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Preface

The theory of bifurcation of vector fields is the study of a family of
equations that are close to a given equation. For example, the family of
equations could be a system of vector fields depending on several
parameters. An important problem is to understand how the topologi-
cal structure of the flow generated by the family of vector fields changes
qualitatively as parameters are varied. The main purpose of this book is
to present some methods and results of the theory of bifurcations of
planar vector fields.

Since simplifying equations is often a necessary first step in many
bifurcation problems, we introduce the theory of center manifolds and
the theory of normal forms. Center manifold theory is important for the
reduction of equations to ones of lower dimension, and normal-form
theory gives a tool for simplifying the forms of equations to the ones
with the simplest possible higher-order terms near their equilibria. We
introduce versal deformations of vector fields and define the codimen-
sion of a bifurcation of vector fields. This is illustrated by saddle-node
and Hopf bifurcations. We discuss in detail all known codimension-
two bifurcations of planar vector fields. Some special cases of higher-
codimension bifurcations are also considered.

In Chapter 1, we introduce briefly the basic concepts of center
manifolds. We show the existence, uniqueness, and smoothness of
global center manifolds. The existence, asymptotic behavior, and folia-
tion of local center manifolds are also discussed.

In Chapter 2, we present the theory of normal forms. We first discuss
in detail normal forms of vector fields near their equilibria. We intro-
duce two methods for computing normal forms: the matrix representa-
tion method and the method of adjoints. We also introduce normal
forms of equations with periodic coefficients or with symmetries. Nor-
mal forms of diffeomorphisms and Hamiltonian systems are discussed.

vii



viii Preface

Complete proofs of Poincaré and Siegel linearization theorems are
presented. Takens’s Theorem gives a relation between diffeomorphisms
near fixed points and the time-one maps of flows of vector fields near
equilibria. We introduce also versal deformations of matrices and of
infinitesimally symplectic matrices and normal forms of vector fields of
codimension one and two.

In Chapters 3, 4, and 5, we discuss bifurcation problems of vector
fields with some degeneraciecs. We assume that the problems to be
considered are restricted to local center manifolds and are in their
normal forms up to some order. In Chapter 3, we introduce the
concepts of versal deformations and the codimension of a bifurcation of
vector fields. Bifurcations of codimension one near singularities and
homoclinic orbits are considered. In Chapter 4, we deal with bifurca-
tions of codimension two. For vector fields whose linear parts have
double zero eigenvalues, we consider a nonsymmetrical case and the
cases with 1:¢q symmetrices (g = 2,3,4 and g > 5). The case of 1:4
symmetry is the most difficult and is far from being solved completely.
For the cases in which the linear parts have one zero and one pair of
purely imaginary eigenvalues, or two pairs of purely imaginary eigenval-
ues, we reduce them to planar systems and then give complete bifurca-
tion diagrams. In Chapter 5, we discuss higher-codimension bifurcation
problems, including Hopf and homoclinic bifurcations with any codi-
mension and cusp bifurcations with codimension three and four.

In the last section of each chapter we give briefly the history and
literature of material covered in the chapter. We have tried to make
our references as complete as possible. However, we are sure that many
are missing.

We would like to express our special acknowledgment to Max
Ashkenazi, Freddy Dumortier, Jibin Li, Kening Lu, Robert Roussarie,
Christiane Rousseau, Lan Wen, and Henryk Zotadek. They read all or
part of the original manuscript and made many helpful suggestions
which enabled us to correct some mistakes and make improvements.

The second and the third authors would also like to thank Professor
Zhifen Zhang and Professor Tongren Ding for many helpful discus-
sions. They would also like to thank the Department of Mathematics at
Michigan State University and the Center for Dynamical Systems and
Nonlinear Studies and the School of Mathematics at the Georgia
Institute of Technology for their kind hospitality, since most of the book
was written while they were visiting there.

This work was partially supported by grants from DARPA and NSF
(USA) and from the National Natural Science Foundation of China.



1
Center Manifolds

The main goal of this book is to study some bifurcation phenomena of
vector fields. This is, in general, a complicated problem. As a prelimi-
nary step, it is necessary to simplify the problem as much as possible
without changing the dynamic behavior of the original vector field.
There are two steps for this purpose: to reduce the dimension of the
bifurcation problem by using the center-manifold theory, which will be
introduced in this chapter, and to make the equation as simple as
possible by using normal-form theory which will be discussed in the next
chapter.

We first give some rough ideas about center manifolds. Consider a
differential equation

X=Ax+f(x), (A)s
where x € R", A € Z(R",R"), f € C*(R",R") for some k > 1, f(0) =
0, and Df(0) = 0.

We write the spectrum o(A4) of A as
o(A)=0,U0. Vg,
where
g,={A€a(A)|Rear <0},
g.={A€a(A)|Rer =0},
g,={r€0(A)|Re A > 0}.

Let E,, E_, and E, be the generalized eigenspaces corresponding to o,
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g,, and ¢, respectively. Then we have
R"=E,®E.®E,
with corresponding projections
7 R" > E, 7T..R*" > E_, 7,:R" > E,.

It is well known that if A is hyperbolic, that is, o, = &, then the flow
of (A); in a small neighborhood Q of the equilibrium point x = 0 is
topologically equivalent to the flow of the linearized equation at x = 0

Since x(t) = e'x(0) is the solution of (A), and ¢, = &, any nonzero
solution in E; (or E,) tends to the equilibrium x = 0 exponentially as
t > 4o (or t > —o). Therefore, the structure of flow in Q is simple;
it is also stable with respect to any small perturbation on the right-hand
side of equation (A),. See Hartman [1], for example.

However, if o, # &, then the situation will be different from the
above in two aspects. First, the topological structure for (A); is not, in
general, the same as for (A), any more; this will be shown in a lot of
examples in Chapters 3-5. Second, more complicated structure of the
flow for (A); may exist on an invariant manifold W<(f), and the
dimension of W<(f) is equal to the dimension of E..

In fact, if f=0, then all bounded solutions of (A),, including all
equilibria and periodic orbits, are contained in the subspace E,, which
is invariant under (A),. So we take W<(0) = E_. We will prove that the
aforementioned W°(f) exists for f # 0, it is tangent to E_ at x = 0,
and W<(f) contains all solutions of (A)f that stay in Q for all + € R
In particular, W<(f) contains all sufficiently small equilibria, periodic
orbits, and homoclinic and heteroclinic orbits. And if ¢, = &, then all
solutions of (A)f (in Q) will converge exponentially to some solutions
on W<(f) as t » +. Therefore, instead of the n-dimensional equa-
tion (A);, we can consider a lower-dimensional equation on W(f) for a
bifurcation problem, and We(f) is called a center manifold. The precise
definition will be given subsequently in Section 1.1.

We will prove the existence, uniqueness, and smoothness of global
center manifolds in Sections 1.1-1.2 under a quite strong condition
which says the Lipschitz constant of f is globally small. In Section 1.3
the cut-off technique is used to get the local center manifolds from the
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global theory, and the above Lipschitz condition will be satisfied auto-
matically since f(0) = 0 and Df(0) = 0. But a new problem arises: The
local center manifold is not unique. In fact, different cut-off functions
can give different local center manifolds. Hence, it is needed to show
the equivalence (in some sense) between different local center mani-
folds concerning the bifurcation problems. Finally, in Section 1.4 we
discuss the center-stable and center-unstable manifolds, give the asymp-
totic behavior of any solution of (1.1) in R”, and describe the invariant
foliation structure.

1.1 Existence and Uniqueness of Global Center Manifolds

Consider the equation
X =Ax + f(x), (1.1)

where x € R”, 4 € Z(R",R"), f € C*([R",R") for some k > 1, f(0) =
0, and Df(0) = 0.

We keep the notations E, E_, E, and =, m, throughout this
chapter, and let

E,=E ®oFE,, T, =Tt m,.

As usual, we denote by |y| the norm of y in some Banach space. Let
X,Y be Banach spaces and C*(X,Y) be the set of all C* mappings
from X into Y. We define the Banach space

CHX,Y) = {w € Ck(X,Y)’||W||Ck = max sup |D'w(x)| < oo}.

<i<k yex
If X =Y, we write CF(X, X) as CH(X). We let
|IDwll = sup, ¢ x| Dw(x)I.
Similarly, we define
ID*w(x) — D*w(y)ll -
lx — yllx

CHI(X,Y) - {w . c:<x,Y>‘sup

x,yEX,x#y
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with norm

ID*w(x) — D*w(x)l
lx — }’||X

Iwlicx.r = lIwllcx + sup , X, yEX,x#y.

Finally, we denote by %(¢,x) the solution of (1.1) with the initial
condition ¥(0, x) = x.

Now we state the main result of this section, and will prove it by
using several lemmas.

Theorem 1.1. (i) There is a positive number 8, which depends only on A
in (1.1) such that if f € C'(R") and Lip(f) < 8,, then the set

We = {x € R"|sup|m, %(t, x)| < °°} (12)

teR

is invariant under (1.1) and is a Lipschitz submanifold of R"; more
precisely, there exists a unique Lipschitz function ¢ € CXE,, E,) such
that

We={x +¢(x)x. €E]}. (1.3)
(i) If ¢ € CNE,, E,), and the set
My = {x .+ ¢(x.)|x €E} (1.4)

is invariant under (1.1), then My, = W< and ¢ = ¢.

Definition 1.2. W¢ is called the global center manifold of (1.1).

Remark 1.3. If f € C}(R"), then we will usually replace the condition
Lip(f) < 8, by IIDf |l < 8.

Remark 1.4. The uniqueness conclusion (ii) should be understood in
the following sense: If M, is invariant under (1.1), then ¢ € CXE,, E,)
is determined uniquely. This is not true if we replace the condition
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¢ € CAE_, E,) by ¢ € CAE_, E,) unless A|g, is semisimple and f
has compact support (see Sijbrand [1] and Vanderbauwhede [3] for
more details).

Lemma 1.5. For any integer k > 0, there are constants K > 1, a > 0,
and B > 0 such that ka < B, and

led'r | < Ke®V, teR,
let'r| < Ke ™, >0, (1.5)
ler,| < Ke, t <0.

Proof. Let

B = min{Re A|A € g, U o, |} — ¢,
B
0<e<a<—k—,

where € and « are sufficiently small. Thus, the existence of K is
obvious by the properties of e m]

Let v satisfy
a<y<p. (1.6)

Define a Banach space by

Y

C. = {x € C°(R,R™)|lixll, = sup e™¥|x(¢)| < °°}-

teR

The following lemma gives a different criterion for W°.

Lemma 1.6. Suppose f € CYY(R") and (1.6) is satisfied. Then
o

we={xeR"|%(-,x) €C,} (1.7)
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(ii) Consider the integral equation

y(t) = et x + [eADm f(y(r))dr
0

+ Lte“’("")wu f(y(7))dr + fimeA(t_f)‘lTsf(y(T))dT. (1.8)

We have
we ={y(0) € R"| y(-) € C, and satisfies (1.8) for some x € R"}.
(1.9)

Proof. By the variation of constants formula, for ¢, € R we have

E(t, x) = e470E(tg,x) + [€4If(%(7, x))dr. (1.10)
o

Denote by W¢ the right-hand side of (1.7), and by W< the right-hand

side of (1.9). We will show that W¢ ¢ W c Wec W°.
(a) Suppose x € W*¢; then by (1.2)

sup e W7, %(¢, x)| < suplw,X(¢, x)| < . (1.11)
teR teR
Taking ¢, = 0 in (1.10) we obtain
mE(t,x) = etmx + [eAOm f(¥(r, x))dr.  (112)
0

Using Lemma 1.5 and (1.6), we have from (1.12) that

lm %(¢t, x)| < Ke™|x| + K| flico

fte“’("’)dﬂr
0

lfllce
sKeV"'(|x|+ flle ,
Y

whence

sup e |7 %(¢, x)| < . (1.13)

teR

It follows from (1.11) and (1.13) that x € W*¢, and this implies W* c W¢.
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(b) Suppose now x € W¢, that is, #(-, x) € C,. From (1.10) we have

m,x(t, x) = eV X (ty, x) + fte“‘("’)qruf(f(f,x))df. (1.14)

to
Fixing ¢ € R and ¢, > max(¢, 0), we obtain from (1.5)
le4¢ 1 %(t,, x)| < KePU™9|%(¢,, x)]
< KeP =B g(, ), > 0 asty > +,

since #(-,x) € C, and y < B. Therefore, taking the limit in (1.14) as
t, = +oo, we have

m&(t,x) = [ e 0m f(i(r, x))dr. (1.15)
Similarly, we can obtain

mE(t,x) = j’ e =" f(%(7, x))dr. (1.16)

Combining (1.12), (lié), and (1.16), we see that %(-, x) satisfies (1.8).
Thus x = %(0, x) € Wi Therefore W< c W¥.

(¢) Suppose y, € WE, that is, there is a function y(-) € C,, which
satisfies (1.8) for some x € R” and y(0) = y,. Then from (1.8)

y(t) = e“"{qrcx + f_owe“‘"qrsf(y(f))df + f:e“‘"qruf( y(T))dT}
+ fote“'("’)f(y(f))df

=ed'y, + fte“‘(“’)f( y(7))dr.
0

Hence y(¢) is the solution of (1.1) with initial value y(0) = y,. Using
(1.5) and (1.8), it follows that

® K
7y ()] < Kliflles | 8¢ ~7dr = 2 lflleo < =,
t
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and
K
lmy() < = lfllco < oo,
B
since f € C)(R"). Hence |m,y(t)] < ®. Thus y, € W¢. This implies
Wec we. a

Now we consider the integral equation defined by (1.8). Let F:
E, — C, be defined by

F(§)(t) =e'¢, ¢E€E, (1.17)

and G: C, - C, be defined by
GY()() = [eDmy(r)dr + ['e=m,y(r)ds
0 Y

+ [ ett=Dm y(r)dr. (1.18)

We denote the previous three integrals by G (y(-)X¢), G,(y(-)X¢t) and
G (y(-)X¢), respectively. We will use these notations repeatedly in this
chapter.

Define J: E, X C, = C, by

J(§,y) = F(§) + G(f(»()))- (1.19)

Obviously, if £ € E, then y = y*(:) is a fixed point of J(¢, - ) if and
only if y*(#) is a solution of (1.8) with x = £.

Lemma 1.7. There is a number 8, > 0, which depends only on A, such
that, if Lip(f) < 8, then for any ¢ € E_, J(¢, y), defined by (1.19), has
a unique fixed point y = x*(-, £).

Proof. Note that
J(&,v1) —J(€, ) = G(f(3:("))) = G(f(¥)))
= G(f(yl(’)) _f(yz(’)))’ (1.20)
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and by (1.5) we have

|G.(£(3:1(*)) = F(r( ()|

j;)teA(t-T)ch(f(yl(T)) - f(yz(T)))dT

< K Lip(f)

l?““”wmf)—yxvndv

< K Lip(f) j:e“""‘e""'(flelg e y(7) — yz(T)l)dT
eV
< 2 K Lin(H)ly, =yl (121)
Similarly, we have
it

IG(f(»1()))(2) = G(F(y (D) < K Lip(H)lly, = vy,

B—vy
(1.22)

vt

B—vy

1G,(F(y:1(")))(1) = G(f(¥.(-))) ()] < K Lip(f)lly; = y,lly-
(1.23)

These estimates give

sup e "IG(f(y1(+)))(1) — G(f(y(-)))(®)I

teR

1
+
y—a B-v

SK( )Lip(f)”}’1 =¥l

We choose

1 1 2 -1
50——3'[K(7_a+3_7)] .



10 Center Manifolds
If Lip(f) < 8, then

K ! + 2 )L' <l 1.24
52+ s oo < 5. (120

and
1
IG(f(3:())) = G(F(ya( Iy < 3lys = yally. (1.29)

Thus, for any £ € E_, by (1.20), we have

1
(€ v1) = I 92l < Sllyi = aly, (1.26)

as long as Lip(f) < §,.
By the Uniform Contraction Mapping Theorem, J(&, - ) has a unique
fixed point y = x*(¢, £) foreach ¢ € E. O

Lemma 1.8. If Lip(f) < 8, then there exists a unique Lipschitz function
¥ € CXE,, E,) such that

WC = {xC + ll’(xc) | xC € EC}'
Proof. By Lemmas 1.7 and 1.6, (1.8) has a unique solution x*(¢,¢) =
#(t, x*(0, ¢)), for any £ € E_. By Lemma 1.6,

we={x*(0,£)|£ € E}.

Note that
x*(0,6) =J(&,x*(, §))0) = £+ 9(£), E€E,
where
W(§) = [etm f(x*(r.))dr + [ e mf(x*(r,€))dr.
(1.27)

We need to prove the boundedness and Lipschitz continuity of .



Existence, Uniqueness of Global Center Manifolds 11

From (1.5) it follows that

[lem (0| =| [ etmp(at(=r.6))ar

0 K
< Kllflleo|_ e?dr = Zfllco < =,

(1.28)

since f € C)(R"). Similarly,

[° e rm f(x*(r,€))dr

< o, (1.29)

Hence  is bounded.

In (1.22) and (1.23), we take y,(¢) = x*(¢, £) and y,(¢) =x*(t,£),
g ée E., and then using the condition (1.24) and letting ¢ = 0, we
obtain

lw(¢) - w(8)| < %le*(-,ﬁ) -x*(,8)],-  (130)
On the other hand, for £,£ € E,
|x*(t,6) = x*(1,2)]
=&, (L)1) —I(E (-, &))(1)]
<|F(& - &)(0)| +]|GF(*(C.0))() = G(£(x* (-, €)))(0)].

Using (1.5) and (1.25), respectively, we have

[*-.6) —x* (-, £,

A

" 1
< Kem0=Mlg — g+ —|x*(-. &) - 2% (- 8)

'y’

whence,

u 3K u
| &) —x* ()], = le -4 (1.31)
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From (1.30) and (1.31) we have finally that

A

.~ K R
(&) —w(e)l< Sl6-¢l foré, ek, (1.32)

Thus the lemma is proved. O

Remark 1.9. By the definition of C,, we can rewrite (1.31) as

” 3K ”
|xﬂu§)—angﬂseWh54§—§| (1.33)

for any y € (a, B), £, € E and all t € R

Proof of Theorem 1.1. Since (¢, (t,, x)) = (¢, + t,, x), the set W*¢
defined by (1.2) is invariant under (1.1). The remaining conclusions in
(i) are proved in Lemma 1.8.

Now we prove the uniqueness of ¢ in (ii). Suppose ¢ € CXE,, E,)
and M, defined by (1.4) is invariant under (1.1). Then (¢, x  +
d(x)) e M, for all t € R and any x. € E_. By the definition of M, it
follows that

T k(e X, + ¢(x)) = d(mE(2, x, + $(x.))).

Since ¢ € CXE,, E,), the boundedness of ¢ implies the bounded-
ness of m,%(t, x, + ¢(x.)), and hence, by the definition (1.2), x, +
¢(x.) € W* for any x, € E_. In Lemma 1.8 we have proved that such a
¢ is unique. Hence ¢ = ¢, and M, = W*. ]

1.2 Smoothness of the Global Center Manifolds

We have proved the existence and uniqueness of the global center
manifolds W¢ under the conditions f € C'(R") and Lip(f) is suffi-
ciently small. If, in addition, f € C,’,‘(IR") for some k > 1, then we will
show that W¢ is smooth. The main result of this section is the following
theorem.
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Theorem 2.1. Suppose f € CE(R™) for some k = 1, f(0) = 0 and Df(0)
= 0. Then there is a number 8, > 0 such that if | Df|| < &, the unique
global center manifold W¢ is of class C*, that is, y € C}(E,, E,), where
¥ is given by (1.27) and is related to W€ by (1.3). Moreover, Lip(y) <
1, $(0) =0 and Dy(0) = 0. Furthermore, if £ € W€ and % (t) =
w X(t, X), then X (t) satisfies the following equation

X, =Ax, + m f(x, + ¥(x,)), x.€E,. (2.1)

We will prove this theorem by induction on k, and consider first the
case k = 1.

We remark here that if o > 0, then C, c C,,, and |lxll,+. < llxl,.
Hence, there exists a continuous inclusion from C, into C,.,. The
choices of spaces {C,} for different 7 in the following discussion are
very important.

To prove ¢ € C!, by (1.27), we need to prove first that x*(¢, £) € C!
with respect to £ € E,. Since x*(¢, £) is the unique solution of (1.8), we
have

x*(1,€) = et + G(f(x*(-,€)))(1), (2.2)
where G is defined in (1.18).
Lemma 2.2. Suppose that f € CL(R"), |IDf|l < 8,. Then there exists a

number o > 0 such that the map & — x*(-,¢) from E, to C is
differentiable.

y+o?

Proof. Let

u(t,€,€) =x*(t,€) —x*(t,§), ¢ E€E, (2.3)

and

FX(1.6,8) = f(x*(1,6)) = f(x*(1,€)) — Df(x*(r,€))u(1, &, ).
(2.4)
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Define
L(u(-, ¢, 8)) = G(Df(x*(-. &))u(-. £, §)), (2.5)
and
N(u(-, £ 8)) = G(f*(-- £ 8)). (2.6)
Then we obtain from (2.2) that
(I-L)(u(- & ) =F(£- &)+ N(u(-,£48)), (27

where I is the identity operator and F is defined in (1.17). Obviously, F
is a bounded linear operator. If we replace (f(y,) — f(y,)) by
Df(x*(t, ONult, &, €) and replace Lip(f) by |DfIl in (1.21)-(1.24), then
instead of (1.25) we can obtain

A 1 A
[L(u(- &), = 3lu(-. £ D], (28)
This implies the norm of L, as an operator from C,to0C,, satisfies
1
LIl < 3

Hence (I — L)~ ! exists and is bounded, and (2.7) can be written as

u(+ &8)=(I-L)'"F(£- &)+ (I1- L) 'N(u(-,£,£)). (29)

We will prove that there exists a ¢ > 0 such that

[Nl &), =0l - &) ase-& (210)

Hence, by the definition of a derivative, the map & — x*(-, ¢): E, —

C, .. is differentiable.

It is obvious that if o > 0 is sufficiently small, and we replace y by

v + o (in some cases later, we need to replace y by y + ko for some

integer k > 0), then (1.6) and (1.24) still hold. We fix such a number o.
We will prove that for every small € > 0, there exists a u > 0 such

that if |£ — £l < u, £ € € E,, then

sup e~V N(u(-, £, 8))(r)| < € - £]. (2.11)

teR

From (2.6) and (2.4) we have

N(u(-, £ 8))(t) =N, + N, + N,, (2.12)
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where

N, = G(f*(-. & &))(1),
G.(f*(-. & 8))), (2.13)
N, = G,(F*(-, &, 8))(1).

Nu

We will find an estimate only for N, since it is similar for N, and N,.
Choose T > 0 so large that

2

€
Dflle T < —, 2.14
o I Df lle 5 (2.14)

where the constants « and K are the same as in (1.5).

We consider two cases:

@Dl <T.

Without loss of generality, we assume 0 < ¢t < T. By (2.13), (2.4) and
(1.31), we have

|Nc| =‘j;eA(t_T)77c[f( x*(’r, §)) -f(x*(’r, é))

~Df(x*(7,))(x*(7,£) — x*(7, &))]dr

<

[lerrm [[prO (5.6 + (1 - Nx(r,B))

DA D) ar) (7. = (1. 8) )

3K? P
—palte _ (y—a)r
) el|¢ §|j(; e

IA

x(fOl|Df(Ax*(T,§) + (1= A)x*(r, 8)) - Df(x*(T,é))|dA)dT

2

3K A (T z
2l = 8[| Df(ax (7. ) + (1= )x*(r, §))

IA

—Df(x*(,€))|drdr. (2.15)
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Since f € CL(R") and the last integral is taken over a compact region
[0, T] X [0, 1] ¢ R?, there exists a u, > 0 such that if
|€ — €| < p, then

€ A
sup e V*+OMIN | < = |¢ — &, (2.16)
<T 3

Gi) el > T.
Without loss of generality, we assume ¢ > T, and let N, = NV + N®,
where

NOD = TA(t—'r) * , ,Ad, N® = tAg-7) * , ,Ad.
A j(;e wcf(1'§§)1' A j;e *n'cf(‘ré'{-')*r

Similarly to (2.15) and (2.16), there exists a u, > 0 such that if |£ — £l
< u,, then

€ S
sup e~ TTOMIND| < — |£ — £]. (2.17)
lt1>T 6

Using (2.4) and (1.5) we have

2 =
IN2| =

fteA('_")wcf*(T, £, {A-')d*r
T

t A
< K| e*™D(2|D *(7, —x*(r, dr.
< K[ e««=(20Dfl|x*(7,£) = x*(. £))dr
From (1.33) it follows that
A 3K N
|x*(7,6) —x*(7, )| < Te”lg — £ (2.18)
Hence

yt

IN®| < 3K2||Dflll¢ - & fT‘ewew—wf < 3K?IDf lllg - afly —

From the above estimate and condition (2.14) we obtain
2

sup e~ ND| <
[>T YT a

IDflleTle = & < < 1¢ — &l. (2.19)
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We choose p, = min(u,, u,). If € — £l < i, then (2.16), (2.17) and
(2.19) give

€ N
INNy+o < 3 1€ = &l.
Similarly, we can find p, and u, such that

INJly4o < =16 — &l whenlé — &l < p,,

€
3
and

INJl,+0 < =& — &l whenl|é — &| < p,.

€
3

Let w = min(u,,p,,p,). If |6 —€l<p and £ € € E, then (2.11)
holds, and hence (2.10) holds. ]

The following lemma gives a more general result which will be used
repeatedly in the rest of this section.

Lemma 2.3. Suppose that E is a Euclidean space with norm || - ||g and,

foreachy € E, the mapy — g(-,y) from E to C, for some p € (a,B)

satisfies

G) g(t,y) is continuous in (t,y) € R X E;

@) llg(-, Y, < M for some constant M > 0, where M is independent
of y.

Then for any { € (p, B) and y, € E, we have

lim |G(g(,y)) = G(g(-,yo))l =0,

ly=yolle—0

where G: C, — C, is defined in (1.18).

Proof. This lemma can be proved by using the same arguments as in
the proof of Lemma 2.2. For a given small € > 0, we find a T > 0 such
that Me~¢~PT < ¢/6. Then divide the integrals in G into two parts
G and G. For the noncompact part |¢| > T, we use condition (ii)
and the continuous inclusion from C, to C, to get GV (g(-, y) ~
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8(-, yo)ll; < €/2; for the compact part |t| < T, we use the uniform
continuity of g(¢,y) (condition (i)) to find a x > 0 such that if
ly — yol < u then [[GP(g(-, y) — g(-, y)lI; < €/2. |

We have proved that under the hypothesis of Lemma 2.2, x*(-, £), as
a mapping from E, to C is differentiable.
It is known that

y+o?

x*(t, &+ An) —x*(1,§)
: .

Dex*(t,£)n = lim (2.20)

Note that for each ¢ € E, Dgx*(-, £€) is a linear mapping from T,E_ =
E to Tox. C, s = C,,p, where T,E and T . .C, ., are the tangent
spaces of E_and C, ., at ¢ and x*(-, ), respectively. For all { € E_,
we consider D, x*(+, ¢) as a mapping from E_to Z(E_,C,,,). We will
show in the next two lemmas that D,x*(-, §), as a mapping from E_ to

Z(E,,C,,3,), is continuous in ¢ € E,.

Lemma 2.4. Suppose that f € CXR") and ||Df|l < 8,. Then the map
§- D.x*(-, ) E. - Z(E,.,C,,,,) satisfies the following integral equa-
tion

e(t)n = e'n + G(DF(x* (-, €))e()m)(1), Vn€E,, t€R,

(2.21)
where G: C, ., = C_,,, is defined in (1.18).
Proof. Let ¢, € E, be fixed, A # 0, and
x*¥(t, €+ An) —x*(t, ¢
g(r 2y = XLE*Am) 77 (68) (2.22)

A
Since lim, _, 4(g(t, A))YW = Dgx*(t, &)n exists (Lemma 2.2) and

x*(+, €) is Lipschitz continuous in ¢ in C -norm (see (1.31)), g(¢,1) is
continuous in (#,A) € R X R. From (2.2) we have for A # 0,

8(1,4) = e + G(h(*, V))(1), (2.23)



Smoothness of Global Center Manifolds 19

where

O (1, 6 + M) = f(x*(2,4))
A

h(t,A) =

- (folDf(Bx*(t,g +An) + (1 - g)x*(t’g))do)g(t’)‘).

To prove Lemma 2.4, we need to take limits on both sides of (2.23) in
C, ., and show that as A — 0,

G(h(-,1)) = G(h(+,0)) inC,,,,.

In fact, the continuity of A(z, A) comes from the continuity of g(¢, A)
and f € C;(R"). By (2.22) and (1.31), we have

3K

Thus the hypotheses of Lemma 2.3 are satisfied. O

Lemma 2.5. Suppose f € CXR"™). Then there exists a number 8, < 8,
such that if |IDfIl <8,, then the map ¢~ D,x*(-,§) from E, to
Z(E,,C,,,,) is continuous in ¢ € E,.

Proof. We consider D, x*(-,¢) as a solution of (2.21), and G as a
mapping from C, ,,, to C,,;,. Then for any n € E_ we have

||(D§x*(-,§) - Dfx*(.’é))n||y+3a'

<|6[or(x* (. £)(Dex* (€)= D (-, )]

y+30

+6[(Df(x* (- €)) = DA(x*(-, &)))Dex*(- &)]

(2.24)

|y+3a'

Similarly to obtaining the estimate (1.25) (it comes from (1.21), (1.22),
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and (1.23)), we can find 8, > 0, §, < §,, such that if | Dfll < &,, then

”G[Df(x*(',f))(Dgx*("f) - D&"*("é))”] ”y+30

< 3 | C.0) ~ D () (2.25)

Noting Df(x*(¢, ¢)) is continuous in (¢, £) € R X E_, and

A 3K
DI <8y, || Dex* (-0 E)n, 100 < S Iml

2

we can use the same argument as in Lemmas 2.2 and 2.3 to find u > 0
such that if |¢ — £] < u then

|G[DF(x*(-, €)) = DF(x*(-, &))Dex* (-, &)l .5, < elml. (2:26)
From (2.24), (2.25), and (2.26) we obtain finally

(20 6) = Dot £))al o, < 3 b

which implies

A 3
||D§x*(.,§) — D§x*("§)|lg(EcyC‘y+30‘) < EG

if 1€ — &l < p. w

Lemma 2.6. Suppose f € Ci(R"), f(0) =0, and Df(0) = 0. Suppose
IDf|l < 8,, where &, is given by Lemma 2.4. Then ¢ € CXE,, E,),
$(0) = 0, Dy(0) = 0, Lip(¢y) < 1, where  is given by (1.27). Further-
more, if £ € W€ and 5 (t) = m %(t, %), then X (t) satisfies equation
(2.1).

Proof. From Lemma 2.5 we have D,x*(-,¢) € CE,, Z(E,,C, ,3,),
and from (1.33) we have

3K 3K 3
|Dex*(7, €)ml < —Z—e""lnl < Te(y Winl, Vé€,me€E, r€R.
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This inequality and (1.5) imply that for each n € E, and all £ € E,

‘Loe_AT”qu(X*(T, £)) Dex* (7, £)mdr

3K?5, 0
[B—(y+30)r
< — I'nlf_we 7430y
3K?8,Iml
- A (2.27)
2(B — (v + 30))
Similarly, for each n € E, and all { € E, we have
o _4 3K2%8,Inl
e T Df(x*(7,£&))D.x*(7,€)ndr| < .
[ e pra (r. ) D (7, e | < 5o
(2.28)

Hence, we can take the derivative under the integral sign with respect
to ¢ € E, on the right-hand side of (1.27). This gives for each n € E,

Dy(£)n = j:)e'AT‘:rqu(x*(r,5))D§x*('r,§)’nd~r

+ [ e DF(x* (7, £)) Dyx* (v, €)mdr. (2.29)

Moreover, the uniform convergence of the above integrals with respect
to £ € E, (see (2.27) and (2.28)), and the continuity of Df, x*(-, ¢), and
D, x*(-, ¢) imply the continuity of Dy(£). From equations (2.27) and
(2.28), we obtain the boundedness of Dy. Therefore, ¢ € C(E,, E,).

Since f(0) = 0, Df(0) = 0, by using the uniqueness of solutions of
(1.1) with initial conditions, we have

x*(t,0) = x(¢,x*(0,0)) =%x(z,0) =0,
and by (1.27) and (2.29)

$(0)=0 and  Dy(0) =0.



22 Center Manifolds

It is obvious from (2.27) and (2.28) that if we choose &, small enough,
then

Lip(¢) < 1.

Finally for £ € W€, if we take x(t, £) = £(¢t) + ¢(£(¢)), where
&(t) € E,, then

(I + Dy)E = Af + Ap(€) + f(£ + ¥(£)).

Projecting both sides of the above equality onto E_, and noting that
E —-E, Dy:TE.=E, > TE, = E,, we have

E=At +m f(E+ (&), ¢€E,

and this is equation (2.1). O

Proof of Theorem 2.1. The conclusions for the case k = 1 have been
proved in Lemma 2.6. The case k > 2 is slightly different from the case
k = 1, although the basic arguments are eventually the same. We will
prove the case k = 2; the general case can be obtained by an induction
on k. In the following we assume a¢ <y <ky <f and o >0 is
sufficiently small.

Suppose that fe& CZ(R"). Then by Lemma 2.5, D,x*(t,{) €
CY%E,, _S”(EC,CYHU)). We prove first that £ — D,x*(-, £), as a map-
ping from E_ to Z(E_, Cy, 134y+,), is differentiable. We will use the
same idea as in the proof of Lemma 2.2 and consider equation (2.21)
instead of (2.2). Let

U= U(t,gaé’ 77) = D§X*(t,§)"7 - Dfx*(t,g)‘q,

£&,¢é,meE, teR,

and
L(v) = G(Df(x*(-, &))v(-. £ &, m)).
Then from (2.21) we obtain

(I-Lyv=G(g(-.¢£.6,m)), (2.30)
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where
g(t,¢,€,)
= Df(x*(t,£)) D x*(¢,6)n
= Df(x*(1,€)) Dex* (1, é)n — Df (x*(t,£))v
= (Df(x*(1,€)) — Df(x*(1,€)))Dpx*(1,6)m
= [fO'DZf(ex*(t,g) +(1- e)x*(t,é))de]
X ((x*(2,€) = x*(t,£)), Dex*(1,€)m)

= []:D2f(0x*(t,§) +(1- 0)x*(t,$))d0]

><<D§x*(t,§)n, [fOIDfx*(t,Og + (1~ 9)3)‘19](5 - 3)>

and -, - ) denotes the action of the bilinear map D*f. We define the
following bilinear form:

B(t,&,€)<a,b) = B(t,¢,&)ab
= [folsz(ox*(t,g) +(1 - o)x*(t,é))do]
1 A
X<D§x*(t,§) - a,j;)Dfx*(t,Gg + (1 - 0)¢)de - b>.
Thus, (2.30) becomes
(I-L)(v) = G|(B(-.£,&))n(¢ - )|

+G|(B(-.£.8) - B(-.£,8))n(¢ - &)]. (@31)

Hence, in order to prove the differentiability of D,x*(:,¢) (as a
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mapping from E, to .‘Z(EC,C2(7+3U)+U)), we only need to verify the

following two facts:

@) G(B(-,é,é)( -, + ) is a bounded bilinear operator from E? to
C2(7+30)+0,Awhere ECZA=AEC X E,_;

(i) IGI(B(-, &) — B(-, &, OX -, - Yl sE2, Cayrsoyey = 0 a8 1€ = £ -
0.

Note that

B(t,&, &), = D*f(x*(t,€))Dex* (£, €)my - Dyx*(t, &),

For any n,,m, € E_,

S

”G(B( ‘s é, §)"71”72) H2(7+3tr)+a'

1
S su e—(2(7+30')+a')|l|” ” 2( +
o4 flle Ay +30)—a  B-(2y +60)
3K\?
(__2_) 62(7+30')t|n1”n2|

< Mln,lln,l, for some M > 0.

Thus, (i) holds. On the other hand, for any 7,,7n, € E,, we consider
G((h(-, & &) — h(-, &, EDnm,) as a mapping from C,,,3,, toO
Cyy+30)+o> and can prove that

HG(h(',§,$) - h("é’é))n1n2uz(7+3¢r)+a -0 as |§ - $| -0

by completely the same way as in the proof of Lemma 2.3. Hence (ii)
holds.

Similarly to Lemma 2.4, we can obtain an equation satisfied by
D(x*(-,6): E, = L(EZ, Cyyr30y420)-

In fact, if we let

Dfx*(t,§ + Any)my — Dfx"‘(t,§)'r71
A b

g(t,A) = MM €E,,
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then
lim g(¢,4) = Dgx* (2, £)nymy,
and by (2.21)
g(t,A) = G(h(-, M))(1), (2.32)
where

h(t,1) = % [DF(x*(t, & + Any))Dex* (2, & + Ang)m,
—Df (x*(t,£)) Dgx*(t,£)my)
= % [Df(x*(1, & + Any))
X(Dex*(, & + Any)my — Dpx*(2, €)my)
+(Df(x*(1, & + Amy)) = DF(x*(1,€))) Dex*(1, £)my|
= Df(x*(t,& + Any))&(t,A)

+ (lezf(ox*(t,§ +Amy) + (1 - ")x*(”g))do)
0

Dyx*(1, §)n1(j:D§x*(t,0(§ +am,) + (1 - 0)§)d0)n2.
Using Lemma 2.3 and taking limits on both sides of (2.32), we obtain
Dix*(t,€)(nmz) = G(Df(x*(-, €)) Dix* (-, £)nm,
+D*f(x* (-, €)) Dpx* (-, €)mDex* (-, £)n;)

= G(Df(x*("g))szx*("§)771772 + H1(3§))~
(2.33)

As in the proof of Lemma 2.5, we obtain that there exists a number
8, < 8, such that if ||Df|l < §,, then Dgzx*(-, £¢) as a mapping from E,
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to F(EZ, Cyy130)43,) is continuous in & € E,. In fact, the term ey
in (2.21) has no influence in the proof. The only difference is the
existence of the additional term H,(¢,£) in (2.33). But H(t, &) is
continuous in (¢, £) € R X E.. Hence, by Lemma 2.3,

||G(H1( ’5) - Hl("£))||c74~,+3a)+3a -0 as |§ - gl - 0.

Here we consider G as a mapping from C,, ,35y425 10 Cy,430y+30-
Finally, by the same reasoning as in Lemma 2.6, we can take the
derivative under the integral sign with respect to ¢ in (2.29), and obtain

D*(£)nm,

= Loe_A"'rru(Df(X*(T, £))Dix*(r,€)nm, + Hy(r, 5))‘17

+f_0we“"’7rs(Df(x*(r,§))D§X*(T,§)’fh’flz + H1(7’§))d7’

(2.34)

where H (7, £) is defined in (2.33). Besides, the continuity and bound-
edness of D%f, DZx*(¢,£), and H (¢, £) imply ¢ € CX(E,, E,).
We have just proved Theorem 2.1 for k = 2. Suppose now the
conclusions are true for kK =j > 2, that is:
(1) Dix*(-, ¢) exists as a mapping from E, to Z(E/,
City+30)+(j-30+s)> Where El=E XE X --- XE_ (j times),
and satisfies the equation (as a mapping from E, to

LEL Ciys30y+(j-D30+20)
Déx*(t,§)(m o my)
= G(Df(x*(+,€))Dix*(-, €)(my -+ m)) + Hy_y(+, €))(1),
n €E, (235
where Hj_l(t, £) is a finite sum of terms involving

Df(x*(t, £)), ..., D'f(x*(t,£)); Dx*(t,8)m, (i=1,...,j~-
D, ...,D{7x*(, EXmy -0 my_y)
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(2) There exists a number 8; <§8;_, such that if ||Dfll <§;, then
Dix*(t,€) as a mapping from E, t0 F(E},Ciyy30ys(-1y0) 18
continuous in ¢ € E_, and hence

(3) ¥ € CI(E_, E}).

If f € CJ*'(R"), we need to prove the above conclusions are true for

k =j + 1. But the procedure is completely the same as that done for

k = 2. Therefore, Theorem 2.1 is proved. O

1.3 Local Center Manifolds

In the previous two sections we established the existence, uniqueness,
and smoothness of the global center manifolds for equation (1.1). The
condition f € C¥(R") is natural. But the hypothesis Lip(f) < 8, (or
IDf Il < &,) for a small 8, > 0 is quite strong. If we consider a bifurca-
tion problem only near an equilibrium point of (1.1), then we need a
local center manifold. This can be obtained from the global center
manifold of a modified equation by using the cut-off technique, and the
hypothesis ||Df]| < 8, will be satisfied automatically since f(0) = 0 and
Df(0) = 0. Let us discuss this in detail.

We consider a cut-off function x: R” — R with the following proper-
ties:
@D x(x)ecCx
() 0<x(x)<1,VxeR%y
GiD) x(x) =11if |x} <1 and x(x) = 0if |x| > 2.

Related to f(x) in (1.1) and for a given p > 0, we define

£,(x) =f(x)x(-:;), Vi eR" (3.1)

Thus, as a modification of equation (1.1), we consider
X=Ax + f(x). (32)

Obviously, if we restrict x to the domain |x| < p, then equations (1.1)
and (3.2) are the same. The following lemma shows that if we choose p
sufficiently small, then IlDfpll can be very small. Hence we can apply the
global center manifold theory to (3.2), and get some local results
for (1.1).



28 Center Manifolds

Lemma 3.1. Iff € C*(R") for some k > 1, and f(0) = 0 and Df(0) = 0,
then f(x) € Cf([R") for a given p > 0, and

lim || Df, || = 0. (3.3)
p—0

Proof. Since f€ C* and y € C*, f, € C*.Foragivenp > 0, f,(x) = 0
if |x] > 2p, whence f, € C,f(R"). From (3.1) we have that

x 1 x
D1 =01 x5 )+ S0 -ox()
Hence,
1
IDf,ll < sup IDf(x)| + —IDxIl sup If(x)I. (3.4)
Ixl<2p p (x|<2p

The condition f(0) = 0 implies f(x) = [IDf((1 — A)x)xdA. This gives

sup |f(x)l < sup le( sup IDf(x)I) < 2p sup |Df(x)l.

Ixl<2p Ixl<2p Ix|<2p Ixl<2p
Substituting the above inequality into (3.4), we obtain that

IDf,Il < (1 + 2liDxll) sup IDf(x)l.

Ixi<2p

The desired result (3.3) follows from the above estimate and the
condition Df(0) = 0. i

Theorem 3.2. Suppose that f € C*(R") for some k > 1, and f(0) = 0,
Df(0) = 0. Then there exists y € C¥(E., E,) and an open neighborhood
Q of x = 0 in R" such that

(i) the manifold

M'I/ = {xc + ll}(xc) |xc € Ec} (35)
is locally invariant under (1.1). More precisely,

B(t,x) €M,, VYxeM,nQ, Vieliy(x),
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where %(t,x) is the flow of (1.1) with %(0, x) = x, and Jo(x) is the
maximal interval of existence of the solution X(-, x) with respect to (};
(i) ¥(0) = 0 and Dy(0) = 0;

(i) if x € Q and Jo(x) = R, then x € M,,.

Proof. Let 8, be given as in Theorem 2.1. By Lemma 3.1, we can find a
p > 0 such that f, € C£(R") and ||Df,|l < 8,, where f, is defined in
(3.1). By Theorem 1.1 and Theorem 2.1, we can obtain the global center
manifold M, of equation (3.2), M,, is defined by (3.5), ¢ € CKR™), and
$(0) =0, Dy(0) = 0.

On the other hand, from the properties of the cut-off function y,
we know that the equations (3.2) and (1.1) are the same if x € ==
{x € R"||lx|l < p}. Thus, the conclusions (i) and (ii) are proved.

We suppose now that x € Q@ and Jo(x) = R. Then #(¢,x)=
£(t,x) cQ,Vt € R, whence sup, glm,£(t, x)| < ». By(12), x € M,,
and conclusion (iii) follows. O

Definition 3.3. If ¢ € CK(E,, E,), k > 1, $(0) = 0, D$(0) = 0, and
My = {x,+ ¢(x.)| x, € E_} is locally invariant for the flow of (1.1),
then M, is called a C k local center manifold of (1.1).

Lemma 3.4. Suppose that f € C'(R™), f(0) =0, and Df(0) = 0; and
¢ € C(E_, E), ¢(0) =0, and D$(0) = 0. Then M, := (x, +
&(x,)| x, € E.} is a local center manifold of (1.1) if and only if there is a
neighborhood Q, of the origin in E, such that for all x_ € Q,,

D(x )m(Ax, + f(x. + ¢(x.))) = mu(Ad(x.) + f(x. + $(x.)))-
(3.6)

Proof. Suppose that such an Q_, exists and (3.6) holds. For each
x. € Q_, let %.(1) be the solution of the following initial value problem

X, = (A%, +f(%, + #(%))), £A(0) =x,,

and let £(t) = £ .(¢) + ¢(%(¢)). It is obvious that x (¢t) € Q_ if [¢] is
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sufficiently small. Then by (3.6) we have

x(t) = (I+ DP(2.(1)))m (AT (1) + f(£ (1) + $(Z(1))))
= (m, + m)(AZ(t) + f(£(t))),  lt]is sufficiently small.

This means x(¢t) = ¥ (t) + ¢(X(¢)) is a solution of (1.1) if |¢| is suffi-
ciently small. Hence, M, is locally invariant under (1.1), and, by
Definition 3.3, it is a local center manifold of (1.1).

Suppose that M, is locally invariant under (1.1) in a neighborhood €
of the origin in R”. Let 2, be an open neighborhood of the origin in E,
such that x, + ¢(x,) € Q if x. € Q.. For any x, € Q_, let %(¢) =
x(t, x, + ¢(x_)), which is the solution of (1.1) with the initial condition
%(0) = x, + ¢(x,). Then the local invariance of M, under (1.1) implies
that for |¢| sufficiently small we have

mpX(t) = ¢(m X(1)).

Differentiating the above equality with respect to ¢, and using (1.1), we
obtain

ma( AE(1) + f(£(1))) = Dd(w 5(1))m (AE(t) + f(£(1)))-
Taking ¢ = 0 and noting ¢: E, — E,, we get (3.6). O

Theorem 3.2 gives the existence of a local center manifold. But, in
general, it is not unique.

Example 3.5. Consider the planar system

It is easy to see that E, = {(x,0)|x € R} and E, = {(0,y)|y € R}.
Suppose ¢ € C!(E,, E,) gives the local center manifold M, = {x +
&(x)| x € R}. Then by Lemma 3.4, we have

¢'(x)x*= —¢(x), ¢(0) = ¢'(0) = 0.
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Hence

_ Jae'* forx <0;
() {0 for x > 0,

where a € R is a constant. Each different « gives a different M. This
means that local center manifolds are not unique, even in a sufficiently
small neighborhood of the origin.

Fortunately, the nonuniqueness of local center manifolds is not a
serious problem when we consider bifurcation phenomena of vector
fields. In fact, every local center manifold of (1.1) contains all bounded
solutions of (1.1), for example, equilibrium points, periodic orbits, or
homoclinic or heteroclinic orbits, provided they stay in a sufficiently
small neighborhood of the origin. To show this, we need the following
result which says that each local center manifold of (1.1) can be
obtained from the global center manifold of a related vector field.

Theorem 3.6. Suppose f € C*(R") for some k=1, f(0)=0 and
Df(0) = 0, and ¢ € C**(E,, E,) defines a local center manifold M, of
(1.1). Let 6 € (0, 8,], where 8, is defined in Theorem 1.1. Then there
exists a neighborhood ) of the origin in R" and mappings f € C,f(R”)
and ¢ € Cf*Y(E,, E,) such that

W f(x)=fx),VxeQ;

G) IDfIl < 5;

(i) M, N Q=M,NQ,

where M, is the unique global center manifold of the following equation

X =Ax + f(x). (3.7)

Proof. Part (I): a special case. We suppose that M, =E,_ is a local
center manifold of (1.1), that is, there exists some neighborhood Q, of
the origin in R”, such that

¢(x.) =0, Vx.€ E.NQ,.
By Lemma 3.4, there exists a d > 0 such that

m,f(x.)=0, Vx.€E, and llx Il <d. (3.8)
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Let 0 < p <d/2, and y € C*(R",R) be a cut-off function. We define

- X
f(x) =f(x)x(;), VxR
then

maf(x2) = (whf(xc))x(-’:f) -0, Vi €E. (39

In fact, if |x.| < 2p < d, then 7, f(x.) = 0 by (3.8); if |x.| = 2p, then
x(x./p) =0. Lemma 3.4 and (3.9) give the invariance of E, under
(3.7). By Lemma 3.1, we can choose p so small that IIDfII < 8. On the
other hand, since fe CK(R™) and ||Df]l <6 < 8y, it follows from
Theorem 1.1 that (3.7) has a unique global center manifold M,. Hence,
M, =E,. We define (x.) =0 and Q = {x € R"||x| < p}. Hence,
xS C;‘“(Ec, E,) and the conclusions (i)—(iii) are satisfied.

Part (II): the general case. Let ¢ € C**/(E_, E,), and M, is a local
center manifold of (1.1). By Lemma 3.4, we can find some d; > 0 such
that (3.6) holds for |x.| < d, and x, € E_. Let d € (0,d,) and define
¢ € CEYY(E_, E,) by

¥(x.) = ¢(xc)x();—”), Vx €E.. (3.10)

We make a transformation
y=x—y(mx)= ¥(x), VxeR" (3.11)

Then it is easy to verify that

(a) ¥(M,) =E,;

®) Y y)=y +¢(my),Vy €R"

Under the transformation (3.11), (1.1) becomes

y=Ay +g(y), (3.12)

where
g(y) =Ay(m.y) + f(y + ¥(7.y))

- Dy(m.y)m Ay + f(y + ¥(m.y))). (3.13)
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Since E, is a local center manifold of (3.12) (see the property (a)), the
results in Part ~(I) imply that there exist some g € C}(R") and some
neighborhood () of the origin in R” such that

g(y) =£(y), Vyeq, (3.14)
and E_ is the unique global center manifold of the equation
y=Ay +£4(y). (3.15)

Furthermore, || Dg|| can be smaller than any given positive number. Now
if we take the inverse transformation x = ¥~1(y) =y + ¢(a,y), (3.15)
becomes an equation of the form (3.7), where

f(x) = Dy(m.x) Am.x = Ab(m.x) + §(x = Y(m.x))
+ Dy(m.x)m g(x — y(m.x)). (3.16)

Since § € CK(R™), y € CF*Y(E_, E,), and ¢ has bounded support, we
have f € CK(R™). We claim that if we take Q@ = ¥~1(() and let ) be
sufficiently small, then the conclusions (i)-(iii) are satisfied.

In fact, Vx € Q = ¥ Y(Q), y =x — ¢(m.x) € Q, and hence (3.14)
holds. Noting ¢, Dy: E, — E,, and substituting (3.13) into (3.16), we
obtain f(x) = f(x) for x € Q.

Next, by using the following equalities

Y(m.x) = (foch//((l - 0)7rcx)d0)(—7rcx),

(s = w(mx)) = [ ['D((1 = 0)(x — w(mx)))do|(b(mex) - ),
we can obtain from (3.16) that

DAl < 2lAllw )IDyl + (1 + Nl Dy l)*| DEll.

By (3.10) and Lemma 3.1, || D¢|| —» 0 as d — 0. Hence we can choose d
so small that 2| Al||lw. IDID¢ll < /2. Fix such a d > 0; then ¢ and g
are well defined. By Part (I), we can choose ) properly such that
(1 + llw Dy ID*DEN < 6/2. Thus, we have ||Df]| < 8.
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Finally, from (3.10) it is obvious that ¢(x_) = y(x_) if |x_| < d. Let Q
be sufficiently small so that |7 x| < d if x € Q. Hence, M, N Q =
M, N €. Since E_ is the unique global center manifold of (3.15) and
¥-(E,) = M, M, is invariant under (3.7). But I Df1l < 6 < 8, so by
Theorem 1.1, M,, is the unique global center manifold of (3.7). O

Theorem 3.7. Under the assumptions of Theorem 3.6, there exists a
bounded neighborhood €} of the origin in R" such that if x € ) and
Jo(x) = R, then x € M. (For the definition of Jo(x), see Theorem 3.2).

Proof. We use Theorem 3.6 with § = §,, and assume that 2 found by
Theorem 3.6 is bounded (otherwise, just shrink it to a bounded one).
Suppose that x € Q and Jo(x) = R, which means %(¢, x) € Q for all
t € R, where #(¢, x) is the solution of (1.1) with (0, x) = x. By the
conclusion (i) of Theorem 3.6, ¥(z, x) is a solution of (3.7), and it is
globally bounded. By the conclusion (ii), we can use Theorem 1.1, and
hence x € M,,. By the conclusion (iii), x € M, a

Remark 3.8. Theorem 3.7 says that if M, is a C* (k = 1) local center
manifold of (1.1), then it must contain all small bounded solutions of
(1.1). In particular, M, must contain all sufficiently small equilibria,
periodic orbits, and homoclinic and heteroclinic orbits.

Theorem 3.9. Suppose that f € C*(R"™) for some k > 1, f(0) = 0 and
Df(0) = 0, and M, and M,, are two C**! local center manifolds of
(1.1). Then we have

Dig(0) = Dig,(0), 1<j<k. (3.17)

Proof. We use Theorem 3.6 for ¢, and ¢, with § = §, < §,, where §,
and §, are defined in Theorems 1.1 and 2.1, respectively, and they
depend only on 4 €. Z(R", R™) in (1.1). Then there exist corresponding
Q,, fi€ CKR™, and ¢, € CE*Y(E_, E,) satisfying the conclusions
(D-(id) for i = 1 and 2, respectively. Let Q = Q; N Q,; then we have
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the following conclusions:

(@) f(x) = f(x) = f,(x) for x € Q;

® IDfll <& =8, <8, fori=1,2

© My nQ =M, NQfori=12,

where M, is the unique global center manifold of the equation

i =Ax + fi(x).

From (1.27) and the proof of Theorem 2.1 we know that D/,(0)
(1 <j <k) is completely determined by 4 and f(x) for x in a
sufficiently small neighborhood of the origin. Hence, by (a) and (b),
Diy(0) = D’y,(0), 1 <j < k, and then by (c), D/¢,(0) = D'¢,(0), 1 <
j<k @]

Remark 3.10. The conclusions in Theorem 3.7 and Theorem 3.9 give
partial uniqueness of local center manifolds. At the end of the next
section we will introduce a new result by Burchard, Deng, and Lu [1]
which says that the flows on any two C**! local center manifolds of
(1.1) are locally C* conjugate. Hence, we can choose any local center
manifold to study the bifurcation phenomena.

1.4 Asymptotic Behavior and Invariant Foliations

In this section we will generalize the results on global center manifolds
in Sections 1.1-1.2 to the cases of global center-stable and center-
unstable manifolds. Then we will discuss asymptotic behavior of solu-
tions outside these invariant manifolds. This is related to foliations of
R”. We will go back to the local situation by using the cut-off technique,
as in Section 1.3, and study stability properties of local center mani-
folds.
Denote

Teu = Te + Ty» Tes = Te T Ty

E,-E®E, E,—E®E,.

We now introduce the center-unstable manifold for which the proof of
results is completely similar to that in Sections 1.1 and 1.2. Suppose
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that the positive numbers «, 8 are determined in Lemma 1.5, and
a<y<B.

Theorem 4.1. (i) There is a positive number 8., such that if f € C}Y(R")
and Lip(f) < 8,,, then the set

Weu = {x € R" | suplw (¢, x)| < °°}

<0

= {x € R" | sup-e”|X(t, x)| < oo} (4.1)

<0

is invariant under (1.1), and is a Lipschitz submanifold of R", that is,
there exists a unique Lipschitz function ¢ € CXE,,, E,) such that

Wcu = {xcu + ‘p(xcu) | xcu E EC“}' (4'2)
(i) If ¢ € CXE,,, E,) and the manifold
Md) = {xcu + ¢(xcu) l Xeu € Ecu} (43)
is invariant under (1.1), then My, = W, ¢ = .

We say that W< is the unique global center-unstable manifold of
(1.1). Using the same approach of Section 1.2, for any % > 1, we have
the following:

Theorem 4.2. Suppose f € CKHR") for some k > 1. Then there is a
number 8%, > 0 such that when ||Df|| < 8%,, the conclusion of Theorem
4.1 holds with ¢ € CKE,,, E,).

We next consider the existence of global invariant foliations. For
v € R, a Banach space is defined by

cr = {z € COR,R") |zl = sup e”|z(t)l < oo}.

teR*

We fix y such that @ < y < ky < B, where k is the positive integer in
Theorem 4.2. Suppose that £(¢, £), (¢, x) are the two solutions of (1.1)
satisfying the initial conditions %(0, £) = £ and (0, x) = x, £, x € R",
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We define the set
M(x) = {2 R"|z(t) =%(t,2) —%(t,x) € C}}. (44)

We call M(x) the stable leaf of x € R".

Theorem 4.3. Suppose f € CQY(R™) and Lip(f) < 8,,. Then there exists
a uniformly continuous mapping J.: R* X E, — E_, such that for each
x € R" the following conclusions hold:

D M(x)={x, +J(x,x)|x, € E} is a Lipschitz manifold,

(i) M(x) has a unique intersection point with W,

(iii) there is a stable foliation of R":

R*= |J M, (x). (4.5)

xeWws

(iv) The foliation is invariant under (1.1), that is,
M(i(t,x)) =%(t,M(x)), Vt>0, VxeR"

The proof of Theorem 4.3 needs several lemmas.

Lemma 4.4. Suppose f € CJ'(R™), Lip(f) < 8,,, and z(t) € C;. For
x € R?, #(-, x) + z is a solution of (1.1) if and only if there exists some
x, € E, such that

z(t) =e?x, + fte“’(“”wsf(r; x,z(7))dr
0

+[teA(t_T)7Tcuf(T; x,z(7))dr, (4.6)
where f: R X R" X R* — R" is defined by
ft 0, 2(1)) = f(5(1, %) +2(1) = f(5(1,%)).  (47)

Proof. If (-, x) + z is a solution of (1.1), then z satisfies the equation

i=Az +f(t;x,2). (4.8)
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The variation of constants formula gives

z(t) = e 0z(1y) + fteA(t_T)f(T’,x,Z(T))dT. (4.9)

L)

Taking ¢, = 0 in (4.9) and applying ,, we have
mz(t) = e*'mz(0) + [ =Dm f(r;x,2(7))dr.  (4.10)
0

Since z(1) € C; we obtain lim, _,, e~z 2(t,) = 0. Writing x, =
m,2(0) and applying m,, in (4.9), and then combining it with (4.10), we
obtain (4.6).

Conversely, we suppose (4.6) holds. Noting

flt;x,2(0)) + f(E(1, %)) = f(E(1,x) +2(1)),  (4.11)

we then have
F(t,x) +z(t) =e(x +2(0)) + 'I:e’“’_*)f(f(f,x) + z(7))dr.

This means that ¥(z, x) + z(¢) is a solution of (1.1). )

Lemma 4.5. Under the conditions of Lemma 4.4, for each (x,x,) €
R" X E,, there exists a unique solution z = z*(x,x,) € C; of (4.6)
which is uniformly continuous in (x, x;) € R" X E_ such that

M(x) ={x +z*(x,x,)(0) | x, € E}. (4.12)

Proof. Let J*: R" X E, X C — C be defined by

T (x5 2())0) = e, + [e0m (s x, 2(x))dr

+fteA('_’)1wa(7';x,z(T))dT. (4.13)
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By using a similar estimate as in the proof of Lemma 1.7, for each
2y, 2, € C;, we have

”J+(x’ Xss Z1( )) - J+(x’ Xss ZZ( ))”;

1
vy —a

2
s K=+ 5 bl - 25

Hence, there is a §,, > 0 such that if Lip(f) < §,,, then

cu’

1
17 (x, x5 21()) =T (x5 20 22Dy < 3 llz1 = 2ally.

Therefore, it follows from the Uniform Contraction Mapping Theorem
that for each (x, x,) € R" X E,, J*(x, x,, z(*)) has a unique fixed point
z=2z*%x,x,X-) € C;}, which is the unique solution of (4.6). Since for
fixed x, J*(x, -, - ) is Lipschitz in x, and z(-), z*(x, x,) is Lipschitz in
x,. By Lemma 4.4, %(¢, x) + z*(x, x,X¢) is a solution of (1.1). Hence
there exists a ¥ € R” such that

(e, %) =%(t,x) +z*(x, x,)(t),

where £ = x + z*(x, x,) (0). We obtain (4.12) from (4.4).

It remains to show the continuity of z*(x, x,) in (x, x,) € R” X E,.
We note that C,, C C, and lzIl; <llzll;+o for & > O, hence there is
a continuous inclusion from CJ,, into C;. If o > 0 is sufficiently
small, then we can apply the Contraction Mapping Theorem to J*:
R*X E, x C;,, = Cy,, to obtain the fixed point z = z}(x, x,) €
C;., CC, for given (x,x,) € R" X E,. By uniqueness, we have
2¥x,x) =2*(x,x),Vx eR", x, € E,.

Now we consider J* as a mapping from R" X E, X C,, to C;. We
will prove that for any given € > 0, there exists a u > 0, such that if

x,xe€R" x,%, €E, and |x —X|+ |x, — X,| < u, then
AT = T (x, x;, 2%(%, x,)()) — J*(i, X, 2% (X, X, )( -))II; <e.
(4.14)

Note that AJ*=[|z*(x, x, X)) — z*(Z%, )'cs)(-)II;L. This implies that the
map (x, x,) = z*(x, x.)(-) from R"” X E, to C; is uniformly continu-
ous.
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From (4.13) we have

I (x, x5, 2% (x, x,)(2)) =T (%, %, 2% (%, %) (1))l

< lem(x, — %) +1G(g(-, x, x,, X, %))(¢)l, (4.15)

where

G(g(hx, x,, %, %,))(2) = fteA(t_T)‘lng(T, X, x,, %, %,)dr
0

+ [0 g(7, %, %,, %, %,)dr,
and )
g(rx, %, %, %,) = f7, %, 2*(x, x,)(7)) = f(7, %, 2*(%, %,)(7))
= f((7,x) + 2*(x,x,)(7)) = f(¥(7, x))
—f(%(7, ) + 2%(%, %,)(7)) + f(3(7, D).

By using (1.5) and the definition of C; , we obtain from (4.15) that

AJ*< supe B x — x|+ 1G(g(", x, x,, X, X ))II5
t=0

<lx,—x]|+ IIC;‘(g(- L x,xg, X, X)) (4.16)

We can use the same technique as in Lemma 2.3 to prove that
IG(g(-, x, x,, z*CNN; < 2€¢/3 provided Kx,x,) — (¥, )} <p. In
fact, since

lg(7, x, x5, %, %) < Lin(f)(1z*(x, x,)(7)| + 1z* (%, %,)(7)]),
and z* € Cy,,, we can find T > 0 such that the integral over the
noncompact part (¢ > T) is smaller than €/3. Then, using the uniform
continuity of g in the compact part, we can find u > 0 (u < €/3) such
that if |x — ¥| + |x, — ¥,| < u, then the integral over the compact part
(0 <t < T) is smaller than €/3. Therefore, (4.14) follows from (4.16).

]
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Lemma 4.6. Assume the conditions of Theorem 4.1 are satisfied. Then
for each x € R" there exists a unique point £ € W< such that

W n M(x) = {#).

Proof. From (4.1) and (4.4) we see that £ € W N M (x) if and only if

sup e”*|x(t,£)| <o  and sup e”’|x(t, ) — X(¢t, x)| < oo.
t<0 t=0
Denote
x(t,x t20
w(t,x) = (t, %), ’

xu(t,x), 120,

where x_,(2, x) satisfies the equation
X =Am,x + 7, f(x),

with x_,(0, x) = x.
Suppose £ € W N M (x). Let z(¢) = %(¢, £) — w(t, x). It is easy to
see that z(¢) belongs to the Banach space

€y~ = {2 € CORRY 121 = sup elz(0)] < ).
teR

Conversely, it is also obvious that if z(z) € CJ~ and w(¢, x) + z(¢) is a
solution of (1.1) then £ = x + z(0) € W N M (x).

Using the same method as in the proof of Lemma 4.4, we can show
that if z(:) € C;~, then w(z, x) + z(¢) is a solution of (1.1) if and
only if

2(1) = —mw(t,x) + [ eA0m f(w(r,x) +2(7))dr

+ j:e"’(“”frw[f(w(f, x) +z(1)) - f(w(r, x))]d7. (4.17)
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By the condition of the lemma and the uniform contraction principle,
it follows that equation (4.17) has for each x € R” a unique continuous
solution z = z*(x) € C; ™.

We define a mapping H_,: R" - W by

H.(x)=x+z*(x)(0) for all x € R”, (4.18)

From the uniqueness of the solution z = z*(x) it follows that £ =
H_.(x) € W n M/(x) is unique for each x € R". O

Proof of Theorem 4.3. By Lemma 4.5, M (x) = {x + z*(x, x)(0)| X, €
EJ}, where z*(x, %,)(¢) is the unique solution of (4.6) in C; with
x, = X,. From (4.6) we have

m(x + z2*(x, X,)(0)) = mx + X,.
Hence
x +2z%(x,%)(0) = mx + X, + wx + m,z2%(x, %,)(0)
=y, +m,x+ m,z*(x,y, — m,x)(0),

where y, == X, + mx € E.. Now, replace y, by ¥, in the above
expression and let

Js(x’ is) = m,Xx + TrcuZ*(x’ is - 1TSX)(0).

Since z*(x, X,) is Lipschitz in ¥,, conclusion (i) follows. Conclusion (ii)
follows from Lemma 4.6. Conclusion (iii) follows from (ii) and the fact
that if y € M(x), then M (y) = M (x). To prove conclusion (iv), we
assume £ € M (x). By (4.4), z(¢) == i(t, %) — %(¢, x) € C, . Hence for
any t; > 0,

z(t + ) = X(¢, (1,, £)) — X(¢, i(t, x)) € C; .
This means
M(%(t,x)) = {%(t, %) | £ € M(x)} = %(t, M,(x)). o

From Theorem 4.6 we have the following two corollaries. Corollary
4.7 will be needed in the proof of Theorem 4.13.
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Corollary 4.7. Assume the conditions of Theorem 4.1 are satisfied. Then
foreachy € W and € > 0 there exists a 6 > 0 such that if |x — y| < 8,
x € R”, then

|€(t, x) = %(¢, H,(x)) <ee”™™, Vi>0. (4.19)

Proof. From the proof of Lemma 4.6 we have
z%(x)(t) =x(t,%) —w(t,x) €C;,
where £ = H_ (x), and w(z, x) = %(¢, x) if £ > 0. Hence

2*(x)(t) = %(¢, H,(x)) — %(t,x), forallt=0, xe&R"
(4.20)

If y e We, then H,(y) =y, which gives
2 (y)(1) =0, fort=0, yeWee (4.21)

Finally, by the continuity of z* we can find § > 0 such that if |x — y| <
8, then ||z*(x) — z*(y)Il;~ < e. By (4.21) we obtain

sup e”’|z*(x)(t)| = llz*(x) — z*()Ily <llz*(x) - 2*(VI}” <e.
t>0

(4.22)

Thus, (4.19) follows from (4.22) and (4.20). ]

Corollary 4.8. Assume the conditions of Theorem 4.1 are satisfied. Then

sup e”’|X(t,X) — X(t,x)| < oo, x € R", e ws,
t=0

ifand only if £ = H_(x). O
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Remark 4.9. The above result gives the asymptotic behavior of solu-
tions of (1.1) that do not lie on the center-unstable manifold. It says
that any solution %(¢, x), x € R", converges exponentially for t - +o
to a uniquely determined solution ¥(¢, H,,(x)) which is on the center-
unstable manifold. In particular, if o, = &, that is, W* = W, then any
solution of (1.1) converges exponentially as ¢ - +o to a uniquely
determined solution on the center manifold. This gives the stability
property of center manifolds. We will give a local version of this
property in Theorem 4.12.

Theorem 4.10. Suppose, in addition to the conditions of Theorem 4.1,
that f € CF(R") for some k > 1. Then for each x € R" the stable leaf
M[x) is C*, that is, the mapping x, — J(x, x,) given by Theorem 4.3 is
C* from E, into E_,,.

Remark 4.11. By reversing time in Theorems 4.1, 4.3, and 4.10, we can
obtain analogous results for the center-stable manifold W<, the unsta-
ble leaf M,(x), and the unstable foliation

R*= U M, (x).

xeWwe

As in Section 2, we can get local results from the above global results.

Theorem 4.12. (Asymptotic Phase) Suppose that f € CY(R™), f(0) =0
and Df(0) = 0, and o, = O. Let M, be a C? local center manifold of
(1.1). Then we can find a neighborhood ) of the origin in R" and some
constants y > 0 (a < y < B) such that if x € Q and cl{%(t,x)|t = 0}
C (), then there exist some ty =0, M >0 andy € My N Q such that

|#(2, x) = %(t —tg,y) < Me™™  forallt =1, (4.23)

Proof. We use Theorem 3.6 for (1.1) with 8 = §,. Then there exist a
neighborhood Q of the origin in R”, and mappings f € CIRM, ¢ €
CX(E,, E,) such that (3.7) has the global center manifold M, and
M,NnQ=M,NQ.



Asymptotic Behavior and Invariant Foliations 45

Since 0, = &, we can take &, = §,, and the global center-unstable
manifold W< of (3.7) coincides with M, . Letting x € (), by Lemma 4.6
and Remark 4.9, we can find £ = H, (x) € M, such that

sup e”|X(t, x) — X(t, R)| < co. (4.24)
t=0

Note that £ may not belong to €). The condition cl{%(z, x)| x > 0} Cc Q
and (4.24) imply that there exits a #, > 0 such that (¢, £) € Q for all
t >ty Let y =#%(ty, %), then y € Q, and #(t — 15, y) =%(t,%) € Q
for t > t,. Therefore (4.23) follows from (4.24). |

Suppose that f € CI(R"), M, is a local center manifold of (1.1), and
y € M,. Let x(t) = = %(¢, y), then by Lemma 2.6 and Theorem 3.6
x (t) satisfies the equation

X, =Ax, + w f(x. + &(x.)), x. €E,. (4.25)

The following theorem gives the relationship between x(tz), as a
solution of (4.25), and %(¢, y), as a solution of (1.1).

Theorem 4.13. (Pliss Reduction Principle) Assume the conditions of
Theorem 4.12 are satisfied. Suppose that y € My N Q and cl{(z, y)|
t > 0} C Q. Then ¥(t, y) is stable (asymptotically stable, unstable) if and
only if x (t) is stable (asymptotically stable, unstable).

Proof. We use the same method and notations as in the proof of
Theorem 4.12, that is, extend the local center manifold M, of (1.1) to
the global center manifold M, of (3.7) in order to use some global
results, and then restrict to ) to get corresponding local results.

Suppose x.(¢) = m.%(z, y) is stable as a solution of (4.25). Then x (¢)
is also stable as a solution of

X, =Ax, + m f(x, + ¥(x.)), (4.26)

where f is given in Theorem 3.6, and the equation is globally defined.



46 Center Manifolds

We consider a special case first. Suppose £ € M,, then ¥(¢, £) =
w %(t, £) + p(w, X(t, X)), w %(t, £) is a solution of (4.26). Thus

[%(t, %) — X(¢, ¥)l
<|m (e, %) + p(mi(t, %)) — (x.(t) + ¥(x.(1)))]
< (1 + 1Dyl (2, £) — x.(2)l.

On the other hand, |7 %(0, %) —x.(0) < |lw lllX — yl. The stability
property of x.(¢) implies that for € > 0 there exists a §, > 0 such that

[X(¢, %) —x%(t,y)l<e/2 fort=0, teM,, and|f-y|<3$,.

(4.27)

Now we consider the general case. Suppose x € R”, then we can use
the continuous mapping H,,: R" - M, = W (since o, = ) to find
£=H,(x) € M,. Noting H,(y) =y, we can find a 8 > 0 such that
|£ =yl < 8, if |x — y| < 8. Let & be sufficiently small so that Corollary
4.7 holds. By using (4.19) and (4.27), we have

[£(t,x) —x(t,y) <|&E(t,x) —x(t, D) + |X(¢, %) — X(¢, ¥)I
€ €
< Ee“" + 7 <6 for t > 0, (4.28)

as long as |x — y| < 8. This gives the stability property of 1(z,y) as a
solution of (3.7). Restricting to {), we obtain that %(¢, y) is stable as a
solution of (1.1).

If x (¢) is asymptotically stable, then instead of (4.27) we can obtain

|%(¢, %) —%(t,y)| =0
ast - +o fort € M,,|f—yl<8. (429
Therefore, (4.29) and (4.28) imply that (¢, y) is asymptotically stable as
a solution of (1.1). On the other hand, if (¢, y) is stable (or asymptoti-

cally stable), then x(#) = m %(z, y) is obviously stable (or asymptoti-
cally stable).



Bibliographical Notes 47

The above results mean that %(z, y) is stable (asymptotically stable) if
and only if x(¢) is also. Hence, (¢, y) must be unstable if x(¢) is
unstable. O

By using the foliation structure, Burchard, Deng and Lu [1] proved
the following theorem.

Theorem 4.14. Suppose that U is a neighborhood of the origin in R",
fe Ck*t1 (U,R™) for some k = 0, f(0) = 0, and Df(0) = 0. Then the
flows on two arbitrary C** 1! local center manifolds W{ and Wy of (1.1)
in U are locally conjugate. More precisely, there is a neighborhood V < U
of the origin in R" and a C* diffeomorphism ¢: W NV — W5 N Vsuch
that

(1, 6(x)) = ¢(£(2, x))
forallx e Wf NVandallt € R as long as ¥(t,x) € W N V.

Outline of the Proof. There is a C*! local center-stable manifold W<*
containing Wy, and there is a C*! local center-unstable manifold W “
containing Wj. The intersection W N W< must be a C*! center
manifold of (1.1) which is denoted by Wy. Since Wf and Wy are
contained in the same center-stable manifold W<, the unstable folia-
tion on W< gives a C* conjugacy between Wy and W5. Similarly, the
stable foliation on W< gives a C* conjugacy between Wj5 and Wf
which are contained in W“. Hence, Wy and W5 are C* conjugate.

1.5 Bibliographical Notes

The invariant manifold theory has a long history, and the center-mani-
fold theory for the finite-dimensional case has been developed by Carr
{1], Chow and Hale [1], Chow and Lu [3], Chow and Yi [1], Fenichel
[1-4], Guckenheimer and Holmes [1], Hirsch and Pugh [1], Hirch, Pugh
and Shub [1], Kelley [1], Marsden {1], Palmer [1], Pliss [1], Sijbrand [1],
Vanderbauwhede [2-3], Vanderbauwhede and van Gils [1], Wan [2],
Wells [1], Yi [1], and others. The center manifold theory for the
infinite-dimensional case has been studied by Bates and Jones [1],



48 Center Manifolds

Burchard, Deng, and Lu [1], Chow, Lin and Lu [1], Chow and Lu [2-3],
Chow, Lu, and Sell [1], Hale and Lin [1], Hale, Magalhaes, and Oliva
[1], Henry [1], Mielke [1], Sell [1], Sell and You [1], Temam [1-2],
Vanderbauwhede and Iooss [1], and many others.

In this chapter we present a short introduction to the basic con-
cepts and results in center-manifold theory for the finite-dimensional
case. From this point of view, a clear description has been given by
Vanderbauwhede [3]. We follow some of his approaches and notations,
as well as some of his proofs (Lemma 3.1, Lemma 3.4, Theorem 3.6,
Corollary 4.7, and Theorems 4.12 and 4.13). The proofs in
Sections1.1-1.4 are essentially due to Chow and Lu [1]. The proof of
the existence of center manifolds in Section 1.1 appears in many of the
above references. The proof of the smoothness of center manifolds
might be the most difficult part in this theory. We would like to mention
some other works. Vanderbauwhede and van Gils [1] use the contrac-
tions on embedded Banach spaces, Vanderbauwhede [2] uses an ap-
proximation argument, and the fiber contraction theorem has been used
in Vanderbauwhede [3]. Our approach in Section 1.2 uses only the
definition of the derivative and a specific estimate described in Lemma
2.2.

Van Strien [1] gives an example to show that there may not exist any
C* local center manifold of (1.1) for f € C* (even if f is analytic).
Similar examples can be found in Carr [1], Guckenheimer and Holmes
[1], Sijbrand [1], and Vanderbauwhede [3]. However, under certain
conditions, C* center manifolds do exist, see Sijbrand [1], for example.

In Sections 1.3 and 1.4, we follow the standard approach to deal with
local center manifolds from the global theory by using Theorem 3.6.
Palmer [1] gives a direct proof of the local results (Theorems 4.12 and
4.13) by using Gronwall’s inequality. We note that in Palmer [1], we
only need to assume that M, is C ! Theorem 4.14 belongs to Burchard,
Deng, and Lu [1].
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Normal Forms

It is well known that a linear change of coordinates
x =Ty
transforms a linear differential equation
X = Ay
to the form
y=(T"UT)y,

where x,y € R", 4 and T are n X n matrices, and T is nondegener-
ate. Therefore without changing the topological structure of the orbits,
we can study the case that A is in its Jordan form.

One may ask if it is possible to do a similar procedure for a nonlinear
differential equation, that is, to obtain the simplest possible form by a
suitable (nonlinear) change of coordinates? The answer is positive, and
this is just the subject of this chapter.

We remark here that in contrast to the linear case, the results of
normal-form theory will be local, and the normal-form equation is not
unique. Nevertheless, the normal-form theory is useful for the study of
bifurcation problems.

2.1 Normal Forms for Differential Equations near a Critical Point

In this section we will consider a vector field near a critical point which
we will take to be the origin. Consider a C'*! differential equation,

49
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i=Ax+h(x), xeC" (1.1)

where 4 € C"*" the n X n matrices with complex entries, and A(x) =
0(x*) as |x| - 0.
Consider a C" transformation in a neighborhood  of the origin:

x=£(y), yeQ, (1.2)

where £(0) = 0. By substituting (1.2) into (1.1), we get:
y=£1()4E(y) + 1 (0)R(E(Y)), yeEQ,  (13)

where £,(y) denotes the derivative of £(y) with respect to y and
£, '(y) is the inverse of £,(y) in Q. Note that the linear part of (1.3) is
£ 1(0)A§y(0) y. Thus, if A is already in a canonical form, we may
assume that the diffeomorphism £(y) in (1.2) takes the form

£(y) =y+0(|y|2) asy - 0. (1.4)
Therefore we may write (1.3) as

y=Ay +g(y), y €, (1.5)

where g(y) = O(y|» as |y| = 0.

Our goal is to determine a change of coordinates (1.2) such that the
transformed equation (1.5) will be in the simplest possible form, so that
the essential features of the flow of (1.1) near the critical point x = 0
become more evident. The desired simplification of (1.1) will be ob-
tained, up to terms of a specified order; by performing inductively a
sequence of near identity change of coordinates of the form

Ey)=y+£y), yeQ,, (1.6)

where ¢%: C" —» C" is a homogeneous polynomial of order k > 2 and
Q, is a neighborhood of the origin in C". Notice that any map of the
form (1.6) is a diffeomorphism in some neighborhood of the origin. To
see how far g can be simplified, we write h#(x) as a formal power series



Normal Forms of Equations near a Critical Point 51

using superscripts to denote the order of the homogeneous terms
h(x) = h*(x) + B3 (x) + -+, (1.7)

where for each k > 2, h* € H,f‘, the vector space of homogeneous
polynomials of order k in n variables with values in C”. From (1.6) we
get

E,(y) =1+ &(y), (1.8)
and then
(£9) " =1-£&() +O(y*?), yeQ,, (19

where , is a small neighborhood of the origin in C”. Substituting
(1.6)-(1.9) into (1.3) we obtain

y=Ay + h*(y) + - +h*"Y(y)
+{nk(y) - [5() Ay — 4e*(D)]} + O(Iy**Y),  yeq,.
(1.10)
To simplify the term h*(y) we have to choose a suitable ¢*(y) before
we make transformation (1.6). In order to see clearly the dependence of
&% on h* (1.10) suggests introducing for each k > 2 a linear operator
L%: H¥ > HF defined by

(L4E*)(y) = E5(v) Ay — AE*(y), € eHf. (111)

Then (1.10) can be expressed as

y=Ay + h*(y) + - +h* " }(y)

+(h*(y) - LKg*(y)) + Oo(IyI**Y),  yeQ,. (1.12)

Let #* be the range of L% in H¥ and &* be any complementary
subspace to #* in HY. We have

Hf=x*o &%, k=2 (1.13)

The following theorem gives the desired simplification of (1.1).
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Theorem 1.1. Let X: C" - C" be a C™*! vector field with X(0) = 0 and
DX(0) = A. Let the decomposition (1.13) of HX be given fork = 2,...,r.
Then there exists a sequence of near identity transformations x =y +
E5(y), y € Q,, where £*¥ € H¥ and Q, is a neighborhood of the origin,
Q1 SO, k=2,..., r, such that equation (1.1) is transformed into:

y=dAy+gXy) + - +g"(y) +O(yI™Y),  yeQ,, (114

where gk € €* fork =2,...,r.

Proof. Let X(x)=Ax + h*(x) + -+ +h"(x) + o(lxI"™), as x = 0.
For k = 2, (1.12) becomes

y=dy + (h*(y) - L4£3(»)) + O(IyP®), ye€Q,, (1.15)

where (, is so small that I + £X(y) is invertible on it. Since for each
h? € H? there exist f2 € #* and g € #? such that h? = f% + g%, we
can find a £2 € H? with L4¢% = f2, and then (1.15) becomes

y=dy +g%(y) +O(IyP’), yeQ,.

Next we proceed by induction. Assume that Theorem 1.1 is true for
2 <k <s — 1 < r. By a change of variables, we may assume that (1.1)
becomes

X = Ax +g2(x) 4o +gs—-l(x) +h’(x) + 0(|x|s+l),
x er—l’

where gk € * for k = 2,...,5 — 1, h* € H? (we remark that 4° here
may be different from the one in (1.1)), and €, _, is a neighborhood of
the origin. Let x =y + £°(y), y € Q,, where £° € HS is chosen ac-
cording to (1.13) so that h* = L5,¢° + g°, g* € @, and Q,C Q,_, isa
neighborhood of the origin on which y + £°(y) is invertible. Then from
(1.12) with k = s we obtain:

y=Ay +g3(y) + - +g i (y) + (R(y) — Li£(¥)) + O(IyI’™)
=Ay +g*(y) + -+ Y(y) +g'(y) + O(yI'*"), yeq,

This completes the proof. O
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Definition 1.2. Suppose that the decompositions (1.13) are given. The
following truncated equation of (1.14)

y=Ay +g%(y) + - +g"(y) (1.16)

where g € %, k = 2,...,r, is called an A-normal form of equation
(1.1) up to order r.

We note that an A4-normal form is not unique for the fixed 4. In
fact, it depends on the choices of the complementary subspaces #*
k=2,...,r).

Remark 1.3. Let K = {k € N| &* + @). Suppose dim&* = n, > 1 and

{vf, ..., vr ) is a basis of &* for k € K. Then (1.16) can be written as
ro ng
y=Ay+ Y Y a,vf, (1.17)
k=2 j=1
kek
where a,; € Cforall j=1,...,n,, k=2,...,r. Then an A-normal

form of (1.1) up to order r is of the form (1.17). Generally it is not easy
to determine the coefficients of (1.17) for a particular equation (1.1) and
it is not easy to find the transformation which transforms (1.1) into
(1.17). Numerical and symbolic computational methods are available
for users to find such transformations and to determine the coefficients
in A-normal form equations. Equation (1.17) with arbitrary coefficients
{a,,} is called a general form of an A4-normal form up to order r.
From the above discussion the A4-normal forms are determined by

the choices of the complementary subspaces #* (k =2,...,r) and
these subspaces are determined by the matrix A4 only. In general, it is
not easy to find complementary subspaces #* for k = 2,...,r. How-

ever in the case when the matrix A is diagonal, it is very easy. We will
consider this case first.
A monomial in HY is an expression of the form x“;, where a =

(a, @,, ..., a,) with nonnegative integers «; is a multi-index and
= “e - a _ o [ PO [+ —
lal = a; + a, + +a, =k, x%=x{1x5? xpn, e =

©,...,1,...,0)7 is the standard basis element of C* with only the jth
component being 1 and all other components zero. A basis for the
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vector space H¥, n > 1, is given by
{x"‘ejllal =k,1<j< n}.

The dimension of HY is

(1.18)

dimH,f=n-("+II:_1).

Definition 1.4. If o(A4) = {A,,...,A,} is the spectrum of A, then the
following relations are called resonant conditions:

Ara—2; =0, (1.19)

where A = (A,...,A ), a =(ay,...,a,) lal>22,1 <j<n,and A -
a=MAa;+ - +A,a,. Let (x,...,x,) be coordinates with respect to
the standard basis {e,, . .., e,} of C" in which the matrix A is in Jordan
normal form with diagonal elements (A;,...,A,). Then a monomial
x%e(lal =k = 2and 1 <j < n) is called a resonant monomial of order
k if and only if (1.19) holds for « and j.

Theorem 1.5. Let A = diag(A,,...,A,). Then an A-normal form up to
order r 2 2 can be chosen so that its nonlinear part consists of all
resonant monomials up to order r.

Proof. A direct calculation shows that for any monomial x®e; with
lal=k>2and1 <j<n,

LY(x%¢;) = (A - a — A;)x%;. (1.20)

Hence Ker(Lfft) is obviously a complementary subspace to the range of
L¥ in H¥ and Ker(L%) is spanned by all resonant monomials of order
k for each k > 2. Then the desired result follows. 0O

In the following, we will present two methods for finding the comple-
mentary subspaces #* for a given matrix 4. The first is the adjoint
operator method. Since an inner product can be introduced in H,f, a
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possible choice for #* is the orthogonal complement of .#*, which will
be characterized as Ker((LX)*), the null space of the adjoint operator
(Lk)* of LY. Other choices will be obtained from Ker((L%)*) by using
linear algebraic techniques. The second is the matrix representation
method. Each L% is a linear operator defined on a finite-dimensional
linear space H*. If L% is the matrix representation of L¥ with respect
to a basis of H,f‘, then our problem is reduced to finding a complemen-
tary subspace to the range of L% in C%, where d, = dimHE.

If p(x) = Z}_ L4 -xPa;x%e; and q(x) = L7 ¥, _xqa;*"e;, Where
p,; and q,; are complex constants then we define

<P,Q> = Z Z pajqajaL (1‘21)

i=1lal=k

where a!= a;la,!...a,!.

Example 1.6. Let laf =iBl=k and 1 <i,j < n. Then
(x%e;, xPe;) = §,;8,4al,

where §;; and §,, are the Kronecker symbols.
It is easy to see that { -, - ) is an inner product in HF.

Theorem 1.7. Operator L* “» is the adjoint operator of L" with respect to
the inner product { -, ) in HF for each k > 2, where A* is the adjoint
operator of A with respect to the usual product (-, - ) in C".

Proof. Let p,q € HF, p(x) = L1l ja=k PaiX ey, qg(x) =
L7 1L 5=k9p;%%e;. Then, using the linearity of L%, L%. and properties
of the inner product, we get

(Lp, ) Z Y Y Y puds{LE(x%,), xPe)),
i=1j=1|al=k |BI=k

Z ) paiqﬁj<xaei’L,;1*(xBej)>‘
=k |BI=k

-
]

—

[



56 Normal Forms

Therefore it is enough to prove that
Li(x%e;), xPe;) = (x®¢;, Lku(xP¢;))

for any a, B8,i,j with |a| =8| = k and 1 < i, j < n. An easy computa-
tion shows:

L%( x%;) = D(x%;) Ax — A(x%;)

‘1 n

n n
Z Zalalm X Z a;x°ey,

I=1m=1 ] =

n n Bxl
= Z ZBmalm—e - Z ajmxBem9
m=11=1 x

m m=1

where D is the differential operator. Therefore

Lk(x°e;), xPe;)

(Za,a,, ,,) ! ifi=jand a =8,

a,a,, B! fi=j;B=a,—-1,B,~a,+1
- for some [ # m;

B, =a, foranys # [, m,
—a;a! ifi#jbuta=4,
0 otherwise;

(x%;, L+ (xP¢;))

(ZBlall u)B‘ ifi:jandB=a9

B, a ! ifi=jia,=B,+1,a,=8,—
= for some [ + m;
a, =B, foranys # I, m,

—a;B! fi+jbuta=2,
0 otherwise,

The two expressions are equal in each case. Thus the theorem is
proved. O
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Corollary 1.8. Ker(LX.) is the orthogonal complementary subspace to
F* with respect to the inner product { -, - ) in H* for each k > 2.

Remark 1.9. If we define L,: CX(C,C") - C%C,C") by
(Lag)(x) = £,(x)Ax — AE(x),

then L% = L lyx, L% = L |y+. Thus a polynomial of order r,
g(x) =g%(x) + -+ +g"(x), where gt € H¥, k = 2,...,r, belongs to
Ker(L ,) if and only if g* € Ker L%, k = 2,..., r. Therefore to find
A-normal form equations up to order r, it is sufficient to solve the
partial differential equation L ¢ = 0 for rth-order polynomial solu-
tions with no constant and linear terms.

Example 1.10. Let

0 1 £1(xq, x5)
A= [0 0] and ) = [§Z(xl’x2)]’

where £,(x,, x,) and £,(x,, x,) are scalar polynomials of degree r > 2.
Then

€, 9E, |
% & 0 0l|x, 0 0| &(xy,x,)
dx, dx,

Lysé(x) = -

¢, 3¢,
El‘ EZ 1 0 Xy 1 0 §2(x1, x2)

9,
X, —
ox,

&, ’
X, —= =
10x2 £

It is easy to see that the rth-order polynomial solutions (without
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constant and the first-order terms) of the equation L &(x) = 0, that is,

3
xl_l = 0,
dx,
&,
x,— — &, =0,
lé'x2 &

are

£1(xyq, x5) =x12<;b1(x1), E2(x1, x;) = x1x,04(xy) +x12¢2(x1),

where ¢,(x,) and ¢,(x,) are arbitrary scalar polynomials of order
r — 2. Thus an A-normal form equation up to order r is

X =x,+ xlzd’l(xl),

X, = x12¢2(x1) +x,%,0,(x,)-

We note that r > 2 can be any integer. An A-normal form up to order
2is

%, =x, + bx}, L2
¢ = gl (1.22)
X, = axi + bx,x,,

where a, b are complex constants.

We can also choose span{x?e,, x,x,e,} as a complementary subspace
to #2. In fact, if v, =x%e,, v, =x?e, + x,x,e,, w, = 3x%,, and
w, = x,X,e,, then {v,,v,} is a basis of Ker(L%.) and it is easy to see
that (v, w;) = §;; for i, j = 1,2. Hence span{w,, w,} is another comple-
mentary subspace to %#2. Thus a different 4-normal form up to order
2 is given by

X, =x,,
a,beC.
: 2

X, = axi + bx,x,,
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Example 1.11. Let

£1(xq5 X2, X3)
and &(x) = | &2(xp5 X2, %3) |,
£3(xy5 %2, X3)

EN

It
o o O
S O =
S = O

where £(x,, x,, x;) are scalar polynomials of order r > 2, i = 1,2,3.
Suppose that £(x) is a solution of equation L £ = 0, that is,

) ¢

xl—g—l + xz—l =0,
dx, dx;
9&, ¢,
=2 22 o 1.2
19x, +x26x3 €1 (1.23)
o ok

X +x,— =§,.
lax2 26x3 &

The two independent first integrals of the first equation of (1.23) are
pr=x; and p, = 2x;x; — x2.

Suppose £,(xy, X5, X3) = L, i kemCiie X1%45x% and £)(xy, x5, x3) =
®(p,, p,). Let p, # 0. Then x, = (p, + x3)/(2p,). Hence

Cijk P i k
®(p,p)) = L 3"_1"1 kxi(py +x3) .

i+j+k=m

Let x, = 0. Then

Ciok ,_
®(p, )= L 71”1 kpk.
i+tk=m

Since @ is differentiable in p,, { > k. Thus & is a polynomial of p, and
D, and hence so is £;. Let

£1(x15 X2, x3) = x104( Py, P2) + ¥i(P,),

where ¢, and ¢, are polynomials in their arguments. Then £, can be
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expressed as
X
£x(x1, X3, X3) = X,04( Py, P2) + x_'/’l(Pz) + ¢(p1» P2),
1

where ¢ is a differentiable function in p, and p,. By multiplying £, by
x,; and then taking x, = 0, we can show that ¢, =0 and ¢ is a
polynomial in p, and p,. Let ¢(p;, p,) = x,6,(p;, P,) + ¥,(p,), where
¢, and ¢, are polynomials in their arguments. Then it can be shown in
a similar way that ¢, = 0 and

£3(xy, X2, X3) = X301(P1> P2) + X20,( P15 P2) + &3( P15 P2)s

where ¢; is a polynomial in p; and p,. Hence an 4-normal form up to
order r is

iy =Xy + x.0,(xy,2x,x5 = x3),
Xy = x5+ x,0(x, 2%, x5 — x3) + x,0,(%1,2x,x5 — x3),
X3 = x3¢1(x1, 2x1x3 — x%) + xz‘/’z(xl, 2x1x3 — x%)

+3(xy,2x,x5 — x3),

where ¢, are polynomials in their arguments such that x;¢,, x,¢,, and
¢, are polynomials in x,, x,, and x; of order r without constant and
linear terms.

A different method for finding A-normal forms is to use the matrix
representation of the linear operator L’j, with respect to a given basis of
H,f‘. First, we give an ordering of the elements of the basis of H,,k,
{x%;|lal = k,1 <j < n}. This is taken to be the reverse lexicographic
ordering, that is,

x%,; <xPe; ifandonlyif (i,a;,...,a,) > (J,By,--->B,),

where (i, a,,...,a,) > (j,B;,...,B,) if and only if i > j or i =j and
the first unequal components, say, «, # B,, satisfy a;, > B,, 1 <s < n.
We shall write i ~ (j, a) if x“e; is the ith basis element with respect to
reverse lexicographic ordering.
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Let d;, = dmH* and U, = {uy,...,u,} be an orthogonal basis of
HF. We will use hereafter only basis U, of the form

u,(x) =x%;, lal=k, j=1,...,n, (1.24)

where i ~ (j,a) is in the reverse lexicographic ordering for i =
1,...,d,. We denote by ¥ the matrix representation of L% with
respect to the basis U, of H*. Then LX is a d, X d, matrix which can
be viewed also as a linear operator on C%. Let .%Z* be the range of [
in C% and #* any complementary subspace, that is, C% = #* & &*. If
we define:

dy

& = {gk =Y au, € H:

i=1

(a1,...,a,,) 6.9?"},
(1.25)

di
ok {gk =Y au, < HY
i=1

(a1,...,8,4) € ‘?k},

then #£* is the range of LY in H* and #* is a complementary
subspace to #* in HY. Therefore, finding a complementary subspace
&* to #* in H* is equivalent by (1.25) to finding a complementary
subspace #* to #* in C%. Such a complementary subspace is provided
by €% = Ker((LX)*), which is the orthogonal complementary subspace
of #* in C% with respect to the inner product (-, -) in C%. Other
complementary subspaces to .#* can be obtained from Ker((Z%)*) by
performing elementary algebraic calculations.

Remark 1.12. Since the size of the matrix [X is d, X d, =
n(" :’f 1 1) X n(" Z k 1 1), which increases rapidly as k increases, to
calculate matrices L¥ and to find bases of complementary subspaces
&* become generally more and more difficult. However, the matrix f,’jl
depends only on the matrix 4 and k, so it involves only computing

coefficients of the basis of H* in the expansion:

n

n n a
Li(x%;) = (Z Y x_ ,,x,)x“ej - Y a;x%.  (1.26)

i=1
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Even though the computations might be tedious they can be performed
in principle, especially when n and k are small, and one can use a
computer to do it. Once L% is known, to find a basis of Ker((ZX)*) or
some other complementary subspace #*, and hence #* by identifica-
tion (1.25), becomes an algebraic problem.

In some cases, as we shall see, l',’j, is easy to compute and so is a
complementary subspace #* to #* in Cé.

Lemma 1.13. If A = diag(A,,..., A,), then L% is also diagonal; if A is
upper (lower) triangular with diagonal elements (A,,...,A,), then f/j, is
lower (upper) triangular. Furthermore, for both cases, the ith element of
the diagonal of l-,’j, isA-a—Aj,wherei ~ (j,a)

Proof. The conclusion follows from (1.26) and the definition of the
reverse lexicographic ordering of the basis U, of H¥. O

Remark 1.14. When A is diagonal or upper triangular it is fairly easy to
obtain a basis of a complementary subspace since in those cases the
matrix f/j, is diagonal or lower triangular and its range is spanned by
the columns of the matrix. From the structure of the matrix it is easy to
read off a basis of a complementary subspace, or to obtain the column
echelon form from which this basis can be read off. This is the
advantage of giving the reverse lexicographical ordering to the basis.
When A is not upper triangular we can make a linear transformation so
that the linear part of the resulting equation is upper triangular.

Example 1.15. Consider the following equation in C?:
¥=Ax+0(Ix*), xecC?
where
_{0 1
4= [ 0 0].

For any k > 2, we shall determine a complemntary subspace #* to the
range #* of L% in H¥. We have dim H¥ = 2(k + 1) and the basis of
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Hf in the reverse lexicographic ordering is

Ak +1) -
{ui(x)}i=1+ ={x{‘xge2,x{‘ xae5,..0,

0.k k.0 k=1 0.k
xXix5e,, X{x3€q, X1 xzel,...,xlxzel},

that is, u(x) =xF""*xile,, up (X)) =x¥"+1xi-le, for 1 <i <
k + 1, where {e,, e,} is the standard basis of C2. For ¢ = (¢,,£,)T € H¥
we have

[ 08, 8¢, |
dx; dx,
9, 9,
dx, dx,

a¢,
ng;: - ¢,
¢,

x—-—_
29x,

3

§2 0 0 xz 0 0 §2

Then, applying L to the elements of our basis we get

k _ .
Liu, = (k—i+ 1) — Uipirs

. l1<i<k+1,
Lﬁiui+k+1 = (k -+ l)uk+i+27

with the convention u,,,; = 0. So we have the following 2(k + 1) X
2(k + 1) matrix for LX,.

0 0 0 0 .0 0 0 0
k 0 0 0:0 0 0 0
0 k-1 0 0.0 0 0 o
0 0 1 0.0 0 0 0
f,f4= ......................... REREEEREEEERTRTRETEE
-1 0 0 0.0 0 0 0
0 -1 0 0k 0 0 0
0 0 D0 t0 k-1 0 0
: : -1 o : Do
| 0 0 0 -1:0 0 e 1 0_2(k+1)x2(k+1)
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Let{é;]i =1,...,2k + 2} be the standard basis of C?**2. Then a basis
of Ker((L%)*) is given by

~ ~

b, =é, b, =€, + ké,,,.

We can choose also % = span{w,, w,}, where w, = é,, w, = €, ,,,as a
complementary subspace to R* in C2¥*2. By the correspondence be-

tween H¥ and C%¥+?
0 k
ol L[]

is a complementary subspace to %Z* in H¥ and an A-normal form
equation up to order r is

x=[
0 k2bkx1

Y [”"x{c] (1.27)

where a,, b, € C, k = 2,...,r. We can rewrite (1.27) as

Xy =Xy + xiy(xy),
2= x12¢2(x1),

where ¢,, ¢, are polynomials of degree r — 2, for r > 2.

Since we can also choose €% = span{w,, W,}, where W, = é,, W, = é,,
as a basis for a complementary subspace to #* in C%**2, the corre-
sponding A-normal form is

+ Z [akx1 + b xf~ lxz]’

where a,, b, €C, k=2,...,r, 01

X, =X,
Xy = x10,(%,) + x,%,0,(x,),
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where ¢,, ¢, are polynomials of degree r — 2, r = 2. In particular,

xl = x2,

i, =ax} + bx,x,,

where a,b € C is an A-normal form equation up to order 2.

To deal with the case when A is not diagonalizable we can apply the
S — N decompositions of linear operators in finite-dimensional vector
spaces.

Definition 1.16. Let L be a linear operator in a finite-dimensional
vector space V over C. L = § + N is called the § — N decomposition
of L if § is semisimple, that is, the matrix representation of S with
respect to a basis of V' is diagonal, N is nilpotent, and SN = NS.

It is well known that for any linear operator in finite-dimensional
vector spaces there exists a unique § — N decomposition.

Theorem 1.17. Let L be a linear operator in a finite-dimensional vector
space V. If L = S + N is its S — N decomposition, then

Ker(L) = Ker(S) N Ker(N).

Proof. It is not hard to see that V' = Im(S) & Ker(S) since S is
semisimple. Then it follows that S is invertible on Im(S). Ker(S) N
Ker(N) ¢ Ker(L) is also apparent. Let v € Ker(L). Then Sv = —Nv.
Since SN = NS, $™v = (—1)"N™v = 0 for some positive integer m. If
m=1, then Sv = —Nv =0. Thus v € Ker(S) N Ker(N). If m > 1,
then $™~1(Sv) = 0 and then we still have Sv = 0 since § is invertible
on Im(S). Consequently Nv = 0. The proof is completed. O

Theorem 1.18. If A =S8 + N is the S — N decomposition of A, then
L% = L% + L%, is the S — N decomposition of L%, for each k > 2.
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Proof. Let {n,,...,n,} be such a basis of C" that the matrix of 4 with
respect to the basis is in Jordan form denoted by

ML+ N

ASIS + NS

where A; is an eigenvalue of A, I; is the n; X n; identity matrix,

! o1
0 n;Xn;

i=1,...,s,and n, + -+ +n, = n. By the uniqueness of the S - N
decomposition of A,

AIII Nl
S = . . and N= .
A N,

s°s

The matrix representations of L% and L%, with respect to the basis U,
are diagonal and strictly lower triangular, respectively, by Lemma 1.13.
Hence L% is semisimple and L% is nilpotent. Furthermore, for any
monomial x%;, if ny + -+ +n,_y <j<n; + - +n; for some 1 <i
< s, then by (1.26)

L(x%¢;) = (A - a — 1)) x%¢;, (1.28)

LY (x7¢;) =

-1
a,
—_— @ —_ @
IZ 141 x,x'“)x e; —a;_q,;x%;_1, (1.29)
=1

where a,,,,=1if l#n; + --- +n, forany 1<t<sora, =0

ifl=n+--+nfort=1,...,5 — 1,and a5, = 0. A simple calcu-
lation shows that if /#n,+ --- +n, for any 1 <t <s and if
ny+ - +n,_;<j<n;+--- +n; forsome 1 <i <s, then
X141 X141
L’;( s x"ej) =(Aa=-A)— x“;.
* X
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Therefore if n, + -+ +n,_; <j<n + - +n,forsome 1 <i<s,
LYLY (x%;) = (A - a — A)L(x%;),

and
LyL%(x%) = (A - a — X)) L5 (x%;).

Since x“; is arbitrary it follows that L}, commutes with L§. The
theorem is then proved. O

Corollary 1.19. Let A =S + N be the S — N decomposition of A and
F(x) be an n-vector valued polynomial in x € C". Then F(x) € Ker(L 4)
if and only if F(x) is a solution of the following system of partial
differential equations:

Ls*F(x) = 0,

We note that when S is diagonal Ker(L%) and Ker(L%«) are the same
for any k > 2. Then we have the following corollary.

Corollary 1.20. Let A =S + N be the S — N decomposition of A. If
S = diag(A,,...,A,), then an A-normal form up to order r > 2 can be
chosen so that its nonlinear part is spanned by resonant monomials up to
order r.

It is not hard to see that if 4 =S + N is the S — N decomposition
of A then Ker(LX) N Ker(L%«) is dlso a complementary subspace to
the range of LY for any k > 2. Hence we can also get 4-normal forms
by finding polynomial solutions of the system of linear partial differen-
tial equations

LsF(x) = 0,
LN*F(X) =0.
We note that if S = diag(A;,...,A,) then any resonant monomial

commutes with exp(§). In general we have the following corollary.
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Corollary 1.21. Let A = S + N be the S — N decomposition of A. Then
an A-normal form can be chosen so that it is invariant under the linear

transformation x — e5x.

Now we discuss A-normal forms of the real equation
X=Ax + f(x), xeNcCcR” (1.30)

where ) is a neighborhood of the origin of R* and f(x) = O(x]?) as
x—0.

Let 17,{‘ be the linear space of all homogeneous polynomials of order
k in n real variables with values in R” and the operator L%: H* — H*
be defined by the same formula (1.11). We can get a real A-normal
form of (1.30) by solving the partial differential equation L #+F(x)=0
for its real polynomial solutions or by the matrix representation method.

If A is diagonalizable over C, we cannot apply resonant conditions to
find its real A-normal form directly. Let B = P™'4P be diagonal,
where P is a nonsingular complex matrix. We change variables in (1.30)
by x = Pz, where z € C” and Pz= Pz. Then (1.30) becomes

2 =Bz + h(z2), (1.31)
where h(z) = 0(|z|*) as z > 0. Let
E = {inTz =Pz, z € C"}.

It can be shown that E is a real n-dimensional linear space. Thus (1.31)
is an equation in the real linear space E. We note that the kth-order
homogeneous part of A(z) in (1.31) belongs to the real linear space

H¥ = {g(z) € H¥Pg(z) = Pg(z) for any z € E}

and H¥ is Lk-invariant. Since B is diagonal, Ker(L%) n H* is a
complementary subspace to the range of L%|gx in HY. Therefore we
can find a near identity transformation in E,

z=v+ &), veq, (1.32)

where £(v) = O(Jv|*) as v - 0 and Q, is a neighborhood of the origin
in E, to obtain a B-normal form of (1.31)

v=Bv+G*v)+ -+G(v), veQ (1.33)

ro
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where G* is a linear combination of all resonant monomials of order k
with suitable complex coefficients such that PG*(v)= PG*(v) for
veE,k=2,...,r. We change variables by y = Pv in (1.33). Then the
resulting equation

y = Ay + PG}(P"ly) + -+ +PG'(Ply) (1.34)
is an A-normal form of (1.30), which is real. From (1.32), we get the

required real transformation x =y + P¢(P~'y). We illustrate this
method by the next example.

Example 1.22. Consider the equation:

i=Ax+0(Ix®), x=(x,x) €R? (1.35)

where

_10 -1
a9 3

We change variables by z, = x, + ix, and z, = x, — ix,. We note that
z, = Z,. Then (1.35) becomes

(1.36)

. 2 2

zy =1z + 0(|21| + |zzl )a

, ; 2 2
Z,= —iz, + O(Ile +lz,1%),

where the second equation of (1.36) is conjugate to the first one. Since
the matrix of the linear part of (1.36) A = diag{i, —i}, the resonant
conditions are

al—a2-1=0, j=1,
a,—a,+1=0, ji=2,

where a; + a, = 2. Therefore, a; + a, must be odd and a; — a, =
(—=1Y~Y Thusif k =2m + 1, m > 1, then

Ker(L%:) = span{z]"* 1z, 2727 *e,}.
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A A-normal form up to order r will be of the form

5 — 7 2 s+1_s
z, =1z, + 127z, + +CSZI Z5,

(1.37)

2,= —izy +dyz;22 + -+ +d,z{z5%7,

where r —1<2s+1<r, ¢, and d, are complex constants, and
d, =7, k =1,...,s. Applying the change of coordinates z, = x; + ix,
and z, = x; — ix, to (1.37), we get a real A-normal form up to order r
as follows:

s
. k
dp=—xy+ 2 (xf +x3) (apxy - bexy),
k=1
s
. k
i, =x,+ 3, (xF +x3) (apx, + byxy),
k=1

where a, and b, are Re(c,) and Im(c,), respectively, k = 1,...,s. A
different type of normal form can be obtained by making a change to

polar coordinates, z = z, = re®, in the first equation of (1.37) (from the
second equation of (1.37), we can change variables by z = z, = re”'

but we will get the same result). Then, we get
F=aprd+ - +ar*tl
é = 1 +b1r2+ - +bsr25,

where a; and b; are real constants, i = 1,...,s.
We note that in (1.37) the second equation is conjugate to the first
one. Let z = z,. Then Z = z,. We may say that

Z=iz + cllzlzz + - +cS|z|2’z, z€C,

where c,,...,c, are complex constants, r — 1 <2s+ 1 <r, is an A-
normal form (in C) of (1.35).

2.2 Poincaré’s Theorem and Siegel’s Theorem

Consider the differential equation

i=dAx+f(x), =xeC" (2.1)
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where A is an n X n complex matrix, f(x) = O(x|*) as x — 0, and
f(x) is analytic in x. If the resonant conditions for 4 do not hold for
any a and j with |a| > 2, 1 <j < n, then it is clear that (2.1) can be
formally transformed into a linear equation

i = Ax. (2.2)

In this section we will give sufficient conditions on A4 for (2.1) to be
transformed to (2.2) by an analytic transformation.

Definition 2.1. If the convex hull of the spectrum o(A4) of 4 in the
complex plane does not contain the origin of C, then o(A4) is said to be
in the Poincaré domain. If the origin of C lies inside the convex hull of
o(A), then we say o(A) is in the Siegel domain.

Lemma 2.2. If o(A)={A,,...,A,} is in the Poincaré domain, then
there are at most finitely many resonant monomials.

Proof. Let D be the convex hull of o(A4) in the complex plane. By
the assumption, d = dist(0, D) > 0. Then for any & with |a| > 2, % =

& -A €D and hence %31 > d. Let M = max, _; _ {IA,}. Thus for any
ji=1,...,n,if lal = %, then

la - A — A la - Al Al d
- -—L>=>0.
|| lal — 2

This proves the lemma. O

lal

Corollary 2.3. If o(A) is in the Poincaré domain and the resonant
conditions for A do not hold for any a and j with la| 22 and 1 <j < n,
then there exists a constant Cy > 0 such that

la - A = Al = Cylal, la| =2, 1<j<n.

Theorem 2.4. (Poincaré) Let A = diag(A,,...,A,). If 0(A) is in the
Poincaré domain and the resonant conditions for A do not hold for any a
and j with la|l > 2 and 1 <j < n, then there exists an analytic change of



72 Normal Forms

variables x =y + £(y), y € Q, where £(y) = O(|y|*) asy — 0 and Q is
a neighborhood of the origin in C", which transforms (2.1) into (2.2).

To prove Poincaré’s Theorem 2.4 it is sufficient to show that the
following equation

Dé(y) Ay —Aé(y) —f(y +£(¥)) =0, (2.3)

where D£(y) is the derivative of ¢ with respect to y, has a solution
£(y) which is analytic in y € Q (where Q is a neighborhood of the
origin in C”) and £(y) = O(|y|*) as y — 0. We will apply the Implicit
Function Theorem to solve (2.3) for any given analytic function f with
f(x) = 0(lx]*) as x - 0. To do so, we first introduce some Banach
spaces of analytic functions.

Let {X,| - |x)} be a Banach space with norm | - |x and L%(C", X) be
the linear space of all bounded symmetric k-linear maps from C” into
X (k= 1). In C" we use the norm | - | defined by |x| = max, _,; _,lx,l
for x = (x,...,x,)7 € C" Let e,,...,e, be the usual basis of C". A
k-linear map m from C” to X has the form

n

n
m(xy, Xg,. .05 Xg) = Y - X Uiy i1y 7 Xkip
=1 ig=1
where x; = (x;;, = , X;,) and Xty iy = m(e;,...,e;) € X.

The map m is symmetric if and only if a permutation of the
subscripts of the as leaves them unchanged. We define

lmle= 3 -+ X la; ... 0., form e L{(C", X).

i=1 ip=1
From this definition we can show that

() {L%(C" X),|- |4} is a Banach space;
() |m(xq, ..., x ) < Imlelxqllx,] - - x| for all x; € C*;
(i) the usual isomorphism of LX*#(C", X) into L%(C", LX(C", X)) is a
norm-preserving isomorphism.
If f: C* — X is an analytic function, then f can be represented as a
power series of the form

F(x) = T fulx),
k=0
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where f, € LK(C", X), x*=(x,...,x)€C"XC" X ... X C" (k
times), k = 1,2,..., and fy(x% =f(0) is an element in X. If we
denote fi(x*) = L, _,C,x{* -~ xg», where x = (x,, X,,...,x,) € X,
a = (a;, a,,...,a,) is a multi-index, and C, € X, then it is easy to see
that |filx = L, —4IC,l., k = 1. We define |fylo = | f(0)]...

Now we define:

2, ={xeC"|x|<r}, r>0.

C(2,X)={f|f 2, - X is analytic}.

A0, (€7, 3) = {f € 2, 0l() = £ 1Y),

fr € LK(C", X), 2 feler® < °°}-
k=0

4,,(C", X) = {f €4,,(C", X)| Df € 4, ,(C", L(C", X))}.

For feA4,,(C" X) we define |flo, = Z;_olfclir*. For fe
A, (", X) we define |fly,,=|flo,r +|Dflo,,. Then {4, (C", X),
|“lo,,} and {4, (C", X),|-|,,} are Banach spaces. Let B, (8)=
{ge4, (C"CYlIgl,<8Li=01

Lemma 2.5. If f S Ao’r(C", X) and 0 <6 < r, then Dkf e
Ag 5(C", LKC", X)) and

0

DFf(x) =k!' Y (]’;);;(xf—k, ), |D*flos < k!

i=k

lflO,r
(r—8)"

fork =1,2, ..., where f(x° -) = ().

Proof. Let f= Y5 _ofiu(x*). Then

flo,r = T ol feler® = Ta_ol file(8 + (r = 8))*.
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Hence

o k

k . .

flo,= L ¥ ( ; )lmkak i(r - 8)'. 2.4)

N l
k=0i=0

Since |flo,» <  and the terms in the above series are all nonnegative,

we can rearrange terms. Thus

flo,r = i { i ( -)Ifklkﬁ"”’}(r - 5)". (2:5)

i=0

o«

g(z) = Z{i( )Ifklkﬁk '} , ze€Cand|z|<r - 6.

Then g(z) is analytic in Q,_; = {z € C||z| < r — 8} since (2.5) ma-
jorizes the series of g(z). Applying Cauchy’s inequality to g(z), we
have

M
k—i
g ( )'f"l"5 = =9
where M = max , _,_,{lg(2)}. From (2.5), M <|flq,,. Therefore
|f|0 r
k—l 2
Z= ( )Ifklka (r o) (2.6)

Let |x| < & and |y| < r — 8. Then |x + y| < r and then
® A © k k ) )
fx+n) = TA((x+0") = T { = (*) st y')}.
k=0 k=0\i=0

We note that the last series is majorized by series (2.4) and hence is
absolutely convergent. Thus we can rearrange the terms such that

r { i,( TAC )}

i=0 \ k=i

‘ { r ( -)fk(x""', -)}(Y")-

k=i

f(x+y)

it1s
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From (2.5) and by the uniqueness of the Taylor’s series of f at x,
Df(x) = T3 (Yt ), i=0,1,2, ... Let gx)) = fix,
for each j < k. Then

|D'f|os—l'2( Jige-d-i2+- '—ué( Jisdest=

The desired conclusion follows from (2.6). (]

Lemma 2.6. Letf € Ay (C", X), g € By 5(r). Thenfo g € Ay (C", X)
and |fo glos < |flo,r.

Proof. Since |g(x)| <|glo,s <r for |x| <8, fog e CF;, X). Let
f(x) = T o fi(x*) and g(x) = I7_,8,(x’), where f, € L%(C", X) and
g € L(C",C") for k > 0 and I > 0. Then for |x| < §

fos(x) - f:fk((f;g,(x'))k)
k=0 1=0
LT X | T x4 58),
where |I| =, + --- +1, and each [, is a nonnegative integer.
foglos < >: (2 |fk|k(mz_ PARE |g,k|,k))a"

-

TS D PARRTAN
k=0 i

=0 \{i|=i

© oo k ©
Yy |fk|k( Y |81|131) < Y Afeler® =1flo,r. O
k=0 1=0 k=0

Lemma 2.7. Let E: A, (C", X) X B, §(r) = A, §(C", X) be defined by
E(f,g) =f<g, where f € Ay (C", X) and g € B, 4(r). Then E is con-
tinuous.
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Proof. Let f and f, € A, ,(C", X), g € B, 5(r). By Lemma 2.6

|ECf+ f1,8) —E(f,8)lo,s =f1°8&lo,s <|filo, .

Hence E is uniformly continuous in its first argument.

Let [glys =a <r,B=(r—a)/3,and h € B, ;(B). Then E(f,g +
hXx) = f(g(x) + h(x)) € C*(Z;, X). Let g(x) = I_og(x") and
h(x) = T%_oh,(x™), where g, € L(C",C") for />0 and h, €
L(C",C™) for m = 0, respectively. By Taylor’s Theorem

"f(X)

(yk)’ |X|$a, |y|<r—a.

f(x+y) = i‘.

Thus

E(f.8 +h)(x) — E(f.8)(x) = ¥ _f(_g(_)_)

k=1

((R(x))).

From Lemma 2.5,

E(f,g +h)(x) — E(f,8)(x)

£ F (£)ae) ™ ()

k=1i=k

-

I
ek
e

(5 )felceeen* = (acxpy)

k

-

I
-

T (5] flceen* (o)

x
[
—

I
s
Bl

T (* )Z T 8o gy (85),

J=0ll+|m|=j

=
1
—

|
s
ll"ls

b (x™),..., hmi(x”'")),



Poincaré’s Theorem and Siegel’s Theorem 77

where |l| =1, + --- +I,_,,Im|l=m; + --- +m,. Hence

|E(f,8 +h) — E(f,8)lo,s

IA

i0 (kgllfklkié (]’()

Jj=

X Z |gll Ill T lglk__i |lk'_,-|hm1|m1 o |hm:|m,)8J

1l +|mj=j

o i

I

k=1 =1

o

klfil(lglo,s + |h|0,a)k—l|h|0,a
k=1

IA

A

( Y klfele(r = B)k—l)|h|o,a
k=1

1
< E Iflo,-lhl1,s-

Thus E is continuous in the second argument. O
Lemma 2.8. Let E be defined as in Lemma 2.7. Then E is C*.

Proof. Let f € A,,(C", X)and g € B 4(r) with |g|;,s = @ <r and let
B = (r — a)/3. Let h € B, 4(B). Since by Taylor’s Theorem, for |x| < a
and |yl <r — a,

o .Dk
fx+yy = & 20 (4,
k=0 :
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for any positive integer N,

k k
E(f,g +h)(x) = f; Df(g(x))(h(x))

k=0 k!

+ Ry(%),

where

- k k
Rysfx) = 3 Df(g(x))(h(x)).

!
k=N+1 k!

From Lemma 2.5,

Ryi(x) = % 1 é(,’;)ﬂ((g(x))"‘k,(h(x))k).

By a similar argument as in Lemma 2.7, we have

|f|0,r N+1
IRy 4+1l0,8 < BN (lah,s)" .

From the converse of Taylor’s Theorem, D§E exists for 0 < k < N and
DXE(f,g) = D*fog. By Lemma 2.7, DYE(f,g) is continuous and
DXE(f, g) is linear in its first argument. It follows that D,DXE(f, g)
exists and D,DXE(f, g) = DXE(-, g). The lemma may now be proved
by induction. 0O

Lemma 2.9. If g € A, (C", X) and M € C"*", then
f(x) = Dg(x)Mx € 4, (C", X)

and

|flo,» < rIM||Dglo, .

Proof. Let g(x) = T3_o8,(x%), where g, € LX(C", X), k =0,1,2,....
From Lemma 2.5, Dg(x) = Ii_ kg (x*~", -) and |Dgly, =
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To_iklgyler®t. Then f(x) = Ti_ kg, (x*~!, Mx). Let f,: C" X
- X C" (k times) » X be defined by

k
fk(Ul,...,Uk) = ng(vl,...,MUi,...,Uk),
i=1

v,eC” i=1,... k.

Then f, € LY(C", X), |file < kIM|lg,lx and f(x) = L3 _, fi(x*). Thus

1flo,» = 2 1 feler® < IMI Y klgilir® = rIM||Dglo, . m]
k=1 k=1

Proof of Poincaré’s Theorem. Let r > 0. We define V,,={glg €
Ay (€, C"), g(0) =0, Dg(0)=0} and V,, = {glg €4, (C",C"),
g(0) = 0, Dg(0) = 0}. Then V;, and V; , are closed linear subspaces of
Banach spaces A,, and A;, respectively. Let Bl’,(8) {g
V., gl < 8). We define F: V,,, X B, , , (r/2) >V, ,, by

F(f,€)(y) =Dé&(y)Ay —AE(y) = f(y + €(¥)).  (2.7)

Then F(0,0) = 0 and from Lemma 2.8 F is C!. Equation (2.3) can be
expressed as

F(f,§)(y)=0, yeQ. (2.8)

Let K = F,(0,0). Then K: V, , , =V, , , is defined by
(Kv)(y) = Du(y) Ay — Av(y).

For any g(x) = L}_(Z} 2 =xChx%)e; €V, , , We define

(Kg)(x) = DD M . (2.9)

k=2lal=k &’ A_A

Since o(A) is in the Poincaré domain and there are no resonant
monomials, by Corollary 2.3 there exists a constant C, > 0 such that
K A—A|>Cola|f0ranyaand]w1th el =2,1<j<n Let C,
(..., ”)T and C,=(cl/(a A —A),....c"/la A =AD", De-
note v(x) = (KgXx) = T3 _,v,(x*) for a given g€V, 2. Then
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Uk(xk) = 2|a|=kéaxa and |Uk|k = Z|a|=k|éa| < #qu:klcal = c%,klgklk
for each k > 2, where g,(x*) = L, _,C,x* Hence

ad 1 =21 1

Wlo,rs2= L loele(r/2)" < o L 7 18uli(r/2)" < o lglo,rz <,
k=2 0 k=2 0

and from Lemma 2.5, we have

o _ 2 o
IDolo,r 2= T klogle(r/2)* ' < =— ¥ lgle(r/2)"
Cor =2

k=2

—lglo,r /2 < .
Co 8lo,r/

These imply that Kg € Vi, and K is a bounded linear operator
from V, , , to V; , ,. A calculation shows

(k)0 = E[ L T carlo, - st

k=2 |al=k

Hence K = K™, that is, F0,0) has a bounded inverse.

By the Implicit Function Theorem, there exists an € > 0 such that for
any f € V,,,if | flo,r < €, there exists ¢ = £(f) € B, , ,,(r/2) such that
F(f,&) =0and £0) = 0.

For a given feV, ,, let flx) = y“f(yx) where 0 <y < 1. It is
obvious that f & Vy,r- Since f(x) = O(|x|*) as x — 0, we can choose
y > 0 such that |f |0 , < e. From the above discussion, there exists a
e Bl’,/z(r/2) such that F(f,£) =0. Let &(x) = yé(y~ %), x| <
yr/2. Then &(x) €V, , ,, and

F(f,£)(x) = D&(x) Ax — A£(x) — f(x + &(x))

=yF(£,€)(v"'x) =0, Ixl<yr/2.

Thus the theorem is proved. O

Corollary 2.10. Poincaré’s Theorem is valid even if A is not diagonaliz-
able.
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Proof. 1t is sufficient to show that the operator K defined in the proof
of the theorem has also a bounded inverse even though A is not
diagonalizable. Without loss of generality, we assume that A is in upper
triangular Jordan normal form and A =S + eN, where § =
diag(A,, ..., A,), € > 0is arbitrarily small and N = (a,;) satisfies a,; = 0
ifj+i+1a,,;,,,=1o0r0,i=1,...,n -1 Wesee that K=K +
K.y, where K and K., are defined by

(Ksv)(y) =Duv(y)Sy — Sv(y)
and
(Knv)(y) =Du(y)(eN)y — (eN)uv(y)

for v € ¥ ,. From the proof of the theorem we see that Ky has a
bounded inverse on ¥/ ,. Since ||K, yll = el[Kyl, we can always choose
€ to be so small that

1
Kl < o
MK
Thus K = K¢ + K, has a bounded inverse. m]

Corollary 2.11. If o(A) is in the Poincaré domain, then there exists an
analytic change of variables x =y + £(y), where £(y) = O(y[*) as
y =0, and y is in a neighborhood of the origin in C", such that it
transforms (2.1) into

i = Ax + h(x), (2.10)

where h(x) consists of at most finitely many monomials and h commutes
with e® with S being the semisimple part of A.

Proof. Without loss of generality, we assume that 4 = § + €N is in the
Jordan normal form, where S = diag(A,,...,A,), N is nilpotent, and €
is arbitrary small. Since o(A) is in the Poincaré domain, there are at
most a finite number of resonant monomials. Suppose that there are no
resonant monomials of order bigger than m. We note that m is
independent of e. By the normal form theory (see Section 2.1), there is
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an analytic change of variables which transforms (2.1) to
X =Ax + h(x) + f(x), (2.11)

where A(x) is a linear combination of resonant monomials and f(x) =
o(x|™ Y as x - 0.

We define V{7, = {glg € 4, (C",C"), g(x) = o(xI™ 1 as x » 0,
|glo,» < «} and V" = {glg € 4, (C",C"), g(x) = O(Ix|"*") as x - 0,
lgly,» < o}. Then V7, and V", are closed linear subspaces of A4, , and
A, , respectively. Let Bl'y(r) = {g € V" |Igli,s < r}. We define F:
Vo, X Vo, X El,r/Z(r/z) - Vo2 by

F(f,h,&)(y) =Dé&(y) Ay —A&(y) — f(y + £(y))
+ h(y) + DE(y)h(y) — h(y + &(¥)).

Then F(0,0,0) = 0. Let K = F;(0,0,0). Then K: V", , > V{7, , is
defined by

(Kv)(y) = Dv(y)Ay — Av(y).

Since there are no resonant monomials of order greater than m, in a
similar way as in the proof of the Poincaré Theorem and Corollary 2.11,
the corollary can be proved. 0

Theorem 2.12. (Siegel) Let 0(A) = {A,,..., A,} be the spectrum of A. If
there exist Cy > 0 and p > 0 such that for any a = (a,...,a,) with
lal > 2

Co

|)t'a—)tj|2 W,

1<j<n, (2.12)

then the equation (2.1) can be transformed to (2.2) by an analytic
transformation.

As in the proof of Poincaré’s Theorem, we need to find an analytic
solution ¢ with &(z) = O(|z|*) as z — 0 of equation (2.3). However,
since there does not exist a positive lower bound for {|A - @ — Ajl, la| >
2,1 < j < n} and there does not exist a bounded inverse of Fg(O, 0), we
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are not able to apply the Implicit Function Theorem to solve (2.3) as we
did in the case of Poincaré’s Theorem.,

We shall prove Siegel’s Theorem in the case A = diag(A,,...,A,).
The idea of the proof is the following: We find first an “approximate
bounded inverse of Ff(O, 0) by which we construct a sequence of
approximate solutions {¢;} of (2.3). The domains of {¢;} will shrink as j
increases, each ¢, is a better approximate solution than ¢;, and {¢>j}
tends to an analytic solution of (2.3) which is defined in a neighborhood
of the origin in C".

First we need some notation and lemmas.

Hy,,={glg: 2,-C" is analytic and g(z)= O0(z]*) as z—
0,5up, ¢ 5 [8(2)] < +oo}.

H,,={glgeH,, and ||Dgll,, = sup, . 5 |Dg(2)| < +}.

For g € H, ,, we define |Igllo,, = sup, . 5 |8(2)|. For g € H, ,, we
define llglly,, = gllo, + IDgllo,,- Then {Hy, ,,II - llo,,} and {Hy ,,II" I}
are Banach spaces.

We denote 17,., A8 ={geH_ Ilgli, <8}, 6>0, the closed ball
with radius & in H; ,, i =0,1.

Define a linear operator K,: H, , > H, , by

K,v(z) =Dw(z) - Az — Av(z), veH, ,, z€D,.

r

Lemma 2.13. Let r € (0,1). If A = diag(A,,..., A,) and the small divi-
sor condition (2.12) holds for A, then for any g € H, , and any 6 € (0, r),
there exist a unique v € H, ,_5 and a positive constant C which does not
depend on g, r and 8 such that (K,_svXz) = g(z) forz € 9,_;, that is,

Kr—év =8 in HO,r—&’
and

ligllo, -

lolly, s < CW-

Proof. Let the Taylor expansion of g at z = 0 be

g()= L T Lz,

k=2 jal=k j=1
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where the c/ are complex constants. For any w € H; ,_; we assume
that the Taylor expansion of w at z = 0 is

()= T T Ldizve,
k=2|al=k j=1

where the d?, are complex constants. If K,_;w = g in Hy ,_; thenby a
direct calculation we must have

. cl
dl, = ————, forla| > 2and1 <j < n.
Aa— )tj
Let
v(z) = Z > Z z%;.
k=2 lalmk j=1 A a")“ !
Let C, = (cl,...,c™M7 for |al > 2. Then by the small divisor condition

(2.12) and the Cauchy’s inequality

lollo, -5 < Z

k=2 a=k Co

8)"

i (r —k8) ||g||0 r E khe—k8/r

k=2

|
('3
=)
S
]
N
~

ligllo, » °°
(n+1) -y L
< C —8" (/Oy“e dy+(p.+1))

0
< Cliglo, 8¢+,

where C, = Cg (I'(u + 1) + (u + 1*), which is a positive constant
and does not depend on g, r and 6. Thus v € H, ,_;. Furthermore,
from the Cauchy’s inequality

n||U||o,r—a/2
(8
9

where C, is a positive constant which does not depend on g, r, and &

< Gyllgllo, 87+,

—(p+2)
”DZU”O,r—B < )

< ncluguo,,(i
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either. Therefore v € H, ,_; and
lolly, -5 < Cligllo, 8~ **2,
where C is a positive constant which does not depend on g, r and 6.

This proves the lemma. D

The above lemma says that even though K, has no bounded inverse,
it has an “approximate bounded inverse K;!; from H,, to H ,_;
which is defined as follows: For any g € H,, and & € (0, r), where
0 <r<1l1letv €H,,_, be the unique solution of equation K, ;v =g
in H,,_,. We define K;!;g =v. Then by Lemma 2.13, K;}; is a
bounded linear operator from H , to H; ,_;.

Let re(0,1) and B €(0,r/2). Now we consider a mapping
FC;r,B): By (r/2) > H, ; defined by

F(&r,B) =Dt A-Af—fo(I+§).

Smce I + €llo,g < B +r/2<r and D*f is umformly continuous on
Dysrp forany k 2 0, F(-;r,B) is C? from B, 4(r/2) to H, 4 for any
fixed r € (0,1) and B8 € (0, r/2). Thus equation (2.3) can be written as

F(&r,B) =0, £€B, 4(r/2), 0<r<1landpe(0,r/2).

Lemma 2.14. Let r € (0,1), B€(0,r/2), 3€0,p), and ¢
B, 4(r/2). Then for any u € H, z_,,

Dy #($ir.B = 8)(I + D,¢)u — D(F(dir, B — 8))u
= (I+D,$)K,_su. (2.13)

Proof. In fact (2.13) holds if and only if
(Dzdb)KB_su + DZ(KB_sdb)u = KB_S((Dzdb)u)
or
D,((D.¢)A)u + (D,¢)(D,u)A = D,((D,¢)u)A + (D,¢) Au,
foru e Hy 54_;.

The last equality follows from a direct calculation. O
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Proof of Siegel’s Theorem. Since the small divisor condition (2.12)
implies that there exist no resonant monomials, by the normal-form
theory introduced in Section 2.1, we can make near identity transforma-
tions

x =z + £8(2), k=2,3,...,4n+u + 3],
such that (2.1) becomes

i=Az+f(z), z€9,
where f(z) = O(|z|*"*#*3* Yy a5 7 — 0, and r > 0 is sufficiently small.
Therefore we may assume for (2.1) that f € H,, with r € (0, 1) suffi-
ciently small and f(z) = O(|z|*"*#**»*!) a5 7 — 0. We can also as-
sume that | D>f|lo., < 1 if r is sufficiently small.

We consider the following sequences of real numbers {r;} and {8,}:

r.—r.
, 8, = M, j=0,1,....

1 1
rj=—r(1+— i >

4 27

Define sequences of functions {¢;} and {u}, j = 0,1,2,..., inductively
as follows:

¢ =0;
u;= (I +D.¢,)K; (1 +D.)"" F(dr.m);
¢'j+1 = ¢j +u;.

We will show that if r is sufficiently small, then the sequences {¢>j} and
{u j} are well defined.

From Lemma 2.13, for any & € (0, r), there is a constant C such that
IK 1|l < C6~®+"*D We may assume that C > 1. Let C, =
8nC(16/r)"*#*3 and €, = 1/(2CZ). We note that r, = r/2 and €, =
O(r®n*#+3) a5 r — 0. We may assume that r is so small that €, < %.
Let the sequence {ej}, j=0,1,2,..., be defined recursively as follows:
€1 = C4*'e?. It is clear that (1) ;= CoU*P(3)%, (2) ¢, > 0 as
j— o, and 3) €, < 3¢; < €; — ¢€;,;. We claim that if r > 0 is small
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enough then {¢;} and {u;} have the following properties:
(A4): ¢; € H,, and lplls,r, < € — €
(B): F(¢sr,r)) € Hy, and | F(gjr, rlo,., < €,
(Cu; e H,  and Neejlls, s,y < €515
forj=0,1,2,....
We prove this claim by induction on j. It is sufficient to show the
following statements:
(1) (A4,) and (B,) are true;
(2) (4)) and (B;) imply (C));
(3) (A4)) and (C)) imply (4, );
4) (4)), (B), (C)), and (4,,,) imply (B, ,).

Proof of (1). (A,) is trivial since ¢, = 0. We note that F(0; r, roXz) =
—f(z) for z €9, and ro = 5. Thus F(0; r, ro) € H, . Since || fllo,, =
O(r¥r+r*3+1y and €2 = O(r¥*+7+») we may choose r > 0 so small
that || fllo, », < 3. Hence (B,) holds.

Proof of (2). We note that §, = (r, = r;+1)/2 =(1/27**)r. By using
(A;), we have

N =

ID,&;llo,r, <
Hence I + D,4; has a bounded inverse for z € 9, and
I(7 + D.4;) llo.r, < 2.
Then by the definition of u;,
leejllo, r,—s, = (1 + Dzd’j)lzr_jlaj(l + Dz¢j)_l<7(¢j; ryr)llo,r;-s,
< ACIF(¢j;r,r)lo, 87 P H4+D < 4CH7 " Hr* D).

ID,ullo, r,,, < nlulo,r-587" < 4nC8 "*#*Ie?.
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Thus

n+p+3

2j+4
—(n+p+3) 2 _ 2 Citl 2 _
lujlly, r,,, < 8RCH; " H1*De? = 8nC( - e < Ci*le} = €,

Proof of (3). By using (4)) and (C)), ¢, is obviously analytic in 2.,
and

jwalls,rny S Ubjlla,r, + Nujlln,ry, < €0 — €+ €541 < € — €45

Proof of (4). By Taylor expansion, for any B € (0, r/ 2, e El, s(r/2)
and u € H, ; such that ¢ + u € B B(r /2), we have the following
equality,

F(d+u;r,B) =F(d;r,B) + D,F(b;r,B)u + R(d,u), (2.14)

where

R($,u) = ]0‘(1 — t)DEF (b + tus r, B)(u2)dt

- fl(l —)D2f(I + ¢ + tw)(u?)dr,
0

D} is the second derivative of & with respect to £, and D?f is the
second derivative of f with respect to z.
By Lemma 2.14,

D5 ($55 1 1) = DoF (b5, 1)) (I + D.dy)
= (I+D,¢;)K, (I +D,¢;) 'u; inHy,rpy.
Thus by the definition of {u;} we have
D, F(¢;;r, 1 )u; — D(F(¢);r, rian)) (I + Dz¢j)_luj

= ~F(é;r,1) inHy, . (2.15)



Normal Forms of Equations with Periodic Coefficients 89

Hence from (2.14),

F(bjs:r r41) = DZ(.7(¢j;r,rj+1))(I + quSj)_luj + R(¢;,u;).

Then we have the following estimates:
-1
”Dz(y((ﬁj; r, rj+1))(1 + Dz¢j) uj||0v7j+l

-1
< 2nllF (s s r)llor,(r; = 1j1) €

2/+4 1 1
2 Fi+1 2 — 2
Sn( p )ejejﬂ < EC{) €j€j+1 = 5 €1

Since I + ¢; + tujllo,,j , <r for t €[0,1], R(¢;,u;) is well defined.

We note that | D2f]l < % Therefore
1
IR(;, u;)lo.r,,, < 3 €,
Hence
17 (1575 "f+1)”0,rj+1 < 5;‘2+1-

Thus the claim is proved.
We note that r; > r/4 for every j > 0. Then by Claim (A,), every
¢; € B, ,{r/2). By Claim (C)), {¢} is a Cauchy sequence in

§1,,/4(r/2). Thus there exists £ € l_ilv,/4(r/2) such that £ = lim; ., ¢;.
From (B;) we conclude that lim;_ ., #(¢;; r,_r/4) = (0. Therefore
F(&;r,r/4) = 0 since & is continuous in ¢ € B, ,,{r/2). This com-
pletes the proof of Siegel’s Theorem. O

2.3 Normal Forms of Equations with Periodic Coeflicients
Consider the T-periodic differential equation
x=f(t,x), xelC” teR, (3.1)

where f is continuous, f(¢,-) € C™*{C",C"), r > 2, f(¢,0) = 0 for all
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t € R, and there is T > 0 such that f(t + T, x) = f(¢, x) for all t € R,
x € C". We may make a change of variables in (3.1) such that the
resulting equation is simpler than (3.1).

Let H* be as in Section 2.1, and

Hii={feC(RXC"C")|f(1,") €Hf foreach t€R;
f(t+T,x) =f(t,x) forall t€R and x€C"},

where s is a nonnegative integer. When s = 0, we use H,f r instead of
H,f’}’. Each H,ﬁ’T‘ is a linear space. Suppose (3.1) is in the following form

i =B(t)x +f3(t,x) + - +f7(t,x) + O(IxI"),
xeC", (32)

where B(t) is an n X n matrix with continuous T-periodic entries and
ffeHi L k=2,...,rrz2
The linear part of equation (3.2) is

i=B(t)x, xeCm (33)

Let X(t) be the fundamental matrix of (3.3) with X(0) = I. Then
J = X(T) is a monodromy matrix of the T-periodic linear equation (3.3).
Let A be a constant # X n matrix such that e4? = J. It is well known
from Floquet theory that the nonsingular T-periodic transformation

x=P(t)y, (34

where P(t) = X(t)e ™, converts (3.3) to a linear system with constant
coeflicients, y = Ay.
By transformation (3.4), (3.2) changes into the following:

E=Ax + f3t,x) + - +f7(t,x) + O(IxI"*"), xecC”, (35)

where f¥ € HY 1, k = 2,...,r. We note that the f*(s,x), k =2,...,r,
in (3.4) may be different from those in (3.2). In the following, we discuss
(3.5) instead of (3.2) since they are equivalent.

Now we change variables in (3.5) by a T-periodic transformation

x =y + h*(t,y), ye, teR, (3.6)
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where h* € H,f‘)’}, 2 <k <r, and Q is a neighborhood of the origin in
C" on which I + h*(¢, - ) is invertible for each ¢ € R. Substituting (3.6)
into (3.5) we obtain:

y=Ay +fi(t,y) + - +f e, y)
0
+(f"(t,y) +AR(1, y) — RE(t, y) Ay - a—thk(r,y))

+o(lyl**h),  yeaq. (3.7)
Notice that transformation (3.6) does not affect the terms in (3.5) of

order less than k in x.
We define for each k > 2 an operator £f: HY} — HY 1 by

d
ZEn(t,y) = b—t-h(t,y) +hy(t,y)Ay —Ah(t,y), heHPL
(3.8)

It is clear that #f is linear. We recall that the operator L%: HF — H*
is defined by

Lﬁh(y) = hy(y)Ay — Ah(y), h e H,f‘.
Thus
i)
Zrn(t, ) = Eh(t’ ) + LYh(t, ),
and (3.7) can be rewritten as
y=Ay + f2(t,y) + - +f7 (¢, y)
+(f (1, y) —Zkn (2, y)) + O(IyI**Y),  yeq.

Let #f be the range of .} in H¥;, and & be a complementary
subspace to %5 in H,\ ;, that is,

HY 5 =k @ 25, (3.9)
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We have then the following theorem.

Theorem 3.1. Let the decompositions (3.9) be given for k =2,...,r.
There exist a neighborhood ) of the origin and a sequence of near identity
T-periodic transformations x =y + h*(t,y), y € Q, k =2,...,r, such
that the resulting equation of (3.5) is of the form:

y=Ay +g2(t,y) + - +g"(t,y) + O(yI™™Y),  yeQ, (3.10)

where gk € &k, k=2,...,r.

Definition 3.2. The truncated equation of (3.10)

y=Ay +g*(t,y) + -+ +g"(t,¥)

is called an A-normal form up to order r of (3.5).

As in Section 2.1, we may find A-normal forms by solving a system of
partial differential equations or by using the matrix representation
method. Let

Cr(R,CY = {fe CO(R,CY | f(t + T) = f(t) forall t € R}

and CH(R,C?) be the linear space of all C” functions in C(R,C%).
Recall also that

1
()%, = {Wxae,- ol = k. j = 1}

is an orthonormal basis for HX, where d, = dim H* (see (1.18)) and

i ~ (j, @) is in the reverse lexicographic ordering. Any element of H,f T
is of the form

dj
'gpi(t)ui(x)’

where p; € Cz(R,C). We then identify Hf; with C(R,C%) in the
following way:

dy di
Y p()ulx) = X p(1)é;, (3.11)
i=1 i=1
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where (€)%, is the standard basis of C%. Then, the linear operator

ZfHEL > HY
gives, by the identification (3.11), the linear operator
Zf: CH(R,C%) - Cr(R,C%)
defined by

- d .
(Zif)() = ST+ Lif(0),  fe CIH(R,C%), (3.12)

where LX: C% — C% is the matrix representation of L¥ with respect
to the basis {(1/ Va!) x“e,}. Let %% be the range of Zf and #f be a
complementary subspace to #5 in C,(R, C%). Then the range of Z
is

dy
RE = {f(t,x) = gp,-(t)ui(x) (Pi(1);- -, Pa(1)) 69?’#}, (3.13)

and

dy
&1 = {f(t,x) = .;pi(t)ui(x) (Pi(1),- s P (D))" € %} G419

is a complementary subspace to %5 in HY ;.
Let (-, ); be an inner product on Cp(R,C%) that is defined as
follows: For any f, g € C(R, C%),

1
(f.8)r= 5 [ (F().8()at,

where (-, - ) is the usual inner product in C%.

Theorem 3.3. The space of T-periodic solutions of the equation
. ~ *
g(t) = (I4) e(r), g€ CHR,C%), (3.15)

is an orthogonal complementary subspace ?‘,’f to .92’; with respect to the
inner product (-, - )y in C(R,C%), k=2,...,r.
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Recall that L%« is the adjoint operator of L¥ with respect to the
inner product { -, - ) in H. We define the inner product { -, : >r on
H:,T by

1
(f(t,x),8(t,x))r = 7/0T<f(r,x),g(r,x)>dr, frg€Hy .

We have the following:

Theorem 3.4. The linear operator (Z{)*: H¥} — H) | defined by
kY 9 k k,1
((=£) h)(1,x) = —Eh(t,x) + LYh(t,x), heHF} (3.16)

is the adjoint operator of £ with respect to the inner product { -, )t
in HY ..

Lemma 35. Let A = diag(Ay,...,A,) and f € CLR,C). Then
f(t)x%e; € Ker(.Z£)* if and only if there exists an integer m such that
2mmw
Ara—A;j = i, i=vy~-1,
T
and
2,
f(t)=ce T ,

where ¢ is a constant.

Definition 3.6. If o(A) = {A,,...,A,} is the spectrum of A, then the
following relations are called resonant conditions:

2mmw
Ara—A= T i, i=Vy-1, meZ, lalz2, (3.17)
where Z denotes the set of all integers. Let (x,, x,,..., x,) be coordi-
nates with respect to the standard basis {e,,...,e,} of C" in which the

matrix 4 has a Jordan normal form with diagonal elements {A,..., A, }.



Normal Forms of Equations with Periodic Coeflicients 95

Then a monomial exp(¥3)x%(lal =k 22,1 <j<n) is called a
resonant monomial of order k if and only if there exists an integer m
such that (3.17) is satisfied for « and ;.

Let A =S + N be the S — N decomposition of A. Then it is easy to
see that Zf = 2F + Lk, is the S — N decomposition of Zf. So we
have the following:

Theorem 3.7. If A = diag(A,,...,A,), then an A-normal form up to
order r > 2 can be chosen so that its nonlinear part consists of all
resonant monomials up to order r. If A is upper (or lower) triangular with
diagonal elements {A,, ..., A}, then an A-normal form up to order r > 2
can be chosen so that its nonlinear part is spanned by resonant monomials
up to order r.

Remark 3.8. If we consider a T-periodic system over the reals, then the
above discussion is valid except for the following. It is well known that
we cannot always find a real matrix A such that e’ = J, but we can
always find a real matrix A4 such that e?47 = J2. In this case there is a
real 2T-periodic transformation x = P(¢)y such that the equation (3.2)
is changed to y = Ay and (3.1) is changed to a 2T-periodic system over
reals. We note that such a 2T7-periodic system has some kind of
symmetry. We will discuss normal forms of equations with symmetry in
Section 2.5.

If A is diagonalizable over the complex numbers, then we cannot
apply Theorem 3.7 directly. But we can use the method for getting
A-normal forms of real equations described in Section 2.1. We illustrate
the method in the following example.

Example 3.9. Assume that the T-periodic system (3.1) is real and
two-dimensional and the monodromy matrix of (3.3) is

_|coswT —sinwT oI p
sinwl  cos 0T | q

where p and g are positive integers with (p,q) = 1. Then after a
Floquet change of coordinates, equation (3.1) is transformed into (3.5)
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where
_ 10 —w
4= [w . ]

We make a transformation to complex coordinates by 2, = x; + ix,,
2, = x; — ix,. Then the resulting equation of the form of (3.5) is

t=Az+g¥t,z) + - +g'(t,2) + O(lzI"*"),  (3.18)

0 -—wi|’
r. We note that the second equation of (3.18) is conjugate to the first
one. The resonance conditions in our case are

where z = (z,,2,)T, A = [“’i 0 |,and g*(t,2) e Hf p for 2 < k <

. . . 27" .
alwt—azwt—wt=mT forj=1, lal=k=22, melZ,
) 2mi
alwt—azwi+wi=mT forj=2, lal=k=2, meZ,

which are equivalent to

p
(al—a2—1)3=m forj=1, lal=k>2, meZ,

D
(al—a2+1)E=m forj=2, lal=k=22, melZ.

The only possibilities to get resonant monomials when 2 < k < g are:
for j=1, when @; —a,—1=0and then m=0,0r @; —a, — 1=
—q and then k=g — 1, m = —p; for j =2, when oy —a, + 1 =0
and then m =0, or @ —a, +1=g¢g and then k=g -1, m =p.
Therefore the resonant monomials up to order g are: {z{"z52e,| a; —
a,=1,2<a +a,<qlU{z]z52e,la,—a;=1,2<0a;, + @, <q} U
{297 le,, 277 'e,}. The coefficient of any resonant monomial will be
c exp(—m% wit), where ¢ is a complex constant. Hence a A-normal
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form of (3.18) up to order g is:

2, =wizy + c;z3z, + - e zFtzE + det@itzg7!, (3.19)
Z,= —wizy + 12,23 + o +Cpzf2kt + dem90iz,
where z, =12z,,¢;,...,¢;, d are complex constants, g — 1 <2k +

1<gq.
If we let w = z,, W = z,, then from (3.19) we get

W= wiw + cIwlPw + -+ +c lwlw + de®wi=1.  (3.20)

The equation for w is omitted since it is conjugate to the equation
for w.

We can obtain a real 4-normal form from (3.20) by applying the
transformation w = x; + ix,. We can also apply the transformation
w = re?® to (3.20) to get real normal forms in polar coordinates. For
example, the normal form in polar coordinates is

F=ard+ - +ar2kt!
2pm 2pm
+r"‘1(d1cos( T t—qo) —dzsin( T t—qo)),
6=w+br>+ - +br

+r?72{ d,cos 2P7Tt_ 0] + d,sin 2P7Tt_ 6
2 T q 1 T q ’

where a; = Re(c;), b, = Im(c,), d; = Re(d), and d, = Im(d).
Now if we let w = ve®®, (3.20) becomes

b =cilvlPv + - +elvlo + doel. (321)
It is simpler than (3.20), but we note that the original equation (3.1) is a

qT-periodic perturbation of (3.21). If we change (3.21) to polar coordi-
nates, then (3.21) becomes

F=ayr®+ - +ar®*t 4+ r171(d, cos(q0) + d, sin(q8)),
6 =byr?+ - +br?* +r172(d, cos(q8) — d,sin(g0)),

where a; = Re(c,), b; = Im(c,), d, = Re(d), and d, = Im(d).
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2.4 Normal Forms of Maps near a Fixed Point

Consider a C™*! map F: Qc C* > C”", where r>2 and Q is a
neighborhood of the origin in C". We assume that the origin is a fixed
point of F(x), thatis, F(0) = 0. Then F(x) can be written as

F(x) =Ax+ f2(x) + f3(x) + - +f7(x) + O(IxI"""),
xef, aax—0, (4.1)

where A is an n X n constant matrix and f* € Hf for2 <k <r.
Now we change variables in (4.1) by

x=H(y)=y+h(y), yeq, (4.2)

where h* € H¥, 2 <k <r, and Q, cQ is a neighborhood of the
origin in C” on which I + A*(-) is invertible. The inverse transforma-
tion to (4.2),

y=x—h&(x) + O(Ix|**"), asx >0,

is a smooth diffeomorphism in Q,. The transformed map of (4.1),
G = H™'o F o H, will take the form:

G(y) =Ay +f2(y) + - +f* () “3)
43
+[£5(y) + AR*(y) — B¥(4y)] + O(IyI**"), as y -0,

where G(y) is defined in the neighborhood (2,. We note that transfor-
mation (4.2) does not affect the terms in (4.1) with order < k — 1.
We define the operator L%: H¥ — H¥ by

LYh(x) = h(Ax) — Ah(x),  h € HE, (4.4)

and let #* be the range of LY in HY, and #* be any complementary
subspace to #* in H), that is,

Hf = 7% © &~ (4.5)

Notice that the operator LY is different from the one in Section 2.1.
We have the following theorem.
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Theorem 4.1. Suppose that the decompositions (4.5) are given for k =
2,...,r. There exists a sequence of near identity transformations,

=y + h*(y), yef), 2<k<r,

where h* € H* and Q c Q is a neighborhood of the origin in C", such
that the map (4.1) takes the form

G(y) =dAy +g*(y) + - +g"(») +O(IyI'"*"), yef, (46)

where gk(y) e €%, 2 <k <r.

Definition 4.2. The truncated form of the map (4.6),

G(y) =dy +g*(y) + -~ +8’(y),

is called an A-normal form of (4.1) up to order r.

Lemma 4.3. If p,q € H* and A is an n X n matrix, then
(1) (p(Ax),q(x)) =<{p(x),q(A4*x)),
(2) (Ap(x),q(x)) = (p(x), A*q(x)),
where A* is the adjoint operator of A with respect to the inner product
¢, )inC"
Proof. To prove (1) it is sufficient to show that
{(Ax)%e;, xPe;y = (x%,, (A*x)’e;)
or equivalently that
((Ax)°e;, xPe;) = ((ATx)Be,-, x%;)

for lal=k,|Bl=k,and 1 <i < n.
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We have

<(Ax)aei’xﬂei>
n .
= <I_I1 (a0 + ajpx, + - +apx,)"e, x"e,-> =Blc,,
=

where ¢, is the coefficient of x# in the expansion of ( Ax). Similarly,

((ATx)’e,, x%,)

n
B.
= <‘I_Il(a1jx1 +ayxy + 0 +a,x,) ’ei,x“ei> = alcg,
i=

where ¢g is the coefficient of x® in the expansion of (A47x)?. It can be
shown that Bl!c, = a!cg by the Binomial Theorem and elementary

calculations. The proof of (1) is then complete. The proof of (2) is
trivial. |

Theorem 4.4. L%. is the adjoint operator of L¥, with respect to the inner
product { -, - in H¥ for each k = 2, where A* is the adjoint operator
of A with respect to the inner product (-, - ) in C".

Proof. By Lemma 4.3, for any p, g € H* we have
(Lip(x),q(x)) = (p(Ax) — Ap(x),q(x))
= (p(Ax),q(x))> — (Ap(x),q(x))
= (p(x),a(A*x)) = {p(x), A*a(x))

= (p(x), Lixq(x)). o

Corollary 4.5. Ker(LX,) is the orthogonal complementary subspace to
F* with respect to the inner product { -, - ) in H* for k > 2.
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Definition 4.6. Let o(A4) ={A,,...,A,} € C be the spectrum of A.
Then the following relations are called resonant conditions:

A=, 4.7)
where A* = A{! -+ A%, lal = 2. Let (xy,..., x;) be coordinates with
respect to the standard basis {e,,..., e,} of C” in which the matrix 4
has a Jordan normal form with diagonal elements {A,,...,A,}. Then a

monomial x%; (lal = k > 2 and 1 <j < n) is called a resonant mono-
mial of order k if and only if (4.7) holds for a and j.

Theorem 4.7. If A = diag(A,,...,A,), then an A-normal form up to
order r > 2 can be chosen so that its nonlinear part consists of all
resonant monomials up to order r.

As in Section 2.1, we can apply also the matrix representation
method to compute A4-normal forms of maps. Let i’,‘, be the matrix
representation of L% with respect to the basis U, (see Section 2.1) of
HE. Then we have the following:

Theorem 4.8. If A = diag(A,,...,A,) then L¥ is diagonal; if A is upper
(or lower) triangular with the diagonal elements {A,, ..., A,}, then [,’j, is
lower (or upper) triangular and if u(x) = x%e, is the ith element of basis
Uy, then the ith element of the diagonal of L% is A* — A,.

Let A =5 + N be the S — N decomposition of 4. We define the
operator #%: H¥ —» H¥ by

Wkh(x) = h(Ax) — h(Sx) — Nk(x),  h € HE.

Theorem 4.9. If A =S + N is the S — N decomposition of A, then
LY = L% + #* is the S — N decomposition of L.

Corollary 4.10. If A =S + N is the S — N decomposition of A and
S = diag(A,,..., A,), then an A normal form up to order r can be chosen
50 that its nonlinear part is spanned by resonant monomials up to order r.
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Resonant monomials have the following symmetry property.

Lemma 4.11. Let A =S + N be the S — N decomposition of A and
S = diag(A,,..., A,). Then every resonant monomial y(x) = xe; com-
mutes with S, that is,

Sy(x) = y(Sx).

Corollary 4.12. If A = S + N is the S — N decomposition of A, then an
A-normal form up to order r can be chosen so that it commutes with S.

Proof. We consider first the case that § is diagonal. By Corollary 4.10,
an A-normal form can be chosen to contain only resonant monomials
in its nonlinear part. Then the desired conclusion follows from Lemma
4.11.

Suppose now that S is not diagonal. Let P be a nonsingular transfor-
mation such that 4, = P~'AP is in upper triangular Jordan form and
Ay = Sy + Ny is the S — N decomposition of 4, where S, is diagonal
and N, is strictly upper triangular. Then 4 = PSyP~! + PN, P~ is the
S — N decomposition of A. By the uniqueness of such a decomposition,
S =PSyP~! and N = PN,P~'. From Corollary 4.10 and Lemma 4.11
there is an 4 -normal form

F(x) =Ayx + f3(x) + -+ +f(x), (4.8)
SO
Sof¥(x) =f¥(Sex), k=2,...,r.

Then we change variables in (4.8) by x = P™'y. We get an A4-normal
form

G(y) =Ay +8%(y) + --- +8%(»),

where G(y) = PF(P~'y) and g*(y) = Pf*(P~'y), k =2,...,r. The
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nonlinear terms of G satisfy
g (Sy) = Pf*(P'Sy) = Pf*(S,P"1y)
= PSof*(P™'y) = SPF*(P7'y) = Sg*(»),

for k =2,...,r. And the matrix 4 commutes with S obviously. Thus
the theorem is proved. D

The above results are valid for normal forms of maps on R”.

Example 4.13. Consider a mapping F(x) = —x + O(|x|*) as x - 0
from R to R. A = —1 is the only eigenvalue. Then the resonant
conditions are

AN —2A=0, k>2,
that is,

(- '=1, k>2

Hence, the resonant monomials are x>, x5,..., x?**1 . k > 1. Thus
the normal form up to order 4 is

G(x) = —x + ax?,

where a is a real constant.
The next example illustrates the use of the matrix representation
method.

Example 4.14. Suppose that the matrix A4 of the linear part of a
nonlinear map from R? to R? is

A= [‘01 _11]

The resonant conditions are (—1)***2 = —1, j=1,2, for k =a; +
a, > 2. Hence there are no resonant monomials of even order and
every monomial of odd order is resonant. Therefore we need only to
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find a basis of a complementary subspace ¥* for k odd. The matrix
representation of L% is taken with respect to the following basis of H}:

{gii(x,y) =x*PyPe,, B =0,... k;
Ugrk+2(X, ) = xk"ByPe,, B= 0,...,k},

where {e,, e,} is the standard basis of R%. We have to compute L*u; for
i=1,...,d,= 2k + 1).

xk_B B
L’;,[ oy

= [(—x +y);_ﬁ(—y)ﬂ] _ [—01 _lll[xk_;yﬁ]

k-8 _
(D) +1)x*Bys + T (—1)"(" . B)xk-ﬂ-fyw
i=1 :

0

= (-1f

0
it

_ 0 _ [_1 1 ] 0
I AGE RSO0 G0 B S ¥ | Bt

(~D)fTixkhyb
— 1k k-8,8 F —_1y k-p k-B—j,B+i |*
((-D* + 1)x*Byf + 3 (-1) i) y

j=1

= (-D*

In terms of the basis of H¥ we have, for odd k > 3:

k-8 k=B
Liug,1 = —lUg ey + '21 (“1)”1( i )“p+j+1, B=0,...,k,
i=
k-p
(k-8
1
Lf‘u3+k+l = Z (—1)”- ( j )up+j+k+2, B = 0,...,k.

j=1



Normal Forms of Equations with Symmetry 105

Therefore we get the following matrix representations of LX, for k odd:
¥ is the following 2(k + 1) X 2(k + 1) matrix

0 0 0 - 0 0

®) 0 0 0 0

_(’2<) (k;l) 0 e 00

G) -2 () o 0 o
Lo -

-1 0 0 0 0 0 0 0 00
0 -1 0 0o 0o (5 0 0 0 0
0 0 -1 o 0 -G (*1Y) 0 0 0
0 0 0 o 0 () -(2Y) (79 0 0
0 0 0 0 -1 1 -1 1 - 10

It follows that for k odd a basis of Ker(L%)* can be chosen as
{¢,,&, + ké,,,}, where {&,, ..., €y, )} is the standard basis of R2**D,
We may also take {&,, &,} as a basis for a complementary subspace &k,
k > 3, odd. Hence a normal form up to order r > 3 is

-x+y

m
G(x,y) = -y+ ¥ (akx2k+1+bkx2"y) )
k=1

where a,, b, € R are real constants, and r — 1 <2m + 1 <r.

2.5 Normal Forms of Equations with Symmetry

In this section, we consider equations with symmetry and their normal
forms.

Definition 5.1. Let S be an invertible n X n matrix. We say that the
equation

i=f(x), =xeQgccCn (5.1)
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where ) is a neighborhood of the origin of C", and fe& C"(Q},C")
(r = 1), has S-symmetry if and only if

f(Sx) = Sf(x), forallx € Q. (5.2)

That (5.1) has S-symmetry is equivalent to the fact that (5.1) is
invariant under the transformation x — Sx.

From the definition, for a fixed f € C"(Q,C"), if matrix § satisfies
(5.2), then so does S~ if S}, S, both satisfy (5.2), then so does S, - S,.
Thus the set T' of all n X n matrices which satisfy the relation (5.2)
forms a group under matrix multiplication.

Definition 5.2. Let T" be a group of n X n matrices. If the right-hand
side of equation (5.1) satisfies

f(Sx) =8f(x), foralxeQcC"andanySE€eT,
then we say that (5.1) has the group I'-symmetry.

Example 5.3. The following are some examples of symmetry groups:

(1) O(n), the n-dimensional orthogonal group, which consists of all
n X n orthogonal matrices;

(2) SO(n), the n-dimensional special orthogonal group, which consists
of all n X n orthogonal matrices whose determinants are equal to
1, SO(n) is also called the n-dimensional rotation group;

2w

2r _gip Im
COSq Slﬂq

27

in 2=
Sin 2 €os %

3 Z,, the group generated by § = K, ,, = [ ], where g

1s a positive integer;

(4) the flip group generated by K, = [1”0‘1
(n — 1) X (n — 1) identity matrix;

(5) D,, the dihedral group, generated by {K,,, ,,, K,}, where K,_ ,, is
defined in (3) and K, is defined in (4).

In what follows, we will discuss 4-normal forms of equations with
S-symmetry, where S is an invertible n X n matrix.

0

_1], where I,_, is the

Lemma 5.4. If equation (5.1) has S-symmetry and is of the following
form

X=Ax + f3(x) + - +f5x) + o(Ix**Y), xeQ, (53)
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where f* € H¥, k = 2,...,r, then
(i) S4 =AS;
(i) f5(Sx) = Sf*(x), foranyx € Q, k =2,3,...,r.

Proof. 1t follows from Definition 5.1. m|

Lemma 5.5. The S-symmetry of an equation is invariant under S-symmet-
rical transformations of variables.

Proof. Suppose that (5.1) has S-symmetry. We change variables in (5.1)
by

x =h(y), y €Q, (54)
where A(y) is a diffeomorphism on Q with the property A(Sy) = Sh(y)
for any y € ). The resulting equation after the change of variables

(5.4)is

y = (h,(»)  f(h(¥)), yeq.

g(y) = (1, (») " f(h(¥))-
Then
2(Sy) = (h,(S9)) "' F(A(SY)) = (Shy(¥)S™') " F(Sh(¥))
= S(hy(»))'STISf(h(¥)) = Sg(y), foranyy € Q.
Thus Lemma 5.5 is proved. O
For any k > 2, the set
HYS = {f€ H¥| f(Sx) = Sf(x), for any x € C"}

is a linear subspace of HY. We shall use the notation H* instead of
HP*S whenever it is clear from the context what the matrix S is.
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Lemma 5.6. Suppose AS = SA. Then H* is L¥-invariant.

Proof. For any h € H¥, let g(x) = L%h(x). Then
g(8x) = h,(Sx) - ASx — Ah(Sx)

=S-h(x)-S! SAx — ASh(x) = Sg(x), forany x € C".
Thus Lemma 5.6 is proved. 0

__Suppose AS = SA. Let L* be the restriction of LX to the subspace
HY. Let #* be the range of LY in H¥, and #* be any complementary
subspace to #* in H¥. Then we have the following theorem.

Theorem 5.7. If equation (5.3) has S-symmetry, then there exists a series
of near identity transformations with S-symmetry which bring equation
(5.3) into the form

y=Ay +g¥y) + - +g"(y) + Oo(lyI'™), (5.5)

whereg € % k=2,...,r.

Definition 5.8. Suppose that equation (5.3) has S-symmetry. Then the
truncated equation of (5.5)

y=Ay +g*(y) + - +£’(y),

where gk € % k =2,...,r, is called an A-normal form with S-sym-
metry up to order r of equation (5.3).

Lemma 5.9. A_gsume that AS = Sé and {"S = SA*. Then a complemen-
tary subspace &* to the range of LY in H¥ is given by Ker(L%.) n H.

Proof. 1t follows from Lemma 5.6 that the subspace HY is invariant
with respect to both LY and L%.. From Theorem 1.7, (LX)* = LX.|gx.
Then the lemma is proved. O
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Remark 5.10. In the case when HF is not L%« invariant, we can apply
the matrix representation method as discussed in Section 2.1 to find

= . . - TP
&*. We notice that the matrix representation L, of L% is an s X s
matrix where s = dim(HY).

To find A-normal forms of equations with S-symmetry, we have to
find the subspaces H¥, k > 2. To do this we introduce a linear operator
L%S: HY —» Hf by

L*Sh(x) = h(Sx) — Sh(x),  h € HE. (5.6)
It is clear that H* = Ker(L* ). We may apply the matrix representa-

tion method to find Ker(L*%) in general. In the case when S is
diagonal, we can easily find a basis of Ker(L*%).

Lemma 5.11. If S = diag(s,,...,s,), then the set of all S-symmetrical
monomials of order k

{x"‘ejls"‘ =s,lal=k,1<j< n}
forms a basis of H.
Proof. 1t is easy to see that any S-symmetrical monomial of order k

belongs to Ker(L**) and thus to HY. If h(x) = T}, X _4CjaX%; €
H¥, then we have

L%Sh(x) = Y, Y cjo(s™ —s;)x%,; = 0.

J=1lal=k
Hence c;, =0 for all monomials which are not S-symmetrical. It

follows that A(x) must be a linear combination of S-symmetrical
monomials of order k. (]

Example 5.12. Let

S = [‘01 _01] (5.7)
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Then x®; € HF if and only if
(-DT(-1D)%= -1, a +a,=k,
that is,
(- = -1, o +a,=k.

Hence, the S-symmetrical monomials are those for which |a| = a; +
a, > 2 is odd. Therefore

H* = {0}, H¥+1 = f2k+1 k=1,2,....
If equation (5.1) is two-dimensional with linear part
10 1
a=[3 4]
and has S-symmetry, where S is defined by (5.7), then by Lemma 5.9,

Example 1.15, and the above discussion, an A-normal form up to order
r>2is

x=y,
m
y=Y (akx2k+l + bkaky)’
k=1
where a,, b, are all complex constants, k = 1,...,m, r— 1 <2m +

1<r.

Theorem 5.13. Suppose that
X=Ax+f(x), f(x)=0(xI") asx -0,

is an A-normal form with S-symmetry. Then the resulting equation of the
linear change of coordinates

x =Py

is an A-normal form with S-symmetry, where A = P~'4P, S = P~'SP.
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Proof. The assertion that the resulting equation is an 4-normal form is
trivial. The S-symmetry follows from the following calculation:

AS = P7'APP™'SP = P"'ASP = P™'SAP = P"'SPP™'AP = §A,
and
g(Sy) = P~'f(PP'SPy) = P'Sf(Py) = P™'SPP™'f(Py) = $g(),

where g(y) = P~'f(Py). O

Remark 5.14. For a real equation with S-symmetry, if the matrix A4 is
diagonalizable over the complex numbers, then we can also apply the
method introduced in Section 2.1 to this case. We illustrate this idea
with the following example.

Example 5.15. Suppose

x = f(x), x=(x1,x2)TER2,
(5.8)
f(x) =0(IxI*) asx -0,

has Z,-symmetry, ¢ > 3. With the complex change of variables z =
P~'x, where z = (z,, z,)7 € C? and

(5.8) becomes
i=g(z), z=(z,,2) €C? z,=3, (5.9)

where g(z) = P7'f(Pz) and the second component of (5.9) is conjugate
to the first one. Let S denote the generator matrix of the Z -symmetry
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group (g = 3):

27 . 27

COs —q— -sin —

§ = 27 27

sin — cos —

q

Let
2m

5 - e’ 7 0
S =P SP= 1 2m
0 e ‘7

Since (5.8) has an S-symmetry, (5.9) has an S-symmetry by Theorem
5.13. We can find a normal form with $-symmetry. The linear part of
equation (5.9) has the zero matrix since (5.8) does. Therefore every
nonlinear monomial is resonant. We note that $ is a diagonal matrix
and the .S~'-symmetry conditions are

@) @2
2w 27 27
(e"q-) (e"? =e',, a +a,=k=>2, forthe first equation,
2w *1 27 "2 2m
(e'q)(e'q =e 'y, ata,=k=2,

for the second equation,

which are equivalent to

a,—a,—1=1lg, le€Z, Cforthe firstequation,
a—a,+1=Ilg, l€Z, Cforthesecondequation, (5.10)
a, ta,=k> 2

Therefore

HE}S = {0} for k<gq,k even,and k #gq — 1;

kS
H,

span{z]"* 'z, z["z T e, },

2m+ 1=k, fork <qg,kodd,and k +q — 1;

HI LS = span{z{~'e), z{ le,, 2" 1z, 22T H e}
forg=2(m+1),m=>1;

Hy 1S = span{zg'lel, z{"lez} forodd q = 3.
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Thus the normal form of (5.9) with S-symmetry up to order g is

2 =czizy+ o ezt + ¢, 287,
s — = 24 ... 47 omom+l = q-1 (511)
2,=C1z1z3 + 4Gzl P T + Cp 207,

where ¢, are all complex constants, g — 1 < 2m + 1 < gq. Since the
second equation of (5.11) is conjugate to the first one, we let z = z, and
omit the second equation of (5.11). Then we say that

i=clzfPz+ - +e, 2Pz + ¢,y 297! (5.12)

is an A-normal form with Z -symmetry up to order q.
We can apply to (5.12) the change of coordinates z = x; + ix, to
obtain a real normal form with S-symmetry of (5.8) up to order gq.
Another real normal form can be obtained from (5.12) by using polar
coordinates z = re’:

F=ar®+ - +a,r**! + (a,,,,c08q6 + b,,, ;singd)r?71,
6 =b,r*+ - +b,r*™ — (a,,, 5ingd — b, ,c0sq0)r?"2,

where a, = Re(cy), by = Im(c ) fork=1,...,m + 1.

2.6 Normal Forms of Linear Hamiltonian Systems

In this and the next sections, we discuss normal forms of Hamiltonian
systems over the reals

X =JVH(x), x € R*, (6.1)
where

I, is the n X n identity matrix, H € C"(R**,R), r > 1, and VH(x) is
the gradient of H(x).

We note that J7 =J~ ! = —J, where JT is the transpose of J.
Hence J is an orthogonal skew-symmetric matrix.

If H(x) is a quadratic form, then H(x) = 3 (x, Bx), where (-, - ) is
the usual scalar product in R?”, and B is a 2n X 2n symmetric matrix.
We note that VH(x) = Bx. For such an H(x), (6.1) can be rewritten as

i=JBx, xeR?” (6.2)

which is a linear Hamiltonian system.
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Definition 6.1. A linear operator 4: R?>" — R?”" is called infinitesimally
symplectic if and only if

A* =JAT,
where A4* is the adjoint operator of A.

The set of all infinitesimally symplectic operators is a vector space,
denoted by sp(2n, R).

Lemma 6.2. A linear system of equations

X = Ax, x € R?",
is Hamiltonian if and only if A is an infinitesimally symplectic operator.

Proof. Suppose the system is Hamiltonian. Then A =JB for some
symmetric matrix B. Therefore

AT =BTJT = -B] = —J U4 =JAJ.
Conversely, suppose A7 = J4J. We define B = J~'4. Then
BT=-ATJT=JA]-J= -JA=J"4=8,

that is, B is symmetric. We define H(x) = 3 (x, Bx). Then the system
can be rewritten as

¥ =JVH(x), x¢€R™ O
Corollary 6.3. If
A, A4,

where each A; (1 < i < 4) is an n X n matrix, then A € sp2n,R) if and
only if A=A, AL =A,, and AT = -4,
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Theorem 6.4. Let A € sp(2n,R). If A is an eigenvalue of A with alge-
braic multiplicity m, then —A, X, and — A are also eigenvalues of A with
the same multiplicity.

Proof. Let p(A) be the characteristic polynomial of 4. Then by Lemma
6.2,

p(A) = det(A] — A) = det(Al —J AT Y)
= det(](AI + AT)]‘l) — det( —J)det(]nl)det( Y —AT)
=p(—A).

Since A is a real matrix we also have p(A) = p()_\). This implies the
result. O

Corollary 6.5. The characteristic polynomial of an infinitesimally symplec-
tic operator must be a product of factors of the form A, (A + aXA — a),
A+ a? and (A — a)? + B2X(A + a)? + B?), where a, B are real posi-
tive numbers.

Definition 6.6. A linear operator S: R?* —» R?" is called a symplectic
operator if and only if

S*JIS =1J,

where S* is the adjoint operator of S.
The set of all linear symplectic operators forms a Lie group under the
matrix composition, and is denoted by Sp(2n, R).

Lemma 6.7. A linear symplectic transformation brings a linear Hamilto-
nian system into a linear Hamiltonian system.

Proof. Suppose that S is a linear symplectic operator. We apply a
change of variables x = Sy to the linear Hamiltonian system

% = JBx, (6.3)
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where B is a symmetric matrix. Then the resulting equation of (6.3) is
y = S~ UBSy. (6.4V)

Since S is symplectic, §~1J = JST. Therefore, (6.4) can be expressed as

y =JBy,

where B = STBS. Since B is symmetric, the matrix B is also symmetric,
thus the transformed equation (6.4) is a linear Hamiltonian system. [

Definition 6.8. Two 2n X 2n infinitesimally symplectic matrices A4, and
A, are symplectically similar if there exists a symplectic matrix S such
that A, = $7!4,S. Two linear Hamiltonian systems

x=A;x and %¥=A,x, x¢€R™,

are symplectically conjugate if matrices 4, and A, are symplectically
similar.

It is easy to see that symplectic conjugacy (or symplectic similarity) is
an equivalent relation. In every equivalence class of symplectically
conjugate linear Hamiltonian systems we will find one as a representa-
tion of this class. We will call this system a normal form. In order to
describe these normal forms, we introduce below some basic concepts
of symplectic vector spaces.

Definition 6.9. Let V' be an even-dimensional vector space over the
reals. A bilinear form 7(-, - ) on V is called skew-symmetric if

(x,y) = —7(y,x), foralx,yeV;

7(-, - ) is called nondegenerate if 7(x,y) = 0 for all y € V implies
x = 0. A nondegenerate, skew-symmetric, bilinear form (-, - ) defined
on V is called a symplectic form and (V, 7) is called a symplectic vector
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space. A basis {vy,...,0,,w,,...,w,} of a symplectic vector space (V, )
is called a symplectic basis if

(v;,0;) =0, 7(w;,,w;) =0, and 7(v;,w,) =8,
fori,j=1,2,...,n,

where §;; is the Kronecker symbol.

Example 6.10. The bilinear form (-, - ): R*”* X R?** - R defined by
wo(x,y) =(x,Jy), forall x,y € R*",

where (-, - ) is the usual scalar product in R?", is a symplectic form,
(R?", ») is a symplectic vector space, and the standard basis of R?" is
also a symplectic basis of (R?", w).

Definition 6.11. Let W be a subspace of a symplectic vector space
(V, 7). W is called a symplectic subspace if 7|y is nondegenerate. Let
W,, W, be two symplectic subspaces of a symplectic vector space (V, 7).
W, and W, are called 7-orthogonal if 7(x,y) = 0 for all x € W, and
y €W,

Definition 6.12. An infinitesimally symplectic mapping 4 on (V, 7) is
called decomposable if V' =V, @ V,, where V; and V, are proper,
A-invariant, and 7-orthogonal symplectic subspaces of V. A4 is called
indecomposable if A4 is not decomposable.

Theorem 6.13. Let A be an infinitesimally symplectic mapping defined on
a symplectic vector space (V,7). Suppose V=V, ® --- & V,, where V
i=1,...,s, are proper, A-invariant, mutually t-orthogonal, symplectic

subspaces. If

I, = {v'l,...,v,',i,wi,...,w,;i}
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is a symplectic basis of V, and the matrix representation of Aly, with
respect to T} is

B,
—AT

i

C.

i

b

where BT =B, CT =C, fori=1,...,s, and n, + --- +n, = n, then
1 1 1 1 . .

(Vs ooy Upp e s VT U W e Wy oo W, Wy ) s @ symplectic

basis of (V, 1) and the matrix representation of A under this basis is

—AT

s s

By using Theorem 6.13 we may consider only the cases where A is an
indecomposable infinitesimally symplectic operator defined on (R?", ).
We have two cases: (i) A4 is semisimple; (i) 4 = S + N is nonsemi-
simple, where S is the semisimple part of 4, N is the nilpotent part of
A, and N # 0. We give below the list of normal forms of infinitesimally
symplectic operators, but omit their proofs. The normal forms will be
denoted by A4 and the corresponding Hamiltonian functions by H(x).

List I. Normal forms of indecomposable semisimple infinitesimally sym-
plectic mappings.
(1) o(4) = {0},

A=[g g], H(x,y)=0, x,yeR.



Normal Forms of Linear Hamiltonian Systems 119

2 o(4) ={ta,a > 0},

_|a 0 _
A—[O —a]’ H(x,y) =axy, x,y€R.

0 =B

A=¢B 0

1
, H(x,y)=i513(x2+y2), x,y €R.

(4) (T(A) = {ia iBiaa > OaB > O}a

a B 0 0

| B « 0 0
A=10 0 -a gl

0 0 —-B -—a

H(x) = a(xlyl + xzyz) + B(xzyl - xlyz), X = (xl, X2, Y15 yz)T
€ R*.

List II. Normal forms of indecomposable nonsemisimple infinitesi-
mally symplectic mappings.

1) o(4) = {0},

n—1

1
H(x)= Y x;yi:1 F Exﬁ, x= (X1, s X, Viseens V)| € R
i=1



120 Normal Forms
Q) o(4) = {0},

n odd,

-1
T
H(x) = Y x¥is1» X=(X15e-esXps V1s---»¥y) € R

i=1

3 o(4) ={ta,a > 0},

o
1 «

1 «a

1 o n

B R I PP R

-a -1 n

-a -1
-
-1
. _a_
n n—1
H(x)=a Y x;y; + X x¥is1», X=(X1,.0s X0, V1r---,Y,) € R
i=1 i=1
A, -
I
I, A, 0 n
A=l , neven
A, ~L n
. _12
1, - A,
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where Iz=[(1) (l)],A2=[0 _B],

B 0
n/2 n—2 1
H(x) =B Y (X3i1V2i = %2:¥2i-1) * L XiVisa ¥ 2 (x2_y +x2),
i=1 i=1

where x = (x;,..., X, Y1p-- -5 V)7 € R?™

(5) o(4) = {£Bi,p > 0},

. —eB-‘
1 0 ep
€B
1 0 - —-ep
....................... e e ,e= +1,n o0dd,
e . 0 -1
—ep . 0
—ep -1
B . 0
n—1
2 i+1
i+
H(x)==eB X (=) (x%p01-i + YiVns1-i)
i=1
n—1 1 r +1
+ XYt 3 —1)[2] eB(x%% +y%H),

where x € (x,...,X,, ¥p-.., ¥,)' € R*"
6) 0(A4) ={ta £ Bi,a>0,p>0}

B,

A= froreeerre e R R , neven,
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where B2=[a _B],Iz=[(1) (1)],

B «
n n/2 n—-2
H(x)=a X x5+ B X (X3i1¥2 — X2¥2i-1) + L XiVisas
i=1 i=1 i=1
where x = (x},..., X, ¥, --» V) € R

2.7 Normal Forms of Nonlinear Hamiltonian Systems

Consider a Hamiltonian system of equations
X =JVH(x), x € Q cR?*™, (7.1)

where () is a neighborhood of the origin in R?”, the Hamiltonian
function H(x) = H)(x) + Hy(x) + -+ +H,(x) + O(xI"*"), H, e
P% , the linear space of all kth order scalar homogeneous polynomials
in 2n variables, k = 2,...,r.

Definition 7.1. A diffeomorphism S: ¢ R?” — R?” is called a sym-
plectic diffeomorphism if

(DS(x))*J(DS(x)) =J forall x € Q c R?",

that is, the linear mapping DS(x): R?" — R?" is symplectic for all
x € Q c R?", where Q is a neighborhood of the origin in R?”. If S(x) is
a symplectic diffeomorphism on (2, then x = S(y), y € Q, is called a
symplectic transformation.

Theorem 7.2. A symplectic transformation x = S(y), y € Q, where Q0 is
a neighborhood of the origin in R*", transforms a Hamiltonian system on
Q with Hamiltonian function H(x) to a Hamiltonian system on ) = S(Q)
with Hamiltonian function H(S(y)).
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Proof. The resulting system of (7.1) under the transformation x = S(y)
is

y = (DS(») T I((DS(»)") ' H(S(y)),  yed. (72)
Since S is symplectic,
(DS(y)) 'J((DS(y))*) ' =J, forallye ) cR?.
Therefore equation (7.2) can be expressed as:
y=JV,H(S(y)), vyeq,
which is a Hamiltonian system with Hamiltonian function H(S(y)). O
Theorem 7.2 says that simplifying a Hamiltonian system by a symplec-
tic transformation is equivalent to simplifying its Hamiltonian function
by composing it with this transformation.
Lemma 7.3. If
F(x) =x+ F¥(x) + o(IxI**"), xeQcR>,

is a symplectic diffeomorphism, where F* € PX k >2, and Q is a
neighborhood of the origin in R*", then

(DF*(x))*J + J(DF*¥(x)) =0, xeQcR>, (7.3)
that is, DF*(x) is an infinitesimally symplectic linear map for any
x € ) c R*",

Proof. By Definition 7.1, we have
(I+ DF*(x) + O(IxI))*J(I + DF*(x) + O(1xI*)) = J,

for any x € Q ¢ R?".

Hence (7.3) follows. O
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Corollary 7.4. If
F(x) =x + F¥(x) + o(IxI*™"), xeQcR™,

is a symplectic diffeomorphism, where F* € HX , k > 2, and Q is a
neighborhood of the origin in R?*", then J(DF*(x)) is symmetric for any
x €.

Let

H}, = {f € HE, | Df(x) is symmetric for any x in R?"}.

Then HY, is a linear subspace of HX,.

Lemma 7.5. For any f € HY,, the equation
VH, . ((x) = f(x), x € R, (74)

is uniquely solvable for H, .., € Pf*.

Proof. Let T} = {a € R, a = (0,...,0,a,...,a,,), ; are nonnega-
tive integers, [ <j < 2n, and |a| =k}, i = 1,...,2n, k = 2. For each
a € T we define

f; ) = x%,; + 2zn: 4 X 1<i<2n-1
i,a(x =Xx7e; @ +1 x. ej ( <l = 4n ),
j=i+1 & j

and
f2n,a(x) = xIZCneZn'

We will show that the set {f; .} defined above forms a basis of HE.
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Component-wise for each f; .:

0, j<i,
_ st o asp i=i,
(fi,a)i - a}. 1 . .
X{Th gt e x T e x92, P <J < 2n.
a;+1

Each f; , € HY, since as the following calculation shows Df; , is
symmetric for any x € R".

0, j<i or I<i,
xa
a —, j=i and [I>1i,
X
xa
(Dfi )it =1 0, j>i and I=i,
X
J
ajo;  x°x; Lo . .
, j>i,1>i, and [ #]j.
a,+1 xlxj

Any f € Hf, is a linear combination of the {f; ). To see this we
suppose f € Hj, and f(x) = £7_ L ,-Cin X ¢;, Where the c,, are real
constants. Then we define

2n
f(x) =f(x) - E clafl,a(x) = E E cg,)x"‘e,-.

ael‘{‘ i=2|al=k

It is clear that f e HX . Since Df(x) is a symmetric matrix and its
elements in the first row are all zero,

o

0= (Df(0)y = (Df(0)a= T ey, 2sjsn,
lel=k 1

it follows that each monomial x“%; in f(x) with nonzero coefficient is
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such that a; = 0. Hence

f= T T e,

i=2 ge F{
By induction, after 2n — 1 steps we obtain:

f(x) - Z Crafr,a(x) = — Z cgznn—_IZ)on—l,a(x)

aEFlk aer;n—l
_ A2n—-1).k _
Con Xop = 0.

To show that the {f; ,} are linearly independent, we assume that
X2 Ly erkCiafi, o{x) = 0. The first component of this equation is

Z €1, x*=0

lal=k
Therefore all ¢,, = 0. The second component of the equation is

o
Ci1a®y X X4

= Z €, X% =10
aerz"

Therefore all ¢,, = 0. An induction argument shows that all ¢,, = 0 for
aclTkand1 <i<2n
Consider now the equation:

VH, . (x) =fio(x), a€Tlk 1<ix<2n (7.5)

It is obvious that H,, (x) = ;57x°x,, a € [}, is the unique solution
of (7.5) in Pf*!. Since any f € HX, can be uniquely represented as a
linear combination of the {f; ,} and V is a linear operator, it follows
that (7.4) is uniquely solvable for H, ,, € P5*'. ]

Let j* be the truncation operator that keeps only the terms up to
order k in a Taylor expansion.
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Lemma 7.6. For any symplectic diffeomorphism of the form
F(x) =x + F¥(x) +O(|x|"“), x € QcR?*”,

where F*(x) € HX , k > 2, and Q is a neighborhood of the origin in R*",
there exists a Hamiltonian system on Q with Hamiltonian function H(x)
whose time-one mapping ®,,(x) satisfies

x + F¥(x) = j*®4(x). (7.6)

In particular, we can choose H € P5+1.

Proof. We note that JF*(x) € HX, by Corollary 7.4. Then we define
H(x) = H, (x) which is the unique solution of equation

JVH; y(x) = F¥(x)
in PX*! (by Lemma 7.5). Let ®(¢, x) be the flow of the system
x=JVH(x).
Then ®(¢, x) can be expanded in a Taylor series
D(t,x) = D (t)x + Dy(t,x) + - +D(¢, x) + O(Ix[*H1),

where &, € C'(R,R****"), &, € C'(R X R**,R*") and ®(t, - ) € H},
for each t € R, j = 2,..., k. By definition, ®(¢, x) is the solution of

®(t,x) =JVH(D(t, x)),

®(0, x) =x. (7.7



128 Normal Forms

From (7.7), expanding ®(¢, x) in its Taylor expansion and equating
coefficients, we get

d,(1) =0,
{q)l(o) =1, (78
{dDj(t, x)=0,
: (7.8);
®,(0,x) =0, j=2,...,k—1,
and
d,(t, x) =TVH(D,(t)x),
{q>k(0,x) =0. (79)

From (7.8),, we get ®(t) = I,,,. From (7.8);,, 2 < j < k — 1, it is easy to
see that ®,(¢,x) =0, j = 2,..., k — 1. Accordingly, (7.9) becomes

®,(t,x) =JVH(x) = F¥(x),
®,(0,x) = 0.

Hence ®,(¢, x) = F¥(x)t, for any ¢ € R, and x € R?". It is clear that
®,(1, x) = F¥(x). Thus

¥ @, (x) =j*®(1, x) =x + F¥(x). o
Lemma 7.7. The time-one mapping of a Hamiltonian system is a symplec-
tic diffeomorphism.
Proof. Let ®(t, x) be the flow of the Hamiltonian system

x=JVH(x), xe€QcR?,

where € is a neighborhood of the origin in R?”. Then we have

d
- ®(1.0) =JVH(®(1,x)), tel, x€Q,

X
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where I, is the maximal interval containing 0 such that ®(z, x) € Q if
t € I, for any x € ). And

d Do
dt X (t’x)

=J(DVH)(®(1,x)) -(Dxd)(t,x)), tel,, x€Q. (7.10)
For any x € 2 ¢ R?", let us consider the function

¥i(1) = (D@(2, %)) (D, 2(1, x)).

Since

d d .
G0 = 5 (071D )

. (d
+(DA(1, %)) J(Z;(Dxd)(t,x))),

from (7.10),

d
wa(t) = (D®(t, x)) ((DVH)(®(t, x)))*(=7) - J(DD(t, x))

+(D&(t, x))* T - J((DVH)(®(t, x)))(D,®(t, x))
= (D,®(1, x))" ((DVH)(®(t,x)))*(D&(t, x))
—(D&(t, x))*((DVH)(®(t, x)))(D,2(t, x)),

tel x €.

x?

We note that DVH(x) is symmetric, being equal to the Hessian matrix
of H(x). Therefore (d/dt)y (t) =0, for t €I, and x € ). Hence
(D, ®(t, x)*J(D,®(t, x)) = (DO, x)*J(DPO0,x) =J, t €I, x €
Q. By Definition 7.1, ®(t, x) is a symplectic diffeomorphism on Q for
anyt€1,. 0O

Let H(x) = H)(x) + Hy(x) + --- +H/(x) + O(x|I"*") be the
Hamiltonian function of a Hamiltonian system on a neighborhood of
the origin in R?", where H; € P4,, j=2,...,r. From the results of
Section 2.6, we may assume H,(x) is already in normal form. Thus to
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simplify H(x) we may apply only near identity symplectic transforma-
tions. From Lemmas 7.3-7.7, any near identity symplectic transforma-
tion is of the form

x=y+JVF  (y) +0(|y|k+1), xeqQ,
where F,, () € P5*!, k > 2, and Q is a neighborhood of the origin
in R2".

Lemma 7.8. If H,(x) is a quadratic form in x,, ..., X,,, then for any
k > 3 and F, € P%,, the kth-order homogeneous polynomial in the expan-
sion of H(y + JVE(y) + O(ly|*)) is

9F, 9H, 9H, oF,
Z —_ _c

i1 \9Vnti 9V Wnsi 0V )

Proof. Let H,(x) = % (x, Bx), where B is a 2n X 2n symmetric matrix,
and (-, - ) is the usual scalar product in R*". We note that VH,(x) = Bx.
Then
Hy(y + JVF(y) + O(Iyl))
=3 (v +IVE(y) + O(Iyl*), By + BIVF,(y) + O(Iyl*))
=3(y,By) + 3 (JVF«(), By)
+1 (v, BIVF,(y)) + O(Iylk“).

The kth-order terms in the above expansion are

3 (JVF(y), By) + 3 (v, BIVF,(»))

3 (JVF(y), By) + 3 (By, JVE,(y))

(JVF(y), By) = (JVF.(y),VH,(y))

§ (9P o, _ oM, O,
i=1 \OVnsi 9V Wnsi 9y )
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Definition 7.9. Let P, Q € CY(R*",R).
n (9P 8Q  8Q 4P
[P.Q]=(JVP,VQ) = ¥ — -

i=1 \ 0%, 0x; 9x,.; 0x;

is called the Poisson bracket of P and Q.

If H, and F, are as in Lemma 7.8, then we have
H,(x + JVF,(x) + O(Ix[*))

= Hy(x) + [F(x), Hy(x)] + O(Ix**!).  (7.11)

For a given quadratic form H,(x) in 2n variables x,,..., x,,, we
define a linear operator ad%, : PX, — P¥ by
2

ad';IZF(x) = [Hz(x),F(x)], F e P%, (7.12)

where k = 3,4,... . Thus (7.11) can be rewritten as
J*Hy(x + JVF(x) + O(1x[*)) = Hy(x) — adfy F,(x).
Let R* be the range of adf;, and C* be any complement of R*

in P,
Theorem 7.10. There exist a series of near identity symplectic transforma-
tions

x=y +JVE(y) +O(ly*), vyeq,,

where F, € Pz",,, k=3,...,r, and Q, is a neighborhood of the origin in
R?", such that the Hamiltonian function K(y) of the resulting system of
(7.1) is of the form

r

K(y) = Hy(») + K3(y) + - +K,(») +O(bI"™),  yeQ,,

where K(y) € C/, j=3,...,r.
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Proof. The theorem is proved by induction. O

Definition 7.11. A Hamiltonian function H(x) is called an H,-normal
form up to order r > 3 if H(x) = H)(x) + K5(x) + - -+ K, (x), where
H,(x) is a quadratic form and K(x) € C/, j=3,...,r.

To find normal forms of a Hamiltonian system, it is sufficient to
determine the structure of a complementary subspace C* to the range
of ad}; for 3 <k <r. We note that if JVH,(x) = Ax, where A is an
infinitesimally symplectic matrix, then adf,zF k(x) = (Ax, VF*(x)),
where (-, - ) is the usual inner product in R?". We define ad%: P¥, — P
by ad F(x) = (Ax, VF(x)) for any F € P},, k > 2. Then adf; = ad%.
Hence we may use ady to study the normal forms instead of adj; .

Definition 7.12. Let o(A) ={A,,...,A,, —A,,..., —A,} be the spec-
trum of A. Then the following relations are called resonant conditions:

n

Y rle; — ;) =0, lal=3. (7.13)

i=1
Let (x;,x,,...,x,,) be symplectic coordinates with respect to the
standard basis of R?”, in which the semisimple part of matrix A is
diag(A,...,A,, —Aq,..., —A,). Then a monomial x* with la| =k >3

is called a resonant monomial of order k if and only if the multi-index
a = (ay,...,a,,) satisfies (7.13).

Theorem 7.13. If A = diag(A,,...,A,, —Aq,..., —A,) is the matrix of
linear Hamiltonian system X = JVH,(x), then an H,-normal form up to
order r > 3 can be chosen so that its kth-order homogeneous terms are

linear combinations of all resonant monomials of order k, k = 3,...,r.

Proof. For any monomial x* € Pz",,, a calculation shows that

n
adfx® = Y. A(a; = a;,)x" = 0.
i=1
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This implies that Ker(ad%) is a complementary subspace to Im (ad¥).
Thus the result follows from the definitions of the H,-normal form and
resonant monomials. (]

Corollary 7.14. Suppose that A = diag(A,,...,A,, —A,,..., —A,) is

s Npsy

the matrix associated to the Hamiltonian function H,(x,y), (x,y) €
R™ X R™ If A,..., A, are rationally independent, then the H,-normal
form up to order r > 3 is

n
H(x,y) = Y Axy, + Y a,xye,
i=1 2<|al<[r/2]

where @ = (e, ..., a,) is a multi-index and all a, are real constants.

Example 7.15. Suppose H,(x,, X,, ¥;, ¥,) = X1 ¥; — X, ¥,. Then

This is the case called 1: —1 resonance. The resonant conditions are
(e —az) = (a3 —a,) =0, lal > 3,
that is,
a, ta,=a,+a,, la| = 3.

This implies that any resonant monomial is of even order. Hence an
Hy-normal form up to order r is

(r/21 & & o . )
H(x) =x,y; %0, + Y X Zcijxixéy{c_!yg_”
k=2i=0=0

where c;; are real constants, 0 <i,j <k, k=2,... r/2)
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Example 7.16. Suppose H,(x, y) = xy. Then

A= [(1) _O].

A =1 is clearly rationally independent. Thus, by Corollary 7.14, an
H,-normal form of H(x, y) up to order r > 3 is

(/2]
H(x,y)=xy+ Y, a,x*y*,
k=2
where a, are real constants, k = 2,...,[r/2].

In general we can apply the following adjoint operator method to get
the H,-normal forms. In linear space PX, we define an inner product
(-, )1 as the following. If p(x) = L, _4a,x% q(x) = L, _b,x%
then {p(x), g(x))1 = T, _xa,b,a!. In fact, ( -, - )y is the inner prod-
uct { -, - ) defined in Section 2.1 for the case dimension = 1.

Theorem 7.17. Under the scalar product { -, - ), in the space P, the
linear operator adX.: P%, — PX is the adjoint operator of adX.

Proof. Let

F(x)= X f,x*€Pf, G(x)= ¥ gzxPePf
lal=k IBl=k

where the f, and g, are real constants. Then

(adXF(x),G(x))

E E fag,3<(Ax,Vx°‘), xB>1-

lal=k 18-k

(F(x),ad%:G(x))1= L Y f,8s(x% (A*x,VxP))1.

lal=k |Bl=k

Therefore it will be enough to show that the following is true for any
two monomials x* and x? in P :

((Ax,Vx®), xB)1 = (x*, (A*x, VxP)),.
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We have
<(Ax,vxa)9xﬁ>l
n n x°
= <(( Zaijxj) ) (ai_) )’xﬁ>
j=1 i=1 t/i=1 1
n nox%x
=<Za,~§:a.~, J’xﬁ>
i=1 j=1 % 1
( Yy a,.a,.i)a!, if B = a,
i=1
for some i # j,
and B, = «, for k # i and j,
0, otherwise.
(x*, (A*x,VxP)),

(g (2] )

n n xﬁxj n n ;
=(x%, XB X a; ={x%, LB Lay;
i=1  j=1 1 j i=1 X |y

X;

( 2": Bjajj)a!, if @ =p,
j=1

_ la;B;al, ifa,.=Bi+1,aj=Bj—1

for some i # j,

and o, = B, for k # i and j,
0, otherwise.

Both expressions are equal. Thus the lemma is proved.

135
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Corollary 7.18. Ker(ad¥«) is a complementary subspace to the range of
adX in P, for k = 3.

Example 7.19. Suppose H,(x,y) = 3y% Then
_lo 1
A= [ 0 0].
Consider the system of linear partial differential equations

(A*(’y‘),VF(x,y)) =0,

that is,
oF

The homogeneous polynomial solutions of (7.14) are
F(x,y) = c,x*, k>1,

where ¢, are real constants. Hence an H,-normal form up to order
rz3is

1 r
H(x,y) = 5y2+ Y cpxk,
k=3

where c, are real constants.

Example 7.20. Suppose H,(x,, x5, ¥,,¥,) = 3(y? + y3). Then

SO OO
SO OO
OO O =
SO = O

If we solve the partial differential equation

(A%, VF(x)) dF F _,
x,VF(x)) =x,— +x,— =0,
13y, 2 3y,
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where x = (x,, x,, ¥;, yz)T, then any polynomial solution is of the
following form:

F(x) = ®(xy, x2, X1¥; — X251),

where @ is an arbitrary differentiable function. In order to show & is a
polynomial in its arguments, without loss of generality, we assume F is
a homogeneous polynomial of order m. Let

= ikl
F(xy, X5, ¥1,¥2) = ) CijkiX1X2¥1¥2-
i+j+k+l=m

Denote z = x,y, — x,y;. If x; # 0, then we have

D(xy,x;,2) = ) cijklxi“lxéyf(z +x2Y1)l.
i+j+k+l=m

Note that the left-hand side of the above equality is independent of y,.
Taking y, = 0, we have

F(xy,%3,51,92) = ®(x,%,,2) = Z cijo,x{"x{z'
i+j+l=m

= -1 _ !
= Z Cijor*1 x3( X1y, = X2¥1) -
i+j+l=m

Since F(x,, x,, ¥, ;) is a polynomial in x,, X5, y,, ¥2, ¢;jor = 0 if i <L
Hence

- i—lj 1
D(xy,x5,2) = ) CijotX1 X22°.
i+j+l=m
izl

By reindexing, we get

_ kyjl
®(xy,x,,2) = Z cjklx1x£z ’
k+j+2l=m

where ¢, are real constants. So @ is a polynomial in its arguments and
has the form shown above. Therefore, an H,-normal form up to order r
is

r

. X
H(xy,%2,¥1,92) = %(Y% +y3) + Y cupxixi(xy, —x0)5,
i+j+2k=3
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where c,;, are real constants. For r = 3,
Ker(ad}x)
- 3 2 2 .3
= Span{xh XTXp5 X1X3, X3, Xo(X1Y2 — X3¥1), Xo( X1V, — xzyl)}-

By an elementary argument we can choose also the following as a
complementary subspace to the range of ad?4 in P43:

3 _ 3 .2 2 .3 .2 2
C’ = span{xl,xlxz,xlxz,xz,xlyz, xzyl}.
Hence an H,-normal form up to order 3 is
H(x) = z(Y1 +y3) + a,xi + ayxix,
+ 2 4 34 2, 4+ 2
A3X X3 T Q4X5; T A5X Yy T dgX3Y),

where a,,..., a4 are all real constants.

We suppose that the standard basis {x* | IaI k} of P¥, is in the
reverse lexicographic ordering. We denote by adA the matnx represen-
tation of ad¥ with respect to the basis {x*||a| = k}.

Lemma 7.21. If A = diag(A,,...,A,, =A,..., —A,), then ady is also
diagonal. If A is upper (or lower) triangular with diagonal elements
Ao s A —A.oo, —A,), then E&f, is lower (or upper) triangular.
Furthermore if x* is the ith basis element of P%., then for both cases the
ith element of the diagonal of ad’ is £7_ A (a; — a;,,).

The proof of Lemma 7.21 is similar to that of Lemma 1.13.

Theorem 7.22. Suppose A =S + N is the S — N decomposition of A.
Then ad% = ad% + ad%, is the S — N decomposition of ad% and
Ker(ad«) N Ker(ad¥«) is a complementary subspace to the range of adX,
in PY, for each k > 3.

The proof of Theorem 7.22 is similar to that of Theorem 1.18.
We can also choose Ker(ad%) N Ker(ad%«) as a complementary sub-
space to the range of ad¥ in P¥, for k > 3.
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Corollary 7.23. Let A be the matrix of linear Hamiltonian system x =
JVH,(x), x € R*". If A = S + N is the S — N decomposition of A and
S = diag(A,...,A,, —Aq, ..., —A,), then an H,-normal form up to or-
der r > 3 can be chosen so that its nonlinear part of order greater than 2
is spanned by resonant monomials up to order r.

Corollary 7.24. Suppose A is the matrix of the linear Hamiltonian system
% =JVHy(x), x € R®. Let A =S + N be the S — N decomposition of
A. An H,-normal form can be chosen so that it satisfies the relation
H(eSx) = H(x) for any x in a neighborhood of the origin in R?".
Consequently an Hy-normal form of the Hamiltonian system can be
chosen so that it has group T-symmetry, where T is the group generated
by e5.

For the case when the semisimple part of the matrix A is diagonaliz-
able over the complex numbers, we can apply a method similar to that
introduced in Section 2.1 for real normal forms to get a real basis of
Ker(ad¥+). We illustrate this idea by Examples 7.25 and 7.28.

Example 7.25. Let H,(x,y) = 3 (x% + y2). Then

_ 0 1
A= [ ¢ 0].
We change variables to z, = x + iy, z, = x — iy. Then the matrix of
the linear transformation is

P2 [ 1 1.],
21 —i i
and the matrix of the linear part of the transformed equation is
A = P~Y4P = diag(i, —i) with respect to the new basis. The resonant
monomials are {zfz% k > 2}. Since Z, = z;, zfz§ is real. We change
coordinates by z; =x +iy and z, =x —iy. Then the corresponding
real basis of Ker(ad%") is {(x? + y2)*} for each k > 2 and Ker(ad%*!)
= {0} for any k > 1. Hence an H,-normal form up to order r is

H(x,y) = 3 (x> +y?) + ay(x? + y2)2 + o ta (x4 yz)k,

where a,,...,a, are real constants, r — 1 < 2k <r.
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Definition 7.26. If Hamiltonian H is a polynomial of degree r in the
symplectic variables x,,..., x,, ¥1,..., ¥, that is actually a polynomial
of degree [r/2] in the variables p;, = (x> + y?)/2,i=1,...,n, then H
is called a Birkhoff normal form of degree r.

Then by a similar argument to that in example 7.25, we have the
following theorem.

Theorem 7.27. Let Hy(X|, ..., X, Yir---, V) = 3sA(x3 + y3) +
<o+ A (x2 + y2), where the A; are real constants. If A,,..., A, are
rationallly independent, then an H,-normal form up to order r > 3 is a
Birkhoff normal form of degree r.

Example 7.28. Suppose
Hy(x1,%5,¥1,¥2) = a(Xx1y, —%,¥1) — %P(’Cl2 +x§),

where a > 0, p = +1. Then

0 —-a 0 O
a 0 0 O
A= p 0 0 -a
0 p a 0

Let z, =x, +ix,, z, =y, +iy,, z3 =%, — ix,, z,=y; —iy,. Then
we have

al
- al
A=|"° ,
—ai
P —ai

Let A=S + N bethe S— N decomposition of A, where

ai 0

The set of all resonant monomials of order k forms a basis of Ker(ad%).
The resonant conditions are «, + a, = a3 + a, with |a| = k > 3. Ob-
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viously, all resonant monomials must be of even order. All the fourth-
order resonant monomials are 2222,z,2,23, 2322, z}2,2,, 212,252,
232524, 2322, 2,2,22, and 2323

To find a basis of

C* = Ker(ad$) N Ker(ad}+),

we apply the undetermined coefficient method. Since the system of
linear partial differential equations for Ker(ad%+) is

oF oF 0,
F4 +z,— =
2 azl 4 9z,

we get for a basis of C*: 2222, i(z,2,22 — 22252,), (2,2, — z,2,)%. We
note that zZ; = z, and Z, = z,, whence this basis is real. After changing
variables by 2z, = x; + ix,, z, = y1 Wy, Z3 =X, —iXy, 2, =Y, — ¥y,
we get a real basis of C*: (yZ +y2)2,(yi + y2)(x,y, — x,¥,), (x1y, —
x,¥,)?. Thus the H,-normal form up to order 4 is

2
H(xy, %5, ¥1,92) = a(x1y, = X,5) — (xl +x2) +a(y12 +Y%)

2
b(yl +y2)(x1y2 x¥1) +c(x1y, — x,%1)5,

where a, b, ¢ are real constants.

Since adX is a linear operator on PX, we can apply also a matrix
representation method to find complement C* for each k = 3. We
illustrate this method with the following example.

Example 7.29. Suppose H,(x,, X5, ¥,, ¥2) = X;¥, F 3x3. Then

0 0 0 0
11 0 0 o0
A"o 0 0 -1
0 +1 0 0

For k = 3, under the basis {x*,|a| = 3} of P} which is in the reverse
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lexicographic ordering, the matrix representation ;d’f, of operator ad’, is
shown in the table below.

ol

—

—
—

OO OO
—

|
—
—

N~

—

—
—

—

N~
N

—
(7]

(]

OOOOOOOOOOOOOOOOOOH'O
N~

cooococococococococooctococococoo
coocoocococo | cococonococooo
cococo |l coocococo~ococococococo
cooo | cootocorocoococoococoo
col cococoocoococoocoococoocococooco
o loccocoot coococoococoococococoo
|l cocotocococococoococococococoo

—

COoC OO0
COC OO O~
cococoocococoocococoocooce |l coo
OO 0O OON
cococoocococoocococoococolt ~ooo
cococoocococoocool coocococooo
cocoocoocococoococootol coo
S T T -
cocoocooccotcoconoccoooo
cococoococootocormoocococococococo
cooot cocoococoocoococococococoo

OO0 O OO OODOOOO O

L

Then Kgr((adf,)*) = span{e;, + 30,265 + €15 + 2€5, €;,). We can
choose C* = span{e,,, e;s, €;;} as a complementary space to the range
of adf1 in R?. Then an H,-normal form up to order 3 is

H(xy,%5,¥1,92) =x19, F 3% + ayx,97 + ayx,9,y, + a3)3,

where q,, a,, a; are all real constants.

2.8 Takens’s Theorem

Takens’s Theorem gives relationships between diffeomorphisms and
vector fields in neighborhoods of the origin in R”. In the simple case
where F(x) = Ax is a linear diffeomorphism on R”, if there exists a real
n X n matrix B such that exp(B) = A4, then F(x) is the time-one map
of the flow generated by the vector field X(x) = Bx. Takens’s Theorem
generalizes this simple case to nonlinear diffeomorphisms.

We assume that F: R® —» R” is a C’-diffeomorphism (r > 2), with
F(0) = 0. The Taylor expansion of F(x) at the origin is

F(x) =Ax + F¥(x) + F3(x) + -+ +F"(x) + o(Ix|"),

as x >0, (8.1)
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where F¥ € HY for k = 2,...,r. We assume that
A=S(I+N), (82)

where S is semisimple, N is nilpotent, SN = NS and [ is the identity.
There is no loss of generality in this assumption since any linear
transformation on R” has the S — N decomposition and if the transfor-
mation is invertible so is its semisimple part. Then Takens’s Theorem
can be stated as follows:

Theorem 8.1. (Takens) Given the diffeomorphism F(x) defined by (8.1)
and (8.2) and any integer 1 <1 <r, there exist a diffeomorphism
Q c R* - R”, where Q is a neighborhood of the origin in R", and a
vector field X(x) on R” such that
Q) ', o Foy ") is an A-normal form of diffeomorphism F(x) up to
order 1,

(i) X(Sx) = SX(x) for any x € R",
(111) jl(l/f[ oFo l/f[_l)(x) = jl(cDx(l, SX)),

where j' is the truncation operator up to order [ and ®@,(z, x) is the
flow of X(x). Furthermore for such a vector field X(x), j’X(x) is
uniquely determined by j'F(x).

Theorem 8.1 will be proved using several lemmas. First we consider
the simple case when 4 =1+ N, where N is nilpotent and upper
triangular, that is, the diffeomorphism is given by

Fi(x)=(+N)x+F*x)+F¥(x)+ - +F(x) +o(x]").
(8.3)

Lemma 8.2. There exists a vector field X(x) on R" such that j"X(x) is
uniquely determined by j"F(x), and its flow ®x(t, x) satisfies:

J®x(1,x) =jFy(x). (8.4)

Proof. Assume that X(x) is of the form:

X(x) =Bx+X*(x) + - +X"(x) + O(IxI"*"),  (85)



144 Normal Forms

where B € R**" and X* € H¥, k = 2,...,r and that its flow is of the
form:

Dy(t,x) = O (t)x + (¢, x) + - +®"(¢t,x) + O(IxI"*"),
(8.6)

where ®*(¢,-) € H¥ for any ¢t € R; and ®!(¢) and ®*(¢, x) for k =
2,...,r are C" in t. Then we have to determine the vector field X(x)
such that its flow ®,(¢, x) satisfies (8.4). Since @, is the flow of X:

by (1, x) = X(®x(1, x))
= B®Dy(t,x) + X*(Dx(t,x))
+ o+ XT(DPy(t, x)) + O(IxI’“),
®,(0,x) = x.

(8.7)

We denote by p(t, x) (j > 1,i = 2,...,r — 1) the homogeneous poly-
nomial of order j in the expansion of X‘(®,(¢, x)). From (8.6) and
(8.7), comparing equal-order homogeneous polynomials, we have

®!(t) = BO\(1),

$(0) = 1 (8.8)

®*(t,x) = BO*(t,x) + kilp”‘(t,x) + X*(®(1, x)),
i=2

®k(£,0) = 0.
2<k<r, (89

The solution of (8.8) is ®'(¢) = e® and therefore j!®,(1, x) = j'F(x)
implies e = I + N. Then B = log(I + N) = N is also upper triangu-
lar. So, the solution of (8.8) is now determined as:

() =N with N = log(I+N). (8.10)

Assume now by induction that X2,..., X* &2 ... ®* have already
been determined. Then

k
p"“(t,x) = sz,k+l(t,x)
i=2
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is known and (8.9) (with & + 1 instead of k) becomes

dF*1(¢, x) = NO¥*1(t, x) + p**1(1, x) + X*+!(eVix)
®*+1(0,x) = 0.

By the variation of constants formula, we get
Okt x) = eﬁ’j:e"v‘[X"“(eN‘x) + p**i(s, x)]ds. (8.11)
From (8.4), ®**1(1, x) = F¥*!(x), which gives:
j(;le'ﬁ’X"“(eN’x)dt = e NFk+1(x) — [Ole-ﬁfpk“(t, x)dt. (8.12)

We note that both sides of (8.12) belong to H**! and X**! is
unknown. We define the operator T*: H¥ — H* by

(T*h)(x) = [Ole—ﬁfh(eﬁfx)dt, heH:.  (8.13)

Claim 8.3. T* is a linear invertible operator for k = 2.

From Claim 8.3 it follows that (8.12) is uniquely solvable for X**1
and consequently ®**! is determined by (8.11). O

Proof of Claim 8.3. It is obvious that T* is linear. Since HF is a finite
dimensional linear space, to show that T* is invertible is equivalent to
showing that the null space of T* is {0}. Since N is upper triangular
and nilpotent,

(-N)

m
N=log(I+N)= Y
j=1

for some integer m is also upper triangular and nilpotent. Thus, et
and e~V are of the form:
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where (*) denotes entries depending on ¢. Let x “e; be any monomial in
H¥. Then (eN’x)"‘e = x%; + r(t, x)e;, where r(t, x)e consists of terms
“bigger” than x “e; in the reverse lex1oograph1c ordermg for any t € R.
Similarly, e "™ (e™'x)%; = xe; + #(¢, x), where #(¢, x) consists only of
terms “bigger” than x%; for any t€R. Let 0 #h € H,f‘ and cx“e;
with ¢ # 0, la] = k, 1 <j < n, be the “smallest” monomial of 4 with
respect to the reverse lexicographic ordering. Thus from above discus-
sion, (T*h)(x) = cx%e; + #(x), where #(x) consists only of terms
“bigger” than x“e; in the reverse lexicographic ordering. This implies
that (T*h)(x) # 0if 1 # 0. O

Corollary 8.4. Lemma 8.2 is still valid in the case where N is not upper
triangular.

Proof. Let P be a nonsingular n X n matrix. It is easy to see that (1)
log(I + P"INP) = P 'log(I + N)P and (2) h(x) is a solution of
T*(h) = f if and only if A(x) = P~'h(Px) is the solution of

fle‘P—WP’ﬁ(eP‘WP’x)dt = P If(Px).
0

Hence T* is also invertible in the case where N is not upper triangular.
O

Lemma 8.5. Let X(x) be a C” vector field on R" and ®x(t, x) be its
flow. Suppose that o is an invertible n X n matrix. Then 0-'1<I>X(t, ox)is
the flow of the vector field o~ 'X(ax), that is,

D -1y, (t,x) =07 '®y(t,0x).

Proof. Let ®,(t,x) be the flow of y = X(y). Then o '®,(¢,0x)
satisfies the equation Z = ¢~ !X(oz) and the initial condition at ¢t = 0
is 07'®,(0,0x) = 0~ lox = x. Therefore o~ '®,(t, ax) is the flow of
the vector field o~ 'X(ox). O
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Lemma 8.6. Suppose that F(x) is a C" diffeomorphism with linear part
(I + N)x, where N is nilpotent, and that F(x) commutes with a nonsin-
gular matrix o € R™*". Then the vector field X(x) defined by Lemma 8.2
has o symmetry up to order r, that is,

jjoT'X(ox) =j’X(x) foranyx € R

Proof. By Lemma 8.2, j'®,(1, x) =j"F(x). Therefore, o~ 'j ®(1,
ox) = 0" 'j"F(ox) and since F has o-symmetry, j'o~'®,(1,0x) =
J’F(x). By Lemma 8.5, j'®, -1, (1, x) = j’F(x) and by Lemma 8.2,
j"X(x) is uniquely determined by j"F(x). Thus

jo ' X(ax) =j’X(x), foranyx e R" O

Proof of Theorem 8.1. From Corollary 4.12 an A-normal form of
diffeomorphism (8.1) can be chosen so that it commutes with S, the
semisimple part of A. Let , be a diffeomorphism in neighborhood )
of the origin in R” for 2 < !/ < r such that

(e Fow)(x) = S(I+ N)x + F2(x) + -+ +F!(x)

is the A-normal form of (8.1) which commutes with S. We factor out S.
Then we get

Mo Fo)(x) = S[(I + N)x + F2(x) + -+ +F(x)], (8.19)

where F*(x) = S7'F*(x), 2 < k <1, and F* commutes with S since
F* commutes with S. By Lemma 8.2, Corollary 8.4, and Lemma 8.6
there exists a vector field X(x) which commutes with S such that

P(e Foyrt) = Si'(@x(1, x)),

where ®,(t, x) is the flow of X(x). Since X(x) commutes with S it
follows from Lemma 8.5 that ®,(1, x) also commutes with S. Therefore
JWy o F o7 Wx) = ji(@x(1, Sx)). 0

We show next that if the diffeomorphism satisfies some group symme-
try, then the vector field given by Theorem 8.1 also satisfies the same
group symmetry.



148 Normal Forms

Theorem 8.7. Let I' be a group of invertible n X n matrices. If the
diffeomorphism (8.1) has T-symmetry, that is, F(yx) = yF(x) for any
vy €T, then the diffeomorphism , and the vector field X given by
Theorem 8.1 also have T'-symmetry up to order r, that is,

7 (yx) = vig,(x) and jX(yx) =vi"X(x),

forany x e R*, yeT.

Proof. The linear part of diffeomorphism (8.1) is Ax = S(J + N)x =
(S + N))x, where N, = SN is nilpotent and commutes with S. From
the symmetry assumption it follows that

S+N, = ‘y_l(S + N)y=v"'Sy + y Ny, vel.

But y~ 'Sy is semisimple, ¥~ !N,y is nilpotent, and the two commute.
By the uniqueness of the S — N decomposition it follows that S =
y~!Sy and N, =y~ !N,y. Thus, Sy =yS and N,y = yN, for any
v € I. Therefore also Ny = yN for any y € I'. From the results in
Section 2.5, we can find an 4-normal form of (8.1) with I'-symmetry by
a transformation with I'-symmetry. It follows that the nonlinear terms
in (8.14) commute with every ¥ € I' and therefore by Lemma 8.6 the
vector field X(x) given by Theorem 8.1 also commutes with each y € T
up to order r. ]

2.9 Versal Deformations of Matrices

Let A: A € R* - R"™" be a C' mapping, where A is a neighborhood
of the origin in R*. To find a canonical form of A(A), A € A, we may
try to find the Jordan canonical form for each A(A) by a linear change
of coordinates depending on A. However, the linear transformations
which change A(A) to its Jordan form may not depend smoothly on A.
As an example, let

A(M) = [8 3] A ER.

The Jordan form of A(A) for each A € R is

[oo 0 1

0 0],1fA=0, and [0 0

],if)HEO.
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It is easy to see that any linear transformation which changes A(A) to
its Jordan form must be discontinuous at A = 0.

In this section we will derive a canonical form (or normal form) for a
family of matrices that depend smoothly on parameters by a linear
transformation also depending smoothly on parameters.

Definition 9.1. Let 4, € R"™" be fixed. A family of matrices A(A),
A € A C R*, is called a deformation of A, if A4: A - R"*" is C' and

Definition 9.2. Let both A(A) and B(u) be deformations of A4, where
A€ AcRFand u € A ¢ R. If there exist a deformation C(u) of the
identity matrix I with € A € A and a C! mapping ¢: A —> A with
¢(0) = 0 such that

B(n) = C(p)A($(n))C(r)™, neA, (9-1)

then we say that B(u) is induced from the deformation A(A) by C(u)
and ¢(u).

Definition 9.3. A deformation A(A) of A, is called a versal deforma-
tion of A, if any deformation B(u) of A, can be induced from A(A).
A versal deformation of A4, is called a miniversal deformation if the
dimension of its parameter space is the smallest among all versal
deformations of A4,.

Example 94. Let A = [(1) g]. Consider the following three deforma-
tions of A4,:

am=[00 0] aw-[o 2]

Ay(r) =

O Az ?
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where A,,..., A, are real parameters. We will show that 4,(A) is a
versal deformation but it is not a miniversal deformation, A4,(A) is not a
versal deformation, and A,(A) is a miniversal deformation.

Let B(u) be an arbitrary deformation A, with u € A ¢ R". Then
B(u) must have the following form:

L+b(n) by(n)

B(‘"=[ ba(w)  buw) | SN

where the b;: A > R are C! functions with 5(0) =0, 1 <i < 4. Thus,
B(u) is induced from A (A) by C(u) =1 and ¢(n) = (b(w), by(u),
by(w), b,())T. Hence, A,(A) is a versal deformation.

To show that A,(A) is not a versal deformation, we consider the
following deformation of A:

Suppose B(u) is induced from A,(A) by a deformation C(u) of I and a
C! mapping ¢: A - R, that is,

B(p) = C(m)Ax((n))C(n)™',  neEA, (9:2)

where A is a neighborhood of the origin in R. Let

ci(pm)  cp)

o) am)| PN

C(p) =

where the ¢, (u) are C! functions. Since C(A) is a deformation of I,
c(0) = ¢c,(0) = 1, c(0) = ¢;(0) = 0. Then from (9.2) one must have

[(1) ¢(0u)]’

/.LGA.

ci(m) )
c3(pm)  cu(m)

c(n)  cr)
c(r)  cu(n)

1+p O
0 0

This implies (1 + p)c(n) = ¢ (n) and therefore c,(u) =0, u €A,
which contradicts ¢,(0) = 1.

It will be shown later by Theorem 9.17 that 4,(A) is a miniversal
deformation of A, and A4,(A) is not a miniversal deformation of A,.
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Now we consider a characterization of versal deformations. We first
introduce some notation. Let GL(n, R) be the set of all invertible real
n X n matrices. It is well known that GL(n,R) is a Lie group and
gl(n,R) is the Lie algebra associated with GL(n, R) with respect to the
Lie bracket:

[u,v) =uv —vu, u,vegl(n,R).
We define a group action 7: GL(n,R) X gl(n,R) — gl(n, R) by

m(g,u) =gug™!, g € GL(n,R), u € gl(n,R).

Definition 9.5. Let A, € gl(n, R). The set

¥(A4o) = {m(8. A,)| g € GL(n,R)}

is called the orbit through A,.

In other words, the orbit through A, under the action 7 is the set of
all real n X n matrices similar to A,. It is well known that y(A4,) is a
submanifold of gl(n,R). For a fixed u € gl(n,R), we define a linear
operator L,: gl(n,R) — gl(n, R) by

Lp=[v,u], vegl(nR).

Definition 9.6. Let 4, € gl(n, R). The set
Z,, =Ker(L,)

is called the centralizer of A,,.

We note that Z, is the set of all real n X n matrices that commute
with A, and it is a subspace of gl(n,R).

Let T, (y(A,)) be the tangent space to y(A,) at 4, and Im(L,, ) be
the image of L, in gl(n,R). Then we have the following lemma.

Lemma 9.7. T, (y(A4,)) = Im(L, ).
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Proof. Let u € gl(n,R) and |u| be sufficiently small. Hence I + u €
GL(n,R). Then as |ul — 0,

m(I+u, Ag) = (I + u) A(I +u)~" = (I + u) Ag(I ~ u + o(lul))
=Ag+udy—Aou +o(lul) =m(I, Ag) + L u +o(lul).
Therefore D,m(I, Ay) = L, and hence T, (y(A,)) = Im(L ). (m]

Corollary 9.8. codim(y(A4,)) = dim(Z,, ).

Proof
dim( gl(n,R)) = dim(Im(L , )) + dim(Ker(L,,))

= dim(TAO(Y(Ao))) + dim(ZAo)

= dim(y(A4,)) + dim(Z, ). O

Corollary 9.9. Let V be a submanifold of GL(n,R). If V is transversal to
Z,, at 1, then

TAO(’Y( Ao)) = LAO( V).

Proof. By the definition of the transversality, for any u € gl(n, R) there
exist u; € T,V and u, € T)(Z, ) such that u = u, + u,. Hence

Lyu=[u, Ag] = [uy, Ag] + [u,, Ag] = [uy, 4g] = L,u,. O

Lemma 9.10. Let A: A — gl(n,R) be C, where A is a neighborhood of
the origin in R*, and V be a submanifold of GL(n,R). Assume that A()\)
is transversal to y(Ay) at A = 0, I € V and V is transversal to Z 4, 9 I,
k = codim(y(A4,)), and dim(V') = dim(y(A,)). Then the mapping ®:
V X A - gl(n,R) defined by

®(v,A) =vA(M)v™l, veV, Ae€A,

is a local diffeomorphism in a neighborhood of (1,0) in V X A.
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Proof. From Lemma 9.7, D®(1,0) = D,w(I, Ay) = L, D,&(I,0) =
DA(0). Therefore

D®(1,0)(u,v) =L, u+ DA0)v, wueTV, veTHA.
By the transversality hypothesis on A4(A),
T,(v(A,)) + DA(0)(ToA) = gl(n,R). (9.3)
By Corollary 9.9, L AO(T,V) = TAO(Y(AO»- Therefore D®(1,0) is surjec-

tive. We note that dim(} X A) = dim(gl(n, R)). Hence the conclusion
follows from the Inverse Function Theorem. O

Theorem 9.11. A deformation A(A) of A, is a versal deformation if and
only if A(A) is transversal to the submanifold y(A,) at A = 0 in gl(n, R).

Proof. Let A be in a neigborhood A of the origin in R*. Assume that
A(A) is a versal deformation of A,. Let B(u) be an arbitrary deforma-
tion of A, with u € A c R’. Then there exists a deformation C(x) of I
with w € A € A and a C! mapping ¢: A — A with ¢(0) = 0 such that

B(k) = C(p)A($(n))C(n)™", n €A
By taking the derivative with respect to u at u = 0 we get
DB(0)v = DA(0) - D$(0)v + [ DC(O)v, 4,], veER.
Since B(w) is an arbitrary deformation of 4,, DB(0)v can be any

element in gl(n, R). On the other hand, by Lemma 9.7, [DC(0)v, A,] €
T, {y(Ay)). Therefore

Ty 81(n,R)) = DA(0)(T,A) + Ta0(7(Ap))-

This says that A(A) is transversal to the submanifold y(A4,) at A = 0in
gl(n,R).

Conversely, assume that A(A) is transversal to y(A4,) at A = 0. By
the definition of transversality, k¥ > codim(y(A4,)). First we consider
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the case k = codim(y(A4y)). Let V and ® be as in Lemma 9.10. Let
B(u) be an arbitrary deformation of 4, with u € A c R". Then by
Lemma 9.10 the equation

B(p) =®(v,A), veV, reA

has a unique solution v = C(u), A = ¢(u) for p in a sufficiently small
neighborhood A C A of the origin in R¥, where C(u) and ¢(p) are C*
with C(0) = I and ¢(0) = 0. Thus

B(k) = D(C(n), 6(n)) = C(W) A(S(1)C(w) ™",  p ek

This says that A(A) is a versal deformation of A,. For the case where
k > codim(y(A,)) = d, there exists a C! mapping A(n) defined in a
neighborhood A of the origin in R? such that A(A(w)) is a deformation
of A, induced from A(A) and it is transversal to y(A4,) at u = 0. From
the above discussion, A(A(w)) is a versal deformation of A,. Hence
A(A) is a versal deformation of A,,. m]

From Theorem 9.11, the dimension of a parameter space of a
miniversal deformation of A4, is equal to codim(y(A4,)) = dim(Z, ).
On the other hand, a miniversal deformation of A, is not unique since
the mapping A(A) which is transversal to y(A4,) at A = 0 is not unique.

Theorem 9.11 shows also that the problem of finding a miniversal
deformation of A, can be reduced to an algebraic problem of finding a
complementary subspace to T, (y(A4)) = Im(L,, ) in gl(n, R). We show
next how to construct a complementary subspace to Im(L 4 ) in gl(n, R).

We introduce first a Hermitian scalar product in gl(n, R):

Ku,v)) = tr(w*), u,vegl(n,R).

where tr(uv*) denotes the trace of uv* and v* is the transpose of the
matrix v. If u = (4;;) and v = (v;;), then by definition {((u,v)) =

T U,

Nt T T

Theorem 9.12. L is the adjoint operator of L 4 with respect to the inner
product {{ -, )) in gl(n,R).
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Proof. For any u,v € gl(n, R),
(L4 u,0)) = udy,v)) — ((Aou,0))

= tr(udgv*) — tr(Aquv™*) = ((u, L 4v)). (m]

Corollary 9.13. Ker(L ) is the orthogonal complementary subspace to
Im(LAO) with respect to the inner product {{ -, - )} in gl(n, R).

Corollary 9.14. Let {v,,...,v,} be a basis of Ker(L ). Then

k
Ay + XA,

i=1

where A,,...,A, are real parameters, is a miniversal deformation
of A,.

By Corollaries 9.13 and 9.14, the problem of finding a miniversal
deformation of A4, can be reduced to finding a basis of the centralizer
Z g of A%. In the case where A, is an upper triangular Jordan matrix,
we have the following lemma.

Lemma 9.15. Suppose A, is an upper triangular Jordan matrix with only
one eigenvalue and a sequence of Jordan blocks of sizes ny >n, >
* 2 n,. Then Z 4 consists precisely of the matrices of the form shown
in Figure 9.1, where each oblique segment stands for a sequence of
identical entries and the blank part consists of zero entries and dim(Z )
=ny +3n, + 5n3 + -+ +(2s — Dn, = number of oblique segments.

Proof. For simplicity, we consider the case where s = 2. Then the
matrix A4, has the following form

A0=)\I+

1
0 N
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7 .% N

7/, :
|
|

4

7/

\

Figure 9.1. Case s = 3.

where

0 nyxny 0 nyXny
and n, +n,=n.

Let u € Ker(L ) and

where the sizes of u,, u,, u,, and u, are n, X ny, n, X n,, n, X n,, and
n, X n,, respectively. Since

U, u, Nf* 0 _ N0 Uy U -0
Uz Uy 0 NZ* 0 NZ* Us Uy ’

one must have
u, N} — Nffu, =0, u, N — Nju, =0,
usNy¥* — Nfus =0,  u N} —Nfu,=0. (94)

By solving (9.4) for u,, u,, u,, and u,, one obtains the desired result. O

Remark 9.16. A basis {v,, ..., v,} of Ker(L Aﬁ) can be chosen such that
each v; is a matrix with all entries on one of the oblique segments
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Figure 9.2. Case s = 3.
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|
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|
|

described in Lemma 9.15 equal to 1 and all other entries being zero. By
an elementary algebraic discussion, we can show that a basis {w,, ..., w,}
of a complementary subspace to Im(L Ao) can be chosen such that each
w; is a matrix with only one entry on one of the oblique segments
described in Lemma 9.15 equal to 1 and all other entries being zero.
Thus

k
Ag+ X Aw,
i=1

where each A; is a real parameter, is also a miniversal deformation
of A,.

Some of the matrices generated by such matrices {w,,...,w,} are
shown in Figure 9.2, in which all entries that are not on the black
segments are equal to zero.

Theorem 9.17. If A, is an upper triangular Jordan matrix with m distinct
eigenvalues w,, ..., w,,, and the sequence of blocks corresponding to the
eigenvalue w; are of sizes ny(w;) 2 nyw;) = -+ 2nfw), 1 <i<m,
then the dimension of the parameter space of a miniversal deformation of
A, is

(ni(w;) + 3ny(w;) + 5n3(w;) + - +(25; — 1)”s,-(“’i))’

~

a8
il
L=

and a miniversal deformation of A, is block diagonal, each of the blocks
being a miniversal deformation described in Remark 9.16 for the block of
A, corresponding to each eigenvalue.
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Proof. The proof is similar to that of Lemma 9.15.

Example 9.18. (1) Let

),

)]

A0= . ’ w,#wj if i#j,i,j=1,...

Then a miniversal deformation of A, is

where A, i = 1,...,n, are parameters.
(2) Let

A11 Aln
A21 A2n
A A

where the A, i,j = 1,..., n, are parameters.
(3) Let

,n.
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Then a miniversal deformation of A, can be chosen as one of the
following:

0 1
Ay A 0 0 ",
or ’
1 0 0 1
A, A, A Ay A A,

where the A, i = 1,..., n, are parameters.
(4) Let

A0=

0 1 0
0 0 1

0 0 O

A miniversal deformation of 4, can be chosen as one of the following:

0 1 0 A 100
0 0 1 or (A, 0 1
A Ay Ay A; 0 O
0 1 0 (A, 1 0
or A1 Ay 1} or [A, A} 1],
A; 0 O Ay A, A

where A;, A,, and A, are parameters.
(5) Let

Here we have two blocks corresponding to the same eigenvalue. There-
fore, a miniversal deformation of A4, can be chosen as one of the



160 Normal Forms

following:
0o 1 0 A, 10
Ay Ay Azl oor A, O A,
Ay 0 Ag Ay 0 A
where A,,i = 1,...,5, are parameters.
(6) Let
a 1.0
Ao—.o...a....o.’ a#*p
0 0.8

Here we have two blocks corresponding to distinct eigenvalues. There-
fore, a miniversal deformation of A, can be chosen as one of the
following:

A, 0 0 0 0 0
Ay +|As Ay 0| or Ag+ M Ay 0,
0 0 A, 0 0 A

where A, A,, and A, are parameters.

(D Let
A0=[_? 3}

By solving L AU = 0 directly, a miniversal deformation of 4, can be
found as one of the following:

0 0

Ay AP

A A

] or Ay +

where A; and A, are parameters.

Remark 9.19. For the case where the matrix 4, has nonreal eigenval-
ues, one can find a nonsingular matrix p € C"*" such that p~'d,p is
in an upper triangular Jordan form. Then one can apply Lemma 9.15 or
Theorem 9.17 to find a basis of the linear space of all complex matrices
commuting with (p ~ 4, p)* and then to find miniversal deformations of
A,. We illustrate this idea by the following example.
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Example 9.20. Let

a B 1 0
-8B a 0 1
0 0 -8B «a
We take
1 0 1 0
|-i 0 i o
P=1 09 10 1|
0 —-i 0 i
Then
a + Bi 1 0 0
0 a+ Bi 0 0
-1 -
P~ Aop 0 0 a-Bi 1
0 0 0 a — Bi

Any complex 4 X 4 matrix commuting with (p~'4,p)* is of the form

e 0 0 O
e ¢ 0 0 .
B(e) = 0 0 ¢ 0 e,€C, i=1,...,4.
0 0 e €
Since
(p~")*B(e) p*
—(El - e3)i El + 63 0 0
B €t ey (€2 — €4)i €t e (€1 — €)i ’
_(52—54)i 52+€4 "'(El ~€3)i El +€3
AL A, 0 0
-A, A 0
Ker(L,y) = S Al,...,As €RY.
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Hence a miniversal deformation of 4, can be chosen as one of the
following:

Ay + ,
0 Ay Ay AL A,
=Ay A3 A A
or
A, 0.0 0
P A, 0 0 0
" 1A;, 0 0 OFf
A, 0 0 0
or
0 0 0 0
0 0 0 0
Ao+l 0 0 0|

where A;’s are real parameters.

2.10 Versal Deformations of Infinitesimally Symplectic Matrices

In this section we discuss versal deformations of infinitesimally symplec-
tic matrices. We recall that

Sp(2n,R) = {u € GL(2n,R) |u*Ju =J},

sp(2n,R) = {u € glI(2n,R) |u*J + Ju = 0},

; 0o I,
“l-1, o

I, is the identity matrix in R"*".

where
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Definition 10.1. Let A, € sp(2n,R) be given. A deformation A(A) of
A, with A € A C R* is called an infinitesimally symplectic deformation
of A, if every A()A) is infinitesimally symplectic.

Definition 10.2. An infinitesimally symplectic deformation A(A) of A,
is called an infinitesimally symplectic versal deformation of A4, if and
only if any infinitesimally symplectic deformation B(u) of A, can be
induced from A(A) by an infinitesimally symplectic deformation C(u)
of the identity matrix I in R?"**" and a C! mapping ¢(u). An
infinitesimally symplectic versal deformation of A, is called an in-
finitesimally symplectic miniversal deformation of A, if the dimension
of its parameter space is the smallest among all infinitesimally symplec-
tic versal deformations of A4,

Lemma 10.3. Sp(2n,R) is a C*-submanifold of GL(2n,R).

Proof. We define a mapping F: GL(2n,R) - GL(2n,R) by

F(p) =p*Jp, pe€GL(2n,R).
Hence Sp(2n,R) = {p € GL(2n,R)| F(p) = J}. We note that, for any
fixed p € GL2n,R), DF(p)u = u*Jp + p*Ju = p*(up~)*J +
Jup~)p = p*DF(IXup~Y)p. Hence rank(DF(p)) = rank(DF(I)).
Since F is C*, Sp(2n, R) is a C*-submanifold of GL(2n, R). O

It is easy to see that sp(2n, R) is a linear subspace of gl(2n, R).

Lemma 10.4. T,(Sp(2n,R)) = sp(2n, R).

Proof. Let ¢(¢) be any curve in Sp(2n,R) with c(0) =1, t e[-1,1].
Since c(¢Y*Je(t) =J, for any t € [-1, 1],
c'(0)*J + Jc'(0) = 0.

This says that the tangent vector ¢'(0) € sp(2n, R).
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On the other hand, if 4, € sp(2n, R), then we define c(t) = exp(A4,t)
and B(t) = c(¢t)*Jc(t), t € [—1,1]. Then

B'(t) = exp((Agt)* ) AkJexp(Agt) + exp((Agt)* )JAgexp( Agt)
= exp((Aot)* )( AT + JAg)exp(Agt) =0, te[-1,1].
Hence B(t) =J. This says that c(t) is a curve in sp(2n,R). Since
c'(0) = 4y, Ay € T,(Sp(2n, R)). a

Lemma 10.5. dim(Sp(2n,R)) = dim(sp(2n,R)) = 2n® + n.

Proof. For any p € sp(2n,R), we may assume that

_ |1 P2
p [Ps Pa]’

where p, € gl(n,R), i=1,2,3,4. Then from Corollary 6.3, p €
sp(2n,R) if and only if p, = —p¥, p3 = p,, p3 = p5. Therefore

dim(sp(2n,R)) = 2n* + n.
From Lemma 10.4, dim(Sp(2x, R)) = dim(sp(2n, R)). O
We define a group action 7*: Sp(2n,R) X sp(2n, R) — sp(2n, R) by
(g, u) =gug™!, g € Sp(2n,R), u € sp(2n,R).
Let A4, € sp(2n,R) be fixed. Then the orbit through A, in sp(2n,R) is
v*(A4o) = {7°(g, 4,) | g € Sp(2n, R)}.
Then y*(A4,) is a submanifold of Sp(2n, R).
For a given u € sp(2n,R), we define a linear operator L:: sp(2n,

R) — sp(2n, R) by

Liv = [v,u], v € sp(2n,R).
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Then for given A, € sp(2n,R), the centralizer of 4, in sp(2n,R) is
Z;, = Ker(L, ).

If we replace gl(n,R) and GL(n,R) by sp(2n,R) and Sp(Qn,R)
respectively, derivatives for corresponding maps by tangent maps, y(A,),
L,,and Z, by y*(A4y), L, and Z , respectively, and the condition
that V is transversal to Z ” in gl(n,R) by the assumption that sp(2n,
R=TVe Z},,» then it is not hard to see that Lemmas 9.7 and 9.10
and Corollaries 9.8 and 9.9 hold for infinitesimally symplectic matrices.
Thus we have the following.

Theorem 10.6. An infinitesimally symplectic deformation A(A) of A, is
versal if and only if A(A) is transversal to y*(Ay) in sp(2n,R) at A = 0.

Let {{-, ")) be the inner product in sp(2n,R) which is induced
from the Hermitian inner product in gl(2n, R) defined in Section 2.9. It
is easy to show the following.

Theorem 10.7. Li,* is the adjoint operator of LS, thh respect to the inner
product {{+,-)) in sp2n,R).

Corollary 10.8. Ker(L, *) is the orthogonal complementary subspace to
Im(L:, ) with respect to the inner product {{ -, ) in spQ2n,R).

We note that Ker(Liy) = Ker(L 43) N sp(2n, R), where L4 is de-
fined in Section 2.9. We can first apply the results in Section 2.9 to find
a basis of Ker(L ) and then by restricting Ker(L 4) to sp(2n,R) to
obtain Ker(L%y).

We can also derive other complementary subspaces to ImLi,0 in
sp(2n, R) from Ker(L;) by some elementary algebraic methods.

Example 10.9.
(@) Let

0 0
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Then

Ker(L ;) = {[:: t] ArerrAg € [R}.
Hence

Ker(Lsss) = {[:: _t] MyAg Ay € [R}.

An infinitesimally symplectic miniversal deformation of A, is

Al AZ
A(A)— [A3 _AI:I’ AI’AZ’A3GR'

(i) Let
Ay = [‘5 _2], a>0
Then
Ker(L ) = {[31 22] A, Ay € [R}.
Hence

Ker(Lty) = {[?) _2”)« e [R}.

An infinitesimally symplectic miniversal deformation of A, is

A(A) = [“3" _aO_A], A ER.

(iii) Let
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A direct calculation shows that

Al,AzeR}.

Al A2
Ker(Ly) = {[ oY Al]

Hence

s 0 A
Ker(Liy) = {[ N OHAGR}.
An infinitesimally symplectic miniversal deformation of A, is

B+A

0
A()«)=[_B_A o | A ER.

(iv) Let
a B 0 0
| -B a 0 0
Ay = 0 0 -a gl a>0, >0
0 0 -8B -a
We take
1 1 0 0
p=_1_ -i i 0 0
V2| 0 0 1 1/
0 0 —i i
Then p~! = p*
a — Bi
1 _ a + Bi

—a + Bi

167
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Any 4 X 4 complex matrix commuting with (p~'4,p)* is of the form

€
B(E)= € ’ GiGC, i=1,...,4,
€3
€4
and
pB(e)p~!
€ te (€1 — €)i 0 0
| (e €)i e te 0 0
S 0 0 €;+ €, (e5—¢€)i |
0 0 —(e;—€)i €3 +e¢,

Since pB(e)p~' € sp(4,R), €, + €, = —(e5+ €,) € R and (¢, — €,)i
= (€3 — €,)i € R. Thus an infinitesimally symplectic miniversal defor-
mation of A4, is

A, A, 00

AV =40+t

ALA ER.

We can also take the following as infinitesimally symplectic miniver-
sal deformations of A4,:

A A, 00
o 0 0 0
ARy =4o+| o o -, o)
0 0 -A, 0
or
[0 0 0 0]
A d, 00
AN =4+ o o 0 -a
0 0 0 -

where A, A, € R,
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(v) Let
o -
1
n
1 0
Ag= o PR RIS EREEREREE . m=o0orl
. i
i (-1" 0 |
We take
1 : -
1: "
R (”i)""'“"';""
( 1)m+1 n
i (-1" |
Then
"o -
1 . n
1 0:
_]A E= [ o s 0 s s s s s s s v s 848 8 s 2 2 2 8 s s 2 s s s s
D oP 1 : 0
-1
. .. n
i 17 0]

Any complex 2n X 2n matrix commuting with (p~'4,p)* is of the
form

€ € ... €,

, €C, i=1,...,2n.



170 Normal Forms

By a similar argument as in (iv), we find an infinitesimally symplectic
miniversal deformation of A4, is

A(A) =A 4.8
=Ag+ |- ,
’ c:-D
where
[0, A, 0 A, O B, B
B
A= 01,
AZ
0
Al
L. 0 -
[ A, 0 Aoy O y |
0 _An—l -v
An——l. Y
B = 0 0 ’
: al,
: -y Caky 0
| Y 0 al, "0 a)tl_

C is a zero matrix,

-—BZ .’ .o .0 .o ..o
—B, =By .. ... 0 A, 0 -a, 0




Versal Deformations of Symplectic Matrices 171

where

B, — As, neven, _ 0, n even,
"“lo, nodd, 7 |Ay modd,

0, n even, m
7={Am, nodd, @=(-17,

and the {A;} are real parameters; or

/\1
0 A,
A(A) =Ay +
/\n
-00 ......... —
where A, €R,i=1,...,n.
(vi) Let
_0 : |
1 : n
Ag= |- 1. .. 0 ................ , n odd.
-0 -1
_1 n
e 0 -
We take
o : .
- - 1-. --------
p= : 1
: -1
-1
i 1 i}
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Then
[0 : T
1 :
- 1 0.
p 1140p= .............-;-6 ------------ .
-1
i 1 0]

€ €, - €401 .- €3,
€] €n+1
................................. s e€C, i=1,...,4n
€2n41 €3n €3n41 €an
€n+1 " €3p+1

Hence, an infinitesimally symplectic miniversal deformation of A, is
A(A) = Ay + the matrix:

(A, A, Ap “Ager 0 A, O A ]
. . . _Ac 0 . _Aa
A, 0
o .-
o) A, T —A, o)

A DA,
................................. SRR R LR LR LR R RERE
“Ay 0 - -2y
O : O
0
Aa+2:

~Ag ~Aez O :
[da 0 . 0 A, 0 )\“15—}\,, I PR Y

where a = (Bn + 1)/2, c=n+2,d =2n+ 1, {A} are real parame-
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ters; or A(1) = A, + the matrix

where a = (3n + 1)/2 and {A;} are real parameters.

(vii) Let

We take

Ay A 0
0 An+2
O
0
0
0 —Aq
_AZ
0 0 .
A2n~0-1
0 Agn
.. 0

- o .
1
-B n
1 0.8
-B-0 -1 ’
B . e
._ﬁ 0_‘
1 o1
O P N )
P=f ~1

B # 0,n odd.

173
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Then

p Ayp

Normal Forms

The complex 2n X 2n matrices commuting with (p~'4,p)* are of the

form

€ ... €

: €n+1
L .

’

¢ €C,

i=1,...

Thus, an infinitesimally symplectic miniversal deformation of A, is

A(A) = A, + the matrix:

0, A, 0 ... 0 2, 0

cAgyr O

.....................................................................
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or A(A) = A, + the matrix

0 A4, 0 ... 0 2, O

g+l ¢ 0

where g = (n — 1)/2 and {A,} are real parameters.
(viii) Let

o _
1 n
1 a
Ag= | :“—'c;'”—'l .......... , o> 0.
_1 n
- —a—
We take
g : _
: n
T
p=|" """ n-1
: (-1
S n
| o1 i
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Then

p_L40p E R E .................

Normal Forms

The complex matrices commuting with (p~'4,p)* are of the form

€ ... €,

€r+1

€C, i=1,..,2n.

Thus an infinitesimally symplectic miniversal deformation of A4, is

—Al An
Ay
A(A)=A0+ .......................... ,
. _Al
_An _Al
or
(A, ... A i
..... 0 . .. .......0
A(A) = Ay + —A ,
0 : 0
—An

where A\, €R,i=1,2,...,n.
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2.11 Normal Forms with Codimension One or Two

We consider the following parameter-dependent equations as our mod-
els for bifurcation problems

i=A(e)x+f(x), x€QCR" ecAcRt (111)

where A(e) is a versal deformation of the matrix 4(0) (see Section 2.9)
and the equation % = A(0)x + f(x) is an A(0)-normal form (in some
cases A(e) may be simplified further).

Since we consider equations on center manifolds, we may assume
that the linear part of the equation has only eigenvalues with zero real
parts when the parameters are zero.

List 1. The following are normal forms of codimension 1.

t=e—x*  xe€R, e€R (saddle-node),
(i)
X =ex —x2, x€R, €€ R (transcritical),
i=ex+x3 x€R, e€R (pitchfork), (ii)
X=ex—y+ (+x —by)(x2+y?), .
. y+( y)(2 2y ) (Hopf), (iii)
y=x+ey+ (bx £y)(x*+y?),

where b is a real constant and € is a real parameter.

List 2. The following are normal forms of codimension 2.
(i) Double zero eigenvalues:
x=y,
y=¢€ +6&y+x*txy,
where €, and ¢, are real parameters.
(ii) Double zero eigenvalues with Z,-symmetry:
x=y,
. _ 3_,2,.
y=€¢x+eyxtx x°y;

where €, and ¢, are real parameters.
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(iii) Double zero eigenvalues with Z -symmetry (g > 3):

=€z +AjlzPz + Aylzl*z + -+ +A, 121z + 297,
=23, q—-1<2k+1<gq;

where z € C, € is a complex parameter, the 4; are complex constants,
and Re A4, # 0.

(iv) Double zero eigenvalues with flip symmetry or one pair of purely
imaginary eigenvalues and one zero eigenvalue:

i=€x+axy+ax’+azxy?,
y=¢€,+b,x? +byy? + byx?y + b,y?,

where ¢; and €, are real parameters, and the a; and b; are real
constants with some restrictions (see Section 4.6).

(v) One pair of imaginary eigenvalues and one zero eigenvalue with
flip symmetry or two different pairs of purely imaginary eigenvalues:

i=e€x +a x>+ a,xy? + a;x® + a,x3y? + asxy?,
€,y + b x%y + b,y* + byx*y + byx?y® + bsy>,

<.
]

where €; and e, are real parameters, and the a; and b; are real
constants with some restrictions (see Section 4.7).
Calculations for Normal Forms in List 1
() Let Ay = 0 € R. Then an A -normal form up to order 2 is
i=ax?’, xeR, aeR (11.2)

We assume that a # 0. On changing variables x - —(1/a) x, (11.2)
becomes

x=—x% (11.3)

Since a miniversal deformation of 4, is A(A) = A, A € R, we may take
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the following as a codimension-one normal form:
*=Ax —x2 (11.4)

If we change variables by x — x + A /2, then (11.4) becomes

i=—-A2/4 - x?, (11.5)
which is induced from the following equation by € = —A%/4:
i=€—x2 € €R. (11.6)

Therefore we take (11.6) instead of (11.4) as a codimension-one normal
form.

(ii) Let 4, = 0 € R and the equation satisfy the reflection symmetry.
An Agjnormal form up to order 3 is

i=ax®, xeR, acR (11.7)
We assume that a # (0. By a similar argument, we get

X =ex +x3 e €R.
(iii) Let

A0=[£ ”‘8], ©>0.

An A;normal form up to order 3 (see Example 1.22) is
x| 0 —-wll|lx
y| e  Ol|y

where a, b € R. We assume that a # 0. Since a miniversal deformation

of A, is

(11.8)

+ (22 +y?)

ax — by
bx +ayl’

Al —w — Az

AN = |4 4 A, A,

], Ap A, ER,
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we may consider the following equation as a model of bifurcation
problems:

x

ol =
We rescale time by ¢ — ¢ /(@ + A,) when A, is close to zero and define
a new parameter € = A, /(w + A,). Then (11.9) becomes

X € -1
y 11 €
If we change variables by x — (‘/w + A,/ \/m)x, y —
o +2r,/ Vlal)y, then (11.10) becomes
x

HEH b

where ¢ = b/|al.

_by
bx + ay

X

+ (x2+y?) . (11.9)

Al —w _Az
o+ A, A

ax — by
bx + ay

x] . (% +y?)

y w+A,

. (11.10)

tx —cy

2 2
+(x%2 +y?) oty

], (11.11)

Calculations for Normal Forms in List 2
(i) Let
_l0 1
Ao = [ 0 0].

Then an A -normal form up to order 2 (see Example 1.15) is

x=y,
vy =ax’ + bxy,
where a, b are real constants. We assume that a - b + 0. On the other

hand, a miniversal deformation of A4, (see Example 9.18(3)) is

0 1
A(A)=[)\l )‘2]’ ALA, ER.
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Hence we may take the following as one of the models of bifurcation
problems:

x=y,
11.12
{y=/\1x+/\2y+ax2+bxy. ( )

We change variables by x = x — A,/2a, y = y and define new param-
etersby u, = —Ai/4a, u, = (2ar, — bA,)/2a. Then (11.12) becomes

x=y,
. ) (11.13)
y=p; +p,y+axc+ bxy.
Let
a |ala b a’ a
xe s Y'-’l—b‘lgy, t— P t K1 g3 €n K27 €
Then (11.13) can be changed to
x=y,
Y R (11.14)
y=¢€,tey+x-txy,

where €, €, are real parameters.

We note that we can also change variables in (11.12) by x = x — A, /b,
y =y and define new parameters by u; = (aA} — bA,A,)/b%, pn, =
(bA; — 2aA,)/b. Then (11.12) becomes

=y,
11.15
{y=p.1+p.2x+ax2+bxy. (11.15)

It can be changed to

r=y,
{. 2 (11.16)
y=¢€ tex+x°txy.

(i) Let
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An A-normal form satisfying Z,-symmetry up to order 3 (see Example
5.12) is

x=y,
y = ax? + bx?y,

where a, b are real constants. We assume that a - b # 0. A miniversal
deformation of A4, is

=0 1]

We note that 4A(A) commutes with

_[-1 o
S‘[ 0 —1]”

which is a generator of the Z,-symmetry group. Thus we may take the
following as one of the models of bifurcation problems:

x=y,
11.17
{y=/\1x+/\2y+ax3+bx2y, ( )

where A, A, are real parameters. Let x — (\/W/b) x, y—
(alVlalb /IbI) y, €, = b?A,/a?, €, = |blA,/lal, and t — |b|t/lal. Then
(11.17) becomes

*= 11.18
y=€x+ ey +x3—x2y. (11.18)
This is the case (ii).
(iii) Let
10 0
Ay = [0 0].

An Agnormal form with Z -symmetry (g = 3) up to order g (see
Example 5.15) is

z =A1|zlzz + .- +Ak|z|2kz + Bz~ 1 (11.19)
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where z € C, the A; and B are complex constants, g — 1 <2k +1 <
q. We assume that B # 0. Suppose that B = |Ble*®. We change vari-
able by z — e'®/9z, rescale time by t — t/|B|, and change coefficients
by A; = A,|Bl. Then (11.19) becomes

i=AjlzlPz + - +A )z + 2070 (11.20)

A miniversal deformation commuting with matrix K,, ,, of A4, is

€ —€
A(e) = [G; E:] , €,, €, are real parameters.

Since the complex form of A(e) is

[3 2] cegC, (11.21)

combining (11.20) and (11.21) we obtain
z=€z +A1|z|22 + - +Ak|z|2kz + 3971,

This is the case (ii).
(iv) Let

_10 0
An A -normal form with flip symmetry up to order 3 (see Section 2.5) is

i =a;x%+ a,y? + az;x> + a xy?,
y =bxy + byx%y + byy?,

where the a; and b, are real constants. Let

s=[5 3]

S is a generator of the flip-symmetry group. A miniversal deformation
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of A, commuting with § is

A, O
A(A)={01 AJ’ Ap A €R.

Thus we obtain the following system:

(11.22)

i=Mx+ax*+a,y%+a;x + a xy?,
Yy =Ay +byxy + b,x%y + byy>.

We change variables in (11.22) by x —» x + a, y — y, where a will be
determined later (note that this transformation satisfies flip symmetry
with respect to y). Then (11.22) becomes

X = ()tla + a0’ + a3a3) + ()t1 + 2a,a + 3a3a2)x
+(a, + 3aza)x% + (a, + a,a)y* + a3x> + axy?,
y = (Ay + by + bya?)y + (b + 2b,a)xy + byx%y + byy>.

(11.23)
We can choose an a = a(A,) such that for each small A,
AL+ 24,0 + 3a;0% =0

provided a, # 0, and a(A,) is continuous and «(0) = 0. We define new
parameters

€ =Ma+aa®+aa’, €=M\, +ba+bya’

and omit the terms with factor « in the coefficients of the higher-order
terms in (11.40). We obtain the following:

X =€ +a;x*+ayy?+azx> + axy?, (1124)
y =&y +bxy + byx%y + byy>. '

After exchanging x and y, (11.24) becomes the normal form of the case

(iv).
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Let the matrix of the linear part of a system be
0 -1 0
Ao =11 0 0 .
0 0 0

We change variables by z = x; + ix,, y = x5. Then the matrix of the
linear part of the resulting system is

i 0 0
0 —-i 0}

-

A0=
0 0 0

The resonant monomials with respect to A, are z,z5e,, 2,23€,, 2,2,€3,
z3es, z32,e,, 2,23€,, 2,22e,, z3e;, and z,2,25e5. We note that z, = z,
2z, =2, and z; = y in this case. A miniversal deformation of A, is

M+i 00
AMNy =] 0 =i 0
0 0 A

. AL, A EC.

But A, = A,, and A; € R in this case. Thus we obtain the following

=(A+i)z+Azy +A)z*2 + Ayzy?,
{ (A ) 12y 2 32y (11.25)

¥ = Ay + aslzl® + byy? + c,lzlPy + dy)3,

where A; are complex constants, a,, b,, ¢,, d, are real constants, and
the equation for Z is omitted. Let z = re’®. Then (11.25) becomes

F=er+ary+brd+cmn?
oo , (11.26)
Yy =€y +ay+ by’ +c,r'y +d,y’,

where €; = Re A, €, = A5, a; = Re 4, b; = Re 4,, ¢; = Re 4,, and
the equation for @ is omitted since 6 = 1 + O((Im A,, 7, y)). If we
replace y by x and replace r by y then (11.26) is the same as (11.22).
This is the case (iv) with x > 0.
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(v) Let
0 -1 0
0 0 0

We assume that the equation satisfies flip symmetry. More precisely,
the equation satisfies the group I'-symmetry, where T is generated by

1 0 0
§=10 1 0.
0 0 -1

By a similar argument as that for the second subcase of case (iv), and
noticing that the equation in complex form satisfies S-symmetry, we
obtain the following:

2= (A +i)z +A)lz1Pz + Ay29% + Aslzlz + A,lz%2% + Agy?,
¥ =2y + byy> + bylzlPy + bilzl'y + bylzI’y? + bsy?,

(11.27)

where z € C, y € R, A, is a complex parameter, A, is a real parameter
and the A4; and b, are complex and real constants. Changing variables
by z = re’®, y = y in (11.27) and omitting the equation for § we get the
normal form of case (v) with x > 0.

Let the matrix of the linear part of a system be

4 w, 0 0 0
° " fo 0 0 -wl
0 0 w, 0

where w;,w, >0 and w; and w, are rationally independent. We
change variables by z;, =x, + ix,, z, =x; —iX,, 23 =X; + ixX,, 2, =
x5 —ix, in the system. Then the matrix of the linear part of the
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resulting system is
i 0 0 0
0 —wyi 0 0
0 0 W, 0
0 0 0 —w,i

The resonant conditions for 4, are w; = a;0; — a,0; + €30, — 40,
or

(al _az_ l)wl +(a3_a4)w2=0, ]= 1,
(al _az)wl + (a3_a4_ 1)(02:0, ]=3.
Since w; and w, are rationally independent, we must have a; — a, = 1,

a;=a, forj=1and o, = a,, a; — a, = 1 for j = 3. Furthermore a
miniversal deformation of A, is

A+ @i 0 0 0
0 A~ 0y 0 0
0 0 Aytwi 0 | MhsC
0 0 0 Ay — w,i

Thus we obtain the following:

. . 2 2 4

2y = (@ + X))z, + Ajlz)|°2, + Ay 24257 + Aslz4] 2,
2. 12 4

+ A,z %252, + Azl 247, (11.28)

, . 2 2 4 .

23 = (wyi + Ay)z3 + B,lz||"z5 + B,lz51°z5 + Bslz,1"z4

2. 2 4
+B,lz,|°| 25|25 + Bs|z4| 25,

where the A; and B, are complex constants. Let z, = r,e®, z; = r,e'%2.
Then (11.28) becomes

Fo=¢€ry + a4 ayrr? + agr] + agrir? + asryri,

_— 2 3 4 2,2 5
Fy = €,r, + biriry, + byr; + byrir, + byriry + bsrs,
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where €, €, are real parameters, the a; and b; are real constants, and
the equations for 6, and 6, are omitted since 6,and 8, are close to 1
when r; and r, are close to zero. This is the case (v) with x > 0 and
y=0.

2.12 Bibliographical Notes

Normal form theory has a long history. The basic idea of simplifying
ordinary differential equations through changes of variables can be-
found in the early work of Briot and Bouquet [1]. Poincaré [2] made
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and Schaeffer [1], Guckenheimer and Holmes [1], and Wiggins [1].
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to a certain order.

In Section 2.1, we introduced two methods of computing normal
forms. The matrix representation method is based on linear algebra
and is well known. The method of adjoints was first given by Belitskii
[3-4], and then by Elphick et al. [1]. Our treatment is similar to that of
Elphick et al. [1]. Another important method is based on the represen-
tation theory of Lie algebra sl(2, R). This method was used in the
computation of normal forms of nonlinear Hamiltonian systems (see
Cushman, Deprit, and Mosak [1] and Cushman, Sanders, and White
[1D. General applications of the method of representation theory of
si(2, R) to normal form theory were studied by Arnold and II’'yashenko
[1], Cushman and Sanders [2], Meyer [3], and Wang [2-3].
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Normal forms of nonlinear Hamiltonian systems were studied first by
Whittaker [1] and then by Birkhoff [1], Cherry [1], and Siegel [2]. See
also Arnold [3], Bruno [3], Gustavson [1], and Meyer [1]. For more
references we recommend van der Meer [1]. The main results in Section
2.7 can be found in Elphick et al. [1] and Wang [4].

Takens’s Theorem was given by Takens [2]. In Section 2.8 we give an
elementary proof of this theorem. The idea of our proof is motivated by
Rousseau [1].

The main results of versal deformations of matrices were given by
Arnold [6]. Following Arnold’s idea, Galin [2] and Kogak [1] gave versal
deformations of infinitesimally symplectic matrices.

The general method for computing normal forms of systems with
parameters € € R* is to add an equation € = 0 to the original system
and to get normal forms for the extended system. See, for example,
Guckenheimer and Holmes [1]. Different treatments were used in
Chow and Wang [1], Elphick et al. [1] and Vanderbauwhede [3]. The
lists of codimension-one and codimension-two normal forms can also be
found in Guckenheimer [3], and Elphick et al. [1].

The computation of coefficients of normal forms for a given system
was studied by many authors; see, for example, Chow, Drachman, and
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Wang [1], Cushman and Sanders [1-5], Knobloch [1], Rand and Keith
[1], and Rand and Armbruster [1]. They gave computer programs by
using symbolic computation softwares such as MACSYMA. Recursive
formulas for coefficients of normal forms were given by Bruno [6], Hsu
and Favretto [1], and Wang [5).

Other topics in normal form theory for volume preserving vector
fields, reversible systems, constrained systems, Hamiltonian systems,
and stochastic systems can be found in Arnold [3], Baider and Churchill
[1], Broer [1-2], Broer et al. [1], Chow, Lu, and Shen [1], Chua and Oka
[1], Cushman, Sanders, and White [1], Khazin and Shnol [1], Moser [1],
Starzhinskii [1-2], Sternberg [3], Tirapegui [1], Ushiki [1], and many
others.



3

Codimension One Bifurcations

In Chapters 3-5 we will study bifurcation phenomena of vector fields.
In order to consider these problems, we should consider not only a
single vector field, but also its “nearby” vector fields. This means we
need to consider a suitable space of vector fields 2, for example,
2"(R"), the Banach space of all C” (r > 1) vector fields on R”, and
investigate the qualitative behavior of all vector fields in a small
neighborhood of a fixed vector field in 2.

We say two vector fields X and Y in 2 are topologically equivalent,
denoted by X ~ Y, if there exists a homeomorphism on R” which maps
the phase orbits of X onto the phase orbits of Y and preserves the
direction of the orbits in time. We say X € 2 is structurally stable if
there is a neighborhood V of X in 2 such that Y ~X forallYe V.
We say X € & is a bifurcation point if X is not structurally stable. All
bifurcation points form a bifurcation set & in 2.

Suppose X €.%. This means that in any neighborhood V of X in 2,
no matter how small it is, we can find Y € VV such that the orbit
structures of X and Y are different (Y is not equivalent to X). There is
a basic question: Is it possible to find a neighborhood W of X in &
such that we can give a complete description of the phase portraits for
all Y € W? Related to this question, we need to know the structure of
the bifurcation set in W (i.e., & N W) which may be very complicated.
In some cases, if we put a suitable “nondegenerate condition” on X we
can make the structure of & (near X) simple. For example, we may
find a finite-dimensional surface S in W passing through X such that
forevery Ye W thereisa Z € S, Z ~ Y. Thus, to answer the above
question, we can restrict our study to the family S. If we can find such a
family with dimension k, but such that any (k¥ — 1)-dimensional family
(passing through X') has no such property, then X is called a codimen-

191
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sion-k bifurcation point. In fact, under certain conditions the surface S
is transversal to a submanifold at X, with codimension k& in 2.
Intuitively, the codimension indicates the degree of complexity of the
bifurcation problem.

3.1 Definitions and Jet Transversality Theorem

We first define the space of jets. Suppose that M and N are C’-mani-
folds (1 < r < «) with finite dimensions, and f, g € C"(M, N).

Definition 1.1. f and g are said to be k-tangentat xe M (1 <k <r)
if in a local coordinate system f and g have the same Taylor coeffi-
cients up to order k at x.

The k-tangency is independent of the choice of local coordinates, and
it gives an equivalence relation in C"(M, N).

Definition 1.2. A k-jet of a C” mapping f at x is given by
j¥(f) ={g € C'(M, N)|g is k-tangent to f at x},
and we define
i*(f) = {i(HV x € M)
and
JX(M,N) = {(i(f)IV f e C*(M, N)}.

Since the dimensions of M and N are finite, J¥(M, N) is finite
dimensional. Moreover, if M and N are C’-manifolds, then J*(M, N)
is a C"~*-manifold (see Hirsch [1]).

Definition 1.3. Suppose L is a linear space, and A4 and B are its linear
subspaces. 4 and B are said to be transversal if

L=A4+B.
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Suppose M and N are smooth manifolds, A4 is a smooth submanifold
of N, f € C*(M, N), and p € M. Since the tangent space of a manifold
at a point is linear, and the tangent mapping T,f maps the tangent
space T, M into the tangent space T} ,,N, we can define the transversal-
ity between f and A4 at p as follows.

Definition 1.4. The mapping f and the submanifold A4 are said to be
transversal at p € M and denoted by f %, A, if f(p)&Aor

(LINTM) + Ty, A = Ty ,)N;

f and A4 are said to be transversal and denoted by f & A4 if they are
transversal at every point p € M.
The following result is obvious, but it is useful.

Theorem 1.5. Suppose that M and N are smooth manifolds with dimen-
sions m and n, respectively, and A is a smooth submanifold of N with
codimension r. Let (x',..., x™) be the local coordinates of M near x,,
and (y',..., y") be the local coordinates of N near f(x,). Suppose in a
neighborhood U of f(x,) in N, the set AN U can be expressed by
yl= - =y =0.Iff(x,) € A, then f X, A if and only if the rank of

the matrix 3y'/3x) ,_,,  atx,isr.

At
[
-
N
3

The following theorem gives a residual set in C"(M, N) by using the
transversality condition.

Theorem 1.6. (Jet Transversality Theorem) Suppose M and N are finite-
dimensional smooth manifolds without boundaries, and A is a smooth
submanifold of J*(M, N). If 1 < k < r < «, then the set of mappings

F = (feC(M,N)|j*(f) % 4)

is residual in C"(M, N). If, in addition, A is closed, then & is open in
C'(M, N).
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Remark 1.7. A residual subset of C"(M, N) is one that is the intersec-
tion of countably many dense open sets of C’(M, N). Hence, it is still a
dense set. The power of Theorem 1.6 is that by a consideration of the
transversal property in a finite-dimensional space J*(M, N) (for exam-
ple, using Theorem 1.5) we can obtain a residual set in the infinite-
dimensional space C"(M, N). By this theorem, we will get some generic
families of vector fields in some bifurcation problems.

We state two more theorems which will be needed in future discus-
sions.

Theorem 1.8. Suppose that f € C"(M, N) and A is a submanifold of N.
If f & A, then f~'(A) is a submanifold of M. If, in addition, A has a
finite codimension in N, then f~'(A) has the same codimension in M,
that is,

codim( f~!( A)) = codim(A).

Remark 1.9. If f: M — N is a submersion, then the condition f & A4 is
satisfied.

Theorem 1.10. (Malgrange Preparation Theorem) Suppose that U C R X
R" is an open set with (0,0) € U, and f € C(U,R) satisfies

f(x,0) = x*g(x)

for some integer k > 1, where g is smooth in a neighborhood of x = 0,
and g(0) # 0. Then there exist a smooth function q defined in a neighbor-
hood V of (0,0) in R X R"” and C* functions ay(e),...,a,_€) ina
neighborhood of the origin in R" such that q(0,0) # 0, a,(0) = --- =
a,.0) =0, and

k-1
a(x,€)f(x,€) =x*+ Y a(e)x’, (x,€) V.
i=0

Remark 1.11. The previous result is, in some sense, a generalization of
the Implicit Function Theorem, and it is obtained by using the Division
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Theorem which has been proved for C" functions by Barbancon [1] and
Lasalle [1]. See also Schecter [2].

In the last part of this section, we define the versal deformation of a
“singular vector field” (i.e., it is not structurally stable) and define the
codimension of a local bifurcation problem, and then try to give a
procedure to determine them in Sections 3.2 and 4.1.

If we consider a bifurcation problem locally, we need the following
concept.

Definition 1.12. Two mappings defined near a point x have a common
germ at x if one can find a neighborhood U of x such that they
coincide in U.

Obviously, the germ of a mapping at a point is an equivalence class,
and we call any mapping in this class a representative of this germ.

Similarly to Definitions 1.1 and 1.2, we can define the k-jet of a germ
at a point. If we consider the problem locally, we usually use the same
notation J¥(M, N) to denote the set of all k-jets of germs of mappings
from M into N.

We denote by V(x,) the space of germs of C” vector fields at
xo € R". We give V(x,) the topology induced from inclusion maps. See
Hirsch [1, p. 36]. We take a small open set U of the origin in R”, and
define

Z={(x,X)|XeV(x), x U} (1.1)
The natural projection
mi(x0): V(x0) = TE = i (X)X € V(x0)) (1.2)
induces a projection
m: > TF = {(x,j5(X))|x € U, X € V(x)). (1.3)
Now we consider the family of vector fields
x=X(x,¢€), (1.4)

where x € R”, € € R*, and X € C*(R" X R*,R"). If € varies in a
small neighborhood of €, in R¥, (1.4) is said to be a deformation of
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vector field x = X(x,¢,). The family of vector fields (1.4) can be
expressed briefly by the mapping X: R" X R* — R”".

Definition 1.13. A local family (X; x,, €,) is the germ of the mapping X
at the point (x,, €;) of the direct product of the phase space and the
parameter space.

Definition 1.14. Two local families (X; x,, €;) and (Y} y,, €,) are said
to be equivalent if there is a germ of a continuous mapping y = h(x, €)
at the point (x,, €,) such that for every €, h(-, €) (the representative of
the germ) is a homeomorphism mapping the phase orbits of (X; x,, €,)
onto the phase orbits of (Y; yg, €5) with h(x,, €;) = y, and preserving
the direction of orbits in time.

Definition 1.15. A local family (Z; x,, uq) is induced from the local
family (X; xg, €,), if there is a germ of a continuous mapping ¢ at u,,
€ = ¢(u), such that €; = ¢(uy) and Z(x, ) = X(x, d(w)).

Definition 1.16. A local family (X; x,, €,) is called a versal deformation
of the germ of X(-,¢€,) at the point x, if every other local family
containing the same germ of X(-,¢€,) is equivalent to a local family
induced from (X; x,, €;).

Definition 1.17. The bifurcation of X(-, ;) is said to have codimension
m if X(-,€,) has a versal deformation with m parameters and any
(m — 1)-parameter local family is not a versal deformation of X(-, ¢).
If any local family with a finite number of parameters is not a versal
deformation of X(-, ¢,), then the codimension of X(-, €,) is infinite.
Now suppose X = X(-,0). Corresponding to the differential equation

E=Ax+ o

is a bifurcation point in V(0). The question is how to determine the
codimension of X in ¥(0) and how to find its versal deformation?
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We note that some bifurcation problems have infinite codimension,
and there is no efficient method to answer the above question in
general.

But for some special cases, it is possible to determine their versal
deformations (see §3.2 and §4.1 for details).

3.2 Bifurcation of Equilibria

In Section 2.11, we have listed the following codimension 1 normal
forms:

() =€ +x?%

(i) % =ex £ x?%,

(i) % = ex + x3,

. [E=ex—y+ (ax - by)(x* +¥?),

(iv)

y=x+ey+(bx +ay)(x*+y?).

In this section we discuss the local bifurcations of these normal
forms, and give a general Hopf bifurcation theorem. We will only
consider the cases “—” in (i)-(iii), and leave the cases “+” as exer-
cises.

(i) ¥ = € — x?, saddle-node bifurcation.

We first show that

i=e—x* (e€RYH (2.1)
is a versal deformation of
= —x24 . (2.2)

Let V(x,) be the space of germs of C* vector fields at x, € R?, and
Z={(x, X)X € V(x), —0 <x < o for a small o > 0}. Suppose X €
V(x) has a representative X = f(x). The natural projection r,(x,):
V(x,) = J¢ induces a projection

Wk:g_",k9 (x,X)'—)(x,f,f,,...,f(k)),

where f, f',..., f® are the Taylor coefficients up to order k at x.



198 Codimension One Bifurcations
Let
% = {(x9, X) € #|3x, such that f(xo) = f'(x,) = 0, f"(x,) # 0}.

If (x,Y) € 3, then Y has the same singular character at x as (2.2) at 0.

Lemma 2.1. If k > 2, then 7,3 is locally a smooth submanifold with
codimension 2 in J* and % is a codimension 2 submanifold of % .

Proof. Obviously,

mE={(x.f.f)f=f =0}

is a codimension 2 smooth submanifold in J!. By Theorem 1.8 and
Remark 1.9, the natural projection

77'21:]2"’]1’ (x,f,f',f”)'—>(x,f,f')

yields that 75!(7r,2) is a codimension 2 submanifold in J2. Since
w3 = 75 (7,2l »0 is locally an open subset of 73,'(m,3), 7,3 is
locally a codimension 2 submanifold in J2.

Using Theorem 1.8, we obtain that m,3 = 7w} (7,3) is locally a
codimension 2 submanifold in J* for k > 2. Hence, % = mj '(m,3) is
locally codimension 2 in 2. o

Now we consider a deformation of (2.2)

x=g(x,A), (2.3)
where g € C(R! X R™ R!) and
g(x,0) = —x? + O(|x|3). (24

By Theorem 1.10, there are smooth functions g(x, A), a(A), B(A) such
that

q(0,0) #0,  a(0) = B(0) =0, (2.5)

and

g(x,2) = a(x, M[a(r) + B(A)x —x?]. (2.6)
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The deformation (2.3) gives a mapping

ERXR™ T, (x,A) = m,8(x,A).

Definition 2.2. The deformation (2.3) is said to be nondegenerate if
¢ R m,3 at (x,A) = (0,0).

Theorem 2.3. Equation (2.1) is a versal deformation of (2.2) provided we
consider only nondegenerate deformations of (2.2).

Proof.
w2 = {(x, £, fL fOIf=fi=0, fi, # 0}.
By Theorem 1.5, if (2.3) is nondegenerate, then

a(g(x,/\), gx(x”\))

Tr VI W @7
Under condition (2.4), (2.7) is equivalent to
£,(0,0) = 0 for some i, l1<i<m. (2.8)
By (2.5) and (2.6), (2.8) is equivalent to
) (0) = 0. (2.9)

Without loss of generality we take { = 1. Since ¢(0,0) = 0, (2.3) is
equivalent to

X =a(A) +B(M)x —x?=y(A) — (x - ﬂ—)-) ,  (2.10)

where y(A) = a(A) + 18%(A).
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Using (2.9) and (2.5), we have v, (0) # 0. Hence

Hq =7()‘)’
Ko =2y,
B = A,

is a C” transformation and has an inverse A = A(u), A(0) = 0. Thus,
(2.10) becomes

1 2
2= =[x - 380)] (2.11)
which is equivalent (by Definition 1.14) to
y=p -y (2.12)

Both (2.11) and (2.12) are m-parameter local families. On the other
hand, (2.12) is obviously induced from (2.1). And, by Definition 1.16,
(2.1) is a versal deformation of (2.2). |
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Finally, we study the bifurcations of (2.1). The equilibria of equation
(2.1) depend on €. If € < 0, then (2.1) has no equilibria; if € = 0, then
x = 0 is the only equilibrium; if € > 0, then x = + Ve are two equilib-
ria.

The bifurcation diagram consists of a point € = 0 in e-space, and the
phase portraits of the vector fields are shown in Figure 2.1.

The relation between equilibria and the parameter € is given by
Figure 2.2.

We remark here that by using the same method we can show that the
singular vector field

)2=akxk+“‘, ak¢0,
has codimension k£ — 1, and
t=€ +ex+ - te_xT+axk

is a versal deformation restricted to nondegenerate deformations.
(i) ¥ = ex — x?2, transcritical bifurcation.

We note that x = 0 is always an equilibrium for all €. When € < 0, it
is stable; when € > 0, it is unstable. If € = 0, then x = 0 is the unique
equilibrium; if € # 0, then x = ¢ is the nonzero equilibrium. The
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linearized equation at x = € (¢ + 0) is
X = —e¢x.

It is obvious that if € < 0, the critical point x = € is unstable; if € > 0,
it is stable.

The phase portraits are shown in Figure 2.3.

The relation between equilibria and parameter is shown in Figure
2.4,

(i) ¥ = ex — x3, pitchfork bifurcation.

Note that x = 0 is always an equilibrium for all €; it is stable if e < 0
and unstable if € > 0. When € < 0, x = 0 is the unique equilibrium,
which is stable. When € > 0, x = + Ve are nonzero equilibria. The
linearized equations at x = + Ve are the same,

X = —2ex.

Therefore they are stable.

The phase portraits are shown in Figure 2.5.

The relation between equilibria and parameter is shown in Figure
2.6.
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We remark here that the bifurcation of type (i) is generic while (ii)
and (iii) are not. However, if we restrict vector fields to the subset of 22
in which every system has always at least one equilibrium, then (i) is
generic. There is a similar situation for type (iii).

(iv) Hopf bifurcation.

We consider a C” system defined in a neighborhood of the origin in

RZ

x=f(x,y;n),

y=28(x,y; 1), (2.13)

where x, y,u € R

Suppose that the origin is an equilibrium of (2.13), and, for u near 0,
the linear part of (2.13) around the origin has eigenvalues a(u) + i8(u).
Our first basic hypothesis is

«(0) =0, B(0) = B, * 0. (H,)

The second hypothesis is the transversality condition given by the
classical Hopf bifurcation theorem

@'(0) # 0. (H,)

In order to describe the third condition, we derive a normal form for
equation (2.13) for 4 = 0. After we make a suitable linear change of
coordinates and z = x + iy, equation (2.13) for u = 0 becomes

Z=iByz+ F(z,2),
(2.14)

Z=—iByZ+ F(z,%).

Since the eigenvalues of the linear part of (2.13) for u = 0 are Ao =
+iB,y, we have the resonances A; = k(A; + Ay) + A, j=1,2and k =
1,2,... . Hence, by a polynomial change of variables

z=w+ Y, bywtw,
2<k+i=sm

equation (2.14) takes the form (see §2.1, Example 2.1.22)

w=iBgw + Cw?w + Cww? + -+ +O(Iwl***?).  (2.15)
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We now make the third hypothesis:

Re(C,) # 0. (H,)

Theorem 2.4. (Hopf Bifurcation) Suppose that (H,), (H,), and (H;)

hold. Then there are o > 0 and a neighborhood U of (x, y) = (0,0) such

that

D if lul < o and Re(C)a'(Ou < 0, the system (2.13) has exactly one
limit cycle inside U,

(i) if |nl < o and Re(CPa’(0)p = 0, the system (2.13) has no periodic
orbits inside U.

Moreover, the limit cycle is stable (unstable) if Re(C,) < 0(Re(C,) > 0),

and it tends to the equilibrium (0,0) as u — 0.

Proof. In suitable coordinates, the system (2.13) has the following form:

HHE

Using the condition (H,), we can make a further change of variables
(keeping the linear terms unchanged) to transform (2.16) with . = 0 to
the normal form equation (2.15). By using polar coordinates (r, 8), we
have from (2.15)

a(p) —B(w)

B(r) a(n) m+ (2.16)

{r' = Re(Cy)r® + O(r%), @17

é=BO + 0(r?).

Since B, # 0, in a small neighborhood of r = 0 it follows from (2.17)
that

dr  Re(Cy)

_— = 3 5
- g o). (2.18)

By the same change of variables, we can transform the system (2.16) for
u # 0 to the form

F=a(pu)r+a(un,0)r’ +b(pn,0)r’ + 0(r*),

. 2.19
6 = B(w) +0(r), @1
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where a(u), B(n) are the same as in (2.16), and a(u, 8), b(u, 8) € C,
a(0,6) = 0, b(0, 8) = Re(C,).

In a small neighborhood of r = 0 and for small |u), we obtain from
2.19)

dar_ a(p)
6 B(n)

r+a(p,0)r? +b(u,8)r*+0(r*), (2.20)

where @(0,8) = 0 and 5(0, 8) = Re(C,)/B,.
Suppose that the functions

R(rg,0,1) = uy(6,1)ro + ”2(&#)’5 + -
and
h(ry,8) = R(ry,0,0) = hy(8)ro + hy(8)rs + - -

are solutions of (2.20) and (2.18), respectively, satisfying the initial
conditions

R(ro,O,I.L) =Ty and h(ro,o) =Tg-

A calculation shows that

ro+u(8,m)ré+ -, (221)

R(ry,0,u) = exp(-;E—“)O

Re(C,)

0

h(r0,0) =R(r0,0,0) = rO +

ori+ . (222

In fact, by (2.18) we have

3 3*h(r,,0)
6  orf

* dr 0, fork=1,2,
rymo o=0 ark de 6Re(C,) /By, fork =3.

Then using h(r,, 0) = r,, we can obtain (2.22).
Now we define the Poincaré map P(x, u) along the x-axis for the
system (2.20), and let

V(x,pn) =P(x,n) —x. (2.23)
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The number of periodic orbits of (2.20) near x = 0 for |u| small is
determined by the number of zeros of V(x, u) for x > 0. When x > 0,
we have

V(x,n) = R(x,2m,pn) —x
and
V(x,0) = h(x,2m) — x.

From (2.21) and (2.22),

V(x,m) =xV(x,u), (2.24)
where
v _ a(p) 5
(x,p) = ||exp 271'-#;(—,;5 =1 +u,(2w, pn)x + O(x%), (2.25)
and
- Re(Cy)
V(x,0) = 27r——B——x2 + 0(x?). (2.26)

From (2.25) and condition (H,) we get

a(p)
B(r)

wv(,0) d

[ du

27w da(p)
n=0 BO d"(‘

#0. (227)

p=0

exp (277

By the Implicit Function Theorem, there exists a unique smooth func-
tion p = u(x), defined for |x| < e, such that u(0) = 0 and

V(x,u(x)) =0. (2.28)

Differentiating with respect to x, we have

v N v
ax 0_—“(x) o (229
2V 2y 2V %)

4
' ' 2 ” =
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b b
B=p(x)
O x
0 x
b=p(x)
(a) R.(cr)a’(0)<0 (b) R (ca0)>0
Figure 2.7.
* x=x(p) x=x(#) *
(0] [ (0] B
(@) R, (c)a(0)<0 (b) R.(ea’(0)>0
Figure 2.8.

On the other hand, from (2.26) and the condition (H,) we see that

av(0,0) -0 3*1(0,0) =4wRe(cl)
ax ’ ax? B,

0. (230

Substituting (2.30) and (2.27) into (2.29), we obtain
#£(0) =0 and g’(0) = —2Re(C,)(a'(0)) ™" = 0.

Therefore, the graph of u = u(x) is as shown in Figure 2.7 (a) or (b),
depending on the sign of Re(C,)a’(0). Since we only need to consider
the number of zeroes of V(x, u) near (0,0) for x > 0, we can determine
the inverse function x = x(u) > 0 of u = u(x). This is shown in Figure
2.8. It follows that there are o > 0 and n > 0 such that if |u| € (0, o)
and pa'(0)Re C, < 0, we can find x = x(u) € (0, 1) such that, among
all the orbits of (2.20) passing through the interval I = {(x, )I0 < x <
n, ¥y = 0}, the orbit passing through the point (x, y) = (x(u),0), and
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only this orbit, is periodic. On the other hand, if |ul € (0,0) and
pa’(Q)Re C, > 0, the system (2.20) has no periodic orbits passing
through the interval I. The stability of the periodic orbit is obtained
from the first equation of (2.17) (or (2.19)). This completes the proof of
Theorem 2.4. O

In Chapter 4 we will apply the Hopf Bifurcation Theorem to the
perturbed Hamiltonian system

dH

ay 8f(x,y,#',8),

2.31
;- +8 ) 20
y=7 g(x,y,pn,8),

where H = H(x,y) € C* is a Hamiltonian function, f, g € C*, the
parameters p,d € R, and 8 > 0 is small.

Suppose that x =y = 0 is an equilibrium of (2.31), and the eigenval-
ues of the linear part of (2.31) at x =y = 0 are a(u, 8) + iB(u, 8). If
there is a function u = u(8), 0 < § < o, satisfying the condition

a(n(8),8) =0,  B(n(8),8) #0, (H?)

then under some additional conditions Hopf bifurcation may take place
at x =y = 0 for u = u(8) and & > 0. This means that for every § > 0
there is an €(8) > 0 such that when |u — ©(8)| < €(8), the system has a
periodic orbit for u > u(8) (or u < p(8)) and has no periodic orbits for
u < u(d) (or u = u(8). When 8 - 0, €(8) may tend to zero (see
Figure 2.9(a)). But in many cases, we need to find & and & such that
€(8) = &> 0forall0<d <3é.

In fact, we can apply Theorem 2.4 to the system (2.31), replacing u
by u — u(8). Suppose that for u = u(8) the system (2.31) takes the
normal form (2.15) at the origin, where B, = B(u(8),8) and C; =
C/(u(8),8). To obtain a Hopf Bifurcation Theorem for the system
(2.31) uniformly with respect to § near & = 0, we need the following
conditions instead of conditions (H,) and (H ), respectively:

1 da 8),6
o e fig L22(3)8)

0 H%
5508 u (HZ)
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P é
n=u(d)
n=u(d)
i "
0 0
(a) (b)

Figure 2.9.

and
1
Ct = lim —Re(Cy(1(5),8)) # 0. (H3)

Theorem 2.5. Suppose that the conditions (H}), (H¥), and (Hj) are
satisfied. Then there are 8 >0, 0 > 0, and a neighborhood U of (x,y) =
0,0) such that

(i) the system (2.31) has exactly one limit cycle in U if 0<8 <38,
lw — u(d) < a, and

CY-a* - (n - p(9)) <0;

(ii) the system (2.31) has no limit cycles in Uif 0 <8 < 8, |p — p(8)| <
o, and

CY-a* (n —n(8)) >0.

Moreover, the limit cycle is asymptotically stable if CY < 0, and unstable
ifC*> 0.

Proof. We replace p in Theorem 2.4 by p — u(8), and take 8 as a
parameter. Then the proof of Theorem 2.4 is valid for § > 0, and
V(x, p) is replaced by V(x, u — u(8), 8).
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System (2.31) is Hamiltonian when § = 0; this implies

V(x,n — 1(8),8)]520=0

for |x| and |u — u(8)| small. Hence

V(x’l-" - /-"(8)’8) = 8XV*(X,[.L - /"'(6)’8)
Conditions (H) and (HY) imply that

av'*(0,0,0) a2V'*(0,0,0)
——— #0 and ————— #0
ou dx

Thus we can replace V in (2.24) by V*, and use the Implicit Function
Theorem at the initial point (x, u — u(8), 8) = (0,0,0). This gives the
uniform property with respect to 6 near é = 0. 0

From the proofs of Theorems 2.4 and 2.5 we have the following result
which will be used in Chapter 4.

Theorem 2.6. Suppose that the system (2.31) has an equilibrium at
(xg, ¥o), the eigenvalues of the linearized equation at (x, y,) are a(u, 8)
+ B, 8), and there is a function p = u(8) satisfying the conditions
(H¥), (H%), and (H%). Then there exist ¥ > x,, & > 0, and a unique
function p = p(x,8) defined inxy <x <X,0 <& < 8§ such that

@) when p = u(x,8), x, <x <X, and 0 < & < 8, the system (2.31) has

a periodic orbit passing through the point (x,0);
(i) ou(x, 8)/9x > 0 if a*Cf < 0, and du(x,8)/dx < 0 if a*Cy > 0.

Remark 2.7. For applications it is convenient to express Re(C,) in
terms of the coefficients of equation (2.13). In Guckenheimer and
Holmes [1], we have the following.

If (2.13) for u = 0 has the following form

o e P R it
dt|y Bo 0|y g(x,y)|
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where f(0) = g(0) = 0 and Df(0) = Dg(0) = 0, then

1
Re(cl) = -1—6 (fxxx +fxyy + gxxy + gyy.v)

+ ! +
Bo[fxy(fxx fyy)

~8xy(8ex +8y)) — frr8ux t fyygyy]}

More generally, we have the following theorem.

Theorem 2.8. Suppose that equation (2.13) has an equilibrium
(x(w), y(p)) for u near u,, and the linear part at (x(u), y(n)) is given
by

a(p) b(w)
c(p) d(p)

b

which satisfies

a(po) +d(po) =0,  BF=a(pe)d(pg) — b(po)c(pg) >0,
a'(mo) +d'(1o) # 0.

(2.33)

Then the stability of the limit cycle bifurcating from the equilibrium
(x(eg), ¥(g)) when w crosses w = p, is determined by the following
quantity:

b
Re(C1) = 15 {BE[0U cer ¥ 8ars) + 24(fuy + 81ry)

—c(fiyy + 8yyy)]
~bd(f2 — fexBay = FeyBax — 8xx8yy — 281y)
~cd(82, = 8yyfey = 8xySfyy = Fyyfex = 2F2)
0 (frx8ux + 81x8ey) — *(f1y8yy + finfy)

—(B% + 3d2)(fxxfxy - gxygyy)}

(x(o), ¥(so), 1g)” (2'34)
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If Re(C,) < 0, then the limit cycle is stable; if Re(C,) > 0, it is unstable.

The proof of (2.34) may be found in Wang [1].

Example 2.9. Consider a quadratic system

i=a(p)x +b(p)y + a;x? + ayxy + azy?,
y=c(p)x+d(p)y +bx*+ byxy + byy?.

If a(u), b(n), c(u), and d(u) satisfy (2.33), then the stability of the
bifurcating limit cycle from (x, y) = (0,0) when p crosses p = pq is
determined by the quantity
v =b[ab(2a} - a,b, — a,b, — 2b,b, — b3)
+ac(2b3 - a,by — a3b, — 2a,a; — a3)

— (24 — bc)(aya, — byby)]| (2.35)

r=pg’

If v < 0, then the limit cycle is stable; if v > 0, it is unstable.

Example 2.10. Consider a cubic system without quadratic terms

*=a(p)x +b(p)y +a,x* + a,x%y + a;xy?* + a,y3,
y=c(n)x +d(pn)y + bx>+ byx%y + byxy* + b,y>.

If (2.33) is satisfied, then the stability of the bifurcating limit cycle from
(0,0) when p crosses pu = p is determined by the quantity

v = b[(3a1 +b,)b + 2(a, + b3)d — (a3 + 3b4)c]|#=#0. (2.36)
If v <0, the limit cycle is stable; if v > 0, it is unstable.

Remark 2.11. We notice that Re(C,) = 0 does not imply that the
equilibrium is a center. In fact, if Re(C,) = 0, then we need to consider
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the coefficients of higher-order terms in (2.15). There may be a Hopf
bifurcation of higher order. This will be discussed in Section 5.1 and we
will give an alternative proof of Theorem 2.4.

3.3 Bifurcation of Homoclinic Orbits

Although we consider bifurcation problems locally, sometimes we need
to consider nonlocal bifurcation phenomena such as homoclinic bifurca-
tion.

In this section we consider the system

Jf=f(x,y,u), 3.1)
y=8(x,y,1),
where x,y,u € R, f, g € C?, and £(0,0,0) = g(0,0,0) = 0. Denote

a(f,8)
4= a(x,y)

(0,0,0). (3.2)

We consider the following conditions:
det A < 0. (H))

This means that the system (3.1), _, has a hyperbolic saddle point at
the equilibrium point O(0, 0).

(W5 N W)\ {0} # ¢, (H,)

where W and W' are, respectively, the stable and unstable manifolds
of (3.1)“=0 at the saddle point 0(0,0).

o, =trace A # 0. (H5)
If po = (x4, yo) € (W5 N W)\ {0}, then the orbit y(p,) through p,

of (3.1), ., approaches the saddle point O(0,0) as t — +. The orbit
¥(py) is called a homoclinic orbit of the saddle point O(0,0), and the
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(b)
(a)

Figure 3.1.

invariant set
Ty = v(po) U {0}, po € (W5 n W)\ {0}

is called a homoclinic loop. Iy can have either of the configurations in
Figure 3.1. We only discuss the case of Figure 3.1(a). The case of Figure
3.1(b) can be treated in a similar way.

We will consider (3.1) as a small perturbation of (3.1),_,. The
purpose of this section is to determine what happens near I'y as p
changes.

We will prove that if (3.1), _, satisfies the hypotheses (H,), (H,), and
(H,), then there are small & > 0 and e > 0 such that for |u| < 8, (3.1)
has at most one periodic orbit in the e-neighborhood of the loop I},.

The case of g, = 0 is more complicated; we will discuss this case in
Section 5.2.

The following questions are crucial in our discussion:

(1) How can we determine the stability of I'y?
(2) How can we determine the relative positions of W,) and W, when
I, is broken by perturbations (i.e., u # 0)?

In order to define stability of Iy, let us establish first the Poincaré
map of (3.1), _, near I,. For p, € W§ N Wy \ {0}, let L, be a transver-
sal to Iy at p, and L{ be the part of L, which belongs to the interior
region surrounded by I, (see Figure 3.2), and L;= L, \ L;. By using
the theorem about the continuous dependence of solutions upon the
initial conditions and the saddle property, it is easy to see that there is a
neighborhood U of p, such that for any p € U N Ly, there is T =
T(p) > 0 with ¢(T(p), p) € L§, #(t, p) & L for 0 < t < T(p), where
#(t, p) is the solution of (3.1), _, through p. One can therefore define
the Poincaré map P by P(p) = ¢(T(p), p) for p € L§N U. For sim-
plicity of notation, let L be orthogonal to I, at p,, and n, be a unit
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Figure 3.2.

vector along Ly. Then for p € Lyn U,

D = ang + py, a > 0small, (3:3)

and
P(p) = ¢(T(p),p) = B(a)ny + py, (34)

where B(a) € C* for & > 0 small, since f, g € C? in (3.1). We consider
the function

d(a) = B(a) — a.

Definition 3.1. The homoclinic loop T, is asymptotically stable (unsta-
ble) if d(a) < 0 (> 0) for all small a > 0.

Remark 3.2. Note that lim,_,,d(a) = 0, and the stability of T, is
determined by the sign of lim,_,d'(a) =lim,_,B'(a) — 1. T, is
asymptotically stable (unstable) if lim,_,d'(a) <0 (> 0), that is,
lim,_,,B()<1(> 1.

Theorem 3.3. Suppose that (3.1),_, satisfies (H,), (H,), and (H;). Then
the homoclinic loop T, is asymptotically stable if o, < 0 and unstable if
g, > 0.

Proof. As in the discussion above, we suppose that p, € LyN T,
pE€Lin U. p and its Poincaré map P(p) are expressed in (3.3) and
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(3.4), respectively. Differentiating (3.4) with respect to «, we obtain

aT(p d
a(p )”0 + 54’(7“(17),1’)"0

oT T\ (n,,
=Fll—,—]"
dxy dy, Roy

F. = f(Bng + py,0) — noy
p g(Bng +py,0) |’ 0 oy |’

d
B(a)ny = W(T(p),p)]

" %¢>(T(p),p) ne» (3.5)

where
and B = B(a). By taking the inner product with FB* , we obtain from
(3.5) that

B ap
(FBJ- ’”0>

<F* , 36(T(p),P) n0>

B'(a) = (3.6)

Note that d¢(¢, p)/dp is the fundamental matrix of the variational
equation

. 9(f,8)
“= (x,y)

(6(£,p),0) - u
for which (¢, p) is a solution. This implies
¢
;,;;(T(p),p)Fa =Fg, (3.7

_ [ f(arg + P, 0)
where F, = (g(ano +p0,0)). Let

d
%(T(p),p) “ng = £Fg + mng, (3.8)
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where £, 1 € R. By the continuity of f and g, F, = (1 + €,)F, + €;n,,
where €,,¢e, = 0 as @ — 0. By (3.7) and (3.8), this implies that

ad
g(T(p),p) “Fg=(1+¢€ +€¢)F + emny. 3.9

Equations (3.8) and (3.9) give the following matrix representation of
d¢ /dp(T(p), p) in terms of the basis {Fg, ny}:

1+e +e,¢ &
€7 nJ

Hence,

det d¢(T(p), p)

> = (1 + &) (3.10)

Therefore, from (3.8), (3.6), and (3.10) we have that

B(a)=n=

3¢(T(p),p) ) (3.11)

(1+¢) ( et ap

On the other hand, by Lemma 3.4, we have

a6(T(p), af 9
det——(—g—)—p—) = exp‘/(;T(p)(% + 5%)(4)(1‘,17),0) dt.

Hence, we obtain from (3.11)

of ag
— + —
dy

o |ep0 ar,

, 1 T(p)

where T(p) — » as a — 0. By using the condition (H,), we can show
that lim_ _,, [JPX(0f/dx + dg/dyX¢(t, p),0)dt is equal to either a
finite number or infinity.

Suppose now o, = trace A = (3f/dx + dg/dyX0,0) < 0 (> 0). Then
by the continuity, there is a neighborhood ¥V, of the saddle point 0O(0, 0)
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such that (3f/dx + dg/dyXx,y) < 0q/2 <0 (> ay/2 > 0) for (x,y)
€ V,. For small « >0, T(p) =T, + T,, where T, and T, are the
times for which the flow ¢(¢, p) is inside and outside V},, respectively.
Obviously, T|, — «, and T, is bounded as @« — 0. Hence

of

d
j(')T(p)(a + %)(q&(l‘,p),o)dt—’ —oo(+oo)

as a = 0if oy < 0(0y > 0).

This implies lim, _, , B'(a) = 0 (4+ ) for g, < 0 (o, > 0) which gives
the desired result (see Remark 3.2). )

Suppose the solution of (3.1)“=0 has the form

(1580, %0, Vo)
P(t;t0, X9, ¥o)

(D(t,p) = [

satisfying

(to; to> X9, ¥o) = Xo, ¥(to; 80, Xg5 Yo) = Yo- (3.12)

Denote
(P, ¥)
J(t;to,xo,}’o) EJ=dCtm. (3.13)
(13
Lemma 3.4. We have that
| of ag
J= expfto[b-;(qs,w) + 5(¢,¢) dt, (3.14)

where J is defined in (3.13) and f = f(x,y,0), g = g(x,y,0) are the
right-hand sides of (3.1) for u = 0.



Bifurcation of Homoclinic Orbits 219
Proof. From (3.13) we have
3 ap 9 b 8 b
aJ |atox, ay,| |ox, atay,

at I W I W
at Ixq 9y, dx, 9t dy,

of(s.9) 36| |36 f(s.9)

_ ax, v, N xg dyg
ig(d.¥) W W (¢, ¥)
0x0 0y0 axo ayo

af ap  of oy 3 ¢  Of o¢p  of
axox, | By dx, dy,| |ox, axdy,  dyay,
dg d¢p ag W W dy dg dp  dg
axox, | dyox, .| |0x, dxady, 9y dy,

Expanding the above determinants, we obtain

a1 [of dg \

From (3.12) we have
Jleasy = 1. (3.16)
Equations (3.15) and (3.16) give (3.14). (]

Consider now the system (3.1) for u # 0 small. Condition (H,)
implies that there is a unique equilibrium point in a neighborhood of
(x,y) =(0,0) for p in a small neighborhood of zero. By a change of
variables, one may suppose without loss of generality that (3.1) satisfies

f(0,0; ) =g(0,0;) =0  forall . (3.17)

Let W: and W* be the stable and unstable manifolds at the saddle
point of (3.1).
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Theorem 3.5. Suppose that (3.1), ., satisfies (H,), (H,), and (H;). Then
there exist 8 > 0 and a neighborhood U of T, such that for |u| < 8, if
(3.1) has a periodic orbit [, in U, then T, is asymptotically stable for
oy < 0 and unstable for o, > 0. Moreover, T, is the unique periodic orbit
of 31)in U.

Proof. We only need to consider the periodic orbit I, of (3.1) with the
property that I, — I; as u — 0. For any fixed small y, let py, € W,
and L, be a transversal to W, at p,,,. Similarly, we have L+ Letn, be
the umt vector along L+ Thus
L= {an, + pg,,a > 0 small}.

Suppose that the periodic orbit I, corresponds to a = a;'j. Then by the
continuity of solutions with respect to initial conditions, we define the
Poincaré map P(p) = B(e)n, + p,, for p = an, + p,, with a near
;. We have that B(a}}) = a}, and the stability of T, is determined by
the sign of (8'(e) — 1). Note that as u — 0, a} — 0, and the local
unstable manifold at S, approaches the local unstable manifold at S,.
Hence, by repeating the same arguments as in the proof of Theorem 3.3
we have that lim,, _,, B'(a}) = 0if 0y < 0 and lim, |, B'(a}) = +xif
o, > 0. This gives the stability of I,.

It is impossible for a system to have more than one periodic orbit
with the property that all of them are asymptotically stable (or unstable).
Therefore the periodic orbit of (3.1) for {u| < § inside an e-neighbor-
hood of I, if it exists, is unique. m]

We now show that the existence of a periodic orbit is possible.
Suppose T, of (3.1), _, is as in Figure 3.1(a) and ¢, < 0 (the other case
can be considered in a similar manner). By Theorem 3.3, I, is asymp-
totically stable. Let p, € L, N I, p € Ly and near p,, and P(p) be
the Poincaré map of p. Then p and P(p) have expressions (3.3) and
(3.4), respectively. We can find a fixed p which is sufficiently close to p,
such that B(a) < a. Let A, denote the part of the orbit from p to
P(p) and B, denote the line segment in L, joining P,(p) and p. Let

=A, UB, (see Figures 3.3 and 3.4). For (3.1), ., the relative
positions of the stable and unstable manifolds (W;f and W;j‘) have three
possibilities which are shown in Figure 3.4(a), (b), and (c). It is easy to
see that in case (a), by the Poincaré-Bendixson Theorem, there is a
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periodic orbit which is a stable limit cycle and is unique (Theorem 3.5).
In cases (b) and (c), there are no periodic orbits in the exterior of y,. In
fact, by Theorem 3.3, the homoclinic loop T, in case (b) is asymptoti-
cally stable. Therefore, in both cases (b) and (¢), if there is a periodic
orbit in the exterior of y,, it must be unstable. This contradicts
Theorem 3.5.

Thus, to determine the existence of limit cycles bifurcating from the
homoclinic loop Ty, we need to know the relative positions of W, and
W,. We will use the Melnikov function to determine the splitting of W*
and W

Consider the equation

{x=P0(x’y)+€P1(xaya€)’ (318)

}" = Qo(xa y) + EQ](x,y,E),

where Py, Qq, P;,Q, € C" and r > 2. For simplicity, we also consider
(3.18) in its vector form:

w=R(w,e) = Ro(w) + eRy(w,¢€), (3.19)
where
Py(x,y) Pl(x’y’e)
w=(’y‘), Ro(w) = Qo(x’y)), Ry(w€) = Ql(x’y’e)).
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Suppose that O(x,, y,) is a hyperbolic saddle point of (3.18),_,. As-
sume that T is a homoclinic loop through O(x,, y,) and is given by

qb(t))‘

Wo(t) = (‘/’(t)

Let v = wy(0) and L be a transversal line segment through v. We
assume that L is parallel to the vector R* (v,0) = Ry (v), where

at= (——az) for any vector a = (al) e R2.
a, a,

By the Implicit Function Theorem, equation (3.18) has a hyperbolic
saddle point O(x,, y,) satisfying O(x,, y.) = O(x,, y,) as € = 0. Let
WS and W* be the stable and unstable manifolds of O(x_,y,) of
system (3.18).

By the results in Chapter 1, for sufficiently small ¢ there exists a
unique bounded solution wi(¢) for ¢t > 0 such that wi(¢) is close to
wo(t) for all ¢+ >0 and w’(0) € L. Furthermore, w(¢) is C” with
respect to the parameter e and wi(¢) € W/ for all £ > 0. Similarly, we
have a unique bounded solution w/(¢) for ¢ < 0 in the unstable mani-
fold Wx.

Let

o(t) = Po(6(2),9(1)) + Qo,(#(2),¥(1)),
Poo(1) = Po(d(2), (1)), Puo(t) = Py($(2),4(1),0),
Qoo(?) = Qo(¢(2),¥(1)),  Quo(?) = Qu((1),¥(2),0),

and

Poo(t)  Qool(?)

PO = piy 0t |

Theorem 3.6. Assume that the vector field (3.18) is C", r > 2, and the
above conditions hold. Let

A= [ D(t)e~ e a (3.20)
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and
d(e) ={w(0) — wi(0), R* (v,0)). (3.21)
Then for sufficiently small ¢ we have

d(e) = eA + O(lel?).

Proof. Let
———-a w = fi 0
(t S(t t>0,
66 e( )€=o z ( ) or
and
—a w = fi 0
“(t “(t or t<0.
ae 6( )€=0 z ( )
Let

A (1) =(2(1), Ri" (wo(1))-
By differentiating (3.19) with respect to €, we have that
IR,
25(t) = W(Wo(t))zs(t) + Ry(wy(1),0)  for ¢>0. (3.22)
Next, for any two vectors a, b € R? we define

anb=1{a,bt).

It is not hard to see that for any 2 X 2 matrix 4, we have

(Aa) Ab+a A (Ab) = (trA)anb, a,beR> (3.23)
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For ¢t > 0, we have the following from (3.22)
d s d s
EA (¢) = E[z (1) A Ro(wo(1))]
d
=2°(t) ARg(wo(2)) +2°(t) A ‘d‘tRo(Wo(‘))
3R,
=2°(t) A Ro(wo(1)) +2°(2) A W(Wo(‘))Ro(WO(‘))
3R,
= W(Wo(‘))zs(‘) A Ro(wo(?))
+ Ry(wo(2),0) A Ro(wo(1))

3R,
+2z°(t) A W(Wo(t))Ro(Wo(t))-

By (3.23), for t = 0,

d
S8 = a ()& (1) + (Ry(wo(1),0), R (wo(1))) -

By the variation of constants formula, we have for ¢t > 0

A'(t) = ef"la(S)ds{A’(O) + j:[e“f(;"(’)d’( Rl(Wo(T)’O),

Ry (WO(T)»

dT}.

This implies that
2(0) + ['[em k7O R(wo(r),0), R (wo(r)) ]

— e_.l;:o(s)dsAs(t).
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Since the solution z3(¢) is on the stable manifold W/,
lim e~ @4 As(¢) = 0.
t— oo

Hence,

A5(0) = —j:[e_fofomd%Rl(Wo(T)’O)’ROL (WO(T)»] dr.

Similarly, we have

A¥(0) = —fo [e—f., 74 R (wo(7),0), Ry (wo(f)))] dr.
Hence A = A*(0) — A%(0). This yields the desired result. m]

Combining the results of Theorems 3.3, 3.5, and 3.6, we obtain
finally:

Theorem 3.7. Suppose that system (3.18)._, has a hyperbolic saddle at

(x9, ¥o) with a homoclinic loop T, and the orientation of T, is clockwise

(counterclockwise). If oy = Py, (x4, yo) + Qy,(xg, o) # 0, then for

sufficiently small |e| and in a small neighborhood of T, we have:

() if ageA > 0 (< 0), system (3.18) has exactly one limit cycle bifurcat-
ing from the loop Ty, which is asymptotically stable for oy, < 0 and
unstable for o, > 0;

(i) if ogeA < 0 (> 0), (3.18) has no limit cycles.

Remark 3.8. In some cases, we do not need to find the expression for
T,. For example, if D(¢) has a fixed sign, then A has the same sign by
(3.20).

Example 3.9. Suppose that the system

x=P(x,y),
y = Q(x’ y)
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has a hyperbolic saddle point at (0, 0) and a homoclinic loop including
(0, 0) with clockwise orientation, and

oy = Py, (%9, ¥o) + Qo,( %9, ¥o) # 0.

Then for sufficiently small |e| and in a small neighborhood of T, the
following perturbed system

x=P(x,y) — eQ(x,y),
y=0(x,y) +€P(x,y),

has exactly one limit cycle bifurcating from the loop I’y when eoy > 0;
and has no limit cycles when eo, < 0.
In fact, it is easy to see that

-Q

P
D(t) =det[Q P >0,

and therefore
A= [ D(t)e k@4 di > 0.

By Theorem 3.7, the desired result follows.

3.4 Bibliographical Notes

There are many references for codimension one bifurcations; see, for
example, the books of Andronov, et al. [1], Arnold [1], Chow and Hale
[1], Hassard, Kazarinoff, and Wan [1], Golubitsky and Schaeffer [1],
Guckenheimer and Holmes [1], Marsden and McCracken [1], and
Wiggens [1, 2].

For a proof of the Jet Transversality Theorem (Theorem 1.6), we
refer to Hirsch [1] or Arnold [4]. The proof of Theorem 1.10 can be
found in Chow and Hale [1]. Definitions 1.13 through 1.16 are due to
Arnold [4].

Theorem 2.6 is different from the classical Hopf Bifurcation Theo-
rem. It gives a uniform property with respect to some parameters. This
result will be useful in Chapter 4.
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Formula (2.32) is taken from Guckenheimer and Holmes [1], and
Marsden and McCracken [1]. Chow and Mallet-Paret [1] presented an
alternative by using the method of averaging. Formula (2.34) can be
obtained by using (2.32) (see Wang [1]), or by using a formula in Farr
et al. [1], which can also be used in more general cases n > 2. Formula
(2.34) is equivalent to a formula in Andronov et al. [1, p. 253].

The proof of Theorem 3.3 is due to Chow and Hale [1].

Theorem 3.7 was first given by Melnikov [1] and the integral (3.20) is
called the Melnikov integral. Our proof of Theorem 3.6 follows basi-
cally Guckenheimer and Holmes [1] and Wiggins [2]. For other ap-
proaches, see Chow and Hale [1], Chow, Hale, and Mallet-Paret [1],
Feng and Qian [1], Ma and Wang [1], and Palmer [2]. For the higher
dimension Melnikov method, see Chow and Yamashita [1], Gruendler
[1], and Palmer [2]. Results in Section 3.3 can be generalized to the case
of heteroclinic orbits. See, for example, Cerkas [1] and Feng [1-2].

The degenerate cases of Hopf bifurcation and homoclinic bifurcation
will be discussed in Section 5.1 and Section 5.2.
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Codimension Two Bifurcations

In this chapter we will introduce some results on codimension two
bifurcations of vector fields near nonhyperbolic equilibrium points.
Consider a family of vector fields

x=f(xe), (Xo)

where x € R", e € R™ (m > 2), f € C*(R" X R™,R"), and f(0,0,0) =
0. Suppose that the origin is a nonhyperbolic equilibrium point of (X)),
and the linear part of (X,) is doubly degenerate. Then, after reduction
to a center manifold, the linearized matrix of (X,,) must take one of the
following forms:

4, = 0 1] or [0 0]’

[0 0 0 0
0 1 0
A2= '_1 0 0 y
0 0 O
[ 0 0)1 0 0
—wy 0 0
Ay = o 0 0w (00, # 0, 0, # ko, k=1,...,5).

In Sections 4.1-4.5, we discuss the case A,. This means that we will
study the bifurcation diagrams in a small neighborhood U of € = 0, and
find all possible phase portraits of (X,) (corresponding to different
€ € U) in a small neighborhood of x = 0, under certain nondegenerate
conditions on the higher-order terms of (X;) which will vary for

228
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different cases. These conditions make the family essentially a two-
parameter family, even though it may contain m > 2 parameters. In
Sections 4.1-4.5, we suppose that (X,) is invariant under a rotation of
the phase plane through an angle 27 /q for ¢ = 1,2,3,4 and q > 5,
respectively. These are usually called 1: g resonance problems. For the
cases ¢ = 1,2 the matrix A, is nonzero nilpotent, and in the cases
q = 3, A, is a zero matrix. The case g = 1 is nonsymmetric; it was first
studied by Bogdanov [1, 2] and Takens [2], and is usually called the
Bogdanov—Takens system. The complete results for the cases g = 2,3
(with codimension two) were first given by Khorozov [1]. All codimen-
sion-two results for 1: g resonances are known, except the case g = 4
(see Arnold [4, 5]). In these problems an important and difficult part is
the study of the existence of periodic orbits, homoclinic or heteroclinic
orbits, and the number of periodic orbits, corresponding to different
values of the parameters. For problems of this kind, we need the Hopf
bifurcation theory and homoclinic (heteroclinic) bifurcation theory, as
well as some special techniques, such as the blowing-up transforma-
tions, Abelian integrals, and Picard—Fuchs equations. We will give
more details in this chapter about all these techniques.

For the types A, and A;, the study of bifurcations is far from
complete. Since the dimension of the system is greater than or equal to
3, some complicated dynamical behavior can occur. The first step to
study these bifurcations is to transform the equations into their normal
forms (see Section 2.11), and then to study the truncated normal form
equations which have some symmetric properties and can be reduced to
planar systems because of the nature of A4, and A4,.

In Sections 4.6 and 4.7, we will discuss codimension-two bifurcations
of the reduced systems corresponding to 4, and A, respectively.
Zoladek [1, 2] gave the complete results for these two cases. We will use
a simpler method to prove the uniqueness of periodic orbits for the first
case.

4.1 Double Zero Eigenvalue

Consider a family of vector fields

i=f(x,y,€),

}}=g(x’y,€)’ (11)

where x,y € R, e € R™, m > 2, and f, g € C(x, y, €).
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We suppose in this section that for e = 0, (1.1) has an equilibrium
point at x =y = 0 for which the matrix of the linear part is similar to
the Jordan block

0 1
0 of

Thus, the normal form of (1.1) for € = 0 (see Examples 2.1.10 and
2.1.15) is

x=y,
{y'=ax2+be+0(|(x,Y)|3)- (12)

We remark here that the first normal form equation may have the
form x =y + ¢(x, y), ¢ = OU(«x, y)|3). By a change of coordinates in a
small neighborhood of the origin:

E=x, §V=y+¢(x,y),

it can be transformed into the form (1.2).
Another basic hypothesis in this section is ab # 0 in (1.2). Under this
condition, if we make a change of coordinates and time:

a a’ b
x_)ﬁx’ y_)?y’ t_);t’

the equation (1.2) is transformed into the form

X =Y,
y=x2+xy+0(|(x,y)|3). (1.3)
The reader should be aware that if ab < 0, then time is inverted by the
scaling. If one wishes to keep the direction of motion, then (1.2) could
be transformed into an equation having the same form as (1.2) with
a =1, b= £1. We only consider the case b = 1. The case b = —1 can
be discussed in a similar way.

Definition 1.1. A family of vector fields (1.1) is called a deformation of
equation (1.3) if for € = 0 it has the form (1.3).
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Under the above hypothesis we can assume that (1.1) is a family of
deformations of (1.3) of the following form:

{x =y +w(x,y,¢€),

j=x 4w+ (e +werre), P

where x,y € R, e € R™, m > 2, w,,w, € C*(x, y, €), and wil._o = 0,
i=12.
We will show that the following two-parameter family of vector fields

{x=y, (15)

Vo= kbt gy +xP+xy

is a versal deformation of (1.3). This result is not obvious and its proof
has been given by Bogdanov [1, 2] and Takens [1].

The discussion will be divided into three parts. We will study the
bifurcation diagram and phase portraits of (1.5) in the first part, reduce
(1.4) to a canonical form in the second part, and study the versality of
(1.5) in the last part.

(I) The Bifurcation Diagram and Phase Portraits
of the System (1.5)

Theorem 1.2. (1) There is a neighborhood A of u, = p, = 0 in R? such
that the bifurcation diagram of (1.5) inside A consists of the origin
(p1, ,) = (0,0) and the following curves:
(@) SN*= {ulu; = 0, p, > 0},
®) SN™= {ulp, =0, p, <0},
(© H = {plp; = —p3, p, >0},
(@) HL = {plp, = — 345 + Ouy?), n, > 0).

(2) The bifurcation diagram and phase portraits of (1.5) for p € A are
shown in Figure 1.1, where the regions I-1V are formed by the above
bifurcation curves.

A proof of Theorem 1.2 will be given by using the following lemmas.

Lemma 1.3. There is a neighborhood A, of u, = p, = 0 such that SN*
and SN~ are saddle-node bifurcation curves while H is a Hopf bifurcation
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HL | SN~

Figure 1.1. The bifurcation diagram and phase portraits of (1.5).

curve for the system (1.5). Moreover, if (u,,p,) € A, N region II and
near H, then the system (1.5) has a unique limit cycle in a small
neighborhood of the focus (— v/ — p,,0). Furthermore, it is unstable,
and it tends to the focus as (u,, p,) tends to a point on H. The phase
portraits of (1.5) for (uy, u,) € Ay N {ulp, = 0} are shown in Figure 1.1.

Proof. If p, > 0, then (1.5) has no equilibria. If u, = 0, then the
unique equilibrium (x, y) = (0,0) is a saddle-node for p, # 0, and is a
“cusp” type for u, = 0. The phase portraits near (0,0) for p, > 0 are
shown in Figure 1.1. (We refer to Zhang et al. [1, p. 130-58] for the
details in obtaining the phase portraits.) Finally, if x4, < 0, then (1.5)
has two equilibria (x ,,0), where x ,= + /— u, . The 2 X 2 matrix of
the linearized equation at (x ,,0) is

0 1
A= 12" m wat V= |
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Since

trace(A,) = p,+ /=, and det(A,) = —(+2y/= ),

(x,,0)is a saddle point and (x _, 0) is an unstable focus for p, > / — 1,
and a stable focus for u, </ — u;. Therefore, a Hopf bifurcation
occurs along the curve H = {ulp; = —u3, u, > 0}, and a saddle-node
bifurcation occurs along the curves SN* and SN~. By using the
formula (3.2.34), it is easy to obtain that

16Re(C,) = > 0.

1
V— M
Hence, the focus (x_, 0) is unstable for 4, = y/ — u, . Moreover, (x _, 0)
will become a stable focus surrounded by an unstable limit cycle for

By <y = ny and lu, — /= py] <1, and the cycle tends to the focus
as (pq, uy) = H (Theorem 3.2.4). |

In order to discuss the limit cycle and the homoclinic orbit of (1.5),
we set

B = _84’ By = {62’ x = 82x’
t
y—> 8y, 1o =(8>0), (1.6)

where { and 8 are new parameters. Then (1.5) becomes

{’f = (17)

y=—1+x2+ {8y + dxy.

For 8 = 0, (1.7) is a Hamiltonian system:

=y, 18
y=—1+x2, (18)
with the first integral
y2 %3
H(x,y)=—2—+x——3—=h. (1.9)

The phase portrait of (1.8) is shown in Figure 1.2.
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Figure 1.2. The phase portrait of (1.8).
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Figure 1.3.

Every closed orbit of (1.8) surrounding (— 1, 0) corresponds to a level
curve T, = {(x, y)IH(x,y) = h, — 3< h < %}. T, shrinks to the equi-
librium (—1,0) as A - —2/3, and tends to the homoclinic loop as
h—2/3.

Now we consider (1.7) as a perturbation of (1.8) for § small. Note
that (1.7) has two equilibria: The point A(1,0) is a saddle point and the
point B(—1, 0) is an equilibrium point with index + 1 for every & and .
Hence every closed orbit of (1.7) must cross the line segment L =
{(x, y)ly =0, —1 < x < 1} and surround the point B.

On the other hand, for every h € (— %,2), T, (the orbit of (1.8))
intersects L at exactly one point P,(x(h),0). Therefore, the segment L
can be parameterized by h € (— %, 3).

For every h € (- %,3), we consider the trajectory of (1.7) passing
through the point P,(x(h),0) € L. Let this trajectory go forward and
backward until it intersects the negative x-axis at points Q, and Q,,
respectively (Figure 1.3). We denote the piece of trajectory from Q, to
Q, by v(h,8,{). For h = +2/3, we take the limiting positions of y by
using the local stable and unstable manifolds at A.
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Lemma 1.4. y(h, §,¢) is a periodic orbit of (1.7) if and only if

F(h,5,0) = [ (£ +x)ydx = 0. (1.10)
¥(h,8,{)

Moreover, the system (1.7) has a homoclinic orbit if and only if (1.10) is
satisfied for h = 2.

Proof. y(h, 8,{) is a periodic orbit if and only if Q;, = Q,. From (1.9)
we have

0H(x,y) _

1—x%2=+0,if [x| # 1.
ox

Hence O, = Q, if and only if H(Q,) = H(Q,).
On the other hand, along the orbits of (1.7) we have that

dH(x,y)
dt

W= x)yHandt = 8(¢L + x)ydx.

This implies that

wondH
H(Q,) - H(Q,) = [“%—

dt =6 +x)ydx. (1.11
wg) dt lan '/;(h,ﬁ,{)({ )y (1.11)

This gives the desired results. The homoclinic case can be obtained by
taking a limit as 2 — 2 — 0 (see Lemma 1.5). m]

Lemma 1.5. (Bogdanov [1]) There is 8, > 0 such that the function
F(h, 8, %) given by (1.10) is continuous on the set
U={(h,8,0)l-3<h<30<8<8,,{, <=8}

where {, < {, are arbitrary constants. Moreover, F is C* in 8 and { on
U, and C*® in h on the set

V={(h,8-3<h<%0<8<8), <l<&).
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Proof. From the theorem about the continuous and differentiable de-
pendence on solutions upon initial conditions and parameters, we know
that F € C% on U and € C* on V. To prove that it is C* in & and { at
h = —2/3, we can use a theorem of Andronov et al. [1] about the
smooth dependence of solutions upon parameters near a focus. To
prove F€ C* in 6 and ¢ at h =2/3, we can use a theorem of
Shoshitaishvili [1] about the smooth dependence of the separatrix upon
the parameters. D

We will consider F(h,8,,) as a perturbation of F(h,0,¢). The
function F(h,0, () is given by

F(h,0,{) = {L(h) + Ii(R), (1.12)

where

I(h) = [rx"ydx, i=0,1,

h
and T}, is the level curve of H(x, y) = h. The orientation of T}, is

determined by the direction of the vector field (1.8). By Green’s
formula

Io(h)=Lhydx=ffD(h)dxdy>0, he( i i]

where D(h) is the region surrounded by T}, It is easy to show that

li Iy(h) = i Li(h) = 0.
im Ik = tim (k)

By the Mean Value Theorem of integrals, we have

1(h) lim ffD(h)xdxdy

im im = i
ho—2/3 Io(h) ho—2/3 f dxdy R —2/3
D(n)

where (¥(h), ¥(h)) € D(h) and D(h) shrinks to the point (—1,0) as
h— -2/3
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Now we define

Iy(h)
P(h)={ Iy(h)’ (1.13)
1, h=-2.

It is continuous in A € [-2/3,2/3].

We remark here that by Lemma 1.4, to determine the existence and
the number of periodic orbits for (1.7), we only need to study the
existence and the number of zeros for the function F(h,$§,¢) with
respect to A € (— £,2). On the other hand, F(, 8,{) can be approxi-
mated by F(h,0,{) = I,(h)({ — P(h)). Hence, the behavior of the
function P = P(h), as a ratio of two Abelian integrals, is crucial in our
discussion.

Lemma 1.6. If —2/3 <h <2/3, then P(h) satisfies the following
Riccati equation:

(9h% — 4)P'(h) = TP? + 3hP — 5. (1.14)

Proof. We have that

n(h)

I(h) _fxydx 2 o

ydx, i=01,2,..., (1.15)

where n(h) and ¢(h) are shown in Figure 1.4 and

2{h +x3
y= x 3

1/2
} (1.16)

From (1.9), we obtain that

n(hy = 2" Yo, i=012.... (1.17)
&n) Y
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Tn

&(h) n(h)

Figure 1.4.

Using (1.15), (1.16), and (1.17), we have

10 =2

On the other hand, an integration by parts shows that

. h .
i+1 |1 1 n(h)xl+1(x2 _ 1)

y - =
&ry I+ 1f§(h) y

i+1

Ii(h) = 2[
Since y(£(h), h) = y(n(h), h) = 0, we obtain by (1.17) that

Ii(h) = : o Tea(h) = Lis(h)).
Removing I/, ,(h) from (1.18) and (1.19), we have
(2i + 5)I,(h) = —4IL (k) + 6hI!(h).
In particular, we have

51, = —4I| + 6hl),
U, = —4I, + 6hI,.

We claim that I,(h) = I(h). Indeed, from (1.9)

dH =ydy + (1 —x?) dx,

2
= 2hI(h) = 20}, (k) + STos(h).

(1.18)

(1.19)
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that is,
(1 —x?)ydx = ydH — y* dy. (1.21)

Integrating (1.21) along T, we have I,(h) = I(h).
Thus, (1.20) becomes
51, = 6hl — 411,
0= Ol ~ (122)
71, = —4I) + 6L

For —2/3 < h < 2/3,(1.22) is equivalent to the following Picard—Fuchs
equation

, .15
(9> = 4)I; = —-hl, + I,
’1 (1.23)
(9> = 4)I; = 51y + —-hl,.

It is easy to obtain (1.14) from (1.23), (1.13), and the following equation

1
P'(h) = (Il = L1,). o
0

Lemma 1.7. P(h) has the following properties:

) lim,, _, :P(h) = 3;

@ P'(h) <0 for —2/3<h<2/3, P(h)—> —1/8 as h > —2/3,
and P'(h) - —wash - 2/3.

Proof. P(h) is a solution of (1.14) and P(h) = 1 as h - —2/3. We
rewrite (1.14) into the following form:

dpP

dt

ah 9h? + 4
— = —9h* + 4.
dt

—7P? — 3hP + 5,

(1.24)
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Figure 1.5.

The graph of P(h) is the heteroclinic orbit from the saddle point
(=2/3, 1) to the node (2/3,5/7) in the hP-plane (see Figure 1.5). Thus
P(h) > 5/7 as h - 2/3.

The graph of the equation

TP% + 3hP — 5 =0 (1.25)

has two branches of curves on which the direction of the vector field
(1.24) is horizontal. The branch of the hyperbola (1.25) above the h-axis
is given by

C,: a(h) = %[—3;, + (9h? + 140)"7. (1.26)
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Along the curve C, we have P'(h) = 0 and ¢'(h) = —3¢°/7¢* + 5.
Hence the vector field (1.24) is transversal to C, from the left to the
right for — 2< h < 2. It follows from (1.14) and (1.26) that

1 1
. ’ - _ _ d 1 _ = ——
h_}11n2/3P (h) g an qa(-2/3) 2

Therefore, the graph of P(h) is entirely above C,, that is, P'(h) < 0 for
-2/3 <h <2/3. The fact that P'(h) > —o as h - 2/3 can be
obtained directly from (1.14). |

Now by using the properties of P(h), we continue with the proof of
Theorem 1.2.

Lemma 1.8. There is a neighborhood A, of pu, = p, = 0 such that for
(i1, 12,) € A, there is a curve HL = {ulp, = — Bus + 0¥, u, >
0} which is a homoclinic loop bifurcation curve of (1.5).

Proof. By Lemma 1.4 and (1.10), the condition for existence of the
homoclinic orbit of (1.7) is: F(2/3,8,¢) = 0. From (1.12), (1.13), and
Lemma 1.7, F(Q2/3,0,¢,) = 0, where {, = P(2/3) = 5/7, and
dF/3{(%,0,¢) = 1,(2/3) > 0. By the Implicit Function Theorem, there
exist a 8, > 0 and a function ¢ = {(8), defined for 0 < & < §,, such
that F(2/3, 8, {(8)) = 0, that is, y(2/3, §, £(8)) is a homoclinic orbit.

Using (1.6), we can change the parameter (8, {) back to (u,, u,) to
obtain the equation of the bifurcation curve.

In fact, u, = {82 and {(8) = {,(1 + O(8)) = 3(1 + O(3)) imply & =
O(uY?) as u, — 0. In addition, u; = —8* and p, = {82 imply that

2

49
- -Ba41o00))-= — 1 + O(kY?),
0

where w, >0 and (up, ;) € A, = ((uy, )l Iyl + gyl < 83). This
completes the proof of Lemma 1.8. 0

Lemma 1.9. For a given h, € (-2/3,2/3), there exist 8, > 0 and a
unique function { = {(h, 8) defined in h € [h,,2/3], 0 < 6 < §,, such
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that

(1°) the trajectory y(h,8,{(h,8)), hy <h <2/3 and 0<8 <8, isa
periodic orbit of (1.7), which is the unique limit cycle of (1.7); and

(2% 8¢, /0h <0, hy <h <2/3,0<8 <3,

Proof. We note from (1.12) that

F(h,8,8)|5-0 = Io(h){ + Ii(k) = I(k)({ — P(h)), (1.27)
where P(h) is defined in (1.13). Hence, for each h* € [h,,2 /3] we have

aF

F(h*,0, P(h*)) =0,
( (7*)) 57 ;s

= Iy(h*) > 0.

By the Implicit Function Theorem there exist 6* > 0, ¢* > 0, and a
function ¢ = {*(h, 6) definedin 0 <& < 6* and h* —o* <h < h* +
o* (if h* = 2/3, then we consider the interval h* — o < h < h*) such
that

F(h,8,0*(h,8)) = 0.

This means that v(h, 8, {*(h, 8)) is a periodic orbit of (1.7).
Thus, by the compactness of [h;,2/3], there exist §, > 0 and a
function { = ¢,(h, ) defined for 0 < 8 < §,, h; < h < 2/3 such that

{(h,0) =P(h), F(h,8,{(h,8))=0, (1.28)

that is, the trajectory y(h, 8, {,(h, 8)) is a periodic orbit of (1.7) passing
through the point (x, y) = (x(h), 0).

Since F € C” for all §, {, and —2/3 <h <2/3 (Lemma 1.5), we
obtain from (1.28), (1.27), and Lemma 1.7 that

dF  OF af,

RN + —_—— =

oh  ar, oh
—|  =1I,(h) >0,
A o(h)

aF

R lo=0.c-cn0 I (¢4, 0) = P(R)) = Io()P'(R) > 0.
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This implies that (note that Iy(h) is finite for —2/3 < h < 2/3)

y(h, 8) 2
—ah_3=0<0, hISh<§',
and
(h,d
{—1(———) - —o, ash—2/3
dh 8=0

Hence, we can choose §; so small that

3y(h, 8) <0

9 R 0<é <é,, hy<hx<

(SRR S

Therefore, for any &, € (0, 8,) and ¢, € (£(8,), P(h;)), where
{(8) = 2(1 + 0(8)) is the function defined in Lemma 1.8, there exists a
unique h, € (hy,2/3) such that {, = {,(hg, 8,). Hence

F(hg, 8, 40) =0, (1.29)
that is, y(hy, 8, {,) is a periodic orbit for (1.7).
On the other hand, we consider the trajectory y(h, §,, {,) for h near

hy. From (1.11) and (1.29) we have

F
oh

H(Qz) - H(Ql) = 3F(h’50,{0) = 3[ (h - ho)],

(h, 80, L0)

(1.30)

where Q, and Q, are the intersection points of y(h,§,,{,) and the
x-axis (see Figure 1.3), and % is between A, and h. Since dF /dh > 0 for
small §, (1.30) implies that the periodic orbit y(A,, 8, {,) is an unstable
limit cycle. O

Lemma 1.10. There exist h, € (-2/3,2/3), 8, > 0, and a unique func-

tion { = {,(h,8) defined for —2/3 <h <h,,0<8 <8, such that

@ if { =¢(h,8), =2/3 <h <h, and 0 <8 <§,, then the system
(1.7) has an unstable limit cycle y(h, 8, {,(h, 8)) passing through the
point (x(h),0);
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(i) 3¢,/0h <0, =2/3 <h <h,,0<8 <5,.

Proof. The linearized equation of (1.7) at the focus (—1,0) has the
matrix

0 1
| )

We use the notations as in the Theorem 3.2.6 and replace w by ¢, and
take £(8) = 1. The eigenvalues at (—1,0) are :

%{5(; -1 zifs- a2 - 17}

Hence the conditions (H}) and (HY) are satisfied, and a* > 0.
Next, we use the formula (3.2.34) and obtain

Re(C,) = %(5 — 282).

Hence the condition (H¥) is also satisfied (for small §) and C} > 0.

By Theorem 3.2.6 we can find X > —1, §,> 0, and a function
{ = {Xx,8) defined for -1 <x <% 0<2&<286, such that
y(h, 8, {,(x,8)) is a periodic orbit of (1.7) passing through the point
(x, 0). Moreover, since a* - C§ > 0, we have

3, -
-a—<0, -l<x<Xx, 0<68<3s,. (1.32)
x

From (1.9) we have that x = x(h) satisfies

1
x - §x3 =h.
Thus
ax(h)
h >0, for -2/3<h<2/3. (1.33)

If we take h, as the value satisfying x(h,) = X, then -2/3 < h, <2/3.
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0o(h,8) = §y(x(h),8). (1.34)

Then the conclusion (i) follows.
From (1.34), (1.32), and (1.33), we have

E—a—fz-’h <0 2/3<h<h 0<86<$6
ah - ax x( ) ’ / 2 b = Y2
and thus the conclusion (ii) follows. 0O

Lemma 1.11. There is a neighborhood A, of u, = p, = 0, such that if
(ny, ;) € A5 and is between the curves H and HL (defined in Lemmas
1.3 and 1.8, respectively), then the system (1.5) has a unigue periodic orbit
and it is an unstable limit cycle. Moreover, as (., ;) tends to H, the
limit cycle shrinks to the focus; as (u,, u,) tends to HL, the limit cycle
tends to the homoclinic loop. The system (1.5) has no limit cycles if
(1, 1,) € (HU HL) N A,

Proof. Instead of (1.5) we first consider the system (1.7).

By Lemma 1.10, 3h, € (-2/3,2/3), 6, > 0, and a function { =
{,h, 8) defined in —2/3 <h < h,,0 < § < 8§, and having the proper-
ties (i) and (ii).

If we choose h, € (—=2/3, h,), then by Lemma 1.9 35, > 0 and a
unique function ¢ = ¢,(h, ) defined in h, <h <2/3,0 <8 <8, and
having the properties (1°) and (2°).

Now let §; = min(8,, §,). Then by the uniqueness of {,(h, §) we have

L(h,8) =L(h,8), hy<h<h,, 0<8<3,.

Thus we can define a function in the whole interval —2/3 <h <2/3
as follows

{z(h,a), if—2/3 _<_h5h2,

EED =), itk sh<2/3,

0<06<8,,



246 Codimensional Two Bifurcations

ol s5/7 1 ¢ o m

Figure 1.6.

which satisfies

(1) y(h, 8,¢5(h, d)) is a periodic orbit of (1.7) passing through the point
(x(M),0), =2/3 <h <2/3;

(2) 3¢,/0h <0, =2/3 <h <2/3,0<8 <38,

The condition (2) implies that for every &, € (0,8;) and ¢, €
[£(8), 1], where ¢ = {(8) is the function corresponding to the homo-
clinic bifurcation and described in Lemma 1.8, 3 a unique h, €
[—2/3,2/3] such that {, = {5(hg, 8,). Hence, if ¢, € ({(8,),1), then
v(hg, 84, {o) is the unique periodic orbit of (1.7). Moreover, it is an
unstable limit cycle. If {5 = {(8,) + (or 1 —), then the limit cycle
tends to the homoclinic loop (or to the focus).

We finally return from the parameters § and { back to y,; and p, by
using the scaling (1.6).

Since

= 8%  m,=1{(87

the region 0 <8 < &,, {(8) < ¢ <1 corresponds to a cusp region
0> p, > —8% and (u,, it,) is in between the bifurcation curves H and
HL (Figure 1.6). Noting that {;(— %,8) = 1, {3(3, 8) = {(8) (defined in
Lemma 1.8), and 9{,/0h < 0, we conclude that the limit cycle will
shrink to the focus or become the homoclinic loop as (u, u,) goes to H
or HL, respectively. The existence of §, guarantees the existence of the
neighborhood A ,. This completes the proof. a

Lemma 1.12. There is a neighborhood A, of u, = u, = 0 such that if
(pq, m,) € Ay and is above the curve H or below the curve HL, then the
system (1.5) has no periodic orbits, and has the phase portraits shown in
Figure 1.1.
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Proof. By Lemma 1.11 we know that if (u,,u,) € A; N (H U HL),
then the system (1.5) has no periodic orbits, and any positive trajectory
v starting from the point

pEL={(x,y)l-1<x<1,y=0}

is an expanding spiral if (u,u,) €H or a contracting spiral if
(4, 1,) € HL (see Figure 1.1).
We rewrite (1.5) in the following form
x=P(x,y) =y,
y=0(x,y) =p  +x> +xy + u,y.

We note that

P Q
9P 30 1=y2>0, ify=0. (1.35)
opy  Op,

This means (1.5) is a family of rotated vector fields with respect to p,.
For details of rotated vector fields, see Zhang et al. [1].

Now we take A, = A;. For any (u,, u,) € A, and above H (or below
HL), we can find (u,,z,) € H (or € HL). Any periodic orbit of
(1.5)(#1’ upy I it exists, must cut the segment L. The positive trajectory y
of (1.5)(#1"72) starting from a point p € L is an expanding (contracting)
spiral, and due to (1.35), the positive trajectory y of (1.5),,, u,) Starting
from the same point p must be entirely located outside (inside) ¥, and
hence v is also an expanding (contracting) spiral. The phase portrait is
as shown in Figure 1.1 O

Combining the conclusions of Lemmas 1.3, 1.8, 1.11, and 1.12, we
obtain Theorem 1.2, where A = A, N A, N A; NA,.

(II) A Canonical Form for the System (1.4)

Theorem 1.13. In a sufficiently small neighborhood of the point x =y =
€ =0, there is a C* transformation

u=u(x,y,e),
v=uv(x,y,€)
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such that u(0,0,0) = v(0,0,0) = 0. It is nondegenerate at the point
x =y = 0 and takes the system (1.4) to the form

u=v8(u,e),
b= [d(e) + y(e)u + u® + uwQ(u, €) + v:®(u,v,€)]0(u,¢),

(1.36)

where 8, Q, ®, ¢, ¢ are C* functions, $(0) = (0) = 0, Q(0,0) = 1, and
0(0,0) = 1.

Proof. Let

E=1x,
n=y+w(x,y,e),

where (x, y) is in a neighborhood of the origin in R? and € is in a
neighborhood of the origin in R* so that the above transformation is
invertible. Then (1.4) is transformed into the following equation defined
in a neighborhood of the origin (0,0,0) in R X R X R*:

§=m , (1.37)
n =F({€) +nG(&,€) +n°H(E 7€),

where F, G, H are C” functions, and

aF 9*F
F(0,0) = E(O,O) =0, F(O,O) =2,

G
G(0,0) =0,  57(0,0)=1,  H(0,0,0) 0.

Since G(0,0) = 0 and G /3£(0,0) = 1 *# 0, it follows from the Implicit
Function Theorem that there exists a C* function «(e) defined in a
neighborhood of € = 0 in R* such that G(a(e), €) = 0 for each e in this
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neighborhood. Then the following change of variables

{u =¢-a(e),

v=m

brings (1.37) to the following equation near the origin (0,0,0) in
R X R X R%:

u=uv,
{0 = F(u,€) + uwG(u,e) + v?H(u,v,€), (1.38)

where F, G, H are C* functions and
F(0,0 oF 0,0) =0 °F 0,0) =2
(’)_au(’)_’ auz(’)_,
G(0,0) =1,  H(0,0,0) = 0.

By using the Malgrange Preparation Theorem (Theorem 3.1.10), we
have

F(u,e) = [d,(€) + dy(€)u + u?]0(u,€),

where ¢,, 6 € C*, ¢$0) = 0 (i = 1,2) and 6(0, 0) = 1. Therefore, (1.38)
can be rewritten in the following form (in a neighborhood of (0, 0, 0) in
R X R X R¥)

u=v,
G(u, H(u,v,e

( e)uv ( )v2 0(u,¢€).
O(u,e) 0(”76)

0= |di(€) + dy(e)u +u*+

(1.39)

v

Vo(u,¢)’

where (u, v, €) is in a neighborhood of the origin of R X R X R*. Then

ii=u, 0=



250 Codimensional Two Bifurcations

(1.39) is transformed into the form

i =0y0(i,e€) ,
5= [$1(e) + dy(©)i + @ + a5B(d, €) + 5°¥(a,0,€)|V6(7,e)
(1.40)
where
O(d,e) = Glae) $(0,0) =1

Ve(i,e)’

- ~ 1 a6
‘P(u,v,e) = H(u,v\/O(u,e) ,6) b mg(u,e).

System (1.40) is now in the same form as (1.36), and this completes the
proof. D

Lemma 1.14. In a sufficiently small neighborhood of the point u = v =
€ = 0 there is a C* transformation

x=x(u,v,¢€),
y=y(u,v,¢)

such that x(0,0,0) = y(0,0,0) = 0 and it is nondegenerate at the point
x =y =0, and it takes the equation (1.36) to the form

x =y§(x,e),
v =[8(e) + ¥(e)y +x + Q(x,€) +y2B(x,y,€)]8(x,¢),

(1.41)

where 0, ¢, ¥, Q, ® are C* functions, $(0) = (0) = 0, 0(0,0) = 1, and
6(0,0) = 1.
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Proof. Let

¥ (e)
7

x=u+

y =uv.

Then (1.36) is transformed into the form (1.41), where

B(x,€) = o(x Q) ,e),

2
_ ¥?(e€)
$(e) = (e) = ——,
¥(e)

¥(e) = —T(f(f) +1),

30 =0r - B e - Edece ),

B(x,y,€) = <l>(x - @,y,e),

and f(e), g(e, x) are defined by

Q(x - "’(26) ,e) =1+ f(e) +g(e, x)x.

251

The conditions Q(0,0) =1 and &(0) = ¢(0) =0 imply f(0) =0,

#(0) = ¢(0) = 0, and 0(0,0) = 1.

O

From now on, we focus our attention on equation (1.41). Obviously,
the orbits of (1.41) and the orbits of the following equation are the

same if we restrict (x, y, €) to a small neighborhood of (0, 0,0):

x=y,

y=¢(e) +d(e)y +x2+xy0(x,€) +y*®(x,y,¢),

(1.42)
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where ¢, ¥, O, ® are the same as in (1.41). If

a ($ € ,_ € d a’_
rank M)— = 2 |say, —(——ﬂ # 0], (1.43)
de e=0 (e, €2) |,
then we can make a change of parameters
Hy = a(f)’
/"'2 = QZ(G)’
B3 = €3, (1.44)
Fom = €y
and (1.42) becomes
x=y,
(1.45)

Y=g+ py +x2+090(x, 1) +y20(x,y, 1),

where Q(x,p) = O(x, e(p)) and ®(x,y,u) = ®(x,y, e(u)), and € =
e(u) is the inverse transformation of (1.44) satisfying €(0) = 0. Hence
Q, ® € C* and Q(0,0) = 1.

In particular, if we let Q(x, ) =1 and ®(x, y, u) = 0, then (1.45)
becomes (1.5), which is a two-parameter family of vector fields, and its
bifurcation diagrams and phase portraits have been studied in part (I).
We will show in the next part that the topological structures of the
bifurcation diagrams and the phase portraits of (1.45) are the same for
different Q and ®, as long as Q, ® € C* and Q(0,0) = 1.

If the condition (1.43) is not satisfied, then, for a given e (|€
sufficiently small), equation (1.42) is only a special case of the family
(1.45). Hence, there is no new kind of phase portrait.

(III) The Versality of the Deformation (1.5)

As in Section 3.2, we let V(z,) be the space of germs of C* vector fields
at z, € R?, and

Z={(z,2)|Z<€V(z),z € U},

where U is a small neighborhood of the origin in R2.
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Suppose Z € V(z,) has the following representative

i =H(z), (1.46)

f(x,y)

eR?, HecC~
g(x,y)

z=(;)eR2, H(z)=(
We have the natural projection

m & > J* (2,Z) » (z,H,DH, ..., D*H),

where each D’H (j = 0,1,..., k) gives a coordinate expression for the
Taylor coefficients of the kth-order derivatives of H at z. In our case,
dim(z) = dim(H) = 2, dim(DH) = 4, and dim(D*H) = 6. We could
take the Jacobian and Hessian matrices at z as DH and D2H, respec-
tively.

We say that (1.46) has the same singular character at z, as (1.3) at 0,
if the following conditions are satisfied:

(H,) The matrix of the linear part of H(z) at z, is similar to g (1) .

(H,) Changing (1.46) to its normal form (1.2) at z,, we have ab > 0.
Now consider a subset of 2
3 ={(z,Z) € #I|Z satisfies (H,) and (H,) at z € U},
where U is the small neighborhood of z = 0.
Lemma 1.15. If k > 2, then w,3 is locally a smooth codimension-4
submanifold of J*.
Proof. Note that
7,5 ={(z, H, DH)|f = g = det DH = Tr DH = 0, DH # 0},
T3 = ‘"'2_11(‘"'12)|(H2)’

where 1, is the natural projection from J?2 onto J', and the condition
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(H,) gives ab > 0 which is independent of the conditions f=g =
det DH = Tr DH = 0 and DH + 0 (see Section 2.1, Example 2.1.15).
Hence, 7,3 is a smooth submanifold with codimension 4 in J!, and
m,3 is locally an open subset of 75;'(7(Z)). By the same arguments as
in the proof of Lemma 3.2.1, the desired result follows. O

We consider a deformation of (1.3)
2 =H(z,¢), (1.47)

where z € R, e e R™, H € C*.

Definition 1.16. Equation (1.47) is called a nondegenerate deformation
of (1.3) if the mapping

(z,€) » 7,H(z,¢)

is transverse to m,% at (z,€) = (0,0) in J2

Lemma 1.17. Any nondegenerate deformation of (1.3) is equivalent to
systems (1.45) (dim{u) = dim(e)).

Proof. By Lemmas 1.13 and 1.14, we only need to show that the
nondegenerate condition implies the condition (1.43). Since the nonde-
generacy is independent of the choice of coordinates, we can prove the
fact by using equation (1.42), that is we consider a nondegenerate
deformation (1.47), where

f(x,y,€) =y,
g(x,y,€) =d(e) +¥(e)y +x2 +x30(x,€) + y?®(x,y,¢).

We know that 7,3, can be expressed locally by

f=g=detH=TrH =0,
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where

_ S 8) oo, %

det H R r
(x,y) dx dy

By Theorem 3.1.5 and Definition 1.16, the nondegeneracy of (1.47)
implies

0 1 0 0 0
¢ o
0 o 2 % 2
de, Oe, de,, 4
ankl 1 0 0 - 0 -
W Wy
de; Oe, de

m J(x,y,6)=(0,0,0)

and this implies

Theorem 1.18. The family (1.5) is a versal deformation of (1.3) at
(x, y) = (0,0) provided we consider only nondegenerate deformations of
(13).

In order to prove Theorem 1.18, it is sufficient to prove that any two
families of (1.45) are equivalent.

Lemma 1.19. For any Q, ® € C*(Q(0,0) = 1), the conclusions of Theo-
rem 1.2 are true for equation (1.45).

Proof. By the scaling (1.6), (1.45) takes the form

=y,
y=—-1+x2+8({+x)y+ 0(8%),
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and the bifurcation function F(h, 8, {) becomes

F(h,8,0) = /y(h . {)((; +x)y + 0(8)) dx.

Therefore, all the discussions in part (I) are valid. 0

Lemma 1.20. For any two families (1.45), there is a C* diffeomorphism
in a neighborhood of u = 0, fixing the point . = 0 and mapping the
bifurcation curves of one to the other.

In order to prove Lemma 1.20, we need the following lemma. Let
Y,,Y,,Y; be three C* curves in a neighborhood of the point x =y =0
in the xy-plane, tangent to each other at the point x =y = 0. We
choose suitable coordinates so that the curves Y,,Y,,Y; are the graphs
of the functions Y,(x), Y,(x), and Y5(x), respectively, and

I(Y,,Y,,Y3) = [¥5(0) - Y{(0)] /[Y5(0) — ¥7(0)], (1.48)

where Y[(0), Y;(0), Y;(0) are different numbers. We note that
I(Y,,Y,,Y) is a finite number different from zero.

Lemma 1.21. Suppose that Y,,Y,,Y; and Z,, Z,, Z are two sets of C*
curves satisfying the above conditions. Then the condition

I(y,y,yv=I12,2,,2,) (1.49)

is necessary and sufficient for the existence of a C* diffeomorphism in a
neighborhood of the origin, fixing the origin and mapping Y; to Z,,
i=1,23.

Proof. To prove the necessity, we suppose that there is a C* transfor-
mation

z=f(x,y), u=g(x,y)
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that transforms Y;: y = y(x) to Z;: z = z,(u), i = 1,2, 3. Therefore
f(x,y:(x)) = z:(8(x, (%)), i=1,2,3.
Differentiating the above equality we get
fi+fyyi=zi(g: + 8y (1.50)

and
" ” 7 ” ! A/ " ! ! ! 2
xx + 2fxyyi +fyyyi2 +fyyi = zi(gx + gyyi)

+ 280, + 28, ¥, + &5, 37 + 8,¥).

(1.51)

Since £(0,0) = g(0,0) = 0 and y,(0) = z,(0) = y}(0) = z/(0) = 0, from

(1.50) we have f,(0,0) = 0 which implies that £,(0,0) # 0 and g(0,0)
# 0. From (1.51),

f2x(0,0) N £,(0,0)

z;(0) = 3 7
(8:(0,0))"  (£:(0,0))

y;(0).

By using the above equality and (1.48), we have
I(Yl,Yz,Ys) =1(Z,,Z,,Z,).

For the converse we will prove that both Y,,Y,,Y, and Z,,Z,, Z,
can be converted respectively by C* transformations to the set of C”
curves X, X,, X, with X (x) =0, X,(x) =x?% X,(x)=cx? where
c=1Y,Y,,Y,) =IZ,,Z,, Z,). In what follows, we will give the proof
for Y,,Y,,Y; only. The proof for Z,, Z,, Z, is the same. It is easy to
find a C* transformation in a neighborhood of the origin to convert
Y, Y, Y, to ¥,,Y,, ¥, with §,(x) =0, 5,(x) = ax?(x), and §,(x) =
Bx2y(x), where « and B are unequal nonzero numbers, and ¢ and ¢
are C* with £(0) = ¢/(0) = 1. From the necessity part of the lemma,
B/a =I(Y,,Y,,Y;). We make a C* change of coordinates near the
origin again by

x—>x, 5> ab(x)y.
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Then Y,,Y,, Y, are mapped to Y;,Y,,Y, with 5,(x) =0, 5,(x) =x?,

and y,(x) = cx2¢(x), where ¢(x) is a C* function with ¢(0) = 1 and

¢ =B/a =1I(Y,,Y,,Y;). Now let us find a C* change of coordinates in

a neighborhood of the origin to convert Y;,Y,,Y; to X;, X,, X,.
Suppose

u=y, v=x+(y—x)f(x)

transforms the curve y = cx’¢(x) into the curve u = cv?. Then we
have

cx’p(x) = c[x + (ex?¢(x) — xz)f(x)]z.

Hence
Vé(x) —1
f(x) = ——————7.
x(ch(x) — 1)
Since ¢(0) =1, ¢ € C*(x), and ¢ # 1, one has that f€ C* in a
small neighborhood of x = 0. This proves Lemma 1.21. O

Proof of Lemma 1.20. For any family (1.45), the equations of bifurca-
tion curves are pu; =0, p; = —p3, and p, = — £ pd + O(uY?) as
i, = 0 + . Hence, by formula (1.48),

49
I(SN, H, HL) = —,  i=12.

Thus Lemma 1.20 follows from Lemma 1.21. O

Lemma 1.22. Any two families of the form (1.45) are equivalent.

Outline of the Proof. By Lemma 1.20, we may carry out the construction
of two families 4 and A over the same neighborhood A in the
parameter space. The neighborhoods of (x, y) = (0,0) for A and A are
denoted by N(x) and N(u), respectively.

Then we may construct a homeomorphism ¥(u) for a fixed p € A,
mapping K(e) (the limit set and singular trajectories of family A in
N(w)) onto K(e), where K(e) is a similar set of 4 in N(u).
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Finally, we may extend the homeomorphism ¥(u) to obtain a homeo-
morphism mapping the trajectories of A in N onto the trajectories of
Ain N.

For more details, we refer to Bogdanov [2] and Sotomayor [1]. O

Remark 1.23. In Definition 3.1.14, if the mapping A(-, €) is continuous
in €, then (X; x,, €,) and (Y; y,, ;) are said to be strongly equivalent.
Otherwise, they are weakly equivalent. Bogdanov [2] proved the versality
of (1.5) in this weak sense. Recently Dumortier and Roussarie [1] gave a
proof for the strong versality of (1.5).

4.2 Double Zero Eigenvalue with Symmetry of Order 2

In Sections 4.2-4.5, we will study the families of vector fields in the
plane that are invariant under a rotation of the plane through an angle
27/q, q = 2,3,... (the case g = 1 is discussed in Section 4.1). In this
section, we consider the case g = 2. Khorozov [1] and Carr [1] investi-
gated this case of codimension two. We will introduce their results.
However, some proofs may be given in a different way. The normal
form of g = 2 is (see Section 2.11)

{x - (2.1)*

y=¢€,x+ey+x>—xd,

where €, and €, are small real parameters. We will give bifurcation
diagrams of the vector fields (2.1)* and (2.1)~, respectively. In Fact,
(2.1)* is a versal deformation of

=y,
{y = ix',‘a _ny. (22):t

It will be shown in Lemma 2.2 that any perturbation of (2.2) with a
small parameter u can be transformed into the form

=y,

) s s v (23)*
y=¢(r)x + ¢(n)y £ x° +x2y®(x,pn) +y*¥(x,y, 1),
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where p € R* (k > 1), ®(x,0) = -1, and ¥(x, y,0) = 0. If k = 2 and
we consider (2.3) as a nondegenerate deformation, then there exists a
transformation of parameters

€1 =d(11; 12)s € =¢(1, 1r)

such that (2.3)* becomes

*=, 2.4)%
y=€x + €y x> +x%y®(x,¢e) +y*¥(x,y,¢), (24)
where ®(x,0) = —1, ¥(x, y,0) = 0.

In Lemmas 2.3-2.10, we will discuss (2.4)* and will show that the
topological structures of the bifurcation diagrams and phase portraits of
(2.4)* are the same for different ® and V. If ® = —1, ¥ = 0, then
(2.4)* becomes (2.1)*. Moreover, it is not difficult to see from these
lemmas that for every small 1 € R* the phase portraits of (2.3) must
also be contained in the phase portraits of (2.4).

All the results are local. That means the bifurcation diagrams are in a
small neighborhood of parameter space near (e, €,) = (0,0), and the
phase portraits are in a small neighborhood of phase space near
(x, y) = (0, 0). Therefore, all bifurcation theorems in this chapter should
be understood in this sense. Thus, we will obtain the following theorem.

Theorem 2.1. We have:
(1) System (2.1)* is a versal deformation of (2.2)* among all the
nondegenerate deformations of (2.2) * with symmetry of order 2.
(2) The bifurcation diagram of (2.1)* consists of the origin and the
following curves:
(@ R = {ele; = 0, €, # 0},
(b) H={ele, =0, ¢; <0},
(©) HL = {ele, = — 1&, + O(e}/?), ¢, < O}.
The bifurcation diagram and phase portraits of (2.1)* are shown in
Figure 2.1.
(3) The bifurcation diagram of (2.1)~ consists of the origin and the
following curves:
(@) R*={ele; = 0, €, > 0},
(b) R"={ele, = 0, €, < 0},
(c) H, = {ele, = 0, €, < 0},



Double Zero Eigenvalue with Symmetry of Order 2 261

Figure 2.1. The bifurcation diagram and phase portraits of (2.1)*.

(d) H, = {ele, = €, + O(e}), €, > 0},
(e) HL = {ele, = 4¢,/5 + O(€}7?), €, > 0},
() B = {ele, = ce, + O(e}/?), ¢, > 0, ¢ = 0.752}.
The bifurcation diagram and phase portraits of (2.1)* are shown in
Figure 2.2

Lemma 2.2. Consider a family of systems

=y +wy(x,y,u), 25)
y=ax3+bxly + wy(x,y,n), '

where ab # 0 and p = (u,, ..., u,). Suppose w; (i = 1,2) satisfies:
(D wlx,y,0) =0,
2 wix, y,u) € C,
) wl—x, -y, pn) = —wilx,y,pn).
Then there exists a smooth mapping (x, y, u) = (¥(x, y, u), ¥(x, y, u))
that transforms (2.5) into a system topologically equivalent to (2.3)*.
If k = 2 and (2.5) satisfies the following additional condition:
(4) the matrix of the linear part of (2.5) at the origin is a versal

deformation of g (1) , then there exists a smooth mapping

(%, ¥, 10, 12) = (X(x,y,1),5(%, ¥, 1), (1), €2(1))

that transforms (2.5) into a system topologically equivalent to (2.4)*.
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1 OuR™ v B
Figure 2.2. The bifurcation diagram and phase portraits of (2.1)".
Proof. Let
£=1x,
n=y+w(x,y,n).
Then (2.5) becomes
£=m,
7 =ag(1+w),) +b2n(1 + w)y) (2.6)

+{—b§2w1(1 +wh,) + w1+ why) + nw’lx].
Define functions 4; and ¥; (i = 1,2, 3) in the following way:
wiy(x(€,m, 1), y(§,m, 1), 1)
= hy(&, 1) + nhy(£, 1) + ?ha(€,m, 1),
=b&2w(1 + wi,) + wy(1 +wh,) + w),

= V(& pm) + V(& 0) + 02 Ws(€, 1, 1),
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Obviously,

hi|,u-=0 =\I,l'|,u.=0 = 0’ i= 1’ 2’3'

Thus (2.6) takes the form

E=m,
N =a&3(1 + hy) + ag’nh, + bE (1 + k) 2.7
+\I,l + ”7\1’2 + ”72‘1’(§, n, /-L)’
where

Since (2.7) has a symmetry property with respect to (£, ) under a
rotation through 7, we have

V(1) = o ()€ + By(&, )€,

ah2(§’ I"’)§3 + \I,Z(g’ I'L) = ¢2(l“’) + BZ(g’ ”)§2

a+ah, +B,=F(&p),
b +bhy + B, = G(&, ).
Thus, (2.7) becomes
E=m,
N =¢(r)E+ b p)n + EF(E, 1) + E29G(&, 1) + n*P(£,m,1).

(2.8)

Using the Malgrange Preparation Theorem for the symmetric case (see
Poénaru [1, p. 64-5)], we have

$i(m)€ + F(£,1)€° = [$(n)€ + sen F(0,0)£°]6(¢, 1),
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where F(0,0) =a # 0, 6(£,0) =lal >0, F(—¢,p)=F(,p), and
0(—¢, u) = 6(¢, u). Thus

4’2(/-‘—)
8(E.n)

n=|d(p)E+ &+

P
G(§,n)§2n + (&;m,1)

+0(§,n) 0(¢,m) 8E m)-

By changing coordinates

u=¢,
{v = n/Vo(E, k),

we obtain

u=uv/8,
) = »/5[43(/&)14 +u + (% - W%)U

+u20G(u, n) + v?®(u,0, )],
where G = G / V8 . Using the symmetry property again, we have

¢, 6 .
T 2 e ¥ o(u, n)u?,

where §(0) = o(x,0) = 0. Denoting G + o by G, we finally obtain

u= \/5 ‘v,
b= \/5[4;(/1,)14 +d(p)v £ u® + uPoG(u,p) + v2<I>(u,v,/.e)],

(2.9)*

and (2.9)* is topologically equivalent to (2.3)*. If the condition (4) of



Double Zero Eigenvalue with Symmetry of Order 2 265

Lemma 2.2 is satisfied, then we can change parameters

€ = ‘5(#1, K2),
€= ‘&(#1:#"2)-

Thus (2.9)* is transformed into a system which is equivalent to (2.4)*.
In 2.9)%, ®(u,v,0) = 0 and G(u,0) = b/ Vial. If b/ Vial #+ —1, we
can take the scaling in (2.5)

lal Vial
x> —x, - — ——=(sgnb)y, t > —(sgnb)t,
b y m(g )y (sgnd)

before the first transformation. ]

We will now study (2.4)~ in detail. (2.4)* is simpler and can be
studied in a similar way.

Lemma 2.3. For (2.4)°, R*U R~ is a bifurcation curve of equilibria
while H, and H, are Hopf bifurcation curves (see Figure 2.2). When the
parameter € = (€,,€,) crosses R*U R~ from the left to the right, the
number of equilibria changes from one (a focus or a node) to three (one
saddle point and two foci or nodes). When e crosses H, from region I to
I, the focus changes from stable to unstable (the equilibrium is stable on
H)), and a unique limit cycle appears. When € crosses H, from region III
to IV, the foci change from unstable to stable (the equilibria are unstable
on H,), and two unstable limit cycles appear (each of them goes around
one focus).

Proof. The coordinates of equilibria satisfy y = 0 and €,x — x> =0,
that is, (0,0) for €, <0, and (0,0) and (+ /;,0) for € > 0. The
matrix of the linear part of (2.4)~ at (x,0) is

0 1
€ —3x? & +x*®(x,€) |

Hence, the first part of Lemma 2.3 is easy to obtain.
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In order to prove the second part of the lemma, we use the result of
Section 3.2.
On H,, the linear part of (2.4)~ at the equilibrium (0, 0) is

0 1
o &)

where €; < 0, €, = 0. By using formula (3.2.34), we have
1682 Re(C,) = —2 + O(lel) < 0.

Hence, the equilibrium is a stable (weak) focus, and a unique stable
limit cycle appears when the parameters vary across H,; from region I
to II (Theorem 3.2.4).

Similarly, on H, the linear part of (2.4)~ at the equilibrium (‘/Z ,0)

is

0 1
—2¢, € —€ + 0(Ie|2) ’

where €, > 0, €, — €, + O(le|*) = 0. Again, by using formula (3.1.34),
we have

1685 Re(Cy) = (=2 + O(lel))

- 5|~ (-ova)(~2yer + 0dien)” + o)

=4 + O(lel) > 0.

Hence, (\/Z; ,0) is an unstable focus and a unique unstable limit cycle
appears when the parameters cross H, from III to IV (see Figure 2.2).
By symmetry, we can obtain similar results for the other equilibrium

(— ey, 0). O

Now we turn to the discussion of periodic orbits and homoclinic
orbits. We first consider the more complicated case: €, > 0.
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y
rh

() )
8% x

Figure 2.3.

Making the following scaling for (2.4):
x — 8x, y — 8%y, € =82,

€, = 8%, t—>t/8, (2.10)

where 6 > 0, we have

=y,
{y =x—x3+8y({ —x%) + 0(8?%). (2.11)

For § = 0, (2.11) is a Hamiltonian system

{x - (2.12)

y=x—x°

with the first integral

IR

H X 2.13

, = — - — + .
(5.9) =5 - > (2.13)

The level curves {H(x,y) = h, h = — 1} are shown in Figure 2.3.

= — 1 corresponds to the foci (+1,0); when — + < h <0, H(x, y)
= h corresponds to two closed curves, each of them surrounding one of
the foci; H = 0 corresponds to a pair of homoclinic orbits; and when
h > 0, H(x, y) = h corresponds to a closed curve which surrounds the
pair of homoclinic orbits.
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y

Figure 2.4.

Welet L=L,UL,, where L, ={(x,y)ly=0,0<x <1} and L,
= {(x, y)Ix = 0, y > 0}. Then the closed level curve T, of (2.12) inter-
sects L at exactly one point (a(h),0)=P, if —1/4<h <0, or
(0, B(h)) = P, if h > 0. Hence L can be parameterized by A.

For every h € (—1/4,®), we consider the trajectory of (2.11) passing
through the point P, € L. Let this trajectory go forward and backward
from P, until it intersects the positive x-axis at points Q; and Q,,
respectively (Figure 2.4).

We denote the piece of trajectory from Q, to Q, by y(h, §, ).

Lemma 24. y = y(h,8,{) of (2.11) is a closed orbit if and only if

dt = 0. (2.14)

Moreover, v is a (or a pair of ) homoclinic orbit(s) if and only if (2.14) is
satisfied for h = 0 — (or 0 + ).

Proof. 1t is similar to the proof of Lemma 1.4. O
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The calculation shows that if & > 0 then (2.14) is equivalent to

F(h,8,0) = [y(h . {)[(g —x%)y + 0(8%)] dx = 0. (2.15)

In the same way as for Lemma 1.5, we can prove that the function
F(h, 8,¢) is continuous and C* in & and { on a set U = {(h, 5, )| —
1/4<h < +», 0<8 <8, {; <{<{,}, where §, is some positive
number and {; < {, are arbitrary constants. Moreover, F € C* in 4 on
the set V={(h,8,)he(-1/4,00 U0, +»), 0<56<8,, {;, <{<
0.

When & = 0, (2.15) becomes

F(h,0,) = [F({—xz)ydx={lo(h) —L(h) =0, (2.16)

where T, is the level curve of (2.12), and the Abelian integrals are given
by

I(h) = [Fx"ydx, i=0,2. (2.17)
h

Similar to the discussion in Section 4.1, we have that
M I k) >0forh> -1 I(-H=1(-H=0,and
2 lim, , _ %Iz(h)/IO(h) = 1.

Hence we can define a function

L(h
(k) , forh> -1,
P(h) = { I(h) (2.18)
1, forh = —1.

It is continuous on —1/4 < h < .

As in Section 4.1, the basic problem is: For given { and & small, does
there exist 4 > —1/4 such that (2.15) is satisfied? First, we study the
properties of P(h).

Lemma 2.5. When h > —1/4 and h # 0, P(h) satisfies the following
Riccati equation

4h(4h + 1)P'(h) = 5P*(h) + 8hP(h) — 4P(h) — 4h. (2.19)
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Moreover, P'(h) > —1/2 as h—> —1/4, and P'(h) > —» as
h—-0.

Proof. Similarly to the proof of Lemma 1.6, we can obtain

{310 = 4nI, + I, (2.20)

51, = 4hl; + I,
where

I(h) = [ x'ydx, i=0,2,4.

b,
From (2.13) we have that along I(H(x, y) = h):
0=xydH =xy*dy + y(—x? + x*) dx.

On the other hand, using y? = 2k + x? — 1x*, we have that

4

3 3 3
e y xy y , X

= —_] - = = —_— ] = = + - X
xy<dy d(3 3dxd3 32h)c 2dx

Hence

3
Xy 2 4 7
d(—) - ghydx - gxzydx + Ex“ydx =0.

Integrating the above equation along I, we get
1
I, = 7(4h10 + 81,). (2.21)

Substituting (2.21) into (2.20) and solving Ij, I;, we obtain the
Picard-Fuchs equation

15
3h(4h + 1)1, = 3(3h + 1) [, - —
(4h + DI =33k + )y - —1, o)
3h(4h + 1)1, = —3hl, + 15hI,.

Equation (2.22) and P'(h) = (I, I, — L 1;)/I# imply (2.19).
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Figure 2.5.

The values of P’(h) as h - —1/4 and as h — 0 can be obtained by
direct calculations from (2.19). a

Lemma 2.6. lim,, _, , . P(h) = +o.

Proof. Without loss of generality, we assume h > 0. From (2.18) and
(2.17) we have

where y = 2k +x% — x*/2)1/2, and B = B(h) is the abscissa of the
intersection point of I, and the x-axis (see Figure 2.5). Hence B = B(h)
satisfies

B* - 28% = 4h. (2.23)

Making the substitution x = B¢ in the integral J,(B), we obtain

Ju(B) = Bzfol(ﬂf)kg(f) g, k=02,



272 Codimensional Two Bifurcations

I 4

(-14, 1)

P=P(h)

-1/4 ol> h*

Figure 2.6.

where

172

86 = | 21—+ (- 1)

Since g(¢) < g(1/B) for 0 < ¢ < 1, we have J,(B) < a, 8> for some
positive constant «;. It is easy to obtain that J,(8) > a,B8° for some
positive constant a,. Since A — » < g — ® (see (2.23)), we have

. LB
fim 7(8) = fm 705y =+
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Lemma 2.7. P(h) has the following properties:

D) lim, , ,P(h) = %;

(2) there exists h* > 0 such that P'(h) <0 for —1/4 <h <h* and
P'(h) > 0 for h > h*;

3 P(h*) > 1/2, P'(h*) =0, and P"(h*) > 0.

Proof. Rewrite (2.19) in the form

dap

m = 5P? + 8hP — 4P — 4h,

an 4h(4h + 1 .
7 (4h +1).

Since P(h) - 1 as h —» —1/4, the graph of P(h) is the heteroclinic
orbit from the saddle point (— ,1) to the node (0, %) in the phase
plane (see Figure 2.6). Hence lim, _ oP(h) = . We denote the two
branches of the hyperbola 5P? + 8hP — 4P — 4h = 0 by P(h) and
P(h).

It is clear that the phase plane is divided into nine parts by the lines
h=0,h= — 1and the curves P = P(h), P = P(h). On the two lines
the vector field is vertical, and on the two curves the vector field is
horizontal. In every one of the nine parts, dP/dh has a fixed sign. From
Lemma 2.5 and by calculations we know that

1
lim P'(h) = — =, lim P'(h) = —,
h-lfr-l% (k) 2 hl-% (k) *
(2.25)

wn| W

lim P'(h) = -1, lim P'(h) = —
h—o—1% h—0

Hence, the graph of P(h) must stay in part 4 for — 3 < h < 0 and
must enter part D for 0 < h < 1. In parts A and D, dP/dh is
negative. But P(h) > +w as h - +o (Lemma 2.6) and P(h) > 1 as
h - +, hence there exists A* > 0 such that P(h*) = P(h*), that is,
P'(h*) = 0 and P'(h) > 0 for h > h*. Noting P'(h) < 0 and P(h) - %
as h > +o, we have P(h*) = P(h*) > 1. Finally, from (2.19) we
obtain

1
4h(4h + 1)P" = (10P — 24h — 8)P' + 8(P - 5).
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Hence,
1
4h*(4h* + 1) P"(h*) = S(P(h*) - 5) >0,

which implies

P"(k*) > 0. 0

Lemma 2.8. For (2.4)~, HL is a homoclinic loop bifurcation curve and B
is a double limit cycle bifurcation curve. The phase portraits in regions III,
IV, V, and VI are shown in Figure 2.2.

Proof. The idea is similar to the proof of Theorem 1.2. Consider first
system (2.11) instead of (2.4)~. For given ¢ and small 8, the periodic
orbits of (2.11) are determined by the zeros of equation (2.15) (Lemma
2.4) which can be approximated well by the zeros of equation (2.16).
More precisely, suppose 4, is one of the solutions of the equation

P(h) = &, (2.26)

that is, F(h,, 0, P(hy)) = 0 (see (2.16) and (2.18)). Since
OF /3L \(ho,0, Pchoyy = To(hg) # 0 if kg > — %, the Implicit Function Theo-
rem implies that there are 6, > 0, o, > 0, and a function { = {(h, )
defined in Uy = {(h, 8): 0 < & < §,, |h — hyl < oy} such that {(h,,0) =
P(hy) and F(h, 8, {(h,8)) = 0 for (h, 8) € U,. If, in addition, P'(h,) #
0, then we can suppose that 8, and o, are so small that {;(h, 8) # 0,
(h,8) € U,, since lim ,_, {;(h, 8) = P'(hy). {;(h,8) # 0 implies that
h—hy

for every { near {,;, 0 < 8 < 8, equation (2.15) has a unique solution
with respect to h € (hy — gy, by + 0y).

The above discussion is valid except in two neighborhoods of A: (1)
near h = — %, since I(— 4) = 0 so the Implicit Function Theorem is
invalid; and (2) near & = h*, since P'(h*) = 0 so the above condition is
not satisfied. In the first case, we can use Theorem 3.2.6 instead of the
Implicit Function Theorem. In fact, the linearized equation of (2.11) at
(1,0) has a matrix with the same form as (1.31); hence the conditions
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(HY), (H%), and (H%) are satisfied (see the proof of Lemma 1.10). In
the second case, we consider

F(h,8,{) =0,

oF h,é 0
3h( ’ 9{)_ .
We have that
F(h*,O,P(h*)) =0,
oF h*,0, P(h* 0
o5 (B0, P(H*)) =0,
and

8(F 8F)
"ok )| sg

3L h) lil—_’(hh**)

HAGS! 0
B VT

—IZ(h*)P"(h*) < 0.

Hence there are 6* > 0 and functions { = {*(8), h = h*(8) defined in
0 < & < 8* such that /*(0) = P(h*), h*(0) = h*, and

F(h*(8),8,4%(9)) =0,

oF . .
-é;(h (8),8,{*(8)) =0

for 0 < & < &*. Since 3°F /oh*(h*,0, P(h*)) = —I(h*)P"(h*) +# 0, we
can suppose that 8* is so small that 82F /oh*(h*(8), 8, {*(8)) # 0 for
0 < 8 < 8%, which implies that { = ¢*(8), h = h*(8) correspond to
double limit cycle bifurcation, and the numbers of zeros for equations
(2.16) and (2.15) are the same near h = h*.

Hence the number of solutions of (2.26) will determine the number of
limit cycles of (2.11) (or, equivalently, of (2.4)~). The relationship
between them is: one-to-one for £ > 0 and one-to-two for — 1< h <0
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because of the symmetry (see Figures 2.7 and 2.2). The solution of
(2.26) for h = 0 corresponds to the pair of homoclinic orbits of (2.4)~.

It is clear that for ¢, > 1, (2.26) has a unique solution h; > 0
corresponding to a limit cycle around three equilibria (the case of
{; =1 is discussed in Lemma 2.2); for $< ¢, <1, (2.26) has two
solutions — < h, <0 and h; >0, h, corresponding to two limit
cycles around two foci respectively while 4, corresponding to one limit
cycle which surrounds the two limit cycles and three equilibria; for
{o = 4/5, (2.26) has two solutions # = 0 and A, > 0, the former corre-
sponding to a pair of symmetric homoclinic loops while the latter
corresponding to a limit cycle surrounding the three equilibria and the
homoclinic loops; for ¢ < ¢, < % (c = P(h*) = 0.752), (2.26) has two
solutions #5 > 0 and A4 > 0, which correspond to two limit cycles, one
surrounding another and both of them surrounding three equilibria; for
¢y = ¢, (2.26) has a double solution A* which corresponds to a double
limit cycle (it is semistable); for ¢, < ¢, (2.26) has no solution, which
means (2.4)~ has no limit cycle.

From the scaling (2.10) we know that €,/€, = {(h,8) = {, + O(8) =
o + O(el7?), which gives the equations of curves HL and B for {, = 3
and {, = c, respectively. This finishes the proof of Lemma 2.8. a

Lemma 2.9. System (2.4)~ has no limit cycle in region I and has a unique
limit cycle in region II.

Proof. This is the case of €; < 0. As in the case €; > 0, we take the
scaling

x - bx, y — 82y, € = —8%, €, = @d?, t— —.
Thus, (2.4)~ becomes

x=y,
{y = —x —x*+ 8y(a —x?) + 0(8%). (227)

For & = 0, (2.27) is a Hamiltonian system

{x o (2.28)

y=-—x-x7,



Double Zero Eigenvalue with Symmetry of Order 2 277
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Figure 2.7.
with the first integral
H v’ * * 2.29
X, = — 4+ — + —. .
(y)=5+5+7 (2.29)

We consider a function

h(h)
—, h>0,
P(h) = { Iy(h)

0, h=0,

where
L(h) = [ x'ydx, =02,
T,

and

I,: H(x,y)=h, h>0(see Figure (2.8)).
P(h) satisfies an equation

4h(4h + 1) P'(h) = —5P% + 8hP — 4P + 4h,
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Y

N
N *

Figure 2.8.

which implies that P'(h) > 0 for A > 0 and P'(0) = ; (by a similar
analysis as in Lemma 2.7). Then, Lemma 2.9 follows by the same
argument as in Lemma 2.8. O

By Lemmas 2.2, 2.3, 2.8, and 2.9, we have the proof of Theorem 2.1
for the case of (2.1)". For the case (2.1)*, the difficult part of the proof
is to study the existence of limit cycles and their numbers. In a manner
similar to the case (2.4)~, one can derive an equation for a similar
function P(h) for 2.4)*:

4h(4h — 1)P'(k) = —5P? + 8hP + 4P — 4h.

Corresponding to Figure 2.3, we have Figure 2.8 for the plus case. We
leave the details to the readers.

4.3 Double Zero Eigenvalue with Symmetry of Order 3

In this section we study the family of vector fields on the plane that are
invariant under a rotation through an angle 27 /3. The normal form is
(Section 2.11)

i =€z + Azlz)? + 22, 3.1)
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m (£,>0) H* " (£,>0)
T EERTTI -
;/ p -t — -4
(€2=0) H- W HL™ (€2=0)
DAG
(<0) N (£,<0)

Y

H-

HL™

Figure 3.1. The bifurcation diagram and phase portraits of (3 - 1) (a < 0).

where

z=x+1iy,

€ =¢€; +1€,,

and A=a+ib,

a+0.

The following theorem belongs to Khorozov [1]. We will use the
Picard—Fuchs equation to prove the uniqueness of periodic orbits (see

Chow, Li, and Wang [2]).

Theorem 3.1. (1) Equation (3.1) is a versal deformation with symmetry
of order 3 of the following system

3= Az|z|* + z2.

(32)

(2) The bifurcation diagram of (3.1) consists of the origin and the
following curves in parameter space:
(@) H*= {ele; = 0, €, > 0},
b) H ={ele, = 0, €, <0},
(c) HL*= {ele, = —(a/2)e? + O(€3), €, > 0},
(d) HL™= {ele; = —(a/2)e? + O(e3), €, < O}
(3) The phase portraits of (3.1) are shown in Figure 3.1.
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We first consider a deformation of (3.2) with symmetry of order 3
F=Azlz|* + 22 + w(z,Z,p), (33)
where
weC® and wl,—0=0, n €C.

Equation (3.3) can be written in the form

3
i= Y a(w)z'z’+0(z1*), a;(n)eC. (3.49)

i+j=0

Since (3.4) is invariant under a rotation through 27 /3, we have in
polar coordinates that

i(r,0)=r‘(r,0+—23£), é(r,0)=é(r,0+ 2%) (r+0).

Using the formulas

72+ 27 7

’ 0 - .
2r 2rki

we obtain in (3.4)
gy = Aoy = Ay = Ay = a3 = ap = ag; = 0.

Hence, (3.4) has the form (after a linear transformation)

i=f(p)z +A(p)zlzI* + 22 + O(lzY), (35)

where f(u) = su + O(lul?). If s # 0, then let e = f(u). Equation (3.5)
becomes

z=ez+A(e)zlzl* + 22 + 0(IzI*), (3.6)

where A(e) = A(u(e)), A(0) = A(0) = A. We will prove that the topo-
logical structure of solutions of (3.6) is independent of the function
A(e) and the higher-order terms O(|z|*) as long as Re A(0) # 0. By a
transformation

x=mcos¢,
y = V2p siné.

(3.7)
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(3.6) takes the form

p =e,(2p) + a(e)(2p)* + (2p)>* cos 3¢ + (20)°*F\(p, 3, €),
é =e, +b(e)(2p) — (2p)*sin3¢ + (2p)**Fy(p,30, €),
(3.8)
where F(p, 3¢, €) is 27-periodic with respect to ¢, Fil.—o = 0(j = 1,2),
and a(e) + ib(e) = A(e).
We suppose that a(0) < 0. The case a(0) > 0 can be obtained through
the transformation ¢t - —¢, z - —z.

In order to determine the number and property of the nonzero
equilibria, we consider

{61 ra(e)2p + (29) T eos3b + 2p) R =0,

€, + b(€)2p — (2p)*sin3¢ + (2p)*F, =0
in a small neighborhood of the origin in phase space. Let € = Vae,

ap = p. Then (3.9) becomes

{\/EGl(a,ﬁ,dw) =0, (3.10)

Va Gy(a,p,¢,4) =0,
where
G, = cos ¢ + a(p)Va (2p) + (25)"* cos3¢ + a(25)”°F,,
G, = siny + b(p)Va (25) — (25)"*sin3¢ + a(25)*F,.
For a # 0, (3.10) is equivalent to

G,=0, 311
G, =0. (3.11)
For a = 0, (3.11) becomes

cos i + (2;3)1/2 cos3¢p =0,
sin ¢ — (26)"/*sin3¢ = 0.
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Hence it is equivalent to
p =13, sin3¢ =siny, cos3dp = —cos .
In other words (3.11) has solutions (for @ = 0)

1
2

p
& = %(77' +2kw—vy), k=0,1,2.

Since (G, G,)/d(p, P)la=0 = —3, the Implicit Function Theorem
implies that for @ # 0 and |a| small, (3.9) has solutions

p=p*(a,¥),
o = d3(a,¢), k=0,1,2.

Let z* = y/2p* e’%* be one of the equilibria. We have for small |e|
20* = 2ap = |el*2p = |e|* + 0(|e|2),
|2*| = y2p* = le| + o(lel).
Let { =z — z*. Then (3.6) becomes

{=P{+ Qf + O(lel),

where
P =+ 2A(€)l2*I* + O(12*]*),
Q =2z* + A(e)z** + O(Iz*]*).
For sufficiently small |e|, we have
|P| < lel + o(lel) < 3lel,
101 = 2lel — o(lel) > Flel.

The following lemma is useful in determining the property of an
equilibrium.
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Lemma 3.2. (Arnold [4]) Consider a planar linear equation

{=P{+Qf, P,0,(eC.

If |P| < |Ql, then the origin is a saddle point. If |P| > |Q)|, then the origin
is a focus (center) or node which is stable for Re P < 0 and unstable for
Re P > 0.

Proof. 1et { =¢, +i{,, P =p, +ip,, and Q = q; + iq,. Then

i]-»

Hence as det M = |P|? - IQI2 and tr M = 2p,, the desired result fol-
lows. O

¢
9

pwta, —ptq;
prta, pi—a

], M-

Lemma 3.3. Suppose that |e| # 0. Then in a small neighborhood of the
origin in phase space (3.8) has four equilibria. p = 0 is a focus or node
which is stable for €, <0 and unstable for €; > 0. The other three
equilibria are saddle points. The curve H *= {ele, = 0, €, # 0} is a Hopf
bifurcation curve.

Proof. The behavior of the equilibrium p = 0 and the curve H?* is
easy to obtain from (3.8).

The behavior of (p*, ¢) is obtained from Lemma 3.2 and from the
fact that the saddle is structurally stable. O

Now we turn to the discussion of the existence and the number of
limit cycles. The basic idea is the same as in Sections 4.1 and 4.2, but we
will use a specific technique.

Let

—
O
()

1
€ = _;Bzﬁs €)= ——Bs p - _2ps

Q
Q

b— —ab, - —— (3.12)
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where a = a(e) < 0 and b = b(e). Then (3.8) becomes

b =8B(2p) — 8(2p)" + (2p)*”
cos3¢ + 82(2p)”*F,,

é = 1+b8(2p) - (2p)"° G
sin3¢ + 62(2p)*°F,.

Suppose that py(8, B), ¢,(8, B) are coordinates of a nonzero equilib-
rium of (3.13). Let

e
2P0 (3.14)
w

0=E+¢_¢°=¢_¢(B’3)'

Then (3.13) takes the form

7 = 8(2r) — 8(2p0) (2r)’
+(2p0)%(2r)7? cos3(6 + ¢) + 82(2r)*/*F,,

= 1+ 5(260)6(2r)  (200)(2r)sin3(0 + 9) O
+62(2r)**F, = H(8,1,90).

The coordinates of the equilibria of (3.15) are independent of & and
B:r=0and r, =3, 0, =7/6 + 2kmw/3 (k =0,1,2).
For 8 = 0, (3.15) is a Hamiltonian system

P = (2r)*? cos 36,
7= (2r) " cos. (3.16)
6=1-(2r)""sin30,

with the first integral

H=r-1(2r)"*sin36 = h. (3.17)

The level curves of H = h are shown in Figure 3.2, where 0 < k < 1.

h = 0 corresponds to the equilibrium r = 0, and A = 1/6 corresponds
to the three heteroclinic orbits.
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0=57/6 O=T/6

€
|
|

Figure 3.2.

Obviously, any closed orbit of (3.15) must cross the segment L =
{(r,0)l6 = w/6,0 < r < 3} which could be parameterized by k, H(r,8)
=h,0<h<x<3.

Let

H(r,0) = [H(3,r,0)dr (H®=H), (3.18)
0

where H is defined in (3.15). Then (3.15) can be rewritten in the form

8

a =
F= = — +26r(B — (2p0)(2r) + 8(2r)**F),

oH?
or

(3.19)

Let y(h, 8, B) be the part of the orbit of (3.15) from the point on L
with 4 € (0,1/6), to the point on the segment {(r, 8|8 = 57/6,0 <r
<1/2}.
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Lemma 3.4. The orbit through y = y(h, 8, B) is a closed orbit of (3.15) if
and only if

dH?®
] — dt = 0. (3.20)
v, 8,0\ 4t [l
Proof. This proof is similar to that of Lemma 1.4. (]

The calculation shows that

dH?
dt

dt = 26r(B — (2p,)2r + 8(2r)*°F) .
(3.19)

®(h,5,8) = [ r[B = (2po)2r + 8(2r)**F| do. (3.21)
v(h,8,8)

Then (3.20) is equivalent to ®(8, h, B8) = 0 (for & # 0). For § = 0, we
have 2p, = 1 and

®(h,0,8) = [ r(B - 2r)do = BI, - 21, (3.22)
T,

where

I(h) =fr"do (i=1,2),

h

and T, is the level curve H = h (w/6 < 6 < 5 /6) of (3.16). Obviously,
I(h) > 0 for h > 0; and lim, _, ,I,(h)/I,(h) = 0. Let

L(h)

PO = 1w

,0<h<i and P0)=0. (3.23)

Then ®(k,0, 8) = 0 is equivalent to

B = 2P(h). (3.24)
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We will prove that P'(h) > 0 for 0 <h < %. This will give the
uniqueness of the periodic orbits of (3.15).

Lemma 3.5. P(h) satisfies an equation (0 < h < })
Oh(6h — 1)P'(h) = —12P% + (28h + 9 — $(h)) P

+ 48h* — 18h + 6hé(h), (3.25)
where

I/(h)

&(h) = 6h*(6h — 1) 0%

(3.26)

Proof. From (3.17), along T,

ar 1 2r

oh 1—msin30= 3h—r

>0 (0<h<g). (327)

Hence
k
I =2k de, 3.28
k r,3h—r ( )
where
Io=[rtds, k=123,.... (3.29)
L,
From (3.29) and (3.28) we obtain
r¥(3h —r) 4o 3h o "
I 3h—r T 2kF 2k + 1) RHE

In particular

I = 31 - i1,

, , (3.30
L= 3hl, - 315 )
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On the other hand,
9 . (r-h) 3 o=sn/s ,
Ii(h) = J rido =g 9= -2 — h)* d(cot 30
(7) ";“hr 8 j;"h sin? 30 8 ,’(;=#/6 (r — k)" d(cot36)

3 0=5m/6
=- g(r - h)? cot 36

+ Z";“,,(r — h)cot 30 dr.

8=7/6
Using (3.16), (3.17), and (3.28), we have

3 . (r—h) (2r)"*cos?36

Iy=~
> 4Jr, sin30 (1 - V2r sin30)
1 r[(2r)3—9(r—h)2]d0
—51",, 3h—r
9 9 2 3 A
= 4L+ |5 — 12k L + | Sk = 36h7 |1, + (54h° - Oh ).
Hence
; 9 12h1 9h 36h21 54h3 9h2)1
=|l—--—= +|—=h-— + | = - - 1
3(10 5)2(10 5)‘(5 57 )1

Substituting (3.31) into (3.30), we have

41, = 6kl - I,
481, = (18h — 48h2) I} + (=9 + 44h) I}, — 24K2(6h — ).

(3.32)

Equation (3.22) is equivalent to

Oh(6h — 1)I] = (—9 + 44h)I, + 121, + 6h*(6h — 1)1,
Oh(6h — 1)I; = (—18h + 48h*)I, + T2I, + 36K3(6h — 1) I},

(333)
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where 0 < & < %. Equation (3.33) and P'(h) = (I3, — I;1,)/I} imply
(3.25) 0

Lemma 3.6. lim, _, ,P'(h) = 1.

Proof. Equation (3.27) shows that dr/dh —» 1 as h — 0. Hence r =
O(h), 3h — r = O(h), and r — h = O(h*/?) (see (3.17)). Therefore, as
h— 0, I, = O(h), I, = O(h?), P(h) = O(h), and

r(r—nh
I =6f Hroh )3 do = O(h™'7?),
r,(3h —r)

r(r~h)(5r —6h

I = 12[ ( X - ) 6 O(h=%?).
L, 3h—r)

These imply that ¢(h) = O(h'/?) and ¢'(h) = O(h=1/?) as h — 0.

Using the above estimations and L’Hospital’s rule, from (3.25) we

obtain lim,, , o P'(h) = 1. ]

Lemma 3.7. P(1/6) = 1/4.

Proof. Let x = V2r cos 6 and y = V2r sin 6. Then T, /6 15 a line seg-
ment {(x, Y)ly = 1/2, — V3 /2 <x < V3 /2}, that is, Y2r sin8 = 1/2,
m/6 < 8 < 57/6. Hence

1 ,sm6 d6 V3

I,(1/6) = do = - = —
1( / ) '/;‘1/6r 8 /6 sin20 4

k4

g
I,(1/6) = [ r2d0=if,6 o B
s

Ty 8? sin' 16’

Therefore,

L(1/6) 1 _

PAO = Tars 3
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Lemma 3.8. P'(h) > 0 for 0 <h < 1/6.

Proof. We shall prove that if there exists 4, € (0, 1) such that P'(h,)
=0, then P"(hy) > 0, which is impossible, since P(0) =0, P(h) > 0
for » > 0, and P’(0) = 1 (Lemma 3.6).

Let P'(hy) = 0 and

I(h)
HON

Q(h) = 0<h<1/6

Then P(h,) = Q(h,) and

1i(ho)

= TR

Q'(hy). (3.34)
From the first equation of (3.32) we have

6hI7 = I - 21I,.

This implies that

Hence

Ql(h) 1 (IIIII II III) Q Ié’ I;’
I{Z 241 241 Ié I{

= ! 6h fr 2
—'6—hQ[( _Q)I_§+ .

The first equation of (3.32) implies 64 — Q = 41,/I;. Thus when

0<h<1/6
Q (2L,L
= + 1.
Q 3h( L
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Since P'(hy) = 0(0 < hy < 1/6), Q(h,) = P(hy) > 0 and

I(he) _ (ko)
Ii(hg) ~ Ta(hg)

It is easy to see that

L(ho) = fr r2de > 0,

ho

, 4r?
L(hy) = frho3ho —d6 >0,

4r2(3hy + 1)

L(hy) = ———d6 > 0.
2(ho) fr,,o (3h, —r)3
We obtain finally
h 2L(h) L (h
0'(hy) Q(hy) 2(ho) I3 (hy) 1l >o.

3hy 13 (hy)

By using (3.34) we have P"(h;) > 0. This finishes the proof of Lemma
3.8. (]

Lemma 3.9. Suppose that Re A(0) < 0. Then system (3.6) has the bifur-
cation diagram and phase portraits as shown in Figure 3.1, which are
topologically independent of the function A(e) and the higher-order terms
0z, up to a factor in the equation of the curve HL.

Proof. Equation (3.6) is transformed into (3.15) and the closed orbit of
(3.15) is determined by the zero point of (3.21) (Lemma 3.4). Similarly
to Theorem 1.2 and Lemma 2.8, we can consider the equation (3.22)
instead of (3.21). Lemmas 3.6-3.8 show that for every B, if 0 < B, <
1/2 (ie., 2P(0) < B, < 2P(1/6)), then (3.22) has exactly one zero point
with respect to h(0 < h < 1/6); if B, < 0 or B, > 1/2, then (3.22) has
no zero point.
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From (3.12) we have

€y

— = —aP = —aBy(1 + 0(8)) = —aBy(1 + O(¢,)),

€

where a = Re 4(0) < 0. Hence the equation of HL is

€, = — —;-eg + 0(|52|3).

We note that all the above discussions are independent of the
higher-order terms O(|z|*) and the behavior of the function A(e) as
long as Re 4(0) # 0. O

4.4 Double Zero Eigenvalue with Symmetry of Order 4

In this section we consider the family of vector fields on the plane that
are invariant under a rotation through an angle 27 /4. The normal form
equation is (see Section 2.11)

=€z + Mzlz|* + 73, zeC, (4.1)

where 2 =x +iy, M =a + ib, and € = €, + ie,.

Since the two nonlinear terms in (4.1) are both of order 3, the
discussion of unfoldings of (4.1) is more complicated. The problem of
versal unfolding has not been solved completely. Some results in this
section have been obtained or discussed by Arnold [4], Wan [1],
Neishtadt [1], Berezovskaia and Knibnik [1], and Wang [1].

Without loss of generality, we assume in (4.1) that a < 0 and b < 0.
In fact, if a > 0, by a change of variables and parameter e¢:

z2-oze”™/4 to —t, €— —e,

equation (4.1) becomes

2 =ez — Mz|z|* + 33.
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b

-1 [+]

Figure 4.1. The partition of the ab-plane (a < 0,5 < 0).

If b> 0, let v = Z. Then equation (4.1) becomes
b =ev + Molv)* + 53,

which keeps the sign of Re M and changes the sign of Im M.
First, we present some theorems and give a conjecture; then we
introduce the proofs of the theorems.

Theorem 4.1. The third quadrant of the ab-plane is divided into the
Jollowing regions (see Figure 4.1):

Region A4: {(a,b)la < —1,b < —1},

Region B: {(a,b)la < —1,-1 < b <0},

Region C: {(a,b)| - 1 <a <0,b < —1},

Region D: {(a,b)| - 1<a <0,-1<b<0,a2+b%>1),

Region E: {(a,b)la < 0,b < 0,a% + b%2 < 1}.

If (a, b) € region E, then equation (4.1), for any e (except zero), has
four nonzero equilibria which are saddle points. If (a,b) € one of the
regions A-D, then there exists two semi-straight lines | , and 1, which have
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& ¢,
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A
- // ﬁ [+ E,
r,/
/
I,
X
(b)
(a)
&
(A &
\ X
L '
X

(e)

(d)

(c)

Figure 4.2. (a) (a, b) € region A. (b) (a,b) € region B. (c) (a, b) € region C.
(d) (a, b) € region D. (e) (a, b) € region E.

a common end at the origin in the e-plane, and divide the e-plane into two
open angular regions A, and A, in a small neighborhood of the origin (A,
has a smaller angle than A.), such that when € € A,, equation (4.1) has
eight nonzero equilibria ( four saddle points and four nodes or foci); when
€ € A,, (4.1) has no nonzero equilibrium; and when € € 1, U 1, (4.1 has
four saddle-nodes. The positions of |, and 1, are shown in Figure 4.2.

Theorem 4.2. If €, < 0, then equation (4.1) has no periodic orbit. For
any fived €, # 0, as €, changes its sign from negative to positive, the Hopf
bifurcation occurs at the origin.
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Figure 4.3. The regions of uniqueness of limit cycle in Theorem 4.3.

Theorem 4.3. Egquation (4.1) has a unique limit cycle which surrounds
the origin and is stable, if one set of the following conditions is satisfied:

€>0,a>+b>>1, and |be, —ae,|l > el + €2, (42)

or

ab + Va? + b%2 -1

1-a?

6>0,a’+b2>1,-1<a<0, and ¢, < €.

(4.3)

Remark 4.4. The shaded regions in Figure 4.3 are covered by conditions
(4.2) and (4.3), where the curves I, and l, are the same as in Figure 4.2.
For more details, see the proof of Lemma 4.12.
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Theorem 4.5. If a < —1 (i.e,, (a,b) € region A U B), then equation
(4.1) has at most one limit cycle. If the limit cycle exists, then it is stable.

Theorem 4.6. For equation (4.1), the Hopf bifurcation occurs at the
nonzero foci if and only if (a, b) € region C and the point (a, b) is below
the curve vy, that is given by

1+ a?
Va' (a,b)|b=-———-—,—1<a<0 .
1-a?

Moreover, the bifurcating limit cycle is unstable.

Theorem 4.7. In the ab-plane there are curves v,, v,, and vy, which
divide the regions A-D into some subregions (Figure 4.4). The asymptotic
behavior of these curves are:

yi:b=—1+047a%asb > —1, b= —035a%ash - —;
y,:b=—1-0.13a%asb > —1, b= -0352a’asb > —;
ys:b=—1~045a%asb > —1, b= —4.11+084a%asb > —4.11.
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Figure 4.5.

The curve y(correspondingly v,) is the boundary between regions in
which saddle-nodes of equation (4.1) appear in different locations on the
phase plane: outside (correspondingly inside) the central cycle and on this
central cycle. For more details, see Figure 4.5, where |, and l, are the
same as in Theorem 4.1. The notation “on” (“outside” or “inside”)
related to the curve 1, (or 1,) means that the saddle-nodes appear on
(outside or inside) the central cycle when (e, €,) € I, (or 1,). The curve
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v, is a boundary between regions in which the stabilities of the heteroclinic
loop are different.

Figure 4.6. The case of (a, b) € A4,.

Now we can state the main results of this section.

Theorem 4.8. If (a,b) € subregion A; or B; (i,j = 1,2,3), then the
bifurcation diagram and phase portraits of equation (4.1) are shown in
Figures 4.6-4.11, respectively. They are similar to the case of weak
resonances (see Section 4.5), but the nonzero equilibria could appear

outside, on, or inside the invariant cycle.
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Figure 4.7. The case of (a, b) € A,.

Conjecture 4.9. If (a,b) € region D, (i = 1,2), or region E, then the
bifurcation diagram and the phase portraits of equation (4.1) are shown in
Figure 4.12, Figure 4.13, and Figure 4.14,, respectively. The last case is
similar to the case of 1:3 resonance (see Section 4.3).

Theorem 4.10. If (a, b) € region C, and |a| is sufficiently small, then the
bifurcation diagram and phase portraits of equation (4.1) are shown in
Figure 4.15 and Figure 4.16 for b < —§¢* and —£* <b < —1, respec-
tively, where

£&* = (3 + cos 6*) /(1 — cos 6*),

and 6* is the unique root of the equation
g
g — 6 =a for@e (O,E);

6* = 1.352 and £* = 4.11.
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Figure 4.8. The case of (a,b) € A4,.

The aforementioned theorems show that the result for (¢, b) €A U B
is complete, for (a, b) € D U E is almost complete (except the unique-
ness of the central limit cycle), and for (a, b) € C is far from complete.
In fact we need a condition |a| < 1 in Theorem 4.10 in order to
transform equation (4.1) into an equation which is near a Hamiltonian
system.

Proof of Theorem 4.1. Let z = re*® be a nonzero equilibrium of equa-
tion (4.1). Then

7 =M+ N, (44)
where N = e~** The point M + N lies on the circle 3, centered at M
with radius 1 (see Figure 4.2).

If |M|=a?+ b%< 1, then the origin lies inside 3 (see Figure
4.2(e)). To solve equation (4.4) for r and 8, we must choose 8 so that ¢
and M + N €3 have opposite directions. This is always possible.
Hence for € # 0, equation (4.1) has four nonzero equilibria.



Double Zero Eigenvalue with Symmetry of Order 4 301
NN
) N J
\\ N
: n / 4 «
(€,>0) / \ ™~
(£,>0)
&
W ¢ N,/
n
-
— i g, P!
(€,=0) (€,=0)
H-lv (2
\ ./
é b A XA
(6,<0) @ ( ) ) 7\
\ AT e
H UIUHY v / \52 n

Figure 4.9. The case of (a, b) € B,.

If [M|=a? + b2 > 1, then equation (4.4) is solvable with respect to
(r,0) if and only if e €/, UA, Ul,, where A, is an open angular
region formed by the semi-lines /; and /, which are opposite extensions
of the tangent lines from the origin to X (see Figure 4.2(a)-(d)). Hence,
for each € € A,, there are two points on the circle 3 with directions
opposite to €. This means that equation (4.1) has eight nonzero equilib-
ria. For € € [; U [,, equation (4.1) has obviously four nonzero equilib-

ria.

Now let us check the types of the equilibria. Suppose that z, = re® is
a nonzero equilibrium. In order to use Lemma 3.2, we linearize the
equation (4.1) at the point z,. Substituting z = z, + £ into equation
(4.1) and retaining the first-order terms in £, £ on the right-hand side,
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All others are the
same as in Fig. 4.9

Figure 4.10. The case of (a, b) € B,.

we obtain

£ = P£ + QE, (45)

where
P=¢€+22zyZyM = R*(M — N) (using (4.4)),
Q = Mz} + 323 = r’*(M + 3N).

By Lemma 3.2, the saddle points appear if [M — N| <[M + 3N|. We
consider the points M — N and M + 3N. These points are symmetric
with respect to the point M + N, and the straight line connecting them
goes through the point M (see Figure 4.17). Let I be the tangent line to
circle 3 at the point M + N. If the origin and the point M — N lie on
the same side of the tangent /, then |[M — N| < |M + 3N|. Otherwise,
(M — N|>|M + 3N|. It is clear now that if |[M| < 1, then |M = N| <
[M + 3N| (see Figure 4.17(a)) and equilibria are saddle points. If
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All others are the
same as in Fig. 4.10

Figure 4.11. The case of (4,b) € B;.

|M| > 1, there are two cases. Let T, and I', be the two arcs bounded by
the tangents to % from the origin, with the arc T, closer to the origin. If
M+ N €T,, then [M — N| <|M + 3N| (see Figure 4.17(b)) and the
corresponding four equilibria are saddle points, and if M + N I,
then [M — N|> [M + 3N| and the corresponding four equilibria are
foci or nodes. 0

Proof of Theorem 4.2. In (x, y) coordinates, equation (4.1) takes the
following form:

I=ex—ey+ (x*+y?)(ax —by) +x3 - 3xy2 = f(x,y),
y=€x+ey+ (x2+y?)(bx +ay) — 3x%y +y> =g(x,y).

(4.6)

It is easy to see that the divergence of the right-hand side of equation
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Figure 4.12. The case of (a,b) € D,.
4.6) is
div(f, g) = 2(e; + 2a(x* +y?)). 4.7

Since a < 0, div(f, g) keeps a negative sign throughout C \ {0} for
€, < 0. Thus, by a theorem of Bendixson, equation (4.6) has no periodic
orbits in C. Next, for any fixed ¢, = u and e, # 0, it is easy to check
that equation (4.6) satisfies the conditions of Theorem 3.2.4. Hence, a
Hopf bifurcation occurs at €; = 0. 0
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Figure 4.13. The case of (a, b) € D,.

In polar coordinates (7, 8), the equation (4.1) takes the following

form:

F=er+r? Re(M + N),
6=¢,+r’Im(M+N),

(4.8)

where M =a +ib, N =e¢ %% In order to prove Theorem 4.3, the

following lemmas are needed.

Lemma 4.11. Let

H =|M}?

2?22 M
2 2

z* and E = ReH,
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Figure 4.14. The case of (a,b) € E.
where M = a + ib and z = re® satisfies (4.1). Then

%(E) = 2[,|M* — Re(eéMN)]r* + 2a(IM|* - 1)r®. (4.9)

Proof.
dH { oH oH | }

d
Z(E)=Re— =Rel —: + —3
z (E) = Re - =Rej o2+ =2

= Re{IM[*z%2(ez + Mz?22 + 7°)

+(IMP2%2 - 2Mz%) - (&2 + Mz?z + 2°)}. (4.10)
After simplifying the above expressions, we get the formula (4.9). o
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Figure 4.15. The case of (a,b) € C and b < —£&* (£* = 4.11), |a| < 1.

Lemma 4.12. If conditions (4.2) or (4.3) is satisfied, then the origin is
the only equilibrium point of equation (4.1).

Proof. Direct calculations show that the condition (4.3) implies (a, b) €
region C or D (see Theorem 4.1 and Figure 4.1) and (e;,¢,) € A U [
where [ is the semi-line opposite to /, and A is the angular region
formed by / and the negative e,-axis. The condition (4.2) implies
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Figure 4.17. (a) The case of (a, b) € region E. (b), (c). The case of (a, b) € one
of regions A, B, C, and D.
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(i) (a,b) € region A4 or B and (e, €,) € {(e;,€,)le; > 0} \{/; U A, U
I}, or (i) (a,b) € region C or D and (e;,¢;) € {(e,, €))le; > 0} \
{a,ul,u ['U A}. Therefore, by Theorem 4.1, equation (4.1), under
condition (4.2), or (4.3), has no nonzero equilibria. O

Lemma 4.13. Suppose that condition (4.2) is satisfied, and (p(t),6(2)) is

a periodic orbit of equation (4.1). Then:

(i) 6(t) # 0 ar any t. Therefore, the periodic orbit takes the form
p(t) = r(6(e)).

(i) sgn 6(t) = sgnIm(eR) = sgnIm(eM), where R = M + N.

(iii) If we set y =r/p — 1 and consider y € (=1, +»), then in (y,8)
coordinates the solutions of equation (4.1) satisfy the equation

2p* Im(&R)

4 02 (By? +y?) ReR -~ mR| (411)
e +p mR’ PV Y AN

p dé

Proof. (i) Let
S={(r,0)le; + r* Im(M + N) = 0}.

We need to show that {(p(¢),8(¢))} N S = & (see (4.8)). If €, = 0, then
S consists of finitely many straight lines through the origin, and § is an
invariant set of equation (4.1). Obviously, {(p(¢), 8(t)} N S = & in this
case. If €, #+ 0, then {0} & S, and

S = {(r,&9)|r2 = Fn(_ll_—l—ei_N_)}

Each branch of § is a curve I': r = r(8) which bounds a closed
unbounded region U = {re®®|r > r(9)}. By Lemma 4.12, the origin is the
only equilibrium of equation (4.1). Hence, 7 + 0 along I'. This means
that the region U is a positive or negative invariant set of equation
(4.1). Therefore, the periodic orbit {(p(z), 8(¢))} cannot meet the curve
T, that is,

{(p(1),8())} NS =0
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(ii) From (4.1) we have
z
E; = €€ + r%R, (4.12)
where R = M + N. On the other hand, it is easy to see that
t_r 1 4.13
— = — +1i6. .
z r ! ( )
Equations (4.12) and (4.13) imply

€

~ |~

+ &if = e + r%R. (4.14)

Let (r, 8) in (4.14) be the periodic solution of equation (4.1). Integrat-
ing (4.14) over a period T (T > 0), and then taking the imaginary parts,
we have

2me, sgn(6(1)) = [OTrZ Im(ZR) dr. (4.15)

Noting €R = éM + €N and [Im(éM)| > |&| (condition (4.2)), we have
sgn Im(eéR) = sgn Im(é M) which is independent of . Therefore, from
(4.15) we obtain

sgn 6(¢) = sgnIm(éM) = sgnIm(&R).

(iii) Since y =r/p — 1, y = (1/p*)pr — rp) = (1/p?)
(pf — rdp/d6e). Using r = p(1 + y), (4.8), and

dp pe, +p®ReR
e €, +p*ImR’
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we have

. 1 3 3
y= ? p[elp(1+y) +p°(1 +y) ReR]

pe; + p®ReR )
—p(1+y) 2 — (e, + p?(1 +y)*Im R
p( Y)62+p21mR(52 p*(1+y)*ImR)
€, + p’ReR
=2p’|ReR - —————1ImR
p( © €, +p?ImR mEp
€, + p’ReR

+p2(3y2+y3)(ReR - R

—1
€, +p*ImR m

2p? Im(2R)
€, +p*ImR

1dp
+p*’(3y*+y*){ReR— ——1ImR|. O
y +p°(3y y)(e pdom)

Proof of Theorem 4.3. From (4.2) and (4.3), we have |[M| > 1. Hence,
the function E > 0 on C\ {0} and E(z) — « if and only if |z| — o,
where E = Re H is defined in Lemma 4.11. By this lemma, one can
find an e > 0 such that dE /dt(z) < 0 on the set {z| E(z) > e}. Conse-
quently, the set {z|E(z) < e} is compact and positive invariant. Any
solution z(t) of equation (4.1) exists for all ¢ > 0 and its w-limit set
O c {z|E(z) < e}. The origin is the only equilibrium of equation (4.1)
(Lemma 4.12), and it is a source for €, > 0. Thus, by the
Poincaré-Bendixson Theorem, the w-limit set of any nontrivial solu-
tion, which lies in the compact set {z| E(z) < e}, is a closed orbit.

First we consider the case of condition (4.2). On any closed orbit, by
(i) and (i) of Lemma 4.13, Im(éR)/(e, + p>Im R) > d > 0 for some
constant d. Hence the conclusion (iii) of Lemma 4.13 shows that any
closed orbit is hyperbolic and stable. Hence it is unique.

Next, we consider the case of condition (4.3). By the same arguments
used in the proof of Lemma 4.13(i) and the condition €, < 0 (see (4.3)),
one can see that any closed orbit must be located in the region
V = {re’®|6 < 0}. Since the right-hand side of equation (4.1) is a polyno-
mial with respect to z and Z, and the only equilibrium, the origin, is a
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source, any closed orbit is isolated (a limit cycle). Suppose that I';, c T,
are two limit cycles in the region V, and they have the expressions

p=pit),
v {e = 6,(t)
and
[P =pa(1),
L: {0 = 0,(t).

From (4.7) and (4.8) we have

¢ div(f, ) dt — ¢ div(f,g) dt
T, T,

o€ + 2ap? _om € + 2ap?
2 T g, - [T 4,
0 0

0, 0,

_ Zf_z,, [ex(b — sin46) — 2ae,](p3 — o) 46, (4.16)
0

6,0,
By condition (4.3), we have

ab + Va2 +b% -1

€(b —sin40) — 2ae, < |b —sin46 + 2a 1= o2

€.

(4.17)

If b < —1, then the right-hand side of (4.17) is obviously negative. If
—1 < b <0, then by using a> + b>> 1 and —1 < a < 0, we have

b 4o ab b 2a%b 24> +b® a4+ b? .
+ <b+ = < < -1
1= b2 b b

Hence, the right-hand side of (4.17) is also negative. Thus

€(b — sin40) — 2ae, < 0. (4.18)
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Noting p, > p, and 6, < 0, i = 1,2, from (4.16) and (4.18) we have

@ div(f,g)dt > ¢ div(f,g) d. (4.19)
T, T,

Since the origin is a source, let I'; be the limit cycle that is the closest
to the origin. Then I, is stable inside. If I} is stable, then
¢r, div(f, g) dt < 0. Therefore, ¢r, div(f, g) dt < 0 (see (4.19)), which
implies T’, is stable. This is impossible. If I'; is semistable, since the
vector field is a rotated vector field with respect to e, (with fixed e,),
change €, to €, + 8, where & is sufficiently small with suitable sign.
Then I'; will become at least two limit cycles, and the inner most one is
stable. For more detail, see Section 3 of Chapter 4 in Zhang et al. [1].
By the same argument as above, this is impossible. Therefore, the limit
cycle is unique. D

Proof of Theorem 4.5. Theorem 4.2 shows that if equation (4.1) has a
limit cycle, then €, > 0. Let z = re”, and consider

ry = min r[#=0,

r+0
From (4.8) it is easy to see that
€ €
2 . 1 1
r; = min > fora < —1.
* 6 —a — cos48 —2a

This means that if a < —1, then inside the circle r = y/e;/(—2a) one
has 7> 0. Hence any limit cycle must surround the circle r =

\/El/(——Za) . By using (4.7), along any limit cycle I’ we have
div(f, g) = 2(e; + 2ar?) <0,
which implies
ﬁdiv(f, g)dt <0.

Therefore, a limit cycle must be stable. Hence, it is unique. 0
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Proof of Theorem 4.6. Theorem 4.1 shows that if (a, b) € one of the
regions A, B, C or D, and € varies from /; into A, (see Figure 4.2),
then each of the four nonzero saddle-nodes of equation (4.1) becomes
a saddle point and a node (or focus). Since the center manifold at a
saddle node is one-dimensional, there is a connection orbit between
a saddle point and an node. Hence, if the node (or focus) does not
change its stability when e varies in A,, then there is no closed orbit
surrounding the node or focus.

Let us study the stability of the nonzero node or focus. We recall the
analysis in the proof of Theorem 4.1 and keep the same notation.
Suppose that z, =re”® is one of the nonzero nodes or focus. By
linearization of equation (4.1) at the point z,, we obtain equation (4.5).
By Lemma 3.2, the stability of equilibrium z, is determined by the sign
of Rep =r?Re(M — N) while M + N € T,. From Figure 4.17 and
Figure 4.2 it is clear that if (a, b) € one of the regions A4, B, or D, then
Re(M — N) < 0. Hence the equilibrium z, is always stable. Suppose
that (a, b) € region C. A change of stability of the equilibrium z, takes
place if the point M — N crosses the imaginary axis as the point M + N
varies along I';. The boundary separating the points {M} for which such
a phenomenon takes place is determined by the following condition:
The diameter drawn through the point of intersection of the circle %
with the imaginary axis is perpendicular to a tangent from the origin.
The calculation shows that the boundary curve vy, has the following
form:

1+a®
‘Y4= (a7b) =_m,_1<a<0.

Summing up the above discussion, we see that if (a, b) is in the third
quadrant and above the curve y,, then the nonzero nodes (or foci) are
always stable. And there is no periodic orbit around them; if (a, b) is
below the curve v,, then there is a ¢, = tan~(e3/€?) € (0, 7 /2) such
that the nonzero focus (or node) is unstable for tan~(e,/€;) < ¢, and
stable for tan (e, /€;) > @, (see Figure 4.18).

We will determine the stability of the nonzero focus (or node)
zo = re'® for tan~(ed/€?) = ¢, by using formula (3.2.36). It is easy to
calculate that M + N = 2a + i(b + V1 — a?). Hence, from (4.8) and
Flz, = 61, = 0, we obtain

€ Im(M +N)  b+/1-22

_=t = = ,
i O W EY)) 2a

(4.20)
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M+N (23, b+Vi-a?)

M-N | (0, b-\/1-a?)
Figure 4.18.
and
l2ol* = r2 e
2ol =rc= = €],
0 Re(M + N) 2a !

where €} > 0, €2 > 0.
Let z = zow. Then equation (4.1) becomes

w=e(w—w?)+ r2M(|w|2w - w?),

and w = 1 is a focus (or node) of equation (4.23).

315

(4.22)

(4.23)

Let w = x + iy. Then equation (4.23) takes the following form:

X=€x—ey—€x’— (3¢, + 4br¥)x?y
+(3e, + 4ar?)xy? + €,y°,

y=e€x + €y — x>+ (3¢ + 4ar?)x?y
+(3e, + 4br?)xy? — €y,

(4.24)

where €, = €, €, = €J. By substituting (4.21) and (4.22) into (4.24), and

by rescaling time ¢ — ¢/€? () > 0), we have for equation (4.24)

X=x—£&y—x3—qx%y +xy? + £y3,
y=€&x+y—§&xP+xy +quy?—yd,

(4.25)
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where
b+ Vl-4? —b + 3V1 — 4 46
&= 2a ’ m= 2a ) (4.26)
The matrix of the linear part of (4.25) at (1,0) is
2V1 — a?
a B 2 T
= . (427)
[7 5} b+ V1l -a? )
a
Denote w? = det[: i] Then
5 2(a2+1+b\/1—a2)
W= — > . (4.28)

a

Using the formula (3.2.36) we have (up to a positive factor)

2
Re(C,) = —43{3 -y + ;3[5@ +58) — 3682 + (w? + 352)1;]}.
(4.29)

Substituting (4.26), (4.27), and (4.28) into (4.29), we obtain

—-328(b + V1 - a?)

a(a2+1+b\/1—a2)'

Re(C,) =

Since a <0, B>0 (see (427), b+V1—-a’<0, a>+1+
bV1 — a? < 0 (see (4.20), and (a, b) is below the curve y,, it follows
that Re(C,) > 0. Thus, the proof of Theorem 4.6 is complete. a

For a proof of Theorem 4.7, we refer to the paper of Berezovskaia
and Knibnik [1], where both the analytic and numerical methods were
used.

The proof of Theorem 4.8 follows from Theorems 4.1, 4.2, 4.3, 4.5,
and 4.7.
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Proof of Theorem 4.10. By the transformation
1 y
p=5(¥*+y%), é=tan”,
equation (4.1) is transformed into the following form:

é = 2p(€, + 2p(a + cos4e)), (4.30)
b =€, + 2p(b — sindg),

where —1 <a <0, lal <1, b < —1, and ¢, and ¢, are small parame-
ters. By Theorems 4.1, 4.2, and 4.3, and Remark 4.4 and Lemma 4.12,
we only need to consider the case of ¢; > 0 and ¢, > 0.

Let

t
€,=58, ¢, =ad?, a=—-Bs, p— dp, i s (4.31)

where 6§ > 0, « > 0, 8 > 0; « and B are new parameters. Equation
(4.30) becomes

. (4.32)

p = 4p*cosdd + 8(2ap — 4Bp?),
¢ =1+2p(b~—sindd).

For 8 = 0, (4.32) becomes a Hamiltonian system

_ (4.33)

p = 4p>cos4e,
é =1+ 2p(b - sindd),

with Hamiltonian function —H(p, ¢), where H is defined by

H(p,9) =p + p*(b — sinde). (4.34)

The closed level curves T, = {(p, $)|H(p,d) = h} are shown in
Figure 4.19, and

0<h <h; forregion G,,
—wo <h <h; forregion G,, (4.35)
h,<h <h, forregion G, k=1,2,3,4,
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Figure 4.19.

where h, = 1/(4(1 — b)) and h. = —1/(4(1 + b)). When h > h, T,
tends to the separatrix connections between four saddle points which
have the coordinates p =p, = 1/(2(1 — b)) and ¢ = w/8 + kw/2 (k
= 1,2,3,4); when h — h_, the four symmetric branches of I, shrink to
the four nonzero centers which have the coordinates p = p, = —1/
21 + b)) and ¢ =3w/8 + kw/2 (k =1,2,3,4); and when h — 0, T},
shrinks to the center p = 0 (in the region G,).

As in previous sections, we will study equation (4.32) as a perturba-
tion of equation (4.33) for some small § > 0. Since

. 3H  oH | -
Hlas = EP + £¢ = 8(2ap — 4Bp°)d,

where H = H(p, ¢) is defined in (4.34), the bifurcation function for
periodic orbits of equation (4.32) is defined, for § = 0, by

G(h,8,a,B)ls-0 = [ (2ap - 4Bp”) dé = 2al(h) = 4BL(h),
(4.36)

where
I(h) = [ pdé, I(h) = [ p*dd, (4.37)

T, is the level curve of H(p, ¢) = h, and h satisfies (4.35).
Obviously, for regions G, and G;, I(h) > 0 and I,(h) > 0; for
region G, I)(h) > 0 and I,(h) >0 if h >0, and I(0) = I,(0) = 0.
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Moreover,

o
h—o* I,(h)

Hence, similarly to Sections 4.1-4.3, we define

L(h)

P(h) = (k)

(4.38)

where h satisfies (4.35) for region G; (i = 1,2,3), and

Equations (4.36) and (4.38) show that G|s_, = 0 is equivalent to
44
E = 2P,(h), i=1,2,3. (4.39)
Thus, for a given a/B (or equivalently, for a given €,/€,; see (4.31)),
the number of periodic orbits of equation (4.32) (or equation (4.1)) is
equal to the number of solutions of (4.39) with respect to % satisfying
(4.35).
By a similar discussion as in Sections 4.1-4.3, from the following
theorem we can obtain the conclusion of Theorem 4.10.

Theorem 4.14. Suppose ¢* is defined as in Theorem 4.10, P(h) is defined
as (4.38), and i = 1,2,3.
(D Ifb < —¢&%, then

(1) Pj(h) > 0, P(h) <0, and Py(h) > 0;

() lim,, , _P,(h) = +x;

(3) Py(h,) < Py(h,) < Py(h)).
UD If —¢&* <b < —1, then

(1) 3h,, < h, such that Pi(h,) =0, Pj(h,) > 0, and P5(h) + 0 for
h#+h,;

(2) Py(h,,) > P(h,);

(3) the behavior of each P(h) (i = 1,2,3) is the same as in Case (I).

The behaviors of P(h) (i = 1,2,3) are shown in Figure 4.20. Theorem
4.14 follows from the following lemmas.
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P P
1 T
——]__Pyh) / Py(h)
Py(h) |
| | 2 |
) | !
] ! I [
I ! T :
h |
P1( ) : : P1(h) ] ) :
1 » h 1 ! i » h
o h, h, o h, h, h,
(a) the case bs— & (b) the case —&*<b<—1
Figure 4.20.

Lemma 4.15. Pi(h) > 0.

Proof. In region G, (we consider G, i.e., /8 < ¢ < 5m/8), along T},
we have from (4.34)

1+ Vo
P12~ T (P1<p2)> (4.40)
where
u= —b+sind¢ >0, v=1-4hu = 0. (4.41)
Hence,

_ Vo
11=];Pd¢=]: (Pz_Pl)d¢=]: _u—dd)’
' ' (4.42)

) R
12=frp2d¢=[: (p%—p%)d¢=f:’ — dg,

where ¢, are the limits of the variation of ¢ on I, ¢_<¢,.
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Equations (4.10), (4.41), and (4.42) give

f (py —ph) dé = f —d¢,
o 1 (4.43)
Q=[;7Wﬂé—pm0d¢=2ﬂj;§d¢

where the prime denotes the derivative with respect to 4. From (4.38),
(4.42), and (4.43) we have

P3(h)

1
m[lz(h)h(h) - Il(h)lz(h)]

b d¢ 6. do ¢+
- Il(h)[d’ u\/_ 7 f f }
1 e, o] Vor Vo2
I} (h) '/:b_ '/:b- [lﬁuz\/z * uzul\/a

e,

where u; = u(¢,), v; = v(¢,), i = 1,2. The calculation shows that the
integrand is equal to (using (4.41))

2
(1 = uy)(uy0y —uyvy) _ (4, —u,) <0
uiusyow, ufudfow, ~

Hence, Pi(h) > 0. O

Lemma 4.16. Pj(h) > 0.

Proof. In region G, from (4.34) along T, we have

1-Vv
2u

p= (4.44)

where u and v are the same as in (4.41).



322 Codimension Two Bifurcations

Since P(0) =0 and Py(h) >0 for 0 <h < h,, in order to show
Pi(h) > 0, we only need to show that if there exists hy € (0, h,) such
that Pi(hy) = 0, then P{(hgy) > 0.

Similarly to the proof of Lemma 3.8, we define

Qo(h) = ;?EZ; . (4.45)
If P(h,) = 0, then P(hy) = Q(h,) and
P(ho) = 732 o) (4.46)
From (4.44), (4.41), and (4.37), we have
Il(h)_f prdd = fzvdd’
B = [THde = [T o,
o) —f rop i~ fz”(_l . L)d¢, (4.47)
Vo
I(h) = j:”%w.
From (4.45) and (4.47), we have
Q(h) = s Lt = 1i13)
B (12;)2{1;2#;?2 fozw;i ¥ fozwd%j:w 7 4o
L el
B (11;)2 ozwf;zw[ugﬂluyz * ug/zlu}/z * qu/z u 213/2

U, u,
- do,de
uwl?v3/? uzvi/zvf/z] 17¥2

where u; = u(¢,), v, = v(¢), i = 1,2
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Since u,v, — uw, = u, — u, (see (4.41)), we can transform the inte-
grand to the following form:

A(¢1 ’ ¢2)
372 °
(v2)
where
4 —(uy — uy)" + udv}? + utv3?

u\u,
2+ ?(vf/z — 1)+ (32— 1)
1 U

k] (v, = (1 + 017 +v,y) + % (v = (1 +0v}? +v,y)

=2+
u, 1+ 0] u, 1+ v)?

(v, = (1 + 0]+ v;) N (v; = D)(1 + 0y +v,)
1+ 017 1+ 01/
2
(Vo2 + Vou)(Vos = vor)

- ) +01y/v, + vyfu; 2 0.

Hence Q'(h) > 0. This implies Pi(h) > 0 for h € (0, h]. O

A=2+

Lemma 4.17. We have:

(D Ifb < —¢*, then Pi(h) < 0;

Q) If —¢* <b< —1, then 3h,, < h such that Pi(h,) =0, Py(h,,)
>0, and Py(h) # 0 if h # h,,;

3) lim,,_, _ P, (h) = +=.

Proof. In the region G,, we have

1+ Vo
T 2u

p : (4.48)

where u and v are the same as in (4.41).
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It is easy to see that for & < 0 and ¢ € (0, 27],

1+y1-4n(-b-1) 1+y1-4n(-b+1)
<p<
2(=b + 1) p 2(=b - 1)
Hence
-27
p’de
lim Py(h) = lim ———— = 4o,
h—o —c h—o — /’ pdd)
0

Next, in the same manner as in the proof of Lemma 4.16, we can
obtain that if there exists an h, € (-, ;) such that Py(h,) = 0, then
Pi(hy) > 0. Obviously, such an h,, if it exists, is unique, and its
existence depends on the sign of Py(h)). If Pi(h,) < 0, then such an A,
does not exist and Py(h) < 0 for —0 < h < h, (using lim,_, _,, P,(h)
= +o). If P)(h,) > 0, then such an h, exists, and it is unique (denote
it by h,,).

Now we consider the sign of Py(h,). From (4.48) and (4.42) we have

-2 1
By = [~ (—W)dqb,

o 1
I(h) =[0 g 2p(—7—v—)d¢.

Thus,
1
Pah)) = lim_ Tz (BN L(A) = B(W) B(h)]

li L Mok - (k)] — d
Jim_ o [T 2eh(hy) - B(h)] 7= d.

At the saddle points (h=h, ¢ =w/8 + kmw/2, k=1,2,3,4), the
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integral has singularities, and
. T  kw
v—>1—sm4¢=0(l¢—— (—8—+—)

Hence
Py(h) = =  if2p I(h;) — I,(h,) <0,
Pi(hy) = +o  if2p I,(h,) — I,(h,) > 0.
If 2p,I(h,) — I,(h,) = 0, then Py(h,) is a finite negative number.
Finally, we need to show that 2p,I,(h,) — I,(h,) is negative, positive,

or zero if and only if b is less than, greater than, or equal to —£*.
From (4.40) and (4.41) we have

1
Ps = 2(-b+ 1)

L5 [1—sind¢é
+ _—
-b+1

2(—b + sinde)

and

p1,2(hs’ ¢) =

1 V=b+1F/1-5sindé
2W—b+1 (=b+1)— (1 -sind¢)

1 1
T /—b+1V-b+1 +I-sinds

Hence
Ps

w7

p1,2(hss @) = P12(d) = , (449)

ltnq
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where
2 1
= <
K b+ 1
In this case
_ Ps
p(hy, @) = pr(d) = —~E
1- n sm(2¢ - Z)’

Substituting the above expression into the following equality
2p,Ii(h,) — I(h,) = 0, (4.50)

we have

™ 2 1
- dif = 0. 451
fo[l—nsinw (l—nsinw)z} v (431

By a substitution tan(y/2) =s in the above integral, (4.51) is re-
duced to

-2 t ok + arct ki
arctan arctan ———
(1—7;2) 1—n? 1+n V1-17?
n
- 2 =) =0. (4.52)

Let @ = 2arcsinn, 8 € (0, 7). Then (4.52) takes the following form:
tan@ — 6 = . (4.53)

If 9* is the root of (4.53), and n = sin(6* /2), then

2 —n?

,n2

-b= = (3 + cos 0*)(1 — cos *) = ¢*.

This completes the proof of Lemma 4.17. O
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Lemma 4.18. P,(h,) < Py(h,) < P,(h,) and P(h,) < P)Xh,,).

Proof. In order to avoid confusion, we denote

_L(h)
(k)]

P,(h)
where h satisfies (4.35) for region G;, i = 1,2,3. Then
P2(hs) - Pl(hs)

- 12,2(hs) _ IZ,l(hs)
Il,Z(hs) Il,l(hs)

[ T5i($) d [ oi(w) dy - f; 52w dy f T5,($) do
[ TB($) d [ TBi(w) dy

m, w

/ 5/’;”’/ 5;/8ﬁl(¢)ﬁz(¢)(ﬁz(¢) ~Pi(9)) o di

L7 aw)a(6) do v
From (4.49), we see
Pi(Y) <p; <pa(9),
for any ¢ # w/8 + kw/2 and ¢ # w/8 + kw/2, k = 1,2,3,4. Hence
P,(h;) — Py(h,) > 0.

Noting py(h,,, d) > py(h,, $) = p,(¢) for all ¢, we can prove P,(h,,)
> Py(h,) by the same method.
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Finally, we consider
Py(hs) — Py(hy)

- 12,3(hs) _ 12,2(hs)
I 5(hs) 1y 5(hy)

[ 52 ($) do + f; TMT53(8) do [ O
L@ ds + [Ta#)ds [ TThu(0)ds

L7 50)(52(8) = ()P 6) + () = o)) dh
_ T/8 T/8 .

L7 (5(#) = 51(8))Ba ) db dt
w/8 “w/8
From (4.49), we have
ps(1 + n?sin’ ¢ — 27 sin ¢)
(1-n?sin¢)(1 — nsing)’

where ¢ = 2¢ — w/4, ¢ = 24 — w/4.
Since for some constant M,

P2(d) +p(d) —p(¥) =

0<(1-n%sine)(1 - nsing) <M,
we obtain that
Py(h,) = Py(h) > 22 [T ["(1 + n?sin g — 2nsin §) d§ df > 0.
3 s 2 s M 0 0

D

4.5 Double Zero Eigenvalue with Symmetry of Order > §

A family of vector fields on the plane that is invariant under a rotation
through 27 /g (q > 3) takes the form

=€z + C2%2 + Cpz%2% + -+ +C,2"*17m + 4797 + 0(Iz]),

(5.1)
where m = [(g — 1)/2], z,¢,C;, A€ C,ReC; #0,and 4 # 0.



Double Zero Eigenvalue with Symmetry of Order > 5 329

In Sections 1-4, we discussed the cases g < 4, which are called
strong resonances. In this section we consider the cases g > 5, which
are called weak resonances. For g > 5, the term AZ97' is smaller than
the term C,z°Z. Hence the behavior of (5.1) is governed mainly by the
term C,z?%Z (see (5.4) below). Therefore, we expect that the discussion
of weak resonance is simpler than the case of strong resonance.

By a scaling on z and ¢, we suppose A = 1 and Re(C,) = —1. Let
e=¢€ +ie, Ci=a;+ib; (j=12,....,m, m=I[g—-1)/2D. We
transform (5.1) into polar coordinates:

F=er—r3+a,r’+ - +a,r**' +ri ' cos g8 + O(r7),

0=e,+br>+byr*+ - +b,r* —ri7%singd + O(r?7).
2 1 2

m

(5.2)

Obviously, (5.2) has a Hopf bifurcation at €, = 0 and €, # 0. When
€, < 0, the first equation in system (5.2) shows that in a small neighbor-
hood of r = 0, every flow tends to the unique attractive equilibrium
r=0as t > +o. When ¢; > 0, we make a scaling

t
@=8 @={8 r=bp, 1> (6>0). (53

Thus (5.2) becomes

6 =p(1 —p*) +8f(8,p,0),

. (54)
0=_+bp*+5g(5,p,0),

where
f(8,0,0) = ay6p° + -+ +a, 6% 2p¥+1
+ 897549 1 cos g0 + O(aq—‘tpq),
2(8,0,0) =b0p* + -+ +b,8% 3%

— 89757 2 sin g6 + O(89 %7 ").
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For 6 = 0, (5.4) takes the following form:

b =p(1 - p?),
] (5.5)
6 ={+b,p%
Equation (5.5) has a unique attractive invariant circle £ = {(p, 8)lp = 1}
which is a limit cycle for { + b, # 0, and consists of only equilibria for
¢ + b, = 0. Denote the time-1 mapping along the flow of (5.4) by ®;.
Then there exists 6 > 0 (correspondingly &, > 0) such that for every
0 <& <& (correspondingly 0 < €, < €,), the sequence of manifolds
{®F(X);_, converges to an invariant manifold L} which is an attractive
circle of (5.4) (see Ruelle and Takens [1] for details). Hence, the phase
portrait of (5.4) is completely determined by the behavior of (5.4)
restricted to these invariant circles {£%}). If { + b, # 0 (equivalently, if
(e, €;) is not on the line .Z: €, = —b,¢,; see (5.3)), then for sufficiently
small 8, there are no equilibria on I}. This means that, in addition to
the Hopf bifurcation on ¢, = 0 and ¢, # 0, all other possible bifurca-
tions must take place near the line .. In fact, we will prove that there
exist two bifurcation curves SN, and SN, which are tangent to .% and
form a cusp region  (see Figure 5.1).

The bifurcation of equilibria on £} occurs in the following way:
When (e,,€,) € region A, there are no equilibria on L}, and ¢q
saddle-nodes appear on L} if (¢;, €,) € SN,. As (¢, €,) goes from SN,
to (), every saddle-node becomes a saddle point and a node. ¢ new
saddle-nodes appear when (¢,, €,) € SN,. See Figure 5.4, p. 332, for
more detail.

We now explain why the equilibrium (p,, 8,) on L} of (5.4) must be a
saddle point or node, or a saddle-node. If (¢, €,) € SN, or SN,, then
sin(gf,) = +1. Hence, 6 does not change its sign when 6 passes
through 6, (see the second equation of (5.2)). Moreover, L} is attrac-
tive on both sides. Therefore, (p,, 8,) is a saddle-node (see Figure 5.2).

&

SN,

SN,

Figure 5.1.



Double Zero Eigenvalue with Symmetry of Order > 5 331

Figure 5.2.

(. /

/ z5

Figure 5.3.

If (e,,€,) € Q, then lsin(g8,)| < 1. Hence 6 changes its sign when @
passes through 6,. Therefore, (p,,0,) is a saddle point or a node.
Moreover, the saddle points and nodes appear alternately (see Figure
5.3).

Theorem 5.1. The bifurcation diagram of (5.2) consists of the origin
(€, = €, = 0) and the curves H *= {e; = 0, €, # 0}, SN,, and SN,. SN;
is defined by an equation with parameter s in the € e,-plane: SM(S) =
(s, h{(s), j = 1,2, s > 0, with the property

im 2 =)

s—0+ §972

Along SN, and SN,, q saddle-nodes on the invariant circle are created or
annihilated. The phase portraits of (5.2) are shown in Figure 5.4.

Now we prove the existence of the curves SN, and SN,. We consider
(5.4) near (p, £, 8) = (1, —b,, 0). A calculation shows that

dJR 4R
ap a0 4
det 0 0 =q8% - D(p,0,98), (5.6)

a0
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H* L]

HY|& SN,
6 (£,>0) oy

N | N
@ |©@ @
| 0 (<0 o,

Figure 5.4. The bifurcation diagram and phase portraits of (5.2) (¢ = 5, b, < 0).
where R and @ are defined to be the right-hand side of (5.4). Note that

D(p,6,8) = (3p* — 1)cos(q8) + 2b,psin(qf) + O(8). (5.7)

Lemma 5.2. (Takens [2]) There is a neighborhood U of W =
{(,6, —b,,00 < 6 < 27} in the pB8-space such that the intersection of
U with {(p,6,{,8)|D =0, R=0, ® =0} consists of 2q curves. The
projection of these curves on the {8-plane consists of two curves which are
of the form {M(8),8} (j=0,1) with My8) — M(8) = £697% +
O0(8973), where ¢ is a nonzero constant.

Proof. 1t is easy to obtain from the first equation of (5.4) that in a
neighborhood of W the set {(p, 9, ¢{, 6)IR = 0} has the form
{0(6,{,6),0,(,8), where p is a smooth function satisfying p = 1 +
0(é).
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Next, Dlg—s-0 = 2cos(q8) + 2b, sin(g8) and D has 2q zeros in W.
Hence, the set {(p, 8, {, 8)IR = 0, D = 0}, in a neighborhood of W, has
the form

2q—1
U {pi(£.9).6(4.9).2,5),

j=0

where 0 and p; satisfy the following conditions:
Q) 0({, 8) = B, + jm/q + O(8), where B, satisfies (see (5.7))

cos(gB,) + b, sin(gB;) = 0; (5.8)
(2 p;,, =p; and 01 +2 (3] = 21 /q (since (5.4) is invariant under a
rotation through 27 /q);
(3 p; =1+ 0(3).
Now we make an estimate of p, — p,. From p(p,,O,,{, 8) =0, it

follows that pl - po = 0(8(1 4) Slnce p(po, 00, {, 8) = p(pl,al, {, 8) =
0,

Po— Po + 87 %cos qBy = Py — P> + 897 % cos(Byq + ) + 0(897?),
that is,
(72— Bo)|1 — (7 + Bpo + 7%)| =287 cos a + O(8772),
which implies
P1— P = —87 *cos gBy + O(8773). (59

Finally, we consider the function ® on the set {(p,6,{,8)IR =0,
D = 0}. This is given by

6(5‘,({,8), 5]((; 8)’ ¢, 8) ={+ blpf + 0(3)
Hence, there are functions M(8), j = 0,1,...,2¢q — 1, such that
©(5,(M,(5), 8),5,(M,(5),8), M,(5),8) = 0,

where & is near zero. By symmetry, M;,, = M;. We make an estimate
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of M(8) — My(5). The equation
®(51(M1(8)’ 8)7 EI(MI(B)’ 8)7 M](a), 8)

= ®(F_’0(MO(8)’ 8)’60(M0(8)’ 8)’ M(5), 8)

gives
My(8) + by(py(M,(5),8))" — 67~ *sin(gB, + )

= M(8) + by(po(My(8),8))" — 87~ *sin(aB,) + O(577%),
which implies, by (5.9), that
M(8) — My(8) = 2697*[b, cos(gB,) — sin(gB,)] + O(8973).
By using (5.8), we have

£ = 2[b, cos(gB,) — sin(gBy)]| = —2[(bf + l)sin qBO] +0.

This completes the proof. D

Proof of Theorem 5.1. As mentioned above, we only need to consider
equilibria bifurcation on X}. This can only occur at the points where
R=0=D=0. For {=My5), these points are (p;(My(5),d),
@.(MO(S), 8)), where j=0,2,...,2g — 2 and 5j+2 - 5] =2m/q, pjs2=
p;- For { = M(8) the situation is similar, but j = 1,3,...,2¢ — 1. On
the other hand, from the second equation of (5.4), equilibria bifurcation
must take place at the values of ({,8) where R=0, ® =0, and
sin(g8) = =+ 1, which just correspond to the above two cases. Finally, by
(5.3) we can change (¢, 8) back to (e}, €,); the curves (My(3), ) and
(M(8), 8) in the (&-plane become curves (82, §2My(5)) and
(8%, 6°M(8)) in the e€,e,-plane. Denote h(8) = §2My(8), h,(8) =
82M(8). Then h(8) — h,(8) = 82(My(8) — M(8)) = £89°% +
0(877 1), £+ 0 (see Lemma 5.2). This completes the proof of the
theorem. D

Remark 5.3. Figure 5.4 is drawn for b, < 0. The case b, > 0 is similar.
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L2

Figure 5.5. The additional bifurcation diagram and phase portraits of (5.2)
(g=35,b,<0).

Remark 5.4. The above results are established in a small neighborhood
of €, = €, = 0. Otherwise, some additional bifurcation curves L;; G,j
= 1,2) will appear. The system (5.2) will have some additional phase
portraits (see Figure 5.5 which is obtained numerically).

4.6 A Purely Imaginary Pair of Eigenvalues and a Simple
Zero Eigenvalue

As we mentioned in the beginning of this chapter, we need the

truncated normal form equations for types A4, and A,, and they have
respectively the following forms (see Section 2.11):

ex +axy +d x> + d,xy?,

.
I

2 2., 3 .2 7 3 (42)
€, +bx* +cy”+dyxy +d,y°,

<.
I}
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where €, €, are small parameters, a, b, c, J] e R, and abc # 0, and

i =x(e +px? +py? + qpxt + q,x%y% + q5y%),

. (43)
¥ =y(& + p3x? + py? + quxt + asx2y? + gy, ’

where x 20,y >0, p;,q; € R!, and €,, €, are small parameters.

We will discuss the dynamical behavior of equation A, in this
section, and equation A, in the next section. Zotadek [1,2] obtained
the complete results for these two cases. We will use a simpler method
to prove the uniqueness of periodic orbits for equation A,.

Since equation A4, is symmetric with respect to the y-axis, we only
need to consider the half plane x > 0. To obtain a simpler form, we let

t

x = el?x, y- by, t— Tk (6.1)
c

€ —clbll/zel, €, & —cl|ble,.

Thus, A, becomes

i=¢€x+Bxy +dx>+d,xy?, (62)
}‘) =€2+nx2—y2+d3x2y+d4y3, )

where B = —a/c # 0,7 = —sgn(bc), d; € R
If we assume

2 2
K, = "(E + 2)d1 + 5d; + ndy +3d, % 0,

then the qualitative behavior of (6.2) near (0,0) with small €, and ¢, is
the same as that of the equation

) (6.3)

% =e€x + Bxy +xy?,
y=€e,+nx’—y

(see Remark 6.7). The main result of this section is as follows.
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Figure 6.1. Case (I): m =1, B > 0.

Theorem 6.1. For equations (6.3) there are four cases: (I) n = 1, B > 0;
UDnmn=1,B<0,UlII)n=-1,B>0;, and (IV) n = -1, B<O.
We have:

(1) In cases (I) and (IV'), the bifurcation diagram of (6.3) consists of
the origin and the following curves in parameter space:

M= {(e,€;)|e; =0, ¢, + 0},

€2
N= {(el,ez)|e2 = B—lz +0(€}), e, # O}.

Along M and N, saddle-node bifurcation and pitchfork bifurcation occur
respectively. Equation (6.3) has no periodic orbits, and the phase portraits
are shown in Figure 6.1 and Figure 6.4 for cases (I) and (IV'), respec-
tively.

(2) In case (II), the bifurcation diagram of (6.3) consists of the origin,
the curves M, N, and the following curves:

H = {(e,€,)|e; =0, ¢, >0},
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and

B
S = {(61,62)|€1 = - 3—BT2'€2 + 0(|€2|3/2), €, > 0}

Along M and N, we have exactly the same bifurcations as in (1). Along H
and S, Hopf bifurcation and heteroclinic bifurcation occur respectively. If
(e, €,) lies between the curves H and S, then (6.3) has a unique limit
cycle which is unstable and becomes a heteroclinic orbit when (e, €,) € S.
Phase portraits in case (III) for different (e, €,) are shown in Figure 6.3.

(3) In case (II), the bifurcation diagram of (6.3) consists of the origin,
the curves M, N, and the following curve:

H={(€,€)|e; =0, ¢, <0}.
The bifurcations along M and N are the same as in (1) and (2). Along H,

Hopf bifurcation occurs. If we localize equation (6.3) by restricting
0<x<§B, |151|1/2 + Ioszll/2 < B, 0 < B < 1, then there exists a curve

5= {(ev-e)ler = 6(B. )€, + O(le;72), €, < 0},

where

x9y2 dxdy
(B, e3)
¢(B762) = . >

[ e

with Q(B, €,) the bounded region surrounded by the closed curve

x2 BZ/B BZ
Bl - +y?] = 1- ifB + 10,
* ( B +1 y) le, '/ lesl(B +1) ) d
or
1+y? e, B
+Ihnhx=—+In——7-, ifB+1=0.
2x? 2p* le,I"/2 /

If (e,, €;) lies between the curves H and S, then (6.3) has a unique limit
cycle which is located entirely in the strip 0 < x < B and touches the line
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o o
R Ji@,o =
____8" VR \ | ____§L-E“_+_

Figure 6.2. Case (ID:n = 1, B < 0.

x = B as (e}, €;) = §. Phase portraits of (6.3) in case (I} are shown in
Figure 6.2.

Proof. The proof of Theorem 6.1 is given in the following steps.

Step 1. Bifurcations of equilibria Clearly, (6.3) has an invariant line
x = 0 and is symmetric with respect to the y-axis. Hence, we will only
consider the half plane x > 0.
On the y-axis x = 0, there are two equilibria (0, + @ ) if €, >0,
and the linearized system at (0, + @ ) is given by the matrix
€, £ Bye, + € 0
A= LB/ + e : (6.4)

0 F2/e,
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Figure 6.3. Case (II):n = —1, B> 0.

Note that B - (det A,) <0 if €, > €l/B* + O(¢}) (ie, (€, €,) is
above the curve N), and €, - (det A,) < 0if 0 <e¢, < €l/B* + O(e}
(i.e., (¢, €,) is between curves N and M, see Figure 6.5). This means
that if (e,, €,) is above N, then both equilibria (0, + \/5 ) are saddle
points in cases (I) and (III) and are nodes in cases (II) and (IV). If
(e,, €,) is between M and N, then one of (0, + \/5 ) is a saddle point
and the other one is a node for cases (I)-(IV), and these two equilibria
form a saddle-node when ¢, = 0 (e, # 0).

In the open half plane x > 0, equation (6.3) has two equilibria:

x=[n(y*-&)]"%  y= %[—B + (B2 - 4¢,)""7.

Obviously, only one of them exists in a small neighborhood of the origin
if |e,] and |e,| are sufficiently small. If we denote this equilibrium by
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Figure 6.4. Case IV): n = —1, B < 0.
& N
W
,/’0‘ \\\
\g
Figure 6.5.
(x5, y3), then
2 172
1
x3= n(—B—z) —62+0(€:1;) )
as e — 0, (6.5)
y3=—— + O(€}),

provided n(e{/B* — €, + O(€3)) > 0. This means that (x,, y,) exists in
cases (I) and (I1) if (e,, €,) is below the curve N, and in cases (III) and
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(V) if (e,, €,) is above the curve N. If (e;, €,) € N (i.e., x5 = 0), then
(x5, y;) merges into one of the equilibria (0, + \/5 ). If (,, ;) = (0,0),
then all equilibria merge into the origin (x, y) = (0, 0).

The linearized system at (x5, y;) is given by the matrix:

2
0 Brf1+—
A= x3( By3) : (6.6)

The determinant of 4 has the same sign as —nB (if x; # 0). Hence
(x5, y5) is a saddle point in cases (I) and (IV), and is an equilibrium
which may be a focus, node, or center in cases (II) and (ITI). It can be
shown that:

(1) In case (ID) if (e, €,) lies between the curves N and R, where

ZB+1

—ei + 0(€}),

then (x,, y,) is a node.

(2) If (ey, €,) is below R in case (II) or above N in case (III), then
(x5, ¥3) is a focus which changes its stability when (e,, €,) crosses the
curve H in case (ID) or (e,, €,) crosses the curve H in case (IID).

Summing up the above discussion, we conclude that in cases (I) and
(V) the system (6.3) has no periodic orbits. In fact, the y-axis is an
invariant line. Hence, periodic orbits in the half plane x > 0, if they
exist, must surround the equilibrium (x;, y;). But this is impossible,
since (x3,y;) is a saddle in cases (I) and (IV). In these cases, the
bifurcation diagram consists of curves N and M. Saddle-node bifurca-
tions occur on M while pitchfork bifurcations occur on N. In cases (II)
and (ITD), the bifurcations on M and N are similar to the cases (I) and
(IV). However, a Hopf bifurcation occurs on H and H, respectively.

Step 2. The stability of (x;,y;) when (e, €,) € H in case (II) and
(e;, €,) € H in case (III) From (6.5) and (6.6), it is easy to determine
the stability of (x5, y;) when (e, €,) is in the two regions divided by H
(or H), and the stability is opposite in these regions. Hence H(H) is a
Hopf bifurcation curve. It is necessary to determine the stability of
(x5, y;) when (e,,€,) € H (or H). By using the formula (3.2.34) we
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have

Re(C,) = ae, a > 0 constant.

Hence, (x5, y,) is an unstable focus when (e, €,) € H (case (III)), and
a stable focus when (e,, €,) € H (case (II)). Therefore, in both cases a
limit cycle appears when (e,, €,) moves across H or H from the right to
the left, and the bifurcating limit cycle is stable in case (II) and unstable
in case (III).

Step 3. Uniqueness of periodic orbits As shown in Step 2, (6.3) can
have periodic orbits only if €, < 0 in case (I) and €, > 0 in case (III).
We choose a small parameter § > 0 and let

q

x
x> 8x, y—dy, dt— ?dt, €, =ad? e€,= —nd?%

where ¢ + 1 =2/B and n = —sgn B. Then (6.3) is transformed into
the form

(6.7)

X =x9(Bxy + 8(ax + 1y?)),
y=x4—-n +nx?-y?),

where n = 1, B < 0 (case (II)) or n = —1, B > 0 (case (III)). When
8 =0, (6.7) becomes a Hamiltonian system

{x =x* By, (6.8)

y =x9(—n + nx? - y?),
with a first integral H(x, y) = h, where

2

B
H(x,y) = ?xq+l(_" -yi+q if B+1+0, (6.9)

B+1)

and
2

2x?

H(x,y) = +Inx, ifB+1=0. (6.10)

Note that H(x, y) is the Hamiltonian function of (6.8).
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y
(0,‘)77 ,//
"
0,-1) N
(a) B>0 {b) -kB<0 {c) B<—1

Figure 6.6. The level curves of H(x, y).

The closed curves I, = {(x, y)IH(x, y) = h} are shown in Figure 6.6
forcases(@) n=-1,B>0,(b)n=1, —1<B<0,and (c) n =1,
B < —1, respectively (see Remark 6.5), where h € J, (i = 1,2,3,4) and
J; corresponds to different values of B:

, B?
= * e — if B>0
J; = (0,h%), A 2(B+1)’ 1 >
—B?2
J,=(h%,0), hf = ——— <0, if -1 <B<O,
2 =(h3,0), 3 2(B + 1) 1 6.11)
1
Js=(h§,+°°),h’§=’2", if B=—1,
BZ
=(h%, + e e—— >0, fB<-—1.

When h — k¥ (i = 1,2,3,4), the level curve I, shrinks to the equi-
librium (x*, y*) = (1,0) of (6.8); and when h — 0, T, expands to the
heteroclinic orbit in the case B > 0. Since

dH
dt

dy
=éx9(ax +xy*)—,
©.7 ( dt

as in Sections 4.1-4.3, to study the periodic orbits of (6.7), we obtain a
bifurcation function ®(#, §, a, B) which for § = 0 is given by
1

Pls=o = frxq(‘” +xy?)dy = —(q + 1)frx"(ay + §y3) dx,
h h

(6.12)
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where h € J; and the orientation of I, is defined by the direction of the
vector field (6.8). The condition ®|;-¢ = 0 is equivalent to

1
=__P h7 >
a= ~=P(h,B)
where

I,(h, B) ,
==""" I(h = ayJ . . .
P(h,B) T B)’ .(h, B) frhx yide, j=1,3. (6.13)

In a manner similar to Sections 4.1-4.3, the uniqueness of periodic
orbits of (6.7) is equivalent to the monotonicity of P(h, B) with respect
to h. The following three lemmas give the monotonic property of
P(h, B).
Lemma 6.2. If h € J,, then P(h, B) > 0 and

lim P(h,B) =0, i=1,2,3,4.

h—h¥

Proof. For simplicity, we denote P(h, B) and I(h, B) by P(h) and
I(h), respectively. Using Green’s Theorem, we have from (6.13) that

3[[9 x%y? dx dy
k.
ffﬂ x9dxdy

h

where (), is the compact region surrounded by I,, and it is contained
in the open right half plane. From the above expression of P(h), it is
easy to see that

P(h) = >0 forhel,

lim P(h) = lim 3y% =0,
h—h* y—)y*

since (k) shrinks to the point (x*, y*) as h — h*, and (x*, y*) =
1,0). 0
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Lemma 6.3. If there exists hy € J; such that P'(hy) = 0, then P(h) —

P(hy) > 0 for 0 <|h — hol < 1.

Proof. Suppose y =y (x,h) and y = y,(x, h) are defined by H(x, y)
=h for h € J; and a,(h) < x < ay(h), where a,(h) and a,(h) are the
intersection points between I, and the x-axis. Obviously, 0 < a,(h) <
1 < a)(h). We will use y(x, h), or simply use y, to denote y,(x, k) or
y(x, h) if there is no confusion. Using (6.9), (6.10), and (6.13), we have

dy

E = — qu—+1y (along Fh) (614)

and

ay(h)

I(h) = frqudx = 2(sgn B)f(h) x9y,(x, k) dx.  (6.15)

Since 0 < a,(h) < 1 < a,(h), for fixed h € J; we have that

g dy 2m(a?(h) —1
lim _.y_= lim 2y_y=M¢0_
x—afh) X — a,-(h) x—=agh) dx Ba,.(h)
(x,y)€T, (x,y)el,

This implies that
|)’|=0(|x—a,-(h)|1/2) as x = a;,(h),
(x,y) €T, i=1,2. (6.16)

Noting y(a\(h), h) =y,(a)h),h) =0, from (6.14) and (6.15) we
have

1,1
L) = -5 [ — . (6.17)
h

Here the integral is convergent because of (6.16). From (6.13) and (6.14)
it is not hard to obtain that

3
K= -2/ %dx. (6.18)
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On the other hand, from (6.13) we have

I(h)  L(hy)  £(h) = £(hy)
I(h) ~ T(he) _ I(W)Iy(he) ’

P(h) = P(h,) =

where

§(h) = Il(hO)IB(h) - 13(h0)11(h)'

Hence

E(0)(h—he) h—ho
LRy~ Ik 20 (619)

P(h) = P(hy) =

where 6 is in between k& and kg, and
Q(h) = Ij(h) = P(ho) i (h). (6.20)
From (6.20), (6.13), and the condition P’(h,) = 0, we have
Q(hy) = 0. (6.21)
We consider two cases separately:

(i) n = —1, B > 0 (case (IID)). The direction of the vector field (6.8)
on T, is clockwise. Substituting (6.17) and (6.18) into (6.20), we have

P(hy) - 32
Q(h) =fr—(—£xy——y—dx. (6.22)

Equations (6.21) and (6.22) imply

P(h) = 3y* ¢ P(hy) = 3y

O(h) = (k) = Q(ho) = [ —— 5 - gy

h

(6.23)

If h > hg then T, C Q, , where (1, is the compact region surrounded



348 Codimension Two Bifurcations

e
Y ={Ahy) Do e ;o
3 "OHo h \p
X
3 //D1
(h>h,)
Figure 6.7.

by I}, . From (6.23) we obtain

P(h ) - 3y?
o -5, "

1] P(hy) — 3y? P(h,) — 3y?
= CORE L O
B |’sptuapy apsuopy 1 —x"—y

1| P(hy) + 3y2
- — "% hd
B ’/’/‘DIUDg, xy? Y
2x(P(hy) - 3y?
+/f (P(ho) yz)dxdy >0, (6.24)
Dup, (1 —x%—y?)

where D = U}_,D; is the annular domain bounded by I, and [, and
D,, D,, D;, and D, are formed by the truncation lines y =
+(P(hy)/3)'/2. We note that they are mutually disjoint and satisfy the
following properties (see Figure 6.7):

{(x,»)Ix* +y*=1} nD c D, UD,,
{(x,y)ly=0}nDcD,uUD,.
Because P(h,) > 0 (Lemma 6.2) and Q(h,) = 0, the lines y =
+(P(hy)/3)"/? must intersect T, (see (6.22)). Hence the above parti-

tion of D into D,,..., D, is always possible if 0 < |h — hy| < 1. The
orientation of dD* (or 8D;") is defined in the usual way: The region D
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y

Y =[P(h)
)

o OO

Figure 6.8.

(or D)) is always on the left side if one goes along 4D (or dD,). In (6.24)
the integrand along dD; U dD,' is transformed by using (6.8) and the
integrand along every part of the truncation lines y = +(P(h,)/3)'/?
is zero. If h < hg, then T, < Q,. We obtain Q(h) < 0 in the same way.
Hence Q(hXh — hy) >0 for 0 < |h — hy|l < 1. By using (6.19), we
have P(h) — P(hy) > 0 for 0 < |h — hyl < 1 since I,(h) > 0.

(i) » = 1, B < 0 (case (ID)). This case is similar to case (i). We will
only indicate the main differences between the two cases. The direction
of the vector field (6.8) on I}, is counterclockwise. If A > h, (the case
h < h, is similar), then T}, < ,, and (6.23) gives

-

1 P(hy) - 3y? P(h,) - 3y®
Q(h) = — f — +f ST R— A
B | /apiuspy Xy apfuapy —1 +x°—y
1 P(hgy) + 3y?
=— ff —(—O)T——dxdy
B|//p,up, xy
2x(P(hy) — 3y?
-/ (P(*o) 2)dxdy <0,
DD, (-1 +x% —y?)
where D is the annular domain bounded by I', and I, , and D,,..., D,

are formed by truncation lines y = +(P(h,)/3)'/2 They are mutually
disjoint and satisfy the following properties (see Figure 6.8):

{(x,y)kx?-y2=1NnDcD,UD,,

{(x,y)ly=0}nD cD,uD,.
Therefore, P(h) — P(hy) > 0for 0 < |h — hy| < 1since Ii(h) < 0. O
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Lemma 6.4. P(h) is monotone inh €J,,i =1,2,3,4.

Proof. By (6.13), (6.17), and (6.18), we have that P(h) € C'(J,). Sup-
pose there is an h, € J; such that P'(hy) = 0. Lemma 6.3 implies that
such an h, is unique. Hence P(h) — P(hy) > 0 for all h € J;, h + h,,
Therefore, by using Lemma 6.3 and the first part of Lemma 6.2 we
obtain that P(h) > P(hy) > 0 for h € J,, h # h,. This implies

hlin}}*P(h) > P(hy) > 0,

which contradicts the second part of Lemma 6.2, and the desired result
follows. (]

Remark 6.5. Instead of equation (6.8), we consider

X = Bxy,

6.25
y=—n+nx*-y? (6:2)

where B# 0, n = £1, nB < 0. It is easy to see that equation (6.25)
has an equilibrium P*(1,0), and trace (A(P*)) =0, det(A(P*)) =
—2Bn > 0, where A(P*) is the matrix of the linear part of (6.25) at
point P*. On the other hand, equations (6.25) are symmetric with
respect to the x-axis. Hence, P* is a center. Using (6.9) and (6.10) we
obtain Figure 6.6.

Remark 6.6. In order to give the equation of the heteroclinic bifurca-
tion curve § in case (III), we need the value P(0, B) for B > 0. In this
case

32

fx"y3dx flxq(l —x3)7" " dx
_ T _
P(0,B) = =— T
fx"ydx fx"(l —x%)""dx
T, 0
+1 5
0

/‘lu(q_l)/z(l_u)l/zdu B(q+1 3\
0 2 2
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where B(a, B) is the usual beta function. By using the properties:

T'(a)I'(B)

HeP) = Tavp

and I'(a) = (a — DI'(a — 1), we obtain

P(0,B 3B
@, )'q+4—3B+2'
Noting
1 €
@a=-=P(h,B) and 2=-2,
3 € a
we obtain
a__2_PRB | e (6.26)
—=——=—— % . :
€; n 3n
In our case n = —1, h =0, and 6 ~ |€2|1/2 as €, = 0. Hence, the

equation of the curve S is given by

‘1T T3B+2

€+ O(|€2|3/2).

The equation of the curve S in case (II) is easily determined by using
(6.26), where n = 1, h = H(&,0) (for the definition of H(x, y), see (6.9)
and (6.10)), £ = B/le,/'/* > 1, and & ~ |e,|'? as €, — 0.

Remark 6.7. We now show why we can consider equation (6.3) instead
of equation (6.2). In fact, if (6.2) has no periodic orbits, then its
qualitative behavior does not depend on the third-order terms. Thus,
we only need to consider (6.2) for €, < 0 in case (II), and for €, > 0 in
case (ITI). In these cases, we can make the same scaling for (6.2) as for
(6.3), and obtain the same Hamiltonian system (6.8) if 8 = 0. The



352 Codimension Two Bifurcations

bifurcation function, similarly to (6.12), is

Pls_p = f x¥ax +dyx* + dyxy?)dy — x9(dsx®y +d,y?) dx
T,

= —(q+ Dal(h) - (g;_ldz + d4)13(h)

-[(a +3)d, + da]frxq”ydx,

h

where I,(h) and I;(h) are the same as in (6.13).
Along T', we have

x9(—n + nx? — y*)dx — xBxydy = 0.

Hence
n'/;hx"*zydx = '/;hxq(n +y3)ydx + B'/;ﬂhx‘”ly2 dy
q+1 1
=ql, + (1 - ———3—B)I3 =nql, + 313.
Thus,
®ls_o= —(g + Val, + K;I, + K, I,
where
K= - %[n(q +3)d, + (g + 1)d, + nd; + 3d,],
K, = —[(q + 3)d, + d,].

This means that as long as K; # 0 we can choose any values for d,, d,,
d,, and d, without changing the existence and uniqueness of periodic
orbits of system (6.2). For system (6.3), d, =d; =d, =0, d, =1, and
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hence

1 2
K3=—§(q+1)=——3§¢0.

4.7 Two Purely Imaginary Pairs of Eigenvalues

As we mentioned at the beginning of Section 4.6, in this case the
truncated normal form equation is

x = x(fl +p1x2 +172y2 + 61x4 + ézxzyz + 53)’4), (7.1)

¥ = y(€z+Psx? +pyy? + Zox* + Gsx?y? + Goy?),
where x 20, y>0, p,q,€R', i=1,234 j=1,2,...,6, and ¢
and €, are small parameters.

By changing (x2, y2) = (x, y) and ¢t — 1¢, equation (7.1) becomes

x =x(€1 +p1x +pyy + G xt + Gxy + ‘73)’2)’

‘ o, _ (7.2)
V= y(€2 +P3x +pyy + Qux? + Tsxy + qy?).
We suppose that
. Py D
A = #* 0. .
p;#0 (i=1,2,3,4) and Py Dy 0 (7.3)
Let
’ (sen p,) (74)
x> —, - — t— —(sgnp,)t. .
|P1| Y |P2| gn P

Then (7.2) takes the form

X =X(/.L1 +nx—y+ q1x2 + g, xy + q3y2)7

a+1 a 5 ,1 (795)
B nX+B+1y+q4x +4sxy +q¢y° |,

y=ylu, -
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‘ﬂ
a+1=0 r
a+f+1=0
o=
© ® (©)
@
=
®
@ | X
N\
N\
—_—
B+1=0 ®

Figure 7.1. The partition of half plane a < 8.

where n = 1if p,p, <0and n = —1if p,p, > 0,

a+1 Ds a Py
B Pl, B+1 Pz,

and condition (7.3) becomes

aB(a+1)(B+1)(a+p+1)=0. (7.6)

We only need to consider the case a < 8. Otherwise, let (x,y) —
(y, x). Then by using the following change of variables: x = [(8 + 1)/
alx, y =|B/(a + 1|y, and t = n(sgn(B/(a + 1)))t, a and B in eq-
uation (7.5) are interchanged (@, = pu,(sgn(B/(a + D)7, &, =
wsgn(B/(a + D), 7 = n(sgn(B(B + 1) /ala + 1))).

The half plane a < 8 is divided into eight regions (a, b, . . ., h) by five
lines: a =0, =0,a+1=0,8+1=0,and a +B +1=0 (see
Figure 7.1).

We denote (7.5) with (a, B) Eregion a and n =1 (n = —1) by
a,(a_). The notations b , ...,k have the same meanings.

Although the total number of a _,a_,..., h ., h_ is sixteen, the total
number of unfoldings for system (7.5) with different behavior is thir-
teen. In fact, we will show that b_~f_,c_~g_,and d_~h_.

In order to state the main theorem, we need the following definition.
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Definition 7.1. Equation (7.5) is called nondegenerate if
1) apla + 1XB + 1 a+ B+ 1)+ 0;
(2) §¢ + 0 for cases a_, d,, and h,,

where

- af? a+2
ST @r)B+rDB+2)\ B "‘*"“)
nap a+1
NTTTED) 3+1‘12+‘15)
[4 4
+(3+2q3+q6). (7.7

In Lemma 7.10 we will show that if (7.5) is nondegenerate, then
instead of (7.5), we only need to consider equation

x=x(l“l’l +T’x_y)9
a+1 o (7.8)

y = -~ x + +v + nx, ,
y y(uz 5 " B+1y g(mqy +mx,y)

where v = sgn g, for cases a_, d, and h, v = 0 for other cases, and

x? 2xy y

g(x’y)=F_ﬁ+1+ﬁ+2'

2

(7.9)

Theorem 7.2. (1) For different values of a, B (e < B) and n = +1, the
nondegenerate system (7.5) has thirteen different types of bifurcation. The
bifurcation diagrams and phase portraits are shown in Figures 7.2-7.14,
respectively.

(2) In every case, except a_, d, and h.,, the bifurcation diagram
consists of

¢=K'UKUL*UL UMUNU {0}, (7.10)
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where

Kt:p, =0, p,>0,

K:p, =0, p,<0,

L*:p,=0, p, >0,

L :p,=0, pn, <0,

M3#~2=_B+1F~1+0(ﬂ21)’ my >0,
@ 2
N:uz=—Eu1+0(u1), py >0

forn=—1land u, <0 forn = 1.

Along curves K*,L*, M, N, saddle-node bifurcations occur. In these
cases, system (7.5) has no limit cycle.
(3) In case a_, the bifurcation diagram consists of

HUHL U® (see (7.10)),

where

a
Hip,= “Eﬂl +0(l‘~31)’ ry >0,

B v(B+1)
Bz(a+/3+1)(a+/3+2)”

a
HL:p;= ——m,

3 i+ 0(1d),

uy > 0.

Along the curve H, Hopf bifurcation occurs. When (u,, p,) is between
curves H and HL, (7.5) has a unique limit cycle which forms a heteroclinic
loop if (uy, n,) € HL.

(4) In cases d, and h ., the bifurcation diagram consists of ® U H,
where

@
H:p,= L +0(p}), p>0forcaseh,

and p, <0 forcased,.

Along curve H, Hopf bifurcation occurs. If we localize equation (7.5) by
restricting 0 < x < € and |p, | + |lpu,l < —efa/(a + B + 1), € > 0, then
there exists a curve S,

(24
Sipy=— el vo(e, m)ui + O(ln, ),
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where w, > 0 in case h, and p, <0 in case d ,

ffﬂ x* lyPTl ¢+ x —y)zdxdy

dle, ) = : »
€, K Bffn x"‘"lyB_ldxdy

€. 1

Q, ., is the region bounded by the closed curve

e \” e \FH!
E+x y ) (m) (§+ m)
xy? - = ,
B B+1 B(B+1)

E=1lincaseh, and ¢ = —lincased_, and e/|p,| > —éa/(a + B +
1) > 0. When (u,, p,) is between curves H and S, (7.5) has a unique limit
cycle which is located entirely in the strip 0 < x < € and touches the line
x=eif (u,uny) €8.

-8
s | N
2 b b

Figure 7.2. The unfoldings for case a _.
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Figure 7.3. The unfoldings for cases b_ and f_.
V] o num n
@ o NUIV
L
K M
K-UVIUL™ LoV

Figure 7.4. The unfoldings for cases ¢_ and g_.
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Figure 7.5. The unfoldings for cases d_ and A _.
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Figure 7.6. The unfoldings for case e _.
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Figure 7.7. The unfoldings for case a .
IUN n K+ruin
My
C K+
N
0 uim MUIV
_ |} v
L o T ]
vi v \\'
L !
viuL~ LruvuK”

Figure 7.8. The unfoldings for case b ,.
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Figure 7.9. The unfoldings for case c,.
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Figure 7.10. The unfoldings for case d, .
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Figure 7.11. The unfoldings for case e,.
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Figure 7.12. The unfoldings for case f..
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Figure 7.13. The unfoldings for case g .
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Figure 7.14. The unfoldings for case 4 ,.
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Proof. We divide the proof into four steps.

Step 1. The phase portraits for p; = n, = 0 We consider first the
equation

=x(p; +x —y),

. a+1 L (7.11)
y =y, B nx B+1Y ’
where x >0,y > 0,71 = t1l,a < B,and aBla + D(B + D(a + B +
1) # 0.
Let
. dt
X =rcos@, y =rsiné, dt——>7,

where r > 0 and 0 < @ < w/2. Equation (7.11) with p, = p, = 0 be-
comes

. a+1 . .
F=r{ncos®@ — cos’@sinf — 71 cos 8 sin? @ + +lsm30 ,
6 1)cos 6 sin 6 — — cos 8 " 0

=(a+ B + 1)cosBsin@| — — cosf + sin @ |.
(a+ B+ 1)cosfs R e

(7.12)

Equation (7.12) has the following equilibria whose linear parts are given
by the following matrices:

n 0
+B8+1
(0,0), 0 @ B .
| B
! 0
_ B\ ., | B+1
(0,9), 1+ 511 )smo a+B+1 ] (7.13)
B+1
- o .
T ﬁ+1
(0’3)’ 0 a+p+1
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The equilibria (0,0) and (0, 7/2) always exist, but the equilibrium (0, 8)
exists only if (8 + 1)n/B > 0. We note that under this condition
0<6<m/2

From (7.13) we can obtain the phase portraits of (7.12) and (7.11)
(py = p, = 0)in the ré-plane (r > 0,0 < 6 < 7/2) and in the xy-plane
(x >0,y > 0)foreverycase of a ,..., h; see Figure 7.15 and Figure
7.16.

It is not difficult to see that the phase portraits of (7.5) for the case
i, = p, = 0 are the same as for (7.11).

Step 2. The phase portraits for u% + w5 # 0 In a small neighborhood
of x =y = 0 in the phase space, (7.11) has the following equilibria and
their linear parts:

wp O
pl(O’O)’ A(pl) = [ O MZ:I,
B+1
+1 +1
pz(o,—ﬂ uz), A= |t O B L
¢ L * _MZ-
-“'Ilq * ]
p3(—muy,0), Ap=| o, &* 1”1 | if —muy 20,
I B ]
n%4 X4
Py(X4, ¥4)s A(py) = _ a+ 1"7}’4 a Ya B if X4 2 0, 7% 0,
B B+1
(7.14)
where
Lo Pt @
‘T g B+l g1 T 2 715
B(B+1) (a+1 N (7.15)
‘T ar g1\ g T H2

From (7.14) and (7.15) it is not difficult to obtain the following proper-
ties for equation (7.11):

(1) p,(p;) appears or disappears when (u,, t,) moves across the
curves L*(K %), and p,(p,) merges into p,(0,0) when (u,, u,) €
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[NE]
/l\ )

|

T

T

T

0¢ Y

y

or——>>—

o]

é‘ y=(tanf)x
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\_

y=(tanf)x

X

Figure 7.15. The phase portraits near x =y = 0 for the case u; = 4, = 0 and

n =1
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Cases The ¥-0 plane The x-y plane
0 y
T
2
_U_ l (
0b——e— Y 00—e——X
6 y
kg
2
y
(ORVOR 1
0—«—7 o X

I
’ A
o Y o X
. ] y y=(tanfx
co g {/;
oﬁ>—<—— Y 0 X

] y y=(tanB)x

= 7
B —
o]Z—Y ] -X

Figure 7.16. The phase portraits near x = y = 0 for the case u; = g, = 0 and
n=-1
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L*(K *). p,(p;) changes from a saddle point to a node when (u,, u,)
moves across the curve M(N), and p, merges into p,(p;) when
(1, o) € M(N).

(2) p, exists if and only if one of the following conditions is satisfied:
() (uq, p,) is between the curves M and N (u, > 0) for the case
n=-1Ge.,casesa_,b_,...,h_).

(ii) (pq, n,) is above the curves M and N for the cases a ., b,, c,, f,,
and g,.
(iii) (1, p,) is below the curves M and N for the cases d, e, and g,.

Moreover, the property of equilibrium p, is determined by

a+p+1
BB+ 1) (7.16)
trace( A( p,)) = ap, + Bu,.

det(A(py)) = ~

If p, is a focus keeping its stability when (u,, u,) varies in some subset
of a small neighborhood of (0,0), then in a small neighborhood of
(x,y) = (0,0) the qualitative behavior of (7.5) is the same as that of
(7.11) (see Bautin [2]).

Suppose now that p, is a focus. The condition

det(A(p,)) > 0 and trace( A(p,)) =0 (7.17)

gives a possibility for Hopf bifurcation. Equations (7.16) and (7.17) give
p, = —(a/Blu, and

%(a+B+ 1) > 0. (7.18)

Noting «¢ < 8, x, > 0, we obtain only the following three cases which
satisfy (7.18):
MDa>0,8>0,n=—1,and u, > 0 (.e.,, a_ with g, > 0);
QB<0,-1<a+B<0,m=1,and g, > 0CG.e., A, with u, > 0);
B3B>0,a+B<-1,7m=1and u, <0CGe.,d, with u, <O0).

D1, D>, and p; are always on the invariant lines x = 0 and y = 0.
Hence, if (7.5) has a limit cycle, then it surrounds p,. In every case
except a_, h ., and d_, p, is a saddle point or a node which arises from
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a saddle-node bifurcation, keeps its stability, and moves into another
saddle-node. This means that (7.5) has no periodic orbits for every case
except a_, d,, and h,. Thus, the bifurcation diagrams and phase
portraits for (7.5) (also for (7.11)) with u3 + p3 # 0 in these cases are
determined completely by the signs of (8 + 1)/a, (a« + 1)/8, and
(a+ B+ 1D/(B(B + 1) (see (7.14), (7.15), and (7.16)). Hence, the
behaviors of b_ and f_ are the same, and there is a similar situation
forc_and g_,d_and h_, b, and f,, and c, and g,. On the other
hand, as we discussed in Step 1, the phase portraits of (7.5) with
u; = p, = 0 are topologically equivalent for cases b_,c_, d_, f_, g_,
and h_, but are different for cases b, and f,, and for ¢, and g, (see
Figure 7.15 and Figure 7.16). Therefore, the total number of partitions
of the half plane a < B for (7.5) with different dynamical behavior is
thirteen (see Figures 7.2-7.14).

Step 3. The uniqueness of periodic orbits of (7.5) for cases a_, d ,, and
h , Instead of equation (7.5), we consider equation (7.8) in three cases:
a_ with u, > 0, d, with u; <0, and h, with u; > 0 (we will give the
reason in Step 4). Let

(41
By =£8, p,= —555 -08%, x-éx,

xa—lyB—l

y = 8y, dt — —6_dt’ (7.19)

where 8 > 0, 8 and o are new parameters, ¢ = 1 for cases a_ and h ,
and £ = —1 for case d,.
Equation (7.8) is transformed into

X =xyP (¢ +qx —y),
o a+1 o

S = a=-1,B8| _¢__ __ +
yxy§B an B+1y

+8(—o +g(£ +1x,y))],

(7.20)
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where ¢ =1,n = —1fora_,¢é=—-1,n=1ford,,and é=1,n=1
for & ,.
When 6 = 0, (7.20) becomes a Hamiltonian system

i=xyE 7 (¢+nx - y),

. w1 B( ga a+1 N o ) (7.21)
y=x yel -6+ — X yi,
BB T B+1
with a first integral
£+ nx y
= x%yP - . 22
Heop) =S5 - 22 (122)

The closed curves {H = h} are shown in Figure 7.17. The values of %
that correspond to the closed level curves are

0 <h <hf forcasesa_andd,,
(7.23)

h% <h <0 forcaseh,

where H = h* corresponds to the equilibrium (x,,y,), and H =0
corresponds to three straight lines (they form three heteroclinic orbits
in case a_).

(-] X o X O X

case@)_ case®, case@),
n=-1, &1, a>0, >0 =1, &1, —1<a+f<0 =1, &=-1, a+f<—

Figure 7.17. The closed level curves of equation (7.21).
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Similarly to Section 4.6, for the study of periodic orbits of (7.8), we
use the bifurcation function ®(¢, 8, h, a, B) which for 8 = 0 is given by

®ls_o = frx"‘lyﬁ( -0+ vg(&+nx,y))dx, (7.24)

where I, is the level curve of H = h. The orientation of I, is defined
by the direction of the vector field (7.21). We note that

®|5-0 =0 isequivalentto o = vP(h),

where
L(h
(7.25)
I(h) = [ x=7yPdx,  L(h) = [ x*7'yPg(€ + . y) dx.

To prove the uniqueness of periodic orbits of (7.8), we only need to
show that P'(h) # 0 for A satisfying (7.23).
From (7.22) we have that along T,

dy 1

o xyEF Y (f+nx—y)

Hence
I'(h) = —_dx, 7.26
() = B[ (7.26)
E+nx—y
L(h)y = | —— dx. 7.27
i = [ — (727)
We define

G(h) = BP(h). (7.28)
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Theorem 7.3. G'(h) + 0 for h satisfying (7.23).

From (7.28), (7.25), (7.26), and (7.27), it is easy to see that G'(h) # 0
is equivalent to

HM)—PUQAM)=I(§+WX—M - G(h)

dx #0. (729
r, x(é+nx-y) #0. (759)

Let z=¢+mx —yand z;, = z(x) = £ + nx — y(x) (i = 1,2), where
{y = y,(x)} are branches of T, lying below and above the line z = 0,
whence z,(x) > 0> z,(x) for x; <x <x,. x, and x, are x-compo-
nents of the intersection of the line z = 0 with T,. Thus, to show (7.29),
we only need to prove that

X, 1 1\}dx
I[A—Q—QML———”—>Q (7.30)

X zy  zZ]| x

The following lemmas of Zotadek [2] are needed.

Lemma 7.4. If Theorem 7.3 holds for B = 1, then in the other cases it is
also true.

Lemma 7.5. Let x, < (x,,x,) be such a point that the function
(z,z,Xx) < O takes its minimal value at x,. Then there exist y > 0 and
X5 > x, such that

zy(x) = al[(xg _xi’)z = (x3 _xy)2]1/2 = au(x),

(731)
2,(x) < ayu(x),
for x; < x < x,, where a; = z(x)/u(xy), i = 1,2.
Lemma 7.6. There exist 8 > 0 and x4 > x, such that
- 2 Q.
zy(x) = al[(xg —x%)" = (x& —x3) ] =aq,w(x),
(732)

z,(x) < a,w(x),

forx, <x <x,, where a, = z(x,)/w(xy), i = 1,2.
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Lemma 7.7. We have the inequality

0< —Lh) < 1 7.33
(2) (70) = (7.33)

for h satisfying (7.23) and B = 1.

Lemma 7.8. We have the inequality

[ [u(x)— 3:;;"))] > 0. (734)

Xy

Lemma 7.9. We have the inequality

X3 w? 0 dx
f [w(x)— 3w((xx)) = >0 (7.35)

Proof of Theorem 7.3. By (7.31), (7.33), and (7.34) we have

X0 13)|dx
[lammewlz-2))F

Xy Z

1
f [(al — ay)u(x) - G(h)(— - —

-

=(a,—a )fxo u(x) + Gui(x) | dx

(212,)(x)u(x) | x

u(xy) ﬁ

3u(x)

z(al—az)fx0 u(x) — > 0.
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Similarly, by (7.32), (7.33), and (7.35) we have

dx
— > 0.

Xo X

X, 1 1
f [Zl — 2y — G(h)(z—l - 2—2)

This gives (7.30), and Theorem 7.3 is proved. m]

Step 4. Reasons for using equation (7.8) instead of equation (7.5) Let
us consider equation (7.5). For cases a_, d ., and h,, we take the same
transformation as (7.19). Then (7.5) becomes

X =x°‘y‘3‘l[§ +nx =y + 6(qx° + quxy + quz)],
) - ga a+1 a
y=x4T "y —€— — nx + y

B B B+1

+8(—0 + q4x? + gsxy + q¥?)].

(7.36)

For & = 0, (7.36) becomes (7.21) with the first integral (7.22). Hence,
to study the periodic orbits of (7.5), we obtain a bifurcation function
G(o, 8, h, a, B,{gq;}) which, for § = 0, is given by

Gls-o = f]rx"y‘?“‘(—qlx2 —qyxy — q3y*) dy
h

+x7yP(—0 + q,x7 + gsxy + qgy*) dx

= _O'Ia—l,ﬁ + d4la+l,ﬁ + dsla,ﬁn + ‘isla—l,3+2, (7-37)

where

1, ,= fx"y”dx,
Ty
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I, is the level curve of H = h, and

3 a+2 . a+1 . a
dy=4q, + B dy, 45 =qs + E+_IQZ’ 96 =ds t B+2q3’
(7.38)
Along I, we have
1p foz a+1 N a
x*TYP == — X y
B8 "B+l
—x®yP Y ¢+ nx —y)dy = 0. (7.39)

Multiplying (7.39) by x and then integrating it along I',, we have

¢ N
—I, 5+ —I

B a B a+1,8 —B__i__TIa,B+1 = 0 (740)

Multiplying (7.39) by y and then integrating it along I},, we have

a¢ n(a +1) a
ey gy — ———I, g+ ——1I,_, 5,,=0. (741
g la-Lel B B+1 T By lam1pe2 (7.41)

Equations (7.40) and (7.41) give

I __ £ne I N nap [
a,B+1 T a+ 1 a—-1,8+1 (Cl + 1)(B + 2) a—1,8+2>
¢ap
sz+l,B = _gnla,ﬂ - (Cl + 1)(B + 1) Ia—l,B+1 (742)
ap?®
+ sz—l,B+2'
(a+1)(B+1)(B+2)

Substituting (7.42) into (7.37), we obtain

Gls—o= =0l g+ Vil 5+ v2loor,541 + q:61a—l,B+2’ (7.43)
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where

af _ na
T+ DB+ )BT a1

Y= —€énd,, y,=¢

z _ aBZ 54 nap
LT+ B+ DB+ @+ 1)(B+2)

ds + g- (7.44)

We remark here that (7.44) and (7.38) give (7.7). a

Lemma 7.10. Suppose that equation (7.5) is nondegenerate. Then there
exist a small neighborhood 4 of the origin (x,y) = (0,0) and a small
neighborhood A of (u,, p,) = (0,0) such that equation (7.5) has at most
one periodic orbit in A for all (uy, p,) € A if and only if the same
property holds for the following equation

E=x(p +1x-y),

. 7.45
y=y(u, + max + by + vg(p, +nx,y)), (7:49)
where
a+1 @ x? 2xy y?
a= — ’ b= ’ g(x9Y) = == - + ’
B B+1 B B+1 B+2

and v is a constant determined in the following manner: v = 0 if one of
the conditions a_, d ., or h_ is not satisfied; v = sgn(qe) if one of the
conditions a_, d ., or h is satisfied.

Proof. In this proof, we may have to choose different neighborhoods .4’
and A for different equations. We will always take the intersections of
such neighborhoods and continue to denote them by .#" and A. This
will not cause any confusion.

From our earlier discussions, we only need to consider the case that
one of the conditions a _, d,, or h_ is satisfied. Thus, we assume that
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v # 0. Moreover, for the uniqueness of periodic orbits of equation (7.5)
in # for (u,p,) €A, we only need to. show the uniqueness of
periodic orbits of equation (7.36) in the xy-plane. Furthermore, we have
shown that the uniqueness of periodic orbits of equation (7.36) is
equivalent to the unique solvability of the bifurcation equation:

Gls=0 = 0, (746)

where Gls-¢ is given in (7.43).
On the other hand, consider the following equation:

{x=x(u1+nx—y), (747

v =y(r2 + (ma + Eyip)x + (b + yap))y +45y?)

in the neighborhood .# for (u,, n,) € A, where ¢ = +1 is chosen
according to the conditions a_, d,, and h, (see the change of variables
(7.19)). By a scaling of (7.9), equation (7.47) is transformed to

x=xyP g+ nx —y],

. g ga a+1 N a

y=x*"yPl = — nx
B B B+1

+8(—a+yix +yy + 56y2)].

y (7.48)

Thus, the uniqueness of periodic orbits of equation (7.47) in .# for
(ny, #3) € A is equivalent to the uniqueness of periodic orbits of
equation (7.48) in the xy-plane. If § = 0, then (7.48) is reduced to the
Hamiltonian system (7.21). Furthermore, the uniqueness of periodic
orbits of equation (7.48) in the xy-plane is equivalent to the unique
solvability of the bifurcation equation (7.46). This says that equation
(7.36) has at most one periodic orbit in the xy-plane if and only if
equation (7.48) does. In other words, equation (7.5) has at most one
periodic orbit in .#" for (u,, n,) € A if and only if equation (7.47) does.
We will use the notation (7.5) = (7.47) to mean this kind of equivalence
relation between equations.
Since equation (7.5) is nondegenerate, g, # 0. Thus, let

1 -
X = =X, y = ="y, t_)léﬁlt
g6l ||
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This transforms equation (7.47) into the following form:

(7.49)

X=x(p, +x—y),
v =ylns + (na + Eypy)x + (b + £you)y + vy?].

Hence, (7.47) = (7.49).
Now, consider equation (7.45). By the definition of g, we write
equation (7.45) as follows:

{i=X(u"f +qx —y), (7.50)

y =y(p% + na*x + b*y + vg*(x,y)),

where

. vl . 2vn
H1 =My, By =ppt g’ a”=a+ BI“LI’
. 2v -
b* =b — mﬂl, v = sgn(q6),

“x )_x_2_2nxy+ y
ELY) = T 1 T g2

2

Thus, equation (7.50) is a special case of equation (7.5) with ¢, = ¢q, =
q; = 0 but a* and b* are dependent on u%} = u,. By repeating the
arguments as for equation (7.5), we obtain that equation (7.50) = the
following equation:

X=x(p, +nx-y),

. . 7.51
y=y[us + (na + Eviu)x + (b + Eviu,)y + 4ev?], (7:51)
where
v vén &v(a +2)
* _ + —py2 * _ , * _ _ ,
2] My B/‘Ll’ Y1 B Y2 ((X + 1)(3 + 1)
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¢ is the same as in (7.47), and

e vie +B+1)
T @+ )(Br)(E+2)

Since

a+p+1
@+ DB+D(E+2) "

v= sgn(q:6) and

+ + 6 6
Sigl‘l.

Let
: _ 32|
X o —X, y - ==y, t > |gglt.
g lg¢|

Then equation (7.51) is transformed into the following form:

X=x(p +nx—y),

\ * *k % 2 (7.52)
y =Y[P«2 + (na + &yfu)x + (b + Eviuy)y + vy ]

We have proved that (7.5) = (7.47) = (7.49) and (7.45) = (7.51) =
(7.52). It is clear that (7.49) = (7.52). Therefore, (7.5) = (7.45). O

Remark 7.11. Since P(h*) = 0 and o = vP(h), the equation of Hopf
bifurcation curve H is obtained from (7.19), that is, u, = —(a/Blu, +
O(u3). In order to obtain the equation of the heteroclinic bifurcation
curve, we need P(0) in case a_. The calculation shows

1 1 a-1 B+2
D MR 1 B(a,p+3)

P(0) = [le“-l(l i T BXB+2) B(a,B+1)

B B+1
T Ba+B+1)(a+B+2)]
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Finally, in order to obtain the equation of curve S for cases d, and
h, (n =1), we note that the coordinates of the center (x,,y,) of
equation (7.21) are

fa
a+pB+1’
Vo=§& +X,.

X4

If we take €/|p,| > X,, Bew, = H(e/Ipql, € + €/|u,D), then the closed
level curve H(x,y) = h,, .. is tangent to the line x /lu,l = €. Returning
to equation (7.5) by using (7.9), we see that if (u,u,) €S, S: p, =
—(a/Bp; — dle, wvud + O(p ), where ¢(e, u,) = P(h, ), then
the limit cycle touches the line x = €. Of course, the limit cycle could
be larger when (u,, u,) crosses the curve S and is still in a small
neighborhood of (0, 0). But the behavior of the limit cycle will depend
on the global property of the vector field.
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S

Bifurcations with Codimension Higher
than Two

In the first two sections of this chapter we will introduce Hopf bifurca-
tion and homoclinic bifurcation with higher codimension. We will
introduce codimension 3 and codimension 4 results concerning the
Bogdanov-Takens system in the last two sections.

5.1 Hopf Bifurcation of Higher Order

As in Section 3.1, the classical Hopf Bifurcation Theorem is a local
result which deals with the occurrence (or annihilation) of a periodic
orbit at an equilibrium point of a system

x=f(x,y,n),

) x,yeER,neR” f,geC, 1.1
y=g(x,y,n), K f (1.1)

when two eigenvalues A, , = a(u) £ iB(p) of the linear part of (1.1)
cross the imaginary axis. Namely, we suppose:

a(0) =0, B(0) = B, + 0, (H,)
a'(0) #0 (if o € R'),and (H,)
ReC, # 0, (H,)

where C, is the first coefficient of nonlinear terms of the normal form
equation obtained from (1.1)#=0. This normal form equation has the

383
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following form (see Section 2.11 or Lemma 1.1 below):

w = lBOW + Clwzw + C2W3w2 ER +Ckwk+lwk + 0(|W|2k+3),

(12)

In this section, we show that a Hopf bifurcation may occur when
either condition (H,) or (H;) fails. This is called a degenerate Hopf
bifurcation. Many authors considered this problem (see Section 5.5).
The proof of Theorem 1.3 in this section belongs to Rousseau and
Schlomiuk [1].

Lemma 1.1. Suppose that the linear part of system (1.1) at (x, y) = (0,0)
has eigenvalues A, , = a(u) + iB(p) satisfying condition (H,). Then for
any integer k > 0, there are o > 0 and a polynomial change of variables
depending smoothly on the parameter u for |u| < o such that in complex
coordinates system (1.1) can be transformed into the following form:

W= (a(p) +iB(p))w + Cy(p)w?® + Co(u)w'w?
+ o A C(p)WRTTRE + O(IwlPF ), (1.3)

where C,(+) € C* and C,(0) = C,, with C, the coefficient in (1.2).

Proof. As in Section 2.1, we let m = (my,m,), m; > 0 (j = 1,2) are
integers, .#, = {m|2 < m; + m, < 2k + 2}, Mp) = (A(p), A()), and

(m, A(p)) = md(p) + myry(p).
It follows from (H,) that
A1(0) = (m, A(0))
gives a resonance of order < 2k + 2 if and only if
me.#*={mm =my+1,m,=12,... k} c#,.

Then by Theorem 2.1.5, there is a polynomial change of variables that
transforms system (1.1) for u = 0 into its normal form (1.2) up to order
2k + 2.
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Since A/(u) is a smooth function (j = 1,2), 3o > 0 such that for
|| < o we have that

Alw) # (m,Mp))  ifmeg\L*

Hence, we can use the same arguments as in the proof of Theorem
2.1.5 to find a polynomial change of variables, depending smoothly on
u, to get rid of all terms w™w™2 with (m, m,) € £, \#*. Hence,
system (1.1) for 0 < |u| < o is transformed into the form (1.3). O

Definition 1.2. We say that (1.1) has a Hopf bifurcation of order k
(k = 1) at the origin if a(0) = 0, B(0) = B, # 0, and

Re(C,) = Re(C,) = --- =Re(C,_;) =0, Re(C,) # 0, (1.4)

where C,, ..., C, are the coefficients of (1.2) which is the normal form
equation of (1.1)u=0. In this case, we also say that the origin is a weak
focus of order k for equation (1.1),, _o.

Theorem 1.3. Let

x=f(x,y), ,
y =g(x,y) (x,y e RY (1.5)
be a C* system with an equilibrium (0, 0) that is a weak focus of order k.
Then

(1) if n 2 k and (1.1),_y = (1.5), then there are o > 0 and a neigh-
borhood A of (x,y) = (0,0) such that for |u| < o, (1.1) has at most k
limit cycles in A;

(2) for any integer j, 1 <j <k, and a neighborhood A* Cc A of
(x,y) = (0,0), there exists a system of the form (1.1), with (1.1),_, =
(1.5), and a number o* > 0 such that (1.1), has exactly j limit cycles in
A* for u € S, where S is an open subset of {u|0 < |u| < o*} and 0 € §.

Proof. (1) Suppose that (1.2) is a normal form equation of (1.5). Then
by condition (1.4) it can be transformed into the following form in polar
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coordinates:

F = Re(C,)r¥**1 + O(r? +3),

6 = B, + O(r?). (1.6)

Noting B, # 0, in a small neighborhood of r = 0, we obtain from (1.6)

the following equation:

dr Rc(Ck) 2k+1 2k
—_—— + +3), N
70 8. r o(r ) (1.7)

By Lemma 1.1, we can transform (1.1) into the following form:

i _ atn)

= r+h(0,u)r®+ hy(0,p0)r’
+ o (0, )T+ O(r%F3), (1.8)
where h(6,n) € C* in 6 €[0,27w] and p near 0, and «(0) =

h(6,0) = -+ =h,_(6,0) =0, r,(0,0) = Re(C,)/B, # 0.
Suppose that

R(rg,0,p) = uy(0,1)ry + uy(9, l“')rg
+ o gy (B, m)r T+ (1.9)

is the solution of (1.8) satisfying the initial condition R(r,,0, p) = ry,
and

¥(ry,8) = R(r,,8,0) (1.10)

is the solution of (1.7) satisfying ¢(r,,0) = r,. This implies that

3 @ o
aaﬁ rouo‘l’(ro’ )
0 forl<i<2k+1,
ReC,
[(2k+1)!] 3 #+0, fori=2k+1.
0
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Hence, ' /dr{|,,—otp(ry, 8) is a constant for i < 2k + 1 and is equal to
[(2k + 1)'ARe C,/By)0 for i = 2k + 1. Therefore, by using ¢(r,,0) =
r, we obtain

i

i
arg

¥(ro,2m)

ro=0

i

_ {1, fori=1,
6_r(';r0=0¢(r0’0)_{0, for1<i< 2k +1,

- (1.11)
Re C, .
277[(2k+1)!]—,-3——, fori =2k + 1.
0

As in the proof of Theorem 3.2.4, we define the Poincaré map
P(x, p) for system (1.8) along the x-axis near x = 0 and u = 0, and let

V(x,n) = P(x,u) —x.

The number of periodic orbits of (1.8) near x = 0 for small |u| is
determined by the number of zeros of function V(x, u) near (0, 0) for
x > 0. When x > 0, we have that

V(x,p) = R(x,2m,pn) —x,
and
V(x,0) = ¢(x,27) —x.

Clearly, we have that

aV00 aPOO . 3
a(,)—a(,)- =

g(r,2m) -1,

ro=0

(1.12)
y(r,2m7), fori>1.

ro=0

i i i

—(0,0) = —(0,0) = —
o (00 = 5 (0.0) arg
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Equations (1.12) and (1.11) give
; 0, forl <i<2k+1,

- - Re C
7 (00 = {2n[2k + 1) —B——", fori=2k+1. (113
0

Thus, by using the Malgrange Preparation Theorem (see Theorem
3.1.10), we have V(x, u) = Q(x, u) - n(x, w), where Q is a polynomial
of degree 2k + 1 with respect to x, and #n(x, u) is invertible in a
neighborhood of (x, u) = (0,0). We remark that Q is divisible by x
(since r = 0 is the equilibrium of (1.8)), and that other roots of Q
appear in pairs: one positive and one negative (since any periodic orbit,
surrounding the origin, must cross the positive and negative x-axes,
respectively). Therefore, there are ¢ > 0 and a neighborhood A of
r = 0 such that (1.8) has at most k limit cycles in A.

(2) Suppose that the origin is a weak focus of order k of system (1.5).
Then (1.5) has the following normal form equation:

i=iByz + CZ*Z + -+ +C 2% 7% + 0(121% %) = F(2, 2).

(1.14)
For a fixed j, 1 <j < k, we take a perturbation of (1.14) in the form
Z=F(z,Z) + pp 2" T 4 p,2FZ5TY (1.15)
where u;, € R, k —j <! < k — 1. In polar coordinates (1.15) gives

F= ,Lk_er(k—f)'*'l TR +l“'k—1r2k—1 + Re(ck)r2k+1 + 0(r2k+3)
(1.16)
= G(Bpojo s bi—2o -3 T)-

In order to obtain j limit cycles for (1.16), we take [T T
successively in the following way. Suppose Re(C,) > 0 (the discussion
for Re(C,) < 0 is similar). We choose 0 < r, < 1 so that

G(0,...,0,0;r,) > 0.
K1 is chosen negative with |u,_,| < Re(C}) so that

G(0,...,0,p,_1; 1) > O.
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Then there is r,_,; € (0, r,) such that
G(0,...,0,pp_y. 7)) <O.
Next, u,_, is chosen positive with |p, _,| < |u,_,| so that
G(O,..., 25 My_15T) > 0,
G(0,... gy 13 Te—1) <O.

Then there is r,_, € (0, r,_,) such that

G(0,...,1p_gsly_15T—2) > 0.

Bi—3>Tk—3s - - -5 Mgx_j» T—; are chosen similarly, where Re(C,),
Kg—15---» My—; have alternating signs, 0 < Ip.k_jl < gyl x
Re(Cy),and 0 <r,_; < -+ <r,_; <r,. Thus we have finally:

F>00onr=r,,r._,,...,
r<0onr=r,_y,rg_3,....

This gives j Poincaré—Bendixson domains; hence there are at least j
limit cycles. We claim that there are o* > 0 and a neighborhood A* of
r = 0 such that by the choices of u, _,..., u,_; described above, (1.15)
has exactly j limit cycles in A* for |u| < o*. Otherwise, for any choices
of A and o, we can find a system of form (1.15) (Ju| < o) which has
more than j limit cycles in A. Then we can choose also py_;_;, ..., 1y
successively to obtain (k — j) other limit cycles in A. Since the total
number of limit cycles will be more than k, this contradicts the
conclusion (1). 0O

Remark 1.4. For applications, it is important to determine the order of
the weak focus of equation (1.1),_,, that is, to find the first nonzero
coefficient Re(C,) in (1.2). Here we introduce briefly another method,
the method of Lyapunov coefficients, which is more convenient in
practical calculations.
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Suppose that (1.1), _ has the following form:

'x.'. = _Boy +p(x, Y),

1.17
§ = Box +a(x, ), (1.17)

where p,q = O(|x, y|%), Bo # 0. It is known (see, for example, Zhang
et al. [1] or Blows and Lloyd [1]) that for any m > 1 there exists a
smooth function

F(x,y) = %‘l(x2 +y?) + O(lIx, y|3)

such that

d i i+1 m+1
—F = L V(x*+y%)" +0[(x? + 2 . (118
dt .17 i=1 l( y ) (( y ) ) ( )
The coefficients {V}} are called the Lyapunov coefficients of (1.17). We
note that F in general is not unique. However, the sign and the position
k of the first nonzero coefficient ¥, in (1.18) is the same for any F.
Lyapunov coeflicients are equivalent to the coefficients of Hopf bifurca-

tion of order k in the following sense.

Theorem 1.5. (Bonin and Legault [1]) The first (k — 1) Lyapunov
coefficients are zero and the kth coefficient is positive (respectively, nega-
tive) if and only if the same is true for the first k coefficients {Re(C))li =
1,2,...,k}.

Example 1.6. (Li[1, 3]) For a quadratic system

X=—-y+ayx’+a + ag, y?,
=kt bt t by + by, a1
let

A =ay + ag, B = by, + by,,

a=ay +2byp, B =by + 2ay,

y = byA® — (ay — b)) A°B + (b, — a,) AB* — a, B,

8 =ad + bk + ap, A + by B.
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Then we have (up to a positive factor)

G V,=Aa - BB,

(i) V,=1[B(54 - B) + a(SB — a)ly, if V] =0,

(iii) V3 =(AB + Ba)yd, if V; =V, =0,

(i) V, =0for k> 3if V, =V, =V, =0. In this case, (1.19) is inte-
grable. (This says that the highest order of weak focus for a
quadratic system is 3).

(v) Around a weak focus of order 3, (1.19) has no limit cycle globally.

Example 1.7. (Sibirskii [1]) Consider a cubic system without quadratic
terms

i=-y+ Y Byxly%
j+k=3
}‘7 =x + Z Cjkxjyk.
j+k=3

(1.20)

If B,, + C,;, = 0 (this is always possible by a rotation of axes), then we
can rewrite (1.20) in the following form:

i=-y+(a—w-0)x*+ (3p —n)x%
+(30 + ¢ - 30w —2a)xp? + (v — p)y?,

y=x+(p+v)x*+ Bw + 36 + 2a)x*y + (n — 3u)xy
+(w -0 -a)y’.

, (1.21)

We have that (up to a positive factor)

@D v =¢

G V,= —av,if V; =0,

(i) V; = abo, if V, =V, =0,

(V) V, =a%0n,if V,=V,=V, =0,

W) Vs=—a’0l4(p’ + 02) —a?)if Vy=V,=V, =V, =0,

W) V,=0,k=6,if V,=0,i=1,2,3,4,5. In this case equation (1.21)
is integrable. (For system (1.21), the highest order of weak focus
isS.)
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Example 1.8. Consider Hopf bifurcation for the equation

=y,

. 1.22
y=—1+x2+pmy+p0y + psx’y + paxty. (1-22)

Since (1.22) has two equilibria (£1,0) and (1,0) is always a saddle
point, we only need to consider (—1,0). If we make a change of
variable X = x + 1, (1.22) becomes

X=y,
V=2X+y(py—pa—p3t pg) X2+ (g + 305 — ) Xy
+(=3ps + 61 ) X%y + (B3 — 4p) Xy + p, X4y

(1.23)

The linear part of (1.23) at (0,0) has a pair of purely imaginary
eigenvalues if and only if

B~ By~ 3t ps=0. (1-24)
Under condition (1.24), let y = — V2'Y so (1.23) becomes
X =-y2Y,
Y=12X- %XZ + (ko + 3ps = 4py) XY + (=3ps + 6p,) XY
+(ps — 4 XY + p, XY
(1.25)

By using the method of Lyapunov coefficients (Remark 1.4), we obtain

1
vy = R(Mz — 3ps + 8uy),

1
Vy= W(Sﬂe — 14p,), if V, =0,

14
= Sk HVi=V,=0.
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Therefore, if p, # 0, then a Hopf bifurcation of order 3 takes place
at

11 2 14

Ky = "5—I~L4, Ko = g’llqa K3 = _5“#"4-

System (1.22) has three limit cycles if (@, u,, u5) is located inside the
region

Ba(Spy — 14p,) <0,  py(py — 3p; + 8uy) >0,

Ba(By — By — B3+ 1g) <O

and 0 < |, — p, — 3 + pyl < IV < [V, < V5.
If u, =0, uy# 0, then a Hopf bifurcation of order 2 takes place at

Bp=4ps,  py=3p;.

System (1.22) has two limit cycles if (u,, u,, u3) is located inside the
region

pa(py = 3p3) <0, py(py —py—ps) >0

and 0 < |p, — p, —p3l < VI <V, < 1.

5.2 Homoclinic Bifurcation of Higher Order

Consider

y=28(x,y,1), (21)

{x =f(x7.V7#')7
where x, y € R, parameter o € R”, and f, g € CX"**D,
Suppose that (x,y) = (0,0) is a hyperbolic saddle point of (2.1).
Then we can transform (2.1) by a linear change of variables such that
the matrix of its linear part at (0, 0) becomes

ao(pm)  bo(r)

AW =1 pw) ao(n)
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Thus A(p) has eigenvalues A, , = ag(p) + jbo(p), where j2 =1 and
ad(p) — b3(n) < 0. The stable and unstable manifolds of the linear
part at (0,0) are lines x + jy = 0.

Since trace A(u) = 2a,(p), the condition ay(0) # 0 is needed for the
homoclinic bifurcation of codimension one (see Section 3.2). Now we
suppose that

ag(0) =0,  by(0) # 0. (2.2)

When p =0, we have that A, + A, = 0 and hence A(0) has the
resonances A; = k(A; + X)) + A;, i=1,2,and k > 1. If u is close to -
zero, the orders of the other resonances of A(u) are greater than
2n + 1. Let

w=x+jy,
w=x-Jjy

(7= D).

Then by an argument similar to Lemma 1.1, we can make a polynomial
change of variables to transform the system (2.1) into the form

w = (ag(p) +ibo(p))w + (ay(p) +jby(p))wW?w + -+
+(a, (1) +ib ()W " + A(w, W),

W= (ag(k) = jbo( )P + (ay(r) = jbr(p))W2w + -
+(a,(p) — jb (1)) W + A(w,®),

(23)

where A(w,w) = O(lw, w|*"*?).

Remark 2.1. Since j2 = 1, both w and W are real. The “conjugate” w
of w, introduced by Joyal [1], is different from the usual complex
conjugate, but it is convenient for the discussion in this section.

Before any further discussion, let us present briefly the problem, the
method, and the result in this section.

Suppose that for p =0 (2.1) has a homoclinic loop I'. We are
interested in the occurrence of periodic orbits in a small neighborhood
of T by perturbation of the system, that is, for 0 < |u| < 1. We will try
to find the expression of the Poincaré map of the flows on a transversal
segment to T" and near T, and then to study the number of fixed points
of this map for small u.
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Z=0
Figure 2.1.

We will find a coordinate z = w + higher-order terms such that the
stable and unstable manifolds coincide locally (near the saddle point)
with the Z- and z-axes, respectively. We define a map Fﬂ(po) from the
transversal segment Z = o to another transversal segment z = o by the
flow (o > 0 small), where p, = 0 corresponds to the intersection point
between I' and Z = 0. Then we define a map G,(p,) from z = 0o to
Z = o by the flow (see Figure 2.1). Thus, the Poincaré map is P, =
G,°F,,and a fixed point of the map P, corresponds to a periodic orbit
of the system.

Suppose that G,(p,) has the Taylor expansion

Gu(Po) = po + Bo(1) + Bi(1)po + Ba()ph
to HB(r)pg + B(pos k), 1 <By(m), (24)
where ¢(pg, 1) = O(p2*!). Then we have a sequence of numbers:

Bo(n)s ao(n), Bi(n)sa1(K)s. - Bi(n), 8(k), ..., (2.5)

where a,(1) and B(u) are coefficients in (2.3) and (2.4), respectively.
The main result in this section can be described roughly as follows:
If B,(0) is the first nonzero coeflicient in the list (2.5) for u = 0, then

Po(po) — po ~ ﬂk(O)P’(;’

and the system can have at most 2k limit cycles near the loop T for
small u; if a,(0) is the first one, then

Po(po) — po ~ ak(O)p’g“ln X,
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and the system can have at most 2k + 1 limit cycles near I' for small .

To prove the above result, we need to find an expression of map
F(py) (the singular part of P). To our knowledge, this problem
has been solved by Roussarie [1] and Joyal [1] independently and
Leontovich [1] announced a result much earlier. Most results in this
section, as well as some notation, belong to Joyal [1].

Lemma 2.2. (Joyal [1]) There exists a C***2 change of coordinates which
transforms (2.3) into the following form:

W = (ag(p) + jbo(m))w + (ay(p) + jby())W? + -+
+(a,(p) +ib(p))W" W + Wt IR E(w, W),

w = (ag(p) — jbo(p))W + (ay(p) — jby(p))w?w + -
+(@,() = jbu(1))F"H 1w + W IWE(w, W),

(2.6)

where E(w,w) € C° and E(w,w) — 0 as (w,w) = (0,0).

Since ay(0) = 0, by(0) # 0 (see (2.2)), we suppose that jby(0) > 0.
Then ag(pn) = ag(u) + jbo(w) > 0, @(u) = ay(n) — jbo(u) <0 for
small u.It is easy to see from (2.6[2ybn) that in a small neighborhood
of the origin, the two lines w = 0 and w = 0 are the stable and unstable
manifolds of (2.6), respectively. Without loss of generality, we suppose
that the region {(w, w)lw > 0, w > 0} N Q is inside the homoclinic loop
I which exists for u = 0. Thus, to establish the transition map F,(p),
we only need to consider w > 0 and w > 0. Let

{” = WW, (2.7)

¢ =Inw.

Then (2.6) becomes

p=2(ag(p)p +ay(p)p®+ - +a,(p)p"*! +p" " A(p, 8)),
b =ao(p) +a(p)p + - +a,(u)p" +p"B(p,$),

(2.8)
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where a(u) = a(u) +jp(u), p"*'A € C™*, p"B€C?" in p=>
0, A, B are continuous, and A, B — 0 as (p, ¢) tends to the saddle
point.

Since ay(0) = jby(0) > 0, the right-hand side of the second equation
in (2.8) is positive for small p and small x. Hence, we obtain from (2.8)

d ~
ﬁ = co(m)p + cr(w)p? + - Fe,(p)p" ! + " A(p, $), (2.9)

where p"*d(p, ) € C***! and A(p,¢) - 0 as (w,w) - 0(p — 0,
¢ — —x). We have the following relation among the a/(x) and c(p):

a0=al="' =ak_1=0, ak¢0
<=>Co=cl="' =Ck1=0, Ck¢0, (2.10)

and sgn(a,) = sgn(c, by).
Suppose the solution of (2.9), p = p(&; py, ) with p(dg; pg, ) = py,
has the form

p=hy(®)py + hy()ps + -+ +h, ()5 + H(py, ¢), (2.11)

where H(p,, ¢) satisfies

H(py, ¢
tim 208 _
P00  Po

Then the h(¢) satisfy the following equations:

K, = cohy,
Ky = cohy + c1h3,
Ky = cohsy + 2¢,h by + coh3,

- (2.12)
Fosr = cohy iy + "1( )y hi,hiz) + o

iitia=n+1

+Cn—l( Z hi, Tt hi,,) + cnh'lH-l’
i+

i+ - +i,=n+1

where h(¢y) = 1 and h(d,) = 0 for i > 2.
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F\4(P°, (A}
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W=¢
Figure 2.2.
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Figure 2.3.

If we consider a transition map p = Fﬂ(po) which is defined by the
flow from a point (py, ¢,) € (W = o} to point (p, ¢) € {w = o} (Figure
2.2), then ¢y =1Inp,—Ino and ¢ =Ino. If we make a rescaling
w — ow, then we can suppose that the flow is defined from a point
(py,9,) to point (p, ¢) satisfying ¢, = In py and ¢ = 0.

Let exp(co(d — ¢o)) = ¢y + 1. Then (2.12) gives

hy=cyy +1, (2.13)
hyor=(coy + Dpi(y,co,€05---5¢1), 1<k <n,

where p, is a polynomial in y of degree k, vanishing at y = 0, and ¢,y
is the linear term in p,. y = (exp(cy{d — @) — 1)/co = (pg — 1 /cq
for ¢, # O and y = ¢ — ¢, for ¢, = 0. For small u, y is always positive
in a neighborhood of the origin (w,w) = 0 (see Figure 2.3). Thus,
substituting (2.13) into (2.11), we have

Fp(Po) =p=pyt CO[PO'Y +p'0(p0,'y,co,...,c,,)]
+cl[pﬁy +ﬁ1(p0,y,c0,...,cn)] (2.19)

+ oo +cn[p8“7 +;;(P0’M)],
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where p; (i < n) is a polynomial and p, = H/c, (H is defined in (2.11)),

with p, = o(pk*ly), k =0,1,...,n.

Now suppose the map G,: {w = o} » {W = ¢} has the expression
(2.4). Then

P(po) = G,°F,(pg) =By + (1 +By)[po +copo+7v) + ]
+Ba[po + col oo + ) + ]2

+ o +Bu[po + colpo + ) + o]

+R(po, 1)-
We expand P,(p,) — p, in two different cases corresponding to the
manner of y at p, = 0 (see Figure 2.3):
(@ ¢y 2 0, p§ = olpfy):
P.(po) = po
= BO + c()[(l + B])poy + CIo(Po, Y, CO,...,Cn, BO’--"Bn)]
+B1po +  +C,1[(1+ B1) PGy + due1(Pos Y5 Crot1s €ns Br)]
+B,00 + ¢, [(1 + B)os 'y + a.(po, 1)) (2.15a)

(b) ¢4 <0, [polcey + DIF = o(pfy):

P(po) — po=Bo + co poy + do) + Bipo(coy +1) + -+
+¢,oi[(1+ B)OGY + dusi] + Balpo(coy + D]
+ea[(1+ B)ps* 1y + dulpos )], (2.15b)

where g, d, = o(p§*ly) for 0 < k <n — 1. Let

, = iy i=0,1,2,---’n’
{52. Bi (2.16)

§2i+1=ci, i=0,1,2,...,n,

where B; and ¢; are the coefficients in (2.4) and (2.14), respectively.
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Definition 2.3. Suppose the linear part of system (2.1) at the origin has
the eigenvalues an(u) + jby(p) with a2 — b3 < 0 (j2 = 1). The system
(2.1), _ is said to have a homoclinic bifurcation of order m if for u = 0
(2.1) has a homoclinic loop and

£(0)= -+ =¢,_4(0)=0 and ¢£,(0) # 0.

Theorem 24. If (2.1),_, has a homoclinic bifurcation of order m
(m <2n + 1), then (1) in a sufficiently small neighborhood of u =0,
any (2.1), has at most m limit cycles near the loop;

(2) for any k, 0 < k < m, there exists a perturbation system (2.1), and
a neighborhood U of the loop such that the system has exactly k limit
cycles in U.

In order to prove Theorem 2.4, we need the following notation and

lemma.

Notation 2.5. Let f(x, n) € C" for x > 0 and be continuous at x = 0
(1 < i < n). We define the following functions:

14
1
filiz = T

i

! .

iy ik

filiz"'ik_T— fOI‘3Sk$n,
iy oy
where ' means d/dx and 1 <i; <i, < -+ <i,<n.

If £,(0,n) = 0 and f;, = o(f;) as x — 0, then lim, _,, f;; = 0.

Lemma 2.6. Let f(x,u),..., f(x,un) be functions continuous at x = 0
and of class C" for p € R™ and x > 0. If f(0,n) = 0, f;, = o(f,) for
iy>ipandf] ;>0 for 0<x<e p €R™ and 1 <k <n, then the
function

P(x,p) = co(r) + () fi(x,m) + o +e(p) ful % 1)

has at most n zeros for 0 <x <€, where c(u)€R,i=0,...,n, and
c(n) # 0.
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Proof. Suppose that P has more than n zeros in [0, €]. Then

P
£ =filer terfip + - +c,f1n) =fiPy

has at least n zeros in (0, €). Since f; > 0, P; has at least n zeros in
(0, €). Repeating the above argument, we see that dP;/dx has at least
n — 1 zeros in (0, €) and as many as

Py =cy)(p) +cs(p)fis + - +e,(1) frzn

By induction, dP,/dx = ¢, f1, .., has at least one zero in (0, €), which
contradicts the assumptions of the lemma. O

Proof of Theorem of 2.4. (1) We will prove that (2.15a) and (2.15b) have
at most m zeros for 0 < p; < €. In order to use Lemma 2.6, we only
need to show that the sequence

PoYs Pos PEYs P55+ P3YsP5 (€2 0) (2.17a)

or

Po¥> Po(Co¥ + 1)s. .y 08y, [0o(coy + D]” (¢ < 0) (2.17b)

satisfies the properties of the sequence {f;} in Lemma 2.6.

From (2.10) we have that ¢y =0 < a; = 0. In the following we
suppose that |cy| is sufficiently small. We denote (2.17a) or (2.17b) by
{f:(pg, )} Since for ¢y # 0, cyy + 1 = py 0, we consider the following
sequence instead of (2.17a) or (2.17b):

xkrym L x Ky, (2.18)

where x = py, vy = (x 7 = 1) /¢y, and k; and m; € R. Equation (2.18)
satisfies the following conditions:

(i) when ¢, > 0, we have k; < k; for i <j; if k, = k; then m; > m;
when ¢, < 0 (I¢cy| small), we have k; < k; for i <j.

(i) k; > 0and m; > 0.
It follows that f; = o(f;) as x — 0 for i; <i,, and

(x"y’”)' = (k — cgm)x*~1y™ + o(x*1y™),
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where k — cym > 0 for small |c,|. Hence.

’
fi1i2 — & — Mxkz’kl»ymz'"ml + o(xkz'kl»ymz_ml),

fi’l

where M > 0. Thus f;; > 0 in (0, €) for a small € > 0. By induction,
we have that f/ .., >0 in (0,¢) for a small fixed e > 0. Thus the
conditions of Lemma 2.6 are satisfied.

(2) We first suppose k = m. Without loss of generality, suppose
m = 2n + 1. Then

£(0) =¢,(0) = -+ =§,,(0) =0, £2n41(0) = 0.

We will find a perturbation system (2.1)” such that it has exactly 2n + 1
limit cycles near the loop.

By using (2.16) and (2.9), we know that (2.1)”=0 can be transformed
into the following form

dp n+1l n+lg =
g = 0" o (p,6) = S(p8). (219)

We will construct a system in a small tubular neighborhood T of the
loop. Let

{’y‘=’; (2.20)
where
d=u+ (i, —u)w, b=v+ (0, —v)og,
iy =uy + (ly — uy)wy, Ty =0, + (5, — v3)w,,
dy=uz+ (I3 —uz)o;,  Dy=v;+ (J; — v3)e;,

where (u, v) is the original system (2.1), _, with the form (2.19) in (p, ¢)
coordinates. The systems (u,, v,), (us, v;), and (i;, ;) expressed in the
(p, ) coordinates are respectively:
dp 2 n
dp  HaP TRt E o aap” + S(p,¢), (2.21)
dp

25 =50, (222)
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02 01
Figure 2.4.
and
dp 2 n
a6 " HeP +usp’+ 0 g0 + S(0,6). (223)

Here S(p, ¢) is the same as in (2.19) and p,, ., 1, fops-- - M35 4y aTE
small parameters satisfying

Bitior <0, 0 <lpol < sl < -+ < gl <[c,(0)]. (224)

Finally, the C* functions w,, w,, and w; are defined as follows:

(i) o x,y)=0 in a strip of T. This strip going from w = o, to
w = o, does not contain the origin. w,(x,y) =1 from # = o, to
w = o, (0 < o, < ay). Elsewhere, 0 < w; < 1 and o, is a constant
onw=o¢ (i.e,on ¢ =Ino) for o, < o < 0.

(i) wyx,y)=0fromw =0, tow = g, w,(x,y) = 1 fromw = o, to
w=0,0<0,<03<0,<0)),and 0 < wyx,y) <land w,isa
constant on w = ¢ for o, < ¢ < o5;. Elsewhere, it does not matter.

(iii) w4(x,y) =0 from W=0, to w=103, 0 <w; <1 and w; is a
constanton w = ¢ for 0; < o < 0,, and w,(x, y) = 1 fromw = o,
to w = g,. Elsewhere, it does not matter (see Figure 2.4).

Obviously, (2.20) is a perturbation system of (2.19). The equations

dp
i (2o + 4P + -+ Fp20")0i(p) + (0, $)
(from % = o, tow = 0y).

ﬁ = (#2P + l‘v4P2 + - +ﬂv2nP")(1 - wz(P)) +8(p, )

(fromw = g, to w = 03)
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give the map F: {w = o,} = {w = o3} which has an expansion of the
form (2.14), with ¢ — ¢y = —Inpy + Ino; — Ino, = —In(o,/py0s)
and the c¢; having the same sign as that of u;,,. The map E: {w = o3}
— (W = o} is defined by

dp

T (m3p + psp® + - Fpg,p1p")0s(p) + S(p, @)
(fromw = o, tow = a3,),

dp 5 n

dé = (m3p + pusp® + - +pp,,0")wi(p) + S(p, b)

(from w = o, to W = 7).

E has an expansion of the form (2.14), with ¢ — ¢y = —Ino;/0; > 0
(finite). On the other hand, replacing the terms, E has an expansion of
the form (2.4) with B, = 0 (this means that the homoclinic loop exists).
According to (2.13), the B; of the expansion satisfy

B1 = K37,

n
By= (p3y + l)us(-fvz + 7),

Bn=(B3Y + D)Du_i(Vs B3s 555 Bans1)s

where p; (j = 1) is a polynomial in y of degree j and having u,;,,y as
the first-degree term. Hence B; has the same sign as that of u,;,,
whenever |u,; | < lu,;, 412 <j<n).

Since the u,(2 < i < 2n + 1) can be chosen independently, and they
are continuous functions of the coefficients of the Taylor expansion of
the system, condition (2.24) implies that system (2.20) has at least 2n
limit cycles inside the annulus region T.

Up to now, we still have the condition B, = 0, that is, system (2.20)
has a homoclinic loop. u, # 0 implies ¢, # 0 (a, # 0), that is, the trace
at the saddle point of (2.20) is nonzero. Hence, as a perturbation of
(2.20), the following system

=
I
<
|
E
<

(2.25)



Homoclinic Bifurcation of Higher Order 405

has one more limit cycle if |u,| < |u,| and sgn u, is well chosen (see
Example 3.3.9).

From conclusion (1) of Theorem 2.4, we know that system (2.25), as a
perturbation of (2.1)“=0, has at most 2n + 1 limit cycles. Therefore,
(2.25) has exactly 2n + 1 = m limit cycles.

For the case k < m, we can use the same argument to prove part (2)
of Theorem 1.3. We use the same perturbed systems (2.25) and (2.20),
but take the first (m — k) elements of the list w,,, ,,_y,. .., 4y tO be
zero. Then we get a perturbed system having at least & limit cycles. We
can obtain a system in this way which has exactly & limit cycles.
Otherwise we can make a perturbation with w&,,, g, _1,.. .5 M, _s Satis-
fying (2.24) to get other (m — k) limit cycles, and the total number of
limit cycles will be more than m, which contradicts conclusion (1). (]

Remark 2.7. For applications, it is important to determine the first
nonzero coefficient in (2.5) for u = 0, that is, the order of homoclinic
bifurcation (see (2.16) and Definition 2.3). We will introduce a method
which is called the method of dual Lyapunov constants to determine
the first nonzero coefficient among a(0), ay(0),... if ay(0) = 0 and
bo(0) = 1 (see (2.5)). Then we will give some results and examples
without a detailed discussion.

If a,(0) =0 (i.e, the trace A(0) = 0), then system (2.1),_, with a
saddle point at the origin can be transformed into the following form:

x=y+p(x,y),

y=x+4q(x,y). (226)

We try to find a function
F(x,y) = (x> =y}) + F(x,y) + - +F(x,9) + -,
where F,(x, y) is a homogeneous polynomial of order k, such that

dF

_ =*2_22+*2_23
dt |26 vP(x® = ") + i -9

+ - +U,f(x2—y2)k+l + -
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Theorem 2.8. (Joyal and Rousseau [1]) Consider the system (2.1) with
a(0) = 0, by(0) = 1, and the sequence (2.5). Then at p = 0, a, = a, =

- =a,_,=0and a, #0 if and only if vy =v5 = -+ =vf_, =0
and v # 0. Moreover sgn(a,) = sgn(v}).

Definition 2.9. The origin is called a weak saddle point of order k if
v¥ = -+ =v§_, =0 and vg # 0 for system (2.1) with a,(0) = 0 and
bo(0) = 1. vf is called a kth saddle quantity.

Example 2.10. For system (2.26), the first saddle quantity is given by
U>1'< = (fxxx _fxyy + 8xxy — gyyy)

+[fxy(fyy _fxx) + gxy(gyy - gxx) _fxxgxx +fyygyy]' (227)

Example 2.11. (Cai [1] and Zhang and Cai [1]) For a quadratic system

% =x+Ax* + Bxy + Cy?,

2.28
y = —y — Kx? — Lxy — My?: (2:28)

(i) The first three saddle quantities are
v¥ = LM — 4B,
v¥ = KB(2M — B)(M + 2B) — CL(24 — L)(A + 2L),
if v* =0,
v¥ = (CK — LB)[ACL(2A4 — L) — BKM(2M - B)],
if v* = 0% =0,
and

vi =0 forall k>3if v} =0v] =05 =0.
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Gii) If vf = 0 for all k, and if the quadratic system has a homoclinic
loop (or compound homoclinic cycle) through the saddle point(s),
then the system is integrable in the interior of the loop (cycle).

(iii) The nonintegrable quadratic systems satisfying v¥ = 0 have no
limit cycle or homoclinic loop.

From Theorem 2.4 and Example 2.11 (iii), one has immediately the
following theorem.

Theorem 2.12. There are at most three limit cycles which may arise from
a homoclinic loop bifurcation in a nonintegrable quadratic system.

Example 2.13. (Joyal and Rousseau [1]) Consider the homoclinic bifur-
cation of the system

x=y=F,
2.29
y = —1+x2+8(V1y+V2xy+v3x3y+v4x4y)=G, (2.29)

with a saddle point at (1,0). For 8 = 0, (2.29) becomes a Hamiltonian
system (see Figure 4.1.2)

x=y,

j= —1+x2, (2.30)
with Hamiltonian function
H(x,y) =y—2+x—£. (2.31)
2 3
{H(x,y)=h, —2<h < %)} are closed level curves. H = —2/3 corre-

sponds to the equilibrium (—1,0) and H = 2/3 corresponds to the
homoclinic loop.

We consider (2.29) as a small perturbation of (2.30). From the
discussion in Section 4.1 (Lemma 4.1.4), we have that the fixed points of
the Poincaré map correspond to the zeros of the following bifurcation
function

M(k) = [ (ny +vam +vaxdy +uaty) e (232)
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Therefore, we have that
(i) System (2.29) has a homoclinic loop bifurcation (HLB) if M(2/3)
= 0.
(ii) The HLB is of order 1 if M(2/3) = 0 and M'(2/3) is infinite. The
latter is equivalent to div(F, G)lq,q) # 0.
(iii) The HLB is of order 2 if M(2/3) = diW(F,G)l1,00=0 and
M'2/3) # 0.
(iv) The HLB is of order 3 if M(2/3) = div(F,G)lq,00=M'(2/3) =0
and M"(2/3) is infinite. The last condition is equivalent to v # 0.
By calculation, we have

M(2/3) = 4\/2/3f1 (v1 + vox + vyx® + px*)(1 + x)Vx + 2 dr.
-2

Hence, M(2/3) = 0 is equivalent to

5 103 187
-V, — + —vy, = 0. (2.33)

177 777" "o

From (2.32) and (2.31) we have

1‘4'(2/3)
—2/1—1(1/ +vx+vx3+vx4)dx
> 1 2 3 4

vitv,+rvyt+y,
(1-x)(x+2)"

=

vy + vs(x?2+x + 1) + v (x?+ 1)(x + 1)
(x +2)"?

It is clear that if M’(2/3) is finite, then it is equivalent to
1 .
3 div(F,G)|qop=v, + vy, +v;+v,=0. (2.34)

When div(F, G)|q,0) = 0, we have that M'(2/3) = 0 is equivalent to

9 8
$v3= v =0. (2.35)

v2+5
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Finally, transforming system (2.29) into the form (2.26) and using the
formula (2.27), we obtain

6
v = E(_Vz + 3v; + 8vy).

It is easy to see that v} = cév,, where ¢ > 0 is a constant, if (2.33),
(2.34), and (2.35) are satisfied.

Thus, if v, # 0 and 0 < |8] < 1, then (2.29) has a homoclinic loop
bifurcation of order 3 when (2.33), (2.34), and (2.35) are satisfied. If
vy, =0, v;#0, and 0 <[8] < 1, then (2.29) has a homoclinic loop
bifurcation of order 2 when (2.33) and (2.34) are satisfied.

5.3 A Codimension 3 Bifurcation: Cusp of Order 3

In Section 4.1 it is shown that the Bogdanov—-Takens system

{x - (3.1)

y=¢€ +€&y+x’+txy

is a versal deformation of the vector field

{x - (32)

y=ax®+ by,

where a and b are constants satisfying ab # 0.

If a # 0 (without loss of generality, suppose a = 1), then the phase
portrait of (3.2) is shown in Figure 3.1. We note that the phase portrait
is the same for all values of b, including b = 0. Since there is a cusp at
the origin, the singularity is said to be a cusp type. If b # 0, it is a cusp
of codimension 2; if b =0, it is a cusp of higher codimension. In
particular, the families of vector fields with cusps of codimension 3 and
4 are respectively

x=y7 +
. 2 3 (33)~
y=€ +t €y +exy+x-+x’y
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Figure 3.1. The flow near a cusp-type equilibrium.
and

x=y, N
: 3 2, .4 (34)
y=€ tT€ytexytex’y+xtx’y,

where €, (i = 1,2,3,4) are small parameters. In this section, we study
(3.3)%; the results are due to Dumortier, Roussarie, and Sotomayor [1].

The following lemma gives an explanation why the x2y term is not
considered in the second equations of (3.3)* and (3.4)*.

Lemma 3.1. In a small neighborhood of the origin, the following two
vector fields

{X =y,
(3.5)

y =x2 + y(ax? + Bx%) + o((Ix| + Iy)*)

and

{i =y,
(3.6)

y=x2+ Bx% + o((Ix| + Iy)*),

are C*-equivalent .
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Proof. Let
H(x,y) = zy>— =x*
Then
dH = ydy — x* dx. (3.7
Hence
yx2dx = y*dy — ydH. (3.8)

Equation (3.5) is equivalent to
dH — [y(ax2 + Bx%) + o((lxl + |y|)4)] dx = 0. (3.9
Substituting (3.8) into (3.9), we have

ay? Byx® + o((Ixl +1y)*)
dH — —dy —
1+ ay 1+ ay

dx=0. (3.10)

It is not difficult to see that, in a small neighborhood of (x, y) = (0, 0),
there exists a coordinate change of the form

X=ux,
{? =y + 0(l(x, »)[")

such that 3dy = (y — ay?/(1 + ay))dy. Thus, this change of coordi-
nates transforms (3.10) into the form

dH - [ﬁy;? + 0((IJ'cI + |y|)4)] dx = 0, (3.11)

where H = 1y — x5,
Since (3.11) is equivalent to equation (3.6), the lemma is proved O

By using the method of Section 4.1, it can be shown that the family of
vector fields (3.3) is a versal deformation of the vector field

(3.12)
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It is easy to see that by a change (x,y,t, ¢, ¢€,,€) — (x, -y,
—1t, €, —€,, —€3), equation (3.3)” is transformed into the form (3.3).
Hence we only need to consider the following equation:

x=y,
. - (3.13)
y=¢€ teytexy +x°+x7y.

We first present the main result (Theorem 3.2), then give the proof in
detail.

It is obvious that the equilibria of (3.13) are determined by the
equations

y=0, x>+¢=0.

Hence (3.13) has no equilibria for €; > 0. The plane {¢; = =xclud-
ing the origin in €;€,€e;-space is a bifurcation surface of sada. -node
type: When ¢, decreases from this surface, the saddle-node of (3.13)
becomes a saddle point and a node. The other bifurcation surfaces are
located in the half space {e; < 0}. We describe them by their intersec-
tion with the half 2-sphere S, = {(¢, €,, €;)le; <0, €] + €2 + €2 = o2,
o > 0 sufficiently small}. The bifurcation diagram of equation (3.13) is a
cone based on this intersection which consists of three curves on S,: a
curve H of Hopf bifurcation, a curve HL of homoclinic bifurcation, and
a curve C of double limit cycle bifurcation. The points &, on H and hl,
on HL are the endpoints of the curve C (see Figure 3.2 and Figure 3.3).

On the other hand, both curves H and HL touch 4S5, =
{(e1, €3, €)le; = 0, €2 + €2 = 0%} with a first-order tangency at the
points b; and b,. In some small neighborhoods of b; and b, one finds

-9 £

Figure 3.2. The parameter space.
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&

£=o / &

b,

Figure 3.3. The trace of the bifurcation diagram on S(e; < 0).

cusp bifurcation of codimension 2 (Bogdanov-Takens bifurcation, see
Section 4.1). System (3.13) has a unique unstable limit cycle when e lies
between H and HL and is in a small neighborhood of b,. System (3.13)
has a unique stable limit cycle when € lies between H and HL and is in
a small neighborhood of b,.

Along the curve H, not including the point #4,, a Hopf bifurcation of
order 1 occurs. System (3.13) has an unstable limit cycle when e crosses
the arc IT;h: in H joining b, and h, from the right to the left and has a
stable limit cycle when e crosses the arc h’zl)\2 in H from the left to the
right.

The point h, corresponds to a Hopf bifurcation of order 2.

Along the curve HL, excluding the point h_ll_,\a homoclinic bifurca-
tion of order 1 occurs. When e crosses the arc b hl, in HL from the left
to the right, two separatrices of the saddle point change their relative
positions and an unstable limit cycle appears. A similar phenomenon
happens when € crosses the arc Ile_b: in HL from the right to the left,
and a stable limit cycle appears.

The point hl, corresponds to a homoclinic bifurcation of order 2.

The curves H and HL intersect transversally at a unique point d
which corresponds to the simultaneous occurrence of a Hopf bifurca-
tion of order 1 and a homoclinic bifurcation of order 1.

If the parameter values are in the curved triangle dh,hl,, then
system (3.1) has exactly two limit cycles. The inner one is stable and the
outer one is unstable.
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These two limit cycles coalesce when € crosses the curve C from the
left to the right. On C itself there exists a unique semistable limit cycle.

Theorem 3.2. Let
S =8S,UHUHLUC,

where S, and curves H, HL, and C are described above.
The bifurcation diagram of equation (3.13) inside the ball

B, = {ele? + & + €2 < 0%}

is a cone homeomorphic to
{(6451,5652,5453)‘6 €[0,0],(¢),&,,6) € 3}.

The topological type of the phase portraits of equation (3.13) in a fixed
neighborhood of 0 € R? is the same in each of six connected components
{D,} of the complement of the bifurcation diagram, and is the same in
each surface or curve in the bifurcation diagram (there are nine surfaces
{S;} and five curves {I}).

The cone regions D, . .., Dy are based on the open regions, I, 11, ..., V,
respectively (see Figure 3.4), and Dy is the half ball {ele € B,, €, > 0).
When € € D, U -+ U Ds, the phase portraits of equation (3.13) are
shown in Figure 3.4.

The surfaces S, . .., Sy are based on the arcs b,dSb, (left), b;HLd, .. .,
h,Chl,, respectively, and the phase portraits of (3.13) for € € S,
U -+ US,y are shown in Figure 3.5.

The curves T',, ..., T are based on the points b,, h,, d, hl,, and b,,
respectively, and the phase portraits of (3.13) for e € I, U --- U T are
shown in Figure 3.6.

The proof of Theorem 3.2 will be given in the rest of this section. We
begin by introducing a blow-up technique for €, < 0. Let

x = 8%x, y = 83y, € = —8%,

€, = 8%, €; = 8%,, t— —t, (3.14)



y=—1+x>+8(, +v,x +x%)y.

i=1,2.
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£>0
£<o
I . w
b1
b2
1 v
Figure 3.4. The codimension 0 phase portraits of equation (3.13).
where & > 0. Equation (3.13) is transformed into the form
x=y,
(3.15)

(3.16)
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§&=o0 ( (

b, aSb, left b, 3Sb, right

( b1 , (
b, HL d b, Hh,

(/ s
b,

d Hb, h, Hd
dHL h¢ h¢, HL b, h, Ch{
2 2 2 2 2

Figure 3.5. The codimension 1 phase portraits of equation (3.13).

Equation (3.15) becomes

{x — v (3.17)

y= =1+ x2+ pmy + poxy + psx’y,

with condition p; > 0.
Equation (3.17) has equilibria (—1,0) and (1,0). The point (1,0) is
always a saddle point whereas the point (—1,0) is a focus.

(i) Hopf bifurcation and the homoclinic loop bifurcation Using the
results in Sections 5.1 and 5.2 (Examples 1.8 and 2.13), we have the



A Codimension 3 Bifurcation: Cusp of Order 3 417

€=0
b, b,
b,
(/) " (
h,
€,<o b z
d h(,

Figure 3.6. The codimension two phase portraits of equation (3.13).

following lemmas:

Lemma 3.3. The equilibrium point (—1,0) of equation (3.15) is a sink (a
source) if v, — v, — 1 < 0 (> 0). There is a Hopf bifurcation of order 1
along the line H: {(v,,v)lv, — v, — 1 = 0), except at the point hy:
(vy,v,) = (4,3) at which a Hopf bifurcation of order 2 takes place.
Moreover, there are two limit cycles around the point (—1,0) if v, — 3 <
0,v;-v,—1>0,and 0 <y, —v, - 1| <y, -3 <« 1.

Lemma 3.4. Equation (3.15) has a homoclinic loop bifurcation of order 1
along the curve HL: {(v,,v,)lv, —2v, ~ 22 + O(8) = 0}, except at the
point hly: (vy,v,) = (F + O(8), — & + 0(8)) at which a homoclinic

loop bifurcation of order 2 takes place. The curves H and HL intersect
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transversely at point d: (v,,v,) = (2 + 0(8), B + 0(8)), which corre-
sponds to the simultaneous occurrence of a Hopf bifurcation of order 1
and a homoclinic loop bifurcation of order 1.

(i) Double limit cycle bifurcation As in Chapter 4, we consider
equation (3.15) with small & as a perturbation of a Hamiltonian system.
If 6 =0, (3.15) becomes

x=y,
y=—1+x2,

with a Hamiltonian function H(x, y), where

y? ¥3
H(x,y)= — +x— —,

(x,5) 5 x 3
and this is exactly the same expression as (4.1.9) of Section 4.1. By

Lemma 4.1.4, we can find a bifurcation function for periodic orbits of
equation (3.15) as follows:

F(h,58,v,,v,) = f (v, + v,x +x%)ydx, (3.18)

¥(h,8,vy,v)

where y(h, 8,v,,v,) is defined as in Section 4.1 and F(h,8,v,,v,) is
well approximated by M(h) = F|s-¢, that is,

M(h) = fr(v1 +v,x + x°)ydx, (3.19)

where T}, is the level curve of H(x, y) =h, —3<h < 2. H(x,y) = — 3
corresponds to the equilibrium (—1,0) whereas H(x,y) = Z corre-
sponds to the homoclinic loop (see Section 4.1 and Figure 4.1.2). The
number of periodic orbits of equation (3.15) is the same as the number
of solutions of M(h) =0, —3<h < %.

As in Section 4.1, we define

I(h) = frxkydx, k=0,1,3,4. (3.20)

h
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Lemma 3.5.

6 15

v

! 211 12h1
4= EO_E 1

Proof. Along I', we have

Y e E 321
2 YT 3T (3.21)
and

ydy + (1 —x?)dx = 0. (3.22)

From (3.22) and (3.21), we have
2
x3ydy = xydx + xy?dy = xydx + 2xhdy — 2x%dy + Ex“ dy.
Integrating the above equality and using integration by parts, we have
8
I, = =2hl, + 5I, — 3-13,
which implies the first desired expression. The second one can be

obtained in the same way. O

By Lemma 3.5, we rewrite (3.19) in the form

I(h). (3.23)

15
V2+ 1—1'

M(h) = (V1 - 1—61h)10(h) +
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As in Section 4.1, we define

I(h) 2<h 2
p— —_—— <_

I(h)’ 3 -3’

1, h=—§.

Then P(h) € C[-2/3,2/3]1 U C'{-2/3,2/3) and (3.23) becomes

_ 6 15
M(h) = (ul - Hh) - (u2 + H)P(h), (3.24)
where
o M(h) 2 i 2
= — —=<h< =,
(k) I(h)’ 3 3
It is obvious that M(h) = M'(h) = -~ = M®(h) = 0, M** (k)
# Oifand only if M(h) = M'(h) = --- = M®(h) = 0, M**D(h) + 0,

where h € (-2/3,2/3].
We recall the following properties of the function P(h) (see Lemmas
4.1.6 and 4.1.7 in Section 4.1):
(1) P(-2,2D cl3,1), P(-2) =1,and P(3) = 3;
(2 P(W)<0for —2<h <2, P(-3)=-%and P3) = —o
(3) P(h) satisfies the equation

(9h2 — 4)P' = TP? + 3hP — 5. (3.25)

We rewrite the last property in the following way:
(h, P) is a solution of the system

dP
e —7P% - 3hP + 5,

dh (3.26)
— =4 - 9h?,

dt
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satisfying the condition

2
lim h=—§, lim P=1.

t—> — t— —»

This system has a saddle point at (—%,1) and an attractive node at
(%,3) (Figure 4.1.5). The graph of the function P(h) is the unstable
separatrix of (— %, 1) of the system (3.26). It joins the point (-3, 1) to
the point (%, 3).

Lemma 3.6. P"(h) <0 for —%<h < 2.

Proof. From (3.25) we get P"(—3) = — 3%, P"(3) = —, and
(9% — 4)P" = P'(14P — 15h) + 3P, (3.27)
(9h% — 4)P" = P"(14P — 33h) + P'(14P — 12).  (3.28)

Let us prove that P"(h) < 0 for —2/3 < h < 2/3. If this is not true,
then we let £* = inf{h|P"(h) = 0, —2/3 < h < 2/3}. Then P"(h*) =0
and P”(h*) > 0 because P"(—2/3) < 0.

On the other hand, taking # = A* on both sides of (3.28) and noting
P"(h*) = 0 and P'(h*) < 0 (Lemma 4.1.7), we have P"(h*) < 0. This
contradiction proves the desired result. 0

Now we turn to the problem of the double limit cycle.
The condition for the existence of a multiple limit cycle is given by

the equation M(h) = M'(h) = 0 which determines a curve C in the
vv,-plane.

Lemma 3.7. C is a convex curve, joins the point iiz on H to the point lTl;
on HL (see Lemmas 3.3 and 3.4), and is tangent to H and HL at these
points. Along C, a double limit cycle bifurcation for equation (3.15)
occurs.
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Proof. From (3.24) we have that

M(h) = (vl - %h) - (Vz + —E)P(h),

M'(h) = —% - (Vz ﬁ)P’(h)

M"(h) = (Vz + %)P"(h)

It is clear that if M(h) = M'(h) =0, then (v, + £) # 0. By Lemma
3.6, M"(h) # 0. Hence, by the Implicit Function Theorem, we can
determine a function & = h(v,) from M'(h) = 0, and a function v, =
vh,v,) = v{h(v,),v,) from M(h) = 0. This means that the curve C
has an expression v, = v,(v,). Hence it is a regular curve along which a
double limit cycle bifurcation occurs.

Next, from M(h) = M'(h) = 0 we have

6 6 P(h)

T T PRy (329)
5 6 1 '

2TTTI T Py

When h — —%, we have that P(h) - 1, P'(h) > —3. Hence
(vy,v,) = (4,3) = h,. When h — %, we have that P(h) - 2, P'(h) -
—. Hence (v,,v,) - (&, = ) = hl, (for convenience, we omit O(5)
terms; see Section 4.1 for details). From (3.29), we obtain dv,/dv, =
P(h) along the curve Civ, = = v((v,). This implies, by Lemmas 3.3 and
34, Cis tangent to H and HL at points h2 and hlz, respectlvely

Finally, we prove the convexity of curve C. Since C is defined by
M(h) = M'(h) = 0, it is the envelope of the famlly of lines {L,} on the
v,v,-plane defined by

6 15
Ly: vy = P(hyv, = ==h = —P(h) =0,

where the parameter h € [— 3, 2]. Since P(h) is invertible, we can
choose its values as a parameter so that the lines {L,} can be parame-
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terized by their slopes P € [3,1]. Thus L, takes the form

Lp:vl _PVZ_H(P) =0,
where H(P) = £h(P) — 1P and h(P) is the inverse function of P(h).
It is easy to see that

p"(h)

=y

’

since P'(h) <0, P"(h) < 0 (Lemma 3.6).

It is known (see, for example, Chapter 1 in Arnold [4]) that the
envelope of a family of lines such as L, (Lp), parameterized by their
slopes and defined by v, = Py, — (— H) with a convex function —H, is
the graph of a convex function v, = v,(v,) which is the Legendre
transform of the function — H. O

(iti) The number of limit cycles As in Section 4.1, for a given (v, v,),
the number of limit cycles of equation (3.15) is determined by the
number of zeros of equation M(h) =0 for —2< h < 2.

Suppose v, + = 0. Then M(h) =0 if and only if v, = $h (see
(3.24)). This means for — &+ < v, < 7, M(h) = 0 has a unique root.

We suppose v, + £ # 0, and rewrite (3.24) in the form

_ 15
M(n) = (,,2+ ﬁ)(A(h) — P(h)), (3.30)

where

a0 = o ) o= )

is a linear function of 4. Obviously, zeros of M(h) correspond to
intersection points of the straight line L, : P = A(h) and the curve [p:
P = P(h) on the AP-plane. Since P'(h) <0 and P”"(h) < 0 (Lemma
4.1.7 and Lemma 3.6), I, is strictly convex. On the other hand, I, is
independent of v, and v,, P(—2/3) =1, and P(2/3)=5/7. The
straight line L, depends on », and v,, but it has the following
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Uy

Figure 3.7. Bifurcation diagram of equation (3.15) in the v,v,-plane for small §.

properties for v, + B > 0:

1% A(-2/3)=1 (> lor < 1)if and only if (v, v,) € H (is below or
above H).

(2°) A(2/3)=5/7(>5/7 or <5/7) if and only if (v, v,) € HL (s
below or above HL).

(3°) L, is tangent to curve T} if and only if (v,,v,) € C (., M(h) =
M'(h) = 0 for some he(-%3).

In the case v, + 12 < 0, we only need to replace “> ” (correspond-
ingly “ < ) by “ < ” (correspondingly “ > ) in propertles (10) and (2°).

The v,v,-plane is divided into five regions by the curves H, HL and
C (see Figure 3.7).

Since L, is a straight line and I}, is a convex curve, we show all the
different intersection possibilities in Figure 3.8. We note that the dotted
lines in Figure 3.8 indicate a different position for L, determined by
the sign of v, + 2.

Extending the result from 8 =0 to 8 > 0 by using the Implicit
Function, Hopf Bifurcation, and Homoclinic Bifurcation Theorems (see
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25
3,7
2 -
(-3 Ath)
A(h) - X
(a) (U1x"2)=8 (b) ("1)”2)6" (c) ("1,"2)E|V (d) ("1, vz)EIII (e) (U1,02)E|
tangent N
(0 (vy,05)€C (9) (vg,0)€V (h) {vy,05) € H U ("1"’2)=ﬁ2 () (vg,09) € 'I\f:':i\al

(above h,)

A(h)
P(h)

(0 (0,06 Hbut  (¢) (og,0,)€ (M (og.00€ () (o, 0)=h¢, () (vy,0,) € AL
( below d) HL (above d) afm_ hkzz ( below hwlz)

Figure 3.8. The relative positions of curve p = p(h) and straight line P = A(h)
( for v, + B> 0;----- for v, + £<0).

Section 3.2, Section 4.1, Section 5.1, and Section 5.2), we obtain the
following lemma.

Lemma 3.8. Let K be a compact neighborhood of the curved triangle
d‘ﬁthz in the vv,plane and N be a compact neighborhood of the
singular disc {H(x,y) < 3} N {x > 1} in the xy-plane. There exists a
value A > 0 such that if (8,v,,v,) € C(K) = (0,A) X K C R? then
the bifurcation diagram of equation (3.15) consists of three surfaces and
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three curves which can be described as follows, up to a diffeomorphism of
C(K) in which the diffeomorphism is the identity at & = 0:
o= (0,A) X (H\ {h,)) is a surface of Hopf bifurcation of codimen-

sion 1; o

Sy = (0, A) X (HL\ {hl,}) is a surface of homoclinic loop bifurcation
of codimension 1,;

Sc = (0,A) x C is a surface of double limit cycle bifurcation;

(0, A) X {h,) is a curve of Hopf bifurcation of codimension 2;

0,A) x {iTl;} is a curve of homoclinic bifurcation of codimension 2;

(0,A) X {d} (i.e., Sy NSy is a curve of Hopf bifurcation and
homoclinic loop bifurcation.

For & € (0, A), denote the intersection of the bifurcation diagram of
(3.15) and the plane 8 = § by 3. Then 3; has a structure as shown
in Figure 3.7. The phase portraits of (3.15) for (8, »,, v,) in regions I-V
are the same as in Figure 3.4 I-V (¢, < 0), respectively. The phase
portraits of (3.15) for (8, v,, v,) along each part of 3; are the same as
in Figures 3.5 and 3.6 (¢; < 0) for each corresponding part of H, HL,
and C, respectively.

Remark 3.9. Since (3.15) is obtained from (3.13), we can obtain a
description of the bifurcation diagram for equation (3.13) with €, < 0.

In fact, (3.14) gives a transformation ®: (8,v,,v,) = (€,, €,, €3).
By this transformation ®, C(K) = (0, A) X K - Ce,(K) =
{(=8%,8%,6%,)16 € (0,4),(r,,¥,) € K}). C_(K) is a cone in €,€,€5-
space around the e,-axis for €, < 0 (see Figure 3.9). The bifurcation
diagram of (3.13) in C_(K) is the image by @ of those described in
Lemma 3.8, and hence homeomorphlc to the cones based on H HL C,
h,, hlz, and d with generating curves 8 — (—8*, 8%,, 8*»,), or equiva-
lently €, — (¢,,(—€,)*?v,,(—€,)v,) for €, < 0.

(iv) The behavior of (3.13) around the es-axis for €, < 0 Consider a
change of coordinates and parameters

2
o [0
e, = 8%, L (3.31)
€3 = 841/2, t - gt'
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Figure 3.9. The cone C,(K) for ¢; < 0.

In order to consider the parameters in a cone in the neighborhood of
the e;-axis, we fix v, = +1 in (3.31), and let (§,€,,»,) be the new
parameters. For v, = 1, we have a cone around the e;-axis, €; > 0, and
for v, = —1, a cone around the e,-axis, €; < 0. We consider only
v, = 1. The case v, = —1 can be treated in the same way.

By (3.31) with v, = 1, equation (3.13) becomes

T 3.32
y=& +x2+ 8y, +x +x7)y. (3-32)
For each fixed 8 € (0, T], where T > 0, we make a second blow up:
x - 7,
62 = T ’ y T y’
o . (3.33)
Vl =T Vl, t - —t
mt
Then (3.32) is transformed into the form
X =Y,
y=—-1+x+8[r(¥, +x)y + 0(+%)]. (3.34)

Comparing (3.34) with equation (4.1.7) and using the method of Section
4.1, we can obtain the following lemma.

Lemma 3.10. In the half plane {(€,v,,v,)lv, =1, € < O} there is a
fixed compact subset B*, diffeomorphic to a disk, having a tangency of
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&
[
~ H
HL
£
B+ 0 '
Figure 3.10.

Figure 3.11.

order 1 at b, = (0,0, 1) with the v,-axis, such that for equation (3.32) the
results of Bogdanov-Takens (see Theorem 4.1.2) are valid for any
(€,,v,) € B and any & € [0, 7].

Remark 3.11. Similarly to Remark 3.9, (3.31) with », =1 gives a
mapping (8, &,v,) = (€}, €,,€;) which maps (0,71 X B™ to C] =
{(8%,,8%,8*)8 € (0,7],(¢;,»)) € B*}. C_, is a cone in €,€,€5-5pace
around the e;-axis and based on B*. The e bifurcation diagram of (3.13)
in C, * consists of cones based on H, HL and {bl} with generating
curves 6 - (8 61,861/1, 8*), where H and HL are the curves of Hopf
and homoclinic bifurcations, respectively (see Figures 3.10 and 3.11).
Similarly, taking », = —1 we can obtain a cone C., around the e;-axis
for e; < 0.
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Proof of Theorem 3.2. Let C/ and C_, be the two cones obtained in
Lemma 3.10 and Remark 3.11. By Lemma 3.8 we can choose a compact
set K in the v,v,-plane such that:

(1) C(K)U C U C_, contains a cone C(D) based on a disk D
belonging to the half sphere S, = {(;, €,, €;)lef + €2 + €3 = 02,
€, <0 and o > 0 sufficiently small}, where C,(K) is described in
Remark 3.9.

(2) D contains the half circle S, N {e, = 0}. D is tangent to 45, with
a tangency of order 1 at the points b, and b,, where b, = (0,0, o),
b, = (0,0, —0).

(3) D contains the curves H= S, NS, HL=5,, NS,, and C = S,
N S,, where Sy, Sy, and S, are described in Lemma 3.8.

We can obtain condition (3) because the curve of Hopf bifurcation
and the curve of homoclinic bifurcation in D N C% are connected with
H and HL, respectively. To show this, we consider the equations for
the curves H=S,;NS, and HL = S, N S,. From Lemma 3.3, we
obtain

v,—v,—1=0,
5 (3.35)

e+ e +ei=0

From (3.14) we have

é= (—6)1/4,
vi = &/(—e)”’, (3.36)
v, =€/(—€),

where €; < 0. Substituting (3.36) into (3.35), we obtain

. f(er, €5,€3) =0,

' g(e;, €, €3) =0, (3-37)

where

1/2 3/2
f=€2_(_51)/53_(_51)/7

g=ef+e§+e§—0'2.

This implies that if e€; — 0, the curve H tends to points b; and b,,
respectively. This means that H is connected to the Hopf bifurcation
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curve in D N Cj; because of the uniqueness of the Hopf bifurcation
curve in a neighborhood of b, or b, (see Section 4.1).

We can consider the equation for HL = Sy; N S, in the same way.

Thus, we can choose K and D satisfying the conditions (1), (2), and
(3). The conclusion of Theorem 3.2 for €; < 0 and (e, €,, €3) € C(D)
follows from Lemmas 3.8 and 3.10. The conclusion for €; > QO or e; = 0
but (€;,€,,€;5) # (0,0, + o) is obvious. The only remaining case is
€, <0 and (e, €,, €3) € C(D). In this case, by using the same method
as in the proof of Lemma 4.1.12, it can be shown that equation (3.13)
has no periodic orbits. O

5.4 A Codimension 4 Bifurcation: Cusp of Order 4

In this section we consider a cusp of codimension 4; the family of vector
fields for this case is (3.4)*. Most results in this section are due to Li
and Rousseau [1]. We discuss only the case (3.4)" because the case
(3.4)" is similar. Thus, we consider the family of vector fields

=y,
- 3 2 4 (4-1)
y=€ teytexytex’y+tx®+xy.

Obviously, if €, > 0, (4.1) has no equilibrium; if €, = 0, we have a
saddle-node bifurcation. When ¢; < 0, we make a scaling

t
x> 8%x, y-8&y, t- 5 €= -84,

62 = 681/1, 63 = 661/2, 64 = 62V39 (4‘2)

where 8 > 0. Then equation (4.1) becomes

=y,
43
Y= —1+x2+8"(v; + vox + v3x> +x%)y. (43)
We will study first the bifurcation diagram of equation (4.3) in
v v,v5-space, and then glue it in €, €,€;¢,-space (back to equation (4.1))
with the saddle-node bifurcation on €, = 0, with a cusp of order 2 on
€, =€,=0, €5 # 0, and with a cusp of order 3 on €, =€, =¢; =0,
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€, # 0. Thus, we can obtain the bifurcation diagram of (4.1), as we did
for equation (3.13) in the last section.

By using the results in Sections 5.1-5.2 (Examples 1.8 and 2.13), we
have the following two lemmas.

Lemma 4.1. Let

V0=V1_V2_V3+].,
Vi=v,—3v; + 8§, (4.4)
V, = 5v, — 14.

Then for each k = 1,2,3, equation (4.3) has a Hopf bifurcation of order

k (HB,) if the following kth condition is satisfied:

(1) Vy=0, 6V, #0;

2) V,=V, =0, 8V, 0

(3) Vo=V, =V,=0,8#00G.e., (v;,v,,v) =, %), 8 +0).
System (4 3) has three limit cycles near the focus if (v,,v,, v;) is in

the region

V,<0,V,>0,V,<0,

0< |V0| < |V1| < |V2| < 1. (4.5)
Lemma 4.2, Let
W 5 103 187
= Sy, 2D
OTMIT R T s T Tgr
Wi=v,+v,+vs+1, (4.6)
9 8
W2= —Vy; - §V3+ 7

Then for each k = 1,2,3, equation (4.3) has a homoclinic loop bifurca-
tion of order k (HLB,) if the following kth condition is satisfied:

(1) Wy =0, W, # 0;

(2) Wy=Ww, =0, W, + 0

(3) Wo=W,=W,=0,8 #0.
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(Condition (3) is equivalent to (v,,v,,v;) = (— %, — 3, 8), 6 #0.)
System (4.3) with 8 # 0 has three limit cycles near the saddle loop T, of
(4.3) with & = 0 if (v,, v,, v,) is in the region

W, <0, W, >0, Wy >0, and 0 <|W,| < W, <|W,| < 1.
(4.7)

From the previous two lemmas we have that HLB, N HB, occurs at

22 22
13713)

(v1,v2,v3) = (’1’
and (4.3) has three limit cycles when (v, v,, v;) satisfies
V, <0, W, >0, W, >0,
0 <Vl <1, and 0 <|W| < |W,| < 1.

Also, HLB, N HB, occurs at (v;,v,,v;) = (3, — 2 1) and (4.3)
has three limit cycles when (v,, v,, v;) satisfies

V,>0, V,<0, W,>0,
0 <Vl x|Vl <1, and 0 <|W,| < 1.

In order to discuss the periodic orbits of equation (4.3), we consider
(4.3) as a perturbation of the Hamiltonian system

*=v, 48

}'] - __1 +x2’ ( . )
with the Hamiltonian function —H(x, y), where
y? x3

H(x,y)=—+x— —. (4.9)
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By Lemma 4.1.4, the condition for the existence of periodic orbits of
equation (4.3) is

F(h,6,v1,v2,v3)=f (V1+v2x+v3x3+x4)ydx=0,
y(h,8,vi,vy,v3)

(4.10)

where y(h,8,v,,v,,v;) is defined as in Section 4.1 and F(h,3$,
v, V5, ¥5) is well approximated by M(h) = F|5_¢. For § = 0, the condi-
tion (4.10) becomes

M(h) = fr(u1 +vyx + w3 +x4)yde = 0, (4.11)
h

where T}, is the level curve of H(x,y) =h, —2<h < 2. H(x,y) = — %
corresponds to the equilibrium (—1,0) and H(x, y) =  corresponds to
the homoclinic loop.

We will study the number of solutions of equation (4.11) with respect
to h € (— 2, 2), for given (v, »,, »5). This number is just the number of
periodic orbits of the system (4.3).

As in Sections 4.1 and 5.3, we define

L(hy = [ x*ydr,  k=0,1,2,3,4, (4.12)
Ty
and then M(h) takes the form

M(h) = v Iy + v,y + viy + I,. (4.13)

By Lemma 3.5, we have

1 6hI 151
R T R TR i
I 211 12hI (9
=TT B

Substituting (4.14) into (4.13), we obtain

M(h) = A(h)Io(h) = B(h)I(h), (4.15)
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where
A(h 6h 21
()“Vl'ﬁ”3+1_3’ a6
B(h 15 12h (4.16)
= +_ — —h.
( ) ) 11”3 13

As in Section 5.3, we consider M(h) = M(h)/1(h) instead of M(h),
and then from (4.15) we have

M(h) =A(h) — B(h)P(h), (4.17)

where P(h) is the same as in Sections 4.1 and 5.3. We recall the
properties of function P(4) in the following lemma (see Lemmas 4.1.6,
4.1.7, and 3.6).

Lemma 4.3. The function P(h) has the following properties:
(1) P(-2,2) c[5,1], P(-2/3) = 1, and P(2/3) = 5/7;
(2) P'(h) <0, P(-2/3) = —1/8, and P'(2/3) = —o0;
(3) P"(h) <0 and P"(-2/3) = —55/1152;

(4) P = P(h) satisfies the following differential equation:

(9h% — 4)P' = TP% + 3hP — 5. (4.18)

Or, equivalently, (h, P) is a solution of the following system

dP
— = ~TP? =3P+ 5,

o (4.19)
— = 4- 912,

dt

satisfying lim, , _ kA= —2/3 and lim, , _, P = 1.

Now we consider the bifurcation of multiple limit cycles. The condi-
tion for occurrence of multiple limit cycles is given by M(h) = M'(h) =
0, which determines a surface S. The points of this surface satisfying
M"(h) # 0 correspond to a double limit cycle bifurcation. We show that
the surface is regular at these points. We also prove that the points of S
satisfying M"(h) = 0 form a smooth curve C, on which M”(h) # 0.
Hence, it corresponds to a triple limit cycle bifurcation. From (4.17) and
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(4.16), we have

_ 6 12

M'(h) = = 37vs + 3 P(k) = B(k)P'(h), (4.20)
_ 24
M'(h) = P (k) = B(h)P"(h), (4.21)
_ 36
M"(h) = ZP"(h) = B(h)P"(h). (4.22)

Lemma 4.4. S is a regular surface at the points where M"(h) # 0.

Proof. From M’'(h) = 0 and M"(h) # 0 we have h = h(v,,v;) by the
Implicit Function Theorem. Since IM/dv, # 0 (see (4.17) and (4.16)),
we have v, = v (h,v,,v,) from M(h) = 0. If we replace & by h(v,, v,),
the desired result follows. O

Lemma 4.5. On the curve C = {(vy, v,, v3)IM(h) = M'(h) = M"(h) = ()
we have that M"(h) + 0, —2/3 <h < 2/3.

Proof. The first step is to prove that if M”(h) = 0 then M"(h) # 0 is
equivalent to

3[P"(R)]> — 2P (R)P"(h) + 0. (4.23)
In fact, we will show that the left-hand side of (4.23) is negative for
hel-2/3,2/3).

From (4.21) we get that M"(h) = 0 is equivalent to

24 P'(h)

(h) = BP®0)’ (4.24)

where P = P(h) and P" # 0 for h €[-2/3,2/3] (see Lemma 4.3).
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Substituting (4.24) into (4.22), we have

12

A_l’”(h) = 13PII

[3(P")? - 2PP"].

Hence M™(h) # 0 is equivalent to (4.23).
Now we prove (4.23). From (4.18) we get

(9h% — 4)P' = TP* + 3hP - 5, (4.25)
(9h* — 4)P" = P'(14P — 15h) + 3P, (4.26)
(9h% — 4)P" = P"(14P - 33h) + P'(14P' — 12),  (4.27)
(9h% — 4) P® = P"(14P — 51h) + P"(42P' — 45).  (4.28)
We denote
F(k) = 3(P"(h))* = 2P’ (R)P"(h). (4.29)

We have from Lemma 4.3, P'(-2/3)= —1/8 and P"(-2/3) =
—55/1152. From (4.18) it is not difficult to obtain that P"(—2/3) =
—3685 /73728, whence F(—2/3) < 0. We need to show F(h) < 0 for
h € (—2/3,2/3). If this is not true, we let A* = inf(h|F(h) = 0, h €
(—2/3,2/3)}, and then it is obvious that F(h*) = 0 and F'(h*) > 0.
But we will show that F(h*) = 0 implies F'(h*) < 0. This contradiction
means that such an A* does not exist,

We suppose now that F(h*) =0, h* € (-2/3,2/3). From (4.25)-
(4.29) we have that

(9% — 4)F'(h)
2

= (9% — 4)(2P"P" - P'PY)

r2 r prr (4'30)
= 2P"*(14P - 33h) — P'P"(14P — 51h)

+P'P'(—14P + 21).
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By using F(h*) = 0, from (4.29) and (4.30) we have

(9h** — 4)F'(h*)
2

1
= —3—P’P’”(14P + 21h) + P'P'(—14P + 21)|,_ps.

(4.31)

We have already that P'(h) < 0 and P"(h) <0 for h € (—-2/3,2/3).
We claim that 14P(h) + 21k > 0 and P"(h) < 0 for h € (-2/3,2/3).
Hence (4.31) implies F’'(h*) < 0 since 94*% — 4 < 0. This yields the
desired result.

We need to show finally that the above claim is true.

To show G(h) = 14P(h) + 21h > 0 for h € (-2/3,2/3), it is suf-
ficient to note that G(—2/3) =0, G(2/3) > 0, G'(-2/3) > 0, and
G"(h) = 14P"(h) < 0 for h € (=2/3,2/3).

To show P"(h) < 0 for h € (—2/3,2/3), we use the same argument
as to show F(h) <0. We have that P"(—2/3) < 0. Suppose h =
inf{h|P"(h) = 0, h € (—2/3,2/3)}. Then P“(h) > 0. From (4.28) and
F"(h) = 0 we obtain that (922 — )P®(h) = P"(42P' — 45)|; > 0. This
implies P®(k) < 0. The contradiction means that such an A does not
exist. (]

Lemma 4.6, The curve C corresponds to a triple limit cycle bifurcation,
and it is a smooth curve.

Proof. The fact that C corresponds to a triple limit cycle bifurcation
follows from the definition of C as the set of {(,,v,,v;)} such that
M(h) = M'(h) = M"(h) = 0 and from Lemma 4.5 which ensures that
M"(h) # 0.

We prove now the smoothness of C. From (4.17), (4.20), (4.21), and
(4.16), we have that M(h) = M'(h) = M"(h) = 0 is equivalent to

3 r2 ’

vi= 5| 4hP - 8h— + 8 —7),
3 P> P

Vv, = B 4h — 10P + 20}7 + 8—13;), (432)
22 p 2P

Vs = B - P
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By Lemma 4.5, M"(h) + 0 is equivalent to (4.23). From the third
equation of (4.32) we have

v, 22 P'(3P"* - 2P'P")
oh 13 p? ’

which is different from zero by (4.23). Hence we get A = h(v,) from the
third equation of (4.32), and the first two equations of (4.32) give
v, = v{(h(v;)) and v, = v,(h(v;)) which are differentiable. Therefore,
C is a regular smooth curve. O

Lemma 4.7. For sufficiently small & there is a smooth curve (HB, S) in
the parameter space, corresponding to the simultaneous occurrence of an
HB, and a double limit cycle. This curve joins the point (v,,v,,v;) =

U 2 1) corresponding to HB;, to the point (v,,v,,v;) =
(-1, — 2, %), corresponding to HB, N HLB, (the coordinates at these
points are up to O(8)). The curve is a convex envelope of the family of

lines in the HB plane, given by M(h) = 0, h € (—2/3,2/3).

Proof. We make a change of coordinates (v,,v,,v3) = (my, m,, ms),
which transforms the two lines H, and H N HL to coordinate axes (see
(4.4) and (4.6)):

ml =V —Vy— V3 + 1,
m2 =V, — 3V3 + 8,
5 103 187

v, — = vyt —.
7727 7V T g

(4.33)

ms =v, —

The equation M(h) = 0 (see (4.17) and (4.16)), under the condition
m, = 0 (on the HB plane; see Lemma 4.1), gives

— 1 7
M(h) = 1—0(3h + 14P — 12)m, + —26(—3}1 — 24P + 22)m,

4
+ 25 (15hP = 21h — 38P + 34) = 0,
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where P = P(h). The above equation is equivalent to

m, = -;—Q(h)m3 + 18—3R(h), (4.34)
where
Q(h) = w, (4.35)
3h + 14P — 12
and

38P + 21h — 15hP — 34

R(h) =
(h) 3h + 14P — 12

(4.36)

Since Q < 0 and R > 0, we will show that dQ/dh + 0 and d*R/dQ?
< 0. Hence, —R is a convex function of the slope Q. Therefore, by
arguments as in Lemma 3.7, the curve (HB, S) is the graph of the
Legendre transform of —R, that is, a convex curve. From (4.35), we
have that

dQ 10[3(1=P) + (3h +2)P']
dh (3h + 14P — 12)* <0 (437)

except at A = —2/3, since the numerator is zero at A = —2/3 and its
derivative 1034 + 2)P" < 0 for h € (~2/3,2/3) (see Lemma 4.3).
From (4.36), we get

dR  5[—-30+ 72P — 42P% + (4 — 9h*) P']
— = > . (438)
dh (3h + 14P - 12)

Equations (4.37) and (4.38) give

dR —30 + 72P — 42P? — (4 — 9h%) P’

°30 " 3(1-P)+ (3h + 2)P'

Hence,

AR [(1-P)(3h +2)P" + 6(1 — P)P' + 2(3h + 2) P

dQdn [3(1 = P) + (3h + 2)P')

X3(12 — 3h — 14P).
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Since d’R/dQ? = d/dh(dR/dQ) - dh/dQ, and for h € (-2/3,2/3)
we have that

d
(12— 3h — 14P) <0 and % <0 (see (4.37)),

we only need to show

G(h) = (1—P)(3h + 2)P" + 6(1 — P)P' + 2(3h + 2)P'* < 0
(4.39)

instead of d’R/dQ* <0 for h €(-2/3,2/3). Since G(-2/3) =
G(-2/3)= G"(-2/3) =0 and G"(-2/3) = 3(3P"* —
2P'P" )i~ -2/3 < 0 (see the explanation following (4.23)), it is enough
to show that G # 0 for h € (-2/3,2/3).

Assume that G(h) has a zero point at some h € (—=2/3,2/3). We
repeat the technique used in the proof of Lemma 4.5 to deduce a
contradiction. In fact, let #* = inf{h|G(h) = 0, —2/3 < h < 2/3}; then
G(h*) =0 and G'(h*) = 0.

On the other hand, from (4.39) we have

G'(h) = 3(3h + 2)P'P" + 9(1 — P)P" + (1 — P)(3h + 2)P",

(4.40)
and G(h*) = 0 implies
1-P
(3n* + 2)P'(h*) = — —217[(3h + 2)P" + 6P'] |,y
Substituting the above expression into (4.40), we obtain
1 2
G(h*)= —=—=(1-P)(3h +2)(3P"" — 2P’P”’)|,,=,,* <0,

2P

since —2/3 < h* <2/3, P(h*) <1, P'(h*) <0, and @P"? - 2PP")
< 0.
The contradiction proves that G(h) < 0for h € [—2/3,2/3). ]

Lemma 4.8. For sufficiently small & there is a smooth curve (HLB, S) in
the parameter space, corresponding to the simultaneous occurrence of a
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a(HB,)

HBNHLB

C'(HBNHLB,)
(HB,NHLB)

d'(HLy)
Figure 4.1.

homoclinic bifurcation of order 1 (HLB,) and a double limit cycle. This

curve joins the point (v, v,,v;) = (=3, — 2,20 corresponding to

HLB;, to the point (v, v,,vs) = (&, — 2,2, corresponding to HLB,
N HB, (the coordinates at these points are up to O(8)). The curve is the
convex envelope of the family of lines in the HLB plane, given by
M(h) =0, h € (=2/3,2/3).

As the proof is similar to that of Lemma 4.7, we omit it here.

Lemma 4.9. The parameter region ) for which the equation (4.3) has
three limit cycles has the form of a “topological 3-simplex” (Figure 4.1).

Proof. We consider the 3-simplex —2/3 < h; < h, < hy < 2/3 (Figure
4.2), and the map F from that 3-simplex to the parameter space
v = (v,,v,v;), defined by h = (h, h,, hy) = v(h), where v(h) is the
solution of M(h,) = M(h,) = M(h;) = 0. This solution is unique. In
fact, from (4.17) and (4.16) we have

_ 6 15 21 12
M(h) = vy = P(h)v, + | = s0h = P(h) |vs + 2 + hP(h),

13

and the coefficient determinant of M(h,) = M(h,) = M(h;) = 0 with
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b =252 c
(HB,)N(HLB) M=~ 303 (HB)N(HLB,)
%
3 //“'5//6
S5\ (HLB,) w4
EN
&
h1=h2="% //QQ 2
& h==3 h=hy
,QN
a
(HB,)
Figure 4.2.
respect to (v, v,,v,) is
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since P <0, P" <0for h € (-2/3,2/3).

The function F is a local diffeomorphism on the 3-simplex in the
h-space. F is of rank 2 on the faces h, = h, # h; and hy # h, = h;,
and is a local diffeomorphism when restricted to these faces. Similarly F
is of rank 1 on the edge h, = h, = h;, and a local homeomorphism
when restricted to this edge. We can conclude that F is a global

>
h3 - h2 0’
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diffeomorphism on the 3-simplex if we can prove that the system cannot
have more than three limit cycles, that is, no four planes M(h j) =0,
h, < h, < hy < hy, can intersect. This is shown in the next lemma. O

Lemma 4.10. For sufficiently small 5, the system (4.3) has at most three
limit cycles for each value of the parameters v, v,, and v,.

Proof. For given v,, v,, and v; we determine the number of zeros of
IW(h) = A(h) — B(h)P(h)

for h € (—2/3,2/3), where A(h) and B(h) are linear in A and given
by (4.16). Let h* € (— o, +») such that B(A*) = 0.

Suppose that M(h*) = 0. Then we have A(h*) =0 and M(h) =
D(h — h*) P — P*) for some constant D. Since P = P(h) is mono-
tonic, M(h) has at most two zeros.

For the rest of the proof we can suppose that M(h*) # 0. Then

M(h) = B(h)(Q(h) — P(h)), (4.41)
where h € (—-2/3,2/3), h #+ h*, and

A(h)  143v, — T8hv; + 231
B(h)  143v, + 195v, — 1324

Q(h) = (4.42)

We need to determine the number of intersection points of the curve
P = P(h), called Tp, and the curve P = Q(h), called T, for h €
(=2/3,2/3\ {h*}. The curve T}, is a hyperbola (Figure 4.3) and

, «
Q (h) = Bz(h) ’
where

a = —78v,(143v, + 195v;) + 132(143v, + 231).

In the case a > 0, it is obvious that T, and I, have at most two
intersection points. Hence, we only consider the case a < 0.
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() If h* < —2/3, then I, and T, have, obviously, at most two
intersection points (Figure 4.4(a)).

(i) If —2/3 < h* < 2/3, then the right branch Ij of T}, always has
at most two intersection points with I, (Figure 4.4(b) and (c)). It has
exactly one intersection point if and only if Q(2/3) < 5/7. In the case
where I intersects I, the left branch I; of I, is then below
P = 5/7, and hence it has no intersection with I',. Therefore, we need
only consider the case where Q(2/3) > 5/7. In this case we study the
number of intersection points of I, and I, (Figure 4.4(d) and (e)).
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For this purpose we count the number of contact points of [}, with
the vector field (4.19), that is, we consider the number of zeros of

e R )
dt (@19 '(h)

for G = P — Q(h). A calculation shows that

. 43
G = (=7P* = 3hP +5) — 25 (4 - 9n)2|penss

1
= ﬁ[—mz — 3hAB + 5B* — a(4 — 9h?)].

The numerator is a polynomial of degree 3 with respect to & (see
(4.16)); therefore, it has at most three roots. It is easy to see that the
left branch I}, has at least as many contact points with the vector field
(4.19) as it has intersection points with I, (Figure 4.4(d) and (e)):
Between any two intersection points there is always a contact point, and
there is always a contact point on the left of the first intersection point,
due to the direction of the vector field at the intersection of I);, with
the line & = —2/3. The number of intersection points is therefore at
most three.

(iii) The case A* > 2/3 can be discussed by the same arguments as in
(ii) (e.g., see Figure 4.4(f)). a

Remark 4.11. From (4.42), Lemma 4.1, and Lemma 4.2, we obtain,
similarly to the discussion in Section 5.3, that Q(—2/3) = 1 = P(-2/3)
if and only if (v,,v,,v;) €HB (ie, vi—v,—v;+1=0) and
QQ/3) =5/7 = PQ2/3) if and only if (v,,v,,v;) € HLB (ie., v, —3v,
- 17‘173—1/3 + 18 = 0). Suppose (v,,v,, v3) € Q, the topological 3-simplex
formed by surfaces HB, HLB, two pieces of the double limit cycle
bifurcation surface S (see Lemma 4.9), and the curve C, and suppose
condition (4.5) is satisfied. By Lemma 4.1, equation (4.3) has three limit
cycles. In this case, Q(—2/3) < 1 and Q(2/3) > 5/7 by Lemma 4.10.
The relative positions of I, and I, is shown in Figure 4.4(f). As
(v,,v,,v3) varies inside Q, the number of intersection points between
[, and I}, is always three. In fact any decreasing of this number
corresponds to at least one of the following situations:

(1) Q(—2/3) becomes larger than 1.

(2) Q(2/3) becomes less than 5/7.
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(3) Two intersection points of I, and [, become a tangent point, and
then disappear.
(4) Three intersection points of I, and [, become a tangent point.
These situations mean that (v,,v,,»,) goes to the boundary of
(the surface HB, HLB, S, or C, respectively), and then leaves . In this
way, we can discuss the phase portrait of equation (4.3) for (v,,v,, v,)
as any position in the parameter space.
Summing up the above lemmas and Remark 4.11, we have the
following theorem.

Theorem 4.12. For sufficiently small 8, the bifurcation diagram of equa-

tion (4.3) is shown in Figure 4.5. It consists of the following:

(1) Surfaces (codimension-1 bifurcation). HB,, HLB,, and S (S has two
smooth pieces divided by the curve C).

(2) Curves (codimension-2 bifurcation): HB,, HB, N HLB,, HLB,,
(HB, S), (HLB, S), and C.

(3) Points (codimension-3 bifurcation): HB,, HLB,, HB, N HLB,, and
HB, N HLB,.

When v = (v,v,,v,) € Q, surrounded by surfaces HB,, HLB,, and S
and curve C, equation (4.3) has exactly three limit cycles; when v varies
from €} through S, then two of the three limit cycles merge as a semistable
limit cycle, and then disappear; when v uvaries from € through the
surface HB,, the most inner limit cycle shrinks into the focus (x,y) =
(—1,0) which changes its stability; and when v varies from Q through
the surface HLB,, the most outer limit cycle expands and forms a
homoclinic orbit, and then the connection from the saddle point to itself
breaks down and the homoclinic loop disappears.

Now we return from equation (4.3) to the original equation (4.1). We
describe the bifurcation diagram of (4.1) by taking its intersections with
a 3-sphere around the origin in the e-space. Equation (4.1) has equilib-
ria only on the closed half 3-sphere {(e;, €,, €;)le} + €3 + €3 =1, ¢; <
0}, which can be transformed into a closed 3-ball (Figure 4.6). The
bifurcation diagram inside the ball is similar to the bifurcation diagram
of (4.3) in v-space (Figure 4.5), containing a topological 3-simplex (2
with exactly three limit cycles. The boundary of the ball (a 2-sphere)
corresponds to the saddle-node bifurcation (e; = 0, €, # 0). On it, the
Bogdanov-Takens bifurcation appears on a circle (e, = €, = 0, €5 # 0).
Two points of the circle (e; = €, = €; = 0, €, # 0, one with €, > 0, the
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(SN)

Figure 4.6.

other with €, < 0) correspond to the cusps of order 3, and separate the
two cases of Bogdanov-Takens bifurcation: e; <0 and e€; > 0. The
Hopf bifurcation surface (HB) and the homoclinic bifurcation surface
(HLB) inside the ball branch along the circle of the Bogdanov-Takens
bifurcation. Moreover, the different curves of codimension-2 bifurca-
tions inside the ball meet on the boundary of the ball at two cusps of
order 3, giving the conic structure described in Section 5.3. In Figure
4.6, for clarity we do not draw completely the Hopf bifurcation surface
(HB) and the homoclinic bifurcation surface ( HLB). We just draw the
continuation of the codimension-2 curves until they meet the boundary
of the ball.

To verify the above description, as we did in the last section, we need
to construct a union of cones:

(1) The half space €, > 0.

(2) A cone K, constructed around the e,-axis on a small neighbor-
hood in €,€,€5-space.

(3) A cone K, constructed around the e;-axis on the product of a
small neighborhood in e€,e,-space with an arbitrary compact set in
€,-space.

(4) A cone K, constructed around the e,-axis on the product of a
small neighborhood in ¢;-space with an arbitrary compact set in e;e,-
space.
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(5) A cone K, constructed around the e,-axis (¢, < 0) on an arbitrary
compact set in €,€5€,-space.

If we choose well the arbitrary compact sets, we will produce a
neighborhood of the origin.

The last cone K, can be obtained from Theorem 4.12 (v, v,,v;) =
(€,, €3, €4), see (4.2)). For the other cones K; we must use the universal
unfolding of the cusps of order j — 1 < 3; the cusp of order 1 is just the
saddle-node.

5.5 Bibliographical Notes

There are at least six different methods used to study degenerate Hopf
bifurcation. We list here these methods and some references: the
method of Poincaré normal forms, see Arnold [1] and Guckenheimer
and Holmes [1]; the method of averaging, see Chow and Hale [1],
Guckenheimer and Holmes [1], and Sanders and Verhulst [1]; the
method of the succession function, see Andronov, et al. [2]; the method
of Lyapunov constants, see Bonin and Legault [1] and Gobber and
Williamowski [1]; the method of Lyapunov-Schmidt, see Golubitsky
and Langford [1], Golubitsky and Schaeffer [1], and Vanderbauwhede
{1]; and the method of intrinsic harmonic balancing, see Allwright [1],
Huseyin and Yu [1], and Mees [1]. In the paper of Farr et al. [1] there is
a review of these different methods, and there are some explicit
formulas of the first three Lyapunov coefficients for degenerate Hopf
bifurcation problems of the general case of a differential equation with
dimension n > 2.

The proof of Theorem 1.3 is due to Rousseau and Schlomiuk {1].
They used the Poincaré normal form and the Malgrange Preparation
Theorem, which made the proof simpler. Theorem 1.5 was given by
Bonin and Legault {1]. The results in Example 1.6 were given by
Li [1, 3]. Example 1.6 (i)-(iii) are generalizations of some well-known
formulas given by Bautin [2]. Example 1.7 was given by Sibirskii [1].

The degenerate homoclinic bifurcation, however, has been much less
studied, although Poincaré {1] and Dulac [1] provided some ideas and
approaches many years ago. The first result on this subject, to our
knowledge, was presented by Leontovich [1] in an abstract paper, and
the complete proof of this result has been given by Roussarie [1] (the
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first part of Theorem 2.5) and by Joyal [1] (both parts of Theorem 2.5).
Most of Section 2 is due to Joyal [1] and Joyal and Rousseau [1].

The finite cyclicity problem for an equilibrium or a singular closed
orbit is closely related to the Hilbert 16th problem and Hopf or
homoclinic bifurcation; see, for example, Dumortier, Roussarie, and
Rousseau [1], Dumortier, Roussarie, Sotomayor, and Zotadek [1], Ecalle
[1], I’yashenko [3], Li and Liu [1], Roussarie [2, 3], and Schlomiuk [1].

Consider the following equation on a plane

X=y,

(5.1)

y =ax? + bxy.

It is well known that if ab # 0, then the bifurcation of (5.1) is of
codimension 2, and the Bogdanov-Takens system is a versal deforma-
tion of (5.1) (see Section 4.1). If b = 0 and a *# 0 in (5.1), then there is
a higher-codimension bifurcation of cusp type. In Sections 3 and 4 we
discussed the cusps of codimension 3 and 4, which were obtained by
Dumortier, Roussarie, and Sotomayor [1], and Li and Rousseau [1],
respectively. Joyal [2] considered cusps of codimension n. The maxi-
mum number of limit cycles in this case is (n — 1). The proofs of
Lemmas 3.6 and 4.5 were suggested by Rousseau, and the idea was
stimulated by Drachman, van Gils, and Zhang [1]. See also Dumortier
and Fiddelaers [1].

If a=0 and b+ 0 in (5.1), then there are higher-codimension
bifurcations of other types: saddle, focus, and elliptic cases. Dumortier,
Roussarie, and Sotomayor [2], Dumortier and Rousseau [1], Medved
[1], Xiao [1], and Zotadek [3] studied these cases with codimension 3.
The results on the focus and elliptic cases are still open, and a
conjecture on the bifurcation diagrams for those cases is proposed in
Dumortier, Roussaire, and Sotomayor [2].

We have considered codimension 2 bifurcation of the 1:2 resonance
in Section 4.2. The unperturbed system is

X=y,
y =ax’ + bx%y, -2)

where ab # 0. In the case b =0 and a # 0, codimension-3 and -4
bifurcations in the 1:2 resonance were considered by Li and Rousseau
[2], Rousseau [2], and Rousseau and Zotadek [1]. In the case @ = 0 and
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b # 0, codimension-3 bifurcation of the 1:2 resonance was considered
by Dangelmayr, Armbruster, and Neveling [1].

Dangelmayr and Guckenheimer [1] studied a bifurcation problem
arising from (5.2) by adding four parameters, and the result was
improved by Zotadek [4].

There are many references concerning homoclinic (or heteroclinic)
bifurcations in higher-dimensional phase spaces. Silnikov [1, 2] gave an
efficient method to study these problems. Chow, Hale, and Mallet-Paret
[1], Chow and Lin [1], Deng [3], Li, Li, and Zhang [1], and Schecter [1]
studied the case of a homoclinic orbit with a degenerate singular point.
See also Chow, Deng, and Fielder [1], Chow, Deng, and Terman [1, 2],
Deng [1, 2], Fiedler [1], Kisaka, Kokubu, and Oka [1, 2], and Lin [1].
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