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INTRODUCTION

In recent years the works of Stiefel,’ Whitney,” Pontrjagin,® Steenrod,* Feld-
bau,” Ehresmann,® etc. have added considerably to our knowledge of the topol-
ogy of manifolds with a differentiable structure, by introducing the notion of
so-called fibre bundles. The topological invariants thus introduced on a mani-
fold, called the characteristic cohomology classes, are to a certain extent sus-
ceptible of characterization, at least in the case of Riemannian manifolds,’
by means of the local geometry. Of these characterizations the generalized
Gauss-Bonnet formula of Allendoerfer-Weil® is probably the most notable ex-
ample.

In the works quoted above, special emphasis has been laid on the sphere
bundles, because they are the fibre bundles which arise naturally from manifolds
with a differentiable structure. Of equal importance are the manifolds with a
complex analytic structure which play an important réle in the theory of analytic
functions of several complex variables and in algebraic geometry. The present
paper will be devoted to a study of the fibre bundles of the complex tangent
vectors of complex manifolds and their characteristic classes in the sense of
Pontrjagin. It will be shown that there are certain basic classes from which
all the other characteristic classes can be obtained by operations of the cohomol-
ogy ring. These basic classes are then identified with the classes obtained by
generalizing Stiefel-Whitney’s classes to complex vectors. In the sense of de
Rham the cohomology classes can be expressed by exact exterior differential
forms which are everywhere regular on the (real) manifold. It is then shown
that, in case the manifold carries an Hermitian metric, these differential forms
can be constructed from the metric in a simple way. This means that the
characteristic classes are completely determined by the local structure of the
IHermitian metric. This result also includes the formula of Allendoerfer-Weil
and can be regarded as a generalization of that formula.

Concerning the relations between the characteristic classes of a complex mani-
fold and an Hermitian metric defined on it, the problem is completely solved by
the above results. It is to be remarked that corresponding questions for Rie-
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86 SHIING-SHEN CHERN

mannian manifolds remain open. Roughly speaking, the difficulty in the real
case lies in the existence of finite homotopy groups of certain real manifolds,
namely the manifolds formed by the ordered sets of linearly independent vectors
of a finite-dimensional vector space.

The paper is divided into five chapters. In Chapter I we consider the fibre
bundles which include the bundles of tangent complex vectors of a complex
manifold and which are called complex sphere bundles. To a given base space
a complex sphere bundle can be defined by a continuous mapping of the base
space into a complex Grassmann manifold and it is shown that this is the most
general way of generating a complex sphere bundle. We take the Grassmann
manifold to be that in a complex vector space of sufficiently high dimension and
define a characteristic cohomology class in the base space to be the inverse image
under this mapping of a cohomology class of the Grassmann manifold. We are
therefore led to the study of the cocycles or cycles on a complex Grassmann mani-
fold, a problem treated exhaustively by Ehresmann.? A close examination of
Ehresmann’s results is therefore made in Chapter I1, in the light of the problems
which concern us here. In fact, we are only interested in the cocycles of the
Grassmann manifold which are of dimension not greater than the dimension of
the base space. If the Grassmann manifold is that of the linear spaces of n
(complex) dimensions in a linear vector space of n + N dimensions, there are on
it n basic cocycles such that all other cocycles of dimension <2n can be obtained
from them by operations of the cohomology ring. The cycles corresponding to
these cocycles are determined and geometrically interpreted. In Chapter III
we identify the images of these cocycles in the base space with the cocycles ob-
tained by generalizing the Stiefel-Whitney invariants to complex vectors. A
new definition of these cocycles is given, which is important for applications to
differential geometry in the large. Chapter IV is devoted to the study of a
complex manifold with an Hermitian metric. It is proved that the n basic co-
cycles in question can be characterized in a simple way in terms of differential
forms constructed from the Hermitian metric. These results are then applied
in Chapter V to the complex projective space with the elliptic Hermitian metric.
Classical formulas of Cartan' and Wirtinger' are derived from our formulas as
particular cases.

CHAPTER 1
ComrLEX SPHERE BUNDLEs AND THEIR IMBEDDING
1. The complex sphere

Various definitions have been given of a fibre bundle. For definiteness we
shall adopt the one of Steenrod' and follow his terminology. We are, however,
going to restrict the kind of fibre bundles under consideration.

9 ’'HRESMANN, (8].
10 CARTAN, [3].

1 WIRTINGER, (31].
12 STEENROD, [22].
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Let E(n; C') be a complex vector space of n dimensions,” whose vectors will
be denoted by small German letters. In E(n; C) suppose a positive definite
Hermitian form be given, which, in terms of a suitable base, has the expression

n

(1) B=2 77

i=1

where 2 are the components of the vector 4 in terms of the base and the bar
denotes the operation of taking the complex conjugate. A vector j such that
33 = 1 is called a unit vector. The group of linear transformations

(2) e Ay, i=1,m,
£

which leaves the form (1) unaltered is the unitary group and will be denoted by
U(n; C). We shall call the complex sphere S(n; C) the manifold of all the unit
vectors of E(n; C). It is homeomorphic to the real sphere of topological dimen-
sion 2n — 1. The letter C in these notations will be dropped, when there is no
danger of confusion.

In this paper we shall be concerned with fibre bundles such that the fibres are
homeomorphic to the complex sphere S(n) and that the group in each fibre is the
unitary group U(n). Such a fibre bundle is called a complex sphere bundle.

The most important complex sphere bundle is obtained from the consideration
of the complex tangent vectors of a complex manifold M (n) of complex dimension
n and topological dimension 2n. By a complex manifold 3 (n) we shall mean a
connected Hausdorff space which satisfies the following conditions:

1) It is covered by a finite or denumerable set of neighborhoods each of which
is homeomorphic to the interior of the polycylinder

2] <1, 1=1---,n,

in the space of n complex variables, so that z* can be taken as local coordinates
of M(n). _

2) In a region in which two local coordinate systems z' and z*' overlap the
coordinates of the same point are connected by the relations

(3) Z* = fl(zl) ] zn))

where f' are analytic functions.

It follows from this definition that the notions of M (n) which are expressed in
terms of local coordinates but which remain invariant under the transformations
(3) have an intrinsic meaning in M (n). This is in particular true of a tangent
vector at a point, which we define in the usual way as an object which has n com-

13 Throughout this paper we shall mean by dimension the complex dimension. The
dimension of a manifold in the sense of topology will be called the topological dimension,
which is twice the complex dimension. The dimensions of simplexes, chains, cycles,
homology groups, etc., are understood in the sense of topology, so long as there is no danger
of confusion.
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ponents Z' in each local coordinate system and whose components Z', Z* in two
local coordinate systems z°, 2*' are transformed according to the equations

n )

: 9z*

(4) Z* =3 *

=1 0z*

It is clear that the space of the tangent vectors at a point is homeomorphic to
E(n). We consider the non-zero tangent vectors and call two such vectors
equivalent if their components Z', W' with respect to the same local coordinate
system satisfy the conditions
W= o7,

where p is a positive real quantity. This relation remains unchanged under
transformation of local coordinates. Also it is an equivalence relation in the
sense of algebra, being reflexive, symmetric, and transitive. Hence the non-zero
tangent vectors can be divided by means of this equivalence relation into mu-
tually disjoint classes. We call such a class of non-zero tangent vectors a direc-
tion. With a natural topology the space of directions at a point is homeomorphic
to the complex sphere S(n). Furthermore, by using the so-called unitarian
trick in group theory, it is easy to verify that the manifold of all directions at the
points of M (n) is a complex sphere bundle with M (n) as the base space It will
be called the tangent bundle of M (n).

Although all the results in this chapter will be formulated for general complex
sphere bundles, it is the particular case of the tangent bundle of a complex mani-
fold that justifies the study of complex sphere bundles.

2. The Grassmann manifold and the imbedding theorems

Consider the space E(n 4+ N;C) and the linear subspaces of E(n + N;C) of
dimension n. The manifold of all such linear subspaces is called a Grassmann
manifold and will be denoted by H(n, N;C) or simply H(n, N). It is of dimen-
sion nN. The unit vectors of the complex sphere S(n + N) in E(n 4+ N), which
belong to a linear subspace E(n) of dimension 7, constitute a complex sphere
S(n), to be denoted by S(n + N) N E(n).

Now let B be a finite polyhedron in the sense of combinatorial topology and
let f be a continuous mapping of B into H(n, N). From the mapping f we can
define a complex sphere bundle § with B as base space as follows: § consists of
the points (b, v) of the topological product B X S(n + N) such that v e f(b) N
S(n + N), and the projection 7 of ¥ onto B is defined by #(b, v) =b. It is easy
to verify that § is a complex sphere bundle over B, which we shall call the in-
duced bundle over B.

The importance of the notion of complex sphere bundles induced by the map-
ping of the base space into a Grassmann manifold is justified by the following
theorems:

THEOREM 1. To cvery bundle § of complex spheres S(n) over a finite polyhedron
B of topological dimension d there exists a continuous mapping f of B into H(n, N)
with N = d/2, such that § is equivalent to the bundle induced by f.
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THEOREM 2. Let 1 and §2 be two bundles of complex spheres S(n) over a finite
polyhedron B of topological dimension d induced by the mappings f1 , f2 respectively
of Binto H(n, N), N 2 d/2. The bundles §, and §, are equivalent when and only
when the mappings fi and f; are homotopic.

Similar theorems for real sphere bundles are known." It follows from these
theorems that to a class of equivalent bundles of complex spheres S(n) over a
finite polyhedron B of topological dimension d corresponds a class of homotopic
mappings of B into the Grassmann manifold H(n, N), where N is an integer
satisfying 2N = d. This class of mappings induces a homomorphism & of the
cohomology groups of dimension = d of H(n, N) into the cohomology groups of
the same dimension of B. A cohomology class of B which is the image under h
of a cohomology class of H(n, N) is called a characteristic cohomology class or
simply a characteristic class and each of its cocycles is called a characteristic
cocycle.

3. Proofs of Theorems 1 and 2

The proofs of the Theorems 1 and 2 do not differ essentially from the real case-
We shall therefore restrict ourselves to a brief description of the general pro-
cedure. We need the following two lemmas:

LemMma 1. (Covering homotopy theorem)” Let § be a fibre space over a base
space B, which is a compact metric space. Let S be a compact topological space
and let I be the unit interval. Suppose a mapping h(S X I) C § be given having
the property: There exists a mapping H(S X 0) C § such that

h(p X 0) = wH(p X 0), pels,

where  1s the projection of § into B. Then there exists a mapping H(S X I) C §
such that

hpXt) =xH(p Xt), peS, 0

IIA
IIA
o

From Lemma 1 follows the lemma:

Lemma 2 (Feldbau)."® Let § be a fibre bundle over a compact metric base
space B. If B is contractible to a point, then § s equivalent to the topological
product of B and one of its fibres F.

To prove Theorem 1 we are going to define the mapping f whose existence
was asserted by the theorem. We take a simplicial decomposition of B which
is so fine that each simplex lies in a neighborhood, and denote by ¢%,7 = 1, - - -,
ap,k=0,1,---,d, its simplexes. We denote as usual by = the projection of
onto B. Our purpose is to define a mapping f(B) C H(n, H) and a mapping
X(§) < B X S(n + N) such that

14 WHITNEY, [29]; STEENROD, [22].

15 HyrewIcz-STEENROD, [15]. The theorem is given in various papers, in slightly dif-
ferent versions.

16 FELDBAU, [12].
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®) J*p) em(p) X {f(x(p)) N S + N)}

and that for a fixed =(p) the mapping f*(p) is a homeomorphism preserving the
scalar product. The definition of these mappings is given by induction on the
dimension of the simplexes of B. The images f(¢}) e Hn, H), 7 =1, --+ , a9,
are defined in an arbitrary way and it is clear how f*(p) can be defined for all
p € § such that #(p) = ¢%,7 =1, -, a . We suppose the mappings be de-
fined over the (k — 1)-dimensional skeleton of B and consider any simplex ¢*
of dimension k. We take a neighborhood U which contains ¢* and decompose
the set = '(U) into a topological product of U and a complex sphere Sy(n).
Then we can define n mappings ¢i(c*) € §F,¢ = 1, - - -, n, such that: 1) me,(p) =
D, pea; 2) oip), 0i(p), i = j, are orthogonal vectors on the complex sphere
7 '(p). We proceed to define by induction f*(0:(p)) = p X ¢, which will
satisfy the condition that ¢;, q; for ¢« &= j are orthogonal vectors of S(n + N).
By hypothesis, f*(¢1(p)) is defined for all p € 3*.'" Since d¢* is topologically
a sphere of topological dimensionk — 1 <d —1<2N —1<2(n+ N) — 1,
which is the topological dimension of the complex sphere S(n + N), and since
7(p), p € p1(c”), is the cell ¢*, it follows that f*(¢i(p)), p € do*. is contractible in
B X S(n + N). This means that there is a continuous mapping ¢g(d¢° X t) <
B X S(n + N),0 =t £ 1, such that the following conditions are satisfied: 1)
g(dc" X 0) is a point; 2) g(dc* X 1) is identical with f*(¢1(p)). On the other
hand, we can introduce in ¢" the “polar coordinates” p, p, where 0 < p < 1
and p € ds". For a point of ¢* having the coordinates p, p we define

*(eilp, P)) = g(p X p).

Suppose now that
f*(ﬁol(p)) =p Xq,- - 7f*(¢i—l(p)) =p X ¢, P eak,

are defined, such that gz, q;, k,j =1, ---, 7 — 1, k == 7, are orthogonal vectors
of S(n + N). To define f*(¢:(p)) we consider on S(n + N) the complex spheres
S(n + N — 7 + 1) whose vectors are orthogonal to g1, -+, ¢iz1. These com-
plex spheres S(n + N — 7 + 1), depending on p, constitute a complex sphere
bundle over the simplex ¢*. By Lemma 2, it is a topological product of ¢*
and a complex sphere Sy(n + N — 7 + 1). By induction hypothesis, the bound-
ary d¢" is mapped into So(n + N — ¢ + 1), by means of the vectors g; ¢ S(n +
N — i+ 1) (p). Since the topological dimension k& — 1 of 8¢ is smaller than
the topological dimension 2(n + N — 7) + 1 of So(n + N — 4 + 1), the map
is contractible and the mapping of ds* can be extended continuously throughout
o*. Tt follows that a mapping h(¢*) < So(n + N — ¢ + 1) and hence a mapping
h(s") < S(n + N) can be defined such that

() eSn + N — i + 1)(p), ped"

We then define f*(p:(p)) = p X h(p) = p X ¢i, p es*. Clearly the vector
¢: is orthogonal to qi, -+, i1 .

17 We shall make use of the notation do* to denote both the combinatorial and the set-
theoretical boundary of the simplex o*, as the meaning will be clear by context.
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To complete the induction on the dimension k let p* ¢ § such that =(p*) =

p ed*. Then p* has n components u , - - - , u, with respect to ¢1(p), - - - , a(p).
We define f(p) to be the linear space of n dimensions of E(n + N) which con-
tains the complex sphere determined by ¢, - -+, ¢, and

ff@*) =p Xy
where ¢ belongs to f(p) N S(n + N) and has the components u;, - -+, u, with
respect to q1, - -+, qn .

Thus our induction is complete and it is easily seen that the mappings f and f*
fulfill our desired conditions. It is also clear that the complex sphere bundle
induced by the mapping f(B) C H(n, N) is equivalent to §. This proves our
Theorem 1.

Concerning Theorem 2 it is not ditficult to prove that §: and §: are equivalent
if f; and f, are homotopic. The converse is proved by defining a mapping
f(B X I) € H(n, H), with f(B X 0) and f(B X 1) coinciding with the given map-
pings f and f, respectively. Because of the equivalence of §: and . a complex
sphere bundle can be defined over B X I in an obvious way. The rest of the
argument consists of defining the mapping f(B X I) by an extension process
analogous to the proof of Theorem 1. We shall omit the details here.

CuaPTER 11
Stupy or THE CocycLeEs oN A ComMpLEX GRASSMANN MANIFOLD
1. Summary of some known results

Let H(n, N) be the Grassmann manifold of n-dimensional linear subspaces
in E(n, N). Our main purpose in this chapter is to give a homology base for the
cocycles of dimension =<2n of H(n, N). It is to be remarked that, H(n, N)
being a manifold of topological dimension 2nN, there corresponds to each cycle
of dimension s a cocycle of dimension 2nN — s, and vice versa.

There are two different ways to describe the cocycles of H(n, N), which are
both useful to our purpose.

To explain the first method let 0 = ¢()
integral-valued function. Let L;, 1 =< ¢
mension ¢ + ¢(¢) in E(n + N), such that

L, CL .-+ C L,.

< i £ n, be a non-decreasing

= 1
< n, be a linear vector space of di-

N,
n,

Let Z(¢(3)) be the set of all n-dimensional linear spaces X (n) such that
dim (X(n) N L) = 1, i=1-,n,

where the notation in the parenthesis denotes the linear space common to X (n)
and L,. Z(e(?)) is called a Schubert variety in algebraic geometry. Itis a
pseudo-manifold of dimension s = Z,’;l ¢(i) and carries an integral cycle of
dimension 2s of H(n, N). Concerning the significance of the Schubert varieties
for the topology of Grassmann manifolds the following theorem was proved by
Ehresmann:"®

18 EHRESMANN, (8], p. 418.
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THEOREM 3. The Grassmann manifold H(n, N) has no torsion coefficients
and has all its Betti numbers of odd dimension equal to zero. Its Betti number of
dimension 2s vs‘equal to the number of distinct non-decreasing integral-valued Sfunc-
tions (1), 1 £ ¢ < n, such that )_ 11 ¢(t) = s. The integral cycles carried by the
corresponding Schubert varieties Z(p(I)) constitute a homology base for the Betti
group of dimension 2s.

The second method to describe the cocycles of H(n, N) is by means of differen-

tial forms. Let X(n) e H(n, H) and let e;, - - - , ¢, be n vectors in X (n) such
that
ei-e; = 8ij, 1= 'L,] =n.
To these n vectors we add N further vectors e,i1, -+ , e,y satisfying the
conditions
(6) eA'éB=6AB, 1§A,B§n+N.
When there is a differentiable family of the vectors e, - -, e,on , We put
(7) 043 = de,{‘éa ,

which are linear differential forms satisfying the conditions
® 645 + 054 = 0.
Among 6,5 the forms
8., 0w, 1=i<n, n+1=rs<n+N,

constitute a set of 2nN linearly independent forms at each point of H(n, N).
Let 6 be a form in 6;,, 8;, with constant coefficients. © is called an invariant
form if it remains unchanged under the groups of transformations

(9) 0:‘ = Z au‘jejr ’
i=1
* n+N
(10) 0y = E brsais,
s=n+1

where (a:;), (b:s) are arbitrary unitary matrices. It is called exact, if d® = 0.
It is well-known that on a differentiable manifold of class two a cocycle with
rational coefficients can be expressed by an exact differential form, and con-
versely. For convenience we shall therefore call an exact differential form a
cocycle. Then we have the following theorem of E. Cartan:"

TreOREM 4. Every invariant form of H(n, N) is exact. The Betti number of
dimenston 2s of H(n, N) s equal to the number of linearly independent (with
constant coefficients) invariant differential forms of degree 2s. The set of these
forms constitutes a cohomology base of dimension 2s.

19 CARTAN, (3]; EHRESMANN, (8], p. 409
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2. The basic forms

Let r be an integer between 1 and n. For reasons which will be clear later
we shall be particularly interested in the n cycles Z, ,r = 1, - - - , n, carried by
the Schubert varieties defined by the functions

e(1) = N — 1, i=1,+-,n—r+1,
or(t) = N, i=n—r—+2 -, ,n.

The cycle Z, is of dimension 2(Nn — n 4+ r — 1). We shall find the invariant
differential form which gives the cocycle of dimension 2(n — r 4+ 1) correspond-
ing to Z, .

For this purpose we put

(11)

n+N
(12) eii = Z 0.’593]', 1 é 1:,.7 é n;

s=n+1
and

q) — 1 Za . . .
a3) U T @vVoD = &2 e )
Oiir ** Oipe i tin—r1 ,

where 6(i1 * *+ Tn_r41; J1 *** Jnor41) 1S zero except when ji, - - -, ja—ry1 form a
permutation of 41, -+, %,—,41, in which case it is +1 or —1 according as the
permutation is even or odd, and where the summation is extended over all
indices 71, -+ * , Tn_rt1 from 1 to n. It is easy to verify that &, is an invariant

form on H(n, N). Our problem is then solved by the following theorem:

THEOREM 5. The tnvartant differential form ®, defines a cocycle of dimension
2(n — r + 1) on H(n, N), which corresponds to the cycle Z, in the sense that, for
any cycle ¢ of dimension 2(n — r + 1), the relation

(14) Km“m=£@

holds,” whenever both sides are defined.

To prove this theorem we notice that both sides of the equation (14) are linear
in ¢, so that it is sufficient to prove (14) for the cycles of a homology base of
dimension 2(n — r + 1). By Theorem 3, these are the cycles carried by the
Schubert varieties Z(¢(¢)) such that

Zlqo(z')=n—r+1.

Since the function ¢(¢7) is non-decreasing, we must have

(15) p(l) = -+ =9(r—1) =0.

20 The notation KI, due to Lefschetz, means the Kronecker index (or the intersection
number).
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Let ¢+, k = 1, ---, m, be the cycles of a homology base of dimension 2(n —
7 + 1) defined in this way, and let {; be the cycle defined by
(16) e(1) = -+ =o(r—1) =0, o) = =9 = 1.
Then for the cycles ¢, k % 1, we must also have
e(r) = 0.
It is therefore sufficient to prove that
a7 KIG,Z) = [ @, k=1,--,m,
Sk

for the cycles ¢ which are well chosen so that both sides of (17) are defined.

Let us first assume that & > 1. By definition, there exists a fixed linear vector
space L(r) of dimension r such that any X(n) of the Schubert variety carrying
¢r satisfies the condition

dim (X(n) U L(r)) = r,
which means that
X(n) D L(r).
On the other hand, any X (n) of the Schubert variety carrying Z, has the property

that it intersects a fixed linear space L(N + n — r) of dimension N + n — r
in a linear space of dimension =2 n — r + 1. We take in E(n + N) a frame

e, -, enyn and let L(r) and L(N + n — r) be spanned by the vectors ¢ ,
, ¢ and e.41, -+, e.yn respectively. There is clearly no X(n) which con-
tains ¢, -+ -, ¢, and has in common with L(N + n — r) a linear space of di-

mension n — r 4+ 1, which means that
KI(Z,, tx) = 0, k= 1.

To show that the integral on the right-hand side of (17) is also zero, we choose
the frame e;, - -+, e,4» such that e, ---, ¢ belong to L(r) and ¢, ---, e,
belong to X (n). It is obviouslypossible to choose ¢;, - - - , e, to be fixed. Under
this choice we have

and hence
. = 0.
Thus the relations (17)-are proved for k = 1.
To define {; we take two linear vector spaces L(r — 1), L(n + 1) of dimensions

r — 1, n 4.1 respectively, such that L(r — 1) C L(n + 1). An element X(n)
of {1 is then defined by the conditions

Lir — 1) € X(n) C L(n 4+ 1).

Lete, -+, exyn beaframe in E(n + N). We suppose the linear vector spates
in question to be so chosen that
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1, ", ¢ CL(T - 1),

€1, **, gl CL("+ 1);

€yttt Caly Cut, tt, bagy S L0+ N — 7).
By this choice L(n + 1) and L(n + N — r) have in common a linear vector
space of dimension n — r + 1, namely the one spanned by e, - -+, en1, €ns1 -
It follows that Z, and ¢; have in common only one X (n), which is spanned by
€, -, €1, eny1. This intersection is to be counted simply, and we have”™

KI(Z, y g‘l) = 1.

It now only remains to evaluate the integral in the right-hand side of 17)
for k = 1. The linear vector spaces L(r — 1) and L(n + 1) being fixed, we

choose a fixed frame a;, -+ , G.yn in E(n + N) such that a;, - - -, a1 belong
toL(r — 1) and ai, -+, Gup1 to L(n + 1). If X(n) €1, we choose the frame
€1, -+, exsn , whose first n vectors belong to X(n) such that
eA‘:aA; A=1,-..’r—1’n+2,...’n+N,
(18) eB=ZuBcClc, B,C=T,---,n+l,
(o]

where uzc are the elements of a unitary matrix. It follows that

Or; = dey-e; = 0, .

(19) - k=n+2-+-,n+N, 1=1---,n+ N,
O = —6i = 0,

and hence that

0:i; = Bint10nt1;, 1 =475 = n

For simplicity we shall write e for es41, us for un41s, and 6; for 6,41,;. We
remark that X (n) is completely determined by the vector e, whose components
with respect to @r, -, Gn41 AT€ Ur, = ** ) Unt1 . Our purpose therefore is to
transform the form &, into an exterior differential form in ., * -, Ua+1, from
twhich the integration can be carried out. With this purpose in mind, we have

n+1 n+1
0; = de-¢; = <Z dusl]s)(z 'ascac)
B wy C=r
n+1
(20) =Zdu8a|‘5’ i:r,...’n’
Bumr
6; =0, 1 =1, , 1 — 1,
and
eij=—'9i6j, i,j=7‘,"‘,'ﬂ,

all other ©;; being zero. It follows that &, is equal to

21 Cf. EHRESMANN, (8], p. 421.
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(2r/ = 1) ) ) . ) _ B}
(21) m : E 0(i1 ** * Tn—rg1 3 J1 -+ - ]n—r+1)0s'1 050+ Oip iy Oy

— (1) =Dt m—-r+1 B = -
( 1) (27r\/‘_‘—1)n-—r+1 or on 0r 0n .

From now on we shall agree on the following ranges of indices:
Y=Ea,=n y=i,j=n+1
From (20) and
Ony1 = Z dujﬁ,-
7

we get, by solving for du, ,

(22) du.' = Z Uas 0a + Ug 0n+l .
We notice that
(23) 0n+l + an+1 = 0.
Consider now the form
n—r+1
(24) ¥, = Z dur -+ Qrpr—1 QUryrr * * * Qg Ay -+ Alrpi—y Ay g1+ * Allinygs
k=0

which we shall prove to differ from ®, by a numerical factor. In fact, it is
easy to verify, by means of the fact that the matrix (u;;) is unitary, that
Y, =6, 0.8, - 8,,
and hence that
_ iy (=1 4+ DI
(25) ®, = (—1) 2r/=1) v, .

To integrate ®, or ¥, over {; let us notice that X(n) will remain unchanged if e
is replaced by the vector evV=1s¢, p being real. We can therefore normalize the
coordinates u,, - -+, #41 of X(n) by assuming that u,. is real and positive.
Then we have

Y, = du, -+ du, da, - - - di,,
which is to be integrated over the domain
Untt + e + o A Uil = 1, tUpa > 0.
This integration is therreasily achieved. In fact, we put

Uy = vr.+ '\/-—]-wr,

Uy = Vp — _—_—l’w, .
Then
v, = (_l)i(n—r)(n—r+1>(_2 _\/__l)n—r+ldvr dw, - - dv, dw, ,

and the integral is over the domain D:
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W+ it w4 e i dwh =1, Ua > 0.
But the integral

f dw, dvy -+ dw, dv,
D

is the volume of the domain bounded by the unit hypersphere of dimension
2n — 2r + 1, which is equal to #"""!/(n — r + 1)!. Hence we have

n—r)(n—r 2w \/ji) o
v, = (—1 fin—r) (n—r+1) ( ,
/;, (=1) (n —r+ !
and finally,

P, = 1.
{1

Our Theorem 5 is therefore completely proved.

3. The basis theorem

The importance of the invariant differential forms ®,, 1 < r < n, lies in a
theorem we proceed to prove, which asserts that every invariant differential
form of degree < 2n in H(n, N) is a polynomial in ®, with constant coefficients.
The exact statement of our theorem is as follows:

THEOREM 6. Every invariant differential form of degree < 2n in H(n, N) 1s
a polynomial in ®, , 1 < r £ n, with constant coefficients. If the form defines an
integral cocycle on H(n, N), the coefficients are integers.

The theorem follows easily from the so-called first main theorem on vector
invariants for the unitary group, which we state as follows:

LEMMma 3. Let by, -+, b, be a set of vectors in E(n) under transformations
of the unitary group U(n). Every integral rational invariant in the components
of o, 1 £ k £ m, is an integral rational function of the scalar products v ,
'S4, k £ m

It is known that™ under the unimodular unitary group such an invariant is
an integral rational function of the scalar products and of determinants of the
form [v; -+ v,] or [0, --- b,]. But under a general unitary transformation of
determinant eV~1= the determinants [v; - - - v,] and [0, - - - D,] will be multiplied
by eV—1e and e”V-T« respectively. It follows that an invariant will involve the
determinants only in produets of the form [vy - - - b,]-[D1 -+ - 5], which can how-
ever be expressed as a determinant of scalar products:

= =/
| 90 JRRCICICHS ST %

loy -« va][0y - -« %) =

Thus the lemma is proved.

2 WEYL, (28], p. 45.
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To prove Theorem 6 let ¥ be an invariant differential form of degree 2s < 2n
in H(n, N), which is therefore an exterior formin 6;, ,8,,1 < i <n,n+ 1 <
r = n + N, with constant coefficients. The form ¥ being in particular invariant
under the transtormation BTT = ¢V-la 0:, , it follows that ¥,when reduced to its
lowest terms, will contain in each term exactly s factors each of 6;, and 8., .
Let us fix our attention for the moment to the group (10). We take from ¥
all the terms of the form

const. 05”1 e 01-&,30]»1“ e Bjsts y
with a fixed set of the indices 41, -+, 4, j1. -+, Js, and call their sum ¥, .
Since the indices 71, -+, 4., j1, -+, Js are now fixed, we shall drop them for

simplicity.

Now it is well-known that there is an isomorphism between the ring of exterior
forms and the ring of multilinear forms with alternating coefficients. To ¥,
corresponds, in the complex vector space of N dimensions, an alternating multi-
linear form of degree 2s. Since ¥, is invariant under the unitary group (10),
the same is true of its corresponding alternating multilinear form. By our
Lemma the latter is an integral rational function of the scalar products. It
follows by the isomorphism that ¥, can be expressed as a polynomial in sums of
the form Zr 0.0, = —6,;. Consequently, ¥ is a polynomial in 0;;, 1 < 1,
j = n, with constant coefficients.

Let us now put

(26) P, = Z 9i1i29i2i3 e ein—r+1i1 , r = 1’ cee L m.

By the same argument as above, we can prove that ¥, being also invariant under
the group (9), is a polynomial in P, , 1 < r < n, with constant coefficients. On
the other hand, it is easy to show, by induction on r, that P, is a polynomial in
®,, .-+, P, with constant coefficients. Hence the first part of our theorem
is proved.

To prove the second part of the theorem consider the products of the form

(27) L AIRRRE:
such that
(27&) )\1+2)\2+ +n)\,,és

These forms constitute a basis for all invariant differential forms of degree
2s £ 2n on H(n, N). Since s < n, their number is equal to the number of
partitions of s as a sum of integral summands. By Theorem 3 this is equal to
the Betti number of dimension 2s of H(n, N). It follows that the products in
(27) are linearly independent, and that every invariant differential form of de-
gree 2s of H(n, N) representing an integral cocycle is equal to a linear combina-
tion of the products (27) with integral coefficients.
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CHAPTER III
TrE Basic CHArAcTERISTIC CLASSES ON A COMPLEX MANIFOLD

1. A second definition of the basic characteristic classes

Let M be a complex manifold of dimension n. We consider the complex
sphere bundle defined from the tangent vectors of M and imbed it, according
to Theorem 1, in a Grassmann manifold H(n, N), N = n, by means of a map-
ping of M into H(n, N). It follows from Theorem 2 that the inverse image of a
cohomology class of dimension =2n of H(n, N) induced by this mapping is an
invariant of M (or rather of the analytic structure of M), which we have called
a characteristic cohomology class of M. From Theorem 6 we see that of all
the characteristic cohomology classes of M those which are inverse images of the
cohomology classes of H(n, N) containing the cocycles &, 1 < r < =n, play a
particularly important réle, because all the others can be obtained from them
by operations of the cohomology ring. We therefore call these n classes the basic
characteristic classes, the inverse image of the class containing &, being the rth
basic class.

Our first aim is to identify these basic classes with the classes obtained by
generalizing to complex manifolds the well-known procedure of Stiefel-Whitney.”

In order to understand the situation we recall briefly the results of Stiefel-
Whitney for real sphere bundles, emphasizing the differences between the real
and complex cases. From a bundle of real spheres of dimension n — 1 over
a polyhedron as base space Stiefel and Whitney considered the fibre bundle
over the same base space whose fibre at each point is the manifold V(n, r) of
r(l1 £ r £ n) linearly independent points of the real sphere at this point. It
was proved that all homology groups of dimension <n — r of V(n, r) vanish
and that the homology group H"™" (V(n, #)) of dimension n — r of Vn, r) is
the free cyclic group or the cyclic group of order 2 according as the following
condition is satisfied or not: n — ris even or r = 1. To define a generator of
H" " (V(n, r)) we take an ordered set of r — 1 mutually perpendicular unit
vectors ¢, - -+, ¢._; in the Euclidean space E" of dimension n which contains
the sphere of dimension n — 1. The unit vector e, of E" perpendicular to
e, -+, ¢,_; describes a sphere of dimension n — 7, which, when oriented,
defines a cycle ¢, belonging to one of the generating homology classes of
H" " (V(n, r)). We then take a simplicial decomposition K of the base space
such that each simplex of K belongs to a neighborhood. Let the simplexes of
K be oriented. It is possible to define a continuous mapping of the (n — r)-
dimensional skeleton of K into the fibre bundle such that each point is mapped
into a point belonging to the fibre over it. Let ¢" "' be a simplex of dimension
n —r+ lof K. In aneighborhood containing ¢"~"*' the fibre bundle can be re-
solved into a topological product and can therefore be mapped into one fibre.
Since the mapping is defined over the boundary d¢" "', we get a mapping of

23 STIEFEL, [24]; WHITNEY, [29].
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a sphere of dimension n — r into a fibre and hence an element h of H*™"(V(n, r)).
The delicate point is to get from this element h an integer or a residue class mod.
2. This is possible if a generating element of H" "(V(n, r)) is defined. When

H""(V(n, r)) is cyclic of order two, it has only one generating element, so that
no further assumption is necessary. When H" "(V(n, r)) is a free cyclic group,
we assume that a continuous field of generating elements of H"™"(V(n, r)) can be
defined over the whole M, which is possible if M is orientable. The element h
is then equal to the generator of H" "(V(n, r)) so defined, multiplied by an
integer or a residue class mod. 2. Taking this integer or the residue class mod. 2
as the value of a cochain for the simplex ¢" "', we get an integral cochain or
a cochain mod. 2. It was proved that the cochain is a cocycle and that its co-
homology class is independent of the choice of the mapping from which it is
defined. This cohomology class is the class of Stiefel-Whitney. It is to be
remarked that the definition can be given under more general conditions, but we
shall be satisfied with the above résume.

The situation is simpler in the case of complex sphere bundles. From a
bundle of complex spheres S(n) we consider the fibre bundle §'” over the same
base space whose fibre at each point is the manifold U(n, r) of 7(1 £ r < n)
linearly independent vectors in E(n). It can be proved that* all homology
groups of dimension <2n — 2r + 1 of U(n, r) vanish and that the homology
group H*"*"*'(U(n, r)) of dimension 2n — 2r + 1 is a free cyclic group. To
define a generator of H*"*"*'(U(n, r)) we take in E(n) an ordered set of r — 1

mutually perpendicular unit vectors ¢;, -- -, ¢,_; . The unit vector ¢, in E(n)
perpendicular to e, - - -, e,_; describes a complex sphere in the E(n — r + 1)
perpendicular to e;, -+, ¢,_; . The complex sphere S(n — r + 1) in E(n —

r + 1) is topologically a real sphere of topological dimension 2n — 2r + 1. Its
two arientations define two cycles belonging respectively to the two generating
classes of H*" " (U(n, r)). The cycle carried by the oriented real sphere S(n —
r 4+ 1) is completely determined by the orientation of E(n — r 4+ 1) considered
as a real Euclidean space of topological dimension 2(n — r 4+ 1). This orienta-
tion is independent of the order of the vectors e, ---, ¢, in E(n — r 4+ 1). It
follows that the fibre bundle § is orientable in the sense of Steenrod, which
means that there is an isomorphism in the large between the (2n — 2r + 1)-
dimensional homology groups of the fibres of ", or that a.continuous field of
generating elements of H**~>*(U(n, r)) can be defined over the whole manifold.
The fibre bundle ' has two opposite orientations and we shall from now on
make a definite choice of one of them. Using this “oriented’’ fibre bundle, we
shall be allowed to replace an element of H*"**(U(n, r)) at a point by the
integer which, when multiplied by the generating element at this point, is equal
to the element in question.
With these explanations understood, we have:

24 EHRESMANN, [9]. This fact is easily proved by making use of the covering homotopy
theorem, the complex case being even simpler than the real case.
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THEOREM 7. The vt basic characteristic class of a complex manifold M of di-
mension n can be defined as follows: Take a simplicial decomposition of M each of
whose simplexes belongs to a neighborhood, and define over its skeleton of dimension
2n — 2r 4 1 a continuous field of ordered sets of r linearly independent complex
tangent vectors. To each simplex of dimension 2n — 2r + 2 take a point in its
interior and consider the manifold of the ordered sets of r linearly independent com-
plex tangent vectors at that point. The field on the boundary of the simplex defines
a mapping of the boundary into this manifold and hence an element of its (2n —
2r + 1)-dimensional homotopy or homology group, which is free cyclic. Attach
the corresponding integer to the simplex. The cochain so defined is a cocycle and
belongs to the rt* basic class.

To prove this theorem we take on H(n, N) a definite Schubert variety V de-
fined by the function in (11), which carries a cycle Z, dual to the cocycle ®, .
The Schubert variety being an algebraic variety on the algebraic variety H(n, N),
it follows from the triangulation theorem of algebraic varieties’ that H(n, N)
can be covered by a complex L such that V is a subcomplex. Let L* be the dual
cellular subdivision of L and let f be a mapping of M into L*, which, according to
Theorem 1, induces over M a complex sphere bundle equivalent to the tangent
bundle of M. By the theorem on the simplicial approximation of mappings
there exists a subdivision of M and a simplicial mapping f, of the subdivision
into L* such that f and f; are homotopic. By Theorem 2 the complex sphere
bundle over M induced by f, is equivalent to the tangent bundle of M. For
simplicity of notation we can therefore assume f to be a simplicial mapping of
M into L*.

Let K be the skeleton of M of dimension 2(n — » 4+ 1). f(K) is a subcomplex
of L* of dimension < 2(n — r 4+ 1). The rt® basic cocycle of M is by definition
a linear function of the integral chains of dimension 2(n — r + 1) of K such
that its value at a simplex o of K is the intersection number of f(s) and V.

To give a description of the Schubert variety V we take in E(n + N) a linear
subspace L(n + N — r) of dimension n + N — r, and let L(r) be the linear sub-
space of dimension r which is totally perpendicular to L(n + N — r). Then
V consists of all X(n) of H(n, N) satisfying the condition

dim(X(r) NL(n + N — 7)) =2n —r + 1.

We take in L(r) r mutually perpendicular unit vectors a;, ---, a,. To each
X (n) not belonging to V the projection of a;, - - - , a- on X (n) will give r vectors
which are linearly independent, and the construction fails exactly for the X(n)
belonging to V.

With these preparations consider a simplex o of K. If the intersection num-
ber KI(f(s), V) = 0, the above construction will give a continuous field of r
linearly independent complex vectors at each point of f(o) and hence also at
each point of o, which shows that the integer attached to ¢ according to the
statement of the theorem is also zero. It remains therefore to consider the case

25 yAN DER WAERDEN, [26].
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that KI(f(e), V) = ¢ # 0. In this case f(s) is of dimension 2(n — r + 1).
Since f(o) and V belong to dual subdivisions, we.have e = + 1. Let Xy(n) be
the linear space of H(n, N) common to V and f(¢). The orthogonal projection
of ar, -+, a, defines on each X(n) # X,(n) of f(¢) r linearly independent com-
plex vectors, which, by the resolution of all the X (n) belonging to f(¢) into a
topological product, are mapped into the manifold p of all the ordered sets of r
linearly independent vectors in Xy(n). Our purpose is to prove that by means
of the sets of vectors on the boundary §f(s), 8f(s) is mapped into a cycle belong-
ing to the generator of the (2n — 2r + 1)st homology group of u. For simplicity
of language let us call index the integer m obtained by mapping the field on the
boundary §f(¢) into a fibre U(n, r), the image cycle being in the homology class
equal to m times the generator of H*" " (U(n, r)).

Suppose first that a continuous field of ordered sets of n linearly independent
vectors e, - -+, e, is defined throughout f(s) and let r linearly independent
vectors fi, - -+, §. be defined over §f(s) such that

f¢=2f=’kelc, 1=
k=1

Regarding e, - - -, e, as fixed, these equations also define a mapping of 3f(o)
into u. We assert that their indices are equal. In fact, the existence of the field
&1, -+, ¢, throughout f(s) provides exactly a deformation of the field e, , - - -,
e, over df(¢) into vectors e, , - - - , ¢, which are constant.

We assume that X(n) has the property that the orthogonal projections of
a, -+, ar-—1 onto it are linearly independent, which is possible, after applying a
small deformation if necessary. Since f(o) is a simplex, we can define over f(o)
a continuous field of n linearly independent vectors, such that in every X (n) the
first r — 1 of these vectors are the orthogonal projections in X(n) of ay, -+,
a,_; respectively. This continuous field is then deformed into a continuous field
&1, -+, e, over f(¢) such that in each X(n) the vectors ¢, - - - , e, constitute a
frame (that is, are mutually perpendicular unit vectors). It is well-known that
the deformation can be so chosen that during the deformation the vector sub-
space determined by the first s vectors (1 £ s < n) remains fixed. With these
deformations performed, we proceed to study the orthogonal projection ar of
a, in X(n).

The index of the field of orthogonal projections of a;, - - - , a, on 8f(s) is equal
to the index of the field ¢, - - - , ¢,_1, ar on 9f(c) and is also equal to the index
of the same field, when ¢, --- , ¢,_;, are considered as constant vectors. We
also remark that the vector a) is linearly independent of e, - -+, ¢, at every
point # Xo(n) of f(o).

To show that the index in question is 1 we choose the continuous field of vec-
tors .41, **+ , eapn Over f(o) such thate,, 1 £ A < n + N,isaframein E(n +
N). Then we have

IIA

r.

n+N n+N

a,=2u4e4, Z'U,ATZAr'l,
A=l A=1
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and

n
%*
a, = Z Uri €
1=1

According to our previous remark we can regard the vectorses ,1 S 4 = n + N,
as fixed and consider the mapping of f(¢) — Xo(n) into S(n — r) defined by the
vector whose components with respect to a fixed frame are w,r41, ***, Umn .
Thus we see that the index is 1, and Theorem 7 is proved.

It is also possible to introduce from a bundle of complex spheres S(n) the fibre
bundles §* over the same base space whose fibre at each point is the manifold
U*(n, ) of all ordered sets of r(1 £ r £ n) mutually perpendicular vectors of
S(n). The manifold U*(n, r) .is an absolute retract of U(n, r). Theorem 7
still holds, if we replace everywhere the phrase “‘ordered sets of r linearly inde-
pendent complex vectors” by “ordered sets of r mutually perpendicular vectors
of S(n)”, and, naturally also the manifold U(n, r) by U*(n, ).

2. A third definition of the basic characteristic classes

We suppose in this section that the base space M, which is a complex manifold,
is compact. From the tangent bundle § over M we construct the fibre bundle
&% (1 < r £ n) as explained at the end of the last section. Then the following
theorem gives a third definition of the r* basic characteristic class:

TuroreM 8. The rt basic characteristic class of M s the cohomology class of
M, each of whose cocycles v has the following property: Under the projection of
&% into M, v is mapped into a cocycle v*. There exists in F7* a cochain B*,
su(ch that 88* = ~* and thot 8* reduces to a fundamental cocycle on each fibre of
FO,

The last statement in the theorem needs some explanation. Let P be a poly-
hedron and Q C P a closed subpolyhedron of P. If vy isa cochain in P, its re-
duced cochain on Q is the cochain v’ such that v'-0 = ev-o, where e = 1 or 0
according as the simplex o belongs to Q or not. Moreover, the integral cohomol-
ogy group of dimension 2n — 2r + 1 of a fibre being free cyclic, a fundamental
cocycle on the fibre is a cocycle of dimension 2n — 2r + 1 which belongs to a
generator of the cohomology group. It is also understood that the cycles and
cocycles are defined in terms of simplicial decompositions of M and F7*. To
define the inverse mapping of the cocycles of M into the cocycles of & * induced
by the projection = of &"* into M, we therefore take a simplicial approximation
x of . Let o* be a simplex of dimension 2n — 2r + 2 of F”*. Then we define

y*o* = v -7'(c%),

if 7'(o*) is of dimension 2n — 2r + 2 and v*-o* = 0 if 7'(¢*) is of lower dimen-
sion. The cocycle v* depends on ', but its cohomology class is independent of
it. The theorem asserts that any such cocycle y* reduces to a fundamental
cocycle on a fibre.
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In order to prove Theorem 8 we need the following lemma:

Lemma 4. With the notations of Theorem 8 let U be a neighborhood of M and
let ' (U) be its complete inverse image in F"*. Let K be a finite complex and L
its skeleton of dimension < 2n — 2r. If f and g are two continuous mappings into
7 '(U) of K and L respectively, there is a continuous mapping f* of K into = (U)
which is homotopic to f and coincides with g on L.

We denote by I the unit segment 0 < ¢ < 1 and consider the topological
product K X I. To prove Lemma 4 is to define a continuous mapping f(K X I)
C »'(U), with f(K X 0) and f(L X 1) given. For this purpose we decompose
K simplicially and arrange the simplexes of the decomposition in a sequence that
every simplex is preceded by its faces. The mapping is then defined by suc-
cessive extensions over the prisms constructed on the simplexes of the sequence.
We resolve = '(U) into the topological product of U and a fixed fibre F, and de-
note by A the projection of #'(U) onto F,. Let ¢’ be a vertex of K. Then
f(e” X 0) and f(¢” X 1) are both defined in §*, and can be joined by a segment,
on which the prism on ¢’ is mapped. Using mathematical induction we suppose
f be defined over all prisms on simplexes preceding ¢™ of the sequence, and con-
sider ¢™, m £ 2n — 2r. By hypothesis, the mapping is defined over 8(¢™ X I),
which is topologically a sphere of topological dimension m. The mapping can
be extended over ¢™ X I, if and only if f(8(c™ X I)) is homotopic to zero in
§7* that is, by the covering homotopy theorem, if and only if Af(d(c™ X I)) is
homotopic to zeroin F, . The latter is the case, because the m'* homotopy group
of Fo is zero. It follows that f is defined for the subcomplex L X I 4+ K X 0
of the prism K X I. By a well-known elementary geometric construction® f
is then extended over K X I. Thus the lemma is proved.

We proceed to prove Theorem 8. Let v be a cocycle of M belonging to the
r basic class defined by the construction of Theorem 7, with the bundle F~
replaced by §*. To explain Theorem 7 for this case, we take a simplicial
decomposition of M which is so fine that each simplex belongs to a neighborhood
of M. Let K% = K be the (20 — 2r + 1)-dimensional skeleton of the
simplicial decomposition. There exists a continuous mapping ¥ of K into §*
such that »¥(p) = p for every p e K. Let ¢ be a simplex of dimension 2n —
2r 4+ 2. The mapping ¥ defines a mapping of the boundary d¢ of ¢ into F7*
and the mapping \¥ defines a mapping of do into F,, , and hence a cycle of dimen-
sion 2n — 2r + 1 of Fy. Let this cycle be homologous to a multiple y(o) of the
generating cycle of dimension 2n — 2r + 1 of F,. According to Theorem 7 the
cocycle y(¢) defined by assigning the integer v(¢) to o belongs to the rt basic
class. Moreover, it was also proved®’ that to a given cocycle v of thert basic
class there exists a mapping ¢ such that y(y) = y. We suppose ¢ to be so
chosen.

Let =’ be a simplicial approximation of = and let ¥* be the inverse image of
v under 7’ as defined above. We shall show that v* is the coboundary of an

26 ALEXaNDROFF-Horr, [1], p. 5018
¥ STEENROD, (21], p. 124.
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integral cochain 8* of dimension 2n — 2r 4+ 1 of F*. To define 8* let +* be
a simplex of dimension 2n — 2r 4+ 1 of ”* and let r = #’(+*). The discussion
will be divided into two cases, according as r is of dimension equal to or less than
2n — 2r 4+ 1.

Suppose 7 be of dimension 2n — 2r + 1. In this case =’ establishes a simplicial
and therefore topological mapping between 7 and 7*. By Lemma 4 there exists
a mapping ='’(r) C §*, which is homotopic to = ~'(r) and coincides with ¥
on the boundary 7. We then take an oriented sphere of topological dimension
2n — 2r + 1 and denote by H,, H, its two hemispheres. We map H, and H,
into 7 by the mappings h; and &, of the degrees —1 and 41 respectively, such
that h, and h, are identical on the “equator” H; N H,. A mapping f of the
sphere H, + H, into §”* is then defined by the conditions

f(p) = ="', (p), peH,,

J(p) = vha(p), peH,.

This mapping f is by construction continuous. Taking its projection \f on F,,
we get an element of the (2n — 2r 4 1)-dimensional homotopy group of the fibre
and hence an integer, on account of the orientability of the bundle §*. This
integer we define to be 8*- 7*. It is to be remarked that 8*- 7* in general depends
on the deformation which carries =~* to =/, but only one such deformation will
be utilized, and 8*- 7* is thus well defined.

Next let 7 be of dimension < 2n — 2r + 1. We suppose without loss of gen-
erality that po = m(F,) e 7. Let any simplex 7’ of dimension 2n — 2r + 1 be
mapped into 7* by a non-degenerate orientation-preserving simplicial mapping.
By Lemma 4 this mapping is homotopic to a mapping ='” (') C §"'* such that
7" (87") = qo, where ¢, is a point of F,. We identify all the points on d7', thus
getting an oriented sphere of topological dimension 2n — 2r 4 1, which is
mapped into Fo by the mapping Ax'"’(#') C F,. This mapping defines an ele-
ment of the (2n — 2r 4+ 1)-dimensional homotopy group and hence an integer,
which is defined to be g*- r*.

It remains to show that the coboundary of the cochain 8* so defined is equal
toy*. For this purpose let o* be a simplex of §”* of dimension 2n — 2r + 2.
It is sufficient to verify that v*.¢* = §8*.¢* = g*-do*.

Suppose first that ¢ = 7'(¢*) is of dimension 2n — 2r + 2. The mapping
7'’ is defined for each simplex of d¢ and hence for ds itself, because it coincides
with ¢ on the (2n — 2r)-dimensional skeleton K**™*. We therefore have two
mappings, Ay and Ax’’ respectively, of d¢ into F, such that they are identical on
K* . Our fibre Fo being (2n — 2r)-simple, this is a situation discussed by
Eilenberg,” who introduced several cochains, denoted in his notation by c(\y),
c(Ar'’), d(\y, Ar”’) respectively. In our notation they are given by

c(\W)-0 = 7*-d%
c(\r'"") = 0,
d\y, A1) -390 = B*-d0*,
28 EILENBERG, [11], pp. 235-237.
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where the second relation follows from the fact that A=’/ is defined for the simplex
o bounded by ds. From a theorem of Eilenberg we have

sdM, A1) = c(\W) — ("),

or

y*-o* = B*.90*,

which is to be proved.

Next suppose ¢ = ='(¢*) be of dimension <2n — 2r + 2. If each simplex
of do* is mapped by =’ into a simplex of dimension <2n — 2r + 1, g*-dc* is
clearly zero. The other possibility is that ¢ is of dimension 2n — 2r 4+ 1 and
that exactly two of the simplexes of do*, say 71 and 75, are mapped by =’ into
o. If 7f and r; are coherently oriented with the boundary d¢*, it follows by
definition that §*- (11 + 72 ) = 0. On the other hand, it is not difficult to see
that g*- (do* — 1 — 72) = 0. Hence we have B*-d¢* = 0. We have thus
proved that v* is the coboundary of a cochain §*.

To see that 3* reduces on a fibre F, , we suppose the simplicial decomposition
of F”* so made that F, is a subcomplex. Every simplex of F, is mapped by
7’ into a point, so that we have v*-6* = 0 for every simplex ¢* of dimension
2n — 2r + 2 of Fy, which shows that 8* reduces to a cocycle on F,. To show
that 8* is the fundamental cocycle on F, , it is sufficient to show that one is the
value of its product with a cycle belonging to the generating homology class of
dimension 2n — 2r + 1 of Fy. For this purpose we take an oriented sphere of
topological dimension 2n — 2r + 1 and map it simplicially into Fy such that the
map belongs to the generator of the (2n — 2r 4 1)-dimensional homotopy group
of Fy. The image of this map defines a cycle of F, belonging to the generating
homology class of the (2n — 2r + 1)-dimensional homology group, and its prod-
uct with g* is 1. It follows that 8* reduces to a fundamental cocycle on F,.

Our Theorem 8 is now completely proved.

3. In terms of differential forms

Consider again the Grassmann manifold H(n, N). We take as point of a new
space a linear space E(n) and r vectors e,—,41, - - -, ¢, belonging to E(n) such
that e, = 6;;,n —r+ 1 =1, 7 =n. Thisspace, to be denoted by R(r, n, N),
is clearly a fibre bundle over H(n, N), the projection of a point of R(r, n, N) being
the corresponding E(n) and each fibre being homeomorphic to U* (n, r). This
fibre bundle R(r, n, N) is transformed transitively by the unitary group in the
space E(n + N). Let W, be the rt* basic class of H(n, N) and v ¢ W, be one of
its cocveles. v is mapped by the inverse mapping induced by any simplicial
approximation of 7 into a cocycle having the properties asserted by Theorem 8.
In particular, we can take for v the cocycle defined by the differential form &, .
The inverse image of ®, in R(r, n, N) under = is a differential form which for con-
venience we denote by ®, . The form &, then defines a cocycle v* in R(r, n, N).
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From Theorem 8 it follows that® there exists a coéhain g* in R(r, n, N) such
that 3% = v* and such that 8* reduces to a fundamental cocycle on a fibre.

In order to define 8* in R(r, n, N) by means of a suitably chosen differential
form, we shall make use of the following lemma proved by de Rham:*

LemMA 5. Let M be a compact differentiable manifold of class Z2 and let K
be a stmplicial decomposition of M, whose simplexes are of ;¢ =1, -+ ,0p, D =
0, 1, - - -, n, and whose incidence relations are

ap—1
dg? = g 1;5-?)0',7-’—1
Then there exists a set of differential forms
(p)

() ’L‘=17"'1a1’1 p=0’17”"n9

such that the following conditions are satisfied:

()
1) f e’ = &,
ai(p)
(» (p+1) (p+1
2) de'® = 3 7tV Pt

We apply this lemma to the manifold R(r, n, N), and write for simplicity
p = 2n — 2r + 1. The cochain 8* is defined by definition by a system of equa-
tions

Let
w = i )\;w(;p).
i=1

Then we have

which shows that the differential form w defines the cochain 8*. By construction
we have

dw = @, .

Now the unitary group U(n 4+ N) in E(n + N) transforms transitively the
manifold R(r, n, N). Let s be a transformation of U(n + N). If 6is a differen-

29 We have tacitly assumed at this point of our discussion that the Theorem 8, proved by
a combinatorial construction for the simplicial approximations of the projection , holds
for = itself, when the cocycles are expressed by means of differential forms. It is, however,
possible to avoid this assumption by observing that the cochain B8* exists in R(r, n, N)
such that §8* = v*. That 8* reduces to a fundamental cocycle on a fibre then follows from
the very definition of the characteristic cocycle on H(n, N).

0 pr Ranm, [20], p. 178.
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tial form in R(r, n, N), we shall denote by s8 its transform by the transformation s.
We also use the notation § ~ 0 to denote that 6 is derived.
LemMa 6. Let 8* be a cochain of dimension 2n — 2r + 1, whose coboundary is
v*. Let w be a differential form which defines 8*. Then sw — w ~ 0.
First of all, the differential form sw — w is exact, since we have
d(sw — w) = sb, — &, = 0.

Let ¢ be a cycle of dimension 2n — 2r + 1 of R(r, n, N). It is sufficient to prove

that
f Sw = fw.
¢ ¢

The cycle sw — w being homologous to zero, let Z* be the chain it bounds.

Then we have
fSw—waf w=fw=f<1>,-.
¢ st—¢ az* z*

Let Z be the projection in the base space H(n, N) of the chain Z* in R(r, n, N).
The boundary of Z is the projection of st — ¢. Since the Betti group of dimen-
sion 2n — 2r 4+ 1 of H(n, N) is zero, the projection of ¢ bounds in H(n, N) a
chain which we shall call Z,. Then the projection of s¢ bounds the chain sZ; ,
and we have

Z ~ SZ1 - Z1 .
It follows that
¢r=fd>r= s, — . = 0.
z* z z, z,

Thus Lemma 6 is proved.

THEOREM 9. Under the projection of R(r, n, N) into H(n, N) the differential
Sform ®, is mapped by the tnverse mapping into R(r, n, N). There exists a differen-
tial form m which is tnvariant under transformations of the unitary group U(n + N)
operating in R(r, n, N) and whose exterior dertvative dr s equal to ®, .

By Lemma 5 we can construct the differential form w in R(r, n, N) such that

dw = &, .
For such a differential form it follows from Lemma 6 that
0w — w ~ 0.

Let dv be the invariant volume element of U(n + N) such that the integral of
dv over U(n + N) is equal to 1. We put

II = f sw db.
U(n+N)
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Then IT is invariant under U(n + N) and we have

AH = f Sdwedy = &, dv = ®,,
U(n+N) U(n+N)
which proves our theorem.

To a point of R(r, n, N) we now attach the frames ¢;, - -+ , e,ex in E(n + N)
such that e, , - - - , ¢, determine the E(n) and that e,_,41, - - - , e, are the vectors
in question. For clearness let us agree in the remainder of this section on the
following ranges of indices:

1<a,8vy=n—-r, n—r+1=<A4,BC<n,
n+1=<4,j,k=n+N.

In a neighborhood of R(r, n, N) we can choose a differentiable family of such
frames, one attached at each point of the neighborhood. By means of the
family of frames the forms 644, 6.4a, 0.4., 04i, 845 can be constructed according
to the equations (7). They constitute a set of linearly independent linear differ-
ential forms at each point of R(r, n, N). Our form m, whose existence was as-
serted by Theorem 9 and which is invariant under U(n + N), is necessarily a
polynomial (in the sense of Grassmann algebra) in the forms of this set, with
constant coefficients. On the other hand, the form II, being itself in R(r, n, N),
must be invariant under the transformation

9;;' = ZaijoA i
1
where a;; are the elements of a unitary matrix. We put

O4p = Z 04:0:8

It follows from the first main theorem on vector invariants of the unitary group
that ITis a polynomial in 04, 4«, 045,045, With constant coefficients. More-
over, on a fibre, that is, omitting all terms in 6,5 , II becomes a fundamental
cocycle.

All these results can be summarized in the following theorem:

TrEOREM 10. There exists in R(r, n, N) a polynomial 11 in 0as, Oaa, 045,
6.5, with constant coefficients, such that dIl = ®,. When all terms involving
O©.45 in I are omilled, the form defines a fundamental cocycle on a fibre.

CHAPTER IV
HerMIiTIAN MANIFOLDS
1. Fundamental formulas of Hermitian Geometry

Let M be a compact complex manifold. M is called an Hermitian manifold,
if an intrinsic Hermitian differential form is given throughout the manifold. In
each local coordinate system z' the Hermitian differential form is defined by
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n

(28) s’ = Zl i (2, (e d?), G = gis,

4=

where, as well as in later formulas, we insert a parenthesis to designate that the
multiplication of the differential forms in question is ordinary multiplication.
We shall agree, unless otherwise stated, that the indices 7, j, k take the values
1 to n.

Our main result in this chapter is to establish that the n basic classes which
arise from the analytic structure of a complex manifold, are completely deter-
mined by the Hermitian metric, if the manifold in question is an Hermitiar: mani-
fold. In particular, as we shall see later, the theorem for the class I¥; reduces
to the formula of Allendoerfer-Weil, if we interpret the Hermitian metric as a
Riemannian metric for the real manifold of 2n topological dimensions.

We begin by establishing the fundamental formulas for local Hermitian
Geometry.

For this purpose we determine in a neighborhood of M n linear differential
forms ¢; in the local coordinates z' such that

(29) ds' = 2 (o).

1=1

The forms ¢; are determined up to a unitary transformation:
(30) Wi =D Uije;, i=1---,n,
1=1

where u;, are the elements of a unitary matrix
U= (ni1)~

and which we take to be independent variables. Let e; be the dual base corre-
sponding to w;, so that

wi(er) = i .
From the Hermitian differential form a scalar product of the contravariant vec-
tors can be defined, and we have

e,--Ek = 0.
We shall call a frame the figure formed by a point P and n such vectors e; .
With a natural topology the set of frames constitutes a fibre bundle over M.

The forms w; are intrinsically defined in the fibre bundle. By actual calcula-

tion in terms of a local coordinate system, we find that their exterior derivatives
are of the form

dw; = Z wjw;j; + Z Ak WjWJ; + Z bijkwjd)k; Q;jk + Q5 = 0,
i 7k Tk

where
wij = 2 Wiy,
k
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so that
rwip + wi = 0.
But the forms w,, are defined up to the transformation
wij = wij + 25 Njwor — 2 Njadn

where the quantities \;;;, are arbitrary. It is easy to show that there exists one,
and only one, set of forms w.;, such that the following equations are satisfied:

(31) dw; = Z wjwj; + Z Aijkijk, Aijk + Aikj =0, wij + @i =0,
1

iik

From the uniqueness of this set of forms follows the fact that they are intrinsi-
cally defined in the fibre bundle. The forms w;, w;; constitute therefore a set
of linearly independent linear differential forms in the fibre bundle.

From equations (31) it is possible to draw all the consequences of local Her-
mitian Geometry. In fact, we put

(32) Q = ]Zk Arwjwr.
Exterior differentiation of the first set of equations in (31) will give
49 = 3 wxui + 2 Qows =0,
where we have put
(33) Q= dwi; — fkj Wik Wk -
We remark that dQ; + Y Quwsi is of the form D_ ;i ¥ipwjwr . It follows that
w o wai; =0

and that we can put
Qie = 2 xikje; -
On the other hand, we have
Qix + Qi = 0
or
JEXM%‘ + Z}: Xrijw; =0,

which shows that x.; is a linear combination of wk, @k :

n n
Xikj = E Gikiwr + 2 bijri@r.
=1 =1
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Substituting this expression of x.; into the last equation, we see immediately
that a;;; must be symmetric in the last two indices j, I. It follows that Q. is of
the form

Qu = Z bijimw; .
The equations for the exterior derivatives dw; , dw,; and the equations obtained

therefrom by exterior differentiation we shall call the fundamental equations of
local Hermitian Geometry. These equations will now be summarized as follows:

de; = ZJ: wjwj; + @,
dwij = ; wirwr; + Qij,
A + 2L Qi — 2 w;%i =0,
]
(34) da.; + )I; Qipwr; — Zk wieli; = 0,
Q=2 Ajpwsor, Aijp + Au; = 0,
Qi = 1.:2:'1 Rijimdrwm , Rijim = st,mz,
wi; + @5 =0, Qi+ Q2 =0.

In a well-known way the forms w;, w;; can be interpreted as defining an in-
finitesimal displacement, by means of the equations

dp = Z w; e,
de.- = Z wi;85.
i

Of importance are the Hermitian metrics satisfying the condition

(35)

(36) QL =0,

which will be called Hermitian metrics without torsion. An Hermitian metric
without torsion can be characterized by the condition

37 d(Z' wi@;) =0,

and was studied by E. Kihler.” Kishler proved that in this case there exists

1=t

locally a function F (2%, 2°) such that the metric can be written in the form

2 F

2 _ i =k
(38) s’ = > 57 a5 (42" ).

1,k

Hermitian metrics without torsion play an important réle in the theory of auto-
morphic functions of several complex variables.

3t KAHLER, [16].
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2. Formulas for the basic characteristic classes
As defined in Chapter III there are on M n basic characteristic classes, the rt
one (1 £ r £ n) being of dimension 2(n — » + 1). We shall show that, it M is
an Hermitian manifold, these classes are defined by the local properties of the
Hermitian metric. For this purpose we put
v = 1
39  @vV-D""@m-—r+ D!

Z B(il e in—r+1 §j1 e jn—r+l)9im e Qin-rﬂin—rﬂ )
where Q; are the forms defined in (34) and where the meaning of the summation
has been explained before. Then we have the following theorem, which is the
main result of this paper:

THEOREM 11. The form ¥, defined by (39) is the form corresponding to the r*®
basic characteristic class W, in the sense that the product of any homology class { of
dimension 2(n — r + 1) with W, is equal to the integral of ¥, over {:

(40) pm=£%.

We first establish the following lemma:

LemMa 7. Let A be the differential form 11 in Theorem 10, with cvery 6 and
O replaced by the corresponding w and @ with the same indices. Then dA = ¥, .

We observe that the equations for dw;; , dQ;; are exactly of the same form as
the equations for d,;, d6,;, the only difference being that 6;; is given bv the
equation (12). It follows that

n+N

dA - ‘I’r = 0 mOd. Q,‘j - Z oiB aBj .

B=n+1

By mathematical induction on the degree of dA — ¥, it is easy to show that then
da — ¥, = 0.

To prove Theorem 11 we make use of the definition of IV, given in Theorem 7,
with § replaced by F'”*. A sufficiently fine simplicial decomposition K of
M is taken and a continuous mapping ¥ of its (2n — 2r + 1)-dimensional skele-
ton into F'"* is defined, such that the image of every point belongs to the fibre
overit. Let 63" * ™ ores,1 < A £ 242, be the simplexes of dimension
2n — 2r + 2 of K. By the construction of Theorem 7, an integer v(o24) is de-
fined for every o, , and the corresponding cocycle v belongs to W, . It is suffi-
cient to prove that

(40a) oy = f;“/

Both sides of the equation (40a) being linear in {, equation (40a) will follow
from the relation

v(0d) = f v,.
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But, by Lemma 7,

[w-f wef a-[ a
04 V(g4) v(oyq) (o) a

The image (o) has a singular point and we see that the last integral is pre-
cisely the definition of v(s,) given in integral form. Hence Theorem 11 is
proved.

3. The case r = 1 and the formula of Allendoerfer-Weil

In the case r = 1 we can take for the cycle ¢ in (40) one of the fundamental
cycles of the manifold M. Then we have {-W,; = x, the Euler-Poincaré char-
acteristic of /. On the other hand, the manifold A/ can be considered as a real
differentiable manifold and the Hermitian metric can be used to define a Rie-
mannian metric in the real manifold. It is to be expected that the formula (40)
will then reduce to the formula of Allendoerfer-Weil. We shall show that this
is actually the case, if the Hermitian metric is without torsion.

To study the Hermitian metric as a Riemannian metric, we decompose each
of the forms w;, wi;, Q;; into its real and imaginary parts, writing

wi = 0: + /=1,
(41) wij = i+ V= 1¢i,
Qi; = 0+ V—1Y,;.
From the last two equations of (34) we have
b:i; + 0 = 0, iy — ¥ =0,
(41a) 0+ 0; =0, ¥,; — ¥; = 0.
The Hermitian metric can then be written as a Riemannian metric in the form:

ds’ = 22 {(6)" + ()}
We get, moreover, by separating the real and imaginary parts of the equations
for dw;, dw;;, the following equations:

db: = 20,05 — 2 ¥ivsi,
1 ]

(42)
dy: = 20 095 + 2 Y05,
and
db.;; = Zk: 0:16; — ; Yie¥r; + 6ij,
(43)

dyi; = ; Oucdr; + Zk Vi Or; + Vs .

It follows that, for the Riemannian Geometry of 2n dimensions thus obtained,
the curvature forms can be conveniently described by the matrix
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(a4) 5 Y
¥ 0;;

or simply by
o -V
v 0/.

It only remains to compare the integrand of the Allendoerfer-Weil formula cal-
culated from +his matrix of curvature forms with the expression ¥; defined in
(39).

Let © denote the integrand of the Allendoerfer-Weil formula. We observe
that (—27)"Q obeys the same expansion rule as a so-called Pfaffian function of
the 2nth order,”” which is an integral rational function in a number of indepen-
dent variables, whose square is equal to the value of a skew-symmetric deter-
minant of order 2n. It follows that

2n 2 e _\I”
@2m)™"Q = v o
On the other hand, we have
1

from which we get, after some reduction,

thwﬁ=P+g3we+&:d
otV e vzl = ls W

Hence we have
Q= v,
and finally
Q =1,
by comparing the coefficients of one of the terms in both sides.

CHAPTER V

AppricaTioNs To ErvLipric HERMITIAN GEOMETRY

1. Preliminaries

We are going to make use of the above results to derive some consequences
for elliptic Hermitian Geometry.

32 PascaL, [17], pp. 60-64.
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The local Hermitian Geometry whose fundamental equations are given by
(34) is called elliptic Hermitian, if we have

Qi = wiwy + Z W @
(45) :
Qij = w,-&:.-, ) #= j.

This definition owes its origin to the tvpe of gcometry studied by G. Fubini,®
E. Study,” and E. Cartan,” which we shall prove to satisfy the conditions (45).

The elliptic Hermitian Geometry of Fubini-Study is defined as follows: We
consider the complex projective space of » dimensions P, , with the homogeneous
coordinates 2% where, as well as throughout this section, we shall use the following
ranges of our indices:
0= aqa,8 v =n, 1 =47,k =n.

In P, let a positive definite Hermitian form be given:
(46) (22) = D 25",

which will serve to define the scalar product of two vectors in the affine space
A, of n 4 1 dimensions, with the (non-homogeneous) coordinates z*. We
normalize the coordinates z* in P, , such that

47) (22) = 1.
An Hermitian metric in P, is then defined by the Hermitian form
(48) ds’ = (dzdz) — (z2d2)-(zdz).

The group of linear transformations in A4,,; which leaves the form (46) in-
variant is the unitary group U(n + 1). We take in A, n + 1 vectors Ay
such that

(49) AeAg = 645 .

For a differentiable family of such sets of vectors we have
(50) dhe =3 by,

where

(51) 0ap + Bsa = 0,

and where the forms 6.5 satisfy the equations of structure:
(52) g = Zj Bay Oy -

3 FusinI, [13].
34 Stupy, [25].
35 CARTAN, [4].
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Let B, be fixed vectors in A,41, satisfying the equations
BaBg = 64 .
The coordinates of a vector A, with respect to B, are defined by the equation
Ag = Z 2" Ba,
from which we find
(dAydAs) — (Ao dAo)(AodAy) = (dzdz) — (zd2)(Zdz).

It follows that, if we regard A, as defining the points in P, , the Hermitian form
in (48) can be written as

d82 = (dAo d/io) - (Ao dAo)([Io dAo),
and, by (50), as
(83) ds’ = E (603 6o5).

This proves in particular that the Hermitian form in (48) is positive definite.

To calculate the curvature of the metric (53) we shall make use of the equations
(52). Using the notations of local Hermitian Geometry in the last Chapter, we
put

W, = 00.‘ .
Then, by (52), we get

dw.‘ = deo.' = ; wjoji + wi(ou - 000).
i#s

From the uniqueness of the set of forms w;; satisfying the first and the ninth
equations of (34) it follows that

wi; = 0ij, 1 # J,
wis = 0ii — 6O -
We find then
dwij = Zk) wikwr; + 8i000; , i,

dwi; = Z wir Wk + G000 + Zk 0o Oox
T

and therefore
Ql'f= —J)fwj7 7’¢])

Q= —wjw; — Z Wk Wk
k
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which are exactly the equations (45). Thus we have proved that it is possible
to define in the complex projective space an elliptic Hermitian Geometry.

2. Formulas of Cartan and Wirtinger

When the Hermitian manifold is locally elliptic, it is possible to calculate the
forms ¥, in (39) more explicitly. In fact, we are going to prove the following
theorem:

TaEOREM 12. In a locally elliptic Hermitian manifold let A be the exterior
differential form corresponding to the Hermitian differential form, that is, A =

wi@; in case the given Hermitian form is ds = i (wic Then we have
1 n+1 -
4 r = T N nrtl n—r+l <
(54) v (21r_\/_1)n +1< r A ’ 1=sr=n

It is clear that the construction of A from ds® is independent of the choice
of the base linear differential forms w; in terms of which ds® is expressed.

The theorem is proved by induction onn — r. If n — r = 0, that is, r = n,
we have

1 n+4+1
RSPy DR ey £
Suppose the formula (54) be true forr + 1, --- , n. We have

1 . . .
v, = (zﬂ__\/:—i)n—rﬂ(n —r ¥ ! {Z 8(31 + Tnr 31 00 Juer)

Qi Ly pinms ZL Qi — (0 — 1) 2081 s 351 " Guer)
.Q‘.lil e Q"ﬂ—r—l Jn—r—1 ’; an—rkgkjn—r} .

Consider the second sum inside the braces. If 7,_, ¥ j._., we can replace the
sum Qi @i, 4 Qj,—, bY @j_ @i A = Qi,_ ., A If 4ar = ju,, the sum
can be replaced by (wi,_,@:,_, + A)A = Qi,_,_.A. By our induction hy-
pothesis we get easily the desired formula (54).

As an application let us determine the n basic classes of the complex projective
space of n dimensions. The result is given by the following theorem:

TurorEM 13.  The r*® basic characteristic class (1 < r £ n) of a complex pro-
jective space of n dimensions is dual to the homology class containing the cycle car-

ried by a linear subspace of dimension r — 1 multiplied by (n j._ 1)'

To prove this theorem we consider the affine space A, of dimension n + 1
with the coordinates z* such that the projective space P, under consideration is
the hyperplane at infinity with which A.,;, is made into a projective space of
n + 1 dimensions. As before, z* are homogeneous coordinates in P, . Suppose
that we have defined at each point 3 of A, different from the origin r vectors
v;, 1 < ¢ £ r, whose components »? , - - - , v7 are linear forms in the coordinates
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2% of 3. Then all the points on the line joining the origin 0 to 3 are projected
from O into the same point p of P, and the vectors b;, 1 < 7 < r, at the points
of 03 are projected from 0 into the same vector of P,, which we attach to p.
It is easy to verify that the r vectors thus defined at each point of P, are linearly

independent when and only when the r + 1 vectors 3, b1, --+, b, in A,4; are
linearly independent.
We take
v; = a;jz°, 1 241 £,

where a; are constants. The a7 can be so chosen that none of the determinants
of order r + 1 of the matrix

1 ---1
a - a4
a--- ar
will vanish. It then follows that the vectors 3, 9, ---, b, will be linearly
dependent when and only when all products
2 ... 2 =0, 0 =< o, ", = n,
the indices ag, - - , a, being distinct from each other. This is possible when

and only when n + 1 — 7 of the coordinates z* will vanish. In other words,
for this particular field of r vectors the points of P, at which the r vectors are
linearly dependent are the linear spaces of dimension r — 1 defined by setting
n + 1 — r of the homogeneous coordinates of P, to zero. The number of

such linear spaces is (n j‘_ 1) and each of them is to be counted simply. Hence

our theorem is proved.

Turorem 14. (E. Cartan).’® Let M be a closed submanifold of topological
dimension 2n — 2r 4+ 2 of the complex projective space of n dimensions P, in
which an elliptic Hermitian Geometry is defined. Let m be the number of points
of intersection of M with a generic linear subspace of dimension r — 1 of P,,. Then

1 n—r+1
(55) M = GaT = T fmA
In particular, if M is an algebraic variety of dimension n — r + 1 in P,, m is
its order.
This theorem is an immediate consequence of the Theorems 11, 12, and 13.
Related to these discussions is also a formula due to W. Wirtinger. In
Hermitian Geometry, as in Riemannian Geometry, it is common to define an

element of volume of topological dimension 2p by means of the equation
) I O T

(- dp)

3 CARTAN, [3], p. 206.
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the summation being over all the combinations of 7, , - - - , 7, from 1 to n. Up
to a sign A,, is equal to %’ A?. We define

1
(57) A?p = 17 Ap.

From (55) follows the theorem:

TreorEM 15. (W. Wirtinger).)” In the complex projective space of n_dimen-
sions with the elliptic Hermitian metric let Vs, be a p-dimensional algebrasc variety
of order m and volume V. Then

(58) v = &)

INSTITUTE FOR ADVANCED STUDY, PRINCETON, AND
Tsine Hua UNiveErsiTy, CHINA.
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