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ABSTRACT. - We extend the classical theorem (by Sattinger) relating
linear symmetries of the full problem and of the bifurcation equation to
the case of Lie-point, i. e. possibly nonlinear, symmetries. The symmetry
of dynamical systems (ODEs) depending on a parameter is discussed in
detail. We also discuss relation with Poincare’ normal form, and a connec-
tion between bifurcation and "exceptional" symmetry algebras, and how
to extend the present results. We give examples of applications to simple
dynamical systems, including the case in which nonlinear symmetry of the
original problem enforces a linear symmetry of the bifurcation equation.

RESUME. 2014 On donne une extension du theoreme de Sattinger, qui relie
les symetries lineaires de I’équation de bifurcation a celle de 1’equation
originaire, pour Ie cas de symetrie du type Lie-point, donc aussi non
lineaires. Les symetries des systemes dynamiques dependantes d’un para-
metre sont analysees en detail. On considere aussi les relations avec les
formes normales, et une liaison entre la presence de points de bifurcation
et d’algebres de symetrie « exceptionnelles », et comment envisager une
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376 G. CICOGNA AND G. GAETA

extension des resultats presentes ici. On presente aussi des exemples
d’applications de nos resultats a des systemes dynamiques simples, mon-
trant aussi comme une symetrie non lineaire peut etre a 1’origine d’une
symetrie lineaire de 1’equation de bifurcation.

INTRODUCTION

Although the original idea goes back to S. Lie, an increasing interest
has been received in recent years by the role of extended nonlinear

symmetries in the study of differential equations ([Ovs], [Olv], [BC], [BK],
[SW]).

In this paper, we want to analyze the application of this method to
time-evolution differential equations (DE): more precisely, our attention
will be mainly focused on DE arising from bifurcation problems, in which
one is interested in the appearance of nontrivial stationary and/or periodic
solutions when a "control parameter" crosses certain critical values.
As well known, the "standard" approach to symmetry theory, i. e. linear

group representation theory, has been widely applied, with remarkable
success, to symmetric (or "covariant") bifurcation problems (see e. g.

[Sat79], [Van], [Sat83], [GSS], [Gae90a], [CK], and references therein). We
believe that the success of the linear theory makes it interesting, and
possibly useful, our attempt of extending these ideas and methods to the
case of nonlinear Lie-point (LP) symmetries.

After a presentation (suitably oriented in view of the foregoing applica-
tions) of the typical techniques of nonlinear symmetries (section 1 ), and a
short statement of the typical bifurcation problems (section 2), section 3
is devoted to show that the usual projection methods, allowing a reduction
in the dimensionality of the problem, actually "preserves" the symmetry
properties of the problem even in the case of nonlinear symmetries. This
result, well known in the case of linear symmetries ([Sat79], [Sat83], [GSS]),
and first extended to general LP symmetries in [Gae89] is here extended
under a quite general point of view, and the underlying algebraic and
geometrical settings are carefully investigated.

In section 4 we construct and analyze the different types of nonlinear
symmetry generators, and in particular the Lie-point time independent
(LPTI) ones, which are the most relevant in the case of autonomous
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377LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

systems. We analyze the interplay between the properties of these gener-
ators and the presence of bifurcating stationary and/or periodic solutions.

There is also a close relationship between the LPTI symmetries and the
existence of "canonical coordinates" [BK], and the possibility of reducing
the problem into normal (or linear) form according to the classical Poin-
care procedure [Arn]: this aspect is considered in section 5. In section 6
some further algebraic features of the problem are considered. Finally, in
section 7, the possibility of extending the above results to more general
problems and in particular to partial differential equations is briefly
considered.
We provide throughout the paper a series of remarks and examples.

The examples in this paper are rather simple, and are given essentially in
order to clarify and illustrate the algebraic formalism. In other publica-
tions, we will give other examples and applications of this approach, e. g.
to an extension of the "equivariant branching lemma" [Cic], to periodic
solutions of nonlinear dynamical systems [Gae90b], and to problems con-
nected with gauge symmetries [Gae91 ] .

It is actually known that, in general, finding the whole algebra of LP
symmetries admitted by a given system of DE may be a very difficult
task, although it can be find by a completely algorithmic procedure, and
this can also be implemented by computer programs ([Win], CHW]).
Nevertheless, let us emphasize that our results may be used even if not all
of the LP algebra is explicitly known.

Equations, figures, remarks, examples, etc. are numbered separately in
each section; reference e. g. to equation ( 1 ) means equation ( 1 ) in the same
section, while if referring to equations in other sections, we denote them
e. g. by equation ( 1.1 ) .
We would like to thank prof. Tanizhmani for a number of discussions

and interesting questions, and proff. Gawedzki, Cartier, Libermann,
Kossman-Schwarzback, Françoise, Gazeau and Winternitz for inviting us
to report on this work in seminars and conferences. G. G. would also like
to thank prof. R. Seneor for his invitation in the Centre de Physique
Theorique of the Ecole Polytechnique and prof. L. Michel for his invita-
tion in I.H.E.S. and for stimulating discussions.

1. JET SPACE, GEOMETRY AND SYMMETRY
OF DIFFERENTIAL EQUATIONS

In this section, we aim to fix some ideas and notation about jet space,
geometrical approach to DE (differential equations), and the symmetry of
DE and their solutions. Readers already familiar with these topics and
with the principles of bifurcation theory could go directly to section 3.

Vol. 56, n° 4-1992.



378 G. CICOGNA AND G. GAETA

We will necessarily be quite sketchy, and consider only nondegenerate
cases, dealing with the kind of situations we want to consider in the
following. On the other end, we will set a framework more general than
what would be explicitely needed (see section 3 below), in view of the
generalizations to be discussed in section 8.
For a comprehensive introduction to jets, we refer to the original series

of papers by Ehresmann [Ehr]; an introduction is also contained in [GG]
and [Olv]; for symmetries of DE and solutions, and the use of these, see

[BKL [Ovs].
We will in general consider DE in q independent variables (q =1 for

ODE, q &#x3E; 1 for PDE) and p dependent ones; dependent variables will be
denoted by ua, a=l, ... , p, and their space will be denoted by 
independent variables will be denoted by x~, i = 1, ... , q, and their space
will be denoted by If dealing with ODE (q =1 ), the independent
variable will be the time and denoted often by t, its space being sometimes
denoted by T.
We will denote the space X x U by M

so that a function /(~): X --+ U will define a graph 1~ in M

We define prolongations of the space M by considering the direct product
of this by the space of (partial) derivatives of u’s. Let be the space of
n-th order (partial) derivatives of ua.’s with respect to xi’s; then we define

is also called the jet space of order n for M, or the n-th jet space
of M.

Example 1. - If X = R 1, is just the tangent bundle TU; this

corresponds to the space of (applied ) tangent vectors in U.

Remark 1. - Exactly in the same way as we can look at a tangent
vector as an equivalence class of tangent curves, we can look at an n-jet
(a point in the jet space of order n) as an equivalence class of curves with
tangency of order n.

Remar’k 2. - has a natural multi-fibered structure. M can be seen
as a fiber bundle with basis X, fiber U and projection ~: (x, u) -~ x; M(l)
can be seen as a fiber bundle with basis M, fiber and projection
~c~ 1 ~ : (x, u, ux) -~ (x, u), and so on.

If we are dealing with a DE of order n, it is natural to consider the

n-th jet space M(n). In this space, one looks at u ~u ... as independentJ p p &#x3E; &#x3E; p

Annales de l’Institut Henri Poincaré - Physique theorique



379LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

(unrelated) variables; to take into account the relations which actually
exist among them, one introduces a contact structure and a jet connection,
as it will be shortly explained in the following.
Now, a DE of order n in M can be considered as an algebraic equation

in M~"B which defines a manifold S in 
Explicitely, for a (system of) DE

one has that d is a function

(where k is the number of equations in the system), and (5) identifies a
manifold Sd c which is the zero level set of ð:

This is called the solution manifold for ~; we will identify equations
having the same solution manifold.

Let us now consider a function

As we have remarked above, this identifies a surface r f c M, but it
does also implicitely define a surface r~ c M~. Infacts, once f is given,
its (partial) derivatives of any order are given as well.

Let us denote by / a multiindex then we write

With this, r~ is given by

where u~ = C~~ 2t E 2~~n~.
Remark 3. - Notice that 

The surface (curve if i. e. for ODE) r~ is called the lift of
0393f~M to M(n), coherently with the picture as a multi-fibered space
over M.

The reader familiar with differential geometry will have noticed that
this corresponds to giving the natural connection in jet space. In physicists’
notation, if we move along the curve and/(8)=/(x(9)), with

Vol. 56, n° 4-1992.



380 G. CICOGNA AND G. GAETA

then it follows

and so on.
This operation of lifting is related to the contact structure mentioned

above: as told before, we should look at x~, u«, M?, ... as independent
variables. Then, for a given function/: X ~ U; f = (/B ...,/"), the require-
ment

corresponds to the assignement to each point of of an hyperplane.
The field of hyperplanes so defined is a contact structure of 
The lift r~ of the graph r f of a function u = f (x) in M will then be

tangent in any point of r~ to this field of hyperplanes, and conversely
any curve in everywhere tangent to the hyperplanes of the contact
structure (this is also called a curve compatible with the contact structure)
is the lift of a curve in M.

Therefore, a solution to the DE (5) is a function f : X -+ U whose lift
lies in So

or, conversely, is a curve in Se which is compatible with the contact
structure.

Example 2. - Let X = R 1 = U, and n =1, The
contact structure is depicted in Figure 1, while the solution manifold is
shown in Figure 2. By considering the intersection of the planes of the
contact structure with So, we get a direction field on So, which can be
projected down to M by

to get, obviously, the curves as depicted in Figure 3.
Now that we have reached an understanding of the geometrical meaning

(in jet space) of a DE and its solutions, we can discuss its Lie-point
symmetries from a geometrical point of view.

Let

be a tangent vector field on M, 11 : M -+ TM (in the case of ODE we will
use also the notation ~ =03C4~t+03C6~u). This is naturally lifted by the jet
connection defined above to a vector field ~~"~ on 

Annales de l’Institut Henri Poincaré - Physique " theorique "



381LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

FtG. 1. - The contact structure. FIG. 2. - The solution manifold.

FiG. 3. - Solutions in the plane (x, u).

If ~ is given by (14), then h(n) is given by

where

and D.1 the total derivative, i. e.

Vol. 56, n° 4-1992.



382 G. CICOGNA AND G. GAETA

We will not prove here (17)~ for which the reader is referred to [Olv],
[BK]; this is also called the prolongation .formula and provides an explicit
form of the jet connection.
The vector field 11 induces a vector field ~ in 03BE the space of differentia-

ble functions f : X ~ U; if

then the action in ~ is given by

where

This is easily seen as follows: if p ~ M is a point in 0393f, p=(x,f(x)), then
will be in r~. But from ( 19) we get

and given the first of ( 19) again, we have

Putting this into (22), we get indeed (21).
Now, it is quite clear what we do mean by the Lie algebra of ( point)

symmetries of 0394 or of f

DEFINITION. ’- Given a DE 1B (x, u~n}) = 0, its symmetry algebra is the

algebra of vector fields M -+- TM such that

or, equivalently, such that

DEFINITION. - Given a function /: X -~ U, corresponding to a graph
0393f c M, its symmetry algebra 03BEf is the algebra of vector fields

11 : M ~ TM such that

or, equivalently, such that

where ~ is defined by (19), (20).

Annales de l’Institut Henri Poincaré - Physique theorique



383LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

In other terms, one can consider the Lie groups Go, G f c Diff(M),
defined by

where is the n-th prolongation of Bj/. The Lie algebra of G A is that

Remark 4. - This r;g f corresponds to vector fields leaving the graph ~~.
of f unvaried, but by no means it is restricted to vector fields leaving
points of fixed. Consider, e. g., the vector field

corresponding to time evolution of solutions,

inserting ~ = 1, into (21) we 
Under Gd, or better its n-th prolongation G~B solutions (i. e. surfaces

r~ c SA) are transformed into - generally, different - solution. We will
denote the subgroup of Ge which leaves r~ invariant as G~, and similarly
for its Lie algebra

For a full discussion of the determination and the use of Ga, g ¿B in
looking for solutions of DE, we refer to [BK], [Ovs].

2. BIFURCATION PROBLEMS: GENERAL SETTING

This paper is devoted to point out some applications of the techniques
and ideas presented in the above section to systems of time-evolution DE
(or "dynamical systems"), which depend on some real parameter À (in
physical terms, a "control parameter"), as typically occurs in bifurcation
theory.

Let us state the problem in the following standard form. Let

be a real time-dependent vector, ~, E R, and consider the system of ODE

where and are given smooth (e. g.
analytical) functions defined in a neighbourood A x U of the origin in

Vol. 56, n° 4-1992.



384 G. CICOGNA AND G. GAETA

R x Rn. As usual in bifurcation theory, we assume the existence of a
stationary "trivial" solution uo of(l), 

where, with no loss of generality, we can put

Assume now that the linear part of G

at (we can put Ao = 0) has some eigenvalue with

("critical eigenvalue"): the classical bifurcation problem
amounts to looking for nonzero solutions of(l) branching from ~o=0.
We will be concerned only with continuous branches of solutions, either
stationary (M=0), or periodic (Hopf bifurcation) tending to zero when
A --+ Ao = O. For sufficient conditions ensuring the existence of such
branches of solutions, i. e. that a bifurcation takes place, we refer to [CH],
[11], [Sat79], [GH], [Rue89].

It would be possible to generalize ( 1 ) supposing that u (t) belongs to a
infinite dimensional function space (e. g. a Banach or Hilbert space): in
this case, one would have to assume Lo = L (Ào) a zero-index Fredholm
operator with the noncritical part of its spectrum lying at finite distance
from the imaginary axis at another (simpler) generalization is to

consider 03BB as a multiparameter, 03BB~ Rp. For sake of simplicity, we will not
investigate this possibility. Similarly, we will assume that the critical

eigenvalues of Lo = L (o) are semisimple, in such a way that, denoting by
the subspace spanned by the corresponding eigenvectors, and R

the range of Lo, one may simply decompose

and use standard Lyapunov-Schmidt projection procedure ([Sat73], [Sat79],
[IJ]) in order to convert the original equation ( 1 ) to the reduced form

as usual (some detail of this reduction will be recalled in the next section).
Another procedure commonly used to reduce the dimensionality of the

original problem ( 1 ) is based on Center Manifold technique ([Rue89],
[GH], [HPS]). Here, one has to assume that all noncritical eigenvalues ~i
have Since the Center Manifold is a (local) invariant manifold,
one is allowed to consider the restriction of the problem to it, in the form

Annales de l’Institut Henri Poincaré - Physique theorique



385LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

(where Mk is the center manifold, tangent in 0 to ~); the asymptotic
solutions to the full problem ( 1 ) are obtained as solutions of this restricted
problem ([Rue89], [GH]).

It is a well known result ([Sat79], [Sat83], [GSS]) that, if the original
problem ( 1 ) has some symmetry property ("covariance") under a linear
representation T (g) of some group r, i. e. if

G(~T(~)=T(~)G(~), Vger (7)
then the same property is inherited by the reduced problem (6), through
the reduced representation operating in the critical subspace, which is

necessarily an invariant subspace for the linear representation T. In the
next section, we shall show that an analogous result holds for the Lie
point time-independent symmetries, and point out the geometrical and
algebraic settings underlying this result.

3. LIE-POINT SYMMETRIES AND BIFURCATION

In this section, we extend the results contained in [Gae89] concerning
the relation of the (Lie-Point) symmetries of the original equation and of
the corresponding bifurcation equation.
We will discuss fully the case in which one is interested in bifurcation

of stationary solutions, so that we can think of the bifurcation equation
as obtained by means of a Lyapounov-Schmidt reduction ([IJ], [Sat73],
[Sat79]).
For the extension to the case of Hopf bifurcation, and to the case the

bifurcation equation is obtained by a center manifold reduction, we will
present some short remarks in section 7.

Let

be the original problem, and as usual

where À-o is the bifurcation point (with no loss of generality, we can put
À-o = 0 and Mo=0); let

where we have supposed Lo has semisimple eigenvalues.

Vol. 56, n° 4-1992.
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Remark 1. - Now La is an n x n real matrix, such that we can block
diagonalize it and have

which we will assume in general for ease of notation. Notice that it would
suffice that the cr~itical eigenvalues of Lo are semisimple.

Remark 2. - In the diagonalization we can be forced to pass to a
complex matrix; in particular this will always be the case when we are in
the presence of an Hopf bifurcation ([IJ], [Sat79], [CH], [MM]), due to
the pair (± i) of complex conjugate eigenvalues with nonzero imaginary
part which are responsible for the bifurcation.

Renzark 3. - For bifurcation of stationary solutions the critical eigenva-
lues are real, so that we can perform a partial change of basis, taking as
M~...,~ eigenvectors corresponding to the critical eigenvalues, and
choose for i = k + 1, ... , n real ui such that (ui,uj)=0, b j =1, ... , k. In
the new basis, Lo is still a real matrix, it is in (k 0 (n - k)) block form,
and the k-dimensional block is diagonalized.
Now, let P and Q be projection operators,

and let us take, as usual,

Let us correspondingly consider the equations

Now we solve (8) for w as a function of À and v

This is locally a one to one function, so it identifies a (local) mani-
fold W c A x R" which can be mapped to [a neighbourhood of

(~P~)=(0,0)~]Ax~.
We can then consider the restriction of (9) to this manifold; this means

considering

and the function ~ on the manifold W can be seen as a function on the

space A x ~V’ from which W is lifted, i. e.

Annales de l’Institut Henri Paiyacarsé - Physique " theorique "
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or, we have the commutative diagram

For later reference, we denote by p the operator which restricts functions
defined on A x R" to the manifold W,

and o Jf the operator which lifts a point % to the corresponding §
point in W, ’

4. - p and ~f are defined only in a neighbourhood of (Âo, v.p),
[notice that ~(~o~o)’==0], since A itself is defined only locally,

and W is a local manifold.
Now, let us consider the case in which (1) admits some nontrivial 

point the algebra of diHerentiable vector
fields on let ~ ~ be its (Lie-point) symmetry algebra, and let

-{ 11 l’ ..., 114} be a basis of it

We will m general write a vector R") as

- Equation (1) can-and 0 must-be supplemented with the
equation

In this way, ~, is on the same footing as variables, and we have a
normal ODE in to which usual symmetry criteria can be

applied. Anyway, we find it more convenient to maintain the notational
distinction between À and the M’s.

According to the general procedures, in (19) we should
have a dependence of cp and v on the time as well, and moreover a

supplementary Since we are looking for stationary sol-
utions, i.e. solutions of an in which time does not

enter, it is quite natural to restrict our attention to ~ of the form (19):
infacts, for stationary solutions (and equations), ~t is a trivial symmetry,

Vol 56, nQ 4-~992.
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and a dependence of on t could only be equivalent to a time-
dependent change of basis. We will return in later sections to the subject
of "trivial" symmetries and on the role of time in symmetries.

Remark 7. - Actually some restrictions on ( 19) are possible and in
order. We will discuss them in the next section.

Let us now consider the restriction of these ~i’s to W

We will decompose 03BEi into a tangent and a normal (to W) part:

Remark 8. - 03BETi and 03BENi are sections, respectively, of the tangent and
normal bundles of W, TW and NW.
Now, let us consider the stationary solution manifold SG for ( 1 ):

The bifurcation theorem ensures (see section 6) that for  in a neighbour-
hood of SG can be decomposed as

where U. represents disjoint union, SG represents "big" solutions,

and

Moreover,

(this follows from general bifurcation construction [CH], [11], [Sat73],
[Sat79], see section 2).

Let us denote Sw the intersection of SG and W. From the above, it
follows

Analogously, let us define the stationary solution manifold SF for ( 11 ),
i. e. for the bifurcation equation

This is

and it is again decomposed as

Remark 9. - Relations similar to (24)-(28) hold O again. We will not
bother the reader by discussing £ them.

Annales de l’Institut Henri Poincaré - Physique " theorique "
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If we consider the lifts of sg and SF to W, we have

The first of these merely reflects the fact that while the
second one is again a translation in geometrical terms of the bifurcation
theorem.

Let us now go back to (22) and notice that

LEMMA I:

Proof. - By definition, is such that

On the other end, we have that W, and Sw n SG = so that

necessarily

From this, it follows that Ç represent symmetries of the restriction of
i. e. of (11).

Remark 9. - For any algebraic equation Q:RnRm, we
have always (trivial ) symmetries of the with f an
arbitrary function f : Rm  Rn satisfying/(0)=0; these correspond to vector
fields which vanish on the solution manifold SQ = ~ x E Rn/Q (x) = 0 }.
Remark 10. - From the definition of symmetry of an (algebraic)

equation, it is clear that one can always add a v. f. of the above type to
any ~ in the symmetry algebra GQ of the equation without changing the
symmetry encoded in ~Q and 11. This suggest that we should be free to
substitute 03BEi by 03BETi with no harm. This will be made precise in the following.
Remark 11. - For an equation LM==0, with L a (partial) differential

operator, remarks 9 and 10 do not apply, as would

correspond to a generalized vector field [Olv]. The same applies to higher
order ODE; it is only for first order ODE that in this way we get Lie
point vector fields.

It is quite obvious that, given (18), the as well generate an algebra,
with the same structure constants as the one generated by the 

LEMMA II:

Notice anyway that even if the x’= 1, ... , d were linearly indepen-
dent, this does not need to be true for the 0161/s: infacts, e. g., two of the

Vol. 56, n° 4-1992.
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could happen to be parallel at a given point or even on the
whole of W, but not on the whole as e. g. the on

any line y = Const. of ~~ _ ~ .~x, ~)}.
From remark 10 we would roughly expect that the algebrae generated

by the and by the are equivalent This is infacts the case.

LEMMA III. - satisfy (18), .then the 
as 

Consider a chart A in W, and a neighbourhood A of A in
Rn, AUW=A; in A choose coordinates such

(~~)/~=0 }. If in A lli is written

then on A ~1 is written

where

We will write for short (40) in the form

Then the decomposition (22) is simply

Let us now consider çj] using the notation (42):

If now we introduce the projection operator which associates to a
v. f. on W with values in T(A x its component in 

then (44) reads

Now we just notice that from (37) it follows that

Annales de Poincaré - Physique theorique



391LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

and we have

In the previous notation, this just reads

and completes the proof..
If we introduce the restriction operator p, which restricts v. f. defined

in Rn to the manifold W,

we have for the v. f. 

(we will denote 03BETi by ~i in the following), and at the algebra level

In this language, lemmas II and III reads

LEMMA IV. - The algebrae G1 1 and 0393w are homeomorphic; the algebrae
~w and ~~ are isomorphic. In other words, p is an algebra homeomorphism,
0) an algebra isomorphism.
From the above discussion it also follows that, denoting by the

symmetry algebra of f = o, equation (11), one has the

LEMMA V:

Rerrcark 12. - We stress that one has no a priori reason to expect the
equality sign to hold in (53): in fact, it is not difficult to think of a v. f.

11* such that 11* : TSw but does not in general satisfy 11* : SG  TSG,
i. e. such that it does not satisfy 11* : S~ -~ TS~ [see equation (24)].
Remark 13. - The discussion conducted up to now did actually use

only the decomposition (24) of SG, and (26), (28) in order to ensure (36).
It therefore applies in more general cases than that of bifurcation problems.
Remark 14. - In the case of bifurcation problems, we expect the

degeneracy of critical eigenvalues is fully due to the symmetry, or it could
be removed by a small perturbation of the equation [Rue?3]. This means
that ~’=1, ....~ do span TxW in general for any and any

is a function i. e. the equality sign applies in (53).
Remark 15. - This is perhaps an appropriate point to stress that all

our discussion does not consider discrete symmetries of (1), (11), or (29),

Vol. 56, n° 4-1992.



392 G. CICOGNA AND G. GAETA

which too are possible. For the relevance of these in connection with the
reduction from (1) to (29), see [GMS].
Given the local isomorphism between Wand A x (we will from now

on denote A x by ~), it is natural to think of pro~ jecting the tangent
v. f. xi’s on W to tangent v. f. on ~; this should give an isomorphism of
algebrae, as in fact it does.

Let us introduce the invertible operator 8, associating to a v. f.

x : W -~ TW a v. f. (3 : ~ --~ by the natural projection; i. e. 8 acts on
W c A x R" as I x P, where P is the projection introduced in (6), and on
TW ~ TA TRn as

Remark 16. - 9 is the inverse " of with ~f defined o in ( 16).
We consider then the v. f. xi’s obtained o as above, and o associate " to them

the v. f. 1

From the invertibility of e and the fact W is locally a smooth regular
manifold, it follows that, if is the algebra generated by the (the e
stands for inherited),

then we have

LEMMA VI. - The algebrae GF and GF are isomorphic.
One has moreover that, given (18), (37), (38) and (55), then the key

lemma follows:

LEMMA VII:

Proo, f ’. - The v. f. xi = Ç can be " written as

?C~ (À, (À, v)) av + ~~ (À, (À, v)) ~~ (À, (À, v)) ~ (57)
The condition W -~ TW implies (in physicists’ notation)

or more precisely

In the notation of (57), ~3i is given by

where
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We stress that the (p, v are functions of (~ v),

while the cp, v are functions of (~ v, w),

independently of the fact that in (57) only their restriction to W c A x R"
does appear.

Therefore, from (60) it follows

Let us now consider {~ P~]. We have

which, using (60) and (63), becomes

If now we use (58), (57), this can be rewritten as

which can also be written as

From (49) we have

which, applying 8 to both sides, gives explicitely

and completes the proof..
Remark 17. - Such a detailed computation was actually not needed,

but we have preferred to include it for completeness.
Remark 18. - In (68) one would clearly have
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The notation ~~ in (55’) could suggest that this is (part of) the

symmetry algebra of the bifurcation equation (29). This is in fact the case,
as it follows from remark 16 and ( 13). If we denote by ~F the symmetry
algebra of the bifurcation equation ( 19), we then have

LEMMA VIII:

Remark 19. - This can be recast in the language of solution manifolds
as follows: the solution manifold SF c ~ of (29) satisfies

where P is defined in (6). By (54) it is obvious that

where ø = ox.
From the previous lemmas it follows

LEMMA IX. - The symmetry algebra o, f ’ the bifurcation equation (29) is
a subalgebra of the symmetry algebra of the full equation ( 1 ).

It may be worth summarizing the results of this section in the

PROPOSITION. - Given the full equation A (À, u) = 0 and its bifurcation
equation F (À, v) = 0, let ~1 1 be the symmetry algebra of the full equation,
and let G1 1 be spanned by { 111’ ... , ~d }. Then the algebra G(e)F = 8 . p 

spanned by the (in general, not independent) vector fields ~ ~31, ... , 
(3i = (8. p) is contained in (generically, is equal to) the symmetry algebra
GF of the bifurcation equation. The composed operator 03A6 = 8 . p is an

algebra homeomorphism; is homeomorphic to  1 and isomorphic to one
of its subalgebras, and therefore such is generically also GF. The structure 

..

constants of in the basis {03B2i} are mutuated from those of G 1 in the

basis {~i }, 1. e. [~i, ~j] - ct ~ [03B2v 03B2j] =Ckij 03B2k. ~
It can also be worth reexpressing the above results in a less abstract

setting. Using coordinates v, w in V, V 1., rewrite 11 as

Then we have in explicit terms

and

Example. - We think it is worth considering in detail a concrete,
although elementary, example. We look for stationary solutions of
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bifurcating £ from at ~=~=0. Here " xEV=R1, 
It is immediate ’ to see " that stationary solutions to (74) are ’ given by

but let us anyway check our construction works correctly in this case.
Solving X(2) = 0 gives

and the bifurcation equation is

Now, let us write as before

The action of this on X gives

and the condition to have that 11 generates a symmetry ofX=0, i. e. that

~.X]~=0, reads

i. e. the symmetries of are generated by

an arbitrary function.
It is immediate to check that such leaves the manifold W defined

by (76) invariant, and that (58) is satisfied.
According to our general discussion, the vector field

i. e. in this case with ~=~(~,~) an arbitrary
function, should generate a symmetry of the bifurcation equation (77).

Actually, by writing

we see that

and on ~ = {(1, ~)/X = ~ }, for F (~, ~c) = 0, the above reads

7.~., our construction gave all the LPTI symmetries of the bifurcation
equation.
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A less trivial example will be given in the next section, dealing with a
case in which the present setting is actually more powerful than the one
based on linear symmetries alone.

It could also be useful to resume some of the (final and intermediate)
results and constructions of this section in terms of diagrams, which we
do here:

4. GENERAL SYMMETRIES FOR SYSTEMS OF ODE’s

Let us now state some general results concerning Lie point-symmetries
(LP) for systems of time-evolution first-order ODE’s, depending on a real
parameter ~:

where f is a given smooth vector field; we consider also for a moment
(until otherwise stated) the possibility that the system is nonautonomous:

As explained in section 3, we have added the equation ( 12) for the

parameter ~, in order to apply, in a more convenient way, the general
methods discussed in sections 1 and 3. The results below come essentially
from a technique already used by Ovsjannikov [Ovs] also [Olv], [BK]),
and suitably adapted to the present case.

l’Institut Henri Poincaré - Physique theorique



397LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

Remark 1. - If the above system ( 1 ) is viewed as a bifurcation problem,
all results from now on are true both if equation (1) describes the "origi-
nal" problem [i. e. in the form of equation (2 .1 )], and if it describes the
"reduced" problem (i. e. obtained after reduction through either Lyapu-
nov-Schmidt projection or Center-Manifold procedure).

According to sections 1 and 3, we are looking now for the LP symmetries
admitted by problem (1): the Lie generators of these symmetries are vector
field operators of the form ,

where ...; It can be useful to remark that the
usual case of linear symmetries would correspond within this formalism
to restrict the opera tors 11 to the form

where C is a constant matrix, i. e. to the case of linear diffeomorphisms.
The condition that the general operator (2) is a symmetry generator

admitted by ( 1 ) takes explicitly the form

Putting

one finds that equation (32) is transformed into

Therefore, one can say:

PROPOSITION 1. - Any system of ODE’s ( 1 ) admits LP symmetry gener-
ators (2) of the following types:

1 V- 8. = 0 1. e.

for any arbitrary function t (À, u, t);
(ii) T=0 and v, 8i satisfying £ (31) and (5).
If the system is autonomous, (3) are satisfied also by
(iii) T= 1, v=(p~=0, i. e. (as obvious)

We shall consider, from now on, only autonomous problems. For these,
time-independent symmetry generators are of special interest: they satisfy

which can be equivalently written in terms of a Lie commutator [Gae]
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For autonomous systems, equations (6) admit the obvious solution v = 0;

which is equivalent, once applied to a solution u (A~ t), to the time transla-
tion generator (~; in fact it produces the transformation

But this gives no real information on the problem of finding new
solutions, indeed the result that also M(~,/+8) is a solution is a trivial

consequence of the property of the system of being autonomous. Similarly,
symmetries of type (i ) in Proposition 1 are not useful in this sense, in fact
they satisfy

[with the notations of ( 1.19-21 ) and ( 1. 27)], so they belong to the algebra
corresponding to the flow of the equation itself.

For what concerns the functions v, we can see that it is sufficient to
consider only the two possibilities v = 0 and e. g. v=l; we have in fact
that if v, ei satisfy (3) and (5), also v’ = v N (v), for any smooth
function N (v), satisfy the same conditions.

Before discussing the properties of these symmetries, let us give a

method for constructing all solutions of (5) (cf [Ovs], [Olv], [BK]), i. e. all

symmetries of type (ii) in Proposition 1. Let ~=~(~M,~) satisfy the

following linear PDE

Assume that one can find n functionally independent solutions y~, ... ~
in some open domain; let us put (this choice is made in order to have

agreement with the above choice for v)

and let be defined by the linear system

Then, it can be shown that

and

are n + 1 independent symmetry generators. In addition, if~==~(~,M,~) is
any solution of ( 10), and 11 any symmetry, then also ~’ = y ~ is a symmetry
[this is true of course also for symmetries (i) and (ii ) of Proposition 1].

In order to understand the physical meaning of these results, we can
observe that (10) defines precisely the "integrals of motion" of (1): if
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is a solution of (1) with initial datum then y (~,, u, t) is
constant along u. Therefore, 11 and 11’ have the same effect once applied
to a solution. This fact allows us to consider 11 and 11’ as "identical"

symmetries and, when enumerating the possible independent symmetries,
to look only for truly different symmetries.
Remark 2. - Writing now the characteristic equations associated to (10)

we see that one could - in principle - obtain just one integral of the form

and conserved quantities y2, ... , yn independent of time. Including
yn + ~ _ ~, the procedure ( 12)-( 14) then provides n + I symmetries all inde-
pendent of time. It is clear that this construction is closely related to the
problem of finding "canonical coordinates" for the system ( 1 ):
assuming in fact yl, ... y~ as new coordinates, one obtains

However, it is known that the existence of n functionally independent
integrals yi can in general be granted only locally, this point being related
also to the existence of regions where the system behaves chaotically.

Summarizing, we have:

PROPOSITION 2. - Given any solutian u (À, t) af (1), there are, generically,
n independent Lie-point time-independent symmetry generators not trans-
farming u into itself; one further symmetry simply produces the trans-

.formation u (À, t) ~ u (À, t + E). All other symmetries can be abtained multi-
plying these by an integral of motion. It is possible to choose these n + 1
generators in such a way that only one has 0 and therefore involves
changes in the parameter À. O.

Let us comment on the meaning of these symmetries. Apart from the
time translation (7), the n - 1 generators ~o with v = 0 express the property
of the vector field f of "being transformed under the symmetry as the
variables ui", i. e. a "generalized covariance" of equation (1) (with fixed
À), extending to LP symmetries the covariance property (2. 7). Assume in
fact that the functions 8~ in (4 . 6) are written in the form

where 0 is a matrix (possibly depending on À) and B)/~(~M) are
higher order terms. Then, condition (6) with v = 0 implies in particular
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where L=L(~)==~/(~,0). This is precisely the typical relation, well
known in standard (via linear representations) covariant bifurcation theory
([Sat79], [Sat83], in the case of a Lie group of linear transforma-

tions, in fact, and E&#x3E; is the matrix representing the Lie generators
of this group in R", and (19) follows from (2. 7).

In order to investigate the properties of the additional symmetry Th.
having v= 1, let us consider first the particular class of solutions of ( 1 )
corresponding to bifurcations of non-trivial stationary solutions, u = O. In
this case, conditions (6) become

Recalling that/~0)==0 and then ~/~0)=0 along the trivial branch
S° where u° = 0, one obtains from (20) that along this branch, whenever

all symmetries have

and the only one remaining is

which generates just the translation ~ -~+s along the trivial branch S .
Then, the well known necessary condition det L (A) = 0 for the appearance
of bifurcating nontrivial solutions naturally arises in this context.
Assume there is a continuous bifurcating branch, parametrized by a

real parameter s:

then

which is the same as (20) with the identification

and this allows to interpret r~~ = 8i ai + v a~ as the generator of translations
along the bifurcating branch. More in detail, let be a point
in a bifurcating branch; if

the above condition (22’) uniquely determines Oi in terms of v (we can fix
e. g. v =1 ), and then the symmetry generating translations along the
branch. If instead

then other symmetries 110 with v = 0 I are " allowed, and o they generate " motions
in the "plane" À = À1, and o correspond o to the existence " of a manifold o Sb
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with dimension &#x3E;1, of bifurcating stationary solutions; these symmetries
leave the intersection of Sb with the hyperplane À = À1 invariant.

Similar results about the role of the generators 110 and 111.. hold essentially
unchanged also for the case of the Hopf bifurcation of periodic solutions.
In agreement with Proposition 2, symmetries 110 having v = 0 (if any) will
connect different bifurcating solutions with the same value of the

parameter À, whereas the symmetry 111.. with will produce changes
along the branching manifold, corresponding to changes of the para-
meter À. This symmetry will connect a periodic solution with another
similar (i. e. periodic) solution, but clearly in general with different period
(as independently known from usual Hopf bifurcation theory). In order
to take into account this fact, it is usual ([Sat79], [IJ]) to introduce a new
real parameter o and a new time variable t’

in such a way that all periodic solutions have period 2 ~c in the rescaled
time t’. As a consequence, we can introduce the new equation to the
system ( 1 )

which produces an additional time dependent symmetry generator of the
form (with aw = 

Using again the same procedure as for obtaining ( 12)-( 14), and
remembering the form ( 16) of the integral we can obtain for the above

generator ~03C9 the expression

In order to clarify their action, it can be useful to give the explicit
expression of the generators 110 and l1Â in the following well known and
very simple example [in which, for simplicity, the change of variable (24)
is unnecessary, the frequency (o of the bifurcating solutions being in fact
fixed].

Example 1. - With u2 = y, let

where Õ is any constant (possibly 0). Apart from and the SO (2)
symmetry generator
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the other symmetry generator, according to Proposition 2, is given by

Applying these generators to a generic solution, we obtain other sol-
utions of (28), but once on the branch uo = 0 (and À 7~ 0) we obtain just

as expected, and we remain on the trivial branch. When on the branch
~, = x2 + y2, we have

and we see that we remain on the manifold Sb of bifurcating solutions
applying to Sb both generators (32) and (29).

This example shows that the generator III (32) becomes singular at the
bifurcation point M=0, ~==0. Alternatively, recalling the arbitrariness in
the function v, one could choose for instead of (32), the form

but with this choice r~=0 at the bifurcation point. It is clear that this
fact is generically true for any bifurcation point [roughly, 1l~ should give
À -4 À + E, uo -4 uo along the trivial solution u = uo = 0, and À -4 À + s,
u -4 u + 8M, 0 along the bifurcating branch, so that the unicity of the
limit for (À, ~.) -4 (0,0) along the trivial and the bifurcating branch imposes
~=0].

It is interesting now to distinguish the two cases ~ ~ 0 and 8=0 in
problem (28). If 8~0, we have periodic Hopf bifurcation on the manifold
~, = x2 + y2, and, on this manifold, we obtain also

Remark 3. - The above result (33), i. e. the identification of the

generator of time shift ~-~+8 in periodic solutions with one of the
other 11 symmetry generators [precisely with the SO (2) generator] is actu-
ally true for any generic Hopf bifurcation: it is known in fact that in
standard Hopf bifurcation the time shift t -~ /+8 is equivalent to a linear
transformation in the R2 space of solutions (introducing normal forms
(see next section) this is just a SO (2) rotation [GS]).

Remark 4. - In agreement with a result given in [Wul], if the periodic
bifurcating solution is (for fixed À) a "limit cycle", then all symmetries 110
(but not 111.) become trivial, i. e. either are zero or coincide with a multiple
of 11, on the bifurcating branch.
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If instead 8==0 in (28), we meet the case on ~, = x~ + y2,
and in fact a 2-dimensional manifold of stationary bifurcating solutions is
present in this case.

5. - Notice, incidentally, that combining the symmetries of
type (i) of Proposition 1 with the remaining l1l and 11/, one can obtain
some interesting (time-dependent) symmetry generators: for the above

example (28) with 8=0, we can construct, e. g., the generator

corresponding to the symmetry of the problem under the scaling transform-
ation t --~ texp (- 2 E), X 
The main points of the above discussion can be summarized in the two

following statements:

Remark 6. - Along the stationary solutions, one has clearly ~f~0.
This fact, together with Remarks 3 and 4 above, give a characterization
in terms of purely algebraic properties, concerning LP symmetries, of
stationary and periodic bifurcations.

PROPOSITION 3. - The submanifold of stationary bifurcating salutions,
and that of periodic bifurcating solutions, are left invariant by the action of
the n + 1 symmetry generators given in Proposition 2.
The following examples will show how these ideas may concretely work:

the first one is actually rather simple, but allows us to provide the explicit
expression in closed form of all its symmetry generators; the other example
may be useful in order to show and stress that the method can be applied
even if not all of the LP symmetry is known.

Example 2 [here and in the following example, M=(~,~,z)~R~j:

where f, g h are given regular real functions. Apart from [defined in
(7)], this problem admits the following simple symmetries generated by

which are independent of the explicit expression of the functions f’, g, h.
The generator 11). can be obtained using ( 14) and can be written in the
form

where 03A6 is an integral function of (integrated with respect to
the variable z), ’I’1 1 of g/[2 ( f + h)], q 2 of f/[z ( f + h)). It can be easily
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verified that in the case /x=0, the cones x2 + y2 = Const.  z2 are invariant
manifolds under the flow of the dynamics. With h -_- o, assume that for
À = À *, z = z* ~ 0 one has /(~,z*)=0, ~(~,z*)~0; then all cones

x2 + y2 = Const. x (z*)2 contain a periodic solution (at the fixed level z = z*)
with period 27T/~(~z*). Notice that, in agreement with Proposition 3,
the above symmetries transform periodic solutions into periodic solutions:
precisely, 111 (just according to the Remark 3) produces a "rotation"
of the solution into itself, 112 "dilates" the radius r2 = x2 + y2 of the
solution keeping z = z* fixed, and finally 1l~ changes simultaneously ~, and
x, y, z. The z-axis contains instead a stationary solution z = z*.

Example 3 . - Putting r2 = x2 + y2 and w=z consider now

where f, g, h are given regular real functions. Apart from a LP

symmetry for problems of this form is

Notice that

are invariant curves under 110. then Lyapunov-
Schmidt reduction gives z=0, and the reduced symmetry, evaluated

according to Section 3, becomes the usual rotation around the z-axis:
notice that the original problem (35) is not rotationally symmetric. We
stress that in this case our construction gives some information about the
form (symmetry) of the bifurcation equation which is not obtained from
linear theory. In fact, if we consider the bifurcation equations constructed
on the basis of symmetry data, no information can be provided by the
linear theory, as no linear symmetry is present in the original problem,
while considering the LP symmetry and its restriction 
allows us to state that for any system of the form

the reduced 2-dimensional bifurcation equation is of the form

A different interesting situation occurs choosing, for instance,
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now the whole R3 is the kernel of the linearized problem; in agreement
with Remarks 3 and 6, and Proposition 3, the following bifurcating
solution is found in this case

which corresponds to a periodic solution if g (~, ~,, Â.) #- 0, and to a manifold
of stationary solutions if g (~, ~,, ~) = 0.

Let us briefly mention here that there are other applications based on
the introduction of LP symmetries of the given dynamical problem.
For instance, we can introduce an extension of the "equivariant bifurca-

tion lemma" [GSS] to the case of LP symmetries. We do not give here
the details (see [Cic], [Gae90b]); the argument is similar to that in the
linear case, the main difference being that the role of the linear fixed
subspaces under the symmetry subgroups is played in this case by man-
ifolds. Similarly to the linear case, the main property of these manifolds
is that of being flow-invariant, which allows a reduction of the original
problem to a restricted one. For another application along the same lines,
including an extension to gauge theories, see [Gae91].

5. LIE-POINT SYMMETRIES AND POINCARE NORMAL FORMS

In this section, we examinate the close relationship existing between the
classical problem of transforming the given dynamical system

in the Poincare normal form [Arn] and the presence of LP symmetries.
Since the equations of interest in this section do not involve the control
parameter we simply omit to indicate the dependence on it. First of

all, we write the r. h. s. of equation ( 1 ) as a sum (or series) of different
terms of order m, i. e.

where (u) is a n-vector field whose components are linear combinations
of monomials with m = m 1 + m2 + ... +~~2, ~~0;
we assume now that the functions 8~ (u) appearing in (4 . 4), (4 . 6) can be
constructed as a formal series expansion

where 0 is a constant n X n matrix, as introduced in Section 4, and (u)
have the same meaning as the /~(M). The determining equation (4 . 6) for
e gives, separately for the various orders ~ ~ 2 [at the order m = 1, it gives
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just condition (4.19)]:

(having introduced the shorthand notation

and o so on. All equations in (4) have " the form of "homological equations"
[Arnl)

where at the r. h. s. of each order m the sum is extended to all possible
brackets {/~B ~r~b~ ~ giving monomials of degree m, and DL is the operator

(and similarly for De).
Then, once a matrix e has been chosen in agreement with (4.19), the

r. h. s. of the first line in (4) is known, and we see that if the first p lines
of (4) can be solved, then also the r. h. s. of the equation is
known. But the 1. h. s. are formally identical to those encountered perform-
ing the classical Poincare procedure [Arn] for reducing the original problem
( 1 ) to normal or possibly linear form. Assume now that L can be diagonal-
ized (this is not a restriction, [Arn]), with eigenvalues 6k and eigenvec-
tors ek; denoting by (ul, u2, ... , un) coordinates with respect to the basis
ek, then L also is diagonal in the space of vector-valued monomials um ek,
with eigenvalues

where 1 + ... + and the m-th equation of the system

4 splits into N = n + : - I) equations, N being the number of all

monomials of degree m. Then, each one of these equations can be solved
if the r. h. s. of (5) is never zero, i. e. if all the eigenvalues 6k of L are
nonresonant. But this is precisely the same condition ensuring the solvabil-
ity of each step of the classical Poincare method for reducing the system
( 1 ) to its linear part Therefore, we can say:

PROPOSITION 1. - The sufficient conditions on the eigenvalues of the
linear part L of ( 1 ) which ensure, according to the Poincare procedure, the
reduction of ( 1 ) to the linear form by a formal (resp. converging) series,
ensure also the existence of a LP symmetry written as a formal (resp.
converging) series. 0
The main difference here with respect to Poincare procedure for reduc-

tion to linear or normal forms is the special form of the r. h. s. of all
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equation (4). More precisely, the arbitrariness in the matrix 0 [only condi-
tion (4.19) is to be satisfied] may allow to solve equation (4), even in the
presence of resonances, by choosing 8, whenever possible, in such a way
that also the r. h. s. of all equations in (4) which contain resonant eigenva-
lues is equal to zero. For instance, we have:

PROPOSITION 2. - If all nonlinear terms in the system (1) are reso-

nant, there is at least one linear symmetry, which generates the scaling
ui ~ uiexp(03C3i~), ~ ~ R.

Proof. - All equations (4) can be solved by = 0 for all k, i, choosing

and the numbers pi satisfying all conditions pk = (p, m) for all monomials
appearing in the nonlinear part of the given system (1). The number

of independent solutions p~ of all these conditions gives the number of
the possible linear symmetries admitted by ( 1 ); the hypothesis that all the
appearing monomials are resonant ensures that at least the choice 6i = pr
is a solution..

The above result coincides with one of the results given in [Elp]: indeed,
according to the Poincare-Dulac theorem [Arn], any system ( 1 ) may be
converted, by a formal or converging series, into a system containing only
resonant terms, and the linear symmetry obtained in proposition 2 above
is in facts generated by the linear part of the vector field defining the
dynamical system.
As well known, an example of this situation is given by the standard

Hopf bifurcation problem: at the bifurcation point in facts the eigenvalues
of L are resonant and imaginary ±i03C90 (we can assume here n = 2). Once
reduced to the normal form, the linear symmetry generated according to
Proposition 2 can be written in the form

having introduced the complex vector z = u1 + iu2 as usual: then this

expresses just the known property th t the normal form of this problem
exhibits an explicit covariance under the rotation group S = S02 ([Sat83],
[GS], [GSS]). Reinserting now the control parameter À, a bifurcating
periodic solution, under standard Hopf hypotheses, has the form
z = z where z, co depend on ~,, and the Hopf problem simply
corresponds to a "linearization" [CG86] of the system, where the time
translation plays exactly the role of the linear symmetry mentioned in the
above proposition. For further details, see [CG90].
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6. BIFURCATION POINTS AND SYMMETRY ALGEBRA

We would like to briefly discuss the relation existing between the (LPTI)
symmetry algebra of an equation

and the existence of a bifurcation point for it.
By the implicit function theorem we have, as already recalled [see

section 3, equations (24)-(27)], that in a neighbourhood A c A x U of
(~o? uo) the stationary solution manifold (from now on in this section
we will write SA for for ease of notation) can be written as

where U. denotes disjoint union and Sl represents big solutions, so that
by appropriately reducing the size of A (but keeping it nonzero and finite)
we have

Here and in (2), S~ corresponds to u = uo, while S~ to bifurcating
solutions. One has therefore

FIG. 4.

The situation is depicted in Figure 4 (notice this applies as well, mutatis
mutandis to Hopf bifurcation).

Annales de l’Institut Henri Poincaré - Physique theorique



409LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS

Now, if ~ ~ G0394, by definition 11 : TSo (for 11 LPTI, ~:S(st)0394 ~ TS(st)0394);

by (4) we have, for ~7~0,

On the other end, we have remarked in section 4 that the alge-
bra G0394 contains in particular the where

~1G = at + G (~,, u) au and ~ is the algebra of LPTI symmetries. We have
also seen that in general we can choose one of the vector fields spanning
G00394, say ~1, to be of the form

while all the others can be chosen in the form

Correspondingly, the manifold W of section 3 and the S~, S~ have a
natural fibered structure, i. e. locally

and W~, si (À) are invariant under 

This means that

and for ’111., with (s), Â. _ À (s) ~ a set of bifurcating solutions, i. e.

Sb0394(03BB) E span { ui (s) },

Example. - Let us consider the equation

Then ( 121 ) implies ~(~0)=0, and on the bifurcating manifold

we get ç = x/2 03BB; equivalently we choose
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As for the there is only one such vector field, corresponding 
S0(2):

Notice that if À is considered as a given, not varying, parameter [so th
all LPTI vector fields are of the form (8)] our condition ( 10) reads 
or 8 = 8 ~u (~, - uz)] for ~~o? while e is arbitrary for ~=~0. (Notice th
8 = ~ [u (~, -- u2)] corresponds to a trivial symmetry.)

This corresponds to the fact that in Â. = Â.o, n (~ x R2) = R 2, 
Figure 4. Notice also that ~2~=~- 0
A little thinking shows that the situation met at the end of the abo

example is actually general. We formalize this as follows:

PROPOSITION. - For equation (1), let algebra of LPTI vect
fields leaving invariant, where

Then if ( 1 ) admits a bifurcation point at ~==~0, for  a neighbourho
of Ao in A and A a neighbourhood of (,o, uo) in A x U, the algebrae ~
are isomorphical among them for different u’s for Jl #- Ào, while ~o ~’~~~
made of arbitrary vector fields 8c~~ with e satisfying only 6(~o,0)=C. 
The above discussion furnishes as well the setting to make precise t

requirement that "the degeneration in the critical eigenvalues is entire
due to the symmetry of the problem": this is expressed, in the abo

notation, by the requirement that G00394 acts transitively on S(03BB)0394 for any 03BB ~ 0
We would like to thank professor Tanizhmani for raising the questi

discussed in this section.

7. EXTENSIONS

Up to now we have been discussing autonomous ODE, and actual
only their stationary solutions. In this "final remark" section, we wou
like to comment on the possibility to extend our procedure and results 
more general cases. ..

First of all (as recalled before), the standard bifurcation of period
solutions (Hopf bifurcation) can be reconducted to the setting of t
stationary case and Lyapounov-Schmidt (L/S) reduction by consideri

the (03BB, M) = 2014 2014 G (03BB, u) and introducting the auxilial~ ( ~ )~ ( ~ ) 
~t 

( ~ ) g 

parameter co = where T is the period of the solutions, and o vari
with Â ([11], [Sat79]), or more precisely one has families u = u (s), ~==~(~
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~ _ ~ (s), so there is no difficult in extending our method and results to
Hopf bifurcation.
We also remark that by this (Sattinger-Joseph) approach, the "tempo-

ral" SO (2) symmetry intrinsic to Hopf bifurcation, and corresponding to
time shifts along the periodic solutions is mapped into an explicit ("spa-
tial") SO (2) symmetry in solution space ([GS], [GSS]).
For generic bifurcating solutions, our picture still holds if we consider

only asymptotic solutions. More precisely, we consider the center-unstable
manifold w~~ ([GH], [HPS], [Rue89]) for the system

[Then solutions starting in a neighbourhood of W~u (which is in general
only a local manifold) are exponentially attracted towards and in

particular for t ~ oo all the solutions in a neighbourhood of (u, ~) = (uo, ~o)
belong to 
We can then repeat our treatment of section 3, with the role of W

played by Anyway, now the solutions on the manifold W~~ have
necessarily nearby solutions not contained in W~u (e. g. those converging
to solutions in so that Lemma I of section 3 has no reason to hold;
our discussion extends therefore, if the bifurcation equation is obtained
via a center manifold reduction, only to those symmetries that,
once restricted to satisfy 11 : 
Notice that ~, = 0 ensures that W~~ is fibered as A x W u by invariant

manifolds W u which are tangent to % in uo and depend smoothly on X.
Our treatment does therefore essentially extend to the case of generic

bifurcation for (autonomous) ODE.
Let us now consider the case of (autonomous) time-evolution PDE,

referring again for simplicity to the bifurcation of stationary solutions,
i. e. to the L/S case (the method of Sattinger and Joseph applies anyway
to PDE as well, so this also cover the periodic bifurcation case again).
The L/S reduction has essentially the role of selecting a finite-dimen-

sional function space % c ~, where now the equation would be

B a Banach (at least) space. In this case, W would still be a finite
dimensional manifold, but it is naturally a submanifold of an infinite-
dimensional (function) space.
Now, if we cast the L/S reduction in jet space, as we have done in

section 3, there is a problem: to select a function space, or functions,
means giving conditions on the derivatives of all orders, as only by
knowing derivatives of all orders one can reconstruct functions.

Therefore, in order to see W as a submanifold of jet space, we are forced
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to consider the (formal) infinite-order jet space and infinite order

prolongations of functions [Olv].
By the way, we notice that also imposing boundary conditions does

select a function space, and can therefore be interpreted geometrically a
selecting a (generically, infinite-dimensional) submanifold of Thi
means that when we deal with PDE we are naturally lead, unless we want
to consider only a formal equation, to the infinite order jet space.
At this point, if one is ready to work in M( (0), there is no reason t

consider only Lie-point symmetries rather than generalized ones.
On the other end, our discussion still applies, since we considered

only operations (restriction to a finite-dimensional submanifold Wand
projections from this to the tangent space A x which are still defined

Therefore, our method and results do formally apply to PDE as well, and
the correspondence theorem of section 3 should actually hold for general
ized symmetries of the original equation as well.
We would like to point out that dealing with is customary i

considering generalized symmetries [Olv] and that our method would seem
to be naturally cast, in the PDE case, in the language of diffeities developed
by Vinogradov et al. ([Vin84], [Vin89]). We hope to be able to treat thes
topics in a future work.

It should be remarked, anyway, that recently it was developed a method
to transform e. g. a PDE with Neumann boundary condition on a squar
into a PDE on a torus, the solution of the original problem corresponding
to the solution of the problem on the torus which satisfy some symmetry
conditions; we refer to [Cra] for details and applications of this method
(which can clearly be extended to other geometries). Here we just want t
stress that for certain kinds of boundary conditions a PDE problem can
be set naturally in terms of finite order jets, so that in this case ou
method can be extended to PDE bypassing the problem of consideratio
of boundary conditions.
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