
FROM TRIANGLES TO MANIFOLDS 

SHIING-SHEN CHERN 

1. Geometry. I believe I am expected to tell you all about geometry; what it is, its 
developments through the centuries, its current issues and problems, and, if possible, a peep into 
the future. The first question does not have a clear-cut answer. The meaning of the word 
geometry changes with time and with the speaker. With Euclid, geometry consists of the logical 
conclusions drawn from a set of axioms. This is clearly not sufficient with the horizons of 
geometry ever widening. Thus in 1932 the great geometers 0. Veblen and J. H. C. Whitehead 
said, "A branch of mathematics is called geometry, because the name seems good on emotional 
and traditional grounds to a sufficiently large number of competent people" [I]. This opinion 
was enthusiastically seconded by the great French geometer Elie Cartan [2]. Being an analyst 
himself, the great American mathematician George Birkhoff mentioned a "disturbing secret fear 
that geometry may ultimately turn out to be no more than the ghttering intuitional trappings of 
analysis" [3]. Recently my friend Andre Weil said: "The psychological aspects of true geometric 
intuition will perhaps never be cleared up. At one time it implied primarily the power of 
visualization in three-dimensional space. Now that higher-dimensional spaces have mostly 
driven out the more elementary problems, visualization can at best be partial or symbolic. Some 
degree of tactile imagination seems also to be involved" [4]. 

At this point it is perhaps better to let things stand and turn to some concrete topics. 

2. Triangles. Among the simplest geometrical figures is the triangle, which has many 
beautiful properties. For example, it has one and only one inscribed circle and also one and only 
one circumscribed circle. At the beginning of this century the nine-point circle theorem was 
known to almost every educated mathematician. But its most intriguing property concerns the 
sum of its angles. Euclid says that it is equal to 180°, or n by radian measure, and deduces this 
from a sophisticated axiom, the so-calledparallel axiom. Efforts to avoid this axiom failed. The 
result was the discovery of non-Euclidean geometries in which the sum of angles of a triangle is 
less or greater than n, according as the geometry is hyperbolic or elliptic. The discovery of 
hyperbolic non-Euclidean geometry, in the eighteenth century by Gauss, John Bolyai, and 
Lobatchevsky, was one of the most brilliant chapters in human intellectual history. 

The generalization of a triangle is an n-gon, a polygon with n sides. By cutting the n-gon into 
n-2 triangles, one sees that the sum of its angles is (n -2)n. It is better to measure the sum of 
the exterior angles! The latter is equal to 2n, for all n-gons, including triangles. 

3. Curves in the plane; rotation index and regular homotopy. By applying calculus we can 
consider smooth curves and closed smooth curves in the plane, i.e., curves with a tangent line 
everywhere and varying continuously. As a point moves along a closed smooth (oriented) curve 
C once, the lines through a fixed point 0 and parallel to the tangent lines of C rotate through an 
angle znn or rotate n times about 8.This integer n is called the rotation index of C. (See Fig. 1.) 
A famous theorem in differential geometry says that if C is a simple curve, i.e., if C does not 
intersect itself, n = k 1. 

Clearly, there should be a theorem combining the theorem on the sum of exterior angles of an 
n-gon and the rotation index theorem of a simple closed smooth curve. This is achieved by 
considering the wider class of simple closed sectionally smooth curves. The rotation index of 
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such a curve can be defined in a natural way by turning the tangent at a corner an amount equal 
to the exterior angle. (See Fig. 2.) Then the rotation index theorem above remains valid for 
simple closed sectionally smooth curves. In the particular case of an n-gon formed by straight 
segments, this reduces to the statement that the sum of its exterior angles is 2m. 

This theorem can be further generalized. Instead of simple closed curves we can allow closed 
curves to intersect themselves. A generic self-intersection can be assigned a sign. Then, if the 
curve is properly oriented, the rotation index is equal to one plus the algebraic sum of the 
number of self-intersections. (See Fig. 3.) For example, the figure 8 has the rotation index zero. 

A fundamental notion in geometry, or in mathematics in general, is deformation or homotopy. 
Two clpsed smooth curves are said to be regularly homotopic if one can be deformed to the other 
through a family of closed smooth curves. Since the rotation index is an integer and varies 
continuously in the family, it must remain a constant; i.e., it keeps the same value when the 
curve is regularly deformed. A remarkable theorem of Graustein-Whitney says that the converse 
is true [S]: Two closed smooth curves with the same rotation index are regularly homotopic. 

It is a standard practice in mathematics that in order to study closed smooth curves in the 
plane it is more profitable to look at all curves and to put them into classes, the regular 
homotopy classes in this case being an example. This may be one of the essential methodological 
differences between theoretical science and experimental science, where such a procedure is 
impractical. The Graustein-Whitney theorem says that the only invariant of a regular homotopy 
class is the rotation index. 
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4. Euclidean three-space. From the plane we pass to the three-dimensional Euclidean space 
where the geometry is richer and has distinct features. Perhaps the nicest space curve which does 
not lie in a plane is a circular helix. It has constant curvature and constant torsion and is the 
only curve admitting ca'rigid motions. There is an essential difference between right-handed 
and left-handed helices (See Fig. 4), depending on the sign of the torsion; a right-handed helix 
cannot be congruent to a left-handed one, except by a mirror reflection. Helices play an 
important role in mechanics. From a geometrical viewpoint it may not be an entire coincidence 
that the Crick-Watson model of a DNA-molecule is double-helical. A double helix has 
interesting geometrical properties. In particular, by joining the end points of the helices by 
segments or arcs, we get two closed curves. In three-dimensional space they have a llnlung 
number. (See Fig. 5.) 

A recent controversial issue in biochemistry, raised by the mathematicians William Pohl and 
George Roberts, is whether the chromosomal DNA is double-helical. In fact, if it is, it will have 
two closed strands with a linking number of the order of 300,000. The molecule is replicated by 
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separation of the strands and formation of the complementary strand of each. With such a large 
linking number Pohl and Roberts showed that the replication process would have severe 
mathematical difficulties. Thus the double-helical structure of the DNA molecule, at least for 
the chromosome, has been questioned [6].(Added January 26, 1979: A number of recent 
experiments have shown that some of the mathematical difficulties for the double helical 
structure of the DNA-molecule can be overcome by enzymatic activities (cf. F. H. C. Crick, Is 
DNA really a double helix? preprint, 1978).) 

The linking number L is determined by the formula of James H. White [7]: 

where T is the total twist and W the writhing number. The latter can be experimentally 
measured and changes by the action of an enzyme. This formula is of fundamental importance 
in molecular biology. Generally DNA molecules are long. In order to store them in limited 
space, the most economical way is to writhe and coil them. These discussions could indicate the 
beginning of a stochastic geometry, with the main examples drawn from biology. 

In a three-dimensional space surfaces have far more important properties than curves. 
Gauss's fundamental work elevated differential geometry from a chapter of calculus to an 
independent discipline. His Disquisitiones generales circa superficies curvas (1827) is the birth 
certificate of differential geometry. The main idea is that a surface has an intrinsic geometry 
based on the measure of arc length alone. From the element of arc other geometric notions, such 
as the angle between curves and the area of a piece of surface, can be defined. Plane geometry is 
thus generalized to any surface Z based only on the local properties of the element of arc. This 
localization of geometry is both original and revolutionary. In place of the straight lines are the 
geodesics, the "shortest" curves between any two points (sufficiently close). More generally, a 
curve on Z has a "geodesic curvature" generalizing the curvature of a plane curve and geodesics 
are the curves whose geodesic curvature vanishes identically. 

Let the surface Z be smooth and oriented. At every pointp of Z there is a unit normal vector 
v(p) which is perpendicular to the tangent plane to C at p. (See Fig. 6.) The vector v(p) can be 
viewed as a point of the unit sphere So with center at the origin of the space. By sending p to 
v(p) we get the Gauss mapping 

The ratio of the element of the area of So by the element of area of Z under this mapping is 
called the Gaussian curvature. Gauss's "remarkable theorem" says that the Gaussian curvature 
depends only on the intrinsic geometry of C. In fact, in a sense it characterizes this geometry. 
Clearly the Gaussian curvature is zero if Z is the plane. 
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As in plane geometry we consider on Z a domain D bounded by one or more sectionally 
smooth curves. D has an important topological invariant x(D), called its Euler characteristic, 
which is most easily defined as follows: Cut D into polygons in a "proper way" and denote by v ,  
e,  and f the number of vertices, edges, and faces, respectively. Then 

x(D)=v-e+f .  (3) 

(Euler's polyhedral theorem was known before Euler, but Euler seems to have been the first one 
to recognize explicitly the importance of the "alternating sum.") 

The Gauss-Bonnet formula in surface theory is 

Gaussian curv =2.irx(D), (4) 

where aD is the boundary of D. For a plane domain the Gaussian curvature is zero. If in 
addition the domain is simply connected, we have x(D)= 1. Then this formula reduces to the 
rotation index theorem discussed in $3. We are indeed a long way from the sum of angles of a 
triangle. 

Generalizing the geometry of closed plane curves we can consider closed oriented surfaces in 
space. The generalization of the rotation index is the degree of the Gauss mapping g in (2). The 
precise definition of the degree is sophisticated. Intuitively it is the number of times that the 
image g(Z) covers So,counted with sign. Unlike the plane, where the rotation index can be any 
integer, the degree d is completely determined by the topology of Z; it is equal to 

For the imbedded unit sphere this degree is + 1 independently of its orientation. A surprising 
result of S. Smale [8] says that the two oppositely oriented unit spheres are indeed regularly 
homotopic or, more intuitively, that the unit sphere can be turned inside out through a regular 
homotopy. It is essential that at each stage of the homotopy the surface has a tangent plane 
everywhere, but is allowed to intersect itself. 

5. From coordinate spaces to manifolds. It was Descartes who in the seventeenth century 
revolutionized geometry by using coordinates. Quoting Hermann Weyl, "The introduction of 
numbers as coordinates was an act of violence" [9]. From now on, paraphrasing Weyl, figure 
and number, like angel and devil, fight for the soul of every geometer. In the plane the Cartesian 
coordinates of a point are its distances, with signs, from two fixed perpendicular lines, the 
coordinate axes. A straight line is the locus of all points whose coordinates x,y satisfy a linear 
equation 

ax+by+c=O. (6 )  

The result is the translation of geometry into algebra. 
Once the door was opened for analytic geometry, other coordmate systems came into play. 

Among them are polar coordinates in the plane and spherical coordinates, cylindrical coordi- 
nates intspace, and elliptic coordinates in the plane and in space. The latter are adapted to the 
confocal quadrics and are particularly suited to the study of the ellipsoids, whch include our 
earth. 

There is also a need for higher dimensions. For even if we start with a three-dimensional 
space, the theory of relativity calls for the inclusion of time as a fourth dimension. On a more 
elementary level, to record the motion of a particle, including its velocity, requires six coordi- 
nates (the hodograph). All the continuous functions in one variable form an infinite-dimensional 
space. Those which are square-integrable form a Hilbert space, which can be coordinatized by 
an infinite sequence of coordinates. Such a viewpoint, of considering all functions with 
prescribed properties, is fundamental in mathematics. 

From the proliferation of coordinate systems it is natural to have a theory of coordinates. 
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General coordinates need only the property that they can be identified with points; i.e., there is 
a one-to-one correspondence between points and their coordinates-their origin and meaning 
are inessential. 

If you find it difficult to accept general coordinates, you will be in good company. It took 
Einstein seven years to pass from his special relativity in 1908 to his general relativity in 1915. 
He explained the long delay in the following words: "Why were another seven years required for 
the construction of the general theory of relativity? The main reason lies in the fact that it is not 
so easy to free oneself from the idea that coordinates must have an immediate metrical 
meaning" [lo]. 

After being served by coordinates in the study of geometry, we now wish to be free from their 
bond. This leads to the fundamental notion of a manifold. A manifold is described locally by 
coordinates, but the latter are subject to arbitrary transformations. In other words, it is a space 
with transient or relative coordinates (principle of relativity). I would compare the concept with 
the introduction of clothing to human life. It was a historical event of the utmost importance 
that human beings began to clothe themselves. No less significant was the ability of human 
beings to change their clothing. If geometry is the human body and coordinates are clothing, 
then the evolution of geometry has the following comparison. 

Synthetic geometry Naked man 
Coordinate geometry Primitive man 
Manifolds Modern man 

A manifold is a sophisticated concept even for mathematicians. For example, a great 
mathematician such as Jacques Hadamard "felt insuperable difficulty . . . in maintaining more 
than a rather elementary and superficial knowledge of the theory of Lie groups" [Ill, a notion 
based on that of a manifold. 

6. Manifolds; local tools. With coordinates practically meaningless there is a need for new 
tools in studying manifolds. The key word is invariance. Invariants are of two kinds: local and 
global. The former refer to the behavior under a change of the local coordinates, while the latter 
are global invariants of the manifold, examples being the topological invariants. Two of the most 
important local tools are the exterior differential calculus and Ricci's tensor analysis. 

An exterior differential form is the integrand of a multiple integral, such as 

JJDpdYm + ~ d z d x+~ d x d y ,  (7) 

in (x,y,z)-space, where P, Q, R are functions in x,y,z and D is a two-dimensional domain. It is 
observed that a change of variables in D (supposed to be oriented) will be taken care of 
~.utomaticallyif the multiplication of differentials is anti-symmetric, i.e., 

d y ~ d z= -d z ~ d y ,etc., (8) 
where the symbol A is used to denote exterior multiplication. It is also more suggestive to 
introduce the exterior two-form 

w =  Pdy Adz + QdzAdx+ RdxAdy (9) 

and to write the integral (7) as a pairing (D,o) of the domain D and the form a .  

For if the same is done in n-space, then Stokes's theorem can be written 


( 0 ,  do) =(aD, a ) ,  (10) 
where D is an r-dimensional domain and o is an exterior (r  - 1)-form; aD is the boundary of D 
and dw is the exterior derivative of w and is an r-form. Formula (lo), the fundamental formula 
in multi-variable calculus, shows that and d are adjoint operators. The remarkable fact is that, 
while the boundary operator on domains is global, the exterior differentiation operator d on 
forms is local. This makes d a powerful tool. When applied to a function (=O-form) and a 
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1-form, it gives the gradient and the curl, respectively. All the smooth forms, of all degrees ( <  
dim of manifold), of a differentiable manifold constitute a ring with the exterior differentiation 
operator d. Elie Cartan used the exterior differential calculus most efficiently in local problems 
of differential geometry and partial differential equations. The global theory was founded by G. 
de Rham, after initial work of Poincare. This will be discussed in the next section. 

In spite of its importance the exterior differential calculus is inadequate in describing the 
geometrical and analytical phenomena on a manifold. A broader concept is Ricci's tensor 
analysis. Tensors are based on the fact that a manifold, being smooth, can be approximated at 
every point by a linear space, called its tangent space. The tangent space at a point leads to 
associated tensor spaces. Differentiation of tensor fields needs an additional structure, called an 
affine connection. If the manifold has a Riemannian or Lorentzian structure, the corresponding 
Levi-Civita connection will serve the purpose. 

7. Homology. Historically a systematic study of the global invariants of a manifold began 
with combinatorial topology. The idea is to decompose the manifold into cells and see how they 
fit together. (The decomposition satisfies some mild conditions, which we will not specify.) In 
particular, if M is a closed manifold of dimension n and ol, denotes the number of k cells of the 
decomposition, k =0,1,. . . ,n, then, as a generalization of (3), the Euler-Poincare characteristic of 
M is defined by 

The basic notion in homology theory is that of a boundary. A chain is a sum of cells with 
multiplicities. It is called a cycle if it has no boundary, i.e., if its boundary is zero. The boundary 
of a chain is a cycle (see Fig. 7). The number of linearly independent k-dimensional cycles 
modulo k-dimensional boundaries is a finite integer b,, called the kth Betti number. The 
Euler-Poincark formula says 

The Betti numbers bk,and hence x ( M )  itself, are topological invariants of M, that is, they are 
independent of the decomposition and remain invariant under a topological transformation of 
M. This and more general statements could be considered the fundamental theorems of 
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combinatorial topology. After the path-breaking works of Poincart and L. E. J. Brouwer, 
combinatorial topology blossomed in the U.S. in the 1920's under the leadership of Veblen, 
Alexander, and Lefschetz. 

While this is an effective way in deriving topological invariants, the danger in cutting a 
manifold is that it might be "killed." Precisely, this means that by using a combinatorial 
approach we may lose sight of the relations of the topological invariants with local geometrical 
properties. It turns out that, while homology theory depends on the boundary operator a, there 
is a dual cohomology theory based on the exterior differentiation operator d, the latter being a 
local operator. 

The resulting de Rham cohomology theory can be summarized as follows: The operator d has 
the fundamental property that, when applied repeatedly it gives the zero form; that is, for any 
k-form a ,  the exterior derivative of the (k+  1)-form da is zero. This corresponds to the 
geometrical fact that the boundary of any chain (or domain) has no boundary. (See (lo).) A 
form a is called closed, if da =O. It is called a derived form, if there exists a form /3, of degree 
k - 1, such that it can be written a =dB. Thus a derived form is always closed. Two closed forms 
are called cohomologous if they l f f e r  by a derived form. All the closed k-forms which are 
cohomologous to each other constitute the k-dimensional cohomology class. The remarkable 
fact is that, while the families of k-forms, closed k-forms, derived k-forms are immensely large, 
the k-dimensional cohomology classes constitute a finite-dimensional linear space whose dimen- 
sion is the kth Betti number bk. 

De Rham cohomology is the forerunner of sheaf cohomology, which was founded by J. Leray 
[12] and perfected and applied with great success by H. Cartan and J.-P. Serre. 

8. Vector fields and generalizations. On a manifold M it is natural to consider continuous 
vector fields, i.e., the attachment of a tangent vector to each point, varying in a continuous 
manner. If the Euler-Poincart characteristic x(M) is not zero, there is at least one point of M at 
which the vector vanishes. In other words, when the wind blows there is at least one spot on 
earth with no wind (for the Euler characteristic of the two-dimensional sphere is equal to 2). 
More precisely, at an isolated zero of a continuous vector field, an integer, called the index, can 
be defined, which describes to a certain extent the behavior of the vector field at the zero, i.e., 
whether it is a source, a sink, or otherwise. No matter what the vector field is, so long as it is 
continuous and has only a finite number of zeros, then the theorem of Poincart-Hopf says that 
the sum of its indices at all the zeros is a topological invariant which is precisely x(M). 

This is a statement on the tangent bundle of M, i.e., the collection of the tangent spaces of M. 
More generally, a family of vector spaces parametrized by a manifold M and satisfying a local 
product condition is called a vector bundle over M. 

A fundamental question is whether such a bundle is globally a product. The above discussion 
shows that the tangent bundle is not a product if x(M)#O; for if it were a product, there would 
exist a continuous vector field which is nowhere zero. The existence of a space which is locally 
but not globally a product, such as the tangent bundle of a manifold M with x(M)#O, is not 
easy to visualize; geometry thus enters a more sophisticated phase. 

To describe the global deviation of a vector bundle from a product space the first invariants 
are th*e so-called characteristic cohomology classes. The Euler-PoincarC characteristic is the 
simplest of the characteristic classes. 

The Gauss-Bonnet formula (4) in 04 takes the particularly simple form 

when the surface Z has no boundary. In this formula K is the Gaussian curvature and d is the 
element of area. Formula (4a) is of paramount importance because it expresses the global 
invariant x(Z) as the integral of a local invariant, which is perhaps the most desirable 
relationship between local and global properties. This result has a wide generalization. 
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Let 
a : E + M  (I3) 

be a vector bundle. The generalization of a tangent vector field on M is a section of the bundle, 
i.e., a smooth mapping s :M-E, such that the composition ~ o sis the identity. Since E is only 
locally a product, the differentiation of s needs an additional structure, usually called a 
connection. The resulting differentiation, called covariant differentiation, is generally not 
commutative. The notion of curvature is a measure of the noncommutativity of covariant 
differentiation. Suitable combinations of the curvature give rise to differential forms which 
represent characteristic cohomology classes in the sense of the de Rham theory, of which the 
Gauss-Bonnet formula (4a) is the simplest example [13]. I believe that the concepts of vector 
bundles, connections, and curvature are so fundamental and so simple that they should be 
included in any introductory course on multivariable calculus. 

9. Elliptic differential equations. When M has a Riemannian metric, there is an operator * 
sending a k-form a to the (n -k)-form *a,n =dimM. It corresponds to the geometrical 
construction of taking the orthogonal complement of a linear subspace of the tangent space. 
With * and the differential d we introduce the codifferential 

a = ( -  l)nk+n+' *d* (14) 

and the Laplacian 
A=d8+6d. (15) 

Then the operator 6 sends a k-form to a (k - 1)-form and A sends a k-form to a k-form. A form 
a satisfying 

Aa=O (16) 

is called harmonic. A harmonic form of degree 0 is a harmonic function in the usual sense. 
The equation (16) is an elliptic partial differential equation of the second order. If M is 

closed, all its solutions form a finite dimensional vector space. By a classical theorem of Hodge 
this dimension is exactly the kth Betti number bk.It follows by (12) that the Euler characteristic 
can be written 

x(M) =de -do, (17) 

where de (respectively, do) is the dimension of the space of harmonic forms of even (respectively 
odd) degree. The exterior derivative d is itself an elliptic operator and (17) can be regarded as 
expressing x(M) as the index of an elliptic operator. The latter is, for any linear elliptic operator, 
equal to the dimension of the space of solutions minus the dimension of the space of solutions of 
the adjoint operator. 

The expression of the index of an elliptic operator as the integral of a local invariant 
culminates in the Atiyah-Singer index theorem. It includes as special cases many famous 
theorems, such as the Hodge signature theorem, the Hirzebruch signature theorem, and the 
Riemann.Roch theorem for complex manifolds. An important by-product of this study is the 
recognition of the need to consider pseudo-differential operators on manifolds, which are more 
general than differential operators. 

Elliptic differential equations and systems are closely enmeshed with geometry. The Cauchy- 
Riemann differential equations, in one or more complex variables, are at the foundation of 
complex geometry. Minimal varieties are solutions of the Euler-Lagrange equations of the 
variational problem minimizing the area. These equations are quasi-linear. Perhaps the "most" 
non-linear equations are the Monge-Ampere equations, which are of importance in several 
geometrical problems. Great progress has been made in these areas in recent years [14]. With 
this heavy intrusion of analysis George Birkhoff's remark quoted above sounds even more 
disturbing. However, while analysis maps a whole mine, geometry looks out for the beautiful 
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stones. Geometry is based on the principle that not all structures are equal and not all equations 
are equal. 

10. Euler characteristic as a source of global invariants. To summarize, the Euler characteristic 
is the source and common cause of a large number of geometrical disciplines. I will illustrate this 
relationship by a diagram. (See Fig. 8.) 

Elliptic Combinatorial 
Topology Topology 

Total Homology and Sheaf 
Curvature Cohomology 

Characteristic 
Classes 

11. Gauge field theory. At the beginning of this century differential geometry got the spotlight 
through Einstein's theory of relativity. Einstein's idea was to interpret physical phenomena as 
geometrical phenomena and to construct a space which would fit the physical world. It was a 
gigantic task and it is not clear whether he said the last word on a unified field theory of 
gravitational and electromagnetic fields. The introduction of vector bundles described above, 
and particularly the connections in them with their characteristic classes and their relations to 
curvature, widened the horizon of geometry. The case of a line bundle (i.e., when the fiber is a 
complex line) furnishes the mathematical basis of Weyl's gauge theory of an electromagnetic 
field. The Yang-Mills theory, based on an understanding of the isotopic spin, is the first example 
of a nonabelian gauge theory. Its geometrical foundation is a complex plane bundle with a 
unitary connection. Attempts to unify all field theories, including strong and weak interactions, 
have recently focused on a gauge theory, i.e., a geometrical model based on bundles and 
connections. It is with great satisfaction to see geometry and physics united again. 

Bundles, connections, cohomology, characteristic classes are sophisticated concepts which 
crystallized after long years of search and experimentation in geometry. The physicist C .  N. 
Yangdwrote [IS]: "That nonabelian gauge fields are conceptually identical to ideas in the 
beautiful theory of fiber bundles, developed by mathematicians without reference to the physical 
world, was a great marvel to me." In 1975 he mentioned to me: "This, is both thrilling and 
puzzling, since you mathematicians dreamed up these concepts out of nowhere." This puzzling is 
mutual. In fact, referring to the role of mathematics in physics, Eugene Wigner spoke about the 
unreasonable effectiveness of mathematics [16]. If one has to find a reason, it might be expressed 
in the vague term "unity of science." Fundamental concepts are always rare. 

12. Concluding remarks. Modern differential geometry is a young subject. Not counting the 
strong impetus it received from relativity and topology, its developments have been continuous. 
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I am glad that we do not know what it is and, unlike many other mathematical disciplines, I 
hope it will not be axiomatized. With its contact with other domains in and outside of 
mathematics and with its spirit of relating the local and the global, it will remain a fertile area 
for years to come. 

It may be interesting to characterize a period of mathematics by the number of variables in 
the functions or the dimension of the spaces it deals with. In this sense nineteenth century 
mathematics is one-dimensional and twentieth century mathematics is n-dimensional. It is 
because of the multi-variables that algebra acquires paramount importance. So far most of the 
global results on manifolds are concerned with even-dimensional ones. In particular, all complex 
algebraic varieties are of even real dimension. Odd-dimensional manifolds are still very mysteri- 
ous. I venture to hope that they will receive more attention and substantial clarification in the 
twenty-first century. Recent works on hyperbolic 3-manifolds by W. Thurston [17] and on closed 
minimal surfaces in a 3-manifold by S. T. Yau, W. Meeks, and R. Schoen have thrown 
considerable light on 3-manifolds and their geometry. Perhaps the problem of problems in 
geometry is still the so-called Poincart conjecture which says that a closed simply connected 
3-dimensional manifold is homeomorphic to the 3-sphere. Topological and algebraic methods 
have so far not led to a clarification of this problem. It is conceivable that tools in geometry and 
analysis will be found useful. 

This paper, written with partial support from NSF Grant MCS77-23579, was delivered as a Faculty Research 
Lecture at Berkeley, California, on April 27, 1978. 
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