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Linearization via the Lie Derivative ∗

Carmen Chicone & Richard Swanson

Abstract

The standard proof of the Grobman–Hartman linearization theorem
for a flow at a hyperbolic rest point proceeds by first establishing the
analogous result for hyperbolic fixed points of local diffeomorphisms. In
this exposition we present a simple direct proof that avoids the discrete
case altogether. We give new proofs for Hartman’s smoothness results:
A C2 flow is C1 linearizable at a hyperbolic sink, and a C2 flow in the
plane is C1 linearizable at a hyperbolic rest point. Also, we formulate
and prove some new results on smooth linearization for special classes of
quasi-linear vector fields where either the nonlinear part is restricted or
additional conditions on the spectrum of the linear part (not related to
resonance conditions) are imposed.
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2 Linearization via the Lie Derivative

1 Introduction

This paper is divided into three parts. In the first part, a new proof is presented
for the Grobman–Hartman linearization theorem: A C1 flow is C0 linearizable
at a hyperbolic rest point. The second part is a discussion of Hartman’s results
on smooth linearization where smoothness of the linearizing transformation is
proved in those cases where resonance conditions are not required. For example,
we will use the theory of ordinary differential equations to prove two main
theorems: A C2 vector field is C1 linearizable at a hyperbolic sink; and, a C2

vector field in the plane is C1 linearizable at a hyperbolic rest point. In the third
part, we will study a special class of vector fields where the smoothness of the
linearizing transformation can be improved.

The proof of the existence of a smooth linearizing transformation at a hyper-
bolic sink is delicate. It uses a version of the stable manifold theorem, consider-
ation of the gaps in the spectrum of the linearized vector field at the rest point,
carefully constructed Gronwall type estimates, and an induction argument. The
main lemma is a result about partial linearization by near-identity transforma-
tions that are continuously differentiable with Hölder derivatives. The method
of the proof requires the Hölder exponent of these derivatives to be less than a
certain number, called the Hölder spectral exponent, that is defined for linear
maps as follows. Suppose that {−b1,−b2, · · ·− bN} is the set of real parts of the
eigenvalues of the linear transformation A : Rn → Rn and

−bN < −bN−1 < · · · < −b1 < 0. (1.1)

The Hölder spectral exponent of A is the number

b1(bj+1 − bj)
b1(bj+1 − bj) + bj+1bj

where

bj+1 − bj
bj+1bj

= min
i∈{1,2,··· ,N−1}

bi+1 − bi
bi+1bi

in case N > 1; it is the number one in case N = 1. The Hölder spectral exponent
of a linear transformation B whose eigenvalues all have positive real parts is the
Hölder spectral exponent of −B.

Although a C2 flow in the plane is always C1 linearizable at a hyperbolic rest
point, a C2 flow in R3 may not be C1 linearizable at a hyperbolic saddle point.
For example, the flow of the system

ẋ = 2x, ẏ = y + xz, ż = −z (1.2)

is not C1 linearizable at the origin (see Hartman’s example (3.1)). We will
prove that a flow in Rn can be smoothly linearized at a hyperbolic saddle if the
spectrum of the corresponding linearized system at the saddle point satisfies
the following condition introduced by Hartman in [H60M]. Note first that the
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real parts of the eigenvalues of the system matrix of the linearized system at a
hyperbolic saddle lie in the union of two intervals, say [−aL,−aR] and [bL, bR]
where aL, aR, bL, and bR are all positive real numbers. Thus, the system matrix
can be written as a direct sum A⊕B where the real parts of the eigenvalues of A
are in [−aL,−aR] and the real parts of the eigenvalues of B are in [bL, bR]. Let
µ denote the Hölder spectral exponent of A and ν the Hölder spectral exponent
of B. If Hartman’s spectral condition

aL − aR < µbL, bR − bL < νaR

is satisfied, then the C2 nonlinear system is C1 linearizable at the hyperbolic
saddle point. It follows that, unlike system (1.2), the flow of

ẋ = 2x, ẏ = y + xz, ż = −4z

is C1 linearizable at the origin.
In the case of hyperbolic saddles where one of the Hölder spectral exponents

is small, Hartman’s spectral condition is satisfied only if the corresponding real
parts of the eigenvalues of the linear part of the field are contained in an ac-
cordingly small interval. Although the situation cannot be improved for general
vector fields, stronger results (in the spirit of Hartman) are possible for a re-
stricted class of vector fields. There are at least two ways to proceed: additional
conditions can be imposed on the spectrum of the linearization, or restrictions
can be imposed on the nonlinear part of the vector field. We will show that
a C3 vector field in “triangular form” with a hyperbolic saddle point at the
origin can be C1 linearized if Hartman’s spectral condition is replaced by the
inequalities aL − aR < bL and bR − bL < aR (see Theorem 4.6). Also, we will
prove the following result: Suppose that X = A+F is a quasi-linear C3 vector
field with a hyperbolic saddle at the origin, the set of negative real parts of
eigenvalues of A is given by {−λ1, . . . ,−λp}, the set of positive real parts is
given by {σ1, . . . , σq}, and

−λ1 < −λ2 < · · · < −λp < 0 < σq < σq−1 < · · · < σ1.

If λi−1/λi > 3, for i ∈ {2, 3, . . . , p}, and σi−1/σi > 3, for i ∈ {2, 3, . . . , q}, and
if λ1 − λp < σq and σ1 − σq < λp, then X is C1 linearizable (see Theorem 4.7).

The important dynamical behavior of a nonlinear system associated with a
hyperbolic sink is local: there is an open basin of attraction and every trajec-
tory that enters this set is asymptotically attracted to the sink. This behavior
is adequately explained by using a linearizing homeomorphism, that is, by using
the Grobman–Hartman theorem. On the other hand, the interesting dynamical
behavior associated with saddles is global; for example, limit cycles are pro-
duced by homoclinic loop bifurcations and chaotic invariant sets are found near
transversal intersections of homoclinic manifolds. Smooth linearizations at hy-
perbolic saddle points are used to analyze these global phenomena. It turns out
that results on the smooth linearization at hyperbolic sinks are key lemmas re-
quired to prove the existence of smooth linearization for hyperbolic saddles. In
fact, this is the main reason to study smooth linearization at hyperbolic sinks.
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We treat only the case of rest points here, but we expect that our method
can be applied to the problem of linearization near general invariant manifolds
of differential equations.

Hartman’s article [H60M] is the main reference for our results on smooth-
ness of linearizations. Other primary sources are the papers [G59], [H60],
[H63], and [St57]. For historical remarks, additional references, and later work
see [CL88], [CLL91], [KP90], [Se85], [St89], and [T99].

2 Continuous Conjugacy

A C1 vector field X on Rn such that X(0) = 0 is called locally topologically
conjugate to its linearization A := DX(0) at the origin if there is a homeomor-
phism h : U → V of neighborhoods of the origin such that the flows of X and
A are locally conjugated by h; that is,

h(etAx) = Xt(h(x)) (2.1)

whenever x ∈ U , t ∈ Rn, and both sides of the conjugacy equation are defined.
A matrix is infinitesimally hyperbolic if every one of its eigenvalues has a nonzero
real part.

Theorem 2.1 (Grobman–Hartman). Let X be a C1 vector field on Rn such
that X(0) = 0. If the linearization A of X at the origin is infinitesimally
hyperbolic, then X is locally topologically conjugate to A at the origin.

Proof. For each r > 0 there is a smooth bump function ρ : Rn → [0, 1] with the
following properties: ρ(x) ≡ 1 for |x| < r/2, ρ(x) ≡ 0 for |x| > r, and |dρ(x)| <
4/r for x ∈ Rn. The vector field Y = A + ξ where ξ(x) := ρ(x)(X(x) − Ax)
is equal to X on the open ball of radius r/2 at the origin. Thus, it suffices to
prove that Y is locally conjugate to A at the origin.

Suppose that in equation (2.1) h = id+ η and η : Rn → Rn is differentiable
in the direction A. Rewrite equation (2.1) in the form

e−tAh(etAx) = e−tAXt(h(x)) (2.2)

and differentiate both sides with respect to t at t = 0 to obtain the infinitesimal
conjugacy equation

LAη = ξ ◦ (id +η) (2.3)

where

LAη :=
d

dt
(e−tAη(etA))

∣∣
t=0

(2.4)

is the Lie derivative of η along A. (We note that if h is a conjugacy, then
the right-hand-side of equation (2.2) is differentiable; and therefore, the Lie
derivative of h in the direction A is defined.)
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We will show that if r > 0 is sufficiently small, then the infinitesimal conju-
gacy equation has a bounded continuous solution η : Rn → Rn (differentiable
along A) such that h := id +η is a homeomorphism of Rn whose restriction to
the ball of radius r/2 at the origin is a local conjugacy as in equation (2.1).

Since A is infinitesimally hyperbolic, A = A+ ⊕ A− having spectra, respec-
tively, to the left and to the right of the imaginary axis. Put E− = Range(A−)
and E+ = Range(A+). There are positive constants C and λ such that

|etAv+| ≤ Ce−λt|v+|, |e−tAv−| ≤ Ce−λt|v−| (2.5)

for t ≥ 0. The Banach space B of bounded (in the supremum norm) continuous
vector fields on Rn splits into the complementary subspaces B+ and B− of vector
fields with ranges, respectively, in E+ or E−. In particular, a vector field η ∈ B
has a unique representation η = η+ + η− where η+ ∈ B+ and η− ∈ B−.

The function G on B defined by

Gη(x) =
∫ ∞

0

etAη+(e−tAx) dt−
∫ ∞

0

e−tAη−(etAx) dt (2.6)

is a bounded linear operator G : B → B. The boundedness of G follows from
the hyperbolic estimates (2.5). The continuity of the function x 7→ Gη(x) is
an immediate consequence of the following lemma from advanced calculus—
essentially the Weierstrass M -test—and the hyperbolic estimates.

Lemma 2.2. Suppose that f : [0,∞) × Rn → Rm, given by (t, x) 7→ f(t, x),
is continuous (respectively, the partial derivative fx is continuous). If for each
y ∈ Rn there is an open set S ⊂ Rn with compact closure S̄ and a function M :
[0,∞) → R such that y ∈ S, the integral

∫∞
0
M(t) dt converges, and |f(t, x)| ≤

M(t) (respectively, |fx(t, x)| ≤ M(t) ) whenever t ∈ [0,∞) and x is in S̄, then
F : Rn → Rm given by F (x) =

∫∞
0
f(t, x) dt is continuous (respectively, F is

continuously differentiable and DF (x) =
∫∞

0
fx(t, x) dt ).

Using the definition of LA in display (2.4) and the fundamental theorem of
calculus, we have the identity LAG = idB. As a consequence, if

η = G(ξ ◦ (id +η)) := F (η), (2.7)

then η is a solution of the infinitesimal conjugacy equation (2.3).
Clearly, F : B → B and for η1 and η2 in B we have that

‖F (η1)− F (η2)‖ ≤ ‖G‖ ‖ξ ◦ (id +η1)− ξ ◦ (id +η2)‖
≤ ‖G‖ ‖Dξ‖ ‖η1 − η2‖.

Using the definitions of ξ and the properties of the bump function ρ, we have
that

‖Dξ‖ ≤ sup
|x|≤r
‖DX(x)−A‖+

4
r

sup
|x|≤r
|X(x)−Ax|.
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By the continuity of DX, there is some positive number r such that ‖DX(x)−
A‖ < 1/(10‖G‖) whenever |x| ≤ r. By Taylor’s theorem (applied to the C1

function X) and the obvious estimate of the integral form of the remainder, if
|x| ≤ r, then |X(x) − Ax| < r/(10‖G‖). For the number r > 0 just chosen,
we have the estimate ‖G‖‖Dξ‖ < 1/2; and therefore, F is a contraction on
B. By the contraction mapping theorem applied to the restriction of F on the
closed subspace B0 of B consisting of those elements that vanish at the origin, the
equation (2.7) has a unique solution η ∈ B0, which also satisfies the infinitesimal
conjugacy equation (2.3).

We will show that h := id +η is a local conjugacy. To do this recall the
following elementary fact about Lie differentiation: If U , V , and W are vector
fields, φt is the flow of U , and LUV = W , then

d

dt
Dφ−t(φt(x))V (φt(x)) = Dφ−t(φt(x))W (φt(x)).

Apply this result to the infinitesimal conjugacy equation (2.3) to obtain the
identity

d

dt
(e−tAη(etAx)) = e−tAξ(h(etAx)).

Using the definitions of h and Y , it follows immediately that

d

dt
(e−tAh(etAx)) = −e−tAAh(etAx) + e−tAY (h(etAx))

and (by the product rule)

e−tA
d

dt
h(etAx) = e−tAY (h(etAx)).

Therefore, the function given by t 7→ h(etAx) is the integral curve of Y starting
at the point h(x). But, by the definition of the flow Yt of Y , this integral curve
is the function t 7→ Yt(h(x)). By uniqueness, h(etAx) = Yt(h(x)). Because Y is
linear on the complement of a compact set, Gronwall’s inequality can be used
to show that the flow of Y is complete. Hence, the conjugacy equation holds
for all t ∈ R.

It remains to show that the continuous function h : Rn → Rn given by
h(x) = x + η(x) is a homeomorphism. Since η is bounded on Rn, the map
h = id +η is surjective. To see this, choose y ∈ Rn, note that the equation
h(x) = y has a solution of the form x = y + z if z = −η(y + z), and apply
Brouwer’s fixed point theorem to the map z 7→ −η(y + z) on the ball of radius
‖η‖ centered at the origin. (Using this idea, it is also easy to prove that h
is proper; that is, the inverse image under h of every compact subset of Rn is
compact.) We will show that h is injective. If x and y are in Rn and h(x) = h(y),
then Yt(h(x)) = Yt(h(y)) and, by the conjugacy relation, Atx+ η(Atx) = Aty+
η(Aty). By the linearity of At, we have that

|At(x− y)| = |η(Aty)− η(Atx)|. (2.8)
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For each nonzero u in Rn, the function t 7→ Atu = etAu is unbounded on
R. Hence, either x = y or the left side of equation (2.8) is unbounded for
t ∈ R. Since η is bounded, x = y; and therefore, the map h is injective. By
Brouwer’s theorem on invariance of domain, the bijective continuous map h is
a homeomorphism. (Brouwer’s theorem can be avoided by using instead the
following elementary fact: A continuous, proper, bijective map from Rn to Rn
is a homeomorphism.)

3 Smooth Conjugacy

In the classic paper [H60M], Hartman shows that if a > b > 0 and c 6= 0, then
there is no C1 linearizing conjugacy at the origin for the analytic differential
equation

ẋ = ax, ẏ = (a− b)y + cxz, ż = −bz. (3.1)

On the other hand, he proved the following two important results. (1) If a C2

vector field has a rest point such that either all eigenvalues of its linearization
have negative real parts or all eigenvalues have positive real parts, then the
vector field is locally C1 conjugate to its linearization. (2) If a C2 planar vector
field has a hyperbolic rest point, then the vector field is locally C1 conjugate
to its linearization. Hartman proves the analogs of these theorems for maps
and then derives the corresponding theorems for vector fields as corollaries. We
will work directly with vector fields and thereby use standard methods from the
theory of ordinary differential equations to obtain these results. We also note
that S. Sternberg proved that the analytic planar system

ẋ = −x, ẏ = −2y + x2 (3.2)

is not C2 linearizable. Hence, it should be clear that the proofs of Hartman’s
results on the existence of (maximally) smooth linearizations will require some
delicate estimates. Nevertheless, as we will soon see, the strategy used in these
proofs is easy to understand.

Although the starting point for the proof of Theorem 2.1, namely, the dif-
ferentiation with respect to t of the desired conjugacy relation (2.1) and the
inversion of the operator LA as in display (2.6), leads to the simple proof of
the existence of a conjugating homeomorphism given in Section 2, it turns out
this strategy does not produce smooth conjugaces. This fact is illustrated by
linearizing the scalar vector field given by X(x) = −ax+f(x) where a > 0. Sup-
pose that f vanishes outside a sufficiently small open subset of the origin with
radius r > 0 so that h(x) = x+η(x) is the continuous linearizing transformation
where

η(x) =
∫ ∞

0

e−atf(eatx+ η(eatx)) dt
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as in the proof of Theorem 2.1. With F := f ◦ (id +η), u := eat, and x 6= 0, the
function η is given by

η(x) =
1
a

∫ r/|x|

1

F (ux)
u2

du.

Moreover, if x > 0, then (with w = ux)

η(x) =
x

a

∫ r

x

F (w)
w2

dw,

and if x < 0, then

η(x) = −x
a

∫ x

−r

F (w)
w2

dw.

If η were continuously differentiable in a neighborhood of the origin, then we
would have the identity

η′(x) =
1
a

∫ r

x

F (w)
w2

dw − F (x)
ax

for x > 0 and the identity

η′(x) = −1
a

∫ x

−r

F (w)
w2

dw − F (x)
ax

for x < 0. Because the left-hand and right-hand derivatives agree at x = 0, it
would follow that ∫ r

−r

F (w)
w2

dw = 0.

But this equality is not true in general. For example, it is not true if f(x) =
ρ(x)x2 where ρ is a bump function as in the proof of Theorem 2.1. In this case,
the integrand is nonnegative and not identically zero.

There are at least two ways to avoid the difficulty just described. First, note
that the operator LA, for the case Ax = −ax, is formally inverted by running
time forward instead of backward. This leads to the formal inverse given by

(Gη)(x) := −
∫ ∞

0

eatη(e−atx) dt

and the fixed point equation

η(x) = −
∫ ∞

0

eatf(e−atx+ η(e−atx)) dt.

In this case, no inconsistency arises from the assumption that η′(0) exists. In
fact, in the last chapter of this paper, we will show that this method does
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produce a smooth conjucacy for certain “special vector fields”, for example, the
scalar vector fields under consideration here (see Theorem 3.8).

Another idea that can be used to avoid the difficulty with smoothness is to
differentiate both sides of the conjugacy relation

etAh(x) = h(Xt(x)) (3.3)

with respect to t, or equivalently for the scalar differential equation, to use the
change of coordinates u = x + η(x). With this starting point, it is easy to see
that η determines a linearizing transformation if it is a solution of the first order
partial differential equation

Dη(x)X(x) + aη(x) = −f(x).

To solve it, replace x by the integral curve t 7→ φt(x) where φt denotes the flow
of X, and note that (along this characteristic curve)

d

dt
η(φt(x)) + aη(φt(x)) = −f(φt(x)).

By variation of constants, we have the identity

d

dt
eatη(φt(x)) = −eatf(φt(x)),

and (after integration on the interval [0, t]) it follows that the function η given
by

η(x) =
∫ ∞

0

eatf(φt(x)) dt (3.4)

determines a linearizing transformation h = id +η if the improper integral con-
verges on some open interval containing the origin. The required convergence
is not obvious in general because the integrand of this integral contains the ex-
ponential growth factor eat. In fact, to prove that η is continuous, a uniform
estimate is required for the growth rate of the family of functions t 7→ |f(φt(x))|,
and to show that η is continuously differentiable, a uniform growth rate estimate
is required for their derivatives. The required estimates will be obtained in the
next section where we will show that η is smooth for a hyperbolic sinks. For
the scalar case as in equation (3.4), f(x) is less than a constant times x2 near
the origin, and the solution φt(x) is approaching the origin like e−atx. Because
this quantity is squared by the function f , the integral converges.

To test the validity of this method, consider the example ẋ = −ax+x2 where
the flow can be computed explicitly and the integral (3.4) can be evaluated to
obtain the smooth near-identity linearizing transformation h : (−a, a) → R
given by

h(x) = x+
x2

a− x
.
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3.1 Hyperbolic Sinks

The main result of this section is the following theorem.

Theorem 3.1 (Hartman). Let X be a C2 vector field on Rn such that X(0) =
0. If every eigenvalue of DX(0) has negative real part, then X is locally C1

conjugate to its linearization at the origin.

The full strength of the natural hypothesis that X is C2 is not used in the
proof; rather, we will use only the weaker hypothesis that X is C1 and certain
of its partial derivatives are Hölder on some fixed neighborhood of the origin.
A function h is Hölder on a subset U of its domain if there is some (Hölder
exponent) µ with 0 < µ ≤ 1 and some constant M > 0 such that

|h(x)− h(y)| ≤M |x− y|µ

whenever x and y are in U . In the special case where µ = 1, the function h is
also called Lipschitz. As a convenient notation, let C1,µ denote the class of C1

functions whose first partial derivatives are all Hölder with Hölder exponent µ.
Recall the definition of Hölder spectral exponents given in Section 1. We

will prove the following generalization of Theorem 3.1.

Theorem 3.2 (Hartman). Let X be a C1,1 vector field on Rn such that X(0) =
0. If every eigenvalue of DX(0) has negative real part and µ > 0 is smaller than
the Hölder spectral exponent, then there is a near-identity C1,µ-diffeomorphism
defined on some neighborhood of the origin that conjugates X to its linearization
at the origin.

The strategy for the proof of Theorem 3.2 is simple; in fact, the proof is
by a finite induction. By a linear change of coordinates, the linear part of the
vector field at the origin is transformed to a real Jordan canonical form where
the diagonal blocks are ordered according to the real parts of the corresponding
eigenvalues, and the vector field is decomposed into (vector) components cor-
responding to these blocks. A theorem from invariant manifold theory is used
to “flatten” the invariant manifold corresponding to the block whose eigenval-
ues have the largest real part onto the corresponding linear subspace. This
transforms the original vector field into a special form which is then “partially
linearized” by a near-identity diffeomorphism; that is, the flattened—but still
nonlinear—component of the vector field is linearized by the transformation.
This reduces the dimension of the linearization problem by the dimension of
the flattened manifold. The process is continued until the system is completely
linearized. Finally, the inverse of the linear transformation to Jordan form is
applied to return to the original coordinates so that the composition of all the
coordinate transformations is a near-identity map.

We will show that the nonlinear part of each near-identity partially lineariz-
ing transformation is given explicitly by an integral transform∫ ∞

0

e−tBg(ϕt(x)) dt



Carmen Chicone & Richard Swanson 11

where g is given by the nonlinear terms of the component function of the vector
field corresponding to the linear block B and ϕt is the nonlinear flow. The
technical part of the proof is to demonstrate that these transformations maintain
the required smoothness. This is done by repeated applications of Lemma 2.2
to prove that “differentiation under the integral sign” is permitted. Because
maximal smoothness is obtained, it is perhaps not surprising that some of the
estimates required to majorize the integrand of the integral transform are rather
delicate. In fact, the main difficulty is to prove that the exponential rate of decay
toward zero of the functions t 7→ g(ϕt(x)) and t 7→ gx(ϕt(x)), defined on some
open neighborhood of x = 0, is faster than the exponential rate at which the
linear flow etB moves points away from the origin in reverse time.

As in Section 2, the original vector field X can be expressed in the “almost
linear” form X(x) = Ax+ (X(x)−Ax). There is a linear change of coordinates
in Rn such that X, in the new coordinates, is the almost linear vector field
Y (x) = Bx+ (Y (x)−Bx) where the matrix B is in real Jordan canonical form
with diagonal blocks B1 and B2, every eigenvalue of B2 has the same negative
real part −b2, and every eigenvalue of B1 has its real part strictly smaller than
−b2. The corresponding ODE has the form

ẋ1 = B1 x1 + P1(x1, x2),
ẋ2 = B2 x1 + P2(x1, x2) (3.5)

where x = (x1, x2) and (P1(x1, x2), P2(x1, x2)) = (Y (x)− Bx). Let c be a real
number such that −b < −c < 0, and note that if the augmented system

ẋ1 = B1 x1 + P1(x1, x2),
ẋ2 = B2 x1 + P2(x1, x2),
ẋ3 = −cx3

is linearized by a near-identity transformation of the form

u1 = x1 + α1(x1, x2, x3),
u2 = x2 + α2(x1, x2, x3),
u3 = x3,

then the ODE (3.5) is linearized by the transformation

u1 = x1 + α1(x1, x2, 0), u2 = x2 + α2(x1, x2, 0).

More generally, let C1,L,µ denote the class of all systems of the form

ẋ = Ax+ f(x, y, z),
ẏ = By + g(x, y, z),
ż = Cz (3.6)

where x ∈ Rk, y ∈ R`, and z ∈ Rm; where A, B, and C are square matrices of
the corresponding dimensions; B is in real Jordan canonical form;
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• every eigenvalue of B has real part −b < 0;

• every eigenvalue of A has real part less than −b;

• every eigenvalue of C has real part in an interval [−c,−d] where
−b < −c and −d < 0;

and F : (x, y, z) 7→ (f(x, y, z), g(x, y, z)) is a C1 function defined in a bounded
product neighborhood

Ω = Ωxy × Ωz (3.7)

of the origin in (Rk × R`)× Rm such that

• F (0, 0, 0) = 0 and DF (0, 0, 0) = 0,

• the partial derivatives Fx and Fy are Lipschitz in Ω, and

• the partial derivative Fz is Lipschitz in Ωxy uniformly with respect to
z ∈ Ωz and Hölder in Ωz uniformly with respect to (x, y) ∈ Ωxy with
Hölder exponent µ.

System (3.6) satisfies the (1, µ) spectral gap condition if (1 + µ)c < b.
We will show that system (3.6) can be linearized by a C1 near-identity trans-

formation of the form

u = x+ α(x, y, z),
v = y + β(x, y, z),
w = z. (3.8)

The proof of this result is given in three main steps: an invariant manifold
theorem for a system with a spectral gap is used to find a preliminary near-
identity C1 map, as in display (3.8), that transforms system (3.6) into a system
of the same form but with the new function F = (f, g) “flattened” along the
coordinate subspace corresponding to the invariant manifold. Next, for the
main part of the proof, a second near-identity transformation of the same form
is constructed that transforms the flattened system to the partially linearized
form

ẋ = Ax+ p(x, y, z),
ẏ = By,

ż = Cz (3.9)

where A, B, and C are the matrices in system (3.6) and the function p has the
following properties:

• p is C1 on an open neighborhood Ω = Ωx×Ωyz of the origin in Rk× (R`×
Rm);
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• p(0, 0, 0) = 0 and Dp(0, 0, 0) = 0;

• The partial derivative px is Lipschitz in Ω;

• The partial derivatives py and pz are Lipschitz in Ωx uniformly with re-
spect to (y, z) ∈ Ωyz and Hölder in Ωyz uniformly with respect to x ∈ Ωx.

The final step of the proof consists of three observations: The composition of
C1 near-identity transformations of the form considered here is again a C1 near-
identity transformation; the dimension of the “unlinearized” part of the system
is made strictly smaller after applying the partially linearizing transformation,
and the argument can be repeated as long as the system is not linearized. In
other words, the proof is completed by a finite induction.

The required version of the invariant manifold theorem is a special case of a
more general theorem (see, for example, Yu. Latushkin and B. Layton [LL99]).
For completeness, we will formulate and prove this special case. Our proof can
be modified to obtain the general result.

For notational convenience, let us view system (3.6) in the compact form

Ẋ = AX + F (X , z),
ż = Cz (3.10)

where X = (x, y), A =
(
A 0
0 B

)
, and F := (f, g). Hyperbolic estimates for

the corresponding linearized equations are used repeatedly. In particular, in
view of the hypotheses about the eigenvalues of A, B, and C, it follows that if
ε > 0 and

0 < λ < d,

then there is a constant K > 1 such that

‖etA‖ ≤ Ke−(b−ε)t, ‖etC‖ ≤ Ke−λt ‖e−tC‖ ≤ Ke(c+ε)t (3.11)

for all t ≥ 0.

Theorem 3.3. If the (1, µ) spectral gap condition holds for system (3.10), then
there is an open set Ωz ⊂ Rm containing z = 0 and a C1,µ function γ : Ωz →
Rk+` such that γ(0) = Dγ(0) = 0 whose graph (the set {(X , z) ∈ Rk+` × Rm :
X = γ(z)}) is forward invariant.

As a remark, we mention that the smoothness of γ cannot in general be
improved by simply requiring additional smoothness of the vector field. Rather,
the smoothness of the invariant manifold can be improved only if additional
requirements are made on the smoothness of the vector field and on the length
of the spectral gap (see [LL99] and the references therein). For these reasons,
it seems that the technical burden imposed by working with Hölder functions
cannot be avoided by simply requiring additional smoothness of the vector field
unless additional hypotheses are made on the eigenvalues of the linearization at
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the origin as well. Also, we mention that our proof illustrates the full power of
the fiber contraction principle introduced by M. Hirsch and C. Pugh in [HP70]
as a method for proving the smoothness of functions obtained as fixed points of
contractions.

To describe the fiber contraction method in our setting, let us consider a
metric subspace D of a Banach space of continuous functions defined on Ω ⊂ Rm
with values in Rp, and let us suppose that Γ : D → D is a contraction (on the
complete metric space D) with fixed point γ. (In the analysis to follow, Γ is given
by an integral transform operator.) We wish to show that γ is differentiable.
Naturally, we start by formally differentiating both sides of the identity η(z) =
Γ(η)(z) with respect to z to obtain the identity Dγ(z) = ∆(γ,Dγ)(z) where the
map Φ 7→ ∆(γ,Φ) is a linear operator on a metric—not necessarily complete—
subspace J of continuous functions from Ω to the bounded linear maps from
Rm to Rp. We expect the derivative Dη, if it exists, to satisfy the equation

Φ = ∆(η,Φ).

Hence, J is a space of “candidates for the derivative of γ”.
The next step is to show that the bundle map Λ : D × J → D × J defined

by

Λ(γ,Φ) = (Γ(γ),∆(γ,Φ))

is a fiber contraction; that is, for each γ ∈ D, the map Φ → ∆(γ,Φ) is a
contraction on J with respect to a contraction constant that does not depend
on the choice of γ ∈ D. The fiber contraction theorem (see [HP70] or, for more
details, [C99]) states that if γ is the globally attracting fixed point of Γ and if Φ
is a fixed point of the map Φ → ∆(γ,Φ), then (γ,Φ) is the globally attracting
fixed point of Λ. The fiber contraction theorem does not require J to be a
complete metric space. This leaves open the possibility to prove the existence
of a fixed point in the fiber over γ by using, for example, Schauder’s theorem.
But, for our applications, the space J will be chosen to be complete so that
the existence of the fixed point Φ follows from an application of the contraction
mapping theorem.

After we show that Λ is a fiber contraction, the following argument can often
be used to prove the desired equality Φ = Dγ. Find a point (γ0,Φ0) ∈ D × J
such that Dγ0 = Φ0, define a sequence {(γj ,Φj)}∞j=0 in D × J by

γj = Γ(γj−1), Φj = ∆(γj−1,Φj−1),

and prove by induction that Dγj = Φj for every positive integer j. By the fiber
contraction theorem, the sequence {γj}∞j=0 converges to γ and the sequence
{Dγj}∞j=0 converges to the fixed point Φ of the map Φ → ∆(γ,Φ). If the con-
vergence is uniform, then by a standard theorem from advanced calculus—the
uniform limit of a sequence of differentiable functions is differentiable and equal
to the limit of the derivatives of the functions in the sequence provided that the
sequence of derivatives is uniformly convergent—the function γ is differentiable
and its derivative is Φ.

Let us prove Theorem 3.3.
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Proof. The graph of γ is forward invariant if and only if Ẋ = Dγ(z)ż whenever
X = γ(z). Equivalently, the identity

Dγ(z)Cz −Aγ(z) = F (γ(z), z) (3.12)

holds for all z in the domain of γ.
The function γ will satisfy identity (3.12) if γ is C1 and

d

dτ
e−τAγ(eτCz) = e−τAF (γ(eτCz), eτCz).

In this case, by integration on the interval [−τ, 0] followed by a change of vari-
ables in the integral on the right-hand side of the resulting equation, it follows
that

γ(z)− eτAγ(e−τCz) =
∫ τ

0

etAF (γ(e−tCz), e−tCz) dt.

If γ is a C1 function such that γ(0) = Dγ(0) = 0 and limτ→∞|eτAγ(e−τCz)| = 0,
then the graph of γ will be (forward) invariant provided that

γ(z) = Γ(γ)(z) :=
∫ ∞

0

etAF (γ(e−tCz), e−tCz) dt. (3.13)

For technical reasons, it is convenient to assume that γ is defined on all of
Rm and that F is “cut off” as in the proof of Theorem 2.1 to have support in an
open ball at the origin in Rk+`+m of radius r > 0 so that the new function, still
denoted by the symbol F , is defined globally with ‖DF‖ bounded by a small
number ρ > 0 to be determined. Recall that both r and ρ can be chosen to be
as small as we wish. This procedure maintains the smoothness of the original
function and the modified function agrees with the original function on some
open ball centered at the origin and with radius r0 < r. Also, the graph of the
restriction of a function γ that satisfies the equation (3.13) to an open subset of
Ωz, containing the origin and inside the ball of radius r0, is forward invariant
for system (3.10) because the the modified differential equation agrees with the
original differential equation in the ball of radius r0.

We will show that there is a solution γ of equation (3.13) such that γ ∈ C1,µ

and γ(0) = Dγ(0) = 0.
Let B denote the Banach space of continuous functions from Rm to Rk+`

that are bounded with respect to the norm given by

‖γ‖B := sup
{ |γ(z)|
|z|

: z ∈ Rm \ {0}
}
.

Also, note that convergence of a sequence in the B-norm implies uniform con-
vergence of the sequence on compact subsets of Rm.

Let D := {γ ∈ B : |γ(z1) − γ(z2)| ≤ |z1 − z2|}. Note that if γ ∈ D, then
‖γ‖B ≤ 1. We will also show that D is a closed subset, and hence a complete
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metric subspace, of B. In fact, if {γk}∞k=1 is a sequence in D that converges to
γ in B, then

|γ(z1)− γ(z2)| ≤ |γ(z1)− γk(z1)|+ |γk(z1)− γk(z2)|+ |γk(z2)− γ(z2)|
≤ ‖γ − γk‖B|z1|µ + |z1 − z2|+ ‖γ − γk‖B|z2|µ. (3.14)

To see that γ ∈ D, pass to the limit as k →∞.
We will show that if ρ is sufficiently small, then Γ, the operator defined in

display (3.13), is a contraction on D.
Recall the hyperbolic estimates 3.11, choose ε so small that c − b + 2ε < 0,

let γ ∈ D, and note that

|Γ(γ)(z1)− Γ(γ)(z2)| ≤
∫ ∞

0

Ke−(b−ε)t‖DF‖(|γ(e−tCz1)− γ(e−tCz2)|

+ |e−tC(z1 − z2)|) dt (3.15)

≤
∫ ∞

0

Ke−(b−ε)tρ(2|e−tC(z1 − z2)|) dt

≤
(
2Kρ

∫ ∞
0

e(c−b+2ε)t dt
)
|z1 − z2|. (3.16)

By taking ρ sufficiently small, it follows that

|Γ(γ)(z1)− Γ(γ)(z2)| ≤ |z1 − z2|.

Also, using similar estimates, it is easy to show that

|Γ(γ1)(z)− Γ(γ2)(z)| ≤ K2ρ

b− c− 2ε
‖γ1 − γ2‖B|z|.

Hence, if ρ = ‖DF‖ is sufficiently small, then Γ is a contraction on the complete
metric space D; and therefore, it has a unique fixed point γ∞ ∈ D.

We will use the fiber contraction principle to show that γ∞ ∈ C1,µ.
Before modification by the bump function, there is some open neighborhood

of the origin on which FX is Lipschitz, Fz is Lipschitz in X , and Fz is Hölder in
z. Using this fact and the construction of the bump function, it is not difficult
to show that there is a constant M̄ > 0 such that (for the modified function F )

|Fz(X1, z1)− Fz(X2, z2)| ≤ M̄(|X1 −X2|µ + |z1 − z2|µ) (3.17)

and

|FX (X1, z1)− FX (X2, z2)| ≤ M̄(|X1 −X2|µ + |z1 − z2|µ). (3.18)

Moreover, M̄ is independent of r as long as r > 0 is smaller than some preas-
signed positive number.

In view of the (1, µ) spectral gap condition, −b + ε + (1 + µ)(c + ε) < 0
whenever ε > 0 is sufficiently small. For ε in this class, let

K̄ := K3

∫ ∞
0

e(−b+ε+(1+µ)(c+ε))t dt.
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inequalities

|∆(γ,Φ)(z)| ≤
∫ ∞

0

|etA||e−tC |
(
FX (γ(e−tCz), e−tCz)|Φ(e−tCz)|

+ |Fz(γ(e−tCz), e−tCz)|
)
dt

≤
∫ ∞

0

K2e(c−b+2ε)t
(
‖DF‖‖Φ‖HKµeµ(c+ε)t|z|µ

+ M̄(|γ(e−tCz|µ + |e−tCz|µ
)
dt

≤
(
K2+µ

∫ ∞
0

e(−b+ε+(1+µ)(c+ε))t dt
)
(‖DF‖‖Φ‖H + 2M̄)|z|µ dt

≤ K̄(ρ‖Φ‖H + 2M̄)|z|µ

≤ 2K̄M̄
1− K̄ρ

|z|µ.

It follows that ∆(γ,Φ) satisfies both inequalities in display (3.19).
To show that ∆(γ,Φ) satisfies the Hölder condition (3.20), estimate

Q := |∆(γ,Φ)(z1)−∆(γ,Φ)(z2)|

in the obvious manner, add and subtract FX (γ(e−tCz1), e−tCz1)Φ(e−tCz2), and
then use the triangle inequality to obtain the inequality

Q ≤
∫ ∞

0

e(c−b+2ε)t
(
|FX (γ(e−tCz1), e−tCz1)||Φ(e−tCz1)− Φ(e−tCz2)|

+|FX (γ(e−tCz1), e−tCz1)− FX (γ(e−tCz2), e−tCz2)||Φ(e−tCz2)|
+|Fz(γ(e−tCz1), e−tCz1)− Fz(γ(e−tCz2), e−tCz2|

)
dt.

The first factor involving FX is bounded above by ρ = ‖DF‖; the second factor
involving FX is bounded above using the Hölder estimate (3.18) followed the
Lipschitz estimate for γ in the definition of D. Likewise, the second factor
involving Φ is bounded using the supremum in display (3.19); the first factor
involving Φ is bounded using the Hölder inequality (3.20). The term involving
Fz is bounded above using the Hölder estimate (3.17). After some manipulation
using the hyperbolic estimate for e−tC and in view of the definition of K̄, it
follows that Q is bounded above by

K̄(ρH + 2M̄
2K̄M̄Kr

1− K̄ρ
+ 2M̄)|z1 − z2|µ ≤ H|z1 − z2|µ.

This completes the proof that ∆(γ,Φ) ∈ J .
Finally, by similar estimation procedures, it is easy to show that

‖∆(γ1,Φ1)(z)−∆(γ2,Φ2)(z)‖ ≤

K̄
(
ρ‖Φ1 − Φ2‖H + M̄(1 +

2K̄M̄Kr

1− K̄ρ
‖γ1 − γ2‖B

)
|z|µ.
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Therefore, ∆ and hence Λ is continuous. Also, because K̄ρ < 1, the map
Φ 7→ ∆(γ,Φ) is a contraction, and the contraction constant is uniform over D.
This proves that Λ is a fiber contraction on D × J .

Choose (γ0,Φ0) = (0, 0) and define a sequence in D × J inductively by

(γj+1,Φj+1) := Λ(γj ,Φj).

In particular, by the contraction mapping theorem the sequence {γj}∞j=0 con-
verges to γ∞. Clearly, we have Dγ0 = Φ0. Proceeding by induction, let us
assume that Dγj = Φj . Since

γj+1(z) = Γ(γj)(z) =
∫ ∞

0

etAF (γj(e−tCz), e−tCz) dt

and since differentiation under the integral sign is permitted by Lemma 2.2
because we have the majorization (3.15), it follows that

Dγj+1(z) =
∫ ∞

0

etAFX (γj(e−tCz), e−tCz)Dγj(e−tCz)e−tC dt.

By the induction hypothesis Dγj(e−tCz) = Φj(e−tCz)r. Hence, by the defini-
tion of ∆, we have that Dγj+1 = Φj+1. Finally, because convergence in the
spaces D and J implies uniform converge on compact sets, by using the fiber
contraction theorem and the theorem from advanced calculus on uniform lim-
its of differentiable functions, it follows that γ∞ is C1 with its derivative in J .
Thus, in fact, γ∞ ∈ C1,µ.

We will now apply Theorem 3.3. After this is done, the remainder of this
section will be devoted to the proof of the existence and smoothness of the
partially linearizing transformation for the flattened system.

The mapping given by

U = X − γ(z),

where the graph of γ is the invariant manifold in Theorem 3.3, transforms
system (3.10) into the form

U̇ = AU +Aγ(z) + F (U + γ(z), z)−Dγ(z)Cz,
ż = Cz. (3.21)

Because the graph of γ is invariant, U̇ = 0 whenever U = 0. In particular,

Aγ(z) + F (γ(z), z)−Dγ(z)Cz ≡ 0;

and therefore, the system (3.21) has the form

U̇ = AU + F(U, z),
ż = Cz (3.22)

where

F(U, z) := F (U + γ(z), z)− F (γ(z), z). (3.23)
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Proposition 3.4. The function F in system (3.22) is C1,L,µ on a bounded
neighborhood of the origin. In addition, if (U, zi) and (Ui, zi) for i ∈ {1, 2}
are in this neighborhood, then there are constants M > 0 and 0 ≤ ϑ < 1 such
that

|F(U1, z1)−F(U2, z2)| ≤ M(|U1|+ |z1|+ |U2|+ |z2|)(|U1 − U2|+ |z1 − z2|),
(3.24)

|Fz(U1, z1)−Fz(U2, z2)| ≤ M(|z1 − z2|µ + |U1 − U2|)1−ϑ(|U1|+ |U2|)ϑ.
(3.25)

Proof. The function F is C1 because it is the composition of C1 functions. More-
over, by definition (3.23) and because F (0, 0) = DF (0, 0) = 0, it is clear that
F(0, 0) = DF(0, 0) = 0.

To show that the partial derivative FU is Lipschitz in a neighborhood of
the origin, start with the equality FU (U, z) = FX(U + γ(z), z), note that FX is
Lipschitz, and conclude that there is a constant K > 0 such that

|FU (U1, z1)−FU (U2, z2)| ≤ K(|U1 − U2|+ |γ(z1)− γ(z2)|+ |z1 − z2|).

By an application of the mean value theorem to the C1 function γ, it follows
that

|FU (U1, z1)−FU (U2, z2)| ≤ K(1 + ‖Dγ‖)(|U1 − U2|+ |z1 − z2|).

Since ‖Dγ‖ is bounded in some neighborhood of the origin, we have the desired
result.

Similarly, in view of the equality

Fz(U, z) = FX (U + γ(z), z)Dγ(z)− FX (γ(z), z)Dγ(z)
+ Fz(U + γ(z), z)− Fz(γ(z), z),

the properties of F , and the triangle law, there is a constant K > 0 such that

|Fz(U1, z)−Fz(U2, z)| ≤ K|U1 − U2|

uniformly for z in a sufficiently small open neighborhood of z = 0.
Several easy estimates are required to show that Fz is Hölder with respect

to its second argument. For this, let T := |Fz(U, z1)−Fz(U, z2)| and note that

T ≤ |FX (U + γ(z1), z1)Dγ(z1)− FX (U + γ(z2), z2)Dγ(z2)|
+ |FX (γ(z1), z1)Dγ(z1)− FX (γ(z2), z2)Dγ(z2)|
+ |Fz(U + γ(z1), z1)− Fz(U + γ(z2), z2)|
+ |Fz(γ(z1), z1)− Fz(γ(z2), z2)|.

Each term on the right-hand side of this inequality is estimated in turn. The
desired result is obtained by combining these results. We will show how to
obtain the Hölder estimate for the first term; the other estimates are similar.



Carmen Chicone & Richard Swanson 21

To estimate the first term T1, add and subtract FX (U + γ(z1), z1)Dγ(z2)
and use the triangle inequality to obtain the upper bound

T1 ≤ ‖DF‖|Dγ(z1)−Dγ(z2)|
+ ‖Dγ‖|FX (U + γ(z1), z1)− FX (U + γ(z2), z2)|.

Because Dγ is Hölder and FX is Lipschitz, there is a constant K > 0 such that

T1 ≤ ‖DF‖K|z1 − z2|µ + ‖Dγ‖K(|z1 − z2|µ + |z1 − z2|)
≤ ‖DF‖K|z1 − z2|µ + ‖Dγ‖K|z1 − z2|µ(1 + |z1 − z2|1−µ).

Finally, by restricting to a sufficiently small neighborhood of the origin, it follows
that there is a constant M > 0 such that

T1 ≤M |z1 − z2|µ,

as required.
To prove the estimate (3.24), note that F(0, 0) = DF(0, 0) = 0 and, by

Taylor’s formula,

F(U, z) =
∫ 1

0

(FU (tU, tz)U + Fz(tU, tz)z) dt.

The desired estimate for |F(U1, z1) − F(U2, z2)| is obtained by subtracting
the integral expressions for F(U1, z1) and F(U2, z2), adding and subtracting
FU (U1, z1)U2 and Fz(U1, z1)z2, and then by using the triangle inequality, the
Lipschitz estimates for FU and Fz, and the observation that |t| ≤ 1 in the
integrand.

For the estimate (3.25), note that the function U 7→ Fz(U, z) is (uniformly)
Lipschitz and use the obvious triangle estimate to conclude that there is a
constant M > 0 such that

|Fz(U1, z1)− Fz(U2, z2)| ≤M(|U1|+ |U2|).

Also, a different upper bound for the same quantity is obtained as follows:

|Fz(U1, z1)− Fz(U2, z2)| ≤ |Fz(U1, z1)− Fz(U1, z2)|
+ |Fz(U1, z2)− Fz(U2, z2)|

≤ M(|z1 − z2|µ + |U1 − U2|)

The desired inequality (3.25) is obtained from these two upper bounds and the
following proposition: Suppose that a ≥ 0, b > 0, and c > 0. If a ≤ max{b, c}
and 0 ≤ ϑ < 1, then a ≤ bηc1−ϑ. The proposition is clearly valid in case a = 0.
On the other hand, the case where a 6= 0 is an immediate consequence of the
inequality

ln a = ϑ ln a+ (1− ϑ) ln a ≤ ϑ ln b+ (1− ϑ) ln c ≤ ln(bϑc1−ϑ).
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As mentioned above, the main result of this section concerns the partial
linearization of system (3.22). More precisely, let us fix the previously defined
square matrices A, B, and C, and consider the system

ẋ = Ax+ f(x, y, z),
ẏ = By + g(x, y, z),
ż = Cz (3.26)

where F := (f, g) satisfies all of the properties mentioned in Proposition 3.4.
Also, we will use the following hypothesis.

Hypothesis 3.5. Let Ω be an open neighborhood of the origin given by Ωxy×Ωz
as in display (3.7),

U,U1, U2 ∈ Ωxy, z, z1, z2 ∈ Ωz, r := sup
(U,z)∈Ω

|U |,

the numbers K > 1 and λ > 0 are the constants in display (3.11), the numbers
M > 0 and ϑ are the constants in Proposition 3.4, and −b is the real part of the
eigenvalues of the matrix B in system (3.26). In addition, Ω is a sufficiently
small open set, ε is a sufficiently small positive real number, and ϑ is a suffi-
ciently large number in the open unit interval such that for δ := 2K2Mr+ ε we
have ε < 1, −b+δ < −λ, −λ+2δ < 0, (1−ϑ)b−λ < 0, and δ−λ+(1−ϑ)b < 0.

Theorem 3.6. There is a C1,L,µ(1−θ) near-identity diffeomorphism defined on
an open subset of the origin that transforms system (3.26) into system (3.9).

Proof. We will show that there is a near-identity transformation of the form

u = x,

v = y + α(x, y, z),
w = z (3.27)

that transforms system (3.26) into

u̇ = Au+ p(u, v, w),
v̇ = Bv,

ẇ = Cw. (3.28)

The map (3.27) transforms system (3.26) into a system in the form of sys-
tem (3.28) if and only if

Au+ p(u, v, w) = Ax+ f(x, y, z),
Bv = By + g(x, y, z) +Dα(x, y, z)V (x, y, z)

where V denotes the vector field given by

(x, y, z) 7→ (Ax+ f(x, y, z), By + g(x, y, z), Cz).
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Hence, to obtain the desired transformation, it suffices to show that the (first
order partial differential) equation

DαV + g = Bα (3.29)

has a C1,L,µ(1−θ) solution α with the additional property that α(0) = Dα(0) = 0,
and that p has the properties listed for system (3.9).

To solve equation (3.29), let us seek a solution along its characteristics; that
is, let us seek a function α such that

d

dt
α(ϕt(x, y, z))−Bα(ϕt(x, y, z)) = −g(ϕt(x, y, z)) (3.30)

where ϕt is the flow of V . Of course, by simply evaluating at t = 0, it follows
immediately that such a function α is also a solution of the equation (3.29).

By variation of parameters, equation (3.30) is equivalent to the differential
equation

d

dt
e−tBα(ϕt(x, y, z)) = −e−tBg(ϕt(x, y, z)).

Hence, (after evaluation at t = 0) it suffices to solve the equation

Jα = −g

where J is the (Lie derivative) operator defined by

(Jα)(x, y, z) =
d

dt
e−tBα(ϕt(x, y, z))

∣∣
t=0

.

In other words, it suffices to prove that the operator J is invertible in a space of
functions containing g, that α := J−1g is in C1,L,µ(1−θ), and α(0) = Dα(0) = 0.

Formally, J satisfies the “Lie derivative property”; that is,

d

dt
e−tBα(ϕt(x, y, z)) = e−tBJα(ϕt(x, y, z)).

Hence,

e−tBα(ϕt(x, y, z))− α(x, y, z) =
∫ t

0

e−sBJα(ϕs(x, y, z)) ds; (3.31)

and therefore, if α is in a function space where limt→∞|e−tBα(ϕt(x, y, z))| = 0,
then the operator E defined by

(Eα)(x, y, z) = −
∫ ∞

0

e−tBα(ϕt(x, y, z)) dt (3.32)

is the inverse of J . In fact, by passing to the limit as t → ∞ on both sides of
equation (3.31) it follows immediately that EJ = I. The identity JE = I is
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proved using a direct computation and the fundamental theorem of calculus as
follows:

JEα(x, y, z) = − d

ds

∫ ∞
0

e(t+s)Bα(ϕt+s(x, y, z)) dt
∣∣
s=0

= − d

ds

∫ ∞
s

euBα(ϕu(x, y, z)) du
∣∣
s=0

= α(x, y, z).

Let B denote the Banach space consisting of all continuous functions α :
Ω→ R` with the norm

‖α‖B := sup
(x,y) 6=0

|α(x, y, z)|
(|x|+ |y|)(|x|+ |y|+ |z|)

where Ω is an open neighborhood of the origin with compact closure. We will
show that E is a bounded operator on B. If Ω is sufficiently small so that the
function F = (f, g) satisfies property (3.24) in Proposition 3.4, then g ∈ B.
Thus, the near-identity transformation (3.27), with α := Eg, is a candidate for
the desired transformation that partially linearizes system (3.26). The proof is
completed by showing that Eg ∈ C1,L,µ(1−θ).

Because of the special decoupled form of system (3.26) and for the pur-
pose of distinguishing solutions from initial conditions, it is convenient to recast
system (3.26) in the form

U̇ = AU + F(U , ζ),
ζ̇ = Cζ (3.33)

so that we can write t 7→ (U(t), ζ(t)) for the solution with the initial condition
(U(0), ζ(0)) = (U, z). The next proposition states the growth estimates for the
components of the flow ϕt, its partial derivatives, and certain differences of
its components and partial derivatives that will be used to prove that E is a
bounded operator on B and Eg ∈ C1,L,µ(1−θ).

Proposition 3.7. Suppose that for i ∈ {1, 2} the function t 7→ (Ui(t), ζi(t))
is the solution of system (3.33) such that (Ui(0), ζi(0)) = (Ui, zi) and t 7→
(U(t), ζ(t)) is the solution such that (U(0), ζ(0)) = (U, z). If Hypothesis 3.5
holds, then there are constants K > 0 and κ > 0 such that

|ζ(t)| ≤ Ke−λt |z|, (3.34)
|U(t)| ≤ Ke(δ−b)t |U |, (3.35)

|U(t)|+ |ζ(t)| ≤ Ke−λt (|U |+ |z|), (3.36)
|ζ1(t)− ζ2(t)| ≤ Ke−λt |z1 − z2|, (3.37)
|U1(t)− U2(t)| ≤ Ke(δ−λ)t (|U1 − U2|+ |z1 − z2|), (3.38)

|UU (t)| ≤ Ke(δ−b)t, (3.39)
|Uz(t)| ≤ Ke(δ−b)t |U |, (3.40)

|U1U (t)− U2U (t)| ≤ κe(δ−b)t (|U1 − U2|+ |z1 − z2|). (3.41)
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Moreover, if z1 = z2, then

|U1(t)− U2(t)| ≤ Ke(δ−b)t |U1 − U2|, (3.42)
|U1z(t)− U2z(t)| ≤ κe(δ−b)t |U1 − U2|; (3.43)

and, if U1 = U2, then

|U1z(t)− U2z(t)| ≤ κe(δ−b)t |z1 − z2|µ(1−ϑ). (3.44)

Proof. By the definition of δ and the inequality K > 1, we have the inequalities
KMr+ε < δ and 2KMr+ε < δ. (These inequalities are used so that the single
quantity δ − b, rather than three different exponents, appears in the statement
of the proposition.)

The estimate (3.34) follows immediately by solving the differential equation
ζ̇ = Cζ and using the hyperbolic estimate (3.11). To prove the inequality (3.35),
start with the variation of parameters formula

U(t) = etA U +
∫ t

0

e(t−s)A F(U(s), ζ(s)) ds,

use the hyperbolic estimates to obtain the inequality

|U(t)| ≤ Ke−(b−ε)t |U |+
∫ t

0

Ke−(b−ε)(t−s) |F(U(s), ζ(s))| ds,

and then use the estimate (3.24) to obtain the inequality

|U(t)| ≤ Ke−(b−ε)t |U |+
∫ t

0

rMKe−(b−ε)(t−s) |U(s)| ds.

Rearrange this last inequality to the equivalent form

e(b−ε)t |U(t)| ≤ K|U |+
∫ t

0

rMKe(b−ε)s |U(s)| ds

and apply Gronwall’s inequality to show

e(b−ε)t |U(t)| ≤ KerMKt |U |,

an estimate that is equivalent to the desired result.
The inequality (3.37) is easy to prove and inequality (3.36) is a simple corol-

lary of estimates (3.34) and (3.35).
To begin the proof for estimates (3.38) and (3.42), use variation of parame-

ters to obtain the inequality

|U1(t)− U2(t)| ≤ Ke−(b−ε)t |U1 − U2|

+
∫ t

0

KMe−(b−ε)(t−s) |F(U1(t), ζ1(t))−F(U2(t), ζ2(t))| ds.
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For estimate (3.38) use the inequalities (3.24) and δ − b < −λ to obtain the
upper bound

|F(U1(t), ζ1(t))−F(U2(t), ζ2(t))| ≤ 2MKr(|U1(t)− U2(t)|+ |ζ1(t)− ζ2(t)|).

Then, using this inequality, the estimates (3.37), and the inequality −(b− ε) ≤
−(λ− ε), it is easy to see that

e(λ−ε)t |U1(t)− U2(t)| ≤ K|U1 − U2|+
2K3Mr

ε
|z1 − z2|

+
∫ t

0

e(λ−ε)s2K2Mr|U1(s)− U2(s)| ds.

The desired result follows by an application of Gronwall’s inequality. The proof
of estimate (3.42) is similar. The only difference is that the inequality

|F(U1(t), ζ(t))−F(U2(t), ζ(t))| ≤ 2MKr|U1(t)− U2(t)|

is used instead of inequality (3.37).
To obtain the bounds for the partial derivatives of solutions with respect

to the space variables, note that the function t 7→ UU (t) is the solution of the
variational initial value problem

ω̇ = Aω + FU (U(t), ζ(t))ω, ω(0) = I

whereas t 7→ Uz(t) is the solution of the variational initial value problem

ω̇ = Aω + FU (U(t), ζ(t))ω + Fz(U(t), ζ(t))etC , ω(0) = 0.

The proofs of the estimates (3.39) and (3.40) are similar to the proof of es-
timate 3.35. For (3.39), note that FU is Lipschitz and use the growth estimates
for |U(t)| and |ζ(t)| to obtain the inequality |FU (U(t), ζ(t))| ≤ Mr. For esti-
mate (3.40) use variation of parameters, bound the term containing Fz using the
Lipschitz estimate, evaluate the resulting integral, and then apply Gronwall’s
inequality.

To prove estimate (3.41), subtract the two corresponding variational equa-
tions, add and subtract FU (U1, ζ1)U2U , and use variation of parameters to obtain
the inequality

|U1U − U2U | ≤
∫ t

0

Ke−(b−ε)(t−s) |FU (U1, ζ1)−FU (U2, ζ2)||U2U | ds

+
∫ t

0

Ke−(b−ε)(t−s) |FU (U1, ζ1)||U1U − U2U | ds.

The second integral is bounded by using the Lipschitz estimate for FU , inequal-
ity (3.36), and the diameter of Ω. For the first integral, a suitable bound is ob-
tained by again using the Lipschitz estimate for FU followed by estimates (3.37)
and (3.38), and by using estimate (3.39). After the replacement of the factor



Carmen Chicone & Richard Swanson 27

e−λs (obtained from (3.37)) by e(δ−λ)s, multiplication of both sides of the in-
equality by e(b−ε)t, and an integration, it follows that

e(b−ε)t |U1U − U2U | ≤
KK(K +K)M
λ− 2δ − ε

(|U1 − U2|+ |z1 − z2|)

+
∫ t

0

K2Mre(b−ε)s |U1U − U2U | ds.

The desired result is obtained by an application of Gronwall’s inequality.
For the proof of estimate (3.43) subtract the two solutions of the appropriate

variational equation, add and subtract FU (U1, ζ)U2z and use variation of param-
eters. After the Lipschitz estimates are employed, as usual, use inequality (3.36)
to estimate |U1|+ |ζ| and use inequality (3.42) to estimate |U1 − U2|.

The proof of estimate (3.44) again uses the same basic strategy, that is,
variation of parameters and Gronwall’s inequality; but several estimates are re-
quired before Gronwall’s inequality can be applied. First, by the usual method,
it is easy to see that

e(b−ε)t |U1z(t)− U2z(t)| ≤
∫ t

0

Ke(b−ε)s |FU (U1, ζ1)||U1z − U2z| ds

+
∫ t

0

Ke(b−ε)s |FU (U1, ζ1)−FU (U2, ζ2)||U2z| ds

+
∫ t

0

K2e(b−ε−λ)s |Fz(U1, ζ1)−Fz(U2, ζ2)| ds

To complete the proof, use Lipschitz estimates for the terms involving partial
derivatives of F in the first two integrals, and use the estimate (3.25) in the
third integral. Next, use the obvious estimates for the terms involving Ui and
ζi; but, for the application of inequality (3.38) in the second and third integrals,
use the hypothesis that U1 = U2. Because 1−ϑ is such that (1−ϑ)b−λ < 0, the
third integral converges as t→∞. By this observation together with some easy
estimates and manipulations, the second integral is bounded above by a constant
multiple of |z1−z2|µ(1−ϑ). Because the second integral converges as t→∞, it is
easy to show that the second integral is bounded above by a constant multiple
of |z1 − z2|, a quantity that is itself bounded above by r1−µ(1−ϑ) |z1 − z2|µ(1−ϑ)

where r is the radius of Ω. After the indicated estimates are made, the desired
result follows in the usual manner by an application of Gronwall’s inequality.

Let us return to the analysis of the operator E defined in display (3.32).
We will show that if Hypothesis 3.5 is satisfied and α ∈ B, then Eα ∈ B. The
fundamental idea here is to apply the Weierstrass M -test in the form stated in
Lemma 2.2. In particular, we will estimate the growth of the integrand in the
integral representation of E.

Using the notation defined above, note first that ϕt(x, y, z) = (U(t), ζ(t)).
Also, recall that the matrix −B is in real Jordan canonical form; that is,

−B = bI +Brot +Bnil
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where the second summand has some diagonal or super-diagonal blocks of 2× 2
infinitesimal rotation matrices of the form(

0 −β
β 0

)
where β 6= 0, and the third summand is a nilpotent matrix whose `th power
vanishes. The summands in this decomposition pairwise commute; and there-
fore,

e−tB = ebtQ(t)

where the components of the matrix Q(t) are (real) linear combinations of func-
tions given by

q1(t), q2(t) sinβt, q3(t) cosβt

where qi, for i ∈ {1, 2, 3}, is a polynomial of degree at most ` − 1. It follows
that there is a positive universal constant υ such that

|e−tB | ≤ ebt|Q(t)| ≤ υebt(1 + |t|`−1)

for all t ∈ R.
The integrand of E is bounded above as follows:

|e−tB α(U(t), ζ(t))| ≤ ebt |Q(t)|‖α‖B(|U(t)|+ |ζ(t)|)|U(t)|. (3.45)

In view of estimates (3.34) and (3.36), we have the inequality

|e−tB α(U(t), ζ(t))| ≤ K2e(δ−λ)t |Q(t)|‖α‖B(|x|+ |y|+ |z|)(|x|+ |y|).

Because |Q(t)| has polynomial growth and δ − b < 0,

N := sup
t≥0

e(δ−b)t/2|Q(t)| <∞. (3.46)

Hence, we have that

|e−tB α(U(t), ζ(t))| ≤ K2Ne(δ−λ)t/2 ‖α‖B(|x|+ |y|+ |z|)(|x|+ |y|)

and ∫ ∞
0

|e−tB α(ϕt(x, y, z))| dt ≤
2K2N

λ− δ
‖α‖B(|x|+ |y|+ |z|)(|x|+ |y|);

and therefore, Eα is continuous in Ω and

‖E‖B ≤
2K2N

λ− δ
.

As a result, the equation Jα = −g has a unique solution α ∈ B, namely,

α(x, y, z) =
∫ ∞

0

e−tB g(ϕt(x, y, z)) dt.
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We will show that α ∈ C1,L,µ(1−θ).
In view of the form of system (3.33), to prove that α ∈ C1 it suffices to

demonstrate that the partial derivatives of α with respect to U := (x, y) and z
are both C1, a fact that we will show by using Lemma 2.2.

The solution t 7→ (U(t), ζ(t)) with initial condition (U, z) is more precisely
written in the form t 7→ (U(t, U, z), ζ(t, z)) where the dependence on the initial
conditions is explicit. Although this dependence is suppressed in most of the
formulas that follow, let us note here that ζ does not depend on U . At any rate,
the partial derivatives of α are given formally by

αU (U, z) =
∫ ∞

0

e−tB gU (U(t), ζ(t))UU (t) dt, (3.47)

αz(U, z) =
∫ ∞

0

e−tB (gU (U(t), ζ(t))Uz(t) + gz(U(t), ζ(t))etC) dt.(3.48)

To prove that αU is C1, use estimate 3.39, the definition (3.46) of N , and note
that gU is Lipschitz to show that the integrand of equation (3.47) is majorized
by

|e−tB gU (U(t), ζ(t))UU (t)| ≤ Meδt |Q(t)|(|U(t)|+ |ζ(t)|)
≤ KMNe(δ−λ)t/2 (|U |+ |z|).

By an application of Lemma 2.2, αU is C1. Moreover, because |αU (U, z)| is
bounded above by a constant multiple of |U |+|z|, we also have that αU (0, 0) = 0.

The proofs to show that αz is C1 and αz(0, 0) = 0 are similar. For example,
the integrand of equation (3.48) is majorized by

K2MNe(δ−λ)t/2
( KM

λ− δ + ε
(|U |+ |z|)|U |+ |U |

)
.

To prove that αU is Lipschitz, let us note first that by adding and subtracting
gU (U1, ζ1)U2U and an application of the triangle law, we have the inequality

|αU (U1, z1)− αU (U2, z2)| ≤
∫ ∞

0

|e−tB | |gU (U1, ζ1)U1U − gU (U2, ζ2)U2U | dt

≤
∫ ∞

0

ebt |Q(t)|
(
|gU (U1, ζ1)| |U1U − U2U |

+ |gU (U1, ζ1)− gU (U2, ζ2)| |U2U |
)
dt.

By using the Lipschitz estimate for gU inherited from FU , the obvious choices
of the inequalities in Proposition 3.7, and an easy computation, it follows that
the integrand in the above inequality is majorized up to a constant multiple by

e(2δ−λ)t/2 (|U1 − U2|+ |z1 − z2|).

There are two key points in the proof of this fact: the estimates (3.39) and (3.41)
both contain the exponential decay factor e−bt to compensate for the growth
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of ebt; and, after the cancelation of these factors, the majorizing integrand still
contains the exponential factor e(2δ−λ)t, the presence of which ensures that
the majorizing integral converges even though the factor |Q(t)| has polynomial
growth. After the majorization is established, the desired result follows from
Lemma 2.2.

The proof that the function U 7→ αz(U, z) is (uniformly) Lipschitz is sim-
ilar to the proof that αU is Lipschitz. As before, by adding and subtracting
gU (U1, ζ)U2z, it is easy to obtain the basic estimate

|αz(U1, z)− αz(U2, z)| ≤
∫ ∞

0

ebt |Q(t)|
(
|gU (U1, ζ)| |U1z − U2z|

+ |gU (U1, ζ)− gU (U2, ζ)| |U2z|
+ |gz(U1, ζ)− gz(U2, ζ)|Ke−λt

)
dt.

By first applying the Lipschitz estimates and then the inequalities (3.37), (3.42),
and (3.43), the growth factor ebt is again canceled; and, up to a constant mul-
tiple, the integrand is majorized by the integrable function

t 7→ e(δ−λ)t|Q(t)||U1 − U2|.

Finally, we will show that the function z 7→ αz(U, z) is (uniformly) Hölder.
In this case U1 = U2. But this equality does not imply that U1 = U2. Thus, the
basic estimate in this case is given by

|αz(U, z1)− αz(U, z2)| ≤
∫ ∞

0

ebt |Q(t)|
(
|gU (U1, ζ1)| |U1z − U2z|

+ |gU (U1, ζ1)− gU (U2, ζ2)| |U2z|
+ |gz(U1, ζ1)− gz(U2, ζ2)|Ke−λt

)
dt.

Use Lipschitz estimates for the partial derivatives in the first two terms in the
(expanded) integrand and the estimate (3.25) for the third term. Then, use the
estimates (3.36), (3.37), and (3.38) to show that the first term is majorized, up
to a constant multiple, by

e(δ−λ)t|Q(t)||z1 − z2|µ(1−ϑ).

The second term is bounded above by a similar function that has the decay
rate 2δ − λ. After some obvious manipulation, the third term is majorized by
a similar term with the decay rate δϑ − λ + b(1 − ϑ). By Hypothesis 3.5, this
number is negative; and therefore, the integrand is majorized by an integrable
function multiplied by the required factor |z1 − z2|µ(1−ϑ).

The final step of the proof is to show that the function p in system (3.28)
has the properties listed for system (3.9). There is an essential observation: p
is obtained by composing f in system (3.26) with the inverse of the transfor-
mation (3.27). In particular, no derivatives of α are used to define p. More
precisely, the inverse transformation has the form

x = u, y = v + β(u, v, w), w = z (3.49)
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and

p(u, v, w) = f(u, v + β(u, v, w), w).

Hence it is clear that p(0, 0, 0) = 0 and Dp(0, 0, 0) = 0.
Note that β is C1 and therefore Lipschitz in a bounded neighborhood of

the origin. Because β(u, v, w) = −α(x, y, z), it follows that βu = −αx + αyβu.
By using a Neumann series representation, note that I + αy is invertible (with
Lipschitz inverse) if αy is restricted to a sufficiently small neighborhood of the
origin. Hence, we have that βu = −(I + αy)−1αx and

pu = fx + fyβu = fx − fy(I + αy)−1αx

where the right-hand side is to viewed as a function composed with the inverse
transformation (3.49). Moreover, since sums, products, and compositions of
bounded Lipschitz (respectively, Hölder) maps are bounded Lipschitz (respec-
tively, Hölder) maps, pu is Lipschitz. Similarly,

pv = fy(I − (I + αy)−1αy),

and it follows that pv is (uniformly) Lipschitz. Hence, pv is (uniformly) Lipschitz
with respect to its first argument and (uniformly) Hölder with respect to its
second and third arguments. Finally, we have that

pw = −fy(I + αy)−1αw + fz.

It follows that pw is (uniformly) Lipschitz with respect to its first and second
arguments and (uniformly) Hölder with respect to its third argument. Hence,
pw is (uniformly) Lipschitz with respect to its first argument and (uniformly)
Hölder with respect to its second and third arguments.

To complete the proof of Theorem 3.2, we will show that it suffices to choose
the Hölder exponent in the statement of the theorem less than the Hölder spec-
tral exponent of DX(0). Note that two conditions have been imposed on the
Hölder exponent µ(1 − ϑ) in Theorem 3.6: the (1, µ) spectral gap condition
(1+µ)c < b (or µ < (b−c)/c) and the inequality b(1−ϑ)−λ < 0 (or 1−θ < λ/b)
in Hypothesis 3.5. Because the real parts of the eigenvalues of C lie in the in-
terval [−c,−d] and λ can be chosen anywhere in the interval (0, d), the numbers
µ and ϑ can be chosen so that the positive quantity

(b− c)d
bc

− µ(1− ϑ)

is as small as we wish. We will choose µ(1 − ϑ), the Hölder exponent, as large
as possible under the constraints imposed by the spectral gap condition and the
inequality

µ(1− ϑ) <
(b− c)d
bc

.
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Suppose that the real parts of the eigenvalues of A := DX(0) are as in
display (1.1). At the first step of the finite induction on the dimension of the
“unlinearized” part of the system, we artificially introduce a scalar equation
ż = −cz where 0 < c < b1. In this case c = d, and the exponent µ(1 − ϑ) can
be chosen to be as close as we like to the number (b1 − c)/b1. At the second
step, the real parts of the eigenvalues of the new matrix C are in the interval
[−b1,−c], the new exponent can be chosen as close as we like to the minimum
of the numbers (b1 − c)/b1 and (b2 − b1)c/(b1b2), and so on. Hence, the Hölder
exponent in Theorem 3.2 can be chosen as close as we like to

HSE := max
0<c<b1

min
{b1 − c

b1
,

(b2 − b1)c
b2b1

,
(b3 − b2)c
b3b2

, . . . ,
(bN − bN−1)c
bNbN−1

}
.

By treating the rational expressions as linear functions of c defined on the in-
terval [0, b1], it is easy to show that HSE is the Hölder spectral exponent for
DX(0). This completes the proof of Theorem 3.2.

3.1.1 Smooth Linearization on the Line

By Theorem 3.2, a C1,1 vector field on the line is C1,µ linearizable at a hyperbolic
rest point. But in this case a stronger result is true (see [St57]).

Theorem 3.8. If X is a C1,1 vector field on R1 with a hyperbolic rest point
at the origin, then X is locally C1,1 linearizable at the origin by a near-identity
transformation. If, in addition, X is Ck with k > 1, then there is a Ck near-
identity linearizing transformation.

Proof. Near the origin, the vector field has the form X(x) = −ax+ f(x) where
a 6= 0 and f is a C1,1-function with f(0) = f ′(0) = 0. Let us assume that a > 0.
The proof for the case a < 0 is similar.

We seek a linearizing transformation given by

u = x+ α(x)

where α(0) = α′(0) = 0. Clearly, it suffices to prove that

α′(x)(−ax+ f(x)) + aα(x) = −f(x) (3.50)

for all x in some open neighborhood of the origin.
Let φt denote the flow of X and (in the usual manner) note that if α ∈ C1

is such that

d

dt
α(φt(x)) + aα(φt(x)) = −f(φt(x)),

then α satisfies the identity (3.50). Using variation of constants, it follows that
α is given formally by

α(x) =
∫ ∞

0

eatf(φt(x)) dt. (3.51)
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We will show that this formal expression defines a sufficiently smooth choice for
α.

Using the assumption that f ′ is Lipschitz and Taylor’s theorem, there is a
constant M > 0 such that

|f(x)| ≤M |x|2. (3.52)

Also, the solution t 7→ X (t) := φt(x) is bounded if x is sufficiently small; in fact,
for 0 < r < a/(2M), we have that

|X (t)| ≤ r whenever |x| < r.

To see this, write X(x) = x(−a + (f(x)/x2)x), use the inequality (3.52), and
note the direction of X(x) for x in the given interval.

By variation of constants and the inequality (3.52), we have that

eat|X (t)| ≤ |x|+
∫ t

0

easMr|X (s)| ds.

Hence, by Gronwall’s inequality, we have the estimate

|X (t)| ≤ |x|e(Mr−a)t. (3.53)

Note that the function given by t 7→ Xx(t) is the solution of the variational
initial value problem

ẇ = −aw + f ′(X (t))w, w(0) = 1,

and in case f ∈ C2, the function given by t 7→ Xxx(t) is the solution of

ż = −az + f ′(X (t))z + f ′′(X (t))w2(t), z(0) = 0.

Their are similar variational equations for the higher order derivatives of X with
respect to x.

If ρ > 0 is given, there is a bounded open interval Ω containing the origin such
that |f ′(x)| ≤ ρ whenever x ∈ Ω. Using this estimate, variation of constants,
and Gronwall’s inequality, it is easy to show that the solution W of the first
variational equation is bounded above as follows:

|W(t)| ≤ e(ρ−a)t. (3.54)

Likewise, if |f ′′(x)| ≤ σ whenever x ∈ Ω, then, by a similar argument, we have
that

|Z(t)| ≤ σ

a− 2ρ
e(ρ−a)t, (3.55)

and so on for higher order derivatives.
We will show the smoothness of α up to order two, the proof in the general

case is similar.
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Choose Ω with a sufficiently small radius so that 2ρ−a < 0. (For the Ck case,
the inequality kρ−a < 0 is required.) To prove that α ∈ C0, bound the absolute
value of the integrand in display (3.51) using the growth estimate (3.53) and
the inequality (3.52), and then apply Lemma (2.2).

To show that α ∈ C1, formally differentiate the integral representation and
then bound the absolute value of the resulting integrand using the Lipschitz
estimate for f ′ and the growth bound (3.54). This results in the upper bound

M |x|e(Mr+ρ−a)t.

For r > 0 sufficiently small, the exponential growth rate Mr+ ρ− a is negative
and the continuity of αx follows from Lemma 2.2. Also, by using the same
estimate, it is clear that α ∈ C1,1.

In case f ∈ C2, the second derivative of the integrand in the integral repre-
sentation of α is bounded above by

|eat|(|f ′′(X (t))||Xx(t)|2 + |f ′(X (t))||Xxx(t)|).

This term is majorized using the inequality |f ′′(x)| ≤ σ, the Lipschitz estimate
for f ′, and the growth bounds (3.54) and (3.55). The exponential growth rates
of the resulting upper bound are 2ρ− a and Mr + ρ− a. If Ω is chosen with a
sufficiently small radius, then both rates are negative.

3.2 Hyperbolic Saddles

The main result of this section is the following theorem.

Theorem 3.9. If X is a C2 vector field on R2 such that X(0) = 0 and DX(0)
is infinitesimally hyperbolic, then X is locally C1 conjugate to its linearization
at the origin.

We will formulate and prove a slightly more general result about the linearization
of systems on Rn with hyperbolic saddle points.

Consider a linear map A : Rn → Rn and suppose that there are positive
numbers aL, aR, bL, and bR such that the real parts of the eigenvalues of A
are contained in the union of the intervals [−aL,−aR] and [bL, bR]. By a linear
change of coordinates, A is transformed to a block diagonal matrix with two
diagonal blocks: As, a matrix whose eigenvalues have their real parts in the
interval [−aL,−aR], and Au, a matrix whose eigenvalues have their real parts
in the interval [bL, bR]. Suppose that 0 < µ < 1 and every quasi-linear C1,1

vector field of the form As + F (that is, F (0) = DF (0) = 0) is C1,µ linearizable
at the origin. Likewise, suppose that 0 < ν < 1 and every quasi-linear C1,1

vector field of the form Au +G is C1,ν linearizable at the origin. In particular,
this is true if µ is the Hölder spectral exponent (1.1) associated with the real
parts of eigenvalues in the interval [−aL,−aR] and ν is the Hölder spectral
exponent associated with the real parts of eigenvalues in the interval [bL, bR].
We say that A satisfies Hartman’s (µ, ν)-spectral condition if

aL − aR < µbL, bR − bL < νaR.
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A linear transformation of R2 with one negative and one positive eigenvalue
satisfies Hartman’s (µ, ν)-spectral condition for every pair of Hölder exponents
(µ, ν). Hence, Theorem 3.9 is a corollary of the following more general result.

Theorem 3.10. If X is a C1,1 vector field on Rn such that X(0) = 0 and
DX(0) satisfies Hartman’s (µ, ν)-spectral condition, then X is locally C1 conju-
gate to its linearization at the origin.

The proof of Theorem 3.10 has two main ingredients: a change of coordinates
into a normal form where the stable and unstable manifolds of the saddle point
at the origin are flattened onto the corresponding linear subspaces of Rn in such
a way that the system is linear on each of these invariant subspaces, and the
application of a linearization procedure for systems in this normal form.

A vector field on Rn with a hyperbolic saddle point at the origin is in (µ, ν)-
flattened normal form if it is given by

(x, y) 7→ (Ax+ f(x, y), y = By + g(x, y)) (3.56)

where (x, y) ∈ Rk×R` for k+` = n, all eigenvalues of A have negative real parts,
all eigenvalues of B have positive real parts, F := (f, g) is a C1 function defined
on an open subset Ω of the origin in Rk ×R` with F (0, 0) = DF (0, 0) = 0, and
there are real numbers M , µ, and ν with M > 0, 0 < µ ≤ 1, and 0 < ν ≤ 1
such that for (x, y) ∈ Ω,

|fy(x, y)| ≤ M |x|, |gx(x, y)| ≤M |y|, (3.57)
|fx(x, y)| ≤ M |y|µ, |gy(x, y)| ≤M |x|ν , (3.58)
|f(x, y)| ≤ M |x||y|, |g(x, y)| ≤M |x||y|. (3.59)

Theorem 3.10 is a corollary of the following two results.

Theorem 3.11. If X is a C1,1 vector field on Rn such that X(0) = 0, the
linear transformation DX(0) satisfies Hartman’s (µ, ν)-spectral condition, and
0 < υ < min{µ, ν}, then there is an open neighborhood of the origin on which
X is C1,υ conjugate to a vector field in (µ, ν)-flattened normal form.

Theorem 3.12. If X is a vector field on Rn such that X(0) = 0, the linear
transformation DX(0) satisfies Hartman’s (µ, ν)-spectral condition, and X is in
(µ, ν)-flattened normal form, then there is an open neighborhood of the origin
on which X is C1 conjugate to its linearization at the origin.

The proof of Theorem 3.11 uses three results: the stable manifold theorem,
Dorroh smoothing, and Theorem 3.2. The required version of the stable man-
ifold theorem is a standard result, which is a straightforward generalization of
the statement and the proof of Theorem 3.3. On the other hand, since Dorroh
smoothing is perhaps less familiar, we will formulate and prove the required
result.

Suppose that X is a Ck vector field on Rn and h : Rn → Rn is a Ck dif-
feomorphism. The flow of X is automatically Ck. If we view h as a change of
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whenever |t| ≤ 1. Hence, we have

Dh(0) =
1
T

∫ T

0

etC dt

=
1
T

( ∫ T

0

I dt+
∫ T

0

(etC − I) dt
)

= I +
1
T

∫ T

0

(etC − I) dt.

For 0 < T < 1, the norm of the operator

B :=
1
T

∫ T

0

(etC − I) dt

is bounded by MT . If T < 1/M , then Dh(0) = I + B with ‖B‖ < 1. It
follows that Dh(0) is invertible, and by the inverse function theorem, h is a
Ck,µ-diffeomorphism defined on some neighborhood of the origin. (The “usual”
inverse function theorem does not mention Hölder derivatives. But the stated re-
sult can be proved with an easy modification of the standard proof that uses the
contraction principle. For example, use the fiber contraction method to prove
smoothness and note that the fiber contraction preserves a space of candidate
derivatives that also satisfy the Hölder condition.)

Let us note that

d

ds
φt(φs(x)) = Dφt(φs(x))F (φs(x))

and

d

ds
φt(φs(x)) =

d

ds
φt+s(x) = F (φs+t(x)).

Hence, we have the identity

Dφt(φs(x))F (φs(x)) = F (φs+t(x))

and, at s = 0,

Dφt(x)F (x) = F (φt(x)).

It follows that

Dh(x)F (x) =
1
T

∫ T

0

Dφt(x)F (x) dt

=
1
T

∫ T

0

F (φt(x)) dt

=
1
T

∫ T

0

d

dt
φt(x) dt

=
1
T

(φT (x)− x);
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and therefore, x 7→ Dh(x)F (x) is a Ck,µ-function. The push forward of X by h,
namely,

y 7→ Dh(h−1(y))F (h−1(y))

is the composition of two Ck,µ functions, hence it is Ck,µ.

As a remark, we mention another variant of Dorroh’s theorem: A C1 vector
field with a Ck flow is locally conjugate to a Ck vector field. In particular, this
result is valid at an arbitrary point p in the phase space, which we may as
well assume is p = 0. The essential part of the proof is to show that Dh(0)
is invertible where h is the function defined in the statement of Theorem 3.13.
In fact, by choosing a bounded neighborhood Ω of the origin so that M :=
sup{‖DF (x)‖ : x ∈ Ω} is sufficiently small, by using Gronwall’s lemma to obtain
the estimate |Dφt(0)| ≤ eMt, and by also choosing T > 0 sufficiently small, it is
easy to show that ‖I −Dh(0)‖ < 1. Hence, because Dh(0) = I − (I −Dh(0)),
the inverse of Dh(0) is given by the Neumann series

∑∞
i=0(I −Dh(0))i.

One nice feature of Dorroh’s theorem is the explicit formula for the smooth-
ing diffeomorphism h. In particular, since h is an average over the original
flow, most dynamical properties of this flow are automatically inherited by
the smoothed vector field. For example, invariant sets of the flow are also
h-invariant. This fact will be used in the following proof of Theorem 3.11.

Proof. Suppose that the vector field (3.56) is such that F := (f, g) is a C1

function. If the inequalities (3.57)-(3.58) are satisfied, then so are the inequal-
ities (3.59). In fact, by using (3.58) we have the identity f(x, 0) ≡ 0 and by
Taylor’s theorem the estimate

|f(x, y)| ≤ |fy(x, 0)||y|+
∫ 1

0

(|fy(x, ty)||y| − |fy(x, 0)||y|) dt.

The first inequality in display (3.59) is an immediate consequence of this esti-
mate and the first inequality in display (3.57). The second inequality in dis-
play (3.59) is proved similarly.

By an affine change of coordinates, the differential equation associated with
X has the representation

ṗ = Ãp+ f4(p, q), q̇ = B̃q + g4(p, q) (3.60)

where (p, q) ∈ Rk × R` with k + ` = n, all eigenvalues of Ã have negative real
parts, all eigenvalues of B̃ have positive real parts, and F4 := (f4, g4) is C1,1

with F4(0, 0) = DF4(0, 0) = 0.
By the (local) stable manifold theorem, there are open sets U4 ⊂ Rk and

V4 ⊂ R` such that (0, 0) ∈ U4×V4 and C1,1 functions η : V4 → Rk and γ : U4 →
R` such that η(0) = Dη(0) = 0, γ(0) = Dγ(0) = 0, the set {(p, q) : p = η(q)} is
overflowing invariant, and {(p, q) : q = γ(p)} is inflowing invariant.
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By the inverse function theorem, the restriction of the near-identity trans-
formation given by

u = p− η(q), v = q − γ(p)

to a sufficiently small open set containing the origin in Rk ×R` is a C1,1 diffeo-
morphism. Moreover, the differential equation (3.60) is transformed to

u̇ = Ãu+ f3(u, v), v̇ = B̃v + g3(u, v) (3.61)

where F3 := (f3, g3) is C0,1 with F3(0, 0) = DF3(0, 0) = 0. In view of the fact
that the stable and unstable manifolds are invariant, we also have the identities

f3(0, v) ≡ 0, g3(u, 0) ≡ 0. (3.62)

Hence, the transformed invariant manifolds lie on the respective coordinate
planes.

Because system (3.61) has a C1,1 flow, Dorroh’s smoothing transformation h
(defined in Theorem 3.13) conjugates system (3.61) to a C1,1 system. Moreover,
by the definition of h, it is clear that it preserves the coordinate planes in the
open neighborhood of the origin where it is defined. In fact, h is given by
h(u, v) = (h̄1(u, v), h̄2(u, v)) where

h̄1(0, v) ≡ 0, h̄2(u, 0) ≡ 0.

The invertible derivative of h at the origin has the block diagonal form

Dh(0, 0) =
(
C1 0
0 C2

)
.

Hence, the diffeomorphism h is given by

(ξ, ζ) = h(u, v) = (C1u+ h1(u, v), C2v + h2(u, v))

where C1 and C2 are invertible, H̃ := (h1, h2) is C1,1 with H̃(0, 0) = 0, DH̃(0, 0) =
0, and

h1(0, v) ≡ 0, h2(u, 0) ≡ 0. (3.63)

The system (3.61) is transformed by h to

ξ̇ = Āξ + f2(ξ, ζ), ζ̇ = B̄ζ + g2(ξ, ζ) (3.64)

where Ā = C1ÃC
−1
1 , B̄ = C2B̃C

−1
2 , F2 := (f2, g2) is C1,1 with F2(0, 0) =

DF2(0, 0) = 0, and

f2(0, ζ) ≡ 0, g2(ξ, 0) ≡ 0. (3.65)

In view of the identities (3.65), the dynamical system (3.64) restricted to a
neighborhood of the origin in Rk × {0} is given by the C1,1 system

ξ̇ = Āξ + f2(ξ, 0).
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Moreover, since this system satisfies the hypotheses of Theorem 3.2, it is lin-
earized by a near-identity C1,µ diffeomorphism H1 : ξ 7→ ξ + h3(ξ). Likewise,
there is a near-identity C1,ν diffeomorphism H2, given by ζ 7→ ζ + h4(ζ), that
linearizes

ζ̇ = B̄ζ + g2(0, ζ).

These maps define a diffeomorphismH := (H1, H2) that transforms system (3.64)
to a system of the form

ψ̇ = Āψ + f1(ψ, ω), ω̇ = B̄ω + g1(ψ, ω) (3.66)

where F1 := (f1, g1) is C0 with F1(0, 0) = DF1(0, 0) = 0,

f1(0, ω) ≡ 0, g1(ψ, 0) ≡ 0, (3.67)

and

f1(ψ, 0) ≡ 0, g1(0, ω) ≡ 0. (3.68)

Let φt = (φ1
t , φ

2
t ) denote the flow of system (3.64) (even though the same nota-

tion has been used to denote other flows). The first component of the flow of
system (3.66) is given by

H1(φ1
t (H

−1
1 (ψ), H−1

2 (ω))).

Its partial derivative with respect to ψ is clearly in Cµ, where for notational
convenience we use µ and ν to denote Hölder exponents that are strictly smaller
than the corresponding Hölder spectral exponents. On the other hand, its par-
tial derivative with respect to ω is bounded by a constant times

|
( ∂
∂ω

φ1
t

)
(H−1

1 (ψ), H−1
2 (ω))|.

Because f2(0, ζ) ≡ 0, it follows that φ1
t (0, ζ) ≡ 0, and therefore,( ∂

∂ζ
φ1
t

)
(0, ζ) ≡ 0.

Because system (3.64) is in C1,1, there is a constant M > 0 such that

|
( ∂
∂ζ
φ1
t

)
(ξ, ζ)| ≤M |ξ|,

and consequently,

|
( ∂
∂ω

φ1
t

)
(H−1

1 (ψ), H−1
2 (ω))| ≤M |H−1

1 (ψ)| ≤M‖DH−1
1 ‖|ψ|.

Similarly, the partial derivative with respect to ψ of the second component of
the flow is bounded above by a constant times |ω|.
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By a second application of Dorroh’s theorem (3.13), there is a C1 diffeo-
morphism, whose partial derivatives satisfy Hölder and Lipschitz conditions
corresponding to those specified for the flow of system (3.66), that transforms
system (3.66) to a system of the form

ẋ = Ax+ f(x, y), ẏ = By + g(x, y) (3.69)

where A is similar to Ā and B is similar to B̄, where F := (f, g) is C1 with
F1(0, 0) = DF1(0, 0) = 0 and with corresponding Hölder partial derivatives,
and where

f(0, y) ≡ 0, g(x, 0) ≡ 0, (3.70)

and

f(x, 0) ≡ 0, g(0, y) ≡ 0. (3.71)

The identities (3.70) are equivalent to the invariance of the coordinate planes,
whereas the identities (3.71) are equivalent to the linearity of the system on
each coordinate plane. The preservation of linearity on the coordinate planes
by the Dorroh transformation is clear from its definition; to wit, a linear flow
produces a linear Dorroh transformation.

Because f(x, 0) ≡ 0, it follows that fx(x, 0) ≡ 0. Also, fx ∈ Cµ. Hence,
there is some M > 0 such that

|fx(x, y)| = |fx(x, y)− fx(x, 0)| ≤M |y|µ.

Likewise, we have the estimate

|gy(x, y)| ≤M |x|ν .

Because f(0, y) ≡ 0, it follows that fy(0, y) ≡ 0, and because fy is Lipschitz,
there is a constant M > 0 such that

|fy(x, y)| = |fy(x, y)− fy(0, y)| ≤M |x|.

Similarly, we have that |gx(x, y)| ≤M |y|.

For a C2 vector field on the plane with a hyperbolic saddle point at the ori-
gin, there is a stronger version of Theorem 3.11. In fact, in this case, the vector
field is conjugate to a C2 vector field in flattened normal form. To prove this,
use the C2 stable manifold theorem to flatten the stable and the unstable mani-
folds onto the corresponding coordinate axes. Dorroh smoothing conjugates the
resulting vector field to a C2 vector field that still has invariant coordinate axes.
Apply Theorem 3.8 to C2 linearize on each coordinate axis, and then use Dorroh
smoothing to obtain a C2 vector field that is also linearized on each coordinate
axis.

The following proof of Theorem 3.12 is similar to a portion of the proof of
Theorem 3.2. In particular, an explicit integral formula for the nonlinear part
of the linearizing transformation is obtained and its smoothness is proved using
Lemma 2.2.
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Proof. Let X denote the vector field (3.56) in flattened normal form. We will
construct a smooth near-identity linearizing transformation given by

u = x+ α(x, y), v = y + β(x, y). (3.72)

The smooth transformation (3.72) linearizes the vector field X if and only
if the pair of functions α, β satisfies the system of partial differential equations

DαX −Aα = −f, DβX −Bβ = −g.

The first equation is equivalent to the differential equation

d

dt
etAα(φ−t(x, y)) = etAf(φ−t(x, y));

and therefore, it has the solution

α(x, y) = −
∫ ∞

0

etAf(φ−t(x, y)) dt (3.73)

provided that the improper integral converges. Similarly, the second equation
is equivalent to the differential equation

d

dt
e−tBβ(φt(x, y)) = −e−tBg(φt(x, y))

and has the solution

β(x, y) =
∫ ∞

0

e−tBg(φt(x, y)) dt.

We will prove that α, as defined in display (3.73), is a C1 function. The
proof for β is similar.

By using a smooth bump function as in Section 2, there is no loss of generality
if we assume that X is bounded on Rn. Under this assumption, f is bounded;
and because A is a stable matrix, it follows immediately that α is a continuous
function defined on an open ball Ω at the origin with radius r.

Let t 7→ (X (t),Y(t)) denote the solution of the system

ẋ = −Ax− f(x, y), (3.74)
ẏ = −By − g(x, y) (3.75)

with initial condition (X (0),Y(0)) = (x, y) and note that (formally)

αx(x, y) = −
∫ ∞

0

etA(fx(X (t),Y(t))Xx(t) + fy(X (t),Y(t))Yx(t)) dt (3.76)

where t 7→ (Xx(t),Yx(t)) is the solution of the variational initial value problem

ẇ = −Aw − fx(X (t),Y(t))w − fy(X (t),Y(t))z,
ż = −Bz − gx(X (t),Y(t))w − gy(X (t),Y(t))z, (3.77)

w(0) = I,

z(0) = 0.
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We will show that αx is a continuous function defined on an open neighborhood
of the origin. The proof for αy is similar.

Several (Gronwall) estimates are required. To set notation, let F := (f, g)
and ρ := sup{‖DF (x, y)‖ : (x, y) ∈ Ω}; and assume that every eigenvalue of
A has its real part in the interval [−aL,−aR] where 0 < aR < aL and every
eigenvalue of B has its real part in the interval [bL, bR] where 0 < bL < bR.
As before, if a, b, λ, and σ are numbers with 0 < λ < aR < aL < a and
0 < σ < bL < bR < b, then there is a number K > 0 such that the following
hyperbolic estimates hold whenever t ≥ 0:

|etAx| ≤ Ke−λt|x|, |e−tAx| ≤ Keat|x|,
|etBy| ≤ Kebt|y|, |e−tBy| ≤ Ke−σt|y|.

We will show that there is a constant K > 0 such that the following Gronwall
estimates hold:

|X (t)| ≤ Ke(Kρ+a)t, (3.78)
|Y(t)| ≤ K|y|e(KMr−σ)t, (3.79)
|Xx(t)| ≤ Ke(Kρ+a)t, (3.80)
|Yx(t)| ≤ K|y|e(KMr+2Kρ+a−σ)t (3.81)

where M is the constant that appears in the definition of the flattened normal
form.

The inequality (3.78) is proved in the usual manner: apply the variation of
constants formula to equation (3.74) to derive the estimate

|X (t)| ≤ |e−tAx|+
∫ t

0

|e(s−t)A||f(X (s),Y(s))| ds

≤ Keat|x|+
∫ t

0

Kea(t−s)ρ(|X (s)|+ r) ds,

rearrange and integrate to obtain the estimate

e−at|X (t)| ≤ Kr +
Kρr

a
+
∫ t

0

Kρe−as|X (t)| dt, (3.82)

and then apply Gronwall’s inequality.
The proof of inequality (3.79) is similar to the proof of inequality (3.78)

except that the estimate in display (3.59) is used for |g(X (t),Y(t))| instead of
the mean value estimate used for |f(X (t),Y(t))|.

The estimates (3.80) and (3.81) are proved in two main steps. First, define
A to be the block diagonal matrix with blocks A and B, U := (x, y), and
F := (f, g) so that the system (3.74)–(3.75) is expressed in the compact form

U̇ = −AU − F (U), (3.83)
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and the corresponding variational equation (also corresponding to equation (3.77))
is

V̇ = −AV −DF (U(t))V

where t 7→ U(t) is the solution of system (3.83) with initial condition U(0) = U .
An easy Gronwall estimate shows that

|V(t)| ≤ Ke(Kρ+a)t

where t 7→ V(t) is the corresponding solution of the variational equation. Be-
cause |V | can be defined to be |w|+ |z|, it follows that

|W(t)| ≤ Ke(Kρ+a)t, |Z(t)| ≤ Ke(Kρ+a)t. (3.84)

Next, the estimate for Z is improved. In fact, using equation (3.77), the corre-
sponding initial condition for Z(t), and variation of constants, we have that

|Z(t)| ≤
∫ t

0

|e(s−t)B ||gx(X (s),Y(s))||W(s)| ds

+
∫ t

0

|e(s−t)B ||gy(X (s),Y(s))||Z(s)| ds

≤
∫ t

0

Ke−σ(t−s)M |Y(s)|Ke(Kρ+a)s ds

+
∫ t

0

Ke−σ(t−s)ρ|Z(s)| ds. (3.85)

The inequality

eσt|Z(t)| ≤
∫ t

0

KK2Mreσse(KMr−σ)se(Kρ+a)s ds

+
∫ t

0

Kρeσs|Z(s)| ds

is obtained by rearrangement of inequality (3.85) and by using the hyperbolic
estimate (3.79). After the first integral is bounded above by its value on the
interval [0,∞), the desired result is obtained by an application of Gronwall’s
inequality.

To show that αx is continuous, it suffices to show that the absolute value of
the integrand J of its formal representation (3.76) is majorized by an integrable
function. In fact,

J ≤ Ke−λt(|fx(X (t),Y(t))||W(t)|+ |fy(X (t),Y(t))||Z(t)|)
≤ Ke−λt(M |Y(t)|µ|W(t)|+ ρ|Z(t)|)
≤ Ke−λt(MKµrµe(KMrµ−σµ)tKe(Kρ+a)t +Kρe(KMr+2Kρ+a−σ)t).
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Thus, we have proved that J is bounded by a function with two exponential
growth rates:

KMrµ+Kρ+ a− λ− σµ, KMrµ+ 2Kρ+ a− λ− σ.

Note that a − λ − σ < a − λ − σµ, and recall Hartman’s spectral condition
aL − aR − µbL < 0. By choosing admissible values of a, λ, and σ such that the
three quantities |a− aL|, |λ− aR|, and |σ − bL| are sufficiently small, it follows
that a − λ − σµ < 0. Moreover, once this inequality is satisfied, if r > 0 and
ρ > 0 are sufficiently small, then the two rate factors are both negative. This
proves that α ∈ C1.

4 Linearization of Special Vector Fields

As we have seen, a C1,1 vector field is C1,µ linearizable at a hyperbolic sink if
the Hölder exponent µ is less than the Hölder spectral exponent of its lineariza-
tion. Also, a C1,1 vector field is C1 linearizable at a hyperbolic saddle point if
Hartman’s (µ, ν)-spectral condition is satisfied. Can these results be improved?

In view of Sternberg’s example (3.2), there is no hope of improving the
smoothness of the linearization at a hyperbolic sink from class C1 to class C2

even for polynomial vector fields.
For hyperbolic saddle points, on the other hand, the existence of a C1 lin-

earization is in doubt unless Hartman’s (µ, ν)-spectral condition is satisfied. In
view of Hartman’s example (3.1), it is not possible to remove this condition.
Note, however, that this spectral condition is imposed, in the course of the
proof of the linearization theorem, under the assumption that the nonlinear
part of the vector field at the rest point is arbitrary. Clearly, this result can
be improved by restricting the type of nonlinearities that appear. As a trivial
example, note that no restriction is necessary if the vector field is linear. It can
also be improved by placing further restrictions on the spectrum of the linear
part of the vector field.

We will define a class of nonlinear vector fields with hyperbolic sinks at
the origin where there is a linearizing transformation of class C1,µ for every
µ ∈ (0, 1). In particular, the size of the Hölder exponent µ of the derivative of
the linearizing transformation is not restricted by the Hölder spectral exponent
of the linear part of the vector field at the origin. This result will be used to
enlarge the class of nonlinear vector fields with hyperbolic saddles at the origin
that can be proved to be C1 linearizable.

Vector fields corresponding to systems of differential equations of the form

u̇1 = −a1u1 + f11(u1, . . . , un)u1,

u̇2 = −a2u2 + f21(u1, . . . , un)u1 + f22(u1, . . . , un)u2,

...
u̇n = −anun + fn1(u1, . . . , un)u1 + fn2(u1, . . . , un)u2

+ · · ·+ fnn(u1, . . . , un)un
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where a1 > a2 > · · · an > 0 and the functions fij are all of class C2 with
fij(0) = 0 are in the special class. They are C1,µ linearizable at the origin for
every µ ∈ (0, 1).

4.1 Special Vector Fields

The next definition lists the properties of the special vector fields that will be
used in the proofs of the results in this section. The following propositions give
simple and explicit criteria that can be easily checked to determine if a C3 vector
field and some vector field in this special class are equal when restricted to some
open neighborhood of the origin.

We will use the notation DjH to denote the partial derivative of the function
H with respect to its jth variable. Also, for r > 0, let

Ωr := {x ∈ Rn : |x| < r}.

Sometimes we will view Ωr as a subset of Rn1×· · ·×Rnp where n1+· · ·+np = n.
In this case, a point x ∈ Ωr is expressed in components as x = (x1, . . . , xp).

Let Pr denote the set of all vector fields on Ωr of the form

(x1, . . . , xp) 7→ (A1x1 + F1(x1, . . . , xp), . . . , Apxp + Fp(x1, . . . , xp)), (4.1)

with the following additional properties:

(1) There are real numbers λ1 > λ2 > · · · > λp > 0 such that, for each
i ∈ {1, 2, . . . , p}, every eigenvalue of the matrix Ai has real part −λi.

(2) For each i ∈ {1, 2, . . . , p}, the function Fi : Ωr → Rni is in class C1(Ωr).
(In particular, Fi and DFi are bounded functions).

(3) There is a constant M > 0 such that

|Fi(x)− Fi(y)| ≤M
(
(|x|+ |y|)

i∑
k=1

|xk − yk|+ |x− y|
i∑

k=1

(|yk|+ |xk|)
)

whenever x, y ∈ Ωr.

(4) There is a constant M > 0 such that

|DjFi(x)−DjFi(y)| ≤M |x− y|

whenever i, j ∈ {1, 2, . . . , p} and x, y ∈ Ωr. (In particular,

|DjFi(x1, . . . , xp)| ≤M |x|

whenever i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , i}, and x ∈ Ωr.)
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(5) There is a constant M > 0 such that

|DjFi(x)−DjFi(y)| ≤M
( i∑
k=1

|xk − yk|+ |x− y|
i∑

k=1

(|xk|+ |yk|)
)

whenever i ∈ {1, 2, . . . , p}, j ∈ {i+1, i+2, . . . , p}, and x ∈ Ωr. (In partic-
ular, |DjFi(x1, . . . , xp)| ≤M(|x1|+ · · ·+ |xi|) whenever i ∈ {1, 2, . . . , p},
j ∈ {i+ 1, i+ 2, . . . , p}, and x ∈ Ωr.)

Definition 4.1. A vector field Y , given by

(x1, . . . , xp) 7→ (A1x1 +G1(x1, . . . , xp), . . . , Apxp +Gp(x1, . . . , xp)) (4.2)

where the matrices A1, . . . , Ap satisfy the property (1) listed in the definition of
Pr, the function G := (G1, . . . , Gp) is defined on an open neighborhood U of
the origin in Rn, and G(0) = DG(0) = 0, is called lower triangular if for each
i ∈ {1, 2, . . . , p− 1}

Gi(0, 0, . . . , 0, xi+1, xi+2, . . . , xp) ≡ 0.

For a quasi-linear vector field in the form of Y , as given in display (4.2), let
A denote the block diagonal matrix with diagonal blocks A1, A2, . . . , Ap so that
Y is expressed in the compact form Y = A+G.

Proposition 4.2. If the C3 vector field Y = A + G is lower triangular on the
open set U containing the origin and the closure of Ωr is in U , then there is a
vector field of the form X = A+F in Pr such that the restrictions of the vector
fields X and Y to Ωr are equal.

Proof. Fix r > 0 such that the closure of Ωr is contained in U . Because Y is
C3, there is a constant K > 0 such that G aand its first three derivatives are
bounded by K on Ωr.

Because DG is C1, the mean value theorem implies that

|DjGi(x)−DjGi(y)| ≤ K|x− y|

whenever x, y ∈ Ωr. This proves property (4).
Note that (as in the proof of Taylor’s theorem)

Gi(x1, x2, . . . , xp) =
∫ 1

0

i∑
k=1

DkGi(tx1, tx2, . . . , txi, xi+1, xi+2, . . . , xp)xk dt.

Hence, with

u := (x1, x2, . . . , xi), v := (xi+1, xi+2, . . . , xp),
w := (y1, y2, . . . , yi), z := (yi+1, yi+2, . . . , yp),

we have

|Gi(x)−Gi(y)| ≤
∫ 1

0

i∑
k=1

|DkGi(tu, v)xk −DkGi(tw, z)yk| dt.
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Using the mean value theorem applied to the C1 function f := DkGi, we have
the inequalities

|f(tu, v)xk − f(tw, z)yk| ≤ |f(tu, v)xk − f(tu, v)yk|
+ |f(tu, v)yk − f(tw, z)yk|

≤ |f(tu, v)||xk − yk|+ |f(tu, v)− f(tw, z)||yk|
≤ K((|t||u|+ |v|)|xk − yk|

+ (|t||u− w|+ |v − z|)|yk|)
≤ K(|x||xk − yk|+ |x− y||yk|); (4.3)

and as a consequence,

|Gi(x)−Gi(y)| ≤ K
(
|x|

i∑
k=1

|xk − yk|+ |x− y|
i∑

k=1

|yk|
)

|Gi(x)−Gi(y)| ≤ K
(
(|x|+ |y|)

i∑
k=1

|xk − yk| (4.4)

+ |x− y|
i∑

k=1

(|xk|+ |yk|)
)

(4.5)

whenever x, y ∈ Ωr. This proves property (3).
Using the integral representation of G, note that

DjGi(x1, x2, . . . , xp) =
∫ 1

0

i∑
k=1

(t(DjDkGi)(tu, v)xk +Gi(tu, v)Djxk) dt.

If j > i, then Djxk = 0; and therefore, the estimate for |DjGi(x) − DjGi(y)|
required to prove property (5) is similar to the proof of estimate (4.4). The
only difference in the proof occurs because the corresponding function f is not
required to vanish at the origin. For this reason, the estimate |f(tu, v)| < K
is used in place of the Lipschitz estimate for |f(tu, v)| in the chain of inequali-
ties (4.3).

Definition 4.3. Suppose that A is an n×n real matrix, λ1 > λ2 > · · · > λp > 0,
and the real part of each eigenvalue of A is one of the real numbers −λi for
i ∈ {1, 2, . . . , p}. The matrix A has the k-spectral gap condition if λi−1/λi > k
for i ∈ {2, 3, . . . , p}.

Proposition 4.4. Suppose that Y = A + G is a quasi-linear C3 vector field
defined on the open set U containing the origin. If the matrix A has the 3-
spectral gap condition and the closure of Ωr is contained in U , then there is a
vector field of the form X in Pr such that the restrictions of the vector fields X
and Y to Ωr are equal.
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Proof. We will outline the proof, the details are left to the reader.
There is a linear change of coordinates such that the linear part of the

transformed vector field is block diagonal with diagonal blocks Ai, for i ∈
{1, 2, . . . , p}, such that −λi is the real part of each eigenvalue of the matrix
Ai and λ1 > λ2 > · · · > λp > 0. Thus, without loss of generality, we may as
well assume that A has this block diagonal form.

Consider the vector field Y in the form

(Bx+G1(x, y), Apy +G2(x, y))

where B is block diagonal with blocks A1, A2, . . . , Ap−1. Because the 3-gap
condition is satisfied for the C3 vector field Y viewed in this form, an application
of the smooth spectral gap theorem (see [LL99]) can be used to obtain a C3

function φ, defined for |y| sufficiently small, such that φ(0) = 0 and {(x, y) :
x = φ(y)} is an invariant manifold.

In the new coordinates u = x − φ(y) and v = y, the vector field Y is given
by

(Bu+G2(u, v), Apv +G3(u, v))

where G2 and G3 are C2 and G2(0, v) ≡ 0. By an application of Dorroh’s
theorem (as in the proof of Theorem 3.11), this system is C3 conjugate to a C3

vector field Y1 of the same form.
Next, consider the vector field Y1 in the form

(Cu+G4(u, v, w), Ap−1v +G5(u, v, w), Apw +G6(u, v, w))

where the variables are renamed. We have already proved that G5(0, 0, w) ≡ 0.
By an application of the smooth spectral gap theorem, there is a C3 function
ψ such that {(u, v, w) : u = ψ(v, w)} is an invariant manifold. In the new
coordinates a = u− ψ(v, w), b = v, and c = w, the vector field has the form

(Ca+G7(a, b, c), Ap−1b+G8(a, b, c), Apw +G9(a, b, c))

where G8(0, 0, c) ≡ 0 and G7(0, b, c) ≡ 0. By Dorroh smoothing we can assume
that the functions G7, G8, and G9 are class C3.

To complete the proof, repeat the argument to obtain a lower triangular
vector field and then apply Proposition 4.4.

We will prove the following theorem.

Theorem 4.5. For each µ ∈ (0, 1), a C3 lower triangular vector field (or a C3

quasi-linear vector field whose linear part satisfies the 3-spectral gap condition)
is linearizable at the origin by a C1,µ near-identity diffeomorphism.

In particular, for the restricted class of vector fields mentioned in Theo-
rem 4.5, the Hölder exponent of the linearizing transformation is not required
to be less than the Hölder spectral exponent of A; rather, the Hölder exponent
can be chosen as close to the number one as we wish.
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4.2 Saddles

Theorem 4.5 together with Theorem 3.10 can be used, in the obvious manner,
to obtain improved results on the smooth linearization of special systems with
hyperbolic saddles. For example, suppose that X = A+ F is quasi-linear such
that A is in block diagonal form A = (As,Au) where all eigenvalues of As have
negative real parts and all eigenvalues of Au have positive real parts. In this
case, the vector field has the form X(x, y) = (Asx + G(x, y),Auy + H(x, y))
where F = (G,H). The vector field X is called triangular if G(0, y) ≡ 0 and
H(x, 0) ≡ 0, and the vector fields x 7→ Asx+G(x, 0) and y 7→ −(Auy+H(0, y))
are both lower triangular.

Theorem 4.6. Suppose that X = A+ F is a quasi-linear C3 triangular vector
field and there are positive numbers aL, aR, bL, and bR such that the real parts
of the eigenvalues of A are contained in the union of the intervals [−aL,−aR]
and [bL, bR]. If aL − aR < bL and bR − bL < aR, then X is C1 linearizable.

The next theorem replaces the requirement that the vector field be triangular
with a spectral gap condition.

Theorem 4.7. Suppose that X = A+F is a quasi-linear C3 vector field with a
hyperbolic saddle at the origin, the set of negative real parts of eigenvalues of A is
given by {−λ1, . . . ,−λp}, the set of positive real parts is given by {σ1, . . . , σq},
and

−λ1 < −λ2 < · · · < −λp < 0 < σq < σq−1 < · · · < σ1.

If λi−1/λi > 3, for i ∈ {2, 3, . . . , p}, and σi−1/σi > 3, for i ∈ {2, 3, . . . , q}, and
if λ1 − λp > σq and σ1 − σq < λp, then X is C1 linearizable.

4.3 Infinitesimal Conjugacy and Fiber Contractions

Recall from Section 2 that the near-identity map h = id +η on Rn conjugates
the quasi-linear vector field X = A + F to the linear vector field given by A if
η satisfies the infinitesimal conjugacy equation

LAη = F ◦ (id +η).

In case the nonlinear vector field X is in Pr, we will invert the Lie derivative
operator LA on a Banach space B of continuous functions, defined on an open
neighborhood Ω of the origin, that also satisfy a Hölder condition at the origin.
The inverse G of LA is used to obtain a fixed point equation,

α = G(F ◦ (id +α)),

that can be solved by the contraction principle. Its unique fixed point η is a
solution of the infinitesimal conjugacy equation and h = id +η is the desired
near-identity continuous linearizing transformation. To show that η is smooth,
we will use fiber contraction (see the discussion following Theorem 3.3).
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The candidates for the (continuous) derivative of η belong to the space H of
continuous functions from Ω to the bounded linear operators on B. Moreover,
the derivative of η, if it exists, satisfies the fixed point equation

Ψ = G(DF ◦ (id +η)(I + Ψ))

on H, where G is an integral operator that inverts the differential operator LA
given by

LAΨ(x) =
d

dt
e−tAΨ(etAx)etA

∣∣∣
t=0

. (4.6)

For appropriately defined subsets D ⊂ B and J ⊂ H, we will show that the
bundle map Λ : D × J → D × J given by

Λ(α,Ψ) = (G(F ◦ (id +α)),G(DF ◦ (id +α)(I + Ψ)))

is the desired fiber contraction.

4.4 Sources and Sinks

Theorem 4.5 is an immediate consequence of Proposition 4.2 and the following
result.

Theorem 4.8. If µ ∈ (0, 1) and X is in Pr, then X is linearizable at the origin
by a C1,µ near-identity diffeomorphism.

The remainder of this section is devoted to the proof of Theorem 4.8
By performing a linear change of coordinates (if necessary), there is no loss

of generality if we assume that the block matrices A1, . . . Ap on the diagonal of
A are each in real Jordan canonical form. In this case, it is easy to see that
there is a real valued function t 7→ Q(t), given by Q(t) = CQ(1 + |t|n−1) where
CQ is a constant, such that

|etAi | ≤ e−λitQ(t) (4.7)

for each i ∈ {1, . . . , p}. Also, for each λ with

−λ1 < −λ2 < · · · < −λp < −λ < 0, (4.8)

there is an adapted norm on Rn such that

|etAx| ≤ e−λt|x| (4.9)

whenever x ∈ Rn and t ≥ 0 (see, for example, [C99] for the standard construc-
tion of the adapted norm).

Unfortunately, the adapted norm is not necessarily natural with respect to
the decomposition Rn1×· · ·×Rnp of Rn. The natural norm is the `1-norm. For
i ∈ {1, 2, . . . , p}, we will use the notation

|x|i :=
i∑

k=1

|xk|. (4.10)
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In particular, | |p is a norm on Rn that does respect the decomposition. It is
also equivalent to the adapted norm; that is, there is a constant K > 1 such
that

1
K
|x|p ≤ |x| ≤ K|x|p. (4.11)

Because A is block diagonal and in view of the ordering of the real parts of
the eigenvalues in display (4.8), we have the useful estimate

|etAx|i =
i∑

k=1

|etAkxk|

=
i∑

k=1

e−λktQ(t)|xk|

≤ e−λitQ(t)|x|i. (4.12)

Recall that for r > 0, Ωr := {x ∈ Rn : |x| < r}. Also, note that a function
α : Ωr → Rn is given by α = (α1, . . . , αp) corresponding to the decomposition
x = (x1, . . . , xp).

For r > 0 and 0 < µ < 1, let Br,µ denote the space of all continuous functions
from Ωr to Rn such that the norm

‖α‖r,µ := max
i∈{1,... ,p}

sup
0<|x|<r

|αi(x)|
|x|i|x|µ

is finite.

Proposition 4.9. The set Br,µ endowed with the norm ‖ ‖r,µ is a Banach space.

For α ∈ Br,µ, define

(Gα)(x) := −
∫ ∞

0

e−tAα(etAx) dt. (4.13)

Note that the “natural” definition of G—in view of the definitions in Section 2—
would be

∫∞
0
etAα(e−tAx) dt. Although this definition does lead to the existence

of a linearizing homeomorphism, the homeomorphism thus obtained may not
be smooth.

Proposition 4.10. The function G is a bounded linear operator on Br,µ; and,
for fixed µ, the operator norms are uniformly bounded for r > 0. Moreover,
LAG = I on Br,µ, and GLA, restricted to the domain of LA on Br,µ, is the
identity.

Proof. The kth component of Gα is given by

(Gα)i(x) = −
∫ ∞

0

e−tAiαi(etAx) dt.
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Since we are using an adapted norm on Rn, if x ∈ Ωr, then so is etAx. Using
this fact, the definition of the space Br,µ, and the inequalities (4.7) and (4.12),
we have the estimate

|e−tAiαi(etAx)| ≤ eλitQ(t)
|αi(etAx)|
|etAx|i|etAx|µ

|etAx|i|etAx|µ

≤ e−λµtQ2(t)‖α‖r,µ|x|i|x|µ.

Because Q(t) has polynomial growth, there is a universal constant c > 0 such
that

e−λµt/2Q2(t) ≤ c

whenever t ≥ 0. Hence, it follows that

|e−tAiαi(etAx)| ≤ c e−λµt/2‖α‖r,µ|x|i|x|µ.

By Lemma 2.2, the function x 7→ (Gα)i(x) is continuous in Ωr and clearly

sup
0<|x|<r

|(Gα)i(x)|
|x|i|x|µ

<
2c
λµ
‖α‖r,µ.

The fundamental theorem of calculus and the properties of the Lie derivative
are used to show that G is a right inverse of LA and that GLA is the identity
operator on the domain of LA.

Proposition 4.11. If α ∈ Br,µ, then F ◦ (id +α) ∈ Br,µ. Moreover, if ε > 0 is
given and r > 0 is sufficiently small, then the map α 7→ F ◦ (id +α) restricted
to the closed unit ball in Br,µ has range in the ball with radius ε centered at the
origin.

Proof. Clearly the function F ◦ (id +α) is continuous in Ωr. We will show first
that this function is in Br,µ.

The ith component of F ◦ (id +α) is

[F ◦ (id +α)]i = Fi ◦ (id +α)

Using property (3) in the definition of Pr, the equivalence of norms, and the
triangle law, we have the estimate

|Fi(x+ α(x))| ≤ KM(|x|p + |α(x)|p)(|x|i + |α(x)|i),

and for k ∈ {1, 2, . . . , p} we have the inequality

|α(x)|k ≤ ‖α‖r,µ|x|µ
k∑
`=1

|x|`

≤ p‖α‖r,µ|x|µ|x|k. (4.14)
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By combining these estimates and restricting x to lie in Ωr where |x| < r, it
follows that

|Fi(x+ α(x))| ≤MK2(1 + p‖α‖r,µrµ)2|x||x|i;

and therefore,

‖F ◦ (id +α)‖r,µ ≤MK2(1 + p‖α‖r,µrµ)2r1−µ.

This proves the first statement of the proposition. The second statement of the
proposition follows from this norm estimate because 0 < µ < 1.

The special Lipschitz number for α ∈ Br,µ is defined as follows:

sLip(α) := max
i∈{1,2,... ,p}

sup
{ |α(x)− α(y)|i

|x− y|i
: x, y ∈ Ωr;x 6= y

}
.

Also, let D denote the set of all α in Br,µ such that ‖α‖r,µ ≤ 1 and sLip(α) ≤ 1.

Proposition 4.12. The set D is a complete metric subspace of Br,µ.

Proof. Suppose that {αm}∞m=1 is a sequence in D that converges to α in Br,µ.
To show sLip(α) ≤ 1, use the inequality (4.14) to obtain the estimate

|α(x)− α(y)|i ≤ |α(x)− αm(x)|i + |αm(x)− αm(y)|i + |αm(y)− α(y)|i
≤ 2p‖α− αm‖r,µr1+µ + sLip(αm)|x− y|i

and pass to the limit as m→∞.

Proposition 4.13. If r > 0 is sufficiently small, then the function

α 7→ G(F ◦ (id +α)) (4.15)

is a contraction on D.

Proof. Let R := 1/‖G‖r,µ and suppose that ‖α‖r,µ ≤ 1. By Proposition 4.11, if
r > 0 sufficiently small, then

‖G(F ◦ (id +α))‖r,µ ≤ ‖G‖r,µ‖F ◦ (id +α)‖r,µ ≤ 1.

Hence, the closed unit ball in Br,µ is an invariant set for the map α 7→ G(F ◦
(id +α)).

To prove that D is an invariant set, we will show the following proposition:
If α ∈ D and r > 0 is sufficiently small, then sLip(G(F ◦ (id +α))) < 1.

Start with the basic inequality

|(G(F ◦ (id +α)))i(x)− (G(F ◦ (id +α)))i(y)| ≤∫ ∞
0

eλitQ(t)|Fi(etAx+ α(etAx))− Fi(etAy + α(etAy))| dt,
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and then use property (3) in the definition of Pr to estimate the third factor of
the integrand. Note that the resulting estimate has two terms, each of the form
| | | |i. After making the obvious triangle law estimates using the linearity of etA,
the inequality |α(x)−α(y)|i ≤ |x−y|i, and the inequality (4.12); it is easy to see
that the first factor is majorized by a bounded multiple of e−λt and the second
factor is majorized by a bounded multiple of e−λitQ(t). One of the multipliers
is bounded above by a constant multiple of r; the other is bounded above by a
constant multiple of |x−y|. The integral converges because its integrand is thus
majorized by a constant (in t) multiple of e−λtQ(t). In fact, there is a constant
c > 0 such that

|(G(F ◦ (id +α)))(x)− (G(F ◦ (id +α)))(y)| ≤ cr|x− y|;

and therefore, if r > 0 is sufficiently small, then sLip(G(F ◦ (id +α))) < 1, as
required.

We have just established that the complete metric space D is an invariant
set for the map α 7→ G(F ◦ (id +α)). To complete the proof, we will show that
this map is a contraction on D.

Fix α and β such that ‖α‖r,µ ≤ 1 and ‖β‖r,µ ≤ 1, and note that

‖G(F ◦ (id +α))−G(F ◦ (id +β))‖r,µ ≤
‖G‖r,µ‖F ◦ (id +α)− F ◦ (id +β)‖r,µ.(4.16)

The ith component function of the function

x 7→ F ◦ (id +α)− F ◦ (id +β)

is given by

Ci := Fi(x+ α(x))− Fi(x+ β(x)).

Using the inequality (4.14) and property (3) of the definition of Pr, we have the
estimate

|Ci| ≤ MK(|x+ α(x)|p|α(x)− β(x)|i + |α(x)− β(x)|p|x+ β(x)|i)
≤ KM

(
(|x|p + p‖α‖r,µrµ|x|p)p‖α− β‖r,µ|x|µ|x|i

+ p‖α− β‖r,µ|x|µ|x|p(|x|i + p‖α‖r,µrµ|x|i)
)

≤ 2K2Mp(1 + prµ)r‖α− β‖r,µ|x|µ|x|i.

Hence, there is a constant M̄ > 0 such that

‖F (x+ α(x))− F (x+ β(x))‖r,µ ≤ M̄r‖α− β‖r,µ.

Using the inequality (4.16) and Proposition 4.10, it follows that if r > 0 is
sufficiently small, then the map α 7→ G(F ◦ (id +α)) is a contraction on the
closed unit ball in Br,µ.
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We will prove that the unique fixed point η of the contraction (4.15) is C1,µ

for all µ ∈ (0, 1).
Let Hr,µ denote the space of all continuous maps Ψ : Ωr → L(Rn,Rn) such

that, for j ≤ i,

sup
0<|x|<r

|Ψij(x)|
|x|µ

<∞

and, for j > i,

sup
0<|x|<r

|Ψij(x)|
|x|µi

<∞

where the subscripts refer to the components of the matrix valued function Ψ
with respect to the decomposition Rn = Rn1 × · · · ×Rnp . Also, the norm ‖Ψ‖µ
of Ψ ∈ Hr,µ is defined to be the maximum of these suprema.

Proposition 4.14. The space Hr,µ endowed with the norm ‖ ‖µ is a Banach
space.

For Ψ ∈ Hr,µ, define

(GΨ)(x) := −
∫ ∞

0

e−tAΨ(etAx)etA dt. (4.17)

Proposition 4.15. If µ < 1 is sufficiently large, then the operator G is a
bounded linear operator on Hr,µ. Also, ‖G‖µ is uniformly bounded with respect
to r.

Proof. In view of the inequality (4.7) and for x ∈ Ωr, the ij-component of the
integrand in the definition of G is bounded above as follows:

|e−tAiΨij(etAx)etAj | ≤ eλitQ(t)|Ψij(etAx)|e−λjtQ(t).

For j ≤ i, we have the inequality

|e−tAiΨij(etAx)etAj | ≤ e(λi−λj)tQ2(t)‖Ψ‖µ|etAx|µ

≤ e(λi−λj−µλ)tQ3(t)‖Ψ‖µ|x|µ

≤ e−µλtQ3(t)‖Ψ‖µ|x|µ;

and for j > i, by using the estimate (4.12), we have

|e−tAiΨij(etAx)etAj | ≤ e(λi−λj)tQ2(t)‖Ψ‖µ|etAx|µi
≤ e((1−µ)λi−λj)tQ3(t)‖Ψ‖µ|x|µi .

Because Q has polynomial growth, if µ < 1 is sufficiently large, then the
integrals ∫ ∞

0

e((1−µ)λi−λj)tQ3(t) dt,
∫ ∞

0

e−λjtQ3(t) dt

both converge. By the definition of the norm, ‖G‖µ is bounded by a constant
that does not depend on r.
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The hypothesis of Proposition 4.15 is the first instance where µ < 1 is re-
quired to be sufficiently large. This restriction is compatible with the conclusion
of Theorem 4.8. Indeed, if a function is Hölder on a bounded set with Hölder
exponent µ, then it is Hölder with exponent ν whenever 0 < ν ≤ µ.

A map Ψ ∈ Hr,µ is called special µ-Hölder if, for all i, j ∈ {1, 2, . . . , p},

|Ψij(x)−Ψij(y)| ≤ |x− y|µ (4.18)

and, for all j > i,

|Ψij(x)−Ψij(y)| ≤ |x− y|µi + |x− y|µ(|x|µi + |y|µi ) (4.19)

whenever x, y ∈ Ωr.
Let J denote the subset of Hr,µ consisting of those functions in Hr,µ such

that Ψ is special µ-Hölder and ‖Ψ‖µ ≤ 1. Also, for α ∈ D and Ψ ∈ J , let

Γ(α) := G(F ◦ (id +α)),
Υ(α,Ψ) := DF ◦ (id +α)(I + Ψ),
∆(α,Ψ) := GΥ(α,Ψ),
Λ(α,Ψ) := (Γ(α),∆(α,Ψ)). (4.20)

Proposition 4.16. The set J is a complete metric subspace of Hr,µ.

Proof. It suffices to show that J is closed in Hr,µ. The proof of this fact is
similar to the proof of Proposition 4.12.

Proposition 4.17. If r > 0 is sufficiently small and µ < 1 is sufficiently large,
then the bundle map Λ defined in display (4.20) is a fiber contraction on D×J .

Proof. We will show first that there is a constant C such that

‖DF ◦ (id +α)(I + Ψ)‖µ ≤ Cr1−µ

for all α ∈ D and Ψ ∈ J .
Using the properties listed in the definition of Pr, note that if j ≤ i, then

|DjFi(x+ α(x))| ≤ M |x+ α(x)|
≤ MK(|x|p + |α(x)|p)
≤ MK2(1 + p‖α‖r,µrµ)|x|
≤ MK2(1 + prµ)r1−µ|x|µ, (4.21)

and if j > i, then

|DjFi(x+ α(x))| ≤ MK(|x|i + |α(x)|i)
≤ MK1+µ(1 + prµ)r1−µ|x|µi . (4.22)

It follows that there is a constant c1 > 0 such that

‖DF ◦ (id +α)‖µ ≤ c1r1−µ. (4.23)
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Suppose that Φ and Ψ are in Hr,µ. We will show that there is a constant
c2 > 0 such that

‖ΦΨ‖µ ≤ c2rµ‖Φ‖µ‖Ψ‖µ. (4.24)

First, note that

|(ΦΨ)ij | ≤
p∑
k=1

|Φik||Ψkj |.

There is a constant c̄ such that

|Φij | ≤ c̄‖Φ‖µ|x|µ (4.25)

for all i, j ∈ {1, 2, . . . , p}. In fact, for j ≤ i, this estimate is immediate from the
definition of the norm; for j > i, it is a consequence of the inequality

|Φij | ≤ ‖Φ‖µ|x|µi ≤ K
µ‖Φ‖µ|x|µi .

Using estimate (4.25), it follows that

|(ΦΨ)ij | ≤
p∑
k=1

c̄2‖Φ‖µ‖Ψ‖µ|x|2µ

≤ (pc̄2|r|µ)‖Φ‖µ‖Ψ‖µ|x|µ

whenever j ≤ i, and

|(ΦΨ)ij | ≤
i∑

k=1

c̄2‖Φ‖µ|x|µ‖Ψ‖µ|x|µi +
p∑

k=i+1

‖Φ‖µ|x|µi c̄‖Ψ‖µ|x|
µ

≤ (pc̄|r|µ)‖Φ‖µ‖Ψ‖µ|x|µi

whenever j > i. This completes the proof of estimate (4.24).
It is now clear that there is a constant C > 0 such that

‖DF ◦ (id +α)(I + Ψ)‖µ ≤ ‖DF ◦ (id +α)‖µ + ‖DF ◦ (id +α)Ψ‖µ ≤ Cr1−µ

(4.26)

for all α ∈ D and Ψ ∈ J . Hence, if r is sufficiently small, then

‖∆(α,Ψ)‖µ ≤ ‖G‖µ‖DF ◦ (id +α)(I + Ψ)‖µ ≤ 1

for all α ∈ D and Ψ ∈ J .
To complete the proof that J × D is an invariant set for Λ, we will prove

the following proposition: If r > 0 is sufficiently small, then ∆(α,Ψ) is special
µ-Hölder whenever α ∈ D and Ψ ∈ J .

Recall from display (4.20) that

Υ(α,Ψ) := DF ◦ (id +α)(I + Ψ).
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We will use the following uniform estimates: There is a constant c > 0 such
that

|Υ(α,Ψ)ij(x)−Υ(α,Ψ)ij(y)| ≤ crµ|x− y|µ (4.27)

and, for all j > i,

|Υ(α,Ψ)ij(x)−Υ(α,Ψ)ij(y)| ≤ c(rµ + r1−µ)|x− y|µi + |x− y|µ(|x|µi + |y|µi )
(4.28)

whenever 0 < r < 1, x, y ∈ Ωr, α ∈ D, and Ψ ∈ J .
To prove the inequalities (4.27) and (4.28) we will show (the key observation)

that for α ∈ D there are Lipschitz (hence Hölder) estimates for DF ◦ (id +α).
In fact, using property (4) in the definition of Pr, there is a constant M̄ such
that

|DjFi(x+ α(x))−DjFi(y + α(y))| ≤ M(|x− y|+ |α(x)− α(y)|)
≤ M(|x− y|+K|α(x)− α(y)|p)
≤ M(|x− y|+K2 sLip(α)|x− y|)
≤ M(1 +K2)|x− y|
≤ M(1 +K2)|x− y|1−µ|x− y|µ

≤ M(1 +K2)21−µr1−µ|x− y|µ

≤ M̄r1−µ|x− y|µ (4.29)

for all i, j ∈ {1, 2, . . . , p} and x, y ∈ Ωr. Using property (5) in the definition
of Pr and the special Lipschitz estimates for α, we have the following similar
result for j > i:

|DjFi(x+ α(x))−DjFi(y + α(y))| ≤
M̄r1−µ(|x− y|µi + |x− y|µ(|x|µi + |y|µi )).(4.30)

We have just obtained “special Hölder” estimates the first summand in the
representation

Υ(α,Ψ) = DF ◦ (id +α) +DF ◦ (id +α)Ψ;

to obtain estimates for the second summand, and hence for Υ(α,Ψ), let Φ :=
DF ◦ (id +α) and note that

|(ΦΨ)ij(x)− (ΦΨ)ij(y)| ≤
p∑
k=1

|Φik(x)Ψkj(x)− Φik(y)Ψkj(y)|

≤
p∑
k=1

Ξk

where

Ξk := |Φik(x)||Ψkj(x)−Ψkj(y)|+ |Φik(x)− Φik(y)||Ψkj(y)|.
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Because Ψ and Φ are in J and 0 < r < 1, there is a constant c̄ > 0 such that

Ξk ≤ ‖Φ‖µ|x|µ|x− y|µ + M̄r1−µ|x− y|µ‖Ψ‖µ|y|µ

≤ (1 + M̄)|r|µ|x− y|µ

≤ c̄|r|µ|x− y|µ. (4.31)

The desired inequality (4.27) is obtained by summing over k and adding the
result to the estimate (4.29).

Suppose that j > i. If k ≤ i, then j > k and

Ξk ≤ ‖Φ‖µ|x|µ(|x− y|µk + |x− y|µ(|x|µk + |y|µk)) + M̄r1−µ|x− y|µ‖Ψ‖µ|y|µk
≤ |r|µ|x− y|µk + |r|µ|x− y|µ(|x|µk + |y|µk) + M̄r1−µ|x− y|µ(|x|µk + |y|µk)
≤ (1 + M̄)(rµ + r1−µ)(|x− y|µk + |x− y|µ(|x|µk + |y|µk))
≤ (1 + M̄)(rµ + r1−µ)(|x− y|µi + |x− y|µ(|x|µi + |y|µi ));

and if k > i, then

Ξk ≤ M̄r1−µ(|x|µi + |x|µ|x|µi )|x− y|µ

+ M̄r1−µ(|x− y|µi + |x− y|µ(|x|µi + |y|µi ))|y|µ

≤ M̄ |r|1−µ(|x− y|µi + (1 + rµ)|x− y|µ(|x|µi + |y|µi )
+ rµr1−µ|x− y|µ(|x|µi + |y|µi ))

≤ 2M̄r1−µ(|x− y|µi + |x− y|µ(|x|µi + |y|µi )).

The desired inequality (4.28) is obtained by summing over k and adding the
result to the estimate (4.30).

Note that

|(GΥ(α,Ψ))ij(x)− (GΥ(α,Ψ))ij(y)|

≤
∫ ∞

0

|e−tAi ||Υ(α,Ψ)ij(etAx)−Υ(α,Ψ)ij(etAy)||etAj | dt

≤
∫ ∞

0

e(λi−λj)tQ2(t)|Υ(α,Ψ)ij(etAx)−Υ(α,Ψ)ij(etAy)| dt.

Using the estimates (4.27) and (4.9), for j ≤ i we have

|(GΥ(α,Ψ)ij)(x)− (GΥ(α,Ψ)ij)(y)| ≤(
cr1−µ

∫ ∞
0

e(λi−λj−µλ)tQ2(t) dt
)
|x− y|µ

with λi − λj − µλ < 0. On the other hand, using inequality (4.28) and (4.12)
for the case j > i, it follows that

|(GΥ(α,Ψ)ij)(x)− (GΥ(α,Ψ)ij)(y)| ≤ M̄(|x− y|µi + |x− y|µ(|x|µi + |y|µi ))

where

M̄ := c(r1−µ + rµ)
∫ ∞

0

e((1−µ)λi−λj)tQ2+µ(t) dt
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Hence, if µ < 1 is sufficiently large, then GΨij satisfies the inequality (4.19);
and because

|x− y|µi + |x− y|µ(|x|µi + |y|µi ) ≤ (1 + 2rµ)|x− y|µ,

the previous estimate also shows that GΨij is µ-Hölder. This completes the
proof that D × J is an invariant set for the fiber contraction.

To show that the function Ψ 7→ ∆(α,Ψ) is a uniform contraction, use the
linearity of G together with inequalities (4.23) and (4.24) to obtain the estimate

‖∆(α,Ψ1)−∆(α,Ψ2)‖µ ≤ ‖G‖µ‖DF ◦ (id +α)(Ψ1 −Ψ2)‖ν
≤ ‖G‖µcrµ‖DF ◦ (id +α)‖ν‖(Ψ1 −Ψ2)‖µ
≤ ‖G‖µc2r‖(Ψ1 −Ψ2)‖µ.

Hence, if r > 0 is sufficiently small, then ∆ is a uniform contraction; and
therefore, Λ is a fiber contraction on D ×Hr,µ.

Proposition 4.18. If α ∈ D, Dα ∈ J , then D(G(F ◦ (id +α))) ∈ J and

D(G(F ◦ (id +α))) = G(DF ◦ (id +α)(I +Dα)).

Proof. Let

(G(F ◦ (id +α)))(x) := −
∫ ∞

0

e−tAF (etAx+ α(etAx)) dt.

Since Dα exists, the integrand is differentiable. Moreover, the derivative of the
integrand has the form e−tAΨ(etAx)etA where, by the estimate (4.26),

Ψ := DF ◦ (id +α)(I +Dα)

is in J . Using the same estimates as in Proposition 4.15, it follows that the
derivative of the original integrand is majorized by an integrable function. The
result now follows from an application of Lemma 2.2 and the definition of G.

We are now ready to prove Theorem 4.8

Proof. By Proposition 4.17, Γ is a fiber contraction.
Choose a function α0 ∈ D such that Ψ0 := Dα0 ∈ J—for example, take

α0 = 0, and consider the sequence in D × J given by the forward Λ-orbit of
(α0,Ψ0), namely, the sequence {(αk,Ψk)}∞k=0 where

αk := Γ(αk−1), Ψk := ∆(αk−1,Ψk−1).

We will prove, by induction, that Ψk = Dαk.
By definition,

αk = G(F ◦ (id +αk−1))
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Also, by the induction hypothesis, Ψk−1 = Dαk−1. Because αk−1 ∈ D and
Dαk−1 ∈ J , by an application of Proposition 4.18 we have that

Dαk = GDF ◦ (id +αk−1)(I + Ψk−1)
= Ψk,

as required.
By an application of the fiber contraction theorem, if η is the fixed point of

Γ and Φ is the fixed point of the map Ψ→ ∆(η,Ψ), then

lim
k→∞

αk = η, lim
k→∞

Dαk = Φ

where the limits exist in the respective spaces D and J .
The following lemma will be used to finish the proof.

Lemma 4.19. If a sequence converges in either of the spaces Br,µ or Hr,µ, then
the sequence converges uniformly.

To prove the lemma, recall that the functions in the spaces Br,µ and Hr,µ
are continuous functions defined on Ωr, the ball of radius r at the origin in Rn
with respect to the adapted norm. Also, by the equivalence of the norms (see
display (4.11)) there is a positive constant K such that |x|i < K|x|.

If limk→∞ αk = α in Br,µ, then for each ε > 0 there is an integer κ > 0 such
that

|(αk)i(x)− αi(x)|
|x|i|x|µ

<
ε

Kr1+µ

whenever 0 < |x| < r, k ≥ κ, and i ∈ {1, . . . , p}. Using the inequality |x|i <
K|x| and the norm equivalence (4.11), it follows that

‖αk − α‖ < ε

whenever 0 < |x| < 1 and k ≥ κ; that is, the sequence of continuous functions
{αk}∞k=0 converges uniformly to α. The proof of the uniform convergence of a
convergent sequence in Hr,µ is similar.

As mentioned previously, the equality Ψ = Dη follows from the uniform
convergence and a standard result in advanced calculus on the differentiability of
the limit of a uniformly convergent sequence of functions. Thus, the conjugating
homeomorphism h = id +η is continuously differentiable. Moreover, using the
equality Dh(0) = I and the inverse function theorem, the conjugacy h is a
diffeomorphism when restricted to a sufficiently small open ball at the origin.
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