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Abstract. The article concerns the second order differential equations
with one unknown function and the aim is twofold: to compare some re-
sults for the well-known linear with the more complicated nonlinear case,
and to point out some distinctions between ordinary and partial differen-
tial equations. We shall mention automorphisms permuting the conjugate
points, moving frames for particular fiber-preserving mappings, the Dar-
boux transformations of ordinary differential equation, and the Laplace
series for the hyperbolic case of two independent variables.
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Our reasoning will be developed in the real smooth category. As a rule, we
shall not specify the definition domains and our primary aim is to outline some
new ideas and methods rather than to derive certain definite theorems.

For the convenience of a possible reader, let us outline the contents. We be-
gin with the family of all equations (2.chr). It is preserved if transformations (1.chr)
are performed, and certain self-transformations of this kind (so called central
dispersions) of a given equation (2.chr) are determined by the location of roots of
solutions: they permute the roots. This result can be easily adapted for the non-
homogeneous family (5.chr) subjected to a broader class (6.chr) of transformations, then
the intersections of solutions undertake the previous role of roots. These well-
known results can be verified by a manner which can be carried over the class of
all nonlinear equations (7.chr) subjected to contact transformations. In particular,
certain automorphisms of a given equation (7.chr) exist which permute the intersec-
tion points of infinitesimally near couples of solutions. They may be regarded
for nonlinear generalization of dispersions.

Our next aim is to determine some subfamilies of the family of all equations
(7.chr) which are preserved if all transformations of the kind (6.chr) are applied. We use
the moving frames.

On the other hand, a given equation (2.chr) can be transformed into the family
of all equations (2.chr) by many rather peculiar transformations, even if the inde-
pendent variable x is kept fixed. They can be explicitly found and the famous

This is the final form of the paper.
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Darboux transformation of eigenvalue problems appears as a very particular sub-
case.

As yet the transformations did not much change the order of derivatives.
However passing to partial differential equations, already the classical Laplace
series has quite other properties: invertible transformations of not too special
equations (16.chr) exist where the new unknown function U(x, y) may depend on
derivatives of arbitrarily high order of the primary unknown u(x, y). This is a
well-known result but we again pass to a nonlinear generalization: the Laplace
coframes permit to determine all invertible mappings of a given equation (18.chr)
into the class of all equations (18.chr), at least in principle since the calculations
are rather complicated. The cases when the independent variables need not be
preserved are involved. We can state only a modest illustrative example of the
equation ∂2u/∂x∂y = g(∂u/∂x) + u here with new independent variables X =
x − g′(∂u/∂x), Y = y and new unknown function (23.chr). The method can be
generalized and applied to higher order equations, as well.

1 The dispersion theory [1], [7]

We find ourselves in the plane x, y, where new variables X = X(x, y), Y =
Y (x, y) can be introduced. In particular transformations of the kind

X = X(x), Y = c|X ′(x)|1/2 y (c = const. 6= 0, X′(x) 6= 0) (1.chr)

are the most general ones which preserve the family of all equations

d2y/dx2 = q(x)y, (2.chr)

i.e., which turn every equation (2.chr) into certain d2Y/dX2 = Q(X)Y . It may be
proved that under transformations (1.chr), equations (2.chr) are locally like each other.
Roots of solutions y are obviously transformed into roots of solutions Y and
this trivial remark can be developed to give the global theory. In particular,
in the oscillatory subcase, there exist automorphisms (1.chr) of equation (2.chr) per-
muting the roots of solutions y, the so called central dispersions of (1.chr). Since
the transformations (1.chr) between two mentioned equations can be determined as
solutions of a certain nonlinear third order differential equation (depending on
q,Q) for the function X, it follows in the particular case of automorphisms that
the distribution of roots of solutions y is governed by a third order differential
equation.

2 A note to proofs [3]

The shortest way to the mentioned results consists in introduction of function
ζ = ȳ/y, where ȳ, y are two independent solutions of (1.chr). The value ∞ at the
roots of y with obvious rules of calculations should be admitted. Then

ζ ′ = c/y2, y = (c/ζ′)1
/2, q = y′′/y = |ζ′|1/2

(
|ζ′|−1/2

)′′
, (3.chr)
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where c = const. 6= 0 and the last expression is the familiar Schwarz deriva-
tive independent of the choice of ȳ, y. Conversely, every such a function ζ(x)
with ζ ′(x) 6= 0 can be arbitrarily chosen in advance. Then the equation (2.chr) is
determined by (3.chr3), automorphisms (1.chr) of (2.chr) are (obviously) given by formula

ζ (X(x)) =
αζ(x) + β

γζ(x) + δ
(α, β, γ, δ constants with αδ 6= βγ)

which provides a third order equation for the function X(x) by applying the
Schwarz derivative, and the central dispersions appear as a particular subcase
ζ (X(x)) = ζ(x). Continuing in this way, analogous function Z = Ȳ /Y and the
formula

Z(X) =
αζ(x) + β

γζ(x) + δ
(α, β, γ, δ constants with αδ 6= βγ) (4.chr)

(obviously) provides all transformation into the equation d2Y/dX2 = Q(X)Y .

3 Nonlinear dispersions

The above results can be carried over the broader family of all equations

d2y/dx2 = q(x)y + r(x) (5.chr)

subjected to the transformations of the kind

X = X(x), Y = c|X ′(x)|1/2 y + Z(x) (c = const. 6= 0, X ′(x) 6= 0). (6.chr)

The previous role of the roots of solutions is undertaken by the points of inter-
section of pairs of solutions in this non-homogeneous case. We shall be however
interested in still broader family of all nonlinear equations

d2y/dx2 = f(x, y, dy/dx). (7.chr)

It may be easily seen that contact transformations

X = X(x, y, y′), Y = Y (x, y, y′), Y ′ = Y ′(x, y, y′) (8.chr)

are the most general ones which preserve the family (7.chr), that is, which turn
every equation (6.chr) into certain d2Y/dX2 = F (X,Y, dY/dX). (Indeed, owing
to (8.chr), differential form dY − Y ′dX should be a linear combination of forms
dy − y′dx and dy′ − fdx with arbitrary f , hence a multiple of dy − y′dx.) It
may proved that under contact transformations, equations (7.chr) are locally like
each other. Instead of common methods, we shall derive this well-known result
by a geometrical reasoning which will be subsequently related to (nonlinear)
dispersions.
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Let y = y(x, a, b) be a complete solution of (7.chr). Keeping a, b fixed for a mo-
ment, choose a near solution with a common point x̄, ȳ . In other terms, we
suppose

ȳ = y(x̄, a, b) = y(x̄, a+ ε, b+ δ), ȳ′ = yx(x̄, a, b). (9.chr)

Analogously let Y = Y (X,A,B) be a complete solution of the equation d2Y/dX2

= F . Choose fixed A = A(a, b), B = B(a, b) such that there exists a common
point X̄, Ȳ with the corresponding near solution, that means, we may write

Ȳ = Y (X̄, A,B) = Y (X̄, A(a+ ε, b+ δ), B(a+ ε, b+ δ)),
Ȳ ′ = Y X(X̄, A,B).

(10.chr)

Keeping ε, δ fixed but a, b (hence x̄, ȳ) variable, the invertible transformation
(x̄, ȳ, ȳ′) −→ (X̄, Ȳ , Ȳ ′) appears. If ε, δ = δ(ε) −→ 0, we obtain even a con-
tact transformation (as follows by simple geometrical arguments or by direct
verification) implicitly given by formulae

ȳ = y(x̄, a, b), ȳ′ = yx(x̄, a, b), Ȳ = Y (X̄, A,B), Ȳ ′ = Y X(X̄, A,B),

ya(x̄, a, b) + λyb(x̄, a, b) = 0 = YA(X̄, A,B)(Aa + λAb)
+ YB(X̄, A,B)(Ba + λBb),

where A = A(a, b), B = B(a, b), λ = δ′(0) and the parameters a, b, λ should be
eliminated. Since every curve y = y(x, a, b) is (obviously) transformed into the
curve Y = Y (X,A,B), the equation (7.chr) turns into d2Y/dX2 = F .

We shall mention two particular kinds of this construction.
Assuming f(x, y, y′) = F (x, y, y′), we deal with automorphisms of equation

(7.chr). Since the functions A = A(a, b), B = B(a, b) can be (in principle) quite
arbitrarily chosen, there is a huge family of them. In the case of oscillatory
equation, the simple choice A = a and B = b gives (besides the identity) the
automorphisms permuting the conjugated points: the common point x̄, ȳ of two
infinitesimally near solutions (cf. (9.chr1) with ε, δ near to zero) can be transformed
into the next intersection point X̄, Ȳ of the same pair of solutions (cf. (10.chr1) with
Y = y,A = a,B = b). So we have a nonlinear generalization of dispersions.

Assuming f(x, y, y′) = q(x)y, F (X,Y, Y ′) = Q(X)Y , we deal with the equa-
tion (2.chr) and the above construction gives (besides the contact transformations)
the point transformations (1.chr) for a particular choice of functions A = A(a, b),
B = B(a, b). In more detail, let

y = aȳ(x) + by(x), Y = AȲ (X) +BY (X)

be complete solutions in our linear case of equations. For our point transforma-
tion (x̄, ȳ, ȳ′) −→ (X̄, Ȳ , Ȳ ′), the couple (X̄, Ȳ ) should depend only on (x̄, ȳ)
and not on ȳ′. Recall formulae (9.chr1, 10.chr1) in our particular case:

ȳ = ay(x̄+ bȳ(x̄), Ȳ = AY (X̄) +BȲ (X̄). (11.chr)
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Choosing arbitrary A = αa − β,B = γa − δb, where αδ 6= βγ, and assuming
ȳ = Ȳ = 0 for a moment, it follows ζ(x̄) = −a/b hence

Z(X̄) = −A
B

= −αa− βb
γa− δb =

αζ(x̄) + β

γζ(x̄) + δ

by using notation of Section 2. However this is just formula (4.chr) and we already
know that such functions X̄ = X̄(x̄) completed by Ȳ = c|X̄ ′(x̄)|1/2ȳ provide
transformations into d2Y/dX2 = Q(X)Y .

4 The moving frames method [2]

Our aim is to determine some kinds of the second order differential equations
(7.chr) which are preserved under the family of all transformations (6.chr).

For better clarity, we shall deal with the pseudogroup of all transformations
(6.chr), where X ′(x) > 0. Then

dX = u2dx, dY = vdx+ cudy (u2 = X ′, v = cX ′′y/2u+ Z ′)

and it follows (from group composition properties) that two families of forms

ω1 = u2dx, ω = vdx+ cudy (u, v are parameters) (12.chr)

are preserved by mappings (6.chr). One can verify that the converse is also true:
transformations (8.chr) preserving families (12.chr) are just of the kind (6.chr). On the
other hand, the system

dy − y′dx = dy′ − fdx = 0 turns into dY − Y ′dX = dY ′ − FdX = 0

and it follows that two families of forms

ω̄ = λ(dy − y′dx), ¯̄ω = µ(dy′ − fdx) + ν̄(dy − y′dx),

where λ, µ, ν̄ are new variables make the intrinsical sense: they are transformed
into the relevant “capital families”. Comparing ω with ω̄ (hence cu = λ, v =
−λy′), we obtain better intrinsical family of forms

ω2 = cu(dy − y′dx), ω3 = µ(dy′ − fdx) + νω2,

where u, µ, ν = ν̄/cu are new variables (and c is an unknown constant). So we
occur ourselves in the space x, y, y′, u, µ, ν, equipped with intrinsical families of
forms ω1, ω2, ω3.

Exterior derivatives are intrinsical, too. However dω1 = 2ω4 ∧ ω1 with the
most general factor

ω4 =
du

u
− ξω1 (ξ a new parameter)



88 Jan Chrastina

which provide still an intrinsical family. Analogously

dω2 =
du

u
∧ ω2 − c

dy′

u
∧ ω1 = ω4 ∧ ω1 + (ξ − cν

uµ
)ω1 ∧ ω2 +

c

uµ
ω1 ∧ ω3

and we may introduce intrinsical restrictions c/uµ = 1, ξ = cν/uµ hence uµ =
c, ξ = ν (then dω2 = ω1 ∧ (ω3 − ω4)). In the same manner

dω3 = ω5 ∧ ω2 +
∂f/∂y′

u2
ω1 ∧ ω3 − ω4 ∧ ω3, (13.chr)

where

ω5 = dν + βω1 + γω2 + 2νω4

(
β = ν2 +

µ

cu3

∂f

∂y
− ν

u2

∂f

∂y′

)
is intrinsical family with a new variable γ. However

dω4 = −(dξ + 2ξω4) ∧ ω1 = (γω2 − ω5) ∧ ω1

owing to ξ = ν, and we may suppose γ = 0. Returning to (12.chr), we have to
distinguish two subcases A : ∂f/∂y′ = 0, B = ∂f/∂y′ 6= 0.

It follows that the family of all equations d2y/dx2 = f(x, y) is preserved by
transformations (6.chr), and one can directly verify that other transformations do
not have such property. Assuming A, then

dω5 = dβ ∧ ω1 + 2βω4 ∧ ω1 + 2(dν ∧ ω4 − νω5 ∧ ω1) = 2ω5 ∧ ω4 + ζ ∧ ω1,

where ζ ∼= dβ+4βω4−2νω5 (mod ω1) is intrinsical form. However β = ν2+fy/u4

(use uµ = c) therefore ζ ∼= fyyω2/cu
5 after short calculation and we have to

distinguish two subcases C : fyy = 0,D : fyy 6= 0 of our case A.
Subcase B is the classical one f = q(x)y + r(x) mentioned above. Surveying

the results, we have structural formulae

dω1 = 2ω4 ∧ ω1, dω2 − ω1 ∧ (ω3 − ω4)

dω3 = ω5 ∧ ω2 − ω4 ∧ ω3, dω4 = ω1 ∧ ω5, dω5 = 2ω5 ∧ ω4

of a Lie group of automorphisms of an equation (5.chr) and, since invariants are lack-
ing, all equation (5.chr) are (locally) like each other with respect to transformations
(6.chr) which is the already mentioned result.

In subcase D, we may introduce the requirement cu5 = ∂2f/∂y2 which im-
plies 5cu4du = fyyxdx+ fyyydy or, in terms of intrinsical forms,

5cu5(ω4 + νω1) =
∂3f

∂x∂y2

ω1

u2
+
∂3f

∂y3

(ω2

cu
+ y′

ω1

u2

)
.

It follows 5ω4 = Mω1 +Nω2 with intrinsical coefficients. In particular

N =
∂3f

∂y3

/
cu
∂2f

∂y2
=
∂3f

∂y3

/
c4/5

(
∂2f

∂y2

)6/5
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does not change after transformations (6.chr). The constant c is not fixed here.
Consequently if N is a conical (containing constant multiples)set of functions
g(x, y), then the family of all equations d2y/dx2 = f(x, y) such that N ∈ N

(equivalently: (fyyy)
5
/(fyy)

6 ∈ N) is preserved when transformations (6.chr) are
applied. Possibly some narrower families could be obtained by using coefficient
M but we shall not continue further.

Let us conclude with the remaining subcase B. Owing to (13.chr), we may assume
u2 = ∂f/∂y′ and, analogously as above, one can obtain an identity of the kind
ω4 = Mω1 +Nω2 + Pω3 with intrinsical coefficients. We shall mention only the
simplest one

P =
∂2f

∂y′2

/
2µu2 =

∂2f

∂y′2

/
2c
(
∂f

∂y′

)1/2

,

which yields the following result: if P is a conical set of functions g(x, y, y′) then
the family of all equations d2y/dx2 = f(x, y, y′) such that P ∈ P (equivalently:
f2
y′y′/fy′ ∈ P) is preserved when transformations (6.chr) are applied.

5 On the Darboux transformation [4]

There exist many mappings (8.chr) of the space x, y, y′ which transform a given
(single) equation (2.chr) into an equation d2Y/dX2 = Q(X)Y . For the sake of
brevity, we shall mention only the particular case q(x) = 0 and the x-preserving
mappings (hence X = x) with Y = Y (x, y, y′) arbitrary. One can then find
Y ′ = ∂Y/∂x+ y′∂Y/∂y and the requirement

Q(x)Y = ∂2Y/∂x2 + 2y′∂2Y/∂x∂y + y′2∂2Y/∂y2 (14.chr)

for the function Y = Y (x, y, y′). Denoting by Y = φ(x), Y = ψ(x) two linearly
independent solutions of equation d2Y/dX2 = Q(X)Y , then (14.chr) is satisfied if

Y (x, y, y′) = α(y − y′x, y′)φ(x) + β(y − y′x, y′)ψ(x),

where α, β are arbitrary functions.
On the other hand, let us suppose the conjecture Y = A(x)y+B(x)y′ which

leads to useful particular results. Then (14.chr) gives Q(Ay +By′) = A′′y +B′′y′ +
2y′A′ and if follows QA = A′′, QB = B′′ + 2A′ whence

A′′B = A(B′′ + 2A′) (15.chr)

by elimination of function Q. Requirement (15.chr) can be explicitly resolved. In par-
ticular, for the choice A = 1, one obtains the famous transformation of equation
y′′ = 0 into the nontrivial equations with Q(x) = cos−2 x or Q(x) = cosh−2 x.

The general case of the equation(2.chr) can be investigated by the same manner,
of course. Then the above conjecture leads to slight generalizations of the familiar
Darboux transformation.
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6 The Laplace series [5], [6]

Turning to partial differential equations, we begin with the general linear hyper-
bolical equation

∂2u

∂x∂y
= a(x, y)

∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u (16.chr)

to transparently illustrate the most important distinctive feature, the possibili-
ty of higher order invertible transformations. One can verify that the function
U = uy − au satisfies a certain equation Uxy = AUx + BUy + CU of the same
kind as (16.chr), and the iteration provides an infinite series of higher order transfor-
mations in the family of equations of the kind (16.chr). Moreover, if ax+ab 6= c then
analogous substitution with variables x, y exchanged yields the inversion. (The
exceptional case ax + ab = c is much easier and may be omitted: then (16.chr) can
be replaced by certain first order linear equations.) So we obtain an infinite in
both direction series of invertible substitutions in the general case, the Laplace
series. (The equation (16.chr) moreover admits a change X = X(x), Y = Y (y)
of independent variables and a linear change of function u; these are however
well-known adaptations. In general, together with the Laplace series, invertible
transformations do not exist, see below.)

The existence of higher order substitutions is possible thanks to the fact that
equation (16.chr) is considered in the infinite-dimensional space with coordinates

x, y, u, ur ≡ ∂ru/∂xr, us ≡ ∂su/∂ys (r, s > 0). (17.chr)

Other derivatives usr ≡ ∂r+su/∂xr∂ys (r, s > 0) can be expressed in terms of
them by virtue of the equation (16.chr) and its derivatives.

7 The Laplace coframe

Passing to the nonlinear case, we shall mention a hyperbolical equation

∂2u

∂x∂y
= f

(
∂2u

∂x2
,
∂2u

∂y2
,
∂u

∂x
,
∂u

∂y
, u, x, y

)
(18.chr)

again in the space of variables (17.chr). Since then the contact transformations can
be applied, it follows that the previous prominent role of variables x, y, u lost
the sense: it is better to employ the contact form ω = du − u1dx − u1dy and
in general the higher order contact forms should replace the functions usr. Quite
analogously the characteristic vector fields

Z+ = a+∂ + b+δ, Z− = a−∂ + b−δ,

where a+, b+anda−, b− are (real and distinct) roots of the equation a2∂f/∂u2 +
ab+ b2∂f/∂u2 = 0, and

∂ = ∂/∂x+
∞∑
ur+1 ∂/∂ur +

∞∑
Y s−1f∂/∂us,

δ = ∂/∂y +
∑

Xr−1 f∂/∂ur +
∞∑
us+1∂/∂us (19.chr)
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are so called formal derivatives will replace the previous derivative operators
∂/∂x, ∂/∂y in equation (16.chr).

In full detail, (18.chr) expressed in terms of contact forms means that

ω1
1 =

∂f

∂u2
ω2 +

∂f

∂u2
ω2 +

∂f

∂u1
ω1 +

∂f

∂u1
ω1 +

∂f

∂u
ω (20.chr)

(we abbreviate ω0
r ≡ ωr, ω

s
0 ≡ ωs) and using the Lie derivatives L satisfying

L∂ω
s
r ≡ ωsr+1, Lδω

s
r ≡ ωs+1

r , one can express the last identity in the manner

LZ− LZ+ ω = aLZ− ω + bLZ+ ω + cω (21.chr)

quite analogous to (16.chr). (We shall not state rather clumsy formulae for coeffi-
cients a, b, c in terms of the function f .) Then the procedure of Section 6 can be
simulated in terms of contact forms: the form Ω = LZ+ω−aω satisfies a certain
identity

LZ− LZ+Ω = ALZ−Ω +BLZ+Ω + CΩ (22.chr)

and the procedure can be iterated. Moreover, if Z−a + ab 6= c, analogous sub-
stitution with Z+, Z− exchanged yields the inversion. In general, one obtains an
infinite in both direction series of certain differential forms which constitute a
basis in the module of all contact forms, the Laplace coframe.

8 Applications

If the equation Ω = 0 can be expressed by five functions, that means, the Pfaff-
Darboux shape is dU − PdX − QdY = 0 for appropriate U,X, Y, P,Q, then
the functions X,Y may be regarded for independent variables and U for new
unknown satisfying a certain second order equation (as follows from (22.chr)). The
same conclusion can be made for any other term of the Laplace coframe and
it may be proved that all possible invertible transformations into some second
order equation arise only in this manner. Other applications as the Darboux
method, representation of solution of an equation (18.chr) by means solutions of
another such equation, Bäcklund correspondences, are also possible.

9 Example

One can easily investigate the Laplace coframes for the linear equations (16.chr)
and verify that they give the well-known Laplace series of transformations. In
general, Laplace coframes are rather complicated. Therefore we shall mention
only few results concerning the particular equation ∂2u/∂x∂y = g(∂u/∂x) + u
for a transparent example. Identity (20.chr) means that ω1

1 = g′ω1 + ω and (since
Z− = ∂, Z+ = δ are formal derivatives in our case and therefore a = g′, b =
0, c = 1 in identity (21.chr) we have to introduce the form Ω = ω1 − g′ω. One
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can find the Pfaff-Darboux shape Ω = dU − PdX − QdY of this form, where
X = x− g′(u1), Y − y may be taken for new independent variables and

U = u1 − ug′(u1)−G(u1) (G(u1) =
∫

(g − u1g
′)g′′du1) (23.chr)

for new unknown function. Moreover coefficients

P = ∂U/dX = g(u1) + u− u1g
′(u1), Q = ∂U/∂Y = u2 − u1g′(u1) (24.chr)

may be identified with new partial derivatives.Then, looking at the differential
dP , one can find (surprisingly simple) formulae

∂2U/dX2 = u1, ∂
2U/∂X∂Y = u1 (25.chr)

which means that functions (23.chr, 24.chr, 25.chr) are related by the equation

∂2U

∂X∂Y
= U +

(
∂U

∂X
− g

(
∂2U

∂X2

)
+
∂2U

∂X2
g′
(
∂2U

∂X2

))
g′
(
∂2U

∂X2

)
+G

(
∂2U

dX2

)
.

Analogous transformation with the role of x, y exchanged leads to the form
Ω = ω1, the independent variables are preserved, and the new unknown function
U = u1 (obviously) satisfies ∂2U/∂x∂y = g′(U)∂U/∂x + U . Modulo contact
transformations, these are the only possible first order invertible transformations
of the equation under consideration.
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