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ISOPARAMETRIC FUNCTIONS AND FLAT MINIMAL TORI IN @p2 

QUO-SHIN CHI, GARY R. JENSEN, AND RUIJIA LIAO 

(Communicated by Christopher B. Croke) 

ABSTRACT.It is proved that all flat minimal tori in CP* are unitarily congruent 
to the Clifford torus by studying a certain associated isoparametric function. 

A nonconstant smooth function f on a Riemannian manifold is said to be 
transnormal if I ~ V f 1 1 2  = a (f )  for some smooth function a . If furthermore 
A F  = b(f) for a smooth function b ,  then f is said to be isoparametric. 
Isoparametric functions on spheres have been the focus of extensive investiga- 
tions in recent years; see, e.g., [I], [8], [9]. On the other hand, the fundamental 
paper [ l  11 reveals that the transnormality of f alone implies certain important 
properties held by isoparametric functions. 

In section one, we observe that the topological type of a compact Riemannian 
surface on which there is a transnormal function f is either a sphere (a pro- 
jective plane if it is nonorientable), or a torus (a Klein bottle if nonorientable), 
and f is a function of the distance from an appropriate submanifold. As an 
immediate corollary, it follows that when the curvature of the Riemannian sur- 
face is constant, a transnormal function is also isoparametric; in the torus case, 

I ~ V f 1 1 2  = a ( f )  implies 

(0.1) Af = 2-'a1(f).  

This identity will be important in section two. 
Our look into transnormal functions on compact Riemannian surfaces is 

motivated by our study of compact minimal surfaces in @ P 2 .  Such min- 
imal surfaces are divided into two classes, namely, the superminimal ones 
and the nonsuperminimal ones. Superminimal surfaces in @Pn in general are 
the projectivization of the vectors of Frenet frames of holomorphic curves in 
@Pn,whereas nonsuperminimal surfaces in @ p 2satisfy the following equations 
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(known as Toda equations in soliton theory, which we will refer to henceforth): 

for appropriate functions p ,q and r (see section two), where p2 +q2 = 1, K 
is the curvature of the surface, and A is the surface Laplacian. 

It' is therefore of no surprise to learn that examples of compact nonsuper- 
minimal surfaces are rare. Up to now, the only known examples of compact 
nonsuperminimal surfaces in @P2have been the Clifford torus [ I :  elX: eiY] , 
which is flat and totally real (i.e., p = q , or Kaehler angle = n/2) ,  and the 
ones with S1-symmetries. In fact, all totally real, flat minimal tori in @Pnhave 
been classified in [6] (see also [7]), and the Clifford torus is the only one in @P2 
up to unitary congruence. 

It should be remarked that it is proved in [2] that all nonsuperminimal tori in 
@P2arise from finite-type solutions in soliton theory, which provides a scheme, 
in principle, for the classification of all such surfaces. 

Granted the difficulty in finding explicit examples of compact nonsupermini- 
ma1 surfaces in @P2,the most natural starting place seems to be to classify those 
compact minimal surfaces of constant curvature. This restricts the genus of the 
surface to be 2 1 . The classification in the constant Kaehler angle case has 
been carried out (cf. [5], [lo]). Namely, the Clifford torus is the only compact 
constant Kaehler angle minimal surface in @P2with genus 2 1 . 

The purpose of this paper is to classify all flat minimal tori in @ P 2 .  

Theorem. All flat minimal tori in @p2are unitarily congruent to the Clifford 
torus. 

It remains an interesting question to classify compact minimal surfaces of 
negative constant curvature in @P2. 

The idea of the proof of the theorem is that on a flat minimal torus in 
Cp2 the function r (and p and q as well) in the Toda equations (0.2) is an 
isoparametric function such that Ar # 2- ' =al(r),where as before l l ~ r 1 1 ~  a(r ) , 
provided r is nonconstant. This contradicts (0. I), and so r must be a constant. 
Therefore the surface is necessarily totally real, which completes the proof. 

Let M be a compact Riemannian manifold and let f be a transnormal 
function on M . Let f (M)= [ a ,  P] . We collect three properties of f proved 
in [11]-. 

(I) The only critical values of f are a and P . 

Set V+= f -' (P)  and V- = f -' (a )  , called focal varieties. 

(11) V+ and V- are smooth submanifolds (possibly with different dimen- 

sions on different connected components). 
Let c E ( a ,p )  . c is a regular value by (I).Since I I v  f j 1 2  = a(f)  means any 

two level sets of f are parallel, set r+ = d (f-' (c), Vi) and consider the focal 
map yl+:  fP ' (c)  -+ V' given by yl*(p) = exp,(r+i+), where [+ (respectively, 
i - )  is the unit normal vector to f- '(c) pointing to the f-increasing (respec- 
tively, f-decreasing) direction. 
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(111) q* : f- '(c) + Vk is a sphere bundle fibration. 
We now specialize to the 2-dimensional case. By raising M to its double 

cover if necessary, we may assume without loss of generality that M is ori- 
entable; we will show that M is topologically either a sphere or a torus. The 
connected components of V' are now points and circles by (11). Pick a con- 
nected component Vp of V+ . 

Case (i). Vp is a point set, say, Vp = {p,) . 
By (111), the geodesics emanating from p+ will hit f-'(c) for all c E ( a ,  P )  . 

Since in a small neighborhood of p+ the geodesic spheres around p+ are dif- 
feomorphic to S1,we see that I/,, the geodesic sphere around p+ at c induced 
by the Morse flow associated with the function f ,  is diffeomorphic to S1 for 
all c E ( a ,p )  . Let I:, be the connected component of V- that I/, converges 
to as c approaches a .  

If V, is a point set (4-1, then M is homeomorphic to S2. 
Otherwise Vv is a circle. By (111), qzl(l / , )  -+ Va is a sphere bundle whose 

fiber is So. Therefore, y l ~ l( K )  is a double cover of V, . Clearly q:' (vl)3 I:. 
If q:'(V,) = V, , then the tubular neighborhood T = U I/t , t E [c, a ] ,  of 
Kr will be a Mobius band, which contradicts the orientability of M .  Hence 
q l l  (V,) = I/,u Wc for some connected component Wc of f-' (c) other than 
I/, and d T = V,U Wc . T is then a cylinder around Kr,  and so T attached to 
the disc U 6, t E [ p ,C], is still a disc. Now the Morse flow of f will carry WC 
through certain connected level sets W, to a connected component Wp of V+ . 
If Wp is a point set, is homeomorphic to a sphere. Otherwise, the same 
reasoning as was done on V, applied this time to Wp shows that the Morse 
flow will carry Wp through certain connected level sets X,  to a connected 
component X, of F'- , so that the resulting space is either a sphere or a disc. 

Continuing in this fashion, we see that the geodesics through p+ expand 
geodesic discs until the last connected component of either V+ or V- ,which 
must be a point for 'the disc to close up, is exhausted. M is thus homeomorphic 
to a sphere. 

Case (ii). Every component of V+ and V- is homeomorphic to a circle. 
Let V' c V+ be a connected component. As in Case (i), the tubular neigh- 

borhood T around Vp is a cylinder whose two boundary circles are carried via 
the Morse flow of f to two circles, etc. We see that eventually we will arrive at 
a cylinder whose two boundary circles are to be identified by a diffeomorphism 
of S1. This gives us a torus. 

From the construction, we see that in the sphere case the polar coordinates 
( y  , 8) around p+ , and in the torus case the cylindrical coordinates (7 ,  8) , 
where 8 is the arc length of the starting circle Vp c V+ and y is the geodesic 
length of geodesics perpendicular to Vp ,give a coordinate chart of M on which 
the transnormal function f is a function of y alone. Hence the Riemannian 
metric is ds2 = d;j2+G(g, @)do2 ,  where J = G112 satisfies the Jacobi equation 
d 2  ~ / d y ~  = 0 and d J/dy(O, 8 )  = 1+ K J  0 with initial conditions J ( 0 ,  8) = 
in the sphere case, and J ( 0 ,  8) = 1 and d J/dy(O, 8) = - ~ ( 8 ) ,  where K is 
the geodesic curvature of the curve Vp , in the torus case. 

Observe that 
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In particular, when K is a positive constant, G112 = K-lI2 sin K112 y , and 

where dyldf = a(f)- ' I2.  It follows that the transnormal function is in fact 
isoparametric. 

When K = 0 ,  we lift M to its universal cover. Vp and its translates via the 
Morse flow of f will be lifted up to curves I.;* diffeomorphic to a line, whereas 
the geodesics perpendicular to Vp will be lifted to lines which are perpendicular 
to the family v*. Any two of these lines never intersect since they do not on 
M ;  hence these lines are parallel lines. Being perpendicular to these parallel 
lines, I/,* must therefore be parallel lines too. Back on M this says that K = 0 ,  
and so G - 1 . Differentiating (1.1) and noting that Af = f"(r) in this case 
gives 

so that again the transnormal function f is isoparametric. (1.2) is to be em- 
ployed in the next section. 

Let M be a compact Riemann surface and let CPn  be equipped with the 
Fubini-Study metric ( , j C p n  whose curvature is normalized to be 4. Fix a 
metric ds2 in the conformal class of M and let fo: ( M ,  ds2) + CPn be a 
branched minimal immersion, i.e., f,*( , )Cp. = A ds2 for some nonnegative 
function il and tr(Vdfo) = 0 .  Denote by C the tautological bundle over CPn . 
Then L = fc13inherits a natural holomorphic bundle structure from those 
of M and CPn , and so does L' , the hyperplane bundle perpendicular to L in 
M x Cn+l (cf. [4]). For a local coordinate z , the Gram-Schmidt process defines 
a map G, from L to L' given by G,(X) = dXl8z  - {(d X/dz , X)/I/ XI/) X , 
where ( , ) is the Euclidean inner product on Cn+' . Then conformality and 
harmonicity of fo imply the following: 

( 1) The well-defined map fi(p)= G,(L,) from p E M to CPn  is conformal 
and harmonic. Denote fi by dfo . 

(2) The map d(X)  = G,(X) 8 d z  from X E L to LL @ T(' > O ) M  is a 
well-defined holomorphic bundle map. 

Clearly the procedures (1) and (2) can be successively carried on so that one 
obtains fo + fi + f2 + . . . . One sets L, = f;-'3. Similarly one can define 
h , 6,. . . and Ti  by replacing d /d z by 8/87 in (1) and (2). Conformality 
of .fo implies that L o ,  L1 , L, are mutually orthogonal. 

In particular if n = 2 and if fo is neither holomorphic nor anti-holomorphic, 
then we have either of the following: 

(a) 0 = f2 = dfi  (respectively, fZ = 0 ) .  It follows that fo = gfi (re-
spectively, = d h )  and fi (respectively, fT) is anti-holomorphic (respectively, 
holomorphic). fo is said to be superminimal. 

(b) fT = .h, SO that the d-process is cyclic. fo is said to be nonsuperminimal. 
Quantitatively, pick orthonormal vectors Zo,  Z1 , Z2 spanning Lo ,  L1 , L2 , 

respectively. Let y, = O1 + G O 2  be a complex coframe on M . Then d q  = 
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G w A y, with w the connection form. Then (b) says (cf. [ 3 ] )  

where Y o ,  Y 1  , Y 2 are the connection forms of the bundles L o ,  L 1  , L2 = Li. 
Note that fo is superminimal precisely when c = 0 .  Furthermore, the holo- 
morphy of the map d :  Lo + L 1 @ T(l>O)-M,i.e., d ( Z o )= sZ1 @ y, , gives that 
the difference between the first Chern classes of L 1 @ T( '>O)Mand Lo is the 
ramification index of d , or expressed analytically (cf. [ 5 ] ) ,  

or 
A(1og Isl) = K + 2(lt12+ lc12- 21s12). 

Similarly by considering d : L 1  + L2 L% T( l, O )  M with d ( Z 1  ) = cZ2 @ y, , and 
d : L2 + LO@ T ( ~  -tZO @ y, ,one deduces the Toda equations O )M with d ( 2 2 )  = 
(0.2) when one sets p = Is1 , q = It1 and r = lcl . From (2.1) it follows that 
p 2 + q 2 =  1 .  

Note that adding the three equations in (0.2) results in A(1ogpqr) = 3 K ,  
which implies that when M is a torus p , q and r have no zeros by the Gauss- 
Bonnet theorem. 

Assume now that K = 0 .  Then A(1ogpqr) = 3K = 0 ,  and so pqr is a 
constant. Set pqr = 6 and r = eu . We obtain the next crucial lemma. 

Lemma. l l ~ u 1 1 ~-d-2e4U + 2(dP2+ 2)e2U 14 + 24d2e-2U,= -

Au = 2 - 4e2'. 
h - 2 [ h ~ h  l l ~ h 1 1 ~ ]Proof. Recall the general formula A(1og h )  = - and p2 +q2 = 

1 . Then the first two formulas of (0.2)can be expanded as 

Knowing that llvp211 = 110q211 and Ap2 = -Aq2,  we can solve the two equa- 
tions for l l ~ p ~ 1 1 ~. Namely, 

Differentiating p2q2r2= d2 with v p 2  = - v q 2  and vr2= 2r2vu  in mind, we 
have 

2d2vu  = r2(p2- q 2 ) v p 2 .  

Taking the norm on both sides of the equation and employing p2 + q2 = 1 ,  
p2q2r2= d2 and r2 = e 2 u ,we arrive at the first equation of the lemma. The 
second equation of the lemma is an immediate substitution of r = eU and 
p2 + q2 = 1 into the third equation of (0.2). 

We are ready to draw the conclusion of the theorem we aim to prove. 

Theorem. All flat minimal tori in @p2  are unitarily congruent to the Clifford 
torus. 

Proof. Notation is as in the preceding lemma. Suppose u is not a constant. 

Then u is an isoparametric function by the lemma. It is immediate to see that 
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Au # 2 - ' a l ( u ) ,where as before a(u)  stands for the function on the right-hand 
side of the identity for l l ~ u 1 1 ~in the lemma. This contradicts (1.2). Therefore 
u is a constant, and so is r = eU. Now p2q2r2= d2 and p2 + q2 = 1 give the 
constancy of all p , q and r . It then follows from (0.2) that p = q = r ,which 
characterizes the Clifford torus up to unitary equivalence. 
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