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GEOMETRY OF A QUADRATIC DIFFERENTIAL FORM*
SHIING-SHEN CHERN'Y

1. The geometry of a quadratic differential form was founded by Gauss
and Riemann, when it was shown that euclidean geometry can be given a
significant generalization by basing all metrical notions on a positive defi-
nite quadratic differential form

(1> Zi.k g,-kdxi dak.

Relativity theory calls for the study of a differential form which is non-
degenerate but of signature (—+ -:- +). Such a data will be called a
Lorentzian structure. Although there is yet no geometrical or physical
justification, it is a natural mathematical problem to study a non-degenerate
quadratic differential form with arbitrary signature.

Modern mathematics requires us to say at the outset in what space the
quadratic differential form is defined and the study takes place. Such spaces
are called differentiable manifolds, which are, roughly speaking, spaces
where differentiation makes sense and where tensor fields can be defined.
The prime example is the n-dimensional number space and a general
differentiable manifold behaves locally like it. From a given differentiable
manifold further manifolds are constructed by taking the submanifolds
or the quotient manifolds. A compact manifold is one which can be covered
by a finite number of coordinate patches. A manifold with a non-degenerate
(resp. positive definite, resp. of signature (— 4+ --- +)) quadratic differ-
ential form defined everywhere is called pseudo-riemannian (resp. rieman-
nian, resp. Lorentzian).

Does such a pseudo-riemannian structure exist on a differentiable mani-
fold? If the form is positive definite, this is so, because the set of all possible
positive semi-definite quadratic differential forms has the convexity prop-
erty. For a non-degenerate form of signature (p, ¢) (p positive squares
and ¢ negative squares in the normal form) the existence of such a form
on a manifold is equivalent to the existence of a continuous field of p-di-
mensional subspaces of the tangent spaces.! If the manifold is compact
and p is odd, a necessary condition is that the Euler-Poincaré characteristic
of the manifold should be zero [2], [3]. A complete topological characteriza-
tion of such manifolds is not known. It follows, however, from the above

* Presented at a meeting of the Society for Industrial and Applied Mathematics
held in memory of Professor H. P. Robertson at Pasadena, March 23, 1962.

t Department of Mathematics, University of California, Berkeley, California.

1 Cf., for example, [1], p. 207.

751



752 SHIING-SHEN CHERN

result that a compact 4-manifold has a Lorentzian structure if and only
if its Euler-Poincaré characteristic is zero.”

2. Once a pseudo-riemannian structure is given on a manifold, its local
properties are expressed by the Levi-Civita connection it determines. The
latter allows us to transport tangent vectors parallelly along curves and
leads to the curvature tensor R,j;; . From the curvature tensor one defines,
for any two-dimensional subspace E of the tangent space spanned by the
vectors X', Y7, the sectional or riemannian curvature

(2) R(E) = —ZRijleinXle/Z(gikgjl - gugjk)XinXle-

Do these local properties have implications on the global properties of
the manifold? The answer is yes, and its precise statements contain some
of the most beautiful discoveries in modern mathematics. To give an
example we take a compact oriented four-dimensional pseudo-riemannian
manifold. Instead of the curvature tensor it is convenient to consider the
tensorial differential forms

(3) Q= LD Rajda’ A da'.
Then the four-form

(4) II= 211;2 Z gm gjl Qij Qg
is a multiple of the volume element by a scalar invariant P. Its integral
over the manafold is a topological invariant, called the index or signature of
the manifold. The latter is defined as follows: Let v,, - -+ , v be a basis of
the second homology group of the manifold. Let KI (y;,v;),1 < 2,5 < b,
be the intersection number of v, , v; . It is symmetric in its two arguments
and can be considered as the coefficients of a quadratic form. The signature
of the latter (i.e., the number of its positive squares minus that of its
negative squares in its diagonalized normal form) is called the signature
of the manifold.

Thus the theorem relates in a precise way a topological invariant de-
pending on the multiplicative homology structure of the manifold with an
expression in the curvature tensor of a pseudo-riemannian structure. It is
among the most difficult theorems in mathematics. Its proof requires the

2 The question whether there exists on a compact oriented 4-manifold a continuous
field of oriented two-dimensional subspaces of the tangent spaces was completely
answered by F. Hirzebruch and H. Hopf, cf. [4]. The corresponding problem for the
unoriented two-dimensional sub-spaces, which is equivalent to the existence or non-
existence of a quadratic differential form of signature (2, 2), seems to be more difficult
and is to my knowledge unsolved.
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cohomology ring theory, characteristic classes, Thom’s cobordism theory,
ete.’ Could the scalar invariant P, homogeneous and of the second degree
in Rz, have some use in physics?

Encouraged by this result, one would like to construct further four-fold
integrals which, when integrated over the manifold, will give topological
invariants. I only know one other instance. This is the Gauss-Bonnet for-
mula for a riemannian manifold. It says that the integral of the four-form
(5) r'= m(%gfm (@12 A Qas 4 Qus A Qiz + Qus A Qus)
is equal to the Euler-Poincaré characteristic of the manifold [8]. The form
in (5) is defined for any oriented pseudo-riemannian structure, but I do
not know whether the statement remains true.*

These results have generalizations to higher dimensions. At the root of
them is de Rham’s theorem. We say that an exterior differential form of
degree r is closed if its exterior derivative is zero and that it is a derived
form if it is the exterior derivative of a form of degree »r — 1. If the manifold
is compact, de Rham’s theorem says that the quotient space of the space
of all closed forms of degree r divided by the space of all derived forms of
degree r is isomorphic to the r-dimensional cohomology group with real
coefficients. The generalizations of the above theorems consist in identi-
fying characteristic cohomology classes of the manifold with differential
forms constructed from the curvature tensor of a pseudo-riemannian
structure.®

3. The simplest pseudo-riemannian structure is when the sectional
curvature (2) is constant for all two-dimensional subspaces E. A manifold
with such a structure is said to be of constant curvature. This obviously
imposes strong restrictions on the manifold. In the riemannian case the
study of such manifolds is called the Clifford-Klein space problem. A Lo-
rentzian manifold of constant curvature is also called a universe with the

8 A brief outline of a proof of this theorem is as follows:

(a) By a theorem of Thom and Hirzebruch the signature of a compact oriented
4-manifold is equal to its Pontrjagin number divided by three;

(b) Pontrjagin numbers can be expressed as integrals of expressions formed from
the components of the curvature tensor of a riemannian metric;

(¢) a theorem of A. Weil says that the integral has the same value when the rie-
mannian structure is replaced by a pseudo-riemannian one.

Cf. [5], p. 85; [6]; and [7].

¢ This question has since been answered. With a suitable modification the Gauss-
Bonnet formula is true for any compact oriented even-dimensional pseudo-rieman-
nian manifold. Cf. a forthcoming paper by the author in Summa Brasiliensis Mathe-
maticae.

8 Cf. [5], [6], and [7].
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locally perfect cosmological principle. The questions on pseudo-riemannian
manifolds of constant curvature have been studied only recently by E.
Calabi and L. Markus [11] and J. A. Wolf [9], [10].

We begin by giving some simple examples of such manifolds. The n-di-

mensional number space R,” with the coordinates (z;, ---, x,) and the
quadratic differential form
(6) —de — - —da) L dabg 4+ o+ de

is an example of such a manifold with sectional curvature zero. To get
examples of manifolds with non-zero constant sectional curvature con-
sider in ™" the quadric Q," defined by the equation

() =o' = a2 = L

Topologically @," is homeomorphic to B* X S"% where S" ¢ denotes
the sphere of n — ¢ dimensions. In R"™ take the form

(8) V, = —du) — - — da) + dvipy + - 4 dad .

The quadric @," with the differential form induced by ¥, we denote by
S;,” and the quadric Q," with the differential form induced by —¥, we
denote by H,_,. Then S,” and H,” are manifolds of dimension n with a
non-degenerate quadratic differential form of signature (n — ¢, ¢), whose
sectional curvatures are respectively the constants 1 and —1. They are
not-necessarily connected nor simply connected, and we denote the corre-
sponding connected and simply connected manifolds by S,* and H,*
respectively. In particular, S," and H," are Lorentzian manifolds of curva-
tures 1 and —1 respectively. S, is also called a de Sitter space.

These spaces play a role which is more than just examples. We say that
a manifold is complete if the geodesics can be extended to arbitrary values
of the affine parameter. Then the following theorem was proved by Wolf:
A complete connected pseudo-riemannian manifold of constant sectional
curvature 1, 0, or —1 4s covered respectively by S,", R," H,".

This reduces the study of the pseudo-riemannian manifolds of constant
curvature to that of discontinuous groups of isometries without fixed
points in the spaces S,”, R,”, H,". Those of particular interest are the
ones which are at the same time homogeneous spaces, i.e., spaces on
which the group of isometries acts transitively. A homogeneous Lorentzian
manifold of constant curvature is also called a universe with the globally
perfect cosmological principle. The connected homogeneous pseudo-rie-
mannian manifolds of non-zero constant curvature have been completely
classified by J. Wolf. In particular, a connected homogeneous riemannian
manifold of constant negative curvature is isometric to the hyperbolic
space H,". Those of constant positive curvature are also relatively few
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and they include the quotient spaces of a sphere S*** of dimension 4k + 3
by the polyhedral groups. The case of zero curvature is more complicated,
of which only partial results are known.
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