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1. Introduction

In this paper, we consider the Benjamin–Ono equation in the form

ut = 2uux +Huxx, (1)

whereH is the Hilbert transform operator

Hu(x) = 1

π
P

∫ +∞
−∞

u(z)

x − z
dz. (2)

HereP denotes the principal value.
The following result was proved by Fokas and Fuchssteiner (see [4]). We first

introduce the necessary notation. Letu be a function ofx and t , A(u), B(u) be
nonlinear operators fromC∞(R2) to C∞(R2), andlB be the derivative in the direc-
tion B, i.e.,

lB(A) = ∂

∂ε
A(u+ εB(u))

∣∣∣
ε=0

. (3)

Let {A,B} denote the Lie bracket,{A,B} = lB(A) − lA(B), adB denote the
corresponding adjoint map, i.e.,

adB(A) = {A,B}, τ (u) = −x(2uux +Huxx)− u2− 3

2
Hux.

Then

K0 = ux, Kn = adn
τ (K0), n = 1, 2, . . .
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122 V. N. CHETVERIKOV

are symmetries of Equation (1) and{Kn,Km} = 0 for anyn,m > 0.
Fuchssteiner [5] proved that the fields

Gm,n =
m∑

i=0

t i

i! adi
K adm

x (Kn), m = 1, 2, . . . , n = 0, 1, 2, . . .

are time-dependent symmetries for (1). HereK = K1 = 2uux +Huxx.

Remark 1.The integral (2) converges, ifu = φ(x) is a differentiable function
onR satisfying the Hölder condition at infinity:

φ(x) = φ(∞)+O

(
1

|x|µ
)

asx →∞, φ(∞) = const, µ > 0. (4)

However, in order to calculateGm,n, it is necessary to generalize the Hilbert trans-
form operator in some cases whenφ(x)→∞ asx →∞. Namely, suppose

u = xkφ(x), (5)

wherek is a positive integer,φ(x) is a differentiable function satisfying (4), while
xφ(x) does not satisfy condition (4). Then

Hu
def= xkHφ (6)

(see [6], p. 52). The operatorH is well defined in this way, since the presenta-
tion (5) is unambiguous.

In this paper we describe the Lie algebra structure on the set of symmetries
found by Fokas and Fuchssteiner. Our main result is as follows.

THEOREM 1. The Benjamin–Ono equation(1) possesses the following symmetry
algebraA: the generators of the linear spaceA are

Gm,n =
m∑

i=0

t i

i! adi
K adm

x adn
τ (K0), for n > 0, n+ 1> m > 0.

The structure of Lie algebra onA is determined by relations

{Gm,n,Gl,k} = c(m, n, l, k)Gm+l−1,n+k−1, (7)

where

c(m, n, l, k)

= (n+ 1)!n!(k + 1)!k!(n+ k + 1−m− l)!
(n+ 1−m)!(k + 1− l)!(n+ k)!(n+ k − 1)!×
×(ln+ l − km−m) (8)

for n+ k − 1> 0, n+ k + 1−m− l > 0 andc(m, n, l, k) = 0 otherwise.
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SYMMETRY ALGEBRA OF THE BENJAMIN–ONO EQUATION 123

Section 3 contains an outline of the geometry of boundary differential equations
used here (see [1] for details). In Section 4, we calculate the classical symmetries
of Equation (1).

2. Transformation the Benjamin–Ono Equation

We use the method developed in [1 – 3]. Let us first transform the Benjamin–Ono
equation to a system of boundary differential equations.

It is clear [6] that

P

∫ +∞
−∞

f (z)

x − z
dz = P

∫ +∞
−∞

f (z)− f (x)

x − z
dz.

Since the right-hand integral has a singularity only at infinity, we have

P

∫ +∞
−∞

f (z)− f (x)

x − z
dz

= lim
A→+∞

[ ∫ A

0

f (z)− f (x)

x − z
dz+

∫ 0

−A

f (z)− f (x)

x − z
dz

]
.

Substituting−z for z in the last integral, we obtain

P

∫ +∞
−∞

f (z)

x − z
dz = lim

A→+∞

∫ A

0

[
f (z)− f (x)

x − z
+ f (−z)− f (x)

x + z

]
dz.

Introduce a new functionv(x, z, t) in the following way. Suppose that

v2(x, z, t) = u11(z, t)− u11(x, t)

x − z
+ u11(−z, t)− u11(x, t)

x + z
,

lim
z→+∞ v(x, z, t) = 0,

wherev2 = vz, u11 = uxx, then

P

∫ +∞
−∞

u11(z)

x − z
dz = −v(x, 0, t).

Let f be a function ofx, z, t , wherez > 0. Denote byf[x0], f[x∞], f[z0], f[−z0]
the functions ofx, z, t such that

f[x0](x, z, t) = f (x, 0, t), f[x∞](x, z, t) = lim
A→+∞ f (x,A, t),

f[z0](x, z, t) = f (z, 0, t), f[−z0](x, z, t) = f (−z, 0, t).

Note thatf[x0] = f if and only if the functionf is independent ofz.
We see that Equation (1) is equivalent to the system

u3 = 2uu1 − v[x0], u[x0] = u, v[x∞] = 0, (9)

v2 = 1

π

[
u11[z0] − u11

x − z
+ u11[−z0] − u11

x + z

]
, (10)
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124 V. N. CHETVERIKOV

whereu3 = ut . Equations (9)–(10) involve three independent variablesx, z, t ,
two dependent variablesu, v, and the restrictions of the dependent variables to
the boundary sets{z = 0} and {z → +∞}. We say that a differential equation
with restrictions of dependent variables to boundary sets is aboundary differential
equation.

3. Symmetries of Boundary Differential Equations

In this section we recall certain concepts of geometry of boundary differential
equations [1].

Supposeπ : E → M is a smooth vector bundle over a manifoldM, 0(π) is
the totality of sections of the bundleπ , k is a nonnegative integer or infinity,
πk: J k(π) → M is the corresponding bundle ofk-jets, andG is a finite set of
smooth mappings fromM to M such that the identity map idM belongs toG; then
by π

G
k we denote the Whitney product of the induced bundles:π

G
k =

⊕
g∈G g∗(πk).

Let J k(π;G) denote the total space of the bundleπ
G
k . The setJ k(π;G) is a finite-

dimensional smooth manifold ifk is a finite integer. This set is an infinite-dimen-
sional manifold ifk is infinity.

Supposes is a section of the bundleπ andy is a point ofM; then by[s]ky we
denote thek-jet of s at y. Every point ofJ k(π;G) over x ∈ M is a collection
of k-jets [sg]kg(x) ∈ J k(π), g ∈ G, wheresg ∈ 0(π). The collection of thek-jets
{[sg]kg(x)}g∈G is called the(k,G)-jet of the collection of sections{sg} at the pointx.
For any collection of sections{sg}g∈G denote byjk({sg}) the following section of
the bundleπG

k :

jk({sg})(x) = {[sg]kg(x)}g∈G. (11)

If all sectionssg, g ∈ G coincide, then the corresponding collection of thek-
jets is called(k,G)-jet of the sections at the pointx and is denoted by[s](k,G)

x .
The jet [s](k,G)

x is interpreted as a class of sections tangent with order> k to the
sections at all pointsg(x), g ∈ G. Denote byjk(s) the sectionx 7→ [s](k,G)

x and
by J k(π;G)0 the subset of(k,G)-jets of sections of the bundleπ . We say that the
manifoldJ k(π;G) is themanifold(or thespace) of (k,G)-jetsand the bundleπG

k

is thebundle of(k,G)-jets.
By a system of boundary partial differential equations of order6 k imposed

on sections ofπ with a set of mapsG (or simply by anequation), we mean a
submanifoldE ⊂ J k(π;G). A sections ∈ 0(π) is asolution of the equationE , if
jk(s)(M) ⊂ E .

Remark 2.If G = {idM}, then the manifoldJ k(π;G) coincides with the or-
dinary jet spaceJ k(π). In this case, the concepts of the geometry of boundary
differential equations coincide with the corresponding concepts of the geometry of
partial differential equations [1, 7].
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SYMMETRY ALGEBRA OF THE BENJAMIN–ONO EQUATION 125

Suppose that(x1, . . . , xn) are coordinates in a domainU ⊂ M, (u1, . . . , um) are
coordinates in a fiber of the bundleπ |U , σ is a multi-index:σ = (i1, . . . , ik), 16
i1 6 n, . . . , 1 6 ik 6 n, |σ | = k. Then(xi, u

j
σ ), i = 1, . . . , n, j = 1, . . . ,m are

the corresponding coordinates in the manifoldJ∞(π), (uj
σg) are the corresponding

coordinates in a fiber of the bundleg∗(π∞), g ∈ G, andu
j

σ idM
= uj

σ . The collection

(xi, u
j
σg), i = 1, . . . , n, j = 1, . . . ,m, g ∈ G, |σ | > 0 (12)

is acanonical coordinate systemin J∞(π;G). Obviously, the coordinateuj
σg at a

point {[sg̃]∞g̃(x)
}g̃∈G ∈ J∞(π;G) is equal to(∂ |σ |sj

g/∂xσ )(g(x)), wheres1
g, . . . , s

m
g

are the components of the sectionsg.

EXAMPLE 1. Consider system (9)–(10). The independent variablesx, z, t are
coordinates in the manifoldM0 = R × [0,+∞) × R. Let us glue the points
(x,+∞, t), (−∞, z, t), (+∞, z, t), (−∞,+∞, t), (+∞,+∞, t) to the manifold
M0. Introduce a manifold structure to the setM = [−∞,+∞] × [0,+∞] × R
such that the manifoldM is diffeomorphic to the manifold[−A,A] × [0, A] ×R,
whereA is a positive number. Define the maps[x0], [x∞], [z0], [−z0] from M to
M by the rules

[x0]: (x, z, t) 7→ (x, 0, t), [x∞]: (x, z, t) 7→ (x,+∞, t),

[z0]: (x, z, t) 7→ (z, 0, t), [−z0]: (x, z, t) 7→ (−z, 0, t).

TakeG0 = {idM, [x0], [x∞], [z0], [−z0]} andπ :R2 ×M → M, where the space
R2 has the coordinatesu, v. Equations (9)–(10) define the submanifoldE ⊂
J 2(π;G0).

Define the bundle

π
G
k,l: J

k(π;G)→ J l(π;G) by π
G
k,l({θg

k }g∈G) = {θg

l }g∈G,
wherek > l or k = ∞. If G1 is a subset ofG, then the bundleπG,G1

k : J k(π;G)→
J k(π;G1) is defined byπG,G1

k ({θg

k }g∈G) = {θg

k }g∈G1.
Evidently, we have

π
G1
k ◦ π

G,G1
k = π

G
k , (13)

π
G1
k,l ◦ π

G,G1
k = π

G,G1
l ◦ π

G
k,l, (14)

π
G
k,l ◦ jk({sg}) = jl({sg}), (15)

π
G,G1
k ◦ jk({sg}) = jk({sg}g∈G1), (16)

where{sg} is an arbitrary set of sections of the bundleπ with g ∈ G and{sg}g∈G1 ={sg | g ∈ G1} ⊂ {sg}.
Letk be a positive integer,F (π;G) andFk(π;G) denote the algebras of smooth

functions onJ∞(π;G) and onJ k(π;G), respectively,3∗(π;G) denote the module
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126 V. N. CHETVERIKOV

of differential forms onJ∞(π;G). By definition, a vector field on the infinite-
dimensional smooth manifoldJ∞(π;G) is a derivationX of the algebraF (π;G)

such that for any integerk, there exists an integerl such thatX(Fk(π;G)) ⊂
Fl(π;G). Denote byD(π;G) the set of vector fields onJ∞(π;G). If π ′ is a
bundle overM, Fk(π, π ′;G) denotes the set of sections of the bundle(π

G
k )∗(π ′).

An elementϕ ∈ Fk(π, π ′;G) can be interpreted as a nonlinear boundary differ-
ential operator from0(π) to 0(π ′). For anyk, the mapping(πG

k+1,k)
∗ embeds

Fk(π, π ′;G) to Fk+1(π, π ′;G). Put

F (π, π ′;G) =
∞⋃

k=0

Fk(π, π ′;G).

For any vector fieldX on M, we can assign a vector field̂X on J∞(π;G).
Indeed, suppose thatθ = {[sg]∞g(x)} is a point of the manifoldJ∞(π;G), ϕ ∈
F (π;G); then, by definition, let us set

X̂(ϕ)(θ) = X(jk({sg})∗(ϕ))(x).

If a canonical coordinate system (12) inJ∞(π;G) is chosen, then

∂̂

∂xi

= ∂

∂xi

+
∑

σ,j,g,l

u
j

σ l,g

∂g∗(xl)

∂xi

∂

∂u
j
σg

,

whereσ l = (i1, . . . , ik, l) for σ = (i1, . . . , ik). The vector field∂̂/∂xi is denoted
below byDi and is called thetotal derivativewith respect toxi .

Further, ifG is a semigroup of maps, then a smooth mappingg1 ∈ G can be lifted
to the smooth mappinĝg1: J k(π;G)→ J k(π;G), wherek is a positive integer or
∞. Namely, the mappinĝg1 takes eachθk = {[sg]kg(x)}g∈G to θ̃k = {[sg◦g1]kg(x1)

}g∈G,
wherex1 = g1(x). Then the following diagram

J k(π;G)

π
G
k

ĝ1
J k(π;G)

π
G
k

M
g1

M

(17)

is commutative and we have

ĝ1 ◦ g2 = ĝ1 ◦ ĝ2, ĝ1 ◦ jk({sg̃}) = jk({s̃g}) ◦ g1,

whereg2 ∈ G and s̃g = sg◦g1 for anyg ∈ G. The mapĝ1 induces the following
action on coordinate functions:̂g1

∗(xi) = g∗1(xi), ĝ1
∗(uj

σg) = u
j
σg3, whereg3 =

g ◦ g1.

EXAMPLE 2. The maps[x0], [x∞], [z0], [−z0] from Example 2 generate the
semigroup

G1 = {idM, [x0], [x∞], [z0], [−z0], [z∞], [−z∞], [00], [+∞0], [−∞0],
[0∞], [+∞∞], [−∞∞]},
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SYMMETRY ALGEBRA OF THE BENJAMIN–ONO EQUATION 127

where the map[•1•2] takes a point(x, z, t) ∈ M to the point(•1, •2, t) ∈ M.
Obviously, Equations (9)–(10) define a submanifoldE of the manifoldJ 2(π;G1)

as well as of the manifoldJ 2(π;G0) (see Example 1).

Suppose thatE ⊂ J k(π;G) is an equation,G is a semigroup,E (l) ⊂ J k+l(π;G)

is the set of all pointsθk+l = {[sg]k+l
g(x)}g∈G such that any point̂g(θk), g ∈ G, θk =

π
G
k+l,k(θk+l) belongs toE and the submanifoldjk({sg}) is tangent toE with order
> l at all pointŝg(θk), g ∈ G. Then the setE (l) is called thelth prolongation of the
equationE .

If the equationE is given by the system

Gj

(
x, . . . , g∗

(
∂ |σ |si

∂xσ

)
, . . .

)
= 0, j = 1, . . . , r, (18)

wheresi , i = 1, . . . ,m are the components of a sections ∈ 0(π), |σ | 6 k, g ∈ G,
then its 0-prolongationE (0) is given by the system

Gj

(
g1
∗(x), . . . , (g ◦ g1)

∗
(

∂ |σ |si

∂xσ

)
, . . .

)
= 0, j = 1, . . . , r, g1 ∈ G

and thelth prolongationE (l) is given by the system

ĝ1
∗(Dτ (Gj)) = 0, j = 1, . . . , r, g1 ∈ G, |τ | 6 l,

whereτ = (t1, . . . , tk), Dτ = Dt1 ◦ · · · ◦ Dtk , andDt is the total derivative with
respect toxt .

For any l, the mapπ
G
k+l+1,k+l takes the setE (l+1) to the setE (l). We get the

sequence of mappingsE (l+1) → E l , l > 0. The inverse limit of this sequence is
called theinfinite prolongationof the equationE and is denoted byE∞. A point
θ = [s](∞,G)

x ∈ J∞(π;G)0 belongs to the setE∞ if and only if the Taylor series of
the sections at the pointsg(x) ∈M, g ∈ G satisfies the equationE . Therefore, we
say that the points of the setE∞∩J∞(π;G)0 areformal solutionsof the equationE .

Let us denote byFl(E) the set of restrictions of smooth functions onJ k+l(π;G)

to E (l). For anyl > 0, we have the embeddingFl(E) ⊂ Fl+1(E). Elements of the
setF (E) = ⋃∞

l=0 Fl(E) are calledsmooth functionson the infinite prolongation
E∞. In a similar way, we define differentiali-forms onE∞. The setF (E) is an
algebra and the set3i(E) of differential i-forms onE∞ is a module overF (E).

To define symmetries of boundary differential equation, we introduce some
auxiliary concepts. A vector fieldX on E∞ is calledvertical if (π∞)∗(X) = 0,
whereπ∞: E∞ → M. Obviously, any vector fieldX on E∞ locally has the form
Y +∑n

i=1 aiDi, whereY is a vertical field andDi, i = 1, . . . , n, are the restrictions
of the total derivatives toE∞. Vector fieldsDi are tangent to any submanifold
j∞(s)(M) ⊂ E∞. Therefore, fieldsDi are trivial symmetries of any equationE∞
and any nontrivial symmetry may be interpreted as a vertical field.
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128 V. N. CHETVERIKOV

A differential 1-form ω on J k(π;G) is called aCartan formon J k(π;G) if
for any set of sections{sg}g∈G we have[jk({sg})]∗(ω) = 0. Denote byC31(E l )

the set of restrictions of Cartan forms onJ k+l(π;G) to E (l). From (16), it follows
that (π

G
k+l+1,k+l)

∗(C31(E l)) ⊂ C31(E l+1) for any l > 0. Elements of the set
C31(E∞) = ⋃∞l=0 C31(E l ) are calledCartan formsonE∞.

THEOREM 2. SupposeE is a boundary differential equation with a semigroupG
andh is a section of the bundleπ∞: E∞ → M. Then there exists a solutions ∈
0(π) of the equationE such thath = j∞(s) if and only if for anyω ∈ C31(E∞)

we haveh∗(ω) = 0 and for anyg ∈ G we havêg(h(M)) ⊂ h(M).

A vertical field X on E∞ is called ahigher (infinitesimal) symmetryof the
equationE ⊂ J k(π;G), if the conditions

X(C31(E∞)) ⊂ C31(E∞) and ĝ∗ ◦X = X ◦ ĝ∗

hold for anyg ∈ G. The set of all higher symmetries of an equationE is a Lie
algebra and is denoted by sym(E).

To make this definition work, we introduce some new concepts. Suppose that
ϕ is a section of a bundle(πG

k )∗(π), U is a coordinate neighborhood inM and
U∞ = (π

G
∞)−1(U) is the corresponding coordinate neighborhood inJ∞(π;G).

Then we define the vector field

�ϕ,U
def=
∑
j,σ,g

ĝ∗(Dσ(ϕj ))
∂

∂u
j
σg

(19)

on U∞, whereϕj is thej th component of the restriction ofϕ to U∞, Dσ is the
σ -composition of the total derivatives. It can be proved that ifU,U′ ⊂ M are two
coordinate neighborhoods inM, then the fields�ϕ,U and�ϕ,U′ coincide on the
neighborhood(πG

∞)−1(U ∩U′). Thus, for anyϕ ∈ F (π, π;G) we have the field
�ϕ onJ∞(π;G), which is called anevolutionary derivation.

Similar to the differential case [1, 7], a field�ϕ, ϕ ∈ F (π, π;G) gives an
evolution of sections of the bundleπ . This evolution is given by the equations

∂uj

∂t
= ϕj

(
x, . . . , g∗

(
∂ |σ |ul

∂xσ

)
, . . .

)
, j = 1, . . . ,m,

wherel = 1, . . . ,m, |σ | 6 k, g ∈ G.

Let G be a subsemigroup of a semigroupG′ andϕ ∈ Fk(π, π;G). It follows
from (13) that the mapping(

π
G′,G
k

)∗
: Fk(π, π;G)→ Fk(π, π;G′)

is an embedding. Therefore, we have the field�ϕ onJ∞(π;G) and the field�ϕ on

J∞(π;G′). By �G
ϕ , we denote the first field and by�G′

ϕ the second one.

PROPOSITION 3. If G is a subsemigroup of a semigroupG′ andϕ is an element

of Fk(π, π;G), then the mapping(πG′,G
k )∗ takes the field�G′

ϕ to the field�G
ϕ .
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SYMMETRY ALGEBRA OF THE BENJAMIN–ONO EQUATION 129

For two sectionsϕ,ψ ∈ F (π, π;G) their Jacobi bracket, {ϕ,ψ}, is defined by

�{ϕ,ψ} = [�ϕ,�ψ ]. (20)

It is easy to verify that{ϕ,ψ} = �ϕ(ψ)− �ψ(ϕ). Therefore,

{ϕ,ψ}j =
∑
α,σ,g

(
ĝ∗(Dσ(ϕα))

∂ψj

∂uα
σg

− ĝ∗(Dσ (ψα))
∂ϕj

∂uα
σg

)
,

j = 1, . . . ,m. (21)

For any functionψ ∈ F (π;G) define theuniversal linearization operator(or
derivative in the directionψ) lψ : F (π, π;G)→ F (π;G) by the rule

lψ(ϕ) = �ϕ(ψ). (22)

It is easy to prove that this definition oflψ is equivalent to definition (3).
Finally, letE be a boundary differential equation with a semigroupG. For any

ϕ ∈ F (π, π;G), denote byϕ̄ the restriction ofϕ to E∞ and byF (E, π;G) denote
the set of these restrictions. By definition, put

lEψ = lψ
∣∣
E∞, {ϕ̄, θ̄}E = {ϕ, θ}∣∣

E∞, �ϕ̄ = �ϕ

∣∣
E∞,

whereθ ∈ F (π, π;G).

THEOREM 4. Suppose that an equationE ⊂ J k(π;G) is given by system(18)
and satisfies the condition(

π
G,{idM }
0 ◦ π

G
∞,0

)
(E∞) = J 0(π).

Then any higher symmetry of the equationE has the form�ϕ̄, ϕ̄ ∈ F (E, π;G).
The set of all solutions of the system

lEGj
(ϕ̄) = 0, j = 1, . . . , r, ϕ̄ ∈ F (E, π;G) (23)

forms a Lie algebra with respect to the bracket{•, •}E . The mappingϕ̄ 7→ �ϕ̄ is
an isomorphism from this Lie algebra tosym(E).

In the differential case (see [1, 7]), a fieldX on the manifoldE ⊂ J k(π) is
called a classical (infinitesimal) symmetry of the equationE if X(C31(E)) ⊂
C31(E). This field can be lifted up to a fieldX∞ onE∞. Suppose thatπ∞,0(E

∞) =
J 0(π) and the vertical component ofX∞ coincides with the restriction of a certain
evolutionary differentiation�ϕ to E∞, whereϕ ∈ F (π, π;G). Then in a canonical
coordinate system(xi, u

j
σ ) in J∞(π) the components of the sectionϕ are

ϕj =
n∑

i=1

aiu
j

(i) + bj , j = 1, . . . ,m, (24)
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whereai , bj , i = 1, . . . , n, j = 1, . . . ,m, are functions of the variablesx1, . . . , xn,
u1, . . . , um. In this case, the mapping(πk,0)∗ takes the fieldX to the field

n∑
i=1

ai

∂

∂xi

+
m∑

j=1

bj

∂

∂uj
.

Suppose now that�ϕ̄ is a higher symmetry of a boundary differential equation
E ⊂ J k(π;G), ϕ̄ = ϕ|E∞ , ϕ ∈ F (π, π; {idM}) ⊂ F (π, π;G), and the image
of �ϕ under the projection(πG,{idM }∞ )∗ is the vertical component of a classical
symmetry of the trivial equatioñE = J 0(π). Then we say that the symmetry�ϕ̄ is
classical. By Proposition (3), it follows that in a canonical coordinate system (12)
in J∞(π;G) a classical symmetryϕ has the form (24).

4. Classical Symmetries of the Benjamin–Ono Equation

In this section, we calculate classical symmetries of system (9)–(10). It follows
from (19), (22), and Example 1 that Equation (23) for system (9)–(10) has the
form

D3(U) = 2uD1(U)+ 2u1U − V[x0], (25)

D2(V ) = (D2
1(U))[z0] −D2

1(U)

π(x − z)
+ (D2

1(U))[−z0] −D2
1(U)

π(x + z)
, (26)

V[x∞] = 0, (27)

U[x0] = U, (28)

whereV[x0] = [̂x0]∗(V ), (D2
1(U))[z0] = [̂z0]∗(D1(D1(U))), etc.

Using (24) and the equationu2 = 0, we get

U = ξu1+ θu3+ φ, (29)

V = ξv1+ ηv2 + θv3+ ψ, (30)

where ξ, η, θ, φ,ψ are functions ofx, z, t, u, v. From (28), it follows that the
functionsξ, θ, φ are independent ofz, v.

Differentiating (26) with respect tou111[z0] and taking into account Equations
(29), (30) and finally multiplying both sides byπ(x − z), we obtain

η + 2u[z0]θ = ξ[z0] + 2u[z0]θ[z0]. (31)

In the same way, differentiating (26) with respect tou111[−z0] and multiplying by
π(x + z), we obtain

−η + 2u[−z0]θ = ξ[−z0] + 2u[−z0]θ[−z0]. (32)

Summing up (31) and (32) and differentiating the result with respect tox or
with respect tou, we get

2(u[z0] + u[−z0])θ ′x = 0, 2(u[z0] + u[−z0])θ ′u = 0,
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respectively. Therefore, the functionθ does not depend onx, u. Hence,θ[z0] = θ =
θ[−z0]. It now follows from (31) and (32) thatη = ξ[z0] and

ξ[z0] + ξ[−z0] = 0. (33)

Sinceξ is a function ofx, t, u, it follows that the functionξ[z0] depends on
z, t, u[z0] and the functionξ[−z0] depends onz, t, u[−z0]. Therefore, from (33) it
follows thatξ is independent ofu.

Using (33), (29), (30), whereξ = ξ(t, x), η = ξ[z0], θ = θ(t), φ = φ(t, x, u),
ψ = ψ(t, x, z, u, v), and differentiating (26) with respect tou11[z0] and with re-
spect tou11[−z0], we obtain

−ξ − ξ[z0]
x − z

+ ψ ′v = φ′u[z0] + ξ ′x[z0], (34)

−ξ + ξ[z0]
x + z

+ ψ ′v = φ′u[−z0] + ξ ′x[z0]. (35)

Subtracting (35) from (34), we get

−ξ + ξ[z0]
x − z

+ ξ + ξ[z0]
x + z

= 8, (36)

where8 = φ′u[z0] − φ′u[−z0]. The function8 depends onz, t, u[z0], u[−z0]. The left-
hand side of (36) can depend onx, z, t only. It follows that8 is a function of
z, t .

Multiplying both sides of (36) byx2 − z2, we get

2xξ[z0] − 2zξ = 8(x2− z2). (37)

Differentiating (37) with respect tox twice, we get−2zξ ′′xx = 28. Thereforeξ ′′xx

is a function oft . Finding the coefficient byz3 in (37), we obtainξ ′′xx = 0. Hence,
8 = φ′u[z0] − φ′u[−z0] = 0. As in the case of (33), from this equality it follows that
φ′u is independent ofu.

Substitutingξ0x+ξ1 for ξ andξ0z+ξ1 for ξ[z0] in (37), whereξ0, ξ1 are functions
of t , we get 2(x − z)ξ1 = 0. Thus

ξ = ξ0x, η = ξ0z, φ = φ0u+ φ1, (38)

whereξ0 is a function oft , φ0, φ1 are functions ofx, t . Combining this with (34),
we obtainψ ′v = φ0[z0] + 2ξ0. Therefore,

ψ = (φ0[z0] + 2ξ0)v + ψ0, (39)

whereψ0 is a function ofx, z, t, u.
Taking into account (29), (30), (38), (39) and differentiating (25) with respect

to v[x0], we get

φ0+ θ ′t = φ0[00] + 2ξ0. (40)
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It now follows thatφ0 is a function oft only, since other functions in (40) possess
the same property. Hence,φ0[00] = φ0. Combining this with (40), we obtain

ξ0 = 1
2θ
′
t . (41)

Differentiating (25) with respect tou1, we getθ ′t u+ξ ′0,tx = 2φ0u+2φ1. Hence,

φ0 = 1
2θ
′
t , φ1 = 1

2ξ
′
0,tx. (42)

Using (29), (30), (38), (39), (41), (42), we rewrite (26) asψ ′0,z = 0. It fol-
lows thatψ0 is a function ofx, t, u. Similarly, we can rewrite (25) and (27) as
1
2ξ
′′
0,t tx = −ψ0[x0] andξ0(zv2)[x∞] + ψ0[x∞] = 0. We haveψ0[x0] = ψ0 = ψ0[x∞]

and(zv2)[x∞] = u11[−∞0] −u11[∞0]. This implies that if we consider only solutions
satisfying the conditions

u11[−∞0] = 0, u11[∞0] = 0, (43)

thenψ0 = 0, ξ ′′0,t t = 1
2θ
′′′
t t t = 0, andθ = at2+ 2bt + c, wherea, b, c are constants.

In this case,

U = a[t2u3+ t (u+ xu1)+ 1
2x] + b[2tu3 + u+ xu1] + cu3, (44)

V = a[t2v3+ t (3v + xv1 + zv2)] +
+b[2tv3 + 3v + xv1 + zv2] + cv3. (45)

Clearly, the symmetries (44)–(45) preserve the condition (43). In other words,
(D2

1(U))[−∞0] = 0 and(D2
1(U))[∞0] = 0 whenever conditions (43) hold.

If we consider solutions vanishing at infinity, then

u[−∞0] = 0, u[∞0] = 0. (46)

In this case, a symmetry(U, V ) must satisfy the conditionsU[−∞0] = 0 and
U[∞0] = 0. Obviously, the symmetries (44)–(45) satisfy these conditions iffa = 0.

In the notation of the Introduction, the symmetry (44)–(45) witha = 0, b =
0, c = 1 corresponds toG0,1. The symmetry (44)–(45) witha = 0, b = −2,
c = 0 corresponds toG1,1. The symmetry (44)–(45) witha = 8, b = 0, c = 0
corresponds toG2,1. Thus we proved the following theorem.

THEOREM 5. (a)The linear span of the fieldsG0,1,G1,1, andG2,1 is the classical
symmetry algebra for system(9), (10), (43).

(b) The linear span of the fieldsG0,1 andG1,1 is the classical symmetry algebra
for system(9), (10), (46).

Remark 3.The symmetriesG0,0 = u1 and G1,0 = −2tu1 − 1 are higher
symmetries in our sense. For example, ifU = G1,0, then

V = −2tv1 − 2t

π

[
u11[z0] − u11

x − z
− u11[−z0] − u11

x + z

]
.

It can be proved that the symmetriesGm,n are nonlocal ones forn > 2.
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5. Lie Algebra Structure on the Set of Symmetries of the Benjamin–Ono
Equation

The aim of this section is to prove Theorem 1. To do this, we need the following
lemma.

LEMMA 6. Suppose that the right-hand sideK of a scalar evolution equation
E : ut = K is independent oft . Thenϕ is a symmetry ofE polynomial int if and
only if

ϕ =
m∑

i=0

t i

i! adi
K(ϕ0),

where the functionϕ0 is independent oft andadm+1
K (ϕ0) = 0.

Proof. In our case, Equation (23) on a symmetryϕ has the form
∂ϕ

∂t
= {ϕ,K}. (47)

Indeed, it follows from (22), (19), and (21) that

lEut−K(ϕ) = lut
(ϕ)|E∞ − lK(ϕ)

= ∂ϕ

∂t
+ �K(ϕ)− lK(ϕ) = ∂ϕ

∂t
− {ϕ,K} = 0.

Suppose thatϕ = ∑m
i=0 t iϕi, where functionsϕi are independent oft ; then

from (47) we get
m∑

i=1

it i−1ϕi =
m∑

i=0

t i{ϕi,K}.

Hence, fori = 1, . . . ,m we have

ϕi = 1

i
{ϕi−1,K} = 1

i
adK(ϕi−1) = 1

i! adi
K(ϕ0) and {ϕm,K} = 0.

This completes the proof. 2
Before proving the theorem, we make some preliminary observations. While

calculating commutators we shall use the known properties of the Hilbert transform
operator:

H(fHg)+H(gHf ) = −fg + (Hf )(Hg), (48)

H(Hf ) = −f, (49)

D ◦H = H ◦D, (50)

H(xk) = 0, (51)

H(xf ) = xHf (52)

and the well-known properties of the linearization operator:

lH◦ψ = H ◦ lψ, lD(ψ) = D ◦ lψ, lφψ = φlψ + ψlφ, (53)
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wheref, g are functions of the form (5) withφ(∞) = 0, D is the total derivative
with respect tox, φ andψ are nonlinear operators. For the functionsf andg of the
class O(1/|x|µ) asx →∞, µ > 0, the proof of properties (48), (49), (50), and (51)
for k = 0 can be found in the book [6]. In a general case, these properties and (52)
easily follow from definition (6). Properties (53) are deduced from definition (3).

Denoteτm,n = adm
x adn

τ (K0) for m > 0, n > 0 (for definitions ofτ andK0, see
the Introduction).

Proof.The proof of Theorem 1 is in 11 steps.
Step 1: By direct calculations, we prove that

τ0,0 = u1, (54)

τ0,1 = K, (55)

τ1,1 = −2D(xu), (56)

τ2,1 = 4x, (57)

τ1,2 = 6τ, (58)

{τ, τ1,1} = 2τ, (59)

{x, τ1,1} = −4x, (60)

{x, τ0,1} = −τ1,1. (61)

Step 2: We prove

adτ1,1(τm,n) = (2+ 2n− 4m)τm,n (62)

by induction onm andn. The casem = 0, n = 0 is obtained by direct calculations.
Using (61), the Jacobi identity, and the induction hypothesis, we obtain

adτ1,1(τ0,n) = adτ1,1 adτ (τ
0,n−1)

= adτ adτ1,1(τ0,n−1)+ ad{τ,τ1,1}(τ0,n−1)

= 2n adτ (τ
0,n−1)+ 2 adτ (τ

0,n−1) = (2+ 2n)τ0,n

for n > 0. Similarly, form > 0 we get

adτ1,1(τm,n) = adx adτ1,1(τm−1,n)+ ad{x,τ1,1}(τm−1,n)

= (6+ 2n− 4m) adx(τ
m−1,n)− 4 adx(τ

m−1,n)

= (2+ 2n− 4m)τm,n.

Step 3: By induction onm we prove that

adτ0,1(τm,n) = 2m(m− 2− n)τm−1,n. (63)

The casem = 0 follows from the results by Fokas and Fuchssteiner (see Introduc-
tion). As above, form > 0 we obtain

adτ0,1(τm,n) = adx adτ0,1(τm−1,n)+ ad{x,τ0,1}(τm−1,n)

= 2(m− 1)(m− 3− n) adx(τ
m−2,n)− adτ1,1(τm−1,n)

= 2m(m− 2− n)τm−1,n.
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Step 4: The relations

τn+2,n = 0 (64)

and

τn+1,n = (−1)n+1[(n+ 1)!]2xn (65)

are proved by induction onn. The casen = 0 is obtained by direct calculations. It
follows from the results by Fokas and Fuchssteiner that

{τ0,n−1, τ0,2} = 0. (66)

Using the Jacobi identity and the induction hypothesis, we get

adn+3
x {τ0,n−1, τ0,2} =

(
n+ 3

3

)
{τn,n−1, τ3,2} = 0, (67)

where
(
n

k

)
denotes the binomial coefficient. By (58) and by the definition ofτ0,n,

we have{τ0,n−1, τ1,2} = 6τ0,n. Like in the case of (67), we obtain

adn+2
x {τ0,n−1, τ1,2} =

(
n+ 2

2

)
{τn,n−1, τ3,2} = 6τn+2,n.

Combining this with (67), we obtain (64).
As above,

adn+2
x {τ0,n−1, τ0,2}
=
(

n+ 2

3

)
{τn−1,n−1, τ3,2} +

(
n+ 2

3

)
{τn,n−1, τ2,2} = 0, (68)

adn+1
x {τ0,n−1, τ1,2}
=
(

n+ 1

2

)
{τn−1,n−1, τ3,2} +

(
n+ 1

1

)
{τn,n−1, τ2,2} = 6τn+1,n. (69)

Solving system (68)–(69), we get

{τn,n−1, τ2,2} = − 12

n+ 1
τn+1,n. (70)

By direct calculations, we obtainτ2,2 = 12D(x2u). Combining this with (70) and
with the induction hypothesis, we obtain (65).

Step 5: Using (63) and (65), we get

τn,n = (−1)n(n!)2(n+ 1)D(xnu),

τn−1,n = 1
2(−1)n−1(n!)2(n+ 1)D

[
xn−1(u2+Hu1)+ n− 1

2
xn−2Hu

]
.
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Hence

{τn+1,n, τ } = − 2

n+ 2
τn+1,n+1,

{τn,n, τ } = − 2(2n− 1)

(n+ 1)(n+ 2)
τn,n+1. (71)

Step 6: Using induction onm, we obtain

{τm,n, τ0,2} = c(m, n, 0, 2)τm−1,n+1, (72)

wherec(m, n, 0, 2) satisfies (8). Namely, it follows from the definition ofτ0,2, the
Jacobi identity, (63), and (71) that

{τn+1,n, τ0,2} = {τn+1,n, {τ0,1, τ }}
= {{τn+1,n, τ0,1}, τ } + {τ0,1, {τn+1,n, τ }}
= −2(n+ 1){τn,n, τ } − 2

n+ 2
{τ0,1, τ n+1,n+1}

= − 12

n+ 2
τn,n+1.

Suppose thatn+1 > m > 0; then 2(m+ 1)(m−1−n) 6= 0. Using (63), (66), the
Jacobi identity, and the induction hypothesis for{τm+1,n, τ0,2}, we get

{τm,n, τ0,2} = 1

2(m+ 1)(m− 1− n)
{{τm+1,n, τ0,1}, τ0,2}

= 1

2(m+ 1)(m− 1− n)
{{τm+1,n, τ0,2}, τ0,1}

= c(m+ 1, n, 0, 2)

2(m+ 1)(m− 1− n)
{τm,n+1, τ0,1}

= c(m, n, 0, 2)τm−1,n+1.

Step 7: Using (72), we obtain

{τm,n, τ1,2} = {τm,n, {τ0,2, x}}
= {{τm,n, τ0,2}, x} + {τ0,2, {τm,n, x}}
= c(m, n, 0, 2){τm−1,n+1, x} + {τ0,2, τm+1,n}
= c(m, n, 1, 2)τm,n+1. (73)

Step 8: Combining (58), (72), (73), and the Jacobi identity, we get

{τm,n, τ0,3} = 1
6{τm,n, {τ0,2, τ1,2}}

= 1
6{{τm,n, τ0,2}, τ1,2} + 1

6{τ0,2, {τm,n, τ1,2}}
= 1

6c(m, n, 0, 2){τm−1,n+1, τ1,2} + 1
6c(m, n, 1, 2){τ0,2, τm,n+1}

= c(m, n, 0, 3)τm−1,n+2. (74)
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Step 9: Form+ n > l + k > 3 we prove by induction onl + k that

{τm,n, τ l,k} = c(m, n, l, k)τm+l−1,n+k−1, (75)

wherec(m, n, l, k) satisfies (8). The casel + k = 3 follows from (73), (74), and
(57). Combining (58), (73), the Jacobi identity, and the induction hypothesis, for
l = 0, k > 3 we obtain

{τm,n, τ0,k} = 1
6{τm,n, {τ0,k−1, τ1,2}}

= 1
6{{τm,n, τ0,k−1}, τ1,2} + 1

6{τ0,k−1, {τm,n, τ1,2}}
= 1

6c(m, n, 0, k − 1){τm−1,n+k−2, τ1,2}
+1

6c(m, n, 1, 2){τ0,k−1, τm,n+1}
= c(m, n, 0, k)τm−1,n+k−1.

Similarly, for l > 0, k + l > 3 we have

{τm,n, τ l,k} = {τm,n, {τ l−1,k, x}}
= {{τm,n, τ l−1,k}, x} + {τ l−1,k, {τm,n, x}}
= c(m, n, l − 1, k){τm+l−2,n+k−1, x} + {τ l−1,k, τm+1,n}
= c(m, n, l, k)τm+l−1,n+k−1.

Step 10: We prove (75) fork = 0 by induction onn andm. The relations

τ1,0 = −1, (76)

{x, τ1,0} = 0, (77)

{τ, τ1,0} = τ1,1, (78)

{τ0,0, τ1,0} = 0 (79)

are proved by direct calculations. Using the definition ofτ0,n, the Jacobi identity,
the induction hypothesis, (78), and (62), we obtain

{τ0,n, τ1,0} = adτ1,0 adτ (τ
0,n−1)

= adτ adτ1,0(τ0,n−1)+ ad{τ,τ1,0}(τ0,n−1)

= n(n− 1) adτ (τ
0,n−2)+ adτ1,1(τ0,n−1)

= n(n− 1)τ0,n−1 + 2nτ0,n−1

= c(0, n, 1, 0)τ0,n−1

for n > 0. Similarly, using (77), form > 0 we get

{τm,n, τ1,0} = adτ1,0 adx(τ
m−1,n)

= adx adτ1,0(τm−1,n)

= n(n+ 1) adx(τ
m−1,n−1) = c(m, n, 1, 0)τm,n−1.
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Finally, we have{τ0,n, τ0,0} = 0. This result was in fact obtained by Fokas and
Fuchssteiner (they used different notation). As above, form > 0 we obtain

{τm,n, τ0,0} = adτ0,0 adx(τ
m−1,n)

= adx adτ0,0(τm−1,n)− ad{τ0,0,x}(τm−1,n)

= −(m− 1)n(n+ 1) adx(τ
m−2,n−1)− adτ1,0(τm−1,n)

= c(m, n, 0, 0)τm−1,n−1.

Step 11: Thus from steps 2, 3, 6, 9, 10 it follows that formula (75) holds for any
m,n, l, k. Combining this with (55), we get adm+1

K (τm,n) = 0 for anym > 0, n >
0. By Lemma 6,Gm,n = ∑m

i=0 t i/i!adi
K(τm,n) is a symmetry of Equation (1).

Moreover, the commutator of symmetries is a symmetry. From (75) it follows that
the constant term (that is, the coefficient att0, cf. Lemma 6) of the symmetry

ϕ = {Gm,n,Gl,k} − c(m, n, l, k)Gm+l−1,n+k−1

vanishes. If we combine this with Lemma 6, we obtainϕ = 0. This concludes the
proof. 2

Acknowledgements

The author is grateful to P. Olver for calling his attention to the Benjamin–Ono
equation and to I. S. Krasil’shchik for interest in this work.

References

1. Krasil’shchik, I. S. and Vinogradov, A. M. (eds):Symmetries and Conservation Laws for Dif-
ferential Equations of Mathematical Physics, Trans. Math. Monogr. 182, Amer. Math. Soc.,
Providence, RI, 1999.

2. Chetverikov, V. N. and Kudryavtsev, A. G.: A method for computing symmetries and
conservation laws of integro-differential equations,Acta Appl. Math.41(1–3) (1995), 45–56.

3. Chetverikov, V. N. and Kudryavtsev, A. G.: Modelling integro-differential equations and a
method for computing their symmetries and conservation laws,Amer. Math. Soc. Transl. (2)
167(1995), 1–22.

4. Fokas, A. S. and Fuchssteiner, B.: The hierarchy of the Benjamin–Ono equation,Phys. Lett. A
86(6) (1981), 341–345.

5. Fuchssteiner, B.: Mastersymmetries, higher order time-dependent symmetries and conserved
densities of nonlinear evolution equations,Progr. Theor. Phys.70(6) (1983), 1508.

6. Gakhov, F. D.:Boundary-Value Problems, Nauka, Moscow, 1977 (in Russian).
7. Krasil’shchik, I. S., Lychagin, V. V., and Vinogradov, A. M.:Geometry of Jet Spaces and

Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986.

ACAPJK2.tex; 22/06/1999; 14:21; p.18


