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Preface

The basic structure playing the key role in this book is a real inner product space
(X, δ), i.e. a real vector space X together with a mapping δ : X × X → R, a
so-called inner product, satisfying rules (i), (ii), (iii), (iv) of section 1 of chapter
1. In order to avoid uninteresting cases from the point of view of geometry, we
will assume throughout the whole book that there exist elements a, b in X which
are linearly independent. But, on the other hand, we do not ask for the exis-
tence of a positive integer n such that every subset S of X containing exactly n
elements is linearly dependent. In other words, we do not assume that X is a finite-
dimensional vector space. So, when dealing in this book with different geometries
like euclidean, hyperbolic, elliptic, spherical, Lorentz–Minkowskian geometry or
Möbius (Lie) sphere geometry over a real inner product space (X, δ), the reader
might think of X = R

2 or R
3, of X finite-dimensional, or of X infinite-dimensional.

In fact, it plays no role, whatsoever, in our considerations whether the dimension
of X is finite or infinite: the theory as presented does not depend on the dimension
of X . In this sense we may say that our presentation in question is dimension-free.

The prerequisites for a fruitful reading of this book are essentially based
on the sophomore level, especially after mastering basic linear algebra and basic
geometry of R

2 and R
3. Of course, hyperspheres are defined via the inner prod-

uct δ. At the same time we also define hyperplanes by this product, namely by
{x ∈ X | δ (a, x) = α}, or, as we prefer to write {x ∈ X | ax = α}, with 0 �= a ∈ X
and α ∈ R. This is a quite natural and simple definition and familiar to everybody
who learned geometry, say, of the plane or of R

3. For us it means that we do not
need to speak about the existence of a basis of X (see, however, section 2.6 where
we describe an example of a quasi-hyperplane which is not a hyperplane) and,
furthermore, that we do not need to speak about (affine) hyperplanes as images
under translations of maximal subspaces �= X of X (see R. Baer [1], p. 19), hence
avoiding transfinite methods, which could be considered as somewhat strange in
the context of geometries of Klein’s Erlangen programme. This programme was
published in 1872 by Felix Klein (1849–1925) under the title Vergleichende Be-
trachtungen über neuere geometrische Forschungen, Programm zum Eintritt in die
philosophische Facultät und den Senat der k. Friedrich-Alexander-Universität zu
Erlangen (Verlag von Andreas Deichert, Erlangen), and it gave rise to an ingenious
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and fundamental principle that allows distinguishing between different geometries
(S, G) (see section 9 of chapter 1) on the basis of their groups G, their invariants
and invariant notions (section 9). In connection with Klein’s Erlangen programme
compare also Julian Lowell Coolidge, A History of Geometrical Methods, Claren-
don Press, Oxford, 1940, and, for instance, W. Benz [3], p. 38 f.

The papers [1] and [5] of E.M. Schröder must be considered as pioneer work
for a dimension-free presentation of geometry. In [1], for instance, E.M. Schröder
proved for arbitrary-dimensional X, dimX ≥ 2, that a mapping f : X → X
satisfying f (0) = 0 and ‖x1 − x2‖ = ‖f (x1) − f (x2)‖ for all x1, x2 ∈ X with
‖x1 − x2‖ = 1 or 2 must be orthogonal. The methods of this result turned out to
be important for certain other results of dimension-free geometry (see Theorem 4
of chapter 1 of the present book, see also W. Benz, H. Berens [1] or F. Radó, D.
Andreescu, D. Válcan [1]).

The main result of chapter 1 is a common characterization of euclidean and
hyperbolic geometry over (X, δ). With an implicit notion of a (separable) transla-
tion group T of X with axis e ∈ X (see sections 7, 8 of chapter 1) the following
theorem is proved (Theorem 7). Let d be a function, not identically zero, from
X × X into the set R≥0 of all non-negative real numbers satisfying d (x, y) =
d
(
ϕ (x), ϕ (y)

)
and, moreover, d (βe, 0) = d (0, βe) = d (0, αe) + d (αe, βe) for all

x, y ∈ X , all ϕ ∈ T ∪ O (X) where O (X) is the group of orthogonal bijections of
X , and for all real α, β with 0 ≤ α ≤ β. Then, up to isomorphism, there exist
exactly two geometries with distance function d in question, namely the euclidean
or the hyperbolic geometry over (X, δ). We would like to stress the fact that this
result, the proof of which covers several pages, is also dimension-free, i.e. that it
characterizes classical euclidean and classical (non-euclidean) hyperbolic geometry
without restriction on the (finite or infinite) dimension of X , provided dimX ≥ 2.
Hyperbolic geometry of the plane was discovered by J. Bolyai (1802–1860), C.F.
Gauß (1777–1855), and N. Lobachevski (1793–1856) by denying the euclidean par-
allel axiom. In our Theorem 7 in question it is not a weakened axiom of parallelity,
but a weakened notion of translation with a fixed axis which leads inescapably to
euclidean or hyperbolic geometry and this for all dimensions of X with dim X ≥ 2.
The methods of the proof of Theorem 7 depend heavily on the theory of functional
equations. However, all results which are needed with respect to functional equa-
tions are proved in the book. Concerning monographs on functional equations see
J. Aczél [1] and J. Aczél–J. Dhombres [1].

In chapter 2 the two metric spaces (X, eucl) (euclidean metric space) and
(X, hyp) (hyperbolic metric space) are introduced depending on the different dis-
tance functions eucl (x, y), hyp (x, y) (x, y ∈ X) of euclidean, hyperbolic geometry,
respectively. The lines of these metric spaces are characterized in three different
ways, as lines of L.M. Blumenthal (section 2), as lines of Karl Menger (section 3), or
as follows (section 4): for given a �= b of X collect as line through a, b all p ∈ X such
that the system d (a, p) = d (a, x) and d (b, p) = d (b, x) of two equations has only
the solution x = p. Moreover, subspaces of the metric spaces in question are defined
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in chapter 2, as well as spherical subspaces, parallelism, orthogonality, angles, mea-
sures of angles and, furthermore, with respect to (X, hyp), equidistant surfaces,
ends, horocycles, and angles of parallelism. As far as isometries of (X, hyp) are
concerned, we would like to mention the following main result (Theorem 35, chap-
ter 2) which corresponds to Theorem 4 in chapter 1. Let � > 0 be a fixed real
number and N > 1 be a fixed integer. If f : X → X satisfies hyp

(
f (x), f (y)

) ≤ �

for all x, y ∈ X with hyp (x, y) = �, and hyp
(
f (x), f (y)

) ≥ N� for all x, y ∈ X
with hyp (x, y) = N�, then f must be an isometry of (X, hyp), i.e. satisfies
hyp

(
f (x), f (y)

)
= hyp(x, y) for all x, y ∈ X . If the dimension of X is finite, the

theorem of B. Farrahi [1] and A.V. Kuz’minyh [1] holds true: let � > 0 be a fixed
real number and f : X → X a mapping satisfying hyp

(
f (x), f (y)

)
= � for all

x, y ∈ X with hyp (x, y) = �. Then f must already be an isometry. In section 21
of chapter 2 an example shows that this cannot generally be carried over to the
infinite-dimensional case.

A geometry Γ = (S, G) is a set S �= ∅ together with a group G of bijections
of S with the usual multiplication (fg)(x) = f

(
g (x)

)
for all x ∈ S and f, g ∈ G.

The geometer then studies invariants and invariant notions of (S, G) (see section
9 of chapter 1). If a geometry Γ is based on an arbitrary real inner product space
X, dimX ≥ 2, then it is useful, as we already realized before, to understand by
“Γ, dimension-free” a theory of Γ which applies to every described X , no matter
whether finite- or infinite-dimensional, so, for instance, the same way to R

2 as
to C [0, 1] with fg =

∫ 1

0
t2f (t) g (t) dt for real-valued functions f, g defined and

continuous in [0, 1] (see section 2, chapter 1). In chapter 3 we develop the geom-
etry of Möbius dimension-free, and also the sphere geometry of Sophus Lie. Even
Poincaré’s model of hyperbolic geometry can be established dimension-free (see
section 8 of chapter 3). In order to stress the fact that those and other theories are
developed dimension-free, we avoided drawings in the book: drawings, of course,
often present properly geometrical situations, but not, for instance, convincingly
the ball B (c, 1) (see section 4 of chapter 2) of the above mentioned example with
X = C [0, 1] such that c : [0, 1] → R is the function c (ξ) = ξ3. The close connection
between Lorentz transformations (see section 17 of chapter 3) and Lie transfor-
mations (section 12), more precisely Laguerre transformations (section 13), has
been known for almost a hundred years: it was discovered by H. Bateman [1] and
H.E. Timerding [1], of course, in the classical context of four dimensions (section
17). This close connection can also be established dimension-free, as shown in
chapter 3. A fundamental theorem in Lorentz–Minkowski geometry (see section
17, chapter 3) of A.D. Alexandrov [1] must be mentioned here with respect to Lie
sphere geometry: if (2 ≤) dimX < ∞, and if λ : Z → Z, Z := X⊕R, is a bijection
such that the Lorentz–Minkowski distance l (x, y) (section 1 of chapter 4) is zero if,
and only if l

(
f (x), f (y)

)
= 0 for all x, y ∈ Z, then f is a Lorentz transformation

up to a dilatation. In fact, much more than this follows from Theorem 65 (section
17, chapter 3) which is a theorem of Lie (Laguerre) geometry: we obtain from
Theorem 65 Alexandrov’s theorem in the dimension-free version and this even in
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the Cacciafesta form (Cacciafesta [1]) (see Theorem 2 of chapter 4).
All Lorentz transformations of Lorentz–Minkowski geometry over (X, δ) are

determined dimension-free in chapter 4, section 1, by Lorentz boosts (section 14,
chapter 3), orthogonal mappings and translations. Also this result follows from a
theorem (Theorem 61 in section 14, chapter 3) on Lie transformations. In The-
orem 6 (section 2, chapter 4) we prove dimension-free a well-known theorem of
Alexandrov–Ovchinnikova–Zeeman which these authors have shown under the as-
sumption dimX < ∞, and in which all causal automorphisms (section 2, chapter
4) of Lorentz–Minkowski geometry over (X, δ) are determined.

In sections 9, 10, 11 (chapter 4) Einstein’s cylindrical world over (X, δ) is
introduced and studied dimension-free; moreover, in sections 12, 13 we discuss de
Sitter’s world. Sections 14, 15, 16, 17, 18, 19 are devoted to elliptic and spheri-
cal geometry. They are studied dimension-free as well. In section 19 the classical
lines of spherical, elliptic geometry, respectively, are characterized via functional
equations. The notions of Lorentz boost and hyperbolic translation are closely
connected: this will be proved and discussed in section 20, again dimension-free.

It is a pleasant task for an author to thank those who have helped him. I am
deeply thankful to Alice Günther who provided me with many valuable suggestions
on the preparation of this book. Furthermore, the manuscript was critically revised
by my colleague Jens Schwaiger from the university of Graz, Austria. He supplied
me with an extensive list of suggestions and corrections which led to substantial
improvements in my exposition. It is with pleasure that I express my gratitude to
him for all the time and energy he has spent on my work.

Waterloo, Ontario, Canada, June 2005 Walter Benz
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In this second edition a new chapter (δ–Projective Mappings, Isomorphism The-
orems) was added. One of the fundamental results contained in this chapter 5 is
that the hyperbolic geometries over two (not necessarily finite–dimensional) real
inner product spaces (X, δ), (V, ε) (see p. 1) are isomorphic (p. 16f) if, and only if,
the two underlying real inner product spaces are isomorphic (p. 1f) as well. Simi-
lar theorems are proved for Möbius sphere geometries and for the euclidean case.
Another result of chapter 5 we would like to mention is that the Cayley–Klein
model of hyperbolic geometry over (X, δ), as developed dimension–free in section
2.12, can also be established dimension–free via a certain selection of projective
mappings of X depending, however, on the chosen inner product δ of X .

It remains to the author to thank Professors Hans Havlicek, Zsolt Páles, Vic-
tor Pambuccian who, through their support, their criticism and their suggestions,
contributed to the improvement of this book. Special thanks in this connection
are due to Alice Günther and my colleagues Ludwig Reich and Jens Schwaiger.

Last, but not least, I would like to express my gratitude to the Birkhäuser
publishing company and, especially, to Dr. Thomas Hempfling for their conscien-
tious work and helpful cooperation.

Hamburg, July 2007 Walter Benz



Chapter 1

Translation Groups

1.1 Real inner product spaces

A real inner product space (X, δ) is a real vector space X together with a mapping
δ : X × X → R satisfying

(i) δ (x, y) = δ (y, x),

(ii) δ (x + y, z) = δ (x, z) + δ (y, z),

(iii) δ (λx, y) = λ · δ (x, y),

(iv) δ (x, x) > 0 for x �= 0

for all x, y, z ∈ X and λ ∈ R. Concerning the notation δ : X × X → R and others
we shall use later on, see the section Notation and symbols of this book. Instead
of δ (x, y) we will write xy or, occasionally, x · y. The laws above are then the
following:

xy = yx, (x + y) z = xz + yz, (λx) · y = λ · (xy)

for all x, y, z ∈ X, λ ∈ R, and x2 := x · x > 0 for all x ∈ X\{0}. Instead of (X, δ)
we mostly will speak of X , hence tacitly assuming that X is equipped with a fixed
inner product, i.e. with a fixed δ : X × X → R satisfying rules (i), (ii), (iii), (iv).

Two real inner product spaces (X, δ), (X ′, δ′) are called isomorphic provided
(in the sense of if, and only if) there exists a bijection

ϕ : X → X ′

such that

ϕ (x + y) = ϕ (x) + ϕ (y), ϕ (λx) = λϕ (x), δ (x, y) = δ′
(
ϕ (x), ϕ (y)

)
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hold true for all x, y ∈ X and λ ∈ R. The last of these equations can be replaced
by the weaker one δ (x, x) = δ′

(
ϕ (x), ϕ (x)

)
for all x ∈ X , since

2δ (x, y) = δ (x + y, x + y) − δ (x, x) − δ (y, y)

holds true for all x, y ∈ X for δ = δ as well as for all x, y ∈ X ′ for δ = δ′.

1.2 Examples

a) Let B �= ∅ be a set and define X (B) to be the set of all f : B → R such that
{b ∈ B | f (b) �= 0} is finite. Put

(f + g)(b) := f (b) + g (b)

for f, g ∈ X and b ∈ B, and

(αf)(b) := αf (b)

for f ∈ X, α ∈ R, b ∈ B. Finally set

fg :=
∑
b∈B

f (b) g (b)

for f, g ∈ X .

b) Let α < β be real numbers and let X be the set of all continuous functions
f : [α, β] → R with [α, β] := {t ∈ R | α ≤ t ≤ β}. Define f + g, αf as in a) and
put

fg :=
∫ β

α

h (t) f (t) g (t) dt

for a fixed h ∈ X satisfying h (t) > 0 for all t ∈ [α, β]\T where T is a finite subset
of [α, β]. This real inner product space will be denoted by X

(
[α, β], h

)
.

c) Suppose that X is the set of all sequences

(a1, a2, a3, . . .)

of real numbers a1, a2, a3, . . . such that
∑∞

i=1 a2
i exists. Define

(a1, a2, . . .) + (b1, b2, . . .) := (a1 + b1, a2 + b2, . . .),

λ · (a1, a2, . . .) := (λa1, λa2, . . .),

(a1, a2, . . .) · (b1, b2, . . .) :=
∞∑

i=1

aibi,

by observing

(ai + bi)2 = a2
i + b2

i + 2aibi ≤ a2
i + b2

i + a2
i + b2

i
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from (ai − bi)2 ≥ 0, i.e. by noticing

n∑
i=1

(ai + bi)2 ≤ 2
n∑

i=1

a2
i + 2

n∑
i=1

b2
i ,

i.e. that
∑∞

i=1(ai + bi)2 exists. Because of

4
n∑

i=1

aibi =
n∑

i=1

(ai + bi)2 −
n∑

i=1

(ai − bi)2,

also
∑∞

i=1 aibi exists.

1.3 Isomorphic, non-isomorphic spaces

Let n be a positive integer. The R
n consists of all ordered n-tuples

(x1, x2, . . . , xn)

of real numbers xi, i = 1, 2, . . . , n. It is a real inner product space with

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

α · (x1, . . . , xn) := (αx1, . . . , αxn),

(x1, . . . , xn) · (y1, . . . , yn) := x1y1 + · · · + xnyn

for xi, yi, α ∈ R, i = 1, . . . , n.
Obviously, R

n and X
({1, 2, . . . , n}) are isomorphic: define ϕ (x1, . . . , xn) to

be the function f : {1, . . . , n} → R with f (i) = xi, i = 1, . . . , n.

Suppose that B1, B2 are non-empty sets. The real inner product spaces
X (B1), X (B2) are isomorphic if, and only if, there exists a bijection γ : B1 → B2

between B1 and B2. If there exists such a bijection, define ϕ (f) for f ∈ X (B1)
by

ϕ (f)
(
γ (b)

)
= f (b)

for all b ∈ B1. Hence ϕ : X (B1) → X (B2) establishes an isomorphism. If
X (B1), X (B2) are isomorphic, there exists a bijection

ϕ : X (B1) → X (B2)

with ϕ (x + y) = ϕ (x) + ϕ (y), ϕ (λx) = λϕ (x) for all x, y ∈ X (B1) and λ ∈ R.
We associate to b ∈ B1 the element b̂ of X (B1) defined by b̂ (b) = 1 and b̂ (c) = 0
for all c ∈ B1\{b}. Then B̂1 := {b̂ | b ∈ B1} is a basis of X (B1), and B̂2 and
ϕ (B̂1) must be bases of X (B2). Since B̂1, ϕ (B̂1) are of the same cardinality, and
also B̂2, ϕ (B̂1), we get the same cardinality for B̂1, B̂2, and hence also for B1, B2.
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Suppose that α < β are real numbers and that h : [α, β] → R is continuous
with h (η) > 0 in [α, β]. Then the real inner product spaces X

(
[α, β], h

)
and

X
(
[0, 1], 1

)
are isomorphic. Here 1 designates the function 1(ξ) = 1 for all ξ ∈

[0, 1]. In order to prove this statement, associate to the function f : [0, 1] → R,
also written as f (ξ), the function ϕ (f) : [α, β] → R defined by

ϕ (f)(η) :=

√
(β − α)−1

h(η)
f

(
η − α

β − α

)
.

Obviously, ϕ : X
(
[0, 1], 1

)→ X
(
[α, β], h

)
is a bijection. It satisfies

ϕ (f + g) = ϕ (f) + ϕ (g), ϕ (λf) = λϕ (f)

for all λ ∈ R and f, g ∈ X
(
[0, 1], 1

)
. Moreover, we obtain

ϕ (f) · ϕ (g) =
∫ β

α

h (η)ϕ (f)(η)ϕ (g)(η) dη =
∫ 1

0

f (ξ) g (ξ) dξ = f · g,

and hence that X
(
[0, 1], 1

)
, X

(
[α, β], h

)
are isomorphic.

Remark. There exist examples of (necessarily infinite-dimensional) real vector
spaces X with mappings δν : X × X → R, ν = 1, 2, satisfying rules (i),(ii), (iii),
(iv) of section 1.1 such that (X, δ1) and (X, δ2) are not isomorphic (J. Rätz [1]).

1.4 Inequality of Cauchy–Schwarz

Inequality of Cauchy–Schwarz: If a, b are elements of X, then (ab)2 ≤ a2b2 holds
true.

Proof. Case b = 0. Observe, for p ∈ X ,

pb = p · 0 = p · (0 + 0) = p · 0 + p · 0,

i.e. pb = p · 0 = 0, i.e. a · b = 0 and b2 = 0.

Case b �= 0. Hence b2 > 0 and thus

0 ≤
(

a − ab

b2
b

)2

= a2 − (ab)2

b2
, (1.1)

i.e. (ab)2 ≤ a2b2. �

Lemma 1. If a, b are elements of X such that (ab)2 = a2b2 holds true, then a, b
are linearly dependent.
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Proof. Case b = 0. Here 0 · a + 1 · b = 0.

Case b �= 0. Hence, by (1.1),
(
a − ab

b2 · b)2 = 0, i.e.

a − ab

b2
· b = 0. �

For x ∈ X , the real number s ≥ 0 with s2 = x2 is said to be the norm of
x, s =: ‖x‖. Obviously, ‖λx‖ = |λ| · ‖x‖ for λ ∈ R and x ∈ X . Moreover, ‖x‖ = 0
holds true for x ∈ X if, and only if, x = 0. Observing xy ≤ |xy| ≤ ‖x‖·‖y‖ for x, y ∈
X, from the inequality of Cauchy–Schwarz, we obtain (x + y)2 ≤ (‖x‖ + ‖y‖)2,
i.e. we get the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X. (1.2)

1.5 Orthogonal mappings

Let X be a real inner product space. In order to avoid that the underlying real
vector space of X is R or {0}, we will assume throughout the whole book that there
exist two elements in X which are linearly independent. Under this assumption the
following holds true: if x, y are elements of X, there exists w ∈ X with w2 = 1 and
w · (x− y) = 0. Since there are elements a, b in X , which are linearly independent,
put w = a

‖a‖ in the case x = y. If x �= y, there exists z in X such that z �∈ R·(x−y),
because otherwise a, b ∈ R · (x − y) would be linearly dependent. Hence

v := z − z (x − y)
(x − y)2

(x − y) �= 0.

Thus w := v
‖v‖ satisfies w2 = 1 and w · (x − y) = 0.

A mapping ω : X → X is called orthogonal if, and only if,

ω (x + y) = ω (x) + ω (y), ω (λx) = λω (x), xy = ω (x)ω (y)

hold true for all x, y ∈ X and λ ∈ R.

An orthogonal mapping ω of X must be injective, but it need not be surjec-
tive. Assume ω (x) = ω (y) for the elements x, y of X . Because of

ω (x − y) = ω
(
x + [(−1) y]

)
= ω (x) + (−1)ω (y) = 0,

we obtain (x − y)2 = [ω (x − y)]2 = 0, i.e. x − y = 0, i.e. x = y.

Define B := {1, 2, 3, . . .} and take the space X = X (B) of type a). For f ∈ X
put

ω (f)(1) = 0 and ω (f)(i) = f (i − 1), i = 2, 3, . . . .
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Since g ∈ X with g (1) = 1, g (i) = 0 for i = 2, 3, . . ., has no inverse image, ω
cannot be surjective. But, trivially, ω is orthogonal.

A linear mapping ω : X → X is orthogonal if, and only if, ‖x‖ = ‖ω (x)‖
holds true for all x ∈ X . From x2 =

(
ω (x)

)2 we get, for all a, b ∈ X ,

(a − b)2 =
(
ω (a − b)

)2 =
(
ω (a) − ω (b)

)2
,

i.e. ab = ω (a)ω (b), in view of a2 =
(
ω (a)

)2
, b2 =

(
ω (b)

)2. On the other hand, if
ω is orthogonal, then x · x = ω (x)ω (x) holds true, i.e. ‖x‖ = ‖ω (x)‖.
Lemma 2. Suppose that a, b, m ∈ X satisfy

‖m − a‖ = ‖b − m‖ =
1
2
‖b − a‖.

Then m = 1
2 (a + b) holds true.

Proof. Put µ := ‖m − a‖, a′ := m − a, b′ := b − m. Hence

(b − a)2 + (a′ − b′)2 = (a′ + b′)2 + (a′ − b′)2 = 4µ2.

Thus ‖b − a‖ = 2µ implies (a′ − b′)2 = 0, i.e. a′ = b′, i.e. m = 1
2 (a + b). �

Proposition 3. A mapping f : X → X satisfying f (0) = 0 and ‖x − y‖ =
‖f (x) − f (y)‖ for all x, y ∈ X must be orthogonal.

Proof. Obviously, for all a, b ∈ X ,∥∥∥∥a + b

2
− a

∥∥∥∥ =
∥∥∥∥b − a + b

2

∥∥∥∥ =
1
2
‖b − a‖.

This implies, by ‖x − y‖ = ‖f (x) − f (y)‖,∥∥∥∥f
(

a + b

2

)
− f (a)

∥∥∥∥ =
∥∥∥∥f (b) − f

(
a + b

2

)∥∥∥∥ =
1
2
‖f (b) − f (a)‖.

Hence, by Lemma 2, we obtain f
(

a+b
2

)
= 1

2

(
f (a)+f (b)

)
, i.e. Jensen’s functional

equation. From b = 0 we get f
(

a
2

)
= 1

2 f (a) for all a ∈ X . Thus

f (a + b) = f (a) + f (b)

for all a, b ∈ X . This implies f (λa) = λf (a) for all rationals λ and all a ∈ X . Let
now λ ∈ R be given, and let λn be a sequence of rational numbers with lim λn = λ.
By (1.2),

‖f (λa) − λf (a)‖ ≤ ‖f (λa) − f (λna)‖ + ‖f (λna) − λf (a)‖ =: R,
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and with ‖x − y‖ = ‖f (x) − f (y)‖,

R = ‖λa − λna‖ + ‖λnf (a) − λf (a)‖ = |λ − λn| ·
(‖a‖ + ‖f (a)‖)

for all a ∈ X . Hence ‖f (λa) − λf (a)‖ = 0, and thus f must be linear. Finally
observe ‖x‖ = ‖f (x)‖ for all x ∈ X from ‖x − 0‖ = ‖f (x) − f (0)‖ and f (0) =
0. �

Of course, the set of all surjective orthogonal mappings ω : X → X forms a
group under the permutation product, the so-called orthogonal group O (X) of X .

1.6 A characterization of orthogonal mappings

The following theorem characterizes the orthogonal mappings of a real inner prod-
uct space under mild hypotheses, i.e. under especially weak assumptions.

Theorem 4. Let � > 0 be a fixed real number and N > 1 be a fixed integer. If the
mapping f : X → X satisfies

∀x,y∈X ‖x − y‖ = � ⇒ ‖f (x) − f (y)‖ ≤ �, (1.3)

∀x,y∈X ‖x − y‖ = N� ⇒ ‖f (x) − f (y)‖ ≥ N�, (1.4)

it must be of the form

∀x∈X f (x) = ω (x) + t, (1.5)

where ω is an orthogonal mapping, and t a fixed element of X.

Proof. We will prove

‖f (x) − f (y)‖ = ‖x − y‖ (1.6)

for all x, y ∈ X . Then, by Proposition 3,

g (x) := f (x) − f (0) =: ω (x)

must be orthogonal, and f is of the form (1.5).

a) ‖x − y‖ ∈ {�, 2�} implies ‖x − y‖ = ‖f (x) − f (y)‖.
If x, y ∈ X are given with ‖x − y‖ = �, define z := 2y − x. Hence ‖x − z‖ = 2�.
If x, z ∈ X are given with ‖x − z‖ = 2�, define y := 1

2 (x + z), and we obtain
‖x − y‖ = �. Put

pλ := x +
1
2

λ (z − x) for λ = 0, 1, . . . , N.
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Hence, by (1.4) and ‖p0 − pN‖ = N�,

‖f (p0) − f (pN )‖ ≥ N�.

By (1.3), for λ = 0, . . . , N − 1,

‖f (pλ) − f (pλ+1)‖ ≤ �,

on account of ‖pλ − pλ+1‖ = �. Thus

N� ≤ ‖f (p0) − f (pN )‖ ≤ ‖f (p0) − f (p2)‖ +
N−1∑
λ=2

‖f (pλ) − f (pλ+1‖

≤ ‖f (p0) − f (p1)‖ + ‖f (p1) − f (p2)‖ +
N−1∑
λ=2

‖f (pλ) − f (pλ+1‖ ≤ N�,

i.e. ‖f (pλ) − f (pλ+1‖ = � for λ = 0, . . . , N − 1, and, moreover,

‖f (p0) − f (p2)‖ = ‖f (p0) − f (p1)‖ + ‖f (p1) − f (p2)‖ = 2�.

Putting p0 = x, p1 = y, p2 = z, we obtain

‖f (x) − f (y)‖ = � and ‖f (x) − f (z)‖ = 2�.

b) If x, y ∈ X satisfy ‖x − y‖ = �, then

f
(
x + λ (y − x)

)
= f (x) + λ

(
f (y) − f (x)

)
(1.7)

holds true for λ = 0, 1, 2, . . ..

This is clear for λ = 0 and λ = 1. Put

pλ := x + λ (y − x) for λ = 0, 1, 2, . . . .

If λ ∈ {1, 2, 3, . . .}, we obtain

� = ‖pλ − pλ−1‖ = ‖pλ+1 − pλ‖ =
1
2
‖pλ+1 − pλ−1‖,

i.e. by a),

� = ‖f (pλ) − f (pλ−1)‖ = ‖f (pλ+1 − f (pλ)‖ =
1
2
‖f (pλ+1) − f (pλ−1)‖,

and hence, by Lemma 2,

f (pλ) =
1
2
(
f (pλ−1) + f (pλ+1)

)
for λ = 1, 2, 3, . . . .

This equation implies (1.7), by induction.
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c) If x, y ∈ X satisfy ‖x − y‖ = λ
µ � with λ, µ ∈ {1, 2, 3, . . .}, then ‖x − y‖ =

‖f (x) − f (y)‖.
We assumed that there exist two elements in X which are linearly independent.
This implies, as we already know, the existence of an element w ∈ X satisfying
w · (x − y) = 0 and ‖w‖ = 1. Put

z :=
1
2

(x + y) + λ�

√
1 − 1

4µ2
· w

and observe ‖z − x‖ = λ� = ‖z − y‖. Define a, b, x′, y′ by means of

x = z + λ (a − z), y = z + λ (b − z),

x′ = z + µ (a − z), y′ = z + µ (b − z).

Hence, by b) and ‖a − z‖ = � = ‖b − z‖,
f (x) = f (z) + λ

(
f (a) − f (z)

)
, f (y) = f (z) + λ

(
f (b) − f (z)

)
,

f (x′) = f (z) + µ
(
f (a) − f (z)

)
, f (y′) = f (z) + µ

(
f (b) − f (z)

)
,

i.e. λ
(
f (x′)− f (y′)

)
= µ

(
f (x)− f (y)

)
. Thus, by a) and ‖x′− y′‖ = �, we obtain

‖f (x) − f (y)‖ =
λ

µ
� = ‖x − y‖.

d) Suppose that t > 0 is a rational number, and that for x, y ∈ X we have ‖x−y‖ <
t�. Then ‖f (x)− f (y)‖ ≤ t�. As in step c) we take w ∈ X with w (x− y) = 0 and
‖w‖ = 1. Put

z :=
1
2

(x + y) +
t�

2

√
1 −
(‖x − y‖

t�

)2

w,

and observe ‖z − x‖ = 1
2 t� = ‖z − y‖. Hence, by c),

‖f (z) − f (x)‖ =
1
2

t� = ‖f (z) − f (y)‖,

and thus

‖f (x) − f (y)‖ ≤ ‖f (x) − f (z)‖ + ‖f (z) − f (y)‖ = t�.

e) Let r > 0, s > 0 be rational numbers, and x, y be elements of X satisfying

r� < ‖x − y‖ < s�.

Then r� ≤ ‖f (x) − f (y)‖ ≤ s� holds true.
Put

p := x +
s�

‖x − y‖ (y − x)
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and observe

‖p − y‖ =
(

s�

‖x − y‖ − 1
)

‖y − x‖ = s� − ‖y − x‖ < (s − r) �.

Hence, by d), ‖f (p)− f (y)‖ ≤ (s − r) �. Because of ‖p− x‖ = s� and step c), we
obtain

‖f (p) − f (x)‖ = s�.

Thus

‖f (x) − f (y)‖ ≥ ‖f (x) − f (p)‖ − ‖f (y) − f (p)‖ ≥ s� − (s − r) �.

Since, moreover, ‖x − y‖ < s� yields, by d), ‖f (x) − f (y)‖ ≤ s�, e) is proved.

f) (1.6) holds true for all x, y ∈ X .
Assuming x �= y, we will consider two sequences rν , sν(ν = 1, 2, 3, . . .) of rational
numbers with lim rν = 1

� ‖x − y‖ = lim sν , and such that

rν� < ‖x − y‖ < sν�

is satisfied for all ν = 1, 2, 3, . . .. Step e) implies

rν� ≤ ‖f (x) − f (y)‖ ≤ sν�.

Hence ‖x − y‖ = ‖f (x) − f (y)‖. �
Remark. Steps b), c), d), e) f) of the previous proof were given by E.M. Schröder
in [1]. For generalizations of Theorem 4, or similar results, see F.S. Beckman, D.A.
Quarles [1], W. Benz, H. Berens [1], W. Benz [8], K. Bezdek, R. Connelly [1], J.A.
Lester [1], F. Radó, D. Andreescu, D. Valcán [1], E.M. Schröder [5], among others.

1.7 Translation groups, axis, kernel

Let X be a real inner product space such that there exist two linearly independent
elements in X . By Perm X we designate the group of all permutations of X with
the usual permutation product

(fg)(x) = f
(
g (x)

)
, for all x ∈ X,

for f, g ∈ Perm X . Let e be a fixed element of X with e2 = 1. Put

H := e⊥ := {x ∈ X | xe = 0},
and we obtain X = H ⊕ Re: this means, by definition, that to every x ∈ X there
exist uniquely determined elements x ∈ H and x0e ∈ Re satisfying

x = x + x0e,
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and that H, Re are subspaces of X . In fact,

x =
(
x − (xe) e

)
+ (xe) e

holds true with x − (xe) e ∈ H, (xe) e ∈ Re, and

x = x + x0e, x ∈ H, x0 ∈ R,

implies xe = (x + x0e) e = x0, i.e. x = x − x0e = x − (xe) e. Observe H �= {0},
since there exists w ∈ X with ‖w‖ = 1 and w · (e − 0) = 0 (see the beginning of
section 1.5).

Remark. Occasionally, the following statement will be useful. If α, β are mappings
from X into X such that αβ = id = βα holds true, where id designates the identity
element of Perm X , then α, and, of course, β as well, must be bijections of X . In
fact, β (x) is an inverse image of x, since α

(
β (x)

)
= x, and if α (x) is equal to

α (y), then
id (x) = β

(
α (x)

)
= β

(
α (y)

)
= id (y)

implies x = y.

A mapping T : R → Perm X is called a translation group of X in the direc-
tion of e, or with axis e, if, and only if, the following properties hold true.

(T1) Tt+s = Tt · Ts for all t, s ∈ R,

(T2) For x, y ∈ X satisfying x − y ∈ Re there exists exactly one t ∈ R with
Tt(x) = y,

(T3) Tt(x) − x ∈ R≥0e for all x ∈ X and all real t ≥ 0.

Here Tt designates the image of t ∈ R under T , moreover, Tt · Ts the permutation
product, and Tt(x) the image of x ∈ X under the permutation Tt of X . By R≥0

we denote the set of all non-negative reals. (T1) is called translation equation in
the theory of functional equations (J.Aczél [1]).

If we associate to t ∈ R the permutation

∀x∈X x → x + te,

of X , we get an example of a translation group with axis e. Another important
example is given by t → Tt with

∀x∈X Tt(x) = x + [(xe)(cosh t − 1) +
√

1 + x2 sinh t] e. (1.8)

In order to prove that t → Tt is a translation group, observe that the elements of
X can be written in the form

h + sinh τ ·
√

1 + h2 e
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with h ∈ H and τ ∈ R: for x ∈ X put

h := x, sinh τ :=
x0√

1 + x2
,

and notice that (1.8) yields

Tt(h + sinh τ ·
√

1 + h2 e) = h + sinh(τ + t)
√

1 + h2 e. (1.9)

From (1.9) we get at once TsTt = Tt+s = Ts+t, especially T−tTt = id, id the
identity permutation of X , so that Tt must be a bijection of X . If x, y ∈ X satisfy
x − y ∈ Re, put y = x + αe for a suitable α ∈ R. Hence, by

h := x and x0 =: sinh τ ·
√

1 + h2,

we obtain y = h + (x0 + α) e =: h + sinh(τ + t′) · √1 + h2 e, i.e. Tt(x) = y has
the uniquely determined solution t = t′. Property (T3), finally, follows from (1.9),
since

Tt(x) − x =
(
sinh(τ + t) − sinh τ

)√
1 + h2 e,

and sinh(τ + t) ≥ sinh τ for τ + t ≥ τ .

Suppose that T : R → Perm X is an arbitrary translation group of X in
the direction of e. Obviously, the group {Tt | t ∈ R} is a homomorphic image
of the additive group of R, and even an isomorphic image, since Ts = T0 implies
Ts(x) = T0(x) for all x ∈ X , i.e. s = 0, in view of (T2). Usually we shall identify the
mapping T with the set {Tt | t ∈ R}. Notice T0 = id ∈ Perm X : since x − x ∈ Re
for x ∈ X , there exists exactly one t ∈ R with Tt(x) = x in view of (T2), moreover,
(T1) implies T2t(x) = Tt(Tt(x)) = Tt(x) = x, i.e. we obtain 2t = t from (T2).

The function � : H × R → R,

� (h, t) := [Tt(h) − h] · e = Tt(h) · e (1.10)

is called the kernel of the translation group T . In the case (1.8), for instance, we
get

� (h, t) = sinh t ·
√

1 + h2. (1.11)

Theorem 5. The kernel � : H × R → R of a translation group T of X with axis e
satisfies

(i) � (h, 0) = 0 and � (h, t1) < � (h, t2) for all h ∈ H and all reals t1 < t2,

(ii) To h ∈ H and ξ ∈ R there exists t ∈ R such that � (h, t) = ξ.

If, on the other hand, an arbitrary function � : H × R → R satisfies (i) and (ii),
then

Tt

(
h + � (h, τ) e

)
= h + � (h, τ + t) e (1.12)

defines a translation group of X in the direction of e; the kernel of this translation
group is �.
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Proof. a) � (h, 0) = 0 follows from (1.10) and T0 = id. Suppose h ∈ H and t1 < t2
for t1, t2 ∈ R. Hence, by (T3),

Tt2−t1

(
Tt1(h)

)− Tt1(h) ∈ R≥0e,

i.e., by (T1), Tt2(h)−Tt1(h) := µe, µ ≥ 0. Since t2 �= t1, we obtain Tt2−t1(h) �= h,
by (T2), i.e. Tt2(h) �= Tt1(h), i.e. µ �= 0, i.e. µ > 0. Hence, by (1.10),

� (h, t2) − � (h, t1) =
(
Tt2(h) − h

)
e − (Tt1(h) − h

)
e

=
(
Tt2(h) − Tt1(h)

)
e = µ > 0.

If h ∈ H and ξ ∈ R, there exists, by (T2), t ∈ R with Tt(h) = h + ξe. Hence, by
(1.10),

� (h, t) =
(
Tt(h) − h

)
e = ξ.

b) t in (ii) is uniquely determined: if also � (h, t′) were equal to ξ with, say t < t′,
then, by (i),

ξ = � (h, t) < � (h, t′) = ξ.

If x ∈ X , the elements h ∈ H and τ ∈ R satisfying

x = h + � (h, τ) e

are uniquely determined because h = x and � (h, τ) = x0 has exactly one solution
τ . Hence Tt from (1.12) defines a mapping from X into X . Observe Tt+s = TtTs

from (1.12), and hence TtT−t = T0. But, by (1.12), T0 = id. This implies that Tt

is bijective.— In order to prove (T2), we consider x, y ∈ R with y = x+ ξe, ξ ∈ R.
Put h := x, and determine, by (ii), the reals τ, t by means of

� (h, τ) = x0 and � (h, τ + t) = ξ + x0.

Then
Tt(x) = Tt

(
h + � (h, τ) e

)
= h + � (h, τ + t) e = y.

Finally, we must prove (T3). Put again

x = h + � (h, τ) e.

For t ≥ 0, we obtain

Tt(x) − x =
(
� (h, τ + t) − � (h, τ)

)
e ∈ R≥0 e,

in view of (i).

The kernel of this translation group is, by (1.10), (1.12), � (h, 0) = 0, i.e.
h = h + � (h, 0) e,

[Tt(h) − h] e = � (h, t). �
Remark. If T is an arbitrary translation group with kernel �, then, of course,
(1.12) holds true, since, by (T3), (1.10),

Tτ (h) = h + � (h, τ) e, Tτ+t(h) = h + � (h, τ + t) e,

and since Tτ+t(h) = TtTτ (h).
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1.8 Separable translation groups

The translation group T of X , in the direction of e, is called separable if, and only
if, there exist functions

ϕ : R → R and ψ : H = e⊥ → R

such that � (h, t) = ϕ (t) · ψ (h) holds true for all (h, t) ∈ H × R, where � (h, t)
denotes the kernel of T .

If there existed h0 ∈ H with ψ (h0) = 0, then � (h0, 0) = � (h0, 1), contra-
dicting (i). We put

ϕ1(t) := ϕ (t) · ψ (0) and ψ1(h) :=
ψ (h)
ψ (0)

.

Again, � (h, t) = ϕ1(t) ·ψ1(h), and we will show ψ1(h) > 0 for all h ∈ H , moreover,
that ϕ1 is an increasing bijection of R with ϕ1(0) = 0. Since, by (i), (ii), � (0, t) is
an increasing bijection of R with � (0, t) = ϕ1(t)ψ1(0) = ϕ1(t), so must be ϕ1(t).
If there existed h1 ∈ H with ψ (h1) < 0, then, by (i),

0 = � (h1, 0) < �1(h1, 1) = ϕ1(1)ψ1(h1) < 0,

in view of 0 = ϕ1(0) < ϕ1(1), a contradiction.

So we may assume, without loss of generality, that the kernel of a separable
translation group can be written in the form

� (h, t) = ϕ (t) · ψ (h)

with ψ : H → R>0 := R≥0\{0}, ψ (0) = 1, and such that ϕ is an increasing
bijection of R satisfying ϕ (0) = 0.

Of course, the translation groups with kernels t, sinh t ·√1 + h2, respectively,
are separable. Separable is also the group with kernel(

sinh t2n−1
) · (1 + h2)

for n ∈ {1, 2, 3, . . .}, and non-separable the group, for instance, with kernel

sinh
(
t2n−1 · 2h2

)
for n ∈ {1, 2, 3, . . .}. Theorem 5 immediately shows that all these functions are
indeed kernels of suitable translation groups.

The following theorem characterizes separability geometrically.
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Theorem 6. Suppose that T is a translation group of X in the direction of e. The
group T is separable if, and only if,

‖Tα(h) − h‖
‖Tβ(h) − h‖ =

‖Tα(0)‖
‖Tβ(0)‖ (1.13)

holds true for all h ∈ H and α, β ∈ R\{0}.
Proof. Since there is exactly one t ∈ R with Tt(h) = h, namely t = 0, we know
Tβ(h) �= h and Tβ(0) �= 0. Hence (1.13) is well-defined. From (i) (Theorem 5) and

Tt(h) = h + � (h, t) e, (1.14)

we obtain sgn � (h, t) = sgn t for t �= 0. Assume now (1.13). Hence, by ‖Tt(h) −
h‖ = sgn t · � (h, t),

� (h, α)
� (h, β)

=
� (0, α)
� (0, β)

for all h ∈ H and α, β ∈ R\{0}, and thus

� (h, t) = � (0, t) · � (h, 1)
� (0, 1)

for α = t �= 0, β = 1. Of course, this formula also holds true for t = 0. Define

ϕ (t) := � (0, t) and ψ (h) :=
� (h, 1)
� (0, 1)

.

Hence � (h, t) = ϕ (t) · ψ (h), and thus T is separable. If, on the other hand, T
is separable, we have to prove (1.13). As we already mentioned, we may assume,
without loss of generality,

� (h, t) = ϕ (t) · ψ (h)

with ψ : H → R>0, ψ (0) = 1. By (1.14),

‖Tt(h) − h‖ = |ϕ (t)| · ψ (h),

i.e. (1.13) holds true. �
Remark. In view of (1.14), � (h, α) · � (0, β) = � (h, β) · � (0, α) is equivalent with

Tα(h) · Tβ(0) = Tβ(h) · Tα(0),

by noticing h ∈ e⊥. Hence (1.13) can be replaced by this latter equation which, of
course, also holds true in the case αβ = 0. Moreover, by (1.14), formula (1.13) is
equivalent with

Tα(h1) · Tβ(h2) = Tα(h2) · Tβ(h1)
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(for all α, β ∈ R and all h1, h2 ∈ H) as well, and also with

Tα(h) · T1(0) = Tα(0) · T1(h)

for all α ∈ R and h ∈ H . To all these equations there correspond formulas like
(1.13), for instance

‖Tα(h1) − h1‖
‖Tβ(h1) − h1‖ =

‖Tα(h2) − h2‖
‖Tβ(h2) − h2‖

for all real α, β with β �= 0 and all h1, h2 ∈ H .

1.9 Geometry of a group of permutations

Let S �= ∅ be a set and let G be a subgroup of Perm S. The structure (S, G) will
be called a geometry. Suppose that N �= ∅ is a set and

ϕ : G × N → N

an action of G on N , i.e. a mapping satisfying

(i) ϕ (fg, l) = ϕ
(
f, ϕ (g, l)

)
,

(ii) ϕ (j, l) = l

for all f, g ∈ G and l ∈ N where j denotes the neutral element of G. We then
call (N, ϕ) an invariant notion of the geometry (S, G). Instead of ϕ (f, l) we often
shall write f (l). Hence (i), (ii) are given by

fg (l) := (fg)(l) = f
(
g (l)
)

and j (l) = l.

Let (N, ϕ) be an invariant notion of (S, G) and let W be a set. A function

h : N → W

is called an invariant of the geometry (S, G) provided

h
(
f (l)

)
= h (l)

holds true for all f ∈ G and all l ∈ N .

Geometries (S, G) and (S′, G′) are called isomorphic if, and only if, there
exist bijections

σ : S → S′ and τ : G → G′

such that the following equations hold true:

τ (g1g2) = τ (g1) τ (g2), σ
(
g (s)

)
= τ (g)

(
σ (s)

)
(1.15)
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for all s ∈ S and g1, g2, g ∈ G. The mapping τ is hence an isomorphism between
the groups G, G′. If (S, G), (S′, G′) are isomorphic, we shall write

(S, G) ∼= (S′, G′).

The relation ∼= is reflexive, symmetric and transitive on every set of geometries
(S, G). The isomorphism of geometries (S, G), (S′, G′) was already playing an im-
portant role in geometry by the 19th century. At that time geometers spoke of
so-called Übertragungsprinzipe which means that two geometries, based on differ-
ent terminologies, could turn out to coincide from a structural point of view, by
just following a vocabulary which associates to the objects of one geometry the
objects of the other geometry. We would like to present an example, connecting

the so-called Cayley–Klein-model of proper 1-dimensional hyperbolic
geometry, (S, G),

with

the so-called Poincaré-model of proper 1-dimensional hyperbolic geom-
etry, (S′, G′).

Define
S = ] − 1, +1[ := {r ∈ R | −1 < r < +1},
S′ = ]0,∞[ := {r ∈ R | r > 0},
G = {ϕp : S → S | p ∈ S}, ϕp(x) = x+p

xp+1 ,

G′ = {ψq : S′ → S′ | q ∈ S′}, ψq(x) = qx,

and put

σ (s) =
1 + s

1 − s
, τ (ϕp) = ψσ (p)

for s ∈ S and ϕp ∈ G.
It is easy to verify that every ϕp, p ∈ S, is a bijection of S, that

ϕp1 · ϕp2 = ϕp1∗p2 with p1 ∗ p2 = ϕp1(p2)

holds true, that σ : S → S′ is a bijection and τ : G → G′ an isomorphism satisfying

σ
(
ϕp(s)

)
= τ (ϕp)

(
σ (s)

)
for all s ∈ S and ϕp1 , ϕp2 , ϕp ∈ G. We thus established isomorphism (or an
Übertragungsprinzip) between the geometries (S, G) and (S′, G′). (For more in-
formation about the hyperbolic line in connection with the present definitions see
W. Benz [3], sections 2.1 to 2.5).

Isomorphic geometries (S, G) and (S′, G′) have, up to notation, the same
invariant notions and the same invariants. Let (N, ϕ) be an invariant notion of
(S, G), let N ′ be a set and

ν : N → N ′
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a bijection (for instance N ′ = N and ν = id). We then define an invariant notion
(N ′, ϕ′) of (S′, G′). Put ϕ′ : G′ × N ′ → N ′ with

ϕ′(τ (g), ν (l)
)

= ν
(
ϕ (g, l)

)
for g ∈ G and l ∈ N where τ : G → G′ is a bijection satisfying (1.15). Obviously,

ϕ′(τ (j), ν (l)
)

= ν
(
ϕ (j, l)

)
= ν (l)

since ϕ (j, l) = l (see (ii)). Moreover, we must prove

L := ϕ′(τ (f) τ (g), ν (l)
)

= ϕ′(τ (f), ϕ′[τ (g), ν (l)]
)

=: R,

i.e. (i) for ϕ′ : G′ × N ′ → N ′. Notice

L = ϕ′(τ (fg), ν (l)
)

= ν
(
ϕ (fg, l)

)
= ν

(
ϕ
(
f, ϕ (g, l)

))
= ϕ′(τ (f), ν [ϕ (g, l)]

)
= ϕ′(τ (f), ϕ′[τ (g), ν (l)]

)
= R.

Now let
h : N → W

be an invariant of (S, G) based on the invariant notion (N, ϕ) of (S, G). We then
would like to define an invariant

h′ : N ′ → W

of (S′, G′). (It also could be useful here to work with a set W ′ and a bijection µ :
W → W ′.) Put h′(l′) := h

(
ν−1(l′)

)
for all l′ ∈ N ′, by observing that ν : N → N ′

is a bijection. Then

h′
(
ϕ′(τ (g), ν (l)

))
= h′

(
ν
(
ϕ (g, l)

))
= h

(
ϕ (g, l)

)
= h (l) = h′(ν (l)

)
.

h′ is hence an invariant of (S′, G′). If we rewrite the definition of ϕ′, namely

ϕ′(τ (g), ν (l)
)

= ν
(
ϕ (g, l)

)
,

by using the abbreviations
ϕ (g, l) =: g (l)

and
ϕ′(τ (g), ν (l)

)
=: τ (g)

(
ν (l)

)
,

we get
τ (g)

(
ν (l)

)
= ν

(
g (l)
)

for all l ∈ N and g ∈ G. In the case that N is a set of subsets of S, or that it
otherwise is based on S, the mapping ν might be taken equal to σ in view of (1.15),
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in order to construct the corresponding invariant notion of (N, ϕ) for (S′, G′) in
terms of this latter geometry. Principally, however, the corresponding invariant
notion of (N, ϕ) for (S′, G′) might be based on (N, ϕ′) (N ′ := N, ν := id) with

ϕ′(τ (g), l
)

:= ϕ (g, l),

according to the proof above. (For more information in this connection compare
W. Benz [3], chapter 1.)

In this context it might be interesting to look again at our previous example
of two isomorphic geometries in connection with proper 1-dimensional hyperbolic
geometry,

(S, G) ∼= (S′, G′).

We are interested in a special invariant notion and in a special invariant. Define

N := S × S,

and the action from G × N into N by

g (x, y) :=
(
g (x), g (y)

)
for all g ∈ G and x, y ∈ S. Define, moreover,

W := {r ∈ R | r > 0}
and h : N → W by

h (x, y) :=
(1 − x)(1 + y)
(1 + x)(1 − y)

for all (x, y) ∈ N . Obviously,

h (x, y) = h
(
g (x), g (y)

)
for all g ∈ G and (x, y) ∈ N , so that h is an invariant of (S, G). With respect to
(S′, G′) define N ′ := S′ × S′ and ν : N → N ′ by

ν (x, y) :=
(
σ (x), σ (y)

)
=: σ (x, y)

for all (x, y) ∈ N . Because of the general formula

h′(ν (l)
)

:= h (l),

we hence define in our present situation

h′(σ (x), σ (y)
)

:= h (x, y),

i.e.
h′(v, w) = h

(
σ−1(v), σ−1(w)

)
=

w

v

for all v, w ∈ S′. Clearly, h′(ψq(v), ψq(w)
)

= h′(v, w) for all q, v, w ∈ S′.
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1.10 Euclidean, hyperbolic geometry

Suppose that X is a real inner product space containing two linearly independent
elements. Take a fixed element e of X with e2 = 1, and a translation group T of
X with axis e. Let G

(
T, O (X)

)
be the group generated by T and O (X), i.e. the

subgroup of Perm X consisting of all finite products of elements of T ∪O (X). We
obtain a geometry (

X, G
(
T, O (X)

))
. (1.16)

For T with Tt(x) = x + te, t ∈ R, (1.16) is called euclidean geometry over the real
inner product space X , and for T with kernel (1.11),

� (h, t) = sinh t ·
√

1 + h2,

(1.16) is called hyperbolic geometry over X .

Define N := X × X and ϕ (f, l) for f ∈ G
(
T, O (X)

)
and l = (x, y) ∈ N by

ϕ
(
f, (x, y)

)
:=
(
f (x), f (y)

)
.

Hence (N, ϕ) is an invariant notion of (X, G). Define

d : N → R≥0 (1.17)

by d (x, y) = ‖x − y‖ in the case of euclidean geometry, and by

cosh d (x, y) =
√

1 + x2
√

1 + y2 − xy (1.18)

for hyperbolic geometry, and we obtain important invariants of these geometries,
namely their distance functions. Observe that the right-hand side of (1.18) is ≥ 1.
This is trivial for xy ≤ 0, and follows otherwise from (xy)2 ≤ x2y2 and (x−y)2 ≥ 0,
i.e. from (1 + x2)(1 + y2) ≥ (1 + xy)2. In the case of hyperbolic geometry and for

x =: h1 + � (h1, τ1) e and y =: h2 + � (h2, τ2) e

with h1, h2 ∈ H we get, by (1.11),√
1 + x2

√
1 + y2 − xy = cosh(τ1 − τ2) ·

√
(1 + h2

1)(1 + h2
2) − h1h2,

i.e. for x′ := Tt(x) = h1 + � (h1, τ1 + t) e, y′ := Tt(y) = h2 + � (h2, τ2 + t) we get
√

1 + x′2√1 + y′2 − x′y′

= cosh
(
(τ1 + t) − (τ2 + t)

) ·√(1 + h2
1)(1 + h2

2) − h1h2.

Hence, by (1.18), (1.17), d (x, y) = d
(
Tt(x), Tt(y)

)
for all t ∈ R. That also

d (x, y) = d
(
ω (x), ω (y)

)
holds true for ω ∈ O (X), follows from ω (p)ω (q) = pq

for all p, q ∈ X .
Instead of d (x, y) we mostly will write eucl (x, y), hyp (x, y), respectively, in

the euclidean, hyperbolic case, and instead of the elements of X we also will speak
of the points of X .
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1.11 A common characterization

Let X be a real inner product space containing two linearly independent elements,
and let e be a fixed element of X with e2 = 1. The following result will be proved
in this section (W. Benz [13]).

Theorem 7. Let T be a separable translation group of X with axis e, and suppose
that d : X × X → R≥0 is not identically 0 and satisfies

(i) d (x, y) = d
(
ω (x), ω (y)

)
,

(ii) d (x, y) = d
(
Tt(x), Tt(y)

)
,

(iii) d (βe, 0) = d (0, βe) = d (0, αe) + d (αe, βe)

for all x, y ∈ X, ω ∈ O (X), t, α, β ∈ R with 0 ≤ α ≤ β. Then, up to isomorphism,(
X, G

(
T, O (X)

))
is the euclidean or the hyperbolic geometry over X. Moreover, there exist positive
reals k, l and δ such that

� (h, t) = lt, d (x, y) =
k

l
‖x − y‖

hold true for all x, y ∈ X, h ∈ e⊥, t ∈ R, or

� (h, t) =
sinh(lt)√

δ

√
1 + δh2, d (x, y) =

k

l
hyp (x

√
δ, y

√
δ)

for all x, y ∈ X, h ∈ e⊥, t ∈ R.

Remark. Instead of (i) and (ii) it is possible to write

d
(
ω (x), ω (y)

)
= d
(
Tt(x), Tt(y)

)
,

since (i) follows here from t = 0 and (ii) from ω = id.

Theorem 7 will be proved in several steps.

A. If p is in X, there exists γ ∈ O (X) with γ (p) = ‖p‖ · e.
Proof. This is trivial in the case p = −‖p‖ e by just applying γ (x) = −x. Otherwise
put

b := p + ||p|| e and ‖b‖ · a := b

and, moreover, γ (x) := −x + 2(xa) a. Now observe that γ is an involution, i.e.
that it satisfies γ2 = id �= γ. Hence γ is bijective and, obviously, it satisfies
xy = γ (x) γ (y) for all x, y ∈ X by noticing that γ (p) = ‖p‖e follows from
2(pa) a = p + ‖p‖e. �
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B. Let d be a function as described in Theorem 7. Then there exists f : K → R≥0

with
K := {(ξ1, ξ2, ξ3) ∈ R

3 | ξ1, ξ2 ∈ R≥0 and ξ2
3 ≤ ξ1ξ2}

such that

d (x, y) = f (x2, y2, xy) (1.19)

holds true for all x, y ∈ X .

Proof. Take j ∈ X with j2 = 1 and ej = 0. If (ξ1, ξ2, ξ3) is in K and ξ1 = 0, put
x0 := 0, y0 := e

√
ξ2 and

f (ξ1, ξ2, ξ3) := d (x0, y0). (1.20)

Observe here ξ3 = 0, since ξ2
3 ≤ ξ1ξ2. For (ξ1, ξ2, ξ3) ∈ K and ξ1 > 0 define again

f by (1.20), but now with

x0 := e
√

ξ1 and y0

√
ξ1 := eξ3 + j

√
ξ1ξ2 − ξ2

3 .

The function f : K → R≥0 is hence determined for all elements of K, and we
finally must prove (1.19). So let x, y be elements of X and put

ξ1 := x2, ξ2 := y2, ξ3 := xy. (1.21)

Because of the inequality of Cauchy–Schwarz, (ξ1, ξ2, ξ3) must be in K. If we are
able to prove that there exists ω ∈ O (X) with

ω (x0) = x and ω (y0) = y, (1.22)

where x0, y0 are the already defined elements with respect to (ξ1, ξ2, ξ3), then

d (x, y) = d
(
ω (x0), ω (y0)

)
= d (x0, y0) = f (ξ1, ξ2, ξ3) = f (x2, y2, xy),

and hence (1.19) holds true. In order to find ω ∈ O (X) with (1.22), observe, by
(1.21),

x2 = x2
0, y2 = y2

0 , xy = x0y0. (1.23)

If x = 0, take, by step A, γ ∈ O (X) with γ (y) = ‖y‖e =
√

ξ2 e. Hence

γ−1(x0) = γ−1(0) = 0 = x and γ−1(y0) = γ−1(e
√

ξ2) = y,

i.e. ω := γ−1 solves (1.22). So assume x �= 0 and take γ ∈ O (X) with γ (x) =
‖x‖ · e = e · √ξ1 = x0. As soon as we have found τ ∈ O (X) with τ (x0) = x0 and
τ (y0) = γ (y), we also have solved (1.22) for x �= 0, namely by ω = γ−1τ . Put
z := γ (y) and observe, by (1.21),

ξ1 = x2
0, ξ2 = y2 =

(
γ (y)

)2 = z2, ξ3 = xy = γ (x) γ (y) = x0z. (1.24)
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In the case z = y0, take τ = id. If y0 = 0, we obtain, by (1.23), y = 0. Also here
put τ = id. So we may assume

z �= y0 �= 0.

Observe X = s⊥ ⊕ Rs for s := z − y0. If v ∈ X , there exist uniquely determined
α ∈ R and m ∈ s⊥ satisfying

v = m + αs.

Define τ (v) := m − αs. Hence τ ∈ O (X). It remains to show τ (x0) = x0 and
τ (y0) = z. Observe x0z = ξ3 from (1.24), and x0y0 = ξ3, by (1.23), (1.21). Hence
x0s = 0, i.e. x0 ∈ s⊥, and thus τ (x0) = x0. From s = z − y0 we obtain

y0 =
z + y0

2
− s

2
.

Since (z + y0) s = z2 − y2
0 = z2 − y2 = 0, by (1.23), (1.24), we get

τ (y0) =
z + y0

2
+

s

2
= z. �

From now on we will work with the expression (1.19) for our distance function
d. Since T is a separable translation group, we may assume

� (h, t) = ϕ (t) · ψ (h)

with ψ : H → R>0, ψ (0) = 1, H := e⊥, and such that ϕ is an increasing bijection
of R with ϕ (0) = 0.

C. There exists a real constant k ≥ 0 with

f
(
0, ϕ2(ξ), 0

)
= k · ξ

for all ξ ≥ 0.

Proof. Given reals 0 ≤ α ≤ β, we get 0 = ϕ (0) ≤ ϕ (α) ≤ ϕ (β). Hence (iii) of
Theorem 7 yields, with ϕ (β) instead of β and ϕ (α) instead of α,

d
(
0, ϕ (β) e

)
= d
(
0, ϕ (α) e

)
+ d
(
ϕ (α) e, ϕ (β) e

)
. (1.25)

Since, by (1.12),

T−α

(
0 + ϕ (β)ψ (0) e

)
= 0 + ϕ (β − α)ψ (0) e,

i.e. T−α

(
ϕ (β) e

)
= ϕ (β − α) e, i.e. by (ii),

d
(
ϕ (α) e, ϕ (β) e

)
= d
(
T−α

(
ϕ (α) e

)
, T−α

(
ϕ (β) e

))
= d
(
0, ϕ (β − α) e

)
.



24 Chapter 1. Translation Groups

Hence, in view of (1.19), (1.25),

f
(
0, ϕ2(β), 0

)
= f

(
0, ϕ2(α), 0

)
+ f
(
0, ϕ2(β − α), 0

)
,

which implies, for ξ, η ∈ R≥0 with α := ξ, β := ξ + η,

f
(
0, ϕ2(ξ + η), 0

)
= f

(
0, ϕ2(ξ), 0

)
+ f
(
0, ϕ2(η), 0

)
. (1.26)

This proves C (see the following Remark). �

Remark. Define g (ξ) := f
(
0, ϕ2(ξ), 0

)
for ξ ≥ 0 and observe g : R≥0 → R≥0,

since d : X × X → R≥0, i.e. since d
(
0, ϕ (ξ) e

) ≥ 0. Because of (1.26), we get
g (ξ + η) = g (ξ) + g (η) for all ξ, η ∈ R≥0. Putting ξ = η = 0 we obtain g (0) = 0.
Define k := g (1). Hence k ≥ 0. Equation (1.26) can be extended to

g (ξ1 + · · · + ξn) =
n∑

i=1

g (ξi)

for every positive integer n by induction. Hence

k = g (1) = g

(
1
n

+ · · · + 1
n

)
= n · g

(
1
n

)
,

i.e. g
(

1
n

)
= k

n for every positive integer n. Thus

g
(m

n

)
= g

(
1
n

+ · · · + 1
n

)
= mg

(
1
n

)
=

m

n
k

for m ∈ {1, 2, 3, . . .}. This leads to g (r) = kr for every rational number r ≥ 0.
Suppose that 0 ≤ ξ ≤ η. Then η − ξ ≥ 0 and hence g (η − ξ) ≥ 0. This implies
g (ξ) ≤ g (η) because

g (ξ) + g (η − ξ) = g (η).

Now let ζ > 0 be a real number and let r1, r2, r3, . . . and s1, s2, s3, . . . be sequences
of rational and non-negative numbers satisfying

lim ri = ζ = lim si

and ri ≤ z ≤ si for all i = 1, 2, 3, . . .. Hence

kri = g (ri) ≤ g (ζ) ≤ g (si) = ksi

and thus g (ζ) = lim kri = kζ. The equation g (ξ + η) = g (ξ) + g (η) is called
a Cauchy equation in the theory of functional equations. For the other Cauchy
equations see J. Aczél [1].
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D. a) To the elements x �= y of X there exist ω1, ω2 ∈ O (X) and λ, t ∈ R with
λ > 0 and

ω1Ttω2(x) = 0, ω1Ttω2(y) = λe.

b) The constant k of statement C is positive.

c) d (x, y) = d (y, x) for all x, y ∈ X .

d) If x, y ∈ X , then d (x, y) = 0 if, and only if, x = y.

Proof. a) Because of A there exists ω2 ∈ O (X) with ω2(x) = ‖x‖e. Since ||x||e −
0 ∈ Re, (T2) implies the existence of t ∈ R with Tt(‖x‖e) = 0. Finally take
ω1 ∈ O (X) with ω1(z) = λe, λ := ‖z‖ ≥ 0, where z := Ttω2(y). Hence g (x) = 0
and g (y) = λe with g := ω1Ttω2. Since x �= y, we obtain λ > 0. This proves a).

b) The distance function d is assumed to be not identically 0. There hence exist
p, q ∈ X with d (p, q) > 0. If p = q, take, in view of a), ω1Ttω2 =: g with g (p) = 0.
This implies, by (i), (ii),

0 < d (p, p) = d
(
g (p), g (p)

)
= d (0, 0).

But (iii) yields d (0, 0) = 0 for α = β = 0. So p = q is impossible. For p �= q take,
in view of a), g = ω1Ttω2 with g (p) = 0, g (q) = λe, λ > 0. Hence 0 < d (p, q) =
d (0, λe). If ξ ∈ R satisfies ϕ (ξ) = λ > 0, then ξ > 0, because ξ ≤ 0 would imply
ϕ (ξ) ≤ ϕ (0) = 0. Hence

0 < d (0, λe) = f (0, λ2, 0) = f
(
0, ϕ2(ξ), 0

)
= kξ,

and thus k > 0.

c) For x �= y take g = ω1Ttω2, in view of a), with g (x) = 0, g (y) = λe, λ > 0.
Hence, by (iii),

d (x, y) = d (0, λe) = d (λe, 0) = d (y, x).

d) If x �= y, we may work again with a mapping g getting

d (x, y) = d (0, λe) > 0,

by λ > 0. On the other hand, by (iii) with α = β = 0,

d (x, x) = d (0, 0) = 0. �

E. a) ϕ (−t) = −ϕ (t) for all t ∈ R.

b) ϕ

(
d (0, x)

k

)
= ‖x‖ for all x ∈ X .

Proof. a) Assume t < 0 and define ϕ (τ) := −ϕ (t). Hence τ > 0. Observe, by D.c,

d
(
0, ϕ (−t) e

)
= d
(
Tt(0), Tt

(
ϕ (−t) e

))
= d
(
ϕ (t) e, 0

)
= d
(
0, ϕ (t) e

)
,
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i.e. f
(
0, ϕ2(−t), 0

)
= f

(
0, ϕ2(t), 0

)
= f

(
0, ϕ2(τ), 0

)
. Hence, from C we get k ·

(−t) = kτ , i.e. τ = −t in view of D.b. This proves E.a for t < 0. Thus ϕ (−t) =
−ϕ (t) for all reals t.
b) By C and D.b we obtain

ϕ

(
f
(
0, ϕ2(ξ), 0

)
k

)
= ϕ (ξ)

for all ξ ≥ 0, and hence ϕ
(

1
k f (0, t2, 0)

)
= t for all t ≥ 0. Applying this formula

for t := ‖x‖, x ∈ X , we obtain, by (1.19), statement E.b. �
Let x, y be elements of X with x �= 0. Observe (xy)2 ≤ x2y2, i.e. λ ≥ 0 where

λx2 := x2y2 − (xy)2.

Let j ∈ H be given with j2 = 1, and define η ∈ R by

xy

‖x‖ = ϕ (η) · ψ (
√

λ j). (1.27)

Of course, η seems to depend on the chosen j. Put

‖x‖ =: ϕ (ξ), (1.28)

i.e. we obtain ξ > 0 and also T−ξ(‖x‖e) = 0. Obviously, by (1.27), (1.28), (1.19),
we obtain

d (x, y) = f (x2, y2, xy) = d
(
ϕ (ξ) e,

√
λ j + ϕ (η)ψ (

√
λ j) e

)
,

i.e. transforming the elements of X of the right-hand side by T−ξ,

d (x, y) = d
(
0,
√

λ j + ϕ (η − ξ)ψ (
√

λ j) e
)
.

Hence, by E.b,

ϕ2

(
d (x, y)

k

)
= λ + ϕ2(η − ξ)ψ2(

√
λ j). (1.29)

If we repeat the same calculation for a j′ ∈ H satisfying (j′)2 = 1, we get instead
of (1.29)

ϕ2

(
d (x, y)

k

)
= λ + ϕ2(η′ − ξ)ψ2(

√
λ j′) (1.30)

by observing

xy

‖x‖ = ϕ (η′) · ψ (
√

λ j′) (1.31)
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instead of (1.27). We apply (1.29) and (1.30) for xy = 0. Noticing that (1.27),
(1.31) lead to η = 0 = η′, we obtain, in view of λ = y2 and ϕ2(0 − ξ) = x2 from
E.a,

ψ2(‖y‖j) =
1
x2

(
ϕ2

(
d (x, y)

k

)
− y2

)
= ψ2(‖y‖j′).

So we get ψ2(αj) = ψ2(αj′) for all real α ≥ 0 and all j, j′ ∈ H with j2 = 1 = j′2.
Since ψ (h) > 0 for h ∈ H we obtain

ψ (h) = ψ (h′) (1.32)

for all h, h′ ∈ H with h2 = (h′)2. Hence η in (1.27) does not depend on the chosen
j.

F. a) There exists a constant δ ≥ 0 such that for all h ∈ H ,

ψ (h) =
√

1 + δh2.

b) For all x, y ∈ X with x �= 0,

ϕ2

(
d (x, y)

k

)
= λ + ϕ2(η − ξ) · (1 + δλ)

holds true, where ‖x‖ =: ϕ (ξ), λx2 := x2y2 − (xy)2 and

xy =: ϕ (ξ)ϕ (η)
√

1 + δλ.

Proof. Because of (1.32), formula (1.27) does not depend on the chosen j ∈ H
satisfying j2 = 1, and thus η does not depend on this j. So we may define

ψ0(η) := ψ (
√

η j)

for η ≥ 0, where j ∈ H is chosen arbitrarily with j2 = 1. Hence, by (1.29),

ϕ2

(
d (x, y)

k

)
= λ + ϕ2(η − ξ)ψ2

0(λ) (1.33)

for all x, y ∈ X with x �= 0 and λx2 = x2y2 − (xy)2.

Take an arbitrary element h �= 0 of H . We get d (e, h) = d (h, e) by D.c, i.e.
by (1.33),

h2 + ϕ2(η − ξ)ψ2
0(h

2) = 1 + ϕ2(η′ − ξ′)ψ2
0(1) (1.34)

with 1 = ϕ (ξ), ‖h‖ = ϕ (ξ′), 0 = ϕ (η)ψ2
0(h2), 0 = ϕ (η′)ψ0(1), i.e. η = 0 and

η′ = 0. Thus, by (1.34), E.a,

h2 + ψ2
0(h2) = 1 + h2ψ2

0(1),
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i.e. ψ2
0(h2) = 1 + h2

(
ψ2

0(1) − 1
)
. If ψ2

0(1) were < 1, then for sufficiently large
h2, ψ2

0(h2) would become negative. So we get with ψ2
0(h

2) ≥ 1 for all h ∈ H ,

ψ0(h2) =
√

1 + δh2

with δ := ψ2
0(1) − 1 ≥ 0, since ψ0(η) = ψ (

√
η j) ∈ R>0 for η ≥ 0. Hence

ψ (h) = ψ0(h2) =
√

1 + δh2.

This proves F.a, and F.b follows from (1.33). �
If h �= 0 is in H and t ∈ R, then D.c and (ii) imply

d (0, h) = d (h, 0) = d
(
Tt(h), Tt(0)

)
.

Hence, by E.b, F.b,

h2 = ϕ2
(

d (0,h)
k

)
= ϕ2

(
d
(
h + ϕ (t)ψ (h) e, ϕ (t) e

)
k

)

=
h2ϕ2(t)
ϕ2(ξ)

+ ϕ2(η − ξ)
(

1 + δ
h2ϕ2(t)
ϕ2(ξ)

)
,

where ξ > 0 and η are given by

ϕ2(ξ) =
(
h + ϕ (t)ψ (h) e

)2 = h2 + ϕ2(t)ψ2(h),

ϕ2(t)ψ (h) = ϕ (ξ)ϕ (η)

√
1 + δ

h2ϕ2(t)
ϕ2(ξ)

.

We thus get, by F.a,

h2
(
ϕ2(ξ) − ϕ2(t)

)
= ϕ2(η − ξ)

(
ϕ2(ξ) + δh2ϕ2(t)

)
, (1.35)

where ξ > 0 and η satisfy

ϕ2(ξ) = h2 + ϕ2(t)(1 + δh2), (1.36)

ϕ2(t)
√

1 + δh2 = ϕ (η)
√

ϕ2(ξ) + δh2ϕ2(t). (1.37)

Take a fixed j ∈ H with j2 = 1, and take an arbitrary real number µ > 0. Put
h =

√
µ j. Then 0 �= h ∈ H . Defining ξ > 0 by

ϕ2(ξ) = µ + ϕ2(t)(1 + δµ) (1.38)

(compare (1.36)), and η by (compare (1.37))

ϕ2(t)
√

1 + δµ = ϕ (η)
√

ϕ2(ξ) + δµϕ2(t), (1.39)
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we obtain from (1.35) and E.a,

µ · (ϕ2(ξ) − ϕ2(t)
)

= ϕ2(η − ξ)
(
ϕ2(ξ) + δµϕ2(t)

)
. (1.40)

G. Given arbitrary real numbers ξ > η ≥ 0, there exist real numbers µ > 0 and t
such that (1.38) and (1.39) hold true.

Proof. ξ > η ≥ 0 implies ϕ (ξ) > ϕ (η) ≥ 0, i.e.

ϕ2(ξ)
(
1 + δϕ2(η)

)
> ϕ2(η)

(
1 + δϕ2(ξ)

)
.

Therefore

µ := ϕ2(ξ) − ϕ (ξ)ϕ (η)

√
1 + δϕ2(ξ)
1 + δϕ2(η)

> 0, (1.41)

i.e. ϕ2(ξ) − µ ≥ 0. There hence exists t ∈ R with

ϕ2(t) :=
ϕ2(ξ) − µ

1 + δµ
. (1.42)

Obviously, (1.42) implies (1.38). From (1.41) we obtain

µ2 − 2ϕ2(ξ)µ = ϕ2(ξ)
ϕ2(η) − ϕ2(ξ)

1 + δϕ2(η)
, (1.43)

i.e. (1.39), if we square both sides of (1.39) by observing ϕ (η) ≥ 0, and replacing
there ϕ2(t) by (1.42). �

Because of G, (1.40) holds true for arbitrarily given ξ > η ≥ 0, if we define
µ by (1.41), and ϕ2(t) by (1.42). Replacing these values in (1.40), we obtain with
α := ϕ2(ξ) and β := ϕ2(η),

µ ·
(

α − α − µ

1 + δµ

)
= ϕ2(ξ − η)

(
α + δµ · α − µ

1 + δµ

)
,

i.e. µ2(1 + δα) = ϕ2(ξ − η)(α + δ · [2αµ − µ2]), i.e., by (1.43),

µ2 · (1 + δβ) = αϕ2(ξ − η),

i.e., by (1.41), (√
α (1 + δβ) −

√
β (1 + δα)

)2

= ϕ2(ξ − η). (1.44)

ϕ (ξ) > ϕ (η) ≥ 0 implies α > β, i.e. α (1 + δβ) > β (1 + δα). Hence, by (1.44) and
ξ > η ≥ 0, the functional equation

ϕ (ξ − η) = ϕ (ξ)
√

1 + δϕ2(η) − ϕ (η)
√

1 + δϕ2(ξ) (1.45)
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holds true for all ξ > η ≥ 0. Since ϕ (0) = 0, (1.45) also holds true for ξ = η ≥ 0.

Since δ ≥ 0 (see F.a), we will distinguish two cases, namely δ = 0 and δ > 0.
For δ = 0, (1.45) yields

ϕ (ξ − η) = ϕ (ξ) − ϕ (η)

for all ξ ≥ η ≥ 0. Given arbitrarily t, s ∈ R≥0, put ξ := t + s and η := s. Hence
ξ ≥ η ≥ 0 and thus

ϕ (t + s) = ϕ (t) + ϕ (s).

Since ϕ (r) ≥ 0 for r ≥ 0, this implies (compare the Remark to C)

ϕ (t) = lt (1.46)

for all t ∈ R≥0 with a constant l > 0, in view of ϕ (1) > ϕ (0) = 0. From F.a we
get ψ (h) = 1 for all h ∈ H .

In the case δ > 0 we will write f (t) :=
√

δ ϕ (t) for t ≥ 0. Hence, by (1.45),

f (ξ − η) = f (ξ)
√

1 + f2(η) − f (η)
√

1 + f2(ξ) (1.47)

(see Aczél–Dhombres [1], Z. Daróczy [2], M. Kuczma [2]) ) for all ξ ≥ η ≥ 0. Since
ϕ is an increasing bijection of R, satisfying E.a, f must be an increasing bijection
of R≥0. So define

f (ξ) =: sinh g (ξ), ξ ≥ 0,

and g must be an increasing bijection of R≥0 as well. (1.47) implies

sinh g (ξ − η) = sinh
(
g (ξ) − g (η)

)
for all ξ ≥ η ≥ 0. Hence g (ξ − η) = g (ξ) − g (η) and we obtain again

g (ξ) = lξ

for all ξ ≥ 0 with a constant l > 0. Thus

ϕ (t) =
1√
δ

sinh(lt) (1.48)

for all t ≥ 0. This implies, in view of E.a, that (1.48) holds true for all t ∈ R with
a constant l > 0. From F.a we get ψ (h) =

√
1 + δh2.

H. a) In the case δ = 0,

d (x, y) =
k

l
· ‖x − y‖

holds true for all x, y ∈ X and, moreover, � (h, t) = lt.
b) For δ > 0 we get

d (x, y) =
k

l
hyp

(
x
√

δ, y
√

δ
)
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for all x, y ∈ X and

coshhyp (p, q) =
√

1 + p2
√

1 + q2 − pq,

hyp(p, q) ≥ 0, for p, q ∈ X. Moreover, � (h, t) = 1√
δ

sinh(lt) · √1 + δh2.

Proof. H.a follows from E.b and F.b. Suppose now δ > 0. From E.b and (1.48) we
get

δx2 = sinh2

(
l
d (0, x)

k

)
,

i.e. 1 + δx2 = cosh2
(
l · d (0,x)

k

)
. Hence

cosh
(

l · d (0, x)
k

)
= cosh hyp (0, x

√
δ),

and thus d (0, x) = k
l hyp (0, x

√
δ). From F.b and (1.48) we obtain for elements

x �= 0 and y of X with λx2 := x2y2 − (xy)2,

1
δ

sinh2

(
l · d (x, y)

k

)
= λ + ϕ2(η − ξ) · (1 + δλ) (1.49)

with ‖x‖ = 1√
δ

sinh(lξ) and xy = ‖x‖ϕ (η)
√

1 + δλ. Hence

√
δ ϕ (η − ξ) = sinh(lη − lξ) = sinh(lη) · cosh(lξ) − cosh(lη) sinh(lξ)

=

√
δ xy

‖x‖√1 + δλ
·
√

1 + δx2 −
√

1 +
δ (xy)2

x2(1 + δλ)
·
√

δ ‖x‖.

Observing λx2 = x2y2 − (xy)2 this implies

λ + ϕ2(η − ξ)(1 + δλ) = 1
δ

[(√
1 + δx2

√
1 + δy2 − δxy

)2

− 1
]

= 1
δ

[(
cosh hyp (x

√
δ, y

√
δ)
)2

− 1
]

.

Thus, by (1.49), we obtain H.b also for x �= 0. �

A surjective mapping f : X → X is called a motion of
(
X, G

(
T, O (X)

))
provided

d (x, y) = d
(
f (x), f (y)

)
holds true for all x, y ∈ X .

I. a) G
(
T, O (X)

)
= {αTtβ | α, β ∈ O (X), t ∈ R}.

b) In all cases δ ≥ 0, G
(
T, O (X)

)
is the group of motions of (X, G) where

G = G
(
T, O (X)

)
.
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Proof. a) If γ is an element of G
(
T, O (X)

)
, take, by A, ω ∈ O (X) with ω (p) =

‖p‖ e where p := γ (0). In view of (T2), there exists s ∈ R with

Ts

(
ω (p)

)
= Ts(‖p‖ e) = 0.

Hence λ (0) = 0 for λ := Tsωγ.
Case δ = 0. By H.a, (i), (ii), we obtain

k

l
‖x − y‖ = d (x, y) = d

(
λ (x), λ (y)

)
=

k

l
‖λ (x) − λ (y)‖.

Hence, by Proposition 3, λ must be orthogonal. Since λ is bijective, we get λ ∈
O (X) and γ = ω−1T−sλ.

Case δ > 0. By H.b, (i), (ii), we obtain with d (x, y) = d
(
λ (x), λ (y)

)
,√

1 + δx2
√

1 + δy2 − δxy =
√

1 + δλ2(x)
√

1 + δλ2(y) − δλ (x)λ (y).

For y = 0 we get x2 = [λ (x)]2 with λ (0) = 0. This and the previous equation then
imply xy = λ (x)λ (y) for all x, y ∈ X . Hence

(x − y)2 = x2 − 2xy + y2

= λ2(x) − 2λ (x)λ (y) + λ2(y) =
(
λ (x) − λ (y)

)2
,

and thus, as in Case δ = 0, λ ∈ O (X).
b) In view of (i), (ii), obviously, G

(
T, O (X)

)
consists only of motions. Suppose

that γ is an arbitrary motion. It is now possible to follow, mutatis mutandis, the
proof of I.a. So having λ := Tsωγ with λ (0) = 0 as in a), we obtain for δ = 0 by
H.a and the fact that λ is a motion,

‖x − y‖ = ‖λ (x) − λ (y)‖,
and for δ > 0, xy = λ (x)λ (y) for all x, y ∈ X , by H.b and by applying that λ is
a motion. �
J. a) Let T be the translation group with axis e and kernel � (h, t) = t and, more-
over, T ′ the group with axis e and kernel � (h, t) = lt, l > 0. Then(

X, G
(
T, O (X)

)) ∼=
(
X, G (T ′, O (X)

))
.

b) Also here the underlying axis is supposed to be e. Let now T, T ′ be the group
with kernel

sinh t ·
√

1 + h2,
1√
δ

sinh(lt) ·
√

1 + δh2,

respectively, with δ > 0 and l > 0. Then(
X, G

(
T, O (X)

)) ∼=
(
X, G

(
T ′, O (X)

))
.
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Proof. a) The distance functions of the two geometries are, by H.a,

eucl (x, y) = ‖x − y‖ and d (x, y) =
k

l
‖x − y‖.

Define σ (x) := l
k · x for x ∈ X . Hence

d
(
σ (x), σ (y)

)
= eucl (x, y) (1.50)

holds true for all x, y ∈ X . In view of I, the groups G, G′ of motions of our two
geometries are G

(
T, O (X)

)
, G
(
T ′, O (X)

)
, respectively. If g ∈ G, then τ (g) :=

σgσ−1 is in G′ since (1.50) and

eucl (x, y) = eucl
(
g (x), g (y)

)
imply, by z′ := σ (z) for z ∈ X ,

d
(
τ (x′), τ (y′)

)
= d
(
σg (x), σg (y)

)
= eucl

(
g (x), g (y)

)
= eucl (x, y) = d (x′, y′)

for all x′, y′ ∈ X . Also γ ∈ G′ implies σ−1γσ ∈ G. Hence τ : G → G′ is an
isomorphism satisfying

σ
(
g (x)

)
= τ (g)σ (x)

for all x ∈ X and g ∈ G.

b) The proof of b) is, mutatis mutandis, the same as that one of a). The distance
functions of the two geometries are, by H.b,

hyp (x, y) and d (x, y) =
k

l
hyp (x

√
δ, y

√
δ).

Define σ (x) = x√
δ

for x ∈ X and let G, G′ be the groups of motions of the two
geometries in question. Observe again I. If g ∈ G, then τ (g) = σgσ−1 is in G′

since
d
(
σ (x)σ (y)

)
=

k

l
hyp (x, y)

and
hyp (x, y) = hyp

(
g (x), g (y)

)
imply, by z′ := σ (z) for z ∈ X ,

d
(
τ (x′), τ (y′)

)
= d

(
σg (x), σg (y)

)
= k

l hyp
(
g (x), g (y)

)
= k

l hyp (x, y) = d (x′, y′)

for all x′, y′ ∈ X . Also γ ∈ G′ implies σ−1γσ ∈ G. Hence τ : G → G′ is an
isomorphism satisfying

σ
(
g (x)

)
= τ (g)σ (x)

for all x ∈ X and g ∈ G. �
This finishes the proof of Theorem 7.
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1.12 Other directions, a counterexample

Proposition 8. Let T be a translation group of X with axis e, e2 = 1, and ker-
nel � (h, t) for all t ∈ R and h ∈ e⊥. If ω ∈ O (X), then

{ωTtω
−1 | t ∈ R}

is a translation group with axis ω (e) and kernel

� (h′, t) = �
(
ω−1(h′), t

)
for all t ∈ R and h′ ∈ [ω (e)]⊥ = ω (e⊥).

Proof. t → ωTtω
−1, t ∈ R, defines a translation group of X with axis ω (e). This

is shown as soon as (T1), (T2), (T3) are verified for ω (e) instead of e. Of course,

ωTt+sω
−1 = ωTtω

−1 · ωTsω
−1,

i.e. (T1), holds true. If x − y ∈ R≥0ω (e), we get

x = h′ + γ1ω (e), y = h′ + γ2ω (e)

with γ1, γ2 ∈ R and h′ ∈ [ω (e)]⊥ = ω (e⊥). Define τ by γ1 = � (h, τ) where
h := ω−1(h′), and hence h ∈ e⊥. The equation

y = ωTtω
−1(x)

implies h′+γ2ω (e) = ωTt

(
h+� (h, τ) e

)
= h′+� (h, τ + t)ω (e). Since t is uniquely

determined by γ2 = � (h, τ + t), (T2) holds true. Moreover, by t ≥ 0 and with the
notations before,

ωTtω
−1
(
h′ + � (h, τ)ω (e)

)− (h′ + � (h, τ)ω (e)
)

= [� (h, τ + t) − � (h, τ)] ω (e) ∈ R≥0ω (e),

in view of (i) of Theorem 5. This proves (T3). The kernel of {ωTtω
−1 | t ∈ R} is

given by
� (h′, t) = [ωTtω

−1(h′)] · ω (e)

= ω
(
h + � (h, t) e

) · ω (e) = � (h, t),

in view of (1.10), for all h′ ∈ [ω (e)]⊥ and t ∈ R. �
Proposition 9. Let T 1, T 2 be translation groups of X such that ei with e2

i = 1 is
the axis and

� (hi, t) = sinh t ·
√

1 + h2
i for t ∈ R, hi ∈ e⊥i ,

the kernel of T i, i = 1, 2. If ω ∈ O (X) satisfies ω (e1) = e2 (such an ω exists
because of step A of the proof of Theorem 7), then

T 2
t = ωT 1

t ω−1

for all t ∈ R.
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Proof. We know from Proposition 8 that {ωT 1
t ω−1 | t ∈ R} is a translation group

in the direction of ω (e1) = e2 with kernel

� (h′, t) = sinh t ·
√

1 + [ω−1(h′)]2 = sinh t ·
√

1 + (h′)2,

in view of h′ · h′ = ω−1(h′) · ω−1(h′), for t ∈ R and h′ ∈ e⊥2 . Since T 2 and
{ωT 1

t ω−1 | t ∈ R} have the same axis and the same kernel, they must coincide
(compare (1.12) and the Remark to Theorem 5). �

The arbitrary motion αTtβ (see step I of the proof of Theorem 7) can be
written as

αTtα
−1 · γ = γ · β−1Ttβ

with γ := αβ ∈ O (X), where αTtα
−1, β−1Ttβ are translations in the direction of

α (e), β−1(e), respectively.

Let (X, G) be a geometry (1.16) as defined at the beginning of section 10. The
group G is generated by O (X) and a translation group T with axis e ∈ X, e2 = 1.
The stabilizer of G in a ∈ X consists of all g ∈ G satisfying g (a) = a.

Proposition 10. Suppose that G = O (X) · T · O (X). The stabilizer of G in 0 is
then O (X), and that one in a ∈ X is isomorphic to O (X).

Proof. 1. Assume g (0) = 0 for g ∈ G. Since g is of the form ατβ with τ ∈ T
and α, β ∈ O (X), we get τβ (0) = α−1(0), i.e. τ (0) = 0, i.e. τ = T0 = id. Hence
g = αβ ∈ O (X).
2. If a ∈ X , take ω ∈ O (X) with ω (a) = ‖a‖ · e (see step A of the proof of
Theorem 7), and, by (T 2), Tt with τ (a) = 0, τ := Ttω. The stabilizer of G in a
is then given by τ−1O (X) τ , the τ -conjugate of the stabilizer of G in 0. �

Because of I of the proof of Theorem 7, Proposition 10 applies to euclidean
as well as to hyperbolic geometry.

We now will present an example of a geometry (1.16) where T is even sepa-
rable, such that there exists g ∈ G satisfying g (0) = 0 and g �∈ O (X). Take the
R

2 (see section 3) and, by Theorem 5, the translation group T with axis e := (1, 0)
and kernel

�
(
(0, x2), t

)
:= t · (1 + x2

2)

with x2, t ∈ R, i.e. Tt(x1, x2) =
(
x1 + t [1 + x2

2], x2

)
. Define

g := T− 1√
2
· R
(
−π

2

)
· T−

√
2

3
· R
(π

4

)
· T1,

where R (α) designates the rotation (in the positive sense) about 0 with angle α,
i.e.

R
(

π
4

)
(x1, x2) = 1√

2
(x1 − x2, x1 + x2),

R
(−π

2

)
(x1, x2) = (x2,−x1).
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Hence g (0) = 0 and g (1, 0) =
(

1√
2
, 0
)
. Since

eucl
(
0, (1, 0)

) �= eucl
(
g (0), g (1, 0)

)
,

g cannot be in O (X).

Proposition 11. Given again a geometry (1.16), (X, G). If the stabilizer of G in 0
is O (X), then to every g ∈ G there exist α, β ∈ O (X) and τ ∈ T with g = ατβ.

Proof. Put a := g (0) and take α ∈ O (X) and τ ∈ T with α (‖a‖e) = a and
τ (0) = ||a||e. Hence τ−1α−1g (0) = 0 and thus β := τ−1α−1g ∈ O (X). �



Chapter 2

Euclidean and Hyperbolic
Geometry

X designates again an arbitrary real inner product space containing two linearly
independent elements. As throughout the whole book, we do not exclude the case
that there exists an infinite and linearly independent subset of X .

A natural and satisfactory definition of hyperbolic geometry over X was
already given by Theorem 7 of chapter 1. If T is a separable translation group
of X , and d an appropriate distance function of X invariant under T and O (X),
then there are, up to isomorphism, exactly two geometries(

X, G
(
T, O (X)

))
.

These geometries are called euclidean, hyperbolic geometry over X . Their distance
functions are eucl (x, y), hyp (x, y), respectively.

2.1 Metric spaces

A set S �= ∅ together with a mapping d : S ×S → R is called a metric space (S, d)
provided

(i) d (x, y) = 0 if, and only if, x = y,

(ii) d (x, y) = d (y, x),

(iii) d (x, y) ≤ d (x, z) + d (z, y)

hold true for all x, y, z ∈ S.

Observe d (x, y) ≥ 0 for all x, y ∈ S, since (i), (ii), (iii) imply

0 = d (x, x) ≤ d (x, y) + d (y, x) = 2d (x, y).
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(i) is called the axiom of coincidence, (ii) the symmetry axiom and (iii) the triangle
inequality.

Proposition 1. (X, eucl), (X, hyp) are metric spaces, called the euclidean, hyper-
bolic metric space, respectively, over X.

Proof. Axioms (i), (ii) hold true for both structures (X, eucl), (X, hyp), because
of D.c and D.d of step D of the proof of Theorem 7. The triangle inequality of
section 1.1 implies

‖(x − z) + (z − y)‖ ≤ ‖x − z‖ + ‖z − y‖

for x, y, z ∈ X , i.e. eucl (x, y) ≤ eucl (x, z)+ eucl (z, y). It remains to prove (iii)
for (X, hyp). We may assume x �= z. Because of D.a and the invariance of hyp
under T and O (X), it is sufficient to show (iii) for z = 0 and x = λe with λ > 0,
i.e. to prove

L := hyp (λe, y) ≤ hyp (λe, 0) + hyp (0, y) =: R

or, equivalently, coshL ≤ coshR. Obviously, this latter inequality can be written
as √

1 + λ2
√

1 + y2 − (λe) y ≤
√

1 + λ2
√

1 + y2 +
√

λ2
√

y2.

So observe finally −(λe) y ≤ |(λe) y| ≤√(λe)2
√

y2 from the inequality of Cauchy–
Schwarz. �

2.2 The lines of L.M. Blumenthal

Let (S, d) be a metric space and x : R → S a function satisfying

d
(
x (ξ), x (η)

)
= |ξ − η| (2.1)

for all real ξ, η. Then {x (ξ) | ξ ∈ R} is called a (Blumenthal) line of (S, d) (L.M.
Blumenthal, K. Menger [1], p. 238). Observe that x : R → S must be injective in
view of the axiom of coincidence and (2.1).

Lemma 2. If ‖x + y‖ = ‖x‖ + ‖y‖ holds true for x, y ∈ X, then x, y are linearly
dependent.

Proof. Squaring both sides, we obtain xy = ‖x‖ ‖y‖. Now apply Lemma 1 of
chapter 1. �

We would like to determine all solutions x : R → X of the functional equation
(2.1) in the case of (X eucl). Let x be a solution. If α < β < γ are reals, then, by
(2.1),

‖x (γ) − x (α)‖ = γ − α, ‖x (γ) − x (β)‖ = γ − β, ‖x (β) − x (α)‖ = β − α,
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i.e., by Lemma 2, x (γ) − x (β), x (β) − x (α) must be linearly dependent. Put

p := x (0), q := x (1) − x (0).

Hence, by (2.1), ‖q‖ = 1. If 0 < 1 < ξ, we obtain

x (ξ) − x (1) = � · (x (1) − x (0)
)

= �q

for a suitable � ∈ R. Thus ξ − 1 = ‖x (ξ) − x (1)‖ = ‖�q‖ = |�|. Moreover,

ξ − 0 = ‖x (ξ) − p‖ = ‖x (1) + �q − p‖ = |1 + �|.
Hence � = ξ − 1 and thus x (ξ) = x (1) + �q = p + ξq for ξ > 1, a formula which
holds also true for ξ = 1, ξ = 0, but also in the cases 0 < ξ < 1, ξ < 0 < 1 as
similar arguments show. That, on the other hand,

x (ξ) := p + ξq, ‖q‖ = 1,

solves (2.1), is obvious. Hence

{(1 − λ) a + λb | λ ∈ R}
with a, b ∈ R and a �= b are the euclidean lines of (X , eucl) by writing p :=
a, q · ‖b − a‖ := b − a, ξ := λ · ‖b − a‖.
Theorem 3. The (hyperbolic) lines of (X, hyp) are given by all sets

{p cosh ξ + q sinh ξ | ξ ∈ R},
where p, q are elements of X with pq = 0 and q2 = 1.

Proof. Let p, q be elements of X satisfying pq = 0 and q2 = 1. Define x : R → X
by

x (ξ) = p cosh ξ + q sinh ξ (2.2)

and observe hyp
(
x (ξ), x (η)

)
= |ξ− η| for all ξ, η ∈ R. Hence (2.2) is the equation

of a line of (X , hyp). Suppose now that x : R → X solves (2.1) in the case of
(X , hyp). Since x is injective, choose a real ξ0 with x (ξ0) �= 0 and put

e :=
x (ξ0)
sinh t0

, sinh t0 := ‖x (ξ0)‖.

Define the translation group

Tt(h + sinh τ ·
√

1 + h2 e) = h + sinh(τ + t) ·
√

1 + h2 e

for all h ∈ e⊥ and τ, t ∈ R. Since

hyp
(
Tt(y), Tt(z)

)
= hyp (y, z) (2.3)
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holds true for all y, z ∈ X ,

ξ → x (ξ) := T−t0

(
x (ξ + ξ0)

)
must be a solution of (2.1) as well: by (2.3),

hyp
(
x (ξ), x (η)

)
= hyp

(
x (ξ + ξ0), x (η + ξ0)

)
= |ξ − η|. (2.4)

Notice Tt0(0) = x (ξ0), i.e. T−t0

(
x (ξ0)

)
= 0, i.e. x (0) = 0. By (2.4),

cosh(ξ − η) =
√

1 + x2(ξ)
√

1 + x2(η) − x (ξ)x (η).

For η = 0 we get cosh ξ =
√

1 + x2(ξ). Thus x2(ξ) = sinh2 ξ and

x (ξ)x (η) = cosh ξ cosh η − cosh (ξ − η) = sinh ξ sinh η, (2.5)

i.e. [x (ξ)x (η)]2 = sinh2 ξ sinh2 η = x2(ξ)x2(η) for all real ξ, η. Hence, by Lemma
1, chapter 1, x (ξ), x (η) must be linearly dependent. Since x is injective and x (0) =
0, we obtain x (1) �= 0. Put a · ‖x (1)‖ := x (1). Thus

x (ξ) = ϕ (ξ) · a (2.6)

with a suitable function ϕ : R → R satisfying ϕ (0) = 0, in view of the fact that
x (ξ), x (1) are linearly dependent. (2.5), (2.6) imply

ϕ (ξ)ϕ (1) = sinh ξ sinh 1

for all real ξ, so especially ϕ2(1) = sinh2 1, i.e.

x (ξ) = sinh ξ · sinh 1
ϕ (1) a

= p · cosh ξ + q · sinh ξ

with p := 0, ϕ (1) q := a sinh 1, i.e. pq = 0 and q2 = 1. Hence x (ξ) is of type (2.2),
and we finally must show that

x (ξ) = Tt0

(
x (ξ − ξ0)

)
= Tt0

(
q sinh(ξ − ξ0)

)
is of type (2.2) as well. This turns out to be a consequence of the following
Lemma 4. �
Lemma 4. Let T be the translation group

Tt(h + sinh τ ·
√

1 + h2 e) = h + sinh(τ + t) ·
√

1 + h2 e

with axis e, e2 = 1, for all h ∈ e⊥ and τ, t ∈ R. If q �= 0 is in X and s in R, there
exist a, b ∈ X with ab = 0, b2 = 1 and

{a cosh η + b sinh η | η ∈ R} = {Ts(µq) | µ ∈ R}.



2.2. The lines of L.M. Blumenthal 41

Proof. There is nothing to prove for q ∈ Re or s = 0. So assume s �= 0, and that
q, e are linearly independent. Hence q �= (qe) e. Because of

{Ts(µq) | µ ∈ R} = {Ts(µ · βq) | µ ∈ R}

for a fixed real β �= 0, we may assume ‖q − (qe) e‖ = 1, without loss of generality.
Put

S := sinh s, C := cosh s, j := q − (qe) e, α := qe,

and observe S �= 0, C > 1, j2 = 1, je = 0, q = αe + j, q2 = 1 + α2. Since (1.8),
(1.9) represent the same Tt, we obtain

Ts(µq) = µq + [µα (C − 1) +
√

1 + µ2q2 S] e =: x1e + x2j

with x1(µ) = µαC +
√

1 + µ2(1 + α2)S and x2(µ) = µ. We hence get

x2
1 − 2αCx1x2 + (α2 − S2)x2

2 = S2

with the branch sgn (x1 − µαC) = sgn S, and also

y2
1

k
− y2

2 = 1, sgn y1 = sgn S,

q2k := S2 > 0, by applying the orthogonal mapping ω of the subspace Σ of X ,
spanned by e, j, namely

δy1 = x1C − x2α,

δy2 = x1α + x2C,

δ :=
√

α2 + C2. In order to find the interesting branch sgn y1 = sgn S of the
hyperbola {

y1e + y2j ∈ Σ
∣∣∣∣y2

1

k
− y2

2 = 1
}

,

observe x1(µ) − µαC =
√

1 + µ2(1 + α2)S, x2(µ) = µ, and hence

δy1 = x1C − x2α = C (x1 − x2αC) + x2αS2

=
(
C
√

1 + µ2(1 + α2) + x2αS
)
S,

i.e. sgn y1 = sgn S, if the coefficient of S is positive. But

0 < C2(1 + x2
2) + x2

2α
2(C2 − S2) = C2(1 + x2

2) + x2
2α

2,

i.e. x2
2α

2S2 < C2
(
1 + x2

2(1 + α2)
)
, i.e.

−x2αS ≤ |x2αS| < C
√

1 + x2
2(1 + α2).
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Obviously, l := {Ts(µq) | µ ∈ R} ⊂ Σ. Hence

ω (l) = {sgn S ·
√

k e cosh η + j sinh η | η ∈ R},

i.e.

l = {sgn S ·
√

k ω−1(e) cosh η + ω−1(j) sinh η | η ∈ R}
with

δω−1(e) = Ce − αj,

δω−1(j) = αe + Cj.

So the line l is given by

{a cosh η + b sinh η | η ∈ R}

with a := sgn S ·√k·ω−1(e), b := ω−1(j). Notice ab = 0, in view of ω−1(e)ω−1(j) =
ej, and b2 = 1. �

That images of lines under motions are lines follows immediately from the
definition of lines. In fact! If l = {x (ξ) | ξ ∈ R} is a line and f : X → X a motion,
then, by (2.1),

d
(
f
(
x (ξ)

)
, f
(
x (η)

))
= d
(
x (ξ), x (η)

)
= |ξ − η|

for all ξ, η ∈ R. This holds true in euclidean as well as in hyperbolic geometry. In
both geometries also holds true the

Proposition 5. If a �= b are elements of X, there is exactly one line l through a, b,
i.e. with l � a, b.

Proof. From D.a (section 1.3) we know that there exists a motion f such that
f (a) = 0 and f (b) = λe, λ > 0, e a fixed element of X with e2 = 1. In the
euclidean case there is exactly one line

{(1 − α) p + αq | α ∈ R},

p �= q, through 0, λe, namely {βe | β ∈ R}. There hence is exactly one line, namely
f−1(Re) through a, b. In the hyperbolic case there is also exactly one line

{v cosh ξ + w sinh ξ | ξ ∈ R}, vw = 0, w2 = 1,

through 0, λe, namely Re. This implies that f−1(Re) is the uniquely determined
line through a, b. �
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2.3 The lines of Karl Menger

Let (S, d) be a metric space. If a �= b are elements of S, then

[a, b] := {x ∈ S | d (a, x) + d (x, b) = d (a, b)}
is called the interval (the Menger interval) [a, b] (Menger [1], [2]). Observe a, b ∈
[a, b] = [b, a]. Moreover,

l (a, b) :=
{
z ∈ S\{b} | a ∈ [z, b]

}∪ [a, b] ∪ {z ∈ S\{a} | b ∈ [a, z]
}

is called a (Menger) line of (S, d).

In the euclidean case (X, eucl), the interval [a, b] consists of all x ∈ X with

‖(a − x) + (x − b)‖ = ‖a− b‖ = ‖a − x‖ + ‖x − b‖. (2.7)

Hence, by Lemma 2, the elements a − x and x − b are linearly dependent. If
x �∈ {a, b}, then x − b = λ (a − x) with a suitable real λ �∈ {0,−1}, i.e.

x =
λ

1 + λ
a +

1
1 + λ

b = a +
b − a

1 + λ
.

For λ > 0 equation (2.7) holds true, but not for λ ∈] − 1, 0[ or λ < −1. Hence

[a, b] = {a + µ (b − a) | 0 ≤ µ ≤ 1},
and l (a, b) = {a + µ (b − a) | µ ∈ R}. In the case (X , eucl) the Menger lines are
thus exactly the previous lines. The same holds true for (X , hyp) as will be proved
in Theorem 6.

If a �= b are elements of X and if

{p cosh ξ + q sinh ξ | ξ ∈ R}, (2.8)

pq = 0, q2 = 1, is the hyperbolic line through a, b, then

a = p coshα + q sinh α,

b = p coshβ + q sinh β

with uniquely determined reals α, β. If β < α we will replace ξ in (2.8) by ξ′ = −ξ
and q by q′ = −q. So without loss of generality we may assume α < β.

Theorem 6. Let x (ξ) = p cosh ξ + q sinh ξ be the equation of the line through a �= b
with a = x (α), b = x (β), α < β. Then

[a, b] = {x (ξ) | α ≤ ξ ≤ β} (2.9)

and l (a, b) = {x (ξ) | ξ ∈ R}.
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Proof. The right-hand side of (2.9) is a subset of [a, b]. This follows from α ≤ ξ ≤ β
and

hyp
(
x (α), x (β)

)
= |α − β| = β − α,

hyp
(
x (α), x (ξ)

)
= ξ − α,

hyp
(
x (ξ), x (β)

)
= β − ξ.

Let now z be an element of X with z ∈ [a, b], i.e. with

β − α = hyp
(
x (α)x (β)

)
= hyp

(
x (α), z

)
+ hyp

(
z, x (β)

)
.

Define ξ := α + hyp
(
x (α), z

)
. Obviously, ξ − α ≥ 0, and

β − ξ = hyp
(
z, x (β)

) ≥ 0,

i.e. α ≤ ξ ≤ β. Hence x (ξ) is an element of the right-hand side of (2.9). Observe

hyp
(
x (α), z

)
= ξ − α = hyp

(
x (α), x (ξ)

)
, (2.10)

hyp
(
z, x (β)

)
= β − ξ = hyp

(
x (ξ), x (β)

)
. (2.11)

We take a motion f with f (a) = 0 and f (b) = λe, λ > 0. Since x (ξ) is on the
line through a, b and

hyp (a, b) = hyp
(
a, x (ξ)

)
+ hyp

(
x (ξ), b

)
holds true, we obtain that f

(
x (ξ)

)
is on the line Re through 0 and λe, and that

hyp (0, λe) = hyp
(
0, f
(
x (ξ)

))
+ hyp

(
f
(
x (ξ)

)
, λe
)
,

i.e. that f (a) = e sinh η1, f
(
x (ξ)

)
= e sinh η2, f (b) = e sinh η3 with η3 = |η2| +

|η3 − η2| and λ = sinh η3. Hence 0 = η1 ≤ η2 ≤ η3 and f
(
x (ξ)

)
=: µe with

0 ≤ µ ≤ λ. If we take the images of x (α), z, . . . in (2.10), (2.11), we get from
these equations with z := f (z),√

1 + z2 =
√

1 + µ2,√
1 + z2

√
1 + λ2 − zλe =

√
1 + µ2

√
1 + λ2 − µλ,

i.e. z2 = µ2 and ze = µ. Thus (ze)2 = z2e2, i.e. z ∈ Re, by Lemma 1, chapter 1,
i.e. z = µe, by ze = µ. Hence f (z) = z = f

(
x (ξ)

)
, i.e. z = x (ξ) ∈ [a, b].

We finally must show that the Menger lines of (X , hyp) are the hyperbolic
lines. If l (a, b) is a Menger line, designate by g the hyperbolic line through a, b.
If z ∈ X\{b} with a ∈ [z, b], then the hyperbolic line through z, b must contain a
since, by (2.9), intervals are subsets of hyperbolic lines. Hence, by Proposition 5,
z ∈ g. Moreover, z ∈ X\{a} with b ∈ [a, z] belongs also to g, i.e. l (a, b) ⊆ g. If
x (ξ) ∈ g, we distinguish three cases ξ < α, α ≤ ξ ≤ β, β < ξ with a = x (α), b =
x (β), α < β. In the first case we get

x (ξ) ∈ X\{x (β)} with x (α) ∈ [x (ξ), x (β)],

in the last x (ξ) ∈ X\{x (α)} with x (β) ∈ [x (α), x (ξ)]. �
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2.4 Another definition of lines

We proposed the following definition of a line, W. Benz [1, 6]. Suppose that (S, d)
is a metric space and that c ∈ S and � ≥ 0 is in R. Then

B (c, �) := {x ∈ S | d (c, x) = �}
is defined to be the ball with center c and radius �. Obviously, B (c, 0) = {c}. If
a, b are distinct elements of S, we will call

g (a, b) :=
{
x ∈ S | B

(
a, d (a, x)

) ∩ B
(
b, d (b, x)

)
= {x}}

a g-line. Notice a, b ∈ g (a, b) = g (b, a).

Let S contain exactly three distinct elements a, b, c and define

d (a, b) = 3, d (a, c) = 4, d (b, c) = 5

and d (x, x) = 0, d (x, y) = d (y, x) for all x, y ∈ S. Hence (S, d) is a metric space.
Of course, (S, d) does not contain a line in the sense of L.M. Blumenthal. The
Menger line l (a, b) is given by

l (a, b) = {a, b},
and the g-line g (a, b) by {a, b, c}.

Define Σ = (X , eucl) and Σ′ = (X, d) with

d (x, y) =
‖x − y‖

1 + ‖x − y‖
for all x, y ∈ X . The g-lines of the metric spaces Σ, Σ′ coincide. Every Menger line
of Σ′ contains exactly two distinct elements. There do not exist lines of Σ′ in the
sense of L.M. Blumenthal, because

‖x (ξ) − x (η)‖
1 + ‖x (ξ) − x (η)‖ = |ξ − η|, for all ξ, η ∈ R,

cannot be true for ξ = 1 and η = 0.

Theorem 7. Let Σ be one of the metric spaces (X, eucl), (X, hyp). Then l (a, b) =
g (a, b) for all a �= b of X, where l (a, b) designates the Menger line through a, b.

Proof. If g (a, b), a �= b, is a g-line, then x ∈ X is in g (a, b) if, and only if,

∀z∈X [d (a, z) = d (a, x)] and [d (b, z) = d (b, x)] imply z = x. (2.12)

As a consequence we get

f
(
g (a, b)

)
= g
(
f (a), f (b)

)
, a �= b,
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for every g-line g and motion f . In order to prove l (a, b) = g (a, b), it is hence
sufficient to prove l (0, λe) = g (0, λe) for λ > 0, i.e. g (0, λe) = {µe | µ ∈ R}.
a) Euclidean case. (2.12) has for a = 0 and b = λe the form

∀z∈X z2 = x2 and ez = ex imply z = x. (2.13)

x = µe belongs to g (0, λe), because z2 = µ2 and ez = µ imply (ez)2 = e2z2, i.e.,
by Lemma 1, chapter 1, z ∈ Re, i.e. z = µe, by ez = µ. If x ∈ g (0, λe) put

z := −(x − (xe) e
)

+ (xe) e, (2.14)

and observe z2 = x2, ez = ex, i.e., by (2.13), z = x. Hence, by (2.14), x = (xe) e ∈
Re.

b) Hyperbolic case. (2.12) has for a = 0 and b = λe also the form (2.13). So also
here we get g (0, λe) = Re. �

2.5 Balls, hyperplanes, subspaces

Proposition 8. Suppose that B (c, �), B (c′, �′) are balls of (X, eucl) satisfying � >
0 and

B (c, �) ⊆ B (c′, �′).

Then c = c′ and � = �′.

Proof. c + �x
‖x‖ ∈ B (c, �) implies

(c − c′)x

‖x‖ =
1
2�

(
�′2 − �2 − (c − c′)2

)
for all elements x �= 0 of X . If c − c′ were �= 0, the left-hand side of this equation
would be 0 for 0 �= x ⊥ (c−c′) and �= 0 for x = c−c′ which is impossible, since the
right-hand side of the equation does not depend on x. (Notice that a ⊥ b stands
for ab = 0.) Hence c − c′ = 0, and thus

0 = �′2 − �2 − (c − c′)2 = �′2 − �2. �

Proposition 9. Let B (c, �), � > 0, be a ball of (X, hyp). Then

B (c, �) = {x ∈ X | ‖x − a‖ + ‖x − b‖ = 2α}

with a := ce−�, b := ce� and α := sinh �·√1 + c2, where et denotes the exponential
function exp (t) for t ∈ R.

Proof. Put S := sinh �, C := cosh � and p := x − cC. Observe C + S = e� and
C − S = e−�.
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a) Assume ‖x−a‖ = 2α−‖x− b‖ for a given x ∈ X . Squaring this equation yields

S (1 + c2) − cp =
√

1 + c2 ‖x − b‖.

Observing x − b = p − Sc and squaring again, we get (cp)2 = (p2 − S2)(1 + c2).
This implies

|cx + C| =
√

1 + c2
√

1 + x2, (2.15)

since cx + C = cp + C (1 + c2). If −cx − C were equal to
√

1 + c2
√

1 + x2, then

1 ≤ cosh hyp (c,−x) =
√

1 + c2
√

1 + x2 + cx = −C

would follow, a contradiction. Hence, by (2.15),

cosh hyp (c, x) = C = cosh �,

i.e. x ∈ B (c, �).

b) Assume vice versa C =
√

1 + c2
√

1 + x2 − cx, i.e. x ∈ B (�, c), for a given
x ∈ X . A similar calculation as in step a), but now in the other direction, leads to√

(p + cS)2
√

(p − cS)2 = |S2(2 + c2) − p2|. (2.16)

If S2(2 + c2) ≥ p2, then ‖x − a‖ + ‖x − b‖ = 2α follows from (2.16). So observe,
by the inequality of Cauchy–Schwarz,

(cx)2 ≤ c2x2 + S2,

i.e., by (cx + C)2 = (1 + c2)(1 + x2),

x2 − 2 (cx)C + c2 = (cx)2 + S2 − c2x2 ≤ 2S2,

i.e. S2(2 + c2) ≥ p2. �

Suppose a, b ∈ X and let γ be a positive real number. Then

{x ∈ X | ‖x − a‖ + ‖x − b‖ = γ}

is called a hyperellipsoid in euclidean geometry, i.e. in (X, eucl). Let now B (c, �),
� > 0, be a hyperbolic ball. If c = 0, then, in view of Proposition 9, it is also a
euclidean ball with center 0 and radius sinh �. In the case c �= 0, the hyperbolic
ball B (c, �) is a euclidean hyperellipsoid such that its foci ce−�, ce� are in

R>0c = {λc | 0 < λ ∈ R}.

Observe τ0 > 1 for ce� =: τ0(ce−�).



48 Chapter 2. Euclidean and Hyperbolic Geometry

Lemma 10. Let a �= 0 be an element of X and τ > 1 be a real number. Then

{x ∈ X | ‖x − a‖ + ‖x − τa‖ = 2α} (2.17)

is the hyperbolic ball B (a
√

τ, ln
√

τ ) if

2α = (τ − 1)

√
1
τ

+ a2.

Proof. Since {x ∈ X | ‖x − ce−�‖ + ‖x − ce�‖ = 2 sinh � · √1 + c2} is B (c, �), we
get with c := a

√
τ, � := ln

√
τ , obviously,

a = ce−�, τa = ce�, 2α = (e� − e−�)
√

1 + c2 = (τ − 1)

√
1
τ

+ a2. �

Proposition 11. Suppose that B (c, �), B (c′, �′) are hyperbolic balls satisfying � > 0
and

B (c, �) ⊆ B (c′, �′). (2.18)

Then c = c′ and � = �′.

Proof. Assume that there exist balls B (c, �), B (c′, �′) with (2.18), c �= c′ and
� > 0. If j ∈ X is given with j2 = 1, there exists, by D.a, a motion µ such that
µ (c) = 0, µ (c′) = λj, λ > 0. Hence B (0, �) ⊆ B (λj, �′), i.e.

hyp (0, x) = � implies hyp (λj, x) = �′

for all x ∈ X , i.e.√
1 + x2 = cosh � implies

√
1 + λ2

√
1 + x2 − λjx = cosh �′.

Applying this implication twice, namely for x = j sinh � and for x = i sinh � with
i ∈ X, i2 = 1, ij = 0 we obtain√

1 + λ2 cosh � − λ sinh � = cosh �′ =
√

1 + λ2 cosh �,

a contradiction, since λ > 0 and � > 0. Thus c = c′. Take now j ∈ X with j2 = 1
and jc = 0, and observe for x := sinh � · j + cosh � · c,

hyp (c, x) = �,

i.e., by (2.18), hyp (c, x) = �′. Hence � = �′. �

If a �= 0 is in X and α ∈ R, then we will call

H (a, α) := {x ∈ X | ax = α}
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a euclidean hyperplane of X .
If e ∈ X satisfies e2 = 1, if t ∈ R and ω1, ω2 ∈ O (X), then

ω1Ttω2(e⊥) = {ω1Ttω2(x) | x ∈ e⊥}
will be called a hyperbolic hyperplane, where {Tt | t ∈ R} is based on the axis e
and the kernel sinh � · √1 + h2. Of course, mutatis mutandis, also the euclidean
hyperplanes can be described this way.

In Proposition 17 parametric representations of hyperbolic hyperplanes will
be given.

Proposition 12. If H (a, α) and H (b, β) are euclidean hyperplanes with H (a, α) ⊆
H (b, β), then H (a, α) = H (b, β) and there exists a real λ �= 0 with b = λa and
β = λα.

Proof. If a, b are linearly dependent, then there exists a real λ �= 0 with b = λa
since a, b are both unequal to 0. Put x0a

2 := αa. Hence

x0 ∈ H (a, α) ⊆ H (b, β),

i.e. β = bx0 = λa · x0 = λα, and thus H (a, α) = H (b, β). If a, b were linearly
independent, then

q := x0 + b − ab

a2
a ∈ H (a, α) ⊆ H (b, β),

i.e. bx0 = β = bq, i.e.(
b − ab

a2
a

)2

= b2 − (ab)2

a2
= b (q − x0) = 0,

i.e. b − ab
a2 a = 0 would hold true. �

If a �= 0 is in X and a2 = 1, then the hyperplanes of (X, hyp) can also be
defined by

αTtβ (a⊥) with α, β ∈ O (X) and t ∈ R :

take ω ∈ O (X) with a = ω (e) and observe

αTtβ
(
[ω (e)]⊥

)
= αTtβ

(
ω (e⊥)

)
= αTtβω (e⊥).

Obviously, ω
(
H (a, α)

)
= H

(
ω (a), α

)
for ω ∈ O (X), where H (a, α) is a eu-

clidean hyperplane. The image of H (a, α) under y = x+ t, t ∈ X , is H (a, at+α).
Of course, if µ is a hyperbolic motion, then µ [ω1Ttω2(e⊥)] is again a hyperbolic
hyperplane since µ · ω1Ttω2 is also a motion (see I of the proof of Theorem 7 of
chapter 1).

A subspace of (X, eucl) (or (X, hyp)) is a set Γ ⊆ X such that for all a �= b
in Γ the euclidean (hyperbolic) line through a, b is a subset of Γ. Of course, ∅ and
X are subspaces, also every point of X , but lines as well. Since every euclidean
(hyperbolic) line is contained in a one- or a two-dimensional subspace of the vector
space X , the following proposition must hold true.
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Proposition 13. All euclidean (hyperbolic) subspaces are given by the subspaces of
the vector space X and their images under motions.

A spherical subspace of (X, eucl) or (X, hyp) is a set

Γ ∩ B (c, �),

where Γ � c is a subspace and B (c, �) a ball of (X, eucl), (X, hyp), respectively.
Without loss of generality we may assume c = 0. Hence the following proposition
holds true.

Proposition 14. All spherical subspaces of X are given by the spherical subspaces
Γ ∩ B (c, �) with c = 0 ∈ Γ and their images under motions.

A subspace V of the vector space X is called maximal if, and only if, V �= X
and, moreover, every subspace W ⊇ V of X is equal to X or V . If 0 �= a ∈ X ,
then a⊥ is a maximal subspace of the vector space X : observe

1) x, y ∈ a⊥ implies x + y ∈ a⊥ and λx ∈ a⊥ for every λ ∈ R,

2) if W ⊇ a⊥ is a subspace of X and x ∈ W\a⊥, then xa �= 0 and −x + xa
a2 a ∈

a⊥ ⊆ W , i.e. xa
a2 a = x+

(−x + xa
a2 a
) ∈ W , i.e. a ∈ W , i.e. X = a⊥⊕Ra ⊆ W ,

i.e. X = W .

Maximal subspaces of X and their images under euclidean (hyperbolic) mo-
tions will be called euclidean (hyperbolic) quasi–hyperplanes. Since a⊥ with 0 �=
a ∈ X is maximal, hyperplanes are quasi–hyperplanes. But there are quasi–
hyperplanes which are not hyperplanes.

2.6 A special quasi–hyperplane

Let X be the set of all power series with real coefficients and radius of convergence
greater than 1,

A (ξ) = a0 + a1ξ + a2ξ
2 + · · · ,

which will be of interest for us in the interval [0, 1]. Define

λA (ξ) = λa0 + λa1ξ + λa2ξ
2 + · · · ,

A (ξ) + B (ξ) = (a0 + b0) + (a1 + b1) ξ + (a2 + b2) ξ2 + · · ·

and AB =
∫ 1

0 A (ξ)B (ξ) dξ. Observe that the following set of elements of X ,
namely

eξ, 1, ξ, ξ2, ξ3, . . . ,

eξ := exp (ξ), is linearly independent: if

keξ + k0 · 1 + k1 · ξ + · · · + kn · ξn = 0 (2.19)
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for all ξ ∈ [0, 1] where k, k0, . . . ∈ R, then differentiating (2.19) (n+1)-times yields
keξ = 0, i.e. k = 0, and differentiating it n-times, kn = 0, and so on, kn−1 = · · · =
k0 = 0. Let B be a basis of X which contains the functions eξ, 1, ξ, ξ2, . . .. Let V
be the subspace of X generated by B′ which is defined by B without the function
eξ. Hence V is maximal. Since, of course, 0 ∈ V, V must be a euclidean subspace
of X . We would like to show that there is no a �= 0 in X such that

V = H (a, 0), (2.20)

i.e. that V is a quasi–hyperplane which is not a hyperplane. Assume that (2.20)
holds true for an element a �= 0 in X . Put

a (ξ) = a0 + a1ξ + · · ·

and notice

0 <

∫ 1

0

a (ξ) a (ξ) d (ξ) =
∞∑

i=0

∫ 1

0

aia (ξ) ξidξ = 0,

since the functions ξi, i = 0, 1, . . ., belong to B′ and hence to V .

2.7 Orthogonality, equidistant surfaces

Let l1, l2 be lines through s ∈ X . We will say that l1 is orthogonal to l2 and write
l1 ⊥ l2 if, and only if, there exist

p1 ∈ l1\{s}, p2 ∈ l2\{s}

such that (see (2.21) for the euclidean and (2.22) for the hyperbolic case)

‖p1 − p2‖2 = ‖p1 − s‖2 + ‖s − p2‖2, (2.21)

coshhyp (p1, p2) = coshhyp (p1, s) cosh hyp (s, p2). (2.22)

Since (p1−p2)2 =
(
(p1−s)+(s−p2)

)2, we also may write (p1−s)(s−p2) = 0 instead
of (2.21). Formula (2.22) is the so-called theorem of Pythagoras of hyperbolic
geometry (see, for instance, W. Benz [4], p. 153) for the triangle p1sp2. If s = 0
in (2.22), then this formula reduces to p1p2 = 0, i.e. that in 0 euclidean and
hyperbolic orthogonality coincide. Observe that l1 ⊥ l2 implies l2 ⊥ l1. Moreover,
there is no line l orthogonal to itself, l �⊥ l: if

l = {p + ξq | ξ ∈ R}, q2 = 1, (2.23)

in the euclidean case or

l = {x (ξ) = p cosh ξ + q sinh ξ | ξ ∈ R}, pq = 0, q2 = 1, (2.24)
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in the hyperbolic case, l ⊥ l would imply

(π1 − σ)(σ − π2) = 0 for s = p + σq, pi = p + πiq �= s (i = 1, 2),

a contradiction, or for s = x (σ), pi = x (πi) �= s (i = 1, 2), by (2.1),

cosh(π1 − π2) = cosh(π1 − σ) cosh(σ − π2).

Put α := π1 − σ and β := σ − π2, observe

cosh(α + β) = coshα coshβ + sinh α sinh β,

i.e. sinh(π1 − σ) sinh(σ − π2) = 0, which is also a contradiction.

Since l �⊥ l holds true for every line l, we obtain, by Proposition 5, that l1 ⊥ l2
implies #(l1 ∩ l2) = 1, i.e. that l1, l2 have one single point in common.

If l1, l2 are lines with l1 ⊥ l2 and µ is a motion, then µ (l1) ⊥ µ (l2). This
follows from (2.21), (2.22) since distances are invariant under motions.

Let l1, l2 be lines through s with l1 ⊥ l2. If ai ∈ li\{s}, i = 1, 2, are arbitrary
points, then

‖a1 − a2‖2 = ‖a1 − s‖2 + ‖s − a2‖2 (2.25)

holds true in the euclidean case, and

coshhyp (a1, a2) = coshhyp (a1, s) coshhyp (s, p2) (2.26)

in the hyperbolic case.

Equation (2.25) follows from q1q2 = 0 (see (2.23)). In order to prove (2.26)
we may assume s = 0 by applying a suitable motion. As we already know, l1 ⊥ l2
is in this case equivalent with a1a2 = 0. But (2.26) is given for s = 0 by√

1 + a2
1

√
1 + a2

2 − a1a2 =
√

1 + a2
1

√
1 + a2

2.

Proposition 15. Let l be a line and a �∈ l a point. Then there exists exactly one
line g through a with g ⊥ l.

Proof. Hyperbolic case. Without loss of generality we may assume a = 0. Then l is
of the form (2.24) with p �= 0. If l1 is the line through 0 and p, it is trivial to verify
l1 ⊥ l. So assume that there is another line l2 through 0 and x (α) �= p = x (0),
i.e. α �= 0, with l2 ⊥ l. This implies

coshhyp (0, p) = coshhyp
(
0, x (α)

)
coshhyp

(
x (0), x (α)

)
,

i.e.
√

1 + p2 = coshα ·
√

1 + p2 · coshα, i.e. α = 0, i.e. x (α) = p, a contradiction.
Also in the euclidean case we may assume a = 0 and that l is of the form

(2.23) with l �� 0, i.e. that p, q are linearly independent. Obviously, l ⊥ Rw with
w := p − (pq) q. Moreover, R (p + ξ0q) ⊥ l implies (p + ξ0q) q = 0. �
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If Γ is a subspace of (X, d), where d stands for eucl or hyp, and l a line with
l ∩ Γ = {s}, then l is called orthogonal to Γ, or Γ to l, provided l ⊥ g holds true
for all lines g ⊆ Γ passing through s.

Proposition 16. Let p be a point and H a hyperplane. Then there exists exactly
one line l � p with l ⊥ H.

Proof. Case p ∈ H .
Without loss of generality we may assume p = 0. Hence in both cases (X, eucl),
(X, hyp), H is a euclidean hyperplane a⊥ with 0 �= a ∈ X . The line Ra is orthog-
onal to every line g � 0 with g ⊆ H : if g = Rb, then g ⊆ a⊥ implies ab = 0, i.e.
g ⊥ Ra. If Rc is orthogonal to every Rb with ab = 0, then b ∈ a⊥ implies b ∈ c⊥,
i.e. H (a, 0) ⊆ H (c, 0), i.e. Rc = Ra, in view of Proposition 12.
Case p �∈ H .
Since a point of H can be transformed into 0 by a motion, we may assume without
loss of generality H = H (a, 0) in both cases, i.e. in the euclidean as well in the
hyperbolic case. Let

p + Rq := {p + λq | λ ∈ R}
be a euclidean line l orthogonal to H . Hence l ⊥ r + Rb for all b ∈ a⊥ where
r ∈ l ∩ H , i.e. a⊥ ⊆ q⊥, i.e. l = p + Ra, by applying Proposition 12. On the other
hand, p + Ra ⊥ H (a, 0). The point of intersection is r = p − pa

a2 a. It remains to
consider p �∈ H in the hyperbolic case. Put H = H (a, 0), a2 = 1. If p− (pa) a �= 0,
we define

j :=
p − (pa) a

‖p − (pa) a‖ .

Take ω ∈ O (X) with ω (e) = j, where e is the axis of our underlying translation
group, and t ∈ R with ωTtω

−1(p) = (pa) a, in view of (T2) for j. Because of

ωTtω
−1(x) = x + [(xj)(cosh t − 1) +

√
1 + x2 sinh t] j

for x ∈ X , we obtain ωTtω
−1(H) = H on account of j ∈ a⊥. There hence exists a

motion

µ :=

{
ωTtω

−1 for p �= (pa) a

id for p = (pa) a

with µ (H) = H and µ (p) ∈ Ra\H , by p �∈ H , i.e. pa �= 0. So we assume, without
loss of generality, H = a⊥ and p = λa, λ �= 0. There hence is a hyperbolic line,
namely l = Ra with p ∈ l ⊥ H . Assume now that there is another hyperbolic line
g � p with l �= g ⊥ H . Hence 0 �∈ g because all hyperbolic lines through 0 are of
the form Rb. Put g ∩ H =: {r}. Hence

coshhyp (0, p) = coshhyp (r, 0) · cosh hyp (r, p),

i.e.
√

1 + p2 =
√

1 + r2 (
√

1 + r2
√

1 + p2−rp). But p ∈ Ra, r ∈ H implies pr = 0.
Thus 1 + r2 = 1, i.e. r = 0, a contradiction. �
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The distance d (p, H) between a point p and a hyperplane H is defined by
d (p, r), where r is the point of intersection of H and the line l � p orthogonal to
H . This applies for (X, eucl) as well as for (X, hyp).

Let � > 0 be a real number and H be a hyperplane. An interesting set of
points is then given by

D�(H) = {x ∈ X | d (x, H) = �},
a so-called equidistant surface or hypercycle of H . We will look to these sets in the
case 0 ∈ H . In the euclidean case we get with a ∈ X, a2 = 1,

D�

(
H (a, 0)

)
= H (a, �) ∪ H (a,−�),

i.e. we obtain the union of two euclidean hyperplanes parallel to a⊥, since the
euclidean hyperplanes H1, H2 are called parallel, H1 ‖ H2, provided H1 = H2 or
H1 ∩ H2 = ∅ hold true. Of course, H (a, α) ‖ H (b, β) is satisfied if, and only if,
Ra = Rb. In hyperbolic geometry we obtain for � > 0, H = H (a, 0), a2 = 1, as
we will show,

D�

(
H (a, 0)

)
= H (a, sinh �) ∪ H (a,− sinh �).

As a matter of fact, this is again the union of two euclidean hyperplanes, and not,
say, of two hyperbolic hyperplanes. The point

p ∈ {a sinh �, −a sinh �}
has distance � from H . Take ωj ∈ O (X) with ωj(e) = j for a given j ∈ X with
j2 = 1 and aj = 0, i.e. j ∈ H . Now

µ (0) = j sinh t, µ (p) = p + j cosh � sinh t

where µ := ωjTtω
−1
j , t ∈ R, holds true, and the line through µ (0), µ (p) must be

orthogonal to H , in view of Rp ⊥ H . Since µ (0) runs over H by varying j and
t, µ (p) runs over D�(H) on account of

hyp
(
µ (0), µ (p)

)
= hyp (0, p) = � :

through h ∈ H there is exactly one hyperbolic line l orthogonal to H , and on l
there are exactly two points of distance � from H . Hence

D�(H) = (a sinh � + H) ∪ (−a sinh � + H)

where p + H := {p + h | h ∈ H}.

2.8 A parametric representation

Proposition 17. If H is a hyperbolic hyperplane, there exist p ∈ X with p2 = 1
and γ ∈ R≥0 with H = Π(p, γ), where

Π(p, γ) := {γp cosh ξ + y sinh ξ | ξ ∈ R, y ∈ p⊥ with y2 = 1}. (2.27)
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On the other hand, every Π(p, γ) is a hyperbolic hyperplane provided γ ∈ R≥0 and
p ∈ X satisfies p2 = 1. Moreover,

Π(p, 0) = p⊥ = {x − (xp) p | x ∈ X}, (2.28)

and for γ > 0,

Π(p, γ) = {γp cosh ξ +
x − (xp) p√
x2 − (xp)2

sinh ξ | ξ ∈ R, x ∈ X\Rp}. (2.29)

Proof. 1. Let γ ≥ 0 and p ∈ X, p2 = 1, be given. Take ω ∈ O (X) with ω (e) = p
and t ∈ R with sinh t = γ. Then ωTtω

−1(p⊥) must be a hyperbolic hyperplane.
Observe

ωTtω
−1(p⊥) = {h + sinh t ·

√
1 + h2 p | h ∈ p⊥}.

With h = y sinh ξ, y ∈ p⊥, y2 = 1, we obtain

ωTtω
−1(p⊥) = {γp cosh ξ + y sinh ξ | ξ ∈ R, y ∈ p⊥ with y2 = 1},

i.e. ωTtω
−1(p⊥) = Π (p, γ), i.e. Π (p, γ) is a hyperbolic hyperplane.

2. Given a hyperbolic line l and a point r ∈ l. Then there exists exactly one
hyperbolic hyperplane H � r with l ⊥ H . In order to prove this statement, take
b ∈ l\{r} and a motion µ with µ (r) = 0, µ (b) =: a. Since r �= b we get 0 �= a.
There is exactly one hyperbolic hyperplane through 0 which is orthogonal to the
line through a and 0, namely a⊥. There hence is exactly one hyperbolic hyperplane
through r, namely µ−1(a⊥), which is orthogonal to l.

3. Let now H be an arbitrary hyperbolic hyperplane. Because of Proposition 16
there exists exactly one hyperbolic line l through 0 which is orthogonal to H .
Let r be the point of intersection of l and H . Let r be the point of intersection
of l and H . Because of step 2 we know that H is uniquely determined as the
hyperbolic hyperplane through r which is orthogonal to l. But we already know a
hyperbolic hyperplane of this kind, namely a⊥ for r = 0 and l = Ra, and Π (p, γ)
for r �= 0, p := r

‖r‖ , γ := ‖r‖. In fact, r = γp ∈ Π for ξ = 0, and g ⊥ l for all
hyperbolic lines g through r and s := γp cosh ξ+y sinh ξ with ξ �= 0, y ∈ p⊥, y2 = 1
on account of

coshhyp(0, s) = cosh hyp(0, r) cosh hyp(r, s).

Hence H = Π(p, γ).

4. Since [x− (xp) p]p = 0, we get x− (xp) p ∈ p⊥ for all x ∈ X . If y ∈ p⊥ we obtain
yp = 0, i.e. y = y− (yp) p. This proves (2.28). In order to get (2.29) we must show

{
x − (xp) p√
x2 − (xp)2

∣∣∣x ∈ X\Rp

}
= {y ∈ X | y ∈ p⊥ and y2 = 1}.
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Because of Lemma 1, chapter 1, we have x2 = (xp)2 if, and only if, x ∈ Rp, in
view of p2 = 1. Obviously,

y =
x − (xp) p√
x2 − (xp)2

satisfies y ∈ p⊥ and y2 = 1. Given, finally, y ∈ X with y ∈ p⊥ and y2 = 1, we
obtain

y =
y − (yp) p√
y2 − (yp)2

with y �∈ Rp. �
From (2.27) we obtain for ω ∈ O (X),

ω
(
Π(p, γ)

)
= {γω (p) cosh ξ + z sinh ξ | ξ ∈ R, z ∈ [ω (p)]⊥with z2 = 1},

i.e.
ω
(
Π(p, γ)

)
= Π

(
ω (p), γ

)
.

In Theorem 26 we will prove that

Tt

(
Π(p, γ)

)
= Π(εp′, |γ′|)

holds true for all t, γ ∈ R with γ ≥ 0, and all p ∈ X with p2 = 1, where

γ′ := γ cosh t + (pe)
√

1 + γ2 sinh t,

ε := sgn γ′ for γ′ �= 0

and p′ · ‖A‖ := A := p +
[

γ√
1+γ2

sinh t + (pe)(cosh t − 1)
]

e, by observing A �= 0.

In the case γ′ = 0 the value of ε �= 0 plays no role, since Π (εp′, 0) = (p′)⊥. In
Proposition 27 we will show that Π (p, γ) ⊆ Π(q, δ) and γ > 0 imply p = q and
γ = δ.

Remark. A parametric representation of euclidean hyperplanes will be given in
section 2, chapter 3.

2.9 Ends, parallelity, measures of angles

The notion of an end as introduced by David Hilbert (1862–1943) concerns hyper-
bolic geometry. If w ∈ X\{0}, then we will call

R≥0w := {λw | λ ∈ R and λ ≥ 0}
an end of X . Two ends R≥0w1, R≥0w2 are equal if, and only if, there exists λ > 0
with w2 = λw1. To every hyperbolic line l there will be associated two ends, the
so-called ends of l. For

lp,q = l = {p cosh ξ + q sinh ξ | ξ ∈ R} (2.30)
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with p, q ∈ X and pq = 0, q2 = 1, the two ends of l are

R≥0(p + q), R≥0(p − q). (2.31)

Note that p is the only element y in l with ‖y‖ = minx∈l‖x‖. This implies for
p, p′, q, q′ ∈ X with pq = 0 = p′q′ and q2 = 1 = q

′2 that the lines lp,q and lp′,q′

coincide if and only if p = p′ and q′ ∈ {q,−q}. If l = Rq, then l = (R≥0q) ∪(
R≥0(−q)

)
. In the case p �= 0,

R≥0(p + q) ∪ R≥0(−p − q),

R≥0(p − q) ∪ R≥0(−p + q)

are the two asymptotes of the hyperbola of which (2.30) is a branch. Obviously,
(2.31) are the limiting positions of R≥0(p cosh ξ + q sinh ξ) for ξ → +∞, ξ → −∞,
respectively:

R≥0

(
p + q

sinh ξ

cosh ξ

)
→ R≥0(p + q) for ξ → +∞

R≥0(p − q) for ξ → −∞ .

Proposition 18. Let Ei = R≥0wi, i = 1, 2, be distinct ends. Then there is exactly
one hyperbolic line, of which E1, E2 are the ends.

Proof. If E2 = −E1, i.e. if R≥0w2 = R≥0(−w1), then Rw1 is the uniquely deter-
mined line with the ends E1, E2. In the case that w1, w2 are linearly independent,
we must solve

2λ1w1 = p + q, 2λ2w2 = p − q

in λ1, λ2, p, q with λ1 > 0, λ2 > 0, pq = 0, q2 = 1. This implies, by assuming
w2

1 = 1 = w2
2 , without loss of generality,

p = λ1w1 + λ2w2, q = λ1w1 − λ2w2,

2λ2
1(1 − w1w2) = 1, λ1 = λ2,

with a uniquely determined solution{
(w1 + w2) cosh ξ + (w1 − w2) sinh ξ√

2 (1 − w1w2)

∣∣∣ ξ ∈ R

}
,

in view of w1w2 ≤ |w1w2| < ‖w1‖ ‖w2‖ = 1 since w1, w2 are linearly independent.
�

Let E be an end of X and µ be a hyperbolic motion. We would like to define
the end µ (E). If E = R≥0a, a2 = 1, put ω (E) := R≥0ω (a) for ω ∈ O (X).
Suppose t ∈ R and that Tt is a translation of (X, hyp) with axis e. Then

Tt

({λa | λ ≥ 0}) =
{
λa + [λ (ae)(cosh t − 1) +

√
1 + λ2 sinh t] e | λ ≥ 0

}
.
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We are now interested in the question whether

R≥0

(
Tt(λa)

)
(2.32)

tends to a limiting position for 0 < λ → +∞. Instead of (2.32) we may write

R≥0

(
a +

[
(ae)(cosh t − 1) +

√
1
λ2

+ 1 sinh t

]
e

)
,

and we obtain as limiting position

R≥0

(
a + [(ae)(cosh t − 1) + sinh t] e

)
(2.33)

which we define as the end Tt(E) = Tt(R≥0a). In the case 0 > λ → −∞ we observe

1
λ

(
λa + [λ (ae)(cosh t − 1) +

√
1 + λ2 sinh t] e

)
= a +

[
(ae)(cosh t − 1) −

√
1
λ2 + 1 sinh t

]
e

→ a + [(ae)(cosh t − 1) − sinh t] e,

a result which corresponds to (2.33), replacing there a by −a, i.e. substituting
R≥0

(
Tt[λ · (−a)]

)
, 0 < λ → +∞, for R≥0

(
Tt(λa)

)
, 0 > λ → −∞.

Proposition 19. If E is an end of the line l and µ a motion, then µ (E) is an end
of µ (l).

Proof. Let x (ξ) = p cosh ξ + q sinh ξ be the equation of l, and let E be given,
say, by R≥0(p + q) thus considering the case ξ → +∞. If µ ∈ O (X), we obtain
R≥0

(
µ (p) + µ (q)

)
as end of µ (l) for ξ → +∞, i.e. we get the end

R≥0

(
µ (p + q)

)
= µ (E).

Suppose now that µ = Tt. We already know, by (2.33), with p+q√
p2+q2

, i.e. p+q√
1+p2

instead of a,

Tt(E) = R≥0

(
p + q√
1 + p2

+

[
(p + q) e√

1 + p2
(cosh t − 1) + sinh t

]
e

)
.

Moreover, R≥0

(
Tt(p cosh ξ + q sinh ξ)

)
is given by

R≥0

(
p + q tanh ξ + [(p + q tanh ξ) e (cosh t − 1) +

√
1 + p2 sinh t] e

)
,

which tends to

R≥0

(
p + q + [(p + q) e (cosh t − 1) +

√
1 + p2 sinh t] e

)
for ξ → +∞, i.e. which tends to Tt(E). Hence µ (E) is an end of µ (l). �
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Two euclidean lines

li := {pi + ξqi | ξ ∈ R}
are called parallel, l1 ‖ l2, provided Rq1 = Rq2. Parallelity is an equivalence relation
on the set of euclidean lines of X . If l = p + Rq is a euclidean line and r a point,
there exists exactly one euclidean line, namely g = r + Rq through r, parallel to l.

Two hyperbolic lines of X are called parallel provided they have at least one
end in common. If l1, l2 are hyperbolic lines, of course, l1 ‖ l1 holds true and also
that l1 ‖ l2 implies l2 ‖ l1. However, parallelity need not be transitive. In order to
verify this statement take elements a, b of X with a2 = 1 = b2 and ab = 0. Define

l1 = {a cosh ξ + b sinh ξ | ξ ∈ R},
l2 = {−a cosh ξ + b sinh ξ | ξ ∈ R},

and l = R (a+b). We obtain l1 ‖ l, because these lines have R≥0(a+b) in common,
moreover, l ‖ l2 since R≥0(−a − b) is an end of both lines. But l1 ‖ l2 does not
hold true: the ends of l1 are R≥0(a + b), R≥0(a − b), and those of l2 are

R≥0(−a + b), R≥0(−a − b).

If p is a point and E := R≥0 a an end, there is exactly one hyperbolic line through
p having E as an end. In order to prove this statement take a motion µ with
µ (p) = 0. Of course, there is exactly one line through 0 having µ (E) =: R≥0b as
an end, namely Rb. Hence, by Proposition 19, there is exactly one line, namely
µ−1(Rb), through p with E as an end.

If l is a line and p �∈ l a point, there are exactly two lines l1 �= l2 through p
which are parallel to l: take the two distinct ends E1, E2 associated with l, and
then the lines l1, l2 through p with E1, E2, respectively, as an end.

Let l = {x (ξ) = p cosh ξ+q sinh ξ | ξ ∈ R} be a hyperbolic line and a = x (α)
be a point of l. The two sets

{x (ξ) | ξ ≥ α}, {x (ξ) | ξ ≤ α} (2.34)

are called (hyperbolic) rays with starting point x (α). If l = {x (ξ) = p+ξq | ξ ∈ R}
is a euclidean line and x (α) = p + αq a point a of l, then (2.34) are said to be
(euclidean) rays with starting point x (α). Images µ (R) of rays R under motions
µ are rays, and if a is the starting point of R, then µ (a) is the starting point of
µ (R).

It is clear how to associate each of the ends of a hyperbolic line l to the two
rays R1, R2 ⊂ l of l with the same starting point. In this connection we will speak
of the end of a ray or of a ray through an end.

Let R1, R2 be rays with the same starting point v such that R1 ∪R2 is not a
line. The triple (R1, R2, v) consisting of the (unordered) pair R1, R2 and the point
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v will be called an angle. If pi ∈ Ri, i = 1, 2, is the point with

d (v, pi) = 1, i = 1, 2,

then the measure �(R1, R2, v) of the angle (R1, R2, v) is defined by �(R1, R2, v) ∈
[0, π] and

1 − cos�(R1, R2, v) =

⎧⎪⎨
⎪⎩

1
2

[eucl (p1, p2)]2

2
coshhyp (p1, p2) − 1

cosh 2 − 1

(2.35)

for the euclidean, hyperbolic case, respectively. (For an axiomatic definition of
measures of angles in 2-dimensional euclidean or hyperbolic geometry see, for
instance, the book [4] of the author.)

If R1, R2 are rays both with starting point v and µ a motion, then

�(R1, R2, v) = �
(
µ (R1), µ (R2), µ (v)

)
.

This is clear since distances are preserved under motions.
Let a, b, v be elements of X with a �= 0 �= b and R1, R2 the rays

v + R≥0a, v + R≥0b,

respectively. Define p1 = v + 1
‖a‖ a, p2 = v + 1

‖b‖ b, γ = �(R1, R2, v). Hence

ab = ‖a‖ · ‖b‖ · (p1 − v)(p2 − v)

= 1
2‖a‖ · ‖b‖ ·

(
(p1 − v)2 + (p2 − v)2 − [(p1 − v) − (p2 − v)]2

)
= ‖a‖ · ‖b‖ · (1 − 1

2 [p1 − p2]2
)
,

i.e. ab = ‖a‖ · ‖b‖ · cos γ, in view of (2.35). As a consequence we get the so-called
cosine theorem:

[eucl (v + a, v + b)]2 = [(v + a) − (v + b)]2 = (a − b)2

= a2 + b2 − 2‖a‖ · ‖b‖ · cos γ,

i.e., by A = eucl (v, v + a), B = eucl (v, v + b),

[eucl (v + a, v + b)]2 = A2 + B2 − 2AB cos�(R1, R2, v).

Similarly, we would like to consider the case of hyperbolic geometry.
Let a, b, v be elements of X with a �= v �= b. If l1 is the hyperbolic line through

v, a, and l2 the one through v, b, if R1, R2 are the (hyperbolic) rays with starting
point v and a ∈ R1, b ∈ R2, then the cosine theorem of hyperbolic geometry holds
true:

coshC = coshA · coshB − sinh A · sinh B · cos γ
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where C = hyp (a, b), A = hyp (v, a), B = hyp (v, b), γ = �(R1, R2, v).
For the proof of this statement we may assume v = 0 without loss of gen-

erality, since distances and measures of angles are preserved under motions. So
put

li := {xi(ξ) = qi sinh ξ | ξ ∈ R}, i = 1, 2,

with q2
i = 1, i = 1, 2, and with a sign for qi such that ξ ≥ 0 describes Ri for

i = 1, 2. Hence x1(0) = v = x2(0) and

pi = xi(1), i = 1, 2, a =: x1(α), b =: x2(β),

with α > 0, β > 0, and thus ‖a‖ = sinh α, ‖b‖ = sinh β,

coshC =
√

1 + a2
√

1 + b2 − ab,

coshA =
√

1 + a2, coshB =
√

1 + b2, coshhyp (p1, p2) = (cosh 1)2−q1q2(sinh 1)2.
Moreover, sinhA = ‖a‖, sinh B = ‖b‖,

ab = x1(α)x2(β) = q1q2 sinh α sinh β,

and, by (2.35), cosh 2 = 1 + 2 sinh2 1,

cos γ = 1 − 2
coshhyp (p1, p2) − 1

cosh 2 − 1

= 1 − 2
(1 − q1q2)[sinh 1]2

cosh 2 − 1
= q1q2.

Hence
√

1 + a2
√

1 + b2−ab = coshA·cosh B−sinh A·sinh B ·cos γ, since sinh A =
sinhα and sinhB = sinh β, q.e.d.

Remark. Measures of angles (R1, R2, 0) coincide in euclidean and hyperbolic ge-
ometry because of the previous formulas cos γ = q1q2 and q1q2 = ‖q1‖ · ‖q2‖ cosγ.
Notice, moreover, that the cosine theorem in both geometries leads for γ = π

2 to
(2.21), (2.22), respectively.

2.10 Angles of parallelism, horocycles

Proposition 20. Let k �= l be parallel hyperbolic lines with E as common end,
p ∈ l\k a point, a � p the line orthogonal to k, and r the point of intersection of
k and a. If R1 ⊂ a is the ray through r with starting point p, and R2 ⊂ l the ray
through E, also with starting point p, then

tan
1
2
(
�(R1, R2, p)

)
= e−hyp (p,r).
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Proof. Without loss of generality we may assume p = 0,

k = {r cosh ξ + q sinh ξ | ξ ∈ R}, rq = 0, q2 = 1,

a = Rr, R1 = R≥0r, l = R (r + q), R2 = R≥0(r + q). Put γ := �(R1, R2, p).
Observe r �= 0 = p, since r ∈ k �� p. From (2.35) we obtain

1 − cos γ =
coshhyp (p1, p2) − 1

sinh2 1
= 1 − ‖r‖√

1 + r2
,

in view of rq = 0, q2 = 1, p1 = r
‖r‖ sinh 1, p2 = r+q√

1+r2 sinh 1. We hence get

cos γ =
‖r‖√
1 + r2

,

i.e. γ ∈ ]0, π
2 [ because of 0 < ‖r‖√

1+r2 < 1. From

coshhyp (p, r) =
√

1 + r2

we obtain

e−hyp (p,r) =
√

1 + r2 − ‖r‖, ehyp (p,r) =
√

1 + r2 + ‖r‖,
i.e.

tan
1
2

γ =
√

1 − cos γ

1 + cos γ
=

√√
1 + r2 − ‖r‖√
1 + r2 + ‖r‖ = e−hyp (p,r). �

Proposition 21. Let l be a hyperbolic line and R ⊂ l a ray with starting point v.
There exists a paraboloid as limiting position for the balls B

(
c, hyp (c, v)

)
with

c ∈ R and hyp (c, v) → ∞. This limiting position is called a horocycle.

Proof. If l = {x (ξ) := p cosh ξ + q sinh ξ | ξ ∈ R}, pq = 0, q2 = 1, and v = x (α),
we may assume R = {x (ξ) | ξ ≥ α}, without loss of generality. Put c =: x (α +
�), � > 0. Then

B� := B
(
c, hyp (c, v)

)
= B

(
x (α + �), �

)
=
{
x ∈ X | hyp

(
x (α + �), x

)
= �
}
,

i.e. B� = {x ∈ X | cosh(α + �)
√

1 + p2
√

1 + x2 −x (α + �)x = cosh �} holds true.
This implies

√
1 + x2

√
1 + p2 − x

(
p + q tanh(α + �)

)
=

cosh �

cosh(α + �)
,

i.e.
√

1 + x2
√

1 + p2 − x (p + q) = e−α for � → +∞. Hence the limiting position
for B�, � → ∞, is

B∞ := {x ∈ X |
√

1 + x2 − xm = τ} (2.36)
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with m := p+q√
1+p2

, i.e. m2 = 1, and τ := e−α√
1+p2

> 0.

In view of X = m⊥ ⊕ Rm, we will write x =: x + x0m with x ∈ m⊥ and
x0 ∈ R. Thus

B∞ = {x ∈ X | x2 − 2τx0 + 1 = τ2}
by observing x0 + τ ≥ 0 for an element x of B∞: assuming x0 + τ < 0 would lead
to

τ2 = x2 − 2τx0 + 1 > x2 + 2τ2 + 1,

i.e. to x2 + τ2 + 1 < 0. The surface S of X ,

S := {ξw + ηm | ξ, η ∈ R, w ∈ m⊥, w2 = 1, ξ2 = 2τη + τ2 + 1},
is called a paraboloid, and B∞ = S holds true. �

If H1, H2 are horocycles, there exists a hyperbolic motion µ with µ (H1) = H2.
If Hi, i = 1, 2, is based on the ray Ri with starting point vi, we take points
pi ∈ Ri, i = 1, 2, satisfying hyp (vi, pi) = 1. Moreover, we take a motion µ with

µ (v1) = v2, µ (p1) = p2.

Hence µ (R1) = R2 and

µ
(
B
(
c1, hyp (c1, v1)

))
= B

(
µ (c1), hyp

(
µ (c1), v2

))
for all c1 ∈ R1 with hyp (c1, v1) → ∞, i.e. for all c2 := µ (c1) ∈ R2 with
hyp (c2, v2) → ∞. Thus µ (H1) and H2 coincide.

2.11 Geometrical subspaces

If S �= ∅ is a set of hyperplanes of (X, d), i.e. of (X, eucl) or (X, hyp), the
intersection

Σ =
⋂

H∈S

H

will be called a geometrical subspace of (X, d). In this case we often will write
Σ ∈ Γ (X, d). We also define X ∈ Γ (X, d). Let a �= 0 be an element of X . Because
of

H (a, 0) ∩ H (a, 1) = ∅,
we obtain ∅ ∈ Γ (X, eucl). Similarly,

H (a, 0) ∩ Π(a, 1) = ∅,
i.e. ∅ ∈ Γ (X, hyp). If Σ �∈ {∅, X} is in Γ (X, d), let µ be a motion with µ (p) = 0
for a fixed element p of Σ. Hence µ (Σ) is an intersection

µ (Σ) =
⋂
a∈S

a⊥

with 0 �∈ S ⊆ X . Observing 0⊥ = X , we obtain
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Proposition 22. All geometrical subspaces of (X, d) are given by ∅, moreover by⋂
a∈S

a⊥, ∅ �= S ⊆ X,

and their images under motions.

We would like to show D :=
⋂

a∈X a⊥ = {0}. In fact! If p �= 0 were in D, then
p ∈ a⊥ for all a ∈ X would imply p ∈ p⊥, i.e. p2 = 0, i.e. p = 0, a contradiction.
Hence, by Proposition 22, every set consisting of one single point is in Γ (X, d).

Proposition 23. Let V, dim V ≥ 1, be a finite-dimensional subspace �= X of the
vector space X. Then the images of V under motions are in Γ (X, d). So especially
the lines of (X, d) are geometrical subspaces.

Proof. Let I (V ) be the intersection of all hyperplanes containing the finite-dimen-
sional subspace V, dim V ≥ 1, of the vector space X . Of course, we assume n :=
dimV < dimX in the case that X is finite-dimensional. Hence V ⊆ I (V ). As a
matter of fact, even V = I (V ) holds true. So assume there would exist

r ∈ I (V )\V. (2.37)

Let b1, . . . , bn be a basis of V satisfying

bibj =

{
0 for i �= j

1 for i = j
,

i, j ∈ {1, . . . , n}. Notice V = {∑n
i=1 ξibi | ξi ∈ R} � 0 and put

z :=
n∑

i=1

(rbi) bi.

Obviously, (r−z) bi = 0, i = 1, . . . , n, and z �= r since z ∈ V and r �∈ V , by (2.37).
Hence V ⊆ H (r − z, 0), i.e. r ∈ H (r − z, 0), by (2.37), and thus (r − z) r = 0. We
obtain, by z ∈ V , i.e. by z ∈ H (r − z, 0),

(r − z)2 = (r − z) r − (r − z) z = 0,

i.e. r = z ∈ V , a contradiction. Hence V = I (V ). Thus V must be a geometrical
subspace of (X, d). Now apply Proposition 22. �

The geometrical subspaces as described in Proposition 23 are given in the
case (X, hyp) as follows. Let p ∈ X, γ ∈ R satisfy p2 = 1 and γ ≥ 0. Suppose
that W, n := dim W ≥ 1, is a finite-dimensional subspace of the vector space p⊥.
Then

{γp cosh ξ + y sinh ξ | ξ ∈ R, y ∈ W with y2 = 1}
will be called an n-dimensional (geometrical) subspace of (X, hyp).
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Not every subspace of (X, d) for d = eucl or d = hyp needs to be a geometrical
subspace. Assume that Q � 0 is a quasi–hyperplane which is not a hyperplane. If

Q ⊆ H (a, 0), (2.38)

a �= 0, holds true, then Q = H (a, 0) or H (a, 0) = X , since Q is a maximal
subspace of X . Hence (2.38) is impossible and, as a consequence, Q cannot be a
geometrical subspace of (X, d).

Other interesting geometrical subspaces occur in the case that X is not finite-
dimensional, in the form

n⋂
i=1

a⊥
i ,

where n is a positive integer and where a1, . . . , an ∈ X are linearly independent,
satisfying a2

i = 1 for i = 1, . . . , n. It will be easy to prove:

n⋂
i=1

a⊥
i =

⎧⎪⎨
⎪⎩x −

n∑
i=1

αiai | x ∈ X and M ·

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠ =

⎛
⎜⎝

xa1

...
xan

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

where M is given by the regular matrix

M =

⎛
⎜⎜⎜⎝

a2
1 a1a2 . . . a1an

a2a1 a2
2 . . . a2an

...
ana1 ana2 . . . a2

n

⎞
⎟⎟⎟⎠

(det M is called Gram’s determinant). In fact, take an element x ∈ X with the
described α1, . . . , αn. Hence⎛

⎜⎝
(x − Σαiai) a1

...
(x − Σαiai) an

⎞
⎟⎠ =

⎛
⎜⎝

xa1

...
xan

⎞
⎟⎠− M

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠ = 0,

i.e. (x − Σαiai) aj = 0 for j = 1, . . . , n, i.e. x − Σαiai ∈
⋂n

j=1 a⊥
j .

If, on the other hand, x ∈ ⋂n
i=1 a⊥

i holds true, xaj = 0 is satisfied for
j = 1, . . . , n. From

M

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠ =

⎛
⎜⎝

xa1

...
xan

⎞
⎟⎠ = 0,

we then obtain α1 = · · · = αn = 0. Hence x has the required form

x −
n∑

i=1

αiai.



66 Chapter 2. Euclidean and Hyperbolic Geometry

2.12 The Cayley–Klein model

The Weierstrass map w : X → X ,

w (x) :=
x√

1 + x2
, (2.39)

is a bijection between X and P := {x ∈ X | x2 < 1}. In view of

[w (x)]2 =
x2

1 + x2
< 1,

we obtain w (x) ∈ P for x ∈ X . Moreover,

w−1(x) =
x√

1 − x2
∈ X

is the uniquely determined y ∈ X satisfying w (y) = x for x ∈ P . Defining

g (x, y) := hyp
(
w−1(x), w−1(y)

)
for x, y ∈ P , we get

cosh g (x, y) =
1 − xy√

1 − x2
√

1 − y2
. (2.40)

If x �= y are elements of P , then (x − y)2 > 0, 1 − x2 > 0 and hence

D := [x (x − y)]2 + (1 − x2)(x − y)2 > 0.

Put {a, b} := {x + ξ (y − x) | ξ ∈ R} ∩ {z ∈ X | z2 = 1}, i.e. put

{a, b} := {x + ξ1(y − x), x + ξ2(y − x)}
with {(x−y)2ξ1, (x−y)2ξ2} = {x (x−y)±√

D}. We now would like to determine

| ln {a, b; x, y}|,
where ln ξ for 0 < ξ ∈ R is defined by the real number η satisfying exp (η) = ξ,
and where

{z1, z2; z3, z4} :=
λ1 − λ3

λ1 − λ4
:

λ2 − λ3

λ2 − λ4

designates the cross ratio of the ordered quadruple z1, z2, z3, z4 of four distinct
points

zi = p + λiq, i = 1, 2, 3, 4,

on the line p + Rq, q �= 0, which does not depend on the representation of the line

p + Rq = p′ + Rq′.
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Writing the points a, b, x, y of {a, b; x, y} in the form

x + ξ (y − x),

we obtain 0 < {a, b; x, y} ∈ {L, L−1} with

L :=
ξ1

ξ1 − 1
· ξ2 − 1

ξ2
.

Observe here ξ1 < 0 and 1 < ξ2 or ξ2 < 0 and 1 < ξ1. The exact value L or L−1

of {a, b; x, y} depends on how we associate a, b to ξ1, ξ2. Put

(x − y)2ξi = x (x − y) + εi

√
D,

i = 1, 2, with ε1 = −ε2 = 1. Then we get

1
2

ln L = ln
1 − xy +

√
D√

1 − x2
√

1 − y2
=: R

by observing xy ≤ |xy| ≤
√

x2
√

y2 < 1. Because of | ln L−1| = | ln L|, we obtain

1
2
| ln {a, b; x, y}| = |R|, (2.41)

independent of how we associate a, b to ξ1, ξ2. Now, by (2.40),

cosh |R| =
eR + e−R

2
=

1 − xy√
1 − x2

√
1 − y2

= cosh g (x, y),

since 1 − xy +
√

D = eR
√

1 − x2
√

1 − y2. Hence, by (2.41),

g (x, y) =
1
2
| ln {a, b; x, y}|. (2.42)

It is certainly more convenient to work with the expression (2.40) than with (2.42),
since there the elements a, b must be determined before g (x, y) can be calculated.

We now would like to look to different notions like translation and hyperplane
as they appear in the Cayley–Klein model.

If ω is a surjective orthogonal mapping, i.e. a bijective orthogonal mapping,
we obtain

w (x) =
x√

1 + x2
, w
(
ω (x)

)
=

ω (x)√
1 + [ω (x)]2

= ω
(
w (x)

)
,

since [ω (x)]2 = x2. Hence, if x ∈ X goes over in ω (x), then w (x) in wω (x) =
ωw (x). Thus ω remains an orthogonal mapping, however, restricted on P . If x ∈ X
goes over in Tt(x), then w (x) in

w
(
Tt(x)

)
= wTtw

−1
(
w (x)

)
.
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Thus the translation Tt, say, based on e ∈ X, e2 = 1, as axis, corresponds to

z → wTtw
−1(z) =: T ′

t (z)

for all z ∈ P . This implies for z ∈ P ,

T ′
t (z) =

z + [(ze)(cosh t − 1) + sinh t] e
cosh t + (ze) sinh t

, (2.43)

by observing cosh t + (ze) sinh t > 0, which holds, since

−(ze) tanh t ≥ 1

would contradict
| − (ze) tanh t| ≤

√
z2

√
e2 · 1 < 1.

Notice
T ′

tT
′
s = wTtw

−1 · wTsw
−1 = wTt+sw

−1 = T ′
t+s,

and also T ′
0 = id on P , and T ′

tT
′−t = T ′

0. If

{p cosh ξ + q sinh ξ | ξ ∈ R}, pq = 0, q2 = 1, (2.44)

is a line, we obtain its image in P as the set{
p√

1 + p2
+

q√
1 + p2

tanh ξ | ξ ∈ R

}
. (2.45)

This is the segment of the euclidean ball B (0, 1) connecting its points

p√
1 + p2

− q√
1 + p2

and
p√

1 + p2
+

q√
1 + p2

. (2.46)

If u �= v are points on B (0, 1), i.e. if they satisfy u2 = 1 = v2, then
(

v+u
2

)2
< 1,

and (2.44) with

p =
v + u

2k
, q =

v − u

2k
, k =

√
1 −
(

v + u

2

)2

=

√
1 − uv

2
(2.47)

is the inverse image of the segment {u + λ (v − u) | 0 < λ < 1}.
Obviously, the two ends of {p cosh ξ + q sinh ξ | ξ ∈ R} can be described by

the points (2.46) of B (0, 1),
p ± q√
1 + p2

.
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Proposition 24. The image of Π(p, γ) (see (2.27) under the mapping w : X → P
is given by

Π′(p, γ) := {x ∈ P | px =
γ√

1 + γ2
}.

Proof. Because of

z := w (γp cosh ξ + y sinh ξ) =
γp√

1 + γ2
+

y√
1 + γ2

tanh ξ

for y ∈ p⊥, y2 = 1, we get

pz =
γ√

1 + γ2
, (2.48)

i.e. z ∈ Π′(p, γ). Let now z ∈ P be given satisfying (2.48). Hence, by p2 = 1,

p

(
z − γp√

1 + γ2

)
= 0,

i.e. Y := z − γp√
1+γ2

∈ p⊥. For Y = 0 we get w−1(z) = γp ∈ Π(p, γ). Suppose now

Y �= 0. We obtain, by z ∈ P and Y ⊥ p,

0 < 1 − z2 = 1 −
(

Y +
γp√

1 + γ2

)2

=
1 − (1 + γ2)Y 2

1 + γ2
,

i.e. 0 < 1 − (1 + γ2)Y 2 < 1. There hence exists ξ > 0 with

cosh ξ =
1√

1 − (1 + γ2)Y 2
.

This implies tanh ξ =
√

1 + γ2 · ‖Y ‖. Put y = 1
‖Y ‖ Y and observe y ∈ p⊥, y2 = 1

and
z =

γp√
1 + γ2

+ ‖Y ‖ · y =
γp√

1 + γ2
+

y√
1 + γ2

tanh ξ,

i.e. w−1(z) = γp cosh ξ + y sinh ξ ∈ Π(p, γ). �
Remark. Notice γp cosh ξ + y sinh ξ = γp cosh(−ξ) + (−y) sinh(−ξ) and that y ∈
p⊥, y2 = 1 implies (−y) ∈ p⊥, (−y)2 = 1, so that, for instance, ξ could be chosen
always non-negative. But in this case not all y ∈ p⊥ with y2 = 1 occur in the
representation of Π (p, γ).

Let H (p, α) be an arbitrary hyperplane of (X, eucl) with p2 = 1. We will
assume α ≥ 0, because otherwise we could work with H (−p,−α). If there is at
least one point a in

H (p, α) ∩ B (0, 1), (2.49)
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then 0 ≤ α ≤ 1: this follows from pa = α and a2 = 1 by means of α ≥ 0 and

α = pa ≤ |pa| ≤
√

p2
√

a2 = 1.

The intersection (2.49) contains exactly one point if, and only if, α = 1. For α = 1
we only have p in this intersection, since px = 1, x2 = 1 imply

1 = px = |px| =
√

p2
√

x2,

i.e. x ∈ {p,−p}, i.e. x = p because of p (−p) = −1. If 0 ≤ α < 1, take r ∈ X with
pr = 0 and r2 = 1. Then

p (αp ±
√

1 − α2 r) = α, (αp ±
√

1 − α2 r)2 = 1

lead to distinct points in (2.49).

Proposition 25. If p ∈ X satisfies p2 = 1 and if 0 ≤ α < 1 holds true for α ∈ R,
then Π(p, γ) with

γ =
α√

1 − α2

is the image of {x ∈ P | px = α} under w−1 : P → X.

Proof. The proof follows from Proposition 24, in view of γ√
1+γ2

= α. �

2.13 Hyperplanes under translations

Theorem 26. Let t, γ ∈ R be given with γ ≥ 0 and p ∈ X with p2 = 1. Suppose
that

Tt(x) = x +
(
(xe)(cosh t − 1) +

√
1 + x2 sinh t

)
e,

x ∈ X, is a hyperbolic translation based on the axis e, e2 = 1. Define

γ′ := γ cosh t + (pe)
√

1 + γ2 sinh t,

ε := sgn γ′ for γ′ �= 0, ε ∈ R\{0} for γ′ = 0,

and p′ · ‖A‖ := A := p +
[

γ√
1+γ2

sinh t + (pe)(cosh t − 1)
]

e by observing A �= 0.

Then

Tt

(
Π(p, γ)

)
= Π(εp′, |γ′|) (2.50)

holds true.

Proof. Notice A2 = 1
1+γ2 +

(
γ√

1+γ2
cosh t + (pe) sinh t

)2

> 0, i.e. A �= 0 and,
moreover, √

1 + γ′2 = ‖A‖ ·
√

1 + γ2. (2.51)
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Instead of (2.50) we prove

w [Π (εp′, |γ′|)] = wTtw
−1

[{
x ∈ P | px =

γ√
1 + γ2

}]
, (2.52)

since, by Proposition 25,

w−1

({
x ∈ P | px =

γ√
1 + γ2

})
= Π(p, γ).

From Proposition 24 we obtain

w [Π (εp′, |γ′|)] =

{
x ∈ P | p′x =

γ′√
1 + γ′2

}
, (2.53)

since εp′x = |γ′|√
1+γ′2 can be rewritten as p′x = γ′√

1+γ′2 . So in order to prove (2.50),

we show, with (2.43),{
x ∈ P | p′x =

γ′√
1 + γ′2

}
= T ′

t

[{
z ∈ P | pz =

γ√
1 + γ2

}]
. (2.54)

Applying the decomposition X = p⊥ ⊕ Rp, we will write

z = z + z0p, z ∈ p⊥, z0 ∈ R,

for z ∈ X . Hence{
z ∈ P | pz =

γ√
1 + γ2

}
=

{
z +

γ√
1 + γ2

p | z ∈ p⊥, ‖z‖ <
1√

1 + γ2

}
.

T ′
t is a bijection of P . With α := γ√

1+γ2
, we obtain

T ′
t

[{
z + αp | z ∈ p⊥, ‖z‖ <

√
1 − α2

}]
,

by (2.43), as the set of all points

u (z) :=
z + αp + [(ze + αpe)(cosh t − 1) + sinh t] e

cosh t + (ze + αpe) sinh t
(2.55)

with ‖z‖2 < 1 − α2. In view of (2.54), we will show

p′ · u (z) =
γ′√

1 + γ′2 ,



72 Chapter 2. Euclidean and Hyperbolic Geometry

i.e. by (2.51),

A · u (z) =
γ′ · ‖A‖√

1 + γ′2 =
γ′√

1 + γ2
.

Calling the nominator, denominator of the right-hand side of (2.55) N (z), D (z),
respectively, the equation

A · N (z) = D (z) · (α cosh t + (pe) sinh t)

must be verified, which can be accomplished easily. Observe, finally, that Tt maps
hyperbolic hyperplanes onto such hyperplanes, and that consequently T ′

t maps
images (under w) of hyperbolic hyperplanes of X onto images of such hyperplanes.

�
Proposition 27. Let p, q ∈ X and γ, δ ∈ R be given with p2 = 1 = q2, γ ≥ 0 and
δ ≥ 0. If

Π(p, γ) ⊆ Π(q, δ) (2.56)

and γ > 0 hold true, then p = q and γ = δ. If (2.56) and γ = 0 hold true, then
p = ±q and δ = 0.

Proof. Instead of (2.56) we will consider w
(
Π(p, γ)

) ⊆ w
(
Π(q, δ)

)
, i.e.

L :=

{
x ∈ P | px =

γ√
1 + γ2

}
⊆
{

x ∈ P | qx =
δ√

1 + δ2

}
=: R.

If v �= 0 is in p⊥, we obtain, by 1/2
1+γ2 + γ2

1+γ2 < 1,

± v

‖v‖√2 (1 + γ2)
+

γp√
1 + γ2

∈ L.

These two points x1, x2 must hence be elements of R, i.e. q · (x1 − x2) = 0, i.e.
v ∈ q⊥. Thus p⊥ ⊆ q⊥, i.e. H (p, 0) ⊆ H (q, 0), i.e., by Proposition 12 we get p = q
or p = −q. Now

γp√
1 + γ2

∈ L ⊆ R implies
γpq√
1 + γ2

=
δ√

1 + δ2
.

Hence, if γ > 0, we obtain p = q, i.e. γ = δ, and if γ = 0, p = ±q and δ = 0 is the
consequence. �

2.14 Lines under translations

Let {p cosh ξ + q sinh ξ | ξ ∈ R} be a hyperbolic line l with elements p, q ∈ X
satisfying pq = 0, q2 = 1. For ω ∈ O (X) we obtain

ω (l) = {ω (p) cosh ξ + ω (q) sinh ξ | ξ ∈ R} (2.57)
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with 0 = pq = ω (p)ω (q), 1 = qq = ω (q)ω (q). Suppose that e ∈ X, t ∈ R

are given with e2 = 1. We are then interested in the image Tt(l) of l under the
hyperbolic translation Tt with axis e.

Theorem 28. Define

p′ := p + [pe (cosh t − 1) +
√

1 + p2 sinh t] e,

q′ := q + (qe)(cosh t − 1) e,

A := qe sinh t,

B := pe sinh t +
√

1 + p2 cosh t.

Then |A| < B. Define α ∈ R by B · tanhα := −A. Then

Tt(l) = {p∗ cosh η + q∗ sinh η | η ∈ R} (2.58)

with
p∗ := p′ coshα + q′ sinh α,

q∗ := p′ sinh α + q′ coshα

and p∗q∗ = 0, (q∗)2 = 1.

Proof. Observe
p′2 = B2 − 1,

i.e. B2 ≥ 1 because of p′2 ≥ 0, and q′2 = 1 + A2, p′q′ = AB. We now would like
to prove

|A| < B.

Case A ≥ 0. Here we get

(q − p) e sinh t ≤ |(q − p) e sinh t| ≤
√

(q − p)2e2 sinh |t|,

i.e. (q − p) e sinh t ≤
√

1 + p2 sinh |t| <
√

1 + p2 cosh t.
Case A < 0. We must prove −A < B. Observe

(−q − p) e sinh t ≤ |(q + p) e sinh t| ≤
√

1 + p2 sinh |t| <
√

1 + p2 cosh t.

Because of B2 ≥ 1 and |A| < B, we obtain B ≥ 1 and∣∣∣∣−A

B

∣∣∣∣ < 1,

i.e. tanhα = −A
B determines α ∈ R uniquely. Hence

sinh α = − A√
B2 − A2

, coshα =
B√

B2 − A2
.
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In view of p′2 = B2 − 1, p′q′ = AB, q′2 = A2 + 1, we thus obtain

(q∗)2 = (B2 − 1) A2

B2−A2 − 2AB AB
B2−A2 + (A2 + 1) B2

B2−A2 = 1,

p∗q∗ = −(A2 + B2) AB
B2−A2 + AB A2+B2

B2−A2 = 0.

Notice
Tt(p cosh ξ + q sinh ξ) = p′ cosh ξ + q′ sinh ξ,

and put η := ξ − α. Then

p′ cosh ξ + q′ sinh ξ = p∗ cosh η + q∗ sinh η,

by cosh ξ = coshα cosh η + sinh α sinh η and sinh ξ = sinh α cosh η + . . .. Hence

Tt(l) = {p∗ cosh η + q∗ sinh η | η ∈ R}. �

2.15 Hyperbolic coordinates

Let n ≥ 2 be an integer and suppose that V is a subspace of dimension n of the
vector space X . Let b1, . . . , bn be a basis of V satisfying bibj = 0 for i �= j and
b2
i = 1 for all i, j ∈ {1, . . . , n}. If p ∈ V and if

p = p1b1 + · · · + pnbn

holds true with p1, . . . , pn ∈ R, then (p1, . . . , pn) will be called the cartesian coor-
dinates of p, and (x1, . . . , xn) with√

1 + p2
2 + · · · + p2

n sinh x1 = p1,√
1 + p2

3 + · · · + p2
n sinh x2 = p2,

...√
1 + p2

n sinh xn−1 = pn−1,

sinh xn = pn,

its hyperbolic coordinates. Designate by π the mapping which associates for every
p ∈ V to the cartesian coordinates (p1, . . . , pn) of p its hyperbolic coordinates

π (p1, . . . , pn) = (x1, . . . , xn).

The mapping π is bijective, because π−1(x1, . . . , xn) is given by (p1, . . . , pn) with

pn = sinh xn,

pn−1 = sinh xn−1 · coshxn,

pn−2 = sinh xn−2 · coshxn−1 · coshxn,

...

p1 = sinh x1 · coshx2 · coshx3 · · · coshxn.
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Proposition 29. Let e ∈ V satisfy e2 = 1. Extend e =: b1 to a basis b1, . . . , bn of
V , again with

bibj =

{
0 for i �= j

1 for i = j

for all i, j ∈ {1, . . . , n}. Representing then the points of V by hyperbolic coordinates
(x1, . . . , xn),

Tt(x1, . . . , xn) = (x1 + t, x2, . . . , xn)

holds true for all t∈R and for all points of V in hyperbolic coordinates (x1, . . . , xn),
where Tt are hyperbolic translations with axis e.

Proof. Put S1 := sinhx1, C1 := coshx1, and so on. Then

Tt(x1, . . . , xn) = Tt(S1C2 . . . Cnb1 + S2C3 . . . Cnb2 + · · · + Snbn)

= p + [pe (cosh t − 1) + C1C2 . . . Cn sinh t] e

with p := S1C2 . . . Cnb1 + · · · + Snbn. Put St := sinh t, Ct := cosh t. Then

Tt(x1, . . . , xn) = p + [S1C2 . . . Cn(Ct − 1) + C1C2 . . . CnSt] b1

= p + (S1Ct − S1 + C1St)C2C3 . . . Cnb1

= sinh(x1 + t)C2 . . . Cnb1 + S2C3 . . . Cnb2 + · · · + Snbn

= (x1 + t, x2, x3, . . . , xn). �

2.16 All isometries of (X, eucl), (X, hyp)

The mapping f : S → S of a metric space (S, d) will be called an isometry of (S, d)
provided

d
(
f (x), f (y)

)
= d (x, y) (2.59)

holds true for all x, y ∈ S.
Isometries are injective mappings since x �= y for x, y ∈ S implies

0 �= d (x, y) = d
(
f (x), f (y)

)
,

i.e. f (x) �= f (y). However, isometries need not be surjective. In chapter 1 we
presented an example of an orthogonal mapping ω which is not surjective. Because
of

d
(
ω (x), ω (y)

)
= d (x, y),

d (x, y) := ‖x−y‖, for all x, y of the underlying real inner product space X , this ω
hence represents an isometry of the metric space (X, eucl) which is not surjective.
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Surjective isometries of (S, d) are called motions of (S, d). Of course, the set
of all motions of the metric space (S, d) is a group M (S, d) under the permutation
product. In view of I (see the proof of Theorem 7, chapter 1) we already know

M (X, d) = {αTtβ | α, β ∈ O (X), t ∈ R} (2.60)

for (X, eucl) or (X, hyp). Here and throughout section 2.3 T is the euclidean or
hyperbolic translation group with a given axis e ∈ X, e2 = 1, i.e.

Tt(x) = x + te (2.61)

in the euclidean and

Tt(x) = x + [(xe)(cosh t − 1) +
√

1 + x2 sinh t] e (2.62)

in the hyperbolic case for all x ∈ X .
The following statement now presents the set of all isometries of (X, d) in

the euclidean or hyperbolic case.

Proposition 30. The set of all isometries of (X, d) is given by

I (X, d) = {αTtβ | α ∈ O (X), β ∈ Õ (X), t ∈ R}, (2.63)

where Õ (X) designates the set of all orthogonal mappings of X.

Proof. Suppose that δ is an isometry of (X, d) and that δ (0) =: p. Because of A
(see the proof of Theorem 7 in chapter 1) there exists γ ∈ O (X) with

γδ (0) = ‖p‖e.
In view of property (T 2) of a translation group, there exists t ∈ R satisfying

Ttγδ (0) = 0.

The mapping ϕ := Ttγδ preserves distances and it satisfies ϕ (0) = 0.
Euclidean case. Hence for all x, y ∈ X ,

‖x − y‖ = ‖ϕ (x) − ϕ (y)‖.
Thus ϕ ∈ Õ (X), in view of Proposition 3 of chapter 1. This implies

δ = γ−1T−tϕ

with γ−1 ∈ O (X).
Hyperbolic case. hyp (x, y) = hyp

(
ϕ (x), ϕ (y)

)
for all x, y ∈ X implies√

1 + x2
√

1 + y2 − xy =
√

1 + ξ2
√

1 + η2 − ξη (2.64)

with ξ := ϕ (x), η := ϕ (y) and, especially for x = 0, y = z,

z2 = [ϕ (z)]2

for all z ∈ X , i.e., by (2.64), xy = ϕ (x)ϕ (y) for all x, y ∈ X . Hence

‖x − y‖ = ‖ϕ (x) − ϕ (y)‖,
and thus ϕ ∈ Õ (X), by Proposition 3, chapter 1. �
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2.17 Isometries preserving a direction

Let T be a translation group with axis e ∈ X, e2 = 1. The following three state-
ments hold true for hyperbolic as well as for euclidean geometry. The given proof
of Lemma 31 is based on (X, hyp).

Lemma 31. Given α ∈ O (X) with α (e) = εe, ε ∈ R. Then αTtα
−1(x) = Tεt(x)

for all x ∈ X and t ∈ R.

Proof. [α (e)]2 = e2 implies ε2 = 1. With α−1(e) = εe and

x = h + x0e, h ∈ e⊥, x0 ∈ R,

we obtain α−1(h)α−1(e) = he = 0 and α−1(h) ∈ e⊥, and hence

αTtα
−1(x) = αTt(α−1(h) + x0εe)

= α
(
α−1(h) + [x0ε cosh t +

√
1 + h2 + x2

0 sinh t] e
)

= x + [(xe)(cosh εt − 1) +
√

1 + x2 sinh εt] e = Tεt(x),

by α−1(h)α−1(h) = h2 and (2.62). �
Corollary. Define χ (x) = h− x0e for x = h + x0e with h ∈ e⊥ and x0 ∈ R. Then

χ Tt = T−t χ

for all t ∈ R.

Proof. Notice χ ∈ O (X) and χ (e) = −e. �
Theorem 32. Suppose that f : X → X is an isometry. Then

f (x) − x ∈ Re for all x ∈ X (2.65)

holds true if, and only if, f ∈ T ∪ Tχ.

Proof. Obviously, f ∈ T ∪ Tχ satisfies (2.65). Let now f : X → X be an isometry
satisfaying (2.65).
Case 1: f ∈ Õ (X). Here f = id or f = χ holds true. In order to prove this
statement observe

f (e) − e ∈ Re,

i.e. f (e) = λe with a suitable λ ∈ R. Hence e2 = [f (e)]2, i.e. λ2 = 1. Because of

0 = he = f (h) f (e) = f (h) · λe

for h ∈ e⊥, we obtain f (h) ∈ e⊥, i.e.

f (h + x0e) = f (h) + x0λe, f (h) ∈ e⊥, (2.66)
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for x = h + x0e, h ∈ e⊥, x0 ∈ R. By (2.65)

f (h + x0e) = h + x0e + µe (2.67)

with a suitable µ ∈ R. Hence, by (2.66), (2.67), f (h) = h, i.e. by (2.66),

f (h + x0e) = h + x0λe.

Thus f = id for λ = 1, and f = χ for λ = −1.
Case 2: f �∈ Õ (X). Since f ∈ I (X, d),

f = αTtβ

with α ∈ O (X), β ∈ Õ (X) and t ∈ R. Because of f �∈ Õ (X), we obtain t �= 0.
Hence Tt(0) �= 0. By (2.65), αTtβ (0) = λe with a suitable λ ∈ R. Thus

0 �= Tt(0) = λα−1(e),

which implies α−1(e) = εe, ε ∈ R, in view of Tt(0) ∈ R e. So we obtain α (e) = εe
with ε2 = 1, i.e. by Lemma 31,

f = αTtα
−1 · αβ = Tεt · γ

with γ := αβ ∈ Õ (X). Since T−εt and f = Tεt · γ have property (2.65), hence also
their product γ. This implies, by Case 1, γ = id or γ = χ. Thus f ∈ T ∪ Tχ. �

2.18 A characterization of translations

The following Theorem 33 is essentially a corollary of Theorem 32.

Theorem 33. An isometry f of (X, d) is a translation �= id with axis e if, and only
if,

0 �= f (x) − x ∈ Re (2.68)

holds true for all x ∈ X.

Proof. Suppose that the isometry f : X → X satisfies (2.68). Hence, by Theorem
32, f ∈ T ∪ Tχ. We will show that f = id and also f ∈ Tχ have at least one
fixpoint, i.e. a point x with f (x) = x, i.e. with 0 = f (x) − x, so that f must be a
translation �= id with axis e.
Hyperbolic case: Here h + e

√
1 + h2 sinh t

2 with h ∈ e⊥ is a fixpoint of Ttχ.
Euclidean case: Here h + t

2 e is a fixpoint of Ttχ.
Suppose, vice versa, that the translation Tt �= id has axis e. Then, of course,
f (x) − x ∈ Re holds true for all x ∈ X . Property (T 2) of a translation group
implies that t = 0 is a consequence of Tt(x0) = x0 for a point x0. �
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2.19 Different representations of isometries

Let again e ∈ X be given with e2 = 1 and suppose that T is the euclidean or
hyperbolic translation group with axis e. Given isometries

αTtβ, γTsδ

of (X, d) with α, γ ∈ O (X), β, δ ∈ Õ (X), t, s ∈ R, we would like to answer the
question, when and only when αTtβ and γTsδ represent the same isometry.

Theorem 34. Given (X, d) ∈ {(X, eucl), (X, hyp)} and

α, γ ∈ O (X), β, δ ∈ Õ (X), t, s ∈ R.

Then

αTtβ = γTsδ (2.69)

holds true if, and only if,

t = s = 0, αβ = γδ for ts = 0,

or
0 �= t = εs, ε2 = 1, αβ = γδ, α (e) = εγ (e) for ts �= 0.

Proof. Of course, (2.69) holds true for t = s = 0, αβ = γδ, but also if all the
presented conditions for ts �= 0 are satisfied, by observing Lemma 31 and

γ−1αTεsβ = γ−1αTεs(γ−1α)−1 · γ−1αβ = Tε2s · δ.

Assume now (2.69), i.e. ξTtβ = Tsδ with ξ := γ−1α. Because of

ξTtβ (0) = Tsδ (0)

we obtain

ξ (e) · sinh t = e · sinh s (2.70)

and ξ (e) ξ (e) = ee = 1.
Case ts = 0. Hence, by (2.70), t = s = 0, and thus αβ = γδ, by (2.69).

Case ts �= 0. Because of (2.70) and
(
ξ (e)

)2 = 1, we obtain ξ (e) = εe, ε2 = 1, 0 �=
t = εs. A consequence of ξ = γ−1α then is α (e) = εγ (e). Finally observe, by
(2.69) and Lemma 31,

Tsδ = ξTtβ = ξTtξ
−1 · ξβ = Tεt · ξβ,

i.e. Tsδ = Tsξβ, i.e. δ = ξβ. �
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2.20 A characterization of isometries

Suppose that (X, d) is one of the metric spaces (X, eucl) or (X, hyp). Then the
following theorem holds true.

Theorem 35. Let � > 0 be a fixed real number and N > 1 be a fixed integer. If
f : X → X is a mapping satisfying

d
(
f (x), f (y)

) ≤ � for all x, y ∈ X with d (x, y) = �, (2.71)

d
(
f (x), f (y)

) ≥ N� for all x, y ∈ X with d (x, y) = N�, (2.72)

then f must be an isometry of (X, d).

Proof. Euclidean case: d (x, y) = ‖x − y‖ for all x, y ∈ X . In view of Theorem 4,
chapter 1, we obtain

f (x) = ω (x) + t

for all x ∈ X , where ω ∈ Õ (X), and t a fixed element of X . Obviously, f satisfies
(2.59).
Hyperbolic case: d (x, y) = hyp (x, y) for all x, y ∈ X .
1. The mapping f preserves hyperbolic distances � and 2�.

Proof. Let p, q be points of (hyperbolic) distance �, and

x (ξ) = a cosh ξ + b sinh ξ, ξ ∈ R,

with a, b ∈ X, ab = 0, b2 = 1, be the line through p, q. If p = x (α), q = x (β),
then |β − α| = �. We may assume β − α = �, since otherwise we would work with
y (ξ) := x (−ξ) instead of x (ξ), and α′ := −α, β′ := −β instead of α, β. Hence

p = x (α) and q = x (α + �).

Define
xλ := x (α + λ�), λ ∈ {0, 1, . . . , N}.

Since hyp (x0, xN ) = N�, (2.72) implies

hyp (x′
0, x

′
N ) ≥ N�

with x′ := f (x) for x ∈ X . Observe

hyp (x′
λ, x′

λ+1) ≤ �

for λ = 0, . . . , N − 1, in view of hyp (xλ, xλ+1) = �. Hence

N� ≤ hyp (x′
0, x

′
N ) ≤ hyp (x′

0, x
′
2) +

N−1∑
λ=2

hyp (x′
λ, x′

λ+1)

≤ hyp (x′
0, x

′
1) + hyp (x′

1, x
′
2) +

N−1∑
λ=2

hyp (x′
λ, x′

λ+1) ≤ N�.
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This yields hyp (x′
λ, x′

λ+1) = � and hyp (x′
0, x

′
2) = 2�. Hence hyp (p′, q′) = �. If

p, r are points of distance 2�, we may write

p = x (α) and r = x (α + 2�).

Working now with q := x (α + �), the proof above leads to 2� = hyp (x′
0, x

′
2) =

hyp (p′, r′). �
2. If a, b, m are points with a �= b and

hyp (a, m) = hyp (m, b) =
1
2

hyp (a, b), (2.73)

then m must be the hyperbolic midpoint of a, b.

Proof. If x (ξ) = p cosh ξ + q sinh ξ, ξ ∈ R, with pq = 0, q2 = 1, contains a, b, we
may write α < β,

a = x (α) and b = x (β).

Equation (2.73) implies

hyp (a, b) = hyp (a, m) + hyp (m, b),

and hence that a, b, m are collinear, i.e. on a common line (see the notion of a
Menger line). Put m = x (γ). By (2.73), we obtain

|γ − α| = |β − γ|,
i.e. γ = 1

2 (α + β), in view of α < β. �
3. Given points p, q of distance �, we will write

p = x (α) and q = x (α + �).

If y (η), η ∈ R, is the line through p′ := f (p), q′ := f (q), we may write, by step 1,

p′ = y (β), q′ = y (β + �).

Then

f
(
x (α + λ�)

)
= y (β + λ�) (2.74)

holds true for all integers λ ≥ 0.

Proof. Clear for λ ∈ {0, 1}. Put pλ := x (α + λ�). Now

� = hyp (pλ−1, pλ) = hyp (pλ, pλ+1) =
1
2

hyp (pλ−1, pλ+1)

and step 1 imply

� = hyp (p′λ−1, p
′
λ) = hyp (p′λ, p′λ+1) =

1
2

hyp (p′λ−1, p
′
λ+1) (2.75)
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for λ = 1, 2, 3, . . .. Assume that (2.74) is proved up to λ ≥ 1. Because of (2.75),
the points p′λ−1, p

′
λ, p′λ+1 must be collinear. Put p′λ+1 = y (γ). Hence

β + λ� =
1
2
(
β + (λ − 1) � + γ

)
by (2.75) and step 2. Thus γ = β+(λ+1) �, i.e. (2.74) holds true also for λ+1. �

A consequence of step 3 is that f preserves all (hyperbolic) distances λ� with
λ ∈ {1, 2, 3, . . .}.
4. There exists a sequence α1, α2, α3, . . . of positive real numbers tending to 0 such
that f preserves all hyperbolic distances αi.

Proof. Let µ > 1 be an integer and A, B, C be points with

hyp (A, B) = µ� = hyp (A, C)

and hyp (B, C) = 2�. Such a triangle exists because of

hyp (B, C) < hyp (B, A) + hyp (A, C).

We are now interested in the uniquely determined points Bµ, Cµ with

hyp (A, Bµ) = �, hyp (Bµ, B) = (µ − 1) �,

hyp (A, Cµ) = �, hyp (Cµ, C) = (µ − 1) �.

Since this configuration remains unaltered in its lengths under f , also the hyper-
bolic distance hyp (Bµ, Cµ) is preserved under f . Applying the hyperbolic cosine
theorem twice, we get

coshhyp (Bµ, Cµ) = cosh2 � − sinh2 � · cosh2 µ� − cosh 2�

sinh2 µ�
,

i.e. sinh µ� · sinh 1
2 hyp (Bµ, Cµ) = sinh2 �. The sequence

αµ−1 := hyp (Bµ, Cµ) > 0, µ = 2, 3, . . . ,

hence tends to 0. All hyperbolic distances αµ are preserved under f . �
5. If α > 0 and x, y ∈ X satisfy hyp (x, y) = α, then

hyp
(
f (x), f (y)

) ≤ α.

Proof. This is proved as soon as

∀ε>0 ∀x,y∈X hyp (x, y) = α ⇒ hyp
(
f (x), f (y)

)
< α + ε

is shown. Let x, y be elements of X with hyp (x, y) = α and let x (ξ), ξ ∈ R, be
the line joining x, y with x = x (σ) and y = x (σ + α) for a suitable σ. Suppose
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that ε > 0 is given. Take an element γ of the sequence α1, α2, α3, . . . of step 4 with
2γ < ε and elements γ1, . . . , γn of {α1, α2, . . .} satisfying

0 < α − (γ1 + · · · + γn) < 2γ.

The γi’s need not be pairwise distinct. Then

0 < α − (γ1 + · · · + γn) < 2γ < [α − (γ1 + · · · + γn)] + ε (2.76)

holds true. Define x1 = x (σ +γ1), . . . , xn = x (σ +γ1 + · · ·+γn). Take p ∈ X with

hyp (xn, p) = γ = hyp (p, y).

The triangle xn, p, y exists, because of

hyp (xn, y) < hyp (xn, p) + hyp (p, y),

i.e. because of hyp (xn, y) = α − (γ1 + · · · + γn) < 2γ. If we designate f (z) by z′

for z ∈ X , then the triangle inequality implies

hyp (x′, y′) ≤ hyp (x′, x′
1) + · · · + hyp (x′

n−1, x
′
n) + hyp (x′

n, p′) + hyp (p′, y′).

Since distances γ1, . . . , γn, γ are preserved under f , we get

γ1 = hyp (x, x1) = hyp (x′, x′
1), . . . , γn = hyp (xn−1, xn) = hyp (x′

n−1, x
′
n)

and γ = hyp (xn, p) = hyp (x′
n, p′), . . .. Hence

hyp (x′, y′) ≤ γ1 + · · · + γn + γ + γ < α + ε,

in view of (2.76). �
6. If r is a positive rational number, then f preserves the hyperbolic distance r�.

Proof. Let n > 1 be an integer. Then step 5 implies

∀x,y∈X hyp (x, y) =
�

n
⇒ hyp

(
f (x), f (y)

) ≤ �

n
.

Since distance � is preserved, we get

∀x,y∈X hyp (x, y) = n · �

n
⇒ hyp

(
f (x), f (y)

)
= n · �

n
,

i.e. we get (2.71), (2.72) for �
n instead of � and for n instead of N . Hence steps 1

and 3, carried out for the present values �
n and n, imply that all distances λ · �

n
with λ ∈ {1, 2, 3, . . .} are preserved. �
7. If t is a positive rational number and if x, y are points satisfying hyp (x, y) < t�,
then hyp

(
f (x), f (y)

) ≤ t�.
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Proof. We shall write again v′ := f (v) for v ∈ X . Take z ∈ X with

hyp (x, z) =
1
2

t� = hyp (z, y).

Step 6 implies hyp (x′, z′) = 1
2 t� = hyp (z′, y′). Hence

hyp (x′, y′) ≤ hyp (x′, z′) + hyp (z′, y′) = t�. �
8. If r, s are positive rational numbers and x, y are points satisfying

r� < hyp (x, y) < s�,

then r� ≤ hyp (x′, y′) ≤ s� holds true.

Proof. Let x (τ), τ ∈ R, be the line joining x, y with x = x (ξ), y = x (η), ξ < η.
Hence hyp (x, y) = η − ξ and thus r� < η − ξ < s�. Notice hyp (x′, y′) ≤ s�, by
step 7. Define p := x (ξ + s�). Then

hyp (y, p) = ξ + s� − η,

i.e. hyp (y, p) = s� − (η − ξ) < (s − r) �. Hence hyp (y′, p′) ≤ (s − r) �, by step 7.
Moreover, hyp (x, p) = s� implies hyp (x′, p′) = s�, on account of step 6. Hence,
by the triangle inequality,

hyp (x′, y′) ≥ hyp (x′, p′) − hyp (y′, p′) ≥ s� − (s − r) � = r�. �
9. hyp (x, y) = hyp

(
f (x), f (y)

)
holds true for all x, y ∈ X.

Proof. If hyp (x, y) > 0, take sequences rν , sν (ν = 1, 2, . . .) of positive rational
numbers satisfying

rν� < hyp (x, y) < sν�, ν = 1, 2, . . . ,

and lim rν = 1
� hyp (x, y) = lim sν . Hence

rν� ≤ hyp
(
f (x), f (y)

) ≤ sν�, ν = 1, 2, . . . ,

by step 8, i.e. hyp (x, y) = hyp
(
f (x), f (y)

)
. �

Because of step 9 the mapping f : X → X must be a hyperbolic isometry.
This finally proves Theorem 35. �
Remark. If the dimension of X is finite, then

∀x,y∈X d (x, y) = � ⇒ d
(
f (x), f (y)

)
= �, (2.77)

d the euclidean or the hyperbolic distance function, for a fixed � > 0 characterizes
the isometries (F.S. Beckman, D.A. Quarles [1], B. Farrahi [1], A.V. Kuz’minyh
[1]). In other words, if X is finite dimensional, then also N = 1 is allowed in
Theorem 35. The euclidean part of Theorem 35 was proved in the context of
strictly convex linear spaces by W. Benz, H. Berens [1], in the context of a more
general N ∈ R by F. Radó, D. Andreescu, D. Valcán [1]. The theory beyond the
Beckman–Quarles result started with the important contribution of E.M. Schröder
[1]. The hyperbolic part of Theorem 35 was proved by W. Benz [8].
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2.21 A counterexample

The following examples show that (2.77) does not generally characterize the isome-
tries in the infinite dimensional case. The special example (X, eucl) was given by
Beckman, Quarles [1], the one concerning hyperbolic geometry by W. Benz [8].

Let X be the set of all sequences

a = (a1, a2, a3, . . .)

of real numbers a1, a2, a3, . . . such that almost all ai are zero. Define

a + b := (a1 + b1, a2 + b2, . . .),

λa := (λa1, λa2, . . .),

a · b := a1b1 + a2b2 + · · ·
for all a, b in X and all real λ. This is a real inner product space which, in other
terms, we already introduced in chapter 1. Let Xrat be the set of all a ∈ X such
that the ai’s of a are rational. Since Xrat is countable, let

ω : N → Xrat

with N = {1, 2, 3, . . .} be a fixed bijection. Moreover, suppose that � > 0 is a fixed
real number. Define

ψ
(
ω (i)

)
:= (xi1, xi2, . . .) for i = 1, 2, . . .

with
(euclidean case) xii = �√

2
and xij = 0 for i �= j,

(hyperbolic case) xii =
√

2 sinh �
2 and xij = 0 for i �= j.

We hence get a mapping ψ : Xrat → X . Another mapping ϕ : X → Xrat will
play a role: For every a ∈ X choose an element ϕ (a) in Xrat such that

d
(
a, ϕ (a)

)
<

�

2
. (2.78)

It is now easy to show that
f : X → X

with f (x) := ψ
(
ϕ (x)

)
for x ∈ X preserves distance �, but no other positive

distance. In fact, if ϕ (x) = ϕ (y) for x, y ∈ X , we then obtain d
(
f (x), f (y)

)
= 0.

If ϕ (x) �= ϕ (y) for x, y ∈ X , then d
(
f (x), f (y)

)
= �. What we finally have to

show is that d (x, y) = � implies ϕ (x) �= ϕ (y). But ϕ (x) = ϕ (y) would lead, in
the case d (x, y) = �, to the contradiction

� = d (x, y) ≤ d
(
x, ϕ (x)

)
+ d
(
ϕ (y), y

)
<

�

2
+

�

2
,

in view of (2.78).
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2.22 An extension problem

Let again (X, d) be one of the metric spaces (X, eucl), (X, hyp).

Lemma 36. Let a1 �= a2 and b1 �= b2 be points with

d (a1, a2) = d (b1, b2). (2.79)

Then there exists a motion µ ∈ M (X, d) satisfying

µ (a1) = b1 and µ (a2) = b2.

Proof. Because of step D.a of the proof of Theorem 7, chapter 1, there exist
motions µ1, µ2 with µ1(a1) = 0, µ1(a2) = λ1e and µ2(b1) = 0, µ2(b2) = λ2e
where λ1, λ2 are suitable positive real numbers. Now

d (a1, a2) = d
(
µ1(a1), µ1(a2)

)
= d (0, λ1e),

d (b1, b2) = d
(
µ2(b1), µ2(b2)

)
= d (0, λ2e)

and (2.79) imply λ1 = λ2, in view of λ1, λ2 > 0. Hence

µ−1
2 µ1(ai) = bi for i = 1, 2. �

Lemma 37. Let m be a positive integer, b an element of X, and suppose that
a1, . . . , am, am+1 are m + 1 linearly independent elements of X. If

a2
m+1 = b2 and am+1ai = bai (2.80)

hold true for i = 1, . . . , m, there exists ω ∈ O (X) with ω = ω−1,

ω (am+1) = b and ω (ai) = ai (2.81)

for i = 1, . . . , m.

Proof. Take an orthogonal basis c1, . . . , cm with c2
i = 1, i = 1, . . . , m, of the vector

space V spanned by a1, . . . , am. Two cases are now important. If am+1 + b ∈ V ,
put cm+1 = 0, and if am+1 + b �∈ V put

r :=
am+1 + b

2
−

m∑
i=1

(
am+1 + b

2
ci

)
ci, (2.82)

and, moreover, since r �= 0,
cm+1 :=

r

‖r‖ .

In the second case c1, . . . , cm+1 must be an orthogonal basis of the vector space
spanned by a1, . . . , am, am+1 + b. Define ω : X → X by

ω (x) = −x + 2
m+1∑
i=1

(xci) ci. (2.83)
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Since aj is in V , we obtain ajcm+1 = 0, and hence

ω (aj) = −aj + 2
m∑

i=1

(ajci) ci = aj

for j = 1, . . . , m. If we write ci = �i1a1 + · · · + �imam for suitable real numbers
�ij , we get, by (2.80),

am+1ci = bci (2.84)

for i = 1, . . . , m. If am+1 + b ∈ V , then

am+1 + b

2
=

m∑
i=1

(
am+1 + b

2
ci

)
ci

holds true, i.e., by (2.84), am+1 +b = 2
∑

(am+1ci) ci, i.e., by (2.83), ω (am+1) = b.
If am+1 + b �∈ V , we obtain, by (2.82) and (2.80),

(am+1 − b) r = −
m∑

i=1

(
am+1 + b

2
ci

)
(am+1ci − bci),

i.e., (by (2.84), (am+1 − b) cm+1 = 0. Hence from (2.84)

am+1 + b

2
=

m+1∑
i=1

(
am+1 + b

2
ci

)
ci =

m+1∑
i=1

(am+1ci) ci,

i.e. ω (am+1) = b.
Since ω is linear and an involution, and since it satisfies [ω (x)]2 = x2 for all

x ∈ X , it must be in O (X). �
Remark. If one of the elements am+1, b is in the vector space W spanned by
a1, . . . , am, am+1 + b, then also is the other one. In this case V �= W holds true.
We then get

am+1 =
m+1∑
i=1

(am+1ci) ci =
m+1∑
i=1

(bci) ci = b.

The subspaces of (X, d) are given, by Proposition 13, by the subspaces Y of
the vector space X and their images under motions of (X, d). If Y has dimension
n ∈ {0, 1, 2, . . .}, then the dimension of µ (Y ) for every µ ∈ M (X, d) will also
be defined by n. In order to show that this dimension of µ (Y ) is well-defined we
consider another subspace Y ′ of the vector space X such that there exists a motion
ν with µ (Y ) = ν (Y ′). Observe Y ′ = σ (Y ) for the motion σ := ν−1µ which also
can be written, in view of Proposition 30, in the form σ = αTtβ with suitable
α, β ∈ O (X) and a suitable translation with respect to an axis e. Hence

Y ′ = αTtβ (Y ), R′ := α−1(Y ′) = Tt(R)
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with R := β (Y ). Since α, β are linear and bijective, R and R′ are subspaces
of the vector space X with n = dimY = dim R. We will show that the equation
R′ = Tt(R) implies R′ = R, i.e. dimY ′ = dimR′ = dimR = n. There is nothing to
prove for t = 0. So assume t �= 0. As subspaces of the vector space X , both spaces
R and R′ contain 0 ∈ X . Hence 0, Tt(0) ∈ R′ implies Re ⊆ R′, and 0, T−t(0) ∈ R,
obviously, Re ⊆ R. Assume now z ∈ R\Re. Hence Tt(z) ∈ R′ and R′ contains the
subspace Wz of X spanned by 0, e, Tt(z). Thus z ∈ Wz ⊆ R′. Similarly R′ ⊆ R,
because of R = T−t(R′).

The following theorem will now be proved.

Theorem 38. Let S �= ∅ be a (finite or infinite) subset of a finite-dimensional
subspace of (X, d), and let f : S → X satisfy

d (x, y) = d
(
f (x), f (y)

)
for all x, y ∈ S. Then there exists ϕ ∈ M (X, d) with f (x) = ϕ (x) for all x ∈ S.

Proof. 1. If S = {a1, a2} contains exactly two elements, define bi := f (ai), i = 1, 2.
Then Lemma 36 proves our theorem in this special case. If S = {a}, put b := f (a).
Because of D.a (see the proof of Theorem 7 in chapter 1), there exists a motion µ1

such that µ1(a) = 0, and also a motion µ2 with µ2

(
f (a)

)
= 0. Hence ϕ = µ−1

2 µ1

is a motion transforming a into f (a). So we may assume that S contains at least
three distinct points. Let a �= p be elements of S and take a1 ∈ X with

d (0, a1) = d (a, p),

and, in view of step 1, α ∈ M (X, d) such that α (a) = 0, α (p) = a1. Because of

d (0, a1) = d (a, p) = d
(
f (a), f (p)

)
,

take β ∈ M (X, d) satisfying β
(
f (a)

)
= 0, β

(
f (p)

)
= a1. Instead of S we would

like to work with α (S) containing 0, a1, and instead of f with

βfα−1 : α (S) → X.

Notice that α (S) � 0 implies that α (S) is a subspace of the vector space X . It is
hence sufficient to prove Theorem 38 in the following form.
2. Let S � 0, a1 with a1 �= 0 be a subset of a finite-dimensional subspace Σ of the
vector space X, and let f : S → X satisfy f (0) = 0, f (a1) = a1 and

d (x, y) = d
(
f (x), f (y)

)
for all x, y ∈ S. Then there exists ϕ ∈ M (X, d) with f (x) = ϕ (x) for all x ∈ S.
3. The euclidean case. If dim Σ = 1, Σ = Ra1 holds true. Since

‖x − y‖ = ‖f (x) − f (y)‖ (2.85)
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must be satisfied for all x, y ∈ S, we obtain, by f (0) = 0, f (a1) = a1,

‖λa1 − 0‖ = ‖f (λa1) − 0‖
and ‖λa1 − a1‖ = ‖f (λa1) − a1‖ for all real λ with λa1 ∈ S. If

{0, a1, λa1} =: {x, y, z},
we get for a suitable order

‖z − x‖ = ‖z − y‖ + ‖y − x‖.
This carries over to the f -images, and these must hence be collinear. Moreover,
we obtain f (λa1) = λa1, i.e. f (s) = s for all s ∈ S. Put ϕ = id.

Assume dim Σ ≥ 2 and that statement 2 holds true for all subspaces Π of X
with dim Π ≤ m where m is a positive integer. We will show that then statement
2 holds true also in the case dim Π = m + 1, provided dim X ≥ m + 1. Besides a1

take elements a2, . . . , am+1 in S such that a1, . . . , am+1 are linearly independent. If
they do not exist, S must already be contained in a subspace Π0 with dim Π0 ≤ m,
and there is nothing to prove. Apply 2 for S0 = {0, a1, . . . , am}, and there hence
exists ϕ1 ∈ M (X, eucl) with ϕ1(0) = 0 = f (0), i.e. ϕ1 ∈ O (X), and

ϕ1(ai) = f (ai), i = 1, . . . , m.

Instead of f we will work with f1 := ϕ−1
1 f : S → X . Observe

‖x − y‖ = ‖f1(x) − f1(y)‖ (2.86)

for all x, y ∈ S, and f1(ai) = ai, i = 1, . . . , m. Put b := f1(am+1). If we apply (2.86)
for x = 0, y = am+1, and also for x = ai, y = am+1, i = 1, . . . , m, we get (2.80). In
view of Lemma 37, there hence exists ϕ2 ∈ O (X) with ϕ2(ai) = ai, ϕ2(am+1) = b
for i = 1, . . . , m. Put f2 := ϕ−1

2 f1 and observe f2(ai) = ai for i = 1, . . . , m + 1,
and

‖x − y‖ = ‖f2(x) − f2(y)‖ (2.87)

for all x, y ∈ S.
Let now s be an arbitrary element of S and define t := f2(s). Suppose that

e1, . . . , em+1 is an orthogonal basis of the vector space V spanned by a1, . . . , am+1

with e2
i = 1, i = 1, . . . , m + 1. Define e = 0 for t ∈ V , and otherwise such that

e1, . . . , em+1, e is an orthogonal basis, e2 = 1, for the vector space W spanned by
a1, . . . , am+1, t. From (2.87) we get, by f2(0) = 0 ∈ S,

s2 = t2 and sai = tai, i = 1, . . . , m + 1.

If ei = �i,1a1 + · · · + �i,m+1am+1, we hence obtain sei = tei, i = 1, . . . , m + 1.
Observe s ∈ S ⊆ Π and therefore

s = (se1) e1 + · · · + (sem+1) em+1
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and t = (te1) e1 + · · · + (tem+1) em+1 + (te) e, i.e. t = s + (te) e. Since se = 0, we
obtain

s2 = t2 = s2 + (te)2,

i.e. te = 0, i.e. s = t. Hence f2 = id on S, and the identity mapping of O (X)
extends f2 on X . Thus ϕ1ϕ2(x) = f (x) for all x ∈ S. This implies that if statement
2 holds true for all Π, dim Π ≤ m, then also for Π with dimΠ = m + 1 provided
dimX ≥ m + 1.
4. The hyperbolic case. If dimΣ = 1, again Σ = Ra1 holds true. Since

hyp (x, y) = hyp
(
f (x), f (y)

)
(2.88)

must be satisfied for all x, y ∈ S, we obtain, by f (0) = 0, f (a1) = a1,

(λa1)2 =
(
f (λa1)

)2
and λa2

1 = a1f (λa1) for all real λ with λa1 ∈ S. If

{0, a1, λa1} =: {x, y, z},
we get for a suitable order

hyp (z, x) = hyp (z, y) + hyp (y, x), (2.89)

since 0, a1, λa1 are on a common hyperbolic line. This carries over to the f -images
implying collinearity for the image points, i.e. for 0, a1, f (λa1). Since (2.89) holds
also true for the image points

f (x), f (y), f (z),

we obtain f (λa1) = λa1, i.e. f (s) = s for all s ∈ S.
Assume dim Σ ≥ 2 and that statement 2 holds true for all subspaces Π of X

with dim Π ≤ m where m is a positive integer. We now will proceed as in step 3
up till formula (2.86), which must be replaced by

hyp (x, y) = hyp
(
f1(x), f1(y)

)
(2.90)

for all x, y ∈ S. It is important to note that the stabilizer of M (X, hyp) in the
point 0 is given by O (X), i.e. that γ ∈ M (X, hyp) and γ (0) = 0 imply γ ∈ O (X),
so that ϕ1 ∈ M (X, hyp) must be in O (X), because of ϕ1(0) = 0. As in step
3 we put b := f1(am+1). Applying (2.90) for x = 0, y = am+1, and also for
x = ai, y = am+1, i = 1, . . . , m, we get a2

m+1 = b2 and√
1 + a2

i

√
1 + a2

m+1 − aiam+1 =
√

1 + a2
i

√
1 + b2 − aib,

i.e. (2.81). Proceeding as in step 3, we arrive at

hyp (x, y) = hyp
(
f2(x), f2(y)

)
(2.91)
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for all x, y ∈ S, instead of (2.87), with f2(ai) = ai, i = 1, . . . , m + 1. With the
further definitions of step 3, we obtain from (2.91), by f2(0) = 0 ∈ S,

hyp (0, s) = hyp (0, t), hyp (ai, s) = hyp (ai, t)

for i = 1, . . . , m + 1, i.e.

s2 = t2 and sai = tai, i = 1, . . . , m + 1.

This leads to s = t as in step 3, and finally to ϕ1ϕ2(x) = f (x) for all x ∈ S.
This finishes the proof of Theorem 38. �

2.23 A mapping which cannot be extended

We already know an example of an orthogonal mapping ω : X → X which is
not surjective (see chapter 1 where orthogonal mappings are defined). Of course,
in this special case there cannot exist ϕ ∈ M (X, d) with ω (x) = ϕ (x) for all
x ∈ S := X , since ϕ : X → X is bijective. Here S is not contained in a finite-
dimensional subspace of X .

In order to present a mapping f : S → X which cannot be extended and
where S is a proper subset of X , take as X all sequences

(a1, a2, a3, . . .)

of real numbers such that almost all of the ai’s are 0. Define, as usual,

a + b := (a1 + b1, a2 + b2, . . .),

λa := (λa1, λa2, . . .),

a · b :=
∞∑

i=1

aibi

for a, b ∈ X, λ ∈ R. A basis of this real inner product space is

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . .

Define S = {0, e2, e3, e4, . . .}, f (0) = 0 and f (ei) = ei−1 for i = 2, 3, . . .. Then

‖x − y‖ = ‖f (x) − f (y)‖ and hyp (x, y) = hyp
(
f (x), f (y)

)
hold true for all x, y ∈ S. The smallest subspace Σ of X containing S is spanned
by e2, e3, . . .. Hence Σ is infinite-dimensional. If there existed ϕ ∈ M (X, d) with
ϕ (s) = f (s) for all s ∈ S, we would obtain ϕ ∈ O (X), in view of ϕ (0) = 0.
Assuming now

ϕ (e1) =: λ1ee1 + · · · + λnein
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with λj ∈ R and 1 ≤ i1 < i2 < · · · < in, would imply

0 = e1eij+1 = ϕ (e1)ϕ (eij+1) = ϕ (e1) eij = λj

for j = 1, . . . , n, i.e. ϕ (e1) = 0, contradicting

1 = e1e1 = ϕ (e1)ϕ (e1).

There hence does not exist ϕ ∈ M (X, d) extending f .



Chapter 3

Sphere Geometries of Möbius
and Lie

Also in this chapter X denotes a real inner product space of arbitrary (finite or
infinite) dimension ≥ 2.

3.1 Möbius balls, inversions

The elements of X ′ := X ∪ {∞} are called points. A Möbius ball (M -ball) is a set

B (c, �) with c ∈ X and 0 < � ∈ R,

or a set
H ′ (a, α) := H (a, α) ∪ {∞} with 0 �= a ∈ X and α ∈ R,

where B (c, �) is a ball of (X, eucl) (see section 4, chapter 2) and H (a, α) a eu-
clidean hyperplane of X . The bijections of X ′ such that images and inverse images
of M -balls are M -balls are called Möbius transformations (M -transformations) of
X . The set of all these M -transformations is a group under the usual product
of bijections, the so-called Möbius group M (X) of X . The geometry

(
X ′, M (X)

)
(see section 9 of chapter 1) is defined to be the Möbius sphere geometry over X .

If ω ∈ O (X) (see section 5 of chapter 1), γ ∈ R with γ �= 0, and a ∈ X , then,
obviously,

f (x) := γω (x) + a for x ∈ X, and f (∞) = ∞ (3.1)

is an M -transformation, called the similitude (γ, ω, a). Since also −ω is in O (X),
(−ω)(x) := −ω (x) for x ∈ X , we always will assume γ > 0 in (3.1). Hence

(γ, ω, a) = id ⇔ γ = 1, ω = id, a = 0, (3.2)
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because x = γω (x) + a implies a = 0 for x = 0 and

x2 = γ2[ω (x)]2 = γ2x2

implies γ2 = 1 for x �= 0, i.e. γ = 1, by γ > 0.

If H (a, α) is a euclidean hyperplane of X , then there exist to every x ∈ X
uniquely determined h ∈ H (a, α) = {x ∈ X | ax = α} and λ ∈ R with

x = h + λa. (3.3)

In fact, if h, λ exist as described, then ax = ah + λa2 and (3.3) imply

λ =
ax − α

a2
and h = x − ax − α

a2
a. (3.4)

Vice versa, h, λ of (3.4) satisfy (3.3), h ∈ H (a, α), λ ∈ R.

The reflection in the euclidean hyperplane H (a, α) is the mapping ϕ from X
into X with

ϕ (h + λa) = h − λa (3.5)

for all h ∈ H (a, α) and λ ∈ R. The mapping ϕ is an involution of X ,

ϕ �= id = ϕ2,

a bijection of X , and it leaves invariant exactly the points of H (a, α). By (3.4),
(3.5),

ϕ (x) = x + 2
α − ax

a2
a (3.6)

for all x ∈ X . Moreover, ϕ (x) = ω (x) + 2αa
a2 , where

ω (x) := x − 2ax

a2
a, (3.7)

x ∈ X , is in O (X) because of [ω (x)]2 = x2 for all x ∈ X , the linearity of ω and
the bijectivity of ϕ. The corresponding similitude

f =
(

1, ω,
2αa

a2

)

is called the inversion in the M -ball H ′ (a, α). It is an involutorial M -transforma-
tion with

Fix (f) := {x ∈ X ′ | f (x) = x} = H ′ (a, α).

The mapping ι : X ′ → X ′ is defined by

ι (x) := x
x2 for 0 �= x �= ∞,

ι (0) := ∞ and ι (∞) := 0.
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It is an involution. In fact, putting y := ι (x) for 0 �= x �= ∞ we obtain x2y2 = 1,
i.e.

x = yx2 =
y

y2
.

Hence ι is a bijection of X ′. Moreover, ι is an M -transformation. The image

(1) of B (c, �) with c2 �= �2 is B
(

c
c2−�2 , �

|c2−�2| ,
)

,

(2) of B (c, �) with c2 = �2 is H ′ (2c, 1),

(3) of H ′ (a, α) with α �= 0 is B
(

a
2α ,
∥∥ a

2α

∥∥) ,
(4) of H ′ (a, 0) is H ′ (a, 0).

The inversion f = ι (c, �) in the M -ball B (c, �) is defined by

f (x) = c + �2 · x − c

(x − c)2
for c �= x �= ∞ (3.8)

and by f (c) = ∞, f (∞) = c. The mapping ι is hence the inversion in the unit
ball B (0, 1). If ϕ is the similitude

ϕ = (�, id, c), (3.9)

then, obviously,

f = ϕιϕ−1, (3.10)

so that the inversion in B (c, �) is also an M -transformation. Moreover, we obtain
Fix (f) = B (c, �). The inversion in B (c, �) can be characterized as a mapping
which interchanges c and ∞, and which carries the point x �∈ {c,∞} into y ∈ X
such that

y − c = λ (x − c),

‖x − c‖ · ‖y − c‖ = �2

hold with 0 < λ ∈ R. The points c, x, y are hence on a common euclidean line.

Proposition 1. If b1, b2 are M -balls, there exists µ ∈ M (X) with

b2 = µ (b1) := {µ (x) | x ∈ b1}.
Proof. a) (�, id, c) carries B (0, 1) onto B (c, �) for given � > 0 and c ∈ X .
b) The inversion in B (0, 1) carries B (c, ‖c‖) onto H ′ (c, 1

2

)
for all c �= 0.

c)
(
1, id, c

2c2

)
carries H ′ (c, 0) onto H ′ (c, 1

2

)
for all 0 �= c ∈ X . �

Let e be a fixed element of X with e2 = 1. If H ′(a, α) is an M -ball, we may
assume a2 = 1 without loss of generality, since

H (a, α) = H

(
a

‖a‖ ,
α

‖a‖
)

.
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Take ω ∈ O (X) with ω (e) = a (see step A of the proof of Theorem 7, chapter 1)
and put

ϕ = (1, ω, αa). (3.11)

Then ϕ
(
H ′(e, 0)

)
= H ′(a, α), since ex = 0 is equivalent with ω (e)ω (x) = 0, i.e.

with
0 = a

(
ϕ (x) − αa

)
= aϕ (x) − α.

Let j be the inversion in H ′(e, 0) and f be that one in H ′(a, α). Then

f = ϕjϕ−1. (3.12)

We will prove this by applying (3.6) for H ′(e, 0),

j (x) = x − 2(ex) e,

and for H ′(a, α),
f (x) = x + 2(α − ax) a.

Equation (3.11) implies ϕ−1(x) = ω−1(x − αa). Hence

jϕ−1(x) = ω−1(x − αa) − 2a (x − αa) · e,

on account of eω−1(x − αa) = ω (e) · (x − αa) and ω (e) = a. Thus

ϕjϕ−1(x) = (x − αa) − 2(ax − α)ω (e) + αa = f (x).

For the following proposition we do not ask for a2 = 1, but, of course, for a �= 0.

Proposition 2. The inversion in H ′(a, α), α �= 0, can be written in the form fιf−1,
where f := ιϕ with

ϕ =
(∥∥∥ a

2α

∥∥∥ , id,
a

2α

)
carries B (0, 1) onto H ′(a, α). Similarly, the inversion in H ′(a, 0) is given by
gιg−1, where g := ψιϕ with

ϕ = (‖a‖, id, a), ψ =
(
1, id,− a

2a2

)
,

carries B (0, 1) onto H ′(a, 0).

3.2 An application to integral equations

If S is a subset of X , put λS := {λx | x ∈ S} for λ ∈ R, and

a + S := {a + x | x ∈ S}



3.2. An application to integral equations 97

for a ∈ X .
A parametric representation of the M -ball B (c, �) is given by

B (c, �) =
{

c +
�x

‖x‖
∣∣∣∣ x ∈ X\{0}

}
= c + �B (0, 1),

and a parametric representation for the euclidean hyperplane H (a, α), a2 = 1, by

H (a, α) = αa +
{

v − (va) a

1 − va

∣∣∣∣ v ∈ B (0, 1)\{a}
}

. (3.13)

In order to prove (3.13), observe 1 �= va, since otherwise (va)2 = v2a2, i.e. v = ±a,
i.e. v = −a, i.e. 1 = va = −1. Of course, the right-hand side of (3.13) is a subset
of H (a, α). If, vice versa, x is in H (a, α), put

v := a +
2z

z2
, z := x − (α + 1) a,

and observe z �= 0, since otherwise α = ax = a (α + 1) a = α + 1. Hence v2 =
1, v �= a, and

αa +
v − (va) a

1 − va
= x.

Equation (3.13) and B (0, 1) =
{

x
‖x‖
∣∣∣ x ∈ X\{0}

}
imply

H (a, α) = αa +
{

v − (va) a

‖v‖ − va

∣∣∣∣ v ∈ X\{0} with
v

‖v‖ �= a

}
. (3.14)

If we take the example b) of section 2, chapter 1, as space X , then formula (3.14)
solves certain integral equations:

Corollary. Let α < β be real numbers and h : I → R, I := [α, β], a function
continuous in I, satisfying h (t) > 0 for all t ∈ I\T , where T is a finite subset of
I. Suppose that � is a real number and a : I → R a real function also continuous
in I. All functions x (t) continuous in I satisfying∫ β

α

h (t) a (t)x (t) dt = � (3.15)

are then given by (3.14), i.e. by

x = �a +
{

v − (va) a

‖v‖ − va

∣∣∣∣ v ∈ X\{0} with
v

‖v‖ �= a

}
. (3.16)

The proof is obvious, since (3.15) asks for all points of the hyperplane H (a, �)
⊂ X . As a matter of fact (3.14) solves even more integral equations. Let J �= ∅ be
a subset of R and

a : J → X\{0}, � : J → R
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be functions. The problem then is to solve

a (s) · x (s) = � (s)

for all s ∈ J , i.e. to solve

∫ β

α

h (t) a (s, t)x (s, t) dt = � (s) (3.17)

for all s ∈ J . The solution of (3.17) is again given by (3.16), however, for each
single s ∈ J , so that also v in (3.16) must be a function of s. Of course, instead
of J ⊆ R we could consider J ⊆ R

n as well, n a positive integer, i.e. functions
a (s1, . . . , sn, t), � (s1, . . . , sn), x (s1, . . . , sn, t).

3.3 A fundamental theorem

If a, b are elements of X ′, there exists µ ∈ M (X) with µ (a) = b and µ2 = id. This
is clear for a = b. So assume a �= b. If ∞ ∈ {a, b}, take the M -ball B (c, 1) with
{c,∞} = {a, b}. The inversion in this M -ball interchanges a and b. If a, b ∈ X ,
take the inversion in

H ′
(

a − b,
a2 − b2

2

)
,

which also interchanges a and b (apply (3.6) for the present situation). We now
would like to prove the following theorem which we call the fundamental theorem
of Möbius sphere geometry.

Theorem 3. Let f be an M -transformation of X. If f (∞) = ∞ then f is a
similitude. Otherwise there exist similitudes α, β with f = αιβ.

Proof. a) Case: f (∞) = ∞. The restriction ϕ of f on X is then a bijection of
X , and images and inverse images under f of M -balls through ∞ are M -balls
containing ∞. Hence images and inverse images under ϕ of euclidean hyperplanes
of X are euclidean hyperplanes. Let p, q be distinct elements of X and let l be
the euclidean line passing through p, q. In view of Proposition 23 and its proof,
chapter 2, the intersection of all euclidean hyperplanes H through p and q, must
be l. Hence

ϕ (l) = ϕ

⎛
⎝ ⋂

p,q∈H

H

⎞
⎠ =

⋂
p,q∈H

ϕ (H).

If J is a hyperplane through ϕ (p), ϕ (q), then f−1(J ∪{∞}) is an M -ball through
∞, p, q. Thus ϕ−1(J) is a hyperplane through p, q. Hence

ϕ (l) =
⋂

p,q∈H

ϕ (H) =
⋂

ϕ (p), ϕ (q)∈J

J
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is a line, and ϕ thus maps euclidean lines of X onto such lines.
b) Based on this mapping ϕ we now would like to prove that

γ (x) := ϕ (x) − ϕ (0), x ∈ X, (3.18)

is a bijective linear mapping of X . Since ϕ is a bijection of X , so must be γ. If l
is a (euclidean) line of X , so is ϕ (l) and therefore γ (l) as well. If g is a line, take
distinct points p, q of γ−1(g). Denote by h the line through p, q. Then g and γ (h)
are lines through γ (p) and γ (q), i.e. γ−1(g) must be a line as well. Hence images
and inverse images of lines under γ must be lines.

A set T ⊂ X is called collinear provided there exists a line l ⊇ T . Let v1, v2

be linearly independent elements of X . Define wi = γ (vi), i = 1, 2. Then w1, w2

must also be linearly independent. Otherwise, {0, w1, w2} would be collinear, and
hence

γ−1({0, w1, w2}) = {0, v1, v2},
since the inverse image under γ of the line through 0, w1, w2 must be a line. But the
collinearity of {0, v1, v2} contradicts the fact that v1, v2 are linearly independent.
Define P, Q by

P = {α1v1 + α2v2 | α1, α2 ∈ R},
Q = {β1w1 + β2w2 | β1, β2 ∈ R},

respectively. γ : P → Q is a bijection. Here γ also denotes the restriction of the
original mapping γ to P . In order to prove this statement, we only need to show
that

∀p∈P γ (p) ∈ Q and ∀q∈Q γ−1(q) ∈ P, (3.19)

since γ is bijective. The image of the line ξ through 0, v1 is the line ξ′ through
0, w1, and the image of the line η through 0, v2 is the line η′ through 0, w2. For a
given p ∈ P choose a ∈ ξ and b ∈ η with a �= b such that a, b, p are collinear. Now
γ (a), γ (b), γ (p) are also collinear and since γ (a) ∈ ξ′, γ (b) ∈ η′ hold true, we
get γ (p) ∈ Q. For the remaining statement of (3.19) observe that also γ−1 maps
lines onto lines.

Write (α1, α2) instead of α1v1 + α2v2 and (β1, β2) instead of the element
β1w1 + β2w2. The mapping γ : P → Q may then be considered to be a bijection
δ of R

2 by defining
δ (α1, α2) = (β1, β2)

if, and only if, γ (α1v1 + α2v2) = β1w1 + β2w2. Images and inverse images under
δ of lines of R

2,

{(λ1, λ2) + µ (�1, �2) | µ ∈ R} =: (λ1, λ2) + R (�1, �2), (�1, �2) �= (0, 0),

must be lines, since
γ (a + Rt) = b + Rs
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for
a = α1v1 + α2v2, t = τ1v1 + τ2v2 �= 0,

b = β1w1 + β2w2, s = σ1w1 + σ2w2 �= 0,

is equivalent to

δ
(
(α1, α2) + R (τ1, τ2)

)
= (β1, β2) + R (σ1, σ2).

A basic theorem of geometry (see, for instance, Proposition 2 of section 1.2
of W. Benz [3]) now says

δ (α1, α2) = (α1a11 + α2a21, α1a12 + α2a22)

for fixed real numbers aij , in view of δ (0, 0) = (0, 0). In particular,

δ (1, 0) = (a11, a12), δ (0, 1) = (a21, a22).

Hence (a11, a12) = (1, 0) and (a21, a22) = (0, 1) since

wi = γ (vi) = ai1w1 + ai2w2

for i = 1, 2. Thus δ (α1, α2) = (α1, α2), i.e.

γ (α1v1 + α2v2) = α1w1 + α2w2 = α1λ (v1) + α2λ (v2). (3.20)

Let now p1, p2 be linearly dependent elements of X . In this case, we would also
like to show that

γ (α1p1 + α2p2) = α1γ (p1) + α2γ (p2)

for α1, α2 ∈ R. Since there is nothing to prove for p1 = 0 = p2, we may assume that
p1 �= 0 without loss of generality. Then p2 = �p1 with � ∈ R. Since the dimension
of X is at least 2, there exists q ∈ X such that p1, q are linearly independent.
Hence, in view of (3.20),

γ (α1p1 + α2p2) = γ
(
(α1 + �α2) p1 + 0 · q) = (α1 + �α2) γ (p1)

and
α1γ (p1) + α2γ (p2) = α1γ (p1 + 0 · q) + α2γ (�p1 + 0 · q)

= (α1 + �α2) γ (p1).

c) The mapping ϕ of step a) can hence be written, by (3.18), as

ϕ (x) = γ (x) + ϕ (0)

for all x ∈ X , where γ is a bijective linear mapping of X . This mapping ϕ was the
restriction of an M -transformation f of X satisfying f (∞) = ∞. Since B (0, 1) is
an M -ball not containing ∞, we obtain

ϕ
(
B (0, 1)

)
= f

(
B (0, 1)

)
= B (c, �)
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with suitable c ∈ X and � > 0. Hence
(

ϕ

(
x

‖x‖
)
− c

)2

= �2

for all x �= 0 in X , i.e.

(
1

‖x‖γ (x) + a

)2

= �2 (3.21)

with a := ϕ (0) − c for all x �= 0 in X . Applying (3.21) for x and −x yields
γ (x) · a = 0 for all x �= 0 in X . If a were �= 0, then

a2 = γ
(
γ−1(a)

) · a = 0.

Hence c = ϕ (0), i.e.
(
γ (x)

)2 = �2x2 for all x ∈ X . Since

ω (x) :=
1
�

γ (x), x ∈ X,

is linear and satisfies ‖x‖ = ‖ω (x)‖ for all x ∈ X , it must be orthogonal (see
section 5 of chapter 1). Hence

ϕ (x) = �ω (x) + ϕ (0).

Thus f is a similitude.
d) Case: f (∞) = c ∈ X . Define g := ι (c, 1) · f . Hence g is an M -transformation
with g (∞) = ∞ and thus a similitude according to step c). In view of (3.10) there
exists a similitude α with

ι (c, 1) = αια−1.

Hence f = ι (c, 1) · g = αι · (α−1g) = αιβ with the similitude β := α−1g �
Proposition 4. If α, β, γ, δ are similitudes, then αιβ = γιδ holds true if, and only
if, α (0) = γ (0) and

δ (x) =
1
�2

· ϕβ (x), (3.22)

where ϕ := γ−1α =: �ω with 0 < � ∈ R and ω ∈ O (X).

Proof. Put ψ := δβ−1. Then we have to prove that ϕι = ιψ holds true provided
ϕ (0) = 0 and ψ = 1

�2 ϕ.

a) Assume ϕι = ιψ. Applying this for x ∈ {0,∞}, we obtain ϕ (0) = 0 and
ψ (0) = 0. Since ϕ, ψ are similitudes leaving invariant 0, we get

ϕ =: �ω, ψ =: σπ
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with ω, π ∈ O (X) and positive reals �, σ, without loss of generality. If x �∈ {0,∞},
then, by x2 =

(
π (x)

)2,
�

x2
ω (x) = ϕι (x) = ιψ (x) =

1
σx2

π (x),

i.e. �σω (x) = π (x). Hence (�σ)2 = 1, i.e.

ψ = σπ = �σ2ω =
1
�

ω =
1
�2

ϕ,

i.e. (3.22).
b) Assume ϕ (0) = 0 and ψ = 1

�2 ϕ. Hence ψ (0) = 0 and thus ϕι (x) = ιψ (x) for
x ∈ {0,∞}. For x �∈ {0,∞} we get

ιψ (x) = ι

(
ϕ (x)
�2

)
= �

ω (x)
x2

= ϕι (x). �

Remark. Suppose that α, β are similitudes. All similitudes γ, δ satisfying αιβ =
γιδ are then, by Proposition 4, determined as follows. Choose γ arbitrarily such
that γ (0) = α (0) holds true and define δ to be the mapping (3.22). Of course,
there are αιβ which cannot be written in the form ιδ, for instance when α (0) �=
id (0) = 0. There are also αιβ which are not of the form γι, since αιβ = γι is
equivalent to β−1ια−1 = ιγ−1. Clearly, αιβ cannot be a similitude γ if α, β are
similitudes, since otherwise ι = α−1γβ−1 would be a similitude, contradicting
ι (∞) �= ∞.

3.4 Involutions

A Möbius transformation f is called an involution provided f2 = id �= f .

Theorem 5. The similitude f (x) = �ω (x)+a with � > 0, ω ∈ O (X) and a ∈ X is
an involution if, and only if, � = 1, ω (a) = −a and ω2 = id �= ω. All involutions
f of M (X) which are not similitudes are given by

f = g · ι (c, τ) (3.23)

with c ∈ X, τ > 0, ϕ ∈ O (X) such that ϕ2 = id and

g (x) = ϕ (x) + [c − ϕ (c)]. (3.24)

Proof. a) Obviously, if � = 1, ω (a) = −a and ω is an involution, then

f2 = id �= f (3.25)

for f (x) = �ω (x) + a. Assume now (3.25). Then

f2(x) = �2ω2(x) + [�ω (a) + a] = x (3.26)
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for all x ∈ X . For x = 0 we obtain �ω (a) + a = 0. Since ϕ := ω2 is in O (X), we
get ϕ (x)ϕ (x) = x2, i.e. � = 1, by �2ϕ (x) = x and � > 0. Hence, by (3.26),

ω2(x) = x

for all x ∈ X and ω (a) = −a. If ω were equal to id, then

−a = ω (a) = a,

i.e. a = 0, i.e. f = id, a contradiction.
b) A mapping (3.23) cannot be a similitude, because otherwise the inversion
ι (c, τ) = g−1f would be a similitude. Observe g2 = id and gι (c, τ)(c) = ∞,
gι (c, τ)(∞) = c. For x ∈ X\{c} we get

gι (c, τ)(x) = τ2ϕ

(
x − c

(x − c)2

)
+ c = ι (c, τ) g (x)

and hence [gι (c, τ)]2 = id.
c) Suppose now that f ∈ M (X) is an involution, but not a similitude. Then, by
Theorem 3, f = αιβ with suitable similitudes α, β. Because of f2 = id, we get

αιβ = β−1ια−1.

Hence, by Proposition 4, βα (0) = 0 and α−1 = 1
�2 βα · β with βα =: �ω, � > 0

and ω ∈ O (X). Thus
�2 id = (βα)2 = �2ω2,

i.e. ω2 = id, i.e.

f = αιβ = αι�ωα−1 (3.27)

with � ∈ R, ω ∈ O (X) satisfying � > 0, ω2 = id and where � also designates the
similitude � (x) = � · x, x ∈ X, � (∞) = ∞. Put

α (x) =: σν (x) + c

with c ∈ X, σ > 0 and ν ∈ O (X). Hence

α−1(x) =
1
σ

ν−1(x − c).

Observe ι�ω (0) = ∞, ι�ω (∞) = 0 and

ι�ω (x) =
ω (x)
�x2

for 0 �= x ∈ X , on account of ω (x)ω (x) = xx. This implies with (3.27) and
ϕ := νων−1,

f (x) =
σ2

�

ϕ (x − c)
(x − c)2

+ c (3.28)
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for x ∈ X\{c}. With g (x) := ϕ (x − c) + c we hence get for x �= c in X ,

f (x) = αι�ωα−1(x) = gι (c, τ)(x), (3.29)

where τ ∈ R is defined by
√

� · τ = σ. The formula (3.29) is also correct for
x ∈ {c,∞}, by observing α (0) = c and that ι�ω interchanges 0 and ∞. �
Theorem 6. If s ∈ M (X), then sιs−1 = ι (c, �) in the case

s
(
B (0, 1)

)
= B (c, �), � > 0.

Moreover, sιs−1 is the inversion in H ′(a, α) in the case

s
(
B (0, 1)

)
= H ′(a, α).

If j is the inversion in the M -ball b and if s ∈ M (X), then sjs−1 is the inversion
in s (b).

Proof. a) Observe sιs−1 �= id = (sιs−1)2. Hence sιs−1 is an involution. Applying
again the definition

Fix (λ) := {x ∈ X ′ | λ (x) = x}
for λ ∈ M (X), we obtain Fix (sιs−1) = s

(
Fix (ι)

)
= s
(
B (0, 1)

)
.

b) Case 1: s
(
B (0, 1)

)
= B (c, �).

If f := sιs−1 is a similitude, then, by Theorem 5,

f (x) = ω (x) + a

with a ∈ X, ω ∈ O (X), ω �= id = ω2, ω (a) = −a. Hence

c +
�x

‖x‖ = f

(
c +

�x

‖x‖
)

= ω (c) +
�ω (x)
‖x‖ + a (3.30)

for all x �= 0 in X , by Fix (f) = B (c, �) and the parametric representation of
the M -ball B (c, �) (see section 2). If we apply (3.30) for x and −x, we obtain
ω (x) = x for all x �= 0 in X , a contradiction. So f cannot be a similitude. Hence,
by Theorem 5,

f := sιs−1 = g · ι (a, τ) (3.31)

with a ∈ X, τ > 0, ϕ ∈ O (X) such that ϕ2 = id and

g (x) = ϕ (x) + a − ϕ (a).

Observe f (a) �= a, since otherwise a = gι (a, τ)(a) = ∞. Hence

c +
�x

‖x‖ = f

(
c +

�x

‖x‖
)

(3.32)
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for all x �= 0 in X , by Fix (f) = B (c, �), implies

a �= c +
�x

‖x‖ (3.33)

for all x ∈ X\{0}. By (3.31), (3.32) and b := c − a, we obtain 0 �= b + �x
‖x‖ and

b +
�x

‖x‖ = τ2 · ϕ (b)‖x‖2 + �ϕ (x)‖x‖
(b‖x‖ + �x)2

(3.34)

for all x �= 0 in X . Applying this equation for x and −x in the case x �= 0 and
xb = 0 implies

x =
τ2

b2 + �2
ϕ (x)

for x = b and all x ∈ X with x ⊥ b, i.e. xb = 0. Hence τ2 = b2+�2, by x2 = [ϕ (x)]2

and since there exist x �= 0 in X with xb = 0. Thus b = ϕ (b) and x = ϕ (x) for all
x ⊥ b. If b = 0, then c = a, τ = � from τ2 = b2 + �2, and g = id because of x ⊥ b
for all x ∈ X , i.e. because of ϕ (x) = x for all x ∈ X . Hence f = ι (a, τ) = ι (c, �)
for b = 0 from (3.31). We now will prove that the case b �= 0 does not occur. So
assume b �= 0. Observe

y =
yb

b2
b +
(

y − yb

b2
b

)

with y − yb
b2 b ⊥ b for all y ∈ X . Hence

ϕ (y) =
yb

b2
ϕ (b) + ϕ

(
y − yb

b2
b

)
,

i.e. ϕ (y) = y for all y ∈ X , in view of ϕ (b) = b and ϕ (x) = x for all x ⊥ b. Thus
g = id, i.e. f = ι (a, τ), by (3.31). Now (3.34) and ϕ = id imply

(
b +

�x

‖x‖
)⎛⎜⎝1 − τ2(

b + �x
‖x‖
)2

⎞
⎟⎠ = 0,

i.e.
(
b + �x

‖x‖
)2

= τ2, by (3.33), for all x �= 0 in X . Hence bx = 0 for all x �= 0 in

X , by b2 + �2 = τ2. Since b �= 0, we get b2 = 0 for x = b, a contradiction.

b) Case 2: s
(
B (0, 1)

)
= H ′(a, α).

Since s
(
B (0, 1)

)
= s (Fix ι) = Fix (sιs−1), by step a), we get f (∞) = ∞ for

f := sιs−1. Hence, by Theorem 5,

f (x) = ω (x) + b
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with ω ∈ O (X), ω �= id = ω2, ω (b) = −b. Without loss of generality we will
assume a2 = 1. From (3.14) we get

H (a, α) = αa +
{

v − (va) a

‖v‖ − va
| 0 �= v ∈ X with

v

‖v‖ �= a

}
.

Because of Fix (f) = H ′(a, α), we obtain

αa +
v − (va) a

‖v‖ − va
= b + αω (a) +

ω (v) − (va)ω (a)
‖v‖ − va

for all v �= 0 satisfying v �= a · ‖v‖. Applying this for v and −v for 0 �= v ⊥ a yields

αa = b + αω (a) and v = ω (v) (3.35)

for all v �= 0 with v ⊥ a. Since x = (xa) a + [x− (xa) a] for all x ∈ X , we get from
(3.35)

ω (x) = (xa)ω (a) + [x − (xa) a] (3.36)

for all x ∈ X , by observing [x − (xa) a] ⊥ a. Note ω (a) �= a because otherwise
ω = id from (3.36). Hence (3.36) implies for x = ω (a), by ω2 = id,

0 =
(
ω (a) − a

)(
ω (a) a + 1

)
,

i.e. ω (a) · a = −1. Thus
(
ω (a) a

)2 = 1 = [ω (a)]2 · a2 and ω (a), a must be linearly
dependent by Lemma 1, chapter 1. Hence ω (a) = −a from ω (a) �= a. Thus

ω (x) = x − 2 (xa) a

from (3.36), and b = 2αa from (3.35). This implies that f is the inversion in
H ′(a, α) (see section 1).
d) Let j be the inversion in the M -ball b and take, by Proposition 1, µ ∈ M (X)
with µ

(
B (0, 1)

)
= b. Then, according to steps b), c) of the proof of the present

theorem, j = µιµ−1. Hence

sjs−1 = (sµ) j (sµ)−1.

Again, by steps b), c), (sµ) j (sµ)−1 must be the inversion in

(sµ)
(
B (0, 1)

)
= s
[
µ
(
B (0, 1)

)]
= s (b). �

Remark. If b is an M -ball, the inversion in b will be denoted by invb. The last
statement of Theorem 6 can hence be expressed as follows: If b is an M -ball and
s an M -transformation, then

s · invb · s−1 = invs (b). (3.37)
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3.5 Orthogonality

Let a, b be M -balls. a will be called orthogonal to b, a ⊥ b, provided a �= b and
invb(a) = a.

Proposition 7. Let a, b be M -balls with a ⊥ b. Then µ ∈ M (X) implies µ (a) ⊥
µ (b).

Proof. From invµ (b) = µ · invb · µ−1, by (3.37), and invb(a) = a, we obtain

invµ (b)

(
µ (a)

)
= µ · invb(a) = µ (a). �

Lemma 8. If a, b are M -balls with a ⊥ b, then a ∩ b contains at least two distinct
points.

Proof. In view of Proposition 1 there exists µ ∈ M (X) with µ (b) = B (0, 1).
Hence, by Proposition 7, µ (a) ⊥ B (0, 1), and thus ι (

(
µ (a)

)
= µ (a).

Case 1: µ (a) = B (c, �).
Since the image of µ (a) under ι is µ (a), we obtain from the list of images of
M -balls under ι (see section 1),

B (c, �) = B

(
c

c2 − �2
,

�

|c2 − �2|
)

with c2 �= �2.

Proposition 11, chapter 2, yields

c =
c

c2 − �2
and � =

�

|c2 − �2| . (3.38)

The second equation implies |c2 − �2| = 1, because of � > 0. Hence, if c = 0, then
� = 1, i.e. µ (b) = µ (a). But b �= a. Thus c �= 0, i.e. c2 − �2 = 1, by (3.38). Take
p ∈ X with pc = 0, p2 = 1 and observe

c

c2
± �

‖c‖ p ∈ B (0, 1) ∩ B (c, �) = µ (b) ∩ µ (a).

Case 2: µ (a) = H ′(p, α) with p2 = 1.
The list of images of M -balls under ι yields α = 0, since ι

(
µ (a)

)
= µ (a). Take

q ∈ X with pq = 0, q2 = 1. Then ±q ∈ µ (a) ∩ µ (b). �
Proposition 9. If a, b are M -balls with a ⊥ b, then also b ⊥ a holds true.

Proof. Take r in a ∩ b and µ1 ∈ M (X) with µ1(r) = ∞ (see the beginning of
section 3). Hence µ1(a) ⊥ µ1(b), by Proposition 7, and

µ1(a) =: H ′(p, α), µ1(b) =: H ′(q, β)

with p2 = 1, q2 = 1.
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Because of Lemma 8 there exists a point s �= r on a ⊥ b. Define the similitude

µ2(x) := x − µ1(s)

and µ := µ2µ1. Hence µ (a) ⊥ µ (b) and

µ (a) = H ′(p, 0), µ (b) = H ′(q, 0).

Thus invµ (b)

(
µ (a)

)
= µ (a) and, by (3.7),

invµ (b)(x) = x − 2(qx)q, x ∈ X.

Consequently, t ∈ p⊥ = H (p, 0) implies invµ (b)(t) ∈ p⊥, i.e.(
t − 2(qt)q

)
p = 0,

i.e. (qt)(qp) = 0 for all t ∈ p⊥. If qt = 0 would hold true for all t ∈ p⊥, then
H (p, 0) ⊆ H (q, 0), contradicting µ (a) �= µ (b), by Proposition 12, chapter 2.
Hence pq = 0, which implies

µ (b) ⊥ µ (a),

i.e. b ⊥ a, by Proposition 7. �
Proposition 10. 1) H ′(t, α) ⊥ H ′(s, β) ⇔ ts = 0.

2) B (c, �) ⊥ H ′(t, α) ⇔ tc = α ⇔ c ∈ H (t, α).

3) B (c, �) ⊥ B (d, σ) ⇔ (c − d)2 = �2 + σ2.

Proof. 1) Put a := H ′(t, α), b := H ′(s, β) and assume ts = 0, t2 = 1, s2 = 1.
Because of

invb(x) = x − 2(sx)s + 2βs, (3.39)

we obtain invb(a) ⊆ a, i.e. invb(a) = a, by Proposition 12, chapter 2, i.e. a ⊥ b.
Vice versa assume a ⊥ b. Since a �= b there exists x0 ∈ X with tx0 = α and
sx0 �= β, because otherwise a ⊆ b would imply a = b. Hence, by (3.39) and a ⊥ b,

α = t · invb(x0) = t · (x0 − 2sx0 · s + 2βs),

i.e. (β − sx0) ts = 0, i.e. ts = 0.
2) Put a := B (c, �), b := H ′(t, α) and assume a ⊥ b, i.e. b ⊥ a, by Proposition 9,
i.e.

ι (c, �)(b) = b.

Hence c = ι (c, �)(∞) ∈ b, i.e. tc = α. Vice versa assume c ∈ H (t, α). If x �= c,∞
is on b, then

ι (c, �)(x) = c + �2 x − c

(x − c)2
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is also on b, since tx = α, i.e. t (x − c) = 0 yields

t · [ι (c, �)(x) − c] = 0.

Now inva(b) ⊆ b implies b = inva

(
inva(b)

) ⊆ inva(b), i.e. b ⊥ a.
3) Assume a := B (c, �) ⊥ B (d, σ) =: b. If c were equal to d, then a∩ b �= ∅ would
imply � = σ, i.e. a = b. Put c−d =: p, take t ∈ X with t2 = 1, tp = 0, and observe

x := c + �t ∈ B (c, �). (3.40)

Hence invb(x) ∈ B (c, �), by a ⊥ b, i.e.(
c − d − σ2 c + �t − d

(c + �t − d)2

)2

= �2, (3.41)

in view of (3.8). Thus, by tp = 0, |p2 − σ2| = �2. Interchanging the role of a
and b, we also obtain |p2 − �2| = σ2. Hence p2 = �2 + σ2. Vice versa assume
(c − d)2 = �2 + σ2. This implies p := c − d �= 0. Observe d �∈ B (c, �), since
otherwise p2 = �2, i.e. σ = 0. The arbitrary point of B (c, �) is given by (3.40)
with t2 = 1. In order to prove a ⊥ b, we will show (3.41) for all t ∈ X satisfying
t2 = 1, by noticing p + �t �= 0, since otherwise p = −�t, i.e. p2 = �2. In fact,(

p − σ2 p + �t

(p + �t)2

)2

− �2 = σ2 − 2σ2 p2 + �pt

(p + �t)2
+

σ4

(p + �t)2
= 0

because of p2 − �2 = σ2. �
Remark. If B (c, �) ⊥ B (d, σ), then (x − c)(x − d) = 0 for x ∈ B (c, �) ∩ B (d, σ).
This follows from

�2 + σ2 = (c − d)2 =
(
(c − x) − (d − x)

)2 = �2 + σ2 − 2(x − c)(x − d).

Remark. If B (c, �) ⊥ B (d, σ), then (x−y)(c−d) = 0 for x, y ∈ B (c, �)∩B (d, σ).
This follows from

(x − c)2 = �2 = (y − c)2, (x − d)2 = σ2 = (y − d)2,

i.e. from −2xc + 2yc = y2 − x2 = −2xd + 2yd.

Proposition 11. Suppose that a is an M -ball and that p �∈ a is a point. Then
{p, q := inva(p)} is the intersection I of all M -balls b satisfying p ∈ b ⊥ a.

Proof. Without loss of generality we may assume p = ∞, and, by applying a
suitable similitude, even a = B (0, 1). The balls b with ∞ ∈ b ⊥ B (0, 1) are given
by all H ′(t, 0), t �= 0. Observe now q = 0 and

{∞, 0} =
⋂

0	=t∈X

H ′(t, 0) =: R

since r ∈ X ′\{∞, 0} implies r �∈ R, in view of r �∈ H ′(r, 0). �
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Proposition 12. a) A line cuts B (c, �) in at most two distinct points.

b) H (a, α) �⊆ B (c, �) �⊆ H (b, β).

c) If p ∈ B (c, �), there is exactly one hyperplane H (a, α) with B (c, �) ∩
H (a, α) = {p}, namely H

(
c − p, (c − p) p

)
, the so-called tangent hyperplane

to B (c, �) at p.

Proof. a) If p+ Rv, v2 = 1, is a line, the points of intersection p+λv with B (c, �)
are determined by

�2 = (p + λv − c)2 = (p − c)2 + 2λv (p − c) + λ2.

There are hence at most two solutions.

b) H (a, α) contains a line, but not B (c, �). Both points

c ± � · b

‖b‖

are in B (c, �), but they are not both in H (b, β).

c) Let p be a point on the M -ball B (c, �). Hence (p − c)2 = �2, i.e. p �= c. If
H (a, α) contains p, then α = ap. Observe

2c − p − 2a (c− p)
a2

a ∈ H (a, ap) ∩ B (c, �).

Asking for {p} = H (a, ap) ∩ B (c, �), we obtain

2c − p − 2a (c − p)
a2

a = p,

i.e. c − p = λa with a suitable real λ �= 0, in view of p �= c. Hence

H (a, ap) = H
(
c − p, (c − p) p

)
.

Assuming now q ∈ H
(
c − p, (c − p) p

) ∩ B (c, �), we get

(c − p) q = (c − p) p and (q − c)2 = �2.

This implies (c − p)(q − p) = 0 and
(
(q − p) − (c − p)

)2 = �2, i.e.

�2 = (q − p)2 + (c − p)2 = (q − p)2 + �2,

i.e. q = p. �
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3.6 Möbius circles, MN - and MN -spheres

Proposition 13. If p, q, r are three distinct points and also p′, q′, r′, then there exists
f ∈ M (X) with p′ = f (p), q′ = f (q), r′ = f (r).

Proof. Case 1: p = ∞ = p′.

If s, t ∈ X satisfy s2 = t2, then there exists ω ∈ O (X) with ω (s) = t. In the case
s �= t take the mapping (3.7) with a := s − t,

ω (x) = x − 2(s − t)x

(s − t)2
(s − t),

and observe ω (s) = t by 2(s − t) s = s2 − 2ts + t2. Now choose � > 0 with

�2(q − r)2 = (q′ − r′)2

and put s := � (q − r), t := q′ − r′. There hence exists ω ∈ O (X) with q′ − r′ =
�ω (q − r). Define now

f (x) := �ω (x − q) + q′.

If � (q − r) = s = t = q′ − r′, put f (x) = � (x − q) + q′.

Case 2: p = ∞ �= p′.

Take τ ∈ M (X) with τ (p′) = ∞ and put τ (p′) =: p′0, τ (q′) =: q′0, τ (r′) = : r′0.
Because of case 1, there exists ϕ ∈ M (X)with p′0 = ϕ (p), q′0 = ϕ (q), r′0 = ϕ (r).
Now put f := τ−1ϕ.

Case 3: p �= ∞.

Take σ ∈ M (X) with σ (p) = ∞ and put σ (p) =: p0, σ (q) =: q0, σ (r) =: r0.
Because of cases 1 or 2, there exist ϕ ∈ M (X) with p′ = ϕ (p0), q′ = ϕ (q0),
r′ = ϕ (r0). Now put f := ϕσ. �

If p, q, r are three distinct points, then the intersection of all M -balls con-
taining p, q, r will be called a Möbius circle, or also an M -circle, of X .

Proposition 14. If l is a fixed euclidean line of X, then µ (l∪{∞}) is an M -circle
for all µ ∈ M (X). There are no other M -circles.

Proof. If l is a (euclidean) line, we will designate the set l ∪ {∞} by l′. Let p �= q
be points of l and put r = ∞. All the M -balls through p, q, r are then given by
all H ′(a, α) with p, q ∈ H (a, α). In view of step a) of the proof of Theorem 3, we
hence get that l′ is the intersection of all M -balls through p, q, r. Let µ ∈ M (X) be
given. µ (l′) must then be the intersection of all M -balls through µ (p), µ (q), µ (r),
i.e. µ (l′) must be an M -circle itself. If, finally, c is the M -circle through the
pairwise distinct points p′, q′, r′, we take µ ∈ M (X), by Proposition 13, satisfying
p′ = µ (p), q′ = µ (q), r′ = µ (r). Hence c = µ (l′). �
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Let n be a positive integer with dim X > n. If p ∈ X and if s1, . . . , sn ∈ X
are linearly independent, then

{p + ξ1s1 + · · · + ξnsn | ξ1, . . . ξn ∈ R}
will be called an n-plane of X . An Mn-sphere is a set P ′

n = Pn ∪ {∞} where Pn

is an n-plane or a set Pn+1 ∩ B (c, �) where Pn+1 is an (n + 1)-plane containing
c ∈ X .

Instead of P ′
n we also will speak of an extended n-plane.

Proposition 15. All M -circles of X which are not of type l′, l a line, are given by

{x ∈ P2 | (x − c)2 = �2}, (3.42)

where P2 is an arbitrary 2-plane, � > 0 a real number, and c a point in P2.

Proof. Let P2 be given by

P2 = {c + ξr + ηt | ξ, η ∈ R}
with r2 = 1 = t2 and rt = 0. Hence, by (3.42),

P2 ∩ B (c, �) = {c + ξr + ηt | ξ2 + η2 = �2}, (3.43)

or also

P2 ∩ B (c, �) = {c + �r cosϕ + �t sinϕ | 0 ≤ ϕ < 2π}. (3.44)

The image of (3.43) under the inversion ι (c + �r, �) is, by (3.8), l′ where l is the
line through a, a + t with a := c + 1

2�r. Hence, by Proposition 14, (3.43) is an
M -circle. Finally we must show that every M -circle �� ∞ is of type (3.42). If

α (x) = σω (x) + b, σ > 0, ω ∈ O (X), b ∈ X, (3.45)

is a similitude, then

B (c, �) =
{

c +
�x

‖x‖
∣∣∣x �= 0

}
(see section 2) implies

α
(
B (c, �)

)
= B

(
α (c), σ�

)
.

Hence α
(
P2 ∩B (c, �)

)
= Q2 ∩B

(
α (c), σ�

)
where Q2 is the 2-plane α (P2), must

again be of type (3.42) since α (c) ∈ α (P2). We will refer to this result later on by
(R).

In view of Proposition 14, let now µ (l′) be an arbitrary M -circle which does
not contain ∞. Then µ cannot be a similitude, since otherwise ∞ = µ (∞) ∈ µ (l′).
Hence, by Theorem 3, µ = αιβ with similitudes α, β. From αιβ (l′) �� ∞ we get

ιβ (l′) �� α−1(∞) = ∞,
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i.e. ι (h′) �� ∞ where h′ := β (l′). Because of h′ �� ι−1(∞) = 0, we may write

h = {p + λq | λ ∈ R}
with suitable elements p �= 0 and q of X with pq = 0, q2 = 1. If ι (h′) is of type
(3.42), then also, by (R),

α [ι (h′)] = αιβ (l′) = µ (l′).

But

ι (h′) = {ξp + ηq | ξ, η ∈ R} ∩ B

(
p

2p2
,

1
2‖p‖

)
,

since ι (h′) = {0} ∪
{

p+λq
p2+λ2

∣∣λ ∈ R

}
. �

Remark. As a consequence of Proposition 15 we obtain that the M -circles of X
are exactly the M1-spheres.

Proposition 16. Let n be an integer satisfying 1 ≤ n < dimX. If Pn is a fixed
n-plane, then µ (P ′

n) is an Mn-sphere for all µ ∈ M (X). There are no other Mn-
spheres.

Proof. We already proved this result separately for the (for us) more important
case n = 1 (see Proposition 14). If µ is a similitude, then µ (P ′

n) is again an
extended n-plane. So we have to show, by Theorem 3, that αιβ (P ′

n) is an Mn-
sphere, where α, β are similitudes. Let β (P ′

n) be the extended n-plane Q′
n with

Qn = {q + η1t1 + · · · + ηntn | ηi ∈ R}
such that t2i = 1 and titj = 0 for i �= j. If 0 ∈ Q′

n, then ι (Q′
n) = Q′

n and
αι (Q′

n) = µ (P ′
n) is an extended n-plane. So assume 0 �∈ Q′

n, i.e. ∞ �∈ ι (Q′
n).

Since ∞ ∈ Q′
n, we get 0 ∈ ι (Q′

n). We may write

q = γ1t1 + · · · + γntn + γt

with t2 = 1, tit = 0 and γ �= 0, by 0 �∈ Q′
n. Hence

ι (Q′
n) = {0} ∪

{
Σ (ηi + γi) ti + γt

Σ (ηi + γi)2 + γ2

∣∣∣ηi ∈ R

}
.

Thus ι (Q′
n) ⊆ Qn+1 := {Σηiti + ηt | ηi, η ∈ R}. Moreover,

ι (Q′
n) = Qn+1 ∩ B

(
t

2γ
,

1
2|γ|
)

,

i.e. µ (P ′
n) = α [ι (Q′

n)] = α (Qn+1) ∩ B
(
α
(

t
2γ

)
, σ

2|γ|
)

is an Mn-sphere, where α

is defined by (3.45).
Let now Σn be an arbitrary Mn-sphere.
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Case 1: Σn is an extended n-plane R′
n with

Rn = {p + ξ1s1 + · · · + ξnsn | ξi ∈ R}

such that s2
i = 1 and sisj = 0 for i �= j. Put

Pn = {a + λ1v1 + · · · + λnvn | λi ∈ R}

with v2
i = 1 and vivj = 0 for i �= j. Define

S = {a, a + v1, . . . , a + vn}

and f : S → X by f (a) = p, f (a+v1) = p+s1, . . . , f (a+vn) = p+sn. Applying
Theorem 38 of chapter 2 for (X, eucl), we obtain that there exists ϕ ∈ M (X, eucl)
with f (x) = ϕ (x) for all x ∈ S. Hence

ϕ (x) = ω (x) + d, x ∈ X,

with ω ∈ O (X) and a fixed d ∈ X . Thus

ϕ (a) = p and ω (vi) = si,

i.e. ϕ (a + λ1v1 + · · · + λnvn) = ϕ (a) + λ1s1 + · · · + λnsn. Now observe that ϕ,
extended by ϕ (∞) = ∞, is in M (X), and that ϕ (Pn) = Rn, i.e. ϕ (P ′

n) = R′
n.

Case 2: Σn = Pn+1 ∩ B (c, �), c ∈ Pn+1.

Put Pn+1 = {c + ξ1s1 + · · · + ξn+1sn+1 | ξi ∈ R} with s2
i = 1 and sisj = 0 for

i �= j. Now observe
ι (c + �s1, �)(Σn) = Q′

n

with Qn = {c+ �
2 s1+

∑n+1
i=2 ηisi | ηi ∈ R}. Because of case 1 there exists ϕ ∈ M (X)

with ϕ (P ′
n) = Q′

n. Hence

Σn = ι (c + �s1, �)(Q′
n) = ι (c + �s1, �)ϕ (P ′

n). �

Remark. If Σn is a fixed Mn-sphere of X , then all Mn-spheres of X are given by
µ (Σn), µ ∈ M (X). This follows immediately from Proposition 16.

Let n be a positive integer with dimX > n. The points p1, . . . pn+2 are called
spherically independent, if, and only if, there is no Mn−1-sphere containing these
points, where every subset T of X ′ with #T = 2 is said to be an M0-sphere.

Obviously, three distinct points are always spherically independent.

Proposition 17. If n is a positive integer and p1, . . . , pn+2 are spherically indepen-
dent, there is exactly one Mn-sphere through these points.
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Proof. We may assume pn+2 = ∞, without loss of generality. Define

P := {p1 + ξ1(p2 − p1) + · · · + ξn(pn+1 − p1) | ξi ∈ R}

and observe p1, . . . , pn+1, pn+2 ∈ P ′. If p2 − p1, . . . , pn+1 − p1 were linearly depen-
dent, say,

pn+1 − p1 = β1(p2 − p1) + · · · + βn−1(pn − p1),

then p1, . . . , pn+2 ∈ {p1 + η1(p2 − p1) + · · ·+ ηn−1(pn − p1) | ηi ∈ R} ∪ {∞} would
be contained in an Mn−1-sphere. There hence exists an Mn-sphere, namely P ′,
through p1, . . . , pn+2. If Q∪{∞} is another Mn-sphere through p1, . . . , pn+2, then,
obviously, P ⊆ Q, i.e. P = Q since the underlying vector spaces of P and Q are
both of dimension n. �

Remark. If p1, . . . , pn+2 are spherically independent and also q1, . . . , qn+2, there
does not necessarily exist µ ∈ M (X) with µ (pi) = qi, i = 1, . . . , n + 2. Assume
dimX > 2 and that v, w ∈ X are linearly independent. Take

p1 = ∞, p2 = 0, p3 = v, p4 = w,

q1 = ∞, q2 = 0, q3 = v, q4 = 2w.

Observe that both quadruples are spherically independent. If there were µ ∈ M (X)
with µ (pi) = qi, then µ ∈ O (X) which contradicts ‖w‖ = ‖ω (w)‖ = 2‖w‖.

Let n be a positive integer and assume dim X > n. Suppose that µ is a
Möbius transformation and that

H (a1, α1), . . . , H (an, αn)

are hyperplanes such that a1, . . . , an are linearly independent. Then

µ
(
H ′(a1, α1) ∩ · · · ∩ H ′(an, αn)

)
will be called an Mn-sphere of X .

Obviously, if X is finite-dimensional, dimX = N , then every Mn-sphere is
an MN−n-sphere as well.

Remark. The M1-spheres of X are exactly its M -balls.

Proposition 18. Suppose dimX > n. If A, B are Mn-spheres of X, there exists
µ ∈ M (X) with µ (A) = B.

Proof. According to the definition there exist representations

A = µ1

(
H ′(a1, α1) ∩ · · · ∩ H ′(an, αn)

)
,

B = µ1

(
H ′(b1, β1) ∩ · · · ∩ H ′(bn, βn)

)
.
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So we have to prove the existence of ϕ ∈ M (X) with

n⋂
ν=1

H ′(bν , βν) = ϕ

(
n⋂

ν=1

H ′(aν , αν)

)
. (3.46)

Take

vi =
n∑

ν=1

γiνaν , i = 1, . . . , n,

with v2
i = 1 and vivj = 0 for i �= j, where γiν are suitable reals. Then

n⋂
i=1

H (ai, αi) =
n⋂

i=1

H (vi, α
′
i)

with α′
i :=

∑n
ν=1 γiναν , i = 1, . . . , n. So we may assume, without loss of generality,

a2
i = 1 = b2

i and aiaj = 0 = bibj for i �= j

in (3.46). Define a := Σαiai, b := Σβibi and observe

a ∈
⋂

H (ai, αi), b ∈
⋂

H (bi, βi).

Define S = {a, a + a1, . . . , a + an} and f : S → X by f (a) = b, f (a + ai) =
b + bi. Applying again Theorem 38 of chapter 2, as in Proposition 16, we obtain
a similitude ϕ = (1, ω, d) with ϕ (a) = b and ω (ai) = bi. It is easy to verify that
ϕ satisfies (3.46): aix = αi implies ai(x − a) = 0, i.e. ω (ai)ω (x − a) = 0. Hence
bi

(
ϕ (x) − b

)
= 0, i.e. biϕ (x) = βi. �

Lemma 19. Let c be an M -circle and b be an M -ball. Then #(c ∩ b) ≥ 3 implies
c ⊆ b.

Proof. We may assume ∞ ∈ c ∩ b, without loss of generality. Hence l := c\{∞} is
a euclidean line and b\{∞} a euclidean hyperplane H . But #(l ∩ H) ≥ 2 implies
l ⊆ H . �

If c is an M -circle and b an M -ball, we will say that c is orthogonal to b, or
b is orthogonal to c provided every M -ball through c is orthogonal to b. We shall
write c ⊥ b or b ⊥ c.

Proposition 20. If the M -circle c is orthogonal to the M -ball b, then #(c∩ b) = 2.

Proof. c �⊆ b, because otherwise b ⊥ b. Hence, by Lemma 19, c and b have at most
two points in common. Assume c∩ b = {p} and, without loss of generality, p = ∞.
Hence c\{p} is a line

l = {r + λv | λ ∈ R},
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and b\{p} a hyperplane H (t, α). Since l ∩ H = ∅, we get tv = 0. Hence c = l′ is
contained in H ′(t, tr). Thus, by c ⊥ b,

H ′(t, α) = b ⊥ H ′(t, tr),

which contradicts Proposition 10, statement 1. Assume, finally, c∩ b = ∅. We may
write b = H ′(v, 0) and, by (3.44),

c = {m + �r cosϕ + �t sinϕ | 0 ≤ ϕ < 2π} (3.47)

with r2 = 1 = t2 and rt = 0. Because of c ∩ b = ∅, we obtain

(m + �r cosϕ + �t sinϕ) · v �= 0

for all ϕ ∈ [0, 2π[. Since there exists ϕ ∈ [0, 2π[ with

cosϕ · �rv + sin ϕ · �tv = 0,

we obtain m · v �= 0. Hence, by Proposition 10, 2),

b = H ′(v, 0) �⊥ B (m, �),

which contradicts c ⊆ B (m, �). �
Proposition 21. If p �= q are points, and if b is an M -ball such that q is not
the image of p under the inversion in b, then there exists exactly one M -circle c
through p, q which is orthogonal to b.

Proof. If at least one of the points p, q is on b, we may assume q = ∞ ∈ b, i.e.
b =: H ′(t, α). Then {p + λt | λ ∈ R} ∪ {∞} is the only M -circle through p, q and
orthogonal to b. If {p, q} ∩ b = ∅, we also may assume q = ∞. Hence b is in this
case of the form B (c, �). Since p is assumed not to be the image of q under the
inversion in b, we get p �= c. Then

{c + λ (p − c) | λ ∈ R} ∪ {∞}
is the only M -circle through p, q and orthogonal to b. �

We already introduced in section 12, chapter 2, the notion of the cross ratio
of an ordered quadruple z1, z2, z3, z4 of four distinct points of a euclidean line l.
Now we will allow that the points are even elements of l′, or more general, of an
arbitrary M -circle.

Lemma 22. Let c be an M -circle, and let p1, p2, p3, p4 be four distinct points on c.
If q1, q2, q3 are three distinct points, and µ1, µ2 M -transformations with

µi(pj) = qj for all i ∈ {1, 2} and j ∈ {1, 2, 3},
then µ1(p4) = µ2(p4).
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Proof. Take a fixed element e �= 0 of X . Then, by Proposition 13, there exist
f, g ∈ M (X) with

f (∞) = p1, f (0) = p2, f (e) = p3,

and g (∞) = q1, g (0) = q2, g (e) = q3. Put g−1µif =: νi for i ∈ {1, 2}. Hence

νi(∞) = ∞, νi(0) = 0, νi(e) = e (3.48)

for i ∈ {1, 2}, and νi must be a similitude

νi(x) = σiωi(x) + ai, σi > 0, i ∈ {1, 2},
in view of Theorem 3. Thus, by (3.48), νi = ωi, i ∈ {1, 2}. Since p1, p2, p3, p4 are
on a common M -circle, so must be their images under f−1. Hence f−1(p4) = αe
with a suitable real α �∈ {1, 2}. Thus

νif
−1(p4) = νi(αe) = ωi(αe) = αωi(e) = αe,

i.e. µ1(p4) = µ2(p4). �
If p1, p2, p3, p4 is an ordered quadruple consisting of four distinct points on

a common M -circle, we define its cross ratio. Take arbitrarily e �= 0 in X and
take arbitrarily µ ∈ M (X) with µ (p1) = ∞, µ (p2) = 0, µ (p3) = e. If then
µ (p4) = αe, α ∈ R, put

{p1, p2; p3, p4} := α.

Since µ (p1), µ (p2), µ (p3), µ (p4) must be on a common M -circle, there exists in
fact α ∈ R with µ (p4) = αe. Obviously, α �= 0 and α �= 1. Moreover, {p1, p2; p3, p4}
does not depend on the chosen e and µ, as we would like to verify now.

Lemma 23. If e �= 0 and k �= 0 are elements of X, and if µ ∈ M (X) satisfies
µ (∞) = ∞, µ (0) = 0, µ (e) = k, then µ (αe) = αk for all α ∈ R.

Proof. µ (∞) = ∞, µ (0) = 0 imply, by Theorem 3, that µ is a similitude of the
form µ (x) = σω (x), σ > 0, ω ∈ O (X). Hence

µ (αe) = σω (αe) = σαω (e) = αk. �

In order to show that {p1, p2; p3, p4} does not depend on e and µ, take e1 �= 0
in X and µ1 ∈ M (X) with

µ1(p1) = ∞, µ1(p2) = 0, µ1(p3) = e1. (3.49)

We then have to show µ1(p4) = αe1. In view of Proposition 13 there exists τ ∈
M (X) with τ (∞) = ∞, τ (0) = 0, τ (e) = e1. Lemma 23 yields τ (αe) = αe1.
Since

τµ (p1) = ∞, τµ (p2) = 0, τµ (p3) = e1

holds true, we get, by Lemma 22 and (3.49),

µ1(p4) = τµ (p4),

i.e. µ1(p4) = τ (αe) = αe1. �
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Proposition 24. Given four distinct points

pi = r + αiv, i ∈ {1, 2, 3, 4},
on the line l = r + Rv, v �= 0, then

{p1, p2; p3, p4} =
α1 − α3

α1 − α4
:

α2 − α3

α2 − α4
. (3.50)

Moreover,

{∞, p2; p3, p4} =
α2 − α4

α2 − α3
, {p1,∞; p3, p4} =

α1 − α3

α1 − α4
,

{p1, p2;∞, p4} =
α2 − α4

α1 − α4
, {p1, p2; p3,∞} =

α1 − α3

α2 − α3
.

If pi = m + �r cosϕi + �t sinϕi, i ∈ {1, 2, 3, 4} are four distinct points on (3.47)
with 0 ≤ ϕi < 2π, then

{p1, p2; p3, p4} =
sin 1

2 (ϕ1 − ϕ3)
sin 1

2 (ϕ1 − ϕ4)
:

sin 1
2 (ϕ2 − ϕ3)

sin 1
2 (ϕ2 − ϕ4)

. (3.51)

Proof. Given four distinct points p1, p2, p3, p4 ∈ X , we define ϕ ∈ M (X) by

ϕ (x) = ι (p1, 1)(x) − ι (p1, 1)(p2).

Put e := ϕ (p3). Hence ϕ (p1) = ∞, ϕ (p2) = 0, ϕ (p3) = e. If

pi = r + αiv,

then ϕ (p4) = {p1, p2; p3, p4} · e. This implies (3.50). If

pi = m + �r cosϕi + �t sin ϕi,

0 ≤ ϕi < 2π, then ϕ (p4) = {p1, p2; p3, p4} · e yields (3.51). �
Proposition 25. Given an M -circle c and four distinct points p1, p2, p3, p4 on c.
Then

{p1, p2; p3, p4} = {p4, p3; p2, p1},
{p1, p2; p3, p4} = {p2, p1; p4, p3},
{p1, p2; p3, p4} · {p1, p2; p4, p3} = 1,

{p1, p2; p3, p4} + {p1, p3; p2, p4} = 1.

Proof. Apply Proposition 24. �
Proposition 26. If µ ∈ M (X) and if p1, p2, p3, p4 are four distinct points on a
common M -circle, then

{µ (p1), µ (p2); µ (p3), µ (p4)} = {p1, p2; p3, p4}.
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Proof. Take e �= 0 in X and ϕ ∈ M (X) with ϕ (p1) = ∞, ϕ (p2) = 0, ϕ (p3) = e.
Hence ϕ (p4) = {p1, p2; p3, p4} · e. Moreover with ψ := ϕµ−1,

ψ
(
µ (p1)

)
= ∞, ψ

(
µ (p2)

)
= 0, ψ

(
µ (p3)

)
= e.

Thus {µ (p1), µ (p2); µ (p3), µ (p4)} · e = ψ
(
µ (p4)

)
= ϕ (p4). �

Let Γ4(X) be the set of all ordered quadruples (p1, p2, p3, p4) consisting of four
distinct elements of X ′ which are on a common M -circle. We are then interested
in the following problem. Find all functions f : Γ4 → R such that

f (p1, p2, p3, p4) = f
(
µ (p1), µ (p2), µ (p3), µ (p4)

)
(3.52)

holds true for all (p1, p2, p3, p4) ∈ Γ4(X) and all µ ∈ M (X).

Theorem 27. All solutions of the functional equation (3.52) are given as follows.
Take an arbitrary function ϕ : R\{0, 1} → R and put

f (p1, p2, p3, p4) = ϕ ({p1, p2; p3, p4}) (3.53)

for all (p1, p2, p3, p4) ∈ Γ4(X).

Proof. In view of Proposition 26, (3.53) is a solution of (3.52). Let now vice versa
f : Γ4(X) → R solve (3.52). Take a fixed e �= 0 in X and define

ϕ (α) := f (∞, 0, e, αe)

for every real α �∈ {0, 1}. For four distinct points p1, p2, p3, p4 on a common M -
circle we hence get for suitable µ ∈ M (X) with

µ (p1) = ∞, µ (p2) = 0, µ (p3) = e,

by (3.52), f (p1, p2, p3, p4) = f (∞, 0, e, αe) = ϕ (α) with α = {p1, p2; p3, p4}. �

3.7 Stereographic projection

Besides our real inner product space X, dim ≥ 2, we also will consider the real
vector space

Y := X ⊕ R,

equipped with the inner product

(a, α) · (b, β) := ab + αβ (3.54)

for (a, α), (b, β) ∈ Y . Obviously, Y itself is a real inner product space under the
scalar product (3.54). We hence may apply to Y everything we developed for X .
We are now interested in the unit ball of Y , namely in

U := {(x, ξ) ∈ Y | (x, ξ)2 = 1}.
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Call N := (0, 1) the North Pole of U , and put U0 := U\{N}. We identify x ∈ X
with (x, 0) ∈ Y , so that X is a proper subset of Y . The stereographic projection ψ
associates to (x, ξ) ∈ U0 the point of intersection of the line

N + R
(
(x, ξ) − N

)
(3.55)

of Y , with X , and it associates to N the point ∞.

Proposition 28. The stereographic projection ψ : U → X ′ is a bijection.

Proof. There is only one point (x, 1), x ∈ X , in U , namely N . This follows from
x2 + 1 = 1. Hence (x, ξ) ∈ U0 implies ξ �= 1. The line (3.55) cuts X exactly in

ψ (x, ξ) =
x

1 − ξ
, (3.56)

where x2 + ξ2 = 1, in view of ξ �= 1. If z ∈ X , then(
2z

z2 + 1
,
z2 − 1
z2 + 1

)
(3.57)

is the only point p on U0 with ψ (p) = z. �
Also in the case of the space Y we distinguish between hyperplanes and

quasi-hyperplanes of Y . The hyperplanes are given by all

H
(
(a, α), γ

)
= {(x, ξ) ∈ Y | ax + αξ = γ}

with (a, α) �= (0, 0) =: 0.

We will call a hyperplane H of Y a suitable hyperplane of Y , if it cuts U in
more than one point.

Lemma 29. The hyperplane H
(
(b, β), α

)
of Y is suitable if, and only if, α2 <

b2 + β2.

Proof. Assume α2 < b2 + β2 and take (c, γ) ⊥ (b, β) with (c, γ)2 = 1. Then the
elements of Y ,

α
(b, β)
(b, β)2

± λ (c, γ), λ :=

√
b2 + β2 − α2

(b, β)2
,

are both in H ∩U . Suppose now, vice versa, #(H ∩U) > 1 and (x0, ξ0) ∈ H ∩U .
We obtain

[(b, β)(x0, ξ0)]2 ≤ (b, β)2(x0, ξ0)2,

by the inequality of Cauchy–Schwarz, i.e. α2 ≤ (b, β)2 = b2 +β2, since (x0, ξ0) ∈ U
implies (x0, ξ0)2 = 1, and since (x0, ξ0) ∈ H , obviously, (b, β)(x0, ξ0) = α. We must
exclude α2 = (b, β)2. But

[(b, β)(x0, ξ0)]2 = α2 = (b, β)2(x0, ξ0)2
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implies, by Lemma 1, chapter 1, (b, β) = λ (x0, ξ0), i.e. λ = α from

(b, β)(xo, ξ0) = α.

The tangent hyperplane to U = B
(
(0, 0), 1

)
in (x0, ξ0) ∈ U is hence, by Proposi-

tion 12, c),
H
(−(x0, ξ0),−(x0, ξ0)2

)
,

i.e. H
(
(b, β), α

)
. Thus #(H ∩ U) = 1, contradicting #(H ∩ U) > 1. �

Theorem 30. If H is a suitable hyperplane of Y , then ψ (H∩U) is an M -ball of X.
If b is an M -ball of X, then there exists a uniquely determined suitable hyperplane
H of Y with b = ψ (H ∩ U).

Proof. Let H
(
(b, β), α

)
be a suitable hyperplane. The points (y, η) on H ∩ U are

given by the equations

by + βη = α, y2 + η2 = 1. (3.58)

Assume η �= 1 and put x := ψ (y, η). Hence, by (3.56),

bx (1 − η) + βη = α, x2(1 − η)2 + η2 = 1,

i.e. (β −α)x2 + 2bx = β + α. From (3.58) we get N ∈ H if, and only if, α = β. In
this case b2 > 0, i.e. b �= 0, holds true, by Lemma 29. We hence obtain

bx = α

for (y, η) ∈ H ∩ U\{N}, N ∈ H , and thus

ψ (H ∩ U) ⊆ H (b, α) ∪ {∞}.
If x ∈ H (b, α) ∪ {∞}, then ψ−1(x) = N for x = ∞, and otherwise, by (3.57)

ψ−1(x) =
(

2x

x2 + 1
,
x2 − 1
x2 + 1

)
,

i.e. ψ−1(x) ∈ H
(
(b, α), α

)
. Hence ψ (H ∩U) = H ′(b, α). In the case α �= β we get

ψ
(
H
(
(b, β), α

) ∩ U
)
⊆ B

(
b

α − β
,

√
b2 + β2 − α2

|α − β|

)
(3.59)

from (β−α)x2 +2bx = β +α and x = ψ (y, η). If x is an element of the right-hand
side of (3.59), then ψ−1(x) is on H

(
(b, β), α

)
. Hence equality holds true in (3.59).

If the M -ball H ′(b, α) is given, we already know that its inverse image is given by
U ∩H

(
(b, α), α

)
. What is the inverse image of B (m, �)? Since equality holds true

in (3.59), we must solve

m =
b

α − β
, �2 =

(
b

α − β

)2

+
β + α

β − α
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with respect to b, β, α, by observing ψ (N) �∈ B (m, �), i.e. α �= β. Instead of b, β, α
we determine

b

α − β
= m,

β

α − β
=

α

α − β
− 1,

α

α − β
=

1 + m2 − �2

2
.

The inverse image of B (m, �) is hence

U ∩ H
(
(2m, m2 − �2 − 1), m2 − �2 + 1

)
. �

3.8 Poincaré’s model of hyperbolic geometry

Let b be an M -ball. We will define the two sides of b.

Case 1: b = H ′(a, α).

The two sides of b are here

{x ∈ X | ax > α} and {x ∈ X | ax < α}.

Observe X ′ = b1∪H ′(a, α)∪b2, where b1, b2 are the two sides of b, and, moreover,

b1 ∩ b = b ∩ b2 = b2 ∩ b1 = ∅. (3.60)

Case 2: b = B (c, �).

The two sides are defined by

{x ∈ X | (x − c)2 > �2} ∪ {∞} and {x ∈ X | (x − c)2 < �2}.

Here we have X ′ = b1 ∪ b ∪ b2, too, and (3.60) for the sides of b.

Proposition 31. If b is an M -ball, µ an M -transformation, and if b1, b2 are the
two sides of b, then µ (b1), µ (b2) are the two sides of the M -ball µ (b).

Proof. Case 1. b = H ′(a, α) and µ is a similitude.

If µ (x) = σω (x) + t, σ > 0, then µ (b) = H ′(ω (a), ασ + tω (a)
)
. Hence

µ ({x ∈ X | ax > α}) = {y ∈ X | ω (a) y > ασ + tω (a)},
µ ({x ∈ X | ax < α}) = {y ∈ X | ω (a) y < ασ + tω (a)},

since, for instance, ax > α is equivalent with ω (a)ω (x) > α, i.e. with

ω (a)
(

µ (x) − t

σ

)
> α.

Case 2. b = B (c, �) and µ is a similitude, say, of the form as above.
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Here we get µ (b) = B
(
µ (c), σ�

)
and

µ ({x ∈ X | (c − x)2 > �2} ∪ {∞}) = {y ∈ X | (µ (c) − y
)2

> (�σ)2} ∪ {∞},
µ ({x ∈ X | (c − x)2 < �2}) = {y ∈ X | (µ (c) − y

)2
< (�σ)2},

since (c − x)2 > �2 is equivalent with
(
ω (c) − ω (x)

)2 = (c − x)2 > �2, i.e. with

(
[σω (c) + t] − [σω (x) + t]

)2
> (σ�)2.

Case 3. b = H ′(a, α) and µ = ι.
From section 1 we know

ι
(
H ′(a, α)

)
= B

( a

2α
,
∣∣∣∣∣∣ a

2α

∣∣∣∣∣∣)
for α �= 0. We may assume α > 0, because otherwise we would work with
H (−a,−α). If x ∈ X satisfies ax > α, we get x �= 0, i.e. ι (x) ∈ X , and

(
ι (x) − a

2α

)2

<
a2

4α2
.

Vice versa, (
y − a

2α

)2

<
a2

4α2
, y ∈ X,

implies y �= 0 and a · ι (y) > α.
In the case α = 0, we know from section 1 that

ι
(
H ′(a, 0)

)
= H ′(a, 0).

Here, of course, ax > 0 is equivalent with aι (x) > 0 for x ∈ X .
Case 4. b = B (c, �) and µ = ι.
In the case c2 = �2 we get ι (B) = H ′(2c, 1). Since ι is involutorial, we also get
ι (H ′) = B and we may apply part 1 of Case 3. So assume c2 �= �2. From section
1 we get

ι
(
B (c, �)

)
= B

(
c

c2 − �2
,

�

|c2 − �2|
)

.

If c2 > �2, then (c − x)2 < �2 is equivalent with

(
c

c2 − �2
− ι (x)

)2

<
�2

(c2 − �2)

for all x ∈ X\{0}, and if c2 > �2, then the image of

{x ∈ X | (c − x)2 > �2} ∪ {∞}
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under ι is {
y ∈ X |

(
c

c2 − �2
− y

)2

<

(
�

c2 − �2

)2
}

.

Because of Theorem 3 no other cases need to be considered. �
Let B be an M -ball, and let Σ be one of its sides. Of course, B could be, for

instance, the M -ball B (c, �) and Σ the side

{x ∈ X | (c − x)2 > �} ∪ {∞}

of B. We now would like to define the hyperbolic geometry (B, Σ), or (in shorter
form) the hyperbolic geometry Σ. This will be the geometry (see section 9, chapter
1) (

Σ, G (Σ)
)
,

where the group G (Σ) is defined as follows. Take the subgroup

Γ (Σ) := {µ ∈ M (X) | µ (B) = B and µ (Σ) = Σ}

of M (X) and put G (Σ) := {µ|Σ | µ ∈ Γ (Σ)}. The points of Σ are called hyperbolic
points (h-points) of Σ. If c is an M -circle orthogonal to B, then c ∩ Σ is said to
be a hyperbolic line (h-line) of Σ. The elements of G (Σ) are called hyperbolic
transformations of Σ.

Lemma 32. Given µ1, µ2 ∈ Γ (Σ) with µ1|Σ = µ2|Σ, then µ1 = µ2.

Proof. 1) If b is an M -ball and p �∈ b a point, then p, invb(p) are on different sides
of b.
Because of Proposition 31 we may assume p = ∞, i.e. b = B (c0, �0). Obviously,
∞, c0 are on different sides of b.
2) Take p ∈ Σ′, where Σ, Σ′ are the two sides of B (c, �). Define q := invB(p) and
observe

{p, q} =
⋂

q∈b⊥B

b,

in view of Proposition 11. Moreover, we obtain q ∈ Σ, by 1). Now

{µi(p), µi(q)}, i ∈ {1, 2},

is the intersection of all M -balls b � µi(q) satisfying b ⊥ µi(B) = B. Since
µ1(q) = µ2(q), by q ∈ Σ, we obtain

{µ1(p), µ1(q)} = {µ1(p), µ2(q)},

i.e. µ1(p) = µ2(p). Hence µ1 = µ2. �
Remark. Because of Lemma 32 we may and we will identify Γ (Σ) and G (Σ).
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Proposition 33. Let also B′ be an M -ball, and let Σ′ be one of its sides. Then the
two geometries

(
Σ, G (Σ)

)
and

(
Σ′, G (Σ′)

)
are isomorphic.

Proof. By Proposition 1 there exists µ0 ∈ M (X) with µ0(B) = B′. From Propo-
sition 31 we get Σ′ ∈ {µ0(Σ), µ0(Σ1)}, where Σ, Σ1 are the two sides of B. In
the case Σ′ = µ0(Σ) put µ := µ0, and otherwise µ := αµ0, where α denotes the
inversion in B′. Hence

µ (B) = B′, µ (Σ) = Σ′.

Define σ : Σ → Σ′ by σ (x) := µ (x) for all x ∈ Σ, and

τ : G (Σ) → G (Σ′)

by τ (g) := µgµ−1 for all g ∈ G (Σ). Since the equations (1.15) hold true, we get(
Σ, G (Σ)

) ∼= (Σ′, G (Σ′)
)
. �

Remark. In Theorem 37 we will show that the geometry
(
Σ, G (Σ)

)
, based on

X , is isomorphic to the hyperbolic geometry over X (see section 10, chapter 1).(
Σ, G (Σ)

)
is called a Poincaré model of hyperbolic geometry.

Through two distinct h-points of Σ there is exactly one h-line. This follows
from Proposition 21, and the fact that two distinct points p, q ∈ X ′ must be on
different sides of B in the case q = invB(p).

Let x, y be distinct h-points of Σ and let c � x, y be the, by Proposition
21, uniquely determined M -circle orthogonal to B. Because of Proposition 20, we
obtain #(c ∩ B) = 2. If a, b are the points of intersection of c and B, then

δ (x, y) := |ln{a, b; x, y}| (3.61)

is called the hyperbolic distance (h-distance) of x, y. This expression is well-defined
in view of Proposition 25. Moreover, put δ (x, x) = 0 for x ∈ Σ. Observe that
ln ξ = η is defined by ξ = exp (η) for real ξ, η with ξ > 0. So we have to show that

{a, b; x, y} > 0 (3.62)

holds true for the described points a, b, x, y. Note that a, b separate c into two parts
and, moreover, that x, y belong to the same part, since they are on the same side
of B. Because of Propositions 13 and 26 we may assume a = ∞ and b = 0 and,
moreover, that y = λx, λ > 0. But then, by Proposition 24, (3.62) holds true.

Remark. If l is a hyperbolic line of (B, Σ), then

µ (l) = {µ (x) | x ∈ l}
must be an h-line of

(
µ (B), µ (Σ)

)
for µ ∈ M (X), since l = c ∩ Σ, c an M -circle

orthogonal to B, implies

µ (l) = µ (c) ∩ µ (Σ), µ (c) ⊥ µ (B).
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In the case µ ∈ G (Σ), i.e. in the case µ (B) = B and µ (Σ) = Σ, µ (l) is again an
h-line of (B, Σ). If x, y ∈ Σ and µ ∈ M (X), then

δ (x, y) with respect to (B, Σ)

is equal to
δ
(
µ, (x), µ (y)

)
with respect to

(
µ (B), µ (Σ)

)
.

This will be shown as follows: assume x �= y and that c is the M -circle orthogonal
to B with x, y ∈ c ∩ Σ. Define {a, b} = c ∩ B. Hence

µ (x), µ (y) ∈ µ (c) ∩ µ (Σ)

and {µ (a), µ (b)} = µ (c) ∩ µ (B), µ (c) ⊥ µ (B). Thus, by Proposition 26,

δ
(
µ (x), µ (y)

)
= |ln{µ (a), µ (b); µ (x), µ (y)}|.

On the basis of Proposition 33 it is sufficient to study now, more intensively,
the following special situation of an M -ball B and one of its sides Σ.

Let t be a fixed element of X with t2 = 1. Define

B := H ′(t, 0)

and Σ := {x ∈ X | x0 > 0} where we applied the decomposition

X = t⊥ ⊕ Rt

with x = x+x0t, x ∈ t⊥ = H (t, 0), x0 ∈ R (see the beginning of section 7, chapter
1).

Proposition 34. In this present geometry (B, Σ) the h-distance (3.61) is given by

cosh δ (x, y) = 1 +
(x − y)2

2x0y0
(3.63)

for all x, y ∈ Σ, and hence also by

2 sinh
δ (x, y)

2
=

‖x − y‖√
x0y0

. (3.64)

Proof. We may assume x �= y. By l denote the h-line through x, y, and by c the
M -circle containing l.
Case 1. ∞ ∈ c.
Hence x = y =: a and, by x = a + x0t and y := a + y0t with Proposition 24,

δ (x, y) = |ln{a,∞; x, y}| =
∣∣∣∣ln x0

y0

∣∣∣∣ ,
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i.e.

cosh δ (x, y) =
eδ + e−δ

2
=

1
2

(
x0

y0
+

y0

x0

)

= 1 +
(x0 − y0)2

2x0y0
= 1 +

(x − y)2

2x0y0
.

Case 2. ∞ �∈ c.
Define {a, b} := c ∩ B. Hence δ (x, y) = |ln{a, b; x, y}|. Obviously

ϕ := ι (b, ‖a − b‖) ∈ G (Σ)

and ϕ (a) = a. For arbitrary z ∈ Σ define z1 := z − b and observe (z1)0 = z0.
Hence z1 ∈ Σ. Put ‖a − b‖ =: �. With v := ϕ (x) and w := ϕ (y) we obtain

v1 = �2 · x1

x2
1

and w1 = �2 y1

y2
1

,

and, especially, v0 = v1t = �2 x0
x2
1
, w0 = �2 y0

y2
1
. Since ϕ (c) contains ϕ (a) = a and

ϕ (b) = ∞, the h-line ϕ (l) is part of a euclidean line of X . With the last Remark
before Proposition 34 and in view of Case 1, we hence get

cosh δ (x, y) = cosh δ (v, w) = 1 +
(v − w)2

2v0w0
.

Observe now

(v1 − w1)2

v0w0
− (x1 − y1)2

x0y0
=

1
v0w0

(
v0

x0
x1 − w0

y0
y1

)2

− (x1 − y1)2

x0y0
= 0,

by applying v0x
2
1 = �2x0 and w0y

2
1 = �2y0. Hence

cosh δ (x, y) = 1 +
(v − w)2

2v0w0
= 1 +

(x − y)2

2x0y0
,

in view of v1 − w1 = v − w and x1 − y1 = x − y. �
Theorem 35. All bijections ψ of Σ with

δ
(
ψ (x), ψ (y)

)
= δ (x, y) (3.65)

for all x, y ∈ Σ are products of the restrictions on Σ of the following M -transfor-
mations:

(α) the similitudes f (x) = kx with 0 < k ∈ R,

(β) the inversion ι,

(γ) the mappings f (x) = ω (x) + a with ω ∈ O (x), ω (t) = t and a ∈ H (t, 0).
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Proof. a) Observe that every µ ∈ G (Σ) satisfies (3.65) and, moreover, that all
mappings (α), (β), (γ) belong to G (Σ). The essential result of Theorem 35 is
hence that G (Σ) is the group of all h-distance preserving bijections of Σ.
b) ω ∈ O (X) with ω (t) = t implies

ω (x + x0t) = ω (x) + x0t, ω (x) t = 0,

since 0 = xt = ω (x)ω (t) = ω (x) t. Hence we get for a mapping (γ)

f (x) = ω (x) + a and [f (x)]0 = x0,

in view of a = a. The inverse mapping of (γ) is

f−1(x) = ω−1(x) − ω−1(a).

Observing ω−1 ∈ O (X), ω−1(t) = t, 0 = ta = ω−1(t)ω−1(a) = tω−1(a), it must
be also of type (γ). The inverse mapping of f (x) = kx, k > 0, is f−1(x) = 1

k x,
i.e. it is of type (α) again.
c) Let the bijection ψ of Σ satisfy (3.65). Hence ψ (t) ∈ Σ, i.e.

ψ (t) =: b + b0t, b0 > 0, (3.66)

and thus g (x) = 1
b0

x − 1
b0

b is the product of a mapping (α) and a mapping (γ):

x → x − b → 1
b0

(x − b).

Note gψ (t) = t. Put gψ (2t) =: c. With (3.65) we get

δ (t, 2t) = δ (t, c),

i.e., by c ∈ Σ and (3.63), 0 < 1
2 c0 = c2 +(c0−1)2. If c0 = 2, then c = 0, i.e. c = 2t,

i.e. gψ (2t) = 2t. If c0 �= 2, define d ∈ H (t, 0) by

d :=
2c

2 − c0
.

Put h := σ−1λισ with σ (x) := x− d, λ (x) := (1 + d2)x. The mapping h is hence
a product of mappings (α), (β), (γ). We obtain

hgψ (t) = t, hgψ (2t) = 2t,

in view of 1
2c0 = c2 + (c0 − 1)2 and c0 �= 2. There hence exists a product π of

mappings (α), (β), (γ) with πψ (t) = t and πψ (2t) = 2t. For every x ∈ Σ we get

δ (t, x) = δ
(
t, πψ (x)

)
, δ (2t, x) = δ

(
2t, πψ (x)

)
,

i.e., by y := πψ (x), x0 = y0 and x2 = y2.
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d) Put τ := πψ. If τ (x+x0t) =: ϕ (x, x0)+x0t, by observing τ (x) = y = y+y0t =
y + x0t, with ϕ (x, x0) ∈ H (t, 0), then ϕ (x, x0) = ϕ (x, ξ) for all positive reals x0

and ξ. In fact,

δ (x + x0t, x + ξt) = δ
(
τ (x + x0t), τ (x + ξt)

)
implies (x0 − ξ)2 =

(
ϕ (x, x0) − ϕ (x, ξ)

)2 + (x0 − ξ)2, i.e.

ϕ (x, x0) = ϕ (x, ξ).

So ϕ (x) := ϕ (x, x0) does not depend on x0 > 0.
e) In view of d), we define a bijection T of X ′ with T | Σ = τ . Put T (∞) = ∞
and

T (x + x0t) := ϕ (x) + x0t (3.67)

for all real x0 and all x ∈ H (t, 0). Since T (t) = t, we get ϕ (0) = 0. Hence
T (0) = 0, by (3.67). Now

δ (x + t, y + t) = δ
(
ϕ (x) + t, ϕ (y) + t

)
implies (x − y)2 =

(
ϕ (x) − ϕ (y)

)2
and hence

(x − y)2 =
(
T (x) − T (y)

)2
for all x, y ∈ X . Thus T ∈ O (X), T (t) = t, i.e. the mapping x → T (x) is of type
(γ). Hence ψ = π−1T | Σ, i.e. the extension π−1T of ψ is a product of mappings
(α), (β), (γ). �
Proposition 36. Every µ ∈ G (Σ) can be written in the form β or in the form αιβ
with

α (x) := kx + a, k > 0, a ∈ t⊥,

β (x) := lω (x) + m, l > 0, m ∈ t⊥, ω ∈ O (X), ω (t) = t.

Proof. According to step a) of the proof of Theorem 35, G (Σ) is exactly the group
of all h-distance preserving bijections of Σ. Let now ψ be an arbitrary h-distance
preserving bijection of Σ, so an element of G (Σ) = Γ (Σ). According to steps c),
d), e) of the proof of Theorem 35, we get

hgψ (x) = ω (x), ω ∈ O (X), ω (t) = t,

with h = id for c0 = 2 where c := gψ (2t), and h = σ−1λισ for c0 �= 2 such that

σ (x) = x − d, λ (x) = (1 + d2)x, d :=
2c

2 − c0
,

g (x) =
1
b0

x − 1
b0

b, b := ψ (t).
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In other words, if c0 = 2, we obtain, by observing (3.66),

ψ (x) = g−1ω (x) = b0ω (x) + b, b0 > 0,

i.e. a mapping of the form β. If c0 �= 2, we get

ψ = g−1h−1ω = g−1σ−1ιλ−1σω,

i.e. ψ = αιβ with

α (x) = g−1σ−1(x) = b0x + (b0d + b), b0 > 0, b0d + b ∈ t⊥,

β (x) = λ−1σω (x) = lω (x) + m, ω (t) = t,

where l = 1
1+d2 > 0 and m = − d

1+d2 , m ∈ t⊥. �

Theorem 37. The geometries
(
Σ, G (Σ)

)
(Poincaré model) and

(
X, M (X, hyp)

)
(Weierstrass model), both based on X, are isomorphic. Here M (X, hyp) (see
(2.60)) is the group of hyperbolic motions of X.

Proof. a) The mapping σ : Σ → X with

σ (x) =
x

x0
+

x2 − 1
2x0

t (3.68)

must be a bijection: if y ∈ X , the uniquely determined inverse image x is given by

x = x0y, x0 =
y0 +

√
1 + y2

1 + y2 .

Note that x0 > 0, since y2 = y2 + y2
0 . Important will be the relation

δ (x, y) = hyp
(
σ (x), σ (y)

)
(3.69)

for all x, y ∈ Σ between the distance notions δ, (3.63), and hyp,

coshhyp (x, y) =
√

1 + x2
√

1 + y2 − xy.

Equation (3.69) follows from

1 + σ2(x) =
(

x2 + 1
2x0

)2

,

i.e. from

coshhyp
(
σ (x), σ (y)

)
=

x2 + y2 − 2x y

2x0y0
= cosh δ (x, y)

for x, y ∈ Σ.
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b) Define τ : G (Σ) → M (X, hyp) by τ (µ) = σµσ−1 for all µ ∈ G (Σ), and observe,
by (3.69),

hyp
(
σ (x), σ (y)

)
= δ (x, y) = δ

(
µ (x), µ (y)

)
= hyp

(
σµ (x), σµ (y)

)
= hyp

(
τσ (x), τσ (y)

)
for x, y ∈ Σ and µ ∈ G (Σ). This implies that if µ is an h-distance preserving
bijection of Σ, then τ (µ) is a motion of (X, hyp). On the other hand, if f is a
motion of (X, hyp), then µ := σ−1fσ is in G (Σ). Hence τ is an isomorphism
between G (Σ) and M (X, hyp) satisfying

σµ (x) = τ (µ)σ (x)

for all x, y ∈ Σ and µ ∈ G (Σ). �

Proposition 38. All hyperbolic lines l of Σ are given as follows:

(α) Take m, r ∈ X with m0 = 0 = r0, r �= 0. Then put

l = {m + r cosϕ + ‖r‖ · t sin ϕ | 0 < ϕ < π}.

(β) Take p ∈ X with p0 = 0 and put

l = {p + ξt | 0 < ξ ∈ R}.

Proof. Let c be an M -circle orthogonal to B = H (t, 0). Put c ∩ B := {a, b}. If
b = ∞, we get c ∩ Σ = {a + ξt | ξ > 0} with a0 = 0, since a ∈ B. On the other
hand, given l from (β), then

{p + ξt | ξ ∈ R} ∪ {∞}

is an M -circle orthogonal to B. Assume now ∞ �∈ {a, b} = c ∩ B with c ⊥ B.
Define

α (x) = x − ι (a − b), β (x) = x − b.

Hence αιβ (a) = 0, αιβ (b) = ∞. Thus, by l := c ∩ Σ,

αιβ (l) = {ξt | ξ > 0}, i.e.

l = β−1ια−1
({ξt | ξ > 0}) =

{
b +

ι (a − b) + ξt(
ι (a − b) + ξt

)2 ∣∣ξ > 0

}
.

Because of a �= b and a, b ∈ B = t⊥, we get 0 �= a − b ∈ t⊥, i.e.

ι (a − b) =
a − b

(a − b)2
∈ t⊥.
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Put m := a+b
2 , r := a−b

2 . Hence ι (a − b) = r
2r2 and{

b +
ι (a − b) + ξt(
ι (a − b) + ξt)2

∣∣∣∣∣ ξ > 0

}
(3.70)

=
{

m + r
1 − η2

1 + η2
+ ‖r‖ 2ηt

1 + η2

∣∣∣∣ η > 0
}

,

by putting η := 2‖r‖ξ. Define

sin ϕ :=
2η

1 + η2

with ϕ ∈]0, π[ for η > 0. Hence l gets the form (α). Vice versa, if we are given l
from (α), let c be the M -circle containing l, and put m+r =: a, m−r =: b. Hence
a �= b and a, b ∈ t⊥. Working again with (3.70), we obtain

αιβ (l) = {ξt | ξ > 0},
i.e. c ⊥ B, since {ξt | ξ ∈ R} ∪ {∞} ⊥ B. �

3.9 Spears, Laguerre cycles, contact

The basis will be again a real inner product space X of (finite or infinite) dimension
≥ 2.

A spear of X is an ordered pair (A, E) where A is a euclidean hyperplane
H (a, α) of X and where E is one of the sides of A. Two spears (Ai, Ei), i = 1, 2,
are called equal if, and only if, A1 = A2 and E1 = E2.

Occasionally, it will be useful to apply the following notation for the two
sides of H (a, α),

H+(a, α) := {x ∈ X | ax > α},
H−(a, α) := {x ∈ X | ax < α}.

Of course, this notation depends on a common real factor λ �= 0 of a, α: so observe

H+(a, α) = H−(λa, λα)

in the case λ < 0, despite the fact that H (a, α) = H (λa, λα). Obviously, there
is no difference between the definition of the two sides of H ′(a, α) of section 8
and that of the two sides H+(a, α), H−(a, α) of H (a, α). However, there will be a
difference between the definition of the two sides of an M -ball B (m, �) and that
of the two sides of the ball B (m, �), � > 0, of X . We define these two sides as
follows,

B+(m, �) := {x ∈ X | (x − m)2 > �2},
B−(m, �) := {x ∈ X | (x − m)2 < �2}.
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A Laguerre cycle of X is a point of X or an ordered pair (C, D) where C is a
ball B (m, �), � > 0, of X , and D one of its sides. Let z1, z2 be Laguerre cycles.
If z1 ∈ X , we will say that z1, z2 are equal exactly in the case that z2 is the same
point. If z1 is the Laguerre cycle (C, D), then the Laguerre cycles z1, z2 are called
equal if, and only if, z2 is the Laguerre cycle (C, D) as well.

In section 5 (see Proposition 12, c)) we defined the notion of a tangent hy-
perplane H (a, α) to a ball B (m, �), � > 0, by means of

#[B (m, �) ∩ H (a, α)] = 1. (3.71)

Proposition 39. (3.71) holds true if, and only if,

(α − am)2 = �2a2. (3.72)

Proof. Assume (3.71), i.e. B (m, �) ∩ H (a, α) =: {p}. Hence, by Proposition 12,
c),we obtain H (a, α) = H

(
m − p, (m − p) p

)
. Thus, by observing Proposition 12

of chapter 2, there exists a real λ �= 0 with

a = λ (m − p), α = λ (m − p) p.

This implies (α − am)2 = λ2(m − p)2 · (m − p)2 = a2 · �2. Assume, vice versa,
(3.72). Define

p := m +
α − am

a2
a, (3.73)

and observe (p − m)2 = �2 and ap = α, by (3.72). Note, moreover, α − am �= 0,
because of (3.72), � �= 0, a �= 0. Hence

p ∈ B (m, �) ∩ H (a, α),

λ := am−α
a2 �= 0,

i.e., by (3.73) and ap = α,

λa = m − p, λα = λap = (m − p) p.

Now apply Proposition 12, c) on H (a, α) = H
(
m − p, (m − p) p

)
. �

If a �= 0 is in X , then X = a⊥ ⊕Ra holds true. Observe that x = v + w with
x ∈ X, v ∈ a⊥, w ∈ Ra implies

v = x − xa

a2
a, w =

xa

a2
a. (3.74)

Obviously, H (a, α) = x0 + a⊥ := {x0 + y | y ∈ a⊥} for all x0 ∈ H , and hence

H+(a, α) = {p + λa | p ∈ H and λ > 0}, (3.75)

H−(a, α) = {p + λa | p ∈ H and λ < 0} : (3.76)
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if x ∈ X satisfies ax > α, then x = p + λa with

p := x +
α − ax

a2
a ∈ H (a, α) and λ :=

ax − α

a2
> 0.

We already defined spears and Laguerre cycles of X . A third fundamental notion
in our present context is that one of contact between a spear and a Laguerre cycle
z. We say that the spear (A, E) is in contact with or touches z if, and only if,

(1) z ∈ A in the case that z is a point,

(2) A is a tangent hyperplane to C and

E ⊆ D or D ⊆ E in the case z = (C, D).

If the spear s touches the Laguerre cycle z we will write s − z or z − s, otherwise
s �−z or z �−s.

Suppose that the spear s = (A, E) is in contact with the Laguerre cycle z.
The point p of contact of s and z is defined by z if z ∈ X , and by {p} = A∩C for
z = (C, D).

The pair (m, �) will be called the (cycle) coordinates of
(
B (m, �), B+(m, �)

)
and (m,−�) those of (B, B−). If z ∈ X , then its cycle coordinates are defined by
(z, 0).

(a,
√

a2, α) are called the (spear) coordinates of the spear(
H (a, α), H+(a, α)

)
and (a,−√

a2, α) those of
(
H (a, α), H−(a, α)

)
.

Since H (a, α) = H (λa, λα) for a real λ �= 0, we must determine the coordi-
nates of

S+
λ :=

(
H (λa, λα), H+(λa, λα)

)
,

S−
λ :=

(
H (λa, λα), H−(λa, λα)

)
,

and see how they depend on the coordinates of S+
1 , S−

1 .
Case 1. λ > 0.
The coordinates of S+

λ , S−
λ are

(λa,
√

(λa)2, λα) = (λa, λ
√

a2, λα),

(λa,−√(λa)2, λα) = (λa,−λ
√

a2, λα),

respectively.
Case 2. λ < 0.
Similarly, we get (λa,−λ

√
a2, λα), (λa, λ

√
a2, λα), as coordinates for S+

λ , S−
λ , re-

spectively.
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Spear coordinates must be homogeneous coordinates: (a, ξ, α) with 0 �= a2 =
ξ2 and (b, η, β) with 0 �= b2 = η2 determine the same spear if, and only if, there
exists λ �= 0 with b = λa, η = λξ, β = λα. This follows from

S+
λ = S+

1 , S−
λ = S−

1 for λ > 0,

S+
λ = S−

1 , S−
λ = S+

1 for λ < 0.

Proposition 40. The spear (a, ξ, α) touches the Laguerre cycle (m, τ) if, and only
if,

am + ξτ = α. (3.77)

Proof. If τ = 0, then (3.77) characterizes the fact that m is on the underlying
hyperplane of (a, ξ, α). Suppose now that τ �= 0. Without loss of generality, we
may assume ξ = 1, since otherwise we would work with(

a

ξ
, 1,

α

ξ

)
,

by observing that spear coordinates are homogeneous coordinates and that (3.77)
does not depend on a common factor �= 0 of a, ξ, α. Hence a2 = 1 for (a, 1, α). Thus
(a, 1, α) is given by

(
H (a, α), H+

)
. Denote the Laguerre cycle (m, τ) by (B, B∗).

a) Assume that (a, 1, α) touches (m, τ). (3.72) implies

α − am ∈ {τ,−τ}, (3.78)

and {p} = H ∩ B is given, in view of (3.73), by

p = m + (α − am) a. (3.79)

Assume α− am = −τ . Hence, by (3.79), p = m− τa. For τ < 0 we get B∗ = B−,
i.e. B− ⊆ H+, by (B, B−)−(H, H+), i.e. m ∈ B− ⊆ H+. Thus m = p+λa, λ > 0,
by (3.75), contradicting λ = τ < 0. For τ > 0 we get B∗ = B+, i.e. H+ ⊆ B+.
Hence m ∈ H−, since m ∈ H ∪ H+ would imply m ∈ H or m ∈ B+. Thus
m = p + λa, λ < 0, by (3.76), contradicting λ = τ > 0.

We obtained that our assumption α − am = −τ does not hold true. Hence
α − am = τ , by (3.78). Thus (3.77) is satisfied.
b) Assume that (3.77) holds true, i.e. am + τ = α for the spear (a, 1, α) and the
cycle (m, τ), τ �= 0. The underlying hyperplane of (a, 1, α) is H := H (a, α), and
the underlying ball of (m, τ) is B := B (m, |τ |). Observe that (3.77) (with ξ = 1)
implies (3.72), in view of a2 = 1, by ξ = 1, and � = |τ |. Hence H is a tangent
hyperplane to B with

H ∩ B = {p},
p = m + (α − am) a = m + τa, by (3.73). Since H = p + a⊥, we get, by (3.75),

H+ = {(p + v) + λa | v ∈ a⊥ and λ > 0}.
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Case τ > 0.
Here B∗ = B+. We would like to show H+ ⊆ B+, because then (B, B+)−(H, H+)
holds true. But x ∈ H+ implies

(m − x)2 =
(
m − [(p + v) + λa]

)2 = (τ + λ)2 + v2 > τ2.

Case τ < 0.
Here we get B− ⊆ H+. In fact! If x ∈ B−, then

x − m ∈ X = a⊥ ⊕ Ra,

i.e. x − m =: v + µa with v ∈ a⊥ and µ ∈ R, i.e.

τ2 > (x − m)2 = v2 + µ2 ≥ µ2,

i.e. −τ > |µ| ≥ −µ, i.e. µ > τ . Moreover, by p = m + τa,

x = m + v + µa = (p + v) + (µ − τ) a ∈ H+. �

Sometimes it will be useful to identify a spear s with the set of all Laguerre
cycles touching this spear s, and also a Laguerre cycle c with the set of all spears
in contact with c.

Lemma 41. Denote by Σ the set of all spears of X, and by Γ the set of all Laguerre
cycles. If s1, s2 ∈ Σ satisfy

{c ∈ Γ | c − s1} = {c ∈ Γ | c − s2}, (3.80)

then s1 = s2, and if c1, c2 ∈ Γ satisfy

{s ∈ Σ | s − c1} = {s ∈ Σ | s − c2},

then c1 = c2.

Proof. a) Let (a, 1, α), (b, 1, β) be coordinates of s1, s2, respectively. By (3.77) and
(3.80) we know that

am + τ = α and bm + τ = β

have the same solutions (m, τ). If we look to the solutions (x, 0), we obtain that
the hyperplanes of equations ax = α, bx = β are identical. Hence, by Proposition
12, chapter 2, there exists a real λ �= 0 with b = λa and β = λα. Furthermore,
a2 = 1 = b2 implies λ2 = 1. The case λ = −1 does not occur, since otherwise we
would determine all solutions (x, 1) with the consequence that the hyperplanes of
equations ax = α − 1 and ax = α + 1 would coincide.
b) Let (m, τ), (n, σ) be coordinates of c1, c2, respectively. We hence know that

am + τ = α and an + σ = α
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must have the same solutions (a, 1, α), a2 = 1. Obviously, (εv, 1, εvm + τ) with
v ∈ X, v2 = 1, ε ∈ {1,−1}, solves am + τ = α. Hence

εvn + σ = (εvm + τ), ε ∈ {1,−1},
i.e. σ = τ , i.e. v (n − m) = 0 for all v ∈ X . Thus m = n. �

Two euclidean hyperplanes H1 = H (a, α), H2 = H (b, β) of X are called
parallel (see section 7, chapter 2), H1 ‖ H2, provided H1 = H2 or H1 ∩ H2 = ∅.
Of course, H1 ‖ H2 is equivalent with Ra = Rb, since Ra �= Rb implies ξa + ηb ∈
H1 ∩ H2 where

a (ξa + ηb) = α,

b (ξa + ηb) = β,

by observing ∣∣∣∣ a2 ab
ba b2

∣∣∣∣ = a2b2 − (ab)2 �= 0

(see Lemma 1, chapter 1).

Two spears s1 �= s2 are called parallel, s1 ‖ s2, provided there does not exist
c ∈ Γ with s1 − c − s2. Moreover, every spear is said to be parallel to itself.

Proposition 42. Two spears (a, ξ, α) and (b, η, β) are parallel if, and only if, one
of the following equivalent properties hold true.

(i) ξb = ηa,

(ii) H1 ‖ H2 and V1 ⊆ V2 or V2 ⊆ V1, where (H1, V1), (H2, V2) are the spears
(a, ξ, α), (b, η, β), respectively.

Proof. Without loss of generality we may assume ξ = 1 = η. If the two spears
coincide, then (a, 1, α) = (b, 1, β), and hence (i) holds true. If they are distinct
and parallel, then H1 ∩H2 = ∅, because c ∈ H1 ∩H2 would satisfy c− (Hi, Vi) for
i = 1, 2. Hence H1 ‖ H2, i.e. b = λa, λ2 = 1. If λ were -1, then, by (3.77),(

p − α + β

2
a,

α + β

2

)
, p ∈ H1,

would touch both spears.
(i) implies (ii). In fact! a = b (observe ξ = 1 = η) yields H1 ‖ H2. Take p1 ∈ H ,
i.e. ap1 = α, and put p2 := p1 + (β − α) a ∈ H2. If β ≥ α, then H+

2 ⊆ H+
1 , by

(3.75), if β < α, then H+
1 ⊂ H+

2 .
(ii) implies (H1, V1) ‖ (H2, V2). If those spears are distinct, we have to show that
there does not exist c ∈ Γ touching both. Since H1 ‖ H2, we get b = λa, i.e.
λ2 = 1. If λ = −1, V1 ⊆ V2 or V2 ⊆ V1 does not hold true. Hence λ = 1, i.e. the
two distinct spears s1, s2 are (a, 1, α) and (a, 1, β). Because of α �= β and (3.77)
there does not exist c ∈ Γ with s1 − c − s2. �
Remark. From Proposition 42, (i), follows that the parallel relation on Σ is an
equivalence relation.
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3.10 Separation, cyclographic projection

If (m1, τ1), (m2, τ2) are two Laguerre cycles of X , the real number

l (c1, c2) = (m1 − m2)2 − (τ1 − τ2)2

will be called their separation, or their power.
We say that c1 ∈ Γ touches c2 ∈ Γ, designated by c1 − c2, if, and only if,

c1 = c2 or
S (c1, c2) := {s ∈ Σ | c1 − s − c2}

consists of exactly one spear.

Proposition 43. Let c1, c2 be Laguerre cycles. Then

(α) c1 − c2 ⇔ l (c1, c2) = 0,

(β) S (c1, c2) = ∅ ⇔ l (c1, c2) < 0,

(γ) S (c1, c2) �= ∅ ⇔ l (c1, c2) ≥ 0

hold true.

Proof. (β) follows from (γ). Let (mi, τi) be the coordinates of c1, c2. Assume
l (c1, c2) ≥ 0. If m1 = m2, then

0 ≤ l (c1, c2) = −(τ1 − τ2)2,

i.e. c1 = c2, i.e. S (c1, c2) �= ∅. If m1 �= m2, take b ∈ X with b2 = 1 and b · (m1 −
m2) = 0. Define α := am1 + τ1 and a ∈ X by

(m1−m2)2 · a := b
√

l (c1, c2) · (m1−m2)2 − (m1−m2)(τ1−τ2). (3.81)

Hence a2 = 1 and a (m1 − m2) + (τ1 − τ2) = 0. Thus, by Proposition 40, (a, 1, α)
touches c1 and c2, i.e. (S (c1, c2) �= ∅. In order to prove the other part of (γ),
assume that (a, 1, α) touches c1 and c2. From

am1 + τ1 = α, am2 + τ2 = α, a2 = 1 (3.82)

we get (τ1 − τ2)2 = [a (m1 − m2)]2 ≤ a2(m1 − m2)2, i.e. l (c1, c2) ≥ 0. Finally,
we would like to prove (α). Assume l (c1, c2) = 0. There is nothing to show for
c1 = c2. If c1 �= c2, there exists, by (γ), (a, 1, α) touching c1 and c2. Hence (3.82)
holds true and also, as before,

(τ1 − τ2)2 = [a (m1 − m2)]2 ≤ a2(m1 − m2)2 = (m1 − m2)2.

Since also 0 = l (c1, c2) = (m1 − m2)2 − (τ1 − τ2)2 is satisfied, we even obtain

[a (m1 − m2)]2 = a2(m1 − m2)2,
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i.e., by Lemma 1, chapter 1, that a, m1 − m2 are linearly dependent. Hence m1 −
m2 = λa with λ ∈ R and thus, by (3.82), λ = τ2 − τ1. Since c1 �= c2, we get λ �= 0.
The spear (a, 1, α) is hence uniquely determined by

a =
m1 − m2

τ2 − τ1
and α = am1 + τ1. (3.83)

Thus c1 − c2. Vice versa assume c1 − c2. We then must prove l (c1, c2) = 0. This
is clear for c1 = c2. Hence suppose that c1 �= c2. From (γ) we get l (c1, c2) ≥ 0.
Replacing b in (3.81) by −b, we also obtain a spear (a′, 1, α′) touching c1 and c2.
Since c1 − c2, the spears (a, 1, α) and (a′, 1, α′) must be identical. This, by (3.81),
implies l (c1, c2) = 0. �
Proposition 44. Let s = (H, H∗) be a spear and c1, c2 be Laguerre cycles with
c1 − s − c2. If pi, i = 1, 2, is the point of contact of s and ci, then

l (c1, c2) = (p1 − p2)2. (3.84)

Proof. Let (a, 1, α) be coordinates of s. Then, by (3.77), (3.73),

pi = mi + τia, i = 1, 2.

This and ami + τi = α, i = 1, 2, imply

(p1 − p2)2 = [(m1 − m2) + (τ1 − τ2) a]2

= (m1 − m2)2 + 2(τ1 − τ2) a (m1 − m2) + (τ1 − τ2)2

= l (c1, c2). �
If l (c1, c2) ≥ 0, i.e. by Proposition 43, (γ), that S (c1, c2) �= ∅, the expression√

l (c1, c2) (3.85)

is called the tangential distance of c1, c2. In other words, it exists exactly if there
is at least one spear s touching c1 and c2. By (3.84),

√
l (c1, c2) represents the

euclidean distance between the two points pi of contact of s and ci, i = 1, 2.

If the separation l (c1, c2) of c1 and c2 is negative, there is also a geometric
interpretation of l (c1, c2):
A. If l (c1, c2) < 0, there exists c ∈ Γ with c1 − c − c2. Take e ∈ X with e2 = 1.
Then

[e (m1 − m2)]2 ≤ e2(m1 − m2)2 = (m1 − m2)2 < (τ1 − τ2)2,

because of l (c1, c2) < 0. Hence k := e (m1 − m2) − (τ1 − τ2) �= 0. Put

m := m2 + λe, τ := τ2 + λ, 2kλ := l (c1, c2).

Now Proposition 43, (α), implies c1 − (m, τ) − c2.
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B. If there is no spear touching c1 and c2, i.e., by Proposition 43, (β), l (c1, c2) < 0,
then, as we will prove,

l (c1, c2) = −4l (y, z) (3.86)

holds true where

y :=
(

m1 + m2

2
,
τ1 + τ2

2

)
(3.87)

is the so-called mid–cycle of c1 and c2, and where z is a Laguerre cycle with
c1 − z − c2 (see step A for the existence of such a z).

Since l (c1, c2) is negative, we obtain l (y, z) > 0, and this latter separation
can hence be interpreted by a tangential distance.

In order to prove (3.86), we again will work with the real vector space

Z := X ⊕ R,

as in section 8, but now with the product

(m, τ) · (n, σ) := mn − τσ (3.88)

instead of (a, α) · (b, β) := ab + αβ as in (3.54). Observe the rules

xy = yx, (x + y) z = xz + yz, (λx) · y = λ · (xy)

for all x, y, z ∈ Z and λ ∈ R. However, x2 may be negative for x �= 0: take e ∈ X
with e2 = 1 and put x = (e, 2). We will call Z the vector space of Laguerre cycles
of X .

Equation (3.86) reads as (c1 − c2)2 = −4(y − z)2 in Z with

2y = c1 + c2 and (c1 − z)2 = 0 = (c2 − z)2.

Note that we have to distinguish between the difference x−y in Z and the contact
x − y of x, y ∈ Γ. A proof of (3.86) is now given by

−(c1 − c2)2 = −((c1 − z) − (c2 − z)
)2 = 2(c1 − z)(c2 − z),

(2y − 2z)2 =
(
(c1 − z) + (c2 − z)

)2 = 2(c1 − z)(c2 − z). �

The mapping which associates to a Laguerre cycle c of X its coordinates
(m, τ) in the vector space Z is called cyclographic projection. We are now interested
in the images of spears s,

s = {c ∈ Γ | c − s}, (3.89)
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under this mapping. Here we will work with the inner product (3.54). In this
context we prefer to speak of the vector space Y (more precisely of the real inner
product space Y ), as we did in section 7. If s has coordinates (a, ξ, α), then (3.89)
is given by all (m, τ) ∈ Y satisfying

(a, ξ) · (m, τ) = α, (3.90)

according to (3.77). This is a hyperplane of the real inner product space Y , but of
course, a special hyperplane, since a2 = ξ2 holds true. Assuming (a, ξ)2 = 1, i.e.
a2 + ξ2 = 1, we obtain for the cosine of the angle between (a, ξ) and (0, 1),

(a, ξ) · (0, 1) = ξ ∈
{

1√
2
,− 1√

2

}
.

We call these hyperplanes of Y its 45◦-hyperplanes,

(a, ξ)(m, τ) = α, (a, ξ)2 = 1,
√

2 ξ ∈ {1,−1}.
The 45◦-hyperplanes of Y are hence exactly the images of the spears under the
cyclographic projection. Two spears are parallel if, and only if, the image hyper-
planes are parallel (see Proposition 42, (i)).

In order to define the cylinder model for our structure of spears and Laguerre
cycles take the cylinder

C := {(y, η) ∈ Y | y2 = 1}
of Y . If H

(
(b, β), γ

)
, (b, β) �= 0, is a hyperplane of Y such that (b, β) �⊥ (0, 1) holds

true, then

C ∩ H
(
(b, β), γ

)
(3.91)

is called a hyperplane cut of C. A line l of Y contained in C is said to be a generator
of C. If l ⊂ C with

l = {(a, α) + λ
(
(b, β) − (a, α)

) | λ ∈ R},
(a, α), (b, β) ∈ C, (a, α) �= (b, β), then [a + λ (b − a)]2 = 1 holds true for all λ ∈ R,
i.e. ab = 1, i.e. a = b, by Lemma 1, chapter 1. Hence l must be parallel to the axis

R · (0, 1)

of the cylinder C. Thus we get all generators g of C by taking a ∈ X with a2 = 1
and putting

g = {(a, λ) | λ ∈ R}.
We will say that the hyperplane H of Y is parallel to the line h of Y provided
there exists a line h0 ⊂ H parallel to h. This implies that C ∩ H

(
(b, β), γ

)
is a
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hyperplane cut if, and only if, H is not parallel to the axis of C. If (m, τ) �= (n, σ)
are both in H such that

(m, τ) − (n, σ) ∈ R (0, 1),

then m = n, i.e. bm + βτ = γ = bm + βσ, i.e. (m, τ) = (n, σ) for β �= 0. Thus
(b, β) ⊥ (0, 1). If, vice versa, (3.91) is not a hyperplane cut, i.e. if (b, β) ⊥ (0, 1),
i.e. β = 0 holds true, then b �= 0, by (b, β) �= 0 and

γ

b2
(b, β) + R (0, 1) ⊂ H,

i.e. H is parallel to the axis of C.
This is now the cylinder model. Associate to the spear of X with coordinates

(a, 1, α) the point (a, α) of C. This is a bijection between C and the set Σ of all
spears of X . The important thing is that the image of a Laguerre cycle

c = {s ∈ Σ | s − c} (3.92)

is a hyperplane cut of C and that the inverse image of every hyperplane cut must
be a Laguerre cycle of X . In fact, the image of (3.92) is the hyperplane cut

C ∩ H
(
(−m, 1), τ

)
(3.93)

where (m, τ) are the coordinates of c: this follows from

(−m, 1)(a, α) − τ = −ma + α − τ = 0

by observing (3.77) with ξ = 1, by noticing a2 = 1, i.e. (a, α) ∈ C, and H �⊥ (0, 1).
Let, vice versa, (3.91) be an arbitrary hyperplane cut of C. Hence β �= 0. Put

(m, τ) :=
(
− b

β
,
γ

β

)

and (3.93) becomes (3.91).

Lemma 45. If both sides of C ∩ H
(
(b, β), γ

)
= C ∩ H

(
(b′, β′), γ′) are hyperplane

cuts, then the hyperplanes involved coincide.

Proof. We may assume β = 1 = β′ without loss of generality. Take arbitrarily
a ∈ X with a2 = 1. Then (a, γ − ba) ∈ C ∩ H

(
(b, 1), γ

)
and hence

b′a + γ − ba = γ′.

Take a ⊥ b′− b. Hence γ = γ′. Thus (b′− b) a = 0 for all a ∈ X with a2 = 1. Hence
b′ = b. �

Note that two spears are parallel if, and only if, their images on C are on the
same generator of C (see Proposition 42, (i)).

Remark. We would like to emphasize that we designated by Y the real vector
space X ⊕R equipped with the inner product (3.54), and that Z denotes the real
vector space X ⊕ R furnished with the product (3.88).
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3.11 Pencils and bundles

In this section we shall work with the vector space Z, so with X⊕R and the product
(3.88). Of course, X is a subspace of Z in the sense that x of X is identified with
the element (x, 0) of Z. As far as elements a, b of X are concerned, we get for these

ab = (a, 0)(b, 0) = ab − 0 · 0,

i.e. we get their inner product in X . Hence for elements a, b of Z which already
belong to X , we may apply, for instance, Lemma 1 of chapter 1.

Note
l (c1, c2) = (c1 − c2)2

for elements c1, c2 of Z.

Let c1 �= c2 be Laguerre cycles satisfying c1 − c2. Then

Bp(c1, c2) = {c ∈ Γ | c1 − c − c2} (3.94)

is called a parabolic pencil of Laguerre cycles.

Proposition 46. Let c1 �= c2 be elements of Γ with c1 − c2. Then the following
statements (α), (β), (γ) hold true.

(α) If v �= w are in Bp(c1, c2), then v − w and Bp(v, w) = Bp(c1, c2).

(β) The spear s touching c1, c2 touches every v ∈ Bp(c1, c2).

(γ) Bp(c1, c2) = {c1 + � (c2 − c1) | � ∈ R}.
Proof. If c ∈ Bp(c1, c2), then, by (3.94) and Proposition 43, l (c, ci) = 0, i = 1, 2
holds true. Put

xi := c − ci = (mi, τi), i = 1, 2.

Then x2
i = 0 for i = 1, 2, and, by l (c1, c2) = 0, also (x1 − x2)2 = 0, i.e. x1x2 = 0,

i.e. m1m2 = τ1τ2. Hence, by x2
i = 0,

(m1m2)2 = τ2
1 τ2

2 = m2
1m

2
2.

Thus, by Lemma 1, chapter 1, m1, m2 are linearly dependent. Even x1, x2 are
linearly dependent. This is clear for x1 = 0 or x2 = 0. Assume x1 �= 0 �= x2. If
mj = λmi, λ ∈ R, for suitable {i, j} = {1, 2}, then m1m2 = τ1τ2 implies

λm2
i = τiτj , (3.95)

and m2
j = τ2

j , by x2
j = 0, yields (λmi)2 = m2

j = τ2
j , i.e. λ2τ2

i = λ2m2
i = τ2

j . Hence
τj ∈ {λτi,−λτi}. If τj = λτi, then xj = λxi. If τj �= λτi, then τj = −λτi and λ �= 0.
Hence 0 ≤ m2

i = −τ2
i ≤ 0, by (3.95), i.e. mi = 0 = τi. But xi = 0 contradicts

x1 �= 0 �= x2. Thus xj = λxi and x1, x2 are linearly dependent.
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Now xj = λxi yields c − cj = λ (c − ci). Since c1 �= c2, we obtain λ �= 1, and
hence

c = ci + γ (cj − ci) = cj + δ (ci − cj) =: c1 + � (c2 − c1)

with γ · (1 − λ) := 1 and δ := 1 − γ. Thus

Bp(c1, c2) ⊆ {c1 + � (c2 − c1) | � ∈ R}.

Moreover, we have to show d := c1 + � (c2 − c1) ∈ Bp(c1, c2) for every � ∈ R: this
follows from

(d − c1)2 = �2(c2 − c1)2 = 0, (d − c2)2 = (� − 1)2(c2 − c1)2 = 0,

i.e. c1 − d− c2. This proves (γ). Statement (α) follows form (γ). In order to show
(β), put

s = (a, 1, α), ci =: (mi, τi) for i = 1, 2.

Now am1 + τ1 = α and am2 + τ2 = α imply

am + τ = α

for (m, τ) := c1 + � (c2 − c1). �
Exactly the lines

Bp(c1, c2) = {c1 + � (c2 − c1) | � ∈ R}, c1 �= c2, l (c1, c2) = 0,

of Z = X ⊕ R represent the parabolic pencils.

Proposition 47. Let c1 �= c2 be Laguerre cycles with c1 − c2. The only spear s
touching c1 and c2 is given as subset of Γ by N ∪ Bp(c1, c2) with

N := {c ∈ Γ | there is no w ∈ Bp(c1, c2) touching c}.

Proof. If ci = (mi, τi), i = 1, 2, then, by (3.83),

s = (a, 1, m1a + τ1)

with (τ2 − τ1) a := m1 − m2. All z = (m, τ) ∈ Γ touching s are given by the
equation

am + τ = am1 + τ1,

i.e. by (m1 − m2)(m − m1) − (τ1 − τ2)(τ − τ1) = 0, i.e. by

P := {z ∈ Γ | (c1 − c2)(z − c1) = 0}. (3.96)

We have to show P = N ∪ Bp(c1, c2) =: Q. Obviously,

l
(
z, c1 + � (c2 − c1)

)
= l (z, c1) + 2� (c1 − c2)(z − c1) (3.97)
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for all z ∈ Γ, in view of l (c1, c2) = 0.
If z ∈ P , then (3.97) implies l

(
z, c1 + � (c2 − c1)

)
= l (z, c1) for all � ∈ R.

Hence, if l (z, c1) = 0, so l (z, c2) = 0 (case � = 1), and we get c1 − z − c2, i.e.
z ∈ Bp(c1, c2) ⊆ Q. If l (z, c1) �= 0, we obtain l

(
z, c1 + � (c2 − c1)

) �= 0 for all
� ∈ R, i.e. z ∈ N ⊆ Q. Also Q ⊆ P holds true. In fact! Obviously, Bp(c1, c2) ⊆ P .
If z ∈ N , then l

(
z, c1 + � (c2 − c1)

) �= 0 for all � ∈ R. If (c1 − c2)(z − c1) were �= 0,
there would exist a real number �0 such that the right-hand side of (3.97) were 0,
i.e. l

(
z, c1 + �0(c2 − c1)

)
= 0 would hold true. �

Let c1, c2 be distinct Laguerre cycles such that there exist at least two distinct
spears touching both c1 and c2. Then

Be(c1, c2) := {c ∈ Γ | c1 − s − c2 ⇒ s − c for all s ∈ Σ}
is called an elliptic pencil.

Proposition 48. Exactly the lines

Be(c1, c2) = {c1 + � (c2 − c1) | � ∈ R}, l (c1, c2) > 0,

of Z = X ⊕ R represent the elliptic pencils.

Proof. Let (mi, τi), i = 1, 2, be the coordinates of ci ∈ Γ. We assume c1 �= c2 and
that there are at least two distinct spears touching c1 and c2. Hence l (c1, c2) > 0,
according to Proposition 43, and thus m1 �= m2. If b ∈ X satisfies b2 = 1 and
b · (m1 − m2) = 0, then, compare (3.81), (a, 1, am1 + τ1) where

(m1 − m2)2 · a := b
√

l (c1, c2)(m1 − m2)2 − (m1 − m2)(τ1 − τ2) (3.98)

touches c1 and c2. This spear must also touch any c ∈ Be(c1, c2). Put c := (m, τ).
Hence a (m − m1) = τ1 − τ and thus, by (3.98),

w2(τ1 − τ) = b (m − m1)
√

l (c1, c2)w2 − w (m − m1)(τ1 − τ2) (3.99)

where w := m1−m2. This equation which only depends on c1, c2 and on a suitable
chosen b must also hold true if we replace b by −b, whence b · (m−m1) = 0 for all
b ∈ X satisfying b2 = 1 and bw = 0. Since X = w⊥⊕Rw, the element t := m−m1

of X must be of the form t = αb0 + βw with b2
0 = 1 and b0w = 0 where b0

is a suitable chosen element of w⊥. Applying this b0 for (3.98) we hence have
b0 · (m − m1) = 0, i.e.

0 = b0t = α,

i.e. t = βw. This together with (3.99) yields

w2(τ1 − τ) = −βw2(τ1 − τ2),

i.e. τ = τ1 + β (τ1 − τ2). Hence c = c1 + (−β)(c2 − c1) with t = βw, by

(m, τ) = (m1, τ1) + β (m1 − m2, τ1 − τ2).
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Let vice versa s = (d, 1, δ) be a spear with c1 − s− c2, i.e. with dmi + τi = δ. This
implies

d
(
m1 + � (m2 − m1)

)
+ τ1 + � (τ2 − τ1) = δ,

i.e. c ∈ Be(c1, c2) for c = c1 + � (c2 − c1). �
Lemma 49. If s is a spear and c a Laguerre cycle, there exists exactly one spear t
satisfying t − c and t ‖ s.

Proof. If (a, 1, α) are the coordinates of s, and (m, τ) those of c, all spears t with
s ‖ t and t− c are given by am+ τ = β, since t ‖ s must have coordinates (a, 1, β),
by Proposition 42. Hence there is exactly one such spear t, namely

(a, 1, am + τ). �

As a consequence of Lemma 49 we obtain that parallel spears s, t touching
the same Laguerre cycle must coincide. However, this statement is already part of
the definition of parallelism of spears.

Suppose that c1, c2 are Laguerre cycles such that there is no spear touching
c1 and c2. If λ is a real number, we define the Laguerre cycle (c1, c2, λ) as follows.
If the spear s touches c1, let As be the point of contact of s and c1, and Bs be
the point of contact of t and c2 where the spear t is defined by s ‖ t and t − c2.
If t (s, λ) denotes the spear which is parallel to s and which touches the Laguerre
cycle with coordinates (

As + λ (Bs − As), 0
)
,

then

(c1, c2, λ) := {t (s, λ) | s − c1} (3.100)

is a Laguerre cycle concerning the interpretation of Lemma 41, and

Bh(c1, c2) := {(c1, c2, λ) | λ ∈ R} (3.101)

is called a hyperbolic pencil.

In fact! If {t (s, λ) | s − c1} is the set of all spears touching a Laguerre cycle
c = (m, τ), if ci =: (mi, τi) for i = 1, 2, and if (a, 1, am2 + τ1) is an arbitrary spear
s with s − c1, then t = (a, 1, am2 + τ2) and

t (s, λ) =
(
a, 1, a [As + λ (Bs − As)]

)
,

in view of s ‖ t (s, λ) and t (s, λ)− z, z =
(
As + λ (Bs −As), 0

)
. Since (see (3.79))

As = m1 + τ1a, Bs = m2 + τ2a,

we obtain from t (s, λ) − z,

a
(
m − m1 − λ (m2 − m1)

)
= −(τ − τ1 − λ (τ2 − τ1)

)
. (3.102)
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If we choose a0 = a ∈ X, a2 = 1, such that the left-hand side of this equation is
0, then

τ = τ1 + λ (τ2 − τ1). (3.103)

Hence the left-hand side of (3.102) must be 0 for all a ∈ X, a2 = 1. This implies

m = m1 + λ (m2 − m1). (3.104)

The cycle of c is thus, if it exists, uniquely determined. We now would like to verify
that c := (m, τ) with (3.103), (3.104) touches all t (s, λ), s−c1, but no other spear.
Of course, every

t (s, λ) =
(
a, 1, a [m1 + λ (m2 − m1)] + [τ1 + λ (τ2 − τ1)]

)
with arbitrary a ∈ X, a2 = 1, touches c. On the other hand, if the spear r touches c,
take s−c1 parallel to r, whence r ‖ s ‖ t (s, λ) and t (s, λ)−c−r, i.e. r = t (s, λ). �

Formulas (3.103), (3.104) also prove

Proposition 50. Exactly the lines

Bh(c1, c2) = {c1 + � (c2 − c1) | � ∈ R}, l (c1, c2) < 0,

of Z = X ⊕ R represent the hyperbolic pencils.

If Bp(c1, c2) is a parabolic pencil, we already know that there is exactly one
spear touching all c in Bp(c1, c2). We will call this spear the underlying spear of
the pencil. Two parabolic pencils B1, B2 are said to be parallel, designated by
B1 ‖ B2, provided their underlying spears are parallel.

Let B1, B2 be parabolic pencils having exactly one Laguerre cycle in common.
Then the union of all parabolic pencils B satisfying

B ∩ B1 �= ∅ and B ‖ B2 (3.105)

will be called a bundle, designated by B = B (B1, B2).

Proposition 51. (α) Two parabolic pencils are parallel if, and only if, their asso-
ciated lines in Z = X ⊕ R (see Proposition 46, (γ)) are parallel.

(β) Let B1 = Bp(c, c1), B2 = Bp(c, c2) be parabolic pencils having exactly c in
common. The union of all parabolic pencils B satisfying (3.105) is then given
by

B (B1, B2) = {c + α (c1 − c) + β (c2 − c) | α, β ∈ R}, (3.106)

where the elements c1 − c, c2 − c of Z are linearly independent in Z.
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(γ) If a, b, p are Laguerre cycles such that a, b ∈ Z are linearly independent, then

B = {p + αa + βb | α, β ∈ R} (3.107)

is a bundle if, and only if,

(ab)2 > a2 · b2. (3.108)

(δ) If Bh is a hyperbolic pencil, then there exist bundles B1, B2 with

Bh = B1 ∩ B2. (3.109)

Proof. (α) If Bp(c1, c2) with ci = (mi, τi), i = 1, 2, is a parabolic pencil, then, by
(3.83), s = (a, 1, m1a+τ1) is the underlying spear satisfying (τ2−τ1) a := m1−m2.
Observe τ1 �= τ2, since otherwise c1 = c2. Suppose now that Bp(c1, c2), Bp(c3, c4)
are parabolic pencils. They are hence parallel, by Proposition 42, if, and only if,

m1 − m2

τ2 − τ1
=

m3 − m4

τ4 − τ3
,

i.e. if, and only if,
c1 − c2

τ2 − τ1
=

c3 − c4

τ4 − τ3

holds true.
(β) Since Bi = {c + �i(ci − c) | �i ∈ R}, i = 1, 2, have exactly c in common,
c1 − c, c2 − c must be linearly independent. Hence B (B1, B2) is given by the
union of all lines

l� := {c + � (c1 − c) + λ (c2 − c) | λ ∈ R}, � ∈ R,

in view of (α).
(γ) Assume that (3.108) holds true. Put c := p and

u := a2, v := b2, w := ab.

Hence w2 > uv. Define ξ :=
√

w2 − uv and

c1 − c := (ξ − w) a + ub, c2 − c := −(ξ + w) a + ub

for u �= 0, and
c1 − c := a, c2 − c := va − 2wb

for u = 0. Then l (c, ci) = 0, i = 1, 2, and c1 − c, c2 − c are linearly independent
in Z. Hence (3.107) has the form (3.106). Vice versa, we are now assuming that
(3.107) is a bundle, say the bundle (3.106). Since

p + 2a, p + a ∈ B = B (B1, B2),
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we get p + 2a = c + α1(c1 − c) + β1(c2 − c), i.e.

a = (p + 2a) − (p + a) =: α (c1 − c) + β (c2 − c),

and similarly,
b = γ (c1 − c) + δ (c2 − c)

with αδ − βγ �= 0, since a, b are linearly independent. Hence

a2 = α2(c1 − c)2 + 2αβσ + β2(c2 − c)2 = 2αβσ

with σ := (c1 − c)(c2 − c). Moreover,

b2 = 2γδσ, ab = (αδ + βγ)σ.

Hence (ab)2 − a2b2 = (αδ − βγ)2σ2. We, finally, have to show that σ �= 0. But
σ = 0 would imply

(c1 − c2)2 = [(c1 − c) + (c − c2)]2 = −2σ = 0,

i.e. c1 would touch c2, i.e. c1 − c2 − c, i.e. c2 ∈ B1, i.e. B1 = B2, by Proposition
46, (α), a contradiction.
(δ) Let Bh = {p + αa | α ∈ R} be a hyperbolic pencil. Hence l (a, 0) < 0, by
Proposition 50, i.e. a2 < 0. Thus τ �= 0 for

a =: (m, τ) ∈ Z = X ⊕ R.

If m �= 0, take e ∈ X with e2 = 1 and e ∈ m⊥, and put

b := (e, 1), c := (e,−1).

Then a, b, c are linearly independent, and, by (γ),

{p + αa + βb | α, β ∈ R}, {p + αa + γc | α, γ ∈ R}
are bundles with Bh as their intersection.— If m = 0, take e1, e2 ∈ X with e2

1 =
e2
2 = 1, e1e2 = 0, and put b := (e1, 1), c := (e2, 1). Then proceed as above. �

3.12 Lie cycles, groups Lie (X), Lag (X)

A Lie cycle of X is a Laguerre cycle of X or a spear of X , or a new object which
will be designated by the symbol ∞. The set of all Lie cycles of X will be denoted
by ∆ = ∆(X). Hence ∆ = Γ ∪ Σ ∪ {∞}. Another fundamental notion in the
context of Lie cycles is again the contact relation. This is defined to be a reflexive
and symmetric relation “–” on ∆ satisfying

(i) ∞ touches every spear, but no Laguerre cycle,
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(ii) the spear s1 touches the spear s2 if, and only if, s1 ‖ s2,

(iii) the spear or Laguerre cycle g touches the Laguerre cycle c if, and only if,
g − c holds true.

A Lie transformation of X is a bijection

λ : ∆ (X) → ∆ (X)

such that for all x, y ∈ ∆ the statements x − y and λ (x) − λ (y) are equivalent.

By Lie (X) we denote the group of all Lie transformations of X where the
multiplication is defined to be the usual product of bijections.

A Laguerre transformation of X is a Lie transformation λ satisfying λ (∞) =
∞. If λ is such a Laguerre transformation, then λ (Σ) ⊆ Σ and λ (Γ) ⊆ Γ, because
of (i) and

∞− s ⇔ ∞− λ (s),

∞ �−c ⇔ ∞ �−λ (c)

for all s ∈ Σ and c ∈ Γ.
We shall identify Laguerre transformations with their restrictions on

Σ ∪ Γ = ∆\{∞}.

The group of all Laguerre transformations of X , Lag (X), is a subgroup of Lie (X).
An important subgroup of Lag (X) is Lag∗(X) consisting of all separation pre-
serving Laguerre transformations of X .

The geometry
(
∆ (X), Lie (X)

)
is called Lie sphere geometry over X , and(

Σ∪Γ, Lag (X)
)

Laguerre sphere geometry over X . Since Lag (X) is the stabilizer
of Lie (X) in ∞, obviously, Laguerre geometry concerns Lie geometry with respect
to a fixed Lie cycle, namely the cycle ∞. The geometry

(
Γ, Lag∗(X)

)
is called

proper Laguerre sphere geometry over X . Of course, Σ defines an invariant notion
(Σ, ϕ) of

(
Γ, Lag∗(X)

)
as well as of the geometry

(
Γ, Lag (X)

)
, by means of

ϕ (f, s) = {f (c) | c − s}.

Proposition 52. A bijection λ : Σ ∪ Γ → Σ ∪ Γ with λ (Σ) ⊆ Σ and λ (Γ) ⊆ Γ is a
Laguerre transformation of X if, and only if,

s − c ⇔ λ (s) − λ (c) (3.110)

holds true for all s ∈ Σ and c ∈ Γ.

Proof. Obviously, λ (Σ) = Σ and λ (Γ) = Γ are satisfied, since λ is a bijection. If
λ is a Laguerre transformation, then (3.110) holds true. If, vice versa, λ satisfies
(3.110), we extend it by λ (∞) = ∞, and, of course, we extend the relation “–” on
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∆ by (i), (ii), (iii) and in such a way that it is reflexive and symmetric. Now we
must prove

x − y ⇔ λ (x) − λ (y) (3.111)

for all x, y ∈ ∆. Instead of (3.111) we will show

x − y ⇒ λ (x) − λ (y) and x �−y ⇒ λ (x) �−λ (y) (3.112)

for all x, y ∈ ∆. If ∞ ∈ {x, y}, (3.112) holds true, because of λ (Σ) = Σ, λ (Γ) = Γ.
If one of the elements x, y of ∆ is a spear and the other one a Laguerre cycle, we
know (3.112) from (3.110). So it remains to consider the two cases

1) {x, y} ⊂ Σ, 2) {x, y} ⊂ Γ

where we even may assume x �= y. In the first case, x − y implies that there is
no Laguerre cycle c with x − c − y, and x �−y yields that there is such a Laguerre
cycle having this property. Hence (3.112) follows from (3.110) in case 1). Also in
the second case (3.112) follows from (3.110). �

On the basis of Lemma 41, there exist two other possibilities to define a
Laguerre transformation.

Proposition 53. Identify s ∈ Σ with {c ∈ Γ | s − c}. A Laguerre transformation
can now be defined as a bijection λ of Γ such that images and pre-images of spears
are spears.

Proof. We must extend λ : Γ → Γ to λ : Σ ∪ Γ → Σ ∪ Γ with λ (Σ) ⊆ Σ and show
that (3.110) holds true. The image of the spear s = {c ∈ Γ | s − c} must be a
spear,

λ (s) := {λ (c) | c ∈ Γ and s − c},
since images of spears are supposed to be spears. Observe

s − c ⇒ λ (c) ∈ λ (s) ⇒ λ (s) − λ (c).

The pre-image of s = {c ∈ Γ | s − c}, namely

λ−1(s) := {λ−1(c) | c ∈ Γ and s − c},
is also a spear. Observe λ

(
λ−1s)

)
= s. Hence

s − c ⇒ λ−1(c) ∈ λ−1(s) ⇒ λ−1(s) − λ−1(c),

i.e. λ (s) − λ (c) ⇒ λ−1[λ (s)] − λ−1[λc] ⇒ s − c. �
Proposition 54. Identify c ∈ Γ with {s ∈ Σ | c−s}. A Laguerre transformation can
also be defined as a bijection λ of Σ such that images and pre-images of Laguerre
cycles are Laguerre cycles.
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Proof. We now must extend λ : Σ → Σ to λ : Σ ∪ Γ → Σ ∪ Γ with λ (Γ) ⊆ Γ and
show that (3.110) holds true. Mutatis mutandis, we may follow the procedure of
the proof of Proposition 53 in order to complete the present proof. �

Examples of Laguerre transformations of X are the (Laguerre) dilatations.
Let δ be a real number and define

λδ(m, τ) := (m, τ + δ), λδ(a, 1, α) := (a, 1, α + δ)

for the Laguerre cycle with coordinates (m, τ) and the spear (a, 1, α). Since

am + τ = α and am + (τ + δ) = α + δ

are equivalent, (3.110) is satisfied by Proposition 40.

If, for instance, δ = 1, then the Laguerre cycle (0, 0), which is actually the
point 0 ∈ X , has as image under λ1 the Laguerre cycle (0, 1) which is not a point
of X . So Laguerre transformations need not be induced by point transformations
of X . The set D (X) of dilatations of X is a subgroup of Lag (X).

If ω ∈ O (X), then, obviously,

λω(m, τ) :=
(
ω (m), τ

)
, λω(a, 1, α) :=

(
ω (a), 1, α

)
defines a Laguerre transformation. If d is a fixed element of X , and if σ �= 0 is a
fixed real number, then also

λ (m, τ) := (σ · m + d, σ · τ), λ (a, 1, α) := (a, 1, σ · α + a · d)

defines a Laguerre transformation designated by λd,σ. If z1 = (m1, τ1), z2 =
(m2, d2) are Laguerre cycles, then, obviously,

λτ2−τ1 · λm2−m1,1 (z1) = z2,

so that Lag (X) operates transitively on Γ. The same group acts transitively on
Σ as well. This will be shown as follows. If a, b ∈ X satisfy a2 = 1 = b2, there
exists ω ∈ O (X) with ω (a) = b (see step A of the proof of Theorem 7, chapter 1).
Suppose now that (a, 1, α) and (b, 1, β) are spears. Take ω ∈ O (X) with ω (a) = b.
Then

λβ−α λω(a, 1, α) = (b, 1, β).

Reversing the orientation,

ϕ (m, τ) := (m,−τ), ϕ (a, 1, α) := (a,−1, α),

also represents a Laguerre transformation.

Proposition 55. Suppose that λ is a Laguerre transformation. Then images and
pre-images of parabolic, elliptic, hyperbolic pencils are parabolic, elliptic, hyperbolic
pencils, respectively. Images and pre-images of bundles are bundles.
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Proof. This statement follows immediately from the definitions, with the exception
of the assertion that images and pre-images of hyperbolic pencils are hyperbolic
pencils. So let Bhbe a hyperbolic pencil. We are interested in

λ (Bh) := {λ (c) | c ∈ Bh}.

Suppose that B1, B2 are bundles satisfying (3.109). Hence

λ (Bh) = λ (B1) ∩ λ (B2)

is a line g of Z = X⊕R, say the line c1+R(c2−c1). Here l (c1, c2) must be negative,
since otherwise g (and then also Bh = λ−1(g)) would represent a parabolic or an
elliptic pencil. �

3.13 Lie cycle coordinates, Lie quadric

Put R
∗ := R\{0}. If c = (m, τ) is in Γ, define(

m,−τ,
1 + l (0, c)

2
,
1 − l (0, c)

2

)

to be coordinates of the Lie cycle c. Moreover, coordinates of the spear (a, 1, α) are
(a, 1, α,−α), and those of ∞ are (0, 0, 1,−1). We would like to have coordinates
of Lie cycles as homogenous coordinates. Therefore we say that every quadruple
contained in

R
∗
(
m,−τ, 1+l (0,c)

2 , 1−l (0,c)
2

)
=
{
λm,−λτ, λ+λl (0,c)

2 , λ−λl (0,c
2

∣∣∣λ ∈ R
∗
}

are coordinates of (m, τ). Similarly we consider

R
∗(a, 1, α,−α) and R

∗(0, 0, 1,−1)

for spears, for ∞, respectively. Observe that R
∗(v, ξ1, ξ2, ξ3) is a subset of V :=

X ⊕ R
3 and that

v2 − ξ2
1 − ξ2

2 + ξ2
3 = 0 (3.113)

holds true for the coordinates of a Lie cycle. Given

R
∗(v, ξ1, ξ2, ξ3) ∈ V

with (3.113) and (v, ξ1, ξ2, ξ3) �= 0, we distinguish the following cases.

Case: ξ2 + ξ3 �= 0.
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Then R
∗(αv, αξ1, αξ2, αξ3) with α · (ξ2 + ξ3) := 1 represents the Laguerre cycle

c = (αv,−αξ1), by observing

1+c2

2 = 1+α2(v2−ξ2
1)

2 = 1
2

(
1 + α2(ξ2

2 − ξ2
3)
)

= αξ2,

1−c2

2 = 1 − 1+c2

2 = 1 − αξ2 = αξ3.

Here and in the remaining sections of chapter 3 we are still working with the vector
space Z of Laguerre cycles of X and with the product (3.88).

Case: ξ2 + ξ3 = 0.

Hence (3.113) implies v2 = ξ2
1 . If ξ1 = 0, we get coordinates of ∞, and if ξ1 �= 0,

we obtain the spear (v, ξ1, ξ2).
The set LQ (X) of all subsets R

∗(v, ξ1, ξ2, ξ3) of X ⊕ R
3 such that (v, ξ1, ξ2, ξ3) �=

(0, 0, 0, 0) and (3.113) hold true is called the Lie quadric of the Lie geometry over
X .

What we proved before, is the

Proposition 56. Associate to every Lie cycle of X of coordinates (v, ξ1, ξ2, ξ3) the
element R

∗(v, ξ1, ξ2, ξ3) of LQ (X). This mapping

ψ : ∆ (X) → LQ (X)

is a bijection between the set ∆ (X) of all Lie cycles of X and LQ (X).

Also important in connection with Proposition 56 is the following

Proposition 57. Let x, y be Lie cycles and let

(v, ξ1, ξ2, ξ3), (w, η1, η2, η3)

be coordinates of x, y, respectively. Then x − y holds true if, and only if,

vw − ξ1η1 − ξ2η2 + ξ3η3 = 0 (3.114)

is satisfied.

Proof. Assume x−y. If x = y, (3.114) follows from ψ (x) ∈ LQ (X). If ∞ ∈ {x, y},
say x = ∞ �= y, (3.114) holds true for all spears y. In the case x = (a, 1, α), y =
(b, 1, β), we get a = b from x − y, i.e.

ab − 1 · 1 − α · β + (−α)(−β) = 0.

If x is a spear and y a Laguerre cycle, x − y implies

am + τ = α
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with x = (a, 1, α), y = (m, τ), i.e. am + τ − α 1+y2

2 − α 1−y2

2 = 0. In the case that
x, y are both Laguerre cycles, (m, τ), (n, σ), respectively, x−y yields 0 = l (x, y) =
(x − y)2. Hence

mn − τσ − 1
4

(1 + x2)(1 + y2) +
1
4

(1 − x2)(1 − y2) = −1
2

(x − y)2 = 0,

by mn − τσ = xy.
Vice versa, assume (3.114) for the Lie cycles x, y. If x = ∞, then we get

η2 + η3 = 0 from (3.114). Hence y must be a spear or ∞. If x = (a, 1, α), then

aw − η1 − αη2 − αη3 = 0. (3.115)

Of course, y = ∞ solves this equation. If y = (b, 1, β) is a solution, then ab−1 = 0,
i.e. a = b, in view of Lemma 1, chapter 1. Hence y ‖ x, i.e. x − y. For y = (m, τ),
we obtain

am + τ − α

2
(1 + y2) − α

2
(1 − y2) = 0

from (3.115), i.e. am + τ = α, i.e. x− y. We, finally, consider the case x = (m, τ).
Hence, by (3.114),

mw + τη1 − 1
2

(1 + x2) η2 +
1
2

(1 − x2) η3 = 0. (3.116)

Since the contact relation is symmetric and also (3.114) in x, y, we only need to
check the case y = (n, σ) in (3.116). Here we get

mn − τσ − 1
4

(1 + x2)(1 + y2) +
1
4

(1 − x2)(1 − y2) = 0,

i.e. (x − y)2 = 0, i.e. x − y. �

Proposition 58. If x, y are Lie cycles, then there exists λ ∈ Lie (X) with λ (x) = y.

Proof. 1) We only need to show that to z ∈ ∆ there exists α ∈ Lie (X) with
α (∞) = z because α (∞) = x and β (∞) = y imply (βα−1)(x) = y.

2) Define ε : LQ (X) → LQ (X) by

ε
(
R

∗(v, ξ1, ξ2, ξ3)
)

= R
∗(v, ξ1, ξ2,−ξ3).

Since εε (x) = x for all x ∈ LQ (X), ε must be a bijection of LQ (X) : ε (x) is also
the inverse image of x, and ε (x) = ε (y) implies x = εε (x) = εε (y) = y (compare
the consideration in section 7, chapter 1, before the definition of a translation
group). Identifying in the following a Lie cycle z with its image ψ (z) on LQ (X),
we can say that ε is a Lie transformation, since (3.114) implies

vw − ξ1η1 − ξ2η2 + (−ξ3)(−η3) = 0.



3.13. Lie cycle coordinates, Lie quadric 157

3) Note that ε (∞) is the Laguerre cycle (0, 0) with m = 0 and τ = 0. Since Lag (X)
operates transitively on Γ (see section 12), to z ∈ Γ there exists α ∈ Lie (X) with
α (0, 0) = z. Hence (αε)(∞) = z.
4) Take a ∈ X with a2 = 1. Then R

∗(a, 1, 1,−1) is a spear s and ε (s) a Laguerre
cycle x. Since Lag (X) operates transitively on Σ (see section 12), to z ∈ Σ exists
α ∈ Lie (X) with α (s) = z. If β (∞) = x for a suitable β ∈ Lie (X) (see step 3)),
then αεβ (∞) = z.
5) If z = ∞, then id (∞) = ∞. �

Let P = P (X ⊕ R
3) be the set of all 1-dimensional subspaces of X ⊕ R

3 and
define L = L (X ⊕ R

3) to be the set of all 2-dimensional subspaces of the vector
space X ⊕R

3. The elements of P are called points and the elements of L lines. Let
p be a point and l be a line. We say that p is on l or that l goes through p provided
p ⊂ l. In this case we also say that p is incident with l or that l is incident with
p. Lines may be considered as sets of points by identifying a line l with the set of
points on l,

{p ∈ P | p ⊂ l}.
Projective transformations are defined as bijections of P such that images and
pre-images of lines are lines. We thus may speak of the group G = G (X ⊕ R

3) of
projective transformations. The geometry

(P, G)

is called the projective geometry Π = Π(X ⊕ R
3) over X ⊕ R

3 and G is called its
projective group.

If p1, p2 are distinct points, there is exactly one line l through p1, p2. A subset
S of P is called collinear provided there exists a line containing all points of S.

It is important that the Lie quadric LQ (X) is a subset of the set of points of
the projective geometry Π over X ⊕ R

3.

Proposition 59. Again we do not distinguish between a Lie cycle of X and its
image on LQ (X) in Π(X ⊕ R

3). Let c1, c2 be distinct Lie cycles of X. Then the
following properties are equivalent.

(α) c1 − c2,

(β) the line of Π through c1, c2 is contained in LQ (X),

(γ) there exists c ∈ LQ (X)\{c1, c2} such that c, c1, c2 are collinear in Π.

Moreover, the following holds true.
If c1, c2, c3 are pairwise distinct Lie cycles which are pairwise in contact, then
{c1, c2, c3} is collinear in Π.

Proof. Assume (α). Let ci, i = 1, 2, be given by

R
∗(vi, ξi1, ξi2, ξi3).
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Then R
∗(αv1 + βv2, αξ11 + βξ21, . . .) is the line through c1, c2 where (α, β) runs

over R
2\{(0, 0)}. That all these points are in LQ (X) follows immediately from

v2
i − ξ2

i1 − ξ2
i2 + ξ2

i3 = 0, i = 1, 2, (3.117)

v1v2 − ξ11ξ21 − ξ12ξ22 + ξ13ξ23 = 0 (3.118)

via (αv1 + βv2)2 − (αξ11 + βξ21)2 − (αξ12 + βξ22)2 + (αξ13 + βξ23)2 = · · · = 0.
That (β) implies (γ) is trivial.
Assume (γ). There hence exists α �= 0 and β �= 0 such that c is given by

R
∗(αv1 + βv2, . . .).

Observing c1, c2, c ∈ LQ (X) and α �= 0 �= β, we get from

0 = (αv1 + βv2)2 − (αξ11 + βξ21)2 − · · ·
and (3.117), obviously, (3.118), i.e. c1 − c2. In order to prove the last part of
Proposition 59, we distinguish several cases.
Case 1: ∞ ∈ {c1, c2, c3}. Hence {c1, c2, c3} = {∞, x, y} where x �= y are parallel
spears. Observe

R
∗(0, 0, 1,−1) = R

∗(1 · (a, 1, α,−α) + (−1)(a, 1, β,−β)
)

with x =: (a, 1, α), y =: (a, 1, β), α �= β.
For the remaining cases we assume ∞ �∈ {c1, c2, c3}.

Case 2: c1, c2, c3 are three spears. Hence ci = (a, 1, αi), i = 1, 2, 3, where α1, α2, α3

are pairwise distinct. Observe

(a, 1, α3,−α3) = λ (a, 1, α1,−α1) + (1 − λ)(a, 1, α2,−α2)

with λ (α2 − α1) := α2 − α3.
Case 3: c1 = (a, 1, α), c2 = (a, 1, β), c3 = (m, τ), α �= β. Hence, by the definition
of parallelism of spears, this case does not occur.
Case 4: c1 = (a, 1, α), c2 = (m, τ) �= (n, σ) = c3. Hence

ma + τ = α = na + σ, (m − n)2 = (τ − σ)2.

Thus (m − n) a = σ − τ , i.e. (σ − τ)2 = [(m − n) a]2 ≤ (m − n)2 = (τ − σ)2. This
implies, by Lemma 1, chapter 1,

m − n =: λa, i.e. λ = (λa) a = (m − n) a = σ − τ.

Now observe, by c2
3 = n2 − σ2,(

m,−τ,
1 + m2 − τ2

2
,
1 − m2 + τ2

2

)

= λ (a, 1, α,−α) +
(

n,−σ,
1 + c2

3

2
,
1 − c2

3

2

)
.
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Case 5: c1, c2, c3 are all Laguerre cycles,

c1 =: (a, α), c2 =: (b, β), c3 =: (c, γ).

Hence (a − b)2 = (α − β)2, (b − c)2 = (β − γ)2, (c − a)2 = (γ − α)2. Observe that
a = b implies α = β, and that α = β yields a = b. Thus a, b, c must be pairwise
distinct, and also α, β, γ. Note that

(γ − α)2 =
(
(a − b) + (b − c)

)2 = (α − β)2 + 2(a − b)(b − c) + (β − γ)2

implies (a− b)(b− c) = (α − β)(β − γ), i.e. (α− β)2(β − γ)2 = [(a− b)(b − c)]2 ≤
(a − b)2(b − c)2 = (α − β)2(β − γ)2. Hence

b − c = µ (a − b), µ ∈ R,

by a �= b. Together with (a − b)(b − c) = (α − β)(β − γ), we obtain

µ =
β − γ

α − β
,

by noticing that α, β, γ are pairwise distinct. We now verify, by

c2
1 = a2 − α2, c2

2 = b2 − β2, c2
3 = c2 − γ2,

that (
c,−γ,

1 + c2
3

2
,
1 − c2

3

2

)
= −µ

(
a,−α,

1 + c2
1

2
,
1 − c2

1

2

)

+(1 + µ)
(

b,−β,
1 + c2

2

2
,
1 − c2

2

2

)
holds true: an essential step for this purpose is to show

(a2 − α2)(β − γ) + (b2 − β2)(γ − α) + (c2 − γ2)(α − β) = 0.

However, this equation follows from eleminating

c = (1 + µ) b − µa and γ = (1 + µ)β − µα,

and by applying a2 − α2 + b2 − β2 = 2(ab − αβ). �

3.14 Lorentz boosts

Lemma 60. (α) If w ∈ Z = X⊕R, there exist reals α, β and linearly independent
a, b ∈ Z satisfying

a2 = 0, b2 = 0, w = αa + βb. (3.119)
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(β) Let the linearly independent a, b ∈ Z satisfy a2 = 0 = b2. Then ab �= 0.
Moreover, (αa + βb)2 = 0 for α, β ∈ R implies α = 0 or β = 0.

Proof. (α) In the case w = (0, τ) take e ∈ X with e2 = 1. Then

w =
τ

2
(e, 1) − τ

2
(e,−1).

If w = (m, τ), m �= 0, note

w =
(

1
2

+
τ

2
√

m2

)
(m,

√
m2) +

(
1
2
− τ

2
√

m2

)
(m,−

√
m2).

(β) Put a =: (m1, τ1), b =: (m2, τ2). Assume ab = 0. Now m2
1 = τ2

1 , m2
2 = τ2

2 and
m1m2 = τ1τ2. Hence

(m1m2)2 = m2
1m

2
2,

i.e. there exist (ξ, η) ∈ R
2\{(0, 0)} such that ξm1 +ηm2 = 0, by Lemma 1, chapter

1. Thus
(ξa + ηb)2 = ξ2a2 + 2ξηab + η2b2 = 0,

0 = (ξa + ηb)2 = (ξm1 + ηm2)2 − (ξτ1 + ητ2)2,

i.e ξτ1 + ητ2 = 0, by ξm1 + ηm2 = 0, whence ξa + ηb = 0. But a, b are linearly
independent.—
The last part of statement (β) follows from ab �= 0. �

If x = (m, τ) ∈ Z, we shall write x := m and x0 := τ . Hence x = (x, x0) will
be the typical element of Z = X ⊕ R.

Let p be an element of X with p2 < 1 and let k �= −1 be a real number
satisfying k2 · (1 − p2) = 1. Define

Ap(x) := (x0p, xp)

for x ∈ Z. Obviously, Ap : Z → Z is a linear mapping of Z. Define

Bp,k := E + kAp +
k2

k + 1
A2

p,

where E designates the identity mapping of Z. Moreover, put

B0,−1(x) := (x,−x0).

The mappings Bp,k are linear and they are bijections of Z, since

Bp,k · B−p,k = E (3.120)

holds true (compare the first Remark of section 7, chapter 1, and also the following
Remark). Bp,k is called a proper Lorentz boost for k > 0 and an improper one
otherwise.
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Remark. Obviously, Bp,k · B−p,k = E holds true for k = −1. In the case k �= −1,
we get

A−p(x) = −Ap(x), A2
−p(x) = A2

p(x).

Hence

Bp,k · B−p,k = E − k2 k − 1
k + 1

A2
p +

k4

(k + 1)2
A4

p,

i.e., by q := kp, and q2 = k2 − 1 from k2(1 − p2) = 1,

Bp,k · B−p,k(x) = x +
(
(xq) q, x0q

2
)(−k − 1

k + 1
+

k2 − 1
(k + 1)2

)
= x.

This proves (3.120). �
Theorem 61. Suppose that λ : Z → Z is a mapping from Z = X ⊕ R into itself
satisfying

l (x, y) = l
(
λ (x), λ (y)

)
for all x, y ∈ Z where l (x, y) = (x − y)2 − (x0 − y0)2 designates the separation
of x, y. Then there exist a uniquely determined Lorentz boost Bp,k and a uniquely
determined orthogonal mapping ω of X such that

λ (x) = Bp,kω (x) + λ (0) (3.121)

holds true for all x ∈ Z where we put ω (x, x0) :=
(
ω (x), x0

)
for all x ∈ X, x0 ∈ R.

Proof. 1) Define λ1(x) := λ (x) − λ (0) for x ∈ Z. Also λ1 preserves separations,
i.e.

l (x, y) = l
(
λ1(x), λ1(y)

)
holds true for all x, y ∈ Z. Put τ := λ1(t) with t := (0, 1) ∈ Z. Hence

−1 = l (0, t) = l
(
λ1(0), λ1(t)

)
= τ2 − τ2

0 ,

i.e. τ2
0 = 1 + τ2 > 0. Define p · τ0 := τ , k := τ0 and observe p ∈ X and

k2(1 − p2) = τ2
0

(
1 − τ2

τ2
0

)
= 1.

This implies p = 0 in the case k = τ0 = −1 and hence τ = B0,−1(t). In the case
k = τ0 �= −1 we get τ = Bp,k(t) on account of Ap(t) = p and A2

p(t) = p2t. Define
λ2 = B−p,k · λ1. Every Lorentz boost B satisfies (see step 2) below)

l (x, y) = l
(
B (x), B (y)

)
(3.122)

for all x, y ∈ Z. Hence also λ2 preserves separations.
2) Equation (3.122) is clear for B0,−1. So assume k �= −1. Observe

l
(
B (x), B (y)

)
=
(
B (x) − B (y)

)2 = [B (x − y)]2,
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since B is linear. So we have to prove L :=
(
B (z)

)2 = z2 for all z ∈ Z. With
q := kp we obtain

L =
(

z + z0q +
(zq) q

k + 1

)2

−
(

z0 + zq +
z0q

2

k + 1

)2

,

i.e. L = z2 +
(
(z0q)2 − (zq)2

) (
1 − 2

k+1 − q2

(k+1)2

)
= z2, in view of

q2 = k2 − 1 from k2(1 − p2) = 1.

3) Observe λ2(0) = 0 and λ2(t) = t, because of (3.120). Suppose that x ∈ X and
that λ2(x) =: y. Then

l (0, x) = l (0, y) and l (t, x) = l (t, y)

imply x2 = y2 − y2
0 and x2 − 1 = y2 − (y0 − 1)2, i.e. y0 = 0. The restriction η of

λ2 on X is hence a mapping of X into itself. Suppose that x, z are elements of X .
Then

l (x, z) = l
(
λ2(x), λ2(z)

)
implies (x − z)2 =

(
η (x) − η (z)

)2 and η must hence be an orthogonal mapping
ω : X → X of X . We now would like to show that

λ2(x + x0t) = ω (x) + x0t (3.123)

holds true for all x ∈ Z. Put λ2(x + x0t) =: y + y0t. Then l (0, x) = l (0, y) and
l (t, x) = l (t, y) imply x0 = y0. Hence

λ2(x + x0t) = y + x0t,

i.e. l (x, x) = l
(
ω (x), y + x0t

)
. Thus

−x2
0 =

(
y − ω (x)

)2 − x2
0,

i.e. y = ω (x). This proves (3.123). Finally, we obtain

λ (x, x0) = λ1(x, x0) + λ (0) = Bp,kλ2(x, x0) + λ (0),

i.e., by (3.123),
λ (x, x0) = Bp,kω (x, x0) + λ (0)

for all (x, x0) ∈ Z = X ⊕ R.
4) Suppose now that

Bp,kω (x) + λ (0) = Bp′,k′ω′(x) + λ (0)

holds true for all x ∈ Z. In the case x = t = (0, 1) we get

Bp,k(t) = Bp′,k′(t),

i.e. kp + kt = k′p′ + k′t, i.e. k = k′ and p = p′. Hence, ω (x) = ω′(x), i.e.
ω (x) = ω′(x) for all x ∈ X . Thus ω = ω′. �
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Theorem 62. All Laguerre transformations λ of X are given as follows. Let σ be a
positive real number and ω be an element of O (X). Moreover, let Bp,k be a Lorentz
boost and d be an element of X ⊕ R. Then

λ (x, x0) = σ · Bp,kω (x, x0) + d (3.124)

for all Laguerre cycles (x, x0).

Proof. 1) We already introduced the Laguerre transformations

λδ(x) = B0,1(x) + (0, δ),

λω(x) = B0,1ω (x, x0),

λd,σ(x) = σ · B0,1(x) + (d, 0) for d ∈ X,

ϕ (x) = B0,−1(x).

In order to be sure that λd,σ, σ < 0, is also of the form (3.124), observe

λd,σ(x) = (−σ) · B0,−1

(
ω (x), x0

)
+ (d, 0)

with ω (y) = −y for y ∈ X . We also must show that

λ (x) = Bp,k(x), (3.125)

k �= −1, is a Laguerre transformation. We will do this via Proposition 53. The
mapping λ : Γ → Γ is a bijection. Let (a, 1, α) be a spear and observe ap �= 1,
since otherwise

1 = (ap)2 ≤ a2p2 = p2 < 1,

by k2(1 − p2) = 1, would be the consequence. The image of (a, 1, α) under λ is
(b, 1, β) with

b :=
a

k (1 − ap)
−
(

k +
1

1 − ap

)
p

k + 1
, (3.126)

β :=
α

k (1 − ap)
. (3.127)

A simple calculation yields b2 = 1. Moreover, ax + x0 = α is equivalent with
by + y0 = β for all x ∈ X ⊕ R with

y := Bp,k(x) =
(

x + kx0p +
k2(xp) p

k + 1
, kx0 + kxp

)
:

this follows from the identity

by + y0 − β =
ax + x0 − α

k (1 − ap)
.
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The pre-image of the spear (b′, 1, β′) is given by (a′, 1, α′) = B−p,k(b′, 1, β′) with

a′ :=
b′

k (1 + b′p)
+
(

k +
1

1 + b′p

)
p

k + 1
,

α′ :=
β′

k (1 + b′p)
:

this is a consequence of

Bp,k[B−p,k(b′, 1, β′)] = (b′, 1, β′)

(see (3.120)) and of (3.126), (3.127) where we replace a, α, p by b′, β′,−p, respec-
tively.

2) Suppose that λ is an arbitrary Laguerre transformation of X . Hence λ is a
bijection of X ⊕ R such that lines of X ⊕ R are mapped onto lines, in view of
Proposition 55. Applying now step b) of Theorem 3 where we replace X by X⊕R,
and the euclidean lines of X by

{(p, p0) + ξ (v, v0) | ξ ∈ R},

(v, v0) �= 0, there exists a bijective linear mapping µ of the vector space Z = X⊕R

satisfying

λ (x) = µ (x) + λ (0) (3.128)

for all x ∈ Z. Put d := −λ (0). Then also

x → µ (x) = λ (x) + d

must be a Laguerre transformation of X . What we would like to prove is that µ
has a representation

µ (x) = σ · Bp,kω (x, x0)

with a suitable real σ > 0, a suitable ω ∈ O (X) and suitable p ∈ X, k ∈ R

satisfying k2(1 − p2) = 1. We know that c1 − c2 is equivalent with µ (c1) − µ (c2)
for all c1, c2 ∈ Γ = Z, since µ ∈ Lag (X). According to (α), Proposition 43,
l (c1, c2) = 0 is hence the same as l

(
µ (c1), µ (c2)

)
= 0. If c2 = 0 holds true for

c ∈ Z, then, obviously, also l (c, 0) = 0, i.e. l
(
µ (c), µ (0)

)
= 0, i.e.

(
µ (c)

)2 = 0.

3) Suppose that a, b ∈ Z are linearly independent and that they satisfy a2 =
0, b2 = 0. If w = αa + βb with α, β ∈ R and α · β �= 0, then ab �= 0 and

(
µ (w)

)2 =
µ (a)µ (b)

ab
w2 �= 0 (3.129)

hold true.
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In fact! Because of Lemma 60, (β), we get ab �= 0. Now a2 = 0, b2 = 0 imply, by
step 2),

(
µ (a)

)2 = 0,
(
µ (b)

)2 = 0. Since µ : Z → Z is linear,

µ (w) = αµ (a) + βµ (b),

i.e.
(
µ (w)

)2 = 2αβµ (a)µ (b). Now w2 = 2αβab and αβ �= 0 imply (3.129), by
noticing that µ (a), µ (b) are linearly independent, since µ is a linear bijection,
and that hence µ (a)µ (b) �= 0, by (β), Lemma 60.
4) If a, b ∈ Z are linearly independent satisfying a2 = 0 and b2 = 0, we will say
that a, b are strongly independent. The elements (e, 1), (e,−1) of Z with e2 = 1,
for instance, are strongly independent. If a, b ∈ Z are strongly independent, we
define

γ (a, b) :=
µ (a)µ (b)

ab
.

Observe γ (b, a) = γ (a, b) = γ (�a, b) for every real � �= 0.
If a, b are strongly independent, and also b, c, then γ (a, b) = γ (b, c).
In fact! We may assume that the second components of a, b, c ∈ Z are all equal to
1, since, for instance, a �= 0 = a2 and a =: (m, τ) yield τ �= 0, whence a may be
replaced by 1

τ a leading to γ (a, b) = γ
(

1
τ a, b

)
.

Case 1: a, b, c are linearly dependent. Then c = αa+βb with suitable real α, β. The
second part of (β), Lemma 60, implies αβ = 0, i.e. β = 0, since b, c are linearly
independent. Hence α �= 0 and γ (a, b) = γ (c, b).
Case 2: a, b, c are linearly independent. Take the two distinct elements p, q ∈ Z on
the line through

w1 =
a + b

2
, w2 =

b + c

2
(3.130)

satisfying p2 = 0 = q2: writing a =: (A, 1), b =: (B, 1), c =: (c1) we have to solve
in � ∈ R, (

w1 + � (w2 − w1)
)2 = 0,

i.e. (
A + B

2
+ �

C − A

2

)2

= 1. (3.131)

a2 = b2 = c2 = 0 imply A2 = B2 = C2 = 1. We get B �= A �= C, because A = B,
for instance, would lead to

ab = AB − 1 = A2 − 1 = 0,

contradicting ab �= 0, in view of Lemma 60, (β). Hence A �= B are points of
B (0, 1) of X with A+B

2 ∈ B−(0, 1). There are thus exactly two solutions � of
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(3.131), because a euclidean line of X through a point of B−(0, 1) cuts B (0, 1) in
exactly two points.

Having the distinct elements p, q ∈ Z on the line of Z through w1, w2 of
(3.130), we would like to verify that p, q are linearly independent, so strongly
independent, since p2 = 0 = q2: but since w1, w2 are linearly independent, so must
be

p = w1 + �1(w2 − w1), q = w1 + �2(w2 − w1).

We now obtain from (3.12),

γ (a, b)w2
1 = [µ (w1)]2 = γ (p, q)w2

1 ,

γ (b, c)w2
2 = [µ (w2)]2 = γ (p, q)w2

2 ,

i.e. γ (a, b) = γ (p, q) = γ (b, c).
5) If a, b are strongly independent, and also c, d, then γ (a, b) = γ (c, d).
If b, c are linearly dependent, we get b = βc, β �= 0, i.e. γ (c, d) = γ (b, d). Hence

γ (c, d) = γ (b, d) = γ (a, b),

from 4). If b, c are linearly independent, then

γ (a, b) = γ (b, c) and γ (b, c) = γ (c, d),

also from 4).
6) There exists a real constant � > 0 with [µ (w)]2 = � · w2 for all w ∈ Z.
Take strongly independent a, b ∈ Z, for instance, (e, 1), (e,−1) with e2 = 1. Put
� := γ (a, b). If w2 = 0, then [µ (w)]2 = 0, i.e. [µ (w)]2 = �w2 holds true. If w2 �= 0,
then, by (α), Lemma 60, there exist strongly independent c, d satisfying

w = αc + βd.

w2 �= 0 implies αβ �= 0. Hence, by (3.129) and 5),

[µ (w)]2 = γ (c, d)w2 = � · w2,

i.e. l
(
µ (w), 0

)
= �l (w, 0), i.e. � > 0, in view of Proposition 43 and Proposition

55.
7) If v, w ∈ Z, then

l
(
µ (v), µ (w)

)
= [µ (v − w)]2 = � · l (v, w),

in view of 6). Hence
l
(
δ−1µ (v), δ−1µ (w)

)
= l (v, w)

for all v, w ∈ Z for the Laguerre transformation

δ (x) :=
√

� · x.
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The Laguerre transformation δ−1µ is hence of the form, by Theorem 61,

δ−1µ (x) = Bp,kω (x) + δ−1µ (0),

i.e., we obtain
µ (x) =

√
� · Bp,kω (x)

for all x ∈ Z. �

Remark. Lorentz boosts were discovered in 1911 by G. Herglotz [1] and in 1912
by A. von Brill [1] in the form of special matrices, the so-called Herglotz–Brill
matrices (see W. Benz [2]).

3.15 M (X) as part of Lie (X)

Every M -transformation µ of X leads in a natural way to a Lie transformation
λ. We will show this for similitudes and for the inversion ι in order to be sure, by
Theorem 3, that it holds true for all M -transformations. In both cases, similitude
or ι, we define λ (c) := µ (c) for the Lie cycle c ∈ X ∪{∞}. If µ is a similitude, put

λ
(
H (a, α), H∗(a, α)

)
:=
(
µ (H), µ (H∗)

)
, (3.132)

by observing Proposition 31, for H∗ ∈ {H+, H−} (see section 9), and, for � > 0,

λ
(
B (m, �), B∗) :=

(
µ (B), [µ (B)]∗

)
(3.133)

(see section 9 for the definition of B+ and B−). We must notice here that, because
of µ (∞) = ∞,

µ (B) =: B (n, σ) implies µ (B∗) = B∗(n, σ)

for ∗ ∈ {+,−}. In fact! Because of Proposition 31 we know that{
µ (B+ ∪ {∞}), µ (B−)

}
=
{
B+(n, σ) ∪ {∞}, B−(n, σ)

}
.

If now µ (B+ ∪ {∞} = B−(n, σ) and µ (B−) = B+(n, σ) ∪ {∞} would hold true,
µ {∞} could not be equal to ∞.

It is not difficult to verify that the induced mapping λ must be a Lie trans-
formation, by noticing that if a side Σ1 is a subset of another side Σ2, of course,
µ (Σ1) ⊆ µ (Σ2) must be the consequence.

If µ is the inversion ι, we put, by applying the cases (1), (2), (3), (4) (between
formulas (3.7) and (3.8)) of section 1,

λ
(
B (c, �), B∗) :=

(
ι (B), [ι (B)]∗

)
for |c| > �,

λ
(
B (c, �), B∗) :=

(
ι (B), [ι (B)]◦

)
for |c| < �,
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with

ι (B) = B

(
c

c2 − �2
,

�

|c2 − �2|
)

,

for ∗ ∈ {+,−} and {∗, ◦} = {+,−}.
Moreover, we put λ2 = id and

λ
(
B (c, �), B∗) :=

(
H (2c, 1), H◦) for |c| = �,

λ
(
H (a, 0), H∗) :=

(
H (a, 0), H∗),

again for ∗ ∈ {+,−} and {∗, ◦} = {+,−}.
Also here it is easy to verify that the induced mapping λ must be a Lie

transformation. In step 2) of the proof of Proposition 58 we defined the Lie trans-
formation

ε : LQ (X) → LQ (X)

by means of
ε [R∗(v, ξ1, ξ2, ξ3)] = R

∗(v, ξ1, ξ2,−ξ3).

The mapping ε is exactly the Lie transformation induced by the inversion ι.
There exist infinitely many Lie transformations which are not induced by

M -transformations, for instance all Laguerre dilatations

λξ(m, τ) = (m, τ + ξ), λξ(a, 1, α) = (a, 1, α + ξ)

with 0 �= ξ ∈ R, since the image of the Laguerre cycle (m,−ξ), ξ �= 0, is the point
m, and since there is no M -transformation transforming an M -ball (m, |− ξ|) into
the point m. So the question arises how to characterize the Möbius group M (X)
within Lie (X).

In section 12 we defined a Laguerre transformation,

(m, τ) → (m,−τ) and (a, 1, α) → (a,−1, α),

which reverses the orientation of every Laguerre cycle (m, τ), τ �= 0, and of every
spear. This Lie transformation can be written in coordinates as

δ : [R∗(v, ξ1, ξ2, ξ3)] = R
∗(v,−ξ1, ξ2, ξ3).

We are also interested in the centralizer of δ,

C (δ) := {λ ∈ Lie (X) | δλ = λδ},

within Lie (X).

Theorem 63. M (X) ∼= C (δ)/{id, δ}.
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Proof. M -transformations are Lie transformations which are permutations on the
set X ∪ {∞} of points, and which transform balls or hyperplanes apart from their
chosen side. We would like to show that a Lie transformation λ has these properties
if, and only if, λδ = δλ holds true. So assume λδ = δλ and that c is a Lie cycle
which is a point. Hence δ (c) = c, i.e.

λ (c) = λδ (c) = δλ (c).

If λ (c) were not a point, then it would be equal to the Lie cycle based on the same
ball or hyperplane as λ (c), but with the opposite orientation, a contradiction. Let
now d be a ball or a hyperplane and s1, s2 its sides. Put

λ (d, s1) =: (e, σ1), (3.134)

by observing that λ (d, s1) cannot be a point c, since otherwise

(d, s1) = λ−1(c) = λ−1δ (c) = δλ−1(c) = δ (d, s1) = (d, s2)

would hold true. Hence

λ (d, s2) = λδ (d, s1) = δλ (d, s1) = (e, σ2),

i.e. λ transforms d into e apart from its chosen side.
Assume now that λ is a Lie transformation which is a permutation on X∪{∞}

and which satisfies λ (d, s2) = (e, σ2), whenever λ (d, s1) = (e, σ1). For every Lie
cycle c which is a point we get

λδ (c) = λ (c) = δλ (c),

since λ (c) is also a point. For any other cycle (d, s1) we get, by (3.134),

λδ (d, s1) = λ (d, s2) = (e, σ2) = δ (e, σ1) = δλ (d, s1).

Hence λδ = δλ.
Our result is that exactly the Lie transformations λ in the centralizer C (δ) of

δ lead to M -transformations. Obviously, this correspondence is a homomorphism
of C (δ) onto M (X). In order to determine the kernel of this homomorphism, we
ask for all λ ∈ C (δ) inducing the identity of M (X). If λ �= id in C (δ) induces
the identity, then λ (∞) = ∞, i.e. λ must be a Laguerre transformation, i.e., by
Theorem 62,

λ (x, x0) = σBp,k

(
ω (x), x0

)
+ d. (3.135)

Because of λ (x, 0) = (x, 0) for all x ∈ X , and because of

λ (0, 1) ∈ {(0, 1), (0,−1)}, (3.136)
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we obtain

d = 0 from λ (0, 0) = (0, 0),

(p, k) ∈ {(0, 1), (0,−1)} and σ = 1 from (3.135), (3.136),

ω = id from λ (x, 0) = (x, 0) for all x = X.

The only mapping λ �= id in C (δ) which induces id ∈ M (X), is hence λ (x, x0) =
B0,−1(x, x0) = (x,−x0), i.e. λ = δ. �

3.16 A characterization of Lag (X)

The following result characterizes the elements of Lag (X) under mild hypotheses.

Theorem 64. Let λ be a bijection of the set Γ of all Laguerre cycles of X such that

∀c1,c2∈Γ c1 − c2 ⇒ λ (c1) − λ (c2) (3.137)

holds true. Then there exists a uniquely determined Laguerre transformation ∆ of
X with ∆ | Γ = λ and, moreover, λ has the form (3.124).

Proof. 1) Let λ be a bijection of Γ = Z = X ⊕ R satisfying (3.137). Instead of
λ (x), x ∈ Z, we will write x′. Assume that there exist a, b ∈ Z with a′ − b′ and
a �−b. Then a �= b and hence a′ �= b′. Designate the parabolic pencil Bp(a′, b′) by
B. Also now it will be important to distinguish between subtraction c1 − c2 and
contactness c1 − c2 of two elements c1, c2 ∈ Z. In view of (α), Lemma 60, there
exist linearly independent v, w in X ⊕ R and α, β ∈ R with

b − a = αv + βw, (3.138)

v2 = 0 = w2. Since (b − a)2 �= 0 by (α), Proposition 43, we get αβ · vw �= 0 from
(3.138). Hence

x := a + αv = b + (−β)w �∈ {a, b}
and y := a + βw = b + (−α) v �∈ {a, b}. Thus a− x− b and a− y − b. This implies
x′, y′ ∈ B by (3.137) and hence

(a + ξv)′, (y + ξv)′ ∈ B

for every real ξ since l (a, a + ξv) = 0 = l (a + ξv, x) and

l (y, y + ξv) = 0 = l (y + ξv, b).

Thus z′ ∈ B for all z = a + ξv + ηw with reals ξ, η because of

l (a + ξv, z) = 0 = l (y + ξv, z).
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Finally, we would like to show c′ ∈ B also for those c ∈ Γ which do not belong to
the bundle

B := {a + ξv + ηw | ξ, η ∈ R}.
Observe here (γ), Proposition 51, and vw �= 0. There exist q1 �= q2,

qi = a + ξiv + ηiw, i = 1, 2,

in B with (qi − c)2 = 0, i = 1, 2, since this latter equation has the form

(ξiP + A)(ηiP + B) = C, i = 1, 2, (3.139)

with P := vw �= 0, A := (a − c)w, B := (a − c) v and

C := AB − 1
2

P · (a − c)2 :

take reals ξ1 �= ξ2, both unequal to −P−1A, and calculate ηi, i = 1, 2, according
to (3.139). Now l (c, qi) = 0 and q′i ∈ B for i = 1, 2 imply c′ ∈ B.

Hence λ (Γ) ⊆ B which contradicts the fact that λ : Γ → Γ is a bijection. We
thus proved that a′ − b′ and a �−b for a, b ∈ Γ is not possible. This implies

∀c1,c2∈Γ λ (c1) − λ (c2) ⇒ c1 − c2. (3.140)

2) A Laguerre transformation of X can be defined, by Proposition 53, as a bijection
of Γ such that images and pre-images of spears are spears by identifying a spear
s ∈ Σ with {c ∈ Γ | s − c}. Let now s be an arbitrary spear and let c1, c2 be
elements of Γ satisfying

c1 �= c2, c1 − c2, c1 − s − c2.

Then, in view of Proposition 47, s is given by N ∪ Bp(c1, c2) with

N = {c ∈ Γ | there is no w ∈ Bp(c1, c2) touching c}.
If we look to λ

(
N ∪ Bp(c1, c2)

)
for a mapping as considered in Theorem 64, we

obtain by (3.137), (3.140) and z′ := λ (z), z ∈ Γ,

λ
(
Bp(c1, c2)

)
= {c′ ∈ Γ | c1 − c − c2} = {c′ ∈ Γ | c′1 − c′ − c′2} = Bp(c′1, c

′
2).

Since N = N (c1, c2) can be written as

{c ∈ Γ | w �−c for all w ∈ Bp(c1, c2)},
we get by (3.137), (3.140),

λ (N) = {c′ ∈ Γ | w′ �−c′ for all w′ ∈ Bp(c′1, c
′
2)},

and hence λ (N) = N (c′1, c
′
2). In view of Proposition 47, the set

N (c′1, c
′
2) ∪ Bp(c′1, c

′
2)

is the spear touching c′1, c
′
2. The image of a spear under λ must hence be a spear.

The same holds true for the pre-image since also λ−1 satisfies (3.137), (3.140). If
we now apply Theorem 62, then Theorem 64 is proved. �
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3.17 Characterization of the Lorentz group

The basic structure of Lorentz–Minkowski geometry is Z = X ⊕ R. The Lorentz–
Minkowski distance of (x, x0), (y, y0) ∈ Z is defined by

l (x, y) := (x − y)2 − (x0 − y0)2. (3.141)

In section 10 this expression was called the separation of the two Laguerre cycles
x, y ∈ Z. A connection between classical Lorentz–Minkowski geometry and clas-
sical Laguerre geometry was dicovered in its first steps by H. Bateman [1] (1910)
and H.E. Timerding [1] (1912). W. Blaschke [2] (1929) then realized that this con-
nection was indeed very close. A mapping λ : X ⊕ R → X ⊕ R is called a Lorentz
transformation of Z = X ⊕ R provided

l (x, y) = l
(
λ (x), λ (y)

)
(3.142)

holds true for all x, y ∈ Z. The Lorentz group L (Z) of Z is the set of all bijective
Lorentz transformations of Z equipped with the usual product of permutations.
The geometry

(
Z, L (Z)

)
is called Lorentz–Minkowski geometry over Z. The case(

Z = R
3 ⊕ R, L (Z)

)
is called classical Lorentz–Minkowski geometry, as well as classical proper Laguerre
geometry in the earlier context (see section 3.12).

Theorem 61 then determines all Lorentz transformations λ : Z → Z in the
context of Laguerre geometry.

Here we would like to present an important and immediate consequence of
Theorems 64 and 62.

Theorem 65. If the bijection λ : X ⊕ R → X ⊕ R satisfies

∀c1,c2∈X⊕R l (c1, c2) = 0 ⇒ l
(
λ (c1), λ (c2)

)
= 0, (3.143)

then

λ (x, x0) = σ · Bp,k

(
ω (x), x0

)
+ d (3.144)

holds true for all x = (x, x0) in Z where d ∈ Z, p ∈ X, k ∈ R with k2(1 − p2) =
1, σ ∈ R, ω ∈ O (X) are suitable elements.

Proof. Because of (α), Proposition 43, the properties (3.137), (3.143) coincide.
Moreover, the mapping (3.144) is bijective if, and only if, ω : X → X is bijective,
i.e. ω ∈ O (X); this follows from the fact that Lorentz boosts are bijective. �
Remark. Concerning generalizations of Lorentz transformations see also J. Lester
[2], [9], W.F. Pfeffer [1], H. Schaeffer [1], E.M. Schröder [3], [6]. Configurations in
Lorentz–Minkowski structures were studied by H.J. Samaga [1].
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3.18 Another fundamental theorem

Theorem 66. (α) A bijection λ : ∆ (X) → ∆ (X) satisfying

∀x,y∈∆ x − y ⇒ λ (x) − λ (y) (3.145)

is already a Lie transformation of X.

(β) Lie (X) consists exactly of all finite products of elements of Lag X ∪ {ε}.
More precisely, every λ ∈ Lie (X) is of the form

α or β1εβ2 or γ1εγ2εγ3

with α, β1, β2, γ1, γ2, γ3 in Lag (X).

Proof. 1) Let the bijection λ : ∆ → ∆ satisfy (3.145). By Proposition 58 there
exists µ ∈ Lie (X) with µ

(
λ (∞)

)
= ∞. The bijection λ′ := µλ of ∆ also satisfies

(3.145). If s is a spear, then s − ∞ implies λ′(s) − ∞, i.e. λ′(s) ∈ Σ. Hence
λ′(Σ) ⊆ Σ, λ′(∞) = ∞. We also would like to show λ′(Γ) ⊆ Γ. Assume that c ∈ Γ
satisfies c′ := λ′(c) ⊆ Σ. If s ∈ Z is given arbitrarily, by Lemma 49, there exists
s1 ∈ Σ with c − s1 and s1 ‖ s. Hence c′ − s′1 and s′1 ‖ s′, i.e. c′ ‖ s′, since c′ is a
spear: all spears in λ′(Σ) are thus parallel to the spear c′. Take now a spear s �‖ c′.
The pre-image c1 of s must hence be in Γ. So we get, as before, that every spear
in λ′(Σ) must be parallel to c′1. This implies

s = c′1 ‖ t ‖ c′

where t is taken arbitrarily from λ′(Σ), i.e. s ‖ c′, contradicting s �‖ c′. Hence our
assumption that there exists c ∈ Γ with c′ ∈ Σ was wrong. This implies λ′(Γ) ⊆ Γ.
Since λ′ : ∆ → ∆ is bijective,

λ′(∞) = ∞, λ′(Σ) ⊆ Σ, λ′(Γ) ⊆ Γ

leads to λ′(Σ) = Σ and λ′(Γ) = Γ. From Theorem 64 we then get (α) by observing
λ = µ−1λ′.
2) Let λ be a Lie transformation. If λ (∞) = ∞, then λ ∈ Lag (X). If λ (∞) =: z
is in Γ, then, with αε (∞) = z (see step 3 of the proof of Proposition 58), α ∈
Lag (X), we get

λ−1αε (∞) = ∞,

i.e. λ−1αε ∈ Lag (X). In the case λ (∞) =: z ∈ Σ, we refer to the spear s and the
Laguerre cycle x = ε (s) as defined in step 4 of the proof of Proposition 58. Take
α, β in Lag (X) with α (0) = x and β (s) = z. Since ∞ remains unaltered under
λ−1βεαε, we get that λ−1βεαε is in Lag (X). �

With Proposition 59, part (α) of Theorem 66 can be presented equivalently
in the following form.
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Theorem 67. A bijection λ of LQ (X) is a Lie transformation of X if λ (l) is
collinear for every line l of Π(X ⊕ R

3) contained in LQ (X).

This theorem already appears in U. Pinkall (Math. Ann. 270 (1985) 427–440)
under the additional assumptions that dimX < ∞ and that λ is a line preserving
diffeomorphism.

Remark. Concerning finite-dimensional sphere geometries of Möbius, Laguerre
and Lie see, for instance, R. Artzy [1], W. Benz [2], W. Blaschke [2], H. Schaeffer
[2], E.M. Schröder [2], H. Schwerdtfeger [1], concerning generalizations in this
context A. Blunck [1], H. Havlicek [1], [2], A. Herzer [1]. The arbitrary-dimensional
case was developed by W. Benz [9], [12].



Chapter 4

Lorentz Transformations

As in the chapters before, X denotes a real inner product space of arbitrary (finite
or infinite) dimension ≥ 2.

4.1 Two characterization theorems

Define the so-called Lorentz–Minkowski spacetime Z := X ⊕ R with the product

(x, x0) · (y, y0) := x y − x0y0 (4.1)

as in (3.88) where x, y ∈ X and x0, y0 ∈ R, or, in other words where (x, x0), (y, y0)
are elements of Z. In the present context, the elements of Z are called events, and

R (0, 1) = {(0, ξ) ∈ Z | ξ ∈ R}

is said to be the time axis of Z. Instead of events we also will speak of the points
of Z. The Lorentz–Minkowski distance of x = (x, x0), y = (y, y0) ∈ Z is defined
by (3.141),

l (x, y) := (x − y)2 − (x0 − y0)2 = (x − y)2. (4.2)

Recall that this expression was defined to be the separation of the two Laguerre
cycles x, y (see section 10 of chapter 3). A mapping λ : Z → Z is said to be a
Lorentz transformation of Z (see section 17, chapter 3) provided

l (x, y) = l
(
λ (x), λ (y)

)
(4.3)

holds true for all x, y ∈ Z.

Theorem 61 of chapter 3 immediately yields
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Theorem 1. Let λ : Z → Z be a Lorentz transformation of Z. Then there exist
a uniquely determined Lorentz boost Bp,k and a uniquely determined orthogonal
mapping ω of X such that

λ (x) = Bp,k ω (x) + λ (0) (4.4)

holds true for all x ∈ Z where we put ω (x, x0) :=
(
ω (x), x0

)
for all x ∈ X, x0 ∈ R.

On the other hand, all mappings (4.4) must be Lorentz transformations pro-
vided Bp,k is a boost and ω an orthogonal mapping of X . Moreover, all mappings
(4.4) are injective, since ω must be injective (see section 5 of chapter 1) and Bp,k

bijective (see (3.120)). There exist real inner product spaces X and orthogonal
mappings ω : X → X which are not bijective (see section 5 of chapter 1). How-
ever, if X is finite-dimensional, every orthogonal mapping ω of X must be bijective.
In fact, if a1, . . . , an is a basis of X , then ω (a1), . . . , ω (an) is a basis as well.

Since Bp,k in (4.4) is bijective and ω injective, a mapping

λ (x) = Bp,k ω (x) + λ (0)

must be bijective if, and only if, ω is bijective, i.e. ω ∈ O (X). The Lorentz group
L (Z) of Z is the set of all bijective Lorentz transformations with the permutation
product as multiplication. Hence, the Lorentz group of Z consists of all mappings
(4.4) satisfying ω ∈ O (X). The geometry

(
Z, L (Z)

)
in the sense of section 9,

chapter 1, is called Lorentz–Minkowski geometry over Z = X ⊕ R. The elements
of L (Z) are also called motions of this geometry.

The following structure theorem was already proved in the context of La-
guerre geometry (Theorem 65, chapter 3).

Theorem 2. If the bijection λ : X ⊕ R → X ⊕ R satisfies

∀x,y∈X⊕R (x − y)2 = 0 ⇒ (
λ (x) − λ (y)

)2 = 0, (4.5)

then

λ (x) = σ · Bp,k ω (x) + d (4.6)

holds true for all x ∈ Z where d ∈ Z, p ∈ X, k ∈ R with k2(1 − p2) = 1, 0 �= σ ∈
R, ω ∈ O (X) are suitable elements and where ω (x) is defined by

(
ω (x), x0

)
for

all x = (x, x0) ∈ Z.

Remark. Observe dim(X ⊕R) ≥ 3, because of dim X ≥ 2. Theorem 2 was proved
for dim(X ⊕ R) < ∞ and under the stronger assumption

∀x,y∈X⊕R (x − y)2 = 0 ⇔ (
λ (x) − λ (y)

)2 = 0, (4.7)

by A.D. Alexandrov [1, 2, 3], however not precisely in the form (4.6), but in the
form λ = σλ′ with

∀x,y∈X⊕R (x − y)2 =
(
λ′(x) − λ′(y)

)2
. (4.8)
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June Lester [1] and E.M. Schröder [5] solved the general field case, E.M. Schröder
even in the infinite-dimensional case. The first mathematician who weakened (4.7)
into (4.5) was F. Cacciafesta [1], however, under the assumption dim X ⊕R < ∞.
The general form was proved by W. Benz [9].

4.2 Causal automorphisms

Let x = (x, x0), y = (y, y0) be elements of Z. We put

x ≤ y

if, and only if,
l (x, y) = (x − y)2 ≤ 0 and x0 ≤ y0

hold true. A bijection σ : Z → Z is called a causal automorphism of Z if, and only
if,

x ≤ y ⇔ σ (x) ≤ σ (y)

for all x, y ∈ Z.
Of course, x < y stands for x ≤ y and x �= y, x ≥ y for y ≤ x, and x > y for

y < x.

Proposition 3. Let x, y, z be elements of Z and let k be a real number. Then the
following statements hold true.

(1) x ≤ x,

(2) x ≤ y and y ≤ x imply x = y,

(3) x ≤ y and y ≤ z imply x ≤ z,

(4) x ≤ y implies x + z ≤ y + z,

(5) x ≤ y implies kx ≤ ky for k ≥ 0,

(6) x ≤ y implies kx ≥ ky for k < 0.

Proof. (1) follows from (x − x)2 = 0 ≤ 0 and x0 ≤ x0. Obviously, x ≤ y ≤ x
implies

0 ≥ (x − y)2 = (x − y)2 − (x0 − y0)2

and x0 ≤ y0 ≤ x0, i.e. x0 = y0 and hence 0 ≥ (x − y)2 ≥ 0. From x ≤ y ≤ z we
obtain

(x − y)2 ≤ (x0 − y0)2, (y − z)2 ≤ (y0 − z0)2, x0 ≤ y0 ≤ z0.

Hence, by the triangle inequality,

‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖ ≤ (y0 − x0) + (z0 − y0),

i.e. (x− z)2 ≤ (x0 − z0)2. Together with x0 ≤ z0 we get (3). The proof of (4), (5),
(6) is trivial. �
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If x, y ∈ Z satisfy x < y,

[x, y] := {z ∈ X | x ≤ z ≤ y}

is called ordered if, and only if, u ≤ v or v ≤ u holds true for all u, v ∈ [x, y].

Proposition 4. If x, y ∈ Z satisfy x < y, then [x, y] is ordered if, and only if,
(x − y)2 = 0.

Proof. a) Assume l (x, y) = (x − y)2 = 0 and u ∈ [x, y], i.e.

x0 ≤ u0 ≤ y0, ‖u − x‖ ≤ u0 − x0, ‖y − u‖ ≤ y0 − u0.

l (x, y) = 0 implies ‖y − x‖ = y0 − x0. Hence

y0 − x0 = ‖y − x‖ ≤ ‖y − u‖ + ‖u − x‖ ≤ y0 − x0, (4.9)

and thus ‖y−x‖ = ‖y−u‖+‖u−x‖. Because of Lemma 2, chapter 2, y−u, u−x
must be linearly dependent. Hence there exists α ∈ R with

u = x + α (y − x), (4.10)

in view of x �= y, since x = y and ‖y − x‖ = y0 − x0 would lead to x = y. Now
(4.9), (4.10) yield

‖y − x‖ = ‖y − u‖ + ‖u − x‖ = |1 − α| ‖y − x‖ + |α|‖y − x‖,

i.e. 1 = |1 − α| + |α|, i.e. 0 ≤ α ≤ 1. Hence, with ξ := y0 − x0,

ξ = (1 − α) ξ + αξ = ‖y − u‖ + ‖u − x‖ ≤ (y0 − u0) + (u0 − x0) = ξ,

i.e. ‖y − u‖ = y0 − u0, ‖u − x‖ = u0 − x0, i.e., by (4.10),

u = x + α (y − x).

Similarly, v ∈ [x, y] implies

v = x + β (y − x), 0 ≤ β ≤ 1.

Hence u ≤ v for α ≤ β, and v ≤ u for β ≤ α.
b) Assume that [x, y] is ordered and that l (x, y) �= 0. Hence, by x < y, we obtain
l (x, y) < 0 and x0 ≤ y0, i.e.

(y − x)2 < (y0 − x0)2 and x0 < y0.

Choose e = (e, e0) ∈ Z with e2 = 1, e0 = 0, and ε ∈ R with

0 < 2ε < (y0 − x0) − ‖y − x‖, (4.11)
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and put

u :=
x + y

2
, v :=

x + y

2
+ εe.

Observe u0 = v0 and l (u, v) = ε2 > 0, i.e.

u �≤ v and v �≤ u. (4.12)

Moreover,

u, v ∈ [x, y]. (4.13)

In order to prove (4.13), we observe

x0 ≤ u0 ≤ y0 and x0 ≤ v0 ≤ y0,

by u0 = v0 = 1
2 (x0 + y0), and, moreover,

l (x, u) =
1
4

l (x, y) = l (u, y),

i.e. l (x, u) = l (u, y) < 0. The triangle inequality yields

‖(y − x) ± 2εe‖ ≤ ‖y − x‖ + 2ε,

i.e., by (4.11),
‖(y − x) ± 2εe‖ < y0 − x0.

Hence [(y − x) ± 2εe]2 < (y0 − x0)2, i.e. l (x, v) and l (v, y) are negative. Because
of (4.12), (4.13), [x, y] is not ordered, a contradiction. Hence l (x, y) = 0. �

A Lorentz transformation of Z is called orthochronous if, and only if, it is
also a causal automorphism.

Theorem 5. The orthochronous Lorentz transformations λ of Z are exactly given
by all mappings

λ (x) = Bp,k ω (x) + d (4.14)

with ω ∈ O (X), d ∈ X, 1 ≤ k ∈ R, p ∈ X, k2(1 − p2) = 1.

Proof. a) Let λ be an arbitrary orthochronous Lorentz transformation, say (4.4).
Since λ is bijective, so must be ω : X → X . Moreover, 0 ≤ t := (0, 1) implies
λ (0) ≤ λ (t), i.e., by (4) of Proposition 3,

0 ≤ Bp,k ω (t, t0) = Bp,k (t) = kp + kt.

Hence (0, 0) ≤ (kp, k), i.e. 0 ≤ k, i.e. 1 ≤ k, in view of k2 ≥ 1.
b) Let λ be a mapping (4.14) with proper Bp,k and ω ∈ O (X). We have to prove

a ≤ b ⇔ λ (a) ≤ λ (b)



180 Chapter 4. Lorentz Transformations

for all a, b ∈ Z. This is clear for λ (x) = x + d, by (4), Proposition 3. It is also
clear for λ (x) = ω (x) because of

l (a, b) = l
(
λ (a), λ (b)

)
and λ (x) = ω (x, x0) =

(
ω (x), x0

)
, i.e. [λ (x)]0 = x0, and because of ω−1 ∈ O (X).

Finally, we consider the case λ (x) = Bp,k(x) with k ≥ 1. Since we have
B−1

p,k = B−p,k (see (3.120)), we only need to prove

a ≤ b ⇒ λ (a) ≤ λ (b)

for all a, b ∈ Z, i.e. 0 ≤ b−a ⇒ 0 ≤ λ (b)−λ (a). But this will be a consequence of

0 ≤ x ⇒ 0 ≤ λ (x), (4.15)

because of the linearity of Bp,k, as soon as (4.15) is proved. Since l (0, x) =
l
(
λ (0), λ (x)

)
= l
(
0, λ (x)

)
, it remains to show

0 ≤ x0 ⇒ [Bp,k(x)]0 ≥ 0

under the assumption l (0, x) ≤ 0. Obviously, [Bp,k(x)]0 = kxp + kx0 =: R. If
xp ≥ 0, then R ≥ 0, since x0 ≥ 0 and k ≥ 1. If xp < 0, then

(xp)2 ≤ x2
0p

2 ≤ x2
0,

by x2 − x2
0 ≤ 0 and p2 < 1. Hence −xp = |xp| ≤ x0. �

Theorem 6. All causal automorphisms of Z are exactly given by all mappings

λ (x) = γ · Bp,k ω (x) + d (4.16)

where γ > 0 is a real number, Bp,k a proper Lorentz boost, d ∈ Z, ω ∈ O (X) with
ω (x, x0) =

(
ω (x), x0

)
for x = (x, x0) ∈ Z.

Proof. Observe that µ (x) := γx for x ∈ Z defines a causal automorphism for a
real constant γ > 0. Hence, by Theorem 5, (4.16) must be a causal automorphism.

Suppose now that λ : Z → Z is an arbitrary causal automorphism. If x �= y
are elements of Z with l (x, y) = 0, we may assume x0 ≤ y0, because otherwise,
x0 > y0, we would interchange x and y. Hence x < y. Thus, by Proposition 4, [x, y]
is ordered. Since λ is a causal automorphism, also [λ (x), λ (y)] must be ordered
and λ (x) < λ (y) holds true. Hence, by Proposition 4, l

(
λ (x), λ (y)

)
= 0. Now

Theorem 2 implies that

λ (x) = m · λ1(x) (4.17)

for all x ∈ Z where λ1 is a Lorentz transformation and m �= 0 a real constant. We
may assume m > 0 without loss of generality, since otherwise we would work with

λ (x) = (−m) · (−λ1(x)
)
,
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by considering that also x → −λ1(x) is a Lorentz transformation. Hence

x → 1
m

λ (x)

is a causal automorphism, and thus, by (4.17), λ1 must be an orthochronous
Lorentz transformation. In view of Theorem 5, we hence obtain for λ the form
(4.16) with the properties described in Theorem 6. �

Remark. If X is finite-dimensional, Theorem 6 is a well-known theorem of Alex-
androv–Ovchinnikova [1], Zeeman [1]. In the general form it is contained in W.
Benz [11].

4.3 Relativistic addition

If λi : Z → Z, i = 1, 2, are Lorentz transformations, then, of course, also λ1λ2 is
such a transformation, because of

l (x, y) = l
(
λ2(x), λ2(y)

)
= l
(
λ1[λ2(x)], λ1[λ2(y)]

)
for all x, y ∈ Z. From Theorem 1 we get, say,

λ1(x) = Ba,α ω1(x) + d1,

λ2(x) = Bb,β ω2(x) + d2,

i.e., by the linearity of ω1 and Ba,α,

λ1λ2(x) = Ba,α ω1Bb,β ω2(x) + d3, (4.18)

d3 := Ba,α ω1(d2) + d1.

The problem now is to find a boost Bc,γ and an orthogonal mapping ω : X → X
satisfying

Bc,γ ω = Ba,α ω1Bb,β ω2.

Theorem 1 guarantees that these objects Bc,γ and ω exist and that they are
uniquely determined. It is easy to verify

ωBp,k = Bω(p),kω. (4.19)

Hence from (4.19),
Ba,αBω1(b),β = Bc,γω′

with the orthogonal mapping ω′ := ωω−1
2 ω−1

1 .



182 Chapter 4. Lorentz Transformations

Theorem 7. If a, b ∈ X and α, β ∈ R are given with

α2(1 − a2) = 1, β2(1 − b2) = 1,

then δ := 1+ab > 0 holds true, and Ba,αBb,β = Bc,γω has the uniquely determined
solution ω = B−c,γBa,αBb,β and

1) c =
a (1 + αδ)
(1 + α) δ

+
b

αδ
and γ = αβδ for − 1 �∈ {α, β},

2) c = −b and γ = −β for α = −1 �= β,

3) c = a and γ = −α for α �= −1 = β,

4) c = 0 and γ = 1 for α = −1 = β.

Proof. Observe 1 − a2 > 0, 1 − b2 > 0, i.e.

−ab ≤ |ab| ≤
√

a2
√

b2 < 1,

i.e. δ > 0. Obviously, α �= 0 and β �= 0. In all four cases we will examine the
equation

L := Ba,αBb,β(t) = Bc,γ ω (t) = Bc,γ(t). (4.20)

Notice here t = (0, 1) and ω (x) = ω (x, x0) :=
(
ω (x), x0

)
. In the case that α, β

are both unequal to −1, we obtain

L = Ba,α(βb + βt) = βBa,α(b) + β (αa + αt) = γ1c1 + γ1t

with
γ1 := αβδ, γ1c1 := βb +

αβa (1 + αδ)
1 + α

.

We verify γ2
1(1 − c2

1) = 1. Hence Bc1,γ1 is a boost and

L = γ1c1 + γ1t = Bc1,γ1(t)

holds true. Let now Bc,γ be a boost also satisfying L = Bc,γ(t), i.e.

γ1c1 + γ1t = γc + γt for γ �= −1,

and γ1c1 +γ1t = −t for γ = −1 (and hence c = 0 from γ2(1− c2) = 1). In the first
case we get, by c1, c ∈ X , i.e. by c1 = (c1, 0) ∈ X ⊕ R, c = (c, 0) and t = (0, 1),

γ = γ1 and c = c1,

in the second γ1 = −1 = γ and c1 = 0 = c with γ2
1(1 − c2

1) = 1.
If α = −1 �= β, (4.20) implies

L = B0,−1(βb + βt) = βb − βt = γc + γt for γ �= −1,
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and L = βb− βt = −t for γ = −1, i.e. γ = −β, c = −b for γ �= −1, and β = 1, i.e.
b = 0 = c for γ = −1.

If α �= −1 = β, (4.20) implies

L = Ba,α(−t) = −αa − αt = γc + γt for γ �= −1,

and L = −αa − αt = −t for γ = −1, i.e. γ = −α, c = a for γ �= −1, and
α = 1 = −γ, i.e. c = 0 = a, for γ = −1.

If α = −1 = β, (4.20) implies

L = t = γc + γt for γ �= −1,

and L = t = −t for γ = −1. Since the second case does not occur, we obtain
γ = 1, c = 0 �

We are now interested in the case

Ba,αBb,β = Bc,γ ω

where the factors on the left-hand side of this equation are proper boosts, hence
where α ≥ 1 and β ≥ 1. This implies

α =
1√

1 − a2
, β =

1√
1 − b2

,

by α2(1 − a2) = 1 = β2(1 − b2). Thus Theorem 7, case 1), yields

γ = αβδ > 0,

i.e. Bc,γ is also a proper boost. Moreover, by Theorem 7, case 1), we obtain

c =
a

δ

1 + αδ

1 + α
+

b

αδ
=

a

δ

1 + α (1 + ab)
1 + α

+
b

αδ
,

i.e.

c =
a

δ

(
1 +

α

1 + α
ab

)
+

b

αδ
, (4.21)

i.e., by
α

1 + α
=

α − 1
αa2

from α2(1 − a2) = 1, we get with δ = 1 + ab,

c =
1

1 + ab

[
b

α
+

α − 1
αa2

(ab) a + a

]
.
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This is in the case X = R
3 the relativistic sum c =: a⊕ b of the velocities a, b ∈ X

(see, for instance, R.U. Sexl and H.K. Urbantke, Relativität, Gruppen, Teilchen.
Springer-Verlag. Wien–New York, 1976, page 34).

By observing α ≥ 1 and α2(1 − a2) = 1, we get

1
α

=
1 + α

α (1 + α)
=

α2(1 − a2) + α

α (1 + α)
= 1 − αa2

1 + α
,

i.e., by (4.21),

c =
a

δ

(
1 +

α

1 + α
ab

)
+

b

δ

(
1 − α

1 + α
a2

)

=
a + b

δ
+

1
1 + 1

α

(ab) a − a2b

δ
.

Hence, by α2(1 − a2) = 1, α > 0,

a ⊕ b := c =
a + b

1 + ab
+

1
1 +

√
1 − a2

(ab) a − a2b

1 + ab
. (4.22)

Remark. Let g (x, y) (see (2.40) in section 12, chapter 2) denote the hyperbolic
distance of x, y ∈ P := {x ∈ X | x2 < 1} in the Cayley–Klein model. Then

g (a, b) = g (x ⊕ a, x ⊕ b)

holds true for all a, b, x ∈ P . On the basis of this functional equation we charac-
terized the function f (x, y) = x ⊕ y in W. Benz [10].

4.4 Lightlike, timelike, spacelike lines

Already in connection with pencils of Laguerre geometry we discussed the notion
of a line of Z. The sets

l = {(p, p0) + λ (v, v0) | λ ∈ R} = p + Rv (4.23)

where p = (p, p0), v = (v, v0) �= 0 are elements of Z, are called the lines of Z. Let
us denote for a moment the set of lines of Z by N . Then

ϕ : L (Z) × N → N

with f (l) := {f (p) + λBa,α ω (v) | λ ∈ R} for

f (x) = Ba,α ω (x) + d, ω ∈ O (X), (4.24)

defines an action. Hence (N, ϕ) is an invariant notion of
(
Z, L (Z)

)
.
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An element z in Z is called timelike provided z2 < 0 holds true. z �= 0 is said
to be lightlike, spacelike if, and only if, z2 = 0, z2 > 0, respectively, is satisfied.
The line (4.23) is defined to be timelike, lightlike, spacelike provided v has the
corresponding property. Observe that

p + Rv = q + Rw

implies q = p + αv for a suitable real α, i.e.

p + Rv = p + Rw.

Hence w = µv for a µ �= 0 in R. Thus the character of l to be timelike,. . ., does
not depend on the special chosen v.

Remark. If x, y ∈ R
3 ⊕R are classical events, i.e. points x, y of R

3 at certain fixed
moments x0, y0, the event x has the chance to influence the event y provided there
exists a signal from x to y travelling from x to y along a line of R

3 with a constant
velocity µ ≥ 0 less than or equal to the speed (which we designate as 1) of light,
starting at time x0 and ending at time y0 ≥ x0. This means√

(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2 = µ · (y0 − x0) ≤ y0 − x0

on the basis of
distance travelled = velocity µ· time taken,

i.e. l (x, y) ≤ 0 and x0 ≤ y0, i.e. x ≤ y, where we applied the classical inner
product of R

3. Timelike or lightlike lines x + R (y − x), x �= y, (y − x)2 ≤ 0,
represent possible signals and lightlike lines signals with speed 1, i.e. the speed of
light. In fact! A motion (

x1(τ), x2(τ), x3(τ)
)
,

τ the time, τ ∈ [α, β], leads to the set of events{(
(x1(τ), x2(τ), x3(τ), τ

) | τ ∈ [α, β]
}

of R
3 ⊕ R, called the world-line of the motion. The world-line

{(p1 + µτa1, p2 + µτa2, p3 + µτa3, p0 + τ | τ ∈ [α, β]},
a2
1 + a2

2 + a2
3 = 1, of a signal travelling with constant velocity µ ∈ [0, 1] along a

line of R
3 can be written in R

3 ⊕ R as

{p + τv | τ ∈ [α, β]}
with p := (p1, p2, p3, p0), v := (µa1, µa2, µa3, 1) such that

v2 = µ2 − 1 ≤ 0.

In this sense possible signals are represented by timelike or lightlike lines of R
3⊕R.

Spacelike lines do not occur as signals.
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The image line f (l) of (4.23) under (4.24) is

f (p) + R · Ba,α ω (v),

as we already know. Because of

l (v, 0) = l (Ba,α ω (v), Ba,α ω (0)) ,

i.e.
v2 = [Ba,α ω (v)]2 ,

f (l) has the same character, namely to be timelike,. . ., as l. We hence get the
invariant notions of timelike lines,. . ..

From Propositions 46 and 43, chapter 3, we know that the parabolic pencils
correspond to the lightlike lines, the elliptic pencils to the spacelike lines (see
Proposition 48), the hyperbolic pencils to the timelike lines (see Proposition 50).

If l := p + Rv = (p, p0) + R (v, v0) is a line of Z, we will call

π (l) := p + Rv

its projection into X . This projection is a point if, and only if, v ∈ Rt. We define
the angle measure

�
(
l, π (l)

)
to be 90◦ provided π (l) is a point, and otherwise by ϕ ∈ [0◦, 90◦[ satisfying

cos2 ϕ =
v2

v2 + v2
0

.

For 0 = v2 = v2 − v2
0 (of course, with v �= 0) we get ϕ = 45◦. This angle

characterizes the lightlike lines of Z. Moreover, l is

timelike ⇔ 45◦ < ϕ ≤ 90◦,

and spacelike ⇔ 0 ≤ ϕ < 45◦: this follows from

0 > v2 = v2 − v2
0 ⇔ 1

2
>

v2

v2 + v2
0

≥ 0,

0 < v2 = v2 − v2
0 ⇔ 1

2
<

v2

v2 + v2
0

≤ 1.

4.5 Light cones, lightlike hyperplanes

If p ∈ Z,
C (p) := {x ∈ Z | l (p, x) = 0}
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is called the light cone with vertex p. This leads also to an invariant notion of(
Z, L (Z)

)
with

f
(
C (p)

)
= C

(
f (p)

)
for all f ∈ L (Z). The future of p ∈ Z is defined by

F (p) := {x ∈ Z | p ≤ x},

the past by
P (p) := {x ∈ Z | x ≤ p}.

Take λ ∈ L (Z) with λ (x) = 2p − x for all x ∈ Z. Then

λ
(
F (p)

)
= P (p).

Hence N := {F (p) | p ∈ Z} with

ϕ
(
f, F (p)

)
:= f

(
F (p)

)
(4.25)

for f ∈ L (Z) does not lead to an invariant notion. Here we consider the group
L

+(Z) of all orthochronous Lorentz transformations of Z. Observe that the index
of L

+(Z) in L(Z) is 2. Of course, (4.25) yields an invariant notion for
(
Z, L

+(Z)
)

under the assumption that the mappings f of (4.25) are in L
+(Z).

Proposition 8. a) A line l is lightlike if, and only if, there exists a light cone
containing l.

b) A line l is timelike or lightlike if, and only if, there exist x, y ∈ l with x < y.

c) The light cone C (p) is the union of all lightlike lines through p.

d) Let S be the set of all timelike or lightlike lines through p. Then

F (p) =
⋃
l∈S

l+(p), P (p) =
⋃
l∈S

l−(p)

where l+(p) := {x ∈ l | p ≤ x} and l−(p) := {x ∈ l | x ≤ p}.
Proof. a) If p + Rv is lightlike, it is contained in C (p), since

l (p, p + λv) =
(
(p + λv) − p

)2 = λ2v2 = 0.

If the line p + Rv is contained in C (r), then

(
(p + λv) − r

)2 = (p − r)2 + 2λ (p − r) v + λ2v2

must be 0 for all real λ. Hence v2 = 0.
b) Let l = p + Rv be timelike or lightlike, i.e. assume v2 ≤ 0. Then p < p + v
for v0 ≥ 0, and p < p − v for v0 ≤ 0. Vice versa, let l be a line containing x, y
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with x < y. Hence x − y = �v with a suitable real � �= 0. Now l (x, y) ≤ 0 implies
(x − y)2 ≤ 0, i.e. v2 ≤ 0.

c) If x �= p is in C (p), then l (p, x) = 0, i.e.

x ∈ p + R (x − p)

with (x − p)2 = 0 holds true. If p + Rv is a lightlike line, then v2 = 0 implies

l (p, p + λv) = 0

for all λ ∈ R.

d) If x �= p is in F (p), then p < x holds true. Hence

x ∈ l := p + R (x − p), (x − p)2 ≤ 0,

and even x ∈ l+ since p ≤ x. Vice versa, if l is a line in S and x a point in l+, then

x ∈ l = p + Rv, v2 ≤ 0, p ≤ x,

i.e. x ∈ F (p). �

Another important invariant notion of
(
Z, L (Z)

)
is based on what we call a

lightlike hyperplane of Z. First of all, however, we would like to define the notion
of a hyperplane of Z. If a �= 0 is an element of Z and α a real number, the set of
points,

{x ∈ Z | ax = α}
will be called a hyperplane of Z. This set can also be written in the form {x ∈ Z |
ax − a0x0 = α}.
Remark. Of course, the hyperplanes of the real inner product space Y = X ⊕ R

equipped with the inner product (3.54) (see the last Remark of section 10, chapter
3) coincide as sets of points with the hyperplanes of Z, since ax in Z is (a,−a0)x
in Y .

A special type of hyperplanes now will be of interest for the final discussions
of this section 5.

If v ∈ Z satisfies v �= 0 = v2, and if α ∈ R, then

{x ∈ Z | vx = α} (4.26)

is said to be a lightlike hyperplane of Z.

For λ ∈ L (Z) define the image of (4.26) under λ by

{λ (x) | x ∈ Z and vx = α}.
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We will prove that this image is also a lightlike hyperplane. This is clear for
λ (x) = x + d, since then the image is given by

{y ∈ Z | vy = vd + α}.
If λ (x) = Bp,k ω (x), we observe l (0, a) = l

(
0, λ (a)

)
for all a ∈ Z, i.e.

a2 = [λ (a)]2. (4.27)

Moreover, l (a, b) = l
(
λ (a), λ (b)

)
for all a, b ∈ Z, i.e.

(a − b)2 = [λ (a) − λ (b)]2,

i.e., by (4.27),

ab = λ (a)λ (b) (4.28)

for all a, b ∈ Z. We would like to emphasize that (4.28) holds true for all Lorentz
transformations λ of Z satisfying λ (0) = 0.

Applying (4.28) on (4.26), we obtain with

y = Bp,k ω (x) =: λ (x),

obviously,

λ ({x ∈ Z | vx = α}) = {y ∈ Z | α = vx = λ (v)λ (x) = λ (v) y}
with [λ (v)]2 = v2 = 0 and λ (v) �= λ (0) = 0, since λ is injective.

Hence we proved

Proposition 9. Define LH (Z) to be the set of all lightlike hyperplanes of Z and
λ (E) for λ ∈ L (Z) and E ∈ LH (Z) to be {λ (x) | x ∈ E}, then

(
LH (Z), ϕ

)
with

ϕ (λ, E) := λ (E) is an invariant notion of
(
Z, L (Z)

)
.

Remark. Let H (Z) be the set of all hyperplanes of Z and define

λ (E) = {λ (x) | x ∈ E}
for λ ∈ L (Z) and E ∈ H (Z), then, with almost the same arguments, we obtain
that

(
H (Z), ϕ1

)
with ϕ1(λ, E) := λ (E) is an invariant notion of

(
Z, L (Z)

)
.

If a �= p is a point of the light cone C (p),

{x ∈ Z | (x − p)(a − p) = 0}
will be called the tangential hyperplane of C (p) in a.

Proposition 10. If a �= p is in C (p), then

C (p) ∩ {x ∈ Z | (x − p)(a − p) = 0} = p + R (a − p).
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Proof. a ∈ C (p) implies l (p, a) = 0, i.e. (a − p)2 = 0. Hence we get for all α ∈ R,

p + α (a − p) ∈ C (p) ∩ {x ∈ Z | (x − p)(a − p) = 0}.
Vice versa, assume b ∈ C (p)\{p} and (b − p)(a − p) = 0. From

(a − p)2 = 0, (b − p)2 = 0, (a − p)(b − p) = 0

and Lemma 60, (β), chapter 3, we obtain that a− p, b− p are linearly dependent.
Hence

b − p = α (a − p),

i.e. b ∈ p + R (a − p). �
Proposition 11. a) Every tangential hyperplane to a light cone is a lightlike hy-

perplane.

b) If a ∈ E ∈ LH (Z) and if l is a (in fact existing) lightlike line contained in
E, and passing through a, then E is a tangential hyperplane of C (p) in a
where p ∈ l\{a}.

c) All lightlike lines contained in E = {x ∈ Z | vx = α}, v �= 0 = v2, are given
by a + Rv, a ∈ E. All other lines contained in E are spacelike.

Proof. a) Follows from (a − p)2 = 0.
b) Assume E = {x ∈ Z | vx = α}, v2 = 0 �= v. If a ∈ E, then

a + Rv � a

is a lightlike line contained in E. Let a + Rw, w �= 0 = w2, be any lightlike line l
contained in E, and take p = a + βw, β �= 0. Hence

v2 = 0, w2 = 0, vw = 0,

in view of α = vp = v (a + βw) = α + βvw. Lemma 60, (β), chapter 3, yields
w = γv with a suitable real γ which must be unequal to 0, since w �= 0. Hence

l = a + Rv.

Observe p = a + βγv, βγ �= 0. Thus

0 = (x − p)(a − p = (x − a − βγv) · (−βγv),

i.e. vx = va = α.
c) We already realized in step b) that there is one and only one lightlike line
contained in E and passing through a ∈ E. Assume now there would exist a
timelike line a + Rw, w2 < 0, contained in E. Hence

v2 = 0, w2 < 0, vw = 0,

i.e. v2 = v2
0 , w2 < w2

0 , v w = v0w0. This implies, by v �= 0, since v �= 0, the
contradiction

(v0w0)2 = (v w)2 ≤ v2w2 < v2
0w

2
0 . �
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4.6 Characterization of some hyperplanes

A hyperplane E = {x ∈ Z | ax = α}, a �= 0, of Z will be called timelike, spacelike
provided a2 > 0, a2 < 0, respectively, holds true. As in Proposition 9 concerning
the lightlike hyperplanes, we also get here invariant notions of

(
Z, L (Z)

)
with

respect to timelike, spacelike hyperplanes.

Theorem 12. A hyperplane Z is lightlike if, and only if, it contains a lightlike line,
but no timelike lines.

Proof. If E is a lightlike hyperplane, it contains a lightlike line, but otherwise only
lightlike or spacelike lines (see Proposition 11, c)). Assume, vice versa, that the
hyperplane

E = {x ∈ Z | ax = α}, a �= 0,

of Z contains at least one lightlike line,

l = p + Rv, v2 = 0 �= v,

but otherwise only lightlike or spacelike lines. Hence ap = α and av = 0. We will
prove that a and v are linearly dependent. This then implies that E is lightlike.
Observe a �= 0, since otherwise

0 = a v = a0v0

from av = 0, contradicting a0v0 �= 0, by a �= 0 �= v and v2 = v2
0 .

Case 1. a2 = 0.
a2 = 0, v2 = 0, va = 0 imply, by Lemma 60, (β), chapter 3, that a, v are linearly
dependent. Thus a = γv.
Case 2.1. a2 �= 0 and a0 = 0.
Hence at = 0 with t = (0, 1). Observe v + βt �= 0 for all β ∈ R, since otherwise
v + β · 0 = 0, i.e. v = 0 from v2 = v2

0 . Hence the line

p + R

(
v − v0

2

)
must be contained in E, and must thus be lightlike or spacelike, i.e., by v0 �= 0,

0 ≤
(
v +

v0

2
t
)2

= v0vt +
v2
0

4
t2 = −3

4
v2
0 < 0.

Hence, Case 2.1 does not occur.
Case 2.2. a2 �= 0 and a0 �= 0.

Observe b :=
(
a, 1

a0
a2
)
�= 0, because of a �= 0. Obviously,

a (b + αv) = 0
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for all α ∈ R. Moreover, by a v = a0v0,

vb = v a − v0 · a2

a0
= − v0

a0
a2 �= 0.

We also have b + αv �= 0 for all α ∈ R, since b + α0v = 0 would imply

0 = (b + α0v) v = bv �= 0.

Hence the line
p + R (b + α1v)

with α1 · 2vb := −1 − b2, must be contained in E, and must thus be lightlike or
spacelike, i.e.

0 ≤ (b + α1v)2 = b2 + 2α1bv = −1,

a contradiction. Thus, Case 2.2 also does not occur. �
Remark. The hyperplane {x ∈ Z | tx = 0} contains only spacelike lines p +
Rb, tp = 0, tb = 0, b �= 0, since b = (b, 0), i.e. b2 > 0.

If a = (e, 0) with 0 �= e ∈ X , then E = {x ∈ Z | ax = 0} contains lightlike,
timelike and spacelike lines. Take j ∈ X with j2 = 1 and ej = 0. Then the line
R (j, α) is contained in E and timelike for α2 > 1, lightlike for α2 = 1, spacelike
for α2 < 1.

Theorem 13. a) E = {x ∈ Z | ax = α}, a �= 0, contains only spacelike lines if,
and only if, a2 < 0.

b) E contains timelike, lightlike and spacelike lines if, and only if, a2 > 0.

Proof. a) Assume a2 < 0 and p + Rb ⊂ E, b �= 0. Hence ab = 0. Observe a0 �= 0,
since a2 < a2

0. Also b �= 0 holds true, because otherwise b = 0 from a b = a0b0.
Hence

(a0b0)2 = (a b)2 ≤ a2b
2

< a2
0b

2
,

i.e. b2
0 < b

2
, i.e. b2 > 0. Thus p + Rb is spacelike. Assume, vice versa, that E

contains only spacelike lines. We hence get b2 > 0 for all b �= 0 in Z which satisfy
ab = 0. If a0 were 0, then with b := t = (0, 1),

b �= 0, ab = 0, b2 < 0

would be the consequence. Hence a0 �= 0. Put

b :=
(

a,
1
a0

a2

)

for a �= 0. This implies b �= 0, ab = 0, whence

0 < b2 = a2 − 1
a2
0

(a2)2 =
a2

a2
0

(a2
0 − a2),
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i.e. a2 < 0. If, finally, a = (0, a0), we get a2 < 0.
b) Assume a2 > 0. Hence a2 − a2

0 > 0, i.e. a �= 0. Take j ∈ X with j2 = 1 and
ja = 0. If a0 = 0, then

αa

a2
+ R (j, γ) ⊂ E

for all γ ∈ R. This line is lightlike for γ = 1, timelike for γ = 2 and spacelike for
γ = 1/2. If a �= 0, then

αa

a2
+ R

(
a + γj,

1
a0

a2

)
⊂ E

for all γ ∈ R. Since

(a + γj)2 −
(

a2

a0

)2

= γ2 − a2

a2
0

a2 =: γ2 − k, k > 0,

there are values γ with γ2 − k > 0, = 0, < 0. Assume, vice versa, that E contains
timelike, lightlike and spacelike lines. This implies a2 > 0, because E does not
contain timelike lines for a2 ≤ 0. �

4.7 L (Z) as subgroup of Lie (X)

Surjective Lorentz transformations ((4.4), here ω ∈ O (X)) are special Laguerre
transformations, (3.124), namely those preserving tangential distances. They are
hence Lie transformations (section 12, chapter 3). Let, vice versa, λ be a Lie
transformation. If it fixes the Lie cycle ∞, it can be described in terms of Lorentz–
Minkowski geometry as a bijection of the set Z of events with

∀x,y∈Z l (x, y) = 0 ⇒ l
(
λ (x), λ (y)

)
= 0

(see Theorem 2). In the classical case this means exactly that λ, λ (∞) = ∞,
as a bijection of R

3 ⊕ R transforms light signals into light signals. The further
assumption then that λ preserves tangential distances leads, as mentioned before,
to the Lorentz transformations.

We will collect some other correspondences between Lorentz–Minkowski
geometry and Laguerre geometry.

An event as an element of Z = X ⊕ R = Γ (see section 10, chapter 3)
corresponds to a Laguerre cycle. If x, y are events, then l (x, y) ≥ 0 (see (3.85))
is the square of the tangential distance of the Laguerre cycles x, y. The Laguerre
cycle x touches y if, and only if, l (x, y) = 0. In Lorentz–Minkowski geometry
this equation means that there is a lightlike line containing the events x and y.
The situation that for the Laguerre cycles x, y there is no spear touching both, is
characterized by l (x, y) < 0: this means in Lorentz–Minkowski geometry that the
line through x, y is timelike. In section 4 we already mentioned correspondences
between the pencils of Laguerre geometry and specific lines of Z.
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Of course, we would like to know what the meaning of spears is in Lorentz–
Minkowski geometry. This is answered by

Proposition 14. The spears s as sets {c ∈ Γ | c− s} of Laguerre cycles are exactly
the ligthlike hyperplanes.

Proof. Let (a, ξ, α) be coordinates of s, then (see (3.77))

{c ∈ Γ | c − s} = {(m, τ) ∈ Z | am + ξτ = α}
= {(x, x0) ∈ Z | (a,−ξ) · x = α}

holds true with (a,−ξ)2 = a2 − (−ξ)2 = 0. If, on the other hand, v ∈ Z is given
with v �= 0 = v2, then

{(x, x0) ∈ Z | vx = α}
is the spear with coordinates (v,−v0, α). �

4.8 A characterization of LM-distances

A function d : Z × Z → R will be called a general Lorentz–Minkowski distance
(LM-distance) of Z provided

d (x, y) = d
(
λ (x), λ (y)

)
(4.29)

holds true for all x, y ∈ Z and for all bijective Lorentz transformations λ of Z.

Theorem 15. All general Lorentz–Minkowski distances d of Z are given as follows.
Let � be a fixed real number and let g : R → R be an arbitrary function. Then

d (x, y) = g
(
l (x, y)

)
(4.30)

for all elements x �= y of Z, and d (x, x) = � for all x ∈ Z.

Proof. Obviously, every such d defines a general Lorentz–Minkowski distance. As-
sume now that d : Z × Z → R is a general Lorentz–Minkowski distance.

a) d (x, y) = d (x − y, 0) holds true for all x, y ∈ Z.

Let x, y ∈ Z be fixed elements. Then

λ (z) := z − y

is a bijective Lorentz transformation of Z. Hence, by (4.29),

d (x, y) = d
(
λ (x), λ (y)

)
= d (x − y, 0).

Define � := d (0, 0). Hence, by a), d (x, x) = d (0, 0) = � for all x ∈ Z.
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b) To x, y ∈ Z\{0} there exists a bijective Lorentz transformation λ with λ (0) = 0
and λ (x) = y if, and only if,

l (x, 0) = x2 − x2
0 = y2 − y2

0 = l (y, 0). (4.31)

If there exists such a λ, of course, (4.31) holds true. So assume, vice versa, that
(4.31) is satisfied.
Case 1. l (x, 0) < 0, i.e. x2

0 > x2 ≥ 0.
Put p · x0 := −x and observe p2 < 1 and p ∈ X . With sgn k := sgn x0 and
k2(1 − p2) := 1, we obtain

Bp,k (x) =
√

x2
0 − x2 t.

Similarly, with suitable q, κ, we get

Bq,κ (y) =
√

y2
0 − y2 t.

Hence, by (4.31), y = B−q,κ Bp,k (x). Also B−q,κ Bp,k (0) = 0.
Case 2. l (x, 0) = 0, but x �= 0 and y �= 0.
Obviously, x �= 0 and x0 �= 0. Hence (x/x0)2 = 1. Suppose x0 �= −1. With

p :=
x2

0 − 1
x2

0 + 1
· x

x0
, sgn k := sgn x0,

k2(1 − p2) := 1, we obtain

Bp,k

(
x

x0
, 1
)

= x. (4.32)

Similarly, if y0 �= −1,

Bq,κ

(
y

y0
, 1
)

= y.

In the case
b :=

x

x0
+

y

y0
= 0

define ω (z, z0) = (−z, z0) for z ∈ Z, and in the case b �= 0,

ω (z, z0) =
(
2(za) a − z, z0

)
with a · ‖b‖ := b. Since ω : X → X is in both cases an involution, ω ∈ O (X). Now

y = Bq,κ ω B−p,k (x) (4.33)

holds true.
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In one of the cases x0 = −1 or y0 = −1, for instance in the case x0 = −1, we
replace (4.32) by

λ

(
x

x0
, 1
)

= (x, x0)

with λ (z) := −z for z ∈ Z. Then B−p,k in (4.33) needs to be replaced by λ.
Case 3. l (x, 0) > 0, i.e. x2 > x2

0 ≥ 0.
Observe

Bp,k (x, x0) =
x

‖x‖
√

x2 − x2
0

for x2 · p := −x0 · x and k > 0. Take as in Case 2 an ω ∈ O (X) such that

ω

(
x

‖x‖
)

=
y

‖y‖ .

With
Bq,κ (y) =

y

‖y‖
√

y2 − y2
0 ,

y2 · q := −y0 · y and κ > 0, we obtain

y = B−q,κ ω Bp,k (x).

c) Suppose that e ∈ X satisfies e2 = 1 and that ξ is a real number. Define
x =

√
ξ · e for ξ > 0, x = (e, 1) for ξ = 0 and x = (0,

√|ξ|) for ξ < 0. Then x �= 0
and l (x, 0) = ξ hold true. Define

g (ξ) := d (x, 0)

for all ξ ∈ R. If also ξ = l (y, 0) is satisfied for y �= 0, then, by b), there exists
λ ∈ L (Z) with λ (0) = 0 and λ (x) = y. Hence d (x, 0) = d (y, 0). Thus d (z, 0) =
g
(
l (z, 0)

)
holds true for every z �= 0 in Z. For v �= w in Z we hence obtain, by a),

d (v, w) = d (v − w, 0) = g
(
l (v − w), 0

)
= g
(
l (v, w)

)
. �

Define D (x, y) :=
√|d (x, y)| for x, y ∈ Z. We will call a general Lorentz–

Minkowski distance d additive provided there exists e ∈ X with e2 = 1 and

(1) d (e, t) = d (e, 0) + d (0, t) = 0, t = (0, 1),

(2) d (αe, 0) ≥ 0 and d (αt, 0) ≤ 0 for all real α > 0,

(3) D (0, βj) = D (0, αj) + D (αj, βj) for j ∈ {e, t} and all α, β ∈ R with 0 ≤
α ≤ β.

Theorem 16. Let d be a general Lorentz–Minkowski distance of Z. Then d is ad-
ditive if, and only if, there exists a fixed non-negative number γ with

d (x, y) = γ · l (x, y) (4.34)

for all x, y ∈ Z.
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Proof. Of course, d of (4.34) is additive. Let now d be an additive general Lorentz–
Minkowski distance. (3) implies D (0, 0) = 0 for α = β = 0. Hence

d (x, x) = d (0, 0) = 0

for all x ∈ Z. Thus (4.34) holds true for x = y. Because of

D (αj, βj) = D
(
0, (β − α) j

)
and of (3) there exist constants γ1 and γ2 with

D (0, ξe) = γ1ξ and D (0, ξt) = γ2ξ

for all ξ ≥ 0: put ϕ (ξ) := D (0, ξj) for ξ ≥ 0, observe ϕ (ξ) ≥ 0 for non-negative ξ
and, moreover,

ϕ (β − α) = D
(
0, (β − α) j

)
= D (αj, βj)

= D (0, βj) − D (0, αj) = ϕ (β) − ϕ (α)

for 0 ≤ α ≤ β, whence ϕ (ξ + η) = ϕ (ξ) + ϕ (η) for ξ ≥ 0, η ≥ 0, by defining
α := ξ, β := ξ + η and noticing 0 ≤ α ≤ β. Now applying the Remark between
steps C and D of the proof of Theorem 7 of chapter 1, we obtain ϕ (ξ) = γξ, γ ≥ 0,
i.e.

d (0, ξe) = γ2
1ξ2 and d (0, ξt) = −γ2

2ξ2,

in view of (2) and of d (x, y) = d (y, x) from (4.30). The second part of (1) implies
γ2
1 = γ2

2 . By step c) of the proof of Theorem 15, we obtain

g (ξ) = d (
√

ξ e, 0) = γ2
1ξ for ξ > 0,

g (ξ) = d (
√|ξ| t, 0) = γ2

1ξ for ξ < 0.

Moreover,

g (0) = d (e + t, 0) = d
(
B0,−1 (e + t), 0

)
= d (e − t, 0) = d (e, t) = 0.

Hence g (ξ) = γξ for all ξ ∈ R with γ = γ2
1 ≥ 0. �

4.9 Einstein’s cylindrical world

Define C (Z) := {z ∈ Z | z2 = 1} to be the set of points of Einstein’s cylindrical
world (Einstein’s cylinder universe) over Z = X ⊕ R, and call

e (x, y) := [arc cos(x y)]2 − (x0 − y0)2 (4.35)

with arc cos(x y) ∈ [0, π] the Einstein distance of x, y ∈ C (Z), by observing
−1 ≤ x y ≤ 1, in view of

(x y)2 ≤ x2y2 = 1

(see section 4, chapter 1).
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Theorem 17. All f : C (Z) → C (Z) satisfying

e (x, y) = e
(
f (x), f (y)

)
(4.36)

for all x, y ∈ C (Z) are injective and they are given by

f (x) = ω (x) + (εx0 + a) t, x ∈ C (Z),

with t := (0, 1) ∈ Z where ω : X → X is orthogonal and where ε, a are real
numbers such that ε2 = 1.

Proof. For a solution of (4.36) put

f (x + x0t) =: ϕ (x, x0) + ψ (x, x0) t, x2 = 1,

with ϕ ∈ X, ϕ2 = 1, and ψ ∈ R. Of course, we identify h ∈ X with the element
(h, 0) of Z.
a) f (−x + x0t) = −ϕ (x, x0) + ψ (x, x0) t for all x ∈ C (Z).
In order to prove this equation, apply (4.36) for y := −x + x0t. Then

π2 =
(
arc cos[ϕ (x, x0)ϕ (−x, x0)]

)2 − (ψ (x, x0) − ψ (−x, x0)
)2

. (4.37)

This implies arc cos[ϕ (x, x0)ϕ (−x, x0)] = π and ψ (x, x0) = ψ (−x, x0), since
otherwise the right-hand side of (4.37) would be smaller than π2. Hence

ϕ (x, x0)ϕ (−x, x0) = −1,

i.e. ϕ (−x, x0) = −ϕ (x, x0).
b) x y = ϕ (x, x0)ϕ (y, y0) for all x, y ∈ C (Z).
Apply (4.36) for x, y and for −x + x0t, y. Then, by step a),

e (x, y) =
(
arc cos[ϕ (x, x0)ϕ (y, y0)]

)2 − A,

e (−x + x0t, y) =
(
arc cos[−ϕ (x, x0)ϕ (y, y0)]

)2 − A

with A :=
(
ψ (x, x0) − ψ (y, y0)

)2. Subtracting the second equation from the first
one, and putting

arc cos(x y) =: α, arc cos[ϕ (x, x0)ϕ (y, y0)] =: β,

we obtain α2 − (π − α)2 = β2 − (π − β)2, i.e. α = β. Hence

x y = cos α = cos β = ϕ (x, x0)ϕ (y, y0).

c) ϕ (h, ξ) = ϕ (h, η) for all ξ, η ∈ R and h ∈ X with h2 = 1.
Apply step b) for x = h + ξt and y = h + ηt. Then

1 = h · h = ϕ (h, ξ)ϕ (h, η),
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i.e. ϕ (h, ξ) = ϕ (h, η), in view of Lemma 1, chapter 1, and of ϕ2 = 1.
Putting ϕ (x) := ϕ (x, 0), we may write, by step c)

f (x + x0t) = ϕ (x) + ψ (x, x0) t. (4.38)

d) Define K := {h ∈ X | h2 = 1}. We would like to extend ϕ : K → K to an
orthogonal mapping ω : X → X . Put ω (0) := 0 and

ω (r) := ‖r‖ · ϕ
(

r

‖r‖
)

for all r �= 0 in X . Obviously,

rs = ω (r)ω (s) (4.39)

for r, s ∈ X and 0 ∈ {r, s}. For r �= 0 �= s we obtain

ω (r)ω (s) = ‖r‖ · ‖s‖ · ϕ
(

r

‖r‖
)

ϕ

(
s

‖s‖
)

= rs,

in view of steps b) and c). So (4.39) holds true for all r, s ∈ X . Hence

‖ω (r) − ω (s)‖2 = [ω (r)]2 − 2ω (r)ω (s) + [ω (s)]2 = ‖r − s‖2

for all r, s ∈ X . Thus, by Proposition 3, chapter 1, ω : X → X must be orthogonal.
e) There exist fixed ε, a ∈ R with ε2 = 1 and

ψ (x, x0) = εx0 + a (4.40)

for all x + x0t ∈ C (Z).
Apply (4.36) for x = r + ξt, y = s + ξt with ξ ∈ R and r, s ∈ K. Hence, by
f (z) = ω (z) + ψ (z, z0) t and (4.39),

(ξ − ξ)2 =
(
ψ (r, ξ) − ψ (s, ξ)

)2
holds true, i.e. ψ (r, ξ) = ψ (s, ξ) =: ψ (ξ). Applying (4.36) for x = r+ξt, y = r+ηt
with ξ, η ∈ R and r ∈ K yields

(ξ − η)2 =
(
ψ (ξ) − ψ (η)

)2
. (4.41)

Put a := ψ (0). Hence ξ2 =
(
ψ (ξ) − a

)2, i.e.

ψ (ξ) =: ε (ξ) · ξ + a

for ξ �= 0 with [ε (ξ)]2 = 1. In the case ξ · η �= 0 now (4.41) implies

ξη = ε (ξ) ε (η)ξη,
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i.e. ε (ξ) = ε (η) =: ε. Hence ψ (ξ) = εξ + a holds true for all ξ ∈ R.
f) Because of f (x + x0t) = ω (x) + ψ (x, x0) t we hence get

f (x + x0t) = ω (x) + (εx0 + a) t, x + x0t ∈ C (Z). (4.42)

Since ω is injective, so must be f . �
A motion of C (Z) is a surjective solution f : C (Z) → C (Z) of (4.36).

Motions are hence bijections of C (Z). Their group will be designated by MC (Z),
and the geometry

(
C (Z), MC (Z)

)
is called geometry of Einstein’s cylindrical

world. Observe that MC (Z) is a subgroup of the Lorentz group L (Z).

Proposition 18. The mapping (4.42) is a motion if, and only if, ω is surjective.

Proof. Since f : C (Z) → C (Z) of (4.42) is injective, we must show that ω : X →
X is surjective if, and only if, f is surjective. If ω is surjective, then

f (x + x0t) = y + y0t

has a solution x + x0t in C (Z) for given y + y0t in C (Z), namely

ω−1(y) + ε (y0 − a) t.

If f is surjective, then ω (r) = s has for given s ∈ X the solution r = 0 for s = 0,
and r = ‖s‖ · v for s �= 0 and v + v0t ∈ C (Z) satisfying

f (v + v0t) =
s

‖s‖ + at. �

4.10 Lines, null–lines, subspaces

If a ∈ K = {h ∈ X | h2 = 1}, define L (a) = a + Rt. For a, b ∈ K and k, λ ∈ R

with ab = 0 put

L (a, b, k, λ) := {a cosϕ + b sinϕ + (kϕ + λ) t | ϕ ∈ R}.

The sets L (a), L (a, b, k, λ) of points of C (Z) are called the lines of C (Z). A null–
line of C (Z) is a line L (a, b, k, λ) with k2 = 1. The lines L (a) are euclidean lines,
L (a, b, 0, λ) are euclidean circles and every L (a, b, k, λ) with k �= 0 is a circular
helix on the circular cylinder

{a cosϕ + b sinϕ + λt | ϕ, λ ∈ R}.

Proposition 19. The line L of C (Z) is a null–line if, and only if, there exist to
every p ∈ L and to every real ε > 0 a point q �= p on L satisfying e (p, q) = 0 and

(p − q)2 + (p0 − q0)2 < ε.
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Proof. a) For two distinct points a + αt, a + βt of L (a), we obtain

e (a + αt, a + βt) = −(α − β)2 < 0,

and for two distinct points

v := a cosα + b sinα + λt, w := a cosβ + b sin β + λt

of L (a, b, 0, λ), 0 ≤ α < β < 2π, obviously,

e (v, w) = (β − α)2 for β − α ≤ π,

e (v, w) = [2π − (β − α)]2 for β − α ≥ π,

i.e. e (v, w) > 0.
b) Let now L be the line L (a, b, k, λ) with k �= 0. Assume p ∈ L with

p = a cosϕ + b sin ϕ + (kϕ + λ) t. (4.43)

If k2 = 1 and if ε > 0 is given, choose ξ ∈]0, 1[ with 2ξ2 < ε. Put

q = a cos(ϕ + ξ) + b sin(ϕ + ξ) + (k [ϕ + ξ] + λ) t (4.44)

and observe p �= q ∈ L, e (p, q) = 0 and

(p − q)2 + (p0 − q0)2 = 2(1 − cos ξ) + ξ2 < ε,

since 2(1 − cos ξ) < ξ2 for 0 < ξ < 1, and since 2ξ2 < ε.

If 0 �= k2 �= 1, put ε =
(

k
10

)2
. We are interested in all points (4.44) such that

(p − q)2 + (p0 − q0)2 = 2(1 − cos ξ) + k2ξ2 <

(
k

10

)2

(4.45)

holds true. (4.45) implies |ξ| < 1
10 , since 2(1 − cos ξ) ≥ 0. But for p, q of (4.43),

(4.44) with |ξ| < 1
10 , we obtain

e (p, q) = [arc cos(cos ξ)]2 − k2ξ2,

and we must choose arc cos(cos ξ) in [0, π]. Since

arc cos(cos ξ) = arc cos(cos|ξ|)
and |ξ| < 1

10 , we get e (p, q) = ξ2 − k2ξ2 �= 0 for ξ �= 0. Hence L can not be a
null–line. �

Points and lines are called subspaces of C (Z), also ∅. The other subspaces
are defined by

C (V ) := {v + λt | v ∈ V, v2 = 1, λ ∈ R}
where V is any subspace of dimension ≥ 2 of the vector space X .
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Theorem 20. If p is a point and L � p a line of C (Z) which is not a null–line,
then

A (p, L) := lim
L�x→p

e (x, p)
l (x, p)

= 1,

where l (x, p) designates the Lorentz–Minkowski distance of x, p.

Proof. Observe d (x, p) = (x − p)2 − (x0 − p0)2 = 2(1 − x p) − (x0 − p0)2.
Case 1. L = a + Rt.
p ∈ L implies L = p+Rt. For x = p+ξt we define x → p by ξ → 0. More generally,
x → p is defined by

(x − p)2 + (x0 − p0)2 → 0. (4.46)

Observe
e (x, p)
l (x, p)

=
e (p + ξt, p)
l (p + ξt, p)

=
−ξ2

−ξ2
= 1.

Case 2. L = {a cosϕ + b sinϕ + [kϕ + λ] t | ϕ ∈ R}, k2 �= 1. Put p = a cosϕ +
b sinϕ + [kϕ + λ] t and

x = a cos(ϕ + ξ) + b sin(ϕ + ξ) + [k (ϕ + ξ) + λ] t.

Because of x → p we obtain, by (4.46),

2(1 − cos ξ) + k2ξ2 → 0,

i.e. ξ → 0. Assume that |ξ| �= 0 is small enough. Then

e (x, p)
l (x, p)

=
ξ2 − k2ξ2

2(1 − cos ξ) − k2ξ2
, (4.47)

is well-defined by observing

lim
ξ→0

2(1 − cos ξ)
ξ2

= 1,

i.e. 2(1 − cos ξ) �= k2ξ2 since k2 �= 1 and since |ξ| is small enough. Hence

e (x, p)
l (x, p)

=
1 − k2

2(1−cos ξ)
ξ2 − k2

→ 1. �

4.11 2-point invariants of
(
C (Z), MC (Z)

)
Suppose that W �= ∅ is a set. We would like to determine all 2-point invariants of
Einstein’s cylinder universe, i.e. all

d : C (Z) × C (Z) → W (4.48)
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such that

d (x, y) = d
(
f (x), f (y)

)
(4.49)

holds true for all x, y ∈ C (Z) and all f ∈ MC (Z). Define the cartesian product

W0 := [−1, 1]× R≥0

with R≥0 = {r ∈ R | r ≥ 0}.
Theorem 21. Let g be a mapping from W0 into W . Then

d (x, y) = g (x y, |x0 − y0|) (4.50)

is a solution of the functional equation (4.49). If, on the other hand, (4.48) is a
solution of (4.49), there exists a function g : W0 → W such that (4.50) holds true.

Proof. a) Suppose that f (x) = ω (x) + (εx0 + a) t is in MC (Z) and put

v = f (x), w = f (y)

for given x, y ∈ C (Z). We obtain

v w = ω (x)ω (y) = x y

and |v0 − w0| = |(εx0 + a) − (εy0 + a)| = |x0 − y0|. This implies that (4.50) is a
2-point invariant of MC (Z).
b) Assume that (4.48) solves (4.49). If (γ, δ) ∈ W0, define

a := i, b := γi +
√

1 − γ2 j + δt,

where i, j ∈ X satisfy ij = 0 and i2 = 1 = j2. Then put g (γ, δ) := d (a, b). We
then have to show

d (x, y) = g (γ, δ) (4.51)

for all x, y ∈ C (Z) with x y = γ and |x0−y0| = δ. If we are able to find a mapping
f ∈ MC (Z) for such a special pair x, y with x = f (a) and y = f (b), then

d (x, y) = d
(
f (a), f (b)

)
= d (a, b) = g (γ, δ),

and (4.51) is proved for that special pair.
If ω ∈ O (X) satisfies

ω (i) = x and ω (γi +
√

1 − γ2 j) = y, (4.52)

then
f (z) := ω (z) + (εz0 + x0) t



204 Chapter 4. Lorentz Transformations

with ε = 1 for x0 = y0 and δε := y0 − x0 for x0 �= y0 (observe δ = |x0 − y0|) is
such a mapping, i.e. satisfies x = f (a) and y = f (b).

c) So what we actually have to find is an ω ∈ O (X) such that (4.52) holds true
for a pair x, y ∈ C (Z) satisfying x y = γ and |x0 − y0| = δ. Observe i2 = 1 and
x2 = 1. Because of step A of the proof of Theorem 7 of chapter 1 there exists
ω1 ∈ O (X) with ω1(i) = x. Define y =: ω1(v) and observe

iv = ω1(i)ω1(v) = x y = γ. (4.53)

d) If we are able to find α ∈ O (X) such that

α (i) = i and α (γi +
√

1 − γ2 j) = v (4.54)

holds true, ω := ω1α solves (4.52). Define

X0 := {h ∈ X | hi = 0}

and note X0 � j, v − γi, because of (4.53). Since X is a real inner product space
of dimension at least 2, X0 must be a real inner product space with dim X0 ≥ 1.
Observe

(v − γi)2 = v2 − 2γvi + γ2i2 = 1 − γ2, (4.55)

in view of (4.53), i2 = 1 and 1 = y2 = ω1(v)ω1(v) = v · v with y ∈ C (Z).

e) There exists β ∈ O (X0) satisfying

√
1 − γ2 β (j) = v − γi.

In the case γ2 = 1 put β = id, in view of (4.55). If γ2 < 1 and dimX0 ≥ 2, apply
again step A of the proof of Theorem 7, chapter 1, by observing

(
v − γi√
1 − γ2

)2

= 1.

If γ2 < 1 and dimX0 = 1, then j, v − γi are linearly dependent, and the existence
of β is trivial.

Define now α (h + ξi) := β (h) + ξi for all h ∈ X0 and note α ∈ O (X), since
β ∈ O (X0), and since (4.54) holds true. �

Remark. A characterization theorem for Einstein’s distance function e (x, y) is
proved in W. Benz [5].
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4.12 De Sitter’s world

Define Σ (Z) := {z ∈ Z | z2 = 1} to be the set of points of de Sitter’s world
over Z = X ⊕ R, and call every restriction λ | Σ (Z) a motion of Σ (Z) where λ
is a surjective Lorentz transformation of Z satisfying λ (0) = 0. We thus get the
group MΣ (Z) of motions of de Sitter’s world Σ (Z), by observing λ (z) ∈ Σ (Z)
for z ∈ Σ (Z) for a Lorentz transformation λ of Z with λ (0) = 0:

1 = z2 = l (z, 0) = l
(
λ (z), λ (0)

)
= [λ (z)]2.

The geometry
(
Σ (Z), MΣ (Z)

)
is called geometry of de Sitter’s world. The points

a, b ∈ Σ (Z) are called separated provided a �= b �= −a. Such a pair must be linearly
independent. Otherwise αa = βb would hold true with real α, β which are not both
0. But (αa)2 = (βb)2, i.e. β ∈ {α,−α} is impossible.

If a, b ∈ Σ (Z) are separated, every ellipse, every euclidean line, every branch
of a hyperbola in

{ξa + ηb | ξ, η ∈ R} ∩ Σ (Z) (4.56)

is called a line of Σ (Z). All ξa + ηb in (4.56) are characterized by the equation

1 = (ξa + ηb)2 =
(
ξ + s (a, b) η

)2 +
(
1 − [s (a, b)]2

)
η2 (4.57)

with

s (a, b) := ab. (4.58)

We will call s (a, b) = ab the de Sitter distance of a, b ∈ Σ (Z), also in the cases
b = a or b = −a. Observe that (4.58) is a 2-point invariant: for λ ∈ MΣ (Z),

l (a, b) = l
(
λ (a), λ (b)

)
implies (a−b)2 = [λ (a)−λ (b)]2 , i.e. ab = λ (a)λ (b). In the cases (ab)2 < 1, (ab)2 =
1, (ab)2 > 1, respectively, we obtain in (4.57) an ellipse (a closed line), two eu-
clidean lines (two null–lines), two branches of a hyperbola (two open lines), re-
spectively, of Σ (Z). The lines of Σ (Z) are also called its geodesics.

4.13 2-point invariants of
(
Σ (Z), MΣ (Z)

)
Theorem 22. MΣ (Z) acts transitively on Σ (Z). If dim X ≥ 3 and if a, b and c, e
are pairs of separated points, there exists δ ∈ MΣ (Z) with δ (a) = c and δ (b) = e
if, and only if, ab = ce holds true.

Proof. a) In step b) of the proof of Theorem 15 we showed that to x, y ∈ Z\{0}
there exists a bijective Lorentz transformation λ with λ (0) = 0 and λ (x) = y if,
and only if, l (x, 0) = l (y, 0). Suppose that x, y are points of Σ (Z). Then

l (x, 0) = 1 = l (y, 0)
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holds true. There hence exists a motion δ with δ (x) = y.
b) If a, b and c, e are pairs of separated points, and if δ ∈ MΣ (Z) satisfies δ (a) = c
and δ (b) = e, then ab = δ (a) δ (b) = ce, as we already know.
c) Let a, b and c, e be pairs of separated points with ab = ce. Because of Theorem
1, Lorentz transformations of Z fixing 0, must be linear. Separated points x, y
must hence be transformed into separated points under motions. In view of step
a) we thus may assume a = c without loss of generality. If h ∈ X satisfies h2 = 1,
which especially implies h ∈ Σ (Z), we even may assume a = h, in view of step a).
Then ab = ae reads hb = he or hb = he, since

h = h + h0t = h + 0 · t.
Put Z0 := {z ∈ Z | zh = 0}. Obviously, t ∈ Z0. Again, we would like to apply step
b) of the proof of Theorem 15, but this time for Z0 instead of Z for the points

ξ := b − (bh)h and η := e − (eh)h,

which both belong to Z0. This can be done, since

dimX0 ≥ 2 with X0 := {z ∈ Z0 | zt = 0},
because of dim X ≥ 3. Observe

l (ξ, 0) = ξ2 = b2 − (bh)2 = 1 − (bh)2 = 1 − (eh)2 = l (η, 0).

There hence exists a bijective Lorentz transformation λ0 of Z0 satisfying

λ0(0) = 0 and λ0

(
b − (bh)h

)
= e − (eh)h. (4.59)

The problem now is to extend λ0 to a bijective Lorentz transformation λ of Z.
This will be accomplished by putting

λ (x) := λ0

(
x − (xh)h

)
+ (xh)h (4.60)

for all x ∈ Z. That λ is an extension of λ0 follows from

xh = 0 for all x ∈ Z0.

With xh := x − (xh)h for x ∈ Z, we obtain

l
(
λ (x), λ (y)

)
=
(
λ (x) − λ (y)

)2 =
(
[λ0(xh) − λ0(yh)] + [xh − yh] h

)2
,

i.e., because of xh · h = 0, λ0 : Z0 → Z0 and of zh = 0 for z ∈ Z0,

l
(
λ (x), λ (y)

)
= l
(
λ0(xh), λ0(yh)

)
+ (xh − yh)2.

Similarly,
l (x, y) = (x − y)2 = ([xh − yh] + [xh − yh] h

)2
,
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i.e. l (x, y) = l (xh, yh) + (xh − yh)2. Hence

l
(
λ (x), λ (y)

)
= l (x, y),

since λ0 is a Lorentz transformation of Z0, i.e. satisfies

l
(
λ0(xh), λ0(yh)

)
= l (xh, yh).

We finally show λ (h) = h and λ (b) = e. In fact, by (4.60),

λ (h) = λ0(h − h2 · h) + h2h = λ0(0) + h = h,

and, by (4.59) and bh = eh,

λ (b) = λ0

(
b − (bh)h

)
+ (bh)h = [e − (eh)h] + (bh)h = e. �

Theorem 23. Let W be a set and g : R → W be a function, and let w0, w1 be fixed
elements of W . Then

d (x, y) =

⎧⎪⎨
⎪⎩

g (xy) for x, y separated
w0 for x = y

w1 for x = −y

(4.61)

with x, y ∈ Σ (Z) is a solution

d : Σ (Z) × Σ (Z) → W (4.62)

of the functional equation

∀x,y∈Σ(Z) ∀f∈MΣ (Z) d (x, y) = d
(
f (x), f (y)

)
. (4.63)

If, on the other hand, (4.62) solves (4.63), then there exists a function g : R → W
and elements w0, w1 ∈ W such that (4.61) holds true.

Proof. a) Obviously, (4.61) solves (4.63) for all motions f and all x, y ∈ Σ (Z) as
was shown almost at the end of section 12 by means of the formula

ab = λ (a)λ (b)

for a, b ∈ Σ (Z) and λ ∈ Σ (Z). (Here we only need this formula for a, b separated.)
b) Assume now that d : Σ (Z)×Σ (Z) → W is a solution of (4.63). Take elements
i, j ∈ X with i2 = 1 = j2 and ij = 0. For k ∈ R define g (k) by means of

g (k) := d (i, ki + j + kt). (4.64)

Observe here i ∈ Σ (Z), ki + j + kt ∈ Σ (Z) and

k = i (ki + j + kt). (4.65)
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Moreover, put w0 := d (i, i) and w1 := d (i,−i). If x ∈ Σ (Z), there exists f ∈
MS (Z) with f (i) = x on account of Theorem 22. Hence

d (x, x) = d
(
f (i), f (i)

)
= d (i, i) = w0.

Since f is linear, we also get

d (x,−x) = d
(
f (i), f (−i)

)
= d (i,−i) = w1.

Suppose now that x, y ∈ Σ (Z) are separated. If xy =: k, then, according to (4.65),
there exists f ∈ MΣ (Z) satisfying

f (i) = x and f (ki + j + kt) = y.

Hence d (x, y) = d
(
f (i), f (ki + j + kt)

)
= d (i, ki + j + kt) = g (k), because of

(4.64). Thus
d (x, y) = g (k) = g (xy). �

Remark. Concerning the spacetimes of Einstein, de Sitter and others see also
W.-L. Huang [1], [2], J. Lester [3]–[8] where finite-dimensional cases are treated.

4.14 Elliptic and spherical distances

The basis of the remaining part of this book is again a real inner product space X
of dimension at least 2. As in the sections before we do not exclude the case that
the dimension of X is infinite.

We define the elliptic distance ε (x, y) of x, y ∈ X0 := X\{0} by means of
ε (x, y) ∈ [0, π

2

]
and

cos ε (x, y) =
|xy|

‖x‖ · ‖y‖ (4.66)

with ‖x‖ =
√

x2. The spherical distance σ (x, y) of x, y ∈ X0 is given by σ (x, y) ∈
[0, π] and

cosσ (x, y) =
xy

‖x‖ · ‖y‖ . (4.67)

In view of the inequality of Cauchy–Schwarz (see section 4 of chapter 1), the
right-hand side of (4.66) must be in [0, 1], and that of (4.67) in [−1, 1]. Observe
that

ε (λx, µy) = ε (x, y) (4.68)

holds true for all x, y ∈ X0 and all λ, µ ∈ R\{0}. Moreover,

σ (λx, µy) = σ (x, y) (4.69)
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is satisfied for all x, y ∈ X0 and all real λ, µ with λ · µ > 0. If ω : X → X is an
orthogonal mapping, obviously, by (4.66),

cos ε (x, y) = cos ε
(
ω (x), ω (y)

)
holds true, and hence ε (x, y) = ε

(
ω (x), ω (y)

)
for x, y ∈ X0, since

ε (x, y), ε
(
ω (x), ω (y)

) ∈ [0,
π

2

]
.

Similarly, σ (x, y) = σ
(
ω (x), ω (y)

)
. This implies that orthogonal mappings of

X preserve elliptic and spherical distances. Notice that the orthogonal mappings
ω : X → X of X are Lorentz transformations of Z = X ⊕ R of the form (x, �) →(
ω (x), �

)
for (x, �) ∈ Z (see Theorem 1 of chapter 4 and the discussion following

this theorem).

Proposition 24. Suppose x, y, z ∈ X0. Then the following statements hold true.

(a) ε (x, y) = 0 if, and only if, x, y are linearly dependent.

(b) ε (x, y) = ε (y, x) and

ε (x, z) ≤ ε (x, y) + ε (y, z). (4.70)

Proof. Observe that ε (x, y) + ε (y, z) ≤ π holds true for all x, y, z ∈ X0. The
inequality (4.70) must hence be equivalent with

cos ε (x, z) ≥ cos[ε (x, y) + ε (y, z)].

In view of (4.68) we may assume x2 = y2 = z2 = 1. So we have to show

|β| ≥ |γ| · |α| −
√

1 − γ2
√

1 − α2 (4.71)

where we put α := yz, β := zx, γ := xy. With

p := x − γy, q := z − αy

we get √
1 − γ2

√
1 − α2 =

√
p2
√

q2 ≥ |pq| = |β − αγ| ≥ |αγ| − |β|,
i.e. (4.71). �
Proposition 25. Suppose that x, y, z are in X0. Then the following statements hold
true.

(a) σ (x, y) = 0 if, and only if, y = λx with λ > 0.

(b) σ (x, y) = σ (y, x) and

σ (x, z) ≤ σ (x, y) + σ (y, z). (4.72)
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Proof. σ (x, y) = 0 implies
xy = ‖x‖ · ‖y‖,

i.e., by Lemma 1, chapter 1, y = λx, i.e. λx2 = ‖λ‖x2. Hence λ > 0. On the other
hand, we get from y = λx, obviously, σ (x, y) = 0.

In order to prove (4.72), we may assume

σ (x, y) + σ (y, z) ≤ π,

without loss of generality since σ (x, z) ∈ [0, π]. In this case, (4.72) is equivalent
with

cosσ (x, z) ≥ cos
(
σ (x, y) + σ (y, z)

)
.

Applying the notations α, β, γ, p, q of the proof of Proposition 24, we have to show
that

β ≥ γα −
√

1 − γ2
√

1 − α2

holds true, again assuming x2 = y2 = z2 = 1. But here√
1 − γ2

√
1 − α2 =

√
p2
√

q2 ≥ |pq| = |β − αγ| ≥ αγ − β,

since �,−� ≤ |�| for all � ∈ R. �

4.15 Points

Suppose that Q �= ∅ is a set and that d is a mapping from Q × Q into R. We
assume that the structure (Q, d) satisfies

(i) d (x, x) = 0 for all x ∈ Q,

(ii) d (x, y) = d (y, x) and

d (x, z) ≤ d (x, y) + d (y, z)

for all x, y, z ∈ Q.
We will call such a structure (Q, d) an ES-space, since only the cases (X0, ε),

(X0, σ) will be of interest for us. Since

0 = d (x, x) ≤ d (x, y) + d (y, x) = 2d (x, y)

holds true, distances d (x, y) are always non-negative. We will call x, y ∈ Q equiv-
alent, x ∼ y, provided d (x, y) = 0. Because of (ii),

x ∼ y ⇒ y ∼ x

holds true, and, moreover,

x ∼ y and y ∼ z imply x ∼ z.
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The last statement follows from

0 ≤ d (x, z) ≤ d (x, y) + d (y, z) = 0.

We shall call the equivalence classes

[x] := {y ∈ Q | y ∼ x}
points. If p, q are points, then we define

d (p, q) := d (x, y) (4.73)

in the case that x ∈ p and y ∈ q. In order to prove that d (p, q) is well-defined, we
must show

d (x, y) = d (x′, y′)

for all x, y, x′, y′ ∈ Q with x ∼ x′ and y ∼ y′. But

d (x, y) ≤ d (x, x′) + d (x′, y′) + d (y′, y) = d (x′, y′),

and, of course, also d (x′, y′) ≤ d (x, y). It is now trivial to check that the set of
points of (Q, d) is a metric space with respect to the distance notion (4.73).

The points of (X0, ε) are called the elliptic points of X , the points of (X0, σ)
the spherical points of X . By E (X), S (X) we designate the set of elliptic points, of
spherical points of X , respectively. In view of our considerations before,

(
E (X), ε)

and
(
S (X), σ

)
are metric spaces.

We would like to describe other representations of the equivalence classes of
(X0, ε), and of those of (X0, σ).

If x ∈ X0, then, obviously, [x] = Rx\{0} in the case (X0, ε). It is hence
possible to identify the points of

(
E (X), ε

)
with the euclidean lines Rx of X

through the origin 0. The distance ε (x, y) then measures the smaller angle between
the lines Rx and Ry. The class [x], x �= 0, of

(
E (X), ε

)
can also be identified with

the following pair of points, {
x

‖x‖ ,− x

‖x‖
}

, (4.74)

which are on the euclidean ball B (0, 1) = {y ∈ X | y2 = 1}. Of course, they are
the points of intersection of the line Rx and the ball B (0, 1).

For x ∈ X0 we obtain [x] = R>0x := {λx | 0 < λ ∈ R} in the case (X0, σ).
We hence may identify [x] with the half-line R≥0x, but also with the point

x

‖x‖
of B (0, 1). The distance σ (x, y) measures the angle ∈ [0, π] between the half-lines
R≥0x and R≥0y. In the case x2 = 1 = y2 and x �= y �= −x take the circle through
x and y with center 0. Then σ (x, y) measures the smaller distance along the circle
from x to y. Of course σ (x, x) = 0 and σ (x,−x) = π.
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4.16 Isometries

Suppose that (Q, d) is an ES-space. An isometry of (Q, d) is a mapping

f : Q → Q

satisfying d (x, y) = d
(
f (x), f (y)

)
for all x, y ∈ Q. Denote by Π(Q) the set of all

points of (Q, d).

Proposition 26. If f : Q → Q is an isometry, then

F ([x]) = [f (x)], x ∈ Q, (4.75)

is an isometry of the metric space
(
Π(Q), d

)
.

Proof. F is well-defined. In fact, x ∼ x′ implies d (x, x′) = 0 and hence

d
(
f (x), f (x′)

)
= d (x, x′) = 0,

i.e. f (x) ∼ f (x′) and hence [f (x)] = [f (x′)]. Moreover,

d
(
[f (x), [f (y)]

)
= d
(
f (x), f (y)

)
= d (x, y) = d ([x], [y]). �

Proposition 27. All isometries f of an ES-space (Q, d) are given as follows. If F
is any isometry of the metric space

(
Π(Q), d

)
,

F : Π(Q) → Π(Q),

then define f : Q → Q arbitrarily up to the restriction that

f (x) ∈ F ([x]) (4.76)

is satisfied for all x ∈ Q.

Proof. Since d ([x], [y]) = d (F [x], F [y]) holds true, and, moreover,

d ([x], [y]) = d (x, y)

and d (F [x], F [y]) = d
(
f (x), f (y)

)
, by (4.76), we obtain

d (x, y) = d
(
f (x), f (y)

)
. �

We already know (see before Proposition 24) that orthogonal mappings of
X preserve elliptic and spherical distances. We now prove a theorem which even
holds in suitable non-real situations as was shown, based on other methods, by A.
Alpers and E.M. Schröder [1].

Theorem 28. All isometries of E (X) or S (X) are given as follows. Take arbi-
trarily an orthogonal mapping of X, then its restriction f on X0, and, finally, the
corresponding mapping (4.75) of f .
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Proof. a) Suppose that F is an isometry of E (X) or S (X), respectively. This
mapping must be injective since F ([x]) = F ([y]) implies

d ([x], [y]) = d
(
F [x]), F ([y])

)
= 0,

i.e. [x] = [y]. Here d designates the distance notion ε or σ, respectively.
b) If dimX < ∞, Theorem 28 is a consequence of the more general Theorems
A.8.2 and A.9.2 of [2] (W. Benz), chapter 2.
c) Assume now dim X ≥ 3. In view of step a), F induces an injective mapping
γ : Σ → Σ of the set Σ of all 1-dimensional subspaces

〈x〉 := [x] ∪ [−x] ∪ {0}, x ∈ X0, (4.77)

of the vector space X . In the case of E (X), of course, [x] = [−x] holds true. In
the case of S (X), the image of (4.77) must also be a 1-dimensional subspace of X
since

σ
(
F ([x]), F ([−x])

)
= σ ([x], [−x]) = π,

i.e. since F ([x]) =: [ξ] implies F ([−x]) = [−ξ]. We would like to show that γ maps
2-dimensional subspaces of X , considered as sets of 1-dimensional subspaces, onto
2-dimensional subspaces. Let ϕ be such a 2-dimensional subspace of the vector
space X and let x, a, b be elements of ϕ satisfying a ⊥ b and x2 = a2 = b2 = 1.
Define

F ([x]) =: [x′], F ([a]) =: [a′], F ([b]) =: [b′].

Without loss of generality we may assume x′2 = a′2 = b′2 = 1. Now we get

x =: αa + βb

with suitable α, β ∈ R and

xa = ε1x
′a′, xb = ε2x

′b′, ab = ε3a
′b′ = 0

with ε2
i = 1, i = 1, 2, 3, since equations like d ([x], [a]) = d ([x′], [a′]) hold true. If

x′ were not an element of

span {a′, b′} := {δ1a
′ + δ2b

′ | δ1, δ2 ∈ R},
then we would have

x′ := λa′ + µb′ + τc, τ �= 0,

with a suitable c ∈ span {a′, b′, x′} satisfying c ⊥ a′, b′ and c2 = 1. But this
contradicts

α = ε1λ, β = ε2µ, 1 = α2 + β2, 1 = λ2 + µ2 + τ2,

since λ2 + µ2 = α2 + β2 = 1 = λ2 +µ2 + τ2. Hence γ (ϕ) ⊆ span {a′, b′}. In order
to show that span {a′, b′} is also a subset of γ (ϕ), we consider any y = λa′ + µb′

with λµ �= 0 and λ2 + µ2 = 1, and we define

z1 := λa + µb and z2 := λa − µb.
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The 1-dimensional subspace 〈y〉 must be the image of 〈z1〉 or 〈z2〉 under γ, since

{γ (〈z1〉), γ (〈z2〉)} ⊆ {〈λa′ + µb′〉, 〈λa′ − µb′〉}
and 〈z1〉 �= 〈z2〉 hold true.
d) We now define Y to be the set of all elements x of X such that there exists
ξ ∈ X0 with x ∈ γ〈[ξ]〉. This implies that Y is a subspace of X and that γ is an
isomorphism between the projective spaces over X and Y . The proof of Theorem
31 of [3], W. Benz, 219 ff, with obvious modifications, implies that there exists an
injective linear mapping δ of X into itself satisfying

γ ( span {x}) = span {δ (x)} (4.78)

for all x ∈ X0. Since
(xy)2

x2y2
=

[δ (x) δ (y)]2

[δ (x)]2[δ (y)]2

holds true for all x, y ∈ X0, we obtain that x ⊥ y implies δ (x) ⊥ δ (y). Moreover,
x2 = y2 implies (x − y)(x + y) = 0, i.e. [δ (x)]2 = [δ (y)]2.
e) Let j be a fixed element of X with j2 = 1. Define δ (j) =: k. For x ∈ X0 we
hence have (

x

‖x‖
)2

= 1 = j2,

and thus [
δ

(
x

‖x‖
)]2

= k2,

i.e. ‖δ (x)‖ = ‖k‖ · ‖x‖. If we replace δ in (4.78) by the orthogonal mapping ∆,

∆ (x) :=
1

‖k‖ δ (x), x ∈ X,

then (4.78) remains true. F is hence induced by ∆ in the form of (4.75) with

f (x) := ∆ (x)

for all x ∈ X0. �
The surjective isometries of E (X), S (X) are called motions of E (X), S (X),

respectively. Their groups ME (X), MS (X) are called elliptic, spherical group of
X , the geometries (

E (X), ME (X)
)
,
(
S (X), MS (X)

)
elliptic, spherical geometry over X , respectively. Observe that all these motions
are induced (see Theorem 28) by orthogonal mappings, i.e. by Lorentz transfor-
mations.
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4.17 Distance functions of X0

A function d : X0 × X0 → R≥0 will be called a distance function of X0. Observe
that the distance functions we were interested in in sections 10 and 11 of chapter
1 were functions from X × X into R≥0. This time the element 0 of X will be
excluded. Therefore step B of the proof of Theorem 7 of chapter 1 can not be
applied for our present purposes without modifications:

Proposition 29. Define

L := {(ξ1, ξ2, ξ3) ∈ R
3 | ξ1, ξ2 ∈ R>0 and ξ2

3 ≤ ξ1ξ2}

with R>0 = R≥0\{0}. Take f : L → R≥0 arbitrarily. Then

d (x, y) = f (x2, y2, xy) (4.79)

is a distance function of X0 satisfying

(∗) d (x, y) = d
(
ω (x), ω (y)

)
for all ω ∈ O (X) and all x, y ∈ X0.

If, vice versa, d is a distance function of X0 such that (∗) holds true, then there
exists f : L → R≥0 with (4.79) for all x, y ∈ X0.

Proof. Obviously, (4.79) satisfies (∗). So assume that d is a distance function of
X0 with (∗). Suppose that (ξ1, ξ2, ξ3) is in L and that j, k are fixed elements of X
with j2 = 1 = k2 and jk = 0. Put

x0 := j
√

ξ1 and y0

√
ξ1 := jξ3 + k

√
ξ1ξ2 − ξ2

3 ,

and observe x0 �= 0 �= y0. Define

f (ξ1, ξ2, ξ3) := d (x0, y0).

The function f : L → R≥0 is hence defined for all elements of L. We now have to
prove that (4.79) holds true. Let x, y be elements of X0, and put

ξ1 := x2, ξ2 := y2, ξ3 := xy.

x, y ∈ X0 implies ξ1 > 0, ξ2 > 0. Moreover, (ξ1, ξ2, ξ3) must be in L, in view of the
Cauchy–Schwarz inequality. If we are able to prove the existence of an ω ∈ O (X)
with

ω (x0) = x and ω (y0) = y,

where x0, y0 are the already defined elements with respect to (ξ1, ξ2, ξ3), then, by
(∗),

d (x, y) = d (x0, y0) = f (ξ1, ξ2, ξ3) = f (x2, y2, xy)
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holds true and (4.79) is established. Without loss of generality we may assume
x = x0, in view of the fact that x2 = x2

0 (see step A of the proof of Theorem 7 of
chapter 1). Suppose that z := y − y0 is unequal to 0 and define

M := {m ∈ X | m ⊥ z}.
Then M is a maximal subspace of X because p ∈ X\M implies

pz2 − (pz) z ∈ M

and hence p ∈ Rz ⊕ M . Since x = x0, we get x ∈ M from xy = x0y0. Define

ω (αz + m) = −αz + m

for all α ∈ R and m ∈ M . Notice ω ∈ O (X), ω2 = id, and ω (x) = x, in view of
x ∈ M . Finally observe ω (y0) = y because of

y0 = −1
2

z +
1
2

(y + y0), y + y0 ⊥ z. �

Theorem 30. Let d be a distance function of X0 satisfying (∗) and

(S) d (x, y) = d (λx, µy) for all λ, µ ∈ R>0 and all x, y ∈ X0.

Then there exists a function
g : [0, π] → R≥0

with d (x, y) = g
(
σ (x, y)

)
for all x, y ∈ X0.

Proof. Because of Proposition 29 there exists f : L → R≥0 with (4.79). Define

g (ξ) := f (1, 1, cos ξ)

for ξ ∈ [0, π]. Hence, by (S) and (4.79),

f (x2, y2, xy) = f (λ2x2, µ2y2, λµxy)

for λ ·
√

x2 := 1 =: µ
√

y2, i.e.

d (x, y) = f

(
1, 1,

xy√
x2
√

y2

)
= f

(
1, 1, cos[σ (x, y)]

)
= g
(
σ (x, y)

)
for all x, y ∈ X0. �
Theorem 31. Let d be a distance function of X0 satisfying (∗), (S) and

(E) d (x, y) = d (−x, y) for all x, y ∈ X0.

Then there exists a function

h :
[
0,

π

2

]
→ R≥0

with d (x, y) = h
(
ε (x, y)

)
for all x, y ∈ X0.
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Proof. As already in the proof of Theorem 30, we obtain

d (x, y) = f

(
1, 1,

xy√
x2
√

y2

)
.

Hence, by (E),

f

(
1, 1,

xy√
x2
√

y2

)
= f

(
1, 1,− xy√

x2
√

y2

)
,

and thus

d (x, y) = f

(
1, 1,

|xy|√
x2
√

y2

)
.

This implies
d
(
x, y) = f (1, 1, cos[ε (x, y)]

)
= h

(
ε (x, y)

)
in view of h (ξ) := f (1, 1, cos ξ) for ξ ∈ [0, π

2 ]. �

4.18 Subspaces, balls

If V is a subspace of dimension r ≥ 1 of the vector space X , then the set {[x] | 0 �=
x ∈ V } is called a subspace of E (X), or also of S (X), depending on the definition
of points. If V is of dimension 2, then the corresponding subspace is called a line.
Obviously, isometries transform subspaces onto subspaces of the same dimension.
Balls (hyperspheres) are defined by

B ([m], �) := {[x] | x ∈ X0 and d ([m], [x]) = �}

for

1. d = ε and � ∈
[
0,

π

2

]
or

2. d = σ and � ∈ [0, π]

where m ∈ X0.
In the elliptic case the following Proposition holds true.

Proposition 32. If m2 = 1 and � ∈ [0, π
2

]
, then

B ([m], �) = {[p · sin � + m · cos �] | p ∈ m⊥ and p2 = 1}

where m⊥ := {x ∈ X | x ⊥ m}.
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Proof. [p · sin � + m · cos �] belongs to B ([m], �) for p ∈ m⊥ and p2 = 1, since

cos ε ([m], [p sin� + m cos �]) = |m · (p sin � + m cos �)| = cos �.

If, on the other hand,

cos � =
|mx|
‖x‖

holds true for x ∈ X0, then, since there exists p ∈ m⊥ with p2 = 1 and

x = αp + βm (4.80)

with suitable α, β ∈ R,

|β| =
√

α2 + β2 cos � (4.81)

holds true, i.e. |β| sin � = |α| cos �. We may assume β ≥ 0, because otherwise we
would work with −x instead of x in (4.80). We also may assume α ≥ 0, since
otherwise we would replace p by −p in (4.80). Hence there exists k ∈ R with

(α, β) = k · (sin �, cos �). (4.82)

Now x �= 0 in (4.80) implies k �= 0. �
In the spherical case we again assume m2 = 1, without loss of generality. We

obtain

Proposition 33. If � ∈ [0, π], then

B ([m], �) = {[p · sin � + m · cos �] | p ∈ m⊥ and p2 = 1}.

In this situation (4.81) reads as β =
√

α2 + β2 cos �, so that cos � and β have
the same sign. Hence

β sin � = |α| cos �.

We may assume α ≥ 0, because otherwise we would replace p by −p in (4.80).
Notice, moreover, that in the new situation, k > 0 must hold true in (4.82).

In the spherical case

B ([m], �) = B ([−m], π − �)

holds true.

4.19 Periodic lines

Suppose that � is a positive real number and that

x : [0, �[→ M (4.83)
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with [0, �[:= {ξ ∈ R | 0 ≤ ξ < �}, is a mapping into the set M of a metric space
(M, d) satisfying

(∗) d
(
x (ξ), x (η)

)
=

{ |ξ − η| if |ξ − η| ≤ �
2

� − |ξ − η| if |ξ − η| > �
2

for all ξ, η ∈ [0, �[. Then

{x (ξ) | 0 ≤ ξ < �} (4.84)

is called (W. Benz [15]) a �-periodic line of (M, d). The mapping (4.83) of a �-
periodic line (4.84) must be injective. Assume x (ξ) = x (η) for ξ, η ∈ [0, �[. If
|ξ − η| ≤ �

2 , then
0 = d

(
x (ξ), x (η)

)
= |ξ − η|

implies ξ = η, and if |ξ − η| > �
2 , then

0 = d
(
x (ξ), x (η)

)
= � − |ξ − η|

is impossible, since ξ, η ∈ [0, �[ yields |ξ − η| < �. According to the beginning of
section 18, a line l of S (X) can be defined as follows: take V = span {p, q} with
p2 = 1 = q2 and pq = 0, and define

l = {[αp + βq] | α2 + β2 = 1}.

Identifying the set of points of (X0, σ) with {x ∈ X | x2 = 1}, we may write

l = {p cos ξ + q sin ξ | 0 ≤ ξ < 2π}. (4.85)

We will call these lines the classical lines of S (X).

Theorem 34. The 2π-periodic lines of the metric space
(
S (X), σ

)
are exactly the

classical lines of S (X).

Proof. a) Define x (ξ) := p cos ξ + q sin ξ on the basis of (4.85) and observe, by
definition of σ,

cosσ
(
x (ξ), x (η)

)
= x (ξ)x (η) = cos|ξ − η|. (4.86)

Hence σ
(
x (ξ), x (η)

)
= |ξ− η| for |ξ− η| ≤ π, since σ

(
x (ξ), x (η)

) ∈ [0, π]. In the
case |ξ − η| > π with ξ, η ∈ [0, 2π[ we obtain

cosσ
(
x (ξ), x (η)

)
= cos(2π − |ξ − η|)

from (4.86), and hence σ
(
x (ξ), x (η)

)
= 2π − |ξ − η|. Thus (4.85) is a 2π-periodic

line.
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b) Suppose that x : [0, 2π[→ {x ∈ X | x2 = 1} satisfies the functional equation
(∗) in the case � = 2π for all ξ, η ∈ [0, 2π[. Hence

x (ξ)x (η) = cosσ
(
x (ξ), x (η)

)
= cos(ξ − η). (4.87)

Thus p, q ∈ S (X), pq = 0, for p := x (0), q =: x
(

π
2

)
. Observe, by (4.87),

x (ξ) · p = x (ξ)x (0) = cos ξ,

x (ξ) · q = x (ξ)x
(

π
2

)
= sin ξ

for ξ ∈ [0, 2π[. Hence

x (ξ)(p cos ξ + q sin ξ) = 1, (4.88)

i.e. [x (ξ)(p cos ξ+q sin ξ)]2 = [x (ξ)]2 ·[p cos ξ+q sin ξ]2. Thus, by Lemma 1, chapter
1,

x (ξ) = λ (ξ) · (p cos ξ + q sin ξ),

with λ (ξ) ∈ {1,−1}. But λ (ξ) = −1 is not possible, because otherwise, by (4.88),

1 = x (ξ)(p cos ξ + q sin ξ) = −(p cos ξ + q sin ξ)2 = −1.

Hence x (ξ) = p cos ξ + q sin ξ, ξ ∈ [0, 2π[, is a classical line. �
Now we will work with the metric space

(
E (X), ε

)
by identifying E (X), as

already described earlier, with{{x,−x} ⊂ X | x2 = 1
}

and by writing
σ ({x,−x}, {y,−y}) ∈

[
0,

π

2

]
,

cosσ ({x,−x}, {y,−y}) = |xy|
for all {x,−x}, {y,−y} ∈ E (X).

We shall write R = {1,−1} and {x,−x} = R·x = Rx. Observe Rx = R·(−x).
Again, according to the beginning of section 18, a line l of E (X) can be

defined by
l = {[αp + βq] | α2 + β2 = 1}

with p, q ∈ X such that p2 = q2 = 1, pq = 0, i.e. by

l = {R (p cos ξ + q sin ξ) | ξ ∈ [0, π[}. (4.89)

These lines will be called the classical lines of E (X).

Theorem 35. The π-periodic lines of the metric space
(
E (X), ε

)
are exactly the

classical lines of E (X).
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Proof. a) For p, q ∈ X with p2 = q2 = 1, pq = 0, define

x (ξ) := p cos ξ + q sin ξ, ξ ∈ [0, π[.

We are now interested in the mapping

ξ → Rx (ξ), ξ ∈ [0, π[,

from [0, π[ into E (X). Observe

cos ε
(
Rx (ξ), Rx (η)

)
= |x (ξ)x (η)| = |cos|ξ − η||.

If |ξ − η| ≤ π
2 , then cos|ξ − η| ≥ 0, and hence

ε
(
Rx (ξ), Rx (η)

)
= |ξ − η|.

In the other case, π
2 < |ξ − η| < π, we obtain

0 < π − |ξ − η| <
π

2

and cos ε
(
Rx (ξ), Rx (η)

)
= |cos|ξ − η|| = |cos(π − |ξ − η|)|, i.e.

d
(
Rx (ξ), Rx (η)

)
= π − |ξ − η|.

Hence (4.89) is a π-periodic line.
b) Suppose the mapping ϕ : [0, π[→ E (X) solves the functional equation (∗), x
there replaced by ϕ now, in the case � = π for all ξ, η ∈ [0, π[. We shall write

ϕ (ξ) =: Rx (ξ)

with a suitable function x : [0, π[→ {x ∈ X | x2 = 1}. Hence

|x (ξ)x (η)| = cos ε
(
Rx (ξ), Rx (η)

)
=

{
cos|ξ − η| if |ξ − η| ≤ π

2 ,

cos(π − |ξ − η|) if |ξ − η| > π
2

for all ξ, η [0, π[, i.e.

|x (ξ)x (η)| = |cos(ξ − η)|. (4.90)

Put p := x (0), q := x
(

π
2

)
. Hence p2 = q2 = 1, pq = 0. Equation (4.90) yields

|x (ξ) p| = |cos ξ|, |x (ξ) q| = sin ξ (4.91)

for ξ ∈ [0, π[. Put D := [0, π[\{0, π
2

}
and

α (ξ) :=
x (ξ) p

cos ξ
, β (ξ) :=

x (ξ) q

sin ξ
(4.92)
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for ξ ∈ D. Hence, by (4.91), [α (ξ)]2 = 1 = [β (ξ)]2. Observe, by (4.92), for all
ξ ∈ D,

x (ξ)(pα (ξ) cos ξ + qβ (ξ) sin ξ) = 1.

Thus, for all ξ ∈ D,

[x (ξ)(pα (ξ) cos ξ + qβ (ξ) sin ξ)]2 = [x (ξ)]2[pα (ξ) cos ξ + qβ (ξ) sin ξ]2.

Hence, by Lemma 1, chapter 1, for all ξ ∈ D,

Rx (ξ) = R
(
p cos ξ + qγ (ξ) sin ξ

)
, γ (ξ) :=

β (ξ)
α (ξ)

,

with [γ (ξ)]2 = 1.
Case 1. γ (ξ) = 1 for all ξ ∈ D. Then Rx (ξ) = R (p cos ξ + q sin ξ), which also
holds true for ξ = 0 or ξ = π

2 . We hence get a classical line.
Case 2. γ (ξ) = −1 for all ξ ∈ D. Put q′ = −q and observe p2 = (q′)2 = 1, pq′ = 0.
Thus

Rx (ξ) = R (p cos ξ + q′ sin ξ),

which also holds true for ξ = 0 or ξ = π
2 . We again get a classical line.

Case 3. There exists ξ1, ξ2 ∈ D with γ (ξ1) = 1 = −γ (ξ2). Here (4.90) implies

|cos(ξ1 − ξ2)| = |x (ξ1)x (ξ2)|
= |(p cos ξ1 + q sin ξ1)(p cos ξ2 − q sin ξ2)| = |cos(ξ1 + ξ2)|,

i.e. [cos(ξ1 − ξ2)]2 = [cos(ξ1 + ξ2)]2. Hence

cos ξ1 cos ξ2 sin ξ1 sin ξ2 = 0.

This is a contradiction, since ξ1, ξ2 ∈ D. Hence Case 3 does not occur. �
Concerning metric (periodic) lines in Lorentz–Minkowski geometry see R. Höfer
[1], [2].

4.20 Hyperbolic geometry revisited

Let X be a real inner product space containing two linearly independent elements.
As in earlier sections define Z = X ⊕ R. Put

H (Z) := {z = (z, z0) ∈ Z | z2 = −1 and z0 ≥ 0}
where z1 · z2, so especially z2 = z · z, designates the product (3.88). The mapping

µ : X → H (Z) (4.93)

with µ (x) := (x,
√

1 + x2) for x ∈ X turns out to be a bijection. In fact, if

z = (z, z0) ∈ H (Z)

is given, z2 − z2
0 = −1 and z0 ≥ 0 hold true, i.e. z0 =

√
1 + z2. Hence µ (z) = z.
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Theorem 36. Let f be a hyperbolic motion of (X, hyp). Then there exists a bijective
Lorentz transformation λ : Z → Z with λ (0) = 0 and λ

(
H (Z)

)
= H (Z) such

that

µ
(
f (x)

)
= λµ (x) (4.94)

holds true for all x ∈ X. We will call λ an induced Lorentz transformation of the
hyperbolic motion f .

Proof. Because of step I of the proof of Theorem 7 of chapter 1, it is sufficient to
prove Theorem 36 for f ∈ O (X) and for f = Tt where Tt is a translation with
axis e ∈ X, e2 = 1.

Case 1. f := ω ∈ O (X).

If z = (z, z0) ∈ Z, define λ (z) :=
(
ω (z), z0

)
. This is a Lorentz transformation of

Z (see section 4.1) with λ (0) = 0 and λ
(
H (Z)

)
= H (Z), since

(
ω (x),

√
1 + [ω (x)]2

)
=
(
ω (x),

√
1 + x2

)
(4.95)

implies λ
(
H (Z)

) ⊆ H (Z), and ω−1 ∈ O (X), obviously,

λ−1
(
H (Z)

) ⊆ H (Z).

In order to prove (4.94), observe

λµ (x) = λ (x,
√

1 + x2) =
(
ω (x),

√
1 + x2

)
= µ

(
ω (x)

)
,

by (4.95).

Case 2. f = Tt.

Put c := cosh t and s := sinh t. Because of (1.8), we obtain for x ∈ X ,

1 + [Tt(x)]2 =
(
c
√

1 + x2 + (xe) s
)2

. (4.96)

If (xe) s ≥ 0, then A := c
√

1 + x2 + (xe) s ≥ 0, since c ≥ 0. In the case (xe) s < 0
we get, by (xe)2 ≤ x2e2 = x2,

(1 + x2) c2 − (xe)2s2 ≥ (1 + x2) c2 − x2s2 = c2 + x2 ≥ 0,

i.e. c
√

1 + x2 ≥ |(xe) s| = −(xe) s, i.e. again A ≥ 0. Hence, by (4.96),

√
1 + [Tt(x)]2 = c

√
1 + x2 + (xe) s. (4.97)

Still applying the abbreviations c := cosh t, s := sinh t, we define

λt(z) := z + (ze)
(
(c − 1) e, s

)
+ z0(se, c − 1) (4.98)
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for z = (z, z0) ∈ Z. Hence λt is a linear mapping from Z into Z. Observe
cosh(−t) = c and sinh(−t) = −s and thus

λ−t(z) = z + (ze)
(
(c − 1) e,−s

)
+ z0(−se, c − 1).

This implies for all z ∈ Z,

λ−tλt(z) = z = λtλ−t(z).

Hence, by applying the first Remark of section 1.7, λt : Z → Z must be bijective.
In order to prove that λt is a Lorentz transformation, we will show (compare
(3.141))

l (z1, z2) = l
(
λt(z1), λt(z2)

)
for all z1, z2 ∈ Z. Since λt is linear, the last equation is equivalent with

(z1 − z2)2 = [λt(z1 − z2)]2,

i.e. with z2 = [λt(z)]2 for all z ∈ Z. Put

a :=
(
(c − 1) e, s

)
, b := (se, c − 1)

and observe, by (4.98),
λt(z) = z + (ze) a + z0b.

In view of a2 = 2(1 − c), ab = 0, b2 = 2(c − 1) = −a2, we obtain

∆ := [λt(z)]2 − z2 =
(
(ze)2 − z2

0

)
a2 + 2(ze)(za) + 2z0(zb),

i.e. ∆ = 0, because of za = (c − 1)(ze)− sz0, zb = s (ze)− (c − 1) z0. So we know
that λt is a bijective and linear Lorentz transformation of Z. Obviously, λt(0) = 0.
That λt

(
H (Z)

) ⊆ H (Z) holds true, follows from (4.98), (1.8), (4.97) by

λt(x,
√

1 + x2) =
(
x + [(xe)(c − 1) +

√
1 + x2s] e, (xe) s +

√
1 + x2c

)
=
(
Tt(x),

√
1 + [Tt(x)]2

)
for all x ∈ X . Replacing t by −t, we also get λ−1

t

(
H (Z)

) ⊆ H (Z). We finally
must prove (4.94), i.e.

µ
(
Tt(x)

)
= λµ (x) = λ (x,

√
1 + x2).

But this is already clear, since µ
(
Tt(x)

)
=
(
Tt(x),

√
1 + [Tt(x)]2

)
. �

More precisely, we will denote the Lorentz transformation λt : Z → Z of
(4.98) also by Le,t. Observe

Le,t = L−e,−t (4.99)

for all t ∈ R and all e ∈ X satisfying e2 = 1.
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Proposition 37. A Lorentz transformation σ of Z with

σ
(
H (Z)

)
= H (Z)

satisfies σ (0) = 0.

Proof. Put σ (0) =: d = (d, d0). Suppose that j ∈ X satisfies j2 = 1 and dj = 0.
Let � be an arbitrary real number and define x� ∈ X by

σ (x�,
√

1 + x2
�) = (�j,

√
1 + �2),

by applying σ
(
H (Z)

)
= H (Z). Hence, by (4.3),

−1 = l
(
0, (x�,

√
1 + x2

�)
)

= l
(
d, (�j,

√
1 + �2)

)
,

i.e. 0 = d2 − 2d · (�j,
√

1 + �2), i.e., by dj = 0,

d
2 − d2

0 + 2d0

√
1 + �2 = 0 (4.100)

for all � ∈ R. Hence d0 = 0 and d
2

= 0, i.e. d = 0, by applying (4.100) for � = 0
and � = 1. �
Proposition 38. A Lorentz transformation ϕ of Z satisfies

ϕ
(
H (Z)

)
= H (Z) (4.101)

if, and only if, ϕ is linear and orthochronous.

Proof. Assume that ϕ is linear and orthochronous. If z ∈ H (Z), we obtain

−1 = l (0, z) = l
(
ϕ (0), ϕ (z)

)
= l
(
0, ϕ (z)

)
,

i.e. [ϕ (z)]2 = −1. Moreover, 0 ≤ z implies 0 ≤ ϕ (z), i.e. ϕ (z) ∈ H (Z). Hence
the left-hand side of (4.101) is contained in H (Z). Since ϕ−1 is linear and or-
thochronous as well, we obtain (4.101).— Assume now that ϕ ∈ L (Z) satisfies the
equation (4.101). From Proposition 37 we get ϕ (0) = 0 and from Theorem 1 that
ϕ is of the form

ϕ (z) = Bp,kω (z).

Since (0, 1) is in H (Z), so must be ϕ (0, 1). Hence 0 ≤ ϕ (0, 1) and

ϕ (0, 1) = Bp,kω (0, 1) = Bp,k(0, 1).

Here k must be unequal to −1, since otherwise ϕ (0, 1) = (0,−1), i.e. 0 �≤ ϕ (0, 1).
Hence (see section 3.14)

ϕ (0, 1) = Bp,k(0, 1) = (0, 1) + k (p, 0) +
k2

k + 1
(0, p2),
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i.e. ϕ (0, 1) = (0, 1) + (kp, k − 1) with k2(1 − p2) = 1. Now 0 ≤ ϕ (0, 1) implies, by
definition, that the last component of ϕ (0, 1), namely k, must be non-negative.
Hence the Lorentz boost Bp,k must be proper, i.e. Bp,kω is orthochronous (see
Theorem 5 and observe that k ≥ 0 and k2(1 − p2) = 1 imply k ≥ 1). �
Proposition 39. Let ϕ1, ϕ2 be linear and orthochronous Lorentz transformations
of Z with ϕ1(z) = ϕ2(z) for all z ∈ H (Z). Then ϕ1 = ϕ2.

Proof. Since also ϕ := ϕ−1
2 ϕ1 is linear and orthochronous, it is sufficient to con-

sider only the case ϕ2 = id. Put ϕ1 =: ϕ and

ϕ (z) = Bp,kω (z) (4.102)

with k ≥ 0. From ϕ (z) = z for all z ∈ H (Z) and (3.120) we get

B−p,k(z, z0) =
(
ω (z), z0

)
for all z = (z, z0) ∈ H (Z). Applying this for z = (0, 1), we obtain (see section 3.14
and observe k2p2 = k2 − 1 from k2(1 − p2) = 1),

(0, 1) + (−kp, k − 1) = B−p,k(0, 1) =
(
ω (0), 1

)
= (0, 1),

i.e. p = 0, k = 1, i.e. Bp,k = id. Hence z = ϕ (z) = ω (z) from (4.102) for all
z ∈ H (Z), i.e. (

z,
√

1 + z2) =
(
ω (z),

√
1 + z2)

for all z ∈ X , i.e. ω = id. Thus ϕ is the identity mapping of Z. �
From Theorem 36 and Propositions 38 and 39 we know that there exists

exactly one induced Lorentz transformation τ (f) of a given hyperbolic motion
f and, moreover, that τ (f) is linear and orthochronous. We will designate by
Lorth(Z) the group of all orthochronous Lorentz transformations of (Z) leaving
fixed 0 ∈ Z. After a while we will see that every element of Lorth(Z) is an in-
duced Lorentz transformation of a certain hyperbolic motion and, moreover, that
hyperbolic geometry over X and(

H (Z), Lorth(Z)
)

(4.103)

are isomorphic, where Lorth, though acting on Z, is considered here as acting on
H (Z) only, namely via the restrictions of all ϕ ∈ Lorth(Z) on H (Z).

The induced Lorentz transformation τ (ω) of the hyperbolic motion x →
ω (x), ω ∈ O (X), is given by (see Case 1 of the proof of Theorem 36)

(z, z0) →
(
ω (z), z0

)
, (4.104)

and that one of x → Tt(x) by

Le,t(z) = z + (ze)
(
(c − 1) e, s

)
+ z0(se, c − 1), (4.105)
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in view of (4.98), where e is the axis of Tt and where we put c := cosh t, s := sinh t.

A geometrical interpretation for proper Lorentz boosts yields the following
statement.

Theorem 40. Suppose that p ∈ X and k ∈ R≥0 satisfy 0 < p2 < 1 and k2(1−p2) =
1. Then

Bp,k = Le,t (4.106)

holds true with

k = cosh t, t > 0, and p =: e tanh t. (4.107)

Remark. Exactly one proper Lorentz boost is missing in (4.106), namely that
one with p = 0 and, consequently, with k = 1, because of k2(1 − p2) = 1 and
k ≥ 0.— On the other hand, to Tt with t > 0 and axis e there belongs, by (4.106),
the induced transformation Bp,k with (4.107). If t < 0, we may apply that the
translations Tt with axis e, and T−t with axis (−e) coincide.

Proof of Theorem 40. Since k ≥ 0, we obtain, by section (3.14) and by z =
(z, z0) ∈ Z,

Bp,k(z) = z + k (z0p, zp) +
k2

k + 1
(
(zp) p, z0p

2
)
. (4.108)

k2(1 − p2) = 1 implies k > 1 and, by cosh t := k, t > 0,

‖p‖ = tanh t.

Define e ∈ X by p =: e · tanh t and put c := cosh t, s := sinh t. Hence, by (4.108),

Bp,k(z) = z +
(
(ze)(c − 1) e + sz0e, s (ze) + z0(c − 1)

)
= Le,t(z). �

Proposition 41. Suppose that t is a real number and that e ∈ X satisfies e2 = 1. If e
is the axis of the hyperbolic translation Tt, then the induced Lorentz transformation
of Tt is given by

τ (Tt) = Be tanh t, cosh t. (4.109)

Proof. This follows for t > 0 from (4.106) and (4.107), since Le,t = τ (Tt). In the
case t = 0 we get τ (Tt) = id and also Be tanh t, cosh t = B0,1 = id. Assume, finally,
t < 0, and put r := −t > 0. If T ′

r is a translation with axis −e, we obtain

Tt = T ′
−t = T ′

r,

i.e., by the first part of this proof, since r > 0,

τ (Tt) = τ (T ′
r) = B(−e) tanh r, cosh r = Be tanh t, cosh t. �
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We now would like to show that every ϕ ∈ Lorth is induced by a motion.
Assume

ϕ (z) = Bp,kω (z) = Bp,k

(
ω (z), z0

)
with k ≥ 1. There is nothing to prove for k = 1, since then ϕ (z) = ω (z). We
hence may assume k > 1 and p �= 0. Put k = cosh t, t > 0, and p =: e tanh t. The
translation Tt with axis e then induces Bp,k, by Theorem 40. So we would like to
verify that the motion

x → Ttω (x)

induces ϕ. If λ is induced by x → ω (x) (see Case 1 of the proof of Theorem 36),
we obtain, by (4.94),

ω (x) = µ−1λµ (x)

and Tt(x) = µ−1Bp,kµ (x), i.e.

Ttω (x) = µ−1Bp,kµ
(
ω (x)

)
= µ−1Bp,kλµ (x) = µ−1ϕµ (x).

Hence ϕ is induced by Ttω.

Proposition 42.
(
X, M (X, hyp)

) ∼= (H (Z), Lorth(Z)
)
.

Proof. Observe that µ : X → H (Z) with µ (x) = (x,
√

1 + x2) is a bijection.
Moreover, associate to the hyperbolic motion f the restriction on H (Z),

τ (f)(z) = µfµ−1(z), z ∈ H (Z),

of the induced Lorentz transformation τ (f) of f . Hence

τ : M (X, hyp) → Lorth(Z)

is an isomorphism satisfying

µ
(
f (x)

)
= µfµ−1

(
µ (x)

)
= τ (f)

(
µ (x)

)
,

i.e. we obtain (1.15). �

Remark. If k ∈ R and p ∈ X satisfy k > 1 and k2(1−p2) = 1, Theorem 7 (chapter
4), case 2, implies

B0,−1Bp,k(z, z0) = B−p,−k

(
ω (z), z0

)
with

ω (z) = z − 2pz

p2
p = ω−1(z),

i.e. with ω ∈ O (X). Hence B−p,−k = B0,−1Bp,kω represents a geometrical inter-
pretation for improper Lorentz boosts B−p,−k �= B0,−1, since, on the one hand,
Bp,k is induced by a hyperbolic translation and since, on the other hand, B0,−1

and ω are simple geometrical mappings of Z (compare 3.6).
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Expressing the hyperbolic distance in terms of
(
H (Z), Lorth(Z)

)
yields

cosh hyp (z1, z2) = −z1 · z2 = 1 +
1
2
(z1 − z2)2

for z1 =: (x,
√

1 + x2), z2 =: (y,
√

1 + y2). Because of (4.2) we also may write

2 sinh
(

1
2

hyp (z1, z2)
)

=
√

l (z1, z2), (4.110)

since
√

1 + x2
√

1 + y2 − xy ≥ 1 (see section 1.10).

Remark. (x,
√

1 + x2) is said to be the Weierstrass coordinates of the hyperbolic
point x ∈ X . Generally speaking, let

ψ : X → R

be an arbitrary function, for instance ψ (x) = 0, ψ (x) =
√

1 + x2 or ψ (x) = ‖x‖.
Define

Hψ(Z) :=
{(

x, ψ (x)
) ∈ Z | x ∈ X

}
and the trivial bijection m : X → Hψ(Z) by m (x) =

(
x, ψ (x)

)
. Furthermore, let

Γψ be the group

Γψ := {τ (f) := mfm−1 | f ∈ M (X, hyp)}

which, of course, is a subgroup of Perm Hψ(Z). Obviously, the geometries(
X, M (X, hyp)

)
,
(
Hψ(Z), Γψ

)
are isomorphic, since τ : M (X, hyp) → Γψ is a group isomorphism satisfying
τ (f)

(
m (x)

)
= m

(
f (x)

)
for all x ∈ X .



Chapter 5

δ–Projective Mappings,
Isomorphism Theorems

Let (X, δ) and (V, ε) be arbitrary real inner product spaces each containing at
least two linearly independent elements. However, as in the earlier chapters we do
not exclude the case that there exist infinite linearly independent subsets of X or
V . One of the important results of this chapter is that the hyperbolic geometries(
X, M(X)

)
,
(
V, M(V )

)
over X = (X, δ), V = (V, ε), respectively, M the group of

hyperbolic motions, are isomorphic (see p. 16f) if, and only if, (X, δ) and (V, ε)
are isomorphic (see p. 1f).

Another result which we would like to mention here is the fact that the
Cayley–Klein model of hyperbolic geometry as developed dimension–free in section
2.12, can also be established dimension–free by an isomorphic geometry via δ–
projective mappings.

5.1 δ–linearity

Instead of δ(x, y) for x, y ∈ X = (X, δ) we will write again xy or x · y.
A mapping λ : X → X of (X, δ) will be called δ–linear if, and only if, λ is

bijective, linear and there exists a surjective mapping λ : X → X such that

x · λ(y) = λ(x) · y (5.1)

holds true for all x, y ∈ X . Of course, in the case that X is finite–dimensional, the
notions δ–linear and bijective linear coincide: in fact, if xy is the product xtMy of
matrices

xt = (x1 . . . xn), y =

⎛
⎜⎝

y1

...
yn

⎞
⎟⎠ , M =

⎛
⎜⎝

m11 . . . m1n

...
...

mn1 . . . mnn

⎞
⎟⎠ ,
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xt the transposed matrix of x, dimX = n ∈ {2, 3, 4, . . .}, M regular because of
(iv), p. 1, then

xtM(Ly) = (Kx)tMy,

Kt := MLM−1, implies (5.1) where y → Ly and x → Kx represent λ and λ,
respectively.

However, there are real inner product spaces (X, δ) and bijective linear map-
pings λ : X → X such that (5.1) has no surjective solution λ. Take the example
(X, δ) of section 2.6 and the quasi–hyperplane V as described there being not a
Euclidean hyperplane. For a fixed a �= 0 in X define H to be the Euclidean hyper-
plane H(a, 0). Let B1 be a basis of the Euclidean subspace H of X and B2 one of
V . Since B1, B2 are of the same cardinality, there exists a bijection λ0 : B1 → B2.
This λ0 can be extended to a bijective linear mapping λ : X → X . If there existed
for this λ a surjective solution λ of (5.1), we would obtain b · λ(y) = a · y for
a = λ(b), b ∈ X , from (5.1), i.e.

V = λ(H) = {λ(y) ∈ X | 0 = ay = b · λ(y)} = {x ∈ X | bx = 0} = H(b, 0),

a contradiction, since V is not a Euclidean hyperplane.

Lemma 1. If the mapping λ : X → X of (X, δ) is δ–linear, λ of (5.1) must be
uniquely determined and, moreover, it must be δ–linear with λ = λ.

Proof. Assume (λ)1(x) · y = x · λ(y) = (λ)2(x) · y for all x, y ∈ X . Hence y2 = 0,
i.e. y = 0, for

y := (λ)1(x) − (λ)2(x).

λ is thus uniquely determined. It is injective as well: λ(x1) = λ(x2) and (5.1) lead
to

0 = λ(x1) · y − λ(x2) · y = (x1 − x2) · λ(y),

i.e. to (x1 − x2)2 = 0 for y := λ−1(x1 − x2). For α ∈ R we obtain

λ(αx) · y = (αx) · λ(y) = α · λ(x)y,

i.e. y2 = 0, i.e. y = 0 for y := λ(αx) − αλ(x). Moreover,

λ(a + b) · y = (a + b)λ(y) = aλ(y) + bλ(y) = λ(a)y + λ(b)y,

i.e. y2 = 0, i.e. y = 0 for y := λ(a+ b)−λ(a)−λ(b). Thus λ is bijective and linear.
(5.1) then shows that λ is δ–linear and that λ = λ. �

Remark. From our example above we know that not every linear and bijective
mapping λ of X must be δ–linear. The identity mapping id(x) := x of X is, of
course, δ–linear with id = id. If λ : X → X is δ–linear, so must be λ−1 with

λ−1 = (λ)−1, (5.2)
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since we get
(λ)−1(x) · y = x · λ−1(y)

from (5.1): put x = λ(a), y = λ(b) in aλ(b) = λ(a)b. If λi : X → X , i = 1, 2, are
δ–linear, so must be λ1 · λ2 with

λ1λ2 = λ2 · λ1. (5.3)

In fact, we obtain from (5.1)

x · (λ1λ2)(y) = x · λ1[λ2(y)] = λ1(x) · λ2(y) = λ2[λ1(x)] · y = (λ2λ1)(x) · y.

The set of all δ–linear mappings of (X, δ) thus forms a group.

5.2 All δ–affine mappings of (X, δ)

Bijections of X such that images and inverse images of Euclidean hyperplanes are
Euclidean hyperplanes will be called δ–affine mappings of (X, δ).

Theorem 2. The bijection λ : X → X with λ(0) = 0 is a δ–affine mapping of
(X, δ) if, and only if, λ is δ–linear.

Proof. Let λ be δ–linear. The image of the Euclidean hyperplane H(a, α) is given,
in view of (5.1) with x := (λ)−1(a), by

λ(H) = {λ(y) ∈ X | α = ay = λ(x) · y = x · λ(y) = (λ)−1(a) · λ(y)}
= H

(
(λ)−1(a), α

)
.

Moreover, of course, by (5.2),

λ−1(H) = H
(
(λ−1)−1(a), α

)
= H

(
λ(a), α

)
.

Vice versa, suppose now that the bijection λ : X → X, λ(0) = 0, is a δ–affine
mapping. In Theorem 3, section 3.3, we determine all M–transformations of (X, δ).
Steps a) and b) of the proof of this theorem imply that our present mapping
λ : X → X must be linear. So it remains to show that λ is δ–linear. Let a �= 0 be
an element of X and put, by observing λ−1(0) = 0,

λ−1[H(a, 0)] =: H(t, 0). (5.4)

Without loss of generality we may assume t2 = 1. From (5.4) we know

ty = 0 if, and only if, aλ(y) = 0 (5.5)

for all y ∈ X . Hence 1 = t · t �= 0 implies aλ(t) �= 0. Thus

λ(a) := t · aλ(t) �= 0 (5.6)
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on account of aλ(t) ∈ R\{0}. We now would like to show

λ(a) · y = a · λ(y)

for all y ∈ X . Observe X = H(t, 0) ⊕ Rt (see p. 10f). For

y = y + y0t

with y ∈ H(t, 0) and y0 ∈ R we obtain aλ(y) = 0 from (5.5) and hence, by (5.6),

λ(a) · y = ty · aλ(t) + y0 · aλ(t) = y0 · aλ(t),
a · λ(y) = aλ(y) + y0 · aλ(t) = y0 · aλ(t),

i.e. we get λ(a) · y = a · λ(y) for all y ∈ X and all a �= 0 of X . Defining λ(0) = 0,
we obtain (5.1). Finally we must prove that the mapping λ : X → X is surjective.
So given v �= 0, v ∈ X , does there exist u ∈ X with λ(u) = v? Define t · ‖v‖ = v
and put (see (5.4))

λ
(
H(t, 0)

)
=: H(a, 0).

Observe aλ(v) �= 0, since otherwise, by (5.5), tv = 0, i.e. v2 = vt‖v‖ = 0.
With

u ·
[
aλ
( v

v2

)]
:= a

and (5.6) we obtain

λ(u) =
v2

aλ(v)
· λ(a) =

‖v‖
aλ(t)

· t · aλ(t) = v,

in view of the fact that (5.6) implies λ(αa) = αλ(a) for α ∈ R. �
Remark. All δ–affine mappings γ : X → X of (X, δ) are of the form

γ(x) = λ(x) + d (5.7)

for x ∈ X , where d is a fixed element of X and where λ is δ–linear. This is an
immediate consequence of Theorem 2 since

λ(x) := γ(x) − γ(0)

satisfies λ(0) = 0. Note also that translations are δ–affine mappings.

If ω : X → X is orthogonal and surjective, it must be δ–affine as well: For

ω−1(x) · y = ω[ω−1(x)] · ω(y) = x · ω(y)

holds true, i.e. (5.1) as well with ω = ω−1. Examples of δ–affine mappings are thus
given by

γ(x) := αω(x) + d, x ∈ X,

with real α �= 0 and with d ∈ X , where ω : X → X is orthogonal and surjective.
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5.3 δ–projective hyperplanes

As already defined in section 3.7 we now would like to apply again the real inner
product space Y = Y (X) = X ⊕ R with

(a, a0) · (b, b0) := a b + a0b0

for the elements a = (a, a0), b = (b, b0) of Y . If y = (y, y0) �= (0, 0) =: 0 is an
element of Y ,

Ry := {αy | α ∈ R}
is called, as usual, a projective point of Y . At the same time Ry will also be called
a δ–projective hyperplane of Y . We identify such a hyperplane Ra, 0 �= a ∈ Y ,
with the set of projective points

[Ra] := {Ry | 0 �= y ∈ Y and a · y = 0}. (5.8)

Of course, to projective points Ra there can also be associated, by (5.8), sets [Ra]
of δ–projective hyperplanes.

Lemma 3. If a, b ∈ Y \{0}, then [Ra] = [Rb] holds true if, and only if, Ra = Rb.

Proof. Assume [Ra] = [Rb]. For a = (0, a0), i.e. a = 0 and a0 �= 0, we get Ra =
R(0, 1). If b were �= 0, then, by (5.8),

R(b, 0) ∈ [Ra] = [Rb],

i.e. b
2

= 0, contradicting b �= 0. Hence b = 0 and thus Ra = Rb. Similarly,
b = (0, b0) implies a = (0, a0). So assume a �= 0 and b �= 0. For c ∈ Y with c �= 0
we obtain

[Rc] = {R(t, 1) | t ∈ X, ct + c0 = 0} ∪ {R(t, 0) | 0 �= t ∈ X | ct = 0}. (5.9)

Hence [Ra] = [Rb] implies H(a,−a0) = H(b,−b0), i.e. Ra = Rb, in view of Propo-
sition 12, chapter 2. �

We now define δ–projective mappings of Y (X) in two different ways. First
of all let us say that the projective point Ry is incident with the δ–projective
hyperplane Ra (written in the form Ry I Ra) if, and only if, a · y = 0.

A. A bijection σ of the set Π(Y ) of all projective points of Y will be called a δ–
projective mapping of Y if, and only if, images and inverse images of δ–projective
hyperplanes [Ra] of Y are δ–projective hyperplanes of Y .

B. Let σ be a bijection of Π(Y ) and τ be a bijection of the set ∆(Y ) of all δ–
projective hyperplanes of Y . The pair (σ, τ) is said to be a δ–projective mapping
of Y (X) if, and only if, Ry is incident with Ra, if, and only if, σ(Ry) is incident
with τ(Ra) for all Ry ∈ Π(Y ) and all Ra ∈ ∆(Y ).
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The bijection τ : ∆(Y ) → ∆(Y ) of definition B is uniquely determined by the
bijection σ : Π(Y ) → Π(Y ) of definition A. In fact, put τ(Ra) =: Rb and observe

Ry I Ra ⇔ Ry ∈ [Ra],

i.e. σ(Ry) I Rb if, and only if, σ(Ry) ∈ [Rb]. Therefore, [Rb] must be the δ–
projective hyperplane of all points σ(Ry) such that Ry ∈ [Ra], i.e. [Rb] must
be, according to definition A, the σ–image of [Ra].

5.4 Extensions of δ–affine mappings

Definition B is useful for finding examples of δ–projective mappings: suppose that
ω is a surjective orthogonal mapping of the real inner product space Y = Y (X),
then

Ry → ω(Ry) = Rω(y), Ra → ω(Ra) = Rω(a) (5.10)

for all Ry ∈ Π(Y ), Ra ∈ ∆(Y ), is a δ–projective mapping. In fact, y · a = 0 is the
same as

ω(y)ω(a) = y · a = 0.

Proposition 4. If Ry, Rz are projective points, there exists a δ–projective mapping
σ with σ(Ry) = Rz, and if Ra, Rb are δ–projective hyperplanes, there exists a
δ–projective mapping σ satisfying σ([Ra]) = [R(b)].

Proof. Take ω as in (5.10) with, say ω
(

a
‖a‖
)

= b
‖b‖ (apply statement A, section

1.11, for Y instead of X). Hence ω([Ra]) = [Rb]. �
Lemma 5. Let t, T be elements of X\{0} such that xt = 0 implies xT = 0 for all
x ∈ X; then t, T must be linearly dependent.

Proof. Because of xt = 0 for x := (T t)t−t2T , we obtain xT = 0, i.e. (tT )2 = t2T 2.
This implies (see Lemma 1, section 1.4) that t, T are linearly dependent. �

We will identify t ∈ X with the projective point R(t, 1). The projective points
in

Π(Y )\X
are then given by

{R(t, 0) | 0 �= t ∈ X},
i.e. by [R(0, 1)] (the so–called improper δ–projective hyperplane), in view of (5.8).

A δ–projective mapping σ of Y (X) is said to be a (δ–projective) extension of
the δ–affine mapping γ of (X, δ) if, and only if, σ

(
R(t, 1)

)
= γ
(
R(t, 1)

)
holds true

for all t ∈ X . Note that σ−1 is an extension of γ−1 under the assumption that σ
extends γ: in fact, for t ∈ X take τ ∈ X satisfying R(τ, 1) = γ−1

(
R(t, 1)

)
with the

consequence
σ
(
R(τ, 1)

)
= γ
(
R(τ, 1)

)
= R(t, 1),
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i.e. σ−1
(
R(t, 1)

)
= R(τ, 1) = γ−1

(
R(t, 1)

)
.

If σ is an extension of γ, then σ
(
[R(0, 1)]

) ⊆ [R(0, 1)] holds true (i.e.
σ−1
(
[R(0, 1)]

) ⊆ [R(0, 1)] as well, since σ−1 extends γ−1): if σ
(
R(t, 0)

)
, t �= 0,

were equal to R(τ, 1), the contradiction

R(t, 0) = σ−1
(
R(τ, 1)

)
= γ−1

(
R(τ, 1)

) �∈ [R(0, 1)]

would be the consequence.

Theorem 6. Every δ–affine mapping γ(t) = λ(t) + d, t ∈ X, (see Remark, section
5.2) can uniquely be extended to a δ–projective mapping σ of Y , and the restriction
on

X = Π(Y )\[R(0, 1)] (5.11)

of every δ–projective mapping σ of Y leaving fixed the improper δ–projective hy-
perplane R(0, 1) must be δ–affine.

Proof. 1. To γ(t) = λ(t) + d define σ : Π(Y ) → Π(Y ) by

σ
(
R(t, 1)

)
= R

(
λ(t) + d, 1

)
for t ∈ X, (5.12)

σ
(
R(t, 0)

)
= R

(
λ(t), 0

)
for 0 �= t ∈ X. (5.13)

Since t �= 0 implies λ(t) �= 0, also (5.13) is well–defined. Observe σ([R(0, 1)]) =
[R(0, 1)]. From (5.9), c �= 0, we obtain

[Rc] = H(c,−c0) ∪ {R(t, 0) | 0 �= t ∈ X, ct = 0}. (5.14)

From (5.12), (5.13) we hence get

σ([Rc]) = γ
(
H(c,−c0)

) ∪ {R
(
λ(t), 0

) | 0 �= t ∈ X, ct = 0}. (5.15)

Now γ
(
H(c,−c0)

)
= {R

(
λ(t) + d, 1

) | ct + c0 = 0
}
. Putting

λ(t) + d =: p, i.e. t = λ−1(p) − λ−1(d),

we obtain, by applying (λ)−1(x) · y = x · λ−1(y) from (5.1), (5.2),

γ
(
H(c,−c0)

)
= {R(p, 1) | (λ)−1(c) · p = cλ−1(d) − c0}, (5.16)

i.e. γ
(
H(c,−c0)

)
must be the Euclidean hyperplane

H
(
(λ)−1(c), cλ−1(d) − c0

)
.

Observe that, with λ(t) =: q,{
R
(
λ(t), 0

) | 0 �= t ∈ X | ct = 0
}

= {R(q, 0) | 0 �= q ∈ X, cλ−1(q) = 0}
= {R(q, 0) | 0 �= q ∈ X, (λ)−1(c) · q = 0}.
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We hence get, by (5.15), (5.14),

σ([Rc]) =
[
R
(
(λ)−1(c), c0 − cλ−1(d)

)]
. (5.17)

Since γ−1(t) = λ−1(t) − λ−1(d) is of the same type as γ, we need not look at
σ−1([Rc]), c �= 0.

2. Let σ be a δ–projective mapping fixing [R(0, 1)] and satisfying (5.12),

σ
(
R(t, 1)

)
= R
(
γ(t) = λ(t) + d, 1

)
,

for all t ∈ X where λ : X → X is supposed to be δ–linear. Put

H(r,−r0) = Hr

and {R(s, 0) | 0 �= s ∈ X , rs = 0} =: Lr for r ∈ Y , r �= 0. Equations (5.14), (5.12)
imply for c �= 0,

σ([Rc]) = γ(Hc) ∪ σ(Lc).

From (5.16) we obtain

γ(Hc) = H
(
(λ)−1(c), cλ−1(d) − c0

)
=: Hr,

i.e. r = (λ)−1(c) and
σ([Rc]) = Hr ∪ σ(Lc).

(5.14) implies [Rr] = Hr ∪ Lr, i.e. Hr determines [Rr]. Since both δ–projective
hyperplanes σ([Rc]) and [Rr] are based on the same Euclidean hyperplane Hr, we
obtain that they must coincide and that, moreover,

σ(Lc) = Lr. (5.18)

Because of σ
(
[R(0, 1)]

)
= [R(0, 1)] we may choose a function g : X\{0} → X\{0}

satisfying
σ
(
R(t, 0)

)
= R
(
g(t), 0

)
for all t �= 0 in X . For such a t �= 0 define T �= 0 in X by g(t) = λ(T ). Hence,
whenever ct = 0 for any c �= 0 in X , we must obtain, by (5.18), rλ(T ) = 0, i.e.

0 = (λ)−1(c) · λ(T ) = c · T,

by applying (λ)−1(x) · y = x · λ−1(y) from (5.1), (5.2). Thus, by Lemma 5 and by

σ
(
R(t, 0)

)
= R

(
λ(T ), 0

)
,

we obtain
σ
(
R(t, 0)

)
= R

(
λ(t), 0

)
,

as in (5.13).

3. Suppose that σ is a δ–projective mapping satisfying

σ
([

R(0, 1)
])

= [R(0, 1)].

This together with (5.14) implies that Euclidean hyperplanes are mapped onto
Euclidean hyperplanes by σ and by σ−1. �
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5.5 All δ–projective mappings

Theorem 7. All δ–projective mappings of Y = Y (X) are given as a product of a
mapping (5.10) and an extended δ–affine mapping (5.12), (5.13).

Proof. Let σ be a δ–projective mapping of Y . If c ∈ Y , c �= 0, and

σ
([

R(0, 1)
])

= [Rc],

take, by Proposition 4 (and its proof), a mapping ω as in (5.10) such that [R(0, 1)]
is transformed onto [Rc]. Hence ω−1σ fixes [R(0, 1)] and must, by Theorem 6, be
an extended δ–affine mapping α. This implies σ = ωα. �

Of course, if ω1, ω2 are mappings (5.10) with

ωi

([
R(0, 1)

])
= [Rc], i = 1, 2,

then ω−1
2 ω1 fixes [R(0, 1)] and must hence be an extended δ–affine mapping. So

we will present special bijective orthogonal mappings ω of Y mapping [Rc] onto
the improper δ–projective hyperplane.

Applying statement A (p. 21) for Y instead of X , we define for

c = (c, 1), c �= 0, and C = (C, C0) := (c, 1 +
√

1 + c2),

ω(y) = −y +
yC

C0(C0 − 1)
C. (5.19)

Proposition 8. (5.19) is an involutorial (and thus bijective) orthogonal mapping of
Y transforming [R(0, 1)] onto [Rc], and this also in the case c = 0.

Proof. It is not difficult to verify ω
(
ω(y)

)
= y for all y ∈ Y . Hence ω is bijective

(apply the first Remark of section 1.7 for Y instead of X and α = β = ω) and
involutorial. Obviously, ω : Y → Y is linear and it satisfies(

ω(y)
)2 = y2

for all y ∈ Y . It is thus orthogonal (see p. 6). Finally, by (5.19),

ω(c) = ω(c, 1) = (−c,−1) + C =
√

1 + c2(0, 1),

i.e. ω([Rc]) = [R(0, 1)]. �
Corollary. All δ–projective mappings of Y are given as product of a mapping (5.19)
(c = 0 included) and an extended δ–affine mapping.

The group G = G(Y ) of all δ–projective mappings of Y will be called the
δ–projective group of Y = Y (X). Designate by A the δ–affine group of (X, δ), i.e.
the group of all δ–affine mappings of X . We will identify γ ∈ A with its extension
(5.12), (5.13), so that A is a subgroup of G.

Remark. (X, A),
(
Π(Y ), G(Y )

)
will respectively be called the δ–affine geometry

and the δ–projective geometry over (X, δ).
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5.6 δ–dualities

A bijection
d : Π(Y ) ∪ ∆(Y ) → Π(Y ) ∪ ∆(Y )

will be called a δ–duality of Y = Y (X) if, and only if,

d
(
Π(Y )

)
= ∆(Y ), d

(
∆(Y )

)
= Π(Y ) (5.20)

hold true and, moreover,

P I D if, and only if, d(P ) I d(D) for all P ∈ Π and D ∈ ∆. (5.21)

A δ–duality d will be called a δ–polarity if, and only if, d−1 = d. In this case
d(P ) is called the polar of P ∈ Π, and d(D) the pole of D ∈ ∆. If d is a δ–polarity
of Y ,

{P ∈ Π | P I d(P )} (5.22)

is called a regular quadric of Y .

Define π(P ) for the projective point P = Ry to be the δ–projective hyper-
plane Ry and π(D) for the δ–projective hyperplane D = Ra by the projective point
Ra. This is a δ–polarity. The underlying regular quadric (5.22) of this δ–polarity
is, of course, the empty set.

If we define the δ–projective hyperplane (the projective point) R(y,−y0)
to be the image of the projective point (the δ–projective hyperplane) Ry, y �=
0, respectively, we obtain a δ–polarity of Y which we will designate by κ. The
underlying regular quadric (5.22) of κ is given by

S = {Ry ∈ Π | 0 �= y ∈ Y, y2 − y2
0 = 0}. (5.23)

Proposition 9. All δ–dualities of Y = Y (X) are given as product of π and a δ–
projective mapping of Y .

Proof. The product of two δ–dualities of Y must be a δ–projective mapping of
Y . If now d is an arbitrary δ–duality, πd must be a δ–projective mapping p, i.e.
d = πp, in view of π−1 = π. �

We will call a subset M �= ∅ of Y linearly δ–independent if, and only if,

(i) there exists y �= 0 in Y such that ym = 0 for all m ∈ M ,

and

(ii) every finite subset T �= ∅ of M is linearly independent

hold true.

Remark. If Y is finite–dimensional, then the subset M �= ∅ of Y is linearly δ–
independent if, and only if, M is linearly independent and dim Y > #M where
#M designates the cardinality of M .
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For every linearly δ–independent subset M �= ∅ of Y we define

1. the Π–subspace MΠ = {Rx ∈ Π | ∀m∈Mxm = 0}, (5.24)

and

2. the ∆–subspace M∆ = {Rx ∈ ∆ | ∀m∈Mxm = 0}. (5.25)

We will call M∆ the dual subspace of MΠ and, vice versa, MΠ the dual subspace
of M∆.

A projective point Rp will be called incident with MΠ, M∆ if, and only if,
Rp ∈ MΠ, Rp is incident with every δ–projective hyperplane in M∆, respectively,
moreover, a δ–projective hyperplane Rh will be called incident with M∆, MΠ

if, and only if, Rh ∈ M∆, Rh is incident with every projective point in MΠ,
respectively.

If M consists of one single element m1, then m1 �= 0, since {0} is linearly
dependent. In this case {m1}Π must be equal to [Rm1], and {m1}∆ is the set of
all δ–projective hyperplanes incident with Rm1.

Remark. If M = {m1, . . . , mn} �= ∅ is a linearly independent finite subset of Y
and if there exists a ∈ Y \M such that also M ∪ {a} is linearly independent, then
M must be linearly δ–independent. The proof of this statement is not difficult:
take an orthogonal basis B = {b1, . . . , bn} of the vector space generated by M in
Y , extend this B to an orthogonal basis B ∪ {y} of the vector space generated by
M ∪ {a}, and observe ymi = 0 for i = 1, . . . , n.

If M = {m1, m2} with Rm1 �= Rm2, then

{m1, m2}Π = {Rx ∈ Π | xm1 = 0 and xm2 = 0} = [Rm1] ∩ [Rm2]

and
{m1, m2}∆ = {Rx ∈ ∆ | xm1 = 0 and xm2 = 0},

i.e. {m1, m2}∆ is the set of all δ–projective hyperplanes incident with the pro-
jective points Rm1 and Rm2. Of course, {m1, m2}Π is the set of all projective
points incident with both δ–projective hyperplanes [Rm1] and [Rm2]. The sub-
space {m1, m2}∆ will be identified with the projective line incident with Rm1 and
Rm2, and {m1, m2, m3}∆ for dimY �= 3 with the projective plane incident with
the projective points Rmi, i = 1, 2, 3, in the case, however, that {m1, m2, m3} is
linearly independent. {m1}∆, {m1}Π, respectively, represents a projective point,
a δ–projective hyperplane. As defined, a projective point Rp is incident with the
projective line {m1, m2}∆ provided Rp is incident with all δ–projective hyper-
planes in {m1, m2}∆. Similarly, a δ–projective hyperplane Rh is incident with the
dual projective line {m1, m2}Π provided Rh is incident with all projective points
in {m1, m2}Π.

From the two statements, for instance,
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(1) there is exactly one projective line incident with two distinct projective
points,

(2) there is exactly one dual projective line incident with two distinct δ–pro-
jective hyperplanes,

one needs to prove only one in order to be sure that also the other one holds true:
the involved equations (5.24), (5.25) are in both cases exactly the same. Similarly,
only one of the following statements must be proved. Assume dim Y �= 3.

(a) Given three distinct projective points Rmi, i = 1, 2, 3, such that there does
not exist a projective line incident with these three projective points, there
is exactly one projective plane incident with Rm1, Rm2, Rm3.

(b) Given three distinct δ–projective hyperplanes [Rmi], i = 1, 2, 3, which are
not all incident with the same dual projective line, there is exactly one dual
projective plane incident with all [Rmi], i = 1, 2, 3.

The possibility, that in this way, i.e. by starting from a statement based solely,
say on ∆–subspaces and on incidences, we get another one on Π–subspaces by
replacing the involved subspaces by their dual spaces is called principle of duality.

5.7 The δ–projective Cayley–Klein model

We are interested in the quadric (5.23), based on the δ–polarity κ,

S = {Ry ∈ Π | 0 �= y ∈ Y, y2 = y2
0}

of Π(Y ). Since the intersection of S with the improper δ–projective hyperplane is
empty, (5.23) can be written as

S = {t ∈ X | t2 = 1}
by observing 0 �= y2 = y2

0 for R(y, y0) ∈ S. Let G0 be the subgroup of the δ–
projective group G satisfying

G0 := {g ∈ G | g(S) = S}.
By A we designate the δ–affine group of (X, δ), however, considered as a subgroup
of G.

Proposition 10. The mapping γ ∈ A with γ(x) = λ(x) + d for x ∈ X belongs to
G0, if, and only if, d = 0 and λ is an orthogonal mapping of X.

Proof. In fact, since 0 �= x ∈ X and
∥∥∥ x
‖x‖
∥∥∥ = 1 imply

(
λ

(
x

‖x‖
)

+ d

)2

= 1, (5.26)
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and, of course, also
(
λ
(

−x
‖x‖
)

+ d
)2

= 1, we obtain λ(x)d = 0 for all x �= 0 in X .

For x = λ−1(d) we hence get d2 = 0, i.e. d = 0. Thus (5.26) implies λ(x)λ(x) = x·x
for all x �= 0, i.e. λ must be orthogonal. �

For τ ∈ R and e ∈ X satisfying e2 = 1, define dτ,e : Y → Y by

dτ,e(y) =
(
y + [(ye)(c − 1) + y0s]e, (ye)s + y0c

)
(5.27)

with c := cosh τ and s := sinh τ . Observe d0,e(y) = y for y ∈ Y , moreover

dτ,e · dσ,e = dτ+σ,e (5.28)

for all τ, σ ∈ R. Hence dτ,e · d−τ,e = id, so that the mappings dτ,e are bijective
and, of course, linear. For 0 �= y ∈ Y , i.e. for Ry ∈ Π(Y ), define

Dτ,e(Ry) = R
(
dτ,e(y)

)
. (5.29)

Hence
Dτ+σ,e(Ry) = R

(
dτ+σ,e(y)

)
= R

(
dτ,edσ,e(y)

)
= Dτ,e

(
Rdσ,e(y)

)
= Dτ,eDσ,e(Ry),

i.e.
Dτ+σ,e = Dτ,e · Dσ,e. (5.30)

Thus Dτ,e · D−τ,e = D0,e = id|Π(Y ) and Dτ,e must be bijective.

Proposition 11. For all a ∈ Y \{0},
Dτ,e([Ra]) ⊆ [Rd−τ,e(a)] (5.31)

holds true.

Proof. We will show that a ·y+a0y0 = 0 for y �= 0 implies that R
(
dτ,e(y)

)
belongs

to [Rd−τ,e(a)]. In fact, a · y + a0y0 = 0 yields the equation bz + b0z0 = 0 with
b := d−τ,e(a), z := dτ,e(y). �
Proposition 12. Dτ,e : Π(Y ) → Π(Y ) is a δ–projective mapping of Y .

Proof. Replacing τ in (5.31) by −τ and a by l yields

D−τ,e([Rl]) ⊆ [Rdτ,e(l)].

Applying this equation for l = d−τ,e(a) leads to

D−τ,e

(
[Rd−τ,e(a)]

) ⊆ [Ra],

i.e. to [Rd−τ,e(a)] ⊆ Dτ,e([Ra]), i.e. together with (5.31),

Dτ,e([Ra]) = [Rd−τ,e(a)]. (5.32)

Dτ,e is hence a δ–projective mapping, since the mapping itself and its inverse,
D−τ,e, map δ–projective hyperplanes onto δ–projective hyperplanes. �



244 Chapter 5. δ–Projective Mappings, Isomorphism Theorems

Proposition 13. Given e ∈ X with e2 = 1, the group

D(e) := {Dτ,e | τ ∈ R}

of δ–projective mappings is a subgroup of G0.

Proof. We must show Dτ,e(S) = S for all τ ∈ R, i.e. Dτ,e(S) ⊆ S. For y = (t, 1),
t2 = 1, we obtain, by (5.29),

Dτ,e

(
R(t, 1)

)
= R

(
t + [te(c − 1) + s]e, tes + c

)
with

(
t + [te(c − 1) + s]e

)2 = (tes + c)2, c = cosh τ , s = sinh τ . �
A δ–projective hyperplane [Ra] will be called a tangent hyperplane (of S)

provided [Ra] ∩ S consists of exactly one point, the so–called point of contact of
[Ra] and S.

Proposition 14. y2 < y2
0 holds true for Ry ∈ Π(Y ) exactly in the case that there

is no tangent hyperplane through Ry.

Proof. 1. [R(0, 1)] cannot be a tangent hyperplane, since otherwise there would
exist R(t, 1), t2 = 1, with 0 · t + 1 · 1 = 0. Also [R(a, 0)] cannot be a tangent
hyperplane, since otherwise we would take t ∈ X with t2 = 1 and at = 0 implying
that the two distinct points R(t, 1), R(−t, 1) were on S and on [R(a, 0)]. We hence
may assume that a tangent hyperplane [R(a, a0)] satisfies a0 = −1 and a �= 0. Let
R(t, 1) be the point of contact of [R(a,−1)] and S. Then a2 = 1. Otherwise

R(t, 1), R
(

2a

a2 − t, 1
)

would be distinct points in [R(a,−1)]∩ S, since 2t = 2a
a2 and t2 = 1 imply a2 = 1.

Hence [R(a,−1)] with a2 = 1 are exactly the tangent hyperplanes: if there
would exist R(t, 1) with t2 = 1, at − 1 = 0, t �= a, we would obtain from Lemma
1, section 1.4,

1 = (at)2 ≤ a2t2 = 1,

i.e. the contradiction t ∈ {a,−a}. Obviously, R(a, 1) is the point of contact of S
and [R(a,−1)], a2 = 1.

2. If Ry ∈ Π(Y ) is on the tangent hyperplane [R(a,−1)], a2 = 1, then a · y −
y0 = 0, i.e.

y2
0 = (a · y)2 ≤ a2y2 = y2

by section 1.4.

3. If y2
0 ≤ y2 for Ry ∈ Π(Y ), then y �= 0. Because of

Ry = R
y√
y2
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we may assume y2 = 1, i.e. 1 = y2 ≥ y2
0 holds true. Take j ∈ X with j2 = 1 and

jy = 0. The tangent hyperplane [R(a,−1)] with

a = y0 · y + j ·
√

1 − y2
0

then contains Ry. �
We now will call exactly the elements of

P := {x ∈ X | x2 < 1} (5.33)

the hyperbolic points of the Cayley–Klein model of Y . We still remember that we
did not ask for the finite–dimensionality of X . Writing the points of P as projective
points we obtain

P := {Ry ∈ Π(Y ) | y2 < y2
0}. (5.34)

Proposition 15. g ∈ G0 implies g(P ) = P .

Proof. Let g be an element of G0, i.e. a δ–projective mapping satisfying g(S) = S.
Since g and g−1 map δ–projective hyperplanes onto δ–projective hyperplanes and
S onto S, they must map tangent hyperplanes onto tangent hyperplanes. In view
of Proposition 14 they hence must map points of P in points of P , i.e. g(P ) ⊆ P
and g−1(P ) ⊆ P hold true, i.e. g(P ) = P . �
Theorem 16. G0 = O(X) ·D(e) ·O(X) where e is a fixed but arbitrary element of
X satisfying e2 = 1 and where O(X) designates the orthogonal group of X.

Proof. From Proposition 10 and 13 we obtain O(X) ⊆ G0 and D(e) ⊆ G0, i.e.
O(X) · D(e) · O(X) ⊆ G0. Now let g be an arbitrary element of G0. Assume
g
([

R(0, 1)
])

= [R(b, b0)].

Case 1. Rb = R(0, 1).
Hence, by Theorem 6, g must be δ–affine and hence, by Proposition 10, an element
of O(X). This implies

g = g · id · id ∈ O(X) · D(e) · O(X).

Case 2. Rb = R(b, 0).
This case does not occur, since [R(0, 1)]∩ S is empty, but not [Rb]∩ g(S), in view
of g(S) = S (see part 1 of the proof of Proposition 14).

Case 3. b �= 0 and b0 �= 0.

Here we may assume b
2

= 1 and b0 > 0.

Case 3.1. Rb = R(b, b0) with b
2

= 1 and b0 > 1.
Take τ ∈ R, τ �= 0, with

τ =
1
2

ln
b0 − 1
b0 + 1

, i.e. b0 =
cosh(−τ)
sinh(−τ)

,
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and observe d−τ,b(0, 1) = (−b sinh τ, cosh τ), by (5.27). Hence, by (5.32),

Dτ,b

(
[R(0, 1)]

)
= [R(b, b0)].

Thus h1 := D−τ,b · g preserves [R(0, 1)]. Because of g ∈ G0 and proposition 13, h1

is in G0, and hence in O(X), by Proposition 10. This implies

g = Dτ,b · h1 = ω−1 · (ωDτ,bω
−1) · ωh1

for an existing ω ∈ O(X) satisfying ω(b) = e (see statement A of the proof
of Theorem 7 in section 1.11). Obviously, ω−1 and ωh1 are elements of O(X).
Moreover, by (5.29),

ωDτ,bω
−1 = Dτ,e for ω ∈ O(X), ω(b) = e.

This implies g = ω−1Dτ,e · ωh1 ∈ O(X) · D(e) · O(X).

Case 3.2. b
2

= 1, 0 < b0 ≤ 1.
This case does not occur, since [R(0, 1)]∩S = ∅, but not [Rb]∩S: take j ∈ X with
j2 = 1 and bj = 0, put

t := −b0b +
√

1 − b2
0 · j

and observe R(t, 1) ∈ S and b · t + b0 · 1 = 0. �
Because of Proposition 15 the elements of G0 are also permutations of P . If

g = ω ∈ O(X), then g
(
R(t, 1)

)
= R

(
ω(t), 1

)
, so that t in P goes over in ω(t),

t → ω(t) for t ∈ P.

For g = Dτ,e we obtain, by (5.29), (5.27), for R(y, y0) = R(t, 1), t2 < 1, obviously,

Dτ,e

(
R(t, 1)

)
= R

(
t + [te(c − 1) + s]e

tes + c
, 1
)

,

i.e.

t → t + [te(cosh τ − 1) + sinh τ ]e
te sinh τ + cosh τ

(see formula (2.43), section 2.12). Designate by G0|P the group

{g restricted on P | g ∈ G0}.

The Cayley–Klein model over Y is the geometry

(P, G0|P )

(see section 1.9).
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The Weierstrass map w : X → P ,

w(x) :=
x√

1 + x2

(formula (2.39), section 2.12) now proves

(P, G0|P ) ∼= (X, M(X, hyp)
)

(for M(X, hyp) see formula (2.60), section 2.16), so that the Cayley–Klein model
over Y is isomorphic to the Weierstrass model over X of hyperbolic geometry.

5.8 M–transformations from X ′ onto V ′

Two real inner product spaces (X, δ), (V, ε) are called isomorphic (see section 1.1),
(X, δ) ∼= (V, ε), if, and only if, there exists a bijection ϕ : X → V such that

ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(λx) = λϕ(x), δ(x, y) = ε
(
ϕ(x), ϕ(y)

)
hold true for all x, y ∈ X and λ ∈ R. We will write δ(x, y) =: xy, ε(v, w) =: v ◦ w
for x, y ∈ X and v, w ∈ V and, moreover, X ′ := X ∪ {∞}, V ′ := V ∪ {∞}. By
M(X, δ), M(V, ε) we designate the Möbius group of (X, δ), (V, ε), respectively.

Theorem 17. The following statements are equivalent.

(i) (X, δ) ∼= (V, ε).

(ii) There exists a bijection ϕ : X ′ → V ′ such that images of M–balls of(
X ′, M(X, δ)

)
are M–balls of

(
V ′, M(V, ε)

)
and that inverse images of M–

balls of
(
V ′, M(V, ε)

)
are M–balls of

(
X ′, M(X, δ)

)
.

Proof. 1. If (i) holds true, there exists a linear bijection ϕ : X → V with

xy = ϕ(x) ◦ ϕ(y) (5.35)

for all x, y ∈ X . Define ϕ(∞) := ∞. The image of

H ′(a, α) = {x ∈ X | ax = α} ∪ {∞} (5.36)

with 0 �= a ∈ X and α ∈ R under the mapping ϕ is then given by

ϕ
(
H ′(a, α)

)
= {ϕ(x) ∈ V | α = ax = ϕ(a) ◦ ϕ(x)} ∪ {∞},

i.e. ϕ
(
H ′(a, α)

)
is the M–ball {v ∈ V | ϕ(a) ◦ v = α} ∪ {∞} of

(
V ′, M(V, ε)

)
. The

image of

B(c, �) = {x ∈ X | ‖x − c‖ = �} with c ∈ X and 0 < � ∈ R
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is
{ϕ(x) ∈ V | � =

√
(x − c)2 =

√
[ϕ(x) − ϕ(c)] ◦ [ϕ(x) − ϕ(c)]},

i.e.
ϕ
(
B(c, �)

)
= B

(
ϕ(c), �

)
.

Since ϕ−1 : V → X is a linear bijection with v ◦ w = ϕ−1(v)ϕ−1(w) we get at
once that images under ϕ−1 with ϕ−1(∞) = ∞ of M–balls of

(
V ′, M(V, ε)

)
are

M–balls of
(
X ′, M(X, δ)

)
.

2. Let λ : X ′ → V ′ be a bijection such that images and inverse images of
M–balls are M–balls. Take µ ∈ M(V, ε) with

µ
(
λ(0)

)
= 0, µ

(
λ(∞)

)
= ∞,

and define ψ := µλ. Then also ψ : X ′ → V ′ with ψ(0) = 0, ψ(∞) = ∞ is a
bijection such that images and inverse images of M–balls are M–balls. Applying,
mutatis mutantis, steps a and b of the proof of Theorem 3, section 3.3, we obtain
that ψ restricted on X , i.e. ψ|X , is a linear bijection. Because of ψ(∞) = ∞ and
∞ �∈ B(0, 1) the M–ball ψ

(
B(0, 1)

)
does not contain ∞. Hence ψ

(
B(0, 1)

)
=:

B(c, �) with suitable c ∈ V and real � > 0. This implies, by x
‖x‖ ∈ B(0, 1),

(
ψ

(
x

‖x‖
)
− c

)
◦
(

ψ

(
x

‖x‖
)
− c

)
= �2 (5.37)

for all x ∈ X with x �= 0. Applying (5.37) also for −x instead of x yields(
ψ

(−x

‖x‖
)
− c

)
◦
(

ψ

( −x

‖x‖
)
− c

)
= �2,

i.e. together with (5.37)
ψ(x) ◦ c = 0.

This also holds true for x = 0. Thus c ◦ c = ψ
(
ψ−1(c)

) ◦ c = 0, i.e. c = 0.
Accordingly we obtain

ψ(x) ◦ ψ(x) = �2x2 (5.38)

for all x ∈ X from (5.37). Define ϕ(x) := 1
�ψ(x). Hence, by (5.38),

x2 = ϕ(x) ◦ ϕ(x) (5.39)

for all x ∈ X . Since ψ|X is linear bijective, so must be ϕ|X . Equation (5.39)
implies

(x + y)2 = ϕ(x + y) ◦ ϕ(x + y) =
(
ϕ(x) + ϕ(y)

) ◦ (ϕ(x) + ϕ(y)
)
,

i.e. xy = ϕ(x) ◦ ϕ(y) together with (5.39). Since ϕ|X is linear bijective satisfying
(5.35), we obtain (i). �
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5.9 Isomorphic Möbius sphere geometries

A geometry (S, G) is a set S �= ∅ together with a subgroup G of the permutation
group of S (see section 1.9). Geometries (S, G) and (S′, G′) are called isomorphic
if, and only if, there exist bijections

ϕ : S → S′ and τ : G → G′

such that the following equations hold true:

τ(g1g2) = τ(g1)τ(g2), ϕ
(
g(s)
)

= τ(g)
(
ϕ(s)

)
for all s ∈ S and g1, g2, g ∈ G (see section 1.9).

For the following lemma assume that (S, G) and (S′, G′) are geometries.

Lemma 18. Let ϕ : S → S′ be a bijection. Then the following statements are
equivalent.

(1) G′ = ϕGϕ−1.

(2) There exists an isomorphism τ : G → G′ satisfying ϕ
(
g(s)
)

= τ(g)
(
ϕ(s)

)
for

all s ∈ S and g ∈ G.

Proof. 1. Suppose that (1) holds true. Put τ(g) := ϕgϕ−1 for g ∈ G and observe
τ(g) ∈ G′, since ϕ, g are bijective and g ∈ G. Obviously, τ is an isomorphism
between the groups G and G′. Finally, we obtain with v := ϕ(s) for s ∈ S,

ϕ
(
g(s)
)

= ϕgϕ−1(v) = τ(g)(v) = τ(g)
(
ϕ(s)

)
.

2. Suppose now that (2) holds true. Put v := ϕ(s) for s ∈ S. Then we get for
g ∈ G, by (2),

ϕgϕ−1(v) = ϕg(s) = τ(g)
(
ϕ(s)

)
= τ(g)(v),

i.e. ϕGϕ−1 ⊆ G′. Given g′ ∈ G′, put g′ =: τ(g). Then, by (2),

g′ϕ(s) = τ(g)ϕ(s) = ϕg(s),

i.e. ϕ−1g′ϕ = g ∈ G, i.e. ϕ−1G′ϕ ⊆ G. �
Theorem 19. The following statements are equivalent.

(i) (X, δ) ∼= (V, ε).

(ii) The geometries
(
X ′, M(X, δ)

)
,
(
V ′, M(V, ε)

)
are isomorphic: there exist bi-

jections ϕ : X ′ → V ′ and τ : M(X, δ) → M(V, ε) satisfying

τ(g1g2) = τ(g1)τ(g2), ϕg(x) = τ(g)ϕ(x)

for all x ∈ X ′ and g1, g2, g ∈ M(X, δ).
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Proof. 1. Assume that (i) holds true. Then there exists a linear bijection ϕ : X →
V satisfying (5.35). Define ϕ(∞) = ∞. The first part of the proof of Theorem 17
implies that ϕ : X ′ → V ′ and its inverse ϕ−1 transform M–balls onto M–balls.
But this leads to

M(V, ε) = ϕM(X, δ)ϕ−1,

i.e. to property (1) of Lemma 18. Hence (2) of this Lemma holds true, i.e. (ii) as
well.

2. Suppose now that the geometries
(
X ′, M(X, δ)

)
,
(
V ′, M(V, ε)

)
are isomor-

phic, (
X ′, M(X, δ)

) ∼= (V ′, M(V, ε)
)
. (5.40)

From (ii) we obtain property (2) of Lemma 18, i.e. property (1). Hence

M(V, ε)ψ = ψM(X, δ), (5.41)

where ψ : X ′ → V ′ is a bijection; we wrote ψ instead of ϕ. Take fixed elements

e ∈ X, r ∈ V with e2 = 1 and r ◦ r = 1 (5.42)

and, by Proposition 13, section 3.6, µ in M(V, ε) satisfying µ
(
ψ(∞)

)
= ∞,

µ
(
ψ(0)

)
= 0, µ

(
ψ(e)

)
= r. Put ϕ := µψ and we obtain that

ϕ : X ′ → V ′

is a bijection with
ϕ(∞) = ∞, ϕ(0) = 0, ϕ(e) = r (5.43)

and, by (5.41) and M(V, ε)µ−1 = M(V, ε) = µM(V, ε), that

M(V, ε)ϕ = ϕM(X, δ) (5.44)

holds true.
Applying (5.44) for the inversion f ∈ M(X, δ) in the M–ball B(0, 1) ⊂ X ,

f(x) = x
x2 for 0 �= x ∈ X,

f(0) = ∞ and f(∞) = 0,

yields λ := ϕfϕ−1 ∈ M(V, ε), i.e. we obtain

αιβ = ϕfϕ−1, (5.45)

by applying Theorem 3, section 3.3, for M(V, ε) instead of M(X, δ). The mappings
α, β are similitudes of

(
V ′, M(V, ε)

)
and ι is the inversion in B(0, 1) ⊂ V . Since

ϕfϕ−1(∞) = 0 and ϕfϕ−1(0) = ∞, we obtain α(0) = 0 = β(0) from (5.45).
Putting (see (3.1))

α(v) = γ1ω1(v), β(v) = γ2ω2(v) (5.46)
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with reals γ1 �= 0, γ2 �= 0 and orthogonal mappings ω1, ω2 in the orthogonal group
O(V, ε), we get from (5.45), (5.46) for x ∈ X\{0},

ϕ
( x

x2

)
= αιβϕ(x) =

γ1

γ2

ω1ω2

(
ϕ(x)

)
ϕ(x) ◦ ϕ(x)

, (5.47)

by observing βϕ(x) �∈ {0,∞} for x ∈ X\{0}, and, by observing (see section 1.5)

ω2

(
ϕ(x)

) ◦ ω2

(
ϕ(x)

)
= ϕ(x) ◦ ϕ(x)

and
ιβϕ(x) = ι[γ2ω2ϕ(x)] =

ω2ϕ(x)
γ2ϕ(x) ◦ ϕ(x)

.

Also γ := γ1
γ2

�= 0 and also π := ω1ω2 is in O(V, ε). Hence from (5.47)

ϕ
( x

x2

)
= γ

π
(
ϕ(x)

)
ϕ(x) ◦ ϕ(x)

(5.48)

for all x ∈ X\{0}. Applying (5.48) in the case x2 = 1 we obtain

ϕ(x) = γ
π
(
ϕ(x)

)
ϕ(x) ◦ ϕ(x)

,

i.e. the functional equation for ϕ,

ϕ(x) ◦ ϕ(x) = γ2 ϕ(x) ◦ ϕ(x)
[ϕ(x) ◦ ϕ(x)]2

because of π(v) ◦ π(v) = v ◦ v for v ∈ V , i.e. we get for x2 = 1,

[ϕ(x) ◦ ϕ(x)]2 = γ2. (5.49)

Since, by (5.42), (5.43), e2 = 1, ϕ(e) = r, r ◦ r = 1, equation (5.49) implies

γ2 = [ϕ(e) ◦ ϕ(e)]2 = (r ◦ r)2 = 1.

Hence [ϕ(x)◦ϕ(x)]2 = 1 from (5.49), i.e. we get the conditional functional equation

ϕ(x) ◦ ϕ(x) = 1 for x2 = 1

because of ϕ(x) ◦ ϕ(x) > 0, by x �= 0, i.e. by ϕ(x) �= ϕ(0) = 0. Thus

ϕ({x ∈ X | x2 = 1}) ⊆ {ϕ(x) ∈ V | ϕ(x) ◦ ϕ(x) = 1}.
Working with M(X, δ)ϕ−1 = ϕ−1

M(V, ε) instead of (5.44) leads, mutatis mutan-
dis, to

ϕ−1({v ∈ V | v ◦ v = 1}) ⊆ {ϕ−1(v) ∈ X | ϕ−1(v)ϕ−1(v) = 1}.
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Hence
ϕ(B) = C, (5.50)

where B is the M–ball B(0, 1) ⊂ X and C the M–ball B(0, 1) ⊂ V . Our strategy
is now to prove (ii) of Theorem 17 in order to be sure, by this theorem, that
(i) holds true. Take an arbitrary M–ball D of

(
X ′, M, (X, δ)

)
. By Proposition 1,

section 3.1, there exists g ∈ M(X, δ) with g(D) = B. Hence

τ(g) = ϕgϕ−1 ∈ M(V, ε), (5.51)

and we get
ϕ(D) = [τ(g)]−1ϕ(B) = [τ(g)]−1(C),

by (5.50), i.e. that ϕ(D) is an M–ball of
(
V ′, M(V, ε)

)
. If T is an arbitrary M–

ball of
(
V ′, M(V, ε)

)
, take, by Proposition 1, section 3.1, τ(g1) ∈ M(V, ε) with

τ(g1)(C) = T . Hence, by τ(g1) = ϕg1ϕ
−1 and (5.50),

T = ϕg1ϕ
−1(C) = ϕg1(B).

The inverse image of T under ϕ is thus the M–ball g1(B) of
(
X ′, M(X, δ)

)
. We

obtain, in fact that (ii) holds true, and, by Theorem 17, that also (i) holds true.
This, finally, proves Theorem 19. �

5.10 Isomorphic Euclidean geometries

The euclidean distance eucl(x, y) of x, y ∈ (X, δ) is defined by (see section 1.10)

eucl(x, y) = ‖x − y‖ =
√

δ(x − y, x − y), (5.52)

and the hyperbolic distance hyp(x, y) ≥ 0 of x, y ∈ (X, δ) by

cosh hyp(x, y) =
√

1 + δ(x, x)
√

1 + δ(y, y) − δ(x, y). (5.53)

Let e be a fixed element of X with δ(e, e) = 1 and d be either the euclidean or the
hyperbolic distance function. The group of motions (see (2.60)) of X with respect
to d, i.e. the group of all surjective mappings µ : X → X such that

d(x, y) = d
(
µ(x), µ(y)

)
for all x, y ∈ X

holds true, is then (step I of the proof of Theorem 7, chapter 1)

{αTtβ | α, β ∈ O(X), t ∈ R} (5.54)

where O(X) is the orthogonal group of (X, δ) (p. 5, p. 7) and {Tt | t ∈ R} the
group of translations with respect to d and with axis e, i.e.

Tt(x) = x + te (5.55)
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in the euclidean and (see (1.8))

Tt(x) = x + [(xe)(cosh t − 1) +
√

1 + x2 sinh t]e (5.56)

in the hyperbolic case for all x ∈ X , where we wrote δ(x, e) = xe and δ(x, x) = x2.
Let (X, δ) and (V, ε) be real inner product spaces. Our only restriction concerning
finite– or infinite–dimensionality is that X as well as V are supposed to contain
at least two linearly independent elements. We again write

δ(x, y) =: xy, ε(v, w) =: v ◦ w

for x, y ∈ X and v, w ∈ V . Moreover, X will be identified with (X, δ) and, for a
while, V with (V, ε). The group (5.54) is denoted by

M(X, d) = {αTtβ | α, β ∈ O(X), t ∈ R}. (5.57)

Four of such groups will be of interest in sections 5.10, 5.11, namely

M(X, eucl), M(X, hyp), M(V, eucl), M(V, hyp).

Theorem 20. The following statements are equivalent.

(i) (X, δ) ∼= (V, ε).

(ii) The geometries
(
X, M(X, eucl)

)
,
(
V, M(V, eucl)

)
are isomorphic.

Proof. Since, later on, we would like to prove the corresponding theorem for hy-
perbolic geometry, we will replace (ii) in our proof by

(ii)∗
(
X, M(X, d)

) ∼= (V, M(V, d)
)

(5.58)

with d = eucl or d = hyp, and we will combine both cases in our proof whenever
we are able to do so.

a) Assume that (i) holds true. Then there exists a bijection ϕ : X → V
satisfying

ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(λx) = λϕ(x), xy = ϕ(x) ◦ ϕ(y) (5.59)

for all x, y ∈ X and λ ∈ R. According to Lemma 18, (5.58) holds true in the case
that we are able to prove

M(V, d) = ϕM(X, d)ϕ−1. (5.60)

Now (5.59) implies d(x, y) = d
(
ϕ(x), ϕ(y)

)
for all x, y ∈ X for d = eucl or d = hyp,

in view of

(x − y)2 = ϕ(x − y) ◦ ϕ(x − y) =
(
ϕ(x) − ϕ(y)

) ◦ (ϕ(x) − ϕ(y)
)
,

x2 = x ◦ x, y2 = y ◦ y, xy = x ◦ y.
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Hence, µ ∈ M(X, d) yields, for all v, w ∈ V ,

d
(
ϕµϕ−1(v), ϕµϕ−1(w)

)
= d

(
µϕ−1(v), µϕ−1(w)

)
= d
(
ϕ−1(v), ϕ−1(w)

)
= d

(
ϕϕ−1(v), ϕϕ−1(w)

)
= d(v, w),

i.e. that the bijection ϕµϕ−1 : V → V is a motion of V . Starting, vice versa, with
ν ∈ M(V, d), we obtain, mutatis mutandis, ϕ−1νϕ ∈ M(X, d). We thus get (5.60),
i.e. (ii)∗.

b) Assume along the steps b), c), d), e), f) of the present proof that (ii)∗

holds true. From Lemma 18 we obtain (5.60) with a bijection ϕ : X → V . Let the
translation group Tt(t ∈ R) of X be based on the axis e ∈ X , e2 = 1, and take
ν ∈ M(V, d) (see step D.a on page 25) with ν

(
ϕ(0)

)
= 0. Also νϕ : X → V is a

bijection, and we get

M(V, d) = (νϕ)M(X, d)(νϕ)−1 ,

from (5.60) and ν−1M(V, d)ν = M(V, d), in view of ν ∈ M(V, d). Observe ψ(0) = 0
for ψ = νϕ, moreover,

M(V, d) = ψM(X, d)ψ−1 (5.61)

and that ψ : X → V is a bijection. Put j := ψ(e) and observe j �= 0 because
of ψ(0) �= ψ(e). Define k :=

√
j ◦ j > 0 and a real inner product space (V, ε) by

means of
ε(v, w) :=

1
k2

· (v ◦ w)

for v, w ∈ V . Hence
(V, ε) ∼= (V, ε) (5.62)

under the bijection which maps v ∈ V in kv. If we are able to prove (X, δ) ∼= (V, ε),
we hence obtain (X, δ) ∼= (V, ε), because of (5.62). Observe ε(j, j) = 1. Instead of
ε(v, w) we will write vw, so the same way we shortened the expression δ(x, y) by
xy in the case of X . Observe

ψ(0) = 0, ψ(e) = j with e2 = 1 = j2. (5.63)

From now on (V, ε) and no longer (V, ε) will be identified with V .

c) The following statement will now be proved.

Let x1, x2, x3, x4 be elements of X. Then d(x1, x2) = d(x3, x4) if, and only if,
d
(
ψ(x1), ψ(x2)

)
= d
(
ψ(x3), ψ(x4)

)
.

If d(x1, x2) = d(x3, x4) holds true, there exists µ ∈ M(X, d) with µ(x1) = x3,
µ(x2) = x4: in the case x1 �= x2 also x3 �= x4 holds true and hence, by Lemma 36,
section 2.22, µ exists. In view of (5.61) there is ν ∈ M(V, d) with

νψ = ψµ.
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Hence d
(
νψ(x1), νψ(x2)

)
= d
(
ψµ(x1), ψµ(x2)

)
= d
(
ψ(x3), ψ(x4)

)
. Finally observe

that ν is a motion of V , i.e. that

d
(
ν(v), ν(w)

)
= d(v, w) for v, w ∈ V,

i.e. that d
(
νψ(x1), νψ(x2)

)
= d
(
ψ(x1), ψ(x2)

)
. Starting, vice versa, with V instead

of X , we obtain that

d
(
ψ(x1), ψ(x2)

)
= d
(
ψ(x3), ψ(x4)

)
implies d(x1, x2) = d(x3, x4).

d) The ball B
(
c, d(c, a)

)
with midpoint c ∈ X and passing through a ∈ X is

defined by
B
(
c, d(c, a)

)
= {x ∈ X | d(c, x) = d(c, a)}.

In view of c) we get that ψ
(
B
(
c, d(c, a)

))
is given by

{
ψ(x) ∈ V | d

(
ψ(c), ψ(x)

)
= d
(
ψ(c), ψ(a)

)}
,

i.e. by
{
v ∈ V | d

(
ψ(c), v

)
= d
(
ψ(c), ψ(a)

)}
. Hence

ψ
(
B
(
c, d(c, a)

))
= B

(
ψ(c), d

(
ψ(c), ψ(a)

))
, (5.64)

i.e. balls are mapped onto balls under ψ : X → V as well as under ψ−1 : V → X .

e) Lines are mapped onto lines under ψ : X → V as well as under ψ−1 :
V → X . The proof of this statement will be based on section 2.4. The line g(a, b)
through the elements a �= b of X is the set of all x ∈ X such that

d(a, x) = d(a, y) and d(b, x) = d(b, y) for y ∈ X (5.65)

imply x = y. This, by c), can be carried over to V (and vice versa): the line
g
(
ψ(a), ψ(b)

)
of V is the set of all v ∈ V such that

d
(
ψ(a), v

)
= d
(
ψ(a), w

)
and d

(
ψ(b), v

)
= d
(
ψ(b), w

)
for w ∈ V

imply v = w. Write here v =: ψ(x), w =: ψ(y). Then c) and (5.65) yield x = y,
i.e. v = w. Hence

ψ
(
g(a, b)

)
= g
(
ψ(a), ψ(b)

)
. (5.66)

f) (5.63) and (5.64) imply

ψ
(
B(
(
0, d(0, e)

))
= B

(
0, d(0, j)

)
. (5.67)

Observe
B
(
0, d(0, e)

)
= {x ∈ X | d(0, x) = d(0, e)}
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and that d(0, x) = d(0, e) in the euclidean case, i.e.

‖0 − x‖ = ‖0 − e‖,

is equivalent with x2 = e2 = 1, and that in the hyperbolic case

cosh d(0, x) = cosh d(0, e)

is also equivalent, by (5.53), with x2 = e2 = 1. We hence get from (5.67) that
x2 = 1 for x ∈ X holds true if, and only if, [ψ(x)]2 = 1 is satisfied.

g) Suppose now d = eucl. Because of step b) of the proof of Theorem 3,
section 3.3, we obtain from our present e) that ψ : X → V must be linear. From
our last statement of f) we hence get x2 = [ψ(x)]2 for all x ∈ X . Thus

(x + y)2 = [ψ(x + y)]2 = [ψ(x) + ψ(y)]2,

i.e. xy = ψ(x)ψ(y) for all x, y ∈ X , i.e. (X, δ) ∼= (V, ε) ∼= (V, ε). �

5.11 Isomorphic hyperbolic geometries

Theorem 21. The following statements are equivalent.

(i) (X, δ) ∼= (V, ε).

(ii) The geometries
(
X, M(X, hyp)

)
,
(
V, M(V, hyp)

)
are isomorphic.

Proof. Steps a), b), c), d), e), f) of the proof of Theorem 20 were based on (ii)∗

with d = eucl or d = hyp. We will apply now the involved statements of these steps
for d = hyp. From a) we already know that (i) implies statement (ii) of Theorem
21. So we will assume, up to the end of the proof, that(

X, M(X, hyp)
) ∼= (V, M(V, hyp)

)
is satisfied. We would like to stress the fact that we have properties b), c), d), and
also e), f) for d = hyp at our disposal.

h) If h is a hyperbolic line of X and E ⊆ X a 2–dimensional euclidean plane
with h ⊂ E, then 0 ∈ E. In the case that h is also a euclidean line, hence of the
form h = {q sinh ξ | ξ ∈ R} with q2 = 1, q ∈ X , then, obviously, 0 ∈ h ⊂ E holds
true. If not, then

h = {pCξ + qSξ | ξ ∈ R}
(see Theorem 3, section 2.2) with p, q ∈ X , pq = 0, q2 = 1, Cξ := cosh ξ, Sξ :=
sinh ξ and p �= 0, in view of 0 �∈ h. The points

a = pC−1 + qS−1, b = pC0 + qS0 = p, c = pC1 + qS1
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of h are not on a common euclidean line. Hence the Euclidean plane E with
h ⊂ E satisfies a, b, c ∈ E and thus is uniquely determined. Now observe that the
euclidean line through 1

2 (a + c), b ∈ E contains 0, since

0 = α
a + c

2
+ (1 − α)b

for α(1 − C1) := 1.

i) Let x, y be elements of X and P ⊆ X be a 2–dimensional euclidean plane
passing through 0, x, y. Take fixed elements p, q ∈ P with p2 = 1, pq = 0, q2 = 1
and denote by g the hyperbolic line

g := {r(ξ) := pCξ + qSξ | ξ ∈ R}. (5.68)

Since 0 �∈ g, i.e. since g is not part of a euclidean line, P is the only 2–dimensional
euclidean plane containing g on account of h). Moreover, ∆ ∩ g = {p} where

∆ := {x ∈ X | x2 = 1},

because of
1 = (pCξ + qSξ)2 ⇒ 1 = C2

ξ + S2
ξ = C2ξ ⇒ ξ = 0.

The last statement of step f) implies

ψ(∆) = {v ∈ V | v2 = 1} =: Γ.

So p ∈ ∆ implies ψ(p) ∈ Γ. Assume, by e),

ψ(g) = {vCη + wSη | η ∈ R} (5.69)

with v, w ∈ V such that vw = 0 and w2 = 1. Because of ∆ ∩ g = {p} we get

Γ ∩ ψ(g) = {ψ(p)}. (5.70)

If vCt +wSt is in Γ∩ψ(g), then also vC−t +wS−t must be an element of Γ∩ψ(g),
since

(vCt + wSt)2 = 1, i.e. v2C2
t + S2

t = 1,

implies
(vC−t + wS−t)2 = (vCt − wSt)2 = v2C2

t + S2
t = 1.

Hence t = −t because of #
(
Γ ∩ ψ(g)

)
= 1 from (5.70). Thus t = 0, i.e.

ψ(p) = vC0 + wS0 = v. (5.71)

This implies, by (5.69),

ψ(g) = {ψ(p)Cη + wSη | η ∈ R}
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with [ψ(p)]2 = 1 (from ψ(p) ∈ Γ), w2 = 1 and ψ(p)w = 0. Since 0 �∈ ψ(g),
there exists, by step h), exactly one 2–dimensional plane Q ⊆ V containing ψ(g).
Observe 0 ∈ Q, also by h).

j) We now would like to prove

ψ(P ) ⊆ Q. (5.72)

The euclidean line lξ ⊂ P through 0 ∈ X and r(ξ) (see (5.68)) which is also the
hyperbolic line through 0 ∈ X and r(ξ), goes over (see step e)) onto the (hyperbolic
= euclidean) line through 0 ∈ V and ψ

(
r(ξ)
) ∈ Q, so that ψ(lξ) ⊂ Q. Hence

⋃
ξ∈R

ψ(lξ) ⊂ Q.

Define
S :=

⋃
ξ∈R

lξ ⊂ P.

If now a point d ∈ P\S is given, join it with a point s of the open set S\{0} by a
hyperbolic line l. This l satisfies l ⊂ P , since #(l ∩ P ) ≥ 2, moreover, since 0 ∈ P
holds true. Then take a point t �= s of l∩S and, since the hyperbolic line through
s, t, namely l, goes over onto the hyperbolic line ψ(l) through ψ(s), ψ(t) ∈ Q, we
obtain ψ(l) ⊂ Q by observing 0 ∈ Q. Hence ψ(d) ∈ ψ(l) ⊂ Q.

k) Obviously, q ∈ ∆∩P (see (5.68)). Hence ψ(q) ∈ Γ∩Q, by step j). Because
of pq = 0, we obtain hyp(p, q) = hyp(p,−q), i.e., by step c) and (5.71),

hyp
(
v, ψ(q)

)
= hyp

(
v, ψ(−q)

)
. (5.73)

Since −q is in ∆ ∩ P and on the hyperbolic line through 0, q, the point ψ(−q)
must be an element of Γ∩Q and of the hyperbolic line through 0, ψ(q). This and
(5.73) yield, by observing ψ(q) �= ψ(−q) from q �= −q,

ψ(−q) = −ψ(q) and vψ(q) = 0,

i.e. ψ(q) ∈ {w,−w}.
If ψ(q) = −w, we replace w by −w in (5.69), so that

ψ(q) = w (5.74)

holds true, without loss of generality.

l) The restriction ψ : P → Q of ψ : X → V on P can be written as

ψ(ξ1p + ξ2q) =: (η1v + η2w) (5.75)
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with (ξ1, ξ2), (η1, η2) ∈ R
2 and, moreover, with

ψ(0) = 0, ψ(p) = v, ψ(q) = w,

p2 = q2 = 1, v2 = w2 = 1,

pq = 0, vw = 0.

−p is on the hyperbolic line through 0, p, hence ψ(−p) must be, by e), on the
hyperbolic line l through ψ(0) = 0, ψ(p) = v. Furthermore, (−p)2 = 1 holds true,
i.e.

ψ(−p) ∈ Γ ∩ l = {v,−v}.
Hence ψ(−p) = −v from −p �= p, i.e. from ψ(−p) �= ψ(p), since ψ : X → V is
bijective.

m) The equation
hyp (−p, p) = 2hyp(0, p) (5.76)

holds true. This follows immediately from (compare (5.53))

cosh hyp (−p, p) = 3, cosh hyp (0, p) =
√

2

and 1 + cosh(2ξ) = 2 cosh2 ξ for ξ ∈ R.

As a consequence of c) we obtain that for all x1, x2 ∈ P ,

hyp (x1, x2) = hyp (0, p) implies hyp
(
ψ(x1), ψ(x2)

)
= hyp (0, v)

and that for all y1, y2 ∈ P

hyp (y1, y2) = hyp (−p, p) implies hyp
(
ψ(y1), ψ(y2)

)
= hyp (−v, v).

Put � := hyp (0, p), i.e. � = ln (1 +
√

2) > 0, and N := 2, i.e.

hyp (−p, p) = ln (3 +
√

8) = N�.

Writing ψ : R
2 → R

2, i.e. ψ(ξ1, ξ2) = (η1, η2), instead of (5.75), and applying
Theorem 35, section 2.20, for X := R

2 and d = hyp, we obtain that ψ : R
2 → R

2

is an isometry, i.e. of form (5.54). Because of ψ(0, 0) = (0, 0) this isometry must
be an orthogonal mapping, i.e. ψ(ξ1, ξ2) = (ξ1, ξ2) because of ψ(1, 0) = (1, 0) and
ψ(0, 1) = (0, 1). The equation ψ(ξ1, ξ2) = (ξ1, ξ2) stands, of course, for

ψ(ξ1p + ξ2q) = ξ1v + ξ2w = ξ1ψ(p) + ξ2ψ(q). (5.77)

We hence get for the arbitrarily chosen elements x, y ∈ P at the beginning
of step i),

ψ(x + y) = ψ(x) + ψ(y), ψ(λx) = λψ(x), xy = ψ(x)ψ(y)
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from (5.77), especially for

x = ξ1p + ξ2q, y = η1p + η2q,

obviously,

ψ(x)ψ(y) = (ξ1v + ξ2w)(η1v + η2w)
= ξ1η1 + ξ2η2 = (ξ1p + ξ2q)(η1p + η2q) = xy.

Hence (X, δ) ∼= (V, ε) ∼= (V, ε). This, finally, finishes the proof of Theorem 21. �
Remark. In analogy to Theorem 17 concerning dimension–free Möbius geometry,
also the following statement for dimension–free hyperbolic geometry can be proved.

Let (X, δ), (V ε) be arbitrary real inner product spaces each containing at least two
linearly independent elements. Then (X, δ) ∼= (V, ε) holds true if, and only if, there
exists a bijection ϕ : X → V such that images of lines of

(
X, M(X, hyp)

)
are lines

of
(
V, M(V, hyp)

)
and that inverse images of lines of

(
V, M(V, hyp)

)
are lines of(

X, M(X, hyp)
)
.

In fact, if (X, δ) ∼= (V, ε) is satisfied, the underlying ϕ of this isomorphism maps
lines onto lines in both directions, since ϕ and ϕ−1 preserve distances, and, more-
over, since lines can be defined by (2.1), section 2.2, with d = hyp. Assume now that
ϕ maps lines onto lines in both directions. Without loss of generality we only con-
sider the case ϕ(0) = 0. We now would like to prove hyp(x, y) = hyp

(
ϕ(x), ϕ(y)

)
for all x, y ∈ X . So take arbitrarily elements x, y of X , and to these elements a
fixed euclidean plane P through 0, x, y. Furthermore, take linearly independent
p, q ∈ P . Then also ϕ(p) =: r, ϕ(q) =: s are linearly independent, since otherwise
0, r, s would be on a euclidean (= hyperbolic) line, and hence also 0, p, q. Let R
be the euclidean plane through 0, r, s. Since the line lp through 0, p goes over in
the line lr through 0, r and lq in ls, we conclude that ϕ maps P into R and, mu-
tatis mutandis, ϕ−1 the plane R into P , i.e. the restriction ϕ|P of the bijection
ϕ : X → V is a bijection of P onto R. This restriction ϕ|P , written as

ϕ(ξ1p + ξ2q) =: (η1r + η2s),

together with its inverse ϕ−1|R map hyperbolic lines onto hyperbolic lines. It
is hence a motion from P onto R (see, for instance, R. Höfer, Invarianten und
invariante Begriffe von Friedmann–Lemâıtre–Räumen, Dissertation, Fachber.
Math. Univ. Hamburg, 1997, Hilfssatz 5, p. 20). We thus obtain hyp(x, y)
= hyp

(
ϕ(x), ϕ(y)

)
for the elements x, y introduced before. This implies that the

bijection ϕ : X → V preserves hyperbolic distances. ϕ : X → V must thus be
(Proposition 30, section 2.16) a motion, this time not from X onto X , but from
X onto V . Now ϕgϕ−1 preserves distances in V for g ∈ M(X, hyp), and ϕ−1g′ϕ
distances in X for g′ ∈ M(V, hyp). Hence

M(V, hyp) = ϕM(X, hyp)ϕ−1,

and thus
(
X, M(X, hyp)

) ∼= (V, M(V, hyp)
)
, i.e. (X, δ) ∼= (V, ε) by Theorem 21.
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Remark. Take a real vector space X with mappings δν : X × X → R, ν = 1, 2,
satisfying rules (i), (ii), (iii), (iv) of section 1.1, such that (X, δ1), (X, δ2) are not
isomorphic (see the Remark in section 1.3). Define the bijection ϕ : X → X ,

ϕ(x) = x,

and observe that ϕ and ϕ−1 as well, map lines of
(
X, M(X, eucl)

)
onto lines of(

X, M(X, eucl)
)
. So the theorem for dimension–free hyperbolic geometry, men-

tioned in the previous remark, does not hold true generally in the dimension–free
euclidean case.

5.12 A mixed case

Proposition 22. Let (X, δ) and (V, ε) be arbitrary real inner product spaces each
containing at least two linearly independent elements. Then the geometries(
X, M(X, eucl)

)
and

(
V, M(V, hyp)

)
are not isomorphic.

Proof. 1. Assume that there exist described spaces (X, δ), (V, ε) satisfying(
X, M(X, eucl)

) ∼= (V, M(V, hyp)
)
. (5.78)

Lemma 18 and (5.78) imply the existence of a bijection ϕ : X → V such that

M(V, hyp) = ϕM(X, eucl)ϕ−1 (5.79)

holds true. Let e ∈ X be a fixed element with e2 = 1. As in the proof of step b) of
the proof of Theorem 20 take ν ∈ M(V, hyp) satisfying ν

(
ϕ(0)

)
= 0. Obviously,

ψ := νϕ : X → V is a bijection with ψ(0) = 0 and

M(V, hyp) = ψM(X, eucl)ψ−1. (5.80)

Put j := ψ(e), observe j �= 0 from ψ(0) �= ψ(e), define k :=
√

ε(j, j) > 0 and the
real inner product space

V ′ := (V, ε) ∼= (V, ε) (5.81)

based on ε(v, w) := 1
k2 ε(v, w) and the bijection v → kv from (V, ε) onto (V, ε).

Now (5.81) and Theorem 21 imply(
V, M(V, hyp)

) ∼= (V ′, M(V ′, hyp)
)
,

i.e., by (5.78), (
X, M(X, eucl)

) ∼= (V ′, M(V ′, hyp)
)
.

Instead of ε(v, w) for v, w ∈ V ′ we will write only vw, and instead of V ′ only V .
So we have (5.78), (5.80) and furthermore

ψ(0) = 0, ψ(e) = j, e2 = 1 = j2. (5.82)



262 Chapter 5. δ–Projective Mappings, Isomorphism Theorems

The proofs of steps c), d), e) of the proof of Theorem 20 lead mutatis mutandis
to the following statements 2 and 3.

2. Let x1, x2, x3, x4 be elements of X . Then

eucl(x1, x2) = eucl(x3, x4) (5.83)

if, and only if,
hyp
(
ψ(x1), ψ(x2)

)
= hyp

(
ψ(x3), ψ(x4)

)
. (5.84)

3. Lines are mapped onto lines under ψ : X → V as well as under ψ−1 : V →
X .

4. Since −e, 0, e are collinear, i.e. on a common line, so must be ψ(−e), ψ(0) =
0, ψ(e) = j. Hence ψ(−e) = µj, µ ∈ R. Applying that (5.84) is a consequence of
(5.83), we obtain [ψ(−e)]2 = 1 for x1 = 0, x2 = e, x3 = 0, x4 = −e. Hence

ψ(−e) = −j (5.85)

from ψ(e) �= ψ(−e) and ψ(−e) = µj.

5. Take a fixed r ∈ X with r2 = 1 and re = 0. Hence eucl(r, e) = eucl(r,−e),
i.e., by (5.84) and s := ψ(r),√

1 + s2
√

2 − sj =
√

1 + s2
√

2 + sj.

Thus
sj = 0. (5.86)

Moreover,
s2 = 1, (5.87)

from (5.83) ⇒ (5.84) for x1 = r, x2 = x3 = 0, x4 = e.

6. Define t := ψ(r + e) and apply (5.83) ⇒ (5.84) twice, namely for

x1 = r, x2 = r + e, x3 = 0, x4 = e

and for
y1 = e, y2 = r + e, y3 = 0, y4 = r.

Hence
√

2
√

1 + t2 − st =
√

2 =
√

2
√

1 + t2 − jt. Thus

st = jt,
√

1 + t2 − 1 =
1√
2
st. (5.88)

From eucl(0, r + e) = eucl(e, r) and (5.84) we obtain√
1 + t2 = 2 − js = 2,
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in view of (5.86). Hence t2 = 3 and thus, by (5.88),

st =
√

2 = jt. (5.89)

7. m := 1
2 (r + e) �∈ {r, e} is on the euclidean line through r, e. Hence ψ(m) �∈

{ψ(r), ψ(e)} = {s, j} is, by step 3, on the hyperbolic line through s, j, i.e. ψ(m) is
in the euclidean plane through 0, s, j. Now r + e is on the euclidean line through
0, m. Thus t = ψ(r + e) is on the hyperbolic (= euclidean) line through 0, ψ(m),
i.e. t = ψ(r + e) is in the euclidean plane through 0, s, j. This implies that t can
be written as t = αj + βs with real numbers α, β.

8. Hence from (5.82), (5.86), (5.87), (5.89),

t2 = α2 + β2, α =
√

2 = β. (5.90)

Since (5.90) yields 3 = t2 = 4, our assumption (5.78) was not correct. This finishes
the proof of Proposition 22. �



Appendix A

Notation and symbols

Theorems, propositions, and lemmata are numbered consecutively in each chap-
ter, so that Lemma 1 may be followed by Proposition 2 and that by Theorem 3.
Chapters are subdivided into sections but numbering of formulas is within chap-
ters, not sections. The end of a proof is indicated by �. The symbols := or =:
mean that the side of the equation, where the colon is, is defined by the other side.
Sometimes provided is used as an abbreviation for if and only if.

A ⇒ B means A implies B,

A ⇔ B is defined by (A ⇒ B) and (B ⇒ A),

∀ abbreviates forall .

Moreover,

∀x∈S A (x) ⇒ B (x) means A (x) implies B (x) for all x ∈ S,

∃, there exist(s)

and
f : A → B that f is a mapping from A into B.

If f is a mapping from B into C and g a mapping from A into B, then fg : A → C
is defined by (fg)(x) := f [g (x)] for all x ∈ A.

If f is a mapping from A into B and if H is a subset of M , then f | H (the so–
called restriction of f on H) denotes the mapping ϕ : H → B with ϕ (x) := f (x)
for all x ∈ H .

If S is a set, then id : S → S designates the mapping defined by id (x) = x for all
x ∈ S.

If S is a set, then {x ∈ S | P (x)} denotes the set of all x in S which satisfy
property P .
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If A, B are sets, then A\B := {x ∈ A | x �∈ B}.
R denotes the set of all real numbers, furthermore,

R≥0 := {x ∈ R | x ≥ 0},
R>0 := R≥0\{0}.

If A1, . . . , An are sets, their cartesian product is

A1 × A2 × · · · × An := {(x1, . . . , xn) | xi ∈ Ai for i = 1, . . . , n}.

If M is a set, #M designates its cardinality.
If a is a non–negative real number,

√
a denotes the real number b ≥ 0 satisfying

b2 = a.
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ball, 45, 46, 217
Blumenthal line, 38
bundle, 148

cartesian coordinates, 74
Cauchy’s functional equation, 24
Cauchy–Schwarz inequality, 4
causal automorphism, 177, 180
Cayley–Klein model, 66–70
chacterization of translations, 78
circular helix, 200
closed line, 205
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cosine theorem, 60

of hyperbolic geometry, 60
cross ratio, 66, 118–120
cycle coordinates

of Laguerre cycles, 135
of Lie cycles, 154

cyclographic projection, 141
cylinder model, 142, 143

δ–affine
geometry, 239
group, 239, 242

mapping, 233, 234
δ–duality, 240
δ–independent, 240
δ–linear mapping, 231
δ–polarity, 240
δ–projective

Cayley–Klein model, 242, 247
extension, 236
geometry, 239
group, 239
hyperplane, 235

improper, 236
mapping, 235

∆–subspace, 241
diffeomorphism (line preserving), 174
dilatation, 153
dimension-free, ix, xi, xii
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perplane, 54
distance function

elliptic, 208, 216
euclidean, 20
hyperbolic, 20, 126, 127
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194, 196
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Einstein distance, 197
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cylinder universe, 197
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elliptic
geometry, 214
group, 214
motion, 214
points, 211

end
of a line, 56, 57
of a ray, 59

equidistant surface, 54
ES-space, 210
euclidean

distance, 20
geometry, 20
hyperplane, 49
line, 39
metric space, 38
motion, 31, 33
subspace, 49, 50

event, 175
example of a quasi–hyperplane which

is not a hyperplane, 50, 51
examples of real inner product spaces,

2, 3, 50
extended δ–affine mapping, 237, 239

Fourty-five degree hyperplane, 142
functional equation

of Blumenthal lines, 38
conditional, 251
of 2-point invariants, 203, 207
of Cauchy, 24
of hyperbolic sine, 30
of Jensen, 6
of translations, 11

fundamental theorem
of Lie sphere geometry, 173
of Möbius sphere geometry, 98

future of an event, 187

generator, 142
geometrical subspace, 63
geometry

δ–affine, 239
δ–projective, 239

elliptic, 214
euclidean, 20
hyperbolic, 20
invariant, 16
invariant notion, 16
Lorentz–Minkowski, 172
of a group of permutations, 16
of de Sitter’s world, 205
of Einstein’s cylindrical world, 200
projective, 157
spherical, 214

group
action, 16
δ–affine, 239, 242
δ–projective, 239
elliptic, 214
Lorentz, 172
of permutations, 10
of translations, 11

axis, 11
direction, 11
kernel, 12

orthogonal, 7
projective, 157
spherical, 214

homogeneous coordinates, 136, 154
horocycle, 62, 63

as paraboloid, 62, 63
hyperbolic

coordinates, 74
distance, 20, 126, 127
geometry, 20
hyperplane, 49
line, 39
metric space, 38
midpoint, 81
motion, 31, 33
subspace, 49, 50

hypercycle, 54
hyperellipsoid, 47
hyperplane

cut, 142
euclidean, 49
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hyperbolic, 49

improper
δ–projective hyperplane, 236
Lorentz boost, 160

incidence, 235, 241
inequality of Cauchy–Schwarz, 4
integral equation, 96–98
invariant, 16
invariant notion, 16
inversion, 94, 95
involution, 95, 102
isometries

of (X, eucl), 75, 76, 80
of (X, hyp), 75, 76, 80
of C(Z), 198
of E(X), 212
of S(X), 212
of a metric space, 75
of an ES-space, 212

isomorphic
euclidean geometries, 252, 253
geometries, 16
hyperbolic geometries, 256
Möbius sphere geometries, 249
real inner product spaces, 1, 2

Jensen’s functional equation, 6

kernel of a translation group, 12
Klein’s Erlangen programme, ix, x

Lag (X), 151, 170
Lag∗(X), 151
Laguerre

cycle, 134
sphere geometry, 151
transformation, 151, 152, 163

Lie
cycle, 150
quadric, 155
sphere geometry, 151
transformation, 151

Lie (X), 151

light cone, 186, 187
lightlike

hyperplane, 188, 189, 191, 194
lines, 185–187

line
Blumenthal, 38
closed, 205
euclidean, 39
hyperbolic, 39
Menger, 43
open, 205

lines
of de Sitter’s world, 205
of Einstein’s universe, 200

Lorentz
boost, 160, 161, 163, 164, 167,

172, 176, 179–183, 227
group, 172
transformation, 172, 175
transformations as Lie transfor-

mations, 193
Lorentz–Minkowski geometry, 172

maximal subspace, 50
measure of an angle, 60, 61
Menger

interval, 43
line, 43

metric space, 37, 38
mid–cycle, 141
midpoint, 81
mild–hypotheses characterizations, 7,

80, 170, 172–174
Mn–sphere, 112
Mn–sphere, 115
Möbius

ball, 93
circle, 111
group, 93
sphere geometry, 93
transformation, 93

as Lie transformation, 167–169
motion

elliptic, 214
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euclidean, 31, 33
hyperbolic, 31, 33
of a metric space, 76
of de Sitter’s world, 205
of Einstein’s cylinder universe,

200
of Lorentz–Minkowski geometry,

176
spherical, 214

norm, 5
n–plane, 112
null–line, 200, 205

open line, 205
orthochronous Lorentz transformation,

179
orthogonal

group, 7
mapping, 5

orthogonality, 51, 107, 116

Parallelity, 54, 59, 138, 142
parametric representation, 54–56, 97
past of an event, 187
pencil

elliptic, 146
hyperbolic, 147
parabolic, 144

periodic lines, 218–220
Perm X , 10
permutation

group, 10
product, 10

Π–subspace, 241
Poincaré’s model, 126, 131
point of contact, 135
power, 139
principle of duality, 242
projective

geometry, 157
group, 157
transformation, 157

proper
Laguerre sphere geometry, 151
Lorentz boost, 160

quasi–hyperplane, 50, 51

ray, 59
through an end, 59

real inner product space, 1
examples, 2, 3, 50

reflection, 94
regular quadric, 240
relativistic addition, 181

separable translation group, 14, 15
separated points, 205
separation, 139
sides

of a ball, 123
of a hyperplane, 123
of an M–ball, 123

similitude, 93
de Sitter distance, 205
de Sitter’s world, 205
spacelike lines, 185–187
spear, 133

coordinates, 135
spherical

geometry, 214
group, 214
motion, 214
points, 211
subspace, 50

spherically independent, 114
stabilizer, 35
stereographic projection, 121
strongly independent, 165, 166
subspace, 49, 50, 217
suitable hyperplane, 121, 122
symmetry axiom, 38

tangential
distance, 140
hyperplane, 110, 134, 189
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theorem of Pythagoras
euclidean case, 51
hyperbolic case, 51

time axis, 175
timelike lines, 185–187
transformation formulas, 70, 73
translation

equation, 11
group, 11

axis, 11
direction, 11
kernel, 12

triangle inequality, 5, 38
two-point invariants, 202, 203, 205,

207

Uniform characterization of euclidean
and hyperbolic geometry,
21–33

unit ball, 95
universe (cylinder universe), 197

velocity of signals, 185

Weierstrass
coordinates, 229
map, 66
model, 131

world-line, 185

X, occasionally also (X, δ), as stan-
dard notation for a real in-
ner product space contain-
ing two linearly independent
elements, 1, 5

Y as standard notation for Y =X⊕R

with product (3.54), 120,
142, 143

Z as standard notation for Z =X⊕R

with product (3.88), 141,
144, 175
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