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Preface

The theory of bifurcation of vector fields is the study of a family of
equations that are close to a given equation. For example, the family of
equations could be a system of vector fields depending on several
parameters. An important problem is to understand how the topologi-
cal structure of the flow generated by the family of vector fields changes
qualitatively as parameters are varied. The main purpose of this book is
to present some methods and results of the theory of bifurcations of
planar vector fields.

Since simplifying equations is often a necessary first step in many
bifurcation problems, we introduce the theory of center manifolds and
the theory of normal forms. Center manifold theory is important for the
reduction of equations to ones of lower dimension, and normal-form
theory gives a tool for simplifying the forms of equations to the ones
with the simplest possible higher-order terms near their equilibria. We
introduce vernal deformations of vector fields and define the codimen-
sion of a bifurcation of vector fields. This is illustrated by saddle-node
and Hopf bifurcations. We discuss in detail all known codimension-
two bifurcations of planar vector fields. Some special cases of higher-
codimension bifurcations are also considered.

In Chapter 1, we introduce briefly the basic concepts of center
manifolds. We show the existence, uniqueness, and smoothness of
global center manifolds. The existence, asymptotic behavior, and folia-
tion of local center manifolds are also discussed.

In Chapter 2, we present the theory of normal forms. We first discuss
in detail normal forms of vector fields near their equilibria. We intro-
duce two methods for computing normal forms: the matrix representa-
tion method and the method of adjoints. We also introduce normal
forms of equations with periodic coefficients or with symmetries. Nor-
mal forms of diffeomorphisms and Hamiltonian systems are discussed.

vii



viii Preface

Complete proofs of Poincare and Siegel linearization theorems are
presented. Takens's Theorem gives a relation between diffeomorphisms
near fixed points and the time-one maps of flows of vector fields near
equilibria. We introduce also versal deformations of matrices and of
infinitesimally symplectic matrices and normal forms of vector fields of
codimension one and two.

In Chapters 3, 4, and 5, we discuss bifurcation problems of vector
fields with some degeneracies. We assume that the problems to be
considered are restricted to local center manifolds and are in their
normal forms up to some order. In Chapter 3, we introduce the
concepts of versal deformations and the codimension of a bifurcation of
vector fields. Bifurcations of codimension one near singularities and
homoclinic orbits are considered. In Chapter 4, we deal with bifurca-
tions of codimension two. For vector fields whose linear parts have
double zero eigenvalues, we consider a nonsymmetrical case and the
cases with 1: q symmetrices (q = 2, 3, 4 and q >_ 5). The case of 1: 4
symmetry is the most difficult and is far from being solved completely.
For the cases in which the linear parts have one zero and one pair of
purely imaginary eigenvalues, or two pairs of purely imaginary eigenval-
ues, we reduce them to planar systems and then give complete bifurca-
tion diagrams. In Chapter 5, we discuss higher-codimension bifurcation
problems, including Hopf and homoclinic bifurcations with any codi-
mension and cusp bifurcations with codimension three and four.

In the last section of each chapter we give briefly the history and
literature of material covered in the chapter. We have tried to make
our references as complete as possible. However, we are sure that many
are missing.

We would like to express our special acknowledgment to Max
Ashkenazi, Freddy Dumortier, Jibin Li, Kening Lu, Robert Roussarie,
Christiane Rousseau, Lan Wen, and Henryk Zoladek. They read all or
part of the original manuscript and made many helpful suggestions
which enabled us to correct some mistakes and make improvements.

The second and the third authors would also like to thank Professor
Zhifen Zhang and Professor Tongren Ding for many helpful discus-
sions. They would also like to thank the Department of Mathematics at
Michigan State University and the Center for Dynamical Systems and
Nonlinear Studies and the School of Mathematics at the Georgia
Institute of Technology for their kind hospitality, since most of the book
was written while they were visiting there.

This work was partially supported by grants from DARPA and NSF
(USA) and from the National Natural Science Foundation of China.



1

Center Manifolds

The main goal of this book is to study some bifurcation phenomena of
vector fields. This is, in general, a complicated problem. As a prelimi-
nary step, it is necessary to simplify the problem as much as possible
without changing the dynamic behavior of the original vector field.
There are two steps for this purpose: to reduce the dimension of the
bifurcation problem by using the center-manifold theory, which will be
introduced in this chapter, and to make the equation as simple as
possible by using normal-form theory which will be discussed in the next
chapter.

We first give some rough ideas about center manifolds. Consider a
differential equation

x = Ax + f(x), (A)f

where x E R", A E Y(W , EW ), f E Ck(W, R") for some k >_ 1, f(0) _
0, and Df (0) = 0.

We write the spectrum Q(A) of A as

o(A) =c Uc U r,

where

v,= (AEo(A)IRe A<0),

Q,= (AEo(A)IReA=0),

Qu=(AEo(A)IRe A>0).

Let E, E, and E,, be the generalized eigenspaces corresponding to v

1



2 Center Manifolds

v,, and o , respectively. Then we have

l8"=E,,®E,®E",

with corresponding projections

ar,: R" -> E Tr,: III" -p E, rru: R" - E.

It is well known that if A is hyperbolic, that is, v, = 0, then the flow
of (A) f in a small neighborhood dZ of the equilibrium point x = 0 is
topologically equivalent to the flow of the linearized equation at x = 0

x = Ax. (A)0

Since x(t) = e`9tx(0) is the solution of (A)0 and a, = 0, any nonzero
solution in E, (or E") tends to the equilibrium x = 0 exponentially as
t -* + oo (or t -' - co). Therefore, the structure of flow in fl is simple;
it is also stable with respect to any small perturbation on the right-hand
side of equation (A)0. See Hartman [1], for example.

However, if o,, 0, then the situation will be different from the
above in two aspects. First, the topological structure for (A) f is not, in
general, the same as for (A)0 any more; this will be shown in a lot of
examples in Chapters 3-5. Second, more complicated structure of the
flow for (A) f may exist on an invariant manifold W `(f ), and the
dimension of W '(f) is equal to the dimension of E,

In fact, if f = 0, then all bounded solutions of (A)0, including all
equilibria and periodic orbits, are contained in the subspace E, which
is invariant under (A)o. So we take W'(0) = E, We will prove that the
aforementioned W `(f) exists for f * 0, it is tangent to E, at x = 0,
and W'(f) contains all solutions of (A)f that stay in fl for all t E If81.
In particular, WC(f) contains all sufficiently small equilibria, periodic
orbits, and homoclinic and heteroclinic orbits. And if a" = 0, then all
solutions of (A)f (in ft) will converge exponentially to some solutions
on WV ) as t -' + c. Therefore, instead of the n-dimensional equa-
tion (A)f, we can consider a lower-dimensional equation on W '(f) for a
bifurcation problem, and WC(f) is called a center manifold. The precise
definition will be given subsequently in Section 1.1.

We will prove the existence, uniqueness, and smoothness of global
center manifolds in Sections 1.1-1.2 under a quite strong condition
which says the Lipschitz constant of f is globally small. In Section 1.3
the cut-off technique is used to get the local center manifolds from the
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global theory, and the above Lipschitz condition will be satisfied auto-
matically since f (O) = 0 and Df (0) = 0. But a new problem arises: The
local center manifold is not unique. In fact, different cut-off functions
can give different local center manifolds. Hence, it is needed to show
the equivalence (in some sense) between different local center mani-
folds concerning the bifurcation problems. Finally, in Section 1.4 we
discuss the center-stable and center-unstable manifolds, give the asymp-
totic behavior of any solution of (1.1) in R", and describe the invariant
foliation structure.

1.1 Existence and Uniqueness of Global Center Manifolds

Consider the equation

x =Ax + f(x), (1.1)

where x E 1R", A E 5°(IP",18"), f E Ck(R ,18") for some k > 1, f(0) _
0, and Df (0) = 0.

We keep the notations Ee, E, E and are, are, aru throughout this
chapter, and let

Eh = ES ® Eu , arh = are + art .

As usual, we denote by I y I the norm of y in some Banach space. Let
X, Y be Banach spaces and Ck(X, Y) be the set of all Ck mappings
from X into Y. We define the Banach space

Cb(X,Y) _ {w E Ck(X,Y) IIWIIck := max suplDjw(x)I < oo
0<j<k XEX

If X = Y, we write Cbk(X, X) as Cb(X ). We let

IIDwII = supXExIDw(x)I.

Similarly, we define

Cb'1(X,Y) = rw E Cb(X,Y)
IIDkw(x) - Dkw(y)II

sup
IIx - yllx <

00,

x,y EX,x 0 y
1



4 Center Manifolds

with norm

11W11-k,1 = IIwII k + sunc
II Dkw(x) - Dkw(x)ll x,yEX,x#y.

IIx - yllx

Finally, we denote by i(t, x) the solution of (1.1) with the initial
condition i(O, x) = x.

Now we state the main result of this section, and will prove it by
using several lemmas.

Theorem 1.1. (i) There is a positive number So which depends only on A
in (1.1) such that if f E Cb.1(l8") and Lip(f) < So, then the set

W`:= (xE08" suplkrhz(t, x)I < 0} (1.2)
teR

is invariant under (1.1) and is a Lipschitz submanifold of 08"; more
precisely, there exists a unique Lipschitz function !i E Cb(EC, Eh) such
that

W`={xc+ii(x,)IxcEEj. (1.3)

(ii) If ¢ E Cb(Ec, Eh), and the set

MO := {xc+4)(xc)IxcEEj (1.4)

is invariant under (1.1), then M. = W` and 0 = 41.

Definition 1.2. W` is called the global center manifold of (1.1).

Remark 1.3. If f E Cb(08"), then we will usually replace the condition
Lip(f) < So by IIDf 11 < So.

Remark 1.4. The uniqueness conclusion (ii) should be understood in
the following sense: If M,, is invariant under (1.1), then ¢ E Cb(EC, Eh)
is determined uniquely. This is not true if we replace the condition
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¢ E Cb(EC, Eh) by 0 E C°(E, Eh) unless AI E, is semisimple and f
has compact support (see Sijbrand [1] and Vanderbauwhede [3] for
more details).

Lemma 1.5. For any integer k > 0, there are constants K > 1, a > 0,
and /3 > 0 such that ka < /3, and

leAt,rrcl <Ke"I`I, t E 18,

leAtirsl <- Ke-Rt, t > 0, (1.5)

leAt7ruI < Kept, t < 0.

Proof. Let

/3 =min{IReAllA E=- E au Uv51} -e,

0<e<a<1

where a and a are sufficiently small. Thus, the existence of K is
obvious by the properties of eAt. 0

Let y satisfy

a<y</3. (1.6)

Define a Banach space by

Cy :_ {x E C°(ll ,QBn) llxll7 := sup e-YItIlx(t)I <
t(=-R

The following lemma gives a different criterion for W`.

Lemma 1.6. Suppose f E Cb.1(Rn) and (1.6) is satisfied. Then
(i)

W` _ (x E Rn 1 1(., x) E CY). (1.7)
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(ii) Consider the integral equation

y(t) = eAt?rcx + f0
r eA(t-T)lTCf(y(T))dT

+ f teA(t-T)Truf(y(T))dT + f t eA(t-T)7r f(y(r))dr. (1.8)
m - o0

We have

W = {y(0) E IIB" I E C,, and satisfies (1.8) forsomex E V8"}.

(1.9)

Proof. By the variation of constants formula, for to, t E R we have

x(t, x) = eA(t-to)x(to,
x) + foeA(t-T)f(x(T, x))dT. (1.10)

Denote by W` the right-hand side of (1.7), and by W` the right-hand

side of (1.9). We will show that W c C W ` c W c c WC.
(a) Suppose x E W c; then by (1.2)

sup e-y't'I'rrhx(t, x)I < supITrhx(t, x)I < oo. (1.11)
t e R teR

Taking to = 0 in (1.10) we obtain

ir,x(t, x) = eAtircx + foteA(t-7)7rcf(x(T, x))dT. (1.12)

Using Lemma 1.5 and (1.6), we have from (1.12) that

I1rTx(t, x)I < Key1tllxl + KII f IIco f tey(t-T)dr
0

whence

s Keyltl(IxI + Ilf llcO I,

y

sup e-y"t1Iirrx(t, x)I < 00. (1.13)
tER

It follows from (1.11) and (1.13) that x E W`, and this implies W` c W c.
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(b) Suppose now x E If/', that is, x) E C,. From (1.10) we have

irux(t, x) = eA(t-to),rrux(to, x) + feA(t-T)Truf(x(T, x))dr. (1.14)

Fixing t E C$ and to >_ max(t, 0), we obtain from (1.5)

IeA(t-to)rrux(to, x)I < KeO(t-to)I x(to, x)I

< KePt-(P x) 117 -* 0 as to - +00,

since x) E C. and y < P. Therefore, taking the limit in (1.14) as
to -* +-, we have

'Jrux(t, x) = f x)) dT. (1.15)

Similarly, we can obtain

7rsx(t, x) = f t eA(t-T)Tr5f(x(r, x))dT. (1.16)

Combining (1.12), (1.15), and (1.16), we see that

x x) E W'. Therefore W` c W'.
(c) Suppose yo E W`, that is, there is a function E CY, which

satisfies (1.8) for some x E fly" and y(O) = yo. Then from (1.8)

y(t) = eAtSTrcx + f o e-A7,r f(y(T))dT + f °e-ATrruf(y(T))dr}

+ f teA(t-T)f(y(T))dT
0

= eAtyo + f teA(t-T)f(y(T))dr.
0

Hence y(t) is the solution of (1.1) with initial value y(0) = y0. Using
(1.5) and (1.8), it follows that

Iirruy(t)I <_ KlIf Ilco f e,(t-T)d-r If Ilc& < 00,
t



8 Center Manifolds

and

K
1ir5Y(t)I - a Ilfiico < 00,

since f E Cb(R'). Hence ITrhy(t)I < oo. Thus yo E W`'. This implies

W`c W`.

Now we consider the integral equation defined by (1.8). Let F:
Ec - Cy be defined by

F(i;)(t) = E Ec, (1.17)

and G: Cy - C., be defined by

G(Y('))(t) = f'eA(r_ 1rcY(T)dT + f leA(`-r)TrUY(T)dT

+ f l eA(t-T)TrSY(T)dT. (1.18)

We denote the previous three integrals by Gc(y( ))(t), and
respectively. We will use these notations repeatedly in this

chapter.
Define J: E, x CY -p Cy by

J(6, y) = F(e) + G(f(y('))) (1.19)

Obviously, if 6 E Ec then y = is a fixed point of J(e, ) if and
only if y*(t) is a solution of (1.8) with x = 6.

Lemma 1.7. There is a number So > 0, which depends only on A, such
that, if Lip(f) < So, then for any f E E, J(e, y), defined by (1.19), has
a unique fixed point y = x * ( , 6).

Proof. Note that

j( YI) -J( ,Y2) = G(.f(Y1('))) - G(f(Y2(')))

= G(f(yi(')) -.f(Y2('))), (1.20)
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and by (1.5) we have

IGG(f(Y1(.)) - f(y2(.)))(t)l

fteA(t-T)Trc(f(Y1(T)) -f(y2(T)))dr

t
<KLip(f)I foealt TIIYl(T) -Y2(T)IdT

<KLip(f)If tealt-TIeYIT1(sup
e-vITIIy1(T) -Y2(T)I)dT

0 TEQ$

erltl
< KLip(f)IIY1 -Y21I,.y-a

Similarly, we have

(1.21)

erltl
IGu(f(y1(.)))(t) - Gu(f(Y2(.)))(t)I <

R
- yK Lip(f )11Y1 - Y211-1,

(1.22)

eyltl

IGS(f(y1(.)))(t) - GS(f(y2(.)))(t)I - R - yK Lip(f)11Y1 - Y2II,..

These estimates give

sup e-"I11IG(f(Y1(.)))(t) - G(f(y2(.)))(t)I
tE=R

< KI 1 +
2

)Lip(f )IIY1 - Y2111--y -a /3-y
We choose

(1.23)

I( llII

1

So K1 a +

y)1-
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If Lip(f) < So then

Ky 1
a

+
a ?

y)Lip(f) < 1 , (1.24)

and

1

IIG(f(Y1(-))) - G(f(y2(.)))Ill s 3IIY1 -Y21I,..

Thus, for any 6 E E,, by (1.20), we have

(1.25)

1

Y1) - J(4, Y2)117 s 31IY1 - Y2IIY1 (1.26)

as long as Lip(f) < So.
By the Uniform Contraction Mapping Theorem, has a unique

fixed point y = x*(t, 6) for each 6 E E,.

Lemma 1.8. If Lip(f) < So, then there exists a unique Lipschitz function
41 E Cb(EC, Eh) such that

W`= {xc+4i(xj I xcEEj.

Proof. By Lemmas 1.7 and 1.6, (1.8) has a unique solution x*(t,
x(t, x*(O, a)), for any E E,. By Lemma 1.6,

W` = {x*(0, 6) I lj E Ej.

Note that

x*(0, 6) = J(6, e))(0) _ 6 + e E Ec,

where

440 = f`e-ATTruf(x*(T, fo
e-aT,r5f(x*(T, 6))dT.

(1.27)

We need to prove the boundedness and Lipschitz continuity of fi.
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From (1.5) it follows that

l'0e-ATVuf(x*(T,6))dTl =I

f E Cb (III"). Similarly,

f° e-AT <00. (1.29)

Hence Vi is bounded.
In (1.22) and (1.23), we take yl(t) = x*(t, ) and y2(t) = x*(t, ),

i E E, and then using the condition (1.24) and letting t = 0, we
obtain

-+G( )I 3 Ilx*(', ) -x*(., )Ily. (1.30)

On the other hand, for , 2 E E,

Ix*(t,) -x*(t,)I

_IJ(,x*(',))(t) -J(,x*(',))(t)I

-I F(6 - )(t)I +I G(f(x*(',e)))(t) - G(f(x*(',)))(t)I

Using (1.5) and (1.25), respectively, we have

11x*(.,) -x*(.,4)I1,

whence,

',) -x*(',)IIY,

IIx*(', ) -x*(., )IIy
2

I
- I (1.31)
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From (1.30) and (1.31) we have finally that

K
I+G() -

2
I -I for 6, 4 E E,. (1.32)

Thus the lemma is proved.

Remark 1.9. By the definition of C.,, we can rewrite (1.31) as

1x*(t, ) -x*(t, )I <

for any y E (a, /3), , E E, and all t E R.

(1.33)

Proof of Theorem 1.1. Since x(t1, i(t2, x)) = z(t1 + t2, x), the set W`
defined by (1.2) is invariant under (1.1). The remaining conclusions in
(i) are proved in Lemma 1.8.

Now we prove the uniqueness of ¢ in (ii). Suppose 0 E Cb(EC, Eh)
and M. defined by (1.4) is invariant under (1.1). Then z(t, xc +
4(xc)) E M. for all t E P and any xc E Ec. By the definition of M., it
follows that

7rhx(t, xc + `V(xc)) = 4('1Tcx(t, xc + `r(xc))).

Since 0 E ME, Eh), the boundedness of 0 implies the bounded-
ness of lrhx(t, xc + cb(xc)), and hence, by the definition (1.2), xc +
O(x,) E W` for any x, E E, In Lemma 1.8 we have proved that such a
0 is unique. Hence 4) = i/i, and M. = W.

1.2 Smoothness of the Global Center Manifolds

We have proved the existence and uniqueness of the global center
manifolds W c under the conditions f E Cb , 1(OB") and Lip(f) is suffi-
ciently small. If, in addition, f E Cb (W') for some k >_ 1, then we will
show that W' is smooth. The main result of this section is the following
theorem.
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Theorem 2.1. Suppose f E Cb (R") for some k >- 1, f (O) = 0 and Df (0)
= 0. Then there is a number Sk > 0 such that if II Df II < Sk, the unique

global center manifold W` is of class Ck, that is, 4 E Cb(EC, Eh), where
a, is given by (1.27) and is related to W` by (1.3). Moreover, Lip(r(i) <
1, qr(0) = 0 and D+/(0) = 0. Furthermore, if x e W` and ic(t)
arrx(t, x), then zc(t) satisfies the following equation

.zc =Axc +7rcf(xc + O(xc)), x, r= Ec. (2.1)

We will prove this theorem by induction on k, and consider first the
case k = 1.

We remark here that if a > 0, then C. c C,y+o and IIxII,+Q < IIxHI,
Hence, there exists a continuous inclusion from C,, into C,,+,. The
choices of spaces (Cfor different 77 in the following discussion are
very important.

To prove .r E C', by (1.27), we need to prove first that x*(t, ) E C'
with respect to E E, Since x*(t, ) is the unique solution of (1.8), we
have

x*(t, 6) = eAt6 + G(f(x fi)))(t), (2.2)

where G is defined in (1.18).

Lemma 2.2. Suppose that f E Cb(18"), II Df II < So. Then there exists a
number o > 0 such that the map from Ec to C,,+o, is
differentiable.

Proof. Let

u(t, , ) = x*(t, ) - x*(t, ), f, E E, (2.3)

and

f*(t, , ) =f(x*(t, )) -f(x*(t, )) -Df(x*(t,
(2.4)
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Define

L(u(., , )) =G(Df(x*(., 0)u(',f,4)), (2.5)

and

N(u(., (2.6)

Then we obtain from (2.2) that

(I (2.7)

where I is the identity operator and F is defined in (1.17). Obviously, F
is a bounded linear operator. If we replace (f(y1) - f(y2)) by
Df(x*(t, ))u(t, 4, 4) and replace Lip(f) by II Df II in (1.21)-(1.24), then
instead of (1.25) we can obtain

3IIu(-,6,4) Ill.

This implies the norm of L, as an operator from C,, to C.Y satisfies

1
IILII <- 3

Hence (I - L)-' exists and is bounded, and (2.7) can be written as

(I - L) -'F( - 4) + (I - (2.9)

We will prove that there exists a o, > 0 such that

r+1 =o(I6-4I) as 6-->4. (2.10)

Hence, by the definition of a derivative, the map 6 H 6): E, -
Cy+o is differentiable.

It is obvious that if o > 0 is sufficiently small, and we replace y by
y + v (in some cases later, we need to replace y by y + kff for some
integer k > 0), then (1.6) and (1.24) still hold. We fix such a number o,.

We will prove that for every small e > 0, there exists a µ > 0 such
that if 16 - 41 < µ, , 4 E E, then

sup e-cv+o>I"II N(u(., , ))(t) <E16-41. (2.11)
ten

From (2.6) and (2.4) we have

NS, (2.12)
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where

N, = ,))(t),

N. =Gulf*( ,))(t), (2.13)

NS = Gs(f*(',))(t).

We will find an estimate only for N, since it is similar for Na and N.
Choose T > 0 so large that

3K2 E
IIDf Ile aT < - (2.14)y-a 6

where the constants a and K are the same as in (1.5).
We consider two cases:
(i)Itl<-T.
Without loss of generality, we assume 0 < t < T. By (2.13), (2.4) and

(1.31), we have

INJ = teA(t-T) 1 c[ f(x*(T, )) -f(x*(T, ))fo
``

-Df(x*(r,))(x*(r,S) -x*(T,S))Jdr

f teA(t-`)Tr,1 f 1[Df(Ax*(T, ) + (1 -
0 0

-Df(x*(T,4))]dA)(x*(T,f) -x*(r, ))dT

3K 2 e«It'I4 - IfItle(y-«)T

2 o

IdA dTx(f'IDf(Ax*(T,6) + (1 - A)x*(z,4))
0

2

< 3K
eyltll - I

foTfo'
(1 - A)x*(T,

-Df(x*(r,2))IdAd-r. (2.15)



16 Center Manifolds

Since f E C'(R) and the last integral is taken over a compact region
[0, TI x [0, 1] c R2, there exists a /.tj > 0 such that if
I4 - 41 < i then

sup e-(Y+o)ItllNl 3 16 - I. (2.16)
ItI-T

(ii) Itl > T.
Without loss of generality, we assume t > T, and let Ne = N(1) + N(2)

where

N(i) = f eA(t-T).c{'*(T,4, )dT, N(2) = fTeA(t-T)Tfcf*(Te )dT.

Similarly to (2.15) and (2.16), there exists a µ2 > 0 such that if (4 -I
< µ2, then

sup e-(Y+O)ItIlN(1)I <

6

I4 - 41.
Itl>T

Using (2.4) and (1.5) we have

IN(2)1= f teA(t-')?rcf*(T, 6, )dr
T

s K f te"(t-7)(21I Df III x* (T, 4) -
T

From (1.33) it follows that

Hence

,4)1)dT.

s 2 eYTI -I
3K

(2.17)

(2.18)

IN(2)I - 3K2IIDf 1114 - I f teate(Y-«)TdT < 3K21IDf1114 - I evt.
T y - a

From the above estimate and condition (2.14) we obtain

3K 2
sup e-(y+Q)ItIIN(2)) < IIDf II e-aTl t -I <

e
I -I. (2.19)

ItI>T y - a 6
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We choose µ, = min(/1, µ2). If 16 - EI < i- then (2.16), (2.17) and
(2.19) give

I - El.

Similarly, we can find µu and µs such that

IINull1+Q <
3

I - 4I when I: - EI < µu,

and

IINSIIy+Q< 31 - I when

Let µ = min(,,, µu, t5). If l - EI < µ and E E, then (2.11)
holds, and hence (2.10) holds. o

The following lemma gives a more general result which will be used
repeatedly in the rest of this section.

Lemma 2.3. Suppose that E is a Euclidean space with norm II ' HE and,
for each y E E, the map y H y) from E to CP for some p E (a,,6)
satisfies
(i) g(t, y) is continuous in (t, y) E Il8 X E;
(ii) Iig(', y)IIP < M for some constant M > 0, where M is independent

of Y.
Then for any E (p,,6) and yo E E, we have

lim 11G(g(', y)) - G(g(', yo)) 11; = 0,
II YoIIE0

where G: CP -> C, is defined in (1.18).

Proof. This lemma can be proved by using the same arguments as in
the proof of Lemma 2.2. For a given small e > 0, we find a T > 0 such
that e/6. Then divide the integrals in G into two parts
G(') and G(2). For the noncompact part I tl >- T, we use condition (ii)
and the continuous inclusion from CP to Q to get y) -
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yo))IIC s E/2; for the compact part I tl < T, we use the uniform
continuity of g(t, y) (condition (i)) to find a µ > 0 such that if
ly - yol < µ then IIG(2)(g(., y) - yo))II s E/2. o

We have proved that under the hypothesis of Lemma 2.2, x*(-, 6), as
a mapping from E, to C'Y+Q, is differentiable.

It is known that

)
DEx*(t,)rl = lim

x*(r, 6 + Arl) - x* (t,
A->o A

(2.20)

Note that for each E E, 4) is a linear mapping from TAE, =
E, to TX*(.,C)C7± = CY+Q, where TAE, and TX*(. )CY+0. are the tangent
spaces of E, and CY+Q at 6 and 6), respectively. For all E E,
we consider 6) as a mapping from E, to .°(E,, CY+o). We will
show in the next two lemmas that as a mapping from E, to
Y (E,, Cy+3Q), is continuous in 6 E E,

Lemma 2.4. Suppose that f 'E=- C'(l ) and II Df II < So. Then the map
ti E, -+2'(E,, CY+2Q) satisfies the following integral equa-

tion

c(t)rl = eA`rl + Vi EEC, t E ft,

(2.21)

where G: CY+o - CY+2o is defined in (1.18).

Proof. Let 6, rl E E, be fixed, A # 0, and

g(r A) =
x*(t,6+Arl)

(2.22)
A

Since limx.o(g(t, A)),+P = Dex*(t, 6)77 exists (Lemma 2.2) and
6) is Lipschitz continuous in l: in Cy norm (see (1.31)), g(t, A) is

continuous in (t, A) E R X R. From (2.2) we have for A # 0,

g(t, A) = eA`rl + A))(t), (2.23)
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where

h(t, A)
f(x*(t,6+Ai7)) -f(x

_ (f1Df(ox*(t, 6 + A77) + (1 - 9)x*(t, f))dO)g(t, A).
0

To prove Lemma 2.4, we need to take limits on both sides of (2.23) in
Cy+o, and show that as A -> 0,

G(h(-, 0)) in C,+2.,'

In fact, the continuity of h(t, A) comes from the continuity of g(t, A)
and f E Cb(R"). By (2.22) and (1.31), we have

3K
A)Ily+v <- A) 11, <- 50 2 1771.

Thus the hypotheses of Lemma 2.3 are satisfied.

Lemma 2.5. Suppose f E C'(IP"). Then there exists a number S1 < S0
such that if II Df II < 81, then the map H 6) from Ec to
2'(E, Cy+3Q) is continuous in E Ec.

Proof. We consider as a solution of (2.21), and G as a
mapping from Cy+2o to CY+3v. Then for any q G Ec we have

(Dfx*(.'6) -DDx*(."))7711,+3,,,

I G[(Df(x*(-,s)) - Df(x*(., )))D x*(' )" Iy+3Q

(2.24)

Similarly to obtaining the estimate (1.25) (it comes from (1.21), (1.22),
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and (1.23)), we can find 31 > 0, 31 < 8°, such that if II Df II < 51, then

11
G[Df(x*( 6))(Dx*(., ) - DDx*(.,

jjy+3o

3 II
(Dgx*(', 6) - DIx*(', ))'1, Iy+3,' (2.25)

Noting Df(x*(t, 6)) is continuous in (t, 6) E R X E., and

IIDf11 <31, Dgx*(', )nI
3K

y+2v < 2 I ?1I.

we can use the same argument as in Lemmas 2.2 and 2.3 to find µ > 0
such that if 16 - I < µ then

-Df(x*(',2))D6x*(',s)'nh y+3o<e1711. (2.26)

From (2.24), (2.25), and (2.26) we obtain finally

i (D,x*(., ) - D x*(', 0)"711 y+3Q 2 E1i11,

which implies

2
3

-D,x*( ,2)IY(Ec,cy+3o)<
e

if l -I < µ.

Lemma 2.6. Suppose f E Cb(II8"), f(0) = 0, and Df(0) = 0. Suppose
II Df I I < 31, where 51 is given by Lemma 2.4. Then 4 E Cb (Ec, Eh),
I0) = 0, D4i(0) = 0, Lip(4i) < 1, where 0 is given by (1.27). Further-
more, if 2 E W` and zc(t) rrcz(t, x), then zc(t) satisfies equation
(2.1).

Proof From Lemma 2.5 we have E C°(Ec, 5f(Ec, Cy+3u)),
and from (1.33) we have

K
I DDx*(T, S )771 < 2 eylTll.nl < 32 e(y+3Q)171I

nI, d , 'q E Ec, T E R.
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This inequality and (1.5) imply that for each r] E E, and all E E,

f°e-Ar7r.D f(x* (T, f)) Dfx* (T, f) ldT

3K23

1 I"]I ° e[P-(y+3-)]Tdr
2 -

3K2S11'iI

2(13 - (y + 3o,))

Similarly, for each 77 E E, and all f E E, we have

f° e-AT,r5Df(x*(T,6))Dfx*(T,6)?7dT

(2.27)

3K2511771

2(a-(y+3a))
(2.28)

Hence, we can take the derivative under the integral sign with respect
to 6 E E, on the right-hand side of (1.27). This gives for each 77 E E,

D*(f)rl = f

f° e-ArTSDf(x*(T, (2.29)

Moreover, the uniform convergence of the above integrals with respect
to E E, (see (2.27) and (2.28)), and the continuity of Df, x*(-, ), and

imply the continuity of D4i(e). From equations (2.27) and
(2.28), we obtain the boundedness of D+/. Therefore, 4 E Cb(E,, Eh).

Since f (O) = 0, Df (0) = 0, by using the uniqueness of solutions of
(1.1) with initial conditions, we have

x*(t,0) =i(t,x*(0,0)) =z(t,0) = 0,

and by (1.27) and (2.29)

4,(0) = 0 and D4i(0) = 0.
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It is obvious from (2.27) and (2.28) that if we choose S1 small enough,
then

Lip(tfi) < 1.

Finally for x E W`, if we take i(t, x) = e(t) + p(i(t)), where
6(t) E E, then

(I + Dql) =Ae +A+/i(6) + f(e +

Projecting both sides of the above equality onto E, and noting that 41:
E, - Eh, Drs: TE, = E, -p TEh = Eh, we have

e E E,,

and this is equation (2.1).

Proof of Theorem 2.1. The conclusions for the case k = 1 have been
proved in Lemma 2.6. The case k >- 2 is slightly different from the case
k = 1, although the basic arguments are eventually the same. We will
prove the case k = 2; the general case can be obtained by an induction
on k. In the following we assume a < y < ky < 0 and o, > 0 is
sufficiently small.

Suppose that f e Cb(D'). Then by Lemma 2.5, Dex*(t, ) E
C°(E,,.(E,, Cy+3o)). We prove first that H as a map-
ping from E, to 2°(E,, Cuy+3a>+,-), is differentiable. We will use the
same idea as in the proof of Lemma 2.2 and consider equation (2.21)
instead of (2.2). Let

v = v(t, , 2, n) = Dx*(t, 6)71 - Dx*(t,

e, , 71 E EC, t E R,

and

L(v) = 2 , , q ) ) .

Then from (2.21) we obtain

(I - L)v = ,i)), (2.30)
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where

S(t, 71)

=Df(x*(t,6))D

Df(x*(t, ))Dx*(t, ),1 - Df(x*(t, )) v

_ (Df(x*(t, 6)) - Df(x*(t, 4)))Dx*(t, 6) 71

= [f'D2f(ox*(t,) + (1 - 0)x*(t, ))dOI

X ((x* (t, ) - x*(t, )), Dex*(t, )r7)

= [f'D2f(ox*(t,) + (1 -
0

X Dx*(t, (1 - 0)4)d01( - ))
0

and ( , ) denotes the action of the bilinear map D 2f. We define the
following bilinear form:

[j1D2f(oX*(t , 6) + (1 - 0)x*(t, 4))d01

X (D x*(t, a, f 1D6x*(t, 0 + (1 - b ).
o /

Thus, (2.30) becomes

(I - L)(v) =

Hence, in order to prove the differentiability of 6) (as a
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mapping from E, to '(E,, C2(y+3(,)+a)), we only need to verify the
following two facts:
(i) 4)( , )) is a bounded bilinear operator from E, to

2C2(y+3a)+a, Where E, = E, x E,;
(ii) 6, j) - j,))( 0 as 16 -I -

0.

Note that

B(t, S, 4)i17l2 = D2f (x*(t, S ))DDx*(t, S )771 - DDx*(t, )j2

For any 7711 712 E E,

11 4)1712) 02(y+3a)+a

< sup e-(2(y+3a)+a)ltlIl f IIc2
1 + 1

t(=R 2(y + 3v) - a 6 - (2y + 6o,

(3K)2-e I'0I7721
2

< M17711117211 for some M> 0.

Thus, (i) holds. On the other hand, for any '171,772 E E, we consider
4) - 4, 4N02) as a mapping from C2(-,+3,) to

C,,+3,)+,, and can prove that

11G(h(-, as16-4I -+0

by completely the same way as in the proof of Lemma 2.3. Hence (ii)
holds.

Similarly to Lemma 2.4, we can obtain an equation satisfied by
E, -Y(Ec,C2(y+3a)+2a)

In fact, if we let

8(t, A)
Dcx*(t, + Ag12)7)1 - DDx*(t, )711

A
fl1'?12EEc,
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limg(t,A) =D£x*(t, )771712,
A-0

9(t, A) = (2.32)

1

h(t, A) = A [Df(x*(t, + A772))D x*(t, + AT12)r11

-Df(x*(t, f))Dx*(t, )'n1]

1

A
[Df(x*(t, 6 + A712))

x (DDx*(t, + A'y72)771 - Dx*(t, 6) 711)

+(Df(x*(t
6 + A712)) - Df(x*(t, )))Dx*(t, 0711]

= Df(x*(t, + A712))g(t, A)

+ I f 1D2f(Ox*(t, + A772) + (1 - 9)x*(t, ))de)
0 /

.D,x*(t, 0 e( + A712) + (1 - 0)6)do '172-
0

Using Lemma 2.3 and taking limits on both sides of (2.32), we obtain

D2
x*(t, )(711712) = G(Df(x*(., ))D2x*(., )711712

+D2f(x*(., ))DDx*(., )711D6x*(., 0712)

G(Df(x*(., ))D2x*(.,S)711712 +H1(', )).

(2.33)

As in the proof of Lemma 2.5, we obtain that there exists a number
322< S1 such that if IIDf II < S2, then e) as a mapping from E,
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to .(Ec,C2(y+3o)+30) is continuous in E E. In fact, the term
in (2.21) has no influence in the proof. The only difference is the
existence of the additional term H1(t, t; ) in (2.33). But H1(t, ) is
continuous in (t, ) E 118 X E, Hence, by Lemma 2.3,

IIG(H1(', ) - H1(', ))II C2(Y+3o)+30
- 0 as 16 - el - 0.

Here we consider G as a mapping from C2(y+3o)+2o to C2(y+3o)+30
Finally, by the same reasoning as in Lemma 2.6, we can take the

derivative under the integral sign with respect to i; in (2.29), and obtain

D2+f( 0771772

f 0 e-Armu(Df(x*(T,
))D2x*(T, 6) 771772 + H1(T, 6))dT.\ l

0+ f e
0711712 + H1(T, ))dr,

(2.34)

where H1(T, ) is defined in (2.33). Besides, the continuity and bound-
edness of D2f, D x*(t, ), and H1(t, 6) implaV E Cb(EC, Eh).

We have just proved Theorem 2.1 for k = 2. Suppose now the
conclusions are true for k = j > 2, that is:
(1) 6) exists as a mapping from Ec to

Cj(y+3o)+(j-2)3a+o), where Eci = Ec X E, X X E, (j times),
and satisfies the equation (as a mapping from Ec to
9'(E,, Ci(Y+3o)+(j-2)3o+20))

Djx*(t, 6) (771 ... 77i)

= G(Df(x*(', ))Dix*(', 6)(711 ...77i) + Hj-1(', ))(t),

77i E Ec, (2.35)

where Hj_1(t, ) is a finite sum of terms involving
Df(x*(t, i)), ... , Dif(x*(t, i)); Dex*(t, (i = 1, ... , j -
1), ..., Dt-1x*(t, 4x711 ... 77j-1).
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(2) There exists a number Sj < Sj_ 1 such that if II Df II < Sj, then
as a mapping from E, to .(Ej,Cj(,y+3o)+(j-1)3o) is

continuous in E E, and hence
(3) 4 E Cb(EC, Eh).

If f E Cb+1(l"), we need to prove the above conclusions are true for
k = j + 1.

Butt

the procedure is completely the same as that done for
k = 2. Therefore, Theorem 2.1 is proved. 0

1.3 Local Center Manifolds

In the previous two sections we established the existence, uniqueness,
and smoothness of the global center manifolds for equation (1.1). The
condition f E Cb (W?) is natural. But the hypothesis Lip(f) < So (or
II Df II < So) for a small So > 0 is quite strong. If we consider a bifurca-
tion problem only near an equilibrium point of (1.1), then we need a
local center manifold. This can be obtained from the global center
manifold of a modified equation by using the cut-off technique, and the
hypothesis II Df II < So will be satisfied automatically since f(0) = 0 and
Df (0) = 0. Let us discuss this in detail.

We consider a cut-off function x: W' - R with the following proper-
ties:
(i) X(x) E C";
(ii) 0<X(x)<1,VxEl8";
(iii) X(x) = 1 if IxI < l and X(x) = 0 if IxI >_ 2.

Related to f(x) in (1.1) and for a given p > 0, we define

.fP(x) =f(x)X(p l ,
Vx E l ". (3.1)

Thus, as a modification of equation (1.1), we consider

.z=Ax+ff(x). (3.2)

Obviously, if we restrict x to the domain IxI < p, then equations (1.1)
and (3.2) are the same. The following lemma shows that if we choose p
sufficiently small, then II DfP II can be very small. Hence we can apply the
global center manifold theory to (3.2), and get some local results
for (1.1).
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Lemma 3.1. If f E Ck(') for some k >_ 1, and f(0) = 0 and Df(0) = 0,
then fp(x) E Cb(l") for a given p > 0, and

limIlDfp11=0.
P-0

Proof. Since f E Ck and X E C°°, fp E Ck. For a given p > 0, fp(x) = 0
if I xl >_ 2p, whence fp c- Cb (l "). From (3.1) we have that

Hence,

1

IIDfpll s sup IDf(x)I + - IIDxII sup If(x)I. (3.4)
IxI52p P IxI52p

The condition f(0) = 0 implies f(x) = foDf((1 - A)x)xdA. This gives

sup l f(x)I < sup IxI( sup IDf(x)l) < 2p sup lDf(x)l.
IxI52p IxI52p IxI52p IxI52p

Substituting the above inequality into (3.4), we obtain that

IlDfpll <- (1 + 2IIDxII) sup I Df(x)l.
IxI52p

The desired result (3.3) follows from the above estimate and the
condition Df (0) = 0.

Theorem 3.2. Suppose that f E Ck(I!") for some k >_ 1, and f(0) = 0,
Df(0) = 0. Then there exists Vi E Cb(EC, Eh) and an open neighborhood
fl of x = 0 in F" such that
(i) the manifold

My {xC + 4r(x,) I xc E Ej (3.5)

is locally invariant under (1.1). More precisely,

X(t,x) EMO, VxEM.nff, VtEJn(x),
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where At, x) is the flow of (1.1) with x(0, x) = x, and JJ(x) is the
maximal interval of existence of the solution x) with respect to fl;
(ii) 0(0) = 0 and Da/r(0) = 0;
(iii) if x E fl and J0(x) = R, then x E Mk.

Proof. Let Sk be given as in Theorem 2.1. By Lemma 3.1, we can find a
p > 0 such that fp E Cb (I!") and II Df f ll < Sk, where f,, is defined in
(3.1). By Theorem 1.1 and Theorem 2.1, we can obtain the global center
manifold M,4 of equation (3.2), M. is defined by (3.5), 41 E Cb (R" and
p(0) = 0, Dii(0) = 0.

On the other hand, from the properties of the cut-off function X,
we know that the equations (3.2) and (1.1) are the same if x E fl
(x E E" I I I x II < p). Thus, the conclusions (i) and (ii) are proved.

We suppose now that x E fl and J0(x) = R. Then x(t, x)
1p(t, x) c fl, V t E R, whence sup1 ERlTrhx(t, x)l < -. By (1.2), x E My,
and conclusion (iii) follows.

Definition 3.3. If 4) E Ck(E,, Eh), k >_ 1, 4)(0) = 0, D¢(0) = 0, and
MM (x, + ¢(x,) I x, E E,) is locally invariant for the flow of (1.1),
then M,, is called a Ck local center manifold of (1.1).

Lemma 3.4. Suppose that f E C 1(W"), f (O) = 0, and Df (0) = 0; and
-0 E C1(E,, Eh), 0(0) = 0, and D4)(0) = 0. Then M. {x, +
¢(x,) I x, E E,} is a local center manifold of (1.1) if and only if there is a
neighborhood ftc of the origin in Ec such that for all xc E ft,

Do(xc)7rw(Ax, +f(xc + 4)(xc))) = 7rh(A4)(xC) +f(xc + O(xc)))

(3.6)

Proof. Suppose that such an f2c exists and (3.6) holds. For each
xc (=- flc, let zi(t) be the solution of the following initial value problem

zC _ -rrc(Aic + f(-'c + 4)(xc))), 1 JO) = x,

and let z(t) = xc(t) + 4)(zJt)). It is obvious that x,(t) E f.l, if Iti is
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sufficiently small. Then by (3.6) we have

z(t) = (I + D4(i,(t)))7rr(Ai,(t) + f(f (t) + 4(i,(t))))

= Or, + -rrh)(Ai(t) + f(i(t))), Itl is sufficiently small.

This means i(t) = i,(t) + 4(i,(t)) is a solution of (1.1) if Iti is suffi-
ciently small. Hence, M. is locally invariant under (1.1), and, by
Definition 3.3, it is a local center manifold of (1.1).

Suppose that M. is locally invariant under (1.1) in a neighborhood fl
of the origin in R". Let fl, be an open neighborhood of the origin in E,
such that x, + 4(x,) E fl if x, E Sty. For any x, e ( let i(t) =
i(t, x, + 4(x,)), which is the solution of (1.1) with the initial condition
i(0) = x, + 4(x,). Then the local invariance of M. under (1.1) implies
that for t sufficiently small we have

Trhx(t) = 4 rcx(t)).

Differentiating the above equality with respect to t, and using (1.1), we
obtain

7rh(`4-'(t) +f(x(t))) = Dcb(ircx(t)) rr(Ai(t) +f(i(t))).

Taking t = 0 and noting 0: E, -+ Eh, we get (3.6).

Theorem 3.2 gives the existence of a local center manifold. But, in
general, it is not unique.

Example 3.5. Consider the planar system

x = x2, Y = -y.

It is easy to see that E, = {(x, 0) I x E R) and Eh = ((0, y) I Y E RI.
Suppose 0 E C'(E, Eh) gives the local center manifold M. = (x +
4(x) I x E R). Then by Lemma 3.4, we have

0,(x)x2
= -4(x), 0(0) = 0'(0) = 0.
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Hence

O(X) __ ae','X for x < 0;
0 for x >_ 0,

where a E O is a constant. Each different a gives a different M.. This
means that local center manifolds are not unique, even in a sufficiently
small neighborhood of the origin.

Fortunately, the nonuniqueness of local center manifolds is not a
serious problem when we consider bifurcation phenomena of vector
fields. In fact, every local center manifold of (1.1) contains all bounded
solutions of (1.1), for example, equilibrium points, periodic orbits, or
homoclinic or heteroclinic orbits, provided they stay in a sufficiently
small neighborhood of the origin. To show this, we need the following
result which says that each local center manifold of (1.1) can be
obtained from the global center manifold of a related vector field.

Theorem 3.6. Suppose f r C"(R") for some k >_ 1, f(0) = 0 and
Df(0) = 0, and 0 E Ck+'(E,, Eh) defines a local center manifold MO of
(1.1). Let S E (0, So], where So is defined in Theorem 1.1. Then there
exists a neighborhood fl of the origin in Fl" and mappings f E Cb (I8")
and 4 E Cb "(Ec, Eh) such that
(i) f(x)=f(x),VxEE fZ;
(ii) II Df II < S;
(iii) M4, n SZ = M. n fl,
where M. is the unique global center manifold of the following equation

x =Ax +AX). (3.7)

Proof. Part (I): a special case. We suppose that M,, = Ec is a local
center manifold of (1.1), that is, there exists some neighborhood fl, of
the origin in Fl", such that

¢(xc) = 0, Vxc E=- Ec n fft.

By Lemma 3.4, there exists a d > 0 such that

Trh f (xc) = 0, V xc E Ec and IIxcII < d. (3.8)
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Let 0 < p < d/2, and X E C(P", fl) be a cut-off function. We define

f(x) =f(x)X(p)' Vx E R";

then

T1hf(xC) = (Trhf(xc))X(p) =
0, Vx, E E, (3.9)

In fact, if Ixj < 2p < d, then 71h f(X,) = 0 by (3.8); if I xj > 2p, then
X(x,/p) = 0. Lemma 3.4 and (3.9) give the invariance of E, under
(3.7). By Lemma 3.1, we can choose p so small that I I Df I I < S. On the
other hand, since f E=- C6 (R") and II Df II < S < So, it follows from
Theorem 1.1 that (3.7) has a unique global center manifold Mo. Hence,
M o = E, We define r/i(x,) ° 0 and fl R ' Hence,
41 E Cb +1(E,, Eh) and the conclusions (i)-(iii) are satisfied.

Part (II): the general case. Let .0 E Ck+'(E,, Eh), and M. is a local
center manifold of (1.1). By Lemma 3.4, we can find some do > 0 such
that (3.6) holds for I x,I < do and x, E E, Let d E (0, do) and define

E CGk+ l(Ec Eh) by

gf(xc) = -O(xc)X(d V xc E Ec. (3.10)

We make a transformation

y = x - +Ii('r x) P(x), V x E R". (3.11)

Then it is easy to verify that
(a) ''P(M,,) = Ec;
(b) 41-1(y) = y + i(7rcy), V y E U8".
Under the transformation (3.11), (1.1) becomes

y =Ay +g(y), (3.12)

where

g(y) =A./i('rrcy) +f(y + -A(7rcy))

- D4(7rcy)7rc(Ay +f(y + 41 (7rcy))). (3.13)
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Since E, is a local center manifold of (3.12) (see the property (a)), the
results in Part (I) imply that there exist some g E Cb (P.') and some
neighborhood fl of the origin in V1" such that

g(Y) = g(y), V Y E fl, (3.14)

and E, is the unique global center manifold of the equation

y =Ay +g(y). (3.15)

Furthermore, IIDgII can be smaller than any given positive number. Now
if we take the inverse transformation x = 'I'1(y) = y + a f (7r y ), (3.15)
becomes an equation of the form (3.7), where

f(x) =Dfi(7rx)A7rx -A4i(irx) +g(x - 4r(7rx))

+ Dr/i(-rrx)-rrrg(x - +/(-rrx)). (3.16)

Since g E Cb (R"), / E Cb + 1(E,, Eh), and 4 has bounded support, we
have f E Cb(W'). We claim that if we take Cl = and let Cl be
sufficiently small, then the conclusions (i)-(iii) are satisfied.

In fact, `d x E Cl = 'I-1(SZ), y = x - /r(7r,x) E (I, and hence (3.14)
holds. Noting 41, DIIi: E, - Eh, and substituting (3.13) into (3.16), we
obtain f(x) = f(x) for x E Cl.

Next, by using the following equalities

4r(7r,x) = (f'D((1 - 0)7rx)dB)(-7r,x),

Ox - 41(7rx)) = (f1Dg((1 - 0)(x -',(Trx)))d6)O/(Tr'x) - x),

we can obtain from (3.16) that

II Df II < (2IAI117r11)IIDiiII + (1 + IIir IIIIDiPII)211Dg11.

By (3.10) and Lemma 3.1, I I DIr I I - 0 as d - 0. Hence we can choose d
so small that (2IAIIkr II)IIDrII < 8/2. Fix such a d > 0; then 41 and g
are well defined. By Part (I), we can choose Cl properly such that
(1 + 5/2. Thus, we have IIDf II < 5.
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Finally, from (3.10) it is obvious that ¢(x,) = ir(x,) if IxJ 5 d. Let SZ
be sufficiently small so that I wry x 15 d if x E fl. Hence, M. n SZ =
M4, n fl. Since E, is the unique global center manifold of (3.15) and
T-'(E,) = Md,, M. is invariant under (3.7). But II Df II < S 5 So, so by
Theorem 1.1, M1, is the unique global center manifold of (3.7).

Theorem 3.7. Under the assumptions of Theorem 3.6, there exists a
bounded neighborhood fZ of the origin in uR" such that if x e ft and
J0(x) = 1k, then x E M1,. (For the definition of Ju(x), see Theorem 3.2).

Proof. We use Theorem 3.6 with S = So, and assume that f found by
Theorem 3.6 is bounded (otherwise, just shrink it to a bounded one).
Suppose that x e H and Jn(x) = fk, which means Z(t, x) E fZ for all
t E 1k, where i(t, x) is the solution of (1.1) with 1(0, x) = x. By the
conclusion (i) of Theorem 3.6, X(t, x) is a solution of (3.7), and it is
globally bounded. By the conclusion (ii), we can use Theorem 1.1, and
hence x E M,,. By the conclusion (iii), x e Mo.

Remark 3.8. Theorem 3.7 says that if M. is a Ck (k >_ 1) local center
manifold of (1.1), then it must contain all small bounded solutions of
(1.1). In particular, M. must contain all sufficiently small equilibria,
periodic orbits, and homoclinic and heteroclinic orbits.

Theorem 3.9. Suppose that f E Ck(1") for some k >_ 1, f(0) = 0 and
Df(0) = 0, and M., and Mo2 are two Ck+1 local center manifolds of
(1.1). Then we have

D'41(0) = D'42(0), 1 5 j 5 k. (3.17)

Proof. We use Theorem 3.6 for 01 and c62 with S = Sk 5 So, where So
and Sk are defined in Theorems 1.1 and 2.1, respectively, and they
depend only on A E £9(OR",1k") in (1.1). Then there exist corresponding
t., f, E Cb(OR"), and i/r, E Cbk+'(Ec, Eh) satisfying the conclusions
(i)-(iii) for i = 1 and 2, respectively. Let ft = H1 n 512; then we have
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the following conclusions:
(a) f(x) = f1(x) = f2(x) for x E fl;
(b) IIDf,II<5=Sk<S.for i=1,2;
(c) MM.nfl=M,, nf1fori=1,2,
where M,,,, is the unique global center manifold of the equation

z=Ax+f;(x).

From (1.27) and the proof of Theorem 2.1 we know that D'ii1(0)
(1 < j < k) is completely determined by A and f(x) for x in a
sufficiently small neighborhood of the origin. Hence, by (a) and (b),
Di4i1(0) = DNi2(0), 1 < j < k, and then by (c), D'¢1(0) = D42(0), 1 <
j<k.

Remark 3.10. The conclusions in Theorem 3.7 and Theorem 3.9 give
partial uniqueness of local center manifolds. At the end of the next
section we will introduce a new result by Burchard, Deng, and Lu [1]
which says that the flows on any two Ck+1 local center manifolds of
(1.1) are locally Ck conjugate. Hence, we can choose any local center
manifold to study the bifurcation phenomena.

1.4 Asymptotic Behavior and Invariant Foliations

In this section we will generalize the results on global center manifolds
in Sections 1.1-1.2 to the cases of global center-stable and center-
unstable manifolds. Then we will discuss asymptotic behavior of solu-
tions outside these invariant manifolds. This is related to foliations of
OB". We will go back to the local situation by using the cut-off technique,
as in Section 1.3, and study stability properties of local center mani-
folds.

Denote

7TC" = 7Tc + 7r", Tres = 7T, + 7T5,

E,"=E,®E", E,,.=E,®E5.

We now introduce the center-unstable manifold for which the proof of
results is completely similar to that in Sections 1.1 and 1.2. Suppose
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that the positive numbers a, /3 are determined in Lemma 1.5, and
a<y</3.

Theorem 4.1. (i) There is a positive number S,u such that if f E Cb' 1(Rn)
and Lip(f) < Scu, then the set

W'u = l(x E ll" I suplirsx(t,x) I <00}
t50 /

_ {xEWIsup e7tIi(t,x)I <oo} (4.1)
ts0

is invariant under (1.1), and is a Lipschitz submanifold of Di", that is,
there exists a unique Lipschitz function 41 E Cb(ECu, Es) such that

W`u = {xCu + i/i(xcu) I xCu E Ec"}. (4.2)

(ii) If ¢ E Cb(Ecu, Es) and the manifold

MO {xCu + la(xcu) I xcu E Ecu} (4.3)

is invariant under (1.1), then M. = W CU, ¢ = 41.

We say that W`" is the unique global center-unstable manifold of
(1.1). Using the same approach of Section 1.2, for any k >_ 1, we have
the following:

Theorem 4.2. Suppose f E Cb (l r) for some k >_ 1. Then there is a
number S' > 0 such that when II Df II < S u, the conclusion of Theorem
4.1 holds with t/t E Cb(Ecu, E).

We next consider the existence of global invariant foliations. For
y E R, a Banach space is defined by

Cy = Z C C°(l ,R") I IIzIIy = sup eytIz(t)I <
tE=R+

We fix y such that a < y < k y < /3, where k is the positive integer in
Theorem 4.2. Suppose that x(t,1), i(t, x) are the two solutions of (1.1)
satisfying the initial conditions 1(0,1) =.i and 1(0, x) = x, x, x E n".
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We define the set

M,(x) = {x E Rn I z(t) =.z(t, z) - z(t, x) E CY }. (4.4)

We call M,(x) the stable leaf of x E R".

Theorem 4.3. Suppose f E C°' 1(Rn) and Lip(f) < S, Then there exists
a uniformly continuous mapping J,: l X E, - Ec" such that for each
x E C$" the following conclusions hold:
(i) M,(x) = (x, + J,(x, x) I xs E Es) is a Lipschitz manifold;
(ii) Ms(x) has a unique intersection point with W`";
(iii) there is a stable foliation of l":

R " = U M,(x). (4.5)
xeW"'

(iv) The foliation is invariant under (1.1), that is,

MS(i(t, X)) = X(t, MM(x)), `d t > 0, `d x E R'.

The proof of Theorem 4.3 needs several lemmas.

Lemma 4.4. Suppose f E Cb.1(Rn), Lip(f) < 8c", and z(t) E C,. For
x E R", x) + z is a solution of (1.1) if and only if there exists some
xs E Es such that

z(t) = eA`x, + fo`e'`-T)7rf(T; x, z(T))dT

+ f teA(t-T)1rcuf( r; x, z(T))dr,

where!: F X Ii" X V8" - R" is defined by

f(t; x, z(t)) = f(z(t, x) + z(t)) - f(z(t, x)). (4.7)

Proof. If x) + z is a solution of (1.1), then z satisfies the equation

i=Az+f(t;x,z). (4.8)
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The variation of constants formula gives

z(t) = eA(t-to)z(t(,) + foeA(t-T)f(T; x, z(T))dT. (4.9)

Taking to = 0 in (4.9) and applying irs, we have

Tr,z(t) = eA,7rz(0) + fOteA(t-T)Trsf(T; x, z(T))dT. (4.10)

Since z(t) E Cy we obtain limto_. eA(t-to)7rruz(to) = 0. Writing x, =
7r,z(0) and applying Trcu in (4.9), and then combining it with (4.10), we
obtain (4.6).

Conversely, we suppose (4.6) holds. Noting

f(t; x, z(t)) + f(i(t, x)) = f(z(t, x) + z(t)), (4.11)

we then have

X(t,x) + z(t) =eAt(x+z(0)) + fo +z(T))dT.

This means that i(t, x) + z(t) is a solution of (1.1).

Lemma 4.5. Under the conditions of Lemma 4.4, for each (x, x) E
R n X E, there exists a unique solution z = z*(x, x) E C,y of (4.6)
which is uniformly continuous in (x, x) E 6W' X E, such that

M,(x) = {x + z*(x, x,)(0) I X, E ES}. (4.12)

Proof. Let J+: R n x E, x CY -> CY be defined by

J+ (x, x z(-))(t) = e "x, + foteA(t-T)Tr,f(T; x, z(T))dT

I A(t -T)+ f e Trcu f (T; x, z(T))dT. (4.13)



Asymptotic Behavior and Invariant Foliations 39

By using a similar estimate as in the proof of Lemma 1.7, for each
z1, z2 E C,, we have

IIJ+(x, xs, zl(')) - J+(x,
xs, Z2( .))11'/

( 1 2 )
K + Lip(f )Ilzl - z211yy-a a - y

Hence, there is a S,u > 0 such that if Lip(f) < S,n, then

1

IIJ+(x, xs, zl(')) - J+(x' X,1 Z2('))11 < 3 IIZ1 - z211Y .

Therefore, it follows from the Uniform Contraction Mapping Theorem
that for each (x, x) E l x Es, J+(x, x,
z = z*(x, E C, , which is the unique solution of (4.6). Since for
fixed x, J+(x, , ) is Lipschitz in xs and z*(x, xs) is Lipschitz in
x,. By Lemma 4.4, x(t, x) + z*(x, x,X t) is a solution of (1.1). Hence
there exists a x E 6Rn such that

.f (t, z) = 2(t, x) + z*(x, x,)(t),

where x = x + z*(x, x) (0). We obtain (4.12) from (4.4).
It remains to show the continuity of z*(x, x) in (x, x) E DRn X E.

We note that CJ, Q c Cy and II z I I Y <- I I z II y +, for a > 0, hence there is
a continuous inclusion from CY+o into CY . If o > 0 is sufficiently
small, then we can apply the Contraction Mapping Theorem to J+:
In X E, X Cyo - CY+o to obtain the fixed point z = z,*(x, x) E
C,y+o c CY for given (x, x) E In X E. By uniqueness, we have
Zo(x, x) = z*(x, x),V x E W', x, E ES.

Now we consider J+ as a mapping from Rn X E, X C,y+v to CY . We
will prove that for any given e > 0, there exists a µ > 0, such that if
x, x E W', x, X, E E, and Ix - X I + Ix, - X, I < µ, then

AJ+t= IIJ+(x, x5, z*(x, xs)( )) - J+(x' xs,
z*(x, xs)(' ))11Y < E.

(4.14)

Note that zJ+= Il z*(x, x,X ) - z*(X, XS)( )IIY . This implies that the
map (x, x,) - z*(x, x,) from Rn X E, to Cy is uniformly continu-
ous.
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From (4.13) we have

IJ+(x, xs, Z*(x, xs)(t)) - J+(x, xs, Z*(x, xs)(t))I

< I eAt s(xs - xs)I + IG(g( , x, xs, x xs))(t)I, (4.15)

where

G(g( x xs, x, zs))(t) f0 teA(t-T)7r g(T> x, x, x, zs)dT

+fteA(t-T)7Tcug(T,
x, xs, x, xs)d r,

00

and

g(T, x, xs, x, xs) .- f(T, x, Z*(x, xs)(T )) - f(T, x, Z*(x, xs)(T))

=f(x(T,x) +Z*(x,xs)(T)) -f(x(T,x))

-f(x(T, x) + Z*(x, xs)(T)) +f(x(T, x))

By using (1.5) and the definition of CY , we obtain from (4.15) that

OJ+< sup e-(O-r>tlx, - zsI + x, xs, x, i,))II y
t-o

< Ix, - xsl + IIG(g( , x, xs, x, xs))IIy . (4.16)

We can use the same technique as in Lemma 2.3 to prove that
IIG(g(, x, xs, 2E/3 provided 1(x, xs) - (x, xs)1 < A. In
fact, since

Ig(T, x, xs, x, xs)I < Lip(f)(Iz*(x, xs)(T)I + I z*(x, xs)(T)I),

and z* E Cy+o, we can find T > 0 such that the integral over the
noncompact part (t > T) is smaller than e/3. Then, using the uniform
continuity of g in the compact part, we can find µ > 0 (µ < E/3) such
that if Ix - xl + Ixs - xsl < µ, then the integral over the compact part
(0 < t 5 T) is smaller than E/3. Therefore, (4.14) follows from (4.16).

11
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Lemma 4.6. Assume the conditions of Theorem 4.1 are satisfied. Then
for each x E R" there exists a unique point z E W`" such that

w- fl Ms(x) = {z}.

Proof. From (4.1) and (4.4) we see that x E W`" fl MS(x) if and only if

sup ey`Ii(t, x)1 < and sup e'tji(t, z) - x(t, x)I < oo.
tsO tz°

Denote

w(t x) _,
x(t, x), t 0,

xcu(t> x)> t<0
,

where xc"(t, x) satisfies the equation

x =ATrc"x +Trcuf(x),

with x,"(0, x) = x.
Suppose x e W`" n M5(x). Let z(t) = i(t, x) - w(t, x). It is easy to

see that z(t) belongs to the Banach space

Cy- {zEC°(R,R")IIIzIIy = supeytlz(t)I <oo
tE=R

Conversely, it is also obvious that if z(t) E Cy - and w(t, x) + z(t) is a
solution of (1.1) then x = x + z(O) E W`" n M5(x).

Using the same method as in the proof of Lemma 4.4, we can show
that if E Cy -, then w(t, x) + z(t) is a solution of (1.1) if and
only if

Z(t) = -7r5W(t, X) + 1 t eA(t-T)Trsf (w(T, x) + Z(T))dT
- o0

+ JteA(t-T)Trcu1f(W(T,x) +Z(t)) - f(w(T,x))]dT. (4.17)
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By the condition of the lemma and the uniform contraction principle,
it follows that equation (4.17) has for each x E R" a unique continuous
solution z = z*(x) E CY -.

We define a mapping HH": R' - W" by

HH"(x) :=x+z*(x)(0) for all x e R". (4.18)

From the uniqueness of the solution z = z*(x) it follows that i =
HH"(x) E W'" n MM(x) is unique for each x E W".

Proof of Theorem 4.3. By Lemma 4.5, M5(x) = {x + z*(x, xs)(0) I xs E
Es), where z*(x, x) (t) is the unique solution of (4.6) in CY with
xs = . . From (4.6) we have

-rr5(x + z*(x, x,.)(0)) = 7rX + xs.

Hence

X + Z*(x, xs)(0) = Trsx + xs + Tr,"x + ?r,"z*(x, xs)(0)

=ys+7rc"x+a,"z*(x,ys-7rx)(0),

where ys xs + 7rx E E. Now, replace ys by zs in the above
expression and let

JJ(x, xs) = ire"x + Try"z*(x, xs - -rrx)(0).

Since z*(x, xs) is Lipschitz in xs, conclusion (i) follows. Conclusion (ii)
follows from Lemma 4.6. Conclusion (iii) follows from (ii) and the fact
that if y E MS(x), then MM(y) = MS(x). To prove conclusion (iv), we
assume x e MM(x). By (4.4), z(t) z(t, x) - z(t, x) E C. Hence for
any t 1 > 0,

z(t + t1) = 2(t, x(t1, x)) - x(t, x(t1, x)) E CY

This means

MS(z(t, x)) = {2(t, z) I x E MS(x)} = x(t, MS(x)).

From Theorem 4.6 we have the following two corollaries. Corollary
4.7 will be needed in the proof of Theorem 4.13.
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Corollary 4.7. Assume the conditions of Theorem 4.1 are satisfied. Then
for each y E W cu and e > 0 there exists a S > 0 such that if I x - y I <
x E=- R', then

jx(t, x) - x(t, Hcu(x))I < ee-"t, `d t >- 0. (4.19)

Proof. From the proof of Lemma 4.6 we have

z*(x)(t) =(t,) - w(t, x) E C' Y'-'

where x = Hu(x), and w(t, x) =1(t, x) if t >- 0. Hence

z*(x)(t) = z(t, Hcu(x)) - x(t, x), for all t >- 0, x E Ru.

(4.20)

If y E W cu, then Hu(y) = y, which gives

z*(y)(t) = 0, fort >- 0, y E Wcu (4.21)

Finally, by the continuity of z * we can find S > 0 such that if I x - y I <
S, then llz*(x) - z*(y)lly- < e. By (4.21) we obtain

sup e''tlz*(x)(t)I = IIz*(x) - z*(y)II,'. < (Iz*(x) - z*(y)ll < E.
t>_0

(4.22)

Thus, (4.19) follows from (4.22) and (4.20).

Corollary 4.8. Assume the conditions of Theorem 4.1 are satisfied. Then

sup e'"tIi(t, x) -1(t, x)I < oo, x E tu,
tz0

2EW`u,

if and only if 1 = Hcu(x).
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Remark 4.9. The above result gives the asymptotic behavior of solu-
tions of (1.1) that do not lie on the center-unstable manifold. It says
that any solution i(t, x), x E W", converges exponentially for t -* +00
to a uniquely determined solution i(t, HHu(x)) which is on the center-
unstable manifold. In particular, if Qu = 0, that is, W`" = W`, then any
solution of (1.1) converges exponentially as t -p +oo to a uniquely
determined solution on the center manifold. This gives the stability
property of center manifolds. We will give a local version of this
property in Theorem 4.12.

Theorem 4.10. Suppose, in addition to the conditions of Theorem 4.1,
that f E Cbk(P") for some k >- 1. Then for each x E R" the stable leaf
MS(x) is Ck, that is, the mapping xs - JS(x, x5) given by Theorem 4.3 is
Ck from ES into Ecu.

Remark 4.11. By reversing time in Theorems 4.1, 4.3, and 4.10, we can
obtain analogous results for the center-stable manifold W`S, the unsta-
ble leaf Mu(x), and the unstable foliation

ll = U Mu(x).
x E W"

As in Section 2, we can get local results from the above global results.

Theorem 4.12. (Asymptotic Phase) Suppose that f E C1(R"), f(0) = 0
and Df(O) = 0, and au = 0. Let M. be a C2 local center manifold of
(1.1). Then we can find a neighborhood fl of the origin in l" and some
constants y > 0 (a < y < B) such that if x E fl and cl(i(t, x) I t >_ 0)
c IL, then there exist some to >- 0, M > 0 and y E MO n fl such that

11(t, x) -.z(t - to, y)I <Me-"t for all t >_ to. (4.23)

Proof. We use Theorem 3.6 for (1.1) with S = So. Then there exist a
neighborhood L of the origin in l", and mappings [E= Chl(W ), 41 E
Cb (EC, Eh) such that (3.7) has the global center manifold M,4 and
M,,nI=M,, nCI.
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Since v" = 0, we can take S," = 30, and the global center-unstable
manifold W'" of (3.7) coincides with M.. Letting x E fl, by Lemma 4.6
and Remark 4.9, we can find z = HH"(x) E M. such that

sup e''`I i(t, x) -1(t, 1)1 < (4.24)
1zO

Note that x may not belong to fl. The condition cl{x(t, x) I x > 0) c fl
and (4.24) imply that there exits a to >- 0 such that x(t, x) E fl for all
t >_ to. Let y = 2(to, x), then y e fl, and i(t - to, y) =1(t,.0 E 11
for t >_ to. Therefore (4.23) follows from (4.24). El

Suppose that f e C'(IV"), M. is a local center manifold of (1.1), and
y E M,,. Let x,(t) = iri(t, y), then by Lemma 2.6 and Theorem 3.6
x,(t) satisfies the equation

x, = Ax, + ire f (x, + 4(x)), x, E E, (4.25)

The following theorem gives the relationship between xjt), as a
solution of (4.25), and i(t, y), as a solution of (1.1).

Theorem 4.13. (Puss Reduction Principle) Assume the conditions of
Theorem 4.12 are satisfied. Suppose that y E MO fl SZ and cl(x(t, y)
t > 0) c fl. Then i(t, y) is stable (asymptotically stable, unstable) if and
only if xc(t) is stable (asymptotically stable, unstable).

Proof. We use the same method and notations as in the proof of
Theorem 4.12, that is, extend the local center manifold M. of (1.1) to
the global center manifold M,, of (3.7) in order to use some global
results, and then restrict to [1 to get corresponding local results.

Suppose xc(t) = Trcx(t, y) is stable as a solution of (4.25). Then xc(t)
is also stable as a solution of

xc = Axc + -rrc f (xC + ii(xc)), (4.26)

where f is given in Theorem 3.6, and the equation is globally defined.
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We consider a special case first. Suppose z E M,,, then i(t, x) _
Trrx(t, z) + ii(Trrz(t, x)), irrz(t, 2) is a solution of (4.26). Thus

I.z(t, x) - x(t, Y)I

<I7r i(t, x) + 4i(7r i(t, x)) - (x,(t) + 4i(x,(t)))

< (1 + II D'PII)ITr i(t, 2) - x,(t)I.

On the other hand, l ir,x(0, x) - x'(0)I < IITrrIIIi - YI. The stability
property of xjt) implies that for e > 0 there exists a S1 > 0 such that

Ii(t,2)-z(t,y)I<e/2 fort>0, 2EM., and lx-YI<31.
(4.27)

Now we consider the general case. Suppose x E R', then we can use
the continuous mapping HH,,: W -* M,, = W"' (since o-u = 0) to find
x = E M,4. Noting y, we can find a S > 0 such that
12 - y j < S 1 if Ix - y j < S. Let S be sufficiently small so that Corollary
4.7 holds. By using (4.19) and (4.27), we have

Ii(t, x) - i(t, y)I < Ii(t, x) - i(t, 2)I + Ii(t, 2) - x(t, Y)I

E E
< 2 e-'"t +

2
< e, fort >- 0, (4.28)

as long as Ix - yI < S. This gives the stability property of i(t, y) as a
solution of (3.7). Restricting to c, we obtain that i(t, y) is stable as a
solution of (1.1).

If x,(t) is asymptotically stable, then instead of (4.27) we can obtain

Ii(t,z) -z(t,Y)I --+0

ast -* + co for 2EM,,,I1-yI<31. (4.29)

Therefore, (4.29) and (4.28) imply that z(t, y) is asymptotically stable as
a solution of (1.1). On the other hand, if i(t, y) is stable (or asymptoti-
cally stable), then xjt) = it i(t, y) is obviously stable (or asymptoti-
cally stable).
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The above results mean that i(t, y) is stable (asymptotically stable) if
and only if x,(t) is also. Hence, i(t, y) must be unstable if x,(t) is
unstable. o

By using the foliation structure, Burchard, Deng and Lu [1] proved
the following theorem.

Theorem 4.14. Suppose that U is a neighborhood of the origin in R n'
f E C k + 1,1 (U, R") for some k >_ 0, f (O) = 0, and Df (0) = 0. Then the
flows on two arbitrary Ck+1, 1 local center manifolds Wl and Wz of (1.1)
in U are locally conjugate. More precisely, there is a neighborhood V c U
of the origin in it and a Ck diffeomorphism 0: Wl n V - WW n V such
that

z(t,O(x)) =4(x(t,x))

for all x E Wc n V and all t E l ' as long as i(t, x) E Wc n V.

Outline of the Proof. There is a Ck,1 local center-stable manifold W`S
containing W1, and there is a Ck,1 local center-unstable manifold W`"
containing W2 c. The intersection W c' n W cu must be a C"1 center
manifold of (1.1) which is denoted by W. Since Wc and W3 are
contained in the same center-stable manifold W`S, the unstable folia-
tion on WcS gives a Ck conjugacy between W1 and W. Similarly, the
stable foliation on W`" gives a Ck conjugacy between WZ and W3
which are contained in W`". Hence, Wc and Wz are Ck conjugate.

1.5 Bibliographical Notes

The invariant manifold theory has a long history, and the center-mani-
fold theory for the finite-dimensional case has been developed by Carr
[1], Chow and Hale [1], Chow and Lu [3], Chow and Yi [1], Fenichel
[1-4], Guckenheimer and Holmes [1], Hirsch and Pugh [1], Hirch, Pugh
and Shub [1], Kelley [1], Marsden [1], Palmer [1], Pliss [1], Sijbrand [1],
Vanderbauwhede [2-3], Vanderbauwhede and van Gils [1], Wan [2],
Wells [1], Yi [1], and others. The center manifold theory for the
infinite-dimensional case has been studied by Bates and Jones [1],
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Burchard, Deng, and Lu [1], Chow, Lin and Lu [1], Chow and Lu [2-3],
Chow, Lu, and Sell [1], Hale and Lin [1], Hale, Magalhaes, and Oliva
[1], Henry [1], Mielke [1], Sell [1], Sell and You [1], Temam [1-2],
Vanderbauwhede and boss [1], and many others.

In this chapter we present a short introduction to the basic con-
cepts and results in center-manifold theory for the finite-dimensional
case. From this point of view, a clear description has been given by
Vanderbauwhede [3]. We follow some of his approaches and notations,
as well as some of his proofs (Lemma 3.1, Lemma 3.4, Theorem 3.6,
Corollary 4.7, and Theorems 4.12 and 4.13). The proofs in
Sectionsl.1-1.4 are essentially due to Chow and Lu [1]. The proof of
the existence of center manifolds in Section 1.1 appears in many of the
above references. The proof of the smoothness of center manifolds
might be the most difficult part in this theory. We would like to mention
some other works. Vanderbauwhede and van Gils [1] use the contrac-
tions on embedded Banach spaces, Vanderbauwhede [2] uses an ap-
proximation argument, and the fiber contraction theorem has been used
in Vanderbauwhede [3]. Our approach in Section 1.2 uses only the
definition of the derivative and a specific estimate described in Lemma
2.2.

Van Strien [1] gives an example to show that there may not exist any
C`° local center manifold of (1.1) for f E C°° (even if f is analytic).
Similar examples can be found in Carr [1], Guckenheimer and Holmes
[1], Sijbrand [1], and Vanderbauwhede [3]. However, under certain
conditions, C°° center manifolds do exist, see Sijbrand [1], for example.

In Sections 1.3 and 1.4, we follow the standard approach to deal with
local center manifolds from the global theory by using Theorem 3.6.
Palmer [1] gives a direct proof of the local results (Theorems 4.12 and
4.13) by using Gronwall's inequality. We note that in Palmer [1], we
only need to assume that M. is C'. Theorem 4.14 belongs to Burchard,
Deng, and Lu [1].
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Normal Forms

It is well known that a linear change of coordinates

x = Ty

transforms a linear differential equation

x = Ay

to the form

Y = (T-'AT)y,

where x, y E ', A and T are n x n matrices, and T is nondegener-
ate. Therefore without changing the topological structure of the orbits,
we can study the case that A is in its Jordan form.

One may ask if it is possible to do a similar procedure for a nonlinear
differential equation, that is, to obtain the simplest possible form by a
suitable (nonlinear) change of coordinates? The answer is positive, and
this is just the subject of this chapter.

We remark here that in contrast to the linear case, the results of
normal-form theory will be local, and the normal-form equation is not
unique. Nevertheless, the normal-form theory is useful for the study of
bifurcation problems.

2.1 Normal Forms for Differential Equations near a Critical Point

In this section we will consider a vector field near a critical point which
we will take to be the origin. Consider a Cr+1 differential equation,

49
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r>_2:

z=Ax+h(x), xECn, (1.1)

where A E Cnxn, the n X n matrices with complex entries, and h(x) _
O(Ix12) as IxI -* 0.

Consider a Cr transformation in a neighborhood fl of the origin:

x= (Y), yEll, (1.2)

where 6(0) = 0. By substituting (1.2) into (1.1), we get:

eY'(Y)Ae(Y) + Cy 1(Y)h(e(y)), y E ft,

where eY(y) denotes the derivative of e(y) with respect to y and
fY '(y) is the inverse of CY(y) in fl. Note that the linear part of (1.3) is
Y 1(0)AeY(0)y. Thus, if A is already in a canonical form, we may
assume that the diffeomorphism (y) in (1.2) takes the form

6(y) = y + O(IYI2) as y - 0. (1.4)

Therefore we may write (1.3) as

Y =Ay +g(Y), y E fl, (1.5)

where g(Y) = O(IYI2) as IYI -* 0.
Our goal is to determine a change of coordinates (1.2) such that the

transformed equation (1.5) will be in the simplest possible form, so that
the essential features of the flow of (1.1) near the critical point x = 0
become more evident. The desired simplification of (1.1) will be ob-
tained, up to terms of a specified order, by performing inductively a
sequence of near identity change of coordinates of the form

6(y) =Y + 6k(Y), Y E flk, (1.6)

where ik: C" -+ C" is a homogeneous polynomial of order k >_ 2 and
SZk is a neighborhood of the origin in C". Notice that any map of the
form (1.6) is a diffeomorphism in some neighborhood of the origin. To
see how far g can be simplified, we write h(x) as a formal power series
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using superscripts to denote the order of the homogeneous terms

h(x) = h2(x) + h3(x) + , (1.7)

where for each k >_ 2, hk E Hn, the vector space of homogeneous
polynomials of order k in n variables with values in C". From (1.6) we
get

Y(Y) = I +
Y
(Y), (1.8)

and then

(y) + O(IYI2k-2), Y "k, (1.9)

where SZk is a small neighborhood of the origin in C". Substituting
(1.6)-(1.9) into (1.3) we obtain

Ay + h2(Y) + ... +hk-1(Y)

+{hk(Y) - [ v(Y)AY -Ak(Y)]} O(IYlk+il, Y E SZk.

// (1.10)

To simplify the term hk(y) we have to choose a suitable k(y) before
we make transformation (1.6). In order to see clearly the dependence ofk on hk (1.10) suggests introducing for each k >_ 2 a linear operator
L,kq: Hk, -' Hn defined by

Then (1.10) can be expressed as

y =Ay + h2(y) + ... +hk-1(y)

+(hk(y) - LAk(Y)) + O(IYlk+1),

k e H" k. (1.11)

Y E SZk. (1.12)

Let 91k be the range of LA in H,k and Wk be any complementary
subspace to gJk in H,k. We have

H, = gk ®Fk, k >_ 2. (1.13)

The following theorem gives the desired simplification of (1.1).
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Theorem 1.1. Let X: C" -* C" be a Cr+1 vector field with X(O) = 0 and
D X ( 0 ) = A. Let the d e c o m p o s i t i o n (1.13) o fH n be given f o r k = 2, ... , r.
Then there exists a sequence of near identity transformations x = y +
sk(y), y E "k, where k E Hn and 1 k is a neighborhood of the origin,
f1k+1 C f1k' k = 2, ... , r, such that equation (1.1) is transformed into:

Y = Ay + g2(Y) + ... +gr(y) + O(I YI r+1)

where gkEWk fork=2,..., r.

yE"r, (1.14)

Proof. Let X(x) =Ax + h2(x) + +hr(x) + O(IxIr+1), as x -* 0.
For k = 2, (1.12) becomes

Y =Ay + (h2(Y) - L262(y)) + O(IY13), Y E a2, (1.15)

where f12 is so small that I + t=,2, (y) is invertible on it. Since for each
h2 E H,,2 there exist f2 E. '2 and g2 E W2 such that h2 =f2 + g2, we
can find a 2 E H,2 with L2 62 = f2, and then (1.15) becomes

j =Ay + g2(y)
+ O(IY13), Y E aa2.

Next we proceed by induction. Assume that Theorem 1.1 is true for
2 < k < s - 1 < r. By a change of variables, we may assume that (1.1)
becomes

x =Ax + g2(x) + +gs-1(x) + hs(x) + O(Ixls+1),

X E fZs-1

where gk E Wk for k = 2, ... , s - 1, hs E Hs, (we remark that hs here
may be different from the one in (1.1)), and Sts_1 is a neighborhood of
the origin. Let x = y + 6'(y), y E fly, where s E Hn is chosen ac-
cording to (1.13) so that hs = gs, gs E Ws, and SZs c is-1 is a
neighborhood of the origin on which y + fs(y) is invertible. Then from
(1.12) with k = s we obtain:

Y =Ay + g2(y) + ... +gs-1(Y) + (hs(y) - Ls fs(y)) + O(IYIs+1)

= Ay + g2(Y) + ...+gs-1(Y) + gs(y) + O(IYIs+1), yES2s.

This completes the proof. 11
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Definition 1.2. Suppose that the decompositions (1.13) are given. The
following truncated equation of (1.14)

Y =Ay +g2(y) + ... +gr(y) (1.16)

where gk E i°k, k = 2, ... , r, is called an A-normal form of equation
(1.1) up to order r.

We note that an A-normal form is not unique for the fixed A. In
fact, it depends on the choices of the complementary subspaces Wk
(k=2,,r).

Remark 1.3. Let K = (k E N I Wk # 0). Suppose dimFk = nk >_ 1 and
{vi, ... , vk} is a basis of 'k for k E K. Then (1.16) can be written as

r nk

y=Ay+ E .akjvJ, (1.17)
k=2 j=1

where ak j E C for all j = 1, ..., nk, k = 2, ... , r. Then an A-normal
form of (1.1) up to order r is of the form (1.17). Generally it is not easy
to determine the coefficients of (1.17) for a particular equation (1.1) and
it is not easy to find the transformation which transforms (1.1) into
(1.17). Numerical and symbolic computational methods are available
for users to find such transformations and to determine the coefficients
in A-normal form equations. Equation (1.17) with arbitrary coefficients
{akj} is called a general form of an A-normal form up to order r.

From the above discussion the A-normal forms are determined by
the choices of the complementary subspaces Wk (k = 2, ... , r) and
these subspaces are determined by the matrix A only. In general, it is
not easy to find complementary subspaces Wk for k = 2, ... , r. How-
ever in the case when the matrix A is diagonal, it is very easy. We will
consider this case first.

A monomial in Hn is an expression of the form x"ej, where a =
(a1, a2, .... a1f) with nonnegative integers ai is a multi-index and
jal = a1 + a2 + +a = k, x" = x11xz2 ... xn^, ej =
(0'...' 1, ... , 0)T is the standard basis element of Cn with only the jth
component being 1 and all other components zero. A basis for the



54 Normal Forms

vector space H,k, n >: 1, is given by

{x"e; I lal = k,1 < j < n}.

The dimension of Hn is

dimH,k=n (n+k-1)

k
(1.18)

Definition 1.4. If o(A) = (A1, ... , An} is the spectrum of A, then the
following relations are called resonant conditions:

A n ( a , , . . . ,

a = A1a1 + +Anan. Let (x1,..., xn) be coordinates with respect to
the standard basis {e1,. .. , en) of Cn in which the matrix A is in Jordan
normal form with diagonal elements (A1, ... , An). Then a monomial
x"e;(I al = k >- 2 and 1 < j < n) is called a resonant monomial of order
k if and only if (1.19) holds for a and j.

Theorem 1.5. Let A = diag(A1,... , An). Then an A-normal form up to
order r >_ 2 can be chosen so that its nonlinear part consists of all
resonant monomials up to order r.

Proof. A direct calculation shows that for any monomial x"ej with
lal=k>_2and1<j<-n,

LA(x"ei) = (A a - Aj)x"ej. (1.20)

Hence Ker(LA) is obviously a complementary subspace to the range of
LA in H,' and Ker(LA) is spanned by all resonant monomials of order
k for each k >- 2. Then the desired result follows.

In the following, we will present two methods for finding the comple-
mentary subspaces Wk for a given matrix A. The first is the adjoint
operator method. Since an inner product can be introduced in H,k, a
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possible choice for W' is the orthogonal complement of Wk, which will
be characterized as Ker((Lk,)*), the null space of the adjoint operator
(LA)* of L. Other choices will be obtained from Ker((LA)*) by using
linear algebraic techniques. The second is the matrix representation
method. Each LA is a linear operator defined on a finite-dimensional
linear space H,k. If LA is the matrix representation of LA with respect
to a basis of H,k, then our problem is reduced to finding a complemen-
tary subspace to the range of LA in Cdk, where dk = dimH,k.

If p(x) = E7 j=1Ela1=kpajx"ej and q(x) = Ej=1E1«1=kq"jxej, where
pa j and qa j are complex constants, then we define

n

(P, q) = E E Pajgaja!,
j=1 lal=k

where a! = a1!a2! ... an!.

Example 1.6. Let I a I = IRI = k and 1 < i, j < n. Then

(x"ei, xOej) = SijSaRa!,

where Si j and SaR are the Kronecker symbols.
It is easy to see that ( , > is an inner product in H, .

(1.21)

Theorem 1.7. Operator LA* is the adjoint operator of LA with respect to
the inner product (- , - ) in Hnk for each k >_ 2, where A* is the adjoint
operator of A with respect to the usual product ( , ) in C n.

Proof. Let p, q E Hn , P(x) = E"=1Elal=kpaix"ei, q(x) _
Ej=1E1sl=kgpjxPej. Then, using the linearity of LA, LA* and properties
of the inner product, we get

n n + +
" ,(LAp,q)

=
E F, L L paigsj(LA(x ei),x ej),
i=1 j=1 lal=k 1/31=k

n n

(p, LA*q) = E E E E Paiq,,j(x"ei, LA*(xsej)).
i=1 j=1 lal=k 1191=k
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Therefore it is enough to prove that

(LA(xae1), x,ej) = (xae1, LA*(xaej))

for any a, 0, i, j with dal = 113! = k and 1 < i, j < n. An easy computa-
tion shows:

LA(xaei) = D(x«e1)Ax -A(xael)

n n xax
m

n

E E alarm e1 - E
allxael,

1=1 m=1 xl 1=1

LA*(xPej) = D(xsej)A*x -A*(xRej)

n
xI3x1

n

L, E I3malm ej F, ajmx"em,
m=11=1 Xm m=1

where D is the differential operator. Therefore

(LA(xael), x, ej)

(faiau_aii)a! ifi=janda=(3,
1=1

alalml3! if i = j; l31 = al - 1, (3m = am + 1
for some l * m;
0s = aS for any s * 1, m,

-aJ1a! if i=jbut a=(3,
0 otherwise;

(xae1, LA*(xsej))

n

(/3iaii-au /3! ifi=jand6=a,

1m alma! ifi=j;a1=(3,+1,am=(3m-1
for some 1 * m;
as = (3s for any s 0 1, m,

-aji(3! if i*jbut a=(3,
0 otherwise,

The two expressions are equal in each case. Thus the theorem is
proved.
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Corollary 1.8. Ker(LA*) is the orthogonal complementary subspace to
gf k with respect to the inner product ( ) in H,k for each k > 2.

Remark 1.9. If we define LA: C1(C, C") -p C°(C, C") by

(LAf)(x) = ex(x)Ax -Ae(x),

then LkA = LAS H,k, , Lkk * = LA* I Hk . Thus a polynomial of order r,
g(x) = g2(x) + +g'(x), where gk E H, , k = 2,..., r, belongs to
Ker(LA*) if and only if gk e Ker LkA*, k = 2, ... , r. Therefore to find
A-normal form equations up to order r, it is sufficient to solve the
partial differential equation LA* 6 = 0 for r th-order polynomial solu-
tions with no constant and linear terms.

Example 1.10. Let

0 1]A = 0
0

and OX)
1(x x2) '

- 2(xl, x2)

where e1(x1, x2) and 52(x1, x2) are scalar polynomials of degree r > 2.
Then

LA*(x) =
0 0

1 0

x1

x2

0 0

1 0

41(x1, x2)

- 61

2(x1, x2)

It is easy to see that the rth-order polynomial solutions (without
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constant and the first-order terms) of the equation LA* (x) = 0, that is,

are

01(x1, x2) = x10l(xl), 52(x1, x2) = x1x201(xl) +x142(xl),

where 41(x1) and ¢2(x1) are arbitrary scalar polynomials of order
r - 2. Thus an A-normal form equation up to order r is

.X'1 = x2 //+ xi41(xl),

x2 = x102(xl) +x1x241(xl)

We note that r >- 2 can be any integer. An A-normal form up to order
2 is

Xl = x2 + bxi,

x2 = axi + bx1x2,
(1.22)

where a, b are complex constants.
We can also choose span{xie2, xlx2e2} as a complementary subspace

to _q 2. In fact, if U1 = xie2, v2 = x1el + xlx2e2, w1 = Zxie2, and
w2 = xlx2e2, then {v1, v2} is a basis of Ker(LA*) and it is easy to see
that (vi, wj> = bij for i, j = 1, 2. Hence span{wl, w2} is another comple-
mentary subspace to R2. Thus a different A-normal form up to order
2 is given by

xl = x2,

X2 = axi + bx1x2,
a,b e C.
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Example 1.11. Let

0 1 0 61(x1, x2, x3)

A= 0 0 1 and f(x) _ f2(x1, x2, x3)

0 0 0 rr 53(x1, x2, x3)

where i(x1, x2, x3) are scalar polynomials of order r >- 2, i = 1, 2, 3.
Suppose that 6(x) is a solution of equation LA-6 = 0, that is,

ail afl

x1ax +x2 ax = 0,
2 3

a2 aS2

x1 +x2 ax = 1,
2 3

43 + 43 - 62-

49X2

x'x2ax
3

(1.23)

The two independent first integrals of the first equation of (1.23) are
2P1 = x1 and p2 = 2x1x3 - x2.

Suppose 1(x1, x2, x3) _ F-i+j+k=mCijkxlx2x3 and e1(x1, x2, x3) _

4 (P1, P2). Let p1 0. Then x3 = (p2 + x2)/(2p1). Hence

(D(P1, P2) _ Zk Pi-kx2(p2 + x2)k.
i+j+k=m

Let x2 = 0. Then

CiOk i-k k4(P1, P2) _ kpi
P2

i+k=m 2

Since 1 is differentiable in p1, i >_ k. Thus 1 is a polynomial of p1 and
P2 and hence so is e1. Let

61(x1, x2, x3) = x141(P1,P2) + r1(p2),

where 0 1
and +G1 are polynomials in their arguments. Then f2 can be
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expressed as

''II''2(xl, x2, x3) = x201(p1, P2) +
xX2

Y'1(P2) + 4'(pl, p2),
1

where 0 is a differentiable function in pl and p2. By multiplying e2 by
xl and then taking xl = 0, we can show that clil = 0 and 0 is a
polynomial in pl and p2. Let t(p1, p2) = x142(pl, p2) + ,2(p2), where
0 2 and 42 are polynomials in their arguments. Then it can be shown in
a similar way that 4'2 ° 0 and

3(x1, x2, x3) = x341(p1, p2) + x242( p1, p2) + 43(p1, p2),

where ¢3 is a polynomial in pl and p2. Hence an A-normal form up to
order r is

2xl = x2 + X101(xl, 2x1x3 - X2 ,

x2 = X3 + x201(xl, 2x1X3 - X2) + x142(x1, 2x1x3 - x2),

x3 = x301(xl, 2x1x3 - x2) + x202(x1, 2x1x3 - x2)
2+03 X1, 2x1X3 - X2 ,

where 4i are polynomials in their arguments such that x341, x242, and
¢3 are polynomials in x1, x2, and x3 of order r without constant and
linear terms.

A different method for finding A-normal forms is to use the matrix
representation of the linear operator LA with respect to a given basis of
H,k. First, we give an ordering of the elements of the basis of H,k,
{x"ej I lal = k, 1 < j < n). This is taken to be the reverse lexicographic
ordering, that is,

x"e1 <x'ej if and only if (i,a1,...,an) > (f,j31,...,/3n),

where (i, al, ... , an) > (j, /31, ...( j , / 3 1 , . . . , / 3 ) and only if i > j or i = j and
the first unequal components, say, as 0 6,., satisfy aS > /3s, 1 < s < n.
We shall write i - (j, a) if x"ee is the ith basis element with respect to
reverse lexicographic ordering.
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Let dk = dimH,k and Uk = (u1, ... , udk) be an orthogonal basis of
H,k. We will use hereafter only basis Uk of the form

ui(x) = xae,, Ial = k, j = 1,..., n, (1.24)

where i - (j, a) is in the reverse lexicographic ordering for i =
1, ... , dk. We denote by LA the matrix representation of LA with
respect to the basis Uk of H,k. Then LA is a dk X dk matrix which can
be viewed also as a linear operator on 'Ldk. Let 4k be the range of LA
in Cdk and Spk any complementary subspace, that is, Cdk =gik If
we define:

dk

I mk = fk = E aiui E
i=1
dk

wk =k = aiui E H,k
i=1

(al,...,adk) E k
,

(al,...,adk) E k

(1.25)

then .9 is the range of LA in H and gk is a complementary
subspace to .9 in H,k. Therefore, finding a complementary subspace
Wk to _qk in Hk is equivalent by (1.25) to finding a complementary
subspace f,°k to _4k in C"k. Such a complementary subspace is provided
by jk = Ker((LA)*), which is the orthogonal complementary subspace
of _4k in Cdk with respect to the inner product (, ) in Cdk. Other
complementary subspaces to _4k can be obtained from Ker((LA)*) by
performing elementary algebraic calculations.

Remark 1.12. Since the size of the matrix LA is dk X dk =
n(" + k 1 1) X n(n

±
k

1
1), which increases rapidly as k increases, to

calculate matrices LA and to find bases of complementary subspaces
*k become generally more and more difficult. However, the matrix LA
depends only on the matrix A and k, so it involves only computing
coefficients of the basis of H,k in the expansion:

LA(
ai

xaei) _ -aiixi xxe - agxaei. (1.26)
i=11=1 xi i=1
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Even though the computations might be tedious they can be performed
in principle, especially when n and k are small, and one can use a
computer to do it. Once LA is known, to find a basis of Ker((LA)*) or
some other complementary subspace jk, and hence Wk by identifica-
tion (1.25), becomes an algebraic problem.

In some cases, as we shall see, LA is easy to compute and so is a
complementary subspace g'k to _4k in Cdk.

Lemma 1.13. If A = then LA is also diagonal; if A is
upper (lower) triangular with diagonal elements (A1,. .. , An), then LA is
lower (upper) triangular. Furthermore, for both cases, the ith element of
the diagonal of LA is A a - Aj, where i - (j, a).

Proof. The conclusion follows from (1.26) and the definition of the
reverse lexicographic ordering of the basis Uk of H,k.

Remark 1.14. When A is diagonal or upper triangular it is fairly easy to
obtain a basis of a complementary subspace since in those cases the
matrix LA is diagonal or lower triangular and its range is spanned by
the columns of the matrix. From the structure of the matrix it is easy to
read off a basis of a complementary subspace, or to obtain the column
echelon form from which this basis can be read off. This is the
advantage of giving the reverse lexicographical ordering to the basis.
When A is not upper triangular we can make a linear transformation so
that the linear part of the resulting equation is upper triangular.

Example 1.15. Consider the following equation in C2:

.z = Ax + O(IxI2), X E C2,

where

A- [0 0].

For any k >_ 2, we shall determine a complemntary subspace V k to the
range Mk of LA in H2. We have dim H2 = 2(k + 1) and the basis of
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H2 in the reverse lexicographic ordering is

2(k+l) = k 0 k-1
{uf(x)}i=1 {x1x2e2,x1 x2e2,...,

x0x2e2, xix0el, xk-1x2e1, ... , x°x2e1},

that is, u (x) = xk-i+lxi-le for 1 < i <1 2 2 k+i+1 1 2 1

k + 1, where (e1, e2) is the standard basis of C2. For e = (e1, 62)T E H2
we have

LkA

C2

e2

0 1

0 0

x1

x2

0 1

0 0

Then, applying LA to the elements of our basis we get

LAUi = (k - i + 1)ui+1 - Ui+k+1,
LAUi+k+1 = (k - i + 1)uk+i+2

1< i< k + 1,

with the convention U2k+3 = 0. So we have the following 2(k + 1) x
2(k + 1) matrix for L.

0 0 0 0 0 0 0 0-
k 0 0 0 0 0 0 0
0 k-1 0 0 0 0 0 0

0 0 1 0: 0 0 0 0

kLA =

-1 0 0 0: 0 0 0 0
0 -1 0 0 k 0 0 0
0 0 0 .0 k-1 0 0

-1 : :

0 0 0 -1 : 0 0 1 0 2(k+1)x2(k+1)
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Let {er I i = 1, . .. , 2k + 2) be the standard basis of C2k+2. Then a basis
of Ker((Lkkl)*) is given by

U2 = e2 + kek+2

We can choose also jk = span{wl, w2}, where wl = el, H'2 = ek+2, as a
complementary subspace to Rk in C2k+2. By the correspondence be-
tween H2 and c2k+2

7k = span
0ki,

L1

]/

is a complementary subspace to gek in Hz and an A-normal form
equation up to order r is

x2 rr, Fakx1x= + J k ,
0 k=2 bkxl

where ak, bk e C, k = 2, ... , r. We can rewrite (1.27) as

.xl = x2 + x2I41(x1),
x2 =x1 2(x1),

(1.27)

where Y'l, ¢2 are polynomials of degree r - 2, for r >_ 2.
Since we can also choose jk = span{wl, w2}, where wl = e1, w2 = e2,

as a basis for a complementary subspace to _4 k in C2k+2, the corre-
sponding A-normal form is

I o I + k2 [akxi + bkxl _1x2

where ak, bk E C, k = 2, ... , r, or

xl = x2,

X2 =x101(x1) +x1x242(xl),
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where 01, 02 are polynomials of degree r - 2, r >- 2. In particular,

x2 = axi + bx1x2,

where a, b E C is an A-normal form equation up to order 2.
To deal with the case when A is not diagonalizable we can apply the

S - N decompositions of linear operators in finite-dimensional vector
spaces.

Definition 1.16. Let L be a linear operator in a finite-dimensional
vector space V over C. L = S + N is called the S - N decomposition
of L if S is semisimple, that is, the matrix representation of S with
respect to a basis of V is diagonal, N is nilpotent, and SN = NS.

It is well known that for any linear operator in finite-dimensional
vector spaces there exists a unique S - N decomposition.

Theorem 1.17. Let L be a linear operator in a finite-dimensional vector
space V. If L = S + N is its S - N decomposition, then

Ker(L) = Ker(S) n Ker(N).

Proof. It is not hard to see that V = Im(S) ® Ker(S) since S is
semisimple. Then it follows that S is invertible on Im(S). Ker(S) n
Ker(N) c Ker(L) is also apparent. Let v E Ker(L). Then Sv = -Nv.
Since SN = NS, Smv = (-1)mNmv = 0 for some positive integer m. If
m = 1, then Sv = -Nv = 0. Thus v E Ker(S) n Ker(N). If m > 1,
then Sri-1(Sv) = 0 and then we still have Sv = 0 since S is invertible
on Im(S). Consequently Nv = 0. The proof is completed. o

Theorem 1.18. If A = S + N is the S - N decomposition of A, then
LA = LS + LN is the S - N decomposition of LA for each k >- 2.
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Proof. Let {,q 1, ... , 'nn} be such a basis of C" that the matrix of A with
respect to the basis is in Jordan form denoted by

A=

where A . is an eigenvalue of A, I, is the n, X n; identity matrix,

N=

n; x n;

i= 1,...,s, and n 1 + +n2=n. By the uniqueness of the S - N
decomposition of A,

A111 Nl

S = and N =

AS IS

The matrix representations of LS and LN with respect to the basis Uk
are diagonal and strictly lower triangular, respectively, by Lemma 1.13.
Hence LS is semisimple and LN is nilpotent. Furthermore, for any
monomial xaee, if n1 + +n;_1 <j < n1 + +n1 for some 1 < i
< s, then by (1.26)

Ls(x"ei) = (A a - A!)x"ej, (1.28)

n-1 a
LN(x"ei) _ at,t+l -xl+l x"e1 - ai-1,,x"e1_1, (1.29)

t=1 xl

where a1,t+l = 1 if 1 * n1 + +n, for any 1 < t < s or at,t+1 = 0
if l = n

1
+ + nt for t = 1, ... , s - 1, and ao,1 = 0. A simple calcu-

lation shows that if 1 # n1 + +nt for any 1 < t < s and if
for some 1 <i :!g s, then

k (xl+l " ) X1+1 "Ls x e, (A a - A,) x e,.
xt xt
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Therefore if n 1 + + n,_ 1 < j < n 1 + + n, for some 1 < i < s,

LsLN(x"ei) = (A a -

and

LNLs(x"ei) = (A a -

Since x"e, is arbitrary it follows that LN commutes with Ls. The
theorem is then proved.

Corollary 1.19. Let A = S + N be the S - N decomposition of A and
F(x) be an n-vector valued polynomial in x E C. Then F(x) e Ker(LA*)
if and only if F(x) is a solution of the following system of partial
differential equations:

Ls*F(x) = 0,
LN*F(x) = 0.

We note that when S is diagonal Ker(LS) and Ker(LS*) are the same
for any k >_ 2. Then we have the following corollary.

Corollary 1.20. Let A = S + N be the S - N decomposition of A. If
S = diag(.t1...... ), then an A-normal form up to order r > 2 can be
chosen so that its nonlinear part is spanned by resonant monomials up to
order r.

It is not hard to see that if A = S + N is the S - N decomposition
of A then Ker(Ls) n Ker(LN*) is also a complementary subspace to
the range of LA for any k >- 2. Hence we can also get A-normal forms
by finding polynomial solutions of the system of linear partial differen-
tial equations

LSF(x) = 0,
StLN*F(x) = 0.

We note that if S = diag(.t 1, ... , then any resonant monomial
commutes with exp(S). In general we have the following corollary.
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Corollary 1.21. Let A = S + N be the S - N decomposition of A. Then
an A-normal form can be chosen so that it is invariant under the linear
transformation x -* esx.

Now we discuss A-normal forms of the real equation

i=Ax+f(x), xEfZclB", (1.30)

where fZ is a neighborhood of the origin of R n and f(x) = O(Ix12) as
x-0.

Let H,k be the linear space of all homogeneous polynomials of order
-* j7'1k in n real variables with values in l " and the operator LA: 17n

be defined by the same formula (1.11). We can get a real A-normal
form of (1.30) by solving the partial differential equation LA.F(x) = 0
for its real polynomial solutions or by the matrix representation method.

If A is diagonalizable over C, we cannot apply resonant conditions to
find its real A-normal form directly. Let B = P-'AP be diagonal,
where P is a nonsingular complex matrix. We change variables in (1.30)
by x = Pz, where z E C" and Pz= Pz. Then (1.30) becomes

i = Bz + h(z),

where h(z) = O(Iz12) as z -* 0. Let

E={zfPz=Pz,zEC"}.

(1.31)

It can be shown that E is a real n-dimensional linear space. Thus (1.31)
is an equation in the real linear space E. We note that the k th-order
homogeneous part of h(z) in (1.31) belongs to the real linear space

link = {g(z) EH,kIPg(z) =Pg(z)foranyzEE}

and fink is LB invariant. Since B is diagonal, Ker(LB) rl H,k is a
complementary subspace to the range of LBI H, in H,k. Therefore we
can find a near identity transformation in E,

VEl (1.32)

where (v) = O(1v12) as v - 0 and fl,. is a neighborhood of the origin
in E, to obtain a B-normal form of (1.31)

6 = By + G2(v) + +G'(v), v E fl, (1.33)
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where Gk is a linear combination of all resonant monomials of order k
with suitable complex coefficients such that PGk(v) = PG"(v) for
v E E, k = 2, ... , r. We change variables by y = Pv in (1.33). Then the
resulting equation

. =Ay + PG2(P-ly) + ... +PGr(P-y) (1.34)

is an A-normal form of (1.30), which is real. From (1.32), we get the
required real transformation x = y + P '(P-1y). We illustrate this
method by the next example.

Example 1.22. Consider the equation:

x =Ax + O(Ix12), x = (x1, X2 )T E R2, (1.35)

where

A = r1 -11.

We change variables by z1 = x1 + ire and z2 = x1 - ix2. We note that
z2 = 21. Then (1.35) becomes

I it = izi + O(Iz112 + Iz212),

i2 = -iz2 + O(Iz112 + Iz212),
(1.36)

where the second equation of (1.36) is conjugate to the first one. Since
the matrix of the linear part of (1.36) A = diag{i, -i}, the resonant
conditions are

(al-a2-1=0, j=1,
al-a2+1=0, j=2,

where a1 + a2 > 2. Therefore, a1 + a2 must be odd and a1 - a2 =
(-1)j-1. Thus if k = 2m + 1, m - 1, then

Ker(LA*) = span(z1 z2 e1) z1 z2 +1e21.
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A A-normal form up to order r will be of the form

Z1 = izl + clzl2z2 + + cSzi+1z2,

z2 = -iz2 + dlzlz2 + .. +d5ziz2+1,
(1.37)

where r - 1 < 2s + 1 < r, Ck and dk are complex constants, and
dk = ck, k = 1, ... , s. Applying the change of coordinates zl = x1 + ix2
and z2 = x1 - ix2 to (1.37), we get a real A-normal form up to order r
as follows:

xl = -x2 + 2 2E (xl + x2)k (akxl - bkx2),
k=1

k=1
bkxl),

where ak and bk are Re(ck) and Im(ck), respectively, k = 1, ... , s. A
different type of normal form can be obtained by making a change to
polar coordinates, z = z1 = re", in the first equation of (1.37) (from the
second equation of (1.37), we can change variables by z = z2 = re-`B,
but we will get the same result). Then, we get

r = alr 3 + ... + asr2s+1,

9 = 1 + b1r2 + +b5r2s,

where a, and b; are real constants, i = 1.... , s.
We note that in (1.37) the second equation is conjugate to the first

one. Let z = z1. Then 2 = z2. We may say that

i =iz+c1IzI2z+ +cSIZI2sz, z E C,

where cl, ... , cs are complex constants, r - 1 < 2s + 1 < r, is an A-
normal form (in C) of (1.35).

2.2 Poincare's Theorem and Siegel's Theorem

Consider the differential equation

.i=Ax+f(x), xeC", (2.1)

x2 = xl + E (xi + x2)k(akx2 +

S
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where A is an n X n complex matrix, f(x) = O(Ix12) as x - 0, and
f(x) is analytic in x. If the resonant conditions for A do not hold for
any a and j with lal >- 2, 1 < j < n, then it is clear that (2.1) can be
formally transformed into a linear equation

x =Ax. (2.2)

In this section we will give sufficient conditions on A for (2.1) to be
transformed to (2.2) by an analytic transformation.

Definition 2.1. If the convex hull of the spectrum Q(A) of A in the
complex plane does not contain the origin of C, then Q(A) is said to be
in the Poincare domain. If the origin of C lies inside the convex hull of
o ,(A), then we say o(A) is in the Siegel domain.

Lemma 2.2. If a(A) = {A1, ... , Aj is in the Poincare domain, then
there are at most finitely many resonant monomials.

Proof. Let D be the convex hull of o-(A) in the complex plane. By
the assumption, d = dist(0, D) > 0. Then for any a with Ial > 2,

iii A E D and hence d. Let M = maxi s; s {IA; I}. Thus for any
n, if lal > 2"', then

Ia A - A,I la Al IA,I d

lal > lal - dal - > 0.

This proves the lemma.

Corollary 2.3. If o(A) is in the Poincare domain and the resonant
conditions for A do not hold for any a and j with Ial > 2 and 1 < j < n,
then there exists a constant Co > 0 such that

A;I>t Colal, I a I > 2, 1 <j <n.

Theorem 2.4. (Poincare) Let A = diag(A1, ... , If a(A) is in the
Poincare domain and the resonant conditions for A do not hold for any a
and j with lal >_ 2 and 1 < j < n, then there exists an analytic change of
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variablesx = y + 6(y), y E [1, where (y) = O(Iy12) as y - 0 and Cl is
a neighborhood of the origin in Cn, which transforms (2.1) into (2.2).

To prove Poincare's Theorem 2.4 it is sufficient to show that the
following equation

D6(Y)AY -AM(Y) -f(y + 6(y)) = 0, (2.3)

where Da(y) is the derivative off with respect to y, has a solution
6(y) which is analytic in y E fl (where fl is a neighborhood of the
origin in fin) and 6(y) = O(IYI2) as y -> 0. We will apply the Implicit
Function Theorem to solve (2.3) for any given analytic function f with
f(x) = O(Ixl2) as x -- 0. To do so, we first introduce some Banach
spaces of analytic functions.

Let (X, I I x) be a Banach space with norm I Ix and LS(Cn, X) be
the linear space of all bounded symmetric k-linear maps from Ln into
X (k 1). In C" we use the norm I I defined by Ixi = max15i,nIxil
for x = (X"...' xn)T E fin. Let e1,. .. , en be the usual basis of C". A
k-linear map m from Cn to X has the form

n n

i,=1 ik=1

where xi = (x31, ... , x3n) and ailiz... ik = m(eil,... , eik) E X.
The map m is symmetric if and only if a permutation of the

subscripts of the as leaves them unchanged. We define

n n

Imlk = ... Jail ... ikIx, form E Ls(Ln, X).
i,=1 ik=1

From this definition we can show that

(i) (Ls(Cn, X), I 1k) is a Banach space;
(ii) Im(x1, ... , xk)1 < ImIkIxlIIx21 ... Ixk1 for all xi E Ln;
(iii) the usual isomorphism of Ls+h(Ln, X) into Ls(Cn, LS(Cn, X)) is a

norm-preserving isomorphism.
If f: Cn -* X is an analytic function, then f can be represented as a

power series of the form

f(x) _ . fk(xk),
k=0
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where fk E LS(C", X), xk = (x,..., x) E C" X C" x ... X C" (k
times), k = 1, 2, ... , and fo(x°) = f(0) is an element in X. If we
denote fk(xk) = EIaJ=kCaxj 1 ... xn", where x = (x1, x2, ... , x") E X,
a = (a1, a2, .... a") is a multi-index, and Ca E X, then it is easy to see
that I fklk = Eii=klCalx, k z 1. We define Ifolo = I f(0)Ix

Now we define:

Or ={x(=- C"Ilxl<r}, r>0.

CO( ge X) = (f I f : -121, -> X is analytic).

AO,r(C", X) = {fE CW( -I?r,X)If(x) = fk(xk),
k=0

fk E LS(C", X), I fkl krk < ool .k=
=0 1

Al r(C", X) = {f EAO,r(C",X)I Df EAor(C",L(C",X))}.

For f E AO,r(C", X) we define If lo,r = Ek=ol.fkl krk. For f E
A 1, r(C", X) we define I f I i, r = I f I O, r + I Df I o, r Then {AO r(C", X),
1'10,r) and {A1 r(C", X), I ' l i, r} are Banach spaces. Let Bi, r(S) =
(g E Ai r(C", C") I Igli,r < S), i = 0, 1.

Lemma 2.5. If f E AO, r(C", X) and 0 < S < r, then Dk f E
AO, (C", Lk (C ", X)) and

If IO,r
Dkf(x) = k! F ()f(Xi-k,.) , IDkf lo,s <- k! k

j=k k (r - S)

fork = 1,2, ..., where fk(x°, ) =

f = Ek=ofk(xk). Then

If 10,r = Ek=Olfklkrk = Ek=°Ifklk(S + (r - .5)) k.
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Hence

r kk

IfI ,r = ()lfklk5"(r (2.4)
k=0i=0

Since If 10, r < oo and the terms in the above series are all nonnegative,
we can rearrange terms. Thus

If IO,r = E S E ()IfkIk')(r (2.5)
i=0 1 k=i

Let

g(z) = j ( j ()lfklkok_1}zi,
i=0 k=i

Then g(z) is analytic in Sr-s = {Z E C I IZI < r - S} since (2.5) ma-
jorizes the series of g(z). Applying Cauchy's inequality to g(z), we
have

°° M
E (k)Ifklksk-i < i
k=i (r - S)

where M = maxjzj=r_s{Ig(z)I}. From (2.5), M:5 If lo,r. Therefore

IfIO,r-Ei()-'
k=i (r

Let I x I <- S and l y l< r- S. Then Ix + y I< r and then

(2.6)

f(x +y) = fk((x +y)k) = l1 L ()fk(xY1)}.
k=0 k=0 i

We note that the last series is majorized by series (2.4) and hence is
absolutely convergent. Thus we can rearrange the terms such that

f(x +y) = i
1

i ()fk(x1c_iY}
i=0 k=i

E
1

E (-i, .)1(yi)
i=0 k=i
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From (2.5) and by the uniqueness of the Taylor's series of f at x,
D'f(x) = i = 0, 1, 2, .... Let gg(x') = fk(xl, ' )
for each j < k. Then

ID`flo,s = i! (k)Igk-ilk-i8k-i E (k)lfkl,Sk-i

k=i k=i l i

The desired conclusion follows from (2.6).

Lemma 2.6. Let f E AO,r(L", X), g E BO, 8(r). Then f o g E AO,s(C", X)
and If ° g10,8 C If 10,r-

Proof. Since Ig(x)I _< IgIo,s < r for IxI < S, f -g E Cw(9s, X). Let
f(x) = Ek=ofk(xk) and g(x) = El 0gl(xl), where fk E Ls(L", X) and
g1 E LS(L", L") for k >_ 0 and l z 0. Then for IxI < 3

f ° g(x) = E A gl(xl)Jk
k=0 1=0

M ao

E E E glk(xlk)),
i=0 k=0 111=i

where Ill = 11 + + l k and each Ii is a nonnegative integer.

if -910,8< E (E I fk l k (E 1 g1,11, ... I glk Ilk ), ts`
i=0 k=0 I1I=i

= E Ifklk E( E I g1,I1, ... I glkIlk)
k=0 i=0 1iI=i

k m

E Ifklkl E I9/11311 < E I fkI krk = I f IO,r. 11

k=0 1=0 k=0

Lemma 2.7. Let E: AO, r(C", X) X B1, (r) - AO s(C", X) be defined by
E(f, g) = f o g, where f c- AO,r(L", X) and g E B1, (r). Then E is con-
tinuous.
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Proof. Let f and f1 E A0,,(C", X), g E B1,(r). By Lemma 2.6

IE(f+f1,g) -E(f,g)lo,s=If1°gIo,s 5If11o,r

Hence E is uniformly continuous in its first argument.
Let I gI1, s = a < r, 13 = (r - a)/3, and h E Bl, s()3). Then E(f, g +

hXx) = f(g(x) + h(x)) E C°'(2s, X). Let g(x) = Ei ogl(xl) and
h(x) = E°m=ohm(xm), where g, E LS(L", C") for l > 0 and hm E
Ls (C", C") for m >- 0, respectively. By Taylor's Theorem

f(x +Y) = Dkf (x) (Yk), IxI 5 a, IYI < r - a.
k=O k.

Thus

E(f, g + h) (x) - E(f, g) (x) _
Dkf(k

(x)) ((h(x))k)
k=1

From Lemma 2.5,

E(f, g + h) (x) - E(f, g) (x)

(k)fi((g(x))`-k,(h(x))k)
k=1 i=k

()fk((g(x)), (h(x))')
i=1 k=i

()fk((g(x)), (h(x))')
k=1i=1

k

(i) fk(gl1(xl1),..., g[k_;(xlk-'),
k=1 i=1 j=0111+1mI=j

hml(xm1),..., hm;(xm')),
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where 111=11+ +lk_i, Iml =m1+ +m1. Hence

IE(f,g+h) -E(f,g)lo,s

< E E(fkikik1
j=0 k=1 i=1

X E I gl1 I1,
...

I glk-i Ilk-Jl hmi Im,
... I hm, I m,

111+ImI=j

k-i00 00

EIg1lls`) (T. IhmImsm)
k-1 i-1 1-0 m=0

<_ kI fk Ik(Iglo,s + Ihi0,s)k-'Ihl0,s
k=1

5 (E k1 fklk(r - R)k 1)Ihlo,s
k=1 J

1

Iflo,rlhll,s

Thus E is continuous in the second argument.

Lemma 2.8. Let E be defined as in Lemma 2.7. Then E is C.

11

Proof. Let f E Ao,r(C", X) and g E B1,s(r) with Igl1,s = a < r and let
l3 = (r - a)/3. Let h E B1,6(13). Since by Taylor's Theorem, for Ixl < a
and 1vl<r-a,

f!x)
W),f(x +y) _

Dk

k=0 k
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for any positive integer N,

N
E(f, g + h) (x) = F Dkf(g(x))(h(x))k +RN+1(x),

k!k=0

where

Dk f(g(x))(h(x))k
RN+1(x) = E k!k=N+1

From Lemma 2.5,

= E E (j)fRN+I(X) j((g(x))'-k,(h(x))k)

k=N+1j=k

By a similar argument as in Lemma 2.7, we have

IRN+11o,s <_
If lo,r

RN+1

(Ihll,s)N+1

From the converse of Taylor's Theorem, DZE exists for 0 < k < N and
DZE(f, g) = Dkf 0 g. By Lemma 2.7, DZE(f, g) is continuous and
DZE(f, g) is linear in its first argument. It follows that D1DZE(f, g)
exists and D1DZE(f, g) = g). The lemma may now be proved
by induction.

Lemma 2.9. If g E A 1, r(L", X) and M E C"'", then

f(x) =Dg(x)Mx EA0 r(Cn,X)

and

If Io,r 5 rIMIIDgIo,r

Proof. Let g(x) = Ek=ogk(xk), where gk e Lk(C", X), k = 0, 1, 2,... .

From Lemma 2.5, Dg(x) = Ek=lkgk(xk-1, ) and IDglo,r =



Poincare's Theorem and Siegel's Theorem 79

Ek=1kl gkl krk-1. Then f(x) = Ek=lkgk(xk-1, Mx). Let fk: C" X
x C" (k times) -> X be defined by

k

fk(U1,...,Uk) - 9k(U1,...,Mvi,...,Uk),
i=1

C i = 1,...,k.

Then A E LSk (E", X ), Ifklk < kI MII gkI k and f(x) = _lfk(xk). Thus

00 00

IfIO,r = IfkIkrk < IMI F, klgklkrk = rIMII DgIO,r
k=1 k=1

11

Proof of Poincare's Theorem. Let r > 0. We define Vo r = {g19 E
A0, r(C", C"), g(0) = 0, Dg(0) = O) and Vl r = {glg E Al, r(C", C"),
g(O) = 0, Dg(0) = 0). Then VO, r and VI, r are closed linear subspaces of
Banach spaces Ao, r and AI, r respectively. Let B1,.(5) = (g E
V1,, I IgI1,r 5 S). We define F: V0,r X Bl,r/2 (r/2) - VO,r/2 by

De(y)Ay -f(y + e(y)). (2.7)

Then F(0, 0) = 0 and from Lemma 2.8 F is C 1. Equation (2.3) can be
expressed as

0, y E fI. (2.8)

Let K = 1 (0, 0). Then K: VI, r/2 -* VO, r12 is defined by

(Kv)(y) =Dv(y)Ay -Av(y).

For any g(x) = E Vo,/2 we define

n m

i(4)(X) = E E E a ,
ca

A x" ej. (2.9)
j=1 k=2I.I=k

Since is in the Poincare domain and there are no resonant
monomials, by Corollary 2.3 there exists a constant Co > 0 such that

AjI>Colalforanyaand j with 2,1<j<n.LetCa
(Ca, ... , c")T and Ca = (Ca/(a A - A1), . . . , C"/(a A - A ))T. De-
note v(X) = (KgXx) = Ek=2Uk(xk) for a given g E Vp r/2. Then



80 Normal Forms

Vk(xk) = Eiai=kCaxa and IvkIk = Eia1=klCal < CuEIaI=kKCal = Coklgklk
for each k >_ 2, where gk(xk) = Eiai=kCaxa. Hence

W

IUlo,r/2 = E IUklk(r/2)k < - E - Igklk(r/2)k < - Iglo,r/2 < 00,
k=2 CO k=2 k CO

and from Lemma 2.5, we have

W 2 °°

IDvIO,r/2 = F, klVklk(r/2)k-1 < _ 2 lgklk(r/2)k
k=2 Cor k=2

2
<

C or0r

These imply that Kg E V1, r/2 and k is a bounded linear operator
from V0, r/2 to V1, r/2. A calculation shows

(Kv)(x) _ ( caxa)ej = g(x)
j=1 k=2 IaI=k

Hence K = K-1, that is, F,(0, 0) has a bounded inverse.
By the Implicit Function Theorem, there exists an e > 0 such that for

any f E V O, r, if I f Io,, < e, there exists e = (f) E B1, r12(r12) such that
F(f, )=0andz(0)=0.

For a given f E V0 r, let f(x) = y 1f(yx), where 0 < y < 1. It is
obvious that f E Vo r. Since f(x) = O(1x12) as x - 0, we can choose
y > 0 such that I f I O, r < E. From the above discussion, there exists a

E B1,r/2(r/2) such that F(f, 6) = 0. Let 6(x) = IxI <
yr/2. Then fi(x) E Vl,,yr/2 and

F(f, 6)(x) = D6(x)Ax f(x + 6(x))

= yF(f,)(y-1x) = 0, IxI < yr/2.

Thus the theorem is proved. 13

Corollary 2.10. Poincare's Theorem is valid even if A is not diagonaliz-
able.
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Proof. It is sufficient to show that the operator K defined in the proof
of the theorem has also a bounded inverse even though A is not
diagonalizable. Without loss of generality, we assume that A is in upper
triangular Jordan normal form and A = S + EN, where S =
diag(A1, ... , A"), E > 0 is arbitrarily small and N = (a,3) satisfies a,3 = 0
if j0i+1,aj,;+1=1or0,i=1,...,n-1. We seethatK=Ks+
KEN, where Ks and KEN are defined by

(Ksv)(y) = Dv(y)Sy - Sv(y)

and

(KENV)(y) =Dv(y)(EN)y - (EN)v(y)

for v E Vl r. From the proof of the theorem we see that Ks has a
bounded inverse on Vo r. Since II KEN 11 = E I I KN I I, we can always choose

E to be so small that

1

IIKENII <
IIKS'll

Thus K = Ks + KEN has a bounded inverse.

Corollary 2.11. If Q(A) is in the Poincare domain, then there exists an
analytic change of variables x = y + e(y), where (y) = O(Iv12) as
y - 0, and y is in a neighborhood of the origin in C", such that it
transforms (2.1) into

x =Ax + h(x), (2.10)

where h(x) consists of at most finitely many monomials and h commutes
with es with S being the semisimple part of A.

Proof. Without loss of generality, we assume that A = S + EN is in the
Jordan normal form, where S = diag(A1,... , A"), N is nilpotent, and e
is arbitrary small. Since o ,(A) is in the Poincare domain, there are at
most a finite number of resonant monomials. Suppose that there are no
resonant monomials of order bigger than m. We note that m is
independent of E. By the normal form theory (see Section 2.1), there is
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an analytic change of variables which transforms (2.1) to

x =Ax + h(x) + f(x), (2.11)

where h(x) is a linear combination of resonant monomials and f(x) _
O(Ixlm+l) as x -, 0.

We define Vo, = (gIg E Ao,r(C", C"), g(x) = O(IxIm ) as x - 0,
Iglo,r < -) and Vi = {gIg E Al,,(C", C"), g(x) = O(Ixlm+l) as x - 0,
g 11, r <}. Then Vo ,and Vi , are closed linear subspaces of AO,, and

A1,, respectively. Let Bi s(r) = {g c- Vi s I Igll,s <- r). We define F:
Vr x VDr x Bl, r/2(r/2) , Vr/12 by

F(.f,h,4)(y) = D6(y)Ay -A6(y) -f(y +6(y))

+ h(y) + D6(y)h(y) - h(y + 6(y)).

Then F(0, 0, 0) = 0. Let K = FF(0, 0, 0). Then K: Vl'rl2 - Vo r12 is

defined by

(Kv)(y) = Dv(y)Ay - Av(y).

Since there are no resonant monomials of order greater than m, in a
similar way as in the proof of the Poincare Theorem and Corollary 2.11,
the corollary can be proved.

Theorem 2.12. (Siegel) Let Q(A) = {Al, ... , A"} be the spectrum of A. If
there exist Co > 0 and µ > 0 such that for any a = (al, . . . , a,,) with
Iai > 2

Co
IA a - A)I lL' 1<j<n, (2.12)

then the equation (2.1) can be transformed to (2.2) by an analytic
transformation.

As in the proof of Poincare's Theorem, we need to find an analytic
solution 6 with 6(z) = O(Iz12) as z -* 0 of equation (2.3). However,
since there does not exist a positive lower bound for (IA a - A 1, IaI >-
2,1 < j < n) and there does not exist a bounded inverse of F,(0, 0), we
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are not able to apply the Implicit Function Theorem to solve (2.3) as we
did in the case of Poincare's Theorem.

We shall prove Siegel's Theorem in the case A = diag(A 1, ... , .t").
The idea of the proof is the following: We find first an "approximate
bounded inverse of F, (0, 0) by which we construct a sequence of
approximate solutions {o) of (2.3). The domains of (4,-) will shrink as j
increases, each ¢j+1 is a better approximate solution than 4j, and {Oj}
tends to an analytic solution of (2.3) which is defined in a neighborhood
of the origin in C.

First we need some notation and lemmas.
Ho,, = {g I g: 0, - C" is analytic and g(z) = O(Iz12) as z

0,supzE-,,lg(z)I < +00}.
Hl,r = {g I g (=- Ho , and IlDgllo,r = supzE_qlDg(z)I < +-).
For g e Ho,,, we define Ilgllo,r = supz eO lg(z)I For g (=- H,,,, we

define llglll,r = Ilgllo,r + IlDgllo,,. Then (HO,,,11 Ilo,r) and {Hl,,, II Ill,,)
are Banach spaces.

We denote Bi,,(S) = {g E Hi,, I Ilglli,r < S}, S > 0, the closed ball
with radius 3 in Hi,,, i = 0, 1.

Define a linear operator K,: H1,, - Ho,, by

KrV(Z) =Dzv(z) - Az -Av(z), v E H1 r, z e D,.

Lemma 2.13. Let r E (0, 1). If A = diag(A1,... , A,,) and the small divi-
sor condition (2.12) holds for A, then for any g E Ho,r and any S E (0, r),
there exist a unique v E H1, r _ S and a positive constant C which does not
depend on g, r and 3 such that (K,_SU)(Z) = g(z) for z E 91r-S, that is,

K,_5v = g in Ho, r-S,

and

Ilgilo,r
IIUhII,r-S <- C 3"`+2

Proof. Let the Taylor expansion of g at z = 0 be

n

g(z) = E E E Paz
k=2 lal=k j=1
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where the ca are complex constants. For any w E H1 r_s we assume
that the Taylor expansion of w at z = 0 is

W n

w(z) = F, E F, diz
k=2lal=k j=1

where the da are complex constants. If Kr-,5w = g in HO r-5 then by a
direct calculation we must have

c'a
for Jal - 2and1 <j <n.

Let

n ca
v(z) = z aej.

k=2 1al=k j=1A a - aj

Let Ca = (Cal,..., c. )T for lal >- 2. Then by the small divisor condition
(2.12) and the Cauchy's inequality

Ilvllo,r-S s Ial kµ(r - S)k
k=2lal=k C0

Ilgllo,r
E kA

(r - S)k < Ilgllo,r Fl kµe_ks/,
k

CO k=2 r CO k=2

llgllo,r

Co
S-(µ+u( (o yµe-ydy + (N- + 1)µ)

where C1 = Co 1(I'(µ + 1) + (µ + 1)"`), which is a positive constant
and does not depend on g, r and S. Thus v E HO,r_s. Furthermore,
from the Cauchy's inequality

nllvllo,-S/2 -(µ+2)
IIDZvllo,r-s s nClllgllo,r(2) <- C2119II0,rS-(µ+2)9

(..)

where C2 is a positive constant which does not depend on g, r, and 3
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either. Therefore v E H1, r-s and

IIVDi,r-S < CIIgllo,r5-(N'+2),

where C is a positive constant which does not depend on g, r and S.
This proves the lemma.

The above lemma says that even though Kr has no bounded inverse,
it has an "approximate bounded inverse K; 's from Ho, r to H1, r _ s
which is defined as follows: For any g E Ho, r and S E (0, r), where
0 < r < 1, let v E Hl, r-S be the unique solution of equation Kr_sv = g
in Ho, r _ s. We define Kg's g = v. Then by Lemma 2.13, k-1. is a
bounded linear operator from Ho, r to Hl, r-s

Let r E (0, 1) and 0 E (0, r/2). Now we consider a mapping
Jr(-; r, 13): Bl, p(r/2) - Ho, p defined by

r ,0 ) = DZf - A -Af - f o(I + f).

Since III + Il o, p < /3 + r/2 < r and Dk f is uniformly continuous on
Op+rI2 for any k >- 0, r, )3) is C2 from B1, p(r/2) to Ho, p for any
fixed r E (0, 1) and 6 E (0, r/2). Thus equation (2.3) can be written as

r,/3) = 0, E Bl,p(r/2), 0 < r < 1 and /3 E (0, r/2).

Lemma 2.14. Let r E (0, 1), /3 E (0, r/2), S E (0, (3), and 4 E
Bt, p(r/2). Then for any u E H1 p-s,

DD r, (3 - 3)(I + DZ4,)u - /3 - S))u

= (I + DZ4,)K0_su. (2.13)

Proof. In fact (2.13) holds if and only if

(DZ4,)Kp-su + DZ(K,-,4,)u = K,-s((DZ.O)u)

or

DZ((DZ¢)A)u + (DZ4,)(Du)A = DZ((DZ4,)u)A + (DZ4,)Au,

for u E H1 S.

The last equality follows from a direct calculation.
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Proof of Siegel's Theorem. Since the small divisor condition (2.12)
implies that there exist no resonant monomials, by the normal-form
theory introduced in Section 2.1, we can make near identity transforma-
tions

x=z+6k(z), k=2,3,...,4[n+µ+3],

such that (2.1) becomes

Z =Az + f(Z), z E Or,

where f(z) = O(iZI4(n+µ+3)+1) as z -> 0, and r > 0 is sufficiently small.
Therefore we may assume for (2.1) that f E Ho, r with r E (0, 1) suffi-
ciently small and f(z) = O(IzI4("+µ+3)+1) as z -+ 0. We can also as-
sume that II DZ f Ilo, r <- i if r is sufficiently small.

We consider the following sequences of real numbers {r) and {S):

1 ( 1 (ri - ri+l)ri= 4r +
2i si=

2
j=0,1,....

Define sequences of functions {¢) and {u), j = 0, 1, 2, ... , inductively
as follows:

00=0;

ui = -(I +DZO1)K,-.1s.(I +DZ4i)-1

4i+1=Oi+u1.

We will show that if r is sufficiently small, then the sequences {4i} and
{ui} are well defined.

From Lemma 2.13, for any 8 E (0, r), there is a constant C such that
llxr 1SII < CS-c.'+n+2> We may assume that C >: 1. Let CO =
8nC(16/r)"µ+3 and co = 1/(2C). We note that r0 = r/2 and Eo =
O(ru"+3>) as r -p 0. We may assume that r is so small that co 5 2.
Let the sequence {E), j = 0, 1, 2, ... , be defined recursively as follows:

Ei+l = C+'Ej . It is clear that (1) Ei = C(i+2 (2)2', (2) E1 - 0 as
j oo, and (3) Ei+l < ZE1 < Ei - E1+1. We claim that if r > 0 is small
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enough then (4) and {uj) have the following properties:
(Aj): 4 E H1 . and Il4ll1,r, < CO - ej,
(Bj): .9-(¢j;r, rj) E HO rj and II 9"(¢j;r, rj)Il o, rj < ej ,

(C1): uj E Hl rj+, and Ilujll1,rj+i < ej+l,
f o r j = 0,1, 2, ... .

We prove this claim by induction on j. It is sufficient to show the
following statements:
(1) (A 0) and (BO) are true;
(2) (Ad and (B) imply (C);
(3) (A) and (Cj) imply (Aj+1);
(4) (A), (B), (C), and (AJ+1) imply (Bj+1).

Proof of (1). (A 0) is trivial since ¢o = 0. We note that 9-(0; r, ro)(z) =_f(z)
for z e -9,o and r0 = 2. Thus 9-(0; r, ro) E Ho ,o. Since II f Ilo,r =

O(r4("'+' 3)+1) and eo = O(r4(µ+n+3)), we may choose r > 0 so small
that If Ilo,r,, < Co. Hence (BO) holds.

Proof of (2). We note that Sj = (rj - rJ+1)/2 = (1/2j+4 )r. By using
(A), we have

1

IIDZfijllo,, < 2

Hence I + D Oj has a bounded inverse for z E . and

II(I + DZ4)j)-lllo,rj < 2.

Then by the definition of u j,

IIujllo,rj- Sj = II(I + DZ4)j)Krjlsj(I + DZ¢j)-1. (411; r, rj)Ilo,rj-Sj

< 4CII.9"(4)j; r, rj)II o,rjSj (n+µ+2) < 4CS, (n+µ+2)e1
.

i
.IIDZujllo,rj+, < nlujlo,rj-sj8j 1 < 4nCS-(n+µ+3)e2
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Thus

12j+4 n+µ+3

Ilujlll,rj+1 811C(Sj (n+µ+3)E = 8nCl r
)

E - Cp+1 = Ej+1

Proof of (3). By using (A) and (C), ¢j+1 is obviously analytic in 01-+
and

Ih j+llll,r+i < IIOjII1,rj + IIujII1,rj+i G EQ - Ej + Ej+1 < EO - Ej+1

Proof of (4). By Taylor expansion, for any 13 E (0, r/2), ¢ E J l , (r/2)
and u E H1,R such that 0 + u E B1,,(r/2), we have the following
equality,

-17(4 +u;r,/3) =. (4;r,(3) +D,.17(cb;r,a)u +R(qS,u), (2.14)

where

R(4, u) = fl(1 - tu; r, 3)(u2)dt

= fl(1 - t)DZ f(I + 0 + tu)(u2)dt,

D,.9" is the second derivative of a with respect to i;, and D- 2f is the
second derivative of f with respect to z.

By Lemma 2.14,

Dg'T(.01; r, rj+1)uj - DZ(-9-(O1; r, rj+1))(I + DZdij)-luj

= (I + DZcbj)KrjJI + Dz(Pj)-luj in Ho, rj+1.

Thus by the definition of {u) we have

DD. (0j; r, rj+1)uj - Dz(-11-(O1; r, rj+1))(I + Dz.0j) luj

= -.F(0j; r, rj) in H0,r.
+1'

(2.15)
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Hence from (2.14),

`9-(Tj+; r, rj+1) = Dz(.9-(laj; r, rj+l))(I +
DZ4j)_1uj

+ R(-Oj, uj).

Then we have the following estimates:

II D-(.q"(Oj; r, rj+1))(I + DZOj)
1ujll

o,rj+.

2nil.9(Oj; r, rj)Ilo,rj(rj - rj+l) -IEj+1

n
2j+a) 1 1(

< r Ej Ej+1 < 2
CO+lEj Ej+1 = 2 Ej+1

Since III + Oj + tujll o,rj+, < r for t E [0, 1], R(4j, uj) is well defined.
We note that IID, f II <_ 2. Therefore

1

IIR(Oj)uj)Ilo,,+i 2
E 1

Hence

II.9-(.Oj+1; r, rj+,)Ilo, ,+1 < Ej2+1

Thus the claim is proved.
We note that rj > r/4 for every j >_ 0. Then by Claim (A), every

¢j E B1,r,,a(r/2). By Claim (C), (4) is a Cauchy sequence in
B1,r1a(r/2). Thus there exists 6 E B1,rla(r/2) such that 4 = limj_ 4j
From (B) we conclude that lim jy J'(4j; r, r/4) = 0. Therefore
.v( ; r, r/4) = 0 since Jr is continuous in f E B1, rIa(r/2). This com-
pletes the proof of Siegel's Theorem.

2.3 Normal Forms of Equations with Periodic Coefficients

Consider the T-periodic differential equation

z=f(t,x), xeC", tEI, (3.1)

where f is continuous, f(t, ) E Cr+1(C", C"), r >_ 2, f(t, 0) = 0 for all



90 Normal Forms

t E R, and there is T > 0 such that f(t + T, x) = f(t, x) for all t E R,
x E C". We may make a change of variables in (3.1) such that the
resulting equation is simpler than (3.1).

Let H,k be as in Section 2.1, and

H,k.T ={ f E CS(R X C", C" ft t, E H,k for each t e III;

f(t+T,x)=f(t,x) forall tEO and xEC"},

where s is a nonnegative integer. When s = 0, we use H,k T instead of
Hn 7°.. Each H,k,T is a linear space. Suppose (3.1) is in the following form

x = B(t)x + f2(t, x) + ... +fr(t, x) + O(IxIr+l),

x E C", (3.2)

where B(t) is an n x n matrix with continuous T-periodic entries and
fkEHnT,k=2,...,r,r>2.

The linear part of equation (3.2) is

x=B(t)x, xEC". (3.3)

Let X(t) be the fundamental matrix of (3.3) with X(0) = I. Then
J = X(T) is a monodromy matrix of the T-periodic linear equation (3.3).
Let A be a constant n X n matrix such that eAT = J. It is well known
from Floquet theory that the nonsingular T-periodic transformation

x =P(t)y, (3.4)

where NO = X(t)e-'`, converts (3.3) to a linear system with constant
coefficients, y = Ay.

By transformation (3.4), (3.2) changes into the following:

x =Ax + f2(t,x) + +fr(t,x) + O(Ixlr+l), X E C", (3.5)

where f k E H,k T, k = 2, ... , r. We note that the fk(t, x), k = 2, ... , r,
in (3.4) may be different from those in (3.2). In the following, we discuss
(3.5) instead of (3.2) since they are equivalent.

Now we change variables in (3.5) by a T-periodic transformation

x=y+hk(t,y), yEfl, tEt1, (3.6)
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where hk E Hn 7'., 2 < k < r, and S2 is a neighborhood of the origin in
C" on which I + hk(t, ) is invertible for each t E R. Substituting (3.6)
into (3.5) we obtain:

Y =Ay +f2(t, y) + ... + fk-1(t,Y)

+(fk(t,y) +Ahk(t,y) - hY(t,Y)AY - at
hk(t,Y)

+0(IYik+1)' Y E fl.

Notice that transformation (3.6) does not affect the terms in (3.5) of
order less than k in x.

We define for each k >- 2 an operator Hn'TI -* H" T by

a
£Ah(t, y) = at

h(t, y) + hy(t, y)Ay -Ah(t, y), k,Ih E H",T.

(3.8)

It is clear that °A is linear. We recall that the operator Lkq: Hn - H,k
is defined by

Lkk h(y) = hy(y)Ay - Ah(y), h E H,k.

Thus

a
YAh(t, at h(t, ) + Lkkh(t, ),

and (3.7) can be rewritten as

=Ay +f2(t,Y) + ... +f k- 1(t, Y)

+(fk(t,Y) -gAhk(t,Y)) + O(jYjk+1), Y E 11.

Let RT be the range of YA in Hk T, and WTk be a complementary
subspace to ,S in H"k T, that is,

Hn T = 9P7k. (3.9)
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We have then the following theorem.

Theorem 3.1. Let the decompositions (3.9) be given for k = 2, ... , r.
There exist a neighborhood fl of the origin and a sequence of near identity
T -periodic transformations x = y + h'(t, y), y E fI, k = 2, ... , r, such
that the resulting equation of (3.5) is of the form:

Y =Ay +g2(t, y) + ... +gr(t, y) + o(Iylr+1),
y E S1, (3.10)

where g k E FT, k = 2, ... , r.

Definition 3.2. The truncated equation of (3.10)

Y = Ay + g2(t, y) + ... +gr(t, y)

is called an A-normal form up to order r of (3.5).

As in Section 2.1, we may find A-normal forms by solving a system of
partial differential equations or by using the matrix representation
method. Let

CT(F,Cd)=If EC°(68,Cd)I f (t + T) = f (t) for alltE:R)

and CT(DB, Cd) be the linear space of all C' functions in CT(68, Cd)Recall
also that

{ui(x))dk 1 =
1

1 x"e.la!
lal=k,j=l,...,n)I

is an orthonormal basis for H,k, where dk = dim H,k (see (1.18)) and
i - (j, a) is in the reverse lexicographic ordering. Any element of Hn T
is of the form

dk

Epi(t)ui(x),
i=1

where pi E CT(R, Q. We then identify HkT with CT(F , Ldk) in the
following way:

dk dk

Epi(t)ui(x) - Epi(t)ei,
i=1 i=1

(3.11)
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where {e1}dk1 is the standard basis of Cdk. Then, the linear operator

YA H. T - Hn, T

gives, by the identification (3.11), the linear operator

JA 'k: CT(l,Cdk) - CT(R,Cdk)

defined by

(-!kA f)(t)
dt

d -kf (t) + LAf(t), f E CT(F, Cdk), (3.12)

where LA: Cdk _ Cdk is the matrix representation of LA with respect
to the basis {(1 / «!) x "e j). Let 4T be the range of .A and jT be a
complementary subspace to T in CT(IR, Cdk). Then the range of
is

APT =

dk

f(t, x) = L pi(t)ui(x)
i=1

(pl(t),...,pdk(t))T EST , (3.13)

and

dk

WT = At' X) = Pi(t)ui(x)
i=1

(pl(t),..., pdk(t))T E iT (3.14)

is a complementary subspace to 1PT in Hn T.
Let )T be an inner product on CT(R,Cdk) that is defined as

follows: For any f, g E CTUF , Cdk),

(f, g)T = 7 fT(f(t), g(t))dt,

where (, ) is the usual inner product in Cdk.

Theorem 3.3. The space of T -periodic solutions of the equation

g(t) = (LA)*g(t), g r= CT(R,Cdk), (3.15)

is an orthogonal complementary subspace j°T to .APT with respect to the
inner product )T in CT(OB, Cdk), k = 2, ... , r.
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Recall that LA is the adjoint operator of Lk with respect to the
inner product < , ) in H,k. We define the inner product )T on
Hn T by

<f( t, x), g(t, X))T = T
jT< f(t,

x), g(t, x))dt, f, g E Hn T.
0

We have the following:

Theorem 3.4. The linear operator (.A)*: H,k°T - Hn T defined by

a
((5A)*h)(t, x) at

h(t, x) + LA*h(t, x), h E (3.16)

is the adjoint operator of i J with respect to the inner product < , )T
in Hnk,

T

Lemma 3.5. Let A = diag(A1, ... , An) and f E CT(l, C). Then
f(t)x"e,. E Ker(9A)* if and only if there exists an integer m such that

2 mTr
Ai= 7, i, i=vi,

and

2mir-it
f(t) = Ce T ,

where c is a constant.

Definition 3.6. If o,(A) = (A1, ... , An) is the spectrum of A, then the
following relations are called resonant conditions:

2mir
a - Ai= 7, i, i= f, mE7L, dal>-2, (3.17)

where 1L denotes the set of all integers. Let (x 1, x2, .... xn) be coordi-
nates with respect to the standard basis (e1,. .. , en} of Cn in which the
matrix A has a Jordan normal form with diagonal elements {A1, ... , An}.
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Then a monomial exp(Z T "x"e1(lal = k >: 2, 1 < j < n) is called a
resonant monomial of order k if and only if there exists an integer m
such that (3.17) is satisfied for a and j.

Let A = S + N be the S - N decomposition of A. Then it is easy to
see that .A = 2' + LN is the S - N decomposition of YA . So we
have the following:

Theorem 3.7. If A = diag(A1,... , A,,), then an A-normal form up to
order r > 2 can be chosen so that its nonlinear part consists of all
resonant monomials up to order r. If A is upper (or lower) triangular with
diagonal elements {,t 1, ... , then an A-normal form up to order r >- 2
can be chosen so that its nonlinear part is spanned by resonant monomials
up to order r.

Remark 3.8. If we consider a T-periodic system over the reals, then the
above discussion is valid except for the following. It is well known that
we cannot always find a real matrix A such that eAT = J, but we can
always find a real matrix A such that e2AT = J2. In this case there is a
real 2T-periodic transformation x = P(t)y such that the equation (3.2)
is changed to y = Ay and (3.1) is changed to a 2T-periodic system over
reals. We note that such a 2T-periodic system has some kind of
symmetry. We will discuss normal forms of equations with symmetry in
Section 2.5.

If A is diagonalizable over the complex numbers, then we cannot
apply Theorem 3.7 directly. But we can use the method for getting
A-normal forms of real equations described in Section 2.1. We illustrate
the method in the following example.

Example 3.9. Assume that the T-periodic system (3.1) is real and
two-dimensional and the monodromy matrix of (3.3) is

J = cos WT - sin wT 1 0 < T = p< 1
sin wT cos wT J' 21T q 'I

where p and q are positive integers with (p, q) = 1. Then after a
Floquet change of coordinates, equation (3.1) is transformed into (3.5)
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where

A= 0
k 0

We make a transformation to complex coordinates by z1 = x1 + ix2,
z2 = x1 - ix2. Then the resulting equation of the form of (3.5) is

i = Az + g2(t, z) + +gr(t, z) + O(IzIr+1), (3.18)

where z = (z1, z2)T, A = [ 0e 1, and gk(t, z) E H2 T for 2 < k <
r. We note that the second equation of (3.18) is conjugate to the first
one. The resonance conditions in our case are

2Tri
alwi-a2coi-wi=m 7, forj=1, lal=k>-2, mE7L,

27ri
a,wi-a2wi+wi=m 7, forj=2, JaI=k>>-2, mEl,

which are equivalent to

P(a1-a2-1)-=m
q

forj=1, IaI=k>-2, me7L,

P(a1-a2+1)-=m forj=2, IaI=k-2, meZ.
q

The only possibilities to get resonant monomials when 2 < k < q are:
for j=1, when a1-a2-1=0 andthen m=0,ora1-a2-1=
-q and then k = q - 1, m= -p; for j = 2, when a,-a2+1=0
and then m = 0, or a,-a2+ 1=q and then k = q - 1, m = p.
Therefore the resonant monomials up to order q are: (zilzz2e1 I al -
a2=1,2<a,+a2<q) U(zi'z22e2I a2-a1=1,2<a,+a2<q}U

{z2-le1,
z1-1e2}. The coefficient of any resonant monomial will be

c exp(-m p wit), where c is a complex constant. Hence a A-normal
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form of (3.18) up to order q is:

Z1 = G)1Z1 + C1ZiZ2 + ' +CkZ1 +1 Z2 + de 0 tz2q-1,

Z2 = -Q)iZ2 + C1Z1Z2 + ... +CkZ1 2+1 + de-gmitZI -1
(3.19)

where Z2 = z1, c1, ... , Ck, d are complex constants, q - 1 < 2k +
1 <- q.

If we let w = z1, w = z2, then from (3.19) we get

g, = Wiw + c1Iw12w + . . +Cklwl2kw + deq` itwq-1. (3.20)

The equation for w is omitted since it is conjugate to the equation
for w.

We can obtain a real A-normal form from (3.20) by applying the
transformation w = x1 + ix2. We can also apply the transformation
w = re`° to (3.20) to get real normal forms in polar coordinates. For
example, the normal form in polar coordinates is

I = a1r3 + +akr2k+1

( 2pTr 2pir
+rq-11 dtcos( T t - qB) - d2sin( T t - q0)),

+ b1r2 + +bkr2k

+rq-2 duos
2p17

( T t - qO) + dksin
2p7r

( T t - qB)),

where a; = Re(c,), b, = Im(c1), d1 = Re(d), and d2 = Im(d).
Now if we let w = ve"t, (3.20) becomes

v = c1Iv12v + +CkIvI2kv + dvq-1 (3.21)

It is simpler than (3.20), but we note that the original equation (3.1) is a
qT-periodic perturbation of (3.21). If we change (3.21) to polar coordi-
nates, then (3.21) becomes

I = a1r3 + +akr2k+1 + rq-1(d1 cos(gO) + d2 sin(gO)),

B = b1r2 + +bkr2k + rq-2(d2 cos(gO) - d1 sin(gO)),

where a; = Re(c,), b. = Im(c;), d1 = Re(d), and d2 = Im(d).
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2.4 Normal Forms of Maps near a Fixed Point

Consider a Cr+1 map F: fl c C" - C", where r >- 2 and fl is a
neighborhood of the origin in C. We assume that the origin is a fixed
point of F(x), that is, F(O) = 0. Then F(x) can be written as

F(x) =Ax + f2(x) + f3(x) + ... +fr(x) + O(IXlr+1),

xEf, (4.1)

where A is an n X n constant matrix and f k E H ` for 2 < k < r.
Now we change variables in (4.1) by

x=H(Y) °Y+hk(Y), YESZk, (4.2)

where hk E Hk, 2< k< r, and f'k c fZ is a neighborhood of the
origin in C" on which I + is invertible. The inverse transforma-
tion to (4.2),

y = x - hk(x) + O(lxlk+l), as x - 0,

is a smooth diffeomorphism in 1 k. The transformed map of (4.1),
G = H-1 o F o H, will take the form:

G(y) =Ay +.f2(Y) + ... +f k-I(y)
(4.3)

+[fk(y) +Ahk(Y) - hk(AY)] + 0 (IYIk+1), as y - 0,

where G(y) is defined in the neighborhood flk. We note that transfor-
mation (4.2) does not affect the terms in (4.1) with order < k - 1.

We define the operator Lkg: H,k - Hk by

L,kgh(x) = h(Ax) -Ah(x), h E Hk,, (4.4)

and let Rk be the range of LkkA in H, , and Wk be any complementary
subspace to q1 k in H,k, that is,

H,k=g1k®Wk.

Notice that the operator L,k4 is different from the one in Section 2.1.
We have the following theorem.
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Theorem 4.1. Suppose that the decompositions (4.5) are given for k =
2, ... , r. There exists a sequence of near identity transformations,

x=y+hk(y), yESZ, 2<k<r,

where hk E Hn and Sz c fl is a neighborhood of the origin in C'1, such
that the map (4.1) takes the form

G(y) =Ay +g2(y) + . +gr(y) + O(IYIr+1), y E n, (4.6)

where gk(y) EWk,2 <_k <r.

Definition 4.2. The truncated form of the map (4.6),

G(y) =Ay +g2(y) + ... +gr(y),

is called an A-normal form of (4.1) up to order r.

Lemma 4.3. If p, q E Hn and A is an n X n matrix, then

(1) (p(Ax),q(x)) = (p(x),q(A*x)),

(2) (Ap(x),q(x)) = (p(x),A*q(x)),

where A* is the adjoint operator of A with respect to the inner product
(', ) in C'1.

Proof. To prove (1) it is sufficient to show that

((Ax) ei, xOe;) = (x«e;, (A*x) et)

or equivalently that

((Ax)«e1, xse,) = ((ATx)0ej, x«e)

forIal=k,I(31=k,and1<i<_n.
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We have

<(Ax)e;, xRe;)

n

F1 (ajlxl + aj2x2 + ... +ajnxn)'ei, xRei/ = N!ca,
=1

where c" is the coefficient of xR in the expansion of (Ax)". Similarly,

((ATx)Re x"e,)

=
(F1

(aljxl + a2jx2 + ... +anlxn)R'ei, x"ej = a!cR
j=l

where cR is the coefficient of x" in the expansion of (ATx)R. It can be
shown that /3!c" = a!cp by the Binomial Theorem and elementary
calculations. The proof of (1) is then complete. The proof of (2) is
trivial.

Theorem 4.4. LA* is the adjoint operator of LA with respect to the inner
product (- , ) in Hn for each k >_ 2, where A* is the adjoint operator
of A with respect to the inner product ( , ) in C".

Proof. By Lemma 4.3, for any p, q e Hk we have

(LAp(x),q(x)) = <p(Ax) -Ap(x),q(x))

= (p(Ax),q(x)) - (Ap(x),q(x))

= (p(x), q(A*x)) - (p(x), A*q(x))

= (p(x), LA*q(x)). 0

Corollary 4.5. Ker(LA*) is the orthogonal complementary subspace to
R k k with respect to the inner product ( , ) in Hn for k >_ 2.
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Definition 4.6. Let o ,(A) = (A1, . . . , An) C C be the spectrum of A.
Then the following relations are called resonant conditions:

A" = Aj, (4.7)

where A" = A",, A" n-, I a I >- 2. Let (x 1, ... , x) be coordinates with
respect to the standard basis {e1,. .. , en} of Cn in which the matrix A
has a Jordan normal form with diagonal elements (A1, ... , An). Then a
monomial x"ej (l al = k > 2 and 1 < j < n) is called a resonant mono-
mial of order k if and only if (4.7) holds for a and j.

Theorem 4.7. If A = diag(A1.... , An), then an A-normal form up to
order r >- 2 can be chosen so that its nonlinear part consists of all
resonant monomials up to order r.

As in Section 2.1, we can apply also the matrix representation
method to compute A-normal forms of maps. Let Lk be the matrix
representation of Lk with respect to the basis Uk (see Section 2.1) of
H,k. Then we have the following:

Theorem 4.8. If A = diag(A1, ... , An) then LA is diagonal; if A is upper
(or lower) triangular with the diagonal elements (A1, ... , An}, then LA is
lower (or upper) triangular and if u,(x) = x"e,. is the ith element of basis
Uk, then the ith element of the diagonal of LA is A" - Aj

Let A = S + N be the S - N decomposition of A. We define the
operator N k: H,k -p H,k by

.N'kh(x) = h(Ax) - h(Sx) - Nh(x), h c= H,k.

Theorem 4.9. If A = S + N is the S - N decomposition of A, then
LA = Lk + .N'k is the S -N decomposition of L.

Corollary 4.10. If A = S + N is the S - N decomposition of A and
S = diag(A1, ... , An) , then an A normal form up to order r can be chosen
so that its nonlinear part is spanned by resonant monomials up to order r.
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Resonant monomials have the following symmetry property.

Lemma 4.11. Let A = S + N be the S - N decomposition of A and
S = diag(A1, ... , An). Then every resonant monomial y(x) = x"ej com-
mutes with S, that is,

Sy(x) = y(Sx).

Corollary 4.12. If A = S + N is the S - N decomposition of A, then an
A-normal form up to order r can be chosen so that it commutes with S.

Proof. We consider first the case that S is diagonal. By Corollary 4.10,
an A-normal form can be chosen to contain only resonant monomials
in its nonlinear part. Then the desired conclusion follows from Lemma
4.11.

Suppose now that S is not diagonal. Let P be a nonsingular transfor-
mation such that AO = P- 'AP is in upper triangular Jordan form and
A0 = So + No is the S - N decomposition of A0, where So is diagonal
and No is strictly upper triangular. Then A = PSoP-1 + PNoP-1 is the
S - N decomposition of A. By the uniqueness of such a decomposition,
S = PSoP-1 and N = PNoP-1. From Corollary 4.10 and Lemma 4.11
there is an A o-normal form

F(x) =Aox + f2(x) + +f'(x), (4.8)

so

Sofk(x) =f'(Sox), k = 2,..., r.

Then we change variables in (4.8) by x = P-1 y. We get an A-normal
form

G(y) =AY + g2(y) + ... +gk(y),

where G(y) =PF(P-1y) and gk(y) =Pfk(P-ly), k = 2,...,r. The
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nonlinear terms of G satisfy

gk(Sy) = pa J k(P-lSy) = pi J k(SOP-ly)

= PSofk(P-1y) = SP k(P-ly) = Sgk(y),

for k = 2, ... , r. And the matrix A commutes with S obviously. Thus
the theorem is proved. 0

The above results are valid for normal forms of maps on 118".

Example 4.13. Consider a mapping F(x) = -x + O(Ix12) as x -* 0
from l8 to R. A = -1 is the only eigenvalue. Then the resonant
conditions are

dk-A=0, k>-2,

that is,

(-1)k-1 = 1, k>-2.

Hence, the resonant monomials are x3, x5, , x2k+1,
, k >- 1. Thus

the normal form up to order 4 is

G(x) = -x + ax3,

where a is a real constant.
The next example illustrates the use of the matrix representation

method.

Example 4.14. Suppose that the matrix A of the linear part of a
nonlinear map from 082 to R2 is

The resonant conditions are (-1)"1+"2 = -1, j=1,2, for k = al +
a2 > 2. Hence there are no resonant monomials of even order and
every monomial of odd order is resonant. Therefore we need only to



104 Normal Forms

find a basis of a complementary subspace ,k for k odd. The matrix
representation of LA is taken with respect to the following basis of H2 :

{uR+1(x, Y) = xk-Ry'e2, /3 = 0, ... , k;

u,3+k+2(x, y) = xk-, y, e1, /3 = 0, ... , k},

where {e1, e2} is the standard basis of R2. We have to compute LAu; for
i=r1,...,d2=2(k+1).

Lk Xk-RYRI

L 0

f (-x +y)k-R(-y)'sl -1 1 f xk-Sysl

I` 0 J-[ 0 -1]I` 0 1

k-fl

_ (-1)kl (-1)k + 1)xk-sys + (-1)i(
j=1

0

LA[xk
RyRJ

I

_ 0 1 1 0 l
= [(-x +y)k-,6(-y)R - [ 0 -1 xk-is

I

(_ 1)k+1xk-Py(3

_ 1 k k-fl k-- (- ) ((-1)k + 1)xk-RyP + (-1)'( .
)xk-S-jyf+j

j=1

In terms of the basis of H2 we have, for odd k > 3:

k E (_
)j+1(k - (3) s+j+1, Q = 0,...,k,LAUD+1 = -us+k+2 + 1 u

j=1

k-(3LAu (-1)j+1(k -/3)u (3 = 0,...,k.A+k+1 - R+j+k+2
j=1



Normal Forms of Equations with Symmetry 105

Therefore we get the following matrix representations of LA, for k odd:

LA is the following 2(k + 1) x 2(k + 1) matrix

0 o 0 0 0

(i ) 0 0 0 0

_ ( )
(k-1 0 0 0

2 1 /
( ) - k

1 k 2
0 0 03

(

2 ) ( 1 )

I -1 1 1 0

-1 0 0 0 0 0 0 0 ... 0 0

0 -1 0 0 0 (;) 0 0 0 0

0 0 -1 0 0 (k) (k11) 0 ... 0 0

0 0 0 0 0 (3) (k 2

1)
(k 1 2)

... 0 0

0 0 0 ... 0 -1 1 -1 1 ... 1 0

It follows that for k odd a basis of Ker(LA)* can be chosen as
{e1, e2 + kek+2}, where {e1, ... , e2(k+1)} is the standard basis of R2(k+1)We

may also take {e1, e2} as a basis for a complementary subspace k

k > 3, odd. Hence a normal form up to order r >- 3 is

G(x, y) = m
-y + (akx2k+1 + bkx2ky\ I,

k=1 IJ
where ak, bk E R are real constants, and r - 1 < 2m + 1 < r.

2.5 Normal Forms of Equations with Symmetry

In this section, we consider equations with symmetry and their normal
forms.

Definition 5.1. Let S be an invertible n x n matrix. We say that the
equation

x=f(x), xEfICC", (5.1)
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where fl is a neighborhood of the origin of C", and f E C'(ft, C")
(r >_ 1), has S-symmetry if and only if

f(Sx) =Sf(x), forallxEfl. (5.2)

That (5.1) has S-symmetry is equivalent to the fact that (5.1) is
invariant under the transformation x - Sx.

From the definition, for a fixed f E C'(fZ, C"), if matrix S satisfies
(5.2), then so does S-1; if S11 S2 both satisfy (5.2), then so does S1 S2.

Thus the set F of all n X n matrices which satisfy the relation (5.2)
forms a group under matrix multiplication.

Definition 5.2. Let IF be a group of n X n matrices. If the right-hand
side of equation (5.1) satisfies

f(Sx) = Sf (x) , for all x E [I c C" and any S E F,

then we say that (5.1) has the group F-symmetry.

Example 5.3. The following are some examples of symmetry groups:
(1) 0(n), the n-dimensional orthogonal group, which consists of all

n X n orthogonal matrices;
(2) SO(n), the n-dimensional special orthogonal group, which consists

of all n X n orthogonal matrices whose determinants are equal to
1, SO(n) is also called the n-dimensional rotation group;

cos q - sin
(3) Zq, the group generated by S = K2,,,Iq =

sin a cos 2 ' where q

is a positive integer;

(4) the flip group generated by K" _ I"o 1 cl where I" is the

(n - 1) x (n - 1) identity matrix;
(5) Dq, the dihedral group, generated by (K2,1q, K2), where K2,"lq is

defined in (3) and K2 is defined in (4).
In what follows, we will discuss A-normal forms of equations with

S-symmetry, where S is an invertible n X n matrix.

Lemma 5.4. If equation (5.1) has S-symmetry and is of the following
form

.X =Ax + f 2(x) + ... +fk(x) + O(Ixlk+1)' x E [1, (5.3)
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where f k e H,k, k = 2, ... , r, then

(i) SA =AS;
(ii) f k(Sx) = Sf k(x), for any x e fI, k = 2,3,..., r.

Proof. It follows from Definition 5.1.

Lemma 5.5. The S-symmetry of an equation is invariant under S-symmet-
rical transformations of variables.

Proof. Suppose that (5.1) has S-symmetry. We change variables in (5.1)
by

x=h(y), yEcI, (5.4)

where h(y) is a diffeomorphism on Il with the property h(Sy) = Sh(y)
for any y e fl. The resulting equation after the change of variables
(5.4) is

y =
(hv(y))-1f(h(y)), y c- fl.

Let

g(y) =
(hv(y))-1f(h(y))

Then

g(Sy) =
(hy(Sy))-1 f(h(Sy))

=
(Shy(y)S-1)-1 f(Sh(y))

= S(hy(y))-1S-1Sf(h(y)) = Sg(y), for any y E fl.

Thus Lemma 5.5 is proved.

For any k >_ 2, the set

I f(Sx)=Sf(x),foranyxEC"}

is a linear subspace of H. We shall use the notation H,k instead of
H,k's whenever it is clear from the context what the matrix S is.
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Lemma 5.6. Suppose AS = SA. Then Hk, is LA-invariant.

Proof. For any h E 'Wk, let g(x) = LAh(x). Then

g(Sx) = hx(Sx) ASx -Ah(Sx)

=Sg(x), foranyxEC".

Thus Lemma 5.6 is proved.

Suppose AS = SA. Let LA be the restriction of Lk to the subspace
H,k. Let Wk be the range of LA in H,k, and k be any complementary
subspace to

._k
in H,k. Then we have the following theorem.

Theorem 5.7. If equation (5.3) has S-symmetry, then there exists a series
of near identity transformations with S-symmetry which bring equation
(5.3) into the form

Y =Ay + g2(y) + ... +gr(y) + O(Iylr+1),

where g k E O k, k = 2, ... , r.

Definition 5.8. Suppose that equation (5.3) has S-symmetry. Then the
truncated equation of (5.5)

j =Ay +g2(y) + ... +gr(y),

where gk E T-k, k = 2, ... , r, is called an A-normal form with S-sym-
metry up to order r of equation (5.3).

Lemma 5.9. Assume that AS = SA and A*S = SA*. Then a complemen-
tary subspace Ok to the range of LA in Hk is given by Ker(LA*) f1 H,k.

Proof. It follows from Lemma 5.6 that the subspace H,k is invariant
with respect to both LA and LA. . From Theorem 1.7, (LA)* = LA* I H,
Then the lemma is proved.
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Remark 5.10. In the case when 17,*, is not LA. invariant, we can apply
the matrix representation method as discussed in Section 2.1 to find
k. We notice that the matrix representation LA of LA is an s X s
matrix where s = dim(H,k).

To find A-normal forms of equations with S-symmetry, we have to
find the subspaces H,k, k >_ 2. To do this we introduce a linear operator
Lk, s: H,k -> H,k by

Lk^sh(x) = h(Sx) - Sh(x), h E H,k. (5.6)

It is clear that H,k = Ker(Lk°s). We may apply the matrix representa-
tion method to find Ker(Lk,s) in general. In the case when S is
diagonal, we can easily find a basis of Ker(Lk,s)

Lemma 5.11. If S = diag(s1, ... , then the set of all S-symmetrical
monomials of order k

{xae;I sa = s;, lal = k, 1 < j < n}

forms a basis of H,k.

Proof It is easy to see that any S-symmetrical monomial of order k
belongs to Ker(L,s) and thus to H,k. If h(x) = E,=lElal=kcjaxaej E
H,k, then we have

n

Lk°sh(x) _ cja(sa - s,)xaej = 0.
i=1 lal=k

Hence c,a = 0 for all monomials which are not S-symmetrical. It
follows that h(x) must be a linear combination of S-symmetrical
monomials of order k.

Example 5.12. Let

S = 1 01
0 (5.7)
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Then x«e1 E H,k if and only if

(-1)«1(-1)«Z= -1,

that is,

a1 + a2 = k,

a1+a2=k.

Hence, the S-symmetrical monomials are those for which lal = a1 +
a2 > 2 is odd. Therefore

j7. 2k12k = 0}
'

17n2k+1 = H2k+1
n k=1,2,..

If equation (5.1) is two-dimensional with linear part

A = 0 10 0 ,

and has S-symmetry, where S is defined by (5.7), then by Lemma 5.9,
Example 1.15, and the above discussion, an A-normal form up to order
r - 2 is

k=1

where ak, bk are all complex constants, k = 1, ... , m, r - 1 < 2m +
1 < r.

Theorem 5.13. Suppose that

x =Ax +f(x), f(x) = o(Ix12) asx->0,

is an A-normal form with S-symmetry. Then the resulting equation of the
linear change of coordinates

x=Py

(akx2k+1 + bk x2ky )

is an A-normal form with 9-symmetry, where 4 = P-1AP, 9 = P-1SP.
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Proof. The assertion that the resulting equation is an A-normal form is
trivial. The 9-symmetry follows from the following calculation:

AS=P-APP-1SP=P-IASP=P-1SAP=P-ISPP-IAP=SA,

and

g(Sy) = P-1f(PP-1SPy) = P-1Sf(Py) = P-ISPP-1f(Py) = Sg(y),

where g(y) = P-1f(Py). O

Remark 5.14. For a real equation with S-symmetry, if the matrix A is
diagonalizable over the complex numbers, then we can also apply the
method introduced in Section 2.1 to this case. We illustrate this idea
with the following example.

Example 5.15. Suppose

x = AX) I x = (x1, X2
)T

E R2,

f(x) = O(Ix12) as x --- 0,

has Zq symmetry, q >_ 3. With the complex change of variables z =
P-1x, where z = (z1, z2)T E C2 and

P-1 = r1 i l
1 1,

(5.8) becomes

Z = g(Z), Z = (zl, Z2) T E C2, z2 = Z1, (5.9)

where g(z) = P- I f (Pz) and the second component of (5.9) is conjugate
to the first one. Let S denote the generator matrix of the ZQ symmetry
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group (q z 3):

27r 2arcos - -sin -
q q

S = tar 2arsin - cos -
q q

Let

z,r

P-ISP = e` 9
021r

0 eq
Since (5.8) has an S-symmetry, (5.9) has an S-symmetry by Theorem
5.13. We can find a normal form with 9-symmetry. The linear part of
equation (5.9) has the zero matrix since (5.8) does. Therefore every
nonlinear monomial is resonant. We note that S is a diagonal matrix
and the S-symmetry conditions are

27r "j 21r a2 27r

(e`q) (e-`q) = e' -q, al + a2 = k >- 2, for the first equation,

tar a,( 21r a2 27r

(e`4) le `q) =e q al+a2=k>-2,

for the second equation,

which are equivalent to

al - a2 - 1 = lq, l E Z, for the first equation,
al - a2 + 1 = lq, l E Z, for the second equation, (5.10)
al+a2=k>- 2.

Therefore

{0} for k < q,k even, and k 0 q - 1;

k,S m+1z m m m+1He =span{z1 2 e1, z1 z2 e2},

2m+1=k, fork<q,kodd, andk*q-1;
H4-l,9 = s an{z9-le z9 le zm+lzme zmzm+1e }z p z 1 1 2= 1 z 1 1 2 2)

for

HZ-1,S = span( zZ-lel, zi -lee} for odd q >- 3.
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Thus the normal form of (5.9) with 9-symmetry up to order q is

Z1 = C1Z2Z2 + ... +CmZln+1Z2 + Cm+1Z2-11
_ _ 5.11

Z2 = C1Z1Z2 + +CmZiZ2 +1 + Cm+1Z1 -1

where Ck are all complex constants, q - 1 5 2m + 1 < q. Since the
second equation of (5.11) is conjugate to the first one, we let z = z1 and
omit the second equation of (5.11). Then we say that

i = C1IZI2Z + . +CmIZI2mZ + Cm+1zq-1 (5.12)

is an A-normal form with Z9 symmetry up to order q.
We can apply to (5.12) the change of coordinates z = x1 + ix2 to

obtain a real normal form with S-symmetry of (5.8) up to order q.
Another real normal form can be obtained from (5.12) by using polar

coordinates z = re`°:

r = alr3 + +amr2m+1 + (am+lcosgO + bm+lsingO)rq-l,

9 = b1r2 + +bmr2m - (am+lsing9 - bm+lcosgO)rq-2,

where ak = Re(ck), bk = Im(Ck) for k = 1, ... , m + 1.

2.6 Normal Forms of Linear Hamiltonian Systems

In this and the next sections, we discuss normal forms of Hamiltonian
systems over the reals

z = JVH(x), X E R2n, (6.1)
where

J= -I 0
In

I
,

n

In is the n x n identity matrix, H E Cr((J2n, R), r > 1, and VH(x) is
the gradient of H(x).

We note that JT = J-1 = -J, where jT is the transpose of J.
Hence J is an orthogonal skew-symmetric matrix.

If H(x) is a quadratic form, then H(x) =
i

(x, Bx), where (, ) is
the usual scalar product in R2n, and B is a 2n x 2n symmetric matrix.
We note that VH(x) = Bx. For such an H(x), (6.1) can be rewritten as

x = JBx, x E lg2n, (6.2)

which is a linear Hamiltonian system.
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Definition 6.1. A linear operator A: R2" . R2" is called infinitesimally
symplectic if and only if

A* = JAJ,

where A* is the adjoint operator of A.
The set of all infinitesimally symplectic operators is a vector space,

denoted by sp(2n, R).

Lemma 6.2. A linear system of equations

x=Ax, xER2n,

is Hamiltonian if and only if A is an infinitesimally symplectic operator.

Proof. Suppose the system is Hamiltonian. Then A = JB for some
symmetric matrix B. Therefore

AT = BTJT = -BJ = -J-'AJ = JAJ.

Conversely, suppose AT = JAJ. We define B = J- 'A. Then

BT= -JA =J-IA=B,

that is, B is symmetric. We define H(x) = i (x, Bx). Then the system
can be rewritten as

x = JVH(x), X E ll 2n.

Corollary 6.3. If

Aj
A2

A3 A41,

where each A, (1 < i < 4) is an n x n matrix, then A E sp(2n, IJ) if and
only if ATZ = A2, AT = A3, and AT = -A4.
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Theorem 6.4. Let A E sp(2n, I!). If A is an eigenvalue of A with alge-
braic multiplicity m, then -A, A, and -,t are also eigenvalues of A with
the same multiplicity.

Proof. Let p(A) be the characteristic polynomial of A. Then by Lemma
6.2,

p(A) = det(AI - A) = det(AI - J-'ATJ-')

= det(J(AI+AT)J-') = det(-J)det(J-')det(-AI-AT)

=p(-A).

Since A is a real matrix we also have p(A) = p(A). This implies the
result. 0

Corollary 6.5. The characteristic polynomial of an infinitesimally symplec-
tic operator must be a product of factors of the form A2, (A + aXA - a),
A2 + a2, and ((A - a)2 +,8')((A + a)2 + R2), where a, 63 are real posi-
tive numbers.

Definition 6.6. A linear operator S: R2n , R2n is called a symplectic
operator if and only if

S*JS = J,

where S* is the adjoint operator of S.
The set of all linear symplectic operators forms a Lie group under the

matrix composition, and is denoted by Sp(2n,l8).

Lemma 6.7. A linear symplectic transformation brings a linear Hamilto-
nian system into a linear Hamiltonian system.

Proof Suppose that S is a linear symplectic operator. We apply a
change of variables x = Sy to the linear Hamiltonian system

z = JBx, (6.3)
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where B is a symmetric matrix. Then the resulting equation of (6.3) is

y = S-'JBSy. (6.4V)

Since S is symplectic, S-'J = JST. Therefore, (6.4) can be expressed as

y = JBy,

where B = STBS. Since B is symmetric, the matrix h is also symmetric,
thus the transformed equation (6.4) is a linear Hamiltonian system.

Definition 6.8. Two 2n X 2n infinitesimally symplectic matrices Al and
A2 are symplectically similar if there exists a symplectic matrix S such
that A2 = S-'A,S. Two linear Hamiltonian systems

x = Alx and z = A2x, x E R2n,

are symplectically conjugate if matrices Al and A2 are symplectically
similar.

It is easy to see that symplectic conjugacy (or symplectic similarity) is
an equivalent relation. In every equivalence class of symplectically
conjugate linear Hamiltonian systems we will find one as a representa-
tion of this class. We will call this system a normal form. In order to
describe these normal forms, we introduce below some basic concepts
of symplectic vector spaces.

Definition 6.9. Let V be an even-dimensional vector space over the
reals. A bilinear form T(-, ) on V is called skew-symmetric if

T(x, y) = -T(y, x), for all x, y E V;

is called nondegenerate if T(x, y) = 0 for all y c- V implies
x = 0. A nondegenerate, skew-symmetric, bilinear form T(-, ) defined
on V is called a symplectic form and (V, T) is called a symplectic vector
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space. A basis {v1, .... v,,, w1, . . . , w,,} of a symplectic vector space (V, T)
is called a symplectic basis if

T(vi,vj) = 0, T(Wi,Wj) = 0, and T(vi,wi) = Sii

for i,j = 1,2,...,n,

where Sii is the Kronecker symbol.

Example 6.10. The bilinear form 1R2n x 12n - 18 defined by

w(x, y) = (x, Jy), for all x, y E Q$2n,

where is the usual scalar product in R2n, is a symplectic form,
(j2n, (0) is a symplectic vector space, and the standard basis of 182n is
also a symplectic basis of (182n, W).

Definition 6.11. Let W be a subspace of a symplectic vector space
(V, T). W is called a symplectic subspace if Tl w is nondegenerate. Let
W1, W2 be two symplectic subspaces of a symplectic vector space (V, T).
W1 and W2 are called T-orthogonal if T(x, y) = 0 for all x e W1 and
y E W2.

Definition 6.12. An infinitesimally symplectic mapping A on (V, T) is
called decomposable if V = V1 ® V2, where V1 and V2 are proper,
A-invariant, and r-orthogonal symplectic subspaces of V. A is called
indecomposable if A is not decomposable.

Theorem 6.13. Let A be an infinitesimally symplectic mapping defined on
a symplectic vector space (V, T). Suppose V = Vl ® . . ® V, where 1
i = 1, ... , s, are proper, A-invariant, mutually T-orthogonal, symplectic
subspaces. If

i i iri = U1, ..., vn I
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is a symplectic basis of V and the matrix representation of Al v; with
respect to 1T is

A. B.

C, -AT '

where BT=B,, C , T = C, for i = 1,...,s, and n1 + +ns =n, then
{ U i, ... , Un 1, ... , VII ... , Uns, W i, ... , Wn1, ... , W i, ... , Wns} is a symplectic
basis of (V, r) and the matrix representation of A under this basis is

A, B,

A2 B2

As. B,

Cl -A T1

2C2 -A T

Cs -AT

By using Theorem 6.13 we may consider only the cases where A is an
indecomposable infinitesimally symplectic operator defined on (R2n, w).
We have two cases: (i) A is semisimple; (ii) A = S + N is nonsemi-
simple, where S is the semisimple part of A, N is the nilpotent part of
A, and N * 0. We give below the list of normal forms of infinitesimally
symplectic operators, but omit their proofs. The normal forms will be
denoted by A and the corresponding Hamiltonian functions by H(x).

List I. Normal forms of indecomposable semisimple infinitesimally sym-
plectic mappings.
(1) (0),

A = [0
0]

0 0
H(x,Y)=0, x,yER.
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(2) r(A) _ (±a, a > 0),

A=[0
-a], H(x,Y)=axy, x,YER.

(3) a(A) = (±13i, a > 0),

A=
L

+o ±0 J, H(x, y) _ ± 2 R(x2 + y2), x, y E R.

(4) Q(A)= (±a±(3i,a> 0,/3 > 01,

A=

0

0

-a

-a

,

H(x) = a(x1y1 + x2y2) + 8(x2Y1 - x1 y2), x = (x1, x2, Y1, Y2 )T

ER 4.

List II. Normal forms of indecomposable nonsemisimple infinitesi-
mally symplectic mappings.

(1) v(A) = {0},

0
1

1 0

A=

0 -1

n

n

n-1 1

H(x) - F xiyi+l + 2
xn, x = (x1,..., xn, y1,..., yn)T E

i=1
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(2) o,(A) = (0),

0
1

A=

-1

0

n

, n odd,

n

n-1
H(x) = F, xiYi+1, x = (x1,..., xn, Y1,..., Yn)

i=1

(3) au(A)={±a,a>0),

A=

1 0

' 0 -1

1 a

-a -1
-a -1

-a

a

n

n

n

H(x) = a E xiYi + L.+ xiYi+1, x = (xi....) Xn, Y1,..., Yn) R2n.
i=1 i=1

(4) u(A) = (±/3i, a > 0),

A2

I2

I2

A=

A2 . 0

....................................

A2 -I2

n

, n even

n

T E R2n
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where I2 = [1 0,, A2
= [0

ol,

n/2 L 11 n-2 - 22(xn-1 + xn),H(x) = R E (x2i-1y2i - x2iy2i-1) + E xiyi+2 +
2i=1 i=1

where x = (x1, ... , xn, Y17 ... , Yn)T E R2n.

(5) Q(A) = {±13i, /3 > 0),

ER

1 0 '-ef3
...............................................

ER

ER 0 -1
- E 0

LEY

n-1

2/H(x) = -E/3 E (-1)i+1(xixn+l-i
+Yiyn+1-i)

i=1

n-1
n

1 +1

+
n

L xiyi+l + 2 (-1) E/3x? +Y?"i z
i=1

where x E (xj,... , xn, Y1, ... , Yn)T E R2n.

(6) Q(A)=(±a f/3i,a>0,/3>0),

- EP

,E= ±1,n odd,

!2 B2.

-BT
2

......................................

- 12

n even,

- I2-BT
2
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where B2 =
L P

a ]' I2 = [ o
0
11 J'

n/2
((

n-2
H(x) = a xiyi + / (x2i-1Y2i - x2iy2i-1) + xiyi+2,

i=1 i=1 i=1

where x = (x1,. .. , xn, Y1, ... , y,,) E R2n.

2.7 Normal Forms of Nonlinear Hamiltonian Systems

Consider a Hamiltonian system of equations

z=JVH(x), xEfZcl{82n (7.1)

where fZ is a neighborhood of the origin in R2n, the Hamiltonian
function H(x) = H2(x) + H3(x) + +Hr(x) + O(lxIr+1), Hk E
Pen, the linear space of all kth order scalar homogeneous polynomials
in 2n variables, k = 2, ... , r.

Definition 7.1. A diffeomorphism S: fZ c g2n is called a sym-
plectic diffeomorphism if

(DS(x))*J(DS(x)) = J for all x E ft c 12n,

that is, the linear mapping DS(x): I2n . R2n is symplectic for all
x E fZ C R2n, where fl is a neighborhood of the origin in R2n. If S(x) is
a symplectic diffeomorphism on f1, then x = S(y), y e fl, is called a
symplectic transformation.

Theorem 7.2. A symplectic transformation x = S(y), y E fl, where ft is
a neighborhood of the origin in R2n, transforms a Hamiltonian system on
fl with Hamiltonian function H(x) to a Hamiltonian system on fl = S(fl)
with Hamiltonian function H(S(y)).
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Proof. The resulting system of (7.1) under the transformation x = S(y)
is

Y = (DS(y))-1J((DS(y))*)-1wH(S(y)), y E fl. (7.2)

Since S is symplectic,

(DS(y)) 1J((DS(y))*)-1 =J, for ally E SZ C R2n.

Therefore equation (7.2) can be expressed as:

y =JV H(S(y)), y E fl,

which is a Hamiltonian system with Hamiltonian function H(S(y)).

Theorem 7.2 says that simplifying a Hamiltonian system by a symplec-
tic transformation is equivalent to simplifying its Hamiltonian function
by composing it with this transformation.

Lemma 7.3. If

F(x) = x + Fk(x) + O(IxIk+1), xEcCR2n,

is a symplectic diffeomorphism, where Fk E PZn, k >_ 2, and Cl is a
neighborhood of the origin in II82n, then

(DFk(x))*J + J(DFk(x)) = 0, xE fj cR2n, (7.3)

that is, DFk(x) is an infinitesimally symplectic linear map for any
xE11 gg

2n.

Proof. By Definition 7.1, we have

(I + DFk(x) + O(IxVk))*J(I + DFk(x) + O(IxIk)) = J,

for any xEfjCR2n.

Hence (7.3) follows.
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Corollary 7.4. If

F(x) = x + F'(x) + O(Ixlk+l), x E fI c R 2n,

is a symplectic diffeomorphism, where Fk E HZn, k >_ 2, and fl is a
neighborhood of the origin in 182n, then J(DFk(x)) is symmetric for any
xEfZ.

Let

Hz = (f (=- H2 I Df (x) is symmetric for any x in Q82n).

Then H2k,, is a linear subspace of H2,,.

Lemma 7.5. For any f E Hen, the equation

VHk+l(x) =f(x), x E 182" (7.4)

is uniquely solvable for Hk+1 E P2,, 1.

Proof. Let I'ik = {a E R2n, a = (0, ... , 0, a1,..., a2n), aj are nonnega-
tive integers, i < j < 2n, and l al = k), i = 1, ... , 2n, k >_ 2. For each
a E rik we define

2n a
aj x x;

fi,a(x) = x e1 + E e, (1 < i< 2n - 1),
i=t+la1+1 xi

and

k
f2n,a(x) = x2ne2n

We will show that the set (f,, a} defined above forms a basis of 172n'
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Component-wise for each fi a:

(fi,a)1

0, j <i,
xaix++1 ... x2n

a1 xi xj+11 ... 1 ... x2n-, i < j G 212.

Each fi, a E Hz since as the following calculation shows Df,, a is
symmetric for any x E l2n.

(Dfi,a(x))ii =

0, j < i or l < i,
x"al-, j=i and l>i,
xl

xaa1-, j>i and I=i,
x1

aja1 x"xi

ai + 1 x,x1
j>i,l>i, and 196J.

Any f E H2n is a linear combination of the { fi a). To see this we
suppose f E HZ, and f(x) = Ein=1EIal=kciaxaej, where the cia are real
constants. Then we define

2n

f(x) f(x) - Clafi,a(x) = Ciax"ei.
aEr; i=2Ial=k

It is clear that f E H,,. Since Df(x) is a symmetric matrix and its
elements in the first row are all zero,

0 = (Df(x))1J = (Df(x))J1 = ' cj1,,)a1
x
-, 2 < j < n,L.

1

it follows that each monomial x"ei in f(x) with nonzero coefficient is
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such that a1 = 0. Hence

2n

f(x) _ c«)x"e
i=2 aEr2

By induction, after 2n - 1 steps we obtain:

f(x) Ciafi,a(x) C2nn 12)f2n-1,a(x)
«E rj aEr2_1

(2n-1) k
- C2n x2n = 0.

To show that the {f,, a) are linearly independent, we assume that
E?n

= 1`a E rkCiafi,a(x) = 0. The first component of this equation is

E Clax" = 0.
Ial=k

Therefore all cla = 0. The second component of the equation is

claaz x«xl
E C2axa + E _ E C2ax" = 0.

aEr2 aEr; a1 + 1 X2 aEr2

Therefore all C2a = 0. An induction argument shows that all cia = 0 for
a Erik and1<i<2n.

Consider now the equation:

VHk+1(x) = fi,a(x), a E Fk, 1 < i < 2n. (7.5)

It is obvious that Hk+1(x) = aj+1
x"xi, a E I'ik, is the unique solution

of (7.5) in P Z + 1. Since any f E HZ can be uniquely represented as a
linear combination of the (It, a) and V is a linear operator, it follows
that (7.4) is uniquely solvable for Hk+l E Pin 1. o

Let jk be the truncation operator that keeps only the terms up to
order k in a Taylor expansion.
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Lemma 7.6. For any symplectic diffeomorphism of the form

F(x) = x + Fk(x) + O(Ixlk+1),

X E SZ C 1182n,

where Fk(x) E H2 , k >_ 2, and fl is a neighborhood of the origin in E2n,
there exists a Hamiltonian system on fl with Hamiltonian function H(x)
whose time-one mapping 4)H(x) satisfies

x + Fk(x) = jkFH(x). (7.6)

In particular, we can choose H E P2 + 1

Proof. We note that JFk(x) E H2 by Corollary 7.4. Then we define
H(x) = Hk+1(x) which is the unique solution of equation

JVHk+I(x) = Fk(x)

in P' (by Lemma 7.5). Let t(t, x) be the flow of the system

x =JVH(x).

Then 1(t, x) can be expanded in a Taylor series

F(t, x) = F1(t)x + F2(t, x) + ... + 1k(t, x) + O(Ixlk+1)'

where 4)1 E C1(R, R2nX2n), 4)j (=- OR X f{82n,R2n) and cj(t, ) E Hj2n
for each t E R, j = 2, ... , k. By definition, (D(t, x) is the solution of

4(t, x) = JVH((D(t, x)),
(7.7)

(D(0, x) = X.
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From (7.7), expanding '(t, x) in its Taylor expansion and equating
coefficients, we get

$1(t) = 0,
(7.8)1

(DAO) = 12.1

)j(t, x) = 0,
(7.8)i

(Dj(0,x) =0, j =2,...,k- 1,

dan

$k(t, x) = JVH((D1(t)x),
(7.9)

(Dk(0, x) = 0.

From (7.8)1, we get c1(t) ° I2n. From (7.8)x, 2 < j < k - 1, it is easy to
see that (D,(t, x) = 0, j = 2, ... , k - 1. Accordingly, (7.9) becomes

$k(t, x) = JVH(x) = Fk(x),
(Dk(0, x) = 0.

Hence ck(t, x) = Fk(x)t, for any t e U8, and X E R2". It is clear that
(Dk(1, X) = Fk(X). Thus

jk4)H(x) = jk(D(1, x) = x + Fk(X). 0

Lemma 7.7. The time-one mapping of a Hamiltonian system is a symplec-
tic diffeomorphism.

Proof. Let 1(t, x) be the flow of the Hamiltonian system

x =JVH(x), xEflcR2n,

where fZ is a neighborhood of the origin in R2n. Then we have

d

dt
b(t, x) = JVH((D(t, x)), t E I, x e fl,
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where IX is the maximal interval containing 0 such that 4(t, x) E fl if
tEIx for any x(=- f.And

d

dt
Dx4)(t, x)

J(DVH)(1(t, x)) (Dx(D(t, x)), t E I, x E fl. (7.10)

For any x E 1Z c t1 n, let us consider the function

+Gx(t) = (Dx(D(t, x))*J(Dx4)(t, x)).

Since

dt OX(t) _ (dt (Dxc(t, x))*)J(Dxc(t, x))

+ (DxO(t, x))*J(dt (Dx1(t, x))),

from (7.10),

dt
4x(t) = (Dx(D(t, x))*((DVH)(-[D(t, x)))*( -J) -J(Dx(D(t,x))

+(Dx1(t, x))*J J((DVH)(1(t, x)))(Dx(D(t, x))

_ (Dx(D(t, x))*((DVH)(t'(t, x)))*(Dx(D(t, x))

-(Dx(D(t, x))*((DVH)(1(t, x)))(Dx(D(t, x)),

t EIx, X E=- fl.

We note that DVH(x) is symmetric, being equal to the Hessian matrix
of H(x). Therefore (d/dt)i/rx(t) = 0, for t e Ix and x E fl. Hence
(Dx(D(t, x))*J(Dx(D(t, x)) = (Dx4)(0, x))*J(Dx ,(0, x)) = J, t E Ix, X E
fl. By Definition 7.1, 4(t, x) is a symplectic diffeomorphism on 11 for
anytEIx. 0

Let H(x) = H2(x) + H3(x) + +H,(x) + O(Ixl'+i) be the
Hamiltonian function of a Hamiltonian system on a neighborhood of
the origin in R2n, where H, E P2,, j = 2, ... , r. From the results of
Section 2.6, we may assume H2(x) is already in normal form. Thus to
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simplify H(x) we may apply only near identity symplectic transforma-
tions. From Lemmas 7.3-7.7, any near identity symplectic transforma-
tion is of the form

x = y +JVFk+i(Y) + O(IYIk+i), X E f,

where Fk+l(y) E P,,1, k >- 2, and fl is a neighborhood of the origin
in R2n

Lemma 7.8. If H2(x) is a quadratic form in x1, ... , x2,,, then for any
k >- 3 and Fk E P n, the kth-order homogeneous polynomial in the expan-
sion of H2(y + JVFk(y) + O(I yl k)) is

n aFk dH2 aH2 aFk

ayn+i ayi ayn+i ayi

Proof. Let H2(x) =
z

(x, Bx), where B is a 2n X 2n symmetric matrix,
and (, ) is the usual scalar product in IJ2n. We note that VH2(x) = Bx.
Then

H2(y + JVFk(y) + O(IYIk))

(y +JVFk(Y) + O(IYIk), By +BJVFk(Y) + O(IYIk))

= z (Y, By) +
2

(JVFk(Y), By)

+'-z (y, BJVFk(y)) + O(IYIk+i)

The kth-order terms in the above expansion are

(JVFk(Y), By) +
i

(y, BJVFk(Y))

= i (JVFk(Y), By) + i (By, JVFk(Y))

_ (JVFk(Y), By) = (J VFk ( Y), VH2 ( Y))

n aP aH2 aH2 3Fk

i=1 ayn+i 3yi ayn+i ayi



Normal Forms of Nonlinear Hamiltonian Systems 131

Definition 7.9. Let P, Q E C1([2n, R).

n

l

aP aQ - aQ aP )
P JVP 0

i=1 axn+i axi axn+i axi

is called the Poisson bracket of P and Q.

If H2 and Fk are as in Lemma 7.8, then we have

H2(x + JVFk(x) + O(Ixlk))

= H2(x) + [Fk(x), H2(x)] + O(IxIk+1) (7.11)

For a given quadratic form H2(x) in 2n variables x1, ... , x2n, we
define a linear operator adHZ: P2 - Pz by

adH2F(x) = [H2(x), F(x)], F E P2k, (7.12)

where k = 3, 4, .... Thus (7.11) can be rewritten as

jkH2(x + JVFk(x) + O(I xI k)) = H2(x) - adH2Fk(x).

Let Rk be the range of adHZ and Ck be any complement of Rk
kin P2n

Theorem 7.10. There exist a series of near identity symplectic transforma-
tions

x = y +JVFk(y) + O(IYI"),

Y E f1r,

where Fk E P2 , k = 3, ... , r, and Str is a neighborhood of the origin in
OB2n, such that the Hamiltonian function K(y) of the resulting system of
(7.1) is of the form

K(y) = H2(y) + KA(Y) + ... +Kr(Y) + O(IYIr+1),

y E f1r,

where Ke(y) E C', j = 3, ... , r.
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Proof. The theorem is proved by induction. 0

Definition 7.11. A Hamiltonian function H(x) is called an H2-normal
form up to order r >- 3 if H(x) = H2(x) + K3(x) + K,.(x), where
H2(x) is a quadratic form and K1(x) E C', j = 3, ... , r.

To find normal forms of a Hamiltonian system, it is sufficient to
determine the structure of a complementary subspace Ck to the range
of adki2 for 3 < k < r. We note that if JVH2(x) = Ax, where A is an
infinitesimally symplectic matrix, then adki2Fk(x) = (Ax, VFk(x)),
where (, ) is the usual inner product in IR2n. We define adA: PZ -* P n
by adAF(x) = (Ax, VF(x)) for any F E P2 `n, k >- 2. Then adH2 = adA.
Hence we may use adA to study the normal forms instead of adkH2

Definition 7.12. Let o,(A) = (A1, ... , An, -A1, ... , -An) be the spec-
trum of A. Then the following relations are called resonant conditions:

n

F, Ai(ai - ai+n) = 0, jal > 3. (7.13)
i=1

Let (x1, x2, ... , x2n) be symplectic coordinates with respect to the
standard basis of R2n, in which the semisimple part of matrix A is
diag(A1.... , An, -A1, ... , -An). Then a monomial x" with Jal = k >: 3
is called a resonant monomial of order k if and only if the multi-index
a = (a1, ... , a2n) satisfies (7.13).

Theorem 7.13. If A = diag(A1, ... , An, -A1, ... , -An) is the matrix of
linear Hamiltonian system x = JVH2(x), then an HZ normal form up to
order r >- 3 can be chosen so that its kth-order homogeneous terms are
linear combinations of all resonant monomials of order k, k = 3, ... , r.

Proof. For any monomial x" E PZ , a calculation shows that

adAx" _ Ai(ai - ai+n)x" = 0.
i=1
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This implies that Ker(adk) is a complementary subspace to Im (adA).
Thus the result follows from the definitions of the H2-normal form and
resonant monomials. o

Corollary 7.14. Suppose that A = diag(,11,... -An, -An.... , -An) is
the matrix associated to the Hamiltonian function H2(x, y), (x, y) E
08n x 18n. If A1, ... , An are rationally independent, then the HZ normal
form up to order r -,1. 3 is

n

H(x, y) _ EAixiyi + L. axaya,
i=1 2<IaIS[r/2]

where a = (a1, . . . , a,,) is a multi-index and all a,, are real constants.

Example 7.15. Suppose H2(x1, x2, y1, y2) = x1Y1 - x2Y2. Then

-1 11
Al=1, A2= -1.

1

This is the case called 1: - 1 resonance. The resonant conditions are

(a1 - a3) - (a2 - a4) = 0, jal > 3,

that is,

a1 + a4 = a2 + a3, lal > 3.

This implies that any resonant monomial is of even order. Hence an
H2-normal form up to order r is

[r/2l k k

H(x) = x1Y1 - x2Y2 + Cijx1
k=2i=0j=0

where cij are real constants, 0 < i, j < k, k = 2, ... , [ r/2].
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Example 7.16. Suppose H2(x, y) = xy. Then

A=

A = 1 is clearly rationally independent. Thus, by Corollary 7.14, an
HZ normal form of H(x, y) up to order r >_ 3 is

[r/2]
H(x, y) =xy + F, akxkyk,

k=2

where ak are real constants, k = 2, ... , [r/2].
In general we can apply the following adjoint operator method to get

the H2-normal forms. In linear space PZ we define an inner product
(- , )1 as the following. If p(x) = EIal=kaax", q(x) = Elal=kbax",
then (p(x), q(x))1 = Elal=kaabaa!. In fact, (- , )1 is the inner prod-
uct (- , ) defined in Section 2.1 for the case dimension = 1.

Theorem 7.17. Under the scalar product ), in the space P2r,, the
linear operator adA*: P2 -> P2 is the adjoint operator of adA.

Proof. Let

F(x) = E faxes E Pin, G(x) _ F, gsx0 E P 2k,,
Ial=k 1/31=k

where the fa and g. are real constants. Then

(adAF(x),G(x))1 =
fagp((Ax,Vx"),x,1)1

lal=k 1131=k

(F(x),adk*G(x))1 = E F, .fag,3(x",(A*x,Vx"))1.
Ial=k 1131=k

Therefore it will be enough to show that the following is true for any
two monomials x" and x,6 in P n:

((Ax,Vx"),x$)1 = (xa,(A*x,Vx"))1
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We have

((Ax,Vx"), x')1

n
n

x"
n

aijx; a;- xs
i=1=1 ( x, i=1

1

n n XaX.
Ea,Ea ,x1
i=1 j=1 xi

n

E a,aii a!, if/3 = a,
i=1

if/3,=a,-1,/31=a;+ 1
for some i # j,
and /3k=akfor k#i and j,

0, otherwise.

(x", (A*x,Vx,))1

l ,

,Oi x n

I
n
n \x", I Ea;txi

n

l-l
l=1 i=1

xi
i=1

xi
n n

x R

1

E Qi E a;i
i=1 ;=1 x,

n n xRx,
= x", Pi E ai;

J=1 i=1 xi

n

(Piajj)a!, ifa = C3,
=1

for some i # j,
and ak = /3k for k * i and j,

otherwise.

Both expressions are equal. Thus the lemma is proved.
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Corollary 7.18. Ker(adk*) is a complementary subspace to the range of
adk in PZ for k >_ 3.

Example 7.19. Suppose H2(x, y) r=
2

y2.1Then

A-I0 0'
Consider the system of linear partial differential equations

that is,

,VF(x,y)) =0,

aF
xa = 0.

Y
(7.14)

The homogeneous polynomial solutions of (7.14) are

F(x, y) = ckxk, k >_ 1,

where Ck are real constants. Hence an H2-normal form up to order
r>_3is

H(x, y) =
2

YZ + F Ckxk,
k=3

where Ck are real constants.

Example 7.20. Suppose H2(x1, x2, y1, y2) = 2 (1 + y22). Then

10 0 1 0

A= 0 0 0 1

0 0 0 0

0 0 0 0

If we solve the partial differential equation

eF W
(A*x,VF(x)) =x1- +x2- =0,

ay, aY2
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where x = (x1, x2, y1, Y2)T, then any polynomial solution is of the
following form:

F(x) = '(x1, x2, xly2 - x2y1),

where C is an arbitrary differentiable function. In order to show 1 is a
polynomial in its arguments, without loss of generality, we assume F is
a homogeneous polynomial of order m. Let

F(x1, x2, Y1, Y2) _ E Cijklx
i+j+k+1=m

Denote z = xly2 - x2y1. If xl # 0, then we have

2Yi Y2

/ /
(x1, x2, Z) _ E Cijklxi_1x2Y1 (Z + x2Y1) .

i+j+k+l=m

Note that the left-hand side of the above equality is independent of yl.
Taking y1 = 0, we have

F(x1, x2, Y1, Y2) = 1(x1, x2, Z) = L cij01xi-1x221
i+j+l=m

E cijolx
i+j+1=m

/
1x2(x1Y2

-x2Y1)/.

Since F(x1, x2, y1, y2) is a polynomial in x1, x2, y1, y2, cijO1 = 0 if i < 1.
Hence

c(x1, x2, z) _ cij01xi-1x221.
i+j+l=m

i>_l

By reindexing, we get

c(x1, x2, Z) E= Cjk[xlx2Z1,
k+j+21=m

where cjki are real constants. So 1 is a polynomial in its arguments and
has the form shown above. Therefore, an H2-normal form up to order r
is

r
k

H(x1, x2, Y1, Y2) = 2 (Y1 +Y22 ) + E Cijkxix2(x1Y2 - x2Y1) ,
i+j+2k=3
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where cijk are real constants. For r = 3,

Ker(adA*)

= span{xi, xix2, xlx2, x2, xl(xlY2 - x2yl), x2(x1y2 - x2y1))By

an elementary argument we can choose also the following as a
3 3complementary subspace to the range of adA in P4 :

C3 = span{xi, xix2, xlx2, x2, x1 Y2, x2Y1}.

Hence an H2-normal form up to order 3 is

H(x) = i(yi +
y2) + alx1 + a2xix2

+ a3x1x2 + a4x2 + a5xiy2 + a6x2Y2,

where al, ... , a6 are all real constants.
We suppose that the standard basis {x" I dal = k} of PZ is in the

reverse lexicographic ordering. We denote by add the matrix represen-
tation of adA with respect to the basis {x" I Jal = k).

Lemma 7.21. If A = diag(A1, ... , A,,, -Al, ... , -Ad, then add is also
diagonal. If A is upper (or lower) triangular with diagonal elements
{Al, ... , An, -All ... , - then add is lower (or upper) triangular.
Furthermore, if x" is the ith basis element of P21,,, then for both cases the
ith element of the diagonal of add is En_ lA1(a1 - a;+ ).

The proof of Lemma 7.21 is similar to that of Lemma 1.13.

Theorem 7.22. Suppose A = S + N is the S - N decomposition of A.
Then adA = ads + adk is the S - N decomposition of adA and
Ker(ads*) n Ker(adN*) is a complementary subspace to the range of adA
in PZ for each k > 3.

The proof of Theorem 7.22 is similar to that of Theorem 1.18.
We can also choose Ker(ads) n Ker(adN*) as a complementary sub-

space to the range of adA in P2 for k >: 3.
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Corollary 7.23. Let A be the matrix of linear Hamiltonian system z =
JVH2(x), x E g 2n. If A = S + N is the S - N decomposition of A and
S = diag(A1,... , An, -Al, ... , -An), then an H2-normal form up to or-
der r >- 3 can be chosen so that its nonlinear part of order greater than 2
is spanned by resonant monomials up to order r.

Corollary 7.24. Suppose A is the matrix of the linear Hamiltonian system
.i = JVH2(x), X E R2n. Let A = S + N be the S - N decomposition of
A. An HZ normal form can be chosen so that it satisfies the relation
H(esx) = H(x) for any x in a neighborhood of the origin in R2n.
Consequently an HZ normal form of the Hamiltonian system can be
chosen so that it has group F-symmetry, where I' is the group generated
byes.

For the case when the semisimple part of the matrix A is diagonaliz-
able over the complex numbers, we can apply a method similar to that
introduced in Section 2.1 for real normal forms to get a real basis of
Ker(adk*). We illustrate this idea by Examples 7.25 and 7.28.

Example 7.25. Let H2(x, y) = 22 (x2 + y2). Then

A=[ off.

We change variables to z1 = x + iy, z2 = x - iy. Then the matrix of
the linear transformation is

P __ 1 [ 1 11
2 -i i'

and the matrix of the linear part of the transformed equation is
A = P-'AP = diag(i, -i) with respect to the new basis. The resonant
monomials are (zkzZ, k >- 2). Since 22 = z1, ziz2 is real. We change
coordinates by z1 = x + iy and z2 = x - iy. Then the corresponding
real basis of Ker(adA) is {(x2 + y2)'} for each k >- 2 and Ker(adA +1)
= (p) for any k >- 1. Hence an H2-normal form up to order r is

H(x, y) =
z

(x2 + y2) + a2(x2 + y2)2 + ... +ak(x2 + y2)k,

where a2, ... , ak are real constants, r - 1 < 2k < r.
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Definition 7.26. If Hamiltonian H is a polynomial of degree r in the
symplectic variables X1'...' x,,, Y1'...' Y,,, that is actually a polynomial
of degree [r/2] in the variables p, = (x? + ye2)/2, i = 1, ... , n, then H
is called a Birkhoff normal form of degree r.

Then by a similar argument to that in example 7.25, we have the
following theorem.

Theorem 7.27. Let H2(x1,... , xn, Y1, ... , Yn) = 2A1(x1 + Yi) +
+ ZAn(xn + yn), where the A, are real constants. If A1,..., An are

rationallly independent, then an H2-normal form up to order r > 3 is a
Birkhoff normal form of degree r.

Example 7.28. Suppose

H2(x1, x2, Y1, Y2) = a(x1Y2 - x2Y1) - 2 P(x1 + x2),

where a > 0, p = ± 1. Then

0 -a 0 0

a 0 0 0
A p 0 0 -a

0 p a 0

Let z1 = x1 + ix2, Z2 = Y1 + iY2, z3 = x1 - ix2, z4 = Y1 - iy2. Then
we have

A=
ai

P ai

-ai
p -ai

Let A = S + N be the S - N decomposition of A, where

ai

-ai and N =

10

P 0

0
P 0

The set of all resonant monomials of order k forms a basis of Ker(ads).
The resonant conditions are a1 + a2 = a3 + a4 with J al = k >- 3. Ob-



Normal Forms of Nonlinear Hamiltonian Systems 141

viously, all resonant monomials must be of even order. All the fourth-

order resonant monomials are Z1Z3, Z1Z2Z3, Z2Z3, Z1Z3Z4, Z1Z2Z3Z4,
z22 z3z4, zi2 z4, zlz2z4, and z2z4.

To find a basis of

C4 = Ker(ads) n Ker(adN*),

we apply the undetermined coefficient method. Since the system of
linear partial differential equations for Ker(adN*) is

aF c3F

z2 aZ + z4 aZ =
0,

1 3

2 2we get for a basis of C4: z2z4, l(ziz2z4 - zzz3z4), (z2z3 - ziz4)2. We
note that z3 = z1 and z4 = z2, whence this basis is real. After changing
variables by z1 = xl + 1x2, z2 = Y1 + LY2, Z3 = XI - ZX2, z4 = y1 - 1y21

we get a real basis of C4: (y1 + y2)2, (y1 + Y22)(x1Y2 - x2Y1), (x1Y2 -
x2yl)2. Thus the H2-normal form up to order 4 is

2

H(xl, x2, Y1, Y2) = 001Y2 - x2Y1) - 2P(x1 + x2) + a(yl + y2)

+ b(y1 +Y2)(x1Y2 - x2y1) + c(x1y2 - x2Y1)2,

where a, b, c are real constants.
Since ad' is a linear operator on PZ, we can apply also a matrix

representation method to find complement Ck for each k > 3. We
illustrate this method with the following example.

Example 7.29. Suppose H2(x1, x2, y1, y2) = xly2 + 2x2. Then

10 0 0 0
A= 1 0 0 0

0 0 0 -1
0 ±1 0 0

For k = 3, under the basis (x", lad = 3) of P4 which is in the reverse
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lexicographic ordering, the matrix representation add of operator adA is
shown in the table below.

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ±1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ±1 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ±1 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 +2 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 -2 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ±1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ±1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 ±10 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ±10 0

00 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 ±2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 ±3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10

Then Ker((add)*) = span{e14 ± ze19, 2e8 + e15 ± 2e20, e17}. We can
choose (f3 = span{e14, e15, e17} as a complementary space to the range
of add in 1120. Then an HZ normal form up to order 3 is

H(x1, x2, Y1, Y2) = x1 Y2 + I
2 2X

2
+ a1x2Yi + a2x2Y1Y2 + a3Yi,

where a1, a2, a3 are all real constants.

2.8 Takens's Theorem

Takens's Theorem gives relationships between diffeomorphisms and
vector fields in neighborhoods of the origin in I}B". In the simple case
where F(x) = Ax is a linear diffeomorphism on I(8", if there exists a real
n X n matrix B such that exp(B) = A, then F(x) is the time-one map
of the flow generated by the vector field X(x) = Bx. Takens's Theorem
generalizes this simple case to nonlinear diffeomorphisms.

We assume that F: F - Fe" is a C'-diffeomorphism (r >_ 2), with
F(O) = 0. The Taylor expansion of F(x) at the origin is

F(x) =Ax + F2(x) + F3(x) + +F'(x) + o(IxI'),

as x - 0, (8.1)
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where Fk E Hn for k = 2, ... , r. We assume that

A = S(I + N),
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where S is semisimple, N is nilpotent, SN = NS and I is the identity.
There is no loss of generality in this assumption since any linear
transformation on 118" has the S - N decomposition and if the transfor-
mation is invertible so is its semisimple part. Then Takens's Theorem
can be stated as follows:

Theorem 8.1. (Takens) Given the diffeomorphism F(x) defined by (8.1)
and (8.2) and any integer 1 < l < r, there exist a diffeomorphism Oil:
fl c IW" - 118", where fl is a neighborhood of the origin in 1", and a
vector field X(x) on 1W' such that
(i) j'(4il o F o 4ii 1) is an A-normal form of diffeomorphism F(x) up to

order 1,
(ii) X(Sx) = SX(x) for any x E 1W,
(iii) jl(4ir ° F ° +ir 1)(x) = j'((D(1, Sx)),

where jl is the truncation operator up to order l and (DX(t, x) is the
flow of X(x). Furthermore for such a vector field X(x), j'X(x) is
uniquely determined by j'F(x).

Theorem 8.1 will be proved using several lemmas. First we consider
the simple case when A = I + N, where N is nilpotent and upper
triangular, that is, the diffeomorphism is given by

F1(x) = (I + N)x + FZ(x) + F3(x) + +Fr(x) + o(Ixlr)

(8.3)

Lemma 8.2. There exists a vector field X(x) on IW' such that jrX(x) is
uniquely determined by jrF1(x), and its flow (DX(t, x) satisfies:

jr4,X(1, x) = jrF1(x). (8.4)

Proof. Assume that X(x) is of the form:

X(x) = Bx + X2(x) + ... +Xr(x) + o(Ixlr+1)' (8.5)
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where B E P."' and XI E H,k, k = 2,..., r and that its flow is of the
form:

Ix(t, x) = t1(t)x + 42(t, x) + ... +4r(t, x) + O(Ixlr+l),J l 1(8.6)

where 4k(t, ) E Hn for any t E R; and I1(t) and Fk(t, x) for k =
2, ... , r are Cr in t. Then we have to determine the vector field X(x)
such that its flow (Dx(t, x) satisfies (8.4). Since (Dx is the flow of X:

$x(t, x) = X(4)x(t, x))

= B(Dx(t, x) +X2((Dx(t, x))

+ ... +X'((DX(t, X)) + O(l xlr+1)'

(Dx(O, x) = X.

We denote by p' (t, x) (j > 1, i = 2, ... , r - 1) the homogeneous poly-
nomial of order j in the expansion of Xi(4)x(t, x)). From (8.6) and
(8.7), comparing equal-order homogeneous polynomials, we have

$1(t) = B41(t),
41(0) = 1,

k-1
$k(t, x) = B4k(t, X) + E pik(t, x) + Xk(c1(t, x)),

i=2
(Dk(t,0) = 0.

2 < k < r, (8.9)

The solution of (8.8) is 11(t) = e Bt and therefore jl(Dx(1, x) = j1F1(x)
implies eB = I + N. Then B = log(I + N) = N is also upper triangu-
lar. So, the solution of (8.8) is now determined as:

q1(t) =eivt with N= log(I+N). (8.10)

Assume now by induction that X 2, ... , Xk, (D2'. , (Dk have already
been determined. Then

k
pk+l(t, x) _ , pi,k+1(t, x)

iL=.2
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is known and (8.9) (with k + 1 instead of k) becomes

$k+1(t, x) = N(Dk+1(t, x) + pk+1(t, x) + Xk+l(eZtx)
(Dk+1(0,x) = 0. l

By the variation of constants formula, we get
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q k+1(t, x) = eNtfoe-RS[Xk+1(et x) + pk+l(s, x)]ds. (8.11)

From (8.4), (D k+1(l, x) = Fk+1(x), which gives:

f le-IVtXk+1(eIVtx)dt = e-IVFk+1(x) _ fOle-Ntpk+1(t, x)dt. (8.12)

We note that both sides of (8.12) belong to H,k+1 and Xk+l is
unknown. We define the operator Tk: H. -p H. by

(Tkh)(x) = fo1e-tvth(e x)dt, h E H,k. (8.13)

Claim 8.3. T k is a linear invertible operator for k >_ 2.

From Claim 8.3 it follows that (8.12) is uniquely solvable for Xk+1
and consequently cpk+1 is determined by (8.11).

Proof of Claim 8.3. It is obvious that Tk is linear. Since Hk is a finite
dimensional linear space, to show that T k is invertible is equivalent to
showing that the null space of T k is (0). Since N is upper triangular
and nilpotent,

N=
-N

log(I+N) = E
j=1 J

for some integer m is also upper triangular and nilpotent. Thus, elvt
and a-,vt are of the form:

1

1

0 1
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where (*) denotes entries depending on t. Let x"e, be any monomial in
H,'. Then (eN`x)"e, = x"e1 + r(t, x)e,, where r(t, x)e, consists of terms
"bigger" than x"e. in the reverse lexicographic ordering for any t E R.
Similarly, e-N`(eN`x)"e1 = x"e, + F(t, x), where F(t, x) consists only of
terms "bigger" than x"e, for any t E R. Let 0 # h E H,k and cx"ej
with c * 0, 1 a I = k, 1 < j <_ n, be the "smallest" monomial of h with
respect to the reverse lexicographic ordering. Thus from above discus-
sion, (Tkh)(x) = cx"e, + r(x), where rP(x) consists only of terms
"bigger" than x"e, in the reverse lexicographic ordering. This implies
that (Tkh)(x) * 0 if It * 0.

Corollary 8.4. Lemma 8.2 is still valid in the case where N is not upper
triangular.

Proof Let P be a nonsingular n x n matrix. It is easy to see that (1)
log(I + P-'NP) = P-1 log(I + N)P and (2) h(x) is a solution of
Tk(h) = f if and only if h(x) = P-1h(Px) is the solution of

f 1e-P-1Nrrh(eP-'NPrx)dt = P-1f (Px).
0

Hence T k is also invertible in the case where N is not upper triangular.

Lemma 8.5. Let X(x) be a C' vector field on R" and 4)X(t, x) be its
flow. Suppose that r is an invertible n x n matrix. Then is

the flow of the vector field o--1X(o-x), that is,

(Do-'xQ(t, x) = o,-1(Dx(t, ox).

Proof Let (Dx(t, x) be the flow of , = X(y). Then o,-1(DX(t,
satisfies the equation z = o,-'X(oz) and the initial condition at t = 0
is o,-1IX(0, ox) = o,-lox = x. Therefore ox) is the flow of
the vector field o,-1X(o-x).
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Lemma 8.6. Suppose that F(x) is a Cr diffeomorphism with linear part
(I + N)x, where N i s nilpotent, and that F(x) commutes with a nonsin-
gular matrix a E l 'x" Then the vector field X(x) defined by Lemma 8.2
has o, symmetry up to order r, that is,

jrX(x) foranyx E P'.

Proof. By Lemma 8.2, jr(DX(1, x) = jrF(x). Therefore, o- 1jr4X(1,
ax) = o--1 and since F has
jrF(x). By Lemma 8.5, jr`D,_,X,"(1, x) = jrF(x) and by Lemma 8.2,
jrX(x) is uniquely determined by jrF(x). Thus

jrX(x), for any x E R".

Proof of Theorem 8.1. From Corollary 4.12 an A-normal form of
diffeomorphism (8.1) can be chosen so that it commutes with S, the
semisimple part of A. Let 41, be a diffeomorphism in neighborhood dZ
of the origin in l for 2 < 1 5 r such that

j'(4,1oFo+Gi 1)(x) =S(I+N)x+F2(x) + +F'(x)

is the A-normal form of (8.1) which commutes with S. We factor out S.
Then we get

jl(41 ° F o 1)(x) = S[(I + N)x + F2(x) + ... +Fu(x)], (8.14)

where Fk(x) = S-1Fk(x), 2 < k < 1, and Fk commutes with S since
Fk commutes with S. By Lemma 8.2, Corollary 8.4, and Lemma 8.6
there exists a vector field X(x) which commutes with S such that

jl(41 ° F ° Or 1) = $1'0x(1, x)),

where (DX(t, x) is the flow of X(x). Since X(x) commutes with S it
follows from Lemma 8.5 that (DX(1, x) also commutes with S. Therefore
jl(I1 ° F ° 4,i-')(x) = j'((Dx(1, Sx)).

We show next that if the diffeomorphism satisfies some group symme-
try, then the vector field given by Theorem 8.1 also satisfies the same
group symmetry.
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Theorem 8.7. Let IF be a group of invertible n X n matrices. If the
diffeomorphism (8.1) has F-symmetry, that is, F(yx) = yF(x) for any
y E F, then the diffeomorphism ilir and the vector field X given by
Theorem 8.1 also have I'-symmetry up to order r, that is,

jr4lr(yx) = yjrOr(x) and JrX(yx) = yjrX(x),
for any xER n, yEF.

Proof. The linear part of diffeomorphism (8.1) is Ax = S(I + N)x =
(S + N1)x, where N1 = SN is nilpotent and commutes with S. From
the symmetry assumption it follows that

S+N1=y-'(S+NI)y=y-1Sy+y-1Nly, yEF.
But y -'Sy is semisimple, y -'N1y is nilpotent, and the two commute.
By the uniqueness of the S - N decomposition it follows that S =
y-'Sy and N1 = y-'N1y. Thus, Sy = yS and Nly = yN1 for any
y E F. Therefore also Ny = yN for any y E F. From the results in
Section 2.5, we can find an A-normal form of (8.1) with F-symmetry by
a transformation with I'-symmetry. It follows that the nonlinear terms
in (8.14) commute with every y E F and therefore by Lemma 8.6 the
vector field X(x) given by Theorem 8.1 also commutes with each y E F
up to order r.

2.9 Versal Deformations of Matrices

Let A: A c 0k -, pgnxn be a C' mapping, where A is a neighborhood
of the origin in O. To find a canonical form of A(A), A E A, we may
try to find the Jordan canonical form for each A(A) by a linear change
of coordinates depending on A. However, the linear transformations
which change A(A) to its Jordan form may not depend smoothly on A.
As an example, let

A(A)=0[0 Al AER.0

The Jordan form of 11A(A) for each A E rR is

J,ifA#O.
f 0

1, 0, and 1
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It is easy to see that any linear transformation which changes A(A) to
its Jordan form must be discontinuous at A = 0.

In this section we will derive a canonical form (or normal form) for a
family of matrices that depend smoothly on parameters by a linear
transformation also depending smoothly on parameters.

Definition 9.1. Let AO E R"'" be fixed. A family of matrices A(A),
A E A c Rk, is called a deformation of AO if A: A -> R"" is C1 and
A(0) =A 0.

Definition 9.2. Let both A(A) and B(µ) be deformations of A0, where
A E A c Ek and µ E A c 181. If there exist a deformation C(µ) of the
identity matrix I with µ E & c 0 and a C1 mapping 0: O -p A with
0(0) = 0 such that

B(µ) = C(Il)A(.O(µ))C(µ)-1' µ E 0, (9.1)

then we say that B(µ) is induced from the deformation A(A) by C(µ)
and O(µ).

Definition 9.3. A deformation A(A) of AO is called a versal deforma-
tion of A0 if any deformation B(µ) of A0 can be induced from A(A).
A versal deformation of AO is called a miniversal deformation if the
dimension of its parameter space is the smallest among all versal
deformations of A0.

Example 9.4. Let A0 = [
o

o

] . Consider the following three deforma-

tions of A 0:

r1+A1 A21 _ r1 01
A1(A) IL A3 A41' A2(A) = L0 A1]'

_ [1+A1 01
A3(A) 0 A2 ,
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where All ... , A4 are real parameters. We will show that A1(A) is a
versal deformation but it is not a miniversal deformation, A2(A) is not a
versal deformation, and A3(A) is a miniversal deformation.

Let B(µ) be an arbitrary deformation AO with µ E A c R1. Then
B(µ) must have the following form:

1 +b,(µ)
B(µ) =

b3(µ)
µEA,

where the bi: A -p U8 are C' functions with bi(0) = 0, 1 < i < 4. Thus,
B(µ) is induced from A1(A) by C(µ) = I and 4(µ) = (b1(µ), b2(µ),
b3(1-t), b4(µ))'. Hence, A1(A) is a versal deformation.

To show that A2(A) is not a versal deformation, we consider the
following deformation of A0:

B(µ)=[1 Oµ OJ, R.

Suppose B(µ) is induced from A2(A) by a deformation C(µ) of I and a
C 1 mapping 0: A - ER, that is,

B(µ) = C(µ)A2(0(µ))C(µ)-1I µ E A, (9.2)

where A is a neighborhood of the origin in R. Let

C(µ) =
C,(µ) C2lµ)

c3(µ) c4(µ)
µ E A,

where the ci(µ) are C' functions. Since C(A) is a deformation of I,
c,(0) = c4(0) = 1, c2(0) = c3(0) = 0. Then from (9.2) one must have

[ 1 + µ 0 c1(µ) c2(µ) _ c1(µ) c2(µ) 1 0

0 0 c3(µ) c4(µ) c3(µ) c4(µ) 0 4(µ)

µ E A.

This implies (1 + µ)c1(µ) = c1(µ) and therefore c1(µ) = 0, µ E A,
which contradicts c1(0) = 1.

It will be shown later by Theorem 9.17 that A3(A) is a miniversal
deformation of AO and A,(A) is not a miniversal deformation of A0.
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Now we consider a characterization of versal deformations. We first
introduce some notation. Let GL(n, Fl) be the set of all invertible real
n x n matrices. It is well known that GL(n, Il) is a Lie group and
gl(n, Il) is the Lie algebra associated with GL(n, F) with respect to the
Lie bracket:

[u,v] = uv - vu, u,v E gl(n,IR).

We define a group action 7r: GL(n, F) x gl(n, Fl) -> gl(n, F) by

ir(g, u) = gug-1, g E GL(n, If8), u E gl(n, Il).

Definition 9.5. Let A0 E gl(n, F). The set

y(A0) = {-rr(g,Ao) I g E GL(n,F)}

is called the orbit through A0.
In other words, the orbit through A0 under the action it is the set of

all real n x n matrices similar to A0. It is well known that y(A0) is a
submanifold of gl(n, Il). For a fixed u E gl(n, Il), we define a linear
operator L,,: gl(n, Il) - gl(n, Il) by

[v,u], v Egl(n,F).

Definition 9.6. Let A0 E gl(n, i8). The set

ZA0 = Ker(LAO)

is called the centralizer of A0.
We note that ZAo is the set of all real n x n matrices that commute

with A0, and it is a subspace of gl(n, Il).
Let TAO(y(Ao)) be the tangent space to y(A0) at A0 and Im(LAO) be

the image of LAO in gl(n, Il). Then we have the following lemma.

Lemma 9.7. TAO(y(Ao)) = Im(LAO).
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Proof Let u E gl(n, R) and I u I be sufficiently small. Hence I + u E
GL(n, R). Then as lul - * 0,

ir(I + u, A0) = (I + u)A0(I + u)-' = (I + u)A0(I - u + o(l ul))

=A0+uA0-Aou+o(lul) = 7r(I,AO) +LAo +o(lul).

Therefore Dg-rr(I, A0) = LAO and hence TAo(y(Ao)) = Im(LA0).

Corollary 9.8. codim(y(A0)) = dim(ZA0).

Proof

dim(gl(n, 68)) = dim(Im(LA,,)) + dim(Ker(LAO))

= dim(TA0(y(Ao))) + dim(ZAO)

= dim(y(A0)) + dim(ZA0).

Corollary 9.9. Let V be a submanifold of GL(n, R). If V is transversal to
ZAo at I, then

TAo(y(Ao)) = LAO(T,V).

Proof. By the definition of the transversality, for any u E gl(n,18) there
exist u1 E T,V and u2 E T,(ZAo) such that u = u1 + u2. Hence

LAou = [u, A0] = [u1, A0] + [u2, A0] = [u1, A0] = LAOu1.

Lemma 9.10. Let A: A - gl(n, U8) be C1, where A is a neighborhood of
the origin in lBk, and V be a submanifold of GL(n, R). Assume that A(A)
is transversal to y(A0) at A = 0, I E V and V is transversal to ZAo at I,
k = codim(y(A0)), and dim(V) = dim(y(A0)). Then the mapping c:
V X A -o gl(n, III) defined by

F(v, A) = vA(A)v-1, v E V, A E A,

is a local diffeomorphism in a neighborhood of (I, 0) in V x A.
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Proof. From Lemma 9.7, 0) = Dg-rr(I, AO) = LA,, DAF(I, 0)
DA(0). Therefore

0) (u, v) = LAou + DA(0)v, u E TIV, v E TOA.

By the transversality hypothesis on A(A),

TA0(y(Ao)) + DA(0)(TOA) = gl(n, 08). (9.3)

By Corollary 9.9, LAo(TIV) = TAo(y(Ao)). Therefore D4)(I,0) is surjec-
tive. We note that dim(V x A) = dim(gl(n, R)). Hence the conclusion
follows from the Inverse Function Theorem.

Theorem 9.11. A deformation A(A) of A0 is a versal deformation if and
only if A(A) is transversal to the submanifold y(A0) at A = 0 in gl(n, R).

Proof. Let A be in a neigborhood A of the origin in R". Assume that
A(A) is a versal deformation of A0. Let B(µ) be an arbitrary deforma-
tion of Ao with µ E A c R1. Then there exists a deformation C(µ) of I
with µ E c A and a C' mapping 0: i - A with ¢(0) = 0 such that

B(µ) = C(A)A(0(A))C(A)-', µ E 0.

By taking the derivative with respect to µ at µ = 0 we get

DB(0) v = DA(0) D¢(0) v + [ DC(0) v, AO], v e 081.

Since B(µ) is an arbitrary deformation of A0, DB(O)v can be any
element in gl(n, 08). On the other hand, by Lemma 9.7, [DC(0)v, AO] E
TA4(y(Ao)). Therefore

TA(O)(gl(n, 08)) = DA(0)(TOA) + TA(o)(y(Ao))

This says that A(A) is transversal to the submanifold y(A0) at k = 0 in
gl(n, R).

Conversely, assume that A(A) is transversal to y(A0) at k = 0. By
the definition of transversality, k z codim(y(Ao)). First we consider
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the case k = codim(y(Ao)). Let V and 1 be as in Lemma 9.10. Let
B(µ) be an arbitrary deformation of A0 with p e 0 c R'. Then by
Lemma 9.10 the equation

B(µ)=cF(v,A), vEV, AEA

has a unique solution v = C(µ), A = O(µ) for µ in a sufficiently small
neighborhood 0 c 0 of the origin in Ilk, where C(µ) and 4(µ) are C'
with C(0) = I and 0(0) = 0. Thus

B(p-) = (D(C(µ),fi(µ)) = C(µ)A(O(µ))C(µ)-1,

1A E &

This says that A(A) is a vernal deformation of A0. For the case where
k > codim(y(Ao)) = d, there exists a C' mapping A(µ) defined in a
neighborhood A of the origin in R d such that A(.1(µ)) is a deformation
of A0 induced from A(A) and it is transversal to y(A0) at µ = 0. From
the above discussion, A(A(A)) is a versal deformation of A0. Hence
A(A) is a versal deformation of A0.

From Theorem 9.11, the dimension of a parameter space of a
miniversal deformation of A0 is equal to codim(y(Ao)) = dim(ZA0)
On the other hand, a miniversal deformation of A0 is not unique since
the mapping A(A) which is transversal to y(AO) at A = 0 is not unique.

Theorem 9.11 shows also that the problem of finding a miniversal
deformation of A0 can be reduced to an algebraic problem of finding a
complementary subspace to TA0(y(A0)) = Im(LAO) in gl(n, R). We show
next how to construct a complementary subspace to Im(LAO) in gl(n, R).
We introduce first a Hermitian scalar product in gl(n, Ii):

((u,v)) = tr(uv*), u,v Egl(n,R).

where tr(uv*) denotes the trace of uv* and v* is the transpose of the
matrix v. If u = (uij) and v = (vi1 ), then by definition ((u, v)) =
Ei, i uijvii

Theorem 9.12. LA' is the adjoint operator of LAO with respect to the inner
product (( , )) in gl(n, IR).



Versal Deformations of Matrices 155

Proof. For any u, v e gl(n, OB),

((LAOu, v)) = ((uAo, v)) - ((Aou, v))

= tr(AAov*) - tr(Aouv*) = ((u, LAov)).

Corollary 9.13. Ker(LAZ) is the orthogonal complementary subspace to
Im(LAO) with respect to the inner product ((- , )) in gl(n, R).

Corollary 9.14. Let (v1, ... , vk) be a basis of Ker(LA*). Then

k

A0+ A,v1,
f=1

where All ... , Ak are real parameters, is a miniversal deformation
of Ao.

By Corollaries 9.13 and 9.14, the problem of finding a miniversal
deformation of A0 can be reduced to finding a basis of the centralizer
ZAo of A. In the case where A 0 is an upper triangular Jordan matrix,
we have the following lemma.

Lemma 9.15. Suppose A0 is an upper triangular Jordan matrix with only
one eigenvalue and a sequence of Jordan blocks of sizes n1 >- n2 >-

ns. Then ZAo consists precisely of the matrices of the form shown
in Figure 9.1, where each oblique segment stands for a sequence of
identical entries and the blank part consists of zero entries and dim(ZAZ)
= n1 + 3n2 + 5n3 + +(2s - 1)ns = number of oblique segments.

Proof. For simplicity, we consider the case where s = 2. Then the
matrix A0 has the following form

Ao=AI +
NI

U N211
L O
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Figure 9.1. Case s = 3.

1

0

0 1

0

N2 =

n2Xn2

and n1 +n2=n.

Let u E Ker(LAS) and

u= [u1

u2JU3 U4

where the sizes of u1, u2, u3, and u4 are n1 X n1, n1 X n2, n2 X n1, and
n2 X n2, respectively. Since

[u1

U3

[Nl*

0
N2

I

0
NI* Nj [ u3 u4 ] - 0'

one must have

u1Ni-Niu1=0, u2Ni-NNu2=01

u3Ni - NZ u3 = 0, u4N2 - Nz u4 = 0-2 (9.4)

By solving (9.4) for u1, u2, u3, and u4, one obtains the desired result. 0

Remark 9.16. A basis {v1, ... , vk} of Ker(LAt) can be chosen such that
each v; is a matrix with all entries on one of the oblique segments



Versal Deformations of Matrices

II I

I I

Figure 9.2. Case s = 3.

157

described in Lemma 9.15 equal to 1 and all other entries being zero. By
an elementary algebraic discussion, we can show that a basis {w1, ... , wk}
of a complementary subspace to Im(LA0) can be chosen such that each
w, is a matrix with only one entry on one of the oblique segments
described in Lemma 9.15 equal to 1 and all other entries being zero.
Thus

k

A0 + E Aiwi,
i=1

where each Ai is a real parameter, is also a miniversal deformation
of A0

Some of the matrices generated by such matrices {w1, ... , wk} are
shown in Figure 9.2, in which all entries that are not on the black
segments are equal to zero.

Theorem 9.17. If AO is an upper triangular Jordan matrix with m distinct
eigenvalues w1, ... , wm, and the sequence of blocks corresponding to the
eigenvalue wi are of sizes nl(wi) ? n2(wi) ? ... >- ns(wi), 1 < i < m,
then the dimension of the parameter space of a miniversal deformation of
A0 is

m

d = E (nl(wi) + 3n2((Oi) + 5n3((Oi) + ... +(2si - 1)ns.(wi)),
i=1

and a miniversal deformation of AO is block diagonal, each of the blocks
being a miniversal deformation described in Remark 9.16 for the block of
AO corresponding to each eigenvalue.
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Proof The proof is similar to that of Lemma 9.15.

Example 9.18. (1) Let

(01

AO = W2 w;#wj if i*j,i,j=1,...,n.

Then a miniversal deformation of AO is

where A,, i = 1, ... , n, are parameters.
(2) Let

Ao=0.

Then a miniversal deformation of AO is

All ... A,.

A21 ... A2n

Anl ... Ann

A2

where the A, , i, j = 1, ... , n, are parameters.
(3) Let

1

0
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Then a miniversal deformation of A 0 can be chosen as one of the
following:

I

A 1

1

0 1

A2 Al

or

0 0

1 0 0 1

A l A2
...

An
An ... A2 A1]

where the A., i = 1, ... , n, are parameters.
(4) Let

0 1 0
A0= 0 0 1 .

0 0 0

A miniversal deformation of A0 can be chosen as one of the following:

0 1 0 Al 1 0

0 0 1 or A2 0 1

Al A2 A3 A3 0 0

0 1 0 Al 1 0

or Al A2 1 or A2 Al 1 ,

A3 0 0 A3 A2 Al

where A1, A2, and A3 are parameters.
(5) Let

0 1 0
A0= 0 0. 0 .

0 0 0

Here we have two blocks corresponding to the same eigenvalue. There-
fore, a miniversal deformation of A 0 can be chosen as one of the
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following:

0 1 0

Al A2 A3 or

A4 0 A5

where A,, i = 1, ... , 5, are parameters.
(6) Let

a 1 : 0

A°= 0 a: 0 ,

0 0/3
a*13.

Here we have two blocks corresponding to distinct eigenvalues. There-
fore, a miniversal deformation of A ° can be chosen as one of the
following:

A 1 0 0 0 0 0

A° + A2 Al 0 or A° + Al A2 0 ,

0 0 A3 0 0 A3

where All A2, and A3 are parameters.
(7) Let

A°= {_1 11.

By solving LA u = 0 directly, a miniversal deformation of A° can be
found as one of the following:

A°+
Al

_A2
01,

All or A°+L0
Al A2

where A, and A2 are parameters.

Remark 9.19. For the case where the matrix A° has nonreal eigenval-
ues, one can find a nonsingular matrix p E C"" such that p -'A° p is
in an upper triangular Jordan form. Then one can apply Lemma 9.15 or
Theorem 9.17 to find a basis of the linear space of all complex matrices
commuting with (p -A Op)* and then to find miniversal deformations of
A0. We illustrate this idea by the following example.

A3 0 A5
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Example 9.20. Let

a (3 1 0

=A
-(3 a 0 1

P O 0.O
0 0 a 13 '

We take

0 0 -a a

1 0 1 0
-i 0 i 0

P 0 1 0 1

0 -i 0 i

Then

a + Pi 1 0 0

0 a+/3i 0 0pAop =
0 0 a -/3i 1

0 0 0 a-13i

Any complex 4 x 4 matrix commuting with (p -A Op)* is of the form

B(E)

E1 0 0 0

E2 E1 0 0

0 0 E3 0

0 0 E4 E3

I E;EL, i=1,...,4.

Since

(p-1)*B(E)p*

E1 + E3

-(El - E3)i
(El - E3)i

E1 + E3

0 0

0 0

E2 + E4 (E2 - E4)l Cl + E3 (Cl - CO'
'

-(E2-E4)1 E2+E4 -(E1 - E3)i E1 + E3

Ai A2 0 0

Ker(LAo)
-A2 Al 0 0

A1,...,A4 E R
3 A4 Al A2

-A4 A3 -A2 Al
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Hence a miniversal deformation of AO can be chosen as one of the
following:

AO +

or

or

Al A2 0 0

-A2 Al 0 0

A3 A4 Al A2

-A4 A3 -A2 Al

AO +

AO +

'

Al

A2

A3

A4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 '

Al A2 A3 A4

where Al's are real parameters.

2.10 Versa! Deformations of Infinitesimally Symplectic Matrices

In this section we discuss versa! deformations of infinitesimally symplec-
tic matrices. We recall that

Sp(2n,18) = (u c- GL(2n, R) I u*Ju = J),

sp(2n, R) = {u E gl(2n, R) u*J + Ju = 0),

where

J=

In is the identity matrix in R">"
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Definition 10.1. Let AO E sp(2n, t1) be given. A deformation A(A) of
Ao with d E A c Rk is called an infinitesimally symplectic deformation
of AO if every A(A) is infinitesimally symplectic.

Definition 10.2. An infinitesimally symplectic deformation A(A) of AO
is called an infinitesimally symplectic versal deformation of AO if and
only if any infinitesimally symplectic deformation B(µ) of AO can be
induced from A(A) by an infinitesimally symplectic deformation C(µ)
of the identity matrix I in R2,12" and a C 1 mapping ¢(µ). An
infinitesimally symplectic versal deformation of AO is called an in-
finitesimally symplectic miniversal deformation of AO if the dimension
of its parameter space is the smallest among all infinitesimally symplec-
tic versal deformations of A0.

Lemma 10.3. Sp(2n, IJ) is a C°°-submanifold of GL(2n, Q8).

Proof. We define a mapping F: GL(2n, i8) -i GL(2n, 01) by

F(p) = p*Jp, p E GL(2n, R).

Hence Sp(2n, Fl) = (p e GL(2n, R) I F(p) = J}. We note that, for any
fixed p E GL(2n, R), DF(p)u = u*Jp + p*Ju = p*((up-1)*J +
J(up-1))p = p*DF(IXup-1)p. Hence rank(DF(p)) = rank(DF(I)).
Since F is C°°, Sp(2n, IFl) is a C°'-submanifold of GL(2n, !1).

It is easy to see that sp(2n, !l) is a linear subspace of gl(2n, IFl).

Lemma 10.4. TI(Sp(2n, IFl)) = sp(2n, i8).

Proof Let c(t) be any curve in Sp(2n, IR) with c(O) = I, t E [ -1,1].
Since c(t)*Jc(t) = J, for any t e [ -1,1],

c'(0)*J + Jc'(0) = 0.

This says that the tangent vector c'(0) E sp(2n, I(8).
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On the other hand, if A0 E sp(2n, li), then we define c(t) = exp(A0t)
and B(t) = c(t)*Jc(t), t e [-1,11. Then

B'(t) = exp((Aot)*)AoJexp(Aot) + exp((Aot)*)JAoexp(Aot)

= exp((Aot)*)(A**J + JAo)exp(Aot) = 0, t E [-1,1].

Hence B(t) = J. This says that c(t) is a curve in sp(2n, R). Since
c'(0) = A0, A0 E T1(Sp(2n, 01)).

Lemma 10.5. dim(Sp(2n,11)) = dim(sp(2n, R)) = 2n2 + n.

Proof. For any p c- sp(2n, ll), we may assume that

P= [P1 P21
P3 P4 '

where p, E gl(n, IIi), i = 1,2,3,4. Then from Corollary 6.3,
sp(2n, !) if and only if p4 = -P*l, P2 = P2, P3 = P3. Therefore

PE

dim(sp(2n, IR)) = 2n2 + n.

From Lemma 10.4, dim(Sp(2n, R)) = dim(sp(2n, IJ)).

We define a group action Tr`: Sp(2n, R) x sp(2n, R) - sp(2n, I1) by

Trs(g, u) = gug-1, g E Sp(2n, l1), u E sp(2n, R).

Let A0 E sp(2n, IJ) be fixed. Then the orbit through A0 in sp(2n, 68) is

ys(Ao) = {Trs(g, A0) I g e Sp(2n, I)}.

Then ys(A0) is a submanifold of Sp(2n, R).
For a given u E sp(2n, R), we define a linear operator Lu: sp(2n,

ll) - sp(2n, IEB) by

Luv = [v,u], v Esp(2n,R).
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Then for given A0 E sp(2n, li), the centralizer of A0 in sp(2n, I(8) is

ZAO = Ker(LAo).

If we replace gl(n, III) and GL(n,111) by sp(2n, IIB) and Sp(2n, Ifl)
respectively, derivatives for corresponding maps by tangent maps, y(A0),
LAO, and ZA0 by ys(AO), LAO, and ZAo, respectively, and the condition
that V is transversal to ZAO in gl(n,11) by the assumption that sp(2n,
Ifl) = TIV ® ZAO, then it is not hard to see that Lemmas 9.7 and 9.10
and Corollaries 9.8 and 9.9 hold for infinitesimally symplectic matrices.
Thus we have the following.

Theorem 10.6. An infinitesimally symplectic deformation A(A) of A0 is
versal if and only if A(A) is transversal to ys(Ao) in sp(2n, R) at k = 0.

Let (( , )) be the inner product in sp(2n,11) which is induced
from the Hermitian inner product in gl(2n,R) defined in Section 2.9. It
is easy to show the following.

Theorem 10.7. LAo is the adjoint operator of LAO with respect to the inner
product (( , )) in sp(2n, Ifl).

Corollary 10.8. Ker(LA*) is the orthogonal complementary subspace to
Im(LAO) with respect to the inner product (( , )) in sp(2n, Ifl).

We note that Ker(LAt) = Ker(LA*) n sp(2n,18), where LAE is de-
fined in Section 2.9. We can first apply the results in Section 2.9 to find
a basis of Ker(LA*) and then by restricting Ker(LAt) to sp(2n, Ifl) to
obtain Ker(LAt).

We can also derive other complementary subspaces to ImLAO in
sp(2n,1l) from Ker(LA*) by some elementary algebraic methods.

Example 10.9.
(i) Let
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Then

Ker(LA*)
[A33

Hence

[
Ker(LAo)

A,

A 3

[A1

A3

A21

A41

An infinitesimally symplectic miniversal deformation of A 0 is

A(A) =

(11) Let

Then

All ... I A4 E R

All A2, A3 E .

All A2, A3 E R.

A0_ 10 a -a]' a>0.

Ker(LAa) [Al
0

Hence

Ker(LAt) = {[ 0

0A2
1

°]

All

A2 E ll

AER .

An infinitesimally symplectic miniversal deformation of AO is

A(A) _ [a + A
0

(iii) Let

AEI.

AO = I _a 0J, 0 > 0.
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A direct calculation shows that

Ker(LA', _
} I -A2 A1,,12 (=- R).

All

all

Hence

Ker(LAo) = {[ -0 ll A E o
A

A( 0 6 + ,t
-a - A 0 ,

AEllB.

(iv) Let

a (3 0 0

-/3 a 0 0
A a>0 f3>0°

0 0 -a 1 ' , .

0 0 -Q -a-

We take

1 1 0 0
-i i 0 0

p
__

0 0 1 1

0 0 - i i

Then p-'=p*

(3i

a+13ipA° p -

C
-a - pi

-a + 13i
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Any 4 x 4 complex matrix commuting with (p-'Ao p)* is of the form

E
B(E) = 2 , El E C, i

E3

E4

and

pB(E)p-1

2

Cl + E2 (El - 'E2)'
-(E1 - 4E2)' E1 + E2

0 0

0 0

0 0

0 0

E3 + Eq (E3 - 'E4)'

-(E3 - Eq)i E3 + Eq

Since pB(e)p1 E sp(4, R), E1 + E2 = -(E3 + Eq) E R and (El - E2)l
= (E3 - 'E4)' E R. Thus an infinitesimally symplectic miniversal defor-
mation of AO is

Al A2

A(A) =Ao + -AZ Al

0 0

0 0

0 0

0 0
All A2 E IIB.

We can also take the following as infinitesimally symplectic miniver-
sal deformations of AO:

Al A2 0 0

0 0 0 0
A(A) = AO +

0 0 -A1 0

0 0 -A2 0]

or

0 0 0 0
Al A2 0 0

A(A) = AO +
0 0 0 -A1

0 0 -A2

where A 1, A 2 E R.
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(v) Let

AO =

We take

Then

fo
1

1 0 ........0..
-1

-1
(_1)m . 0

Ii

P=

n

m=0or1.

n

1.........................................
(-1)m+n-1

pAop =

(-1)m+l
(-1)m

Fo
1

1 0:

1 0

n

Any complex 2n X 2n matrix commuting with (p - lAo p)* is of the
form

E1 E2 ... E2n

n

n

n

E e, E C, i = 1,...,2n.
2

E1
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By a similar argument as in (iv), we find an infinitesimally symplectic
miniversal deformation of AO is

AB
A(A) = AO + :.. ,

C D
where

A=

B =

0. Al 0 A2 0

0 0 ... Y 1
0 y

An-1. y

0 _ 0 ,

aA2

-y ' -aA2 0

y 0 aA2 0 aA1

C is a zero matrix,

D=1

-a2
.0 -A2 - 0 -A1

-a1 -a2
0
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where

_ Z, n even, / _ 0, n even,

R1 = { 0, n odd,
N2 A^Z', n odd,

0, n even,
n odd,

2

and the (A,) are real parameters; or

A(A) = AO +

a = (-1)m,

Al

0 A2

An...0:......0.........

where A;ER,i=1,...,n.
(vi) Let

To

1

AO =
1 0:

0 -1

n

We take

1

1:..............................

n

n odd.

-1
1
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Then

fo
1

1 0:
p-IAOp =

1 0

The complex matrices commuting with (p - lAo p)* are of the form

E1 En . En+l ... E2n

E1 En+1................................
E2n+1 ... E3n E3n+1 ... E4n

E2n+1 E3n+1

EiEC, i=1,...,4n.

Hence, an infinitesimally symplectic miniversal deformation of A 0 is
A(A) = A0 + the matrix:

Al Al ... ... ... ... An : An+1 0 A, 0 .1a

0 -A, 0 -Aa

AC
0 '

0 A2 -Aa 0
Al Aa

Ad -A1
-Ad 0 -A2

0

-Ad
Ad 0

0

Aa+2

-Aa+2 0

0 Aa+2 0 Aa+1

0

-A2 -A1 J

where a = (3n + 1)/2, c = n + 2, d = 2n + 1, {A1) are real parame-
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ters; or A(A) = AO + the matrix

[A, A2 ... ... ... A. . An+l 0

0 An+2
0

0 AQ

0 0

....................
0

0

0 0

A2n+I

A2n

00

. 0

0

0

0

OA 1 -An

where a = On + 1)/2 and (A;) are real parameters.
(vii) Let

Ao=

L-P

We take

1

1 0 ./3
-P 0 -1

1 .1

i

n

, /3*0,nodd.

n

1 . 1
n

n
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Then

-/3i
1 -pi

p-'Aop =
/3 i

1 /3i

1 /3i

n

n

The complex 2n x 2n matrices commuting with (p-'Ao p)* are of the
form

E1

E1 ...........................
En+1 E2n

Ei e C, i = 1,...,2n.

En+1 J

I

Thus, an infinitesimally symplectic miniversal deformation of AO is
A(A) = AO + the matrix:

0 Al 0 ... 0 Ag 0 : Ag+i 0 ... ... 0 An
0

Ag
0 -An

0 :

0

Al . 0 -An
0 . An

-An 0

An -A1
-An 0 0

An

0

An 0 -Ag
-An 0 ... ... 0 -Ag+i 0 -Ag 0 ... 0 -A1 0
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or A(A) = AO + the matrix

o A, 0 ... 0 Ag 0 :.1g+, 0

0 .

0

0

where g = (n - 1)/2 and (A,) are real parameters.
(viii) Let

AO =

ra
1

-a -1

1 a:

n

We take

P=
1:.........................

0

0 0

n

a>0.

n

07

-1 in
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Then

a
1

p-'Aop =

Normal Forms

1 a.........................
-a
1

1 -a

n

n

The complex matrices commuting with (p -'A0 p)* are of the form

E1 En .

E1
...........:..............

En+1 ... E2n

En+1

n

E1EC, i=1,...,2n.

Thus an infinitesimally symplectic miniversal deformation of AO is

rA1 ... An .

A(A) = AO +

or

A(A) =Ao+

Al

Al .

0 0
. . . .... .. . . .. 1 . . . .

0 0

where A . E R, i = 1, 2, ... , n.
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2.11 Normal Forms with Codimension One or Two

We consider the following parameter-dependent equations as our mod-
els for bifurcation problems

x=A(E)x+f(x), xEfZ W, EEAcQ , (11.1)

where A(E) is a versal deformation of the matrix A(0) (see Section 2.9)
and the equation X = A(O)x + f(x) is an A(O)-normal form (in some
cases A(E) may be simplified further).

Since we consider equations on center manifolds, we may assume
that the linear part of the equation has only eigenvalues with zero real
parts when the parameters are zero.

List 1. The following are normal forms of codimension 1.

X= E - x2, x E R, E E R (saddle-node),

X = Ex - X2, x E L, E E l8 (transcritical),
(i)

x= Ex ± x3, x E R, E E l (pitchfork), (ii)

=Ex-y+(±x-by)(x2+y2),
(Hopf), (iii)

= x + Ey + (bx ± y)(x2 + y2),

where b is a real constant and E is a real parameter.

List 2. The following are normal forms of codimension 2.
(i) Double zero eigenvalues:

= y,
y=El+E2y+x2±xy,

where El and E2 are real parameters.
(ii) Double zero eigenvalues with Z2-symmetry:

x = y,

Elx + E2Y ± x3 - x2Yi

where el and 62 are real parameters.
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(iii) Double zero eigenvalues with Z, ,-symmetry (q > 3):

i = Ez +A1IzI2z +A2lzl4z + "' +Aklzl2kz + zq-1,

q>:3, q-1<2k+1<q;

where z E C, e is a complex parameter, the A, are complex constants,
and Re Al#0.

(iv) Double zero eigenvalues with flip symmetry or one pair of purely
imaginary eigenvalues and one zero eigenvalue:

Elx + alxy + a2x3 + a3xy2,

E2 + bix2 + b2 y2 + b3x2y + b4y3,

where E1 and E2 are real parameters, and the a, and b, are real
constants with some restrictions (see Section 4.6).

(v) One pair of imaginary eigenvalues and one zero eigenvalue with
flip symmetry or two different pairs of purely imaginary eigenvalues:

fix + alx3 + a2xy2 + a3x5 + a4x3y2 + a5xy4,

Ely + blx2y + b2y3 + b3x4y + b4x2y3 + b5y5,

where E1 and E2 are real parameters, and the a, and b, are real
constants with some restrictions (see Section 4.7).

Calculations for Normal Forms in List 1

(i) Let Ao = 0 E R. Then an Ao-normal form up to order 2 is

axe, xEOB, aEl. (11.2)

We assume that a * 0. On changing variables x - -(1/a) x, (11.2)
becomes

(11.3)

Since a miniversal deformation of A0 is A(A) = A, A E R, we may take
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the following as a codimension-one normal form:

z=Ax-x2.

If we change variables by x -> x + A/2, then (11.4) becomes

.z = -A2/4 - x2,

which is induced from the following equation bye = -A2/4:

x=E-x2, EER.

(11.4)

(11.5)

(11.6)

Therefore we take (11.6) instead of (11.4) as a codimension-one normal
form.

(ii) Let A0 = 0 E U8 and the equation satisfy the reflection symmetry.
An Ao-normal form up to order 3 is

z=ax3, xER, aEl. (11.7)

We assume that a # 0. By a similar argument, we get

x=Exfx3, EEIIB.

(iii) Let

Ao = 0

LW

-W
01

1
, W>0.

An Ao-normal form up to order 3 (see Example 1.22) is

0 -O)[] = [W 0,[y, + (x2 +y2)[bx +ay]' (11.8)

where a, b E R. We assume that a # 0. Since a miniversal deformation
of A0 is

A(A) _ [W +lA -
A21'

All
A2 E R,

2 Al
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we may consider the following equation as a model of bifurcation
problems:

We rescale time by t -+ t/(w + A2) when A2 is close to zero and define
a new parameter E = AI/(w + A2). Then (11.9) becomes

[61

E1JLyj + (w2+A2)

[bxax - by

+ay].

If we change variables by x (/(o + A2 / l al )x, y

( w -+A 2 / lal )y, then (11.10) becomes

Y

2)[±X -
(11.11)[Y]-[1 E1 II

where c = b/I al.

Calculations for Normal Forms in List 2

(i) Let

`40 - [0 0J.

Then an Ao normal form up to order 2 (see Example 1.15) is

y,

axe+bxy,

where a, b are real constants. We assume that ab # 0. On the other
hand, a miniversal deformation of A0 (see Example 9.18(3)) is

A(A) = 101 X21, All A2 E R.
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Hence we may take the following as one of the models of bifurcation
problems:

=y,
A1x+A2y+ax2+bxy.

We change variables by x - x - Al/2a, y -> y and define new param-
eters by µl = -Ai/4a, µ2 = (2aA2 - bA1)/2a. Then (11.12) becomes

x = y,

l-A1+µ2Y+ax2+bxy.

Let

a gala
xy b2 x, Y-Ib7y, t-

b

a
E2.

Then (11.13) can be changed to

a3 a
t, NS1 ' b4 E1, µ2y b

x =y,
E1 + E2Y + x2 ± xy,

where Ei, E2 are real parameters.
We note that we can also change variables in (11.12) by x -* x - A2/b,

y - y and define new parameters by µl = (a k2 - bA1A2)/b2, µ2 =
(bA1 - 2aA2)/b. Then (11.12) becomes

x = y,
µl+µ2x+ax2+bxy.

It can be changed to

x = y,

E1 + E2x + x2 ± xy.

(ii) Let
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An A°-normal form satisfying Z2-symmetry up to order 3 (see Example
5.12) is

y,

ax3+bx2y,

where a, b are real constants. We assume that a b # 0. A miniversal
deformation of A° is

A(A) _ [Al0 1

A21.

We note that A(A) commutes with

S=[
0 -1]'

which is a generator of the Z2-symmetry group. Thus we may take the
following as one of the models of bifurcation problems:

y,

Alx + A2y + ax3 + bx2y,

where A1, A2 are real parameters. Let x - (Ial /b) x, y -*
(Iai lalb /Ibl3) y, E1 = b2A1/a2, E2 = IbIA2/lal, and t --* IbIt/lal. Then
(11.17) becomes

y,

y = E1x + E2Y ± x3

This is the case (ii).
(iii) Let

2

An A°-normal form with Z9 symmetry (q > 3) up to order q (see
Example 5.15) is

i =A, IZ12Z + +Aklzl2kz + Bzq-1, (11.19)
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where z E C, the A. and B are complex constants, q - 1 < 2k + 1 <
q. We assume that B # 0. Suppose that B = I BI e`'. We change vari-
able by z -+ ei,IIgZ, rescale time by t - t/I BI, and change coefficients
by A. - A; I BI. Then (11.19) becomes

i = A11zI2z + ... +AkIZ12kz + 2q-1. (11.20)

A miniversal deformation commuting with matrix K2,, lq of A0 is

A(E) = f E1
E2

Since the complex form of A(E) is

I
c
0

01,

E1, E2 are real parameters.

E E C, (11.21)

combining (11.20) and (11.21) we obtain

i = Ez +A11Z12Z + "' +AkIZ12kZ + Zq-1

This is the case (iii).
(iv) Let

`4° - 10 0,.

An A°-normal form with flip symmetry up to order 3 (see Section 2.5) is

a1x2 + a2y2 + a3x3 + a4xy2,

blxy + b2x2y + b3y3,

where the a . and b, are real constants. Let

S=

S is a generator of the flip-symmetry group. A miniversal deformation
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of AO commuting with S is

A(A) =
Al

0

0

A
, All A2 E R.

2

Thus we obtain the following system:

X = Alx + a1x2 + a2 y2 + a3x3 + a4xy2,

y = A2y + blxy + b2x2y + b3y3
(11.22)

We change variables in (11.22) by x - x + a, y - y, where a will be
determined later (note that this transformation satisfies flip symmetry
with respect to y). Then (11.22) becomes

x = (Ala + ala2 + a3a3) + (A1 + 2ala + 3a3a2)x

+(a1 + 3a3a)x2 + (a2 + a4a) y2 + a3x3 + a4
= (A2 + bla + b2a2)y + (b1 + 2b2a)xy + b2x2y + b3y3.

(11.23)

We can choose an a = a(A1) such that for each small Al

Al + 2ala + 3a3a2 = 0

provided al # 0, and a(A1) is continuous and a(0) = 0. We define new
parameters

El = Ala + ala2 + a3a3, E2 = A2 + bla + b2a2

and omit the terms with factor a in the coefficients of the higher-order
terms in (11.40). We obtain the following:

X = El + a1x2 + a2y2 + a3x3 + a4xy2,

Ely + blxy + b2x2y + b3y3

xy2,

(11.24)

After exchanging x and y, (11.24) becomes the normal form of the case
(iv).
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Let the matrix of the linear part of a system be

0 -1 0
A0= 1 0 0.

0 0 0

We change variables by z = x1 + ix2, y = x3. Then the matrix of the
linear part of the resulting system is

i 0 0
Ao = 0 -i 0 .

0 0 0

The resonant monomials with respect to A0 are zlz3el, z2z3e2, z1z2e3,
z3e3, zjz2el, zxz3el, zlz2el, z3e3, and z1z2z3e3. We note that z1 = z,
z2 = 2, and z3 = y in this case. A miniversal deformation of A0 is

Al + i 0 0

A(A) = 0 A2 - i 0

0 0 A3

Al, A2, A3 E C.

But A2 = ,il, and A3 E R in this case. Thus we obtain the following

i = (A1 + i)z +A1Zy +A2Iz12z +A3Zy2,

Y = A3y + a2IZI2 + b2y2 + c2Izl2y + d2y3
(11.25)

where A, are complex constants, a2, b2, c2, d2 are real constants, and
the equation for i is omitted. Let z = re". Then (11.25) becomes

elr + airy + bxr3 + c1ry 2,

e2y + a2r2 + b2y2 + c2r2y + d2y3,
(11.26)

where El = Re Al, e2 = A3, al = Re A1, b1 = Re A2, c1 = Re A3, and
the equation for 8 is omitted since B = 1 + O(KIm Al, r, y)I). If we
replace y by x and replace r by y then (11.26) is the same as (11.22).
This is the case (iv) with x >- 0.
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(v) Let

0 -1 0
A0= 1 0 0 .

0 0 0

We assume that the equation satisfies flip symmetry. More precisely,
the equation satisfies the group I'-symmetry, where F is generated by

1 0 0
S= 0 1 0 .

0 0 -1

By a similar argument as that for the second subcase of case (iv), and
noticing that the equation in complex form satisfies S-symmetry, we
obtain the following:

i = (A1 + i)z +A1Iz12z +A2zy2 +A3Izl4z +A4IzI2ry2 +A5y4,

y = Ay + bly3 + b2Iz I2y + b3Iz I4y + b4I zI2y3 + b5y5,

(11.27)

where z E C, y E Fl, A l is a complex parameter, A2 is a real parameter
and the A, and b, are complex and real constants. Changing variables
by z = re", y = y in (11.27) and omitting the equation for 9 we get the
normal form of case (v) with x >: 0.

Let the matrix of the linear part of a system be

AO

0 -wl 0 0

wl 0 0 0

0 0 0 -m2
0 0 w2 0

where toll co2 > 0 and wl and m2 are rationally independent. We
change variables by z1 = x1 + ix2, z2 = x1 - zx2, z3 = X3 + 1Xa, Z4 =
x3 - ix4 in the system. Then the matrix of the linear part of the
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resulting system is

A0=

w 1i 0 0 0

0 - U)11 0 0

0 0 (021 0

0 0 0 -w21

The resonant conditions for A0 are wj = a1w1 - a2w1 + a3w2 - a4w2,
or

(al-a2-1)col+(a3-a4)w2=0, j=1,

(a1 - a2)w1 + (a3 - a4 - 1)w2 = 0, j=3.

Since col and w2 are rationally independent, we must have a1 - a2 = 1,
a3 = a4 for j = 1 and a1 = a2, a3 - a4 = 1 for j = 3. Furthermore a
miniversal deformation of Ao is

a1 + coli 0 0 0

0 X1 - wli 0 0

0 0 .12 + co2i 0 ' A1, A2 E C.

L
0 0 0 .t2-co2i

Thus we obtain the following:

zl = (wli + A1)z1 +A1Iz1I2z1 +A2z1Iz312 +A3Iz1I4z1

+A41Z1121Z312Z1 + A5z11Z314,

z3 = lw2l + A2)Z3 + B21Z112Z3 + B2IZ312Z3 + B31Z1I4Z3

+B41 z1121Z312z3 + B51z314z3,

(11.28)

where the A, and B. are complex constants. Let z1 = r1e'°', z3 = r2e`B2.
Then (11.28) becomes

it = earl + axri + a2r1r2 + a3ri + a4r3r2 + a5rlrz,

i2 = e2r2 + blr2r2 + b2rz + b3r4r2 + b4r2r2 + b5r2,
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where e1, e2 are real parameters, the a; and bi are real constants, and
the equations for 61 and 62 are omitted since 61and 02 are close to 1
when r1 and r2 are close to zero. This is the case (v) with x >_ 0 and
y>0.

2.12 Bibliographical Notes

Normal form theory has a long history. The basic idea of simplifying
ordinary differential equations through changes of variables can be
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convergent series (see Siegel [1] and Bruno [6]). From the point of view
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to a certain order.

In Section 2.1, we introduced two methods of computing normal
forms. The matrix representation method is based on linear algebra
and is well known. The method of adjoints was first given by Belitskii
[3-4], and then by Elphick et al. [1]. Our treatment is similar to that of
Elphick et al. [1]. Another important method is based on the represen-
tation theory of Lie algebra sl(2, R). This method was used in the
computation of normal forms of nonlinear Hamiltonian systems (see
Cushman, Deprit, and Mosak [1] and Cushman, Sanders, and White
[1]). General applications of the method of representation theory of
sl(2, R) to normal form theory were studied by Arnold and Il'yashenko
[1], Cushman and Sanders [2], Meyer [3], and Wang [2-3].
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also Arnold [3], Bruno [3], Gustavson [1], and Meyer [1]. For more
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2.7 can be found in Elphick et al. [1] and Wang [4].

Takens's Theorem was given by Takens [2]. In Section 2.8 we give an
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Rousseau [1].
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Arnold [6]. Following Arnold's idea, Galin [2] and Kocak [1] gave versal
deformations of infinitesimally symplectic matrices.

The general method for computing normal forms of systems with
parameters e E Rk is to add an equation e = 0 to the original system
and to get normal forms for the extended system. See, for example,
Guckenheimer and Holmes [1]. Different treatments were used in
Chow and Wang [1], Elphick et al. [1] and Vanderbauwhede [3]. The
lists of codimension-one and codimension-two normal forms can also be
found in Guckenheimer [3], and Elphick et al. [1].

The computation of coefficients of normal forms for a given system
was studied by many authors; see, for example, Chow, Drachman, and
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formulas for coefficients of normal forms were given by Bruno [6], Hsu
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fields, reversible systems, constrained systems, Hamiltonian systems,
and stochastic systems can be found in Arnold [3], Baider and Churchill
[1], Broer [1-2], Broer et al. [1], Chow, Lu, and Shen [1], Chua and Oka
[1], Cushman, Sanders, and White [1], Khazin and Shnol [1], Moser [1],
Starzhinskii [1-2], Sternberg [3], Tirapegui [1], Ushiki [1], and many
others.



3

Codimension One Bifurcations

In Chapters 3-5 we will study bifurcation phenomena of vector fields.
In order to consider these problems, we should consider not only a
single vector field, but also its "nearby" vector fields. This means we
need to consider a suitable space of vector fields ', for example,
r"(R"), the Banach space of all C' (r >_ 1) vector fields on li", and
investigate the qualitative behavior of all vector fields in a small
neighborhood of a fixed vector field in X.

We say two vector fields X and Y in Jr are topologically equivalent,
denoted by X - Y, if there exists a homeomorphism on R' which maps
the phase orbits of X onto the phase orbits of Y and preserves the
direction of the orbits in time. We say X E 2' is structurally stable if
there is a neighborhood V of X in 2' such that Y - X for all Y E V.
We say X E 2' is a bifurcation point if X is not structurally stable. All
bifurcation points form a bifurcation set 3 in 2'.

Suppose X E M. This means that in any neighborhood V of X in 2',
no matter how small it is, we can find Y E V such that the orbit
structures of X and Y are different (Y is not equivalent to X). There is
a basic question: Is it possible to find a neighborhood W of X in 2'
such that we can give a complete description of the phase portraits for
all Y E W? Related to this question, we need to know the structure of
the bifurcation set in W (i.e., 3 n W) which may be very complicated.
In some cases, if we put a suitable "nondegenerate condition" on X we
can make the structure of 3 (near X) simple. For example, we may
find a finite-dimensional surface S in W passing through X such that
for every Y E W there is a Z E S, Z - Y. Thus, to answer the above
question, we can restrict our study to the family S. If we can find such a
family with dimension k, but such that any (k - 1)-dimensional family
(passing through X) has no such property, then X is called a codimen-

191



192 Codimension One Bifurcations

sion-k bifurcation point. In fact, under certain conditions the surface S
is transversal to a submanifold at X, with codimension k in r.
Intuitively, the codimension indicates the degree of complexity of the
bifurcation problem.

3.1 Definitions and Jet Transversality Theorem

We first define the space of jets. Suppose that M and N are C-mani-
folds (1 < r < co) with finite dimensions, and f, g E C'(M, N).

Definition 1.1. f and g are said to be k-tangent at x E M (1 < k < r)
if in a local coordinate system f and g have the same Taylor coeffi-
cients up to order k at x.

The k-tangency is independent of the choice of local coordinates, and
it gives an equivalence relation in C'(M, N).

Definition 1.2. A k -jet of a Cr mapping f at x is given by

jX(f) _ {g E C'(M, N)Ig is k-tangent to fat x},

and we define

jk(f) = {l(f)IV x E M}

and

Jk(M, N) = {jk(f )Id f E Ck(M, N)}.

Since the dimensions of M and N are finite, Jk(M, N) is finite
dimensional. Moreover, if M and N are C'-manifolds, then Jk(M, N)
is a C'-k-manifold (see Hirsch [1]).

Definition 1.3. Suppose L is a linear space, and A and B are its linear
subspaces. A and B are said to be transversal if

L =A +B.
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Suppose M and N are smooth manifolds, A is a smooth submanifold
of N, f E C(M, N), and p E M. Since the tangent space of a manifold
at a point is linear, and the tangent mapping TP f maps the tangent
space TPM into the tangent space Tf(P)N, we can define the transversal-
ity between f and A at p as follows.

Definition 1.4. The mapping f and the submanifold A are said to be
transversal at p E M and denoted by f TP A, if f(p) e A or

(TP f)(TPM) + Tf(P)A = Tf(P)N;

f and A are said to be transversal and denoted by f 7 A if they are
transversal at every point p E M.

The following result is obvious, but it is useful.

Theorem 1.5. Suppose that M and N are smooth manifolds with dimen-
sions m and n, respectively, and A is a smooth submanifold of N with
codimension r. Let (x1, ... , x'") be the local coordinates of M near x0,
and (y1, , y") be the local coordinates of N near f(x0). Suppose in a
neighborhood U of f(xo) in N, the set A n U can be expressed by
y1 = . . . = yr = 0. If f(xo) E A, then f XXO A if and only if the rank of
the matrix (8y`/8x')I i=1,2,...,r atxo is r.

j=1,2, ,m

The following theorem gives a residual set in Cr(M, N) by using the
transversality condition.

Theorem 1.6. (Jet Transversality Theorem) Suppose M and N are finite-
dimensional smooth manifolds without boundaries, and A is a smooth
submanifold of Jk(M, N). If 1 < k < r< -, then the set of mappings

.,"_ (f E C'(M,N)Ijk(f) T, A)

is residual in C'(M, N). If, in addition, A is closed, then .17 is open in
C'(M, N).
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Remark 1.7. A residual subset of C'(M, N) is one that is the intersec-
tion of countably many dense open sets of C'(M, N). Hence, it is still a
dense set. The power of Theorem 1.6 is that by a consideration of the
transversal property in a finite-dimensional space Jk(M, N) (for exam-
ple, using Theorem 1.5) we can obtain a residual set in the infinite-
dimensional space C'(M, N). By this theorem, we will get some generic
families of vector fields in some bifurcation problems.

We state two more theorems which will be needed in future discus-
sions.

Theorem 1.8. Suppose that f e C'(M, N) and A is a submanifold of N.
If f T A, then f- '(A) is a submanifold of M. If, in addition, A has a
finite codimension in N, then f- '(A) has the same codimension in M,
that is,

codim(f-'(A)) = codim(A).

Remark 1.9. If f : M - N is a submersion, then the condition f T, A is
satisfied.

Theorem 1.10. (Malgrange Preparation Theorem) Suppose that U C R X
R" is an open set with (0, 0) e U, and f e C(U, R) satisfies

f(x,0) =xkg(x)

for some integer k >_ 1, where g is smooth in a neighborhood of x = 0,
and g(0) : 0. Then there exist a smooth function q defined in a neighbor-
hood V of (0, 0) in IJ X Q8" and C°° functions ao(E),... , ak - 1(e) in a
neighborhood of the origin in Fe" such that q(0, 0) 0 0, a0(0) _ _
a k -1(0) = 0, and

k-1
q(x,e)f(x,E) =xk + ai(E)x`, (x, E) E=- V.

i=0

Remark 1.11. The previous result is, in some sense, a generalization of
the Implicit Function Theorem, and it is obtained by using the Division
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Theorem which has been proved for C' functions by Barbancon [1] and
Lasalle [1]. See also Schecter [2].

In the last part of this section, we define the versal deformation of a
"singular vector field" (i.e., it is not structurally stable) and define the
codimension of a local bifurcation problem, and then try to give a
procedure to determine them in Sections 3.2 and 4.1.

If we consider a bifurcation problem locally, we need the following
concept.

Definition 1.12. Two mappings defined near a point x have a common
germ at x if one can find a neighborhood U of x such that they
coincide in U.

Obviously, the germ of a mapping at a point is an equivalence class,
and we call any mapping in this class a representative of this germ.

Similarly to Definitions 1.1 and 1.2, we can define the k -jet of a germ
at a point. If we consider the problem locally, we usually use the same
notation Jk(M, N) to denote the set of all k-jets of germs of mappings
from M into N.

We denote by V(xo) the space of germs of C°° vector fields at
x0 E W". We give V(xo) the topology induced from inclusion maps. See
Hirsch [1, p. 361. We take a small open set U of the origin in li", and
define

Z = {(x,X)IX E V(x), x E U). (1.1)

The natural projection

lTk(XO): V(x0) JXa {JXO(X)IX E V(x0)} (1.2)

induces a projection

Irk: 2'_ Jk = l(x,Js(X))IX E U, X E V(x)). (1.3)

Now we consider the family of vector fields

x = X(x, E), (1.4)

where x E R", C E Rk, and X E C°°(W X Rk, Fl"). If a varies in a
small neighborhood of co in Rk, (1.4) is said to be a deformation of
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vector field z = X(x, eo). The family of vector fields (1.4) can be
expressed briefly by the mapping X: D 1 X Rk

OB"

Definition 1.13. A local family (X; x0, co) is the germ of the mapping X
at the point (xo, eo) of the direct product of the phase space and the
parameter space.

Definition 1.14. Two local families (X; x0, eo) and (Y; yo, eo) are said
to be equivalent if there is a germ of a continuous mapping y = h(x, e)
at the point (xo, eo) such that for every e, e) (the representative of
the germ) is a homeomorphism mapping the phase orbits of (X; x0, eo)
onto the phase orbits of (Y; yo, eo) with h(xo, eo) = yo and preserving
the direction of orbits in time.

Definition 1.15. A local family (Z; x0, µo) is induced from the local
family (X; x0, eo), if there is a germ of a continuous mapping 0 at µo,
e = 4(µ), such that eo = 4(µo) and Z(x, µ) = X(x, ¢(µ)).

Definition 1.16. A local family (X; xo, eo) is called a versal deformation
of the germ of co) at the point x0 if every other local family
containing the same germ of co) is equivalent to a local family
induced from (X; x0, co).

Definition 1.17. The bifurcation of co) is said to have codimension
m if co) has a versal deformation with m parameters and any
(m - 1)-parameter local family is not a versal deformation of e).
If any local family with a finite number of'parameters is not a versal
deformation of en), then the codimension of

X = 0). Corresponding to the differential equation

X=Ax+...

is a bifurcation point in V(0). The question is how to determine the
codimension of X in V(0) and how to find its versal deformation?
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We note that some bifurcation problems have infinite codimension,
and there is no efficient method to answer the above question in
general.

But for some special cases, it is possible to determine their versal
deformations (see §3.2 and §4.1 for details).

3.2 Bifurcation of Equilibria

In Section 2.11, we have listed the following codimension 1 normal
forms:
(i) .X = E ± x 2,
(ii) X = Ex ± x2,
(iii) Ex ± x3,

iv)

X=Ex-y+(ax-by)(x2+y2),
= x + Ey + (bx + ay)(x2 + y2).

In this section we discuss the local bifurcations of these normal
forms, and give a general Hopf bifurcation theorem. We will only
consider the cases "-" in (i)-(iii), and leave the cases "+" as exer-
cises.

(i) X = E - x 2, saddle-node bifurcation.
We first show that

x = E - x2 (E E R1) (2.1)

is a versal deformation of

X= -x2+ . (2.2)

Let V(xo) be the space of germs of C°° vector fields at xo E L1, and
X = {(x, X)I X E V(x), -o < x < o for a small o > 0). Suppose X E
V(x) has a representative X = f(x). The natural projection 7rk(xo):
V(xo) -> j k induces a projection

where f, f', ... , f (k) are the Taylor coefficients up to order k at x.
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Let

Y. = {(xo,X) E 2'3x0 such that f(x0) = f'(xo) = 0, f"(xo) 0 0).

If (x, Y) E 1, then Y has the same singular character at x as (2.2) at 0.

Lemma 2.1. If k >_ 2, then 7TkI is locally a smooth submanifold with
codimension 2 in Jk and I is a codimension 2 submanifold of 2'.

Proof. Obviously,

7r1yi=((x,f,f')If=f'=0)

is a codimension 2 smooth submanifold in J 1. By Theorem 1.8 and
Remark 1.9, the natural projection

7x21: J2 -* J1, (x, f, f', f") - (x, f, f')

yields that 7rji1(7r1l) is a codimension 2 submanifold in j2. Since
7r2y = 7r21'(ir1Yi)I f' 0 is locally an open subset of ?r211(?r14), 7r2tr is
locally a codimension 2 submanifold in J 2.

Using Theorem 1.8, we obtain that 7Tk.4 = 7rk2(7r2l,) is locally a
codimension 2 submanifold in Jk for k > 2. Hence, = 7Tk 1(7rki) is
locally codimension 2 in 2'. o

Now we consider a deformation of (2.2)

z = g(x, A), (2.3)

where g E C(Q81 x R', R1) and

g(x,0) = -x2 + O(Ix13). (2.4)

By Theorem 1.10, there are smooth functions q(x, A), a(A), /3(A) such
that

q(0, 0) * 0, a(0) = f3(0) = 0, (2.5)

and

g(x, A) = q(x, A) [a(A) + (3(A)x - x2] . (2.6)
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The deformation (2.3) gives a mapping

: R X Rm _J2, (x, A) - ir2g(x, A)

Definition 2.2. The deformation (2.3) is said to be nondegenerate if
6T' 7r21 at (x, A)=(0,0).

Theorem 2.3. Equation (2.1) is a versal deformation of (2.2) provided we
consider only nondegenerate deformations of (2.2).

Proof.

7r2l = {(x,f,f',f")If=fx=O,fxx#0).

By Theorem 1.5, if (2.3) is nondegenerate, then

rank
a(g(x, A), gx(x, A))

= 2. (2.7)

(0,0)

Under condition (2.4), (2.7) is equivalent to

g;,.(0, 0) 0 0 for some i, 1 < i < m. (2.8)

By (2.5) and (2.6), (2.8) is equivalent to

a'A.(0) 0 0. (2.9)

Without loss of generality we take i = 1. Since q(0, 0) : 0, (2.3) is
equivalent to

z

x = a(A) +p(A)x -x2 = y(A) - (x
a(2) )

, (2.10)

where y(A) = a(A) + 132(A).
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E<0 E=0

Figure 2.1.

X

saddle nods
saddle

E=X2

Joe

I node

Figure 2.2.

Using (2.9) and (2.5), we have y,,(0) # 0. Hence

E70

is a C°° transformation and has an inverse A = A(µ), A(0) = 0. Thus,
(2.10) becomes

z

z = µi - (x - 213(A(µ)))

which is equivalent (by Definition 1.14) to

(2.11)

3' = Al - y2. (2.12)

Both (2.11) and (2.12) are m-parameter local families. On the other
hand, (2.12) is obviously induced from (2.1). And, by Definition 1.16,
(2.1) is a versal deformation of (2.2).
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£ 0 0 0 E

s<o £=o e>0

Figure 2.3.

stable

l

Figure 2.4.

Finally, we study the bifurcations of (2.1). The equilibria of equation
(2.1) depend on E. If e < 0, then (2.1) has no equilibria; if e = 0, then
x = 0 is the only equilibrium; if E > 0, then x = ± are two equilib-
ria.

The bifurcation diagram consists of a point e = 0 in E-space, and the
phase portraits of the vector fields are shown in Figure 2.1.

The relation between equilibria and the parameter a is given by
Figure 2.2.

We remark here that by using the same method we can show that the
singular vector field

x=akxk+ ..., ak*0,
has codimension k - 1, and

x = E1 + E2X + ... +Ek-1xk-2 + akxk

is a versal deformation restricted to nondegenerate deformations.
(ii) x = Ex - x2, transcritical bifurcation.

We note that x = 0 is always an equilibrium for all e. When E < 0, it
is stable; when E > 0, it is unstable. If e = 0, then x = 0 is the unique
equilibrium; if E : 0, then x = e is the nonzero equilibrium. The
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E<0 p0

Figure 2.5.

stable

l

Figure 2.6.

linearized equation at x = e (e 0) is

z = -ex.

stable

f

It is obvious that if e < 0, the critical point x = e is unstable; if e > 0,
it is stable.

The phase portraits are shown in Figure 2.3.
The relation between equilibria and parameter is shown in Figure

2.4.
(iii) z = ex - x3, pitchfork bifurcation.

Note that x = 0 is always an equilibrium for all e; it is stable if e < 0
and unstable if e > 0. When e < 0, x = 0 is the unique equilibrium,
which is stable. When e > 0, x = ± vre- are nonzero equilibria. The
linearized equations at x = ± to are the same,

.z = -2ex.

Therefore they are stable.

The phase portraits are shown in Figure 2.5.
The relation between equilibria and parameter is shown in Figure

2.6.
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We remark here that the bifurcation of type (i) is generic while (ii)
and (iii) are not. However, if we restrict vector fields to the subset of 2'
in which every system has always at least one equilibrium, then (ii) is
generic. There is a similar situation for type (iii).
(iv) Hopf bifurcation.

We consider a C°° system defined in a neighborhood of the origin in
p2

AX,Y;N),
Y = g(x, Y;!-0,

(2.13)

where x, y, µ E 1181.
Suppose that the origin is an equilibrium of (2.13), and, for µ near 0,

the linear part of (2.13) around the origin has eigenvalues a(µ) ± i 6(µ).
Our first basic hypothesis is

a(0) = 0, 13(0) = /30 # 0. (H1)

The second hypothesis is the transversality condition given by the
classical Hopf bifurcation theorem

a'(0) # 0. (H2)

In order to describe the third condition, we derive a normal form for
equation (2.13) for µ = 0. After we make a suitable linear change of
coordinates and z = x + iy, equation (2.13) for µ = 0 becomes

i = i(3oz + F(z, z),

2= -i(302+F(z,2).
(2.14)

Since the eigenvalues of the linear part of (2.13) for µ = 0 are A1.2 =
±i130, we have the resonances Ai = k(A1 + A2) + Aj, j = 1, 2 and k =
1, 2, .... Hence, by a polynomial change of variables

z = w + bklwki7pl,
25k+lsm

equation (2.14) takes the form (see §2.1, Example 2.1.22)

lv = i/30w + C1w2w + C2w3w2 + +O(IwI2k+3) (2.15)
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We now make the third hypothesis:

Re(C1) 0 0. (H3)

Theorem 2.4. (Hopf Bifurcation) Suppose that (H1), (H2), and (H3)
hold. Then there are o, > 0 and a neighborhood U of (x, y) = (0, 0) such
that
(i) if I p < o and Re(C1)a'(0)µ < 0, the system (2.13) has exactly one

limit cycle inside U;
(ii) if I AI < o and Re(Cl)a'(0)µ >_ 0, the system (2.13) has no periodic

orbits inside U.
Moreover, the limit cycle is stable (unstable) if Re(C1) < 0 (Re(C1) > 0),
and it tends to the equilibrium (0, 0) as µ -p 0.

Proof. In suitable coordinates, the system (2.13) has the following form:

d [X] = a(N) -R(µ) xl + ...
dt LyJ Q(µ) a(µ) I)'

(2.16)

Using the condition (H1), we can make a further change of variables
(keeping the linear terms unchanged) to transform (2.16) with µ = 0 to
the normal form equation (2.15). By using polar coordinates (r, 0), we
have from (2.15)

i = Re(Cl)r3 + 0(r 5),

9=Q0+O(r2).
(2.17)

Since /30 * 0, in a small neighborhood of r = 0 it follows from (2.17)
that

dr Re(C1)

de = r3 + 0(r5). (2.18)
130

By the same change of variables, we can transform the system (2.16) for
µ # 0 to the form

i = a(p.)r + a(µ, 0)r2 + b(µ, 0)r3 + 0(r°), (2.19)
a(µ) + 0(r2),
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where a(µ), a(µ) are the same as in (2.16), and a(µ, 0), b(µ, 0) E C°,
a(0, 9) = 0, b(0, 0) = Re(C1).

In a small neighborhood of r = 0 and for small JAI, we obtain from
(2.19)

dr a(µ)
r + a(µ, 0)r2 + b(µ, 0)r3 + 0(r4), (2.20)

de a(µ)

where a(0, 0) = 0 and 6(0, 0) = Re(C1)/Q0.
Suppose that the functions

R(ro, 0, A) = ul(0, A) ro + u2(0, µ)ro + .. .

and

h(r0, 0) = R(r0, 0,0) = h1(9)r0 + h2(9)ro +

are solutions of (2.20) and (2.18), respectively, satisfying the initial
conditions

R(ro, 0, µ) = r0 and h(r0, 0) = ro.

A calculation shows that

R(ro,0,µ) = exp(a(µ)0)ro+u2(0,µ)ro + ..., (2.21)

Re(C1)
h(ro,0) =R(ro,0,0) =r0+ Bra + (2.22)

Qo

In fact, by (2.18) we have

a akh(ro,0)

ae aro r0=0

ak dr 0, for k = 1, 2,lim--_{6ReC) fork=3.

Then using h(ro, 0) = ro, we can obtain (2.22).
Now we define the Poincar6 map P(x, µ) along the x-axis for the

system (2.20), and let

V(x, µ) = P(x, µ) - X. (2.23)
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The number of periodic orbits of (2.20) near x = 0 for I µ I small is
determined by the number of zeros of V(x, µ) for x > 0. When x > 0,
we have

V(x, µ) = R(x, 27r,µ) - x

and

V(x,0) =h(x,27r) -x.

From (2.21) and (2.22),

V(x, µ) = xV(x, µ), (2.24)

where

V(x,µ) = ( ira(µ) )J - 1) + u2(27r, µ)x + O(x2), (2.25)

and

V(x,0) = 27T
Re(C1)

x2 + O(X3). (2.26)
F'0

From (2.25) and condition (H2) we get

8V (O, 0) d rr « µ) 27r d« µ)
dµ =

dµ lexp27rI(µ) )Jµ=o Ro µ 00. (2.27)
µ=0

By the Implicit Function Theorem, there exists a unique smooth func-
tion µ = A(x), defined for (x I < e, such that µ(0) = 0 and

V(x,µ(x)) = 0. (2.28)

Differentiating with respect to x, we have

av av

ax + aµ µ,(x) = 0,

a2v a2v

axe
+2aµ ax(!!(x

a2v av
)) + aµ2(µ(x))2+ 0.

(2.29)
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µ

(a) R,(ci)a'(O)<O

Figure 2.7.

x

0 µ

(a) R,(ci)a'(O)<O

Figure 2.8.

(b) RQ(c1)a'(O)>O

x

0
(b) R,(ci)a'(0)>O

On the other hand, from (2.26) and the condition (H3) we see that

aV(0, 0) az V(0, 0) Re(C1)
= 4Tr # 0. (2.30)

ax ax2
PO

Substituting (2.30) and (2.27) into (2.29), we obtain

µ'(0) = 0 and µ"(0) = -2Re(C1)(a'(0))-1 0 0.

Therefore, the graph of µ = µ(x) is as shown in Figure 2.7 (a) or (b),
depending on the sign of Re(C1)a'(0). Since we only need to consider
the number of zeroes of V(x, µ) near (0, 0) for x > 0, we can determine
the inverse function x = x(µ) > 0 of µ = µ(x). This is shown in Figure
2.8. It follows that there are a > 0 and i > 0 such that if I,.I E (0, o,)
and µa'(0) Re C1 < 0, we can find x = x(µ) E (0,,q) such that, among
all the orbits of (2.20) passing through the interval I = {(x, y)I0 < x <
ri, y = 0), the orbit passing through the point (x, y) = (x(µ), 0), and
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only this orbit, is periodic. On the other hand, if IµI E (0, o) and
µa'(0) Re C1 > 0, the system (2.20) has no periodic orbits passing
through the interval I. The stability of the periodic orbit is obtained
from the first equation of (2.17) (or (2.19)). This completes the proof of
Theorem 2.4.

In Chapter 4 we will apply the Hopf Bifurcation Theorem to the
perturbed Hamiltonian system

aH
- ay

+ Sf(x, Y, A, S),

aH
ax

+ Sg(x, Y, A, S),

(2.31)

where H = H(x, y) E C° is a Hamiltonian function, f, g E C, the
parameters g, S E 1181, and S >- 0 is small.

Suppose that x = y = 0 is an equilibrium of (2.31), and the eigenval-
ues of the linear part of (2.31) at x = y = 0 are a(g, S) ± i/3(µ, S). If
there is a function g = g(S), 0 < 8 < o-, satisfying the condition

a(u(6), S) = 0, S) : 0, (Hi )

then under some additional conditions Hopf bifurcation may take place
at x = y = 0 for g = g(S) and S > 0. This means that for every S > 0
there is an e(S) > 0 such that when Ig - g(S)I < e(S), the system has a
periodic orbit for g > g(S) (or g < g(S)) and has no periodic orbits for
g 5µ(S) (or g >_ g(S)). When S -' 0, e(S) may tend to zero (see
Figure 2.9(a)). But in many cases, we need to find S and a such that
e(S)>-a>0forall0<8<S.

In fact, we can apply Theorem 2.4 to the system (2.31), replacing g
by g - A(S). Suppose that for g = g(S) the system (2.31) takes the
normal form (2.15) at the origin, where /30 = 6(g(3), S) and C; =
Ci(g(S), S). To obtain a Hopf Bifurcation Theorem for the system
(2.31) uniformly with respect to S near S = 0, we need the following
conditions instead of conditions (H2) and (H3), respectively:

a* lim
1 aa(g(S), S)

# 0 (Hi )ag
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0

(a)

0

(b)

It

Figure 2.9.

and

1
CI lim - Re(C1(µ(S), S)) # 0. (H*)

s-0 S

Theorem 2.5. Suppose that the conditions (H,*), (H2*), and (H3) are
satisfied. Then there are S > 0, a > 0, and a neighborhood U of (x, y) _
(0, 0) such that
(i) the system (2.31) has exactly one limit cycle in U if 0 < S <
is - µ(S)I < a, and

Ci'a*.(lp-p(S))<0;
(ii) the system (2.31) has no limit cycles in U if 0 < S < µ(S)I <
a, and

Ci -a*-(s-µ(8))>0.
Moreover, the limit cycle is asymptotically stable if C; < 0, and unstable
ifC*>0.

Proof. We replace µ in Theorem 2.4 by µ - µ(S), and take S as a
parameter. Then the proof of Theorem 2.4 is valid for S > 0, and
V(x, µ) is replaced by V(x, µ - µ(S), S).
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System (2.31) is Hamiltonian when 6 = 0; this implies

V(x, µ - µ(S), 3) I.=o = 0

for lx1 and Iµ - µ(6)I small. Hence

V(x,µ - µ(S),3) = SxV*(x,µ - µ(S),3).

Conditions (HZ) and (H3) imply that

aV*(0,0,0)
0 and

a2V*(0, 0, 0)
# 0 .

all axe

Thus we can replace V in (2.24) by V*, and use the Implicit Function
Theorem at the initial point (x, µ - µ(3), S) = (0, 0, 0). This gives the
uniform property with respect to S near S = 0.

From the proofs of Theorems 2.4 and 2.5 we have the following result
which will be used in Chapter 4.

Theorem 2.6. Suppose that the system (2.31) has an equilibrium at
(xo, yo), the eigenvalues of the linearized equation at (xo, yo) are a(µ, S)
± /3(µ, S), and there is a function µ = µ(S) satisfying the conditions
(H*), ), (H*), and (H*). Then there exist x > xo, S > 0, and a unique2 3

function µ = µ(x, S) defined in x0 < x < 1, 0 < 3 < S such that
(i) when µ = µ(x, 3), x0 < x < x, and 0 < S < S, the system (2.31) has

a periodic orbit passing through the point (x, 0);
(ii) aµ(x, S)/ax > 0 if a*Ci < 0, and aµ(x, S)/ax < 0 if a*Ci > 0.

Remark 2.7. For applications it is convenient to express Re(C1) in
terms of the coefficients of equation (2.13). In Guckenheimer and
Holmes [1], we have the following.

If (2.13) for µ = 0 has the following form

d 0 -1

d [Y] [60

00 1LyJ

+ [g(x,Y)
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where f(O) = g(O) = 0 and Df(0) = Dg(0) = 0, then

1
Re(C1) =

16 (fxxx + fxYY + gxxy + gYYY)

1

+ - [fxy(fxx +fYY)

-gxy(gxx +gyy) -fxxgxx +fyygyyI )

More generally, we have the following theorem.

. (2.32)
x=y=0

Theorem 2.8. Suppose that equation (2.13) has an equilibrium
(x(µ), y(µ)) for µ near µo, and the linear part at (x(µ), y(µ)) is given
by

a(µ) b(µ)
c(µ) d(µ)

which satisfies

a(µ0) + d(µ0) = 0, f3 = a(µ0)d(µ0) - b(µ0)c(µo) > 0,
a'(µo) + d'(µo) # 0.

(2.33)

Then the stability of the limit cycle bifurcating from the equilibrium
(x(µ0), y(µ0)) when µ crosses µ = µo is determined by the following
quantity:

b
Re(C1) =

16/30
{F'o[b(fxxx + gxxy) + 2d(fxxy + gxyY)

-C(fxYY + gYYY)1

-bd(fx -fxxgxy -fxygxx -gxxgyy - 2gxy)

-cd(gyy - gyyfxy - gxyfyy - fyyfxx - 2fxY)

+b2(fxxgxx + gxxgxY) - C2(1fYYgYY +fxYfYY)

-(I3 + 3d2)(fxxfxy gxYgYY)/ I Wµo),Y(µo),µo). (2.34)
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If Re(C1) < 0, then the limit cycle is stable; if Re(C1) > 0, it is unstable.

The proof of (2.34) may be found in Wang [1].

Example 2.9. Consider a quadratic system

z = a(µ)x + b(µ) y + a1x2 + a2xy + a3y2,
y = c(µ)x + d(µ) y + b1x2 + b2xy + b3y2.

If a(µ), b(µ), c(µ), and d(µ) satisfy (2.33), then the stability of the
bifurcating limit cycle from (x, y) = (0, 0) when µ crosses µ = µo is
determined by the quantity

v = b[ab(2ai - a1b2 - a2b1 - 2b1b3 - b2)

+ac(2b2 - a2b3 - a3b2 - 2a1a3 - a2)3 2

+b2(2a1b1 + b1b2) - c2(2a3b3 + a2b3)

-(2a2 - bc)(a1a2 - b2b3)]Iw=µ0
.

(2.35)

If v < 0, then the limit cycle is stable; if v > 0, it is unstable.

Example 2.10. Consider a cubic system without quadratic terms

x = a(µ)x + b(µ) y + a1x3 + a2x2y + a3xy2 + a4y3,

Y = c(µ)x + d(p)y + b1x3 + b2x2y + b3xy2 + b4y3.

If (2.33) is satisfied, then the stability of the bifurcating limit cycle from
(0, 0) when µ crosses µ = µo is determined by the quantity

v = b[(3a1 + b2)b + 2(a2 + b3)d - (a3 + 3b4)c] (2.36)

If v < 0, the limit cycle is stable; if v > 0, it is unstable.

Remark 2.11. We notice that Re(C1) = 0 does not imply that the
equilibrium is a center. In fact, if Re(C1) = 0, then we need to consider
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the coefficients of higher-order terms in (2.15). There may be a Hopf
bifurcation of higher order. This will be discussed in Section 5.1 and we
will give an alternative proof of Theorem 2.4.

3.3 Bifurcation of Homoclinic Orbits

Although we consider bifurcation problems locally, sometimes we need
to consider nonlocal bifurcation phenomena such as homoclinic bifurca-
tion.

In this section we consider the system

f(x,Y,A),
Y =g(x,Y,A),

(3.1)

where x, y, µ E III, f, g E C2, and f(0, 0, 0) = g(0, 0, 0) = 0. Denote

A = a(f,g) (0,0,0).
a(x, Y)

(3.2)

We consider the following conditions:

det A < 0. (H1)

This means that the system (3.1))=0 has a hyperbolic saddle point at
the equilibrium point 0(0, 0).

(Wo n Wa)\(0) o, (H2)

where Wo and Wo are, respectively, the stable and unstable manifolds
of (3.1),-0 at the saddle point 0(0,0).

o,o=trace A#0. (H3)

If po = (xo, yo) E (Wo n Wo) \ {0}, then the orbit y(po) through po
of (3.1),=o approaches the saddle point 0(0, 0) as t - ±-. The orbit
y(po) is called a homoclinic orbit of the saddle point 0(0, 0), and the



214 Codimension One Bifurcations

(a)

Figure 3.1.

invariant set

(b)

170=y(po) U {0}, poE (Wo n Wo)\(0)

is called a homoclinic loop. F0 can have either of the configurations in
Figure 3.1. We only discuss the case of Figure 3.1(a). The case of Figure
3.1(b) can be treated in a similar way.

We will consider (3.1) as a small perturbation of (3.l)µ=0. The
purpose of this section is to determine what happens near to as µ
changes.

We will prove that if (3.1)µ=0 satisfies the hypotheses (H1), (H 2), and
(H3), then there are small 3 > 0 and e > 0 such that for JAI < S, (3.1)
has at most one periodic orbit in the e-neighborhood of the loop I'0.

The case of o-0 = 0 is more complicated; we will discuss this case in
Section 5.2.

The following questions are crucial in our discussion:
(1) How can we determine the stability of F0?
(2) How can we determine the relative positions of Wµ and Wµ when

F0 is broken by perturbations (i.e., µ 0 0)?
In order to define stability of t0, let us establish first the Poincare

map of (3.1)µ-o near F0. For p0 E Wo n Wo \ (0), let L0 be a transver-
sal to F0 at p0 and Lo be the part of L0 which belongs to the interior
region surrounded by F0 (see Figure 3.2), and Lo = L0 \ Lo L. By using
the theorem about the continuous dependence of solutions upon the
initial conditions and the saddle property, it is easy to see that there is a
neighborhood U of p0 such that for any p E U n Lo, there is T =
T(p) > 0 with 4(T(p), p) E Lo , 4(t, p) 44 Lo for 0 < t < T(p), where
4(t, p) is the solution of (3.1)µ=0 through p. One can therefore define
the Poincare map P by P(p) = 4(T(p), p) for p E Lo n U. For sim-
plicity of notation, let Lo be orthogonal to To at p0, and no be a unit
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Figure 3.2.

vector along Lo . Then for p E Lon U,

p = ano + p0, a > 0 small, (3.3)

and

P(p) _ 4(T(p),p) = l3(a)no +po,

where (3(a) E C' for a > 0 small, since f, g E C2 in (3.1). We consider
the function

d(a) _ /3(a) - a.

Definition 3.1. The homoclinic loop r0 is asymptotically stable (unsta-
ble) if d(a) < 0 (> 0) for all small a > 0.

Remark 3.2. Note that lima _ 0 d(a) = 0, and the stability of r0 is
determined by the sign of lima . o d'(a) = lima _, o (3'(a) - 1. r0 is
asymptotically stable (unstable) if lima _ o d'(a) < 0 (> 0), that is,
lima-o1'(a) < 1 (> 1).

Theorem 3.3. Suppose that (3.1), =0 satisfies (HI), (H2), and (H3). Then
the homoclinic loop F0 is asymptotically stable if vo < 0 and unstable if
a0 > 0.

Proof. As in the discussion above, we suppose that p0 E Lon I70,
p E Lo n U. p and its Poincare map P(p) are expressed in (3.3) and
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(3.4), respectively. Differentiating (3.4) with respect to a, we obtain

9'(a)no = I aO(T(p),p)] a app) n
L o

=Fsl(ao ao) (noyJI +

where

F
f(l3no +po,0)

R '8(Pno+po, 0)

a
+ .O(T(p),p)no

a
apO(T(p),p) -no, (3.5)

no =

and J3 = /3(a). By taking the inner product with Fs'- , we obtain from
(3.5) that

F,1
,
a4(T(p),p) \

/3'(a) _
ap

no

. (3.6)
F 1

Note that a4(t, p)/ap is the fundamental matrix of the variational
equation

u= a( f, 8)(4(t,p),0).u
a(x, Y)

for which 4(t, p) is a solution. This implies

a45

ap (T(p),p)F. = F,9,

where Fa
ft -no + po, o)

Let= (g(-no +p0o)

ap(T(p),p) -no=6Fs+qno,
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where ,,q E R. By the continuity of f and g, F6 = (1 + Ei)Fa + E2no,
where E11 E2 -* 0 as a --> 0. By (3.7) and (3.8), this implies that

a

ap
(T (P), P) - FR = (1 + E1 + E2 )F,6 + E2nno. (3.9)

Equations (3.8) and (3.9) give the following matrix representation of
aA/ap(T(p), p) in terms of the basis {Fs, no}:

1 + E1 + E2
E277 77

Hence,

det
a-O(T(p),p) = (1 + E1)rl

19P

Ry(a) = 77
1 1) (

a-O(T(P),P)()1 + e l) ap

On the other hand, by Lemma 3.4, we have

(3.10)

(3.11)

det
p)

=exp
foT(p)(ax

+
ay)(-O(t,P),0) dt.

Hence, we obtain from (3.11)

1

1 + E1
exp fT(p) (ax

+ ay)(4(t,P),0) dt,

where T(p) - oo as a -- > 0. By using the condition (H1), we can show
that lima_o Jo (I)(af/ax + ag/ayx(A(t, p), 0) dt is equal to either a
finite number or infinity.

Suppose now vo = trace A = (8f/ax + ag/ayXO, 0) < 0 (> 0). Then
by the continuity, there is a neighborhood Vo of the saddle point 0(0, 0)
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such that (a f/ax + ag/8y)(x, y) < Q0/2 < 0 (> ao/2 > 0) for (x, y)
e Vo. For small a > 0, T(p) = T, + T2, where T, and T2 are the
times for which the flow ¢(t, p) is inside and outside V0, respectively.
Obviously, T, - -, and T2 is bounded as a -* 0. Hence

f0T(P)(ax
+

ay)(-O(t,p),0) dt -oo(+o)

as a-0if vo<0(vo>0).

This implies lim«_o /3'(a) = 0 (+co) for Qo < 0 (oo > 0) which gives
the desired result (see Remark 3.2).

Suppose the solution of (3.1),,=0 has the form

p) --Vt ,
0(t; to, xo, Yo)
41(t to, xo, yo)

satisfying

4 (to; to, xo, yo) = xo, +i(to; to, xo, yo) = yo. (3.12)

Denote

a(o ,41)
dJ J 3 13et(t; to, xo, yo) = = ( . )

a(xo, Yo)

Lemma 3.4. We have that

J = exp fol ax (4, G) + ay (4 P)] dt, (3.14)

where J is defined in (3.13) and f = f(x, y, 0), g = g(x, y, 0) are the
right-hand sides of (3.1) for µ = 0.
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Proof. From (3.13) we have

aJ

at

at axo

a ao ao

at axo ayo

aa, a,I

ayo

a0

ayo

aj

ayo

of a0 of aq
ax axo ay axo

dg do ag aq
ax axo By axo

ao a ao
axo at ayo

a4 a aq,

axo at a y o

ao

ayo

a41

ayo

af(4, 41)

ayo

ag(4',+p)

ayo

ao of ao of aip

axo ax ayo By ayo

4941 dg a(P dg a/i

axo ax ayo ay ayo

Expanding the above determinants, we obtain

219

aJ

at

of dg
J. (3.15)

From (3.12) we have

Jet=ro = 1. (3.16)

Equations (3.15) and (3.16) give (3.14). 0

Consider now the system (3.1) for µ 0 0 small. Condition (H1)
implies that there is a unique equilibrium point in a neighborhood of
(x, y) = (0, 0) for µ in a small neighborhood of zero. By a change of
variables, one may suppose without loss of generality that (3.1) satisfies

f(0, 0; µ) = g(0, 0; µ) = 0 for all A. (3.17)

Let Wµ and Wµ be the stable and unstable manifolds at the saddle
point of (3.1).
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Theorem 3.5. Suppose that (3.1), satisfies (H1), (H2), and (H3). Then
there exist S > 0 and a neighborhood U of F0 such that for Ip <6, if
(3.1) has a periodic orbit tµ in U, then I'µ is asymptotically stable for
a0 <0 and unstable for o> 0. Moreover, tµ is the unique periodic orbit
of (3.1) in U.

Proof We only need to consider the periodic orbit F of (3.1) with the
property that F - F0 as µ - 0. For any fixed small µ, let p0µ E Wµ
and Lµ be a transversal to Wµ at p0µ. Similarly, we have L. Let nµ be
the unit vector along Lµ. Thus

Lµ = {anµ + p01, a > 0 small}.

Suppose that the periodic orbit tµ corresponds to a = aµ. Then by the
continuity of solutions with respect to initial conditions, we define the
Poincare map Pµ(p) = f3(a)nµ + p0µ for p = anµ +p0µ with a near
aµ. We have that (3(aµ) = aµ, and the stability of F is determined by
the sign of ((3'(aµ) - 1). Note that as µ - 0, aµ - 0, and the local
unstable manifold at Sµ approaches the local unstable manifold at S0.
Hence, by repeating the same arguments as in the proof of Theorem 3.3
we have that lim0 R'(aµ) = 0 if o <0 and lim0 f3'(aµ) _ + if
vo > 0. This gives the stability of F.

It is impossible for a system to have more than one periodic orbit
with the property that all of them are asymptotically stable (or unstable).
Therefore the periodic orbit of (3.1) for µl <6 inside an e-neighbor-
hood of Fif it exists, is unique.

We now show that the existence of a periodic orbit is possible.
Suppose F0 of (3.1)µ=0 is as in Figure 3.1(a) and 0 (the other case
can be considered in a similar manner). By Theorem 3.3, F0 is asymp-
totically stable. Let p0 E L0 f1 F0, p E Lo and near p0, and P(p) be
the Poincare map of p. Then p and P(p) have expressions (3.3) and
(3.4), respectively. We can find a fixed p which is sufficiently close to p0
such that 13(a) <a. Let Aµ denote the part of the orbit from p to
Pµ(p) and Bµ denote the line segment in Lµ joining Pµ(p) and p. Let
yµ = Aµ U Bµ (see Figures 3.3 and 3.4). For (3.l)µ # 0, the relative
positions of the stable and unstable manifolds (Wµ and Wµ) have three
possibilities which are shown in Figure 3.4(a), (b), and (c). It is easy to
see that in case (a), by the Poincare-Bendixson Theorem, there is a
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Figure 3.3.

(a) (b)

Figure 3.4.

periodic orbit which is a stable limit cycle and is unique (Theorem 3.5).
In cases (b) and (c), there are no periodic orbits in the exterior of 'Y,,. In
fact, by Theorem 3.3, the homoclinic loop I'µ in case (b) is asymptoti-
cally stable. Therefore, in both cases (b) and (c), if there is a periodic
orbit in the exterior of yµ, it must be unstable. This contradicts
Theorem 3.5.

Thus, to determine the existence of limit cycles bifurcating from the
homoclinic loop F0, we need to know the relative positions of Wµ and
W. We will use the Melnikov function to determine the splitting of WN"
and Wµ.

Consider the equation

z = P0(x, Y) + EP1(x, Y, E),
(3.18)

Y = QO(x, Y) + EQ1(x, Y, E),

where P0, Q0, P1, Q1 E C' and r >_ 2. For simplicity, we also consider
(3.18) in its vector form:

vv = R(w, E) = Ro(w) + ER1(w, E), (3.19)

where

(X), / P x, Y) __ P1(x, Y,E)
w = R0(w) = Q0(x, Y) R1(w E) Q1(x, Y, E)
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Suppose that O(xo, yo) is a hyperbolic saddle point of (3.18)E=0. As-
sume that F0 is a homoclinic loop through O(x0, y0) and is given by

wo(t) =

Let v = wo(0) and L be a transversal line segment through v. We
assume that L is parallel to the vector R 1(v, 0) = Ro (v), where

a 1= ( aa2) for any vector a = (a2) E R2.

By the Implicit Function Theorem, equation (3.18) has a hyperbolic
saddle point O(xE, yE) satisfying O(xE, yE) -+ O(x0, y0) as e - 0. Let
WE and WE" be the stable and unstable manifolds of O(xE, yE) of
system (3.18).

By the results in Chapter 1, for sufficiently small a there exists a
unique bounded solution w, '(t) for t >_ 0 such that w, ,(t) is close to
w0(t) for all t >_ 0 and ww(0) E L. Furthermore, wE(t) is C` with
respect to the parameter a and w,,(t) E WE for all t >_ 0. Similarly, we
have a unique bounded solution w, ,"(t) for t < 0 in the unstable mani-
fold WE"

Let

o(t) = Pox(O(t),+/(t)) + Qor(0(t), cG(t)),

Poo(t) = P0(kt),+/i(t)), P10(t) = Pi(4(t), 4(t) 10),

Qoo(t) = Qo(4(t),+1(t)), Q10(t) = Qi(0(t),+1(t),0),

and

D(t) = det Poo(t) Q00(t)

Pio(t) Q10(t)

Theorem 3.6. Assume that the vector field (3.18) is Cr, r >_ 2, and the
above conditions hold. Let

0 = f D(t)e- 0°c0'1 dt (3.20)
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and

d(E) =(wE(0) -w:(0),R1(v,0)). (3.21)

Then for sufficiently small E we have

d(E) = EO + O(IE12).

Proof Let

a

aEwE(t)

and

a

aEwE(t)

Let

= zs(t) for t >_ 0,

E=o

= zu(t) for t < 0.
E=0

OS'u(t) = (zs'u(t), RO (wo(t)))

By differentiating (3.19) with respect to e, we have that

zs(t) aw° (wo(t))zs(t) + R1(wo(t),0) for t >_ 0. (3.22)

Next, for any two vectors a, b E 1R2 we define

aAb=<a,b').

It is not hard to see that for any 2 X 2 matrix A, we have

(Aa) A b + a A (Ab) = (trA)a A b, a, b E l2. (3.23)
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For t >_ 0, we have the following from (3.22)

dus(t) = dt [ zs(t) A R0(wo(t))]

d
= is(t) A R0(wo(t)) + Zs(t) A dtR0(wo(t))

_ ?s(t) A R0(wo(t)) + zs(t) A awo (wo(t))Ro(wo(t))

awo (Wo(t))zs(t) A R0(wo(t))

+ R1(wo(t),0) A Ro(wo(t))

+ zs(t) A awo (wo(t))R0(wo(t))

By (3.23), for t >_ 0,

d OS(t) = Q(t)OS(t) + ( R1(wo(t), 0), Ro (wo(t)))

By the variation of constants formula, we have for t >_ 0

J'o(s) ds tOs(t) = e o IDs(0) + f [e_Jo(Ri(wo(r),O),o(s)dsJ0

Ro (wo(T))) ] dTJ.

This implies that

W(0) + fo e-JoO(s)ds(R1(wo(T),0),Ro (wo(T)))] dT

= e-J0!o(s)dsy (t).
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Since the solution z'(t) is on the stable manifold WE,

lime- fov(s)d5Qs(t) = 0.t-m

Hence,

OS(0) f [e_fod15( Rl(w0(T),0),R (wo(T)))I dT.

Similarly, we have

0'"(0) =
_ (0[e_Io

`v( s)ds(R,(wo(T),0), Ro (wo(T))), dT.

Hence 0 = W(0) - W(0). This yields the desired result. 0

Combining the results of Theorems 3.3, 3.5, and 3.6, we obtain
finally:

Theorem 3.7. Suppose that system (3.18)c=0 has a hyperbolic saddle at
(xo, yo) with a homoclinic loop to, and the orientation of I'o is clockwise
(counterclockwise). If ob = Pox(xo, yo) + Qo,(xo, yo) * 0, then for
sufficiently small Jet and in a small neighborhood of I70, we have:
(i) if oOEO > 0 (< 0), system (3.18) has exactly one limit cycle bifurcat-

ing from the loop I70, which is asymptotically stable for o 0 < 0 and
unstable for o-o > 0;

(ii) if 0 (> 0), (3.18) has no limit cycles.

Remark 3.8. In some cases, we do not need to find the expression for
I'o. For example, if D(t) has a fixed sign, then 0 has the same sign by
(3.20).

Example 3.9. Suppose that the system

Jx = P(x, Y),
Y=Q(x,Y)
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has a hyperbolic saddle point at (0, 0) and a homoclinic loop including
(0, 0) with clockwise orientation, and

00 = PoX(xo, Yo) + QoY(xo, Yo) # 0.

Then for sufficiently small Jet and in a small neighborhood of I's, the
following perturbed system

x = P(x, Y) - EQ(x, Y),
Y = Q(x, Y) + EP(x, Y),

has exactly one limit cycle bifurcating from the loop I'o when eoo > 0;
and has no limit cycles when eoo < 0.

In fact, it is easy to see that

D(t) = det[Q Ql > 0,

and therefore

O = f D(t)e&Q)dg dt > 0.

By Theorem 3.7, the desired result follows.

3.4 Bibliographical Notes

There are many references for codimension one bifurcations; see, for
example, the books of Andronov, et al. [1], Arnold [1], Chow and Hale
[1], Hassard, Kazarinoff, and Wan [1], Golubitsky and Schaeffer [1],
Guckenheimer and Holmes [1], Marsden and McCracken [1], and
Wiggens [1, 2].

For a proof of the Jet Transversality Theorem (Theorem 1.6), we
refer to Hirsch [1] or Arnold [4]. The proof of Theorem 1.10 can be
found in Chow and Hale [1]. Definitions 1.13 through 1.16 are due to
Arnold [4].

Theorem 2.6 is different from the classical Hopf Bifurcation Theo-
rem. It gives a uniform property with respect to some parameters. This
result will be useful in Chapter 4.
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Formula (2.32) is taken from Guckenheimer and Holmes [1], and
Marsden and McCracken [1]. Chow and Mallet-Paret [1] presented an
alternative by using the method of averaging. Formula (2.34) can be
obtained by using (2.32) (see Wang [1]), or by using a formula in Farr
et al. [1], which can also be used in more general cases n > 2. Formula
(2.34) is equivalent to a formula in Andronov et al. [1, p. 253].

The proof of Theorem 3.3 is due to Chow and Hale [1].
Theorem 3.7 was first given by Melnikov [1] and the integral (3.20) is

called the Melnikov integral. Our proof of Theorem 3.6 follows basi-
cally Guckenheimer and Holmes [1] and Wiggins [2]. For other ap-
proaches, see Chow and Hale [1], Chow, Hale, and Mallet-Paret [1],
Feng and Qian [1], Ma and Wang [1], and Palmer [2]. For the higher
dimension Melnikov method, see Chow and Yamashita [1], Gruendler
[1], and Palmer [2]. Results in Section 3.3 can be generalized to the case
of heteroclinic orbits. See, for example, Cerkas [1] and Feng [1-2].

The degenerate cases of Hopf bifurcation and homoclinic bifurcation
will be discussed in Section 5.1 and Section 5.2.
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Codimension Two Bifurcations

In this chapter we will introduce some results on codimension two
bifurcations of vector fields near nonhyperbolic equilibrium points.

Consider a family of vector fields

x =f(x,E), (XE)

where x E IIB", E E fpm (m > 2), f E C(P" x l, R"), and f(0, 0, 0) =
0. Suppose that the origin is a nonhyperbolic equilibrium point of (X0),
and the linear part of (X0) is doubly degenerate. Then, after reduction
to a center manifold, the linearized matrix of (X0) must take one of the
following forms:

`41 = [0 0 0] or [0 01,

0 1 0
A2= -1 0 0,

0 0 0

A3 =

0 wl 0 0

w1 0 0 0

0 0 0 w2

0 0 w2 0

(wlw2*01 w10kw2,k= 1,...,5).

In Sections 4.1-4.5, we discuss the case Al. This means that we will
study the bifurcation diagrams in a small neighborhood U of E = 0, and
find all possible phase portraits of (XE) (corresponding to different
E E U) in a small neighborhood of x = 0, under certain nondegenerate
conditions on the higher-order terms of (X0) which will vary for

228
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different cases. These conditions make the family essentially a two-
parameter family, even though it may contain m > 2 parameters. In
Sections 4.1-4.5, we suppose that (XE) is invariant under a rotation of
the phase plane through an angle 2-7r/q for q = 1, 2, 3, 4 and q >_ 5,
respectively. These are usually called 1: q resonance problems. For the
cases q = 1, 2 the matrix A 1 is nonzero nilpotent, and in the cases
q >_ 3, Al is a zero matrix. The case q = 1 is nonsymmetric; it was first
studied by Bogdanov [1, 21 and Takens [2], and is usually called the
Bogdanov-Takens system. The complete results for the cases q = 2,3
(with codimension two) were first given by Khorozov [1]. All codimen-
sion-two results for 1: q resonances are known, except the case q = 4
(see Arnold [4, 5]). In these problems an important and difficult part is
the study of the existence of periodic orbits, homoclinic or heteroclinic
orbits, and the number of periodic orbits, corresponding to different
values of the parameters. For problems of this kind, we need the Hopf
bifurcation theory and homoclinic (heteroclinic) bifurcation theory, as
well as some special techniques, such as the blowing-up transforma-
tions, Abelian integrals, and Picard-Fuchs equations. We will give
more details in this chapter about all these techniques.

For the types A2 and A3, the study of bifurcations is far from
complete. Since the dimension of the system is greater than or equal to
3, some complicated dynamical behavior can occur. The first step to
study these bifurcations is to transform the equations into their normal
forms (see Section 2.11), and then to study the truncated normal form
equations which have some symmetric properties and can be reduced to
planar systems because of the nature of A2 and A 3.

In Sections 4.6 and 4.7, we will discuss codimension-two bifurcations
of the reduced systems corresponding to A2 and A3, respectively.
Zoladek [1, 2] gave the complete results for these two cases. We will use
a simpler method to prove the uniqueness of periodic orbits for the first
case.

4.1 Double Zero Eigenvalue

Consider a family of vector fields

= f( x, Y, e),

Y =g(x,Y,e),

where x, y e R', e E R', m >_ 2, and f, g E C(x, y, e).
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We suppose in this section that for e = 0, (1.1) has an equilibrium
point at x = y = 0 for which the matrix of the linear part is similar to
the Jordan block

Thus, the normal form of (1.1) for e = 0 (see Examples 2.1.10 and
2.1.15) is

Y,

axe + bxy + O(I(x, Y ) I3).
(1.2)

We remark here that the first normal form equation may have the
form i = y + 4(x, y), 0 = O(Kx, y)13). By a change of coordinates in a
small neighborhood of the origin:

x=x, Y=Y+4(x,Y),

it can be transformed into the form (1.2).
Another basic hypothesis in this section is ab * 0 in (1.2). Under this

condition, if we make a change of coordinates and time:

a
x--), b2x,

a2

Y b3Y,

the equation (1.2) is transformed into the form

= y,

= x2 + xy +0 0(X1 Y) 13)

The reader should be aware that if ab < 0, then time is inverted by the
scaling. If one wishes to keep the direction of motion, then (1.2) could
be transformed into an equation having the same form as (1.2) with
a = 1, b = ± 1. We only consider the case b = 1. The case b = -1 can
be discussed in a similar way.

Definition 1.1. A family of vector fields (1.1) is called a deformation of
equation (1.3) if for e = 0 it has the form (1.3).
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Under the above hypothesis we can assume that (1.1) is a family of
deformations of (1.3) of the following form:

=y+w1(x,Y,E),

= x2 + xy + O(I (x, Y) I3) + w2(x, Y, E),
(1.4)

where x, y E l1, E E Rm, m > 2, W11 W2 E C°°(x, y, E), and w,IE.0 = 0,
i = 1, 2.

We will show that the following two-parameter family of vector fields

= y,

= Al + µ2Y + X2 + Xy

is a versal deformation of (1.3). This result is not obvious and its proof
has been given by Bogdanov [1, 2] and Takens [1].

The discussion will be divided into three parts. We will study the
bifurcation diagram and phase portraits of (1.5) in the first part, reduce
(1.4) to a canonical form in the second part, and study the versality of
(1.5) in the last part.

(I) The Bifurcation Diagram and Phase Portraits
of the System (1.5)

Theorem 1.2. (1) There is a neighborhood A of µl = µ2 = 0 in R2 such
that the bifurcation diagram of (1.5) inside 0 consists of the origin
(µ1, µ2) = (0, 0) and the following curves:
(a)SN+=(µIµ1=O,µ2>0),
(b)SN-=(µIµ1=0,µ2F0),
(c) H = (µIµ1 = -µ2, µ2 > 0),
(d)HL={µIµ1= - 25µi+O(µ22),µ2>0).

(2) The bifurcation diagram and phase portraits of (1.5) for µ E 0 are
shown in Figure 1.1, where the regions I-IV are formed by the above
bifurcation curves.

A proof of Theorem 1.2 will be given by using the following lemmas.

Lemma 1.3. There is a neighborhood O1 of Al = µ2 = 0 such that SN+
and SN- are saddle-node bifurcation curves while H is a Hopf bifurcation
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0

I

0

Figure 1.1. The bifurcation diagram and phase portraits of (1.5).

curve for the system (1.5). Moreover, if (µ 1, µ2) E 01 n region II and
near H, then the system (1.5) has a unique limit cycle in a small
neighborhood of the focus (- - µ1 , 0). Furthermore, it is unstable,
and it tends to the focus as (11, µ2) tends to a point on H. The phase
portraits of (1.5) for (µ 1, µ2) E 01 n (µ1µ1 >- 0) are shown in Figure 1.1.

Proof. If /,tl > 0, then (1.5) has no equilibria. If µ1 = 0, then the
unique equilibrium (x, y) = (0, 0) is a saddle-node for µ 2 * 0, and is a
"cusp" type for µ2 = 0. The phase portraits near (0, 0) for µ1 >- 0 are
shown in Figure 1.1. (We refer to Zhang et al. [1, p. 130-58] for the
details in obtaining the phase portraits.) Finally, if Al < 0, then (1.5)
has two equilibria (x t, 0), where x f= ± - µ1 I. The 2 x 2 matrix of
the linearized equation at (x f, 0) is

H SN+

HL- II III

0 1

`4±+= ±2 - µ1 142 t - /a,1
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Since

trace(At) =µ2t V_-Al and det(A±) = -(±2 - µ1 ),

(x, 0) is a saddle point and (x_, 0) is an unstable focus for µ2 > --A 1
and a stable focus for µ2 < Therefore, a Hopf bifurcation
occurs along the curve H = {µIµ1 = -µ2,µ2 > 0), and a saddle-node
bifurcation occurs along the curves SN+ and SN-. By using the
formula (3.2.34), it is easy to obtain that

1
16Re(C1)= >0.

Hence, the focus (x_, 0) is unstable for µ2 = --A
1

. Moreover, (x_, 0)
will become a stable focus surrounded by an unstable limit cycle for
µ2 <'i--µ1 and Iµ2 - -µ1I << 1, and the cycle tends to the focus
as (µ1, µ2) - H (Theorem 3.2.4).

In order to discuss the limit cycle and the homoclinic orbit of (1.5),
we set

/21 = -s4,
/.L =

32, x - 32x,

t
y -> 63y, t -

S
(S > 0),

where and S are new parameters. Then (1.5) becomes

=Y'
=

For S = 0, (1.7) is a Hamiltonian system:

Y,

-1+x2,

with the first integral

Y2 x3
H(x,y) =

2
+x-

3
=h.

(1.8)

The phase portrait of (1.8) is shown in Figure 1.2.
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Figure 1.2. The phase portrait of (1.8).

Figure 1.3.

Every closed orbit of (1.8) surrounding (- 1, 0) corresponds to a level
curve rh = ((x, y)IH(x, y) = h, - 3 < h < 3}. Ih shrinks to the equi-
librium (-1, 0) as h - - 2/3, and tends to the homoclinic loop as
h - 2/3.

Now we consider (1.7) as a perturbation of (1.8) for S small. Note
that (1.7) has two equilibria: The point A(l, 0) is a saddle point and the
point B(-1, 0) is an equilibrium point with index + 1 for every S and
Hence every closed orbit of (1.7) must cross the line segment L =
((x, y)I y = 0, -1 < x < 11 and surround the point B.

On the other hand, for every h E (- 3, 3), rh (the orbit of (1.8))
intersects L at exactly one point Ph(x(h), 0). Therefore, the segment L
can be parameterized by h E (- 2, 3).

For every h E (- 3, 3), we consider toe trajectory of (1.7) passing
through the point Ph(x(h), 0) E L. Let this trajectory go forward and
backward until it intersects the negative x-axis at points Q2 and Q1,
respectively (Figure 1.3). We denote the piece of trajectory from Q1 to
Q2 by y(h, S, ). For h = + 2/3, we take the limiting positions of y by
using the local stable and unstable manifolds at A.
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Lemma 1.4. y(h, S, T) is a periodic orbit of (1.7) if and only if

f (1.10)

Moreover, the system (1.7) has a homoclinic orbit if and only if (1.10) is
satisfied for h =

3.

Proof. y(h, S, ) is a periodic orbit if and only if Q1 = Q2. From (1.9)
we have

aH(x, y) =1-x2#0,if lxl#1.
ax

Hence Q1 = Q2 if and only if H(Q1) = H(Q2).
On the other hand, along the orbits of (1.7) we have that

dH(x, y)
dt

This implies that

0.7)
dt =

ft(Q2) dH
H(Q2) - H(Q1)

t(Q,) dt 1(.7) dt =Sf (1.11)
y(h, S, C)

This gives the desired results. The homoclinic case can be obtained by
taking a limit as h - 3 - 0 (see Lemma 1.5). 0

Lemma 1.5. (Bogdanov [1]) There is So > 0 such that the function
F(h, S, f) given by (1.10) is continuous on the set

where y, < 2 are arbitrary constants. Moreover, F is C°° in S and on
U, and C`° in h on the set

-3 <h <3,0 _ S _ 80,1 <<-2)
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Proof. From the theorem about the continuous and differentiable de-
pendence on solutions upon initial conditions and parameters, we know
that F E CO on U and E C°° on V. To prove that it is C°° in S and at
h = -2/3, we can use a theorem of Andronov et al. [1] about the
smooth dependence of solutions upon parameters near a focus. To
prove F E C°° in S and at h = 2/3, we can use a theorem of
Shoshitaishvili [1] about the smooth dependence of the separatrix upon
the parameters.

We will consider F(h, S, ) as a perturbation of F(h, 0, ). The
function F(h, 0, ) is given by

F(h,0, ) = I0(h) + I1(h), (1.12)

where

I,(h)= f x`ydx, i=0,1,
F.

and "h is the level curve of H(x, y) = h. The orientation of I'h is
determined by the direction of the vector field (1.8). By Green's
formula

( 1

Io(h) = f y dr = f f dx dy > 0, h ca
2 2,

r, D(h) 3 3

where D(h) is the region surrounded by 1'h. It is easy to show that

lim 10(h) = lim 11(h) = 0.
h->-2/3 h- -2/3

By the Mean Value Theorem of integrals, we have

f f x dr dy

lim II(h) = lim D(h) = lim 1(h) = -1,
h-+-2/3 10(h) h,-2/3 f f idy h- -2/3

D(h)

where (x(h), y(h)) E D(h) and D(h) shrinks to the point (- 1, 0) as
h - - 2/3.
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Now we define

I1(h) 2 2

P(h) I0(h)' -3 <h ;,

1, h= -3.

237

(1.13)

It is continuous in h E [ - 2/3, 2/3].
We remark here that by Lemma 1.4, to determine the existence and

the number of periodic orbits for (1.7), we only need to study the
existence and the number of zeros for the function F(h, 6, I') with
respect to h E (- 3, 3). On the other hand, F(h, 6, t) can be approxi-
mated by F(h, 0, ) = I0(h)(t - P(h)). Hence, the behavior of the
function P = P(h), as a ratio of two Abelian integrals, is crucial in our
discussion.

Lemma 1.6. If -2/3 < h < 2/3, then P(h) satisfies the following
Riccati equation:

(9h2 - 4)P'(h) = 7P2 + 3hP - 5. (1.14)

Proof. We have that

I,(h) = f x`ydx = 2 f "(h)x`ydx, i = 0,1,2,..., (1.15)
rh f(h)

where 77(h) and (h) are shown in Figure 1.4 and

x3
1/2

y = [2(h_x+ 3) (1.16)

From (1.9), we obtain that

x
I, (h) = 2 71(h)- dx, i = 0, 1, 2, ... (1.17)

4(h) Y
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rh

Figure 1.4.

Using (1.15), (1.16), and (1.17), we have

17(h)`,2dx=2h1(h) 2I' h+ 2I' h (1.18)11(h) 2
4(h) Y 3

On the other hand, an integration by parts shows that

xi+1

Ii(h)=2 i+ly
1

('77(h)Xi+1 (x2 - 1)
dx .

i + 1 .le(h) yf(h)

Since y(C(h), h) = y(q(h), h) = 0, we obtain by (1.17) that

1

I1(h) i + 1 (Ii+1(h) - Ii+3(h)).

Removing Ii+3(h) from (1.18) and (1.19), we have

(2i + 5)Ii(h) = -41i+1(h) + 6hIi(h).

In particular, we have

0510=-4I11 +6hI,
771 = -4I21 + 6hI11 .

We claim that I2(h) ° I.W. Indeed, from (1.9)

dH=ydy+(1-x2)dx,

(1.19)
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that is,

(1 -x2)ydx = ydH - y2dy. (1.21)

Integrating (1.21) along I'h, we have I0(h) = I2(h).
Thus, (1.20) becomes

(510=6hIo-4Ii,
7I1= -410+6hIi. (1.22)

For - 2/3 < h < 2/3, (1.22) is equivalent to the following Picard-Fuchs
equation

(9h2-4)I0' = 2hI0+711,

21
(9h2-4)Ii=510+ 2hI1.

(1.23)

It is easy to obtain (1.14) from (1.23), (1.13), and the following equation

1
P'(h) =T2 (Ioil -h'0). O

Lemma 1.7. P(h) has the following properties:
(1) limh - 3P(h) = ';
(2) P'(h) < 0 for - 2/3 < h < 2/3, P'(h) - -1/8 as h - - 2/3,
and P(h) - -- ash - 2/3.

Proof. P(h) is a solution of (1.14) and P(h) - 1 as h -+ - 2/3. We
rewrite (1.14) into the following form:

dP
_ -7P2 - 3hP + 5,dt

dh

dt
-9h2 + 4.

(1.24)
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Figure 1.5.

The graph of P(h) is the heteroclinic orbit from the saddle point
(- 2/3, 1) to the node (2/3, 5/7) in the hP-plane (see Figure 1.5). Thus
P(h)->5/7ash-->2/3.

The graph of the equation

7P2+3hP-5=0 (1.25)

has two branches of curves on which the direction of the vector field
(1.24) is horizontal. The branch of the hyperbola (1.25) above the h-axis
is given by

Cq: q(h) = 14 [-3h + (9h2 + 140)12}. (1.26)
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Along the curve Cq we have P'(h) = 0 and q'(h) = -3q 2/7q2 + 5.
Hence the vector field (1.24) is transversal to Cq from the left to the
right for - 3 < h < 3. It follows from (1.14) and (1.26) that

1 1

h
lim 3P'(h)

8
and q'(-2/3) = - 4.

Therefore, the graph of P(h) is entirely above Cq, that is, P'(h) < 0 for
-2/3 < h < 2/3. The fact that P'(h) -p - as h - 2/3 can be
obtained directly from (1.14).

Now by using the properties of P(h), we continue with the proof of
Theorem 1.2.

Lemma 1.8. There is a neighborhood A2 of Al = µ2 = 0 such that for
(µl, µ2) E D2 there is a curve HL = {µIµ1 = - uµ2 + O(µ2/2), µ2 >
0) which is a homoclinic loop bifurcation curve of (1.5).

Proof By Lemma 1.4 and (1.10), the condition for existence of the
homoclinic orbit of (1.7) is: F(2/3, S, f) = 0. From (1.12), (1.13), and
Lemma 1.7, F(2/3, 0, 0) = 0, where CO = P(2/3) = 5/7, and
aF/aC(;, 0, C) = I0(2/3) > 0. By the Implicit Function Theorem, there
exist a 50 > 0 and a function _ (S), defined for 0 < S < 80, such
that F(2/3, S, C(S)) = 0, that is, y(2/3, S, (S)) is a homoclinic orbit.

Using (1.6), we can change the parameter (S, C) back to (µl, µ2) to
obtain the equation of the bifurcation curve.

In fact, µ2 = C62 and C(S) = C0(1 + O(S)) = (1 + 0(6)) imply S =
O(µ12 2) as µ2 - 0+. In addition, µl = -S4 and µ2 = C62 imply that

2 2 49
N'l = - (S)

0
(1 + O(S)) = - 25µ2+0W 2),

where 92 > 0 and (µl, 92) E '&2 = {(µl, µ2)I IµII + Iµ21 < So}. This
completes the proof of Lemma 1.8.

Lemma 1.9. For a given hl E (-2/3,2/3), there exist S1 > 0 and a
unique function C = C1(h, S) defined in h E [hl, 2/3], 0 < 8 < S1, such
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that
(1°) the trajectory y(h, 8, 1(h, 8)), h1 5 h < 2/3 and 0 < S 5 81, is a

periodic orbit of (1.7), which is the unique limit cycle of (1.7); and
0, h,Sh<2/3,0<8581.

Proof. We note from (1.12) that

F(h, 8, ) Is=o = I0(h) + I1(h) = Io(h)( - P(h)), (1.27)

where P(h) is defined in (1.13). Hence, for each h* E [hl, 2/3] we have

IF
F(h*,0, P(h*)) = 0, = Io(h*) > 0.g s=o

By the Implicit Function Theorem there exist 8* > 0, o,* > 0, and a
function _ t*(h, S) defined in 0 5 8 5 8* and h* - o-* < h < h* +
0`* (if h* = 2/3, then we consider the interval h* - o- < h 5 h*) such
that

0.

This means that y(h, 8, *(h, 8)) is a periodic orbit of (1.7).
Thus, by the compactness of [h1, 2/3], there exist 51 > 0 and a

function = 1(h, 8) defined for 0 5 8 5 81, h1 5 h 5 2/3 such that

1(h, 0) = P(h), F(h, 8, 1(h, 8)) = 0, (1.28)

that is, the trajectory y(h, 8, 1(h, 8)) is a periodic orbit of (1.7) passing
through the point (x, y) = (x(h), 0).

Since F E C°° for all 3, , and - 2/3 < h < 2/3 (Lemma 1.5), we
obtain from (1.28), (1.27), and Lemma 1.7 that

IF IF ail
ah + ail ah

=
0'

8=0

= 10(h) > 0,

IF l
= P(h)) - I°(h)P'(h) > 0.

ah s=o, =C,ch,o>
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This implies that (note that II(h) is finite for - 2/3 < h < 2/3)

S)

ah

and

2
<0, h,<h<-

s=0 3

s=0
- -, as h -2/3.

Hence, we can choose 8, so small that

S) 2

ah
<0, 05 S5 S,, h,<-h<- 3.

Therefore, for any So a (0, S1) and o e P(h,)), where
t(S) _ ;0 + O(S)) is the function defined in Lemma 1.8, there exists a
unique ho a (h1, 2/3) such that o = 1(h0, S0). Hence

F(ho, S0, 0) = 0, (1.29)

that is, y(h0, S0, 0) is a periodic orbit for (1.7).
On the other hand, we consider the trajectory y(h, S0, 0) for h near

h0. From (1.11) and (1.29) we have

aF
H(Q2) - H(Q1) = SF(h, So, 4) = S dh

(h, So, Co)

where Q1 and Q2 are the intersection points of y(h, S0, 0) and the
x-axis (see Figure 1.3), and h is between h0 and h. Since aF/ah > 0 for
small S, (1.30) implies that the periodic orbit y(h0, S0, 0) is an unstable
limit cycle.

Lemma 1.10. There exist h 2 e (- 2/3, 2/3), S2 > 0, and a unique func-
tion = 2(h, S) defined for -2/3 < h <- h2, 0 < S < S2 such that
(i) if = 2(h, S), -2/3 < h < h2 and 0 < S < S2, then the system

(1.7) has an unstable limit cycle y(h, a, C2(h, S)) passing through the
point (x(h), 0);
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(ii) ad2/ah < 0, -2/3 < h < h2, 0 < S < S2.

Proof. The linearized equation of (1.7) at the focus (-1, 0) has the
matrix

0 1

-2 6( - 1) .
(1.31)

We use the notations as in the Theorem 3.2.6 and replace µ by , and
take (S) = 1. The eigenvalues at (-1, 0) are

1
z z i/z

1) ± i18 -
2

SG

Hence the conditions (Hi) and (H2) are satisfied, and a* > 0.
Next, we use the formula (3.2.34) and obtain

1
Re(C1) = 32

(S - 252).

Hence the condition (H3) is also satisfied (for small S) and Ci > 0.
By Theorem 3.2.6 we can find x > -1, S2 > 0, and a function
=

-
2(x, S) defined for - 1 < x < x, 0 < S < S2 such that

y(h, a, C2(x, S)) is a periodic orbit of (1.7) passing through the point
(x, 0). Moreover, since a* Ci > 0, we have

a2 <0, -1<-x<x, 0<S<32. (1.32)

From (1.9) we have that x = x(h) satisfies

x- 1x3=h.
3

Thus

dx(h)
for -2/3 < h < 2/3. (1.33)> 0 ,

dh

If we take h2 as the value satisfying x(h2) = x, then - 2/3 < h2 < 2/3.
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Let

2(h,5) = 2(x(h),5). (1.34)

Then the conclusion (i) follows.
From (1.34), (1.32), and (1.33), we have

42_42
ah ax .

x'(h) < 0, -2/3 < h < h2, 0 < S < S2,

and thus the conclusion (ii) follows.

Lemma 1.11. There is a neighborhood 03 of Al = µ2 = 0, such that if
(µ 1, µ2) E 03 and is between the curves H and HL (defined in Lemmas
1.3 and 1.8, respectively), then the system (1.5) has a unique periodic orbit
and it is an unstable limit cycle. Moreover, as (µ1, µ2) tends to H, the
limit cycle shrinks to the focus; as (µ1, µ2) tends to HL, the limit cycle
tends to the homoclinic loop. The system (1.5) has no limit cycles if
(Al, µ2) E (H u HL) n 03.

Proof. Instead of (1.5) we first consider the system (1.7).
By Lemma 1.10, 3h2 E (-2/3,2/3), S2 > 0, and a function _

2(h, S) defined in -2/3 < h < h2, 0 < S < S2 and having the proper-
ties (i) and (ii).

If we choose h 1 E (- 2/3, h 2), then by Lemma 1.9 351 > 0 and a
unique function 1' = 1(h, 6) defined in h1 < h < 2/3, 0 < 6 < S1 and
having the properties (1°) and (2°).

Now let S3 = min(S1, S2). Then by the uniqueness of C1(h, S) we have

1(h, S) = 2(h, S), h1 < h < h2, 0 < S < S3.

Thus we can define a function in the whole interval - 2/3 < h < 2/3
as follows

(h' S)
2(h, S), if -2/3 < h < h2,
1(h, S), if h2 < h < 2/3,

0 < S < S3,
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6

0 5/7 1

{12

Figure 1.6.

0 µ'

which satisfies
(1) y(h, S, 3(h, S)) is a periodic orbit of (1.7) passing through the point

(x(h), 0), -2/3 < h < 2/3;
(2) 43/ah < 0, - 2/3 < h < 2/3, 0 < S < S3.

The condition (2) implies that for every So E (0, S3) and S0 E
[C(50), 1], where = (S) is the function corresponding to the homo-
clinic bifurcation and described in Lemma 1.8, 3 a unique ho E
[ - 2/3, 2/3] such that o = 3(h0, 80). Hence, if u E ((60),1), then
y(ho, So, o) is the unique periodic orbit of (1.7). Moreover, it is an
unstable limit cycle. If u - (6) + (or 1 - ), then the limit cycle
tends to the homoclinic loop (or to the focus).

We finally return from the parameters S and back to µl and µ2 by
using the scaling (1.6).

Since

µl = -S4, P'2 = SS2,

the region 0 < S < S3, (6) < < 1 corresponds to a cusp region
0 > µl >_ -33 and (µl, µ2) is in between the bifurcation curves H and
HL (Figure 1.6). Noting that 3(- 3, S) = 1, X3(3, 3) = (S) (defined in
Lemma 1.8), and t9 3/ah < 0, we conclude that the limit cycle will
shrink to the focus or become the homoclinic loop as (µ 1, µ2) goes to H
or HL, respectively. The existence of S3 guarantees the existence of the
neighborhood A3. This completes the proof.

Lemma 1.12. There is a neighborhood A4 of µl = µ2 = 0 such that if
(µl, µ2) E A4 and is above the curve H or below the curve HL, then the
system (1.5) has no periodic orbits, and has the phase portraits shown in
Figure 1.1.
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n (H U HL),Proof. By Lemma 1.11 we know that if (µ1, µ2) E A3
then the system (1.5) has no periodic orbits, and any positive trajectory
y starting from the point

pEL={(x,y)I-1<x<1,y=0}
is an expanding spiral if (µ, µ2) E H or a contracting spiral if
(µ1, µ2) E HL (see Figure 1.1).

We rewrite (1.5) in the following form

x=P(x,Y) =Y,
Y = Q(x, Y) = Al + x2 + xy + µ2y

We note that

P Q
aP dQ

aµ22 aµ22

=y2>0, ify*0. (1.35)

This means (1.5) is a family of rotated vector fields with respect to µ2.
For details of rotated vector fields, see Zhang et al. [1].

Now we take A4 = A3. For any (µ1, µ2) E A4 and above H (or below
HL), we can find (µ1,µ2) E H (or E HL). Any periodic orbit of
(1.5)(11,p2)' if it exists, must cut the segment L. The positive trajectory y
of (1.5)(µ,,µ2 starting from a point p E L is an expanding (contracting)
spiral, and due to (1.35), the positive trajectory y of (1.5)(µl,

W2)
starting

from the same point p must be entirely located outside (inside) y, and
hence y is also an expanding (contracting) spiral. The phase portrait is
as shown in Figure 1.1

Combining the conclusions of Lemmas 1.3, 1.8, 1.11, and 1.12, we
obtain Theorem 1.2, where A = 01 n A2 n A3 n A4.

(II) A Canonical Form for the System (1.4)

Theorem 1.13. In a sufficiently small neighborhood of the point x = y =
e = 0, there is a C°° transformation

Cu

= u(x, Y, 01
v=v(x,y,E)
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such that u(0, 0, 0) = v(0, 0, 0) = 0. It is nondegenerate at the point
x = y = 0 and takes the system (1.4) to the form

u = v9/,(u,E),

v = [lp(E) + II!(E)u + u2 + uvQ(u, E) + v2(p(u, v, E)]e(u, E),

(1.36)

where 0, Q, 1, (A, 41 are C°° functions, ¢(0) = 41(0) = 0, Q(0, 0) = 1, and
0(0, 0) = 1.

Proof. Let

=x,
77 = Y + wi(x, Y, E),

where (x, y) is in a neighborhood of the origin in R2 and E is in a
neighborhood of the origin in ff1k so that the above transformation is
invertible. Then (1.4) is transformed into the following equation defined
in a neighborhood of the origin (0, 0, 0) in F x R x 68k:

='11,

Il = F(f, c) + e) + E),

where F, G, H are C° functions, and

aF a2F
F(0, 0) =

a
(0, 0) = 0, a2 (0, 0) = 2,

aG
G(0, 0) = 0, a- (0, 0) = 1, H(0, 0, 0) = 0.

(1.37)

Since G(0, 0) = 0 and aG/ae(0, 0) = 1 0 0, it follows from the Implicit
Function Theorem that there exists a C° function a(E) defined in a
neighborhood of E = 0 in 111k such that G(a(E), E) = 0 for each E in this
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neighborhood. Then the following change of variables

ru
(v=11

brings (1.37) to the following equation near the origin (0, 0, 0) in
RXRxIIBk:

is=v,
u = F(u, E) + uvG(u, E) + v2H(u, v, E),

where F, G, H are C°° functions and

aF a2F
F(0, 0) =

au
(0, 0) = 0,

au2 (0, 0) =
2,

G(0, 0) = 1, H(0, 0, 0) = 0.

(1.38)

By using the Malgrange Preparation Theorem (Theorem 3.1.10), we
have

E(u,E) = [01(E) + 42(E)u + u2]0(u,E),

where ¢,, 0 E C°°, 4 (0) = 0 (i = 1, 2) and 0(0, 0) = 1. Therefore, (1.38)
can be rewritten in the following form (in a neighborhood of (0, 0, 0) in
l xRxRk)

02(E)u + u2 + 0(u,
E)

uU +
HB(u UE))

U2 0(u, E).

Let

V

0(u,E)

(1.39)

where (u, v, 0 is in a neighborhood of the origin of R x O x IRk. Then
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(1.39) is transformed into the form

u = u o(u, E)

U = [41(E) + 4)2(E)u + µ2 + uv4(u, E) + 52+(U, v, E)J

(1.40)

where

G(u, E)
(b(0, 0) = 1,

o([,,
E) ,

1 do
(u, v,E) = II(u,v o(u,E),E) -

20(u, E) au
(u, E).

System (1.40) is now in the same form as (1.36), and this completes the
proof.

Lemma 1.14. In a sufficiently small neighborhood of the point u = v =
E = 0 there is a C° transformation

fx = x(u,v,E),

y = Y(u,v,E)

such that x(0, 0, 0) = y(0, 0, 0) = 0 and it is nondegenerate at the point
x = y = 0, and it takes the equation (1.36) to the form

z = YO(x,

'(E)Y +x2 +xyQ(x,E) +Y2;5(x,Y,E)]o(x,E),

(1.41)

where 9, , r/i, Q, D are C°° functions, (0) = (0) = 0, Q(0, 0) = 1, and
8(0, 0) = 1.
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Proof. Let

y = V.

Then (1.36) is transformed into the form (1.41), where

./. E
6(x,E)=B(x- w2

(#2 E)

,fi(E) - (E) 4

w(E) = w
2.0

`f(E) + 1),

C(X,E)
=Q(x-2E),E) - 42E)g(E,X),

and f(E), g(E, x) are defined by

The conditions Q(0, 0) = 1 and ¢(0) _ i(0) = 0 imply f(0) = 0,
¢(0) = (0) = 0, and Q(0, 0) = 1.

From now on, we focus our attention on equation (1.41). Obviously,
the orbits of (1.41) and the orbits of the following equation are the
same if we restrict (x, y, E) to a small neighborhood of (0, 0, 0):

Y,

x2 + Y2
(1.42)

4' (x, Y,E)
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where ¢, /i, Q, D are the same as in (1.41). If

rank
a(RE) , 4'(E)) [=01 = 2 say,

3E (3(e , E2)

then we can make a change of parameters

and (1.42) becomes

µ3 = E3,

e=O

#0 , (1.43)

(1.44)

y,

Al + µ2Y +x2+xyQ(x,A) +y2(D(x,y,A), (1.45)

where Q(x, µ) = &x, E(µ)) and I(x, y, µ) = i(x, y, E(µ)), and E =
E(µ) is the inverse transformation of (1.44) satisfying E(0) = 0. Hence
Q, ch E C°° and Q(0, 0) = 1.

In particular, if we let Q(x, µ) = 1 and D(x, y, µ) = 0, then (1.45)
becomes (1.5), which is a two-parameter family of vector fields, and its
bifurcation diagrams and phase portraits have been studied in part (I).
We will show in the next part that the topological structures of the
bifurcation diagrams and the phase portraits of (1.45) are the same for
different Q and 1, as long as Q, 1 E C°° and Q(0, 0) = 1.

If the condition (1.43) is not satisfied, then, for a given e (IEI
sufficiently small), equation (1.42) is only a special case of the family
(1.45). Hence, there is no new kind of phase portrait.

(III) The Versality of the Deformation (1.5)

As in Section 3.2, we let V(zo) be the space of germs of C°° vector'fields
at

{(z, Z)IZ E V(z), Z E U},

where U is a small neighborhood of the origin in 182.
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Suppose Z E V(zo) has the following representative

i = H(z),

where

z = (y) E R2 H(z) =
(f(xY)\

E R2,
g(x, Y)

253

(1.46)

H E C°°.

We have the natural projection

7Tk:2'_ Jk,(Z,Z) ti (z,H,DH,...,DkII),

where each D'H (j = 0, 1, ... , k) gives a coordinate expression for the
Taylor coefficients of the kth-order derivatives of H at z. In our case,
dim(z) = dim(H) = 2, dim(DH) = 4, and dim(152H) = 6. We could
take the Jacobian and Hessian matrices at z as DH and D2H, respec-
tively.

We say that (1.46) has the same singular character at zo as (1.3) at 0,
if the following conditions are satisfied:

(H 1) The matrix of the linear part of H(z) at zo is similar to
L

o J
(H2) Changing (1.46) to its normal form (1.2) at zo, we have ab > 0.

Now consider a subset of 2'

where U is the small neighborhood of z = 0.

Lemma 1.15. If k >_ 2, then ?rk is locally a smooth codimension-4
submanifold of Jk.

Proof. Note that

a1 ={(z,H,DH)If=g=detDH=TrDH=0,DH#0),

iT2 = 7r211Or1 AHZ>>

where 1r21 is the natural projection from J2 onto J1, and the condition
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(H2) gives ab > 0 which is independent of the conditions f = g =
det DH = Tr DH = 0 and DH 0 0 (see Section 2.1, Example 2.1.15).
Hence, X14 is a smooth submanifold with codimension 4 in J1, and
-rr2l is locally an open subset of 7r211(Trl(I )). By the same arguments as
in the proof of Lemma 3.2.1, the desired result follows.

We consider a deformation of (1.3)

z=H(z,E),

where z E R2, E E I}8m, H E C.

(1.47)

Definition 1.16. Equation (1.47) is called a nondegenerate deformation
of (1.3) if the mapping

(Z, E) '-+ or2H(z, e)

is transverse to 7r2 l at (z, E) = (0, 0) in J 2.

Lemma 1.17. Any nondegenerate deformation of (1.3) is equivalent to
systems (1.45) (dim(µ) = dim(e)).

Proof By Lemmas 1.13 and 1.14, we only need to show that the
nondegenerate condition implies the condition (1.43). Since the nonde-
generacy is independent of the choice of coordinates, we can prove the
fact by using equation (1.42), that is we consider a nondegenerate
deformation (1.47), where

f(x,Y,E) =Y,
(E)g(x,Y,E) (E) +y+x2+xyQ(x,E) +y21(x,Y,E)

We know that 7r2I can be expressed locally by

f = g = det H = Tr H = 0,
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where

det H =
a(x, Y) ,

TrH = of + ay .

By Theorem 3.1.5 and Definition 1.16, the nondegeneracy of (1.47)
implies

( 0 1 0 0

rank

0 0
a a

del aE2

-2 -1 0 0

1 24)
alp a(#

del aE2

and this implies

aEm

= 4,

(x, y, E)=(0, 0, 0)

rank(a` 2.
E=0

Theorem 1.18. The family (1.5) is a versal deformation of (1.3) at
(x, y) = (0, 0) provided we consider only nondegenerate deformations of
(1.3).

In order to prove Theorem 1.18, it is sufficient to prove that any two
families of (1.45) are equivalent.

Lemma 1.19. For any Q, 4' E C(Q(0, 0) = 1), the conclusions of Theo-
rem 1.2 are true for equation (1.45).

Proof. By the scaling (1.6), (1.45) takes the form

y,

y= -1+x2+S(+x)y+O(52),
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and the bifurcation function F(h, 3, ) becomes

f
y(h, S, C)

Therefore, all the discussions in part (I) are valid. 0

Lemma 1.20. For any two families (1.45), there is a C° diffeomorphism
in a neighborhood of µ = 0, fixing the point µ = 0 and mapping the
bifurcation curves of one to the other.

In order to prove Lemma 1.20, we need the following lemma. Let
Y1, Y2, Y3 be three C° curves in a neighborhood of the point x = y = 0
in the xy-plane, tangent to each other at the point x = y = 0. We
choose suitable coordinates so that the curves Y1, Y2, Y3 are the graphs
of the functions Y1(x), Y2(x), and Y3(x), respectively, and

dY(0)
Y(0) =

dx
= 0.

Let

I(Y1,Y2,Y3) = [Ys (0) - Yi (0)]/[Y' (0) - Yi (0)l , (1.48)

where Y,"(0), Y2"(0), Y3"(0) are different numbers. We note that
I(Y1, Y2, Y3) is a finite number different from zero.

Lemma 1.21. Suppose that Y1, Y2, Y3 and Z1, Z2, Z3 are two sets of C°
curves satisfying the above conditions. Then the condition

I(Y1,1'2,1'3) = I(Z1, Z2, Z3) (1.49)

is necessary and sufficient for the existence of a C° diffeomorphism in a
neighborhood of the origin, fixing the origin and mapping Y to Z,,
i = 1,2,3.

Proof. To prove the necessity, we suppose that there is a C° transfor-
mation

z=f(x,Y), u=g(x,Y)
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that transforms Y: y = yi(x) to Z1: z = zi(u), i = 1, 2, 3. Therefore

f(x, yi(x)) = zi(g(x, yi(x))), i = 1,2,3.

Differentiating the above equality we get

fx +fy,Yi, = Zi(gx + gy,Yi) (1.50)

and

fxx + 2fxYy' +fryY,2 +ffy = zt
(gx,

+ g,Y,)2

.+ Z,(gxx + 2gxyyi + g;Yyi2 + g;Y")

(1.51)

Since f(0, 0) = g(0, 0) = 0 and yi(0) = zi(0) = y,(0) = z;(0) = 0, from
(1.50) we have fx(0, 0) = 0 which implies that fy(0, 0) 0 0 and gx(0, 0)
# 0. From (1.51),

fzx(010)
2

+ fy(0' 0)
2 Yt (o)

(gx(0,0))
(gX,(0,0))

By using the above equality and (1.48), we have

I(Y1,Y2,Y3) = I(Z1, Z2, Z3).

For the converse we will prove that both Y1, Y2, Y3 and Z1, Z2, Z3
can be converted respectively by C°° transformations to the set of C°°
curves X1, X2, X3 with X1(x) = 0, X2(x) = x2, X3(x) = cx2, where
c = I(Y11 Y21 Y3) = I(Z1, Z2, Z3). In what follows, we will give the proof
for Y1, Y2, Y3 only. The proof for Z1, Z2, Z3 is the same. It is easy to
find a C°° transformation in a neighborhood of the origin to convert
Y1,Y2,Y3 to Y1,Y2,Y3 with 9i(x) = 0, 92(x) = ax2e(x), and 93(x) _
13x2P(x), where a and 03 are unequal nonzero numbers, and 4 and 41
are C°° with C(0) = 41(0) = 1. From the necessity part of the lemma,
/3/a = I(Y1, Y2, Y3). We make a C' change of coordinates near the
origin again by

x->x,9-'a(x)y.
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Then Y1, Y2, Y3 are mapped to Y1, Y2, Y3 with yl(x) = 0, y2(x) = x2,
and y3(x) = cx24)(x), where 4)(x) is a C°° function with 0(0) = 1 and
c = 61a = I(Y1, Y2, Y3). Now let us find a C' change of coordinates in
a neighborhood of the origin to convert Y1, Y29 Y3 to X1, X2, X3.

Suppose

u=y, v=x+(y-x2)f(x)

transforms the curve y = cx2¢(x) into the curve u = cv2. Then we
have

cx2cb(x) = c[x + (cx24)(x) - x2)f(x)]2.

Hence

f(x) = x(c¢(x)-1)*

Since ¢(0) = 1, 0 E C°°(x), and c # 1, one has that f e C°° in a
small neighborhood of x = 0. This proves Lemma 1.21.

Proof of Lemma 1.20. For any family (1.45), the equations of bifurca-

25 µ2 +0(/.L5/2 ) astion curves are µl = 0, µl = -µi, and µl = -
µ2 -* 0 + . Hence, by formula (1.48),

49
25, i = 1,2.

Thus Lemma 1.20 follows from Lemma 1.21.

Lemma 1.22. Any two families of the form (1.45) are equivalent.

Outline of the Proof. By Lemma 1.20, we may carry out the construction
of two families A and A over the same neighborhood A in the
parameter space. The neighborhoods of (x, y) = (0, 0) for A and A are
denoted by N(µ) and N(µ), respectively.

Then we may construct a homeomorphism 41(µ) for a fixed µ E A,
mapping K(e) (the limit set and singular trajectories of family A in
N(µ)) onto K(e), where k(c) is a similar set of 4 in N(µ).
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Finally, we may extend the homeomorphism 4'(p) to obtain a homeo-
morphism mapping the trajectories of A in N onto the trajectories of

in R.
For more details, we refer to Bogdanov [2] and Sotomayor [1]. 0

Remark 1.23. In Definition 3.1.14, if the mapping e) is continuous
in e, then (X; x0, co) and (Y; yo, Eo) are said to be strongly equivalent.
Otherwise, they are weakly equivalent. Bogdanov [2] proved the versality
of (1.5) in this weak sense. Recently Dumortier and Roussarie [1] gave a
proof for the strong versality of (1.5).

4.2 Double Zero Eigenvalue with Symmetry of Order 2

In Sections 4.2-4.5, we will study the families of vector fields in the
plane that are invariant under a rotation of the plane through an angle
2r/q, q = 2,3.... (the case q = 1 is discussed in Section 4.1). In this
section, we consider the case q = 2. Khorozov [1] and Carr [1] investi-
gated this case of codimension two. We will introduce their results.
However, some proofs may be given in a different way. The normal
form of q = 2 is (see Section 2.11)

y,

Elx + Ely ±X 3 - x3y,

where el and E2 are small real parameters. We will give bifurcation
diagrams of the vector fields (2.1)+ and (2.1)-, respectively. In Fact,
(2.1)± is a versal deformation of

y,

Y= ±x3-x2Y.
(2.2) t

It will be shown in Lemma 2.2 that any perturbation of (2.2) with a
small parameter p. can be transformed into the form

x-y,
Y = O(µ)x + q(µ)Y ±x3 +x2YjD(x,A) +Y2'I'(x,Y,µ),

(2.3)t
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where µ E l8k (k > 1), jD(x, 0) = -1, and +(x, y, 0) = 0. If k = 2 and
we consider (2.3) as a nondegenerate deformation, then there exists a
transformation of parameters

E1 = 4(/.t1,/.L2), E2 = O(All A2)

such that (2.3) } becomes

y,

E1X + E2Y ± x3 + x2Y4(x, E) + Y2'I (x, Y, E),
(2.4) t

where 4(x, 0) = -1, (x, y, 0) = 0.
In Lemmas 2.3-2.10, we will discuss (2.4)± and will show that the

topological structures of the bifurcation diagrams and phase portraits of
(2.4) } are the same for different 1 and AY. If 0 = -1, 'k = 0, then
(2.4) ± becomes (2.1) ±. Moreover, it is not difficult to see from these
lemmas that for every small µ E Rk the phase portraits of (2.3) must
also be contained in the phase portraits of (2.4).

All the results are local. That means the bifurcation diagrams are in a
small neighborhood of parameter space near (E1, E2) = (0, 0), and the
phase portraits are in a small neighborhood of phase space near
(x, y) = (0, 0). Therefore, all bifurcation theorems in this chapter should
be understood in this sense. Thus, we will obtain the following theorem.

Theorem 2.1. We have:
(1) System (2.1) ± is a versa! deformation of (2.2) ± among all the

nondegenerate deformations of (2.2) ± with symmetry of order 2.
(2) The bifurcation diagram of (2.1) + consists of the origin and the

following curves:
(a)R=(EIE1=0,E290),
(b)H=(EIE2=0, E1 <0),
(C) HL = (EIE2 SE1 + O(E3j/2), E1 < 0).

The bifurcation diagram and phase portraits of (2.1) + are shown in
Figure 2.1.
(3) The bifurcation diagram of (2.1)- consists of the origin and the

following (curves:

(a) R+= {ElE1 = 0, E2 > 0),

(b) R={EIE1=0,E2<0},
(c) H1 = {EIE2 = 0, E1 < 0),
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Figure 2.1. The bifurcation diagram and phase portraits of (2.1)+.

(d)H2=(EIE2=E1+O(Ei),E1>0),
(e) HL = {EIE2 = 4E1/5 + O(Ei"2), E1> 0),
(f) B = {EIE2 = CE1 + O( 1'2), E1 > 0, c = 0.752).

The bifurcation diagram and phase portraits of (2.1)+ are shown in
Figure 2.2.

Lemma 2.2. Consider a family of systems

z=y+w1(x,Y,µ)
ax3 + bx2y + w2(x, Y, /-0,

where ab 0 and µ = (µl, ... , µk). Suppose w; (i = 1, 2) satisfies:
(1) w1(x, y, 0) = 0,
(2) wi(x, y, µ) E C°°,
(3) w,(-x, -y, µ) _ -w1(x, y, µ).

Then there exists a smooth mapping (x, y, µ) -+ (x(x, y, µ), y(x, y, µ))
that transforms (2.5) into a system topologically equivalent to (2.3) t.

If k = 2 and (2.5) satisfies the following additional condition:
(4) the matrix fof the linear part of (2.5) at the origin is a versal
deformation of I o 1 ], then there exists a smooth mapping

(x, y, µ1, µ2) (x(x, y, µ), 5'(x, y, N ),e1(µ), e2(µ))

that transforms (2.5) into a system topologically equivalent to (2.4) t.
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Figure 2.2. The bifurcation diagram and phase portraits of (2.1)-.

Proof Let

7 7 =Y + w1(x, Y, µ)

Then (2.5) becomes

= 77,

7 = wiy) + wiy)

+{-b 2w1(1 + wiy) + w2(1 + wiy) + 77wiX}.

Define functions hi and T (i = 1, 2,3) in the following way:

W,ly(x(f, 77, A), I.0, A)

= h1(6,µ) + iih2(e, µ) + 712h3(S, q, µ),

wiy) + w2(1 + wiy) + 77w1

= `1(e,µ) +11'V20,µ) +172'l3(e,11,µ)
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Obviously,

h;I,=o ='Y"Iµ=o = 0, i = 1,2,3.

Thus (2.6) takes the form

= h1) + h1) (2.7)

+qr + 71'1`2 + 7120(e, n' ),

where

(D = af3h3 + b62(h2 + 71h3) + 'I''3..

Since (2.7) has a symmetry property with respect to i7) under a
rotation through ir, we have

'`1`1(6, Nt) =
01(A + )610, N-)63,

ah2(i;,µ) 3 +p2(4,µ) = 42(P) +l32(,µ) 2.

Let

a+ah1+Q1=F(C,µ),

Thus, (2.7) becomes

=71,

1 = &1(µ)i + 42(µ)f1 + e3F(e,A) + 2gG(e,A) + f1240,77,µ)

Using the Malgrange Preparation Theorem for the symmetric case (see
Poenaru [1, p. 64-5)], we have

01(µ)e + F(e, µ)e3 = [i(µ)6 + sgn F(0, 0) 3]0(x, µ),
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where F(0, 0) = a # 0, 6(, 0) = lal > 0, F(-, µ) = F(, µ), and
9(i,µ). Thus

G(e, µ) 4) (6, 77, µ)

+ e( A ) + e( µ) 772 e(,A)

By changing coordinates

u = ,
V=rl/ e(

we obtain

it.= vr,
e

6 =FO(µ)u±L[3+( - 2W-0
v

+ u2vG(u, + v2(p(u, v, µ)] ,

where d = G/ CO. Using the symmetry property again, we have

- e4 270
2V 0 = ii(µ) + 0,(U, µ)u2,

where (0) = o,(u, 0) = 0. Denoting G + v by G, we finally obtain

u=FO v,
v = CO [ a(µ)u + r/i(µ)v ± u3 + u2vG(u,µ) +

(2.9)+

and (2.9) ± is topologically equivalent to (2.3)t. If the condition (4) of
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Lemma 2.2 is satisfied, then we can change parameters

E 1 = (A1 I /L2) 1

E2 = i0111 N-2)

Thus (2.9) t is transformed into a system which is equivalent to (2.4)1.
In (2.9) 'D(u, v, 0) = 0 and G(u, 0) = b/ lal . If b/ lal * -1, we

can take the scaling in (2.5)

x -3
JbI

x, y
bbl

(sgnb)y, t - -(sgnb)t,

before the first transformation.

We will now study (2.4)- in detail. (2.4)+ is simpler and can be
studied in a similar way.

Lemma 2.3. For (2.4) -, R+U R- is a bifurcation curve of equilibria
while Hl and H2 are Hopf bifurcation curves (see Figure 2.2). When the
parameter E = (E1, E2) crosses R+U R - from the left to the right, the
number of equilibria changes from one (a focus or a node) to three (one
saddle point and two foci or nodes). When E crosses Hl from region I to
II, the focus changes from stable to unstable (the equilibrium is stable on
H1), and a unique limit cycle appears. When e crosses H2 from region III
to IV, the foci change from unstable to stable (the equilibria are unstable
on H2), and two unstable limit cycles appear (each of them goes around
one focus).

Proof. The coordinates of equilibria satisfy y = 0 and Elx - x3 = 0,
that is, (0, 0) for El < 0, and (0, 0) and (± E1 , 0) for El > 0. The
matrix of the linear part of (2.4)- at (x, 0) is

0 1

Lel - 3x2 E2+x21(x,E)

Hence, the first part of Lemma 2.3 is easy to obtain.
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In order to prove the second part of the lemma, we use the result of
Section 3.2.

On H1, the linear part of (2.4)- at the equilibrium (0, 0) is

where E1 < 0, E2 = 0. By using formula (3.2.34), we have

16/32 Re(C1) = -2 + O(IEI) < 0.

Hence, the equilibrium is a stable (weak) focus, and a unique stable
limit cycle appears when the parameters vary across H1 from region I
to II (Theorem 3.2.4).

Similarly, on H2 the linear part of (2.4)- at the equilibrium ( E1 , 0)

is

0 1

-2E1 E2 - E1 + O(IEI2)

where E1 > 0, E2 - E1 + O(IEI2) = 0. Again, by using formula (3.1.34),
we have

16/32 Re(C1) = (-2 + O(IEI))

2E1
[-(-6 E1 )(-2 E1 + O(IEI))3/2 + O(IEI2)]

= 4 + O(IEI) > 0.

Hence, ( E1 , 0) is an unstable focus and a unique unstable limit cycle
appears when the parameters cross H2 from III to IV (see Figure 2.2).

By symmetry, we can obtain similar results for the other equilibrium
(- E1 , 0).

Now we turn to the discussion of periodic orbits and homoclinic
orbits. We first consider the more complicated case: el > 0.
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Figure 2.3.

Making the following scaling for (2.4)-:

Y_ SzY, el=S2,

E2 = t -* t/S,

where S > 0, we have

=y,
y = x - x3 + Sy( - X2) + 0(62).

For S = 0, (2.11) is a Hamiltonian system

x = Y,
y=X-X3,

with the first integral

Y2 x2 x4
H(x, y) = 2 - 2 +

4

267

(2.10)

(2.11)

(2.12)

(2.13)

The level curves {H(x, y) = h, h >- -
;)

are shown in Figure 2.3.
H = - a corresponds to the foci (± 1, 0); when - a < h < 0, H(x, y)
= h corresponds to two closed curves, each of them surrounding one of
the foci; H = 0 corresponds to a pair of homoclinic orbits; and when
h > 0, H(x, y) = h corresponds to a closed curve which surrounds the
pair of homoclinic orbits.
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Figure 2.4.

We let L = L1 U L2, where L1 = ((x, y)Iy = 0, 05 x < 1) and L2
_ ((x, y)Ix = 0, y > 0). Then the closed level curve Fh of (2.12) inter-
sects L at exactly one point (a(h), 0) = Ph if -1/4 5 h 5 0, or
(0, (3(h)) = Ph if h > 0. Hence L can be parameterized by h.

For every h E (-1/4, oo), we consider the trajectory of (2.11) passing
through the point Ph E L. Let this trajectory go forward and backward
from Ph until it intersects the positive x-axis at points Q1 and Q2,
respectively (Figure 2.4).

We denote the piece of trajectory from Q1 to Q2 by y(h, 6, ).

Lemma 2.4. y = y(h, 8, ) of (2.11) is a closed orbit if and only if

fdH(x,y) I

dt = 0. (2.14)
dt (2.11)Y

Moreover, y is a (or a pair of) homoclinic orbit(s) if and only if (2.14) is
satisfied for h = 0 - (or 0 + ).

Proof. It is similar to the proof of Lemma 1.4.



Double Zero Eigenvalue with Symmetry of Order 2 269

The calculation shows that if S > 0 then (2.14) is equivalent to

F(h, S, C) = f [(C - x2)y + O(S2)] dx = 0. (2.15)

In the same way as for Lemma 1.5, we can prove that the function
F(h, S, C) is continuous and C°° in S and C on a set U = {(h, S, C)I -
1/4 < h < +-, 0 < S < 30, C1 < C < C2}, where So is some positive
number and C1 < C2 are arbitrary constants. Moreover, F E C`° in h on
the set V = {(h, S, C)I h E (- 1/4, 0) U (0, + oo), 0 < S < So, C1 < C <
C2}.

When S = 0, (2.15) becomes

F(h, 0, C) = f (C - x2)ydx = CI0(h) - I2(h) = 0, (2.16)
rh

where rh is the level curve of (2.12), and the Abelian integrals are given
by

I,(h) = f x`ydx, i = 0,2. (2.17)
F.

Similar to the discussion in Section 4.1, we have that
(1) Io(h) > 0 for h > - 4, Io(- 4) = I2(- 4) = 0, and
(2) limh - _ I2(h)/IO(h) = 1.
Hence we can define a function

I2(h)
forh> -1,

P(h) = IO(h)

,

for h = - ,`-.

(2.18)

It is continuous on - 1/4 < h < -.
As in Section 4.1, the basic problem is: For given and S small, does

there exist h > - 1/4 such that (2.15) is satisfied? First, we study the
properties of P(h).

Lemma 2.5. When h > -1/4 and h # 0, P(h) satisfies the following
Riccati equation

4h(4h + 1)P'(h) = 5P2(h) + 8hP(h) - 4P(h) - 4h. (2.19)
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Moreover, P'(h) --> -1/2 as h - -1/4, and P'(h) - - as
h - 0.

Proof. Similarly to the proof of Lemma 1.6, we can obtain

310=4hI0' +I2,
St 512=4h12+I4,

where

I,(h) = f x`ydx, i = 0,2,4.
rh

From (2.13) we have that along rh(H(x, y) = h):

0 = xydH =xy2dy + y(-x2 +x4) dx.

On the other hand, using y2 = 2h + x2 - 2x4, we have that

(2.20)

xy3 y x4
xy2dyd(3 ) - - (2h+X2_ 2 dx.

Hence

3 2 4 7d( 3 3hydx - 3x2ydx + 6x4ydx = 0.

Integrating the above equation along Fh, we get

1
14 7- (4hI0+812). (2.21)

Substituting (2.21) into (2.20) and solving Io,I2, we obtain the
Picard-Fuchs equation

15
3h(4h + 1)I0' = 3(3h + 1)I0 -

4 12' (2.22)
3h(4h + 1)12 = -3h10 + 15h12.

Equation (2.22) and P'(h) = (IZIo - '210)/1o imply (2.19).
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Figure 2.5.

The values of P'(h) as h - -1/4 and as h -f 0 can be obtained by
direct calculations from (2.19).

Lemma 2.6. +00.

Proof. Without loss of generality, we assume h > 0. From (2.18) and
(2.17) we have

frhx2ydx f Rx2y JZ(a)P(h) _ =
JoQ)fydx f

Rydx
rh

where y = (2h + x2 - x4/2)'/2, and /3 = /3(h) is the abscissa of the
intersection point of 1'h and the x-axis (see Figure 2.5). Hence /3 = /3(h)
satisfies

/34 -2 p2 = 4h. (2.23)

Making the substitution x = 66 in the integral Jk(/3), we obtain

Jk(/3) _
/32Jl(/3:)kg(6)

d6, k = 0,2,
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Figure 2.6.

where

1z 1/2a (1 - 4) + (62 - 1)

p=P(h)

h

Since gO < g(1//3) for 0 < < 1, we have J0(13) < a1f33 for some
positive constant al. It is easy to obtain that J2(/3) >- a2/35 for some
positive constant a2. Since h - oo -,0 oo (see (2.23)), we have

lim P(h) = lira J2(/3) = +00.
h-". p-.oo JO(R)
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Lemma 2.7. P(h) has the following properties:
(1) limh.0P(h) = s
(2) there exists h* > 0 such that P'(h) < 0 for - 1/4 < h < h* and
P'(h) > 0 for h > h*;
(3) P(h*) > 1/2, P'(h*) = 0, and P"(h*) > 0.

Proof. Rewrite (2.19) in the form

dP

dt
=5P2+8hP-4P-4h,

A
- = 4h(4h + 1).
dt

(2.24)

Since P(h) - 1 as h -* -1/4, the graph of P(h) is the heteroclinic
orbit from the saddle point (- 4,1) to the node (0,

5)
in the phase

plane (see Figure 2.6). Hence limb-OP(h) We denote the two
branches of the hyperbola 5P2 + 8hP - 4P - 4h = 0 by P(h) and
P(h).

It is clear that the phase plane is divided into nine parts by the lines
h = 0, h = - a and the curves P = P(h), P = P(h). On the two lines
the vector field is vertical, and on the two curves the vector field is
horizontal. In every one of the nine parts, dP/dh has a fixed sign. From
Lemma 2.5 and by calculations we know that

lim P'(h) _ -1,

lim P'(h)
h-*0

3

h-o
P'(h)

5

(2.25)

Hence, the graph of P(h) must stay in part A for - a < h < 0 and
must enter part D for 0 < h << 1. In parts A and D, dP/dh is
negative. But P(h) - +co as h - +x (Lemma 2.6) and NO asz
h hence there exists h* > 0 such that P(h*) = P(h*), that is,
P'(h*) = 0 and P'(h) > 0 for h > h*. Noting P'(h) < 0 and P(h) -

zas h -* +oo, we have P(h*) = P(h*) > 2. Finally, from (2.19) we
obtain

4h(4h+1)P"=(10P-24h-8)P'+8(P- 1
).
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Hence,

4h*(4h* + 1)P-(h') = 8(P(h*) - 2) > 0,

which implies

P"(h*) > 0.

Lemma 2.8. For (2.4) -, HL is a homoclinic loop bifurcation curve and B
is a double limit cycle bifurcation curve. The phase portraits in regions III,
IV, V, and VI are shown in Figure 2.2.

Proof The idea is similar to the proof of Theorem 1.2. Consider first
system (2.11) instead of (2.4)-. For given and small S, the periodic
orbits of (2.11) are determined by the zeros of equation (2.15) (Lemma
2.4) which can be approximated well by the zeros of equation (2.16).

More precisely, suppose ho is one of the solutions of the equation

P(h) = o, (2.26)

that is, F(ho, 0, P(ho)) = 0 (see (2.16) and (2.18)). Since
I0(h0) * 0 if ho > - 4, the Implicit Function Theo-

rem implies that there are 6o > 0, vo > 0, and a function
defined in Uo = {(h, S): 0 < S < So, I h - hol < o O) such that (ho, 0) _
P(ho) and F(h, S, (h, S)) = 0 for (h, S) E Uo. If, in addition, P'(ho) #
0, then we can suppose that So and Qo are so small that h(h, 6) * 0,
(h, S) E Uo, since lim s_o h(h, S) = P'(ho). h(h, S) # 0 implies that

h -h0
for every near o, 0 < S < So equation (2.15) has a unique solution
with respect to h E (ho - 0o, ho + o O).

The above discussion is valid except in two neighborhoods of h: (1)
near h = - 4 , since Io(- 4) = 0 so the Implicit Function Theorem is
invalid; and (2) near h = h*, since P'(h*) = 0 so the above condition is
not satisfied. In the first case, we can use Theorem 3.2.6 instead of the
Implicit Function Theorem. In fact, the linearized equation of (2.11) at
(1, 0) has a matrix with the same form as (1.31); hence the conditions
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), and (H*) are satisfied (see the proof of Lemma 1.10). In(H*), ), (H*2 3

the second case, we consider

We have that

and

= -Io(h*)P"(h*) < 0.

Hence there are S* > 0 and functions = *(S), h = h*(S) defined in
0< S < 8* such that *(0) = P(h*), h*(0) = h*, and

0,

aF

ah
(h* (3), S, *(S)) = 0

for 0 < S < S*. Since a2F/ah2(h*, 0, P(h*)) = -Io(h*)P"(h*) * 0, we
can suppose that S* is so small that a2F/ah2(h*(0, S, *(6)) # 0 for
0< S < S*, which implies that _ *(S), h = h*(S) correspond to
double limit cycle bifurcation, and the numbers of zeros for equations
(2.16) and (2.15) are the same near h = h*.

Hence the number of solutions of (2.26) will determine the number of
limit cycles of (2.11) (or, equivalently, of (2.4)-). The relationship
between them is: one-to-one for h > 0 and one-to-two for - < h < 0a

0,
aF

ah
(h*, P(h*)) = 0,

0

-Io(h*)P"(h*)
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because of the symmetry (see Figures 2.7 and 2.2). The solution of
(2.26) for h = 0 corresponds to the pair of homoclinic orbits of (2.4)-.

It is clear that for o > 1, (2.26) has a unique solution h1 > 0
corresponding to a limit cycle around three equilibria (the case of
o = 1 is discussed in Lemma 2.2); for s < o < 1, (2.26) has two
solutions - a < h2 < 0 and h3 > 0, h2 corresponding to two limit
cycles around two foci respectively while h3 corresponding to one limit
cycle which surrounds the two limit cycles and three equilibria; for
o = 4/5, (2.26) has two solutions h = 0 and h4 > 0, the former corre-
sponding to a pair of symmetric homoclinic loops while the latter
corresponding to a limit cycle surrounding the three equilibria and the
homoclinic loops; for c < o < s (c = P(h*) = 0.752), (2.26) has two
solutions h5 > 0 and h6 > 0, which correspond to two limit cycles, one
surrounding another and both of them surrounding three equilibria; for
o = c, (2.26) has a double solution h* which corresponds to a double
limit cycle (it is semistable); for o < c, (2.26) has no solution, which
means (2.4)- has no limit cycle.

From the scaling (2.10) we know that E2/E1 = (h, S) = o + O(S) _
o + O(ei/z), which gives the equations of curves HL and B for o = s
and o = c, respectively. This finishes the proof of Lemma 2.8.

Lemma 2.9. System (2.4)- has no limit cycle in region I and has a unique
limit cycle in region II.

Proof. This is the case of E1 < 0. As in the case E1 > 0, we take the
scaling

y - sty, E1 = -(S2,

Thus, (2.4)- becomes

'E2 = aSz,

y,

-x - x3 + Sy(a - x2) + 0(S3).

For S = 0, (2.27) is a Hamiltonian system

(2.27)

y,
(2.28)y = -x - x3,
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with the first integral

Figure 2.7.

Y2 x2 x4
H(x,Y) =

2
+

2
+

4
. (2.29)

We consider a function

h>0I2(h)
P(h) = I0(h) '

0, h = 0,

where

I;(h) = f x`ydx, i = 0,2,r
and

Fh: H(x, y) = h, h >- 0 (see Figure (2.8)).

P(h) satisfies an equation

4h(4h + 1)P'(h) = -5P2 + 8hP - 4P + 4h,
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Figure 2.8.

which implies that P(h) > 0 for h > 0 and P'(0) = z (by a similar
analysis as in Lemma 2.7). Then, Lemma 2.9 follows by the same
argument as in Lemma 2.8. 0

By Lemmas 2.2, 2.3, 2.8, and 2.9, we have the proof of Theorem 2.1
for the case of (2.1)-. For the case (2.1)+, the difficult part of the proof
is to study the existence of limit cycles and their numbers. In a manner
similar to the case (2.4)-, one can derive an equation for a similar
function P(h) for (2.4)+:

4h(4h - 1)P'(h) = -5P2 + 8hP + 4P - 4h.

Corresponding to Figure 2.3, we have Figure 2.8 for the plus case. We
leave the details to the readers.

4.3 Double Zero Eigenvalue with Symmetry of Order 3

In this section we study the family of vector fields on the plane that are
invariant under a rotation through an angle 21r/3. The normal form is
(Section 2.11)

i = ez +AzIz12 + z2, (3.1)
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:7 + +11 II HL

(E2>0)
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H
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(E2-0)
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(E2<0) 1 O (E2<0) nl

H- IV HL-

Figure 3.1. The bifurcation diagram and phase portraits of (3 1) (a < 0).

where

z=x+iy, E=E1+iE2, and A=a+ib, a00.
The following theorem belongs to Khorozov [1]. We will use the

Picard-Fuchs equation to prove the uniqueness of periodic orbits (see
Chow, Li, and Wang [2]).

Theorem 3.1. (1) Equation (3.1) is a versa! deformation with symmetry
of order 3 of the following system

i = AzIzI2 + 22. (3.2)

(2) The bifurcation diagram of (3.1) consists of the origin and the
following curves in parameter space:

(a) H+= {EIE1 = 0, E2 > 0l1,

(b) H={EIE1=0,E2<0},
(c) HL+= {EIE, = -(a/2)E2 + O(E2), E2 > 0),

+ O(E3), E2 < 0).(d) HL -= {EIE1 = -(a/2)E22 2

(3) The phase portraits of (3.1) are shown in Figure 3.1.
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We first consider a deformation of (3.2) with symmetry of order 3

i = AzI z12 + 22 + W( Z' 2, µ), (3.3)

where

w E C°° and wI.o = 0,

Equation (3.3) can be written in the form

AEC.

3

i = F, aij(µ)z`z, + O(1Z14) aij(µ) E C. (3.4)
i+j=0

Since (3.4) is invariant under a rotation through 21T/3, we have in
polar coordinates that

( 27r = ( 2Tr )
r(r,B) r ,0+

3
6(r,B) 9 r,8 + 3 (r # 0).

Using the formulas

r=

we obtain in (3.4)

2i + z2 Zi - zz
2r ' 0 = 2r 2i '

a00=a01=ago=a11=a30=a12=a03=0.

Hence, (3.4) has the form (after a linear transformation)

i = f(µ)z +A(µ)zIz12 + 22 + O(IzI4), (3.5)

where f(µ) = sµ + O(Iµ12). If s # 0, then let e = f(µ). Equation (3.5)
becomes

i = Ez +A(E)zIZ12 + 22 + O(Iz14), (3.6)

where A(E) = A(µ(E)), A(0) = A(0) = A. We will prove that the topo-
logical structure of solutions of (3.6) is independent of the function
A(E) and the higher-order terms 0(1z14) as long as Re A(0) # 0. By a
transformation

x = 2p cos
(3.7)

y = 2p sin c.
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(3.6) takes the form

E1(2p) + a(E)(2p)2 + (2p)3/2 cos30 + (2p)5/2F1(p, 3-0, E),

( = E2 + b(E)(2p) - (2p)1/2

sin 30 + (2p)3/2F2(p,34, E),

(3.8)

where F ,(p, 30, c) is 27r-periodic with respect to .0, F IE =o = 0 (j = 1, 2),
and a(E) + ib(E) = A(E).

We suppose that a(0) < 0. The case a(0) > 0 can be obtained through
the transformation t - - t, z - - z.

In order to determine the number and property of the nonzero
equilibria, we consider

E1 + a(E)2p + (2p)1/2 cos34 + (2p)3/2F1 = 0,
(3.9)

E2 + b(e)2p - (2p) 1/2 sin 3.0 + (2p)3/2F2 = 0

in a small neighborhood of the origin in phase space. Let E = re"q,
a p = p. Then (3.9) becomes

FG1(a, P, 0, ip) = 0,

Ca G2(a, P, 0, 41) = 0,
(3.10)

where

G1 = cos + a(µ)% (2p) + (2p)1/2 cos30 + a(2p)3/2F1,

G2 = sin 41 + b(p)F(2p) - (2p)1/2 sin 3,0 + a(2p)3/2F2.

For a # 0, (3.10) is equivalent to

G1-0,
S1 G2=0.

For a = 0, (3.11) becomes

(3.11)

cos 4 1 + (2p)1/2 cos 34 = 0,

sin 4 - (2p)1/2 sin 30 = 0.
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Hence it is equivalent to

p = 2 , sin 30 = sin g', cos 30 cos 41.

In other words (3.11) has solutions (for a = 0)

1

21

Ok= 3(Tr+2kar-41), k=0,1,2.

Since a(G1, G2)/a(p", 0 a=o = -3, the Implicit Function Theorem
implies that for a 0 0 and lal small, (3.9) has solutions

P =P*(a,0),
Ok = 0*(a, 4,), k = 0, 1, 2.

Let z* = 2p*e`'t be one of the equilibria. We have for small IEI

2p* = 2ap = 1E12 2p = IE12 + O(IEI2),

Iz*I = 2p* = IEI + D(IET).

Let = z - z*. Then (3.6) becomes

e = P + QZ + O(IEI2),

where

P = E + 2A(E)Iz*12 + O(Iz*14),

Q = 2z* +A(E)Z*2 + O(IZ*I4).

For sufficiently small IEI, we have

IPI < IEI + O(IEI) < 1fl,

IQI > 21EI - o(lel) > 41E1.

The following lemma is useful in determining the property of an
equilibrium.
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Lemma 3.2. (Arnold [4]) Consider a planar linear equation

e=n
P I < IQI, then the origin is a saddle point. If I P I > IQI, then the origin

is a focus (center) or node which is stable for Re P < 0 and unstable for
ReP> 0.

Proof. Let = S1 + P = p1 + ip2, and Q = q1 + iq2. Then

1 _ bll M = + q1 -P2 + q2
'2 -M

[S2J,

[p,
P2 + q2 p1 - q1

Hence as det M = IPI2 - IQI2 and tr M = 2p1, the desired result fol-
lows.

Lemma 3.3. Suppose that Iel # 0. Then in a small neighborhood of the
origin in phase space (3.8) has four equilibria. p = 0 is a focus or node
which is stable for el < 0 and unstable for el > 0. The other three
equilibria are saddle points. The curve H (EIE1 = 0, E2 0 0) is a Hopf
bifurcation curve.

Proof. The behavior of the equilibrium p = 0 and the curve Ht is
easy to obtain from (3.8).

The behavior of (p*, ¢k) is obtained from Lemma 3.2 and from the
fact that the saddle is structurally stable.

Now we turn to the discussion of the existence and the number of
limit cycles. The basic idea is the same as in Sections 4.1 and 4.2, but we
will use a specific technique.

Let

E1 = -
a

1 S2
E2 =

a P -' a2 P,

at
b - -ab, t -+ - s , (3.12)
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where a = a(e) < 0 and b = b(e). Then (3.8) becomes

8/3(2p) - 3(2p)2 + (2p)3"2
cos3¢ + 32(2p)112F1,

4) = 1 + bS(2p) - (2p) 1,12

sin 30 + S2(2p)1/2F2.

(3.13)

Suppose that po(S, /3), 40(8, /3) are coordinates of a nonzero equilib-
rium of (3.13). Let

Pr = -
2Po
it

0=
6

+0-0o=0-4(/3,3).

Then (3.13) takes the form

(3.14)

= 3/3(2r) - S(2po)(2r)2

+(2po)1/12(2r)3/2 cos3(0 + 1/1) + 82(2r)S/2 F1,

= 1 + 3(2po)b(2r) - (2po) 1/2(2r) 1/2 sin 3(0 + 41)
(3.15)

+32(2r)3/'2F2 = H(3, r, 0).

The coordinates of the equilibria of (3.15) are independent of S and
/3: r = 0 and rk = z,Ok=7r/6+2kir/3 (k=0,1,2).

For S = 0, (3.15) is a Hamiltonian system

r = (2r)3/2 cos30,

9 = 1 - (2r)1/2 sin30,

with the first integral

(3.16)

H = r -
3

(2r)3"2 sin 30 = h. (3.17)

The level curves of H = h are shown in Figure 3.2, where 0 < h - i
h = 0 corresponds to the equilibrium r = 0, and h = 1/6 corresponds
to the three heteroclinic orbits.
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0=571/6
Y

Tn

Figure 3.2.

0=71/6

x

Obviously, any closed orbit of (3.15) must cross the segment L =
((r, 0)10 = 1r/6, 0 < r < Z} which could be parameterized by h, H(r, 0)
=h,0<h<1

Let

H3(r, 0) = f rH(S, r, 0) dr (H° = H), (3.18)
0

where H is defined in (3.15). Then (3.15) can be rewritten in the form

3H8 3/2 -
8B

+ 2Sr(13 - (2p0)(2r) + S(2r) F),

r3 HS
0=

8r

(3.19)

Let y(h, S, (3) be the part of the orbit of (3.15) from the point on L
with h E (0, 1/6), to the point on the segment {(r, 0)10 = 57r/6, 0 5 r
< 1/2).
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Lemma 3.4. The orbit through y = y(h, 5,(3) is a closed orbit of (3.15) if
and only if

fy(h, s, p) l dtdHs)
dt = 0.

(3.19)

(3.20)

Proof. This proof is similar to that of Lemma 1.4. o

The calculation shows that

,4[45

Let

dt (3.19)
dt = 26r(13 - (2po)2r + 5(2r)''`F) do.

4(h, 6, /3) = f r[/3 - (2po)2r + 6(2r)3"2F] do. (3.21)
y(h, S, p)

Then (3.20) is equivalent to (P(6, h, /3) = 0 (for 6 0 0). For 6 = 0, we
have 2po = 1 and

4(h, 0, /3) = f r(/3 - 2r) do = (371 - 212, (3.22)
rh

where

I,(h) = f rr`do (i = 1,2),
h

and rh is the level curve H = h Or/6 < 0 < 57r/6) of (3.16). Obviously,
I1(h) > 0 for h > 0; and limb -0I2(h)/I1(h) = 0. Let

P(h) I,(h) , 0 < h < 6, and P(0) = 0. (3.23)

Then 1(h, 0,0) = 0 is equivalent to

0 = 2P(h). (3.24)
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We will prove that P(h) > 0 for 0 < h < 6. This will give the
uniqueness of the periodic orbits of (3.15).

Lemma 3.5. P(h) satisfies an equation (0 < h < '-1)

9h(6h - 1) P'(h) _ -12P2 + (28h + 9 - 4(h))P

+ 48h2 - 18h + 6ho(h), (3.25)

where

¢(h) = 6h2(6h - 1) 1

I1(h)
(3.26)

Proof. From (3.17), along I'h

oar 1 2r
ah 1- 2rsin30 3h - r

> 0 (0 < h < 1 (3.27)

Hence

Yk
Ik = 2kf do,

rk3h - r

where

Ik = frrkd9, k = 1,2,3,... .

ti

From (3.29) and (3.28) we obtain

rk(3h - r) 3h 1

Ik-frh 3h-r de-
2klk 2(k+1)Ik+'

In particular

(3.28)

(3.29)

I, =
Z
hI' - 4I2 ,

3 1
(3.30)I2= 4hI2, - 613.
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On the other hand,

I3(h) = f r3 d8 =
rh

Codimension Two Bifurcations

9 (r - h) 2 3 O=5/6 2

- f d9 = - - f (r - h) d(cot30)
8 rh sin2 30 8

3
g(r-h)2cot30

8=5a/6 3

+ - f (r-h)cot30dr.
e=Tr/6 rh

Using (3.16), (3.17), and (3.28), we have

3 (r - h) (2r) 3/2 cost 30
13

4 Jrh sin 30 (1 - 2r sin 30)
de

1 r[(2r)3 - 9(r - h)2]
d9

2 rh 3h-r

_ -413+(2 -12h)12+(2h-36h2)11+(54h3

Hence

- 9h2)Ii.

9 12 9 36 54 9

13-(10 Sh)I2+(h
5h2 -h3

Sh2)I'.10

(3.31)

Substituting (3.31) into (3.30), we have

411=6h1 -I2,
4812 = (18h - 48h2)Ii + (-9 + 44h) 12' - 24h2(6h - 1)Il.

(3.32)

Equation (3.22) is equivalent to

9h(6h - 1)1i = (-9 + 44h)11 + 1212 + 6h2(6h - 1)Ii,
9h(6h - 1) 12' = (-18h + 48h2)11 + 7212 + 36h3(6h - 1)Ii,

(3.33)
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where 0 < h < 6. Equation (3.33) and P'(h) = (I2Ij - IiI2)/Ii imply
(3.25)

Lemma 3.6. limh - 0P'(h) = 1.

Proof. Equation (3.27) shows that ar/ah -* 1 as h - 0. Hence r =
0(h), 3h - r = 0(h), and r - h = 0(h3/2) (see (3.17)). Therefore, as
h - 0, Il = 0(h), 12 = 0(h2), P(h) = 0(h), and

=f r(r - h)I6 3d9=O(h -'/2),
rh (3h - r)

r(r - h)(5r - 6h)
I1' = 12 f 5

de = 0(h -3/2).
r,, (3h - r)

These imply that (P(h) = 0(h1/2) and 4'(h) = 0(h-1/2) as h - 0.
Using the above estimations and L'Hospital's rule, from (3.25) we
obtain limh -0P'(h) = 1.

Lemma 3.7. P(1/6) = 1/4.

Proof. Let x = 2 r cos 0 and y = 2 r sin 0. Then I71/6 is a line seg-
ment ((x, y)I y = 1/2, - v/2 < x < F/2), that is, 2r sin 0 = 1/2,
it/6 < 0 < 51r/6. Hence

Il(1/6) = f rdo =
1 57r/6 d6

8 /6 sine 0 4

1 5°r de Ff'6 _12(1/6) = f r2 d0 = 2 . _ 4 = -
r,/6 8

6
sin o 16

Therefore,

P(1/6) =
12(1/6) 1

0
11(1/6) 4
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Lemma 3.8. NO > 0 for 0 < h < 1/6.

Proof. We shall prove that if there exists ho E (0,
6)

such that P'(ho)
= 0, then P"(ho) > 0, which is impossible, since P(0) = 0, P(h) > 0
for h > 0, and P'(0) = 1 (Lemma 3.6).

Let P'(ho) = 0 and

Q(h) = h < 1/6

Then P(ho) = Q(ho)and

1(h0)

P"(ho) Ii(ho)
Q (ho)

From the first equation of (3.32) we have

6hI1 = 12" - 2I1.

This implies that

If

1 IZ

6h
Q(h) - 2 .

Ii 12

Hence

1 " I
1"

z I'
h I'T - 12'

I1 Iz I1

= 6h Ql (6h - Q)-2 + 2J.
L z

(3.34)

The first equation of (3.32) implies 6h - Q = 4I1/Ii. Thus when
0<h<1/6

Q
= Q 2I1Iz

3h I1T
+ 1 .
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Since P'(h0) = 0 (0 < ho < 1/6), Q(h0) = P(ho) > 0 and

It is easy to see that

I1(ho) 12(ho)

Il'(ho) I2(ho)

I2(h0) = f r2 dO > 0,
rtio

4r z

II(ho) = fr 3h - r d6 > 0,
no 0

I2"(ho) _

We obtain finally

4r2(3ho + r)
de>0.

r,,. (3ho - r)3

Q,(h°) =
Q(ho) (2I2(ho)I(hO)

+ 1 > 0.
3ho I22(ho)

By using (3.34) we have P"(ho) > 0. This finishes the proof of Lemma
3.8. 0

Lemma 3.9. Suppose that Re A(0) < 0. Then system (3.6) has the bifur-
cation diagram and phase portraits as shown in Figure 3.1, which are
topologically independent of the function A(e) and the higher-order terms
O(Iz14), up to a factor in the equation of the curve HL.

Proof. Equation (3.6) is transformed into (3.15) and the closed orbit of
(3.15) is determined by the zero point of (3.21) (Lemma 3.4). Similarly
to Theorem 1.2 and Lemma 2.8, we can consider the equation (3.22)
instead of (3.21). Lemmas 3.6-3.8 show that for every 60, if 0 < jo <
1/2 (i.e., 2P(0) < (30 < 2P(1/6)), then (3.22) has exactly one zero point
with respect to h(0 < h < 1/6); if /30 < 0 or x(30 > 1/2, then (3.22) has
no zero point.
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From (3.12) we have

E
E22 = -a/3 = -ap0(1 + 0(3)) = -a130(1 + 0(E2)),

where a = Re A(O) < 0. Hence the equation of HL is

a
E1 = - 2 E2 + O(IE2I3).

We note that all the above discussions are independent of the
higher-order terms 0(1 zl a) and the behavior of the function A(E) as
long as ReA(0) # 0.

4.4 Double Zero Eigenvalue with Symmetry of Order 4

In this section we consider the family of vector fields on the plane that
are invariant under a rotation through an angle 27r/4. The normal form
equation is (see Section 2.11)

Z = Ez + MzIzI2 + Z3, Z E C, (4.1)

where z=x+iy,M=a+ib,andE=E1+iE2.
Since the two nonlinear terms in (4.1) are both of order 3, the

discussion of unfoldings of (4.1) is more complicated. The problem of
versal unfolding has not been solved completely. Some results in this
section have been obtained or discussed by Arnold [4], Wan [1],
Neishtadt [1], Berezovskaia and Knibnik [1], and Wang [1].

Without loss of generality, we assume in (4.1) that a < 0 and b 5 0.
In fact, if a > 0, by a change of variables and parameter E:

z --> ze-'i14 t -t, E , -E,

equation (4.1) becomes

j = EZ - MZIZI2 + Z3.



Double Zero Eigenvalue with Symmetry of Order 4 293

B

b

E

-1

A

C

Figure 4.1. The partition of the ab-plane (a < 0, b < 0).

If b > 0, let v = z. Then equation (4.1) becomes

6 =EV+MUIUI2+U3,

which keeps the sign of Re M and changes the sign of Im M.
First, we present some theorems and give a conjecture; then we

introduce the proofs of the theorems.

Theorem 4.1. The third quadrant of the ab-plane is divided into the
following regions (see Figure 4.1):

Region A: {(a,b)Ia < -1,b < -1},
Region B: {(a, b)l a < -1, -1 < b < 0},
Region C: {(a, b)I - 1 < a < 0, b < -1},
Region D:((a,b)I - 1 <a <0,-1 <b <O,a2+b2> 1),
Region E:{(a,b)Ia<0,b<0,a2+b2<1}.
If (a, b) E region E, then equation (4.1), for any E (except zero), has

four nonzero equilibria which are saddle points. If (a, b) E one of the
regions A-D, then there exists two semi-straight lines 11 and 12 which have
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E2
1,

A

A
I

0

(a)

.E, ur , , o
M

11

E,

(e)

(d)

(c)

Figure 4.2. (a) (a, b) E region A. (b) (a, b) E region B. (c) (a, b) E region C.
(d) (a, b) E region D. (e) (a, b) E region E.

a common end at the origin in the c -plane, and divide the E -plane into two

open angular regions O1 and A2 in a small neighborhood of the origin (A1

has a smaller angle than A2), such that when E E A1, equation (4.1) has

eight nonzero equilibria (four saddle points and four nodes or foci); when

e E A2, (4.1) has no nonzero equilibrium; and when e E II U l2 (4.1) has
four saddle-nodes. The positions of ll and l2 are shown in Figure 4.2.

Theorem 4.2. If E1 < 0, then equation (4.1) has no periodic orbit. For

any fixed e2 0 0, as E1 changes its sign from negative to positive, the Hopf

bifurcation occurs at the origin.
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E2

E,

E,

2

E,

Figure 4.3. The regions of uniqueness of limit cycle in Theorem 4.3.

Theorem 4.3. Equation (4.1) has a unique limit cycle which surrounds
the origin and is stable, if one set of the following conditions is satisfied:

el > 0, a2 + b2 > 1, and Ibel - ae2I > el + e2 , (4.2)

or

ab + Va2+b2-1
el>0,a2+b2> 1, -1 <a <0, and e25 - 2 el.

1-a

(4.3)

Remark 4.4. The shaded regions in Figure 4.3 are covered by conditions
(4.2) and (4.3), where the curves ll and 12 are the same as in Figure 4.2.
For more details, see the proof of Lemma 4.12.
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Figure 4.4.

Theorem 4.5. If a < -1 (i.e., (a, b) E region A U B), then equation
(4.1) has at most one limit cycle. If the limit cycle exists, then it is stable.

Theorem 4.6. For equation (4.1), the Hopf bifurcation occurs at the
nonzero foci if and only if (a, b) E region C and the point (a, b) is below
the curve y4 that is given by

((
1 + a2

Y4:S(a,b)Ib=- 1-
2,-1<a<0 .

tt a

Moreover, the bifurcating limit cycle is unstable.

Theorem 4.7. In the ab-plane there are curves y,, y2, and y3 which
divide the regions A-D into some subregions (Figure 4.4). The asymptotic
behavior of these curves are:

yl:b= - 1 + 0.47a 2 as b - -1, b= -0.35a2asb-

y2:b= - 1 - 0.13a 2 as b - -1, b= -0.352a2asb-> -co;

y3: b= -1 -0.45a2asb- -1, b= -4.11+0.84a2asb-' -4.11.
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EZ -2. outside

inside

(a,b)EA1

E2

(a, b) E B1

E1

on

on

E1

E2

(a, b) E A2

E2

outside

(a,b)EA3

E2

E1

E1

outside

E1

I N on I

(a, b) E B2 (a, b) E B3

E2

outside

inside

14 El

(a, b) E C1

E2

(a,b)ED1

(a,b)EC2

E2

(a, b) E D2

Figure 4.5.

The curve y1(correspondingly y2) is the boundary between regions in
which saddle-nodes of equation (4.1) appear in different locations on the
phase plane: outside (correspondingly inside) the central cycle and on this
central cycle. For more details, see Figure 4.5, where 11 and I2 are the
same as in Theorem 4.1. The notation "on" ("outside" or "inside")
related to the curve 11 (or 12) means that the saddle-nodes appear on
(outside or inside) the central cycle when (e1, e2) E 11 (or 12). The curve
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II / e,lf
E2

(E2>O)
H+

1 ~
It

I II III

-1

-

2

IV-

W
H J N

1 e

2

H-UIUH+
(E2(0) (E2>0)

Iv

Figure 4.6. The case of (a, b) E A1.

Y3 is a boundary between regions in which the stabilities of the heteroclinic
loop are different.

Now we can state the main results of this section.

Theorem 4.8. If (a, b) E subregion A. or BB (i, j = 1, 2, 3), then the
bifurcation diagram and phase portraits of equation (4.1) are shown in
Figures 4.6-4.11, respectively. They are similar to the case of weak
resonances (see Section 4.5), but the nonzero equilibria could appear
outside, on, or inside the invariant cycle.
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r 1

et nit e

EZ

H+ et

11 Ih_e

ez
All others are the

same as in Fig. 4.6
_I

0 IV-;

H

Figure 4.7. The case of (a, b) E A2.

Conjecture 4.9. If (a, b) E region Di (i = 1, 2), or region E, then the
bifurcation diagram and the phase portraits of equation (4.1) are shown in
Figure 4.12, Figure 4.13, and Figure 4.14,, respectively. The last case is
similar to the case of 1: 3 resonance (see Section 4.3).

Theorem 4.10. If (a, b) E region C, and l al is sufficiently small, then the
bifurcation diagram and phase portraits of equation (4.1) are shown in
Figure 4.15 and Figure 4.16 for b < -* and -* < b < -1, respec-
tively, where

* = (3 + cose*)/(1 - cos 0*),

and 0* is the unique root of the equation

yr
tg9-0=T- f o r 0, 2);

0*=1.352and *=4.11.
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All others are the
same as in Fig. 4.7

H_

Figure 4.8. The case of (a, b) E A3.

The aforementioned theorems show that the result for (a, b) E A U B
is complete, for (a, b) E D U E is almost complete (except the unique-
ness of the central limit cycle), and for (a, b) E C is far from complete.
In fact we need a condition lal << 1 in Theorem 4.10 in order to
transform equation (4.1) into an equation which is near a Hamiltonian
system.

Proof of Theorem 4.1. Let z = re" be a nonzero equilibrium of equa-
tion (4.1). Then

ri =M+N, (4.4)

where N = e-4iB The point M + N lies on the circle I centered at M
with radius 1 (see Figure 4.2).

If IMl =a 2 + b2 < 1, then the origin lies inside I (see Figure
4.2(e)). To solve equation (4.4) for r and 0, we must choose 0 so that e
and M + N E I have opposite directions. This is always possible.
Hence for E * 0, equation (4.1) has four nonzero equilibria.
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I

(E2>0)

(E2=0)

(E2<O)

H-U IU H+ IV

el

Figure 4.9. The case of (a, b) E B1.

(e2=0)

If IMI = a2 + b2 > 1, then equation (4.4) is solvable with respect to
(r, 0) if and only if e E 11 U O1 U 12, where O1 is an open angular
region formed by the semi-lines 11 and 12 which are opposite extensions
of the tangent lines from the origin to 2. (see Figure 4.2(a)-(d)). Hence,
for each e E A 1, there are two points on the circle I with directions
opposite to e. This means that equation (4.1) has eight nonzero equilib-
ria. For E E 11 U 12, equation (4.1) has obviously four nonzero equilib-
ria.

Now let us check the types of the equilibria. Suppose that zo = re" is
a nonzero equilibrium. In order to use Lemma 3.2, we linearize the
equation (4.1) at the point zo. Substituting z = zo + into equation
(4.1) and retaining the first-order terms in , on the right-hand side,
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r L
1110

e, III, e

H+ II

-1
111 a

III- E
All others are the

same as in Fig. 4.9
U

IV

e2

Figure 4.10. The case of (a, b) E B2.

we obtain

=PC+Q,
where

P = e + 2z020M = R2(M - N) (using (4.4)),

Q = Mz0 + 32, = r2e2iB(M + 3N).

(4.5)

By Lemma 3.2, the saddle points appear if IM - NJ < IM + 3N1. We
consider the points M - N and M + 3N. These points are symmetric
with respect to the point M + N, and the straight line connecting them
goes through the point M (see Figure 4.17). Let 1 be the tangent line to
circle I at the point M + N. If the origin and the point M - N lie on
the same side of the tangent 1, then IM - NI < IM + 3NI. Otherwise,
IM - NI > IM + 3N1. It is clear now that if IMI < 1, then IM - NI <
IM + 3N J (see Figure 4.17(a)) and equilibria are saddle points. If
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aio-
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same as in Fig. 4.10
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1112

IV
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2
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Figure 4.11. The case of (a, b) E B3.

IMI > 1, there are two cases. Let F1 and r2 be the two arcs bounded by
the tangents to I from the origin, with the arc F1 closer to the origin. If
M + N E t2, then IM - NI < IM + 3NI (see Figure 4.17(b)) and the
corresponding four equilibria are saddle points, and if M + N E F1,
then IM - NI > IM + 3NI and the corresponding four equilibria are
foci or nodes.

Proof of Theorem 4.2. In (x, y) coordinates, equation (4.1) takes the
following form:

E1x - Ely + (x2 + y2)(ax - by) + x3 - 3xy2 = f(x, y),
E2x + Ely + (x2 + y2)(bx + ay) - 3x2y + y3 = g(x, y).

It is easy to see that the divergence of the right-hand side of equation
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r r
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1
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0
IV- E

V 12 ,
H- y.rR

}(' Z0)
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H-UI V l2 (E2<0) IV

Figure 4.12. The case of (a, b) E D1.

(4.6) is

div(f, g) = 2(E1 + 2a(x2 + y2)). (4.7)

Since a < 0, div(f, g) keeps a negative sign throughout C \ {0} for
E1 < 0. Thus, by a theorem of Bendixson, equation (4.6) has no periodic
orbits in C. Next, for any fixed E1 = p and E2 * 0, it is easy to check
that equation (4.6) satisfies the conditions of Theorem 3.2.4. Hence, a
Hopf bifurcation occurs at E1 = 0.
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e IV, 4

e E

`i H+
2 Q

II III All others are the
same as in Fig. 4.12

00 IV-E
lv, e

" e2

Figure 4.13. The case of (a, b) E D2.

In polar coordinates (r, 0), the equation (4.1) takes the following
form:

er+r3Re(M+N),
8=E2+r2Im(M+N),

where M=a + ib, N = e-410. In order to prove Theorem 4.3, the
following lemmas are needed.

Lemma 4.11. Let

z222 M
H =

2
-

2
z4 and E = Re H,
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(E2>0) (E2>0)

H+ W \/

(E2=0) 0 111 E,

(E2=0)

IV

H- 12

f'` } N) ) 2G0 \
(E2<0)

H-U IU H+ IV 42 111

Figure 4.14. The case of (a, b) E E.

where M = a + ib and z = re" satisfies (4.1). Then

dt (E) = 2[CJIMI2 - Re(eMN)I r4 + 2a(I MI2 - 1)r6. (4.9)

Proof.

d dH (8H 9H .

dt
(E) = Re

dt
= Re jl az i + aZ 2l}

= Re(IMI222z(EZ + Mz222 + 23)

l+(IMI2Z22 - 2M23) . (E2 + M22Z + Z3)}. (4.10)

After simplifying the above expressions, we get the formula (4.9).
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Figure 4.15. The case of (a, b) n C and b < - * ( * = 4.11), lal << 1.

Lemma 4.12. If conditions (4.2) or (4.3) is satisfied, then the origin is
the only equilibrium point of equation (4.1).

Proof. Direct calculations show that the condition (4.3) implies (a, b) E
region C or D (see Theorem 4.1 and Figure 4.1) and (e1, e2) E 0 U 1,
where I is the semi-line opposite to 11 and 0 is the angular region
formed by I and the negative e2-axis. The condition (4.2) implies
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s

e2 s,§
H+ Ill v/.V S2 S1, 34 Vi 3

All others are the
same as in Fig. 4.15

Figure 4.16. The case of (a, b) E C and -6* < b < -1, 1 a I << 1.

S2

(a) (b) (c)

Figure 4.17. (a) The case of (a, b) a region E. (b), (c). The case of (a, b) E one
of regions A, B, C, and D.



Double Zero Eigenvalue with Symmetry of Order 4 309

(i) (a, b) E region A or B and (El, E2) E {(El, E2)IE1 > 0) \ Ill U Al U
\12), or (ii) (a, b) E region C or D and (El, EZ) E {(E1, EZ)IE1 > 0)

(Ol U 12 U 1 U 0). Therefore, by Theorem 4.1, equation (4.1), under
condition (4.2), or (4.3), has no nonzero equilibria. U

Lemma 4.13. Suppose that condition (4.2) is satisfied, and (p(t), 0(t)) is
a periodic orbit of equation (4.1). Then:
(i) 9(t) # 0 at any t. Therefore, the periodic orbit takes the form

p(t) = r(0(t)).
(ii) sgn B(t) = sgn lm(M) = sgn Im(eM), where R = M + N.
(iii) If we set y = r/p - 1 and consider y E (-1, + oo), then in (y, 0)

coordinates the solutions of equation (4.1) satisfy the equation

2p2Im(eR) ( 1 dp )

y E2 + p2 Im R y
+ P + y3) ReR -

P d9
lm R (4.11)

Proof. (i) Let

S = {(r, 0)IE2 + r2 Im(M + N) = 0}.

We need to show that {(p(t), 0(t))) n S = 0 (see (4.8)). If E2 = 0, then
S consists of finitely many straight lines through the origin, and S is an
invariant set of equation (4.1). Obviously, {(p(t), 0(t))) n S = 0 in this
case. If E2 # 0, then {0} S, and

S = {(r,0)1r2 =
-EZ

Im(M + N)

Each branch of S is a curve I': r = r(0) which bounds a closed
unbounded region U = {re`BI r >: r(9)}. By Lemma 4.12, the origin is the
only equilibrium of equation (4.1). Hence, r # 0 along IF. This means
that the region U is a positive or negative invariant set of equation
(4.1). Therefore, the periodic orbit {(p(t), 0(t))) cannot meet the curve
I', that is,

{(p(t), 6(t))} n s = 0.
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(ii) From (4.1) we have

_z
= EE + r2ER,

z

where R = M + N. On the other hand, it is easy to see that

Z r-=-+ie.
z r

Equations (4.12) and (4.13) imply

_r _
E- + El0 = EE + r2ER.

r

(4.12)

(4.13)

(4.14)

Let (r, 0) in (4.14) be the periodic solution of equation (4.1). Integrat-
ing (4.14) over a period T (T > 0), and then taking the imaginary parts,
we have

21re sgn(e(t)) = I r2 lm(M) dt. (4.15)
0

Noting ER = EM + EN and IIm(EM)I > IeI (condition (4.2)), we have
sgn Im(eR) = sgn Im(eM) which is independent of t. Therefore, from
(4.15) we obtain

sgn 0(t) = sgnlm(EM) = sgnIm(ER).

(iii) Since y = r/p - 1, ,y = (1/p2)(pr - rji) = (1/p2)
(pr - rdp/d09). Using r = p(1 + y), (4.8), and

dp pEl +p3ReR
dO E2+p2ImR



Double Zero Eigenvalue with Symmetry of Order 4 311

we have

1

PZ
'[fjp(j +y) +p3(1 +y)3ReR]

pet +p3ReR
p(1 + y) E2 + p2 Im R

(e2 + p2(1 + y)2 Im R)

= 2p2 (Re R -
el +p2ReR
e2+p2ImR

e1 +p2ReR
+P 2(3y2 + y3) Re R -

e2 + p2 Im R

2p2Im(eR) ( 1 dp )

E2 + p2 Im R y + p2(3y2 + y3) Re R - p d6
Im R 11

Proof of Theorem 4.3. From (4.2) and (4.3), we have IMI > 1. Hence,
the function E > 0 on C \ (0) and E(z) - c if and only if I z I -> -,
where E = Re H is defined in Lemma 4.11. By this lemma, one can
find an e > 0 such that dE/dt(z) < 0 on the set (zIE(z) > e). Conse-
quently, the set (zI E(z) < e) is compact and positive invariant. Any
solution z(t) of equation (4.1) exists for all t >- 0 and its w-limit set
ft c (zIE(z) < e). The origin is the only equilibrium of equation (4.1)
(Lemma 4.12), and it is a source for E1 > 0. Thus, by the
Poincare-Bendixson Theorem, the w-limit set of any nontrivial solu-
tion, which lies in the compact set (zIE(z) < e), is a closed orbit.

First we consider the case of condition (4.2). On any closed orbit, by
(i) and (ii) of Lemma 4.13, Im(eR)/(e2 + p2 Im R) >- d > 0 for some
constant d. Hence the conclusion (iii) of Lemma 4.13 shows that any
closed orbit is hyperbolic and stable. Hence it is unique.

Next, we consider the case of condition (4.3). By the same arguments
used in the proof of Lemma 4.13(i) and the condition E2 < 0 (see (4.3)),
one can see that any closed orbit must be located in the region
V = (re`BI9 < 0). Since the right-hand side of equation (4.1) is a polyno-
mial with respect to z and z, and the only equilibrium, the origin, is a
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source, any closed orbit is isolated (a limit cycle). Suppose that r1 c r2
are two limit cycles in the region V, and they have the expressions

F1:
P = Pi(t),
0=01(t)

and

F
P = P2(t)1

e -_ e2(t)
2

From (4.7) and (4.8) we have

div(f,g)dt-0, div(f,g)dt

2
2are1 + 2ap1

d6 2
27re1 + 2aP2

d9
I0 01

1-
I0 02

2

Za sin 40) - 2ae2](P2 - Pi)
2 de. (4.16)

0 0102

By condition (4.3), we have

ab + Va2+b2-1
el(b - sin 40) - 2ae2 < b - sin 40 + 2a

1 a
2 el.

-

(4.17)

If b < -1, then the right-hand side of (4.17) is obviously negative. If
- 1 < b < 0, then by using a 2 + b2 > land -1 <a <0,wehave

ab 2a2b 2a2 + b2 a2 + b2
2 < b + - - - =<b+ b2 = b < b <-1.

Hence, the right-hand side of (4.17) is also negative. Thus

el(b - sin 40) - 2ae2 < 0. (4.18)
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Noting P2 > pt and 61 < 0, i = 1, 2, from (4.16) and (4.18) we have

0 div(f, g) dt > (, div(f, g) dt. (4.19)
F, r2

Since the origin is a source, let F1 be the limit cycle that is the closest
to the origin. Then F1 is stable inside. If F1 is stable, then
Or, div(f, g) dt < 0. Therefore, Or2 div(f, g) dt < 0 (see (4.19)), which
implies F2 is stable. This is impossible. If r1 is semistable, since the
vector field is a rotated vector field with respect to et (with fixed e2),
change et to et + S, where 6 is sufficiently small with suitable sign.
Then F1 will become at least two limit cycles, and the inner most one is
stable. For more detail, see Section 3 of Chapter 4 in Zhang et al. [1].
By the same argument as above, this is impossible. Therefore, the limit
cycle is unique.

Proof of Theorem 4.5. Theorem 4.2 shows that if equation (4.1) has a
limit cycle, then e1 > 0. Let z = re1B, and consider

r* =min rjr=o.
r#0

From (4.8) it is easy to see that

This means that if a < -1, then inside the circle r = et/ --2a) one
has r > 0. Hence any limit cycle must surround the circle r =

et/(-2a) . By using (4.7), along any limit cycle I' we have

div(f, g) = 2(e1 + 2ar2) < 0,

which implies

div(f,g)dt <0.

Therefore, a limit cycle must be stable. Hence, it is unique.
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Proof of Theorem 4.6. Theorem 4.1 shows that if (a, b) E one of the
regions A, B, C or D, and a varies from 11 into O1 (see Figure 4.2),
then each of the four nonzero saddle-nodes of equation (4.1) becomes
a saddle point and a node (or focus). Since the center manifold at a
saddle node is one-dimensional, there is a connection orbit between
a saddle point and an node. Hence, if the node (or focus) does not
change its stability when a varies in O1, then there is no closed orbit
surrounding the node or focus.

Let us study the stability of the nonzero node or focus. We recall the
analysis in the proof of Theorem 4.1 and keep the same notation.
Suppose that zo = re" is one of the nonzero nodes or focus. By
linearization of equation (4.1) at the point zo, we obtain equation (4.5).
By Lemma 3.2, the stability of equilibrium zo is determined by the sign
of Rep = r2 Re(M - N) while M + N E I'1. From Figure 4.17 and
Figure 4.2 it is clear that if (a, b) (=- one of the regions A, B, or D, then
Re(M - N) < 0. Hence the equilibrium zo is always stable. Suppose
that (a, b) E region C. A change of stability of the equilibrium zo takes
place if the point M - N crosses the imaginary axis as the point M + N
varies along I71. The boundary separating the points (M) for which such
a phenomenon takes place is determined by the following condition:
The diameter drawn through the point of intersection of the circle I
with the imaginary axis is perpendicular to a tangent from the origin.
The calculation shows that the boundary curve y4 has the following
form:

y4 = (a, b) b=- 1 + a2
1-a2'-1 <a <0 . (4.20)

Summing up the above discussion, we see that if (a, b) is in the third
quadrant and above the curve y4, then the nonzero nodes (or foci) are
always stable. And there is no periodic orbit around them; if (a, b) is
below the curve y4, then there is a 0o = tan-1(e2/e°) E (0, 7r/2) such
that the nonzero focus (or node) is unstable for tan-1(E2/E1) < 00 and
stable for tan-1(E2/el) > 0u (see Figure 4.18).

We will determine the stability of the nonzero focus (or node)
zo = re`B for tan-1(EZ/e°) = 0o by using formula (3.2.36). It is easy to
calculate that M + N = 2a + i(b + 1 - a2 ). Hence, from (4.8) and

0, we obtain

E0 Im(M + N) b + 1 - zo
Eo = tan 00 =

Re(M + N) 2a (4.21)
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and

IZOIZ = r2 = -

Figure 4.18.

0E1 0

(4.22)Re(M+N) 2a 1,

where ° > 0, CO
Z

> 0.
Let z = z0w. Then equation (4.1) becomes

VV = (w - w3) + r2M(IwI2w - w3), (4.23)

and w = 1 is a focus (or node) of equation (4.23).
Let w = x + iy. Then equation (4.23) takes the following form:

x = E1X - EZy - Elx3 - (3E2 + 4br2)x2y

+ (3El + 4ar2)xy2 + f2 y3,

= E2x + Ely - 2x3 + 4ar2)x2y

+(3E2 + 4br2)xy2 - Ely3,

(4.24)

where E2 = E°, E2 = E2. By substituting (4.21) and (4.22) into (4.24), and
by rescaling time t - t/E° (co > 0), we have for equation (4.24)

X = x - 6y - x3 -'Ix2y + xy2 + y3,
6x+y-6x3+x2y+7jxy2-y3,

(4.25)
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where

b+ 1-a2 -b+3 1-a2
2a

71=
2a

The matrix of the linear part of (4.25) at (1, 0) is

-2

b + a2

a

Denote w2 = det 1 a R 1. Then
y s

2

2
2(a2 + 1 + b 1 - a2 )

W = -
a 2

(4.26)

(4.27)

(4.28)

Using the formula (3.2.36) we have (up to a positive factor)

2
Re(C1) = -49 { /3 - y + 2 [3(-y + 5/3) - 3(32 + (w2 +332)(477] }.

11

(4.219)

Substituting (4.26), (4.27), and (4.28) into (4.29), we obtain

Re(C1)
-32/3(b + 1 - a2 )

a(a2 + 1 + b6 - a2 )

Since a < 0, P > 0 (see (4.27)), b + 1 - a2 < 0, a2 + 1 +
b 1 - a2 < 0 (see (4.20), and (a, b) is below the curve y4, it follows
that Re(C1) > 0. Thus, the proof of Theorem 4.6 is complete. 13

For a proof of Theorem 4.7, we refer to the paper of Berezovskaia
and Knibnik [1], where both the analytic and numerical methods were
used.

The proof of Theorem 4.8 follows from Theorems 4.1, 4.2, 4.3, 4.5,
and 4.7.
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Proof of Theorem 4.10. By the transformation

1 Y

P = 2 (x2 + Y2), = tan-1 x-,

equation (4.1) is transformed into the following form:

2p(el + 2p(a + cos40)),
=e2+2p(b-sin40), (4.30)

where -1 < a < 0, lal << 1, b < -1, and el and e2 are small parame-
ters. By Theorems 4.1, 4.2, and 4.3, and Remark 4.4 and Lemma 4.12,
we only need to consider the case of el > 0 and e2 > 0.

Let

t
e2 = S, el = a62, a = -/3S, p - 6p, t

t
(4.31)

where S > 0, a > 0, /3 > 0; a and /3 are new parameters. Equation
(4.30) becomes

4p2 cos 44 + 3(2ap - 4/3p2),

¢=1+2p(b-sin40).

For S = 0, (4.32) becomes a Hamiltonian system

4p2cos4.0,

1+2p(b-sin40),

(4.32)

(4.33)

with Hamiltonian function -H(p, 0), where H is defined by

H(p,0) = p + p2(b - sin 40). (4.34)

The closed level curves I'h = {(p, 4')I H(p, 0) = h} are shown in
Figure 4.19, and

0 < h < hs for region G1,

-- < h < hs for region G2,

h3 < h < h, for region G3k), k = 1,2,3,4,
(4.35)
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Figure 4.19.

where hs = 1/(4(1 - b)) and h, = -1/(4(1 + b)). When h - h, Fh
tends to the separatrix connections between four saddle points which
have the coordinates p = pS = 1/(2(1 - b)) and ¢ = 7r/8 + kwr/2 (k
= 1, 2, 3, 4); when h -* h, the four symmetric branches of I'h shrink to
the four nonzero centers which have the coordinates p = p, _ -1/
(2(1 + b)) and ¢ = 3Tr/8 + kar/2 (k = 1, 2, 3, 4); and when h -p 0, 1'h
shrinks to the center p = 0 (in the region G1).

As in previous sections, we will study equation (4.32) as a perturba-
tion of equation (4.33) for some small 5 > 0. Since

aH aH .

N1(4.32) =
49P

P +
ao

0 = 3(2ap - 4/3p2)t,

where H = H(p, ¢) is defined in (4.34), the bifurcation function for
periodic orbits of equation (4.32) is defined, for 6 = 0, by

G(h, S, a, a)Is=o =
frh

(2ap - 4f3p2) do = 2aI1(h) - 4/312(h),

(4.36)

where

11(h) = f Pd4, I2(h) = f P2do, (4.37)
rh rh

I'h is the level curve of H(p, 0) = h, and h satisfies (4.35).
Obviously, for regions G2 and G3, 11(h) > 0 and I2(h) > 0; for

region G1, I1(h) > 0 and I2(h) > 0 if h > 0, and 11(0) = 12(0) = 0.
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Moreover,

lim
12(h)

= 0.
h-'O+ I1(h)

Hence, similarly to Sections 4.1-4.3, we define

P1(h) = 2(h)
II(h)

(4.38)

where h satisfies (4.35) for region G; (i = 1, 2, 3), and

P1(0) = 0.

Equations (4.36) and (4.38) show that GI3=0 = 0 is equivalent to

a
2PP(h), i = 1,2,3. (4.39)

Thus, for a given a/1i (or equivalently, for a given e2/el; see (4.31)),
the number of periodic orbits of equation (4.32) (or equation (4.1)) is
equal to the number of solutions of (4.39) with respect to h satisfying
(4.35).

By a similar discussion as in Sections 4.1-4.3, from the following
theorem we can obtain the conclusion of Theorem 4.10.

Theorem 4.14. Suppose 6* is defined as in Theorem 4.10, P,(h) is defined
as (4.38), and i = 1, 2, 3.
(I) If b < then

(1) Pi(h) > 0, P2(h) < 0, and P3(h) > 0;
(2) limh - _,P2(h) = +oo;
(3) Pl(hs) < P2(hs) < P3(hs).

(II) If -6* < b < -1, then
(1) 3hm < hs such that P2(hm) = 0, P2(hm) > 0, and P2(h) # 0 for

h * hm;
(2) P2(hm) > P1(hs);
(3) the behavior of each P1(h) (i = 1, 2,3) is the same as in Case (I).
The behaviors of P,(h) (i = 1, 2,3) are shown in Figure 4.20. Theorem

4.14 follows from the following lemmas.
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P

(a) the case b<-

Figure 4.20.

Lemma 4.15. P3(h) > 0.

(b) the case - <b<-1

Proof. In region G3 (we consider G31), i.e., 1r/8 < (A < 51T/8), along rh
we have from (4.34)

1±r
P1,2 = 2u (P1 <_ P2),

where

(4.40)

u= -b+sin44)>0, v=1-4hu>-0. (4.41)

Hence,

f pd4)
=

f d4),rh

f P2 d4 = f (Pz - Pi) dcp = f
u2

dO,
rti

'5+

(4.42)

where 0 ± are the limits of the variation of 0 on I'h, 0 - < 0+.
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Equations (4.10), (4.41), and (4.42) give

2
if=l0

(P2-p2) dO

1 I2=I 2(P2P2-plpl)d¢=2I d4
0+ 'A- ur

(4.43)

where the prime denotes the derivative with respect to h. From (4.38),
(4.42), and (4.43) we have

1
P3(h) = h(h) [Iz(h)I1(h) - li(h)12(h)]

2 d-O
0

v
d

0+ dO m+ F
dIl (h) I0 u f0 u -10 f0 u2

1 r+ / + vi

I1 (h) 0- 0- ulU2 U2

v1

2 - 2 d41 d42,
u1 U2 u

where u, = u(4,), v, = v(4,), i = 1, 2. The calculation shows that the
integrand is equal to (using (4.41))

(u1 - u2)(u2y1 - u2v2)
2 2u1u2 U1U2

S 0
(u1 - u2)

2

2 2; .u1u2 U1U2

Hence, P3(h) > 0.

Lemma 4.16. P,(h) > 0.

Proof. In region G 1, from (4.34) along rh we have

1-V
P

2u
(4.44)

where u and v are the same as in (4.41).
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Since P1(0) = 0 and P1(h) > 0 for 0 < h < ha, in order to show
P;(h) > 0, we only need to show that if there exists ho E (0, h) such
that Pj'(ho) = 0, then Pl (ho) > 0.

Similarly to the proof of Lemma 3.8, we define

Q(h) = I,( h) (4.45)

If Pj'(ho) = 0, then P1(ho) = Q(ho) and

I' ho
P'(ho) =

I1(ho)
Q '(ho). (4.46)

From (4.44), (4.41), and (4.37), we have

Ii(h)
f2phd4=f2,dO

0 0 r
2u

I1 (h) = f
2,rph

dcb = f
2,r

3/2 d4,
0 o u

1 1
(4.47)

II(h) = f 22PPh do = f
2,r

u + uF) dO,
0 0

tar 2
IZ(h) = f0 v3/2 d-.

From (4.45) and (4.47), we have

1

Q'(h) = (I,(h))2 [12 -'1'21

2 2,r d4 ear d¢ 2,r d¢ ear U

! --)T fo v 3/2 fo v 1/2/2 + f0 u f0 v 3/2 d O

fz,r deb fz,r u
dO

0 uyw 0 V3/2

2,r 2,r 1 1

(Il)2 fo fo v1/2v1/2 + U2/2U1/

1/2 3/2
u1u1 U2

U2
+ +

u1

3/2 3/2
u1v2 U2U1

U2 u1

- 1/2 3/2 d`r)1 d02,u2V2 U1

where u; = u(4,), v, = v(O,), i = 1, 2.



Double Zero Eigenvalue with Symmetry of Order 4 323

Since u2v1 - ulv2 = u2 - u1 (see (4.41)), we can transform the inte-
grand to the following form:

A(.01,02)

(U1V2)
3/2

where

-(ul - u2)2 + u2vi/2 + u1v2/2
A

ulu2

= 2 +
u2

(Ui/2 - 1 + ul (v2/2 - 1)
u1 U2

u2 (U1 - 1)(1 + vl'2 + y1) ul (v2 - 1)(1 + v212 + v2)
=2+

ul 1 +v1/2 + U2 1+V1/2

Since (v, - 1)u2 = (v2 - 1)ul (see (4.41)),

(v2 - 1)(1 + v1112 + U1) (U1 - 1)(1 + v212 + v2)A=2+ 1+vi/2 + 1+1/2

( U2 + vl )( v2 -
U1 )

2

+ v1 F V2 Vz >U 0.
(1 + vl)(1 + v2 )

Hence Q(h) > 0. This implies P,(h) > 0 for h E (0, h5].

Lemma 4.17. We have:
(1) If b -6*, then P2(h) < 0;
(2) If - * < b < -1, then 3hm < hs such that P2(hm) = 0, PZ(hm)

>0,and P2(h)*0if h*hm;
(3)

Proof. In the region G2, we have

P
2u

(4.48)

where u and v are the same as in (4.41).
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It is easy to see that for h < 0 and .0 E (0, 27r],

1+ 1-4h(-b-1)
< <

1+ 1-4h(-b+l)
2(-b+1) p 2(-b-1)

Hence

fP2 d
lira P2(h) = lira °

27r

+00.h-- h- 2af p d.0
0

Next, in the same manner as in the proof of Lemma 4.16, we can
obtain that if there exists an h 0 E (-00, h) such that P2(h°) = 0, then
P2"(h°) > 0. Obviously, such an h°, if it exists, is unique, and its
existence depends on the sign of P2(hs). If PP(hs) < 0, then such an h°
does not exist and P2(h) < 0 for -00 < h < hs (using limh- P2(h)
= +00). If PP(hs) > 0, then such an h 0 exists, and it is unique (denote
it by h).

Now we consider the sign of P2(hs). From (4.48) and (4.42) we have

Ii(h) =
2

f° - 1
d-P,

1Iz(h) = f- d¢

Thus,

Piths) =
h

I'M- Ilh) [I (h)I1(h) - Ii(h)I2(h)]

1

= lim
f2'[2pIi(hs)

- I2(hs)] dO.Ij (hs) 0 vv

At the saddle points (h = h, 0 = it/8 + kir/2, k = 1, 2, 3, 4), the
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integral has singularities, and

v - 1-sin44 =0
7r kTr

8 + 2

2i

7r kzrash-h5-, ¢- +
8 2

.

Hence

P2'(hs) = -0 if 2pSI1(hs) - I2(hs) < 0,

P2'(hs) = +0 if 2p5I1(hs) - I2(h5) > 0.

If 2p5I1(hs) - I2(h) = 0, then P2(hs) is a finite negative number.
Finally, we need to show that 2pSI1(h) - I2(h) is negative, positive,

or zero if and only if b is less than, greater than, or equal to -*.
From (4.40) and (4.41) we have

1

PS 2(-b + 1)

and

n (h A)_
1+

1-sin
b 11 - +

1,2 s 2(-b + sin40)

Hence

1 -b+1 +V1-sin40
2 -b+l ( - b + 1) - ( 1 - sin 4 0)

2'-b+1 -b+1 ± 1-sin44

PLO, 0) = P1,2(4)
PS

or I'
sin (20- 4)

(4.49)
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where

In this case

2
71 b+1 <1.

P(hs, 0) = P2(4) =
PS

Tr1-risin(24'- 4)

Substituting the above expression into the following equality

we have

2PsI1(hs) - I2(hs) = 0, (4.50)

2 1

Io 1 - ?1 sinir (1 - 17 sin 4i)
J d4i = 0. (4.51)

By a substitution tan (4i/2) = s in the above integral, (4.51) is re-
duced to

1-2712 1-71 _77
[arctan + arctan

(1-r72) 1-q2 +71 1-,72

77
= 0 .

2(1 - n2)
(4.52)

Let 0 = 2 arcsin -q, 0 E (0, 7r). Then (4.52) takes the following form:

tan0-6=ir. (4.53)

If 0* is the root of (4.53), and 17 = sin (0*/2), then

2-772
-b =

71

2 = (3 + cos 0*) (1 - cos 0*) _*.

This completes the proof of Lemma 4.17.



Double Zero Eigenvalue with Symmetry of Order 4 327

Lemma 4.18. P1(h,) < P2(h,) < P3(h,) and P1(h,) < P2(hm).

Proof. In order to avoid confusion, we denote

12,,(h)

11 1(h)

where h satisfies (4.35) for region G., i = 1, 2, 3. Then

P2(h,) - P1(h,)

I2,2(h..,) _ 12,1(h,)

,1,2(h5) I1, 1(h5)

f -2
P2(0) dO

2 1 r

d+l, - f 2 Pi(4G) dli f d¢
0 0 0 0

02P2(0)
dO fo21rr1(() dpi

f5,r,s
P 1 ( d¢ dir

,r/s it/8
f5/8 5n,sir

P1(41)P2(0) d4 dcli
r/s

fads

,r/8'

From (4.49), we see

Pl(c) <P, <P2(4')1

for any 4 # 7r/8 + k7r/2 and * 7r/8 + k7r/2, k = 1,2,3,4. Hence

P2(h,) - P1(h3) > 0.

Noting p2(hm, 46) > p2(hs, (k) = p2(4,) for all 0, we can prove P2(hm)
> P1(h,) by the same method.
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Finally, we consider

P3(hs) - P2(hs)

_ 12,3(h5) _ I2,2(hs)

I1,3(h5) I1,2(h,)

f21rPi(0) do + f2 P2(0) d4 f -2
P2(0) do

j 2 ( ) dO + f
-27r

T2(0) dO f -27r
T2(0) dO

f5'r/s P2(
)(P2(4) - P1(4))(P2(4) + P1(4) - P2( )) do dO

ir/s ir/s
151r/s151T/s

/s 'r/s (P2(4) - Pi(4))P2(+1') d¢ 4,

From (4.49), we have

p5(1 + q2 sin2 ¢ - 2,7 sin fir)
P2 P1 P2 (1 - 172 sin2 )(1 - 77 sin

where = 2¢ - 7r/4, a1 = 21k - 7r/4.
Since for some constant M,

0<(1-,72sin¢)(1-77 sin )<M,
we obtain that

M
(1 + q2 sin - 2,r7 sin +/) d¢ dr/i > 0.P3(hs) - P2(hs) >

PS

f f
O

4.5 Double Zero Eigenvalue with Symmetry of Order >- 5

A family of vector fields on the plane that is invariant under a rotation
through 27r/q (q > 3) takes the form

Z = Ez + Clz2Z + C2Z3Z2 + +C,,,z-+1Zm +Azq-1 + O(IZIQ),

(5.1)

where m = [(q - 1)/2], z, e, C1, A E C, Re C1 0 0, and A 0.
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In Sections 1-4, we discussed the cases q < 4, which are called
strong resonances. In this section we consider the cases q > 5, which
are called weak resonances. For q >: 5, the term Azq-1 is smaller than

the term C1z22. Hence the behavior of (5.1) is governed mainly by the
term C1z22 (see (5.4) below). Therefore, we expect that the discussion
of weak resonance is simpler than the case of strong resonance.

By a scaling on z and t, we suppose A = 1 and Re(C1) = -1. Let
E = E1 + iE2, C C = aj + i b b (j = 1, 2, ... , m, m = [(q - 1)/2]). We
transform (5.1) into polar coordinates:

P = Elr - r3 + a2r5 + - .. +a,,,r2m+1 + rq-1 cos q0 + O(rq),

0 = E2 + b1r2 + b2r4 + ... +bmr2m - rq-2 sin qO + O(rq-1).

Obviously, (5.2) has a Hopf bifurcation at E1 = 0 and E2 * 0. When
E1 < 0, the first equation in system (5.2) shows that in a small neighbor-
hood of r = 0, every flow tends to the unique attractive equilibrium
r = 0 as t -p +oo. When e > 0, we make a scaling

E1 = S2, E2 = X52, r = Sp, t

t
(S > 0). (5.3)s2

Thus (5.2) becomes

p = p(1 - p2) + Sf(S,p,0),

9 = + blp2 + Sg(S,p,0),

where

f(S, p, 9) = a2Sp5 + ... +a/521-3P21+1

+ Sq-5pq-1 cos q9 + O(Sq-4pq),

g(S, p, 9) = b2Sp4 + ... +b1S21-3p21

- Sq-5pq-2 sin q6 + O(Sq-4pq-1).
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For S = 0, (5.4) takes the following form:

p(1 - p2),

0 = + b1p2.
(5.5)

Equation (5.5) has a unique attractive invariant circle E = {(p, OAP = 1}
which is a limit cycle for + b1 0 0, and consists of only equilibria for

+ b1 = 0. Denote the time-1 mapping along the flow of (5.4) by 0s.
Then there exists S > 0 (correspondingly e1 > 0) such that for every
0 < S < S (correspondingly 0 < e1 < E1), the sequence of manifolds
{(Ds(E)}n-0 converges to an invariant manifold ES which is an attractive
circle of (5.4) (see Ruelle and Takens [1] for details). Hence, the phase
portrait of (5.4) is completely determined by the behavior of (5.4)
restricted to these invariant circles {Es}. If + b1 : 0 (equivalently, if
(E1, E2) is not on the line 9°: E2 = -b1E1; see (5.3)), then for sufficiently
small S, there are no equilibria on E. This means that, in addition to
the Hopf bifurcation on e, = 0 and E2 # 0, all other possible bifurca-
tions must take place near the line Y. In fact, we will prove that there
exist two bifurcation curves SN1 and SN2 which are tangent to 2' and
form a cusp region fl (see Figure 5.1).

The bifurcation of equilibria on ES occurs in the following way:
When (E1, E2) E region A, there are no equilibria on Es, and q
saddle-nodes appear on ES if (E1, E2) E SN1. As (E1, E2) goes from SN1
to fl, every saddle-node becomes a saddle point and a node. q new
saddle-nodes appear when (E1, E2) E SN2. See Figure 5.4, p. 332, for
more detail.

We now explain why the equilibrium (po, 00) on ES of (5.4) must be a
saddle point or node, or a saddle-node. If (E1, E2) E SN1 or SN2, then
sin(g00) = ± 1. Hence, 0 does not change its sign when 0 passes
through 0 (see the second equation of (5.2)). Moreover, ES is attrac-
tive on both sides. Therefore, (po, 0) is a saddle-node (see Figure 5.2).

e2

E,

Figure 5.1.
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1If (el, EE then Isin(g0o)I < 1. Hence 0 changes its sign when 0
passes through 00. Therefore, (po, 00) is a saddle point or a node.
Moreover, the saddle points and nodes appear alternately (see Figure
5.3).

Theorem 5.1. The bifurcation diagram of (5.2) consists of the origin
(el = E2 = 0) and the curves H :I= {el = 0, E2 0 0), SNI, and SN2. SN
is defined by an equation with parameter s in the 1e2 plane: SN,(s) _
(s2, h,(s)), j = 1, 2, s > 0, with the property

lim h2(s) - hl(s)
0.

s-.0+ S

Figure 5.2.

Figure 5.3.

q-2

Along SNI and SN2, q saddle-nodes on the invariant circle are created or
annihilated. The phase portraits of (5.2) are shown in Figure 5.4.

Now we prove the existence of the curves SNI and SN2. We consider
(5.4) near (p, , 3) = (1, -b1, 0). A calculation shows that

det

aR aR

ap ao

ao po

ap ao

:= qsq-4 . D(p, 0, s), (5.6)
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H+ 11 / SN1

(f2>0)

(E2150)

`
H+ E2 SN1

II
III SN2

I 0 IV-8i
CJ

1 0
H_

III

NO O
ti

H-
(f.2>0) (82150)

IV SN2

Figure 5.4. The bifurcation diagram and phase portraits of (5.2) (q = 5, bl < 0).

where R and 0 are defined to be the right-hand side of (5.4). Note that

D(p, O, S) = (3p2 - 1)cos(qO) + 2blp sin(gO) + O(S). (5.7)

Lemma 5.2. (Takens [2]) There is a neighborhood U of W =
0, -bl, 0)10 < 0 < 27r) in the such that the intersection of

U with ((p, 0, , SAD = 0, R = 0, 0 = 0) consists of 2q curves. The
projection of these curves on the S plane consists of two curves which are
of the form (MS(S), S) (j = 0, 1) with M0(S) - M1(S) = e6q_4 +
O(Sq-3), where is a nonzero constant.

Proof. It is easy to obtain from the first equation of (5.4) that in a
neighborhood of W the set ((p, 0, , S )I R = 0) has the form
(p(O, , S), 0, , S), where p is a smooth function satisfying p = 1 +
O(S).
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Next, DIR=s=o = 2cos(gO) + 2b, sin(go) and D has 2q zeros in W.
Hence, the set {(p, 0, , S)I R = 0, D = 01, in a neighborhood of W, has
the form

2q-1

1=0

where_90 and p, satisfy the following conditions:
(1) S) = l30 + j-rr/q + O(S), where l60 satisfies (see (5.7))

cos(q/30) + b, sin(g130) = 0; (5.8)

(2) pj+2 = p, and',+2 - Bj = 2-7r/q (since (5.4) is invariant under a
rotation through 27r/q);

(3) pj = 1 + O(S).
Now we make an estimate of p, - P0. From p(pj, 0j, , S) = 0, it

follows that p, - To = O(Sq-4). Since P(po, 00,', S) = p(p,, 91, C, S) _
0,

Po - Po +
Sq-4

cos q#0 = P1 - Pi + Sq-4 cos(/3oq + ?r) + O(Sq-3),

that is,

(P, - Po)[1 - (Pi + P1Po + Po), = 2Sq-4 cos q/30 + O(Sq-3),

which implies

Pi - PO = -5q-4 cos q/30 + 0(Sq-3). (5.9)

Finally, we consider the function 0 on the set ((p, 0, C, S)I R = 0,
D = 01. This is given by

S), S), , S) = C + b, pj2 + 0(3),

Hence, there are functions M1(S), j = 0, 1, ... , 2q - 1, such that

O(pj(Mj(S), S), 9;(Mi(S), S), MS(S), S) = 0,

where 3 is near zero. By symmetry, Mj+2 = M,. We make an estimate
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of M1(S) - MO(S). The equation

e(P1(Mi(s), S), 91(M1(S), S), Ml(S), S)

= O(Po(Mo(S)1 S), k(Mo(S)1 S), Mo(S)1 S)

gives

M1(S) + bl(pl(M1(S),
3))2 - Sq-4 sin(q/3o + Tr)

= M0(S) + bl(po(Mo(S),
3))2 - Sq-4 sin(q/3o) + O(Sq-3),

which implies, by (5.9), that

M1(S) - M0(S) = 259-4[b1 cos(q/3o) - sin(g13o)] + O(Sq-3).

By using (5.8), we have

6 = 2[b1 cos(q/3o) - sin(q/3o)] = -2[(b; + 1)sin q(3o] # 0.

This completes the proof. 13

Proof of Theorem 5.1. As mentioned above, we only need to consider
equilibria bifurcation on Es. This can only occur at the points where
R = 0 = D = 0. For = M0(S), these points are (pj(M0(S), S),
B,(M0(S), S)), where j = 0,2,. .. , 2q - 2 and 0j+2 - 9j = 2.7r/q, P;+2 =
pp For = M1(S) the situation is similar, but j = 1, 3, ... , 2q - 1. On
the other hand, from the second equation of (5.4), equilibria bifurcation
must take place at the values of S) where R = 0, 0 = 0, and
sin(qO) = ± 1, which just correspond to the above two cases. Finally, by
(5.3) we can change S) back to ('Ell e2); the curves (MO(S), S) and
(M1(S), S) in the S-plane become curves (S2, S2Mo(S)) and
(32,52M M) in the E1E2-plane. Denote h1(S) = S2Mo(S), h2(S) =
S2M1(S). Then h1(S) - h2(S) = S2(Mo(S) - M1(S)) = Sq-2 +

O(Sq-1), * 0 (see Lemma 5.2). This completes the proof of the
theorem.

Remark 5.3. Figure 5.4 is drawn for b 1 < 0. The case b 1 >- 0 is similar.
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Figure 5.5. The additional bifurcation diagram and phase portraits of (5.2)
(q = 5, b1<0).

Remark 5.4. The above results are established in a small neighborhood
of E1 = E2 = 0. Otherwise, some additional bifurcation curves L;1 (i, j
= 1, 2) will appear. The system (5.2) will have some additional phase
portraits (see Figure 5.5 which is obtained numerically).

4.6 A Purely Imaginary Pair of Eigenvalues and a Simple
Zero Eigenvalue

As we mentioned in the beginning of this chapter, we need the
truncated normal form equations for types A2 and A3, and they have
respectively the following forms (see Section 2.11):

elx + axy + dlx3 + d2xy2,

y = E2 + bx2 + cy2 + d3x2y + d4y3,
(A2)
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where E1, E2 are small parameters, a, b, c, di E R', and abc # 0, and

x(E1 + plx2 +P2 y2 + g1x4 + g2x2y2 + g3Y4)l

Y(E2 +P3x2 +P4Y2 + 84x4 + g5x2y2 + g6Y4),
(A3)

where x >- 0, y >- 0, pj, q3 E R', and E1, E2 are small parameters.
We will discuss the dynamical behavior of equation A2 in this

section, and equation A3 in the next section. Zoladek [1,21 obtained
the complete results for these two cases. We will use a simpler method
to prove the uniqueness of periodic orbits for equation A2.

Since equation A2 is symmetric with respect to the y-axis, we only
need to consider the half plane x >_ 0. To obtain a simpler form, we let

x -4 ICI'l2x, y -+ IbI1"2y, t -f - t

clbl1/2'

E1 - -CIbI1/2E1, E2 - -CIbIE2.

Thus, A2 becomes

x = 1x + Bxy + dlx3 + d2xy2,

Y = E2 + ,qx2 - y2 + d3x2Y + d4Y3,

where B = -a/c * 0, 17 = -sgn(bc), d, E IIB'.
If we assume

2 2
K3=77(2 +2)dl+ 2d2+17d3+3d4*0,

then the qualitative behavior of (6.2) near (0, 0) with small E1 and E2 is
the same as that of the equation

x=E1x+Bxy+xy2
y = E2 + 17x2 - y2

(see Remark 6.7). The main result of this section is as follows.
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Figure 6.1. Case (I): 77 = 1, B > 0.

Theorem 6.1. For equations (6.3) there are four cases: (I) i = 1, B > 0;
(II)q=1,B<0;(III)77=-1,B>0;and(IV)77=-1,B<0.
We have:

(1) In cases (I) and (IV), the bifurcation diagram of (6.3) consists of
the origin and the following curves in parameter space:

M = ((ElI E2)IE2 = 0, E1 # 0),

E2
N= B2 + 0(E3), E1 01 .

Along M and N, saddle-node bifurcation and pitchfork bifurcation occur
respectively. Equation (6.3) has no periodic orbits, and the phase portraits
are shown in Figure 6.1 and Figure 6.4 for cases (I) and (IV), respec-
tively.

(2) In case (III), the bifurcation diagram of (6.3) consists of the origin,
the curves M, N, and the following curves:

H = {(E1, E2)IEl = 0, E2 > 0},
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and

S =
B l

3B + 2
E2 + O(IE2I3/2), E2 > 01 .

Along M and N, we have exactly the same bifurcation as in (1). Along H
and S, Hopf bifurcation and heteroclinic bifurcation occur respectively. If
(E1, E2) lies between the curves H and S, then (6.3) has a unique limit
cycle which is unstable and becomes a heteroclinic orbit when (El, E2) E S.
Phase portraits in case (III) for different (E1, E2) are shown in Figure 6.3.

(3) In case (II), the bifurcation diagram of (6.3) consists of the origin,
the curves M, N, and the following curve:

H = {(El, E2)IE1 = O, E2 < O}.

The bifurcation along M and N are the same as in (1) and (2). Along H,
Hopf bifurcation occurs. If we localize equation (6.3) by restricting
0 < x < f3, IEIIl/2 + IE211/2 < 6, 0 < 6 << 1, then there exists a curve

S = {(Ell E2)IE1 = cb(N, E2)E2 + O(IE213/2), E2 < O}

where

11xgy2 dxdy

4(f3, E2)
1101 E2)-

A10,

E2)
x gdx dy

with fl(P, E2) the bounded region surrounded by the closed curve

xz a2/B p2

x2/B(1
+y 2) = 1/2 1 - ifB + 1 # 0,

B + 1 IE2I IE2I(B + 1)

or

1 + y2 IE2I R

2x2
+1nx=2#2 +1nIE 11/2 ifB+1=0.

z

If (E1, E2) lies between the curves H and S, then (6.3) has a unique limit
cycle which is located entirely in the strip 0 < x < 6 and touches the line
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Figure 6.2. Case (II): q = 1, B < 0.

x = 0 as (E1, E2) Phase portraits of (6.3) in case (II) are shown in
Figure 6.2.

Proof. The proof of Theorem 6.1 is given in the following steps.

Step 1. Bifurcations of equilibria Clearly, (6.3) has an invariant line
x = 0 and is symmetric with respect to the y-axis. Hence, we will only
consider the half plane x >_ 0.

On the y-axis x = 0, there are two equilibria (0, ± E2) if E2 > 0,
and the linearized system at (0, ± E2) is given by the matrix

E1 f B [E2 + 'E2 0

0 T2
At=

e2 I.
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Figure 6.3. Case (III): 77 = -1, B > 0.

Note that B (det Ad < 0 if E2 > E1/B2 + O(E1) (i.e., (E1, E2) is
above the curve N), and e1 (det A±) < 0 if 0 < E2 <E1/B2 + O(El)
(i.e., (e1, E2) is between curves N and M, see Figure 6.5). This means
that if (E1, E2) is above N, then both equilibria (0, ± E2) are saddle
points in cases (I) and (III) and are nodes in cases (II) and (IV). If
(E1, E2) is between M and N, then one of (0, ± E2) is a saddle point
and the other one is a node for cases (I)-(IV), and these two equilibria
form a saddle-node when E2 = 0 (El 0).

In the open half plane x > 0, equation (6.3) has two equilibria:

X = [77(y2 - E2)] 1/2,
Y =

2
[-B ± (B2 - 4E1)1/2].

Obviously, only one of them exists in a small neighborhood of the origin
if IE1I and IE21 are sufficiently small. If we denote this equilibrium by
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Figure 6.4. Case (IV): ,q = -1, B < 0.

S,

Figure 6.5.

(x3, y3), then

EZ 3
x3 = [i)

BZ
- E2 +0 (E1)

E

y3 = -
B

+ O(Ei ),

as El -+ 0, (6.5)

provided 17(E1/B2 - E2 + 0(4E3)) > 0. This means that (x3, y3) exists in
cases (I) and (II) if (E1, E2) is below the curve N, and in cases (III) and
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(IV) if (E1, E2) is above the curve N. If (E1, E2) E N (i.e., x3 = 0), then
(x3, y3) merges into one of the equilibria (0, ± E2 ). If (El, E2) = (0, 0),
then all equilibria merge into the origin (x, y) = (0, 0).

The linearized system at (x3, y3) is given by the matrix:

2
A = 0 Bx3(1 + BY3)

(6.6)
2ix3 -2y3

The determinant of A has the same sign as -riB (if x3 # 0). Hence
(x3, y3) is a saddle point in cases (I) and (IV), and is an equilibrium
which may be a focus, node, or center in cases (II) and (III). It can be
shown that:

(1) In case (II) if (E1, E2) lies between the curves N and R, where

R: E2=
2B + 1

2B3
E2+0 3E),

then (x3, y3) is a node.
(2) If (E1, E2) is below R in case (II) or above N in case (III), then

(x3, y3) is a focus which changes its stability when (E1, E2) crosses the
curve H in case (II) or (E1, E2) crosses the curve H in case (III).

Summing up the above discussion, we conclude that in cases (I) and
(IV) the system (6.3) has no periodic orbits. In fact, the y-axis is an
invariant line. Hence, periodic orbits in the half plane x > 0, if they
exist, must surround the equilibrium (x3, y3). But this is impossible,
since (x3, y3) is a saddle in cases (I) and (IV). In these cases, the
bifurcation diagram consists of curves N and M. Saddle-node bifurca-
tions occur on M while pitchfork bifurcations occur on N. In cases (II)
and (III), the bifurcations on M and N are similar to the cases (I) and
(IV). However, a Hopf bifurcation occurs on H and H, respectively.

Step 2. The stability of (x3, y3) when (El, E2) E H in case (II) and
(E1, E2) E H in case (III) From (6.5) and (6.6), it is easy to determine
the stability of (x3, y3) when (E1, E2) is in the two regions divided by H
(or H), and the stability is opposite in these regions. Hence H(H) is a
Hopf bifurcation curve. It is necessary to determine the stability of
(x3, y3) when (E1, E2) E H (or H). By using the formula (3.2.34) we
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have

Re(Cl) = ae2 a > 0 constant.

Hence, (x3, y3) is an unstable focus when (el, e2) E H (case (III)), and
a stable focus when ('Ell e2) E H (case (II)). Therefore, in both cases a
limit cycle appears when (el, e2) moves across H or H from the right to
the left, and the bifurcating limit cycle is stable in case (II) and unstable
in case (III).

Step 3. Uniqueness of periodic orbits As shown in Step 2, (6.3) can
have periodic orbits only if e2 < 0 in case (II) and e2 > 0 in case (III).
We choose a small parameter S > 0 and let

xq
x - Sx, y - Sy, dt -

S
dt, El = aS2, e2 = -,q82,

where q + 1 = 2/B and ri = - sgn B. Then (6.3) is transformed into
the form

.x = x9(Bxy + S(ax + xy2)),

Y =xq(-71 +'nx2 -y2),
(6.7)

where 71 = 1, B < 0 (case (II)) or 77 = -1, B > 0 (case (III)). When
S = 0, (6.7) becomes a Hamiltonian system

Y = x9(-71 + 71x2 - YZ),

with a first integral H(x, y) = h, where

2

H(x, y) = Bxe+i(-rl -Y2+nB+1

and

(6.8)

ifB+1#0, (6.9)

1 +y2
H(x, y) =

2x 2
+ In x, ifB+1=0. (6.10)

Note that H(x, y) is the Hamiltonian function of (6.8).
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(a) B>O

Codimension Two Bifurcations

(b) 1<B<O

Figure 6.6. The level curves of H(x, y).

(c) B<-1

The closed curves IT,, = {(x, y)IH(x, y) = h) are shown in Figure 6.6
for cases (a) -Y7 = -1, B > 0, (b) 77 = 1, -1 < B < 0, and (c) 77 = 1,
B < - 1, respectively (see Remark 6.5), where h e J! (i = 1, 2, 3, 4) and
J; corresponds to different values of B:

B2
1J1 = (0,hfl,h' 2(B+1)' ifB>0,

-B2
J 2 2(B+ 1)

<0, if -1 <B <0,

1J3=(h3,+-),h3=2, ifB=-1,
B2

J4=(h4,+oo),h4 2(B+1) >0, ifB<1.

(6.11)

When h - h* (i = 1,2,3,4), the level curve Fh shrinks to the equi-
librium (x*, y*) = (1,0) of (6.8); and when h --> 0, rh expands to the
heteroclinic orbit in the case B > 0. Since

dH

dt
= Sx4(ax + xy2)

dy
,

(6.7) dt

as in Sections 4.1-4.3, to study the periodic orbits of (6.7), we obtain a
bifurcation function 4(h, S, a, B) which for S = 0 is given by

s=o = f x9(ax +xy2) dy = -(q + 1) fx9(ay +
1

1y3) dx,
rh

rh
111

(6.12)
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where h E J, and the orientation of rh is defined by the direction of the
vector field (6.8). The condition Its=o = 0 is equivalent to

1
a = - 3P(h,B),

where

P(h, B) - I1(h, B)
I (h, B) = f xqy' dx, 1 = 1, 3. (6.13)

Ij(h, B) ' rti

In a manner similar to Sections 4.1-4.3, the uniqueness of periodic
orbits of (6.7) is equivalent to the monotonicity of P(h, B) with respect
to h. The following three lemmas give the monotonic property of
P(h, B).

Lemma 6.2. If h E JJ, then P(h, B) > 0 and

lim P(h,B) = 0, i = 1,2,3,4.

Proof. For simplicity, we denote P(h, B) and I,(h, B) by P(h) and
It(h), respectively. Using Green's Theorem, we have from (6.13) that

3 f f xgy2dxdy
P(h) _ h

> 0 for h E J,
Alhxg dxdy

where f1h is the compact region surrounded by I'h, and it is contained
in the open right half plane. From the above expression of P(h), it is
easy to see that

lim P(h) = lim 3y2 = 0,
h h* y_ y*

since 1(h) shrinks to the point (x*, y*) as h -+ h*, and (x*, y*) =
(1, 0).
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Lemma 6.3. If there exists ho E Ji such that P'(h0) = 0, then P(h) -
P(ho) > 0 for 0 < Ih - hol << 1.

Proof. Suppose y = yl(x, h) and y = y2(x, h) are defined by H(x, y)
= h for h E J, and al(h) < x < a2(h), where al(h) and a2(h) are the
intersection points between rh and the x-axis. Obviously, 0 < al(h) <
1 < a2(h). We will use y(x, h), or simply use y, to denote yl(x, h) or
y2(x, h) if there is no confusion. Using (6.9), (6.10), and (6.13), we have

ay 1

ah Bxq+ly
(along 1'h) (6.14)

and

Ii(h) = f xgydx = 2(sgn B) f a2(h)xgyl(x, h) dx. (6.15)
rh a, h)

Since 0 < al(h) < 1 < a2(h), for fixed h E J, we have that

y2 dy 277(a2(h) - 1)
lim = lim 2y- _ * 0.

x->a,(h) x - a,(h) x--.a;(h) dx Bat(h)
(x, y)E rh (x, y)Erh

This implies that

IYI=O(Ix-a,(h)11"2) asx-+a,(h),

(x, y) E "h, i = 1,2. (6.16)

Noting yl(a,(h), h) = y2(a2(h), h) = 0, from (6.14) and (6.15) we
have

1 1

I'(h)
B

fr - dx. (6.17)
h

Here the integral is convergent because of (6.16). From (6.13) and (6.14)
it is not hard to obtain that

3 y
I3(h) B fr x dx. (6.18)

h
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On the other hand, from (6.13) we have

I3(h) _ I3(ho) _ (h) - 4(ho)P(h) - P(ho) = I1(h)
I1(ho) I1(h)I1(ho)

where

6(h) = Ii(ho)I3(h) - I3(ho)Ii(h)

Hence

P(h) - P(ho) =
'(B)(h - ho) - h - ho

I1(h)Ii(ho) I1(h)
Q(B), (6.19)

where 0 is in between h and ho, and

Q(h) = I3(h) - P(ho)Il'(h). (6.20)

From (6.20), (6.13), and the condition P'(ho) = 0, we have

Q(ho) = 0. (6.21)

We consider two cases separately:
(i) = - 1, B > 0 (case (III)). The direction of the vector field (6.8)

on Fh is clockwise. Substituting (6.17) and (6.18) into (6.20), we have

Q(h) = f P(ho) - 3 y2
dx. (6.22)

rh Bxy

Equations (6.21) and (6.22) imply

Q(h) = Q(h) - Q(ho) = f P(ho) - 3y2
dx - f P(ho) - 3y2 dx.

rh Bxy rho Bxy

(6.23)

If h > ho then rh c flho, where SZho is the compact region surrounded
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(h > ho)

Figure 6.7.

by 1'ho. From (6.23) we obtain

Q(h) =
1 P(ho) - 3y2

dx
B'aD+ xy

1 P(ho) - 3y2 -
I

P(ho) 3y2

IfB aD; uaD; XY aDZ uaD; 1 - x2 - y2

:[II
P(ho) + 3y2

D,UD3 XY2
dxdy

2x P(ho) - 3y2)
+ II 2 dx dy > 0, (6.24)

DZUD4 (1 - x2 - y2)

where D = U'=1 D; is the annular domain bounded by rh and F,,), and
D1, D2, D3, and D4 are formed by the truncation lines y =
±(P(ho)/3)12. We note that they are mutually disjoint and satisfy the
following properties (see Figure 6.7):

{(x, y)Ix2 + y2 = 1} n D C D1 U D3,

{(x,y)Iy = 0) nD cD2 uD4.

Because P(ho) > 0 (Lemma 6.2) and Q(ho) = 0, the lines y =
±(P(ho)/3)12 must intersect rho (see (6.22)). Hence the above parti-
tion of D into D1, ... , D4 is always possible if 0 < Ih - hot << 1. The
orientation of 8D+ (or 3D,+) is defined in the usual way: The region D



Simple Zero and an Imaginary Pair of Eigenvalues 349

(h > ho)

Figure 6.8.

(or D,) is always on the left side if one goes along aD (or aD1). In (6.24)
the integrand along 3D2 U aD4 is transformed by using (6.8) and the
integrand along every part of the truncation lines y = ±(P(ho)/3)1 2
is zero. If h < ho, then rho c SZh. We obtain Q(h) < 0 in the same way.
Hence Q(hXh - ho) > 0 for 0 < Ih - hol << 1. By using (6.19), we
have P(h) - P(ho) > 0 for 0 < Ih - hol << 1 since 11(h) > 0.

(ii) ri = 1, B < 0 (case (II)). This case is similar to case (i). We will
only indicate the main differences between the two cases. The direction
of the vector field (6.8) on Fh is counterclockwise. If h > ho (the case
h < ho is similar), then rho c f1h, and (6.23) gives

Q(h) _
1 P(ho) - 3y2

dx + P(ho) - 3y2 dy
B 'dD; uaD3 XY 'dDZ uaD; -1 + x2 - y2

1 P(ho) + 3y2
dx dyB D,uD3 xY2

- I1
2x(P(ho) - 3y2)

D2uD4 (-1 +x2 -y2)2

where D is the annular domain bounded by IF, and rho, and Dl,..., D4
are formed by truncation lines y = ±(P(ho)/3)1/2. They are mutually
disjoint and satisfy the following properties (see Figure 6.8):

((x,y)Ix2-y2= 1) nD CD1 U D3,

{(x,y)Iy = 0} nD cD2 U D4.

Therefore, P(h) - P(ho) > 0 for 0 < Ih - hol << 1 since I1(h) < 0.
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Lemma 6.4. P(h) is monotone in h E Ji, i = 1,2,3,4.

Proof. By (6.13), (6.17), and (6.18), we have that P(h) E C1(J,). Sup-
pose there is an ho E Ji such that P'(h0) = 0. Lemma 6.3 implies that
such an ho is unique. Hence P(h) - P(h0) > 0 for all h E Ji, h * ho.
Therefore, by using Lemma 6.3 and the first part of Lemma 6.2 we
obtain that P(h) > P(h0) > 0 for h E Ji, h = ho. This implies

lim P(h) >- P(ho) > 0,hh*

which contradicts the second part of Lemma 6.2, and the desired result
follows.

Remark 6.5. Instead of equation (6.8), we consider

x = Bxy,
(6.25)y = -77 + rx2 - y2,

where B 0 0, q = ± 1, qB < 0. It is easy to see that equation (6.25)
has an equilibrium P*(1,0), and trace (A(P*)) = 0, det(A(P*)) _
-2Br7 > 0, where A(P*) is the matrix of the linear part of (6.25) at
point P*. On the other hand, equations (6.25) are symmetric with
respect to the x-axis. Hence, P* is a center. Using (6.9) and (6.10) we
obtain Figure 6.6.

Remark 6.6. In order to give the equation of the heteroclinic bifurca-
tion curve S in case (III), we need the value P(0, B) for B > 0. In this
case

f xgy3 dx f1x4(1 - x2)3/2 dx
P(0, B) = F. = o

f xaydx f 1x4(1 - x2)1/2 dx
ro 0

1 4 + 1 5

f ut4-1>/z(1 - u)3/2 du B
0 2

,

2

Ilu(g-1)/2(1 - u)1/2 du B q + 1 3

0 ( 2 ' 2)
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where B(a, /3) is the usual beta function. By using the properties:

B(a /3) =
r(a)r(13)

' r(a +,(3)

and r(a) = (a - 1)r(a - 1), we obtain

3 3B
P(0, B) _ _q+4 3B+2'

Noting

1

Z

77a= - 3P(h, B) and
E

a ,
1

we obtain

E1 a P(h, B)

351

+0(3). (6.26)
E2 1) 3i

In our case q = -1, h = 0, and 8_1'E21 1/2 as E2 - 0. Hence, the
equation of the curve S is given by

B
I3/2).+ O(IEE 22

3B + 2

The equation of the curve S in case (II) is easily determined by using
(6.26), where 71 = 1, h = 0) (for the definition of H(x, y), see (6.9)
and (6.10)), 6 _ 13/IE2I1/2 > 1, and 6 IE2I1/2 as E2 - 0.

Remark 6.7. We now show why we can consider equation (6.3) instead
of equation (6.2). In fact, if (6.2) has no periodic orbits, then its
qualitative behavior does not depend on the third-order terms. Thus,
we only need to consider (6.2) for E2 < 0 in case (II), and for E2 > 0 in
case (III). In these cases, we can make the same scaling for (6.2) as for
(6.3), and obtain the same Hamiltonian system (6.8) if 6 = 0. The
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bifurcation function, similarly to (6.12), is

01s=0 = f xq(ax + d,x3 + d2xy2) dy - xq(d3x2y + d4y3) dx
rh

= -(q + 1)aI,(h) - (q 3 1 d2 + d4)I3(h)

-[(q + 3)d1 + d3] frxq+2ydx,
ti

where I,(h) and I3(h) are the same as in (6.13).
Along Fh we have

xq(-77 +'qx2 -y2)dx - xgBxydy = 0.

Hence

77f xq+2ydx = f xq(r7 + y2)ydx + B f xq+ly2 dy
r,, r,, rh

+1 1
=7711+ (1- q

3 B)I3='IiI1+
313

.

Thus,

4)15=0 = -(q + 1)a11 + K3I3 + K1I1,

where

1

K3= -3[n(q+3)d,+(q+1)d2+77d3+3d4],

K,= -[(q+3)d,+d3].

This means that as long as K3 * 0 we can choose any values for d,, d2,
d3, and d4 without changing the existence and uniqueness of periodic
orbits of system (6.2). For system (6.3), d, = d3 = d4 = 0, d2 = 1, and
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hence

1 2

K3 3(q+1) 3B
:0.

4.7 Two Purely Imaginary Pairs of Eigenvalues

As we mentioned at the beginning of Section 4.6, in this case the
truncated normal form equation is

x(el + P1x2
+ P2Y2 + 41x4 +42X2y2

+ 43Y4)

Y(e2 +P3x2 +P4Y2 + 84x4 + 45x2Y2 + g6Y4),
(7.1)

where x > 0, y > 0, E R1, i = 1,2,3,4, j = 1,2,...,6, and el
and e2 are small parameters.

By changing (x2, y2) -.> (x, y) and t --> 1-2t, equation (7.1) becomes

x = x(el +P1x +P2Y + 41x2 + 42XY + 43y2),

+2 + P3x + P4Y + 44x2 + gsxY + g6y2)

We suppose that

p1*0 (i=1,2,3,4) and

Let

P1 P2

P3 P4
00. (7.3)

x
, Y -' -1 t -+ - (sgn P2)t. (7.4)x -1P11 IP21

Then (7.2) takes the form

x = x(µ1 +'i1x - y + g1x2 + g2xY + q3y2),

a + 1 a (7.5)
Y µ2-

Q
rlX+ R+1y+44x2+q5 +g6Y2
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Figure 7.1. The partition of half plane a < /3.

where 77=1ifp1 p2<0and77= -1 ifplp2>0,

a + 1 p3

Pi'
and condition (7.3) becomes

a

/3+1

a/3(a+1)(,6+1)(a+/3+1) 0. (7.6)

We only need to consider the case a < /3. Otherwise, let (x, y) -
(y, x). Then by using the following change of variables: x = Q + 1)/
all, y =113/(a + 1)Iy, and t = 77(sgn(/3/(a + 1)))t, a and /3 in eq-
uation (7.5) are interchanged (µl = µ2(sgn (/3/(a + 1)))771 µ2 =
µl(sgn (/3/(a + 1)))77, 71 = g7(sgn (/3(/i + 1)/a(a + 1))).

The half plane a < /3 is divided into eight regions (a, b, . . . , h) by five
lines: a=0, /3=0, a+1=0, 6+1=0, and a+/3+1=0 (see
Figure 7.1).

We denote (7.5) with (a, /3) E region a and 71 = 1 (77 = -1) by
a (a _ ). The notations b ±, ... , h ± have the same meanings.

Although the total number of a +, a _, ... , h +, h _ is sixteen, the total
number of unfoldings for system (7.5) with different behavior is thir-
teen. In fact, we will show that b _ - f-, c _' g _, and d _ - h _.

In order to state the main theorem, we need the following definition.
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Definition 7.1. Equation (7.5) is called nondegenerate if
(1)af3(a+1x13+1)(a+f3+1)#0;
(2) q6 # 0 for cases a_, d+, and h+,

where

a132 a+2
gb (a+1)(a+1)(a+2)( 6

q1+g4

77a/3 (a+l )

+(a+1)(13+2) f3+1q2+q5

a
R+2qs+q6 (7.7)

In Lemma 7.10 we will show that if (7.5) is nondegenerate, then
instead of (7.5), we only need to consider equation

z=x(11+i7x-Y),
r a + 1 a (7.8)

Y{µ2- R 77x+

where v = sgn q6 for cases a _, d+, and h+, v = 0 for other cases, and

x2 2xy y2
g(x'Y)-/3-13+1+a+2 (7.9)

Theorem 7.2. (1) For different values of a, 6 (a < 6) and 77 = ± 1, the
nondegenerate system (7.5) has thirteen different types of bifurcation. The
bifurcation diagrams and phase portraits are shown in Figures 7.2-7.14,
respectively.

(2) In every case, except a_, d+ and h+, the bifurcation diagram
consists of

(D =K+uK-uL+uL-UMUNU {0}, (7.10)
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K+: µ1 = 0, µ2>0,
K-:µ1=0, µ2 < 0,

L+: µ2=0, µ1>0,
L-:µ2=0, µ1 < 0,

M: = - a
+0( 1 >0µ2 a+11 N1 N1 ,

a
N:µz= -aµ1+O(µi), µ1>0

form = -1 and µ1 <0 fore = 1.

Along curves K ±, L±, M, N, saddle-node bifurcations occur. In these
cases, system (75) has no limit cycle.

(3) In case a-, the bifurcation diagram consists of

H U HL U 1 (see (7.10)),

where
a

H: µ2 = -aµ1 + O(µ1), µ1 > 0,

a v((3 + 1)
HL: µ2= -aµ1- /3 (a+(3+1)(a+p +2)µi+°(µi),

µ1>0.
Along the curve H, Hopf bifurcation occurs. When (µ1, 112) is between
curves H and HL, (7.5) has a unique limit cycle which forms a heteroclinic
loop if (µ1,µ2) E HL.

(4) In cases d+ and h+, the bifurcation diagram consists of (D U H,
where

a
H: µ2 = -aµ1 + o(µi), Al > 0 for case h +

and µ 1
< 0 for cased .

Along curve H, Hopf bifurcation occurs. If we localize equation (7.5) by
restricting 0 < x < e and 1µ1I + Iµ21 < -eea/(a + /3 + 1), e > 0, then
there exists a curve S,

a
S: µz = -aµ1 - µ1)µi + 0(Iµ113),
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where A, > 0 in case h + and µ 1 < 0 in cased +,

II"
xa-ly6-1( + x - y)2 dxdy

4'(E, µl) =
Qfl xa-1YS-1 dxdy

.E,Al

fl is the region bounded by the closed curve
E a E (3+1

a
t3

6+x - Y Iµ1I) I11I
x Y

( R (3+1 = /3(a+1)
= 1 in case h+ and -1 in case d+, and E/1µ11 > -4a/(a +,0 +

1) > 0. When (111, µ2) is between curves Hand S, (7.5) has a unique limit
cycle which is located entirely in the strip 0 < x < E and touches the line
x = E if (IL1, µ2)E S.

L-UIUK+ IIUL+ IIIUM

I12

K+

I II

0 L+
- µ

IVU H

L
tL

O III

VIII IV M

VI V H

K-VIN HL
OG

K-UVIII V

NUVII VI HL

Figure 7.2. The unfoldings for case a -.
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K
IUK+ AA HUM III

it I L----
or

M2
K+

M
II

©- Q 0 I 111 L+ L+UIV

L- 0 IV p9

VI V

K_
N

K-UVIUL- NUV

Figure 7.3. The unfoldings for cases b_ and f_.

IUK+ HUM III

or 1LI2

K+ M
L

Q Q 0 1 II
111 N

NUIV

O IV

L+

vi v

K-

K-UVIUL- L+UV

Figure 7.4. The unfoldings for cases c_ and g_.
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IU K+ HUN III

t9t M2

K+

L O 11 111 M MUIV

O IVL7 - A,
VI V L+

K-

K-UVIUL- L+UV

Figure 7.5. The unfoldings for cases d _ and h -.

L-UIUK+ IIUL+ IIIUN

P-2

K+

I II

O L O III IV

VI IV N
V

K-

M

K-U VI MUV

Figure 7.6. The unfoldings for case e-
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L-UIUN II K+UIIIUL+

M2

N II K+

I III
0 L+

AL-
IV

a:p -

I A

0 IV

VI V M

K-

VI MUVUK-

Figure 7.7. The unfoldings for case a +.

IUN II K+UIII

K+

p
N

M
II

....,\1 MUIV>
IV

1

0 L+ IAt

VI V

K-

VIUL- L+UVUK-

Figure 7.8. The unfoldings for case b+.



I K+U I I I IMUM

P2

K+ MZ
O 1 11 L+

- L+UIVUK-
L

VI 0
V IV

N

K-

VIU L- VUN

Figure 7.9. The unfoldings for case c+.

K+UIIUM III

P2

K XM
I I

0 L- VIII 0 L+ Nti L+UIVUK-

N VII IV

H
S VI

V

K-
V

NUVIIIUL- VUH

VII S VI

Figure 7.10. The unfoldings for case d+.
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L-U I NU I I K+U I I IU L+

P2

K+

O

N II III

L_ I L Ai IVUM
IV

VI V

K- M

VI VU K-

Figure 7.11. The unfoldings for case a+.

IUN II K+UIII

µ2

K+

N

MII x\1 MUIV

1v1 'Al

O +
V L+

V1

K-

VIU L- L+U VU K-

Figure 7.12. The unfoldings for case f+.



1 K+U I I RUMI I

K+ M

I 11

0
0

111 L+
L+UIVUK-

L' N,

VI IV
V

N

K-

VIOL VUN

Figure 7.13. The unfoldings for case g+.

I K+UIIUM IIIUH

K+ M
II

H LC21
0

LI
S

IV

0
V111 VI L+

N VII

K

NUVIIIUL- S

VII L+UVIUK- V

Figure 7.14. The unfoldings for case h.
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Proof. We divide the proof into four steps.

Step 1. The phase portraits for j = µ2 = 0 We consider first the
equation

x(µ1+77x-Y),
a + 1 a (7.11)

Y = Y / 2- R f7x+ R+lY)

w h e r e - 0,y>>-0, q _ ±1,a</3,and a/3(a+1)(/3+1)(a+/3+
1)O0.

Let

dt
x = r cos 0, y = r sin 0, dt -> -,

r

where r > 0 and 0 < 0 < 7r/2. Equation (7.11) with µl = µ2 = 0 be-
comes

a+1 a
77r= r cos3 0 -cost 0 sin 0

R
77 cos 0 sin2 0+ R+ 1 sin3 0

a
+

1 s i n .6=(a+/3+1)cos0sin0 -77 cos0+
1

(7.12)

Equation (7.12) has the following equilibria whose linear parts are given
by the following matrices:

177 0

(0,0),
0 77

R

2

(0, B), (1 +
(Q a

1)
)sin3

a
Tr /3+1

0

a +0' 2
0

/3

+1Q

+1

1

/3+1

0

0

a+/3+1
/3+1

(7.13)
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The equilibria (0, 0) and (0, -rr/2) always exist, but the equilibrium (0, j)
exists only if (0 + 1)7//3 > 0. We note that under this condition
0<0<7r/2.

From (7.13) we can obtain the phase portraits of (7.12) and (7.11)
(Al = µz = 0) in the rO-plane (r >_ 0, 0 < 0 :5,7r/2) and in the xy-plane
(x >_ 0, y 0) for every case of a t, ... 1h t; see Figure 7.15 and Figure
7.16.

It is not difficult to see that the phase portraits of (7.5) for the case
AI = A2 = 0 are the same as for (7.11).

Step 2. The phase portraits for µl + µ2 # 0 In a small neighborhood
of x = y = 0 in the phase space, (7.11) has the following equilibria and
their linear parts:

Pi(0,0), A(P1) =
µi 0

0 µzJ ,

l P+1
0

1-(0 A µ2µ1 + if -- a 0,P2 µ2 (P2) = a
'

µz? ,
a

* -µ2

P3(-71µi,0), A(P3) =
-µi

0 a + 1
+

if 0,
µi µ2

/1

?7x4 -x4

P4(x4, Y4), A(P4) a + 1 a , if x4 0, y4 0,
Y411Y4

/3 a+1

where

13(13 + 1)77 ( a )
1x4 = Al + µz ,

y4 =

a+p+1 p+1
/3(/3+1) (a+1
a+/3+1 R Al+µz

(7.14)

(7.15)

From (7.14) and (7.15) it is not difficult to obtain the following proper-
ties for equation (7.11):

(1) p2(p3) appears or disappears when (µl, µz) moves across the
curves Lt(K t), and p2(p3) merges into p1(0, 0) when (µl, A2) E
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Y
0

A
2

y

x

Figure 7.15. The phase portraits near x = y = 0 for the case µl = µz = 0 and
11 = 1.
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Cases The y-O plane

0

The

x

Y x

0

Y

x y 0 for the case µl = µ2 = 0 and
,1 = -1.
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Lt(K t) p2(p3) changes from a saddle point to a node when (µvµ2)
moves across the curve M(N), and p4 merges into p2(p3) when
(µv µ2) E M(N).

(2) p4 exists if and only if one of the following conditions is satisfied:
(i) (µ 1, µ2) is between the curves M and N (µl > 0) for the case
77 = -1 (i.e., cases a-, b _, ... , h _ ).
(ii) (µ 1, µ2) is above the curves M and N for the cases a+, b+, c+, .f+,
and g+.
(iii) (µ 1, µ2) is below the curves M and N for the cases d+, a+, and g+.

Moreover, the property of equilibrium p4 is determined by

a+f3+1
det(A(p4)) _ ?1

13(13 + 1) x4Y41

trace(A(p4)) = aµ1 + f3µ2.
(7.16)

If p4 is a focus keeping its stability when (µl, µ2) varies in some subset
of a small neighborhood of (0, 0), then in a small neighborhood of
(x, y) _ (0, 0) the qualitative behavior of (7.5) is the same as that of
(7.11) (see Bautin [2]).

Suppose now that p4 is a focus. The condition

det(A(p4)) > 0andtrace(A(p4)) = 0 (7.17)

gives a possibility for Hopf bifurcation. Equations (7.16) and (7.17) give

µ2 = -(a/a)µ1 and

aa(a+/3+1)>0. (7.18)

Noting a < f3, x4 > 0, we obtain only the following three cases which
satisfy (7.18):
(1)a>0,f3>0,71= -1, and µ>0(i.e.,a_with µ>0);
(2)f3<0,-1<a+f3<0,r1=1,and µ1>0(i.e.,h+with j >0);
(3)13>0,a+f3<-1,77 =1, and µl<0(i.e.,d+with µl<0).

p1, p2, and p3 are always on the invariant lines x = 0 and y = 0.
Hence, if (7.5) has a limit cycle, then it surrounds p4. In every case
except a_, h+, and d+, p4 is a saddle point or a node which arises from
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a saddle-node bifurcation, keeps its stability, and moves into another
saddle-node. This means that (7.5) has no periodic orbits for every case
except a-, d+, and h+. Thus, the bifurcation diagrams and phase
portraits for (7.5) (also for (7.11)) with /12 + µ 2 * 0 in these cases are
determined completely by the signs of (j3 + 1)/a, (a + 1)//3, and
(a + /3 + 1)/((303 + 1)) (see (7.14), (7.15), and (7.16)). Hence, the
behaviors of b- and f- are the same, and there is a similar situation
for c _ and g _, d _ and h _, b + and f+, and c + and g+. On the other
hand, as we discussed in Step 1, the phase portraits of (7.5) with
Al = µ2 = 0 are topologically equivalent for cases b_, c_, d_, f_, g_,
and h_, but are different for cases b+ and f, and for c+ and g+ (see
Figure 7.15 and Figure 7.16). Therefore, the total number of partitions
of the half plane a < 0 for (7.5) with different dynamical behavior is
thirteen (see Figures 7.2-7.14).

Step 3. The uniqueness of periodic orbits of (7.5) for cases a -, d +, and
h + Instead of equation (7.5), we consider equation (7.8) in three cases:
a _ with µ 1 > 0, d + with µ 1 < 0, and h + with µ > 0 (we will give the
reason in Step 4). Let

a
A1 = 6S, µ2 = _6_5 _ QS2, X - 5X,

y - 6y, dt -
8

dt, (7.19)

where S > 0, S and or are new parameters, = 1 for cases a _ and h
and _ -1 for case d+.

Equation (7.8) is transformed into

x«y1-1( + 71x - y),
l

a a+1 a
Y = xa-1ys[ _ R - 77x + -0+

1
y (7.20)

+S( -a- + g( + 77x, y))],
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where= 1,r1 = -1 for a-, = -1,77 = 1ford+,and = 1,r1 = 1
for h +.

When S = 0, (7.20) becomes a Hamiltonian system

x = x"yR-1( + 77x - y),

a a +
Y=x" lyp _ a _

f3

with a first integral

1 a (7.21)
7x+

R+1Y

H(x, y) = x"y1 (7.22)

The closed curves {H = h} are shown in Figure 7.17. The values of h
that correspond to the closed level curves are

0 < h < hi for cases a _ and d+,
h* < h< 0 for case h+

(7.23)

where H = h* corresponds to the equilibrium (x4, y4), and H = 0
corresponds to three straight lines (they form three heteroclinic orbits
in case a-).

y y

case a@_

0

case®+ case®+
n=-i , = 1' a>o, /3>0 I r-1, =i , -i<a+/3<o n=1, =-i , a+/3<-i

Figure 7.17. The closed level curves of equation (7.21).
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Similarly to Section 4.6, for the study of periodic orbits of (7.8), we
use the bifurcation function 1(o, 8, h, a, /3) which for S = 0 is given by

rh(xa-1YO( -v + vg( + qx, y)) dx, (7.24)

where Fh is the level curve of H = h. The orientation of I'h is defined
by the direction of the vector field (7.21). We note that

01s=o = 0 is equivalent to a = vP(h),

where

P(h) = 12(h)

II(h)
(7.25)

I1(h) = l' xa-1Y1 dx,r I2(h) = fxa-1YRg(rh + '17x, y) dx.

To prove the uniqueness of periodic orbits of (7.8), we only need to
show that P(h) 0 0 for h satisfying (7.23).

From (7.22) we have that along rh

ay 1

8h xay'-1(6 + 77x -

Hence

Ii(h) = l3f dx, (7.26)
rtix(

+
77X -

y)

I2'(h) = f
6 + qx - y

dx. (7.27)
rh x

We define

G(h) = /3P(h). (7.28)
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Theorem 7.3. G(h) * 0 for h satisfying (7.23).

From (7.28), (7.25), (7.26), and (7.27), it is easy to see that G'(h) 0 0
is equivalent to

I2'(h) - P(h)Il'(h) = f ( + - y)2 - G(h)
dx * 0. (7.29)

rh

x(

+,qx - y)

Let z +rtx - y and z,=z,(x)= +'qx-y,(x)(i= 1,2),where
{y = y,(x)) are branches of Fh lying below and above the line z = 0,
whence z1(x) > 0 > z2(x) for x1 < x < x2. x1 and x2 are x-compo-
nents of the intersection of the line z = 0 with F,,. Thus, to show (7.29),
we only need to prove that

I Z1 z1 - z2 - G(h)
1 2

)] - > 0. (7.30),

Z

The following lemmas of Zoladek [21 are needed.

Lemma 7.4. If Theorem 7.3 holds for 6 >- 1, then in the other cases it is
also true.

Lemma 7.5. Let xo E (x1, x2) be such a point that the function
(z1z2Xx) < 0 takes its minimal value at x0. Then there exist y > 0 and
x5 > xo such that

Z1(x) > a1[(xs -xi)2 - (x5 -x')2]1/2

= a1u(x),

z2(x) < a2u(x),

for x1 < x < x0, where a, = z,(xo)/u(xo), i = 1, 2.

Lemma 7.6. There exist 5 > 0 and x6 > x2 such that

z1(x) > ai (x68 - x8)2 - (xb - x2)211/2 = alw(x),

(7.31)

(7.32)

z2(x) < a2w(x),

for xo < x < x2, where a, = z,(xo)/w(xo), i = 1, 2.
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Lemma 7.7. We have the inequality

G(h) 1
0 < -

(zlz2)(xo) - 3

for h satisfying (7.23) and a >- 1.

Lemma 7.8. We have the inequality

(7.33)

fxo u(x) - u2(xo) -
> 0. (7.34)

3u(x) x

Lemma 7.9. We have the inequality

x2
w(x) -

w2(xo) dx
> 0. (7.35)

fxo 3w(x) x

Proof of Theorem 7.3. By (7.31), (7.33), and (7.34) we have

f ,oLZl - z2 - G(h)(
1 )J

dx

x

> fx,o[(al - a2)u(x) -
G(h)(al 2) u(x)

1

dx

x) G(h)u2(xo) 1 dx
(al - a2) f u(x)

(ZlZ2)(x0)u(x) X

2 dx
z (al - a2) f 1X 0 u(x) - 3 > 0.
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Similarly, by (7.32), (7.33), and (7.35) we have

fx2 z1
1-z2-G(h)(Z - z1

)

dx
>0.

0 1 2

-
This gives (7.30), and Theorem 7.3 is proved. 11

Step 4. Reasons for using equation (7.8) instead of equation (7.5) Let
us consider equation (7.5). For cases a_, d , and h+, we take the same
transformation as (7.19). Then (7.5) becomes

= xays-1[ f + 77x - y + S(g1x2 + g2xy + g3y2)]

a-1 6 a a+ 1 a
Y -

16

R ,qx+
R+lY (7.36)

+8(-v + g4x2 + g5xy + g6Y2)] .

For S = 0, (7.36) becomes (7.21) with the first integral (7.22). Hence,
to study the periodic orbits of (7.5), we obtain a bifurcation function
G(o, 8, h, a, 0, {q;}) which, for S = 0, is given by

GIs=o = f xaYP-1(-g1x2 - g2xy - q3 y2) dy
rh

+xa-ly/3(-Q + g4x2 + g5xy + g6y2) dx

_ -QIa-1,R + 44Ia+1,R + 45Ia,R+1 + 46Ia-1,,6+2, (7.37)

where
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rh is the level curve of H = h, and

a+ 2 a+ 1 a
44 = 44 + R q1, 45 = 45 +

Q + 1 q2'
46 = q6 +

R + 2 q3.

(7.38)

Along rh we have

« 1 p a+1 aax y -
a

rlx+ a+ly dx

- xayP-1(4 + 77x - y) dy = 0. (7.39)

Multiplying (7.39) by x and then integrating it along I'h, we have

177

I«,R + R I«+1,a - R+ 1 I",)3+1 = 0. (7.40)

Multiplying (7.39) by y and then integrating it along I'h, we have

a 77(a + 1) a
(7.41)a I«,/3+1 + a+ 2I«_1,/3+2 = 0

,r7 a 'qa(3

a + 1I«-1,(3+1 + (a + 1)(/3 + 2)

= (a + 1)(x(3 + 1)
I(7.42)

a,6 2

+ (a + 1)(R + 1)(R + 2)

Substituting (7.42) into (7.37), we obtain

GIs=o = -QI«-1,a +'rila,P + 72'a-1,0+1 + g6la-1,a+2, (7.43)
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where

a/3 n a6
Y1=-i;?lg4, 72= (a+1)(/3+1)q4 a+1q5'

2
77 a)9 -

9'6- (a+1)((3±1)(/3+2)q4+ (a+1)(/3+2)45+46. (7.44)

We remark here that (7.44) and (7.38) give (7.7).

Lemma 7.10. Suppose that equation (7.5) is nondegenerate. Then there
exist a small neighborhood Y of the origin (x, y) = (0, 0) and a small
neighborhood A of (µ1, µ2) = (0, 0) such that equation (7.5) has at most
one periodic orbit in Y for all (µl, µ2) E 0 if and only if the same
property holds for the following equation

x(111 + 77x - Y),

Y(µ2 + 'ax + by + vg(µ1 + 17X, y)),

where

(7.45)

a + 1 a x2 2xy y2a= -
(3

b= /3+1' g(x,Y)=
a

- /3+1 + /3+2'

and v is a constant determined in the following manner: v = 0 if one of
the conditions a_, d, or h+ is not satisfied; v = sgn(g6) if one of the
conditions a_, d+, or h+ is satisfied.

Proof. In this proof, we may have to choose different neighborhoods . V

and A for different equations. We will always take the intersections of
such neighborhoods and continue to denote them by A and A. This
will not cause any confusion.

From our earlier discussions, we only need to consider the case that
one of the conditions a_, d+, or h + is satisfied. Thus, we assume that
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v * 0. Moreover, for the uniqueness of periodic orbits of equation (7.5)
in V for (µl, µ2) E 0, we only need to show the uniqueness of
periodic orbits of equation (7.36) in the xy-plane. Furthermore, we have
shown that the uniqueness of periodic orbits of equation (7.36) is
equivalent to the unique solvability of the bifurcation equation:

GIs=o = 0, (7.46)

where G18=0 is given in (7.43).
On the other hand, consider the following equation:

x(µ1+77x-Y),
(7.47)

Y(µ2 + (ija + 6y1!-i1)x + (b + 6y2µi)y + 46Y2)

in the neighborhood 4t for (µl,µ2) E A, where 6 = ± 1 is chosen
according to the conditions a_, d +, and h + (see the change of variables
(7.19)). By a scaling of (7.9), equation (7.47) is transformed to

= xayP-1[ + 77x - Y],
a-1 6 a a+ 1 a

= x y - R - R -ax +
t3 + 1 Y (7.48)

+3 (-0' + ylx + Y2y + g6y2)].

Thus, the uniqueness of periodic orbits of equation (7.47) in .N' for
(µl, µ2) E 0 is equivalent to the uniqueness of periodic orbits of
equation (7.48) in the xy-plane. If S = 0, then (7.48) is reduced to the
Hamiltonian system (7.21). Furthermore, the uniqueness of periodic
orbits of equation (7.48) in the xy-plane is equivalent to the unique
solvability of the bifurcation equation (7.46). This says that equation
(7.36) has at most one periodic orbit in the xy-plane if and only if
equation (7.48) does. In other words, equation (7.5) has at most one
periodic orbit in ./Y for (µ 1, µ 2) E 0 if and only if equation (7.47) does.
We will use the notation (7.5) = (7.47) to mean this kind of equivalence
relation between equations.

Since equation (7.5) is nondegenerate, q6 # 0. Thus, let

1 1

y,
t Ig6It.X x, Y-*

1461Ig6I
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This transforms equation (7.47) into the following form:

x=x(µi+77x-Y),
°YIµ2 + ("la + eyiµi)x + (b + y2µi)Y + vy2}.

(7.49)

Hence, (7.47) = (7.49).
Now, consider equation (7.45). By the definition of g, we write

equation (7.45) as follows:

x(µ4+77x-Y),
y(µ**2 + r7a*x + b*y + vg*(x, y)),

(7.50)

where

µ1
All =µ1'

N'2=µ2+ vR
'

2vr7
a*=a+ µi,

a

2v
b*=b - a+lµ'' v = sgn(g6),

x2 2,7x1' y2

0 0+1 6 + 2

Thus, equation (7.50) is a special case of equation (7.5) with ql = q2 =
q3 = 0 but a* and b* are dependent on µ4 = µl. By repeating the
arguments as for equation (7.5), we obtain that equation (7.50) = the
following equation:

x(µ1+77x-Y)'
(7.51)

=Yµ2 + (77a + yiµi)x + (b + Yzµi)Y + 96Y2

where

v
2

* v(a + 2)
µ2 = µ2 + 0 µt' 71 =

13

' y2 - (a + 1)(f3 + 1) '
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is the same as in (7.47), and

v(a + 9 + 1)
46 (a+1)(13+1)(/3+2)

Since

v = sgn(g6) and
a + 13 + 1

> 0
(a + 1)(0 + 1)(/3 + 2)

(see conditions a_, d+, and h+ with a < 13), 46 and q6 have the same
sign.

Let

1 1
X

q6-X, Y
Ig6IY,

t 1gb1t.

1

Then equation (7.51) is transformed into the following form:

x(µ1 + ix - Y),
(7.52)

3' = Yµ2 + (,qa + 'Yiµ1)x + (b + vy2] .

We have proved that (7.5) = (7.47) = (7.49) and (7.45) = (7.51) =
(7.52). It is clear that (7.49) = (7.52). Therefore, (7.5) = (7.45).

Remark 7.11. Since P(h*) = 0 and r = vP(h), the equation of Hopf
bifurcation curve H is obtained from (7.19), that is, µ2 = -(a/l3)µ1 +
O(µ3). In order to obtain the equation of the heteroclinic bifurcation
curve, we need P(0) in case a-. The calculation shows

1

f
1xa-1(1 - X),1+2

dx

P(0) -
132((3 + 2) o 1 B(a, l3 + 3)

foIxa-1(1 - x)s dx 132(/3 + 2) B(a,13 + 1)

13+1

l32(a+13+1)(a+13+2)
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Finally, in order to obtain the equation of curve S for cases d+ and
h+ (i = 1), we note that the coordinates of the center (x4, y4) of
equation (7.21) are

a
x4 a+'6 +1'

x4

If we take E/I911 > X4, h,,µl = ME/Iµ11, + E/µ1I), then the closed
level curve H(x, y) = h,

JA
is tangent to the line x/I 1I = E. Returning

to equation (7.5) by using (7.9), we see that if (µ1,µ2) E S, S: µ2 =
-(a/13)p 1 - 4(E, µ1)v/-L1 + 0(1/ 1113), where lp(E, /11) = P(hE.µ1), then
the limit cycle touches the line x = E. Of course, the limit cycle could
be larger when (µ1, µ2) crosses the curve S and is still in a small
neighborhood of (0, 0). But the behavior of the limit cycle will depend
on the global property of the vector field.
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5

Bifurcations with Codimension Higher
than Two

In the first two sections of this chapter we will introduce Hopf bifurca-
tion and homoclinic bifurcation with higher codimension. We will
introduce codimension 3 and codimension 4 results concerning the
Bogdanov-Takens system in the last two sections.

5.1 Hopf Bifurcation of Higher Order

As in Section 3.1, the classical Hopf Bifurcation Theorem is a local
result which deals with the occurrence (or annihilation) of a periodic
orbit at an equilibrium point of a system

f (x, Y, A),
Y = g(x, Y, µ),

x, y E R1, W E 08", f, g E C°°, (1.1)

when two eigenvalues A1,2 = a(µ) ± i/3(1.) of the linear part of (1.1)
cross the imaginary axis. Namely, we suppose:

a(O) = 0, 6(0) = 130 # 0, (H1)

a'(0) # 0 (if µ E 081), and (H2)

Re C1 # 0, (H3)

where C1 is the first coefficient of nonlinear terms of the normal form
equation obtained from (1.1)µ=o. This normal form equation has the

383
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following form (see Section 2.11 or Lemma 1.1 below):

W = i/30W + C1W2W + C2W3w2 + +CkWk+1Hk + O(Iwl2k+3)

l (1.2)

In this section, we show that a Hopf bifurcation may occur when
either condition (H2) or (H3) fails. This is called a degenerate Hopf
bifurcation. Many authors considered this problem (see Section 5.5).
The proof of Theorem 1.3 in this section belongs to Rousseau and
Schlomiuk [1].

Lemma 1.1. Suppose that the linear part of system (1.1) at (x, y) = (0, 0)
has eigenvalues k1,2 = a(µ) ± i/3(µ) satisfying condition (H1). Then for
any integer k > 0, there are v > 0 and a polynomial change of variables
depending smoothly on the parameter µ for I I.L I < a such that in complex
coordinates system (1.1) can be transformed into the following form:

YV = (a(µ) + if3(1))w + C1(µ)w2w + C2(µ)W3w2

+ ... +Ck(µ)Wk+Iwk +0 (IW12k+3),

where Ck(') E C' and Ck(O) = Ck, with Ck the coefficient in (1.2).

Proof. As in Section 2.1, we let m = (m1, m2), m1 >_ 0 (j = 1, 2) are
integers, ''1k = (m12 < m1 + m2 < 2k + 2), k(µ) = (A 1(A)' A 2W), and

(m, k(µ)) = m1k1(µ) + m2k2(t-L)

It follows from (H1) that

k1(0) = (m, k(0))

gives a resonance of order < 2k + 2 if and only if

mEf*={mIm1=m2+1,m2=1,2,...,k}c.9fk.

Then by Theorem 2.1.5, there is a polynomial change of variables that
transforms system (1.1) for µ = 0 into its normal form (1.2) up to order
2k+2.
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Since A.(µ) is a smooth function (j = 1, 2), 3o > 0 such that for
I AI < r we have that

A1(µ) # (m, A(µ)) if m E ek\"e*.

Hence, we can use the same arguments as in the proof of Theorem
2.1.5 to find a polynomial change of variables, depending smoothly on
µ, to get rid of all terms wn1Wnz with (m1, m2) E ..fk\%l*. Hence,
system (1.1) for 0 < Iµl < o, is transformed into the form (1.3).

Definition 1.2. We say that (1.1) has a Hopf bifurcation of order k
(k > 1) at the origin if a(O) = 0, /3(0) = /30 0 0, and

Re(C1) = Re(C2) = = Re(Ck_1) = 0, Re(Ck) * 0, (1.4)

where C1, . . . , Ck are the coefficients of (1.2) which is the normal form
equation of (1.1)µ=o. In this case, we also say that the origin is a weak
focus of order k for equation (1.1)µ=o.

Theorem 1.3. Let

x = f(x, Y),
1Y =g(x,Y)

(x, y E R1) (1.5)

be a C' system with an equilibrium (0, 0) that is a weak focus of order k.
Then

(1) if n >_ k and (1.1),L = (1.5), then there are o > 0 and a neigh-
borhood 0 of (x, y) = (0, 0) such that for µ l < o-, (1.1) has at most k
limit cycles in 0;

(2) for any integer j, 1 <_ j <_ k, and a neighborhood A* C A of
(x, y) = (0, 0), there exists a system of the form (1.1), with (1.1), = 0 =

(1.5), and a number o,* > 0 such that (1.1)µ has exactly j limit cycles in
Y for µ E S, where S is an open subset of (µl0 < IµI < o, *) and 0 E S.

Proof (1) Suppose that (1.2) is a normal form equation of (1.5). Then
by condition (1.4) it can be transformed into the following form in polar
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coordinates:

r = Re(Ck)r2k+1 + O(r2k+3),

9=(3o+O(r2).

Noting /30 0 0, in a small neighborhood of r = 0, we obtain from (1.6)
the following equation:

dr Re(Ck)

dO = Ro

2k+1 + O(r2k+3)

By Lemma 1.1, we can transform (1.1) into the following form:

d6
/3(µ)r + h1(0,la)r3 + h2(e, µ)rs

+ ... +hk(O,/A.)r2k+1 + 0(r2k+3), (1.8)

where hj(9,.t) E C°° in 0 E [0,27r] and µ near 0, and a(0) _
h1(9, 0) = ... = hk-1(e, 0) = 0, hk(6, 0) = Re(Ck)//3o * 0.

Suppose that

R(ro, 0, p.) = u1(O, µ)ro + u2(O, A) ro

+ ... +u2k+1(O,µ)rok+1 + ... (1.9)

is the solution of (1.8) satisfying the initial condition R(ro, 0, µ) = ro,
and

/i(ro,0) =R(ro,0,0) (1.10)

is the solution of (1.7) satisfying 4r(ro, 0) = ro. This implies that

a at

a art +G(ro, 0)
o roffio

0 for l<i<2k+1,
[(2k + 1)!]

Re Ck
* 0, for i = 2k + 1.

go
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Hence, a constant for i < 2k + 1 and is equal to
[(2k + 1)!](Re Ck/30)0 for i = 2k + 1. Therefore, by using ir(ro, 0) _
ro we obtain

at

aro
4i(ro, 2-rr)

r0=0

q(ro, 0) 1, for i = 1,
ro=o 0, for l < i < 2k + 1,

1 11
Re Ck

27r[(2k + 1)!] , for i = 2k + 1.
ao

( . )

As in the proof of Theorem 3.2.4, we define the Poincare map
P(x, µ) for system (1.8) along the x-axis near x = 0 and µ = 0, and let

V( X, µ) = P(x, µ) - X.

The number of periodic orbits of (1.8) near x = 0 for small Ip is
determined by the number of zeros of function V(x, µ) near (0, 0) for
x > 0. When x > 0, we have that

V(x, µ) = R(x, 2ar, p.) - x,

and

V(x,0) = 4r(x,21r) -x.

Clearly, we have that

aV aP aI
ar

cr(r, 2ar) - 1,
(0, 0)

(0, 0) - 1 =-
ax ax o ro=0

aiv a`P a!

ax`
-(090)

ax`
(0, 0)

ar`
+/i(r, 2-rr), for i > 1.

o r0=0

(1.12)
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Equations (1.12) and (1.11) give

a`V O,

- 0, 0) =-
Re Ck

ax` ( 121T[(2k + 1)!]
e160

fort <i <2k+ 1,

for i = 2k + 1. (1.13)

Thus, by using the Malgrange Preparation Theorem (see Theorem
3.1.10), we have V(x, µ) = Q(x, µ) i7(x, µ), where Q is a polynomial
of degree 2k + 1 with respect to x, and i7(x, µ) is invertible in a
neighborhood of (x, µ) = (0, 0). We remark that Q is divisible by x
(since r = 0 is the equilibrium of (1.8)), and that other roots of Q
appear in pairs: one positive and one negative (since any periodic orbit,
surrounding the origin, must cross the positive and negative x-axes,
respectively). Therefore, there are o, > 0 and a neighborhood A of
r = 0 such that (1.8) has at most k limit cycles in A.

(2) Suppose that the origin is a weak focus of order k of system (1.5).
Then (1.5) has the following normal form equation:

Z = ia0Z + C1Z2Z + ... +CkZk+12k + O(1Z12k+3) = F(Z, 2).l
l (1.14)

For a fixed j, 1 < j < k, we take a perturbation of (1.14) in the form

Z = F(z, 2) + Ak -jZk-j+lZk-j + ... +N'k- 1Zkfk-1, (1.15)

where µ1E Ifs, k - j < I < k - 1. In polar coordinates (1.15) gives

r = µk-jruk-j)+l + ... +N'k-lr2k-1 + Re(Ck)r2k+1 + O(r2k+3)

= G( k-j, ... , µk-2' Ixk-1; r).
(1.16)

In order to obtain j limit cycles for (1.16), we take µk-11 .... µk-j
successively in the following way. Suppose Re(Ck) > 0 (the discussion
for Re(Ck) < 0 is similar). We choose 0 < rk < 1 so that

G(O,...,0,0;rk) > 0.

µk_1 is chosen negative with 1µk-11 << Re(Ck) so that

G(0, ... 1 0, µk-1; rk) > 0.
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Then there is rk _ 1 E (0, rk) such that

G(0, ... 10, Pk-1; rk-1) < 0.

Next, µk_2 is chosen positive with Iµk-2I << I µk-11 so that

G(0, ..., µk-2,µk-1; rk) > 0,

G(0, ... , A k-21 /. k-1, rk-1) < 0.

Then there is rk _ 2 E (0, rk _ 1) such that

G(O, ... , µk-2,µk-1, rk-2) > 0.

A k-3, rk-3, .. , l-1'k-j, rk_j are chosen similarly, where Re(Ck),
µk-11 , µk-j have alternating signs, 0 < IAk_jI << << Iµk_1I <<
Re(Ck ), and 0 < rk _ j < < rk _ 1 < rk. Thus we have finally:

r > Oon r = rk,rk_2,...,

i < 0 on r = rk-1, rk-3, ...

This gives j Poincare-Bendixson domains; hence there are at least j
limit cycles. We claim that there are v* > 0 and a neighborhood N* of
r = 0 such that by the choices of µk-1, .... µk-j described above, (1.15)
has exactly j limit cycles in A * for I A J < o,*. Otherwise, for any choices
of 0 and r, we can find a system of form (1.15) (I µI < o,) which has
more than j limit cycles in A. Then we can choose also µk-j-1, , µl
successively to obtain (k - j) other limit cycles in A. Since the total
number of limit cycles will be more than k, this contradicts the
conclusion (1).

Remark 1.4. For applications, it is important to determine the order of
the weak focus of equation (1.1)µ=o, that is, to find the first nonzero
coefficient Re(Ck) in (1.2). Here we introduce briefly another method,
the method of Lyapunov coefficients, which is more convenient in
practical calculations.
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Suppose that (1.1)µ=0 has the following form:

z = -/30Y +p(x,Y),
(1.17)

Qox + q(x, y),

where p, q = O(I x, y12), YO # 0. It is known (see, for example, Zhang
et al. [1] or Blows and Lloyd [1]) that for any m > 1 there exists a
smooth function

such that

d

dt F

F(x, y) =
go (x2

+ y2) + O(I x, y13)

m` ,
V (x2 +

y2)i+l + o((x2 + Y2)m+l).
(1.18)

(1.17) i=1

The coefficients (V j) are called the Lyapunov coefficients of (1.17). We
note that F in general is not unique. However, the sign and the position
k of the first nonzero coefficient Vk in (1.18) is the same for any F.
Lyapunov coefficients are equivalent to the coefficients of Hopf bifurca-
tion of order k in the following sense.

Theorem 1.5. (Bonin and Legault [1f) The first (k - 1) Lyapunov
coefficients are zero and the kth coefficient is positive (respectively, nega-
tive) if and only if the same is true for the first k coefficients {Re(C1)Ii =
1, 2, ... , k}.

Example 1.6. (Li [1, 3]) For a quadratic system

let

-y + a20x2
+ allxy + a02Y2,

x + b20x2 + bllxy + b02 y2'

A =a20+a02, B =b20+b02,

a = all + 2b02, (3 = bll + 2a20,

(1.19)

Y =
b20A3 - (a20 - bll)A2B + (b02 - au)AB2 - a02B3,

S = a02 + b20 + a02A + b20B.
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Then we have (up to a positive factor)
(i) V1 = Aa - B/3,
(ii) V2 = [/3(5A - /3) + a(5B - a)]y, if V1 = 0,
(iii) V3 = (A/3 + Ba)yS, if V1 = V2 = 0,
(iv) Vk = 0 for k > 3 if V1 = V2 = V3 = 0. In this case, (1.19) is inte-

grable. (This says that the highest order of weak focus for a
quadratic system is 3).

(v) Around a weak focus of order 3, (1.19) has no limit cycle globally.

Example 1.7. (Sibirskii [1]) Consider a cubic system without quadratic
terms

x = -Y + E Bjkxiyk,
j+k=3

Y = x + E Cjkxjyk.
j+k=3

(1.20)

If B21 + C12 = 0 (this is always possible by a rotation of axes), then we
can rewrite (1.20) in the following form:

-y+(a-w-6)x3+ (31.L -17)x2y
+(30+ -3w-2a)xy2+(v- L)y3,

(1.21)
=x+(µ+v)x3+ (3w+30+2a)x2y+ (77 -3µ)xy2

+(w-0-a)y3.

We have that (up to a positive factor)
(i) Vl = e,
(ii) V2 = -av, if V1 = 0,
(iii) V3=a0w,if V1=V2=0,
(iv) V4=a2071,if V1=V2=V3=0,
(v) V 5 V 1 V 2 V 3 V

(vi) Vk = 0, k >- 6, if V = 0, i = 1,2,3,4,5. In this case equation (1.21)
is integrable. (For system (1.21), the highest order of weak focus
is 5.)
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Example 1.8. Consider Hopf bifurcation for the equation

x =y'

= -1 + x2 + µly + 112xy + µ3x3y + /4x4y.
(1.22)

Since (1.22) has two equilibria (±1,0) and (1,0) is always a saddle
point, we only need to consider (-1, 0). If we make a change of
variable X = x + 1, (1.22) becomes

2=X+Y(/21 -/22-/23+/24) + X2 + (µ2+3/23-4/24)XY

+(-3/23 + 6/24)X2Y + (/23 - 4µ4)X3y + /4X4y.

(1.23)

The linear part of (1.23) at (0, 0) has a pair of purely imaginary
eigenvalues if and only if

/21-/22-/23+/24=0.

Under condition (1.24), let y = - vY so (1.23) becomes

(1.24)

1IX2+(/22+3/23-4/24)XY+(-3µ3+6/24)X21'

+013 - 4/24)X3Y+ /24X4Y.

(1.25)

By using the method of Lyapunov coefficients (Remark 1.4), we obtain

1
v 1 = -

1 6 216(/22-3/23+8/24),

1

V2 96I (5/23 - 14/24), if V1 = 0,

14

V3 =
5

/241 if Vi=V2=0.
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at

Therefore, if µ4 * 0, then a Hopf bifurcation of order 3 takes place

11 2 14
Al = 5 µ41 µ2 = 5µ4I µ3 = 5 µ4.

System (1.22) has three limit cycles if (µ 1, µ2, A3) is located inside the
region

µ4(5µ3 - 14/24) < 0, µ4(12 - 3µ3 + 8µ4) > 0,

µ4(4i - µ2 - /.L3 + 24) < 0

and 0 <lµl -22-µ3+µ4I << IViI << IV21 << IV3i.
If µ4 = 0, µ3 # 0, then a Hopf bifurcation of order 2 takes place at

µl = 4µ3, µ2 = 3µ3

System (1.22) has two limit cycles if (µ1, µ2, µ3) is located inside the
region

µ3(µ2 - 3µ3) < 0, µ3(µ1 - µ2 - µ3) > 0

a n d < I g 1 -µ2-µ3I < < I «IV21 « 1.

5.2 Homoclinic Bifurcation of Higher Order

Consider

f(x,Y,A),
g(x, Y, µ),

where x, y E 181, parameter µ (=- W, and f, g E C'un+1)
Suppose that (x, y) = (0, 0) is a hyperbolic saddle point of (2.1).

Then we can transform (2.1) by a linear change of variables such that
the matrix of its linear part at (0, 0) becomes

A(µ) =
ao(µ) bo(µ)

{b0(12) ao(µ)
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Thus A(µ) has eigenvalues Al 2 = a0(µ) ± jb0(µ), where j2 = 1 and
ao(µ) - bo(µ) < 0. The stable and unstable manifolds of the linear
part at (0, 0) are lines x ± jy = 0.

Since trace A(µ) = 2a0(µ), the condition a0(0) # 0 is needed for the
homoclinic bifurcation of codimension one (see Section 3.2). Now we
suppose that

a0(0) = 0, b0(0) * 0. (2.2)

When µ = 0, we have that Al + A2 = 0 and hence A(O) has the
resonances A. = k(A1 + A2) + A., i = 1,2, and k >- 1. If µ is close to
zero, the orders of the other resonances of A(µ) are greater than
2n + 1. Let

w=x+jy, 2

w = x - jy (j = 1).

Then by an argument similar to Lemma 1.1, we can make a polynomial
change of variables to transform the system (2.1) into the form

_ (ao(µ) +jbo(µ))w + (a1(µ) +jb1(µ))w2w +

+(an(µ) +jbnlµ))wn+lwn +A(w,w),

_ (ao(µ) -jbo(µ))H' + (a1(µ) -jjb1(µ))w2w +
+(an(f'1') -jbn(it))wn+1wn +I (w,w),

where A(w, w) = O(Iw, wI2n+2)

Remark 2.1. Since j2 = 1, both w and w are real. The "conjugate" w
of w, introduced by Joyal [1], is different from the usual complex
conjugate, but it is convenient for the discussion in this section.

Before any further discussion, let us present briefly the problem, the
method, and the result in this section.

Suppose that for µ = 0 (2.1) has a homoclinic loop IF. We are
interested in the occurrence of periodic orbits in a small neighborhood
of F by perturbation of the system, that is, for 0 < IµI << 1. We will try
to find the expression of the Poincare map of the flows on a transversal
segment to r and near IF, and then to study the number of fixed points
of this map for small µ.
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z=v

We will find a coordinate z = w + higher-order terms such that the
stable and unstable manifolds coincide locally (near the saddle point)
with the 2- and z-axes, respectively. We define a map Fµ(po) from the
transversal segment 2 = o to another transversal segment z = 0 by the
flow (oS > 0 small), where po = 0 corresponds to the intersection point
between IF and 2 = a map Gµ(po) from z = r to
2 = o, by the flow (see Figure 2.1). Thus, the Poincare map is P. =
Gµ ° F,, and a fixed point of the map Pµ corresponds to a periodic orbit
of the system.

Suppose that Gµ(po) has the Taylor expansion

G,APo) = Po + POW + /3i(i )Po + /32(µ)P0

+ ... +/3.(µ)P0 + 4'(Po, µ), -1 < f31(µ), (2.4)

where 4(p0,µ) = O(po+1). Then we have a sequence of numbers:

(µ),ak(µ),..., (2.5)

where a;(µ) and P,(µ) are coefficients in (2.3) and (2.4), respectively.
The main result in this section can be described roughly as follows:
If 13k(0) is the first nonzero coefficient in the list (2.5) for µ = 0, then

Po(Po) - Po - /3k(0)P0

and the system can have at most 2k limit cycles near the loop r for
small µ; if ak(0) is the first one, then

Po(Po) - Po - ak(0)Po+1ln x,
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and the system can have at most 2k + 1 limit cycles near t for small µ.
To prove the above result, we need to find an expression of map

F,(po) (the singular part of P). To our knowledge, this problem
has been solved by Roussarie [1] and Joyal [1] independently and
Leontovich [1] announced a result much earlier. Most results in this
section, as well as some notation, belong to Joyal [1].

Lemma 2.2. (Joyal [11) There exists a C2n+2 change of coordinates which
transforms (2.3) into the following form:

= (ao(µ) +jbo(µ))w + (a1(µ) +jbl(µ))w2w +

+(an(µ) +jbn(µ))wn+1n,n + wn+1yynE(w, W),

= (ao(µ) -jbo(µ))w + (a1(µ) -jb1(µ)) 172w + ...
+(an(N') -jbn(i ))wn+lwn + Wn+lw"E(w,i ),

where E(w, w) E CO and E(w, w) -+ 0 as (w, w) -. (0, 0).

Since ao(0) = 0, bo(0) # 0 (see (2.2)), we suppose that jbo(0) > 0.
Then ao(µ) = ao(µ) + jbo(µ) > 0, ao(µ) = ao(µ) - jbo(µ) < 0 for
small .It is easy to see from (2.6[2ybn) that in a small neighborhood fl
of the origin, the two lines w = 0 and w = 0 are the stable and unstable
manifolds of (2.6), respectively. Without loss of generality, we suppose
that the region ((w, w)Iw > 0, w > 0) n ft is inside the homoclinic loop
F which exists for µ = 0. Thus, to establish the transition map F,,(p),
we only need to consider w > 0 and w > 0. Let

p = ww,
0=1nw.

Then (2.6) becomes

2(ao(µ)P + a1( µ)P2 + ... +an(µ)P"+1 + pn+lA(P,

= ao(µ) + a1(µ)P + ... +a,,(p)Pn + P"B(P, 0),

(2.8)
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where ai(µ) = ai(µ) + jbi(µ), pn+A E C2n+1, pnB E C2n in p >
0, A, B are continuous, and A, B - 0 as (p, ¢) tends to the saddle
point.

Since ao(0) = jb0(0) > 0, the right-hand side of the second equation
in (2.8) is positive for small p and small A. Hence, we obtain from (2.8)

dp

d = Co(µ)P + C1(P)P2 + ... +Cn(µ)Pn+1 + pn+1A(p,0), (2.9)

where pn+1A(p, (P) E C2n+1 and A(p, 0) - 0 as (w, w) -+ 0(p - 0,
¢ -+ - oo). We have the following relation among the ai(µ) and ci(µ):

ao = al = ... = ak-1 = 0, ak # 0

p Co = C1 = ... = Ck-1 = 0, Ck # 0, (2.10)

and sgn(ak) = sgn(ckbo).
Suppose the solution of (2.9), p = p(¢; po, µ) with p(c)o; Po, P) = Po,

has the form

p = h1(4))Po + h2(4))Po + ... +hn+1(4))Pno+l + H(Po, ¢), (2.11)

where H(po, ¢) satisfies

lim
H(Po, ) = 0.n+I

Po-'o PO

Then the hi(¢) satisfy the following equations:

h' = cohl,
h2 = c0h2 + c1h21,

h3 = c0h3 + 2c1h1h2 + c2h3J,

1

hn+1 = cohn+1 + (71 hi,hi2) + .. .
2=n+1

+Cn_1( hi1 ... hi
n
) + Cnhi+1

1
l,+ ... +in=n+1

(2.12)

where h1(4)o) = 1 and hi(¢o) = 0 for i > 2.
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W =a

-1 fY

0

s
PO

c0<0

w=o
Figure 2.2.

C6= 0

s
PO PO

-----------
C0> 0

Figure 2.3.

If we consider a transition map p = FF,,(po) which is defined by the
flow from a point (po, 00) E (w = Q) to point (p, 0) E (w = o-) (Figure
2.2), then 00 = In po - In o, and 4) = In Q. If we make a rescaling
w --> vw, then we can suppose that the flow is defined from a point
(po,40) to point (p, 0) satisfying ¢0 = In po and ¢ = 0.

Let exp(c0(4) - 40)) = coy + 1. Then (2.12) gives

h, = coy + 1,
hk+1 (COY +1)Pk(Y,c0Ic1I I

Ck)> 1 < k<n (2.13)
= >

where Pk is a polynomial in y of degree k, vanishing at y = 0, and CkY
is the linear term in Pk. y = (exp(c0(4) - ¢0)) - 1)/c0 = (po co - 1)/c0
for co # 0 and y = 0 - ¢0 for co = 0. For small µ, y is always positive
in a neighborhood of the origin (w, w) = 0 (see Figure 2.3). Thus,
substituting (2.13) into (2.11), we have

F,(PO) =P =PO+co[POY

z (2.14)

+ +Cn[Po+IY +Pn(Po'N')]I
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where p, (i < n) is a polynomial and p,,= H/c,, (H is defined in (2.11)),
with pk = o(Po+IY), k = 0, 1, ... , n.

Now suppose the map Gµ: {w = Q} {w = U} has the expression
(2.4). Then

P,.(Po) = Gµ ° FN,(Po) _ /30 + (1 + /31) [ Po + co(Po + Y) + ... ]

+/2[PO+c0(Po+Y) + ...12

+ ... +/n[po + Co(PO + Y) + ...
]n

+R(p0, /i)

We expand PN,(p0) - po in two different cases corresponding to the
manner of y at po = 0 (see Figure 2.3):

(a) CO > 0, Po = o(Poy):

P,(Po) - Po

=f3 +co[(1 +Q1)PoY +g0(PO,Y,CO,...,Cn,QO,...) Rn)]

+,61PO + +Cn-1[(1 + 61)P0ny

+ qn-1(P0, Y, Cn-1, Cn, an)]

+F'nP0 + CAP + /31)Po+1Y + gn(P0, N')]

(b) co < 0, [Po(c0y + 1)]k = o(Poy):

PP(PO) - Po = Qo + CO(Poy + 40) + 131P0(COY + 1) +

+ c,-1[(1 + I3i)Poy + 4n-1] + Rn[PO(COY

(2.15a)

+ 1)]n

+ Cn[(1 + Q1)Pu+1y + 4n(Po, µ)], (2.15b)

where qk, 4k = o(po+1y) for 0 < k < n - 1. Let

f S2; _ 13;, i = 0,1, 2, ... , n,

2i+1 =C;, i = 0,1,2,..., n, (2.16)

where 6, and c, are the coefficients in (2.4) and (2.14), respectively.
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Definition 2.3. Suppose the linear part of system (2.1) at the origin has
the eigenvalues a0(µ) ± jbO(µ) with a2 - b2 < 0 (j2 = 1). The system
(2.1)µ,-0 is said to have a homoclinic bifurcation of order m if for µ = 0
(2.1) has a homoclinic loop and

60(0) = ... = 6n,-1(0) = 0 and m(0) # 0.

Theorem 2.4. If (2.1)µ-0 has a homoclinic bifurcation of order m
(m < 2n + 1), then (1) in a sufficiently small neighborhood of µ = 0,
any (2.1), has at most m limit cycles near the loop;

(2) for any k, 0 < k < m, there exists a perturbation system (2.1)µ and
a neighborhood U of the loop such that the system has exactly k limit
cycles in U.

In order to prove Theorem 2.4, we need the following notation and
lemma.

Notation 2.5. Let ff(x, µ) E C" for x > 0 and be continuous at x = 0
(1 < i < n). We define the following functions:

... fi1i2 -
fl,

,
fill

f,

i1 ... (k-21k
F112 "' jk = ,

fit ... (k-1
for3<_k<n,

where ' means a/ax and 1 < i1 < i2 < < ik <- n.
If fX1(0, µ) = 0 and f,2 = o(f,1) as x - 0, then lima - 0 f11;2 = 0.

Lemma 2.6. Let f 1(x, µ), ... , f"(x, µ) be functions continuous at x = 0
and of class C" for µ E R" 1 and x > 0. If f,(0,µ) = 0, f,2 = o(f11) for
i2 > i1, and f;, ... tk > 0 for 0 < x < c, µ E Wri, and 1 < k < n, then the
function

P(X, A) = c0(/2) + C1(/2)f1(xj t) + ... +cn(l-1')fn(x, A)

has at most n zeros for 0 < x < c, where c;(µ) E R, i = 0, ... , n, and
cn(µ) # 0.
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Proof. Suppose that P has more than n zeros in [0, e]. Then

ap

ax = MC1 + c2J 12 + +cnJ 1n) := fiP1

has at least n zeros in (0, e). Since fl' > 0, PI has at least n zeros in
(0, e). Repeating the above argument, we see that aP1/ax has at least
n - 1 zeros in (0, e) and as many as

P2 = C2(A) + C3(A)f123 + ... +Cn(N')J12n

By induction, aPn/ax = Cnfi2 ... n has at least one zero in (0, e), which
contradicts the assumptions of the lemma.

Proof of Theorem of 2.4. (1) We will prove that (2.15a) and (2.15b) have
at most m zeros for 0 < po < e. In order to use Lemma 2.6, we only
need to show that the sequence

PoY' Po' PoY' Po' ' PoY' Po (co >_ 0)

or

(2.17a)

PoY, Po(coY + 1), Poy,[Po(coy + 1)]n (co < 0) (2.17b)

satisfies the properties of the sequence (f;) in Lemma 2.6.
From (2.10) we have that co = 0 a ao = 0. In the following we

suppose that Icol is sufficiently small. We denote (2.17a) or (2.17b) by
{ f,(po, µ.)}. Since for co # 0, coy + 1 = po co, we consider the following
sequence instead of (2.17a) or (2.17b):

xkiymi,..., xk ym^ (2.18)

where x = po, y = (x-c0 - 1)/co, and ki and m; E R. Equation (2.18)
satisfies the following conditions:

(i) when co > 0, we have k; < ki for i < j; if k, = k . then m; > m j;
when co < 0 (1col small), we have k, < k1 for i < j.

(ii)k1>0and mt>-0.
It follows that f2 = o(fi,) as x -> 0 for it < i2, and

(xkym)' = (k - Com)xk-1 ym + O(xk-1 ym)
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where k - com > 0 for small Icol. Hence.

fttt2 = fit
= MXk2-k, ym2-mt + O(Xk2-ktym2-mt)

fiit

where M > 0. Thus f,i12 > 0 in (0, e) for a small e > 0. By induction,
we have that f;i ...

tk
> 0 in (0, e) for a small fixed E > 0. Thus the

conditions of Lemma 2.6 are satisfied.
(2) We first suppose k = m. Without loss of generality, suppose

m = 2n + 1. Then

X0(0) = X1(0) = ... = e2n(0) = 0, 2n+1(0) * 0.

We will find a perturbation system (2.1)µ such that it has exactly 2n + 1
limit cycles near the loop.

By using (2.16) and (2.9), we know that (2.1)1-0 can be transformed
into the following form

dp
=

Cn(0)Pn+1 + pn+lA(p, 4) = S(P, 4)
d-O

(2.19)

We will construct a system in a small tubular neighborhood T of the
loop. Let

(2.20)

where

u = u + (fit - u)601, U = v + (U1 - v)W1,

ll1 = u2 + (a - U2) 'W21 61 = v2 + (U2 - V2) (02,

U2 = U3 + (U3 - u3) W3, v2 = v3 + (v3 - v3) W3,

where (u, v) is the original system (2.1),=p with the form (2.19) in (p, 4)
coordinates. The systems (u2, v2), (u3, v3), and (u3, v3) expressed in the
(p, 0) coordinates are respectively:

dp

dp
=µ2p+N4P2++A2nPn+S(P,(2.21)

dp

dO
= (2.22)
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I W1

W= a1 a2 a3 04 0 W= a2 q1

Figure 2.4.

and

Here S(p, 4) is the same as in (2.19) and µ2n+v µ2n' ) µ3l µ2 are
small parameters satisfying

µ1µt+1 < 0,

dp

d (h- µ3P + µ5P2 + +/.t2n+1Pn + S(p, la). (2.23)

0 < Iµ21 << Iµ31 << ... << 1µ2n+1I << I cn(0) 1- (2.24)

L I

Ni

Finally, the C`° functions w1, W2, and w3 are defined as follows:
(i) w1(x, y) = 0 in a strip of T. This strip going from w = v1 to

w = v1 does not contain the origin. w1(x, y) = 1 from w = Q2 to
w = U2 (0 < o,2 < U1). Elsewhere, 0 < w1 < 1 and w1 is a constant
on w = o- (i.e., on la = In o,) for o,2 < Q < 01.

(11) 0)2(x, y) = 0 from W = Q1 to w = u'4, w2(x, y) = 1 from w = Q3 to
w=al (0<a-4<(T3<o,2<U1),and 0<W2(x,y)<land w2is a
constant on w = Q for v4 < o < Q3. Elsewhere, it does not matter.

(iii) w3(x, y) = 0 from i7=U1 to W=0-3, 0 < w3 < 1 and w3 is a
constant on w = o- for v3 < Q < Q2, and W3(x, y) = 1 from w = Q2
to w = v1. Elsewhere, it does not matter (see Figure 2.4).

Obviously, (2.20) is a perturbation system of (2.19). The equations

dp
(µ2P + µ4P2 + +µ2,,P")w1(P) + S(P, 4')

d4'

(from w=al tow=Q4).

dp

do (1-L2P + µ4P2 + ... +µ2.P")(1 - W2(P)) + S(P1 0)

(from w=o4 tow=v3)
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give the map F: (w = o-1) -* (w = r) which has an expansion of the
form (2.14), with 0 - 00 = -in Po + In r3 - in vl = -ln(o-1/poo-3)
and the cr having the same sign as that of µr+2. The map E: {w = 03}
-> (w = u d is defined by

dp
d_ (µ3P + Ij5P2 + +j 2n+1Pn)w3(P) + S(P1 4,)

(from w=Q3 tow=Q2),

dp
d _ (p 3P + /.L5f32 + +/.L2n+1Pn)W 1(P) + S(P1 4,)

(from w = v2 to w = Q1).

E has an expansion of the form (2.14), with ¢ - (A0 = - In v3/v1 > 0
(finite). On the other hand, replacing the terms, E has an expansion of
the form (2.4) with /30 = 0 (this means that the homoclinic loop exists).
According to (2.13), the /3r of the expansion satisfy

131 = A 3Y,

13 = (P'3Y + 1)pn-1(Y,Ia'3,I.Ls,...I/a'2n+1)l

where pj (j >: 1) is a polynomial in y of degree j and having µ2;+1y as
the first-degree term. Hence has the same sign as that of µ2r+1
whenever Iµ2,-1I << Iµ2,+11(2 < j < n).

Since the µr(2 < i < 2n + 1) can be chosen independently, and they
are continuous functions of the coefficients of the Taylor expansion of
the system, condition (2.24) implies that system (2.20) has at least 2n
limit cycles inside the annulus region T.

Up to now, we still have the condition /30 = 0, that is, system (2.20)
has a homoclinic loop. A2 * 0 implies co # 0 (a0 # 0), that is, the trace
at the saddle point of (2.20) is nonzero. Hence, as a perturbation of
(2.20), the following system

z=u-µ1v"

(2.25)
y=µ1u+0.
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has one more limit cycle if IA11 << Iµ21 and sgn p is well chosen (see
Example 3.3.9).

From conclusion (1) of Theorem 2.4, we know that system (2.25), as a
perturbation of (2.1)1=0, has at most 2n + 1 limit cycles. Therefore,
(2.25) has exactly 2n + 1 = m limit cycles.

For the case k < m, we can use the same argument to prove part (2)
of Theorem 1.3. We use the same perturbed systems (2.25) and (2.20),
but take the first (m - k) elements of the list µm, µm _ 1, ... , µ1 to be
zero. Then we get a perturbed system having at least k limit cycles. We
can obtain a system in this way which has exactly k limit cycles.
Otherwise we can make a perturbation with µm, µ,,,-11 ... , µm-k satis-
fying (2.24) to get other (m - k) limit cycles, and the total number of
limit cycles will be more than m, which contradicts conclusion (1).

Remark 2.7. For applications, it is important to determine the first
nonzero coefficient in (2.5) for µ = 0, that is, the order of homoclinic
bifurcation (see (2.16) and Definition 2.3). We will introduce a method
which is called the method of dual Lyapunov constants to determine
the first nonzero coefficient among a1(0), a2(0), ... if a0(0) = 0 and
bo(0) = 1 (see (2.5)). Then we will give some results and examples
without a detailed discussion.

If a0(0) = 0 (i.e., the trace A(0) = 0), then system (2.1)1=o with a
saddle point at the origin can be transformed into the following form:

y+p(x,y),
x+q(x,y). (2.26)

We try to find a function

F(x, y) = (x2 - y2) + F3(x, y) + ... +Fk(x, y) + ... ,

where Fk(x, y) is a homogeneous polynomial of order k, such that

dF

dt
2 - y2)2 + v (x2 - y2)3

+ ... +v (x2 - y2)k+l +
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Theorem 2.8. (Joyal and Rousseau [1I) Consider the system (2.1) with
ao(0) = 0, b0(0) = 1, and the sequence (2.5). Then at µ = 0, a1 = a2 =

=ak_1=0 andak*Oifandonly ifv1=v2= =vk_1=0
and vk * 0. Moreover sgn(ak) = sgn(vk).

Definition 2.9. The origin is called a weak saddle point of order k if
vi = = vk_1 = 0 and vk = 0 for system (2.1) with ao(0) = 0 and
bo(0) = 1. vk is called a kth saddle quantity.

Example 2.10. For system (2.26), the first saddle quantity is given by

U fxxx - fxYY + gxxY - gYYY

+ [ ffY(fYY - fxx) + gxy(gYY - gxx) - fxxgXx + fYYgYY (2.27)

Example 2.11. (Cai [1] and Zhang and Cai [1]) For a quadratic system

.z=x+Ax2+Bxy+Cy2,
y= -y-Kx2-Lxy-My2: (2.28)

(i) The first three saddle quantities are

v1 =LM-AB,

v2 = KB(2M - B)(M + 2B) - CL(2A - L)(A + 2L),

if v* = 0,

V3 = (CK - LB)[ACL(2A - L) - BKM(2M - B)],

if vi =v2=0,

and

vk =0 for all k>3ifv1 =v2=
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(ii) If vk = 0 for all k, and if the quadratic system has a homoclinic
loop (or compound homoclinic cycle) through the saddle point(s),
then the system is integrable in the interior of the loop (cycle).

(iii) The nonintegrable quadratic systems satisfying v* = 0 have no
limit cycle or homoclinic loop.

From Theorem 2.4 and Example 2.11 (iii), one has immediately the
following theorem.

Theorem 2.12. There are at most three limit cycles which may arise from
a homoclinic loop bifurcation in a nonintegrable quadratic system.

Example 2.13. (Joyal and Rousseau [1]) Consider the homoclinic bifur-
cation of the system

x=y -F,
(2.29)

y = - 1 + x2 + S(vl y + v2xy + v3x3y + v4x4y) = G,

with a saddle point at (1, 0). For S 0, (2.29) becomes a Hamiltonian
system (see Figure 4.1.2)

Ix = y,
-1+x2,

with Hamiltonian function

(2.30)

y2 x3
H(x, y) =

2
+x - 3 . (2.31)

(H(x, y) = h, - 3 < h < 3) are closed level curves. H = -2/3 corre-
sponds to the equilibrium (-1, 0) and H = 2/3 corresponds to the
homoclinic loop.

We consider (2.29) as a small perturbation of (2.30). From the
discussion in Section 4.1 (Lemma 4.1.4), we have that the fixed points of
the Poincare map correspond to the zeros of the following bifurcation
function

M(h) = IH=h(vl y + v2xy + v3x3y + v4x4y) dx. (2.32)



408 Bifurcations with Codimension Higher than Two

Therefore, we have that
(i) System (2.29) has a homoclinic loop bifurcation (HLB) if M(2/3)

= 0.
(ii) The HLB is of order 1 if M(2/3) = 0 and M'(2/3) is infinite. The

latter is equivalent to div(F, G)1(1, 0) # 0.
(iii) The HLB is of order 2 if M(2/3) = div(F, G)1(1, 0) = 0 and

M'(2/3) # 0.
(iv) The HLB is of order 3 if M(2/3) = div(F, G)I(l,o) = M'(2/3) = 0

and M"(2/3) is infinite. The last condition is equivalent to vi # 0.
By calculation, we have

M(2/3) = 4 2/3 f vl + vex + v3x3 + v4x4)(1 + x)x + 2 dx.2

Hence, M(2/3) = 0 is equivalent to

5 103 187
V1 7v2

77
v3+

91
v4=0.

From (2.32) and (2.31) we have

M'(2/3)

= 2f12Y (v1 + vex + V3x3 + v4x4) Clx

(3/2) 1/2f I2 [(1

V, + P2 + V3 + V4

-x)(x+2) 1/2

(2.33)

P2 + v3(x2 +x + 1) + v4(x2 + 1)(x + 1)

(x + 2) 1/2

It is clear that if M'(2/3) is finite, then it is equivalent to

1

S
div(F,G)I(10)=V1+V2+V3+V4=0. (2.34)

When div(F, G)I(l,o) = 0, we have that M'(2/3) = 0 is equivalent to

9 8
v2 + 5 V3 -

7
V4 = 0. (2.35)
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Finally, transforming system (2.29) into the form (2.26) and using the
formula (2.27), we obtain

S

2
v2 + 3v3 + 8v4).

It is easy to see that vi = c3v4, where c > 0 is a constant, if (2.33),
(2.34), and (2.35) are satisfied.

Thus, if v4 # 0 and 0 < 161 << 1, then (2.29) has a homoclinic loop
bifurcation of order 3 when (2.33), (2.34), and (2.35) are satisfied. If
v4 = 0, v3 # 0, and 0 < 161 << 1, then (2.29) has a homoclinic loop
bifurcation of order 2 when (2.33) and (2.34) are satisfied.

5.3 A Codimension 3 Bifurcation: Cusp of Order 3

In Section 4.1 it is shown that the Bogdanov-Takens system

y,

E1+E2y+x2±xy

is a versal deformation of the vector field

y=axe+bxy,

where a and b are constants satisfying ab # 0.
If a : 0 (without loss of generality, suppose a = 1), then the phase

portrait of (3.2) is shown in Figure 3.1. We note that the phase portrait
is the same for all values of b, including b = 0. Since there is a cusp at
the origin, the singularity is said to be a cusp type. If b * 0, it is a cusp
of codimension 2; if b = 0, it is a cusp of higher codimension. In
particular, the families of vector fields with cusps of codimension 3 and
4 are respectively

fx = y,
(3.3)

y = E1 + E2y + E3xy + x2 ± x3y
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Figure 3.1. The flow near a cusp-type equilibrium.

and

y,

y = E1 + Ely + E3Xy + E4X3y + X2 + x4y,
(3.4)1

where E; (i = 1, 2, 3, 4) are small parameters. In this section, we study
(3.3) 1; the results are due to Dumortier, Roussarie, and Sotomayor [1].

The following lemma gives an explanation why the x2y term is not
considered in the second equations of (3.3)1 and (3.4)1.

Lemma 3.1. In a small neighborhood of the origin, the following two
vector fields

x = Y,

= x2 + Y(ax2 + (3x3) +
0((I XI

+ IYI)4)

and

x = Y,

x2 + Rx3Y + 0((I XI + IYI)4),

are C°°-equivalent.
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Proof. Let

Then

H(x, y) = 2y2 - 3x3.

dH = ydy - x2 dx. 3.7)

Hence

yx2dx=y2dy-ydH. (3.8)

Equation (3.5) is equivalent to

dH - [ y(ax2 + (3x3) + o((IxI + IYI)4)] dx = 0. (3.9)

Substituting (3.8) into (3.9), we have

dy - aYx3 + o((IxI + IYI)4)
dx = 0.dH -

ay2
(3.10)

1 + ay 1 + ay

It is not difficult to see that, in a small neighborhood of (x, y) = (0, 0),
there exists a coordinate change of the form

x = x,

Y =Y + 00( X, Y) I2)

such that ydy = (y - a y 2/(1 + a y)) dy. Thus, this change of coordi-
nates transforms (3.10) into the form

dx - [ayx3 + o((Ixl + 1y1)4)]
dz = 0, (3.11)

where H = '-?y2 - 3x3
Since (3.11) is equivalent to equation (3.6), the lemma is proved

By using the method of Section 4.1, it can be shown that the family of
vector fields (3.3) is a versal deformation of the vector field

x = y,
(3.12)y=x2+yx3.
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It is easy to see that by a change (x, y, t, E1, EZ, E3) -3 (x, -y,
-t, E1, -E2, -E3), equation (3.3)- is transformed into the form (3.3)+.
Hence we only need to consider the following equation:

y,
Cl + Ely + E3xy + x2 + x3y.

(3.13)

We first present the main result (Theorem 3.2), then give the proof in
detail.

It is obvious that the equilibria of (3.13) are determined by the
equations

y=0, x2+E1=0.
Hence (3.13) has no equilibria for E1 > 0. The plane f E1 = , °xclud-

ing the origin in E1E2E3-space is a bifurcation surface of sado. -node
type: When E1 decreases from this surface, the saddle-node of (3.13)
becomes a saddle point and a node. The other bifurcation surfaces are
located in the half space f E1 < 0). We describe them by their intersec-
tion with the half 2-sphere S, = {(E1, E2, E3)IE1 < 0, Ei + E2 + E3 = o 2,
o > 0 sufficiently small). The bifurcation diagram of equation (3.13) is a
cone based on this intersection which consists of three curves on SQ: a
curve H of Hopf bifurcation, a curve HL of homoclinic bifurcation, and
a curve C of double limit cycle bifurcation. The points h2 on H and hl2
on HL are the endpoints of the curve C (see Figure 3.2 and Figure 3.3).

On the other hand, both curves H and HL touch 3S,, =
((E1, E21 E3)IE1 = 0, EZ + E3 = o } with a first-order tangency at the
points b1 and b2. In some small neighborhoods of b1 and b2 one finds

Figure 3.2. The parameter space.
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E3

b2

Figure 3.3. The trace of the bifurcation diagram on S(e1 < 0).

cusp bifurcation of codimension 2 (Bogdanov-Takens bifurcation, see
Section 4.1). System (3.13) has a unique unstable limit cycle when a lies
between H and HL and is in a small neighborhood of b1. System (3.13)
has a unique stable limit cycle when a lies between H and HL and is in
a small neighborhood of b2.

Along the curve H, not including the point h2, a Hopf bifurcation of
order 1 occurs. System (3.13) has an unstable limit cycle when a crosses
the arc b1h2 in H joining b1 and h2 from the right to the left and has a
stable limit cycle when a crosses the arc h2b2 in H from the left to the
right.

The point h2 corresponds to a Hopf bifurcation of order 2.
Along the curve HL, excluding the point h12, a homoclinic bifurca-

tion of order 1 occurs. When e crosses the arc b1h12 in HL from the left
to the right, two separatrices of the saddle point change their relative
positions and an unstable limit cycle appears. A similar phenomenon
happens when e crosses the arc h12b2 in HL from the right to the left,
and a stable limit cycle appears.

The point hl2 corresponds to a homoclinic bifurcation of order 2.
The curves H and HL intersect transversally at a unique point d

which corresponds to the simultaneous occurrence of a Hopf bifurca-
tion of order 1 and a homoclinic bifurcation of order 1.

If the parameter values are in the curved triangle dh2hl2, then
system (3.1) has exactly two limit cycles. The inner one is stable and the
outer one is unstable.
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These two limit cycles coalesce when a crosses the curve C from the
left to the right. On C itself there exists a unique semistable limit cycle.

Theorem 3.2. Let

1=3SQUHUHLUC,

where dSQ and curves H, HL, and C are described above.
The bifurcation diagram of equation (3.13) inside the ball

Bo = {EIE1 + E2 + 3 < O'2}

is a cone homeomorphic to

54e1, S6ez, 34'3) 5 E 10, Q1, (e1, e2, e3) E 1 .

The topological type of the phase portraits of equation (3.13) in a fixed
neighborhood of 0 E l 2 is the same in each of six connected components
{D,} of the complement of the bifurcation diagram, and is the same in
each surface or curve in the bifurcation diagram (there are nine surfaces
{S,} and five curves {t,}).

T h e cone r e g i o n s D1, ... , D5 are based on the open regions, I, II, . . . , V,

respectively (see Figure 3.4), and D6 is the half ball {EIE E Bo, E1 > 0).
When E E D1 U U D5, the phase portraits of equation (3.13) are
shown in Figure 3.4.

The surfaces S1, ... , S9 are based on the arcs b18Sb2 (left), b1HLd,... ,

h2Chl2, respectively, and the phase portraits of (3.13) for E E S1
U U S9 are shown in Figure 3.5.

The curves tl, ... , t5 are based on the points b1, h2, d, hl2, and b2,
respectively, and the phase portraits of (3.13) for e E I'1 U U I'5 are
shown in Figure 3.6.

The proof of Theorem 3.2 will be given in the rest of this section. We
begin by introducing a blow-up technique for el < 0. Let

y-83y

1

e2 = 66V1, E3 = 64V21 t -
3

t, (3.14)
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Figure 3.4. The codimension 0 phase portraits of equation (3.13).

where 3 > 0. Equation (3.13) is transformed into the form

x = Y,

-1 + x2 + a,(vl + v2x + X3)Y.

Let

(3.15)

A3 = 55, I.Li = 35v i = 1, 2. (3.16)
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E, = 0

rq!(( (k(
b1 aSb2 left bt a5b2 right

CC(X( bi

bi HL d HL H bt Hh2

(as d h2 )as
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C
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2
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i1

d Hb2 h2 Hd
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Figure 3.5. The codimension 1 phase portraits of equation (3.13).

Equation (3.15) becomes

x = y,

-1 +x2+µ1y+µ2xy+M-3x3y,
(3.17)

with condition µ3 > 0.
Equation (3.17) has equilibria (-1, 0) and (1, 0). The point (1, 0) is

always a saddle point whereas the point (-1, 0) is a focus.

(i) Hopf bifurcation and the homoclinic loop bifurcation Using the
results in Sections 5.1 and 5.2 (Examples 1.8 and 2.13), we have the
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Figure 3.6. The codimension two phase portraits of equation (3.13).

following lemmas:

417

Lemma 3.3. The equilibrium point (- 1, 0) of equation (3.15) is a sink (a
source) if vl - v2 - 1 < 0 (> 0). There is a Hopf bifurcation of order 1
along the line H: ((vl, v2)wl - v2 - 1 = 0), except at the point h2:
(v1, v2) = (4,3) at which a Hopf bifurcation of order 2 takes place.
Moreover, there are two limit cycles around the point (-1, 0) if v2 - 3 <
0,VI -v2-1>0,and 0«wl-v2-11«w2-31<< 1.

Lemma 3.4. Equation (3.15) has a homoclinic loop bifurcation of order 1
along the curve HL: {(vl, v2)Iv1 - iv2 - 03 + O(S) = 0), except at the
point h12: (vi, v2) = (Al + O(S), - ii + O(S)) at which a homoclinic
loop bifurcation of order 2 takes place. The curves H and HL intersect
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transversely at point d: (vl, v2) = (4 + O(S), 13 + O(S)), which corre-
sponds to the simultaneous occurrence of a Hopf bifurcation of order 1
and a homoclinic loop bifurcation of order 1.

(ii) Double limit cycle bifurcation As in Chapter 4, we consider
equation (3.15) with small 3 as a perturbation of a Hamiltonian system.
If S = 0, (3.15) becomes

1z = Y,
-1+x2,

with a Hamiltonian function H(x, y), where

Y2
x3

H(x, y) =
2

+ x - 3

and this is exactly the same expression as (4.1.9) of Section 4.1. By
Lemma 4.1.4, we can find a bifurcation function for periodic orbits of
equation (3.15) as follows:

F(h,S,vl,v2) = f (v1 + vex+x3)ydx, (3.18)
y(h, , v1, V2

where y(h, a, v1, v2) is defined as in Section 4.1 and F(h, S, v1, v2) is
well approximated by M(h) = FIs=o, that is,

M(h) = f (Vi + vex +x3)ydx, (3.19)
rh

where I'h is the level curve of H(x, y) = h, - 3 < h < 3. H(x, y) _ - 3
corresponds to the equilibrium (- 1, 0) whereas H(x, y) = 3 corre-
sponds to the homoclinic loop (see Section 4.1 and Figure 4.1.2). The
number of periodic orbits of equation (3.15) is the same as the number
of solutions of M(h) = 0, - 3 < h < 3.

As in Section 4.1, we define

Ik(h) = f xkydx, k = 0,1,3,4. (3.20)
rh
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Lemma 3.5.

6 15
13

11
hIo +

11 I1,

21 12
14 1310 13hI1.

Proof. Along rh we have

419

Y2 x3

2
+x - 3 =h, (3.21)

and

ydy+(1-x2)dx=0. (3.22)

From (3.22) and (3.21), we have

2
X 3 y dx = xy dx + xy 2 dy = xy dx + 2 xh dy - 2x 2 dy +

3
-X4 dy.

Integrating the above equality and using integration by parts, we have

8
13 = -2h10+511- 313,

which implies the first desired expression. The second one can be
obtained in the same way.

By Lemma 3.5, we rewrite (3.19) in the form

6 15
M(h) _ - ilh)Io(h) + (v2 + )I1h. (3.23)
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As in Section 4.1, we define

II(h) 2
<h <

2
I°(h) 3 3,

P(h) =
2

1,
3

Then P(h) e C°[ - 2/3, 2/3] U C'[ - 2/3, 2/3) and (3.23) becomes

M(h) _ (v, - 6
h) - (v2 + 11)P(h), (3.24)

where

M(h) 2 2
M(h)

1°(h) ,
- 3 < h < 3 .

It is obvious that M(h) = M'(h) _ . = M(k)(h) = 0, M(k+')(h)

# 0 if and only if M(h) = M'(h) _ = M(k)(h) = 0, M(k+l)(h) * 0,
where h e (-2/3,2/3].

We recall the following properties of the function P(h) (see Lemmas
4 1 6 d 4 1 7 i i 4 1)S. . an . . n ect on . :

(1) P([ - 3, 3]) c [;, 1], P(- 3) = 1, and P(3) _ ;;
(2) P'(h)<Ofor-3<h<3, P'(-3)=
(3) P(h) satisfies the equation

-1, and P'(2) oo;

(9h2-4)P'=7P2+3hP-5. (3.25)

We rewrite the last property in the following way:
(h, P) is a solution of the system

dP- = -7P2-3hP+5,
at

(3.26)
dh

2=4-9h ,
dt
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satisfying the condition

2
lim h = - 3 ,t-W t- -W

This system has a saddle point at (- 3, 1) and an attractive node at
(3 , -) (Figure 4.1.5). The graph of the function P(h) is the unstable
separatrix of (- 3, 1) of the system (3.26). It joins the point (- 3, 1) to
the point (3, 7).

Lemma 3.6. P"(h) < 0 for - 3 < h < 3.

Proof. From (3.25) we get P"(-3) = - iisz, P"(3) and

(9h2 - 4)P" = P'(14P - 15h) + 3P, (3.27)

(9h2 - 4)P" = P"(14P - 33h) + P'(14P' - 12). (3.28)

Let us prove that P"(h) < 0 for - 2/3 < h < 2/3. If this is not true,
then we let h* = inf{hI P11(h) = 0, - 2/3 < h < 2/3}. Then P"(h*) = 0
and P'(h*) >: 0 because P"(- 2/3) < 0.

On the other hand, taking h = h* on both sides of (3.28) and noting
P"(h*) = 0 and P'(h*) < 0 (Lemma 4.1.7), we have P(h*) < 0. This
contradiction proves the desired result.

Now we turn to the problem of the double limit cycle.
The condition for the existence of a multiple limit cycle is given by

the equation M(h) = M'(h) = 0 which determines a curve C in the
' plane.

Lemma 3.7. C is a convex curve, joins the point h2 on H to the point hl2
on HL (see Lemmas 3.3 and 3.4), and is tangent to H and HL at these
points. Along C, a double limit cycle bifurcation for equation (3.15)
occurs.
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Proof. From (3.24) we have that

15
M(h) _ v, -

6
h) - (v2 + il)P(h),

6 15

F(h) 11 - v2 + P'(h),

15
,9"(h) - (v2 + 11)P"(h).

It is clear that if M(h) = M'(h) = 0, then (v2 + 11) # 0. By Lemma
3.6, M"(h) # 0. Hence, by the Implicit Function Theorem, we can
determine a function h = h(v2) from M'(h) = 0, and a function v, =
v1(h, v2) = v1(h(v2), v2) from M(h) = 0. This means that the curve C
has an expression v, = v1(v2). Hence it is a regular curve along which a
double limit cycle bifurcation occurs.

Next, from M(h) = M'(h) = 0 we have

6 6 P(h)
vt 11 h 11 P(h) '

15 6 1

v2 =
11 11 P(h)

(3.29)

When h - - 3, we have that P(h) - 1, P'(h) -> - $. Hence
(vt, v2) , (4,3) = h2. When h 3, we have that P(h) -> ;, P'(h) -
-oo. Hence (v1, v2) -a (ii, - -) = R-2 (for convenience, we omit 0(S)
terms; see Section 4.1 for details). From (3.29), we obtain dv1/dv2 =
P(h) along the curve e: v, = v1(v2). This implies, by Lemmas 3.3 and
3.4, C is tangent to H and HL at points h2 and h12, respectively.

Finally, we prove the convexity of curve C. Since C is defined by
M(h) = M'(h) = 0, it is the envelope of the family of lines {Lh} on the
v1v2 plane defined by

6 15
Lh: vt - P(h)v2 - 11 h - it P(h) = 0,

where the parameter h e [ - 3 ,
s
]. Since P(h) is invertible, we can

choose its values as a parameter so that the lines {Lh} can be parame-
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terized by their slopes P E [;, 1]. Thus Lh takes the form

Lp: v1 - Pv2 - H(P) = 0,

where H(P) = 6 h(P) - i;P and h(P) is the inverse function of P(h).
It is easy to see that

since P(h) < 0, P"(h) < 0 (Lemma 3.6).
It is known (see, for example, Chapter 1 in Arnold [4]) that the

envelope of a family of lines such as Lh (Lv), parameterized by their
slopes and defined by v1 = Pv2 - (-H) with a convex function -H, is
the graph of a convex function vl = v1(v2) which is the Legendre
transform of the function -H.

(iii) The number of limit cycles As in Section 4.1, for a given (v1, v2),
the number of limit cycles of equation (3.15) is determined by the
number of zeros of equation M(h) = 0 for - 3 < h < 3.

Suppose v2 + ii = 0. Then M(h) = 0_if and only if v1 = h (see11

(3.24)). This means for - 11 < vl < , M(h) = 0 has a unique root.
We suppose v2 + -115, 0, and rewrite (3.24) in the form

M(h) _ v2 + 11 )(A(h) - P(h)), (3.30)

where

15 ' 6

A(h) = (v2 + 11) (vl 11 h)

is a linear function of h. Obviously, zeros of M(h) correspond to
intersection points of the straight line LA: P = A(h) and the curve Fp:
P = P(h) on the hP-plane. Since P(h) < 0 and P"(h) < 0 (Lemma
4.1.7 and Lemma 3.6), F is strictly convex. On the other hand, I'P is
independent of v 1 and v2, P(-2/3) = 1, and P(2/3) = 5/7. The
straight line LA depends on v1 and v2, but it has the following
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U2

Figure 3.7. Bifurcation diagram of equation (3.15) in the v1v2 plane for small 3.

properties for v2 + ;; > 0:
(1°) A(-2/3) = 1 (> 1 or < 1) if and only if (v1, v2) E H (is below or

above H). _
(20) A(2/3) = 5/7 (> 5/7 or < 5/7) if and only if (v1, v2) E HL (is

below or above HL).
(30) LA is tangent to curve FP if and only if (v1, v2) E C (i.e., M(h) _

M'(h) = 0 for some h (=- (- 3,
3)).

In the case v2 + 11 < 0, we only need to replace " > " (correspond-
ingly " < ") by " < " (correspondingly " > ") in properties (1°) and (2°).

The v1v2-plane is divided into five regions by the curves H, HL, and
C (see Figure 3.7).

Since LA is a straight line and I', is a convex curve, we show all the
different intersection possibilities in Figure 3.8. We note that the dotted
lines in Figure 3.8 indicate a different position for LA determined by
the sign of v2 + ii

Extending the result from S = 0 to S > 0 by using the Implicit
Function, Hopf Bifurcation, and Homoclinic Bifurcation Theorems (see
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(2,S)37

N
(b) (u1,u2)EII (c) (u1,u2)EIV (d) (ul, u2)Ela1 (e) (VI,u2)EI

tangent

(Q (VI,u2)EC (9) (u1 ,u2)E V (h)(ul,u2) E H

(above h2)
O (ui,u2)=h2 (ll (VI,u2) Cr h2H d

(k) (u, u2)EH but V ) (VI,u2)E (m) (u1,u2) E (n) (0) (u1,u2)EHL

( below a) HL (above d) dH 2 (below ht2)

Figure 3.8. The relative positions of curve p = p(h) and straight line P = A(h)(P 2 4-for - - - - - for v2 + 11 < 0).

Section 3.2, Section 4.1, Section 5.1, and Section 5.2), we obtain the
following lemma.

Lemma 3.8. Let K be a compact neighborhood of the curved triangle
dh2hl2 in the v1v2 plane and N be a compact neighborhood of the
singular disc {H(x, y) < ;1 n (x >_ 1) in the xy-plane. There exists a
value A > 0 such that i f V then
the bifurcation diagram of equation (3.15) consists of three surfaces and
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three curves which can be described as follows, up to a diffeomorphism of
C(K) in which the diffeomorphism is the identity at 6 = 0:

SH = (0, 0) x (H\ {h2}) is a surface of Hopf bifurcation of codimen-
sion 1;

SHL = (0, 0) x (HL\ {h12}) is a surface of homoclinic loop bifurcation
of codimension 1;

Sc = (0, A) x C is a surface of double limit cycle bifurcation;
(0, 0) x {h2) is a curve of Hopf bifurcation of codimension 2;
(0, 0) x {h12} is a curve of homoclinic bifurcation of codimension 2;
(0, 0) x {d} (i.e., SH (1 SHL) is a curve of Hopf bifurcation and

homoclinic loop bifurcation.

For S E (0, A), denote the intersection of the bifurcation diagram of
(3.15) and the plane S = S by 1g. Then Is has a structure as shown
in Figure 3.7. The phase portraits of (3.15) for (8, v1, v2) in regions I-V
are the same as in Figure 3.4 I-V (E1 < 0), respectively. The phase
portraits of (3.15) for (S, v1, v2) along each part of Is are the same as
in Figures 3.5 and 3.6 (E1 < 0) for each corresponding part of H, HL,
and C, respectively.

Remark 3.9. Since (3.15) is obtained from (3.13), we can obtain a
description of the bifurcation diagram for equation (3.13) with E1 < 0.

In fact, (3.14) gives a transformation t: (S, v1, v2) - (E1, E2, E3).
By this transformation (D, C(K) = (0, A) X K -* CEI(K) _
((-34, 36v1, 54v2)I6 E (0, 0), (vl, v2) E K). CE'(K) is a cone in E1E2E3-
space around the E1-axis for E1 < 0 (see Figure 3.9). The bifurcation
diagram of (3.13) in CE,(K) is the image by 1 of those described in
Lemma 3.8, and hence homeomorphic to the cones based on H, HL, C,
h2, hl2, and d with generating curves S -* (-S4, 36v1, 64v2), or equiva-
lently E1 - (E1,(-E1)3j2v1,(-E1)v2) for E1 < 0.

(iv) The behavior of (3.13) around the E3-axis for El < 0 Consider a
change of coordinates and parameters

E1 = 34E1, x . SZx,

6l, y - .53y,
EZ = S vl,

1

E3 = S4 v2, t -> St.
(3.31)
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Figure 3.9. The cone CE,(K) for E1 < 0.

In order to consider the parameters in a cone in the neighborhood of
the E3 axis, we fix vz = ±1 in (3.31), and let (S, el, v1) be the new
parameters. For v2 = 1, we have a cone around the E3-axis, E3 > 0, and
for vz = -1, a cone around the E3-axis, E3 < 0. We consider only
vz = 1. The case v2 = - 1 can be treated in the same way.

By (3.31) with vz = 1, equation (3.13) becomes

Y,

E1 + Xz + 35(v1 + x + x3)y.
(3.32)

For each fixed 3 E (0, T1, where T > 0, we make a second blow up:

x TZX,

Ez - -T a JYT3Y
vl = Tzvl, 1

Then (3.32) is transformed into the form

x =Y,
-1 + xz + SS[T(vl + X) y + O(TS)] .

(3.33)

(3.34)

Comparing (3.34) with equation (4.1.7) and using the method of Section
4.1, we can obtain the following lemma.

Lemma 3.10. In the half plane ((el, v1, vz)I vz = 1, El < 0) there is a
fixed compact subset B+, diffeomorphic to a disk, having a tangency of
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Figure 3.10.

E3

Figure 3.11.

order 1 at b1 = (0, 0, 1) with the vl-axis, such that for equation (3.32) the
results of Bogdanov-Takens (see Theorem 4.1.2) are valid for any
(el, vl) E B+ and any S E [0, T].

Remark 3.11. Similarly to Remark 3.9, (3.31) with v2 = 1 gives a
mapping (S, E1, ul) - (E1, E2, E3) which maps (0, T] X B+ to C 3 =
{($4E1, Soul, tj4)IS E ( 0, , r ] ,( 1 , ' 1 ) E B+}. CE3 is a cone in
around the E3-axis and based on B+. The bifurcation diagram of (3.13)
in C 3 consists of cones based on H, HL, and [b1) with generating
curves S - (S4E1, 56v1, S4), where H and HL are the curves of Hopf
and homoclinic bifurcations, respectively (see Figures 3.10 and 3.11).
Similarly, taking v2 = -1 we can obtain a cone CE3 around the E3-axis
for E3 < 0.
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Proof of Theorem 3.2. Let C 3 and C.3 be the two cones obtained in
Lemma 3.10 and Remark 3.11. By Lemma 3.8 we can choose a compact
set K in the v1v2-plane such that:
(1) CEl(K) U C 3 U CE3 contains a cone C(D) based on a disk D

belonging to the half sphere S,,, = {(E1, E2, E3)IE1 + 2 + E3 = o 2,
El < 0 and o > 0 sufficiently small), where CE,(K) is described in
Remark 3.9.

(2) D contains the half circle S, n (2 = 0). aD is tangent to 3S,,, with
a tangency of order 1 at the points bl and b2, where bl = (0, 0, u),
b2 = (0,0, -(T).

(3) D contains the curves H = SH n SQ, HL = SHL n So, and C = Sc
n SQ, where SH, SHL, and Sc are described in Lemma 3.8.

We can obtain condition (3) because the curve of Hopf bifurcation
and the curve of homoclinic bifurcation in D n C 3 are connected with
H and HL, respectively. To show this, we consider the equations for
the curves H = SH n S,, and HL = SHL n So. From Lemma 3.3, we
obtain

w.
vl-v2-1=0,

z + E2z + E2 Q
(3.35)

From (3.14) we have

(5 =
1/4

3/2vl = E2/( -E1)
v2 =

El < 0. Substituting (3.36) into (3.35), we obtain

(E1IE21E3) = 0,H: f
g( E1, 2, 3) = 0,

where

f = E2 - (-El)1/2 E3 -

g=el+2+E3-Q2.

(3.36)

(3.37)

This implies that if El -> 0, the curve H tends to points bl and b2,
respectively. This means that H is connected to the Hopf bifurcation
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curve in D n C3 because of the uniqueness of the Hopf bifurcation

curve in a neighborhood of b1 or b2 (see Section 4.1).
We can consider the equation for HL = SHL n S, in the same way.
Thus, we can choose K and D satisfying the conditions (1), (2), and

(3). The conclusion of Theorem 3.2 for E1 < 0 and (El, E2, E3) E C(D)
follows from Lemmas 3.8 and 3.10. The conclusion for El > 0 or E1 = 0
but (El, E2, E3) * (0, 0, ± o) is obvious. The only remaining case is
El < 0 and (El, E2, E3) 44 C(D). In this case, by using the same method
as in the proof of Lemma 4.1.12, it can be shown that equation (3.13)
has no periodic orbits.

5.4 A Codimension 4 Bifurcation: Cusp of Order 4

In this section we consider a cusp of codimension 4; the family of vector
fields for this case is (3.4) t. Most results in this section are due to Li
and Rousseau [1]. We discuss only the case (3.4)+ because the case
(3.4)- is similar. Thus, we consider the family of vector fields

x = y,
El + E2y + E3xy + E4x3y + x2 + xay.

Obviously, if El > 0, (4.1) has no equilibrium; if El = 0, we have a
saddle-node bifurcation. When el < 0, we make a scaling

t
x _ 32x, y _ say, t

EZ = S8vl, E3 = S6v2, Ea = S2v31

where 8 > 0. Then equation (4.1) becomes

y,

-1 +x2 + t57(vl + v2x + V3x3 +xa)y.

We will study first the bifurcation diagram of equation (4.3) in
v1v2v3 space, and then glue it in Ele2E3E4 space (back to equation (4.1))
with the saddle-node bifurcation on El = 0, with a cusp of order 2 on
El = E2 = 0, E3 0 0, and with a cusp of order 3 on E1 = E2 = E3 = 0,
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E4 # 0. Thus, we can obtain the bifurcation diagram of (4.1), as we did
for equation (3.13) in the last section.

By using the results in Sections 5.1-5.2 (Examples 1.8 and 2.13), we
have the following two lemmas.

Lemma 4.1. Let

VD =v1 - v2- v3+ 1,
V1=v2-31/3+8,
V2 = 5v2 - 14.

Then for each k = 1, 2, 3, equation (4.3) has a Hopf bifurcation of order
k (HBk) if the following kth condition is satisfied:
(1) V0 = 0, 6 V1 0;

(2) VO = V1 = 0, SV2 # 0;
(3) V0=V1=V2=0,S#0(i.e.,(v1,v2,v3)=(5555#0).

System (4.3) has three limit cycles near the focus if (vl, v2, v3) is in
the region

V2 < 0, V1 > 0, VD < 0,

0<IVOI«IVI I«IV2H«1.

Lemma 4.2. Let

5 103 187
fwo = VI -

7
v2

77 v3 + 91 ,

W1=v1+v2+v3+1,
9 8

WZ = -v2 - 5 v3 +
7

.

Then for each k = 1, 2, 3, equation (4.3) has a homoclinic loop bifurca-
tion of order k (HLBk) if the following kth condition is satisfied:
(1) W0=0' S W1 * 0;
(2) W0 = W1 = 0, SW2 * 0;
(3) W0=W1=W2=0,S*0.
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(Condition (3) is equivalent to (vi, v2, v3) = (- 9', - 91, vi), S 0.)
System (4.3) with S * 0 has three limit cycles near the saddle loop I'o of
(4.3) with 3 = 0 if (v1, v2, v3) is in the region

W2<0, WI>0, Wo>0, and 0<IWWI«IWII<< IW2I<< I.

(4.7)

From the previous two lemmas we have that HLB2 n HBI occurs at

22 22
(vl,v2,v3) _ (-1, - 13' 13 ),

and (4.3) has three limit cycles when (vl, v2, v3) satisfies

Vo<0, WI>0, Wo>0,

0<IVOI<< 1, and 0<IW0I«IWII<< 1.

Also, HLB1 n HB2 occurs at (vl, v2, v3) = (65, - 65, bs ), and (4.3)
has three limit cycles when (vl, v2, v3) satisfies

VI>0, Vo<0, Wo>0,

0<IVOI<< IVII<< 1, and 0<1Wo1«1.

In order to discuss the periodic orbits of equation (4.3), we consider
(4.3) as a perturbation of the Hamiltonian system

y,

-1+x2,

with the Hamiltonian function -H(x, y), where

Y2 x3
H(x,Y) =

2
+x - 3 .
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By Lemma 4.1.4, the condition for the existence of periodic orbits of
equation (4.3) is

F(h, S, v1, v2, v3) = J (v1 + V2x + V3x3 +X4 ) y dx = 0,

(4.10)

where y(h, a, vl, v2, v3) is defined as in Section 4.1 and F(h, S,
V1, v2, v3) is well approximated by M(h) = FIs=O. For S = 0, the condi-
tion (4.10) becomes

M(h) = f (VI + V2x + v3X3 +x4)ydx = 0, (4.11)
rn

where Fh is the level curve of H(x, y) = h, - 3 < h < 3. H(x, y) = - 3
corresponds to the equilibrium (-1, 0) and H(x, y) = 3 corresponds to
the homoclinic loop.

We will study the number of solutions of equation (4.11) with respect
to h E (- 3, 3), for given (v1, v2, v3). This number is just the number of
periodic orbits of the system (4.3).

As in Sections 4.1 and 5.3, we define

Ik(h) = f xkydx, k = 0,1,2,3,4,
r,,

and then M(h) takes the form

(4.12)

M(h) = v1I0 + v211 + v3I3 + 14.

By Lemma 3.5, we have

(4.13)

6 15

13 11hI0 + 11I1,
(4 14)

21 12
.

14 13
I0 13 h11.

Substituting (4.14) into (4.13), we obtain

M(h) =A(h)I0(h) -B(h)11(h), (4.15)
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where

6 21
A(h) = vl - 11 hv3 + 13

15 12
B(h) = v2 + 11 v3 13h.

(4.16)

As in Section 5.3, we consider M(h) = M(h)/I0(h) instead of M(h),
and then from (4.15) we have

M(h) =A(h) - B(h) P(h), (4.17)

where P(h) is the same as in Sections 4.1 and 5.3. We recall the
properties of function P(h) in the following lemma (see Lemmas 4.1.6,
4.1.7, and 3.6).

Lemma 4.3. The function P(h) has the following properties:
(1) P([- 3, 3]) c [;,11, P(-2/3) = 1, and P(2/3) = 5/7;
(2) P(h) < 0, P'(-2/3) _ -1/8, and P'(2/3) _ -oo;
(3) P"(h) < 0 and P"(-2/3) = -55/1152;
(4) P = P(h) satisfies the following differential equation:

(9h2-4)P'=7P2+3hP-5. (4.18)

Or, equivalently, (h, P) is a solution of the following system

dP
_ -7P2-3hP+5,

dt
dh

=4-9h2,
dt

(4.19)

satisfying lim t - h = - 2/3 and urn, _ _ P = 1.
Now we consider the bifurcation of multiple limit cycles. The condi-

tion for occurrence of multiple limit cycles is given by M(h) = M'(h) =
0, which determines a surface S. The points of this surface satisfying
M"(h) # 0 correspond to a double limit cycle bifurcation. We show that
the surface is regular at these points. We also prove that the points of S
satisfying M"(h) = 0 form a smooth curve C, on which M"'(h) # 0.
Hence, it corresponds to a triple limit cycle bifurcation. From (4.17) and
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(4.16), we have

6 12
M '(h)

11
v3 + 13P(h) - B(h)P'(h), (4.20)

24
M"(h) = 13 P'(h) - B(h)P"(h), (4.21)

36M"'(h) = 13P (h) - B(h)P"(h). (4.22)

Lemma 4.4. S is a regular surface at the points where M"(h) 0.

Proof. From M'(h) = 0 and M"(h) # 0 we have h = h(v2, v3) by the
Implicit Function Theorem. Since aM/evl # 0 (see (4.17) and (4.16)),
we have v, = v,(h, v2, v3) from M(h) = 0. If we replace h by h(v2, v3),
the desired result follows.

Lemma 4.5. On the curve C = {(v,, v2, v3)IM(h) = M'(h) = M"(h) = 0)
we have that M(h) 0, - 2/3 < h < 2/3.

Proof. The first step is to prove that if M"(h) = 0 then M"'(h) # 0 is
equivalent to

3[P"(h)]2 - 2P'(h)P"'(h) 0 0. (4.23)

In fact, we will show that the left-hand side of (4.23) is negative for
h E [-2/3,2/3). _

From (4.21) we get that M"(h) = 0 is equivalent to

24 P'(h)
B(h)

13 P"(h)'
(4.24)

where P = P(h) and P" 0 0 for It E [ - 2/3, 2/3] (see Lemma 4.3).
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Substituting (4.24) into (4.22), we have

12M,,,(h) =
13P"

[3(P")2 - 2P'p"1.

Hence M'(h) 0 0 is equivalent to (4.23).
Now we prove (4.23). From (4.18) we get

(9h2-4)P'=7P2+3hP-5, (4.25)

(9h2 - 4)P" = P'(14P - 15h) + 3P, (4.26)

(9h2 - 4)P" = P"(14P - 33h) + P'(14P' - 12), (4.27)

(9h2 -4) p(4) = P"(14P - 51h) + P"(42P' - 45). (4.28)

We denote

F(h) - 3(P"(h))2 - 2P'(h)P"'(h). (4.29)

We have from Lemma 4.3, P'(- 2/3) = - 1/8 and P"(- 2/3) =
-55/1152. From (4.18) it is not difficult to obtain that P'(-2/3) =
- 3685/73728, whence F(- 2/3) < 0. We need to show F(h) < 0 for
h E (-2/3, 2/3). If this is not true, we let h* = inf{hIF(h) = 0, h E
(-2/3,2/3)), and then it is obvious that F(h*) = 0 and F'(h*) >- 0.
But we will show that F(h*) = 0 implies F'(h*) < 0. This contradiction
means that such an h* does not exist.

We suppose now that F(h*) = 0, h* E (-2/3,2/3). From (4.25)-
(4.29) we have that

(9h2 - 4) F'(h)
= (9h2 - p?p(4))

2

= 2P"2(14P - 33h) - P'P"(14P - 51h)
(4.30)

+P'P"(-14P' + 21).
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By using F(h*) = 0, from (4.29) and (4.30) we have

(9h*2 - 4)F'(h*)
= 3P'P",(14P+ 21h) +P'P"(-14P' + 21)Ih=h*

2

(4.31)

We have already that P'(h) < 0 and P"(h) < 0 for h E (-2/3,2/3).
We claim that 14P(h) + 21h > 0 and P111(h) < 0 for h E (-2/3,2/3).
Hence (4.31) implies F'(h*) < 0 since 9h*2 - 4 < 0. This yields the
desired result.

We need to show finally that the above claim is true.
To show G(h) ° 14P(h) + 21h > 0 for h E (-2/3,2/3), it is suf-

ficient to note that G(-213) = 0, G(2/3) > 0, G'(-2/3) > 0, and
G"(h) = 14P"(h) < 0 for h e (-2/3,2/3).

To show P'(h) < 0 for h E (- 2/3, 2/3), we use the same argument
as to show F(h) < 0. We have that P'( - 2/3) < 0. Suppose h =
inf{hI P"'(h) = 0, h E (-2/3, 2/3)). Then p(4)(h) > 0. From (4.28) and
Fm(h) = 0 we obtain that (9h2 - 4)P(4)(h) = P"(42P' - 45)Ih > 0. This
implies P(4)(h) < 0. The contradiction means that such an h does not
exist.

Lemma 4.6. The curve C corresponds to a triple limit cycle bifurcation,
and it is a smooth curve.

Proof. The fact that C corresponds to a triple limit cycle bifurcation
follows from the definition of C as the set of {(vl, v2, v3)) such that
M(h) = M'(h) = M"(h) = 0 and from Lemma 4.5 which ensures that
M"'(h) 0 0.

We prove now the smoothness of C. From (4.17), (4.20), (4.21), and
(4.16), we have that M(h) = M'(h) = M"(h) = 0 is equivalent to

v1= 1 4hP-8hP +8P -7
3 Pi2

PP'

3 Pre P'
P2= -(4h - 10P+20- (4.32)

(
v3 = 3 P - I-

13

22 2Pr2
1 P
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By Lemma 4.5, M'(h) 0 0 is equivalent to (4.23). From the third
equation of (4.32) we have

dv3 22 P'(3P"2 - 2P'P"')
ah 13 Pi2

which is different from zero by (4.23). Hence we get h = h(v3) from the
third equation of (4.32), and the first two equations of (4.32) give
vl = vl(h(v3)) and v2 = v2(h(v3)) which are differentiable. Therefore,
C is a regular smooth curve.

Lemma 4.7. For sufficiently small 3 there is a smooth curve (HB, S) in
the parameter space, corresponding to the simultaneous occurrence of an
HB1 and a double limit cycle. This curve joins the point (v1, v2, v3) =

corresponding to HB31 to the point (v1, v2, v3) _(s , s, s
14),

zz zz(-1, - 13, 13 ), corresponding to HBl n HLB2 (the coordinates at these
points are up to 0(3)). The curve is a convex envelope of the family of
lines in the HB plane, given by M(h) = 0, h E (- 2/3, 2/3).

Proof. We make a change of coordinates (vl, v2, v3) - (m1, m2, m3),
which transforms the two lines H2 and H n HL to coordinate axes (see
(4.4) and (4.6)):

m1=v1-V2- v3+ 1,
m2 = v2 - 3v3 + 8,

5 103
m3=V1 - 7V2- ,7,7 V3+

187

91

(4.33)

The equation M(h) = 0 (see (4.17) and (4.16)), under the condition
m1 = 0 (on the HB plane; see Lemma 4.1), gives

1 7
M(h) =

10
(3h + 14P - 12)m2 +

20
(-3h - 24P + 22)m3

4
+65(15hP-21h - 38P + 34) =0,
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where P = P(h). The above equation is equivalent to

7 8
m2 = 2Q(h)m3 + 13R(h), (4.34)

where

3h + 24P - 22
Q(h) 3h + 14P - 12'

(4.35)

and

R(h) =
38P + 21h - 15hP - 34

(4.36)
3h + 14P - 12

Since Q < 0 and R > 0, we will show that dQ/dh 0 0 and d2R/dQ2
< 0. Hence, -R is a convex function of the slope Q. Therefore, by
arguments as in Lemma 3.7, the curve (HB, S) is the graph of the
Legendre transform of -R, that is, a convex curve. From (4.35), we
have that

dQ 10[3(1 - P) + (3h + 2)P']
dh (3h + 14P - 12)

2 < 0, (4.37)

except at h = - 2/3, since the numerator is zero at h = - 2/3 and its
derivative 10(3h + 2)P" < 0 for h E (- 2/3, 2/3) (see Lemma 4.3).

From (4.36), we get

dR 5[ -30 + 72P - 42P2 + (4 - 9h2)P']
dh (3h + 14P - 12)2

Equations (4.37) and (4.38) give

dR -30 + 72P - 42P2 - (4 - 9h2)P'
2dQ 3(1-P)+(3h+2)P'

Hence,

(4.38)

d2R [(1 - P)(3h + 2)P" + 6(1 - P)P' + 2(3h + 2)P'2]

2dQdh [3(1 - P) + (3h + 2)P']2

x3(12 - 3h - 14P).
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Since d2R/dQ2 = d/dh(dR/dQ) dh/dQ, and for h E (-2/3,2/3)
we have that

(12-3h-14P) <0 and dQ < 0 (see (4.37)),

we only need to show

G(h) = (1 - P)(3h + 2)P" + 6(1 - P)P' + 2(3h + 2)P'2 < 0

(4.39)

instead of d2R/dQ2 < 0 for h E (- 2/3, 2/3). Since G( - 2/3) _
G'(- 2/3) = G"(- 2/3) = 0 and G'(- 2/3) = 30p"2 -
2P'P')I h = - 2/3 < 0 (see the explanation following (4.23)), it is enough
to show that G 0 0 for h E (-2/3,2/3).

Assume that G(h) has a zero point at some h E (-2/3,2/3). We
repeat the technique used in the proof of Lemma 4.5 to deduce a
contradiction. In fact, let h* = inf(hIG(h) = 0, - 2/3 < h < 2/3); then
G(h*) = 0 and G'(h*) >- 0.

On the other hand, from (4.39) we have

G'(h) = 3(3h + 2)P'P" + 9(1 - P)P" + (1 - P) (3h + 2)P",

(4.40)

and G(h*) = 0 implies

1-P
(3h* + 2)P'(h*) 2P, [(3h + 2)P" + 6P'jlh=h*

Substituting the above expression into (4.40), we obtain

G '(h') 2P, (1 - P)(3h + 2)(3P"2 - 2P'P")Ih..h* < 0,

since -2/3 < h* < 2/3, P(h*) < 1, P'(h*) < 0, and (3P"2 - 2P'P"')
<0.

The contradiction proves that G(h) < 0 for h E [ - 2/3, 2/3).

Lemma 4.8. For sufficiently small S there is a smooth curve (HLB, S) in
the parameter space, corresponding to the simultaneous occurrence of a



A Codimension 4 Bifurcation: Cusp of Order 4 441

a'(H B3)

C'(HBnHLB2)

d'(HL3)

Figure 4.1.

homoclinic bifurcation of order 1 (HLB1) and a double limit cycle. This
- 2±01),ucurve joins the point (v v v 107 to2, 3) _ (- 91 , 91, 91 corresponding t0

HLB3, to the point (v1, v2, v3) = (6s, - 65, bs ), corresponding to HLB1
n HB2 (the coordinates at these points are up to O(8)). The curve is the
convex envelope of the family of lines in the HLB plane, given by
M(h) = 0, h e (-2/3,2/3).

As the proof is similar to that of Lemma 4.7, we omit it here.

Lemma 4.9. The parameter region S2 for which the equation (4.3) has
three limit cycles has the form of a "topological 3-simplex" (Figure 4.1).

Proof. We consider the 3-simplex - 2/3 < h1 < h2 < h3 < 2/3 (Figure
4.2), and the map F from that 3-simplex to the parameter space
v = (v1, v2 v3), defined by h = (hl, h2, h3) - v(h), where v(h) is the
solution of M(h1) = M(h2) = M(h3) = 0. This solution is unique. In
fact, from (4.17) and (4.16) we have

6 15 21 12
M(h) = vl - P(h)v2 + (-

11 h 11 P(h))v3 + 13 + 13
hP(h),

and the coefficient determinant of M(hl) = M(h2) = M(h3) = 0 with
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(HB)n(HLB2)

(H B3)

Figure 4.2.

respect to (v1, v2, v3) is

6 15
1 -P(hl)

11h1 11P(hl)

6 15
1 -P(h2)

11
hz 11 P(h2)

6 15
1 -P(h3)

11 h3 11 P(h3)

1 P(h1) h1
6

1 P(h2) h2
11

1 P(h3) h3

f lP(h2) - P(h1) _ p(h3) - P(h2)
> 0,

(h2 - hl)(h3 - h2)
I

h2 - hl h3 - h2

since P < 0, P" < 0 for h E (-2/3,2/3).
The function F is a local diffeomorphism on the 3-simplex in the

h-space. F is of rank 2 on the faces h1 = h2 * h3 and h1 * h2 = h3,
and is a local diffeomorphism when restricted to these faces. Similarly F
is of rank 1 on the edge h1 = h2 = h3, and a local homeomorphism
when restricted to this edge. We can conclude that F is a global
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diffeomorphism on the 3-simplex if we can prove that the system cannot
have more than three limit cycles, that is, no four planes M(h1) = 0,
h1 < h2 < h3 < h4, can intersect. This is shown in the next lemma.

Lemma 4.10. For sufficiently small 8, the system (4.3) has at most three
limit cycles for each value of the parameters v1, v2, and v3.

Proof. For given v1, v2, and v3 we determine the number of zeros of

M(h) =A(h) - B(h) P(h)

for h E (-2/3,2/3), where A(h) and B(h) are linear in h and given
by (4.16). Let h* E (- x, + oo) such that B(h*) = 0.

Suppose that M(h*) = 0. Then we have A(h*) = 0 and M(h) _
D(h - h*)(P - P*) for some constant D. Since P = P(h) is mono-
tonic, M(h) has at most two zeros.

For the rest of the proof we can suppose that M(h*) * 0. Then

M(h) = B(h) (Q(h) - P(h)), (4.41)

where h e (-2/3,2/3), h * h*, and

Q(h) =
A(h) 143v1 - 78hv3 + 231

(4.42)
B(h) 143v2 + 195v3 - 132h

We need to determine the number of intersection points of the curve
P = P(h), called F'p, and the curve P = Q(h), called 1'Q, for h E
(- 2/3, 2/3)\ (h*). The curve rQ is a hyperbola (Figure 4.3) and

a

where

Q'(h) = B2(h)

a = - 78v3(143v2 + 195v3) + 132(143v1 + 231).

In the case a >- 0, it is obvious that F'Q and Fp have at most two
intersection points. Hence, we only consider the case a < 0.



444 Bifurcations with Codimension Higher than Two

h` h h

a>0 a<O

Figure 4.3.

h' (a) h" h
(b) (c)

h' h
(d) (e)

Figure 4.4.

(Q

(i) If h* < -2/3, then l 7p I'Q have, obviously, at most two
intersection points (Figure 4.4(a)).

(ii) If - 2/3 < h* < 2/3, then the right branch rQ of FQ always has
at most two intersection points with l7p (Figure 4.4(b) and (c)). It has
exactly one intersection point if and only if Q(2/3) < 5/7. In the case
where FQ intersects I,,, the left branch r of FQ is then below
P = 5/7, and hence it has no intersection with r p. Therefore, we need
only consider the case where Q(2/3) > 5/7. In this case we study the
number of intersection points of I'Q and J,, (Figure 4.4(d) and (e)).
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For this purpose we count the number of contact points of I'Q with
the vector field (4.19), that is, we consider the number of zeros of

dG

G = dt (4.19)
= P - Q'(h)h

for G = P - Q(h). A calculation shows that

G = (-7P2 - 3hP + 5)
a-

BZ
(4 - 9h)2Ip=A/B

1
82[-7A2-3hAB+5B2-a(4-9h2)].

The numerator is a polynomial of degree 3 with respect to h (see
(4.16)); therefore, it has at most three roots. It is easy to see that the
left branch r'Q has at least as many contact points with the vector field
(4.19) as it has intersection points with Fp (Figure 4.4(d) and (e)):
Between any two intersection points there is always a contact point, and
there is always a contact point on the left of the first intersection point,
due to the direction of the vector field at the intersection of F with
the line h = - 2/3. The number of intersection points is therefore at
most three.

(iii) The case h* > 2/3 can be discussed by the same arguments as in
(ii) (e.g., see Figure 4.4(f)).

Remark 4.11. From (4.42), Lemma 4.1, and Lemma 4.2, we obtain,
similarly to the discussion in Section 5.3, that Q(- 2/3) = 1 = P(- 2/3)
if and only if (v1, v2, v3) E HB (i.e., v1 - v2 - v3 + 1 = 0) and
Q(2/3) = 5/7 = P(2/3) if and only if (v1, v2, v3) E HLB (i.e., v1 - v2
- 10; v3 + 187 = 0). Suppose (v1, v2, v3) E fl, the topological 3-simplex
formed by surfaces HB, HLB, two pieces of the double limit cycle
bifurcation surface S (see Lemma 4.9), and the curve C, and suppose
condition (4.5) is satisfied. By Lemma 4.1, equation (4.3) has three limit
cycles. In this case, Q(-213) < 1 and Q(2/3) > 5/7 by Lemma 4.10.
The relative positions of I'p and FQ is shown in Figure 4.4(f). As
(v1, v2,v3) varies inside f, the number of intersection points between
Fp and I'Q is always three. In fact any decreasing of this number
corresponds to at least one of the following situations:
(1) Q( - 2/3) becomes larger than 1.
(2) Q(2/3) becomes less than 5/7.
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(3) Two intersection points of Fp and I'Q become a tangent point, and
then disappear.

(4) Three intersection points of I'p and FQ become a tangent point.
These situations mean that (v1, v2, v3) goes to the boundary of fl,

(the surface HB, HLB, S, or C, respectively), and then leaves fZ. In this
way, we can discuss the phase portrait of equation (4.3) for (v1, v2, v3)
as any position in the parameter space.

Summing up the above lemmas and Remark 4.11, we have the
following theorem.

Theorem 4.12. For sufficiently small S, the bifurcation diagram of equa-
tion (4.3) is shown in Figure 4.5. It consists of the following :
(1) Surfaces (codimension-1 bifurcation): HBI, HLBI, and S (S has two

smooth pieces divided by the curve C).
(2) Curves (codimension-2 bifurcation): HB2, HB1 n HLB1, HLB2,

(HB, S), (HLB, S), and C.
(3) Points (codimension-3 bifurcation): HB3, HLB3, HB2 n HLBI, and

HB1 n HLB2.
When v = (v1, v2, v3) E fZ, surrounded by surfaces HBI, HLBI, and S

and curve C, equation (4.3) has exactly three limit cycles; when v varies
from fl through S, then two of the three limit cycles merge as a semistable
limit cycle, and then disappear; when v varies from fl through the
surface HB1, the most inner limit cycle shrinks into the focus (x, y) =
(-1, 0) which changes its stability; and when v varies from fl through
the surface HLB1, the most outer limit cycle expands and forms a
homoclinic orbit, and then the connection from the saddle point to itself
breaks down and the homoclinic loop disappears.

Now we return from equation (4.3) to the original equation (4.1). We
describe the bifurcation diagram of (4.1) by taking its intersections with
a 3-sphere around the.origin in the E-space. Equation (4.1) has equilib-
ria only on the closed half 3-sphere ((E1, E2, E3)IE1 + EZ + E3 = 1, EI <
0), which can be transformed into a closed 3-ball (Figure 4.6). The
bifurcation diagram inside the ball is similar to the bifurcation diagram
of (4.3) in v-space (Figure 4.5), containing a topological 3-simplex fZ
with exactly three limit cycles. The boundary of the ball (a 2-sphere)
corresponds to the saddle-node bifurcation (E1 = 0, E2 * 0). On it, the
Bogdanov-Takens bifurcation appears on a circle (E1 = E2 = 0, E3 * 0).
Two points of the circle (EI = E2 = E3 = 0, E4 * 0, one with E4 > 0, the
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Figure 4.6.

other with E4 < 0) correspond to the cusps of order 3, and separate the
two cases of Bogdanov-Takens bifurcation: E3 < 0 and E3 > 0. The
Hopf bifurcation surface (HB) and the homoclinic bifurcation surface
(HLB) inside the ball branch along the circle of the Bogdanov-Takens
bifurcation. Moreover, the different curves of codimension-2 bifurca-
tions inside the ball meet on the boundary of the ball at two cusps of
order 3, giving the conic structure described in Section 5.3. In Figure
4.6, for clarity we do not draw completely the Hopf bifurcation surface
(HB) and the homoclinic bifurcation surface (HLB). We just draw the
continuation of the codimension-2 curves until they meet the boundary
of the ball.

To verify the above description, as we did in the last section, we need
to construct a union of cones:

(1) The half space E1 > 0.
(2) A cone K4 constructed around the E4-axis on a small neighbor-

hood in E1E2E3-space.
(3) A cone K3 constructed around the E3-axis on the product of a

small neighborhood in ElE2-space with an arbitrary compact set in
E4 space.

(4) A cone K2 constructed around the E2 -axis on the product of a
small neighborhood in E1-space with an arbitrary compact set in E364-
space.
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(5) A cone Kl constructed around the el-axis (el < 0) on an arbitrary
compact set in e2e3e4-space.

If we choose well the arbitrary compact sets, we will produce a
neighborhood of the origin.

The last cone Kl can be obtained from Theorem 4.12 ((vl, v2, v3) -
(e2, e3, e4), see (4.2)). For the other cones K, we must use the universal
unfolding of the cusps of order j - 1 < 3; the cusp of order 1 is just the
saddle-node.

5.5 Bibliographical Notes

There are at least six different methods used to study degenerate Hopf
bifurcation. We list here these methods and some references: the
method of Poincare normal forms, see Arnold [1] and Guckenheimer
and Holmes [1]; the method of averaging, see Chow and Hale [1],
Guckenheimer and Holmes [1], and Sanders and Verhulst [1]; the
method of the succession function, see Andronov, et al. [2]; the method
of Lyapunov constants, see Bonin and Legault [1] and Gobber and
Williamowski [1]; the method of Lyapunov-Schmidt, see Golubitsky
and Langford [1], Golubitsky and Schaeffer [1], and Vanderbauwhede
[1]; and the method of intrinsic harmonic balancing, see Allwright [1],
Huseyin and Yu [1], and Mees [1]. In the paper of Farr et al. [1] there is
a review of these different methods, and there are some explicit
formulas of the first three Lyapunov coefficients for degenerate Hopf
bifurcation problems of the general case of a differential equation with
dimension n > 2.

The proof of Theorem 1.3 is due to Rousseau and Schlomiuk [1].
They used the Poincare normal form and the Malgrange Preparation
Theorem, which made the proof simpler. Theorem 1.5 was given by
Bonin and Legault [1]. The results in Example 1.6 were given by
Li [1, 3]. Example 1.6 (i)-(iii) are generalizations of some well-known
formulas given by Bautin [2]. Example 1.7 was given by Sibirskii [1].

The degenerate homoclinic bifurcation, however, has been much less
studied, although Poincare [1] and Dulac [1] provided some ideas and
approaches many years ago. The first result on this subject, to our
knowledge, was presented by Leontovich [1] in an abstract paper, and
the complete proof of this result has been given by Roussarie [1] (the
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first part of Theorem 2.5) and by Joyal [1] (both parts of Theorem 2.5).
Most of Section 2 is due to Joyal [1] and Joyal and Rousseau [1].

The finite cyclicity problem for an equilibrium or a singular closed
orbit is closely related to the Hilbert 16th problem and Hopf or
homoclinic bifurcation; see, for example, Dumortier, Roussarie, and
Rousseau [1], Dumortier, Roussarie, Sotomayor, and Zoladek [1], Ecalle
[1], Il'yashenko [3], Li and Liu [1], Roussarie [2, 3], and Schlomiuk [1].

Consider the following equation on a plane

y,

axe+bxy.

It is well known that if ab # 0, then the bifurcation of (5.1) is of
codimension 2, and the Bogdanov-Takens system is a versal deforma-
tion of (5.1) (see Section 4.1). If b = 0 and a 0 0 in (5.1), then there is
a higher-codimension bifurcation of cusp type. In Sections 3 and 4 we
discussed the cusps of codimension 3 and 4, which were obtained by
Dumortier, Roussarie, and Sotomayor [1], and Li and Rousseau [1],
respectively. Joyal [2] considered cusps of codimension n. The maxi-
mum number of limit cycles in this case is (n - 1). The proofs of
Lemmas 3.6 and 4.5 were suggested by Rousseau, and the idea was
stimulated by Drachman, van Gils, and Zhang [1]. See also Dumortier
and Fiddelaers [1].

If a = 0 and b # 0 in (5.1), then there are higher-codimension
bifurcations of other types: saddle, focus, and elliptic cases. Dumortier,
Roussarie, and Sotomayor [2], Dumortier and Rousseau [1], Medved
[1], Xiao [1], and Zoladek [3] studied these cases with codimension 3.
The results on the focus and elliptic cases are still open, and a
conjecture on the bifurcation diagrams for those cases is proposed in
Dumortier, Roussaire, and Sotomayor [2].

We have considered codimension 2 bifurcation of the 1: 2 resonance
in Section 4.2. The unperturbed system is

=Y'

= ax3 + bx2y,

where ab # 0. In the case b = 0 and a # 0, codimension-3 and -4
bifurcations in the 1: 2 resonance were considered by Li and Rousseau
[2], Rousseau [2], and Rousseau and Zoladek [1]. In the case a = 0 and
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b * 0, codimension-3 bifurcation of the 1: 2 resonance was considered
by Dangelmayr, Armbruster, and Neveling [1].

Dangelmayr and Guckenheimer [1] studied a bifurcation problem
arising from (5.2) by adding four parameters, and the result was
improved by Zoladek [4].

There are many references concerning homoclinic (or heteroclinic)
bifurcations in higher-dimensional phase spaces. Silnikov [1, 2] gave an
efficient method to study these problems. Chow, Hale, and Mallet-Paret
[1], Chow and Lin [1], Deng [3], Li, Li, and Zhang [1], and Schecter [1]
studied the case of a homoclinic orbit with a degenerate singular point.
See also Chow, Deng, and Fielder [1], Chow, Deng, and Terman [1, 2],
Deng [1, 2], Fiedler [1], Kisaka, Kokubu, and Oka [1, 2], and Lin [1].
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129
form, 116, 117
operator, 115
subspace,117
transformation, 115, 122
vector space, 116-17

symplectically
conjugate, 116
similar, 116

Theorem
Bendixson, 304
Binomial, 100
Converse of Taylor's, 78
Division, 194-5
Fiber Contraction, 48
Green's, 345
Homoclinic Bifurcation, 424
Hopf Bifurcation, 204, 208, 209, 226, 424
Implicit Function, 72, 80, 83, 194, 206,

210, 241, 242, 248, 273-4, 282, 424
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Theorem (cont.)
Jet transversality, 193, 226
Main Value, 236

time one mapping, 128
trancation operator, 126, 143
transversality, 152, 153-4, 165, 192-3, 203,

Malgrange Preparation, 194, 249, 263, 254
388

Poincare 70 71-2 80 82 83, 189 unstable manifold, 213, 219, 234, 394, 395,
, , , , ,

Siegel's, 70, 82, 83, 89, 189 396

Takens's, 143, 144, 189
'

variation of constants formula, 6, 38, 145,
Taylor s, 76, 77
Uniform Contraction Mapping, 10, 39,

224

42 weak focus, 385, 388
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