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It has been known for a long time that several areas of the theory of differential 
equations (compatibility theory, generalized symmetries, geometry of characteristics, 
variational complexes, and others) can be clarified by using certain infinite-dimen
sional spaces and algebraic tools that cannot be easily related with today's mathe
matical theory. The spectrum of these topics is rather wide and goes from linear 
algebra (infinite systems of linear equations) through vector fields in R™ (a generaliza
tion of Lie's theory) up to the axiomatic foundations of differential equations 
(naturally including the concept of Bäcklund correspondences). In dealing with all 
these topics, our exposition cannot be too punctilious and thorough for obvious 
reasons, many important problems must be left unsolved, and several interesting 
questions are tacitly passed over. 

1. The Gaoss elimination. We shall deal with a system A and the relevant homo
geneous system A of linear algebraic equations 

A1: Y,a)xj = y%, A1: J>jz' = 0 

(i = 1, 2, ... ; sum over j = 1, ..., m(i)) 

with real coefficients a) e R and three series of independent variables x\ y\ z\ 
00 

(The finite sum will be always indicated by £ , while £ will be used for the infinite 
series.) We begin with strong assumptions: let A consist of linearly independent 
equations and admit only trivial solutions zl = 0. Under these assumptions, the 
systems A9 A will be modified by certain invertible rearrangements (permutation of 
equations, substitutions) but the intermediate results will be not always explicitly 
indicated by a change of notation. 

With this in mind, we may ensure the nonvanishing of all left corner diagonal 
minors, det (alj) Ф 0 (i,j = 1, ...5 n) for n = 1, 2, ... , permuting (if necessary) 
the equations. Then the "direct run" ofthe elimination can be applied. The equation 
A1 is retained but x1 calculated from A1 and inserted into A2, Л3, . . . ensure a\ = 0 
(i > 1). Then the second (new) equation A2 is retained but x2 calculated from A2 

and inserted into A3, A4, ... ensures a\ = 0 (i > 2). Continuing with x3, x4, . . . , 
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the resulting system denoted by B and the relevant homogeneous B are upper trian
gular with nonvanishing diagonal terms: 

V- lb)f = {y\ ..., У" '} + f , B'. jy,z> = 0 
(b) = 0 if i>j). 

We denote by {...} a finite linear combination of the entries involved. 
The "inverse run" is less trivial. Choosing a fixed i, the variables xi+1, ..., xi+c 

calculated from B i + 1 , .. ,f Bi+C and inserted into Bl yield a result like this: 

Ъ\х* + rc = {y\...,yi+c} (rc = {xi+c+\xi+c+2,...}). 

In principle there are two possibilities: either rc = 0 for c big enough (and x l is 
resolved) or rc Ф 0 survive for all c. But in reality, the latter case cannot occur 
since it implies the existence of a nontrivial solution of B, hence of^i, which is rejected, 
(tnfact, rc Ф OforallcmeansthattheformJR* - h\zl = b j + 1 z i + 1 + . . . + &Í(i)z

w(í) 

is not a linear combination of Bi+1, Bi+2, . . . and one can then see that there exists 
a solution of B with z1 = .. . = zc = 0 but with some nonvanishing z c + 1 , zc+2, .. , 
which is impossible.)Successively taking i = 1, 2, . . . we conclude that ouralgorithm 
when applied to B leads to a diagonal system 

C': Xі = £ > } / (i = 1, 2, . . . ; sum over j = 1, ..., n(i)) 

of Б, hence of the original system A. 

2. Summary. If A consists of linearly independent equations and permits onîy 
trivial solutions, then A is uniquely solvable by certain formulae C. Then the relevant 
homogeneous system C satisfies the same conditions as A so that the relation 
between A and C is symmetrical. Moreover, if all left corner minors of A are non-
vanishing, then the following criterion of solvability holds: for every c = 1, 2, . . . 
there exists /<:(c) ^ c such that the submatrix (aJ.) with rows i = 1, ..., fe(c) and 
columnsj = c, c + 1, ... is of rank k[c) — c. (All assertions easily follow from the 
above procedure of elimination.) 

3. Bases and duality. We pass to a more conceptual point of view. Let V be an 
^-linear space, VA the dual space of all ^-linear functions on V. In view of future 
applications, the values will be written as C(X) є R where £ є V, X є VA. A sequence 
Č1, £2, . . . є V is called a basis of F i f every £ є F can be uniquely expressed as £ = 
= £дС|£* (х гє й). One can see that such a sequence is a basis if and only if it is 
linearly independent and Ç\X) = 0 implies X = 0. If rç1, rç2, ... with if = ^ a } ^ 
is an other basis, then there exists an inversion £* = ^CW'* ^n* s P r o v ^ e s a simpler but 
less constructive approach to the problem of Section 1. A sequence Xu X2, . . . є F A 

is called a wďofc bösis of VA if £(Xř) = 0 for every £ є F and í = /(£) big enough 
00 

(therefore every series J^xXt (xř є Я) makes a good sense), and every X є F can be 
00 

uniquely expressed as X = JVX t- with appropriate x1 e ff. 
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For every basis ^1, £2, . . . ofFthere exists a dual weak basis Xu X2, . . . determined 
by C(Xj) = 5}. Moreover, every weak basis is ofthis kind. (In fact, let Yu Y2,... be 

00 

another weak basis of VA. Then Yj = Yfl)^-i w n e r e a) = i*(^y) S 0 t n a t aj = ^ 
00 

(j > m(if). Conversely, X}- = Yf)^i w^ t n 

00 00 00 

Xj = I*iG>W = I(I^>i) x* (a finite s u m ! ) • 
Consequently £e}a* = t>*. One can see that the relevant homogeneous system A 
satisfies the assumptions of Section 1 which implies e) = c), hence e} = 0 for j big 
enough. So we may put nl = YjeW an<^ vei*ify t n e duality ^(У,-) = <5y by direct 
calculations.) 

4. The underlying spaces. We turn to the analysis. Let R™ be the space of all 
sequences t = (i1, ř2, ...) of real numbers equipped with the usual direct product 
topology. An infinite product of open intervals a1 < ť < bl is called a box, a topo
logical subspace U c= R™ which is a union of such boxes is called an underlying 
space. Our reasoning will be carried out in such an underlying space U which will 
not be exactly specified and even fixed (to simplify the exposition). 

Let <F = tF(U) be the structural ring consisting of all C°°-smooth real valued 
functions f = f(tl,...,tn(f)) on U depending on a finite number of coordinates. 
Then the natural transformations F are given by certain formulae 

F(t) = t = (t\ ř2,...) є R*> , V = f(t1, ..., tm(i)) є JF . 

If we are interested in the inversion 

F-Щ = t = (t\t2,...)eRœ, Xі = д\1\...,Г(1))е^, 

the criterion of Section 2 can be applied to the differential áF and the presumed 
inversion d F " 1 = (dF)"1 . With a\ = df^dť, xj = dtJ\ yl = dt\ this criterion leads 
to very strong requirements for the Jacobian matrix (dfljdtj), hence for the functions 
f\ According to the usual finite-dimensional implicit function theorem, this criterion 
ensures that the part ť = gl (i = 1, ..., c) of the inverse formulae can be derived 
from the finite family ť = fl (i = Ì, ..., k(c)) of the original equations by elimination 
of the parasite variables řc + 1, čc + 2 , . . . via a nonlinear version of the Gauss elimina
tion of Section 1. Since the elimination proceeds only locally, the existence of all 
functions gl leads to the inverse mapping F _ 1 only if the intersection C\Ul of the 
definition domains Ul ofg1 is wide enough, e.g., ifit contains a model space. (A quite 
different but a little peculiar approach to this trouble will be suggested in the next 
section. Note aside that the requirement of inversion on an open subset of R™ is 
very restrictive for the common practise. For this reason, R™ cannot be considered 
an "infinite dimensional manifold" in the classical sense. Expressively we can say 
that manifolds are like the Banach spaces but R™ behaves as the linear topological 
space; the boxes may be compared with bounded subsets, not with open balls.) 
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5. One-parameter groups. To ensure nontrivial results, a somewhat peculiar 
measures are needed. Let Fx be introduced by 

F,(t1, t\ ...) = {f\t\..., i**>; 1), f \ t \ ..., i**>;A,...) 

with components fl є #" defined for Я є R close enough to zero, \X\ < s(i). Here 
s(i) > 0 but s(i) ^> 0 as / ~> cc is admitted. So, rigorously speaking, Fx need not be 
a transformation if Я ф 0; the above definition must be understood in the sense that 
an arbitrarily large number of coordinates of Fx(t) is well defined only for Я suf
ficiently near to zero. 

We shall suppose F0 = identity in the sequel. Then, if the rule Fx o Fß = Fx+ß 

is satisfied, we shall speak of a (one-parameter, generalized, local) group. In more 
detail, we require the equalities 

P{f\t\..., r ^> ; pi),...,r^(t1, ..., i"***>>. ^) . я) s 

= f\t\...,tm^;X + ^) 

to hold whenever they make sense (for instance, if ř є C/7 c U с ^?00 and |Я|, |ju| < 
oo 

< e(i, #'))• T h e v e c t o r field z = I^(<5/^'") w i t h z I s df4dX\Xss0 is called the 
infinitesimal transformation of the group FA and we shall see that the relevant 
Lie system 
(*) 3/'-(s A)/3A S z ' ' ( / ' ( . ; A),. . . ,r<'>(-; A)), / ' ( • ; 0) = ť 

is of paramount importance since the Lie's first fundamental theorem can be carried 
over to our generalization and moreover, the family G of all infinitesimal transfor
mations can be interestingly characterized. 

6. Theorem. The group Fx satisfies (*) and conversely, an arbitrary Fx satisfying 
(*) with certainfunctions zl є 3F is a group. 

Proof. The direct assertion follows (as in the classical case) by applying d|dX 
to the composition rules at the value X = 0. 

Conversely, let some general Fx satisfying (*) be given. One can then verify that 
both Fx+fl and Fx о Fß (with fixed fi) are solutions of the differential equations of (*) 
but with another (and in both cases the same) initial value Fß at Я = 0. In more 
detail, if we abbreviate 

Fx+ll{t\t\:.) = {F\X),FÍX),..\ 

FÁoFll(t\t\...) = (Gl(X),G\X),...) 

with tl, t2, ... mere parameters, then one can verify the identities 

(**) d/|dX EE z%y1,..., y* '>) , / ( 0 ) = f{t\..., t^; p) 

for both families yl = Fl and yl = Gl. So we need to prove the uniqueness property 
for the system (**) in order to be able to conclude Fl = G' which expresses the desired 
composition rule. But (**) differs only inessentially from (*) (namely in the choice 
of the initial value). So we need to prove uniqueness for the original system. 
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Let us look at the first component / 1 . By supposition, any change of the initial 
values tk (k > m(l)) does not affect it, thus it does not affect the function z1 = dfljdX. 
It follows that quite arbitrary functions/^ (/c > m(l)) can be inserted into the system 
(*) with the result that the initial finite part ofthis system consisting of m(l) equations 
for the remaining functions / 1 , . . . , / w ( 1 ) may have other solutions except the first 
component/1 which is preserved (since df1jdX = z1 a n d / ^ = o = tl are), it follows 
that the first component/ 1 of FA can be calculated from a finite classical system of 
ordinary differential equations, so it is unique. (Other components fl are clearly 
unique, too.) 

7. Theorem. A vectorfie1d Z is an infinitesimal transformation (ofsome group FA) 
if and only iffor everyfunctionfe J^ the wholefamily offunctionsf, Zf, Z2f, ... 
can be expressed by afinite number ofcoordinates. 

Proof. If Z is an infinitesimal transformation of FA, then Zjf 0 Fx — dj(f о FA)/dly, 
hence Zjf= dJ(/oFA)/dAJ |A=0 as follows from the composition rule (a classical 
argument). Consequently, for f = f(t\...,ť(f))eáF, all functions ZJf can be 
expressed by the coordinates t1, ..., tm(-n(f)\ 

The inverse assertion is less trivial. Our first aim is to resolve (*) without any 
additional assumption made on the vector field Z. Since the underlying space can 
be changed, the vector field Z can be arbitrary modified outside a box containing the 
point under consideration. For instance, we may suppose each function zJ = 
= zj(t\ ..., tmU)) to be defined in all space #?œ and to vanish if |i*|, ..., \tmU)\ are 
large.enough. After this adjustment, the functions/^(A) (/, k = 1, 2, ...) determined by 

fl(X) = ť ( - l/fc g A й 0) , 

Ш = fi + io 4Л 1 (д - i/fc), • • .,/f(0 (̂  - i/fc)) ^ (Л è o) 
and depending on the parameters ř1, t2, ... are bounded and uniformly continuous. 
For a fixed i they are even equicontinuous. So, owing to the Arzela-Ascoli theorem, 
there exist limits/'(A) = limfl(X) for an appropriate sequence k = /<(l), /v(2), ... ^ 
^ oo. The functions fl(X) satisfy the original system (*) only on a certain interval 
0 ^ A < e(/), e(i) > 0, but it does not matter. Moreover, /1(Я) proves to be C00-
smooth in Y] and as a function ofthe initial parameters í1, ř2, ... as follows by applying 
the common classical methods of the theory of ordinary differential equations. It is 
evident that the existence ofsolutions/'(A) of(*) on certain intervals -e( / ) < n ^ 0 
can be proved quite analogously and that the composed solution of(*)on the interval 
-e(i) < X < s(i) is smooth. So the only fact to be verified is that every component/ ' 
depends only on a finite number of the parameters í1, ř2, . . . . At this place, the 
special assumption on the operator Z is coming into play. 

By successive differentiation of df'|dA — z' and elimination of the derivatives 
dfjjdX (/' Ф /) with the use of (*) one can obtain a sequence of identities 

df|di = Zl(f\...,/n(1)), dY|dx2 = z2(f\...,/-<2)),... 
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where Zj_ = zl = Z í \ z2 = Zzx = Z V , .. . . By our assumption only a finite number 
of arguments/ 1 , . . . , / " effectively appear in all these functions Zj. Let us now look 
at the finite system 

d/'/dA = z ^ , . . . , r ) , . . . , d y ' / d A " = z , ( / 1 , . . . , / " ) . 

This is a finite system of ordinary differential equations with unknown functions 
f1, . . . , / " , but the functions / J (j Ф /) are mere "parasite variables". If they are 
(locally) eliminated, at least one differential equation of order at most n for the 
true unknown function fl appears. However, a solution of such an equation 
depends on at most n initial values, the derivatives dfe/l/dAfc|A = 0 (fc = 0, ..., n — 1). 
Returning to (*) again, we can express every such derivative by a finite number of 
parameters t\ /2, ... . This concludes the proof. 

8. A note on differential equations. A non-autonomous system d/'/dA = 
= 0%A,f1, . . . , /m ( i ) ) can be reduced to the form (*) by introducing a new independent 
variable ji and denoting A =f0 with, say, àf°jàfi = 1. Then all the above results 
can be applied. In particular, the linear system 

d/'/<U = aj(A)/1 + . . . + < o ( A ) r C > , f%=0 = c' 

is ofeven greater interest since then the global existence and uniqueness can be proved. 
If, moreover, the coefficients a}(A) = a) are constant, the criterion ensuring the 

oo 

inclusion Z e G applied to the vector field Z = J^a{f(d|d^) can be interestingly 
expressed in the following way: every fixed7-tf1 row of all powers Ak (k = 1, 2, ...) 
of the matrix A = (aj) is of limited length uniformly with respect to k. In geometric 
terms, if A is identified with the transformation sending t e R™ into t є R"° with 
V = Y,a]t^ then all vectors t, At, A2t, ... (t e R™ is fixed here) should be lying in 
a finite-dimensional linear subspace of R°°. Such a transformation A can be reduced 
to the Jordan normal form with the infinite number of diagonal blocks. 

9. Regularity. Before continuing the main subject, we shall discuss some general 
concepts which will provide a comfortable link between algebra (Я-linear spaces) 
and analysis (J^-modules). Let V be an #'-module, f̂ A the dual space consisting 
of all J^-linear J^-valued functions on i^. Then a basis of V (that is, ^-basis), 
weak (^-)basis o f ^ A , and the duality between them can be introduced quite 
analogously as in Section 3. (For instance, i fX l 5 X2, . . . is a weak basis of У , then 

00 

every X є V can be expressed as X = £VX f with Xі = C{X) є 3F where £ \ f2, ... 
00 

is the relevant dual basis of Y. Conversely, every series £ V X ; (xl e <F) represents 
Xe f^A determined by the values i(X) = J^x^(X)e^ where the sum is finite.) 
The existence of bases of various J*-modules rT will be tacitly assumed; then the 
weak bases off^A are determined by the duality. 

Let m, cz <jF be the maximal ideal of all functions/ є $F vanishing at a point t e U. 
Let us denote Vx = V\\\\tV which is considered as an ^-linear space. We shall 
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speak of a regular #"-module У if for every (equivalently: an appropriate) basis 
f1, £ 2 , . . . of V, the relevant classes f/, £f, ••• provide a basis of тГ,. If this is the 
case and Xl9 X2,... is a weak basis of i^A, then the relevant classes (Xt)t, (X2)t, ... 

provide a weak basis of the #-lmear space f^A = irAjmtirA, We shall deal only 
with regular ^-modules. They have the nice property that many concepts can be 
"localized" at every point te U. For instance, there is an isomorphism ( ^ ř ) A = 
= (f"A)t and every J^-homomorphism L: i^ -^ if between J^-modules induces 

Lt: f^t ^> Wt between the relevant R-linear spaces, by factorization. Denoting by € 
the cardinality ofvarious bases (i.e., the dimension), the trivial equality S(^) = f(^t) 
proves to be very useful. 

The natural inclusion % а -V of a submodule JU into a module "ť is called 
regular if every (equivalently: an appropriate) basis of °U can be completed to 
a basis of V. In this case, if i^ is regular then both ^ and І^\°и are, too. Moreover, 
<%11 = <*U. (For a subset sé с іГ9 sé1 c f'A consists of all Xei^A satisfying 
C(X) = 0 for all Č, e sé; 4lLL is defined analogously.) An #"-homomorphism L: ir ^> 
~> W between #'-modules will be called regular ifthe relevant inclusions Ker L c f̂ , 
Im L c #~ are regular in the above sense. 

10. Differential forms ao.d vector fields. The J^-module Ф = Ф(^) of all differential 
forms Č, = Y;xiať (x^e#") is regular with the basis di*,dr2, . . . . Then the dual 
#"-module ФА has the dual weak basis d|dt1, d|dt2, . . . . Let G с Фл be the subset 
of all infinitesimal transformations Z of various groups FÀ. (Cf. Section 5. At this 
place, we tacitly avoid some troubles concerning the domains of definition. In more 
exact terms, G should be defined as the set of all vector fields Z which produce 
a group near every point of U, that is, in an appropriate box.) Using the criterion 
of Theorem 7, one can easily see that G is a cone (i.e., $FG cz G) but neither G + 

00 

+ G c G, nor [G, G] c G hold. (Hint: look at the vector fields £ í 2 i + 13/dí2 i , 
00 

YJt
2i+2ôlôt2i + leG. Note that even (d/dř1) + С ф G according to Section 11.) 

Let us state several properties ( i ) - (x) characterizing the vector fields Z lying in G: 

(i) For every fe^, the family Zkf (k = 0, 1, ...) /s expressible by a finite 
number of coordinates (Theorem 7). 

(ii) For every coordinate t\ thefamily Zkť (k — 0, 1, ...) is expressible by afinite 
number of coordinates, ((i) => (ii) is trivial, (ii) => (i) follows from the formulae 
z/ = I(3//fli0zť, z2/ - Z(d*f|dt* dt>)ztW + E(o//or')zV,....) 

(iii) For everyform Ç є 0,'thefamily Se\^ (к = 0, 1, ... ; ifz = Z П d + d ~] Z 
is the Lie derivative) /s expressible by a finite numb,er of coordinates, ((iii) => (i) 
follows by taking { = d/, (і) => (iii) follows by direct calculation with £ = £ / r d i \ ) 

(iv) For everyform £ e Ф, thefamily Jš?z£ (fc = 0, 1, ...) /s contained in afinite-
dimensional submodule of Ф. ((iii)=>(iv) is trivial, (iv)=>(iii) follows by taking 
{ = d/just as in point (iii).) 

(v) For every term {1 of a basis {1, £2, . . . of Ф, thefamily &к
2С1 (k = 0, 1, ...) 
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is contained in afinite-dimensional submodule of Ф. ((iv) => (v) is trivial, (v) => (iv) 
follows by direct calculation of S£\^ with £ = ^x^1 ' . ) 

(vi) For every term Ç1 of a basis Ç1, £2, . . . of Ф, thefamily ^k
zC (k = 0, 1, ...) 

can be expressed by afinite number of coordinates. (Clearly (iv) => (vi), (vi) => (v).) 
(vii) The same as (iii), (iv) but with the operator dZ ~~l instead of Jě?z. (We omit 

the proof and note that an analogous modification of (v), (vi) is not true.) 
(viii)-(x): see Sections 11, 12 and 16. 

11. Approximation of groops. Let us begin with a simplifying assumption, namely 
that. Z є G generates a uniform group, that is, the components/1 ofi^(r) are defined 
for U| < г (є = e(i) is independent of /). Assume moreover that Z is nonvanishing, 
for instance z l = dfl\dX ф 0. Then the function g = g(t1, . . . ,řm ( 1 )) satisfying 
r j ( i \ ..., řm(1); g) = c with an appropriate and fixed once for all constant c permits 
to introduce new coordinates 

tl = 0(f*,...,i"**>), 

V = f'l{t\ ..., r ( / ) ; g(t\ ..., im(1))) for i > 1 . 

Owing to F_A o Fx = identity, the inversions are ť = / г(с, ř2, ..., Гп(і); —ř1). Taking 
into account the rule FÀ 0 Fß = Fl+ß, one can verify that F*t* = ř1 + Я, F*r1 = Г 
(/ > 1) so that Z = d|dt1 in the new coordinates. 

Passing to a general Z e 6r with, say, z1 Ф 0 as before, the above construction 
can be carried out only "approximatively" by taking 

ť=g(t\...,t^), 

Iі = f'l(t\ ..., řw(/); g) for 1 < i g M , Г = ť for ř > M , 

where M is fixed and and very big (to ensure some properties needed later on). The 
existence of a certain inversion ť = gl(t\ ..., Г(г)) follows by the classical implicit 
function theorem (since the system V = fl (l < / ^ M) reduces to the identity 
Iі = Ґ' if /1 = c). it is clear that even g\t\ ..., í"<ť)) = / ' ( c , t2, ..., ím(0; - ř 1 ) for as 
many indices i as desired, by an appropriate choice of a very big M. Moreover, one 
can ensure that F*f1 = tl + Я and F*r1 = Г for arbitrarily many indices i, e.g., for 
i ^ N. It follows that Z = d/dř1 + RN where RN is a series involving only the 
summands djdtk with A; > N. Every finite family ^1 , ...,gce^ can be expressed 
by the variables t\ ..., řN if N is chosen big enough. So it follows that Zkgl = 
= dkglj(dV)kfork = 0, 1 , . . . /'n a« appropriate coordinate system. (Conversely, 
the latter property noted (viii) of a vector field Z є Фл clearly ensures Z є Cr, even 
in the weakened form c = 1.) Still in other terms: the above results mean that the 
uniform group F'? defined by F^(r1, f2, f3, ...) = (ř1 + Я, ř2, ř3, ...) approximates 
the original group Fx in the sense that both FÀ, F\ operate in the same manner onas 
many coordinates as one needs, /*(i1, ..., tm(l);X) =f'l{tl, ..., řm ( í ) ; l) for a large 
number of indices /. So if we deal with a finite number of functions, the action of 
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a group F; can be replaced by the action of an appropriate uniform group F'k 

without any change of the result. 

12. Towards the Frobenius theorem. Let Z e Фл be a nonvanishing vector field. 
Denote by Z 1 the submodule of Ф consisting of all forms £ є Ф satisfying £(Z) = 0. 
Such a Z is an infinitesimal transformation of a uniform group Fx if and only if 
there is a basis ofZ1 consisting oftotal differentials. 

Proof. If Z generates a uniform group Fx, then Z = d|dt1 in appropriate co
ordinates t1, t2,... and dt2, dř3, . . . is a basis of Z 1 . Conversely, if d/i1, dh2,... is 
a basis of Z 1 and h = h° є 3F is a function with Z/i Ф 0, then h0, h1, . . . may be 
used for coordinates so that Z = Zhd|dh clearly generates a uniform group. 

More generally, Z є G if and only ifevery £ є Z 1 can be expressed as a linear 
combination ofsome linearly independent total differentials lying in Z1 . 

Proof. Let Z є (7 and £ = zt àt1 + ... + zn àf є Ф. We may ensure Z = 
= d|dt1 + Ядг in some new coodinates, and suppose that i1, ..., iM can be expressed 
by ř1 , . . . , tN and jR^ is a series involving only d|dV (i > N). Then the inclusion 
Č, є Z1 implies £ є {dř1, ..., d!^} cz Z1 . Conversely, let the above property (briefly: 
property (i.x)) be satisfied for every form { e Z 1 . Let ^2, ^3, . . . be a basis of the 
#"-module Z1 . Then we may write Ç1 = Y,9j dhJ with some àhJ e Z 1 (property (ix)). 
One can easily verify &\£ = (Z П d)fc f' = ^Z f c^ i d^ j so that the family Jž?|Cť 

(/ is fixed but /c = 0, 1, ...) is lying in a finite-dimensional submodule of Ф. We wish 
to apply the criterion (v) of section 10 to conclude Ze G; however, we still have 
no basis of Ф. Let / є 3F satisfy Zf ф 0. Replacing Z by ZJZf, we may suppose 
Zf — 1. Denoting ^1 = d/, we have =^z^1 = 0 so that the above mentioned criterion 
can be applied to the basis ^1, £2, ... of Ф. 

One can discern the above two results as a simple variant ofthe famous Frobenius 
theorem for the space R°° in the particular case of one-dimensional submodules 
of ФА (i.e., of nonvanishing vector fields). For the general case, it is desirable to 
employ the tools of differential forms to greater extent. 

Let Q cz Ф be a submodule with the regular inclusion. We shall denote Ж = 
= Q1 cz Ф л , hence Ж1- — Q. The module Q is called/orma/Гу integrable (briefly: 

flat) if the equivalent conditions 

[jf, Ж] с Ж , Ж П àQ c í2 , jSf^ß cz í2 , di2 = 0 modulo Q 

are satisfied. If, moreover, / ( ß ) < oo, then the common Frobenius theorem applies 
and we conclude that Q has a basis consisting of total differentials, and consequently 
Ж admits a weak basis with terms in G, Passing to the less trivial case c(Q) = oo, 
we may state the following generalizations of the abóve results (in which we had 
Q = Z1 and ф Р ) = 1). 

13. Theorem. Let Q beflat and £(Ж) < oo. Then every Z e Ж is an infinitesimal 
transformation of a uniform group if and only if there exists a basis of Q con
sisting of total differentials. 
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We omit the p r o o f prefering the more interesting 

14. Theorem. Let Q beflat and <?(Ж) < oo. Then Ж c G if and only if every 
form a>e Q can be expressed as a linear combination ofsome linearly independent 
total differentials lying in Q. 

Proof. Using a slightly different notation than usually, we shall assume that 
dx1, . . . ,dx", d y \ d y 2 , . . . is a basis of Ф where dx1, . . . ,dx n (n = с(Ж)) provide 
a basis of Ф/ß. Then certain forms ooj = àyJ — Y,yjdx1 (j = 1,2, ...) provide 
a basis of Q, and then the vector fields Zt = d|dx1 + Y,yi Щ^У3 (ř = 1» •••» w) п іаУ 
serve as a basis of Jf. 

First, assume J ť c G. Since the case *f(j"f) = 1 is already clear, we shall proceed 
by induction. It is sufficient to consider only the form œ = a>j with a fixed j . Let 
Z є Jf. We may assume Z = Z b hence Z = d/dx1. (Use the approximation of section 
11 with coordinates ť = - x ' (i = 1, ..., n) and ť , + i = У (j = 0, 1, . . . ) , and realize 
that Z will be applied on a finite family of functions in the rest of the proof.) Then 
coj(Z) = 0 implies y{ = 0, i?zwJ* = Z П dcoy - %(dyi|dx1) dx'" є ß implies 
dyj|dx1 = 0, thus the form coJ is independent of the variable x1. We pass to the 
induction. The form œj restricted to x1 = const, can be expressed as œj = J^gk àhk 

where dhk lie in the restriction of Q on x1 = const. When gk, hk are regarded as 
functions on the whole space but independent of the coordinate x1, then the above 
expression of coj is still valid and, moreover, âhk є Q. (The last inclusion follows from 
Zthk = Zhk = 3ft*/&c1 = 0 and for i = 2, ..., n we have d(Z^)|dx1 = ZZthk = 
= ZřZ/i* + [Z, Z,] hk = 0 (since [Z, Z;] = [Z l 5 Z j - 0) and Zthk = 0 on x1 = 
— const. Hence Zihk •== 0.) œ 

Conversely, l e t / e # " , Z = Y;f>(d|dx1) + ^{д]д\ду])еЖ, w h e r e / , / 1 , . . . , / ' 1 are 
functions expressible by the variables x1, . . . ,x", y1, . . . , у м . According to the as
sumption ofthe theorem we suppose œ1, ..., wM є {dft1, ..., àhc} cz Q. Let us include 
the functions ft1, ..., hc into the family of coordinates instead of the appropriate 
original coordinates y3. We obtain, for instance, the new coordinates x1,...9x

n
9 

ft1, ..., ftc, yc + 1, yc + 2, ... . In terms of these new coordinates we have Z = 
OO 

= J^f'd|dx1 + ^gjdjdyj (the second sum with j = c + 1, c + 2, ...) and all 
functions Zkf = Ç£jld\dxl)kf are clearly expressible by the coordinates x1, ..., x", 
x\...9h

c. 

15. A note on generalization. Assume Q is flat and the dimension с(Ж) arbitrary. 
Let x1, x2, ..., j ; 1 , y2, ... є SF be functions such that their differentials dx1, dx2, . . . 
. . . , d j ; 1 , ây2, ... provide a basis of Ф and at the same time d x 1 , d x 2 , . . . provide 

(oo) (сю) 

a basis оїФ\и. Every Z e Фл can be represented as Z = £ / 'д /дх ' + ^gjdjdyJ = 
— X + У. Then the following generalization of Theorem 14 can be established: 
everyform co e O can be expressed as a linear combination of certain differentials 
from Q if and only if, for every Z є Ж, the inclusion X є G implies Z є G. Since 
this result looks rather ugly, we omit the proof (which does not bring much new 
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ideas). For the case £(Ж) < oo, the inclusion X є G is always valid and the assertion 
reduces to Theorem 14. 

16. The Monge systems of equations. Let us introduce the following property (x) 
of a vector field Z e ФА: for every Ç є Z1 , the family Sßk

z^ (k = 0, 1, ...) generates 
a finite-dimensional submodule of Ф (in reality a submodule of Z 1 since £ є Z 1 

always implies J£zč, = Z "1 d£ є Z1). One can easily see that (x) is equivalent to the 
inclusion Z є G (cf. Theorem 14 or, directly, look at the end of the proof in Section 
12). On the other hand, let F <=z ФА be the subset of all Z e ФА for which there exists 
a finite set of forms £*, ..., Çc e Z 1 such that the family of forms J£k

zÇ
J (k = 0, 1, ... ; 

j = 1, 2, ...) may be used for generators of the J^-module Z1 . (According to (c), 
F may be considered as an "opposite object" to G.) One can easily see t h a t / F c ^ 
for every nonvanishing/e # \ 

We pass to an interpretation of vector fields from F. Let Z є F and x є $F with 
Zx ф 0. Replacing Z by Z|Zfe F we may suppose Zx = 1. Let the forms Ç1, ..., £c 

from the above definition be all expressible by the variable x and appropriate 
functions y1, ..., ym. Denoting yJ

0 = У and taking recurrently yJ
k+i = Zy{, one can 

verify that œ{ = dy/ — ^ + 1 dx e Z 1 and J^zco^ = a>{+1. The forms ш/ generate the 
module Z1 . 

It may happen that these forms oo{ are linearly independent. Then they provide 
a basis of Z1 , the family of all differentials dx, ay{ may serve for a basis of Ф, and 
the functions x, y£ may be taken for coordinates. We enter the area of the jet theory 
of curves (all curves yJ = yj(x); j = J, ..., m; in the space ^ m + 1 ) : the coordinatesj^. 
stand for the derivatives àkyj\àxk, co[ are identical with the familiar contact forms 

00 

and, in terms of new coordinates, Z = d|dx + ^УІ+^І^УІ ^s t n e tota^ derivative 
in the direction of the curves. However, such an identification is possible only as 
a result of a very successful choice of the initial variables x, y1, ..., ym. It is a very 
nontrivial problem how to do it. 

In general, the forms dx, dy1, ..., dym may be assumed linearly independent, and 
then the family w1, ..., of1 is independent, too. But there may exist some relations 

(*i) У\ =д\(х,у\...,ут,уІ...,уѴ), l = ßi + l , . . . , m , 

between the variables x, y1, ..., ym, y{, ..., y™ and consequently, between the forms 
o>o, ..., o>o, oj{, ..., u>7- (We have 

<o[ = Bpg[|dyi)<ob + YtfeWi)aA •) 

Moreover, besides the derived relations col
2 = Zy[ = Zg[ (/ = nt + 1, ..., m), 

there may exist others, for instance 

(Д2) y2 = g2(x,y',*..,y'",yl..;yV,yl...>y*22), f = ^2 + i, . . . ,A*i, 

and so on. So we obtain the basis 
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dx, áyl ..., d j C dy[, ..., d^ 1 , . . . (yJ
0 = yJ, ^0 - m) 

of the module Ф, and the basis Шо,...,ш£°,со},...,аУ^,... of Z1 . Clearly Z = 
cx) 

= d/dx + Y;yl+id|dyl as before but the sum is taken only throughj = 1, ...,^ / c 

(and k = 0, 1, . . . ) . Since fi0 = m ^ j ^ i ^ jU2 ^ ... , necessarily fik = д is constant 
for all /<: large enough (so that no new relations Rk appear if k is big enough). In 
classical terms, where y{ are interpreted as derivatives, we have the (finite) Monge 
syste7nofordinarydifferentialequationsy£ = gl

k[k = 1, 2, ... ; / = jU/c + 1, ..., ^fc_i) 
or better, its infinite prolongation since all derived relations yl

k+j = Z ^ are also 
taken into account. It is to be pointed out that such an interpretation appears only 
after the choice of the initial variables so that the vector field Z є F represents the 
Monge system "abstractly" without the presence of any additional and accidental 
structure. 

17. A note on the oumber of generators. It may be proved that the above constant 
fi = /i(i2) depends only on the vector field Z under consideration, or better, on the 
module Z 1 = Q. On the contrary, the number c of the generating forms (1, . . . , £c 

is not of this kind. Nonetheless, we may introduce an intrinsical constant g = $(ß) 
as the minimum of all possible numbers c of generators. 

If we deal with all curves in the space Rm+i, that is, with the module Í2 of all 
contact forms a>{ (k = 0, 1, ... ; j = 1, ..., m), then clearly g(Q) = m and c = m 
(choose £J" = &>o>i = 1> •••> w > f ° r t n e generators). Since always g ^ до, we conclude 
Q = m = fj, for the module of contact forms. 

This example seems to be very suggestive and the conjecture may arise that the 
equality д(и) = fi(Q) is a typical property of the module of contact forms. However, 
this is not the case even if g(Q) = fi(Q) = 1. The point lies in the fact that the 
generating form may be rather complicated. (Example. Let the coordinates be denoted 
by x, u, v, w0, wl9 . . . and let the module Q be generated by the forms £ = du — / dx, 
n = ày - g dx, &i = dwř- - wi + 1 dx (і = 0, 1, . . . ) , where / = f(x, wx), g = 
= g(x, Wi) are given functions. Clearly Q = Z 1 where Z = d|dx + / d|du 4-

00 

+ g(d|dv) + Y.wk+l(dldwk)eF. If we take £ = я#0 + b£ + crj with coefficients 
satisfying 

a + bV- + e*L-a + bz(£) + c z № ) - 0 , 
dwx dwt \dwi/ \ ^ w i / 

then 
^ z £ = 2aSo + Zb^ + Za/ , J^z£ = Z2«#o + Z2b£ + 7?сц 

which permits to express the forms #0> {» *? in terms of £, Jšfz£, i^z£. Then, using the 
operator J2?z, all forms 9Л can be expressed in terms of £, i?z£, ... so that £\ = £ 
can be taken for the generating form and g(Q) = 1. On the other hand, it can be 
proved that the module Q is quite different from the module of all contact forms 
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(to the curves in ^ 2 ) provided the functions / , g are general enough. Indeed, if 

WM%i"Uo. 
yrg|dwi dg|dx dwiJ 

then Q is not explicitly solvable.) 

Í8. Diffietks. A flat submodule Q cz Ф is called a diffiety if there exist forms 
C\ ...,CC such that the family if^C7' ( Z e / ; fc - 0, 1, ...; j = 1, . . . ,c) generates 
the J^-module Q; here Jf = Q1 and we suppose / ( j f ) = n < oo. For the particular 
case £(Ж) = 1, we may use only the family of generators J£k

zÇ
j where Z є Ж is 

a fixed nonvanishing vector field and the above definition means exactly that Z є F. 
So, according to Section 16, a diffiety with 1{Ж) = 1 may be identified with the in
finite prolongation of a system of ordinary differential equations. Quite analogously, 
a general diffiety Q may be identified with the infinite prolongation of a system of 
partial differential equations with n — / ( j f ) independent variables. In general 
Ж ф F. Even the intersection Ж n G may be nonempty and then it determines the 
Cauchy characteristics. The true meaning of Ж n F is not yet known. 

19. Infinitesimal symmetries, A vector field БєФА is called a generalized (or: 
Lie-Bäcklund) infinitesimal symmetry of a diffiety Q if ££$ß c Q or, equivalently, 
[S, J^] cz Ж (The equivalence follows from the identity 0 = ^ 5 ( Z ~] co) = 
= [S, Z] П co + Z П J£?sœ with Z є Jť and co є ß.) If, moreover, Z є G, then the 
relevant one-parameter group Fk preserves Q and Ж in the obvious sense. In general, 
a symmetry S ф G cannot be related with any reasonable automorphism ofthe under
lying space. However, it can be identified with use a certain special kind of diffiety Q 
in an extended space (endowed by certain additional structures), the so called 
evolution diffiety (to Q). 

This is done as follows. Besides the original coordinates f1, r2, ... we introduce 
a new coordinate t0 to obtain the points t = (ř°, t1, ...) of the extended space U = 
= Й x U instead of the original points t = (t1, t2, . . . ) є U cz R™. Using the com
mon convention, we identify & — J^(r7) cz $F = tF(U) with the submodules, and 
analogously Ф cz Ф = Ф(и) and even ФА cz Фл (the horizontal and projectable 
vector fields). Then, if a diffiety Q and a vector field S є ФА are given, we introduce 
the J^-module Q cz Ф generated by all forms co — co(S) àt° (co e Q) so that Ж = 
= Q1 cz Ф1 is generated by the vector field 2 = d|dt0 + Se$A and all vector 
fields Z є Jť(cz0A cz ФА). One can then verify that such Q is flat (and hence a dif
fiety, see the next section) if and only if S is a generalized symmetry of Q. 

So the generalized symmetries may be identified with the evolutional diffieties 
A huge number of articles deal with generalized symmetries of evolutional diffieties 
(that is, with the simultaneous theory of two symmetries), especially if the original 
diffiety Q is the module of all contact forms to the curves in R2. But even in the 
simplest cases, the search for all such symmetries proves to be a toilsome task as yet 
resolved only case by case. 
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20. Continuation. Every field S є Ж is a generalized symmetry of £2 = Ж1. 
However, the existence of nontrivial symmetries S ф Ж proves to be a very restrictive 
requirement. For this reason the following weakened concept may be of certain 
interest: a flat submodule £2' cz Ф is called an overdiffiety of a diffiety £2 if £2' cz £2 
(that is, if Ж' = Q'1 zD Ж = £2X which means that "solutions of £2 lie in solutions 
of £2' ") . Note aside that the higher is c(Q|Q'), the easier is the calculation of over-
diffieties. The case c(Q|Q') = 1 is closely related to generalized symmetries. 

For brevity we shall deal only with the latter case. Then Ж' is generated by Ж 
and one additional vector field Уф Ж, hence £2' = Y1 n £2. The flatness of £2' may 
be expressed by [Y, Ж^ cz Ж' or, in dual terms, by 

&y(Y1 n £2) cz Y1 n £2 (Уф Ж). 

It is interesting to note that such a flat £2' is in reality a diffiety. (Proof. Let 
(1, ..., Cc є £2 be forms giving the generators of the #"-moduie £2 after the repeating 
application of the operators ifz (2еЖ). We may assume (*(Y) = 1? £2(^) = ••• 
... = CC(Y) = 0, hence С2,.--, Г є £2' and so 5£к

ж^ (j = 2, ..., c). As the form C1 

is concerned, we have 

Cj = ^ z / 1 - / / 1 є У1 n £2 = £2' (у) = Y И <Fzp = df(Y, Zj)) 

for every j = 1, ..., n, where Z1? . . . , Zn is a basis of Ж. It follows that even the 
repeating use of the operators S£z (Z є <?f) on the forms Ci> •.., Cn? £2, • • •> £c produces 
the family ofgenerators ofthe #'-module Q'.) Now the point ofthe construction lies 
in the obvious fact that for every nontrivial generalized symmetry S ф Ж of £2, 
the module Q' = S1 n Q is an overdiffiety of £2. 

In explicit terms, let Q' = Y1 n Q be an overdiffiety of Q. We ask whether there 
exists S e jf ' with Q' = S 1 n £2 and [S, J f ] c Jf. Since such a vector field S may 
be replaced by every S + Z (Z є Ж), we may find S in the form S = fY for an 
appropriate / є <F. The resulting equation [/Y, J f ] cz J ť can be made more trans
parent if we use a basis Z1? ..., Zn of J f and introduce hi, ..., frrt satisfying [У, Zj] = 
= hJ modulo Ж. Then we obtain the conditions [fY, Z j = (/й; - Z ř / ) Ує Ж, 
that is 

Z ř / = A (i = l , . . . , n ) . 

The same conditions in dual terms (advantageous for calculations) can be expressed 
as follows. If some forms {1, ..., £w provide a basis of <P|Q then, for a fixed co e £2, 
со ф Q' we have do> = Yfi& л ш modulo Q л £2 and £2'. We search for nonvanishing 
/ e # ' which satisfy d(co|f) = 0 modulo £2 л £2 and £2'. Assuming df= Y,fj^ 
modulo £2, we obtain the conditions 

fi-fki = 0 (f = l , . . . , n ) 

equivalent to the above (and in reality identical ifthe bases are chosen dual, C%Zj) = 
s ôp since then fi = ZJ and kt === fr.). 
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21. Simple examples, (i) We begin with the module of и-dimensional contact 
forms. To this aim, let the coordinates in R°° be denoted (a little artifically) by 

x\y{ (7 = 1, . . . , л ; j = 1, . . . ,m; / = ix . . . ik 

with fc = 0, 1, . . . and i b j 2 , . . . = 1, ..., и) 

where the order of the entries iu ..., /fc of the multiindex / is inessential (so that 1 
can be arranged in the non-decreasing order ix ^ ... ^ ifc if uniqueness of the 
record is needed). Then the module Q = i2(n, m) of contact forms is generated by 
all a>{ = ay{ — Yjyii &xl and Ж — Í21 by the familiar total derivatives dt = d|dx1 + 

00 

+ Y,yiid|dyi- The formulae dcoj = £ dx* л co{^ Уд.со\ = co}t. easily imply that 0 
is a diffiety. The generalized symmetries 5 є Фл of £2 can be easily calculated if we 
use the basis of Ф consisting of all forms dx1, co} and the dual weak basis of ФА 

consisting of all vector fields dh d|doo{. Assuming S = £ s f д( + J^sj d|dco'j, we can 
make the conditions &SQ cz Q more explicit by writing them in the form 

(*) gsœ[ = (dSn + S П d) co{ = àsj + £> ; ш я - £ s / . dxř є Q 

so that the functions sh sJ є J^ (I = 0 is empty here) may be chosen quite arbitrarily 
and the remaining coefficients sJj (J = 0) are recurrently determined by the rule 
sj

Ti = ôfs
7, that is sj = djSj. 

(ii) Continuing (i), let us assume m = 1. If S is a generalized symmetry, then(*) 

reduces to 

(**) &sco\ = Yflir^i' + J > ^ ( a j r ss dsj/dyj, = dd^jdy)) . 

In particular, J^co1 = £ dsl\dy\, . coj, + ^ f ^ / i - ^ some contact form coj>, (I" = 
= i'[, ..., i£) with |/"| = k > 1 effectively appears on the right hand side of the latter 
formula, then one can easily observe that the right hand side of (**) contains a non-
trivial summand with a>],,, | i" | = k + \l\ and hence S ф G (cf. point (iv) of Section 10). 
So the inclusion S є G implies J£sœ

l = hœ1 (with an appropriate h є ŠF) or, in 
classical terms, S is an infinitesimal contact transformation. Since the converse 
implication is well-known, we have obtained a result which is an invariant reformula
tion ofthe Bäcklund theorem concerning the non-existence of "higher order contact 
symmetries". (Note aside that the original definition of these symmetries consisting 
in the property that they preserve the submodule generated by contact forms w[ 
with |/ | fg some constant makes little sense from our point of view.) 

(iii) Continuing (ii), let us consider the overdiffieties Q' of Q with c(Q|Q') = 1. 
Clearly со1 ф Q' (in the other case all J ^ w 1 <= &', hence Q c Q') so that Q' is 
generated by certain forms a>j — gjco1 (/ Ф 0, gl є $F). Since 

<&oi(<t>) - 9^) = oy)i - digl. œ1 - 0jttJ e Q' 

implies oj\i — (d^j + #/#i) ^ 1 e 0 ' we obtain the recurrence gn = dtgt + g^i for 
the unknown coefficients g}. One can verify that this recurrence ensures the flatness 
of Q', too, hence Q' is indeed an overdiffiety of Q. According to Section 20 (with 
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Ç = dx\ Zi = dh hi = gt), the overdiffiety Q' arises from a generalized symmetry 
S = / 7 o f Q if and only ifthe system dJ = / ^ has a solut ion/є #". For an arbitrary 
choice of gu . . . ,#„, this is clearly contradictory. However, one may choose g{ ~ 

00 

= d^|s1 and then S = ^s)d/dcoj appears just the same as in (i). It follows that 
other solutions do not exist. 

(iv) Continuing (i) with n = m = 1, we shall abbreviate xL = x and y\ = yk, 
co] = a>k, s] = sk whenever \l\ — |l . . . l | = к (/c terms). So the coordinates are 
x> Уо> Уъ • • •> the module £2 = 0(1, 1) is generated by the contact forms cok = àyk — 
— yk+i dx and Ж = ß 1 consists of all multiples of the vector field д = дх = 

oo oo 

= d|dx + ^Ук + і^І^Ук- For a generalized symmetry S == sd + ^sfc3/öa>fc (where 
Sjt = d/cs0), the corresponding evolution diffiety Q is generated by the forms 

Щ = w/c — 5fc dř = dj;/c — yk+ x dx — sk dt (k = 0, 1, ...) , 

where ř = ř° is the additional variable. The module Ж = Ö1 is generated by two 
commuting vector fields д (considered in the extended space) and d' = (d|dt) + 

00 CO 

+ Y;Skdldyk. A vector field S = s'd' + sd + p / t ^ w f c is a generalized symmetry 
of Q if ^fsi2 cz Ö which yields the requirements 

šk+1 = 5šfc , ö's, EE Y,dSi|dy,, šk (к, 1 = 0, 1, . . . ) . 

The first group is a simple recurrence and it may be shown that already the initial 
equation (/ = 0) of the second group expressed in terms of š0 (i.e., d'š0 = 
= X(^o/^fc) ^5o) is sufficient. (In fact, the recurrence ensures the commutation 
[d, S] = (ds|dx) д and owing to it, the initial equation / = 0 (which is equivalent 
to J£gčo0 cz Q) implies 

^>
sœ1 = £Є3£Єд<о0 = ^s^s^o - ^id,Bi^o c ß 

and analogously &$aîk cz Q (k = 2, 3, . . . ) , that is J£SQ cz Q.) Let us mention the 

overdiffieties Q' of Q with c(Q|Q') = 1. They are generated by certain forms 

cok — gkčo0 (/c = 1, 2, ...) and one can obtain the requirements 

9k+i = d9k + 9k9i > Jj9kdst|dyk = 9і^9іС~$о\дук + d'gt 

(fc,Z = 1 ,2 , . . . ) . 

In reality, only the initial equation / — 1 ofthe second group is important. 
(v) We pass to a generalization of the Bäcklund theorem. We shall deal with 

a system of m ordinary differential equations involving m + 1 unknown functions. 
In term of diffieties, we deal with a diffiety Q satisfying і\Ж) — fi(Q) = 1. After 
some rearrangements, the diffiety is generated by the forms 

Щ = аУк - Ук+г d* (fe - 0, U •••) > 

S' =dzi~fi(x,z\...,zm,y0,y1)dx (/ = l , . . . , m ) , 
where x, z1, ..., zm, y0, yl9 ... are coordinates in the underlying space a n d / 1 , . . . , / ' " є 
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є J* are given functions. (The diffiety corresponds to the Monge system dz*|dt ~ 
= /*(x,z1 , ...,z"*,y,dy|dx).) One can see that Ж = Q1 consists of all multiples 

00 

of the vector field г^д\дх+^1д\д^ + ^ук+1д\дук. If the basis of Ф 
consisting of all forms dx, Sl, cok and the relevant weak dual basis of Фл are used, 
the conditions for the coefficients of a generalized symmetry S = sZ + JVd/d#' + 

00 

+ Yskdjda)k are as follows: 

sk+l = Zsk (fc = 0 , l , . . . ) , Zr> = ^ s 0 + ^ s l + Z ^ - > J 

dy0 ay1 ozJ 

(/ = 1, ..., m) . 

The first group of conditions is a simple recurrence, the second group consists of m 
equations for m + 1 unknown functions r1, ..., rm, s0 (with st = Zs0) and may be 
investigated quite separately. Alas, this is a difficult problem and we restrict ourselves 
to the following result: every generalized symmetry S є G is an infinitesimal 
contact transformation modulo #1, . . . ,# m , that is ^soj0 = hco0 + ^hßl. (Proof. 
Assume the formula <S?sœ0 = (...) + AcoM with A ф 0, M > Î holds, where (...) 
denotes some summands involving S1, ..., #m and the lower order cok (with k < M). 
Owing to Se^ = (...) + 5ftt>!, if zco/c = ojk+i and [S, Z] є Ж, we conclude 

^S<H*+l = &S&Z<Ok = ^ Z ^ S ^ I c + ^[S,Z]<^/c = (. . .) + 4 + fc+l 

(fc-o,i , . . . ) 
by induction. Let analogously J ^ # ' = (...) + C;C%7. Then jSf*S' = (...) + 
+ C;A*a>^i)+fc^ so that S £ G according to (iv), Section 10.) 

(vi) In terms of the coordinates x, y0, z0, yu zl9 ..., let Q = i2(l, 2) be the diffiety 
generated by all forms cok = dyk - yk+1 dx, 9k = dz/c - zfc+l dx (fc = 0, 1,...). 
Then S = ^Zc+bd|dcOb is a generalized symmetry and S£soyk = #c+£, ^s$fc = 0 
so that S є G. Here c = 0, 1, ... is a fixed constant. The corresponding group Fx 

which preserves Q is given by F*yk = y/c + rjzc+k9 F*zk = zk9 F*x == x. The example 
can be easily generalized and it follows that the modules Q(n, m) of contact forms 
admit huge families of automorphisms not preserving the submodules generated 
by the forms to} with |/| ^ constant. It follows that the common theory of partial 
differential equations based on the fixed hierarchy of dependent and independent 
variables is (a little) misleading. 

22. Concluding remarks. Infinitesimal transformations (vector fields) lying in G 
should undertake the role of the ambigous "classical infinitesimal transformations" 
which are defined from case to case by the property of preserving a certain fixed 
space ofvariables. It is to be noted that all infinitesimal transformations Z ofa Lie-
Cartan pseudogroup (defined by the property *£гЖ = 5£ЪЕ = 0 where Ж9 E are 
the invariants and Maurer-Cartan forms, respectively) are lying in G as follows 
from (v) Section 10. On the contrary, infinitesimal automorphisms S of such 
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a pseudogroup (defined by 5£$Ж c jT, Š£SE c S) need not apriori belong to G 
except, e.g., the special case when the Maurer-Cartan forms admit a canonical 
filtration (preserved by all automorphisms) by finitely generated submodules. (All 
simple transitive pseudogroups are of this kind.) We do not know whether all 
infinitesimal automorphisms lying in G of a geometrical object constitute an in
finitesimal pseudogroup. 

The problem of determination of all generalized symmetries of a diffiety may be 
reduced to a finite number of recurrences and a separate (linear in derivatives) 
system of equations involving more unknown functions than equations (cf. the 
particular examples in Section 21); in general the proof is based on the concept 
of involutiveness. In certain favourable cases, it may be reduced to the classical 
problem of equivalence. (The point (v) of Section 21 seems to be instructive. One 
can observe that every submodule generated by the forms #1, ..., #w, оэ0, ,.., coN 

where N ^ N(i), i — 1, ..., m, is preserved by j£?s. Then the constant N can be uni
formly reduced to N = 1 by using the derived submodules which are preserved, 
too.) Quite analogous remarks can be repeated for overdiffieties. 

Note aside that the evolution equations admitting an infinite number of generalized 
symmetries (the integrable equations) belong to the most interesting topics oftoday's 
mathematics. 

As we have seen in Section 12, nonvanishing vector fields from G are essentially 
the same as the vector field d|dt1. On the contrary, the family F includes quite 
different objects (cf., e.g., the invariant jtx(i2)) and the problem of classification 
proves to be extremely difficult (but highly important for the theory of the Monge 
systems). Also the weaker (and rather natural) concept of projectable vector fields 
from F is very interesting in connection with certain classical problems, and far 
from being trivial. 

In more detail, let Z є F с Фл(и), Z e F = F(Ü) c <PA(U) be given vector fields. 
If F: U ~> U is a surjection and ZF*f = Zf for every fe #"(r/), Z and Z are said 
to be F-related (and Z is projectable into Z). In terms ofdifferential forms, Q = Z 1 

is called a factordiffiety of Q = Z 1 (and Q is a covering of Q); we suppose Z Ф 0, 
Z Ф 0 here. IfDis another factordiffiety of Í2, then Q and Q are said to be in Bäcklund 
correspondence. Several authors propose to use this term only when the fibers of the 
relevant surjections are of finite dimensions. Then many properties of Í2, Q are 
the same (e.g. ji{Q) = ^(D)). The definitions can be carried over to general diffieties 
і{Ж) > 1 without much effort. 

23. Added in proof. If Fx is a group (cf. section 5) then all pull-backs F*ť (i is 
fixed but X ranges in M) can be expressed by a finite number of coordinates (namely 
by i1, ..., řm(0) so that there exists a finite family hl = t\ h2, ..., hnU) e <<F such that 
F*hj = HJ(lil, ..., hn(j)) is a composed function (use the group property). It follows 
that (under certain regularity assumptions) the coordinates t\ t2, . . . can be changed 
in such a manner that F* preserves every space of variables tl, ..., f{l) (/ = 1, 2, ...) 
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where n(ť) ^ 00 as i ~+ oo. In brief terms, F* preserves an appropriate finite-
dimensional filtration of the variables. Such a filtration need not exist for a general 
automorphism F ofthe space Rœ in the sense of section 4, ofcourse. But at the same 
time, this F may preserve a quite nice geometrical object (cf. the example below). 
It follows that automorphisms of a geometrical object need not constitute the Lie-
Cartan pseudogroup (cf section 22) so that they cannot be universally calculated 
by the Cartan's moving frames! (Example. Consider the object £2(1, 2) of (1) section 
21. Using a simplified notation, this is the module generated by the contact forms 
$i = &Уі ~~ Уі+i dx, a>i = dz,- — z í + 1 dx (î = 0, 1, ...) in the space ofthe variables 
x, y0, z0, j l 5 z1? ... . Then the groups FA, GA defined by F*kx = G^x = x, F*yf = j ť 

^*^i = zt + A^ i+1, G*j^ = yi + Àzi+U G%Zi = z, preserve 0 ( l , 2) so that Я я = 
= Fx o Gx is an automorphism, too. But Hfyt = yt + Xzi+1 + A2(z/ + 1 + y ž + 2 + 
+ zž+3) thus Я* does not preserve any filtration ofthe above kind.) 
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