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PREFACE

It is a fundamental fact of nature that the space we live in is three-
dimensional. Consequently, many branches of applied mathematics
and theoretical physics are concerned with physical quantities defined
in 3-space, as I shall call it; these subjects include Newtonian
mechanics, fluid mechanics, theories of elasticity and plasticity, non-
relativistic quantum mechanics, and many parts of solid state physics.
The Greek geometers made the first systematic investigation of the
properties of `ordinary' 3-space, and their work is known to us mainly
through the books of Euclid; our basic geometrical ideas about the
physical world have their origins in Euclidean geometry. A major
advantage of Euclid's work was its presentation as a deductive system
derived from a small number of definitions and axioms (or `basic
assumptions'); although Euclid's axioms have turned out to be
inadequate in a number of ways, he nevertheless provided us with
a model of what a proper mathematical system should be [Reference
P.11.

Through the introduction of coordinate systems, Descartes linked
geometry with algebra [Reference P.2]; geometrical structures in
3-space such as lines, planes, circles, ellipses and spheres, were asso-
ciated with algebraic equations involving three Cartesian coordinates
(x, y, z). Then in the nineteenth century, Hamilton [Reference P.3]
and Gibbs [Reference P.4] introduced two similar types of algebraic
objects, `quaternions' and `vectors', which treated the three coor-
dinates simultaneously; the rules of operation of these new sets of
objects were different from those of real or complex numbers, giving
rise to new types of `algebra'; a more general algebra of N-dimen-
sional space (N=3,4,5,...) was introduced by Grassmann
[Reference P.5]. Over several decades, the vector concept developed

vii



viii Preface

in two different ways: in a wide variety of physical applications,
vector notation and techniques became, by the middle of this century,
almost universal; on the other hand, pure mathematicians reduced
vector algebra to an axiomatic system, and introduced wide general-
isations of the concept of a three-dimensional `vector space', not only
to N-dimensional spaces, but also to Hilbert space and other infinite-
dimensional metric spaces, and to topological spaces. These two
developments proceeded largely independently, and many books
dealing with the applications of vectors have approached the fun-
damentals of the subject intuitively rather than axiomatically, assum-
ing some prior knowledge of Euclidean and Cartesian geometry. In
recent decades, however, hard-and-fast distinctions between `pure'
and `applied' mathematics have been disappearing; in particular, the
concept of an abstract `space', especially Hilbert space, has become
familiar in many applications of mathematics, including quantum
mechanics, numerical analysis and statistics, and in the study of
differential and integral equations. Also, the concept of `basic
assumptions' or `structure', in dealing with number systems, has
taken its place in school mathematics [Reference P.6]; while these
basic assumptions are not presented as a complete logical scheme in
the way that Euclid intended, they nevertheless familiarise students
with the concept of an axiomatic scheme. For these reasons, it seems
appropriate to take account of both pure and applied mathematical
points of view when treating the subject of `vectors', which is now a
fundamental part of both these modes of thought.

This book deals with vector algebra and analysis, and with their
application to three-dimensional geometry and to the analysis of
fields in 3-space. In order to bring out both the `pure' and `applied'
aspects of the subject, my main objectives have been:

(i) to base the work on sound algebraic and analytic foundations;
(ii) to develop those intuitive relations between algebraic equa-

tions and geometrical concepts which are of fundamental
importance in physical applications;

(iii) to establish standard vector techniques and theorems, giving
numerous examples of their use.

In the first three chapters, the algebra of vectors is developed, based
upon the axioms of vector space algebra; as the axioms are
introduced, their geometrical interpretation is given, so that they can
be understood intuitively. The axiomatic scheme is extended to pro-
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vide a definition of Euclidean space, consisting of `points' and 'dis-
placements'; this provides an axiomatic basis for Euclidean geometry,
linking it directly with the algebra of linear vector spaces. This
linkage has the reciprocal advantage (not apparent in this book) that
it enables geometrical intuitions to be developed in dealing with more
general types of linear space, in particular with finite-dimensional
spaces and Hilbert space. In the process of interpreting the algebraic
axioms geometrically, algebraic definitions of elementary geometrical
concepts such as `length' and `angle' have to be given and justified;
we also define Cartesian or `rectangular' coordinates and establish
their fundamental properties, such as Pythagoras' theorem. By this
means, Cartesian geometry and trigonometry, as well as Euclidean
geometry, are seen to arise out of a single set of axioms. The first
three chapters also develop the techniques of vector algebra, and
apply them to problems in geometry, in particular the geometry of
lines and planes.

The fourth chapter deals with transformations of the components
of a vector in two or three dimensions, in particular with trans-
formations representing rotations and reflections. A clear distinction
is made between `active transformations', due to a change of the
vector itself, and `passive transformations', due to change of the
frame of reference. The idea of groups of transformations is
introduced, and the study of rotations in two dimensions is linked
with the intuitively familiar concept of `addition of angles'. Trans-
formations in 3-space are represented by 3 x 3 matrices. Although it
has been assumed that the reader has some familiarity with matrices,
the necessary theory of 3 x 3 matrices and their determinants has
been developed in the first two sections of Chapter 4, using the
properties of vectors established earlier. This emphasises the fact that
vectors and matrix algebra are simply two different aspects of the
algebra of vector spaces. It is of interest to note that this vectorial
approach to matrix algebra can be made quite general, and is not
restricted to 3 X 3 matrices.

The study of functions f(x), where x is a variable lying in a
continuous range, depends to a great extent upon the differential and
integral calculus. When we study functions defined in 3-space, it is
necessary to develop an extension of calculus appropriate to regions
of this space. There are several difficult problems to solve before this
extended calculus can be defined. First, we have to study how points
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in 3-space are specified by systems of coordinates; second, we have to
give definitions of curves, surfaces and volume regions in 3-space;
third, if we consider a specific surface or volume region, we need to
define the `boundary' of that region. These problems are dealt with in
Chapter 5. Since points in 3-space are described by three coordinates,
this work necessarily involves using analytic properties of functions of
up to three variables, and of their derivatives and integrals. This
raises a problem of presentation: establishing the necessary analytic
properties of functions of one, two and three variables requires a
substantial amount of work, whose incorporation in Chapter 5 would
break the continuity of ideas developed there. Elementary analysis of
functions of one variable is normally dealt with early in university
mathematics courses, and is the subject of a large number of text-
books; so when I use an analytic property of one-variable functions, I
simply quote a reference in one of the most readable elementary
books on the subject, J. C. Burkill's A First Course in Mathematical
Analysis. The analysis of functions of several variables is appreciably
more complicated, and it is arguable that in an elementary textbook,
we should not trouble about proofs of properties of partial derivatives
and multiple integrals. In a book for students of mathematics,
however, it is unsatisfactory to omit explanations simply because they
are complicated. 1 have met this difficulty by establishing the essential
properties of functions of two variables in Appendix A, to which
reference is made when these properties are used in the main text;
the necessary properties of functions of three variables are simple
generalisations of those of two variables, and when they are used, I
again refer to the analogous property of two-variable functions. A
reader can therefore either accept the analytic properties assumed in
the main text, or refer to Appendix A for a justification of these
assumptions. By omitting this analytic detail from Chapter 5, it is
possible to give a fairly detailed account of surfaces, volume regions,
and especially of curves.

Scalars and vectors whose value depends upon their position in
space are called scalar and vector `fields', provided that they satisfy
suitable analytic conditions. Since these fields in general depend upon
three coordinates, variations in a field throughout 3-space depend
upon the derivatives of the field with respect to three coordinates;
certain combinations of derivatives, `divergence', `gradient' and
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`curl', known as vector operators, are closely associated with physical
concepts such as flux and vorticity. In the final chapter, these opera-
tors are defined and studied, and their physical significance is

emphasised. As in Chapter 5, it is necessary to be careful over
analytic details; the vector operators are defined in a mathematically
sound way, but in the discussion of their physical significance, I have
thought it best to omit some analytic details. One theorem (Stokes'
theorem) is difficult to prove in full generality: its significance is
brought out by proving it under special conditions in the main text;
the general proof is given in Appendix B. The discussion of physical
examples leads naturally to the introduction of the 'Laplacian'
operator; this completes the definition and discussion of the principal
differential operators used in a variety of branches of mathematical
physics, and provides a natural point at which to end.

The first three chapters of this book arose out of a course of
lectures given to first-year mathematics students at the University of
Kent. Although the book is written primarily for students of mathe-
matics in the early part of their University course, those interested in
the more mathematical aspects of physics and engineering may prefer
this treatment of vectors based on linear space algebra, since linear
spaces have a rapidly widening relevance in these disciplines. A
number of my former students have chosen to follow this approach in
sixth-form mathematics teaching, and those studying advanced
school mathematics may find that the first four chapters of the book
provide a coherent picture of a number of sixth-form topics which are
often treated separately.

While writing this book, I have had many helpful discussions with
other members of staff of the School of Mathematics in the University
of Kent. I am particularly indebted to Dr R. Hughes Jones for many
exchanges of ideas, not only while the book was being written, but
also when I was formulating the approach to Chapters 1-3. I am very
grateful to Mrs Sandra Bateman and Miss Diane Mayes for their
careful preparation of the manuscript, and for their patience in
coping with a long series of additions and amendments. The Cam-
bridge University Press have been most helpful and thorough in
checking and tidying up the manuscript; I wish to thank them for
their help, and also Miss Ruth Farwell for checking the examples and
problems. I have been pleased to have the student's-eye comments of
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my daughter Carol, and I very much appreciate the interest that my
whole family have shown in the book, despite the nuisance value of
books and papers strewn all over the house.

Roy Chisholm

Mathematical Institute
University of Kent
February 1977



1
Linear spaces and displacements

1.1 Introduction

Our understanding of the physical world depends to a great extent on
making more or less exact measurements of a variety of physical
quantities. All single measurements on a physical system consist of
observing a single real number, and very often this single real number
is, by itself, the value of an important physical quantity; examples are
the measurement of a mass, a length, an interval of time, an electrical
potential, the frequency or wavelength of an electromagnetic wave, a
quantity of electrical charge, and the electric current in a wire.
Physical quantities of this kind are called scalar quantities, or, more
frequently, scalars. We shall make a distinction between these two
expressions: `scalar' will be used as a mathematical expression;
scalars, for our purposes, are real algebraic variables A, µ, ... , which
can, in general, take values in the whole range (-oo, oo); they possess
other properties which will be defined in Chapter 4, but for the
present we shall regard them simply as real numbers. The expression
`scalar quantity' will refer to any specific physically measurable
quantity, such as a mass or a charge, which is found experimentally to
have the mathematical properties of a scalar. One important property
of scalar quantities is that they are intrinsic properties of a physical
system, and do not change if the whole physical system is translated
to a different position in three-dimensional space, or is rotated in
space. For example, if a metallic conductor is at a certain potential in
an electric field produced by certain electric charges, this potential is
unchanged if the conductor and the charges are translated or rotated
as a whole, their relative positions remaining unchanged. Similarly,
the mass of a body is independent of the position and orientation of
the body in three-dimensional space.

1
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Not all measured quantities are best understood as a single
number. A change in position in three-dimensional space from a
point P to a point 0, known as a displacement, depends upon a
number (the distance from P to 0), but also depends upon the
direction from P to Q. There are various ways of defining a dis-
placement; the most familiar is to define a set of Cartesian axes, with
the origin at P, as in Fig. 1.1. Then the displacement PQ is defined by
giving the projections (x, y, z) of the line PQ on the three axes. Other
examples of physical quantities with which we intuitively associate
both a real number (the magnitude) and a direction in space are force,
velocity, the electric, magnetic or gravitational field at a point in
space, and the direction normal (that is, perpendicular) to a given
plane in space. Physical quantities of this type are known as vector
quantities; the corresponding abstract mathematical entities, whose
properties we now start to define, are called vectors.

We shall define vectors by assuming that they obey certain basic
algebraic equations, the axioms of vector algebra. From these axioms
we shall be able to deduce the usual geometric properties of dis-
placements in three-dimensional space; for example, we can show
that the lengths PQ, x, y and z in Fig. 1.1 obey the Pythagorean
relation

PQ2=x2+y2+z2.

Fig. 1.1
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The algebraic axioms are not necessarily associated with any
geometrical interpretation; however, the interpretation of vectors as
displacements is such a natural and familiar one that we inevitably
think in geometrical terms when we discuss vectors; moreover, the
geometric picture is a great aid to our intuition about vector quan-
tities. So, on the one hand, we shall derive vector algebra from
axioms written in algebraic form, and shall eventually deduce three-
dimensional Euclidean geometry from these axioms; on the other
hand, we shall, from the beginning, interpret the axioms and other
equations intuitively in terms of three-dimensional geometry, with
the vectors represented by displacements.

We denote vectors by symbols such as a, b, r, n and u. A set of
vectors satisfying certain conditions is denoted by {a}, for example.
Geometrically, a vector a is represented by a `directed line' in space,
as in Fig. 1.2. With any vector a we associate a unique non-negative

-a

Fig. 1.2

real number a, called the modulus or magnitude of the vector. We
frequently say that a is the `length' of the vector; in saying this, we are
using the geometrical interpretation of a vector as a spatial dis-
placement. Although we do not give a definition of modulus or length
a until Chapter 2, we shall use the concept in talking about the
geometrical interpretation of vectors.

1.2 Scalar multiplication of vectors

A vector a can be multiplied by any real number A to give another
vector Aa. If A > 0 and if a represents a displacement, Aa is a dis-
placement in the same direction as a, but with magnitude Aa; so la
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is simply a itself. The displacement 3a is indicated in Fig. 1.2. We
have drawn the displacements representing 3a and a in different
positions. As we shall discuss fully in §1.4, a displacement has a
definite `initial point' in space, and the displacement is `from' this
point; because displacements have a definite position in space, they
are often referred to as `fixed vectors'. The abstract vectors a and 3a,
however, have no initial points in space - it is, in fact, rather
misleading to represent them by directed lines in a diagram. In order
to remind ourselves that vectors are not associated with points in
space, we represent them (as in Fig. 1.2) by directed lines at arbi-
trarily chosen points; abstract vectors are for this reason sometimes
called `free vectors'.

Multiplication of a vector a by -1 gives a vector denoted by -a;
this vector is represented by a displacement of the same length as a,
and in exactly the opposite direction, as indicated in Fig. 1.2. When
A < 0, the vector Aa is again represented by a displacement in the
opposite direction to a; its length is JAIa, where JAI is the absolute
value of A. For example, a displacement representing the vector -2a
is as shown in Fig. 1.2; note that the arrows on -a and -2a are in the
opposite sense to those on a and 3a.

The formal axioms governing multiplication by finite real scalars A
and µ are:

(1A) If a is a vector, and A any real number, then Aa is a vector,

(1B) la = a, (1.2)

(1C) A (µa) = (Aµ )a.

The Axiom (1B) tells us that multiplication by unity does not change a
vector a. Since Aµ = /xA on the right of Axiom (1C), we can extend
the axiom to give

A (µa) = µ (Aa) = (µA )a. (1.3)

So Axiom (1C) tells us that the order of multiplication by two scalars
(A and µ) does not matter, since the result is equivalent to multi-
plication by Aµ. In formal language, (1.3) tells us that scalar multi-
plication of vectors is associative and commutative. If A 4'0 and
µ = A -1, (1.2) and (1.3) give

A-1(Aa)= la=a.

This means that a is a scalar multiple of all vectors Aa (A A 0).
Geometrically, displacements corresponding to a and Aa are said to
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be `parallel'; this is explained more fully in §1.4. Although we have
referred to the modulus of a vector in discussion, we note that this has
not been defined by the Axioms (1A)-(1C).

When A = 0, the Axiom (1A) implies the existence of a vector Oa.
A displacement corresponding to Oa is of zero length, and so is no
displacement at all; so for all vectors a we write

02=0 (1.4)

defining the zero vector 0. The essential point of equation (1.4) is that
0 is the same vector, whatever a is. We formalize this into the axiom:

(1D) There is a unique vector 0, called the zero vector, which
satisfies

Oa = 0,

for all vectors a.

The uniqueness of the zero vector is an important property of
three-dimensional space, and is also a property of many more
complicated `spaces' occurring in mathematics and mathematical
physics. Equation (1.4) is `intuitively obvious', but this is only because
of our everyday experience of displacements; in formulating an ab-
stract mathematical theory of vectors, the obvious needs to be stated
explicitly.

1.3 Addition and subtraction of vectors

The second set of axioms for vectors {a} define the laws of addition of
vectors. They embody many familiar properties of displacements in
space, and after stating the axioms, we shall discuss their geometric
meaning. The operation of addition is denoted by the symbol `+'. It
may appear confusing to use the same symbol for addition of
numbers (scalars) and for addition of vectors; there are two reasons
why confusion does not arise:

(i) the sum of two scalars A +µ contains scalars (A and µ), while
the sum of two vectors a+b contains vectors (a and b);

(ii) the axioms of addition and scalar multiplication of vectors are
very similar to axioms of addition and multiplication of scalars.

The axioms of vector addition are:

(2A) a+b is a vector, for any two vectors a, b,

(1.5)(2B) a+b = b+ a,
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(2C) a+(b+c)= (a+b)+c, (1.6)

(2D) (A + µ )a = Aa + µa, (1.7)

(2E) A (a+b) = A a + A b. (1.8)

The addition of a and b to give the vector sum a+b is represented
in Fig. 1.3. The two vectors are represented by displacements PQ and
PS from the point P. The point R is chosen so that PORS is a
parallelogram; then PR represents the vector sum a+b. Geometric-
ally, this rule of combination, known as the parallelogram law, is
obviously symmetrical between a and b; this symmetry is built in to
vector algebra in Axiom (2B); algebraically, this axiom is known as
the commutative law of addition of vectors. It has been already
pointed out that representing vectors by displacements can be
misleading; this shows up in Fig. 1.3, where it is more natural to think

Fig. 1.3

of combining displacements PQ and QR to give the displacement PR.
We shall see in §1.4, however, that this is not an accurate way of
representing vector addition. A closer physical analogy to vector
addition is the experimental law of combination of two forces acting
at a point P: if they are represented by the vectors a and b, then they
are equivalent to a force represented by a+b, also acting at P; Fig.
1.3 is then interpreted as the `parallelogram of forces'.

Axiom (2C) is the associative law of addition of vectors; a+(b+c)
is the vector formed by first adding b and c to give (b + c) and then
adding this to a; this process is represented in Fig. 1.4, with a+(b+c)
represented by PT. Likewise, (a+b)+c is represented by PT in Fig.
1.5. Axiom (2C) has the interpretation that the same displacement
PT is defined by the two processes.
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a

Fig. 1.4

T

a

Fig. 1.5

Axioms (2B) and (2C) together tell us that all possible sums of
three vectors a, b and c, for example (a+b)+c and b+(a+c), are
equal; the sum can therefore be written as a+b+c, without brackets.
This property can be readily extended to sums of more then three
vectors; for example, all possible sums of four vectors a, b, c and d are
equal, and are denoted by a+b+c+d. In general, all sums of n
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vectors al, 22, ... , an are denoted by
n

Y- ar=al+a2+...+an.
r=1

In the following example, the equality of two particular sums of four
vectors is established from the axioms.

Example 1.1

Using only the axioms, show that

(a+b)+(c+d) = [(b+d)+a]+c.
The axiom used at each stage is written alongside:

(a+b)+(c+d)

= (a+b)+(d+c) (2B)

= [(a+b)+d]+c (2C)

= [a+ (b+d)] +c (2C)

= [(b+d)+a]+c. (2B)

Axioms (2D) and (2E) define the relationship between scalar
multiplication and addition; they allow us to `multiply out' products
so that

(A +µ)(a+b)= A (a+b)+µ(a+b)

=Aa+Ab+µa+µb,

for example. Geometrically, (1.7) simply means that distances along
the line of the displacement representing a are additive in the usual
sense. If, for example, A > 0 and µ < 0, Aa and µa are in opposite
directions and have moduli Aa and IµIa respectively, as represented in
Fig. 1.6; the vector sum (A +µ)a is also represented. If we put A = 1
and µ = 0 in (1.7), so that µa = 0 (the zero vector), we find

a=a+0. (1.9)

Fig. 1.6
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So addition of the zero vector to any vector a leaves a unaltered, in
accord with our intuitions about zero displacements.

The final axiom (2E) has a very important geometrical meaning,
and can be called the `similarity postulate'. In Fig. 1.3 we have
already pictured the vectors a, b and a + b as displacements connected
by the parallelogram law. Axiom (2E) means that if each of these
displacements is multiplied by a number A, the resulting three dis-
placements representing Aa, Ab and A(a+b), still obey the paral-
lelogram law. This property is represented in Fig. 1.7. The similarity

Aa

Fig. 1.7

postulate is characteristic of Euclidean space, and is one of the
axioms closely associated with the `flatness' of the space. If, for
example, we tried to represent displacements along great circles on a
sphere by vectors {a}, it is clearly hard to satisfy the commutative law
of addition (1.5). It is also clear that the similarity postulate (1.8) is
going to fail: one cannot expand or contract a figure drawn on the
surface of a sphere without changing some angles or the ratios of
some of the lengths; preservation of angles and of the ratios of all
lengths are the essential properties of `similarity'.

We have defined the vector -a=(-1)a. From (1.7),

a+(-a)=(1-1)a=0, (1.10)

in accord with our intuitive concept of the vector -a, represented in
Fig. 1.2. Equation (1.10) is often written

a - a = 0. (1.10)

More generally, subtraction of a vector b from a vector a is defined by

a-b=a+(-b), (1.11)

this difference of displacements is represented by PT in Fig. 1.8. If we
replace b by -b in Axiom (2A) and use (1.11), we see that a-b is a
vector, for all vectors a and b. Making similar replacements in
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Fig. 1.8

Axioms (2B)-(2E), we can express these axioms in a number of
different forms, in which both plus and minus signs may occur. Some
examples of these different forms are:

a-b=-(b-a), (1.12)

a-(b+c)= (a-b)-c, (1.13)

(A -µ)a=Aa-µa, (1.14)

A(a-b)=Aa-Ab. (1.15)

Example 1.2

Establish (1.13).

a-(b+c)=a+[-1(b+c)] by (1.11)

= a+ [(-b) + (-c)] by (1.8)

_ [a + (-b)] + (-c) by (1.6)

_ (a-b)-c. by (1.11)

Summarising, the axioms of scalar multiplication and addition,
together with the definition (1.11) of a-b, ensure that

(i) any linear combination of vectors, for example Aa+µb+vc, is
a vector;

(ii) products can be `multiplied out', and terms rearranged and
cancelled, as in the algebra of real or complex numbers.
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Example 1.3

Simplify

(A +g)(a-b)-A(a+c)+(g - v)b.

This expression is a vector, being a linear combination of vectors a,
b and c. Multiplying out, cancelling, and `collecting terms', we obtain

Aa+ga-Ab-gb-Aa-Ac+gb- vb
=ga-Ab-Ac-vb
= ga - (A + v)b -Ac.

The Axioms (lA)-(1D) and (2A)-(2E) define a set {a} which is
called a linear space or a vector space. Many sets of mathematical
objects satisfy these axioms and form a linear space. We therefore
need to impose on the set {a} further restrictions or axioms which
define the structure of three-dimensional Euclidean space. One im-
portant concept which needs to be properly defined is 'modulus' or
`length'; we also need to introduce the concept of `angle'. Both of
these elementary geometric concepts will be introduced in Chapter 2.

Problems 1.1

1 If a, b, c are three vectors, simplify the following expressions, using
only axioms and definitions given in the text:

A(a+b)-A(b+ c),

3(a+b)-[a+3(b+c)].

2 If vectors a, v and w are defined in terms of two vectors a and b by

u=a-3b,
v = -2a+b,
w = 3a+ 2b,

express the following vectors in terms of a and b:

2u+v u+v+w
3u-2v+2w 2u+4v+w.

3 Establish Equation (1.15), using only (1.11) and the axioms.
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1.4 Displacements in Euclidean space

Although we have not yet stated all the axioms of vector algebra,
some familiar properties of the geometry of points and lines can be
derived from the axioms already given. In previous sections, we have
used displacements in geometrical or Euclidean space to exemplify
properties of vectors, but we have not yet stated clearly the relation-
ship between abstract vectors and displacements. Further, the
concept of `a point in space' has not been introduced in the axioms.
So before we derive any geometrical results, we must discuss the
relationship between an abstract vector space {a} and three-dimen-
sional Euclidean space.

We shall describe Euclidean space in terms of points, which we
denote by 0, P, 0, R, ... , and displacements. A displacement is
determined if we are given a point P, called the initial point, and an
abstract vector a; the displacement is then denoted by ap, and we say
that ap is a displacement `from the point P'. In practice, one normally
omits the suffix `P' on ap; for the present, we shall retain the suffix,
since it is essential for a clear understanding of displacements.

We shall set out the properties of displacements as a third set of
axioms, commenting on them and explaining them as we go along.
The first axiom assumes the existence of one `point' 0; other points
are introduced later:

(3A) The set of displacements {ao} from the given point 0 is in
one-to-one correspondence with the abstract vectors {a}, and
obeys the same Axioms (lA)-(1D) and (2A)-(2E).

The two sets {ao} and {a} therefore have identical mathematical
properties; we say that they are isomorphic. Since {a} is a linear space,
so is {ao}. Other sets of physical quantities are also isomorphic to the
vector space {a}; for example, forces Fo acting at the given point 0
are found experimentally to have vector properties; so the set {F0}
also forms a vector space isomorphic to {a}. It is important to realise
that the spaces {a}, {ao} and {F0} are essentially different, and contain
different types of element: each ao is a displacement, with the
dimension of length; each Fo is a force, with the dimension of force;
each a is an abstract algebraic object, and has no dimension asso-
ciated with it.

Points other than the given point 0 are introduced by the second
axiom:
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(3B) The set of all points {P} is in one-to-one correspondence with
the displacements {ao} from 0, and hence in one-to-one cor-
respondence with the vectors {a}. The point 0 itself corresponds
to the zero vector 0.

The point A associated with a particular displacement ao from 0
is called the end-point of ao, and the displacement is written

ao = OA; (1.16)

the abstract vector a corresponding to OA is called the position
vector of A relative to origin O. Displacements ao, bo and co from 0
are represented in Fig. 1.9(a) by directed lines from the point O. The
corresponding vectors a, b, c are represented in Fig. 1.9(b) by direc-
ted lines in arbitrary positions, since they are not associated with any
point in space. The displacements {ao}, with a given initial point 0,
are often called fixed vectors; a force FO acting at 0 is also a `fixed
vector'. The abstract vectors {a} are then called free vectors, since
they are not associated with any initial point. The fact that the sets
{a}, {ao} and {A} are in one-to-one correspondence means that if we
are given a member of one of the sets, there is exactly one member of
each of the other two sets corresponding to it. For example, any given
displacement ao from 0 corresponds both to a,unique end-point A
and to a unique vector a.

(a)

a

(b)

Fig. 1.9
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Axiom (3A) only defines displacements {ao} from the single point
0. Now that other points {A} have been introduced, we define
displacements from an arbitrary point P by further axioms, which are
represented in Fig. 1.10:

(3C) If points A and P correspond to displacements ao and po, and
hence to vectors a and p, a unique displacement

aP= PA
from P to A exists.

(3D) For every two points A and P, and corresponding vectors a and
p, the displacement ap from P to A corresponds to the abstract
vector a-p. For this reason, we use the notation

aP= (a-p)P. (1.17)

(3E) For each point P, the displacements {ap} obey the same al-
gebraic rules as the abstract vectors to which they correspond.

In Fig. 1.10, the given displacements ao and po, defining A and P,
are drawn as solid lines. The displacement aP= PA, defined by the
axioms, is represented by a broken line PA. At first sight it seems that
Fig. 1.10 merely represents the fact that two vectors p and a obey the
equation

p+(a-p)= a. (1.18)

A ap=(a-p),,

/

Po P

Fig. 1.10

The situation is not in fact so simple. Each abstract vector a cor-
responds to a displacement ao from the given point 0. Axiom (3C)
now tells us that a and ao also correspond to a displacement ap from
P, for every point P. So corresponding to the set of abstract vectors {a}
represented in Fig. 1.9(a), we have a whole collection of sets
{ao}, {ap}, . . . , one for each of the points 0, P, .... Axiom (3D) tells
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us how displacements from 0 are related to displacements from P,
and is in fact the rule governing change of origin from 0 to P; the set
of displacements {ap}, for example, are said to `have P as origin'.

The axioms defining displacements appear to single out one point,
denoted by O. We shall now show that all points 0, P, ... , are in fact
equivalent. First note that from any point P, there is a unique dis-
placement aP related to a-p, defined by (1.17); further, the dis-
placements {a P} obey the same axioms as the displacements {ao} from
the given point 0, each forming a linear space. Let us consider how
the axioms for the sets {a}, {ao} and {a'p} correspond; take for instance
the Axiom (2B),

a + b = b +a. (1.5)

If the vectors a, b correspond to displacements ao, bo from 0, the
corresponding axiom for these displacements is

ao+bo =bo+ao. (1.19)

Using Axiom (1.6), the Axiom (1.5) can be written in the form

(a-p)+ (b-p)= (b-p)+ (a-p), (1.20)

where p is any vector; we take p to correspond to the displacement
po=OP. Then, since (a-p) and (b-p) correspond to displacements
aP and bP by Axiom (3D), we see that (1.20), or (1.5), corresponds to

aP+bP=bP+aP, (1.21)

by virtue of Axiom (3E). So the vector Axiom (2B) corresponds
directly to an equivalent property (1.21) of displacements from any
point P. The axiom for displacements {a0} from the point 0 is
recovered from (1.21) by putting p = 0 and using Axiom (3B).

It is not hard to check that, in a similar way, all the axioms
(1A)-(1D) and (2A)-(2E) give rise to the same set of properties of
displacements from an arbitrary point P; so displacements from 0
are in no way specially related to the abstract vector space. The fact
that ao corresponds to the vector a, while aP corresponds to a - p,
does appear to single out the point 0; for this reason, the point 0 is
often called the origin; we emphasise, however, that it is in no basic
sense a special point, and that any point may be chosen as origin.

We have already noted that the relation (1.17) between vectors and
displacements from P, indicated in Fig. 1.10, is related to the vector
equation (1.18). Because we choose to relate displacements from
different points in this way, it is possible to use (1.18) as an equation



16 Linear spaces and displacements

relating displacements between different points; the equation could
in fact be written in the form

ao = Po +(a-p)p; (1.22)

this equation can be interpreted directly as `a displacement from 0 to
P followed by a displacement from P to A is equivalent to a dis-
placement from 0 to A'. Whether (1.22) is regarded as an equation
defining `change of origin', or as a rule governing physical displace-
ments in space, it is quite different from the mathematical relation
(1.18) governing abstract vectors. It is customary to omit the suffixes
`O' and `P' in Equation (1.22) and to write it in the form (1.18); in
discussing geometric applications, we shall frequently do this; the
initial points of the various displacements are usually fairly obvious in
any application.

It is important to realise that, in some applications, Equation (1.18)
can be interpreted in terms of vector quantities at a single point. We
noted earlier the experimental fact that forces {Fp} at a single point P
obey the vector axioms. So if Fp and Gp are two such vectors, they
obey the relation

Gp+(Fp-GP)=Fp,

corresponding directly to the vector relation (1.18); this relation,
unlike (1.22), involves only vector quantities at a single point P. We
must therefore bear in mind that a simple vector relation like (1.18)
can have several different interpretations which should be clearly
distinguished.

Equation (1.17) relates the abstract vector a - p to the displacement
PA = ap'. The vector a - p is called the position vector of A relative to
P. The vector a - p also corresponds to the displacement

OB=(a-p)o
from 0, shown in Fig. 1.10. Displacements such as OB and PA which
correspond to the same position vector (a-p in this case), are said to
be equal and parallel. More generally, a non-zero displacement ap
from a point P is said to be parallel to any displacement AaM from
another point M, provided A 0 0; ap and am correspond, of course, to
the same non-zero vector a.

If we are given a displacement ap from a point P to a point 0, as in
Fig. 1.11, the set of displacements of the form Aap are said to form a
ray, and the end-point R of a displacement Aap `lies on the line PQ';
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T

S
a

Fig. 1.11

the line PQ is the set of all such points. We say that PR and PQ are
`in the ratio A : 1', or that

PR:PQ=A: 1.
If ST = as is equal and parallel to ap, as in Fig. 1.11, we also say that

PR: ST=A:1.

1.5 Geometrical applications

Now that we have defined displacements, points and lines in
Euclidean space, we can establish some simple geometric results.
Normally, we shall adopt the standard convention of labelling dis-
placements ao, be, ... by the corresponding position vectors a, b, ... ;
the initial point of each displacement is usually clear, and is often
represented in a diagram. When displacements are written as
OR, PQ, ... , the initial point is the first of the two points named.
Again following normal practice, we shall use equations such as

OB = PA = a-p, (1.23)

relating different displacements in Fig. 1.10 to the position vector
a-p. Equation (1.23) tells us which displacements of the two sets
{ao}, {ap} correspond to the vector a - p; geometrically, it tells us that
OB and PA are equal and parallel, and it is a different kind of
equation from (1.21), say, which relates displacements from a single
point only.

The first result we establish concerns the division of a line AB in a
given ratio m : n. Suppose, as in Fig. 1.12(a), that a and b are the
position vectors of A and B relative to an origin O. We want to find
the position vector of the point C on AB such that AC: CB = m : n.
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(a)

Fig. 1.12

OC= OA+AC =a+AC;

The displacements AC and AB are therefore parallel and their
lengths are in the ratio m : m + n. Thus

AC = m AB
m+n

=mmn(OB-OA)

_ m
(b -m+n a).

Also

hence, using (1.24),

OC=a+ m (b-a)
m+n

na+mb
m+n

(b)

(1.24)

(1.25)

Thus the position vector of C is the `weighted mean' of the position
vectors of A and B. In mechanics, C is the centroid of a mass n at A
and a mass m at B. The coefficient of b in (1.25) is

_ m

q m+n'
and the coefficient of a is

n =1- m =1-q;m+n m+n
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so the two ratios m:n and q:1-q are equal. Equation (1.25) then
tells us that the point C dividing AB in the ratio q: 1- q has position
vector

c = (1-q)a+qb. (1.26)

This is a useful variant of (1.25).
Equation (1.25) can be applied even if m or n is negative; division

in the ratio m : n is then called `external division' of AB in the ratio
j m l : In I. If m>0 and 0 > n > -m, for example, B lies on the line
between A and C; then the condition that AC: CB = m : n is better
expressed vectorially by the equation

m CB = n AC;

the relative positions of A, B, C are shown in Fig. 1.12(b); thus
(1.24), and hence (1.25) and (1.26), are still true.

We note that in deducing (1.25), we have used a notation which
mixes up displacements from different origins, such as AC and OC,
and position vectors such as a and b. In deducing (1.25), one should
use abstract vectors throughout, interpreting the result in terms of
displacements from O.

Suppose that N points A, B, ... , E have position vectors
a, b, . . . , e relative to an origin O. Then the mean position or centroid
of A, B, . . . , E is defined as the point G with position vector

OG= 1 (a+b±...+e). (1.27)

It is important to note that G is a point which is fixed relative to the
points A, B, ... , E. That is to say, the vectors AG, BG, ... , EG do
not depend on the choice of the origin O. It is sufficient to show that
AG is independent of the choice of origin. Now

AG = OG - OA

= 1 (a+b+c+...+e)-a

= 1(b+c+...+e)- N-1
a. (1.28)

Now suppose we use a different point P as origin, and that OP = p, as
in Fig. 1.13. Let a', b'. ... . e' be the position vectors of A, B, . . . , E
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Fig. 1.13

relative to P; then (1.17), written in terms of position vectors, gives

a'=a-p,
b'=b-p,

e'=e-p.

Using P as origin in the definition (1.27), we would find, instead of
(1.28),

AG=N(b'+c'+...+e')- N la'.

Fig. 1.14
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But substituting for a', b', ... , e' in terms of a, b, ... , e and p gives
exactly (1.28). So the same point G is defined as centroid, regardless
of the origin chosen.

We can define a parallelogram PQRS by taking P, for example, as
origin, and defining PQ = a and PS = b to be the displacements along
two sides from P, as shown in Fig. 1.3; R is defined by taking
PR = a+b. Similarly, we can define a parallelepiped by taking one
vertex 0 as origin and giving the position vectors a, b, c correspond-
ing to displacements OA, OB, OC along three adjacent edges, as
shown in Fig. 1.14. The remaining vertices A', B', C' and 0' have
position vectors b + c, c + a, a + b and a + b + c respectively.

Example 1.4

Show that
(i) the medians of a triangle ABC meet at the centroid G of A, B

and C;
(ii) if D, E and F are the mid-points of BC, CA and AB respec-

tively, then

AG:GD=BG:GE=CG:GF=2:1;
(iii) G is the centroid of the points D, E and F.
Let a, b, c be the position vectors of A, B, C, relative to some

origin, as in Fig. 1.15. Using (1.25) with m = n, the mid-point D of
BC has position vector

d = 2(b + c).

Now define a point G on AD such that AG: GD = 2: 1. Using (1.25)
with n = 1, m = 2, and b replaced by d, we find that G has position

.A (a)

Fig. 1.15
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vector

3 +
3d
=3(a+b+c).

By (1.27) with N = 3, G is the centroid of A, B, C. Further, symmetry
between a, b, c shows that it is the point of trisection of the other two
medians also. Thus (i) and (ii) are established.

By (1.27), the centroid of D, E, F has position vector

3 2 2 2

and is therefore also at G, proving (iii).

Example 1.5

Prove that the four diagonals of a parallelepiped meet and bisect each
other.

Since the definition of a mid-point is independent of the origin
chosen, choose the origin at 0 as in Fig. 1.14, and define vectors a, b,
c as shown. Then the position vectors of the pairs of points at the ends
of the diagonals are

0, 0':O,a+b+c,
A, A': a, b+c,

B, B' : b, c+a,

C, C':c,a+b.
Using (1.25) with m = n tells us that the mid-points of 00', AA',
BB' and CC' all have the same position vector

2(a+b+ c).

So the diagonals do intersect at their mid-points. Note that the point
of intersection is the centroid of the eight points 0, A, B, C, 0', A',
B' and C.

Problems 1.2

1 0, A and B are three points. P and Q are points lying, respectively,
on the line through 0 and A, and on the line through 0 and B. If
OP = mOA and OQ = nOB, show that the line through 0 and the
mid-point of AB divides PQ in the ratio m: n. Draw diagrams to
illustrate this result
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(a) when m>1 and O < n < 1,
(b) when -1<m<Oandn>1.

2 L and L' are two lines in space, and C, C' are two fixed points on L,
L' respectively. A, B are variable points on L, and A', B' variable
points on L' such that

ACA'C'
CB C'B' - '

where A is a real constant. Prove that

AA'+ABB'=(1+A)CC'.

3 Prove that the diagonals of a parallelogram bisect each other.
4 OACB is a parallelogram. D is a point on OA such that OA = AOD,

and E is a point on DB such that EB = ADE. Prove that 0, E, C are
collinear and that OC = (A + 1)OE.

5 A, B, C, D are four points in space. A' is the centroid of B, C, D; B'
is the centroid of C, D, A; C' is the centroid of D, A, B, and D' is the
centroid of A, B, C. Prove that if A 0 A', B 0 B', C 56 Cand D 0 D',
then AA', BB', CC' and DD' all meet at the centroid G of A, B, C,
D. Prove also that G is the centroid of A', B', C, D'.

6 A, B, C, D are four different points in space. P, 0, R, S are points on
AB, BC, CD, and DA respectively, dividing these lines in the same
ratio m : n. Prove that the centroids of A, B, C, D and of P, 0, R, S
coincide.

7 A, µ, v are real numbers, and p, q, r are the position vectors of points
P, Q, R relative to a given origin. If

(A-µ)p+(µ-v)q+(v-A)r=0,
and none of A, µ, v are equal, prove that P, Q, R are collinear.

8 A, B, C are three non-collinear points and A, p., v are non-zero real
numbers. D, E, F are points on BC, CA, AB respectively, such that

AF__A BDCE
FB F.c' DC V' EA A'

with the usual sign convention. Show that D, E, F are collinear.
[This is Menelaus' theorem.]
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Scalar products and components

2.1 Scalar products

In the first chapter, the concept of the modulus or magnitude of a
vector was used to discuss the geometric interpretation of certain
axioms, but we have not yet defined it. Nor have we introduced the
fundamental geometrical concept of `angle'. We shall define both
modulus and angle in terms of a more general mathematical object,
the scalar product of two vectors, frequently called the inner product
in mathematical works.

Before giving the formal definition of scalar product, we explain
how it is related to the moduli of two vectors a and b, and the angle 0
between these vectors. In Fig. 2.1 we have represented the vectors by
two displacements drawn from a point, and have taken 0 to be the
smaller angle between the two lines, so that

O'0'7r.

Fig. 2.1

(2.1)

In terms of 0 and the moduli a and b of the vectors, the scalar
product, denoted by a b is given by

a b = ab cos 0. (2.2)

24
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When a and b denote displacements, a and b are the lengths of the
displacements. Equation (2.2) is often regarded as the definition of
a b, but this presupposes that we know what lengths and angles
are - in fact, we have to assume a knowledge of Euclidean geometry.
Our purpose, however, is to deduce the properties of vectors from
algebraic axioms, including the axioms defining scalar products. We
then define modulus and angle in terms of scalar products; applying
these definitions to displacements in three-dimensional space, we
then deduce Euclidean geometry.

We can, however, use (2.2) to see how `modulus' and `angle' are to
be related to scalar products. If the vectors a and b are equal in (2.2),
then in Fig. 2.1, 0 = 0 and a = b. So (2.2) becomes

a a=a2cos0=a2. (2.3)

So the scalar product of a vector a with itself gives us the square of the
modulus (or magnitude) of a. We always choose the modulus a to be
non-negative (a , 0); in particular, lengths of displacements are al-
ways positive or zero.

If we multiply a vector a by a-', we obtain the vector

u = a-la, (2.4a)

called the unit vector corresponding to a. Likewise the- unit vector
corresponding to b is

u1= b-'b. (2.4b)

The axioms that we shall write down will allow us to divide Equation
(2.2) by the scalar factor ab to give

(a 'a) (b -'b) = cos 0,

or, using (2.4),
(2.5)

So the scalar product of two unit vectors is the cosine of the angle
between the vectors. We note that scalar products define cosines of
angles, not the angles themselves; however, if we are given cos 0, with

lcos 01 -_ 1, (2.6)

this determines a unique angle 0 in the range (2.1). We shall see later
that all cosines defined by (2.2) or (2.5) satisfy the condition (2.6),
and so correspond to a definite angle 0 in the range 0 _ 0!5 ?r.
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Now that we have seen how scalar products are to be related to the
familiar geometrical properties of length and angle, we shall give the
axioms defining them. Then we shall show that the familiar properties
of length and angle do in fact follow from the axioms, when they are
introduced through (2.2), or (equivalently) through (2.3) and (2.5).

The axioms defining scalar products are:

(4A) To any two vectors a and b there corresponds a unique real
number, the scalar product, which is denoted by a b.

(4B) (2.7)

(4C)

a a a =

(4E) a

a a = a

a when

a 0 (2.10)

is the definition of the modulus of the vector a. It is easy to show that
the modulus of the zero vector 0 is zero; we leave the proof as an
example. The modulus a of a vector a is often written as 121.

Axiom (4B) accords with the interpretation (2.2) of the scalar
product, since

b a = ab cos 0

also; this axiom tells us that scalar multiplication of two vectors is
commutative. Using (2.7), Axiom (4C) can be immediately extended
to give

a (Ab) = (Aa) b = A (a b); (2.11)

so multiplication of either a or b by a real number A results in
multiplication of their scalar product by A. This property was used
when we multiplied the scalar product a b in (2.2) by (ab)-1 in order
to give u ul in (2.5); it is an associative law.

The unit vector u in the direction of a is defined by (2.4a); we find
the modulus of u from (2.3), using (2.11):

u2 = u u = (a-la) (a-1a)
= a-2(a a) = 1.

So u = 1, justifying the term `unit vector'.
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Axiom (4D) is most easily understood geometrically if we multiply
it throughout by a-1; defining the unit vector u by (2.4a), (2.8)
becomes

u b, for example. Equation (2.2) tells us that it is
to be interpreted as

as in Fig. 2.2, this is the projection of a displacement b in the
direction of u. So (2.12) can be interpreted in terms of projections, as
shown in Fig. 2.3; since u b= OP, u c=RS, u (b+c)= 00, (2.12)
has the geometric interpretation

00=OP+RS.
Axioms (4C) and (4D) express the linearity of the scalar product;
they allow us to `multiply out' scalar products, and to factor out
scalars. Axiom (4D) is a distributive law.

B

Fig. 2.2

Fig. 2.3
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Example 2.1

Using only the axioms, expand

(a + Ab) (c + Ad).

The axioms used are indicated at each stage.

(a+Ab) (c+Ad)

= (a+Ab) c+(a+Ab) (Ad) (4D)

=c (a+Ab)+A[d (a+Ab)] (4B, 4C)

=c a+A(c b)+A(d a)+A2(d b) (4D, 4C)

(4B)

Example 2.2

Simplify

[a+ b(1 +A)+ c] [a+b(1-A)-c].

Using methods familiar in the algebra of real or complex numbers,
and remembering (2.3), this becomes

[(a+b)+(Ab+c)] [(a+b)-(Ab+c)]
= (a+b) (a+b)-(Ab+c) (Ab+c)
= la+b12-IAb+cl2.

We can now show that the geometrical interpretation (2.5) of the
scalar product of two unit vectors is reasonable; in particular, we
shall establish (2.6). Suppose that u and ul are any two unit vectors,
so that

Axiom (2.9) tells us that

(u-ul) (u-ul)>O
unless u-ul = 0. Expanding and using (2.13),

u ipl- ul, so that

(2.13)

U. u,<1.
Similarly, considering (u+ul) (u+ul), we find that

U. u,>-1
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provided u 0 u,. Thus

In U,1<1 (2.14)

unless u = tul. Using the word `iff' to denote `if and only if', we can
easily see that

u u = -ul. (2.15b)

Equations (2.14)-(2.15) establish the essential condition (2.6) for
accepting the interpretation (2.5). They go further, however. The
statement (2.15a) tells us that if cos 9 = 1 in (2.5), so that the angle
between u and ul is zero, then u and ul are the same unit vector.
Likewise, (2.15b) tells us that there is only one unit vector making an
angle IT with a given unit vector u, and that this vector is -u.

To summarise this section, we have laid down Axioms (4A)-(4E)
defining the scalar product a b of any two vectors a and b; when
b = a, (2.10) defines the modulus of a vector, which has been shown to
have the basic properties of `length'. The cosine of the angle 0
between two vectors has been defined by (2.2) or (2.5), and has been
shown to have the essential properties (2.6), and (2.15). Later in the
chapter, when we have introduced Cartesian coordinates, we shall see
that we have given a definition of `cosine' which accords with its usual
trigonometrical meaning.

The result (2.6) or (2.14) gives rise to an important inequality
relating the moduli of vectors. If the angle between two vectors a, b is
0, then, using (2.2) and (2.3),

ja+b12 = a2+b2+2ab cos 0
-a2+b2+2ab

=(a+b)2.

Since a, b and ja+bI are non-negative,

ja+bI; a +b, (2.16)

and by (2.15a), the equality holds only if 9 = 0. Equation (2.16) is
known as the triangle inequality; its geometrical interpretation, that
the sum of the lengths a, b of two sides of a triangle is greater than the
length Ia+bI of the third side, is well known.
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Suppose that a and b are two non-zero vectors, so that a 0 0 and
b 0 0. Then if their scalar product is zero,

a b = 0, (2.17)

it follows from (2.2) that cos 0 = 0. Since 0 , 0 0 = Zar. Two
non-zero displacements, represented by a and b and satisfying (2.17),
are thus perpendicular; non-zero vectors a and b satisfying (2.17) are
said to be orthogonal or normal. The concept of orthogonality plays an
important role, not only in geometry, but in many other applications of
the algebra of linear spaces.

Problems 2.1

1 Use Axiom (4C) to show that the modulus of 0 is zero.
2 Using (2.4 a) and (2.11), show that as and a have the same unit vector

associated with them when A > 0. What happens for other values of
A?

3 Assuming that cos 0 is defined for 0 , 0 < a, give definitions of sin 0
and tan 0 in terms of cos 0, for the same range of angles.

4 If a and b are vectors, and a and b are their lengths, derive the
identity

(a+b) (a-b)= a2-b2
from the axioms and the definition (2.3).
If a and b represent displacements along adjacent sides of a paral-
lelogram, interpret the above identity in terms of the geometry of the
parallelogram.

5 Simplify the following expressions:
(i) (a+d) (b-c)+(a-d) (b+c),
(ii) a (b-c)+b (c-a)+c (a-b),
(iii) a (Ab-µc)+b (Ac-µa)+c (Aa-µb).

6 Prove the statements (2.15a) and (2.15b).

2.2 Linear dependence and dimension

Suppose that a, b, c, ... , e are a finite number of vectors, and that
they obey a relationship of the form

as+/3b+yc+...+ee = 0, (2.18)

where the real numbers a, f3, y, ... , e are not all zero. Then the
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vectors a, b, c, . . . , e are said to be linearly dependent. (If a = /3 =
y = ... = e = 0, (2.18) is always trivially satisfied.) The geometric
significance of linear dependence can be seen by considering two
examples.

Example 2.3

Let a be any vector, and A any real number. Then a and b = Aa are
linearly dependent, since

-Aa+b=O.

This is a relationship of the form (2.18), and the coefficient of b is
non-zero.

Geometrically, a displacement Aa from a point P is either `in the
same line as' a, as in Fig. 1.11, or (if A = 0) it is the zero displacement
0. So linear dependence of two displacements a and b from the same
point P means that P and the two end-points, 0 and R, are collinear;
in fact, we take this to be the definition of collinearity of three points.
Note that a or b (or both) may be 0. If a and b represent displace-
ments from different points, these displacements are parallel (or
possibly zero).

Example 2.4

Suppose that three vectors a, b, c are linearly dependent, with

as+/3b+yc=0.

Not all of a, /3, y are zero; suppose y 74- 0, for example. Then defining
finite real numbers A = -a/ y and µ = -/3/ y,

c = Aa+ µb. (2.19)

If a and b represent displacements, they are in general not parallel.
Taking them to represent displacements from a single point P, as in
Fig. 2.4, they then define a plane. If c is also represented as a
displacement from P, as in the figure, then c `lies in the plane' defined
by a and b. We can formally define the plane as the set of points
whose position vectors relative to a point P are of the form (2.19); A
and µ may take any real values.

If a and b in (2.19) are linearly dependent, representing displace-
ments in the same line, they do not define a plane. Displacements c
are then in the same direction as a and b.
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Fig. 2.4

Generally, if the set a, b, ... , e are linearly dependent, then the set
a, b, . . . , e, f (with any other vector f added) are also linearly depen-
dent, for we can add the term Of to the left-hand side of (2.18),
obtaining a non-trivial relation of the same kind, but involving f as
well as a,b,...,e.

A set of vectors a, b, c, ... , e is linearly independent if the only
solution of (2.18) is the trivial solution

a=0=y=...=E=0. (2.20)

It follows at once from Example 2.3 that two linearly independent
displacements are non-zero and are not parallel; and from Example
2.4, that three linearly independent displacements a, b, c from a point
do not lie in a plane, since no relationship of the type (2.19) exists.

We now state and prove an important theorem dealing with the
`expansion' of a vector v. Suppose that a, b, c, ... , e are a linearly
independent set of vectors, and that the vector v can be expressed as a
linear combination.

v = a'a+ f3'b + y'c + ... + E'e (2.21)

of this set. Then the uniqueness of expansion theorem states that the
linear independence of a, b, . . . , e implies that the coefficients
a', P', y', ... , E' in (2.21) are unique.

The proof of this theorem is simple. Suppose that v can also be
expanded as

v = a"a+ f3"b+y"c+... +E"e.

Subtracting this equation from (2.21) gives

(a'-a")a+((3'-f3")b+...+(e'-a")e=0.
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This is a relationship of type (2.18) with a = a'- a ", f3 =13' - a", and
so on. The condition (2.20) of linear independence therefore gives

So the expansion (2.21) is unique.
As an example of the uniqueness of expansion theorem, consider

the expansion (2.19) of a displacement c lying in the plane of two
non-parallel displacements a and b. Since a and b correspond to
linearly independent vectors, the coefficients A and pt in (2.19) are
uniquely determined. When a and b are collinear displacements
(linearly dependent), so that b is a multiple of a, then c is also a
multiple of a; the coefficients A and µ in (2.19) are then not uniquely
fixed.

In this book, we are studying vectors in three-dimensional space.
So far we have not introduced the concept of the dimension of a
linear vector space. The dimension of a linear space {a}, defined by
Axioms (1A)-(1D) and (2A)-(2E), is the maximum number of
linearly independent vectors in the space. Thus a one-dimensional
space consists of all vectors of the form Aa, where a is a single
non-zero vector; if these vectors Aa correspond to displacements
from a point P, the end-points define a line through that point, as in
Fig. 1.11.

Likewise, a plane is a two-dimensional space of displacements; if a
and b are two linearly independent displacements from a given point,
then all displacements c from the point are uniquely expressible in the
form (2.19).

For brevity, we shall refer to n-dimensional space as `n-space', so
that a line is a 1-space of displacements and a plane is a 2-space. In
3-space, let a, b, c be three linearly independent vectors. If d is any
other vector in the 3-space, a, b, c and d must be linearly dependent;
so there is a non-trivial relationship of the form

as+,(3b+ yc+ Sd = 0.

In this equation S ?4- 0, since S = 0 would imply that a, b and c were
linearly dependent. So we can divide out by 6, putting A = -a/S,
µ = -0/3, v = -y/S; this gives

d=Aa+µb+vc, (2.22)

the expansion of d in terms of a, b, c. Since a, b, c are linearly
independent, the uniqueness of expansion theorem tells us that this
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expansion is unique. Since any vector d can be expanded uniquely in
the form (2.22), the vectors (a, b, c) are said to form a basis in the
3-space; they are also said to span the 3-space.

Quite generally, an n-space is (by definition) spanned by n linearly
independent vectors; any other vector in the n-space has a unique
expansion in terms of them. Equations (2.19) and (2.22) are examples
of these expansions, in 2-space and 3-space respectively. Some im-
portant linear spaces used in mathematics contain an arbitrarily large
number of linearly independent vectors; these spaces are said to be
infinite-dimensional. When a scalar product is defined in such a
space, satisfying Axioms (4A)-(4E), the space is called a Hilbert space.
We can if we wish look upon a finite-dimensional space, for example
3-space, as a special kind of Hilbert space.

We have now written down and discussed the full set of axioms
defining a vector space of n dimensions with a scalar product, and we
have given further axioms defining points and displacements in
geometrical or `Euclidean' space. The algebraic axioms are known to
be self-consistent, and the geometrical interpretation of the axioms
provides us with an intuitive `picture' or `model' of the axioms. The
algebraic and geometrical ideas therefore give each other mutual
support: the consistency of the axiomatic algebraic scheme assures us
that Euclidean geometry rests on a coherent and simple mathematical
foundation, while the geometrical model in 3-space provides us
with an intuitive picture of abstract vectors in terms of lengths, angles
and other familiar geometrical concepts. A further advantage is that
these geometrical intuitions can be used to understand the algebra of
spaces of four and higher dimensions, and even of infinite-dimen-
sional spaces. This advantage will not be apparent in this book,
however, since we are restricting our study to 3-space.

Problems 2.2

1 A, B, C are three non-collinear points and l, µ, v are non-zero real
numbers. D, E, F are points on BC, CA, AB respectively, such that

AAF = IxFB, A BD = vDC, vCE = AEA.

Show that AD, BE and CF meet at a point. Find the position vector
of the point in terms of the position vectors of A, B and C. (Ceva's
theorem.)
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2 Vectors a and b are linearly independent. A set of points P(nl, n2) is
defined to have position vectors

v(ni, n2) = n,a+n2b

relative to an origin 0, with the numbers n, and n2 each taking all
integral values 0, ±1, ±2, t3, .... Draw a diagram to indicate the
positions of these points. What happens when a and b are linearly
dependent?

3 A vector c is expressed in the form

c=,la+µb,
where a and b are linearly independent. By taking scalar products of
this equation with a and b, express A and µ in terms of scalar
products of the three vectors. Why is linear independence necessary?

4 A vector d is expanded as

d=Aa+µb+vc,
where a, b, c are linearly independent. Show how to find A, µ, v in
terms of scalar products of the four vectors.

5 Two unit vectors i and j satisfy i j = 0. Show that i and j are linearly
independent.

If c is a third vector such that i, j, c are linearly independent, and c'
is defined by

c'
(i) (ii) geometrically.

2.3 Components of a vector

In interpreting Equation (2.12), we introduced the projection b - u of
a vector b in the direction of a unit vector u. The projection is a
scalar, and is represented geometrically in Fig. 2.2. If we multiply this
scalar into the unit vector u, we obtain the vector

bll = (b u)u; (2.23)

this vector is represented in Fig. 2.2 by the displacement OP. The
vector bll is called the component of b parallel to u, explaining the
notation bp. The vector represented by the displacement PB in Fig.
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2.2 is then
b1= b - bil

=b-(b u)u. (2.24)

Equation (2.24) defines the component of b orthogonal to u. It is
intuitively obvious that the displacement PB = b1 in Fig. 2.2 is
orthogonal to u; it is easy to see that b1 and u satisfy the ortho-
gonality condition (2.17), since from (2.24),

b1

In coordinate geometry we study displacements in terms of their
components along three mutually orthogonal directions, as indicated
in Fig. 1.1. We are now in a position to introduce Cartesian coordinates
for vectors by defining a set of three unit vectors, (i, j, k), known as a
triad, such that

(2.25)

Geometrically, i, j and k are mutually orthogonal and represent unit
displacements along the three Cartesian axes. We must first establish
that triads exist. In 3-space, we know that we can find three linearly
independent (and hence non-zero) vectors a, b and c. Define the first
vector of the triad as

i=a 1a;

this is the unit vector corresponding to a, indicated in Fig. 2.5. Then,
as in (2.2), define

b1= b- (b i)i,

orthogonal to i. Clearly b1 0 0; for if b1= 0, b = (b i)i, meaning that
a and b would not be linearly independent. Let j be the unit vector
corresponding to b1, again indicated in Fig. 2.5. Then i j = 0, as
required. To define the third vector k of the triad, we consider the
vector (see Problems 2.2, Question 5)

c =c-(c i)i-(c j)j. (2.26)

Here we have subtracted from c its components along i and j, and it is
easy to check that

c' - i=

c' = c would be linearly
dependent. We therefore define k as the unit vector corresponding to
c ; this satisfies (2.25), completing the triad (i, j, k). A triad is also
known as an orthonormal basis.
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b 1 "b

a

Fig. 2.5

The vectors i, j, k are linearly independent; for if

ai+(3j+yk=0,
then taking scalar products with i, j and k successively and using
(2.25), we find

a=/3=y=0.
So, using (2.22), it follows that any vector v in 3-space can be
expressed in the form

v= vli+v2j+v3k. (2.27)

Further, the uniqueness of expansion theorem tells us that the
coefficients v1, v2, v3 in (2.27) are unique. By forming the scalar
products of (2.27) with i, j and k in turn, we find

V2=V'J, V3=V'k. (2.28)

Comparison with (2.17) tells us that v1, V2, V3 are the projections of v
along i, j and k respectively. The vectors in the vector sum (2.27),

Vii(V' i)i,
vzl = (v (2.29)

and

v3k = (v k)k
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are called the components of the vector v relative to the basis i, j, k.
The scalars v1, v2, v3 are also often referred to as `components'; to
avoid confusion we shall call the projections vi, v2, v3 the Cartesian
components.

It is important to note that if two basis vectors i, j are given, all
vectors in 3-space which are normal to both i and j are of the form Ak,
where k is constructed as above. To prove this, use the general
expression (2.27) for a vector; the condition that v is normal to i and j
gives, using (2.28), v1= V2 = 0. Hence v = v3k, a multiple of k. There
are thus only two unit vectors orthogonal to both i and j; assuming
that one of them, k, has been constructed as above from a particular
linearly independent set a, b, c, the other unit vector is then -k.

A triad (i, j, k) is pictured geometrically as the set of unit vectors
along three Cartesian axes, as in Fig. 2.6. In this figure, we have

Fig. 2.6

drawn (i, j, k) as a right-handed triad, meaning that a rotation by the
smaller angle from i to j (indicated by the arrow on the arc of the
circle), accompanied by a translation in the direction of k, gives a
right-hand screw motion. With this convention, we see that (i, j, -k),
the only other triad containing i and j, is left-handed. The concept of
`right-handedness' is purely geometrical, and there is nothing in the
algebraic definition of (i, j, k) which defines such a concept. We shall,
however, follow the usual geometrical convention of associating a
triad denoted by (i, j, k) with a right-handed set of axes, unless we
specifically introduce a left-handed triad.
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In the plane defined by i and j, the rotation through zir from i to j is
said to be a rotation in the positive sense. If i' and j' are two other
mutually orthogonal unit vectors in the plane of i and j, as shown in
Fig. 2.6, and if

i=j'-j, (2.30)

then the angles a marked in the figure are equal. We then say that the
rotation from i to j' through 21r is also in the positive sense. But if

i = -j' j, (2.31)

then the rotation through zir from i' to j' is a rotation in the negative
sense.

More generally, suppose that a and b are any two non-zero vectors
in the plane of i and j. Let be the unit vector corresponding to a, and
let j' be the unit vector corresponding to the component b1 defined by
(2.24); these replace i and j in Fig. 2.5. Then the sense of rotation
(positive or negative) from a to b, through the smaller angle 9
between them is the same as sense of rotation from i' to j'. The sense
of rotation from a to b through the reflex angle (21r - 0) is defined to
be in the opposite sense to the rotation through the smaller angle 0.

From the general expansion (2.27) of a vector in terms of its
components and from (2.25), it is easy to establish certain rules of
manipulation. Multiplying (2.27) by a scalar A,

Av = (Avi)i+ (Av2)j +(Av3)k; (2.32)

so multiplication of a vector by A implies that its projections or its
components are each multiplied by A. If also

W= wii+ w2 j + w3k, (2.33)

then

v+w= (v1+ wl)i+(v2+ w2)j+(v3+w3)k, (2.34)

so that addition of vectors implies the addition of respective
components, a result closely related to Axiom (4D). In deducing
(2.32) and (2.34), the Axioms (2D) and (2E) have been used.

The rules governing scalar products of basis vectors i, j, k are

(2.35)

and the orthogonality conditions (2.25):

(2.25)
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If v and w are given by (2.27) and (2.33), then

V' w = (vii+v2j+v3k) (wli+ w2j+ w3k)

= viw1(i i)+v2w2(j - j)+v3w3(k . k)
+(v1W2+v2W1)i . ]+(v1W3+v3Wi)i k

+(v2W3+v3W2)j . k.

Using (2.35) and (2.25), this gives

V W=v1W1+v2W2+v3W3. (2.36)

This is the formula for the scalar product of any two vectors v and w
in terms of the components of v and w. The condition that non-zero
vectors v and w are orthogonal is that expression (2.36) is zero.

The modulus v of v is given by putting w=v. Then (2.36) and (2.3)
give

v is interpreted as a displacement from a point P, (2.37) is
immediately identifiable as the Pythagorean relation (1.1). We have
therefore established Pythagoras' theorem as a theorem in vector
algebra.

Example 2.5

Evaluate the scalar product of the two vectors

v = i + 2j + 3k,

w=2i-3j+2k.
Find the moduli of the two vectors.

The vectors v and w are given by (2.27) and (2.33) with

(vi, v2, v3) = (1, 2, 3)

and

(wi, w2, w3) = (2, -3, 2).

The scalar product, given by (2.36), is

.2=2.
The modulus of v is given by (2.37):

v2=12+22+32=14.

Since v > 0, v = Similarly

w = (22+32+22)1 = 17.
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Example 2.6

Two vectors are given in terms of a triad (i, j, k) by

a=3i-j-k,
b=2i+2j- 4k.

Find the unit vectors corresponding to a and b, and the angle between
a and b.

The moduli of a and b are given by (2.37):

a2=32+12+12=11,

so that a = 11. Likewise b = 24 = So by (2.4), the unit vectors
u and u, corresponding to a and b are

u=T-(3i-j-k),

ui =T(i+j-2k).

The angle between a and b is given by (2.2) or, equivalently, by (2.5).
We use (2.5) to give

cos 0 =6(3i-j-k) (i+j-2k).

Evaluating the scalar product by using (2.36),

Cos0=

Since 0 , 0 _ rr, 0 is the acute angle arccos

Problems 2.3

[Throughout, (i, j, k) is taken to be a triad.]
1 Three vectors a, b, c are defined by

a=i-2j+4k,
b = 2i +j,

c=-i+j-3k.
Evaluate 2a-b, a+b+c, a+2b+3c.

2 Vectors a, b, c are defined as in Question 1. Find the unit vectors
corresponding to a, b and c, and find the angles between the three
pairs of vectors.
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3 i'and j' are orthogonal unit vectors. Vectors a and b are defined in
terms of i', j' by

a= 3i'+4j',

b=i'-j'.
Show that a and b are linearly independent. By using (2.4a) and
(2.24), construct a second set of orthogonal unit vectors i and j,
expressed in terms of and j'. Check that i and j are orthogonal.

4 (i', j', k') is a triad. Vectors a and b are defined by

a=2i'+2j'+k',
b 4i'+ j'- W.

By using (2.4a) and (2.24), construct the unit vector i corresponding
to a, and a unit vector j, normal to i, in the plane of a and b.

Find a unit vector k satisfying

Check that (i, j, k) is a triad.
5 Define a rhombus in terms of position vectors. Prove that the

diagonals of a rhombus are orthogonal.
6 Vectors a, b and c satisfy the relation (c-a) a = (c - b) b. Show that

c - (a + b) is orthogonal to a - b. Draw a diagram to illustrate these
relations when a, b, c represent displacements.

2.4 Geometrical applications

Now that we have introduced scalar products and have thereby
provided an axiomatic basis for Euclidean geometry, we can extend
the range of geometrical theorems provable by vector methods. In
§2.5 and in the next chapter we shall introduce techniques and
concepts which allow a greater range of problems to be solved rela-
tively easily. So, while in principle the whole of Euclidean geometry
can now be established, we shall limit ourselves in this section to
problems which can be solved easily using the methods we have
established so far.

The simplest use of Cartesian components is in the geometry of a
plane; for many practical purposes we can regard local travel on the
earth's surface as being confined to a plane. Making this ap-
proximation, and choosing a point on the earth's surface as origin, we
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can take as basis two orthogonal unit displacements i and j in, say, the
directions east (E) and north (N); then, as shown in Fig. 2.7, a nearby
point P on the earth's surface will have a position vector p of the form

p=xi+yj. (2.38)

Fig. 2.7

3 (E)

The Cartesian components (x, y) are the rectangular coordinates of P.
If PO is another point with position vector

Po = xoi+yoj, (2.39)

then the displacement POP is

P - PO = (x - xO)i + (Y - Yo)j. (2.40)

A succession of displacements P,, P2, ... , pn, where

P,=Xti+ytj (t=1,2,..., n),
result in a total displacement, or resultant,

n

P - Pt

(Yxt)i+(iYtJ (2.41)

This is simply an extension of the rule (2.34).
The trigonometric functions of angles are often useful for describ-

ing position vectors in a plane. The cosine of an angle, which we now
denote by ¢(0<0,ir), is defined by (2.5); to allow the use of the
usual trigonometric formulae, we now extend the definition of cos 0
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to the range (0, 27r), and define sin 0 and tan ¢ in this range. For
-rr < .0 , 27r, we define

cos.0 = cos (21r - (k). (2.42)

The sine is defined by

sin +(1-cos2 O)t (0, ar),
(2.43)

sin¢=-(1-cos2O)t (7r<q<27r),

and the tangent by

tan 0 =sin ¢ (0 27r). (2.44)
cos ¢

Suppose that the position vector of a point P in a plane is given by
(2.38), and that we define (P (0 _- 0 , 2ir) to be the angle between i
and p, measured in the positive sense, so that 0 = 127T when p = j. This
is in accord with normal trigonometric convention, and it is not hard
to show that definitions (2.42)-(2.44) give rise to the usual formulae

cos 4 =p , sin 4 =P , tan g =z , (2.45)

for all real values of x and y. These relationships are shown in Fig.
2.7. We can extend the definition of trigonometric functions to all
real values of ¢ by postulating that they are unchanged when 0 is
increased or decreased by 27r; for example

cos ¢ = cos (0 + 2nir) (n +±1, t2, ... ). (2.46)

We now give some further examples of geometric applications of
vectors.

Example 2.7

A ship makes successively the following movements:

10 kilometres north,
20 kilometres north-west,
12 kilometres 30° west of south,
6 kilometres south-east.

Find its overall change of position.
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Taking i and j as unit displacements to the east and north, the four
displacements are

10j,

-6i -
3,/2i -

The total displacement is thus

=-15.898i+9.506j.
This is a displacement of magnitude

[(15.898)2+(9.506)2]1=18.5

in a direction

' 15.898
tan =59°7'

9.506

west of north.

Example 2.8

Define an isosceles triangle vectorially. Prove that the angles at the
base are equal.

Let ABC be the triangle, with AB = AC. Choose A as origin, so
that it has position vector 0. Let B and C have position vectors b and
c, so that AB = b, AC = c and BC = c - b. Then if b = c, the triangle is
defined to be isosceles. Let /3 and y be the angles ABC and ACB.
Then by (2.2)

AB CB=b (b-c) =blb-cl cosa,
so that

b2-b c
cos Ii = bib-cl

Likewise

c.2-b c
cos y = cib-cl

But since b = c, cos /3 = cos y. Hence /3 = y.
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Example 2.9

Points A and B have position vectors

a=3i-2j+k,
b=-i+2j-7k.

Find the position vector of the point P on AB such that AP: PB =
3:1.

The position vector of P is, using (1.25),

4a+4b=j-5k.

Example 2.10

a, (3, y are any real numbers. Show that points P, 0, R with position
vectors

p=ai+$j+yk,
q=/3i+yj+ak,
r = yi+aj+(3k,

are the vertices of an equilateral triangle. Show that the angle PQR is
3 T.

The displacements along the sides of the triangle are

PQ=((3-a)i+(y-a)j+(a-y)k,
QR=(y-a)i+(a-y)j+(13-a)k,
RP=(a-y)i+((3-a)j+(y-f3)k.

So the length I of each side is given by

12= (0 -a)2+(y-'3)2+(a - y)2,

and the triangle is equilateral. Denote the angle QPR by 0. Then

(a-13)(a-y)+(a-13)(y-f3)+(a-y)(13-y)
a2+f32+y2-/3y-ya-a,(3
1, 2.2

Hence cos 0 = 2 and 0 = arr.

Example 2.11

Prove that the perpendiculars from the vertices of a triangle onto the
opposite sides are concurrent.
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Fig. 2.8

Let OAB be the triangle, as shown in Fig. 2.8. Choose 0 as origin
and let OA = a, OB = b, so that AB = b - a. It is assumed that 0, A, B
are distinct points, so that a* 0, b -?4- 0, a - b 5-4- 0. If P is a point such
that BP is perpendicular to OA and AP is perpendicular to OB, then

(b - p) a = 0,}
(2.47)

(a-p) b=0.
Subtracting these equations gives

p- (a-b)=0,
showing that p is orthogonal to the (non-zero) vector a - b, or OP is
perpendicular to AB.

Note that (2.47) determine a unique position vector p in the plane.
For p is of the form

so that (2.47) gives

p=Aa+µb,

Aa2+µa b=a b,

b,

which have a unique solution because a, b are linearly independent.
(See Problems 2.2, Question 3.)

The sine and cosine of an angle have been defined vectorially. We
shall now use these definitions to establish familiar formulae for the
sine and cosine of the sum of two angles. Suppose that (i, j, k) is a
triad, and that , are two mutually orthogonal vectors in the plane
defined by i, j, as indicated in Figs. 2.6 and 2.9, such that the sense of
rotation from to j' is positive. Let a be the angle between i and i',
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measured in the positive sense from i; then

i (2.48a)

and
a. (2.48b)

Now consider a unit vector u in the plane which makes an angle a
with i (in the positive sense from i'). Then, as shown in Fig. 2.9,

u=i'cos(3+j'sin/3. (2.49)

Fig. 2.9

The angle between u and i is called the sum of the angles a and (3, and
is denoted by a +0; the cosine of this angle is, by definition,

cos (a + (3) = u i.

Using (2.49) and (2.48), this becomes

cos (a +,G) = (i i) cos (3 + (j' i) sin (3

= cos a cos /3 - sin a sin (3. (2.50a)

Similarly it can be shown (Problems 2.4, Question 9) that

sin (a +(3) = sin a cos (3 +cos a sin (3. (2.50b)

The symmetry of the formulae (2.50) between a and 0 shows that
(a +(3) can be replaced by ((3 +a) in all trigonometric functions; this
is consistent with the use of the term `sum of angles' for the angle
between u and i, since we expect a `sum' of two quantities, a and 0, to
be independent of their order. Also, putting 0 = 0 in (2.50) gives

cos (a + 0) = cos a, sin (a + 0) = sin a ;

so we can take a +0 = a, for all a, ensuring that the zero angle also
satisfies the usual additive property of the number 0. Addition of
angles also satisfies the associative law; the use of the usual `+' sign is
therefore justified.
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The set of points with position vectors

r= a cos 4) i+a sin 0 j, (2.51)

with .0 taking values in the range 0--0<21r, have Cartesian
components

x=acos4), y=asinq5,

which satisfy

x2+y2=a2

by (2.43). The points with position vectors (2.51) therefore constitute
the circle of radius a, with centre at the origin. The points cor-
responding to 0=0 and 0 = Ir have position vectors ai and -ai
respectively; these are the end-points of a diameter of the circle.

Example 2.12

If A, B are the end-points of the diameter of a circle, and R is any
other point on the circle, show that AR and BR are orthogonal.

Let the circle have radius a. Choose the centre of the circle as
origin, and the basis vector i so that A, B have position vectors ai and
-ai. Let R have position vector (2.51), corresponding to an angle 4).
Then

AR = a (cos 0 -1)i + a sin 0 j,

BR = a (cos 4) + 1)i + a sin .0 j.

Then

AR BR = a2[(cos 0 -1)(cos 0 + 1)+sin2 ¢]

=a2[cos20-1+sin2 ¢]=0.
But since 0 0 0 and 0 54- rr, the moduli of AR and BR are not zero.
Therefore AR and BR are orthogonal.

Problems 2.4

1 The position vectors of points A, B relative to an origin 0 are

a=3i-j-k,
b=-2i-5j+ A.

P and 0 are the points of trisection of AB, with AP: PB =
OB: AQ = 1: 2. Find the position vectors of P and 0, the lengths of
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OA, OP and AP, and the angles OAB and OQB. Check that

OA < OP +PA.

2 Unit vectors i, j are parallel to adjacent edges of a large square table;
the directions of i and j are referred to as `east' and `north'. An ant,
walking on the table, makes the following movements:

4 centimetres 30° east of south,

12 centimetres south-west,

6 centimetres east,

9 centimetres 60° west of north.

Find the magnitude and direction of the ant's resultant displacement.
3 The position vectors of non-collinear points A, B, C are a, b, c. Show

that the position vector r of any point R in the plane of A, B and C
can be expressed in the form

_ as+,(3b+yc
r a+f3+y

with a, suitably chosen. Interpret the ratios a : 0: y in terms of
the ratios in which the lines AR, BR and CR cut the sides BC, CA
and AB respectively. Prove that there is a point P (the orthocentre)
such that AP, BP, CP intersect BC, CA and AB at right-angles, and
that its position vector is

cot A cot B cot C {a tan A +b tan B +c tan C}.

4 If A, B, C, D are any four points in space, show that

DA BC+DB CA+DC AB = 0.

5 If G is the centroid of n points A1, A2, A3, ... , A,,, and P is any
other point, show that

A1P2+A2P2+.

6 Points A, B have position vectors a, b. Points C and D divide AB
internally and externally in the ratio p: q. Show that

g2a2_ p2b2
2 2q -P

Deduce that OC and OD are perpendicular if pb = qa ; interpret this
result in terms of the geometry of the circle with CD as diameter.



2.5 Coordinate systems 51

7 One pair of opposite edges of a tetrahedron are equal in length and
both of these edges are perpendicular to the line joining their mid-
points. Show that these properties are then true for the other pairs of
opposite edges.

8 A line passes through the centre of a cube, making angles a, X13, y, 8
with the four diagonals of the cube. Show that

cos2 a + cost i3 + cost y + cost s = 3.

9 Use the definition (2.43) to establish (2.48b). Use vectorial methods
to establish (2.50b). Find a formula for tan (a +a) in terms of tan a
and tan R.

2.5 Coordinate systems

In the previous section, we introduced rectangular coordinates (x, y)
of a point in a plane. There are a number of useful methods of
denoting points in a plane and in 3-space by a set of numbers,
referred to generally as coordinate systems; we shall introduce some
of the most familiar coordinate systems in this section.

Position vectors in a plane relative to an origin in the plane, are all
of the form

p=xi+yj; (2.38)

the axioms of addition and scalar multiplication imply that we must
allow x and y each to have any real value, usually expressed as

-co < x < oo, -oo < y < ao. (2.52)

Polar coordinates (p, 4) in a plane are defined by the relations

x=pcosqS,
y =p sin 4',

or by the inverse relations

(2.53)

P = (xt+yt)t>
0 = tan-1 (y/x)

The coordinate pairs (x, y) and (p, 0) are shown in Fig. 2.7; compar-
ing (2.35) and (2.54), we see that p =1p1, so that the notation p for the
polar coordinate accords with the usual convention for the modulus
of the vector p.

It is not difficult to show (see Problems 2.5, Question 1) that to any
set of Cartesian coordinates (x, y), satisfying (2.52), there is normally
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a unique set of polar coordinates (p, 0), provided that the allowed
ranges of p and ¢ are

0--p <cc, 0<0 <2irr. (2.55)

The only exception to this rule is the origin, given by p = 0 for any
value of 0. We may, if we wish, choose 0 to vary over any range of
length 2Tr; another common choice of ranges is

0sp<00, -Tr<¢,TT. (2.56)

We now discuss several coordinate systems that are useful in 3-
space. The vectors we study, as in 2-space, represent displacements.
It is important to note, though, that other types of vector quantity,
such as velocity and force, can also be described by using these
coordinate systems.

Corresponding to the representation (2.38) of a displacement p in a
plane, we frequently express a displacement r from an origin 0 in
3-space in the form

r = xi + yj + zk, (2.57)

where (i, j, k) is a triad. Then, as in Fig. 2.10, the Cartesian
components (x, y, z) of r are the rectangular coordinates of the point
P with position vector r. Equations (2.32) and (2.34) are then the
familiar laws of scalar multiplication and of addition of components.
In particular, (2.34) tells us that the displacement to P from a point
P1 with position vector

r1= x1i+y1j+zlk (2.58)

is

r-r1= (x -x1)i+(y -yl)j+(z -z1)k. (2.59)

The unit vector corresponding to r(= OP is, using (2.4),

u-r 1r=( )i+( )j+\r/k. (2.60)

The coordinates of this unit vector,

11=x, 12=y 13=?,r r r
(2.61)

are called the direction cosines of OP, since they determine the
direction of OP in space, but not its length. From (2.5), we see (for
example) that 11 is the cosine of the angle between OP and i. The
three direction cosines (2.61) are not independent, since the
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Fig. 2.10

Pythagorean relation (2.37) tells us that

1i+12+13=1. (2.62)

The unit vector in the direction of r is

u =11i+12j+13k. (2.63)

The displacement r is therefore specified by giving its length r and its
direction cosines.

For a general displacement (2.59), with length Ir-ril given by

Ir-r1I2 = (x -x1)2+(Y -Y1)2+(z -zi)2,

the direction cosines are defined as

_x - xl _ Y - Yl _ z-Zl
ll Ir-ril

12 it-rll' 13 Ir - rlI

They again satisfy the relation (2.62).

(2.64)

(2.65)
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Suppose that r and s are the position vectors of two points relative
to 0, and that the unit vectors corresponding to r and s are given by
(2.59) and by

Ul ° S-1S = m li+m2j + m3k,

so that (M1, m2, m3) are the direction cosines of s. If 0 is the angle
between r and s, then by (2.5),

cos 0 = a a1

=11ml+12m2+13m3. (2.66)

Two other well-used sets of coordinates in 3-space are cylindrical
polar coordinates and spherical polar coordinates. Cylindrical polar
coordinates are a simple extension of polar coordinates (p, 0) in a
plane. The x and y coordinates in (2.57) are replaced by p and 0, as
in (2.53), while z remains as a coordinate. Defining p by (2.38), we
have

r=xi+yj+zk
= p+zk

=p cos 4)i+p sin ¢j+zk. (2.67)

This expresses the rectangular coordinates in terms of the cylindrical
polar coordinates (p, 4), z). Using (2.55), it is clear that any dis-
placement with p 0 0 is uniquely specified if the values of these
coordinates lie in the ranges

O'p<00, 0<4)<2ir, -00<z<co. (2.68)

Two of the three spherical polar coordinates are r, the length of r,
and 0, the cylindrical polar angle. The third coordinate is the angle 0
between the vectors r and k (the `z-axis'). The spherical polar coor-
dinates (r, 0, ¢), and their geometrical relationships with x, y, z and p
are shown in Fig. 2.10; the position vector r of the point P is shown as
a thickened line, and is of length r. From the diagram it is clear that

p=rsin0,l
z=r cos 0.

(2.69)

Using (2.53), we find the relationship between (x, y, z) and (r, 0, 0) to
be

x=rsin0cos4),
y = r sin 0 sin 4),

z = r cos 0.

(2.70)
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We can find r and trigonometrical functions of 9 and 0 in terms of
(x, Y, z):

71)(2 .

2
2i t2 2 fcos = x/(x + sin _Y) Y/(x + Y ) .

Almost all displacements can be uniquely described if (r, 9, 0) vary in
the ranges

0-r<oo, 0-_ 9-- rr, 0-- 0<21r. (2.72)

We can allow ¢ to vary over any range of length 2ir, for example

-1T < S IT,

if we wish. The proof of (2.71) and (2.72) is left to the reader
(Problems 2.5, Question 3).

Problems 2.5

1 Show that each point in a plane, except the origin of coordinates,
corresponds to a unique set of polar coordinates (p, 0) lying in the
ranges

0<p<00, 0<0<27r.
2 Show that the distance d between two points in a plane with polar

coordinates (pi, 01) and (p2i ¢2) is given by

d2 =P1+P2-2P1P2 cos (01-02)-

3 Show that the relations (2.71) between spherical polar and rectan-
gular coordinates follow from the relations (2.70), and that each set
of rectangular coordinates (x, y, z) normally corresponds to exactly
one set of spherical polar coordinates (r, 9, b) lying in the ranges

0_r<co, 0C9-_ IT, 0-_q<27r.
Discuss the relationship between the two sets of coordinates when
r=0 and when 9=0 or0=7T.

4 If (p, ¢, z) are cylindrical polar coordinates, write down in terms of
rectangular coordinates the equations of surfaces
(1) P = Po,
(ii) 0 46o,

where po and 00 are constants. Draw a diagram showing surfaces of
types (i) and (ii).

r = (x2+ cos 9 = z/(x2+y2+z2)1 , (
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5 If (r, 0, 0) are spherical polar coordinates, write down in terms of
rectangular coordinates the equations of surfaces

(i) r = ro,
(ii) 6 = 60,
(iii) -0 00,
where ro, 0 and 450 are constants. Draw a diagram showing surfaces
of types (i), (ii) and (iii).

6 Write down the rectangular coordinates of the two unit vectors with
spherical polar angles (e1, 01) and (02, &2) If a is the angle between
these two unit vectors, show that

cos a = cos 01 cos 02 + sin 01 sin 02 cos (01 - 02)-

7 Two points have spherical polar coordinates (r1, 01, (11) and
(r2, 02, ¢2); show that the distance d between the points is given by

d2=ri+r2-2r1r2[cos 01 cos 02+sin 91 sin 02 cos (o1-02)].

Simplify this formula by using the result of Question 6.
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Other products of vectors

3.1 The vector product of two vectors

If we are given two linearly independent vectors a and b, they define a
2-space of vectors through (2.19). We proved in §2.3 that there were
only two unit vectors in 3-space orthogonal to both a and b; if we
denote one of these by n, the other is -n. If b1 is the component of b
orthogonal to a, the vectors a, b1, n are mutually orthogonal. We
shall see in Chapter 4 that, if any given triad (i, j, k) is taken to be
right-handed, the 'handedness' of any three mutually orthogonal
vectors is determined. We can choose the labelling of the two vectors
(n, -n) to ensure either that (a, b1, n) is right-handed or that (a, b1, n)
is left-handed. We choose to define n so that (a, b1, n) is right-
handed, as indicated in Fig. 3.1; then, of course, (a, b1, -n) is left-

a

Fig. 3.1

handed. So a rotation from a to b through the smaller angle 0,
combined with motion in the direction n, produces a right-handed'
screw motion. The vector product of the two vectors a and b is
defined in terms of the moduli a and b, the angle 0 (0 < 0 < 7r)

57
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between the vectors, and the vector n specified above. The vector
product is denoted by a n b, and has definition

a n b = ab sin On. (3.1)

Since we have assumed that 0 < 0 < 7r, (3.1) defines a n b for this
range of 0 only. It is easy, however, to extend the definition to all real
values of 0. First, if 0 = 0 or 0 = 7r, sin 0 = 0, and we can take (3.1) to
mean a n b = 0; n is undefined for these values of 0, since a and b are
then linearly dependent; the result 0 is obtained if we take the limit of
(3.1)as 0-*0or 94Ir.

Next, if 0 = 27r - 0 is the reflex angle between a and b, shown in
Fig. 3.2, then 7r < 0 < 27r. Let us apply the definition (3.1), regarding

-b

Fig. 3.2

aG as the angle between a and b; the rotation from a to b through i i is
in the opposite sense to that through 0, as indicated, so the `right-
hand rule' associates the vector -n (not n) with the rotation through
the angle 0. Then (3.1) gives

a n b = ab sin 0 (-n)

_-absin(27r-0)n
= ab sin On,

consistent with the definition (3.1) for 0 < 0 < 7r. So (3.1) is valid for
all angles in the range 0 < 0 = 27r. Since any angle is of the form

0f27rn (n=0, 1,2,...;00<27r),
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and sin (0 t 2an) = sin 0, the definition (3.1) can be used for any
angle.

In (3.1), n is a unit vector; so the magnitude of a n b is

lab sin 01.

If a and b correspond to displacements from a point P, as in Fig. 1.3,
this is the area of the parallelogram PQRS defined by a and b.

Certain simple properties follow from the definition (3.1). First
note that

a n (-b) = -a A b; (3.2)

for, if 0 is the angle between a and b, as in Fig. 3.2, then (0 + ir) is the
angle between a and -b, in the same sense as 0; since (3.1) is valid for
all angles,

a n (-b) = ab sin (0 + ir)n

= -ab sin On,

establishing (3.2). Next, if A > 0,

aA(Ab)=(A a)Ab=A(aAb); (3.3)

this follows at once from the definition (3.1), remembering that the
lengths of Aa and Ab are Aa and Ab respectively. Combining (3.2) and
(3.3) we see that (3.3) is valid for any scalar A, positive or negative.

The effect of interchanging the order of vectors in a vector product
is to change its sign; thus

b n a=-an b. (3.4)

This result follows by noting that, in Fig. 3.2, a rotation from b to a in
the positive sense is through the angle fr = 27r - 0, so that

b n a = ba sin (21r - 0)n

= -ab sin On.

Putting b = a in (3.4), we find

aAa=0; (3.5)

this equation is valid, since we have already taken a n b = 0 when b is
parallel to a. Its deduction from (3.4) is not valid, however; it is
correctly deduced by taking the limit b a with 0 -+ 0 in (3.1). For
similar reasons, we define a n 0 = 0, for all vectors a, although a
unique vector n in (3.1) is not determined when b = 0.

A very common notation for the vector product is a x b, and the
vector product is frequently called the cross product. The use of the



60 Other products of vectors

ordinary multiplication sign can be confusing, since by (3.4) the
vector product does not obey the commutative law of multiplication.
We have therefore chosen to use the other standard notation a n b
for the vector product.

3.2 The distributive law for vector products; components

Suppose that b1 is the component of b orthogonal to a, as represen-
ted in Fig. 3.1. Then we shall show that

aAb=aAbl. (3.6)

The product a n b is defined by (3.1), with 0 < e < Tr and with n and
the rotation a b associated by the right-hand rule. The angle
between a and b1 is za; the vector n is orthogonal to both a and b1i
and is associated with the rotation a--> b1 by the right-hand rule. So
the vector product a n b1 is a vector in the direction of n. Thus the
definition (3.1), with b replaced by b1i gives

a n b1= a lb1I sin Zir n

= a lb±ln. (3.7)

However, the modulus of b1 is

b1= Ib1j = b sin 0,

so that (3.7) becomes

a A b1= a (b sin 6)n.

Comparing with (3.1), we see that (3.6) is established for 0 < 0 < IT.
When 0 = 0 or ir, both sides of (3.6) are zero, so that the equation
holds for all vectors a and b.

If we resolve b into components parallel and orthogonal to a, by
taking u = a-la in (2.23) and (2.24), then

b = b1l +b1. (3.8)

Equation (3.6) tells us that

2 A (bp+b1)=a n b1. (3.9)

Since a n bl, = 0, we might regard this equation as obvious. It is not
obvious, however, because we do not know that we can `multiply out'
the left-hand member of (3.9) to give

(a n b11)+(a A b1).
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Put more generally, we have not yet established the distributive law
of multiplication

aA(b+c)=aAb+anc (3.10)

for vector products. This law is not an axiom, like the distributive law
(2.8) for scalar products; the vector product has been defined by
(3.1), and all of its properties, including (3.10), must follow from this
definition.

To establish (3.10), we shall express each of the vector products in
terms of a right-handed triad (i, j, k), chosen so that

a=ak. (3.11)

Consider, for example, the term a A b in (3.10), which equals a A b1,
by (3.6). The vector b1 is orthogonal to k, and so is of the form

b1= b1i+b2j, (3.12)

as indicated in Fig. 3.3. We shall now show that the vector product is
given by

a n b=a A b1=-ab2i+ab1j.

Fig. 3.3

(3.13)

The vector a A b1i given by (3.7), is generally determined by the
properties:

(i) Its modulus is

ab1=a(b1+b.)t, (3.14)

using (3.1) with 6 = iir, and (3.12).
(ii) a A b1 is orthogonal to both a and b1.
(iii) (a, b1, a n b1) form a right-handed set.
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If it happens that b1= b2 = 0, so that b1= 0, the modulus (3.14) is also
zero, and (3.13) gives a A b1 = 0, which is correct. We therefore
check that the vector on the right of (3.13) satisfies the properties (i),
(ii) and (iii) when b1 54- 0. Its modulus is [(ab2)2+ (ab1)2]1, agreeing
with (3.14). It is clearly orthogonal to a= ak, and its scalar product
with b1 is, using (3.12) and (2.36),

bl(-ab2)+b2(ab1) = 0.

It is thus also orthogonal to b1. So we have only to establish property
(iii); if and j' are the unit vector corresponding to the vectors (3.12)
and (3.13), we need to establish Equation (2.30),

i=j' - j. (3.15)

The unit vectors corresponding to (3.14) and (3.15) are, using (2.4)
and (3.14),

= b1'(bli+b2j)

and

j'= b11(-b2i+blj)
It is clear that each side of (3.15) is equal to b11b1, establishing
property (iii). We have therefore proved that a n b is given by (3.13).
The relationships between ab, b1, i, j and a A b are represented
geometrically in Fig. 3.3; the angles marked `a' are equal, by (3.15).
In a similar way, if in terms of the same triad (i, j, k),

C1 = Cji+c2j,

so that

(b+c)1= (bl+cl)i+(b2+c2)j,

the other vector products in (3.10) are given by

a n c=-ac2i+aclj
and

a n (b+c)=-a(b2+c2)i+a(bl+c1)j.

Taken together with (3.13), these equations show that the distributive
law (3.10) is satisfied. The essential point of the argument is that
a n b, given by (3.13), is linear in the components b1, b2 of b.

The distributive law (3.10) is algebraically very simple, but its
geometrical significance is quite complex. The vectors b, c and b+c
can be represented by displacements which form a closed triangle in
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space. The three vector products in (3.10) represent displacements
perpendicular to b, c and b+c respectively, all lying in a plane
perpendicular to a. The result (3.10) tells us that this second set of
displacements also form a closed triangle.

The distributive law is extremely useful in practice, since it allows
`multiplying out' and `factorisation' of vector products. Using (3.4),
(3.10) becomes

(b+c)Aa=bAa+cna, (3.16)

so that these properties also apply to the first vector in a vector
product. We must always remember, though, to preserve the order of
vectors in vector products, since a change of order results in a change
of sign.

Example 3.1

Simplify
(a+Ab) A (a+µb).

Using (3.3), (3.10) and (3.16), we multiply out to obtain

ana+AbAa+µaAb+AµbAb.
Using (3.4) and (3.5), this becomes

Abna-gbAa=(A-r)bA a.

From the definition (3.1), and from (3.4) and (3.5), it follows that a
right-handed triad (i, j, k) satisfies the following relations:

jAk=-kAj=
k n i= -i n k=j, } (3.17)

iAj=-jAi=k,
ini=jAj=kAk= 0. (3.18)

If vectors v and w are expressed in component form

v=v1i+v2j+v3k,

w= w1i+w2j+w3k,

then, using the fact that we can multiply out vector products,

V A W=vlwli n i+v1W2i n j+vlw3i n k

+v2w1j n i+V2W2j n j+V2W3j n k

+v3w1k n i+v3w2k n j+v3w3k n k;
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using now the relations (3.17) and (3.18),

V A W=(v2W3-v3W2)i+(V3W1-v1W3)l+(v1W2-v2W1)k. (3.19)

Example 3.2

Find a unit vector orthogonal to v = i+ 2j + 3k and to w = i - j + k.
By definition, the vector product v A w is orthogonal to both v and w.
The Cartesian components of v and w are (1, 2, 3) and (1, -1, 1).
Using (3.19),

V n w=[2. 1-3(-1)]i+[3 1-1 1]j+[1 (-1)-2 1]k
= 5i+2j-3k.

We can check that this vector is orthogonal to v and w by forming
scalar products. For example, the scalar product with v is

5.1+2.2+(-3)-3=0.
The modulus of V A w is given by

IV A WI2=52+22+32=38.

So the unit vector corresponding to V A W is

We have already noted that, when a and b are displacements, the
modulus la n bI of the vector product equals the area of the
parallelogram with displacements a and b along adjacent sides.
Geometrically, vector products are often useful for describing areas.

Example 3.3

The vertices of a triangle have position vectors a, b, c. Show that the
area of the triangle is

'lb n c+c A a+a n bl.
The area of the triangle is half the area of the parallelogram with

displacements b-a and c-a along adjacent sides. The area of the
parallelogram is

1(b-a) A (c-a)I

=IbAc-aAc-bAa+aAal
= lbAc+cAa+aAbl,

using (3.4) and (3.5). The result follows.
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Problems 3.1

1 Vectors a, b, c are defined by

a=i+4j+2k,
b=i+2j+k,
c = i-j + k.

Calculate a n b and a n c. Show that b and c are orthogonal, but that
a n b and a n c are not orthogonal. Find a vector d such that d n b
and d n c are orthogonal.

2 If vectors a, b, c satisfy a + b+ c= 0, prove that a n b=b n C=C A a.
Interpret this result geometrically.

3 Vectors a, b, c are defined by

a=2i-j+k,
b=3i+2j-k,
c=i+2j+ A.

Evaluate a n b and b n c, and hence evaluate the vectors (a n b) A C
and a A (b n c).

3.3 Products of more than two vectors
The scalar triple product of vectors a, b and c is defined to be

a (b n c). (3.20)

We shall now establish some basic properties of this product:
(i) a, b, c are linearly dependent if and only if

a- (b n c)=0. (3.21)

(ii) a (b n c) = b (C A a) = c (a n b). (3.22)

First, consider property (i). If a, b, c are linearly dependent, then a
relation

as+/3b+yc=0
holds, with at least one of a, f3, y non-zero. If a = 0, b and c are then
linearly dependent (or parallel), and b n c = 0, establishing (3.29). If
a 54 0, then a b A c can be expressed as a linear combination of
b (b n c) and c (b n c); but

b (b n c) = c (b n c) = 0, (3.23)
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since b n C is orthogonal to both b and c. So linear dependence
always implies (3.21). Conversely, if (3.21) holds, either a = 0, or a is
orthogonal to b n c, or b n c = 0; that is, either a is linearly depen-
dent on b and c, or b and c are linearly dependent. In either case,
(a, b, c) are linearly dependent. So (i) is established.

To prove (3.22), replace b by a+b in (3.23). Then

(a+b) [(a+b) A c] = 0.
Expanding,

a (a n c)+b (a n c)+a (b n c)+b (b n c)=0.
Using (3.23) again, and writing a A C = -C A a, we obtain the result

a (b n c) = b (C A a).

Since

a (b n c) _ (b n c) a, (3.24)

(3.22) implies that all scalar triple products with a, b, c in the same
cyclic order are equal. For this reason we introduce the notation

[a, b, c] = a (b n c) (3.25)

for the scalar triple product.
When a, b, c denote displacements, the scalar triple product has an

important geometrical significance. Let a, b, c be displacements along
adjacent edges of a parallelepiped, as in Fig. 3.4. Then

d=b n C

is perpendicular to the base of the parallelepiped, and

d = Ib n c! (3.26)

d=bA C
0'

Fig. 3.4
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is equal to the area of the base. If a is the angle between a and d,

ad cos a.

But, as shown, Ja cos a I = h, the height of the parallelepiped, so that

1a (b n c)J = dh

= area of base x height,

or

volume of parallelepiped = I[a, b, c]j. (3.27)

The cyclic symmetry of [a, b, c] means that the volume is symmetric
between the vectors a, b, c.

The geometric figure with vertices at 0, A, B, C in Fig. 3.4 is a
tetrahedron, and its volume is

6l[a, b, c]i,

or one-sixth of the volume (3.27) of the parallelepiped. We justify
this statement by noting that the parallelepiped can be exactly
divided up into six non-overlapping tetrahedra; three of these, with
vertices (0, A, B, C), (A, C, B, B') and (A, B, C', B') are shown in
Fig. 3.4. If we consider the tetrahedron (A, C, B, B'), for example,
the displacements along three edges are

AB=b-a,
AC=c-a,
AB'=c.

Our assumption then gives the volume of this tetrahedron to be

'-'I[b-a, c-a, c]i

= [a, b, c]I.

In a similar way, the assumed formula gives the same result for the
volumes of all six tetrahedra. Since the tetrahedra are non-overlap-
ping, the volume of the parallelepiped should be the sum of the
volumes of the tetrahedra; the factor 6 ensures that this is so.

If a, b, c are given in component form, with

a= aii+a2j+a3k,
b=bli+b2j+b3k,
C= cli+c2j+c3k,
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then (3.19) and (2.36) give

[a, b, c]=al(b2c3-b3c2)+a2(b3c1-blc3)+a3(blc2-b2c1). (3.28)

Once again, the cyclic symmetry between a, b and c is evident.

Example 3.4

If a= 3i-2j, b=2i+j+2k, c=-i-3j+k, evaluate [a, b, c].
Using (3.27) with (al, a2, a3) = (3, -2, 0), (b1, b2, b3) = (2, 1, 2) and

(cl, c2, c3)= (-1, -3, 1),

[a, b, c]=3(1 1+2 3)-2(-2. 1-2 1)
=3.7+2.4=29.

The vector triple product of three vectors a, b and c is

a n (b n c). (3.29)

This product does not possess symmetry between the three vectors a,
b and c: it is orthogonal to a; but since it is orthogonal to b n C, it
must be linearly dependent on b and c (geometrically, (3.29) lies in
the plane of b and c); thus

a A (b A c)=db+µc,

for some values of the scalars A and µ. We shall now find the values of
the scalars A and µ. For any particular vectors b and c, we define a
triad (i, j, k) such that i = b-1b, and j lies in the plane of b and c. Then
a, b, c are of the form

a=ali+a2j+a3k,
b=bi,
C = cli+c2j.

Using (3.17) and (3.18)

b n c = bi n c2j = bc2k,

and hence

a n (b n c)=(ali+a2j) A bc2k

= -albc2j+a2bc2i.

Adding and subtracting albcli, we find

a n (b n c)=(alcl+a2c2)bi-alb(cli+c2j)

=(ajcl+a2c2)b-ajbc.

(3.30)
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But from (3.30),

a c=a1c,+a2c2.

So we have finally

a A (b n c) = (a c)b - (a b)c. (3.31)

Although we have introduced a particular triad in establishing (3.31),
the result does not depend on this triad, but only on the original
vectors a, b and c. The formula (3.31) is extremely important in
practice; with the other formulae already established, any compli-
cated product of vectors can be reduced to a simpler form. We note
that an interchange of vectors in (3.31) leads to the formula

(a n b) A c = (a c)b - (b c)a. (3.32)

Example 3.5

If a=2i-j-2k, b=3i+2k and c=-3i+j+k, find a n (b n c) and
(a A b) A C.

First evaluate the scalar products occurring in (3.31) and (3.32):

a c=-2 3-1 1-2. 1=-9,

Then (3.31) gives

a A (b n c)=-9(3i+2k)-2(-3i+j+k)
=-21i-2j-20k,

while (3.32) gives

(a A b) A c=-9(3i+2k)+7(2i-j-2k)
=-13i-7j-32k.

Note that these vector triple products are quite different vectors.

Example 3.6

Show that
(a n b) (C A d) = (a c)(b d) - (a d)(b c), (3.33)

for any four vectors a, b, c, d.
Putting e = a n b in the equality

e(cAd)=(eAc)d
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gives

using (3.32), this becomes

[(a c)b - (b c)a] d

An interesting identity between any four vectors a, b, c, d follows
by considering the product

(a n b) n (c A d).

Treating a n b as a single vector, and using (3.31), we find

(a n b) A (c A d)={(a n b) d}c-{(a n b) c}d

= [a, b, d]c - [a, b, c]d. (3.34)

Similarly, the product may be expanded as a linear combination of a
and b:

(a n b) A (c A d) _ [a, c, d]b - [b, c, d]a. (3.35)

From (3.34) and (3.35) follows the identity

[b, c, d]a - [c, d, a]b + [d, a, b]c - [a, b, c]d = 0. (3.36a)

We know that any four vectors a, b, c and d in 3-space are linearly
dependent. Equation (3.36a) is a linear relationship that they satisfy;
it can also be written

[a, b, c]d = [d, b, c]a + [d, c, alb + [d, a, b]c. (3.36b)

If [a, b, c] -X 0, so that a, b and c are linearly independent, we can
divide through by [a, b, c] in (3.36b). We then have an expression for
any vector d in terms of a, b, c.

Example 3.7

Simplify
{(anb)A(cna)}n(bAc).

By (3.34), the expression in curly brackets is equal to

[a, b, a]c - [a, b, c]a = - [a, b, c]a.

Thus the whole expression equals

- [a, b, c]{a n (b n c)}

= [a, b, c]{(a b)c-(a c)b},
using (3.31).
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Problems 3.2

1 Vectors a, b, c are defined by

a = 4i - 2j + k,

b=i-j-3k,
c=2i+j+2k.

Evaluate a (b n c), (a n c) b, (a n c) n b, a n (c n b) and
b)Ac}AC.

2 If a, b, c, d, e, f are any vectors, show that
(i) a A {b n (c A d)} _ (b d)(a n c) - (b c)(a A d),

(ii) (a n b) t(b A c) A (c A a)} _ [a, b, c]2,

{(a A

(iii) la A bI2 = a2b2_(a . b)2,

(iv) (a n b) t(c A d) A (e n f)}
= [a, b, d][c, e, f] - [a, b, c][d, e, f].

3 The corners of a tetrahedron have position vectors a, b, c and d. Show
that the volume of the tetrahedron is

6I [b, c, d] - [c, d, a] + [d, a, b] - [a, b, c] 1.

4 The lengths of two opposite edges of a tetrahedron are a and b ; the
acute angle between these edges is 8, and the perpendicular distance
between them is h. Show that the volume of the tetrahedron is

abh sin 8.
5 A, B, C, D are four points in a plane; lines through the four points,

perpendicular to a plane 7r, meet iT in points P, 0, R, S. Show that the
tetrahedra AQRS and PBCD have equal volumes.

6 ABCD is a tetrahedron with vertices at non-coplanar points A, B, C,
D, and 0 is another point. The lines AO, BO, CO, DO through the
four vertices and 0 meet the faces BCD, CDA, DAB, and ABC,
respectively, at points P, Q, R and S. Prove that

AO BO CO DO_
APBQCR+DS -3.

7 If a, b, c and p are four vectors, show that

[a, b, c]p= (a p)(b n c)+(b p)(c A a)+(c p)(a A b).

Explain why p can be expanded in terms of b n C, c A a and a n b
only if [a,b,c],4- 0.
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3.4 Further geometry of planes and lines

Suppose that a and b are linearly independent vectors corresponding
to displacements QA and QB from a point 0; then (by definition) the
displacement from Q to a point R in the plane containing QA and
QB is of the form

ro=QR=Aa+µb. (3.37)

If an arbitrary point 0 in space is chosen as origin, with

OQ = q, (3.38)

as in Fig. 3.5, then the position vector of R relative to 0 is, using
(1.22),

r=q+r0
= q+Aa+µb. (3.39)

r
Q Q

R /

P I

I l A /

L------/--

Fig. 3.5

This is the parametric equation of a plane, relative to origin 0; all
points in the plane are described by allowing A and µ to take every
value in the range (-oo, oo). The variable vector r is called the running
vector in the plane.

Now suppose that u is one of the two unit vectors normal to the
plane defined by a and b (the other such vector is -u). Then

(3.40)
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The projection of the vector q in direction u is

(3.41)

equation (2.2) tells us that this is the length of OP, the perpendicular
from 0 onto the plane, shown in Fig. 3.5. Also, by (2.23), the
displacement OP corresponds to the vector

p = (q u)u = pu. (3.42)

Taking the scalar product of Equation (3.39) with u and using (3.41),
we find

r u = p. (3.43)

This is another form of the equation of a plane; it tells us that the
projection perpendicular to the plane, of the position vector of any
point R in the plane, is equal to p.

We note that any equation of the form

(v7 0) (3.44)

can be written as
-1 m,

where u = v-'v is a unit vector; this is of the form (3.43), so that
(3.44) also defines a plane.

Also, using (3.42), the equation of the plane can be written

(r-p) u=0. (3.45)

Example 3.8

Find the equation of the plane through the point with position vector
2i - j - 2k which is orthogonal to the vector i + j + 3k.

If r is the position vector of any point in the plane, then
r-(2i-j-2k) is perpendicular to i+j+3k. So

r- (i+j+3k)=(2i-j-2k) (i+j+3k)=-5.
If r = x i + y j + z k, the equation can be written

x+y+3z=-5.
If three non-collinear points R1, R2, R3 with position vectors r1, r2

and r3 lie in plane, the plane is determined. We can identify R1, say,
with Q in Fig. 3.5, so that

q = rl;
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also, we can take the linearly independent displacements in the plane
to be

a=r2-r1
and

b = r3 -r1,

so that R2 and R3 coincide with A and B respectively. Substituting
for q, a and b in (3.39), and writing A = A 2, µ = A 3, the parametric
equation of the plane becomes

r=r1+A2(r2-ri)+A3(r3-r1)

or

r= (1-A2-A3)r1+A2r2+A3r3. (3.46)

Defining A 1 by

Al+A2+A3 = 1, (3.47)

Equation (3.46) can be written in the symmetrical form

r = A1r1 +A2r2+A3r3. (3.48)

We note that this result gives a partial answer to Question 3 of
Problems 2.4.

Example 3.9

Find the equation of the plane through the points with position
vectors

r1= 2i - k,

r2 = 3i+2j+k,
r3 = -i + 4j + 2k.

The equation can be written in the parametric form (3.47) and (3.48)
directly. Another form of the equation can be given: if r is a point in
the plane, then r - r1i r2-r1 and r3-r1 all lie in the plane. The
condition for these vectors to be coplanar is, by (3.21),

[r-ri, r2-r1, r3-r1] = 0.
Since

(r2-r1) A (r3-r1)=-2i-9j+10k,
the equation is

r (-2i - 9j + 10k) = (2i -k) (-2i-9j+10k)
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or

2x+9y -10z = 14.

If A is a given point, any point R on a line through A has position
vector relative to A of the form

rA = su, (3.49)

where u is a fixed unit vector and s is a variable parameter. Changing
origin to a point 0, with

OA=a,

the position vector of R relative to 0 is

r=a+rA=a+su.

(3.50)

(3.51)

This is the parametric equation of a line through A in direction u, and
r is the running vector. If the rectangular components of r, a and u
are (x, y, z), (a,, a2, a3) and (l1i 12, 13) respectively, (3.51) can be
written

x=a,+s11,
y = a2+s12,

z=a3+s13.

We can eliminate s from these equations to give

x-a1 y-a2 z-a3
(3.52)1i = 12 - 13

an equation satisfied by the Cartesian coordinates (x, y, z) of every
point on the line. This is the. usual coordinate equation of a line
through a point (a,, a2, a3), with direction cosines (11,12i13).

If the point B with coordinates (b1, b2, b3) also lies on the line, then

b,-a, b2-a2 b3-a3
11 12 13 .

Eliminating (11, 12, 13) between this equation and (3.52) gives

x-al _y-a2-z-a3
(3.53)a,-b, a2-b2 a3-b3.

This is the equation of the line through two given points A and B
with position vectors a and b.

Two non-parallel planes intersect in a line; we now show how to
determine their line of intersection. Suppose that the equations of the
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planes are given in the form (3.44) as

r w = n.
(3.54)

Since v and w respectively are perpendicular to the two planes, the
condition that the planes are not parallel is equivalent to assuming
that v and w are linearly independent. Then v, w and v A w form a
linearly independent set of vectors, and we can therefore express the
position vector r of any point in 3-space in the form

r=av+,(3w+tv A W. (3.55)

For points common to the two planes, r satisfies (3.54). Substituting
(3.55) in (3.54), and remembering that [v, v, w] = [w, v, w] = 0, we
find

av2+/3v w = m,

av w+f3w2 = n.
(3.56)

Since v w 0 vw for linearly independent vectors v and w, (3.56) can
be solved to determine a and 8 uniquely. So, in (3.55), only t is
undetermined; the equation is therefore of the form (3.51), with u the
unit vector corresponding to v A w. The parameters s and t in (3.51)
and (3.55) are related by

s = tlv A WI.

The direction u of the line is thus orthogonal to both v and w, in
accord with geometrical intuition.

Example 3.10

Find the equation of the line common to the two planes

r (i+j+k)=4,
r (2i-j+k)=-2.

The direction of the common line is parallel to v A W, using the
notation of (3.54). This vector is

(i+j+k) A (2i-j+k)=2i+j-3k.
In (3.55), a and /3 are determined by (3.56):

3a + 2/3 = 4,

2a +60 _ -2,
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so that a= 2, _ -1. So the parametric equation of the line of
intersection is

r = 2(i+j+k)- (2i-j+k)+t(2i+j- 3k)
= 3j +k+ t(2i+j - 3k).

The Equations (3.54) for two planes may be written

r- V-m=0,

Consider an equation of the form

(r v-m)+a(r w-n)=0, (3.57)

where a is some real number. We assume that the planes (3.54) are
not parallel, so that the terms r (v+aw) in (3.57) cannot be identic-
ally zero. Then (3.57) is the equation of a plane of the form (3.44);
further, if a vector r satisfies both of the Equations (3.54), it satisfies
(3.57). So the plane (3.57) contains the line of intersection of the
planes (3.54); if we allow a to vary, (3.57) represents the family of
planes, all of which contain this line of intersection. One of the
original planes corresponds to a = 0; dividing (3.57) by a and then
putting a -1= 0 gives the second plane.

Example 3.11

Find the condition for the lines

r=a,+s,u,,
and (3.58)

r = a2 + s2u2

to intersect.
If there are values of s, and s2 corresponding to the same position

vector r, then

a,-a2=s1U1-s2u2.

Forming the scalar product with u, A U2 gives

(a, -a2, u1, u2] = 0, (3.59)

a condition on a,, a2, u, and u2 only. This is the condition for the two
lines (3.58) to intersect.
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Example 3.12

Find the perpendicular distance from the point p=2i+j+3k to the
line

r= 3i+2j+12k+t(3i-j+k),

and find the position vector r1 of the foot of the perpendicular.
Let r = r1 correspond to t = t1. Then

(r1-p) (3i-j+k)=0
or

[i+j+9k+tl(3i-j+k)] (3i-j+k)=O,
giving t1= -1. So the foot of the perpendicular has position vector

r1= 3j+llk.

The length of the perpendicular is

Iri -pI = I-2i+2j +8k1=

It is often convenient to define a line in terms of its vector moment
m about the origin O. This is defined by taking the vector product of
the running vector (3.51) with u; since u A u = 0, this gives

rAu=aAu=m. (3.60)

Since s has been eliminated, m is the same vector for all points r on
the line. We shall now show that the line is determined if u and m are
given; they must of course satisfy the condition

U. M=0. (3.61)

The position vectors r are constructed to satisfy (3.60), with given u
and m; this is a vector equation for r. We solve the equation by taking
the vector product of (3.60) with u, giving

UA(rAu)=u Am

or, using (3.32),

r- (r u)u = u n M. (3.62)

The left-hand member of this equation is, by (2.24), just the
component r1 or r orthogonal to u, and (r u) is the projection of r in
direction u, as indicated in Fig. 3.6. Thus u, m, r1 are a mutually
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Fig. 3.6

orthogonal right-handed set of vectors. In (3.62), (r u) is just a scalar
parameter defining the distance PR, and can thus be identified with s
in (3.51). Defining the vector a by

a=rl=u A m, (3.63)

we see that (3.62) is exactly of the form (3.51); the displacement
OP = a is given in terms of (u, m) by (3.63). Thus (3.60) is another
form of the equation of a line. The pair of vectors (u, m) are called the
fundamental vectors of the line.

If a line is defined as the intersection of the planes (3.54), we have
shown that the unit vector u along the line is given by

vnw
U

Iv A WI

The vector moment is thus

(3.64)

rA(vAw)
m= ;

Iv A wI

using (3.32) and the Equations (3.54) of the planes, this becomes

m
Iv A wI

nv-mw
(3.65)

Iv A wi

Equations (3.64) and (3.65) define the fundamental vectors (u, m) for
the line of intersection of the two planes (3.54).
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Example 3.13

Find the equation of the plane containing the point r1 and the line
(u, m).

Let r represent any point in the plane. From (3.62) or (3.63), the
point a = u A m lies in the plane. So the vectors r - r1 and (rl - U A m)
are parallel to the plane; but u, along the line, is also parallel to the
plane. The condition (3.21) for these three vectors to be linearly
dependent is

[r-rl,rl-u A m,u]=0.
Since (u A m) A u = m, this reduces to

n

Example 3.14

Find the equation of the plane through the line (ul, ml) which is
parallel to the line (u2, m2).

The point a = u1 n ml lies in the plane, so r- a is parallel to the
plane for all points r in the plane. But ul and u2 are also parallel to the
plane. Hence

[r-a, ul, u2] = 0,

which reduces to

r' (ul n u2)=u2 ml.

3.5 Vector equations

In §3.4 we encountered the vector equation (3.60) for the vector r,
subject to the condition (3.61). We showed that its solution was of the
form (3.51), with a given by (3.63). This is one example of a vector
equation; more generally, vector equations are mathematical state-
ments about an unknown vector x which determine, or partly deter-
mine, x. Equation (3.60) does not determine r exactly, since the scalar
s = (r u) in (3.51) is undetermined; thus the component of r in the
direction of u is arbitrary.

We now consider some other types of vector equation. First,
suppose that x satisfies

Ax+x A a = b, (3.66)

where A, a and b are given, with A 0 0. If A = 0, Equation (3.66)
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reduces to the form (3.60), which we have already solved. Taking the
vector product of (3.66) with a, and using (3.32), we obtain

A(x A A a. (3.67)

Also, taking the scalar product of (3.66) with a gives

A

A -1(b a). (3.68)

Now, from (3.66) itself,

A(x A a)=A(b-Ax). (3.69)

Substituting (3.68) and (3.69) into (3.67), we find

A(b-Ax)+A-'(b a)a-a2x=b n a,
or

x=[Ab+A-'(b a)a-b n a]/(A2+a2). (3.70)

So when A 0 0, (3.66) has the unique solution (3.70); but when A = 0,
we know that provided a b = 0, there is a solution x which is not
uniquely determined. These facts can also be understood as pro-
perties of linear equations, which we discuss in Chapter 4: if we express
x, a and b in terms of components, then the three components of the
vector equation (3.66) become three linear equations for x1, x2, x3. If
the determinant of coefficients in this equation is non-zero, x is
uniquely determined; it is not hard to show that this condition is just
A 0 0 (see Problems 3.3, Question 15). When A = 0, the determinant of
coefficients is zero; then there is either no solution for x or an infinite
number of solutions.

Another type of vector equation is

Ax+(x b)a=c, (3.71)

in which we assume that A 0 0. If we form the scalar product of each
side with b, we find

(x b)[A +a b] = b c. (3.72)

So if

A + a b
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Substituting into (3.71), we obtain the solution

x=A c_a (3.74)
\A+acb)],

since A * 0. There is therefore a unique solution (3.74) provided
(3.73) holds; again, this condition ensures that, in component form,
the three linear equations (3.71) have a non-zero determinant of
coefficients, and so have a unique solution.

If, however,

then (3.72) implies that b c = 0; if b and c are not orthogonal, (3.71)
cannot then be satisfied. Provided b c = 0, (3.72) is then trivially
satisfied, and x b is not determined. Writing t = x b, (3.71) then
becomes

x = A -1[c- ta], (3.75)

with t arbitrary. So there is an infinity of solutions x; in geometric
terms, x lies on a line through A -lc and parallel to the vector a.

Problems 3.3

1 A plane 1r is normal to the vector 2i - j - 2k and passes through the
point with position vector 3i+2j-k. Find the perpendicular distance
from the origin to the plane Ir; find also the position vector of the foot
of the perpendicular.

2 Show that the points with position vectors i-j+k, 2i+3k, -i+2j+
4k and 6i-j+4k lie in a plane.

3 Find the equation of the plane which contains the line

r=i-j+2k+t(4i-j-k),
and to which the vector 2i + j - 3k is parallel.

4 Find the plane it containing the line of intersection of the planes
r (2i+ 3j - k) = 4 and r (i - j + 2k) = 3, and passing through the point
with position vector -i+2j+4k.

5 Show that the equation of the line passing through the point with
position vector r2, and meeting the line r = rl +Au at right-angles, is

r=r2+µ[r2-r1-{(r2-r1)' u}u].
6 Show that the lines

2(x - 2) = - (3y + 1) = z - 2
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and

2(x+3)=y+4=3(2z+1)
intersect, and find the point of intersection.

7 Find the equation of the line containing the point r2, which is parallel
to the plane r - v = m and perpendicular to the line r = r1 + su; the
vectors u and v are not parallel.

8 If v1 and v2 are not parallel, show that there is a unique line (the
common perpendicular) which intersects and is perpendicular to the
two lines

r=r1+tv1,

r = r2+ tv2.

Show that the perpendicular distance between the lines is

11r2-rl, vi, v2]I/Ivi A V21-

9 Find the length and the equation of the common perpendicular of the
two lines

x-3=y-4=-z-1
and

2(x+6)=y+5=-4(z+1).
[See Question 8 above.]

10 Find the equation of the line of intersection of the planes

r (i+2j-k)= 9,
r (3i-4j-k)=-2,

and find the fundamental vectors of the line.
11 Find the angle between the line r = a+ tv and the plane r w = n.
12 Find the equation of the plane containing the line (u, m) and perpen-

dicular to the plane r w = n.
13 The line (u1, m) is projected orthogonally onto the plane r u2 = p,

where ul and U2 are non-parallel unit vectors. Show that the
fundamental vectors of the resulting line are ku2 A (u1 A 112),
k[P(u2 A ul)+(112 m)u2], where klul A 1121=1.

14 The plane or passes through the point with position vector a, and is
perpendicular to the vector a; ar meets the coordinate axes at the
points A, B, C. Show that the area of the triangle ABC is

z 5a/(a' i)(a . j)(a . k).
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15 Write Equation (3.66) in terms of Cartesian coordinates of the
vectors x, a, b. If 0 is the determinant of coefficients of these equa-
tions for the components of x, show that A = 0 if and only if A = 0.

3.6 Spherical trigonometry

The formulae of spherical trigonometry are basic to the study of
astronomy and astro-navigation. We shall establish the two
fundamental formulae, the sine formula and the cosine formula.
These formulae relate certain angles defined in terms of points on the
unit sphere whose centre is at the origin 0; the position vectors of all
points on this sphere are then unit vectors. The cosine formula is the
result to be established in Problems 2.5, Question 6; it is expressed in
terms of spherical polar coordinates (r, 0, 0) relative to a given frame
of reference. Since r = 1 for all points on the unit sphere, the spherical
polar coordinates of two points P1, P2 on the sphere are of the form
(1, 01, 01) and (1, 02,102)- So the unit position vectors of P1 and P2
are, from (2.70),

ul=sin01cos.01i+sin 01 sin 41j+cos01k,

u2 = sin 02 cos ¢2 i + sin 02 sin ¢2 j+cos 02 k.

Using (2.66) and (2.50a), the angle a between the vectors ul and u2 is
given by

cos a =sin 01 cos 01 sin 02 cos 9)2

+sin 01 sin 01 sin 02 sin 02+cos 01 cos 02

or

cos a =cos 01 cos 02 + sin 01 sin 02 cos (01 -4)2) (3.76)

This is the cosine formula.
The sine formula concerns the angles of a spherical triangle, which

we now define. As in Fig. 3.7, let A, B, C be three points on the unit
sphere, centre 0, and let a, b, c be their unit position vectors. The
planes OAB, OBC and OCA intersect the sphere in the circular arcs
AB, BC, CA, as shown; these three circular arcs form a spherical
triangle. The angles between the pairs of planes are denoted by A, B,
C, as shown. The angles subtended at 0 by the arcs BC, CA, AB are
a, f3, y respectively, and these angles are assumed to be different
from 0 and ir; two of these angles are shown. The sine formula states
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Fig. 3.7

that

85

sin A sin B _ sin C
(3.77)

sin a sin f3 sin y

We now establish this formula.
Let n be the unit normal to the plane OAB, represented by the

displacement BN; then

a n b = n sin y, (3.78)

since a and b are unit vectors. If the perpendiculars to OB, OC at B,
C respectively, in the plane OBC, meet the lines OC, OB at P, 0
respectively, then the angle NBP equals B +121T. So if 1 is the unit
vector parallel to BP,

n l=cos(B+za)=-sin B.
Using (3.78), this gives

(a n b) l = -sin y sin B. (3.79)

Likewise, if m is the unit vector parallel to CQ,

(c A a) m = -sin 6 sin C. (3.80)
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Now, in the plane OBC, since OB = OC, it follows that BP = CO and
OP = 00. So, if

1= ABP and OP = µc,
then

m = ACQ and OQ = µb.
It follows that

1=A(OP-OB)=A(µc-b),
and

m=A(OQ-OC)=A(µb-c).
Hence, in (3.79),

(a n b) 1=A(a n b) (µc-b),
=Aµ(a n

similarly, in (3.80),

(c A A

But

(a n A

so that (3.79) and (3.80) give

sin y sin B = sin /3 sin C.

Since we are assuming that sin a and sin y are non-zero,

sin B sin C
sin f3 sin y'

The proof can clearly be extended to establish in full the sine formula
(3.77).
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Transformations of vectors

4.1 Vectors and matrices

To study rotations in 3-space, we need to use matrix algebra. The
fundamentals of matrix algebra are laid down in a variety of text-
books [Reference 4.1]. We are only interested in matrices of dimen-
sions 1, 2 and 3, arising in the study of the geometry of the plane and
of 3-space. Many of the basic properties of this class of matrices are
closely connected with properties of vectors that we have already
established. So, in the first two sections of this chapter, we shall
establish several basic properties of this class of matrices and their
determinants by using vector methods and notation; this approach to
matrix algebra can be generalised to (n xn) matrices through the
algebra of exterior forms [Reference 4.2]. Our approach comple-
ments the normal approach to matrix algebra by demonstrating the
close linkage of the theory of (3 x 3) matrices and determinants with
the vector algebra developed in the first three chapters, and thus with
familiar concepts of the geometry of 3-space.

We shall assume that the reader has a familiarity with the basic
matrix operations of addition, subtraction and multiplication; never-
theless we state these properties, for completeness. Matrices are
denoted by capital letters A, B, C, ... , and are rectangular arrays of
numbers; for example, the matrix

gall a12 ... as,,

a21 g22 . ' a2nA= (4.1)

Iaml am2 amnI

is an (m x n) matrix whose general element is a , (p = 1 , 2, ... , m ;
q = 1, 2, ... , n); (4.1) can also be written

A = (a,,,). (4.2)

87
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The matrix A has m rows and n columns. For example, the second
row of A is

a21 a22 ... a2n,

every element having its first suffix equal to 2. If B is another (m x n)
matrix, then the matrix sum A + B exists, and is the (m xn) matrix
formed by adding corresponding elements of A and B; thus

A + B = (apq + bpq). (4.3)

Likewise the matrix difference A - B is the (m x n) matrix

A - B = (apg - bpq). (4.4)

The matrix product AB of two matrices A and B exists only if the
number of rows of B is equal to the number of columns of A; if
A = (apq) is an (m x n) matrix and B = (bpq) is an (n x k) matrix, then
the (p, r) element of AB is defined to be

n

Y_ apgbgr. (4.5)

q=1

It is important to note the relationship between this expression and
(2.36) for the scalar product of two vectors. Let us set out the matrix
product in full, displaying rows of A and columns of B :

I all a12 ... aln bll ... blr ...
................. b2l ... b2r ...

apl ap2 ... apn .

aml am2 amnl \bn 1

Equation (2.36) can be written
3

V - W = VgWq.
q=1

blk

b2k

.. bnk l

(4.6)

If we looked upon the row apl ap2 ... apn as the n components of a
`vector', and likewise the column blr b2r ... bnr as the n components
of another `vector', then the sum (4.5) has exactly the form of a
`scalar product' between these two vectors, the sum over the suffix q
being from 1 to n, rather than from 1 to 3. (We shall in fact be dealing
only with matrices for which n = 3 or n = 2.) So if we regard the rows
of A as m `vectors' in component form, and likewise the columns of B
as k `vectors', then the elements (4.5) of the (m x k) matrix AB can
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be regarded as the `scalar products' of the m rows of A with the k
columns of B.

We have used the phrases `vectors' and `scalar products' in inverted
commas because the rows and columns of matrices are not in fact
vectors, but simply have the same form as the set of components of a
vector in n-space. Later in this chapter, we shall define certain
matrices by identifying their rows or columns with certain vectors in
component form; the `scalar products' we have just discussed will
then be true scalar products of vectors.

An (n x 1) matrix, consisting of a single column, is called a column
matrix. It is customary to omit the second suffix from the elements of
a column matrix, since it takes only one value. If the elements of a
column matrix are v,, (p = 1 , 2, ... , m), the matrix is written

'v2 1
V=

1 vm/

(4.7a)

It is often convenient to write the three components of a vector v in
this form, with m = 3:

(4.7b)

we then call V a component matrix. A clear distinction should be
made between the vector

v= v1i+v2j+v3k

itself and the component matrix (4.7b), since the components of v
depend upon the choice of the basis (i, j, k). If a different triad
(F, j', k') is chosen as basis, the same vector v is expressible as

V = vii'+v2j'+v3k',

with component matrix

which is not in general equal to V.
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A triad (i, j, k) is frequently called a reference frame, and is
denoted by F. One of our main tasks in this chapter is to investigate
the relationship between the component matrices V and V' of a
vector v in different reference frames F and F'.

The transposed matrix, or transpose, of a given matrix A is formed
by interchanging the rows and columns of A. So if A = (apq) is an
(m x n) matrix, the transpose AT is an (n x m) matrix (apTq); its (p, q)
element is given by

T
a pq = aqp. (4.8)

It is easy to show (Problems 4.1, Question 2) that (AB)T=BTAT
whenever AB exists with the row and column suffixes interchanged.
The transpose of the column matrix (4.7b) is the row matrix

VT=(vl v2 v3). (4.9)

If wp (p = 1, 2, 3) are the components of a vector w relative to the
triad (1, j, k), then the product of the row matrix (4.9) into the column
matrix

is the (1 X 1) matrix
W3

VTW =(viWj+V2W2+v3W3). (4.10)

The single element of this matrix is equal to the scalar product v ' w of
the vectors v and w given by (2.36). In particular, the square of the
modulus of v, given by (2.37), is equal to the single element of the
matrix product VT V. Since we are interested in the relationship of
component matrices V and VT in different reference frames, it is
important to note that the definition (in Chapter 2) of a scalar product
v ' w did not depend upon any reference frame; it follows that its
value in terms of the components of v and w is independent of the
reference frame used. Using components in two frames F and F',

V'w=ViW1+V2W2+V3W3

= V1W1+V2W2+V3w3, (4.11)

or, expressed in terms of the matrix form (4.10),

VTW = V'T W'. (4.12a)

The scalar product is also the single element of

WTV= W'T V' (4.12b)
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Equations (4.11) and (4.12) express the invariance of scalar products
under a change of reference frame; this invariance is in fact the
meaning of the word `scalar'. Since the modulus of a vector and the
angle between two vectors have been defined by (2.10) and (2.2) in
terms of scalar products, it follows that all moduli and angles are
independent of the choice of reference frame.

A matrix with the same number of rows and columns (m = n) is
called a square matrix. We shall deal only with (2 x 2) and (3 x 3)
square matrices. If a (3 x 3) square matrix A is multiplied into the
column matrix (4.7b), we obtain the product

3

/ 1 alsvsl
S=1

3

AV = E a2svs ; (4.13)
s=1

3

1
a3svs/

s=1

like V, this is a column matrix, with elements
3

a,. vs (r = 1, 2, 3).
s=1

(4.14)

We say that V `is transformed into' AV by multiplication by A; we
also say that A `operates on' V to give AV. Since the components
(4.14) of AV are linear combinations of v1, v2, v3, we refer to A as a
linear operator; multiplication of V by A is called a linear trans-
formation of V. We shall be especially interested in linear trans-
formations of component matrices of a vector v; for the present, we
simply note that these transformations are of two distinct types:

(a) transformations due to the change of the vector v, relative to a
fixed reference frame; these are active transformations;

(b) transformations of the components of a given vector v, due to a
change of the reference frame; these are passive transformations.

The matrix equivalent of the number 1 is a unit matrix. This is
defined in terms of a two-suffix quantity S,q, known as the Kronecker
delta; the values of S,, for p, q = 1, 2, 3.... are

Spq = 1 (p = q), l (4.15)
5pq =0 (p9q).

The (m x m) unit matrix I is the matrix whose elements are Sa,
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(p, q = 1, 2, ... , m). If A is an (m x n) matrix, and I is (m x m), then
using (4.5), we find

IA =A; (4.16a)

If I is (n x n), then

AI =A. (4.16b)

So when multiplication of a matrix A by a unit matrix is possible, it
leaves A unchanged.

A diagonal matrix is a square matrix (apq) whose 'non-diagonal'
elements (those with p 54 q) are all zero. The (m x m) diagonal matrix
with elements dl, d2, ... , d,,, along the leading diagonal is then

D = (dp6pq). (4.17)

The unit (m x m) matrix is therefore the diagonal matrix whose
diagonal elements dp (p = 1, ... , m) are all unity.

If E = (eg3gr) is a second (m x m) diagonal matrix, then the (p, r)
element of the product DE is

`q dp6pgeg3qr = dpepspr,

using (4.15). So DE is the diagonal matrix whose pth diagonal ele-
ment is dpep, the product of the corresponding elements of D and E;
since we are simply multiplying corresponding diagonal elements, the
product ED will give the same result. In general, two square matrices
D, E for which DE = ED are commuting matrices. So all pairs of
diagonal matrices commute. In order to commute, a pair of square
matrices do not have to be diagonal; for example, I and A commute,
where A is any square matrix.

4.2 Determinants; inverse of a square matrix

The determinant of a square matrix A, denoted by 0(A), is a very
important single number defined from the elements apg of A. We
shall only be concerned with the determinants of (2 x 2) and (3 x 3)
matrices. If

A= all a121

a21 a22/I '

then we define

i(A)=a11a22-al2a2l. (4.18)
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Let us now treat the columns

(alll (a121
A1=

'
A2=

)
(4.19a)

a21 a22

of A as though they were component matrices of two vectors, al and
a2, lying in the (i, j) plane. If we introduce the third vector k of a
right-handed triad, a1 and a2 will have zero components along k; so,
using (3.19), a1 A a2 has a single component, in the k-direction, equal
to i(A) in (4.18); that is,

al n a2 = 0(A)k. (4.20a)

Therefore v(A) is in magnitude equal to the area of the paral-
lelogram with adjacent sides corresponding to vectors a1 and a2.

We have chosen to regard the matrix

A = (A1 A2) (4.21a)

as composed of the two column matrices (4.19a). We could equally
write

(4.21b)

where Al and A2 are the row matrices

Al=(all a12), A2=(a21 a22); (4.19b)

Al and A2 could again be regarded as the component matrices of
vectors a1, a2 lying in the (i, j) plane. Exactly as before,

al n a2 = 0(A)k, (4.20b)

so that 0(A) is in magnitude also equal to the area of the paral-
lelogram with sides corresponding to al and a2.

The determinant 0(A) of the (3 x 3) matrix

all a12 a13

A = a21 a22 a23

a31 a32 a33

(4.22)

can also be defined in terms of column matrices and their associated
vectors. We write

all a12 a13

Al = a21 , A2 = a22 , A3 = a23 ; (4.23a)

a31 a32 a33
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in terms of these three columns,

A = (A 1 A2 A3). (4.24a)

Let us now regard A 1, A2, A3 as the component matrices of three
vectors a1, a2, a3, relative to a reference frame (i, j, k). Then we define
the determinant of A to be the scalar triple product

0(A) = [a1, a2, a3]; (4.25a)

substituting the components (4.23a) into (3.28),

0(A) = a, I(a22a33 - a23a32) +a21(a32a 13 - a 12a33)

+a31(a12a23-a22a13)

We can also choose to write A in terms of its rows

Al = (all a12

A2 = (a21 a22

A3 = (a31 a32

giving

a13),

a23),

a33),

(4.26)

(4.23b)

Al
A= A2 . (4.24b)

A3

Just as before, we can regard the row matrices (4.23b) as the
component matrices of three vectors al, a2, a3; then

0(A) = [a1, a2, a3], (4.25b)

since this scalar triple product, given by (4.23b) and (3.28), equals
(4.26).

Since A(A) has the same definition in terms of the rows and
columns of A, it follows that 0(A) is unchanged if the rows and
columns of A are interchanged. Thus we have established the first of
a number of properties of determinants.

(i) A(A) = A(AT), (4.27)

where AT is the transpose of A.
From the definition (4.18) it is clear that (4.27) is also true for

(2 x 2) matrices. We shall only establish this and other properties of
determinants for (3 x 3) matrices, since the proofs for (2 x 2) matrices
are very simple. All of these properties have generalisations which
are true for (n x n) matrices; general proofs can be found in standard
texts on linear algebra [Reference 4.1]. The proofs which we give
have generalisations in the algebra of exterior forms [Reference 4.2].
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The next three properties of 0(A) have already been established in
§3.3 as properties of scalar triple products, and follow through
(4.25a) and (4.25b).

(ii) Property (i) of scalar triple products (p. 65) tells us that the
following three statements are equivalent to each other:

(a) 0(A) = 0,
(b) the columns (4.23a) of A are linearly dependent,
(c) the rows (4.23b) of A are linearly dependent.

Statement (c), for example, means that there exist constants a,, a2,
a3 (not all zero) such that a,a,+a2a2+a3$3=0, or

a,A,+a2A2+a3A3=(0 0 0).

As a special case of this property, 0(A) is zero if two rows, or
alternately two columns of A, are identical.

(iii) The cyclic property (ii) of scalar triple products (p. 65) tells us
that A(A) is unchanged if we cyclically permute either the rows or the
columns of A.

(iv) The antisymmetric property (3.4) of vector products ensures
that scalar triple products change sign if two of the vectors are
interchanged. Hence 0(A) changes sign if two rows of A are inter-
changed, or if two columns of A are interchanged.

(v) 0(A) is linear in the components of the first column A,, by
(4.26); so if we form a second matrix by replacing the column A, by
another column AO, the determinants of the matrices are added by
adding Ao to A,; that is,

0(A, A2 A3)+z(A, A2 A3)
=0([Ao+A,] A2 A3)- (4.28)

The same rule applies to any row or any column of a square matrix.
(vi) Combining properties (ii) and (v), it follows that 0(A) is un-

changed if we add any multiples of columns A2 and A3 to the column
A,; for, if A and µ are any constants,

0([A,+AA2+µA3] A2 A3)
=0(A, A2 A3)+A0(A2 A2 A3)+µ0(A3 A2 A3)-

Since the last two determinants are zero,

z([A, +AA2+µA3] A2 A,)=A(A). (4.29)

(vii) If A and B are two (3 x 3) matrices, the determinant of the
matrix product AB is the product of the determinants of A and B:

i(AB) = 0(A)0(B). (4.30)
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This is a very simple and very important result, but there is no very
obvious proof. For (m x m) matrices A and B, one of the simplest
proofs of (4.30) involves the use of (2m x 2m) matrices [Reference
4.3]. Since we are particularly concerned with relations between
vectors and matrices, we give a proof of (4.30) for (3 X 3) matrices
which depends upon vector properties that we have already
established in Chapter 3. The proof for (2 X 2) matrices is left as a
problem for the reader (Problem 4.1, Question 1).

First, let us write the matrix A in the form (4.24b), in terms of
rows, and B in the form (4.24a), so that

B=(B1 B2 B3)

in terms of its columns B1, B2, B3. Recalling the discussion following
(4.6), we see that the (p, r) element of AB is the `scalar product' of
the row AP with the column Br. But a,, and b, have been introduced
as vectors whose component matrices are AP and B, respectively; so
the (p, r) element of AB is equal to the scalar product aP b,. Thus

I a1-b1 a,-b2
AB= a2-b2

a3 b, i3-b2

al b3

a2 b3

a3 b3

(4.31)

The determinant of this matrix is given by (4.26):

A(AB) = (at . bl)[(a2 b2)(a3 . b3)-(a3 b2)(a2 . b3)]

+(a2 b1)[(a3 b2)(al b3)-(at b2)(a3 b3)]

+(a3 b1)[(at b2)(a2 b3)-(a2 b2)(al b3)]

Using the vector identity (3.33) for each of the square brackets, this
equation becomes

A(AB) = (a1 bt)[(a2 A a3) (b2 A b3)]

+(a2 bt)[(a3 n at) (b2 A b3)]

+(a3 bl)[(at n a2) (b2 A b3)]. (4.32)

Now, from the definitions (4.25a) and (4.25b),

A(A)0(B) = [a 1, a2, a3][bt, b2, b3]

= [at, a2, a3](b b1), (4.33)

where

b=b2Ab3.
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Equation (3.36b) allows us to write

[a1, a2, a3]b = [b, a2, a3]a1

+[b, a3, a1]a2+[b, a1, a2]a3

Substituting on the right of (4.33) and putting in the value of b, we
obtain

0(A)0(B) = [b2 A b3, a2, 53](al ' bl)

+[b2 A b3, a3, al](a2 b1)

+[b2 A b3, at, a2](a3 b1).

Comparing this with (4.32), we have established the property (4.30).
The non-triviality of the result (4.30) is emphasised if we consider

the numbers of terms on each side of the equation, when A and B are
(3 x 3) matrices. In terms of the elements {ate,} of A and {b9,} of B,
each element of the matrix (4.31) consists of the sum of three terms,
since it is a scalar product. A(AB) consists of 6 products, each of 3
such terms; so the direct expansion of 0(AB) contains 6 x 27 = 162
terms. Each of z(A) and 0(B), however, are the sum of 6 terms, so
that 0(A)0(B) contains just 36 terms. Therefore 126 of the 162
terms of A(AB) must cancel, and the remaining 36 then factorise
exactly to give 0(A)A(B). It is therefore not surprising that the proof
of (4.30) involves some complication.

One of the fundamental concepts of matrix algebra is that of the
inverse A-' of an (m x m) square matrix A, satisfying the matrix
equations

A-'A=AA-'=I, (4.34)

where I is the unit (m x m) matrix. Once again, the general definition
of A-' can be found in many textbooks [Reference 4.1]; we shall only
consider (3 x 3) matrices, using vector methods and notation to
establish our results. We write the matrix A as

A = (A 1 A2 A3)

in terms of its columns (4.23a), and again regard A1i A2, A3 as
component matrices of three vectors a1, a2, a3. Now define the three
vector products

d1= a2 A a3, d2 = a3 A a1, d3 = a1 A a2, (4.35a)

and let D1, 152, D3 be the component row matrices of these vectors.
Then the adjoint D of the matrix A is defined as the matrix whose
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rows are D1i D2, D3:
D1

D = D2 . (4.36a)

D3

The matrix product DA is similar to (4.31); each element is therefore
a scalar triple product, the scalar product of a vector (4.35a) with one
of a1, a2, a3. Thus

[a2, a3, all

DA = [a3, a1, aj
[al, a2, all

[a2, a3, a2]

[a3, a1, a2]

[al, a2, a2]

[a2, a3, 231

[a3, 21, a3]

[al, a2, a3]

The off-diagonal elements of this matrix are all zero by (3.23), while
the cyclic property of scalar triple products ensures that the diagonal
elements are all equal to [al, a2, a3] = 0(A), using the definition
(4.25a). Hence D satisfies the matrix equation

DA = A(A)L (4.37a)

Provided that A is a non-singular matrix, meaning that

A(A) 54 0, (4.38)

we can define the inverse of A to be

A 1=
[0(A)]-1D;

(4.39)

then (4.37a) ensures that A-1 satisfies

A-1A = I,

one of the Equations (4.34).
We now establish a formula for the general element of D in terms

of (2 x 2) determinants. From (4.36a), it is clear that d is the qth
element in the row D. For example, d32 is the second element of D3;
but, by (4.35a), D3 corresponds to the vector product al n a2, whose
components are derived from Al and A2 in (4.23a) by using the
formula (3.19). The second component of D3 is thus

d32=a31a12-a11a32

=-(a11a32-a31a12)

Now consider the matrix formed by deleting the second row and the
third column of the matrix (4.22); this process defines the (2 x 2)
matrix

A[row 2, col 3] = (a31all a12)a32
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whose determinant, by (4.18), is equal to (a,1a32-a31a12). Therefore
the (3, 2) element of D is

d32 = -0(A[row 2, col. 3]).

This argument is quite general, and provides the formula

dpq = (-1)P+gL(A[row q, col. p]) (4.40)

for the general element of the adjoint matrix; these elements are
known as the minors of A. The determinant in (4.40) is that of the
matrix formed from A by deleting the qth row and the pth column.
Note that the deleted row in A corresponds to the column suffix in
dq, and vice versa; this switch of suffixes occurs because the rows of
D are multiplied into the columns of A to form the product in
(4.37a).

Equation (4.40) shows that the definition of the adjoint D is
symmetrical between the rows and columns of A. We could therefore
have used the rows (4.23b) of A, rather than the columns (4.23a), to
define D. If the rows (4.23b) are regarded as component matrices of
vectors al, a2, a3, we define, similarly to (4.35a),

d, = a2 A a3, d2 = a3 A a1, d3 = a, A a2. (4.35b)

Then if D, (r = 1, 2, 3) are the component matrices of d the sym-
metry of (4.40) ensures that they are the columns of D; thus

D = (D, D2 D3) (4.36b)

is a definition equivalent to (4.36a).
Using the forms (4.24b) and (4.36b) for A and D, the argument

used to establish (4.37a) tells us that

AD =[a1, a2, a3]I

= 0(A)I. (4.37b)

So provided A is non-singular, the inverse (4.39) of A satisfies

AA-'=7;

this establishes 'in full the equations (4.34), for the inverse A-'
defined by (4.39) and (4.40).

It is important to show that the inverse A-' of a non-singular
matrix A is unique. Since we are assuming that 0(A) 0 0, we have to
show that the adjoint D is uniquely determined by (4.37a). Suppose
that D(') and D12) both satisfy (4.37a); then subtracting the two
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equations gives

EA=0,
where E = D"' - D 12) and 0 is the zero matrix. Now write E in terms
of rows E1, E2, E3, and A in the form (4.24a); then

E1

E2
E3

(A1 A2 A3)=O-

Consider the row E1 for instance. If we regard it as the component
matrix of a vector el, then this vector satisfies

el a1=e1 a2=e1 a3=0.
But since 0(A) 0 0, the vectors a1, a2, a3 are linearly independent; the
only vector orthogonal to three linearly independent vectors is the
zero vector, so e1= 0. Likewise e2 = e3 = 0. Therefore the matrix E is
identically zero, and D")=D12. So when 0(A)00, the adjoint D,
and hence the inverse A-', is unique.

The existence and uniqueness of A-' enables us to solve the set of
linear equations

AX = V, (4.41)

where V is a given column matrix, X an unknown column matrix,
and A a non-singular square matrix. Multiplying (4.41) on the left by

A-1 gives IX = A_' V, or simply

X =A-'V. (4.42)

The uniqueness of A-' ensures that (4.42) is the unique solution of
(4.41). If V = 0, with all elements zero, then (4.42) tells us that,
when 0(A) :.4- 0, X = 0 is the only solution of

AX = 0. (4.43a)

When A(A) = 0, (4.43a) has non-zero solutions. If we write A in
the form (4.24b) in terms of its rows A1, A2, A3, then (4.43a) is
equivalent to the vector equations

a1 x=a2 x=a3 x=0, (4.43b)

where x is the vector with component matrix X. So x must be
orthogonal to al, a2, a3. The range of solutions of (4.43a) can then be
classified in terms of the rank r(A) of the matrix A, defined to be the
number of linearly independent rows of A:
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(i) If 0(A) 0 0, the vectors a, (r = 1, 2, 3) are linearly independent
and span the whole of 3-space; then r(A) = 3 and x = 0 is the only
vector satisfying (4.43b).

(ii) If 0(A) = 0, then a, (r = 1, 2, 3) are linear dependent. But if
r(A) = 2, the set {a,} will span a plane. If n is a unit normal to this
plane (determined apart from sign), and A is any number, then any
vector x =An satisfies (4.43b), so that its component matrix satisfies
(4.43a). The solutions therefore correspond to the ray of vectors {A n}.

This set of solutions can be obtained more precisely. Since 0(A) _
0, (4.37b) becomes

AD = 0.

Therefore (4.43a) is satisfied if X = D1, D2 or D3 (the columns of D).
These columns correspond to the vector products (4.35b), which are
all orthogonal to the plane of al, a2, a3, and which are therefore all of
the form An. But since r(A) = 2, at least two of the vectors {a,} are
linearly independent, so that one or more of the vector products
(4.35b) must be non-zero; thus (4.35b) defines the ray {An} explicitly.

(iii) If A(A)=O and r(A)=1, then the rows A 1, A2, A3 are
multiples of a single row matrix; al, a2, a3 are then parallel (or zero),
and (4.43b) only restrict x to lie in the plane orthogonal to their
common direction. There is no unique normal {n} to the three vectors
{a,}, and every one of the vector products (4.35a) is zero. So the
adjoint matrix is D = 0.

(iv) If r(A) = 0, A is the zero matrix. Then any column matrix X
satisfies (4.43a).

Generally, the set {X} of solutions of (4.43a) correspond to the
vectors {x} orthogonal to the space spanned by a, (r = 1, 2, 3). The
dimension of the space {x} is therefore 3 - r(A).

Problems 4.1

1 One (2 x 2) matrix A is written in the form (4.21b), and a second
(2 x 2) matrix B in the form (4.21a). Use (4.20) to write 0(A)0(B) in
terms of al, a2, b1, b2.

Adapt (4.31) to (2 x 2) matrices, and express 0(AB) in terms of a
a2, bI, b2. Hence show that

0(A)0(B) = 0(AB).
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2 If the product AB of two matrices A and B exists, show that the
transposed matrix is given by (AB)T=BTAT.

3 If A is a (3 X 3) diagonal matrix with diagonal elements a,. (r =
1, 2, 3), and B = (b,s) is any (3 x 3) matrix, write down a formula for
the general element of the matrix product AB. Use (4.26) to evaluate
0(AB), and hence to show that 0(AB) = 0(A)0(B).

4 If
1 2 3

A= 1 1 2 ,

2 -1 2

evaluate 0(A). Use (4.35a), (4.36a) and (4.39) to calculate the in-
verse A '.

Check that
A-'A=AA-'=I.

5 If A is the matrix defined in Question 4, check that the inverse A-'
given by (4.35b) and (4.36b) is the same as that given by (4.35a) and
(4.36a).

6 Use the inverse A-' calculated in Questions 4 or 5 to solve the set of
linear equations

x +2y +3z = 2,

x+y+2z=0,
2x-y+2z =-3.

7 If A and B are two non-singular square matrices, show that the
inverse of AB is given by (AB)-' = B-'A-'.

8 If A and Bare (3x3) matrices, show that r(AB) <r(A).

4.3 Rotations and reflections in a plane

Before studying rotations and reflections in 3-space, we investigate
the simpler situation in a plane. This serves two purposes: first, we
can discuss several general concepts in a particularly simple case;
second, we are able to understand fully the property of addition of
angles in a plane; this is one more familiar geometrical concept which
needs to be derived through our axiomatic approach to vectors and
Euclidean geometry.

Let (i, j) be an orthonormal basis in a plane, so that i and j are
orthogonal unit vectors. As in §2.3, let (i, j) define a positive sense of
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rotation in the plane. Now let (i', j') be a second orthonormal basis,
chosen to satisfy (2.48):

i' i = j' j =cosa, (2.48a)

i - j = -j' i = sin a ; (2.48b)

then the rotation from i' to j' is also '7T in the positive sense, as in Fig.
2.6. The relations between the two sets of basis vectors are

i'= cos a i + sin a j, (4.44a)

j'= -sin ai+cosa j. (4.44b)

The component matrices of i' and j' relative to the basis (i, j) are thus

(cos a)
sina

sin a
and ( (4.45)

\ cos a

By combining these two column matrices, we form the trans-
formation matrix

(cosa -sin aR _
-\sina cosa

(4.46)

So, if the (i, j) frame is denoted by F, this definition ensures that the
component matrices of i and j' in the frame F are the columns of the
transformation matrix R.

The transpose of the matrix (4.46) is

R T -
cosa sin a l

\-sin a cos a /'

and it is easy to check that

RTR =RR'= I, (4.47)

where I is the (2 x 2) unit matrix. Taking determinants on each side of
(4.47) and using (4.30) and (4.27), we find that [A(R)]2 = 1 or

0(R) = t 1. (4.48)

A unique inverse R-1 of R therefore exists, and comparing (4.47)
with (4.34), we see that R-' is given by

R -1 =R T
. (4.49)

Any real square matrix which satisfies (4.47) or (4.49) is called
an orthogonal matrix and represents an orthogonal transformation.
Clearly matrices of the form (4.46) satisfy 0(R) = +1; later on, we shall
discuss orthogonal matrices L for which z(L)=-1.
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Relations (4.44) can be written in matrix form, using row matrices
with vectors as components:

cos a -sin a
(i j') = (i j)(sina cos a

(i j)R. (4.50)

Multiplying this equation on the right by R_', and using (4.34) and
(4.49), we find

(i j) = (i' j')R (i j')(-cosa sin a .
(4.51)

sina cosa
Comparing (4.51) with (4.50), we see that if the (i', j') frame F' is
obtained from F by a rotation a, as in Fig. 2.6, then the frame F is
obtained from F' by a rotation -a. This is a `geometrically obvious'
fact.

Consider a given vector v in the plane of i and j. It can be expressed
in terms of the two bases in the form

v = vii+v2j, (4.52a)

v = vii'+v2j'. (4.52b)

We now find the relationship between the sets of components (v 1, v2)
and (vi, v2). Substituting from (4.44) into (4.52b),

v = (vi cos a-v2 sin a)i

+(vi sin a +v2 cos a)j.

Comparing with (4.52a) we find, using matrix notation,

(vl _ a -v2sina
v2) -

(vi'cos
vi sin a +v2 cos a)
cos a
sin a

-sin al v
cos a)(v2 (4.53a)

Using the notation (4.7) for component matrices, and the definition
(4.46), this equation can be written

V = RV. (4.53b)

These equations can be solved for V in terms of V, as in (4.43); then

V'=R-1V=RTV, (4.54)

using (4.48); (4.53) and (4.54) give the relationship between the
component matrices of the same vector v in the two frames of
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reference F and P. So (4.53) and (4.54) express the effect of a
rotation of the reference frame, also termed a passive transformation
of the component matrix.

We can also ask: what is the effect of rotation of a vector v, keeping
the reference frame F fixed? We must make clear what is meant by
rotating a vector through an angle a ; this is shown in Fig. 4.1. As

above, let (i', j') be the basis derived from (i, j) by a rotation a, and
defined by (4.44). If

v=vli+v2j,
then the vector w given by rotating v through an angle a is

w= vli'+v2j'; (4.55)

thus it has, by definition, the same components as v, but relative to
the rotated frame P. To find the components of w in the frame F,
substitute from (4.44) into (4.55); then

w = (v1 cos a - V2 sin a)i

+ (vi sin a + v2 cos a )j.

So if w=wli+w2j, the component matrix of w relative to F is given
by

I\/\) snsa C sa v2W2
(4.56a)

or

W = R V. (4.56b)
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So rotating the vector v through an angle a in the plane is represented
by the operation of R on the component matrix V. This result should
be carefully compared with (4.54), where the effect on V of rotating
the frame is the operation of the inverse R-'. A little thought tells us
that this is sensible: for if we rotate both the vector v and the frame of
reference, there is no change in the components. In other words, the
transformation of V due to rotating the reference frame must be the
inverse of that due to rotating the vector v.

Let us now consider the effect of performing two successive rota-
tions on a vector v, first through an angle a and then through an angle
P. The rotation through a changes v into the vector w with
components given by (4.56). Using the same formula, the second
rotation results in w becoming the vector t= t1i+t2j, with

\t21- \snscow w2l\1
Substituting from (4.56a),

\t2/-\sn,6 cos/3 1sina cosa/\v2/

_ (cos a cos /3 - sin a sin f3 -sin a cos /3 - cos a singl (v ll
- \sin a cos f3 +cos a sin 6 cos acos f3 -sin asin f3/ \v2)

_ (cos (a + f3) -sin (a +/3) V1 l (4.57)- sin (a +/3) cos (a +/3)J\v2)'

using (2.50). So the effect of successive rotations through angles a
and /3 is the same as a rotation through the angle defined in Chapter 2
as the `sum of angles' a +3. This result establishes, in terms of
vectors, the property of addition of angles in a plane: successive
transformations of the form (4.56) are equivalent to a third trans-
formation (4.57) of the same type. We note that these trans-
formations are all expressed in terms of cosines and sines, and so
through (2.5) and (2.43) are directly expressible in terms of scalar
products. The properties of rotations in a plane have therefore been
based on the axioms of vectors.

If we now denote the transformation matrix (4.46) by R (a), then
the matrix multiplication performed in deriving (4.57) can be
expressed as

R (P)R (a) = R (a +,G). (4.58a)
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Since cos(a +/3) and sin(a +f3) are symmetrical between a and /3,
(4.58a) can also be written

R(a)R(f3)=R(a+/3), (4.58b)

implying that the effect of performing two rotations in a plane is
independent of the order in which they are performed.

The set of matrices {R (a)j form a group. The properties of a group,
consisting of certain group elements, are:

(i) There is a rule for combining any two elements of the set to
form another element, and this rule must satisfy the associative law.
(4.57) tells us that rotation matrices combine by matrix multi-
plication. Matrices satisfy the associative law of multiplication
A(BC) = (AB)C.

(ii) There is a unit element of the group which combines with any
element of the group to give exactly the same element; the unit
matrix, representing a zero rotation, is the unit element of the rotation
group.

(iii) Every element of the group has an inverse which combines
with the element to give the unit element. (4.46) and (4.47) tell us
that the inverse of R (a) is

R-'(a)=RT(a)=R(-a),

expressing the obvious fact that the inverse of a rotation through an
angle a is a rotation through -a. The fact that R (a )R (/3) _
R ()i)R (a), for all a and /3, tells us that the group is an Abelian group.

In establishing these group properties and the property of
additivity of angles, we discussed the rotation of vectors. We could
equally well have discussed the rotations of frames of reference;
then R (a) is replaced in the above discussion by R -'(a) = R (-a),
representing the inverse rotation. The whole discussion proceeds
as above, but with the sign of every angle changed. So additivity of
angles of rotation, and the group properties of rotations in a plane,
apply equally to rotations of vectors and to rotations of frames of
reference.

We took the rotation 21T from i to j as defining the positive sense of
rotation in the plane, and also chose the rotation 27r from i' to j' to be
in the positive sense. Now suppose that j' has been chosen with the
opposite sign, so that the rotation ''ir from i' to j' is in the negative
sense, as shown in Fig. 4.2. Then (4.44a) remains unchanged, but
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Fig. 4.2

(4.44b) is replaced by

j'=sing i-cosa j.
The transformation matrix (4.46) is replaced by

L(a) _ (cosa sin a l
-\sina -cosa) (4.59)

There are several differences between transformations of type L and
type R. If we put a = 0 in R, we obtain the unit matrix I, which
represents no change in the component matrix V in (4.54) and (4.56);
R (0) corresponds to zero rotation. But putting a = 0 in L(a) gives

L(0) = \0 -Ol (4.60)

clearly this matrix is its own inverse,

L-'(0) = L(0); (4.61)

replacing R by L(0) in (4.50) produces a change of basis from (i, j) to
(i', j'), where

i' = i, j = -j'. (4.62)

The components of a given vector v using the two bases are then
related by

vi=vi, v2=-v2.
The change of basis (4.62) is a reflection of the frame in the i-axis.

We may also consider L(0) as an operator acting on a vector v, with
given basis (i, j); then the components of the transformed vector w,
given by (4.56a), are

Wi=vi, W2=-v2.
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In this case, L(0) represents the reflection of the vector in the i-axis.
Next, we note that the transformation matrix (4.59) can be written

as the matrix product

L(a)=R(a)L(O)

of the rotation matrix R (a) and the i-axis reflection matrix (4.60).
The transformation is therefore a combination of an i-axis reflection,
followed by a rotation. It is geometrically obvious from Fig. 4.2 that
L(a) cannot represent a pure rotation in the plane; algebraically,
transformations L(a) can be distinguished from R(a) by evaluating
their determinants. While 0[R(a)]=+1, it is clear from (4.59) that
0[L(a)] = -1, for all a. So the sign of the determinant distinguishes
between matrices representing a rotation and those representing a
rotation plus a reflection.

The set of matrices {L(a)} does not form a group, since the unit
matrix is not one of the set. However, the set of matrices {R(a), L(a)}
does form a group; in Problems 4.2, Question 4, the reader is asked
to verify the group properties of this set.

Example 4.1

Show that the matrices I, -I, L(0) and -L(0) form an Abelian group.
Explain the geometric significance of -I and -L(0).

The matrices are

I=(p ), -I=( 0 -1),

L(0)=(1 -0), -L(0)_( 0).

I and -I are their own inverses, and [L(0)1-'=L(O). Since
L(0)L(0) = I, all products of two of the four matrices are members of
the set. Since the matrices are all diagonal, the products are in-
dependent of the order of the matrices. So the group is Abelian.

The matrix -I is given by putting a = 7r in (4.46), and so cor-
responds to a rotation in the plane through angle 7r; this is also called
reflection in the origin or central inversion. Just as L(0) represents
reflection in the i-axis, -L(0) represents reflection in the j-axis.
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Example 4.2

Show that the rotation matrices (4.46) with ap = 2irp/n
0, 1, . . . , n - 1) form an Abelian group with n members.

By (4.58) the products of R(ap) and R(aq) obey

R (ap)R (aq) = R (aq )R (ap )

=R(ap+aq).

(P =

If p +q , n -1, R (ap +aq) is a member of the set. If n , p +q
2n-2, so that 2rr_-ap+aq<4ir, R(ap+aq)=R(ap+aq-21r),
again a member of the set. So the product of two members of the set
is a member.

The unit matrix is the member of the set with ap = 0. For p =
1, 2, ... , n -1, the inverse of R (ap) is R (-ap) = R (21r -ap), cor-
responding to angle 2,7r(n -p)/n; this is also a member of the set. So
the set possesses all the properties of the group. [The group is a cyclic
group of order n.]

Problems 4.2

1 Write down the transformation matrices R1 and R2 corresponding to
rotations through angles 61r and 36r. Show by matrix multiplication
that the matrix products R1R2 and R2R1 correspond to a rotation
through IT.

2 Show that all (2 x 2) matrices A satisfying AAT = I are either of the
form (4.46) or (4.59).

3 The vector v is given as v=i+2j relative to the frame F. A second
frame F' has orthonormal basis (V, j'), with j, = 53i -Sj and i' i = j'- j.
Find the components of v relative to the frame P. If w is the vector
formed from v by the rotation which takes i into i', find the
components of w relative to both frames of reference.

4 Show that the set of matrices {R (a), L(a); 0 _- a < 2-7r}, defined by
(4.46) and (4.59), form a group.

5 If L is a (2 x 2) orthogonal matrix, interpret the condition A(L) = t 1
in terms of

(a) the vector product of the columns of L,
(b) areas in the plane.

Explain carefully the effect of the choice of sign of A(L).
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6 Show that the set of matrices {R (a,), L(a,)} defined by (4.46) and
(4.59), with ap = 21Tp/n (p = 0, 1, . . . , n -1) form a group. Draw
diagrams to show how each member of the group transforms an
arbitrary vector v, as in (4.56), for the groups defined by n = 3 and
n =4.

4.4 Rotations and reflections in 3-space

Many of the properties of (2 x 2) orthogonal transformations have a
simple generalisation when we consider a change of orthonormal
basis in 3-space. Let us consider two bases (i, j, k) and (i', j', k'), each
consisting of three mutually orthogonal unit vectors. Any unit vector u
can be expanded in the form (2.63),

u=11i+12j+13k,

where, by (2.62), the direction cosines satisfy

3

19=1.
q=1

Expressing each of the unit vectors i', j', k' in this form, we have

i' = 1111 + 121j + 131k,

j'=1121+122j+132k, (4.63a)

k' = 1131 + 123] + 133k,

with
3 3 3

L 1ql = k
22
= L 1q3 = 1. (4.64)

q=1 q=1 q=1

Since i', j', k' are mutually orthogonal, their scalar products, given in
terms of components by (2.36), are zero; thus

3 3 3

Y- lgllg2= Y- lgllg3= Y- 1g21g3=0.
q=1 q=1 q=1

(4.65)

Using the Kronecker delta defined by (4.15), the six equations (4.64)
and (4.65) can be written compactly as

Y- lgplq, = 6pr (p, r = 1, 2, 3), (4.66)
q

where the summation is over the values q = 1, 2, 3; (4.66) constitute
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the orthonormality conditions for (i', j', k'). We now define the matrix

111 112 113

L = 121 122 123

131 132 133

(4.67)

which is called an orthogonal matrix; we see from (4.63a) that the
columns of L are the component matrices of , j', k' relative to the basis
(i, j, k). If LT is the transpose of L, with elements given by (4.8), then
the expression Eq lqplqr in (4.66) is just the (p, r) component of the
matrix product LTL, for p, r = 1, 2, 3. Since (5pr) is the unit matrix,
(4.66) can be written in matrix form as

LTL = I; (4.68a)

this is of exactly the same form as one of the equations (4.47) for
(2 x 2) orthogonal matrices. As for (2 x 2) matrices, taking deter-
minants in (4.68a) gives

A(L) = t 1, (4.69)

and multiplying on the right by the unique inverse L-' gives

L ' = LT; (4.70)

multiplication on the left by L then gives

LLT = I, (4.68b)

analogous to the second equation (4.47). In general, an orthogonal
matrix L is a square matrix satisfying (4.68) or (4.70), analogous to
(4.47) or (4.49) for (2 x 2) matrices. Orthogonal (3 x 3) matrices are
again of two types, dependent upon the sign of 0(L) in (4.69). We
shall see later that, as in 2-space, L represents a pure rotation when
0(L) = + 1; but when z(L) = -1, L represents a rotation plus a
reflection. Writing the basis vectors as row matrices, the relations
(4.63a) connecting two frames F and F' can be written, as in (4.50),

(i' j' k') = (i j k)L; (4.63b)

multiplying on the right by L-' and using (4.68) and (4.70),

(i i k) = (i' j' k')LT. (4.71)
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So, just as L in (4.63) transforms the basis vectors of F to those of F',
LT in (4.71) effects the inverse transformation from F' to F. There-
fore the columns of LT are the component matrices of i, j, k relative
to the basis (V, j', k'). Remembering that transposition interchanges
the rows and columns of L, we see that the rows of L are the
component matrices of i, j, k relative to the basis (i', j', k'). So both the
rows and columns of an orthogonal matrix L have a direct inter-
pretation in terms of the two bases.

Example 4.3

The basis vectors of a frame F', relative to frame F, are the unit
vectors associated with a,, a2 and a, A a2, where

a, =i+2j+2k,
a2=j-k.

Find the component matrices of each set of basis vectors in terms of
the other set.

First note that a, and a2 are orthogonal, as required; the unit
vectors associated with them are

V= 3(i + 2j + 2k),

j'= 1
2(j- k).

The third member of the triad is thus

k'=i A '=3 J2(-4i+j+k).

The components of i', j', k' in frame F form the columns of the
transformation matrix (4.67), which is thus

L=

1 4

3 0 3442

2 1 1

3 /2 3./2

2 1 1

3 /2 32/
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The component matrices of i, j, k relative to frame F are the rows of
L, namely

/ 3 1 / 3

2

3

°1' ITI' I7
4 _l3I 133T 13 I

Now consider a given vector v, expanded in terms of the two triads
as

v= vli+v2j+v3k, (4.72a)

v=v1 +v2j'+v3k'. (4.72b)

Substituting from (4.63a) into (4.72b) gives

V = (E 11gvq)i + (Y_ 12gvq f j + (Y 13gvq) k,
q q / q

Eq denoting the sum over the values 1, 2, 3 of q. Comparing with
(4.72a), we find the relations

v, =Y_ lavq (p = 1, 2, 3) (4.73a)
q

between the components in the two frames. Introducing, as in (4.7b),
the component matrices V and V of the vector v, (4.73a) is then of
the form (4.53b):

V = L V.

Just as in 2-space, it follows that the inverse relation is

(4.73b)

V= L_' V = LT V. (4.74)

Once again, (4.73b) and (4.74) express the effect of a change of the
reference frame on the component matrix of a given vector Y.

When we first defined a triad (i, j, k) in Chapter 2, we arbitrarily
chose to call this particular triad `right-handed', while the triad
(i, j, -k) was `left-handed'. With this choice for the one particular
triad (i, j, k), we are now able to define 'handedness' for any other
triad (i', j', k'). Given i' and j', the third unit vector k' must equal
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ti' A j'. If k' = i' n j', so that

[i', j', k] = +1,

the triad is defined to be right-handed. If L is the orthogonal matrix
defined by (4.63), with columns equal to the component matrices of i',
j', k', then the definition (4.25a) gives

z(L) = +1

as the condition for a right-handed triad. Equally, if k' = -i' n j', then

A(L) = [i', j', k] _ -1,

and the triad is defined to be left-handed. Since all orthogonal
matrices satisfy (4.69), all triads are either right-handed or left-
handed.

If we picture a reference frame F as a set of unit vectors along
three Cartesian axes, we can consider rotating F continuously until it
coincides with a second frame P. This cannot happen if F and F'
have opposite 'handedness'; there can be no continuous change from
a right-handed to a left-handed frame, since at some stage the
determinant associated with the frame must change abruptly from +1
to -1. We shall now see, by explicit construction of the trans-
formation matrix, that all transformations with determinant +1 can
be carried out continuously as a series of rotations. When we are
dealing specifically with matrices representing rotations, we shall
denote them by R, rather than L, as in §4.3; then A(R) = +1 always.

In Fig. 4.3, we show how the transformation from the frame (i, j, k)
to any other right-handed frame (i', j', k') can be effected by three
successive rotations through angles a, 0, y. The unit vectors i, j, k are
represented by three mutually orthogonal displacements OX, OY,
OZ. The first rotation is through the angle a about the axis OZ, so

z
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that the rotated triad is represented by (OA, OB, OZ). The trans-
formation matrix representing the rotation is

cos a -sin a 0
R1= sin a cos a 0 ; (4.75a)

0 0 1

this transforms (i, j) as in (4.50) and (4.46), leaving k unchanged. The
next rotation is through an angle G about the axis OA, the first axis of
the displaced triad; after this second rotation, the position of the triad
is represented by (OA, OC, OD). The transformation matrix cor-
responding to the second rotation is

1 0 0
R2= 0 C0SJ8 -sin

0 sin /3 cos13

(4.75b)

this matrix corresponds to the transformation of type (4.63) from the
frame (OA, OR, OZ) to the frame (OA, OC, OD), and operates on
unit vectors parallel to OA, OC, OD. So, representing unit vectors by
displacements, two applications of (4.63b), with L = R2 and L = R 1

respectively, give

(OA OC OD) = (OA OB OZ)R2
_ (OX OY OZ)R1R2. (4.76)

We now identify the unit vector k' as that represented by OD; if k'
is given it is clear from Fig. 4.3 that its direction defines the angles a
and 0, and that any unit vector k' corresponds to angles in the ranges
0 _ a _ 2a, 0 _ /3 _-7r. This identification of k' tells us that i and j'
must lie in the plane defined by 0, A and C; so i' is represented by
some unit displacement OE in this plane. The third rotation y (0, y <
21r) about axis OD is therefore defined to take OA into OE; this
same rotation takes OC into OF, completing the right-handed triad
(OE, OF, OD); since (i', j', k') is assumed to be right-handed, it is
represented by this triad of displacements. The matrix transforming
(OA, OC, OD) into (OE, OF, OD) is

cos y -sin y 0
R3 = sin y cosy 0 ; (4.75c)

0 0 1
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so applying (4.63b) again, with L = R3, and using (4.76),

(OE OF OD) = (OA OC OD)R3
= (OX OY OZ)R1R2R3. (4.77)

Thus the complete transformation between the bases is of the form
(4.63b), with transformation matrix

R =R1R2R3. (4.78)

The three rotation matrices R, (r = 1, 2, 3) are given by (4.75a, b, c);
forming the matrix product (4.78) gives

R=
cos a cos y - sin a cos /3 sin y -cos a sin y - sin a cos /3 cosy sin a sin /3
sin a cosy +cos a cos /3 sin y -sin a sin y +cos a cos /3 cos y -cos a sin 13 .

sin /3 sin y sin /3 cos y cos /3

(4.79)

This transformation matrix corresponds to the three rotations a, /3, y
performed in succession; the angles a, /3, y defining the trans-
formation are called Euler's angles. It is not hard to check directly
that R is an orthogonal matrix with OR = +1 (see Problems 4.3,
Question 2), and that R 1= R T. Since the matrix elements of R are
all continuous functions [Reference 4.4] of a, /3, y and R = I when
a = /3 = y = 0, the transformation from frame F to F' can be carried
out continuously. Later in this section we shall show that the trans-
formation R represents a rotation about an axis that can be deter-
mined.

Let us now consider transformations with determinant -1. One of
the simplest is the transformation i'= -i, j'= -j, k'= -k, with trans-
formation matrix

-1 0 0

P 0 -1 0 .

0 0 -1

(4.80)

This transformation corresponds to reflection in the origin (central
inversion) of the frame (i, j, k).

Now consider any transformation matrix L with A(L) _ -1; it can be
expressed as the matrix product

L = PR, (4.81)

where P is the reflection (4.80) and R = -L. Since the columns of L
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represent a triad, so do those of R, so that R is an orthogonal matrix;
and since 0(L)=0(P)=-1, (4.81) and (4.30) ensure that 0(R)=+1.
So R is a matrix representing a pure rotation; hence L = PR is a
combination of a rotation and a reflection in the origin.

We have so far discussed transformations of reference frames. As
in 2-space, we can also consider transformations of vectors relative to
a given frame F, taken as right-handed. First we consider rotations of
a vector v. If (i', j', k') is another right-handed frame, and v is given by
(4.72a), the rotated vector w is defined to be

w= v1i'+v2j'+v3k'.

Substituting from (4.63a), with L replaced by a rotation matrix R =
(rpg ),

W = (zr1qVq i+(z r2gvq)j+(Y_r3gvq)k,

so that the components of w in frame F are

wp Y_ rpgvi (4.82a)
q

In matrix form, this equation is the same as (4.56b) in 2-space:

W=RV. (4.82b)

Once again, we can compare the effect of the transformations
(4.74) and (4.82) on the component matrix V. The effect of rotating the
vector is the operation (4.82) of R on V, while the effect of rotating the
reference frame is the operation of R-1 on V.

The set of orthogonal matrices R representing rotations, with
IX(R) = + 1, form a group since

(i) The matrix R1R2 formed by matrix multiplication of two
rotation matrices is also a rotation matrix, satisfying (4.68),

(ii) the unit matrix I is a member of the set, and
(iii) each matrix R has an inverse R-1= RT which is also a rota-

tion matrix.
Since any member R of this group is of form (4.79) and can be
derived from I by continuous variation of the values of a, 9, y, the
group is called a continuous group; it is known as the 3-dimensional
rotation group. It is not difficult (see Problems 4.3, Question 4) to
find rotation matrices R 1, R2 with R 1R2 0 R2R 1; the group is there-
fore not Abelian.
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The set of all (3 x 3) orthogonal matrices also forms a non-Abelian
group, since it satisfies the conditions (i), (ii) and (iii) above. It is not,
however, a continuous group, since matrices L with 0(L) = -1 cannot
be obtained from I by continuous variation. The set of matrices L with
A(L)=-1, as in 2-space, is not a group, since it does not contain the
unit matrix I.

We are intuitively familiar with the concept of an axis of rotation; it
is a straight line which is unchanged by a particular rotation. We shall
now show that to every non-zero rotation there corresponds a unique
axis of rotation. If the rotation is represented by an orthogonal matrix
R with A(R)=+1, then we look for a vector v whose component
matrix V satisfies

RV=V
or

(R-I)V =0, (4.83a)

so that it is unchanged by the operation of R. Written out in full, this
matrix equation is of the form (4.43a):

r11-1 r12 r13 vl 0

r21 r22 -1 r23 V2 = 0 . (4.83b)

r31 r32 r33 - 1 v3 0

At the end of §4.2, we showed that this set of equations would have
a solution V if the matrix of coefficients R -I had zero determinant.
We shall now show that 0(R -I) = 0.

Since RT=R-1,

I -R =R(RT-I).
Taking determinants on both sides, and using (4.30),

d(1- R) = A(R)0(RT-1).
Since .(R)=+1 and the determinant of RT-I equals that of its
transpose R - I, this gives

z(I-R)=0(R-I)=-0(I-R).
Therefore 0(I -R) = 0, showing that (4.83) has a solution V; as in
§4.2, there is therefore a unique ray of vectors invariant under the
rotation, defining an axis of rotation, provided that the rank r(I -R)
is 2. We have already shown that r(I - R) < 3; r(I - R) = 0 only if
R = I, representing zero rotation. It can also be shown (Problems 4.3,
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Question 6) that r(I -R) = 1 also implies that R = I. So r(I -R) = 2
for all non-zero rotations, and a unique axis of rotation is defined.

Example 4.4

Show that the eight diagonal (3 x 3) matrices, with each diagonal
element taking values +1 or -1, form an Abelian group. Discuss the
geometric interpretation of the matrices.

The eight matrices are of form

t1 0 0

0 t1 0 .

0 0 ±1
The set contains the unit matrix, and each matrix is its own inverse. If
we multiply two of the matrices (in either order), we simply multiply
corresponding diagonal elements, giving another diagonal matrix of
the set. So the eight matrices form an Abelian group.

The matrix P = -I denotes reflection in the origin or central in-
version. The matrix with diagonal elements {1, 1, -1} changes the
sign of the third component, and so denotes reflection in the (i, j)
plane. The matrix with diagonal elements {-1, -1, 1}, as in Example
4.1, denotes a rotation through angle IT about the k-axis, which is
unchanged by the transformation. The other matrices have similar
interpretations.

Example 4.5

Relative to a frame F, a vector w is obtained from a vector v by a
rotation represented by the matrix R. The transformation from the
frame F to a second frame F is represented by the matrix L. Show
that, relative to the frame F, the rotation from v to w is represented
by the matrix

L-1RL = LTRL.

If V and W are the component matrices of v and w relative to F,
then by (4.56),

W = R V.

But by (4.53), the component matrices V and W' relative to F are
related to V and W by

V = LV', W = LW'.
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Substituting in the above equation gives

LW' = RLV'

or

W' = L-1RLV'.

Thus the matrix representing the rotation, in frame F', is

L-1RL = LTRL. (4.84)

Example 4.6

Relative to the frame F, the rotation from F to a second frame F is
represented by the matrix R1. Relative to F', a second rotation from
F to frame F" is represented by R2. Show that, relative to F, the
rotation from F to F" is represented by the matrix R1R2.

In frame F, let the rotation from F to F" be represented by R. Now
use the result of Example 4.5 above, with L replaced by R 1. Then the
rotation from F to F", in frame F', is represented by R i 1RR 1. But
this is equal to R2: so R2 = R 1RR 1i or

R =R1 2 1 1.

In frame F, the rotation from F to F" is represented by the matrix
product R2R (R acts first, then R2, with fixed frame F). Substituting
for R, this matrix product becomes

(R1R2R1 1)R1=R1R2,

as required.

Problems 4.3

1 The vectors j', k' of a left-handed frame F are the unit vectors
corresponding to

a1=i+2j-2k

and

a2=2i-2j-k
respectively. Find the component matrix of

v=3i-j+2k
relative to the frame F'.
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2 Check by direct matrix multiplication that the matrix R given by
(4.79) satisfies RTR = RRT = L Show by direct calculation that
0(R)=+1.

3 Show that the matrix 2 2 2
3 0 -,/3

-,/6 -1 2 -1

corresponds to a rotation. Find a unit vector u in the direction of the
axis of rotation.

4 Write down the set of nine matrices which correspond to rotations
through angles zar, or and 12,7r about axes in directions i, j and'k. Find a
further set of rotation matrices which, together with I and these nine
matrices, form a group. To what rotations do these other matrices
correspond?

5 Relative to frame F, the rotation to frame F(') corresponds to matrix
R1; and for k = 2, ... , n, the rotation from frame FM ') to FM,
relative to frame F(k ", corresponds to matrix Rk. Show that the
rotation from F to F("), relative to frame F, corresponds to the matrix

R =R,R2 ... R"-,R"-

[This is an extension of the result in Example 4.6.]
6 If R is an orthogonal matrix with A(R) = +1, and R 0 I, show that

r(I -R) 0 1.
[Hint : The columns of I - R correspond to vectors i - i', j - j',

k-k'; if r(I -R) = 1, these three vectors are parallel or zero.]

4.5 Vector products and axial vectors

If we reflect the vector V = v,i+v2j+v3k in the origin, its components
are transformed by the matrix P, given by (4.80). The components of
the reflected vectors v' are given by

vp= -vp (p=1,2,3). (4.85)

A second vector w= w,i+w2j+w3k has a reflected vector with
components

w, = - we.
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The vector product v A W is defined by (3.19), so that the vector
product of the reflected vectors v' and w' is given by

V'nw'=vnw. (4.86)

There is no change of sign of the components of V n w due to
reflection; that this is to be expected can be seen from Fig. 4.4. The

v'A w

vn w

Fig. 4.4

sense of rotation from v to w is the same as that from v' = -v to
w'= -w, so that the vector products v A w and V' A w' are in the same
sense. Thus vnw and v behave differently under the reflection
operation, and v A w is not in this respect a vector in the original vector
space. The different nature of v A W stems from the introduction of a
`sense of rotation' in its definition in §3.1; this `sense of rotation' is
unchanged when v and w are replaced by -v and -w. We distinguish
these two types of vectors by referring to a vector v with reflection
property (4.85) as a polar vector; v is a vector in the original vector
space. The vector product V A W, with reflection property (4.86), is
called an axial vector or a pseudovector. Provided that we do not wish
to discuss reflection properties, axial vectors behave in every sense
like vectors; for example, under a rotation of vectors defined by an
orthogonal matrix R with 0(R) = +1, the vector n in the definition
(3.1) of a vector product will rotate with the vectors a and b in order
to remain orthogonal to them, while a, b and sin 9 (defined in terms
of scalar products) remain unchanged; so a vector product behaves
exactly like a vector under the operation of a rotation.

Axial vectors are not necessarily of the form of a vector product,
although they are frequently associated with vector products. In
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mechanics, the moment of a force is a vector product, and has the
reflection properties of an axial vector. The vorticity of a fluid,
measuring the rotation of a fluid about an axis, is an axial vector; it is
defined as an integral of a vector product.

Suppose that v, w and t are three polar vectors, each changing sign
under reflection. Then the scalar triple product

[v, w, t] = v (w At)

changes sign when all three vectors are reflected; this is because the
'handedness' of the set (v, w, t) is opposite to that of (-v, -w, -t).
Under rotations, [v, w, t] is unchanged, because it was defined as a
scalar product; so we call [v, w, t] an axial scalar or a pseudoscalar.
Generally, an axial scalar is unchanged by a rotation, but changes sign
under the operation of a reflection. We saw in §3.3 that the modulus
of a scalar triple product could be interpreted geometrically as the
volume of a parallelepiped; the volume is a positive scalar quantity,
while the scalar triple product, which may be positive or negative, is a
pseudoscalar.

4.6 Tensors in 3-space

Given a basis (i, j, k) in 3-space, a vector v is uniquely determined by
its three components vp; these components obey transformation laws
(4.74) and (4.82). A second-rank tensor T is a mathematical entity
described by nine quantities tpq (p, q = 1, 2, 3), relative to a given
basis; each suffix p, q of tpq transforms like a vector suffix under a
rotation. So if the nine components of T relative to a basis (i', j', k')
are t;s (r, s = 1, 2, 3), then the transformation law (4.73a) is general-
ised to

tpq =Y_ Z lprlgstr's (p, q = 1, 2, 3), (4.87)
r s

where L is the transformation matrix and the summations are over
values 1, 2, 3. The inverse transformation, as in (4.74), involves the
inverse transformation matrix L_' =LT, and is therefore

L lrrppl 9tpq
p q

E Y_ tpglprlgs, (4.88)
p q

using the definition (4.8) of a transposed matrix.
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It is sometimes convenient to regard (tm) as a (3 x 3) matrix T, with
p labelling the rows and q the columns. Again using the transposed
matrix LT, (4.87) can be written

tpq = lprtrsl q; (4.89a)
r s

since the sums are now over adjacent suffixes, (4.89a) can be written
as the matrix equation

T = LT'LT, (4.89b)

relating the two (3 X 3) matrices T = (tai) and T' = (ts). Multiplying
(4.89b) on the left by LT = L-1, and on the right by L, we obtain the
matrix equation

T'= LT TL ; (4.90)

this is just the matrix form of (4.88).

Example 4.7

Comparing (4.90) with result (4.84) of Example 4.5, we see that the
matrix R representing the rotation of a vector transforms like a
second-rank tensor when the frame of reference is changed.

Tensors of rank n (n > 2) can be defined similarly; relative to a
frame F, a tensor T of rank n has 3" components ttq...r (p, q, ... , r =
1, 2, 3), where there are n suffixes p, q, ... , r. If are the
components of T relative to frame F', the transformation laws (4.87)
and (4.88) are generalised to

tpq...r Z 1pilgj ... Irktij...k
i j k

and

(4.91)

tij...k = Y _ Y ... Y _ tpq...r lpilgj ... lrk (4.92)
P q r

These equations define tensor transformations when the frame is
changed. As in (4.82), the transformation matrix L in (4.91) or (4.92)
is replaced by LT =L-1 to define the transformation when the tensor,
rather than the frame of reference, is subjected to a transformation;
we note that each tensor suffix is then being subjected to the vector-
type transformation.
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Tensors are used in a wide variety of physical contexts, such as the
study of stress and strain in solids, flow of electricity in crystals, heat
flow in fluids, and in the special and general theories of relativity. We
shall not consider any particular application, but we now study two
tensors which merit special attention.

The first important tensor is the unit tensor, a tensor of second
rank, which has the same definition as the unit matrix, through (4.15).
We must remember, however, that the tensor is defined relative to a
given frame F, and transforms according to (4.88) or (4.90) under
change of reference frame. We shall now show, however, that the unit
tensor is unchanged by a change of reference frame: putting t" = 6 in
(4.88), the transformed tensor has components

trs = Y_ Y_ 6pq'prlgs
p q

_ 11PrlPs

P

Srs,

using (4.66). This proof may be written more simply using the matrix
form (4.90): putting T = I gives T' = LTL = I. So we have shown that
the unit tensor is invariant under orthogonal transformations, including
reflections.

The second important tensor is a tensor of the third rank which
arises out of the coordinate expression of a vector product. Suppose
that t = v n w; then, relative to a given right-handed frame F, the
components of t are given by

tP = E I EPgrvgWr, (4.93)
q r

where the 27 numbers EPgr (p, q, r = 1, 2, 3) are defined as follows:
(i) If (p, q, r) is an even permutation of the numbers (1, 2, 3), for

example (2, 3, 1), then
EPgr = + 1.

(ii) If (p, q, r) is an odd permutation of the numbers (1, 2, 3), for
example (2, 1, 3), then

Epqr = - 1.

(iii) If any two, or all three, of the numbers p, q, r are equal, then

E pqr = 0.
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This means that 21 of the 27 numbers are zero. The reader should
check that (4.93) is equivalent to (3.19).

The tensor Epgr has been defined relative to a given right-handed
frame F. We now show that, subject to a rotation of the frame with
matrix R, the set {epgr} transforms into itself by the tensor trans-
formation law (4.91) or (4.92). In terms of components relative to a
second right-handed frame F, the relation t = v A W is

_Y_ Y_ EijkvJWk, (4.94a)
j k

with Eijk defined exactly as in (4.93). The components {v;} and {vq} of
v are related by (4.73), and the same holds for the vectors w and t.
Substituting these values into (4.93), we find

lpsts-2: Y_ Epgr2: lgjvj EIrkWkq r j k

This is a set of three equations, given by p = 1, 2, 3. If we multiply
these equations by lpi and sum over p, the left-hand side becomes, for
each value of i,

Y_ E ipilpsts = L, Sists = ti
P s S

using (4.66) and (4.16a). So wa obtain

ll
ti=Y_ I [Y_ Y- Y_ Epgrlpilgjlrk]VjWk,

j k p q r

for i = 1, 2, 3. Comparing with (4.94a), we see that

Eijk = Y_ Y_ Y_ rpgrlpilgjlrk. (4.95a)
p q r

This shows that, under rotations, the set {Epgr} transforms into itself
according to the tensor transformation law (4.92), as a third-rank
tensor. It therefore also transforms into itself under the inverse
transformation (4.91).

Equations (4.93) and (4.94) follow from t = V A W only if F and F'
are each right-handed frames, so that the transformation law (4.95)
has been established only when L is a rotation matrix. If F' is a
left-handed frame, then the signs of i', j', k' will be opposite to those
of i, j, kin (3.17), and hence those of the components in (3.19) will be
changed; so (4.94a) will become

Eijkv] Wk. (4.94b)
j k
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The change of sign carries through to (4.95a), which becomes

Eijk = -Y_ Y_ Y_ Epgrlpilgjlrk
P q r

(4.95b)

So the transformation law (4.95a) is modified when L represents a
rotation plus reflection, by a change of sign. For a reflection in the
origin, L = P = -I, as in (4.80), so that Ipi = -Spi. Then (4.95b)
becomes

Eijk = +Y_ Y_ Epgr piSgjSrk = +Eijk.
P q r

The sign change in (4.95b) is therefore necessary to preserve
mathematical consistency. Since the transformation law (4.95a) holds
only for rotation matrices L, and has to be modified to (4.95b) if the
handedness of the frame changes, Eijk is often termed a pseudo-
tensor or axial tensor.

Problems 4.4

1 If Tpq (p, q = 1, 2) are the components of a second-rank tensor in a
plane, relative to a frame F, find the explicit values of the components
relative to frame F

(a) when the transformation from F to F' is represented by the
rotation matrix (4.46),

(b) when the transformation is represented by the matrix (4.59).
Use these results to show directly that the unit tensor in a plane

transforms into itself under all orthogonal transformations.
2 From the definitions ofSpq and Epq show that

EpgrEpst = igssrt - SgtSrsY
P

for all q, r, s, t taking the values 1, 2, 3.
Use this identity to establish in component form the identity

(a A b) (c n d) = (a c)(b d) - (a d)(b c).

3 Use the tensor identity of Question 2 above to establish the vector
equality

a n (b n c) = (a c)b - (a b)c.

4.7 General linear transformations

In §4.3 and §4.4 we studied the operations of rotation and reflection,
corresponding to orthogonal matrices. This group of transformations
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is only a subset of all linear transformations of a column matrix,
defined by (4.13); each (3 x 3) matrix A defines a linear trans-
formation in 3-space. As for orthogonal transformations, we may
consider either transformations of the reference frame or trans-
formations of the vector.

Let us first consider transformations of the basis vectors i, j, k of a
frame F. The transformation analogous to (4.63) will define the three
vectors al, a2, a3 by

a1= alli+a21j+a31k,

a2 = a12i+a22j+a32k,

a3 = a 13i + a 23i + a 33k,

or

(4.96a)

(a1 a2 a3) = (i j k)A, (4.96b)

where A is the matrix (a,s) whose components are the three columns
(4.23a). Since A is not generally an orthogonal matrix, we do not
know that its determinant 0(A) is non-zero. If 0(A) = 0, we have
shown in §4.3 that the columns of A are linearly dependent. So, using
(4.96a), there are constants al, a2, a3 (not all zero) such that

alai +a2a2+a3a3 = 0;

that is to say, the three vectors a, (r = 1, 2, 3) are linearly dependent,
and so do not span the 3-space. But if z(A) 0 0, the columns of A are
linearly independent, and by (4.96a), the vectors a, (r = 1, 2, 3) span
the 3-space. A unique inverse A-' of A then exists, and we can
multiply (4.96b) on the right by A-' to give

(i j k)=(al a2 a3)A 1, (4.97a)

analogous to (4.71), except that A-' is not in general equal to the
transpose AT. Then (4.97a) expresses the basis vectors i, j, k in
terms of al, a2, a3, and enables us to expand any vector v as a linear
combination of {a,}. So if z(A) 0 0, the linearly independent set {a,}
form a basis in 3-space. The vectors a, are not in general unit vectors,
and they are not mutually orthogonal. A basis whose vectors are not
mutually orthogonal is called an oblique frame of reference. For the
present, we assume that 0(A) 54 0.

If a vector v is expressible in terms of the two bases as

v= vii+v2j+v3k (4.98a)

and
v = vial + v2a2 + v3a3, (4.98b)
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then, just as in (4.73b), the component (column) matrices V and V
in the two frames are related by

V = AV'; (4.99a)

multiplying by A-' on the left gives

V'=A-'V. (4.99b)

We may also consider the transformation of a vector v into a
different vector w due to replacement of the basis vectors i, j, k by the
vectors a,, 22, a3. Such transformations can be used to describe the
change of position vectors of points in an elastic solid, when it is
deformed by the application of given stresses. Provided that the
deformation or strain of the body can be assumed to be linear, the
transform of the vector v will be of the form

W= v,a, + v2a2 +v3a3.

Just as in (4.82), the components of w are given by

w, =Y_ a vq

or

q
(4.100a)

W=AV. (4.100b)

The set of all (3 x 3) transformation matrices A with 0(A) 0 0 form
a group. The operation of successive transformations A and B is
represented by the matrix product BA; also, (4.30) gives A(BA)=
A(B)A(A) 0 0, so that BA belongs to the set. Since each matrix A has
a unique inverse, and the unit matrix belongs to the set, the set is a
group. Just as for the group of orthogonal matrices, the subset of
matrices with 0(A) > 0 themselves form a group [Problems 4.5,
Question l J. Any (3 x 3) matrix B with z(B) < 0 can be written in the
form

B = PA, (4.101)

where P is the reflection matrix defined by (4.80), and 0(A) > 0. The
set {B} is not a group, as it does not contain the unit matrix.

If (a,, a2, a3) and (b,, b2, b3) are two oblique frames of reference,
then by (4.96) and (4.97), they are related to (i, j, k) by trans-
formations of the form

(a, a2 a3) = (i j k)A i,

(i j k) = (bi b2 b3)A21 ,
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with 0(A,) *0 and A(A2) 00. So if we form the matrix product
M = Az'A,, with 0(M) O0, the bases are related by the trans-
formation

(at a2 a3) = (b, b2 b3)M, (4.96c)

a simple generalisation of (4.98b). The inverse relation, correspond-
ing to (4.97a), is

(b, b2 b3) = (a, a2 a3)M-'. (4.97b)

If the vector v has expansion

v=v'bt+v2"b2+v3b3 (4.98c)

then the component (column) matrices in the two oblique frames are
related by

V" = MV' (4.99c)

and

V' = M- t V", (4.99d)

analogous to (4.73) and (4.74), or to (4.99a) and (4.99b).
If a matrix A defines an oblique frame of reference F, through

(4.96), it is sometimes convenient to consider simultaneously a
second frame of reference F2, with basis vectors c, (r = 1, 2, 3)
defined by

(C1 C2 C3) _ (i j
k)(AT)-i (4.102)

where (AT)-' is the inverse of the transpose of A. Now suppose a
vector v is defined by (4.98b), with column matrix V' satisfying
(4.99). Let another vector w be expressed as

and

w = wti+ w2j + w3k
0.

W=W'Ct+W2C2+W3C3, (4.103)

with respect to frames F and F2. Then the column component
matrices W and W' are related, as in (4.99a), by

W = (AT )-' W',

so that the transposed row matrices satisfy

WT = W'TA-1 (4.104)

The scalar product of the vectors v and w is, by (4.12b), the single
component of WT V. But (4.100b) and (4.104) give

WT V = W'TA-'AV' = WIT V'; (4.105)
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so the familiar form (2.36) for the scalar product is retained if one
vector v is referred to an oblique frame F1, while the second vector is
referred to the associated oblique frame F2. The frames F1 and F2,
used in this way, form a bi-orthogonal coordinate system.

The basis (cl, c2, c3) is called the reciprocal basis of the basis
(a1, 22, a3), and is of considerable importance in the study of crystals,
where non-orthogonal frames arise naturally. From (4.102), the
component matrices of c, (r = 1, 2, 3) are just the columns of (AT)-',
equal to the rows of A-1. The rows of A-' are given by (4.39) and
(4.36a) to be [O(A)] 'D,. So the reciprocal basis vectors {c,} are given
by

c, = [0(A)] 'd.,

or using (4.35a) and the e-tensor,

(4.106a)

Zr = 2[0(A)] 'E,,,as A a,. (4.106b)

The close association of the basis {c,} with the `reciprocal' A-' is the
reason for the name `reciprocal basis'. It is not difficult to see that the
basis (a1, a2, a3) is the reciprocal basis of (c1, c2, c3) [see Problems 4.5,
Question 2].

We have already pointed out that when z(A) = 0, the vectors a,
(r = 1, 2, 3) defined by (4.96) are linearly dependent, and do not span
the 3-space; in Problems 4.5, Question 3, the reader is asked to prove
that the dimension of the space spanned by {a,} is equal to the rank of
the matrix A.

Certain types of (n x n) matrices represent transformations known
as elementary operations; these matrices are called elementary
matrices. We shall exemplify them by using (3 x 3) matrices. An
example of the first type of elementary operation is represented by
the diagonal matrix

1 0 0

E3(C) = 0 1 0

0 0 c

(4.107)

When E3(c) acts on the column matrix V, given by (4.7b), it trans-
forms V to

v1

E3(c)V = V2

CV3

(4.108)
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If c > 0, this transformation is known as a dilatation along the third
axis with factor c, and represents a change of scale in this direction. If
c <O, the transformation represents a dilatation with factor Id,
together with a reflection in the (1, 2) plane. Provided c 0 t 1, this
transformation is not an orthogonal transformation. If c > 0, the
product of dilatations with factor c along each of the three axes gives
a uniform dilatation, represented by

c 0 0

E(c) = 0 c 0 . (4.109)

0 0 c

Dilatations may represent either a change of unit of measurement
along an axis (a passive transformation), or a change in the physical
dimension of some system, such as the expansion of a solid when it is
heated (an active transformation).

The second type of elementary operation is represented by a
matrix such as

1 k 0
E21(k) = 0 1 0

0 0 1

which transforms a column matrix V into

v1+kv2
E21(k)V = V2

V3

(4.110)

If the transformation represents the (active) transformation of a
vector, E21(k) represents a shear parallel to the first axis; the first
component vi is increased by an amount proportional to the second
component. If the transformation is passive, it represents a change of
frame in which the vector j of the triad (i, j, k) is replaced by the
vector j - ki. Provided k 0, the matrix E21(k) is not orthogonal, and
the new frame is oblique.

The third type of elementary operation is simply an interchange of
two components of V, and is therefore represented by an orthogonal
transformation. The interchange of V1 and V3, for example, is
effected by the matrix

0 0 1

(4.112)E13 = 0 1 0

1 0 0
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All matrices of this type have determinant equal to -1. The operation
E13 can be regarded either as an interchange of basis vectors i and k,
or of the components v, and v3 of a vector relative to a given triad.

Elementary operations in n-space, represented by (n x n) matrices,
can be defined [Reference 4.5] as straightforward generalisations of
matrices such as (4.107), (4.110) and (4.112). The most important
property of these elementary matrices, for any value of n, is that any
non -singular (n x n) matrix A can be written as a product of elemen -
tary matrices. This theorem provides a basis for the study of matrices
and transformations in n-space. We shall not, however, prove the
theorem or develop this theory, since we have taken an alternative
approach, based on vectors, to the study of matrices and trans-
formations.

Problems 4.5

1 If A is a non-singular matrix, and {ar} and {c,} are defined by (4.96)
and (4.102), show that

Cr -as =C5rs (r, s = 1, 2, 3).

Hence show that the components {v;} of v in (4.98b) are given by

Vr =Cr V.

2 If A(A) 0 and {ar} and {cr} are defined by (4.96) and (4.102), show
that {ar} is the reciprocal basis to {cr}.

3 If r(A) is the rank of a (3 x 3) matrix A, show that the vectors {ar}
defined by (4.96) span a space of dimension r(A).

4 Find the inverses of the elementary matrices defined by (4.107),
(4.110) and (4.112), and express them as elementary matrices.

5 Show that numbers b, c, k, l can be chosen so that the general (2 x 2)
matrix {ars} can be written as the product

1 0

\0

11\0

1 0/\0 11 0 c01\0 11

of elementary (2 x 2) matrices.
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Curves and surfaces: vector calculus

5.1 Definition of curves and surfaces

When the value of a scalar f(u) depends upon, and is uniquely
determined by, a variable u, we say that f is a function of u. In just the
same way, we can consider a vector v(u) which is uniquely deter-
mined when u is given, lying in some definite range of values; we then
say that v(u) is a vector function of the variable u. Now suppose that
O is a fixed point in Euclidean space, and that the position vector r(u)
relative to 0 is a function of u; then we have defined a point R whose
position is determined by the value of the variable u. Let us assume
that (i, j, k) is a fixed frame of reference with origin at 0, meaning
that the three basis vectors do not depend on the variable u. Then the
position vector r can be expressed as

r(u)=X(u)i+Y(u)j+Z(u)k, (5.1)

where X (u ), Y(u), Z(u) are functions of u, determining the rectan-
gular coordinates through

x =X(u), y = Y(u), z =Z(u). (5.2)

Example 5.1

The position vector

r=cos 0 i+sin 0 j,

with 0 varying in the range 0 , 0 < 21T, corresponds to a point P
which traverses the `unit circle' in the (x, y) plane,

r2=x2+y2= 1,
as 0 varies from 0 to 21T. The rectangular coordinates, as functions of
0, are

x=cos0, y=sin0, z=0.
135
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If the functions X(u), Y(u), Z(u) are defined over the range

uo, U U,

and are continuous functions [Reference 5.1] in the range, then the
set of points corresponding to the position vectors

{r(u ); uo _- u , u 1} (5.3a)

is defined to be a finite curve. So that no section of the curve is
represented more than once in (5.3a), we assume that no two open
sub-intervals [Reference 5.2] of the range uo , u , u 1 correspond to
the same set of points; it may happen, however, that the position
vectors of a finite number of points correspond to two (or more)
values of u. Provided that r(uo) 0 r(u 1), these position vectors define,
respectively, the initial point and the final point of the curve; these
two points are known as the end-points of the curve. The expression
(5.1) is called the parametric equation of the curve, with u as the
parameter. A curve may be specified in many ways: suppose that u is
defined as a continuous strictly increasing function u = U(t) of a
variable t [Reference 5.3], and that the range to, t _ t1 corresponds
to the range uo, u --u1, with uo = U(to) and u1= U(t1). The position
vector r(u) can then be regarded as the function r[U(t)] of the
parameter t, with rectangular components

x =X[U(t)], Y = Y[U(t)], z =Z[U(t)]. (5.4)

Since U(t) is continuous, x, y, z are given as continuous functions of t
in the range to --t < tl [Reference 5.1]. So t can parametrise the
curve.

Continuity of the function X (u) for a given value of u means that,
if s is any positive number, there is a second positive number S1 such
that

IX(u+ 5u)-X(u)I <e (5.5a)

whenever 18u I< 51. Since Y(u), Z(u) are also continuous, positive
numbers S2, 83 also exist such that

Y(u + Su )- y (u)I < e (5.5b)

and
IZ(u +8u)-Z(u)J < E (5.5c)

provided that ISu I < S2 and ISu I < S3.
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If S is the least of the numbers S, (r = 1, 2, 3) it follows from (5.5) that

Ir(u+Su)-r(u)I2

_ IX(u+Su)-X(u)12+I Y(u+Su)- Y(u)12
+IZ(u+Su)-Z(u)12

provided that 1Su I < S, so that

Ir(u +Su)-r(u)I (5.6)

since can be chosen as small as we please, (5.6) expresses
continuity of r(u) as a vector function of u, in the same form as
continuity of scalar functions.

A curve F will intersect itself if there are two (or perhaps more)
different values u = u2i u3, in the range uo< u <ul, such that r(u2)=
r(u3). If r(uo)=r(uI), the two ends of the range correspond to the
same point, and r is said to be closed. A curve which has no point
corresponding to two different parameters is called a simple open
curve, or more simply, an arc. A closed curve which does not intersect
itself is called a simple closed curve. The circle in Example 5.1 is a
simple closed curve; as in this example, we often omit one end-point
in order to ensure a one-to-one correspondence between values of
the parameter u and points of a simple closed curve.

If the parameter range uo < u < u 1 of an open curve is extended by
allowing ul to increase it may happen that Ir(u)I -oo as ul approaches
a particular value u.; provided that X(u), Y(u) and Z(u) are defined
to be continuous in the range uo < u < u., the set of position vectors

{r(u); uo-- u <u.} (5.3b)

will define a semi-infinite curve, with one end-point given by r(uo). It
may be that the limiting value u.. is +oo, but this is not necessarily so.
In the same way, if Ir(uj --> oo as uo decreases to the value u_,,,,, the
set of position vectors

{r(u ); u_,. < u < u.} (5.3c)

defines an infinite curve, provided that r(u) is continuous in the
range; again, u_,,,, may equal -co.

Example 5.2

If a, b are constants, the equations

x=acos0, y=asin0, z=b9,
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with Bo < 8 < 01, define an arc of a circular helix, with axis along the
z-axis; the helix is shown in Fig. 5.1. As 0 increases, the (x, y)
coordinates repeatedly describe a circle of radius a, while the z-
coordinate increases in proportion to 0. Since each z-value cor-
responds to only one value of 0, the curve does not intersect itself. If
01- +oo the curve becomes semi-infinite; if 0o --> -oo also, the curve
becomes infinite, and is then the complete circular helix.

Fig. 5.1

If the parameter 0 is replaced by a new parameter

u =tan-' 0,

the range -oo < 0 < oo is in one-to-one correspondence with the
range -air < u < zir. So with u as parameter, the limits of the range
are u, 1 1= -1 and u = 21r.
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Quite frequently, it is convenient to divide a curve F into several
pieces r,, I'2, ... , with the final point of each piece r, (r =
1, 2, ... , n -1) coinciding with the initial point of the next piece F,+,.
If the final point of F. coincides with the initial point of t1, the curve
is closed. Each piece can then be defined by a different parametrisa-
tion and range, through (5.1) and (5.3). A curve consisting of a
semi-circle I', and the diameter I'2 joining its end-points, or a square
consisting of four sides 1'1, I'2, I'3, I'4, exemplifies the division of a
closed curve into several pieces.

Example 5.3

Show that a closed curve is defined by the three arcs

I',: {r(Y)=i+Yj; -1 <y _ 1},
I72: {r(z)= (1-z)i+(1-z)j+zk; 0z 1},
I73: {r(z)= (1-z)i-(1-z)j+zk; 1 z <0}.

The arc 1', is the section of line from r1= i - j (with y = -1) to
r2 = i+j (with y = 1); 1'2 is the line section from r2 = i+j (with z = 0)
to r3 = k (with z = 1); 173 is the line section from r3 = k to r1= i - j. So
the arcs define a triangle whose vertices have position vectors r1, r2,
r3.

We note that the range of the parameter z for r3 is not an
increasing range. We can choose a parameter u which increases
continuously along the complete curve if we define

I'1:u=Y;-1_u_1;
172:u=1+z;1_u_2;
I'3: u=3-z;2_u`3.

Then the curve is defined in the form (5.3a) with u0= -1, u1= 3.
Since r(-1)=r(3), the curve is closed.

It is sometimes convenient to eliminate the parameter u from (5.2)
to obtain two relations between the coordinates x, y, z. The circle of
Example 5.1, for instance, can be defined by the two equations

x2+y2=1, z=0.
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In Example 5.2, the parameter 0 can be eliminated by writing 0 =
z/b, giving the equations

x = a cos(z/b), y = a sin(z/b)

for the circular helix.

Curves have been defined by considering continuous vector
functions of a single parameter u. Let us now suppose that a position
vector r is a function

r(u)=X(u)i+ Y(us)j +Z(us)k (5.7)

of two real variables us (s = 1, 2). Then the points corresponding to
r(us), for a range of values of (ul, u2), will form a finite surface 0-
provided that several conditions are satisfied; these are:

(i) The variables u1, u2 can be chosen so that their ranges are of the
form

a u 1 b, (5.8a)

a(u1)u2=/3(ul),

(5.8b)

where a and b (>a) are constants, and a(ul) and /3(u1) are continu-
ous functions of u1 in the range a , u1 - b. The functions a(u1) and
/3(u1) may, of course, also be constant, but /3(u1)> a(u1) for all values
of u1, except possibly u1= a and u1= b.

(ii) The functions X(us), Y(us), Z(us) are continuous functions
[Reference 5.4] of ul and u2 throughout the range defined by (5.8).

(iii) Except at a finite number of points, and along a finite number
of curves, there is only one set of parameter values {us} corresponding
to each position vector r.

It is important to distinguish between open surfaces (such as a
circular disc), which have a boundary, and closed surfaces (such as the
surface of a sphere), which do not. But before we attempt to define
the boundary of a surface, we shall study several examples of finite
surfaces.

Example 5.4

If polar coordinates p, .0 are chosen as parameters of points in the
plane z = 0, so that

r = p cos qi+p sin 4j,

the `unit disc' corresponds to the parameter range

0 sp-_ l, 0_-q_-2z7.
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This range is of the form (5.8) with p = u, and 0 = u2, and with
a(u,)=0 and j3(ul)=2ir, both constant. The limiting values of p and
0 define three different sets of points, and it is important to dis-
tinguish them:

(a) 0 = 0, 2ir.

For a given value of p, these values of 0 represent the same point;
this duplication can be avoided by changing the range of 0 to 0 , ¢ <
tar. The line ¢ = 0 is a radius of the disc, and any radius of the disc
could be chosen to define the limits of 0. For example, the range of ¢
could be chosen as -fir < zar; then the value ¢ = 0 would lie
inside the range of .0. The fact that 0 = 0 does not necessarily define
the limiting values of 0 means that this radius is not part of the
boundary of the disc.

(b) p=1.
There is no other set of parameter values to define the `unit circle',
which is the boundary of the disc.

(c) p=0.

For every value of 4) in the range 0, ¢ < 2ir, p = 0 corresponds to the
origin. This is an isolated point, not on the boundary, and cor-
responds to a whole range of values of the parameters. By using a
different coordinate system, we can avoid including the origin in
defining the limits of the parameters; using (x, y) as parameters, for
instance, the unit disc corresponds to the ranges

-1 x -_ 1, (5.9a)

- (1-x2)l __y _(1 _X2)1. (5.9b)

The end-points of the ranges define only the unit circle y2 =,_X2
,

which is the boundary. So the use of rectangular coordinates shows
that neither the point p = 0 nor the line 4) = 0 need be used to define
the limits of the parameter range.

Example 5.5

Points on the unit sphere

x2+y2+z2= 1
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can be expressed parametrically in the form

r(0, 0)=sin 0 cos Oi+sin 0 sin 4j+cos 0k,

using (2.70) with r = 1.
If the ranges of 0, ¢ are

01--0--02, 0-- 21r,

where 0 < 01 < 02 < 77, then r(0, ¢) defines that part o, of the surface of
the unit sphere shown in Fig. 5.2, lying between the simple closed
curves

F1:{0=01; 00<27r},
r2:{0=02; 00<27r}.

Fig. 5.2

These closed curves form the boundary of v. The curves (k = 0 and
¢ = 21r coincide, and do not form part of the boundary; just as in
Example 5.4, the limits of the range of c could be chosen differently.
To avoid duplicating the curve 4' = 0, we have taken the range of .0 to
be0-- ¢<27r.

If the value of 01 tended to zero, the boundary curve F1 would
shrink to the point N. In the limit 01= 0, I i would cease to be part of
the boundary; the point N would then be an `interior point' of the
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surface, and would correspond to the whole set of parameter values
{O = 0, 0 < 0 < 2 rr}. This is analogous to the description of the origin
by polar coordinates in Example 5.4.

If 0, -* 0 and 02 -> 2Tr, I'1 and F2 shrink to the points N and M
respectively. In this limit, the surface has no boundary, and has
become a `closed' surface.

Example 5.6

Define ranges of two parameters which correspond to the plane
triangle bounded by the closed curve of Example 5.3.

The three line sections rl, r2, r3 lie in the plane

We choose y, z as the parameters to describe the triangle. All points
on the boundary have z-values in the range 0 <z < 1; for any value of
z in this range, the values of y on the boundary curves r2, r3 are
±(1 -z); so the range of y is -(I -z )< y < 1- z, and is dependent on
the value of z. Thus the range of values of the parameters y, z is

0<z<1, z-1<y<1-z.
In examples 5.4, 5.5 and 5.6, we have introduced the terms 'boun-

dary', `interior point' and `closed surface' without giving them precise
definitions. These examples, however, indicate some of the problems
that arise in defining these terms, and suggest how they may be
overcome. First, we define from (5.8) a limit set of points; this is the
set of points on a surface o corresponding to an end of one of the
ranges (5.8), namely

{u1,u2;u1=a or u1=b,a(ul)<u2<f3(u1)} (5.10a)

and

{u1,U2ia<u1<b,u2=a(ul)or u2=/3(u1)}. (5.1Ob)

The examples above indicate that the limit set contains all the points
of the boundary of o, but that it may contain other points also.
We define a boundary point to be one whose parameters belong to
the limit set, for every parametric system satisfying conditions (i), (ii)
and (iii) on p. 140; the boundary of 0 is the set of all boundary points.
Then in Example 5.4, the unit circle is the boundary of the unit disc; in
Example 5.5, F1 and F2 constitute the boundary of the region 0 on
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the unit sphere; and in Example 5.6 the line sections I'1, F2, 1,3 form
the boundary of the triangle.

Points of a surface o, which are not boundary points are interior
points. In order to show that this definition of boundary points and
interior points is reasonable, we now study an example of a surface
which has a `fold' in it.

Example 5.7

A surface v consists of the two sets of points o-1 and Q2, defined in
terms of rectangular coordinates by

0,1:{z= 0,0--x1,0-- y1}
0`2:{y=0,0--x 1,0<z11,

and corresponding to the shaded region in Fig. 5.3. If 0 < x1 < 1, show
that the point B with coordinates (x1, 0, 0) is an interior point of o.

The point B is in the set o i defined above, but lies on the boundary
of that set. We must show that there is a parametric system for u
which satisfies conditions (i), (ii) and (iii), but with B not belonging to
the limit set. We choose x as one parameter, and define a second
parameter u by

u = y for points in Ql,

u = -z for points in O2.

Fig. 5.3
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Consider points in or with a fixed value of x, corresponding to the two
lines AB and BC. Then if I u I is the absolute value of u, all the points
on these two lines have position vectors

r(xi, u)=x1i+i(juj+u)j+2'(IuI -u)k,

with u taking values in the range -1, u < 1. This is true for all values
of x1, so that o- is defined by

{r(x,u);0'x-_ 1,-1-- u-- 1},

with range of the form (5.8). The coordinates x, 12L(Iuj+u), i(jul -u)
are continuous functions of x, u in this range, in particular at u = 0,
and there is only one set of parameters corresponding to each point;
so the parametric system obeys conditions (i), (ii) and (iii). But if
0<x1<1 and u = 0, giving r = x li, the parameters (x 1, 0) do not
belong to the limit set (5.10); since r = xli is the position vector of B,
B is not on the boundary of o-.

The essence of this example is that, for any interior point, we can
always find a set of parameters (ul, u2) which go continuously through
the values corresponding to the point, even when the surface has a
`fold'.

One complication we have not considered is the possibility of a
surface o intersecting itself. A true intersection will define a curve on
o, whose points will correspond to two (or possibly more) distinct sets
of parameter values. In Examples 5.4 and 5.5, however, we have
noted curves whose points do correspond to two sets of parameters
on a surface, but which do not intersect themselves. But by choosing a
different set of parameters, this `double representation' disappears.
We therefore define a self-intersection of o- to be a curve on a whose
points correspond to two (or more) distinct sets of parameters, for all
sets of parameters satisfying conditions (i), (ii) and (iii). We shall only
be interested in surfaces which have no self-intersections, which are
called simple surfaces. When we use the word `surface' in future,
however, we shall take it to mean `simple surface', since we are not
interested in self-intersecting surfaces.

So far, we have only considered finite surfaces, whose points cor-
respond to finite position vectors r. If F is the boundary of a surface o,,
then by increasing the range (5.8) of parameters, the position vectors
of all or part of F may tend to infinity in magnitude; this defines an
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infinite surface. Extension of the range of parameters may mean that
some of the limits of the parameter values become infinite, but this
need not necessarily be so.

Example 5.8

If the spherical polar coordinate 0 takes a fixed value a (0 < a < 21v),
the position vector

r(r, ¢) = r[sin a cos 0 i+sin a sin ¢ j+cos a k],

with parameters r and 0, lies on the right circular cone

x 2 + y 2 = z2 tan2 a, (5.11)

shown in Fig. 5.4. The origin 0, the vertex of the cone, corresponds
to the range of parameter values jr = 0, 0 _ 0 < 27r}. The range of
parameters

0_r-r1, 0-- q5<21r,

defines the shaded section of the cone, with boundary curve

h:{r=r1i0= a,O -- 0<27r}.

Fig. 5.4
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If r, - co, all points on I' recede to infinity, so that the range

0<r<oo, 0-- 6 <27r,

defines the half of the right circular cone which has z O. If we
defined a new variable u by

r
U

1+r'
and used (u, ¢) as parameters, the infinite half-cone would cor-
respond to the finite range

0<u<1, 0<0<21r.
The half-cone with z < 0 corresponds to the fixed value 0 = Tr - a ;

points on this half-cone can also be represented by leaving 0 = a, but
allowing r to take negative values in the expression for r(r, ¢).

In Examples 5.5 and 5.8, we have defined surfaces by fixing the
value of one of the three spherical polar coordinates (r, 0, 0), and
using the other two as parameters of the surface. In this way, we can
parametrise spherical surfaces (fixing r), cones (fixing 0) and planes
containing the z-axis (fixing q5). A variety of surfaces can be
paramettised by fixing the value of one of three coordinates. Coor-
dinates other than (x, y) in the plane z = 0 are called curvilinear
coordinates in the plane.

Our definition of a surface depends upon the existence of a
parametric system (u1, u2) for which the range is given by (5.8).
Although this parametric system exists, it may not be the most
convenient for a given surface. In Example 5.7, for instance, it is
probably easier to treat the regions o-1 and 0-2 of the surface
separately, rather than to introduce the parametric system (x, u) with
range of the form (5.8). More generally, it may be simpler to treat a
surface 0 as the union of a finite number of surfaces 0-1, o2, ... , O'n,
each of which shares part of its boundary with other members of the
set {cr,}. The surface of a cube, for example, is most simply looked
upon as the union of its six square faces 0%, 0'2, , 0'6-

N Problems 5.1
1 Draw a diagram of the curve

r(0)=0cos0i+0 sin0j+ABk(A>0),
with -ir _- 0 -_ 27r.
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2 If a curve is defined by one vector function rl(u) in the range
u1 < u < u2 and by a second vector function r2(u) in the range u3 --
U--U4, with r, (u2) = r2(u3), give a single formula for the vector
function describing the curve over a continuous range of a parameter.

3 A surface o, is defined by the relation z =A0 (A constant) between
two of the cylindrical polar coordinates p, 0, z; the ranges are
0 , p , po and Sketch the surface when .00=0 and
01 = IT. What is the boundary of o-? Discuss ways in which the surface
can become infinite. Show in your figure the curves defined by adding
a second relation p = u4 (µ constant).

4 The coordinates (x, y) in the plane z = 0 are defined in terms of two
parameters e, i7 by

x = c cosh cosr7,

y = c sinh sin 71.

Find the equations relating x and y of the curves given by putting (i)
constant, (ii) 17 constant. Draw a diagram showing these curves for
two values each of e and 77. Define ranges of 6 and 77 which cor-
respond to the ranges -oo < x < oo, -oo < y < oo.

5 Oblate spheroidal coordinates are related to rectangular
coordinates (x, y, z) by

x = c cosh cos q7 cos qS,

y=ccosh cosrtsin
z = c sinh sin -q.

Find the relations between cylindrical polar coordinates and oblate
spheroidal coordinates. Find the equations relating x, y, z for the
surfaces defined by putting (i) = constant, (ii) 7 = constant, (iii)

= constant.
[Hint: use results obtained in Question 4 above.]

6 Oblique coordinates in space are related to rectangular
coordinates by

x

y =A77,
z

where A = (a,s) is a (3 x 3) matrix with i1(A) * 0. Find the equations
of the oblique axes e = 0, r, = 0 and = 0 in terms of x, y, z. Explain
the importance of the condition 0(A) 0 0.
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7 Coordinates (e, n) in the plane z = 0 are related to (x, y) by

x =e2_172,

y=2671.

Draw a diagram to show how a point in the plane is determined by
(e, q), and give ranges of e, t1 which correspond to the ranges 0 < x <
cc, -ao < y < oo.

5.2 Differentiation of vectors; moving axes

Given a suitable vector function v(u) of a single parameter u, we can
define the derivative dv/du exactly as we do for a scalar function of
u; we shall assume that the reader is familiar with the differential and
integral calculus of scalar functions [Reference 5.5]. Let v(u +Su) be
the value of the vector v when the parameter takes the value u + 5u.
Then the derivative of v(u) with respect to u is defined as

v(u)-= li
ov(u+SSu-V(u),

(5.12)du

whenever this limit exists. The geometrical significance of the deriva-
tive can be seen by considering position vectors r(u) = OP and r(u +
5u) = OQ on a curve F, as shown in Fig. 5.5; then the displacement PQ
corresponds to the vector

Sr = r(u + Su )- r(u ), (5.13)

giving the change or `increment' in r when the parameter increases

Fig. 5.5
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from u to u + Su. The derivative of r(u) is then

dr Sri(u)
du

lim
8u

(5.14)

When dr/du exists, this vector is tangential to the curve IF at P. We shall
give a fuller definition of the tangent later on. The increment 8r
defined by (5.13) is unchanged if the origin is changed; in other words
Sr, and hence i(u) is an intrinsic property of the curve defined by r(u).

If a curve is defined in parametric form by (5.1), where (i, j, k) is a
fixed frame of reference, then the derivative of r(u) is given by

r(u)=X(u)i+ I'(u)j+Z(u)k, (5.15)

where X, Y, Z are the derivatives of the functions X (u ), Y(u), Z(u);
this result follows directly from the definition (5.14), since i, j, k do
not depend on u. The existence of the derivative i(u) is equivalent to
the existence of the three derivatives X(u), Y(u), Z(u). More
generally, the derivative of a vector function

v(u)=vl(u)i+v2(u)j+v3(u)k (5.16)

with respect to u is

v(u)= v1(u)i+v2(u)j+v3(u)k, (5.17)

provided 61, v2, v3 exist. When v(u) exists for a given value of u, we
say that v(u) is differentiable at u. If v(u) is defined in the range
uo, u --u1, and the limit (5.12) exists at u = uo or u = u,, with u +Su
restricted to the range (uo, u1), we say that v(uo) or v(ul) exists as a
one-sided derivative of v. If v(u) exists for uo < u < u 1, v(u) is
differentiable in this open interval; it, in addition, v(uo) and *(u 1) exist
as one-sided derivatives, v(u) is said to be differentiable in the closed
interval uo, u , u1.

By differentiating n times, we can define the nth derivatives of r(u)
and v(u),

r(n)(u)=X(n)(u)i+Y(")(u)j+Z("'(u)k, (5.18)

and

v(n)(u)=vjn)(u)i+v2")(u)j+v3n)(u)k, (5.1.9)

provided that the nth derivatives X'"'(u), Y("'(u), Z(")(u) and
vjn)(u), v2")(u), v3n)(u) exist.

The usual rules for differentiating scalar functions [Reference 5.6]
can be immediately extended to vector functions. If v(u) and w(u) are
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differentiable vector functions and f (u) is a differentiable scalar
function, then

d
U(u)v(u)1=df(u)v(u)+f(u)dv(u),du du du (5.20)

d
du du du (5.21)

d [v(u)nw(u)]=dv(u)nw(U)+V(U)ndw(u),
du du du

(5.22)

d v(u) _ 1 [ dv(u)_df(u) ( j
(5 23

[ f(U) v U) .

du lAu)] [f(u)1 du du
. )

In (5.22), the order of the vectors must be preserved. The formulae
(5.20)-(5.23) can be established directly from the definition (5.14) of
derivatives, or by expressing all the functions in component form
through (5.16), (2.36) and (3.19), and using the rules for differentiat-
ing scalar functions.

The chain rule governing changes of variables also applies to vector
functions: if v(u) is a differentiable function of u and u = g(s) is a
differentiable function of s, so that

v(u) = v[g(s )],

then

dv_[dv(u)] dg(s). (5.24)
ds du u =g(s ) ds '

the subscript `u = g(s)' indicates that this substitution is made after
v(u) has been differentiated.

If v(ul, u2, ... , un) is a vector function of n variables ul, u2,. .. , u
we can define the first partial derivatives of v as

av = llm V(U1, ... , Ur+SUr, ... , Un)-V(Ul, ... , Ur, ... , un)
our su,- 0 SUr

(5.25)

whenever these limits exist. By repeated differentiation one can form
second and third partial derivatives of v, such as

a2V a
2
v a3v a

3
v

au1au2'3U2'aulau2'aulau2aU3

Just as for scalar functions, a partial derivative is independent of
the order in which differentiations are performed, provided the
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derivative is continuous in all the variables u1, u2, ... , u,,. This
theorem, for second derivatives of scalar functions of two variables, is
Theorem Al of Appendix A.

Example 5.9

Show that if v(u)= Iv(u)I, then in general

dv v(u)
du I du

If v(u) is given by (5.16),

v = (v1 +vz+v3)#,

so that

But

so that

dv v1 dvl/du+v2 dv2/du+v3 dv3/du
du (vi+vi+v3)

dv dvl , dv2 dv3

du du du du

dv

du

[(dvl12+(dv212+(dv3211
lL du JJ du lJ du) JJ '

which is not the same as dv/du.

Example 5.10

If r(u) is a vector function of a parameter u, if a, b and a unit vector n
are constant vectors, and if k is a constant, differentiate

r2-(r. n)2

with respect to u.
Let

and

f(u)=r2-(r. n)2

Then, using (5.20) -(5.22),

du - kdu
a-(r

b)du - (du b)r
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and

df = d
r-

r-(r
R)

2

du du

= 2du [r-n(r - n)]

153

_ dr

where r1 is the component of r orthogonal to n. The result is then
given by substituting these expressions for dv/du and df/du into
(5.23).

Example 5.11

The position vector r in spherical polar coordinates (r, 0, 45) is given
by

r=rsin0cos(k i+r sin 0 sin j+r cos 6k.

The three first partial derivatives of r, defined by (5.25), are

ar
-= sin 6 cos (k i+ sin 0 sin 4) j+cos 6 k, (5.26a)
ar

ar
=a6 rcos0cos4 i+r cos0sin4 j - r sin 0 k, (5.26b)

ar
_ -r sin 0 sin 0 i+r sin 0 cos ¢ j 26c)(5.

a- .

The second partial derivatives a2r/are, a2r/8ra6 and a2r/8084' are
given by

a
2
r

are =
0,

and

a (ara \a6) = cos 0 cos 0 i+cos 0 sin .0 j -sin 0 k,

a'8rl_
aB \a¢/

-r cos 6 sin ¢ i+r cos 0 cos 0 j.

The last two derivatives are also equal to

a6 \ar 1
and

as \a61
respectively.
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Formulae (5.15) and (5.17) for the derivative of a vector r or v were
established on the assumption that the triad i, j, k was fixed, and did
not vary when u varied. It is, however, sometimes convenient to use a
triad (i(u ), j(u), k(u)), which varies with the parameter u ; the deriva-
tive dv/du of a vector v(u) will then depend partly on the rates of
change di/du, dj/du, dk/du. We shall now establish a formula for
these derivatives, from which we can derive a more general formula
for dv/du.

Let us suppose that i(u +6u), j(u +8u), k(u +Su) are the basis
vectors when the parameter value is u + 8u. Since we assume that the
triad is always right-handed, the triads for parameter values u and
u + Su must be related through (4.63b), with L = R representing a
rotation:

(i(u +Su) j(u +Su) k(u +Su))= (i(u) j(u) k(u))R. (5.27)

If we write

Si(u) = i(u + Su)- i(u ),

and so on, for the incremental changes in i(u), j(u), k(u), then
subtracting (i(u) j(u) k(u)) from each side of (5.27), and dividing by
8u, we find

Si(u) 5j(u) Sk(u)l R -I
Su Su Su 1 = (i(u) j (u) k(u ))

Su ,

where I is the unit (3 x 3) matrix. Assuming that the derivatives of i, j,
k exist, we can take the limit of this equation as Su -> 0, giving

(di(u) dj(u) dk(u) SR
\ du du du ) = (1(u) j(u) k(u))

s.'. o au , (5.28)

where

SR=R-1 (5.29)

is a (3 x 3) matrix. Since the limit of SR/Su exists, every element of
the matrix SR must tend to zero as Su -+ 0, and the same is true of the
transposed matrix SRT = RT -L Therefore, forming the matrix pro-
duct SRTSR and dividing by Su gives

lim
SRTSR

(5.30)
BU-.o Su
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But, using (5.29) and the orthogonality property RTR = I,

SRT SR=(RT-I)(R-I)
=RTR+I-R-RT
= -(SR +SRT). (5.31)

Dividing by Su and letting Su -* 0, we have from (5.30),

SR SR T (lim (_+-) = 0.
su- 0 Su Su

Now defining the limit of the matrix SR/Su to be

SR dR
lim

= = (W.S) (r, s = 1, 2,3) (5.32)
Su- 0 Su du

the equation becomes

W,S + Ws, = 0 (r, s = 1, 2, 3) (5.33)

so that (co,) ,is an anti-symmetric matrix. It is convenient to re-label
three of the elements of the matrix (W,S) by writing

W1= W32, W2= W13, W3=w21;

then (5.33) implies that

W11=W22=(033=0

and

W23=-W1, (031=-W2, W12=-W3.

Therefore the matrix (5.32) can be written

dR 0

du
W3

W2

-W3 W2

0 -W1
W1 0

(5.34)

(5.35)

substituting into (5.28), the rates of change of the unit vectors are of
the form

di
d =W3,-W2k,

(5.36a)

dj =W1k-W31, (5.36b)
du

dk
du =

W21 - W1]. (5.36c)
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The geometrical interpretation of w, (r = 1, 2, 3) can be seen if we
consider the matrix

cos 803 -sin 503 0

R3 = sin 303 COS 593 0

0 0 1

representing, as in (4.77c), a rotation through angle 303 about the
z-axis, corresponding to the parameter change 3u. Putting R = R3 in
(5.29) and using (5.32),

cos 893 -1 -sin 893 0- = li 1 i 88 -1 080 Im s n 3 COS 3 .
du su-.o Su

0 0 0

If sin 803/8u has a limit as Su -+ 0 [Reference 5.7], it is equal to

303
lim

Su

_d03
du '

and then
cos 393 -1

li 0
-

m
su-o Su

Thus

d93
0

du
0

dR3 d03

du du
0 0

0 0 0/

Comparing this with the general result (5.35), we see that for a
rotation about the z-axis, w3 is equal to the rate of rotation d03/du.
In general, the matrix dR/du can be looked upon as a combination of
rotations about the three axes i, j, k, at rates W1, w2, W3.

Now that the rates of change of the basis vectors are given by
(5.36), we can find an expression for the rate of change of the vector

v(u)= vl(u) i(u)+v2(u) j(u)+V3(u) k(u), (5.37)

when both the components {v,(u)} and the basis vectors vary with u.
Assuming that {v,(u)} and i(u), j(u), k(u) are differentiable,

dv dvl , dv2 , dv3 di dj dk
du =du `+du+d k+v,du+v2du+v3du (5.38)
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The first three terms give the rate of change of the vector v relative to
the variable triad (i, j, k), so we define

dv _( dv1 dv2
j+-i

dv3+-k. (5.39)\du re du du du

Using (5.36), the last three terms in (5.38) become

(W2v3 -W3v2)i+(W3v1 -&)I v3)j+(W1v2-W2v1)k;

if we now define a vector

W=Wli+0)2j+0)3k, (5.40)

then, by (3.19), the three terms are just w A V. So equation (5.38) can
be written

dv dvTdu
_
- \du rel

+W A V. (5.41)

In dynamical problems, when u represents time, so that W is the
angular velocity vector, (5.41) is known as the moving axes formula.

Since v is a vector, given by (5.37), dv/du and (dv/du)re, are also
vectors. The remaining term W AV in (5.41), however, has the ap-
pearance of an axial vector; if this were so, and the formula (5.41)
were referred to left-handed axes, this term would change sign. But
since W represents a rotation, it is natural to define it to be an axial
vector itself, with components retaining their sign under reflection;
then W A v behaves like a vector under all transformations of axes,
and (5.41) is valid in both right-banded and left-handed frames.

Problems 5.2

1 The vectors v(u) and w(u) are differentiable functions of a parameter
u; a and b are constant vectors and k is constant. Find the derivatives
with respect to u of

(i) [a, v, w],
(ii) Iv+wI,

(iii)
(a+w) A V

w+wI

(iv)
IVAWI2

2 The position vector on a surface is given in terms of parameters u, a
by r(u, a) = u 2 sec a i + u 2 tan a j + u 4k. Find the first and second
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partial derivatives of r(u, a). What limitations must be imposed on
u, a in order that r(u, a) defines a surface? Explain the reasons for
these limitations.

3 A vector v(u) has fixed modulus jvi. If the derivative dv/du is
continuous, show that it is of the form

dv
=wnv,

du

where w may vary with u. If u represents time, and w is independent
of u, show that v makes a fixed angle with to, and that it rotates with
uniform angular velocity about an axis parallel to w.

5.3 Differential geometry of curves

Suppose that a curve F is defined by a position vector r(u), as in
(5.3a), in terms of a particular parameter u. Suppose also that the
derivative dr/du exists in the range uo < u < u1i at any point of 17, the
vector dr/du is in the tangential direction. The magnitude 15r1 of the
increment (5.13) is the increment of distance between points of r,
equal to the length of the chord PQ in Fig. 5.5. In defining distance
along r, we wish to ensure that the distance increases (or decreases)
as u increases (or decreases); the increment of distance must there-
fore have the same sign as Su. So, denoting the sign of Su by sgn(Su ),
we take

Ss =1Sri sgn(Su) (5.42)

to be the increment of distance PQ. Note that a different choice of
parameter, for instance the parameter (-u), could lead to a change in
sign of Ss, and hence to distance increasing in the opposite direction
along F.

Dividing (5.42) by Su gives

Ss Sri
Su Su sgn(Su)

since we are assuming that dr/du exists
Su - 0 in this equation, giving

Sr

au

for uo, u , u1, we can let

ds _ lim Ss
= lim

Sr dr
(5.43)

du su-.o Su su-.o Su du

This defines the rate of increase of distance along I, as a function of u,
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and is non-negative for all values of u. We now make the first of a
further series of assumptions about the differentiability of the
function r(u) defining F; in practice the functions (5.2) can usually be
differentiated any number of times except perhaps at a few isolated
values of u, and the assumptions we make ensure that we can carry
out the processes of differentiation and integration without analytic
difficulties arising. For the present, we assume that the derivative
dr/du is non-zero and continuous for uo, u _ u,; then the modulus
ds/du of this vector will be a positive and continuous function of u in
the range. When this condition is satisfied, we say that F is a smooth
curve. Since a function which is continuous in a closed interval is
integrable [Reference 5.8], we can define the arc length as the integral
along F of ds/du with respect to u:

"' ds
s(uo, u1)=

J
du.

fuU0

du
(5.44)

For a finite curve, s(uo, ul) is finite. If we regard r(uo) as the position
vector of a fixed initial point Po on F, then

s(u)=s(uo, u) (5.45)

defines the distance along the curve from Po to the point with
parameter u. Further, (5.44) ensures that ds/du is the derivative of
s(u), as the notation implies [Reference 5.9]. Since ds/du is positive,
s(u) is a strictly increasing function of u [Reference 5.3], and there is
therefore a one-to-one correspondence between s and u. This
enables us to change variable from u to s without any ambiguity
arising; it is often useful to describe a curve as a function of the
variable s. By imposing the condition that dr/du is continuous, we are
restricting the class of parameters used to describe the curve; if u and
t are two suitable parameters, then du/dt must exist, be continuous
and non-zero; du/dt must therefore be of fixed sign. When we
impose further conditions on the differentiability of r(u), these
restrict the choice Gf parameter in a similar way; in future, though, we
shall not state these further restrictions.

If increments 5u, Sr and Ss are related by (5.42), then

Sr _ Sr/Su
Ss Ss/8u '

as Su - 0, both numerator and denominator here have non-zero
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limitsr ands ; therefore the limit

r' =
dr

= lim
Sr

ds s,-.o Ss

exists, and is given by

dr/du rr =
ds/du s

(5.46)

(5.47)

Here we have used a `prime' to denote differentiation with respect to
the distance s, in contrast to the `dot' denoting differentiation with
respect to the general parameter u.

From (5.42), l8r/5sl = 1, so by (5.46) the vector

t = r' (5.48)

is a unit vector; since Sr is tangential to F in the limit Ss - 0, t is called
the unit tangent vector to F; it is shown in Fig. 5.5. The line through a
point P of the curve, parallel to t, is the tangent to the curve at P.

When u = u0i the distance s(uo) given by (5.45) and (5.44) is zero;
denote s(ul), the distance between points with parameters uo and u1,
by sl. We can then change variables [Reference 5.10] from u to s in
(5.44), giving simply

Ss1=Jlds.
0

This is the simplest example of an integral along a curve. Generally, if
f(s) is an integrable function of s, then its integral along F from the
points with s = sl and s = s2 is

f S2
f (s) ds. (5.49a)

Si

If the integrand is given as a function g(u) of the parameter u, we can
change variable in (5.49a) to give [Reference 5.10]

j g(u)dsdu =fu2g(u)
U1 du ,

dr

du
du (5.49b)

as the integral. We often encounter an integrand of the form f (s) =
v(s) t(s), the component of a vector function in the tangential direc-
tion; the notation

ds=tds
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can then be used to express the integral (5.49a) as

(5.50)
S Si i

If s2 -+ oo as u2 - u., the upper limit in the integral (5.49a) becomes
infinite; likewise, the lower limit s, may become -co. When such a
limit of the integral (5.49) is required, we shall assume that it exists.
Conditions for the existence of integrals with infinite limits are
established in standard works on analysis [Reference 5.11].

In practice, we may wish to integrate along a piecewise smooth
curve, which consists of a finite number of smooth pieces
I',, F2, . . . , as detailed on p. 139; the integral is defined to be the
sum of the integrals along the n separate smooth curves.

Example 5.12

In the plane z = 0, the Archimedean spiral is defined in terms of polar
coordinates (p, 0) by p = a¢ (a = constant, ¢ , 0). Find the arc length
along the curve from the origin to 0 = ¢1, and find the tangent vector
t for any positive value of ¢. Integrate the function p along the curve
from the origin to 0 = ¢1.

The position vector r, as a function of 0, is given by

r=p cos0i+p sin ¢j
=a¢(cos (k i + sin 0 j).

So

dr
d¢

=a[(cos.0 -0 sin -O)i+(sin q5+¢ cos ¢)j],

and from (5.43) with u = ¢,

ds
d

s = a[(cos 4S -(k sin ¢)2+(sin ¢+0 cos (k)211.

=a(l+02)t.

So the arc length s, from 0 = 0 to ¢ = ¢, is, by (5.44),

m,

si=af (1+02)t d¢
o= C,

1 W1]
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The unit tangent vector for any 0 > 0 is, from (5.47),

_ dr/d¢
t ds/d¢

_ (1+02)-t[(cos 4) -(k sin 4))i+(sin ¢+0 cos q5)j].

The integral of p = a4) along the curve is

J
a2(g1+(k2)'d¢=3a2[(1+.0 1 _ 11.

Example 5.13

Find the are length from 0 = 0 to 0 = 01 along the circular helix of
Example 5.2. Show that the tangent vector t makes a constant angle
with the plane z = 0.

The position vector on the helix is given by

r= a cos 0 i+a sin 0 j+b0k.

So

dr _

dB -a sin 8 i+a cos 0 j+bk

and hence, from (5.43),

d=(a2+b2)=c,

say, defining the constant c. Thus the arc length from 0 = 0 to 0 = 01 is
91 ds

s1= J -d6=cO1.
0e-0d

The tangent vector is_dra b
t sin0i+acos0j+k.a

ds
-

This vector makes an angle (3 = arctan (b/a) with the plane z = 0, for
all values of 0.

Since t is a unit vector at every point on the curve,

for all values of s. If we now make the assumption that the vector t(s)
is a differentiable function of s, we can differentiate this equation with
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respect to s, using (5.21); this gives

t' = dt/ds is orthogonal to t at all points, unless
it is zero. If t'= 0 over a range of values of s, t is a constant vector, and
this part of the curve is just a straight line. Otherwise C o 0, and we
can define the unit normal vector n as the unit vector corresponding
to t', at every point of the curve. So differentiating (5.48) gives

r"=t'=Kn, (5.51)

where K is the modulus of t'; it is a positive scalar, called the
curvature of a curve r at any point r. The line through a point of r in
the direction of n is called the normal to r at that point. Since t is a
function of s, K and n are also functions of s, and usually vary as s
varies.

If t and t+St are the unit tangent vectors corresponding to lengths
s and s + Ss, they can be represented, as in Fig. 5.6, by displacements

8t

Fig. 5.6

along two sides of an isosceles triangle; if Sr(i is the angle between the
two unit vectors, measured in radians,

IStI = 2 sin 2 Sr/i

= Sale +
0(803),

using a standard approximation for the sine of a small angle
[Reference 5.71. Letting 80 -* 0, and using (5.51),

K lim
18tJ

SS-0 Ss

= lim -,
Ss

since the existence of this limit ensures that terms of order (30)3/Ss
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vanish in the limit Ss - 0. So we can write

df
K ds

(5.52)

and K tells us the rate of rotation of the tangent vector per unit length
along the curve. The reciprocal of the curvature K is called the radius
of curvature rr; thus

r,=K_1=d
; (5.53)

this inverse exists if t' o 0, so that K 0 0 by (5.51).
In (5.52), K is a function of s which can be calculated from (5.51)

by differentiating t. We can therefore regard (5.52) as a first order
differential equation for a function 41(s); provided that K(S) is in-
tegrable over the range so < s ' s 1, we can integrate the equation to
give

P(si)-0(so)= J
s,

K(s)ds. (5.54)
so

This quantity does not have any particular significance except for
plane curves, for which r lies in a given plane, usually taken to be the
plane z = 0. Then t = r' lies in the same plane, at all points on the
curve. So K in (5.52) tells us the rate of rotation oft about the fixed axis
normal to the plane, and the integral (5.54) tells us the angle through
which t rotates between points with s = so and s = sl I. If we regard so
as fixed, (5.54) defines /i(sl) as a function of sl; the derivative of this
function is given by (5.52). The variables s and 0 are known, as the
intrinsic coordinates of a plane curve, and the relation (5.54) is called
the intrinsic equation of the curve.

Example 5.14

Find the curvature of the Archimedean spiral p = a¢ of Example
5.12. Find the intrinsic coordinate 0 as a function of .0.

The tangent vector of the spiral p = a¢ is given in Example 5.12.
So

dt
d _ -qS(1+02)-2[(cos ¢ -¢ sin c¢)i+(sin 0+0 cos 4')j]

+(1
+4'z)-#[-(2

sin 0 +¢ cos ¢)i+(2 cos 0 -0 sin 4')j],
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giving

d0
I2=(1+¢2)-2(2+4,2)2.

But ds/d4, =a(l+¢2)1, so that (5.51) gives

K= dt =ldt/dcSl=a-'(1+4,2)-z(2+¢2).
ds ds/d¢

To find the intrinsic equation, we do not use (5.54), but note that in
Fig. 5.7, 0 = 0 +a. Now if U. is the unit vector in the direction of r,

Fig. 5.7

The results of Example 5.12 give

t= (1 +,02)-J [(cos 0 _0 sin 4, )i+ (sin 4, +0 cos q, )j]

and

So

giving

u, = cos 0 i+sin 0 j.

cos a = (1 +¢2)-

qi=¢+cos-' (1+02)-t
=¢+tan-' 0.

Since s has already been found as a function of ¢, we have an
implicit relation between s and q,, the intrinsic coordinates.
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For any point P on a curve F where r" exists and is non-zero, unit
tangent and normal vectors t and n have been defined as two mutually
perpendicular unit vectors. It is natural to define a third unit vector b,
known as the unit binormal vector, to complete a right-handed triad
(t, n, b), as shown in Fig. 5.8. The line through a point P on IF in the

Fig. 5.8

direction of b is called the binormal. The plane through P, parallel to
b and n, is called the normal plane to the curve at P; t is normal to this
plane. As the point P moves along the curve, the rate of change of the
tangent vector t is given by (5.51); we now find the rates of change of
n and b, the other vectors in the triad, assuming that their derivatives
exist. Differentiating the orthogonality relation

gives, using (5.51),

But n b = 0, by definition, so that b' t = 0. But differentiating b b =
1 gives b' b = 0 so that b' is orthogonal to both t and b; hence it must
be of the form

b' _ --rn; (5.55)

here r is a scalar, which measures the rate at which b, and hence n,
rotate in the normal plane; it therefore measures the `rate of twisting'
or the torsion of the curve at any point. The sign in (5.55) is chosen so
that positive values of r correspond to a rotation which gives a
right-handed screw motion when combined with motion in direction
t.

The rates of rotation of the triad (t, n, b) must be of the form (5.36),
with (i, j, k) replaced by (t, n, b) and u replaced by s. Equations (5.51)
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and (5.55) can then be identified with the first and third equations of
(5.36), giving

(03 =K, W2=0, W1=T,

which can be substituted in the second equation. The complete set of
equations, known as the Serret-Frenet formulae, is therefore

t' = Kn, (5.56a)

n'=Tb-Kt, (5.56b)

b' = -Tn. (5.56c)

The identification of w, (r = 1, 2, 3) with (r, 0, K) tells us that K and T
are, respectively, the rates of rotation per unit distance of the triad
(t, n, b) about b and t respectively, and that there is no rotation about
n. Since we have assumed that t' and b' exist, n' also exists, because
n=bnt and so n'=b'nt+bAt'.

We have already seen that the curvature K is given by (5.51) to be

K = It'I = Ir"I.

Differentiating (5.51) with respect to s and using (5.56b) gives

r"' = K'n + K (rb - K t);

(5.57)

so, using (5.51) again,

[C, r", r"] _ [t, Kn, K'n + K (T b - K t)]

= K2T[t, n, b]

K2T.

So the torsion can be calculated from the formula

T = K-2 [r', r", r"'], (5.58)

with K given by (5.57).
The curvature and torsion can also be found in terms of the

derivativesr = ar/au, j= 02r/au 2 and I = a3r/au3, with respect to a
general parameter u. From (5.47) and (5.48),

i=St.
Differentiating with respect to u gives, using (5.51),

'r=st+st
= st+s2Kn.

Forming the vector product with i = st now gives

r n r = s3Kb, (5.59)



168 Curves and surfaces: vector calculus

so that, taking the modulus,

K=S-3lrArl=lrI-3IrArl. (5.60)

Also, differentiating (5.59) again, using (5.20) and (5.55),

r A r = -s4KTn+bd(s3K)/du ;

taking the scalar product with r now gives

[r, r, r] = S6K27_ =TI[ A'r92,

using (5.60). So the torsion is given by

(5.61)T = IIr.

A

Example 5.15

Find the curvature of the curve y = f(x) in the plane z = 0. The
position vector is, with x as parameter,

r=xi+f(x)j.
So

dr =i+f(x)j,
dx

where I (x) = df/dx. Using (5.43) with u = x,

ds (1
+12)1,

dx
so that

t=as=(1+f2)-'[i+f(x)j]

Differentiating again,

dt dt/dxKn=-=
ds ds/dx

=(1+f2) 1{(1+12) fj-ff(1+f)3[i+fj]}.
We could evaluate K by taking the modulus of this vector, but it is
simpler to use (3.5) with a= i + j j to give

KtAn=(1+f2)-'(i+fj)A (1+f2)-tfj
=(1+f2) 2fk.

The binormal b = t A n is thus +k, orthogonal to the plane of the
curve, and the curvature, which is positive, is

K = If1 (1 +f2) 2
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An alternative derivation of this formula is suggested in Problems
5.3, Question 7.

Example 5.16

Find the curvature and torsion of the circular helix of Examples 5.2
and 5.13.

We already have

r' =-a sin 9i.+acos0j+bk
C c C

and

dec(a2t)'.

So

dr'/dO
ds/dO

=-acos8i--sin0j;
C c

from (5.51) and (5.57),

n=-cos0i-sin8j
and

a positive constant.
Differentiating r",

r ds/de C3 sin 9 i-
a

cos 9 j.

Using (5.58),

a3 (sin 8i-cos0j)J

c= (a2 ) (b ) (as j[k, i, j] cost 9 - [k, j, i] sin2 9}

b
2,
c

which is also constant along the curve.
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Now consider a particular point r, on a curve, and suppose that we
know the tangent t1, the normal n, and the curvature K, (assumed
non-zero) at the given point. We shall now show that there is a unique
circle passing through r, with these given values of t1, nl, K,; this
circle is known as the circle of curvature at r1. Suppose that a is the
position vector of the centre of such a circle; then the circle must be
the intersection of a sphere, centre a, and a plane through r1. So we
can write the equations of the circle as

(r-a) (r-a)=A2, (r-r1) u=0 (5.62)

where u is a unit vector, and A is a real number. We have to show that
a, A (>0) and (apart from its sign) u are determined by t1, n, and K 1.

In (5.62), r is the position vector of a point on the circle. We can
differentiate (5.62) twice with respect to the arc length s on the circle,
and use (5.48) and (5.51) to obtain

t and n and normal vectors to the circle. We
are told that r = r, lies on the circle (5.62), and that t = t1, n = n, and
K = K1 -?4- 0 at this point. So substituting in all six equations gives

jr, - ale =A 2,
(5.63a)

t, (r1-a)=0, (5.63b)

n, (r, -a)= -K I 1, (5.63c)

and

tl u = n1 u=0. (5.63d)

Equations (5.63d) tell us that, apart from an unimportant choice of
sign, u = b1, the binormal at r1. The circle (5.62) therefore lies in the
plane through r1 parallel to t1 and n1, known as the osculating plane
at r1. The displacement from the centre a to r1 is therefore normal to
b1, or

Since by (5.63b), (r1-a) is also normal to t1, and by (5.63a), has
magnitude A, we know that

r,-a=:An1.
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Substituting in (5.63c) and remembering that A and K1 are positive,
we find

-1A =K1 ,

therefore

a=r1+K1'n,

completing the determination of a, u, A in (5.62). The radius A of the
circle of curvature is therefore the radius of curvature r. defined by
(5.53), while the centre of the circle is on the normal to the curve at
r1, at the correct radial distance rc = K ' from r1.

Since t, n and K determine r' and r" through (5.48) and (5.51), the
circle of curvature at a point on a curve has the same values of r, r'
and r" as the curve itself, and is said to have triple contact with the
curve at the point.

Problems 5.3

1 A cycloid is the locus in the (x, y) plane of a point on the circum-
ference of a circle, radius a, rolling on the line y = 0. If the origin 0 is
on the cycloid, and 0 is the angle through which the circle has rotated
in a clockwise direction from the position corresponding to 0, show
that the equation of the cycloid with y = 0 is

r= a(8 -sin 8)i+a(1-cos 0)j.

Find the unit tangent and normal vectors t and n to the cycloid for any
value of 0 in the range 0 < 0 < 2,7r, and show that the curvature is
K = (4a)-' cosec 10. Show also that the distance along the curve from
0 to the point with 0 = 01 is 4a (1- cos 201). Integrate the function
y = a(l-cos 0) along the curve from 0 = 0 to 0 = 01.

2 A catenary in the (x, y) plane is defined by the equation y =
c cosh(x/c). Show that the intrinsic equation of the curve can be
written s = c tan 0. Show also that the radius of curvature at any point
P is equal to the distance along the normal from P to the x-axis.
Integrate the function y2 along the curve from x = 0 to x = x1.

3 Find the curvature, the torsion, and the equation of the osculating
plane at any point of the curve

r=a0 cos0i+a0 sin 0j+b0k.
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4 Find the equation of the normal plane, the curvature K and the
torsion r of the twisted cubic curve

r=6ui+3u j+u3 k.

Integrate the function eu along the curve from u = 0 to u = u1.
5 Show that both the curvature and the torsion of the curve

r= 3a sech 9i+3a tanh Oj+8a tan-1(exp 0)k

are constant. Find the equation of the circle of curvature at the point
0 = 01.

6 Show that the curvature and torsion of the cubic curve

r=3ui+3u j+2u3k
are equal at every point. Find the equations of the tangent, normal
and binormal at the point u = u I.

7 Use Equation (5.60), with x as parameter, to establish the formula
for the curvature of the curve y = f (x ), where f (x) is twice differenti-
able.

8 If the curvature K(s) and the torsion -r(s) are infinitely differentiable
functions of s, show that t, n and b are infinitely differentiable.

5.4 Surface integrals

In §5.3 we have defined the integral of a function along a line,
expressing it as the integrals (5.49) over the single parameter u or s.
In a similar way, when a surface is defined, as in §5.1, in terms of two
parameters u1, u2i an integral over the surface can be defined as
a double integral over the variables u1, u2. Before defining these
double integrals, we discuss in more detail how points on a surface
are specified in terms of u1, u2.

A surface o,, defined in terms of parameters u1 and u2, is shown in
Fig. 5.9. We have already assumed that particular values of u1, u2
define a unique position vector r(u1i u2), corresponding to a unique
point P(u1, u2), say. If u1 takes a constant value and u2 is allowed to
vary, then the position vector r(u 1= constant, u2) traces out the curve
AB on the surface; the point Q on AB corresponds to the second
parameter value u2+3u2. The various values of the fixed parameter
u1 each define a curve on o,; members of this family, including AB
and CD, are drawn in Fig. 5.9; CD corresponds to the fixed
parameter value u 1 + 8u 1. In the same way, the position vector
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Fig. 5.9

r(u1, u2=constant), with u2 fixed, traces out the curve EF as u1
varies, and the point S on EF corresponds to the value u 1 + Su 1 of the
first parameter. The curve EF is a member of a second family of
curves each defined by keeping u2 fixed; GH is another member of
this family, corresponding to the fixed value u2+5u2 of the second
parameter. The points of intersection of AB and CD with EF and
GH are labelled P, Q, S, R, together with the corresponding values of
the two parameters. The two families of curves are said to form a
mesh over the surface or. Apart from certain exceptional points and
lines, each position vector r on cr corresponds to unique values of u1,
u2i so in general, there is only one curve of each system passing
through a given point.

Example 5.17

As in Example 5.5, the spherical polar coordinates 9,¢ can be used to
represent points on the unit sphere. In general, each point cor-
responds to one and only one set of values in the ranges 0, 0 , IT,
0 _ ¢ = tar. The curves 0 = constant are the `circles of latitude', and
the curves .0 = constant are the `great circles of longitude'; these two
sets of curves form a mesh over the sphere. The `poles', however,
correspond to the values 0 = 0 and 0 = IT, for any value of 0; so all
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great circles with cb = constant pass through the two poles. Also, the
curves 0 = 0 and 0 = 27r correspond to the same set of points; this
ambiguity can be removed, however, by taking the range of 0 to be
0 , 0 < 27r.

Before we defined the integral along a curve by (5.49), it was
necessary to assume that the curve was smooth, possessing a
continuous unit tangent vector at each point. Similarly, we need to
impose further conditions on a surface before we define integrals over
surfaces. We define a smooth surface 0 to be a simple surface
satisfying the following conditions, in addition to the conditions (i),
(ii) and (iii) of §5.1:

(iv) Through every point of o,, apart from a finite set of exceptional
points belonging to the limit set defined by (5.10), there is a unique
pair of curves of the mesh, defined respectively by keeping ul and u2
constant. Points which are not exceptional are called normal points of
0'.

(v) At all normal points of v, the partial derivatives

ar(ul, u2) ar(ul, u2)
(5 64).

aul au2

exist, and are non-zero and continuous; at points on the boundary,
these derivatives may be one-sided. So at all normal points of 0-, the
vectors (5.64) can be normalised to define unit tangent vectors tl and
t2 to the two curves of the mesh, in the directions of ul and u2
increasing, respectively; the tangent vectors at P are marked in Fig.
5.9. The vectors tl and t2 are continuous functions of ul, u2.

(vi) At all normal points of a, we assume that tl and t2 are linearly
independent, so that the two curves of the mesh at a point are not
tangent to each other.

Since exceptional points correspond to limiting values (5.10) of the
variables ul, u2i we are assured that tl and t2 exist and are continuous
at interior points of the ranges, for which a < u l < b and a (u l) < u2 <
/3(ul). We also know that the tangent to the boundary curve can be
defined at all but a finite number of exceptional points; for example a
part of the boundary defined by u2 = a(ul) will have

ar da ar
aul dul au2
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as a tangent vector. So the boundary of a smooth surface u consists of
a finite number of smooth curves.

Example 5.18

In terms of spherical polar coordinates, a hemisphere of the unit
sphere r = 1 is defined by the ranges 0 -_ 0 , jr, Z0 , 0 , 21r. The
boundary is the `equator' 0 = 2'7r; the `longitudes' ¢ = 0 and ¢ = 21r
coincide, but if 0 > 0, there are unique `circles of latitude' 0 =
constant and `longitudes' ¢ = constant through any point 0,4); this is
true even on the boundary 8 =2'7r, where one-sided non-zero deriva-
tives (5.64) exist, and on the duplicated longitude 0 = 0 or ¢ = 27r.
The only point at which conditions (i)-(iii) above fail is the `north
pole' N shown in Fig. 5.2; all the `longitudes' ¢ = constant pass
through this point; 8 = 0 is not a curve, and while each `longitude' has
a unique unit tangent vector at N, 0 = 0 does not define a unique
tangential direction at N.

The limit set, defined by (5.10), consists of points with 0=0,
0 = IT, 0 = 0 or ¢ = 2ir. The only `exceptional point' of the limit set is
N, defined by 0 = 0. We note that N is an exceptional point of the
coordinate system, rather than of the sphere itself; we could, if we
wished, use a different coordinate system, for which N was not in the
limit set, and hence not an exceptional point.

Example 5.19

As in Example 5.8, a part of the right circular cone 8 = a (0 < a < 2' 7T)
is defined by the ranges 0 , r r1, 0 _ 0 < 2m Through each point
with r > 0, there is one circle r = constant and one line 4) = constant,
and the tangent vectors tl and t2 are uniquely defined; these tangent
vectors are continuous functions of r,4). The origin, the vertex of the
cone, corresponds to r = 0, for all values of ¢. The equation r = 0 does
not define a curve, and it defines no tangent vector. The origin is
therefore an exceptional point. The situation is different from that in
Example 5.18, however, since the vertex of the cone will be an
exceptional point regardless of the choice of coordinates; in other
words, it is an exceptional point of the surface, rather than of the
coordinate system.

Conditions (iv)-(vi) ensure that linearly independent tangent
vectors t, and t2 exist at a point P. We can then define the tangent
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plane at P, as in (3.39), to be the plane through P parallel to tl and t2.
Fig. 5.10 shows the surface region PQRS of Fig. 5.9, enlarged,
defined by increments 6ul and Sue of the parameters ul, u2. Cor-
responding to these increments, we can define displacements

ar arPN=- 8u1, PL=au2 Sue (5.65)
au,

parallel to the tangent vectors t1 and t2. If we assume that the
increments 6u1 and Sue are positive, the area of the parallelogram
PLMN formed from these displacements from P is

ar arSQp= -H-
aul au2

6u1 Sue. (5.66a)

We often use orthogonal systems of coordinates on v, for which the
vectors (5.65) are orthogonal at all normal points of o; then the mesh
consists of two sets of curves which are orthogonal at every normal
point. Defining the moduli

h.(u1, u2)= I ar I (5.67)
ally
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for r =1, 2, the area (5.66a) can then be written

So,p = hIh2SuISu2 (5.66b)

for orthogonal systems of coordinates.
When the surface or is a region of the plane z = 0, so that ul, u2 are

coordinates in the (x, y) plane, then (5.1) reduces to

r=X(ur)i+ Y(u,)j,
so that, for r = 1, 2,

Then the vector product

ar _ aX, aY,
our our our

ar ar-n-
aul au2

is parallel to k, and has magnitude

ax ay-ax ay
Ml au2 au2 aul

This is the modulus of the determinant

a(X, Y)
a(ul, u2)

ax a Y

aul aul

ax ay
au2 au2

(5.68)

which is known as the Jacobian of the transformation from variables
(x, y) to the variables (ul, u2).

In Appendix A, we define double integrals and establish certain
basic properties in Theorems A.5-A.8. Using these results, we are
now in a position to define the integral over a surface a- of any
piecewise continuous function f (u1, u2) defined at all points on o,. The
parameters ul, u2 define a mesh over v; by selecting a finite number
of curves of each system of curves, forming a coarse mesh, v is
divided into a finite number of small regions, as in Fig. 5.9. Let us
represent by P the point in one of these regions (including its boun-
dary) with the minimum values of ul and U2; regions which contain
part of the boundary of o- can be excluded, by Theorem A.4. Then if
Sap denotes the area (5.66) of the parallelogram formed by tangents at
P, we construct the sum

Y_ fp&rp (5.69)
P
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over points P representing all the regions not containing boundary
points of Now the surface o- corresponds to ranges of ul, u2 of the
form (5.8); a coarse mesh corresponds to division of the range (a, b)
of ul into intervals of finite lengths denoted by Sul, and (for each
value of ul) division of the range (a(ul),13(ul)) of u2 into intervals
with lengths denoted by Sue. If f(ul, u2) is a piecewise uniformly
continuous function, then (Theorem A.3, Appendix A) as the maxi-
mum value Max(Sul, Sue) of all the parametric increments tends to
zero, the sum (5.69) tends to the double integral

JJf(ui, 112)

a

ar(u1, u2)
A

ar(u1, u2)
8ul au2

dul due (5.70a)

over the surface a-. In forming this limit, we have used the expression
(5.66a) for the element of area associated with P. If u1i u2 form a
system of orthogonal coordinates on o,, the limit derived by using
(5.66b) is

J
Jf(ui, u2)hl(ul, u2)h2(ul, u2) dul due.

a

(5.70b)

If the surface a- is a region of the (x, y) plane, we can use (5.68) to
express the integral (5.70a) in the form

JJf(ui,u2) a(X, Y)
a(ul, U2)

dul due. (5.70c)

The double integral (5.70a) can be evaluated by performing the u2
integration first, over the range (5.8b), and then performing the ul
integration over the range (5.8a) [Theorem A.7, Appendix A]. The
integral is then the repeated integral

b P ((u u j)l) ar(ul, u2) ar(ul, u2)
dul fa duzf(ul, u2)I aul

A au2 I. (5.71a)
a

For orthogonal systems of coordinates, and for integrals over plane
areas, the integrand in (5.70a) simplifies to those in (5.69b) and
(5.69c), giving

b /3(u2)

J dul J du2f(u1, u2)hl(ul, u2)h2(ul, u2) (5.71b)
a (ui)
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and

a (3(ul) a(X Y)
j

du1 du2f(ul, u2) / ' I. (5.71c)
a Ja(u1), a(u1, u2))

The double integral (5.70a) is also equal to a repeated integral in
which the integration over u1 is carried out first. It may happen,
however, that the ranges of integration are then not of the form (5.8).
For example, if o is the shaded region in the (x, y) plane shown in Fig.
5.11, and if u 1 = x, u2 = y, then cr corresponds to ranges a , x < b,

a

Fig. 5.11

r n

a(x), y </3(x). But if we integrate first over x, there are two ranges
of x corresponding to y-values below the line LM and above the line
PQ, so that the ranges of integration are more complicated than those
in (5.8). The region o can, however, be cut into five finite pieces by
the lines LM and PQ, and each of these pieces corresponds to ranges
of the form (5.8), with the x-integration performed first. The integral
over o, is the sum of the integrals over these five pieces [Theorem
A.6, Appendix A]. There are, of course, other ways of dividing a into
pieces, each with ranges of integration of the form (5.8).
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Let us consider the surface integral (5.70a) of the unit function
f (U 1, U2)= 1. From (5.69), this is the limit of the sum lp STp, where
STP is the area of the parallelogram PLMN in Fig. 5.10. As the
increments Sul, Sue tend to zero, the region PQRS becomes pro-
gressively flatter, since t1 and t2 are continuous. It is natural to take
the area of PLMN as a good approximation to the area of the surface
element PQRS when Sul, Sue are small. We therefore define the area
of the surface o- to be the limit of 1p5op; putting f(ul,u2)1 in
(5.70a), the area is thus

JJ
a

ar(u1, u2) ar(u1, u2)
n

aul au2
dul due. (5.72a)

For orthogonal systems of coordinates and for areas in a plane, the
area is given by putting f (ul, u2) =1 in (5.70b) and (5.70c); this gives

and

J J
hl(ul, u2)h2(ul, u2) dul dug (5.72b)

a

JJ
a

a(X, Y)
a(ul, u2)

dul due. (5.72c)

Since f =1 is a continuous function, the integral (5.72) exists, and is
equal to the repeated integral of the form (5.71). The area can also be
evaluated as a repeated integral in which the first integration is over
u1. Since the integrand in (5.72) is positive, areas are always positive.

The double integral (5.70) may exist and be equal to the repeated
integral (5.71) even if the integrand

ar arf-A-
aul au2

is not bounded, but tends to infinity at some points or along some
lines in 0. Unboundedness of the integrand may arise either from the
unboundedness of the function f(u1, u2), or because r(u1, u2) tends to
infinity at some part of the boundary of o-. Even if the integral (5.72)
is divergent, corresponding to a surface of infinite area, the integral
(5.70) may exist for some class of functions f(ul, u2), and be equal to
the repeated integrals over ul and u2. Conditions under which this is
true need to be particularly carefully investigated, and are established
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in standard works on analysis [Reference 5.12]. In some classes of
problems, in potential theory for example, great care needs to be
taken in defining certain surface integrals.

Example 5.20

If (p, 0) are polar coordinates in the plane z = 0, the region a- in the
plane is defined by ranges 1 < p , 2, 0 , 0 , 2vr. If f (x, y) is a boun-
ded function of the rectangular coordinates x, y in the region v, write
the integral of f over a- as

(i) a repeated integral over ¢ and then p,
(ii) a repeated integral over x and then y.
(i) The region of integration is shown in Fig. 5.12. In terms of polar

coordinates,

r(p,q)=pcos4 i+p sin (k j;
so taking u1= p, u2 = ¢, (5.2) becomes

X(p,4S)=pcos0, Y(p,q5)=p sin k.

Fig. 5.12
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Hence the Jacobian (5.68) is

a(X, Y) = cos ¢ sin O

a(p, ¢) - I-p sin 0 p cos ' = p.

In terms of p, 0, the function to be integrated is f (p cos 0, p sin qi ).
The integral (5.71c), with the correct limits inserted, is

2 2,.

J1 dp J0
dq pf(p cos 0, p sin 0).

Note that, since ar/ap and ar/aq are orthogonal, the factor p could
also have been obtained by using (5.71b).

(ii) Consider the range of values of x for fixed values of y. For
-2 < y < -1, there is a single range of values of x, represented by the
line AB in Fig. 5.12; for this range of y-values, the range of x is

-(4-y2)1 _x _+(4-y2)j.
This is also the range of x -values for 1 _ y _ 2. For -1 < y < 1, the
range of x-values is divided into two parts, represented by CD and
EF; the two ranges of x are

-(4-y2)t_x_-(1-y2)t

and

(1-y2)t_x_(4-Y2)j.
The integral over o, is the sum of the integrals over four regions with
ranges of the form (5.8), with u2 = x and u1= y. Since an element area
is of the form Sx Sy, the integral of f(x, y) over o, is

1 +(4-y2)4 2

f,=-(A-,2

+(4-y2)4

J- dyJ-ra-2'4 dxf(x,y)+J
=,

dyi4 dxf(x, y)
)-(1-Y (4-y )

+J dyJ dxf(x,y)+J dyJ dxf(x, y).
Y=-1 x=-(4-Y2)4

Y1

=-1 x=(1-Y2)1

This result can be simplified by writing it as the difference between
integrals over 0 -_ p _- 2 and 0 -_ p _- 1, giving

2 +(4-Y2)4 1 (1-y2)4

J dyJ dxf(x,y)-J dyj dxf(x, y).
y=-2 x=-(4-y2)4 Y=-1 x=_(1-y2)4

Clearly, the limits of integration are simpler if we use polar coor-
dinates, but the integrand f(x, y) may be more simply expressed in
terms of rectangular coordinates. For such integrals, there is no
definite rule for deciding whether it is best to use the coordinates with

2 41 2 4
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simple limits of integration, or the coordinates which keep the in-
tegrand simple.

Example 5.21

Using the standard notation for cylindrical and spherical polar coor-
dinates, integrate 1/r over the region of the surface p = a bounded by
z=0,z=ao and 4=a.

The boundary of the region is shown by thickened lines in Fig.
5.13, joining the points A, B and C. If we integrate first over z, the
range for a given value of ¢ is indicated by DE; the range of z is then
0 , z a4. The position vector on p = a is given by r =
a cos ¢ i+a sin 4 j+zk. It is easy to show that ar/ao and ar/az have
magnitudes h1= a, h2 = 1, so that (5.66b) becomes Sop = a So Sz. As
a function of p, z, the function to be integrated is r-1= (a2+z2)-1.
Thus the integral, in the form (5.71b), is

do sinh-1 ¢J ado Jam dz (a2+z2)-A =a foV
m=0 Z=o

= a [4 sinh-1 - (1 +02)t] o

=a[ir sinh-' it+1-(1+7r2)A].

=11

Fig. 5.13
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Example 5.22

Integrate

exp(-,/p2/a2)
(p-adi)2+µ2i

where p, 0 are polar coordinates and a, µ are positive constants, over
the region of the (x, y) plane bounded by the curves p = flair, p = a¢
andp=a(O +11ir).

Use coordinates p and t = p - a4,. The position vector in the plane

r=pcos0i+p sin.0 j

=P cos(p-
a

t i+p sin(p-
a

t) j.j.

So

p = Icos(pa tt) - p sin(pa t) Ii
a

t at+ sin(p)+a cos(p)]j
a a

and

at
a[sin(pa tt)i-cos(pa tt)jj;

these two vectors are not orthogonal, so that the coordinate system is
not orthogonal. The weighting factor in (5.70a) or (5.71a) is

ar ar p

a

This is the modulus of the Jacobian (5.68).
The region of integration is bounded by the lines p = flair, t = 0 and

t = lair, the last two intersecting at p = 0. So the ranges of integration
are 0 -_ p _- 4a7r, 0 -_ t -_ zair. Thus the integral is

fgaa }asr p exp(-p2/ad
2)

o P

dt 2zo a t+µ
tl law

=-zaleXp(-p2/a2)joaw[µ_1 tan 1-J
0µ

2

ll=2µ[i-exp(-16)J tan-1 (2µ).
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Example 5.23

The integral

I = J
ao

exp(-x2) dx
0

is the limit
a

1= lim J exp(-x2) dx.
a-.ao 0

It is evaluated by squaring to give the double integral
a

I2 = lim J dx J dy exp{- (x 2 + y 2)}.
a-0 0 0

In the (x, y) plane, the region of integration is over the square OABC
shown in Fig. 5.14. Let the quarter-disc OAC be denoted by o-1, and

0 A

Fig. 5.14

D

the quarter-disc ODE by 0'2. Then, since the integrand exp{- (x 2 +
y2)} is positive everywhere,

J J
exp{-(x2+y2)}dx dy <J0a dx J dy exp{-(x2+y2)}

0 1

< J J exp{-(x2+y2)}dx dy.

02
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The integral over a1 can be evaluated by using polar coordinates
(p, 4') in the (x, y) plane. As in Example 5.20, the Jacobian is equal to
p. Thus the integral is

a ria
f dp f dcbp exp(-p2)=a7r[-exp(-pz)}0

0 0

=47r{1 -exp(-p2)}.

Similarly the integral over o,2 is

4ir{1-exp(-2a2)}.

Thus
a a

2)}.47r{1-exp(-a2)}< dx
fo

dyexp{-(x2+y2)}<47r{1-exp(-2a
fo

As a -+ oo, the limits of the integrals over a 1 and Cr2 are both equal to
fir. So taking this limit, we find I2 = 4a. Thus

f
00

exp(-x2) dx = 2',7r .

0

Problems 5.4

1 Integrate the function f (x, y) _ (x + y + k)-', where k > 0, over the
triangle o, in the (x, y) plane which is bounded by the lines x = 0,
y = 0 and x + y = a (a > 0). By letting k - 0 through positive values,
show that the integral of (x + y)-' over o- exists and is finite, even
though the function is unbounded near the origin.

2 If x = (A/a) cos 6, y = (A/b) sin f, write down ranges of A and i; which
correspond to the interior o- of the ellipse

2 2

a2 + a2=

Evaluate

f J x2y dxdy.
a

3 If x = u2 - v2, y = 2uv, find in terms of u and v the equation of the
parabola

y2=4a(x+a),
both when a > 0 and when a <0. Integrate the function

(x2+y2)_t
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over the region enclosed by the three parabolas

y =4a,(x+a,) (r= 1, 2, 3),2

where
a1>a2>0>a3.

4 Curvilinear coordinates in the (x, y) plane are defined by the relations

x = c cosh cos q,

y = c sinh sin 71.

Show that the Jacobian for the transformation from (x, y) to (u, v) is

c 2(cosh2 f - cosh2 11).

Using the results of Problems 5.1, Question 4, find the area of the
surface whose boundary consists of the curves e = 51, _ f2, 'q = 771'
77 =712-

5 Evaluate the integral

JdxJdy exp(-x2 - 2xy cos a - y2)o
0

here -vr <a <?r. [Hint: take (x, y) as oblique coordinates in aw
plane.]

6 Using spherical polar coordinates, show that the element of area
(5.66) on the sphere r = a is a 2 sin 0 80 S¢. Evaluate the integral of
x2 = a2 sin2 0 cost 0 over the part of the surface of the sphere defined
by the ranges 0 0 zvr, 0 ¢ fir.

7 Find the area of the part of the cylindrical surface x2 + y 2 = a 2 lying
within the second surface y2+ z 2 = a 2.

8 Using cylindrical polar coordinates (p, ¢, z), a finite part a of the
surface z = a¢ is defined by the ranges 0 _ p , a and 0 < 4 = Za. Find
the area of a- and the integral of x = p cos ¢ over

a is defined by the position vector

r=u2cos0 i+u2sin41 j+2u4k,
with parameter ranges 0 , u , u 1 and Tr , o , 2or. Show that the
integral of

(x2+y2)_t

over o, is equal to
2a

J do [u1(u +112+4) +((012+4)sinh-1 {u1(¢2+4)-1}].

10 The region o, is that part of the cone z = +(X2 + y 2)4 which is interior
to the cylinder (x - a )2 + y 2 = a 2. Find the area of a and calculate the
integral of x2z2 over a-.
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5.5 Volume integrals

The definition of volume regions and of integrals over volume regions
is very similar to that of surface regions and surface integrals. Points
in space can be specified by a variety of coordinate systems, such as
spherical polar or spheroidal coordinates. These coordinate systems
consist of three coordinates which we denote by u1, u2, u3, and the
position vector r(ul, u2, u3) is a function of us (s = 1, 2, 3). Subject to
certain conditions which we shall state, the coordinates {us} are called
curvilinear coordinates. If (i, j, k) is a fixed triad, the position vector r
is expressible in the form (5.7), where X(u,), Y(us), Z(us) are now
functions of the three curvilinear coordinates. The points cor-
responding to r(us) will define a finite volume region r, provided that
the following conditions are satisfied:

(i) The variables u1, u2, u3 can be chosen so that their ranges are of
the form

a u1 ' b, (5.73a)

a(ul) u2--0(u1), (5.73b)

7A U1, u2) - u3

-t

S (u 1, u2), (5.73c)

where a and b (>a) are constants, a(u1) and f3(ul) are continuous
functions of u1 in the range a < u1, b, and q(u1, u2) and f(u1, u2) are
continuous functions of u1 and u2 in the region defined by (5.73a) and
(5.73b). The functions a(u1), 13(u1), ii(uii u2) and ie(u1, u2) may, of
course, be constant.

(ii) The functions X(u,), Y(us), Z(us) are continuous functions of
us (s = 1, 2, 3) throughout the ranges (5.73).

(iii) Except at a finite number of points, and over a finite number
of curves and surfaces, there is only one set of parameter values {us}
corresponding to each position vector r.

The limit set of points defined by the ranges (5.73) is the set of
points of the region r corresponding to parameter values

{ul, u2i u3; u1= a or u1= b}, (5.74a)

1U1, u2, u3; u2=a(u1), u2=P (u1)} (5.74b)
and

{u1, u2, u3; u3 = 17(U I, u2),u3 = e(u1, u2)}. (5.74c)

Just as for surfaces, we define a boundary point of r to be one whose
parameters belong to the limit set (5.74), for every parametric system
satisfy the conditions (i), (ii) and (iii); other points of r are then
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interior points. The boundary of r is the set of all boundary points; in
most practical situations, the boundary is a simple closed surface
consisting of a finite number of smooth surfaces. Condition (ii) above
ensures that the parameter regions (5.73) correspond to the interior
of the closed surface o,, since the continuity condition prevents
r = Xi + Yj + Zk from becoming indefinitely large.

The most suitable coordinate system for a given region r may have
parameter ranges which are more complicated than those allowed by
(5.73). We then subdivide the region T into a finite number of
volume regions Ti, T2, ... , Tn each of which may share some
boundary points with other regions, and each corresponding to
parameter ranges of the form (5.73). Also, it is often necessary to
consider infinite volumes, defined by allowing one or more of the
ranges (5.73) to increase in such a way that Irk oo in certain regions
in 3-space; the boundary of an infinite volume will, of course, be an
infinite surface, unless the volume is the whole of 3-space.

Suppose that P(u,) is a point in 3-space corresponding to particular
values of u1, u2, u3. If we allow ul to vary, but keep u2, u3 fixed, the
position vector varies along a curve with u1 as parameter, represented
by AB in Fig. 5.15; Q is the point on this curve with parameters
(u1+6u1i u2, u3). Likewise, CD and EF are the curves obtained by
allowing u2 and u3 respectively to vary, keeping the other parameters
fixed; the points R(ul, u2+Su2, Su3) and S(u1, u2, u3+Su3) lie on
these two curves. The set of curves represented by AB, CD, EF form
a mesh throughout the volume. The points Q, R, S shown in Fig. 5.15
are obtained by making variations Su, in two of the three parameters,
while P' is obtained by making variations in all three. In order to
define volume regions, we make the further assumptions, analogous to
those made for surfaces:

(iv) Through every point of T, apart from a finite number of
exceptional points and along a finite number of exceptional curves, all
contained within the limit set (5.74), there is a unique trio of curves of
the mesh, defined respectively by keeping the pairs (u2, u3), (U3, u1)
and (uI, u2) constant. Points which are not exceptional, and do not lie
on exceptional curves, are called normal points of the volume T.

(v) At all normal points of T, the partial derivatives

ar
(s=1,2,3)

a
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Fig. 5.15

exist and are continuous and non-zero; at points on the boundary of
T, these derivatives may be one-sided. This assumption ensures the
existence of three unit tangent vectors t, (r = 1, 2, 3) to the curves of
the mesh at all normal points; the unit vectors {t,} correspond to the
three non-zero vectors {ar/au,}, and are continuous functions of the
coordinates.

(vi) At all normal points of r, the three tangent vectors {ar/aus}, or
alternatively {ts}, are assumed to be linearly independent. So, by
(3.21),

1ar ar ar
aul' au2' aU3J

560

and

(5.75a)

[t1, t2, t3] 3;6 0. (5.75b)

As with the boundaries of surfaces, these assumptions ensure that a
tangent plane can be defined to the boundary of the volume T, except
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at exceptional points and along exceptional curves. Boundaries
normally consist of a finite number of smooth surfaces.

If a system of coordinates {u,} satisfies conditions (i)-(vi) of this
section, for a finite region r of 3-space, it satisfies all the properties
usually assumed for systems of curvilinear coordinates.

If Su, (r = 1, 2, 3) are small positive increments, then at normal
points, the vectors

ar
Su, (r = 1, 2, 3) (5.76)

aUr

generate, as in Fig. 5.16, a parallelepiped with one vertex at P, whose

Fig. 5.16

seven other vertices lie close to the points 0, R, S, 0', R', S' and P';
the tangent vectors tl, t2, t3 are parallel to the vectors (5.76), and in
the same sense. The volume of the parallelepiped is, by (3.27),

STp =
ar ar ar

aul' aU2' aud
SUI SU2 SU3i (5.77a)

since Sur > 0 (r = 1, 2, 3). The condition (5.75) ensures that this
volume element is non-zero except for a subset of the limit set (5.74).
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Very often we use an orthogonal system of coordinates in 3-space,
such that the vectors (5.76) are mutually orthogonal at all points, so
that

ar ar-=0 (r0s)au, au,

everywhere. We then define, as in (5.67), the moduli

hs(u,)=

so that

ar
aus

(5.78)

(s = 1, 2, 3), (5.79a)

-=fists (s=1,2,3).
aus

ar
(5.80)

Ordering the coordinates so that {t,} is right-handed, [tl, t2, t3] = 1
everywhere; so the volume element (5.77a) reduces to

STp = h1h2h3 SU1 SU2 6U3. (5.77b)

If the position vector r has rectangular components X(u,), Y(u,),
Z(u,), as in (5.7), then

ar _ aX i+ aYj aZ--+-k.
aus aus au, au,

(5.81)

The scalar triple product occurring in (5.77) is, by (4.25b) and
(3.28)

ax a Y aZ

a(X,Y,Z)
au1

ax
aul

aY
aul

aZ
(5.82)

a(ul, u2, u3) aU2

ax
au2

a Y

au2

aZ
au3 au3 au3

this determinant is defined to be the Jacobian of the transformation
from variables (x, y, z) to variables u, (r = 1, 2, 3). Its relationship to
the Jacobian (5.68), for changes of variable in a plane, is clear. For
orthogonal systems, the functions hs defined by (5.79a) and (5.81) are

hs(u,)= \aX
2+(,,)2+- (aZ)2]}.

(5.79b)
L

I\aus
1 au, aus
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Example 5.24

In terms of cylindrical polar coordinates, the position vector of a
general point in 3-space is

r= p cos 0 i+p sin ¢ j+ zk.

The vectors (5.81) are

ar-=cos 0 i+sin 0 j,
ap

or
a-0= -p sin.0 i+p cos ¢ j,

ar
- = k.
az

These vectors are mutually orthogonal at all points, so the system of
coordinates is orthogonal. On the k-axis, where p = 0, the vector
ar/a¢ = 0; this is an exceptional line of points of the limit set where the
volume element (5.77) and the Jacobian (5.82) are zero.

A volume r is defined to be one quarter of a right circular cylinder,
with a boundary consisting of the five surfaces p = a, ¢ = 0, 0 = z?r,
z = 0, z = h, as shown in Fig. 5.17. At first sight, it appears that the

Fig. 5.17
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lines AC, BD and the arcs AB, CD are exceptional curves. This is
not so, since the derivatives ar/ap, ar/a¢, ar/az are well-defined there
as one-sided derivatives; they are non-zero and mutually orthogonal
on these four curves, which therefore consist of normal points only.
The line OE is, however, an exceptional curve of T, since ar/a¢ = 0,
and is part of the boundary of T. We might then expect OE to be a
line of exceptional points on the surfaces ACEO and EBDO, violat-
ing condition (v) of the conditions we have assumed for smooth
surfaces. But, on EDBO for instance, 4 is fixed at value 27r, and the
coordinates defining the surface are p, z. On the line OE, ar/ap and
ar/az exist (at least as one-sided derivatives), and are non-zero and
orthogonal. So, while OE is an exceptional line of the volume T, none
of its points are exceptional points of the plane surfaces ACEO and
EDBO.

Example 5.25

In terms of oblate spheroidal coordinates (see Problems 5.1, Ques-
tion 5) the general position vector is

r = c cosh 6 cos i(cos 0 i+sin ¢ j)+c sinh f sin q k.

The vectors (5.81) are

ar
a

e= c sinh 6 cos ri (cos 0 i+ sin ¢ j)+ c cosh a sin n k,

ar
= -c cosh e sin -q (cos ¢ i +sin ¢ j)+c sinh a cos -q k,

a,q

ar
= c cosh a cos

a¢
q (-sin 0 i + cos 0 j).

Clearly ar/a¢ is orthogonal to the other two derivatives, while

ar ar _
-c2 sinh C cos 71 cosh C sin i cos ¢ i+sin ¢ jj2

a al?

+c2 cosh e sin 71 sinh a cos -q

= 0.

Thus the coordinates form an orthogonal system.
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The magnitudes (5.79a) of the three vectors are

the =
laraeI

= (c2 sinh2 e cos' r , +c2 cosh2 6 sine n ) '

=c(cosh2 -cos2 T))t,

h = I
a r

= c (cosh2 - cos2 n )l = h£,
11

h,, = c cosh f cos i.

So the volume element (5.77b) is

STp = c 3 cosh e cos 71 (cosh2 it - cos2
n)

Given a region r of 3-space and a system of curvilinear coordinates
{u,} which satisfy conditions (i) -(vi), we can now define integration
over r in much the same way as we have defined surface integrals. A
coarse mesh of curves is chosen, as indicated in Fig. 5.15, cor-
responding to a finite number of values of the three coordinates u1,
u2, u3. Apart from exceptional points and curves, each particular set
of coordinates values corresponds to a point of intersection P of three
curves, one belonging to each family of curves. If u I+ Su 1, u2 + Su 2,
u3+Su3 are adjacent values of the coordinates (with Su,>0), then
the points P, Q, R, S, Q', R', S', P defined by these two sets of
parameter values form a `cell' whose volume we take to be closely
approximated by (5.77) when Su1i Sue, Su3 are sufficiently small. If
the ranges (5.73) are divided into intervals denoted by Su, (r =
1, 2, 3), the region r will be divided into a number of regions; if we
exclude regions containing part of the boundary of r, the remainder
will be cells of the kind we have discussed, in the interior of T. (The
3-variable analogue of Theorem A.4, Appendix A, justifies this
exclusion.) Now let f (u,) be a piecewise continuous function in r, and
let fp be the value at the point P of a cell corresponding to the
minimum value of each variable u,. Then we form the sum

Y_ fpS'rp
P

over all the cells not containing boundary points of r; if we now let
every increment Su, tend to zero, then by the analogue of Theorem
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A.3 (Appendix A), this sum has the limit

JJJ f(ur)dr JJJ f(ur) lalll,au2,au3JI
duldu2du3, (5.83a)

using the expression (5.77) for the volume element. Since the scalar
triple product is equal to the Jacobian (5.82), this volume integral can
be written

J
f a(X, Y, Z)

80l, u2, u3)
dul du2 du3. (5.83b)

r T

For orthogonal coordinates systems, we can use the expression (5.80)
for the volume element, giving the integral

J J J f (u,)hl(u,)h2(u,)h3(u,) dul du2 du3. (5.83c)

T

By the 3-variable analogue of Theorem A.8 (Appendix A), the
volume integral is equal to the repeated integral over the ranges
(5.73), so that in expressions (5.83) we may make the replacement

' ((ul uz)) f((uuli,uzu2))

dul
Ja

du2
Jrl

du3.JJJ dul du2 du3-* f.,
,

r

(5.84)

The repeated integration may be carried out in any order, but as for
surface integrals, the ranges of integration may not be of the simple
form (5.73). More generally, we may wish to use a coordinate system
which requires r to be divided into a finite number of regions, each
corresponding to ranges of the form (5.73).

Integrals over infinite volumes can be defined as limits of finite
volume integrals, with ranges (5.73) increasing so that Ir) -+ oo some-
where in r. It is also possible to define integrals of certain classes of
functions which are unbounded in T. We again refer to textbooks of
analysis for a detailed study of these classes of integral [Reference
5.12].

If f (u,) =1 in (5.83), we are calculating the limit of X p 8rp, which
gives the volume of T. Using (5.83b) and (5.83c), the volume is

VT _- JJJIa(X,Y,Z)'a(u, u2>
u3)du, du2 du3, (5.85a)
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or, for orthogonal coordinate systems,

V.,
=

JJJ h1(ur)h2(u,)h3(ur) dul due du3. (5.85b)

T

Example 5.26

Using standard notation for spherical and cylindrical polar coor-
dinates, evaluate the integral of p2 over the spherical volume r --a.

In terms of spherical polar coordinates, the position vector is

r= r[sin 9 cos 4) i+sin 9 sin ¢ j+cos 9 k].

As in (5.26),

ar
- = [sin 9 cos 0 i +sin 9 sin ¢ j +cos 0 k],
ar

ar
a =r[cos 0 cos ¢ i+cos 0 sin -0 j - sin 0 k],

ar
-

= r[-sin 9 sin ¢ i +sin 0 cos

These three vectors are easily seen to be mutually orthogonal, and
denoting the functions (5.79) by h,, he, h,*, we find

h,=1, he=r, ho=rsin0.

The integrand is p2 = (r sin 9)2, so the integral, given by (5.83c) and
(5.84), is

a V 2n

dr J d9 J d4) r2 sin 9 (r sin 9)2.
0 0 0f

Now

JOa

dr r4 = 5a 5

and

fo,
sin39d9=3.

Therefore the integral is
1 5.4 8 5
5a 3'2v=151ra .
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Example 5.27

Evaluate

J
JJdx dy dz (1 +x + 2y + 3z )-3

T

over the simplex r defined by x > 0, y > 0, z , 0, x + y + z < 1.
The ranges of integration can be taken to be

0x1,
0 y1-x,
0z1-x-y.

The integral is then
1-X 1-X-

J dx j dy J dz (1+x+2y+3z)-3.
0 0 0

The z-integral is
-6[(1+x+2y+3z)-2]y-0 Y6[(4-2x-y)-2-(1+x+2y) 2].

Integrating over y, we obtain

-6[(4-2x -y)-1+z(1 +x
+2y)-']y=0

=12[2(4 - 2x)-'+ (1 +x)-'- 2(3 -x)-'- (3 -x)-'].
The final integration over x gives

i2[-ln(4-2x)+ln(1 +x)+31n(3 -x)]
X=0

=121n27.

Problems 5.5

1 A cylindrical volume region z is defined by the conditions 0 , z , h
and xz 2

2+62,

If x =.1a cos aft, y =.1b sin 41, define ranges of the coordinates (A, 0, z)
corresponding to r. Define the limit set of points corresponding to
these ranges, and show why certain parts of the limit set do not
belong to the boundary of the region.
Integrate the integral

JJJ \a2+b21 1dT.
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2 The boundary of a finite volume region r is defined in terms of oblate
spheroidal coordinates [Example 5.25 and Problems 5.1, Question 51
to be parts of the surfaces f = a and 71 = b, where a and b are positive
constants. Find the volume of T, and integrate r2 = x 2 + y 2 + z 2 over
the region T.

3 Find the volume contained within the two cylinders x2+y2 = a2 and
y2+Z2 = a2.

4 Evaluate

J JJ dx dy dzxe' cos a(ax+by+cz),
T

where the region T is defined by x , 0, y a 0, z , 0 and
ax +by +cz-1.

5 In terms of spherical polar coordinates, the infinite conical region T is
defined by 0 _- a, where a < 27r. Show that the integral

J J J (r2+a2)-2 cos2 9dr(a>0)

exists as a well-defined limit, and evaluate the integral.
6 The region T is defined by the position vector

r=u2v cos ¢ i+u2v sin ¢ j+2uv 0 k

and parameter ranges 0,--- u u l, 0,--- v ,1, Tr = -0 < 2ir. Calculate the
volume of r and evaluate the integral of r-2 over r.

7 Prolate spheroidal coordinates are related to rectangular
coordinates by

x=csinhsingcos4,,
y=c sinhsin,i sin 4,,
z = c cosh cos Tl.

Show that the tangent vectors dr/de, dr/dh, dr/d4 are mutually
orthogonal, and that the functions (5.79b) are given by

2 -cos2

h4, = c sinh 6 sin i.

Show that the surface o defined by e = a, where a is a positive
constant, is a spheroid with semi-axes of length c sinh a, c sinh a and
c cosh a, and that the whole surface corresponds to ranges

0 <.q <Tr, 0 <_0 <2ir.
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Write the integral of a function f(7, ¢) over the surface o as a double
integral over i7, 0. Also write the integral of a function g(e, -q, (k),
over the volume bounded by o,, as a triple integral over e, 17, 0.

5.6 Properties of Jacobians

If curvilinear coordinates (ul, u2) in the (x, y) plane are defined by the
relations x =X(u,), y = Y(u,), then the element of area (5.66a) is
proportional to the Jacobian (5.68), which can also be written

a(x, Y)

a(ul, u2)'

Likewise, if curvilinear coordinates {u,} in 3-space are defined by
x =X(u,), y = Y(u,), z =Z(u,), the element of volume (5.77) is
proportional to the Jacobian (5.82), which we sometimes write as

a(x, y, Z)

a(ul, u2, u3)

More generally, let {t} and {u,} be two sets of coordinates either in
the plane (p, r = 1, 2) or in 3-space (p, r = 1, 2, 3), each satisfying
properties (i) -(vi) of the previous sections; suppose also that in a
given region, each point r corresponds to unique coordinate values
{t,} and {u,}. Then {t,} will be functions of the variables u

tP = TP(u,), (5.86)

and these (two or three) equations can be solved uniquely to give

u, = F,(tp) (5.87)

as functions of ti,. Equations (2.53) and (2.54) are examples of the
pair of functional relations (5.86) and (5.87). The Jacobian cor-
responding to the relationship (5.86) is then

a(t") a(T) _ atPl
a(u,) a(u,) A(au,l ,

(5.88a)

where A denotes either the (2 x 2) determinant (4.18) or the (3 x 3)
determinant (4.25). The definition (5.88a) is identical with the
definitions (5.68) and (5.82).

Let us now suppose that {w5} are a third set of coordinates in
one-to-one correspondence with position vectors r; then {u,} are
functions

u, = U,(ws) (5.89)
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of these coordinates, and we can define the Jacobian

a(u,) 4au,
J (5.88b)

a(Ws) ;-Ws

corresponding to this change of variables. Now {t} are defined as
functions of {ws} through (5.86) and (5.89), with {u,} as intermediate
variables. The Jacobian of this transformation is

a(t,) o( at,
l (5.88c)

a(ws) awsJ

However, the partial derivatives at,/aws, with intermediate variables
{u,}, are given by the chain rule

at, _ at, au,
aws au, aws'

where the summation is over r = 1, 2 or r = 1, 2, 3. We can regard this
equation as a matrix equation relating square matrices

(aws)' (au,)' \aws/

The property (4.30) then give the determinan\tal relationship

\aws1 -iurJ \8w5
But, by (5.88), these determinants are just the Jacobians associated
with the three changes of variables. So the Jacobian (5.88c) is given
by

a(t,) _ a(t,) a(u,)
(5.90)

a(ws) a(u,) a(W,)'

The identity (5.90) for sets of two or three variables can be compared
with the change of variable rule for single variables. If a single
variable t is a differentiable function t = T(u) of a second variable u,
and u is a differentiable function u = U(w), then t is a differentiable
function of w, and

dt_dt du
dw du dw'

where

dt dT(u) du dU(w)
du du 'dw dw
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The relation (5.90) between three Jacobians is a generalisation of this
rule to more than one variable.

If the original and final variables in (5.90) are identical, so that
w, = ti,, then the definition of the Jacobian gives immediately

a(tP)=1.
a(rP)

So (5.90) becomes

91)(5 .

a(u.) a(tP)

therefore the Jacobian for the transformation (5.86) is the inverse of
the Jacobian for the inverse transformation (5.87). For some changes
of variable, it is easier to calculate the Jacobian for the inverse
transformation than for the transformation itself.

Jacobians were introduced in (5.66a), (5.68) and (5.77) as factors
defining elements of areas and volumes, corresponding to increments
{5u,} in coordinates {u,}. In 3-space, for example, if we take w1= x,
w2 = y, w3 = z in (5.89), we obtain

a(tt) = a(tP)/a(x, Y, z) (5.92)
a(u,) a(u,)/a(x, y, z)*

So the Jacobian a(tp)/a(u,) is the ratio of volume factors for the two
sets of coordinates; we can therefore think of it intuitively as an
expansion or contraction factor of elementary volumes when we
change from one set of coordinates to another.

a(tP) a(u.) =1
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Vector analysis

6.1 Scalar and vector fields

In almost every branch of mathematical physics, we have to deal with
physical quantities which extend continuously through regions of
3-space. These regions and their boundaries do not usually have any
awkward features; we therefore assume that they can be described
mathematically as volume regions and smooth surfaces which satisfy
the conditions set out in Chapter 5. We also assume that any curves in
physical space can be validly represented as piecewise smooth curves.
Volumes, areas of surfaces and lengths of curves can therefore be
defined. We can also define integrals of functions along curves, over
surfaces and throughout volumes, provided that the region is finite
and the functions are piecewise continuous; these definitions are
based on analytic theorems established in Appendix A.

In this chapter, we shall be studying the analysis of functions in
3-space which might represent the properties of, for example, fluids,
gravitational or electromagnetic fields, stress and strain in solids, or
wave functions in atoms, molecules and nuclei. Such a function may
be unbounded when the position vector tends to certain points,
curves or surfaces; for example the electrical potential of a point
charge e at the origin is a/r, which is unbounded near the origin
(r = 0). Special care must be taken in the study of functions in
regions where they are unbounded; we shall concentrate our attention
on the analysis of functions in regions where they are 'well-
behaved'. By 'well-behaved' we not only mean that a function is
continuous, but also that any derivatives we use exist and are
continuous.

Let us consider a function of the position vector r, defined
throughout a volume region r; this function is called a scalar field if it
satisfies the following properties:

203
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(i) Let {u,; r = 1, 2, 3} be a set of coordinates which, with T, satisfy
conditions (i)-(vi) of §5.5, so that the function is expressed as a
function ifi(u,) of the coordinates. Then we assume that the
derivatives

aqf
(r = 1, 2, 3)

au,

exist (at least as one-sided derivatives) and are continuous,
except possibly at a finite number of points and on a finite
number of curves, constituting the exceptional set for 0; this set
may overlap the exceptional set for the coordinates.

(ii) If {w3} is any other set of curvilinear coordinates, and the
function is expressed as g(w,) in terms of these coordinates,
then

,f(u.) = g(w.s)

whenever {u,} and {ws} correspond to the same point r in T.
In other words, the value of the function at each point in
Euclidean (or physical) space is independent of the coordinate
system. Very often the volume T is the whole of 3-space; a
scalar field may then satisfy certain further conditions at large
distances from the origin.

A vector field is a vector function of r defined in a volume region T,
satisfying conditions analogous to (i) and (ii) for scalar fields: it
possesses continuous derivatives in T apart from an exceptional set of
points, and at each point r it transforms like a vector when the
coordinate system is changed. A little care is needed in understanding
these conditions. At any normal point P, a set of curvilinear coor-
dinates {us} defines three linearly independent tangent vectors t1(u,),
t2(Us), t3(us); in general, these three vectors vary continuously from
point to point, indicated by writing them as functions of the coor-
dinates; they are parallel to the displacements PQ, PR, PS in Fig. 5.16.
Any vector in 3-space can be expressed as a linear combination

3

Y_ A tP(U.)
P=1

of the tangent vectors at P. A vector field v defines a particular vector
at each point r, so that the field value at r can be expressed

3

v(r) = E vP(US)tP(US), (6.1a)
P=1
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where {us} are the coordinates of r. It is very important to note that
both the components vp(us) and the basis vectors t,(us) vary from
point to point; the position-dependent triad {tt(us)} is called a local
frame of reference. Since {atP/aus} are already assumed to be continu-
ous, v will have continuous derivatives provided:

(iii) The functions v,(us) in (6.1a) have continuous derivatives
avP/aus (s = 1, 2, 3) except, as in condition (i) above, at excep-
tional points and on exceptional curves, the exceptional set for
v. Then {av/aus} exist and are continuous at all normal points.

A second set of curvilinear coordinates {ws} will define a second set
of unit tangent vectors lq(ws), say, at each normal point, and the value
of the field v at r can be expressed in the form

3

v(r) = Y
1

vq(ws)Iq(ws) (6.1b)
q=

At each point r, the two sets of basis vectors {tp(us)} and {lq(ws)} will
be related by a linear transformation of the form (4.96c):

(t1 t2 t3) = (11 12 13)M. (6.2)

The transformation matrix M = M(r) is a function of position, since
the basis vectors are. Since both sets of basis vectors in (6.2) are
linearly independent, M(r) is non-singular at every normal point r.
Continuity of {tP} and {lq} implies continuity of the elements of M(r)
as functions of r; so the determinant 0[M(r)] is continuous and
non-zero, and hence is of fixed sign, throughout volume regions of
normal points.

The condition on a vector field v which is analogous to (ii) for a
scalar field is:

(iv) The sets of components {v,(us)} and {vQ(ws)} of a vector field v,
at a normal point r, are related by the vector transformation law

vp(us) =Y_ mpgvy(ws), (6.3)

where M = M(r) is the transformation matrix defined by (6.2);
this follows from (6.3) by a simple generalisation of the
argument leading to (4.73b) or (4.99a).

In most applications, only orthogonal systems of coordinates are
used. Then the transformation matrix M(r) is an orthogonal matrix at
each normal point r; if the triads of unit vectors are chosen to be
right-handed, then z[M(r)] = +1 at all points.
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Example 6.1.

Let (r, 6, ¢) be spherical polar coordinates defined relative to a triad
(i, j, k), and let (t te, ts) be the triad of tangent vectors defined at a
point by the coordinate system; as in Fig. 6.1, t, lies in the direction of
increasing r, and so on. The direction cosines of t t0, t, relative to
(i, j, k) are, written as column matrices,

sin 6 cos 4) cos 6 cos 0 -sin 46
sin 6 sin cos 6 sin cos 4

cos 6 ), -sin 6 0

The transformation matrix R relating the triads, equal to A in (4.96b)
or M in (6.3), is thus

sin 6 cos ¢ cos 6 cos ¢ -sin 0
R(010)= sin 6 sin o cos 6 sin o cos ¢ . (6.4)

cos 0 -sin 0 0

This is an orthogonal matrix with 0(R)=+1; so, as is evident from
Fig. 6.1, the triad (t to, t,6) is right-handed.

Suppose that the components of v relative to the two triads are
(v1, v2i V3) and (v v0, vp). By (4.74), the relation between these
components is

v, V1

vq =RT(0, 0)
V2

v(A V3

Fig. 6.1
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If v is a vector field, then v1, v2, V3 may be given as functions of x, y, z
by (2.28). The full transformation from rectangular to spherical polar
coordinates therefore consists of making the substitution (2.70), and
also performing the transformation (4.74) with L replaced by (6.4).

Now suppose that the vector v is parallel to r at all points (a radial
vector), so that ve = v4, = 0 everywhere. Then (4.73) with L replaced
by (6.4) gives

v1 v, v,sin 0cos4I
V2 =R(9,0) 0 = yrsin0sin0
V3 0 v,Cos0

Using (2.70), this can be expressed as

v 1 = xvr/r,

V2=yvrlr,

v3 = zv,/r.

We frequently wish to refer to the values of a scalar or a vector field
on a surface o or on a curve F. Relative to a coordinate system {ur} in
3-space, a surface can be defined by expressing one coordinate as a
continuous function of the other two, for example

U3 =f(u1, u2) (6.5)

This relation restricts the general position vector r(u1, u2, u3) to the
form

r(u1, u2,f(u1, u2)),

and a scalar field +'(u,), for instance, is restricted to the form

+li(u1, u2,f(u1, u2))

(6.6a)

(6.6b)

In order to describe a surface in terms of certain coordinates, it is
often necessary to divide the surface into a finite number of parts, as
in the next example.

Example 6.2

Rectangular coordinates (x, y, z) determine a point in space. If we-
wish to specify points on the sphere

x2+y2+z2=a2
in terms of the two coordinates (x, y), we need to express z as a
function of x and y. In order to define z uniquely, we need to divide
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the sphere into two hemispheres; one is defined by z =
+(a2-x2-y2)i %0, and the other by z =-(a2-x2-y2)i <0. With
the restriction x2 + y 2 , a 2, (x, y) can be used as coordinates of points
on the two hemispheres, for which the position vectors (6.6a) are

r(x, y, +(a2-x2-y2)i), r(x, y, -(a2-x2-y2)i).

More generally, we may describe a finite volume region r by
specifying parameter ranges (5.73). Suppose that the coordinates u1,
u2 are used to parametrise the closed surface o bounding -r; then, in
general, putting u3 = i (u 1, u2) will define one part of the closed
surface a- bounding T, while u3 = (u1, u2) defines another part. The
simplest situation of this kind is illustrated in Fig. 6.2, where the
whole surface is defined by u3 =11 (u 1, u2) and u3 = (u 1, u2), the point

Fig. 6.2

A having coordinates (u1, u2i rl(ul, u2)) and the point P having
coordinates (UI, u2, (u1, u2)). In other situations, it may happen that
one of the limits of u3 corresponds to a point or a curve; for example,
if the origin is within the volume T, and the boundary a- is given in
terms of spherical polar coordinates by r = (O, 0), then for given
0, ¢, the limits of r are 0 and (0, 45). But r = 0 is not part of the
boundary, but simply an exceptional point of the coordinate system.



6.1 Scalar and vector fields 209

We have already noted that, using certain coordinate systems, the
region r does not correspond to ranges of the form (5.73); it must
then be divided into a finite number of subregions each correspond-
ing to ranges of this form. Also, it very frequently happens that the
simple division of the bounding surface into two regions, as in Fig.
6.2, does not occur. In the following example, we examine a very
common situation in which the bounding surface consists of six
pieces.

Example 6.3

If the limits of each coordinate defining a volume region r are
constant, so that (5.73) is of the form

aulb,
au2
71 U3-

then it is best to divide the closed surface bounding T into six parts.
The definitions of these six parts, and the parameters used, are listed
in Table 6.1. When u1= x, u2 = y, u3 = a, the region T is a rectangular
solid with six rectangular faces.

Table 6.1

Defining
equation (6.5)

Surface
parameters

Parameter
ranges

u1=a au2

u1=b
U2, U3

71u3

u2=a au1b
2u2=Y

U1, U3

17 U3

u3=r aulb
u3=

U1, U2

a u216
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As in Example 6.3, it is often desirable to choose a coordinate
system so that the Equations (6.5) defining different parts of the
boundary simply fix one coordinate at a constant value. This is not
always possible, however; and even when coordinates can be chosen
to simplify the equations defining the boundary surface, it may be
preferable to use a different coordinate system, either because it is
orthogonal, or because it simplifies the form of some given scalar or
vector field in which we are interested.

A curve IF can be defined by expressing two of the coordinates {u,}
as a function of the third, for example

U2 = AU 1), (6.7a)

U3 = g(u 1). (6.7b)

These equations restrict the general position vector r(u1, u2, u3) to
the one-parameter form

r(u1,f(u1), g(u1)),

and restrict a scalar field Ji(us) to the range of values

'i(ul,f(ul), g(ul))

(6.8a)

(6.8b)

A vector field v(u,) is restricted in the same way. In describing a
particular curve, ambiguities of the type described in Example 6.2
may arise; more than one point on F may correspond to a given value
of u1. Then u1 does not satisfy the requirements of §5.3 for a simple
parametrisation of the curve. When ambiguities of this kind arise, as
they will later in this chapter, it is necessary to divide the curve into
two or more pieces, on each of which the parameter value determines
a unique position vector.

Example 6.4

The helix

r = a cos 4, i+a sin ¢ j+b4, k

can be described in terms of the coordinate z = ba,; the conditions
(6.7) are

x = a cos(z/b), y = a sin (z/b).

Since x and y are uniquely determined by these equations, z is a
parameter satisfying the conditions of §5.3.
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If, however, x is chosen as a parameter, y and z are determined by
the equations

y = :f-x2)2, z = b cos 1(x/a).

Thus y has two values, and z has many values, for each value of x.
The coordinates y and z are only determined as unique functions of x
if the helix is divided into sections corresponding to ranges of ¢ of the
form n-rr_- 0<(n+1)1r (n=0,±1,±2,...).

As for closed surfaces, it is very often convenient to divide a closed
curve into two or more sections on which the coordinate restrictions
(6.7) are unambiguous. Examples of division of curves, into sections
analogous to Examples 6.2 and 6.3 for surfaces, are:

(i) The use of x as the parameter on the circle x2+y2= a2; the
two semi-circles have y =+(a2-x2)2 and y= -(a2_X2)2.

(ii) If ul and u2 are coordinates in a plane, the use of u, and u2
as parameters on those sections of the curves u1= a, u1= b,
u2 = a, u2 = /3 which form a closed curve.

6.2 Divergence of a vector field

One of the physical systems which can most obviously be described
by functions in a continuum is a fluid, which may be liquid or gaseous.
Some of the quantities which may vary throughout a fluid are the
density, which can be represented by scalar field, and the velocity of
the fluid at a point, represented by a vector field v(r). Now suppose
that Svp is a plane element of area containing a point P, and that n is
one of the two unit vectors normal of Sop, as in Fig. 6.3. Let v(r) =
v11(r) +v1(r), dividing the vector into two components, vil parallel to n,

Fig. 6.3
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and v1 orthogonal to n. If v(r) is a continuous function of r, and So-P is
small enough, the speed of flow through the element So-p in direction
n is approximately n v11(r); the component v1(r) does not contribute
to the flow through So-p. Since n . v1= 0, the speed of flow equals n v;
hence the volume flowing through Sop per unit time is approximately

Sorpv(r) n. (6.9)

Although we have talked about the flow of a fluid, the concept of rate
of flow or flux is important when we consider any vector field v(r). If
V11 is in the opposite sense to n, the flux (6.9) is negative.

Now suppose that o, is a surface satisfying the conditions set out in
§5.4, and that it is divided into elements by a coarse mesh, with Sop
representing the plane elements defined by the coarse mesh. Sum-
ming (6.9) over these elements, the total flow through these elements
is approximately

Y_ So-p v(r) n(r), (6.10)
P

where n(r) indicates that the normal vector is in general different for
each surface element. If v(r) is piecewise continuous over o-, then in
the limit of a fine mesh, with each element So-p - 0, this sum becomes
the surface integral

JJdcTv.nJJdff.v, (6.11)

of the form (5.70). In this limit, (6.9) accurately represents the flux of
v through So-p, so that (6.11) defines the flux through the surface o-.
Apart from exceptional points, we can define two unique normals
tn(r) at each point of o-, where n(r) is a continuous function of r; so
continuity of n(r) determines two distinct `sides' of the surface. Even
when we deal with surfaces with folds or vertices where n(r) is
undefined (as in Examples 5.19, 5.24, and 6.3), it will be intuitively
clear which are the two sides of a surface; we will only consider
surfaces for which this is so. If the surface o- is the boundary of a
continuous finite volume r then o- has an `inside' and an `outside',
corresponding to the inward and outward normals. The outward
normal can be distinguished, since a small displacement from o- in
that direction and sense has an end-point outside the volume -r; from
such a point, (continuous) curves can be drawn, containing points p
with IpI arbitrary large, which do not intersect T.
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We are now in a position to establish an important identity, the
divergence theorem, for the flux (6.11) over the closed boundary v of a
finite volume T; we assume r contains no exceptional points, either of v
or of the coordinate system. In the surface integral (6.11), n is taken to
be the outward normal of o,. Now suppose that the volume T is divided
into cells by a coarse mesh defined by an orthogonal system of
coordinates u1, u2, u3, and that, as in Fig. 5.15, coordinate values
(U1, U2), (u1i u2+Su2), (u1+Su1, u2), (u1+8u1, u2+Su2) define
adjacent curves of the mesh. For the simple volume shown in Fig. 6.2,
the curves AP, BL, CM and DN define a `tube', with u3 increasing
from r,(u1i u2) to (u1, u2) along AP; ABCD and PLMN are plane
elements tangent to the surface o,, so that the unit normals n to the
surface at A, P are normal to these elements. Since n is chosen as the
outward normal at every point, as shown, n3 , 0 at the lower limit
u3 = ii(u1, u2), since u3 decreases in the direction of the vector n;
likewise n3 %0 at the upper limit u3 = (u1, u2). The value n3 = 0 is
included because there are points such as E in Fig. 6.2 where n is
orthogonal to the curves with u1 and u2 constant; for the closed surface
of Example 6.3, n3 = 0 for the four parts of o, defined by u1= a, u1= b,
u2=a, u2=/3.

Let us now consider the contribution

SQPV 3(r) n3(r) (6.12)

to one of the terms in the sum (6.10). In Fig. 6.4, the upper part of the
tube in Fig. 6.2 is shown, enlarged. The parallelogram PLMN is

t3

4
tZ

Fig. 6.4
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defined by displacements PL and PN which are tangent to o, at P, and
which corresponds to increases Sul, Su2 in the parameters ul, u2.
Their projections PL' and PN' orthogonal to t3 are therefore the
displacements of magnitude hl Sul and h2 Su2 parallel to t1 and t2,
where hl and h2 are given by (5.67). Since the system of coordinates
is assumed to be orthogonal, these displacements define the rectangle
PL'M'N' whose area is h1h2 Sul 6u2i by (5.66b). But since Sap is the
area of PLMN, n3SQP is just the area of PL'M'N', its projection
orthogonal to t3; so (6.12) can be expressed

5QPV3(Us)n3(Us)=hl(Us)h2(Us)v3(Us) Su1 3u2, (6.13a)

where the coordinate values {us} correspond to the point P; we have
shown the dependence of hl and h2 on {us} explicitly, since they are in
general functions of position. Applying the same argument to the
surface element at A in Fig. 6.2, but remembering that n3 is negative
there, the corresponding contribution from A to (6.10) is

5TAV3(Us)n3(Us) _ -h1(us)h2(us)v3(us) Sul Su2, (6.13b)

where the values {us} now correspond to the position vector of A. In
(6.13a) and (6.13b), the increments Sul, 5u2 have the same values all
along the tube from A to Pin Fig. 6.2, and the values of u 1 and u2 are
fixed along the curve from A to P; thus only u3 varies along the tube
in expression (6.13a). Since we are assuming that the derivatives of
{h,(us)} and {vp(us)} are continuous, the sum of (6.13a) and (6.13b) can
therefore be expressed

Su1 Su2 {[hl(us)h2(Us)v3(us)]P-[hl(us)h2(u$)v3(Us)]A}
3'(ul,u2) a

Sul SU2 dU3-[h l(Us)h2(Us)v3(Us)]; (6.14)I
'n(u,,u2) aU3

this is the 3-variable generalisation of Theorem A.2 (Appendix A),
essentially the fundamental theorem of the calculus [Reference 6.1].

Considering still a simple surface of the kind shown in Fig. 6.2, we
can now form the sum of contributions (6.12) over the whole of o,,
and then, in the fine mesh limit with Srp - 0, obtain the contribution

J J
do, v3n3

a

(6.15)

to (6.11). Since (6.14) gives the contribution from the two points A, P
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corresponding to given values of u1, u2, summing (6.14) over all
`tubes' in Fig. 6.2 corresponds to A, P varying over the whole surface
a, with u 1, u2 varying over the ranges (5.8). In the fine mesh limit, the
sum over u1, u2 becomes a double integral; the right-hand side of
(6.14) then gives the surface integral (6.15); the left-hand side gives a
triple integral over the ranges (5.73) defining T. Thus

f f

f.,

tul> C(u,, u2)

do, v3n3 = du1 J du2 J du3-
a(u,) n(u,,ui) au3

a

X [hl(us)h2(us)v3(us)]. (6.16)

Using expression (5.77b) for the volume element Sr, this integral can
be expressed as

J JJ dT h1h2h3 au3
(h1h2v3). (6.17)

T

This result can be established for any volume r, bounding surface
and coordinate system {us} satisfying the conditions of Chapter 5.

If any region of o, has n3 = 0, as in Example 6.3, it gives no contribu-
tion to (6.15), leaving the result (6.17) unchanged. As we explained in
§5.5, using a particular coordinate system may necessitate dividing
the volume r into a finite number of parts, each of which corresponds
to ranges of the form (5.73), and o, may not comprise the whole
boundary of these parts. Consider, for example, the division of r into
two parts, T(l) and T(2), as in Fig. 6.5, with a common surface o-(3). The

Q(2)

Fig. 6.5
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outward unit normals na> and n(2) to the two volumes are equal and
opposite over o-, as shown, so that

J J do- (v n(i)+v n(2)) = 0; (6.18)
,0)

this equation simply means that the flux of v out of r(') over o-(3) is
equal to the flux into r(2). If the original surface o- is divided into the
two sections o-(l) and as shown, the total flux (6.11) can be
written

JJ
do-

o (i) 0 (2)

Adding the zero term (6.18), we obtain

JJ do,

o(1)+Q(3) a (2) +Q(3)

where the unit outward normals on o.(1) and o, (2) have been written as
n=n(l) and n=n (2) respectively; this is just the sum of the integrals of
form (6.11) over the complete boundaries of -r(') and T(2). The two
terms of the form (6.15) are, as before, equal to integrals of the form
(6.17) over the volumes r(') and r(z), so that their sum is exactly the
integral (6.17) over the whole volume z (using the 3-variable
generalisation of Theorem A.6, Appendix A). This argument can
clearly be extended to a volume T divided into any finite number of
non-overlapping parts, ensuring the validity of the result (6.17).

The surface integral of v I n I and vznz in (6.11) can be transformed
in the same way as (6.15); adding to (6.17) similar results for these
surface integrals, we finally obtain

JJdov=JJJdrdivv, (6.19)

Q T

where we define

1 a aaauz(h3hivz)+au3(hihzv3)],dive=hihzhs aul(hzh3v1)+

(6.20)

at all points where it exists. This function is called the divergence of the
vector field v; (6.19) and (6.20) express one form of the divergence
theorem, or Green's theorem.
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Since {hS} and {vs} are assumed to have continuous derivatives and
h, 0- 0, div v is a continuous function of the coordinates {us}, except
possibly at exceptional points. Now suppose that the lengths of the
ranges (5.73) all tend to zero in such a way that they always contain
the coordinates {us} of a particular normal point P, and that

VT=fJJdT (6.21)

T

is the volume of T. Then the 3-dimensional analogue of Theorem A.8
(Appendix A) tells us that in this limit,

div v(u,) = lim VT J J J div v dT,

since div v can be `taken outside the integral sign'. Using the diver-
gence theorem (6.19) then gives the expression

div v = ii m
VT

J J dv v (6.22)

a

for the divergence at the point P.
If we wish, we can regard (6.22) as the definition of the divergence,

instead of (6.20). One advantage in using (6.22) is that it is in-
dependent of any coordinate system, since the integrand is a scalar
product. However, the limit T -* 0 needs to be defined very carefully,
since difficulties can arise if the surface o, becomes very `corrugated'
as T shrinks upon the point P; we shall not discuss this particular
problem, since (6.20) is a valid and equivalent definition of diver-
gence. The fact that VT, the surface elements (5.66a), and the in-
tegrand n v in (6.22) are all scalars means that (6.22) is a scalar, and
is therefore independent of the choice of coordinates; it follows that
div v, evaluated by using (6.20), must be the same for all orthogonal
systems of coordinates. For rectangular coordinates (x, y, z) with
h, =1 (r = 1, 2, 3), the divergence of v = v1i+ v2j +v3k is

t3v1 av2 CVl
div v = ax + a + az . (6.23a}

Y

The expression (6.22) allows an immediate physical interpretation
of the divergence: the surface integral is the outward flux of v over o-;
division by VT means that the divergence measures outflow per unit
volume of the vector field v at any point. This concept can be used to
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give a very clear meaning to (6.19), which simply says that the outflow
of v over the boundary o- is the integral throughout T of the outflow
per unit volume. In fact, the divergence theorem (6.19) can be looked
upon as the integral of the definition (6.22). Suppose that the volume
T is divided into small cells by a coarse mesh; if STp is the volume of a
small cell containing a point P, then (6.22) tells us that the outflow
from the cell is approximately

STp(div V)p. (6.24)

Denoting by S(rp the surface of the cell with volume STp, the sum of
the outflows from all cells in T is

ysJJv.do..

Sop

(6.25)

Now any surface element of a cell which lies within T is shared
between two cells, just as .(3) is shared in Fig. 6.5; so in the `sum over
cells', equations of type (6.18) ensure that contributions from all
boundary elements inside T cancel in pairs; all that remain are the
integrals over the surface elements belonging to a. So the sum (6.25)
is exactly

JJ
0

But, using (6.24), the sum of the outflows is approximately

Z &rp(div v)p;
cells

in the limit STp -* 0 of a fine mesh, each term accurately represents the
outflow from a cell, and the sum then becomes the volume integral in
(6.19). This non-rigorous derivation of the divergence theorem can
be made mathematically rigorous; our purpose here is to bring out
the essential physical meaning of (6.19) and (6.22) in terms of
`outflow' or `outward flux'.

Example 6.5

If (r, 0, 0) are spherical polar coordinates, the corresponding
functions (5.79b) are

h,=1, he=r, h,=rsin0.
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Since the system of coordinates is orthogonal, expression (6.20) with
u1=r, u2=0, u3=¢ and v1=Vr, V2=Ve, V3=VO gives

a
(modsin evr) +ae (r sin ova) +

a

adiv v =
r2

i
sin 9

[-(r2

_ 1 a 2 a av
r sin 9

[sifl eve) +
ao

. (6.23b)r ar
(r vr) +

1

We now use this result to evaluate div v when v is the radial vector
field with components Vr = r3, ve = vk = 0. We obtain

div v =r
ar

(r5) = 5r2.

We can also obtain this result by using rectangular coordinates. The
final equations of Example 6.1 with yr = r3 give

v1=xr2=x(x2+y2+z2),

v2=y(x2+y2+z2),

V3=z(x2+y2+Z2),

as the rectangular components of v. Then (6.23a) gives

divv=(3x2+y2+z2)+(x2+3y2+z2)+(x2+y2+3z2)

=5r2 .

This result exemplifies the fact that div v is independent of the coor-
dinate system used.

Example 6.6

The components of a vector field v in the orthogonal directions
defined by cylindrical polar coordinates (p, 0, z) are

v,, = p 2, v4 =P2 sin 20, vZ = Apz,

where A is constant. Check that the divergence theorem (6.19) holds
for this field v, where T is the circular cylinder bounded by the
surfaces z=0, z=h and p=a.

For cylindrical polar coordinates, the functions (5.79) are

hp=1, h4=p, hZ=1.
So (6.20) gives

1 a 1 av± avZ
div v = P

ap
(pVP) +P a( + az (6.23c)
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so that, for the given field v,

div v = 3p +2p cos 2¢ +Ap.

We note that v is continuously differentiable everywhere, even at
the end-points 0 = 0 and 0 = 27r of the range of ¢, so that the
divergence theorem is valid. Using the form (5.83c) for the volume
integral over the cylinder, the right of (6.19) becomes

r r a r2ar h

J 1
j div v dT = J p dp j do J dz p(3 +A +2 cos 24,)

P=0 m=o z=o

since

this integral is

2zr

do 2cos20=0,
J=o

3a 321r(3 +A)h = 2,ra 3h (1 +3A ). (6.26)

The integral on the left of (6.19) is the sum of surface integrals over
the circular discs

o1:z =0, 0p --a, 0 2ir,
U2:z =h, 0p a, 21T,

and the cylindrical surface
os:p=a, 0 2ir, 0zh.

On vl the outward normal component of v is

since z = 0, so that this surface gives zero contribution. On 0'2, the
component is

v V. n=+vz =Apz =Aph.

This surface therefore contributes
a 2vr

J
_ p dp f do Aph = 3rra3hA,

P 0 m=o

equal to the second term in the volume integral (6.26). On 0'3 the
normal component is, since p = a,

and the contribution of this surface to the left of (6.19) is thus
2- h

J
ado J dza2=2Tra3h.

m=o Z=o
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This is equal to the first term in (6.26), so that the divergence theorem
is verified.

Problems 6.1

1 Use the results of Example 5.25 and of Problems 5.5, Question 7 to
evaluate the divergence of a vector v in (a) oblate spheroidal coor-
dinates, (b) prolate spheroidal coordinates.

2 Check the divergence theorem (6.19) for the vector field

Y=x2 ezi+y2 ez j+z2k

over the cube T bounded by the six planes x = 0, y = 0, z = 0, x = a,
y = a, z = a.

3 A vector field v is defined by

v=xzi+yzj+(x2+y2)k.
Calculate div v, and use the matrix (6.4) to show that the components
of v in the orthogonal directions defined by spherical polar coor-
dinates are

v, = 2r2 sin 2 a cos 0,

ve = r2 sin 6(1- 2 sine 0),

vc=0.
Check the divergence theorem (6.19) for the field v, where the
volume T is half of the sphere r --a with z % 0.

6.3 Gradient of a scalar field; conservative fields

The concept of `rate of change' of a function is fundamental to the
differential calculus; for functions of a single variable, the rate of
change is equal to the derivative. In order to describe the rate of
change of a scalar field in 3-space, we assume that it is a function
a!i(u,) of a set of three curvilinear coordinates {us} satisfying the
conditions of §5.5; we further assume that the coordinate system is
orthogonal. If r(us) is the position vector of a point P, then the
magnitudes and directions of car/au, are given by (5.80):

ar = hsts (s = 1, 2, 3). (5.80)
au5
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Fig. 6.6

If {xs} are rectangular coordinates relative to the triad {ts}, as in Fig.
6.6, then

r = Y_ xrtr ; (6.27a)
r

these coordinates are functions

xr = Xr(us) (r = 1, 2, 3) (6.28)

of the curvilinear coordinates, so that

r = Y_ Xr (us )tr. (6.27b)
r

Differentiating this equation with respect to us gives

ar _ [)y X.
au, r aus

tr.

Comparing with (5.80) above, we find that

aXr
= hs6rs (r, s = 1, 2, 3), (6.29)

aus

where Sr, is the Kronecker delta; this is simply another way of
expressing the fact that {hs} are the rates of change of r with respect to
the coordinates {us}.
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A scalar field a/i can be regarded as a function of the coordinates
{x,}; then the rate of change of /i in direction t, is the partial
derivative a+/i/ax,, with x2, x3 fixed. Now, using the chain rule and
(6.29) with s = 1, the rate of change of 41 with respect to u, is

a4= a ax,.

au, , ax, au,

a+P

= h l ax,

Similar equations hold for a+1/au2, ar'/au3, so the rates of change of 41
in directions t,. (r = 1, 2, 3) are

a+/r _ 1 aa/r
(6.30)

ax, hr our

We are now in a position to calculate the rate of change of 41 in any
direction in 3-space. The radial distance from the origin P is r = Irl;
the unit vector u parallel to r, shown in Fig. 6.6, is

u = Istr, (6.31)

where {1s} are the direction cosines of r. By (2.61),

xs=r1s .,(s=1,2,3);
this defines {xs} as functions of spherical polar coordinates (r, 0, 4)),
with

(11,12i 13) = (sin 0 cos 0, sin 0 sin ¢, cos 0),

and we can differentiate partially with respect to r to give

axs
=

ar
Is (s =1, 2, 3). (6.32)

The chain rule and the results (6.30) and (6.32) can then be used to
calculate the rate of change a/ar in the radial direction, known as
the directional derivative of 4 in direction u:

41 _ a+p ax,

ar
Es

'axs ar

Y J" 494,

=
is

aus .
(6.33a)

hss
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If we now define the gradient vector

grad i/i = Z
1 a±,

ts, (6.34)s hs aus

with components given by (6.30), then, using (6.31), (6.33a) can be
written in scalar product form

a
= u grad 41. (6.33b)

ar

Equations (6.30) and (6.33b) express the two fundamental pro-
perties of the gradient vector:

(i) the components of grad 41 in the directions {t3} defined by an
orthogonal system {us} are equal to the rates of change of the
scalar field a/i in these directions;

(ii) the directional derivative of fi in the direction of any unit
vector u is equal to the component of grad 4 in direction u.

At each point P the gradient vector (6.34) defines a particular
direction in 3-space; since the component (6.33b) of grad w is
greatest when u is parallel to grad qf, a third property of the gradient
vector is;

(iii) the rate of increase of a scalar field a/i is greatest in the
direction of grad 41, where it equals the modulus of grad 41.

If afro is a given real number, the equation

a6(us) = ado (6.35)

is a single relation between the variables u,. As in Example 6.2, this
relation may not define one coordinate, say u3, uniquely in terms of
u1, u2; but if we solve (6.35) for u3, the solution (or solutions) will
define a surface (or surfaces) satisfying the conditions of Chapter 5,
since 41 is assumed to have continuous derivatives; this ensures that
the gradient vector (6.34) exists, apart from exceptional points and
curves. Any surface defined by (6.35), on which a/, takes the constant
value afro, is called a level surface of the scalar field 41. If P and Q are
two points on the same level surface (6.35), and qi(P) and a/'(Q) the
corresponding values of 0, then

41(P) - 41(Q) = 0. (6.36)

Now let Q approach P, so that r --> 0 in Fig. 6.6, in such a way that u
becomes a definite tangent vector to the level surface. In this limit,
(6.36) divided by Sr becomes

0,
ar
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so that (6.33b) implies

u may be any tangent vector at P to the level surface, we have
established the fourth property;

(iv) at any point P, grad pi is orthogonal to the level surface (6.35)
with ipo = ql(P).

The three most frequently used coordinate systems are rectangular,
cylindrical polar, and spherical polar coordinates. Since h 1 = h2 =
h3 = 1 for rectangular coordinates, the components (6.30) of grad /i
are simply 8i///ax, 8qi/ay and aqi/az, and

grad aG = Loi+-j +-`k. (6.38)
ax ay az

For cylindrical polar coordinates, h. = 1, h, = p, hZ = 1, so that (6.34)
becomes

grad Vi =LIP +I ao to +L-tZ. (6.39)

For spherical polar coordinates, with h, = 1, he = r, h,5 = r sin 0, the
gradient vector is

grad =
a+Gt, + 1 -to

+ 1 10 (6.40)
ar r a0 r sin 0 a¢

Note that the component along to is the same in (6.39) and (6.40),
since p = r sin 0.

Example 6.7

A scalar field + i is given by

xyz
x2+

Y
2.

Find the components of grad in rectangular, cylindrical polar and
spherical polar coordinates.

In rectangular coordinates, the components of (6.38) are

(y2-x2)Yz (x2-y2)xz xy
(x2+y2)2 ) (x2+y2)2 ' x2+y2.

In terms of cylindrical polar coordinates,

0 = z cos 0 sin 0 = Zz sin 20.
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Then from (6.39), the components along t,,, to, t,, are

(0, p 'z cos 2.0, 2 sin 20).

The z-component is equal to that given by rectangular coordinates.
In terms of spherical polar coordinates,

fi=r cos 0 cos ¢ sin ¢ =2r cos 0 sin 2¢.

The components of grad 4 given by (6.40) are then

(2 cos 0 sin 2¢, -2 sin 0 sin 20, cot 0 cos 24)).

Again it is clear that the ¢-component is the same as that given by
cylindrical polars.

For differentiable functions of one variable, integration can be
regarded as an `inverse operation' to differentiation. For a scalar field
4), we can define an integral which in a rather similar way serves as the
inverse of the gradient operation. Suppose thatT is a curve satisfying
the conditions (i)-(iii) of §5.1 and the conditions of smoothness
defined early in §5.3 and that s denotes the distance along T from
s = so. Since s measures distance in the direction of the tangent vector
t at every point of r, (6.33b) gives

t- grad 41
aq,

for the tangential component of grad 4'; since a4i/as is assumed to be
continuous, we can integrate this equation along F from s = so to
s = sI, giving the path integral

Jr

Using the notation

dst grad ds
aas

SppIS,

=41(s1)-41(so)

ds = ds t

for the vector increment along F, we have

fr ds grad 41 = 4)(s,) - 4i(so). (6.41)

So the integral of the component of grad 4 gives the difference
between the values of 4 at the end-points. It is very important to
realise that the integral (6.41) depends only on the values of 41 at the
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end-points, and is independent of the particular curve IF joining these
end-points. If F is infinite or semi-infinite, so that sl - +oo and/or
sow-oo, the result (6.41) will still be valid, provided that Ii(sl)
and/or fi(so) have unique well-defined limits for the particular curve.

If IF is a closed curve, so that s =so and s = s, represent the same
point, then ay(sl) = 4r(so) and the integral (6.41) vanishes. The fact
that t is a closed curve is indicated by adding a circle to the integral
sign; thus for any scalar field 0,

J ds grad 41 = 0 (6.42)
r

around a closed curve t containing no exceptional points of i4.
We can write (6.41), with a sign change, in the form

Jr.
ds = i/r(so) -i/r(sl), (6.43)

r
where

v = -grad 41. (6.44)

A vector field v of the form (6.44) is called a conservative field, and 41 is
known as the potential of the field; so, by definition, a field `derivable
from a potential 41' is a conservative field. The converse is also true:
suppose v is of the form (6.44), and we choose some arbitrary value Op
for the scalar function er(r) at a point P; then if P corresponds to.s = so
on any curve F, and an arbitrary point Q corresponds to s = Si, (6.43)
gives the value of 1/i(r) at Q to be

OQ41(sl)=OP- v ds (6.45)

independent of the path F joining P and Q. So the potential 4i(r) is
uniquely defined at all points.

If (6.43) holds for all F within a simple volume r, then

v ds = 0 (6.46)

"for any closed curve F. Conversely, if (6.46) holds for all closed
curves I', and I'1, r2 are any two curves from a point P to another
point 0, then (6.46) implies that

vds=Jr2 vds,

ince t1 and r2 (traversed in the opposite direction) combine to forms
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a closed curve. Again choosing an arbitrary value r/ip of 4i(r) at P,
(6.45) with IF = F, or Y= F2 defines a unique potential 4i(r) = q1Q at
any point 0; then v and 41 will be related by (6.44), and v is a
conservative field. We have therefore established the equivalence of
two conditions:

(i) v is conservative, of the form (6.44);
(ii) equation (6.46) is true for all closed curves r, enabling fi(r) to

be defined by (6.45).
We note that condition (ii) need only apply to simple closed curves,
since any closed curve can be regarded as a combination of a finite
number of simple closed curves.

Path integrals (6.43) of the tangential component of a field v arise
frequently in mathematical physics. For example, if v = f represents a
field of force, the integral in (6.43) is the work done by the field
during motion along F. If f is of the form (6.44), then the work done
in going from P to 0 is given by (6.43), and is independent of the
path r traversed; it is equal to the potential difference O(P)-4i(Q)
between the two points. For a conservative force field f = -grad r/i, the
work done in traversing a closed path is zero, by (6.42).

Example 6.8

Near to the earth's surface, the gravitational force acting on a unit
mass is

f = -gk (g constant),

using a triad (i, j, k) with k vertically upwards. The gradient of the
scalar field 41 = gz is, by (6.38), grad i/i = -gk. So f is of the form
(6.44), derivable from the potential Eli = gz ; this is the usual gravita-
tional potential energy, and (6.43) tells us that the work per unit mass
done by the gravitational field in moving from P to 0 is equal to the
change of gravitational potential 4i(P)-4i(Q); it is independent of
the path F traversed.

Example 6.9

A point charge e at a point 0 produces an electrostatic potential
0 = e/r at a distance r from 0. The electrostatic field derived from
this potential is, by (6.44),

E = -grad +G.
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We use the expression (6.40) for grad +/i in terms of spherical polar
coordinates with origin at 0; the components of grad 4 are

(e/r2, 0, 0),

so that, in terms of the position vector r relative to 0,

eE= 3r.
r

E is the electrical force acting on a unit positive charge; it is in the
radial direction, obeys the inverse square law or Coulomb's law, is
proportional to e, and is repulsive (attractive) if e is a positive
(negative) charge.

The work done by the field on a unit charge in moving along a
curve I' from a point with r = ro to a point with r = r, is, by (6.43),

E =i/r(ro)-+G(ri)

If we let ro -* 0, so that the initial point is `at infinity', the work done
by the field when the unit charge moves from infinity to distance r, is
then -e/r,.

The level surfaces, on which qi = e/r is constant, are the spheres
r = r,, with r, fixed. The field E is everywhere orthogonal to these
spheres, exemplifying property (iv) of the gradient. In electrostatics,
the level surfaces are in general called equipotentials.

Problems 6.2

1 A scalar field is defined to be

+/i=p sin 2(k +p-' Z2

in terms of cylindrical polar coordinates. Find the components of
grad 4 relative to rectangular, cylindrical polar and spherical polar
coordinates. Check that the three sets of components define the same
vector field.

2 The field of a magnetic dipole is derivable from a potential of the
form

µ cos 0
r/i = 2 (µ constant),

r
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using spherical polar coordinates. Find the components of the
magnetic field vector at any point, and show directly that it is ortho-
gonal to the level surfaces defined by +/<. Draw a diagram showing the
level surfaces and the magnetic field directions in terms of polar
coordinates r, 0.

3 Show that the vector field v with components

r_2 (sin 20 tan ¢, -2 cos 20 tan 0, -2 cos 0 sect 4))

with respect to spherical polar coordinates is a conservative field.
Find the potential from which the field is derived. Calculate the
integral J v ds along two distinct curves F, and F2 joining the points
with r = a, 0 = 2ir, ¢ = 0 and r = a, 0 = air, ¢ = air. Show that these
integrals are each equal to the difference between the potentials at
the two points.

6.4 Curl of a vector field; Stokes' theorem

For a conservative field v, (6.42) ensures that the integral

v- ds (6.47)

round a closed curve F is zero. For a more general vector field v, the
integral (6.47) is not usually zero. If v represents a non-conservative
field of force (a magnetic field produced by an electric current, for
example), (6.47) still represents the work done in traversing the
closed curve F. In a different physical situation, v might represent the
velocity at each point in a fluid; then (6.47) is the integral of the
component of velocity tangential to F, and measures the `swirling' of
the fluid round F; this analogy is used in calling the integral (6.47) the
circulation of v round F. Since we have assumed that F is traversed in
the direction `s increasing' there is no ambiguity of sign in (6.47);
if, however, the direction of integration round F were reversed,
the sign of (6.47) would change, since the tangent vector t would be
reversed at all points.

In this section, we shall establish Stokes' theorem, which is very
similar in nature to the divergence theorem; it transforms the path
integral (6.47) into a surface integral over a piecewise smooth surface
o whose boundary is the closed curve F. In the process, we define the
`curl' of the vector field v in terms of the derivatives of the
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components of v; in order to establish these results, we need to
assume that v has continuous derivatives, not only on F, but also on
the surface o,.

To establish Stokes' theorem for an arbitrary surface a is quite
difficult, and would obscure the essential meaning of the theorem. We
shall prove the theorem in a particularly simple situation, when the
coordinate system {u,} used has a particularly simple relation to a-,
and the boundary F also has a simple form. Then, in Appendix B, we
establish Stokes' theorem using an arbitrary orthogonal coordinate
system, but still with a simple type of boundary; we also indicate how
the theorem can be extended to different and more complicated types
of boundary.

The simple situation we consider is when the surface o, is of the
form u3 = c, where {u,; r = 1, 2, 3} is an orthogonal coordinate system
with no exceptional points on o,, and c is a constant. Then the
coordinates ui, u2 define an orthogonal system of curves on o'. We
further assume that the ranges of ul, u2 are of the form

aui-b (5.8a)

a(ui)u2' 3(ui), (5.8b)

as shown in Fig. 6.7; we also assume that the ranges are of this form
when ul and u2 are interchanged. Then a curve y with u, fixed
(a< u I<b) will intersect the boundary r in two points A, B, cor-
responding to u2 = a (u,) and u2 = /3 (u,).

The coordinate system defines an orthogonal triad {t,} at each point
of a-; tj and t2 are tangent to o,, while t3 = n is the unit normal to o, at

N (u, =h)

Fig. 6.7
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all normal points. We choose t1 and t2 in the directions of increase of
u 1 and u2, as shown and then choose t3 = n to form a right-handed
triad. An increment Ss tangent to F is, by (5.76) and (5.80), of the
form

Ss= hiSuit1+h2 5u2 t2, (6.48)

defining corresponding increments 5u1, Sue. Writing

V = viti +v2t2+v3t3,

the integral (6.47) becomes

(vihi dul+v2h2 du2). (6.49)

Consider the first term here. We have assumed that F is traversed in a
right-handed sense about the normal vector n, so that in Fig. 6.7, the
variable u1 increases from a to b along MAN, and then decreases to
the value a along NBM. Denoting values at A and B by suffixes, the
first term in (6.49) is therefore

Jb

dul[(vihl)A-(vlhl)a].
a

(6.50)

Since we assume that {h} and {v,} have continuous derivatives on v,
and u1 is constant on y, Theorem A.2 (Appendix A) allows us to write

3(u)
(vlhl)A-(vlhl)B due-(vlhl);

u2=(ul) au2

so (6.50) is equal to
b R(ut)

-I du, due-(vlhl).
a

a("

) ou2

We note that this transformation to a double integral is very similar to
the transformation (6.16), which is the essential step in proving the
divergence theorem. As in (5.66b), the increment of surface area is

So, = h1h2 8U1 8u2i

so that the double integral equals

-f f do-hlh2 3u2(vlhl),

integrated over the whole surface 6. Treating the second term in
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(6.49) in the same way, the whole integral becomes

v ds= II do1 [-(v2h2)--a (vlhl)]; (6.51)r h1h2 9U1 au2
a

the difference in sign of the two terms arises from the right-handed-
ness of the sense of rotation about n.

The result (6.51) is valid for any surface which can be divided into a
finite number of sections, each with coordinate ranges of the form
(5.8). For example, suppose that o- can be divided into two such
pieces oa> and Q(2), as in Fig. 6.8, by a curve F(3), so that or") has

r"'

r (2)

Fig. 6.8

boundary 1(1) +I (3), while Q(2) has boundary P2)-P3), the minus sign
indicating that Fc3) is traversed in the opposite sense. Then, if v and
{h,} have continuous derivatives on o,,

r

f
By using the result (6.49) for the surfaces Q(u and Q(2) separately,
these two integrals are equal to surface integrals (6.51) over 0'(1) and
Q(2); by Theorem A.6 (Appendix A), the sum of these integrals is just
the integral (6.51) over the whole of Q.

It is also possible for a to contain an exceptional point of the
coordinate system {u,}, provided that v has continuous derivatives
there. Consider, for example, the use of cylindrical polar coordinates
when o, is the circular disc p , a, 0 ,.0 _ 21r in the plane z = 0. The
boundary F is the circle p = a, so that (6.46) reduces to Ss = a&¢t2 and
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(6.49) and (6.51) become

Jvcbad4= oJ" od¢ I opdp 1
P

a(pvo)
ap

only the first term in the integrand of (6.51) appears. The limits of
integration correspond not just to the boundary r, but to the full limit
set of coordinates for the disc. Provided that av,/ap is continuous, no
problem arises at the exceptional point p = 0; Stokes' theorem is in
fact valid for a class of fields v for which av4,/ap is unbounded at
p = 0, but we shall not discuss these details.

We now state the generalisation of the result (6.51) to surfaces 0
which have no special relationship to the coordinate system {u,}; the
proof of the result is given in Appendix B. In the general result, the
integral replacing (6.51) is expressed in terms of the curl vector,
defined by

+h 1
[aU3a

+h h2Lau,(v2h2)-au2(vihi)]t3, (6.52)
1

where {t5} is the triad defined at any point by the coordinates {us}.
The integrand in (6.51) is the third component of curl v. The in-
tegration in (6.47) prescribes a sense in which r is traversed; we
define n to be the unit normal to v such that motion round r and in
the direction of n is a right-handed screw motion. Then Stokes'
theorem states that

y. (6.53)

a

The result (6.51) was obtained by assuming that n = t3 everywhere on
v; from (6.52), it is clear that the surface integral in (6.53) then
reduces to (6.51). The theorem holds provided v and {h,} have
continuous derivatives on o,; it is possible to relax these conditions to
some extent, and also to allow a- to be an infinite surface, subject to
certain convergence conditions; but these extensions of Stokes'
theorem are beyond the scope of this book.
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Let us now consider equation (6.53) as the maximum dimension of
o, tends to zero, in such a way that o, always contains a specific point
P, and n tends continuously to a fixed (vector) value at all points of or;
then o- becomes `flat' as it shrinks upon the point P. Since n curl v is
then continuous at P, Theorem A.8 (Appendix A) implies that its
value at P is

(n curl v)p = lim
A (o,)I )

a

do n curl v.

where A(o-) is the area (5.72) of o-. Using (6.53), we find

(n curl v)p = lim
1 v ds. (6.54)a-0 r

Since n is an arbitrary unit vector at an arbitrary point P, (6.54)
provides an alternative definition of curl; it is analogous to the
definition (6.22) of divergence. As in (6.22), the main difficulty with
(6.54) is providing a precise definition of the limiting process; one
must ensure that F does not become very corrugated as o, -* 0. The
advantages of (6.54) are essentially the same as that of (6.22): since
v ds and A(Q) are scalars, (6.54) ensures that n curl v is in-
dependent of the coordinate system, and hence that curl v transforms
as a vector under rotations. We therefore know that (6.52) is valid for
all coordinate systems for which the triad {t,} is right-handed. Equally
important, (6.54) gives a direct physical meaning to a component of
curl v. The integral round F is the circulation of v; as o- -* 0, this is the
circulation around the axis n, so that the limit (6.54) is directly
interpretable as `circulation per unit area around the axis n', at any
point P. The vector curl v is also called the vorticity of v.

In §6.2, we used the concept of `outflow per unit volume' to give a
clear meaning to the divergence theorem; in the same way, the
concept of circulation per unit area gives a clear meaning to Stokes'
theorem. Suppose we divide a surface o- into a large number of small
elements op (n = 1, 2, 3, ...) by a coarse mesh, as in Fig. 5.9, and let
the boundary of the element op be Fp. Provided that the closed
curves Fp are all traversed in the same sense, the circulation (6.47) is
equal to the sum of circulations

v ds (6.55)
P rp
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round the elements op, by the argument used to extend the result
(6.51): just as in the simple situation of Fig. 6.8, each element of the
mesh contributes two equal and opposite terms to (6.55); so the
sections of the mesh contribute nothing to the sum, leaving just the
integral (6.47). Since the elements ap are small, (6.54) ensures that
(6.55) is approximately

Y_ A(up)(n curl v)P, (6.56)
P

where P is a point of the element O'P. Either through (6.55) or (6.56),
the total circulation (6.47) is the sum of the circulations associated
with the elements Op. Provided that certain analytic conditions are
satisfied, it is possible to re-derive Stokes' theorem by going to the
limit of a fine mesh in (6.56), giving just

J J
do, n curl v.

a

Although we have referred to curl v as a vector, it is in fact an axial
vector if v is a polar vector. There are several ways to see this. If we
change the sign of all basis vectors {t,}, the coordinates {u,} and the
components {v,} in (6.52) are changed in sign, while {h,}, being
positive, are unchanged. Therefore the components of curl v retain
their signs. Equally, in (6.54), v and ds are changed in sign while
A(o,) is unchanged, ensuring that any component of curl v preserves
its sign. The axial vector property stems from the rotational nature of
the circulation (6.47); the sense of `rotation from i to j about the axis
k' is unchanged if we reflect axes by the transformation (4.80).

Using rectangular coordinates (x, y, z) with h, = h2 = h3 = 1, (6.52)
becomes

/3v Z avy
curl y = - i

ay az

+(avx-avZ)] +(avy-avx')k.
(6.57)

az ax ax ay JJ

Cylindrical polar coordinates (p, ¢, z) have(( hp = hZ = 1, ho = p, so that

curl y=PLa aazo)tP+lazP
apto

+
1Ia(pvo) avp

tZ.
1

(6.58)
P .9p a-P
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Similarly, spherical polar coordinates (r, 0, ¢) give

curl v= r2 sin B [a0 (r sin 0v,6)-aa (rvo)I t,

1 49v,- a-
+rsin0 a

ar(rsin0vo) to

+ r [ar (rvo) a0
]tm. (6.59)

Example 6.10

In terms of rectangular coordinates, a vector field v(r) is defined by

v= 2xyz2i+(x2+y2)z2j+4x2y2k.

Use (6.58) to find the components of curl v relative to cylindrical
polar coordinates.

If (ti,, to, tZ) are the triad of unit vectors at any point, defined by
cylindrical polar coordinates, then

i=t, cos0-tosin
j=t,, sin¢+t,6 cos0,
k = tZ.

Substituting these expressions and x = p cos 0, y = p sin 0 into the
formula for v, we find

v=p2z2(sin 20 cos ¢ +sin 4))t,,

-p2z2(sin 20 sin 0 -cos O)to

+p4 sin2 20 t,
or

v = 2p 2z 2 sin ¢ (cos 20 + 2)t,

+p2 z2 cos ¢ cos 24)t4, +p4 sin 2 24)t,.

The components of curl v are given by (6.58). They are

(curl v)p =P [p4 a9 (sin2 24))-p3 cos ¢ cos 24az
(z2)]

= 2p2[p sin 40 -z cos 0 cos 20], J

(curl v)4, = 2p2 sin 0(cos 2(fi +2)az (z2)-sin 2 24)- (p4)

= 2 p2[z sin 4)(cos 24) +2)-2p sin2 2¢],
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(curl v)Z =1 [z2 cos ¢ cos 20ap (p3)

-p2z2aa {sin 0(cos 20+2)}]

= 0.

An alternative method of finding these components is to calculate
curl v in rectangular coordinates, and then to transform to cylindrical
polars. [See Problems 6.3, Question 1.]

Example 6.11

A vector field v is given by

v = (x2 -y2) ezi+2xy ezj+(x2+y2+z2)k,

and a closed curve r consists of the edges of the rectangle with
corners at points i, i+j, j+k and k; the order of these points indicates
the sense in which F is traversed. Calculate the integral of n curl v
over the rectangle o bounded by r, and show explicitly that it is equal
to the circulation (6.47).

The rectangle is shown in Fig. 6.9, and is labelled ABCD. The
normal vector n, associated with F by the right-hand rule, is constant

Fig. 6.9



6.4 Curl of a vector field; Stokes' theorem 239

over o-, and is n = (i+k)//2. So, in terms of the components of curl v,

n curl v = [(curl v)1 + (curl

If we use (x, y) to specify points on a-, the element of area is

So, = ,12 Sx Sy.

Since a corresponds to the range (0, 1) of both x and y, the surface
integral of n - curl v equals

Cl 1

J dx f
o

[(curl v) 1 + (curl V)31-
0

Now, using (6.57)Now,
a(Y2)a(2xy

ez)(curl v) i = --
ay az

= 2y - 2xy eZ,

a(2xy eZ) a(-y2 ez)
(curl v)3 =

ax ay

= 4y eZ.

Since z = 1 -x on the surface, the double integral becomes

r1 1

J dx f
o

[2y -2xy e1-x +4y e1-x]

0 0

f
dx [1 -x e1-x +2 e1-"]

0

Carrying out the final integration, we find

JJdo y=1+e.
a

The circulation (6.47) consists of integrals along AB, BC, CD
and DA. We treat these separately.

AB(x =1, z =0, Ss = j Sy; v2 = 2xy eZ =2y):

J(AB)JO v2dyJ2ydy=1.
0

CD(x=0,z=1,Ss=-jSy;v2=2xyeZ=0):

LD)
v.ds=-1v2dy=0.
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BC(z=1-x,y=1,Sz=-Sx,Ss=iSx+j&z):
0

IBC)
(vldx+v3dz)

x -1

=- J1 [(x2-1)el-x-{x2+1+(1-x)2}]dx

0

DA(z=1-x,y=r0,5z=-Sx,Ss=iSx+j&z):

IDA)
1 (vldx+v3dz)

(DA) x-0

=f [x2 e1_x -{x2+(1 -x)2}] dx.
0

The sum of the last two integrals is just
J1

0

Adding in the integrals along AB, CD then gives

verifying Stokes' theorem (6.53).

Towards the end of §6.3, we showed that a field v is conservative in
a simple volume region r if and only if condition (6.46) holds, that the
circulation (6.47) is zero for all simple closed curves t lying within T.

We shall now show that these conditions are equivalent to the condi-
tion

curl v = 0 (6.60)

at all interior points of r; we are, of course, assuming that curl v exists
and is continuous. When condition (6.60) is satisfied throughout a
region, we say that v is irrotational there.

Since T is a simple volume region, any simple closed curve IF lying
within T is the boundary of some surface a- lying within T. Applying
Stokes' theorem (6.53) to such a surface or, we see that, if (6.60) holds
within r, the circulation (6.47) is zero round r. Conversely, if (6.47) is
zero for all circuits T within T, then (6.54) implies that any component
of curl v (at an interior point of T) is the limit of zero quantities, and
hence is zero. We have therefore established the equivalence of three
conditions:
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(i) the field v is conservative within a simple volume T, derivable
from a potential rlr;

(ii) the circulation (6.47) of v is zero for all simple closed curves
lying within r;

(iii) the field v is irrotational, with curl v = 0 at all interior points of
T.

Problems 6.3

1 Use (6.57) to calculate curl v in rectangular coordinates, where

v = 2xyz 2i+(x 2 + y 2)z 2j +4xZy 2k.

Using this result, check the values of the components of curl v relative
to cylindrical polar coordinates, evaluated in Example 6.10.

2 A closed curve F on the surface of the sphere r = a consists of three
arcs, defined in terms of spherical polar coordinates:

PQ:¢=0,0-- 9-- 2Tr,

QR:0=29r, 0 -- 2,7r,

RP:0=2'rr,2i 8-- 0.

Calculate the circulation (6.47) of the vector field

v = e sin 0(sin 20 t, +cos Z(h t0)+ sin 0 to

round F in the sense PQRP, and verify directly that Stokes' theorem
(6.53) is satisfied for this field v and this closed curve F.

3 A vector field v is defined in terms of cylindrical polar coordinates to
be

v = 2 pz cos 4 tt + (p 2 + z
2)t,6 +P2 cost 0 t.

Find curl v.
Calculate directly the integral

JJ do, n curl v
a

when
(a) the surface o is the disc z = 0, p --a, with n in the direction of

increasing z;
(b) the surface o- is the hemispherical cap r = a, 0, 0 -- Zir (using

spherical polar coordinates), with n in the direction of increasing
r.

Use Stokes' theorem to comment on these results.
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4 By calculating curl v, show that the following fields are conservative:
(a) v = 2pz -' sin 2¢ t, + 2pz -' cos 24) to - p 2z -2 sin 20 t2,
(b) v = 2r0 sin 0 cost 4) t, +r(sin 0 + 0 cos O)cos2 4) tq - r9 sin 20 to.
[Standard notation for polar coordinates is used.]

6.5 Field operators; the Laplacian

At the end of §6.4, we saw that a conservative field v = -grad 4i was
irrotational, with curl v=0. Therefore any scalar field 4(r) with
continuous second derivatives satisfies

curl grad 4) = 0. (6.61 a)

This equation can also be established directly by substituting the
components

_1arGVS _

h au (s = 1, 2, 3)
s s

of grad 4i, given by (6.34), into the formula (6.52) for curl v. The first
term, for example, gives

h2h3 Lau2 \au3/ au3 (au2)]

which is zero since the second derivatives are equal, since they are
assumed continuous (Theorem A.1, Appendix A). The identity
(6.61a) is simply a statement in `differential form' that conservative
fields are irrotational. The same statement can be made in `integral
form' by integrating (6.61a) over a simple surface o, with a simple
closed curve I as boundary; then by Stokes' theorem,

fr grad 41 ds = JJ do, n curl grad 4) = 0. (6.62)

a

This is just a re-statement of the result (6.42) that a conservative field
is irrotational, with zero circulation round any closed curve.

A second identity can be derived from (6.20) if we replace v,, V2, v3
by the components of curl v, given by (6.52); the square bracket in
(6.20) becomes

al1rs _a )t a a a

au1 laLl2(v3h3) au3(v2h2)J +au2Iau3(vlhl) au'(v3h3)J

+au3{au1(v2h2)-au2(vihi)}J,
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which is zero if all the second partial derivatives are continuous. Thus

div curl v = 0, (6.63a)

which means that the outflow of curl v is zero at any point. Again, we
can integrate (6.63a) over a volume z bounded by a simple closed
surface o-, obtaining the `integral form' of the statement. Using the
divergence theorem (6.19), we find

J J do- n- curl y=JJJ drdivcurl y=0.
a

This tells us that the flux of curl v out of the volume T is zero. When
the outflow of a vector field is zero, the field satisfies a conservation
law; so this equation, or alternatively (6.63a) expresses the fact that
curl v always satisfies a conservation law, provided that its derivatives
are continuous: the flow of vorticity out of any region is zero.

Since (6.61a) and (6.63a) hold for a whole class of functions er(r)
and v(r), they are often written as

curl grad = 0 (6.61b)

and

div curl = 0. (6.63b)

In these equations, we are regarding `div', `grad' and `curl' as field
operators, which can operate on scalar or vector fields according to
the definitions (6.20), (6.34) and (6.52); since these definitions are
linear in /i or in the components of v, they are linear operators.
Equations (6.61b) and (6.63b) state that the operators `curl grad' and
`div curl' each behave as a zero axial vector operator; the first con-
verts a scalar field 41 into the zero axial vector field, while the second
converts a polar vector field v into the zero axial scalar field.

When rectangular coordinates are used, the field operators have
particularly simple forms given by (6.23), (6.38) and (6.57). These
equations can be written particularly neatly in terms of the vector
operator del or nabla, defined to be

V =
ax

i +
ay

j +z k. (6.64)

Since i, j, k are independent of the coordinates, and since (assuming
continuity of all derivatives) the order of derivatives a/ax, a/ay, a/az
can be changed, the del operator can be manipulated according to the



244 Vector analysis

ordinary rules of vectors, provided that the order of V and any scalar
or vector field is preserved. For example, if 41, and 412 are two scalar
fields,

V4'102 = ax
(Y'142)i+-y (.p1p2)i+az (41412)k,

which is not the same as

01V02=411 a 2i++/!1 y2j+i0l1 2k.

Using the usual formula (2.36) and (3.19) for scalar and vector
products, we see that (6.23), (6.38) and (6.57) can be written

(6.65)

grad v = V+/i, (6.66)

curl y=Vnv. (6.67)

In terms of the del operator, (6.61 a) and (6.63a) become

VAV4i=0 (6.61c)

and

V-Vnv=0 (6.63c)

In this form, these equations follow at once by applying to V the
ordinary rules of vector products and scalar triple products.

The definition (6.64) is in terms of rectangular coordinates. We
shall now show that, in terms of a set {us} of orthogonal curvilinear
coordinates, and the corresponding local frame of reference {t},

t,
s

(6.68)
a

Regarding {us} as functions of (x, y, z) and using the chain rule,

a ax a ay a az a

aus au, ax au, ay au, az

ar
au,

using the definition (6.64) and then (5.80). So

is a

hs aus =
E is (ts 0);

but, comparing with (2.27) and (2.29), this is just the sum of the
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components of V relative to the triad {t5}, and so is equal to V. Note
that in this proof, the differential operators have (correctly) been
placed on the right of every expression.

If we allow the operator (6.68) to operate on a scalar field 41, we
immediately obtain the expression (6.34) for grad 41, verifying (6.66)
for the coordinate system {us}. It is not so easy to verify directly the
formulae (6.65) and (6.67), as we see in Example 6.12 below. Direct
verification is not, however, necessary, since (6.65)-(6.67) are true
for rectangular coordinates, and (6.68) tells us how to change vari-
ables to any orthogonal system {us}.

Example 6.12

Use (6.68) to establish (6.65) directly, where div v is given by (6.20).
First, applying (6.68) to the functions {ur} gives

V ur = tr/hr (r = 1, 2, 3).

Also, using the rule for differentiating products,

V (our nVus)=(Vus) (VnVUr)-(vur) (VnVus)=0.

In addition, we recall the relations t3 = t, A t2 and so on, for the
orthonormal system {tr}.

Using these three formulae,

V [vlh2h3(Vu2) n (Vu3)+cyclic terms]

= (DUD A (Vu3) V(v,h2h3)+cyclic terms

I
t, V(vih2h3)+Cyclic terms

h2h3

1

- (v'hzh3)+cyclic termsh, h2h3 [
l,

since the component of V is given by (6.34) or (6.68). This is the
expression (6.20) for div v.

The representation (6.65)-(6.67) can be used to establish other
identities for scalar and vector fields. Three of these follow from the
rules for differentiating products:

div(Ov) = r/i div v + v grad +1, (6.69)
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curl(,/iv) = 41 curl v+grad 4' A V, (6.70)

div(v1 A v2) = v2 curl vi -vl curl v2. (6.71)

For example, (6.70) can be written as

VA(4/V)=41 (VAv)+(Vil)Av

in terms of the operator (6.68); in this form it follows at once from
(5.20). The identities (6.69)-(6.71) can also be established from
(6.20), (6.34) and (6.52).

If 4 is a scalar field, grad +li is a vector field, and its divergence is
scalar. So the operator

D2-V V=divgrad (6.72)

is a scalar differential operator, since it does not change the scalar
character of 41; this operator is called the Laplacian, often referred
to as 'del squared'; it is probably the most important differential
operator in mathematical physics. For an orthogonal coordinate
system, (6.20) and (6.34) give

_ 1 r a (h2h3 a+l a (h3h, 8i'2 h,h2h3 Laul \ hl aul) +au2 \ h2 au2

-941

+
a

8u3

(h1h2
h3 au3

For rectangular coordinates, (6.64), (6.65) and (6.66) give
2 2 2

(6.73)

V2=V. V=
az+ay +a ; (6.74)

this also follows by putting h, = h2 = h3 = 1 in (6.73). The differential
equation

v2r/i=0 (6.75)

for a scalar field is called the Laplace equation; it arises in many
different physical theories, including those of gravitation, electricity
and magnetism, fluid mechanics, and elasticity. Solutions of the
Laplace equation are known as harmonic functions; a vast amount of
work has been done studying and applying harmonic functions, but
the subject is beyond the scope of this book. We shall, however, now
show how Laplace's equation arises in electrostatics.

In Example 6.9, we saw that the electric field E produced by a
charge e at the origin 0 is given by

E = -grad qi, (6.76)



6.5 Field operators; the Laplacian 247

where t = e/r, so that

eE= 2t,.
r

Using Equation (6.23b) to calculate div E in spherical polar coor-
dinates, we find

l a\
Z 2

div E = r2 ar r r2 =0,

except at r = 0. Since E is derivable from the potential 0, it follows
that /i = e/r satisfies Laplace's equation except at the origin.

Let us now consider a charge el at the point with position vector rl;
the potential at r is, by change of origin,

el1= lr-rll .

It is an experimental fact that the potential and electric field produced
by a number of charges is obtained by summing the individual poten-
tials or fields. So the potential produced by charges el, e2, . . . , e at
points r1, r2, . . . r is

rG(r) _
el

(6.77a)

and the electric field (the force acting on a unit charge) is

E(r) _ -grad 41(r)

el=lZ l (r-ri)1Y1 E,, (6.78a)

say. Since each term Ei in this sum has zero divergence except at the
points r,,

O2qi(r) = -div E(r) = 0 (r 0 r!). (6.79)

So the `outflow' of E is zero except when r = r, (l = 1, 2, ... , n), and
the potential +/i then satisfies Laplace's equation (6.74). If we in-
tegrate (6.79) over any volume T not containing any of the charges,
the divergence theorem (6.19) gives

J
Jdo..E=JJJdrdivE=0,
a r

where a- is the boundary of T. So the total outward flux of E over the
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boundary is zero, giving a conservation law for E in any region not
containing charges. The conservation of flux of E allowed Faraday
and Maxwell to think in terms of lines of force in the direction of E; a
set of lines of force carry the same electric flux into and out of any
region not containing charges, thereby satisfying the conservation
law.

Let us consider the flux of E through a small sphere ir-ri =a
surrounding the charge e1, due to the field E1 produced by el. The
field along the outward normal has the same magnitude el/a2 at all
points (if e1 <0, the field is directed inwards). The integral of this flux
over the surface of the sphere, of area 41Ta2, is thus

(e l /a 2) x 4Tra 2 = 4ar e 1. (6.80)

Now consider any simple volume region T, with boundary o, which
contains r1 as an interior point. Let 0a be a sphere of radius a, centre
r1, with a chosen so that oa lies in the interior of T, as shown in Fig.
6.10. The volume region between Qa and v does not contain the

Fig. 6.10

charge e1; the conservation law therefore ensures that the radially
outward flux of E1 through a is equal to the outward flux (6.80)
through aa. Now suppose that the volume T has charges e1, e2, . . , e
at interior points r1i r2, ... , each charge el gives rise to a term E,
in (6.78a), and, just as for E1, the outward flux of Et through the
boundary v is 41rel. Summing over 1, the outward flux of E through a-
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is

n

Jf do E = 47r el. (6.81 a)
1'1

a

This result is known as Gauss' theorem: the total outward flux of E
through a closed surface o- is equal to 4Tr times the charge enclosed by

a of discrete charges {e,} in the volume T, we can
consider a volume distribution of charge of density p(r) per unit
volume. Then the sum of the right of (6.81a) is replaced by the
volume integral over T of the density, giving

JJdr. E= 47r fJJ p(r) dT; (6.81b)

P T

this equation expresses Gauss' theorem for a volume distribution of
charge. If we now apply the divergence theorem (6.19) to the surface
integral on the left, we see that the volume integrals of div E and of
4ap are equal; since this equality holds for every volume T, div E _
41rp at all points. It can be shown that, as in (6.78a), E(r) is derivable
from the potential .i(r) at points r inside a volume distribution of
charge; hence

V2#i(r) = -div E(r) = -41rp(r) (6.82)

at all points within the volume distribution; this equation is known as
Poisson's equation. Where there is no charge, p (r) = 0 and the equa-
tion reduces to Laplace's equation (6.79). Poisson's equation is the
`differential form' of Gauss' theorem (6.81b).

Although we shall not attempt a proof, we note that the potential
4i(r) corresponding a charge density p(r), and hence satisfying
Poisson's equation, is found by replacing the sum in (6.77a) by an
integral, giving

JJJ
dT,

TI

(6.77b)

the region r' of integration is the region in which the density p is
non-zero, which is assumed to be finite. It can be shown that the
integral (6.77b) is well defined, even at points r in the region T'; it is
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also valid to differentiate under the integral sign to give the formula

E(r) _ -grad ii(r)

_rrr
=J

J 1
dr' Ir-rr''I3(r-r')

(6.78b)

T

for the field, corresponding to (6.78a) for discrete charges.
The derivation of the Laplace and Poisson equations for elec-

trostatics applies equally to Newtonian gravitational theory, with
mass density replacing charge density, and the same equations arise
in other physical theories. The Laplacian is therefore a very im-
portant operator, and we shall give its explicit form in cylindrical and
spherical polar coordinates. Using (6.23c) and (6.39), (6.72) becomes

2 1 8/ a\ 1 a2 a2-p
8p

pap)+p2 (6.83)

for cylindrical polars. For spherical polars, (6.23b) and (6.40) give

11a al 1 a a 1 allV2=
r2 Lar

(r2ar!
+sin 0 ag (sin 8a9) +sin2 8 ace J. (6.84)

We have established identities (6.61), (6.63) and (6.69)-(6.71) for
the field operators div, grad and curl. A further identity is given by
using the expansion (3.31) of the vector triple product,

VA (V n v) = V(V V)-(V V)v, (6.85a)

the vector v being kept to the right.
This formula can be expressed as

curl curl v = grad div v - V 2v; (6.85b)

in the last term here, the Laplacian (6.72) operates on the vector v,
rather than on a scalar. Thus the derivatives in (6.68) operate on the
vectors {t,} in v = l,v,t and V2=V. V in (6.85a) will not have the
forms (6.83) and (6.84) in polar coordinates. But since derivatives of
(i, j, k) are all zero, the expression (6.74) is valid in (6.85) when
rectangular coordinates are used.

A further important identity involving two scalar fields 41 and cb is
obtained from the rules for differentiating products:

V . (41VO) = (V+fr) . (VO)+4,V20 (6.86a)

using (6.65) and (6.66), this can be written

div(/i grad 40) = grad ip grad ca +a/iV20. (6.86b)
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Since 4, and ¢ are scalars, the representations (6.74), (6.83) and
(6.84) can be used in (6.86).

We have emphasised the physical importance of the vector opera-
tors, and we end this chapter by establishing conditions under which
div v and curl v determine a vector field v uniquely; Laplace's equa-
tion occurs naturally in the proof. Let us suppose that a vector field
v(r) is defined in a finite volume T with boundary o-, and satisfies the
three conditions:

(i) div v(r) = 41rp (r), where p (r) is a scalar function defined
throughout T;

(ii) curl v(r) = µ(r), where µ(r) is a vector function defined
throughout T;

(iii) the normal component v n is given on the boundary o-.
Then Helmholtz' theorem states that there is at most one vector field

v(r) satisfying conditions (i), (ii) and (iii). To establish this
uniqueness theorem, let us suppose that vi(r) and v2(r) both
satisfy these conditions; then the difference

vo(r) = VI (r) - v2(r) (6.87)

satisfies the conditions

(i)' div vo(r) = 0 throughout T;
(ii)' curl vo(r) = 0 throughout -r;
(iii)' vo n = 0 over the boundary

Condition (ii)' ensures that vo(r) is derivable from a potential 4i(r),
with

vo(r) = -grad 4i(r).

Now consider the integral of vo vo over the volume T; using (6.86b)
with .0 4,,

J JJ
dTgrad 4,.grad 4i

=JJJ dT[div(4i grad 4r)-4,V24,].

Condition (i)' gives V 24, = 0, and the first term transforms by the
divergence theorem to give

J JJdr vo vo= J

JJ do, 4) (n . vo) = 0,
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using condition (iii)'. However, the integrand vo vo is non-negative;
since its integral is zero, vo vo = 0 throughout r; this in turn implies
that vo(r) = 0 everywhere. Thus vi (r) = v2(r), establishing uniqueness.

We should note that Helmholtz' theorem does not prove the exis-
tence of a vector field v satisfying (i), (ii) and (iii) above, but it is in
fact true that a solution v does exist. The theorem can be extended to
fields in an infinite volume T, provided that lv(r)l = O(r-2) as r - oo;
the unique solution v = E for an irrotational field, with curl v = 0, is
given by (6.78b).

Helmholtz' theorem is the 3-dimensional analogue of a familiar
property of one-variable functions f (x) with continuous derivatives: if
df/dx and the value of f(x) at one point are given, then f(x) is
determined. In 3-space, specification of div v and curl v determines
the rates of change of v in three independent directions; the boundary
condition prescribing v n on v is the 3-dimensional generalisation of
the condition defining f(x) at one point.

Problems 6.4

1 Use the operator V to establish the identities (6.69) and (6.71).
2 Establish directly the equality (6.67), where V and curl v are given by

(6.68) and (6.52). [Use the methods of Example 6.12.]
3 If o, is a simple closed surface bounding the volume T, i i a scalar field

in T and a any constant vector, apply the divergence theorem to al'a
to prove that

j JJ dr grad .1, = JJ do i.
T Q

By applying the divergence theorem to v A a, where v is a vector field,
show that

JJJ dTcurl y= JJ dvnv.



APPENDIX A

Some properties of functions of two variables

In Chapters 5 and 6, we assume certain analytic properties of deriva-
tives and integrals of functions of two and three variables. In this
appendix, we establish these properties for functions of two variables.
Reference is made to these results whenever these properties, or their
three-variable analogues, are assumed in the main text.

Two variables (x, y) can be regarded as rectangular coordinates in a
plane. A range of the coordinates, for example (5.8), can then be
thought of as a region S in the plane. A function f(x, y) defined on S
is then a number uniquely determined when (x, y) are given, cor-
responding to a point in S. The partial derivative off with respect to x
is defined as

of (x, Y) = lim Ax + Sx, Y) -f (x, Y)
ax SX-+o Sx

(A.1)

whenever this limit exists; it is the derivative of f with respect to x,
keeping y fixed. Likewise, the partial derivative with respect to y is

af(x, y)= lim f(x, Y+Sy)-f(x, y)
ay 8Y-.o Sy

(A.2)

whenever this limit exists. If (x, y) corresponds to points on the
boundary of S, the limits (A.1) and (A.2) may exist only as one-sided
derivatives, with Sx or Sy having a fixed sign.

The derivatives (A.1) and (A.2) are themselves functions of (x, y)
which may be differentiable; the second partial derivatives are then
denoted

a (afll _ a
2f a of\ a2f

ax ax/-axe' ay\ax)=ayax'

253
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and so on. Combining (A.2) and (A.1) we find, for example,

a2f (x, Y)= lim lim f (x+Bx, y+By)- f(x, y+Sy)- f(x+Sx, y)+ f(x, y)
ay ax sy- 0 sx-.o Sy ax

(A.3)

with the limit Sx 0 taken before the limit By -, 0. The symmetry of
the fraction on the right suggests that this derivative may be equal to
a

2flax ay, with the limit By -> 0 taken before the limit Sx --> 0, but this is
not always true. We shall now establish conditions under which these
two derivatives are equal.

The four points (x, y), (x + Sx, y), (x, y + 8y), (x + Sx, y + Sy) define
a rectangle R, and we define the second difference

82f(R)-f(x+Sx, y+6y)-f(x, y+Sy)-f(x+Sx, y)+f(x, y),

so that (A.3) becomes
(A.4)

a2f (x, Y) li li S2f (R)= m m
ay ax sy- 0 sx-.o By Sx

(A.5)

In Fig. A.1, the two rectangles denoted by R2 and R3 have areas
8X 8Y2 and Sx Sy3, as shown; these rectangles combine to form a
larger rectangle R1, with area Sx By1, where

3y3 = 3y1 Sy2. (A.6)

If we apply the definition (A.4) to the rectangles R1, R2, R3, it follows
that

32f(R3)=32f(R1)-82f(R2). (A.7)

R,

B

R3 Sy3

A (x, y) Sx

Fig. A.1
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It is not hard to check the algebraic identity

al-a2 a1 all b1+b2 a1 a2l
2b1-b2-\b1+b21 b1-b2\b1 b21'

putting a1= 82f(R1), a2 = S2f(R2), b1= Syl, b2 = 42, using (A.6) and
(A.7), and dividing by 8x, this identity gives

252f(R3)_ rs2f(R1)+S2f(R2)
Sx Sy3 L Sx 3Y1 Sx Sy2

_8y1+3Y2 S2f(R1)S2f(R2)l (A.8)
Sy3 L SxSy1 8X 8Y2 J

In this identity we now let Sx, SY1, SY2i 8y3 all tend to zero, but in such
a way that

Sx
0

Sx
0, sy3 , 0; (A.9)

Syl 8Y2 Sx

this is indicated in Fig. A. 1 by drawing 3y3 smaller than Sx, which is in
turn smaller than Syl and SY2. Since 3y3- 0 faster than Sx, then by
(A.5)

02f(R3a2fA
Sx Sy3 ax ay'

the suffix `A' denoting evaluation at the point A; and since Sx - 0
faster than 3y, and 8Y2,

52f(R1)+32f(R2a2fA + a2fB

Sx syl Sx SY2 ay ax ay ax

We have of course assumed that these three second derivatives exist;
if we also assume that a2f/ay ax is continuous at A, a2fA/ay ax =
a2fB/ay ax in the limit B-+A, so that the left-hand side of (A.8) has
the limit

rr afA _ a2fA l
2Lax ay ay ax J.

(A.lo)

Now consider the right-hand side of (A.8). The square bracket is
the change in a2f(R)/Sx Sy when Sy changes from 8y2 to 8y1, by an
amount 8y3; we therefore write the expression as

41±42 _2f(RZ
45Y3

S[
Sx 8y2
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In the limit, this is equivalent to

3Y1+SY2
32fA

(A.11)
Sy3 Lay ax

Now continuity of a2f/ay ax ensures that as Sy3 -+ 0,

S[ 2fA , 0
(A.12)

Lay ax]

Conditions (A.9) require that (Sy1+Sy2)/sy3- oo, but the continuity
condition (A.12) allows us to take the limit so that (A.11) tends to
zero. (For example, if the increment (A.12) is 10-3n, we can choose
15y1= SY2 =102, Sy3 and 8X=10"43; then as n - oo, (A.9) is
satisfied, while (A. 11) is nearly 2 10-", which tends to zero.)

The limit of (A.8) therefore tells us that (A.10) is zero. So we have
shown:

Theorem A.1

If the partial derivatives a2f/ax ay and a2f/ay ax exist at a point (x, y),
and if one of them is continuous, then they are equal.

Next, we establish a theorem which is a simple generalisation of the
fundamental theorem of the calculus [Reference A. 1]; this states that
if f(y) is a function of a real variable y, and if the derivative df/dy is
continuous for a , y , 13, then

f s dydf =ffl)-f(a) (A.13)

Now suppose that a function f(x, y) is defined for some range of
values of (x, y), perhaps of the form (5.8); the function of/ay is
uniformly continuous in y if, for any given e > 0,

af(x,Y+oy)af(x, Y) <e (A.14)
ay ay

for all increments Sy satisfying

18yI> S, (A.15)

where S depends on a but does not depend on the value of x. If x is
regarded as fixed, (A.14) and (A.15) express continuity of of/ay as a
function of y; we can therefore integrate it with respect to y, with x
fixed, and use (A.13) to give:
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Theorem A.2

If af(x, y)/ay exists and is uniformly continuous in y for some range
of values a < y _ 0, where a and (3 are finite, but may vary with x
over a range of values of x, then

Jdy a=f(x,f(x,a) (A.16)

throughout the range of x.
(We note that, for a finite closed range a <x <_ b of x, continuity in

y is equivalent to uniform continuity.)

The definition of a double integral is similar to that of a single
integral; integration can be defined with varying degrees of generality
and sophistication, but we shall give the simplest definition, that of
the Riemann integral, of a function f (x, y) over a finite region S of the
(x, y) plane. Since S is finite, it can be contained within a rectangle R
of the plane corresponding to finite ranges

X0 xX1, (A.17a)

YO y Y1. (A. 17b)

We define the extension of f (x, y) in R to be the function

f(x, y) for (x, Y)c S A. 18)(x, Y) = 1 0 for (x, y) 0 S J'

A coarse mesh of lines on R is defined by x = x, (r = 0, 1, 2, ... , m)
and y = ys (s = 0, 1, 2, ... , n ), where

Xo=xo<x1<x2<...<xm =X1i (A.19a)

Yo=Yo<Y1<Y2<...<yn= Y1. (A.19b)

This mesh divides the rectangle R into mn smaller rectangles. If we
write

Sxr = xr - xr _ 1 (t =1, 2, .. m), (A.20a)

SYs = Ys - Ys-1 (s =1, 2, ... , n), (A.20b)

then the small rectangle bounded by lines x = x,_1i x = x y = Ys-1,
y = ys has area

8S, = Sxr Sys, (A.21)

where i denotes the pair (r, s); this rectangle is labelled R;. Now let M;
and m; be the maximum and minimum values of 7(x, y) in the
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rectangle R;; then the upper and lower sums of Ax, y) over R, for the
mesh (A.19), are

m n

M = M; 8S, = I Y- M; ax, Sys, (A.22a)
i r=1 s=1

m n

M = Y- mi SSi = Y- Y- m; Sx, Sys. (A.22b)
i r=1 s=1

Since J(x, y) = 0 outside S, M; = m; = 0 for rectangles wholly outside
S, so that these do not contribute to the sums M and m. The actual
size of R is therefore unimportant, so long as S c R.

The sums (A.22) depend upon the particular mesh chosen, and
since m; -- M; for all i, m , M. Also, if the mesh (A.19) is subdivided
into a finer mesh, m increases and M decreases. Now consider the
limit

Max(Sx Sys)-0 (A.23)

of a fine mesh: the decreasing sum M and the increasing sum m must
each tend to a finite limit [Reference A.2]; if these limits are equal,
their common value is the double integral

J J f(x, y)dS
S

of f over the region S. Equally, this common limit is the integral of
Ax, y) over the rectangle R.

We now prove several theorems concerning double integrals; the
first is:

Theorem A.3

If fi is the value of f (x, y) at any point in the rectangle R,, for all i,
then the integral of f (x, y) over S is equal to

lim Y- fi SS,. (A.24)
i

The proof is simple: since m, -- fi EM,,

Y- m,SS,EY- fiSS,EY- MiMSi.
i i i

In the limit (A.23), the upper and lower sums tend to the same limit;
hence Y, fi SS, must tend to this limit also.
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Theorem A.4

If I f (x, y )l < K for all points (x, y) c S, and if F is a finite curve lying
within a finite rectangle R containing S, then the contributions to the
sums (A.22) from rectangles R; containing any points of IF tend to
zero in the limit of a fine mesh.

Proof. Let the length of F be 1. Now choose the rectangle R and mesh
(A.19) so that all increments {8x,} and 18y} are equal, say to a
number S. Since, in general, F can enter at most three other rectan-
gles R; between complete traverses of two of the rectangles, the
number N of rectangles entered is limited by

(N - 3)3 -- 4l. (A.25)

Since IM; I , K for all i, the contribution to (A.22a) from rectangles
intersecting r has modulus satisfying

y- M,SS,I,y IM,IS2

,(r) i(r)

NKS2<(41+35)KS,

using (A.25). Since I and K are fixed and finite, this quantity tends to
zero with the mesh size 8, establishing Theorem A.4.

It is important to know that double integrals exist for certain
classes of function. We shall not prove integrability of the largest
possible class of functions, but content ourselves with a theorem
which is applicable in many physical situations.

Theorem A.5

If f(x, y) is bounded and piecewise uniformly continuous on S, then
the double integral of f over S exists.

Proof. The condition piecewise uniformly continuous means that,
except on certain curves of finite total length, the following continuity
condition holds: given any positive number e, we can find a positive
number S such that

If(x+Sx, Y+SY)-f(x, Y)I <s (A.26)

provided 18x I , S and ISy I , S. The number S depends on e, but not on
the point (x, y).
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Since f is bounded, Theorem A.4 ensures that those rectangles R;
which intersect the curves of discontinuity of f do not contribute to
the sums (A.22) in the limit. In all other rectangles R,, f is continuous,
and (A.26) ensures that

IM;-m;1<e

for a mesh with increments no larger than S.
So from (A.22), the difference between the upper and lower sums

satisfies

M-mE6S;<E(X,-Xo)(Yi-Yo).

Since E can be made as small as we wish by choosing S (the maximum
mesh increment) small enough, M - m -* 0 in the limit of a fine mesh.
So M and m have the same limit, which is the integral of f over S.

One important property of integrals is their additivity.

Theorem A.6

If the region S is divided into a finite number of non-overlapping
subregions by curves of finite total length, the integral over S of a
bounded and uniformly continuous function f (x, y) is equal to the sum
of its integrals over the subregions.

Proof. By Theorem A.4, rectangles R; which intersect the curves do
not contribute to (A.22) in the limit. The other terms in these sums
can be divided into sets, each corresponding to one subregion of S. By
Theorem A.5, the upper and lower sums corresponding to a given
subregion tend to the same limit, which is the integral over the
subregion. So in the limit, the integral over S is the sum of the
integrals of its subregions.

As exemplified in the main text, double integrals are usually
evaluated as repeated integrals. It therefore is important to establish
the equality of double and repeated integrals.

Theorem A.7

If the region S is defined by

a <_ x _- b, a (x) -- Y -- 10 W, (A.27)
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and if, for each value of x in a , x , b, the integral

dyf(x,y)

exists, then, provided the double integral of f over S also exists, it is
given by

b 0(x)
rJ

dSf(x, Y)= jQ dx j«(x) dyf(x,Y)
S

Proof. Since i denotes the pair (r, s), the point (xr, ys) is at one corner
of the rectangle R;. So we can take f; = f(xr, ys) in (A.24); then the
integral of f over S is

m n

lim Y- Y- f (xr, Ys) Sxr SYs. (A.28)
r=1 s=1

The coefficient of Sxr in this double sum is
n

Y- f(xr, Ys) SYs;
S=1

since f (x, y) = 0 outside S, this sum is over rectangles with a (Xr)
Ys = 9 (X,), with a -- Xr , b ; also, as max(Sys) -+ 0, this sum tends to the
integral

!3(x,)

J
dY.f(x, y)

«(x.)

since this integral exists. So (A.28) is the limit of

Y- Sxr

ja(x.)f(xr,
Y)dY

r=1 «(x,)

as max(Sxr)--> 0. This limit exists, because it is the double integral; but
since only points with a -- Xr -- b contribute to the sum I m 1, the limit
is just the repeated integral

b R(x)

ja dx j«(x) f(x, Y)dy. (A.29)

13)

If the region S can be divided into a finite number of subregions,
each corresponding to a range of the form (A.27), Theorem A.6
ensures that the double integral over S is equal to the sum over the
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subregions of repeated integrals of the form (A.29). This is the
method normally used in practice to evaluate double integrals.

The last result proved in this appendix is:

Theorem A.8

Let S1, S2. S3, ... be a sequence of regions in the (x, y) plane such
that

(a) Sn contains the point (x0, yo), for all n ;
(b) for all points (x, y) in Sn,

Ix-XOJ<&, IY - YOI<sn,

where {Sn } is a positive sequence with Sn -* 0 as n - oo;
(c) the area of Sn is

A.= JJ dS.
S.

Then if f(x, y) is continuous at (x0, yo),

lim An f f f (x, y) dS = f (xo, Yo)
n->oo

S

Proof. In S,, continuity of f(x, y) ensures that

If(x, Y)-f(xo, YO)I < En

for all (x, y) E Sn, where En -* 0 as Sn -* 0. Hence

I f f f(x,y)dS-f(xo,Yo)
S.

An JJ If(x, y)-f(xo, Yo)I dS
S.

An
En f f dS = En.

We can choose En as small as we wish by letting n - oo and Sn -* 0; this
establishes the theorem.
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Proof of Stokes' theorem

We wish to establish Stokes' theorem for surfaces o which have no
special relationship to the coordinate system {u,}. As in the main text,
it is convenient to make some simplifying assumptions about Q, and
then to indicate how the theorem can be extended to more general
surfaces. Before embarking on the main theorem we need to intro-
duce some notation, and then to derive a formula used in establishing
the theorem. The boundary to the surface o, is the closed curve F. We
assume that (ul, u2, u3) are orthogonal curvilinear coordinates, and
that y is the curve of intersection of o- and the surface u3 = c (c
constant). In Fig. B.1, we show the relationship of r, o- and y in a
particularly simple situation, when y is a continuous curve joining
points A and B on the boundary r; we assume that A and B
correspond to values (ui, u2') and (ui, uZ) respectively of the two

M (u3)

Fig. B.1
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coordinates (ul, u2). As the value c of u3 increases from us at M to u'
(>us) at N, the curve y sweeps out the whole surface o-. In general,
the limiting values u;, u2, ul, uz, will depend upon the value of u3.

We assume that a is a smooth surface, so that we can define a unit
normal vector n to o- at every point; it is chosen to be right-handed
relative to the sense of integration round F; we note that n is not
usually the normal vector to the curve y. At any point P of y, a
tangent vector t can be defined, normal to n; a third unit vector I
completes a right-handed triad (t, n, 1), as shown in Fig. B.1, t being
chosen so that 1 is in the direction of increasing u3; so a displacement
tangential to o-, and normal to y, is of the form I Sv. The increment Sv
corresponds to a change Su3 in the value of u3, and to displacements
Ss' at A and -Ss" at B, shown in Fig. B.1. At P, the orthogonal system
{u,} defines, as in §5.5, a triad {t,}; the two triads (t, n, 1) and (tl, t2, t3)
are shown in Fig. B.2. Since t is tangent to the surface u3 = c, it is
orthogonal to t3 and lies in the plane defined by tl, t2. So a displace-

Fig. B.2
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ment Sq along t is the sum

8qt=hISu1t1+h2Su2t2
of displacements (5.76) along tl and t2; here Sul and Su2 are the
increments in ul and u2 corresponding to the displacement along t.
Taking scalar products with tl and t2 gives

hl Sul = Sq(t - t1), h2 Su2 = Sq(t ' t2), (B.1)

which is also evident from Fig. B.2.
We can now establish the formula needed in proving Stokes'

theorem. Let us consider a function f(ul, u2, u3) of the three coor-
dinates. On the surface u3 = c it is the function f(u1, u2i c) of the two
variables ul, u2; on the curve y, ul and u2 can be regarded as
functions

u1= Ul(q), U2 = U2(q) (B.2)

of the distance q along y. Then, on y, f is the function

f(q)=f[U1(q), U2(q), c] (B.3)

of q. We assume that f has continuous derivatives; the chain rule then
gives

dj of aul of au2
dq aul aq au2 aq

However, (B.1) relates Sq to the corresponding increments Sul, Su2i
and can be written

aul t. tl au2 t - t2

aq h1 ' aq h2

Therefore the chain rule equation becomes

df _ t - tl of +t' t2 of
(B.4)

dq hl aul h2 au2

In this equation, all the quantities have to be evaluated at P.
We now integrate (B.4) along the curve y from A to B. If the

values of f(u,) = f(q) at A and B are fA and fB, then using Theorem
A.2 of Appendix A,

B d(q)
fB -fA= JA dq dq

= J B d [t tl
of +t-t2 of ].

A
q hl aul h2 au2

(B.5)
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This is the formula we shall use to establish Stokes' theorem. This key
formula, as in the proof of the divergence theorem in §6.2, is essen-
tially the fundamental theorem of the calculus.

The components of Ss are {h, Su,; r = 1, 2, 3}, so that the integral
(6.47) is

fr
(vihi dul+v2h2 du2+v3h3 du3). (B.6)

The integrand v3h3 in the third term

V3h3 dU3 (B.7)

is evaluated on F just as 'i is in (6.8b), but with u3 as the independent
variable. In the simple situation of Fig. B.1, which we deal with first,
the range of u3 in passing along r increases from u3 at M to u' at N
through A, and then decreases through the same range on the section
of F through B. The points A and B correspond to the same value of
u3, and the increments Ss' and -Ss" correspond to the same increment
8u3 of u3i we have defined the increment 13v at any point P to
correspond also to Su3i as in Fig. B.2. If we write

1 = lltl + 12t2 + 13t3,

so that (1 t3) = 13, then Sv and Su3 are related by

(B.8)

136V=h33U3. (B.9)

Using suffixes A and B to denote function values at these points, the
integral (B.7) equals

u3

J dU3[(v3h3)A-(v3h3)B]
U3

Using the formula (B.5) with f = v3h3 and using (B.9) to change
variable from u3 to v, this integral becomes

-f dv 13 r B
d q

tl a(y3A3)+tt2 a(v3A3)J.
h3JA q hl 8ul h2 au2

Now
t= (t ' tl)tl + (t ' t2)t2

and the normal vector n is given by

n=IAt;
so the first two components of n are

nl = -13(t . t2), n2 = 13(t ' tl)

(B.10)
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Substituting these results in (B.10), we find eventually that (B.7)
becomes

J J dv d
[

n2 a(v3h3)+ ni
v3h3)]. (B.11q

hlh3 aul h2h3 au2
)

In this integral, dv dq = do, is just the increment of surface area, since
1 is normal to t; and since the q-integration is along y in Fig. 6.7,
while the v-integration corresponds to y sweeping over o, from M to
N, (B.11) is just a surface integral over the whole of a.

The first two terms in (B.6) can be treated in the same way, giving
rise to two integrals over o, similar to (B.11). So (6.47) is given by

f v - ds= dot n1 a(y3h3) a(y2h2)

r o h2h3 8u2 au3

+ n2 (a(vlhl) a(y3h3)

h3hlt au3 aul

+ n3 ia(v2h2)a(yihl) ll
h1h21 aul au2

Since

the surface integral is

v

where curl v is given by (6.52). This establishes Stokes' theorem.
In this proof, we can dispense with the assumption that the curves y

meet the boundary F in only two points. We can also allow sections of
the boundary to have a constant value of u3. Consider, for example, a
surface a of the form MNPQRS in Fig. B.3; the sections NP and MS
of the boundary r have u3 constant, and so do not contribute to the
integral (B.7). Curves on v with u3 = c, for various constants c, are
shown as AB, CD plus EF, and GH. The contributions to (B.7) from
TN and PQ transform into the integral (B.11) over the surface
NPQT; the contributions from QR and RV give the surface integral
over QR V, and those from MT and VS give the surface integral over
MTVS. In a similar way, Stokes' theorem can be established for any
surface which consists of a finite number of pieces of the simple kind
considered in the proof. We note that the surface o- generally needs
to be divided up in different ways for each of the terms in (B.6).

n= nltl+n2t2+n3t3,

J do, n curl v,
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OUTLINE SOLUTIONS TO SELECTED
PROBLEMS

Problems 1.1

1(b) (3a+3b)+(-1)[a+3(b+c)]
= (3b+3a)+[(-1)a+(-3)(b+c)]
= [(3b + 3a) + (-1)a] + (-3)(b + c)

= (3b + 2a) + [(-3)b + (-3)c]

= [(2a + 3b) + (-3)b] + (-3)c

= (2a + Ob) - 3c

=2a-3c.

3 A[a+(-1)b]

=da+A[(-1)b]

=,1a+(-1)[Ab]

_ ,1a -Ab.

Problems 1.2

(2E), (1.11)

(2B), (2E), (1C)

(2C)

(2B), (2D)

(2B), (2C)

(2C), (2D), (1.11)

(1D), (1.9)

5 Position vectors of A, B, C, D are a, b, c, d. A' has position
vector 3(b+c+d). By (1.25), point G on AA' with AG:GA'=
3: 1 has position vector

:M+;[3(b+c+d)]
=4(a+b+c+d).

So G is the centroid.
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8

Outline solutions to selected problems

Position vectors of A, B, C are a, b, c. Those of D, E, F are

b-µc Ac-pad=

v-µ e A-v ' f= - A
-A

DE=e-d= v[(µ -v)a+(v-A)b+(A -µ)c]
(A-v)(v-µ)

Similarly, DF is a multiple of (µ -v)a+(v-A)b+(A -µ)c, and
so of DE. So D, E, F are collinear.

Problems 2.1

2 For A > 0, jAaj2 = (Aa) (Aa)
=A2(a a) =A2a 2, by (2.11) and

(2.3). Thus jAaI = Aa > 0, and unit vector associated with Aa is
(Aa)-'(Aa) = a-'a = u in (2.4a). When A <0, IAa I = -Aa > 0, and
unit vector associated with Aa is (-Aa)-'Aa = -a-'a = -u.

4 (a +b) a-(a+b) b (4D)

(4B),(4D)

=a2-b2. (2.3)

If PQRS is a parallelogram and PQ = a, PS = b, and a is the
acute angle between the diagonals,

PR QS cos a = IPQ2-PS2j.

Problems 2.2

1 Position vectors of D, E, F are

µb+vc vc+Aa
f Aa+µb

d =
µ+v

e= v+A = A+µ

Points P, Q with AP : PD = a : 1-a, BQ : QE =,6: 1 - 0 have
position vectors

(1-a)a+aµb+vc vc+Aa
µ+v ' (1-(3)b+/3

v+A

These are same point (Aa+µb+vc)/(A +µ +v) if

µ+v v+A
A+µ+v' R A+µ+v

By symmetry, the point lies on CF also.
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4 Take scalar products with a, b, c.

5 See §2.3.

2

Problems 2.3

a = (12+22+42)1='121,

b ='15, c ='111.

a b = 0, so angle = 2'1r.

For angle 0 between a, c,

ac cos0=a c=1 (-1)-2.1+4 (-3)=-15,
cos 0 = -15/'1231.

4 a=(22+22+12)1=3.

i = a-1a = 3(2i'+2j'+k').

b-(b i)i=4i'+j'-k'-(2i'+2j'+k')
=2i'-j'-2k'.

Corresponding unit vector is 3'(2i'- j'- 2k').
If k = kii'+k2j'+k3k',

2k1+2k2+k3=0, 4k1+k2-k3=0.
Unit k is therefore :F--31(i'- 2j'+2k').

5 Vertices with position vectors 0, a, b, a+b, with a = b. Diagonal
vectors are a+b, a-b, and (a+b) (a-b)=a2-b2=0.

Problems 2.4

3 b-a, c-a linearly dependent. Any point has position vector of
form r=a+A(b-a)+µ(c-a)=Ka+Ab+µc with K+A+µ=1.
If a:K=f3:A=y:µ,r=(aa+f3b+yc)/(a+f3+y).
Any point D on AR has position vector

d =
(1-T)a+T(aa+ fib+ycl

\ a+f3+y
D on BC if coefficient of a zero, with d = (f3b+ yc)/(f3 + y). So
BD : DC = y : l3 = f3-1: y-1. If AD, BC perpendicular,
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BD : DC = cot B : cot C; so we can take 6 = tan B, y = tan C. R
lies on all three perpendiculars if a = tan A also. Then

a tan A + b tan B + c tan Cr= .

tan A +tan B +tan C

Result follows by a standard trigonometric identity.

5 Position vectors al, a2, .. , an.

A,P=p-a, _ (p-g)-(a,-g).
n n n

Y_ IA.PI2=E[p-glt+la,-gl2] -2(p-g) . (a.-g)
1 1 1

But I 'l (a, - g) = 0 for centroid, giving result.

7 Take origin at centre of common perpendicular, and i parallel to
it. Then mid-points of opposite edges have position vectors of
form ±Ai. Choose j so that opposite edges make same angle with
j; since opposite edges have equal length, their end-points (the
vertices) have position vectors of form

Ai+µj+vk, Ai-µj-vk
and

-Ai +µj - vk, -Ai - µj + A.

Symmetry between A, p., v ensures that other two pairs of
opposite edges are similarly related.

8 Origin at centre of cube, edges parallel to i, j, k. Diagonals then
parallel to unit vectors (i t j t k)/./3. Let u = u li + u2j +u3k be a
vector in the direction of the line. Then cos a, ... , cos S =
(ul t u2± So cost a +... +cost S = 4(u 1 + uz + u3 )/3 = 3.

Problems 2.5

2 d = p,_P2 = p1(cos 41i+sin 01j) -p2(cos 42i+sin 02j),

d2 = (plcos 01-p2cos 42)2+(plsin 01-p2sin c&2)2.

6 up=sin9cosdii+sin0psinOpj+cos9k (p=1,2).
cos a = u, u2

= sin 6 sin 62(cos 01 cos 02 + sin 01 sin 02) +cos 01 cos 02.
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7 r,, = rr(sin 0,, cos O i+sin 0,, sin (kpj+cos O k)

d2 = jr, -r212 gives result.

Problems 3.1

1 anb=j-2k, anc=6i+j-5k.
(anb) (anC)=0+1+10= 11, not orthogonal.

If d = b n c, then d n b and d n c lie in the plane of b, c, orthogonal
to b, c respectively. Since b, c are orthogonal, so are d n b, d n C.
So choose d = b n c = 3(i-k).

2 a, b, c can be represented by the sides of a triangle. Each vector
product is normal to the plane of the triangle, magnitude twice
the area, same sense.

Problems 3.2

1 Final part: use (a c)(b n c) - (b C)(a n C).

2 (ii) (anb) {[b (c n a)]c - [c (c n a)]b}.

3 Three concurrent edges b - a, c - a, d - a.
Volume is

6I[b-a, c-a, d-all.
Expand and use [a, a, d] = 0, [b, a, d] = -[d, a, b] and so on.

4 Origin 0 at end of line of length a; choose i along line, k along
common perpendicular. Then other vertices have position
vectors of form p=ai, q=xi+hk+y(icos6+jsin6), r=
xi+hk+(y -b) (i cos 0+j sin 0). Calculate 61 [p, q, r]I.

5 P, 0, R, S have position vectors 0, q, r, s, satisfying [q, r, s] = 0.
A, B, C, D have position vectors of form ak, b = q + /3k, c =
r+yk, d=s+Sk, and [ak-b, ak-c, ak-d]=0. Expanding,
[b, c, d] = [ak, c, d] + cyclic terms. But [ak - q, ak - r, ak - s] =
[ak, r, s]+cyclic=[ak, c, d] +cyclic. So volumes }[b, c, d]i and
l[ak-q, ak-r, ak-s]i are equal.
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6 Let PA = a, OA = aa, OP = (a - 1)a; likewise for OB, RC, SD.
Take 0 as origin. For (a - 1)a to lie in plane of /3b, yc, 3d,
(a-1)/3y[a, b, c]-f3y8[b, c, d]+(a-1)yS[c, d, a]-(a-1)8(3
[d, a, b] = 0. For non-zero triple products, this and three similar
equations must be consistent, with zero (4 x 4) determinant; this
happens when a + 0 + y + S = 3. Each row of the determinant
should be divided by a(3y8 and expressed in terms of A= a -',
B=(3-', C=y-', D=3-1.

Problems 3.3

1 Unit normal u = 3(2i - j - 2k). Equation of plane is

r u = 3(3i+2j -k) (2i-j - 2k) = 2.
By (3.43), p = 2.
Foot of perpendicular is at 2u.

3 Plane is parallel to both (4i - j - k) and (2i + j - 3k) and so is
normal to their vector product v=2(2i+5j+3k). Equation is

r- (2i+5j+3k)= (i-j+2k) (2i+5j+3k)
or 2x+5y+3z=3.

5 Component of r2-r1 perpendicular to u is a=
r2-IN -{(r2-rl) u}u. This is a vector along the required line;
since it passes through r2, equation is r = r2 +µa.

7 Line is perpendicular to both v and u, and so is in direction u A V.
Passing through r2, it is r = r2 + to A v.

8 Parameters t1, t2 must be chosen so that d = (r1+tlvl)-(r2+t2V2)
is orthogonal to vl and v2, or parallel to V1 A V2 Scalar product
with vi A v2 gives tdIvi A v21= {r1-r2, v1, V21-

12 Plane is parallel to both u, w, so normal to u A W. Equation is of
form r (u n w) = const. But r (u n w) = (r n u) w = m w. Hence
result r (u A w) = in w.

14 Let A, B, C have position vectors A, yj, A. Since (xi - a) a = 0,
x = a2/a i; likewise y = a2/a j, z = a2/a k. By Example 3.3
result, area=Zlyzi+zxj+xykl ='Zxyz(x 2+y 2+z 2)i =3xyz/a.
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Problems 4.1

1 A(A)A(B) _ (ai n a2) (bi A b2).

L1(AB) = (al bi)(a2 b2) -(ai b2)(a2 bi).

These are equal by (3.33).

4

1

-4 7 -1
-2 4 -1 .

3 -5 1

Problems 4.2

J3 1 1 -,/3). 0 -1).
2

1 /32(J3 1) Product (1 0).

4 Let {a}=a t2nir, 0'a±2n7r<21r.
(a) R(a)R((3)=R({a+/3}),R(a)L(f3)=L({a+(3}),

L(a )R (/3) = L({a -/3}), L(a)L(/3) = R ({a -/3}).
(b) R(a), L(a) have inverses R(27r-a), L(a).
(c) Multiplication is associative.

6 Let [p/n] be the fractional part of p/n; then cos27r[p/n]=
cos 21rp/n, sin 2rr[p/n] = sin 21rp/n.
(a) Products: R (ap )R (aq) = R ({ap + aq}),

R(a)L(/3)=L({a+/3}),
L(a)R((3)=L({a-/3}), L(a)L((3)=R({a-(3}).

(b) R(ap), L(ap) have inverses R(2ir-ap), L(ap).
(c) Multiplication is associative.

Problems 4.3

4 Rotations about axis k represented by

0 -1 0 -1 0 0 0 1 0

1 0 0 , 0 -1 0 , -1 0 0 .

0 0 1 0 0 1 0 0 1

Similarly about i, j. Unit matrix plus eight other matrices of type

0 1 0 0 0 -1
0 0 1, 1 0 0;
1 0 0 0 -1 0
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these represent notations through 21r/3, 41r/3 about the four
axes L E j ± k, permuting the coordinate axis.

6 Use the hint. (i, j, k) and (i', j', k') are right-handed triads. If
I - R is of rank 1, then V= i + au, j' = j+pu, k' = k+yu for some
real a, /3, y and some unit vector u. From F. i'= j' j'= k' k'= 1,
we find a(i. u)=-2a2, (3G u)=-zj2, y(k u)=-Zy2. Then
from [i', j', k'] _ [i, j, k] =1 we find [i', j', k'] = 1-2(a2+/32+y2)
or a 2 +a 2 +y 2 = 0. So a =13 = y = 0, and R = I, forbidden.

Problems 4.4

2(b) Iq Y,, spq,agb, = (a A b)p.

Apply Eq 1, Y-s 1, agb,csd, to the identity:

E (a n b)P . (C A d)p = Z aC9 Y_ b,d, -E avd9 E brCr
P q r q r

3 Apply Y, Y.s E, abc, to the identity; the left-hand-side becomes

Y_ Y_ Epgrar(b A c)p = [a n (b n c)]p.
r p

Problems 5.1

2 Define v =u (u, _ u --u2) and v = u - u3 + u2 (u3 < u --u4) Then
r(v)=r,(u) for u1=u--u2 and r(v)=r2(u) for u3<U U4
defines the curve as a function of v over the continuous range
u1-v, u4-u3+u2.

3 The boundary consists of the curves (i) 4 = ¢o, z = Ado (0 p
po), (ii) 4 = 421, z = AO 1 (0 = P -- Po), (iii) z = AO, P = Po (4o = 0
(A,), (iv) the part of the z-axis p =0 (A4 o _ z _ A01).

4 When 6 = Co (constant), i is curve parameter. For all r,, using
cost 71 +sin2 'n = 1,

2
X

2
V

=1
c2 cosh2 60 cz sinh2 Co

an ellipse with semi-axes of length c cosh i;o, c sinh o. When
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ri = rio, elimination of i; gives the hyperbola

x 2 y 2

c sin2 r7o-
1.

2 2 2COs 77o c

Ranges 0,-< < co, 0,-<,q < 2Tr allow x, y to take both signs.

5 p = c cosh e cos 7, z = c sinh a sin 17. In the above, (x, y) becomes
(p, z). e = i;o, ellipsoid of rotation about z-axis; ri = q o, hyper-
boloid of rotation; 0 = ¢o, plane through z-axis.

Problems 5.2

1 Write dv/du = v', dw/du = W.
(i) [a, v', w] + [a, v, w'],

(ii) (v+w) (v'+w')/Iv+wl,
w' n v+(a+w) n v' [(a+w) n v][(v+w) (v'+w')]

(iii)
IV+WI IV+WI3

3 Since v v is constant, v v'= 0, so v, v' orthogonal. Let v n v' _
vv'n; then n n v = vv'/v'. So if to = v'n/v, W A V = V'.
If w'= =(o =0.
Since v and w are constant, v, to are at fixed angle a. Define i, j,
k with to = wk; then v has components v (sin a cos 0, sin a sin 4),
cos a). Substituting in v' = w A V gives 4) = w.

Problems 5.3

1 ds/d0 =2a sin 20; t=sin20 i+cos 20 j; n=cos20 i-sin20 j.

2 r = xi+c cosh(x/c)j; ds/dx = cosh(x/c), s = c sinh(x/c). So
c tan = c dy/dx = c sinh(x/c) = s.
t= sech(x/c)i+tanh(x/c)j, r.= K c cosh2(XIC),

n=tanh(x/c)i-sech(x/c)j. Distance along n corresponding to
y = c cosh(x/c) is then c cosh2(x/c) = r..

3 If A 2a 2 = a2+b2, ds/d0 = a(A2+02)i,
t= (A2+02)-1[(cos 0-0 sin 0)i+(sin 0+0 cos 0)j+bk].
K = a-'(A2+02) 2[(A2+02)(4+02)-02]; n given by K-' dt/ds, then
b = t n n. Torsion given by z = n' b.
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4 ds/du =3(2+u2), t=(2+u2)-1(2i+2uj+u2k).

K =3(2+u2)-2, n=(-2ui+(2-u2)j+2uk)(2+u2)-1.

b = t A n = - (2i + 2uj - 2k)(2 + U2)-1.

K = jb'I = 4(2+u2)-1.

5 K = 3/25a, T = 4/25a.

6r=3i+6uj+6u2k,r=6j+12uk, "r= 12k. (5.60) and (5.61) give
K=T=3(2U2+1)-2.

1
fa

dx. f

Problems 5.4
a-x

dy (x +y
+k)-1

=
f a

dx [ln(a +k) - ln(x +k)]
0

=a+k Ink -k In(a +k).

A s

2 0_.1 <1, 0--f<2a. Jacobian=.1/ab.

J dlJ deA/ab A3/a2bcos2esine=4/15a3b2.
0 0

3 a > 0 : u = +,la, -co < y < co.

a < 0 : v = +,l(-a) and v=-V(-a), 0--u<00.
Region of integration is rectangle bounded by

u = +,/a 1, u = +,/a2, v = -,/(-a3), v = +/(-a3).
.Jacobian = 4(u2+v2), x2+y2 = (U2+v2)2

Integral= JJ du dv 4 = 8,/(-a3) (,/a1-,/a2).

5 Angle a between x- and y-axes. Polar coordinates (p, 4) rela-
tive to x-axis: x = p sin(a - 4)/sin a, y = p sin 4/sin a ;
8(x, y)/a(p, ¢) = p/sin a. Integral is

oor r

J
dp

J
do (p/sin a) exp(-p2) = a/2 sin a.

0

0«
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7 At ±x, arc length in (y, z) plane is 2a cos-'(x/a). Total area
8a 1x=o dx cos-'(x/a) = 8a2.

8 Surface parameters (p, 0) with z = ao :orthogonal system on
surface with h1= 1, h2= (p2+a2)2. Integral of p cos ¢ is

J
2-cos0 d4fo a
0

Area = ira

9 ar ar

au a, 2u2[u2+(a2+4]2.

Problems 5.5

r2 = c2(cosh 2 -cos2 ir) = c2(sinh2 +sin2 a7).

Volume = 2arc3J a d(sinh i;)
J

b d(sin rl)(sinh2 6+sin217)
0 0

= 3arc3 sinh a sin b (sinh2 a+ sin2 b).

Integral = 27rc 3 sinh a sin b [5(sinh4 a -sin4 b) + 3(sinh2 a + sin2 b)].

3 In positive octant, ranges are 0--::z,-::-a, 0, x < z, 0 , y
(a2-z2)2. Total volume is

a

8 dz z(a2-z2)2 =3a3.

0

5 Limit as R -> oc of
R r2 a

tar dr 2 2)2 d8 cos2 0
fo (r + a o

4a
[2a +sin 2a] tan-' a .

As R moo, tan-'(R/a)->Zar.

6 Jacobian = 2Ju4v20I. Volume = 2rrui/15. Iri = uv(u2 +4¢2)2;
integral is

2

2+ 16
r al

3[uI
ln(

ul
+4ar2) +24ar2ui -128ar3 tan-'Oar

3 1 ul+16ar tan a .
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Problems 6.1

2 divv=2(x eZ+y eZ+z).

r r ra r a

I

dyJ dz(xez+yez+z)JJJ divvdT=2J dx
a

0 0 0
T

=2a3(ea-1)+a4.
On x = 0, y = 0, z =0, normal component v n = 0. On x = a,

a a

J0dYJ0dZVfl = a3(ea

Other two terms likewise.

3 Use (6.23a) to give div v = 2z = 2r cos 0, also obtainable from
(6.23b). Hemisphere integral

r a rya 2w

J
d r div v=

J
r2 dr

f o

0 dO
f o

2r cos 0
0 0 0

1 4
zira

On hemispherical surface, v n = v, = 2r2 sin2 0 cos 0, giving
surface integral

rir 2a

2a4J sin9doJ d4sin28cos0=ira4.
0 0

On disc 0 = fir, v n = -vZ = -r2, giving surface integral

ra r2T
1-J rdrJ d¢r2=-Zara4.

o m=o

Total surface integral = 2'ira4, as required.

Problems 6.2

1 Rectangular components a+J/ax, aii/ay, a+//az, with 41 =

(2xy +22)(x2+y2)-2. Cylindrical polars: (6.39) has a1i/ap =
sin 2¢ -p-2z2, p-1a+/r/ao = 2 cos 2¢, a/i/az = 2p-1z. Spherical
polars: 41 = r[sin 0 sin 2¢ +cos 0 cot 0]. Components given by
(6.40).
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2 By (6.40), grad -21ir-3 cos 0 t,. -µr-3 sin 0 to. Small varia-
tions Sr, 30 on level surface 41 = constant satisfy

Sr ai'/ar +56 a+ii/a6 = 0

or

Sr 2µr-3 cos 6 + r 86µr-3 sin 0 = 0.

So a small displacement Sr tr + r 50 to on surface is orthogonal to
grad 41.

Problems 6.3

1 curl v=[8x2y -2z(x2+y2)]i+4xy(z - 2y)j

=2p2(4p sin 0 cost -z)i
+4p2 sin 0 cos.0 (z -2p sin (A)j.

Substitute i = t0 cos <a - t* sin q5, j = t0 sin (a +t4. cos.0.

_ rl
2 J a sin0+J ado

0 0

A
Z

a d 0 2-1 a-a sin O

0

=a a-a(1-2 i)+'-ZVra.

(curl v)r = (r-' sin 20 +2'r-'e-r sin 0 sin 2'0)/sin 0.

rm
a 2

fl

sin 0 dO J d¢ (curl V)r
0 0

d0 [z,ra sin 20+a a-a sin 0(1-2-2)],=J'
equalling f v ds on integration.

3 curl v = - (p sin 2¢ + 2z )tp + 2p cos ¢ (1- cos 0*6

+p-'(3p2+z2+2pz sin ¢)t--.
a 2, a

Onz=0, J pdpj dotz .curly=21r J pdp3p=21ra3.
0 0 0

tr curl v = -(p sin 20 + 2z) sin 0
+p-'(3p2+z2+2pz sin ¢) cos 0

= -r sin 0(sin 0 sin 20 +2cos 0)

+r cot 0(1 +2 sin 2 0+sin 20 sin ¢).
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2 2ir

a2
J

sin 0 d9
J

do t, curl v
0 o

= 2zra 3 Jsin 0 d6 [-2 sin 0 cos 0
0

+cot 9 (1 +2 sine 8)]

= 21ra3, equal to integral over the disc.

Problems 6.4

3 For any constant a, using (6.69) with div a = 0,

a JJdff.If=JJJdrdiv(aP)
O

=a JJJ dTgrad q/.
Using (6.71) with curl a = 0,

JJ doAv=JJ
a

= J J J dT div(v n a)

T

= a JJJ dT curl v.
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addition of 8
along curve 159, 161-2, 171, 265
in plane 55
perpendicular 73, 78, 83

distributive law
for scalar products 27
for vector products 60-3

divergence 211-21, 235, 243-51
divergence theorem 213, 216, 230,

232, 243, 247, 249, 252
division of line in given ratio 17-19,

50
external 19

double integral, see integral
dynamics 157

elastic solid 130
elasticity 246
electricity 126, 203, 228-9, 246-50
electromagnetism 203, 230
electrostatic field 228-9, 246-50
element

of area, see area

of group 107
of matrix 87, 90, 91
of volume 191-2, 195, 200, 202

elementary matrices 132-4
elementary operations 132-4
ellipse 186
endpoint 13, 16-17

of curve 136, 137, 226-7
energy 228
equal and parallel 16
equation

integral form of 242, 243
intrinsic 164, 171
linear 81, 82, 100, 119
of line 75-6
of plane 72-4, 80
vector 78, 80-2, 100

equator 175
equilateral triangle 46
equipotential 229
Euclidean geometry, see geometry
Euclidean space 3, 9, 11, 12-17, 34,

102, 135, 204
Euler's angles 117
exceptional curve 189, 191, 193-4
exceptional point, see point
exceptional set 174, 189, 204, 227
expansion 32-4, 70, 71, 244-5
extension of function 257
exterior forms 87, 94, 269

factorising 27, 63
family
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of curves 172
of planes 77

Faraday 248

field, see conservative field, electrostatic
field, force field, irrotational field,
magnetic field, scalar field, vector
field

field operators 242-6
final point of curve 136
finite curve 159, 259
finite surface 140
finite volume region 188
fixed frame of reference 91, 135, 150
fixed vector 4, 13
flatness of space 9
flow or flux 126, 212, 216-18, 243,

247-9
of vorticity 243

fluid 124, 126, 203, 211, 230, 246
force 6, 12, 52, 124, 230

addition of 6
at a point 12, 16
electrical 229, 247
lines of 248
moment of 124
non-conservative 230

force field 228
frame of reference 90, 104-7, 112-15,

117, 120-1, 125, 126, 129, 132,
157, 205

change of 91, 120-1
fixed 91, 135, 150
local 205, 244
oblique 129-32, 133
rotation of 103-7, 115, 121, 127
see also basis, triad

free vector 4, 13
function 135, 140, 200, 269

bounded 259
continuous, see continuous
extension of 257
harmonic 246
integrable 159, 160
of two variables 253-62
unbounded 180, 186, 192, 203
vector 135, 140, 149, 151, 204
wave 203

fundamental theorem of calculus 214,
226,232,256,265-6

fundamental vectors of line 79

Gauss' theorem 249
general linear transformation 128-34
geometrical interpretation 3, 5, 62-3,

66-7, 68, 76, 82, 120, 149, 156

geometry 3, 17-22, 25, 34, 42-9, 72-
80,87,269

gradient vector 221-9, 243-7, 250-1,
252

gravitation 203, 228, 246, 250
great circle 173-4
Green's theorem 216-18, 230, 232,

243, 247, 249, 252
group 107

continuous 118-19
cyclic 110
of linear transformations 130
rotation 107, 118

group element 107

harmonic functions 246
heat flow 126
helix, see circular helix
Helmholtz' theorem 251-2
hemisphere 175, 208
Hilbert space 34

increment 149-50, 154, 158, 159,
176, 178, 189, 191, 195, 202, 214,
226,232,256,257,264-7

infinite curve 137, 138, 227
infinite limit of integral 161
infinite surface 145-7, 189, 234
infinite volume 189, 196, 252
infinite-dimensional space 34
initial point 12, 16, 17

of curve 136, 159
inner product 24
integrable function 159, 160
integral(s) 124, 159, 196, 226, 256-8

addition of, see addition
along curve 160-2, 164, 226-8, 230,

263-8
double 172, 177-81, 185, 215, 232,

253,257-62,266-7,270
of curl 234, 252
of derivative 214, 226, 232, 256,

265-6
of divergence 216
of gradient 226-9, 252
path 226, 228, 230
repeated 178-9, 180-2, 196, 260-2
Riemann 257-60
surface 172-86, 212-18, 232-3,

249, 263-8
triple 215, 253, 270
volume 188-98, 215, 218, 249
with infinite limit 161

integral calculus 149
integral form of equation 242, 243
interior point 142, 144, 189
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intersection
of curves 137, 173
of lines 77
of planes 75-7, 79
of surfaces 145

intrinsic coordinates 164
intrinsic equation 164, 171
intrinsic property 150
invariance 91, 126, 204, 217
inverse

of group element 107, 110
of square matrix, see square matrix

inverse square law 229
inward normal 212
irrotational field 240-1, 252
isomorphic sets 12
isosceles triangle 45, 163

Jacobian 177, 182, 184, 187, 192-3,
196, 200-2

Kronecker delta 91, 92, 111, 126, 222

Laplace equation 246-51
Laplacian 242, 246-51
latitude 173, 175
left-handed 38, 57, 114-15, 127, 157
length 3, 25, 29, 73, 78

of arc 159, 161, 162
level surface 224-5, 229
limit 58-9, 149, 151, 154-5, 160, 163,

178, 185-6, 196, 199, 214, 217,
235,236,240,253-6,258

limit set of points 143, 144, 175, 188-
9,193,234

limits of integration 161, 178-9, 182-
6, 198, 213, 226-7, 234

line 16-19, 33, 75-80
division of, in given ratio 17-19, 50
of intersection of planes 75-6, 79
parametric equation of 75-7
trisection of 22

linear dependence 30, 32, 65-6, 68,
70, 80, 95, 101, 129, 132

linear equations 81, 82, 100, 119
linear independence 32-4, 36, 37, 57,

70, 72, 74, 76, 100-1, 129, 174,
190

linear operator 91, 243
linear space 11, 12, 30
linear transformation 91, 128-34, 205
linearity 27
lines of force 248
local frame of reference 205, 244
longitude 173, 175

289

magnetic dipole 229
magnetic field 230
magnetism 229, 246
magnitude, see modulus
mass 18, 250
matrix 87ff, 269

adjoint 97-101
anti-symmetic 155
diagonal 92, 109, 120, 132
elementary 132-4
non-singular 98-100, 134
rank of 100-1, 102, 109-10, 122,

132
reflection 108-9, 130
zero 100, 154
see also column matrix, component

matrix, diagonal matrix, orthogonal
matrix, reflection matrix, rotation
matrix, row matrix, square matrix,
transformation matrix, transposed
matrix, unit matrix

matrix addition 87-8
matrix algebra 87-101
matrix commutation 92
matrix difference 88
matrix element 87, 90, 91
matrix product 88, 90, 92, 95-7, 101-

2, 105-6, 112
matrix sum 87, 88
Maxwell 248
mean position 19
mechanics 124
medians of triangle 21
Menelaus' theorem 23
mesh of curves 173, 176, 189, 212,

218,236,258-60
coarse 177, 195, 212, 213, 218,

235, 257
mid-point 21, 22
minors 99
model 34
modulus (magnitude)

of unit vector 26
of vector 3, 5, 8, 24-6, 29, 40,

51,57,61,90-1,158-9,163,
224

molecule 203
moment of force 124
moving axes formula 157
multiplication

matrix 87-9, 91
of two vectors, see scalar product,

vector product
of several vectors 65-70
scalar, of a vector 3-5, 39, 51-2

multiply out 8, 10, 27, 60, 63
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nabla 243
negative sense of rotation 39, 107-8
non-parallel planes 75-6
non-singular matrix 98-100, 134
normal 30, 38, 85, 101, 163

inward 212
outward 212-13
vector, unit 163, 170, 211-14, 216,

232,234-5,264-7
normal component 211-16, 220
normal plane 166
normal point 174, 189
n-space 33-4, 134
nuclei 203

oblate spheroidal coordinates 148, 194
oblique coordinates 148, 187
oblique frame of reference 129-32,

133
one-sided derivative 150, 174, 175,

190, 194, 253
osculating plane 170
open interval 136, 150
open surface 140
operator 91, 242-6
order of differentiation 151-2, 153,

254-6
origin 15

change of 15, 19-21, 72
orthocentre 50
orthogonal component 36, 57, 60, 78,

153, 211-12
orthogonal matrix 103, 112-13, 117,

118, 206
orthogonal system of coordinates, see

coordinates
orthogonal transformation 103, 111,

126, 133
orthogonality 30, 36, 39, 40, 47, 49,

57, 60-2, 68, 76, 79, 100-1, 111,
155, 176, 182, 184, 192, 225, 229

orthonormal basis 36, 102-3, 111, 245
see also frame of reference, triad

orthonormality conditions 111-12
outward normal 212-13

parabola 186-7
parallel 5, 16, 31, 65, 80

equal and 16
parallel component 35, 60, 80, 211-12
parallelepiped 21, 22, 66-7, 124, 191

diagonals of 22
parallelogram 21, 23, 59, 64, 66-7,

93, 176, 213-14
of forces 6

parallelogram law 6, 9

parameter 72, 75, 136, 139, 143-7,
154, 158-60, 172-3, 188-9, 195

range of, see range
parametric equation

of curve 136, 172-3, 210-11
of line 75-7
of plane 72, 74
of surface 207

partial derivative, see derivative
passive transformation 91, 104-5, 118,

125, 129, 133, 134
path integral 226, 228, 230
permutation 126
perpendicular 30, 66, 72, 83

foot of 78
of triangle 46, 50

perpendicular distance 73, 78, 83
piecewise smooth curve 161
plane(s) 31, 33, 42-3, 50, 55, 68, 72-

7, 80, 101, 147
intersection of 75-6, 79
normal 166
osculating 170
parametric equation of 72, 74
tangent 175-6, 190-1

plane curve 164, 168, 211
plane rotation 102-7, 120
plane surface 177
plus sign 5
point 12-15

boundary 143, 188, 253
exceptional 174-5, 189, 191, 208,

213,227,233-4,268
final, of curve 136
forces at 12, 16
interior 142, 144, 189
normal 174, 189
see also endpoint, initial point, limit

set of points
point charge 228, 246-9
Poisson's equation 249-50, 270
polar coordinates 51, 140, 181-2, 184,

186
polar vector 123, 236, 243
position vector 13, 17, 31, 43, 51, 52,

135-6, 140, 145, 188
of point in plane 50, 72
of point on a line 17-19, 75, 78

positive sense of rotation 39, 103
potential 227, 241, 247, 251

electrical 203, 228, 247, 249
gravitational 203, 228

potential difference 228
product, see multiplication
prolate spheroidal coordinates 199
pseudoscalar 124
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pseudovector 122-4
projection 27, 35, 37, 73, 78, 214
Pythagoras' theorem 2, 40, 53

radial vector 207, 219
radius of curvature 164, 171

range of coordinates or parameters 51,
52, 55, 57, 136-47, 179, 182-6,
188, 196, 198, 208-11, 231, 253,
257, 263-4

rank of matrix 100-1, 102, 109-10,
122, 132

rate of change 154-7, 166-7, 221-4,
252

relative 157
rate of rotation 156-7, 164, 166-7
ratio 17

division of line in given 17-19, 50
ray 16, 101, 119
real number 1, 3
reciprocal basis 132
rectangular coordinates, see coordinates

rectangular solid 209
reference frame, see frame of reference
reflection 108-9, 122-4, 126, 128

in axis 109
in plane 120, 133
in origin 109, 117, 122-3, 130

reflection matrix 108-9, 130
reflex angle 58
relativity, theories of 126
repeated integral 178-9, 180-2, 196,

260-2
resultant 43
rhombus 42
Riemann integral 257-60
right circular cone 146-7, 175
right circular cylinder 193, 198, 219
right-handed 58, 61-2, 114-15, 157,

166, 232, 234, 264
see also triad, right-handed

rotation 38, 57-9, 102, 121, 124, 236
axis of 115-16, 117, 119-20
continuous 115, 117
of axes 154-7
of frame 105, 117
in plane 102-7, 120
of fluid 124, 230
of reference frame 103-7, 115, 121,

127
of vector 105-7, 118, 123
rate of 156-7, 164, 166-7
sense of 39, 47-8, 102-3, 107-8,

123
zero 107-8

rotation group 107, 118

rotation matrix 109, 116-17, 118,
121, 125, 127, 156

row 88, 89, 112-13, 132
row matrix 90, 92-4, 97, 104, 131

running vector 72, 75

scalar 1, 35, 91, 124, 235
scalar field 203-4, 221, 226, 246
scalar multiplication of a vector 3-5,

39, 51-2
scalar quantity 1

scalar product 24-34, 39-40, 88, 90-
1, 96, 106, 111, 123-4, 131-2,
151, 217

scalar triple product 65-8, 94-5, 98,
124, 190, 192, 244

scale 133
second difference 254-6
self-intersection 137, 145
semi-infinite curve 137, 138, 227, 229
sense of rotation 39, 47-8, 102-3,

107-8, 123
sequence of integrals 217, 235, 262
Serret-Frenet formulae 167
shear 123
similarity 9
similarity postulate 9
simple closed curve 137, 142, 228,

241
simple surface 145, 174, 189
simplex 198
sine 44, 47-8, 106, 163
sine formula 84-6
smooth curve 159, 161, 175
smooth surface 174-5, 189, 191, 194,

264
space 5, 33-4

Euclidean, see Euclidean
flatness of 9
Hilbert 34
infinite dimensional 34
linear 11, 12, 30
one-dimensional 34
three-dimensional 5, 33-4
two-dimensional 34
vector 11, 12, 34

sphere 84, 140, 147, 207-8, 229
unit 84, 141, 144, 173, 175

spherical polar coordinates, see
coordinates

spherical triangle 84-5
spherical trigonometry 84-6
spheroid 199
square matrix 91, 92, 112

inverse of 97-100, 102, 103, 112,
114,117,129
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Stokes' theorem 230-40, 242, 263-8
strain 126, 130, 203 of rotation matrix
stress 126, 130, 203 of tensors 124-8
strictly increasing function 136, 159
sub-interval, open
subtraction

136

of matrices 87, 88
of vectors 9-10

suffix 88
sum

lower 258
of angles 47-8, 106-7
of integrals, see addition
f l 5arso sca

of vectors 6-8, 10, 39
upper 258

surface 135, 140-7, 172-5, 207-8,
224, 263

area of 180, 232
closed 140, 143, 189, 207-11
finite 140
infinite 145-6, 147, 189, 234
level 224-5, 229
open 140

parametric equation of 207
plane 177
self-intersection of 145
simple 145, 174, 189
smooth 174-5, 189, 191, 194, 264

surface flux 212, 216
surface fold 144-5

surface integral, see integral
symmetry 67, 74, 95

tangent 160, 174
of angle 44

tangent plane 175-6, 190-1
tangent vector 150, 158, 164, 174-5,

204-6, 231-2
unit 160, 161-3, 170, 174, 190,

224, 230, 264
tensor 124-8

identity 128
of rank n 125
second-rank 124-6
third-rank 126
unit 126

tetrahedron 51, 67, 71
three-dimensional rotation group 118
three-dimensional space 5. 11, 12, 33,

124
torsion 166-9
transformation 87ff

active 91, 118, 125, 129,
134

Jacobian of, see Jacobian
linear 91, 1Z8-34, 205

120-1

of vector field 204-7, 235
passive 91, 104-5, 118, 125, 129,

133, 134
transformation matrix 103, 108, 112-

13, 115-17, 124, 130, 205
transposed matrix or transpose 90, 94,

102, 103, 112, 131, 154-5
triad 36, 38, 57, 61, 63, 68, 89, 114-

17, 133, 154, 166, 188, 231, 234,
237, 245

right-handed 38, 57, 63, 93, 115,
116-17, 126, 154, 166, 192, 232,
235, 264

variable 154-7, 205-7
see also basis, frame of reference

triangle 21, 46, 50, 64, 139, 143
equilateral 46
isosceles 45, 163

triangle inequality 46
trigonometry 29, 43-4, 84-6
triple contact 171
triple integral 215, 253, 270
trisection of line 22
twisted cubic 172

unbounded function 180, 186, 192,
203

uniform dilatation 133
uniform continuity 178, 195, 256-60

piecewise 259-60
uniqueness

of axis of rotation 119-20
of circle of curvature 170-1
of coordinates 52
of matrix inverse 99-100
of potential 227-8
of solution 80-2, 100
of vector field 251-2
of zero vector 5

uniqueness of expansion theorem 32,
33, 37

unit circle 135, 141
unit disc 140, 143
unit element of group 107
unit matrix 91-2, 103, 107, 110, 119,

120, 126, 154
unit of measurement 133
unit normal, see normal
unit sphere 84, 141,
unit tensor 126

130, 133, unit vector 25-9, 35,
57, 59, 64, 72-3,

144, 173, 175

36, 48, 52, 53,
75, 78-9, 84-5,

111, 116, 154-5, 160, 163, 165,
166, 223
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vector 2
abstract 4, 12-14, 19
axial 122-4, 157, 236, 243
fixed 4, 13
free 4, 13
fundamental, of line 78-80
gradient 221-9, 243-7, 250-1, 252
polar 123, 236, 243
radial 207, 219
running 72, 75

See also binormal vector, gradient
vector, normal, position vector,
tangent vector, unit vector, zero
vector

vector addition 5, 10, 39, 51
vector analysis 203-52
vector calculus 135-202
vector equations 78, 80-2, 100
vector field 203-7, 212ff
vector function 135, 140, 149, 151,

204
vector moment of line 78-80
vector product 57-64, 93, 97, 99, 101,

122-3, 126, 151, 157, 177, 244,
266

vector quantity 2, 52
vector space 11, 12, 34

vector sum 6-8, 10, 39
vector triple product 68-9, 250
velocity 52, 211-12
vertex of cone 146, 175
volume 67, 71, 124, 191, 196

infinite 189, 196, 252
volume element 191-2, 195, 200, 202
volume integral 188-98, 215, 218, 249
volume region 188-9
vorticity 124, 235

wave function 203
weighted mean 18
work 228, 229

zero angle 48
zero axial vector operator 245
zero circulation 240, 242
zero curl 240, 252
zero determinant 95, 119, 129
zero displacement 31
zero divergence 243, 247
zero flow or flux 243, 247-8
zero matrix 100, 154
zero rotation 107-8
zero vector 5, 8-9, 13, 26, 30, 58, 163
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