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1. Introduction : aggregation and gradient structures

In many situations, economists are interested in the behavior of aggregate variables
that stem from the addition of several elementary demand or supply functions.
In turn, each of these elementary components results from some maximizing deci-
sion process at the ’individual’ level.1 From a mathematical standpoint, the two
ideas of maximization and aggregation have a natural translation in terms of com-
bination of gradients. Specifically, they require that some given function X(p),
mapping Rn

+ to Rn and representing aggregate behavior, can be decomposed as a
linear combination of gradients DpV

k(p), where the V k, k = 1, ...,K are functions
defined on Rn

+. Formally:

X(p) = λ1(p)DpV
1(p) + ...+ λK(p)DpV

K(p) (1.1)

To give an example, consider an economy with K consumers, each of them
characterized by some nominal income that can, without loss of generality, be
normalized to 1. For a given price vector p, consumer k solves the program

maxUk(xk)
p.xk = 1

(1.2)

The value of this program, denoted V k(p), is k’s indirect utility; under adequate
assumptions, it is decreasing, quasi-convex, and differentiable. The envelope the-
orem implies that DpV

k(p) = −αk(p).x
k(p), where αk(p) is the Lagrange multi-

plier associated with the budget constraint. Substituting into the sum X =
P

xk,
we find the economy’s aggregate demand at prices p:

X(p) = − 1

α1(p)
DpV

1(p)− ...− 1

αK(p)
DpV

K(p) (1.3)

1A standard illustration is the characterization of aggregate market or excess demand in
an exchange economy, a problem initially raised by Sonnenschein (1973a,b) and to which a
number of author contributed, including Debreu (1974), McFadden et al. (1974), Mantel (1974,
1976, 1977), Diewert (1977), Geanakoplos and Polemarchakis (1980) and Chiappori and Ekeland
(2000). A different but related example is provided by Browning and Chiappori (1994) and
Chiappori and Ekeland (2002) who consider the demand function of a two-person household,
where each member is characterized by a specific utility function and decisions are only assumed
to be Pareto-efficient.
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which is a linear combination ofK gradients and satisfies p0X(p) = K. In addition
:

• the V k are (quasi) convex and decreasing

• the αk are negative

• furthermore, the budget constraint implies :

p.DpV
k(p) = αk (p) ∀k (1.4)

A natural question, initially raised by Sonnenschein (1972), is the following :
what does relation (1.1) imply upon the form of the functionX ? In particular, are
there testable necessary restrictions on the aggregate function X(p) that reflect
its decomposability into individual maximizing behavior? And is it possible to
find sufficient conditions on X(p) that guarantee the existence of a decomposition
of the type (1.1)?
In practice, it is useful to decompose this problem into two subproblems. One,

called the mathematical integration problem, can be stated as follows: given some
functionX, when is it possible to find functions V k, k = 1, ...,K, such that the de-
composition (1.1) holds? The second problem, the economic integration problem,
requires in addition that the V k arise from maximizing some concave utilities, i.e.
satisfy the conditions (quasi-convexity, (1.4), etc.) listed above.
In a previous contribution, Chiappori and Ekeland (1999) have argued that

a particular subfield of differential topology, developped in the first half of this
century by Elie Cartan and usually referred to as exterior differential calculus
(from now on EDC), proved especially convenient to deal with problems of this
type. Surprisingly enough, however, these tools have rarely been used in the
field of economic theory, although other tools form differential topology have (see
[?]). One possible explanation for this absence is the lack of familiarity of most
economists with these concepts, and the technical difficulty of the main results.
The main goal of the present paper is to propose an introduction to EDC. In

particular, we describe in some details two very powerful theorems, respectively
due to Darboux (with an improvement due to the authors and Nirenberg, see
[11]) and to Cartan and Kähler. To our knowledge, these results have never been
used so far in economics, with the only exception of contributions by Chiappori
and Ekeland (1999, 2002). We believe, however, that they may reveal extremely
helpful in many contexts, and they should profitably be included in mathematical
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economists’ toolbox. We show that Pfaff’s theorem provides a direct answer to the
mathematical integration problem, while Cartan-Kähler provides the tools that
allow to solve (locally) the economic integration problem.
In the final section of the paper, we present an applications of this approach

to Sonnenschein’s problem. The standard version, where the number of agents is
(at least) as large as the number of goods, has been solved, using the techniques
described below, by Chiappori and Ekeland (1999). A more difficult problem deals
with the characterization of the aggregate demand of a market economy when the
number of agents is smaller than the number of commodities - a problem that has
been discussed by various authors, including Diewert (1977) and Geanakoplos and
Polemarchakis (1980), but has not been solved so far. We show how our approach
allows to solve (locally) this problem.

2. Exterior differential calculus : an economist’s toolkit

In this section, we introduce the basic notions of exterior differential calculus. Our
purpose is exclusively pedagogical. At many places, in particular, our presentation
is somewhat intuitive, and skips most technicalities, while many precautions are
deliberately left aside. For a much more exhaustive and rigorous presentation, the
interested reader is referred to Cartan’s book (1945), or to the recent treatise by
Bryant et al. (1991).

2.1. Linear and differential forms

The basic notion is that of forms. A linear form (or a 1-form) on E = Rn is a
linear mapping from E to R :

ω : ξ ∈ Rn 7→ hω, ξi =
nX
i=1

ωiξi

The set of linear forms on E is the dual E∗ of E. A basic example of linear
form is the projection πi : ξ 7→ ξi, which, to any vector, associates its i-th
coordinate. These form a basis of E∗; any form ω can be decomposed as :

ω =
X

ωi πi

In what follows, we are especially interested in differential forms. Consider a
smooth manifold U , and let TpU denote its tangent space at some point p. A
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differential 1-form is, for every p ∈ U , a 1-form ω(p) on the tangent spaceTpU to
U at p (with, say, hω(p), ξi =

P
ωi(p)ξi), such that the coefficients ω

i(p) depend
smoothly on p. A local coordinate system at p, say p =(p1, ..., pn), provides TpU
with a coordinate system as well. If U is n-dimensional, then TpU is a copy of
Rn, and the projection πi : TpU → R, which associates with a tangent vector ξ
its i-th coordinate ξi, will be denoted by dpi.
As a simple example of a differential 1-form, we may, for any smooth mapping

U from E to R, consider the differential form dV (called a total differential)
defined at any point p by :

dV (p) =
X ∂V

∂pi
(p)dpi

so that

dV (p) : ξ 7→ hdV (p), ξi =
X ∂V

∂pi
. ξi

Of course, this form is extremely specific, for the following reason. Consider
the hypersurface (that is, the (n − 1)-dimensional submanifold) M ⊂ U defined
by

M = {p ∈ U | V (p) = a}
where a is a constant. Then, for any p, the form dV (p) - and, as a matter of
fact, any form ω(p) = λ(p)dV (p) proportional to dV (p) - vanishes on the tangent
space TpM :

∀p ∈M, ∀ξ ∈ TpM, hω(p), ξi = 0 (2.1)

The integration problem is exactly this. Starting from some given differential
form ω(p), when is it possible to find a hypersurface (or failing that, a lower-
dimensional submanifold) M such that, for any p, the restriction of ω(p) to TpM
is zero ? Such a submanifold will be called an integrating submanifold for ω.
As an example, take any demand function x(p) (where income is normalized

to 1 by homogeneity). Assume it is invertible, let p(x) denote the inverse demand
function, and consider the form ω(x) =

P
pi(x)dx

i. Integrating ω means to look
for a hypersurface M such that, for any x on M , the vector p(x) is orthogonal to
the tangent subspace TxM . More precisely, we are looking for a one-dimensional
family of such hypersurfaces, so that every point x ∈ M belongs to one hyper-
surface of the family and one only: this is called a foliation. In terms of consumer
theory, each manifold of the foliation will be an indifference surface, the tangent
subspace a budget constraint, and we are imposing that the price vector be or-
thogonal to the indifference curve at each point, which is the usual first order
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condition for utility maximization. This is nothing else than the standard integra-
tion problem for individual demand functions2. In the next section, we investigate
this aspect in more details3.
One point must however be emphasized. When ω(p) is proportional to some

total differential dV , the submanifold M can be found of (maximum) dimension
(n − 1). But, of course, life is not always that easy. Starting from an arbitrary
form, it is in general impossible to find such an integrating submanifold of di-
mension (n − 1). On the other hand, as we shall see presently, it is easy to find
integrating submanifolds of dimension 1: there is just an ordinary differential
equation to solve. The integration problem then consists in finding a foliation of
U by integrating submanifolds Mt, t ∈ R, of maximum dimension (or minimum
codimension). When this minimal codimension is one, the form is completely
integrable; in general, the minimum codimension will be greater than 1.
In fact, this has an interesting translation in terms of our initial problem.

Assume, indeed, that instead of being proportional to some total differential dV ,
the form ω(p) is a linear combination of k total differentials :

ω(p) = λ1(p) dV
1(p) + ...+ λk(p) dV

k(p)

Then we can find an integrating submanifold of codimension (at most) k. In-
deed, for every choice of a = (a1, ..., ak) ∈ Rk, define the submanifold submanifold
Ma by :

Ma =
©
p ∈ E | V 1(p) = a1, ..., V

k(p) = ak
ª

Clearly, Ma is of dimension (at least) n − k. Also, the tangent space at p is
the intersection of the tangent spaces to the k manifolds M i, ...,Mk defined by

M i =
©
p ∈ E | V i(p) = ai

ª
It follows that (2.1) is always fulfilled. So the Ma, a = (a1, ..., ak) ∈ Rk, con-

stitute a foliation of U by k-dimensional integrating submanifolds. A reciprocal
property will be given later.

2Note that additional restrictions must be imposed upon the manifolds, reflecting monotonic-
ity and quasi-concavity of preferences.

3Alternatively, one may consider the form ω(p) =
P

pi(x)dxi. Integration will then lead to
recovering the indifference surfaces of the indirect utility function.
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2.2. Exterior k-forms and exterior product

Before addressing the integration problem in details, we must generalize our basic
concept.

Definition 1. An exterior k-form is a mapping ω : (E)k → R which is :

• multilinear, i.e., linear w.r.t. each vector : for all (ξ1, ..., ξs−1, η,ζ, ξs+1, ..., ξk) ∈
E k+1 and all (a, b) ∈ R2, we have:

ω (ξ1, ..., ξs−1, aη+bζ, ξs+1, ..., ξk) = a. ω (ξ1, ..., ξs−1, η, ξs+1, ..., ξk)+ b. ω (ξ1, ..., ξs−1, ζ, ξs+1, ..., ξk

• antisymmetric, i.e., the sign is changed when two vectors are permuted :

∀ (ξ1, ..., ξk) ∈ E k, ω(ξ1, ..., ξi, ..., ξj, ..., ξk) = −.ω (ξ1, ..., ξj, ..., ξi, ..., ξk)

It follows that for any permutation σ of {1, ..., k} :

∀ (ξ1, ..., ξk) ∈ E k, ω (ξσ(1), ..., ξσ(s), ..., ξσ(k)) = (−1)sign(σ).ω (ξ1, ..., ξs, ..., ξk)

Note that, if k = 1, we are back to the definition of linear forms.
Consider, for instance, the case k = 2. A 2-form is defined by a matrix Ω :

ω(ξ, η) =
X
i,j

ωi,jξiηj = ξ0Ωη

Additional restrictions are usually imposed upon the matrix Ω. A standard one
is symmetry; i.e., Ω = Ω0. In EDC, on the contrary, since one considers exterior
forms, antisymmetry is imposed. This gives Ω = −Ω0, i.e. ωi,j = −ωj,i for all i, j;
hence

ω(ξ, η) =
X
i<j

ωi,j(ξiηj − ξjηi)

Another case of interest is k = n , where n is the dimension of the space E.
Then the space of exterior n-form is of dimension one, and include the determinant.
That is, any n-form ω is collinear to the determinant:

ω (ξ1, ..., ξn) = λ det (ξ1, ..., ξn)

Some well known properties of determinant are in fact due exclusively to mul-
tilinearity together with antisymmetry, and can thus be generalized to forms of
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any order. For instance, take any k-form ω, and take k vectors (ξ1, ..., ξk) that are
not linearly independent. Then ω(ξ1, ..., ξk) = 04. An important consequence is
that, for any k > n , any exterior k−form must be zero.

2.3. Exterior product

The set of exterior forms on M is an algebra, on which the multiplication, called
the exterior product, is formally defined by :

Definition 2. Let ω be a k-form, and γ be a c-form, then ω ∧γ is a (k+ c)-form
such that

(ω ∧ γ) (ξ1, ..., ξk+c) =
X
σ

1

k!c!
(−1)sign(σ)ω

³
ξσ(1), ..., ξσ(k)

´
γ
³
ξσ(k+1), ..., ξσ(k+c)

´
where the sum is over all permutations σ of {1, ..., k + c}

The formula may seem complex. Note, however, that it satisfies two basic
requirements : ω ∧ γ is multilinear and antisymmetric. To grasp the intuition,
consider the case of two linear forms (k = c = 1). Then

ω ∧ γ (ξ, η) = ω(ξ)γ(η)− ω(η)γ(ξ)

Obviously, this is the simplest exterior 2-form related to ω and γ and satisfying
the two requirements above.
A few consequences of this definition must be kept in mind :

• Whenever ω is linear (or of odd order), ω ∧ ω = 0. More generally, let
ω1, ..., ωs be any 1-forms, and consider the product :

ω1 ∧ ... ∧ ωs

If the forms are linearly dependent, this product is always zero.

• But whenever ω is a 2-form (or a form of even order), ω ∧ ω need not be 0

• For any k-form, (ω)s = ω ∧ω ∧ ...∧ω is a (ks)-form. In particular, (ω)s = 0
as soon as ks > n.

4Indeed, one vector (say, pk) can be decomposed as a linear combination of the oth-
ers. Multilinearity implies that ω(p1, ...pk) writes down as a linear combination of terms like
ω(p1, ...pk−1,ps) with s < k. But antisymmetry imposes all these terms be zero.
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• Any k-form can be decomposed into exterior products of 1-forms. If ω is a
k-form, then:

ω =
X
σ

ωσ(1),...,σ(k)dpσ(1)...dpσ(k) (2.2)

where the sum is over all ordered maps σ : {1, ..., k}→ {1, ..., n}

2.4. Differential forms and exterior differentiation

A differential k-form is, for every p ∈ U , an exterior k-form ω(p) on the tangent
space TpU to U at p, depending smoothly on p. Exterior differentiation sends
differential k-forms into differential (k + 1)-forms. We first define it on 1-forms.
Set:

ω(p) =
X

ω j(p) dpj

To define the exterior differential of ω(p), we may first remark that the ω j(p)
are standard functions from E to R. As such, they admit total differentials:

dω j(p) =
X
i

∂ ω j

∂pi
dpi

Then the exterior differential dω(p) of ω(p) is the differential 2-form defined
by :

dω(p) =
X
j

dω j(p)∧dpj =
X
i,j

∂ ω j

∂pi
dpi∧dpj =

X
i< j

(
∂ ω j

∂pi
− ∂ ωi

∂pj
) dpi∧dpj (2.3)

Note, again, that this formula guarantees that dω(p) is bilinear and antisym-
metric.
Let us give a geometric interpretation, based on the antisymmetric side of the

operation. In E = R2, consider a 1-form ω(p) = ω1(p)dp1 + ω2(p)dp2, where
p = (p1, p2). Consider the four points depicted in Figure 1, namely : A = (p1, p2),
B = (p1 + δp1, p2), C = (p1, p2 + δp2) and D = (p1 + δp1, p2 + δp2), where the
δpi are ’infinitesimally small’. Assume that we want to compute the following
expressions :

I =

Z
Γ

ω(p)dp and I 0 =

Z
Γ0
ω(p)dp

where Γ (resp. Γ0) is the infinitesimal curve ABD (resp. ACD).
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INSERT HERE FIGURE 1

Using the infinitesimal nature of the δpi, we can compute

I =

Z B

A

ω(p)dp+

Z D

B

ω(p)dp = ω1(p1, p2)δp1 + ω2(p1 + δp1, p2)δp2

and

I 0 =

Z C

A

ω(p)dp+

Z D

C

ω(p)dp = ω2(p1, p2)δp2 + ω1(p1, p2 + δp2)δp1

What we are interested in is the difference I − I 0. If ω was equal to the total
differential dV for some smooth function V , this difference would be zero; in fact,
the Jacobian matrix Dpω would then be symmetric. In the general case, using
first order approximation, we find that :

I − I 0 =

µ
∂ω2

∂p1
− ∂ω1

∂p2

¶
δp1δp2

This is exactly the coefficient of the 2-form dω(p), as defined in (2.3).

Exterior differentiation is a linear operation, and there is a product formula5.:
if α is a differential p-form and ω a differential q-form, we have :

d [α+ ω] = dα+ dω
d [α ∧ ω] = dα ∧ ω + (−1)p α ∧ dω

This last property enables us to define exterior differentiation for differential
forms of degree k > 1. Indeed, any such form can be decomposed into a product
of 1-forms, and one just applies the two preceding rules to formula (2.2)
A last property that will turn out to be crucial in the sequel is naturalness

with respect to pullbacks. To understand this property, take open subsets V ⊂ Rq

and U ⊂ Rp, and ϕ : V → U a smooth (non-linear) mapping. To any smooth
f : U → R, we can associate f ◦ ϕ, which is a smooth function on V . Similarly,
to df , which is a 1-form on U , we associate d(f ◦ϕ), which is a differential 1-form

5Exterior differentiation also has integration properties (Stokes’ formula). Since we do not
need this part of the theory, we shall nor enter into it in the paper.
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on V , called the pullback of f . As a particular case, take for f the ith coordinate
map x→ xi on U ; then the pullback of dxi will be a 1-form on V that we denote
by ϕ∗(dxi).
The pullback ϕ∗, being defined for the dxi, is defined for all 1-forms on U

by linearity, and for p-forms in the same way. Also, it is natural with respect to
exterior products and exterior differentiation, in the following sense :

Proposition 1. With the preceding definitions :

ϕ∗(α ∧ ω) = (ϕ∗α) ∧ (ϕ∗ω)
ϕ∗(dω) = dϕ∗(ω)

These results, and the notion of pullback itself, will be important in studying
integral manifolds of exterior differential systems in section 4.

2.5. Poincaré’s theorem

The construction detailed above has strong implications for the resolution of the
type of equations we are interested in. Let us start with a simple problem : what
are the conditions for a given exterior form ω to be the tangent form of some
given, twice continuously differentiable function V ? An immediate, necessary
condition is given by the following result :

Proposition 2. Assume ω(p) = dV (p) for some V , then :

dω = 0

Proof. Just note that,

dω =
X
i< j

(
∂2V

∂pj∂pi
− ∂ 2V

∂pi∂pj
) dpi ∧ dpj = 0

This Proposition admits a converse, due to Poincaré, that requires some topo-
logical condition upon U (there should be no ’hole’ in U). For the sake of simplicity,
let us just assume convexity (a sufficient property), and state the following result,
valid for a differential form of arbitrarty degree :
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Theorem 2.1. Let ω be a differential k-form on U such that dω = 0. Assume U
is convex. Then there exists a differential (k − 1)-form on U , say Ω, such that :

ω = dΩ

Proof. : see Bryant et al. (1991), ch.
The simplest case is the following. Let ω1(p), ..., ωn(p) be given functions.

Can we find V such that ωi = ∂V /∂pi ? The answer is simple. Define the
exterior form ω(p) =

P
ωi(p). dpi. Then, from the previous results, a necessary

and sufficient condition is that :

dω =
X
i,j

∂ ωi

∂pj
dpi ∧ dpj =

X
i< j

(
∂ ωi

∂pj
− ∂ ωj

∂pi
) dpi ∧ dpj = 0

or
∂ ωi

∂pj
=

∂ ωj

∂pi
∀i, j

2.6. The Darboux theorem

Poincaré’s theorem provides necessary and sufficient conditions for a 1-form to
be a total differential (or, equivalently, for vector field to be a gradient field). In
this case, the integration problem is straightforward, as illustrated above. But, at
the same time, these conditions are very strong. We now generalize this result, by
giving necessary and sufficient conditions for a form to be a linear combination
of k tangent forms. As discussed above, this means that the integration problem
can be solved, but only with an integral manifold of dimension (at least) (n− k).
Assume that ω(p) can be written under the form :

ω(p) =
kX

s=1

λs(p)dV
s(p) ∀p ∈ U (2.4)

A first remark is that this structure has an immediate consequence. Indeed
(forgetting the p for simplicity) :

dω =
kX

s=1

dλs ∧ dV s
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Let us compute the exterior product ω ∧ (dω)k = ω ∧ dω ∧ ... ∧ dω ∧ dω. We
get first:

(dω)k = dλ1 ∧ dV 1 ∧ ... ∧ dλk ∧ dV k

hence

ω ∧ (dω)k =
Ã

kX
s=1

dλs ∧ dV s

!
∧ dλ1 ∧ dV 1 ∧ ... ∧ dλk ∧ dV k = 0

since we get the sum of k terms, each of whom includes twice the same 1-form.
In summary, we have a simple characterization : if ω can be written as in (2.4),

then the product ω ∧ (dω)k must be zero.
This simple necessary condition admits an important converse.

Theorem 2.2. (Darboux) Let ω be a linear form defined on some neighbourhood
U0 of p. Let k be such that :

ω ∧ (dω)k−1 = ω ∧ dω ∧ ... ∧ dω 6= 0, ∀p ∈ U

ω ∧ (dω)k = ω ∧ dω ∧ ... ∧ dω ∧ dω = 0, ∀p ∈ U

Then there exist a (possibly smaller) neighbourhood U1 of p and 2k smooth
functions V s and λs such that :

• the V s are linearly independent

• none of the λs vanishes on U

• and

ω(p) =
kX

s=1

λs(p).dV
s(p) ∀p ∈ U1

Proof. See Bryant et al. (1991), ch. II, §3
In other words, the Darboux theorem provides a necessary and sufficient con-

dition for the mathematical integration problem.

3. Mathematical integration

In this section, we show, on two specific examples, how the tools previously de-
scribed have very natural applications in consumer theory.
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3.1. Maximization under linear constraint

The basic remark is the following. Consider the program that characterizes the
behavior of an individual consumer facing a linear budget constraint :

V (p) = max
x

U(x)

p0x = 1
(3.1)

where the utility function U is continuously differentiable and strongly quasi-
concave; note that, from now on, income is normalized to 1. Let x(p) denote the
solution to (3.1). If α denotes the Lagrange multiplier, we have, from the envelope
theorem, that :

DV (p) = −α(p)x(p) (3.2)

and x(p) is proportional to the gradient of the indirect utility V. Incidentally,
(3.1) is equivalent to :

−U(x) = max
p
(−V (p))

p0x = 1
(3.3)

which implies, as above, that

DU(x) = β(x)p(x) (3.4)

where p(x) is the inverse demand function and β(x) is the associated Lagrange
multiplier; so p(x) is proportional to the gradient of U 6.
So both p(x) and x(p) are proportional to a (single) gradient; we have a

problem of the type (1.1) for m = 1. Actually, the programs (3.4) and (3.1) are
exactly similar, so these two functions share exactly the same properties - a fact
that has been known at least since Antonelli (1886).
Now, how does EDC enter the picture7 ? The idea is to define the linear form

ω by :
ω(p) =

X
xi(p).dpi (3.5)

From the Darboux theorem, we know that x(p) is proportional to a gradient
if and only if ω(p) satisfies :

ω ∧ dω = 0
6In fact, (3.4) can also be seen as the first order conditions of (3.1); this implies that β [x(p)] =

α(p).
7For a development on the links between EDC and Slutsky relations and the consequences

upon Gorman forms, see Russell and Farris (1993).
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which writes down :

∀ i, j, k, xi(
∂ xj
∂pk
− ∂ xk

∂pj
) + xk(

∂ xi
∂pj
− ∂ xj

∂pi
) + xj(

∂ xk
∂pi
− ∂ xi

∂pk
) = 0 (3.6)

We now show that (3.6) is nothing else than traditional Slutsky symmetry.
To see why, note, first, that given our normalization (income is equal to 1), the
Slutsky matrix is :

S = Dpx. (I − p.x0) (3.7)

whereDpx is the Jacobian matrix of x(p). Take some fixed p̄. Slutsky symmetry is
equivalent to the following condition: the restriction of Dpx(p̄) to the hyperplane
orthogonal to x(p̄) = x̄ must be symmetric. Formally :

∀y, z⊥x̄, y0 (Dpx) z = z0 (Dpx)y⇔ y0 (Dpx− (Dpx)
0) z = 0 (3.8)

Now, it can readily be seen that the vectors

yk =

⎛⎜⎜⎜⎜⎝
0

xk(p̄)
0

−xi(p̄)
0

⎞⎟⎟⎟⎟⎠
, where xk(p̄) (resp. -xi(p̄)) occupies the i-th (resp. k-th) row, form a basis of
{x(p̄)}⊥. It is thus sufficient to check (3.8) for any two yj and yk. But this is
exactly equivalent to (3.6).
Incidentally, given the similarity between (3.4) and (3.1), the same conclusion

applies to the inverse demand function p(x); i.e., the matrix A defined by

A = Dxp. (I − x.p0)
is symmetric. The reader can check that this is equivalent to the symmetry of the
Antonelli matrix.

3.2. Aggregate demand

As a second example, consider the problem discussed in introduction, namely
decomposition of aggregate market demand. Let X be some given function; when
is it possible to find scalar functions λk(p) and V k(p), k = 1, ...,K, such that

X(p) = λ1(p)DpV
1(p) + ...+ λK(p) DpV

K(p) (3.9)
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From the Darboux theorem, a necessary and sufficient condition for (??) is
that :

ω ∧ (dω)K = 0 (3.10)

We now provide an equivalent but simpler statement of this property. Consider
the Slutsky matrix associated to X, namely S(p) = DpX. (I − p.X0). Then

S(p) =

ÃX
k

Dpx
k

!
.

Ã
I − p.

ÃX
j

xj

!0!

=
X
k

Sk +
X
j

ÃÃX
k 6=j

Dpx
k

!
.p
¡
xj
¢0!

(3.11)

where Sk is Slutsky matrix associated to xk. Hence S(p) is of the form

S (p) = Σ+
X
j

uj. (vj)
0 (3.12)

where

uj =

ÃX
k 6=j

Dpx
k

!
.p and vj = x

j

and S(p) is the sum of a symmetric matrix and a matrix of rank at most K. This
shows that (3.12) is a necessary consequence of (3.9).
Conversely, let us show that (3.12) is sufficient for the necessary and sufficient

condition (3.10) to hold. Indeed, (3.12) is equivalent to

dω − ω ∧ a =
X
j

bj ∧ cj

where a, bj and cj (j = 1, ...,K) are 1-forms whose definition is clear. Then

(dω)K = ω ∧ a ∧ b1 ∧ c1... ∧ bK ∧ cK

and (3.10) is fulfilled.
Finally, still another equivalent statement is the following. Consider the linear

subspace S, of codimension K, orthogonal to the vectors u1, ...,uK . For any
vectors x,y in S, one has that

x0S (p)y = x0Σy = y0Σx = y0S (p)x
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implying that the restriction of S (p) to S is symmetric. Hence there exists a
subspace of codimension K such that the restriction of S (p) to this subspace is
symmetric.
An interesting property is the following. Assume K ≥ n/2. Then ω ∧ (dω)k

is a s-form with s ≥ n + 1 (remember that dω is a 2-form). It follows that it is
identically zero, so that the condition is always fulfilled. We conclude that when
the number of consumers is larger than n/2, the mathematical integration problem
can always be solved.
Note, however, that these conditions are necessary and sufficient for math-

ematical integration only. Although they guarantee the existence of functions
V k, k = 1, ...,K, such that the decomposition (3.9) holds, one does not expect in
general that these functions will satisfy the additional restrictions required by the
economic interpretation in terms of maximization under budget constraint. Eco-
nomic integration is in fact a much harder problem, that requires the full strength
of a very deep theorem in EDC, due to Cartan and Kähler. Note, however, that
in some situations, it is enough for economic integration that, in the decomposi-
tion (3.9), the λk are positive and the V k are quasi-concave. In other words, one
needs a convex version of the Darboux theorem. Together with Nirenberg, the
authors have given a necessary and sufficient condition for (3.9) to hold with the
λk positive and the V k quasi-concave; we refer to [11] for the statement and proof.

4. Exterior differential systems on manifolds : the Cartan-
Kähler theorem

We now present the key result upon which our approach relies. This theorem,
due to Cartan and Kähler, solves the following, general problem. Given a certain
family of differential forms (not necessarily 1-forms, nor even of the same degree),
a point p̄ and an integer m ≥ 1, can one find some m-dimensional submanifold
M containing p̄ and on which all the given forms vanish ?

4.1. An introductory example

As an introduction, let us start from a simple version of our problem, namely the
Cauchy-Lipschitz theorem for ordinary differential equations. It states that, given
a point p̄ ∈ Rn−1 and a C1 function f , defined from some neighborhood U of p̄
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into Rn−1, there exists some � > 0 and a C1 function ϕ : ]− �, � [−→ U such that

dϕ

dt
= f (ϕ(t)) ∀t ∈ ]− �, � [, ϕ(0) = p̄ (4.1)

It follows that dϕ
dt
(0) = f(p̄). If f(p̄) = 0, the solution is trivial, ϕ(t) = p̄ for

all t so we assume that f(p̄) does not vanish.
This theorem can be rephrased in a geometric way. Consider the graph M of

ϕ :
M = { (t, ϕ(t) ) | − � < t < � }

which is a 1-dimensional submanifold of ]− �, � [×U . Let us introduce the 1-forms
ωi defined by :

ωi = f i(p)dt − dpi , 1 ≤ i ≤ n− 1

Clearly ϕ solves the differential equation (4.1) if and only if the ωi all vanish
onM . More precisely, substituting pi = ϕi(t) into formula (4) yields the pullbacks
:

ϕ∗ωi =

∙
f i (ϕ(t)) − dϕi

dt
(t)

¸
dt

which vanish if and only if ϕ solves equation (4.1).
So the Cauchy-Lipschitz theorem tells us how to find a 1-dimensional subman-

ifold of R×Rn on which certain 1-forms vanish.

4.2. The general problem

The Cauchy-Lipschitz theorem deals with 1-forms of a specific nature. By exten-
sion, the general problem can formally be stated as follows.

Definition 3. Let ωk , 1 ≤ k ≤ K, be differential forms on an open subset of Rn,
and M ⊂ Rn a submanifold. We call M an integral submanifold of the exterior
differential system :

ω1 = 0 , ...., ωK = 0 (4.2)

if the pullbacks of the ωk to M all vanish :

ωk (p)
¡
ξ1, ...ξdk

¢
= 0 1 ≤ k ≤ K (4.3)

whenever p ∈M , ωk has degree dk, and ξi ∈ TpM for 1 ≤ i ≤ dk.
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Given a point p̄ ∈ Rn, the Cartan-Kähler theorem will give necessary and
sufficient conditions for the existence of an integral manifold containing x̄.
Necessary conditions are easy to find. Assume an integral manifold M 3 p̄

exists, and letm be its dimension. Then its tangent space at p̄ , denoted by Tp̄M ,
is m-dimensional, and all the ωj (p̄) must vanish on Tp̄M , because of formula (7).
Any subspace E ⊂ Tp̄M with this property will be called an integral element of
system (6) at p̄. The set of all m-dimensional integral elements at p̄ will be

Gm (p̄) =

½
E

¯̄̄̄
E ⊂ Tp̄M and dim E = m

ω1 (p̄) , ..., ωK (p̄) vanish on E

¾
Our first necessary condition is clear :

Gm
x̄ 6= ® (4.4)

4.3. Differential ideals

To get the second one, let us ask a strange question : have we written all the
equations ? In other words, does the system :

ω1 = 0, ..., ωK = 0 (4.5)

exhibit all the relevant information ?
The answer may be no. To see why, recall thatM is a submanifold of Rn, and

denote by ϕM : M → Rn the standard embedding ϕM(x) = x for all x ∈ M .
Then M is an integral manifold of system (4.5) if :

ϕ∗M ω1 = 0, ..., ϕ∗M ωK = 0 (4.6)

But we know that exterior differentiation is natural with respect to pullbacks,
that is, that d commutes with ϕ∗M . So (4.6) implies that:

ϕ∗M(dω
1) = 0, ..., ϕ∗M(dω

K) = 0

In other words, M is also an integral manifold of the larger system :½
ω1 = 0, ..., ωK = 0
dω1 = 0, ..., dωK = 0

(4.7)
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which is different from (4.5). If integral elements of (4.7) are different from integral
elements of (4.5), it is not clear which ones we should be working with.
To resolve this quandary, we shall assume that systems (4.5) and (4.7) have

the same integral elements. In other words, the second equations in (4.7) must
be algebraic consequences of the first ones. The precise statement for this is as
follows :

Definition 4. The family {ωk|1 ≤ k ≤ K} is said to generate a differential ideal
if there are forms {αk

j | 1 ≤ j, k ≤ K } such that :

∀k, dωk = Σj α
k
j ∧ ωj (4.8)

Our second necessary condition is that the ωk, 1 ≤ k ≤ K, must generate a
differential ideal. If this is the case, we say that the exterior differential system is
closed.
Note that if the given family

©
ωk |1 ≤ k ≤ K

ª
does not satisfy this condition,

the enlarged family
©
ωk , dωk|1 ≤ k ≤ K

ª
certainly will (because ddωk = 0). So

the condition that the system is closed can be understood as saying that the
enlargement procedure has already taken place.
Unfortunately, conditions (4.4) and (4.8) are not sufficient. We give two coun-

terexamples to show that an additional condition is needed

4.4. A first counter example

Consider two functions f and g from Rn−1 into itself, with f(0) = g(0) 6= 0, and
f (p) 6= g (p) for p 6=0. Define αi and βi, 1 ≤ i ≤ n− 1 , by

αi = f i(p)dt− dpi

βi = gi(p)dt− dpi

and consider the exterior differential system in Rn :

αi = 0 , βi = 0 , 1 ≤ i ≤ n− 1

The αi and the βi generate a differential ideal, and there is an integral element
at 0, namely the line carried by (1, N), soG1 (0) 6= ®. However, finding an integral
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manifold of the initial system containing 0 amounts to finding a common solution
of the two Cauchy problems :

dp

dt
= f(p) , p(0) = 0

dp

dt
= g(p) , p(0) = 0

which does not exist in general. The problem clearly is that the equality f(p) =
g(p) holds at p = 0 only. So we need a regularity condition which will exclude such
pathological situations - technically, that guarantees that the required equality
hold true at ordinary points, a concept we now formally define.

4.5. A second counterexample.

Let us work in R2, and let us find all functions φ (x, y) which can be written as

φ (x, y) = f (x) + g (y)

It is well known that a necessary and sufficient condition for such a decompo-
sition to be possible, at least for smooth φ, is that the cross derivative vanishes:

∂2φ

∂x∂y
≡ 0 (4.9)

Consider the exterior differential system in R4 = (x, y, f, g):

∂φ

∂x
dx+

∂φ

∂y
dy = df + dg

0 = df ∧ dx
0 = dg ∧ dy

Any 2-dimensional integral submanifold M of this system will be the graph
of a pair of functions (f, g) wich solve the problem, provided only that it is not
vertical, that is, that neither dx nor dy vanish on M . Let us try to find such
an integral submanifold. The system is obviously closed. We then look for non-
vertical integral elements, at 0 say. They are defined by a set of linear equations:

df = A1dx+B1dy

dg = A2dx+B2dy
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and plugging them into the system, we get

B1 = 0, A2 = 0, A1 =
∂φ

∂x
(0, 0) , B2 =

∂φ

∂y
(0, 0)

So there is an integral element. However, there is no 2-dimensional integral
submanifold, unless condition (4.9) is satisfied.

4.6. The last condition.

If all the ωk(p) are 1-forms, the regularity condition is clear enough : the dimen-
sion of the space spanned by the ωk(p), 1 ≤ k ≤ K, should be constant on a
neighborhood of p̄ (which is obviously not the case in the counterexample above).
Note that, locally, this dimension can only increase, that is, the codimension can
only decrease.
If some of the ωk have higher degree, the regularity condition is more compli-

cated. It is expressed in the following.
Pick a point p̄ ∈ Rn ; from now on, we work in the tangent space V = Tp̄Rn.

Let E ⊂ V be an m-dimensional integral element at p̄. Pick a basis ᾱ1, ..., ᾱn of
V ∗ such that :

E = {ξ ∈ V | < ξ, ᾱi >= 0 ∀i ≥ m+ 1 }

For n0 ≤ n, denote by I(n0, d) the set of all ordered subsets of {1, ..., n0} with
d elements. Denote by dk the degree of ωk. For every k, writing ωk(p̄) in the ᾱi

basis, we get
ωk(p̄) =

X
I∈I(n,dk)

ckI ᾱi1 ∧ ... ∧ ᾱidk
.

In this summation, it is understood that I = {i1, ..., idk}. Since ωk(x̄) vanishes
on E, each monomial must contain some ᾱi with i ≥ m+1. Let us single out the
monomials containing one such term only. Regrouping and rewriting, we get the
expression :

ωk(p̄) =
X

J∈I(m,dk−1)

β̄
k
J ∧ ᾱj1 ∧ ... ∧ ᾱjdk−1 + remainder

where β̄kJ is a linear combination of the αi for i ≥ m + 1, and all the monomials
in the remainder contain ᾱi ∧ ᾱi0 for some i > i0 ≥ m+ 1.
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Define an increasing sequence of linear subspace H∗
0 ⊂ H∗

1 ⊂ ... ⊂ H∗
M ⊂ V ∗

as follows :

H∗
m = Span[ β̄

k
J |1 ≤ k ≤ K, J ∈ I(m, dk − 1)}

H∗
m−1 = Span[ β̄

k
J |1 ≤ k ≤ K, J ∈ I(m− 1, dk − 1)}

H∗
0 = Span[ β̄

k
J |1 ≤ k ≤ K, J ∈ I(0, dk − 1)}

The latter is just the linear subspace generated by those of the ωk(x̄) which
happen to be 1-forms. We define an increasing sequence of integers 0 ≤ c0(x̄, E) ≤
... ≤ cm(x̄, E) ≤ n by :

ci(x̄, E) = dim H∗
i

We are finally able to express Cartan’s regularity condition. Denote by Pm(Rn)
the set of all m-dimensional subspaces of Rn with the standard (Grassmannian)
topology : it is known to be a manifold of dimension m(n−m). Denote by Gm

the set of all (p, E) such that E is an m-dimensional integral element at p. Note
that Gm is a subset of Rn × Pm(Rn).

Definition 5. Let (p̄, Ē) ∈ Gm - that is, Ē is anm-dimensional integral element
at p̄. We say that (p̄, Ē) is ordinary if there is some neighborhood U of (p̄, Ē) in
Rn × Pm(Rn) such that Gm ∩ U is a submanifold of codimension

c0(p̄, Ē) + ...+ cm−1(p̄, Ē)

If all the ωk are 1-forms, denote by d(p) the dimension of the space spanned
by the ωk(p). Then ci(p, E) = d(p) for every i, and (p̄, Ē) is ordinary if Gm ∩ U
is a submanifold of codimension md(p̄) in Rn × Pm(Rn). This implies that, for
every p in a neighborhood of p̄, the set of E ∈ Gm (p) (integral elements at p)
has codimension md(p̄) in Pm(Rn). It can be seen directly to have codimension
md(p). So d(p) = d(p̄) in a neighborhood of p̄ : this is exactly the regularity
condition we wanted for 1-forms.
In the general case, if (p̄, Ē) is ordinary, the numbers ci will also be locally

constant :
ci(p, E) = ci(p̄, Ē) = ci ∀(p, E) ∈ U .

The (non-negative) numbers

s0 = c0

si = ci − ci−1 for 1 ≤ i < m

sm = n−m− cn−1
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are called the Cartan characters. We shall use them later on.

4.7. The main result

We are now in a position to state the Cartan-Kähler theorem. Recall that a
real-valued function on Rn is called analytic if its Taylor series at every point is
absolutely convergent.:

Theorem 4.1. (Cartan-Kähler) Consider the exterior differential system :

ωk = 0 , 1 ≤ k ≤ K (4.10)

Assume that the ωk are real analytic and that they generate a differential ideal.
Let p̄ be a point and let Ē be an integral element at p̄ such that (p̄, Ē) is ordinary.
Then there is a real analytic integral manifold M , containing p̄ and such that :

Tp̄M = E . (4.11)

Nothing should come as a surprise in this statement, except the real analyticity.
It comes from the very generality of the Cartan-Kähler theorem. Indeed, every
system of partial differential equations, linear or not, can be written as an exterior
differential system, and there is a famous example, due to Hans Lewy, of a system
of two first-order nonhomogeneous linear partial differential equations (with non-
constant coefficients) for two unknown functions, which has no solution if the
right-hand side is C∞ but not analytic.
To conclude, let us mention the question of uniqueness. There is no uniqueness

in the Cartan-Kähler theorem : there may be infinitely many analytic integral
manifolds going through p̄ and having Ē as a tangent space at p̄. However, the
theorem describes in a precise way (not given here) the set

MU =

½
M

¯̄̄̄
M is an integral manifold and there exists
(p, E) ∈ U such that p ∈M and TpM = E

¾
,

where U is a suitably chosen neighborhood of (p̄, Ē). Loosely speaking, each M
inMU is completely determined by the (arbitrary) choice of sm analytic functions
of m variables, the sm being the Cartan character.
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4.8. An example

Let us go back to the second counterexample. There is only one integral element
at every point, so that G2 is a point in P2(R4) which has dimension 4. So its
codimension is 4.
Let us now compute the Cartan characters.

5. Application : aggregate market demand of a ’small’ num-
ber of consumers

We now come back to the economic integration problem described in introduction.
A first remark, due to Sonnenschein, is that, in contrast with the excess demand
problem, the characterization of market demand will face complex non-negativity
restrictions. In particular, he exhibits a counter-example of a function X that
cannot be globally decomposed as above because of these constraints. However,
the local version of the problem remains. From the mathematematical integration
problem, discussed above, we already know necessary conditions, stating that
for any point p̄, there must exist a subspace S, of codimension K, such that the
restriction to S of the Slustsky matrix ofX is symmetric. AN additional, necessary
condition is that this restriction should furthermore be negative, as can readily be
checked; these necessary conditions have already be described by Diewert (1977),
Mantel (1977) and Geanakoplos and Polemarchakis (1980). We now prove that
they are locally sufficient, a result that is new.
We first describe the basic strategy used throughout the proof. Consider the

space E = {p, λ1, ..., λK,∆1, ...,∆K} = Rn+K+K2
(the vector ∆i will later be

interpreted as the DpV
i). Clearly, if a solution exists, then the equations λi =

λi(p) and∆i =∆i(p) define a (n-dimensional) manifold S in E; and S is included
in the K2-dimensional manifoldM defined by :

X(p) =
X
i

λi∆
i (5.1)

p.∆i = 1/λi ∀i

Conversely, assume that we have found functions λi = λi(p) and ∆i =∆i(p)
such that :

• for every p,
©
p,λ1(p), ..., λK(p),∆

1(p), ...,∆K(p)
ª
belong toM
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• for every i = 1, ...,K, ∆i(p) satisfies the equation :

d

ÃX
j

∆ijdpj

!
=
X
j

d∆ij ∧ dpj =
X
k<j

µ
∂∆ij

∂pk
− ∂∆ik

∂pj

¶
dpk ∧ dpj = 0

Then ∆i(p) is the gradient of some function V i, and the (V 1, ..., V K) solve
the problem. In the language of the previous section, we are looking for an n-
dimensional integral manifold of the exterior differential system :X

j

d∆ij ∧ dpj = 0 ∀i (5.2)

Finally, the solution must be parametrized by (p1, ..., pn). The formal transla-
tion of this is :

dp1 ∧ ... ∧ pn 6= 0 (5.3)

An important remark, here, is that this system is closed, in the sense of the
previous section (since all 1-forms involved are already tangent forms). So the
condition that the forms constitute a differential ideal is automatically fulfilled.
The idea, now, is to consider (5.2) and (5.3) as an exterior differential system

to be solved on the manifoldM. Following the approach described in the previous
section, the proof is in two steps.

• As a first step, one must look for a solution of the linearized problem (at
some given point p̄). Specifically, choose (arbitrarily) the values (at p̄) of
λi and ∆i = DpV

i. In particular, one may choose λi < 0 , ∆i << 0 and
∆ = (∆1, ...,∆K) invertible; if these properties hold at p̄, they will hold by
continuity on a neighborhood as well. Also, these values must satisfy (again
at p̄) the relations :

X(p̄) =
X
i

λi∆
i

p.∆i = 1/λi ∀i

• Now, linearize λi and ∆i (as functions of p) around p̄ :

∂λi
∂pj

= N i
j

∂∆i
k

∂pj
=M i

k j
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Solving the linearized problem is equivalent to finding vectors N i and matri-
ces M i that satisfy the integration equations, i.e., (5.2) and (5.3), plus the
equations expressing that λi and ∆i remain on the manifoldM (the latter
obtain by differentiating (5.1)); in addition, we want the V i to be convex.
Formally, we write that :

— ∆i is the gradient of a convex function; this implies that

M i symmetric positive, i = 1, ...,K

— ’the point remains on the manifold’, which leads to :

DpX(p̄) =
X
i

¡
∆iDpλ

0
i + λiDp∆

i
¢
=
X
i

¡
∆iN 0

i + λiM
i
¢

M ip+∆i = − 1
λ2i

Ni ⇔ N 0
i = −λ2i (p0M i +∆i0)

One can show that this linear system has a solution if and only if the neces-
sary conditions described above hold true, a property that is linked to the
results derived in the linear context by Diewert (1977) and Geanakoplos and
Polemarchakis (1980).

• the second, and more tricky step is to show that the previous conditions
hold true at ordinary points. This is crucial in order to go from a solution to
the linearized version at each point to a solution to the general, non-linear
problem; a move that may not be possible otherwise, as illustrated by the
counter-examples in the previous section. Formally, this requirement trans-
lates into the fact that the subspaces involved have the ’right’ codimension.
We do not prove this result here; the interested reader is referred to Ekeland
and Nyremberg (), who provide a general analysis of these problems.ons.

Once these conditions have been checked, Cartan-Kähler theorem applies. Fi-
nally, one gets the following statement :

Theorem 5.1. Consider some open set U in Rn−{0} and some analytic mapping
X : U → Rn such that p.X(p) = 1. Choose some p̄ ∈ U such that for all p in some
neighborhood of p̄, the Slutsky matrix of X at p, S (p), is such that there exists
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a subspace S of codimension K to which the restriction of S (p) is symmetric and
negative. Then for all (x̄1, ..., x̄K) ∈ RnK and (λ̄1, ..., λ̄K) ∈ RK that satisfy :

x̄1+...+ x̄K = X(p̄)

∀i, λi > 0

, there exist K functions U1, ..., UK , where each Ui is defined in some convex
neighborhood Ui of x̄i and is analytic and strictly quasi-concave in U i ,K mappings
(x1, ...,xK) and K functions (λ1, ..., λK) , all defined in some neighborhood V of
p̄ and analytic in V, such that, for all p ∈ V :

p.xi(p) = 1/K, i = 1, ..., K

Ui (xi(p)) = max {Ui(x) | x ∈ U i, p.x ≤ 1/K} , i = 1, ..., K

∂Ui

∂xj
(xi(p)) = λi(p) pj, i = 1, ..., K, j = 1, ...,K

KX
i=1

xi(p) = X(p)

xi(p̄) = x̄i , i = 1, ...,K

λi(p̄) = λ̄i, i = 1, ...,K

Note that both the individual demands and the Lagrange multipliers (i.e., each
agent’s marginal utility of income) can be freely chosen at p̄. In particular, non-
negativity constraints can be forgotten, since one can choose individual demands
to be strictly positive at p̄, and they will remain positive in a neighbourhood.
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