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8 Bäcklund Transformations 263
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 263
8.2 Permutability Theorem . . . . . . . . . . . . . . . . . . 264
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8.8 Group Property of Bäcklund Transformations . . . . . 287
8.9 Recent Developments in the Bäcklund
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Preface

Integrable systems have opened up new horizons in the field of clas-
sical physics over the past few decades. The concepts of solitons and
solitary waves have provided a foundation for both analytical studies
as well as practical applications. Consequently, research in nonlin-
ear systems has gained immense popularity and has led to forays into
newer areas. A particularly rich field has been the subatomic world,
where quantized counterparts of the classical treatments are applica-
ble. However, a point of caution must be mentioned; whereas the
usual techniques of quantization rely heavily on the notions of linearity
and superposition principles, such niceities are not present in nonlinear
systems. Therefore, new approaches have been developed to obtain a
“proper” quantization procedure for such systems.

In this volume, our objective is to clarify some of the developments
in the domain of quantum integrable systems, keeping in mind the cor-
responding classical notions. The latter have been included to produce
a self-contained book as far as possible, although some background
reading is always useful for a better understanding of the material.

We wish to thank the publishers who have allowed us to use material
from published articles for this purpose. This volume would never
have materialized without the support of Professor A. Jeffrey, to whom
we are deeply indebted. It is also a pleasure to thank everyone at
Chapman & Hall/CRC Press for their kind cooperation at all stages of
preparation of the book.

A. Roy Chowdhury is thankful to his wife, Dr. Kasturi Roy Chowd-
hury, and his students for continuous support and encouragement.

A. Ghose Choudhury gratefully acknowledges the cooperation and
assistance rendered by his colleagues in the Department of Physics,
Surendranath College. He also thanks Dr. S. Maity, S. Sinha Choud-
huri and N. De for their support in preparing the final version of the
manuscript.

A. Roy Chowdhury
A. Ghose Choudhury
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Chapter 1

Nonlinear Systems and Classical IST

1.1 Introduction

Nonlinear integrable systems constitute one of the most fascinating
discoveries of applied mathematics and theoretical physics. The sub-
ject developed rapidly because of its wide applicabilty in a wide range
of physical situations. It began with the study of shallow water waves
in fluid mechanics, and is now popular with both physicsts and math-
ematicians. Initial studies were confined to the classical aspects of
nonlinear partial differential equations, which were integrable. Later
it was observed that their applicability could be extended to explain
several phenomena in particle physics, condensed matter and even laser
physics. Hence it was considered necessary to develop a quantum me-
chanical counterpart of the classical inverse scattering transform for-
malism.

In the meantime, exhaustive studies of classical soliton theory had
led to the identification of several basic features of the theory such as
the Hamilton structure, existence of an infinite number of conservation
laws, bi-Hamiltonian structure, action-angle variables and so on. Con-
sequently, soliton theory may be considered a full fledged classical field
theory. In this volume we will discuss primarily the developements that
took place in the quantum mechanical domain of integrable systems.
But prior to that we will acquaint the readers with the basic formalism
of classical integrable systems, which is necessary to understand the
salient features of the quantum theory.

To begin with let us discuss some of the fundamental aspects of
classical nonlinear integrable systems. In this chapter we will discuss
the fundamental aspects of classical nonlinear integrable systems.

1



2 Quantum Integrable Systems

1.2 Definition of Integrability

Before proceeding to the theoretical framework, one should bear in
mind that even today there is no foolproof definition of a completely in-
tegrable system. There are a number of different approaches to defining
integrability.

The classical method is that of Painlevé, who studied nonlinear dy-
namical systems long ago in an attempt to deduce a sufficient number
of first integrals, so that the task of solving a nonlinear problem is
reduced to that of a quadrature. But even in the case of the simple
pendulum, the inadequacy of this approach is evident as the motion,
when reduced to that of a quadrature, is defined by an integral of the
form,

t− t0 =
∫ u

u0

dy√
(1− y2)(1−K2y2)

, (1.2.1)

where K is a constant. However this elliptic integral does not provide
the result, i.e., the position as a function of time in general.

In this context it is interesting to recall a famous comment made
by Painlevé about the “double interest” of a differential equation. He
considered them either as the source for defining new functions or as
a class of equations to be integrated with the existing functions at
our disposal. The study of integrability is essentially a study of the
singularity structure of the solution of differential equations.

There exists a deep difference between the singularities of solutions
of linear and nonlinear equations. While the singularities of a linear
equation control that of its solutions, the same does not hold for non-
linear equations. Linear equations have a fixed set of singularities for
its solution, for nonlinear equations one may find solutions having sin-
gularities not present in the original equation. Such singularities are
termed movable singularities. The complete integrability of a nonlinear
ordinary differential equation implies the nonexistence of movable sin-
gularities. This is to be expected since the integration of an ordinary
differential equation is essentially an acquisition of global knowledge of
its general solution and not just a local knowledge as ensured by the
existence of Cauchy’s theorem. Thus the most demanding definition
for integrability is the single valuedness of its general solution, so that
the same may be consistent with any kind of initial condition. In short
we may say that the Painlevé criterion for complete integrability of
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a nonlinear ordinary differential equation is the uniformizability of its
general solution. The Painlevé criterion may also be stated as “the
absence of movable critical points in the general solution”.

An alternative approach to the concept of complete integrability uti-
lizes the existence of Lax pairs and the notion of the existence of an
infinite number of conservation laws. This is true both for partial and
ordinary differential equations, although in the previous paragraph we
restricted ourselves to ordinary differential equations. The idea of ex-
tending the Painlevé criterion to partial differential equations was due
to Ablowitz, Ramani and Segur who conjectured that all possible re-
ductions of a partial differential equation to an ordinary differential
equation will be completely integrable if the original partial differential
equation is completely integrable. Subsequently the case of nonlin-
ear partial differential equations was analyzed by John Weiss [1], who
developed an extension of the original approach of Painlevé.

In the Lax pair method one usually asserts that a system of partial
differential equations is completely integrable if it can be deduced as
the consistency condition of two linear problems.

Ψx = UΨ, Ψt = VΨ, (1.2.2)

where Ψ is a n component vector and U, V are matrices which belong to
either SL(n), GL(n) or any other n−dimensional Lie algebra. Several
authors have shown how to prove the existence of an infinite number of
conservation laws from (1.2.2); and the fact that they are in involution.
The matrix functions U and V depend on the nonlinear field variable
and their derivatives. The basic idea of the inverse scattering transform
(IST) is to determine the nonlinear field variables from a study of the
linear auxiliary equations (1.2.2). At present there are several alternate
routes to this destination: the Riemann-Hilbert approach or in more
than one dimension the so-called ∂̄ bar problem. On the other hand,
for a discrete nonlinear integrable system, the Lax pair is written as

Ψn+1 = LnΨn, Ψnt = LnΨn, (1.2.3)

and the corresponding nonlinear set becomes

∂Ln

∂t
= [Ln, Vn]. (1.2.4)

All the techniques of the IST formalism are equally applicable for this
case. But a second look at (1.2.3) reveals its striking resemblence to
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our well-known Hamilton’s equation in classical mechanics, with the
difference that the right-hand side is a commutator and not a Poisson
bracket.

1.3 Lax Pair Technique

The technique of generating a nonlinear equation from a pair of linear
problems is usually referred to as the Lax pair technique. Initially, there
was no well-defined procedure for obtaining a Lax pair for a given
nonlinear partial differential equation. However a novel approach was
suggested in the seminal papers of Ablowitz, Kaup, Newell, Segur [2]
and Zakharov and Shabat [3]. They showed that if one begins with two
linear problems,

Ψx = UΨ U =

(
λ q
r −λ

)
, (1.3.1)

and

Ψt = VΨ, V =

(
A B
C −A

)
, (1.3.2)

then by demanding consistency of (1.3.1) and (1.3.2) one can generate
several types of nonlinear integrable systems by assuming that A,B,C
are appropriate analytic functions of λ. Almost simultaneously a break-
through was made by Wahlquist and Estabrook [4], who showed that
by using Cartan calculus of differential forms and prolongation tech-
niques, it is possible to find the Lax pair of a given nonlinear problem.
It is perhaps the only direct method of finding the Lax pair that other-
wise had to be “pulled out of the hat” many times. The nonlinear fields
occur as coefficients in the linear Lax equations, which for the famous
KdV case turns out to the familiar stationary Schrödinger equation
and which were referred to as “potentials” or “pseudo potentials”. The
basic idea of inverse scattering is to obtain detailed information about
these potentials (i.e., nonlinear fields) from the data on the wave func-
tion, which is a eigenfunction of the Lax equation. The usual approach
of quantum mechanics is based on the idea of scattering in a potential
as the distance goes to positive or negative infinity. The other methods
like Riemann-Hilbert or dressing operator approach do not rely on the
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concept of “scattering”, and thus have wider applicability. Besides in
more than 1+1 dimension we now have the well formulated ∂̄-problem
[5].

1.4 Inverse Scattering Transform

The subject of IST developed because of its importance in the do-
main of atomic and particle physics. It was the endeavour of researchers
worldwide to reconstruct the potential responsible for atomic and sub-
atomic phenomena from the phase shifts of different partial waves in
scattering experiments. Similar approaches were also adopted in the
classical domain; its application to the field of oil prospecting highlights
its immense utility. Here a wave with known characteristics is sent
through the earth’s crust and the reflected wave is monitored. From
the change in the nature of this wave it is possible to predict the density
at a particular depth, providing thereby an indication of the possible
existence of petroleum. Though the two situations differ considerably,
the basic philosophy remains the same. Theoretically there are some
differences in the treatment of the classical and quantum cases. In
the classical situation, one studies the form of the “potential” or the
nonlinear field, which may either be a single soliton state or even mul-
tisoliton states. In the quantum case we generally deal with the nature
of the excitation spectrum for a particular “potential”, which is ex-
pressed through the Bethe ansatz equations. Recently there have been
attempts to construct the operator corresponding to quantum mechan-
ical nonlinear fields. These topics will be discussed in some detail in
the next few chapters . At this point, we should recognize some of the
shortcomings of the classical IST. Since in this formulation we always
speak of x −→ ±∞ (x being the coordinate), it is essential that care
is taken to apply this method to bounded systems. In this respect Za-
kharov’s seminal work, based on Riemann-Hilbert transforms, should
be mentioned. In this case the scattering behaviour is replaced by the
“analyticity property in the complex eigenvalue plane.”

So far we have discussed classical systems in the 1 + 1 dimensional
system. In the classical case of the (2 + 1) dimension Ablowitz et al.
formulated the ∂̄-bar problem, which elegantly solves the inverse prob-
lem in the (2 + 1) dimension. In the classical case we have the famous
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Gelfand-Levitan-Marchenko (GLM) equation that is the cornerstone
in the developement of the subject. Now-a-days we do have a quan-
tum version of the GLM equation, which again is due to the efforts of
the Russian school. Incidentally, it may be mentioned that a peculiar
difficulty exists with the quantum inverse scattering method (QISM).
While classically it is easier to deal with continuous systems, in the cor-
responding quantum case such systems invariably suffer from problems
of regularization. In the latter case it is obviously easier to deal with
discrete systems. However, attempts have also been made to discretize
the continuous Lax equation for constructing the monodromy matrix.
On the other hand, two excellent papers by Sklyanin [6], which may be
interpreted as a new attempt to understand the quantum inverse scat-
tering method in the continuous case, lead to the fact that the Riemann-
Hilbert technique is an extremely potent tool for solving these prob-
lems. In these papers Sklyanin proposed a rigorous formulation of the
quantum Sine-Gordon and the nonlinear Schrödinger problem.

The classical inverse scattering problem was initiated as a result of
the remarkable observation of P.D. Lax that the KdV equation for
shallow water waves [7],

ut + 6uux + uxxx = 0, (1.4.1)

could be obtained as the consistency condition of the following linear
equations:

−Ψxx + λ2Ψ = uΨ, (1.4.2)

Ψt = A(u)Ψx +B(u)Ψ. (1.4.3)

It will be noticed that (1.4.2) is the familiar Schrödinger equation with
potential u(x, t). Now Lax showed that if the scattering data for the
stationary Schrödinger equation is known, then it is possible to recon-
struct the potential u(x, t), by making use of (1.4.3). This remarkable
feature allows for the solution of the nonlinear evolution equation, by
means of analysing the two auxillary linear problems given by (1.4.2
and 1.4.3). The entire problem can be formulated by demanding that
the potential u goes to zero as x→ ±∞, i.e., the solitary character of
the potential. One then defines the Jost functions Ψ, Ψ̄,Φ, Φ̄ as solu-
tions of (1.4.2), which are connected by means of the transmission and
reflection coefficients as follows:

Ψ = aΦ + bΦ̄,
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Ψ̄ = āΦ̄ + b̄Φ. (1.4.4)

One can then show that the classical GLM equation may be written as

K(x, y) +G(x, y) +
∫ ∞

x
G(x, z)K(z, y)dz = 0, (1.4.5)

where G(x, y) is the kernel of the equation and is given by

G(x, y) =
1
2π

∫ ∞

−∞
b(λ)
a(λ)

eiλ(x+y)dλ. (1.4.6)

Here b/a is the reflection coefficient. It can further be shown that the
nonlinear variable u(x) is connected to K(x, y) in (1.4.5) by

u(x) = −2
dK(x, x)

dx
. (1.4.7)

Then the time dependence of u(x, t) can be ascertained from the equa-
tion (1.4.3). Thus the procedure for solving the intial value problem
can be outlined as follows. One specifies some initial profile of the
nonlinear wave u(x, t)t=0 = u(x, 0), and uses (1.4.2) to solve the direct
scattering problem; that is one determines the position and number
of bound states λj , together with their normalization constants Cj for
the corresponding eigenfunctions and also the continuum contribution
in the form of the quantity b(λ)/a(λ) called the reflection coefficient.
Then (1.4.3) is used to determine the time evolution of this set known
as the scattering data; i.e., λj(t), Cj(t) and b(λ, t)/a(λ, t). These are
then used in the construction of the kernel G(x, y). Actually the dis-
crete part of the spectrum is exactly solvable. In (1.4.6) if we consider
only the zeros of a(λ), then we find that

G(x, y) =
∑
i

Cie
−λi(x+y).

Inserting this in (1.4.5) then leads to a degeneration of the integral
equation into a set of coupled linear equations, once we write

K(x, y) =
∑
i

fi(x)e−λiy,

which can then be solved for the fi’s. Finally we can determine the
nonlinear variable u(x) from (1.4.7). In this procedure one can always
substitute the time variation of the parameters beforehand, and get the
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full-time dependent multisoliton solution.

It should be mentioned that essentially the same procedure is followed
in case of the n× n matrix Lax equation, where one gets a coupled set
of more than one GLM equation. We shall discuss a specific case in
Appendix D to illustrate the procedure in the case of a matrix Lax
equation.

The entire scheme of classical inverse scattering problem is best sum-
marized by the schematic diagram shown in Figure (1.4.1).

It may be mentioned that the same can also be derived without using
the terminology of scattering theory. This is the method of dressing
operators formulated by Zakharov [8] and others. In this formalism
one starts with a trivial solution of the nonlinear system for which the
Lax operators become constant coefficient differential operators, say
L0,M0.The dressing operator approach then demands the factoriza-
tion of L in terms of Volterra operator. The main objective is to find
operators K̂+ and K̂− so that the ‘dressed’ and ‘undressed’ operators
L̂ and L̂0 are related by

L̂ = (I + K̂+)L̂0(I + K̂+)−1, (1.4.8)

In general L̂ consists of two parts, a differential operator and an integral
Volterra operator. The operators K̂+ and K̂− have the effect of making

FIGURE 1.4.1: Schematic diagram of the inverse scattering
method.
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zero the contribution from this integral operator. Suppose we have a
Fredholm operator F̂ ,

F̂Ψ =
∫ ∞

−∞
F (z, z′)Ψ(z′)dz′, (1.4.9)

and we factorize it as follows:

I + F̂ = (I + K̂+)−1(I + K̂−), (1.4.10)

where
K̂−Ψ =

∫ z

−∞
K−(z, z′)Ψ(z′)dz′, (1.4.11)

K̂± are the Volterra factors of the operator F . In the inverse scattering
we are interested in those F that commute with differential operators.
A simple case is

[F̂ , M̂0] = 0 (1.4.12)

with M̂0 = α ∂
∂x + L̂0 . Then (1.4.12) leads to a linear differential

equation for F . On the other hand the same treatment for the time
part,

N̂0 = β
∂

∂t
+ V̂0, (1.4.13)

leads to
[F̂ , N̂0] = 0, (1.4.14)

which is again a linear differential equation giving the time dependence
of F . Hence the kernel function F of the operator F̂ is completely
determined. The most interesting part of the procedure is that if the
dressed form of the operator L̂0 is L̂ and that of N̂0 is N̂ then we get

α
∂N̂

∂x
− β∂L̂

∂t
= [L̂, N̂ ], (1.4.15)

which is the required Lax equation generating the nonlinear integrable
system! On the other hand one also gets equations connecting the
nonlinear fields with the kernel K(x, x), which can always be explic-
itly obtained from the integral Gelfand-Levitan-Marchenko equation
once the function F is known. Consequently, it is in principle possible
to obtain all the results of the classical IST by the dressing operator
approach. The soliton class can also be generalized as we have not
imposed any condition such as x −→ ±∞.
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It should be mentioned that there is another method, namely the
Riemann-Hilbert transform, which, too, does not utilize the boundary
conditions at infinite distance. Though a discussion of these techniques
is outside the scope of this book, we have mentioned them in order to
give readers an overall flavour of just how well formulated the classical
theory of inverse scattering problem is. Though it should in principle be
possible to consider the quantum version of these techniques, only the
first approach using the idea of scattering has been properly translated
into a quantum version, and many aspects of the classical IST are yet
to be properly formulated and analyzed in the quantum context.

1.5 Hamiltonian Structure

Since quantization of a system requires full information about the
canonical Poisson bracket relations between its variables, the Hamilto-
nian structure of nonlinear equations will be of utmost importance in
our future discussions. In this context one should remember that non-
linear integrable systems possess infinite numbers of conserved quanti-
ties, of which any one can serve as the Hamiltonian. At present there
are several methods for the derivation of the Hamiltonian structure of
a nonlinear partial differential equation. Mention should be made of
the work of F. Magri [9], who first showed that these integrable systems
are bi-Hamiltonian in character, that is they may be generated from
two Hamiltonians H1 and H2 and two symplectic operators θ1 and θ2
i.e.,

qt = θ1∇H1 = θ2∇H2. (1.5.1)

For quantization, we require the explicit forms of θ1 and θ2 as well as
H1, H2 for the particular equation under consideration. For example,
in case of the KdV equation we have,

qt =
∂

∂x

δH1

δq
, H1 = −uxx + 3u2 (1.5.2)

and

qt = (−∂3
x + 4u∂x + 2∂xu)

δH2

δq
, H2 =

1
2
u2 (1.5.3)
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while for the nonlinear Schrödinger equation we have,(
qt
q∗t

)
t

=

(
0 1
−1 0

)
∇H1, (1.5.4)

with H1 = ∇ψ∇ψ∗ + λ | ψ |4 . Let us now point out the basic dif-
ference between (1.5.3) and (1.5.4). While the symplectic operator in
(1.5.3) is a differential operator, in (1.5.4) it is a constant. The former
is usually referred to as the “nonultralocal” case, while the latter is
said to be “ultralocal”. As of now, the quantum inverse problem has
been rigorously formulated only in the case of ultralocal systems and
the nonultralocal cases need to be studied further.

A particularly useful method for obtaining the Hamiltonian structure
is that of Drinfeld-Sokolov [10]. Besides, small amplitude expansion
[11] and the trace identity method [12] have also been employed for
this purpose. Once the symplectic structure is explicitly known, an
important element that may be constructed from it is the classical r-
matrix, a notion introduced by the Leningrad school, which has found
universal acceptance. The Poisson racket between the entries of the
Lax operators L(x, λ) and L(y, µ) is denoted as {L(x, λ) ⊗, L(y, µ)}
and the fundamental equation determining the classical r-matrix is

{L(x, λ) ⊗, L(y, µ)} = [r(λ, µ), L(x, λ)⊗I+I⊗L(y, µ)]δ(x−y). (1.5.5)

The delta function on the right-hand side shows that this relation is
valid for “ultralocal” systems. The quantum counterpart of (1.5.5)
plays a vital role in the formulation of the quantum inverse scattering
problem. In case of nonultralocal systems, a more generalized version
of such an equation can be constructed. However, quantization of such
systems is plagued with several problems and is not well formulated.
On the other hand, it is possible to generate a hierarchy of integrable
equations if the space part of the Lax equation and the corresponding
r(λ, µ) matrix is known [13]. This clearly indicates the important role
played by the classical r matrix in case of classical integrable systems.

In the case of nonultralocal systems, quantization is a nontrivial task,
but one method that has proved to be quite useful is that of operator
product expansions (OPE), a technique used frequently in quantum
field theory, together with that of the coordinate Bethe ansatz, which
will be discussed in the next chapter.
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There is another approach: an equivalence class of operators used
in the case of KdV equation by Fuchssteiner and Roy Chowdhury
[14]. This complements the techniques of quantum inverse scattering
method, operator product expansions, etc. It should be emphasised
that while it is not possible to translate all aspects of the classical the-
ory to their corresponding quantum versions, the last technique allows
for the construction of the quantum recursion operator, which is essen-
tial for proving complete quantum integrability, even though the latter
is not a well-defined concept.

Trace identity is another elegant method for deducing the symplectic
form in which one assumes that the space part of the Lax equation for
a particular nonlinear problem is

Ψx = U(λ)Ψ, (1.5.6)

and that the nth flow is given by

Ut − V (n)
x = [V (n), U ]. (1.5.7)

The time part of the Lax pair is taken as

Ψt = V (n)Ψ, (1.5.8)

and the matrix V (n) is determined through

V (n)
x = [U, V (n)]. (1.5.9)

If V (n) is a solution of this equation, then

V̄ = λµV (n) (1.5.10)

is also a solution. The trace identity technique can then be used to
show that

(
δ

δui
)tr(V̄

∂U

∂λ
) =

∂

∂λ
tr(V̄

∂U

∂ui
), (1.5.11)

where ui(i = 1, 2, ...p) are the nonlinear field variables on which U
depends. Here δ

δui
stands for the variational derivatives given by

δ

δui
=
∑
j=0

(−∂)j ∂

∂uji
; ∂ =

∂

∂x
;uji = ∂jui. (1.5.12)
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The equation (1.5.12) actually expresses the variational derivatives of
the conserved densities in terms of the coefficients of V (n), which in
turn are connected to the time evolution in a particular flow.

In the foregoing discussion we have given an overview of the vari-
ous aspects of classical nonlinear integrable systems. The classical and
quantum treatments differ in many respects. Some properties of nonlin-
ear integrable systems are easily interpretable in the quantum language
while others remain confined to their classical domain. An important
example is the existence of an infinite number of conserved quantities.
Whereas quantum mechanically it is easy to prove that this existence is
associated with the factorization of the scattering matrx, yet for a long
time, a suitable interpretation of this fact was obscure in the classical
domain. On the other hand though the GLM equation played a key role
in classical inverse scattering transform, the corresponding equation for
the quantum inverse scattering method was derived albeit much later.
Thus it is fascinating to compare the developement of classical inverse
and quantum inverse scattering transforms step by step, and we hope
that the reader will appreciate in this process the role of quantum me-
chanics in nonlinear systems. Of course in these discussions we have
not brought up the notion of the possibility of a quantum mechanical
Lax operator. It has been shown from the Yang-Baxter equation that
such an operator does exist. Several such ideas and the various intrica-
cies of the quantization of nonlinear partial differential equations will
be analysed in the subsequent chapters as we go through the sequential
developement of the subject.





Chapter 2

Coordinate Bethe Ansatz

2.1 Introduction

In the last chapter, we presented a general overview of classical inte-
grable systems and their essential features. Although it has not been
possible to construct a quantum mechanical counterpart of every classi-
cal technique, remarkable progress has been made in the developement
of quantum integrable systems. Regarding quantization of nonlinear
equations, the simplest approach is to consider the nonlinear field oc-
curring in a nonlinear equation as an operator and assume the equation
to be derivable from a suitable Hamiltonian with a well-defined commu-
tation rule. Indeed this was the essential approach adopted by Bethe
in his treatment of the many-body bosonic system with a δ-function
potential [15]. This system is today better known as the δ-function
Bose gas. Later, it was observed that such a system is equivalent to
the nonlinear Schrödinger equation. We start therefore with a very
brief introduction to the Bose gas, adopting the approach as outlined
in the celebrated article by Fowler [16].

In this original study, the many-particle system was modeled as a
collection of n perfectly elastic billiard balls of equal mass, constrained
to move along a line. Consequently in each collision the incoming and
the outgoing momenta are coincident, and as the system evolves with
time, the momenta of the n particles k1, k2, ..., kn are preserved. The
Schrödinger equation for such a system is

⎛⎝− n∑
i=1

∂2

∂x2
i

+ 2c
∑
i,j

δ(xi − xj)

⎞⎠Ψ = EΨ. (2.1.1)

Now for n = 2, this is equivalent to the quantum mechanical problem
of a single particle interacting in a δ-function potential. The associated

15
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boundary condition is(
∂

∂x1
− ∂

∂x2

)
Ψ(x1 = x+

2 )−
(
∂

∂x1
− ∂

∂x2

)
Ψ(x1 = x−2 )

= 2cΨ(x1 = x2), (2.1.2)

where x±i represents the limiting values of the coordinate from larger
to smaller values. Assuming the basic form of the wave function for
the two particle system to be

Ψ(x1, x2) = exp{i(k1x1 + k2x2)}+ eiθ12 exp{i(k2x1 + k1x2)} (2.1.3)

for the region x1 < x2, one can show that the same wave function for
the region x1 > x2 may be obtained by the symmetry transformation
x1 → x2. In that case the boundary condition yields

eiθ12 = −c− i(k1 − k2)
c+ i(k1 − k2)

. (2.1.4)

For the N particle system the generalization is fairly obvious:

Ψ(x1, x2...xn) =
∑
P

a(P ) exp{i
n∑

j=1

kPjxj}, x1 < x2 < .... < xn,

(2.1.5)
where the sum over P is a sum over all permutations of 1, 2, ...n, and
the function a(P ) stands for factors of the form exp(iθ12) and their
products. This wave function follows bosonic symmetry. The total
energy and momentum of the system is given by

E =
n∑

i=1

k2
i , k =

n∑
i=1

ki. (2.1.6)

Since the wave function is of the plane-wave type, hence the relation
(2.1.5) prompts us to interpret the system to be quasi-free. However in
pratice these momenta are not observable owing to large phase shifts
at the points of collision resulting in the ki’s getting smeared out. As
of now we have not defined the system completely, since we are yet
to impose a suitable boundary condition. The latter will lead to a
restriction of the values of the momenta ki. Thus while all possible wave
functions of the form (2.1.5) are admissible, all values of the momenta
ki are not permissible. One should also note that all the momenta
ki should be different; for if we set k1 = k2 we get exp(iθ12) = −1
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and Ψ(x1, x2) becomes identically zero. This causes the particles to
behave as fermions. There is a boson-fermion correspondence in two
dimensions that is manifested in the equivalence between the Thirring
model and the Sine-Gordon model. If we impose the periodic boundary
conditions for free particles we get

exp(ikiL) = 1, kiL = 0, 2π, ...., (2.1.7)

assuming that the total length occupied by the particles is L.
In case of the Bethe ansatz wave function, there are two mechanisms

for phase change. The kinetic phase change, which causes exp(ikix) to
change between collisions, and the phase shift at collisions. Hence in
this case (2.1.7) is modified to

kjL+
∑
l �=j

θjl = 2πIj , (2.1.8)

where
exp(iθjl) = −c− i(kj − kl)

c+ i(kj − kl)
(2.1.9)

and the Ij ’s are integers, which are nothing but the quantum numbers.
The set (2.1.8) forms a large number of coupled equations that are
usually difficult to solve. If on the other hand we let L→∞, it can be
shown [17] that the kj ’s are closely spaced, so that upon writing (2.1.8)
for kj+1 we have

kj+1L+
∑
l �=j

θj + 1, l(kj+1, kl) = 2πIj+1. (2.1.10)

Subtracting (2.1.8) and (2.1.10) we get

(kj+1 − kj)L =
∑
{θj+1,l − θj,l}+ 2π,

≈ −2c(kj+1−kj)
∑
l

1
c2 + (kj − kl)2

+2π. (2.1.11)

Defining f(k) by

kj+1 − kj =
1

Lf(kj)
, (2.1.12)

so that Lf(k)dk is the number of k’s in the range (k, k + dk) we have
upon proceeding to the limit L→∞,

2f(k)− 1 = 2c
∫ k

−k

f(p)
c2 + (p− k)2dp, (2.1.13)
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and

L

∫ k

−k
f(p)dp = n, (2.1.14)

which may be solved by iteration. The ground state energy is therefore
given by

E = L

∫ k

−k
p2f(p)dp. (2.1.15)

We shall not elaborate further on this issue, though it remains at
the heart of any discussion of the coordinate Bethe ansatz. Analysis
of more general situations can be found in the original articles by B.
Sutherland [18] and C. N. Yang [19].

2.2 Nonlinear Systems and the CBA

The above discussion does not make it clear how a nonlinear inte-
grable system is related to the technique of coordinate Bethe ansatz,
but for the fact that the nonlinear Schrödinger equation is equivalent
to the δ-function Bose gas. To illustrate the connection it is helpful
to take a concrete example. We make use of the extended derivative
nonlinear Schrödinger equation, which is written as [20]

iq0,t = −q0xx + iε0q
2
1q

�
0x + 2iV0q1x − ε1|q1|2V0q1 − V1q0, (2.2.1)

iq1,t = −q1xx − iε1q21q�1x − V1q1 + 2V0q0. (2.2.2)

The system is completely integrable in the classical sense and possesses
a Lax pair. It is known that the lowest Hamiltonian is given by

H =
1
2

∫ ∞

−∞
dxH(x),

H(x) =
(
ε0q1xxq

∗
0 + εq0xxq

∗
1 +

3
5
iε1ε0q1xq1q

∗
1q

∗
0

−3
5
iε21q0q1q

∗
1xq

∗
1 + V0V1

)
, (2.2.3)

where
V0 = ε1(q0q∗1) + ε0q1q

∗
0,
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V1 =
1
2
ε21|q1|4 − 2ε0|q0|2.

The canonical Poisson brackets are

{ε0q∗0(x), q1(y)} = δ(x− y), (2.2.4)

{ε1q0(x), q∗1(y)} = −δ(x− y), (2.2.5)

where ε1, ε0 are ±1. To construct the corresponding quantum mechan-
ical system, we consider q0, q1 as operators and convert the Poisson
bracket relations (2.2.4 and 2.2.5) to commutators, assuming that a
vacuum state exists and is given by

q∗1|0〉 = q∗0|0〉 = 0. (2.2.6)

Here a general state vector can contain excitations of both q1 type and
q0 type and is therefore written as |N,L,M〉, where N is the number
of excitations of the q1 type, L is the mixed state containing both q0
and q1, while M denotes the excitations of q0 type. Let us now assume
that the simplest one-particle state can be written as

|1, 1〉 =
∫
dxf1(x)q1(x)|0〉+

∫
dxf2(x)q0(x)|0〉, (2.2.7)

where f1, f0 are the respective wave functions. If we demand

H|1, 1〉 = E|1, 1〉, (2.2.8)

then we get
1
2
∂2f1

∂x2
= Ef1,

1
2
∂2f2

∂x2
= Ef2.

For the two-particle state the state vector is written in the form,

|2, 11, 2〉 =
∫ ∫

dx1dx2g1(x1, x2)q1(x)q1(x2)|0〉+

∫ ∫
dx1dx2g2(x1, x2)q1(x)q0(x2)|0〉

+
∫ ∫

dx1dx2g3(x1, x2)q0(x1)q0(x2)|0〉. (2.2.9)

Then the condition

H|2, 11, 2〉 = E|2, 11, 2〉,



20 Quantum Integrable Systems

leads to the following equations:

1
2

(
∂2g2
∂x2

1

+
∂2g2
∂x2

2

)
− 3i

10

(
∂g3
∂x1

+
∂g3
∂x2

)
δ(x1 − x2)−

−4g1(x1, x2)δ(x1 − x2) = Eg2(x1, x2), (2.2.10)

1
2

(
∂2g1
∂x2

1

+
∂2g1
∂x2

2

)
− 3i

10

(
∂g2
∂x1

+
∂g2
∂x2

)
δ(x1 − x2) = Eg1(x1, x2),

(2.2.11)
1
2

(
∂2g3
∂x2

1

+
∂2g3
∂x2

2

)
− 2g2(x1, x2)δ(x1 − x2) = Eg3(x1, x2). (2.2.12)

In a similar way the corresponding three-particle case can be expressed
as follows:

|3, 12, 21, 3〉 =
∫ ∫

dx1dx2dx3h1(x1, x2, x3)q1(x1)q1(x2)q1(x3)|0〉

+
∫ ∫

dx1dx2dx3h2(x1, x2, x3)q0(x1)q1(x2)q1(x3)|0〉

+
∫ ∫

dx1dx2dx3h3(x1, x2, x3)q0(x1)q0(x2)q1(x3)|0〉

+
∫ ∫

dx1dx2dx3h4(x1, x2, x3)q0(x1)q0(x2)q0(x3)|0〉. (2.2.13)

The corresponding equation for hi (i = 1, ...4) turns out to be

1
2
∇2h1 +

3i
10

(Σ12h2δ(x2 − x1) + Σ13h2δ(x3 − x1))+

+h3δ(x1 − x3)δ(x2 − x3) = Eh1, (2.2.14)

1
2
∇2h2 +

3i
5

(Σ23h3δ(x2 − x3) + Σ21h3δ(x1 − x2))+

+3h4δ(x2 − x3)δ(x1 − x3)− 4h1 (δ(x1 − x2) + δ(x2 − x3)) = Eh2,
(2.2.15)

1
2
∇2h3 −

3i
5

(Σ31h4δ(x1 − x3) + Σ32h4δ(x2 − x3))+

−4h2 (δ(x1 − x2) + δ(x2 − x3)) = Eh3, (2.2.16)

1
2
∇2h4 − 2h3 (δ(x1 − x3) + δ(x2 − x3)) = Eh4, (2.2.17)
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where

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, Σij =
∂

∂xi
+

∂

∂xj
.

This time the equations for the wave functions are not as simple as
in case of the δ-function Bose gas. One can actually write down the
equations for the N particle state, but their explicit form is rather
complicated. To solve the set (2.2.10–2.2.12) we set

gi(x1, x2) = Aie
i(k1x1+k2x2)θ(x1 − x2) +Bie

i(k1x2+k2x1)θ(x2 − x1),
(2.2.18)

which immediately leads to

E = −1
2
(k2

1 + k2
2), (2.2.19)

i

2
(k1 − k2)(A1 −B1) =

3i
5

[
i

2
(k1 + k2)(A3 +B3)

]
− 2(A2 +B2),

i

2
(k1 − k2)(A2 −B2) =

3
20

(k1 + k2)(A1 +B1),

i

2
(k1 − k2)(A3 −B3) = A1 +B1. (2.2.20)

Using the usual normalization conditions on gi we obtain

A1

B1
=
k1(10 + 6i)− k2(10− 6i)− 40i
k1(10− 6i)− k2(10 + 6i) + 40i

, (2.2.21)

A2

B2
=
k1(10− 3i)− k2(10 + 3i)
k1(10 + 3i)− k2(10− 3i)

, (2.2.22)

A3

B3
=
k1 − k2 − 2i
k1 − k2 + 2i

. (2.2.23)

A similar analysis holds for the case of three-particle states, however,
the number of equations are very large. The solution involves 22 equa-
tions in all, and as the symmetry of the δ-function Bose gas is no longer
valid, we do not have a compact expression for either the set of equa-
tions or its solutions. On the other hand, the present set of equations
does have an important implication. Under the reduction condition
q1 = ±q�0 the set (2.2.1 and 2.2.2) reduces to the derivative nonlinear
Schrödinger equation:

iut + uxx + ε1(|u|2u)x = 0. (2.2.24)
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This equation plays an important role in various situations in plasma
physics [21] and elsewhere [22]. However, its most important property
in the present context is that it represents an example of a nonul-
tralocal integrable system. This means that its Hamiltonian structure
is governed by a symplectic operator involving the derivative of the
δ-function. Written explicitly we have

H =
∫
dx

[
−1

2
(uu∗x − uxu∗) + ε1|u(x)|4

]
, (2.2.25)

while the basic Poisson bracket is

{u(x), u∗(y)} =
∂

∂x
δ(x− y). (2.2.26)

Nonultralocal systems are in general rather difficult to tackle within
the framework of algebraic Bethe ansatz. Though at present some so-
lutions have been found [23], a rigorous and completely satisfactory
formalism is yet to emerge. However, we can proceed with the coordi-
nate Bethe ansatz trick for solving the quantum mechanical problem
if we agree to set aside subtle questions regarding normalization and a
proper Hilbert space, etc.

To proceed we shall write the one-, two- and three-particle states as
follows:

|1〉 =
∫
dx1f1(x1)u(x1)|0〉,

|2〉 =
∫ ∫

dx1dx2f2(x1, x2)u(x1)u(x2)|0〉,

|3〉 =
∫ ∫ ∫

dx1dx2dx3f3(x1, x2, x3)u(x1)u(x2)u(x3)|0〉. (2.2.27)

For the one-particle state we have

E = −k2,
∂2f1

∂x2
1

= Ef1. (2.2.28)

The two-particle case leads to

∇2
2f2 + 2ε1

∂f2

∂x1

∂

∂x2
δ(x1 − x2) = Ef2(x1, x2), (2.2.29)

with the boundary condition given by(
∂f1

∂x12

)
+
−
(
∂f1

∂x12

)
−

+ 2ε1

(
∂2f1

∂x2
12

)
x12=0

= 0, (2.2.30)
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where x12 = x1 − x2. The solution for f2(x1, x2) is

f2(x1, x2) =
[
a2e

−ik2(x1+x2) + b2e
ik2(x1+x2)

]
×

×
[
(1 + F )eik1(x1−x2)θ(x1 − x2)

+{eik1(x1−x2) +Be−ik1(x1−x2)}θ(x1 − x2)
]
, (2.2.31)

where
B = F = − iε1k1

1 + iε1k1
.

In the case of the three-particle system, the corresponding set of equa-
tions is

∇2
3f3 + 2ε1

[
∂f3

∂x1

∂

∂x2
δ(x2 − x1) + P

]
= Ef3, (2.2.32)

with P denoting terms obtained by permutation of (1, 2, 3). Note that
in this manner it is not difficult to formulate the n-particle problem.
Moreover, the solution may be obtained by following the previous strat-
egy. Hence, even though the commutation relation is not canonical, it
is in principle possible to solve the quantum mechanical problem. For-
mulation of the n-particle case essentially represents a combinatorial
problem.

Let us now return to the Hamiltonian in (2.2.25). The equation for
the N -particle system is⎡⎣i∑

i

∂2

∂x2
i

+
∑
i�=j

δ′(xi − xj)

⎤⎦φ(x1, ...xN ) = Eφ(x1, ...xN ). (2.2.33)

Considering for simplicity the case N = 2, we write the two-particle
wave function as

φ(x1, x2) = α(12, 12)ei(k1x1+k2x2) + α(12, 21)ei(k2x1+k1x2) x1 < x2,

φ(x1, x2) = α(21, 12)ei(k1x1+k2x2) + α(21, 21)ei(k2x1+k1x2) x1 > x2,
(2.2.34)

with the boundary condition expressed in the following way:(
∂f

∂xi
− ∂f

∂xj

)
xi>xj

−
(
∂f

∂xi
− ∂f

∂xj

)
xi<xj

=

(
∂2f

∂xi∂xj

)
xi=xj

. (2.2.35)
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Applying this to (2.2.34) we get(
α11

α12

)
=

(
1 + ik1k2

k1−k2

ik1k2
k1−k2

− ik1k2
k1−k2

1− ik1k2
k1−k2

)(
α21

α22

)
. (2.2.36)

Next let us consider the three-particle state with (x1 < x2 < x3),

φ(x1, x2, x3) = α(123, 123)ei(k1x1+k2x2+k3x3)+

+α(123, 213)ei(k2x1+k1x2+k3x3)

+α(123, 231)ei(k2x1+k3x2+k1x3) + α(123, 321)ei(k3x1+k2x2+k1x3)

+α(123, 312)ei(k3x1+k1x2+k2x3) +α(123, 132)ei(k1x1+k3x2+k2x3). (2.2.37)

The basic assumption here is that the wave function in the other sec-
tors (x2 < x1 < x3) is obtained by a permutation of the coordinates
x1, x2, x3, which was essentially the approach used by Yang and Yang
[15]. If we now impose the boundary condition on φ(x1, x2, x3), then
we can relate the coefficients α(ijk, lmn) in different sectors. Here we
have followed the convention that in the notation for α, the first three
indices denote the sector xi < xj < xk, while the second set denote the
momenta kl, km, kn associated with the positions. Organizing these
coefficients as a vector,

�α(123, 123) = [α123
123, α

213
123, α

231
123, α

312
123, α

321
123, α

132
123]

t, (2.2.38)

we arrive at the following conditions:

�α(123, 123)i = (N1)ij�α(213, 213)j ,

�α(213, 213)i = (N2)ij�α(231, 231)j ,

�α(231, 231)i = (N3)ij�α(321, 321)j , (2.2.39)

where N1, N2 and N3 are 6× 6 matrices. We also have

�α(123, 123)a = (M1)ab�α(132, 132)b,

�α(132, 132)a = (M2)ab�α(312, 312)b,

�α(312, 312)a = (M3)ab�α(321, 321)b. (2.2.40)

The relations (2.2.39) and (2.2.40) imply that we should have

M1M2M3 = N1N2N3, (2.2.41)
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which is nothing but the Yang-Baxter equation. We can quote a couple
of these matrices [24]:

N1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 +A12 A12 0 0 0 0
A21 1 +A21 0 0 0 0
0 0 1 +A23 A23 0 0
0 0 A32 1 +A32 0 0
0 0 0 0 1 +A31 A31

0 0 0 0 A31 1 +A13

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

N2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 +A13 0 0 A13 0 0
0 1 +A23 0 0 A23 0
0 0 1 +A21 0 0 A21

A31 0 0 1 +A31 0 0
0 A32 0 0 1 +A32 0
0 0 A12 0 0 1 +A12

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (2.2.42)

with similar expressions for other Ni and Mi. The identity can be
verified by direct multiplication using

(1 +A12)A13(1 +A21) +A12A23A12 = A12A23A13 +A13,

with Aij standing for

Aij =
kikj
ki − kj

.

Imposition of the periodicity condition now leads to

eikiL =
∏
j �=i

(
1−Aij

1 +Aij

)
.

This form of the result suggests that we can construct some matrix
analogous to the quantum R matrix if we set

R(x) = a(x)P + b(x)I, (2.2.43)

with
a =

1
1 +Aij

, b =
Aij

1 +Aij
.

Here I is a 4× 4 unit matrix and

P =
1
2

(
1 + σ3 σ1 − iσ2

σ1 + iσ2 1− σ3

)
,
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so that

R(ki, kj) = Rij =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1

1+Aij

Aij

1+Aij
0

0 Aij

1+Aij

1
1+Aij

0
0 0 0 1

⎞⎟⎟⎟⎟⎠ .
Furthermore, it can be easily checked that

(I ⊗R32)(R31 ⊗ I)(I ⊗R21) = (R21 ⊗ I)(I ⊗R31)(R32 ⊗ I). (2.2.44)

Relations of this type will be the main topic of discussions in the follow-
ing chapter, where we will explore their implications and uses. Here,
it is sufficient to note that such relations have come out from even a
nonultralocal theory.

2.3 Fermionic System

In this section we shall discuss the applicability of the coordinate
Bethe ansatz in the case of fermionic systems. An important example
of such a system is provided by the Luttinger model [25]. We write the
two-component fermionic field operator as χ(x, t) = (χ1(x, t), χ2(x, t)).
The Hamiltonian of the system is

H =
∫ ∞

−∞
Hdx,

H = iv(χ†
1∂xχ1 − χ†

2∂xχ2) + 2g
∫
dyχ†

1(x)χ
†
2(y)V (x− y)χ2(y)χ1(x),

(2.3.1)
where v, g are real constants. The potential V (x) is assumed to have
the following properties:

V (x) = V (−x),
∫ ∞

−∞
dx′V (x′) = finite. (2.3.2)

The field operators χ satisfy equal time anticommutation relations:

[χk(x), χ†
m(y)]+ = δkmδ(x−y), [χk(x), χm(y)]+ = [χ†

k(x), χ
†
m(y)]+ = 0,

(2.3.3)
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here (k,m = 1, 2). The Hamilton’s equations for this model are given
by

i∂tχj(x, t) = [χj(x, t), H] (2.3.4)

and are as follows:

∂tχ1 − v∂xχ1 = −2ig
∫
dyV (x− y)χ†

2(y)χ2(y)χ1(x), (2.3.5)

∂tχ+v∂xχ2 = −2ig
∫
dyV (x− y)χ†

1(y)χ1(y)χ2(x). (2.3.6)

Instead of continuing with the Hamiltonian (2.3.1), Komori et al. [25]
constructed a transformation that converted (2.3.1) into a quadratic
Hamiltonian. The transformation used was

ψ1(x, t) = exp
(
−ig
v
φ2(x, t)

)
χ1(x, t), (2.3.7)

ψ2(x, t) = exp
(
i
g

v
φ1(x, t)

)
χ2(x, t), (2.3.8)

where

φj(x, t) =
∫
dx′W (x− x′)χ†

j(x
′, t)χj(x′, t) j = 1, 2;

W (x) =
∫ x

−∞
dx′V (x′). (2.3.9)

Under the above transformation, the new equations of motion become

∂tψ1 − v∂xψ1 = 0, (2.3.10)

∂tψ2 + v∂xψ2 = 0. (2.3.11)

The corresponding Hamiltonian is

H ′ =
∫
dx iv(ψ†

1∂xψ1 − ψ†
2∂xψ2). (2.3.12)

Let us denote by |n,m〉 the state with n, ψ1 particles and m,ψ2 parti-
cles. The |1, 1〉 state is then expressible in the form,

|1, 1〉 =
∫ ∫

dx1dx2 Ψ(x1, x2)ψ
†
1(x1)ψ

†
2(x2)|0〉, (2.3.13)

with the vacuum defined by

χj(x)|0〉 = 0, ψj(x)|0〉 = 0, j = 1, 2. (2.3.14)
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Let us now consider the eigenvalue equation

H ′|1, 1〉 = E1,1|1, 1〉, (2.3.15)

i.e.,

iv

(
∂

∂x1
− ∂

∂x2

)
Ψ(x1, x2) = E1,1ψ(x1, x2). (2.3.16)

The solution of (2.3.16) is

Ψ(x1, x2) = A exp[i(k1x1 + k2x2)], E1,1 = v(k2 − k1). (2.3.17)

By using the inverse transformation we get back

|1, 1〉 =
∫ ∫

dx1dx2Ψ(x1, x2) exp
(
ig

v
W (x1 − x2)

)
rχ†

1(x1)χ
†
2(x2)|0〉,

(2.3.18)
so that the Bethe wave function is of the form,

ψ̂(x1, x2) = exp[i(k1x1 + k2x2)] exp
(
ig

v
W (x1 − x2)

)
. (2.3.19)

The construction of the general state |n,m〉, n +m = N can be done
as follows. We start with

|n,m〉 =
∫
...

∫ n+m∏
k=1

dxkΨ(x1..xn, xn+1, ..xn+m)×

×
n∏

j=1

ψ†
1(xj)

m∏
i=1

ψ†
2(xn+i)|0〉 (2.3.20)

and setting
H ′|n,m〉 = En,m|n,m〉,

it is seen that Ψ(x1....xn+m) satisfies the equation,

iv

⎛⎝ n∑
j=1

∂

∂xj
−

m∑
i=1

∂

∂xn+i

⎞⎠ψ(x1, ...xn+m) = En,mΨ(x1, ...xn+m).

(2.3.21)
The solution of (2.3.21) is given by

Ψ(x1, ...xn+m) = exp

⎛⎝i n+m∑
j=1

kjxj

⎞⎠ , (2.3.22)
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with

En,m = v

⎛⎝ n∑
j=1

(−kj) +
m∑
i=1

kn+i

⎞⎠ , (2.3.23)

so upon transforming back we obtain

Ψ̂(x1, ..xn+m) = exp

⎛⎝i n+m∑
j=1

kjxj

⎞⎠ ∏
1≤j≤n,1≤i≤m

exp
(
ig

v
W (xj − xn+i)

)
.

(2.3.24)
It will be noticed that in this case the computations were greatly sim-
plified owing to the transformations (2.3.7 and 2.3.8 ) which converted
the Hamiltonian (2.3.1) to a quadratic form. But even without this
trick, it is possible to obtain the manifold of solutions for the fermionic
system. A generalized fermionic model was studied by Dutyshev in
[26]. The original approach uses the Lagrangian,

L = iψγµ∂µψ −mψ̄ψ + LI , (2.3.25)

where LI is the interaction part given by

LI = −1
2
g0(ψ̄γµψ)2 − 1

2
ga(ψ̄γµτaψ)2. (2.3.26)

Here, ψ is a two-component Dirac spinor while τa are the Pauli matrices
with γµ being Dirac matrices. The spinors obey anticommutation rules:

[ψα
i (x), ψ

β
j (y)]+ = δijδ

αβδ(x− y), (2.3.27)

and the Hamiltonian is given by

H =
∫
dx{−iψ†α

i στij∂iψ
α
j +m0ψ

†α
i σijψ

α
j }+HI , (2.3.28)

where σij are Pauli matrices, τ stands for the transpose and HI is given
by

HI =
∫ 1

4
ψ†α1
i1

ψ†β1
j1

(gaδα1α2δβ1β2 + gaτ
a
α1α2

τaβ1β2
)×

×(δi1i2δj1j2 − στi1i2σ
τ
j1j2)ψ

α2
i2
ψβ2
j2
.

If |0〉 is the vacuum state so that

ψ|0〉 = 0 and H|0〉 = 0, (2.3.29)
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then an arbitrary eigenstate may be written as

|N〉 =
∫
dx1...dxNΦi1...iN

α1...αN
ψ†α1
i1

...ψ†αN
iN
|0〉, (2.3.30)

which we want to be a solution of

HΦi1...iN
α1...αN

= ENΦi1....iN
α1...αN

. (2.3.31)

Let us first consider the one-particle sector. The wave function satisfies(
−iσz ∂

∂x
+m0σ

x
)
φia(x) = E1φ

i
a(x), (2.3.32)

with a solution
φa(x) = AaU(θ) exp(ikx), (2.3.33)

where
E1 = m0 cosh θ, k = m0 sinh θ,

k being the wave vector and θ the rapidity. The function U(θ) is the
Dirac spinor given by

U(θ) = (2 cosh θ)−
1
2

(
eθ/2

e−θ/2

)
. (2.3.34)

Now the two-particle state can be easily constructed if one recalls that
the total energy E2 = m0 cosh θ1 +m0 cosh θ2 and the total momenta
K2 = k1 + k2 are conserved. Explicitly, the two-particle wave function
is given by

Φ(12)
α1α2

= A12
α1α2

U1(θ1)U2(θ2)ei(k1x1+k2x2)

−A21
α1α2

U1(θ2)U2(θ1)ei(k2x1+k1x2), (2.3.35)

along with
Φ(21)
α1α2

= A21
α1α2

U1(θ1)U2(θ2)ei(k1x1+k2x2)

−A12
α1α2

U1(θ2)U2(θ1)ei(k2x1+k1x2). (2.3.36)

If we now consider linear combinations of these wave functions:

G0 = φ12 − φ21, G1 = φ11 + φ22,

G2 = φ11 − φ22, G3 = φ12 + φ21,
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they are seen to satisfy

−i∂xG+−
µ + i∂+G

+−
µ +m0(G++

µ +G−−
µ )+2fµG+−

µ δ(x1−x2) = E2G
+−
µ .

(2.3.37)
Here µ = 0, 1, 2, 3 and (+−) refers to spinor components, the constants
f0, f1, f2, f3 being defined as follows:

f0 =
1
2
(g0 − g3 − g1 − g2), f1 =

1
2
(g0 + g1 + g2 + g3),

f2 =
1
2
(g0 + g3 − g1 + g2), f3 =

1
2
(g0 − g3 + g1 + g2).

As before one should have appropriate boundary conditions at x1 = x2,
viz:

G+−
µ (x1 < x2)|x1=x2 = e2ifµG+−

µ (x2 < x1)|x1=x2 ,

G−+
µ (x1 < x2)|x1=x2 = e−2ifµG−+

µ (x2 > x1)|x1=x2 , (2.3.38)

while the other Gµ’s are continuous. The system of equations so ob-
tained is closed, with the periodicity condition of the wave function
given by

φ(....xn + L....) = φ(....xn....). (2.3.39)

Equations (2.3.37 and 2.3.38) immediately yield

B12
µ = γµ(θ12)B21

µ , (2.3.40)

where θ12 = 1
2(θ1 − θ2), with

γa(θ) =
coth θ + iλa
coth θ − iλa

, a = 1, 2, 3,

λµ = tan fµ, γ0(θ) = −1 + iλ0 coth θ
1− iλ0 coth θ

;

where
B0,3 = A12 ∓A21, B1,2 = A11 ±A22.

Since the B’s are linear combinations of A’s one can at once solve and
get

A12
α1α2

= K12(θ12)A21
α2α1

, (2.3.41)

where
Knm(θ) = vµ(θ)τµn τ

µ
m, (2.3.42)
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with

v0 =
1
4
(γ1 + γ2 + γ3 − γ0), v1 =

1
4
(γ1 − γ2 + γ3 − γ0),

v2 =
1
4
(−γ1 + γ2 + γ3 − γ0), v3 =

1
4
(γ1 + γ2 − γ3 − γ0),

the matrix K12 is the scattering matrix. For n > 2 the relation is

A....qnqn+1....
....αnαn+1... = Sn,n+1A

...qn+1qn....

....αn+1αn..... (2.3.43)

In the sequel we will prove that the S matrix satisfies the Yang-Baxter
equation. Until now we have not used any periodic boundary condition.
If we consider the wave function and use periodicity, along with the
definition of the S matrix in the N -particle case, then it leads to

TnΩ = eiknLΩ, (2.3.44)

with
Tn = Sn,n+1....SnNSn1....Snn−1.

This equation can be solved by taking recourse to a special trick. We
set

L(v) = −
N∏
n=1

S0n

(
v − σn

2

)
, (2.3.45)

S0n

(
v − σn

2

)
= ωµ

(
v − σn

2

)
τµ0 τ

µ
n ,

the operator L(v) acts in a space of 2N+1 dimension with an additional
particle numbered 0. Let us denote the trace of this operator over the
indices of the additional particle by T (v):

T (v) = tr0L(v), (2.3.46)

this T (v) is actually Baxter’s transfer matrix [27]. The solution will
lead to equations that determine the momenta ki. One then utilizes
the fact that T (u), T (v) commute, i.e.,

[T (u), T (v)] = 0 (2.3.47)

and represents the operator L(v) in the following form:

L(v) =

(
A(v) B(v)
C(v) D(v)

)
= −

N∏
n=1

(
ω0
n + ω3

nτ
3
n ω1

nτ
1
n − iω2

nτ
2
n

ω1
nτ

1
n + iω2

nτ
2
n ω0

n − ω3
nτ

3
n

)
,

(2.3.48)
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where
ωµ
n = ωµ

(
v − σn

2

)
.

It is then easy to show that L(v) satisfies the relation,

R

(
v − u

2

)
(L(v)⊗ L(u)) = (L(u)⊗ L(v))R

(
v − u

2

)
, (2.3.49)

which is a fundamental relation of the Yang-Baxter algebra, with R
representing the quantum R matrix.

We will further discuss the Yang-Baxter equation and associated alge-
bra in the subsequent chapters, and hence do not pursue the matter fur-
ther here. Instead, in the next section we shall discuss another method
for obtaining the eigenmomenta equation. We remind the reader that
we have not used the periodicity condition yet and hence we did not
talk about the equation determining the eigenmomenta ki’s.

2.4 Boundary Condition in the Bethe Ansatz

We have already shown in section (2.2) how periodic boundary con-
ditions lead to a set of equations determining the eigenmomenta kj .
However, physical situations in which the boundary conditions are not
periodic can often be conceived. Such nonperiodic boundary condi-
tions were considered by several authors, notably Gaudin [28] for the
δ-function Bose gas and also by Woynarovich [29]. In this section we
take up this interesting issue and discuss how the coordinate Bethe
ansatz may be applied in such cases.

For this purpose we once again consider the Hamiltonian for the δ-
function Bose gas:

H = −
N∑
i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj), 0 < xi < L. (2.4.1)

Recall the following:
(i) An elementary solution of the system governed by (2.4.1) is a con-
tinuous symmetric function of the coordinates (x1, ..., xN ).
(ii) Bethe ansatz for the eigenvalue problem associated with H above
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yields a solution that is parametrized by the set {k} = (k1, ....kN ) and
is given by

Ψ{k}(x) =
∑
P

a(P ) exp

(
i

N∑
i=1

kPixi

)
, (2.4.2)

in the domain D,x1 < x2 < ... < xN , with the sum over all permuta-
tions P of order N over i = 1 to i = N .
(iii) The coefficients a(P ) are given by

a(P ) =
∏
i<j

(
1 +

ic

kPi − kPj

)
. (2.4.3)

(iv) The corresponding energy eigenvalue is

E{k} =
N∑
i=1

k2
i . (2.4.4)

The usual periodicity condition is of the form

Ψ(x1 = 0, x2, ...xN ) = Ψ(x2, x3, ...xN , x1 = L). (2.4.5)

Imposition of this condition on Ψ{k} leads to

a(PC) exp (ikP1L) = a(P ), (2.4.6)

with C being the cyclic permutation of (1, 2...N). From (2.4.2) and
(2.4.5) we get

kiL = 2πni +
∑
j

ψij , (2.4.7)

with ψij being the phases and

tan
ψij

2
=

c

ki − kj
, (2.4.8)

which is just the eigenvalue equation of the algebraic Bethe ansatz (to
be discussed in Chapter 5). That the integers ni are unique was proved
by Yang and Yang [15]. Here we follow Gaudin’s argument [28] based
on the continuity of c. For ni �= nj we choose the sheet of ψij , which
in the neighbourhood of c = 0 behaves like

ψij ∝
c

ni − nj
L

2π
. (2.4.9)
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Let us consider the ground state of total momentum zero so that ni = 0
∀i. In the vicinity of c = 0, we look for a solution of the form

ki ≈
(
2c
L

) 1
2

qi +O(c),

qi being distinct, so that we get

ψij ≈ (2cL)
1
2 (qi − qj) +O(c). (2.4.10)

Equation (2.4.7) then leads to the fact that the qi’s must satisfy the
relation,

qi =
∑
i�=j

1
qi − qj

. (2.4.11)

This gives us a precise idea of the distribution of the pseudomomenta
k in the limit c → 0. Equation (2.4.11) immediately implies that the
qi’s are the zeros of Hermite polynomials of degree N , and therefore
satisfy

H ′′(q)− 2qH ′(q) + 2NH(q) = 0. (2.4.12)

The density of the zeros of H(q) is given by

ρ(q) =
1
π
(2N − q2) 1

2 , (2.4.13)

leading to the following density for k:

ρ(k) =
L

2πc
(4cρ− k2)

1
2 , (2.4.14)

with ρ = N
L as c→ 0.

2.4.1 Semi-infinite axis

We shall next consider the same problem formulated on a semi-
infinite axis (0, L). In this case the boundary conditions for the bosonic
wave function ψ(x) are

ψ(x1 = 0, x2...xN ) = 0, (2.4.15)

ψ(x1, .....xN = L) = 0, (2.4.16)
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in the region 0 ≤ x1 ≤ x2... ≤ xn < L. The idea here is to construct
elementary solutions of the Schrödinger equation on the semi-infinite
axis xi > 0, which must satisfy (2.4.15) at x1 = 0. Here one can
effectively utilize the optical analogy given by McGuire [30]. The idea
is to construct the wave function, by superposition of all elementary
wave functions Ψ{k} obtained by reflection at the wall x = 0. Such an
elementary solution is written as Ψ{|ki|}(x), and is associated with a set
of N distinct positive numbers |ki|. If k’s are real, then one can choose

0 < |ki| < |k2| < ... < |kN |,

so that we can define the 2N sets,

{k} = {k1, k2, ...kN}, ki = εi|ki|, ε = ±1.

All the states Ψ{k} have the same energy and we look for a solution of
the form,

Ψ{|ki|}(x) =
∑

ε1ε2...εN

A(ε1....εN )Ψ{k}(x). (2.4.17)

Then the condition (2.4.15) yields

∑
ε

A{ε}
∑
P

∏
i<j

(
1 +

ic

kPi − kPj

)
exp

(
i

N∑
i=2

kPixi

)
= 0, (2.4.18)

leading thereby to 2N−1 relations of the form,

A(ε1...εP1 ...εN )
∏

β �=P1

(
1 +

ic

kP1 − kβ

)
+

+A(ε1...,−εP1 ...εN )
∏

β �=P1

(
1 +

ic

−kP1 − kβ

)
= 0, (2.4.19)

which must be true for any {k} and P . It is therefore sufficient to
choose

A(ε1...εN ) =
∏
i<j

(
1− ic

ki + kj

)
ε1...εN (ki + kj). (2.4.20)

Thus, we obtain the desired solution,
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Ψ{|ki|} =
∑
ε,P

ε1...εN
∏
i<j

(
1− ic

ki + kj

)(
1 +

ic

kPi − kPj

)
×

×ei(kP1
x1+...+kPN

xN ) (2.4.21)

with ki = εi|ki| and kPi = εPi |kPi |.
After the determination of the wave function that satisfies the condition
(2.4.15), let us now impose (2.4.16) on (2.4.21); this yields

∑
ε,P

⎡⎣∏
i<j

(
1− ic

kPi + kPj

)(
1 +

ic

kPi − kPj

)⎤⎦ eikPN
L = 0, (2.4.22)

for all P and {ε}. Setting PN = α we obtain

e2ikαL =
∏
β �=α

kβ − kα − ic
kβ − kα + ic

.
kβ + kα + ic

kβ + kα − ic
, (2.4.23)

which must be satisfied by all possible α and possible signs of k. Equa-
tion (2.4.23) can also be recast as

e2ikαL =
∏
β �=α

(kα + ic)2 − k2
β

(−kα + ic)2 − k2
β

, (2.4.24)

leading to

2kαL = mα +
∑
β �=α

{
tan−1 c

kα − kβ
+ tan−1 c

kα + kβ

}
, (2.4.25)

which is the equation for the eigenmomenta under the modified bound-
ary conditions (2.4.15 and 2.4.16).

2.5 Heisenberg Spin Chain

The Heisenberg spin chain model constitutes one of the classic inte-
grable models and has been investigated in great detail. It was origi-
nally solved by Onsager by evaluating the partition function [31]. Later,
an application of the coordinate Bethe ansatz revealed its rich under-
lying mathematical structure. Among one-dimensional models, it is
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universally recognized as the most important discrete integrable sys-
tem. The model is defined by the Hamiltonian,

H =
N−1∑
i=1

((
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
+ P

(
Sz
i S

z
i+1 − 1/4

))
+

+(Sx
NS

x
1 + Sy

NS
y
1 ) + P (Sz

NS
z
1 − 1/4) , (2.5.1)

where Sx
i , S

y
i , S

z
i are the components of the spin operators at the ith

lattice site. The periodic boundary condition implies SN+1 = S1 and
this is represented by the last two terms in the Hamiltonian. Introduc-
ing the operators,

σ±j = Sx
j ± iS

y
j , σzj = 2Sz

j , (2.5.2)

we have
H = Hkin +Hint,

where

Hkin =
N∑
i=1

1
2

(
σ+
i σ

−
i+1 + σ+

i+1σ
−
i

)
, (2.5.3)

Hint =
N∑
i=1

P

4
(
σzi σ

z
i+1 − 1

)
. (2.5.4)

The Bethe ansatz is actually a way of constructing the many-particle
wave function, which diagonalizes the Hamiltonian. If there are no par-
ticles, all the spins point up, and the chain is in the ferromagnetic state
(Sz = N/2) |F 〉, with zero energy. From this bare vacuum, particles
can be created by acting on it with the σ−n operators. The one-particle
eigenstate is of a plain wave type (Sz = N/2− 1),

|φ(1)〉 =
N∑
n=1

a(n)σ−n |F 〉, with an = eikn, (2.5.5)

and obeys the equation

H|φ(1)〉 = E(1)|φ(1)〉. (2.5.6)

When expressed in component form it reads

〈F |σ+
nH|φ(1)〉 = E(1)〈F |σ+

n |φ(1)〉, (2.5.7)
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leading to

1/2{a(n− 1) + a(n+ 1)} − ρa(n) = E(1)a(n), 1 < n < N,

1/2{a(N) + a(2)} − ρa(1) = E(1)a(1),

1/2{a(N − 1) + a(1)} − ρa(N) = E(1)a(N). (2.5.8)

Substitution of a(n) gives

E(1)(k) = (cos k − ρ), (2.5.9)

provided

eikN = 1 or k =
2π
N
λ; λ = 1, ...N. (2.5.10)

The momentum of the state is

ρ(1)(k) = k =
2π
N
λ. (2.5.11)

Next we look at the two-particle state with (Sz = N/2− 2):

|φ(2)〉 =
∑

n1<n2

a(n1, n2)σ−n1
σ−n2
|F 〉, (2.5.12)

with
a(n1, n2) = a12e

i(k1n1+k2n2) + a21e
i(k2n1+k1n2)

= exp[i(k1n1 + k2n2 + ψ12/2)] + exp[i(k2n1 + k1n2 − ψ21/2)]. (2.5.13)

For convenience we choose

ψ21 = −ψ12 = ψ(k1, k2), ψ(k2, k1) = −ψ(k1, k2);

then the eigenvalue equation is

〈F |σ+
n1
σ+
n2
H|φ(2)〉 = E(2)〈F |σ+

n1
σ+
n2
|φ(2)〉, (2.5.14)

which leads to

1/2{a(n1 − 1, n2) + a(n1 + 1, n2) + a(n1, n2 − 1) + a(n1, n2 + 1)}−

−2ρa(n1, n2) = E(2)a(n1, n2),

1/2{a(n1−1, n1+1)+a(n1, n1+2)}−ρa(n1, n1+1) = E(2)a(n1, n1+1),

1/2{a(n2, N) + a(2, n2) + a(1, n2 − 1) + a(1, n2 + 1)}−
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−2ρa(1, n2) = E(2)a(1, n2). (2.5.15)

The first equation holds when both particles are apart from each other
and end points. The second is valid when they occupy neighbouring
sites. Using the form of a(n1, n2) as given in (2.5.13) we get

E(2)(k1, k2) = (cos k1−ρ)+(cos k2−ρ) = E(1)(k1)+E(1)(k2). (2.5.16)

Using this and the expression for a(n1, n2), together with (2.5.15), we
get an equation that determines the phase ψ12 as a function of k1, k2.
The simplest way to do this is to observe that

1/2{a(n1, n2) + a(n1 + 1, n1 + 1)} − ρa(n1, n1 + 1) = 0, (2.5.17)

is equivalent to (2.5.8) if E(2) = E(1)(k1) +E(1)(k2). The last equation
can be written as(

eiψ12/2 + e−iψ12/2
)
+ ei(k1+k2)

(
eiψ12/2 + e−iψ12/2

)
−

−ρ
(
ei(k2+ψ12/2) + ei(k2+ψ12/2)

)
= 0, (2.5.18)

leading to

cot(
ψ12

2
) = −ρ cot(k1/2)− cot(k2/2)

(1− ρ) cot(k1/2) cot(k2/2)− (1 + ρ)
. (2.5.19)

Finally one can check that (2.5.18) is equivalent to

a(n2, N) = a(0, n2), (2.5.20)

that is,

ei(k1n2+k2N+ψ12/2) + ei(k2n2+k1N−ψ12/2) = ei(k2n2+ψ12/2) + ei(k1n2−ψ12/2).
(2.5.21)

This will be satisfied for all n2 if

ei(k1N−ψ12) = 1, ei(k1n2−ψ12) = 1; (2.5.22)

implying thereby that

Nk1 = 2πλ1 + ψ12,

Nk2 = 2πλ2 − ψ12, (2.5.23)



Coordinate Bethe Ansatz 41

λ12 being integers. The total momentum is

ρ(2)(k1, k2) = k1 + k2 =
2π
N

(λ1 + λ2).

In view of the above, we can write the most general eigenstate of r
particles (Sz = N/2− r) as follows:

|φ(r)〉 =
∑

nα<nα+1

a(n1, n2, ...nr)
r∏

α=1

σ−nα
|F 〉, (2.5.24)

with the coefficients a(n1, ...nr) being

a(n1, ...nr) =
∑
P

exp

⎡⎣i∑
α

kPαnα + i/2
∑
α<β

ψPαPβ

⎤⎦ , (2.5.25)

where P is the permutation of the indices 1, 2, ..., r. The corresponding
energy is given by

E(r)(k1, ...kr) =
r∑
α

(cos kα − ρ) =
r∑
α

E(1)(kα), (2.5.26)

provided

cot(ψαβ/2) = −ρ cot(kα/2)− cot(kβ/2)
(1− ρ) cot(kα/2) cot(kβ/2)− (1− ρ) , (2.5.27)

and
Nkα = 2πλα +

∑
β �=α

ψαβ (α = 1, 2...r). (2.5.28)

The momentum of the state is

P (r)(k1, ...kr) =
r∑
α

kα =
2π
N

r∑
α

λα. (2.5.29)

The calculation is identical to that in case of the single- and two-particle
cases:

〈F |
r∏

α=1

σ+
nα
H|φ(r)〉 = E(r)〈F |

r∏
α=1

σ+
nα
|φ(r)〉. (2.5.30)

Written explicitly, the above condition gives the following:

1/2{....+a(...., n−1, n+1, N = 2, ....)+a(...., n, n+1, n+3, ....)+ ...}−
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−(r − 2)ρa(...., n+ 1, n+ 2, ....) = E(r)a(...., n, n+ 1, n+ 2, ....),

1/2{a(...., n, n, n+ 2, ...0 + a(..., n+ 1, n = 1, n+ 2, ....)}−

−ρa(..., n, n+ 1, n+ 2, ....) = 0,

1/2{a(..., n, n+ 1, n+ 1, ...) + a(..., n+ n+ 2, n = 2, ...)}−

−ρa(...., n, n+ 1, n+ 2, ...) = 0. (2.5.31)

The configuration of particles in this case is more complicated than in
the two-particle case. Besides, there are other complications associated
with the Bethe ansatz for the spin chain, which we do not go into here,
but refer the reader to the following reference [32].

2.6 Spin of the Bethe Ansatz State

The solutions obtained in the previous situations are all eigenstates
of Sz. The isotropic case corresponds to ρ = 1. In this case the
Hamiltonian commutes with all three components of the total spin,
and it is expected that the eigenstate will also be eigenstates of the
total spin S2, which we write as

S2 = σ−σ+ + Sz(Sz + 1), (2.6.1)

with σ± =
∑N

i=1 σ
±
i . The above statement holds if

σ+|φ(r)〉 = 0. (2.6.2)

For r = 1, the left-hand side of (2.5.5) is formally a Sz = N/2 state
that is either zero or a multiple of |F 〉. Actually,

〈F |σ+|φ(1)〉 =
N∑

m=1

a(m) =
N∑

m=1

eikm, (2.6.3)

which is zero due to the fact that k = 2π
N λ. So these are eigenstates of

S2. For r = 2 the left-hand side of (2.5.12) is formally an Sz = N/2−1
state; thus we have

〈F |σ+
n σ

+|φ(2)〉 =
n−1∑
m=1

a(m,n) +
N∑

m=n+1

a(n,m) = 0, (2.6.4)
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for 1 ≤ n ≤ N . Substituting the expression for a(n1, n2) we get

n−1∑
m=1

a(m,n) +
N∑

m=n+1

a(m,n)

=
n−1∑
m=1

(
ei(k1m+k2n+ψ12/2) + ei(k2m+k1n−ψ12/2)

)

+
N∑

m=n+1

(
ei(k1n+k2m+ψ12/2) + ei(k2n+k1m−ψ12/2)

)
(2.6.5)

A simple calculation then yields

=
eik1 − eik1n

1− eik1
ei(k2n+ψ12/2) +

eik2 − eik2n

1− eik2
ei(k1n−ψ12/2)

+eik1n e
ik2(n+1) − eik2(N+1)

1− eik2
eiψ12/2 + eik2n e

ik1(n+1) − eik1(N+1)

1− eik1
e−iψ12/2.

(2.6.6)
This can be reduced to

ei(k1+k2)n

[
ei(k1−ψ12/2) − eiψ12/2

1− eik1
+
ei(k2+ψ12/2) − e−iψ12/2

1− eik2

]
= 0,

(2.6.7)
since for ρ = 1

cot(ψ12/2) =
1
2
(cot(k1/2)− cot(k2/2)). (2.6.8)

The generalization of such computations for the case r > 2 is straight-
forward but laborious. However, the above ananlysis shows that in
the isotropic case, the Bethe states are eigenvectors of the total spin
operator.

2.7 Other Integrable Models

In the preceding sections we have described how the coordinate Bethe
ansatz may be applied to specific models like the Heisenberg spin chain,
a Fermionic system and the extended derivative nonlinear Schrödinger
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equation. We have also described the procedure for incorporating non-
periodic boundary conditions and have dwelt on application of this
technique for ultralocal and nonultralocal cases. The Heisenberg spin
chain and the nonlinear Schrödinger equation are two major models in
which the applicability of the coordinate Bethe ansatz was tested in
the truest sense. Therafter several other integrable models in two di-
mensions appeared, such as the three-wave interaction, supersymmetric
nonlinear integrable equations, etc., where an application of this tech-
nique proved to be immensely succesful, thus revealing the enormous
power of the coordinate Bethe ansatz.

2.7.1 Supersymmetric NLS equation

In this section we shall consider one such system, namely the su-
persymmetric nonlinear Schrödinger equation, which is written as a
coupled system [33]:

iqt = −qxx + 2α1q
†qq + α2ψ

†ψq − i(α2)
1
2ψψx,

iψt = −2ψxx + α2q
†qψ + i(α2)

1
2 (2q∂xψ† + ψ†qx), (2.7.1)

with q being a bosonic field and ψ a fermionic field. The Hamiltonian
of the system is

H =
∫
dx{−q†qxx − 2ψ†ψxx + α1q

† † qq + α2q
†qxψ†ψ

−i(α2)
1
2 (qψ†ψ†

x + q†ψψx)}; (2.7.2)

while the equations of motion are given as usual by

∂ψ

∂t
= [H,ψ]

∂q

∂t
= [H, q] . (2.7.3)

Note that the commutation and anticommutation relations satisfied by
the fields are as follows:

{ψ(x), ψ(y)} = {ψ†(x), ψ†(y)} = 0,

{ψ(x), ψ†(y)} = δ(x− y),
[
q(x), q†(y)

]
= δ(x− y). (2.7.4)

The basic problem is again to search for solutions of

H|φ〉 = E|φ〉, (2.7.5)
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where |φ〉 = |m,n〉, with m denoting here the number of bosons and n
the number of fermions. To illustrate the calculational procedure, let
us consider the state |1, 2〉 where

|1, 2〉 =
∫
dx1f(x1)q†(x1)|0〉+

∫ ∫
dx1dx2g(x1, x2)ψ†(x1)ψ†(x2)|0〉.

(2.7.6)
The equations for f and g turn out to be as follows:

−∂
2f

∂x2
1

= Ef(x1),

i(α2)
1
2 f(x1)δ′(x2 − x1)− 2

[
∂2g(x1, x2)

∂x2
1

+
∂2g(x1, x2)

∂x2
2

]
= Eg(x1, x2).

(2.7.7)
The solutions of these can be obtained by the usual procedure and
finally we obtain:

f(x1) = a1e
ip1x1 + a2e

−ip1x1 , E = p2
1, (2.7.8)

g(x1, x2) = g1(x1, x2)θ(x1 − x2) + g2(x1, x2)θ(x2 − x1), (2.7.9)

where

g1(x1, x2)

= πa1
√
α2

(
i∓ 1√

3

)
exp

[(
−
√

3± i
2

)√
Ex1 +

(√
3± i
2

)√
Ex2

]

+πa2
√
α2

(
i± 1√

3

)
exp

[(
−
√

3± i
2

)√
Ex1 +

(√
3∓ i
2

)√
Ex2

]
,

and

g2(x1, x2) = πa1
√
α2 exp

[(√
3± i
2

)√
Ex1 +

(
−
√

3∓ i
2

)√
Ex2

]

+πa2
√
α2 exp

[(√
3∓ i
2

)√
Ex1 +

(
−
√

3± i
2

)√
Ex2

]
. (2.7.10)

The same procedure may be followed if we assume that E < 0. We can
now consider various types of states, such as

|S1〉 =
∫ ∫

dx1dx2g(x1, x2)q†(x1)ψ†(x2)|0〉
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+
∫ ∫

dx1dx2dx3ψ
†(x1)ψ†(x2)ψ†(x3)h(x1, x2, x3)|0〉. (2.7.11)

The eigenvalue problem

H|S1〉 = E|S1〉 (2.7.12)

then leads to

−
(
∂2g

∂x2
1

+ 2
∂2g

∂x2
2

)
+ α2g(x1, x2)δ(x1 − x2) = Eg(x1, x2),

−i√α2g(x1, x2)δ′(x3 − x1)− 2

(
∂2h

∂x2
1

+
∂2h

∂x2
2

+
∂2h

∂x2
3

)
= Eh(x1, x2, x3).

(2.7.13)
The solutions can always be obtained if we consider the regions x1 < x2

and x1 > x2 separately.
We can pass over to multiparticle states and consider

|S2〉 =
∫ ∫

dx1dx2g(x1, x2)q†(x1)q†(x2)|0〉+∫ ∫ ∫
dx1dx2dx3h(x1, x2, x3)q†(x1)ψ†(x2)ψ†(x3)|0〉+∫ ∫ ∫ ∫

dx1dx2dx3dx4K(x1, x2, x3, x4)ψ†(x1)ψ†(x2)ψ†(x3)ψ†(x4)|0〉.
(2.7.14)

The differential equations for g, h,K are now more complicated, as
follows:

−
(
∂2g

∂x2
1

+
∂2g

∂x2
2

)
+ 2α1h(x1, x2)δ(x1 − x2) = Eg(x1, x2),

−2i
√
α2[g(x1, x2) + g(x2, x1)]δ′(x3 − x1)−

(
∂2h

∂x2
1

+
∂2h

∂x2
2

+
∂2h

∂x2
3

)
+α2h(x1, x2, x3)[δ(x1 − x2) + δ(x1 − x3)] = Eh(x1, x2, x3),

−i√α2h(x1, x2, x3)δ′(x4 − x1)− 2

(
∂2K

∂x2
1

+
∂2K

∂x2
2

+
∂2K

∂x2
3

+
∂2K

∂x2
4

)
= EK(x1, x2, x3, x4). (2.7.15)

After a rather lengthy but straightforward calculation, we can obtain
the solutions for the above equations in the following form:

g(x1, x2) = (1 + F1) exp[i(k2 +Q2)x1 + i(Q2 −K2)x2]θ(x1 − x2)
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+ exp[i(k2 +Q2)x1 + i(Q2 − k2)x2]θ(x2 − x1)

−B1 exp[i(Q2 − k2)x1 + i(Q2 + k2)x2]θ(x2 − x1), (2.7.16)

h(x1, x2, x3) = (h1b + h2b)θ(x1 − x2)θ(x2 − x3)θ(x1 − x3)+

+(h1b + h2b + h3a)θ(x1 − x2)θ(x3 − x2)θ(x1 − x3)

+(h1b + h2a + h3a)θ(x1 − x2)θ(x3 − x2)θ(x3 − x1)

+(h1a + h2b + h3b)θ(x2 − x1)θ(x2 − x3)θ(x1 − x3)

+(h1a + h2a + h3b)θ(x2 − x1)θ(x2 − x3)θ(x3 − x1)

+(h1a + h2a)θ(x2 − x1)θ(x3 − x2)θ(x3 − x1), (2.7.17)

where h1a, h1b, h2a, h2b are combinations of plane waves of the following
form:

h1a = exp i [(k3 +Q3)x1 + (−k3 +Q3/2)x2 +Q4x3]

−B2 exp i [(−k3 +Q3)x1 + (k3 +Q3/2)x2 + q4x3] , (2.7.18)

h1b = exp i [(k3 +Q3)x1 + (−k3 +Q3/2)x2 +Q4x3] (1 + F2), (2.7.19)

with similar expressions for the others. In the present case the structure
of the Bethe ansatz wave function is more complicated than in the
earlier ones. Consequently the imposition of the periodicity condition
results in a complicated equation for the eigenmomenta.

2.7.2 Three-wave interaction problem

We next consider the three-wave interaction problem, which was
solved in [34]. The quantum three-wave interaction model in one di-
mension is governed by the Hamiltonian:

H =
∫
dx[−

3∑
j=1

icjQ
�
jQjx+g{Q�

2(x)Q3(x)Q1(x)+Q�
1(x)Q

�
3(x)Q2(x)}].

(2.7.20)
Here Q�

j , Qj are the creation and annihilation operators of the partic-
ular wave for j = 1, 2, 3. For the purely bosonic case,

[Qj(x, t), Q�
k(y, t)] = δjkδ(x− y). (2.7.21)

The equations of motion are given by

∂Qj(x, t)
∂t

= i[H,Qj(x, t)]. (2.7.22)
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From these, using the commutation rules, we get

∂Q1

∂t
+ c1

∂Q1

∂x
= −igQ�

3Q2,

∂Q2

∂t
+ c2

∂Q2

∂x
= −igQ3Q1,

∂Q3

∂t
+ c3

∂Q3

∂x
= −igQ�

1Q2. (2.7.23)

For setting up the Bethe ansatz one assumes that

Qj(x, t)|0〉 = 0, j = 1, 2, 3. (2.7.24)

The different multiparticle states are constructed as follows:

|λ1, ...λN 〉 =
∫
dx1...dxNθ(x1 > ...... > xN ) exp(i

N∑
i=1

pixi)×

×Q�
1(x1)......Q�

1(xN )|0〉, (2.7.25)

|µ1, ...µN 〉 =
∫
dx1..dxNθ(x1 > ...... > xN ) exp(i

N∑
i=1

qixi)×

×Q�
3(x1)......Q�

3(xN )|0〉, (2.7.26)

|λ1 + µ1, ...λN + µN 〉 =
∫
dx1...dxNθ(x1 > ...... > xN )×

× exp(i
N∑
i=1

(pi + qi)xi)Q�
2(x1)......Q�

2(xN )|0〉, (2.7.27)

with θ(x1 > x2... > xN ) = θ(x1 − x2)θ(x2 − x3)...θ(xN−1 − xN ) where

θ(x) =

⎧⎪⎨⎪⎩
1, x > 0,

1/2, x = 0,
0, x < 0

and
pj = (c2 − c3)λj , qj = (c1 − c2)µj .

Similarly one can think of states with more than one kind of particle,
for example, the state,

|λ1, λ2 + µ1, µ2〉 =
∫ ∫

dx1dx2dx3θ(x1 > x2 > x3)×
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exp{i[p1x1 + (p2 + q1)x2 + q3x3]}Q�
1(x1)Q�

2(x2)Q�
3(x3)|0〉. (2.7.28)

The Hamiltonian commutes with the number operators,

M̂ =
∫
dx(Q�

1Q1 +Q�
2Q2), N̂ =

∫
dx(Q�

2Q2 +Q�
3Q3).

The entire analysis can be repeated as before and it is possible to
derive the detailed structure of the energy and momenta eigenvalues
for a particular state. The details are very elaborate and we refer the
reader to the original articles [35].

In this chapter we have discussed the original method for analysis
of a nonlinear quantum mechanical problem. It involves essentially
treating the nonlinear equation as an operator equation, and writing a
suitable Hamiltonian from which the equation is derivable, through use
of appropriate commutation relations. The next step is to set up the
eigenvalue problem Hψ = Eψ, which leads to the generalized form of
the Bethe equations. These are then explicitly solved, whereupon im-
position of periodic boundary conditions leads to the equation for the
eigenmomenta. In this respect a remarkable result is that of the deriva-
tive nonlinear Schrödinger problem. Even in cases where fermions are
involved there is essentially no difficulty in applying this method. Of
course, in each case, solving the eigenmomenta equation poses a tricky
problem, and the usual procedure is to convert it to an integral equa-
tion. The solution of the latter constitutes a separate problem in itself.
The efficacy of the coordinate Bethe ansatz can be ascertained by look-
ing at its applications to systems other than the δ-function Bose gas or
the NLS equation.

However, it is necessary to also comment on the limitations of the
method described in this chapter. Notably all the models treated so
far are in one space and one temporal dimension. A higher dimensional
analog of the Bethe ansatz is yet to emerge. Attempts have also been
made to look into the application of the Bethe ansatz by employing the
perturbative techniques of quantum field theory. In this respect the
works of Thacker et al. are worth mentioning [36]. A similar but more
rigorous approach was adopted by Gutkhin [37], in which the concept of
intertwining operators were considered. These are operators that yield
the solution of interacting systems, from that of the free one. However,
till now it has been tested only in the case of the Heisenberg spin
chain [38] and the δ-function Bose gas, where the solution is already
possible by the the standard Bethe ansatz. Actually, the construction of
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intertwining operators is a nontrivial task. It is important to note that
although the equations studied are all completely integrable, yet there
is no need to invoke the Lax equation. In the following chapters we will
show how the Lax equation and its associated inverse scattering can be
used and subsequently quantized to set up another variant of the Bethe
ansatz, to elegantly solve for the spectrum of the nonlinear quantum
mechanical problem. The method, which is algebraic in character, is
known as the algebraic Bethe ansatz.



Chapter 3

Yang-Baxter Equation

3.1 Introduction

In the previous chapter we introduced the coordinate Bethe ansatz,
which is a fundamental tool for the exact solution of a large number of
quantum mechanical many-body problems. We also introduced the no-
tion of the quantum R matrix, a central object in the modern approach
to studies of quantum integrable systems deriving in particular a basic
equation satisfied by it, namely the Yang-Baxter equation (YBE).

In this chapter we will analyze the Yang-Baxter equation in greater
detail, discussing its origin and structure, the nature of its solutions,
their properties and also its connection with exactly solvable models of
statistical mechanics and the quantum inverse problem in general.

3.2 General Description

The Yang-Baxter equation is a matrix equation, defined in the tensor
product of three complex vector spaces V1⊗ V2⊗ V3 and given by [39]:

RV1V2(u−v)RV1V3(u)RV2V3(v) = RV2V3(v)RV1V3(u)RV1V2(u−v). (3.2.1)

Each matrix R is assumed to act only on two spaces of the direct prod-
uct as indicated by the superscripts and as an identity in the remaining
space. We introduce the Chevalley basis eij , which represents a ma-
trix of appropriate dimensions, with unity as the only nonvanishing
entry at the intersection of the ith row and the jth column so that
eijekl = δjkeil. One can then write

RV1V2(u) =
[
RV1V2(u)

]ij
kl
eV1
ij ⊗ e

V2
kl ⊗ I,

51
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RV1V3(v) =
[
RV1V3(v)

]pq
rs
eV1
pq ⊗ I ⊗ eV3

rs ,

RV2V3(w) =
[
RV2V3(w)

]ab
cd
I ⊗ eV2

ab ⊗ e
V3
cd , (3.2.2)

so that the Yang-Baxter equation in terms of its elements is as follows:∑
αβγ

[
RV1V2(u− v)

]aα
cβ

[
RV1V3(u)

]αb
eγ

[
RV2V3(v)

]βd
γf

=
∑
αβγ

[
RV2V3(v)

]cα
eβ

[
RV1V3(u)

]aγ
βf

[
RV1V2(u− v)

]γb
αd
. (3.2.3)

For the time being, let us assume that the Vi’s (i = 1, 2, 3) are identical
vector spaces of dimension, say N . It is pertinent to mention here that
although we shall be following the above notation for the Yang-Baxter
equation, there exists in the literature an alternative notation, which,
too, is in wide use. Instead of R as introduced above, one defines a
matrix R̂ by a left multiplication of R by the permutation operator P:

R̂(u) = PR(u) where P ij
kl = δilδjk. (3.2.4)

In terms of R̂(u), the Yang-Baxter equation assumes the form,

(I⊗R̂(u−v))(R̂(u)⊗I)(I⊗R̂(v)) = (R̂(v)⊗I)(I⊗R̂(u))(R̂(u−v)⊗I).
(3.2.5)

The complex variable u occurring in the argument of the R matrix is
called the spectral parameter. However, in general a solution of the
Yang-Baxter equation, to be called a Yang-Baxter sheaf may depend
on additional parameters, which are called connection constants. In our
discussion, we will consider R to be a function of a single connection
constant, besides the spectral parameter, for the sake of simplicity.
Consequently, one has not an isolated sheaf but instead a family of
sheaves R(u, η), depending on the connection constant η. At this point
it is imperative to introduce a few definitions. We say that the Yang-
Baxter sheaf R(u, η) is

(i) Regular if the following condition holds: R(u = 0, η) = P.
(3.2.6)

(ii) Quasi-classical if there exists η = ηc so that R(u, ηc) = I,
(3.2.7)

where I is the identity operator in V ⊗V . Furthermore, there exist the
following symmetry transformations.
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(iii) Homothetic: It is obvious from the Yang-Baxter equation that if
R(u) is a solution, then R′(u) = f(u)R(u), where f(u) is an arbitrary
scalar function, will also be a solution. One then says that the sheaves
R(u) and R′(u) are homothetic.
(iv) If T is some nondegenerate operator in V , then the sheaf

R′(u) = (T ⊗ T )R(u)(T ⊗ T )−1 is a solution of the YBE. (3.2.8)

Two homothetic sheaves that are connected by the above similarity
transformation are said to be equivalent.
Furthermore, if in the space V the representation T (g) of some group
G acts, then one says that the sheaf R(u) is invariant with respect to
the representation T (g), if for any g ∈ G the following holds:

R(u)(T (g)⊗ T (g)) = (T (g)⊗ T (g))R(u). (3.2.9)

Product of sheaves:
Let R(1)(u) and R(2)(u) be two solutions of the Yang-Baxter equation of
dimensions N1 and N2, respectively. The tensor product of the sheaves,
R(1)(u) and R(2)(u), means the sheaf (R(1) ⊗ R(2))(u) of dimension
N1 ×N2 defined by

(R(1) ⊗R(2))(u) = R(1)(u)⊗R(2)(u). (3.2.10)

Direct sum:
The direct sum of the sheaves R(1)(u) and R(2)(u) is the sheaf (R(1)(u)+
R(2)(u)) of dimension N1 +N2 defined as follows. Let eα ⊗ eβ denote
basis vectors so that

R(u)(eγ ⊗ eδ) = (eα ⊗ eβ)Rαβ
γδ (u).

The operator (R(1)(u) +R(2)(u)) acts on the basis vectors of the form,

e(i)αi
⊗ e(k)

αk
(i, k = 1, 2; αi = 1, 2...Ni; e(i)αi

∈ Vi),

of the space (V1 + V2)⊗ (V1 + V2) by

(R(1)(u) +R(2)(u))(e(1)
α1
⊗ e(1)

β1
) = R(1)(u)(e(1)

α1
⊗ e(1)

β1
),

(R(1)(u) +R(2)(u))(e(1)
α1
⊗ e(2)

β2
) = (e(1)

α1
⊗ e(2)

β2
),

(R(1)(u) +R(2)(u))(e(2)
α2
⊗ e(1)

β1
) = (e(2)

α2
⊗ e(1)

β1
),



54 Quantum Integrable Systems

(R(1)(u) +R(2)(u))(e(2)
α2
⊗ e(2)

β2
) = R(2)(u)(e(2)

α2
⊗ e(2)

β2
). (3.2.11)

It is seen by direct verification that both (R(1) ⊗R(2))(u) and (R(1) +
R(2))(u) satisfy the Yang-Baxter equation (3.2.1). It should be men-
tioned that, while the tensor product of Yang-Baxter sheaves preserves
the regular nature of families of sheaves, the operation of addition pre-
serves only their quasi-classicalism. Moreover, from (3.2.11) it is evi-
dent that the direct sum of two sheaves is never a regular sheaf. If the
space V admits a decomposition into a direct product of two subspaces
V1 and V2, so that the action of the operator R(u) on a basis vector
e
(i)
αi ⊗ e

(k)
βk

has the property,

R(u)(e(i)αi
⊗ e(k)

βk
) ∈ Vi ⊗ Vk, i, k = 1, 2;

then we say that the sheaf R(u) is reducible. A reducible sheaf is
therefore always the direct sum of two sheaves. If such a decomposition
does not exist, then the sheaf is said to be irreducible. For a reducible
sheaf R(u) the operatorsR(1)(u) andR(2)(u) acting in the spaces V1⊗V1

and V2 ⊗ V2, respectively, according to the formula,

R(i)(e(i)αi
⊗ e(i)βi

) = R(u)(e(i)αi
⊗ e(i)βi

), i = 1, 2, (3.2.12)

will also be Yang-Baxter sheaves. We shall now discuss the Yang-
Baxter equation and its generalizations to include quadratic algebras,
the so-called Yang-Baxter algebras. The same has been extensively
used for analysis of quantum groups in recent times. One can identify
four major areas where the Yang-Baxter equation and the Yang-Baxter
algebras have appeared:
(i) One-dimensional quantum chains, for example, the Heisenberg spin
chain, Toda lattice, etc.
(ii) Factorizable scattering in the 1 + 1 dimension.
(iii) Statistical lattice models in two dimensions.
(iv) Braid groups.
Let us confine ourselves, for the time being, to quantum models on
a lattice. An important feature of any regular Yang-Baxter sheaf is
that one can associate it to a quantum completely integrable system
with locally commuting integrals of motion. To understand how this is
accomplished, consider a regular Yang-Baxter sheaf R(u) of dimension
N . The state space A of the required quantum system is assumed to
be given by

A = V1 ⊗ V2 ⊗ ...⊗ VM , (Vn = Cn;n = 1, 2, ...M),
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where M is an arbitrary natural number ≥ 2. In this space A is defined
a Hamiltonian H, where

H =
M−1∑
n=1

Hn+1,n +H1,M , (3.2.13)

with the local Hamiltonian density Hn+1,n given by

Hn+1,n =
(
d

du
Rn+1,n(u)|u=0

)
Pn+1,n. (3.2.14)

The operator Rn+1,n(u) acts in the space Vn+1⊗Vn in the corresponding
Yang-Baxter sheaf R(u) and on the remaining components of A as an
identity. Similar remarks hold for the permutation operator Pn+1,n.
One can then view the quantum system, as a chain of M “atoms” each
of which has N quantum states and interacts only with its nearest
neighbours. To construct a sequence of operators commuting with H
as defined in (3.2.14), we consider an extended space Â = Q⊗Q′ ⊗A,
where the two auxillary spaces Q and Q′ are isomorphic with CN . We
define the transition operator TM

1 (u) by

TM
1 (u) = LM (u)LM−1(u)....L1(u) =

←
M∏
n=1

Ln(u), (3.2.15)

where Ln(u) ≡ Rqn(u), in which the index n is related to the space Vn,
and q to the space Q. Replacing Q by Q′ one can similarly define the
quantities T ′M

1 (u) and L′
n(u). With this notation one can rewrite the

Yang-Baxter equation (3.2.1) in the following manner [40]:

Rqq′(u− v)Ln(u)L′
n(v) = L′

n(v)Ln(u)Rqq′(u− v). (3.2.16)

We shall now present an important theorem in this context.
Theorem: If the matrix Rqq′(u − v) intertwines the operators Ln(u)
and L′

n(v) as given in (3.2.16), then it also intertwines the transition
matrix TM

1 (u), so that

Rqq′(u− v)TM
1 (u)T ′M

1 (v) = T ′M
1 (v)TM

1 (u)Rqq′(u− v). (3.2.17)

Proof: Let us assume that the theorem is true for M = j so that

Rqq′(u− v)T j+1
1 (u)T ′j+1

1 (v) = Rqq′(u− v)Lj+1(u)L′
j+1(v)×
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×R−1
qq′Rqq′(u− v)T j

1 (u)T1
′j(v)R−1

qq′Rqq′(u− v),

= L′
j+1(v)Lj+1(u)T

′j
1 (v)T j

1 (u)Rqq′(u− v);

We have used (3.2.16):

= T ′j+1
1 (v)T j+1

1 (u)Rqq′(u− v).

Thus the theorem is true for M = j + 1 if it is true for M = j. Hence
the proof.
Now, the generating function t(u) of the integrals of motion of the quan-
tum system under consideration is defined as the trace of the transition
operator TM

1 (u) taken with respect to the auxiliary space Q i.e.,

t(u) = trqTM
1 (u). (3.2.18)

It follows from (3.2.17), upon taking trace over both Q and Q′ (and us-
ing the cyclic property of trace operation), that the generating function
t(u) forms a commuting set of operators in A:

[t(u), t(v)] = 0, ∀ u, v (u �= v). (3.2.19)

The generating functional of the local integrals of motion for the Hamil-
tonian H is often given by ln(t−1(0)t(u)) [41]:

In =
dn

dun
ln(t−1(0)t(u))|u=0. (3.2.20)

Locality in the present context means that the operator In may be
represented as a sum of operators, each of which acts nontrivially at
no more than n+ 1 neighbouring nodes of the lattice.

It is also important to dwell on the aspect of completeness of the
systems of integrals In in the space A. While this is an open problem in
many respects, it has been proved in case of the Heisenberg ferromagnet
that these integrals do in fact form a complete set [42]. It is plausible
to expect that for N = 2 at least these integrals of motion form a
complete set. It should be noted that the Yang-Baxter equation, in
addition to allowing for the construction of the integrals of motion of a
quantum model on a lattice, also allows us to find the eigenfunctions of
the Hamiltonian H and to determine the spectrum of H. A systematic
procedure for determining these is through the algebraic Bethe ansatz,
which will be described in Chapter 5.
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As mentioned earlier, the operator R, besides being a function of the
spectral parameter u, may depend on additional variables. However
for the sake of brevity we assume there is only a single parameter
η. This variable takes the same value for all R matrices, while the
spectral parameter u takes different but relevant values for different
R matrices. The physical meanings of the parameters u and η would
depend on the explicit model under investigation. However, in certain
cases it is possible to perform the passage to the limit for η, as a result
of which one gets a continuous completely integrable model of quantum
field theory on a line. The most notable examples of the performance
of such a limiting procedure is the XYZ model from which one gets the
nonlinear Schrödinger equation [43].

3.3 Factorized Scattering

To discuss the Yang-Baxter equation in the context of factorized
scattering, we note that the process is characterized by the following
general features.
(i) There is no particle production; the number of particles in the in-
coming state is the same as those in the outgoing state. Furthermore,
the set of outgoing momenta is the same as the set of incoming mo-
menta. However, the particles may exchange momenta in the course of
collisions.
(ii) TheM -particle S matrix can be represented as a product ofM(M−
1)/2 two-particle S matrices, so that mathematically the process of M -
particle scattering is reduced to a sequence of two-particle collisions.

In two dimensions, there are several quantum field theoretic models
that exhibit these features, thus allowing for explicit realizations of
the factorized S matrix. In such systems, the essential feature is the
existence of a two-particle scattering matrix, as all the amplitudes can
be expressed as a product of these basic building blocks. Essentially,
the elastic nature of the collisions and factorizability arise due to the
existence of additional conserved charges, apart from the usual ones
like energy, momentum, electric charge, etc. These may either be local
or nonlocal. In most cases of interest, there exist an infinite number
of “charges” for the integrable field theories. To understand how the
factorizability of the S matrix leads to the Yang-Baxter equation, let
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us consider the case of M = 3 body scattering [44].

Let the initial three-particle state (labelled by the momenta) be
specified by p1 > p2 > p3. The incoming and/or outgoing particles
are in one of the N different internal states designated by i and j,
1 ≤ i, j ≤ N . It is possible to parametrize the energy-momenta of the
relativistic particles by their rapidity θ, in terms of which the momenta
pa = m(cosh θa, sinh θa), in two dimensions. We assume the particles
to be of equal mass and use θa to denote the rapidity of the ath par-
ticle (a = 1, 2, 3). Owing to the elastic nature of the scattering, while
the internal state indices i and j may undergo changes in the course
of collisions, the rapidities do not change. Moreover, due to Lorentz
invariance, the S matrix Rab (a, b = 1, 2, 3) being an N2×N2 matrix of
the internal indices, is a function only of the difference of the rapidities
θa − θb. Since in the final state, there are also three particles with the
same set of momenta {p1, p2, p3}, there are three possible collisions,
which are depicted in Figure (3.3.1).

In Figure (3.3.1a) and Figure (3.3.1c) the collision proceeds two at a
time while in Figure (3.3.1b) there is an intrinsic three-body scattering.
According to the particle-displacement argument [45], because of the
existence of conserved charges, say Qn(n = 1, 2...), one can act on the
entire initial state by exp(iξQ̂N ), which causes a displacement of each
particle by amounts proportional to their momentum. By allowing the

FIGURE 3.3.1: Schematic diagram of possible three-particle
collisions.
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real parameter ξ to become arbitrarily large one can cause an arbitrary
change in the relative position of any two particles. Thus by displacing
the line labelled 1 parallel to itself, relative to 2 and 3, one can go
from Figure (3.3.1a) to Figure (3.3.1c) continuously. The consequences
of the particle displacement argument are far reaching. As QN is a
conserved charge, it commutes with the Hamiltonian and thus leaves
the S matrix invariant. Consequently, the amplitude for all the three
processes depicted in Figure (3.3.1a) to Figure (3.3.1c) are the same.
Moreover, the processes in Figure (3.3.1a) to Figure (3.3.1c) can be
written in terms of the two-body scattering matrices Rab, and since
the amplitudes are the same, one has

R123(θ1, θ2, θ3) = R12(θ1 − θ2)R13(θ1 − θ3)R23(θ2 − θ3)

= R23(θ2 − θ3)R13(θ1 − θ3)R12(θ1 − θ2). (3.3.1)

Thus, in addition to the factorization of the three-body scattering ma-
trix, it is seen that the individual two-body scattering matrices obey a
cubic identity. This cubic identity is of fundamental importance, for it
has been shown that even for higher many-body amplitudes the same
cubic identity provides the sufficiency condition for factorized scatter-
ing [46]. Equation (3.3.1) essentially represents the Yang-Baxter equa-
tion in the context of factorized scattering. In the case of relativis-
tic models, such as the Sine-Gordon model, and nonlinear σ-model,
Karowski et al. [47] and Zamolodchikov and Zamolodchikov [48] have
obtained exact expressions for the S matrices, by solving functional
equations derived from certain general considerations like unitarity,
crossing symmetry and factorization. We shall however not go into
the details of these calculations, but refer the reader to the original
articles.

As the majority of completely integrable models are strictly nonrel-
ativistic in nature, it would be appropriate to discuss a nonrelativistic
theory of such factorized S matrices. The following discussion is based
on the work of Sogo et al. [49]. It may be mentioned here that space-
time symmetries impose the following requirements on the S matrix:
(a) Time-reversal invariance S(θ) = ST (θ).
(b) Parity-inversion invariance S(θ) = PS(θ)P .
(c) In the absence of sources or sinks of particles, unitarity condition
requires S(θ)S†(θ) = I.
(d) Real analyticity S�(θ) = S(−θ).
(e) Crossing invariance Scd

ab(θ) = Scb
ad(iπ − θ).
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(f) Crossing symmetry St1(θ) = (I ⊗W )S(−θ− η)(I ⊗W−1), where t1
denotes transposition in the first horizontal space, and W is a constant
matrix while η is a model-dependent parameter.

A nonrelativistic theory of factorized S matrix may be constructed
by dispensing with the crossing relations and replacing the rapidity
variable θ by the velocity p/m. Furthermore, the imposition of Z4-
symmetry, which is by far the most general form of symmetry, may
be shown to lead — in the nonrelativistic case — to the nonlinear
Schrödinger model, i.e., the δ-function Bose gas.

The S matrix is basically the transformation operator connecting the
incoming and outgoing states, that is,

|in〉 = Ŝ|out〉. (3.3.2)

The |in〉(|out〉) state is one in which all particles are arranged spatially
in order of increasing (deceasing) momenta. Consider a pair of particles
A, Ā, which may either be a particle-antiparticle pair or a spin up-spin
down pair, and assume that they are connected by an operator Ĉ in
such a way that

Ĉ|A〉 = |Ā〉, Ĉ|Ā〉 = |A〉. (3.3.3)

For a two-particle basis state, we may consider the following: |AA〉,
|ĀĀ〉, |AĀ〉 and |ĀA〉. Consequently, the two-body S matrix elements
are given by⎛⎜⎜⎜⎝

|A(θ1)A(θ2)〉
|Ā(θ1)Ā(θ2)〉
|A(θ1)Ā(θ2)〉
|Ā(θ1)A(θ2)〉

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
|Ā(θ2)A(θ1)〉
|Ā(θ2)Ā(θ1)〉
|A(θ2)Ā(θ1)〉
|Ā(θ2)A(θ1)〉

⎞⎟⎟⎟⎠ . (3.3.4)

The general ZN operator is defined by

ZN |A〉 = eiφ|A〉, ZN |Ā〉 = e−iφ|Ā〉, (3.3.5)

where φ = 2π/N . Invariance, under Ĉ and ZN symmetry, requires that

[Ĉ, Ŝ] = 0, (3.3.6)

[ZN , Ŝ] = 0. (3.3.7)

In addition the C invariance implies that

Sij = Sji, i, j = 1, 2, 3, 4, (3.3.8)
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while ZN symmetry gives rise to the following conditions:

〈AĀ|Ŝ|AA〉 sinφ = 0, 〈ĀA|Ŝ|AA〉 sinφ = 0, 〈ĀĀ|Ŝ|AA〉 sin(2φ) = 0.
(3.3.9)

Hence, for N = 4, we have φ = π
2 and as a result the two-body S

matrix assumes the following form:

Ŝ(2)(θ) =

⎛⎜⎜⎜⎝
S Sa 0 0
Sa S 0 0
0 0 Sr st
0 0 St Sr

⎞⎟⎟⎟⎠ for Z4.

Applying the same procedure to the three-particle S matrix, one can
show that

Ŝ(3)(θ) =

(
S̃(3) 0
0 S̃(3)

)
,

where the following basis may be chosen, |AAA〉, |AĀĀ〉, |ĀAĀ〉, |ĀĀA〉,
|ĀĀĀ〉, |ĀAA〉, |AĀA〉 and |AAĀ〉 in this order; S̃(3) being a 4× 4 ma-
trix. As the unitarity condition requires

Ŝ(2)(θ)Ŝ(2)(−θ) = I, (3.3.10)

it gives rise to the following:

S(θ)S(−θ) + Sa(θ)Sa(−θ) = 1,

S(θ)Sa(−θ) + Sa(θ)S(−θ) = 0, (3.3.11)

Sr(θ)Sr(−θ) + St(θ)St(−θ) = 1,

Sr(θ)St(−θ) + St(θ)Sr(−θ) = 0.

In addition, one has for systems with an infinite number of integrals of
motion, the factorization equation,

Ŝ(3)((1)23, θ23)Ŝ(3)(13(2), θ13)Ŝ(3)((3)12, θ12)

= Ŝ(3)(12(3), θ12)Ŝ(3)((2)13, θ13)Ŝ(3)(23(1), θ23), (3.3.12)
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where θij = θi − θj . Here

Ŝ(3)(ij(k), θ) =

(
S̃(3)(ij(k), θ) 0

0 S̃(3)(ij(k), θ)

)
, (3.3.13)

and Ŝ(3)((k)ij, θ) =

(
S̃(3)((k)ij, θ) 0

0 S̃(3)((k)ij, θ)

)
, (3.3.14)

with S̃(3)(ij(k); θ) =

⎛⎜⎜⎜⎝
S 0 0 Sa
0 Sr St 0
0 St Sr 0
Sa 0 0 S

⎞⎟⎟⎟⎠ , (3.3.15)

and S̃(3)((k)ij; θ) =

⎛⎜⎜⎜⎝
S Sa 0 0
Sa S 0 0
0 0 Sr St
0 0 St Sr

⎞⎟⎟⎟⎠ . (3.3.16)

Ŝ(3)(ij(k); θ), actually means that particles ij collide, while k remains
to the right of the collision, and Ŝ(3)((k)ij; θ) is similar but with k
remaining to the left. From the preceding cubic identity (3.3.12) we
obtain the following relations:

SSaSr + SaStSt = SaSS + SSrSa,

SSaSt + SaStSr = SrStSa + StSaS,

SrSSr + StSrSt = SaSSa + SSrS,

SrSSt + StSrSr = SrStS + StSaSa, (3.3.17)

where the arguments of the S’s are implied to be θ12, θ13 and θ23 in
that order, or for greater convenience θ, θ + θ′, θ′ after denoting that
θ = θ12 and θ′ = θ23.

If, instead of |A〉 and |Ā〉, one employs the doublet

|A〉 = (|A1〉+ i|A2〉)/
√

2

|Ā〉 = (|A1〉 − i|A2〉)/
√

2 (3.3.18)
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and takes as basis |A1A1〉, |A2A2〉, |A1A2〉 and |A2A1〉, then it leads to
the following form of Ŝ(2)(θ):

Ŝ(2)(θ) =

⎛⎜⎜⎜⎝
σ σa 0 0
σa σ 0 0
0 0 σr σt
0 0 σt σr

⎞⎟⎟⎟⎠ ,
where

2σ = S + Sa + St + Sr,

2σa = St + Sr − S − Sa,

2σr = S − Sa + Sr − St,

2σt = S − Sa + St − Sr. (3.3.19)

The problem now is to solve the functional equations (3.3.11) and
(3.3.17). For the nonrelativistic case one need not consider the crossing
relations for the nonrelativistic case. Instead, from (3.3.17) we have

S(θ) =
sn(µθ + 2ξ, l)

sn(2ξ, l)
Sr(θ),

St(θ) = −sn(µθ, l)
sn(2ξ, l)

Sr(θ),

Sa(θ) = −lsn(µθ, l)sn(µθ + 2ξ, l)Sr(θ), (3.3.20)

where l is the modulus of Jacobi’s elliptic function sn(x, l), while µ, ξ
are arbitrary constants. Substitution in the unitary relations gives

Sr(θ)Sr(−θ) =
sn2(2ξ, l)

sn2(2ξ,−l)− sn2(µθ, l)
. (3.3.21)

This equation can be uniquely solved, except for the well-known CDD
ambiguity [50]. Setting f(θ) = lnSr(θ), we can rewrite it as

f(θ) + f(−θ) =
∞∑
n=1

16qn

n(1− q2n) sin2
[
πn(2ξ + ik′)

2k

]
sin2

[
πnµθ

2k

]
,

(3.3.22)
where k and k′ are the complete elliptical integrals of the first kind
with moduli l and l′ =

√
1− l2, respectively, and q is defined by

q = exp(−πk′/k). (3.3.23)
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Equation (3.3.22) may be solved under the condition that Sr(θ) is mero-
morphic, to obtain

f(θ) = 8
∞∑
n=1

sin2
[
πn(2ξ+ik′)

2k

]
n sinh

[
πnk′
k

] fn(θ), (3.3.24)

with

fn(θ) =
sin
[
πnµθ
2k

]
sin
[
πn(2ξ+µθ)

2k

]
2 cos

[
πnξ
k

] . (3.3.25)

Thus the function Sr(θ) is given by

Sr(θ) = exp

⎡⎣4 ∞∑
n=1

sin2
[
πn(2ξ+ik′)

2k

]
sin
[
πnµθ
2k

]
sin
[
πn(2ξ+µθ)

2k

]
n sinh

[
πnk′
k

]
cos
[
πnξ
k

]
⎤⎦ .
(3.3.26)

Having determined Sr(θ), the remaining elements of the S matrix can
be obtained from (3.3.20), thus completing the determination of the
nonrelativistic factorized S matrix with Z4 symmetry. Note that the
constants µ and ξ are independent.

It is interesting to consider certain special cases. For example, l = 0
corresponds to Sa = 0 and is interesting, as the functional equations
(3.3.20) now reduce to sinusoidal functions given by

S(θ) =
sin(µθ + 2ξ)

sin 2ξ
Sr(θ),

St(θ) = −sin(µθ)
sin 2ξ

Sr(θ), (3.3.27)

and Sr(θ)Sr(−θ) + St(θ)St(−θ) = 1. (3.3.28)

Substituting St(θ) into the last equation gives

Sr(θ)Sr(−θ) =
sin2 2ξ

sin(2ξ + µθ) sin(2ξ − µθ) . (3.3.29)

Assuming Sr(θ) to be meromorphic, and considering the gamma func-
tion formula,

Γ(z)Γ(1− z) =
π

sinπz
,
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leads to the following solution for Sr(θ):

Sr(θ) = − sin 2ξ
sinµθ

Γ(−2ξ+µθ
π )Γ(1 + 2ξ−µθ

π )

Γ(−µθ
π )Γ(1− µθ

π )
. (3.3.30)

Hence from (3.3.27), one finds

St(θ) =
Γ(−2ξ+µθ

π )Γ(1 + 2ξ−µθ
π )

Γ(−µθ
π )Γ(1− µθ

π )
, (3.3.31)

and S(θ) = −sin(µθ + 2ξ)
sin 2ξ

Γ(−2ξ+µθ
π )Γ(1 + 2ξ−µθ

π )

Γ(−µθ
π )Γ(1− µθ

π )
. (3.3.32)

It should be pointed out however that there still exists CDD ambiguity
in the solution (3.3.30) of the unitary equation (3.3.29).

For subsequent analysis, it is convenient to recast Sr(θ) and S(θ),
given by (3.3.30) and (3.3.32), respectively, in the following form:

Sr(θ) =
Γ(µθπ )Γ(1 + 2ξ−µθ

π )Γ(−2ξ+µθ
π )

Γ(−µθ
π )Γ(−2ξ

π )Γ(1 + 2ξ
π )

, (3.3.33)

S(θ) =
Γ(µθπ )Γ(1 + 2ξ−µθ

π )

Γ(−µθ
π )Γ(1 + 2ξ+µθ

π )
. (3.3.34)

Zamolodchikov and Zamolodchikov were the first to note the connection
between the above S matrices and those of the Calogero system [51].
The latter is in general a completely integrable many-body system,
described by the Wierstrass ℘ function. However, there is a special case
of this system consisting of two species A and Ā, with a Hamiltonian
given by

H = − h̄2

2m

∑
A

∂2

∂x2
i

+ ΣUAA(xi − xj)−
h̄2

2m

∑
Ā

∂2

∂y2
i

+ΣUĀĀ(yi − yj) + ΣUAĀ(xi − yj), (3.3.35)

where

UAA(x) = UĀĀ(x) =
U0

sinh2(ax)
, UAĀ(x) = − U0

cosh2(ax)
, (3.3.36)
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with U0 and a being positive constants. Owing to the complete inte-
grability of the model, the total S matrix can be determined by com-
puting the two-body S matrix. Furthermore, the consequent two-body
problem with interaction potential given by (3.3.36) may be solved ana-
lytically. In terms of relative coordinates, the problem involves solving
the Schrödinger equation:(

− h̄
2

m

∂2

∂x2
+

U0

cosh2 ax

)
Ψ(x) = EΨ(x). (3.3.37)

Employing the transformation,

ξ = tanh(ax), ε = −i
√
mE

h̄a
, s =

1
2

⎛⎝√1− 4mU0

h̄2a2
− 1

⎞⎠ , (3.3.38)

allows (3.3.37) to be written as

d

dξ
(1− ξ2)dΨ

dξ
+

{
s(s+ 1)− ε2

1− ξ2

}
Ψ = 0. (3.3.39)

Using
Ψ(x) = (1− ξ2)νw(ξ), ν = ε/2, (3.3.40)

(3.3.39) reduces to

(1− ξ2)d
2w

dξ2
− 2ξ(2ν + 1)

dw

dξ
+ (s− ε)(s+ ε+ 1)w = 0, (3.3.41)

and upon making the identifications,

u = (1− ξ)/2, α = ε− s, β = ε+ s+ 1, γ = ε+ 1, (3.3.42)

it reduces to the familiar hypergeometric equation:

u(1− u)d
2w

du2
+ {γ − (α+ β + 1)u}dw

du
− αβw = 0. (3.3.43)

The scattering wave solution is therefore given by

Ψ(x) = (1− ξ2)νF (α, β, γ; (1− ξ)/2), (3.3.44)

and has the asymptotic nature:

Ψ(x) ∼ 4ν exp(−2ανx) as x→ +∞, (3.3.45)
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Ψ(x) ∼ 4ν
[
Γ(γ)Γ(α+ β − γ)

Γ(α)Γ(β)
e−2ανx +

Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)e

2ανx
]

(3.3.46)
as x → −∞. Here we have used the connection formula for hypergeo-
metric functions:

F (α, β, γ;u) =
Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)F (α, β, α+ β − γ + 1; 1− u)

+(1− u)γ−α−β Γ(γ)Γ(α+ β − γ)
Γ(α)Γ(β)

F (γ − α, γ − β, γ − α− β + 1; 1− u).
(3.3.47)

The S matrices are then given by

Sr =
Γ(α)Γ(β)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)Γ(α+ β − γ) , (3.3.48)

St =
Γ(α)Γ(β)

Γ(γ)Γ(α+ β − γ) . (3.3.49)

Comparing these expressions with (3.3.33) and (3.3.34), it is found that
both these S matrices are identical for

2µ = i
mπ

h̄a
, 2ξ = πs. (3.3.50)

An interesting result that emerges from this:∫ ∞

−∞
U0

cosh2(ax)
dx =

2U0

a
;

when the limit U0, a → +∞ with U0/a = κ (fixed) is taken, then the
expressions for the S matrices reduce to

Sr(p) =
−iκ/h̄

p
2m + iκ/h̄

, (3.3.51)

St(p) =
p

2m
p

2m + iκ/h̄
, S(p) = 1, (3.3.52)

using (3.3.50) and determining that p = 2
√
mE and Γ(z) ∼ 1

z for z ∼ 0.
These expressions for Sr and St are similar to those obtained by Yang
when considering the δ-function fermi gas, with the Hamiltonian

H = − h̄2

2m

∑
i

∂2

∂x2
i

− h̄2

2m

∑
i

∂2

∂y2
i

+ 2κ
∑
i

δ(xi − yi) (3.3.53)
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where xi(yi)’s are the coordinates of spin-up (down) particles [52]. In
this context one regards A(Ā) as a spin-up (down) state of fermions of
spin 1/2.

The second interesting limit arises when the case Sa = 0 and σa = 0
is considered, which forbids the processes AA←→ ĀĀ and A1A1 ←→
A2A2, in which case S = St + Sr, as a result of (3.3.48 and 3.3.49).
This case is realized when one takes the limit, µ→ 0, 2ξ → −π, where
(π + 2ξ)/µ ≡ −2iκ/h̄ is fixed. The resulting S matrix is now

S(p) =
p

2m −
iκ
h̄

p
2m + iκ

h̄

, (3.3.54)

which matches the result of Lieb and Liniger for the δ-function Bose
gas with the Hamiltonian [32]:

H = − h̄2

2m

∑
i

∂2

∂x2
i

+ 2κ
∑
i

δ(xi − xj). (3.3.55)

Thus, a nonrelativistic theory of factorized S matrices is not only pos-
sible, but also it reproduces certain well-known results, of different
many-particle systems under various limiting conditions.

3.4 Baxter’s Star-Triangle Relation

Baxter’s star-triangle relation marks one of the most outstanding
theoretical achievements in the analysis of exactly solvable lattice spin
systems. The simplest way to understand this particular relation is to
consider a relativistic scattering theory with n kinds of particles, all
having identical masses in 1+1 dimension. The two-particle scattering
matrix is given by Sβ1β2

α1α2
(θ12), where α1 and α2 denote the incoming

particles and β1 and β2 the outgoing ones. This is shown in Figure
(3.4.1). As the particles are identical and of equal mass, the energy-
momentum conservation relation and a pair of rapidities θ1 and θ2
remain unaltered during the scattering process. Furthermore, Lorentz-
invariance requires that the S matrix be a function only of the relative
rapidity θ1 − θ2 = θ12. A crucial observation here is if the system ad-
mits an infinite set of conserved quantities, then any set of individual
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FIGURE 3.4.1: Schematic diagram of the two-particle scattering
matrix.

rapidities will be conserved in a multiparticle collision. As a conse-
quence, the resulting amplitude of the S matrix is independent of the
sequence of two-particle collisions. This means that the three-particle
S matrix element constructed from two-particle amplitudes in different
ways must be equal [53]. Two such possibilities are depicted in the
Figure (3.4.2). The equalities of the depicted amplitudes are known as
the factorization equations and may be expressed as follows:

Sγ1γ2
α1α2

(θ12)Sβ1γ3
γ1α3

(θ13)Sβ2β3
γ2γ3

(θ23) = Sγ2γ3
α2α3

(θ23)Sγ1β3
α1γ3

(θ13)Sβ1β2
γ1γ2

(θ12),
(3.4.1)

θmn = θm − θn, 0 ≤ αi, βi, γi < n, i = 1, 2, 3,

where we assume summation over repeated indices. A number of ob-
servations follow from (3.4.1):

(i) When the relative rapidities vanish, then there is no scattering.
This gives us a natural initial condition,

Sβ1β2
α1α2

(0) = δα1β2δα2β1 . (3.4.2)

This initial condition is compatible with the factorization equation pro-
vided:

(ii) Sγ1γ2
α1α2

(θ)Sβ2β1
γ2γ1

(−θ) = δα1β1δα2β2F (θ), (3.4.3)

which is known as the unitarity condition.
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FIGURE 3.4.2: Diagram depicting the equivalence of S matrix
element constructed from two-particle amplitudes.

(iii) Furthermore, (3.4.1) admits the following symmetry condition,
known as crossing symmetry:

Sβ1β2
α1α2

(θ) = S
β2α�

1
α2β�

1
(iπ − θ). (3.4.4)

We also have

(iv) PT-invariance: Sβ1β2
α1α2

(θ) = Sα2α1
β2β1

(θ), (3.4.5)

(v) CP-invariance: Sβ1β2
α1α2

(θ) = S
β�
2β

�
1

α�
2α

�
1
(θ), (3.4.6)

where the � denotes charge conjugation. Now the type of particle in-
volved in the scattering process is typically specified by its isotopic
charge, that is, conserved modulo n. In the case of two-particle scat-
tering it means that

α1 + α2 = β1 + β2 (mod n), (3.4.7)

while charge conjugation stands for a reversal of its sign,

α� = −α mod n. (3.4.8)

The preceding discussion allows for a smooth transition to analysis of
two-dimensional spin statistical systems. For this, it is necessary to
assume that the rapidities are purely imaginary. The latter condition
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FIGURE 3.4.3: The relative rapidity corresponds to the angle θ12.

allows for the relative rapidity to be given the geometrical meaning of
the angle depicted in Figure (3.4.3). Consider now a lattice formed by
the vertices shown in Figure (3.4.3), the plaquettes of the latter being
occupied by spin variables σ and µ in a way to satisfy the conditions:

α1 = σ1 − µ1, α2 = µ2 − σ1, β1 = µ2 − σ2, β2 = σ2 − µ1. (3.4.9)

It is implied that the addition of indices is modulo n. The connection
to statistical spin systems is brought about by regarding the S matrix
element, as a statistical weight of a corresponding spin configuration,
with identification

Sβ1β2
α1α2

(θ) = Rσ1σ2
µ1µ2

(−iθ), (3.4.10)

and depends on the relative orientation of spins. The PT-invariance
condition now takes the form

Rσ1σ2
µ1µ2

(θ) = Rσ2σ1
µ1µ2

(θ), (3.4.11)

and is therefore equivalent to symmetry upon interchanging σ1 ↔ σ2.
CP-invariance, on the other hand, translates to a symmetry upon in-
terchange of µ1 ↔ µ2 so that

Rσ1σ2
µ1µ2

(θ) = Rµ2µ1
σ1σ2

(θ). (3.4.12)

Finally crossing symmetry now assumes the form

Rσ1σ2
µ1µ2

(θ) = Rµ1µ2
σ1σ2

(π − θ). (3.4.13)
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FIGURE 3.4.4: Graphical representation of Equation (3.4.14).

In view of (3.4.10), the factorization equation in terms of the spin
variables becomes
n−1∑
σ=0

Rσ1σ3
µ2µ3

(θ1)Rσ2σ
µ3µ1

(θ2)Rσ3σ
µ3µ2

(θ3) =
n−1∑
µ=0

Rµ1µ
σ2σ3

(θ1)Rµ2µ
σ3σ1

(θ2)Rµ3µ
σ1σ2

(θ3),

(3.4.14)
θ1 + θ2 + θ3 = π. (3.4.15)

Equation (3.4.14) may be graphically represented as in Figure (3.4.4).
When (3.4.14) is satisfied, Baxter showed that the partition function
of the spin model remained invariant under parallel translations of the
direct lines forming the lattice, thus depending only on the angles be-
tween them. This property is called Z-invariance [54].

From the standard initial conditions (3.4.2) and using (3.4.9) and
(3.4.13), it is possible to derive the boundary conditions on R(θ), which
are as follows:

Rσ1σ2
µ1µ2

(0) = δσ1,σ2 , Rσ1σ2
µ1µ2

(π) = δµ1,µ2 . (3.4.16)

The analog of the unitary condition (3.4.3) may now be obtained from
(3.4.14), if one of the arguments θi is set equal to π and (3.4.15) is
used. This leads to the condition,

n−1∑
σ=0

Rσ1σ
µ1µ2

(θ)Rσ2σ
µ1µ2

(−θ) = δσ1,σ2F (θ). (3.4.17)
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As (3.4.17) holds for arbitrary µ1 and µ2, it is obvious that F (θ) must
be an even function. It will be noticed that the spin models under
consideration are actually built out of two kinds of spin variables σ
and µ, which do not interact. The absence of any interaction between
the σ and µ means that the statistical weight Rσ1σ2

µ1µ2
can be factorized:

Rσ1σ2
µ1µ2

(θ) = Kσ1σ2(θ)Kµ1µ2(π − θ), (3.4.18)

while the crossing condition Rσ1σ2
µ1µ2

(θ) = Rσ1σ2
µ1µ2

(π − θ), implies

Kσ1σ2(θ) = Kσ1σ2(π − θ), (3.4.19)

so that the K’s obey crossing symmetry. Again the restriction

Rσ1σ2
µ1µ2

(θ) = Rσ1σ2
µ2µ1

(θ),

implies that
Kµ1µ2(π − θ) = Kµ2µ1(π − θ), (3.4.20)

meaning that K(θ) is symmetric in its indices. Furthermore,

Rσ1σ2
µ1µ2

(θ) = Rσ2σ1
µ1µ2

(θ)

implies that
Kσ1σ2(θ) = Kσ2σ1(θ). (3.4.21)

Substituting (3.4.18) into (3.4.14) we get

n−1∑
σ=0

Kσ1σ(θ1)Kσ2σ(θ2)Kσ3σ(θ3) = λ(θ1, θ2, θ3)Kσ2σ3(π − θ1)×

×Kσ3σ1(π − θ)Kσ1σ2(π − θ), (3.4.22)

where θ1 + θ2 + θ3 = π and λ(θ1, θ2, θ3) is some function, symmetric in
its arguments. Equation (3.4.21) admits the graphical representation
shown in Figure (3.4.5) in which Kσ1σ2(θ) is denoted by a line connect-
ing points σ1 and σ2, and is called the star-triangle relation (STR).
The standard boundary conditions on the statistical weights Rσ1σ2

µ1µ2
, as

given in (3.4.16), lead to the following boundary conditions for K’s:

Kσ1σ2(0) = νδσ1,σ2 , Kσ1σ2(π) = ν−1. (3.4.23)

Setting one of the arguments θi in (3.4.21) equal to π and using (3.4.22),
we get the following unitarity conditions:∑

σ

Kσ1σ(θ)Kσ2σ(−θ) = f(θ)δσ1σ2 , (3.4.24)
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FIGURE 3.4.5: Diagrammatic representation of the star-triangle
relation.

Kσ1σ2(π − θ)Kσ1σ2(π + θ) = g(θ), (3.4.25)

where f(θ) and g(θ) are some even functions. It might be mentioned
here that any two solutions of the star-triangle relation differing by an
arbitrary factor ρ(θ) are equivalent, as it involves a renormalization of
the factors λ(θ1, θ2, θ3) and f(θ) and g(θ) in the respective equations.

Using (3.4.1) and (3.4.14), Baxter showed that the transfer matrices
of Z-invariant models formed parametric commutative families. This
is also true for spin models obeying the star-triangle relation. We refer
the reader to the original work of Baxter [55] for further details.

3.5 Vertex Models

A particularly rich field in which the Yang-Baxter equation has fun-
damental importance is in the case of two-dimensional vertex models
[65, 66, 67]. It can be viewed as giving a sufficient condition for the
commutability of the transfer matrices in statistical mechanics. This
property enables us to evaluate exactly physical quantities such as the
free energy and the one-point function. It is in this sense that such mod-
els are termed as exactly solvable. The commutability of the transfer
matrices allows us to study the exactly solvable models in (1 + 1)-
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dimensional quantum theory and two-dimensional classical statistical
mechanics. Moreover, as two-dimensional vertex models appear in di-
verse physical situations, such as ferroelectric systems, spin models,
crystal models like ice and KDP, etc., they constitute a vital part of
any theoretical study of real-life physical systems.

Vertex models in statistical physics consist basically of a two-dimens-
ional square lattice of M rows and N columns, where each link can
take a different state. Horizontal and vertical links may be in local
states belonging to two different vector spaces A and V. One then
assigns the Boltzmann weight (vertex weight) to the configuration of
state variables. To get a more concrete idea, let us consider a collection
of “atoms” located at the vertices of the two-dimensional lattice and
assume that each atom interacts only with its nearest neighbour. In
addition, we assume that the interaction energy depends on the “state”
of the bonds joining the neighbouring atoms. If the possible states of
the bonds are labelled by the elements of a finite set {1, 2, ..., n}, then
the interaction energy will be denoted, say by εklij , if the states of the
bonds connected to the atoms are as depicted in Figure (3.5.1).

In general εklij will depend on certain other parameters such as the
external electric or magnetic fields, etc. It will, however, be assumed to
be independent of the location of the vertex within the lattice. Knowl-
edge of εklij obviously specifies the model. Now, a state of the lattice

FIGURE 3.5.1: Labelling of the state of bonds.
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is given by the assignment of a state to each bond of the lattice, so
that the energy of the entire lattice is obtained by summing up εklij
over all the atoms in the lattice. Obviously for an infinite lattice, such
a sum will clearly be divergent and therefore one begins with a lat-
tice of M × N (finite) rows and columns and finally goes to the limit
M,N →∞. For such finite lattices, it is necessary to impose periodic
boundary conditions on the states of the bonds at the edges as shown
in Figure (3.5.2).

Now the canonical partition function

Z =
∑
all

configs.

exp(−βEstate), (3.5.1)

where β as usual is proportional to the inverse temperature while

exp(−βEstate) =
∏
all

vertices

exp(−βεklij ). (3.5.2)

Hence
Z =

∑
all

configs.

∏
all

vertices

exp(−βεklij ). (3.5.3)

The free energy of the system is defined in the thermodynamic limit

FIGURE 3.5.2: Schematic diagram of a finite M ×N lattice with
periodic boundary conditions.
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by

f = − lim
(M,N)→∞

1
MN

logZ. (3.5.4)

Here exp(−βεklij ) is called the Boltzmann weight, and we may repre-
sent them as the elements of a matrix, i.e., Rjl

ik(θ) = exp(−βεklij ), with
θ being some kind of coupling constant, which also depends on the
temperature. Now we introduce the monodromy operator Tij(θ), asso-
ciated with a horizontal line of the lattice and given by

Tij(θ) =
dimA∑

a1,...aN−1=1

t
(1)
ia1

(θ)⊗ t(2)
a1a2

(θ)⊗ ...⊗ t(N)
aN−1L

(θ). (3.5.5)

Here each t
(K)
ij (θ) acts in the vertical space V associated to the Kth

column of the lattice, and its elements are given by

[tij(θ)]kl = Rjl
ik(θ) = exp(−βεklij ).

To evaluate the partition function Z one has to sum over all possible
states of the bonds in the first row, excluding the free bonds for the
time being as shown in Figure (3.5.3).

FIGURE 3.5.3: Schematic diagram of the lattice with a single row
used for evaluation of the partition function.
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Thus we form the monodromy matrix T (θ), with the elements

T
j′1l1....lN
j1k1...kN

(θ) =
∑

r1...rN−1

Rr1l1
j1k1

(θ)Rr2l2
r1k2

(θ)....Rj′1lN
rN−1kN

(θ). (3.5.6)

To keep track of the indices, it is convenient to introduce an auxiliary
N -dimensional vector space V, with basis {v1, ....vN} and define R ∈
End(V ⊗ V) by

R(vi ⊗ vj) =
∑
k,l

Rkl
ijvk ⊗ vl, (3.5.7)

and T ∈ End(A⊗ V⊗N ) by

T (vj1 ⊗ vk1 ⊗ ...⊗ vkN ) =
∑

j1,l1...lN

T
j′1l1....lN
j1k1...kN

(vj′1 ⊗ vl1 ....⊗ vlN ). (3.5.8)

Then the monodromy matrix can be written as

T (θ) = R01(θ)R02(θ)....R0N (θ), (3.5.9)

where Rij here means an R acting in the ith and jth space of the
tensor product A ⊗ V⊗N , the first space being labelled 0 and the rest
1, 2, ...., N . Recalling that we assumed periodic boundary conditions
for the ends, i.e., j1 = j′1, so that summing over the states of all bonds
in the first row gives us nothing but a trace so that we have

T j1l1....lN
j1k1....kN

(θ) = (trAT (θ))l1.....lNk1....kN
. (3.5.10)

This is referred to as the row-to-row transfer matrix in the literature
on statistical mechanics. Consequently, the result of summing the con-
tributions to the partition function Z, over all states of bonds in the
first two rows will be

(trAT (θ))l1.....lNk1....kN
(trAT (θ))k1....kN

m1....mN
=
(
(trAT )2

)l1.....lN
m1....mN

, (3.5.11)

due to the summing up over the vertical bonds joining the first two
rows. This is depicted in Figure (3.5.4).

Proceeding in this manner, it is obvious that the result of summing
over all the vertical bonds together with periodic boundary conditions
finally leads to the following expression for the partition function:

Z = trV⊗N

(
(trAT (θ))M

)
= trV⊗N

[
τ(θ)M

]
, (3.5.12)
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FIGURE 3.5.4: Schematic diagram of the row-to-row transfer
matrix for two rows.

where we have denoted the row-to-row transfer matrix by τ(θ). Since
(3.5.12) gives the partition function Z as a trace over a transfer matrix,
its evaluation basically requires determination of the eigenvalues of the

operator
[
τ (N)(θ)

]M
. Indeed, in the thermodynamic limit, all one re-

quires is a knowledge of the largest eigenvalue Λ(N)
max(θ), to evaluate

the free energy since it can be shown that

f = − lim
N→∞

1
N

log Λ(N)
max(θ). (3.5.13)

The above considerations are valid irrespective of the integrability of
the model. Now, while the notion of complete integrability in Hamil-
tonian mechanics is a precise notion in view of the Liouville theorem,
it does not have a precise meaning in statistical mechanics, where the
term exactly solvable is more appropriate, provided one can obtain
closed-form analytic expressions for the free energy in the thermody-
namic limit. We shall see later how the quantum inverse scattering
method allows for the exact determination of the eigenvalues of the
transfer matrix, by making use of the algebraic Bethe ansatz. In the
present context of vertex models, it is appropriate to dwell on the
sufficiency condition for exact solvability of the model or integrability
generally. This is provided once again by the Yang-Baxter equation
which emerges in the following manner. Assuming the existence of a



80 Quantum Integrable Systems

nonsingular matrix R(θ), so that

R(θ − θ′)[t(θ)⊗ t(θ′)] = [t(θ′)⊗ t(θ)]R(θ − θ′), (3.5.14)

where ⊗ refers to the usual tensor product of matrices acting on h-
dimensional horizontal spaces A, with R acting on A⊗A, the matrix
product being on the vertical spaces V. Elementwise, this equation is
written as follows:

Ref
ab (θ−θ

′)[tec(θ)]pγ [tfd(θ′)]γq = [tae(θ′)]pγ [tbf (θ)]γqRcd
ef (θ−θ′). (3.5.15)

If a new vertex configuration is associated to Rcd
ab(θ), as shown in Figure

(3.5.5). Then equation (3.5.15) can be interpreted in the following
graphical manner as shown in Figure (3.5.6).

This graphical description will be particularly helpful when we con-
sider the Yang-Baxter algebra in the presence of finite boundary condi-
tions. Equation (3.5.15), together with its graphical counterpart, shows
that one is allowed to shift the wavy lattice line (of type V) through the
vertex representing Rcd

ab, provided we maintain the same relative angles
between the different lines. Equation (3.5.14), or its explicit version as
given by (3.5.15), represents in a sense a local relation since it is valid
for each vertex.

FIGURE 3.5.5: Schematic representation of a vertex configuration.
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FIGURE 3.5.6: Schematic representation of Equation (3.5.15).

From the definition of Tij(θ) in (3.5.5), using (3.5.15) one can derive
the corresponding relation for Tab(θ), which reads

R(θ − θ′)[T (N)(θ)⊗ T (N)(θ′)] = [T (N) ⊗ T (N)(θ)]R(θ − θ′), (3.5.16)

which is to be interpreted as a global version of (3.5.15). Equation
(3.5.16) holds in A ⊗ A ⊗ V. Its graphical representation consists of
repeated application of the graphical form, depicted in Figure (3.5.7),
which is often referred to as the train argument.

From (3.5.16) as R(θ − θ′) is nonsingular, we have

[T (N)(θ)⊗ T (N)(θ′)] = R−1(θ − θ′)[T (N) ⊗ T (N)(θ)]R(θ − θ′).

Upon taking trace on A⊗A and using its cyclic property, we arrive at

[τ (N)(θ), τ (N)(θ′)] = 0, (3.5.17)

with
τ (N)(θ) ≡ trAT (N)(θ). (3.5.18)

Thus we have a one-parameter family of commuting transfer matrices.
It will be realized that by virtue of the relation (3.5.16), the R matrix
defines the basic algebraic structure of the theory of integrable vertex
models. We shall refer to (3.5.16) as the Yang-Baxter algebra (YBA).
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FIGURE 3.5.7: Graphical representation of the Yang-Baxter
algebra.

To determine the consistency of this algebra, we may consider the trans-
formation of the product T (θ1)⊗T (θ2)⊗T (θ3) to T (θ3)⊗T (θ2)⊗T (θ1),
using (3.5.16), in order to establish the Yang-Baxter equation. Firstly,
one can convert T (θ1) ⊗ T (θ2) ⊗ T (θ3) to T (θ3) ⊗ T (θ2) ⊗ T (θ1) as
follows:

T (θ1)⊗ T (θ2)⊗ T (θ3) = (R−1(θ1 − θ2)⊗ I)(I ⊗R−1(θ1 − θ3))

×(R−1(θ2 − θ3)⊗ I)[T (θ3)⊗ T (θ2)⊗ T (θ1)]

×(R(θ2 − θ3)⊗ I)(I ⊗R(θ1 − θ3))(R(θ1 − θ2)⊗ I).
Alternatively the same conversion may be obtained in the following
manner:

T (θ1)⊗ T (θ2)⊗ T (θ3) = (I ⊗R−1(θ2 − θ3))(R−1(θ1 − θ3)⊗ I)

×(I ⊗R−1(θ1 − θ2))× [T (θ3)⊗ T (θ2)⊗ T (θ1)]

×(I ⊗R(θ1 − θ2))(R(θ1 − θ3)⊗ I)(I ⊗R(θ2 − θ3)).
The Yang-Baxter equation then emerges as the sufficiency condition of
these two equations and is represented by

(I ⊗R(θ1 − θ2))(R(θ1 − θ3)⊗ I)(I ⊗R(θ2 − θ3))

= (R(θ2 − θ3)⊗ I)(I ⊗R(θ1 − θ3))(R(θ1 − θ2)⊗ I). (3.5.19)



Yang-Baxter Equation 83

3.6 Reflection Equation Algebra

In this section we consider an extension of the Yang-Baxter equation
by incorporating an additional element called the reflection matrix.
The resulting quadratic algebra may be shown to have new proper-
ties with a direct bearing on physical problems. Historically, just as
the Yang-Baxter equation arose from factorizable scattering on the en-
tire line, the new reflection equation algebra can be shown to emerge
from factorizable scattering on a half line. Furthermore, whereas the
Yang-Baxter equation gives the sufficiency condition for commutativ-
ity of transfer matrices of exactly solvable models in statistical me-
chanics assuming periodic boundary conditions. The new reflection
equation leads to commutability of transfer matrices for lattice models
with boundaries, the so-called open chains. This provides motivation
for studying the reflection equation and its associated algebra. Apart
from open chains, the reflection equation has also appeared in the con-
text of quantum groups and quantum algebras, in noncommutative
differential geometry, etc., to name a few branches.

To initiate a discussion on the reflection algebra we consider the
Zamolodchikov algebra [56]

Aα(u)Aβ(v) = Rαβ
γδ (u− v)Aγ(u)Aδ(u), (3.6.1)

and assume that there exists a matrix K(u), so that

Aα(u) = Kα
α′(u)Aα′(−u). (3.6.2)

From (3.6.2), the matrix Kα
α′(u) may be interpreted as the amplitude

for a particle to be reflected elastically from a wall. This provides a
simple visual description of factorized scattering on a half line. Setting
u = 0 gives

K(0) = I. (3.6.3)

Using (3.6.2) twice we get Aα(u) = Kα
α′(u)Kα′

α′′(−u)Aα′′(u), implying
that

K(u)K(−u) = I, (3.6.4)

giving us the unitarity condition. Considering monomials of degree two,
i.e., objects Aα(u)Aβ(v), it can be shown that there are two distinct
ways of applying the extended Zamoldchikov algebra twice, to obtain an
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expression proportional to Aα′(−u)Aβ′(−u). Subsequent assumption of
linear independence of these monomials leads to the relation [57]

R12(u− v)
1

K(u) P12R12(u+ v)P12

2

K(v)

=
2

K(v) R12(u+ v)
1

K(u) P12R12(u− v)P12. (3.6.5)

Equation (3.6.5) will be referred to as the reflection factorization equa-
tion.
Thus, given a solution of R(u) the Yang-Baxter equation (3.6.5) may
be solved for K(u). We give a few examples below.
Example 1: The R matrix for the spin 1

2 A
(1)
1 matrix is [58]

R(u, η) =
1

Z(u, η)

⎛⎜⎜⎜⎝
sinh(u+ η) 0 0 0

0 sinhu sinh η 0
0 sinh η sinhu 0
0 0 0 sinh(u+ η)

⎞⎟⎟⎟⎠ , (3.6.6)

where Z(u, η) =
√
| sinh(u+ η) sinh(−u+ η)|. It is seen to be symmet-

ric, i.e.,
P12R12(u)P12 = R12(u).

The solution of K(u) for such an R matrix is

K(u, ξ) =
1√

| sinh(u+ ξ) sinh(−u+ ξ)|

(
sinh(u+ ξ) 0

0 − sinh(u− ξ)

)
.

(3.6.7)
Example 2: In the case of the Fateev-Zamolodchikov R matrix rep-
resenting spin 1, the A

(1)
1 matrix [59], the solution of the reflection

equation is

K(u, ξ) = ρ(u, ξ)

⎛⎜⎝a++ 0 0
0 a−+ 0
0 0 a−−

⎞⎟⎠ , (3.6.8)

where
a++ = sinh(u+ ξ) sinh(u+ ξ − η),
a−+ = − sinh(u− ξ) sinh(u+ ξ − η),
a−− = sinh(u− ξ) sinh(u− ξ + η),

and

ρ(u, ξ) =
√

sinh(u+ ξ) sinh(−u+ ξ) sinh(u− η + ξ) sinh(−u− η + η),



Yang-Baxter Equation 85

with ξ being an arbitrary parameter. It is convenient at this point to
return to a diagrammatic approach in order to understand the reflection
equation. For simplicity we will assume that the R matrix, following
from the Yang-Baxter equation, satisfies the following conditions:

• Symmetry P12R12P12 = R12, Rt1
12 = Rt2

12, (3.6.9)

where ti denotes a transposition in the ith space.

• Unitarity R12(θ)R12(−θ) = ρ(θ). (3.6.10)

• Crossing unitarity Rt1
12(θ)R

t2
12(−θ − 2i) = ρ̃(θ), (3.6.11)

where ρ(θ) and ρ̃(θ) are some scalar functions.
Example: The simplest example of a R matrix fulfilling these condi-
tions is that which corresponds to the scattering of two spin 1

2 particles,
and is given by

R(θ) = −iθI + P, (3.6.12)

(P)j1j2i1i2
= δj2i1 δ

j1
i2
. (3.6.13)

As noted earlier, the scattering process on a half line can be visualized
by postulating the existence of a “wall” either on the right or left. On
striking the wall, a particle is assumed to be reflected elastically so that
its rapidity undergoes a reflection θ −→ −θ, without any alteration of
its intrinsic quantum numbers; i.e., the indices on the R matrix. The

FIGURE 3.6.1: Schematic diagram of a reflection matrix.
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amplitude for scattering off the wall is therefore given by the “reflection
matrix”, say, Kj

−i(θ) and is shown in Figure (3.6.1).
Let us recall that the essential feature in the case of factorized scat-

tering within the diagrammatic approach was the fact that one could
displace any line parallel to itself through the intersection of the other
two lines. Retaining this view would mean, in the case of two-particle
scattering from a half line, the equivalence of the two diagrams, shown
in Figure (3.6.2).

Associating an R matrix to the intersection of two lines and a K−
matrix to reflection from the wall with time flowing from the bottom
to top gives us the following relation:

R12(θ1 − θ2)
1
K− (θ1)R12(θ1 + θ2)

2
K− (θ2)

=
2
K− (θ2)R12(θ1 + θ2)

1
K− (θ1)R12(θ1 − θ). (3.6.14)

For the R matrix given by (3.6.12), this equation admits the following
solution for K−(θ):

K−(θ, ξ−) =
(
I − iθ

ξ−
σ3
)
. (3.6.15)

If the “wall” is situated to the left as shown in Figure (3.6.3), then we
may associate a matrix K+

j
i for the elastic reflection.

FIGURE 3.6.2: Schematic diagram of Equation (3.6.2).
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FIGURE 3.6.3: Schematic representation of reflection matrix from
a left “wall”.

In that case the factorized reflection equation may be depicted as in
Figure (3.6.4). This corresponds to the following equation:

R12(−θ1 + θ2)
1

Kt1
+ R12(−θ1 − θ2 − 2i)

2

Kt2
+ (θ2)

= Kt2
+ (θ2)R12(−θ1 − θ2 − 2i)

1

Kt1
+ R12(−θ1 + θ2). (3.6.16)

With the R matrix given in (3.6.12), equation (3.6.15) admits the
following solution for K+(θ):

K+(θ) = Kt
−(−θ − i, ξ+). (3.6.17)

To establish a connection between the above discussion and quantum
spin chains, it is convenient to once again introduce the notion of an
auxiliary vector space of rapidity, say a, to be denoted by straight
lines and a set of quantum spaces that will be denoted by wavy lines
of zero rapidity. In addition, it is necessary to analytically continue
the spectral parameter or rapidity variable θi, to purely imaginary val-
ues, θ = iu with u ∈ R. Remembering that Ln(u) ≡ Ran(u), the
equivalence of the schematic representation shown in Figure (3.6.5) is
obvious. Let T−(u) denote this sequential matrix product and define
the monodromy matrix by T (u) ≡ Ln(u).....L1(u). We then have

T (u) = T (u)K−(u)T−1(−u). (3.6.18)
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FIGURE 3.6.4: Schematic representation of Equation (3.6.16).

As a result of the Yang-Baxter equation, the monodromy matrix T (u)
satisfies the relation

R(u1 − u2)
1
T (u1)

2
T (u2) =

2
T (u2)

1
T (u1)R(u1 − u2), (3.6.19)

and may be understood from Figure (3.6.6).
Introduction of a right wall modifies the figures on either side of

the equality as represented in Figure (3.6.6) to the Figures (3.6.7) and
(3.6.8), respectively.

Their equality establishes the analog of (3.6.19) in the case of open
chains, viz,

R12(u1 − u2)
1
T − (u1)R12(u1 + u2)

2
T − (u2) =

2
T − (u2)R12(u1 + u2)

1
T − (u1)R12(u1 − u2). (3.6.20)

For reflection from a left wall, the corresponding algebra is

R12(u1 − u2)
1
T

t1

+ (u1)R12(−u1 − u2 − 2i)
2
T

t2

+ (u2) =

2
T

t2

+ (u2)R12(−u1 − u2 − 2i)
1
T

t1

+ (u1)R12(−u1 + u2). (3.6.21)

The above discussions might tempt one to introduce, in case of open
chains with boundary terms at both ends, two walls, one at either end.
However, such a consideration does not lead to a natural definition for
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FIGURE 3.6.5: Diagram representing sequential matrix products of
Ln(u) together with reflection.

FIGURE 3.6.6: Graphical representation of the Yang-Baxter
algebra.
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FIGURE 3.6.7: Diagram showing modification of left-hand-side of
Figure (3.6.6) in the presence of a right boundary.

FIGURE 3.6.8: Diagram showing modification of right-hand-side of
Figure (3.6.6) in the presence of a right boundary.
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the transfer matrix for such chains. The credit for deducing a proper
and consistent definition for the transfer matrix in this context goes to
Sklyanin, who first demonstrated that the quantity t(u) given by [62],

t(u) = traK+(u)T−(u), (3.6.22)

is a transfer matrix, with

[t(u), t(v)] = 0 ∀ u, v.

It is natural to enquire about the expressions for the Hamiltonian of
the system in the presence of such boundaries. This is given by

H =
t′(0)− trK ′

+(0)
2trK+(0)

=
N−1∑
n=1

Hn,n+1 +Hboundary, (3.6.23)

where
Hn,n+1 = Pn,n+1

d

du
Rn,n+1(u)|u=0 (3.6.24)

and the boundary term is given by

Hboundary =
1
2

1
K−

′
(0) +

tr0
0
K+ (0)HN0

trK+(0)
. (3.6.25)

The proof of (3.6.23–3.6.25) is based on the following assumptions:

(i) Ln(u) = Rn,0(u) (ii) Rm,n(0) = Pmn (iii) K−(0) = I.

Consider the derivative of t(u) as given in (3.6.22), with respect to u
and evaluate it at u = 0. Straightforward calculation gives

t′(0) = 2tr[K+(0)T ′(0)T−1(0)] + tr[K+(0)T (0)K ′
−(0)T−1(0)]

+tr(K ′
+(0)), (3.6.26)

where the primes denote differentiation with respect to u and T (0) =
PN,0 PN−1,0.....P1,0. Consider the last term in (3.6.26) and denote it
by, say X3, i.e.,

X3 = tr[K+(0)PN,0....P1,0K
′
−(0)P1,0....PN,0].

As P1,0K
′−(0) = P1,0

(
I(1)⊗

(0)

K ′− (0)

)
hence P1,0K

′−(0)P1,0 =(
(1)

K ′− (0)⊗ I(0)

)
P2

1,0 =
1

K ′− (0). Because the trace operation is taken



92 Quantum Integrable Systems

over the auxiliary space “0”,
1

K ′− (0) may be taken outside the trace,
leading to

X3 =
1

K ′
− (0)tr[K+(0)PN,0....P2,0.P2,0....PN,0].

However, P2
m,n = I, so

X3 =
1

K ′
− (0)tr(K+(0)). (3.6.27)

Denoting X2 = tr[K+(0)T ′(0)T−1(0)],

=
N∑
j=1

tr
[
K+(0)

(
PN,0....

dRj,0(u)
du

|u=0Pj−1,0....P1,0

)
T−1(0)

]
,

= tr
[
K+(0)

dRN,0(u)
du

|u=0(PN−1,0......P1,0)× (P1,0....PN,0)
]
+

+
N−1∑
j=1

tr[K+(0)PN,0....Yj,0Pj−1,0....P1,0T
−1(0)],

= tr
[
K+(0)

dRN,0(u)
du

|u=0PN,0

]
+

N−1∑
j=1

Mj,j+1,

where
Yj,0 ≡

dRj,0(u)
du

|u=0,

Mj,j+1 ≡ tr
[
K+(0)PN,0.....Yj,0Pj−1,0....P1,0T

−1(0)
]
,

leading to
X2 = tr [K+(0)PN,0....Yj,o(Pj−1,0...P1,0)

{(P1,0...Pj−1,0)(Pj,0Pj+1,0...PN,0)}] .
But P2

k,o = I so

Mj,j+1 = tr [K+(0)PN,0...Pj+2,0Pj+1,0Yj,0Pj,0Pj+1,0...PN,0] .

With the property Pj+1,0Yj,0 = Yj,j+1Pj+1,0, Yj+1,j can be shifted left-
ward and taken outside the trace, to finally get Mj,j+1 = Yj,j+1Pj,j+1

tr(K+(0)) resulting in

X2 = tr
[
K+(0)

dRN,0(u)
du

|u=0PN,0

]
+ tr(K+(0))
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N−1∑
j=1

dRj,j+1(u)
du

|u=0Pj,j+1. (3.6.28)

Consequently,

t′(0) = tr(K ′
+(0)) + 2

⎡⎣trK+(0)
N−1∑
j=1

hj,j+1 + tr{
0

K+(0) HN,0}

⎤⎦

+
1
K−

′
(0)trK+(0),

or alternatively,

t′(0) = 2trK+(0)

⎡⎢⎣N−1∑
j=1

hj,j+1 +
1
2

1

K ′
− (0) +

tr0{
0
K+ (0)HN,0}
tr(K+(0))

⎤⎥⎦
+tr(K ′

+(0)). (3.6.29)

The last term within square brackets represents the Hamiltonian of
the model in the presence of finite boundary conditions, the first term
representing the bulk Hamiltonian; the remaining terms represent the
contributions to the Hamiltonian from either end.

We now consider a general solution of the reflection matrices for
the six-vertex model, depending on four arbitrary parameters. This
problem was analysed by H.J. de Vega and A. González Ruiz in [63].
Going back to (3.6.5) and assuming that the R matrix has P , T and
crossing symmetry, one can obtain the following:

R̂(u− v)[K−(u)⊗ I]R̂(u+ v)[K−(v)⊗ I]

= [K−(v)⊗ I]R̂(u+ v)[K−(u)⊗ I]R̂(u− v), (3.6.30)

R̄(u− v)[I ⊗K+(u)]R̄(u+ v)[I ⊗K+(v)]

= [I ⊗K+(v)]R̄(u+ v)[I ⊗K+(u)]R̄(u− v), (3.6.31)

where R̂(u) ≡ P12R12(u) and R̄(u) = R12(u)P12. From (3.6.9) however,
R̂(u) = R̄(u) = R(u) (say), and satisfies the Yang-Baxter equation:

[I ⊗R(u− v′)][R(u)⊗ I][I ⊗R(v)] = [R(v)⊗ I][I ⊗R(u)][R(u− v)⊗ I].
(3.6.32)
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From above, K+
ab(u) and K−

ab(u) describe scattering of the particles by
the right and left boundaries, respectively. We follow [63] to discuss the
procedure for finding the general solutions of K±

ab(u), for a given solu-
tion of the Yang-Baxter equation, in the case of the six-vertex model.
For this model R(u) has the following form:

R(u) =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 sinh η

sinh(u+η)
sinhu

sinh(u+η) 0
0 sinhu

sinh(u+η)
sinh η

sinh(u+η) 0
0 0 0 1

⎞⎟⎟⎟⎟⎠ . (3.6.33)

Consider the following ansatz for K(u):

K(u) =

(
x(u) y(u)
z(u) t(u)

)
. (3.6.34)

Substitution of R(u) and K(u) in (3.6.30) or (3.6.31), since they are
equivalent for the six-vertex model above, gives rise to a set of func-
tional equations determining the unknown functions x(u), y(u), z(u)
and t(u). The relevant equations are

z(u)y(v) = z(v)y(u), (3.6.35)

sinh(u− v)[x(u)x(v)− t(u)t(v)] + sinh(u+ v)[x(v)− x(u)t(v)] = 0,
(3.6.36)

y(u)x(v) sinh 2v = [sinh(u+ v)x(u) + sinh(u− v)t(u)]y(v). (3.6.37)

From (3.6.35) it follows that

y(u)
z(u)

=
y(v)
z(v)

= k1 (say)

k1 being an arbitrary constant. Defining a(u) = t(u)
x(u) , enables one to

write (3.6.36) as

a(u)− a(v)
a(u)a(v)− 1

=
tanhu− tanh v
tanhu+ tanh v

, (3.6.38)

which gives rise to the solution

a(u) =
t(u)
x(u)

=
sinh(ξ − u)
sinh(ξ + u)

, (3.6.39)
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with ξ being an arbitrary constant. Finally, (3.6.37) yields

y(u) = µ sinh 2u, (3.6.40)

with µ being another constant. The remaining equations are identically
satisfied, so that the general solution K(u) for the six-vertex model can
be represented as

K(u, k, λ, µ, ξ) =

(
k sinh(ξ + u) µ sinh 2u
λ sinh 2u k sinh(ξ − u)

)
, (3.6.41)

where k, µ, λ and ξ are arbitrary parameters. This solution was also
obtained by A.B. Zamolodchikov. Note that the choice µ = λ = 0 leads
to the singular solution. The Hamiltonian associated with this solution
for the boundary matrices is of the form

H = A

{
N−1∑
n=1

hn,n+1 +
1
2
K̇−

1 (0) +
tr0[K+t

0 (−η)hN0]
tr[K+(−η)]

}
. (3.6.42)

Here hn,n+1 = d
duRn,n+1(u)|u=0, gives the two-site bulk Hamiltonian,

while (n, n + 1) label the lattice site on which the R matrix acts and
A = constant. Choosing in this particular case,

K±(u) = K(u, k±, λ±, µ±, ξ±), (3.6.43)

we find that to maintain the bulk XXZ Hamiltonian with the first
derivative of the transfer matrix, it is necessary that the value of
K−(u = 0) be non-zero. Consequently, we must have k− �= 0 and
without loss of generality set K−(0) = 1, leading to K− = 1

sinh ξ . Sim-
ilar reasoning dictates that k+ �= 0. The preceding formula for the
Hamiltonian becomes, upon insertion of (3.6.33), (3.6.41) and (3.6.43)
into (3.6.42):

H =
N−1∑
n=1

[
σ1
nσ

1
n+1 + σ2

nσ
2
n+1 + cosh ησ3

nσ
3
n+1

]

+sinh η
[
b−σ3

1 + c−σ−1 + d−σ+
1 − b+σ3

N − c+σ−N − d+σ
+
N

]
. (3.6.44)

Here (σ1
k, σ

2
k, σ

3
k) or (σ3

k, σ
±
k ) refer to the Pauli matrices at the kth site.

In arriving at this form, A has been set equal to 2 sinh η and terms
proportional to the identity have been neglected. Note that the Pauli



96 Quantum Integrable Systems

matrices at site 1 have been obtained from the term 1
2K̇

−(0), the dot
referring to differentiation with respect to u, while σ±N , σ

3
N ’s have arisen

from the tr0[....] term. The parameters b±, c±, d± are given as follows:

b± = coth ξ±, c− = 2λ−, d− = 2µ−, c+ =
2λ+

k+ sinh ξ+
, d+ =

2µ+

k+ sinh ξ+
.

One should compare (3.6.42) with (3.6.25) and note that evaluation
of the boundary term at θ = −η in (3.6.42) as opposed to θ = 0 in
(3.6.25), has led to the appearance of σ±N in the expression for the
Hamiltonian (3.6.44).



Chapter 4

Continuous Integrable Systems

4.1 Introduction

In Chapter 3 we discussed the properties of the Yang-Baxter equation
and the associated quantum R matrix, which are essential ingredients
for setting up the algebraic Bethe ansatz. The latter is undoubtedly
one of the most significant contributions of the St. Petersburg school
to the theory of quantum inverse scattering method. Subsequently a
number of variants of the algebraic Bethe ansatz have been developed
to deal with situations where the standard technique fails, namely the
functional Bethe ansatz, analytical Bethe ansatz, etc.

The quantum inverse scattering method is, in a sense, tailor made for
discrete integrable systems. Initial studies of integrable systems were
however confined mostly to continuous systems, and their quantization
posed a major problem. With this in mind we analyze certain continu-
ous integrable systems to provide the requisite background for further
discussions.

4.2 Quantum Continuous Integrable Systems

Application of the quantum inverse scattering method to continuous
integrable systems, presents a number of difficulties. In case of con-
tinuous systems the occurrence of divergences is a pertinent issue. In
view of this Faddeev and his school [68] initially formulated the quan-
tum inverse problem for continuous systems by making a suitable space
discretization of the continuous Lax operator. However, the problem of
deriving a suitable Lax operator correct up to all orders of ∆, the cell
length of discretization, still remained. There are only a few continuous

97
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models for which such an exact discretization is possible.
To initiate the discussion of continuous integrable systems and their

quantization, we may recall that the essential reason for introducing the
concept of normal ordering in field theory stemmed from the fact that in
any quantum field theory, operator products unless properly written are
often ill-defined objects. The expressions of the Hamiltonian, momenta,
etc., have to be normal ordered to have precise meaning. In the discrete
case, owing to analogy with statistical mechanics, one often overlooks
these issues in the eagerness to obtain the energy excitations and the
Bethe equations for the eigenmomenta together with their solution.
However we will illustrate how the usual concepts of quantum field
theory may be applied to continuous integrable systems with suitable
examples. Our first example is the nonlinear Schrödinger model.

4.2.1 Nonlinear Schrödinger model

We begin by considering a particularly well-known continuous sys-
tem, the nonlinear Schrödinger (NLS) model whose Hamiltonian is

H =
∫
dx

(
∂u�

∂x

∂u

∂x
+ cu�(x)2u(x)2

)
. (4.2.1)

The Lax equation for this is

∂Ψ
∂x

= L(λ)Ψ,
∂Ψ
∂t

= M(λ)Ψ, (4.2.2)

where
L(λ) =

i

2
λσ3 + i

√
cu(x)σ+ − i

√
cu�(x)σ−. (4.2.3)

We define the transition matrix T (x, y;λ) as the solution of the follow-
ing equation:

∂T (x, y;λ)
∂x

= L(x, λ)T (x, y;λ), with T (x, x;λ) = I. (4.2.4)

Here σi (i = 1, 2, 3) are the Pauli matrices with σ± = 1/2(σ1 ± σ2).
In the quantum mechanical case we assume u(x), u�(x) are operators
acting on a Fock space and obeying the commutation relations:

[u(x), u(y)] = [u�(x), u�(y)] = 0, [u(x), u�(y)] = δ(x− y). (4.2.5)

The equations for the transition matrix are then given by

∂T (x, y;λ)
∂x

=: L(x, λ)T (x, y;λ) :, (4.2.6)
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∂T (x, y;λ)
∂y

= − : T (x, y;λ)L(y, λ) :, with T (x, x;λ) = I. (4.2.7)

Here : A : stands for normal ordering of the expression A, meaning
that the creation and annihilation operators, u� and u, respectively,
occurring in the expression for A are written in such a manner that
the annihilation operators always appear to the right of the creation
operators. It is customary to convert the forward and backward equa-
tions for the monodromy matrix, i.e., (4.2.6 and 4.2.7) respectively, to
integral equations and then compute the commutation relations for the
field operators u, u� with T (x, y;λ). The results are as follows:

[u(z), T (x, y;λ)] = [u�(z), T (x, y;λ)] = 0 z /∈ [y, x],

[u(x), T (x, y;λ)] = −i
√
c

2
σ−T (x, y;λ),

[u(y), T (x, y;λ)] = −i
√
c

2
T (x, y;λ)σ−,

[u�(x), T (x, y;λ)] = − i
√
c

2
σ+T (x, y;λ),

[u�(y), T (x, y;λ)] = − i
√
c

2
T (x, y;λ)σ+,

[u(z), T (x, y;λ)] = −i
√
cT (x, z;λ)σ−T (z, y;λ) when y < z < x.

(4.2.8)
Now consider the quantity [T (x, y;λ) ⊗, T (x, y;µ)] whose matrix ele-
ments are defined by

[T (x, y;λ) ⊗, T (x, y;µ)]ij,kl = [Tik(x, y;λ), Tjl(x, y;λ)]. (4.2.9)

It is easy to see that

[T (x, y;λ) ⊗, T (x, y;µ)] = T (x, y;λ)⊗ T (x, y;µ)

−PT (x, y;µ)⊗ T (x, y;λ)P. (4.2.10)

Using the commutation relations (4.2.8), we can rewrite (4.2.6) and
(4.2.7) as

∂T (x, y;λ)
∂x

= L̃(x, λ)T (x, y;λ),

∂T (x, y;λ)
∂y

= −T (x, y;λ)L̃(x, λ), (4.2.11)
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where L̃(x, λ) = L(x, λ) c2σ+σ− and we have dropped the normal or-
dering symbol. An important relation that will be required in our
subsequent analysis is

[T (x, y;λ) ⊗, T (x, y;µ)] =
∫ x

y

∫ x

y
dzdz′T (x, y;λ)⊗ T (x, z′;µ)×

×[L̃(z, λ)⊗ L̃(z′, µ)]PT (z′, y;µ)⊗ T (z, y;λ)P. (4.2.12)

Regarding the proof of this relation we consider the (αβ, γδ) element
of the right-hand side that gives∫ x

y

∫ x

y
dzdz′Tαρ(x, z;λ)Tβσ(x, z′;µ)(L̃ρθ(z, λ)L̃σφ(z′, µ)−

−L̃σφ(z′, µ)L̃ρθ(z, λ))Tφδ(z′, y;µ)Tθγ(z, y;λ). (4.2.13)

Using the equations for the transition matrix in their component form,
viz

L̃σφ(z′, µ)Tφδ(z′, y;µ) =
∂

∂z′
Tσδ(z′, y;µ),

−Tβσ(x, z′;µ)L̃σφ(z′;µ) =
∂

∂z′
Tβφ(x, z′;µ), (4.2.14)

we can write (4.2.13) in the following form:∫ x

y
dzTαρ(x, z;λ)

∫ x

y

∂

∂z′
(
Tβσ(x, z′;µ)L̃ρθ(z, λ)Tσδ(z′, y;µ)

)
Tθγ(z, y;λ).

Integrating with respect to z′ and using Tβα(x, x;µ) = δβα we therefore
obtain ∫ x

y
Tαρ(x, z;λ)L̃ρθ(z, λ)Tβδ(x, y;µ)Tθδ(z, y;λ)−

−Tαρ(x, z;λ)Tβδ(x, y;µ)L̃ρθ(z, λ)Tθγ(z, y;λ). (4.2.15)

Owing to the fact that

Tαρ(x, z;λ)L̃ρθ(z;λ) = − ∂

∂z
Tαθ(x, z;λ),

L̃ρθ(z, λ)Tθγ(z, y;λ) =
∂

∂z
Tργ(z, y;λ), (4.2.16)

the second integration can be performed to obtain

−Tβδ(x, y;µ)Tαγ(x, y;λ) + Tαγ(x, y;λ)Tβδ(x, y;µ), (4.2.17)
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which is nothing but the left-hand side of (4.2.12). Making use of the
relation

[L̃(z;λ)⊗ L̃(z′;µ)] = c[σ+ ⊗ σ− − σ− ⊗ σ+]δ(z − z′), (4.2.18)

in (4.2.12) yields

[T (x, y;λ) ⊗, T (x, y;µ)] =
c

2

∫ x

y
dzT (x, z;λ)⊗T (x, z;µ)(σ3⊗I−I⊗σ3)

×T (z, y;µ)⊗ T (z, y;λ)P. (4.2.19)

Since
[T (x, z;µ), T (z, y;µ)] = 0, (4.2.20)

the right-hand side of (4.2.19) is simply

c

2

∫ x

y
dz(T (x, z;λ)σ3T (z, y;µ))⊗ T (x, z;µ)T (z, y;λ)−

−T (x, z;λ)T (z, y;µ)⊗ T (x, z;µ)σ3T (z, y;λ)P. (4.2.21)

One can further prove that

2i(λ− µ)−1 ∂

∂z
(T (x, z;λ)T (z, y;µ)⊗ T (x, z;µ)T (z, y;λ))

= T (x, z;λ)σ3T (z, y;µ)⊗ T (x, z;µ)T (z, y;λ)−

−T (x, z;λ)T (z, y;µ)⊗ T (x, z;µ)σ3T (z, y;λ), (4.2.22)

which, when used in (4.2.21), gives

[T (x, y;λ)⊗ T (x, y;µ)]

=
(

ic

λ− µ

)
[T (x, y;µ)⊗ T (x, y;λ)− T (x, y;λ)⊗ T (x, y;µ)]P. (4.2.23)

Finally using (4.2.10) we can convert (4.2.23) to

R(λ, µ)T (x, y;λ)⊗ T (x, y;µ) = T (x, y;µ)⊗ T (x, y;µ)R(λ, µ), (4.2.24)

where

R(λ, µ) = − ic

λ− µ− icI +
λ− µ

λ− µ− icP. (4.2.25)
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Equation (4.2.24) is the fundamental relation for the formulation of the
quantum inverse problem. An important observation here is that this
equation is actually equivalent to the following differential identity:

∂

∂z
[T (x, z;µ)⊗ T (x, z;λ)R(λ, µ)T (z, y;λ)⊗ T (z, y;µ)] = 0. (4.2.26)

A simple proof of this assertion follows upon integration over the inter-
val y ≤ z ≤ x, which leads to the Yang-Baxter equation. Conversely, if
the Yang-Baxter equation holds for all x and y, then it certainly holds
for y = z. Multiplying the Yang-Baxter equation for x, z on the right
by T (z, y;λ)⊗ T (z, y;µ), we get

R(λ, µ)[{T (x, z;λ)⊗ T (x, z;µ)}{T (z, yλ)⊗ T (z, y;µ}]

= T (x, z;µ)⊗ T (x, z;λ)R(λ, µ)T (z, y;λ)⊗ T (z, y;µ).

Since T (x, z;µ) and T (z, y;µ) depend on field operators on nonover-
lapping intervals and as these field operators commute, we find that

[T (x, z;λ)⊗ T (x, z;µ)][T (z, y;λ)⊗ T (z, y;µ)] = T (x, y;λ)⊗ T (x, y;µ).
(4.2.27)

Hence, the left-hand side is independent of z and differentiation with
respect to z proves the identity.

The above discussion shows how the usual procedure of normal or-
dering together with the Lax operator can be used to obtain the Yang-
Baxter equation in case of continuous systems. It should be mentioned
however that other authors have adopted a slightly different approach
and have used the properties of square eigenfunctions to verify the same
relation.

We shall now consider the example of the massive Thirring model
to further illustrate this procedure, since it involves the use of graded
products.

4.2.2 Thirring model

The Thirring model, apart from being an example of an integrable
system, is important from a physical point of view, as it describes
essentially the dynamics of a two-dimensional fermionic field. There
are two different formulations for describing this system, depending on
the commuting or anticommuting properties of the field. The transition
matrix for the Thirring model is defined as usual to be the solution of

∂T (x;λ)
∂x

=: L(x;λ)T (x;λ) :, (4.2.28)
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with the condition that T (x = 0;λ) = I. Here we are to follow normal
ordering of fermions. The Lax operator is given by

L(x;λ) =
i

2
m sinhλτ3 + Σ(x) + S(x;λ), (4.2.29)

with

Σ(x) =

(
−φ+(x)(1− eicσ3)φ(x) 0

0 −φ+(x)(1 + eicσ3)φ(x)

)
, (4.2.30)

S(x;λ)
i
√
m sin c

=

(
0 e−λ/2φ1(x)− eλ/2φ2(x)

−e−λ/2φ†1(x) + eλ/2φ†2(x) 0

)
,

(4.2.31)
where the Lax matrix is a super matrix with its row and column parities
p(1) = 0 and p(2) = 1, respectively. As discussed previously we can
convert (4.2.28) to the following integral equation over the interval
0 ≤ x ≤M :

T (x;λ) = exp(
im

2
x sinhλτ3) +

∫ x

0
dz exp{ im

2
(x− z) sinhλτ3}

× : (Σ(z) + S(z;λ))T (z;λ) : . (4.2.32)

From this we can derive the following auxiliary relations:

φνT (x;λ) = τ3T (x;λ)τ3φν(x) +
1
2

: Eν(x;λ)T (x;λ) :,

T (x;λ)φ†ν(x) = φ†ν(x)τ3T (x;λ)τ3 +
1
2

: Fν(x;λ)τ3T (x;λ)τ3 :, (4.2.33)

with

Eν(x;λ) = −φν(x)[1− τ3eicντ3(−1)ν+1
] + i
√
m sin c(−1)νe(−1)νλ/2τ−

Fν(x;λ) = −φ+
ν (x)[1− τ3eicντ3(−1)ν+1

]− i
√
m sin c(−1)νe(−1)νλ/2τ+.

(4.2.34)
Now let us define a tensor product,

K(x;λ, µ) = T (x, λ)⊗s T (x;µ), (4.2.35)

where the tensor product ⊗s is of the super form defined by

(A⊗s B)klij = −(−1)p(j)(p(k)+p(i))AikBjl. (4.2.36)
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By differentiating (4.2.35) and using (4.2.28) and (4.2.29), we get

∂xK(x;λ, µ) =: M(x;λ, µ)K(x;λ, µ) :, (4.2.37)

with

M(x;λ, µ) = L(x;λ)⊗s I+I⊗sL(x;µ)+
∑
ν

(x;λ)⊗sEν(x;µ). (4.2.38)

One can then show that the following relation holds:

R(λ− µ)M(x;λ, µ) = M(x;µ, λ)R(λ− µ), (4.2.39)

which means that the R matrix can exchange λ, µ in L(x;λ, µ) in the
same manner as in the Yang-Baxter equation. It also implies that this
relation also holds good for K(x;λ, µ), which is nothing but the Yang-
Baxter equation. The quantity K(x;λ, µ) is similar to the classical
square eigenfunctions, which are known to form a complete set, from
classical inverse scattering theory. In case of the fermionic model, the
transfer matrix t(λ) is given by the super trace of T (λ), which is t(λ) =
T11(λ)− T22(λ). Integrability then implies that

[t(λ), t(µ)] = 0. (4.2.40)

We have shown how a continuous classical integrable equation may be
analysed in the light of the quantization procedure and a reasonbly
proper derivation of the Yang-Baxter equation can be obtained. The
algebraic Bethe ansatz actually starts from the Yang-Baxter equation
after representing the monodromy matrix in the following manner:

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (4.2.41)

to get the commutation relations of A(λ), B(λ), etc. These are then
utilized to define the Hamiltonian and creation/ annihilation operators
for the n excitation Bethe states. In the above example we wanted
to show that it is possible to prove the Yang-Baxter equation for the
case of a nonlinear integrable system defined in continuous space time.
Furthermore, it is in the continuous domain alone that one can under-
stand the problem for nonultralocal systems and the difficulties they
pose even for a proof of the Yang-Baxter equation. Moreover, the iden-
tification of creation and annihilation operators in the continuous case
has great implications on our subsequent discussion.
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4.3 Conserved Quantities

Since complete integrability is always associated with the existence
of an infinite number of conserved quantities, we will now dwell on the
issue of conserved quantities for quantized systems. We shall explain
their occurrence with the quantum nonlinear Schrödinger equation as
our prototype example. The space part of the Lax operator for this
equation is

ψ1x +
iλ

2
ψ1 = i

√
cu�ψ2,

ψ2x −
iλ

2
ψ2 = −iε

√
cψ1u. (4.3.1)

On the other hand, the corresponding time part is given by

ψ1t = c1ψ1 − i
√
cλu�ψ2 +

√
cu�xψ2 + iku�ψ1u,

ψ2t = c2ψ2 + iε
√
cλuψ1 + ε

√
cuxψ1 − iku�ψ2u, (4.3.2)

where ε = ±1, k = εc and c1 − c2 = iλ2. Here we have followed the
convention of Wadati et al. [69].

The asymptotic behaviour of Ψ = (ψ1, ψ2)t is important both in the
classical and quantum contexts. It is given by

Ψ(x;λ) =

(
ψ1(x;λ)
ψ2(x, λ)

)
→
(

1
0

)
exp(−iλx/2), as x→ −∞ (4.3.3)

and

Ψ(x;λ) =

(
ψ1(x;λ)
ψ2(x, λ)

)
→
(
A(λ) exp(−iλx/2)
B(λ) exp(iλx/2)

)
, as x→ +∞.

(4.3.4)
The differential equations (4.3.1) and the boundary conditions can be
combined into the following integral equations:

ψ1(x;λ)eiλx/2 = 1 + i
√
c

∫
dyθ(x > y)eiλyu�(y)ψ2(y;λ)e−iλy,

ψ2(x;λ)e−iλx/2 = −iε
√
c

∫
dyθ(x > y)e−iλy(y)ψ1(y;λ)eiλyu(y).

(4.3.5)
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By iteration we then have

ψ1(x;λ)eiλx/2 = 1 +
∞∑
n=1

n
√
c

∫
...

∫
dx1...dxndy1....dyn×

×θ(x > x1 > y1.... > xn > yn)eiλ
∑n

i=1
(xi−yi)

×u�(x1)...u�(xn)u(yn)....u(y1)

ψ2(x;λ)e−iλx/2 = −iε
∞∑
n=1

n+1
√
c

∫
...

∫
dx1...dxndy1....dyn+1×

eiλ
∑n

i=1
(xi−yi)θ(x > x1 > y1.... > xn > yn+1)×

u�(x1)...u�(xn)u(yn+1)....u(y1), (4.3.6)

with θ(x1 > x2 > ... > xn) = θ(x1 − x2)θ(x2 − x3)....θ(xn−1 − xn). If
the asymptotic limits are taken of these expressions, then we find that

A(λ) = 1 +
∞∑
n=1

n
√
c

∫
...

∫
dx1..dxndy1...dyne

iλ
∑n

i=1
(xi−yi)×

×θ(x1 > x2 > ... > y1 > ... > yn)u�(x1)....u�(xn)u(y1)...u(yn),

B(λ) = −iε
∞∑
n=1

n+1
√
c

∫
...

∫
dx1...dxndy1....dyn+1e

iλ
∑n

i=1
(xi−yi)

×θ(x > x1 > y1.... > xn > yn+1)u�(x1)...u�(xn)u(yn+1)....u(y1).
(4.3.7)

It is interesting to note that the operator A(λ) contains equal numbers
of creation and annihilation operators. Furthermore, it is known that
A(λ) is independent of time and generates conserved quantities. On the
other hand in the expression for B(λ), there is an additional creation
operator, and hence the reason for usingB(λ) to generate a n-excitation
state in the case of the algebraic Bethe ansatz. The infinite number of
conserved quantities can be obtained by an expansion of A(λ) of the
form

A(λ) = 1 +
∞∑
n=1

An

(iλ)n
. (4.3.8)
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4.4 Nonultralocal Systems and the YBE

Having discussed continuous systems and their quantization in the
previous sections, we are now in a position we consider the case of in-
tegrable nonultralocal systems. For classical integrable systems, when
one evaluates the symplectic operators it often turns out that they
contain derivatives of the delta function. These are cases that have
no counterparts in usual quantum field theory, and as such they were
discarded due to the presence of divergences and for not being renor-
malizable. However, in two dimensions it is possible to analyse such
systems with a certain degree of rigour.
In Chapter 3 we indicated how the scattering matrix may be related
to the Yang-Baxter equation. The former is of prime concern in any
quantum field theoretical analysis. We shall try to give an idea of the
attempts that have been made to encompass different nonultralocal
theories within the broader framework of the Yang-Baxter equation.
Until now our treatment has centered around describing continuous
integrable systems in quantum mechanical terms, using the notions
of operators and normal orderings. However, one can always employ
the purely classical Lax operators for a derivation of the Yang-Baxter
equation. In the following we shall concern ourselves with the initial at-
tempts at understanding nonultralocal systems and will follow mostly
Tsyplyev’s paper [70].

We once again consider the equation for the transition matrix, i.e.,

∂

∂x
T (x, y;λ) = L(x;λ)T (x, y;λ) with T (x, x;λ) = I. (4.4.1)

In the case of fields that decrease sufficiently rapidly as |x| → ∞, one
can define the monodromy matrix on the entire x axis, in the following
manner:

T (λ) = lim
x→∞

y→−∞
T−1

+ (x;λ)T (x, y;λ)T−(y;λ), (4.4.2)

where T±(x;λ) denotes the solutions of (4.4.1) for the asymptotic ma-
trix,

L±(λ) = lim
x→±∞L(x;λ).

For the Poisson bracket of the monodromy matrix T (λ) we find that

{T (λ)⊗, T (µ)} = r+(λ, µ)T (λ)⊗ T (µ)− T (λ)⊗ T (µ)r−(λ, µ), (4.4.3)
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where r±(λ, µ) are defined by

r±(λ, µ) = lim
x→±∞T−1

± (x;λ)⊗ T−1
± (x;µ)r(λ, µ)T±(x;λ)⊗ T±(x, µ).

(4.4.4)
Defining the Jost functions as

φ±(x;λ) = lim
y→±∞T (x, y;λ)T±(x;λ), (4.4.5)

the Poisson bracket {T (λ)⊗, T (µ)} may be evaluated from the relation

{T (λ)⊗T (µ)} =
∫ ∫ ∞

−∞
dxdyφ−1

+ (x;λ)⊗φ−1
+ (y;µ){L(x;λ)⊗L(y;µ)}×

×φ−(x;λ)⊗ φ−(y;µ). (4.4.6)

In the derivation of this relation use has been made of the well-known
variational formula,

δT (λ) =
∫ ∞

−∞
dxφ−1

+ (x;λ)δL(x;λ)φ−(x;λ).

For a nonultralocal system let us assume that the explicit computa-
tion of Poisson brackets between elements of the Lax operator can be
expressed as

{L(x;λ) ⊗, L(y;µ)} =

⎛⎝ N∑
i,k=0

ωik∂
i
x∂

k
y

⎞⎠ δ(x− y), (4.4.7)

where ωik are nonconstant matrices, defined in the tensor product V ⊗
V , which depend on λ and µ as on the nonlinear field variables. The
antisymmtery of the Poisson brackets implies that

Pωij(λ, µ;x, y)P = −ωji(λ, µ;x, y).

Using the equation

(∂x − L(x;λ))φ±(x;λ) = 0,

it is possible to perform one integration in (4.4.6) to get

{T (λ)⊗, T (µ)} =
∫ ∞

−∞
dxφ−1

+ (x;λ)⊗ φ−1
+ (x;µ)

×Ω(λ, µ;x)φ−(x;λ)⊗ φ−(x;µ). (4.4.8)



Continuous Integrable Systems 109

The matrix Ω(λ, µ;x) can be constructed out of ωik and L(x;λ) and is
given by

Ω(λ, µ;x) =
N∑

i,k=0

l+n=k
s+m=i∑
m,n,s=0

P ik
slmnD

sl
−(λ, µ;x)

×
(
∂i−s−m
x ∂k−i−n

y ωik(λ, µ;x, y)
)
y=x

Dmn
+ (λ, µ;x). (4.4.9)

It is important to note that the integrand of (4.4.8) will be the deriva-
tive of the following expression:

φ−1
+ (x;λ)⊗ φ−1

+ (x;µ)r(λ, µ;x)φ−(x;λ)⊗ φ−(x;µ)

if the matrix r(λ, µ) satisfies the equation

∂xr(λ, µ;x) + [r(λ, µ;x), L(x;λ)⊗ I + I ⊗ L(x;µ)] = Ω(λ, µ;x, y),
(4.4.10)

whence one obtains (4.4.3), i.e.,

{T (λ)⊗, T (µ)} = r+(λ, µ)T (λ)⊗ T (µ)− T (λ)⊗ T (µ)r−(λ, µ),

with r±(λ, µ) connected to the classical r matrix, r(λ, µ) by the relation
(4.4.4).
Example: Let us consider an equation studied by Wadati et al.

[34, 35] namely

∂tq = −1
2
∂2
x{q(1 + q�q)−

1
2 }, (4.4.11)

where q is a complex field. The Hamiltonian for this equation is

H =
∫
dx{(1 + q�q)

1
2 − 1}.

The complex nonlinear fields obey the Poisson brackets:

{q(x), q�(y)} = δ′′(x− y), {q(x), q(y)} = {q�(x), q�(y)} = 0. (4.4.12)

Here the ′ denotes differentiation of the delta function with respect to
its argument. The Lax matrix associated with this equation is

L(x;λ) = −iλ(σ3 + q(x)σ+ + q�(x)σ−). (4.4.13)

It is then straightforward to calculate the Poisson brackets of the Lax
matrix, and we find that

{L(x;λ)⊗, L(y;µ)} = 4ωδ′′(x− y), (4.4.14)
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where
ω = − i

4
λµ(σ+ ⊗ σ− − σ− ⊗ σ+). (4.4.15)

Let us now write

L±(λ, µ;x) = L(x;λ)⊗ I ± I ⊗ L(x;µ), (4.4.16)

then (4.4.10) for the r matrix becomes

∂xr + [r, L+] = ∂x[ω,L+] + [L−, [L−, ω]].

As we are interested in a local solution of this equation, we demand
that

∂xr = ∂x[ω,L+],

which implies that

r(λ, µ;x) = [ω,L+] + r′(λ, µ).

Here r′(λ, µ) satisfies the equation.

[r′, L+] = [L−, [L−, ω]]− [L+, [L+, ω]].

Hence, by writing Q(x) = q(x)σ+ + q�(x)σ−, we obtain

r(λ, µ;x) = λµ

[
λµ

λ− µσ3 ⊗ σ3 +
(λ+ µ)2

2(λ− µ)(σ+ ⊗ σ− + σ− ⊗ σ+)

]

+
λµ

4
(λσ3 ⊗Q(x) + µQ(x)⊗ σ3). (4.4.17)

From (4.4.17) we can easily compute r± if we note that the asymptotic
solutions φ±(x;λ) can be taken in the form,

φ±(x;λ) = exp(−iλσ3x).

Consequently, we obtain from (4.4.4):

r±(λ, µ) = λ2µ2
[

1
λ− µσ3 ⊗ σ3 ± 2πiδ(λ− µ)(σ+ ⊗ σ−σ− ⊗ σ+)

]
.

(4.4.18)
Thus we have obtained a well defined r matrix for the nonultralocal
system under discussion. We shall now discuss the quantization of such
systems.
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4.4.1 Quantization of nonultralocal systems

In order to quantize such systems we use, as a preliminary approxima-
tion, the technique of lattice approximation as formulated by Faddeev
and others [71]. First of all we note from (4.4.1), that the transition
matrix is formally given by

T (x, y;λ) = X exp
(∫ x

y
L(z;λ)dz

)
, (4.4.19)

where “X” denotes x ordering, which is basically similar to the notion of
time ordering in quantum field theory. We split the interval (x, y) into
N intervals of length ∆ = 1

N (x−y) and denote by xn the coordinate of
the nth lattice point, with x0 = y, xN = x. Then the matrix T (x, y;λ)
can be represented as a product,

T (x, y;λ) =
∏
n

Tn(λ) where Tn(λ) = Tn(xn, xn−1;λ).

Furthermore, we demand that

{Tn(λ) ⊗, Tm(µ)} = 0, for m �= n. (4.4.20)

Because of this one can consider the formula locally only for the ma-
trices Tn(λ) at each lattice site. In the usual ultralocal situation it is
possible to restrict oneself to only a first approximation in ∆ in the
formula for Tn(λ), i.e.,

Tn(λ) ≈ 1 +
∫ xn

xn−1

L(z;λ)dz,

because we consider δ(x − y) to be of the order of ∆−1. But in the
nonultralocal case if in general the Poisson brackets of the elements
of L(x;λ) involve the nth derivatives of the delta function, then since
δ(n) ∼ ∆−(n+1), one has to modify the above approximation to include
higher-order terms so that

Tn(λ) ≈ X
N+1∑
k=0

1
k!

(∫ xn

xn−1

L(z;λ)dz

)k

. (4.4.21)

Example:
To illustrate this point we consider the Sine-Gordon equation, which
in light-cone coordinates is given by

φxt +
1
2
sin 2φ = 0.
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Here t = (x0 − x1)/2 and x = (x0 + x1)/2. The Hamiltonian for this
equation is

H =
∫ ∞

−∞
sin2 φdx,

with the fields obeying the Poisson brackets {φ(x), φy(y)} = 1
2δ(x− y).

Now the Lax matrix for the Sine-Gordon equation is given by

L(x;λ) = i(u(x)σ3 + λσ2),

where u(x) = φx(x), and one can easily verify that

{L(x;λ) ⊗, L(y;µ)} = −1
2
σ3 ⊗ σ3δ

′(x− y).

Retaining therefore terms up to order ∆2, we get for the discretized
monodromy matrix the following approximation:

Tn(λ) ≈
(

1 + ipn − p2
n/2 ∆λ(1− iqn)

−∆λ(1 + iqn) 1− ipn − p2
n/2

)
, (4.4.22)

where

pn =
∫ xn

xn−1

u(x)dx, qn = ∆−1
∫ xn

xn−1

dxnu(x)(xn + xn−1 − 2x).

(4.4.23)
The discrete variables (pn, qn) satisfy the following canonical Poisson
brackets:

{pn, pm} = {qn, qm} = 0 and {qn, pm} =
1
2
δnm.

Consequently, the relation (4.4.21) is satisfied up to the required accu-
racy in ∆ if the classical r matrix is given by

r(λ, µ) =

[
λ2 + µ2

4(λ2 − µ2)
σ3 ⊗ σ3 +

λµ

2(λ2 − µ2)
(σ1 ⊗ σ1 + σ2 ⊗ σ2)

]
.

For calculating the quantum R matrix we are forced to use the mon-
odromy matrix, as there is no formal prescription to compute the quan-
tum counterpart of Tn(λ). For this we notice that since the commutator
[û(x), û(y)] = û(x)û(y)−û(y)û(x) is equal to ih̄

2 δ
′(x−y) ∼ ∆−2, we can

ascribe to û(x) an order ∆−1. Here û(x) is the operator corresponding
to the field u(x). It may be commented that the construction of the
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quantum version of the matrix Tn(λ) is still an open problem. So with
these dimensional arguments, it is found that the operators pn, qn as
defined by (4.4.23) in which u(x) is replaced by û(x) have order ∆−1.
This makes it necessary to retain all powers of pn and qn in the ex-
pression for Tn(λ) and we may assume that the quantum monodromy
matrix is of the following form:

Tn(λ) =

(
eip̂n ∆λe−iq̂n

−∆λeiq̂n e−ip̂n

)
. (4.4.24)

The commutation relations for the operators q̂n, p̂n are now as follows:

[p̂n, p̂m] = [q̂n, q̂m] = 0, [q̂n, p̂m] =
ih̄

2
δnm.

Evaluating T (x, y;λ) in operator form and keeping in mind the com-
mutation rules, we find that

R(λ, µ) =

⎡⎣sinh
(
α−β−ih̄

2

)
2 sinh

(
α−β

2

) σ0 ⊗ σ0 +
cosh

(
α−β−ih̄

2

)
2 cosh

(
α−β

2

) σ3 ⊗ σ3

⎤⎦+

+σ+ ⊗ σ− + σ− ⊗ σ+ where α = lnλ, β = lnµ; σ0 = I.

It is evident that as h̄→ 0 we get back the classical r matrix.
This example serves to illustrate the initial attempts at deriving the

classical and quantum r matrices in case of nonultralocal systems. It is
by no means a rigorous technique, since there are several obvious gaps,
and more studies are required to tackle these and other related issues.
For example, one still needs to develop a rigorous prescription for the
construction of Tn(λ), which will be valid for all orders of the lattice
spacing ∆. Secondly, the exact form of the quantised L operator is also
needed. However, we should mention here an important communication
by Sklyanin [72], who showed how one can construct an exact quantum
mechanical L operator from the discretization of the space part of the
Lax pair, in case of the nonlinear Schrödinger equation. For more
details on this method, including its application to the Sine-Gordon
equation, we refer to the articles [73, 74].
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4.5 Operator Product Expansion and the YBE

For continuous integrable systems there is an alternative procedure
for deriving the Yang-Baxter equation, which is fundamental to the
study of quantum field theory. It is well known from quantum field
theory that the occurrence of ultraviolet diveregences is primarily due
to the improper definition of operator products arising in the theory. It
was through the remarkable work of K. Wilson [75] that one recognized
how to obtain the equations of motion in a divergenceless manner in
quantum field theory, through the concept of operator product expan-
sion (OPE). The latter contains all the information of the commutation
rules, besides taking care of the singularities arising in the various in-
variant delta functions.

In this section we show how by the simple use of OPEs, one is led
to the Yang-Baxter equation. Moreover, we shall also in this context
consider situations where the nonlinear field variables take asymptoti-
cally nonzero values. This allows us to derive a more general form of
the quantum R matrix, along with the Yang-Baxter equation.

Let us once again consider the nonlinear Schrödinger equation, sat-
isfying the Lax equation,

Φx = iL(x;λ)Φ, (4.5.1)

with

L(x;λ) =

(
iλ
√
χψ̄√

χψ −iλ

)
. (4.5.2)

The fields satisfy the Poisson brackets:

{ψ(x), ψ̄(y)} = iδ(x− y), {ψ(x), ψ(y)} = {ψ̄(x), ψ̄(y)} = 0.

As before we define the transition matrix T (x, y;λ) as the solution of

∂T (x, y;λ)
∂x

= L(x;λ)T (x, y;λ) with T (x, x;λ) = I. (4.5.3)

The solution of (4.5.3) is formally written as

T (x, y;λ) = P exp
{∫ x

y
L(ξ;λ)dξ

}
(4.5.4)
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where P now denotes an ordered exponential. Since T (x, y;λ) is func-
tionally dependent on the field variables ψ, ψ̄ through L(ξ;λ), the
proper approach is to consider the singularities in the product ψ(x)ψ̄(y),
which occur in the tensor product T (x, y;λ)⊗T (x, y;µ). Using (4.5.4)
we can write this tensor product as

T (x, y;λ)⊗ T (x, y;µ) =
(
P exp

{∫ x

x−∆
L(ξ;λ)dξ

})
⊗

⊗
(
P exp

{∫ x

x−∆
L(ζ;λ)dζ

})
T (x−∆, y;λ)⊗ T (x−∆, y;µ), (4.5.5)

for arbitrary but small ∆. Differentiating this with respect to x we get

∂

∂x
(T (x, y;λ)⊗ T (x, y;µ)) =

[
iL(x;λ)P exp

{∫ x

x−∆
L(ξ;λ)dξ

}
⊗ P exp

{∫ x

x−∆
L(ζ;λ)dζ

}]
×

×T (x−∆, y;λ)⊗ T (x−∆, y;µ)+

+
[
P exp

{∫ x

x−∆
L(ξ;λ)dξ

}
⊗ iL(x;µ)P exp

{∫ x

x−∆
L(ζ;λ)dζ

}]
×

×T (x−∆, y;λ)⊗ T (x−∆, y;µ). (4.5.6)

Next expanding the exponentials as ∆→ 0, from (4.5.6) we obtain

∂

∂x
(T (x, y;λ)⊗ T (x, y;µ)) = Γ(x;λ, µ) (T (x, y;λ)⊗ T (x, y;µ)) ,

(4.5.7)
where Γ(x;λ, µ) is given by

Γ(x;λ, µ) = iL(x;λ)⊗ I + iI ⊗ L(x;µ)−

−
∫ x

x−∆
L(x;λ)⊗L(ζ;µ)dζ −

∫ x

x−∆
L(ξ;λ)⊗L(x;µ)dξ+O(∆). (4.5.8)

Let us now write the Lax matrix in terms of the su(2) generators, viz

L(x;λ) = ti(λ)Li(x),

where

t1(λ) =
√
χσ+, t2(λ) =

√
χσ−, t3(λ) =

λσ3

2i
and
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L1(x) = ψ̄(x), L2(x) = ψ(x), L3(x) = 1.

Since in the tensor product L(x;λ) ⊗ L(ζ;µ), the operator product
Li(x)Lj(ζ) is governed by the commutator

[Li(x), Lj(ζ)],

therefore from the singularity as ∆→ 0, we get∫ x

x−∆
L(x;λ)⊗ L(ζ;µ)dζ = ti(λ)⊗ tj(µ)

∫ x

x−∆
Li(x)Lj(ζ)dζ

≈ ti(λ)⊗ tj(µ)
∫ x

x−∆
[Li(x), Lj(ζ)]dζ as ∆→ 0. (4.5.9)

Using the procedure outlined in (4.5.9), one can work out the rest of
the operator products occurring in (4.5.8) to finally obtain the following
expression for Γ(x, λ, µ), viz

Γ(x;λ, µ) = i
√
χψ̄(x)(σ+ ⊗ I + I ⊗ σ+) + i

√
χψ(x)(σ− ⊗ I + I ⊗ σ−)+

+
1
2i

(λσ3 ⊗ I + µI ⊗ σ3) + 2χh̄(σ+ ⊗ σ− − σ− ⊗ σ+). (4.5.10)

The quantum R matrix can now be obtained from the fact that it
intertwines T (x, y;λ)⊗ T (x, y;µ), i.e.,

R(λ, µ) (T (x, y;λ)⊗ T (x, y;µ)) = (T (x, y;µ)⊗ T (x, y;λ))R(λ, µ),

where
R(λ, µ)Γ(x;λ, µ) = Γ(x;λ, µ)R(λ, µ). (4.5.11)

Assuming a general structure for the R matrix of the form

R(λ, µ) = I ⊗ I +R1(σ3 ⊗ σ3) +R2(σ2 ⊗ σ2) +R3(σ1 ⊗ σ1),

we find that

R(λ, µ) =

⎛⎜⎜⎜⎝
1 + p 0 0 0

0 1− p 2p 0
0 2p 1− p 0
0 0 0 1 + p

⎞⎟⎟⎟⎠ , (4.5.12)

where p =
(
1 +

8ih̄χ
λ− µ

)−1

.
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As of now we have not used the asymptotic behaviour of the nonlinear
fields. Let us therefore suppose that as x → ±∞, ψ(x) does not tend
to zero but satisfies instead

lim
x→±∞ψ(x) = ρeiφ± with φ+ − φ− = θ. (4.5.13)

Such a situation corresponds to the case of finite density. For conve-
nience we set φ− = 0 and φ+ = θ, so that

lim
x→−∞L(x;λ) =

1
2

(
−iλ 2

√
χρ

2
√
χρ iλ

)
= L−(λ). (4.5.14)

Let E−
ρ (x;λ) denote the matrix solution of

d

dx
E−
ρ (x;λ) = L−(λ)E−

ρ (x;λ). (4.5.15)

One can easily verify that

E−
ρ (x;λ) =

(
1 i(k − λ)/ω

i(λ− k)/ω 1

)
exp(ikxσ3/2)

= A−(ω, λ) exp(ikxσ3/2), (4.5.16)

with

A−(ω, λ) =

(
1 i(k − λ)/ω

i(λ− k)/ω 1

)
,

k(λ) =
√
λ2 − ω2, ω = 2

√
χρ.

A similar consideration for x→ +∞, yields the solution

E+
ρ (x;λ) = A+(ω, λ) exp(−ikxσ3/2), (4.5.17)

with

A+(ω, λ) =

(
1 −i(λ−k)

ω eiθ

i(λ−k)
ω eiθ 1

)
.

Consequently, the limiting form of Γ(x;λ, µ) is given by

Γ0(λ, µ) = i
√
χρ [(σ1 ⊗ I + I ⊗ σ1) cos θ + (σ2 ⊗ I + I ⊗ σ2) sin θ] +

+i
√
χρ

[
ih̄χ(σ2 ⊗ σ1 − σ1 ⊗ σ2) +

1
2i

(λσ3 ⊗ I + µI ⊗ σ3)
]
. (4.5.18)
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We clearly have from (4.5.11),

R(λ, µ)Γ0(λ, µ) = Γ0(λ, µ)R(λ, µ),

so that

exp(−iΓ0(λ, µ))R(λ, µ) = R(λ, µ) exp(−iΓ0(λ, µ)).

Now the scattering data is defined by

lim
y→−∞
x→+∞

T (x, y;λ) = E+
ρ (x, ;λ)T (λ)(E−

ρ (x;λ))−1. (4.5.19)

Upon passing over to these limits in the intertwining relation we get

R1(x;λ, µ)T (λ)⊗ T (µ) = T (µ)⊗ T (λ)R2(x;λ, µ), (4.5.20)

where

R1(x;λ, µ) = Q1R(λ, µ)Q2, R2(x;λ, µ) = S1R(λ, µ)S2

and

Q1 = exp(ik(µ)xσ3/2)A−1
+ (µ)⊗ exp(ik(λ)xσ3/2)A−1

+ (λ),

Q2 = A+(λ) exp(−ik(λ)xσ3/2)⊗A+(µ) exp(−ik(µ)xσ3/2),

S1 = exp(ik(µ)yσ3/2)A−1
− (µ)⊗ exp(ik(λ)yσ3/2)A−1

− (λ),

S2 = A−(λ) exp(−ik(λ)yσ3/2)⊗A−(µ) exp(−ik(µ)yσ3/2). (4.5.21)

Finally, we arrive at

R+(λ, µ)T (λ)⊗ T (µ) = T (µ)⊗ T (λ)R−(λ, µ), (4.5.22)

where

R±(λ, µ) = lim
x→±∞

(
eik(µ)xσ3/2 ⊗ eik(λ)xσ3/2

)
(A−1

± (µ)⊗A−1
± (λ))

×R(λ, µ)(A±(λ)⊗A±(µ)) lim
x→±∞

(
e−ik(λ)xσ3/2 ⊗ e−ik(µ)xσ3/2

)
. (4.5.23)

The above expressions can be explicitly evaluated; for example, one
finds that

A−1
− (µ)σ1A−(λ) =

{
ω2

2µ(µ− k(µ)) +
λ− k(λ)

2µ

}
σ1
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+
iω

2µ

(
1 +

λ− k(λ)
µ− k(µ)

)
σ3,

and

A−1
− (µ)σ2A−(λ) =

ω2

2µ(µ− k(µ))σ2 +
i(λ− k(λ))

2µ
σ3

+
ω

2µ

(
λ− k(λ)
µ− k(µ) − 1

)
I.

4.6 Finite Boundary Conditions

In Chapter 3 we dwelt on the effect of nonperiodic boundary condi-
tions on the Yang-Baxter equation in the context of scattering theory
within the framework developed by Cherednik [76]. The most notable
outcome of the discussion was that the factorization of the n-particle
scattering could be conceived of as a multitude of two-particle scatter-
ing amplitudes. However, this did not shed light on the more familiar
concept of a boundary condition in the usual sense of classical field the-
ory. Indeed, the notion of boundary conditions is intimately connected
to the famous Dirichlet and Neumann problems. A crucial factor in
case of integrable systems is that the imposition of boundary condi-
tions should not destroy the integrability of the system. In a series of
papers, Sklyanin et al. [78], have investigated the possible forms of non-
trivial boundary conditions in relation to the KdV, mKdV equations.
An alternative approach to analyse the effect of boundary conditions
was given by Saha et al. [77].

In this section we first consider, the effect of different types of bound-
ary conditions on the existence of the infinite conserved quantities,
which are a characteristic feature of integrable systems. We will then
investigate them in relation to the classical r matrix and Yang-Baxter
equation. In discussing these issues we closely follow Sklyanin’s formal-
ism and consider the nonlinear Schrödinger equation

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ 2ψ̄ψ2. (4.6.1)
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The Hamiltonian for this equation is

H =
∫
dx

{
∂ψ̄

∂x

∂ψ

∂x
+ ψ̄2ψ2

}
, (4.6.2)

where the nonlinear fields obey the Poisson brackets:

{ψ(x), ψ̄(y)} = iδ(x− y), {ψ(x), ψ(y)} = {ψ̄(x), ψ̄(y)} = 0. (4.6.3)

It is customary to assume in classical inverse scattering theory that as
x → ±∞, ψ(x) → 0. That is, one considers usually the entire x-axis
and asymptotically decaying nonlinear fields. In the finite case this
condition may be generalized to

ψ(x+) = eiθψ(x−), (4.6.4)

where [x+, x−] is the portion of the x-axis that is considered; this is
referred to as the quasi-periodic situation. By analogy with the Sturm-
Liouville theorem, it is natural to consider even more general boundary
conditions such as:

∂ψ

∂x
|x=x± + θ±ψ± = 0, ψ± = ψ(x±). (4.6.5)

The condition θ± = 0 now corresponds to the Neumann condition while
the condition θ →∞ represents the Dirichlet condition.

Let us first derive the form of the generating function for the in-
finite number of conserved quantities, when the boundary conditions
are not periodic. Obviously, the preservation of the integrals of motion
requires that the generating function should also be preserved. In the
continuous case the transition matrix is formally given by

T (x, y;λ) =
←
exp

(∫ x

y
L(z, λ)dz

)
, (4.6.6)

where T (x, y;λ) satisfies the following group properties:

T (x, z;λ)T (z, y;λ) = T (x, y;λ),

T (x, y;λ) = T−1(y, x;λ),

∂T (x, y;λ)
∂y

= −T (x, y;λ)L(y, λ) (4.6.7)
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and
det T (x, y;λ) = 1 since tr L(x;λ) = 0. (4.6.8)

Let γ be a curve with initial point (x0, t0) and final point (x, t) in the
two-dimensional plane R2 : (x, t). Parallel transport from (x0, t0) to
(x, t) along γ is given by

Ωγ =
←
exp

(∫
γ
Ldx+Mdt

)
, (4.6.9)

where the integration is understood multiplicatively. Consider a par-
tition of γ into N − 1, sections denoted by, say γ1, γ2, ...., γN , so that
one can write

Ln = 1 +
∫
γn

(Ldx+Mdt), (4.6.10)

Ωn =

←
N∏
n=1

Ln = LNLN−1......L1, (4.6.11)

with
Ωγ = lim

N→∞
ΩN . (4.6.12)

Now the parallel transport of any vector F along γ is given by

Fγ = ΩγF. (4.6.13)

We also note that the gauge transformation properties of L,M,Ω are
as follows:

L→ ∂G

∂x
G−1 +GLG−1,

M → ∂G

∂x
G−1 +GMG−1,

Ωγ → G(x, t)ΩγG
−1(x0, t0). (4.6.14)

The vanishing of the curvature means that Ωγ depends only on the
initial and final points and not on the path γ itself. Locally, the zero
curvature condition then amounts to having Ωγ = 1.

Next let us proceed to the quasi-periodic case. Here the monodromy
matrix written as TL is the matrix of parallel transport along the con-
tour t = t0,−L ≤ x ≤ L, oriented along the positive x-axis so that we
have

TL(λ, t0) =
←
exp

(∫ L

−L
L(x, t0;λ)dx

)
. (4.6.15)
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FIGURE 4.6.1: Contour for evaluation of the monodromy matrix.

Next we consider the contour ABCD in the (x, t) plane and we evaluate
Ω around it.

Starting from D one finds

(1) D → A TL(λ, t1) =
←
exp

(∫ L

−L
L(x, t1;λ)dx

)
= ΩDA,

(2) A→ B S+ =
←
exp

(∫ t2

t1
M(+L, t;λ)dx

)
= ΩAB,

(3) B → C T̃L(λ, t2) =
←
exp

(∫ L

−L
L(x, t2;λ)dx

)
= ΩBC ,

(4) C → D S̃− =
←
exp

(∫ t1

t2
M(−L, t;λ)dx

)
= ΩCD.

(4.6.16)
Since Ωγ = I we get ΩCDΩBCΩABΩDA = I, i.e.,

S−1
− T−1

L (t2)S+TL(t1) = I. (4.6.17)

Under quasi-periodic boundary conditions, we have

M(−L,L;λ) = Q(θ)M(L)Q−1(θ), S− = Q(θ)S+Q
−1(θ), (4.6.18)

so that
TL(t2)Q(θ) = S+(TL(t1)Q(θ))S−1

+ ,
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or
tr{TL(t2)Q(θ)} = tr{TL(t1)Q(θ)}. (4.6.19)

Thus we see that, tr {TL(t)Q(θ)} is independent of time and hence is a
generator of the conserved quantities in the presence of quasi-periodic
boundary conditions. Note that the explicit form of the boundary
matrix Q(θ) depends on the particular form of the temporal part,
M(x, t;λ), of the Lax pair for the nonlinear equation under investi-
gation.

Let us now consider a more general type of boundary condition [78].
For the nonlinear Schrödinger equation the temporal part of the Lax
pair is

M(x, t;λ) = i

(
λ2/2 + ψ̄ψ −iψ̄x − λψ̄
−iψx + λψ −λ2/2− ψ̄ψ

)
. (4.6.20)

With the boundary condition,

∂ψ

∂x
|x=x± + θ±ψ(x = x±) = 0, (4.6.21)

it is then found that there exists a matrix K(λ) so that

K±(λ)M(x±,±λ) = M(x±,∓λ)K±(λ), (4.6.22)

where

K±(λ) =

(
λ± iθ± 0

0 −λ± iθ±

)
. (4.6.23)

It can then be shown that

S+(λ, t, t2) =
←
exp

[∫ t2

t1
K−1

+ (λ)M(x+, t;−λ)K+(λ)dt
]
. (4.6.24)

Upon using the identity

exp(g−1Ag) = g−1 exp(A)g (4.6.25)

where g,A are matrices, one can show that

S+(λ, t, t2) = K−1
+ (λ)S+(−λ, t, t2)K+(λ). (4.6.26)

Similarly it can also be shown that

S−(λ, t, t2) =
←
exp

[∫ t2

t1
K−(λ)M(x−, t;−λ)K−1

− (λ)dt
]
,
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= K−(λ)S−(−λ, t, t2)K−1
− (λ). (4.6.27)

Since Ωγ = I we get

[K−(λ)S−1
− (−λ)K−1

− (λ)]T−1
± (t2)[K−1

+ (λ)S+(−λ)K+(λ)]T±(t1) = I,
(4.6.28)

or
K+(λ)T+−(t1)K−(λ)T−1

± (−λ) =

S−1
+ (−λ){K+(λ)T±(t2)K(λ)T

−1
± (−λ)}T±(t2, λ)S−(−λ)T−1

± (t1,−λ).
(4.6.29)

Since
S−1
− (λ)T−1

± (t2)S+(λ)T±(t1) = I, (4.6.30)

we find that
K+(λ)T±(t1, λ)K−(λ)T−1

± (t1,−λ) =

S−1
+ (λ)[K+(λ)T±(t2, λ)K−(λ)T−1

± (t2,−λ)]S+(−λ), (4.6.31)

and finally,

τ(λ) = tr
[
K+(λ)T±(t, λ)K−(λ)T−1

± (t,−λ)
]

(4.6.32)

is independent of time and therefore is the generator of the conserved
quantities. In this case the contour is obtained by joining the points
(x−, t1), (x+, t1), (x+, t2) and (x−, t2).

4.7 Modified Classical Yang-Baxter Equation

After ensuring the existence of an infinite number of conservation
laws, we now proceed to establish the form of the Yang-Baxter equa-
tion (in the classical limiting case) after the imposition of nonperiodic
boundary conditions. Our discussion will be based on an important
integrable system, known in the literature as the Liouville-Thirring
model. This model is of additional relevance to our discussions as it
is nonultralocal, and we shall describe how finite boundary conditions
may be imposed on such a model without destroying its integrability
[81].

The classical Liouville-Thirring model is governed by the following
coupled equations:

∂2Φ = −J2 exp(Φ), i∂̂Ψ = 4JΨexp(Φ), (4.7.1)
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where Φ is a scalar field and Ψ is a two-component fermionic field.
We have used the following notation: ∂̂ = γµ∂µ, J

µ = Ψ̄γµΨ,Ψ =
Ψ†γ0, J2 = JµJ

µ, Ψ̄ = γ0Ψ. Such a model was first investigated by
Pogrebkov et al. in [79]. The space part of the Lax operator for (4.7.1)
can be written as follows:

L(x;λ) =

(
p(x) q(x)
r(x) −p(x)

)
− iλσ3, (4.7.2)

where

p(x) = −ρ1(x)α1(x) +
1
4
(φ′(x) + π(x)),

r(x) = −ρ2(x)eφ(x) + α′
1(x) + ρ1(x)α2

1(x)−
1
2
α1(x)(φ′(x) + π(x)),

q(x) = −ρ1(x). (4.7.3)

Here the primes denote differentiation with respect to the space variable
x, while π(x) is the field momentum conjugate to the field φ; i.e.,
π(x) = ∂tφ. In addition the substitution Ψj =

√
ρj(t, x) exp[(−1)j+1

αj(t, x)] has been used. The canonical Poisson brackets are

{π(x), φ(y)} = δ(x− y),

{αj(x), ρk(y)} =
1
4
(−1)j+1δjkδ(x− y). (4.7.4)

Using (4.7.3) and (4.7.4) we can calculate the Poisson brackets between
the elements of L(x, λ):

{p(x), q(y)} = −1
4
q(x)δ(x− y), {r(x), p(y)} = −1

4
r(x)δ(x− y),

{p(x), r(y)} =
1
4
r(x)δ(x− y), {q(x), p(y)} =

1
4
q(x)δ(x− y),

{p(x), p(y)} = −1
8
δ′(x− y), (4.7.5)

{r(x), q(y)} =
1
2
p(x)δ(x− y)− 1

4
δ′(x− y),

{q(x), r(y)} = −1
2
p(x)δ(x− y)− 1

4
δ′(x− y).

Now, a simple computation shows that

{L(z, λ) ⊗, L(w, µ)} = [s(λ, µ), L(z, λ)⊗ I − I ⊗ L(w, µ)]δ(z − w)
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−[r(λ, µ), L(z, λ)⊗ I + I ⊗ L(w, µ)]δ(z − w)− 2s(λ, µ)δ′(z − w)

= A(z, w, λ)δ(z − w)− 2s(λ, µ)δ′(z − w), (4.7.6)

with
r(λ, µ) =

1
8
λ+ µ

λ− µP, s(λ, µ) =
1
16

(2P − I). (4.7.7)

Here P stands for the permutation matrix. The particular form of the
Poisson brackets of the Lax matrix L(x, λ) as given by (4.7.6), is known
in the literature as the (r − s) Poisson structure and was exhaustively
studied by de Vega, Maillet and several other authors [80].

Consider the Poisson brackets between the elements of the transition
matrix defined earlier. However, due to the nonultralocal character of
the Poisson brackets (4.7.5) one has to be careful about the nature of
the end points occurring in the definition of the monodromy matrix
ensuring that the end points in the expression for {T ⊗, T} should not
coincide. One can then show that the Poisson brackets of the transition
matrix T (x, y;λ) is as follows [79]:

{T (x, y;λ) ⊗, T (u, v, µ)} =
∫ x

y
dz

∫ u

v
dwε(x−y)ε(u−v)χ(z;x, y)χ(w;u, v)

×T (x, z;λ)⊗ T (u,w;µ){L(z, λ) ⊗, L(w, µ)}T (z, y;λ)⊗ T (w, v;µ),
(4.7.8)

where

ε(x− y) =

⎧⎪⎨⎪⎩
1 when x > y
0 when x = y
−1 when x < y

and

χ(z;x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α for z =min (x, y)
1 min (x, y) < z < max (x, y)
β for z = max (x, y)
0 otherwise

. (4.7.9)

To compute {T ⊗, T} we calculate first of all {T ⊗, L}, which by defini-
tion is given by

{T (x, y;λ) ⊗, L(w, µ)} =
∫ x

y
dzε(x− y)χ(z;x, y)(T (x, z;λ)⊗ I)

×{L(z, λ) ⊗, L(w, µ)}(T (z, y;λ)⊗ I), (4.7.10)

=
∫ x

y
dzε(x− y)χ(z;x, y)(T (x, z;λ)⊗ I)
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×[A(z;λ, µ)δ(z − w)− 2s(λ, µ)δz(z − w)](T (z, y;λ)⊗ I).

Considering the δ′(z − w) part, let

t1 = −2
∫ x

y
dz ε(x−y)χ(z;x, y)T (x, z;λ)⊗Is(λ, µ)T (z, y;λ)⊗Iδ′(z−w),

= 2
∂

∂z
{ε(x− y)χ(z;x, y)(T (x, z;λ)⊗ I)s(λ, µ)(T (z, y;λ)⊗ I)}z=w ,

= 2
[(

∂

∂z
{ε(x− y)χ(z;x, y)}

)
(T (x, z;λ)⊗ I)s(λ, µ)(T (z, y;λ)⊗ I)+

+ε(x− y)χ(z;x, y)
(
∂

∂z
T (x, z;λ)⊗ I

)
s(λ, µ)(T (z, y;λ)⊗ I)

+ε(x− y)χ(z;x, y)(T (x, z;λ)⊗ I)s(λ, µ)
(
∂

∂z
T (z, y;λ)⊗ I

)]
.

Note that

ε(x− y) ∂
∂z
χ(z, x;λ) = ε(x− y)[δ(z −min(x, y))− δ(z −max(x, y))].

Upon simplification we get,

t1 = 2[δ(w − y)− δ(w − x)](T (x,w;λ)⊗ I)s(λ, µ)(T (w, y;λ)⊗ I)

−2ε(x−y)χ(w;x, y)(T (x,w;λ)⊗I)[s(λ, µ), L(w, λ)⊗I](T (w, y;λ)⊗I).
(4.7.11)

Next, we consider the term involving δ(z − w), and denote it by t2, so
that

{T (x, y;λ)⊗, L(w;µ)} = t1 + t2

= −2(δ(w − x)− δ(w − y))(T (x,w;λ)⊗ I)s(λ, µ)(T (w, y;λ)⊗ I)

−ε(x− y)χ(w;x, y)(T (x,w;λ)⊗ I)×

×[r(λ, µ) + s(λ, µ), L(w, λ)⊗ I + I ⊗L(w, µ)](T (w, y;λ)⊗ I). (4.7.12)

In terms of this expression for the Poisson bracket, we can express
{T (x, y, λ) ⊗, T (u, v;µ)} as given below:

{T (x, y, λ) ⊗, T (u, v;µ)} =
∫ u

v
dwε(u− v)χ(w;u, v)(I ⊗ T (u,w;µ))×

×{T (x, y;λ) ⊗, L(w;µ)}(I ⊗ T (w, v;µ)). (4.7.13)
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Using (4.7.12) and integrating over the delta function we obtain

{T (x, y, λ) ⊗, T (u, v;µ)} = −2ε(x−y)χ(w;u, v)(T (x,w;λ)⊗T (u,w;µ))

×s(λ, µ)(T (w, y;λ)⊗ T (w, v;µ))|w=x
w=y −

∫ u

v
dwε(x− y)ε(u− v)

×χ(w;x, y)χ(w;u, v)(T (x,w;λ)⊗ T (u,w;µ))

×[r + s, L(w;λ)⊗ I + I ⊗ L(w;λ)](T (w, y;λ)⊗ T (w, v;µ)). (4.7.14)

From the defining equations for the transition matrix, we may rewrite
the integrand of the last term as follows:

= −
∫ u

v
dwε(x− y)ε(u− v)χ(w;x, y)χ(w;u, v)(T (x,w;λ)⊗T (u,w;µ)×

[r(λ, µ) + s(λ, µ), L(w;λ)⊗ I + I ⊗ L(w;µ)](T (w, y;λ)⊗ T (w, v;µ)

=
∫ u

v
dwε(x− y)ε(u− v)χ(w;x, y)χ(w;u, v)×

∂

∂w
[(T (x,w;λ)⊗ T (u,w;µ))(r + s)(T (w, y;λ)⊗ T (w, v;µ))] .

(4.7.15)
Integrating by parts causes the left-hand side to become

= ε(x− y)ε(u− v)χ(w;x, y)χ(w;u, v)×

(T (x,w;λ)⊗ T (u,w;µ)(r + s)(T (w, y;λ)⊗ T (w, v;µ))|w=u
w=v

−
∫ u

v
dw[δ(w − y)− δ(w − x)]ε(u− v)χ(w;u, v)

+ε(x− y)χ(w;x, y)(δ(w − v)− δ(w − u))×
(T (x,w;λ)⊗ T (u,w;µ))(r + s)(T (w, y;λ)⊗ T (w, v;µ)). (4.7.16)

The last integral is easy to evaluate, so that finally

{T (x, y, λ) ⊗, T (u, v;µ)} = −2ε(u− v)χ(w;u, v)×

(T (x,w;λ)⊗ T (u,w;λ))s(λ, µ)(T (w, y;λ)⊗ T (w, v;µ))|w=x
w=y

+ε(x− y)ε(u− v)χ(w;x, y)χ(w;u, v)×
(T (x,w;λ)⊗ T (u,w;µ)(r + s)(T (w, y;λ)⊗ T (w, v;µ))|w=u

w=v

+ε(u− v)χ(w;u, v)(T (x,w;λ)⊗ T (u,w;µ))(r + s)

×(T (w, y;λ)⊗ T (w, v;µ)|w=x
w=y
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+ε(x− y)χ(w;x, y)(T (x,w;λ)⊗ T (u,w;µ))(r + s)

×T (w, y;λ)⊗ T (w, v;µ))|w=u
w=v ,

= ε(u− v)χ(w;u, v)(T (x,w;λ)⊗ T (u,w;µ))(r − s)

×(T (w, y;λ)⊗ T (w, v;µ))|w=u
w=v

+ε(x− y)χ(w;x, y)(T (x,w;λ)⊗ T (u,w;µ))(r + s)

×(T (w, y;λ)⊗ T (w, v;µ))|w=u
w=v

+ε(x− y)ε(u− v)χ(w;x, y)χ(w;u, v)×

×(T (x,w;λ)⊗T (u,w;µ))(r+ s)(T (w, y;λ)⊗T (w, v;µ))|w=u
w=v . (4.7.17)

Due to nonultralocality of the theory we have kept the points (u, v)
and (x, y) separated. If we assume that they are ordered in a specific
way then (4.7.17) leads to:

• if v < y < x < u, then

{T (x, y;λ) ⊗, T (u, v;µ)} = ε(u−v)χ(w;u, v)T (x,w;λ)⊗T (u,w;µ)(r−s)

×T (w, y;λ)⊗ T (w, y;µ)|w=x
w=y , (4.7.18)

and if
• (ii) y < v < u < x, then

{T (x, y;λ) ⊗, T (u, v;µ)} = ε(x−y)χ(w;x, y)T (x,w;λ)⊗T (u,w;µ)(r+s)

×T (w, y;λ)⊗ T (w, y;µ)|w=u
w=v . (4.7.19)

Thus if in (4.7.18) and (4.7.19), we take the limit u → x, v → y, then
we get

{T (x, y;λ) ⊗, T (u, v;µ)} = [r − s, T (x, y;λ)⊗ T (x, y;µ)], (4.7.20)

{T (x, y;λ) ⊗, T (u, v;µ)} = [r + s, T (x, y;λ)⊗ T (x, y;µ)]. (4.7.21)

Consequently, following the procedure of Maillet et al. in [80] and
taking the average of (4.7.20) and (4.7.21), we finally obtain

{T (x, y;λ) ⊗, T (u, v;µ)} = [r, T (x, y;λ)⊗ T (x, y;µ)]. (4.7.22)

Thus, we have once again reconstructed a situation where the mon-
odromy matrix obeys the same Poisson bracket algebra as in the ul-
tralocal case.
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However, we have not imposed the nontrivial boundary conditions
on our problem. To incorporate these effects we shall next show how
one can deduce a general condition on the boundary matrices K±(λ),
even for the nonultralocal case. For this let us define T (x, y;λ) by

T (x, y;λ) = T (x, y;λ)K−(λ)T−1(x, y;λ−1) (4.7.23)

and compute the Poisson bracket:

{T (x, y;λ) ⊗, T (x, y;µ)} = {T (x, y;λ) ⊗, T (x, y;µ)}K−(λ)×

T−1(x, y;λ−1)⊗K−(µ)T−1(x, y;µ−1)

+(I ⊗ T−1(x, y;λ−1))K−(µ){T (x, y;λ) ⊗, T−1(x, y;µ−1)}

×K−(λ)(T−1(x, y;λ−1)⊗ I)+

T (x, y;λ)K−(λ)⊗ I{T (x, y;λ−1) ⊗, T (x, y;µ)}I ⊗K−(µ)T−1(x, y;µ−1)

+T (x, y;λ)K−(λ)⊗ T (x, y;µ)K−(µ){T−1(x, y;λ−1) ⊗, T−1(x, y;µ−1)}.
(4.7.24)

Evaluating each term separately, we find that

{T (x, y;λ) ⊗, T−1(x, y;µ−1)}= T (x, y;λ)⊗Ir(λ, µ−1)I⊗T−1(x, y;µ−1)

−I ⊗ T−1(x, y;µ−1)r(λ, µ−1)T (x, y;λ)⊗ I,

{T−1(x, y;λ−1) ⊗, T (x, y;µ)}= I⊗T (x, y;µ)r(λ−1, µ)T−1(x, y;λ−1)⊗I

−(T−1(x, y;λ−1)⊗ I)r(λ−1, µ)(I ⊗ T (x, y;µ)),

{T−1(x, y;λ−1) ⊗, T−1(x, y;µ−1)}

= −[r(λ−1, µ−1), T−1(x, y;λ−1) ⊗, T−1(x, y;µ−1)]. (4.7.25)

Substituting in (4.7.24) we get

{T (x, y;λ) ⊗, T (x, y;µ)} = [T (x, y;λ)⊗ Ir(λ−1, µ)I ⊗ T (x, y;µ)]

−[I ⊗ T (x, y;µ)r(λ, µ−1)T (x, y;λ)⊗ I] + ∆

+[T (x, y;λ)⊗ T (x, y;µ)r(λ−1, µ−1) + r(λ, µ)T (x, y;λ)⊗ T (x, y;µ)],
(4.7.26)

where ∆ stands for

T (x, y;λ)⊗ T (x, y;µ)
[
K1

−(λ)r(λ−1, µ)K2
−(µ) +K2

−(µ)r(λ, µ−1)K1
−(λ)
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−r(λ, µ)K1
−(λ)K2

−(µ)−K1
−(λ)K2

−(µ)r(λ−1, µ−1)
]
, (4.7.27)

where

K1
−(λ) = K−(λ)⊗ I, and K2

−(µ) = I ⊗K−(µ).

Now it is clear that {T (x, y;λ) ⊗, T (x, y;µ)} can be expressed solely
in terms of the T ’s, if and only if ∆ = 0, whence we get the equation
determining the boundary matrices, given a knowledge of the r matrix,
viz

r(λ, µ)K1
−(λ)K2

−(µ) +K1
−(λ)K2

−(µ)r(λ−1, µ−1)

= K1
−(λ)r(λ−1, µ)K2

−(µ) +K2
−(µ)r(λ, µ−1)K1

−(µ). (4.7.28)

To prove that we still have an infinite number of commuting conserved
quantities, let us set

G(x, y;λ) = T (x, y;λ)K+(λ), (4.7.29)

where K+(λ) is the boundary matrix at the other end, obeying the
same equation (4.7.28) asK−(λ). One can show that the new conserved
quantities are generated by

t(x, y;λ) = trG(x, y;λ). (4.7.30)

This may be accomplished by computing the Poisson bracket

{G(x, y;λ) ⊗, G(x, y;µ)},

using (4.7.26) with ∆ = 0, and thereafter using the fact that K±(λ)
satisfies (4.7.28), to obtain finally

{t(x, y;λ), t(x, y;µ)} = 0.

In this way one can deduce the existence of the integrals of motion and
also the equations for the boundary matrices K±(λ) for a nonultralocal
system with finite boundary conditions. A number of other important
models such as the Toda lattice and Sine-Gordon equations have been
treated in this manner, and we refer the reader to Sklyanin’s original
article [77] for further details.





Chapter 5

Algebraic Bethe Ansatz

5.1 Introduction

In the previous chapters we have discussed in detail the various mani-
festations of the Yang-Baxter equation for both discrete and continuous
integrable systems. Discrete integrable systems have a close analogy
with vertex models of statistical mechanics in two dimensions, which
were studied extensively by Baxter [64], Onsager, Mattis, Lieb [32] and
others. Our focus here is on the applications of the Yang Baxter equa-
tion in the ananlysis of specific nonlinear models. It should be borne
in mind that the motivation of solution in classical and quantum prob-
lems is quite different. While in classical IST one is interested in the
form of the solutions, that is, in the structure of the solitary wave, in
the quantum case one searches for the excitation spectrum, the Bethe
eigenmomenta equation and the energy eigenvalues, besides being in-
terested in the structure of the string states. Since there are certain
subtle problems associated with the continuous Lax operators we begin
with discrete models. A model that has received quite a lot of attention
in recent years and is structurally simple is the discrete self-trapping
(DST) model, which we analyse below.

5.2 Discrete Self-Trapping Model

The DST equation was introduced by Eilbeck et al. [82] to model
the nonlinear dynamics of small molecules. It consists of n nondissi-
pative anharmonic oscillators coupled through dispersive interactions.
Later, a detailed analysis was reported by Enol’skii et al. [83], who
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discovered an important aspect of this model. This was the existence
of both quadratic and linear algebra generated by the scattering data,
depending upon the type of Lax operator one used. Here we will es-
sentially decribe the work of Enol’skii et al. to illustrate the use of the
algebraic Bethe ansatz (ABA) for the explicit solution of the model
in the quantum regime. The existence of two types of scattering data
algebra actually leads to two different approaches to the model’s diago-
nalization, and hence to the derivation of the eigenvalue/eigenmomenta
equation by the algebraic Bethe ansatz.
The model is governed by the Lax operator

L(u) = L(1)(u)L(2)(u),

where L(m)(u) stands for

L(m) =

(
u− i(γb†mbm + wm)

√
εγb†m√

εγbm iε

)
for m = 1, 2. (5.2.1)

The corresponding Hamiltonian is given by

H = −γ
4

[
(b†1b1 − b

†
2b2)

2 +N2
]
+ (w1 − γ/2)b†1b1

+(w2 − γ/2)b†2b2 − ε(b
†
1b2 + b†2b1), (5.2.2)

with N = b†1b1 + b†2b2; b
†
i , bi being the creation and annihilation opera-

tors, respectively. The equations of motion are

ḃi = [H, bi], ḃ†i = [H, b†i ], i = 1, 2. (5.2.3)

This gives the two-state discrete self-trapping dimer equation. For the
Lax operator given by (5.2.1), the quantum R matrix is of the form

R(u) =

⎛⎜⎜⎜⎝
f(u) 0 0 0
0 1 g(u) 0
0 g(u) 1 0
0 0 0 f(u)

⎞⎟⎟⎟⎠ , (5.2.4)

with f(u) = (u − iγ)u, g(u) = −iγ/u. One assumes the existence of a
pseudo-vacuum vector |0〉 so that for the transfer matrix,

T (u) =

(
A(u) B(u)
C(u) D(u)

)
,
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one has C(u)|)〉 = 〈0|C(u) = 0. The action of A(u), D(u) on the
vacuum is given by

A(u)|0〉 = a(u)|0〉, D(u)|0〉 = d(u)|0〉, (5.2.5)

where a(u), d(u) are the corresponding eigenvalues. The nth excited
state is now obtained by the action of n creation operators acting on
the vacuum, i.e.,

|N〉 = B(u1)B(u2)...B(uN )|0〉.

The Hamiltonian H is obtained as the coefficient of u in the expression
trT (u) = A(u) +D(u), while the eigenstates are solutions of

(A(u) +D(u))|N〉 = Λ(u)|N〉. (5.2.6)

(We will at times write |N〉 as Ψ(u1, u2, ....uN )). The commutation
rules for the operators A(u), B(u)... etc. are obtained from the inter-
twining relation

R(u, v)T 1(u)T 2(v) = T 2(v)T 1(u)R(u, v), (5.2.7)

where T 1(u) = T (u) ⊗ I and T 2(u) = I ⊗ T (u). When written out in
full these commutation relations are as follows:

f(u− v)A(u)A(v) = A(v)A(u)f(u− v), (5.2.8)

f(u− v)A(u)B(v) = B(v)A(u) + g(u− v)A(v)B(u), (5.2.9)

A(u)C(v) + g(u− v)C(u)A(v) = f(u− v)C(v)A(u), (5.2.10)

A(u)D(v)+g(u−v)C(u)B(v) = f(u−v)C(v)B(u)+D(v)A(u), (5.2.11)

f(u− v)B(u)A(v) = g(u− v)B(v)A(u) +A(v)B(u), (5.2.12)

f(u− v)B(u)B(v) = f(u− v)B(v)B(u) (5.2.13)

B(u)C(v)+g(u−v)D(u)A(v) = g(u−v)D(v)A(u)+C(v)B(u), (5.2.14)

B(u)D(v) + g(u− v)D(u)B(v) = f(u− v)D(v)B(u), (5.2.15)

g(u− v)A(u)C(v) + C(u)A(v) = f(u− v)A(v)C(u), (5.2.16)

g(u−v)A(u)D(v)+C(u)B(v) = B(v)C(u)+g(u−v)A(v)D(u), (5.2.17)

[C(u), C(v)] = 0, (5.2.18)

f(u− v)C(u)D(v) = D(v)C(u) + g(u− v)C(v)D(u), (5.2.19)
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g(u−v)B(u)C(v)+D(u)A(v) = g(u−v)B(v)C(u)+A(v)D(u), (5.2.20)

g(u− v)B(u)D(v) +D(u)B(v) = f(u− v)B(u)D(v), (5.2.21)

f(u− v)D(u)C(v) = g(u− v)D(v)C(u) + C(v)D(u), (5.2.22)

[D(u), D(v)] = 0. (5.2.23)

In practice, we only require a few of the above commutation relations
for actual calculations. The basic idea behind the calculations is to
use the appropriate commutation rules for A(u) and D(u) with B(u)
to move the latter to the extreme right to operate on the vacuum |0〉,
whence the eigenvalue equations (5.2.5) can be used. In this procedure
two classes of terms are generated, commonly referred to as the wanted
and unwanted terms. The wanted term has the same structure as the
starting state |N〉 while the unwanted ones have a different form. For
|N〉 to be an eigenvector of A(u)+D(u) we require the unwanted terms
to vanish. The vanishing of the unwanted terms gives rise to the Bethe
eigenmomenta equations. In this particular case these equations are as
follows:

a(uk)
d(uk)

=
N∏

j=1,j �=k

f(uk − uj)
f(uj − uk)

, k = 1, 2, ..., N, (5.2.24)

while the energy eigenvalue from t(u)|N〉 = Λ(u)|N〉, has the form

Λ(u) = a(u)
∏N

j=1(u− uj + iγ)∏N
j=1(u− uj)

+ d(u)
∏N

j=1(u− uj − iγ)∏N
j=1(u− uj)

, (5.2.25)

with

a(u) = [u− i(w1 − γ/2)][u− i(w2 − γ/2)] and d(u) = −ε2. (5.2.26)

Finally the Hamiltonian operator can be expressed as

γH =

[
1
2

(
d

du
trL(u)

)2

− trL(u)

]
u=0

−ε2+1
2
(w1−γ/2)2+

1
2
(w2−γ/2)2,

(5.2.27)
where the energy eigenvalue are

γEk =

[
1
2

(
d

du
tr t(u)

)2

− tr t(u)
]
u=0

−ε2+1
2
(w1−γ/2)2+

1
2
(w2−γ/2)2.

(5.2.28)
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A more convenient form is obtained if we write (5.2.25) as

Λ(u) = a(u)− ε2 +
φn+1(u)∏N
j=1(u− uj)

, (5.2.29)

where φn+1(u) is a polynomial of degree n+ 1 given by

φn+1(u) = [u− i(w1 − γ/2)][u− i(w2 − γ/2)]×

×

⎡⎣ N∏
j=1

(u− uj − iγ)−
N∏
j=1

(u− uj)

⎤⎦

−ε2
⎡⎣ N∏
j=1

(u− uj + iγ)−
N∏
j=1

(u− uj)

⎤⎦ = (−Nγu+ βn)
N∏
j=1

(u− uj),

(5.2.30)
βn being parameters. Upon equating the coefficients of the different
powers of u in (5.2.29), one is led to det(βI + P ) = 0, where I is a
(n+ 1)× (n+ 1) unit matrix and P is the Heisenberg matrix:

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0,n −iγ 0 0 .. .. 0
q1,n q1,n−1 −2iγ 0 .. .. 0
q2,n q2,n−1 q2,n−2 −3iγ .. .. 0
.
.
.

qn,n qn,n−1 qn,n−2 .. .. .. qn,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.2.31)

where the matrix elements qn,m−l, (m, l = 0, ...N) are

qn,m−l = −θ(m− l)(−iγ)m−l−2

(
n− l

n−m− 2

)
[1− δm,|l−2|θ(l − 2)]

−iθ(m− l)(w1 +w2− γ)(−iγ)m−l−1

(
n− l

n−m− 1

)
[1− δm,|l−1|θ(l− 1)]

+(−iγ)m−lθ(m− l)[w1w2 − 1/2γ(w1 + w2) + γ2/4 + (−1)m−lε2]×

×
(
n− l
n−m

)
(1− δm,l). (5.2.32)
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One can show that for n+1 characteristic values β(k)
n , k = 1, ..., (n+1)

the expression for the energy eigenvalue may be written as

Ek = n(w1 + w2)−
n

2
(n+ 2)2γ − β(k)

n /γ. (5.2.33)

It is important to point out that the same problem may be associated
with another Lax operator that satisfies a linear r matrix relation as
does the operator T (u). One can again formulate the quantum inverse
problem; however in that case one adopts the techniques of separation
of variables together with the use of a functional Bethe ansatz ap-
proach. In Chapter 7 we shall return to this problem when describing
the method of separation of variables for integrable systems.

5.3 Asymmetric XXZ Model in a Magnetic Field

As a second example of the application of the algebraic Bethe ansatz
to the solution of concrete problems, we consider the R matrix for an
asymmetrical XXZ spin chain placed in an external magnetic field. The
system was analysed in [84]. In terms of the R matrix the analysis of
such a system can be accomplished using the algebraic Bethe ansatz.
The R matrix obtained in [84] presents certain novel features in the
sense that the spectral parameters on which the R matrix depends are
two component vectors. The inclusion of the external magnetic field
within the R matrix itself is facilitated by assigning one component of
this vector-valued spectral parameter to be proportional to the external
magnetic field. Let us consider the R matrix in the form

R̃(�λ, �µ) =

⎛⎜⎜⎜⎝
aeη(λ2−µ2) 0 0 0

0 be−η(λ2+µ2) sinh η 0
0 sinh η beη(λ2+µ2) 0
0 0 0 a−η(λ2−µ2)

⎞⎟⎟⎟⎠ , (5.3.1)

where �λ = (λ1, λ2) and �µ = (µ1, µ2), are two component vectors while
a(λ1, µ1) = sinh(λ1 − µ1 + η), b(λ1, µ1) = sinh(λ1 − µ1), η being the
quantization parameter. This R matrix satisfies the Yang-Baxter equa-
tion

R̃12(�λ, �µ)R̃13(�λ, �ν)R̃23(�µ, �ν) = R̃23(�µ, �ν)R̃13(�λ, �ν)R̃12(�λ, �µ). (5.3.2)
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It is interesting to note that (5.3.2) remains valid even upon introduc-
ing inhomogenities αi, βi, γi(i = 1, 2), by means of the transformations
�λ→ �λ−�α, �µ→ �µ− �β, �ν → �ν−�γ. The connection with the local Hamil-
tonian density of the asymmetric XXZ spin chain, in the presence of
an external magnetic field, can be made by employing the following
reduction.
Let �λ = (λ, λh), �ν = (ν, νh), where h is the magnetic field. Defining

R̃(�λ, �ν) ≡ L(λ, ν),

we have

L(λ, ν) =

⎛⎜⎜⎜⎝
peηh(λ−ν) 0 0 0

0 qe−ηh(λ+ν) r 0
0 r qeηh(λ+ν) 0
0 0 0 pe−ηh(λ−ν)

⎞⎟⎟⎟⎠ , (5.3.3)

where

p = sinh(λ− ν + η), q = sinh(λ− ν), r = sinh η.

Now it can be shown that the local Hamiltonian density follows from

Hi,i+1 = sinh ηL−1(λ, ν)
∂

∂λ
L(λ, ν)|λ=ν −

1
2
cosh ηI4 (5.3.4)

=
1
2
cosh ησ3

i ⊗ σ3
i+1 +

1
2
ηh sinh η(σ3

i ⊗ I + I ⊗ σ3
i+1),

+e−hψσ−i ⊗ σ+
i+1 + ehψσ+

i ⊗ σ−i+1, (5.3.5)

where ψ = 2ην and we have written L(λ, ν) in terms of the local oper-
ators (�σi, �σi+1) which are the 2 × 2 Pauli matrices. As shown in [85],
the L operator satisfies the standard relation,

R̂(λ, ν)L(λ, ν)⊗ L(µ, ν) = L(µ, ν)⊗ L(λ, ν)R̂(λ, µ), (5.3.6)

where
R̂(λ, µ) = PR̃(λ, µ), (5.3.7)

with P as the permutation operator. Equation (5.3.6) is important for
it will be noticed that ν plays the role of an auxiliary parameter. We
consider a one-dimensional lattice and assign to each site the operator,

L̂(λ, νk) ≡ R0k(λ, νk; η) =
1

sinh(λ− νk + η)
R̂0k(λ, νk; η), (5.3.8)
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where the indices 0 and k refer to an auxiliary space VA and a quantum
space Vk at the kth lattice site, respectively. Thus L̂(λ, νk) above is de-
fined in the tensor product of the two vector spaces, i.e., VA⊗Vk. Note
that the parameter ν has now become site dependent. Two properties
of R0k(λ, νk; η) are very important in any analysis:

(i) R0k(νk, νk; η) = Pok, (ii) R0k(λ, νk; η = 0) = I4. (5.3.9)

Defining the monodromy matrix as usual by

TN (λ, {νk}; η) = R0N (λ, νN ; η)...R0k(λ, νk; η)...R01(λ, ν1; η), (5.3.10)

it is evident from (5.3.6) that TN (λ, {νk}; η) satisfies

R̂(λ, µ)TN (λ, {νk}; η)⊗ TN (µ, {νk}; η)

= TN (µ, {νk}; η)⊗ TN (λ, {νk}; η)R̂(λ, µ). (5.3.11)

The trace of the transition matrix defined by (5.3.10), is known to be
the generator of the integrals of motion, which are in involution. Let
us formally write the monodromy matrix as

TN (λ, {νk}; η) =

(
AN (λ) BN (λ)
CN (λ) DN (λ)

)
, (5.3.12)

and from (5.3.11) pick up two commutation relations:

AN (λ)CN (µ) =
sinh(λ− µ+ η)eηh(λ−µ)

sinh(λ− µ)e−ηh(λ+µ)
CN (µ)AN (λ)

− sinh η
sinh(λ− µ)e−ηh(λ+µ)

CN (λ)AN (µ), (5.3.13)

DN (λ)CN (µ) =
sinh(µ− λ+ η)e−ηh(λ−µ)

sinh(µ− λ)e−ηh(λ+µ)
CN (µ)AN (λ)

− sinh η
sinh(µ− λ)e−ηh(λ+µ)

CN (λ)DN (µ). (5.3.14)

Here we have taken CN (λ) as a creation operator, so that a M excita-
tion eigenstate of the transfer matrix

t(λ, {νk}; η) = tr0

←
N∏
k=1

R0k(λ, νk; η)
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is of the form

|ΩM 〉 = CN (µ1)CN (µ2)....CN (µM )|0〉. (5.3.15)

The vacuum state |0〉 here is defined by

|0〉 =
N∏
k=1

⊗
(

1
0

)
k

. (5.3.16)

Application of AN (λ) to the state |Ω〉 results in the following equation
upon repeatedly using (5.3.13):

AN (λ)|Ω〉 = aN (λ)
M∏
i=1

sinh(λ− µi + η)
sinh(λ− µi)

e2ηhλ|ΩM 〉+ unwanted terms,

(5.3.17)
where by “unwanted terms” is meant all those terms that are not pro-
portional to |Ω〉. Similar application of DN (λ) to |ΩM 〉 using (5.3.14)
results in the following:

DN (λ)|ΩM 〉 = dN (λ)
M∏
i=1

sinh(µi − λ+ η)
sinh(µi − λ)

e2ηhλ + unwanted terms.

(5.3.18)
In equations (5.3.17 and 5.3.18), aN (λ) and dN (λ) are the eigenvalues
of AN (λ) and DN (λ) when acting on |0〉. These eigenvalues may be
determined by noting that in general

(TN (λ))ab =
2∑

a1,..aN−1=1

t(1)
aa1

(λ, ν1)t(2)
a1a2

(λ, ν2)....t
(N)
aN−1b

(λ, νN ), (5.3.19)

where t(k)
ij (λ, νk) refers to the partitioned submatrix of R0k(λ, νk; η), so

that

R0k(λ, νk; η) =

(
t
(k)
11 (λ, νk) t

(k)
12 (λ, νk)

t
(k)
21 (λ, νk) t

(k)
22 (λ, νk)

)
, (5.3.20)

with

t
(k)
11 (λ, νk) =

(
eηh(λ−νk) 0

0 sinh(λ−νk)
sinh(λ−νk+η)e

−ηh(λ+νk)

)

t
(k)
12 (λ, νk) =

(
0 0

sinh η
sinh(λ−νk+η) 0

)
; t

(k)
21 (λ, νk) =

(
0 sinh η

sinh(λ−νk+η)

0 0

)
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t
(k)
22 (λ, νk) =

(
sinh(λ−νk)

sinh(λ−νk+η)e
ηh(λ+νk) 0

0 e−ηh(λ−νk)

)
. (5.3.21)

Applying the definition (5.3.19) we find that

AN (λ)|0〉 =
(

N∏
k=1

eηh(λ−νk)

)
|0〉 = aN (λ)|0〉, (5.3.22)

DN (λ)|0〉 =
{

N∏
k=1

sinh(λ− νk)
sinh(λ− νk + η)

eηh(λ+νk)

}
|0〉 = dN (λ)|0〉, (5.3.23)

so that aN (λ) and dN (λ) can be read off easily.

From equations (5.3.17 and 5.3.18) it is obvious that |ΩM 〉 will be
an eigenstate of t(λ) if the unwanted terms vanish; the vanishing of
the unwanted terms leads to the Bethe ansatz equation (BAE) that
determines the {µi}’s. Under this condition one has

t(λ)|ΩM 〉 = (AN (λ)+DN (λ))|ΩM 〉 =
[
aN (λ)

M∏
i=1

sinh(λ− µi + η)
sinh(λ− µi)

e2ληh

+dN (λ)
M∏
i=1

sinh(µi − λ+ η)
sinh(µi − λ)

e2ληh
]
|ΩM 〉, (5.3.24)

while the vanishing condition for the unwanted terms is the following
set of coupled equations:

aN (µj)
dN (µj)

=
M∏
i�=j

sinh(µi − µj + η)
sinh(µi − µj − η)

, j = 1, 2, ...,M. (5.3.25)

From (5.3.22 and 5.3.23) we find that the ratio on the left is

aN (µj)
dN (µj)

=
N∏
k=1

sinh(µj − νk + η)
sinh(µj − νk)

e−2ηνkh. (5.3.26)

Hence the BAE finally assumes the following form:

N∏
k=1

sinh(µj − νk + η)
sinh(µj − νk)

e−2ηνkh =
M∏
i=1

i�=j

sinh(µi − µj + η)
sinh(µi − µj − η)

, j = 1, 2, ....,M.

(5.3.27)
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Furthermore, the energy eigenvalue of the transfer matrix is seen to be
given by

ΛM (λ, {νk}) = e2ηλh
(

N∏
k=1

eηh(λ−νk)

)
M∏
i=1

sinh(λ− µi + η)
sinh(λ− µi)

+e2ηλh
(

N∏
i=1

sinh(λ− νk)
sinh(λ− νk + η)

eηh(λ+νk)

)
M∏
i=1

sinh(µi − λ+ η)
sinh(µi − λ)

. (5.3.28)

Equations (5.3.27 and 5.3.28) complete the Bethe ansatz solution of
the eigenvalue problem:

t(λ)|ΩM 〉 = ΛM |ΩM 〉

an analysis of the BAE would determine the eigenmomenta µj ’s, which
is a separate issue in itself.

5.4 Analytical Bethe Ansatz

The quantum inverse scattering method is in fact a general formalism
applicable to a wide number of nonlinear integrable systems possessing
a Lax operator. In the preceding section we have shown its application
to a discrete system, yet it is also applicable to continuous problems
albeit after certain modifications are made. Several important results
have been discovered by Faddeev, Takhtajan, Kulish, Sklyanin et al.
[86] of the Russian school and also by de Vega, Maillet [87] and others
in this context.

In the continuous domain the Sine-Gordon model occupies a very
special status, being a field theoretic model and owing to its appearence
in several areas of condensed matter physics and quantum field theory.
In the context of nonlinear integrable systems, specially with regard to
the quantum inverse problem its importance stems from the fact that
it does not admit a natural pseudo-vacuum reference state; therefore
the algebraic Bethe ansatz technique as described in the last section
cannot be applied directly.

Initially the model was studied by Kulish [88] who used the method
of space discretization to construct a discrete Lax operator, Ln(x), from
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the continuous Lax matrix L(x). Later, an exact form of Ln was de-
rived for all orders of the lattice spacing ∆. However the absence of
a pseudo-vacuum state still persisted, and compelled Kulish to assume
that although it did not exist for Ln, it existed for the product LnLn−1.
Thus by postulating the existence of a vacuum state for the product
he was able to apply the methodology of algebraic Bethe ansatz to the
system and construct the solution for the quantum inverse problem
(the details may be found in [88]).
Later it was shown by authors [89] that one could use the technique of
analytical Bethe ansatz to set up the Bethe ansatz and derive the eigen-
momenta equation and the eigenvalues. We shall illustrate the method
of analytical Bethe ansatz with the Sine-Gordon equation written in
the form [91]:

φxt = sinφ. (5.4.1)

Its Lax matrix is given by

L(x, λ) =

(
iβπ(x)

4
m
4 (λ−1eiβφ/2 − λe−iβφ/2)

m
4 (λeiβφ/2 − λ−1e−iβφ/2) − iβπ(x)

4

)
.

(5.4.2)
Here the field momentum π(x) = ∂tφ(x) and satisfies the Poisson
bracket {π(x), φ(y)} = δ(x− y).

By going over to the lattice, we can get a discrete form of the Lax
operator valid up to first order in the lattice spacing ∆:

Ln(x) =

(
1− iβpn4

∆m
4 (λe−iβun/2 − λ−1eiβun/2)

∆m
4 (λ−1e−iβun/2 − λeiβun/2) 1 + iβpn4

)
,

(5.4.3)
where un, pn are the following:

un =
1
∆

∫ xn

xn−1

φ(x)dx, pn =
∫ xn

xn−1

π(x)dx, (5.4.4)

with
{pn, um} = δn,m.

By converting this Poisson bracket to a commutator, so that [pn, um] =
−iγδn,m and requiring that

R(λ, µ)Ln(λ)⊗ Ln(µ) = Ln(µ)⊗ Ln(λ)R(λ, µ), (5.4.5)
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where the entries of Ln(λ), Ln(µ) are thought of as operators, one can
show that the solution of the intertwining matrix R(λ, µ) is

R̄(λ, µ) =

⎛⎜⎜⎜⎝
r11 0 0 0
0 r22 r23 0
0 r23 r22 0
0 0 0 r11

⎞⎟⎟⎟⎠ ; (5.4.6)

where

r11 =
λ

µ
eiγ − µ

λ
e−iγ , r22 = eiγ − e−iγ , r23 =

λ

µ
− µ

λ
. (5.4.7)

Note that in deriving this solution for the quantum R matrix, the Lax
operator was discretized only up to the first order in ∆. In order to
derive the exact discretized version of the Lax operator for the model,
Kulish used a novel technique, assuming the quantum R matrix to have
the same form as in (5.4.6) (note that this solution is ∆ independent),
he went back to (5.4.5) and with this R matrix obtained a solution for
the Lax operator valid up to all orders in ∆. This was found to be

Ln(λ) =

(
f(un)e−iβpn/4 m∆

4 (λe−βun/2 − λ−1eiβun/2)
m∆
4 (λ−1e−iβun/2 − λeiβun/2) g(un)eiβpn/4

)
,

(5.4.8)
where the functions f(un), g(un) are given by

g(u+ β/4− 2π/β)g(u) = 1 + 2(
m∆
4

)2 cos(βu+ γ),

f(u) = g(u− 2π/β), γ = β2/8. (5.4.9)

Setting eu = λ, ev = µ, the quantum R matrix in (5.4.6) is essentially
of the form

R̄(u) =

⎛⎜⎜⎜⎝
sinh(u+ iγ) 0 0 0

0 sinh(iγ) sinh(u) 0
0 sinh(u) sinh(iγ) 0
0 0 0 sinh(u+ iγ)

⎞⎟⎟⎟⎠ . (5.4.10)

Alternatively we can consider the following R matrix defined by

R′(u− v) = PR̄(u− v), (5.4.11)
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where P is the permutation operator. The gauge transformation of this
R′ matrix yields

R′ → R(u− v) = B1(u)B2(v)R′(u− v)B1(−u)B2(−v), (5.4.12)

where B(u) is a diagonal matrix satisfying

B(u)B(v) = B(u+ v),

and we have employed the standard notations

B1(u) = B(u)⊗ I, B2(v) = I ⊗B(v).

Let us further require that B(0) = I and that

B1(u)R̄(u− v)B1(−u) = B2(−u)R(u− v)B2(u),

which implies that Rαα′
ββ′ = 0 unless α + β = α′ + β′. Here α, α′ refer

to the first space and β, β′ to the second vector space on which the R
matrix is defined. In the following calculations we shall take

B(u) =

(
euζ 0
0 e−uζ

)
; (5.4.13)

as a result we obtain the following form of the R matrix:

R(ω) =

⎛⎜⎜⎜⎝
sinh(ω + η) 0 0 0

0 sinhω eω sinh η 0
0 e−ω sinh η sinhω 0
0 0 0 sinh(ω + η)

⎞⎟⎟⎟⎠ ; (5.4.14)

where ω = (u − v)η = iγ and the arbitrary parameter ζ has been set
equal to 1/2. As R and R̄ are connected by a similarity transformation,

R(ω) = SR′S−1, S = diag(e(u+v)/2, e(u−v)/2, e−(u−v)/2, e−(u+v)/2),
(5.4.15)

hence the eigenvalues of R and R′ are the same. Furthermore, the R(ω)
matrix admits the following properties:

R(ω)R(−ω) = ξ(ω)I, ξ(ω) = −4 sinh(ω + η) sinh(ω − η), (5.4.16)

R21(ω) = PR12(ω)P, P2 = I, (5.4.17)
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R(−ρ) = ξ(0)1/2

⎛⎜⎜⎜⎝
0 0 0 0
0 1 −e−η 0
0 −eη 1 0
0 0 0 0

⎞⎟⎟⎟⎠ , ρ = iπ + η. (5.4.18)

In addition we note that

P−
12 =

R12(−ρ)
2ξ(0)1/2

, (5.4.19)

is a projection operator in V1 ⊗ V2 and R(ω) obeys crossing symmetry

R12(ω) = X1R12(−ω − ρ)t2X1, (5.4.20)

with

X =

(
0 −ie−η/2

ieη/2 0

)
,

as t2 denotes transpose in the second space V2.
As usual the monodromy matrix is given by

Ta(ω) = RaN (ω)RaN−1(ω).....Ra1(ω), (5.4.21)

with Rak(ω) being defined on Va⊗Vk. Here Va is the auxiliary space and
Vk represents the kth lattice site. The corresponding transfer matrix
is obtained by taking the trace of the monodromy matrix over the
auxiliary space so that

t(ω) = tra[Ta(ω)] = tra[RaN (ω)RaN−1(ω).....Ra1(ω)], (5.4.22)

and
[t(ω), t(ω′)] = 0, ω �= ω′. (5.4.23)

The analytical Bethe ansatz starts by looking at the asymptotic be-
haviour of R(ω) as ω →∞. In the present case one finds that

Rak(ω) ω→∞−→ eω+η/2

(
eηS

3
k PS−

k

0 e−ηS3
k

)
, (5.4.24)

where

S3
k =

1
2
σ3, S−

k =
1
2
(σ1 − iσ2), P = 2e−η/2 sinh η. (5.4.25)



148 Quantum Integrable Systems

The upper triangular nature of the R matrix immediately implies that
as ω →∞

Ta(ω) =
N∏
k=1

Rak(ω) � e(ω+η/2)N

(
eηS

3
PS−

0 e−ηS3

)
, (5.4.26)

with

S3 =
N∑
k=1

S3
k , S− =

N∑
k=1

eη(S
3
N+....S3

k+1)S−
k e

−η(S3
k−1+...+S3

1). (5.4.27)

When ω →∞ we obtain

t(ω) � eωN [eη/2(N+2S3) + eη/2(N−2S3)]. (5.4.28)

If we set 4σ = N − 2S3, then we find that

t(ω) � eωN [eη(N−2σ) + e2ησ]. (5.4.29)

Note that t(ω) commutes with Ta(ω) and therefore with S−, so that
S3 also commutes with σ.
Let |∆(m)〉 be the simultaneous eigenstate of t(ω) and σ,

t(ω)|∆(m)〉 = ∆(m)(ω)|∆(m)〉, σ|∆(m)〉 = m|∆(m)〉, (5.4.30)

so that explicitly we obtain as ω →∞,

t(ω)|∆(m)〉 ∼ eωN [eη(N−2m) + 2e2mη]|∆(m)〉, (5.4.31)

whence

∆(m)(ω) ∼ eωN [e(N−2m)η + 2e2mη], ω →∞. (5.4.32)

We next consider the pseudo-vacuum state with all N spins in the up
state, i.e.,

| ↑↑ ....... ↑〉 =
N∏
k=1

⊗| ↑〉k, | ↑〉k =

(
1
0

)
k

, (5.4.33)

so that

4σ
N∏
k=1

⊗| ↑〉k = 0, (5.4.34)
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and hence the state
∏N

k=1⊗| ↑〉k has m = 0. Assuming that this is an
eigenstate of t(ω) so that

N∏
k=1

⊗| ↑〉k ≡ |∆(0)〉, (5.4.35)

one finds that the corresponding eigenvalue is

∆(0)(ω) = 〈∆(0)|t(ω)|∆(0)〉 = tra〈∆(0)|Ta(ω)|∆(0)〉. (5.4.36)

We observe that the exact R matrix can be written as

Rak(ω) = 2

(
z0 + z3σ

3
k z−σ−k

z+σ
+
k z0 − z3σ3

k

)
, (5.4.37)

where

z0 =
1
2
[sinh(ω+η)+sinhω], z3 =

1
2
[sinh(ω+η)−sinhω], z± = e±η sinh η,

(5.4.38)
whence

∆(0)(ω) = tra

{
N∏
k=1

[〈↑ |kRak(ω)| ↑〉k]
}

= 2N [sinhN (ω + η) + sinhN (ω)].

(5.4.39)
We then assume that the eigenvalue ∆(m) has the general form

∆(m)(ω) = 2N [A(m) sinhn(ω + η) +B(m) sinhN ω], (5.4.40)

so that
∆(m)(ω) ω→∞−→ eωN [eηNA(m)(ω) +B(m)(ω)].

Comparing with (5.4.32) we conclude that asymptotically

A(m)(ω) ∼ e−2mη, B(m) ∼ e2mη. (5.4.41)

To proceed further we will require that the functional relations are
satisfied by the coefficients A(m)(ω) and B(m)(ω). To this end let us
consider that

Ta(ω)t = Ta(ω)t1...tN = [RaN (ω)....Ra1(ω)]t1...tN = [RtN
aN (ω)...Rt1

a1(ω)],
(5.4.42)
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where Xti represents a transpose in the ith space. From crossing sym-
metry we find that

Rak(ω) = XaRak(−ω − ρ)tkXa, Rtk
ak(ω) = XaR(−ω − ρ)Xa.

(5.4.43)
Using these relations one can derive

tt(ω) = t(−ω − ρ), (5.4.44)

so that the eigenvalue satisfies

∆(m)(ω) = ∆(m)(−ω − ρ). (5.4.45)

We now employ the fusion property, which is a procedure for generating
higher spin states from lower ones. For the relevant details of the
formulae to be used in the sequel, we refer the reader to section (7) of
Chapter 5. From the fusion property of the R matrix, it can be shown
that

R〈12〉,3(ω) = P+
12R13(ω)R23(ω + ρ)P+

12 and P+
12 = I − P−

12, (5.4.46)

which again is an R matrix satisfying the Yang-Baxter equation. This
along with the representation theory implies that

R13(ω)R23(ω + ρ) ∼
(
−4 sinhω sinh(ω + 2η)I(3)

2 �
0 f(ω)Z

)
, (5.4.47)

where Z is a 3 × 3 matrix whose elements are operators in V3. The
top right represents a 1× 3 matrix whose elements are operators in V3,
while the lower left-hand corner is a 3×1 null matrix and I(3)

2 is a 2×2
unit matrix in V3. The fused transfer matrix therefore becomes

t(ω)t(ω+ρ) = (−1)N [4 sinhN (ω) sinh(ω+2η)]N +fN (ω)t̃(ω), (5.4.48)

where t̃(ω) is the transfer matrix corresponding to Z. Equation (5.4.48)
yields

∆(m)(ω)∆(m)(ω+ρ) = (−1)N [4N sinhN ω sinhN (ω+2η)+fN (ω)∆̃(ω)],
(5.4.49)

with ∆̃(ω) being the eigenvalue of t̃(ω).
Substituting (5.4.40) in (5.4.49) we obtain

B(m)(ω)A(m)(ω + ρ) = 1, A(m)(ω)A(m)(−ω) = 1, (5.4.50)
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which are the requisite functional relations.
Our goal, is to find A(m) and B(m). For this we observe that the R
matrix depends on ζ0, ζ+1, ζ−1, where ζ = eω, and therefore one may
infer that t(ω) =

∑N
i=1 tiζ

i and consequently,

∆(m)(ω) =
N∑

i=−N

C
(m)
i ζi. (5.4.51)

We assume the following form of A(m)(ω):

A(m)(ω) =
m∏
j=1

(ζ − αj)(ζ − γj)(ζ−1 + ᾱj)(ζ−1 + γ̄j)
(ζ − βj)(ζ − δj)(ζ−1 + β̄j)(ζ−1 + δ̄j)

, (5.4.52)

along with the conditions,

βj = α−1
j , γj = eη/αj , δj = e−ηαj , β̄j = αj ,

ᾱj = α−1
j , γ̄j = e−ηαj , δ̄j = eηα−1

j , (5.4.53)

following from (5.4.50). Furthermore as ω →∞ we have

A(m)(ω)→
m∏
j=1

e−2η = e−2mη, (5.4.54)

in conformity with (5.4.41). The second part of (5.4.50) yields

B(m)(ω) =
m∏
j=1

(ζ−1 + eηαj)(ζ−1 + e2ηα−1
j )(ζ − e−ηα−1

j )(ζ − e−2ηαj)

(ζ−1 + eηα−1
j )(ζ−1 + αj)(ζ − e−ηαj)(ζ − α−1

j )
.

(5.4.55)
One can easily verify that B(m)(ω) ∼ e2mη as ω → ∞ as required by
(5.4.41).
Thus we have obtained the form of the Bethe ansatz eigenvalue for the
mth excited state being given by (5.4.40) as a result of the explicit
construction of A(m)(ω) and B(m)(ω), which are as in (5.4.52) and
(5.4.54), respectively. The equations for the quasi-momenta can be
shown to follow from the condition that the residue of (5.4.40) should
vanish at the poles. These turn out to be as follows:

sinhN (ωk − η/2)
sinhN (ωk + η/2)

=
sinh(2ωk − η)
sinh(2ωk + η)

N∏
j=1,j �=k

Nj

Dj
, (5.4.56)
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where

Nj = P (ωk, ωj , η)Q(ωk, ωj , η)P (−ωk,−ωj ,−η)Q(−ωk,−ωj ,−η),

Dj = P̄ (ωk, ωj , η)Q̄(ωk, ωj , η)P̄ (−ωk,−ωj ,−η)Q̄(−ωk,−ωj ,−η),
(5.4.57)

P (ωk, ωj , η) = eωk+η/2 + eωj+3η/2 P̄ (ωk, ωj , η) = eωk+η/2 + eωj−η/2,
(5.4.58)

Q(ωk, ωj , η) = eωk+η/2+e−ωj+3η/2, Q̄(ωk, ωj , η) = eωk+η/2+e−ωj−η/2.

In this manner we have the complete solution of the Bethe ansatz prob-
lem for the Sine-Gordon equation in a way different from that in [88].

5.5 Off-Shell Bethe Ansatz

In this section we describe a recent concept related to the algebraic
Bethe ansatz, which was introduced for the evaluation of the semiclas-
sical limits of the algebraic Bethe ansatz. It provided for the connection
of the algebraic Bethe ansatz with conformal field theory. In fact one
can deduce the famous Knizhnik-Zamolodchikov (KZ) equation [92]
from this procedure. In order to discuss this concept we consider an
inhomogeneous vertex model. We start with a two-dimensional M ×N
lattice with N + 1 in general, different types of spin variables placed
in the following manner inhomogeneously on the links of the lattice.
On all horizontal links are spin variables taking values ±1/2. The
variables in the jth column (j = 1, 2, ...N) take values of an SU(2)
representation with spin Sj . The interaction takes place between spins
located on neighbouring links and is described by the vertex weight
matrix Rj1,j2

i1,i2
(λ − z), where λ is the usual spectral parameter and z

is a parameter known as the disorder parameter. We assume that the
boundary conditions are cyclic and use the SU(2) invariant solution of
the Yang-Baxter equation:

R12
σ (λ− µ)R13

s (λ− z)R23
s (µ− z) = R23

s (µ− z)R13
s (λ− z)R12

σ (λ− µ).
(5.5.1)

This is a Yang-Baxter equation involving two types of spin vertices.
Here R12

σ (λ) is the vertex weight of the XXX model so that

R12
σ (λ) = I1 ⊗ I2 +

2η
(η − 2λ)

�σ1 ⊗ �σ2, (5.5.2)
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and
R12
s (λ− z) = I1 ⊗ I2 +

2η
η − 2(λ− z)�σ1 ⊗ �S2, (5.5.3)

where �σ is the Pauli operator and �S denotes an arbitrary spin. I1 and
I2 are unit operators in the respective spaces. The parameter η gives
the quasi-classical expansion,

R12(λ, η)|η=0 = I1 ⊗ I2, (5.5.4)

The monodromy and transfer matrices are defined in the usual way as

T (λ, {z}) = R0N (λ− zN )R0,N−1(λ− zN−1).......R01(λ− z1), (5.5.5)

t(λ, {z}) = tr0[T (λ, {z})], (5.5.6)

with the trace being taken over the auxiliary space, and

R0k(λ− zk) = I0 ⊗ Ik +
2η

η − 2(λ− zk)
�σ0 ⊗ �Sk. (5.5.7)

One infers from (5.5.1) that

R12
σ (λ− µ)T (λ, {z})⊗ T (µ, {z}) = T (µ, {z})⊗ T (λ, {z})R12

σ (λ− µ),
(5.5.8)

and also that
[t(λ, {z}), t(µ, {z})] = 0. (5.5.9)

We write T (λ, {z}) as a 2× 2 matrix

T (λ, {z}) =

(
A(λ, {z}) B(λ, {z})
C(λ, {z}) D(λ, {z})

)
,

while Rσ(λ) occurring in (5.5.8) is given by

Rσ(λ) =

⎛⎜⎜⎜⎝
1 0 0 0
0 c b 0
0 b c 0
0 0 0 1

⎞⎟⎟⎟⎠ , (5.5.10)

where

b(λ) =
η

η − λ, c(λ) =
λ

λ− η . (5.5.11)
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Let us now start with a pseudo-vacuum, say |Ω〉, and using the com-
mutation relations for A,B,C,D from (5.5.8) pick up the following for
our purpose:

A(λ, {z})|Ω〉 =
N∏
i=1

(1 + Pi(λ)si)|Ω〉,

D(λ, {z})|Ω〉 =
N∏
i=1

(1− Pi(λ)si)|Ω〉, (5.5.12)

C(λ, {z})|Ω〉 = 0, Pi(λ) =
2η

η − 2(λ− zi)
.

Now the general Bethe wave function is written as follows:

φ(λ1, ........., λn, {z}) =
n∏

α=1

B(λα, {z})|Ω〉. (5.5.13)

The action of t(λ, {z}) = A(λ, {z}) +D(λ, {z}) on φ is given by

t(λ, {z})φ = Λ(λ;λ1, ......, λn)φ−
n∑

α=1

Fα(λ, {z})
λ− λα

φα, (5.5.14)

where we have written the unwanted terms in detail. The explicit forms
of Λ, Fα are as follows:

Λ(λ;λ1, ...., λn) =
N∏
i=1

(1 + Pi(λ)si)
n∏

α=1

1
c(λα − λ)

+

+
N∏
i=1

(1− Pi(λ)si)
n∏

α=1

1
c(λ− λα)

, (5.5.15)

Fα(λ, {z}) = η
N∏
i=1

(1 + Pi(λ)si)
n∏

β �=α

λα − λβ + η

λα − λβ

−η
N∏
i=1

(1− Pi(λ)si)
n∏

β �=α

λα − λβ − η
λα − λβ

, (5.5.16)

φα = φ(λ1, λ2, ....λα−1, λ, λα+1, ..., λn). (5.5.17)

In the customary approach one imposes the condition that the un-
wanted terms should vanish, which then leads to the Bethe ansatz
equation for the eigenmomenta, while the coefficient of the wanted term
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yields the Bethe states eigenvalue. The vanishing of the unwanted term
means that Fα = 0, and when these equations are satisfied by the λα’s
we say that the Bethe wave function is on shell. But if one does not
impose the condition Fα = 0, then one can say that we are dealing with
an off-shell Bethe ansatz wave function.

Let us next consider the quasi-classical expansion of equation (5.5.15).
In general by a quasi-classical expansion one commonly understands the
expansion of the vertex weight R(λ, η) around a point, say η0, so that
R(λ, η0) = I ⊗ I. In this case one can always choose η0 = 0. Then for
the power series expansion of t(λ, {z}) in the neighbourhood of η = 0
we have

t(λ, {z}) =
∞∑
k=0

ηkTk(λ, {z}). (5.5.18)

It follows from (5.5.9) that∑
k+m=l

[Tk(λ, {z}), Tm(λ, {z})] = 0, (5.5.19)

which implies that we do have integrable systems in the quasi-classical
limit. It is interesting to note further that the Tk(λ, {z})’s do not
commute with t(λ, {z}). In order to find a quasi-classical expansion,
we write R in (5.5.7) as

R0,i(λ− zi) =

(
1 + Pi(λ)S3

i Pi(λ)S−
i

Pi(λ)S+
i 1− Pi(λ)S3

i

)
, (5.5.20)

with

Pi(λ) = − η

λ− zi
− 1

2

(
η

λ− zi

)2

, η << 1. (5.5.21)

Using this form we get

T (λ, {z}) =
N∏
i=1

[
I0 ⊗ Ii + Pi(λ)

(
S3
i S−

i

S+
i −S3

i

)]
=

(
A B
C D

)
, (5.5.22)

where

A(λ, {z}) = I − ηS3(λ, {z}) + η2
∑
i<j

S3
i S

3
j + S−

i S
+
j

(λ− zi)(λ− zj)
+
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+
η2

2
d

dλ
S3(λ, {z}) +O(η3), (5.5.23)

D(λ, {z}) = I − ηS3(λ, {z}) + η2
∑
i<j

S3
i S

3
j + S+

i S
−
j

(λ− zi)(λ− zj)
−

−η
2

2
d

dλ
S3(λ, {z}) +O(η3), (5.5.24)

B(λ, {z}) = −ηS−(λ, {z}) + η2
∑
i<j

S3
i S

−
j − S−

i S
3
j

(λ− zi)(λ− zj)
−

−η
2

2
d

dλ
S−(λ, {z}) +O(η3), (5.5.25)

C(λ, {z}) = −ηS+(λ, {z}) + η2
∑
i<j

S+
i S

3
j − S3

i S
+
j

(λ− zi)(λ− zj)

−η
2

2
d

dλ
S+(λ, {z}) +O(η3). (5.5.26)

In (5.5.23–5.5.26), we have used the notations

I =
N∏
i=1

⊗Ii, Sa(λ, {z}) =
N∑
i=1

Sa
i

λ− zi
.

Consequently one has for the transfer matrix t(λ, {z}) the expression

t(λ, {z}) = 2I + 2η2
N∑
i=1

Hj

λ− zj
, (5.5.27)

Hj =
N∑
i�=j

Sa
j S

a
i

zj − zi
. (5.5.28)

It is obvious from (5.5.19) that the operators Hj commute so that in
the quasi-classical limit we finally obtain

φ(λ1, ......, λn) = (−η)n
N∏

α=1

S−(λα, {z})|Ω〉+O(ηn+1), (5.5.29)

Λ(λ;λ1.....λn) = 2 + 2η2Q+O(η3), (5.5.30)
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where

Q =
∑
i,α

si
(λ− zi)(λα − λ)

+
∑
i�=j

sisj
(λ− zi)(λ− zj)

+
∑
α �=β

1
(λα − λ)(λβ − λ)

,

(5.5.31)

Fα = 2η2

⎡⎣∑
α �=β

1
λα − λβ

−
N∑
i=1

Si
λα − zi

⎤⎦+O(η3), (5.5.32)

φα = (−η)nS−(λ, {z})....S−(λα−1, {z})S−(λ, {z})S−(λα+1, {z})....

...........S−(λn, {z})|Ω〉+O(ηn+1). (5.5.33)

Substituting all these in (5.5.14) and collecting terms proportional to
ηn+2, we find that in the quasi-classical limit.

N∑
j=1

Hj

λ− zj
φ(λ1....λn) = hφ(λ1....λn)−

n∑
α=1

fαφα
λ− λα

. (5.5.34)

Here the vectors φ and φα appearing in (5.5.29) and (5.5.33) are both
proportional to η2. Taking the residue at the pole λ = zj we have from
(5.5.34) that

Hjφ(λ1....λn) = hjφ(λ1....λn)−
N∑

α=1

fαS
−
j

zj − λα
φ′α(λ1....λn), (5.5.35)

where

hj =
∑
j �=i

sisj
zj − zi

+
n∑

α=1

si
λα − zj

, (5.5.36)

fα =
n∑

α �=β

1
λα − λβ

−
N∑
i=1

si
λα − zi

, (5.5.37)

φ(λ, {z}) =
n∏

α=1

S−(λα, {z})|Ω〉. (5.5.38)

In the above equations φ(λ1....λn) = S−(λα, {z})φ′α(λ1...., λn) i.e. in
φ′α(λ1....λn) the operator S−(λα, {z}) is omitted. Equations (5.5.35)
and (5.5.36–5.5.38) are the off-shell quasi-classical limit of the algebraic
Bethe ansatz.

We shall next try to explain the connection of the preceding results
with the Knizhnik-Zamolodchikov equation. Without going into the
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details of the KZ equation itself we consider the equation in the form
[92],

κ
dψ

dzj
=

N∑
i�=j

taj t
a
i

zj − zi
ψ; (5.5.39)

here zi’s denote the disorder parameters of the Bethe ansatz.
ψ(z1, ....zN ) is a vector in the tensor product of spaces V 1⊗V 2....⊗V N .
The matrices tai (a = 1, 2...dim g) represent the hermitian generators of
a Lie algebra g. In addition we have κ = 1

2(Cv+K) and δabCv = facdf bcd

with fabc being the structure constants of the Lie algebra g and K is
the central charge of the Kac-Moody algebra. In the present analysis
we consider only the SU(2) case. To investigate the connection of the
off-shell Bethe ansatz equation (OSBAE) with the KZ equation, let us
therefore consider a function χ(λ, {z}) = χ(λ1, ...λN , z1, ...zN ) obeying
the following relations:

κ
dχ

dzj
= hjχ, κ

dχ

dλα
= fαχ, (5.5.40)

where κ = 1
2(K+2) , since for SU(2) we have Cv = 2. The consistency

of these equations requires that

dhj
dλα

=
dfα
dzj

, (5.5.41)

which is identically satisfied. The solution χ, which is common to these
two, can be expressed in the form

χ(λ, {z}) =
N∏
i<j

(zi− zj)
sisj
K

n∏
α<β

(λα− λβ)1/n
∏
k,γ

(zk − λγ)−sk/n. (5.5.42)

Next define the vector function ψ(z1, .....zN ) through

ψ(z1, ...zN ) =
∮
...

∮
χ(λ, {z})φ(λ, {z})dλ1...dλN . (5.5.43)

The integrations are to be taken as contour integrals over the canonical
cycles of the space X = Cn − U(λα = zi) with coefficicents from S�

λ

dual to the local system Sλ, that is, defined by the monodromy group
of χ(λ, {z}). It is now important to note that this ψ is a solution of the
KZ equation (5.5.39). To show this we substitute (5.5.43) in (5.5.39)
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and using (5.5.35) together with the defining relation (5.5.40) for χ, to
arrive at∮

....

∮ [
K
dφ

dzj
− 1
K

n∑
α=1

S−
j fαχφ

′
α

zj − λα

]
dλ1.....dλN = 0. (5.5.44)

Taking into account the linear equations satisfied by χ and the identity

dφ

dzj
= −

n∑
α=1

d

dλα

S−
j φ

′
α

zj − λα
,

which follows from (5.5.38) one can simplify the relation (5.5.44) to
finally obtain

n∑
α=1

∮
.......

∮
d

dλα

[
S−
j φ

′
αχ

zj − λα

]
dλ1.....dλn = 0. (5.5.45)

Now it is obvious that this equation is identically satisfied as the con-
tour is closed. It follows then that ψ is a singlet state of SU(2). We
shall not provide further details of the proof of this conjecture but refer
the reader to the excellent papers of Babujian et al. [93].

5.6 Nested Bethe Ansatz

The nested Bethe ansatz is perhaps the most sophisticated tool in the
algebraic construction of eigenvectors for integrable lattice systems. As
is well known integrable systems within the Lax operator formalism are
often associated with underlying quantum groups of rank greater than
unity. It is in these situations that the nested Bethe ansatz becomes
indispensible. Examples of systems with Lax matrices of dimension
greater than 2 × 2 abound in the literature, prominent among them
being the three wave interaction problem, self induced transparency,
coupled NLS equation, etc. Setting up the algebraic Bethe ansatz in
such cases is difficult owing to the existence of a large number of op-
erators in the corresponding monodromy matrix (e.g., 9 in case of a
3×3 and 16 in case of a 4×4 problem). Moreover, the complex nature
of the commutation rules generated by the Yang-Baxter equation has
also to be taken into account. In such cases the algebraic Bethe ansatz
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is implemented in a multistage manner and this is referred to as the
nested Bethe ansatz [94].

For clarity let us consider a 3×3 problem, which has all the features of
the more general N×N case. Let Ln(λ) denote the local Lax matrix at
the nth lattice site and assume that it satisfies the intertwining relation

R(λ, µ)Ln(λ)⊗ Ln(µ) = Ln(µ)⊗ Ln(λ)R(λ, µ). (5.6.1)

The monodromy matrix is

TN (λ) = LN (λ)LN−1(λ).........L1(λ), (5.6.2)

and satisfies an algebra similar to (5.6.1), i.e.,

R(λ, µ)TN (λ)⊗ TN (µ) = TN (µ)⊗ TN (λ)R(λ, µ). (5.6.3)

Suppose that the quantum R matrix, which is a solution of the Yang-
Baxter equation, has the following nonvanishing components:

R(λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 a 0 b 0 0 0 0 0
0 0 a 0 0 0 b 0 0
0 b 0 a 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 a 0 b 0
0 0 b 0 0 0 a 0 0
0 0 0 0 0 b 0 a 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

a(λ) =
γ

γ − 2λ
, b(λ) =

2λ
2λ− γ , γ = ih̄. (5.6.4)

We can also express theRmatrix in the notationR(λ) =
∑

ab,ij R
ab
ij eab⊗

eij where the components are given by

Rab
ij (λ) =

γ

γ − 2λ
δiaδjb +

2λ
2λ− γ δibδja. (5.6.5)

In addition suppose it satisfies the following conditions:

Rab
ij (0) = δiaδjb, Rab

ij (λ) = Rij
ab(λ). (5.6.6)
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Next let us write the monodromy matrix as

TN (λ) =

N←∏
n=1

Ln(λ) =

⎛⎜⎝ A(λ) B2(λ) B3(λ)
C2(λ) D22(λ) D23(λ)
C3(λ) D32(λ) D33(λ)

⎞⎟⎠ , (5.6.7)

and introduce the notation T11(λ) = A(λ), T1i(λ) = Bi(λ), Ti1(λ) =
Ci(λ) and Tij(λ) = Dij(λ) with 2 ≤ i, j ≤ 3. Let ||1〉 be a reference
state (the vacuum) so that T1i(λ)||1〉 �= 0 while Tij(λ)||1〉 = 0 for
i �= j, 2 ≤ i, j ≤ 3 with following properties:

T11(λ)||λ〉 = exp(−iλ∆)||λ〉, Tkk(λ)||λ〉 = exp(iλ∆)||λ〉, (5.6.8)

with k = 2, 3 and ∆ being the lattice spacing. Now by a similarity
transformation, one can always recast the R matrix into the following
form that is more suited to our subsequent analysis:

R(λ) =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 δjjc(λ) δij 1

g(λ) 0
0 δij 1

g(λ) δijc(λ) 0

0 0 0 R̃jl
ik(λ)

⎞⎟⎟⎟⎟⎠ , (5.6.9)

where c(λ) = γ
(γ−2λ) and g(λ) = 2λ−γ

2λ , with 2 ≤ i, j, k, l ≤ 3 and

R̃(λ) =

⎛⎜⎜⎜⎝
1 0 0 0
0 γ

γ−2λ
2λ

2λ−γ 0
0 2λ

2λ−γ
γ

γ−2λ 0
0 0 0 1

⎞⎟⎟⎟⎠ . (5.6.10)

Then (5.6.3), when using (5.6.7) and (5.6.9), yields the following com-
mutation relations:

A(λ)B(µ) = g(µ− λ)B(µ)A(λ)− h(µ− λ)B(λ)A(µ), (5.6.11)

Bi(λ)Bj(µ) = R̃ij
klBk(µ)Bl(λ), (5.6.12)

DkjBl(µ) = g(λ− µ)Bm(µ)Dki(λ)R̃
ij
mi(λ− µ)− h(λ− µ)Bj(λ)Dkl(µ),

(5.6.13)
where B = (B2(λ), B3(λ)) and g(λ − µ) = 2(µ−λ)−γ

2(µ−λ) , while h(µ −
λ) = − γ

2(µ−λ) . Alternatively, in tensor product notation, (5.6.12) and
(5.6.13) may be written in a more compact form as

B(λ)⊗B(µ) = B(µ)⊗B(λ)R̃(λ− µ), (5.6.14)
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D(λ)⊗B(µ) = g(λ− µ)B(µ)⊗D(λ)R̃(λ− µ)− h(λ− µ)B(λ)⊗D(µ).
(5.6.15)

Note all indices here assume values 2, 3 only. The transfer matrix is
defined in the usual manner as the trace of the monodromy matrix
TN (λ), i.e.,

τ(λ) = A(λ) + tr(2)D(λ) (5.6.16)

and tr(2)D(λ) =
∑3

a=2Daa(λ). An r-excitation state is then built by
the application of r creation operators from among (B2(λ), B3(λ)) and
is written as a linear superposition, viz

|µ1, µ2, ....µr〉 =
3∑

i1,...ir=2

Xi1....irBi1(µ1).....Bir(µr)||1〉, (5.6.17)

or in the more compact form as

|µ1....µr〉 = XtB(µ1)⊗ ...⊗B(µr)||1〉, (5.6.18)

where X is a vector whose components are yet to be determined and Xt

denotes transposition. Applying A(λ) to the state defined by (5.6.18)
and repeatedly using (5.6.11) together with (5.6.12) yields

A(λ)|µ1, ...µr〉 = exp(−iλ∆)
r∏

j=1

g(µj − λ)|µ1....µr〉+ unwanted terms.

(5.6.19)
Note that it is not always necessary to know the explicit form of the
unwanted terms for the purposes of analysis. The important point lies
in calculating the action of tr(2)D(λ) on |µ1, .....µr〉. To this end, using
(5.6.12) and (5.6.13) one can show that

Dkj(λ)Xi1....irBi1(µ1)....Bir(µr)||1〉

=
r∏

p=1

g(λ− µp)Xi1.....irBm1(µ1).........Bmr ||1〉δklr×

× exp(−iλ∆)R̃lr−1ir
mrlr

(λ−µr).........R̃l1i2
m2l2

(λ−µ2)R̃
ji1
m1l1

(λ−µ1), (5.6.20)

so that (
tr(2)D(λ)

) 3∑
i1...ir=2

Xi1....irBi1(µ1)....Bir(µr)||1〉

=
3∑

k=2

⎡⎣exp(−iλ∆)
r∏

p=1

g(λ− µp)
3∑

i1..ir=2

Xi1....irBi1(µ1)....Bir(µr)||1〉

⎤⎦×
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×
{
R̃
lr−1ir
mrlr

(λ− µr)....R̃l1i2
m2l2

(λ− µ2)R̃
ji1
m1l1

(λ− µ1)
}

+ unwanted terms.
(5.6.21)

Until now we have followed the basic strategy of the algebraic Bethe
ansatz of separating the wanted and unwanted terms. The actual “nest-
ing” procedure will now be described for (5.6.21).

Recall that the matrix R̃(λ) occurring in (5.6.21) is actually given
by (5.6.10) and is a 4 × 4 matrix. The process of nesting consists
in treating Xi1....ir as an eigenvector of an associated transfer matrix
defined by the term within the curly brackets in (5.6.21). That is,
one considers a “vertex model” similar to those of statistical mechanics
with Boltzmann weights given by the elements of a lower-dimensional
quantum R matrix, viz R̃(λ). Notice that while our original R matrix
as given by (5.6.5) was a 9 × 9 matrix after employing the similarity
transformation it could be partitioned into a form so that the lowermost
block R̃(λ) had the appearance of the standard 4×4, R matrix usually
associated with a 2× 2 Lax operator. The advantage of being able to
do such a partitioning is that one can subsequently apply the usual
procedure of algebraic Bethe ansatz to this “reduced” R matrix and
formulate the quantum inverse problem. In general if one starts with an
N2×N2 quantum R matrix, then applying the method outlined above,
one is led to a reduced problem with an (N−1)2×(N−1)2 quantum R
matrix. This procedure can be continued until we arrive at the lowest
dimensional 22×22 quantum R matrix. Let us now relabel the weights
so that R̃jik

mklk
(λ) → R̂jik

lkmk
(λ), which essentially means multiplication

of R̃(λ) by the permutation matrix P that has the property P2 = I.
Hence the term within the curly brackets in (5.6.21) now assumes the
following form, and may be looked upon as a kind of reduced “transfer
matrix.” Suppose we define

R̂
lr−1ir
kmr

(λ− µr).......R̂l1i2
l2m2

(λ− µ2)R̂ki1
l1m1

(λ− µ1) ≡ F̂ (λ)mr..m1
ir...i1

(5.6.22)

Consequently the “wanted term” in (5.6.21) now appears as(
tr(2)D(λ)

) 3∑
i1...ir=2

Xi1....irBi1(µ1)....Bir(µr)||1〉

= exp (−iλ∆)
r∏

j=1

g(λ− µj)B(µ1)⊗ ....⊗B(µr)F̂ (λ)||1〉, (5.6.23)

with

F̂ (λ) = tr0
[
R̂0r(λ− µr).....R̂02(λ− µ2)R̂01(λ− µ1)

]
. (5.6.24)
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Equation (5.6.24) is clearly similar to the usual transfer matrix of an
auxiliary r-site model with R̂ defined in the reduced C2 ⊗ C2 space.
However (5.6.23) (even apart from the “unwanted terms”) is not an
eigenvalue equation, though it may be brought to such a form by re-
quiring X to be an eigenvector of F̂ (λ, {µj}), so that

F̂ (λ, {µj})X = Λ̂(λ)X, and (5.6.25)

tr(2)D(λ)|µ1, ...µr〉 = exp(−iλ∆)
r∏

j=1

g(λ− µj)Λ̂(λ)|µ1...µr〉

+ unwanted terms. (5.6.26)

Combining (5.6.19) and (5.6.26) we finally have

[A(λ) + tr(2)D(λ)]|µ1...µr〉 = exp(iλ∆)
r∏

j=1

g(µj − λ)|µ1........µr〉+

+exp(−iλ∆)
r∏

j=1

g(λ−µj)Λ̂(λ)|µ1........µr〉+unwanted terms. (5.6.27)

Demanding the unwanted terms to vanish converts (5.6.27), strictly into
an eigenvalue equation. The condition for vanishing of the unwanted
terms of (5.6.27) can be obtained by equating to zero the residue of the
above eigenvalue at its poles. This gives us the following condition:

Λ̂(λ)(µs, {µj}) = exp(iµs∆)
r∏

j �=s

g(µj − µs)
g(µs − µj)

. (5.6.28)

Equation (5.6.28) may be used to determine the µj ’s once Λ̂(λ) is
known. To this end, we need to solve the eigenvalue problem (see
(5.6.25)) with an “inhomogeneous” monodromy matrix defined over
“r-lattice sites” given by

T̂ (λ, {µj}) = [R̂0r(λ− µr)............R̂01(λ− µ1)], (5.6.29)

with

F̂ (λ, {µj}) = tr0[R̂0r(λ− µr)............R̂01(λ− µ1)], (5.6.30)

where

R̂0i(ui) =

⎛⎜⎜⎜⎝
1 0 0 0
0 2ui

2ui−γ
γ

γ−2ui
0

0 γ
γ−2ui

2ui
2ui−γ 0

0 0 0 1

⎞⎟⎟⎟⎠ , (5.6.31)
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and ui = (λ − µi). It is interesting to note that the new monodromy
matrix T̂ (λ, {µj}) and R̂(λ− ω) obey the fundamental relation

R̂(λ− ω)T̂ (λ, {µj})⊗ T̂ (ω, {µj}) = T̂ (ω, {µj})⊗ T̂ (λ, {µj})R̂(λ− ω).
(5.6.32)

Thus, writing

T̂ (λ, {µj}) =

(
Â(λ) B̂(λ)
Ĉ(λ) D̂(λ)

)
, (5.6.33)

it is obvious that (5.6.29–5.6.33) together constitute the essential in-
gredients for the application of the algebraic Bethe ansatz in its sim-
plest form as described in earlier. Choosing a reference state |1〉 =

⊗∏r
i=1

(
1
0

)
i

, it follows from the structure of the R̂ matrix that

Â(λ)|1〉 = 1|1〉, D̂(λ)|1〉 =
r∏

m=1

2(λ− µm)
2(λ− µm)− γ |1〉. (5.6.34)

Setting X = B̂(µ′1).....B̂(µ′p)|1〉, one can select the appropriate commu-
tation relations from (5.6.32) to obtain

F̂ (λ, {µj})X =

⎡⎣ p∏
q=1

g(µ′q − λ) +
∏p

q=1 g(λ− µ′q)∏r
m=1 g(λ− µm)

⎤⎦X+unwanted terms,

(5.6.35)
where g(λ− µm) = 2(λ−µm)−γ

2(λ−µm) . Hence we identify the eigenvalue as

Λ̂(λ, {µj}) =

⎡⎣ p∏
q=1

g(µ′q − λ) +
∏p

q=1 g(λ− µ′q)∏r
m=1 g(λ− µm)

⎤⎦ . (5.6.36)

The vanishing of the unwanted terms in (5.6.35) can be accomplished
by demanding that ResΛ̂(λ, {µj})|λ=µ′

l
= 0, which gives

r∏
m=1

g(µ′l − µm) =
p∏

q �=l

g(µ′l − µ′q)
g(µ′q − µ′l)

, (5.6.37)

while (5.6.28), upon using (5.6.36), becomes

λ̂(µs, {µj}) =
p∏

q=1

g(µ′1 − µs), (5.6.38)
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since the second term in (5.6.36), i.e.,
∏r

m=1 g
−1(λ−µm)|λ=µs vanishes.

Thus we finally have the following results. The eigenvalue of the r
excitation state defined by (5.6.18) when acting on the transfer matrix
τ(λ) is

t(λ, {µj}) = exp(iλ∆)
r∏

j=1

g(µj−λ)+exp(−iλ∆)
r∏

j=1

g(λ−µj)Λ̂(λ, {µj}),

(5.6.39)
with λ̂(λ, {µj}) given by (5.6.36). The two sets of coupled algebraic
equations determining the parameters {µj} and {µ′k} are from ( 5.6.28),
(5.6.38) and (5.6.37), respectively:

p∏
q=1

g(µ′q − µs) = exp(2iµs∆)
r∏

j �=s

g(µj − µs)
g(µs − µj)

, (5.6.40)

r∏
m=1

g(µ′l − µm) =
p∏

q �=l

g(µ′j − µ′q)
g(µ′q − µ′l)

. (5.6.41)

Solutions of these coupled algebraic equations give us a complete de-
scription of the eigenstates. Lastly it is obvious that if the dimension
of the Lax matrix is greater than 3 × 3 then we will get more sets of
such coupled equations determining the eigenmomenta.

5.7 Fusion Procedure

From the previous discussions, it will have been noticed that most
of the results stated or examples that have been worked out explicitly
almost invariably dealt with R matrices that were 4 × 4 matrices. Of
these perhaps the simplest R matrix relates to the spin 1

2 model. This
has been the case both for closed as well as open integrable systems.
For such cases the auxiliary space is a two-dimensional one and conse-
quently the volume and complexity of the calculations involved simplify
to a great extent.

Consider now the case of spin 1, the auxiliary space will be three
dimensional, and the R matrix will have dimension 9 × 9. The com-
plexity and volume of calculations and associated manipulations that
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arise are indeed tremendous.

In order to deal with auxiliary spaces of dimension greater than two,
one can use the technique of nested Bethe ansatz, which has been ex-
plained in a preceding section. However in the case of spin chains,
with spin greater than 1

2 , an alternative and neat approach has been
developed that allows the transfer matrix of higher spin systems to
be re-expressed by means of traces taken in a two-dimensional auxil-
iary space, the eigenvalues and eigenvectors of the latter presumably
being determined beforehand. This procedure is termed as the fusion
procedure [95] and may be concisely stated as follows; starting from a
trigonometric R matrix related to the fundamental representation of
a Lie algebra g, the fusion procedure provides a way of constructing
new R matrices related to higher-dimensional representations of this
algebra. Such an R matrix can therefore be used to construct a closed
integrable quantum spin chain of higher spin, whose transfer matrix is
related to that of the corresponding chain in the fundamental represen-
tation. As we shall describe later, this procedure can also be extended
to the case of open spin chains, which indeed marks a major achieve-
ment.

To illustrate the fusion procedure for spin 1 case, it is easiest if we
think of it as a scattering process of three spin 1

2 particles in which the
collision of particle 1 and particle 2 with respective rapidities u + u0

and u − u0 produces a state called “12”, which eventually undergoes
scattering with the particle number 3 of spin 1

2 and rapidity v. Al-
though, while referring to scattering, the rapidity variable was θ, with
u = iθ, here we shall continue with u, v, etc. and refer to them as
rapidities although they are actually spectral parameters. The process
just described is depicted in Figure (5.7.1) where the shaded/blurred
region refers to the composite state “12.”

For simplicity we shall assume that

R12(u) = −Iu+ P12, P12 = permutation matrix. (5.7.1)

As suggested by the preceding figure, the R matrix corresponding to
the scattering of the state “12” with particle 3 is given by

R〈12〉,3(u− v;u0) = R13(u+ u0 − v)R23(u− u0 − v). (5.7.2)

It has to be realized that this new R matrix does not describe the
scattering of a spin 1 and spin 1

2 particle. This may be understood from



168 Quantum Integrable Systems

FIGURE 5.7.1: Schematic representation of the composite state
“12.”

the following argument. Since we are considering three-body scattering
there exists the possibility of charge exchange, which implies that if
before collision the composite state “12” was spin 1, then after collision
the spin 1 state may be either in the “13” or “23” sectors or the initial
state “12” may have spin 0, which after collision changes to a spin 1.
Denoting the R matrix describing spin 1 and spin 1

2 collision by R(1, 1
2
),

it should be understood that this matrix excludes all charge exchange
processes and hence must satisfy the constraint

P∓
12R

(1. 1
2
)

〈12〉,3(u− v)P
±
12 = 0, (5.7.3)

where P± = 1
2(I±P) are projectors onto spin 1 and spin 0 states. It can

be verified that the R matrix R〈12〉,3 given by (5.7.2) does not satisfy
this constraint. If one sandwiches this matrix between the projectors
P+

12, then the resulting matrix will satisfy the constraint (5.7.3) since
P+

12P
−
12 = P−

12P
+
12 = 0, that is,

R
(1, 1

2
)

〈12〉,3(u− v;u0) = P+
12R〈12〉,3(u− v;u0)P+

12 (5.7.4)

is appropriate for describing collisions of spin 1 and spin 1
2 particles. A

valid question here is whether R
(1, 1

2
)

〈12〉,3 satisfies the factorization equa-
tion,

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v).
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It will be shown that a factorization equation is satsfied by R
(1, 1

2
)

〈12〉,3
provided we impose the additional constraint [94],

P−
12R〈12〉,3(u− v;u0)P+

12 = 0, (5.7.5)

which also serves to determine the parameter u0. To deduce the fac-
torization equation it may be noted that for u = −1

R(u)|u=−1 = −I + P ∼ P−, (5.7.6)

while the Yang-Baxter equation for R(u) may be written in the sug-
gestive form:

R12(−1)R13(u−
1
2
− v)R23(u+

1
2
− v) =

R23(u+
1
2
− v)R13(u−

1
2
− v)R12(−1), (5.7.7)

P−
12R13(u−

1
2
− v)R23(u+

1
2
− v)P+

12

= R23(u− v +
1
2
)R13(u− v −

1
2
)P−

12P
+
12 = 0.

From the basic definition of R〈12〉,3 given in (5.7.2), we see that the
choice u0 = −1

2 leads to the condition

P−
12R〈12〉,3(u− v;−

1
2
)P+

12 = 0. (5.7.8)

Consequently the quantity

R
(1, 1

2
)

〈12〉, (u− v) ≡ P+
12R〈12〉,3(u− v;u0 = −1

2
)P+

12 (5.7.9)

satisfies the factorization condition for the scattering of a particle of
spin 1 with two particles of spin 1

2 , i.e.,

R
(1, 1

2
)

12 (u− v)R(1, 1
2
)

13 (u)R
( 1
2
, 1
2
)

23 (v) = R
( 1
2
, 1
2
)

23 (v)R
(1, 1

2
)

13 (u)R
(1, 1

2
)

12 (u− v)
(5.7.10)

where the subscript 1 means the three-dimensional auxiliary space and
R( 1

2
, 1
2
) is the familiar spin 1

2 R matrix, R(u) = −iuI + P.
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FIGURE 5.7.2: Schematic representation of R( 1
2
, 1
2
)(u− v).

Graphically R( 1
2
, 1
2
)(u− v) may be represented by the intersection of

a double line and a single line as shown in Figure (5.7.2).

In the above preliminary discussion of the fusion procedure for spin
chains, one should notice the crucial role played by the R matrix for
the spin 1

2 model that degenerates to the projection operator P− for
a certain value of the spectral parameter, namely u = −1. This is of
fundamental importance as will be seen from the following more formal
analysis of the fusion procedure.

Following the article by Nepomachie and Mezincescu [95] , we assume
that the R matrix acts on Cn⊗Cn and obeys the Yang-Baxter equation:

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (5.7.11)

and is in addition P-T symmetric, that is

P12R12(u)P12 = R21(u) = Rt1t2
12 (u), (5.7.12)

where P12 is the permutation matrix defined by

P12(x⊗ y) = y ⊗ x, ∀ x, y ∈ Cn. (5.7.13)

Here ti denotes transposition in the ith space. Moreover it is assumed
to be unitary, i.e.,

R12(u)R21(−u) = ζ(u), (5.7.14)
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with ζ(u) being an even scalar function of u and furthermore to satisfy
crossing unitarity:

R12(u) = V1R12(−u− ρ)t2V1 = V t2
2 R12(−u− ρ)t1V t2

2 . (5.7.15)

Here V 2 = I, V1 = V ⊗ I and V2 = I ⊗ V . Finally the R matrix is
assumed to be regular, that is

R12(0) = ζ
1
2 (0)P12. (5.7.16)

Setting u = −ρ in (5.7.15) we have

R12(−ρ) = V1

[
ζ

1
2 (0)P12

]t2
V1

and find that
1

αζ
1
2 (0)

R12(−ρ) =
1
α
V1Pt2

12V1, (5.7.17)

where α is a constant. Consider the square of (5.7.17),[
1

αζ
1
2 (0)

R12(−ρ)
]2

=
1
α2
V1Pt2

12P
t2
12V1 (5.7.18)

and using the fact that V 2
1 = I. Then in terms of a Chevelley basis, as

P12 = e
(1)
ij ⊗ e

(2)
ji (i, j = 1, 2....n) we find that

Pt2
12P

t2
12 = e

(1)
ij e

(1)
kl ⊗ e

(2)
ij e

(2)
kl = δjj [e

(1)
il ⊗ e

(2)
li ]t2 = nPt2

12 (5.7.19)

and hence[
1

αζ
1
2 (0)

R12(−ρ)
]2

=
n

α2
V1Pt2

12V1 =
n

α

[
1

αζ
1
2 (0)

R12(−ρ)
]
.

Clearly the choice n = α makes the quantity on the left-hand side a
projection operator. Hence we define P̃−

12 = 1

nζ
1
2 (0)

R12(−ρ) with the

property
(P̃−

12)
2 = (P̃−

12). (5.7.20)

One may also verify that

P̃−
12A12P̃−

12 = tr12(P̃−
12A12)P̃−

12, (5.7.21)
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where A is any arbitrary matrix acting on Cn ⊗ Cn. Now given a
projector P̃−

12, we can construct another projection operator,

P̃+
12 = I − P̃−

12, (5.7.22)

so that
(P̃+

12)
2 = P̃+

12

and
P̃+

12P̃−
12 = P̃−

12 − (P̃−
12)

2 = 0, P̃−
12P̃+

12 = 0. (5.7.23)

However, the projection operators constructed in the above manner are
not symmetric, that is

(P̃∓
12)

t1t2 = P̃∓
21 �= P̃∓

12.

Let us now set v = u+ ρ in (5.7.11 ) so that

R12(−ρ)R13(u)R23(u+ ρ) = R23(u+ ρ)R13(u)R12(−ρ).

Upon using the definition of the projection operator we get after right
multiplication with P̃+

12,

P̃−
12R13(u)R23(u+ ρ)P̃+

12 = 0, (5.7.24)

where use has been made of (5.7.23). If we next define a “fused” R
matrix by the following relation:

R〈12〉3(u) ≡ P̃+
12R13(u)R23(u+ ρ)P̃+

12 (5.7.25)

then this fused R matrix obeys a Yang-Baxter equation:

R〈12〉3(u− v)R〈12〉4(u)R34(v) = R34(v)R〈12〉4(u)R〈12〉3(u− v). (5.7.26)

To see how this comes about from the definition (5.7.25) we have

R〈12〉3(u− v)R〈12〉4(u)R34(v)

= P̃+
12R〈12〉3(u− v)P̃+

12P̃+
12R〈12〉4(u)P̃+

12R34(v); (5.7.27)

also using the fact that

R〈12〉,3 = R13(u− v + u0)R23(u− v − u0),
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equation (5.7.27) becomes

= P̃+
12R13(u− v + u0)R23(u− v − u0)P̃+

12×

×P̃+
12R14(u+ u0)R24(u− u0)P̃+

12R34(u0). (5.7.28)

Now

R13(u−v+u0)R23(u−v−u0)P+
12 = P+

12R23(u−v−u0)R13(u−v+u0)

and since P+2
12 = P+

12, we find that the expression in (5.7.28) equals

P+
12R23(u− v − u0)R13(u− v + u0)R24(u− u0)R14(u+ u0)P+2

12 R34(v)

= P+
12R23(u− v−u0)R24(u−u0)R13(u− v+u0)R14(u+u0)R34(v)P+

12.

This is possible since R13 and R24 involve completely different spaces.
Using the Yang-Baxter equation for R13R14R34 the above relation be-
comes

= P+
12R23(u− v−u0)R24(u−u0)R34(v)R14(u+u0)R13(u− v+u0)P+

12,

= P+
12R34(v)R24(u−u0)R23(u− v−u0)R14(u+u0)R13(u− v+u0)P+

12,

= P+
12R34(v)R24(u−u0)R14(u+u0)R23(u− v−u0)R13(u− v+u0)P+

12,

= R34(v)P+
12R24(u−u0)R14(u+u0)R23(u− v−u0)R13(u− v+u0)P+

12,

= R34(v)P+
12R24(u− u0)R14(u+ u0)(P+

12 + P−
12)×

×R23(u− v − u0)R13(u− v + u0)P+
12. (5.7.29)

But it is known that

P−
12R23(u− v − u0)R13(u− v + u0)P+

12

= (P−
12R23(u− v − u0)R13(u− v + u0)P+

12)P+
12,

= P−
12P+

12R13(u− v − u0)R23(u− v − u0)P+
12. (5.7.30)

Hence as P−
12P+

12 = 0, the above expression becomes

= R34(v)P+
12R24(u−u0)R14(u+u0)P+

12R23(u−v−u0)R13(u−v+u0)P+
12

= R34(v)
[
P+

12R24(u− u0)R14(u+ u0)P+
12

]
×

×
[
P+

12R23(u− v − u0)R13(u− v + u0)P+
12

]
. (5.7.31)
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Again we have

P+
12R24(u− u0)R14(u+ u0)P+

12 =
[
P+

12R24(u− u0)R14(u+ u0)P+
12

]
P+

12

= P+
12P+

12R14(u+ u0)R24(u− u0)P+
12 = P+

12R14(u+ u))R24(u− u0)P+
12,

= P+
12R12,4(u)P+

12 = R〈12〉,4(u). (5.7.32)

In the same way we get

P+
12R23(u− v − u0)R13(u− v + u0)P+

12 = R〈12〉,3(u− v)

= P+
12R12,3(u− v)P+

12. (5.7.33)

So that finally we have

R〈12〉,3(u−v)R〈12〉,4(u)R34(v) = R34(v)R〈12〉,4(u)R〈12〉,3(u−v). (5.7.34)

This completes the proof of (5.7.26).

Now under the cyclic permutation (123) −→ (312) and setting v =
−ρ in the Yang-Baxter equation we obtain

R31(u+ ρ)R32(u)R12(−ρ) = R12(−ρ)R32(u)R31(u+ ρ).

Left multiplication by P̃+
12 and using the fact that R12(−ρ) is propor-

tional to P̃−
12, then gives

P̃+
12R31(u+ ρ)R32(u)P̃−

12 = 0. (5.7.35)

Consequently we may define another fused R matrix by

R3〈12〉(u) ≡ P̃+
12R31(u+ ρ)R32(u)P̃+

12. (5.7.36)

The unitary and crossing unitarity properties of the fused R matrices
as given by (5.7.25) and (5.7.36) can be determined from the corre-
sponding properties (5.7.14 and 5.7.15) of the original R matrix. For
example it can be shown that

R〈12〉3(u)R3〈12〉(−u) = ζ(u)ζ(u+ ρ)P̃+
12 (5.7.37)

and that
R〈12〉3(u) = V t3

3 R3〈12〉(−u− ρ)t3V t3
3 , (5.7.38)

R3〈12〉(u) = V3R〈12〉3(−u− ρ)t3V3. (5.7.39)
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These follow from use of the following result:

P̃−
12V1V2P̃+

12 = 0,

which is a consequence of the degeneration of the identity

V1R12(u)V1 = V2R21(u)V2 at u = −ρ.

5.8 Fusion Procedure for Open Chains

In the construction of new integrable systems that are open, one
needs a procedure for construction of new boundary matrices—the so-
called K matrices—which may be interpreted as the amplitude for a
particle to reflect elastically from a wall. Here we describe the corre-
sponding fusion procedure in case of open chains following Mezincescu
et al. [96]
For a PT invariant R matrix the fundamental “reflection factorization”
relations obeyed by K− and K+ are

R12(u−v)K−
1 (u)R12(u+v)K−

2 (v) = K−
2 (v)R12(u+v)K−

1 (u)R12(u−v),
(5.8.1)

R12(−u+ v)K+
1 (u)t1M−1

1 R21(−u− v − 2ρ)M1K
+
2 (v)t2

= K+
2 (v)t2M1R12(−u− v − 2ρ)M−1

1 K+
1 (u)t1R21(−u+ v), (5.8.2)

where M = V tV . Setting v = u+ ρ in (5.8.1) we get

P̃−1
12 K

−
1 (u)R21(2u+ ρ)K−

2 (u+ ρ) = K−
2 (u+ ρ)R12(2u+ ρ)K1(u)P̃−1

12 ,
(5.8.3)

which implies that

P̃−
12K

−
1 (u)R21(2u+ ρ)K−

2 (u+ ρ)P̃+
12 = 0. (5.8.4)

This result can be used to show that the fused K− matrix

K−
〈12〉(u) = P̃+

12K
−
1 (u)R21(2u+ ρ)K−

2 (u+ ρ)P̃+
21, (5.8.5)

satisfies the factorized relations:

R3〈12〉(u− v)K−
3 (u)R〈12〉3(u+ v)K−

〈12〉(v)
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= K−
〈12〉(v)R

′
3〈12〉(u+ v)K−

3 (u)R′
〈12〉3(u− v), (5.8.6)

and
R〈12〉3(u− v)K−

〈12〉(u)R
′
3〈12〉(u+ v)K−

3 (v)

= K−
3 (u)R〈12〉3(u+ v)K−

〈12〉(u)R
′
3〈12〉(u− v). (5.8.7)

The quantity K ′−
〈12〉(u) = K−

〈21〉(u−ρ) satisfies a similar pair of relations
with R and R′ interchanged. We also have

R〈12〉3(u− v)K−
〈12〉(u)R

′
3〈12〉(u+ v)K−

3 (v)

= K−
3 (u)R〈12〉3(u+ v)K−

〈12〉(u)R
′
3〈12〉(u− v). (5.8.8)

For the matrix K+(u), we consider a similar degeneration of (5.8.2) to
get

P̃+
21K

+
1 (u)t1M2R21(−2u− 3ρ)M−

2 K
+
2 (u+ ρ)t2P̃12 = 0. (5.8.9)

This result and the identity

M−1
1 R12(u)M1 = M2R12(u)M−1

2 , (5.8.10)

is to be used to show that the fused K+ matrix,[
K+

〈12〉(u)
]t2

= P̃+
21K

+
1 (u)t1M2R21(−2u− 3ρ)M−1

2 K+
2 (u+ ρ)t2P̃+

12,

(5.8.11)
obeys the relation:

R〈12〉3(−u+ v)t123K+
3 (u)t3M−1

3 R3〈12〉(−u− v − 2ρ)t123M3K
+
〈12〉(v)

t12

= K+
〈12〉(v)

t12M3R
′
〈12〉3(−u− v− 2ρ)t123M−1

3 K+
3 (u)t3R′

3〈12〉(−u+ v)t123 ,
(5.8.12)

and

R3〈12〉(−u+ v)t123K+
〈12〉(u)

t12M3R
′
〈12〉3(−u− v − 2ρ)t123M−1

3 K+
3 (v)t3

= K+
3 (v)t3M−1

3 R3〈12〉(−u− v− 2ρ)t123M3K
+
〈12〉(u)

t12R′
〈12〉3(−u+ v)t123 .

(5.8.13)
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5.9 Fusion Procedure for Transfer Matrices

From the basic theory of open integrable chains as developed by
Sklyanin in [97], it is known that the open-chain transfer matrix is
given by

t(u) = tr1K+
1 (u)τ−1 (u), (5.9.1)

with τ−(u)
τ−(u) = T (u)K−(u)T̂ (u). (5.9.2)

Here T (u) and T̂ (u) obey the following relations:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v),

T̂2(v)R12(u+ v)T1(u) = T1(u)R12(u+ v)T̂2(v), (5.9.3)

R12(−u+ v)T̂2(v)T̂1(u) = T̂1(u)T̂2(v)R12(−u+ v).

T (u) is the so-called monodromy matrix and T̂ (u) obeys the same re-
lations as T (−u)−1. The quantity τ−(u) satisfies the same relation as
K−(u), i.e., (5.8.1) and we have

[t(u), t(v)] = 0, u �= v. (5.9.4)

In order to construct a transfer matrix t̂(u) for the fused quantities
described above, we consider the following quantity,

t̂(u) = tr12K
+
〈12〉(u)τ

−
〈12〉(u) (5.9.5)

along with
τ−〈12〉(u) = T〈12〉(u)K−

〈12〉(u)T̂12(u+ ρ),

T〈12〉(u) = P̃+
12T1(u)T2(u+ ρ)P̃+

12, (5.9.6)

T̃〈21〉(u+ ρ) = P̃+
12T̂1(u)T̂2(u+ ρ)P̃+

21.

We observe that τ−〈12〉(u) obeys the same relations (5.8.6) and (5.8.7)
as K−

〈12〉(u) and therefore the same fusion formula can be used:

τ−〈12〉(u) = P̃+
12τ

−
1 (u)R21(2u+ ρ)τ−2 (u+ ρ)P̃+

12.

To establish the commutativity,

[t(u), t(v)] = 0,
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we follow a generalization of Sklyanin’s approach. In particular we
make use of the relation (5.7.37), i.e.,

R〈12〉3(u)R3〈12〉(−u) = ζ(u)ζ(u+ ρ)P̃+
12

and

M−1
3 R〈12〉3(−u− 2ρ)t12M3R3〈12〉(u)t12 = ζ(u)ζ(u+ ρ)P̃+

12,

which follows from (5.7.37–5.7.39). Use will also be made of the reflec-
tion factorization relation (5.8.6) and (5.8.7) along with (5.8.12) and
(5.8.13). We are now in a position to construct the fusion formula for
the transfer matrix. From the (5.9.5) and the expression for τ−〈12〉(u)
from (5.9.6), along with (5.8.11) for the fused K+ matrix we get

t̂(u) = tr12{P̃+
12K

+
2 (u+ ρ)M−1

2 R12(−2u− 3ρ)M2K
+
1 (u)τ−1 (u)

×R21(2u+ ρ)τ−2 (u+ ρ)}.

Using the identity P̃+
21 = I − P̃−

21 we obtain

t̂(u) =

tr12{K+
2 (u+ρ)M1R12(−2u−3ρ)M−1

1 K+
1 (u)τ−1 (u)R21(2u+ρ)τ−2 (u+ρ)}

−tr12{P̃−
21K

+
2 (u+ ρ)M−1

2 R12(−2u− 3ρ)M2K
+
1 (u)τ−1 (u)

×R21(2u+ ρ)τ−2 (u+ ρ)}. (5.9.7)

The first term can be expressed as a product of two transfer matrices,
while the second term may be written as a product of two quantum
determinants. For the first term we have

tr12{
[
K+

2 (u+ ρ)K+
1 (u)t1M−1

1 R12(−2u− 3ρ)t1M1

]t1 ×
[
τ−1 (u)R21(2u+ ρ)τ−2 (u+ ρ)

]
},

= tr12{K+
2 (u+ ρ)K+

1 (u)t1M−1
1 R12(−2u− 3ρ)t1M1

×
[
τ−1 (u)R21(2u+ ρ)τ−2 (u+ ρ)

]t1},
= tr12{K+

2 (u+ ρ)K+
1 (u)t1M−1

1 R12(−2u− 3ρ)t1M1R21(2u+ ρ)t1

×τ−1 (u)t1τ−2 (u+ ρ)}.
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Using the fact that

M−1
1 R12(−2u− 3ρ)t1M1R21(2u+ ρ)t1 = ζ(2u+ 2ρ),

one can see that this term is equal to ζ(2u + 2ρ)t(u)t(u + ρ). On the
other hand the second term of (5.9.7) can be written as

tr12{P̃+
12K

+
2 (u+ ρ)M−1

2 R12(−2u− 3ρ)M2K
+
1 (u)P̃−

12τ
−
1 (u)

×R21(2u+ ρ)τ−2 (u+ ρ)}.
Expressing P̃−

21 in terms of P̃−
12 with the help of

P̃−
21 = V1V2P̃−

12V1V2

and using the property of projectors we conclude that this term is equal
to

∆{K+(u)}∆{τ−(u)}, (5.9.8)

where

∆{K+(u)} = tr12{P̃−
12V1V2K

+
2 (u+ ρ)M−1

2 R12(−2u− 3ρ)M2K
+
1 (u)},
(5.9.9)

∆{τ−(u)} = tr12{P̃−
12τ

−
1 (u)R21(2u+ ρ)τ−2 (u+ ρ)V1V2}. (5.9.10)

Summarising we see that the fusion formula for the transfer matrix is

t̂(u) = ζ(2u+ 2ρ)t(u)t(u+ ρ)−∆{K+(u)}{τ−(u)}. (5.9.11)

What now remains is the determination of the quantum determinants.
Recalling that

τ−(u) = T (u)K−(u)T̂ (u)

and using this in ∆{τ−(u)} we see that

∆{τ−(u)} = δ{T (u)}∆{K−(u)}δ{t̂(u)}, (5.9.12)

where
δ{T (u)} = tr12{P̃−

12T1(u)T2(u+ ρ)},
δ{T̂ (u)} = tr12{P̃−

12T̂2(u)T̂1(u+ ρ)},
∆{K−(u)} = tr12{P̃−

12K
−
1 (u)R21(2u+ ρ)K−

2 (u+ ρ)V1V2}. (5.9.13)

Let us now assume that the monodromy matrix T (u) is given by

T1(u) = R1,N (u)R1,N−1(u)....R1,1(u)
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and similarly

T̂1(u) = R1,1(u)....RN−1,1(u)RN,1(u).

Now with the help of the relation

P̃−
12R1,m(u)R2,m(u+ ρ)P̃−

12 = ζ(u+ ρ)P̃−
12

for m = 1, 2, ...., N , it follows then

δ{T (u)} = δ{T̂ (u)} = ζ(u+ ρ)N .

Since the expression of quantum determinants are c numbers the com-
mutativity of t̂(u) follows:

[t̂(u), t̂(v)] = 0.

For any particular model and fixed boundary matrices K+ and K−

the evaluation can be more explicit and one can again follow the usual
procedure of Bethe ansatz.

5.10 Application of Fusion Procedure

As an example of the application of the fusion procedure we shall
now discuss how it may be employed to formulate a problem exhibiting
long-range interaction. This will serve to give an illustration of the
connection that may be established between apparently unrelated top-
ics in integrable systems [90].

Let us consider a Heisenberg spin chain with the nearest neighbour
interaction (spin of each atom at the lattice site being equal to 1/2)
governed by the quantum R matrix [99]:

R(θ) =

⎛⎜⎜⎜⎝
sinh(θ + η) 0 0 0

0 sinh θ sinh η 0
0 sinh η sinh θ 0
0 0 0 sinh(θ + η)

⎞⎟⎟⎟⎠ . (5.10.1)

The basic observation of [100] is that, even if one introduces inho-
mogeneities µ1, µ2, ..., µN at the lattice sites i = 1, 2...., N , the model
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remains integrable and the system still possesses an infinite number of
integrals of motion in involution.

In general a monodromy operator T (θ, {µ}) is written as

T σ(θ, {µ}) =
N∏
i=1

Rσ
0i(θ + µi),

where R0i is defined over V0 ⊗ Vi; V0 is the quantum space and σ is
used to denote the purely spin 1/2 character of the R matrix. Writing
the monodromy matrix as

T σ(θ, {µ}) =

(
Aσ(θ, {µ}) Bσ(θ, {µ})
Cσ(θ, {µ}) Dσ(θ, {µ})

)
, (5.10.2)

the corresponding transfer matrix tσ(θ, {µ}) is given by

tσ(θ, {µ}) = tr0T σ(θ, {µ}).

The matrix elements of T σ(θ, {µ}) will be denoted as T σ
αβ(θ, {µ}). The

above assertion implies that

[tσ(θ, {µ}), tσ(θ′, {µ})] = 0. (5.10.3)

The monodromy matrix for the inhomogeneous model reads in terms
of site operators as

Tab(θ, {µ}) =
2∑

a1,a2,...aN−1=1

t(1)
aa1

(θ + µ1)t(2)
a1a2

(θ + µ2)....t
(N)
aN−1b

(θ + µN ).

(5.10.4)

The operators t(k)
ak−1ak(θ + µk) act on the two-dimensional space V (k).

We have further

t11(θ) =

(
sinh(θ + η) 0

0 sinh θ

)
, t12(θ) = σ− sinh η,

t22(θ) =

(
sinh θ 0

0 sinh(θ + η)

)
, t21(θ) = σ+ sinh η, (5.10.5)

where

σ= =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.
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Such a monodromy matrix satisfies the equation

Rσ(θ − θ′)T σ(θ, {µ})T σ(θ′, {µ}) = T σ(θ′, {µ})T σ(θ, {µ})Rσ(θ − θ′),
(5.10.6)

where R is given by (5.10.1). Now by the standard procedure of alge-
braic Bethe ansatz it is straightforward to derive the energy eigenvalue
of the mth excited state, defined by

|Ωm〉 = Bσ(v1)Bσ(v2)....Bσ(vm)|0〉σ, (5.10.7)

where

|0〉σ =
N∏
i=1

⊗
(

1
0

)
i

. (5.10.8)

The eigenvalue is given by

Eσ(θ) =
m∏
i=1

sinh(vi − θ + η)
sinh(vi − θ)

α(θ, {µ}) +
m∑
i=1

sinh(θ − vi + η)
sinh(θ − vi)

δ(θ, {µ}),

(5.10.9)
with

α(θ, {µ}) =
N∏
k=1

sinh(θ + µk + η), δ(θ, {µ}) =
N∏
k=1

sinh(θ + µk).

(5.10.10)
The eigenmomenta vi are given by the following equations, obtained
by equating the residues at the poles of Eσ(θ) to zero. In this way one
obtains

m∏
i=1

sinh(vj + µk + η)
sinh(vj + µk)

=
m∏
i�=j

sinh(vi − vj − η)
sinh(vi − vj + η)

. (5.10.11)

Next we fuse two spin 1/2 quantum Rσ matrices, to construct an in-
termediate Rσs matrix:

Rσs(θ, {µ}) = P̃+
12R

σ(θ − η/2)Rσ(θ + η/2)P̃+
12, (5.10.12)

where the suffix “s” denotes that half of the spin states are now actually
spin 1 due to the fusion procdure. The corresponding monodromy
matrix is

T σs(θ, {µ}) = P̃+
12T

σ
1 (θ − η/2, {µ})T σ

2 (θ + η/2, {µ})P̃+
12, (5.10.13)
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where P̃+
12 is a projection operator. The transfer matrix for the mixed

σs case is given by

tσs(θ, {µ}) = tr12

[
P̃+

12T
σ
1 (θ − η/2, {µ})T σ

2 (θ + η/2, {µ})P̃+
12

]
= −tr12

[
P̃−

12T
σ
1 (θ + η/2, {µ})T σ

2 (θ + η/2, {µ})
]

+tσ(θ + η/2, {µ})tσ(θ + η/2, {µ}). (5.10.14)

It will be recalled that the last term is just the quantum determinant,

∆(θ) = tr
[
I − P12

2
T σ

1 (θ − η/2, {µ})T σ
2 (θ + η/2, {µ})

]
, (5.10.15)

where P12 is the permutation operator. Explicitly, we have

∆(θ) = Aσ(θ + η/2, {µ})Dσ(θ − η/2, {µ})

−Bσ(θ + η/2, {µ})Cσ(θ − η/2, {µ}). (5.10.16)

The eigenvalues and eigenvectors of the mixed transfer matrix tσs can
be obtained from the crucial observation that tσs and tσ commute:

[tσs(θ, {µ}), tσ(θ, {µ})] = 0, (5.10.17)

so that they posses simultaneous eigenvectors. Hence using |Ωm〉, as
defined earlier, to denote their common eigenvectors we can at once
obtain the eigenvalue of tσs as

Eσs
m (θ) = Eσ

m(θ − η/2)Eσ
m(θ + η/2)− d(θ), (5.10.18)

with

d(θ) =
m∏
k=1

sinh(vk − θ + η/2)
sinh(vk − θ − η/2)

m∏
l=1

sinh(θ − vl + η/2)
sinh(θ − vl − η/2)

×

× α(θ + η/2)δ(θ − η/2),

= α(θ + η/2)δ(θ − η/2). (5.10.19)

We now perform a second fusion to obtain the full spin 1 chain. Let
us denote the corresponding monodromy matrix as T s:

T s(θ, {µ}) = P̃+
12T

σs
1 (θ − η/2, {µ})T σs

2 (θ + η/2, {µ})P̃+
12. (5.10.20)
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Taking the trace of both sides we obtain

ts(θ, {µ}) = tr
[
P̃+

12T
σs
1 (θ − η/2, {µ})T σs

2 (θ + η/2, {µ})P̃+
12

]
= tσs(θ − η/2, {µ})tσs(θ + η/2, {µ})−∆(θ), (5.10.21)

where
∆(θ) = q-detT σs

1 (θ − η/2)q-detT σs
2 (θ + η/2)

= ∆(θ − η/2)∆(θ + η/2). (5.10.22)

From (5.10.14) we now obtain

ts(θ, {µ}) = [tσ(θ − η, {µ})tσ(θ, {µ})−∆(θ − η/2)]×

×[tσ(θ, {µ})tσ(θ + η, {µ})−∆(θ + η/2)]−∆(θ − η/2)∆(θ + η/2),

= tσ(θ − η, {µ})tσ(θ, {µ})tσ(θ, {µ})tσ(θ + η, {µ})

−tσ(θ − η, {µ})tσ(θ, {µ})∆(θ + η/2)

−∆(θ − η/2)tσ(θ, {µ})tσ(θ + η, {µ}). (5.10.23)

Again, with the help of the Yang-Baxter equation one can show that

[ts(θ, {µ}), tσs(θ, {µ})] = 0, (5.10.24)

so that they also have common eigenvectors. This was the main com-
ponent of the analysis in [100]. Now, if we operate with ts, as given in
(5.10.23), on |Ωm〉 we obtain

Es
m(θ) = Eσ

m(θ − η)Eσ
m(θ)Eσ

m(θ + η)− Eσ
m(θ − η)Eσ

m(θ)d(θ + η/2)

−d(θ − η/2)Eσ
m(θ)Eσ

m(θ + η). (5.10.25)

We have thus derived the general form of the eigenvalue of the mth
excited state for a spin 1 system by the technique of double fusion,
without any reference to the specific form of the Hamiltonian.

Next we shall deduce a long-range interaction Hamiltonian and then
extract the corresponding eigenvalue for that Hamiltonian from the
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general expression (5.10.25). For this purpose we start with the once
fused form of the R matrix Rσs(ω):

Rσs(ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 0
0 b 0 d 0 0
0 0 c 0 d 0
0 d 0 c 0 0
0 0 d 0 b 0
0 0 0 0 0 a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.10.26)

with
a(ω) = sinh(ω +

3
2
η), b(ω) = sinh(ω + η/2),

c(ω) = sinh(ω − η/2), d(ω) =
√

sinh η sinh 2η.

This matrix acts on the tensor product of the vector spaces Vσ⊗Vs that
is a (2 × 3) dimensional space. We first note that Rσs can be written
as

Rσs(ω) =

(
t11 t12

t21 t22

)
, (5.10.27)

where
t11 = f(ω, η)s23 + g(ω, η)s3 + h(ω, η),

t22 = f(ω, η)s23 − g(ω, η)s3 + h(ω, η), (5.10.28)

t12 = d(ω)s−, t21 = d(ω)s−,

with s3, s± representing the spin 1 matrix operators of SU(2):

s3 =

⎛⎜⎝1 0 0
0 0 0
0 0 −1

⎞⎟⎠ , s1 =
1
2

⎛⎜⎝0 1 0
1 0 1
0 1 0

⎞⎟⎠ , s2 =
i

2

⎛⎜⎝0 −1 0
1 0 −1
0 1 0

⎞⎟⎠ . (5.10.29)

Here s± = s1 ± is2 and the functions f, g, h are given by

f(ω, η) =
1
2
(a− 2b+ c), g(ω, η) =

1
2
(a− c), h(ω, η) = b. (5.10.30)

If we expand f, g, h around ω =∞ we obtain

f
ω→∞−→ eω+η/2 sinh2 η/2, g

ω→∞−→ eω+η/2 sinh η,

h
ω→∞−→ eω+η/2. (5.10.31)
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We will now employ these to obtain the asymptotic form for the ele-
ments of T σs . Since

T σs
ab (ω, {µ}) =

2∑
a1,....aN1

t(1)
aa1

(ω + µ1)t(2)
a1a2

(ω + µ2)....t
(N)
aN−1b

(ω + µN ),

(5.10.32)
using (5.10.26) we immediately obtain

Aσs(ω, {µ}) ∼ yN (ω)

[
exp

[
η

N∑
i=1

si3

]
+
Q+(µ)
y2

+O(y−4)

]
,

Dσs(ω, {µ}) ∼ yN (ω)

[
exp

[
−η

N∑
i=1

si3

]
+
Q−(µ)
y2

+O(y−4)

]
, (5.10.33)

Bσs(ω, {µ}) ∼ yN−1(ω)d
N∑
k=1

eµ̄−µkΣk
−,

Cσs(ω, {µ}) ∼ yN−1(ω)d
N∑
k=1

eµ̄−µkΣk
+, (5.10.34)

where

Σk
− = exp

[
η
k−1∑
i=1

si3

]
sk− exp

⎡⎣−η N∑
i=k+1

si3

⎤⎦ ,
Σk

+ = exp

[
−η

k−1∑
i=1

si3

]
sk+ exp

⎡⎣η N∑
i=k+1

si3

⎤⎦ (5.10.35)

and

Q±(µ) = d2e2µ̄
∑

i≤j<k≤N

e−µj−µk exp

⎡⎣±η j−1∑
i=1

si3

⎤⎦ si∓×
× exp

⎡⎣∓η k−1∑
m=j+1

sm3

⎤⎦ sk± exp

⎡⎣±η N∑
l=k+1

sl3

⎤⎦ , (5.10.36)

d =
√

sinh η sinh 2η, y =
1
2
eω+η/2+µ̄, µ =

1
N

N∑
k=1

µk, Σ3 =
∑
i

si3.

Substituting these expressions in ts(ω, {µ}) we obtain

y−2N (ω)ts(ω, {µ}) =
(
e2ηΣ3 + e−2ηΣ3 + 1

)
+d2

N∑
k,l=1

e2µ̄−µk−µl(Σk
−−Σl

−)
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+
1
y2

(
eηQ+(µ)eηΣ3 + e−ηeηΣ3Q+(µ) + eηQ+(µ)eηΣ3

)
+

1
y2

(
e−ηe−ηΣ3Q−(µ) + eηQ−(µ)e−ηΣ3 + e−ηeηΣ3Q−(µ)

)
. (5.10.37)

Extracting the coefficient of y2N−2 gives the Hamiltonian,

H2N−2 = eη
[
Q+(µ)eηΣ3 +Q−(µ)e−ηΣ3 +Q+(µ)e−ηΣ3

]
+e−η

[
eηΣ3Q+(µ) + eηΣ3Q−(µ) + e−ηΣ3Q−(µ)

]
+d2

N∑
k,l=1

e2µ̄−µk−µl(Σk
−Σl

+). (5.10.38)

This is actually a long-range Hamiltonian coupling the spin 1 opera-
tors s3, s± at different lattice sites. This observation that an expansion
of the transfer matrix in the parameter y leads to various long-range
Hamiltonians was made by de Vega in [101], and we have applied this
idea to the case of the fused t matrix ts(ω, µ), which provides an ex-
ample of the application of the fusion procedure.

The eigenvalues pertaining to this Hamiltonian can be extracted from
the general expression given by (5.10.25), by expanding in the variable
y. If we set x = 1

2e
u+µ̄+η/2, then after a simple calculation we obtain

δ(u) = xNe−Nη/2

[
1− eη

4x2

N∑
k=1

e2(µ̄−µk) + .....

]
,

α(u) = xNeNη/2

[
1− 1

4x2

N∑
k=1

e2(µ̄−µk) + .....

]
. (5.10.39)

Substituting in (5.10.25) we obtain

Ẽ =

[
R1S1(e2η + 1) +

R2
1

4
(eη + e−3η)

∑
k

e2(µ̄−µk)

]
+

+

[
R1S1(1 + e−2η) +

R2
1

4
(e−η + e3η)

∑
k

e2(µ̄−µk)

]

−
[
R3

1S1(1 + e−2η) +R3
1S1(e2η + 1)

]
; (5.10.40)
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where
R1 = eη(N−2m)/2 + e−η(N−2m)/2,

S1 = eη(N−2m)/2

[
N∑
k=1

e2(µ̄−µk) − 2 sinh η
m∑
i=1

e2(µ̄+vi)

]
,

+e−η(N−2m)/2

[
eη

N∑
k=1

e2(µ̄−µk) − 2 sinh η
m∑
i=1

e2(µ̄+vi)

]
, (5.10.41)

which is the required eigenvalue corresponding to the long-range Hamil-
tonian (5.10.38). For explicit evaluation we still require a knowledge
of the quasi-momenta vi, which can be determined by demanding that
the residue at the poles of the exact expression for E(θ, {µ}) vanishes.



Chapter 6

Integrable Long-Range Models

6.1 Introduction

So far, we have given a general overview of integrable systems. Our
discussions have focused mainly on integrable systems arising in two-
dimensional statistical mechanics, 1+1-dimensional Hamiltonian sys-
tems, and also on field theoretic models. We have described in some
detail the techniques of coordinate and algebraic Bethe ansatz, which
are indispensable tools for analysing such systems.

Now we consider further applications of the Bethe ansatz, which in-
clude the construction and analysis of certain long-range spin models
based on the algebraic Bethe ansatz, integrable models with disorder
arising from symmetry transformations of the Yang-Baxter algebra and
such classic integrable systems as the Calogero-Moser model and its
generalization.

While discussing quantum integrable systems on a chain, it is use-
ful to first introduce, a classification of such systems on the basis of
the range of interaction. Well-known models exhibiting short range,
i.e, nearest neighbour interaction, are the δ-function gas, Toda lattice,
XYZ model and its various simplifications. This is evident from their
respective Hamiltonians:

HToda =
1
2

N∑
j=1

p2
j +

N−1∑
j=1

exp(xj+1 − xj),

HXY Z =
N−1∑
n=1

3∑
α=1

Jασαnσαn+1.

In contrast to such systems there exists a class of integrable systems in
which the interaction is not restricted to just nearest neighbours but

189
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extends to any arbitrary member. For example, the Calogero-Moser
model has the following Hamiltonian:

HCM =
N∑
i=1

p2
i +

∑
j �=k

g2

(xj − xk)2
,

in which particles interact by a pairwise inverse square potential. Other
variants of such systems are those in which the potential is either given
by

(i) V =
∑
j �=k

g2a2

sin2 a(xj − xk)
,

(ii) V =
∑
j �=k

g2a2

sinh2 a(xj − xk)
,

or, (iii) V =
∑
j �=k

g2a2℘(a(xj − xk)),

where ℘(x) represents the Weirstrass ℘ function.

6.2 Long-Range Models from the ABA

We now outline certain general procedures for obtaining long-range
integrable spin systems based essentially on the Yang-Baxter relation
and its symmetries. To begin with, we will associate to each lattice site
an arbitrary parameter called inhomogeneity. Consider an R matrix
depending on the spectral parameter u and an additional parameter η,
which satisfies the Yang-Baxter equation (YBE) [102]:

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (6.2.1)

Let
R̂(u; η) = R(u; η)P, (6.2.2)

where P is the permutation operator. In Chapter 3, we have seen that
R̂(u; η) satisfies the YBE in the form

(R̂(u−v)⊗I)(I⊗R̂(u))(R̂(v)⊗I) = (R̂(v)⊗I)(I⊗R̂(u))(R̂(u−v)⊗I).
(6.2.3)
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FIGURE 6.2.1: One-dimensional lattice with inhomogeneities
{λk}.

Furthermore, we assume that R(u; η) and R̂(u; η) satisfy the conditions
of regularity and quasi-classical theory

(i) R(u = 0; η) = P, R̂(u = 0; η) = I, (6.2.4)

(ii) R(u; η = 0) = I, R̂(u; η = 0) = P. (6.2.5)

Introduce next a one-dimensional lattice with inhomogeneities as de-
picted in Figure (6.2.1).

In this figure, the horizontal line represents a quantum space “V0”
and the vertical lines denote the spaces “Vk” at the kth lattice site.
And {λk} denotes the set of inhomogeneity parameters. To each site
we introduce the matrix R0k(u − λk; η), acting on V0 ⊗ Vk. A typical
vertex corresponding to an R matrix element is given in Figure (6.2.2).

Define the transfer matrix t(u) as follows:

t(u) = tr 0TN (u; {λ}; η) = tr0[R0N (u−λN ; η).....R01(u−λ1; η)], (6.2.6)

with the trace being taken over the horizontal space. Here TN (u, {λ}; η)
is the transition matrix, which despite the inhomogeneities satisfies the
Yang-Baxter algebra (YBA):

R̂(u− v)TN (u)⊗ TN (v) = TN (v)⊗ TN (u)R̂(u− v), (6.2.7)

with the transfer matrix t(u) forming a commuting family of operators,

[t(u), t(v)] = 0. (6.2.8)
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FIGURE 6.2.2: R matrix corresponding to a lattice site.

Let us consider |u′〉 to be an eigenstate of t(u) and assume that it
is characterized by the following set of “quasi-momenta” {u′1, ....u′M}.
Defining Zk to be the operator t(u) evaluated at the kth inhomogeneity
λk, we set up the following eigenvalue problem:

Zk|u′〉 =
M∏
l=1

1
c(u′l − λk)

|u′〉. (6.2.9)

Here
Zk = τ(u = λk; η)

and c(u) is a model-dependent quantity along with the {u′l}’s. Differ-
entiating (6.2.9) with respect to η at η = 0 gives

∂Zk

∂η
|u′〉η=0 + Zk

∂

∂η
|u′〉η=0 = (

∂

∂η

M∏
l=1

1
c(u′l − λk)

)|u′〉η=0+ (6.2.10)

+
M∏
l=1

1
c(u′l − λk)

∂

∂η
|u′〉η=0.

The quasi-classical condition yields Zk|η=0 = I, so that demanding

c(u′l − λk)|η=0 = 1, (6.2.11)

we have from (6.2.10)

∂Zk

∂η
|u′〉η=0 = (

∂

∂η

M∏
l=1

1
c(u′l − λk)

)|u′〉η=0. (6.2.12)



Integrable Long-Range Models 193

From (6.2.8) it follows that

[Zk, Zl] = 0, (6.2.13)

so that an expression for Zk in powers of η has the following form:

Zk = I +
∂Zk

∂η
|η=0η +O(η). (6.2.14)

Consequently, one may look upon {∂Zk
∂η |η=0} as a family of commuting

Hamiltonians, and rewrite (6.2.13) and (6.2.14) as

Hk|u′〉η=0 = Λk|u′〉η=0, (6.2.15)

where

Λk =
∂

∂η

M∏
l=1

1
c(u′l − λk)

|η=0 (6.2.16)

and
[Hk, Hl] = 0 k, l = 1, 2, ..., N. (6.2.17)

From these equations it is evident that a Hamiltonian system given by

H =
N∑
k=1

ξkHk, (6.2.18)

where ξk are arbitrary constants, constitutes a completely integrable
system with eigenvalue given by

E =
N∑
k=1

ξkΛk. (6.2.19)

To derive an explicit expression for the Hamiltonian we need to consider
the original expression for Zk, that is

Zk = tro[RoN (λk − λN )....Pok...Ro1(λk − λ1)],

=
∑
{l}

RbN l1
aN lN

(λk − λN ).....P bklk+1

aklk
...Rb1l2

a1l1
(λk − λ1),

or Zk =
∑
{l}

R
bk−1bk
ak−1lk−1

(λk − λk−1)....Rb1l2
a1l−1(λk − λ1)× (6.2.20)

×RbN l1
aN lN

(λk − λN )...Rbk+1lk+2

ak+1lk+1
(λk − λk+1),
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FIGURE 6.2.3: Z
{b}
k{a} = t

{b}
{a}(λk), where {aj} and {bj} stand for

states in the lower and upper rows.

so that

Zk = Rkk−1(λk−λk−1)...Rk1(λk−λ1)RkN (λk−λN )....Rkk+1(λk−λk+1)
(6.2.21)

where the diagrammatic representation of Zk is shown in Figure (6.2.3).
Using (6.2.21) we arrive at the following formula for the Hamiltonian

Hk:

Hk =
∂

∂η
Zk|η=0 =

∑
j �=k

∂

∂η
Rkj(λk − λj ; η)|η=0. (6.2.22)

The total Hamiltonian is

H =
1
2

∑
j �=k

(ξk − ξj)
∂

∂η
Rkj(λk − λj ; η),

under the assummption ∂
∂ηR(λ, η) = − ∂

∂ηR(−λ; η). Let us consider a
specific example to clarify the above procedure.
Example: XXZ model in a magnetic field

While describing the algebraic Bethe ansatz, we had considered the
XXZ spin chain placed in an external magnetic field [103]. We also
recall that the following R matrix was associated to each lattice site

R0k(λ, νk; η) =

(
t
(k)
11 (λ, νk) t

(k)
12 (λ, νk)

t
(k)
21 (λ, νk) t

(k)
22 (λ, νk)

)
,

with

t
(k)
11 (λ, νk) =

(
eηh(λ−νk) 0

0 sinh(λ−νk)
sinh(λ−νk+η)e

−ηh(λ+νk)

)
,
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t
(k)
12 (λ, νk) =

(
0 0

sinh η
sinh(λ−νk+η) 0

)
, t

(k)
21 (λ, νk) =

(
0 sinh η

sinh(λ−νk+η)

0 0

)
,

t
(k)
22 (λ, νk) =

(
sinh(λ−νk)

sinh(λ−νk+η)e
ηh(λ+νk) 0

0 e−ηh(λ−νk)

)
.

Hence in the present case Hk may be obtained in terms of local spin
operators and (6.2.22):

Hk =
N∑
j=1

j �=k

1
2 sinh(νk − νj)

[
cosh(νk − νl)(σ3

k ⊗ σ3
j − I)

+(σ+
k ⊗ σ

−
j + σ−k ⊗ σ

+
j ) + h(νk − νj) sinh(νk − νj)(σ3

k ⊗ σ3
j + I ⊗ I)

+h(νk + νj) sinh(νk − νj)(I ⊗ σ3
j − σ3

k ⊗ I)
]
. (6.2.23)

Note the terms involving the magnetic field in (6.2.23); it is seen that
when h = 0 we get back the basic result in [102].

To ensure that the eigenvalue problem given by (6.2.9) is well defined,
we have to check that condition (6.2.11) is satisfied. It should be clear
that the eigenvalue of Zk, when acting on the M excitation state |ΩM 〉,
will be the same as that of the transfer matrix of the corresponding
algebraic Bethe ansatz problem, evaluated at λ = νk. From (5.3.28)
we have

ΛM (λ = νk) = e2ηνkh

⎛⎝ N∏
j=1

eηh(νk−νj)

⎞⎠ M∏
i=1

sinh(νk − µi + η)
sinh(νk − µi)

+e2ηνkh
⎛⎝ N∏

j=1

sinh(νk − νj)
sinh(νk − νj + η)

eηh(νk+νj)

⎞⎠ M∏
i=1

sinh(µi − νk + η)
sinh(µi − νk)

.

(6.2.24)
However, the second term on the right-hand side of (6.2.24) vanishes
when j = k, so that

ΛM (λ = νk) = e2ηνkh

⎛⎝ N∏
j=1

eηh(νk−νj)

⎞⎠ M∏
i=1

sinh(νk − µi + η)
sinh(νk − µi)

. (6.2.25)

Notice once again the appearance of the terms involving the external
magnetic field in the last expression. Thus from (6.2.9) and (6.2.25),
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we find that

M∏
l=1

1
c(µl − νk)

= e2ηνkh

⎛⎝ N∏
j=1

eηh(νk−νj)

⎞⎠ M∏
i=1

sinh(νk − µi + η)
sinh(νk − µi)

.

(6.2.26)
In view of the constraint expressed by (6.2.11), one can immediately
conclude that the right-hand-side of (6.2.26) reduces to unity when
η = 0. Thus we conclude that the eigenvalue problem given by (6.2.9)
is well defined. The eigenvalue corresponding to a Hamiltonian Hk can
be easily deduced from (6.2.26) as

ξk = h

⎡⎣2νk +
N∑
j=1

(νk − νj)

⎤⎦+
M∑
l=1

coth(νk − µl). (6.2.27)

Finally, the new Bethe ansatz equation determining the µl’s is obtained
by differentiating (5.3.26), i.e.,

N∏
k=1

sinh(µj − νk + η)
sinh(µj − νk)

e−2ηνkh =
M∏
i=1

i�=j

sinh(µi − µj + η)
sinh(µi − µj − η)

, j = 1, 2, ....,M,

(6.2.28)
with respect to η and setting η = 0. From this we get

N∑
k=1

[coth(µl − νk)− 2hνk] = 2
M∑
i�=l

coth(µi − µl), l = 1, 2, ...,M.

(6.2.29)
From (6.2.23) we see that the inhomogeneities {νk}Nk=1 appear as co-
ordinates in the expression for the Hamiltonian Hk. Moreover, as the
summation in (6.2.23) is not confined to nearest neighbours, the Hamil-
tonian Hk is said to exhibit long-range interaction in terms of the “co-
ordinates” {νk}Nk=1. The external magnetic field appears in the form of
additional terms in the expression for Hk. The energy eigenvalue and
the new BAE both explicitly involve the magnetic field.
We state below the results for a few more models:
• XYZ model

Hl =
1
2

∑
j �=l

1
sn(λl − λj)

{
(1 + ksn2(λl − λj))σxl σxj +

(1−ksn2(λl−λj))σyl σ
y
j + cn(λl − λj)dn(λl − λj)(σzl σzj − 1)

}
. (6.2.30)
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The constant k in (6.2.30) is the modulus of Jacobi’s elliptic functions.
• Spin 1 XXZ model

Hk =
∑
j �=k

1
sin(λk − λj)

{
Sx
kS

x
j + Sy

kS
y
j + cos(λk − λj)Sz

kS
z
j

}
. (6.2.31)

• Zn model

Hk =
∑
j �=k

⎧⎨⎩∑
αβ

((
2
n
(α− β)− sgn(α− β

)
(λk − λj)

)
(Ek)αβ(Ej)βα
sinh(λk − λj)

+
∑
αβ

(
2
n
(β − α)− sgn(β − α)− coth(λk − λj)

)
(Ek)αα(Ej)ββ

⎫⎬⎭ ,
(6.2.32)

where E is a matrix whose elements are

(Eαβ)lm = δαlδβm.

6.3 Symmetry Transformation

An alternate procedure for constructing integrable quantum mod-
els with long-range interactions is by exploiting the symmetries of
the Yang-Baxter algebra (YBA), together with association of inho-
mogeneities at each lattice site [104]. Let us consider the following
transformation of the monodromy operator:

TN (u) −→ gTN (u). (6.3.1)

Under this transformation the YBA given by (6.2.7) is invariant, pro-
vided

[R̂(u− v), g ⊗ g ] = 0, ∀ u, v. (6.3.2)

Consequently the operator,

tg(u) = tr [gTN (u)], (6.3.3)

constitutes a family of commuting transfer matrices,

[tg(u), tg(v)] = 0. (6.3.4)
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Thus, each symmetry-generating transformation g will generate a cor-
responding commuting family of transfer matrices. It will be shown
below that these operators tg(u) generate one-dimensional Hamilto-
nians with inhomogeneous parameters, provided g and the expansion
point in the spectral variable u are carefully chosen. Indeed, commut-
ing operators in general follow from (6.3.4) when tg(u) is expanded in
a power series, around some suitable point, say u0. It is customary to
call an integrable system regular if for some point u0,

tI(u0) = constX, (6.3.5)

where X is the unit shift operator on the line and g = I. Without loss
of generality, one can then set u0 = 0 and write

log tI(u) =
∞∑
p=0

ĉpu
p. (6.3.6)

In this expansion, the operators ĉp may be shown to couple (p + 1)
adjacent sites. But the explicit forms of ĉp when expanded about a
generic point are usually complicated.

As an alternative, one may try to expand tg(u) around u =∞. The
expansion coefficients are operators that now couple nonadjacent sites,
and are usually easy to obtain explicitly even in the case of inhomoge-
neous models.

To clarify these issues it would be useful to consider an explicit inho-
mogeneous six-vertex model, on a square lattice for which the R matrix
is given by

R̂(u; η) =

⎛⎜⎜⎜⎝
sinh(u+ η) 0 0 0

0 sinh η sinhu 0
0 sinhu sinh η 0
0 0 0 sinh(u+ η)

⎞⎟⎟⎟⎠ . (6.3.7)

Partitioning the R matrix into blocks, we may write it as

R̂(u) =

(
t11(u) t12(u)
t21(u) t22(u)

)
, (6.3.8)

where

t11(u) =

(
sinh(u+ η) 0

0 sinhu

)
, t22 =

(
sinhu 0

0 sinh(u+ η)

)
,
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t12(u) =

(
0 0

sinh η 0

)
, t21 =

(
0 sinh η
0 0

)
. (6.3.9)

The monodromy matrix can be written in the usual manner as

TN (u) =

(
A(u) B(u)
C(u) D(u)

)
, (6.3.10)

where the elements of the monodromy operator are defined by

T ab
N (u) =

∑
a1...aN

t(1)(u+ µ1)aa1t
(2)(u+ µ2)a1a2 ....t

(N)(u+ µN )aN b,

(6.3.11)
a, b, a1, .....aN = 1, 2. The operators t(k)(u + µk)ak−1ak act on a two-
dimensional vertical space V (k), while {µ1, µ2, ...µk} are the inhomo-
geneity parameters. Taking

g(α) =

(
α 0
0 α−1

)
, (6.3.12)

it can be verified that the YBA as given in (6.2.7) is satisfied since

[R̂(u), g(α)⊗ g(α)] = 0. (6.3.13)

Consequently, we have now a two-parameter family of commuting trans-
fer matrices:

tα(u; {µ}) = tr[g(α)TN (u; {µ})] = αA(u; {µ}) +
1
α
D(u; {µ}), (6.3.14)

[tα(u; {µ}), tα(v; {µ})] = 0. (6.3.15)

If we expand T ab
N (u; {µ}) around u =∞, then from (6.3.10) and (6.3.8)

we find

A(u; {µ}) = yNeηs3 [1 +Q+(µ)/y2 +O(y−4)], (6.3.16)

D(u; {µ}) = yNe−ηs3 [1 +Q−(µ)/y2 +O(y−4)], (6.3.17)

where y = 1
2 exp(u+ η

2 + 1
N

∑
i µi) and

s3 =
1
2

N∑
k=1

(σk)3 with σ3 =

(
1 0
0 −1

)
. (6.3.18)
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The latter is the third component of the total spin and

Q±(µ) = sinh2 η
∑

1≤k,l≤N

e−µk−µl(σ∓)k(σ±)l

−1
4

N∑
k=1

e−2µk [cosh η ∓ sinh η(σk)3], (6.3.19)

σ± being the Pauli matrices. One can also show that

[s3, A(u; {µ})] = [s3, D(u; {µ})] = 0, (6.3.20)

so that one may define another transfer matrix,

t̂α(u; {µ}) = αe−ηs3A(u; {µ}) +
1
α
eηs3D(u; {µ}), (6.3.21)

which also forms a commuting set, i.e.,

[t̂α(u; {µ}), t̂α(v; {µ})] = 0. (6.3.22)

It should be noted that neither of the transfer matrices defined by
(6.3.4) or (6.3.21) would form a commuting family for different values
of the parameter α of inhomogeneities {µ}. From (6.3.20) and (6.3.16)
we find the first nontrivial operator generated by t̂α to be

K(α) = αQ+(µ) + α−1Q−(µ). (6.3.23)

Indeed for α = 1, this can be expressed in terms of one-site operators:

K(1) =
1
2
sinh2 η(Σ+Σ− + Σ−Σ+)− 1

2
(chη + sh2η)

N∑
k=1

e−2µk , (6.3.24)

where

Σ± =
N∑
k=1

e−µk(σ±)k.

This operator does not couple spins at arbitrary sites and therefore
shows no long-range interaction. However if we set α = i, then we find
that

K(i) = i(Q+ −Q−) = i sinh2 η
∑

1≤k,l≤N

e−µk−µlsign(l − k)(σ+)l(σ−)k,
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+
i

2
sinh η

N∑
k=1

e−2µk(σk)3. (6.3.25)

This operator not only couples the spin variables at different sites, but
is also hermitian if we assume iη = −γ ∈ R and eµk+µl ∈ R(l, k =
1, ...N). If we rescale by a factor −1

2 sin γ, then, we arrive at the fol-
lowing expression for the Hamiltonian

H({µ}) =
1
2
sin γ

∑
1≤k,l≤N

e−µk−µl(σl ∧ σk)3 +
N∑
k=1

e−2µk(σk)3, (6.3.26)

which belongs to an infinite family of commuting operators. The
higher ones follow from the terms of order e−2pk , p ≥ 2 in (6.3.16)
and (6.3.20).

6.4 Calogero-Moser Models

The Calogero-Moser models have recently attracted a lot of attention
as they are classic examples of systems exhibiting long-range interac-
tion. These models are related to random matrix theory, matrix models
and two-dimensional gravity. Moreover, they have what are known as
Jastrow-type wave functions, which play an important role in several
areas of condensed matter physics such as quantum Hall effect, anions,
and high Tc superconductivity.

For discussing this particular family of models, we begin by consider-
ing the basic Hamiltonian of the classical Calogero-Moser (CM) model
in the form [105]

H =
1
2

N∑
j=1

p2
j +

g

2

∑
j �=k

V (xj − xk), (6.4.1)

where {xj} and {pj} denote positions and conjugate momenta of N
identical particles, and g represents the strength of the potential. The
Hamilton’s equations of motion are given by

ẋj = {xj , H} = pj , ṗj = {pj , H} = −g
∑
k �=j

V ′(xj − xk). (6.4.2)
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In the inverse scattering method, these equations of motion are assumed
to follow from the Lax equation, that is, from hermitian N×N matrices
L, M satisfying the Lax equation:

iL̇ = i{L,H} = [M,L]. (6.4.3)

From this, it follows that the conserved integrals of motions are

In =
1
n
tr(Ln) =

1
n

∑
j

(Ln)jj , n = 1, 2, ...., N. (6.4.4)

For the purpose of clarity let us assume the L,M matrices to be

Ljk = pjδjk + ia(1− δjk)f(xj − xk), (6.4.5)

Mjk = a(1− δjk)g(xj − xk) + aδjk
∑
l �=j

z(xj − xl), (6.4.6)

where a is a constant and the functions f(x), g(x) and z(x) have the
property

f(x) = −f(−x), g(x) = g(−x) and z(x) = z(−x). (6.4.7)

Upon substitution of (6.4.1), (6.4.5) and (6.4.6) in the Lax equation
(6.4.3), one gets a set of functional equations determining the functions
f, g and z(x):

g(x) = f ′(x), gV ′(x) = 2a2f(x)g(x),
f(x)g(y)− f(y)g(x) = f(x+ y)(z(x)− z(y)) (6.4.8)

and g = a2. The solutions of (6.4.8) can be classified into four categories
of potentials [106].
• Rational: V (x) = 1

x2 ,

• Trigonometric: V (x) = α2

sin2 αx
,

• Hyperbolic: V (x) = α2

sinh2 αx
,

• Elliptic: V (x) = α2℘(αx).

Here α is a constant and ℘(x) is the Weirstrass ℘ function. The latter
represents the most general situation, as ℘(x) is doubly periodic in the
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complex x plane. In the limiting case when one of the periods tends to
infinity we get the second and the third cases up to a constant, while
when both periods go to infinity one gets the rational case. The rational
case is referred to as the Calogero-Moser model as the integrability of
the classical case was deduced by Moser [107].

6.4.1 Quantum Calogero-Moser model

In the quantum case the Hamiltonian of the Calogero-Moser model
is given by

H =
1
2

N∑
j=1

p2
j +

g

2

∑
j �=k

V (xj − xk), (6.4.9)

with pj now being an operator, i.e., pj = −i∂/∂xj . In the quantum ver-
sion of the inverse scattering, one introduces N×N hermitian matrices
L,M such that the Lax equation,

d

dt
Ljk = i[H,Ljk] = i[L,M ]jk, (6.4.10)

is equivalent to the Heisenberg equation of motion generated by the
Hamiltonian. Note that here the elements of L and M are operator
valued. If we take the L,M matrices as follows:

Ljkpjδjk + ia(1− δjk)f(xj − xk), (6.4.11)

Mjk = a(1− δjk)g(xj − xk) + aδjk
∑
l �=j

z(xj − xk), (6.4.12)

where f(x) is an odd function and g(x) and z(x) are even functions,
then upon substitution of (6.4.11) and (6.4.12) into (6.4.10) we obtain

g(x) = f ′(x), gV ′(x) = 2a2f(x)g(x)− az′(x),
f(x)g(y)− f(y)g(x) = f(x+ y)(z(x)− z(y)). (6.4.13)

The extra term −az′(x) in the second equation in (6.4.13), arises from
the operator nature of the elements of L. A solution of the functional
equations (6.4.13) is given by

f(x) = 1/x, g(x) = −z(x) = −1/x2 and gV (x) = (a2 − a)/x2.
(6.4.14)



204 Quantum Integrable Systems

Consequently, the quantum inverse problem for the quantum Calogero-
Moser model is formulated with the following form of the Hamiltonian:

H =
1
2

N∑
j=1

p2
j +

g

2

∑
j �=k

1
(xj − xk)2

, (6.4.15)

where g = a2 − a and the Lax pair for the model is

Ljk = pjδjk + ia(1− δjk)
1

(xj − xk)
, (6.4.16)

Mjk = −a(1− δjk)
1

(xj − xk)2
+ aδjk

∑
l �=j

1
(xj − xl)2

. (6.4.17)

It would be interesting to determine how the conserved quantities
may be constructed for such a case. One can show that M satisfies the
so-called sum-to-zero condition:∑

k

Mjk =
∑
k

Mkj = 0. (6.4.18)

From the Lax equation (6.4.10) we have

[H,
∑
jk

(Ln)j,k] =
∑
jl

(Ln)jl(
∑
k

Mlk)−
∑
lk

(
∑
j

Mjl)(Ln)lk = 0, (6.4.19)

the equality following as a result of the sum-to-zero condition. Hence
we have the following formula for the conserved operators [108],

In =
1
n

∑
jk

(Ln)jk. (6.4.20)

One should mention here that although the condition (6.4.18) is valid
for trigonometric and hyperbolic cases, it is not so for the elliptic case.

In order to prove explicitly the integrability of the quantum Calogero-
Moser model (6.4.15), it is convenient to construct the following oper-
ators and relations:

1. Boost operator Bn:

Bn =
1
2i

[
∑
j

x2
j , In+1]. (6.4.21)
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2. Generalized Lax equation:

[In, Ljk] = [L,M (n)]jk. (6.4.22)

3. Additional relations:

[In+1, X] = [X,M (n+1)] + Ln, (6.4.23)

Xjk ≡ ixjδjk. (6.4.24)

The explicit construction of M (n) is given in [109] and M (n) satisfies
the sum-to-zero condition. From these relations one can obtain the
following commutation relations between the conserved quantities In
and the boost operators {Bn}:

[In, Im] = 0 (6.4.25)

[Bm, In] = i(n+m− 1)In+m−1 (6.4.26)

[Bm, Bn] = i(m− n)Bn+m−1. (6.4.27)

The relation (6.4.25) shows that the conserved quantities are in involu-
tion and that the model (6.4.15) is therefore integrable. The preceding
relations constitute what is known as the U(1)-current algebra.

6.4.2 Generalizations of the CM model

In [110] Gibbons and Hermsen considered a generalized version of the
Calogero-Moser many-body system, in which the interacting particles
possessed additional internal degrees of freedom. In [111] Billey et
al. considered this generalized CM system, which is governed by the
Hamiltonian:

H =
1
2

N∑
i=1

p2
i −

1
2

N∑
i�=j

fijfji
(qi − qj)2

, (6.4.28)

with the dynamical variables (qi, pi)Ni=1 and (fij)Ni,j=1 satisfying the
Poisson brackets:

{qi, qj} = {pi, pj} = 0, {qi, pj} = δij , {fij , fkl} = δjkfil − δilfkj .
(6.4.29)

The classical integrability of this model was found to exist on the sur-
faces fii = const., i = 1, ..., N . Brezezinski [112] proposed a further
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generalization of this model by introducing a nontrivial internal struc-
ture in the dynamical variables (fij)Ni,j=1, so that the Hamiltonian as-
sumed the form,

H =
1
2

N∑
i=1

p2
i −

1
2

N∑
i�=j

M∑
α,β=1

fαijf
β
ji

(qi − qj)2
, (6.4.30)

with (qi, pi)Ni=1 obeying the previous Poisson brackets, but the fαij ’s
satisfying the following:

{fαij , f
β
kl} = δαβ(δjkfαil − δilfαkj). (6.4.31)

The essential difference of this Hamiltonian with the one given by
(6.4.28), is the identification of fij as

∑M
α=1 f

α
ij . The system (6.4.30)

may be shown to be integrable when (fii = const)Ni=1 and to admit the
Lax matrix:

L(λ) =
N∑
i=1

(
pi +

M∑
α=1

fαii
λ− εα

)
eii +

N∑
i�=j

(
fij

qi − qj
+

M∑
α=1

fαij
λ− εα

)
eij .

(6.4.32)
Here eij is a matrix whose ijth element is unity and all the others
are zero, while ε1 > ε2 > ....εM are arbitrary parameters. The form
of the Lax matrix L(λ) represents nothing but the coupling of the M
particle Gaudin model to the usual Calogero-Moser model. It is in
this sense that the Calogero-Moser model has been modified. Using
the fundamental Poisson brackets (6.4.31), one can show that the Lax
matrix in (6.4.32) obeys the relation,

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ) + L2(µ)]−
N∑
i�=j

fii − fjj
(qi − qj)2

eij ⊗ eji,

(6.4.33)
with the following classical r matrix:

r12(λ, µ) =
N∑
i�=j

(
1

λ− µ +
1

qi − qj

)
eij⊗eji+

1
λ− µ

N∑
i=1

eii⊗eii. (6.4.34)

Note here that the r matrix now depends not only the spectral param-
eters λ, µ but, also explicitly on the coordinates qi’s. Such r matrices
are termed as dynamical r matrices. From (6.4.33) it immediately
follows that the model (6.4.30) will be classically integrable provided
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fii = fjj , i, j = 1, ...., N since in that case the Poisson bracket (6.4.33)
reduces to the standard case. For the specific case of N = 2, the Lax
matrix is

L(λ) =

⎛⎝ p1 +
∑M

α=1
fα
11

λ−εα
f12

q1−q2

∑M
α=1

fα
12

λ−εα
f21

q2−q1

∑M
α=1

fα
21

λ−εα
p2 +

∑M
α=1

fα
22

λ−εα

⎞⎠ . (6.4.35)

Working in the center of mass frame we have, upon subtracting the
center of mass motion, the following form of the above Lax matrix:

L(λ) =

⎛⎝ p1−p2

2 + 1
2

∑M
α=1

fα
11−fα

22
λ−εα

f12
q1−q2

∑M
α=1

fα
12

λ−εα
f21

q2−q1

∑M
α=1

fα
21

λ−εα
p2−p1

2 + 1
2

∑M
α=1

fα
22−fα

11
λ−εα

⎞⎠ . (6.4.36)

Introducing relative coordinates q, p defined by q = q1− q2, p = 1
2(p1−

p2), so that {q, p} = 1 and writing

Sα
3 =

1
2
(fα11 − fα22), fα12 = Sα

+, fα21 = Sα
−,

L(λ) in (6.4.36) assumes the form

L(λ) =

(
A(λ) B(λ)
C(λ) −A(λ)

)
=

⎛⎝ p+
∑M

α=1
Sα

3
λ−εα

S+

q +
∑M

α=1
Sα

+

λ−εα

−S−
q +

∑M
α=1

Sα
−

λ−εα
−p+

∑M
α=1

Sα
3

λ−εα

⎞⎠ .
(6.4.37)

Here Sα
3 , S

α± are generators of the so(2, 1) Poisson algebra

{Sα
3 , S

β
±} = ±δαβSβ

±, {Sα
+, S

β
−} = 2δαβS

β
3 , (6.4.38)

and S+ = f12 =
∑M

α=1 f
α
12. With L(λ) expressed as in (6.4.37), it is

easy to show that

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ)]− [r21(µ, λ), L2(µ)]. (6.4.39)

In this equation

r12(λ, µ) =

⎛⎜⎜⎜⎜⎝
1

λ−µ 0 0 0
0 0 1

λ−µ + 1
q 0

0 1
λ−µ −

1
q 0 0

0 0 0 1
λ−µ

⎞⎟⎟⎟⎟⎠ , (6.4.40)

and r21(λ, µ) = Pr12(λ, µ)P while r21(µ, λ) = −r12(λ, µ) so that (6.4.39)
reduces to

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ) + L2(µ)], (6.4.41)
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provided S3 = 0.

The generating function of the integrals of motion is defined as

t(λ) =
1
2
tr (L2(λ)) (6.4.42)

and is expressible in the form,

t(λ) = H +
M∑
α=1

Hα

λ− εα
+

M∑
α=1

Gα

(λ− εα)2
. (6.4.43)

Here
H = p2 − S−S+

q2
, (6.4.44)

Hα =
M∑
β �=α

2Sα
3 S

β
3 + (Sα−S

β
+ + Sβ

−Sα
+)

εα − εβ
+ 2pSα

3 +
1
q
(Sα

−S+ − Sα
+S−),

(6.4.45)
and Gα = (Sα

3 )2 + Sα
−S

α
+. (6.4.46)

One can show that {t(λ), S3} = 0, so that the reduction S3 = 0 is
possible. These integrals of motion are in involution if S3 = 0, which
essentially means that

∑M
α=1Hα = 0. Here, H is the Hamiltonian of

the system while each Gα(α = 1, ...M) is a Casimir function. One
can show that the following representation of (Sα±, Sα

3 ) is admissible, in
terms of canonical coordinates and momenta (xα, pα):

Sα
3 =

1
2
xαpα, Sα

+ =
1
2
p2
α, Sα

− = −1
2
x2
α, (6.4.47)

where {xα, pβ} = δαβ , α, β = 1, ...,M . In this representation the above
integrals of motion become

H = p2 +
R2

4q2

M∑
α=1

p2
α,

Gα = 0, α = 1, ....,M, (6.4.48)

Hα = −1
4

M∑
β �=α

M2
αβ

εα − εβ
+ pαxαpα +

1
4q

M∑
β �=α

(p2
αx

2
β − x2

αp
2
β),

where R2 =
∑M

α=1 x
2
α and Mαβ = pαxβ − xαpβ. The constraint S3 = 0

implies that
∑M

α=1 xαpα = 0.

We shall return to this model in Chapter 7 where the method of
separation of variables will be applied to its quantum version.



Chapter 7

Separation of Variables

7.1 Introduction

The term “separation of variables” (SoV) appears in various branches
of mathematical sciences, due to the preponderance of differential equa-
tions. In a sense, it constitutes the simplest approach toward attempt-
ing a solution of any dynamical problem. Starting from the simplest dif-
ferential equations to those governing complicated natural phenomena,
its utility has been repeatedly proved. Contrary to the usual notions,
the system of equations may be either a set of partial differential equa-
tions or ordinary differential equations. In the former, the term SoV
usually refers to the separation of the actual coordinates, which may be
cartesian or polar variables, as in the hydrogen atom. In the latter, the
term refers to the separation of independent dynamical variables. In a
completely integrable system, separation of variables assumes utmost
importance, as such systems are endowed with an infinite number of
conserved quantities. The notion of complete integrability is entwined
with the concept of separability. Classical studies of dynamical sys-
tems focused on identifying “action-angle” variables, thus in essence
achieving separability. Furthermore, it is well known that integrable
systems are often bi- or even multi- Hamiltonian in character, and in
such cases separation of variables has often been an additional output
of this characteristic feature.

In this chapter, we attempt to clarify this concept, with the objective
of explaining its occurrence and utility within the broader framework
of the quantum inverse scattering problem and the properties of the
classical r matrix. However, we begin with some elementary concepts
of classical mechanics [113, 114].

209
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7.2 Hamilton-Jacobi Equation

Let us consider a holonomic system that obeys the canonical equa-
tions of motion:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, i = 1, ..., n. (7.2.1)

The fundamental problem of dynamics is to search for a canonical trans-
formation so that in the transformed variables q̃i, p̃i the equations are

dq̃i
dt

=
∂H̃

∂p̃i
,

dp̃i
dt

= −∂H̃
∂q̃i

, i = 1, ..., n, (7.2.2)

with the function H̃ being identically zero,

H̃ ≡ 0.

Then the system (7.2.2) can be integrated to get

q̃i = αi, p̃i = βi,

where αi and βi are 2n arbitrary constants. Consequently, by inverting
the transformation we can get back (qi, pi) as functions of “t” and
αi, βi’s and the dynamical problem is completely solved. However, the
identification of an appropriate transformation for this purpose is not
always obvious. The clue lies in the fact that the generating function
of the transformation S has to satisfy the equation

∂S

∂t
+H(t, pi, qi) = 0, (7.2.3)

which is nothing but

∂S

∂t
+H(t, qi,

∂S

∂qi
) = 0 (7.2.4)

where use has been made of the fact that pi = ∂S
∂qi

. Equation (7.2.3) is
known as the Hamilton-Jacobi equation of the system. It may be solved
for the generating function, in which the q̃i’s appear as parameters.
Besides (7.2.4), the generating function has to satisfy the condition,

det(
∂2S

∂qi∂q̃k
)ni,k=1 �= 0. (7.2.5)
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Once S has been determined the canonical transformation is obtained
from the following relations:

∂S

∂qi
= pi,

∂S

∂q̃i
= −p̃i, (i = 1, ..., n) (7.2.6)

Let us now consider a special form of the Hamiltonian;

H = G[f1(qi, p1), ....fn(qn, pn)]. (7.2.7)

If the system is a generalized conservative one, then the Hamilton-
Jacobi equation becomes

∂S

∂t
+H(qi,

∂S

∂qi
) = 0 (7.2.8)

because ∂H
∂t = 0. Its solution can be sought in the form,

S = −ht+ V (q1, ...qn, α1, ...αn−1, h), (7.2.9)

where h, α1, ...αn−1 are arbitrary constants. Substituting this in (7.2.4)
we get

H(qi,
∂V

∂qi
) = h. (7.2.10)

For H as given in (7.2.7), this equation becomes

G[f1(q1,
∂V

∂q1
), ...fn(qn,

∂V

∂qn
)] = h. (7.2.11)

Let us set
fi(qi,

∂V

∂qi
) = αi, (i = 1, ...., n) (7.2.12)

so that
h = G(α1, ...αn). (7.2.13)

Solving for ∂V
∂qi

we find

∂V

∂qi
= Fi(qi, αi), (i = 1, ..., n) (7.2.14)

so that,

V =
n∑

i=1

∫
Fi(qi, αi)dqi, (7.2.15)
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whence

S = −G(α1, ..αn)t+
n∑

i=1

∫
Fi(qi, αi)dqi. (7.2.16)

In this case

∂2S

∂qi∂αi
=
∂Fi
∂αi

,
∂2S

∂qi∂αn
= 0, i �= k and (i, k = 1, ..., n). (7.2.17)

Hence the condition det( ∂2S
∂qi∂αn

)ni,k=1 �= 0 reduces to the inequality,

n∏
i=1

∂Fi
∂αi
�= 0. (7.2.18)

Since fi(qi, pi) = αi is equivalent to the equation,

pi = Fi(qi, αi), (7.2.19)

it follows that

∂Fi
∂αi

= (
∂fi
∂pi

)−1 �= 0, (i = 1, ..., n) (7.2.20)

and so condition (7.2.17) holds . Finally one can write

∂S

∂qi
= pi,

∂S

∂αi
= βi, (i = 1, ..., n), (7.2.21)

along with

− ∂G
∂αi

t+
∫

dqi

(∂fi∂pi
)pi=Fi(qi,αi)

= βi, (7.2.22)

so that the system is completely solved by quadrature.

This discussion clearly shows how the system of equations arising
from the Hamilton-Jacobi equation may be explicitly solved. One
should notice a crucial aspect here, which is that the pairs of canonical
variables (pi, qi), can be grouped into functions fi and that there is no
mixing.

Let us now turn our attention to a more general situation. Consider
a Hamiltonian given by

H = gn{...g3{g2[g1(q1, p1), q2, p2]q3, p3}....qn, pn}. (7.2.23)
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Then the equation determining V is as follows:

gn{....g3{g2[g1(q1, p1), q2, p2], q3, p3}...qn, pn} = h, (7.2.24)

so that

gn{....g3{g2[g1(q1,
∂V

∂q1
), q2,

∂V

∂q2
], q3,

∂V

∂q3
}...qn,

∂V

∂qn
} = h. (7.2.25)

To begin with we set

g1

(
q1,

∂V

∂q1

)
= α1,

g2

(
α1, q2,

∂V

∂q2

)
= α2,

................................

gn

(
αn−1, qn,

∂V

∂qn

)
= αn. (7.2.26)

The partial derivatives of V are determined successively from these and
are

∂V

∂q1
= G1(q1, α1),

∂V

∂q2
= G2(q2, α1, α2),

..............................

∂V

∂qn
= Gn(qn, αn−1, αn). (7.2.27)

Consequently, we can write

V =
n∑

k=1

∫
Gk(qk, αk−1, αk)dqk, (7.2.28)

leading to

S = −αnt+
n∑

i=1

∫
Gi(qi, αi−1, αi)dqi. (7.2.29)

We can once again test the criterion (7.2.17) and find that

∂2S

∂qi∂αi
=
∂Gi

∂αi
,

∂2S

∂qi∂αn
= 0, i < k (i, k = 1, ..., n). (7.2.30)
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Thus the required condition reduces to
n∏

i=1

∂Gi

∂αi
�= 0, (7.2.31)

which is always true because the equation gi(αi−1, qi, pi) = αi is equiv-
alent to pi = Gi(qi, αi−1, αi) and hence

∂Gi

∂αi
=
(
∂gi
∂pi

)−1

pi=Gi(qi,αi−1,αi)

�= 0. (7.2.32)

In the sequel we shall need the expressions for the derivative ∂Gi
∂αi−1

,
which can be calculated from (7.2.31) and (7.2.32), namely

∂Gi

∂αi−1
= −

⎛⎝ ∂gi
∂αi−1

∂gi
∂pi

⎞⎠
pi=Gi(qi,αi−1,αi)

. (7.2.33)

Finally one arrives at the equations,∫
dqi

(∂gi∂pi
)pi=Gi(qi,αi−1,αi)

−
∫ (∂gi+1

∂αi
)∗

(∂gi+1

∂pi+1
)∗
dqi+1 = βi, (7.2.34)

and
−t+

∫
dqn

(∂gn∂pn
)pn=Gn(qn,αn−1,αn)

= βn (7.2.35)

where the ∗ in (7.2.34) implies that the partial derivatives are to be
evaluated at pi+1 = Gi+1(qi+1, αi, αi+1).

This example illustrates a general approach for solving a class of dy-
namical problems, whose underlying philosophy is the separation of
dynamical variables of the system.

In the following our main concern will be to understand how this basic
approach must be modified to be applicable to nonlinear integrable
systems, governed by a Lax pair. It ought to be mentioned that the
methods to be discussed are applicable to both classical and quantum
mechanical systems. The initial formulation in this context was due to
Sklyanin [115], who first devised the technique and adapted it to the
case of a classical system possessing a classical r matrix. Furthermore,
it is well known that an integrable system associated with a Lax pair,
is usually bi- or at times even multi-Hamiltonian. This gives rise to an
alternative approach for the separation of variables, which starts from
the multi-Hamiltonian structure and may be used to solve the system
in terms of elliptic integrals or Riemann theta function.



Separation of Variables 215

7.3 Sklyanin’s Method for SoV

It is well known that a discrete integrable system,

qi,t = f(qi, qi+1, ....),

can be written in terms of the Lax pair as

Ψn+1 = LnΨn, Ψn,t = VnΨn,

where Ln and Vn depend on qi, qi+1’s and also on a spectral parameter
u. When the basic dynamical quantities qi are canonical, then it is a
matter of simple computation to prove that

{Ln(u) ⊗, Lm(v)} = [r(u, v), Ln(u)⊗ Ln(v)], (7.3.1)

where r(u, v) is the classical r matrix. On the other hand the mon-
odromy matrix is defined by

T (u) =

←
N∏
n=1

Ln(u). (7.3.2)

Equation (7.3.1) immediately implies that

{T (u) ⊗, T (v)} = [r(u, v), T (u)⊗ T (v)] (7.3.3)

where, for a system with a 2 × 2 Lax operator Ln(u), one usually
represents T (u) as

T (u) =

(
A(u) B(u)
C(u) D(u)

)
. (7.3.4)

If the system is a nonlinear and integrable with D degrees of freedom,
then according to the Liouville-Arnold definition of complete integra-
bility [116], it possesses exactly D independent Hamiltonians Hj com-
muting with respect to the Poisson bracket,

{Hj , Hk} = 0. j, k = 1, ....., D.

We can cite three basic problems associated with such a system. These
are:
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• construction of action-angle variables,

• integration of the equations of motion,

• separation of variables.

As far as integration of the equations is concerned, there exists a
number of well-defined methods such as the inverse scattering formal-
ism, the Riemann-Hilbert approach and also certain algebrogeometric
methods. On the other hand the explicit construction of action-angle
variables is in general a difficult problem, although some breakthroughs
have been made in certain cases.

We concentrate here mainly on the last problem, which involves
searching for D pairs of canonical variables xj , pj , (j = 1, ...D) so that:

{xj , xk} = {pj , pk} = 0, {pj , xk} = δjk (7.3.5)

and D functions φj so that

φj(xj , pj , H1, ......, HD) = 0, (j = 1, ..., D). (7.3.6)

Note that the transformation from the original dynamical variables to
a new set (xj , pj) may involve both coordinate and momenta. Further-
more, a classical system is said to be separable if there exist, variables
in which the Hamilton-Jacobi equation separates. Traditionally this
meant introducing n separation constants so that the Hamilton-Jacobi
equation could be replaced by n equations, each involving one such
constant.

Sklyanin’s method, however, is based on a functional Bethe ansatz
(FBA) approach [117], initially formulated by him for systems with
Lax operators, whose vacuum did not exist in the usual sense.

In general the method of constructing the separation variables is non-
trivial. Certain broad guidelines can, however, be obtained by consid-
ering instead the converse problem. According to Jacobi’s theorem, if
a system is separable then it is integrable, with the integrals of motion
corresponding to the separation constants. Thus, given a separation
of the Hamiltonian, there is a systematic method for constructing the
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integrals of motion.

The procedure for separation of variables may be formulated in two
stages. The first stage consists in searching for variables in which the
equations are separated, while the second step consists in checking that
these variables obey the appropriate commutation relations. In both
these steps a crucial feature is that if ζi is an eigenvalue of T (ui), then
ui and ζi automatically obey the following separated equation:

det (ζi − T (ui)) = 0. (7.3.7)

Suppose the spectral invariants of the matrix T (λ) are defined as the
elementary symmetric polynomials of its eigenvalues:

tν(u) = tr ∧ν T (u), ν = 1, ..., N. (7.3.8)

For example,
t1(u) = tr T (u),

t2(u) =
1
2
{tr 2T (u)− tr T 2(u)},

..................................

tN (u) = detT (u) = d(u).

An important theorem due to Sklyanin asserts that the nonleading co-
efficients of the powers of u of the polynomials tν(u), ν = 1, ..., (N − 1)
form a commutative family (with respect to the previous Poisson struc-
ture) of MN(N − 1)/2 independent Hamiltonians. This theorem is
actually an outcome of the basic theory of classical inverse scattering.
Consequently for a GL(N) system there exist functions A and B so
that the following properties hold:

• A(T ) and B(T ) are algebraic functions of degreeD = MN(N−1)/2
of the elements Tαβ of T (u).

• The variables xj , Pj(j = 1, ...., D) defined by

B(T (xj)) = 0, Pj = A(T (xj))

have the Poisson brackets,

{xj , xk} = {Pj , Pk} = 0, {Pj , xk} = Pjδjk, (7.3.9)
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and they are related to the Hamiltonian (invariants) tν(u) by the rela-
tion,

det(Pj − T (xj)) = 0. (7.3.10)

While it is possible to have a general proof for these assertions, we
shall discuss these issues for specific cases of N = 2 and 3, as otherwise
algebraic complications may overwhelm the inherent physical ideas.
We begin with the N = 2 case. The system has M degrees of freedom.
The spectral invariants are

t(u) = t1(u) = tr T (u), (7.3.11)

d(u) = t2(u) = detT (u), (7.3.12)

with t(u) containing the M integrals of motion. Let us define A(T )
and B(T ) by

A(T ) = T11, B(T ) = T12, (7.3.13)

where xj , Pj are given by (7.3.9). For the polynomial B(u) to have M
zeros, it is necessary that its leading coefficient be nonzero. This can
always be done by means of a similarity transformation QT (u)Q−1,
which neither affects the basic Poisson structure nor the Hamiltonians.
The spectral condition determining Pj is then given by

P 2
j − t(xj)Pj + d(xj) = 0, j = 1, ....,M. (7.3.14)

Now the classical r matrix equation (7.3.1) yields

{A(u), A(v)} = {B(u), B(v)} = 0, (7.3.15)

{A(u), B(v)} =
A(u)B(v)−B(u)A(v)

u− v , (7.3.16)

so upon taking the limit as u→ uα, where uα is a zero of B, we get

{uα, Pβ} = {Pα, Pβ} = 0. (7.3.17)

In addition from (7.3.16) one finds

{A(uα), B(v)} = −A(uα)B(v)
v − uα

, (7.3.18)

so that
lim
v→uβ

{A(uα), B(v)} = − lim
v→uβ

A(uα)B(v)
v − uα

. (7.3.19)
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To proceed further we write B(u) as

B(u) =
N−1∏
α=1

(v − uα). (7.3.20)

Consider next the case N = 3, for which B(v) = (v − u1)(v − u2),
then

lim
v→u2

{A(u1), B(v)} = lim
v→u2

{A(u1), u2(u1 − v) + v(v − u1)},

= lim
v→u2

[{A(u1), u2}(u1 − v) + u2{A(u1), u1} − v{A(u1), u1}] ,

= {A(u1), u2}(u1 − u2),

= −{A(u1), u2}B′(u2). (7.3.21)

This simple derivation can easily be extended to the general case N
where one has

−{A(uα), uβ}
dB(v)
dv
|v=uβ

= −A(uα) lim
v→uβ

B(v)
v − uα

,

leading thereby to

{A(uα), uβ} =
A(uα)
B′(uβ)

lim
v→uβ

B(v)
v − uα

. (7.3.22)

Thus if α �= β, then the right-hand side is zero. Otherwise for α = β it
is simply A(uα). Finally one obtains

{A(uα), uβ} = A(uα)δαβ . (7.3.23)

Now as
{A(u), B(v)} =

2u[B(u)−B(v)]
(u− v)(u+ v)

, (7.3.24)

one can obtain similarly,

{A(uα), uα} = 1. (7.3.25)

Let us next consider the case, where the Lax operator is a 3 × 3
matrix. The polynomial T (u) is now written as

T (u) =

⎛⎜⎝T11(u) T12(u) T13(u)
T21(u) T22(u) T23(u)
T31(u) T32(u) T33(u)

⎞⎟⎠ . (7.3.26)
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The system has D = 3M degrees of freedom. The spectral invariants
are

t1(u) = tr T (u) = λ1 + λ2 + λ3,

t2(u) =
1
2

(
tr 2T (u)− tr T 2(u)

)
=
∑

λiλj ,

d(u) = detT (u) = λ1λ2λ3. (7.3.27)

The characteristic polynomial in this case is

det(λ− T (u)) = λ3 − t1λ2 + t2λ− d(u). (7.3.28)

It is convenient to introduce the matrix,

Q(T ) ≡ T ∧ T,

=

⎛⎜⎝T22T33 − T23T32 T23T31 − T21T33 T21T32 − T22T31

T13T32 − T12T33 T11T33 − T13T31 T12T31 − T11T32

T12T23 − T13T22 T13T21 − T11T23 T11T22 − T12T21

⎞⎟⎠ , (7.3.29)

whose elements are the algebraic adjuncts of Tαβ . The Poisson brackets
of T and Q can be calculated from (7.3.1) to yield

{T 1(u), Q2(v)} = − 1
u− v [P

t2 , T 1(u)⊗Q2(v)]. (7.3.30)

Similarly we also find

{Q1(u), Q2(v)} =
1

u− v [P,Q
1(u)Q2(v)]. (7.3.31)

In component form one can express the above equations as

[Tab(u), Qcd(v)] =
1

u− v

3∑
r=1

(−δacTrb(u)Qrd(v) + Tar(u)Qcr(v)δbd) ,

(7.3.32)

{Qα1β1(u), Qα2β2(v)} =
1

u− v [Qα2β1Qα1β2(v) −Qα1β2(u)Qα2β1(v)];

(7.3.33)
the subscript t2 in (7.3.30) denotes transposition with respect to the
second space.

The preceding 2 × 2 case suggests that we define xj as the zeros of
some polynomial B(u) of degree 3M with the corresponding momenta
Pj , related to xj by the secular equation,

P 3
j − t1(xj)P 2

j + t2(xj)Pj − d(xj) = 0. (7.3.34)
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It follows from (7.3.28) that Pj is an eigenvalue of the matrix T (xj).
Hence there should be a transformation,

T (xj) −→ T̃ (xj) = KjT (xj)K−1
j , ∀ j, (7.3.35)

so that the matrix T̃ (xj) is block triangular so that

T̃12(xj) = T̃13(xj) = 0, and Pj = T̃11(xj). (7.3.36)

The problem is therefore reduced to a determination of the matrix Kj

and the polynomial B(u). Let us consider K(k) to be as follows:

K(k) =

⎛⎜⎝1 k 0
0 1 0
0 0 1

⎞⎟⎠ . (7.3.37)

Note that
T̃ (u, k) = K(k)T (u)K−1(k) (7.3.38)

depends on two parameters u and k. Hence we can use the conditions
given in (7.3.36), to obtain two algebraic equations:

T̃12(x, k) = T12(x) + kT22(x)− kT11(x)− k2T21 = 0, (7.3.39)

T̃13(x, k) = T13(x) + kT23(x) = 0, (7.3.40)

for the two variables x and k. Eliminating k between these two equa-
tions gives

T23(x)U31(x)− T13(x)U32(x) = 0. (7.3.41)

Now as k = −T13(x)/T23(x), substituting this in the definition of Pj
given by Pj = T̃11(x) we get

P = T11(x) + kT21(x) = −U32(x)
T23(x)

, (7.3.42)

giving rise thereby to 3M pairs of variables xj , Pj .

It now remains to check their Poisson brackets. Let

A(T ) = −Q32(T )
T23

, B(T ) = T23Q31(T )− T13Q32(T ). (7.3.43)

Setting
A(u) = A(T (11)), B(u) = B(T (11)), (7.3.44)
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one immediately obtains

{A(u), A(v)} = {B(u), B(v)} = 0, (7.3.45)

along with

{A(u), B(v)} =
1

u− v

(
A(u)B(v)−B(u)A(v)

T 2
23(v)
T 2

23(u)

)
, (7.3.46)

that upon simplification leads to the desired result.

In this section we have outlined the basic procedure for separation of
variables, though certain features still remain to be clarified such as the
precise method of calculation for identifying the separation variables
in a specific situation. With this in mind we discuss some concrete
examples which will help the reader get a clearer idea of the procedure
outlined above.

7.4 Goryachev-Chaplygin Top

A particularly important nonlinear dynamical systems studied within
the preceding framework is the Goryachev-Chaplygin (GC) top. The
treatment to be given below is due to Sklyanin [118] and exemplifies
the intricacies of the procedure involved. The GC top is a Hamiltonian
system with a six-dimensional phase space, described by the dynamical
variables xα, Jα(α = 1, 2, 3), and generates the following Lie algebra:

{Jα, Jβ} = εαβγJγ , {Jα, xβ} = εαβγxγ , {xα, xβ} = 0. (7.4.1)

There are two Casimir invariants,

ρ = x2
1 + x2

2 + x2
3 = 1, σ = x1J1 + x2J2 + x3J3 = 0, (7.4.2)

so that the manifold can be reduced to four dimensions. The GC top
is governed by the following Hamiltonian:

H =
1
2
(J2

1 + J2
2 + 4J2

3 )− bx1 =
1
2
(J2 + 3J2

3 )− bx1, (7.4.3)
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where J2 = J2
1 + J2

2 + J2
3 and b is a parameter. It was shown by

Chaplygin [124] that the system has another integral of motion,

G = 2J3(J2
1 + J2

2 ) + 2bx3J1, (7.4.4)

which Poisson commutes with (7.4.2) and (7.4.3).

For analysis of the system, we have to first search for an appropriate
Lax operator L and a classical r matrix. The Lax operator will obvi-
ously depend on an auxiliary parameter u referred to as the spectral
parameter of the Lax equation.

Our analysis will be based upon the relation,

{L(u) ⊗, L(v)} = [r(u− v), L(u)⊗ L(v)], (7.4.5)

whose immediate implication is that the transfer matrix t(u) = tr L(u)
commutes for different values of the spectral parameter, i.e.,

{t(u), t(v)} = 0. (7.4.6)

Sklyanin in [119] proposed a modified form of the Lax operator, by
enlarging the phase space through addition of variables p and q with
the following Poisson brackets:

{p, q} = 1 {p, Jα} = {q, Jα} = {p, xα} = {q, xα} = 0. (7.4.7)

The Lax operator is of the form,

L(u) =

(
A B
C D

)
, (7.4.8)

where
A(u) = (u+ p+ 2J3)K(u) + b(x− u− x3J−),

B(u) = be2iq[(x− u− x3J+)(u+ p+ 2J3)− bx2
3],

C(u) = e−2iqK(u),

D(u) = b(x+ u− x3J+),

K(u) = u2 − 2J3u− (J2 − J2
3 ) = (u− u1)(u− u2), (7.4.9)
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where x± = x1± ix2 and J± = J1± iJ2. One can easily see by a simple
calculation that

r(u) =
2i
u
P where P =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ . (7.4.10)

In the present case,

t(u) = A(u) +D(u) = u3 + pu2 − 2Hpu−Gp, (7.4.11)

where Hp and Gp are the Casimir invariants introduced earlier. Here
the suffix “p” has been used to remind the reader that an additional
variable p is also involved. Note that due to the Poisson brackets
(7.4.6), p is an integral of motion and hence can be considered as a
parameter. Furthermore, u1 and u2 are the roots of the quadratic
polynomial C(u):

C(un) = 0, n = 1, 2. (7.4.12)

Next defining λ± as follows:

λ−n = A(un), λ+
n = D(un) n = 1, 2 (7.4.13)

and using the values of ρ and σ defined earlier, we see that

detL(u) = A(u)D(u)−B(u)C(u) = d(u)− b2u2, (7.4.14)

so that
λ−n λ

+
n = A(un)D(un) = d(un)− b2u2

n. (7.4.15)

One can now compute the Poisson brackets of (p, q) and (λ±n , un) to get

{p, un} = {p, λ±n } = {q, un} = {q, λ±n } = 0,

{un, um} = 0, {λ±m, λ±n } = 0, {λ±m, un} = ±2iλ±mδmn,

{λ+
m, λ

−
n } = 2id′(un)δmn = 4ib2umδmn; (7.4.16)

the method is similar to that discussed in the previous section. For
example, to calculate {λ±m, un} we have

{λ+
m, un} = {D(um), un} = D′(um){um, un}+ {D(u), un}|u=um ,

= − 1
C ′(um)

{D(u), C(u)}|u=um
v=un
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= − 2i
C ′(un)

D(u)C(v)− C(u)D(v)
u− v |u=um

v=un
,

= 2iλ+
mδmn. (7.4.17)

The variables p, q, un and λ±n constitute a complete family of dynamical
variables, consequently every function on the phase space A,B, etc. is
expressible in terms of them. In fact these terms can be uniquely
specified by their values at un and asymptotic behaviours:

C(u) −→ e−2iqu2 +O(u),

A(u) −→ u3 + pu2 +O(u),

and D(u) −→ O(u), (7.4.18)

as u → ∞. Using Lagrange’s interpolation formula we can express
C(u) as follows:

C(u) = e−2iq(u− u1)(u− u2), (7.4.19)

and A(u) and D(u) as

A(u) = (u+ p+ u1 + u2)(u− u1)(u− u2) +
u− u2

u1 − u2
λ−1 +

u− u1

u2 − u1
λ−2 ,

(7.4.20)

D(u) =
u− u2

u1 − u2
λ+

1 +
u− u1

u2 − u1
λ+

2 . (7.4.21)

The expression for B(u) can be obtained with the help of (7.4.9) and
is written as

B(u) = e2iq(u+ p+ u1 + u2)
[
u− u2

u1 − u2
λ+

1 +
u− u1

u2 − u1
λ+

2

]
+

+
e2iq

u1 − u2

[
2b2u1u2 − λ+

1 λ
−
2 − λ−1 λ+

2

]
. (7.4.22)

A comparison of (7.4.22) and (7.4.9) shows that

u1 + u2 = 2J3, u1u2 = J2
3 − J2

λ±1 − λ±2
u1 − u2

= bx±,
u2λ

±
1 − u1λ

±
2

u1 − u2
= bx2J± (7.4.23)

along with the following:

2H = u2
1 + u1u2 − u2

2 − (u1 − u2)−1(λ+
1 + λ−1 − λ+

2 − λ−2 ), (7.4.24)
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G = −u1u2(u1 + u2)− (u1 − u2)−1[u1(λ+
2 + λ− 2−)− u2(λ+

1 + λ−1 )].
(7.4.25)

Moreover, from the conditions x∗1 = x−, J∗
+ = J−, we obtain the reality

condition,
λ∗±n = λ∓n . (7.4.26)

Finally λ±n can be expressed as

λ±n = bune
±2iwn , (7.4.27)

with vn being the momenta canonically conjugate to the coordinates
un so that

{v1, v2} = 0, {um, un} = δmn. (7.4.28)

Thus in this manner a set of canonically conjugate variables may be
identified, which are totally separated.

7.5 Quantum Case and the Role of Lie Algebra

The basic technique for separation of variables as, outlined thus far,
is valid even in the quantum version of integrable models, though the
details of the computation procedure are somewhat different. An im-
portant point here is that, at present there exists another variation of
the classical equation (7.3.1), given by

{L(u)⊗ L(v)} = [r(u, v), L(u)⊗ I + I ⊗ L(v)]. (7.5.1)

This in turn gives rise to

{T (u)⊗, T (v)} = [r(u, v), T (u)⊗ I + I ⊗ T (v)] (7.5.2)

While (7.3.1) leads to a quadratic algebra, these equations lead to a
linear one. An important example is that of the Gaudin model [120].
On the other hand there are systems for which (7.5.1) or (7.3.1) have
to be extended to the (r − s) structure. However, the basic idea of
separation of variables still holds in this case.

In this section we discuss these issues and show how the quantum
case can be treated. In this respect an important role is played by the
Lie algebra realization of the basic functions on which the polynomials
A,B, etc. are constructed.
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7.5.1 Gaudin model

Gaudin’s model can be considered as a limiting case of integrable
quantum chains solvable in the framework of the quantum inverse scat-
tering method. It conforms to the linear relation given in (7.5.1). We
consider an inhomogeneous SU(2) spin chain on N nodes with quasi-
periodic boundary conditions, defined by the spin variables Sα

n (α =
1, 2, 3) and n = 1, 2, ..., N and satisfying the following relations:

3∑
α=1

(Sα
n )2 = �n(�n + 1), (7.5.3)

[Sα
m, S

β
n ] = iδmn

3∑
γ=1

εαβγSγ
n. (7.5.4)

The Lax operator for the model under consideration is given by [121]

Ln(u) = I +
η

u

3∑
α=1

Sα
nσ

α =
1
u

(
u+ ηS3

n ηS−
n

ηS+
n u− ηS3

n

)
, (7.5.5)

where
S±
n = S1

n ± S2
n.

The corresponding monodromy matrix is

T (u) = eηgσ
3
L1(u− δ1)....LN (u− δN ), (7.5.6)

and satisfies the quantum commutation relation,

R12(u1 − u2)T 1(u1)T 2(u2) = T 2(u2)T 1(u1)R12(u1 − u2). (7.5.7)

Here R12(u) stands for the quantum R matrix and is given by

R12(u) = uI + ηP12. (7.5.8)

The Lax operator for the Gaudin model from (7.5.5), in the limit as
η → 0 and is given by

Ln(u) = I + ηLn(u), (7.5.9)

with

Ln(u) =
1
u

3∑
α=1

Sα
nσ

α. (7.5.10)
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In a similar manner we have

T (u) = 1 + ητ(u) + ......., (7.5.11)

where

τ(u) = gσ3 +
N∑
n=1

L(u− δn) =

(
A B
C D

)
(7.5.12)

and
1
u
R12(u) = I − ηr12(u), r12(u) = −1

u
P12. (7.5.13)

τ(u) for the Gaudin model satisfies the algebra,

[τ1(u1), τ2(u2)] = [r(u1 − u2), τ1(u1) + τ2(u2)]. (7.5.14)

The integrals of motion are obtained from

I(u) =
1
2
tr (τ2(u)), (7.5.15)

[I(u), I(v)] = 0 forall u, v. (7.5.16)

In explicit form, I(u) is given by

I(u) = g2 +
N∑
n=1

Hn

u− δn
+

N∑
n=1

�n(�n + 1)
(u− δn)2

. (7.5.17)

The N independent Hamiltonians are quadratic in the spin variables
and are of the form,

Hn = 2gS3
n +

N∑
m�=n

3∑
α=1

2Sα
nS

α
m

δn − δm
. (7.5.18)

The basic problem of determining the joint spectrum of Hn was solved
by Gaudin using the coordinate Bethe ansatz [122]. One essentially
seeks, the eigenvectors of I(u) in the form,

|v1, .....vM 〉 = B(v1)....B(vM )|0〉, (7.5.19)

with the vacuum being defined by

C(v)|0〉 = 0 ∀v. (7.5.20)
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The condition for (7.5.19) to be an eigenvector is

Λ(vm) =
∑
k

1
vm − vk

m = 1, ....,M, (7.5.21)

where Λ(u) is an eigenvalue of the operator A(u) of τ(u) acting on |0〉,
so that

A(u)|0〉 = Λ(u)|0〉, Λ(u) = g +
N∑
n=1

�n
u− δn

. (7.5.22)

The concept of separation of variables can be applied to this problem,
using the functional Bethe ansatz. It involves finding a realization of
the representation of τ(u), with Lie algebra given by (7.5.4), in a suit-
able function space, in which the generating function I(u) has a form
that allows for identification of the separable variables.

With this in mind, we note that the element B(u) of τ(u), is a rational
function with N simple poles at u = δn and (N − 1) zeros and forms a
commutative family,

[B(u1), B(u2)] = 0, ∀ u1, u2. (7.5.23)

One can then introduce mutually commuting operators x, yj , (j =
1, ...., (N − 1)) through the asymptotics:

B(u) = u−1x+O(u−2), as u→∞,

and
B(yj) = 0, j = 1, ...., (N − 1).

A simple realization of B(u) is as follows:

B(u) = x
(u− y1)....(u− yN−1)
(u− δ1)......(u− δN )

, (7.5.24)

in the space of functions on the joint spectrum of the operators x, {yj}(j =
1, ..., (N − 1)). One needs to obtain information about the following:

• spectral analysis of x, {yj}

• description of the space of functions on the joint spectrum of x, {yj}
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• realization in an {x, y} representation of the operators τ(u)

To this end we consider the case N = 1. Let � ∈ {1/2, 1, 3/2, 2, ....}
and C(x) be the ring of polynomials with complex coefficients and
{x2�+1} be the ideal in C(x). Then the operators,

S3 = −x d

dx
+ �, S− = x, and S+ = −x d2

dx2
+ 2�

d

dx
, (7.5.25)

are well defined on the ring and realize a representation of sl(2). This
follows from the observation that

S+xm = m(2�+ 1−m)xm−1,

and that the space K(�)(dim = 2�+1) is generated by the action of S−

on the highest weight vector q(x) = 1 ∈ K�.

Now consider a representation of τ(u). We realise the operators Sα
n by

the differential operators (7.5.25) with respect to variables {xn}n=1,...N

in the space K = ⊗N
n=1K

(�n). This is nothing but the ring,

K = C[x1, ....xn]/X, (7.5.26)

of the ring C[x1, ...xN ] of the polynomials {xn}n=1,...N by the ideal X,
where

X = (x2�1+1
1 , x2�2+1

2 , ....x2�N+1
N ).

Let us now introduce new variables: x, {yj} as follows

xn ≡ S−
n = Resu=δnB(u) = x

∏N−1
j=1 (δn − yj)∏N
m=1(δn − δm)

. (7.5.27)

It is possible to get a description of the ring K in terms of variables
x, {yj} as follows. Let S̃[x, y1, ...yN−1] be the ring of polynomials in
x, {yj}N−1

1 of the form,

M∑
m=0

xmPm(y1, ....yN−1) ∈ S̃[x, y1, ....yN−1], (7.5.28)

where the polynomials Pm, are symmetric polynomials in {yj} of degree
≤ m in each yj . We consider the ideals,

Tn ⊂ S̃[x, y1, .....yN−1],
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with

Tn = (x2�n+1
N−1∏
j=1

(yj − δn)2�n+1), (7.5.29)

T = (T1, ...TN ). It can be proved [123], that the change of variables
{xn}Nn=1 to x, {yj}N−1

j=1 induces an isomorphism and our goal is to make
this transformation effective. This change of variable can be effected
algebraically in a rather complicated and lengthy manner. However,
there exists an elegant procedure due to Sklyanin that we shall follow
[117]. If τ(u) is of the form, (7.5.12) then

(i) A(u) is a rational function of the parameter u with N simple poles
at u = δn,

(ii) A(u) = g + u−1〈S3〉+ ...., where

〈S3〉 = x
∂

∂x
+ 〈�〉 = −x ∂

∂x
+

N∑
n=1

�n, (7.5.30)

(iii) and A(u)|u=yj = ∂
∂yj

+ Λ(yj), where

Λ(u) = g +
N∑
n=1

�

u− δn
. (7.5.31)

Here Λ(yj) is to be interpreted as the substitution of yj in Λ(u) from
the left. This is necessary because we are dealing with operators.

Property (i) is obvious. With regard to (ii) we use the definition of
τ(u) as a product of Ln(u− δn). Since

〈S3〉 =
∑
n

S3
n = 〈�〉 −

N∑
n=1

xn
∂

∂xn
, (7.5.32)

therefore from (7.5.27), ∂xn
∂x = xn

x , and we have

x
∂

∂x
=
∑
n

xn
∂

∂xn
.

With regard to the last property, we observe that

A(u)|u=yj =

[
g −

N∑
n=1

S3
n

u− δn

]
u=yj

[
g −

N∑
n=1

�n − xn ∂
∂xn

u− δn

]
u=yj

,
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= Λ(yj)−
N∑
n=1

xn
yj − δn

∂

∂xn
. (7.5.33)

Upon using the fact that

∂

∂yj
=

N∑
n=1

xn
yj − δn

∂

∂xn
,

we get the result.

The generator of the conserved quantities in the quantum case Î(u)
has similar properties, which are as follows:

(i) Î(u) is a rational function of u with N point poles at u = δn and
principal parts τ(u) ∼ �n(�n + 1)(u− δn)−2u

(ii) as u→∞,

Î(u) = g2 + u−12g〈S3〉+ ....

(iii)
[
Î(u)

]
u=yj

= ∂2

∂y2
j
− 2Λ(yj) + Λ2(yj)− Λ′(yj).

The expression for Î(u) gives a clear indication of the first two prop-
erties. For the third property we observe that

Î(u) =
1
2
tr[τ2(u)] =

1
2
[A2(u) +D2(u) +B(u)C(u) + C(u)B(u)].

As trτ [(u)] = 0 so A(u) = −D(u) and it follows that

[B(u), C(v)] = − 1
u− v [D(u)−A(u) +A(v)−D(v)],

which in the limit v → u becomes the equation,

[B(u), C(u)] = 2A′(u). (7.5.34)

Thus substituting we obtain

Î(u) = A2(u)−A′(u) +B(u)C(u). (7.5.35)

Furthermore, one can show that

[A2(u)−A′(u)]u=yj = A2(yj). (7.5.36)
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Squaring the expression defining A(u) at u = yj , i.e.,

A(u)|u=yj = A0(yj) +Ax(yj)
∂

∂x
+

N−1∑
k=1

Ak(yj)
∂

∂yj
,

we get

A2(u)|u=yj =
∂2

∂y2
j

− 2Λ(yj)
∂

∂yj
+ Λ2(yj)− [

∂

∂yj
A(u)]u=yj , (7.5.37)

and hence the desired result.

The stage is now set for an effective analysis of separation of variables.
The eigenvectors of the algebraic Bethe ansatz is of the form,

|v1, v2, ...vM 〉 = B(v1)....B(vM )|0〉,

with the vacuum defined by

C(v)|0〉 = 0 ∀ v.

For |v1, v2, ...vM 〉 to be an eigenvector of Î(u) ∀u, the parameters vm
should satisfy

Λ(vm) =
∑
k

1
vm − vk

, m = 1, ...,M. (7.5.38)

Here Λ(u) is the eigenvalue of A(u) acting on |0〉, that is

A(u)|0〉 = Λ(u)|0〉, Λ(u) = g +
N∑
n=1

�n
u− δn

.

The corresponding eigenvalue i(u) of Î(u) is then given by

i(u) = (χ(u)− Λ(u))2 +
d

du
(χ(u)− Λ(u)) , (7.5.39)

with

χ(u)
M∑

m=1

1
u− vm

=
q′(u)
q(u)

,

q(u) =
M∏

m=1

(u− vm).
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Note that q(u) satisfies the Lamé equation

q′′ − 2Λq′ + (λ2 − Λ′)q = iq, (7.5.40)

which in this case is of the form,

q′′(u)− 2

(
g +

∑
n

�n
u− δn

)
q′(u) +

(∑
n

an
u− δ

)
q = 0, (7.5.41)

where

an = −Hn + 2�n

⎛⎝g +
∑
n�=m

�m
δn − δm

⎞⎠ .
The above analysis enables us to ascertain that the eigenvector must
be of the form,

|v1, .......vM 〉 = xM
N−1∏
j=1

q(yj), (7.5.42)

where the polynomials q(yj) are solutions of the equation (7.5.40). A
more rigorous approach was adopted in the analysis of Sklyanin by
considering the space of x, {yj} as a space of jets, which requires further
technical modifications in the formulation. We shall not discuss the
finer points here.

7.5.2 Quantum DST model

To describe how the technique of the separation of variables can be
applied to a quantum mechanical problem involving a linear r matrix
algebra, let us go back to the discrete self-trapping dimer problem,
which was discussed in the context of the algebraic Bethe ansatz in
Chapter 5. It will be recalled that we mentioned there that the same
problem could also be associated with a linear r matrix relation, which
was also valid for the corresponding monodromy operator. To explain
how the separation technique works in such a situation, we consider a
new Lax operator for the quantum DST dimer, which is equivalent to
the two-site hyperbolic Gaudin magnet [125]. As for the appropriate
space of the quantum states, we shall take it to be the representation
space of the direct sum of the SU(1, 1) Lie algebra with generators
Sα(α = 1, 2) satisfying

[Si
α, S

j
β] = −iδαβεjklglmS

m
α , g = diag (1,−1,−1). (7.5.43)
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The norm of the vector �S is

S2
α = (Sα, Sα) = (S1

α)
2 − (S2

α)
2 − (S3

α)
2, (7.5.44)

with (Sα, Sβ) = S1
αS

1
β − S2

αS
2
β − S3

αS
3
β. (7.5.45)

In terms of these, the Lax operator assumes the form,

L(u) =

(
A(u) B(u)
C(u) D(u)

)
=

S1

u− a +
S2

u− b −
1
2

⎛⎜⎝1
0
0

⎞⎟⎠ . (7.5.46)

It is then easy to check that

[Lj(u), Lk(v)] =
iεjkl
u− v glm[Lm(u)− Lm(v)], (7.5.47)

where j, k, l,m = 1, 2, 3, or in matrix form,

[L1(u), L2(v)] = [r(u− v), L1(u) + L2(v)]. (7.5.48)

Here r(u) = P
u with P being the permutation matrix given by

P =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ .
We now define the quantum determinant of the L operator as

detL(u) = −L2(u) = −A2(u)− 1
2
[B(u), C(u)]+, (7.5.49)

where [, ]+ represents the anticommutator. One can now easily verify
that

[L2(u), L2(v)] = 0, (7.5.50)

thereby implying that L2(u) is the generating function of the integrals
of motion:

L2(u) =
S2

1

(u− a)2 +
S2

2

(u− b)2 +
H1

u− a +
H2

u− b +
1
4
, (7.5.51)

where

H1 =
2

a− b(
�S1.�S2)− S1

1 , and H2 =
2

b− a(
�S1.�S2)− S1

2 . (7.5.52)
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Note that the Lax operator in (7.5.46) does not possess a vacuum due
to the c number term 1/2(1, 0, 0)t. To proceed with separation of vari-
ables, one utilizes the zeros of the operator equation B(u) = 0, which
are denoted by uj . At u = uj the L operator becomes triangular:

L(uj) =

(
A(uj) 0
� A(uj)

)
, (7.5.53)

from which we observe that ivj ≡ A(uj), j = 1, 2...., n are the operator
eigenvalues of L(u). Our aim is to solve the spectral problem for the
generating function of the integrals of motion, which in this case are
given by the operator determinant −L2(u) = detL(u). As the determi-
nant of L(u) commutes with the substitution u → uj , we can express
(7.5.49) in terms of uj and vj as

L2(uj) = −v2
j , j = 1, ...., n. (7.5.54)

Now the linear r matrix algebra can be used to prove that

[vj , u− k] = −iδjk, [uj , uk] = [vj , vk] = 0, (7.5.55)

showing that uj , vj are canonical operators. This enables us to separate
the eigenvalue problem:

L2(u)Ψ = t(u)Ψ (7.5.56)

into a set of one-dimensional problems:

−v2
i ψi(uu) = t(ui)ψi(ui), (7.5.57)

with Ψ =
∏n

i=1 ψi(ui). Note that here

t(u) = − 3
16

[
1

(u− a)2 +
1

(u− b)2
]
+

H1

u− a +
H2

u− b +
1
4
. (7.5.58)

Let us now define

S1
α =

1
2
(p2

α + x2
α), S2

α =
1
2
(p2

α − x2
α), S3

α =
1
4
[pα, xα]+, (7.5.59)

with

[pα, xβ] = −iδαβ , [pα, pβ] = [xα, xβ] = 0, α, β = 1, 2. (7.5.60)
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Then the condition B(u) = 0 is equivalent to −L1(u) + L2(u) = 0,
which leads to the condition

x2
1

u− a +
x2

2

u− b = 1, (7.5.61)

and whose roots u1, u2 satisfy

u1 + u2 = a+ b+ x2
1 + x2

2, u1u2 = ab+ bx2
1 + ax2

2.

Incidentally (7.5.61) can also be written as

Θ(u) =
x2

1

u− a +
x2

2

u− b − 1 = −(u− u1)(u− u2)
(u− a)(u− b) = 0 (7.5.62)

so that upon taking the residues at u = a, b we get

x2
1 =

(u1 − a)(u2 − a)
b− a , x2

2 =
(u1 − b)(u2 − b)

a− b . (7.5.63)

For each such uj we define an additional variable vj (by substituting
from the left):

vj = −A(uj) =
1

4(uj − a)
[x1, p1]+ +

1
4(uj − b)

[x2, p2]. (7.5.64)

The general forms of A(u), B(u) are then given by

B(u) =
1
2
− S1

1 − S2
1

u− a − S1
2 − S2

2

u− b =
1
2
(u− u1)(u− u2)
(u− a)(u− b) , (7.5.65)

A(u) =
i

4(u− a) [p1, x1]+ +
i

4(u− b) [p2, x2]+

= −2iB(u)
[

1
u− u2

D2v2 +
1

u− u1
D1v1

]
, (7.5.66)

where

D1 =
(u1 − a)(u1 − b)

u1 − u2
, D2 =

(u2 − a)(u2 − b)
u2 − u1

. (7.5.67)

Note that the meromorphic operator-valued function A(u) is obtained
by interpolation with the data A(uj) = ivj , while B(uj) is obtained
from the definition of uj . Equating the residues at u = a, b one obtains

1
4
[pα, xα]+ = −x2

α

(
1

yα − u2
D2v2 +

1
yα − u1

D1v1

)
, (7.5.68)
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where yα = a, b.

A crucial property of the operators uj and vj is that of their conju-
gation. One can show that

u�j = uj , Djvj = v�jDj (7.5.69)

so that vj ’s are not self-adjoint. However, if we construct the operator
ωj in the following manner:

ωj =
√
Djvj

1√
Dj

, vj =
1√
Dj

ωj
√
Dj (7.5.70)

then it is found to be self-adjoint. Furthermore, ωj , uj are also canon-
ical. Substituting u = uj in (7.5.58) we find that

−v2
j = − 3

16

[
1

(uj − a)2
+

1
(uj − b)2

]
+

H1

uj − a
+

H2

uj − b
+

1
4
, (7.5.71)

j = 1, 2. Operating on Ψ which is the common eigenfunction of H1

and H2, we therefore obtain

v2
jΨ + t(uj)ψ = 0,

which is also equivalent to

ω2
j

√
DjΨ + t(uj)

√
Djψ = 0. (7.5.72)

Let us now demand that Ψ be factorized in the following form:

Ψ =
1

4
√
D1D2

exp[(−1
2
)(u1 + u2)]Φ, with Φ = φ1(u1)φ2(u2).

(7.5.73)
Here the factor (D1D2)

1
4 arises from the Jacobian of the transformation

{xj} → {uj}. Finally one gets the following equation for Φ:

−Φ′′(u)+
(
1− 1

2(u− a) −
1

2(u− b)

)
Φ′(u)+

(
H̃1

u− a +
H̃2

u− b

)
Φ(u) = 0.

(7.5.74)
This equation is of the confluent Heun’s type and is well documented
in the literature. Thus, we have shown how the techniques of the
separation of variables can be applied to a quantum system governed
by a linear r matrix structure.
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7.6 Bi-Hamiltonian Structure and SoV

It is well known that almost all integrable systems possess more than
one Hamiltonian structure. This observation was first made by Magri
[126]. Several interesting properties have been deduced from this ob-
servation, which in itself is remarkable. Besides, a number of methods
have also been developed for deducing the bi-Hamiltonian structure
itself.

We begin by describing certain standard features of integrable sys-
tems possessing a bi-Hamiltonian structure. To this end, we introduce
certain essential terminology.

Let M be a differential manifold, TM and T �M its tangent and
cotangent bundles, respectively, and suppose θ0 and θ1 : T �M → TM
are two compatible Poisson tensors on M . A vector field X is said to
be bi-Hamiltonian (BH) with respect to θ0 and θ1 if there exist two
functions H and F ∈ C∞(M) so that

X = θ0dH = θ1dF, (7.6.1)

where dF denotes the differential of F , which is ∇F for finite systems
and the variational derivative δF for field systems. If θ0 is invertible
then Φ = θ1θ

−1
0 is a Nijenhuis tensor or hereditary operator, which

maps a BH vector field to another BH vector field and guarantees the
Poisson commutativity of the integrals of motion.

Unfortunately, in many situations θ0 and θ1 are not invertible oper-
ators, and sometimes they may satisfy a weaker form of the BH con-
dition, known as the quasi bi-Hamiltonian condition (qBH). A vector
field is said to be qBH with respect to two Poisson tensors θ0 and θ1,
if there exist three smooth functions H,F and ρ so that

X = θ0∇F =
1
ρ
θ1∇F. (7.6.2)

The function ρ is known as an integrating factor. On a 2n-dimensional
symplectic manifold M , let q = (q1, ...qn), p = (p1, ...pn) be a set of

canonical coordinates, and θ0 =

(
0 I
−I 0

)
the canonical Poisson matrix.

As θ0 and θ1 are compatible and invertible, the Nijenhuis tensor Φ =
θ1θ

−1
0 is maximal and has n distinct eigenvalues µ = (µ1, ....µn). In the
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vicinity of a regular point, where the eigenvalues are distinct, one can
always find a canonical transformation (q, p)→ (µ, ν) so that θ1 and Φ
have the form:

θ1 =

(
0 Λ1

−Λ1 0

)
, Φ =

(
Λ1 0
0 Λ1

)
(7.6.3)

Λ1 = diag(µ1, ....µn). (7.6.4)

A qBH vector field is said to be Pfaffian, if an integrating factor ρ in
the Nijenhuis coordinates is expressible in the form:

ρ =
n∏

i=1

µi. (7.6.5)

One can then show that the corresponding Hamilton-Jacobi equation
is separable, by verifying the Levi-Civita conditions. We will illustrate
these observations with the help of some constrained flows of integrable
systems analysed initially by Zeng and Ma [127].

7.6.1 Jaulent-Miodek spectral problem

Consider the Jaulent-Miodek (JM) spectral problem:

Ψx = UΨ, U =

(
0 1

λ2 − u1λ− u0 0

)
, Ψ =

(
ψ1

Ψ2

)
. (7.6.6)

The time part of the JM problem may be written as

V =
∞∑
i=0

Viλ
−1, Vi =

(
ai bi
ci −ai

)
. (7.6.7)

From the adjoint representation we have

Vx = [U, V ] , (7.6.8)

so that the coefficients ai, ci, etc. can be obtained in terms of bi. The
recursion relation for bi is(

bk+2

bk+1

)
= L

(
bk+1

bk

)
, (7.6.9)
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where

L =

(
u1 − 1

2D
−1u1x

1
4D

2 + u0 − 1
2D

−1u0x

1 0

)
. (7.6.10)

Consequently, the JM hierarchy can be written in the following manner:

Utn =

(
u1

u0

)
tn

= J

(
bn+2

bn+1

)
= J

δHn

δu
, (7.6.11)

where

J =

(
0 2D

2D −u1x − 2u1D

)
, (7.6.12)

Hn =
1
n
(2bn+3 − u1bn+2). (7.6.13)

Under the zero boundary conditions we have

δλ

δu
=

(
λψ2

1

ψ2
1

)
, L

δλ

δu
= λ

δλ

δu
. (7.6.14)

The constrained flow consists of the equations obtained from the spec-
tral problem (7.6.6) for N distinct λj and the restriction of the varia-
tional derivatives for conserved quantities Hl and λj :

ψ1x = ψ2, ψ2x = Λ2ψ1 − u1Λψ1 − u0ψ1, (7.6.15)

δHl

δu
− 1

2

N∑
j=1

δλj
δu

=

(
bl+2

bl+1

)
− 1

2

(
〈λψ1, ψ1〉
〈ψ1, ψ1〉

)
= 0, (7.6.16)

where 〈., .〉 denotes the inner product in RN .

For l = 4 we get as a result,

H4 =
7

128
u5

1 +
5
16
u3

1u0 −
5
32
u2

1xu1 +
3
8
u2

0u1 −
1
8
u1xu0x. (7.6.17)

Introducing the Jacobi coordinates,

q1 = u1, q2 = u0,

p1 =
δH4

δu1x
= − 5

16
u1u1x −

1
8
u0x, p2 =

δH4

δu0x
= −1

8
u1x, (7.6.18)
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the equations for l = 4 are transformed into a finite dimensional Hamil-
tonian system (FDHS):

ψ1x =
∂F1

∂ψ2
= ψ2, q1x =

∂F1

∂p1
= −8p2,

q2x =
∂F1

∂p2
= −8p1 + 20q1p2,

ψ2x = −∂F1

∂ψ1
= Λ2ψ1 − q1Λψ1 − q2Λ1,

p1x = −∂F1

∂q1
=

35
128

q41 +
15
16
q21q2 − 10p2

2 +
3
8
q22 −

1
2
〈λψ1, ψ1〉,

p2x =
∂F1

∂q2
=

5
16
q31 +

3
4
q1q2 −

1
2
〈ψ1, ψ1〉. (7.6.19)

The entire system can be compactly written as

Px = θ0∇F1. (7.6.20)

The various flows of the infinite dimensional system are then given by

vtn =

(
v0

v1

)
tn

= J

(
2an
−bn

)
= J

δHn

δv
, (7.6.21)

J =

(
D/2 0
0 −D/2

)
, Hn = − 1

n
[an,x − v1bn + 2bn+1]. (7.6.22)

The corresponding constrained flow is defined by

Φ1x = v0Φ1 + ΛΦ2, (7.6.23)

Φ2x = (Λ− v1)Φ1 − v0Φ2, (7.6.24)

δHl

δv
+

1
2

(
2〈Φ1,Φ2〉
〈Φ1,Φ1〉

)
= 0. (7.6.25)

In a similar way for l = 3 one finds:

H3 = −
(
1
4
v2
0x −

1
16
v2
1x +

1
4
v4
0 +

5
64
v4
1 −

3
8
v0xv

2
1 −

3
8
v2
0v

2
1

)
. (7.6.26)

In this case the Jacobi coordinates are

q̃1 = v1, q̃2 = v0,
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p̃2 = − δH3

δv0x
=

1
2
v0x −

3
8
v2
1, p̃1 = − δH3

δv1x
= −1

8
v1x. (7.6.27)

so that the corresponding FDHS becomes

Φ1x =
∂F̃2

∂Φ2
= q̃2Φ1 + ΛΦ2

q̃1x =
∂F̃1

∂p̃1
= −8p̃1, q̃2x =

∂F̃1

∂p̃2
= 2p̃2 +

3
4
q̃21,

Φ2x = −∂F̃1

∂Φ1
= ΛΦ1 − q̃1Φ1 − q̃2Φ2,

p̃1x = −∂F̃1

∂q̃1
= −3

2
q̃1p̃2 −

3
4
q̃q q̃

2
2 −

1
4
q̃31 −

1
2
〈Φ1,Φ1〉,

p̃2x = −∂F̃2

∂q̃2
= q̃32 −

3
4
q̃21 q̃2 − 〈Φ1,Φ2〉. (7.6.28)

One can express the whole set as

P̃x = θ0∇F̃1, (7.6.29)

where
P̃ = (ΦT

1 , q̃1, q̃2,Φ
T
2 , p̃1, p̃2)T , (7.6.30)

F̃1 = −4p̃2
1 + p̃2

2 +
3
4
q̃21 p̃2 +

3
8
q̃21 q̃

2
2 +

1
16
q̃41 −

1
4
q̃42+

+q̃2〈Φ1,Φ2〉+
1
2
〈ΛΦ2,Φ2〉 −

1
2
〈ΛΦ1,Φ1〉+

1
2
〈Φ1,Φ1〉. (7.6.31)

For the construction of a qBH, one requires the mapping between the
two FDHSs constructed above. The idea is exactly the same as that of
the Miura map connecting the KdV and mKdV systems. It is known
that a gauge transformation between the JM and the modified JM
problem is given by

ψ1 = Φ1, ψ2 = λΦ2 + v0Φ1,

u1 = v1, u0 = v0x − v2
0, (7.6.32)

which together with (7.6.23) and (7.6.24) gives rise to the map relating
(7.6.20) and (7.6.29); that is P = M(P̃ ) and

ψ1 = Φ1, ψ2 = ΛΦ2 + q̃2Φ1,
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q1 = q̃1, q2 = −2p̃2 −
3
4
q̃21 − q̃22,

p1 = q̃1p̃1 +
1
4
q̃32 +

1
2
q̃2p̃2 −

1
4
〈Φ1,Φ2〉, p2 = p̃1. (7.6.33)

One then computes the Jacobian of the transformation M to find

M ′(P̃ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0
0 1 0 0 0 0
0 −3

2 q̃1 −2q̃2 0 0 −2
q̃2I 0 Φ1 Λ 0 0
−1

4Φ
T
2 p̃1

3
4 q̃

2
2 + 1

2 p̃2 −1
4Φ

T
1 q̃1

1
2 q̃2

0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence the image of θ0 under M gives the second compatible Poisson
tensor,

θ1 = M ′θ0M ′T |P=M(P̃ ) =

(
O(N+2)×(N+2) A1

−AT
1 B1

)
, (7.6.34)

where

A1 =

⎛⎜⎝ Λ −1
4ψ1 ON×1

O1×N q1 1
2ψT

1 −1
2q2 −

15
8 q

2
1 −3

2q1

⎞⎟⎠ , (7.6.35)

B1 =

⎛⎜⎝ON×N
1
4ψ2 ON×1

−1
4ψ

T
2 o p2

O1×N −p2 0

⎞⎟⎠ . (7.6.36)

Finally the qBH for the FDHS is

Px = θ0∇F1 =
1
ρ
θ1∇E1, (7.6.37)

ρ = B(λ)|λ=0 E1 = [A2 +BC]λ=0. (7.6.38)

It remains to construct the Nijenhuis coordinates for the qBH system.
As θ0 and θ1 are compatible and invertible, the matrix θ1θ−1

0 is maximal
and has N + 2 distinct eigenvalues µ = (µ1, ....µN+2). The explicit
transformation to the Nijenhuis set (µ, ν) is given as follows. The
eigenvalues µ1, ....µN+2 are defined by the roots of

f(λ) = det(λI −A1) = 0, (7.6.39)



Separation of Variables 245

while A1 depends on (ψ1, q1, q2). This gives rise to the following:

µj = fj(ψ1, q1, q2), j = 1, 2, ...., (N + 2), (7.6.40)

Ψ1j = gj(µ), j = 1, ......, N, (7.6.41)

q1 = gN+1(µ), q2 = gN+2(µ). (7.6.42)

Let us introduce the generating function by

S =
N∑
j=1

ψ2jgj(µ) + p1gN+1(µ) + p2gN+2(µ), (7.6.43)

ψ1j =
∂S

∂ψ2j
j = 1, ...., N, (7.6.44)

q1 =
∂S

∂p1
, q2 =

∂S

∂p2
, (7.6.45)

νj =
∂S

∂µj
=
∑
j

ψ2j
∂gj
∂µj

+ p1
∂GN+1

∂µj
+ p2

∂gN+1

∂µj
j = 1, ..., (N + 2).

(7.6.46)
Then the system of original equations (7.6.28) can be proved to be
separable in the variables (µ, ν).
It is interesting to note that the two different approaches described here
lead to the same set of separated variables, though we cannot go into
the proof of this important assertion due to paucity of space.

7.7 SoV for GCM Model

In this section we again consider the generalization of the Calogero-
Moser model described in Chapter 6. The model provides an example of
a classical integrable system that is governed by a dynamical r matrix
structure. It is described by the Poisson algebra (6.4.41), and the
generating function for the integrals of motion is t(λ) = 1

2tr[L
2(λ)].

From (6.4.41) it follows that the integrals of motion are in involution
as {t(λ), t(µ)} = 0. We discuss how the separation of variables can be
achieved for this model, using the functional Bethe ansatz.
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From (6.4.40) we note that the r matrix for the model is

r12(λ, µ) =

⎛⎜⎜⎜⎝
a(λ, µ) 0 0 0

0 0 b(λ, µ) 0
0 c(λ, µ) 0 0
0 0 0 a(λ, µ)

⎞⎟⎟⎟⎠ , (7.7.1)

with

a(λ, µ) =
1

λ− µ, b(λ, µ) =
1

λ− µ +
1
q
, and c(λ, µ) =

1
λ− µ −

1
q
.

The functions a(λ, µ), b(λ, µ) and c(λ, µ), satisfy appropriate relations
so that the Poisson bracket (6.4.41) obeys the Jacobi identity. For the
time being, we write the Lax matrix L(λ) in the form,

L(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
; (7.7.2)

we find upon inserting (7.7.1 and 7.7.2) into (6.4.41) that the nonvan-
ishing Poisson brackets are as follows:

{A(λ), B(µ)} = b(λ, µ)B(λ) + a(µ, λ)B(µ),
{A(λ), C(µ)} = −c(λ, µ)C(λ)− a(µ, λ)C(µ), (7.7.3)

{B(λ), C(µ)} = 2c(λ, µ)A(λ) + 2b(µ, λ)A(µ).

From the foregoing discussion it follows that the separation variables
may be defined by [128]:

B(Xi) = 0 and Pi = A(Xi), (7.7.4)

so that using the algebra (7.7.3), one may show that

{Xi, Xj} = {Pi, Pj} = 0,

{Xi, Pj} = δij lim
λ→Xi

a(λ,Xi)B(λ)
B′(Xi)

. (7.7.5)

Thus, a sufficient condition for (Xi, Pi) to be canonical variables is that

lim
λ→Xi

A(λ,Xi)B(λ)
B′(Xi)

= 1,

which is equivalent to the condition,

a(Xi + h,Xi) =
1
h

+O(h). (7.7.6)
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Indeed, this condition is valid for nondynamical as well as dynamical
r matrices. Consequently, one can apply the functional Bethe ansatz
technique to the Calogero-Moser model and its variants, which are de-
scribed by dynamical r matrices. Having defined the separation vari-
ables by (7.7.4), we find from

t(λ) =
1
2
tr[L(λ)]2,

that
t(Xi) = P 2

i , (7.7.7)

which are the separated equations.
The Lax matrix for the generalized Calogero-Moser system, in terms

of canonical variables (xα, pα), is given by [112]:

L(λ) =

⎛⎝ p+ 1
2

∑M
α=1

xαpα
λ−εα

1
2q

∑M
α=1 x

2
α − 1

2

∑M
α=1

x2
α

λ−εα
1
2q

∑M
α=1 p

2
α + 1

2

∑M
α=1

p2
α

λ−εα
−(p+ 1

2

∑M
α=1

xαpα
λ−εα

)

⎞⎠ .
(7.7.8)

The integrals of motion are

H = p2 +
R2

4q2

M∑
α=1

p2
α, (7.7.9)

Gα = 0, α = 1, ......,M, (7.7.10)

Hα = −1
4

M∑
β �=α

M2
αβ

εα − εβ
+ pαxαpα +

1
4q

M∑
β �=α

(p2
αx

2
β − x2

αp
2
β); (7.7.11)

provided
∑M

α xαpα = 0, where Mαβ = pαxβ − xαpβ. In this case, the
condition B(Xi) = 0 reduces to

1
q

M∑
α=1

x2
α −

M∑
α=1

x2
α

λ− εα
= 0. (7.7.12)

This is a polynomial equation of degree M in λ and has M solutions,
say Xi(i = 1, 2, .....,M). Using the Vieta theorem, one can show that
q and x2

α(α = 1, .....,M) are given by the following expressions:

q =
M∑
i=1

Xi −
M∑
α=1

εα, x2
α =

R2∏M
i=1(Xi − εα)

q
∏M

β �=α(εβ − εα)
; (7.7.13)
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where R2 =
∑M

α=1 x
2
α. It is clear that a(λ, µ) = 1/(λ− µ) satisfies the

condition (7.7.6); consequently the canonical momenta Pi(i = 1, ...M)
can be defined by the second part of (7.7.4), which gives us a set of
canonical variables (Xi, Pi)Mi−1 with {Xi, Pj} = δij . To obtain the sep-
arated equations one needs to derive a common solution S(X1, ...XM )
of the following Hamilton-Jacobi equations:

H

(
∂S

∂X1
, ....,

∂S

∂XM
, X1, ....XM

)
= E, (7.7.14)

Hα

(
∂S

∂X1
, ....,

∂S

∂XM
, X1, ....XM

)
= Eα, (7.7.15)

with S(X1, ...., XM ) =
∑M

i=1 Si(Xi). Note from (7.7.11) that the Eα’s
must satisfy the constraint

∑M
α=1Eα = 0 so that from (6.4.43) and

(7.7.7) we have

t(Xi) = H +
M∑
α=1

Hα

(Xi − εα)
= P 2

i =
(
dSi
dXi

)2

. (7.7.16)

Finally from (7.7.14), we get the separated equations in the following
form: (

dSi
dXi

)2

− E −
M∑
α=1

Eα

(Xi − εα)
= 0, (i = 1, 2...,M). (7.7.17)

If one considers only a flow generated by H, then Eα’s are the arbitrary
separation constants. Classically, it remains to express the Hamiltonian
H in terms of the separable variables (Xi, Pi)Mi=1. This can be done
by eliminating the constants Eα from (7.7.17) (using the condition∑M

α=1Eα = 0) to yield

H =
∑M

α=1 P
2
i

∏M
α=1(Xi − εα)

∏M
j �=i(Xi −Xj)−1∑M

i=1

∏M
α=1(Xi − εα)

∏M
j �=i(Xi −Xj)−1

. (7.7.18)

Restricting ourselves to the two-particle case, we shall next consider
the quantum counterpart of the above procedure, and obtain a sep-
aration of variables in the Schrödinger equations. This will provide
an insight not only into the method of quantizing the functional Bethe
ansatz, but also the method of dealing with quantum systems governed
by dynamical r matrices.
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7.7.1 Quantum generalized Calogero-Moser model

To this end, let us consider the generalized Calogero-Moser mode l
with Hamiltonian given by [107, 130]

H =
1
2

N∑
i=1

p2
i −

1
2

N∑
i�=j

M∑
α,β=1

fαijf
β
ji

(qi − qj)2
. (7.7.19)

To quantize the system one replaces the Poisson bracket { , } with
the commutator bracket −i[ , ], with the result that the Lax matrix
satisfies the algebra,

[L1(λ), L2(µ)] = i[r12(λ, µ), L1(λ)]− i[r21(µ, λ), L2(µ)]. (7.7.20)

The generating function t(λ) for the integrals of motion is given by
t(λ) = 1

2tr [L(λ)] and r12 matrices are of the form (7.7.1). However, as
the entries of the r matrix depend on the dynamical variables, hence
in the quantum case they are operator-valued functions. We shall refer
to (7.7.20) as the Gaudin algebra and for its consistency, it is sufficient
that the entries of the r12 matrix, viz a(λ, µ), b(λ, µ) and c(λ, µ) satisfy
the following:

[a(λ, µ), A(λ)] = [a(λ, µ), B(λ)] = [a(λ, µ), C(λ)] = 0

[b(λ, µ), B(λ)] = [c(λ, µ), C(λ)] = 0. (7.7.21)

When these conditions are fulfilled, the Gaudin algebra becomes

[A(λ), B(µ)] = i(b(λ, µ)B(λ) + a(µ, λ)B(µ)),

[A(λ), C(µ)] = −i(c(λ, µ)C(λ) + a(µ, λ)C(µ)),

[B(λ), C(µ)] = i([c(λ, µ), A(λ)]+ + [b(µ, λ), A(µ)]+), (7.7.22)

with [ , ]+ denoting the anticommutator. In this case, too, the sepa-
ration variables are formally defined by (7.7.4) and are canonical when
(7.7.6) is satisfied. However, care should be taken in the interpretation
of (7.7.4) in the quantum case. They are now operator equations and
therefore one has to fix the order of the operators appearing in A(Xi)
and B(Xi). Let us assume that all the substitutions are done from the
left, and that all position operators precede the momenta. One can
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then show that the quantum generating function for the commuting
integrals of motion is

t(λ) = p2 − [S−, S+]+
2q2

+
M∑

α,β=1

Sα
3 S

β
3 + 1

2 [S
α−, S

β
+]+

(λ− εα)(λ− εβ)
,

+
M∑
α=1

2pSα
3 + 1

2q ([S
α−, S+]+ − [Sα

+, S−]−)

λ− εα
, (7.7.23)

where (S±, S3) are the variables in terms of which the model was writ-
ten in section (6.4.2). The corresponding conserved quantities are as
follows:

H = p2 − [S−, S+]+
2q2

,

Gα = (Sα
3 )2 +

1
2
[Sα

−, S
α
+]+, (7.7.24)

Hα =
M∑
β �=α

2Sα
3 S

β
3 + (Sα−S

β
+ + Sβ

−Sα
+)

εα − εβ
+2pSα

3 +
1
2q

([Sα
−, S+]+−[Sα

+, S−]+).

These integrals of motion play the role of the Hamiltonians of the quan-
tum system and

∑M
α=1Hα = 0. Furthermore, each Gα is a quadratic

Casimir invariant operator of the algebra soα(2, 1) generated by �Sα. If
one were to use a specific realization of the spin variables �Sα, in terms
of canonical variables, (xα, pα) with [xα, pβ] = iδαβ , (α, β = 1, .....,M),
i.e.,

Sα
3 =

1
4
(xαpα + pαxα), Sα

+ =
1
2
p2
α, Sα

− = −1
2
x2
α, (7.7.25)

then the first integrals have the following form, which are the quantum
analogs of (7.7.9–7.7.11)

H = p2 +
R2

4q2

M∑
α=1

p2
α,

Gα =
3
16
, α = 1, .......,M, (7.7.26)

Hα = −1
4

M∑
β �=α

M2
αβ + 1/2
εα − εβ

+
1
2
p[xα, pα] +

1
4q

M∑
β �=α

(p2
αx

2
β − x2

αp
2
β).
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Now Pi ≡ A(Xi) and as P †
i �= Pi, so the Pi’s as defined are not Hermi-

tian. To address this problem we use (7.7.13) to find

B(λ) =
R2

2q

∏M
i=1(λ−Xi)∏M
α=1(λ− εα)

,

A(λ) =
2q
R2

B(λ)

(
p+ q

M∑
i=1

1
λ−Xi

DiPi

)
, (7.7.27)

where

Di =
∏M

α=1(Xi − εα)
q
∏M

j �=i(Xi −Xj)
, i = 1, 2, ......,M (7.7.28)

and R2 is now an operator. The expression for A(λ) has been derived
from the behaviour of A(λ) at the Xi’s and at λ =∞. Now as the roots
Xi, can be labelled so thatX1 > ... > XM , one can choose the arbitrary
parameters εα so that either XM < εM < XM−1 < ... < X1 < ε1 or
εM < XM < ... < ε1 < X1. Hence each Di is positive. Moreover using
the commutation relation [Xi, Pj ] = iδij and

M∑
i=1

1
λ−Xi

∏M
α=1(Xi − εα)∏M
j �=i(Xi −Xj)

=
∏M

α=1(λ− εα)∏M
i=1(λ−Xi)

− 1,

one can show that

A†(λ) =
2q
R2

B(λ)

(
p+ q

M∑
i=1

1
λ−Xi

P †
i Di

)
. (7.7.29)

Since A†(λ) = A(λ) we have as a consequence DiPi = P †
i Di. This

allows for the definition of Hermitian operators,

Πi ≡
√
DiPi

1√
Di
, (7.7.30)

which are canonically conjugate to Xi and are the true separation mo-
menta. The separation equations in terms of Πi then become

1√
Di

Π2
i

√
DiΨ(X1, ...XM )−

−
(
E +

M∑
α=1

(
Eα

Xi − εα
+

3/16
(Xi − εα)2

))
Ψ(X1, ....XM ) = 0, (7.7.31)
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i = 1, ...,M . Here E,Eα are the eigenvalues of the operatorsH,Hα, α =
1, .....,M . Setting

Ψ(X1, ...XM ) =
√
|qV |

M∏
i=1

Ψi(Xi) (7.7.32)

where V is the Vandermonde determinant, i.e., V =
∏M

i<j(Xi − Xj),
upon substituting (7.7.32) in (7.7.31) and using Πi = −i d

dXi
, (i =

1, ..,M) we have the following separated Schrödinger equations for the
generalized Calogero-Moser model under consideration:

1√
Ci

d2

dX2
i

(
√
CiΨi) + EΨi +

M∑
α=1

(
Eα

Xi − εα
+

3/16
(Xi − εα)2

)
Ψi = 0,

(7.7.33)
i = 1, ......,M and Ci = |

∏M
α=1(Xi − εα)|.

This completes the construction of the separation of variables in the
quantum case for a model governed by a dynamical r matrix, and also
provides an insight into the procedure for applying the functional Bethe
ansatz in the case of such systems.

7.8 SoV and Boundary Conditions

In this section we shall describe how the technique of the separation
of variables can be used to solve the quantum inverse problem for an
integrable system, subject to nonperiodic boundary conditions. To il-
lustrate the technique we consider an important discrete model, namely
the Toda lattice [129], for which the usual method of algebraic Bethe
ansatz is inapplicable owing to the nonexistence of a reference vacuum
state.

7.8.1 Periodic Toda lattice

The Hamiltonian of the Toda lattice under periodic boundary con-
ditions is given by

HP =
1
2

N∑
j=1

p2
j +

N∑
j=1

exp(qj+1 − qj), (7.8.1)
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where N denotes the number of lattice sites and it is assumed that
qN+k = qk (k = 1, ...., N). The Lax operator for the model is

Lj(u) =

(
u− pj eqj
−e−qj 0

)
with j = 1, ..., N, (7.8.2)

and obeys the relation,

R(u− v)L1
j (u)L

2
j (v) = L2

j (v)L
1
j (u)R(u− v). (7.8.3)

The canonical variables (qj , pj) satisfy the commutation relation,

[pj , qk] = −ih̄δjk, (7.8.4)

where we have used the standard notation L1(u) = L(u)⊗ I, L2(u) =
I ⊗ L(u). The quantum R(u) matrix is given by

R(u) =

⎛⎜⎜⎜⎝
u− ih̄ 0 0 0

0 u −ih̄ 0
0 −ih̄ u 0
0 0 0 u− ih̄

⎞⎟⎟⎟⎠ . (7.8.5)

It satisfies the Yang-Baxter equation:

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u). (7.8.6)

The monodromy matrix is defined in the usual way by

T (u) =

←
N∏
j=1

Lj(u) (7.8.7)

and satisfies the following relation:

R(u− v)T 1(u)T 2(v) = T 2(v)T 1(u)R(u− v). (7.8.8)

It is convenient to write T (u) in the form

T (u) =

(
A(u) B(u)
C(u) D(u)

)
. (7.8.9)

The transfer matrix is then defined as a trace of the monodromy matrix,

t(u) = tr T (u) = A(u) +D(u), (7.8.10)
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and it follows immediately from (7.8.8) that

[t(u), t(v)] = 0. (7.8.11)

From (7.8.8) we get the commutation relations:

[C(u), C(v)] = 0, (7.8.12)

A(u)C(u) =
u− v − ih̄
u− v C(v)A(u) +

ih̄

u− vC(u)A(v), (7.8.13)

D(u)C(v) =
u− v − ih̄
u− v C(v)D(u)− ih̄

u− vC(u)D(v). (7.8.14)

One should note that the Lax operator (7.8.2) does not possess a pseu-
dovacuum. Hence the usual algebraic Bethe ansatz is not applicable.
To overcome this difficulty, we consider the product (7.8.7), from which
one can write a general polynomial expansion for the elements of T (u)
by explicit multiplication namely:

A(u) = uN − PuN−1 + ............., (7.8.15)

C(u) = −eqN (uN−1 + .................), (7.8.16)

D(u) = O(uN−2). (7.8.17)

Consider now the zeros of the operator C(u), defined by

C(ûα) = 0, for α = 1, 2, ..., N − 1. (7.8.18)

From (7.8.12) we infer that

[ûα, ûβ] = 0. (7.8.19)

Thus the ûα’s form a commuting set of operators. Next we introduce
another set of quantum operators by substitution of: ûα in A(u) and
D(u)

v̂−α ≡ A(u⇒ ûα), v̂+
α ≡ D(u⇒ ûα). (7.8.20)

To avoid any confusion in ordering, we shall always assume that these
substitutions are done from the left, so that if A(u) =

∑
anu

n, then
left substitution means that

A(u⇒ ûα) =
∑

(ûα)nan. (7.8.21)
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From the commutation rules of A(u), C(u), D(u) we get the following:

[v̂±β , ûα] = ±ih̄δαβ v̂
±
β , [v̂+

α , v̂
+
β ] = [v̂−α , v̂

−
β ] = 0. (7.8.22)

Also it will be observed that A(u) and D(v) commute among them-
selves, so that one can deduce the following commutation relations:

[v̂+
α , v̂

+
β ] = [v̂−α , v̂

−
β ] = 0. (7.8.23)

By means of the Lagrange interpolation formula, we then obtain the
general forms of the elements of the monodromy matrix as given below:

C(u) = −e−qN
N−1∏
α=1

(u− ûα), (7.8.24)

D(u) =
N−1∑
α=1

N−1∏
β �=α

u− ûβ
ûα − ûβ

v̂+
α , (7.8.25)

A(u) = (u− P +
N−1∑
α=1

ûα).
N−1∏
α=1

(u− ûα) +
N−1∑
α=1

N−1∏
β �=α

u− ûβ
ûα − ûβ

v̂−α . (7.8.26)

One can now set up the Hilbert space on which the canonical operators
act. The action of the above operators, are then given by

ûα|u1, u2, ....., uN−1〉 = uα|u1, u2, ....., uN−1〉, (7.8.27)

v̂±α |u1, u2, ....., uN−1〉 = i±|u1, u2, ....., uN−1〉, (7.8.28)

which imply that

t(ûα)φ(u1, ....uN−1) = iNφ(u1, ....uα + ih̄, ...., uN−1)+

+i−Nφ(u1, ....uα − ih̄, ...uN−1). (7.8.29)

Assuming now that the eigenfunction φ can be factorized, i.e.,

φ(u1, .....uN−1) =
N−1∏
α=1

ϕ(uα); (7.8.30)

we see that (7.8.29) reduces to

t(u)ϕ(u) = iNϕ(u+ ih̄) + i−Nϕ(u− ih̄) (7.8.31)
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so that the eigenvalue of the quantum Toda lattice is given from the
solution of a difference equation (7.8.31). Let us write ϕ(u) as an
infinite product of the form,

ϕ(u) =
∏
k

(u− uk); (7.8.32)

then the Bethe ansatz equation can be expressed as

(−1)N =
∏
k �=j

uj − uk + ih̄

uj − uk − ih̄
(7.8.33)

We shall now consider the case of nonperiodic boundary conditions.

7.8.2 Nonperiodic case

In case of open boundary conditions, the Hamiltonian of the Toda
lattice may be taken in the following form:

H =
1
2

∑
j

p2
j +
∑
j

exp(qj+1−qj)+α1e
q1 +

β1

2
e2q1−αNe−qN − βN

2
e−2qN

(7.8.34)
where α1, β1, αN , βN determine the boundary potential. It will be re-
called from our previous discussion of the Yang-Baxter that in case of
such boundary conditions, we have to consider the modified form of
the Yang-Baxter equation, known also as the reflection equation:

R12(u− v)
1
K (u)R21(u+ v)

2
K (v) =

2
K (v)R12(u+ v)

1
K (u)R21(u− v),

(7.8.35)
together with its conjugate equation,

R21(u− v)
1

K̄ (u)R12(u+ v)
2

K̄ (v) =
2

K̄ (v)R21(u+ v)
1

K̄ (u)R12(u− v).
(7.8.36)

In this example we assume that the boundaryK matrices are as follows:

K1(u) =

(
α1 −u
β1u α1

)
, K2(u) =

(
αN −βNu
−u αN

)
. (7.8.37)

In such cases one has to define a new monodromy matrix U(u) given
by

U(u) = T (u)K1(u+ ih̄/2)T−1(−u− ih̄). (7.8.38)
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It satisfies the following reflection equation:

R12(u−v)
1
U(u)R21(u = v+ih̄)

2

U(v) =
2

U(v)R12(u+v+ih̄)
1
U(u)R21(u−v).

(7.8.39)
The transfer matrix is defined by

Λ(u) = tr {K2(u− ih̄/2)U(u)} (7.8.40)

= (−1)N
{
u2N+2 −

(
2H + (

ih̄

2
)2
)
u2N + ....

}
.

Let us write the monodromy matrix as

U(u) =

(
A(u) B(u)
C(u) D(u)

)
(7.8.41)

and define
D�(u) = 2uD(u) + ih̄A(u). (7.8.42)

These operators satisfy the following commutation rules:

[B(u),B(v)] = 0, (7.8.43)

A(u)B(v) =
(u− v + ih̄)(u+ v + ih̄)

(u+ v)(u− v) B(v)A(u)− ih̄(2v + ih̄)
2v(u− v) B(u)A(v)

+
ih̄

2u(u+ v)
B(u)D�(v), (7.8.44)

D�(u)B(v) =
−ih̄(2u− ih̄)(2v + ih̄)

2v(u+ v)
B(u)A(v)+

ih̄(2u− ih̄)
2v(u− v) B(u)D

�(v)

+
(u− v − ih̄)(u+ v − ih̄)

(u− v)(u+ v)
B(u)D�(v). (7.8.45)

From (7.8.40) we get

Λ(u) = αn
2u− ih̄

2u
A(u) +

αN
2u
D�(u)− βN

(
u− ih̄

2

)
C(u)

−
(
u− ih̄

2

)
B(u). (7.8.46)

The absence of a pseudovacuum state for the Lj(u) forces us to again
search for the zeros of B(u). As before by explicit multiplication we
can obtain the leading terms of the matrix elements of U(u) as

A(u) = (−1)Ne−qN
(
u2N − (pN + ih̄/2)u2N−1 + ..........

)
,
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B(u) = (−1)N−1(u+ ih̄/2)(u2N + .........), (7.8.47)

D(u) = (−1)Ne−qN
(
u2N + (pN + ih̄/2)u2N1 + ....

)
.

If ûα denote the zeros of B(u) then we can express it in the form,

B(u) = (−1)N−1(u+ ih̄/2)
N∏

α=1

(u− ûα)(u+ ûα). (7.8.48)

Moreover as in the previous subsection we define

v̂+
α = A(u⇒ ûα), v̂−α = D�(u→ ûα). (7.8.49)

One can show that ûα, v̂±α satisfy the following commutation relations:

[v̂±α , ûβ] = ±ih̄δαβ v̂±β , [v̂+
α , v̂

+
β ] = [v̂−α , v̂

−
β ] = 0. (7.8.50)

Due to the presence of a second set of zeros at u = −ûα we may also
define

ω̂−
α = A(u⇒ −ûα), ω̂+

α = D�(u⇒ −ûα). (7.8.51)

These quantities satisfy commutation relations similar to (7.8.50) above:

[ω̂±
α , ûβ] = ±ih̄δαβω̂±

β , [ω̂+
α , ω̂

+
β ] = [ω̂−

α , ω̂
−
β ] = 0. (7.8.52)

Then by using the Lagrange interpolation formula it is possible to ob-
tain the form of the operators A(u),D�(u) as

A(u) =
2N∑
α=1

2N∏
β �=α

u− X̂β

X̂α − X̂β

Ŷ −
α + (−1)Ne−qN

2N∏
α=1

(u− X̂α),

D�(u) =
2N∑
α=1

2N∏
β �=α

u− X̂β

X̂α − X̂β

Ŷ +
α + (−1)Ne−qN

2N∏
α=1

(u− X̂α), (7.8.53)

where X̂α = ûα, for 1 ≤ α ≤ N and − ûα, for N + 1 ≤ α ≤ 2N while
Ŷ ±
α = v̂∓α , for 1 ≤ α ≤ N and ω̂±

α , for N + 1 ≤ α ≤ 2N .
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7.8.3 Quantum determinant

At this point we make a brief digression to the notion of quantum
determinants, which play an important role in the theory of quantum
inverse scattering. Consider the Lax operator of the present problem
(7.8.2). It will be observed that

σyLj(u)σyLt
j(u+ ih̄) = I

Lt
j(u)σ

yLj(u− ih̄)σy = I. (7.8.54)

Here Lt
j(u) denotes the transpose and σy is a Pauli matrix. The inverse

of Lj(u) is

L−1
j (u) =

(
0 −eqj
eqj u− pj + ih̄

)
= σyLt

j(u+ ih̄)σy. (7.8.55)

The quantum determinant d(u) is defined by

d(u) = tr P−
12Lj(u)⊗ Lj(u+ ih̄). (7.8.56)

Note that the inverse of Lj(u) may be calculated with the aid of the
quantum determinant. In (7.8.56) P−

12 denotes the antisymmetrizer in
the auxiliary space. Now from (7.8.7) it is clear that T (u) also satisfies
the identities:

σyT (u)σyT t(u+ ih̄) = 1, T t(u)σyT (u− ih̄)σy = 1. (7.8.57)

These relations imply that the quantum determinant of T (u) equals
unity and thus commutes with every matrix element of the monodromy
matrix T (u). In terms of the elements of T (u) as given in (7.8.9) we
find that

D(u)A(u+ ih̄)− C(u)B(u+ ih̄) = 1,
D(u)C(u+ ih̄)− C(u)D(u+ ih̄) = 0,
A(u)B(u+ ih̄)−B(u)A(u+ ih̄) = 0,
A(u)D(u+ ih̄)−B(u)C(u+ ih̄) = 1, (7.8.58)

along with a similar set of relations with ih̄ replaced with −ih̄:

A(u)D(u− ih̄)− C(u)B(u− ih̄) = 1,
C(u)A(u− ih̄)−A(u)C(u− ih̄) = 0,
B(u)D(u− ih̄)−D(u)B(u− ih̄) = 0,
D(u)A(u− ih̄)−B(u)C(u− ih̄) = 1. (7.8.59)
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To formulate the quantum determinant associated with the reflection
equation (7.8.35) we introduce the matrix,

Ū(u) =

(
2uD(u) + ih̄A(u) (ih̄− 2u)B(u)

(ih̄− 2u)C(u) 2uA(u) + ih̄D(u)

)
. (7.8.60)

By using the reflection equation (7.8.39) and (7.8.60) we find that

Ū(u)(u+ ih̄/2)U(u− ih̄/2) = U(u− ih̄/2)Ū(u)(u+ ih̄/2) = ∆(u),
(7.8.61)

where ∆(u) is the quantum determinant of U(u). Various relations
between ûα, ω̂α, etc. can now be deduced from the above equation. For
example,

D(u)A(u− ih̄) + (ih̄− 2u)B(u)C(u− ih̄) = ∆(u− ih̄/2), (7.8.62)

in which one considers the limit as u→ ûα, then

∆(ûα − ih̄/2) = lim
u⇒ûα

D(u)A(u− ih̄) =
∑

n,mûnα(ûα − ih̄)mdnam,

=
∑
n,m

(ûα − ih̄)m(ûnαdn)am =
∑
m

(ûα − ih̄)mv̂−α am =
∑
m

v̂−α û
m
α am;

hence
∆(ûα − ih̄/2) = v̂−α v̂

+
α . (7.8.63)

Similarly one can deduce the following:

∆(−ûα − ih̄/2) = ω̂+
α ω̂

−
α , (7.8.64)

δ(ûα + ih̄/2) = v̂+
α ω̂

−
α , (7.8.65)

δ(−ûα + ih̄/2) = ω̂−
α v̂

+
α . (7.8.66)

Let us go back to (7.8.46) and substitute u = ûα, giving

2ûαΛ(ûα) = αN (2ûα−ih̄)v̂+
α +αN v̂−α−βN lim

u⇒ûα

u(2u−ih̄)C(u). (7.8.67)

From (7.8.67) it is apparent that if we demand βN = 0 then it will
entail complete separation. Having obtained the commutation relations
of ûα, v̂±α and ω̂±

α we can now set up the Hilbert space on which the
quantum canonical operators act, in the following manner:

ûα|u1, ....., uN 〉 = uα|u1, ....., uN 〉, (7.8.68)
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v̂±α |u1, ....., uN 〉 = ∆±(uα)|u1, ...., uα ± ih̄, ........, uN 〉, (7.8.69)

ω̂±
α |u1, ....., uN 〉 = δ±(uα)|u1, ...., uα ± ih̄, ........, uN 〉. (7.8.70)

The functions ∆±(u), δ±(u) can be chosen so as to satisfy the identities
(7.8.63–7.8.66) by setting

∆+(u) = δ−(−u) = α1 + i
√
β1(u+ ih̄/2), (7.8.71)

∆−(u) = δ+(−u) = (2u+ ih̄).(α1 − i
√
β1(u− ih̄/2)). (7.8.72)

The eigenvalue problem for the transfer matrix Λ(u) can now be ex-
pressed as

2uαΛ(uα)Ψ(u1, ...., uN ) = αN (2uα−ih̄)∆+(uα)Ψ(u1, .., uα+ih̄, ....., uN )

+αN∆−(uα)ψ(u1, ..., uα − ih̄, ....uN ). (7.8.73)

As before we assume that the eigenfunction Ψ may be factorized in the
form

Ψ(u1, ...., uN ) =
N∏

α=1

ψ(uα), (7.8.74)

whence we get from (7.8.73):

2uΛ(u)ψ(u) = αN (2u− ih̄)∆+(u)ψ(u+ ih̄) + αN∆−(u)ψ(u− ih̄).
(7.8.75)

This is a one-dimensional difference equation; to solve it we set

ψ(u) =
∏
k

(u− uk)(u+ uk), (7.8.76)

leading thereby to the Bethe ansatz equation in the form

,
α1 + i

√
β1(uj + ih̄/2)

α1 − i
√
β1(uj − ih̄/2)

=
∏
k �=j

(uj − uk − ih̄)(uj + uk − ih̄)
(uj − uk + ih̄)(uj + uk + ih̄)

. (7.8.77)

This example illustrates the basic steps involved in the application of
the separation of variables to the quantum inverse scattering method,
particularly for systems that do not possess a pseudovacuum state. The
same procedure may be applied to continuous integrable systems and
such a case was studied by Dasgupta et al. [131]. On the other hand,
the technique is also applicable, when the Lax matrix is of dimension
greater than 2 × 2, although in that case the computations become
rather involved. The basic theorems related to the fundamental prop-
erties of separation of variables are discussed in detail, in the light of
the inverse scattering theory in Sklyanin’s celebrated Nankai Lectures
[132], and also in the review article [133]. We refer the interested reader
to these articles for further details.





Chapter 8

Bäcklund Transformations

8.1 Introduction

Bäcklund transformations (BT) refer to transformations between the
solutions of either the same or two different differential equations. Their
origin may be traced back to the 1875 studies of A. V. Bäcklund on
pseudospherical surfaces [134], i.e., surfaces of constant negative curva-
ture. On such surfaces the line element in terms of suitable coordinates
u and v may be expressed as

ds2 = α2(du2 + 2 cosωdudv + dv2), (8.1.1)

where −1/α2 is the constant total curvature of the surface and ω is the
angle between the asymptotic lines. It may be shown that the angle ω
satisfies [135]

∂2ω

∂u∂v
= sinω, (8.1.2)

which is known as the Sine-Gordon equation. A solution of this equa-
tion corresponds to a surface of constant negative curvature. In trying
to generate such surfaces Bäcklund discovered that a new solution ω1

could be obtained from a given solution ω0 by means of the following
transformation:

∂

∂u
(
ω1 − ω0

2
) = a sin(

ω1 + ω0

2
), (8.1.3)

∂

∂v
(
ω1 + ω0

2
) = a−1 sin(

ω1 − ω0

2
), (8.1.4)

where a is an arbitrary constant. It is obvious that for such a transfor-
mation to be of any practical use one must be able to find the solution
ω0. However, the efficacy of such transformations rests on the fact that
in many cases, the initial solution ω0 can often be obtained by inspec-
tion. In the case of (8.1.2), for example, it is seen that ω0 = 0 is a
solution and can therefore be used for generating new solutions.

263
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8.2 Permutability Theorem

It is also evident from (8.1.2) that the procedure for deriving a new
solution ω1 involves a quadrature. However, Bianchi [136] showed that
a new solution could also be obtained, even without the use of quadra-
ture. This procedure, known as the theorem of permutability, relates
four solutions without the use of quadrature. Indeed since (8.1.3 and
8.1.4) actually represent a transformation from a solution ω0 to a solu-
tion ω1 with constant a, it may be schematically represented by Figure
8.2.1.

Geometrically, (8.1.3) and (8.1.4) signify that a surface characterized
by ω0 can be transformed into a new surface S1 (of the same curvature)
by means of ω1 and a1. The theorem of permutability then states
that if S1 and S2 are transforms of S by means of respective pairs of
functions (ω1, a1) and (ω2, a2), then a function ω3 can be found without
quadrature so that by means of the (ω3, a2) and (ω3, a1), the surfaces
S1 and S2 can be transformed into the surface S′. The essential content
of the permutability theorem is schematically depicted by Figure 8.2.2.
From (8.1.3 and 8.1.4) the four u derivative equations associated with
Figure 8.2.2 are

FIGURE 8.2.1: Schematic diagram of the Bäcklund transformation
given in (8.1.3) ω0 → ω1.
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FIGURE 8.2.2: Schematic form of transformation occurring in the
permutability theorem.

∂

∂u
(
ω1 − ω0

2
) = a1 sin(

ω1 + ω0

2
), (8.2.1)

∂

∂u
(
ω2 − ω0

2
) = a2 sin(

ω2 + ω0

2
), (8.2.2)

∂

∂u
(
ω3 − ω1

2
) = a2 sin(

ω3 + ω1

2
), (8.2.3)

∂

∂u
(
ω3 − ω2

2
) = a1 sin(

ω3 + ω2

2
), (8.2.4)

Equations (8.2.1–8.2.4) can be algebraically manipulated to obtain a
form that is completely independent of the u derivatives to yield

tan(
ω3 − ω0

4
) =

a1 + a2

a1 − a2
tan(

ω1 − ω2

4
). (8.2.5)

It was shown by Bianchi that if the functions ω3 in (8.2.3) and (8.2.4)
are replaced by ω4 and ω5 respectively, then with ω1 and ω2 given
by (8.2.1) and (8.2.2), differentiation of (8.2.5) implies the validity of
(8.2.3) and (8.2.4) with the same ω3 in both equations. The theorem
of permutability thus provides an efficient procedure for generating so-
lutions of (8.1.2).

Another systematic procedure for deriving Bäcklund transformations
is by Clarin’s method [137].
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8.3 Bäcklund Transformations and Classical Inverse
Scattering

In the context of classical inverse scattering theory, there exists a
close interrelation between the inverse method, the infinite conserva-
tion laws that are characteristic of intergrable systems, and Bäcklund
transformations. These interrelated features were extensively studied
by Wadati et al. [138]. Indeed, it is possible to reduce the Bäcklund
transformations to the fundamental equations of the inverse method
by the introduction of auxiliary fuctions, a procedure first illustrated
by Wahlquist and Estabrook [139]. Conversely, it is also possible to
derive Bäcklund transformations from the inverse method. In this sec-
tion we shall deal with these issues and consider the KdV equation, for
which the space part of the Lax operator is the well-known Schrödinger
equation:

−ψxx + η2ψ = qψ. (8.3.1)

Let ψ0(x) be some particular solution of (8.3.1) for spectral parameter
η = η0, and ψ(x, η) be an arbitrary solution of (8.3.1). Next consider
the transformation,

ψ′(x, η) = W{ψ(x, η);ψ0(x)}/[(η2 − η2
0)ψ0(x)], (8.3.2)

where W{ψ, φ} is the Wronskian of the functions ψ and φ,

W{ψ, φ} = ψxφ− ψφx. (8.3.3)

One can now state the following theorem.
Theorem I: The function ψ′(x, η) defined by (8.3.2) is a solution of

(8.3.1) with the potential q′(x) = q(x) + ∆q(x) where

∆q(x) = 2

[
∂ψ0(x)
∂x

ψ0(x)

]
x

= 2(logψ0(x))xx (8.3.4)

Proof: For any two solutions of (8.3.1) one can show that the fol-
lowing relation is satisfied:

∂

∂x

[
1

η2
1 − η2

2

W{ψ(x, η1), ψ(x, η2)}
]
= ψ(x, η1)ψ(x, η2). (8.3.5)
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Using (8.3.2) one obtains from (8.3.1)

∂

∂x
ψ′(x, η) = ψ(x, η)− ψ′(x, η)v(x), (8.3.6)

where

v(x) =
1

ψ0(x)
∂ψ0(x)
∂x

= (logψ0(x))x. (8.3.7)

Moreover, v(x) satisfies the Riccati equation,

∂v(x)
∂x

+ v2(x) = −q(x) + η2
0. (8.3.8)

Differentiating (8.3.1) once and using (8.3.6), (8.3.7) and (8.3.2) we
then obtain the result,

−ψ′
xx(x, η) + η2ψ′(x, η) = q′(x)ψ′(x, η). (8.3.9)

The transformation (8.3.2) is valid for η �= η0. For η = η0, two inde-
pendent solutions of the transformed (8.3.9) are found to be

ψ′
01(x) = 1/ψ0(x), (8.3.10)

ψ′
02(x) = ψ′

01

∫ x

dy/ψ′2
01(y) =

∫ x

dy
ψ2

0(y)
ψ0(x)

. (8.3.11)

We then have the following theorem.
Theorem II: The transformation inverse to (8.3.2) is given by

ψ(x, η) = W{ψ′(x, η);ψ′
01(x)}/ψ′

01(x). (8.3.12)

Proof: From (8.3.6) we have

ψ(x, η) =
∂ψ′(x, η)

∂x
+ ψ′(x, η)

1
ψ0(x)

∂ψ0(x)
∂x

, (8.3.13)

so upon using (8.3.10) one obtains

ψ(x, η) =
∂ψ′(x, η)

∂x
− ψ′(x, η)

ψ′
01(x)

∂ψ′
01(x)
∂x

= W{ψ′(x, η);ψ′
01(x)}/ψ′

01(x).

Now a transformation of the form (8.3.2), is closely related to Bäcklund
transformations by making the following identification. Suppose that
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q(N) and q(N+1) are N and N + 1 soliton solutions, respectively. Since
a N soliton solution is known to have N bound states, hence

−∂
2ψi

∂x2
+ η2

i ψi = q(N)ψi, (8.3.14)

with ψi → 0 as |x| → ∞, i = 1, 2, ..., N and

−∂
2φi
∂x2

+ η2
i φi = q(N+1)φi, (8.3.15)

with φi → 0 as |x| → ∞, i = 1, 2, ..., N,N+1. Without loss of generality
one can assume that

−η2
N+1 < −η2

N < ... < −η2
2 < −η2

1 < 0. (8.3.16)

Furthermore, if we add the relation,

−∂
2ψN+1

∂x2
+ η2

N+1ψN+1 = q(N)ψN+1, (8.3.17)

to the system (8.3.14), then (8.3.15) cannot be a bounded solution.
However, as shown in Theorem I, the transformation (8.3.2) exists be-
tween two Schrödinger equations that have the same eigenvalues and
their potentials bear the relation (8.3.4). Consequently, if we identify
η2
0 = η2

N+1, q
′ = q(N), q = q(N+1) and ψ0(x) = φN+1(x) = 1

ψN+1(x) from
the relations (8.3.15) and (8.3.17) we have

q(N+1) = q(N) + 2(logψN+1(x))xx. (8.3.18)

Thus in order to obtain N+1 soliton solution, we have a procedure that
entails solving (8.3.1) for the N soliton solution q(N), and hence ψN+1

and thereafter substituting the latter into (8.3.18); instead of trying to
solve the eigenvalue problem (8.3.17) . To get a better understanding
of how this procedure works, let us consider the following example.
Suppose we start from the “vacuum” solution q(0) = 0 for N = 0.
From (8.3.14) we have

−∂
2ψ1

∂x2
+ η2

1ψ1 = 0. (8.3.19)

Its unbounded solution is

ψ1 = Aeη1x +Be−η1x. (8.3.20)
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Next from (8.3.18), we have

q(1)(x) = 2
∂2

∂x2
log(Aeη1x +Be−η1x). (8.3.21)

Furthermore, consider the equation

∂2ψ2

∂x2
+ η2

2ψ2 = q(1)(x)ψ2, (8.3.22)

whose unbounded solution is

ψ2 =
1

(Aeη1x +Be−η1x)
× {Ce(η1+η2)x +De(η1−η2)x+

η1 + η2

η2 − η1

B

A
Ce−(η1−η2)x +

η2 − η1

η1 + η2

B

A
De−(η1+η2)x}. (8.3.23)

Then from (8.3.22) we obtain

q(2)(x) = 2
∂2

∂x2
log{Ce(η1+η2)x +De(η1−η2)x +

η1 + η2

η2 − η1

B

A
Ce−(η1−η2)x

+
η2 − η1

η1 + η2

B

A
De−(η1+η2)x}. (8.3.24)

The functional forms of q(1)(x) and q(2)(x) are indicative of the N soli-
ton solution of the KdV equation. The explicit forms of the Bäcklund
transformation for the KdV equation can now be derived, by starting
from the basic equations of the inverse method, which for the KdV
equation are given by

∂ψ1

∂x
− ηψ1 = q(x, t)ψ2, (8.3.25)

∂ψ2

∂x
+ ηψ2 = ψ1, (8.3.26)

with

∂ψ1

∂t
= (−4η3 − 2ηq(x, t)− qx(x, t))ψ1 + (−qxx − 2ηqx − 4η2q− 2q2)ψ2,

(8.3.27)
∂ψ2

∂t
= (4η2 + 2q)ψ1 − (−4η3 − 2ηq − qx)ψ2. (8.3.28)

From (8.3.25) and (8.3.26) we get

−∂
2ψ2

∂x2
+ η2ψ2 = qψ2, (8.3.29)
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while (8.3.27) and (8.3.28) yield

∂ψ2

∂t
= −(4η2 + 2q)

∂ψ2

∂x
+ qxψ2. (8.3.30)

Next let us make the following identifications:

q(N) = −ω′
x = q′, q(N+1) = −ωx = q, ηN+1 = η, ψN+1 = 1/ψ2,

(8.3.31)
so that (8.3.18) reduces to

ω′ − ω = −2
∂

∂x
logψ2 = −2(

1
ψ2

∂ψ2

∂x
). (8.3.32)

Substitution of (8.3.31) into (8.3.32) gives

ωx + ω′
x = −2η2 + (ω − ω′)2/2. (8.3.33)

Differentiating (8.3.30) with respect to x and making use of (8.3.31)
and (8.3.32) then yields

ωt + ω′
t = 2(ω2

x + ωxω
′
x + ω′2

x )− (ω − ω′)(ωxx − ω′
xx). (8.3.34)

In deriving this we have written q = −ωx in the KdV equation qt +
6qqx + qxxx = 0, which then assumes the form ωt− 3ω2

x +ωxxx = 0 and
we have also made use of the fact that

ωxx + ω′
xx = (ω − ω′)(ωx − ω′

x). (8.3.35)

Equations (8.3.33 and 8.3.34) constitute the Bäcklund transformation
for the KdV equation.

8.4 Bäcklund Transformations from the Riccati
Equation

An alternative method of deriving Bäcklund transformations for clas-
sical continuous systems was formulated by Konno and Wadati [144],
and involves use of the Riccati form of the inverse method. This tech-
nique was also studied by Chen [145]. In this procedure, the scattering
problem is written in the following manner:

∂

∂x

(
ψ1

ψ2

)
=

(
η q(x, t)

r(x, t) −η

)(
ψ1

ψ2

)
, (8.4.1)
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∂

∂x

(
ψ1

ψ2

)
=

(
A B
C −A

)(
ψ1

ψ2

)
. (8.4.2)

The eigenvalues η are time independent when

∂A

∂x
= qC − rB, (8.4.3)

∂B

∂x
− 2ηB = qt − 2Aq, (8.4.4)

∂C

∂x
+ 2ηC = rt + 2Ar, (8.4.5)

where A, B and C are functions of (x, t) and their specific choices yield
a large class of nonlinear evolution equations. The next step consists
in introducing a function,

Γ ≡ ψ1

ψ2
, (8.4.6)

so that from (8.4.1) and (8.4.2) we get the Riccati equations:

∂Γ
∂x

= 2ηΓ + q − rΓ2 (8.4.7)

∂Γ
∂t

= B + 2AΓ− CΓ2. (8.4.8)

The key to the derivation of Bäcklund transformations by means of
Riccati equations rests on the construction of a transformation Γ′, sat-
isfying the same equation as (8.4.7) with a potential q′(x), given by

q′(x) = q(x) + f(Γ, η). (8.4.9)

Upon elimination of Γ between (8.4.7) and (8.4.9), we get the required
Bäcklund transformation for a particular nonlinear equation, fixed by
specific choices for the function r(x, t) occurring in (8.4.1).
Case (i) r = −1: For this choice the Riccati equation (8.4.7) assumes

the form
∂Γ
∂x

= 2ηΓ + q + Γ2. (8.4.10)

Now choosing Γ′ and q′ as follows:

Γ′ = −Γ− 2η, (8.4.11)

q′(x) = q(x) + 2
∂

∂x
(−Γ− 2η), (8.4.12)
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and requiring Γ′, q′ to satisfy (8.4.7), upon elimination of Γ in (8.4.10)
and (8.4.11) using (8.4.12), one has the Bäcklund transformation:

ω′
x + ωx = −2η2 +

(ω − ω′)2

2
, (8.4.13)

ω′
t − ωt = 2B + 4A[

ω′ − ω
2
− η]− 2C[

ω′ − ω
2
− η]2, (8.4.14)

where we have set q = −ωx, q′ = −ω′
x.

Case (ii) r = −q: In this case the Riccati equation (8.4.7) becomes

∂Γ
∂x

= 2ηΓ + q + qΓ2. (8.4.15)

Upon choosing
Γ′ = 1/Γ, (8.4.16)

and q′(x) = q(x)− 2
∂

∂x
tan−1 Γ, (8.4.17)

with Γ′, q′ satisfying (8.4.15) as in the previous case, by elimination of
Γ, we obtain the following Bäcklund transformation equations:

ωx + ω′
x = −2η sin(ω − ω′), (8.4.18)

ωt − ω′
t = (C −B)− (B + C) cos(ω − ω′) + 2A sin(ω − ω′), (8.4.19)

where as before q = −ωx and likewise q′ = −ω′
x.

Case (iii) r = −q�: For this case, the Riccati equation assumes the
form,

∂Γ
∂x

= 2ηΓ + q + q∗Γ2. (8.4.20)

Choosing Γ′, q′ as
Γ′ = 1/Γ∗, (8.4.21)

q′(x) = q(x) + 2

(
Γ2(∂Γ∗

∂x )− ∂Γ
∂x

1− |Γ|4

)
. (8.4.22)

It can be shown that Γ′ with q′(x) as in (8.4.22) satisfies (8.4.7) for real
η. Equation (8.4.22) reduces to a simpler form given by

q′(x) + q(x) = −4η
Γ

1 + |Γ|2 , (8.4.23)
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which may be solved for Γ, to yield

Γ = −2η +
√

4η2 − |q′ + q|2
(q′� + q�)

. (8.4.24)

Now by elimination of Γ in (8.4.24) and (8.4.7) with the use of (8.4.8)
and the following choice for the quantities A,B and C, namely

A = 2iη2 + i|q|2, B = −qx + 2iηq, and C = iq�x − 2iηq�, (8.4.25)

one can finally derive the Bäcklund transformation for the nonlinear
Schrödinger equation in the following form:

qx + q′x = (q − q′)
√

4η2 − |q + q′|2, (8.4.26)

qt+q′t = i(qx−q′x)
√

4η2 − |q + q′|2+ i

2
(q+q′)(|q+q′|2+|q−q′|2). (8.4.27)

It should be noted that the other solution of (8.4.22), namely

Γ = −2η −
√

4η2 − |q′ + q|2
(q′� + q�)

, (8.4.28)

can also be used to determine the Bäcklund transformation from the
Riccati form by setting 1

Γ� instead of Γ in (8.4.20) and (8.4.8). We shall
now give some explicit results. For example, (8.4.13 and 8.4.14) give
the Bäcklund transformation for the KdV equation when the following
choices for A,B and C are made, viz

A = −4η3 − 2ηq2, B = −qxx − 2ηqx − 4η2q − 2q3,

C = qxx − 2ηqx + 4η2q = 2q3. (8.4.29)

The same set of equations with ω = u
2 give the Bäcklund transformation

for the Sine-Gordon equation when A, B and C are chosen as follows:

A =
1
4η

cosu B = C =
1
4η

sinu. (8.4.30)

8.5 Darboux-Bäcklund Transformations

In the previous section it was shown from an analysis of the Riccati
form of the inverse scattering equation how Bäcklund transformations
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could be deduced for a wide class of inverse problems by appropriate
choices for the functions A, B and C. The equations considered there
were all examples of continuous integrable systems. In this section we
describe a method for deriving Bäcklund transformations for discrete
integrable equations. This method depends on the existence of an
operator matrix “B”, which is functionally dependent on the nonlinear
variables and which provides a connection between the old and the new
variables, i.e., the transformed Lax equations. Such a transformation
is usually referred to as the Darboux-Bäcklund transformation. We
illustrate the technique by means of the next example [146], involving
a nonlinear differential-difference equation belonging to the nonlinear
Schrödinger family:

iqn,t =
qn+1 − qn−1 − 2qn

k2
± qnq�n(qn+1 + qn−1), k = ∆x. (8.5.1)

The Lax pair associated with the above equation is

Ψn+1 = LnΨn, Ψn,t = MnΨn, (8.5.2)

where

Ln = z

(
1 0
0 0

)
+ z−1

(
0 0
0 1

)
+

(
0 qn
rn 0

)
=

(
z qn
rn z

−1

)
, (8.5.3)

Mn =

(
Pn Qn

Rn Sn

)
,

=

(
i
k2 (1− z2 + k2qnq

�
n−1)

i
k (−qnz + z−1qn−1)

± i
k (q

�
n−1z − z−1q�n) − i

k2 (1− z−2 ∓ k2qn−1q
�
n)

)
. (8.5.4)

Let us consider the transformation to a new set of nonlinear variables
(q′n, r′n), and write the transformed Lax equation as

Ψ′
n+1 = L′

nΨ
′
n, Ψ′

n,t = M ′
nΨ

′
n. (8.5.5)

Here (L′
n,M

′
n) have the same functional dependences as before, but

with (qn, rn) replaced by (q′n, r′n). The Darboux-Bäcklund transforma-
tion connects the old and the new linear problem through the matrix
function B, as follows:

Ψ′
n = BnΨn. (8.5.6)
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In general, one assumes Bn to be a suitable polynomial in the spectral
parameter z with matrix coefficients, having in the present case the
form

Bn =
N∑

k=−1

zkBn
k (8.5.7)

with the coefficient matrix Bn
k given by

Bn
k =

(
ank(q, r, q

′, r′) bnk(q, r, q
′, r′)

cnk(q, r, q
′, r′) dnk(q, r, q

′, r′)

)
. (8.5.8)

The basic problem now is to determine the entries of this matrix as
functions of the nonlinear field variables. For clarity let us explicitly
consider the case when N = 2 so that Bn is quadratic in z. Consistency
of (8.5.5) and (8.5.6) leads to

Bn+1Ln − L′
nBn = 0, and Bn,t = M ′

nBn −BnMn, (8.5.9)

which determine the elements of the matrices Bn
0 , B

n
1 , B

n
2 , B

n−1 as fol-
lows:

an2 = const. = a2(say), bn2 = 0, cn2 = 0, dn2 = d0
2F (n− 1), (8.5.10)

an1 = const. = a1(say), dn1 = d0
1F (n− 1), (8.5.11)

cn1 = d0rn − a0
0F (n− 1)r′n, bn1d0q

′
n−1 − a0

0F (n− 1)qn−1, (8.5.12)

an0 = a0
0F (n− 1), bn0 = d−1q

′
n−1 − a0

−1F (n− 1)qn−1, (8.5.13)

cn0 = d−1rn − a0
−1F (n− 1)r′n−1, dn0 = const. = d0(say), (8.5.14)

bn−1 = 0, dn+1
−1 = dn−1 = const. = d−1(say), (8.5.15)

cn−1 = 0, an−1 = a0
−1F (n− 1), (8.5.16)

where

F (n) =
∏n

i=0(1− q′ir′i)∏n
i=0(1− qiri)

=
n∏

i=0

G(i). (8.5.17)

Also the complete set of equations yields

(d0 − d−1)q′n + (a0
−1 − a0

0)F (n)qn = (a2 − a1)qn+1 + (d0
1 − d0

2)F (n)q′n+1,
(8.5.18)

(a2− a1)r′n + (d0
1− d0

2)F (n)rn = (d0− d−1)rn+1 + (a0
−1− a0

0)F (n)r′n+1,
(8.5.19)
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which determine the transformation between the sets (qn, rn) and
(q′n, r′n), i.e., the usual Bäcklund transformation. It should be noted
that changing the polynomial structure of Bn, by say retaining terms
up to the fourth power of z, would lead to a more complicated set of
Bäcklund transformations relations, using the same procedure. The
point to be noted is that the process of determining the coefficients
recursively can still be carried out in the case of higher-order polynomial
forms of Bn.

8.6 The Exponential Lattice

In one of the earliest investigations of the connection between Bäck-
lund transformations and the inverse scattering transform theory, Wa-
dati and Toda [140] considered the equation of motion of an exponential
lattice, better known subsequently as the Toda lattice. They succeeded
in showing how a recursive application of the transformation leads to
an algebraic formula for the solutions. Their work extended the the-
ory of Bäcklund transformations to differential-difference equations and
marked a major developement. The exponential lattice considered by
Wadati and Toda had the following equation of motion:

d2Qn

dt2
= e(Qn−Qn−1) − e(Qn+1−Qn), (8.6.1)

with Qn denoting the displacement of the nth particle from its equilib-
rium position. If a new variable rn = Qn−Qn+1 is introduced to denote
the relative displacement, then in terms of this variable the equation
of motion for the lattice assumes the form,

d2rn
dt2

= 2e−rn − e−rn+1 − e−rn−1 . (8.6.2)

Wadati and Toda derived the Bäcklund transformation for the Toda
lattice equation in the form,

d

dt
(Qn −Q′

n−1) = A
[
e−(Q′

n−Qn) − e−(Q′
n−1−Qn−1)

]
, (8.6.3)

d

dt
(Q′

n −Qn) =
1
A

[
e−(Qn+1−Q′

n) − e−(Qn−Q′
n−1)

]
, (8.6.4)
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where A is an arbitrary constant. It is easy to see that r = Qn−Qn−1

and r′ = Q′
n−Q′

n−1 satisfy (8.6.2). In most cases of interest, it is usual
to impose the following boundary condition:

Qn, Q
′
n −→ const., as |n| −→ ∞. (8.6.5)

From (8.6.3) and (8.6.4) one can show that

dQn

dt
−Ae−(Q′

n−Qn) − 1
A
e−(Qn−Q′

n−1)

=
dQn−1

dt
−Ae−(Q′

n−1−Qn−1) − 1
A
e−(Qn−1−Q′

n−2), (8.6.6)

so that by decreasing the lattice index n in steps of unity and using the
boundary conditions given by (8.6.5), one may obtain the relation,

dQn

dt
= A[e−(Q′

n−Qn) − c] + 1
A

[e−(Qn−Q′
n−1) − 1

c
], (8.6.7)

where
c = e−(Q′

−∞−Q−∞), (8.6.8)

and similarly

dQ′
n

dt
= A[e−(Q′

n−Qn) − c] + 1
A

[e−(Qn+1−Q′
n) − 1

c
]. (8.6.9)

Equations (8.6.7) and (8.6.9) give the Bäcklund transformation for sys-
tem (8.6.2) under the above-mentioned boundary conditions as well as
for (8.6.1), since the latter is equivalent to system (8.6.2) with its as-
sociated boundary condition.

In [141] Toda and Wadati go on to derive a canonical transformation
connecting two solutions of the exponential lattice equation, thereby
obtaining a discrete version of the Bäcklund transformation. In addi-
tion, the transformation is also shown to be canonical. In the subse-
quent sections we shall dwell on the canonicity of Bäcklund transfor-
mations from different points of view. However it is still interesting
at this juncture to briefly reconstruct their reasoning. It will be ob-
served that the equation of motion as given by (8.6.1) can be derived
from the following Hamiltonian for the Toda lattice, using the notation
Q = {Qn} and P = {Pn}:

H(Q,P ) =
1
2

∞∑
n=−∞

P 2
n +

∞∑
n=−∞

e−(Qn−Qn−1) (8.6.10)
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The Hamiltonian equations are

Q̇n =
∂H

∂Pn
= Pn, (8.6.11)

Ṗn = − ∂H

∂Qn
= e−(Qn−Qn−1) − e−(Qn+1−Qn). (8.6.12)

Toda and Wadati next observed that if a transformation of the sets
of variables P = {Pn}, Q = {Qn} to P ′ = {P ′

n} and Q′ = {Qn} is
considered, so that

Pn =
fn(Q)
fn(Q′)

+
fn−1(Q′)
fn(Q)

, (8.6.13)

P ′
n =

fn(Q)
fn(Q′)

+
fn(Q′)
fn+1(Q)

, (8.6.14)

then it is readily observed that the construct,⎧⎨⎩1
2

N∑
n=−N0

P ′2
n +

N∑
n=−N0

fn−1(Q′)
fn(Q′)

⎫⎬⎭−
⎧⎨⎩1

2

N∑
n=−N0

P 2
n +

N∑
n=−N0

fn(Q)
fn+1(Q)

⎫⎬⎭ ,
= −1

2
{
f−N0−1(Q′)/f−N (Q)

}2 +
1
2

{
fN (Q′)
fN+1(Q)

}2

. (8.6.15)

This means that if we have a canonical transformation of the form given
in (8.6.13 and 8.6.14), then it will transform the Hamiltonian:

H(Q,P ) =
1
2

∑
n

P 2
n +

∑
n

fn(Q)
fn−1(Q)

, (8.6.16)

to itself except for a constant term, when suitable boundary conditions
are imposed. It is now quite natural to seek a canonical transformation
of the form (8.6.13 and 8.6.14), with fn(Q) = eQn corresponding to
the Hamiltonian for the Toda lattice. Considering now a canonical
transformation,

Pn =
∂W

∂Qn
, P ′

n = − ∂W
∂Q′

n

, (8.6.17)

induced by the generating function,

W (Q,Q′) =
∑
j

[
Ae−(Q′

j−Qj) − 1
A
e−(Qj+1−Q′

j) + α(Q′
j −Qj)

]
,

(8.6.18)
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where A and α are constants to be determined by the boundary con-
ditions. We have therefore from (8.6.13 and 8.6.14)

Pn = Ae−(Q′
n−Qn) +

1
A
e−(Qn−Q′

n−1) − α, (8.6.19)

P ′
n = Ae−(Q′

n−Qn) +
1
A
e−(Qn+1−Q′

n) − α. (8.6.20)

Now for the case of an infinite lattice, assuming that as |n| → ∞ the
lattice variables are constants with

Qn → Q−∞, Q′
n → Q′

−∞, as n→ −∞, (8.6.21)

Qn → Q+∞, Q′
n → Q′

+∞, as n→ +∞, (8.6.22)

we have, since Pn and P ′
n must then vanish at infinity,

∞∑
n=−∞

P ′2
n −

∞∑
n=−∞

P 2
n =

−2
∞∑

n=−∞
e−(Q′

n−Q′
n−1) + 2

∞∑
n=−∞

e−(Qn+1−Qn) + const. (8.6.23)

It is known from the general theory of canonical transformations, that
the transformed Hamiltonian is related to the old Hamiltonian in the
following manner:

H ′(Q′, P ′) = H
[
Q(Q′, P ′), P (Q′, P ′)

]
+
∂W

∂t
. (8.6.24)

Consequently, we have from (8.6.18) and (8.6.24)

H ′(Q′, P ′) =
1
2

∞∑
n=−∞

P ′2
n +

∞∑
n=−∞

e−(Q′
n−Q′

n−1) + const. (8.6.25)

Equation (8.6.25) is of the same form as (8.6.10) except for the addi-
tional constant term. From this it is apparent that the above transfor-
mation maps a dynamical space of the system to itself, so that

Q̇′
n =

∂H ′

∂Pn
= P ′

n, (8.6.26)

Ṗ ′
n = − ∂H

′

∂Q′
n

= e−(Q′
n−Q′

n1
) − e−(Q′

n+1−Q′
n). (8.6.27)
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Thus the transformation constitutes a canonical Bäcklund transforma-
tion. To check the correctness of the above method let us consider the
following example. Suppose, we begin with the trivial solution Qn = 0,
and see if

eQ
′
n = A

cosh(κn+ βt)
cosh(κ(n+ 1) + βt)

, (8.6.28)

represents another solution with

A = eκ, α = eκ + e−κ, β = sinhκ. (8.6.29)

Since Pn and P ′
n both vanish at infinity, hence we have from (8.6.19

and 8.6.20)

Ae−(Q′
−∞−Q−∞) +

1
A
e−(Q−∞−Q′

−∞) − α = 0, (8.6.30)

Ae−(Q′∞−Q∞) +
1
A
e−(Q∞−Q′∞) − α = 0. (8.6.31)

From (8.6.30 and 8.6.31), solving for A and α we have

α = AC +
1
AC

, C = e−(Q′
−∞−Q−∞), (8.6.32)

A = exp
[
1
2
(Q′

∞ +Q′
−∞)− 1

2
(Q∞ +Q−∞)

]
. (8.6.33)

Assuming A > 0, one can show from (8.6.27) that the difference be-
tween the total momenta

∑
Pn and

∑
P ′
n is given entirely by the bound-

ary values, i.e.,

∞∑
n=−∞

(P ′
n − Pn) = 2 sinh

1
2
{(Q′

∞ −Q′
−∞)− (Q∞ −Q−∞)}, (8.6.34)

so that
∑∞

n=−∞ P ′
n =

∑∞
n=−∞ Pn + const. Again from (8.6.27) one has

∑
n

(P ′
n + α)2 = A2

∑
n

e−2(Q′
n−Qn) +

1
A2

∑
n

e−2(Qn+1−Q′
n)

+2
∑
n

e−(Qn+1−Qn) (8.6.35)

∑
n

(Pn + α)2 = A2
∑
n

e−2(Q′
n−Qn) +

1
A2

∑
n

e−2(Qn−Q′
n−1)
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+2
∑
n

e−(Q′
n−Q′

n−1); (8.6.36)

then by using the expressions obtained for A,α and β from (8.6.29)
and (8.6.28) in (8.6.19) we find that

Pn =
cosh[κ(n+ 1) + βt]

cosh(κn+ βt)
+

cosh[κ(n− 1) + βt]
cosh(κn+ βt)

− (eκ + e−κ) = 0,

(8.6.37)
while (8.6.20) gives us

P ′
n =

cosh[κ(n+ 1) + βt]
cosh(κn+ βt)

+
cosh[κn+ βt]

cosh(κ(n+ 1) + βt)
− (eκ + e−κ)

= sinhκ
{

sinh(κn+ βt)
cosh(κn+ βt)

− sinh[κ(n+ 1) + βt]
cosh[κ(n+ 1) + βt]

}
= Q̇′

n. (8.6.38)

Thus (8.6.28) represents a valid soliton solution. In fact the transfor-
mation given by (8.6.19 and 8.6.20) is such that it adds another soliton
to the solution, which is a general feature of Bäcklund transformations
derived in the above manner.

8.7 Canonical Transformations

In Section 8.6 we briefly touched upon the canonical nature of Bäck-
lund transformations (BT). This served to indicate the dynamical sig-
nificance of such transformation, and suggests that the theory of canon-
ical transformations plays a significant role in the case of completely
integrable systems. We will therefore dwell on this aspect of the theory.

In order to understand how the general theory of canonical trans-
formation applies to nonlinear evolution equations, let us consider an
evolution equation of the form [142],

φxt = K(φ, φx, φxx), (8.7.1)

where K(φ, φx, φxx) is in general, a nonlinear function of φ and its x-
derivatives, but does not include t−derivatives of φ. Equation (8.7.1)
can be derived from the Euler-Lagrange equation:

∂

∂t

(
δL

δφt

)
− δL

δφ
= 0; (8.7.2)
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the Lagrangian L is given by

L =
∫ ∞

−∞
dxL where L = φxφt − U(φ, φx, φxx...). (8.7.3)

From (8.7.2 and 8.7.3) we have

φxt = −1
2
δU

δφ
and U [φ] =

∫ ∞

−∞
dxU(φ, φx, φxx....). (8.7.4)

Since the Lagrangian density L is linear with respect to φt, the Hamilto-
nian formalism is not uniquely defined. However, we may still consider
the Hamilton’s equation in the following form:

φxt = −δH
δφ

, (8.7.5)

with the Hamiltonian given by

H[φ] =
1
2
U [φ]. (8.7.6)

Note that, when U involves only x−derivatives of φ, one can write
(8.7.4) in the following manner using (8.7.5):

φxt =
∂

∂x

(
δH

δφx

)
, H[φ] =

1
2
U [φx]. (8.7.7)

Now a transformation that maps φ into φ′ is canonical if the Pfaffian
form,

θ =
∫ ∞

−∞
dx(φxdφ−Hdt), (8.7.8)

is invariant under the transformation, i.e.,∫ ∞

−∞
dx(φxdφ−Hdt) =

∫ ∞

−∞
dx(φ′xdφ

′ −H′dt) + dW [φ, φ′; t]. (8.7.9)

Here W [φ, φ′; t] is an arbitrary functional referred to as a generating
functional of the transformation. Hamilton’s equation as given by
(8.7.7) follows from the canonical symplectic form, i.e., from the ex-
terior derivative of the Pfaffian form given by (8.7.8), as is easy to
verify. For this purpose, we construct the exterior differential form dθ
from (8.7.8), which is

ω ≡ dθ =
∫ ∞

−∞
dx{dφx ∧ dφ−

∑
i=0

(−1)i
∂i

∂xi
∂H
∂φt

dφ ∧ dt}, (8.7.10)
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so that

ω =
∫ ∞

−∞
{dφx ∧ dφ−

∑
i=1

(−1)i−1 ∂
i−1

∂xi−1

∂H
∂φt

dφx ∧ dt}, (8.7.11)

where φi ≡ (∂/∂x)iφ and ∧ stands for the exterior product. If the dif-
ferential two-form ω is an integral invariant (i.e., θ is a relative integral
invariant), then we obtain the Hamiltonian flow in the following form:

φxt = −
∑
i=0

(−1)i
∂i

∂xi
∂H
∂φt

= −δH[φ]
δφ

, (8.7.12)

and hence

φt =
∑
i=1

(−1)i−1 ∂
i−1

∂xi−1

∂H
∂φt

=
δH[φx]
δφx

. (8.7.13)

Thus the Hamiltonian flow is uniquely determined by the Pfaffian form
in (8.7.8). It follows that if θ is invariant under the transformation,
then φ′ will satisfy the equation:

φ′xt = −δH
′

δφ′
. (8.7.14)

The canonical transformation for the system may now be defined. In-
tegration by parts of (8.7.9) results in∫ ∞

−∞
dx(φdφx+Hdt) =

∫ ∞

−∞
dx(φ′dφ′x+H′dt)−dW̃ [φx, φ′x; t]; (8.7.15)

therefore the canonical transformation is given by the formulae,

φ = −δW̃
δφx

, and φ′ =
δW̃

δφ′x
. (8.7.16)

Going back to (8.7.15), we see that since dW [φ, φ′; t] is an exact differ-
ential form, hence

dW [φ, φ′; t] =
∂W

∂t
dt+

∫ ∞

−∞
dx

(
δW

δφ
dφ+

δW

δφ′
dφ′
)
, (8.7.17)

so that one has the following transformation equations:

φx =
δW

δφ
, φ′x = −δW

δφ′
, H ′ = H +

∂W

∂t
. (8.7.18)
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In general, if the Hamiltonian does not depend explicitly on time t,
then the generating functionalW [φ, φ′; t] will assume the following form
[113, 143]:

W [φ, φ′, t] = S[φ, φ′]− Et, (8.7.19)

with E being the constant energy integral, determined by the boundary
conditions on the flows φ and φ′. The transformed Hamiltonian H ′ is
then given by

H ′ = H +
∂W

∂t
= H − E. (8.7.20)

In particular for the case of stationary flows, where the Hamiltonian H
is transformed into H ′

0 = 0, we get the Hamilton-Jacobi equation,

H[φ,
δS

δφ
] = E. (8.7.21)

In general to derive the canonical transformation, one needs to solve
(8.7.21). However, if we restrict our discussion to canonical transfor-
mations in which the transformed Hamiltonian H ′ has the same form
as the original Hamiltonian, except for an additional constant term,
then the transformations of interest to us are such that

H′(φ′, φ′x....)−H(φ, φx...) =
∂

∂x
F(φ, φ′, φx, φ′x, ....). (8.7.22)

Moreover, if we assume that the generating functional W [φ, φ′; t], has
the form,

W [φ, φ′; t] =
∫ ∞

−∞
{φ′φx + G(φ, φ′)}dx− Et, (8.7.23)

then from (8.7.16) and (8.7.18) we find that

G(φ, φ′) = G(φ− φ′), (8.7.24)

φx + φ′x =
∂

∂φ
G(φ− φ′) = g(φ = φ′), (8.7.25)

E = −F(φ, φ′, φx, φ′x....)|x=∞
x=−∞.

Using the conditions (8.7.16) and (8.7.22) we can determine the func-
tional form of g(φ − φ′) and obtain a canonical transformation that
maps the Hamiltonian to itself. We illustrate this procedure with an
example.
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Example: Sine-Gordon equation
In a characteristic frame the Sine-Gordon equation is given by

φxt = sinφ (8.7.26)

with the boundary condition φ −→ 0(mod 2π) as |x| → ∞. The La-
grangian density is

L = φxφt + 2(1− cosφ), (8.7.27)

so that from (8.7.27), the Hamiltonian for this system is

H[φ] = −
∫ ∞

−∞
(1− cosφ)dx. (8.7.28)

Proceeding as stated, we find the difference between the Hamiltonian
densities H′ and H to be given by

H′(φ′)−H(φ) = cosφ′ − cosφ = 2 sin
φ+ φ′

2
sin

φ− φ′
2

. (8.7.29)

According to (8.7.22), we should have

H′ −H =
∂

∂x
F(φ, φ′),

= Fφφx + Fφ′φ′x =
1
2
[
(Fφ −Fφ′)(φx − φ′x) + (Fφ −Fφ′)(φx + φ′x)

]
,

(8.7.30)
where Fφ = ∂

∂φF(φ, φ′). Compatibility of (8.7.29 and 8.7.30) requires
that we identify F(φ, φ′) = F(φ+ φ′), leading thereby to the identity,

H′(φ′)−H(φ) = 2 sin
φ+ φ′

2
sin

φ− φ′
2

= g(φ−φ′)Fφ(φ+φ′). (8.7.31)

Hence we obtain

g(φ− φ′) = A sin
φ− φ′

2
(8.7.32)

and

Fφ(φ+ φ′) =
2
A

sin
φ+ φ′

2
, (8.7.33)

with A being a constant. Consequently, the generating functional
W [φ, φ′; t] becomes

W [φ, φ′; t] =
∫ ∞

−∞

[
φ′φx − 2A{cos φ− φ

′

2
− 1}

]
dx− Et, (8.7.34)
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with the constant E being determined by

E = − 4
A

cos
φ+ φ′

2
|x=∞
x=−∞. (8.7.35)

Thus the canonical transformation induced by the generating functional
(8.7.34) is as follows:

φx =
δW

δφ
= −φ′x +A sin

(
φ− φ′

2

)
. (8.7.36)

For the sake of clarity, let us consider a transformation from a solu-
tion with boundary conditions φ −→ 0 as x → −∞ and φ → 2π as
x −→ +∞, to a trivial solution φ′ = 0. Under this transformation, a
flow on the dynamical surface with energy integral E = − 4

A , is mapped
into a stationary flow E = 0. Comparision of this transformation with
the BT makes the solution structure clearer. It will be noticed that
the transformation (8.7.36), is just the spatial part of the BT so that
the original and transformed system represent the one soliton and the
vacuum state, respectively. Now the temporal part of the BT can be
derived using Hamilton’s equation and the canonical transformation.
We illustrate this particular point once again for the Sine-Gordon equa-
tion. From (8.7.36) we have

φx + φ′x = A sin
(
φ− φ′

2

)
. (8.7.37)

Differentiating this equation with respect to time t and making use of
the Hamilton’s equation φxt = sinφ, yields

A

2
(φt − φ′t) cos(

φ− φ′
2

) = sinφ+ sinφ′ = 2 sin(
φ+ φ′

2
) cos(

φ− φ′
2

).
(8.7.38)

Therefore one finally obtains

φt − φ′t =
4
A

sin(
φ+ φ′

2
). (8.7.39)

The pair of (8.7.36) and (8.7.37) constitute the well-known Bäcklund
transformation for the Sine-Gordon system.

Thus one is led to the conclusion that the Bäcklund transformation
is a canonical transformation, keeping the Hamiltonian form invariant.



Bäcklund Transformations 287

This result implies that the procedure of constructing N-soliton so-
lutions by Bäcklund transformation may be interpreted as a canonical
transformation between the dynamical states, i.e., between the station-
ary state (vacuum state) and the N-soliton state.

8.8 Group Property of Bäcklund Transformations

It is interesting to note that canonical transformations derived by the
method described above exhibit a group property. Indeed, they may be
shown to constitute an Abelian group. To illustrate their group nature
we consider once again the Sine-Gordon equation. As this equation is
invariant under φ→ −φ, one can write the generating functional of the
canonical transformation (8.7.18) in the form

Wa[φ, φ′; t] =
∫ ∞

−∞

[
φφ′x − 2a

(
cos(

φ+ φ′

2
)− 1

)]
dx− Eat, (8.8.1)

where a is a continuous transformation parameter. Then the canonical
transformation Ta : φx −→ φ′x is given by

φx =
δWa

δφ
= φ′x + a sin

(
φ+ φ′

2

)
. (8.8.2)

We now have the following theorem.
Theorem: The transformation φx = φ′x + a sin

(
φ+φ′

2

)
constitutes a

group, so that the following properties hold:
(i) Closure: If transformation Ta : φx −→ φ′x and Tb : φ′x −→ φ′′x are

canonical then their product transformation T = TaTb : φx −→ φ′′x is
also canonical.

(ii) Associative law: If Ta, Tb and Tc denote canonical transforma-
tions, then

Tc(TbTa) = (TcTb)Ta.

(iii) Identity: There is a unique identity element corresponding to
the identity transformation,

T0 : φx = φ′x.
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(iv) Unique inverse: To every element Ta : φx −→ φ′x, there exists a
unique element T−1

a : φ′x −→ φx, corresponding to the inverse transfor-
mation of Ta.
Proof: Since Ta is a canonical transformation, there is a generating

functional Wa[φ, φ′; t] so that

dWa =
∫ ∞

−∞
dx(

δWa

δφ
dφ+

δWa

δφ′
dφ′) +

∂Wa

∂t
dt,

=
∫ ∞

−∞
dx(φxdφ− φ′xdφ′)− (H −H ′)dt.

Similarly for Tb we have

dWb =
∫ ∞

−∞
dx(φ′xdφ

′ − φ′′xdφ′′)− (H ′ −H ′′)dt.

Hence

d(Wa +Wb) =
∫ ∞

−∞
dx(φxdφ− φ′′xdφ′′)− (H −H ′′)dt, (8.8.3)

indicating therefore that the product transformation T = TbTa, is also
canonical. The generating functional of the product transformation
T = TbTa is given by

W [φ, φ′′; t] = Wa[φ, φ′; t] +Wb[φ′, φ′′; t]. (8.8.4)

Now by using the transformations,

φx = φ′x + a sin(
φ+ φ′

2
), (8.8.5)

φ′x = φ′′x + a sin(
φ′ + φ′′

2
), (8.8.6)

one can eliminate φ′ and φ′xfrom the right-hand side of (8.8.5 and 8.8.6);
the resulting generating functional W [φ, φ′′; t], then depends symmet-
rically on two parameters a and b . This completes the proof of the
closure property.
Proof of (ii) is obvious since the generating functional for both sides of
the the equation Tc(TbTa) = (TcTb)Ta are the same, namely Wa+Wb+
Wc.
The proof of the identity property follows from (8.8.5), upon setting
a = 0, whence we have from the generating functional,

W0[φ, φ′; t] =
∫ ∞

−∞
φφ′xdx.
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Finally, the inverse transformation of Ta, viz, T−1
a : φ′x −→ φx, is given

by

dW−1
a =

∫ ∞

−∞
dx(φ′xdφ

′ − φxdφ)− (H ′ −H)dt = −dWa. (8.8.7)

Therefore, the generating functional for the inverse transformation is
W−1

a = −Wa, i.e., T−1
a = T−a. Lastly, it is clear that TaTb = TbTa so

the group is Abelian.
Thus the Bäcklund transformation for the Sine-Gordon equation,

considered as a canonical transformation, forms an Abelian group. Sim-
ilar conclusions may be shown to hold for the other standard nonlinear
equations such as the KdV, mKdV equations, etc.

8.9 Recent Developments in the Bäcklund
Transformation Theory

After describing some of the original attempts at understanding the
canonical nature of Bäcklund transformations, let us now consider some
of the more recent developments in the theory of Bäcklund transfor-
mations. It will be realized that the initial attempts at deriving the
canonicity of Bäcklund transformations did not take into account the
Hamiltonian structure of the systems. Recently, there has, however,
been a keen interest in discrete integrable systems or integrable map-
pings, together with attempts at finding the most universal method
of solving completely integrable systems. Perhaps the most significant
method for arriving at a general formalism for solving integrable sys-
tems is the modern approach of the separation of variables in its most
general form [147]. This in turn has given impetus to taking a fresh
look at some of the traditional methods of integration such as the Dar-
boux transformation, which had earlier been so successfully applied to
many physical and mathematical problems.

It has also led to the study of Bäcklund transformations for finite
dimensional Hamiltonian systems. The latter are canonical transfor-
mations depending on a Bäcklund transformation parameter, say λ,
and may be shown to lead to the separation of variables when n such
mappings are applied to an integrable system with n degrees of free-
dom. Indeed the sequence of Bäcklund transformation parameters λj ,
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together with a set of suitably defined conjugate variables µj , constitute
the separation variables and satisfy a new property called spectrality.

From the Hamiltonian point of view, the significance of Bäcklund
transformations is most prominently expressed by the close relation-
ship between the transformations and Baxter’s quantum Q operator.
This was discovered by Pasquier and Gaudin [148]. In order to un-
derstand the connection between the spectrality property of Bäcklund
transformations and the separation of variables [149], let us consider
a Liouville integrable system with n degrees of freedom, described by
canonical Darboux variables X ≡ {Xi}ni=1 and x = {xi}ni=1. They obey
the Poisson brackets:

{Xi, Xj} = {xi, xj} = 0 {Xi, xj} = δij .

The n functionally independent Hamiltonians Hi ≡ Hi(X,x), are in
involution:

{Hi, Hj} = 0 i, j = 1, 2, ...., n.

Let us assume that there exists a Bäcklund transformation Bλ, which
is also a canonical transformation, from the set (X,x) to (Y, y). Both
the sets are canonical and depend on a complex parameter λ. Owing
to its canonical nature, there exists a generating function Fλ(y;x) say,
so that

Xi =
∂Fλ
∂xi

and Yi = −
∂Fλ
∂yi

. (8.9.1)

Let us list the main properties of Bäcklund transformations, namely:

• canonicity,

• invariance of H, i.e., Hi(X,x) = Hi(Y, y), i = 1, ...., n,

• commutativity, Bλ1 ◦ Bλ2 = Bλ2 ◦ Bλ1 , where ◦ denotes the com-
position of canonical transformations, and

• algebraicity, which means that the equations describing the Bäcklund
transformation Bλ are supposed to be algebraic with respect to X and
Y and properly chosen functions of x and y.

Among these, it should be mentioned that canonicity and invariance
of the H’s are also common to integrable canonical mappings, but the
Bäcklund transformations to be considered here are also assumed to
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depend on an additional parameter λ, which will be seen to play a
vital role in the subsequent analysis and is at the root of the richness
of the underlying theory.

When the integrable system in question is solvable by the inverse
scattering method, then it is often the case that the commuting Hamil-
tonians Hi are obtained from the coefficients of the characteristic poly-
monial of the Lax operator L(u) ≡ L(u;X,x) viz

W (u, v; {Hi}) = det (v − L(u)). (8.9.2)

Since the invariance of Hi under Bλ is then equivalent to the invariance
of the spectrum of L(u), there exists an invertible matrix M(u) so that

M(u)L(u;X,x) = L(u;Y, y)M(u). (8.9.3)

8.9.1 Spectrality

Let µ be defined as the variable conjugated to λ by the relation,

µ = −∂Fλ
∂µ

. (8.9.4)

The notion of spectrality is apparently a new concept in the theory
of Bäcklund transformations. When a Bäcklund transformation Bλ

exists, then it is said to be associated with the Lax operator L(u), if
for some function f(µ), the pair (λ, f(µ)) lies on the spectral curve of
the Lax matrix:

W (λ, f(µ); {Hi}) ≡ det(f(µ)− L(λ)) = 0. (8.9.5)

To understand the meaning of (8.9.5) one has to turn to the quantum
case. In a pioneering paper by Pasquier and Gaudin [148] a remarkable
connection was established between the classical Bäcklund transforma-
tion Bλ for the Toda lattice and Baxter’s Q operator. The authors
constructed a certain integral operator Q̂λ,

Q̂λ : Ψ(x) −→
∫
dxQλΨ(x), (8.9.6)

(here dx = dx1 ∧ .... ∧ dxn) whose properties parallel those of the clas-
sical Bäcklund transformation Bλ. In the quantum case, the canonical
transformation is replaced by the similarity transformation,

Ŷi = Q̂λX̂iQ̂
−1
λ , and ŷi = Q̂λx̂iQ̂

−1
λ , (8.9.7)
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where the ∧ distinguishes the quantum operators from their classical
counterparts. In fact the correspondence between the kernel of Q̂λ, viz
Qλ(y, x) and the generating function of the classical Bäcklund trans-
formation is given by the semiclassical formula,

Qλ(y, x) ≈ exp

(
− i
h̄
Fλ(y;x)

)
, h̄ −→ 0. (8.9.8)

At this point let us state the fundamental defining properties of Bax-
ter’s Q operator.

8.9.2 Properties of the Q operator

TheQ operator is assumed to satisfy the following operator identities:

[t(u), Q̂λ] = 0,

[Q̂λ1 , Q̂λ2 ] = 0,

Q̂λt(λ) = α(λ)Q̂λ−1 + β(λ)Q̂λ+1, (8.9.9)

where α, β are functions of the parameter λ and u stands here for the
spectral parameter. Corresponding to the first property above, which
essentially translates to the property [Q̂λ, Hi] = 0 of the Q̂λ operator
(since t(u) is a transfer matrix), the corresponding property of Bλ is
that the Hamiltonian is invariant, i.e.,

Hi(X,x) = Hi(Y, y). (8.9.10)

The commutativity [Q̂λ1 , Q̂λ2 ] = 0 on the other hand corresponds to
the property,

Bλ1 ◦Bλ2 = Bλ2 ◦Bλ1 .

However, the most interesting property of Q̂λ is that its eigenvalues
φ(λ) on the joint eigenvectors Ψν of Hi and Qλ labelled with the quan-
tum numbers ν, i.e.,

Q̂λΨν = φν(λ)Ψν (8.9.11)

satisfy the separation equation, which is a certain difference or differ-
ential equation of the form

Ŵ

(
λ,−ih̄ d

dx
; {hi}

)
φν(λ) = 0, (8.9.12)

containing the eigenvalues hi of Hi . The classical limit of (8.9.12) is
the spectrality equation (8.9.5).
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8.9.3 Application of spectrality to the separation of variables

To understand the role played by spectrality, it is useful to first con-
sider the quantum case. By definition an operator K̂ is said to be a
separating operator if it transforms the joint eigenfunctions Ψν of Hi,
into a product of separated functions φν(λ) of a single variable λ, i.e.,

K̂Ψν = cν

n∏
i=1

φν(λi), (8.9.13)

satisfying the separation equation (8.9.11). In principle, since the coef-
ficients cν in (8.9.13) can be chosen arbitrarily, there exists an infinite
number of separating operators. However, the actual problem consists
in finding those separating operators, which can be described as integral
operators with explicitly given kernels. In fact, knowledge of a Q oper-
ator enables one to construct separating operators. If we consider the
operator product Q̂λ1....λn ≡ Q̂λ1 ....Q̂λn , having kernel Qλ1...λn(y, x),
and any function ρ(y), then it is possible to introduce the operator,

K̂ρ : Ψ(x) −→
∫
dx

∫
dyρ(y)Qλ1....λn(y, x)Ψ(x), (8.9.14)

so that

K̂ρ : Ψν(x) −→
∫
dx

∫
dyρ(y)

n∏
i=1

φν(λi)Ψ(x). (8.9.15)

Here use has been made of Q̂λi
Ψν = φν(λi)Ψν , from which it is evident

that K̂ρ is a separating operator with the coefficients cν given by

cν =
∫
dyρ(y)Ψν(y). (8.9.16)

As the eigenfunctions Ψν(y) form a basis in the corresponding Hilbert
space, the formula (8.9.16) provides a one-to-one correspondence be-
tween reasonably chosen classes of cν and ρ(y). Hence (8.9.13) basically
describes all possible separating operators. Their kernels Kρ(λ;x) are
given explicitly by multiple integrals of the form,

Kρ(λ;x) =
∫
dy

∫
dξ(1)....

∫
dξ(n−1)ρ(y)

×Qλ1(y; ξ
(1))Qλ2(ξ

(1); ξ(2))....Qλn(ξ
(n−1);x). (8.9.17)
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The classical analogue of the preceding argument may be described
as follows. Considering the composition Bλ1....λn = Bλ1 ◦ .... ◦ Bλn of
Bäcklund transformations and its corresponding generating function
Fλ1...λn(y, x), let us switch the roles of the y’s and the λ’s so that the
λ’s are now treated as the dynamical variables while the y’s are now
parameters. Then Fλ1...λn(y, x) becomes the generating function of
the n− parametric canonical transformation Ky from (x, y) −→ (µ, λ),
given by the equations:

Xi =
∂Fλ1...λn

∂xi
and µi = −

∂Fλ1...λn

∂λi
. (8.9.18)

It then follows that the pairs (λi, µi) satisfy the separation equation
W (λi, f(µi); {Hi}) = 0, which constitutes the definition of the sepa-
rating canonical transformation in the classical case [147]. This clas-
sical construction corresponds in the quantum case, to setting ρ(y) =
δ(y − ỹ1)....δ(y − ỹn), where ỹi are some constants.

It remains however an open question as to what could be the classical
analogue of (8.9.17) for generic ρ(y). Finally, it should be mentioned
that for finite dimensional systems the composition of n Bäcklund
transformations, with n being the number of degrees of freedom, is
a sort of universal Bäcklund transformation in the sense that any other
transformation preserving the Hamiltonians Hi must be expressible in
terms of Bλ1....λn . This follows from the observation that the transfor-
mation Bλ acts as a shift in the angle coordinate on the Liouville torus
as φi −→ φi + bi(λ). For generic bi(λ) the sum

∑n
j=1 bi(λ) must then

cover the n-dimensional Liouville torus, which results in the universal-
ity of Bλ1...λn .

8.10 Sklyanin’s Formalism for Canonical Bäcklund
Transformations

Recently Sklyanin developed an elegant formalism based on the clas-
sical r matrix, for deriving Bäcklund transformations for a wide class
of discrete nonlinear integrable systems and has provided an explicit
proof of their canonicity, for Hamiltonian systems governed by an
SL(2)-invariant r matrix. Sklyanin’s formulation considers an inte-
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grable Hamiltonian system with a matrix Lax operator T (u), depending
on the dynamical variables with u being a complex spectral parameter.
Furthermore, it assumes that the commuting Hamiltonians of the sys-
tem are generated by the spectral invariants of T (u). To ensure that
the transformation keeps the Hamiltonian of the system invariant, it is
necessary that the spectral invariants be preserved under the transfor-
mation. Consequently, the Lax matrix T (u) has to be related to the
transformed Lax matrix T̃ (u) by a similarity transformation, so that

T̃ (u) = M(u)T (u)M(u)−1. (8.10.1)

At this point one needs to address two questions. First, given a T (u),
what should be the form of the matrix M(u) that will generate the re-
quired Bäcklund transformation? Secondly, assuming that the Bäcklund
transformations exists, does it really preserve the Poisson brackets, i.e.,
does it generate a canonical transformation? These issues were specif-
ically addressed in two brilliant papers [150, 152]. In describing this
formalism we shall follow Sklyanin’s original work as closely as possible.
To this end, let us suppose that the Possion algebra of the Lax matrix
T (u) is expressible in the following form:{

T 1(u), T 2(v)
}

=
[
r12(u− v), T 1(u)T 2(v)

]
, (8.10.2)

where standard notations T 1(u) = T (u)⊗I and T 2(u) = I⊗T (u) have
been used. Here

r12(u− v) =
κP12

u− v ,

is the standard SL(2)-invariant solution of the classical Yang-Baxter
equation, κ is a constant while P12 is the permutation operator in
C2 ⊗ C2. It is interesting to note that this class of integrable sys-
tems includes such well-known models as the nonlinear Schrödinger
equation, Heisenberg magnetic chain, Toda lattice. Next the following
ansatz for the matrix M(u) is made:

M(u) =

(
u− λ1 + pq p
−pq2 + 2µq u− λ2 − pq

)
, (8.10.3)

where λ1 and λ2 are taken to be the free parameters of the Bäcklund
transformations, while the parameters p and q are to be determined
from the defining equation of the Bäcklund transformations, namely
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(8.10.1), noting that µ = (λ1 − λ2)/2. We introduce the eigenbasis of
M(u):

|1 >=
1
2µ

(
1
q

)
, |2 >=

1
2µ

(
p

2µ− pq

)
, (8.10.4)

together with its dual basis,

< 1| = (2µ− pq,−p), < 2| = (q, 1), (8.10.5)

we can define the spectral projectors,

Pij = |i >< j| i, j ∈ {1, 2}. (8.10.6)

The spectral projectors satisfy

PijPkl = δjkPil, (8.10.7)

and in terms of them, the matrix M(u) is decomposed in the following
form:

M(u) = (u− λ1)P11 + (u− λ2)P22. (8.10.8)

Furthermore, one finds that M−1(u) may also be decomposed in terms
of the projectors as follows:

M(u)−1 = (u− λ1)−1P11 + (u− λ2)−1P22. (8.10.9)

Notice that
det M(u) = (u− λ1)(u− λ2) (8.10.10)

is degenerate at λ1 and λ2. To determine the parameters p and q, let
us assume that T (u) is a polynomial in u. Furthermore, in order that
it retains this character even after the transformation, we require from
(8.10.1) that Res T̃ (u)|u=λi

, i = 1, 2 should vanish. This gives rise to
the following conditions, namely

< 2|T (λ1)|1 >= 0 < 1|T (λ2)|2 >= 0, (8.10.11)

which may be expressed also in the form,

trP12T (λ1) = 0, trP21T (λ2) = 0. (8.10.12)

These conditions implicitly determine the parameters p and q, so that
with p and q determined by them, the matrix T̃ (u) as defined by (8.10.1)
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is a function of the dynamical variables and the two free parameters λ1

and λ2. To show that the transformation given by (8.10.1) preserves
the Poisson bracket (8.10.2), we have to show that T̃ (u) satisfies the
relation,{

T̃ 1(u), T̃ 2(v)
}

=
[
r12(u− v), T̃ 1(u)T̃ 2(v)

]
. (8.10.13)

Substituting (8.10.1) into the right-hand side of (8.10.13) and differen-
tiating the products of matrices one arrives at the following expression,
namely{

T̃ 1(u), T̃ 1(u)
}

= 〈M1M2〉T̃ 1(u)T̃ 2(v)− T̃ 1(u)〈M1M2〉T̃ 2(v)+

+〈M1T 2〉T̃ 1(u) + [r̃12, T̃
1(u)T̃ 2(v)]− T̃ 1(u)〈M1T 2〉−

−T̃ 2(v)〈M1M2〉T̃ 1(u)−T̃ 2(v)〈T 1M2〉+T̃ 1(u)T̃ 2(v)〈M1M2〉, (8.10.14)

where the following notation has been introduced:

〈T 1M2〉 = M1(u){T 1(u),M2(u)}M1(u)−1M2(v)−1, (8.10.15)

〈M1T 2〉 = M2(v){M1(u), T 2(v)}M1(u)−1M2(v)−1, (8.10.16)

〈M1M2〉 = M1(u)M2(v){M1(u),M2(v)}M1(u)−1M2(v)−1, (8.10.17)

and
r̃12 = M1(u)M2(v)r12M

1(u)−1M2(v)−1. (8.10.18)

To evaluate the right-hand side of (8.10.14) the following identity is
useful:

P12 = P 1
11P

2
11 + P 1

12P
2
21 + P 1

21P
2
12 + P 1

22P
2
22, (8.10.19)

using this, one can show that

r̃12 = r12 + 2µκ

{
P 1

12P
2
21

(u− λ2)(v − λ1)
− P 1

21P
2
12

(u− λ1)(v − λ2)

}
. (8.10.20)

Next, to calculate the Poisson brackets between T (u) and M(u), the
following technique is employed . It will be noticed from (8.10.12) that
if f is any function on the phase space, then

{f, trP12T (λ1)} = {f, trP21T (λ2)} = 0. (8.10.21)
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But as
{f, trP12T (λ1)} = {f, p}tr∂P12

∂p
T (λ1)+

+{f, q}tr∂P12

∂q
T (λ1) + trP12{f, T (λ1)} = 0, (8.10.22)

and likewise

{f, trP21T (λ2)} = {f, p}tr∂P21

∂p
T (λ2)+

+{f, q}tr∂P21

∂q
T (λ2) + trP21{f, T (λ2)} = 0. (8.10.23)

Treating (8.10.22 and 8.10.23) as a linear system of equations in {f, p}
and {f, q}, we find that as

∂P12

∂p
= 0,

∂P12

∂q
=

1
2µ

(P11 − P22) +
p

µ
P12, (8.10.24)

∂P21

∂p
= P11 − P22,

∂P21

∂q
=
p2

2µ
(P11 − P22)−

p

µ
P21, (8.10.25)

∂M(u)
∂p

= 2µp,
∂M(u)
∂q

= p2P12 + P21, (8.10.26)

so upon introducing the notation,

wi(λ) = trPiiT (λ), and w(λ) = w1(λ)− w2(λ), (8.10.27)

one obtains the following result:

{f,M(v)} = − 2µ
w(λ1)

P21tr{f, T (λ1)}P12 −
2µ

w(λ2)
P12tr{f, T (λ2)}P21.

(8.10.28)
Then using (8.10.2) it remains to calculate the Poisson brackets occur-
ring in (8.10.15–8.10.17), which turn out to be as follows:

{T 1(u),M2(v)}

= − 2µκ
(u− λ1)w(λ1)

[
w1(λ1)P 1

12T
1(u)P 2

21 − w2(λ1)T 1(u)P 1
12P

2
21

]
−

− 2µκ
(u− λ2)w(λ2)

[
w2(λ2)P 1

21T
1(u)P 2

12 − w1(λ2)T 1(u)P 1
21P

2
12

]
,

(8.10.29)
{M1(u), T 2(v)}
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=
2µκ

(v − λ1)w(λ1)

[
w1(λ1)P 1

21P
2
12T

2(v)− w2(λ1)P 1
21T

2(v)P 2
12

]
+

+
2µκ

(v − λ2)w(λ2)

[
w2(λ2)P 1

12P
2
21T

2(v)− w1(λ2)P 1
12T

2(v)P 2
21

]
,

(8.10.30)

{M1(u),M2(v)} =

−2µκ (w1(λ1)w2(λ2)− w2(λ1)w1(λ2))
w(λ1)w(λ2)

[
P 1

12P
2
21 − P 1

21P
2
12

]
. (8.10.31)

Then recalling the 〈, 〉 notation introduced earlier, one arrives at the
following expressions for

〈T 1M2〉 = − 2µκ
(u− λ2)(v − λ1)

×

×
(
w1(λ1)
w(λ1)

P 1
12T̃

1(u)P 2
21 −

w2(λ1)
w(λ1)

T̃ 1(u)P 1
12P

2
21

)

− 2µκ
(u− λ1)(v − λ2)

(
w2(λ2)
w(λ2)

P 1
21T̃

1(u)P 2
12 −

w1(λ2)
w(λ2)

T̃ 1(u)P 1
21P

2
12

)
,

(8.10.32)

〈M1T 2〉 = µκ

(u− λ1)(v − λ2)
×

×
(
w1(λ1)
w(λ1)

P 1
21P

2
12T̃

2(v)− w2(λ1)
w(λ1)

P 1
21T̃

2(v)P 2
12

)

+
µκ

(u− λ2)(v − λ1)

(
w2(λ2)
w(λ2)

P 1
12P

2
12T̃

2(v)− w1(λ2)
w(λ2)

P 1
12T̃

2(v)P 2
21

)
,

(8.10.33)

〈M1M2〉 = −2µκ (w1(λ1)w2(λ2)− w2(λ1)w1(λ2))
w(λ1)w(λ2)

×

×
(

P 1
12P

2
21

(u− λ2)(v − λ1)
− P 1

21P
2
12

(u− λ1)(v − λ2)

)
. (8.10.34)

Finally substituting (8.10.29 and 8.10.30) with (8.10.31) into (8.10.14),
after much simplification one obtains the equality (8.10.13). This com-
pletes the proof of the canonicity of the Bäcklund transformations for
the case under consideration.
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8.11 Extended-Phase Space Method

In the preceding section it was shown by direct calculation that the
two parametric Bäcklund transformations Bλ1λ2 corresponding to the
matrix Mλ1λ2 as given by (8.10.1) were canonical transformations. The
explicit form of Mλ1λ2 was introduced as an ansatz; however the fact
that this particular form coincides with the elementary Lax matrix for
the Heisenberg XXX magnet [151] with canonical Poisson brackets is
not just a mere coincidence. By invoking the notion of an extended-
phase space and imposing suitable constraints, it can be shown to arise
in a natural way. Such an indirect approach turns out to be not only
simpler than the brute force method introduced earlier, but also pro-
vides a systematic procedure for constructing multiparametric families
of Bäcklund transformations. In this section we consider these and
other related issues, illustrating them with suitable examples.

Let us consider a finite dimensional Hamiltonian system, defined by
canonical variables (X,x):

{Xi, Xj} = {xi, xj} = 0, and {Xi, xj} = δij . (8.11.1)

Suppose that the system is completely integrable and possesses a Lax
matrix T (u;X,x) whose spectral invariants generate the commuting
Hamiltonians Hn, with u being a complex parameter. Denoting the
Lax matrix T (u;X,x) by the notation L(x)(u), we assume that T (x)(u)
is a matrix of order 2× 2 and satisfies the following Poisson algebra:

{
1
T (u),

2
T (v)} = [r12(u− v),

1
T (u)

2
T (v)], (8.11.2)

where
1
T= T ⊗ I,

2
T= I ⊗ T . Here r12 = κ(u− v)−1P12 is the standard

SL(2)-invariant solution of the classical Yang-Baxter equation. For a
one-parametric family of Bäcklund transformations that preserve the
Hamiltonians Hn, it is necessary that there exists a matrix Mλ(u) so
that

Mλ(u)T (x)(u) = T (y)(u)Mλ(u), (8.11.3)

since the Hamiltonians are just the spectral invariants of the Lax ma-
trix. Here, Y = Y (X,x) and y = y(X,x), so thatMλ(u) = Mλ(u;X,x).
Furthermore, we shall assume thatMλ(u) = M(u−λ), where λ denotes
the Bäcklund parameter. We consider next an extended-phase phase
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obtained by augmenting the canonical variables (X,x) with an inde-
pendent set of auxiliary canonical variables (S, s). It will be assumed
that the variables (S, s) commute with (X,x) and the dimension of the
phase space (S, s) bears no relation to that of the (X,x).

Furthermore, we assume there exists a matrixM (s)(u), which induces
a canonical transformation Rλ : (X,x;S, s) → (Y, y;T, t) determined
from the equation [152],

M (s)(u− λ)T (x)(u) = T (y)(u)M (t)(u− λ), (8.11.4)

with the matrix M (s)(u) obeying the same Poisson brackets as T (u),
i.e.,

{
1
M (u),

2
M (v)} = [r12(u− v),

1
M (u)

2
M (v)]. (8.11.5)

If the canonical transformations admits a generating function,
say Fλ(y, t;x, s), so that one has (temporarily dropping the indices i in
Xi, xi)

X =
∂Fλ
∂x

, Y = −∂Fλ
∂y

, S =
∂Fλ
∂s

, T = −∂Fλ
∂t

, (8.11.6)

then imposing the constraint,

t = s, T = S, (8.11.7)

allows one to resolve (8.11.6 and 8.11.7) with respect to s = t and to
express X and Y as functions of (x, y). Under these conditions one
arrives at the following proposition.

Proposition: The resulting transformation Bλ(X,x) −→ (Y, y) is
canonical and is given by the generating function Φλ(x, y) = Fλ(y, s(x, y);
x, s(x, y)), so that

X =
∂Φλ

∂x
, Y = −∂Φλ

∂y
. (8.11.8)

Proof:

X =
∂Φλ

∂x
=
(
∂Fλ
∂x

)
st

+
(
∂Fλ
∂s

)
st

∂s

∂x
+
(
∂Fλ
∂t

)
st

∂t

∂x
,

=
(
∂Fλ
∂x

)
st

+
∂s

∂x

(
∂Fλ
∂s

+
∂Fλ
∂t

)
st
, (8.11.9)
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where ()st stands for restriction on the constraint manifold s = t =
s(x, y). However, due to the constraint S = T , it is observed that(

∂Fλ
∂s

+
∂Fλ
∂t

)
st

= 0. (8.11.10)

ConsequentlyX = ∂Φλ/∂x. Similarly one can show that Y = −∂Φλ/∂y.
Note that the constraint (8.11.7) essentially implies the identityM (s)(u−
λ) = M (t)(u − λ) as a result of which (8.11.4) turns into the equality
(8.11.3), ensuring thereby that the transformation preserves the spec-
trum of T (u).

In many cases, it often happens that the Lax matrix is a monodromy
matrix factorized, into the product of local Lax matrices �i(u), i.e.,

T (u) = �N (u)...�2(u)�1(u), (8.11.11)

and obey the same Poisson brackets as the monodromy matrix T (u),

{
1

�i(u),
2

�j(v)} = [r12(u− v),
1

�i(u)
2

�j(v)]δij . (8.11.12)

Under this condition, the similarity transformation defined earlier is
replaced by a gauge transformation of the form

Mi(u− λ)�(x)
i (u) = �

(y)
i (u)Mi−1(u− λ). (8.11.13)

The latter ensures that the spectral invariants of T (u) are preserved.

The modification of the reduction procedure described earlier is as
follows. Suppose that �i(u) and Mi(u) depend on local canonical vari-
ables:

�
(x)
i (u) ≡ �i(u;Xi, xi), �

(y)
i (u) ≡ �i(u;Yi, yi), (8.11.14)

M
(s)
i (u) ≡M(u;Si, si), M

(t)
i (u) ≡M(u;Ti, ti). (8.11.15)

Under these conditions, one can first define a local canonical transfor-
mation R(i)

λ : (Xi, xi;Si, si) −→ (Yi, yi;Ti, ti), by means of the relation,

M
(s)
i (u− λ)�(x)

i (u) = �
(y)
i (u)M (t)

i (u− λ). (8.11.16)
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Denoting the corresponding generating function by f
(i)
λ (yi, ti;xi, si),

we consider the direct product of N phase spaces (Xi, xi;Si, si) and
(Yi, yi;Ti, ti), respectively. Then the generating function,

Fλ =
N∑
i=1

f
(i)
λ (yi, ti;xi, si), (8.11.17)

determines the direct product Rλ of local transformations R(i)
λ . Im-

posing the constraints,

ti = si−1, Ti = Si−1, (8.11.18)

and assuming periodicity i+N ≡ i, the proof of the canonicity of the
resulting transformation Bλ (X,x) −→ (Y, y), can be reconstructed
in the same way as before. We illustrate the above method by the
following example.
Example: Toda lattice The local Lax operator for the periodic

Toda lattice with inhomogeneities is [165]

�
(x)
l (u) =

(
u− ci +Xi −exi

e−xi 0

)
, (8.11.19)

where (Xi, xi)Ni=1 are a set of canonical variables with

{Xi, xj} = δij , {Xi, Xj} = {xi, xj} = 0. (8.11.20)

Here ci are the the inhomogeneity parameters and u is the spectral
parameter. A simple computation shows that �(x)

i (u) satisfies

{�(x)
i (u) ⊗, �(x)

i (v)} = [r(u− v), �(x)
i (u)⊗ �(x)

i (v)], (8.11.21)

with r(u−v) = (u−v)−1P. The spectral invariants of the monodromy
operator,

T (u;X,x) = �N (u)....�2(u)�1(u), (8.11.22)

follow from t(u) = tr T (u;X,x) =
∑
unHn. The search for an alterna-

tive representation of the Poisson bracket algebra (8.11.21) and hence,
an ansatz for the matrix Mi(u − λ) leads us to consider the Lax op-
erator for the DST model [157], which admits the following local Lax
matrix:

Mi(u− λ) =

(
u− λ+ Sisi si

Si 1

)
. (8.11.23)
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Mi(u − λ) obeys (8.11.21) and the variables Si, si satisfy the Poisson
brackets,

{Si, sj} = δij , {Si, Sj} = {si, sj} = 0, (8.11.24)

with λ being the Bäcklund parameter. Then using (8.11.19), (8.11.23)
in (8.11.16), we obtain the following set of equations:

Xi + Sisi = Titi + Yi,

−λXi + Sisi(Xi − ci) + sie
−xi = −λYi + Titi(Y − i− ci)− Tie−yi ,

ti = −exi , (λ− Sisi)exi = (Yi − ci)ti − eyi ,

Si = e−yi (Xi − ci)Si + e−xi = (Titi − λ)e−yi ,

Sie
−xi = e−yiti. (8.11.25)

These equations are found to be self-consistent and may be solved to
yield

Si = e−yi , Xi = −e−xi+yi − Tiexi + (ci − λ),

ti = −exi , Yi = −e−xi+yi + sie
−yi + (ci − λ). (8.11.26)

The corresponding generating function is

f
(i)
λ (xi, si|yi, Ti) = e−xi+yi + sie

−yi −Tiexi +(ci−λ)(xi− yi), (8.11.27)

so that

Xi =
∂f

(i)
λ

∂xi
, Yi = −

∂f
(i)
λ

∂yi
,

Si =
∂f

(i)
λ

∂si
, ti =

∂f
(i)
λ

∂Ti
. (8.11.28)

Next if we demand that ti = si−1 and Ti = Si−1 we get

si = ti+1 = −exi+1 , Xi = −e−xi+yi − exi−yi−1 + (ci − λ),

Ti = Si−1 = e−yi−1 , and Yi = −e−xi+yi − exi+1−yi + (ci − λ).
(8.11.29)

Hence, the auxiliary variables may be eliminated from (8.11.27) to yield
the local generating function, in the following form:

f
(i)
λ = e−xi+yi − exi−yi−1 − exi+1−yi + (ci − λ)(xi − yi). (8.11.30)
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The global generating function is then simply given by

Φλ =
N∑
i=1

{e−xi+yi − exi−yi−1 − exi+1−yi + (ci − λ)(xi − yi)} (8.11.31)

Upon using (8.11.29), the matrix M (s)
i (u) as defined by (8.11.23), may

be written as

M
(s)
i (u) =

(
u− exi+1−yi −exi+1

e−yi 1

)
= M

(t)
i+1(u). (8.11.32)

Example: DST model As our second example, we consider the DST
model, which lies intermediate between the Heisenberg XXX model and
the Toda lattice. In [162] the following representation is chosen for the
local Lax matrix of the DST model:

�
(x)
i (u) =

(
u− ci −Xixi xi
−Xi 1

)
. (8.11.33)

It satisfies the Poisson brackets (8.11.21) with the r matrix,

r(u) = −Pu−1. (8.11.34)

For an alternate realization of the same Poisson brackets, we make the
following choice for the matrix Mi(u):

M
(s)
i (u) =

(
1 −Si
si u− Sisi

)
. (8.11.35)

It follows that the local canonical transformation Rλ is given by the
equations:

Xi = si, Yi = ti +
(ci − λ)si
1− siyi

, (8.11.36)

Ti = yi, Si = xi −
(ci − λ)yi
1− siyi

,

or equivalently by the generating function:

f
(i)
λ (yi, ti|xi, si) = xisi − yiti + (ci − λ) log(1− siyi). (8.11.37)

Following the general scheme previously outlined we impose constraints
to obtain

si =
1
yi

+
ci − λ

yi+1 − xi
. (8.11.38)
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After substitution in (8.11.36) we obtain

Xi =
1
yi

+
ci − λ

yi+1 − xi
, (8.11.39)

Yi =
1

yi+1
+
xi − yi+1

y2
i

+
ci−1 − λ
yi − xi−1

− ci − λ
yi

. (8.11.40)

One can then immediately verify that these equations describe a canon-
ical transformation whose generating function is

Φλ(y|x) =
∑
i

xi − yi+1

yi
+ (ci − λ) log

yi
yi+1 − xi

. (8.11.41)

8.12 Quantization of Bäcklund Transformations

In this section we describe a quantum analog of the classical Bäcklund
transformation, which directly leads to a representation of Baxter’s fa-
mous Q operator (see Chapters 9 and 10 of [64]). Broadly, there are
two approaches to constructing such an operator. One method ac-
cording to Pasquier and Gaudin [148] uses the techniques of statistical
mechanics to construct the Q operator as an integral operator, the ker-
nel of which is related to the generating function of the corresponding
classical canonical Bäcklund transformation. An alternative procedure
according to Bazhanov et al. [155] relies on defining it as a trace of a
monodromy matrix with infinite dimensional auxiliary space. Recently
a method that combines the essential features of both and based on
the r matrix formalism has been developed by Kuzntesov et al. [156].
Prior to describing the actual methods for constructing such operators,
a few preliminary remarks are in order. First, from the basic defini-
tion given in (8.9.9), the Q operator designated by Qλ is assumed to
share a common set of eigenvectors with the Hamiltonians Hi of the
model under consideration. Secondly, its eigenvalues are polynomials
that satisfy a finite difference equation, known as Baxter’s equation. It
is assumed to satisfy the following operator identities:

•t(λ)Q̂(λ) = ∆+(λ)Q̂(λ+ η) + ∆−(λ)Q̂(λ− η)

•Q̂(µ)Q̂(λ) = Q̂(λ)Q̂(µ)

•t(µ)Q̂(λ) = Q̂(λ)t(µ).
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In [156] Pasquier and Gaudin constructed a family of integral operators
Q(u) for the Toda lattice, satisfying the matrix relation,

t(u)Q(u) = iNQ(u+ ih̄) + i−NQ(u− ih̄). (8.12.1)

They also showed that a similarity relation O → QλOQ−1
λ reduces in

the classical limit to a classical Bäcklund transformation, that is to
a one-parametric family of canonical transformations preserving the
commuting Hamiltonians. In (8.12.1) the operators Q(u), Q(v), t(v)
commute for all values u, v. In the language of statistical mechanics
the matrix Q is labelled with its rows and columns indexed by the
(continuous) variables (q1, ....qN ), (q′1, ....q′N ), where the qi’s and q′i’s
both satisfy the Toda lattice equation. Let us consider the equation
for the columns of Q, namely yn(q1, ....qN ), taken in the form of a direct
product so that

y(q1, ...qN ) =
N∏
i=1

ϕi(qi). (8.12.2)

Consequently, one has as a result,

t(u)y = tr (�1ϕ1)....(�NϕN ), (8.12.3)

where �i(u) actually represents the local Lax matrix at the ith site for
the lattice. Specifically

�i(u) =

(
u− pi eqi
−e−qi 0

)
, (8.12.4)

and may be shown to satisfy the quantum Yang-Baxter relation,

R12(u1 − u2)
1

�(u1)
2

�(u2)=
2

�(u2)
1

�(u1) R12(u1 − u2), (8.12.5)

with the quantum R matrix given by

R(u) =

⎛⎜⎜⎜⎝
u− ih̄ 0 0 0

0 u −ih̄ 0
0 −ih̄ u 0
0 0 0 u− ih̄

⎞⎟⎟⎟⎠ . (8.12.6)

Now the product t(u)y can be shown to decompose into two terms
y′ + y′′ if each of the matrices �jϕj is lower triangular. Since t(u) is
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by definition a trace of the monodromy operator, consequently a local
gauge transformation to �̃j = Ni�jN

−1
j+1 with

Nj =

(
1 ieq

′
j

0 1

)
(8.12.7)

keeps t(u) invariant. Thus, one can equate to zero the upper-right
coefficient of �̃jϕj , obtaining thereby the equation

(pj + (−i)eqj−q′j+1 + ieq
′
j−qj − u)ϕj = 0. (8.12.8)

This equation is solved by

ϕj(u) = exp
(

1
h̄
(iu(qj − q′j+1)− eqj−q′j+1 − eq

′
j−qj )

)
, (8.12.9)

and as a result we have

�̃jϕj =

(
−iϕj(u− ih̄) 0

� iϕj(u+ ih̄)

)
. (8.12.10)

It follows directly from (8.12.10) that (8.12.5) is satisfied with y sub-
stituted for Q. Let us now define the kernel of Q(u) by

Qu(q|q′) = exp
1
h̄

⎛⎝iu( N∑
j=1

qj −
N∑
j=1

q′j)−
N∑
j=1

(eq
′
j−qj + eqj−q′j+1)

⎞⎠

=
N∏
j=1

Wu(q′j − qj)W ′
u(qj − q′j+1), (8.12.11)

with
Wu(q) = exp

(
1
h̄
(− iu

2
q − eq)

)
, (8.12.12)

W ′
u(q) = exp

(
1
h̄
(
iu

2
q − eq)

)
. (8.12.13)

By construction Q satisfies (8.9.9) and a similar analysis reveals that
it also satisfies

Q(u)t(u) = iNQ(u+ ih̄) + i−NQ(u− ih̄), (8.12.14)

thereby implying the commutation relation,

[Q(u), t(u)] = 0.
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In order to show that Q(u)’s with different spectral parameters u com-
mute, one introduces the permutation operator C,

(Cf)(q1, ....qN ) = f(q2, q3, ...., q1), (8.12.15)

and the kernel Q̂,

Q̂u(q|q′) = (QuC)(q|q′) = (CQu)(q|q′),

=
N∏
j=1

Wu(q′j − qj+1)W ′
u(qj − q′j). (8.12.16)

Then the equality Q̂(u)Q(v) = Q̂(v)Q(u) is realized if there exist func-
tions Au(q) satisfying the identity,

Au−v(q1 − r1)
∫ ∞

−∞
dqW ′

u(q1 − q)Wu(q − q2)Wv(r1 − q)W ′
v(q − r2)

= Au−v(q2 − r2)
∫ ∞

−∞
dqW ′

v(q1 − q)Wv(q − q2)Wu(r1 − q)W ′
u(q − r2)

(8.12.17)
for all values of u, v, q, q1, q2, r1 and r2. Calculations for Au(q) yields
the following solution of (8.12.17):

Au(q) =
(
cosh

q

2

) iu
h̄

. (8.12.18)

Now for real u, the operators Q(u) and Q̂(u) are Hermitian conjugates
and commute with C. Therefore, there exists a unitary operator D
independent of u, which diagonalizes Q(u) simultaneously for all values
of u. Moreover, in the basis of momentum eigenstates, the matrix
elements of Q vanish like exp(−πN |u|/2) when u goes to infinity on
the real line. Multiplying (8.12.1) byD to the right andD−1 to the left,
we obtain an equation for the eigenvalue matrices Qd and td(u). The
eigenvalue matrix Qd(u) is entire and vanishes when u tends to infinity
in the real direction. The essential point in the procedure described
here is the realization of a Q operator as an integral operator with a
well-defined kernel.

An important outcome of the analysis in [148] was the discovery of
the relation between the kernel of the Q operator and the generat-
ing function of the corresponding classical Bäcklund transformation,
namely

Q(u) ∼ exp
(
− i
h̄
Fλ(q|q′)

)
, h̄→ 0. (8.12.19)



310 Quantum Integrable Systems

On the other hand an alternative procedure in which the Q opera-
tor is constructed by means of a trace of a suitably defined monodromy
matrix is best understood by means of a concrete example. We shall de-
scribe this procedure as formulated recently by Kuznetsov et al. [156].
For this, we consider the discrete self-trapping (DST) equation intro-
duced by Eilbeck et al. [157] to model the nonlinear dynamics of small
molecules. The integrability properties of this model were studied by
several authors [158, 159, 160]. The quantum Hamiltonian of the inte-
grable DST model contains (n+1) parameters c1, ...cn, b and is defined
by

H =
n∑

i=1

(
1
2
x2
i ∂

2
i + (ci +

1
2
)ci∂i + bxi+1∂i

)
, (8.12.20)

acting in the space P [�x] of polynomials of n variables {x1, ....xn} ≡
�x. We shall assume that the periodicity condition xn+1 ≡ x1 holds.
Initially the DST model was found to be integrable only in case of
n = 2, the so-called case of the dimer problem. For this case, in addition
to the Hamiltonian, the other conserved quantity was the number of
particles. However, later on an integrable version of the DST model for
more than two degrees of freedom was studied by Christiansen et al.
[161], which was found to coincide with the DST dimer when n = 2.
While the Hamiltonian is self-adjoint only in case of the dimer, for
the general case no self adjoint H is known. However, in the present
discussion we will not be concerned with the underying Hilbert space
structure.

Let us therefore consider the Lax matrix for the DST model in the
form,

�i(u) =

(
u− ci + xiXi bxi

Xi b

)
. (8.12.21)

Following [152] the Q operator will be constructed as an integral oper-
ator in P [x]. In the quantum case, the canonical momenta Xi are first
replaced by differential operators ∂i ≡ ∂

∂xi
, where we have discarded

the factor of ih̄ to simplify the notation. Thus the local quantum Lax
matrix assumes the form,

�i(u) =

(
u− ci + xi∂i bxi

∂i b

)
, (8.12.22)

and satisfies the intertwining relation,

R12(u1 − u2)
1
� (u1)

2
� (u2) =

2
� (u2)

1
� (u1)R12(u1 − u2). (8.12.23)
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R12(u) = uI + P12 here is the standard SL(2)-invariant solution of
the quantum Yang-Baxter equation. The mondromy matrix or Lax
operator T (u) and its trace t(u) are defined by the usual formulae:

T (u) = �N (u)....�1(u), t(u) = tr [�N (u).....�1(u)]. (8.12.24)

Since the quantum Lax operator T (u) obeys (8.12.1) the commuta-
tivity of t(u) is obvious. Moreover, as the quantum Hamiltonians are
defined by the coefficients of the polynomial t(u), their involution is
also ensured. The basic problem in the quantum context is to solve
the spectral problem for commuting differential operators, namely the
quantum Hamiltonians {Hi}ni=1, i.e.,

HiΨ(x1, x2, ...., xn) = hiΨ(x1, ...xn) Ψ(x1, ...xn) ∈ P [�x]. (8.12.25)

The spectrum of Hi or equivalently t(u) can be described using the
algebraic Bethe ansatz [162]. Defining the vacuum state |0〉 as the unit
function |0〉(x) ≡ 1 in P [�x], we find that

L21|0〉 = 0, L11(u)|0〉 = α(u)|0〉, and L22(u)|0〉 = β(u)|0〉,
(8.12.26)

with

α(u) =
n∏

i=1

(u− ci) and β(u) = bn. (8.12.27)

Next defining the Bethe vector Ψ�v(x1, ..., xn) ∈ P [�x], which is parame-
terized by m complex numbers, as follows:

Ψ�v(x1, ...xn) ≡ |v1, ....vm〉 = L12(v1)....L12(vm)|0〉, (8.12.28)

one can show using the commutation relations derived from (8.12.23)
that, |v1, ...vm〉 is an eigenvector of t(u):

t(u)|v1, ...vm〉 = τ(u)|v1, ...vm〉 (8.12.29)

for any complex number u, if and only if the parameters vj satisfy the
system of Bethe ansatz equations:

m∏
j=1

vk − vj + 1
vk − vj − 1

= −α(vk)
β(vk)

, k = 1, ...,m. (8.12.30)

The corresponding eigenvalue τ(u) is given by

τ(u) = α(u)
m∏
j=1

u− vj − 1
u− vj

+ β(u)
m∏
j=1

u− vj + 1
u− vj

. (8.12.31)
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Regarding the question of completeness of the Bethe eigenvectors, proofs
exist only for a few models, but it is conjectured that they are com-
plete at least for generic values of parameters. It is also interesting
to note that, aside from the question of completeness, an equivalent
formulation of (8.12.30 and 8.12.31) in the case of the XYZ and XXZ
spin chain, was made by Baxter [64], where these equations were for-
mulated as finite difference equations in a certain class of holomorphic
functions. Introducing now a polynomial φ(λ;�v), whose zeros are the
Bethe parameters vj , i.e.,

φ(λ;�v) =
m∏
j=1

(λ− vj) (8.12.32)

with λ being a complex parameter, we may formally recast the system
of equations (8.12.30) for {vi}mi=1 and (8.12.31) for τ(u = λ), to the
following finite difference equation of second order for φ(λ;�v):

φ(λ;�v)τ(λ) = α(λ)φ(λ− 1;�v) + β(λ)φ(λ+ 1;�v). (8.12.33)

This can be easily seen by dividing both sides of (8.12.30) by φ(λ) and
taking the residues at λ = vj . Equation (8.12.33) is called Baxter’s
equation or sometimes the t−Q equation; an identical equation in fact
arises when solving the model by means of the separation of variables
method. The search for Q operators therefore reduces to finding a
single parameter family of operators Qλ acting in [P (�x)] so that t(u)
and Qλ have a common set of Bethe eigenvectors, with the eigenvalues
q(λ) of Qλ obeying the relation,

Qλ|v1, ....vm〉 = q(λ)|v1, ....vm〉, (8.12.34)

and being polynomials in λ satisfying Baxter’s equation.
As for the actual steps involved in calculating the Q operator we first

consider a linear operator R̂ defined at each lattice site. This operator
maps the space P [s, x] into P [t, y] and depends on the complex param-
eter λ. We shall refer to the spaces P [x] and P [y] as quantum spaces,
while P [s] and P [t] will be referred to as auxiliary spaces. The construc-
tion basically parallels that of the transfer matrix t(u), in the sense that
it is considered as the trace of a monodromy matrix built fron n copies
of the elementary matrix R̂(i)

λ−ci
, with R̂

(i)
λ−ci

: P [si, xi] −→ P [si+1, yi],
and extending on P [xj ](j �= i) as the unit operator. Consequently, the
monodromy matrix, R̂(i)

λ−cn
......R̂

(i)
λ−c1

, acts from P [s1, �x] → P [s1, �y],
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whilst the Q operator is obtained by taking the trace in the auxiliary
space P [s1]:

Qλ − tr s1R̂
(i)
λ−cn

.....R̂
(i)
λ−c1

. (8.12.35)

Defining the operation of R̂ according to the rule,

R̂λ : ψ(s, x) �−→
∫
dx

∫
dsRλ(t, y|s, x)ψ(s, x), (8.12.36)

one has for the kernel of the Q operator the following expression:

Qλ(�y|�x) =
∫
dsn...

∫
ds1

n∏
i=1

Rλ−ci(si+1, yi|si, xi). (8.12.37)

To ensure the first property of theQ operator, namely the commutation
rule [t(u), Qλ] = 0, it is sufficient to find a solution Rλ of the following
equation:

M(u− λ; t, ∂t)�(u; y, ∂y)Rλ = Rλ�(u;x, ∂x)M(u− λ; s, ∂s), (8.12.38)

where �(u;x, ∂x) is the local quantum Lax matrix and M(u − λ) is a
matrix that obeys the quantum commutation relation (8.12.23) with
the same quantum R matrix as �(u;x∂x). The main difficulty is in
finding or rather choosing the matrix M(u − λ), so that (8.12.38) for
Rλ has a solution for every complex parameter u and the Q operator
thus obtained fulfils the required properties.

The second property of the Q operator, namely [Qλ1 , Qλ2 ] = 0, fol-
lows from the Yang-Baxter, equation which may be obtained from
(8.12.38) by a standard procedure [153]. It is sufficient to establish
the Yang-Baxter identity:∫

dt1

∫
dt2

∫
dyR̃λ1−λ2(w1, w2|t1, t2)Rλ1(t1, z|s1, y)Rλ2(t2, y|s2, x)

=
∫
dt1

∫
dt2

∫
dyRλ2(w2, z|t2, y)Rλ1(w1, y|t1, x)R̃λ1−λ2(t1, t2|s1, s2),

(8.12.39)
with some kernel R̃λ. Regarding the choice of M(u−λ), in case of the
DST model the following was found to be appropriate:

M(u− λ; s, ∂s) =

(
u− λ− s∂s s
−∂s 1

)
. (8.12.40)
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Now from (8.12.38) using this particular form of M(u−λ), one obtains
a set of differential equations for the kernel Rλ(t, y|s, x) of R̂λ:(

u− λ− t∂t t
−∂t 1

)(
u− y∂y by
−∂y b

)
Rλ(t, y|s, x)

=

(
u+ 1 + x∂x bx

∂x b

)(
u− λ+ 1 + s∂s s

∂s 1

)
Rλ(t, y|s, x), (8.12.41)

where the index “i” on the variables has been dropped for simplicity
and the identities,

∂�x = −∂x, (x∂x)� = −1− x∂x,

have been used. Equation (8.12.41) determines Rλ up to a scalar factor
ρλ:

Rλ(t, y|s, x) = ρλδ(s− by)y−1 exp(
t− x
y

)(
t− x
y

)−λ−1. (8.12.42)

One then has to choose the factor ρλ in (8.12.42) and the integration
contour in (8.12.36) in a manner so that

R̂λ : P [s, x] �−→ P [t, y, λ].

Recalling the action of R̂λ on ψ(s, x), we therefore have

R̂λ : ψ(s, x) �→
∫
dx

∫
dsρλδ(s− by)y−1 exp(

t− x
y

)(
t− x
y

)−λ−1ψ(s, x).

(8.12.43)
The integration over s is easily done and with ξ = x−t

y , so that x = t+yξ
and we have

R̂λ : ψ(s, x) �→ ρλ

∫
γ
dξ exp(−ξ)(−ξ)−λ−1ψ(by, yξ + t), (8.12.44)

where the contour γ is shown in Figure (8.12.1) below.
A few comments are in order. In [152] it is shown that there are two

possible choices for the normalization constant ρλ. For instance, with
the contour γ as in Figure (8.12.1) one has

R̂λ : 1 �−→ ρλ

∫
γ
dξe−ξ(−ξ)−(λ+1). (8.12.45)
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FIGURE 8.12.1: Contour for integration in Equation (8.12.45).

However, by Hankel’s formula for the gamma function [154] it is well
known that ∫

γ
dξe−ξ(−ξ)−(λ+1) =

2π
iΓ(λ+ 1)

; (8.12.46)

hence we may choose

ρλ =
iΓ(λ+ 1)

2π
. (8.12.47)

With this choice for the normalization factor, one has

R̂λ : ψ(s, x) �→ iΓ(λ+ 1)
2π

∫
γ
dξe−ξ(−ξ)−λ−1ψ(by, yξ + t). (8.12.48)

From (8.12.48) it is apparent that R̂λ as a function of λ is analytic
except at the poles λ = −1,−2, .... of Γ(λ+1). However, for Re λ < 0
one can deform the contour γ over the cut (0,∞) and replace

∫
γ dξf(ξ)

with
∫∞
0 dξ[f(ξ − i0)− f(ξ + i0)], resulting thereby in the formula,

R̂λ : ψ(s, x) �→ 1
Γ(−λ)

∫ ∞

0
dξe−ξξ−λ−1ψ(by, yξ + t), Re λ < 0,

(8.12.49)
which is analytic in λ = −1,−2..... The branch of ξ−λ−1 in (8.12.49)
being fixed by the condition arg(ξ) = 0.

Let us now substitute the expression for the kernel Rλ as given by
(8.12.35) into the expression for the kernel Qλ of the Q operator given
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in (8.12.49). Then by using the first normalization choice, we find that

Qλ(�y|�x) =
n∏

i=1

wi(λ; yi+1, yi, xi), (8.12.50)

with

wi(λ; yi+1, yi, xi) =
i

2π
Γ(λ+ 1− ci)y−1

i

(
byi+1 − xi

yi

)ci−λ−1

×

× exp
(
byi+1 − xi

yi

)
. (8.12.51)

At this point it is interesting to note that taking into consideration the
quantization convention −ih̄ = 1 and apart from some λ-dependent
factors one has

Qλ(�y|�x) � exp (−Fλ(�y|�x)) , (8.12.52)

where Fλ is the generating function of the corresponding classical Bäc-
klund transformation. This result is in agreement with the general
principles formulated in the work of Pasquier and Gaudin for the Toda
lattice. While comphrehensive details of the analytical properties of
the Q operator for the DST model are contained in [160], we shall now
confine our attention to a derivation of Baxter’s difference equation,
since this marks in a sense the high point of the formalism developed
in [155]. Let us once again recall the method proposed by Pasquier and
Gaudin, who considered Qλ as an integral operator,

Qλ : ψ(�x0 �→
∫
dx1....

∫
dxnQλ(�y|�x)ψ(�x), (8.12.53)

with the kernel satisfying (8.12.50). As t(u) = tr T (u) with T (u) being
a 2×2 matrix with differential operator entries in xi, we can transform
the left-hand side of (8.12.50) as follows, using integration by parts:

[Qλt(λ)ψ](�y) = tr [QλT (λ)ψ](�y) = tr
∫
dxnQ(�y|�x)T (λ)ψ(�x),

= tr
∫
dxn[T �(λ)Qλ(�y|�x)]ψ(�x). (8.12.54)

Here T �(λ) denotes the matrix composed of adjoint differential opera-
tors (Tjk)� = T �

jk. Using the fact that the Lax matrix T (λ) factors into
an ordered product of elementary local Lax operators �i(λ), as also the
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kernel Qλ(�y|�x) into the factors wi (see (8.12.50) and (8.12.51)), we can
write the kernel of the integral operator Qλt(λ) as follows:

[Qλt(λ)](�y|�x) = tr ��n(λ).....�
�
1(λ)

n∏
i=1

wi = tr (��n(λ)wn....(��1(λ)w1),

(8.12.55)
where

�i(λ) =

(
λ− ci + 1 + xi∂xi bxi

∂xi b

)
. (8.12.56)

It should be emphasised that this factorization of [QλT (λ)](�y|�x) is pos-
sible, since the factors wi in (8.12.55) depended only on a single variable
xi. Later, we shall show how to tackle the problem when wi depends on
additional xi’s. To proceed further we introduce matrices �̃i(λ) through
the definition ��i (λ)wi = wi�̃i(λ). By noting that

∂xi lnwi(yi+1, yi, xi) =
ci − λ− 1
xi − byi+1

− 1
yi
, (8.12.57)

we obtain

�̃i(λ) =

(
λ− ci + 1 + xi∂xi lnwi bxi

∂xi lnwi b

)
=

(
b(ci−λ−1)yi+1

xi−byi+1
− xi

yi
bxi

ci−λ−1
xi−byi+1

− 1
yi

b

)
(8.12.58)

and

[Qλt(λ)](�y|�x) = Qλ(�y|�x)tr �̃n(λ).....�̃1(λ) ≡ Qλ(�y|�x)tr T̃ (λ). (8.12.59)

Furthermore, we also note that a gauge transformation of �̃i(λ) �→
N−1

i+1�̃i(λ)Ni, with Ni given by

Ni =

(
1 byi
0 1

)
, (8.12.60)

leaves tr L̃(λ) invariant, while at the same time making �̃i(λ) and con-
sequently, L̃(λ) triangular, i.e.,

N−1
i+1�̃i(λ)Ni =

⎛⎝ −xi−byi+1

yi
0

ci−λ−1
xi−byi+1

− 1
yi

b(ci−λ−1)yi
xi−byi+1

⎞⎠

=

⎛⎝ (λ− ci)wi(λ−1)
wi(λ) 0

ci−λ−1
xi−byi+1

− 1
yi

bwi(λ+1)
wi(λ)

⎞⎠ . (8.12.61)
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In calculating (8.12.61), use has been made of the following identities:

wi(λ+ 1)
wi(λ)

=
(ci − λ− 1)yi
xi − byi+1

,
wi(λ− 1)
wi(λ)

=
xi − byi+1

(ci − λ)yi
. (8.12.62)

We are thus led to the equality,

tr T̃ (λ) = bn
n∏

i=1

wi(λ+ 1)
wi(λ)

+
n∏

i+1

(λ− ci)
wi(λ− 1)
wi(λ)

, (8.12.63)

which represents Baxter’s difference equation. Having described the
construction of the Q operator for the DST model and the derivation
of Baxter’s difference equation for the model, we consider certain other
models for which a similar procedure has been applied.

Example 1: Toda model
In [164] the authors performed an analysis of the Toda lattice, whose
local Lax operator �i(u− ci, xi) is of the form,

�i(u− ci, xi) =

(
u− ci − η∂xi −exi

e−xi 0

)
. (8.12.64)

The auxiliary matrix M(u−λ) was chosen to be that of the DST model
and the following expression for the kernel of the linear operator R̂λ

was obtained:

Rλ−c = ρλ−cδ(t+ ey)(ησ)−
λ−c
η exp(σ − z2

4σ
). (8.12.65)

Here σ = 1
ηe

x−y and η represents the quantization parameter. Conse-
quently in this case one has

R̂λ−c : ψ(t, x) �→
∫
dx

∫
dtRλ−c(s, y|t, x)ψ(t, x),

= ρµη
−µ

η

∫
dxσ

−µ
η exp(σ − z2

4σ
)ψ(t = −ey, x),

= ρµη
−µ

η

∫
γ
dσ σ

−µ
η
−1 exp(σ − z2

4σ
)ψ, (8.12.66)

where we have introduced the quantity µ = λ− c. The contour γ being
chosen as shown in Figure (8.12.2). To fix the normalization factor ρµ,
we set ψ(t, x) = 1, which yields

R̂µ : 1 �→ ρµη
−µ

η

∫
γ
dσ σ−ν−1 exp(σ − z2

4σ
), ν =

µ

η
. (8.12.67)
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FIGURE 8.12.2: Contour for integration in Equation (8.12.68).

From the fundamental integral representation of the Bessel function
[154],

Jν(z) =
1

2πi
(
z

2
)ν
∫
γ
dσ σ−ν−1 exp(σ − z2

4σ
), (8.12.68)

we demand
ρµ =

1
πiJν(z)

(
zν

2
)ν . (8.12.69)

As before, the Qλ operator can be defined as

Qλ = tr (
n∏

i=1

R̂(i)
µ1

) =
∫
dtn...

∫
dt1

n∏
i=1

Rµi(ti+1, yi|ti, xi) =
n∏

i=1

wi,

(8.12.70)
where

wi =
1

2πiJνi(zi)

(
zi
2

)νi
exp

(
σi −

z2
i

4σi

)
(8.12.71)

and
νi =

µi
η

=
λ− ci
η

, σi =
1
η
exi−yi , z2

i =
4
η2
e(yi+1−yi).

It is interesting to note that

logQλ(�y|�x) =
n∑

i=1

logwi =
1
η
F class.
λ (�y|�x) +

n∑
i=1

∆̃i, (8.12.72)

where

F class.
λ =

n∑
i=1

[
exi−yi − eyi+1−xi + (λ− ci)(xi − yi)

]
(8.12.73)
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and
∆̃i = log

(
1

2πiJνi(zi)

(
zi
2

)νi)
+
λ− ci
η

log η. (8.12.74)

The latter explicitly represents the quantum correction term.

Example 2: XXX model
An analysis of Baxter’s Q operator for the XXX model was performed
independently by Derkachov in [163] and the authors in [165]. The
local Lax operator for the model may be taken in the form [165],

�n(u) =

(
u+ ηs3n ηs−n
ηs+n u− ηs3n

)
, (8.12.75)

with sin being the spin variables at the nth lattice site and obeying the
sl(2) algebra:

[s3k, s
−
j ] = −s−k δkj , [s3k, s

+
j ] = s+k δkj , [s+k , s

−
j ] = 2s3kδkj . (8.12.76)

A co-adjoint differential operator representation of this algebra is given
by

s3k = xk
∂

∂xk
+ ξk, s−k = − ∂

∂xk
, s+k = x2

k

∂

∂xk
+ 2ξkxk, (8.12.77)

with ξk being arbitrary.

As the above Lax operator and the Lax operator for the DST model
obey the same quantum commutation relation, viz

R(u− v)�i(u)⊗ �i(v) = �i(v)⊗ �i(u)R(u− v),

with the quantum R matrix being given by

R(u− v) = P
(
I +

η

u− vP
)
, (8.12.78)

we may take the Lax operator for the DST model as our prototype for
the auxiliary matrix M(u− λ). Proceeding as before, one obtains the
following solution for the kernel Rλ(y, t|s, x), namely

R(i)
λ (y, t|x, s) = ρ

(i)
λ (xiti−1)(ξ−1−λ/η)(xisi−1)(ξ−1+λ/η) exp

(
ti − si
η

yi

)
,

(8.12.79)
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where η is the quantization parameter. The representation for the Q
operator is then given by

Qλ(y|x) =
∫
dsn....

∫
ds1

(n)∏
i=1

(xiti − 1)ξ−1−λ
η (xisi − 1)ξ−1+λ

η e
[yi

si−1−si
η

]
.

(8.12.80)
In the adjoint repesentation, the Lax operator for the XXX model is
as follows:

�∗i (λ) = η

(
λ
η −−xi∂xi + ξi − 1 ∂xi
−x2

i ∂xi + 2xi(ξi − 1) λ
η + xi∂xi − ξi + 1

)
. (8.12.81)

Moreover, under the local transformation,

�∗i (λ) −→ �̃∗i (λ) = N−1
i−1�

∗
i (λ)Ni, where Ni =

(
0 1
−1 1/si

)
, (8.12.82)

as the adjoint transfer matrix,

t�(λ) = tr
n∏

i=1

��i (λ) = tr
n∏

i=1

�̃�i (λ), (8.12.83)

remains invariant; acting on Qλ leads to the following:

t∗(λ)Qλ(�y|�x) = tr
n∏

i=1

�̃∗i (λ)
∫
dsn...

∫
ds1

n∏
i=1

R(i)
λ
η

(si−1, yi|si, xi)

= tr
∏∫

dsn....

∫
ds1�̃

∗
i (λ)R

(i)
λ
η

(si−1, yi|si, xi). (8.12.84)

One can isolate the xi dependence of Ri
λ
η

to get

R(i)
λ
η

= F (si, si−1, yi)(xi −
1
si−1

)ξ−
λ
η
−1(xi −

1
si

)ξ+
λ
η
−1
,

where F (si, si−1, yi) = ρiλs
−ξ+λ

η
+1

i−1 s
−ξ−λ

η
+1

i exp(yi
si−1 − si

η
).

Consequently, we find that

[�̃∗i (λ)]12R(i)
λ
η

(si−1, yi|si, xi)

= η(xi −
1
si−1

)ξi−
λ
η (xi −

1
si

)ξi+
λ
η
∂

∂xi
[F (si, si−1, yi)] = 0. (8.12.85)
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Thus, the integrand in (8.12.84) becomes a triangular matrix with the
following structure

t∗(λ)Qλ(�y|�x) = tr
n∏

i=1

∫
dsn....

∫
ds1

⎛⎝ �̃∗11
i Ri

λ
η

0

� �̃∗22
i Ri

λ
η

⎞⎠ . (8.12.86)

It remains to examine the effect of the diagonal elements on Ri
λ
η

. A

little algebra shows that one can rewrite the above equation as

�̃∗11
i Ri

λ
η

= η(xi −
1
si−1

)ξi−
λ
η ∂xi(xi −

1
si−1

)−ξi+
λ
η
+1Ri

λ
η

. (8.12.87)

Using then the expression for Ri
λ
η

as given in (8.12.79), we find that

�̃∗11
i Ri

λ
η

= η(
λ

η
+ ξ − 1)Ri

λ
η
−1

(si−1, yi|si, xi),

and similarly,

�̃∗22
i Ri

λ
η

= η(
−λ
η

+ ξ − 1)Ri
λ
η
−1

(si−1, yi|si, xi).

As a result we finally have

t∗(λ)Qλ
η
(�y|�x)

= ηntr
n∏

i=1

∫
dsn....

∫
ds1

⎛⎝ (ξ − 1 + λ
η )Ri

λ
η
−1

0

� −(ξ − 1− λ
η )Ri

λ
η
+1

⎞⎠ ,
= ηn

n∏
i=1

(ξ − 1 +
λ

η
)[
∫
dsn...

∫
ds1Ri

λ
η
−1

]

+ηn
n∏

i=1

(−ξ + 1 +
λ

η
)[
∫
dsn...

∫
ds1Ri

λ
η
+1

],

t∗(λ)Qλ
η
(�y|�x) = ∆+(

λ

η
)Qλ

η
+1(�y|�x) + ∆−(

λ

η
)Qλ

η
−1(�y|�x), (8.12.88)

where ∆±(λη ) = ηn
∏n

i=1(
λ
η ± 1∓ ξ) and

Qλ
η
±1(�y|�x) =

∫
dsn....

∫
ds1

n∏
i=1

R(i)
λ
η
±1
. (8.12.89)
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8.12.1 Analytical properties of the Q operator

We shall now discuss some analytical properties of the Q operator
for the XXX model for which we obtained the following expression for
the kernel of the basic element R̂λ

η
:

R̂λ
η

: φ(s, x) −→
∫
dx

∫
dsRλ

η
(t, y|s, x)φ(s, x),

Rλ
η

= ρλ(xt− 1)ξ−1−λ
η (xs− 1)ξ−1+λ

η e
[

(t−s)y
η

]
. (8.12.90)

Setting φ(s, x) = 1 gives R̂λ
η

: 1 −→ Z, where

Z = ρλ

∫
dx

∫
ds(xt−1)ξ−1−λ

η (xs−1)ξ−1+λ
η exp

[
(t− s)y

η

]
. (8.12.91)

Performing the following change of variables xs− 1 = w and xt− 1 =
u, where u should not be confused with the spectral parameter used
earlier, one finds that Z may be recast in the following manner:

Z = ρλ

∫
du(u+ 1)ξ−1−λ

µ e[uβ(u)](−1)ξ−1+λ
ηK, (8.12.92)

where K =
∫
dw(−w)ξ−1+λ

η exp[−βw] and β(u) = yt
η(u+1) .

If w̄ = βw then the integral defining K becomes a standard repre-
sentation of the gamma function [154], so that

K = 1/((β)ξ+
λ
η )
∫
dw̄δ(−w̄)−(1−ξ−λ

η
)
exp[−w̄] =

1

β
ξ+λ

η

−2iπ
Γ(1− ξ − λ

η )
,

(8.12.93)
provided its real part Re(1− ξ− λ

η ) > 0. Consequently, we have for Z:

Z = ρλ
2iπ(−1)a

Γ(1− ξ − λ
η )
eyt/η(yt/η)−(ξ+λ

η
)
∫
du(u+1)ξ+

λ
η
−1
u
ξ−λ

η
−1
e
[− yt

η(u+1)
]

(8.12.94)

and a = ξ +
λ

η

The integral in the above equation, under the transformation v =
1/(u+ 1), with γ = −yt/η may be expressed as

Z = ρλ
2iπ(−1)a

Γ(1− ξ − λ
η )
× e−γ(−γ)−(ξ+λ

η
)
[
−
∫
dv(1− v)ξ−

λ
η
−1
v−2ξeγv

]
(8.12.95)
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Hence setting v = −q we obtain

Z = ρλ
2iπ(−1)a

Γ(1− ξ − λ
η )
e−γ(−γ)−(ξ+λ

η
)
[
−
∫
dqqα−1(1 + q)δ−α−1e−γq

]
,

(8.12.96)
where we have defined α = 1 − 2ξ and δ = 1 − ξ − λ

η . When this
integral is evaluated from 0 to ∞ along a suitable contour (see [154]),
it is found to be the representation of the confluent hypergeometric
function ψ(α, δ; γ), so that

Z = ρλ
2iπ(−1)a

Γ(1− ξ − λ
η )
e(yt/η)(yt/η)−(ξ+λ

η
)(−yt/η)−(ξ+λ

η
)
eyt/η×

ψ(1− 2ξ, 1− ξ − λ

η
;−yt/η). (8.12.97)

Upon setting

ρλ =
Γ(1− ξ − λ

η )

2iπΓ(1− 2ξ)
, (8.12.98)

we get

R̂λ
η

: 1 −→ (−yt/η)(ξ+
λ
η
)
eyt/ηψ(1− 2ξ, 1− ξ − λ

η
;−yt/η). (8.12.99)

Equation (8.12.98) is the normalization constant in case of the Q op-
erator for XXX model subject to Re (1 − ξ − λ

η ) > Re (1 − 2ξ) > 0.
One can explicitly evaluate the kernel of the Q operator for the XXX
model, since

Qλ
η

=
∫
dsn...

∫
ds1

n∏
i=1

Ri
λ
η

(si−1, yi|si, xi), (8.12.100)

and we have set ti = si−1. This leads to

Qλ
η

=
∫
dsn...

∫
ds1

i∏
i=1

ρiλ(xisi−1−1)ξi−1−λ
η (xisi−1)ξi−1+λ

η e
[si

yi+1−yi
η

]

(8.12.101)
To evaluate this integral we make the substitution, xisi−1 = qi

xi+1−xi
xi+1

,
whence it assumes the following form, viz

=
n∏

i=1

ρiλ(
xi+1 − xi

xi
)ξi+1−λ/η(

xi+1 − xi
xi+1

)ξi+1+λ/ηe
[
yi+1−yi

ηxi
]×
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×
∫
dqiq

ai−1
i (1 + qi)bi−ai−1 exp[−ziqi]. (8.12.102)

Here

ai = ξi + λ/η,

bi = ξi + ξi+1,

zi = −
(xi+1 − xi)(yi+1 − yi)

ηxixi+1
. (8.12.103)

When the integral in (8.12.102) is evaluated from 0 to ∞ along the
contour as before, it is representable by the confluent hypergeometric
function ψ(ai, bi; zi), so that

Qλ
η
(�y|�x) =

n∏
i=1

ρiλ(
xi+1 − xi

xi
)ξi+1−λ/η(

xi+1 − xi
xi+1

)ξi+1+λ/η×

×Γ(ξi +
λ

µ
)ψ(ai, bi; zi). (8.12.104)

Note that the Qλ
η

operator is explicitly deducible even when it involves
coupling of adjacent lattice sites. In this respect the above analysis
differs from the previous ones.

8.13 Method of Projection Operators

A new method for constructing the Q operator using projection op-
erators has recently received a lot of attention. In a series of recent
papers Pronko et al. [166, 167] suggested an approach that leads to
the construction of one parametric family of Q operators, satisfying
Wronskian-type relations for a number of integrable systems, e.g., XXX
spin chain, the Toda lattice and most recently the DST model. We de-
scribe here this procedure with the DST model in mind, for which it
will be recalled that the Lax operator at the nth lattice site is of the
form,

�n(u) =

(
u− i/2− iφ†nφn φ†n

φn i

)
. (8.13.1)
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Here u is the spectral parameter and the canonical variables φ†n, φn are
assumed to satisfy the commutation relation [φi, φ

†
j ] = δij . Moreover,

these variables obey the periodic boundary conditions:

φk+N = φk, φ†k+N = φ†k. (8.13.2)

The local Lax operator can be shown to satisfy the fundamental relation

R12(u− v)�1n(u)�2n(v) = �2(v)�1(u)R12(u− v), (8.13.3)

with the R matrix given by R12(u) = u+ iP12. Here P12 is the permu-
tation operator. By the standard method of algebraic Bethe ansatz, it
follows that t(u), i.e., the trace of the mondromy matrix,

t(u) = tr T (u) = tr

←
N∏
n=1

�n(u), (8.13.4)

satisfies an eigenvalue equation, with eigenvalue given by

t(u) = (u− i/2)N
l∏

j=1

(u− vj + i)
(u− vj)

+ iN
l∏

j=1

(u− vj − i)
(u− vj)

, (8.13.5)

provided the vj ’s satisfy the Bethe equations:

l∏
j=1

(vi − vj − i)
(vi − vj + i)

=
(vi − i/2)

iN
. (8.13.6)

It is therefore evident, that the polynomial,

q(u) ≡
l∏

j=1

(u− vj), (8.13.7)

satisfies Baxter’s equation,

t(u)q(u) = (u− i/2)Nq(u− i) + iNq(u+ i). (8.13.8)

Furthermore, we note that the Q operator is defined so as to satisfy

t(u)Q(u) = (u− i/2)NQ(u− i) + iNQ(u+ i), (8.13.9)

together with the following:

[t(u), Q(u)] = 0, [Q(u), Q(v)] = 0. (8.13.10)
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Hence if one considers (8.13.8) as a discrete analog of a second-order
differential equation, then it is natural to enquire about the second so-
lution of (8.13.8), and also whether there exists a second Q operator.
Indeed, it can be shown that a second Q operator does exist, and its
eigenvalues in case of the DST model are meromorphic functions. In
fact the existence of a second linearly independent Q operator may be
deduced from the following argument. Let us consider Baxter’s equa-
tion for the firstQ operator, with eigenvalue q(u), which is a polynomial
of degree, say n. The eigenvalue of the trace of the monodromy matrix
t(u), is a polynomial of degree N and we have

t(u)q(u) = (u− i/2)Nq(u− i) + iNq(u+ i). (8.13.11)

Then from (8.13.11) we have

t(u)
q(u+ i)q(u− i) =

(u− i/2)N
q(u)q(u+ i)

+
iN

q(u)q(u− i) . (8.13.12)

Multiplying this equation by ΓN (−i(u− i/2)), we get

t(u)ΓN (−i(u− i/2))
q(u+ i)q(u− i) =

iNΓ(−i(u+ i/2))
q(u)q(u+ i)

+
iNΓN (−i(u− i/2))

q(u)q(u− i) .

(8.13.13)
Let us now denote

S(u) =
iNΓ(−i(u+ i/2))
q(u)q(u+ i)

, (8.13.14)

so that
t(u)ΓN (−i(u− i/2))
q(u+ i)q(u− i) = S(u)− S(u− i).

One may write S(u) in the following manner:

S(u) = iNΓN (−i(u+ i/2))
[
q1(u)
q(u+ i)

+
q2(u)
q(u)

]
, (8.13.15)

with q1(u) and q2(u) being polynomials of degree < n. Inserting this
expression into Baxter’s equation (8.13.8) gives

(u− i/2)Nq2(u) + iNq1(u− i) = r(u)q(u), (8.13.16)
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where r(u) is a polynomial of degree < N . Expressing q1(u) in terms
of q2(u) and r(u), if we substitute it in the expression for S(u), then it
yields the following expression for S(u), viz

S(u) = iNΓN (−i(u+ i/2))r(u+ i) + iNΓ(−i(u+ i/2))
q2(u)
q(u)

−ΓN (−i(u+ 3i/2))
q2(u+ i)
q(u+ i)

. (8.13.17)

Suppose that S(u) is expressible in the form,

S(u) =
p(u+ i)
q(u+ i)

− p(u)
q(u)

. (8.13.18)

Then from (8.13.14) we have

iNΓN (−i(u+ i/2)) = p(u+ i)q(u)− p(u)q(u+ i), (8.13.19)

and

iNΓN (−i(u− i/2)) = p(u)q(u− i)− p(u− i)q(u). (8.13.20)

Multiplying (8.13.20) by (−i(u−i/2))N and subtracting it from (8.13.19)
leads after some simplification to

t(u)p(u) = (u− i/2)Np(u− i) + iNp(u+ i). (8.13.21)

This implies that p(u), is an eigenvalue of the second Q operator. The
next step consists in finding a function g(u) so that

g(u− i)− g(u) = iNΓN (−i(u+ i/2))r(u+ i). (8.13.22)

Assuming g(u) to be given by

g(u) =
∞∑
k=0

f(−iu− k), (8.13.23)

we see that
g(u− i)− g(u) = −f(−iu). (8.13.24)

Thus if we set

f(−iu) = −iNΓN (−i(u+ i/2))r(u+ i), (8.13.25)
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then

g(u) = −iN
∞∑
k=1

ΓN (−i(u+ i/2)− k)r(u+ i− ik), (8.13.26)

and the desired eigenvalue is given by

p(u) = g(u)q(u)− iNΓN (−i(u+ i/2))q2(u). (8.13.27)

Note that (8.13.27) is a meromorphic function of the spectral param-
eter u, which has poles at the integer values of v = −iu + i/2 (the
convergency of the series for g(u) at −iu+ 1/2 = Z is provided by the
term −k in the argument of the gamma function).

The approach developed by Pronko seeks to construct two Q(1,2)

operators as traces of monodromies Q̂(1,2), of suitable M (1,2)
n operators

acting in the nth quantum space and the auxiliary space γ, which
is a representation space of a certain Heisenberg algebra [ρ, ρ†] = 1.
It considers products of the form L(u)M (1,2)(u), which are defined in
Γ⊗ C2 and in which one introduces the projection operators:

Π†
ij =

(
1
ρ

)
i

1
(ρ†ρ+ 1)

(1, ρ†)+, Π−
ij =

(
−ρ†
1

)
i

1
(ρ†ρ+ 2)

(−ρ, 1)j .

(8.13.28)
Imposing the condition that the products L(u)M(u) and M(u)L(u)
are triangular in the sense of projectors Π±, one has for M1

n(u) the
conditions:

Π−
ik(Ln(u))klM (1)

n (u)Π+
ij = 0, (8.13.29)

Π+
ikM

(1)
n (u)(Ln(u))klΠ−

lj = 0. (8.13.30)

On the other hand for M (2)
n (u) we have

Π+
ik(Ln(u))klM (2)

n (u)Π−
lj = 0, (8.13.31)

Π−
ikM

(2)
n (u)(Ln(u))klΠ+

lj = 0. (8.13.32)

It follows from (8.13.29) that

M (1)(u)

(
1
ρ

)
i

= L̃(u)ij

(
1
ρ

)
j

A(1)(u), (8.13.33)
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B(1)(u)

(
1
ρ

)
i

= L̃(u+ i)ij

(
1
ρ

)
j

M (1)(u), (8.13.34)

where

L̃(u) =

(
i −φ†
−φ u− 3i/2− φ†φ

)
, (8.13.35)

together with the following properties:

L(u)L̃(u) = i(u− i/2)I (8.13.36)

and
L(u) + L̃(u+ i) = tr (L(u)I), (8.13.37)

(I = identity matrix). Equations (8.13.33 and 8.13.34) admit a solution
of the form,

B(1)(u) = cM (1)(u+ i), A(1)(u) = c−1M (1)(u), (8.13.38)

with c being a number. If one chooses c = i, then along with the
analogous considerations of triangularity for right multiplication, viz

Π+
ikM

(1)
n (u)(Ln(u))klΠ−

lj = 0,

it leads to the system,

L(u+ i)ij

(
1
ρ

)
j

M (1)(u) = M (1)(u+ i)

(
1
ρ

)
i

,

M (1)(u)L(u)ij

(
−ρ†
1

)
j

= i

(
−ρ†
1

)
i

M (1)(u+ i). (8.13.39)

For M (2) one similarly obtains

L̃(u+ i)ij

(
−ρ†
1

)
j

M (2)(u) = M (2)(u+ i)

(
−ρ†
1

)
i

,

M (2)(u)L(u)ij

(
1
ρ

)
j

= i

(
1
ρ

)
i

M (2)(u+ i). (8.13.40)

The full multiplication rules show that the triangular structure as given
by (8.13.29 and 8.13.30) and (8.13.31 and 8.13.32) is preserved for prod-
ucts of Ln and Mn. This is a consequence of the fact that the quantum
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operators with different n commute with each other. Hence, these re-
lations guarantee that both the traces of monodromies (if they exist),

Q(1,2)(u) = tr (Q̂(1,2)(u)) = tr
N∏
k=1

M
(1,2)
k (u), (8.13.41)

satisfy Baxter’s equation.

To solve the equations (8.13.39 and 8.13.40) explicitly the authors
in [166] use the holomorphic representation for the operators ρ, ρ†.
Accordingly, they let the operator ρ† be a multiplication operator
(ρ†ψ)(α) = αψ(α), and ρ be a differential operator, so that (ρψ)(α) =
∂
∂αψ(α). The action of an operator in the holomorphic representation
is defined by its kernel:

(M̂ψ)(α) =
∫
d2µ(β)M(α, β̄)ψ(β), (8.13.42)

with the measure being defined by d2µ(β) = e−ββ̄dβdβ̄. In this rep-
resentation the operators that satisfy (8.13.39) and (8.13.40) have the
following forms:

M (1)(u, α, β̄) =
e−iβ̄φ†Γ(−i(u− i/2))
Γ(−φ†φ− i(u− i/2))e

−iαφ, (8.13.43)

M (2)(u, α, β̄) = eiαφeiπφ
†φΓ(−φ†φ− i(u− i/2))eiβ̄φ†

. (8.13.44)

In order to find the monodromy Q̂(1,2)(u, α, β̄) one has to take an or-
dered multiplication of the M (1,2)-operators, so that

Q̂(i)(u, α, β̄) =
∫ N−1∏

i=1

d2µ(ri)M
(i)
N (u, α, γ̄N−1)...........M

(i)
1 (u, γ1, β̄).

(8.13.45)
Taking the trace of Q̂(1,2) over the auxiliary space gives the Q(1,2) op-
erator. Note that the trace of an operator Q in the holomorphic rep-
resentation, is given by

tr Q =
∫
d2µ(α)Q̂(α, ᾱ), (8.13.46)

where Q̂(α, ᾱ) is the kernel of Q̂.
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To ascertain that the eigenvalues of Q(1)(u) are polynomials in u, let
us consider the action of Q(1) on the basis vectors,

|n1, n2, ...nN 〉 = (φ†1)
n1(φ†2)

n2 ....(φ†N )nN |0〉, (8.13.47)

where |0〉 is the Bethe vacuum with

φk|0〉 = 0, k = 1, 2, ...., N. (8.13.48)

It can be shown that

Q(1)(u)|n1, n2, ...nN 〉 =
n1,...nN∑

m1,...mN=0

N∏
k=1

(−1)mk

mk!
Γ(−i(u− i/2))

Γ(−i(u− i/2)− nk +mk)

× nk!
(nk −mk)!

|..., nk −mk +mk−1, ....〉. (8.13.49)

From (8.13.49) it is evident that Q(1)(u) leaves the subspace of vectors,
with a common particle number n = n1 + n2 + ...+ nN invariant, and
all matrix elements of Q(1) are polynomials in u. Moreover, it should
be noticed that the action of the second Q operator, namely Q(2), on
the same basis vector yields

Q(2)(u)|n1, n2, ...nN 〉 = eiπn
∑

m1,...mn=0

N∏
k=1

Γ(−iu− 1/2− nk −mk−1)×

× (mk−1 + nk)!
mk!(nk +mk−1 −mk)!

|..., nk +mk−1 −mk, ....〉. (8.13.50)

The connection of this particular formalism with the earlier works
of Pasquier and Gaudin stems from the fact that in some realizations
of the quantum and auxiliary operators, the Q operator assumes a
factorized form. Indeed, in a coordinate representation for the quantum
and auxiliary operators, one obtains the Q operator as

Q(x1, ...xN , x
′
1, ....x

′
N ) =

N∏
k=1

qk(xk, x′k+1, xk). (8.13.51)

For the simplest case of one degree of freedom, Q(1)(u) and Q(2)(u)
have the following explicit nature:

Q(1)(u) =
n∑

k=1

n!
k!(n− k)!

Γ(−iu+ 1/2)
Γ(−iu+ 1/2− n− k) , (8.13.52)
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Q(2)(u) = eiπn
∞∑

m=0

(n+m)!
m!n!

Γ(−iu− 1/2− n−m). (8.13.53)

From the above equations, it is clear that the eigenvalues of Q(1)(u)
are polynomials of degree n, while those of Q(2)(u) are meromorphic
functions of the spectral parameter u. Furthermore, the solutions of
(8.13.29) and (8.13.32) can be cast in the form [166]:

M (1)(u, ρ) = P ρφ(i− φρ†)−i(u−i/2)e−uπ/2, (8.13.54)

M (2)(u, ρ) = Πρφγ(−ρ†ρ− ρ†φ− i(u− i/2)), (8.13.55)

where

P ρφ = exp
[
π

2
(φ†ρ− φρ†)

]
exp

[
iπ

2
(ρ†ρ− φ†φ)

]
(8.13.56)

and

Πρφ =

[
1 +

∑
k=1

(iφρ†)k
Γ(ρ†ρ+ 1)

Γ(ρ†ρ+ k + 1)
+
∑
k=1

(iφ†ρ)k
Γ(φ†φ+ 1)

Γ(φ†φ+ k + 1)

]
×

× Γ(ρ†ρ+ φ†φ+ 1)
Γ(ρ†ρ+ 1)Γ(φ†φ+ 1)

eiπφ
†φ. (8.13.57)

The operators M (1,2)
n and Ln(u) satisfy certain intertwining relations

that lead directly to the commutativity of Q operators and with the
transfer matrix namely:

[t(u), Q(i)(v)] = 0, [Q(i)(u), Q(j)(v)] = 0.

Having in principle constructed two solutions of the Baxter’s equa-
tion, it is natural to establish their linear independence. To this end
one considers a finite difference analog of the Wronskian determinant,

Wm = Q1(u− im)Q2(u+ i)−Q1(u+ i)Q2(u− im),

with m being a non-negative integer. From Baxter’s equation one has

t(u)Q1(u) = (u− i/2)NQ1(u− i) + iNQ1(u+ i), (8.13.58)

t(u)Q2(u) = (u− i/2)NQ2(u− i) + iNQ2(u+ i). (8.13.59)

Multiplying (8.13.58) by Q2(u) and (8.13.59) by Q1(u) and subtracting,
one finds that

(u− i/2)NW0(u− i) = −iNW0(u), (8.13.60)
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which indicates that W0 necessarily has a factor ΓN (−i(u + i/2)). In
fact one can also deduce that

W0(u) = eiπn̂ΓN (−i(u+ i/2)), (8.13.61)

where n̂ is the number of particles operator. Again, multiplying (8.13.59)
by Q2(u− i) and (8.13.58) by Q1(u− i), one can show that

W1(u) = (−i)N t(u)W0(u− i). (8.13.62)

In the general case of non-negative integer m one has the relation,

(u− i/2)NWm−2(u− 2i) + iNWm(u) = t(u)Wm−1(u− i), (8.13.63)

and hence, the full set of Wi’s may be determined once W0,W1, etc.
are known.

The above discussion gives us an overall idea of an alternative ap-
proach for constructing Q operators. We have purposely not gone into
the rigorous mathematical details. However, a few remarks are neces-
sary. First, this method has the important property of being able to
generate two different solutions of the Q operator. In fact an appli-
cation of this formalism to the case of the Toda lattice has also been
made in [167]. We refer the interested reader to the original papers for
further details. Secondly, although the case of the XXX spin chain is
described in [166], the latter model needs to be studied further, since as
of now there is no explicit derivation of the generating function and the
corresponding canonical transformation within this framework. Lastly,
to understand the physical consequences of this formalism, a proper
semiclassical limit needs to be introduced. Therefore, further scope for
analysis remains in order to ascertain the implications and efficacy of
this approach.



Chapter 9

Quantum GLM Equation

9.1 Introduction

We have so far discussed several features of quantum integrable
systems, many of which are similar to the classical ones, while others
are valid only for quantum systems. The Bethe ansatz together
with its variations all belong to the latter category. As mentioned
earlier, the Bethe ansatz allows us to calculate the spectrum of
the excitations when the nonlinear system is quantized. However,
there is a basic difference between the quantum inverse scattering
method formulated by means of the algebraic Bethe ansatz and
classical inverse scattering transform. While in the classical inverse
scattering transform, one determines or reconstructs the form of
the nonlinear field as a function of (x, t), in the quantum inverse
scattering method one can expect to compute the “excitation levels”
only, but not the “shape” of the nonlinear object. In other words,
one cannot compute or reconstruct the analog of the classical field.
In classical inverse scattering, the reconstruction of the fields is done
with the aid of the well-known Gelfand-Levitan-Marchenko (GLM)
equation.

In this chapter we shall discuss a quantum mechanical version of the
Gelfand-Levitan-Marchenko equation.

335
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9.2 Quantum GLM Equation

We consider the discrete NLS equation for which the Lax operator
can be written as

Ln(λ) = (1+
m

2
ρn)I−

iλ∆
2
σ3−iα

√
1 +

m

2
ρnψnσ−+iεαψ�

n

√
1 +

m

4
ρnσ+

(9.2.1)
where σ−, σ+, σ3 are Pauli matrices and

ρn = ψ�
nψn, α =

√
m, [ψn, ψ

�
m] = ∆δm,n.

The matrix Ln(λ) satisfies the Yang-Baxter equation:

R(λ− µ)(Ln(λ)⊗ I)(I ⊗ Ln(µ)) = (I ⊗ Ln(µ))(Ln(λ)⊗ I)R(λ− µ),
(9.2.2)

with R(λ) denoting the quantum R matrix operating on C2 ⊗ C2 and
having the form R(λ) = I + im

λ P. P being the usual permutation
operator : Pf ⊗ g = g ⊗ f . The generating function of the quantum
mechanical time part of the Lax operator has the form [172]:

Mn(λ, µ) = tr1(T+
n (µ)⊗ I)R(λ− µ)(T−

n (µ)⊗ I), (9.2.3)

where T±
n (µ) are the operator-valued matrices:

T+
n (µ) =

←
N∏
i=n

Li(µ) =

(
a+
n (µ) b+n (µ)
c+n (µ) d+

n (µ)

)
(9.2.4)

T−
n (µ) = Ln−1(µ)......L−N (µ) =

(
a−n (µ) b−n (µ)
c−n (µ) d−n (µ)

)
, (9.2.5)

and tr1 stands for the trace with respect to the first space in the tensor
product C2 ⊗ C2. It can be verified readily that (9.2.1) satisfies the
equation,

Mn(λ, µ)Ln(λ) = Ln(λ)Mn+1(λ, µ). (9.2.6)

Before we go into the detailed derivation of the quantum Gelfand-
Levitan-Marchenko (GLM) equation, we shall discuss the classical con-
cept of Floquet indices and Floquet functions that are relevant in the
subsequent quantum mechanical analysis.
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9.3 Quantum Floquet Function

The Floquet function for a difference equation with periodic bound-
ary conditions may be defined in the following manner.
Let T̂p be the operator of translation by p nodes along a chain. Its
action is defined by

T̂pfn = fn+p. (9.3.1)

Consider the periodic potential involving the Lax equation,

φn+1(λ) = Ln(λ)φn(λ), (9.3.2)

LM+2N (λ) = LM (λ). (9.3.3)

The action of T̂p on φn leads to

T̂pφn(λ) = Lp+n(λ)Lp+n−1(λ).........Ln(λ)φn(λ) = φn+p(λ). (9.3.4)

By definition a Floquet solution of (9.3.2) is an eigenfunction of the
operator of translation by 2N nodes,

T̂2NFn(λ) = exp(2ip(λ)N)Fn(λ), (9.3.5)

whence p(λ) is known as the quasi momentum. The known analytic and
asymptotic properties of F permit us to reconstruct it and help us to
find the potential in the auxiliary linear problem. In the periodic case
these analytical properties are complicated in nature requiring exhaus-
tive use of Riemann surfaces with handles for a proper exposition. We
will not go into these details, but assumme that all the required prop-
erties hold. In the quantum case the elements of φn(λ) are operators
in the full-state space,

H = H−n ⊗ ....⊗Hn, (9.3.6)

where Hn stands for the state space at the nth node. The translation
operator acts on the solutions of the quantum linear problem. It is
natural to define the quantum Floquet function as an operator that
diagonalizes the operator of translation by 2N nodes:

T̂n(λ)Fn(λ) = Ln(λ)....LN (λ)L−N (λ)....Ln−1(λ)Fn(λ)

= exp(2ip(λ)N)Fn(λ). (9.3.7)



338 Quantum Integrable Systems

The translation operator T̂n(λ) is simply related to the generating func-
tion Mn(λ, µ). It is the residue of Mn(λ, µ) at λ = µ, which is evident
from the following formula:

Mn(λ, µ) = tr Tn(µ)I +
im

λ− µTn(µ), (9.3.8)

where Tn(µ) = T+
n (µ)T−

n (µ) is the monodromy matrix. The matrix
elements of T (λ) in the auxiliary space are

Tn(λ) =

(
a(λ) b(λ)
c(λ) d(λ)

)
. (9.3.9)

From (9.3.9) it follows that Tn(λ) and Mn(λ, µ) can be simultaneously
diagonalized. Furthermore, since Mn(λ, µ) is the trace of the mon-
odromy operator of a nonhomogeneous lattice, an impurity with quan-
tum space C2 is introduced between the nth and the (n − 1)th nodes.
The monodromy matrix of such a chain acts in space C2 ⊗ (C2 ⊗ H)
and has the form

T̂n(λ, µ) = (T+
n (µ)⊗ I)R(µ− λ)(T−

n (µ)⊗ I), (9.3.10)

=

(
Ân(λ, µ) B̂n(λ, µ)
Ĉn(λ, µ) D̂n(λ, µ)

)
. (9.3.11)

The operators Â, B̂, etc. act in C2 ⊗H and

Mn(λ, µ) = Ân(λ, µ) + D̂n(λ, µ). (9.3.12)

From (9.3.8) one can find explicit expressions for Â, B̂, etc. For exam-
ple,

B̂n(λ, µ) = b(µ)I +
im

λ− µ

(
b−n (µ)
d−n (µ)

)
⊗ (a+

n (µ), b+n (µ)). (9.3.13)

Note that the operator T̂n(λ, µ) satisfies the same Yang-Baxter equa-
tion (9.2.2) and that the vector

Ω̂ =

(
Ω
0

)
, (9.3.14)

where Ω is the Fock vacuum for φn, has the following properties:

Ĉn(λ, µ)Ω̂ = 0,
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D̂n(λ, µ)Ω̂ =
(
1 +

iµ

2
∆
)2N

Ω̂, (9.3.15)

Ân(λ, µ)Ω̂ =
λ− µ+ im

λ− µ

(
1− iµ

2
∆
)2N

Ω̂.

In order to find the eigenvectors of Mn(λ, µ), one can use the Bethe
ansatz. Consider the eigenvectors,

fn(λ, µ, µ1(λ), ...µn(λ)) =
m∏
k=1

B̂(λ, µk(λ))Ω̂, (9.3.16)

where µi(λ) satisfies the system,(
1 + iµk

2 ∆

1− iµk
2 ∆

)2N

=
∆− µk + im

∆− µk

m∏
j �=k

µk − µj + im

µk − µj − im
. (9.3.17)

It can be shown that the eigenvalue of Mn(λ, µ) is

m(λ, µ) =
λ− µ+ im

λ− µ

(
1− iµ

2
∆
)2N m∏

k=1

µ− µk + im

µ− µk
+

+
(
1 +

iµ

2
∆
)2N m∏

k=1

µ− µk − im
µ− µk

. (9.3.18)

The eigenvalue of Tn(µ) on fn is

t(λ) =
(
1− iλ∆

2

)2N m∏
k=1

λ− µk + im

λ− µn
= exp(2ip(λ)N). (9.3.19)

On the other hand the eigenvectors,

b(µ1, ...µm) = b(µ1)....b(µm)Ω, (9.3.20)

describe the full-state space of the model, where µ1, ...µm satisfy the
system of equations:(

1− iµk
2 ∆

1 + iµk
2 ∆

)2N

=
m∏
j �=k

µk − µj + im

µk − µj − im
. (9.3.21)

Following the insertion of an impurity the space H is enriched to Ĥ =
H ⊕ C1. Hence Mn(λ, µ) has twice as many eigenvectors as trTn(λ).
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When λ → ∞, R(λ, µ) → I, the impurity ceases to interact with the
basic model. Then (9.3.17) degenerates to (9.3.21) and we have the
following set of eigenfunctions:

f+(µ1, ...µn) =

(
b(µ1...µn)

0

)
, f−(µ1, ...µn) =

(
0

b(µ1, ...µn)

)
.

(9.3.22)
One can show that the solutions of (9.3.21) µ1, ...µn produce a solution
of (9.3.17) µ1(λ), ...µn(λ) so that

µj(λ)→ µj . (9.3.23)

Consider the operator F+
n (λ) acting from H to Ĥ according to the rule:

F+
n (λ) : f(µ1, ...µm)→ fn(λ, µ1(λ)....µm(λ)). (9.3.24)

The operator F+
n (λ) thus defined is the first branch of the operator

Floquet function. It is obvious that

F+
n (λ)λ→∞−→

(
1
0

)
. (9.3.25)

The second branch of the Floquet operator is

F−
n (λ) λ→∞−→

(
0
1

)
. (9.3.26)

Analysis with finite N is complicated and as a result the quasimomen-
tum p(λ) has complicated analytical properties. But if N →∞ in the
Fock space with the following conditions, namely

• µ1....µp, arbitrary real numbers which are independent of λ,

• Imλ < 0, µ1 = λ1, while µ1....µp arbitrary,

• Imλ > −σ, µ1 = λ+ iσ, while µ1, ....µp are arbitrary,
then we can define T±, T as follows:

T (λ) = lim
N→∞

V −N (λ)TN (λ)V −N (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
(9.3.27)

T+(λ) = lim
N→∞

V −N+k(λ)T+
k (λ) =

(
A+(k, λ) B+(k, λ)
C+(k, λ) D+(k, λ)

)
(9.3.28)
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T−(λ) = lim
N→∞

T−
k (λ)V −N−k(λ) =

(
A−(k, λ) B−(k, λ)
C−(k, λ) D−(k, λ)

)
(9.3.29)

V (λ) = diag
(
1− iλ∆

2
, 1 +

iλ∆
2

)
. (9.3.30)

The limiting value of the operator B̂k(λ, µ) is given by

B(µ)I +
im

λ− µ

(
1− iλ∆

2

1 + iλ∆
2

)−2k (
B−(k, µ)
D−(k, µ)

)
⊗ (A+(k, µ), B+(k, µ)).

(9.3.31)
From the solution (9.3.27) and (9.3.28) one can construct the limiting
Floquet functions on the first branch,

F1(k, λ)B(µ1)....B(µn)Ω = B̂n(λ, µ1).....B̂k(λ, µk)Ω. (9.3.32)

Obviously F1(k, λ) →
(

1
0

)
as λ → ∞, where F1(k, λ) is the limit of

F+
k (λ) for N →∞. From the previous formula it is readily seen that

B̂k(λ, µ)
k→−∞−→ B(µ)I, Imλ > 0, (9.3.33)

B̂k(λ, µ)
k→∞−→ B(µ)

(
1 + im

λ−µ

1

)
, Im λ < 0. (9.3.34)

For F1(k, λ) this yields

F1(k, λ) −→
(

1
0

)
; k → −∞, Im λ > 0, (9.3.35)

F1(k, λ) −→ D−1(λ+ im)

(
1
0

)
; k →∞, Im λ < 0. (9.3.36)

Moreover, from the fact that F1(k, λ) diagonalizes the operatorMn(λ, µ)
given by (9.3.8), one gets the connection between F1(k, λ) and the Jost
functions,

F1(k, λ) = χ(k, λ); Imλ > 0,

F1(k, λ) = φ̃(k, λ+ im)D−1(λ+ im); Imλ < 0, (9.3.37)

where

χ(k, λ) =

(
A−(k, λ)
C−(k, λ)

)
; φ̃(k, λ) =

(
D+(k, λ)
−C+(k, λ)

)
. (9.3.38)
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The function F1(k, λ) has a jump on the real axis caused by the poles
in the right-hand side of (9.3.8). For µi �= µj we get

[F1(k, λ+ i0)− F1(k, λ− i0)]B(µ1).....B(µm)Ω =

2πm
n∑

j=1

δ(λ− µj)
∏
j

λ− µj + im

λ− µj
B̃k(λ, µ)

∏
Bk(λ, µl)Ω̃(check?),

(9.3.39)

B̃k(λ, µ) =
λ− µ

λ− µ+ im
B̂k(λ, µ). (9.3.40)

The vector on the right-hand side of the above equation defines the
second branch of the Floquet function:

F2(k, λ)B(µ1)...B(µn)Ω = B̃(λ, λ)B̃(λ, µ1)....B̃(λ, µn)Ω̃; Imλ > 0.
(9.3.41)

Introducing the operator R(λ) = D−1(λ)C(λ) and using the commu-
tation rule,

R(λ)R(µ) =
λ− µ+ im

λ− µ B(µ)R(λ) + 2πmA(λ)δ(λ− µ), (9.3.42)

we can write (9.3.39) as

F1(k, λ+ i0)− F1(k, λ− i0) = F2(k, λ)R(λ).

Similar to F1(k, λ), we can show that F2(k, λ) is also connected to the
Jost function. To do so, note that B̃(λ, λ) degenerates into a projector:

B̃(λ, λ) =

(
1− iλ∆

2

1 + iλ∆
2

)−2k (
B−(k, λ)
D−(k, λ)

)
⊗(A+(k, λ), B+(k, λ)), (9.3.43)

whence in view of (9.3.41) and (9.3.43) we find that

F2(k, λ) =

(
1− iλ∆

2

1 + iλ∆
2

)2k (
B−(k, λ)
D−(k, λ)

)
=

(
1− iλ∆

2

1 + iλ∆
2

)2k

χ̄(k, λ) (9.3.44)

as a consequence of which (9.3.42) becomes equivalent to

χ(k, λ)−
(

1− iλ∆
2

1 + iλ∆
2

)2k

χ̄(k, λ)R(λ) = φ(k, λ+ im)D−1(λ+ im),

(9.3.45)
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leading thereby to the quantum GLM equation.

In the foregoing discussion we have tried to present an idea about
how the quantum Gelfand-Levitan-Marchenko equation may be formu-
lated in the case of the discrete NLS equation. The discussion was
based mainly on the exposition of Reshetikhin and Smirnov [171]. We
have not been able to give details regarding the construction of the
operator M(λ, µ), and we refer the interested reader to their original
papers [172, 173].

The relevance of the quantum GLM equation is yet to be fully ascer-
tained in the theory of quantum integrable systems, primarily because
the algebraic Bethe ansatz is much easier to apply to concrete systems,
thereby somewhat overshadowing this method. To appreciate this for-
malism from a more physical point of view, we shall now discuss it in
the context of a continuous NLS system.

A slightly different approach utilizes the concept of the quantum
determinant, which is used to evaluate the inverse of matrices like Ln(λ)
whose elements are operators. In the present case one can verify that

L−1
n (λ) = d−1(λ)σ2L

t
n(λ+ im)σ2, (9.3.46)

with
d(λ) = (1− iλ

2
∆)(1 +

iλ

2
∆− m∆

4
). (9.3.47)

The monodromy matrix T (λ) can be written as

T (λ) = T+
n (λ)T−

n (λ), (9.3.48)

whence using the above equation we have

T+
n (λ)− d−N−n+1(λ)T (λ)σT−1?

n (λ+ im)σ2. (9.3.49)

The first row of this equation yields

A−1
n (λ− im)

(
A+
n (λ− im)

B+
n (λ− im)

)
= d−N−k+1(λ− im)

[(
D−

n (λ)
−B−

n (λ)

)
+

+Bn(λ)A−1
n (λ)

(
−C−

n (λ)
A−
n (λ)

)]
, (9.3.50)
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where the parameter λ is shifted and use has been made of the identity,

A−1
n (λ− im)Bn(λ− im) = Bn(λ)A−1

n (λ). (9.3.51)

Now it is known that as ∆→ 0 and the length L→∞ we have

T (λ) = limV −N (λ)Tn(λ)V −N (λ), (9.3.52)

T+(x, λ) = lim
n∆=x

V −N+n(λ)T+
n (λ), (9.3.53)

T−(x, λ) = lim
n∆=x

T−
n (λ)V −N+n+1(λ), (9.3.54)

with V (λ) = diag(1− iλ
2 ∆, 1+ iλ

2 ∆). These are just equations (9.3.27–
9.3.29) written in a different way for easier reference. If the normalized
Jost functions be defined as

Φ(x, λ) =

(
A+(x, λ)
B+(x, λ)

)
, Φ̄(x, λ) =

(
C+(x, λ)
D+(x, λ)

)
, (9.3.55)

χ(x, λ) =

(
−C−(x, λ)
A−(x, λ)

)
, χ̄(x, λ) =

(
D−(x, λ)
−B−(x, λ)

)
, (9.3.56)

then upon passing to the limit, we obtain from (9.3.51):

χ̄(x, λ)+e−iλxB(λ)A−1(λ)χ(x, λ) = A−1(λ−im)φ(x, λ−im). (9.3.57)

Now inverting T+ but not T− in (9.3.49) we get

Φ(x, λ)− eiλxφ(x, λ)A−1(λ)C(λ) = χ(x, λ− im)A−1(λ− im). (9.3.58)

It is important to note that these equations (9.3.57) and (9.3.58) differ
from the corresponding classical relations by a shift in the spectral
parameter on the right-hand side. The analyticity properties of A,Φ, χ
andD, φ̄, χ̄ remain the same as in the classical case, although the proofs
are more involved. For m < 0 bound states occur as before and one
has

A(λ)|n, k〉 =
λ− k + im

2 (n+ 1)
λ− k − im

2 (n− 1)
|n, k〉.

Now let us study (9.3.58). The function Φ is analytic for Im λ ≤ 0,
while the right-hand side of the same equation has Im λ > 0, discon-
tinuites on the straight line Im λ = −mn/2, n = 1, 2, ..... Using the
asymptotic behaviour,

A(λ)→ 1,Φ(x, λ)→
(

1
0

)
and χ(x, λ)→

(
0
1

)
,
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one can write an integral representation for Φ(x, λ) in the form:

Φ(x, λ) =

(
0
1

)
+

1
2iπ

[∫ ∞

−∞
Φ(x, µ)A−1(µ)C(µ)eiµx

λ− µ dµ

+
∞∑
n=1

∫
Im λ=−mn/2

χ(x, µ− im)disc A−1(µ− im)
λ− µ dµ

]
, Im λ < 0

where discA−1(µ) = A−1(µ+ i0) − A−1(µ− i0). The next question is
how to express χ(x, µ)discA−1(µ) in terms of Φ to have a closed system.
Using

A+(x, λ)A−(x, λ) +B+(x, λ)C−(x, λ) = A(λ)

and the equality A(λ)discA−1(λ) = 0 we get

χ(x, λ)discA−1(λ) = Φ(x, λ− im)F (x, λ+ im),

where

F (x, λ+ im) = C−(x, λ)(A+(x, λ+ im))−1discA−1(λ).

The standard commutation rules give

A(µ)C−(x, λ)A+(x, λ+im)−1 =
λ− µ+ im

λ− µ C−(x, λ)A+(x, λ+im)−1×

A(µ)− im

λ− µA
+(x, λ+ im)−1A+(x, µ)C−(x, µ)A+(x, λ)−1A(λ).

It then follows that

A(µ)F (x, λ) =
λ− µ

λ− µ− imF (x, λ)A(µ). (9.3.59)

The last equation implies that

eiP bF (x, λ)e−iP b = e−iλtF (x, λ), (9.3.60)

eiHtF (x, λ)e−iHt = e−iλ2tF (x, λ), (9.3.61)

where P,H are the momentum and energy operators. The functions Φ
and χ have the properties,

e−iP bχ(x, λ)eiP b = χ(x+ b, λ), (9.3.62)

e−iP bΦ(x, λ)eiP b = Φ(x+ b, λ), (9.3.63)
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so that F (x, λ) depends on x in a trivial way. Let us fix the point x0

and introduce

Fn,1(λ) = F (x0, λ−
imn

2
), n = 1, 2, .....

F0,1(λ) = eiλx0A−1(λ)C(λ),

φn(x, λ) = Φ(x, λ− imn

2
), n = 0, 1, ....

φ̄n(x, λ) = φ̄(x, λ+
imn

2
), n = 0, 1, .... (9.3.64)

where Im λ = 0. The operator Fn,1(λ) has the intutive meaning of an
operator annihilating a particle with momenta (λ−imn/2) in the bound
state |n+1, λ〉. At this stage it is necessary to introduce the annihilation
operators for k particles with momenta λ−( imn

2 +jm); j = 0, 1, ..., k−1
in the state |n+ 1, λ〉,

Fn,k(λ) =
[
C−(x0, λ−

im

2
(n+ 2) + im(k − 1))A+(x0, λ−

imn

2

+im(k − 1)).....C−(x0, λ−
im

2
(n+ 2))A+(x, λ− imn

2
)−1
]
×

disc(λ− im

2
(n+ 2)). (9.3.65)

These operators satisfy

A(µ)Fn,k(λ) =
λ− µ− imn

2 + im(k − 1)
λ− µ− imn

2 − im
Fn,k(λ)A(µ), (9.3.66)

Fn,k(λ)Fr,l(µ) =
λ− µ− im

2 (n− r − 2k)
λ− µ− im

2 (n− r + 2l)− i0
Fr,l(µ)Fn,k(λ)

+2πiδ(λ− µ)δr−n,2lFr,k+l(λ)A−1
(
λ− im

2
(n+ 2) + i0

)
, (9.3.67)

Fn,1(λ)F �
r,1(µ) =

λ− µ− im
2 (n+ r)− im

λ− µ− im
2 (n+ r) + im

F �
r,1(µ)Fn,1(λ), (9.3.68)

whence the GLM equation can be written as

Φ̄n(x, λ) =

(
0
1

)
+

1
2πi

∞∑
r=0

emr(x−x0)/2
∫ ∞

−∞
dµ

Φr(x, µ)Fr,1(µ)eiµ(x−x0)

λ− µ+ im
2 (n+ r)− i0

(9.3.69)
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If we adjoin it with,

Φn(x, λ) = −iσ2φ̄
n(x, λ)�

then (9.3.69) represents the desired GLM equation.

In the above analysis we have discussed how the Floquet problem and
the GLM equation can be formulated in the case of a discrete system
and how the passage to the continuous case can be achieved. On the
other hand, a completely distinct approach to the same problem was
given by Thacker [22, 36], Creamer et al. [180] for a continuous system.
The construction of the bound state creation and annihilation operators
was studied later by Kaup [176], Göckeller [179] and Nakawaki [175].
We shall try to give a brief overview of their work in the following
sections. Lastly, it is important to remember that the main difficulty
in the quantum case arises in ascertaining the analyticity properties in
the λ-plane, which, however, is similar to the corresponding classical
counterpart.

9.4 Exact Quantization

An alternative approach to the process of quantization was suggested
by Kaup in 1975 [176]. His approach was based on the analogy of the
nonlinear inverse scattering transform and linear Fourier analysis, the
idea being that it was perhaps easier to quantize the normal modes
rather than the fields. The motivation for this arose from the fact that
the normal modes are independent and therefore relatively simpler to
deal with compared to the field variables. Moreover, by appealing to
Bohr’s correspondence principle one could try to examine the classi-
cal equations of motion for the modes, in the limit h̄ → 0. To keep
track of the limiting procedure, we will mostly follow the notations
of Kaup [176], after a little simplification, since in the original work
a somewhat unconventional notation was employed. We consider the
Zakharov problem for the NLS system, which is written in the form,

v1x + iλv1 =
√
−cψv2,

v2x − iλv2 = −
√
−cψ�v1(check). (9.4.1)
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The classical solution of the initial value problem is as follows. First
the scattering data is determined at t = 0;

S+ = {[λj , ρj ]Jj=1, ρ(λ) (λ = real)}. (9.4.2)

Let ψ satisfy the condition∫ ∞

−∞
|ψ(x, t)|2dx <∞. (9.4.3)

The Jost function φ =

(
φ1

φ2

)
, defined to be a solution of (9.4.1), satis-

fies:

φ −→
(

1
0

)
e−iλx as x→ −∞ (9.4.4)

for Im (λ) > 0, and

φ −→
(
a(λ)e−iλx

b(λ)eiλx

)
as x→ +∞. (9.4.5)

We define a(λ) and b(λ) so that they obey

ā(λ)a(λ) + b̄(λ)b(λ) = 1, (9.4.6)

with
ā(λ) = [a(λ�)]�, b̄(λ) = [b(λ�)]�, (9.4.7)

(the nonlinear field ψ is defined on a compact support). The continuous
spectrum of the scattering data is given by

ρ(λ) =
b(λ)
a(λ)

, (λ = real). (9.4.8)

The existence of bound states depends on the sign of c. Basically, the
inverse scattering transform is a nonlinear mapping of the field ψ(x, y)
to the scattering data S+(λ, t). The time evolution of the data are

λt = 0, ρjt = −(2λ2
j )ρj , a(λ)t = 0, (Imλ > 0),

ρ(λ)t = −(2λ)2ρ(λ) (λ = real). (9.4.9)

To reconstruct the potential, one takes recourse to the method of
Gelfand-Levitan-Marchenko equation, which in the presence of bound
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states leads to the soliton solutions. The point to note here is that
the above-mentioned mapping has transformed the nonlinear equations
into a set of linear equations. The complete integrability of the NLS
equation guarantees that this mapping is a canonical, which allows the
Hamilton-Jacobi differential equation to be completely separable. As
a result, the corresponding action-angle variables can be determined.
One starts from the fact that a(λ) is an analytic function in λ in the
upper half λ-plane and can be represented as

Im a(λ) =
J∑

j=1

ln

(
λ− λj
λ− λ�j

)
− 1

2πi

∫ ∞

−∞
dλ′

λ′ − λ ln[1+ρ̄(λ′)ρ(λ)], (9.4.10)

for Im (λ) > 0, where the summation is absent if c < 0. It can be
shown that

ln a(λ) = lim
x→∞ lnω(λ, x), (9.4.11)

with ω(λ, x) = φ1(λ, x)eiλx, (9.4.12)

where ω is the solution of

ω(λ, x) = 1 +
∫ ∞

−∞
M(λ;x, y)ω(λ, y)dy,

with M(λ;x, y) = −cψ�(y)
∫ x

y
e2iλ(z−y)ψ(z)dz. (9.4.13)

The Neumann series solution is absolutely convergent in the upper half
plane. The conserved quantities are obtained as asymptotic expansions
of ln a(λ). One can prove that

ln a(λ) = − ic
λ

(
N − 1

2λ
P +

1
2λ2

E + ....

)
, (9.4.14)

with
N =

∫ ∞

−∞
ψ�ψdx,

P = −1
2

∫ ∞

−∞
(ψ�ψx − ψ�

xψ)dx,

E =
∫ ∞

−∞
[ψ�

xψx −
1
2
c(ψ�ψ)2]dx. (9.4.15)

Before proceeding with quantization, let us note that by means of stan-
dard procedure, we can derive the Hamiltonian for the continuous NLS
equation and define the conjugate momentum of ψ as

Π = ih̄ψ�. (9.4.16)
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On the other hand, although the inverse scattering has mapped the
nonlinear system to the scattering data, it still remains to identify the
actual canonical variables in the scattering data space. A solution to
this can be obtained, by writing (9.4.15) in terms of the scattering
variables (in the following description we have set h̄ equal to 1), so
that

E =
J∑

j=1

1
2
(P 2

j +Q2
j )P

2
j −

c2

12

J∑
j=1

[
1
2
(P 2

j +Q2
j )]

3

+
∫
dλ(−2λ)2

1
2
(p2(λ) +Q2(λ)), (9.4.17)

where Pj , Qj , P (λ), Q(λ) are defined by

arg(Pj + iQj) = argbj , P 2
j +Q2

j = −8
c
ηj ,

Pj = −2ξj , Qj = −1
c
ln |bj |2, (9.4.18)

with λj = ξj + iηj . The choice of the canonical variables are made from
the equation,∫ ∞

−∞
δψ ∧ δΠdx =

∫ ∞

−∞
dξδ(argb) ∧ δ

(
1
c
ln(1 + ρ̄ρ)

)
+

+
J∑

j=1

δ(argbj) ∧ δ(
1
c
ηj) +

J∑
j=1

δ(
1
c
ln(b�jbj)) ∧ δ(−2ξj), (9.4.19)

where bj = ρj
∂a
∂λ |λ=λj

. Prior to quantization, one must also look for any
constraints on the system. Since the Hamiltonian is separable, we need
only consider the subspaces of the conjugate pair, one at a time. For
the (Aj , Bj) space to be physical, we must have Aj > 0(j = 1, ..., J),
since all the eigenvalues must lie in the upper half λ-plane. This is
a nonholonomic constraint and rather difficult to tackle. However, it
turns out that one can find a simple transformation to map this space,
which is one to one, and onto the space of the harmonic oscillator. This
transformation is

Aj =
1
2
(P 2

j +Q2
j ), Bj = arg(Pj + iQj). (9.4.20)

As a result, the quantization is simplified and one gets

1
2
(P 2

j +Q2
j ) −→ A†

jAj +
1
2
,
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1
2
(P 2(ξ) +Q2(ξ)) −→ A†(ξ)A(ξ) +

1
2
. (9.4.21)

Here A,A† are the usual destruction and creation operators satisfying

[Ak, A
†
j ] = δkj , [A(ξ), A†(ξ′)] = δ(ξ′ − ξ), (9.4.22)

so that the jth soliton appears as a bound state of 1
2(P

2
j + Q2

j ) parti-
cles. Now, Pj + iQj is the classical counterpart of a ladder operator,
which increases the number of excitation in the jth soliton by one, thus
transforming an n particle bound state into an (n+ 1) particle bound
state. This ladder property is also shared by

exp(iarg (Pj + iQj)) = ecqj/2bj = lim
x→∞ ecqjze−iλjxφ2(λj , x). (9.4.23)

The variable qj is canonically conjugate to the quantity pj , which rep-
resents the momentum per particle in the jth soliton. We are now in
a position to define an analogue of (9.4.1) in the full quantum theory.
For this we set

Φ2(λ, x) = − 1√
c
e−iλxecS/2φ2(λ, x), (9.4.24)

with
S =

∫
dxψ†(x)xψ(x). (9.4.25)

It is important to analyse the question of whether there are states |An〉,
so that limx→∞ |A〉 exist for suitably chosen λ. We consider |An〉 to be
an n particle state:

|An〉 =
∫
dx1...dxnAn(x1....xn)|x1....xn〉,

|x1....xn〉 = ψ†(x1)....ψ†(xn)|0〉. (9.4.26)

Note that An should be a bounded and symmetric function of its ar-
guments and the following relations should hold:

φ1(λ, x)|An〉 =
∫
dx1...dxne

−iλx−2iλ(x1+...+xn)Un(x1...xn)|x1...xn〉,
(9.4.27)

φ2(λ, x)|An〉 = −
√
−c
∫
dy eiλ(x−y)θ(x− y)ψ†(y)φ1(λ, y)|An〉

=
∫
dx1....dxne

iλx−2iλ(x1+...xn+1)Vn(x, x1...xn+1)|x1...xn+1〉, (9.4.28)
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V (x, x1.....xn+1) =
√
−c

n+ 1

n+1∑
j=1

θ(x− xj)Un(xj , x1...x̂j ...xn+1), (9.4.29)

where the symbol x̂j means that the argument under ∧ is to be omitted.
Applying the series for φ1(λ, x) (which is constructed from (9.4.28) by
iteration to |An〉), we obtain for x1 < x2 < ... < xn:

Un(x, x1...xn) = Dn(x1....xn) +
n∑

m=1

θ(xm+1 > x > xm)
m∑
j=1

cj×

×
∑

1≤k1...≤kj<m

∫
dy1...dyjθ(x > yj > xkj > yj−1... > y1 > xk1)×

×{Dn(x1...xn)|xk1
→y1....xkj→yj}. (9.4.30)

Here
Dn = An(x1...xn)e2iλ(x1+...+xn) (9.4.31)

and xn+1 has to have been set equal to ∞, so that Un is determined
by (9.4.30). In particular we have

Un(−∞;x1...xn) = Dn(x1...xn) (9.4.32)

and for x1 < x2... < xn the following relations:

Un(−∞;x1....xn) = Dn(x1....xn) (9.4.33)

Un(+∞, x1...xn) = Dn(x1....xn) +
n∑

j=1

θ(xm+1 > x > xm)
m∑
j=1

cj×

×
∑

1≤k1...≤kj<n

∫
dy1...dyjθ(yj > xkj > yj−1 > xkj−1... > y1 > xk1)×

×{Dn(x1...xn)|xk1
→y1....xkj→yj}. (9.4.34)

We also note that

a(λ)|An〉 = lim
x→∞ eiλxφ1(λ, x)|An〉,

=
∫
dx1...dxne

−2iλ(x1+....+xn)Un(∞;x1...xn)|x1...xn〉. (9.4.35)

Let us investigate the condition under which

lim
x→∞φ2(λ, x)|An〉



Quantum GLM Equation 353

exists. For this purpose we consider the matrix element,

〈gn+1|Φ2(λ, x)|An〉, (9.4.36)

with |gm〉 =
∫
dx1...dxmgm(x1...xm)|x1....xm〉 We find that

〈gn+1|Φ2(λ, x)|An〉 = (n+ 1)!
∫
dx1...dxne

(c/2−2iλ)(x1+...xn)×∫ x

−∞
dye(c/2−2iλ)yg�n+1(x1...xn, y)Un(y;x1...xn). (9.4.37)

Setting λ = ξ + iη, (η > 0) and upon examining the integral over y
with x1....xn fixed, the following cases arise:

(1) When 2η+c/2 > 0 and if x is finite, then the integral exists. The
integration contains a factor that grows exponentially as y → ∞, so
that limx→∞ can exist for all gn+1, which satisfy∫

dx1...dxm|gm(x1...xm)|k <∞ for k = 1, 2,

only if Un(∞;x1...xn) = 0.

(2) When 2η + c/2 < 0 , then the integral exists even if x is finite.

(3) Finally when 2η + c/2 = 0, we have λ = ξ − ic/4 and

Φ2(λ, x) = − 1√
−ce

−iξxφ2(ξ, x)ecS/2 = lim
x→∞ b(ξ)ecS/2. (9.4.38)

Hence, in this case we get b(ξ) as x → ∞, by which scattering states
are constructed and one therefore has an unbound state.

Let us now consider the case 2η + c/2 > 0 more closely. By the
preceding analysis, a necessary condition for the existence of the limit
is

a(λ(|An〉 =
∫
dx1...dxne

−2iλ(x1+...+x)n)Un(∞, x1...xn)|x1...xn〉 = 0.

(9.4.39)
This condition is the quantum mechanical analogue of the fact that in
(9.4.36), we have to introduce an eigenvalue λj , i.e., a zero of a(λ),
whence Un(∞, x1...xn) = 0 gives an equation for Dn. When x1 <
x2.... < xn solution for this is given by

Dn(x1...xn) = exp(c
n∑

j=1

jxj), n = 1, 2, ..., (9.4.40)



354 Quantum Integrable Systems

so that

An(x1....xn) = exp(
n∑

j=1

(jc− 2iλ)xj), (9.4.41)

for x1 < x2 < ...xn. This wave function is bounded provided η =
−1

4c(n+ 1). So from (9.4.26) we find

An(x1....xn) = exp

⎛⎝−2iξ(x1 + ..+ xn) +
c

2

∑
1≤j≤k<n

|xk − xj |

⎞⎠ .
(9.4.42)

If we let ξ = −p/2, then (9.4.42) is the wave function of an n particle
bound state with total momentum np, which we denote as ωp

n(x1....xn):

|n, p〉 =
∫
dx1...dxnω

p
n(x1...x)n)|x1....xn〉

=
∫
dx1....dxn exp

⎛⎝−2iξ(x1 + ..+ xn) +
c

2

∑
1≤j≤k<n

|xk − xj |

⎞⎠ |x1...xn〉,

(9.4.43)
so that for λ = λn = −p/2 − ic(n + 1)/4 and |A〉 = |n, p〉, n = 1, 2...
the limit Φ2(λ, x)|A〉 as x→∞ exists. To verify this one can calculate
Φ2(λ, x)|n, p〉 at λ = λn and again compute Dn to get

lim
x→∞Φ2(λn, x)|n, p〉 = |n+ 1, p〉, (9.4.44)

where a(λ)|n, p〉 = 0. The λn’s correspond to the string states of the
algebraic Bethe ansatz, deduced by Faddeev and Sklyanin in [177, 178].
A similar analysis can be carried out for all the energy eigenstates of
the theory, for which we refer the reader to the original literature.

9.5 Quantum GLM Equation in a Continuous System

The quantum inverse scattering method is often associated with prob-
lems of ultraviolet and infrared divergences, thereby making its appli-
cation difficult, in the case of most continuous systems, except for the
exceptional case of the NLS problem. In fact it is almost tailored for dis-
crete integrable systems. For the NLS problem Thacker et al. [22, 36]
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developed an operator analogue of the classical treatment, which is
more likely to appeal to most readers.

In this section we focus on this particular problem, bearing in mind
the fact that the following analysis is applicable only to the particular
model under discussion. In this context we remind the reader that
the first attempt at quantization of a continuous integrable system was
by Faddeev et al., which we have described in Chapter 4. There one
started with the operator analogue of squared eigenfunctions. The
Hamiltonian for the NLS problem is given by

H =
∫
dx{∂1φ

�∂1φ+ cφ�φ�φφ}, (9.5.1)

with the fields obeying the fundamental commutation relations:

[φ(x, t), φ�(y, t)] = δ(x− y). (9.5.2)

The Zakharov-Shabat linear problem for this system is expressed in the
form, (

i
∂

∂x
+

1
2
ξ

)
ψ1 = −

√
cψ2φ,(

i
∂

∂x
− 1

2
ξ

)
ψ2 = −

√
cφ�ψ1. (9.5.3)

The Jost solutions of these equations, namely ψ(x, ξ) and χ(x, ξ), are
defined by

ψ(x, ξ) −→
(

1
0

)
eiξx/2 as x→ −∞,

χ(x, ξ) −→
(

0
1

)
e−iξx/2 as x→ +∞. (9.5.4)

We shall also require the conjugate solutions of the system (9.5.3),
which are given by

ψ̃ =

(
ψ�

2

ψ�
1

)
and χ̃ =

(
χ�2
χ�1

)
. (9.5.5)

Analyticity of an matrix operator means the analyticity of all its ma-
trix elements. The scattering data a(ξ) and b(ξ) are defined by the
asymptotic behaviour,

ψ(x, ξ) −→
(
a(ξ)eiξx/2

b(ξ)e−iξx/2

)
as x→∞. (9.5.6)
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The commutation rules for the Jost functions are as follows:

[ψ1, ψ
�] =

i
√
c

2
ψ2, [ψ2, ψ] =

i
√
c

2
ψ,

[χ1, φ
�] = − i

√
c

2
χ2, [χ2, φ] = −

i
√
c

2
χ1. (9.5.7)

In addition ψ and χ commute. One can prove that the Wronskian of
any two solutions that are independent is a constant so that

a(ξ) = ψ1χ2 − ψ2χ1, b(ξ) = ψ2χ̃1 − ψ1χ̃2. (9.5.8)

These can be used to deduce the following asymptotic behaviour of χ:

χ(x, ξ) ∼
(
−b�(ξ)eiξx/2
a(ξ)e−iξx/2

)
as x→ −∞. (9.5.9)

Using the results of Chapter 4 one can deduce that

[H, a(ξ)] = 0, (9.5.10)

[H,R�(ξ)] = ξ2R�(ξ), (9.5.11)

[a(ξ), a(ξ′)] = [a�(ξ), a�(ξ′)] = 0, (9.5.12)

a(ξ)R�(ξ′) =
(
1− ic

ξ − ξ′ − iε

)
R�(ξ′)a(ξ), (9.5.13)

a�(ξ)R�(ξ′) =
(
1 +

ic

ξ − ξ′ + iε

)
R�(ξ′)a�(ξ), (9.5.14)

R�(ξ)R�(ξ′) = S(ξ′, ξ)R�(ξ′)R�(ξ), (9.5.15)

with

R�(ξ) =
1√
c
b(ξ)a−1(ξ), S(ξ′, ξ) =

ξ − ξ′ − ic
ξ + ξ′ + ic

. (9.5.16)

Furthermore, from the equations satisfied by the ordered product of
the eigenfunctions, one can show that [178]

R(ξ)R�(ξ′) = S(ξ, ξ′)R�(ξ′)R(ξ) + 2πδ(ξ − ξ′). (9.5.17)

Then by the standard approach of the Bethe ansatz, the excited states
may be defined by

|k1, ....kn〉 = R�(k1).....R�(kn)|0〉 (9.5.18)
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and one can prove that

H|k1....kn〉 =
(∑

i

k2
i

)
|k1, .....kn〉, (9.5.19)

a(ξ)|k1, ....kn〉 =
∏
i=1

(
1− ic

ξ − ki − iε

)
|k1.....kn〉, (9.5.20)

a�(ξ)|k1, ....kn〉 =
∏
i=1

(
1 +

ic

ξ − ki + iε

)
|k1.....kn〉. (9.5.21)

9.5.1 Quantum GLM equation

The original derivation of the classical GLM equation [176] begins
with the relation,

ψ = aχ̃+ bχ, (9.5.22)

which may be recast as

ψa−1 = χ̃− i
√
cR�χ, (9.5.23)

suggesting the existence of a piecewise analytic function,

φ(x, ξ) =

{
χ̃e−iξx/2 Im (ξ) > 0
ψa−1e−iξx/2 Im (ξ) < 0

. (9.5.24)

From the above equation, the discontinuity of φ across the real axis is
seen to be i

√
cR�χ, while |ε| → ∞, φ has the behaviour,

φ ∼
(

1
0

)
+O(1/ε). (9.5.25)

Consequently it is possible to write a dispersion relation for φ in the
form,

χ̃e−iξx/2 =

(
1
0

)
+
√
c

2π

∫ ∞

−∞
dξ′

R�(ξ′)χ(x, ξ′)e−iξ′x/2

ξ′ − ξ − iε . (9.5.26)

This equation enables the Jost function χ(x, ξ) to be determined in
terms of the reflection coefficient R(ξ), from which φ can be determined
through the asymptotic expansion:

χ1(x, xi)eiξx/2 ∼ −
√
cφ(x)
ξ

as |ε| → ∞. (9.5.27)
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In the quantum case (9.5.23) is no longer valid, but we can define the
function,

g(x, ξ) = χ̃(x, ξ)− i
√
cR�(ξ)χ(x, ξ). (9.5.28)

Since χ̃ and χ satisfy the Zakhrov-Shabat equation, we observe that
g(x, ξ) satisfies the system,(

i
∂

∂x
+

1
2
ξ

)
g1 = −

√
cg2φ,

(
i
∂

∂x
− 1

2
ξ

)
g2 =

√
cφ�g1 − ic[R�(ξ), φ�(x)]χ1. (9.5.29)

The second term on the right-hand side of (9.5.29) arises due to quan-
tum orderings. Using (9.5.9) and (9.5.3), one can evaluate the commu-
tator to get

[R�(ξ), φ�] = (χ̃2 − i
√
cR�χ2)ψ2a

−1, (9.5.30)

so that the system of equations (9.5.29) become(
i
∂

∂x
+

1
2
ξ

)
g1 = −

√
cg2φ, (9.5.31)

(
i
∂

∂x
− 1

2
ξ

)
g2 =

√
cφ�g1 − icg2ψ2a

−1, (9.5.32)

where g now has the asymptotic behaviour,

g(x, ξ) ∼ eiξx/2
(
ã(ξ)
0

)
as x→∞, (9.5.33)

with
ã(ξ) = a�(ξ)− cR�(ξ)a�(ξ)R(ξ) (9.5.34)

for real ξ. Classically one could use the relation |a(ξ)|2− |b(ξ)|2 = 1 to
conclude that ã(ξ) = a−1(ξ), as if g were equal to ψa−1. To get an idea
of how to proceed in the quantum case, we use (9.5.34) and (9.5.9) to
evaluate ã(ξ) on a single particle state to obtain

ã(ξ)|k〉 =
(
1 +

ic

ξ − k + iε
− 2πcδ(ξ − k)

)
|k〉 =

(
1 +

ic

ξ − k + iε

)
|k〉,

(9.5.35)
which shows that to first order in c, this is the same as a−1(ξ)|k〉, since
the latter equals

(
1− ic

ξ−k+iε

)−1
|k〉.
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On the other hand, for many particle states,

ã(ξ)|k1...kn〉 =
n∏

i=1

(
1 +

ic

ξ − ki − iε

)
|k1...kn〉, (9.5.36)

since the states |k1..kn〉 form a complete set, we may use (9.5.35) as an
alternative definition of ã(ξ) and conclude that ã(ξ) is analytic in the
lower half ξ-plane:

ã(ξ) = 1 +O(1/ε) as |ξ| → ∞. (9.5.37)

We now make the crucial observation that both the differential equa-
tions (9.5.31) for g and its asymptotic behaviour in (9.5.33) may be
continued into the lower half plane of ξ without singularities. So the
operator g(x, ξ) itself may be continued in the lower half plane and is
analytic there. We are now in a position to make a derivation that
resembles the classical one. Defining the function φ by

φ =

{
χ̃e−iξx/2, Im (ξ) > 0,
ge−iξx/2 Im (ξ) < 0,

(9.5.38)

by construction we have φ to be piecewise analytic, with the disconti-
nuity across the real axis given by i

√
cR�(ξ)χ(x, ξ)e−iξx/2. In addition,

|ε| → ∞ has the property φ ∼
(

1
0

)
+O(1/ε), which holds in the lower

half plane due to (9.5.38). Hence one can write the dispersion relation
for φ as

χ̃e−iξx/2 =

(
1
0

)
+
√
c

2π

∫ ∞

−∞
dξ′

R�(ξ′)χ(x, ξ′)e−iξ′x/2

ξ′ − ξ − iε . (9.5.39)

By iterating this equation and its Hermitian conjugate and using the
asymptotic behaviour, we get

φ(x) =
∫
dξ1
2π

R(ξ1)eiξ1x+

+c
∫ ∫ ∫

dξ1dξ2dξ3
(2π)3

R�(ξ2)R(ξ1)R(ξ3)ei(ξ1−ξ2+ξ3)x

(ξ2 − ξ1 − iε)(ξ3 − ξ2 + iε)
+ ... (9.5.40)

The above derivation has been done for a fixed time, say t = 0. But as
in the classical case, one can prove that

R(ξ) −→ R(ξ, t) = e−iξ2tR(ξ). (9.5.41)
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So that using this, one can retrace the previous computation to get the
results at any arbitrary instant of time.

The basic difference between the classical and quantum cases arises
from the use of series-like expansions used for the integral equation
(9.5.39). But in many two-dimensional problems, such expansions may
be summed up. The above discussion closely preserves the analogy
with the corresponding classical approach, whereas the algebraic Bethe
ansatz is totally silent about these properties. The formalism presented
here is, however, more intuitive, even though it is less rigorous. How-
ever, it enables one to get the physical essence of the problem, keeping
the classical results in sight.

An immediate outcome of (9.5.40) is the computation of various
Green’s function for the Heisenberg field φ(x, t). These are written
as

〈0|T{φ(x′1, t′1)...φ(x′n, t′n)φ�(x1, t1)....φ�(xn, tn)|0〉,
where T denotes the usual time ordering. Here we interpret R(ξ) as
the annihilation operator and R�(ξ) as a creation operator. Next using
the basic commutation rules of R(ξ) and R�(ξ), we can bring R(ξ) to
the extreme right to operate on |0〉, so that it vanishes and hence all
the calculations can be done in a finite number of steps.

Finally we should mention that for the discrete Sine-Gordon equa-
tion, a very rigorous derivation of the quantum GLM equation was
made by Smirnov [172]. This requires complicated analyticity consid-
erations of all the operators involved. We refer the interested reader to
the original articles [172].

9.6 Bound States and an Alternative Approach

The technique of deriving the GLM equation by constructing string
states was first employed by Göckeller and Nakawaki. They gave an
explicit construction of the Bethe ansatz states in terms of the reflection
operator R. The starting point of their analysis was the nonlinear
Schrödinger problem expressed as a Hamiltonian system:

i
∂φ

∂t
= [H,φ], (9.6.1)

with H =
∫
dx(∂xφ∂xφ� + cφ�φ�φφ), (9.6.2)
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along with the properly ordered Zakharov-Shabat eigenvalue problem:

−i∂xV (x, λ) =: Q(x, λ)V (x, λ) :, (9.6.3)

with Q(x, λ) =

(
λ
2

√
cφ

−
√
cφ −λ

2

)
. (9.6.4)

This notation was explained in Section 2 of Chapter 4. The eigenfunc-
tions ψ and χ are analytic in the lower half plane, while their conjugate
functions φ̄, ψ̄ are defined by

ψ̄1(x, λ) = −(ψ2(x, λ�))�, ψ̄2(x, λ) = (ψ1(x, λ�))�,

χ̄1(x, λ) = (χ2(x, λ�))�, χ̄2(x, λ) = −(χ1(x, λ�))�, (9.6.5)

are analytic in the upper half plane. The scattering data are defined
as usual by the relations:

lim
x→∞ e−iλx/2ψ1(x, λ) = A1(λ), (9.6.6)

lim
x→∞ eiλx/2ψ2(x, λ) = −B1(λ). (9.6.7)

A simple and direct calculation shows that

[H,A1(λ)] = 0, [H,B1(λ)] = λ2B1(λ), (9.6.8)

which implies that A1(λ) is a conserved quantity and the excitation
states can be constructed by repeated application of B1(λ) to the vac-
uum. By means of the algebraic Bethe ansatz, one can derive a set
of coupled equation, for the eigenmomenta with such excitation, which
are referred to as the string states. The operators for such states were
constructed by Göckeller. Such n particle bound states, the so-called
string states, are written as

B1(ζ1(λ))B1(ζ2(λ)).....B1(ζn(λ))|0〉, (9.6.9)

with ζi(λ) = λ+
ic

2
(n+ 1− 2j) and j = 1, 2, ....., n. (9.6.10)

The corresponding eigenvalue of H is

En(λ) = nλ2 − c2n(n2 − 1)/12. (9.6.11)
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In order to construct the scattering data operators for these states, the
following string products of Jost functions were first constructed [175]:

ψ(n, r|x, λ) =
r∏

j=1

ψ2(x, ζj(λ))
n∏

j=1

ψ1(x, ζj(λ)), (9.6.12)

ψ̄(n, r|x, λ) =
r∏

j=1

ψ̄2(x, ζj(λ))
n∏

j=1

ψ̄1(x, ζj(λ)), (9.6.13)

χ(n, r|x, λ) =
r∏

j=1

χ2(x, ηj(λ))
n∏

j=1

χ1(x, ηj(λ)), (9.6.14)

χ̄(n, r|x, λ) =
r∏

j=1

χ̄2(x, ηj(λ))
n∏

j=1

χ̄1(x, ηj(λ)), (9.6.15)

where r = 0, 1, 2, ..., n and

ηi(λ) = λ− ic

2
(n+ 1− 2j) with j = 1, 2, ..., n. (9.6.16)

The functions ψ(n, r|x, λ) are solutions of the generalized Zakharov-
Shabat equation, i.e.,

−i∂xψ(n, r|x, λ)− 1
2
{λ(n− 2r)− icr(n− r)}ψ(n, r|x, λ) =

i
√
−c{rφ�(x)ψ(n, r − 1|x, λ)− (n− r)ψ(n, r + 1|x, λ)φ}, (9.6.17)

and satisfy boundary conditions:

lim
x→−∞ e−inλx/2ψ(n, r|x, λ) = δr,0, (9.6.18)

lim
x→−∞ einλx/2ψ̄(n, r|x, λ) = δr,n. (9.6.19)

On the other hand, χ(n, r|x, λ) and χ̄(n, r|x, λ) are the Jost solutions
of the conjugate equation:

−i∂xχ(n, r|x, λ)−
1
2
{λ(n− 2r) + icr(n− r)}χ(n, r|x, λ) =

i
√
−c{rφ�(x)χ(n, r − 1|x, λ)− (n− r)χ(n, r + 1|x, λ)φ(x)}, (9.6.20)

obeying the boundary conditions:

lim
x→−∞ e−imλx/2ψ(n, r|x, λ) = δr,0, (9.6.21)
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lim
x→−∞ eimλx/2ψ̄(n, r|x, λ) = δr,n, (9.6.22)

with similar equations for χ(n, r|x, λ) and χ̄(n, r|x, λ). These boundary
conditions imply that ψ(n, r|x, λ) and χ(n, r|x, λ) are analytic in the
lower half λ-plane and ψ̄(n, r|x, λ) and χ̄(n, r|x, λ) are analytic in the
upper half λ-plane. We now define the Wronskians of this new type of
Jost solutions as follows:

An(λ) =
n∑

r=0

(−1)r
(
n
r

)
ψ(n, r|x, λ)χ(n, n− r|x, λ),

A�
n(λ) =

n∑
r=0

(−1)r
(
n
r

)
ψ̄(n, r|x, λ)χ̄(n, r|x, λ),

Bn(λ) =
n∑

r=0

(−1)r
(
n
r

)
ψ(n, r|x, λ)χ̄(n, n− r|x, λ),

B�
n(λ) =

n∑
r=0

(−1)r
(
n
r

)
ψ̄(n, r|x, λ)χ(n, n− r|x, λ), (9.6.23)

which we call scattering data operators. They satisfy the commutation
rules:

[Am(λ), An(µ)] = [Am(λ), A�
n(µ)] = [Bm(λ), Bn(µ)] = 0,

Am(λ)Bn(µ) = Λ−1
mn(λ− µ− iε)Bn(µ)Am(λ),

Am(λ)B�
n(µ) = Λmn(λ− µ− iε)B�

n(µ)Am(λ),

B�
m(λ)Bn(µ) = δmn2πn(−c)δ(λ− µ)An(λ)A�

n(λ) + σBn(µ)B�
m(λ),
(9.6.24)

where Λmn(λ) =
m∏
j=1

λ+ ic
2 (m+ n− 2j)

λ+ ic
2 (m− n− 2j)

, (9.6.25)

and σ =
(λ− µ)2 + c2(m+ n)2/4

(λ− µ− iε)2 + c2(m− n)2/4 . (9.6.26)

These results are traditionally obtained by following the method devel-
oped by Sklyanin [178]. From (9.6.24) and the commutation rules for
m = 1 we obtain

[N,Bn(λ)] = nBn(λ),

[P,Bn(λ)] = nλBn(λ),
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[H,Bn(λ)] = En(λ)Bn(λ). (9.6.27)

To formulate the inverse quantum inverse scattering method, we con-
sider three operator identities:

A−1
m (λ+ ic) = A�

m(λ)− (−1)mR�
m(λ)B�

m(λ), (9.6.28)

where R�
m is the reflection operator:

R�
m(λ) = Bm(λ)A−1

m (λ). (9.6.29)

To derive the above equation we observe that

A−1
m (λ)Bn(µ) = Λmn(λ− µ− iε)Bn(µ)A−1

m (λ),

R�
m(λ)Bn(µ) = Λmn(λ− µ− iε)Bn(µ)R�

m(λ),

A�
m(λ)Bn(µ) = Λmn(λ+ ic− µ− iε)Bn(µ)A�

m(λ). (9.6.30)

Then (9.6.27–9.6.29) give the following commutation relation of the
right-hand side of (9.6.28) with Bn(µ):

{A�
m(λ)− (−1)mR�

m(λ)B�
m(λ)}Bn(µ) = Λmn(λ+ ic− µ− iε)Bn(µ)×

×{A�
m(λ)− (−1)mR�

m(λ)B�
m(λ)}, (9.6.31)

where we have used

Λmn(λ+ ic−µ+ iε)−Λmn(λ+ ic−µ− iε) = δmn(−1)m2πimδ(λ−µ).

Comparing (9.6.30) with (9.6.31) we see that A−1
m (λ+ ic) and A�

m(λ)−
(−1)mR�

m(λ)B�
m(λ), satisfy the same commutation rule with Bn(µ). It

follows that the difference of both operators has to be zero because it
annihilates the vacuum. Hence the proof of the equation (9.6.28).

The second set are those among the Jost solutions:

(−1)r
(
m
r

)
ψ̄(m,m− r|x, λ)ψ(m, s|λ, λ+ ic) = δrse

−cmx/2, (9.6.32)

m∑
l=0

(−1)l
(
m
l

)
ψ(m, l|x, λ+ ic)ψ̄(m,m− l|x, λ) = e−cmx/2. (9.6.33)

These are obtained from the following identities (obtained by Göckeller):

(−1)r
(
m
r

)
ψ̄(m,m− r|x, λ)ψ(m, s|x, λ+ ic) =
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δrs

m∑
l=0

(−1)l
(
m
l

)
ψ(m, l|x, λ+ ic)ψ̄(m,m− 1|x, λ),

(−1)s
(
m
s

)
χ(m,m− r|x, λ+ ic)χ̄(m, s|x, λ)

= δrs

m∑
l=0

(−1)l
(
m
l

)
χ̄(m, l|x, λ)χ(m,m− l|x, λ+ ic). (9.6.34)

We have pointed out in the introduction that ψ(m, r|x, λ+ ic) can be
expressed in terms of χ̄(m, r|x, λ) and χ(m, r|x, λ). If we use the right-
hand side of (9.6.28) and the Wronskians (9.6.23) as the expressions of
A−1
m (λ+ ic), A�

m(λ) and B�
m(λ), we have

emx/2A−1
m (λ+ ic)ψ(m, r|x, λ+ ic) =

m∑
s=0

δrs{χ̄(m, s|x, λ)−

R�
m(λ)χ(m, s|x, λ)} = χ̄(m, r|x, λ)−R�

m(λ)χ(m, r|x, λ), (9.6.35)

and

ecmx/2A−1
m (λ+ ic)ψ(m, r|x, λ+ ic) = χ̄(m, r|x, λ)−R�

mχ(m, r|x, λ)

= G(m, r|x, λ). (9.6.36)

From this operator identity, the GLM equation for χ(m, r|x, λ) can be
set up. The analytic properties of G(m, r|x, λ) are known from those of
Am(λ+ ic) and ψ(m, r|x, λ+ ic) in the lower half λ-plane. In the sequel
we shall show how the discontinuites of G(m, r|x, λ) can be expressed
in a manner leading to the closed GLM set.

The singularities of G(m, r|x, λ) in the lower half of the λ-plane are
actually the poles of A−1

m (λ+ic), which may be obtained from the zeros
of a(λ). The eigenstates of A−1

m (λ + ic) are constructed by applying
the Bn(µ)’s to |0〉. The eigenvalue Λmn in (9.6.25) consists of products
of m functions, so that it has m simple poles in general, giving rise to
discontinuites of the form,

Λmn(λ+
ic

2
(n−m+ 2j)− µ+ iε)−Λmn(λ+

ic

2
(n−m+ 2j)− µ− iε)

= 2πcδ(λ− µ)(−1)m−jj

(
m
j

)(
n+ j − 1

m

)
, (9.6.37)
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across
Im (λ) =

c

2
(n−m+ 2j − 2); j = 1, ....,m.

Now Am(λ+ic) =
∏m

j=1A1(λj(λ+ic)) enables us to see that A−1
1 (λj(λ+

ic)) yields the jth discontinuity. Hence following the procedure of [175],
we can realize these discontinuites in the form of operators, that is

A−1
m (λ+

ic

2
(N + 1) + iε)−A−1

m (λ+
ic

2
(N + 1)− iε)

=
m∑
j=1

(−1)m+1−j

(
m

j − 1

)(
nj − 1
m− j

)
R�
nj

(λ)RN−j(λ−
ic

2
(m+1− j))×

×A�
j−1(λ+

ic

2
(N +m− j))B�

m+1−j(λ+
ic

2
(N − j)), (9.6.38)

with N = 1, 2, ...., and nj = N + m + 1 − 2j. Hence substituting
this in (9.6.36) yields the discontinuity of G(m, r|x, λ) across Im (λ) =
c
2(N − 1).

The next task is to express the discontinuities in terms of the χ’s.
One observes that the product,

A�
j−1(λ+

ic

2
(m+ 1− j))B�

m+1−j(λ−
ic

2
(j − 1)),

is actually a string product of (j − 1)A�
1’s and (m + 1 − j), Bl�’s, so

that if we substitute (9.6.23) into it then, ψ(m, l|x, λ) may be built as
follows:(

m
j − 1

)
A�
j−1(λ+

ic

2
(m+ 1− j))B�

m+1−j(λ−
ic

2
(j − 1))

= (−1)j−1
m∑
j=0

(−1)l
(
m
l

)
ψ̄(m, l|x, λ)χm+1−j,j−1(m,m− l|x, λ),

(9.6.39)
where

χm+1−j,j−1(m,m− l|x, λ) =

(
m

j − 1

)
(
m
l

) l∑
s=0

(
j − 1
l − s

)(
m+ 1− j

s

)
×

×χ̄(j − 1, j − 1 + s− l|x, λ+
ic

2
(m+ 1− j))×
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×χ(m+ 1− j,m+ 1− j − s|x, λ− ic

2
(j − 1)). (9.6.40)

By using commutations of χi and χ̄i, we can formally write the above
as

χm+1−j,j−1(m,m− l|x, λ)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ(m+ 1− j,m+ 1− j|x, λ− ic
2 (j − 1))×

χ̄(j − 1, j − 1− l|x, λ+ ic
2 (m+ 1− j))

for 0 ≤ l ≤ j − 1,
χ(m+ 1− j,m− l|x, λ− ic

2 (j − 1))χ̄(j − 1, 0|x, λ+ ic
c (m+ 1− j))

for j − 1 < l,
(9.6.41)

so that(
m

j − 1

)
A�
j−1(λ+

ic

2
(m+1−j))B�

m+1−j(λ−
ic

2
(j−1))ψ(m, r|x, λ+ ic)

= (−1)m+1−je−cmx/2χm+1−j,j−i(m, r|x, λ), (9.6.42)

whence from (9.6.38) and (9.6.42) one obtains

emcx/2{A−1
m (λ+

ic

2
(N+1)+iε)−A−1

m (λ+
ic

2
(N+1)−iε)}ψ(m, r|x, λ+ic)

=
m∑
j=1

(
nj − 1
m− j

)
R�
nj

(λ)RN−j(λ−
ic

2
(m+ 1− j))

χm+1−j,j−1(m, r|x, λ+
ic

2
(N − 1)).

We now proceed to obtain the quantum GLM equation for χ(m, r|x, λ).
We define a piecewise analytic function,

Φ(x, λ) =

{
χ̄(m, r|x, λ)e−imλx/2, Im λ > 0,
G(m, r|x, λ)e−imλx/2, Im λ < 0

, (9.6.43)

where Imλ �= cN
2 , N = 1, 2, ..... and we may write the dispersion relation

for Φ(x, λ) using the above equation in the form,

χ(m, r|x, λ)eimλx/2 = δrm +
1

2πi

∞∑
n=0

∞∑
l=1

(
m+ n+ 1− 2l

m− l

)
×

∫
dq

exp[ im2 (q − icη
2 )x]

q − icη
2 − λ+ iε

χl−1,m+1−l(m, r|x, q −
icη

2
)×
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(−1)m−lR�
n+1−l(q +

ic

2
(m+ 1− l))Rm+n+2−2l(q). (9.6.44)

On a state with particle number N , only the terms with n ≤ N −
1 do not vanish. Iterating this and its Hermitian conjugate yields
χ(m, r|x, λ) expressed in terms of the reflection coefficient operator.

We now take the limit x→ −∞ in (9.6.44) with r = m and note that

eimλx/2χ(m,m|x, λ)⇒ Am(λ) as x→ −∞, (9.6.45)

eimλx/2χ̄(m,m|x, λ)⇒ Bm(λ) as x→ −∞. (9.6.46)

Taking into account these features and (9.6.41), we get as x→ −∞:

eimqx/2χl−1,m+1−l(m,m|x, q)

→ Al−1(q −
ic

2
(m+ 1− l))Bm+1−l(q +

ic

2
(l − 1)). (9.6.47)

Then upon using the commutation rules one may obtain

Am(λ) = 1 +
1

2πi

∞∑
n=0

m∑
l=1

(
m+ n+ 1− 2l

m− l

)(
m+ n+ 1− l

l − 1

)
×

×
∫
dq

(−1)m−l

q − icη
2 − λ+ iε

R�
m+n+2−2l(q)Am(q − icη

2
)Rm+n+2−2l(q),

(9.6.48)
which is an integral equation for Am and may be solved by iteration.
By a set of complicated manipulations, which we omit here, one can
deduce that

Am(λ) = exp

[ ∞∑
n=1

∫
dq log Λmn(q − λ+ 2iε)r�n(q)rn(q)

]
, (9.6.49)

Bm(λ) = R�
m exp

[ ∞∑
n=1

∫
dq log Λmn(q − k + ic+ iε)rn(q)rn(q)

]
,

(9.6.50)

with rNj =
RNj

(q)√
2π(−c)Nj

.

The above discussion indicates that the reflection operator is of prime
importance in the quantum NLS problem. Although the above treat-
ment is quite rigorous, yet a parallel treatment for other nonlinear
systems is at present lacking. As such one may feel somewhat uneasy
about the efficacy of the entire procedure of deducing the quantum
GLM equation using the above methodology.



Appendix A

Direct Product Calculus

In the formulation of the algebraic Bethe ansatz, classical and quantum
r matrices, exhaustive use has been made of the direct product algebra
of matrices and vectors. Since these materials are essential for explicit
derivation of results contained in the earlier chapters, we give below
some important results related to these techniques.

The direct product better known as the Kronecker product of two
matrices is defined as follows. Let A be an m × n matrix and B be a
p× q matrix. Then the Kronecker product of A and B is a (mp)× (nq)
matrix defined by

A⊗B =

⎛⎜⎜⎜⎜⎜⎝
a11B a12B .... a1nB
a21B a22B .... a2nB
.. .. .... ..
.. .. .... ..

am1B am2B .... amnB

⎞⎟⎟⎟⎟⎟⎠ . (A.1)

This is also known as the tensor product. Some authors however use
the following definition:

A⊗B =

⎛⎜⎜⎜⎜⎜⎝
b11A b12A .... b1qA
b21A b22A .... b2qA
.. .. .... ..
.. .. .... ..

bp1A bp2A .... bpqA

⎞⎟⎟⎟⎟⎟⎠ . (A.2)

The tensor product is in general noncommutative, i.e.,

A⊗B �= B ⊗A; (A.3)

for example, if

A =

(
2 3
0 1

)
, B =

(
0 −1
−1 1

)
then

369
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A⊗B =

⎛⎜⎜⎜⎝
0 −2 0 −3
−2 2 −3 3
0 0 0 1
0 0 −1 1

⎞⎟⎟⎟⎠ , B ⊗A =

⎛⎜⎜⎜⎝
0 0 −2 −3
0 0 0 −1
−2 −3 2 3
0 −1 0 0.

⎞⎟⎟⎟⎠
A similar definition also holds for vectors. For example, if

U =

(
u1

u2

)
, V =

(
v1

v2

)
, then

U ⊗ V =

(
u1

u2

)
⊗
(
v1

v2

)
=

⎛⎜⎜⎜⎝
u1v1

u1v2

u2v1

u2v2

⎞⎟⎟⎟⎠ . (A.4)

In general
U ⊗ V �= V ⊗ U. (A.5)

One should note that while {U, V } is a standard set of vectors in R2,
U ⊗ V is a similar one in R4. Let us take

U =

(
1
0

)
and V =

(
0
1

)
,

then we see that while {U, V } is a basis in R2, one has {U ⊗ U,U ⊗
V, V ⊗V, V ⊗U} as the corresponding basis in R4. We give below some
basic properties of the Kronecker product.
Let A be an m × n matrix, B a p × q matrix and C an s × t matrix;
then

(A⊗B)⊗ C = A⊗ (B ⊗ C). (A.6)

If α is a scalar quantity then we have

(αA)⊗B = α(A⊗B) = A⊗ (αB), (A.7)

and

(A+B)⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D, (A.8)

so that the Kronecker product has both an associative and distributive
property. Lastly let r(A) be the rank of the matrix A and r(B) the
rank of the matrix B, then

r(A⊗B) = r(A).r(B). (A.9)
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Furthermore let AT , A and A� denote the transpose, the complex
conjugate and the adjoint of the matrix A, respectively, then

(A⊗B)T = AT ⊗BT , (A.10)

(A⊗B) = A⊗B, (A.11)

(A⊗B)� = A� ⊗B�. (A.12)

The following properties can be easily deduced from the definition:

(a) If A and B are diagonal, then A⊗B is also diagonal.

(b) If A and B are upper (lower) triangular, then A⊗B is also upper
(lower) triangular.

(c) If A and B are Hermitian, then A⊗B is also Hermitian.

(d) If A is an invertible n × n matrix and B is an invertible m × m
matrix, then A⊗B is also invertible.

We consider next the product rules involving the Kronecker product.
If A is an m× n matrix and B is an n× r matrix, then

(AB)kl =
n∑

j=1

akjbjl,

so that for a matrix A of order m × n, B of order p × q , C of order
n× r and D of order q × s, one has

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (A.13)

As a special case we have

(A⊗ In)(In ⊗B) = (A⊗B),

and
(A⊗B)−1 = A−1 ⊗B−1.

Another important aspect of matrices is exhibited through their com-
mutative properties. If A, B are m ×m matrices and C,D are n × n
matrices, and if

[A,B] = [C,D] = 0, then [A⊗ C,B ⊗D] = 0. (A.14)
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The proof of (A.14) is as follows:

[A⊗ C,B ⊗D] = (A⊗ C)(B ⊗D)− (B ⊗D)(A⊗ C)

= (AB)⊗ (CD)− (BA)⊗ (DC) = (AB)⊗ (CD)− (AB)⊗ (CD) = 0

which completes the proof. If In, Im denote unit matrices of order n×n
and m×m, respectively, then

[A⊗ In, Im ⊗B] = 0, (A.15)

because

[A⊗In, Im⊗B] = (A⊗In)(Im⊗B)−(Im⊗B)(A⊗In) = A⊗B−A⊗B = 0.

Furthermore, if A,B are n× n matrices and In denotes an n× n unit
matrix, then

exp (A⊗ In + In ⊗B) = exp(A)⊗ exp(B). (A.16)

An important role in our analysis is played by the permutation matrix
P, which is defined as follows:

B ⊗A = P(A⊗B)P. (A.17)

For example, let

A =

(
a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)
, then

P =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ .
For a matrix A1 of order m ×m and a matrix A2 of order n × n we
have

tr12(A1 ⊗A2) = (trA1)(trA2); (A.18)

tr12 means the operation of taking the trace is done over both the vector
spaces involved in the tensor product. In addition we have

tr{exp (A1 ⊗ I + I ⊗A2)} = (tr exp(A1)) (tr exp(A2)) , (A.19)

and det(A⊗B) = (detA)n(detB)m. (A.20)
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Note that
tr1(A1 ⊗A2) = {tr(A1)}.A2, (A.21)

when the matrix A1 ⊗ A2 is defined in the tensor product of C2 ⊗ C2,
the operator tr1 carries the matrix in C2 ⊗ C2 to a matrix in C. In the
same way we also have

tr2(A1 ⊗A2) = A1.{tr(A2)}. (A.22)

Furthermore, if X → C2 ⊗ C2 and A→ C2, then

tr1(I ⊗A).X = A.tr1X, (A.23)

tr1X.(I ⊗A) = tr1.A, (A.24)

tr1(A⊗ I).X = tr1X.(A⊗ I), (A.25)

tr1P = I. (A.25)

Moreover, we have the following definition for the Poisson bracket of
the tensor product

{A⊗, B}ijkl = {Aij , Bkl}, (A.26)

and
tr{A⊗, B} = {trA, trB}. (A.27)

Next we shall discuss properties associated with eigenvalues. Let A
be an m ×m matrix with eigenvalues λ1, λ2, ....λm and corresponding
eigenvectors U1, U2, ....Um; and suppose B is another n × n matrix
with eigenvalues µ1, µ2, ....µn with eigenvectors V1, V2, ....Vn, then the
matrix A ⊗ B has eigenvalues λjµk with eigenvectors Uj ⊗ Vk, where
1 ≤ j ≤ m, 1 ≤ k ≤ n. The proof is straightforward, since

AUj = λjUj , and BVk = µkVk,

so (A⊗B)(Uj ⊗ Vk) = (AUj)⊗ (BVk) = λjµk(Uj ⊗ Vk). (A.28)

Also the eigenvalues of A⊗ In + Im ⊗B are given by λj + µk and the
eigenvectors are Uj ⊗ Vk, where j = 1, 2, ...m and k = 1, 2, ..., n, it is
easy to demonstrate this property since

(A⊗ In + Im ⊗B)(Uj ⊗ Vk) = (A⊗ In)(Uj ⊗ Vk) + (Im ⊗B)(Uj ⊗ Vk)
= (AUj)⊗ (InVk) + (ImUj)⊗ (BVk),

= (λjUj)⊗ Vk + Uj ⊗ (µkVk) = (λj + µk)(Uj ⊗ Vk).
The above properties have been widely used in our discussions and we
have collected the important results related to direct products in this
appendix.





Appendix B

Grassman Algebra

The concept of supersymmetry was the outcome of the ingenious re-
search in 1974, by two groups, one led by Weiss and Zumino [181], and
the other by Salam and Strathedee [182]. It was formulated basically
to treat the bosonic and fermionic particles on an equal footing. Later,
it was realized that this unification is more elegant if the space-time
world is assumed to contain both ordinary and the Grassmanian type
of variables, the latter being anticommuting quantities.

In this appendix we shall give the basic rules of dealing with such
variables in two space-time dimensions. It should be mentioned that,
in the case of Grassman variables, since a different form of the com-
position law is followed, the usual Lie algebras are also generalized
and one encounters super Lie algebras, with all the properties of roots
and weight diagrams remaining intact, but undergoing certain gener-
alizations. Since we will be primarily concerned with two-dimensional
models, we shall restrict ourselves to 2D supersymmetric spaces. The
2D superspace is constructed as follows. In addition to the two usual
coordinates (x, t), denoted henceforth by (x0, x1), we have two Grass-
manian coordinates (θ1, θ2) with the property,

θ2
1 = 0 = θ2

2, θ1θ2 = −θ2θ1. (B.1)

The combined set is denoted by

z = (xµ, θ1) = (x0, x1, θ1, θ2), (B.2)

with xµ being the traditional coordinate with Minkowski space metric
ηµν = diag(1,−1). Furthermore, let us introduce a spinor field ψ =(
ψ1

ψ2

)
in 2D, which is Majorana, along with the usual scalar field

φ(x, t). The Dirac matrices in 2D are

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 i
i 0

)
. (B.3)

375



376 Quantum Integrable Systems

The superfield Φ(x, t) is given by

Φ(x, θ) = φ(x, t) + θ̄ψ(x, t) +
1
2
θ̄θF (x, t), (B.4)

where θ̄ = θ†γ0, since higher powers of θ are zero. We call ψ the
fermionic partner of φ(x, t).

The super covariant derivatives are defined as follows:

D =
∂

∂θ̄
− i � ∂ θ, D̄ = − ∂

∂θ
+ iθ̄ � ∂ (B.5)

where � ∂ = ∂µγµ, and we have followed the usual Feynmann convention.
Usually there are two types of derivatives with respect to Grassmanian
variables, the right and left derivatives. For example,

∂

∂θ
ψ̄θ = −θ̄, ∂

∂θ
θ̄θ = −2θ̄,

∂

∂θ̄
θ̄ψ = θ,

∂

∂θ̄
θ̄θ = 2θ. (B.6)

The expansion given in (B.4) follows from the fact that all the powers
higher and equal to θ2

1 and θ2
2 are zero. We can write the formula for

different types of derivatives as follows:

∂

∂θi
f = −(−1)p(f)f

∂

∂θi
,

∂

∂θi
(fg) =

(
∂

∂θi
f

)
g + (−1)p(f)f

(
∂

∂θi
g

)
, (B.7)

(fg)
∂

∂θi
= f(g

∂

∂θi
) + (−1)p(g)(f

∂

∂θi
)g.

Here p(f), p(g) denotes respectively the parity or grading of f and g.

For integration of the anticommuting or super variables, one usually
follows the conventions laid down by Berezin. The two basic rules are∫

dθi = 0,
∫
dθi θi = 1. (B.8)

Once it is possible to define the various coordinates, one can pro-
ceed to set up the various generalizations of standard classical trans-
formations, Galilean, Lorentz, etc. These generalized transformations
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generate Lie groups that are known as super Lie groups and they have
corresponding super Lie algebras. The basic composition rule for such a
Lie algebra involves both commutation and anticommutation rules for
the generators. To produce a compact definition one divides the space
of generators into two parts, odd and even, designated by a quantity
“p” called the grade or parity. For even generators p = 0 and for odd
ones p = 1 and we denote by p(A) the grade of A. In (B.7) this nota-
tion is followed. Keeping in mind the correspondence between Poisson
brackets and commutators, one can imagine that a generalized version
of the Poisson bracket is possible, one that defines super Hamiltonian
dynamics. For example, one can study the dynamics of an anticom-
muting or fermionic harmonic oscillator.

As a simple example of super Lie algebra, we can cite the case of
super-extension of the SO(1,2) algebra that is denoted as Osp(1, 2),
with five generators {L0, L±, G±}. The set {L0, L±} is the usual an-
gular momentum generators, and G± are the fermionic counterparts of
L±. Their commutation (anticommutation) rules are as follows:

[L0, L±] = ∓L±, [L=, L−] = 2L0,

[L±, G±] = 0,

[L0, G±] = ±1
2
G±, [G=, G−] = 2L0,

[L±, G∓] = ±G±, {G±, G±} = 2L=, {G+, G−} = 2L0.

The simplest 3× 3 representation of the algebra Osp(1, 2) is given by

L0

⎛⎜⎝1/2 0 0
0 0 0
0 0 −1/2

⎞⎟⎠ , L− =

⎛⎜⎝0 0 i
0 0 0
0 0 0

⎞⎟⎠ , L+ =

⎛⎜⎝0 0 0
0 0 0
i 0 0

⎞⎟⎠ ,

G− =

⎛⎜⎝0 1 0
0 0 i
0 0 0

⎞⎟⎠ , G+ =

⎛⎜⎝0 0 0
1 0 0
0 i 0

⎞⎟⎠ .
In the usual notation of the group SO(1, 2), the standard generators
X1, X2, X3 obey the commutation relations given below:

[X1, X2] = X3, [X2, X3] = −X1, [X3, X1] = X2;
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the correspondence with the set {L±, L0} is L± = X1 ∓X2, L0 = X3.
One defines the representation of SO(1, 2) by the eigenvalues of the
Casimirs L2 and L0. In case of Osp(1, 2) we have another operator
that commutes with L0, L±, viz

N =
1
2
[G−, G+],

so here we define the representation by the eigenvalues of three opera-
tors L2, N and L0, with

L2|λ, µ,m〉 = λ||λ, µ,m〉,

N |λ, µ,m〉 = µ|λ, µ,m〉,

L0|λ, µ,m〉 = m|λ, µ,m〉.

The computation then follows the same line as in the case of our usual
Lie algebras. We refer readers to the excellent three-volume textbook
by Cornwall; the last volume deals with super Lie algebra [183]. The
definitive treatise on fermionic variables and their calculus is that of
Berezin [184].



Appendix C

The Bethe Ansatz Equation

A major achievement of the quantum inverse scattering method is un-
doubtedly the formulation of the algebraic Bethe ansatz, which invari-
ably leads to a set of coupled algebraic equations for the eigenmomenta
associated with the various excitations, known as the Bethe ansatz
equation (BAE). For a complete solution of the spectral problem, one
needs to solve the BAE explicitly [185].

C.1 The BAE for an Elementary Spin System

In practice, one usually converts the BAE to a set of integral equa-
tions by defining a suitable density-of-states function, involving the
eigenmomenta. In this appendix, we illustrate the procedure by con-
sidering a quantum mechanical system containing N elementary spins
on a one-dimensional lattice [17]. The BAE for such a system, which
is typical of most other problems, is the following:

(
χj + iπ/2
χj − iπ/2

)N

= −
M∏
i=1

χj − χi + iπ

χj − χi − iπ
. (C.1)

The energy eigenvalue corresponding to the equation

HΦ = EΦ,

being

E = −J
M∑
j=1

π2

χ2
j + (π/2)2

. (C.2)
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We shall first deal with the case of real roots. Suppose that all the χj ’s
in a solution set of (C.1) ∈ R. Taking the logarithm of (C.1) yields

N log

⎛⎝ e
i tan−1( π

2χj
)

e
−i tan−1( π

2χj
)

⎞⎠ = 2i(k − 1
2
)π +

M∑
i=1

log

⎛⎝ e
i tan−1( π

χj−χi
)

e
−i tan−1( π

χj−χi
)

⎞⎠ ,
N tan−1

(
π

2χj

)
= (k − 1

2
)π +

M∑
i=1

tan−1

(
π

χj − χi

)
.

Now using the identities,

tan−1 x+ cot−1 x =
π

2
, cot−1 x = tan−1 1

x
,

we have

N

[
π

2
− tan−1

(
2χj
π

)]
= (k − 1

2
)π +

M∑
i=1

[
π

2
− tan−1

(
χj − χi

π

)]
,

which upon simplification gives

2N tan−1
(
2χj
π

)
−2

M∑
i=1

tan−1
(
χj − χi

π

)
= 2πJj , where j = 1, ...,M.

(C.3)
Here we have written Jj =

(
N−M−1

2 + k
)

so that if N − M = odd
then, Jj is an integer and if N − m = even then, Jj is a half odd
integer. Let us note the fact that the BAE (C.1) constitute a set
of M transcendental equations for the eigenmomenta χj and suppose
that {χ1, χ2, ...., χM} is a self-consistent solution set of (C.1) with, say,
N −M = odd. Consider the function,

J(χ) =
1
2π

[
2N tan−1 2χ

π
− 2

M∑
i=1

tan−1
(
χ− χi
π

)]
, (C.4)

which for states of interest, is a monotonically increasing function of
χ. The values of χ for which J(χ) are integers Ji are clearly equal to
χi. However there might be some integer values of J(χ) for which the
corresponding χ does not belong to the solution set of (C.1); such a χ
will be called a hole, while values for which J(χ) is an integer will be
called the roots. Figure (C.1.1) depicts the situation described above.
One then starts with a natural definition of positive definite density,
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FIGURE C.1.1: Position of roots and holes in J(χ).

describing the distribution of roots and holes for a given solution of
(C.3), namely

ρ(χ) =
dJ(χ)
dχ

, (C.5)

with the inverse relation,

J(χ) = J(−∞) +
∫ χ

−∞
ρ(χ′)dχ′. (C.6)

Let us now consider a solution of (C.3) for which the number of holes,
say n, is fixed, independent of N as N −→∞. By differentiating (C.4)
and using the definition of ρ(χ) we find from (C.6):

ρ(χ) =
N/2

χ2 + (π2 )
2
−

M∑
i=1

1
(χ− χi)2 + π2

. (C.7)

We shall next approximate (accurate whenN →∞) the sum
∑M

i=1 f(χi)
by

M∑
i=1

f(χi) ≈
∫
dχρ(χ)f(χ)−

n∑
j=1

f(θj),

where θ1, θ2, ...θn are the hole positions. As a result (C.7), becomes

ρ(χ) +
∫
dχ′ ρ(χ′)

1
(χ− χ′)2 + π2

=
N/2

χ2 + (π2 )
2
+

n∑
j=1

1
(χ− θj)2 + π2

.

(C.8)
Thus in passing to the thermodynamic limit (N → ∞), we have con-
verted (C.1) into an integral equation for the density function; and the
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seemingly impossible task of solving M simultaneous transcendental
equations has been reduced to that of solving a linear integral equa-
tion. Note that once ρ(χ) has been determined, the individual χj and
θi can be obtained from the condition,∫ ζk

−∞
ρ(χ)dχ = k − 1

2
, (C.9)

where ζk is the kth element of the set {χ1, χ2, ..., χM ; θ1, θ2, ..., θn}
counting from the left-hand side of the χ axis.

Equation (C.8) is solved by the Fourier transformation method. If
ρ̃(p) denotes the Fourier transform of ρ(χ), then

ρ(χ) =
1
2π

∫
dp exp(ipχ)ρ̃(p).

Further, we note that as

a/π

χ2 + a2
=

1
2π

∫
dp exp(ipχ− a|p|), (C.10)

(C.8) consequently becomes∫
dp

2π
eipχρ̃(p) +

∫
dχ′ρ(χ′)

∫
dp

2π
eip(χ−χ′)−π|p|

= N

∫
dp

2π
eipχ.e−π|p|/2 +

n∑
j=1

∫
dp

2π
eip(χ−θj).e−π|p|

∫
dp

2π
eipχ

[
ρ̃(p) +

∫
dχ′ρ(χ′)e−ipχ′).e−π|p|

]

=
∫
dp

2π
eipχeipχ

⎡⎣Ne−π|p|/2 +
n∑

j=1

e−ipθj .e−π|p|
⎤⎦ . (C.11)

However, as ∫
dχ′ρ(χ′)e−ipχ′

= ρ̃(p),

therefore the above equation assumes the simplified form:

ρ̃(p) = ρ̃0(p) +
n∑

j=1

exp(−ipθj − π|p|/2)
2 cosh(πp/2)

, (C.12)
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where
ρ̃0(p) =

N

2 cosh(πp/2)
.

Alternatively we can write

ρ(χ) = ρ0(χ) +
∑
j

ρh(χ− θj), (C.13)

where ρh(χ− θ) is a smooth function peaked at the hole position θ and
falling off ∼ (4χ2)−1 for large |χ|. To see how this may be done, we
consider the equation defining the Fourier transform of ρ(χ), viz

ρ(χ) =
∫
dp

2π
eipχ

⎡⎣ρ̃0(p) +
n∑

j=1

exp(−ipθj − π|p|/2)
2 coshπp/2

⎤⎦ = t1 + t2.

Now as

t1 =
∫ ∞

−∞
dp

2π
eipχρ̃0(p) =

N

2

∫ ∞

−∞
dp

2π
eipχ

cosh(πp/2)
,

so making the substitution x = πp/2 allows us to write t1 as

t1 =
N

2π2

∫ ∞

−∞
eiαx

cosh(x)
dx, α =

2χ
π
.

The integral on the right-hand side may be evaluated by the residue
theorem, using the contour in Figure (C.1.2), and one finds finally that

FIGURE C.1.2: Contour for evaluation of the term t1.
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t1 =
N

2π coshχ
. (C.14)

The same substitution x = πp/2 allows us to rewrite t2 in the following
manner:

t2 =
∑
j

1
2π2

∫ ∞

−∞
dx
eiξx−|x|

coshx
, where ξ =

2
π
(χ− θj)

or, t2 = 2
∫ ∞

0

e−x cos(ξx)
coshx

dx = 2I.

To evaluate this integral, we consider the following contour integral:

∮
Γ

e−zeiξz

cosh z
dz

over the contour shown in Figure (C.1.3). Application of Cauchy’s
theorem leads to∫ ∞

0

e−xeiξx

coshx
dx− i

∫ ∞

0

e−xeiξx

sinx
dx.e−ξπ/2 = −π

2
e−ξπ/2,

the real part of which yields∫ ∞

0

e−x cos(ξx)
coshx

dx+
∫ ∞

0
dx
e−x sin(ξx)

sinx
e−πξ/2 = −π

2
e−ξπ/2. (C.15)

Under the transformation ξ → −ξ, (C.15) gives

FIGURE C.1.3: Contour for evaluation of the term t2.
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0

e−x cos(ξx)
coshx

dx−
∫ ∞

0
dx
e−x sin(ξx)

sinx
eπξ/2 = −π

2
eξπ/2 (C.16).

Multiplying (C.15) and (C.16) by e±πξ/2, respectively, we get by addi-
tion

I =
∫ ∞

0

e−x cos(ξx)
coshx

dx = − π

2 cosh(πξ/2)
,

so that finally

t2 = −
∑
j

1
2π cosh(χ− θj)

.

Hence
ρ(χ) =

N

2π coshχ
−
∑
j

1
2π cosh(χ− θj)

.

From this it is easy to compute the total number of roots M in a state
with n holes as

M =
∫
dχρ(χ)− n = ρ̃(0)− n =

N

2
− n

2
. (C.17)

Since M is by definition an integer, we see that for a given even N , the
number of holes in a state must be even; while for an odd number of
lattice sites, n must be odd.
The energy of the state corresponding to ρ(χ) may be obtained from
(C.2),

E = −Jπ2
∫
dχσ(χ)

1
χ2 + (π/2)2

, (C.18)

where σ(χ) is the density of roots of the BAE, i.e.,

σ(χ) = ρ(χ)−
n∑

i=1

δ(χ− θi), (C.19)

assuming there are n number of holes in the state under consideration.
Now the Fourier transform of σ(χ) is given by

σ̃(p) = ρ̃(p)−
n∑

i=1

e−ipθi , (C.20)

while the inverse fourier transform yields

σ(χ) =
∫
dp

2π
eipχσ̃(p).
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Using this together with (C.10) (taking a = π/2), in (C.18) gives us

E = −J
2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 σ̃(p1)e−π|p2|/2

∫ ∞

−∞
dχei(p1+p2)χ.

But as
∫∞
−∞ dχei(p1+p2)χ = 2πδ(p1 + p2), hence we have

E = −Jπ
∫ ∞

−∞
dpσ̃(−p)e−π|p|/2.

Using the expressions for σ̃(p) and ρ̃(p) as given by (C.20) and (C.12)
we therefore obtain

E = −Jπ
∫ ∞

−∞
dp e−|p|/2

⎡⎣ρ̃0(−p) +
n∑

j=1

eipθj−π|−p|/2

2 cosh(−p)π/2 −
n∑

j=1

eipθj

⎤⎦ ,
(C.21)

or, − E

Jπ
= t0 +

n∑
j=1

tj ,

where
t0 =

∫ ∞

−∞
dp e−π|p|/2 N

2 cosh(πp/2)
=

2N ln 2
π

(C.22)

and

tj =
∫ ∞

−∞
dp

eipθj

2 coshπp/2

[
e−πp − e−π|p|/2 (eπp/2 + e−πp/2

)]
,

tj = −
[∫ ∞

−∞
dp

eipθj

2 cosh(πp/2)

]
. (C.23)

Finally, we have

E = −2JN ln 2 +
n∑

j=1

Eh(θj), (C.24)

with
Eh(θj) =

Jπ

cosh θj
. (C.25)

From (C.24) we see that the ground state (which has no holes) has to-
tal energy −2NJ ln 2 and that each hole corresponds to a particle-like
excitation with positive definite energy given by (C.25). Next let us
briefly discuss the case of complex roots.
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C.2 Complex Roots

For the case of complex roots we set χ = ξ + iη, η > 0, so that

(
ξ + i(η + π/2)
ξ + i(η − π/2)

)N
= −

M∏
i=1

χ− χi + iπ

χ− χi − iπ
. (C.26)

We note that for N →∞, the magnitude of the left-hand side behaves
like

exp(kN), k > 0. (C.27)

If M is a fixed number, the only way the right-hand side can blow up
at this rate is if

|χ− χj − iπ| ∼ e−kN , (C.28)

that is, for another root χi having the same real part as χ and an
imaginary part π less than that of χ. One can establish an even general
result: for fixed M and N tending to infinity, all roots χ1, χ2, ...χM in
a solution set of the BAE are members of n strings. An n string is
a family of n roots with the same real parts of the form ξ + iπj with
j = −(n − 1)/2,−(n − 3)/2, ...., (n − 1)/2. Examples of n strings are
displayed in Figure (C.1.4). One can easily generalize the previous

FIGURE C.2.1: Schematic diagram of string states.
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results to this case:

σ̃(p) = ρ̃0(p)−
n∑

i=1

eπ|p|/2−ipθj

2 cosh(πp/2)
−

ηi<π∑
ξi+iηi

cosh(ηip)
cosh(πp/2)

exp(−iξip−π|p|/2).

(C.29)



Appendix D

The AKNS Problem

We consider here the classical inverse scattering transform for the
Ablowitz, Kaup, Newell and Segur (AKNS) problem, which is an ex-
ample of a 2× 2 matrix eigenvalue problem defined by [186]:(

v1

v2

)
x

=

(
−iζ q
r iζ

)(
v1

v2

)
. (D.1)

The nonlinear fields q, r → 0 as |x| → ∞ and ζ = ξ + iη represents the
eigenvalue. The eigenfunctions φ, φ̄, ψ, ψ̄ of (D.1), as |x| → 0, are as
follows with ζ = ξ:

as x→ −∞ φ ∼
(

1
0

)
e−iξx and φ̄ ∼

(
0
−1

)
eiξx, (D.2a)

while as x→ +∞ ψ ∼
(

1
0

)
e−iξx and ψ̄ ∼

(
0
−1

)
eiξx. (D.2b)

By defining the Wronskian of two solutions u and v as W (u, v) =
u1v2 − v1u2, we find for the above solutions:

W (φ, φ̄) = −1 and W (ψ, ψ̄) = −1. (D.3)

Hence φ, φ̄ and ψ, ψ̄ constitute two sets of independent solutions. Ob-
viously (D.1) is of first order, which means that there are only two
linearly independent solutions; this implies that the above sets are not
linearly independent. Consequently,

φ(x, ξ) = a(ξ)ψ̄(x, ξ) + b(ξ)ψ(x, ξ) (D.4a)

and φ̄(x, ξ) = −ā(ξ)ψ(x, ξ) + b̄(ξ)ψ̄(x, ξ), (D.4b)

where a, ā, b, b̄ depend parametrically on time t. From (D.2) we find
that their Wronskian is given by

W (φ, φ̄) = W (aψ̄ + bψ,−āψ + b̄ψ̄) = (aā+ bb̄)W (ψ, ψ̄),

389
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implying that
aā+ bb̄ = 1, (D.5)

in view of (D.3). If
∫∞
−∞ |q|dx and

∫∞
−∞ |r|dx are bounded, then φeiζx

and ψe−iζx are analytic in the upper half (UHP) of the complex ζ plane,
while φ̄e−iζx and ψ̄eiζx are analytic in the lower half plane (LHP). As
a result a(ζ) = W (φ, ψ) and ā(ζ) = W (φ̄, ψ̄) are analytic in the UHP
and LHP, respectively. In general b, b̄ are not analytic.

In Chapter 1, we stated that the direct scattering problem essentially
involves calculation of φ, φ̄, ψ, ψ̄ and the quantities a, ā, b, b̄, given q
and r at t = 0, besides determination of their analytical properties.
The inverse problem on the other hand consists in the determination
of q and r from a knowledge of the preceding quantities. Presuming
we have at our disposal the above knowledge, we proceed to construct
a solution of the inverse scattering problem.

As ψ and ψ̄ are defined by their asymptotic nature as x → +∞, we
assume their integral representations to be

ψ(x, ξ) =

(
0
1

)
eiξx +

∫ ∞

x
K(x, s)eiξsds, (D.6a)

ψ̄(x, ξ) =

(
1
0

)
e−iξx +

∫ ∞

x
K̄(x, s)e−iξsds, (D.6b)

where K, K̄ are two component vectors, i.e., K(x, s) =

(
K1(x, s)
k2(x, s)

)
and similarly for K̄. It will be shown that such kernels do exist and
K(x, s) is independent of the eigenvalue ξ. Assuming a(ξ) �= 0, we may
divide (D.4a) by a(ξ) and use (D.6) to get

φ

a
=

(
1
0

)
e−iξx +

∫ ∞

x
K̄(x, s)e−iξsds+

b

a

((
0
1

)
eiξx +

∫ ∞

x
K(x, s)eiξsds

)
. (D.7)

Operating on both sides of (D.7) with 1
2π

∫∞
−∞ eiξydξ, y > x and using∫∞

−∞ eiξ(y−x)dξ = δ(y − x) = 0 since y > x, we find that

1
2π

∫ ∞

−∞
φ

a
eiξydξ =

(
0
1

)
FC(x+y)+ K̄(x, y)+

∫ ∞

x
K(x, s)FC(s+y)ds,

(D.8)
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where
FC(x) =

1
2π

∫ ∞

−∞
b

a
eiξxdξ. (D.9)

To calculate the left-hand side of (D.8) we need to know the following:
(a) the zeros of a(ζ) in the UHP and (b) the asymptotic form of φ
and a as ζ → +∞. For this purpose we assume that a(ζ) has isolated
simple zeros with an asymptotic nature given by

a(ζ) ∼ 1 +O(1/ζ). (D.10)

On the other hand φ behaves like

φ ∼
(

1
0

)
e−iζx +O(1/ζ). (D.11)

Now define the integral,

I =
1
2π

∮
C

φ

a
eiζydζ (D.12)

where C is a semicircular contour in the UHP. If a(ζj) = 0, then by
the residue theorem and using the asymptotic behaviour given above,
we find that

1
2π

∫ ∞

−∞
φ

a
eiξydξ = i

N∑
j=1

φ(ζj)
a′(ζj)

eiζjy. (D.13)

Since a = W (φ, ψ) and ζj (j = 1, 2..N), are the zeros of a(ζ), it follows
that φ(ζj) ∝ ψ(ζj) = ψj , i.e., φ(ζj) = c̃jψj , leading to

1
2π

∫ ∞

−∞
φ

a
eiξydξ = i

N∑
j=1

cjψje
iζjy, (D.14)

where the normalization constant cj = c̃j
a′(ζj) . As ψ, given by (D.6a),

admits analytical continuation to the UHP, it follows that

ψj =

(
0
1

)
eiζjx +

∫ ∞

x
K(x, s)eiζjsds. (D.15)

As a result we have

1
2π

∫ ∞

−∞
φ

a
eiξydξ = −

(
0
1

)
FD(x+y)−

∫ ∞

x
K(x, s)FD(s+y)ds, (D.16)
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where

FD(x+ y) = −i
N∑
j=1

cje
iζj(x+y). (D.17)

From (D.9) and (D.17), by subtraction we have

F (x) = (FC + FD)(x) =
1
2π

∫ ∞

−∞
b

a
eiξxdξ − i

N∑
j=1

cje
iζjx, (D.18)

allowing for (D.8) to be expressed as

K̄(x, y) +

(
0
1

)
F (x+ y) +

∫ ∞

x
K(x, s)F (s+ y)ds = 0. (D.19)

Similarly,

K(x, y)−
(

1
0

)
F̄ (x+ y)−

∫ ∞

x
K̄(x, s)F̄ (s+ y)ds = 0. (D.20)

Defining the matrices,

K =

(
K̄1 K1

K̄2 K2

)
, F =

(
0 −F̄
F 0

)
, (D.21)

(D.19 and D.20) may be compactly expressed in the form,

K(x, y) + F(x+ y) +
∫ ∞

x
K(x, s)F(s+ y)ds = 0. (D.22)

This is the matrix version of the Gelfand-Levitan equation written in
Marchenko form. The final step in the inverse problem consists of
relating the fields q, r to the kernelsK(x, y). This may be accomplished
in the following manner. We substitute the integral equation for ψ from
(D.6a) into the eigenvalue equation (D.1) to obtain

iζ

(
0
1

)
eiζx −

(
K1(x, x)
K2(x, x)

)
eiζx +

∫ ∞

x

(
K1x(x, s)
K2x(x, s)

)
eiζsds

=

(
q
iζ

)
eiζx+iζ

∫ ∞

x

(
−K1(x, s)
K2(x, s)

)
eiζsds+

∫ ∞

x

(
q(x)K2(x, s)
r(x)K1(x, s)

)
eiζsds.
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Assuming Ki(x, s→∞) = 0, we may integrate the second term on the
right-hand side by parts, which enables the kernels to be expressed as
follows, in terms of the fields:

K1(x, x) = −1
2
q(x),

K1x −K1s = q(x)K2(x, s), K2x +K1s = r(x)K1(x, s). (D.23)

Likewise, for ψ̄ we obtain

K̄2(x, x) = −1
2
r(x),

K̄2x − K̄2s = rK̄1(x, s), K̄1x + K̄1s = qK̄2(x, s). (D.24)

To determine the asymptotic form of φ, φ̄, ψ and ψ̄, we essentially use
the WBK trick, i.e., we write ψ as follows and substitute it into the
eigenvalue equation (D.1):

ψ = eiζx
[(

o
1

)
+

1
ζ
A(x) + ...

]
. (D.25)

Upon equating coefficients of ζ, it yields the components of the vector
A(x), enabling us to express ψ as given below:

ψe−iζx ∼
(

0
1

)
+

1
2iζ

(
q

−
∫∞
−x rqdx

′

)
+ ...... (D.26a)

In the same way, the following may also be deduced:

ψ̄eiζx ∼
(

1
0

)
+

1
2iζ

(∫∞
x qrdx′

−r

)
+ ..., (D.26b)

φeiζx ∼
(

1
0

)
− 1

2iζ

(∫ x
−∞ qrdx′

r

)
+ ....., (D.26c)

φ̄e−iζx ∼
(

0
−1

)
− 1

2iζ

(
q∫ x

−∞ rqdx′

)
+ ... . (D.26d)

As a(ζ) = W (φ, ψ), the above expansions lead to the following form of
a(ζ):

a(ζ) ∼ 1− 1
2iζ

∫ ∞

−∞
rqdx′ +O(

1
ζ
), (D.27a)
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and also
ā(ζ) ∼ 1 +

1
2iζ

∫ ∞

−∞
rqdx′ +O(

1
ζ
). (D.27b)

Furthermore, as K(x, s→∞) = 0, one can formally write

ψ ∼
(

0
1

)
eiζx −K(x, x)

eiζx

iζ
+ ...., (D.28a)

ψ̄ ∼
(

0
1

)
e−iζx + K̄(x, x)

eiζx

iζ
+ ..... (D.28b)

Comparing (D.26a and D.26b) and (D.28a and D.28b) we conclude that

K1(x, x) = −1
2
q(x), K2(x, x) =

1
2

=
∫ ∞

x
qrdx′, (D.29a)

K̄2(x, x) = −1
2
r(x), K̄1(x, x) =

1
2

∫ ∞

x
qrdx′. (D.29b)

Thus, the kernels exist and are unique and independent of the eigen-
value ζ.

Finally, let us consider the time evolution problem. The time part of
the Lax equation is(

v1

v2

)
t

=

(
A(ζ) B(ζ)
C(ζ) D(ζ)

)(
v1

v2

)
, (D.30)

with the following behaviour, viz A → A−(ζ), D → −A−(ζ) and
B(ζ), C(ζ)→ 0, as |x| → ∞. The corresponding solutions are
as x→ −∞,

φ(t) = φ eA−(ζ)t, φ̄(t) = φ̄ e−A−(ζ)t, (D.31a)

and as x→ +∞,

ψ(t) = ψ e−A−(ζ)t, ψ̄(t) = ψ̄ eA−(ζ)t, (D.31b)

where φ, φ̄, ψ and ψ̄ are the old eigenfunctions satisfying the space part
of the Lax equation. From these equations, it follows that the time
dependence of φ is determined by the equation,

φt ∼
(

0 0
0 −2A−(ζ)

)
φ as x→ +∞ . (D.32)
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However, as φ = aψ̄ + bψ, by using the behaviour of ψ and ψ̄ as
x→ +∞, we obtain

φ ∼
(
ae−iζx

beiζx

)
. (D.33)

Calculating φt from this asymptotic solution and by substituting φ, φt
thus obtained in (D.4a) we get the following time dependences of a and
b:

ate
−iζx = 0, so that a(ζ, t) = a(ζ, 0), (D.34)

and bt(ζ, t) = −2bA−(ζ), which implies that

b(ζ, t) = b(ζ, 0)e−2A−(ζ)t. (D.35)

It follows from (D.34) that the eigenvalues are fixed in time. Assum-
ing the necessary conditions for analytic continuation, we have for the
normalization constants:

Cj(t) =
bj(t)
a′j(t)

=
bj(0)
a′j(0)

e−2A−(ζ)t = Cj,0e
−2A−(ζ)t. (D.36)

Similarly, using φ̄ = −āψ + b̄ψ̄, we have

ā(ζ, t) = ā(ζ, 0), (D.37)

b̄(ζ, t) = b̄(ζ, 0)e2A−(ζ)t, (D.38)

and
C̄j(t) = C̄j,0e

2A−(ζ)t. (D.39)

These results allow us to determine the time dependencies of F (x, t)
and F̄ (x, t) in the inverse scattering equation. From (D.18), it follows
that

F (x, t) =
1
2π

∫ ∞

−∞
b

a
(ζ, t)eiζx−2A−(ζ)tdζ − i

N∑
j=1

Cj,0e
iζjx−2A−(ζj)t,

(D.40)
and similarly,

F̄ (x, t) =
1
2π

∫ ∞

−∞
b̄

ā
(ζ, t)e−iζx+2A−(ζ)tdζ − i

N∑
j=1

C̄j,0e
−iζ̄jx+2A−(ζ̄j)t.

(D.41)
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These expressions are analogous to Fourier integral equations in linear
problems. For x→ +∞ and the special case of r = ∓q�, one can show
that [186]

q(x, t) ∼ ∓2F �(2x, t),

where use has been made of F̄ = ±F �. Thus the time dependence is
parametric in nature. Furthermore, writing ζj = αj + iβj with βj >
0, we note that the contribution to q(x, t) from the bound states is
negligible, as x→ +∞. As a result one has

q(x, t) ∼ ∓ 1
π

∫ ∞

−∞
b

a

�

(0)e−2iζx−2A�
−(ζ)tdζ, (D.42)

which basically shows that as x→ +∞, the problem reduces to a linear
one.
Special case r = −q�: In this case we have

K1(x, y) = F �(x+y)−
∫ ∞

x

∫ ∞

x
K1(x, z)F (x+s)F �(s+y)dz ds. (D.43)

For the “reflectionless” case, i.e., (b/a)0 = 0, the continuous spectrum
is absent and choosing N = 1, we find that

F (x) = −iceiζx, with ζ = ξ + iη, η > 0. (D.44)

Substituting (D.44) in (D.43) and multiplying both sides by
∫∞
x eiζydy,

we obtain

K̂1(x) = − c�ei(ζ−2ζ�)x[
1− |c|2e2i(ζ−ζ�)x

(ζ−ζ�)2

]
(ζ − ζ�)

, (D.45)

where K̂1 has been defined as

K̂1(x) =
∫ ∞

x
K1(x, y)eiζydy. (D.46)

Using (D.46) in (D.43) allows us to express K1(x, y) in the form,

K1(x, y) = ic�e−iζ�(x+y)

[
1− |c|

2e2i(ζ−ζ�)x

(ζ − ζ�)2

]−1

(D.47)

The potential q(x) then becomes

q(x) = −2ic�e−2iζ�x

[
1− |c|

2e2i(ζ−ζ�)x

(ζ − ζ�)2

]−1

, (D.48)
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which may be simplified to

q(x) = −i c
�

|c|2ηe
−2iξxsech{2(ηx− θ)}. (D.49)

Here ξ and η represent the real and imaginary parts of ζ, respectively,
while θ is defined by e2θ = |c|

2η . Equation (D.49) represents a soliton so-
lution to all evolution equations with r = −q�, subject to the condition
A(ζ)→ A−(ζ) as |x| → ∞.
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