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Abstract� There are three di�erent actions of the unimodular Lie group SL��	 on
a two�dimensional space� In every case� we show how an ordinary di�erential equation
admitting SL��	 as a symmetry group can be reduced in order by three� and the solution
recovered from that of the reduced equation via a pair of quadratures and the solution
to a linear second order equation� A particular example is the Chazy equation� whose
general solution can be expressed as a ratio of two solutions to a hypergeometric equation�
The reduction method leads to an alternative formula in terms of solutions to the Lam
e
equation� resulting in a surprising transformation between the Lam
e and hypergeometric
equations� Finally� we discuss the Painlev
e analysis of the singularities of solutions to the
Chazy equation�

�� Introduction�

The simplest of the equations introduced by Chazy� ������������ takes the form

yxxx 
 �yyxx � �y�x� ����	

It arises in the study of third order ordinary di�erential equations having the �Painlev
e
property� that the solutions have only poles for moveable singularities �see also �������	�
The Chazy equation is important since it is the simplest example of an ordinary di�erential
equation whose solutions have a moveable natural boundary� By a natural boundary we
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mean a closed curve in the complex plane beyond which the solution cannot be analytically
continued� This phenomenon �rst arises in the case of third order equations� In the case of
Chazy�s equation� the boundary is a circle� and is moveable in the sense that its position
depends on the initial data for the solution� Chazy demonstrated the existence of moveable
boundaries for ����	 by relating its solutions to those of the linear hypergeometric equation

t��� t	
d��

dt�
�

�
�

�
� �

�
t

�
d�

dt
�

�

���
� 
 �� ����	

Given any two independent solutions of this equation� ��t	 and ��t	� de�ne the function
x�t	 by x�t	 
 ��t	���t	� Then x�t	 maps the upper half t�plane into the interior of a
spherical triangle with angles �� �

���
�
��� cf� ���� p� ����� The inverse function t�x	 is the

Schwarzian triangle function S�x� �� �
�
� �
�
	� which has a straight line or a circle as a natural

boundary and whose fundamental triangle also has angles �� �
�
�� �

�
�� The general solution

of ����	 is then given by
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and has the same natural boundary as S�x	� Thus the general solution of ����	 is single�
valued in its domain of de�nition� �In fact� every solution is analytic either in a punctured
plane� or in a domain bounded by a straight line or a circle� the location of which is
dependent on the constants of integration�	 Furthermore� the radius and center of this
circle can be speci�ed by the �initial conditions�� i�e�� in terms of y� yx and yxx at some
given point x�� cf� ����

The Chazy equation is deeply connected to special automorphic functions �elliptic
modular functions	 which arise in various branches of mathematics� in particular number
theory� �See� for example� ���� for further details�	 A Painlev
e analysis demonstrates that
the Chazy equation also possesses three �negative resonances� about which there is much
current interest� cf� ���������� and x� below�

In recent years the Chazy equation ����	 has assumed added importance since it
appears as a reduction of the self�dual Yang�Mills �SDYM	 equations� �	�� Ward ����
conjectured that in some sense all soliton equations arise as special cases of the SDYM
equations� Subsequently many of the well�known soliton equations� such as the Korteweg�
de Vries� nonlinear Schr�odinger� sine�Gordon� Kadomtsev�Petviashvili� Davey�Stewartson�
and Painlev
e equations� have been discovered to be exact or asymptotic reductions of the
SDYM equations �cf� ���	� All these classical soliton equations arise when it is assumed that
the Yang�Mills potentials take values in a �nite�dimensional Lie algebra such as su��	� By
contrast� the Chazy equation arises when it is assumed that the Yang�Mills potentials take
values in the in�nite�dimensional Lie algebra sdiff�SU��		 of all �divergence�free� vector
�elds on SU��	� �	�� in fact� the Chazy equation is perhaps the simplest equation that
arises from an in�nite�dimensional Lie algebra� Therefore� the Chazy equation plays an
important role in soliton theory and integrable systems�

We remark that the Chazy equation ����	 also arises as a reduction of the stationary�
incompressible Prandtl boundary layer equations �cf� ����	

���� 
 ����� � ������ ����	
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Using the classical Lie method of in�nitesimal transformations �cf� ��
�	 we obtain the
similarity reduction

���� �	 
 ��y�x	� x 
 ����� � f��	�

where f��	 is an arbitrary function� Substituting this into ����	 yields

yxxx 
 	yyxx � ��	 � �	y�x�

which� in the special case 	 
 �� is the Chazy equation ����	�

The Chazy equation ����	 is known to admit a three�dimensional symmetry group of
unimodular transformations� with in�nitesimal generators


x� x
x � y
y � x�
x � ��xy � �	
y � ����	

However� its reduction using well�established symmetry methods� ��
�� is not as straight�
forward as one might suppose� The �rst two generators can be used to reduce ����	 to a
�rst order equation �cf� ����	� However the third generator does not reduce this resulting
equation� In this paper we show that its symmetry group is the most complicated of the
three known unimodular group actions on a two�dimensional complex manifold� as classi�
�ed by Lie� We describe a simple connection between these three actions via the standard
prolongation process� and use this to inter�relate their di�erential invariants� The known
integration method for the basic unimodular action can then be applied to determine a
solution method for the general SL��	�invariant ordinary di�erential equation� including
the Chazy equation as a special case� Finally� we show how the solutions to the Chazy
equation can be constructed from that of the Lam
e equation� which can be �surprisingly	
related to the hypergeometric equation ����	 via an elliptic change of variables�

�� Planar Actions of the Unimodular Group�

According to Lie�s classi�cation of Lie group actions� ����� there are precisely three
inequivalent nonsingular local actions of the three�dimensional special linear or unimodular
group U 
 SL��� C 	� with Lie algebra u 
 sl��� C 	� on any two�dimensional complex
manifold� These are modelled by the Lie algebras spanned by the vector �elds

f
x� x
x� x�
xg�
f
x� x
x � u
u� x�
x � �xu
ug�
f
x � 
u� x
x � u
u� x�
x � u�
ug�

����	

where 
x � 
�
x etc�� on the space M 
 C � �

Remark� There are �ve inequivalent actions of three�dimensional simple Lie groups on
a two�dimensional real manifold� There are four di�erent actions of the real unimodular
group SL���R	� provided by the three listed in ����	 �considered as real Lie algebras	� and
the additional real unimodular Lie algebra

f
x� x
x � u
u� �x� � u�	
x � �xu
ug�

�



The �fth Lie algebra

fu
x � x
u� �� � x� � u�	
x � �xu
u� �xu
x � ��� x� � u�	
ug�

de�nes the action of the rotation group SO��	 which is obtained from its natural action
on the two�dimensional sphere via stereographic projection�

Whenever we have a Lie group G acting on a space M � X �U � where X represents
the independent variables and U the dependent variables� there is an induced action on the
associated jet bundles Jn 
 JnM � which is called the nth prolongation of G� and denoted
pr�n�G� It is an interesting fact that the three actions of SL��	 are directly connected via
prolongation� The �rst Lie algebra of vector �elds


x� x
x� x�
x� ����	u��� �

generates the projective linear fractional or M�obius action

�x� u	 ���
�
�x� 	

�x� 

� u

�
� �
 � 	� 
 �� ����	U ��� �

of the unimodular group� The �rst prolongation of this group action is generated by the
prolonged vector �elds


x� x
x � v
v� x�
x � �xv
v� ����	u��� �

where we use v 
 ux to indicate the derivative coordinate� These vector �elds form a
Lie algebra having the same sl��	 commutation relations� The Lie algebra ����	 clearly
projects to the �x� v	 plane� thereby de�ning a Lie algebra of vector �elds equivalent to
the second Lie algebra in our list ����	� indeed� the explicit isomorphism is to replace v by
u 
 ��v� The corresponding group action is

�x� v	 ���
�
�x� 	

�x� 

� ��x � 
	�v

�
� ����	U ��� �

Setting q 
 uxx� the second prolongation of the original three vector �elds yields


x� x
x � v
v � �q
q� x�
x � �xv
v � ��xq � �q	
q �

again having the same commutation relations as the original three vector �elds� Let

w 

q

�v



vx
�v



uxx
�ux

� ����	

�The factor of �
� is merely for convenience�	 Using �x� u� v�w	 instead of �x� u� v� q	 on the

open subset of J� where v �
 �� we see that the vector �elds have the equivalent form


x� x
x � v
v �w
w� x�
x � �xv
v � ��xw � �	
w�

�



Again� we can project this action to the two�dimensional subspace coordinatized by x and
w� on which the vector �elds reduce to


x� x
x � w
w� x�
x � ��xw � �	
w� ����	u��� �

These vector �elds span a Lie algebra isomorphic to the third one in the list ����	� indeed�
the transformation given by u 
 x���w provides the explicit isomorphism� The associated
group action is

�x�w	 ���
�
�x� 	

�x� 

� ��x � 
	�w � ���x� 
	

�
� ����	U ��� �

Thus� all three inequivalent actions of SL��	 on two�dimensional complex manifolds arise
from a single source through the process of prolongation� This raises the interesting ques�
tion of how general this phenomenon is� Are di�erent �complex	 actions of a given trans�
formation group related by the processes of prolongation and projection�

�� Di�erential Invariants�

Recall �rst that a scalar�valued function I�x� u�n�	 depending on the independent and
dependent variables and their derivatives� which is invariant under the prolonged group
action pr�n�G� is known as a di
erential invariant of the group G� On the subset of the
jet space where the prolonged group acts regularly� every invariant system of di�erential
equations can be written in terms of the di�erential invariants of the group action� �The
singular subset of the prolonged group action is also determined by a G�invariant di�er�
ential equation� whose form is explicitly given in terms of the Lie determinant of G� �����
For simplicity� though� we shall omit its analysis here�	 A complete system of di�erential
invariants is constructed through the use of invariant di�erential operators � see ����������
for the general theory� In the present case� since we are dealing with a single independent
and a single dependent variable� we need just two functionally independent di�erential
invariants z 
 I�x� u�n�	� w 
 J�x� u�m�	� every other di�erential invariant can be deter�
mined as a function of I� J and the di�erentiated invariants dkz�dwk 
 �Dk

xJ	��D
k
xI	� Lie�

����� computed the fundamental di�erential invariants for all of the complex transforma�
tion groups in the plane� including the previous three copies of SL��	� The construction
of the required di�erential invariants is simpli�ed by the prolongation connection between
these three actions�

Case I� U ���

For the �rst unimodular group action� the two fundamental di�erential invariants are

u and s 

uxuxxx � �

�u
�
xx

u�x
� ����	U ��� �

We note that� if we interchange the roles of independent and dependent variables� then
the second fundamental di�erential invariant in equation ����	 becomes

s 
 � xuxuuu � �
�x

�
uu

x�u
� ����	

�



which coincides with the negative of the well�known projectively invariant Schwarzian
derivative� of importance in conformal mapping and other applications in complex analysis�
����� Any nth order ordinary di�erential equation admitting U ��� as a symmetry group can
be written in the form

dn��s

dun��

 H

�
u� s�

ds

du
� � � � �

dn��s

dun��

�
� ����	

Thus the equation reduces in order by �� once we know the solution s 
 F �u	 to the
reduced ordinary di�erential equation ����	� we recover the solution to the original ordinary
di�erential equation by solving the U ����invariant third order equation s 
 F �u	� or�
explicitly�

uxuxxx � �
�
u�xx 
 u�xF �u	� ����	

Even though it admits a three�parameter symmetry group� the equation ����	 cannot be
integrated explicitly by quadrature because the symmetry group is not solvable� cf� ��
��
However� as is well known� we can reduce its integration to the solution of a Riccati
equation followed by a pair of quadratures� Using the Lie reduction method associated
with the two�dimensional solvable subgroup generated by 
x and x
x� we set

z 

uxx
u�x

� in terms of which s 

dz

du
� �

�
z�� ����	

Then equation ����	 reduces to the Riccati equation

dz

du
� �

�
z� 
 F �u	� ����	

Once we solve equation ����	 for z 
 z�u	� we can recover the solution u 
 f�x	 to equation
����	 by a pair of quadratures� �rst

ux 
 g�u	 
 c exp

�Z u

z��u	 d�u

�
� ����	

followed by Z u d�u

g��u	

 x � k� ����	

The Riccati equation ����	 can� of course� be linearized� If we de�ne � 

p
ux� then

z 

uxx
u�x


 �
�x
ux�


 �
�u
�


 ��log �	u�

Therefore � 
 ��u	 is a solution to the second order� homogeneous� linear Schr�odinger
equation

d��

du�
� �

�F �u	� 
 �� ����	

�



with potential ��
�
F �u	� In this case� since ux 
 ��� we recover u by a single quadrature�Z u d�u

����u	

 x� k� �����	

In fact� this form of the solution can be re�expressed directly in terms of the solutions of
the linear Schr�odinger equation� We recall that� according to the method of variation of
parameters� ���� p� ����� if ��u	 is one solution to the linear ordinary di�erential equation
����	� then a second� linearly independent solution� is given by

��u	 
 ��u	

Z u d�u

���u	�
� �����	

Comparing with �����	� we conclude that the general solution to the U ����invariant equa�
tion ����	 is given� parametrically� in the form

x 

��u	

��u	
� �����	

where ��u	 and ��u	 are two arbitrary linearly independent solutions to the linear Schr�o�
dinger equation ����	� Here� we have absorbed the integration constant k in �����	 by
replacing ��u	 by � � k�� If ���u	� ���u	 denote a basis for the solution space to ����	�
then � 
 a�� � b��� � 
 c�� � d��� where ad � bc �
 �� Moreover� since we can always
cancel a common factor in the ratio �����	� we may� without loss of generality� assume that
ad� bc 
 �� Therefore formula �����	 does depend on three arbitrary constants� and does
represent the general solution to equation ����	�

Finally� we remark that� in view of the identi�cation of the di�erential invariant s
with the Schwarzian derivative ����	� our symmetry reduction of ����	 also provides a
direct proof of a classical theorem due to Schwarz � see ���� Theorem ��������

Theorem ���� The general solution to the Schwarzian equation

xuxuuu � �
�x

�
uu

x�u

 �F �u	� �����	

has the form

x 

��u	

��u	
� �����	

where ��u	 and ��u	 form two linearly independent� but otherwise arbitrary� solutions to

the linear Schr�odinger equation ����	�

Case II� U ���

For the second unimodular group action� by the prolongation connection� any di�eren�
tial invariant of U ��� will be a di�erential invariant of U ���� provided it does not explicitly

�



depend on u� �Di�erential invariants depending on u provide �non�local� invariants of
U ����	 Thus the fundamental di�erential invariants of U ��� are the Schwarzian invariant

s 

vvxx � �

�
v�x

v�
�����	

�rewritten in terms of v 
 ux	 and its derivative

r 

ds

du


v�vxxx � �vvxvxx � �v�x

v�
� �����	

Any nth order ordinary di�erential equation admitting U ��� as a symmetry group can be
written in the form

dn��r

dsn��

 H

�
s� r�

dr

ds
� � � � �

dn��r

dsn��

�
� �����	

Once we know the solution r 
 G�s	 to the reduced ordinary di�erential equation �����	�
we recover the solution to the original ordinary di�erential equation by solving the U ����
invariant third order equation r 
 G�s	� or� explicitly�

v�vxxx � �vvxvxx � �v�x 
 v�G

�
vvxx � �

�
v�x

v�

�
� �����	

Recalling that r 
 ds�du� we can integrate equation �����	 once to yield

H�s	 


Z s d�s

G��s	

 u� k� �����	

which� once solved for s 
 F �u	� reduces to the U ����invariant third order equation ����	 �
an equation we know how to solve in terms of a pair of quadratures and a Riccati equation�
Thus the original third order equation �����	 can be integrated using a Riccati equation
and three quadratures� Alternatively� the solution �����	 based on the linear Schr�odinger
equation ����	 can also be e�ectively employed in this case� We must compute

v 
 ux 

�

xu



��u	�

�
� �����	

where
� 
 ��u � �u� �����	

denotes the Wronskian of the two solutions ��u	 and ��u	 to ����	� which� by Abel�s
formula� is constant� Therefore� the general solution to the U ����invariant equation �����	
can be written in parametric form as

x 

��u	

��u	
� v 


��u	�

�
� �����	

�



It is worth remarking� however� that we can avoid the introduction of an auxiliary
variable u by a more direct reduction of �����	� According to equation ����	� if we set
z 
 vx�v

�� then

dz

ds


zu
su



s� �

�
z�

r



s� �
�
z�

G�s	
� �����	

which is a Riccati equation for z as a function of s� Once we solve �����	 for z 
 A�s	� and
invert to �nd s 
 B�z	� then we can �nd how v depends on x by solving the second order
equation

vvxx � �
�
v�x 
 v�B

�
v��vx

�
� �����	

The fact that equation �����	 is invariant under the two parameter group consisting of
translations in x and scalings �x� v	 �� ��x� ���v	 implies that we can recover v 
 g�x	 by
two quadratures� We �nd

v
dz

dv



s� �
�
z�

z


B�z	

z
� z

�
�

giving

v 
 C�z	 
 c exp

�Z z �z d�z

B��z	 � �
� �z

�

�
�

Inverting the latter equation to �nd z 
 D�v	� we use the de�nition of z to recover

E�v	 


Z v d�v

�v�D��v	

 x� k� �����	

The alternative Riccati equation �����	 is linearized by setting z 
 �G�s	�log �	s� in terms
of which

G�s	�
d��

ds�
�G��s	G�s	

d�

ds
� s

�
� 
 �� �����	

Thus we have reduced the original equation to a seemingly di�erent linear second order
equation� In fact� the two linear equations ����	 and �����	 are the same equation for
the same dependent variable �� but written in terms of di�erent independent variables�
Indeed� one transforms from one to the other by a change of independent variable s 
 F �u	�
according to equation �����	� we have su 
 F ��u	 
 G�s	� and suu 
 F ���u	 
 G��s	G�s	�
which proves the isomorphism between the two linear equations ����	� �����	�

Case III� U ���

As for the third unimodular group action� by the prolongation connection� any di�er�
ential invariant of U ��� will be a di�erential invariant of U ���� provided � when written in
terms of x� u� v 
 ux� w 
 vx���v	� it does not explicitly depend on v� Note �rst that

s 
 �
wx � w�

v�
� r 


ds

du

 �

wxx � �wwx � �w�

v�
�

�



Thus the fundamental di�erential invariants of U ��� are

t 

p
�

r

s���



wxx � �wwx � �w�

�wx � w�	���
�

y 

�

s�
dr

du



wxxx � ��wwxx � �w�
x � ��w�wx � ��w�

�wx � w�	�
�

�����	

We note that we can replace the second invariant by a slightly simpler di�erential invariant

y � �� 

�

s�
dr

du
� �� 


wxxx � ��wwxx � ��w�
x

�wx �w�	�
� �����	

Any nth order ordinary di�erential equation admitting U ��� as a symmetry group can be
written in the form

dn��y

dtn��

 H

�
t� y�

dy

dt
� � � � �

dn��y

dtn��

�
� �����	

Once we know the solution y 
 K�t	 to the reduced ordinary di�erential equation �����	�
we recover the solution to the original ordinary di�erential equation by solving the U ����
invariant third order equation

dr

du

 s�K

� r

s���

�
� �����	

or� in full detail�

wxxx � ��wwxx � ��w�
x 
 �wx � w�	� bK �

wxx � �wwx � �w�

�wx � w�	���

�
� �����	

where bK�t	 
 �K

�
tp
�

�
� ���

We can rewrite equation �����	 in the form

r

s�
dr

ds

 K

� r

s���

�
� �����	

Equation �����	 can be integrated once as a consequence of its invariance under the one�
parameter scaling group �s� r	 �� ��s� ����r	� Setting t 
 r�s���� we �nd that �����	
becomes

s
dt

ds



K�t	

t
� �t

�
� �����	

hence t 
 M�s	 is found by quadrature�

s 
 L�t	 
 c exp

�Z t ��t d�t

�K��t	� ��t�

�
� �����	

��



Inverting� this leads to the U ����invariant equation

r 
 s���M�s	�

cf� equation �����	� and so can be solved by reducing to a Riccati equation� Thus the
solution to the original U ����invariant equation �����	 can be found by solving an associated
Riccati equation together with three or four quadratures� Alternatively� if we use the
solution �����	 based on the linear Schr�odinger equation ����	� then� using �����	�

w 

vx
�v



�x
�



��u
�

� �����	

Therefore� the general solution to the U ����invariant equation �����	 can be expressed in
the parametric form

x 

��u	

��u	
� w 


�x
�



��u
�

� �����	

where ��u	 and ��u	 form two solutions of the second order linear equation ����	� and �
is their Wronskian� cf� �����	�

This completes our analysis of the reduction of �complex	 ordinary di�erential equa�
tions admitting a unimodular group of symmetries� We hav shown that� in every case�
an nth order equation invariant under SL��	 can be reduced in order by �� Moreover� the
solutions to the original equation can� in all cases� be recovered from those of the reduced
equation via quadrature and the solution to a Riccati equation� or� equivalently� a linear
second order ordinary di�erential equation�

�� The Chazy Equation�

In his study of third order ordinary di�erential equations having the Painlev
e property�
Chazy� ���� was led to the remarkable family of equations

yxxx 
 �yyxx � �y�x � ���yx � y�	�� ����	

Chazy showed that when

� 
 �� or � 

�

��� k�
� where � � k � N� ����	

then the nontrivial solutions y 
 f�x	 to ����	 have a moveable circular natural boundary�
This is a consequence of the following theorem�

Theorem ���� Suppose ��t	 and ��t	 are two arbitrary linearly independent solu�

tions of the hypergeometric equation

t��� t	
d��

dt�
�

�
�

�
� �

�
t

�
d�

dt
� �� 
 �� ����	

��



Then

x 

��t	

��t	
� y 


�

��t	

d�

dx



���t	

�

d�

dt
� ����	

where � 
 ��t � ��t� parametrizes the general solution y 
 f�x	 to the Chazy equation

����	 with parameter value

� 

�

������ ��	
� ����	

In particular� the cases

� 

�

�

�
�

��
� �

k�

�
� ����	

correspond to Chazy�s preferred values ����	 for his third order equations� Interestingly�
����	 arises in Schwarz�s theory of algebraic hypergeometric functions� in fact� for k 
 ��
�� �� and �� the parameter values ����	 constitute four types of hypergeometric equations
all of whose solutions are algebraic functions � they correspond to the dihedral triangle�
tetrahedral� octahedral and icosahedral symmetry classes� See Hille� ���� x������ for the
details of Schwarz�s theory�

Chazy noted that equation ����	 admits a unimodular symmetry group� with in�nites�
imal generators


x� x
x � y
y � x�
x � ��xy � �	
y � ����	

�See also �����	 This result can be veri�ed readily using the standard Lie in�nitesimal
method for computing symmetry groups of di�erential equations� ��
�� The Lie algebra
����	 is mapped to the Lie algebra u���� given in ����	� by the map y 
 �w� Therefore� our
integration method can be directly applied to the general Chazy equation ����	� Note that�
under this rescaling� the Chazy equation ����	 turns out to be the simplest U ����invariant
equation of the general form �����	� where

K 
 ������ �	� or bK 
 �����

is a constant function� We now discuss how the general reduction technique applies to the
particular case of the Chazy equation�

First� in terms of the fundamental di�erential invariants r� s� the Chazy equation
takes the form

r

s�
dr

ds

 ����� � �	� ����	

Equation ����	 can be directly solved� producing r� 
 ���� � �	s� � c� where c is an
integration constant� Thus� if we introduce the parameter u so that r 
 ds�du� we see
that �

ds

du

��


 ����� �	s� � c� ����	

Therefore� if � �
 �
� and � denotes the Weierstrass elliptic function with parameters g� 
 ��

g� 
 ��c���� �	�� then

s�u	 

��u� k	

���� � �	
�

��



The resulting second order linear equation ����	 is equivalent to the Lam
e equation

d��

du�
� ��u� k	

����� �	
� 
 �� �����	

We deduce that if ��u	 and ��u	 form two independent solutions of the Lam
e equation
�����	� then

x 

��u	

��u	
� y 


�

�

d�

dx
� �����	

parametrizes the general solution to the Chazy equation� Note that� in view of the variation
of parameters formula �����	� we can recover the second independent solution ��u	 from
the �rst solution ��u	 using a single quadrature�

On the other hand� if � 
 �
�
�i�e�� k 
 �	� the analogous second order equation is the

Airy equation
d��

du�
� �

�
cu� 
 �� �����	

It is easily veri�ed that if ��u	 and ��u	 are any two linearly independent solutions of
�����	� then y�x	 as de�ned by �����	 satis�es equation ����	 with � 
 �

� � It appears that
this result has not previously been written down� We leave the subsequent analysis of this
special case to the reader�

The hypergeometric equation ����	 of Schwarz is directly related to the Lam
e equation
�����	� Indeed� suppose we are given a second order linear equation

f�t	
d��

dt�
� g�t	

d�

dt
� h�t	� 
 ��

If we make a change of independent variable u 
 ��t	� then the equation becomes

f�t	

�
du

dt

��
d��

du�
�

�
f�t	

d�u

dt�
� g�t	

du

dt

	
d�

du
� h�t	� 
 ��

In particular� if we choose u so that

du

dt

 exp

�Z t g��t	

f��t	
d�t

�
� �����	

then the �rst derivative term vanishes� and the equation takes the Schr�odinger form ����	
with

F �u	 
 �� h�t	
f�t	

�
dt

du

��

� �����	

In the present case� starting with the hypergeometric equation ����	� the change of
variables required to place it in Schr�odinger form satis�es

du

dt

 exp



�
Z t �

� � 	
�
�t

�t��� �t	
d�t

�



a

t����� � t	���
� �����	

��



where a is a constant� hence

u�t	 
 a

Z t d�t

�t������ �t	���
�

The latter integral can be rewritten as an elliptic integral� we set �t 
 �� ��� so that

u�t	 
 ��a
Z ���t���� d�p

�� ��
� �����	

The required potential �����	 is

s 
 F �u	 

��

t�� � t	

�
dt

du

��



��

a�
��� t	����

Note that
ds

du

 � ��

�a��� � t	���
dt

du

 ���t���

�a�
�

hence �
ds

du

��



���t

�a�

 � s�

���
�

���

�a�
� �����	

Thus s 
 F �u	 de�nes the correct Weierstass elliptic function� and the resulting Schr�o�
dinger equation agrees with the Lam
e equation �����	� provided the parameters � and �
are related by ����	� Since the formula �����	 relating the solution to the linear equation
to that of the Chazy equation is una�ected by a change of independent variable� Chazy�s
result in Theorem ��� has been re�established�

Although the preceding transformation between the hypergeometric equation and the
Lam
e equation does appear in Kamke� ��	� p� ����� its existence comes as a surprise to
us� We remark that the hypergeometric equation admits regular singular points� whereas
the Lam
e equation has an irregular singular point� Thus it appears that the e�ect of the
elliptic change of variables �����	 is to �insert� an irregular singular point�

�� Some General Considerations�

One question that arisies from the preceding analysis is whether it can be extended
to other classes of di�erential equations� In this section we investigate the method used
by Chazy to solve equation ����	 and determine the general form of a di�erential equation
soluble by this technique� In particular� we shall see that the hypergeometric equation
����	 is the natural choice for Chazy�s method�

Suppose that ��t	 is a solution of the linear second order equation

d��

dt�

 p�t	

d�

dt
� q�t	�� ����	

��



where p�t	 and q�t	 are determined� We seek a solution y�x	 of an equation� at present
unknown� in the form

y�x	 

�

�

d�

dx



�

�

d�

dt

dt

dx
� ����	

with
dt

dx



���t	

��t	
� ��t	 
 exp

�Z t

p�s	 ds

�
� ����	

Repeatedly di�erentiating ����	 yields

yx � �
�y

� 

�q�t	���t	

���t	
� ����	

yxx � yyx � �
�
y� 
 K��t	

�
yx � �

�
y�
����

� ����	

yxxx � �yyxx � � �yx	
�

 �� �K��t	�

�
yx � �

�y
�
��
� ����	

where

K��t	 

�p

� q���

�
dq

dt
� �pq

�
� K��t	 


�

�q�

�
d�q

dt�
� �p

dq

dt
� �q

dp

dt
� �p�q

�
�

In order that ����	 be a local equation� we require that K��t	 
 c�� a constant� Therefore
p�t	 and q�t	 satisfy

dq

dt
� �pq 
 c�

p
� q���� ����	

and after making the change of variables

��t	 
 v�z	�
dz

dt


p
q�t	� ����	

equation ����	 becomes
d�v

dz�
� ��

dv

dz
� v 
 �� ����	

where � 
 �
�c�

p
�� Solving ����	 yields the general solution of ����	� with K��t	 
 ���

p
��

given by

y�x	 

� ��x� x�	 � �a�

�� � ��	a� � �x � x�	
�
�

where x� and a are arbitrary constants�

Now consider the third order equation ����	� As for ����	� we set K��t	 
 c�� a
constant� in order to obtain a local equation� Then p�t	 and q�t	 satisfy

d�q

dt�
� �p

dq

dt
� �q

dp

dt
� �p�q 
 �c�q

��

��



which is a Riccati equation for p�t	 and has solution

p�t	 

�

�q�t	

dq

dt
� �

�

p
q�t	 cot

�
�

Z tp
q�s	 ds

�
� �����	

where c� 
 ��
��

�� Then� by analogy with the second order case� making the transformation
����	 to ����	� with p�t	 given by �����	� yields

d�v

dz�
� �

�
� cot��z	

dv

dz
� v 
 �� �����	

Finally setting s 
 cos���z	 yields the hypergeometric equation

s�� � s	
d�v

ds�
�

�
�

�
� �

�
s

�
dv

dz
�
�

�

���
� �

�k�

�
v 
 �� �����	

where �� 
 ��k���k� � ��	�

This method of solving a nonlinear ordinary di�erential equation in terms of the
quotient of solutions of a second order linear equation can be generalized to higher order
equations� �
�� Furthermore� the hierarchy of equations generated in �
� also turn out to
be soluble in terms of modular functions� �����

	� Painlev
e Analysis�

In this section we discuss the structure of the singularities of solutions to the Chazy
equation using a Painlev
e analysis� We take the equation in the form

yxxx 
 �yyxx � �y�x �
�

��� k�
��yx � y�	�� ����	

which is ����	 with � 
 ����� � k�	� provided k �
 �� �We shall assume without loss of
generality that k � ��	 An ordinary di�erential equation is said to possess the Painlev
e
property if its solutions are single�valued in the neighborhood of movable singular points�
We remark that it is often stated that an ordinary di�erential equation possesses the Pain�
lev
e property if its solutions have no movable singular points except poles� though this is
not strictly the de�nition given by Painlev
e himself �cf� ���������	�

In order to determine whether ����	 possesses the Painlev
e property� we apply the
algorithm due to Ablowitz� Ramani and Segur ���� We seek a solution of ����	 in the
neighborhood of an arbitrary point x� in the form of a Laurent series

y�x	 

�X
n
�

an�x � x�	
n��� ����	

��



where �� an� n 
 �� �� �� � � � � are constants to be determined such that a� �
 �� Leading
order analysis shows that maximal dominant balance occurs when � 
 �� and there are
three possible leading orders� a� 
 ��� �� � �

�
k���� �

�
k� By substituting

y�x	 

a�

x � x�
� 	�x � x�	

r���

into ����	� it is routine to show that the so�called resonances are

Case �a	� r 
 ��� ��� �� if a� 
 ���
Case �b	� r 
 ��� �� k if a� 
 �� � �

�
k� and

Case �c	� r 
 ��� �� �k if a� 
 ��� �
�
k�

Case �a	 corresponds to the well�known occurrence of three �negative resonances�
for equation ����	� Although this phenomena was known to Chazy� in our opinion such
negative resonances have still not yet been completely explained and currently attract
considerable interest� Fordy and Pickering� ����� proposed criteria based on Fuchsian�type
analysis� the �Fuchs�Painlev
e test�� in which they simultaneously analyse both the original
equation and its linearization� Subsequently Conte� Fordy� and Pickering� ����� extended
these ideas to more general perturbation series� developed a so�called �perturbative Pain�
lev
e approach�� and gave several illustrative examples� It appears that there will continue
to be much interest in the existence and interpretation of negative resonances� though we
shall not pursue this further here�

Unless k is an integer then there exist non�integer resonances in Cases �b	 and �c	�
which is a strong indication that equation ����	 does not possess the Painlev
e property for
such k�

If k 
 �� i�e�� � 
 �
�� � then there is a double resonance at r 
 � in both Cases �b	 and

�c	� which also is a strong indication that ����	 with � 
 �
��

does not possess the Painlev
e
property�

If k 
 �� i�e�� � 
 �
� � then the occurrence of a resonance at r 
 � in Cases �b	 and �c	

is commonly associated with the leading order behavior being arbitrary� However this is
not the situation in this case� Analogous analysis to that used by Ablowitz� Ramani and
Segur� ��� p� ����� demonstrates that there exist solutions of the equation

yxx � �yyx � �y� 
 �� ����	

which possess movable logarithmic branch points� shows that ����	 with k 
 � does not
possess the Painlev
e property� We note that equation ����	 with k 
 � possesses the exact
solution

y�x	 
 � �

x� x�
� �

x � x�
�

where x� and x� are arbitrary constants�

At each positive resonance there is a compatibility condition which must be identically
satis�ed for the expansion ����	 to be valid� The compatibility conditions associated with

��



the resonance r 
 � in both Cases �b	 and �c	 are easily shown to be identically satis�ed
for all values of k� which implies that a� is arbitrary� Further� it is straightforward to show
that the compatibility condition associated with the resonance r 
 k in Case �c	 is also
identically satis�ed for all integer values of k� The existence of a second negative resonance
in Case �b	 is usually interpreted as indicating that the associated leading order gives rise
to a so�called secondary branch�

Consequently� we conclude that a necessary condition for equation ����	 to possess
the Painlev
e property is that � 
 ����� � k�	 with � � k � N� provided that k �
 �� As
remarked in x� above� the cases k 
 �� �� �� and �� correspond to the dihedral triangle�
tetrahedral� octahedral and icosahedral symmetry classes ���� x������ Thus� it appears
that these four values of k are similar to k � � from a Painlev
e analysis point of view�

Acknowledgement� PAC would like to thank Mark Ablowitz and Sarbarish Chakrav�
arty for many interesting and stimulating discussions on the Chazy equation and the School
of Mathematics� University of Minnesota for their kind hospitality during his visit when
much of the present work was done�

��



References

��� Ablowitz� M�J�� and Clarkson� P�A�� Solitons� Nonlinear Evolution Equations and the
Inverse Scattering Transform� L�M�S� Lecture Notes in Mathematics� vol� ����
C�U�P�� Cambridge� �����

��� Ablowitz� M�J�� Ramani A�� Segur� and H���A connection between nonlinear
evolution equations and ordinary di�erential equations of P�type� I� J� Math�
Phys� �� �����	� ��������

��� Bureau� F�J�� Integration of some nonlinear systems of di�erential equations� Ann�
Mat� Pura Appl� �IV� 
� �����	� ��������

��� Bureau� F�J�� Sur des syst emes non lin
eaires du troisi eme ordre et les 
equations
di�
erentielles non lin
eaires associ
ees� Acad� Roy� Belg� Bull� Cl� Sc� ��� ��
�����	� ��������

�	� Chakravarty� S�� Ablowitz� M�J�� and Clarkson� P�A�� Reductions of self�dual
Yang�Mills �elds and classical systems� Phys� Rev� Lett� �	 �����	� ����������

��� Chazy� J�� Sur les 
equations di�
erentielles dont l�int
egrale g
en
erale est uniforme et
admet des singularities essentielles mobiles� C�R� Acad� Sc� Paris ��
 �����	�
��������

��� Chazy� J�� Sur les 
equations di�
erentielles dont l�int
egrale g
en
erale poss ede une
coupure essentielle mobile� C�R� Acad� Sc� Paris �	� �����	� ��������

��� Chazy� J�� Sur les 
equations di�
erentielles du troisi eme ordre et d�ordre sup
erieur
dont l�int
egrale g
en
erale a ses points critiques �xes� Acta Math� �� �����	�
��������

�
� Clarkson� P�A�� SERC Postdoctoral Fellowship Report B!RF!���� �����	�

���� Conte� R�� Fordy� A�P�� and Pickering� A�� A perturbative Painlev
e approach to
nonlinear di�erential equations� Physica D�
 �����	� ������

���� Fordy� A�P�� and Pickering� A�� Analysing negative resonances in the Painlev
e test�
Phys� Lett� A��� �����	� ��������

���� Hille� E�� Ordinary Di
erential Equations in the Complex Domain� John Wiley "
Sons� New York� �����

���� Ince� E�L�� Ordinary Di
erential Equations� Dover� New York� �����

���� Joshi� N�� and Kruskal� M�D�� A local asymptotic method of seeing the natural
barrier of the solutions of the Chazy equation� in� Applications of Analytic and
Geometric Methods to Nonlinear Partial Di
erential Equations� P�A� Clarkson�
ed�� Kluwer Acad� Publ�� Dordrecht� the Netherlands� pp� ��������

��	� Kamke� E�� Di
erentialgleichungen L�osungsmethoden und L�osungen� vol� �� Chelsea�
New York� �����

���� Kruskal� M�D�� and Clarkson� P�A�� The Painlev
e�Kowalevski and poly�Painlev
e
tests for integrability� Stud� Appl� Math� �� �����	� �������

���� Lie� S�� Klassi�kation und Integration von gew�ohnlichen Di�erentialgleichungen
zwischen x� y� die eine Gruppe von Transformationen gestatten I� II� Math�
Ann� �� �����	� �������� also Gesammelte Abhandlungen� vol� �� B�G� Teubner�

��



Leipzig� ����� pp� ��������

���� Nehari� Z�� Conformal Mapping� McGraw�Hill� New York� ����� �Reprinted by
Dover� New York� �����	��

��
� Olver� P�J�� Applications of Lie Groups to Di
erential Equations� Second Edition�
Graduate Texts in Mathematics� vol� ���� Springer�Verlag� New York� �����

���� Olver� P�J�� Di�erential invariants� in� Algebraic and Geometric Structures in
Di
erential Equations� P�H�M� Kersten and I�S� Krasil�shchik� eds�� Proceedings�
University of Twente� ����� to appear�

���� Ovsiannikov� L�V�� Group Analysis of Di
erential Equations� Academic Press� New
York� �����

���� Rosenhead� L� �Editor	� Laminar Boundary Layers� Clarendon Press� Oxford� �����

���� Takhtajan� L�A�� A simple example of modular�forms as tau�functions for integrable
equations� Theo� Math� Phys� 
� �����	� ����������

���� Ward� R�S�� Integrable and solvable systems� and relations amongst them� Phil�
Trans� R� Soc� Lond� A ��	 �����	� ��������

��


