Symmetry and the Chazy Equation

Peter A. Clarkson Peter J. Olver T
Department of Mathematics School of Mathematics
University of Exeter University of Minnesota
Exeter, EX4 4QE Minneapolis, Minnesota
U.K. U.S.A. 55455

e-mail: clarkson@maths.exeter.ac.uk e-mail: olver@ima.umn.edu

Abstract. There are three different actions of the unimodular Lie group SL(2) on
a two-dimensional space. In every case, we show how an ordinary differential equation
admitting SL(2) as a symmetry group can be reduced in order by three, and the solution
recovered from that of the reduced equation via a pair of quadratures and the solution
to a linear second order equation. A particular example is the Chazy equation, whose
general solution can be expressed as a ratio of two solutions to a hypergeometric equation.
The reduction method leads to an alternative formula in terms of solutions to the Lamé
equation, resulting in a surprising transformation between the Lamé and hypergeometric
equations. Finally, we discuss the Painlevé analysis of the singularities of solutions to the
Chazy equation.

1. Introduction.
The simplest of the equations introduced by Chazy, [6],[7],[8], takes the form

Yovs = 2YYns — 3Ys- (1.1)

It arises in the study of third order ordinary differential equations having the “Painlevé
property” that the solutions have only poles for moveable singularities (see also [3],[4]).
The Chazy equation is important since it is the simplest example of an ordinary differential
equation whose solutions have a moveable natural boundary. By a natural boundary we
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mean a closed curve in the complex plane beyond which the solution cannot be analytically
continued. This phenomenon first arises in the case of third order equations. In the case of
Chazy’s equation, the boundary is a circle, and is moveable in the sense that its position
depends on the initial data for the solution. Chazy demonstrated the existence of moveable
boundaries for (1.1) by relating its solutions to those of the linear hypergeometric equation

d?x 1 7Y\ dy 1
t(1—1t) 7 + (2 = 6t> i + X = 0. (1.2)
Given any two independent solutions of this equation, ¢(¢) and (t), define the function
z(t) by =(t) = #(¢)/¥(t). Then z(t) maps the upper half ¢-plane into the interior of a
spherical triangle with angles 0, 1w, i, cf. [18; p. 206]. The inverse function () is the
, %, %), which has a straight line or a circle as a natural
boundary and whose fundamental triangle also has angles 0, %7[’, %7[’. The general solution

of (1.1) is then given by

Schwarzian triangle function S(z;0

6 dy 6dy dt
y(CB) = T T i g

Yvde Y dt dz
and has the same natural boundary as S(z). Thus the general solution of (1.1) is single-
valued in its domain of definition. (In fact, every solution is analytic either in a punctured
plane, or in a domain bounded by a straight line or a circle, the location of which is
dependent on the constants of integration.) Furthermore, the radius and center of this
circle can be specified by the “initial conditions,” i.e., in terms of y, y, and y,, at some
given point z,, cf. [1].

The Chazy equation is deeply connected to special automorphic functions (elliptic
modular functions) which arise in various branches of mathematics, in particular number
theory. (See, for example, [23] for further details.) A Painlevé analysis demonstrates that

the Chazy equation also possesses three “negative resonances” about which there is much
current interest, cf. [10],[11], and §6 below.

In recent years the Chazy equation (1.1) has assumed added importance since it
appears as a reduction of the self-dual Yang-Mills (SDYM) equations, [5]. Ward [24]
conjectured that in some sense all soliton equations arise as special cases of the SDYM
equations. Subsequently many of the well-known soliton equations, such as the Korteweg-
de Vries, nonlinear Schrodinger, sine-Gordon, Kadomtsev-Petviashvili, Davey-Stewartson,
and Painlevé equations, have been discovered to be exact or asymptotic reductions of the
SDYM equations (¢f. [1]). All these classical soliton equations arise when it is assumed that
the Yang-Mills potentials take values in a finite-dimensional Lie algebra such as su(2). By
contrast, the Chazy equation arises when it is assumed that the Yang-Mills potentials take
values in the infinite-dimensional Lie algebra s0iff(SU(2)) of all “divergence-free” vector
fields on SU(2), [5]; in fact, the Chazy equation is perhaps the simplest equation that
arises from an infinite-dimensional Lie algebra. Therefore, the Chazy equation plays an
important role in soliton theory and integrable systems.

We remark that the Chazy equation (1.1) also arises as a reduction of the stationary,
incompressible Prandtl boundary layer equations (cf. [22])

Doy = Pyeq — ety (1.3)
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Using the classical Lie method of infinitesimal transformations (¢f. [19]) we obtain the
similarity reduction

P(&n) = Py(z), ==+ f(6),
where f(£) is an arbitrary function. Substituting this into (1.3) yields

which, in the special case 3 = 2, is the Chazy equation (1.1).

The Chazy equation (1.1) is known to admit a three-dimensional symmetry group of
unimodular transformations, with infinitesimal generators

0 z0, — yo

z? T y°?

2?0, — (2zy + 6)9,. (1.4)

However, its reduction using well-established symmetry methods, [19], is not as straight-
forward as one might suppose. The first two generators can be used to reduce (1.1) to a
first order equation (¢f. [14]). However the third generator does not reduce this resulting
equation. In this paper we show that its symmetry group is the most complicated of the
three known unimodular group actions on a two-dimensional complex manifold, as classi-
fied by Lie. We describe a simple connection between these three actions via the standard
prolongation process, and use this to inter-relate their differential invariants. The known
integration method for the basic unimodular action can then be applied to determine a
solution method for the general SL(2)-invariant ordinary differential equation, including
the Chazy equation as a special case. Finally, we show how the solutions to the Chazy
equation can be constructed from that of the Lamé equation, which can be (surprisingly)
related to the hypergeometric equation (1.2) via an elliptic change of variables.

2. Planar Actions of the Unimodular Group.

According to Lie’s classification of Lie group actions, [17], there are precisely three
inequivalent nonsingular local actions of the three-dimensional special linear or unimodular
group U = SL(2,C), with Lie algebra u = sl(2,C), on any two-dimensional complex
manifold. These are modelled by the Lie algebras spanned by the vector fields

{81;7 wa(l;, w281§}7
{8,, =8, +ud, z*0,+2zud,}, (2.1)
{8,+98,, =0,+ud, =z°8,+u*d,},

where 8, = 8/0z etc., on the space M = C2.

Remark: There are five inequivalent actions of three-dimensional simple Lie groups on
a two-dimensional real manifold. There are four different actions of the real unimodular
group SL(2,R), provided by the three listed in (2.1) (considered as real Lie algebras), and
the additional real unimodular Lie algebra

{8,, =0,+ud,, (w2 — u2)c‘9z + 2zud, }.
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The fifth Lie algebra
{vwd, —20,, (1+ 22 — u2)c‘9z +2zud,, 2zud, + (1 — 22+ u2)3u},

defines the action of the rotation group SO(3) which is obtained from its natural action
on the two-dimensional sphere via stereographic projection.

Whenever we have a Lie group G acting on a space M ~ X x U, where X represents
the independent variables and U the dependent variables, there is an induced action on the
associated jet bundles J” = J™” M, which is called the n'! prolongation of G, and denoted
pr{™@. Tt is an interesting fact that the three actions of SL(2) are directly connected via
prolongation. The first Lie algebra of vector fields

ul® 8 220

zd (2.2)

z? ) z?

generates the projective linear fractional or Mobius action

azr + 0
, U
yr 4+ 6

U (z,u) — ( ) ,  ab—pBy=1, (2.3)

of the unimodular group. The first prolongation of this group action is generated by the
prolonged vector fields

ut . 3} 0, —v0,), 2?8, — 2zv0,, (2.4)

9
where we use v = u, to indicate the derivative coordinate. These vector fields form a
Lie algebra having the same s((2) commutation relations. The Lie algebra (2.4) clearly
projects to the (z,v) plane, thereby defining a Lie algebra of vector fields equivalent to
the second Lie algebra in our list (2.1); indeed, the explicit isomorphism is to replace v by
u = 1/v. The corresponding group action is

f‘y‘: i? (ve + 5)%) . (2.5)

Uy . (z,v) — (

Setting ¢ = u,_, the second prolongation of the original three vector fields yields

0) zd, —v0, — 2¢0 2?0, — 2zvd, — (4xq + 29)9,,

T? q°

again having the same commutation relations as the original three vector fields. Let

w= 1 — Tz _ Zez (2.6)

(The factor of % is merely for convenience.) Using (z,u,v,w) instead of (z,u,v,q) on the
open subset of J* where v # 0, we see that the vector fields have the equivalent form

15} 0, —vd, —wd,, w23$ —2zv9, — (2zw + 1)9,,.

T?
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Again, we can project this action to the two-dimensional subspace coordinatized by = and
w, on which the vector fields reduce to

u? 0 zd, —wd,,, 2?0, — (2zw +1)9,,. (2.7)

T?

These vector fields span a Lie algebra isomorphic to the third one in the list (2.1); indeed,
the transformation given by v = z+1/w provides the explicit isomorphism. The associated
group action is

U . (z,w) — (aw—l—ﬂ

vz + 6’

(vz +8)°w +7(yz + 5)) : (2.8)

Thus, all three inequivalent actions of SL(2) on two-dimensional complex manifolds arise
from a single source through the process of prolongation. This raises the interesting ques-
tion of how general this phenomenon is. Are different (complex) actions of a given trans-
formation group related by the processes of prolongation and projection?

3. Differential Invariants.

Recall first that a scalar-valued function I(z, u(n)) depending on the independent and
dependent variables and their derivatives, which is invariant under the prolonged group
action pr'™@, is known as a differential invariant of the group G. On the subset of the
jet space where the prolonged group acts regularly, every invariant system of differential
equations can be written in terms of the differential invariants of the group action. (The
singular subset of the prolonged group action is also determined by a G-invariant differ-
ential equation, whose form is explicitly given in terms of the Lie determinant of G, [17].
For simplicity, though, we shall omit its analysis here.) A complete system of differential
invariants is constructed through the use of invariant differential operators — see [20],[21],
for the general theory. In the present case, since we are dealing with a single independent
and a single dependent variable, we need just two functionally independent differential
invariants z = I(z,u™), w = J(z,u(™); every other differential invariant can be deter-
mined as a function of I, J and the differentiated invariants d*z/dw"* = (D¥.J)/(D*I). Lie,
[17], computed the fundamental differential invariants for all of the complex transforma-
tion groups in the plane, including the previous three copies of SL(2). The construction
of the required differential invariants is simplified by the prolongation connection between
these three actions.

Case I: U

For the first unimodular group action, the two fundamental differential invariants are

U . U and § = L Ewe 3wz (3.1)

We note that, if we interchange the roles of independent and dependent variables, then
the second fundamental differential invariant in equation (3.1) becomes

s — _ _uTuuu - u, (32)



which coincides with the negative of the well-known projectively invariant Schwarzian
derivative, of importance in conformal mapping and other applications in complex analysis,
[12]. Any nt! order ordinary differential equation admitting 2/(°) as a symmetry group can
be written in the form

d"3s ds d"%s
W:H(u,s,@,...,m>. (33)
Thus the equation reduces in order by 3; once we know the solution s = F(u) to the
reduced ordinary differential equation (3.3), we recover the solution to the original ordinary
differential equation by solving the /(®)—invariant third order equation s = F(u), or,
explicitly,
3.2 4

Even though it admits a three-parameter symmetry group, the equation (3.4) cannot be
integrated explicitly by quadrature because the symmetry group is not solvable, cf. [19].
However, as is well known, we can reduce its integration to the solution of a Riccati
equation followed by a pair of quadratures. Using the Lie reduction method associated
with the two-dimensional solvable subgroup generated by 0, and z0,, we set

d
z = 1:;;, in terms of which § = é + %z2. (3.5)
Then equation (3.4) reduces to the Riccati equation
dz
7o + %z2 = F(u). (3.6)

Once we solve equation (3.6) for z = z(u), we can recover the solution u = f(z) to equation
(3.4) by a pair of quadratures: first

followed by

v Ji
/ Y itk (3.8)

g(i)
The Riccati equation (3.6) can, of course, be linearized. If we define ¢ = y/u_, then

2= tzz _ o Yo = 21/}—u = 2(log ®),,.

up w9

Therefore ¥ = ¥ (u) is a solution to the second order, homogeneous, linear Schrédinger
equation

4%
5 — 3Py =0, (3.9)



with potential —%F(u) In this case, since u, = 1%, we recover u by a single quadrature:

v da
/ =t k. (3.10)

In fact, this form of the solution can be re-expressed directly in terms of the solutions of
the linear Schrodinger equation. We recall that, according to the method of variation of
parameters, [13; p. 122], if ¢(u) is one solution to the linear ordinary differential equation
(3.9), then a second, linearly independent solution, is given by

o(u) = P(u) /u % (3.11)

Comparing with (3.10), we conclude that the general solution to the U —nvariant equa-
tion (3.4) is given, parametrically, in the form

_ v (3.12)

P(u)’

where ¢(u) and ¥(u) are two arbitrary linearly independent solutions to the linear Schro-
dinger equation (3.9). Here, we have absorbed the integration constant k in (3.10) by
replacing ¢(u) by ¢ + ky. If ¢, (u), ¥,(u) denote a basis for the solution space to (3.9),
then ¢ = ayp; + bp,, ¥ = cp; + dip,, where ad — bc # 0. Moreover, since we can always
cancel a common factor in the ratio (3.12), we may, without loss of generality, assume that
ad — bc = 1. Therefore formula (3.12) does depend on three arbitrary constants, and does
represent the general solution to equation (3.4).

Finally, we remark that, in view of the identification of the differential invariant s
with the Schwarzian derivative (3.2), our symmetry reduction of (3.4) also provides a
direct proof of a classical theorem due to Schwarz — see [12; Theorem 10.1.1].

Theorem 3.1. The general solution to the Schwarzian equation

vTuun _ 27Wu . B(y), (3.13)

has the form

_ vl (3.14)

where p(u) and ¥(u) form two linearly independent, but otherwise arbitrary, solutions to
the linear Schrédinger equation (3.9).

Case II: YWD

For the second unimodular group action, by the prolongation connection, any differen-
tial invariant of 2/(°) will be a differential invariant of /1), provided it does not explicitly
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depend on u. (Differential invariants depending on u provide “non-local” invariants of
U (1).) Thus the fundamental differential invariants of ¢/(!) are the Schwarzian invariant

s= 2L _2¢ (3.15)

(rewritten in terms of v = u,) and its derivative

2 3
. ds VU, — Bvv, v, + 6U

du v8

(3.16)

Any nth order ordinary differential equation admitting /(1) as a symmetry group can be

n—3 n—4
uzﬂ(s,r,@ u) (3.17)

written in the form

ds™—3 ds’ 7 dsn4

Once we know the solution r = G(s) to the reduced ordinary differential equation (3.17),
we recover the solution to the original ordinary differential equation by solving the 2/(1)-
invariant third order equation r = G(s), or, explicitly,

3.2
VU, — v
2o ., — 6vv v, + 61)3 =2%G (M> ) (3.18)

T

Recalling that » = ds/du, we can integrate equation (3.18) once to yield

H(s) = /S GCZ) =u+k, (3.19)

which, once solved for s = F(u), reduces to the /(*)~invariant third order equation (3.4) —
an equation we know how to solve in terms of a pair of quadratures and a Riccati equation.
Thus the original third order equation (3.18) can be integrated using a Riccati equation
and three quadratures. Alternatively, the solution (3.12) based on the linear Schrédinger
equation (3.9) can also be effectively employed in this case. We must compute

v —u — = : (3.20)

where
W = 901/}1;, - Soul/} (321)

denotes the Wronskian of the two solutions ¢(u) and ¥(u) to (3.9), which, by Abel’s
formula, is constant. Therefore, the general solution to the /(') —invariant equation (3.18)
can be written in parametric form as

o 90(7/’) _ ¢(u)2 ) (3-22)



It is worth remarking, however, that we can avoid the introduction of an auxiliary
variable v by a more direct reduction of (3.18). According to equation (3.5), if we set
z=v,/v?, then

dz =z s —

1 1
o Cu 2 = 2 3.23
ds s r G(s) ’ ( )

u

which is a Riccati equation for z as a function of s. Once we solve (3.23) for z = A(s), and
invert to find s = B(z), then we can find how v depends on z by solving the second order
equation

VU, — %vi =v*B (v ?v,). (3.24)

T

The fact that equation (3.24) is invariant under the two parameter group consisting of
translations in z and scalings (z,v) — (Az,A"'v) implies that we can recover v = g(z) by
two quadratures. We find

dz s— %z2 B(z)

z
v — = -
dv z z 2’

o zdz
v:C(z):cexp{/ m}
2

Inverting the latter equation to find z = D(v), we use the definition of z to recover

giving

v do
E(v) = / T('ﬁ) =z + k. (3.25)

v

The alternative Riccati equation (3.23) is linearized by setting z = 2G(s)(log ¥),, in terms
of which
dy s

G(s) T + G (s)G(s) - — 24 = 0. (3.26)

Thus we have reduced the original equation to a seemingly different linear second order
equation. In fact, the two linear equations (3.9) and (3.26) are the same equation for
the same dependent variable v, but written in terms of different independent variables.
Indeed, one transforms from one to the other by a change of independent variable s = F(u);
according to equation (3.18), we have s, = F'(u) = G(s), and s, = F"(uv) = G'(s)G(s),
which proves the isomorphism between the two linear equations (3.9), (3.26).

Case III:  U?

As for the third unimodular group action, by the prolongation connection, any differ-
ential invariant of /(1) will be a differential invariant of 2/(?), provided, when written in
terms of z, u, v = u,, w = v,/(2v), it does not explicitly depend on v. Note first that

w, —w ds wz$—6ww$—|—4w3
s=2-2_ Y LT _9 .
du v3
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Thus the fundamental differential invariants of ¢/(2) are

t:\/§ r _w$z—6ww$—|—4w3

§3/2 (w _ w2)3/2 ’
7” (3.27)
_2dr w,,, — 12ww,, — 6w? + 48wrw, — 24w*
y= s2 du (w, — w?)?

We note that we can replace the second invariant by a slightly simpler differential invariant

2 dr w,,, — 12ww,, + 18wi
y+r24a="2"" 194

s2 du (w, —w?)?

(3.28)

T

Any ntt order ordinary differential equation admitting /(?) as a symmetry group can be

written in the form
dn_?’y B ( dy dn—4y>

W— t’y’ﬁ""’dtnﬁ (329)

Once we know the solution y = K(t) to the reduced ordinary differential equation (3.29),
we recover the solution to the original ordinary differential equation by solving the ¢/(?)—
invariant third order equation

;Z—Z =s’K <33%> , (3.30)

or, in full detail,

=~ (w,, — 6ww, + 43
where
- 1
K(it)=2K | — | + 24.
=2 ()
We can rewrite equation (3.30) in the form
r dr r
v 5 =K () (3-32)

Equation (3.32) can be integrated once as a consequence of its invariance under the one-
parameter scaling group (s,7) — (s, A\3/?7). Setting t = r/s*/2, we find that (3.32)
becomes

dt  K(t) 3t
_— = —" - — 3.33
* ds t 2’ ( )

hence t = M(s) is found by quadrature:

s:L(t):cexp{/tM(?;idjw}. (3.34)
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Inverting, this leads to the /(") —invariant equation
r = 33/2M(s),

cf. equation (3.18), and so can be solved by reducing to a Riccati equation. Thus the
solution to the original 2/(?)~invariant equation (3.31) can be found by solving an associated
Riccati equation together with three or four quadratures. Alternatively, if we use the
solution (3.12) based on the linear Schrodinger equation (3.9), then, using (3.20),

_ Ve _ Y _ Y
L T (3.35)

Therefore, the general solution to the ¢/(?)—invariant equation (3.30) can be expressed in
the parametric form
p(u) b, _ Y,

L (3.36)

where ¢(u) and ¥(u) form two solutions of the second order linear equation (3.9), and w
is their Wronskian, cf. (3.21).

This completes our analysis of the reduction of (complex) ordinary differential equa-
tions admitting a unimodular group of symmetries. We hav shown that, in every case,
an ntt order equation invariant under SL(2) can be reduced in order by 3. Moreover, the
solutions to the original equation can, in all cases, be recovered from those of the reduced
equation via quadrature and the solution to a Riccati equation, or, equivalently, a linear
second order ordinary differential equation.

4. The Chazy Equation.

In his study of third order ordinary differential equations having the Painlevé property,
Chazy, [8], was led to the remarkable family of equations

Chazy showed that when

4

&= e where 6 <k € N, (4.2)

a =0, or

then the nontrivial solutions y = f(z) to (4.1) have a moveable circular natural boundary.
This is a consequence of the following theorem.

Theorem 4.1. Suppose ¢(t) and ¢ (t) are two arbitrary linearly independent solu-
tions of the hypergeometric equation

d?x 1 7\ dy
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Then
L) 6 dp 6yl dv
b)) VTR de T w  dt’
where w = Y, — p¥,, parametrizes the general solution y = f(z) to the Chazy equation
(4.1) with parameter value

(4.4)

1
77 14401 — 9a)

1/1 1

correspond to Chazy’s preferred values (4.2) for his third order equations. Interestingly,
(4.3) arises in Schwarz’s theory of algebraic hypergeometric functions; in fact, for £ = 2,
3, 4, and 5, the parameter values (4.6) constitute four types of hypergeometric equations
all of whose solutions are algebraic functions — they correspond to the dihedral triangle,
tetrahedral, octahedral and icosahedral symmetry classes. See Hille, [12; §10.3], for the
details of Schwarz’s theory.

(4.5)

In particular, the cases

Chazy noted that equation (4.1) admits a unimodular symmetry group, with infinites-
imal generators

z0, — yo

9,, . ” 2?0, — (2zy + 6)0, - (4.7)
(See also [14].) This result can be verified readily using the standard Lie infinitesimal
method for computing symmetry groups of differential equations, [19]. The Lie algebra
(4.7) is mapped to the Lie algebra u(?), given in (2.7), by the map y = 6w. Therefore, our
integration method can be directly applied to the general Chazy equation (4.1). Note that,
under this rescaling, the Chazy equation (4.1) turns out to be the simplest U —invariant
equation of the general form (3.31), where

K=129a—-1), or K =216aq,
is a constant function. We now discuss how the general reduction technique applies to the
particular case of the Chazy equation.

First, in terms of the fundamental differential invariants r, s, the Chazy equation
takes the form

— — =12(9a —1). (4.8)

Equation (4.8) can be directly solved, producing > = 8(9a — 1)s® + ¢, where ¢ is an
integration constant. Thus, if we introduce the parameter u so that r = ds/du, we see
that

(%)2 = 8(9a — 1)s® + c. (4.9)

Therefore, if o # % and p denotes the Weierstrass elliptic function with parameters g, =0,
g3 = —4c(9a — 1)%, then

p(u+ k)

2(9a — 1)

s(u) =

12



The resulting second order linear equation (3.9) is equivalent to the Lamé equation

&’ plutk)
du?  4(9a—1) v=0 (4.10)

We deduce that if ¢(u) and ¥ (u) form two independent solutions of the Lamé equation
(4.10), then
_ eu) _Sdy
TP YT de
parametrizes the general solution to the Chazy equation. Note that, in view of the variation
of parameters formula (3.11), we can recover the second independent solution ¢(u) from

the first solution ¥ (u) using a single quadrature.

(4.11)

On the other hand, if a = % (i.e., k = 0), the analogous second order equation is the
Airy equation

d2
d—uf —lcuy =0. (4.12)

It is easily verified that if ¢(u) and ¢(u) are any two linearly independent solutions of
(4.12), then y(z) as defined by (4.11) satisfies equation (4.1) with a = }. It appears that
this result has not previously been written down. We leave the subsequent analysis of this
special case to the reader.

The hypergeometric equation (4.3) of Schwarz is directly related to the Lamé equation
(4.10). Indeed, suppose we are given a second order linear equation

d? d
10 T8 + o) % 1 hvy = 0.

If we make a change of independent variable w = p(t), then the equation becomes

(1 (ﬁ—j) T 10 G a0 G| G+ o

In particular, if we choose u so that

% = exp {/t %; di} , (4.13)

then the first derivative term vanishes, and the equation takes the Schrédinger form (3.9)

with
_ h(t) (dt 2
F(u) =27 <—du> . (4.14)

In the present case, starting with the hypergeometric equation (4.3), the change of
variables required to place it in Schrodinger form satisfies

du _ /t%_%id{ - (4.15)
it ~ P -9 [ ara—2r '
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where a is a constant, hence

/t di
t1/2(1 _ t)2/3

The latter integral can be rewritten as an elliptic integral; we set ¢ = 1 — 72, so that

1=/ dr

-7

The required potential (4.14) is

o= Flu)= —27 (dt>2 = 270 s,

T t(1—t) \du a?
Note that
ds B 20 dt B 20t1/2
du 3a2(1 —t)2/3 du 3a3 ’
hence ,
ds B 402t B 83 L 40 (4.17)
du 945 180  9aS’ )

Thus s = F(u) defines the correct Weierstass elliptic function, and the resulting Schro-
dinger equation agrees with the Lamé equation (4.10), provided the parameters ¢ and «
are related by (4.5). Since the formula (4.11) relating the solution to the linear equation
to that of the Chazy equation is unaffected by a change of independent variable, Chazy’s
result in Theorem 4.1 has been re-established.

Although the preceding transformation between the hypergeometric equation and the
Lamé equation does appear in Kamke, [15; p. 501], its existence comes as a surprise to
us. We remark that the hypergeometric equation admits regular singular points, whereas
the Lamé equation has an irregular singular point. Thus it appears that the effect of the
elliptic change of variables (4.16) is to “insert” an irregular singular point.

5. Some General Considerations.

One question that arisies from the preceding analysis is whether it can be extended
to other classes of differential equations. In this section we investigate the method used
by Chazy to solve equation (4.1) and determine the general form of a differential equation
soluble by this technique. In particular, we shall see that the hypergeometric equation
(4.3) is the natural choice for Chazy’s method.

Suppose that x(¢) is a solution of the linear second order equation

d*x dx

X =00 + a0, (5.1)
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where p(t) and ¢(t) are determined. We seek a solution y(z) of an equation, at present
unknown, in the form

6dy 6dydt
y(z) = =

- —_ A 5.2
xde  x dt dz’ (5:2)
with

dt x*(t)

e W=ew {/tp(s)ds} . (5.3)

Repeatedly differentiating (5.2) yields

6g(t)x* (1)
1.2
Yo — &Y wi(t) (5.4)
1.3 1_2\3/2
Yor — e + 3U° = K, (1) (v, — 59°) 77, (5.5)
2
where

1 dq 1 (d%q dgq dp 2
K,(t) = —_2 K,(t)= — | = — bp— — 2g— + 6p’q ) .
2(1) NP (dt pq>, 5(1) 6q2<dt2 P — 244 +6p°g

In order that (5.5) be a local equation, we require that K,(¢) = c,, a constant. Therefore
p(t) and ¢(¢) satisfy

d

U 2pg = e, VBe, 5.7

and after making the change of variables
dz
()=o), %= ), (538)

equation (5.1) becomes

d*v Lo dv —0

dz? Faz "%

(5.9)

where yu = %02\/6. Solving (5.9) yields the general solution of (5.5), with K,(t) = 4u//6,
given by

. 6[(w—w0)—,ua]
U (e PR

where z, and a are arbitrary constants.

Now consider the third order equation (5.6). As for (5.5), we set K,;(t) = ¢, a
constant, in order to obtain a local equation. Then p(¢) and g(t) satisfy

d’q _ dg P a2 2
— . _Bp— — 29— +6p°g=6
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which is a Riccati equation for p(¢) and has solution

p(t) = Y1 /o cot (M/t \/@ds> , (5.10)

2q(t) dt

where c; = — %,u?. Then, by analogy with the second order case, making the transformation
(5.8) to (5.1), with p(¢) given by (5.10), yields

d*v dv
12 + %,UJ cot(,uz)a —v=0. (5.11)

Finally setting s = cos?(uz) yields the hypergeometric equation

(1_)d2_'"+ 1 7ydv (1 1N _, (5.12)
T T\ 27 6% ) 4z \1aa a2 )T '
where p? = 36k%/(k* — 36).

This method of solving a nonlinear ordinary differential equation in terms of the
quotient of solutions of a second order linear equation can be generalized to higher order
equations, [9]. Furthermore, the hierarchy of equations generated in [9] also turn out to
be soluble in terms of modular functions, [23].

6. Painlevé Analysis.

In this section we discuss the structure of the singularities of solutions to the Chazy
equation using a Painlevé analysis. We take the equation in the form

6y:1; - y2)27 (61)

2 3y2 !

Yooz = 2YYre — Yz T m(
which is (4.1) with o = 4/(36 — k?), provided k # 6. (We shall assume without loss of
generality that £ > 0.) An ordinary differential equation is said to possess the Painlevé
property if its solutions are single-valued in the neighborhood of movable singular points.
We remark that it is often stated that an ordinary differential equation possesses the Pain-

levé property if its solutions have no movable singular points except poles, though this is
not strictly the definition given by Painlevé himself (¢f. [10],[16]).

In order to determine whether (6.1) possesses the Painlevé property, we apply the
algorithm due to Ablowitz, Ramani and Segur [2]. We seek a solution of (6.1) in the
neighborhood of an arbitrary point z, in the form of a Laurent series

y(2) = Y a,(z —2)"*, (6.2)

n=0
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where p, a,, n = 0,1,2,..., are constants to be determined such that ¢, # 0. Leading
order analysis shows that maximal dominant balance occurs when p = —1 and there are
three possible leading orders: a, = —6, —3 + %k, -3 - %k By substituting

%

y(z) = +B(z— )",

r — X

into (6.1), it is routine to show that the so-called resonances are
(a), r=-1,-2,-3if gy = —6,

Case (b), r=-1,1,kif ay = -3+ %k, and
(c)y, r=-1,1, —kifay, = -3 — Lk.

Case (a) corresponds to the well-known occurrence of three “negative resonances”
for equation (6.1). Although this phenomena was known to Chazy, in our opinion such
negative resonances have still not yet been completely explained and currently attract
considerable interest. Fordy and Pickering, [11], proposed criteria based on Fuchsian-type
analysis, the “Fuchs-Painlevé test”, in which they simultaneously analyse both the original
equation and its linearization. Subsequently Conte, Fordy, and Pickering, [10], extended
these ideas to more general perturbation series, developed a so-called “perturbative Pain-
levé approach”, and gave several illustrative examples. It appears that there will continue
to be much interest in the existence and interpretation of negative resonances, though we
shall not pursue this further here.

Unless k is an integer then there exist non-integer resonances in Cases (b) and (c),
which is a strong indication that equation (6.1) does not possess the Painlevé property for

such k.

Ifk=1,1e,a= %, then there is a double resonance at » = 1 in both Cases (b) and

¢), which also is a strong indication that (6.1) with a = £ does not possess the Painlevé
: g - p
property.

Ifk=0,1e,a= %, then the occurrence of a resonance at »r = 0 in Cases (b) and (c)
is commonly associated with the leading order behavior being arbitrary. However this is
not the situation in this case. Analogous analysis to that used by Ablowitz, Ramani and
Segur, [2; p. 718], demonstrates that there exist solutions of the equation

Yo +4yy, +3y° =0, (6.3)

which possess movable logarithmic branch points, shows that (6.1) with & = 0 does not
possess the Painlevé property. We note that equation (6.1) with k = 0 possesses the exact

solution
3 3

y(w):_w_wl - CB—CB2,

where z; and z, are arbitrary constants.

At each positive resonance there is a compatibility condition which must be identically
satisfied for the expansion (6.2) to be valid. The compatibility conditions associated with
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the resonance r = 1 in both Cases (b) and (¢) are easily shown to be identically satisfied
for all values of k, which implies that a; is arbitrary. Further, it is straightforward to show
that the compatibility condition associated with the resonance »r = k in Case (¢) is also
identically satisfied for all integer values of k. The existence of a second negative resonance
in Case (b) is usually interpreted as indicating that the associated leading order gives rise
to a so-called secondary branch.

Consequently, we conclude that a necessary condition for equation (6.2) to possess
the Painlevé property is that o = 4/(36 — k?) with 1 < k € N, provided that k£ # 6. As
remarked in §4 above, the cases k = 2, 3, 4, and 5, correspond to the dihedral triangle,
tetrahedral, octahedral and icosahedral symmetry classes [12; §10.3]. Thus, it appears
that these four values of k are similar to k& > 6 from a Painlevé analysis point of view.
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