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Some new similarity reductions of the Boussinesq equation, which arises in several physical 
applications including shallow water waves and also is of considerable mathematical interest 
because it is a soliton equation solvable by inverse scattering, are presented. These new 
similarity reductions, including some new reductions to the first, second, and fourth Painleve 
equations, cannot be obtained using the standard Lie group method for finding group-invariant 
solutions of partial differential equations; they are determined using a new and direct method 
that involves no group theoretical techniques. 

I. INTRODUCTION 

The Boussinesq equation 

Utt + auxx + b(u2
)xx + cU xxxx = 0, 0.1 ) 

where a, b, and c are constants and sUbscripts denote differ­
entiation, was introduced to Boussinesq in 1871 to describe 
the propagation of long waves in shallow water I (see, also, 
Ref. 2). The Boussinesq equation also arises in several other 
physical applications including one-dimensional nonlinear 
lattice waves,3,4 vibrations in a nonlinear string,S and ion 
sound waves in a plasma.6 

It is well known (and was even to Boussinesq) that the 
Boussinesq equation (1,1) has a bidirectional solitary wave 
solution 

u(X,t) = 3(f + a) 

2b 

{
I (f+a)l12 } X sech

2 2" ----=-;;- (x ± rt) + Xo , 

where rand Xo are constants. 
Recently there has been considerable mathematical in­

terest in the Boussinesq equation, primarily because its 
Cauchy problem (for initial data on the infinite line that 
decays sufficiently rapidly) is solvable by inverse scatter­
ing,S through a third-order scattering problem (see, also, 
Ref. 7). 

The inverse scattering method was originally developed 
by Gardner et al.8 in order to solve the Cauchy problem for 
the Korteweg-de Vries (KdV) equation. In effect, this 
method reduces the solution of the nonlinear partial differ­
ential equation to that of a linear integral equation, and the 
partial differential equation is usually then said to be com­
pletely integrable. Completely integrable partial differential 
equations generally possess almost all of the following re­
markable properties: the existence of multisoliton solutions; 
an infinite number of independent conservation laws and 
symmetries, and recursion operators generating them; a bi­
Hamiltonian representation; a prolongation structure; a Lax 
pair; Backlund transformations; the Hirota bilinear repre­
sentation; the Painleve property, etc. (cf. Ref. 9). However, 
the precise relationship between these properties has yet to 
be rigorously established. 

In this paper we study similarity reductions of the Bous­
sinesq equation. Without loss of generality we shall assume 
that a = 0, b = !, and c = ± 1 in Eq. (1.1) since the equa­
tion 

( 1.2) 

is equivalent to Eq. (1.1) after suitable rescaling and transla­
tion of the variables. If the quantities in the equation are to be 
interpreted as real, then the sign matters and we choose the 
plus sign from here on only for convenience, and leave the 
reader the trivial modifications required for the other sign. 
However, if the quantities are interpreted as complex, then 
the sign does not matter and our analysis is complete. 

The classical method for finding similarity reductions of 
a given partial differential equation is to use the Lie group 
method of infinitesimal transformations (sometimes called 
the method of group-invariant solutions), originally devel­
oped by Lie lO (see Refs. 11-14 for recent descriptions of this 
method). Though the method is entirely algorithmic, it of­
ten involves a large amount of tedious algebra and auxiliary 
calculations which are virtually unmanageable manually. 
Recently symbolic manipulation programs have been devel­
oped, especially in MACSYMA IS and REDUCE,16 in order to 
facilitate the determination of the associated similarity re­
ductions. (See Ref. 17 for a review of the use of computer 
algebra to find symmetries of differential equations. ) 

Bluman and Cole l8 proposed a generalization of Lie's 
method which they called the "nonclassical method of group­
invariant solutions," which itself has been generalized by 
Olver and Rosenau. 19 All these methods determine Lie point 
transformations of a given partial differential equation, i.e., 
transformations depending only on the independent and de­
pendent variables. 

Noether20 recognized that Lie's method could be gener­
alized by allowing the transformations to depend upon the 
derivatives of the dependent variable as ~ell as the indepen­
dent and dependent variables. The associated symmetries, 
called Lie-Backlund symmetries, can also be determined by 
an algorithmic method (see Refs. 13 and 21 ) . 

In a recent paper, BIuman et al.22 introduce an algorith­
mic method which yields new classes of symmetries of a giv­
en partial differential equation that are neither Lie point nor 
Lie-Backlund symmetries. 

2201 J. Math. Phys. 30 (10), October 1989 0022-2488/89/102201-13$02.50 @ 1989 American Institute of Physics 2201 

Downloaded 28 Jun 2010 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



A common characteristic of all these methods for find­
ing symmetries and associated similarity reductions of a giv­
en partial differential equation is the use of group theory. 

In this paper we develop a new method of deriving simi­
larity reductions of partial differential equations and apply it 
to the Boussinesq equation ( 1.2). The unusual characteristic 
of this new method in comparison to the ones mentioned 
above is that it does not use group theory (though we hope 
that a group theoretic explanation of the method will be pos­
sible in due course23

). The basic idea is to seek a reduction of 
a given partial differential equation in the form 

U(X,t) = U(x,t,w(z(x,t)j), (1.3 ) 

which is the most general form for a similarity reduction (cf. 
BIuman and Cole 11). Substituting this into the partial differ­
ential equation and demanding that the result be an ordinary 
differential equation for w(z) imposes conditions upon U 
and its derivatives that enable one to solve for U. For the 
Boussinesq equation (1.2), it turns out to be sufficient to 
take ( 1. 3) in the specialform 

u(x,t) = a(x,t) + p(x,t)w(z(x,t»). (1.4) 

The outline of this paper is as follows: in Sec. II we 
describe the previously known (classical and nonclassical) 
similarity reductions of the Boussinesq equation; in Sec. III 
we present our new method for finding similarity reductions 
of a given partial differential equation and use it to obtain 
new similarity reductions of the Boussinesq equation (1.2); 
in Sec. IV we justify the use of the special form ( 1.4); and in 
Sec. V we discuss our results. 

II. CLASSICAL AND NONCLASSICAL SIMILARITY 
REDUCTIONS 

First we sketch the derivation of the classical similarity 
reductions ofthe Boussinesq equation using Lie group meth­
od as given by BIuman and Cole. 11 Consider the one-param­
eter (E) Lie group of infinitesimal transformations in (x,t,u) 
given by 

5'=X+EX(X,t,u) + O(E2), 

7 = t + ET(x,t,U) + O(E2), 

"I = U + EU(X,t,u) + O(E2
), 

"Is = Ux + EU x + O(E2
), 

"Iss = Uxx + EUxX + O(e2), 

"15555 = Uxxxx + eUxxxx + O(E2), 

"ITT = Ult + eU lt + O(e2
), 

(2.1a) 

(2.1 b) 

(2.1c) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

where the functions Ux, U XX, UXXXX, and U lt in (2.2) are 
determined from Eqs. (2.1) (cf. Ref. 11). The Boussinesq 
equation (1.2) is invariant under this transformation if 

"In- + ! ("12) 55 + TJSSS5 = O. (2.3) 

By (2.1) and (2.2), to first order in e, this becomes 

U lt + uUxx + UXX U + 2ux UX + UXXXX = O. (2.4) 

Conditions on the infinitesimals X(x,t,u), T(x,t,u), and 
U(x,t,u) are determined by equating coefficients oflike de­
rivatives of monomials in Ux and u, and higher derivatives. 
Solving these "determining equations" yields the following: 
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X=ax+p, T=2at+y, U= -2au, (2.5) 

where a, 13, and r are arbitrary constants (cf. Refs. 24 and 
25). Similarity reductions are then obtained by solving the 
characteristic equations 

dx dt du 
= 

X(X,t,U) T(x,t,u) U(X,t,U) 

Integration of these ordinary differential equations yields 
the following cases. 

Case (a), a=O: This is the traveling wave reduction 
u(x,t) = fez), z = yx - Pt, wheref(z) satisfies 

Pz.r+~Yf2+'Id,~ =Az+B, (2.6) 
2 dz-

with A and B arbitrary constants of integration. For r = 0, 
this is a form of the first Painleve equation (cf. Ince26

) 

(2.7) 

(or the Weierstrass elliptic function equation for A = 0). 
This reduction of the Boussinesq equation to the first Painle­
ve equation is well known in connection with the Painleve 
conjecture (cf. Refs. 27 and 28) for soliton equations. 

Case (b), a#O: This is the scaling reduction 

u(x,t) = g(z) ,z = (x + 13 fa) , 
[t + y/(2a)] [t + y/(2a)] 1/2 

(2.8) 
where g(z) satisfies 

~ d 2g 7z dg 2 d 2g (dg )2 d 4g_ 0 4 d~ + 4 dz + g+g d~ + dz + dz4 - • 

(2.9) 

This can be solved in terms of solutions of the fourth Painle­
ve equation 

--=- - +-w +4zw +2(~-a)w+-, d2
w 1 (dW)2 3 3 2 b 

d~ 2w dz 2 w 

(2.10) 

where a and b are arbitrary constants29 (see also Appendix 
A). 

However, there also exist similarity reductions of the 
Boussinesq equation that cannot be obtained by the classical 
Lie group method. As noted by several authors, 19,24,25.29 the 
Boussinesq equation ( 1.2) possesses the similarity reduction 

u(x,t) = fez) - 4,1,2t 2, Z = X + At 2, (2.11) 

where A is a constant andf(z) satisfies 

d,r + fdf + Uf= 8,.1, 2Z + A, 
dz dz 

(2.12) 

with A a constant of integration. If, in (2.12), we make the 
transformation 

fez) = "1(5') + 2,.1,5', z = 5' - A /(8,.1, 2), 

then "1(5') satisfies 

d 3; + "I dTJ + U (5' dTJ + 2"1) = o. 
d5' d5' d5' 

(2.13 ) 

Solutions of Eq. (2.13) are known to be related through a 
one-to-one transformation to solutions of the second Painle­
ve equation 
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(2.14 ) 

where a is an arbitrary constaneo-see, also, Appendix A. 
[We remark that this equation also arises from the scaling 
reduction 

u(x,t) = (- 3At)-2/31](S), s=x/( - 3At)-1(3 

of the KdV equation 

u, + UUx + Uxxx = 0 

-see Ref. 27.] 
The infinitesimals that give rise to the similarity reduc­

tion (2.11) of the Boussinesq equation are 

X(x,t,u) = lAt, T(x,t,u) = - 1, U(x,t,u) = 8A 2t, 

(2.15 ) 

which are clearly not a special case of (2.5). Since Eqs. 
(2.15) describe a Lie point transformation of the Boussinesq 
equation, Rosenau and Schwarzmeier25 suggest it can be ob­
tained using the nonclassical method of Bluman and Cole l8 

(see, also, Ref. 11). This method involves more algebra and 
calculations than the classical Lie method; in fact, Olver and 
Rosenau 19 suggest that for some partial differential equa-

I 

tions, the determining equations for these nonclassical sym­
metries might be too difficult to solve explicitly. The princi­
pal reason for this is that although the determining equations 
for the infinitesimals X, T, and U in the classical method are 
a linear system of equations (in X, T, and U), in the nonclas­
sical method, they are a nonlinear system. Furthermore, for 
some equations, such as the linear heat equation, it is well 
known that the nonclassical method does not appear to yield 
any more similarity reductions than the classical Lie method 
does 18 (see, also, Ref. 31). 

III. NEW SIMILARITY REDUCTIONS 

In this section we seek reductions of the Boussinesq 
equation ( 1.2) in the form 

u(x,t) = a(x,t) + P(x,t)w(z(x,t»), (3.1) 

where a(x,t), P(x,t), and z(x,t) are to be determined. [We 
shall show in Sec. IV why it is sufficient to seek a similarity 
reduction ofthe Boussinesq equation ( 1.2) in the form (3.1) 
rather than the more general form ( 1.3). ] 

Substituting (3.1) into ( 1.2) and collecting coefficients 
of monomials of wand its derivatives yields 

pz! w'''' + [6Pz;zxx + 4Px~ ] w", + [P(3Z;x + 4zxzxxx ) + 12Pxzx Zxx + 6Pxxz; + apz; + PZ;] wIt 

+ [pzxxxx + 4Pxzxxx + 6Pxx zxx + 4Pxxx zx + 2axpzx + 2aPxzx + apzxx + 2P,z, + pz" ] w' 

+ [Pxxxx + 2axpx + aPxx + axxp + PIt ] w + P 2Z; ww" + P [4Pxzx + pZxx ] ww' 

+ p 2Z; (W,)2 + [ P; + PPxx ]W2 + [a" + aaxx + a; + a xxxx ] = 0, (3.2) 

where': = d / dz. In order that this equation be an ordinary 
differential equation for w(z) the ratios of coefficients of 
different derivatives and powers of w(z) have to be functions 
of z only. This gives a set of conditions for a(x,t), P(x,t), 
and z(x,t) for which any solution will yield a similarity re­
duction. 

Remark 1: We use the coefficient of w"" (i.e., pz!) as 
the normalizing coefficient and therefore require that the 
other coefficients be of the formpz!r(z), where r is a func­
tion of z to be determined. 

Remark 2: We reserve uppercase greek letters for unde­
termined functions of z so that after performing operations 
(differentiation, integration, exponentiation, rescaling, etc. ) 
the result can be denoted by the same letter [e.g., the deriva­
tive of r(z) will be called r(z)]. 

Remark 3: There are three freedoms in the determina­
tion of a, p, z and w we can exploit, without loss of genera­
lity, that are valuable in keeping the method manageable: (i) 

if a (x,t) has the form a = ao(x,t) + P(x,t)o.(z), then we 
can take 0.=0 [by substituting w(z) -+w(z) - o.(z)]; (ii) if 
P(x,t) has the form P = Po(x,t)o.(z), then we can take 
0.= I [by substituting w(z) -+w(z)/fl(z)]; and (iii) if 
z(x,t) is determined by an equation of the form o.(z) 
= zo(x,t), where o.(z) is any invertible function, then we 

can take o.(z) = z [by substituting Z-+ 0. -I (z)]. 
We shall now proceed to determine the general similar­

ity reductions of the Boussinesq equation using this method. 
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The coefficients of ww" and (W,)2 yield the common 
constraint 

pz!r(z) =p2Z;, 

where r(z) is a function to be determined. Hence, using the 
freedom mentioned in Remark 3(ii) above, we choose 

p=z;. (3.3 ) 

The coefficient of w", yields 

pz!r(z) = 4Pxz! + 6Pz;z""", 

where r(z) is another function to be determined. Hence 
using (3.3) and rescaling r, we have 

zxr(z) + zxx/zx = 0, 

which upon integration gives 

ret) + In Zx = 8(t), 

where 8(t) is a function of integration. Exponentiated this 
becomes 

zxr(z) = 8(t) (3.4 ) 

(recall Remark 2). Integrating again gives 

r(z) = x8(t) + l:(t), 

with l:(t) is another function of integration. By Remark 
3(iii), we have 

z = x()(t) + (7(t), (3.5) 
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where O(t) and a(t) are to be determined. From Eqs. (3.3) 
and (3.5), we have 

f3 = 02(t). (3.6) 

The coefficient of wIt yields 

f3z!r(z) = f3(3z;,x + 4zxzxxx ) + 12f3xzxzxx 

+ 6f3xxz;, + f3(az;, + Z;), 
where r(z) is to be determined, and by Eqs. (3.5) and (3.6) 
this simplifies to 

04r(z) =a02+(x dO + da)2. 
dt dt 

Hence by Remark 3 (i) above 

1 ( dO da)2 
a= - 02(t) xTt+Tt . (3.7) 

Let us see how Eq. (3.2) looks with the simplifications as 
determined so far, viz. (3.5)-(3.7): 

06{W"" + ww" + (W')2} 

+ 02(X d
2
0 + d

2
a) w' + 20 d

2
0 w 

dt 2 dt 2 dt 2 

(3.8) 

We continue to make this an ordinary differential equation 
for w(z). Then the remaining coefficients yield 

6 2 ( d
2
0 d

2a) o rl (z) = 0 x --2 + --2 ' 
dt dt 

(3.9) 

d 20 
06r2 (Z) = 20--2 ' 

dt 
(3.10) 

_ ~ [ { J.. (x dO + da)}2] 
dt 2 0 dt dt 

(3.11 ) 

with rl(z), r2(z), and r3(z) to be determined. First, since 
z = xO(t) + a(l) and the right-hand sideofEq. (3.9) is lin­
ear in x, consequently rl (z) = Az + B, where A and Bare 
constants, and so 

d 20 d 2a 
04[A(xO+a) +B] =X dt2 + dt 2 . 

Equating coefficients of powers of x gives 

d
2
0 =A0 5 

dt 2 ' 

d
2
a =04(Aa+B). 

dt 2 

(3.12) 

(3.13 ) 

(3.14 ) 

It is then easily seen fromEqs. (3.10) and (3.11) that 

r2(Z) = 2A, r3(z) = - 2(Az + B)2. 

[The Boussinesq equation is special in that, having satisfied 
Eq. (3.9), Eqs. (3.10) and (3.11) are satisfied automatical­
ly; slight modifications of the equation would not have sig­
nificantly affected the application of the method until this 
point when further restrictions, on 0(1) and a(t), would 
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arise from (3.1O)and (3.11), severely limiting the set ofsi­
milarity reductions.] 

We conclude that the general similarity reduction of the 
Boussinesq equation (1.2) is given by 

u(x,t) = 02(t)W(Z) - _2_1- (x dO + da)2, (3.15a) 
o (t) dt dt 

z(x,t) = xO(t) + a(t), (3.15b) 

where O(t) and a(t) satisfy Eqs. (3.13) and (3.14), and 
w(z) satisfies 

w"" + ww" + (W')2 + (Az + B)w' + 2Aw 

=2(Az+B)2. (3.16) 

It can be shown that of all the equations of the form 

Willi + ww" + (W')2 + f(z)w' + g(z)w = h(z), 

with fez), g(z), and h(z) analytic, (3.16) is the most gen­
eral one having the Painleve property, that is, having no 
solutions with movable singularities except poles. In general, 
(3.16) is equivalent to the fourth Painleve equation; but, 
when A = 0, it is equivalent to the second Painleve equation, 
and, when B = 0 as well, it is equivalent to either first Painle­
ve equation of the Weierstrass elliptic function equation­
see Appendix A for details. We remark that it is not essential 
to our method that all ordinary differential equations arising 
from similarity reductions are equivalent to one of the Pain­
leve equations (or more generally possess the Painleve prop­
erty). The Boussinesq equation is a completely integrable 
soliton equation for which the Painleve conjecture28 asserts 
that every ordinary differential equation arising from a simi­
larity reduction is necessarily of the Painleve type, in agree­
ment with our results. 

Henceforth, new symbols appearing in an equation ob­
tained by integration are generally understood to be arbi­
trary constants. Furthermore, whenever we set a constant to 
be a specific value without further explanation, it is implied 
that this is easily seen to be without loss of generality. 

There are three cases to consider. 
Case 1. A =0, B=O: In this case, the general solutions of 

Eqs. (3.13) and (3.14) are 

0(1) = alt + ao' a(l) = bit + bo, 

and the similarity reduction of the Boussinesq equation is 

z = x(alt + ao) + bit + bo, 

where w(z) satisfies 

wIt +! w2 = CIZ + Co' 

(3.17a) 

(3.17b) 

(3.17c) 

Equation (3.17c) is the same as Eq. (2.6) and so, as we 
remarked in Sec. II, it is equivalent to either the first Painleve 
equation (2.7) or the Weierstrass elliptic function equation. 
We note also that the traveling wave reduction arises as the 
special case of (3.17) where a l = 0 and bl #0. However, if 
a l = 0, then we set a l = 1, ao = b l = bo = 0, and obtain the 
similarity reduction 

u(x,t) = t 2w(z) - X2/t 2, z = xt, (3.18) 

where w(z) satisfies Eq. (3.17c). This is a new reduction of 
the Boussinesq equation to the first Painleve equation. 
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With z and was invariants, Eqs. (3.18) define the point 
transformation group 

(x,t,u) -+ (r-Ix,rt,ru + (f - r-4)x2/t 2). 

The infinitesimals associated with this are 

x= -x, T= t, U= 2u + 6x2/t 2, (3.19) 

which clearly are not a special case of the infinitesima1s ob­
tained by the classical Lie group method [cf. (2.5)]. 

Case 2. A=O, B:rf=O: In this case the general solution of 
Eqs. (3.13) and (3.14) are 

O(t) = alt + ao, 

_ {3b Ba l- 2(alt + ao)6 + bIt + bo, if al ::;60, 
u(t) - 2 2 ·f 0 

~ Baot + bIt + bo, 1 a l = . 

Case (a). a] =0: The similarity reduction of the Boussin­
esq equation is 

u(x,t) = a6w(z) - (Ba6t + bl )2/a6 , 

z = aoX +! Ba6t2 + bIt + bo, 

where w(z) satisfies 

w'" + ww' + Bw = 2B 2Z + co. 

(3.20a) 

(3.20b) 

(3.21 ) 

Equation (3.21) is the same as Eq. (2.12) and so, as re­
marked in Sec. II, it is equivalent to the second Painleve 
equation (2.14 )-see, also, Appendix A. We set ao = 1, 
bl = bo = 0, in (3.20), in which case it just reduces to the 
"nonclassical" similarity reduction (2.11) (cf. Refs. 19, 24, 
25, and 29). 

Case (b). a]:rf=O: The similarity reduction of the Boussin­
esq equation is 

u(x,t) = (alt + ao)2w(z) 

_ 
( 

ai x + ! B(alt + ao)5 + alb l )2, 

a l (alt + ao) 
(3.20a') 

z = x(alt + ao) + [B /30ai ] (alt + ao)6 + bIt + bo, 

(3.20b') 

where w(z) satisfies (3.21). We set al = 1, ao = b l = bo 
= 0, and obtain 

U(x,t) =t 2w(z) - (X+,.1.t 5 )2/t 2, z=xt+!,.1.t6, 

(3.22) 

where w(z) satisfies (3.21) (we have also set B = 5,.1.). This 
is another new reduction of the Boussinesq equation; this 
time to the second Painleve equation (2.14). The infinitesi­
mals associated with the transformation group defined by 
(3.22) are 

X=-(x+,.1.t 5
), T=t, 

(3.23 ) 

[We note that if A. = 0 in (3.22) and (3.23), they reduce to 
(3.18) and (3.19).J 

Case 3. A:rf=O:In thiscasewecansetB = OinEq. (3.14). 
Multiplying Eq. (3.13) by dO /dt and integrating gives 

( dO)2 = ~A06 + A 
dt 3 0' 

(3.24) 
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where Ao is a constant. There are two possibilites. 
Case (a). Ao = 0: Equation (3.24) has the solution 

O(t)=co(t+tO)-1/2, (3.25) 

with c~ = 3/(4A). Substituting this into Eq. (3.14) and 
solving yields 

u(t) = CI (t + to)3/2 + c2(t + to) -1/2. 

Therefore we may set to = 0, Co = 1, and C2 = 0, and obtain 
the similarity reduction 

u(x,t) = t -IW(Z) -l t -2(X - 3clt 2)2, 

z = xt -1/2 + c l t
3/2, 

where w(z) satisfies 

W'II' + ww N + (W')2 + ~zw' + 1 w = ;r. 

(3.26) 

(3.27) 

Note that the scaling reduction (2.8) arises as the special 
case of (3.26) with CI = o. If CI ::;60, this is a new similarity 
reduction, namely, to the fourth Painleve equation, since if 
in (3.27) we make the transformation w(z) = g(z) + z2 /4, 
theng(z) satisfies Eq. (2.9) and therefore Eq. (3.27) is also 
equivalent to the fourth Painleve equation (2.1O)-see, also, 
AppendixA. 

Case (b). A:rf=O: Equation (3.24) can be solved in terms 
ofJacobian ellipticfunctions (cf. Ref. 32). Furthermore we 
may set 

Ao=k 2, A=(k 2+1)/3k 2, (3.28) 

where k is a constant to be chosen. For this choice of con­
stants, the transformation 

02(t) = 1/[ rl(t) - A] 

reduces (3.24) to the normal form 

provided that 

P =!(1 ± iJ"J) 

(3.29) 

(3.30) 

(3.31) 

(which we may assume without loss of generality). The so­
lution of (3.30) is the Jacobian elliptic function sn (t + to;k) , 
and so 

O(t) = (sn2(t + to;k) - (k 2 + 1)/3k 2)-1/2. (3.32) 

Equation (3.14) becomes 

d 2u k 2 + 1 4 --=---0 U 
dt 2 3k 2 

' 

which has the solution 

u(t) = [C([(2-k2)/3k2]t 

- k -2E(t + to;k») + D ]O(t), 

(3.33 ) 

where E(t + to;k) is the elliptic integral of the second kind 
given by 

E(t+ to;k) = 1'+'0 [1- k 2 sn2(s;k)]ds 

and C and D are arbitrary constants-we set D = o. 
Therefore we have the following similarity reduction: 

P. A. Clarkson and M. D. Kruskal 2205 

Downloaded 28 Jun 2010 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



U(X,t) = (sn2 (t + to;k) - A )-IW(Z) 

- [C(sn2(t+to;k) -A)-{x+C([(2-k 2)/3k 2]t-k-2E(t+to;k»)} 

X [sn(t + to;k)~(l - sn2 (t + to;k»)(l - k 2 sn2(t + to;k) )I(sn2 (t + to;k) - A) p, (3.34a) 

with 

z = [x + C([ (2 - k 2)/3k 2]t - k -2E(t + to;k»)] 

X(sn2(t+to;k) _A)-1/2, (3.34b) 

and 

where w(z) satisfies 

w"" + ww" + (W,)2 + Azw' + 2Aw = 2A 2r. (3.34d) 

This is another new similarity reduction, again to the fourth 
Painleve equation (2.10). 

As for the other new similarity reductions given above 
[ (3.18) and (3.22)], we can write down the infinitesimals 
associated with the transformation groups defined by (3.26) 
and (3.34). Again they are not special cases of those ob­
tained by the classical Lie group method. 

In all three cases we have obtained new similarity reduc­
tions of the Boussinesq equation more general than those 
previously obtained (though, interestingly, the resulting or­
dinary differential equations are the same). As mentioned 
above, these similarity reductions are associated with Lie 
point transformations (since they depend only on the inde­
pendent and dependent variables and not upon the deriva­
tives of the dependent variable). It remains an open question 
as to whether all these new similarity reductions and their 
associated transformations can be obtained using any of the 
other generalizations of the classical Lie method, such as the 
nonclassical method ofBIuman and Cole l8 (cf. Ref. 23), and 
the method developed by BIuman et al. 22 However, even if 
theoretically they can be obtained by either of these methods 
it seems that our method is somewhat simpler to implement; 
in fact, it appears to be simpler than calculating the classical 
Lie point symmetries manually. 

It can be shown that for the similarity reductions of the 
Boussinesq equation that cannot be obtained using the clas­
sical Lie group method, the associated group transformation 
does not map the Boussinesq equation into itself, whereas 
the similarity reductions obtained by the classical Lie group 
method do. For example, consider the similarity reduction 

u(x,t) = t 2w(z) - (X+At 5 )2It 2, z=xt+!,1t 6
• 

(3.22) 

The one-parameter (y) group associated with this similarity 
reduction is given by 

x-y-Ix + !,1y-l(1- t)t 5 , 

t-yt, 

u-Tu + T(1 - y-6) 

( 3.35a) 

(3.35b) 

X {x2lt 2 + j ,1xt 3 + fc, A. 2t 8(1 - 25y-6)}. 

(3.35c) 

This group maps solutions of the Boussinesq equation (1.2) 
into solutions of 

Uti + UU xx + u~ + Uxxxx = (y6 - l)t -2<1>, (3.36a) 

where 

<1>: = (X2 + j,1xt 5 
- p. 2t IO)Uxx + 4(x +At 5 )Ux + 2u 

+ 5,1t 6u _ t 2u + 6x21t 2 + 2,1xt 3 _ 112 12t 8 3 x," j A • 

(3.36b) 

If U is the similarity reduction (3.22), then it is easily seen 
that <1>:=0, i.e., the group (3.35) maps the Boussinesq equa­
tion (1.2) into the "perturbed Boussinesq equation" 
(3.36a), but (3.36b) is identically zero. Therefore the per­
turbed equation is identical to the Boussinesq equation when 
U is given by (3.22). 

In order to understand why the perturbation <I> must 
vanish identically, consider the infinitesimals 

X=-(x+,1t 5
), T=t, 

(3.23 ) 

for the similarity reduction (3.22). The similarity reduction 
necessarily satisfies the invariant surface condition 

X(x,t,u)ux + T(x,t,u)u, = U(x,t,u), 

i.e., 

if;: = (x + ,1t 5 )ux - tu, 

+ 2u + 6x21t 2 + lAxt 3 - 4,1 2t 8 = O. (3.37) 

It is easily shown that 

<I> = (x - j ,1t 5 )if;x + tif;, + if;. (3.38) 

IV. JUSTIFICATION OF THE SPECIAL FORM (1.4) 

We show here that it is sufficient to seek a similarity 
reduction of the Boussinesq equation (1.2) in the special 
form 

U(X,t) = a(x,t) + {3(x,t)w(z(x,t»), 

rather than the more general form 

u(x,t) = U(x,t,w(z(x,t»)). 

Substituting (4.2) into (1.2) yields 

(4.1 ) 

(4.2) 

[U" +2U,ww'z, + Uww (W')2Z;+ Uw(w"z, +w'z,,)] + U[Uxx + 2 Uxw w'zx + Uww(W')2~ + Uw(w"zx +w'zxx)] 

+ U~ + 2Ux Uww'zx + U~ (W')2~ + Uxxxx + 4Uxxxw w'zx 

+ 6Uxxww(W')2~ + 4Uxwww(W,)3Z! + Uwwww(W,)4Z! + 6Uxxw (w'zxx + w"~) + 12Uxww [w'w"z! + (w') 2zx zxx] 
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+ 6Uwww [(W')2W"z! + (W')3Z;ZXX] + 4U"w (WIHz! + 3w"z"z"" + w'zxxx) 

+ Uww [{4w'w"' + 3(w"f}z! + 18w'w"Z;z"" + (w')2(4z"z"xx + 3Z;,,)] 

+ Uw[w""z! +6w'"z;z"" + w"(4z"z"xx +3Z;,,) +W'ZXXXX] =0. (4.3) 

For this to be an ordinary differential equation in w(z), the ratios of different derivatives of w(z) must be functions of wand z. 
Using the coefficient of win (i.e., U wZ! ) as the normalizing coefficient, the coefficients of w'wIH and (w") 2 require that 

Uwz!r(w,z) = Uwwz!, 

where r(w,z) is a function to be determined. Hence 

r(w,z) = UwwlUw , 

which after two integrations yields 

U(x,t,w) = 0(x,t)r(w,z) + <I'(x,t), 

(4.4) 

(4.5) 

with 0(x,t) and CP(x,t) arbitrary functions (cf. Remarks 2 and 3 in Sec. III). Therefore it is sufficient to seek similarity 
reductions of the Boussinesq equation (1.2) in the form (4.1). 

Therefore, if we seek a similarity reduction of the Boussinesq equation in the general form (4.2), we are naturally led to 
the special form (4.1). Although, for many partial differential equations such as the Boussinesq equation, it is sufficient to 
seek similarity reductions in the special form (4.2), for some others it may be necessary to transform the dependent variable 
before using (4.1); however, the assumption (4.2) leads naturally to the required transformation. 

For example, consider the Harry-Dym equation (cf. Ref. 33). 

u, + 2(u- 1/2 )xxx = 0, (4.6) 

which can be solved by inverse scattering34 (see, also, Ref. 12) and is related to the Korteweg-de Vries and modified 
Korteweg-de Vries equations through hodograph transformations. 35 Let us seek a similarity reduction in the form (4.2). 
Substitution yields 

U, + Uww'z, _ljU-7/2 CUx + UwW'zx)3 

+ ~U-5/2( Ux + Uww'zx) [U"" + 2U"ww'zx + Uww (W')2Z; + Uw (w"Z; + w'z"x)] 

- U- 3/2[ Uxxx + 3Uxxw w'zx + 3Uxww (W,)2Z; + Uwww (W')3z! + 3Uxw (w"Z; + w'zxx) 

+ 3Uww {w'w"z! + (w')2zxzxx} + Uw (wIHz! + 3w"zxzxx + w'zxxx)] = o. (4.7) 

Using the coefficient ofwIH (i.e., U- 3
/
2 Uw z!) as the normal­

izing coefficient, the coefficient of w'w" requires that 

U- 3/2 U ~r(wz) = 3U-5/2 U 2 Z3 _ U- 3/2 U ~ 
w x '2 w x ww x' 

that is, 

(4.8) 

where r(w,z) is a function to be determined. Integrating 
twice yields 

U- 1/2(x,t) = 0(x,t)r(w,z) + <I'(x,t) , (4.9) 

with 0(x,t) and CP(x,t) arbitrary functions (cf. Remark 2 in 
Sec. III). Hence it is sufficient to seek similarity reductions 
of the Harry-Dym equation (4.6) in the form 

u- 1/2 (x,t) = a(x,t) + ,8(x,t)w(z(x,t») . 

Alternatively we could first make the transformation 
v = u - 112 and then seek similarity reductions in the form 
( 4.1 ). Obvious as this transformation is, our method leads to 
it systematically. 

v. DISCUSSION 

In this paper we have developed a direct method for 
determining similarity reductions of a given partial differen­
tial equation. However, there are a number of open questions 
our method poses. First, what is the relationship (if any) 
between our method and other generalizations of the classi­
cal Lie method, such as those of Bluman and Cole l8 (cf. Ref. 
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, 
23), Olver and Rosenau,19 and BIuman et al. 22 ? In their 
generalization of the method of BIuman and Cole, 18 Olver 
and Rosenaul9 showed that in order to determine a group­
invariant solution to a given partial differential equation, one 
could try any group of infinitesimal transformations whatso­
ever. Generally, for any specific group and any specific equa­
tion, there will be no solutions of the equation invariant un­
der the group, and so the question becomes how does one 
determine a priori which groups will give meaningful simi­
larity reductions? One possibility is that by seeking a reduc­
tion of a certain form (as done in this paper), one is naturally 
led to the appropriate group (i.e., the requirement that the 
similarity reduction reduce the partial differential equation 
to an ordinary differential equation is equivalent to the side 
conditions in the terminology of Olver and RosenauI 8

). 

Second, what kind of "symmetries" of the Boussinesq 
equation are those we have obtained that are not found using 
the classcial Lie method? (They are "weak symmetries" in 
the terminology of Olver and Rosenau. 19) As shown in Sec. 
III, the associated group of infinitesimal transformations 
does not map solutions of the Boussinesq equation into other 
solutions of the Boussinesq equation, but rather into solu­
tions of other equations. 

The idea of making the ansatz that a similarity reduc­
tion of a given partial differential equation have a particular 
form has been suggested previously in the literature. For 
example, (i), Gilding36 seeks solutions of the porous media 
equation 
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U, = (Um)xx' m> 1, 

in the form 

u(x,t) =f-l(t)f(z), z=p(t)[X+A(t)]; 

and (ii), Fushchlich, in a series of papers with various co­
authors,37 has obtained exact solutions of several nonlinear 
relativistic and nonlinear wave equations (including the 
nonlinear Dirac, Klein-Gordon, Maxwell, and Schrodinger 
equations) in three spatial and one temporal dimension, us­
ing their symmetry properties and seeking solutions in the 
form 

U(Xo,X\,X2,X3) = A (xO,x\,X2,X3)W(z\,Z2,Z3) 

+ B(xO'x\,X2,X3) , 

where 

Z3 (xo,x \,X2'X3» 

are the new independent variables, W(Z\,Z2,Z3) the new de­
pendent variable, and A (xo,x \'X2'X3) and B(xo,x \'X2'X3) are 
determined. 

We have applied the method to several other integrable 
equations including Burgers' equation 

U, + UU x + Uxx = 0, (5.1 ) 

which can be mapped into the linear heat equation through 
the Cole-Hopf transformation38

; the Korteweg-de Vries 
equation 

U, + UU x + Uxxx = 0, (5.2) 

which can be solved by inverse scattering8
; and the modified 

Korteweg-de Vries equation 

(5.3 ) 

which also can be solved by inverse scattering.39 However, 
for these three equations, the similarity reductions obtained 
are precisely the same as those obtained using the classical 
Lie method of infinitesimal transformations (for further de­
tails see Appendices B, C, and D, respectively, which also 
provide further examples of the application of our method). 

There is much current interest in the mathematically 
and physically significant determination of similarity reduc­
tions of given partial differential equations. (In addition to 
the references mentioned above, the interested reader might 
also consult Refs. 40-43, and the references therein.) Our 
method is a practical and direct one for finding similarity 
reductions; it has generated similarity reductions that, to the 
best of our knowledge, are previously unknown. It seems 
probable that the method can be generalized to higher-order 
equations with more independent and dependent variables. 
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APPENDIX A: REDUCTION TO PAINLEVE EQUATIONS 

In this appendix it is shown that of all the equations of 
the form 

w'''' + WW" + (W,)2 + f(z)w' + g(z) = h(z), (AI) 

withf(z), g(z), and h(z) analytic, the most general one 
having the Painleve property, that is, having no solutions 
with movable singularities except poles, is given by 

w"" + WW" + (W,)2 + (Az + B)w' + 2Aw = 2(Ax + B)2, 
(A2) 

where A and Bare arbitary constants. To show this we follow 
Ablowitz et al.28 in seeking a solution of Eq. (A2) in the 
Laurent series form 

ao 

w(z) = L wj(z - zo)HP, 
j~O 

(A3) 

with zo an arbitrary constant, wo#O and wj,}>O, constants 
to be determined. Leading-order analysis shows that 

Wo = - 12, P = - 2. (A4) 

Substituting into (AI) and equating coefficients of powers 
yields for }> 1 the recursion relation 

(j + 1) (j - 4) (j - 5) (j - 6) Wj 

1 j-I 

+-(j-4)(j-5) L WkWj _ k 
2 k~\ 

where 

j-3 
- L fk(j-k-5)wj _ k _ 3 

k~O 

j-4 
- L gk Wj-k-4 + hj _ 6 , 

k~O 

ao 

fez) = L fdz-zo)\etc. 
k~O 

(A5a) 

(A5b) 

(defining Wj = 0 for) < 0, etc.). This determines Wj for}> 1 
except for} = 4,5,6, which are the so-called resonances. For 
each resonance there is a compatibility condition that must 
be identically satisfied for Eq. (AI) to have a solution in the 
form (A3). From Eq. (AS) we obtain 

W\ = 0, W2 = 0, W3 = fo . 
The compatibility conditions for} = 4 and} = 5 are 

go = 2f.., g \ = 21z , 

respectively. Since Zo is arbitrary, necessarily 

g(z) = 2 df, dg = d
2
f. 

dz dz dr 

These hold simultaneously if and only if 

d 2f -=0 
dr ' 

i.e., 

fez) =Az+B, g(z) =2A, 

(A6) 

(A7) 

(A8a) 

with A and B arbitrary constants. The compatibility condi­
tion for} = 6 is 
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ho = 2f~ . 

Thus 

h(z) = 2(Az + B)2 . (A8b) 

Unlessf(z), g(z), and h(z) are as given in Eqs. (A8), the 
compatibility conditions are violated and so Eq. (AI) has 
the Painleve property only ifit has the special form (A2). 

In order to complete the proof that Eq. (A2) has the 
Painleve property, we show that no solution of it has a mov­
able essential singularity by reducing it to known such equa­
tions. 

Case (a). A=O, B=O: Integrating Eq. (A2) twice yields 

d 2w 1 dr +T W2 =C1Z+CO ' (A9) 

If C1 = 0, w(z) is a Weierstrass ellipticfunction (cf. Ref. 32); 
otherwise (A9) is the first Painleve equation (cf. Ref. 26). 
In either case, all solutions possess the Painleve property (in 
fact, are meromorphic); hence no solution ofEq. (A9) has a 
movable essential singularity. 

Case (b). A=O, B¥O: Integrating Eq. (A2) once yields 

d 3w dw 2 
--+w-+Bw= 2B z+c2 . 
d7 dz 

Then make the transformation 

w(z) = B 2/3 W(Z) + Bz + c2/2B, 

Z = - (B 1I3Z + ! c2B -5/3) , 

which produces 

d 3 W + W dW _ (2 W + Z dW) = 0 . 
dZ 3 dZ dZ 

(AW) 

(All ) 

(A12) 

Whitham (see Refs. 27 and 30) noted that solutions of this 
equation are related to solutions of the second Painleve equa­
tion 

d 2 v 3 
--2 =2V +ZV+a, 
dZ 

(A13) 

with a an arbitrary constant. Actually, as shown by Fokas 
and Ablowitz,30 there is a one-to-one correspondence 
between solutions of (Al2) and (A13) given by 

W(Z) = - 6(V'(Z) + V 2 (Z»), 

V(Z) = [W'(Z) + 6a]l[2W(Z) - 6ZJ , 

(A14a) 

(A14b) 

where I: = d IdZ. [Equation (AI4a) is just the scaling, or 
self-similar, reduction of the Miura transformation44 relat­
ing solutions of the modified Korteweg-de Vries equation 
(5.3) to solutions of the Korteweg-de Vries equation 
(5.2).J All solutions of the second Painleve equation possess 
the Painleve property (in fact, are meromorphic); hence no 
solution ofEq. (AW) has a movable essential singularity. 

Case (c). A¥O: The transformation 

w->(4A)I12W Z->(_3_)1/4Z_.!!.. 
3 ' 4A A' 

takes (A2) to the form 

w"" + w" + (W')2 + ~ZW' + ~ w = ~ Z2. CA15) 

Hirota and Satsuma45 show that there is a "Miura-type" 
transformation relating solutions of the modified Boussinesq 
equation 
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(AI6) 

to solutions of the Boussinesq equation (1.2) (see, also, 
Refs. 29 and 46). The Backlund transformation 

Vx (x,t) = - qt + .,j3qxx - ! q; , (A17a) 

vt(x,t) =.,j3qxt +qxxx -qAt -~q! +0, (AI7b) 

where 0 is a constant, is easily seen to take a solution q of the 
modified Boussinesq equation (A 16) to a solution v of the 
potential Boussinesq equation 

(AI8) 

furthermore U = Vx is a solution of the Boussinesq equation 
(1.2). The modified Boussinesq equation (AI6) has the si­
milarity solution (cf. Ref. 29) 

q(X,t) = -rlnt+p(z), z=xt- 1
/
2 , (A19) 

wherep(z) satisfies 

r+ 3z pi + r p" + (r+ J...Zp'\"" 
4 4 2 Y 
_ +(pl)2p " + p"" = 0, 

with I: = d I dz; and if we now make the transformation 

pi (z) = - 33
/
4 Q(Z) - z, Z = 31/4z/2 , (A20) 

then Q(Z) satisfies the fourth Painleve equation 

d
2
Q = _1 (dQ)2 + ~Q3 + 4ZQ2 

dZ 2 2Q dZ 2 

+2(Z2-a)Q+~, 
Q 

(A2l) 

with a = 8rl(9.,j3) and fJ an arbitrary constant (see, also, 
Ref. 46). The Boussinesq equation (1.2) and the potential 
Boussinesq equation (A 18) possess the similarity reduc­
tions 

U(X,t) =t-1w(z) _x2/4t 2 , z=xt- 1/2 , (A22a) 

V(X,t)=t-l/2r(z), z=xt- 1/2 , (A22b) 

where w(z) satisfies Eq. (A15) and r(z) satisfies 

r"" + r'r" -! (r+zr') = O. (A23) 

Therefore, Eqs. (A 17)-(A22) show that if Q(Z) is a solu­
tion of the fourth Painleve equation, then 

w(z): = - 3.,j3 (d
Q + Q2(Z) + 2ZQ(Z) + 3Z 2 ) 

2 dZ 

+ 9f a - .,j3 , (A24a) 

(A24b) 

is a solution ofEq. (AtS). 
What all this shows is that from any solution of the 

fourth Painleve equation we can obtain a solution of (A 15). 
To obtain the converse we substitute the similarity reduc­
tions (AI9) and (A22) into the Backlund transformation 
(A 17) and easily see that if r(z) is a solution of (A23 ), then 
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_3/4(~(r - Zr') + !3r" - z3 - 2!3Z) 
Q(Z): = - 3 , 

r' + z? + 2r - !3 
Z = 3If4Z/2, (A25) 

satisfies the fourth Painleve equation (A21); furthermore 
solutions ofEqs. (AI5) and (A23) are related by 

dr z? 
w(z) =-+-. (A26) 

dz 4 

Equations (A24)-(A26) provide a one-to-one relationship 
between solutions of Eq. (A 15) and solutions of the fourth 
Painleve equation. All solutions of the fourth Painleve equa­
tion possess the Painleve property, i.e., have no movable es­
sential singularities (in fact, are meromorphic). Therefore 
no solution ofEq. (A 15) has a movable essential singularity. 

We remark that there is also a direct method to show 
that no solution ofEq. (A2) has a movable essential singu­
larity. Making the transformation 

w(z) = v'(z) - (Az + B)2/A, (A26') 

we obtain a fifth-order equation easily integrated twice to 
yield 

v"'+~(v')2- Az+B [(Az+B)v'-Av] =CIZ+C2 . 
2 A 

Multiplying by v" and integrating again yields 

1 (V")2 + !(V,)3 - (l/2A)[ (Az + B)v' _AV]2 

= (cl/A)[ (Az + B)v' - Av] + C2v' + c3 . 

(A27) 

(A28) 

This is equivalent (through rescaling and translation of the 
variables) to an equation given by Chazy,47 

(y")2 + 4(y')3 + (zy' - y)2 + ay' + f3 = 0, (A29) 

with a and f3 constants. According to Chazy, this is "an 
algebraic transformation of the fourth Painleve equation" 
[Eq. (A29) is sometimes referred to as Chazy IV, cf. Refs. 
29 and 48]. Furthermore, as shown by Chazy,47 for any solu­
tion of (A29), exp{SZy(s)ds} is analytic except at the points 
0,00. Hence we conclude that no solution ofEq. (A26), and 
hence also ofEq. (A2), has a movable essential singularity. 

APPENDIX B: BURGERS' EQUATION 

In this appendix we outline how to determine the simi­
larity reductions of Burgers' equation 

(Bl) 

using the method developed in this paper. As with the Bous­
sinesq equation (1.2), it suffices to seek similarity reductions 
in the special form 

u(x,t) =a(x,t) +f3(x,t)w(z(x,t»). (B2) 

Substituting (B2) and (Bl) and collecting coefficients 
yields 

f3i!w" + (2f3x zx + f3zxx + f3Zt + af3zx )w' 

+ (f3xx + f3t + af3x + a xf3)w 

+ f32zxww' + f3f3xw2 + a xx + at + aax = O. (B3) 

We use the coefficient of w" as the normalizing coefficient. 
For this to be an ordinary differential equation, from the 
coefficient of ww' we get 
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f3i!r(z) =f3 2zx , 

where r(z) is to be determined. Using the freedom in Re­
mark 3 (i) in Sec. III, we take 

f3= Zx . (B4) 

The coefficient of w2 gives 

f3i!r(z) = f3f3x , 

where r(z) is to be determined. Using (B4), integrating 
twice, and using the freedoms in Remark 2 and 3(iii), we' 
have 

z = xO(t) + a(t), f3 = O(t) , (B5) 

where O(t) and a(t) are to be determined. Equation (B3) 
simplifies to 

03(W" + ww') + o{(x ~~ + ~~) + aO }w' 

+ { ~~ + axo}w + a xx + at + aax = o. (B6) 

This is an ordinary differential equation for w(z) provided 
that 

(B7) 

(B8) 

(B9) 

with A and B arbitrary constants. Multiplying (B8) by 
20 -2 dO /dt and integrating gives 

(~~r =A 20
6 + C 2

0
4

, (BlO) 

with C an arbitrary constant. 
Therefore the general similarity reduction of Burgers' 

equation (Bl) is given by 

u(x,t) = O(t)w(z) -- x-+- , 1 (dO da) 
o dt dt 

z = xO(t) + a(t) , 

where OU) and a(t) satisfy (B9) and (BlO). 
There are four cases to consider. 
Case 1. A=O, C=O.· Here the solutions are 

O(t) = 00, a(t) = Bt 2 + Cit + C2 . 

We set 00 = 1 and obtain the similarity reduction, 

u(x,t) = w(z) - 2Bt - CI, z = X + Bt 2 + CI + C2 . 

(Bll) 

Case 2. A~-o, C=O.· We set A = -! and B = O. Then 

O(t) = (t - to) -1/2, 

a(t) = c3(t - to) 1/2 + c4 (t - to) -1/2. 

Setting to = 1, C4 = 0, we obtain 

u(x,t) = t -1/2W(Z) + x/2t -! C3 . (BI2) 
Case 3. A=O, C~O.· We set C = - 1. Then 

O(t) = (t-tO)-I, 

a(t) = B(t - to)-2 + cs(t - to)-1 + C6 • 
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Setting to = 1, c5 = 0, and c6 = 0, we obtain 

x 2B x B 
U(x,t)=t-Iw(z) +-+-2 ,z=-+z. (B13) 

t t t t 

Case 4. A¥O, C¥O:WesetA 2 = - I,B = 0, C 2 = 1. Then 

O(t) = (t 2 ± 1) -1/2, u(t) = c7t + Cg (t2 ± 1) -1/2. 

Setting Cg = 0, we obtain 

/ xt - C 
u(x,t) = (t 2 ± 1) -I 2W (Z) + ----Z--17 , 

t ± 
x + c7t z=---. 
t

2 ± 1 

(BI4) 

The infinitesimals for Burgers' equation obtained using 
the classical Lie method are 

x = ax + f3t + yxt + 8 , 

T = 2at + yt 2 + K , 

U = - au + y(x - tu) + f3 , 

(BI5a) 

(BI5b) 

(BI5c) 

with a, f3, y, 8, and K arbitrary constants (cf. Ref. 49). It is 
easily shown that all the similarity reductions obtained by 
our method (Bll)-(BI4) for Bergers' equation (B1) can 
also be obtained from these infinitesimals (cf. Ref. 49). 

APPENDIX C: KORTEWEG-dE VRIES EQUATION 

In this appendix we outline how to determine the simi­
larity reductions of the Korteweg-de Vries equation 

(Cl) 

using the method developed in this paper. It suffices to as­
sume the special form 

U(x,t) = a(x,t) + f3(x,t)w(z(x,t». 

Substituting and collecting coefficients yields 

f3z!w'" + (3f3x~ + 3f3zxzxx )w" 

+ (3f3xx zx + 3f3xzxx + f3zxxx + f3z, + af3zx )w' 

(C2) 

+ (f3xxx + f3, + af3x + a xf3)w + f3 2zxww' + f3f3xw2 

+axxx +a, +aax =0. (C3) 

We use the coefficient of w'" as the normalizing coefficient. 
For this to be an ordinary differential equation, from the 
coefficient of ww' we get 

f3z~r(z) =f32zx , 

where r(z) is to be determined. Using the freedom in Re­
mark 3 (i) in Sec. III, 

f3=~. (C4) 

The coefficient of w2 gives 

f3z!r(z) =f3f3x 

where r(z) is to be determined. Using (C4), integrating 
twice, and using the freedoms in Remarks 2 and 3(iii), we 
have 

z = xO(t) + u(t), f3 = 02(t), (C5) 

where O(t) and u(t) are to be determined. Equation (C3) 
simplifies to 
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05(W'" + ww') + 02{ (x ~~ + ':;;) + aO }w' 

+ {20 ~~ + a xo2
}w + a xxx + a, + aax = O. (C6) 

The conditions for this to be an ordinary differential equa­
tion give successively, from the coefficients of w', w, and 1, 

a = _ ~ (x dO + du) , 
o dt dt 

(C7) 

dO =A0 3 

dt ' 
(C8) 

Od
2
u -2 dO du =206(A2u+B), 

dt 2 dt dt 
(C9) 

with B another arbitrary constant. 
Therefore the general similarity reduction of the 

Kortweg-de Vries equation (C 1 ) is 

u(x,t) = 02(t)W(Z) _ ~(x dO + du), 
o dt dt 

z = xO(t) + u(t) , 

where O(t) and u(t) satisfy (C8) and (C9). 
There are two cases to consider. 
Case 1. A¥O: We set A = - j, B = O. Thus 

e = (t - to) -1/3, u(t) = CI (t - to)2/3 + c
2
(t - to) -1/3. 

We set to = 0, C2 = 0 and obtain the similarity reduction 

-2/3 x 2 x + C t u(xt)=t w(z)+---C Z= __ I_. 
, 3t 3 I' t 1/3 

Case 2. A =0. We set 0 = 1, and then 

u(t) = Bt 2 + c3t + C4 • 

Now set C4 = 0 and obtain the similarity reduction 

(CIO) 

u(x,t) =w(z) -2Bt-c3, z=x+Bt 2 +clt. (CIO') 

The infinitesimals for the Korteweg-de Vries equation 
obtained using the classical Lie method are 

X = ax + f3t + y, T = 3at + 8, 
(Cll) 

u= - 2au +f3, 

with a, f3, y, and 8 arbitrary constants (cf. Ref. 16, p. 129, 
and Refs. 41-43). It is easily shown that both the similarity 
red uctions (C 10) and (C 11) for the Korteweg-de Vries 
equation (C 1 ) can be obtained from these infinitesimals (cf. 
Ref. 16, p. 196, and Ref. 43). 

APPENDIX D: MODIFIED KORTEWEG-dE VRIES 
EQUATION 

In this appendix we outline how to determine similarity 
reductions of the modified Korteweg-de Vries equation 

(Dl) 

using the method developed in this paper. It suffices to as­
sume 

U(x,t) = a(x,t) + f3(x,t)w(z(x,t)). (D2) 

Substituting and collecting coefficients yields 
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/3z!w'" + (3/3xi! + 3/3zxzxx )w" + (3/3xx zx + 3/3xzxx 

+ /3zxxx + /3Zt + a 2/3zx )W' + (/3xxx + /3t + a2/3x 
+ 2aax/3)w + /33zxW2W' + /32/3xW3 + 2a/32zxww' 

+ (2a/3/3x + a x/3 2)w2 + axxx + at + aax = O. 

(D3) 

We use the coefficient of WIll as the normalizing coefficient. 
For this to be an ordinary differential equation for w(z), 
from the coefficient of w2 w' we get 

/3z!r(z) =/3 3zx , 

where r(z) is to be determined. Using the freedom in Re­
mark 3 ( i) of Sec. III, 

/3 = Zx . (D4) 

The coefficient of w3 gives 

/3z!r(z) =/3 2/3x, 

where r(z) is to be determined. Using (D4), integrating 
twice, and using the freedoms in Remarks 2 and 3 (iii), we 
have 

z = xO(t) + a(t), /3 = O(t) , (D5) 

where O(t) and aCt) are to be determined. The coefficient of 
ww' gives 

/3z!r(z) = 2a/32zx , 

where r(z) is to be determined. Using (D4) and the free­
dom in Remark 3(i), we have 

a=O. (D6) 

Equation (D3) simplies to 

04(W'" + ww') + o(x dO + da)w' + dO w = O. 
dt dt dt 

(D7) 

This is an ordinary differential equation for w(z) provided 
that 

dO = A0 4 , 

dt 

da =03(Aa+B), 
dt 

where A and B are arbitrary constants. 

(D8a) 

(D8b) 

Therefore the general similarity reduction of the modi­
fied Kortweg-de Vries equation is 

u(x,t) = O(t)w(z), z = xO(t) + aCt) , 

where O(t) and aCt) satisfy Eqs. (D8). 
There are two cases to consider. 
Case 1. A¥O: We setA = - j, B = O. Hence 

O(t) = (t - to) -1/3, aCt) = C1 (t - to) -1/3 . (D9) 

Setting to = 0, C1 = 0, we obtain the similarity reduction 

U(x,t) =t- I
/ 3W(Z), z=xt- I / 3. 

Case 2. A=O: Solving (D8), 

O(t) = C2, aCt) = Bt + C3 . 

(DlO) 

Setting C2 = 1, c3 = 0, we obtain the similarity reduction 

U(X,t) = w(z), z = x + Bt. (DIl) 

The infinitesimals for the modified Korteweg-de Vries 
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equation obtained using the classical Lie method are 

X=ax+/3, T=3at+r, U= -2au, (DI2) 

with a, /3, and r arbitrary constants (cf. Ref. 42). It is easily 
shown that both the similarity reductions (DIO) and (DII) 
for the modified Korteweg-de Vries equation (D I) can be 
obtained from these infinitesimals (cf. 42). 
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