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1. Introduction

In this paper, we consider the Benjamin—Ono equation in the form

u; = 2uu, + Hu,y, (1)
whereH is the Hilbert transform operator
1 +00
Hu(x) = —Pf u() dz. (2)
T o0 X —2Z

Here P denotes the principal value.

The following result was proved by Fokas and Fuchssteiner (see [4]). We first
introduce the necessary notation. lkebe a function ofx and¢, A(u), B(u) be
nonlinear operators fro@>°(R?) to C*(R?), andl be the derivative in the direc-
tion B, i.e.,

0
lp(A) = Z Al +eBW)| _ - 3)

Let {A, B} denote the Lie brackefA, B} = [3(A) — I4(B), ads denote the
corresponding adjoint map, i.e.,

3
adg(A) = {A, B}, 1) = —xQuu, + Hu,,) — u® — EHux.
Then

KO:u)C’ Kn:ad;(KO)a n:1525"'
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122 V. N. CHETVERIKOV

are symmetries of Equation (1) af,, K,,} = 0 for anyn, m > 0.
Fuchssteiner [5] proved that the fields

mo
o
Gun=)» —adead'(K,), m=12..n=012...
P i!
are time-dependent symmetries for (1). H&re= K1 = 2uu, + Hu,,.

Remark 1.The integral (2) converges, if = ¢(x) is a differentiable function
on R satisfying the Holder condition at infinity:

¢(x) = ¢(c0) + o(i) asx — 00, ¢(00) = const u > 0. (4)

||

However, in order to calculatg,, ,, it is necessary to generalize the Hilbert trans-
form operator in some cases whg(x) — oo asx — oo. Namely, suppose

u = xk¢(x), (%)
wherek is a positive integerp (x) is a differentiable function satisfying (4), while
x¢(x) does not satisfy condition (4). Then

Hu T ¥ He (6)

(see [6], p. 52). The operatdt is well defined in this way, since the presenta-
tion (5) is unambiguous.

In this paper we describe the Lie algebra structure on the set of symmetries
found by Fokas and Fuchssteiner. Our main result is as follows.

THEOREM 1. The Benjamin—Ono equatidf) possesses the following symmetry
algebra: the generators of the linear space are

m

t
Gon = Zﬂad,(adjad;(l(o), forn>0,n+1>m>0.
i=0
The structure of Lie algebra o is determined by relations
{Guns Gri} = cm,n, 1, k)G 1 104k-1 (7)
where

cim,n,l, k)
n+ DItk + Dk +k+1—m — D)
T l-mk+l-Dn+ )t k-1
x({n+1—km—m) (8)

forn+k—-1>0n+k+1—m—1>0andc(m,n,l, k) = 0otherwise.
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SYMMETRY ALGEBRA OF THE BENJAMIN-ONO EQUATION 123

Section 3 contains an outline of the geometry of boundary differential equations
used here (see [1] for details). In Section 4, we calculate the classical symmetries
of Equation (1).

2. Transformation the Benjamin—Ono Equation

We use the method developed in [1—3]. Let us first transform the Benjamin—Ono
equation to a system of boundary differential equations.
Itis clear [6] that

o0 +00 _
pf+ f2) dz:p/ ARl ISP

o X —Z 00 x—z

Since the right-hand integral has a singularity only at infinity, we have

, /+°° f@ - f@

X =2z

= lim [/ F@ - (x)d —i—/ Mdz].

A—+o00 X —Z X —Z
Substituting—z for z in the last integral, we obtain

Pf+°° f(2) &= lim fA[f(Z)—f(X)+f(—Z)—f(X)]dZ
0

o X —2Z A—+00 X—2z X+z

Introduce a new function(x, z, ¢) in the following way. Suppose that

u11(z, 1) —u11(x, t)  wu11(—z,1) —wu(x, 1)
va(x,z,t) = o + o ,
lim v(x,z,t)=0

z— 400

wherev, = v,, 11 = u,,, then

+00
P/ u11(2) dz = —v(x, 0, 7).

o X —Z

Let f be a function ofx, z, r, wherez > 0. Denote byfi.o, fixools fiz01 fi—z01
the functions ofx, z, ¢ such that

f[XO](X, Z, t) = f(xs Os t)s f[xoo](xs s t) = AiToof(x, A’ t)’

frzo(x,z,t) = f(z,0,1), fi—zo(x, 2, ) = f(—2,0,1).

Note thatf{.o; = f if and only if the functionf is independent of.
We see that Equation (1) is equivalent to the system

uz = 2Ul1 — Vo, upo) = U, Vroo] = 0, 9
1 u —u U1 —,01 — U

vy = _[ 10 ~ 411 | H1c0) 11], (10)
T X —2z xX+z
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124 V. N. CHETVERIKOV

whereus = u,. Equations (9)—(10) involve three independent variables ¢,

two dependent variables, v, and the restrictions of the dependent variables to
the boundary setk = 0} and{z — +oo}. We say that a differential equation
with restrictions of dependent variables to boundary setb®muadary differential
equation

3. Symmetries of Boundary Differential Equations

In this section we recall certain concepts of geometry of boundary differential
equations [1].

Supposer: E — M is a smooth vector bundle over a manifalfl, I" () is
the totality of sections of the bundle, k is a nonnegative integer or infinity,
m. JK(r) — M is the corresponding bundle éfjets, andg is a finite set of
smooth mappings fromM to M such that the identity map jdbelongs tog; then

by n,? we denote the Whitney product of the induced bund’lés:: @geg g (mp).

Let J*(7r; §) denote the total space of the bundl,é. The set/*(rr; §) is a finite-
dimensional smooth manifold if is a finite integer. This set is an infinite-dimen-
sional manifold ifk is infinity.

Suppose is a section of the bundle andy is a point ofM; then by[s]} we
denote thek-jet of s at y. Every point of J*(rr; §) overx € M is a collection
of k-jets [sg]’;,(x) € JK(m), g € §, wheres, € I'(r). The collection of the-jets
{[sg]’;,(x)}geg is called the(k, §)-jet of the collection of sections,} at the pointx.
For any collection of sectiong,},cq denote byji ({s,}) the following section of
the bundler/:

Je(lsgD () = ([5 1 eeg- (11)

If all sectionss,, g € § coincide, then the corresponding collection of the
jets is called(k, §)-jet of the sectior at the pointx and is denoted bys]*# .
The jet[s]# is interpreted as a class of sections tangent with ordérto the
sections at all pointsg(x), g € §. Denote byj,(s) the sectionx — [s],(ck’g) and
by J*(7r; §)o the subset ofk, §)-jets of sections of the bundte. We say that the
manifold J*(7r; §) is themanifold (or thespacé of (k, §)-jetsand the bundlerfL
is thebundle of(k, )-jets

By a system of boundary partial differential equations of orderk imposed
on sections ofr with a set of map% (or simply by anequatior), we mean a
submanifoldé c J*(rr; §). A sections e I'(r) is asolution of the equatio®, if

Jk()(M) C €.

Remark 2.If ¢ = {idy}, then the manifold/*(rr; §) coincides with the or-
dinary jet space/ (). In this case, the concepts of the geometry of boundary
differential equations coincide with the corresponding concepts of the geometry of
partial differential equations [1, 7].
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SYMMETRY ALGEBRA OF THE BENJAMIN-ONO EQUATION 125

Suppose thatry, . . ., x,) are coordinates in adomaih C M, (u', ..., u™) are
coordinates in a fiber of the bundidy, o is a multi-index:oc = (i, ..., i), 1 <
i1 <n,....,1<ip <n,lo| =k Then(x;,ul),i =1,...,n,j =1,...,mare

the corresponding coordinates in the maniféfi(r), (u;’;g) are the corresponding
coordinates in a fiber of the bundié(.), g € §, andu, 4, = u.. The collection

(xi,u{;g),i:l,...,n,j:l,...,m,geg,, lo| >0 (12)

is acanonical coordinate systein J*°(xr; §). Obviously, the coordinate{;g ata
point {[sz1%,)}zeq € J>(7; ) is equal to(8'9ls} /0x7) (g (x)), Wheresé}, sy
are the components of the sectign

EXAMPLE 1. Consider system (9)—(10). The independent variables: are
coordinates in the manifoldfy, = R x [0, +00) x R. Let us glue the points
(x, 400, 1), (=00, z, 1), (+00, z, 1), (—00, +00, ), (+00, +00, t) to the manifold
M. Introduce a manifold structure to the &t = [—oo, +00] x [0, +00] x R
such that the manifold/ is diffeomorphic to the manifol@i—A, A] x [0, A] x R,
whereA is a positive number. Define the map$®)], [xoo], [z0], [—z0] from M to
M by the rules

[x0]: (x,z,8) = (x,0,1), [xo0]: (x,z,1) = (x, +00, 1),
[zO]: (x,z,t) — (z,0,1), [—z0]: (x,z,t) = (—z,0,1).

Take§o = {idy, [x0], [xoc], [z0], [—z0]} andr:R? x M — M, where the space
R? has the coordinates, v. Equations (9)—(10) define the submanifad c

J3(7; Go).
Define the bundle
xl I §) — I §) by (68 geg) = 6] Voeg

wherek > [ ork = oc. If g, is a subset of, then the bundler/-%*: J%(zr; §) —
JE(r; o) is defined byt 9 ({65 ) 4eq) = {65 ) ecgy-
Evidently, we have

niton) ™ =m, (13)
Jr,f’} o = gfH o n,f’),, (14)
710 jklse) = i({s ), (15)
789 jillsh) = JilUsgloegy). (16)

where{s, } is an arbitrary set of sections of the bundlevith ¢ € § and{s,},cq, =
{Sg | 8 € 91} C {Sg}-

Letk be a positive integef (r; ¢) and ¥ (;r; §) denote the algebras of smooth
functions on/>°(xr; §) and onJ*(rr; §), respectivelyA*(rr; §) denote the module
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126 V. N. CHETVERIKOV

of differential forms onJ*°(rr; §). By definition, a vector field on the infinite-
dimensional smooth manifold>(rr; §) is a derivationX of the algebra# (r; ¢)
such that for any integet, there exists an integérsuch thatX (¥;(r; $)) C
Fi(; g). Denote byD(r; §) the set of vector fields od*>(xr; §). If 7’ is a
bundle overM, ¥, (x, 7’; §) denotes the set of sections of the bun@h‘é)*(n’).

An elementyp € F,(w, 7’; §) can be interpreted as a nonlinear boundary differ-
ential operator fronT' (rr) to I'(x’). For anyk, the mapping(n,il’k)* embeds
Fr(m, 7’5 6) 10 Fiypa(mw, 7’5 §). Put

Fe.n' §) =] FGr.x': ).

k=0

For any vector fieldX on M, we can assign a vector fiel on J>(r; 9).
Indeed, suppose that = {[s, ey is a point of the manifold/*(r; §), ¢ €
F (7; 4); then, by definition, let us set

X(@)(©0) = X (Geseh @) ().
If a canonical coordinate system (12)Jf°(r; ¢) is chosen, then

—

d ;o 0g"(x) 0
kR B e
i i o,jg.l i 8Lt<7g
whereol = (i, ..., i, [) for o = (is, . .., ;). The vector field/ax; is denoted
below by D; and is called théotal derivativewith respect tox;.

Further, if4 is a semigroup of maps, then a smooth mapging 4 can be lifted
to the smooth mapping:: J*(; §) — J*(r; §), wherek is a positive integer or
oo. Namely, the mapping: takes each, = {[sg]’;,(x)}geg to Oy = {[sgogl]’;m)}geg,
wherex; = g1(x). Then the following diagram

JEr: §) — 2= T4 §) 17)

nfi lng
M M
is commutative and we have

81

g1og2=g10 &, g10 ji({sz)) = jie({se D) o g1,
whereg, € § ands, = s,.,, fOr anyg € §. The mapg; induces the following
action on coordinate functiongi*(x;) = g5(x;), 81" (ube) = usg,, Wheregs =
8 0 81.

EXAMPLE 2. The mapgx0], [xoc], [z0], [—z0] from Example 2 generate the
semigroup

91 = {IdMs [XO], [XOO], [Zo]s [_ZO]’ [ZOO], [—ZOO], [00], [+OOO], [_OOO]’
[0c0], [+0000], [—000c]},
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SYMMETRY ALGEBRA OF THE BENJAMIN-ONO EQUATION 127

where the mape;e;] takes a pointix, z,¢t) € M to the point(ey, e3,1) € M.
Obviously, Equations (9)—(10) define a submaniféldf the manifoldJ2(r; §1)
as well as of the manifold?(rr; o) (see Example 1).

Suppose thag C J*(rr; §) is an equationg is a semigroupg® c J**(x; )
is the set of all points;; = {[s,]%{;)}¢eq SUCh that any poirg(6,), g € §, 6k =
yr,?ﬂ’k(ekﬂ) belongs to€ and the submanifoldy ({s,}) is tangent to§ with order
> [ at all pointsg(6y), g € . Then the se€ is called theth prolongation of the
eqguation§.

If the equationg is given by the system

a\a\i
Gj<x,...,g*<8x:),...):o, j:l,...,l", (18)

wheres’,i =1, ..., m are the components of a sectiom I' (), |o| < k, g € §,
then its 0-prolongatio® © is given by the system

glolgi .
Gj(gl*(x),...,(gogl)*( ),> =0, j=1,...,r,81€4%

dx°
and the/th prolongationg® is given by the system
gﬁ*(D,(Gj)):O, j=1...,r,g1€$%, I7| </,

wheret = (t1,...,%), D = D,, o--- o D,, and D, is the total derivative with
respect to;.

For anyl, the maprf, ., ., takes the seg!*Y to the setg. We get the
sequence of mappingg’*Y — &/, 1 > 0. The inverse limit of this sequence is
called theinfinite prolongationof the equations and is denoted bg>. A point
0= [s],(f"’g) € J®(r; §)o belongs to the se&* if and only if the Taylor series of
the sectiory at the pointg (x) € M, g € § satisfies the equatiof. Therefore, we
say that the points of the set°NJ*°(rr; ), areformal solutionf the equatior€.

Let us denote byF; (&) the set of restrictions of smooth functions 6t (7 §)
to €. For anyl > 0, we have the embeddirng (&) C F..1(8). Elements of the
setF (&) = ;2o Fi1(€) are calledsmooth function®n the infinite prolongation
&*. In a similar way, we define differentiatforms on&. The setF (§) is an
algebra and the set’ (&) of differentiali-forms on&> is a module overF (8).

To define symmetries of boundary differential equation, we introduce some
auxiliary concepts. A vector field on &% is calledvertical if (774).(X) = 0,
wherer.: 8 — M. Obviously, any vector fiel& on &% locally has the form
Y+ " ,a;D;, whereY is a vertical field and);,i = 1, ..., n, are the restrictions
of the total derivatives t&>. Vector fieldsD; are tangent to any submanifold
Joo(8)(M) C &%°. Therefore, fielddD; are trivial symmetries of any equatic@
and any nontrivial symmetry may be interpreted as a vertical field.
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128 V. N. CHETVERIKOV

A differential 1-formw on J*(rr; §) is called aCartan formon J*(x; §) if
for any set of sectiongs, },cq we have[ji({s,}))]*(@w) = 0. Denote byCA* (&)
the set of restrictions of Cartan forms dh*(r; §) to &?. From (16), it follows
that (”1?+z+1,k+z)*(@1\l(81)) C CAY&™Y) for any! > 0. Elements of the set
CAYE™) = U2, CAL(E) are calledCartan formson §.

THEOREM 2. Suppose is a boundary differential equation with a semigro§p
and 4 is a section of the bundle.,: £ — M. Then there exists a solutione
I' () of the equatiore such thath = j..(s) if and only if for anyw € CAL(E™®)
we haveh*(w) = 0 and for anyg € ¢ we haveg(h(M)) C h(M).

A vertical field X on &% is called ahigher (infinitesima) symmetryof the
equationé C J*(rr; ), if the conditions

X(CAYE®) Cc CAY(E™®) and §*oX =Xog"

hold for anyg € 4. The set of all higher symmetries of an equati®is a Lie
algebra and is denoted by sy&).
To make this definition work, we introduce some new concepts. Suppose that
@ is a section of a bundlezr,f’)*(n), U is a coordinate neighborhood M and
U* = (nfo)’l(‘l,{) is the corresponding coordinate neighborhood (rr; ).
Then we define the vector field
9 &3 (D, () —

J,0,8 Uog

(19)

on U>, whereg’ is the jth component of the restriction gf to U, D, is the
o-composition of the total derivatives. It can be proved that jfu’ c M are two
coordinate neighborhoods i, then the fields, ¢, and9, ¢ coincide on the
neighborhoootnfo)—l(u N U). Thus, for anyy € F (, 7; §) we have the field
9, 0nJ*(m; §), which is called arevolutionary derivation

Similar to the differential case [1, 7], a field,, ¢ € F (7, 7;§) gives an
evolution of sections of the bundte. This evolution is given by the equations

ou’ ) gloly!
— = ¢’ g o ), j=1...,m,
= (v (G ) o) m

wherel =1,...,m,|lo| <k, g €G.
Let ¢ be a subsemigroup of a semigrogpandy € F(x, ; ¢). It follows
from (13) that the mapping
(71,?9) CF(m, s §) > Fi(w,m §)
is an embedding. Therefore, we have the figjdon /> (r; §) and the field, on
J®(; 6). By ©%, we denote the first field and 1y the second one.

PROPOSITION 3.1If 4 is a subsemigroup of a semigrogpand ¢ is an element
of Fi.(z, ; §), then the mappingz/ %), takes the fielb? to the field>?.
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SYMMETRY ALGEBRA OF THE BENJAMIN-ONO EQUATION 129
For two sectiong, ¢ € ¥ (, ; §) their Jacobi bracket{¢p, v}, is defined by
Op.y) = [Dp: Dy . (20)

Itis easy to verify thafy, ¥} = 9,(¥) — 9y (). Therefore,

. our! BYY
oy = > (é*(Dgwf‘)) a‘”a —g’*(DU(w“))la),
«,0,8 ng ang

j=1...,m. (22)

For any functiomy € ¥ (;r; ¢) define theuniversal linearization operatofor
derivative in the direction) l,,: ¥ (w, 7; ) — F (7; §) by the rule

Ly (@) = 9, (¥). (22)

Itis easy to prove that this definition ff is equivalent to definition (3).

Finally, let & be a boundary differential equation with a semigrgug-or any
@ € F(m, m; G), denote byp the restriction ofp to €~ and by¥ (&, ; ) denote
the set of these restrictions. By definition, put

g =lyfgws (300 =100 |ens D5 =ylgn.

wheref € F(r,7; 4).

THEOREM 4. Suppose that an equatidgh ¢ J*(r; §) is given by syster(i8)
and satisfies the condition

(n§ " o 78 ) (€%) = J°(m).

Then any higher symmetry of the equattras the fornb;, ¢ € (&, m; §).
The set of all solutions of the system

£.@ =0, j=1..r¢eFEmn§ (23)

forms a Lie algebra with respect to the bracket e}c. The mapping — 9; is
an isomorphism from this Lie algebra sym(§).

In the differential case (see [1, 7]), a fiekl on the manifoldé c J*(n) is
called a classical (infinitesimal) symmetry of the equat®if X(CAX(8)) C
CAL(&). This field can be lifted up to a field> on €. Suppose that, o(€>) =
JO() and the vertical component &f° coincides with the restriction of a certain
evolutionary differentiatiorp,, to £, wherep € ¥ (7, ; §). Then in a canonical
coordinate systertw;, «/) in J°°(r) the components of the sectignare

n
(pj :Zaiu{i)-i—bj, j=1...,m, (24)
i=1
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130 V. N. CHETVERIKOV

wherea;, b;,i =1,...,n,j=1,...,m,are functions of the variables, . .., x,,
ul, ..., u". Inthis case, the mapping; o). takes the fieldX to the field

N BN
Eal ox, + ;bl P E
Suppose now thad; is a higher symmetry of a boundary differential equation
€ C I 9), @ = ¢lex, ¢ € F(m,m;{idy}) C F(r,7;§), and the image
of 9, under the projectior(m?oi'dM})* is the vertical component of a classical
symmetry of the trivial equatiof = J%(rr). Then we say that the symmetsy; is
classical By Proposition (3), it follows that in a canonical coordinate system (12)
in J°°(rr; §) a classical symmetry has the form (24).

4. Classical Symmetries of the Benjamin—Ono Equation

In this section, we calculate classical symmetries of system (9)—(10). It follows
from (19), (22), and Example 1 that Equation (23) for system (9)-(10) has the
form

DS(U) = 2MD1(U) + 2M1U — V[xO], (25)

Dy(vy = LEUDic0 = DiW) | (DiW))izor = Di(U) o5
T(x = 2) w(x +2)

Vicee = 0, @27)

U[xO] = U, (28)

whereVi,o = [x0]"(V), (D3(U))1.0) = [20] (D1(D1(U))), etc,
Using (24) and the equatiarp = 0, we get

U=%&ui+0us+ ¢, (29)
V =&vy + nuo + Ovs + ¢, (30)

whereé, n, 0, ¢, ¥ are functions ofx, z, ¢, u, v. From (28), it follows that the
functionsé, 6, ¢ are independent af, v.

Differentiating (26) with respect t@111.0; and taking into account Equations
(29), (30) and finally multiplying both sides by(x — z), we obtain

N+ 2u00 = &0 + 2u:0,0-0;- (31)

In the same way, differentiating (26) with respectut@y_.o; and multiplying by
7 (x + z), we obtain

=0+ 2up_;0)0 = &—;0) + 2u[—010—:0)- (32)

Summing up (31) and (32) and differentiating the result with respegt @o
with respect ta:, we get

2(ug 0] + u—0D0. =0,  2(up0 + u—0)0, =0,
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SYMMETRY ALGEBRA OF THE BENJAMIN-ONO EQUATION 131

respectively. Therefore, the functiérdoes not depend on u. Hencep,o) = 6 =
0;—-0;- It now follows from (31) and (32) that = &.¢; and

&1:00 + §(—z00 = 0. (33)

Sinceé& is a function ofx, 7, u, it follows that the function; depends on
z,t,up0) and the functior_.o; depends or, ¢, u;_.o. Therefore, from (33) it
follows that¢ is independent af.

Using (33), (29), (30), wherge = &(t, x), n = &0, 0 = 0(1), ¢ = (1, x,u),
¥ = ¥ (t,x, z,u,v), and differentiating (26) with respect tq ;.o and with re-
spect tous1;—,0), We obtain

_Ex_i—g[;o] + W{; = ¢l/4[20] + E;[zo]’ (34)
&+ &0
x+rzo + ¥, = b0 T Eupor- (35)

Subtracting (35) from (34), we get
—& + §z0) n § + &z0)
X —z x+z

where® = ¢/, o, — #;_.o;- The functiond depends on, 7, ur.o, u;—.q- The left-
hand side of (36) can depend enz, ¢ only. It follows that® is a function of

z,t.
Multiplying both sides of (36) by? — z2, we get

= o, (36)

2xE.0 — 226 = D(x? — 2?). (37)

Differentiating (37) with respect to twice, we get—2z¢,. = 2. Therefor
is a function oft. Finding the coefficient by? in (37), we obtaire”. = 0. Hence,
S = ¢,.0; — P,;_.0 = O- As in the case of (33), from this equallity it follows that
¢, is independent of.

Substitutingsox +-&; for & andépz+&1 for &, in (37), wherék, &; are functions
of r, we get Zx — z)&€, = 0. Thus

&€ =&ox, n=2%&z, ¢=dou-+ e, (38)

where&g is a function ofz, ¢q, ¢1 are functions ofc, 1. Combining this with (34),
we obtainy, = ¢o.0) + 2£0. Therefore,

¥ = (¢oz0) + 260)v + Yo, (39)

wherevyy is a function ofx, z, ¢, u.
Taking into account (29), (30), (38), (39) and differentiating (25) with respect

to V[x0), WE get

$o + 6, = ¢oo0 + 2£0. (40)
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It now follows thatgyg is a function ofr only, since other functions in (40) possess
the same property. Henagg ooy = ¢o. Combining this with (40), we obtain

£ = 30, (41)
Differentiating (25) with respect te;, we getv/u +&; ,.x = 2¢ou + 2¢;. Hence,
$o = 30, ¢1 = 38),x. (42)

Using (29), (30), (38), (39), (41), (42), we rewrite (26) &#§. = 0. It fol-
lows thatyrg is a function ofx, z, u. Similarly, we can rewrite (25) and (27) as
€8x = —opo) and&o(2v2)(xeo) + Yorxoo) = 0. We haveyoo = Yo = Vo)
and(zv2)xeo] = U11[—000] — U11[000)- T IS iMplies that if we consider only solutions
satisfying the conditions

U11[—o00] = 0, U117000] = O, (43)

thenyg = 0, f;‘é{n = %9[;/, = 0, andd = ar? + 2bt + ¢, wherea, b, ¢ are constants.
In this case,

U = a[t’us + t(u+ xuq) + %x] + b[2tuz + u + xu1] + cus, (44)
V = a[t’vs+1t(3Bv + xv1 + zv2)] +
+b[2tvs + 3v + xv1 + zv2] + cvs. (45)

Clearly, the symmetries (44)—(45) preserve the condition (43). In other words,
(D2(U))[—o00; = 0 and(DZ(U))[o00; = 0 Whenever conditions (43) hold.
If we consider solutions vanishing at infinity, then

U[—000] = O, U[co0] = 0. (46)

In this case, a symmetryU, V) must satisfy the condition§/;_..qy = 0 and
Ujc0) = 0. Obviously, the symmetries (44)—(45) satisfy these conditions=f0.

In the notation of the Introduction, the symmetry (44)—(45) with= 0, b =
0, ¢ = 1 corresponds t@ . The symmetry (44)—(45) with = 0, b = -2,
¢ = 0 corresponds t@;; ;. The symmetry (44)—(45) with = 8,0 = 0,¢c =0
corresponds t@;; ;. Thus we proved the following theorem.

THEOREM 5. (a)The linear span of the fieldSy 1, G1.1, andG» 1 is the classical
symmetry algebra for systef®), (10), (43)

(b) The linear span of the fieldS, ; andG1 1 is the classical symmetry algebra
for system(9), (10), (46)

Remark 3.The symmetriesGoo = u1 and Gio = —2tu; — 1 are higher
symmetries in our sense. For exampld/it= G4 o, then

2t
V =-2tvy — —
T

U110 — U11 _ U11—z0] — U11
X —z X+z ’
It can be proved that the symmetri€s, ,, are nonlocal ones for > 2.
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5. Lie Algebra Structure on the Set of Symmetries of the Benjamin—Ono
Equation

The aim of this section is to prove Theorem 1. To do this, we need the following
lemma.

LEMMA 6. Suppose that the right-hand sidé of a scalar evolution equation
€: u, = K is independent of. Theng is a symmetry o€ polynomial inz if and
only if

m .
t .
i=0

where the functior, is independent of and ad};*l(goo) =0.
Proof. In our case, Equation (23) on a symmegrjas the form

o
3 = (0. K). (“7)

Indeed, it follows from (22), (19), and (21) that

15 k(@) = L,(@lex — Ix(p)

AP ap
= L~ 49 —1 =L _{p,K}=0.
Py + 9k () — k(@) » {p, K}

Suppose thap = Y I t'¢;, where functionsy; are independent af, then
from (47) we get

> it e =) e K).
i=1 i=0

Hence, fori =1, ..., m we have

1 1 1 .
¥ = lT{@i—l, K} = 7 adg (gi—1) = q ady (o) and {g,, K} =0.
This completes the proof. O
Before proving the theorem, we make some preliminary observations. While

calculating commutators we shall use the known properties of the Hilbert transform
operator:

H(fHg)+ H(gHf)=—fg+ (Hf)(Hg), (48)

HHf) = -1, (49)

DoH=HoD, (50)

H(xY =0, (51)

H(xf)=xHf (52)
and the well-known properties of the linearization operator:

lioy = Holy,  Ipyy=Doly, oy =ly +Vly, (53)
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where f, g are functions of the form (5) witkh (c0) = 0, D is the total derivative

with respect tor, ¢ andys are nonlinear operators. For the functiohandg of the

class Q1/|x|*) asx — oo, u > 0, the proof of properties (48), (49), (50), and (51)

for k = 0 can be found in the book [6]. In a general case, these properties and (52)

easily follow from definition (6). Properties (53) are deduced from definition (3).
Denoter™" = ad! ad!(Ko) form > 0,n > 0 (for definitions ofr and Ky, see

the Introduction).

Proof. The proof of Theorem 1is in 11 steps.
Step 1By direct calculations, we prove that

700 — uy, (54)
%1 =k, (55)
= —2D(xu), (56)
21 = 4x, (57)
12 = 6r, (58)
{r, VY = 21, (59)
{x, thy = —4x, (60)
{x, %1 = —11, (61)

Step 2We prove
ad1i(z"™") = 2+ 2n — dm)T™" (62)

by induction onm andn. The casen = 0, n = 0 is obtained by direct calculations.
Using (61), the Jacobi identity, and the induction hypothesis, we obtain

ad12(r*") = adiiad (r*"Y
= ad ad,11(r>") + ad, ;10 (>
= 2nad, (> +2ad (") = (24 20)7%"
forn > 0. Similarly, form > 0 we get
ad11(t™") = ad ad.i(r""M") +ad, (")
= (6+21 —4m)ad. (" ") — 4ad.(«" ")

= 2+ 2n —4m)T™".
Step 3By induction onm we prove that
ado1(t™") = 2m(m — 2 — n)T" ", (63)

The casen = 0 follows from the results by Fokas and Fuchssteiner (see Introduc-
tion). As above, fom > 0 we obtain

adoi(r"™") = ad, adzo,l(tm_l’") + ad{x,fo,l}(fm_l’”)
= 2(m - 1)(7’)’[ —3- I’l) adx(‘[m_z’") — ad[l’l(.[m—l,n)
= 2m(m — 2 — n).’:mfl,n.
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Step 4 The relations
T2 =0 (64)
and
T = (1) + D (65)

are proved by induction om. The case: = 0 is obtained by direct calculations. It
follows from the results by Fokas and Fuchssteiner that

{,L,O,nfl’ TO,Z} = 0. (66)

Using the Jacobi identity and the induction hypothesis, we get

3
a 1+3{f0,n—1’ 'L'O’2} — (l’l -:: >{Tn,n—l’ 'L'3’2} — 0’ (67)

where(’) denotes the binomial coefficient. By (58) and by the definition ®f,
we have{t%"~1, 112} = 672", Like in the case of (67), we obtain

n+2
a 1+2{f0,n—1’ .L,l,2} — ( ) ){.L,n,n—l’ 'L'3’2} — 6Tn+2,n.

Combining this with (67), we obtain (64).
As above,

acglJrZ{TO,nfl, _[0,2}

2 2
_ n _|_ {_L_nfl,n*l’ 1—3’2} + n + {Tn)nfl’ T2,2} — O’ (68)
3 3
ad {0t 12
1 1

Solving system (68)—(69), we get

12

-1 _22y _
n,n ,T }__
n+1

{_[ _L,n+1,n ) (70)

By direct calculations, we obtair?? = 12D (x?u). Combining this with (70) and
with the induction hypothesis, we obtain (65).
Step 5 Using (63) and (65), we get

" = (=1)"(n)?(n + D) D(x"u),

-1
= LD )2 (n + 1)D[x”l(u2 + Hug) + - 5 x"2H u]
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Hence
2
n+1,n _ n+1ln+1
{T ) T} - n + 2T )
22n —1
(r"", 1} = ( ) gt (71)

C+D(n+2)
Step 6 Using induction onn, we obtain
{.L,m,n’ .L,O,Z} — c(m, n, 0’ Z)Tmfl,nJrl’ (72)

wherec(m, n, 0, 2) satisfies (8). Namely, it follows from the definition o2, the
Jacobi identity, (63), and (71) that

= (" (2, o))

= ({7 N g+ (O T )

{.L,nJrl,n’ TO,Z}

2
= =2+ D{r"", 7} - n—H{rO'l, gibntly
12
n+2

Suppose that +1 > m > 0; then 2Zm + 1)(m — 1 — n) £ 0. Using (63), (66), the
Jacobi identity, and the induction hypothesis fof+", 192}, we get

1

_L,n,nJrl.

mmn 0,2y __ m+1n _0,1 0,2
{T at } - 2(m+1)(m_1_n){{T at }’T }
1
_ m+1,n 0,2 0,1
= 2miDm 1wt TR T
_ cim+1,n,0,2) (gt 01y

2(m + 1)(m —1—n) ’
= c¢(m,n,Q, Z)Im_l’"""l.
Step 7 Using (72), we obtain
{.L,m,n’ .L,l,2} — {.L,m,n’ {T0’2,X}}
(=", T, x) + (2%2, (", x))
= c(m,n,0,2){t" 1 x} 4 (02, ¢mHlmy

= c(m,n, 1, 2)1’"’””. (73)

Step 8 Combining (58), (72), (73), and the Jacobi identity, we get
{_L,m,n, _[0,3} — %{.’:m,n’ {.L.O,Z’ .L.l,Z}}
— %{{.’:m,n, ‘1,'0’2}, ‘171’2} + %{TO,Z, {.L,m,n, .L,l,Z}}
= gelm,n,0,2{r" "+ 12y + e(m, n, 1, 2){%2, o)

= c¢(m,n,0, 3)1”‘71’"*2. (74)
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Step 9Form +n > 1 + k > 3 we prove by induction oh+ & that
{_L,m,n, _L,l,k} — c(m, n, l, k)rm+l—1,n+k—l, (75)

wherec(m, n, [, k) satisfies (8). The cade+ k = 3 follows from (73), (74), and
(57). Combining (58), (73), the Jacobi identity, and the induction hypothesis, for
[ =0,k > 3 we obtain

m,n

,TQk} — %{Tnun,{TQkfl,le}}
— %{{.’:m,n, TOk-1y 712y 4 %{.L.O,kfl, (o, 2
= gc(m,n, 0,k — Df{rm-tnth=2 12}
+%c(m, n, 1, 2){g0k1, ¢mntly

= c(m,n, 0, k)" Lkt

{t

Similarly, for! > 0,k +1 > 3 we have

-1
O L L))

— {{.L,m,n’ Tl_l’k},X} 4+ {Tl—l,k’ {.L,m,n’ .X}}
= c(m,n,l -1, k){.[m+172,n+kfl, X} + {_L,lfl,k, Tmﬂ,n}

= c(m,n,l, k)"t -Lrtk-1

{t

Step 10We prove (75) fok = 0 by induction om andm. The relations

0= -1, (76)
{x, 719 =0, (77)
{r, 7% = 11, (78)
(%%, %% =0 (79)

are proved by direct calculations. Using the definitiorr®f, the Jacobi identity,
the induction hypothesis, (78), and (62), we obtain

(%", 1% = ad.oad, (z%" 1)
= ad, ad,l,o(ro’”’l) + aq,,rl,o}(ro’”’l)

n(n —1)ad, (%2 + ad,.1 (z*" 1)

n(n —1)7t%" 1 4 257011

= ¢(0,n,1,07%1

for n > 0. Similarly, using (77), forn > 0 we get

= ad,1o adx(‘rmfl’n)
ad, ad,o(z" L")
= nn+Dad. (" Y =c(m,n, 1, 07" 1.

{.L,m,n’ .L,l,O}
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Finally, we have(z®", %%} = 0. This result was in fact obtained by Fokas and
Fuchssteiner (they used different notation). As aboveyfor O we obtain
{z™" %% = adooad,(z" L")
= ad, adzo.o(‘rmfl’n) — ad{ro,o,x}(fmfl’n)
—(m — Dn(n + 1) ad, (z" 21 — ad ro(z" L")
= c¢(m,n,0, O)rm_l’"_l.

Step 11 Thus from steps 2, 3, 6, 9, 10 it follows that formula (75) holds for any
m, n, 1, k. Combining this with (55), we get @d‘l(r’”’”) =0foranym > 0,n >
0. By Lemma 6,G,, = Y.yt /i'adg (z™") is a symmetry of Equation (1).
Moreover, the commutator of symmetries is a symmetry. From (75) it follows that
the constant term (that is, the coefficientGtcf. Lemma 6) of the symmetry

Y = {Gm,na Gl,k} - C(ma n, la k)Gm+lfl,n+kfl

vanishes. If we combine this with Lemma 6, we obtaia- 0. This concludes the
proof. a
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