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ON THE EQUIVALENCE OF VARIATIONAL PROBLEMS II

Jan Chrastina

Abstract� Elements of general theory of in�nitely prolongedunderdetermined sys
tems of ordinary di�erential equations are outlined and applied to the equivalence of
onedimensional constrained variational integrals� The relevant in�nitedimensional
variantof Cartan�smoving framemethod expressed in quite elementary terms proves
to be surprisingly e�cient in solution of particular equivalence problems� however�
most of the principal questions of the general theory remains unanswered� New
concepts of Poincar�eCartan form and EulerLagrange system without Lagrange
multiplies appearing as a mere byproduct seem to be of independent interest in
connection with the ��rd Hilbert problem�

After the previous part ��� exhibiting some advantages of a certain unorthodox
approach to the equivalence of variational problems on examples� we pluck up
the currage to outline our task in full generality� In the space of variables x� yis
�i � 	� � � � �m
 s � �� 	� � � ��� we have a variational integral
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considered on admissible curves yis � yis�x� � dsyi�x��dxs which satisfy an under
determined system of di�erential equations �the constraints�
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On the other hand� we have analogous objects
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in the copyspace of capital variables X�Y i
s �i � 	� � � � �m
 s � �� 	 � � ��� Then the

question can be raised whether an invertible transformation exists that changes
the original data �	�� ��� into the capital ones ���� However� this is not the true
setting for two reasons� First� only the subspace of admissible points satisfying ���
and the capital counterpart are in reality important �and not their behaviour in the
ambient space of all variables�� Second� even on this subspace� a mere �conditional
equivalence� of variational integrals is interesting since the arguments in f� F are
of a special kind �see below��

In order to delete the �rst trouble� only the points satisfying ��� should be
taken to constitute the correct underlying space� It is to be noted that the latter
�in�nitedimensional� space endoved with the restrictions of the contact forms
�is � dyis � yis��dx �the system �is � � serves for a coordinatefree transcription
of the relations yis � dsyi�dxs� can be characterized in abstract terms and we
shall speak of a di�ety � In the correct setting of the problem� this di�ety is to
be identi�ed with the relevant �capital di�ety� by an invertible mapping between
the new underlying spaces� In more detail� every �restriction of the� form �is is
to be changed into �the restriction of� a linear combination of the capital contact

forms �j
s � dY j

s � Y j
s��dX�

As the second trouble is concerned� one can observe that if � is such a 	form
that the value of the integral

R
� is equal to

R
f dx for all admissible curves then

� � f dx� �ais�
i
s ��nite sum� for appropriate functions ais� It follows that in the

correct setting of equivalence problems� every such � is to be transformed into a
certain capital counterpart � � F dX � �Ai

s�
i
s�

Continuing ���� our approach is rather elementary and avoids the common ma
chinery of Gstructures ������ We try to �nd certain quite de�nite forms �� �
f dx � ��ais�

i
s� �	is � ��aijsr�

j
r �so called speci�cations� that constitute a coframe

�the Frenet coframe� and can be intrinsically related to the given data� If is quite
clear that they are changed into the relevant capital counterparts ��� ��i

s by the
equivalence transformations �if the latter exist�� In this sense� the equivalence
problem in �in principle� resolved if the Frenet coframe is known� �In particular�
a lot of other functions and di�erential forms which are corresponding to the rel
evant capital counterparts can be derived by the wellknown methods� �rst of all
from the developments of d��� d�	is in terms of the Frenet coframe� We omit these
investigations since they are of a purely technical nature��

We shall also mention the divergence equivalence problem by assuming that a
mere di�erential d� is changed into d�� that is� the above form � is transformed
into � � dH �H is unknown in advance�� On the contrary� there are subordinated
equivalences if certain additional objects are selected for invariants in advance�
From our point of view� the classical setting of equivalence is of the latter kind
since it is developed in an apriori prescribed ��nitedimensional� space of variables�

Our reasonings will be carried out in real C�smooth category near generic
points where ranks of certain matrices are locally constant� submanifolds are em
bedded� certain functions do not change sign� various modules over the ring F of
all C�smooth functions have free bases which turn into bases of Rlinear spaces
after taking the values at a point �the generalized regularity concept� cf� Section
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	�� etc� We shall not specify the de�nition domains� The common tools of classical
analysis will be used in a somewhat unusual in�nitedimensional case but it does
not cause any di�culties here �cf� however ����� But the terminology and notation
di�er from the common usage and for this reason� the introductory part �Sections
	�� should be followed with a certain care� The body of the paper is devoted to
particular and selfcontained examples of the equivalence problems� the concluding
Sections brie�y mention ��rd Hilbert problem and some related topics�

Ordinary differential equations

�� Some fundamental concepts� ���� We shall deal with the space R� of all
in�nite sequences t� � �t�� t�� � � �� of real numbers equipped with the ring F of
all �realvalued and C�smooth� functions f � f�t�� � � � � tm�� m � m�f�� Another
coordinates �t� � ��t�� �t�� � � � � can be introduced by invertible formulae

��� �ti � f i�t�� � � � � tp�i��� ti � gi��t�� � � � � �tq�i�� �f i� gi � F�

which may be also regarded as an invertible transformation �often denoted by
ti � �ti � f i�� Let � be the Fmodule of all di�erential forms 
 � �f idgi �f i� gi �
F 
 �nite sum�� We shall deal with various submodules � � �� Then a ��nite or
in�nite� family��� ��� � � � � � is called a basis of � if every � � � admits a unique
representation � � �gi�i �gi � F � �nite sum� and � is a regular module if values
of ��� ��� � � � at a �xed point are linearly independent �over R�� The existence of
a basis and the regularity will be tacitly supposed for all � under consideration�
By ������ we denote the dimension of �� i�e�� the number of elements of a basis of
�� The notation � � f
�� 
�� � � �g signi�es the generators of �� i�e�� � consists of
all forms 
 � �f i
i �f i � F � �nite sum�� Vector �elds are expressed by in�nite
series Z � �zi���ti and Zf � �zi�f��ti makes a good sense for every f � F �
Here zi � Zti � F can be �in principle� arbitrarily chosen� The common rules for
Lie brackets and Lie derivatives LZ � Zcd � dZc are accepted� Denoting by ��

the module of all vector �elds satisfying ��Z� � ��� � ��� clearly ��� � � in
the obvious sense�

�� Di�eties� ���� Let � � � be a submodule of codimension one� i�e�� �� is
consisting of multiplies of a nonvanishing vector �eld �� Then L�� � �cd��
hence �cL�� � �� L�� � �� Assume that there is a �ltration

��  � � ��� � ���� � � � � � � � ��� ���� � ��

by submodules satisfying ������� �	�

�!� L��� � ���� �all ��� �� � L��� � ���� �� large enough� �

Then � is called a di�ety � In practice� it is su�cient to determine appropriate
forms 	�� � � � � 	c � � such that the family of all forms of the kind Lk�	

j �j �
	� � � � � c
 k � �� 	� � � �� generates � and put �� � � �� � ��� �� � the module
generated by all Lk�	

j where k 
 ��
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�� Normal �ltrations� On the graded module Grad �� � ��������� the oper
ator L� induces a homomorphism � de�ned by

��	� � �L�	� � ������� �	 � ��� �	� � ��������


the square brackets denote the classes� We speak of a normal �ltration �� if �be
sides �!�� also �� � � �� � �	� and

��� L���� � ���� �  ������� � ������� is injective if � � �

Such a �ltration can be obtained after an appropriate change of lower order terms
of any �ltration ��� In fact� clearly �  ������� � ������� is bijective for all �
large enough� say� for � � L� One may then denote ��� � �� �� � L� and inductively
put

�"� ��k�� � kernel of the composition ��k � ��k�� � ��k�����k�

where L� is composed with factorization� Clearly ��L  ��L��  � � � hence ��K �
��K�� � � � � for a certain K 
 L� It follows L� ��K � ��K and �  ��������� �
��������� is injective if �  K� Thus a mere shift of indices for the dashed �ltration
yields the desired result�

Let �� be a normal �ltration� Let 	j�r� �j � 	� � � � � jr
 we admit jr � �� be such

forms that their classes provide a basis of �r���r�� � L��r���� Then� for every

s � �� the classes of forms Lk�	
j
�r� with k � r � s� j � 	� � � � � jr provide a basis of

�s��s��� So� denoting

	ik�r � Lk�	
j
�r� � �k�r �i � j� � � � �� jr � j
 j � 	� � � � � jr��

we have L�	is � 	is�� and the classes of forms 	js with a �xed s provide a basis of
�s��s��� All 	js provide a basis of ������

As the term ��� of a normal �ltration is concerned� it is plain that it consists
of all forms 	 � � such that the family Lk�	 �k � �� 	� � � �� is contained in a
�nitedimensional submodule of � �e�g�� in ����� It follows that ��� � R��� is
independent of the choice of the �ltration� It may be proved that ��� is com�
pletely integrable� i�e�� it has a basis consisting of total di�erentials� �See �!� for a
conceptual proof but the direct approach using the above basis 	is is quite easy and
therefore omitted here� It is to be noted that R��� can be related to the concept
of �accessible points� of the optimal regulation theory��

The above forms 	j�r� will be called the initial ones� Their total number ���� �

�jr �a �nite sum� cf� �!�� is independent of the choice of the �ltration� In fact� if
��� ��� are two �ltrations of � satisfying �!�� then �� � ��K � �L for appropriate
K � K���� L � L���� For � large enough� we obtain ���k � ��K�k � �L�k by
applyingLk� � If we deal with normal �ltrations� then ������� � ���m� �������� � ���� �m
where � ���� is the number of initial forms for the �ltration ������� and m� �m are
constants� It follows

��� � k� � m 
 ���K � k� � �m 
 ��L � k� �m �k � �� 	� � � ��

which implies � � ��� �Since every �ltration �� satisfying �!� is identical with a
normal one for all higher order terms� clearly ������� � ������ const� is valid� too��
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	� A particular case� If ���� � 	� we have only one initial form 	���� uniquely

determined up to a nonvanishing factor from F and a summand from R���� This
form has a typical property �in the family of all forms of �� namely that the
forms 	�k � Lk�	

�
��� �k � �� 	� � � �� provide a basis of ��R���� It follows that 	����

does not depend on the choice of the normal �ltration or� in equivalent terms� the
normal �ltration �� of � is unique� �Consequently� for the case � � 	� the normal
�ltrations of various di�eties are changed one into the other by the equivalence
transformations� The fact was stated in ��� without proof and expressed by the
phrase �the order of derivatives is preserved���


� Example� The di�eties may be regarded as abstract substitutes for the in�n
itely prolonged underdetermined systems of ordinary di�erential equations when
a de�nite choice of dependent and independent variables is not appointed� Instead
of �a simple but lengthy� discussion of this principle �which can be carried over
to partial di�erential equations� cf� ���	�� and the next Part III�� we shall present
some illustrative examples�

Denoting rather by x� z� y�� y�� � � � the coordinates in R�� we introduce the
submodule � � � generated by the forms � � dz�g dx �g � g�x� z� y�� � � � � yk� � F
is given�� �s � dys� ys��dx �s � �� 	� � � ��� Clearly �� consists of all multiplies of
� � ���x� g���z � �ys�����ys� Since

�#� L�� � dg � �g dx � gz� � �gs�s� L��s � �s��

�gs � �g��ys�� we have a di�ety with the �ltration consisting of the terms

�� � f��� � � � � ����g �� 
 k�� �� � f�� ��� � � � � ����g ��  k��

The di�ety � �or better� the Pfa�$s system 	 � � �	 � ��� represents the in�nite
prolongation of the equation dz�dx � g�x� z� y� � � � � dky�dxk� in the obvious sense 
the variables ys stand for the derivatives dsy�dxs and the derivatives dsz�dxs �
�s��g �s � 	� need not be adjoint to the coordinates since they are expressed by
other variables�

Assume k � 	 and gk �� �� Then the classes ���� ��k��� � �k��k�� satisfy
���� � gk � ��k�� ���k��� � ��k� �cf� �#��� hence ��� � gk�k��� � � � �k����k and
�� is not a normal �ltration� But one may put ��� � �� ��  k� and apply �"� to
obtain the desired terms ��k� ��k��� � � � of the normal improvement ���� After some
calculations �cf� ��� Section "��� the �nal result is as follows� If we denote

bi � gi�� � �gz � ��gi�� � � � �� �gz � ��k�i��gk �i � k � 	� � � � ��	��

�� � � � bk���k�� � � � � � b����

then L��� � gz�� � b���� and two subcases are to be distinguished� If b�� �� ��
then we may put

��� ��� � � �� � ��� ��� � f��g� ��� � f��� ��� � � � � ����g �� � 	�
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with the initial form 	���� � ��� If b�� � �� we may put

�	�� ��� � ��� � �	�� ���� � f��g� ��� � f��� ��� � � � � ��g�� � ��

with the initial form 	���� � ��� �In the latter case clearly �cd�� � L��� � gz��

implies d�� �� gzdx � �� �modulo all �s� and analysing the identity d��� � �� one
can even obtain d�� �� � �modulo ���� It follows by Frobenius theorem that �� is
a multiple of total di�erential�� Since ���� � 	� other normal �ltrations do not
exist�

�� Example� Denoting by x� yis �i � 	� � � � �m
 s � �� 	� � � �� the coordinates in
R�� we introduce the submodule � � � generated by all contact forms �is �
dyis � yis��dx� Clearly �� consists of all multiples of the vector �eld � � ���x �

�yis�����y
i
s� The submodules �� � � �� � ��� �� �� � �� generated by all forms

Lk��
i � �ik �k 
 �� provide a normal �ltration of �� This di�ety � represents

the empty system of di�erential equations for the functions y��x�� � � � � ym�x�� It
is wellknown as the one dimensional �in�nite order jet space�� cf� �	��� However�
an important remark is to be pointed out� neither the choice of coordinates x� yis�
nor the choice of the basis �js� nor the above mentioned normal �ltration �� are
of intrinsical sense from our point of view� Only the submodule � � � is the true
given object�

�� Variational problems� Returning to general theory and the notation of Sec
tions 	�� let � � � be a given form �the Lagrange density�� We introduce the
�constrained� variational integral

�		�

Z
p��� extremum � p�	 � � �	 � ���

where p  ti � ti�� �� a 
 � 
 b� is ranging over the family of curves in the underly
ing space �and the di�ety � realizes the constraints�� Following some reasonable
arguments �!�"�� such a curve p is called an extremal if p�	 � � �	 � �� and
moreover

�	�� p�Zcd�� � �	� � �

for an appropriate form �	 � � and all vector �elds Z� In principle� this form �	
may depend on the choice of p� In practice� it can be selected from a certain �nite
dimensional submodule of �� that is� it depends on some auxiliary variables �the
phase variables in the terminology of �"��� In this approach� �	�� is equivalent to the
common EulerLagrange system with Lagrange multiplies� Beyond all expectation�
the auxility variables can be completely eliminated�

� Theorem� To a given � � �� there is a universal form �	 � � such that ��	

is valid for all extremals p� �Then �� �	 may be called the Poincar�e�Cartan form

and ej�r� appearing in �	�� may be regarded as Euler�Lagrange operators� cf� �!���
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Proof� Let �� be a �xed normal �ltration of �� Recall the relevant initial forms
	j�r�� the special basis 	is satisfying L�	is � 	is�� of ��R���� and choose a basis

dh�� � � � � dhc of R���� Let x � F satis�es dx �� �� We may normalize the vector
� � �� by �x � 	 and then df �� �f dx �modulo �� for every f � ��

Assume that a curve p is nearly an extremal in the sense that �	�� is satis�ed
in the following weakened sense p�	 � �	 � �� and there is a form �	 � � such
that

�	�� d��� �	� �� �ais	
i
s � dx �modulo R��� and � � ��

with p�ais � �� �Roughly saying� �	�� is satis�ed moduloR����� Assuming p�dx ��
� �the other case is trivial�� clearly � � p�dais � p��ais � p

�dx� p��ais � � and thus
p��kais � � for all k� Consequently� if ajr	

j
r is a particular summand in �	�� with

the form 	jr � L�	
j
r�� not an initial one� then d	jr��

�� dx � 	jr �modulo � ���
and thus

p�Zcd�ajr	
j
r��� � p�Zc��ajr � dx � 	

j
r�� � ajrdx� 	

j
r� � � �

It follows that the original form �	 in �	�� can be replaced by �	 � ajr	
j
r��� Then

�	�� remains true but the summand ajr	
j
r in �	�� turns into a lower order term

�ajr	
j
r��� Repeatedly applying this reduction� such modi�ed form �	 appears that

only the initial form survive in the resulting relation �	�� 

�	�� d��� �	� �� �ej�r�	
j
�r� � dx �modulo R��� and � ����

Recall that p�ej�r� � � for our extremal p �since we have made a mere change of

notation ej�r� stand for the previous ajr�� But the point lies in the �easily veri�able�

fact that the form �	 satisfying the congruence �	�� is unique modulo R���� So it
follows that p�ejr � � for all curves which are nearly extremals�

At last� we shall prove that a nearly extremal p is in reality the true extremal�
For this aim� let �	 � �bis	

i
s � �bjdhj satis�es �	��� where bis � F are uniquely

determined but bj � F may be �as yet� arbitrary� Let d� �� �cjdhj � dx �modulo

all 	is�� Since �	�� with p�ej�r� � � and p�	 � � �	 � �� especially p�dhj � �� are

valid� the original requirement �	�� simpli�es into

p�Zcd�� � �	� � p���cj � �bj�Zhj � p�dx � ��

But p��cj��bj� � � can be always satis�ed by a choice proper of bj � This concludes
the proof� �

�� Example� Returning to Section !� let � � f dx �f � f�x� z� y�� � � � � ym�dx�
and assume �	 � c�� � c��� � � � �� cn�n� Then

d��� �	� � �df � c�gz�� � b������ �ci�i��� � dx�

� dc � �� � dci � �i �
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where df� dc� dci may be developed by using the general formula

dh � �h dx� hx�� � �h� � b���� � � � �� �hk�� � bk����k�� � hk�k � � � �

�here hs � �h��ys�� Assuming b�� �� �� the Poincar%eCartan form is determined
by the recurrent formula

ci � � �i � n � max�m� k��� cn�� � fn�� � bn���

ci � fi�� � bi�� � �ci�� �i � n� �� � � � � ��� c � �f� � b� � �c���b��

and the EulerLagrange operator is e � fz � cgz � �c �cf� ��� Section "��� On the
contrary� assuming b�� � �� the Poincar%eCartan form is determined by the same
recurrences but without the last formula for c �which remains quite arbitrary��
The EulerLagrange operator is e � f� � b� � �c��

A test example for equivalence

��� A particular problem� Before passing to more di�cult problems� we should
like to demonstrate various aspects of equivalence on a relatively simple example�
So we shall discuss the constrained variational integral

�	!�

Z
f dx� g dy � extremum � dz � p dx� q dy�

where f� g� p� q are functions of x� y� z� Choosing x for independent variable� the
symmetry is lost and the integral can be equivalently expressed by

Z
�f � g dy�dx�dx� extremum � dz�dx� p� q dy�dx�

Turning to di�eties� we introduce the variables x� z� y � y�� y�� y�� � � � � and the
module � generated by the forms � � dz � p dx� q dy� �s � dys � ys��dx �s �
�� 	� � � ��� Moreover we have � � f dx� g dy� Clearly � � ���x� �p� qy�����z �
�ys�����ys � ��� The formula

�	�� dh � �h dx� hz�� � q��� � �hs�s

easily yields

�	"� d� � dx� ��pz � qzy��� � a��� � qz�� � �

where a � pzq � qzp � p� � qz� Two cases are to be distinguished� If a �� � then
the normal �ltration is

�� � � �� � ��� �� � f�� �o� � � � � ����g �� � ��
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with 	���� � � the initial form� If a � �� then we put

�� � ��� � �	����� � f�g��� � f�� ��� � � � � ��g�� � ��

with the initial form 	���� � ��� In the latter case� clearly d� �� � �modulo �� hence

� is a multiple of a total di�erential dh �h � h�x� y� z�� and can be even replaced
by dh in the latter �ltration�

Since ���� � 	� the normal �ltrations are unique and we have the intrinsical
families of forms

�	#� 	s � a�s� � a�s�� � � � �� ass�s�� �ass �� ��

with varying coe�cients ais � F � for every s � �� 	� � � � � We have moreover the
intrisical family of forms

�	�� � � f dz � g dy � c�� � c��� � � � �� cn�n��

with varying ci � F of undetermined length n� Assuming either f �� � or g �� ��
the vector �eld D � ���f � gy�� de�ned by the properties D � ��� ��D� � 	 is
intrinsical� too�

Turn to the speci�cations� If n � 	� then the obvious congruence d� �� cndx��n
�modulo 	�� � � � � 	n�� and ���� clearly permits to assume �cn � �� Continuing in
this way� we obtain the intrinsical speci�cations �c� � �c� � � � � � �� Then the use
of �	��� �	"� yields

���� d� � �e� � e���� � dx� b�� � � �b � qz � gz � �q
�

�z
�

�

�y�
�c���

where

e � fz � gzy� � c��pz � qzy��� �c�� e� � fzq � f� � gzp� gx � c�a�

At this place� two cases are to be distinguished�

��� Continuation� if a �� �� One can then introduce the intrinsical requirement
d� �� � �modulo 	��� � ��� that is� e� � �� This yields the speci�cation �c� �
�fzq � f� � gzp� gx��a� the Poincar%eCartan form

�� � f dx� g dy � �c�� � �f � gy��dx� �c�� � g���

and the EulerLagrange operator �e � fz � gzy� � �c��pz � qzy�� � ��c�� With the
use of �	#� we have

d�� �
�e

�f � gy��a��
	� � �� � I	� � 	�� I �

�
�eg

f � gy�
� b

�
�a��a

�
��
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and assuming �e �� � �the subcase �e � � is delayed for a moment�� we may in
trinsically specify �a�� � �e��f � gy��� This determines �	� and thus the remaining
speci�cations �	s � LsD�	�� The latter formula can be expressed by the recurrence

�a�s�� � �pz � qzy� � ���a�s��f � gy��� �a
�
s�� � �a�a�s � ��a�s���f � gy���

�ajs�� � ��aj��s � ��ajs���f � gy�� �j � ��

�use �	��� �	"��� The Frenet coframe ��� �	�� �	�� � � � is determined�
Reduction to the �nitedimensional space of variables x� y� z �that is� to the

classical setting of the equivalence problem� cf� ���� can be achieved by the use
of the function I �or better by the speci�cation �I with �a��� �a

�
� inserted�� Alas� a

complete discussion of a large number of subcases which may in principle happen
seems to be not appropriate here� To outline the most essential step� we mention
the formula

�I � �u� vy���f � gy��
��a�e�� v � gqz�	� �c��

where u � u�x� y� z� is a certain function �not explicitly stated here�� Assuming
v �� � �and moreover vf �� ug to ensure the �niteness of �a��� see below�� the
intrinsical requirement �I � � permits to employ the reduction y� � �u�v �hence
�a�� � �ev��vf �ug�� and thus y��k � �Dk�u�v� for all k � �� �The latter equations
determine a threedimensional submanifold with coordinates x� y� z and restrictions
of ��� �	�� �	� on it determine the sought classical transcription of the equivalence
problem�� The equality v � � is realized in three subcases g � �� qz � �� �c� � 	�
Then we may advantageously use the requirement �I � �	� If �e is depending on y�
�i�e�� if ��e��y� � ��g � �c�q�z � ��c���y� �� ��� we obtain a quadratic equation for
y�� quite analogously as in ��� Section ���

��� Continuation� if a � �� We know that then � can be replaced by a complete
di�erential dh �a multiple od ��� Since hz �� �� we may even assume h � z �i�e��
p � q � �� by a mere change of variables� If e� � f� � gx �� � �the subcase e� � �
is much easier and may be omitted�� the form f dx� g dy can be transformed into
x dx by an appropriate change of variables x � u�x� y�� y � v�x� y� z�� z � z� It
follows that all these variational problems are equivalent�

On this occasion� let us brie�y mention the case a �� � but �e � �� One can
then see that d�� � � �look at d��� � ��� hence �� � dh for an appropriate function
h � h�x� y� z�� After a change of variables� we may assume � � dz � y dx� After
an additional change of independent variable� we may even assume h � x� So it
follows that all variational problems of this kind are mutually equivalent� too�

��� The divergence equivalence� for the variational integral �	!� is based on
the same intrinsical families �	#� as above� however� instead of the family �	�� we
may employ only its exterior di�erential d�� It follows that at the beginning� the
speci�cation procedure runs exactly as in Section 	� and we obtain the formula
����� Assuming moreover a �� � �the case a � � is trivial� cf� Section 	��� we can
even use the same speci�cation �c� ensuring e� � � �cf� Section 		� so that we obtain
the intrinsical �form

d� � �e� � dx� b�� � � � 	� � ��e dx� b����a
�
�
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with a�� � F variable� It follows that the family of forms

� � ��e dx� c� � b����a
�
� �c� a�� � F are varying�

is of the intrinsical nature� It may be used for a convenient substitute for the
previous form � in the sought Frenet coframe and in the following procedure of
speci�cation� So �assuming �e �� �� one can see that

d	� � da�� � � � a��d�
��
a�a���

�

�ea��
� � 	� �modulo � � 	��� ���

and we may introduce the intrinsical relation a�� � a�a���
���e� Quite analogously

d	� �� a��d�� � a��dx � �� �
a��
�e

�a��� �
b

a��
	�� �

	�
a��

and we may introduce the intrinsical relations

a��a
�
���ea�� � 	 b��ea�� � 	�

Altogether b��e � a�� � a��a
�
���e � a�a���

���e� whence �a�� � �b�e�a����� We have tacitly
supposed b �� �� �One can observe that the unpleasant case b � � is a highly
degenerate one� In this case d�� � � � �e dx� hence � � d��� � d�e� � � dx� �ed� � dx�
which implies in particular that �e is not depending on y�� We shall not deal with
it��

At this stage� we know the intrinsical vector �eld D � �a����e � � �determined by
the requirements D � ��� ��D� � 	�� the intrinsical form �	� � �a���� and thus the
intrinsical sequence �	s � LsD�	o �s � �� 	� � � ���

The �as yet variable� coe�cient c appearing in the form � can be speci�ed by
looking at the di�erential d�	� � d�a�� � � � �a��d� �

�a����d ln �a�� � �pz � qzy��dx� qz��� � � � a�� � dx� �

� � � ��
	

�a��

��
b

�e
� �

�

�y�
�

�a��
�a��

�

�y�

�
ln �a�� � �pz � qzy��

b

�e
� qz �

ac

�e

�
�	� � �	��

The intrinsical assumption f� � �g � � gives the sought speci�cation �c� �hence �� �
��e dx� �c� � ������a��� and the Frenet coframe ��� �	�� �	�� � � �

�	� Subordinated equivalence� Assume� for instance� that the foliation dx �
dy � � is taken for an additional intrinsical object to the original variational
integral �	!�� Then the family � � u dx� v dy with u� v � F variable is intrinsical�
It follows that the form � � f dx�g dy �the unique common form of the families �
and �� is intrinsical� Continuing in this direction� the form �c�� � ���� is intrinsical�
hence �by looking at �	� � �a���� the function �c���a�� is a new invariant� Quite
analogously� the form �a���� is intrinsical �this is the only form of the family �
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satisfying �	� � � �� � modulo 	��� hence �a��� � �	�� �a���� is intrinsical and �c���a��
is again an invariant �we assume �a�� �� �� the other case is easier��

Conversely� let �c���a�� and �c���a�� be taken for additional invariants for the equiv
alences to the integral �	!�� One can then see �by reverse run of the above argu
ments� that both � and �a���� are intrinsical forms� hence the system dx � dy � �
�equivalent to � � �� � �� is of the intrinsical nature�

So we have seen that the subordinated problem di�er from the original one by
a mere presence of additional invariants �and invariant forms which may be used
to simplify the Frenet coframe��

Equivalence of spatial problems

�
� The classical variational integral� We leave the case ���� � 	 �where
the existence of unique normal �ltrations makes the calculation a mere matter
of patience� and turn to ���� � � where the things became substantially more
complicated� �For all such equivalence problems in which a �nitedimensional in
trinsical subspace is not given in advance� as far no �nite solution algorithm is
known�� We shall begin with the variational integral

��	�

Z
f�x� y� z� dy�dx� dz�dx�dx� extremum

without any further constraints and under the classical assumption of contact
equivalence� that is� we assume that the space of variables x� y � y�� z � z��
y� � dy�dx� z� � dz�dx is of the intrinsical nature� In other terms� we shall look
only for equivalences which preserve the order of derivatives�

Passing to di�eties� we introduce the variables x� ys� zs �s � �� 	� � � ��� the di�
ety � generated by the contact forms �s � dys � ys��dx� �s � dzs � zs��dx�
and the Lagrange density � � f dx �f � f�x� y�� z�� y�� z���� Clearly � � ���x �
�ys�����ys � �zs�����zs � �� satis�es L��s � �s��� L��s � �s�� so that the
modules �� � f��� ��� � � � � ��� ��g provide a normal �ltration� From the point of
view of our equivalence problem� this �ltration is of the intrinsical nature and
thus the families of forms

���� 	s � a�s�� � b�s�� � � � �� ass�s � bss�s �jassj� jbssj �� ��

with ais� b
i
s � F variable functions are intrinsical for every s � �� 	� � � � � �Clearly

	� is intrinsical by de�nition and 	s�� can be characterized in terms 	�� � � � � 	s by
the property d	s �� � �modulo 	�� � � � � 	s����� Moreover� we have the intrinsical
family

���� � � f dx� a��� � b��� � � � �� an�n � bn�n

with varying ai� bi � F and undetermined n� hence the intrinsical vector �eld
D � ��f �
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If n � 	� then the congruence d� �� dx��an�n���bn�n��� �modulo �n�������
leads to the intrinsical speci�cation �an � �bn � �� So we may assume ai � bi � �
for all i � 	� and it follows

d� �� �e�� � e��� �

�
�f

�y�
� a�

�
�� �

�
�f

�z�
� b�

�
��� � dx �modulo � ����

where e � �f��y� ��a�� e� � �f��z���b�� This permits to specify �a� � �f��y��
�b � �f��z� to ensure the intrinsical requirement d� �� � �modulo ���� ���� We
obtain the Poincar%eCartan form �� � f dx� �a��� � �b��� satisfying

���� d�� � ��e�� � �e���� � dx� ��a� � �� � ��b� � ��

where
�e � �f��y� � ���f��y��� �e� � �f��z� � ���f��z��

are the EulerLagrange operators and � � �����ys� � �s � �����zs� � �s is the
�truncated di�erential�� It follows that

�� � LD �� � Dcd�� �
	

f
��e�� � �e����� �s � LsD��

are intrinsical forms� However� as yet we do not have a coframe�
We shall search for other intrinsical forms� Abbreviating the notation by A � �e�

B � �e�� L � ��f��y�� � M � ��f��y��z�� N � ��f��z�� and assuming A �� ��
B �� �� we shall employ the above family 	� �cf� ����� in the modi�ed transcription
	� � aAf ���bBf �� �thus a � a��f�A� b � b��f�B are variable functions� and choose

	� � LD	� �� �aA�f������bB�f���� �modulo ��� ���� We shall suppose that 	�� ��
are linearly independent �i�e�� a� b �� ��� Then

A

f
�� �

	� � b��
a� b

�
B

f
�� �

	� � a��
b� a

�
A

f�
�� ��

	� � b��
a� b

�
B

f�
�� ��

	� � a��
b� a

�

Inserting these ��� � � � � �� into the right hand side of ����� the coe�cients of the
products 	� � 	�� 	� � ��� �� � 	�� �� � �� are of the intrinsical nature� One can
see that they are respectively equal to

U � L�A� � �M�AB � N�B�� V � �bL�A� � �a � b�M�AB � aN�B��

V�W � b�L�A� � �abM�AB � a�N�B�

multiplied by the function f���a� b��� Suppose U �� �� �One can verify by direct
computation that this is equivalent to the regularity LN �� M�� We shall not
discuss the nonregular case here since it deserves a separate article�� Then we may
introduce the intrinsical requirements Uf���a�b�� � �	 �i�e�� a�b � ��Uf������
and V � � which leads to the speci�cations

�a �

�
L

A
�
M

B

�
�AU�� �b �

�
M

A
�
N

B

�
�BU��
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So we have the intrinsical forms �	s � LsD��aAf �� � �bBf ��� and thus the Frenet

coframe ��� ��� �	�� ��� �	�� � � � � The remaining function W �speci�ed to �W � gives the
invariant

�Wf����a� �b�� � � �W�U � ��LN �M���A�B�U��

Other invariants can be quite automatically derived by the common methods�

��� The divergence equivalence for the variational integral ��	� will be dis
cussed by the use of two independent intrinsical families ���� and an intrinsical
�form� the exterior di�erential of the Poincar%eCartan form

d�� � �A�� � B��� � dx� C�� � �� � �L�� �M��� � �� � �M�� �N��� � ��

�here C � ��f��z��y� � ��f��y��z��� see formula ����� We through retain some
abbreviations of the preceding Sections� Recall once more that the form �� is not
of the intrinsical nature for the divergence equivalences� The previous role of ��
undertakes the �form d���

Passing to more detail� the �ltration �� of Section 	! is again regarded for an
intrinsical object �i�e�� we deal with the divergence equivalences preserving the
order of derivatives�� Therefore the families of forms

	� � p�� � q��� �� � r�� � s�� �u �

���� p s
q r

���� �� ���

with variable functions p� q� r� s � F are of the intrinsical nature �they constitute
the most general basis of ���� By using the inverse formulae�

��!� �� � S	� �Q��� �� � �R	� � P�� �P � p�u� � � � � S � s�u��

one can easily verify that

���� d�� � 	� � � � �� � �� C�� � ��

where

� �

����A B
R S

����dx�

���� L M
R S

���� �� �

����M N
R S

���� ���
� �

����P Q
A B

���� dx�

����P Q
L M

������ �

���� P Q
M N

���� ���
The families of forms �� � �with P�Q�R� S � F variable� are of the intrinsical
nature modulo ��� Assuming jAj � jBj �� �� we may introduce the intrinsical
requirement � � �� that is�

��"� P � vA� Q � vB �thus

����A B
R S

���� �
	

v

����P Q
R S

���� � 	�uv��
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where v � F is a variable function� Then d�� �� dx � �r�� � s���� that is�

��#� d�� �� uv� � u�R�� � S��� �modulo ���� ����

in virtue of ��!��"�� It follows that the family of forms u�v�R�� � A��� �where
u� v � F are variable� is intrinsical modulo ��� We shall identify it with � ���"� is
assumed� which implies the speci�cations

���� �R �

����A B
L M

���� �u�� �S �

���� A B
M N

���� �u�

�of a weakened sense since u � F is variable�� This identi�cation is correct if the
formula

���� u � 	�

����P Q
R S

���� � 	�v

����A B
R S

����
makes a sense after the substitution R� �R� S � �S� That means� we must suppose
A �S �� B �R� �To this point� see Section 	"��

On the other hand� the family of operators D � uv� �de�ned by the properties
D � ��� ��D� � 	� is of the intrinsical nature and so are the families of forms

	� � LD	� �� uv�p�� � q��� � u�v��A�� � B����

�� � LD�� �� uv�r�� � s��� � u�v� �R�� � �S���

�both modulo ���� It follows in particular

	� � �� �� u�v��� � �� �modulo ����

Using the latter formulae� one can see that

d	� �� dx� �p�� � q���

� u�v��� �

���� L M
�R �S

���� �� �
����M N

�R �S

���� ��� � �A�� � B���

� � � 	� � u�v� �
W

u�
�

	

u�v�
	� � ���

where W is a quite de�nite �in general nonvanishing� function 

W �

�����
L M����A B

L M

����
���� A B
M N

����
�����B �

�����
M N����A B

L M

����
���� A B
M N

����
�����A�

The coe�cient of 	� � �� is of the intrinsical nature and assuming W �� �� it
may be equated to 	 which yields the speci�cation �u � �W ����� hence also the
speci�cation

�v � �u�

�����
A B����A B

L M

����
���� A B
M N

����
�����
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following from ��"�� �Quite analogously� by looking at the di�erential

d�� �� dx� �r�� � s��� � � � �� � u�v �
w

u�
�

	

u�v�
	� � ��

where

w �

�����
L M����A B

L M

����
���� A B
M N

����
����� �
���� A B
M N

�����
�����

M N����A B
L M

����
���� A B
M N

����
����� �
����A B
L M

���� �

we obtain the invariant w��u	�v� the coe�cient of 	� � ����

Altogether taken� we already know the speci�cations �P � �vA� �Q � �vB and
complete speci�cations �R� �S de�ned by ���� with �u instead of u� So we have the
relevant intrinsical forms �	�� ���� the intrinsical operator LD �here D � �u�v�� and
thus the intrinsical chains �	s � LsD�	s� ��s � LsD

���� One can also observe that
��� �� � �modulo ����

Since �� is intrinsical modulo �� �and thus modulo ��� we have the intrinsical
family of forms � � �� � 	 �	 � � is variable�� that is�

� �

����A B
�R �S

����dx� A��� �B��� � � � ��An�n � Bn�n

where A�� � � � � Bn � F are varying functions and n is undetermined� One can then
see that there are unique speci�cations �A�� � � � � �Bn such that Dcd�� � �� for the
relevant speci�ed ��� �In other terms� we have the intrinsically related variational
integral Z ����A B

�R �S

���� dx� extremum

and �� is the corresponding Poincar%eCartan form�� At this stage� the Frenet cofra
me consisting of �� and all forms �	s� ��s is determined�

��� Remark� The identityA �S � B �R means that the formLg�	� �� gv�A���B���
is proportional to � �modulo ���� for any function g � F � The proportionality turns
into the equality if we specify

�g �

����A B
L M

���� �A �

���� A B
M N

�����B�

This provides the intrinsical vector �eld D � �g� and thus the intrinsical family
of di�erential forms � � dx��g� A��� � B��� � � � �� An�n � Bn�n �with variable
coe�cients�� It follows that we deal with the common equivalence problem for the
variational integral s dz��g � extremum �endowed moreover with the additional
intrinsical �form d����
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Nonstandard equivalences

�� Setting the problem� Passing to the equivalence transformations which
may change the order of derivatives� we enter an extensive and rather unusual
realm� Since we should like to explain the ideas and methods as clearly as possible�
only a very particular problem will be investigated to determine whether a given
second order variational integral

��	�

Z
g�x� y�� z�� � � � � y�� z��dx� extremum

can be obtained by transformation of an unknown in advance �rst order varia
tional integral ��	�� The notation of Sections 	!	" is preserved so that the sought
equivalence transformation can be symbolically written as

���� x� &x� ys � &ys� zs � &zs �s � �� 	� � � ���

where &x� &ys� &zs � F are certain functions �which will be determined together with
the integral ��	� in the course of the following calculations�� The sought transfor
mation ���� should preserve the di�ety � and should carry the �as yet unknown�
di�erential form f dx �cf� ��	�� into the wellknown form g dx �cf� ��	�� modulo a
summand from �� It is moreover necessary to ensure the invertibility of ���� in the
in�nitedimensional underlying space of variables x� ys� zs �s � �� 	� � � �� and we
shall assume that this is guaranted if the di�erentials d&x� d&ys� d&zs �s � �� 	� � � ��
can be taken for a basis of the module � of all di�erential 	forms �and refer to
��� for more details��

Let us made the above requirements on the sought equivalence ���� explicit�
First of all� the equivalence ���� should be an automorphism of � the forms

���� &�s � d&ys � &ys��d&x� &�s � d&zs � &zs��d&x �s � �� 	� � � ��

�transforms of �s� �s� should constitute a basis of �� One can then observe that
the latter condition together with the assumption d&x �� � ensures the invertibility
of ���� since then the forms ���� and d&x �and thus all di�erentials d&x� d&ys� d&zs�
constitute a basis of �� One can also observe that

�&xd&ys � �&ysd&x� �&xd&zs � �&zsd&x � � �s � �� 	� � � ��

and it follows that the forms ���� are lying in � if and only if

���� &ys�� � �&ys��&x� &zs�� � �&zs��&x

�the prolongation formulae�� So the knowledge of the initial terms x� &x� y� � &y��
z� � &z� of ���� is quite enough�

At second� let us look at the variational integral ��	� or better� at a general
variational integral

��!�

Z
f�x� y�� z�� � � � � yn� zn�dx� extremum
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of exactly nth order� Recalling the common �ltration �� � �� � � � � � one can
easily see that the relevant Poincar%eCartan form �� � f dx� �	 is de�ned by the
congruences

�� �� f dx �modulo ��� �cd�� �� � �modulo ���

�the �rst one is trivial� the second one is identical with �	�� since R��� � � and
�� consists of initial forms�� One can then observe that the �rst congruence can be
strenghtened as �� �� f dx �modulo �n��� and the indice n�	 cannot be diminished
here� In our case n � 	� The equivalence ���� carries the �ltration �� � �� � � � �

into the �ltration &�� � &�� � � � � �where &�� � f&��� &��� � � � � &��� &��g�� the form f dx
into the form

&f d&x � &f ��&x dx� �&x� �� g dx �modulo ��

�hence &f � g��&x and thus &f d&x � g dx � &f �&x�� and the above form �� into the

Poincar%eCartan form &� �a simpli�ed notation for ������ for the integral ��	�� Al
together taken� the congruences

���� &� �� g dx� &f �&x� �cd&� �� � �modulo &���

de�ne the form &� and ensure the order n � 	 of the integral ��!�� This problem
will be not resolved in full generality here�

��� Explicit calculations� For technical reasons� the original problem will be
investigated under the additional assumption &�� � ��� One can observe that this
happens if and only if the functions &x� &y�� &z� are depending only on the coordinates
x� y�� y�� z�� z� �i�e�� we suppose that the order of derivatives may increase on 	 at
most�� We are going to determine the module &���

If &�� � �� then we deal with a common point equivalence ����� The functions
&x� &y�� &z� are depending only on x� y�� z� �as follows from the LieB'acklund theorem�
cf� Section �	�� the order of derivatives is not changed and ��	� is in reality a mere
�rst order integral� Omitting this trivial subcase� we may suppose &�� � f�� �g

where both � and � are not lying in ��� Since clearly &���� � &�� � L��� �� � ��

and �&�� � �� the family of all forms of the kind L���� L��� should generate the
module � �the main principle�� Owing to the latter principle� one can see that
�� � cannot be linearly independent modulo ��� �Proof assuming � � �� � � � � �
� � ���� � � where � � � � ��� then L��� � ���� � � � L

�
�� � ���� � � cannot generate any

form from ���� So we may assume � � ��� � �� �� without any loss of generality�
and even

��"� � � a�� � ��� � � b�� � c�� � ��

with appropriate a� b� c � F � But applying the main principle� it follows a � c�
b �� �a� �Proof L�� � �a���a����� and � cannot be linearly independent modulo
�� which implies a � c� Then L�� � � must be independent of �� hence b �� �a��

Summarizing the achievement� we have determined all submodules &�� � �� which
give rise to the �ltration &�� � &�� � &�� � L� &�� � � � � of the di�ety � from the
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�algebraic� point of view� �There are some additional conditions of deeper nature�
see belov��

Let us turn to the form &�� that is� to the congruences ����� For technical reasons�
we shall deal with a mere �ber equivalences where &x � &x�x�� hence �&x � ��&x��ys �
�s � ��&x��zs � �s � � is vanishing and ���� means that

&� � g dx� p� � q�� �c&� � r� � s�

where p� q� r� s � F are certain unknown functions� Inserting ��"� with c � a into
the latter equations� six conditions

�g

�z�
� q�

�g

�y�
� aq�

�g

�z�
� p� �q � s�

�g

�y�
� ap� ��aq� � as

�g

�z�
� �p � r�

�g

�y�
� ��ap� � ��bq� � ar � bs

for the unknowns p� q� r� s� a� b appear� They uniquely determine q and a� yield the
compatibility condition

��#�
�g

�y�
�

�
�g

�z�
�

�g

�y�
�

��
�g

�y�
�
�g

�z�

�

for the function g� and permit to express p� r� s in terms of b� We state only the
most complicated formula

p �
	

�a � b

�
�g

�y�
�

�g

�z�

�g

�y�
�
�g

�z�
�

�g

�z�
b�

�g

�z�
�b

�
�

the remaining for a� r� s are quite clear�
At last� let us pass to the most interesting and nontrivial property of the module

&�� being a transformation of the module ��� there exist a rather special basis &��� &��
in &��� Now recall the following result a module � � f�� �g of 	forms admits an
alternative basis of the kind � � fdv � v�du� dw� w�dug where u� v� w� v�� w� are
appropriate functions if and only if

���� d� �� � � ��� d� �� � � �� �modulo ��

for appropriate forms �� ��� �� such that the module f�� �� �g �is completely inte
grable� i�e��� has a basis consisting of total di�erentials� �See ��� p���� formula IV$�
but for convenience of reader� we outline a brief proof� In the trivial direction�
assuming � � f�� �g � fdv� v�du� dw�w�dug� then clearly ���� with � � du and
f�� �� �g � fdu� dv� dwg are valid� In the opposite direction� assuming ���� and
f�� �� �g � fdu� dv� dwg� one can take � � du in ���� without any loss of general
ity� Then� by applying the Frobenius theorem on ���� with u � const� kept �xed�
one can conclude that f�� �g � fdv� dwg modulo du which is the desired result��
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In our case � � &�� and it may be taken u � &x� v � &y�� w � &z�� of course� Using
��"�� we have

���� d� �� dx � ��a � b��� � �a � ���

��	� d� �� dx � ��b�� � ��a � b��� � a�� � ��� � �b � �� � �a � ��

and this should be represented like ����� But clearly f�� �� �g � fdu� dv� dwg �
fd&x� d&y�� d&z�g where &x � &x�x� and so we may take � � d&x or better� � � dx� Then
���� �	� imply

�a � �� �� �b � �� � �a � �� �� � �modulo &����

and using the development � � �����ys� � �s � �����zs� � �s ���
�

�y�
� a

�

�z�
� b

�

�z�

�
� �� �

�
�

�y�
� a

�

�z�

�
��� �

�
�

�y�

�
� �� �

�
�

�z�

�
� �� � � � � �

modulo �� �� the latter congruences proves to be equivalent to the system

����
�a

�y�
� a

�a

�z�
�
�a

�ys
�

�a

�zs
� � �s � ���

����
�b

�y�
� a

�b

�z�
�

�a

�z�
b �

�a

�ys
� a

�a

�z�
�
�b

�ys
�

�b

�zs
� � �s � ���

This concludes the calculations�

��� Summary of results� Assume that the compatibility conditions ��
 and
��	
 with a � ��g��y�����g��z�� for the function g are satis�ed� We may choose
a function b � b�x� y�� z�� y�� z�� satisfying ���
� Then the forms �� � �see ���
 with

c � a
 and thus the module &�� � f�� �g �and also all &��� � � 	
 are known� By
applying the Frobenius theorem on the module f�� �� �g where � � dx� we obtain

f�� �� �g � fdu� dv� dwg where u � x� It follows &�� � fdv � v�du� dw� w�dug for
appropriate v�� w� � F �explicitly v� � �v��u � �v� dw � �w
 and we may put
&x � u � x� &y� � v� &z� � w which completely determines the sought equivalence
transformation ��	
�

��� Theorem� Every automorphism of � which preserves �� is a prolonged point

transformation�

Proof� The mentioned automorphism preserves moreover the module �� since
&�� � &�� � L� &�� � �� � L��� � ��� It is an automorphism of both �� and ���
hence

&�� � A�� � B��

&�� � C�� �D��

&�� � � � � � P�� �Q��

&�� � � � � �R�� � S��
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with a regular matrix� Moreover� the module fdx� dy�� dz�� dy�� dz�g is preserved�
too� �This follows from the fact that the family of functions x� y�� � � � � z� is in
trinsically related to �� it is the minimal family such that there is a basis of ��

expressible in terms of it�� So the above system may be completed by

d&x � � � �� U�� � V �� � W dx�

Then the congruence

d&x� &�� � d&�� � dA � �� � dB � �� � dx � �A�� �B��� �� �

modulo dx� ��� �� implies PV � UQ� Quite analogously PV � US� Since PS ��
QR� we obtain V � U � �� It follows

d&x �� �� d&y� � &�� � &y�d&x �� �� d&z� �� � �modulo dx� ��� ����

and thus �� � modulo dx� dy�� dz�� This concludes the proof� �

It is to be noted that the proof of the latter Theorem is not easily available in
current literature and that the original B'acklund argument seems to be not quite
correct� �See �	� p� �"� the osculating curve C need not behave continuously if P �i
converge to P �

Miscellanery

��� On a Hilbert problem� The Poincar%eCartan form �� � � � �	 to the con
strained variational integral �		� depends on the choice of the normal �ltration

�� and even on the choice of the initial forms 	j�r� appearing in the de�nition

formula �	��� However� it may be proved that the restriction of �� on the subspace
E � R� which consists of all points that satisfy the in�nitely prolonged Euler
Lagrange system �kej�r� � � �all possible k� j� r� is unique modulo R���� cf� �!��

Assume R��� � � from now on� for simplicity� then the restriction of �� on E

is a welldetermined form� Since the extremals are such curves which satisfy the
Pfa�$s system 	 � � �	 � �� and the EulerLagrange system� it follows that if
we deal with extremals� the restriction of �� to E is quite enough� In this way�
it is possible to carry over to the constrained variational problems �		� most of
the important concepts of the classical calculus of variations �e�g�� variational for
mulae� E� Noether$s theory� integral invariants� geodetics �elds� HamiltonJacobi
equation� and so on� without any essential change� Even the singular variational
problems with extremals depending on functions can be included without much
trouble�

For instance� a multiparameter family of extremals may be called a �eld if
d�� � � on the submanifold F � E covered by the extremals of the mentioned
family� Then the �uniquely determined� restriction of �� to F is a generalization of
the famous Hilbert invariant integral and easily leads to generalized Weierstrass
theory for all contrained variational problems� May be� this is the way to the
solution of the ��rd Hilbert problem which was suggestively explained �see �#�� but
never explicitly formulated to investigate the �eld theory of constrained variational
problems�
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��� Empty Euler�Lagrange system� Assuming R��� � �� we shall be inter

ested in the case E � R�� So assume that ej�r� � � are identically vanishing in

�	��� It follows d�� � �aijrs	
i
r �	

j
s in terms of the special basis de�ned in Section ��

The latter double sum may be taken only over r 
 s and i � j if r � s� We may
assume that �x � 	 for appropriate � � ��� x � F � Then L�	is � 	is�� means that

d	is
�� dx�	is�� �modulo ����� Inserting this into the trivial identity d��� � �� one

can derive that aijrs � � by �a decreasing� double induction on s and j� It follows
d�� � �� �� � dh for an appropriate function h � F � Hence � �� �� �� dh �� �h dx
�modulo �� is a generalized divergence�

The divergence equivalence problem is concerned with the study of the di�eren
tial d�� �not of ���� that is� the above result can be interpreted by saying that we deal
with families of variational integrals with the same EulerLagrange operators� So
even the �rather weak� divergence equivalence problem is strongly subordinated to
the related equivalence of the corresponding systems of EulerLagrange equations 
it may well happen that EulerLagrange system of two variational integrals are
equivalent but the relevant EulerLagrange operators di�er�

�	� Correction� We should like to mention once more the divergence equivalence
problem of the variational integral

Z
f�x� y�� � � � � yn�dx� extremum � ys � dsy�dxs�

with general m �which was not quite correctly treated in ��� Section !� in the
particular case m � ��� We deal with the space of variables x� y�� y�� � � � � the
di�ety � generated by the contact forms �s � dys � ys��dx� the vector �eld
� � ���x � �ss�����ys� and the Lagrange density � � f dx� Intrinsical objects
for the divergence problem are the families

	i � a���� � � � �� aii�i �aii �� �
 i � �� 	� � � ��

and the di�erential d�� of the Poincar%eCartan form

�� � f dx� �a��� � � � �� �am���m�� ��am�� � fm� �a
i � fi�� � ��ai����

see ��� ���!���
First of all� if ��f��y�m � � �the singular case�� then f � A�Bym where A�B

does not depend on ym� and we may introduce the lowerorder variational integral

Z
�f � �g�dx� extremum �g �

Z
Bdym���

instead of the original one �its Poincar%eCartan form is �� � dg so that the di�er
ential d�� is retained�� Repeatedly applying this reduction� we may assume that
��f��y�m �� ��
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Passing to calculation of the Frenet coframe� we begin with

d�� � E�� � dx� ���ai � �i
�� 	� � �Edx� � � �� fmm��m����a

�
� �modulo � ���

where E � �����ifi is the EulerLagrange operator �we denote fi � �f��yi and
analogously for higher derivatives� see ��� ������ It follows that

� � �Edx� � � �� fmm��m����a
�
�

with a�� � F variable is an intrinsical family of forms� Then

d	� �� a��dx� �� �� a���a
�
�� � fmm	�m���a

�m��
�m��� � 	��a

�
�E

�modulo 	�� 	��	�� � � � � 	�m���	�� and we may introduce the relations �a���
��a��E

� 	� a��fmm�a
�m��
�m��a

�
�E � 	� Continuing more easily

d	� �� a��dx � �� �� a��a
�
�� � 	��a

�
�E �modulo � ���

we introduce a��a
�
��a

�
�E � 	� Then d	� yields a��a

�
��a

�
�E � 	� and so on� Altogether

taken�

a�� � �a���
��E� a�� � a��a

�
�E � �a���

��E�� � � �

a�m���m�� � �a���
�m�E�m�� � fmm�a

�
�� �a

�
� � �fmmE

�m�������m����

One can observe that after this speci�cation of a��� we may introduce the intrinsical
vector �eld D � �a����E and then the intrinsical forms �	s � LsD�	� where �	� �
�a����� The speci�cation �� is not yet completely known since the form � is in reality
determined only modulo ��  � � ���b�� where �� is known but b � F is a variable
function� It is� however possible to use the congruence d� �� � � �bi�	i �modulo
���� just in the same manner as in ��� Section !�� The sought Frenet coframe is
constituted by ��� �	�� �	� � � � �
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