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To avoid misunderstanding I will not give a definition of geometry as in the 
customary mathematical treatment of a topic. I will only try to discuss its major 
historical developments. 

1. Geometry as a logical system; Euclid. Euclid's "Elements of Geometry" (ca. 
300 B.c.) is one of the great achievements of the human mind. It makes geometry 
into a deductive science and the geometrical phenomena as the logical conclusions 
of a system of axioms and postulates. The content is not restricted to geometry as 
we now understand the term. Its main geometrical results are: 

a) Pythagoras' Theorem. 

.;$ 

b) Angle-sum of a triangle. 

The result b) is derived using the fifth, or the last, postulate, which says: "And 
that, if a straight line falling on two straight lines make the angles, internal and on 

*Work done under partial support of NSF grant DMS-87-01609 



680 SHIING-SHEN CHERN [October 

the same side, less than two right angles, the two straight lines, being produced 
indefinitely, meet on the side on which are the angles less than two right angles." 

Euclid realized that the parallel postulate was not as transparent as his other 
axioms and postulates. Efforts were made to prove it as a consequence. Their 
failure led to the discovery of non-Euclidean geometry by C. F. Gauss, John 
Bolyai, and N. I. Lobachevski in the early 19th century. 

The "Elements" treated rectilinear figures and the circle. The last three of its 
thirteen Books were devoted to solid geometry. 

2. Coordinatization of space; Descartes. The introduction of coordinates by 
Descartes (1596-1650) was a revolution in geometry. In the plane it can be 
described by the following figure: 

where the role of the two coordinates x, y is not symmetric. Descartes' work was 
published in 1637 as an appendix, entitled "La gComCtrien, to his famous book on 
philosophy [6]. At about the same time Fermat (1601-1665) also found the concept 
of coordinates and used them to treat successfully geometric problems by algebraic 
methods. But Fermat's work was published only posthumously [71. 

One immediate 'consequence was the study of curves defined by arbitrary 
equations 

thus enlarging the scope of the figures. 
Fermat went on to introduce some of the fundamental concepts of the calculus, 

such as the tangent line and the maxima and minima. 
From two dimensions one goes to n dimensions, and to an infinite number of 

dimensions. In these spaces one studies loci defined by arbitrary systems of 
equations. Thus a great vista was opened, and geometry and algebra became 
inseparable. 



A mystery is the role of differentiation. The analytic method is most effective 
when the functions involved are smooth. Hence I wish to quote a philosophical 
question posed by Clifford Taubes [15]: Do humans really take derivatives? Can 
they tell the difference? 

Coordinate geometry paved the way to applications to physics. An example was 
Newton's derivation of the Kepler laws from his law of gravitation. Kepler's first 
law says that the planetary orbits are ellipses with the sun as their common focus. 
The proof was possible only after an analytic theory of conics had been estab- 
lished. 

3. Space based on the group concept; Klein's Erlanger Programm. Works on 
geometry led to the development of projective geometry, among whose founders 
were: J. V. Poncelet (1788-1867), A. F. Mobius (1790-1868), M. Chasles 
(1793-1880), and J. Steiner (1796-1863). Projective geometry studies the geometri- 
cal properties arising from the linear subspaces of a space and the transformations 
generated by projections and sections. Other geometries resulted, the most notable 
ones being affine geometry and conformal geometry. 

In 1872 Felix Klein formulated his Erlanger Programm [I], [Ill ,  which defines 
geometry as the study of the properties of a space that are invariant under a group 
of transformations. Thus there is a geometry corresponding to every group of 
transformations acting on a space. The basic notion is "group" and the notion of a 
space is now greatly expanded. In a certain sense the group of projective 
collineations is the most encompassing group and projective geometry occupies a 
dominant position. 

The most important application of the Erlanger Programm was the treatment of 
non-Euclidean geometry by the so-called Cayley-Klein projective metric [121. The 
hyperbolic space can be identified with the interior of a hypersphere and the 
non-euclidean motions with the group of projective collineations leaving invariant 
the hypersphere. The same group may appear as a group of transformations in 
different spaces. As a result the same algebraic argument could give entirely 
different geometric theorems. For example, everybody knows that the three 
medians of a triangle meet in a point. By using Study's dual numbers this translates 
into the following theorem of J. Petersen and F. Morley: Let ABCDEF be a skew 
hexagon such that consecutive sides are perpendicular. The three common perpen- 
diculars of the pairs of opposite sides AB, DE; BC, EF; CD, FA have a common 
perpendicular. See [13]. 

Sophus Lie founded a theory of general transformation groups, which became a 
fundamental tool of all geometry. 

4. Localization of geometry; Gauss and Riemann. In his monograph on surface 
theory published in 1827 [a], Gauss (1777-1855) developed the geometry on a 
surface based on its fundamental form. This was generalized by B. Riemann 
(1826-1866) to n dimensions in his Habilitationschrift in 1854 [14]. Riemannian 
geometry is the geometry based on the quadratic differential form 

in the space of the coordinates u ' , . . . ,un,where the form is positive definite, or at 
least non-degenerate. Given ds2, one can define the arc length of a curve, the 
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angle between two intersecting curves, the volume of a domain, and other geomet- 
rical concepts. 

The main characteristic of this geometry is that it is local: it is valid in a 
neighborhood of the u-space. Because of this feature it fits well with field theory in 
physics. Einstein's general theory of relativity interprets the physical universe as a 
four-dimensional Lorentzian space (with a ds2 of signature + + + - ) satisfying 
the field equations 

where R,, is the Ricci curvature tensor, R is the scalar curvature, K is a constant, 
and 7;., is the energy-stress tensor. 

It is soon observed that most properties of Riemannian geometry derive from its 
Levi-Civita parallelism, an infinitesimal transport of the tangent spaces. In other 
words, Riemannian geometry studies the tangent bundle of a Riemannian space 
with the Levi-Civita connection. 

5. Globalization; topology. Riemannian geometry and its generalizations in 
differential geometry are local in character. It seems a mystery to me that we do 
need a whole space to piece the neighborhoods togetller. This is achieved by 
topology. The notion of a differentiable manifold is one of the most sophisticated 
concepts in mathematics. The idea was clear to Riemann. The first mathematical 
formulation of a topological manifold was made by D. Hilbert in 1902 [lo], [171. 
Hermann Weyl identified the Riemann surfaces with one-dimensional complex 
manifolds and used it as the central theme of his epoch-making book Die Idee der 
Riemannschen Flache [16]. On the topological side "neighborhood" became the 
basic concept in Hausdorff's topology [9]. 

Hassler Whitney saw the merit of establishing an imbedding theorem on 
differentiable manifolds (1936), thus beginning the serious study of differential 
topology. That derivatives play a role in topology came as a shock when J. Milnor 
discovered the exotic differentiable structures on the seven-dimensional sphere 
(1956). By studying the Yang-Mills equations on a four-dimensional manifold, 
S. Donaldson found in 1983 a remarkable theorem on the intersection-form, which 
led to the existence of an infinite number of differentiable structures on R4. 

With the foundation of differentiable manifolds laid, geometrical structures can 
now be defined on them, such as the Riemannian structure, the complex structure, 
the conformal structure, the projective structure based on a system of paths, etc. 
Tools are developed for their treatment, of which the most important are the 
exterior differential calculus and the tensor analysis. 

A fundamental notion is "curvature," in its different forms. Its simplest mani- 
festation is the circle in plane Euclidean geometry. It could also be the force of a 
physical system or the strength of a gravitational or electro-magnetic field. In 
mathematical terms it measures the non-commutativity of covariant differentiation. 

It is remarkable that suitable algebraic combinations of curvature give topologi- 
cal invariants. To illustrate this we wish to state the Gauss-Bonnet theorem. Let D 
be a domain with a sectionally smooth boundary on a two-dimensional Riemannian 



manifold. Then the Gauss-Bonnet theorem is the formula 

where the first term is the sum of the exterior angles at the corners, the second 
term is the integral of the geodesic curvature along the sides, the third term is the 
integral of the Gaussian curvature over D, and X(D) is the Euler characteristic of 
D. For a rectilinear triangle in the Euclidean plane this is the theorem on the 
angle-sum stated in $1. For higher dimensions we will only give, for the sake of 
simplicity, the theorem for a compact oriented Riemannian manifold M of 
dimension 2n without boundary. Let Rijklbe the Riemann-Christoffel tensor and 
let 

be the "curvature form". Let 

be the pfaffian, where ci, ... i2n is + 1or -1 according as its indices form an even or 
odd permutation of 1,.. . ,2n ,  and is otherwise zero, and the sum is extended over 
all indices from 1 to 2n. Then the Gauss-Bonnet theorem says 

where x (M)  is the Euler-PoincarC characteristic of M. 

6. Connections in a fiber bundle; Elie Cartan. A notion which includes both 
Klein's homogeneous spaces and Riemann's local geometry is Cartan's generalized 
spaces (espaces gCnCralis6s). In modern terms it is called "a connection in a fiber 
bundle." It is a straightforward generalization of the Levi-Civita parallelism, which 
is a connection in the tangent bundle of a Riemannian manifold. In general, we 
have a fiber bundle n-: E -,M, whose fibers n--l(x), x E M, are homogeneous 
spaces acted on by a Lie group G. A connection is an infinitesimal transport of the 
fibers compatible with the group action by G. 

I wish to illustrate this more precisely in the case of a complex vector bundle, 
where the fibers are complex vector spaces C, of dimension q and G = GL (q; C) 
[4]. The importance of complex numbers in geometry is a mystery to me. It is well 
organized and complete. One manifestation is the simple behaviour of the group 
GL(q; C): its maximal compact subgroup U(q) has no torsion and has as Weyl 
group the group of all permutations on q letters. 

We shall call a frame an ordered set of linearly independent vectors el , .  . . ,e, E 

rP1(x) ,  x E M. In a neighborhood U where a frame field el(x), . . . ,e,(x), x E U, 
is defined, a connection is given by the infinitesimal displacement 

De, = CwEe,,, 1 I:a , P  l q,  
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where w: are linear differential forms in U. We call w: the connection forms and 
the matrix 

w = (0:) (9) 

the connection matrix. Under a change of the frame field 

e:, = Cacep, A = (a!), (10) 

the connection matrix is changed as follows: 

w'A = dA + Aw. (11) 
We introduce the curvature matrix 

f l = d w - w r \ w ,  (12) 

which is a matrix of exterior two-forms. By exterior differentiation of (11) we get 

R' =ARA-I .  (13) 

It follows that the exterior polynomial 

in which c,(Cl) is a 2a-form, is independent of the choice of the frame field and is 
hence globally defined in M. Moreover, each c, is closed, i.e., 

dc, = 0. (15) 

The form c,(R) has been called the a t h  Chern form of the connection and its 
cohomology class {c,(Cl)} in the sense of de Rham cohomology is an element of 
the cohomology group H2"(M; Z)and is called the a t h  Chern class of the bundle 
E. These characteristic classes are the simplest and most fundamental global 
invariants of a complex vector bundle. They have the advantage of possessing a 
local representation, by curvature. 

As in the Gauss-Bonnet formula such a representation is of great importance, 
because the forms c,(R) themselves have a geometrical significance. Moreover, let 
T': P -+ M be the bundle of frames of the complex vector bundle. Then the 
pull-back T'*c, becomes a derived form, i.e., 

T'*c, = dTc,, (16) 

where Tc,, a form of degree 2 a  - 1 in P, is uniquely determined by certain 
properties. This operation is called transgression and Tc, have been called the 
Chern-Simons forms [5]. These forms have played a role in three-dimensional 
topology and in recent works of E. Witten on quantum field theory [20]. 

This theory can be developed for any fiber bundle; see [3]. The above provides 
the geometrical basis of gauge field theory in physics. Here M is a four-dimen- 
sional Lorentzian manifold, so that the Hodge *-operator is defined, and we 
define the codifferential 

a =  * d *  (17) 

There is a discrepancy of terminology and notation, as given by the following table: 

mathematics physics 
connection w gauge potential A 
curvature Cl strength F 



Maxwell's theory is based on a U (1)-bundle over M, and his field equations can be 
written 

d A  = F ,  S F  = J, (18) 

where J is the current vector. Actually, Maxwell wrote the first equation as 

which is a consequence. For most applications (19) is sufficient. But a critical study 
of an experiment proposed by Boehm and Aharanov and performed by Chambers 
shows that (18) are the correct equations [21]. A generalization of (18) to an SU(2) 
bundle over M gives the Yang-Mills equations 

DA = F ,  S F  = J. (20) 

It is indeed remarkable that developments in geometry have been consistently 
parallel to those in physics. 

7. An application to biology. So far the most far-reaching applications of 
geometry are to physics, from which it is indeed inseparable. I wish to mention an 
application to biology, namely, to the structures of DNA molecules. This is known 
to be a "double helix", which geometrically means a pair of closed curves. Their 
geometrical invariants will clearly be of significance in biology. The following three 
are most important: 1) The linking number introduced by Gauss; 2) the total twist, 
which is essentially the integral of the torsion; 3) the writhing number. 

James White proved that between these invariants there is the relation [I81 

~k = TW + Wr. (21) 
This formula is of fundamental importance in molecular biology. 

8. Conclusion. Contemporary geometry is thus a far cry from Euclid. To 
summarize, I would like to consider the following as the major developments in the 
history of geometry: 

1) Axioms (Euclid); 
2) Coordinates (Descartes, Fermat); 
3) Calculus (Newton, Leibniz); 
4) Groups (Klein, Lie); 
5 )  Manifolds (Riemann); 
6) Fiber bundles (Elie Cartan, Whitney). 

A property is ge6metric, if it does not deal directly with numbers or if it 
happens on a manifold, where the coordinates themselves have no meaning. Going 
to several variables, algebra and analysis have a tendency to be involved with 
geometry. 

This story is clearly one-sided and incomplete, representing only my personal 
viewpoint, and my limitations. It is clear that the story will not end here. Recent 
developments in theoretical physics, such as geometric quantum field theory, string 
theory, etc, are pushing for a much more general definition of geometry [19]. 

It is satisfying to note that so far almost all the sophisticated notions introduced 
in geometry have been found useful. 

Finally, I wish to call attention to an early paper of mine [2], which could be 
read as a companion to this one. 
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