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Preface

This book offers an introduction to some basic aspects of modern anal-
ysis. It is designed for students who are majoring in some area of math-
ematics but who do not necessarily intend to continue their studies at a
graduate level.

The choice of material and the method of presentation are both aimed
at as wide a readership as possible. Future teachers of high school math-
ematics should be given an introduction to the mathematical future as
much as they must be given some knowledge of the mathematical past;
students of mathematical engineering, biology or finance may need to
read current literature without desiring to contribute to it. These are
perhaps the extremes in the type of student to whom this book is di-
rected. At the same time, students who do need to go on to courses
in measure theory and functional analysis will find this book an easy
introduction to the initial concepts in those areas.

Syllabus requirements would rarely allow more than one semester to
be available for work of this nature in an undergraduate course and
this imposes restrictions on topics and the depth of their presentation.
In line with the above thoughts, I have tried throughout to merge the
nominal divisions of pure and applied mathematics, leaving enough for
students of either inclination to have a feeling for what further devel-
opments might look like. After a somewhat objective choice of topics,
the guiding rule in the end was to carry those topics just far enough
that their applications might be appreciated. Applications have been
included from such fields as differential and integral equations, systems
of linear algebraic equations, approximation theory, numerical analysis
and quantum mechanics.

The better the reader’s knowledge of real variable analysis, the easier
this book will be to work through. In particular, a thorough under-

ix



x Preface

standing of convergence of sequences and series is desirable. However,
it should be possible to manage with little more than the quite detailed
summary of these notions in Chapter 1. This is a lengthy chapter and
the reasons for its length must be explained. It aims essentially to review
or at least mention all topics required in the following chapters. But con-
siderable attention has been given to maintaining from beginning to end
a stream of thought which justifies and anticipates the generalisations
that follow. The central and recurring theme is the completeness of the
real number system. It is not advised to take the chapter too seriously at
its first reading. Read as much as possible at a sitting, skipping proofs
and difficult passages, and just retaining sufficient to be able to follow
the development. Return later to the less understood pieces. Review
exercises that imply a suitable level of understanding have been included
throughout this chapter.

Nothing is used in this book from the theory of functions of a com-
plex variable, from theories of measure and integration, such as Lebesgue
integration, or from modern algebra. Topics like completeness and com-
pactness are approached initially through convergence of sequences in
metric space, and the emphasis remains on this approach. However, the
alternative topological approach is described in a separate chapter. This
chapter, Chapter 5, gives the book more flexibility as an introductory
text for subsequent courses, but there are are only a few later references
to it and it may be omitted if desired.

Except for the exercises in Chapter 1, each exercise set is split in two
by a dotted line. Those exercises before the line are essential for an
understanding of the concepts that precede them and in some cases are
referred to subsequently; those after the line are either harder practice
exercises or introduce theoretical ideas not later required. The book
includes a large number of solved problems which should be considered
as an integral part of the text. Furthermore, many of the exercises before
the line in each set have complete solutions given at the end of the book.

This edition is a completely revised and extended version of notes I
produced in 1978 and have been using ever since. Many colleagues, of
whom I mention Dr Gordon McLelland in particular, read sections from
that earlier manuscript and I am grateful for their comments. Dr Xuan
Tran, as an undergraduate, solved all the exercises in the book, when no
solutions were included, and was therefore of great assistance in compil-
ing the solutions given here.

David Tranah, from Cambridge University Press, has been of great
assistance in guiding the preparation of this edition, and I am extremely



Preface xi

grateful to him. The copious comments of an unknown referee are also
very much appreciated.

A little belatedly, I must also thank Professor John Ward, from whose
Young Mathematician’s Guide I quote overleaf. His subject matter may
have differed considerably from mine, but our philosophies in writing
seem to coincide remarkably.

Graeme L. Cohen
University of Technology, Sydney

October 2002





This I may (without vanity) presume to say, that whoever Reads it
over, will find more in it than the Title doth promise, or perhaps
he expects. ’Tis true indeed, the Dress is but Plain and Homely, it
being wholly intended to Instruct, and not to Amuse or Puzzle the
young Learner with hard Words; nor is it my Ambitious Desire
of being thought more Learned or Knowing than really I am . . . ;
However in this I shall always have the Satisfaction, That I’ve
sincerely Aim’d at what is Useful, altho’ in one of the meanest
Ways; ’Tis Honour enough for me to be accounted as one of the
under Labourers in Clearing the Ground a little, and Removing
some of the Rubbish that lies in the way to Knowledge. How well
I have performed that, must be left to proper Judges.

From the Preface of The Young Mathematicians’s Guide,
by John Ward, third edition, 1719.
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Prelude to Modern Analysis

1.1 Introduction

The primary purpose of this chapter is to review a number of topics
from analysis, and some from algebra, that will be called upon in the
following chapters. These are topics of a classical nature, such as appear
in books on advanced calculus and linear algebra. For our treatment of
modern analysis, we can distinguish four fundamental notions which will
be particularly stressed in this chapter. These are

(a) set theory, of an elementary nature;
(b) the concept of a function;
(c) convergence of sequences; and
(d) some theory of vector spaces.

On a number of occasions in this chapter, we will also take the time
to discuss the relationship of modern analysis to classical analysis. We
begin this now, assuming some knowledge of the points (a) to (d) just
mentioned.

Modern analysis is not a new brand of mathematics that replaces the
old brand. It is totally dependent on the time-honoured concepts of
classical analysis, although in parts it can be given without reference to
the specifics of classical analysis. For example, whereas classical analysis
is largely concerned with functions of a real or complex variable, modern
analysis is concerned with functions whose domains and ranges are far
more general than just sets of real or complex numbers. In fact, these
functions can have domains and ranges which are themselves sets of
functions. A function of this more general type will be called an operator
or mapping. Importantly, very often any set will do as the domain of a
mapping, with no specific reference to the nature of its elements.

1



2 1 Prelude to Modern Analysis

This illustrates how modern analysis generalises the ideas of classical
analysis. At the same time, in many ways modern analysis simplifies
classical analysis because it uses a basic notation which is not cluttered
with the symbolism that characterises many topics of a classical nature.
Through this, the unifying aspect of modern analysis appears because
when the symbolism of those classical topics is removed a surprising
similarity becomes apparent in the treatments formerly thought to be
peculiar to those topics.

Here is an example:∫ b

a

k(s, t)x(t) dt = f(s), a � s � b,

is an integral equation; f and k are continuous functions and we want
to solve this to find the continuous function x. The left-hand side shows
that we have operated on the function x to give the function f , on the
right. We can write the whole thing as

Kx = f,

where K is an operator of the type we just mentioned. Now the essence of
the problem is clear. It has the same form as a matrix equation Ax = b,
for which the solution (sometimes) is x = A−1b. In the same way, we
would like the solution of the integral equation to be given simply as
x = K−1f . The two problems, stripped of their classical symbolism,
appear to be two aspects of a more general study.

The process can be reversed, showing the strong applicability of mod-
ern analysis: when the symbolism of a particular branch of classical
analysis is restored to results often obtained only because of the manip-
ulative ease of the simplified notation, there arise results not formerly
obtained in the earlier theory. In other cases, this procedure gives rise
to results in one field which had not been recognised as essentially the
same as well-known results in another field. The notations of the two
branches had fully disguised the similarity of the results.

When this occurs, it can only be because there is some underlying
structure which makes the two (or more) branches of classical analysis
appear just as examples of some work in modern analysis. The ba-
sic entities in these branches, when extracted, are apparently combined
together in a precisely corresponding manner in the several branches.
This takes us back to our first point of the generalising nature of mod-
ern analysis and of the benefit of working with quite arbitrary sets. To
combine the elements of these sets together requires some basic ground
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rules and this is why, very often and predominantly in this book, the
sets are assumed to be vector spaces: simply because vector spaces are
sets with certain rules attached allowing their elements to be combined
together in a particular fashion.

We have indicated the relevance of set theory, functions and vector
spaces in our work. The other point, of the four given above, is the
springboard that takes us from algebra into analysis. In this book,
we use in a very direct fashion the notion of a convergent sequence to
generate virtually every result.

We might mention now, since we have been comparing classical and
modern analysis, that another area of study, called functional analysis,
may today be taken as identical with modern analysis. A functional is a
mapping whose range is a set of real or complex numbers and functional
analysis had a fairly specific meaning (the analysis of functionals) when
the term was first introduced early in the 20th century. Other writers
may make technical distinctions between the two terms but we will not.

In the review which follows, it is the aim at least to mention all topics
required for an understanding of the subsequent chapters. Some topics,
notably those connected with the points (a) to (d) above, are discussed
in considerable detail, while others might receive little more than a def-
inition and a few relevant properties.

1.2 Sets and numbers

A set is a concept so basic to modern mathematics that it is not possible
to give it a precise definition without going deeply into the study of
mathematical logic. Commonly, a set is described as any collection of
objects but no attempt is made to say what a ‘collection’ is or what
an ‘object’ is. We are forced in books of this type to accept sets as
fundamental entities and to rely on an intuitive feeling for what a set is.

The objects that together make up a particular set are called elements
or members of that set. The list of possible sets is as long as the imagi-
nation is vivid, or even longer (we are hardly being precise here) since,
importantly, the elements of a set may themselves be sets.

Later in this chapter we will be looking with some detail into the prop-
erties of certain sets of numbers. We are going to rely on the reader’s
experience with numbers and not spend a great deal of time on the devel-
opment of the real number system. In particular, we assume familiarity
with
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(a) the integers, or whole numbers, such as −79, −3, 0, 12, 4,063,180;
(b) the rational numbers, such as − 5

3 , 11
17 , which are numbers ex-

pressible as a ratio of integers (the integers themselves also being
examples);

(c) those numbers which are not rational, known as irrational num-
bers, such as

√
2, 3

√
15, π;

(d) the real numbers, which are numbers that are either rational or
irrational;

(e) the ordering of the real numbers, using the inequality signs <

and > (and the use of the signs � and �);
(f) the representation of the real numbers as points along a line; and
(g) the fact, in (f), that the real numbers fill the line, leaving no

holes: to every point on the line there corresponds a real number.

The final point is a crucial one and may not appear to be so familiar.
On reflection however, it will be seen to accord with experience, even
when expressed in such a vague way. This is a crude formulation of
what is known as the completeness of the real number system, and will
be referred to again in some detail subsequently.

By way of review, we remark that we assume the ability to per-
form simple manipulations with inequalities. In particular, the following
should be known. If a and b are real numbers and a < b, then

−a > −b;
1
a

>
1
b
, if also a > 0 or b < 0;

√
a <

√
b, if also a � 0.

With regard to the third property, we stress that the use of the radi-
cal sign (

√
) always implies that the nonnegative root is to be taken.

Bearing this comment in mind, we may define the absolute value |a| of
any real number a by

|a| =
√

a2.

More commonly, and equivalently of course, we say that |a| is a whenever
a > 0 and |a| is −a whenever a < 0, while |0| = 0. For any real numbers
a and b, we have

|a + b| � |a| + |b|, |ab| = |a| |b|.
These may be proved by considering the various combinations of positive
and negative values for a and b.
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We also assume a knowledge of complex numbers : numbers of the
form a + ib where a and b are real numbers and i is an imaginary unit,
satisfying i2 = −1.

This is a good place to review a number of definitions and properties
connected with complex numbers. If z = a+ib is a complex number, then
we call the numbers a, b, a − ib and

√
a2 + b2 the real part, imaginary

part, conjugate and modulus, respectively, of z, and denote these by
Re z, Im z, z and |z|, respectively. The following are some of the simple
properties of complex numbers that we use. If z, z1 and z2 are complex
numbers, then

z = z,

z1 + z2 = z1 + z2,

z1z2 = z1 z2,

|Re z| � |z|, | Im z| � |z|,
zz = |z|2,

|z1 + z2| � |z1| + |z2|,
|z1z2| = |z1| |z2|.

It is essential to remember that, although z is a complex number, the
numbers Re z, Im z and |z| are real. The final two properties in the
above list are important generalisations of the corresponding properties
just given for real numbers. They can be generalised further, in the
natural way, to the sum or product of three or four or more complex
numbers.

Real numbers, complex numbers, and other sets of numbers, all occur
so frequently in our work that it is worth using special symbols to denote
them.

Definition 1.2.1 The following symbols denote the stated sets:

N, the set of all positive integers;
Z, the set of all integers (positive, negative and zero);
Q, the set of all rational numbers;
R, the set of all real numbers;
R+, the set of all nonnegative real numbers;
C, the set of all complex numbers.

Other sets will generally be denoted by ordinary capital letters and their
elements by lower case letters; the same letter will not always refer to
the same set or element. To indicate that an object x is an element
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of a set X , we will write x ∈ X ; if x is not an element of X , we will
write x /∈ X . For example,

√
2 ∈ R but

√
2 /∈ Z. A statement such

as x, y ∈ X will be used as an abbreviation for the two statements
x ∈ X and y ∈ X . To show the elements of a set we always enclose
them in braces and give either a complete listing (for example, {1, 2, 3}
is the set consisting of the integers 1, 2 and 3), or an indication of a
pattern (for example, {1, 2, 3, . . .} is the set N), or a description of a
rule of formation following a colon (for example, {x : x ∈ R, x � 0} is
the set R+). Sometimes we use an abbreviated notation (for example,
{n : n = 2m, m ∈ N} and {2n : n ∈ N} both denote the set of all even
positive integers).

An important aspect in the understanding of sets is that the order
in which their elements are listed is irrelevant. For example, {1, 2, 3},
{3, 1, 2}, {2, 1, 3} are different ways of writing the same set. However,
on many occasions we need to be able to specify the first position, the
second position, and so on, and for this we need a new notion. We speak
of ordered pairs of two elements, ordered triples of three elements, and,
generally, ordered n-tuples of n elements with this property that each
requires for its full determination a list of its elements and the order
in which they are to be listed. The elements, in their right order, are
enclosed in parentheses (rather than braces, as for sets). For example,
(1, 2, 3), (3, 1, 2), (2, 1, 3) are different ordered triples. This is not an
unfamiliar notion. In ordinary three-dimensional coordinate geometry,
the coordinates of a point provide an example of an ordered triple: the
three ordered triples just given would refer to three different points in
space.

We give now a number of definitions which help us describe various
manipulations to be performed with sets.

Definition 1.2.2

(a) A set S is called a subset of a set X , and this is denoted by S ⊆ X

or X ⊇ S, if every element of S is also an element of X .
(b) Two sets X and Y are called equal, and this is denoted by X = Y ,

if each is a subset of the other; that is, if both X ⊆ Y and Y ⊆ X .
Otherwise, we write X �= Y .

(c) A set which is a subset of any other set is called a null set or
empty set, and is denoted by ∅.

(d) A set S is called a proper subset of a set X if S ⊆ X , but S �= X .
(e) The union of two sets X and Y , denoted by X ∪ Y , is the set of



1.2 Sets and numbers 7

elements belonging to at least one of X and Y ; that is,

X ∪ Y = {x : x ∈ X or x ∈ Y (or both)}.
(f) The intersection of two sets X and Y , denoted by X ∩ Y , is the

set of elements belonging to both X and Y ; that is,

X ∩ Y = {x : x ∈ X and x ∈ Y }.
(g) The cartesian product of two sets X and Y , denoted by X × Y ,

is the set of all ordered pairs, the first elements of which belong
to X and the second elements to Y ; that is,

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
(h) The complement of a set X , denoted by ∼X , is the set of elements

that do not belong to X ; that is, ∼X = {x : x /∈ X}. The
complement of X relative to a set Y is the set Y ∩ ∼X ; this is
denoted by Y \X .

For some simple examples illustrating parts of this definition, we let
X = {1, 3, 5} and Y = {1, 4}. Then

X ∪ Y = {1, 3, 4, 5}, X ∩ Y = {1},
X × Y = {(1, 1), (1, 4), (3, 1), (3, 4), (5, 1), (5, 4)},
Y × X = {(1, 1), (1, 3), (1, 5), (4, 1), (4, 3), (4, 5)}.

We see that in general X × Y �= Y × X . The set Y \X is the set of
elements of Y that do not belong to X , so here Y \X = {4}.

The definitions of union, intersection and cartesian product of sets
can be extended to more than two sets. Suppose we have n sets X1, X2,
. . . , Xn. Their union, intersection and cartesian product are defined as

X1 ∪ X2 ∪ · · · ∪ Xn =
n⋃

k=1

Xk

= {x : x ∈ Xk for at least one k = 1, 2, . . . , n},

X1 ∩ X2 ∩ · · · ∩ Xn =
n⋂

k=1

Xk

= {x : x ∈ Xk for all k = 1, 2, . . . , n},

X1 × X2 × · · · × Xn =
n∏

k=1

Xk

= {(x1, x2, . . . , xn) : xk ∈ Xk for k = 1, 2, . . . , n},
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respectively (the cartesian product being a set of ordered n-tuples). The
notations in the middle are similar to the familiar sigma notation for
addition, where we write

x1 + x2 + · · · + xn =
n∑

k=1

xk,

when x1, x2, . . . , xn are numbers.
For cartesian products only, there is a further simplification of nota-

tion when all the sets are equal. If X1 = X2 = · · · = Xn = X , then
in place of

∏n
k=1 Xk or

∏n
k=1 X we write simply Xn, as suggested by

the × notation, but note that there is no suggestion of multiplication:
Xn is a set of n-tuples. In particular, it is common to write Rn for the
set of all n-tuples of real numbers and Cn for the set of all n-tuples of
complex numbers.

It is necessary to make some comments regarding the definition of
an empty set in Definition 1.2.2(c). These are gathered together as a
theorem.

Theorem 1.2.3

(a) All empty sets are equal.
(b) The empty set has no elements.
(c) The only set with no elements is the empty set.

To prove (a), we suppose that ∅1 and ∅2 are any two empty sets.
Since an empty set is a subset of any other set, we must have both
∅1 ⊆ ∅2 and ∅2 ⊆ ∅1. By the definition of equality of sets, it follows
that ∅1 = ∅2. This proves (a) and justifies our speaking of ‘the’ empty
set in the remainder of the theorem. We prove (b) by contradiction.
Suppose x ∈ ∅. Since for any set X we have ∅ ⊆ X and ∅ ⊆ ∼X ,
we must have both x ∈ X and x ∈ ∼X . This surely contradicts the
existence of x, proving (b). Finally, we prove (c), again by contradiction.
Suppose X is a set with no elements and suppose X �= ∅. Since ∅ ⊆ X ,
this means that X is not a subset of ∅. Then there must be an element
of X which is not in ∅. But X has no elements so this is the contradiction
we need.

All this must seem a bit peculiar if it has not been met before. In
defence, it may be pointed out that sets were only introduced intuitively
in the first place and that the inclusion in the concept of ‘a set with no
elements’ is a necessary addition (possibly beyond intuition) to provide
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consistency elsewhere. For example, if two sets X and Y have no el-
ements in common and we wish to speak of their intersection, we can
now happily say X ∩ Y = ∅. (Two such sets are called disjoint.)

Manipulations with sets often make use of the following basic results.

Theorem 1.2.4 Let X, Y and Z be sets. Then

(a) ∼(∼X) = X,
(b) X ∪ Y = Y ∪ X and X ∩ Y = Y ∩ X (commutative rules),
(c) X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z and X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z

(associative rules),
(d) X∪(Y ∩Z) = (X∪Y )∩(X∪Z) and X∩(Y ∪Z) = (X∩Y )∪(X∩Z)

(distributive rules).

We will prove only the second distributive rule. To show that two
sets are equal we must make use of the definition of equality in Defini-
tion 1.2.2(b).

First, suppose x ∈ X ∩ (Y ∪ Z). Then x ∈ X and x ∈ Y ∪ Z. That
is, x is a member of X and of either Y or Z (or both). If x ∈ Y then
x ∈ X∩Y ; if x ∈ Z then x ∈ X∩Z. At least one of these must be true, so
x ∈ (X∩Y )∪(X∩Z). This proves that X∩(Y ∪Z) ⊆ (X∩Y )∪(X∩Z).
Next, suppose x ∈ (X ∩ Y ) ∪ (X ∩ Z). Then x ∈ X ∩ Y or x ∈ X ∩ Z

(or both). In both cases, x ∈ X ∩ (Y ∪ Z) since in both cases x ∈ X ,
and Y ⊆ Y ∪Z and Z ⊆ Y ∪Z. Thus X ∩ (Y ∪Z) ⊇ (X ∩Y )∪ (X ∩Z).

Then it follows that X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z), completing
this part of the proof.

The following theorem gives two of the more important relationships
between sets.

Theorem 1.2.5 (De Morgan’s Laws) Let X, Y and Z be sets. Then

Z\(X ∩ Y ) = Z\X ∪ Z\Y and Z\(X ∪ Y ) = Z\X ∩ Z\Y.

There is a simpler form of de Morgan’s laws for ordinary complements:

∼(X ∩ Y ) = ∼X ∪ ∼Y and ∼(X ∪ Y ) = ∼X ∩ ∼Y.

To prove the first of these, suppose x ∈ ∼(X ∩ Y ). Then x /∈ X ∩ Y so
either x /∈ X or x /∈ Y . That is, x ∈ ∼X or x ∈ ∼Y , so x ∈ ∼X ∪ ∼Y .
This proves that ∼(X∩Y ) ⊆ ∼X∪∼Y . Suppose next that x ∈ ∼X∪∼Y .
If x ∈ ∼X then x /∈ X so x /∈ X ∩ Y , since X ∩ Y ⊆ X . That is,
x ∈ ∼(X∩Y ). The same is true if x ∈ ∼Y . Thus ∼X∪∼Y ⊆ ∼(X∩Y ),
so we have proved that ∼(X ∩ Y ) = ∼X ∪ ∼Y .
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We can use this, the definition of relative complement, and a distribu-
tive rule from Theorem 1.2.4 to prove the first result of Theorem 1.2.5:

Z\(X ∩ Y ) = Z ∩ ∼(X ∩ Y ) = Z ∩ (∼X ∪∼Y )

= (Z ∩∼X) ∪ (Z ∩ ∼Y ) = Z\X ∪ Z\Y.

The second of de Morgan’s laws is proved similarly.

Review exercises 1.2

(1) Let a and b be real numbers. Show that

(a) ||a| − |b|| � |a − b|,
(b) |a − b| < ε if and only if b − ε < a < b + ε,
(c) if a < b + ε for every ε > 0 then a � b.

(2) Suppose A∪B = X . Show that X × Y = (A×Y )∪ (B ×Y ), for
any set Y .

(3) For any sets A and B, show that

(a) A\B = A if and only if A ∩ B = ∅,
(b) A\B = ∅ if and only if A ⊆ B.

1.3 Functions or mappings

We indicated in Section 1.1 how fundamental the concept of a function is
in modern analysis. (It is equally important in classical analysis but may
be given a restricted meaning there, as we remark below.) A function
is often described as a rule which associates with an element in one
set a unique element in another set; we will give a definition which
avoids the undefined term ‘rule’. In this definition we will include all
associated terms and notations that will be required. Examples and
general discussion will follow.

Definition 1.3.1 Let X and Y be any two nonempty sets (which
may be equal).

(a) A function f from X into Y is a subset of X×Y with the property
that for each x ∈ X there is precisely one element (x, y) in the
subset f . We write f : X → Y to indicate that f is a function
from X into Y .

(b) The set X is called the domain of the function f : X → Y .
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(c) If (x, y) ∈ f for some function f : X → Y and some x ∈ X , then
we call y the image of x under f , and we write y = f(x).

(d) Let S be a subset of X . The set

{y : y ∈ Y, y = f(x) for some x ∈ S},
which is a subset of Y , is called the image of the set S under
f : X → Y , and is denoted by f(S). The subset f(X) of Y is
called the range of f .

(e) When f(X) = Y , we say that the function f is from X onto Y

(rather than into Y ) and we call f an onto function.
(f) If, for x1, x2 ∈ X , we have f(x1) = f(x2) only when x1 = x2,

then we call the function f : X → Y one-to-one.
(g) An onto function is also said to be surjective, or a surjection. A

one-to-one function is also said to be injective, or an injection. A
function that is both injective and surjective is called bijective, or
a bijection.

Enlarging on the definition in (a), we see that a function f from a set X

into a set Y is itself a set, namely a set of ordered pairs chosen from
X × Y in such a way that distinct elements of f cannot have distinct
second elements with the same first element. In (c), we see that the
common method of denoting a function as y = f(x) is no more than an
alternative, and more convenient, way of writing (x, y) ∈ f . Notice the
different roles played by the sets X and Y . The set X is fully used up
in that every x ∈ X has an image f(x) ∈ Y , but the set Y need not be
used up in that there may be a y ∈ Y , or many such, which is not the
image of any x ∈ X . Paraphrasing (e), when in fact each y ∈ Y is the
image of some x ∈ X , then the function is called ‘onto’. Notice that the
same term ‘image’ is used slightly differently in (c) and (d), but this will
not cause any confusion.

It follows from Definition 1.2.2(b) that two functions f and g from X

into Y are equal if and only if f(x) = g(x) for all x ∈ X .
In Figure 1, four functions

fk : X → Yk, k = 1, 2, 3, 4,

are illustrated. Each has domain X = {1, 2, 3, 4, 5}. The function
f1 : X → Y1 has Y1 = {1, 2, 3, 4, 5, 6} and the function is the sub-
set {(1, 3), (2, 3), (3, 4), (4, 1), (5, 6)} of X × Y1, as indicated by arrows
giving the images of the elements of X . The range of f1 is the set
f1(X) = {1, 3, 4, 6}. The other functions may be similarly described.
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f4 : X → Y4

Figure 1

For all four functions, each element of X is the tail of an arrow and of
only one arrow, while the elements of the Y ’s may be at the head of
more than one arrow or perhaps not at the head of any arrow. This
situation is typical of any function. The elements of Y2 and Y4 are all at
heads of arrows, so the functions f2 and f4 are both onto. Observe that
f1(1) = 3 and f1(2) = 3. Also, f2(1) = 3 and f2(5) = 3. This situation
does not apply to the functions f3 and f4: each element of Y3 and Y4 is
at the head of at most one arrow, so the functions f3 and f4 are both
one-to-one.

Only the function f4 is both one-to-one and onto: it is a bijection.
This is a highly desirable situation which we pursue further in Chap-
ters 5 and 7, though we briefly mention the reason now. Only for the
function f4 of the four functions can we simply reverse the directions of
the arrows to give another function from a Y into X . We will denote
this function temporarily by g : Y4 → X . In full:

f4 = {(1, 2), (2, 3), (3, 1), (4, 5), (5, 4)},
g = {(1, 3), (2, 1), (3, 2), (4, 5), (5, 4)}.

The function g is also a bijection, and has the characteristic properties

g(f4(x)) = x for each x ∈ X,

f4(g(y)) = y for each y ∈ Y4.
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We call g the inverse of the function f4, and denote it by f−1
4 . The

precise definition of this term follows.

Definition 1.3.2 For any bijection f : X → Y , the inverse function
f−1 : Y → X is the function for which

f−1(y) = x whenever f(x) = y,

where x ∈ X and y ∈ Y .

It follows readily that if f is a function possessing an inverse function,
then f−1 also has an inverse function and in fact (f−1)−1 = f .

It is sometimes useful in other contexts to speak of the inverse of a
function when it is one-to-one but not necessarily onto. This could be
applied to the function f3 : X → Y3, above. We can reverse the arrows
there to give a function h, but the domain of h would only be f3(X) and
not the whole of Y3.

The following definition gives us an important method of combining
two functions together to give a third function.

Definition 1.3.3 Let f : X → Y and g : Y → Z be two functions.
The composition of f with g is the function g ◦ f : X → Z given by

(g ◦ f)(x) = g(f(x)), x ∈ X.

Note carefully that the composition g ◦ f is only defined when the range
of f is a subset of the domain of g. It should be clear that in general
the composition of g with f , that is, the function f ◦ g, does not exist
when g ◦ f does, and even if it does exist it need not equal g ◦ f .

For example, consider the functions f1 and f4 above. Since Y4 = X ,
we may form the composition f1 ◦ f4 (but not f4 ◦ f1). We have

(f1 ◦ f4)(1) = f1(f4(1)) = f1(2) = 3,

and so on; in full, f1 ◦ f4 = {(1, 3), (2, 4), (3, 3), (4, 6), (5, 1)}.
There are some other terms which require mention. For a function

itself, of the general nature given here, we will prefer the terms map and
mapping. The use of the word ‘function’ will be restricted to the classical
sense in which the domain and range are essentially sets of numbers.
These are the traditional real-valued or complex-valued functions of one
or more real variables. (We do not make use in this book of functions
of a complex variable.) The terms functional and operator will be used
later for special types of mappings.
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We will generally reserve the usual letters f , g, etc., for the traditional
types of functions, and also later for functionals, and we will use letters
such as A and B for mappings.

Review exercises 1.3

(1) Let f = {(2, 2), (3, 1), (4, 3)}, g = {(1, 6), (2, 8), (3, 6)}. Does f−1

exist? Does g−1 exist? If so, write out the function in full. Does
f ◦ g exist? Does g ◦ f exist? If so, write out the function in full.

(2) Define a function f : R → R by f(x) = 5x − 2, for x ∈ R. Show
that f is one-to-one and onto. Find f−1.

(3) For functions f : X → Y and g : Y → Z, show that

(a) g ◦ f : X → Z is one-to-one if f and g are both one-to-one,
(b) g ◦ f : X → Z is onto if f and g are both onto.

1.4 Countability

Our aim is to make a basic distinction between finite and infinite sets
and then to show how infinite sets can be distinguished into two types,
called countable and uncountable. These are very descriptive names:
countable sets are those whose elements can be listed and then counted.
This has to be made precise of course, but essentially it means that
although in an infinite set the counting process would never end, any
particular element of the set would eventually be included in the count.
The fact that there are uncountable sets will soon be illustrated by an
important example.

Two special terms are useful here. Two sets X and Y are called
equivalent if there exists a one-to-one mapping from X onto Y . Such
a mapping is a bijection, but in this context is usually called a one-to-
one correspondence between X and Y . Notice that these are two-way
terms, treating the two sets interchangeably. This is because a bijection
has an inverse, so that if f : X → Y is a one-to-one correspondence
between X and Y , then so is f−1 : Y → X , and either serves to show
that X and Y are equivalent. Any set is equivalent to itself: the identity
mapping I : X → X , where I(x) = x for each x ∈ X , gives a one-
to-one correspondence between X and itself. It is also not difficult to
prove, using the notion of composition of mappings, that if X and Y are
equivalent sets and Y and Z are equivalent sets, then also X and Z are
equivalent sets. See Review Exercise 1.3(3).
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We now define a finite set as one that is empty or is equivalent to the
set {1, 2, 3, . . . , n} for some positive integer n. A set that is not finite is
called an infinite set. Furthermore:

Definition 1.4.1 Countable sets are sets that are finite or that are
equivalent to the set N of positive integers. Sets that are not countable
are called uncountable.

It follows that the set N itself is countable.
For the remainder of this section, we will be referring only to infinite

sets. It will be easy to see that some of the results apply equally to finite
sets.

According to the definition, if X is a countable set then there is a one-
to-one correspondence between N and X , that is, a mapping f : N → X

which is one-to-one and onto. Thus X is the set of images, under f , of
elements of N:

X = {f(1), f(2), f(3), . . .},
and no two of these images are equal. This displays the sense in which
the elements of X may be counted: each is the image of precisely one
positive integer. It is therefore permissible, when speaking of a countable
set X , to write X = {x1, x2, x3, . . . }, implying that any element of X

will eventually be included in the list x1, x2, x3, . . . .
In proving below that a given set is countable, we will generally be

satisfied to indicate how the set may be counted or listed, and will not
give an actual mapping which confirms the equivalence of the set with N.
For example, the set Z of all integers is countable, since we may write

Z = {0,−1, 1,−2, 2,−3, 3, . . .}
and it is clear with this arrangement how the integers may be counted.
It now follows that any other set is countable if it can be shown to be
equivalent to Z. In fact, any countable set may be used in this way to
prove that other sets are countable.

The next theorem gives two important results which will cover most
of our applications. The second uses a further extension of the notion of
a union of sets, this time to a countable number of sets: if X1, X2, . . . ,
are sets, then

∞⋃
k=1

Xk = {x : x ∈ Xk for at least one k = 1, 2, 3, . . . }.
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Theorem 1.4.2 If X1, X2, . . . are countable sets, then

(a)
∏n

k=1 Xk is countable for any integer n � 2,
(b)
⋃∞

k=1 Xk is countable.

Our proof of (a) will require mathematical induction. We show first
that X1 ×X2 is countable. Recall that X1 ×X2 is the set of all ordered
pairs (x1, x2), where x1 ∈ X1 and x2 ∈ X2. Since X1 and X2 are
countable, we may list their elements and write, using a double subscript
notation for convenience,

X1 = {x11, x12, x13, . . . }, X2 = {x21, x22, x23, . . . }.
(The first subscript is the set number of any element, the second sub-
script is the element number in that set.) Writing the elements of
X1 × X2 down in the following array

(x11, x21) (x11, x22)→ (x11, x23) (x11, x24)→ . . .

↓ ↗ ↙ ↗
(x12, x21) (x12, x22) (x12, x23) (x12, x24) . . .

↙ ↗
(x13, x21) (x13, x22) (x13, x23) (x13, x24) . . .

↓ ↗
(x14, x21) (x14, x22) (x14, x23) (x14, x24) . . .

...
...

...
...

and then counting them in the order indicated (those whose subscripts
total 5, then those whose subscripts total 6, then those whose subscripts
total 7, . . . ) proves that X1 × X2 is countable.

Now assume that X1 ×X2× · · ·×Xn−1 is countable for n > 2 and let
this set be Y . Then Y ×Xn can be shown to be countable exactly as we
showed X1×X2 to be countable. Now, Y ×Xn is the set of ordered pairs
{((x1, x2, . . . , xn−1), xn) : xk ∈ Xk, k = 1, 2, . . . , n}. The mapping
f : Y × Xn → X1 × X2 × · · · × Xn given by

f(((x1, x2, . . . , xn−1), xn)) = (x1, x2, . . . , xn−1, xn)

is clearly a one-to-one correspondence, and this establishes that X1 ×
X2 × · · · × Xn, or

∏n
k=1 Xk, is countable. The induction is complete,

and (a) is proved.
The proof of (b) uses a similar method of counting. As before, we

write Xk = {xk1, xk2, xk3, . . . }, for k ∈ N. We write down the elements
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of
⋃∞

k=1 Xk in the array

x11 x12 → x13 x14 → . . .
↓ ↗ ↙ ↗

x21 x22 x23 x24 . . .
↙ ↗

x31 x32 x33 x34 . . .
↓ ↗

x41 x42 x43 x44 . . .
...

...
...

...

and count them in the order indicated (those whose subscripts total 2,
then 3, then 4, . . . ), this time taking care that any x’s belonging to more
than one Xk are counted only once. This proves (b), a result which is
often expressed by saying: the union of countably many countable sets
is itself a countable set.

It should be clear that the proof of (b) covers the cases where there are
only finitely many sets Xk, and where some of these are finite sets. In
particular, it implies that the union of two countable sets is countable.

We now prove two fundamental results.

Theorem 1.4.3

(a) The set Q of rational numbers is countable.
(b) The set R of real numbers is uncountable.

To prove (a), for each k ∈ N let Xk be the set of all rational numbers
that can be expressed as p/k where p ∈ Z. That is,

Xk =
{

0
k

,
−1
k

,
1
k
,
−2
k

,
2
k

, . . .

}
.

Writing Xk in this way shows that Xk is countable for each k. Any
rational number belongs to Xk for some k, so

⋃∞
k=1 Xk = Q. Hence, Q

is countable, by Theorem 1.4.2(b).
We now prove (b), that R is uncountable, giving our first example

of an uncountable set. The proof relies on the statement that every
real number has a decimal expansion. (The following observations are
relevant to this. Any real number x has a decimal expansion which, for
nonnegative numbers, has the form

x = m.n1n2n3 . . . = m +
n1

10
+

n2

102
+

n3

103
+ · · · ,

where m, n1, n2, n3, . . . are integers with 0 � nk � 9 for each k. The
number is rational if and only if its decimal expansion either terminates
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or becomes periodic: for example, 1
8 = 0.125000 . . . terminates and

1887
4950 = 0.38121212 . . . is periodic, whereas

√
2 = 1.4142135 . . . is neither

terminating nor periodic, being irrational. One problem with decimal
expansions is that they are not unique for all real numbers. For example,
we also have 1

8 = 0.124999 . . . .)
The proof that R is uncountable is a proof by contradiction. We

suppose that R is countable. Then the elements of R can be counted,
and all will be included in the count. In particular, all real numbers
between 0 and 1 will be counted. Let the set {x1, x2, x3, . . . } serve to
list all these numbers between 0 and 1 and give these numbers their
decimal expansions, say

x1 = 0.n11n12n13 . . . ,

x2 = 0.n21n22n23 . . . ,

x3 = 0.n31n32n33 . . . ,

...

the double subscript notation again being convenient. Consider the num-
ber

y = 0.r1r2r3 . . . ,

where

rk =

{
2, nkk = 1,

1, nkk �= 1,

for k ∈ N. This choice of values (which may be replaced by many other
choices) ensures that rk �= nkk for any k. Hence, y �= x1 (since these
numbers differ in their first decimal place), y �= x2 (since these numbers
differ in their second decimal place), and so on. That is, y �= xj for any j.
The choice of 1’s and 2’s in the decimal expansion of y ensures that there
is no ambiguity with 0’s and 9’s. But y is a number between 0 and 1
and the set {x1, x2, x3, . . . } was supposed to include all such numbers.
This is the contradiction which proves that R is uncountable.

We will not prove here the very reasonable statement that a subset of
a countable set is itself a countable set, possibly finite. This result was
used already in the preceding paragraph and may now be used to prove
further that the set C of all complex numbers is uncountable: if this
were not true then the subset of C consisting of all complex numbers
with zero imaginary part would be countable, but this subset is R.
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On the other hand, the set

X = {z : z = x + iy, x, y ∈ Q}
of all complex numbers with rational real and imaginary parts is count-
able. This follows using the two theorems above. For Q is countable,
so Q×Q is countable, and there is a natural one-to-one correspondence
between X and Q × Q, namely the mapping f : Q × Q → X given by
f((x, y)) = x + iy, x, y ∈ Q.

Presumably, uncountable sets are bigger than countable sets, but is
N×N bigger than N? To make this notion precise, and thus to be able
to compare the sizes of different sets, we introduce cardinality.

Definition 1.4.4 Any set X has an associated symbol called its
cardinal number, denoted by |X |. If X and Y are sets then we write
|X | = |Y | if X is equivalent to Y ; we write |X | � |Y | if X is equivalent
to a subset of Y ; and we write |X | < |Y | if |X | � |Y | but X is not
equivalent to Y . We specify that the cardinal number of a finite set is
the number of its elements (so, in particular, |∅| = 0), and we write
|N| = ℵ0 and |R| = c.

There is a lot in this definition. First, it defines how to use the symbols
=, < and � in connection with this object called the cardinal number
of a set. For finite sets, these turn out to be our usual uses of these
symbols. Then, for two specific infinite sets, special symbols are given
as their cardinal numbers.

Any infinite countable set is equivalent to N, by definition, so any
infinite countable set has cardinal number ℵ0 (pronounced ‘aleph null’).
So, for example, |N × N| = |Q| = ℵ0. It is not difficult to see that
n < ℵ0 for any n ∈ N and that ℵ0 < c. This is the sense in which
uncountable sets are bigger than countable sets.

The arithmetic of cardinal numbers is quite unlike ordinary arithmetic.
We will not pursue the details here but will, for interest, list some of the
main results. We define addition and multiplication of cardinal numbers
by: |X | + |Y | = |X ∪ Y | and |X | · |Y | = |X × Y |, where X and Y are
any sets, and we define |Y ||X| to be the cardinal number of the power
set Y X , which is the set of all functions from X into Y . Then:

1 + ℵ0 = ℵ0, ℵ0 + ℵ0 = ℵ0, ℵ0 · ℵ0 = ℵ0,

c + c = c, c · c = c, 2ℵ0 = c.

The famous continuum hypothesis is that there is no cardinal num-
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ber α satisfying ℵ0 < α < c. All efforts to prove this, or to disprove it by
finding a set with cardinal number strictly between those of N and R,
had been unsuccessful. In 1963, it was shown that the existence of such
a set could neither be proved nor disproved within the usual axioms of
set theory. (Those ‘usual’ axioms have not been discussed here).

Review exercises 1.4

(1) Define a function f : Z → N by

f(n) =

{
2n + 1, n � 0,

−2n, n < 0.

Show that f determines a one-to-one correspondence between Z
and N.

(2) Suppose X is an uncountable set and Y is a countable set. Show
that X\Y is uncountable.

(3) Show that the set of all polynomial functions with rational coef-
ficients is countable.

1.5 Point sets

In this section, we are concerned only with sets of real numbers. Because
real numbers can conveniently be considered as points on a line, such
sets are known as point sets and their elements as points.

The simplest point sets are intervals, for which we have special no-
tations. Let a and b be real numbers, with a < b. The point set
{x : a � x � b} is a closed interval, denoted by [a, b], and the point
set {x : a < x < b} is an open interval, denoted by (a, b). There are also
the half-open intervals {x : a � x < b} and {x : a < x � b}, denoted by
[a, b) and (a, b], respectively. In all cases, the numbers a and b are called
endpoints of the intervals. Closed intervals contain their endpoints as
members, but open intervals do not. The following point sets are infi-
nite intervals: {x : a < x}, denoted by (a,∞); {x : a � x}, denoted
by [a,∞); {x : x < b}, denoted by (−∞, b); and {x : x � b}, denoted
by (−∞, b]. These have only one endpoint, which may or may not be
a member of the set. The use of the signs ∞ and −∞ is purely con-
ventional and does not imply that these things are numbers. The set R
itself is sometimes referred to as the infinite interval (−∞,∞).

A special name is given to an open interval of the form (a− δ, a + δ),
where δ is a positive number. This is called the δ-neighbourhood of a.
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We intend to move towards a further discussion of the assumption (g)
at the beginning of Section 1.2, that there are no holes when we represent
real numbers as points on a line. A few more definitions are required
first.

Definition 1.5.1 Let S be a point set (that is, let S be a subset
of R).

(a) A number l is called a lower bound for S if l � x for all x ∈ S. A
number u is called an upper bound for S if x � u for all x ∈ S.

(b) If there is a lower bound for S, then S is said to be bounded below.
If there is an upper bound for S, then S is said to be bounded
above. If S is bounded below and bounded above, then S is said
to be bounded.

(c) If S is bounded below, a number L is called a greatest lower bound
for S if L is a lower bound for S and if l � L for any other lower
bound l. We write

L = glbS or L = inf S.

If S is bounded above, a number U is called a least upper bound
for S if U is an upper bound for S and if U � u for any other
upper bound u. We write

U = lubS or U = supS.

(d) If S has a greatest lower bound m and m ∈ S, then m is called a
minimum for S, and we write

m = min S.

If S has a least upper bound M and M ∈ S, then M is called a
maximum for S, and we write

M = maxS.

A number of remarks need to be made.
If S is a bounded point set, then there exists a closed interval [l, u]

such that l � x � u for all x ∈ S; that is, S ⊆ [l, u]. The converse is
also true. Further, any number less than l is also a lower bound for S

and any number greater than u is also an upper bound for S.
A greatest lower bound for S, if one exists, is unique. To see this, sup-

pose L and L′ are both greatest lower bounds for S. Then in particular
both are lower bounds for S and, by definition of greatest lower bound,
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L � L′ and L′ � L. These imply that L = L′. Similarly, a least upper
bound for S, if one exists, is unique.

Notice that it is not required that the greatest lower bound for a set
be an element of that set. However, when it is an element of the set
it may be given a special name: the minimum for the set. A similar
remark applies for the least upper bound and the maximum for a set.

The notations inf and sup are abbreviations for infimum and supre-
mum, and these notations will be preferred in this book over glb and
lub. It is sometimes convenient to write

L = inf
x∈S

x,

rather than L = inf S, and similarly for sup, min and max. Other
variations in the uses of these notations will be easily identified.

The above terms, and some others to be defined, are pictured in Fig-
ure 2 on page 27. They may be illustrated most simply using intervals.
For example, let S be the open interval (0, 1). The numbers −37, − 1

2 , 0
are lower bounds for S; the numbers 1, π, 72 are upper bounds. We
have inf S = 0, supS = 1. Since inf S /∈ S and supS /∈ S, we see that
min S and max S do not exist. If T is the closed interval [0, 1], then
inf T = 0 ∈ T , so min T = 0; supT = 1 ∈ T , so maxT = 1. The interval
(−∞, 0) is bounded above but not below; its supremum is 0.

We remark finally that if S is a finite point set, then minS and maxS

must both exist (unless S = ∅, for the empty set has any number as a
lower bound and any number as an upper bound!).

Definition 1.5.2 Let S be a nonempty point set. A number ξ is
called a cluster point for S if every δ-neighbourhood of ξ contains a
point of S other than ξ.

This definition does not imply that a cluster point for a set must be an
element of that set. Put a little differently, ξ is a cluster point for S

if, no matter how small δ is, there exists a point ξ′ such that ξ′ �= ξ,
ξ′ ∈ (ξ − δ, ξ + δ) and ξ′ ∈ S.

For example, the left-hand endpoint a is a cluster point for the closed
interval [a, b] because there exists a point of the interval in (a−δ, a+δ), no
matter how small δ is. Such a point is a+ 1

2δ (assuming that δ < 2(b−a)).
Precisely the same is true for the open interval (a, b), and this time a is
not an element of the set. Similar reasoning shows that every point of
[a, b] is a cluster point for [a, b] and for (a, b). Instead of these intervals,
now consider the point sets [a, b]∩Q and (a, b)∩Q, consisting of only the
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rational numbers in the intervals. Again, all points of [a, b] are cluster
points for these sets. This follows from the fact that between any two
numbers, rational or irrational, there always exists a rational number.

It should be clear that within any δ-neighbourhood of a cluster point ξ

for a set S there in fact exist infinitely many points of S. That is,
S ∩ (ξ − δ, ξ + δ) is an infinite set for any number δ > 0. From this it
follows that a finite point set cannot have any cluster points.

An infinite point set may or may not have cluster points. For exam-
ple, intervals have (infinitely many) cluster points, while the set Z of
all integers has no cluster points. (The latter follows from the preced-
ing paragraph, since no δ-neighbourhood could contain infinitely many
points of Z.) This leads us to the Bolzano–Weierstrass theorem, which
provides a criterion for an infinite point set to have a cluster point.

Theorem 1.5.3 (Bolzano–Weierstrass Theorem) If S is a bounded
infinite point set, then there exists at least one cluster point for S.

The criterion is that the infinite set be bounded. We stress again
that the cluster point need not be a point of the set. In proving this
theorem, we will see arising, in a natural way, a need to formalise our
assumption (g) in Section 1.2, dealing with the completeness of the real
number system. The proof follows.

Since S is a bounded set, there must be an interval [a, b] such that
S ⊆ [a, b]. Bisect this interval (by the point 1

2 (a+b)) and consider the in-
tervals [a, 1

2 (a+b)] and [12 (a+b), b]. If [a, 1
2 (a+b)] contains infinitely many

points of S, then (renaming its endpoints) let this interval be [a1, b1]; oth-
erwise, let [ 12 (a + b), b] be [a1, b1]. Either way, [a1, b1] contains infinitely
many points of S, since S is an infinite set. Now treat [a1, b1] similarly:
let [a2, b2] be the interval [a1,

1
2 (a1 + b1)] if this contains infinitely many

points of S, and otherwise let [a2, b2] be [12 (a1 + b1), b1]. This process
may be continued indefinitely to give a set {[a1, b1], [a2, b2], . . . } of in-
tervals each containing infinitely many points of S and such that, by
construction,

[a1, b1] ⊇ [a2, b2] ⊇ · · · .

Notice that b1 − a1 = 1
2 (b − a), b2 − a2 = 1

2 (b1 − a1) = 1
4 (b − a), and

generally

bn − an =
b − a

2n
, n ∈ N.

We ask: are there any points belonging to all these intervals? An-
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swering this in part, suppose ξ′ and ξ′′ are two points, both belonging
to all the intervals, with ξ′ �= ξ′′. Then |ξ′ − ξ′′| > 0 and we can find n

so that bn − an < |ξ′ − ξ′′|. (We can do this by solving the inequality
(b − a)/2n < |ξ′ − ξ′′| for n.) This means it is impossible to have both
ξ′ ∈ [an, bn] and ξ′′ ∈ [an, bn] for such a value of n. We must conclude
that at most one point can belong to all the intervals.

Here is where we need to make a crucial assumption: precisely one
point belongs to all the intervals. Let this point be ξ. We show that ξ is
a cluster point for S, and this proves the theorem. Choose any number
δ > 0. A value of n can be found so that bn − an < δ and this means
that [an, bn] ⊆ (ξ − δ, ξ + δ) for this n. Since [an, bn] contains infinitely
many points of S, this δ-neighbourhood certainly contains a point of S

other than perhaps ξ itself. Thus ξ is a cluster point for S, and the proof
of the theorem is finished.

The proof rests fundamentally on our assumption that there exists
exactly one point common to all the intervals [an, bn] constructed above.
We saw that there could not be two or more such points, so the only
alternative to this assumption is that there is no point common to all
the intervals. Then this would be the kind of hole in the real number
system which we have explicitly stated cannot occur. That is, the need
to make our assumption in the above proof is a specific instance of the
need for the general, if vague, statement (g) in Section 1.2.

That statement is especially made with reference to the real number
system. It is important to recognise that it does not apply to the rational
number system, for example. We can indicate this in terms of intervals
of the type constructed above, as follows. Remembering that we are
dealing only with rational numbers now, consider the set of intervals

{[1, 2], [1.4, 1.5], [1.414, 1.415], [1.4142, 1.4143], . . .}.

This is like the set {[a1, b1], [a2, b2], . . . } above in that each interval con-
tains infinitely many (rational) numbers and each is a subset of the one
before it. Is there a number belonging to all the intervals? The answer is
that there is not, when we consider only rational numbers. The reason
is that the only candidate for inclusion in all the intervals is

√
2 (the

intervals were constructed with this in mind) and
√

2 is not a rational
number.

The rational number system therefore has holes in it. What we are
saying is that when the irrational numbers are added, the resulting real
number system no longer has any holes. Most treatments of real numbers
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which do not actually construct the real number system have a statement
of this type, or one equivalent to it. Such a statement is generally
presented as an axiom of the real number system. We end this discussion
of holes by formally presenting the axiom for completeness of the real
number system which has proved convenient for our treatment.

Axiom 1.5.4 (Nested Intervals Axiom) Let {[c1, d1], [c2, d2], . . . } be
a set of closed intervals for which

[c1, d1] ⊇ [c2, d2] ⊇ · · · ,

and for which, for any number ε > 0, a positive integer N exists such
that dn − cn < ε whenever n > N . Then there exists precisely one point
common to all the intervals.

This is called the nested intervals axiom because intervals [c1, d1],
[c2, d2], . . . such that [c1, d1] ⊇ [c2, d2] ⊇ · · · are said to be nested.

We look again to our proof of the Bolzano–Weierstrass theorem to see
what more can be gleaned. It is apparent from our construction of the
intervals [an, bn] that for each n there are only finitely many points of S

less than an but infinitely many points of S less than bn. Thus if there
is more than one cluster point for S, there can be none less than the
one we found. We have therefore proved a little more than we set out to
do. The result is presented in Theorem 1.5.6, after giving the relevant
definitions.

Definition 1.5.5 A least cluster point for an infinite point set S

is a cluster point ξ for S with the property that only finitely many
points of S are less than or equal to ξ − δ for any δ > 0. A greatest
cluster point for S is a cluster point ξ for S with the property that
only finitely many points of S are greater than or equal to ξ + δ for
any δ > 0.

Theorem 1.5.6 For any bounded infinite point set there exists a least
cluster point and a greatest cluster point.

The existence of a greatest cluster point is proved by varying the
construction of the intervals [an, bn] in an obvious manner. It is clear
that there can be at most one least cluster point and at most one greatest
cluster point for any point set.

The points ξ and ξ of Definition 1.5.5 are also known as the least limit
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and the greatest limit, respectively, for S, and the following notations
are used:

ξ = lim S, ξ = lim S.

With reference still to our proof of the Bolzano–Weierstrass theorem,
let ξ = limS. It is possible that no points of S are greater than ξ. Then
ξ is an upper bound for S. There is no value of δ > 0 such that ξ − δ

is also an upper bound for S since, ξ being a cluster point for S, there
must be (infinitely many) points of S in (ξ− δ, ξ + δ). Hence in this case
ξ is the least upper bound for S. That is, ξ = supS (which may or may
not be an element of S). Alternatively, if there are points of S greater
than ξ, let x0 be such a point. Then, since ξ is the greatest cluster point
for S, either x � x0 for all x ∈ S or else the set T = {x : x > x0, x ∈ S}
is finite and not empty. Either way, the existence of maxS is assured
(maxS is x0 or maxT , respectively) so that in this case also the least
upper bound for S exists (and must be an element of S). We have
therefore all but proved the following result.

Theorem 1.5.7 Any nonempty point set that is bounded above has a
least upper bound.

We have just proved this in the case of a bounded infinite point set.
Clearly, it would be sufficient for the set only to be bounded above
for the same conclusion to follow, and clearly the result is true for any
nonempty finite point set.

In a similar manner, we could prove that any nonempty point set
that is bounded below has a greatest lower bound. Theorem 1.5.7 is
often stated as an axiom (the least upper bound axiom), alternative to
our Axiom 1.5.4, to ensure the completeness of the real number system.
This is quite equivalent to our approach in that, if Theorem 1.5.7 were
given as an axiom, then our nested intervals axiom could be proved as
a theorem.

Many of the concepts defined in this section are illustrated in Figure 2,
where the dots (•) indicate the (infinite) point set. We proceed with
another important definition.

Definition 1.5.8 A point which is both the least cluster point and
the greatest cluster point for a point set is called the limit point for
the set.
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lower
bounds
for S

inf S
= min S lim S

another
cluster
point
for S

supS
= lim S

upper
bounds
for S

Figure 2

Such a set, in which the least cluster point and the greatest cluster point
exist and are equal, has of course only one cluster point. The definition
says we then call it the ‘limit point’ for the set.

This is not the same as saying that a set with a single cluster point
must have a limit point. For example, the point set

S =
{

x : x =
1
n

, n ∈ N
}

=
{

1,
1
2
,
1
3
,
1
4
, . . .

}
has 0 as its limit point, as is easily verified. The point set S ∪ Z also
has 0 as its only cluster point, but 0 �= lim(S ∪Z), since infinitely many
points of S ∪ Z are less than −δ for any δ > 0, and also 0 �= lim(S ∪ Z)
for a corresponding reason.

We can look at this situation in general terms as follows. Suppose
ξ is a limit point for a set S, and choose any number δ > 0. Since ξ

is the least cluster point for S, only finitely many points of S are less
than or equal to ξ − δ, and similarly only finitely many are greater than
or equal to ξ + δ. So all but a finite number of the points of S are
within (ξ − δ, ξ + δ). Then either ξ − δ is a lower bound for S or the
set {x : x � ξ − δ, x ∈ S} is not empty but is finite. Either way, S

is bounded below. Similarly, S is bounded above. We have proved the
following theorem.

Theorem 1.5.9 If a point set has a limit point, then it is bounded.

In the example above, the set {1, 1
2 , 1

3 , 1
4 , . . . } ∪ Z is not bounded.

Therefore, there is no limit point for this set.
We end this section with one more theorem.

Theorem 1.5.10 Let S be a point set for which there exists a limit
point ξ, and suppose that l < x < u for all x ∈ S. Then l � ξ � u.
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The point to notice is that the signs < become � for the limit point,
reflecting the fact that the limit point for a set may not be an element
of that set. This happened above with the example S = {1, 1

2 , 1
3 , 1

4 , . . . },
where 0 was the limit point for S, but 0 /∈ S. Note, in the theorem, that
the existence of such numbers l and u is guaranteed by Theorem 1.5.9.

To prove Theorem 1.5.10, suppose ξ > u and set δ = 1
2 (ξ − u). As ξ

is a cluster point for S, there must exist a point of S in (ξ − δ, ξ + δ).
Let x0 be such a point. Then

x0 > ξ − δ = ξ − 1
2 ξ + 1

2u = 1
2ξ + 1

2u > 1
2u + 1

2u = u;

that is, x0 > u. This contradicts the statement that x < u for all x ∈ S,
so it cannot be possible to have ξ > u. Thus ξ � u. It is similarly proved
that l � ξ.

Review exercises 1.5

(1) Let S = {1 + (1/m) − (1/n) : m, n ∈ N}. Find inf S and supS.
(2) Suppose a nonempty point set S is bounded below. Show that

inf S = − sup{−x : x ∈ S}.
(3) Let the point sets A and B be bounded above. Show that A ∪B

is bounded above, and supA ∪ B = max{sup A, sup B}.
(4) (a) Show directly that x /∈ ⋂∞

n=1[0, 1/n], for any positive real
number x.

(b) Show that
⋂∞

n=1(0, 1/n) = ∅.

1.6 Open and closed sets

Topology is a branch of mathematics dealing with entities called open
sets. Their properties are modelled on those defined below for real
numbers. These help us with a further investigation of real numbers,
including the notion of compactness of subsets of R. The work in this
section is sometimes called topology of the real line.

Definition 1.6.1 A point set S is open if every point x ∈ S has a
δ-neighbourhood which is a subset of S; that is, if there exists δ > 0
such that (x− δ, x+ δ) ⊆ S. The set S is closed if its complement ∼S

is open.

By ∼S here, we mean R\S.
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The set R itself is open because, for any x ∈ R, (x − 1, x + 1) is a
δ-neighbourhood of x (with δ = 1) and is a subset of R. The empty
set ∅ is also open, ‘vacuously’. Then R and ∅ must also both be closed
sets, since ∼R = ∅ and ∼∅ = R. It is easy to see that open intervals
are open sets, and closed intervals are closed sets.

We can build up other examples of open sets through the next theo-
rem. It uses yet another extension of the notion of union of sets. Let
T be a collection of sets. (Collection is just another word for a set; it
is useful when the elements of the set are themselves sets.) The set T

may be finite or infinite, countable or uncountable, but we will always
assume that such collections are nonempty. We define⋃

T∈T

T = {x : x ∈ T for at least one T ∈ T }.

Theorem 1.6.2

(a) If T is a collection of open sets, then
⋃

T∈T T is open.
(b) If {T1, T2, . . . , Tn} is a finite collection of open sets, then

⋂n
k=1 Tk

is open.

To prove (a), put V =
⋃

T∈T T and suppose x ∈ V . Then x ∈ T for
some T ∈ T . Since T is open, there is a δ-neighbourhood of x contained
in T . But T ⊆ V , so this δ-neighbourhood is also contained in V . So V

is open.
For (b), this time put V =

⋂n
k=1 Tk. If V = ∅ then it is open, so

suppose V �= ∅. Take any point x ∈ V . Then x ∈ Tk for each k. Each
Tk is open, so there are δ-neighbourhoods (x − δk, x + δk), satisfying
(x − δk, x + δk) ⊆ Tk, for each k. If δ = min{δ1, δ2, . . . , δn}, then
x ∈ (x− δ, x + δ) ⊆ Tk for all k, so x ∈ (x− δ, x + δ) ⊆ V . That is, V is
open.

The theorem is sometimes worded as follows: arbitrary unions and
finite intersections of open sets are open. Using de Morgan’s laws (The-
orem 1.2.5), we could write down a corresponding result for finite unions
and arbitrary intersections of closed sets.

Now we introduce compactness for sets of real numbers.

Definition 1.6.3 A point set S is compact if any collection of open
sets whose union contains S has a finite subcollection whose union
contains S.
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Collections of open sets like these are often called open coverings, and
the definition of a compact set is then given as ‘a set for which every open
covering has a finite subcovering’. In symbols, suppose T is any collec-
tion of open sets such that

⋃
T∈T T ⊇ S. Then S is compact if there is

a finite subcollection {T1, . . . , Tn} of sets in T such that
⋃n

k=1 Tk ⊇ S.
We wish to determine precisely which point sets are compact. We

begin by establishing some properties of compact sets. It will turn out,
as a consequence of the Heine–Borel theorem (Theorem 1.6.7), that the
first two of these are also sufficient conditions for subsets of R to be
compact.

Theorem 1.6.4 If S is a compact subset of R, then S is bounded.

To prove this, observe that the collection {(−n, n) : n ∈ N} is an open
covering of R, and hence also of S. Since S is compact, a finite subset of
these is a covering of S, so, for some n ∈ N, S ⊆ ⋃n

k=1(−k, k) = (−n, n).
Thus S is bounded.

Theorem 1.6.5 If S is a compact subset of R, then S is closed.

The proof proceeds by showing that ∼S is open. This is certainly
the case if ∼S = ∅, so now suppose ∼S �= ∅. Take y ∈ ∼S. Then
for each x ∈ S we set δx = 1

2 |x − y|, and we must have δx > 0.
Clearly the collection of all δx-neighbourhoods is an open covering of S.
As S is compact, there is a finite subcollection of these which is an
open covering of S. That is, there are points x1, x2, . . . , xn such that
S ⊆ ⋃n

k=1(xk − δxk
, xk + δxk

). Take δ = min{δx1 , . . . , δxn}. Our result
will follow when we show that (y − δ, y + δ) ⊆ ∼S. If this is not the
case, then there is a point z ∈ (y − δ, y + δ) ∩ S. Since z ∈ S, we have
|z − xi| < δxi , for some i, and then, since z ∈ (y − δ, y + δ), we have
|z − y| < δ � δxi . But then

|xi − y| = |(xi − z) + (z − y)| � |xi − z| + |z − y| < 2δxi = |xi − y|,
by definition of δxi . This is a contradiction, so indeed (y−δ, y+δ) ⊆ ∼S.

(Note how the inequality |a+b| � |a|+ |b|, for a, b ∈ R, was employed.
This idea will be used many times in the coming pages.)

Theorem 1.6.6 Any closed subset of a compact set is compact.
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Let T be a closed subset of a compact set S, and let T be an open
covering of T . Since ∼T is an open set, the collection {∼T } ∪ T is an
open covering of S, which, since S is compact, has a finite subcovering
{T1, . . . , Tn}, say. If this subcollection does not include ∼T then it is the
required subcovering of T . If it does include ∼T , then simply remove it
from the set so that the remaining n−1 sets are the required subcovering
of T .

Now we come to the Heine–Borel theorem. This is like the Bolzano–
Weierstrass theorem in that it describes a fundamental property of the
real number system—fundamental because it is very closely related to
the axiomatic concept of completeness.

Theorem 1.6.7 (Heine–Borel Theorem) A point set is compact if
and only if it is closed and bounded.

We have already proved, in Theorems 1.6.5 and 1.6.4, that compact
subsets of R are closed and bounded, so here we must prove the converse,
that subsets of R which are closed and bounded are compact. This will
give us the required characterisation of the compact sets in R.

Let K be a closed, bounded point set. Then, since K is bounded,
K ⊆ [a, b] for some interval [a, b]. If we can prove that [a, b] is compact,
then the result will follow from Theorem 1.6.6.

Let T be an open covering of [a, b], and let S be the set

S = {a} ∪ {x : a � x � b,

there is an open covering of [a, x] by finitely many sets in T }.

We have a ∈ S and S ⊆ [a, b], so S is a nonempty bounded point set. It
thus has a least upper bound, c say, by Theorem 1.5.7, and c � b. (We
have just made use of the completeness of the real number system.) The
result will follow immediately if we can show that b ∈ S, and this will
follow once we show that c = b. We suppose that c < b and will obtain
a contradiction.

Since c ∈ [a, b], we have c ∈ T for some T ∈ T . Since T is open,
(c − δ, c + δ) ⊆ T for some δ > 0. Let δ0 = min{ 1

2δ, b − c}. Then δ0 > 0
and [c− δ0, c+ δ0] ⊆ T . For some x ∈ S we must have x > c− δ0 and for
this x we know there is a finite collection {T1, . . . , Tn} of sets in T which
is a covering of [a, x]. Then {T1, . . . , Tn, T } is a finite collection of sets
in T which is a covering of [a, c + δ0]. But, by choice of δ0, c + δ0 � b,
so c + δ0 ∈ S, contradicting the definition of c. Hence we have proved
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that c = b. A slight adjustment of this argument with b replacing c then
shows that b ∈ S, and the theorem is proved.

In particular, of course, all closed intervals are compact subsets of R.

Review exercises 1.6

(1) Show that open intervals are open sets and closed intervals are
closed sets.

(2) Let S be a point set. (a) A point x ∈ R is an interior point of S

if, for some δ > 0, (x − δ, x + δ) ⊆ S. Show that all points of R
are interior points. (b) A point x ∈ R is an isolated point of S

if, for some δ > 0, (x − δ, x + δ) ∩ S = {x}. Show that all points
of Z are isolated points.

(3) Let S be a point set. A point x ∈ R is a boundary point of S if,
for every δ > 0, (x−δ, x+δ)∩S �= ∅ and (x−δ, x+δ)∩ ∼ S �= ∅.
Show that S is closed if and only if it contains all its boundary
points.

1.7 Sequences

In this section, we introduce the idea of a sequence, which, as we men-
tioned right at the beginning, is essential for our treatment of modern
analysis: a great many of our major definitions are framed in terms of
convergent sequences. This approach is adopted because it is felt that
sequences are intuitively acceptable objects that are also relatively easy
to manipulate.

It is time for another brief essay on what modern analysis is all about.
We stated in Section 1.1 that it generalises, simplifies and unifies many
classical branches of mathematics. This is accomplished essentially in
two steps. First of all, everything that suggests specialisation into certain
streams of mathematics needs to be discarded. For example, functions
that are solutions of differential equations need to be differentiable, and
matrices that help in solving certain systems of linear equations need to
have inverses; but these properties are not essential to the notion of a
function or a matrix. Discarding them leaves us only with some very
basic entities, namely sets whose elements have no prescribed properties.
The second step is then gradually to add back what was discarded.
At each phase of this second step, we look around to see what bits of
known mathematics can successfully be accommodated. Here is where
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different strands of mathematics are seen to be strikingly similar whereas
originally they were thought to be distinct.

The thing that determines the order of retrieval of the various dis-
carded bits during the second step is the real number system, for this
seems to be the ideal to work towards. We said this step begins with
sets alone. Retrieving the pieces is technically described as adding more
and more structure to the elements of the sets: allowing the notion of a
distance between pairs of elements, allowing the elements to be able to
be added together, and so on. Each phase determines what is known as
a space. It is not required that the elements of any of these spaces (ex-
cept perhaps the ultimate one) actually be real numbers, but just that
they have properties suggested by certain properties of real numbers.

This explains why up to now, and particularly in the preceding two
sections, we have concentrated on properties of real numbers. We will
continue to do this throughout this and the next few sections of this
chapter, but largely now in the context of sequences of real numbers.
Nearly everything we say about sequences here will be found generalised,
either as a definition or by a theorem, somewhere in the coming chapters.

We choose to use sequences to generate much of our theory, for the
reasons mentioned above, but there is a common alternative based on
the more primitive notion of open sets. This approach usually begins
with the concept of a topological space, which is quite an early notion in
the hierarchy of spaces indicated above. We in effect will be simplifying
things a little by starting some way along the hierarchy, though later, in
Chapter 5, we will pull the various approaches together.

Now back to work.

Definition 1.7.1 A sequence is a mapping whose domain is the set N
of positive integers.

This might more strictly be called an infinite sequence, but we always
use the term ‘sequence’ alone to have this meaning. (A mapping with
domain {1, 2, . . . , n}, for some n ∈ N, is a finite sequence, but these are
not required in our work.)

Thus, a mapping A : N → X is a sequence, whatever the set X .
Being a mapping (or function), the sequence A is the set of ordered
pairs {(n, A(n)) : n ∈ N} and is fully specified by listing the elements
A(1), A(2), A(3), . . . in X . We will follow convention by writing an in
place of A(n) and denoting the sequence by a1, a2, a3, . . . or by {an}∞n=1.
The latter is generally abbreviated to {an}, provided that this does not
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cause confusion with the notation for a set. The element an (in X) is
called the nth term of the sequence A. A notation such as {an}∞n=−∞
would indicate in a similar way a mapping whose domain is Z.

We next introduce subsequences. Generally speaking, a subsequence
of a sequence {an} is a subset of its terms a1, a2, a3, . . . in which their
original order is maintained. That is, for any positive integers n1, n2,
n3, . . . where n1 < n2 < n3 < · · · , the terms an1 , an2 , an3 , . . . form a
subsequence of {an}. This is made precise as follows.

Definition 1.7.2 Let A be any sequence. A subsequence of A is a
composite mapping A ◦ N , where N : N → N is any mapping with
the property that if i, j ∈ N and i < j then N(i) < N(j).

Notice that N is a sequence whose terms are positive integers in increas-
ing order. Consistent with the conventional notation just described,
we may write nk for N(k) (k ∈ N), and then N is given alternatively
as {nk}∞k=1. Since A is a mapping from N into some set X , the com-
position of N with A also maps N into X and so a subsequence of a
sequence is itself a sequence whose terms belong to the same set as those
of the original sequence. Note finally that if A = {an} then

(A ◦ N)(k) = A(N(k)) = A(nk) = ank
, k ∈ N.

Thus, the kth term of A ◦ N is ank
, and so the subsequence A ◦ N

of the sequence A = {an} may be given alternatively as {ank
}∞k=1 or,

briefly, {ank
}. Examples of subsequences will be given shortly.

In this section we are interested only in sequences whose terms are
all real numbers or all complex numbers. These are called real-valued
sequences and complex-valued sequences, respectively. Unless we specify
otherwise, we will for the time being be referring only to real-valued
sequences.

An example of such a sequence is {1/n}, or 1, 1
2 , 1

3 , 1
4 , . . . . (Enough

terms are given to indicate a natural pattern. The key word is ‘nat-
ural’, as you will see if you write out the first four terms of the se-
quence {(n − 1)(n − 2)(n − 3) + 1/n}.) One subsequence of {1/n} is
1
2 , 1

4 , 1
6 , . . . , or {1/2n}, taking every second term of the original sequence.

To see how this conforms with Definition 1.7.2, write A = {an} = {1/n}
and let N = {nk} be the sequence {2k}. Then

A ◦ N = {ank
} = {a2k} =

{
1
2k

}∞

k=1

=
{

1
2n

}∞

n=1

.

Other subsequences of {1/n} are {1/n2} and {1/n!}.
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There may initially be confusion between the notation {an} for a se-
quence and the notation {a1, a2, a3, . . . } for the point set which is the
range of the sequence (recalling that a sequence is a function), so care
is needed. Notice that by definition a sequence always has infinitely
many terms, whereas its range may be a finite set. For example, the
sequence {(−1)n} has range {−1, 1}. This sequence may also be written
−1, 1,−1, 1, . . . . The confusion is at its worst for a constant sequence:
a sequence whose range consists of a single element. An example is {5},
where we use (or misuse) the abbreviation for the sequence better de-
noted by {5}∞n=1 or 5, 5, 5, . . . . The range of this sequence is the point
set {5}.

At the same time, this similarity of notations suggests how we might
define a number of ideas related to sequences: we make use of the range
of a sequence and employ our earlier work on point sets.

Definition 1.7.3 A point is called a cluster point for the (real-valued)
sequence {an} if it is either

(a) the element of the range of a constant subsequence of {an}, or
(b) a cluster point for the range of {an}.

The range of a sequence is a point set, so the reference to a cluster point
in (b) is in the sense of Definition 1.5.2. If the sequence {an} has a finite
range (that is, if the range is a finite set), then there must be at least one
value which is taken on by infinitely many terms of {an}. More precisely,
there must be a subset {n1, n2, n3, . . . } of N, with n1 < n2 < n3 < · · · ,
such that an1 = an2 = an3 = · · · . Then {ank

} is a constant subsequence
of {an} and, according to (a), an1 is a cluster point for {an}.

The range of the sequence {1/n} is the point set {1, 1
2 , 1

3 , 1
4 , . . . }, for

which 0 is a cluster point. It follows that 0 is a cluster point for the
sequence. The sequence {(−1)n} has a finite range: it has two constant
subsequences, namely −1,−1,−1, . . . and 1, 1, 1, . . . , so −1 and 1 are
cluster points for this sequence. The sequence 1, 1

2 , 1, 1
3 , 1, 1

4 , . . . has
cluster points at 1 and 0 since 1, 1, 1, . . . is a constant subsequence and
0 is a cluster point for the range {1, 1

2 , 1
3 , 1

4 , . . . }. Obviously, a cluster
point for a sequence need not be an element of its range.

The quantities defined in Definition 1.5.1 (on lower and upper bounds,
greatest lower bound and least upper bound, minimum and maximum
for a point set) are carried over in a natural way for a sequence by
referring to the range of the sequence. For example, a number l is a lower
bound for a sequence {an} if l � an for all n ∈ N. A sequence {an}
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is bounded if there are numbers l and u such that l � an � u for all
n ∈ N. The greatest lower bound of {an} is denoted by glb an or inf an,
and similarly for lub, sup, max and min. The remarks immediately
following Definition 1.5.1 apply also for sequences. It follows from the
Bolzano–Weierstrass theorem that there exists at least one cluster point
for a bounded sequence. It is the need for this statement and others like
it to be true that motivates the inclusion of infinitely recurring sequence-
values in the definition of a cluster point for a sequence.

Definition 1.5.5 (least cluster point, greatest cluster point) also carries
over for sequences, and in this context these quantities are called the
least limit or limit inferior and the greatest limit or limit superior. For
the sequence {an}, they are denoted by

lim an or lim inf an and lim an or lim sup an,

respectively. We prefer the latter names and the latter notations, for
sequences.

By Theorem 1.5.6, the limit inferior and limit superior of a sequence
exist when the sequence is bounded. It follows also that if {an} is a
bounded sequence and ε is any positive number, then

an � lim inf an − ε for finitely many n ∈ N,

an � lim inf an + ε for infinitely many n ∈ N,

an � lim sup an − ε for infinitely many n ∈ N,

an � lim sup an + ε for finitely many n ∈ N.

The following definition is suggested by Definition 1.5.8.

Definition 1.7.4 Given a sequence {an}, if lim inf an and lim sup an

both exist and are equal, then their common value is called the limit
of {an}, denoted by lim an, and we say that {an} is convergent. If
lim an = ξ, we say that {an} converges to ξ and we write an → ξ.
If lim an does not exist, we say that {an} is divergent, or that {an}
diverges.

A convergent sequence is often defined differently. The alternative is
indicated in the following theorem.

Theorem 1.7.5 A sequence {an} converges to ξ if and only if for any
number ε > 0 there exists a positive integer N such that

|an − ξ| < ε whenever n > N.
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To prove this, suppose first that {an} is convergent and lim an = ξ.
Then ξ = lim inf an and ξ = lim sup an, and so

an � ξ − ε for finitely many n ∈ N,

an � ξ + ε for finitely many n ∈ N.

Because these inequalities hold only for finitely many n ∈ N, there must
be some number in N, say N , such that an > ξ − ε and an < ξ + ε

whenever n > N . That is, |an − ξ| < ε whenever n > N , as required.
Now suppose the condition of the theorem is satisfied. We have to

prove that {an} is convergent, and that lim an = ξ. We are given that
the numbers N and ξ exist. It is possible that aN+1 = aN+2 = · · · = ξ, in
which case {an} has a constant subsequence, so that ξ is a cluster point
for {an}. Moreover, then ξ = lim inf an = lim sup an, since there are only
finitely many other terms of the sequence, namely a1, a2, . . . , aN . If this
is not the case, then the condition ensures that there is a point of the set
{a1, a2, a3, . . . }, besides possibly ξ itself, lying in any ε-neighbourhood
of ξ. Thus again ξ is a cluster point for {an} and again ξ = lim inf an =
lim supan since only finitely many terms of {an} are less than or equal to
ξ− ε or greater than or equal to ξ+ ε. In either case, by Definition 1.7.4,
{an} converges and ξ = lim an.

The number N in the theorem generally depends on the choice made
for ε and as a rule the smaller ε is chosen to be, the larger N turns out
to be. This is the basis for the common rider ‘n → ∞’ when speaking of
the convergence of a sequence {an}. The notion is superfluous with our
development, but will be used whenever it helps to clarify a statement.

The following three examples serve to illustrate Definition 1.7.4 and
Theorem 1.7.5.

(a) The sequence {1/n} converges to 0 because∣∣∣∣ 1n − 0
∣∣∣∣ = 1

n
< ε

whenever n > 1/ε. That is, we may choose N to be an integer
greater than or equal to 1/ε.

(b) The sequence 5, 5, 5, . . . converges to 5 because |5 − 5| = 0 < ε

whenever n > 1. Here, and for any constant sequence, any posi-
tive integer may be chosen for N , regardless of the value of ε.

(c) The sequence {(−1)n} diverges because the requirement, for con-
vergence, that |(−1)n − ξ| < ε whenever n > N cannot be satis-
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fied: whatever value is chosen for ξ, if ε < max{|− 1− ξ|, |1− ξ|}
then there is no value for N that will satisfy the condition.

Before continuing, we give the important analogues for sequences of
Theorems 1.5.9 and 1.5.10. They require nothing further in the way of
proof.

Theorem 1.7.6 If a sequence converges, then it is bounded.

Theorem 1.7.7 Let {an} be a convergent sequence, with lim an = ξ,
and suppose l < an < u for all n ∈ N. Then l � ξ � u.

The following is another useful theorem, worth giving at this stage.

Theorem 1.7.8 Let {an} and {bn} be two convergent sequences, with
lim an = ξ and lim bn = η. If an � bn for all n ∈ N, then ξ � η.

To prove this, suppose ξ > η and set ε = 1
2 (ξ − η). There must exist

an integer n such that an > ξ − ε = 1
2 (ξ + η) and bn < η + ε = 1

2 (ξ + η).
But then bn < an, which is a contradiction. Hence ξ � η.

A simple but useful consequence of Theorem 1.7.6 is that a sequence
which is not bounded must be divergent. In this way, the sequences
{3n − 75} and {2n−8}, for example, may be shown to diverge. Thus
we have a method by which some sequences may be shown to diverge
without reference to the definition or Theorem 1.7.5. Simple criteria that
allow conclusions like this are always worth seeking. The next theorem
gives such a criterion, in this case for certain sequences to be convergent.
We first define the type of sequence to which it will apply.

Definition 1.7.9 A sequence {an} is said to be

(a) nondecreasing if an � an+1 for all n ∈ N,
(b) nonincreasing if an � an+1 for all n ∈ N,
(c) increasing if an < an+1 for all n ∈ N,
(d) decreasing if an > an+1 for all n ∈ N.

Any such sequence is said to be monotone.

The terms in (a) to (d) are very descriptive. For example, the sequence
1, 2, 2, 3, 4, 4, . . . is nondecreasing, and the sequence 1, 1

2 , 1
3 , 1

4 , . . . is de-
creasing.

Now the theorem.
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Theorem 1.7.10 If a sequence is monotone and bounded, then it is
convergent.

We will prove the theorem for a sequence {an} which is nondecreasing
and bounded. The proofs in the other cases are handled similarly. Note
that if {an} is nondecreasing, then a1 � a2, a2 � a3, a3 � a4, and
so on, so that a1 � an for all n ∈ N. Thus a nondecreasing sequence
is automatically bounded below. We are assuming further that {an}
is bounded above. If {an} has only a finite range, then the desired
conclusion is easily obtained, and we omit the details. Otherwise, the
point set {a1, a2, a3, . . . } is bounded and infinite and Theorem 1.5.7 may
be applied: the least upper bound must exist. Write ξ = supan. For
any ε > 0, we must have aN > ξ − ε for some N ∈ N because ξ − ε

cannot also be an upper bound for {an}. But {an} is nondecreasing,
so that aN � aN+1 � aN+2 � · · · , implying that an > ξ − ε for all
n > N . Furthermore, an � ξ < ξ + ε for all n, and in particular for all
n > N . Thus |an − ξ| < ε whenever n > N , and hence, according to
Theorem 1.7.5, {an} converges (and lim an = sup an).

It is important to note the byproduct here, that lim an = sup an.
Thus, to find the limit of a bounded nondecreasing (or increasing) se-
quence, we need only find its least upper bound. Similarly, the limit
of a bounded nonincreasing or decreasing sequence is its greatest lower
bound.

As an application of the theorem, suppose {an} is a bounded sequence,
and define a sequence {bn} by

bn = sup{an, an+1, an+2, . . . }, n ∈ N.

The point set {an, an+1, an+2, . . . } is bounded for each n, so the exis-
tence of bn for each n is guaranteed by Theorem 1.5.7. Furthermore,
it is clear that {bn} is bounded. We will show that {bn} is nonin-
creasing. To do this, note that for any n ∈ N either an � ak for all
k > n, or an < ak for at least one k > n. Thus, either bn = an or
bn = sup{an+1, an+2, . . . } = bn+1, so that certainly bn � bn+1 for all
n ∈ N. That is, {bn} is nonincreasing. Hence we may apply the preced-
ing theorem to the bounded sequence {bn}: we are assured that {bn}
converges (whether or not {an} does).

Write ξ = lim bn, which we now know exists. We will show that in
fact ξ = lim sup an. To this end, choose any number ε > 0. Suppose
that an > ξ − ε for only finitely many n ∈ N. Then there exists N ∈ N
such that an � ξ − ε for all n > N , and in that case, by definition
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of {bn}, we have bn � ξ − ε for all n > N . Suppose also that an � ξ + ε

for infinitely many n ∈ N. Then this would imply that bn � ξ + ε for
infinitely many n ∈ N. Both of these possibilities are contradicted by
the fact that ξ = lim bn. Hence we must have an > ξ − ε for infinitely
many n ∈ N, and an � ξ + ε for only finitely many n ∈ N. These mean
that ξ = lim sup an, as we set out to show.

In this way, we see the justification for the notation lim sup an for
the greatest limit of {an}. That is, we have lim sup an = lim bn, where
bn = sup{an, an+1, an+2, . . . } (n ∈ N): the greatest limit is indeed
a limit of suprema. Some authors bring this out explicitly with the
notation limn→∞ supk�n ak. A similar justification can be given for the
notation lim inf an for the least limit of {an}.

We move on now to prove two theorems which share with the preceding
theorem a fundamental property: the three theorems are all dependent
on the completeness of the real number system. Corresponding results
stated in the context of rational numbers only would not be true.

The first is often referred to as the Bolzano–Weierstrass theorem for
sequences.

Theorem 1.7.11 Every bounded sequence has a convergent subsequence.

Consider the sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . of partial decimals
of

√
2. Within the rational number system, this sequence is not conver-

gent because
√

2 is not rational. It is a bounded monotone sequence,
demonstrating that Theorem 1.7.10 is not true for rational numbers
alone. It demonstrates the same thing for Theorem 1.7.11, because, as
is easy to see, if there were a convergent subsequence its limit would also
have to be

√
2.

For the proof of Theorem 1.7.11, let {an} be a bounded sequence,
and, as above, set bn = sup{an, an+1, an+2, . . . } for n ∈ N. We consider
two possibilities. First, it may be that max{an, an+1, an+2, . . . } exists
for all n ∈ N. In that case, the sequence {bn} is a subsequence of {an},
and, as we have seen above, it is convergent. The second possibility is
that for some N ∈ N, max{aN , aN+1, aN+2, . . . } does not exist. In this
case, set n1 = N ; then let n2 be the smallest integer such that n2 > n1

and an2 > an1 (n2 must exist, for otherwise an � an1 for all n � N so
that bN = an1); then let n3 be the smallest integer such that n3 > n2

and an3 > an2 (n3 must exist, for otherwise an � an2 for all n � N so
that bN = an2). Proceeding in this way, we obtain a subsequence {ank

}
which, being increasing and bounded, is convergent by Theorem 1.7.10.
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This completes the proof of the theorem, since both possibilities lead to
the existence of a convergent subsequence of {an}.

Note the bonus in this proof: we have in fact shown that for any
bounded sequence there exists a convergent subsequence which is mono-
tone.

The next theorem is known as the Cauchy convergence criterion. As
the name implies, and like Theorem 1.7.10, it provides a criterion for a
sequence to converge. Unlike Theorem 1.7.10, it does not require the se-
quence to be monotone. It is a test based on the terms themselves of the
sequence and does not require any foreknowledge, or any guess, of what
the limit of the sequence may be, as is required in Theorem 1.7.5. Essen-
tially the criterion is that the further we progress along the sequence, the
smaller the distances between terms must become. The example above
of a sequence of rational numbers converging to an irrational number
shows that this too is not a property of the system of rational numbers
alone.

Theorem 1.7.12 (Cauchy Convergence Criterion) A sequence {an}
is convergent if and only if for any number ε > 0 there exists a positive
integer N such that

|an − am| < ε whenever m, n > N.

It is easy to see that the condition is necessary. To do so, suppose
{an} is convergent and lim an = ξ. Then, given ε > 0, we know by
Theorem 1.7.5 that a positive integer N exists such that |an − ξ| < 1

2ε

whenever n > N . If n and m are both integers greater than N , then
both |an − ξ| < 1

2ε and |am − ξ| < 1
2ε. Hence

|an − am| = |(an − ξ) + (ξ − am)|
� |an − ξ| + |am − ξ| < 1

2ε + 1
2ε = ε,

proving the necessity of the condition. (The use here of 1
2 ε instead of ε

is a common practice designed to make the analysis look a little tidier.)
Proving the theorem in the opposite direction is more difficult. We

are now assuming the condition: for any ε > 0 there exists N such that
|an − am| < ε whenever m, n > N , and we must prove that {an} con-
verges. We will show first that this condition implies that the sequence
is bounded, so that, by the preceding theorem, it has a convergent sub-
sequence. Using the condition again, this will then be shown to imply
that the sequence {an} itself is convergent.
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Taking ε = 1 (for convenience) in the condition, let a corresponding
integer N be determined so that the condition is satisfied. Then, for any
n > N ,

|an| = |(an − aN+1) + aN+1|
� |an − aN+1| + |aN+1| < 1 + |aN+1|.

(We have taken m = N + 1 in the condition, again for convenience.)
This provides upper and lower bounds for those terms an with n > N .
Hence certainly

|an| � max{|a1|, |a2|, . . . , |aN |, 1 + |aN+1|}
for all n ∈ N, so the sequence {an} is bounded. Therefore it has a con-
vergent subsequence, {ank

} say. Let ξ be the limit of this subsequence.
We will show that an → ξ. Let ε > 0 be given and let N and K be
integers such that

|an − am| < 1
2ε whenever m, n > N,

|ank
− ξ| < 1

2ε whenever k > K.

Then, provided k is such that k > K and nk > N , we have, whenever
n > N ,

|an − ξ| = |(an − ank
) + (ank

− ξ)|
� |an − ank

| + |ank
− ξ| < 1

2ε + 1
2ε = ε.

By Theorem 1.7.5, this means that the sequence {an} converges, as
required.

We turn briefly now to complex-valued sequences.
It is quite possible to develop a point set theory for sets of complex

numbers, each number being thought of as a point in the plane. In this
way, a cluster point can be defined leading to a form of the Bolzano–
Weierstrass theorem after adapting an axiom of completeness like the
Nested Intervals Axiom. However, it is important to realise that we
could not go much further with a development parallel to that for real
numbers, because there is no notion of upper and lower bounds or of least
and greatest limits for sets of complex numbers. For real numbers, these
notions depended on the fact that the real number system is ordered (by
the ordering symbol < and its properties). But no such ordering idea
exists for complex numbers.

It is not possible therefore to arrive at a definition for convergence of
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complex-valued sequences like that of Definition 1.7.4 for real-valued se-
quences, and we must look elsewhere for a satisfactory way to proceed. It
is highly significant that we look no further than Theorem 1.7.5, adapt-
ing this almost verbatim as a definition, not a theorem, for convergence
of complex-valued sequences. This is strongly indicative of the method
to be adopted later in much more general contexts.

Definition 1.7.13 A complex-valued sequence {zn} is said to be
convergent to ζ if for any number ε > 0 there exists a positive inte-
ger N such that

|zn − ζ| < ε whenever n > N.

We then write lim zn = ζ or zn → ζ and call ζ the limit of {zn}.

Of course, ζ may be a complex number. The rider ‘n → ∞’ is often
added for clarification.

There is no need to say more at this stage specifically about complex-
valued sequences. The point has been made that we are not able to
set up a definition of convergence which exactly parallels that for real-
valued sequences, but nonetheless it is the real-valued theory which sub-
sequently suggests an adequate definition. The adequacy can be seen by
showing that analogues of Theorem 1.7.11 and Theorem 1.7.12 can be
deduced using Definition 1.7.13. This can be done by first showing that
the convergence of a complex-valued sequence {zn} is equivalent to the
convergence of both real-valued sequences {an} and {bn}, where we set
zn = an + ibn for each n ∈ N. But all this will be seen as byproducts of
our more general theory in the coming chapters.

Only one thing remains to complete this section. The following theo-
rem allows us to reduce considerably the work involved in determining
or estimating the limit of a convergent sequence.

Theorem 1.7.14 Let {sn} and {tn} be convergent sequences (real-valued
or complex-valued) with lim sn = s and lim tn = t. Then

(a) if un = sn+tn for all n ∈ N, then the sequence {un} is convergent
and limun = s + t;

(b) if vn = sntn for all n ∈ N, then the sequence {vn} is convergent
and lim vn = st; and

(c) when tn �= 0 for any n ∈ N and t �= 0, if wn = sn/tn for all
n ∈ N, then the sequence {wn} is convergent and lim wn = s/t.



44 1 Prelude to Modern Analysis

We will not prove this theorem. The proof is standard and is available
in most textbooks on the subject. The relevance of the theorem to our
development is that it provides the first occurrence of the need to add,
multiply or divide terms of sequences. Up to this point the only arith-
metic operation we have used on sequence-values has been the taking of
absolute differences, in expressions such as |an − ξ| and |an − am|. This
operation has an important alternative interpretation: we have only been
concerned with the distance between numbers. It is the recognition of
this fact that prompts the whole theory of metric spaces that we begin
in the next chapter: a metric space is a set where the only additional
notion we are given is that of a distance between pairs of its elements.

This will be the first space treated here in the hierarchy of spaces that
we have spoken of. It will be some time later (Chapter 6) when we first
introduce the notion of adding elements of a set together.

Review exercises 1.7

(1) Find a positive integer N such that |(2n− 3)/(n + 1)− 2| < ε for
all n > N , when (a) ε = 10−1, (b) ε = 10−6.

(2) Suppose {an} and {bn} are sequences for which there exist num-
bers ξ, B and N (B ∈ R+, N ∈ N) so that |an − ξ| � B|bn| for
all n > N . Suppose also that lim bn = 0. Prove that lim an = ξ.

(3) Suppose {an} is a sequence of nonnegative numbers for which
{(−1)nan} converges. Show that {an} converges.

(4) Define a sequence {an} by a1 =
√

2 and an+1 =
√

2 + an, for
n � 1. Show that {an} is bounded and increasing. Hence show
that an → 2.

(5) Let the sequence {an} be such that |an+1 − an| < rn for all
n ∈ N, where 0 < r < 1. Take any ε > 0. Show that there exists
a positive integer N such that |an − am| < ε whenever m, n > N .

1.8 Series

The definition of a series involves the adding together of terms of a
sequence so that, as suggested at the end of the preceding section, we
will not see any generalisation of the notion of a series until Chapter 6.
However, series of real numbers will occur quite early in the next chapter,
and series of complex numbers will arise in Chapter 8, so this section
serves to review the latter concepts and to suggest relevant definitions
when we come to the more general context.
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Until we point out a change, the following definitions and results apply
equally to real or complex numbers.

Definition 1.8.1 By a series (or infinite series), we mean an ordered
pair ({an}, {sn}) of sequences, where {an} is any sequence of numbers
and

sn = a1 + a2 + · · · + an =
n∑

k=1

ak

for n ∈ N. The series is more commonly denoted by
∞∑

k=1

ak or a1 + a2 + a3 + · · · ,

or simply
∑

ak, when there is no likelihood of confusion. The num-
ber an is called the nth term of the series

∑
ak. The number sn is

called the nth partial sum of the series
∑

ak.
The series

∑
ak is said to converge, or to be convergent, if the

sequence {sn} converges, and then the number lim sn is called the sum
of the series, also denoted by

∑∞
k=1 ak or

∑
ak. If the sequence {sn}

diverges, then the series
∑

ak is said to diverge, or to be divergent.

The ‘more common’ notation is in fact used universally, because of its
suggestion that a series is a limiting sum of a sequence. Given a se-
quence {an}, we form the sequence {sn} of partial sums (where s1 = a1,
s2 = a1 + a2, s3 = a1 + a2 + a3, etc.). Then the convergence or diver-
gence of the series

∑
ak is determined by the convergence or divergence,

respectively, of the sequence {sn}, and the limit of the sequence {sn}, if
it exists, is the sum of the series

∑
ak.

Since the convergence or divergence of a series is defined in terms
of the convergence or divergence of a sequence, many of our results on
sequences carry over without further proof to give results on series. For
example, with only a slight adjustment, applying Theorem 1.7.12 to the
sequence of partial sums, leads to the following theorem. It is also often
referred to as a Cauchy convergence criterion.

Theorem 1.8.2 A series
∑

ak is convergent if and only if for any
number ε > 0 there exists a positive integer N such that∣∣∣∣ n∑

k=m

ak

∣∣∣∣ < ε whenever n � m > N.
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Using the earlier result, it is only necessary to observe that
n∑

k=m

ak = am + am+1 + · · · + an = sn − sm−1,

where {sn} is the associated sequence of partial sums.

This theorem quickly allows us to conclude as follows that the har-
monic series

∑∞
k=1 1/k is divergent. We notice that

2m∑
k=m

1
k

=
1
m

+
1

m + 1
+ · · · + 1

2m

>
1

2m
+

1
2m

+ · · · + 1
2m

=
m + 1
2m

>
1
2
.

Then, choosing ε to satisfy 0 < ε � 1
2 , we see that no matter what value

we try for N we cannot have
∑n

k=m 1/k < ε whenever n � m > N . That
is, we cannot satisfy the convergence criterion, so the series is divergent.

In Theorem 1.8.2, if the series is convergent then the criterion must
hold in particular for m = n. That observation immediately gives us the
following.

Theorem 1.8.3 If a series
∑

ak is convergent, then for any number
ε > 0 there exists a positive integer N such that

|an| < ε whenever n > N.

To paraphrase this: if
∑

ak is convergent, then an → 0. Importantly,
we can put this still another way (the contrapositive way) and say that
if {an} is a sequence not converging to zero, then the series

∑
ak cannot

be convergent.
The converse is not true: nothing can be said about the convergence

or divergence of the series
∑

ak if we know only that an → 0. The
harmonic series is an example of this: we have 1/n → 0, but

∑
1/k

diverges.
We also use Theorem 1.8.2 to provide a simple proof that a series

converges if it is absolutely convergent. The latter term must be defined:

Definition 1.8.4 A series
∑

ak is called absolutely convergent if
the series

∑ |ak| is convergent. A series which is convergent but not
absolutely convergent is called conditionally convergent.

Suppose
∑

ak is absolutely convergent. This means that
∑ |ak| is con-

vergent, so that, by Theorem 1.8.2, for any ε > 0 there is a positive
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integer N such that∣∣∣∣ n∑
k=m

|ak|
∣∣∣∣ = n∑

k=m

|ak| < ε whenever n � m > N.

Using the extension of the inequality |a + b| � |a|+ |b| to a sum of more
than two numbers, we then have∣∣∣∣ n∑

k=m

ak

∣∣∣∣ � n∑
k=m

|ak| < ε whenever n � m > N,

and, again applying Theorem 1.8.2, this implies that
∑

ak is convergent.
As required, we have proved the following theorem.

Theorem 1.8.5 A series is convergent if it is absolutely convergent.

It is interesting to trace the chain of theorems that led to this result.
Look at Figure 3. All the numbers refer to theorems, except the one at
the beginning of the chain, which is our Nested Intervals Axiom, and
the one in the centre, which is our definition of the limit of a sequence.
Rather dramatically, this shows the supreme role played by the notion
of completeness of the real number system and the central role played by
the notion of convergence of a sequence. The main point to be made at
this time is the ultimate dependence of Theorem 1.8.5 on our assumption
that there are no holes in the real number system (at least, according
to our treatment of this topic), and this is an assumption that would
appear to be totally unrelated to the content of Theorem 1.8.5.

1.5.4

1.8.5 1.5.3

1.8.2 1.7.4 1.5.7

1.7.12 1.7.5 1.7.10

1.7.11

Figure 3

Returning to that theorem, we point out that the converse is not
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true (a convergent series certainly need not be absolutely convergent),
and indeed provision was made in Definition 1.8.4 for convergent series
which are not absolutely convergent: they are termed ‘conditionally’
convergent. A simple example is the series

∑
(−1)k+1/k. This is shown

to be convergent in most standard texts. For absolute convergence we
would require the series

∑ |(−1)k+1/k|, that is
∑

1/k, to be convergent,
and this is not the case.

The remainder of this section (except the last paragraph) applies only
to series

∑
ak where {an} is a real-valued sequence.

By a positive series, we mean a series
∑

ak in which an > 0 for all
n ∈ N. The advantage in working with positive series is that there are
numerous tests which allow us to determine whether they converge or
diverge, without recourse to the definition. All these tests use the basic
comparison test, to be given below, and this in turn relies on the fact
that, for a positive series

∑
ak, the associated sequence {sn} of partial

sums is increasing (since sn+1 = sn + an+1 > sn for all n ∈ N). Hence
Theorem 1.7.10 may be employed to assure us that a positive series is
convergent if its sequence of partial sums is bounded.

Theorem 1.8.6 (Comparison Test) Let
∑

ak and
∑

bk be two posi-
tive series, with an � bn for all n greater than some integer N . Then

(a) if
∑

bk converges, so does
∑

ak;
(b) if

∑
ak diverges, so does

∑
bk.

To prove (a), set

sn =
n∑

k=1

ak, tn =
n∑

k=1

bk,

for all n ∈ N, so that, with n > N ,

sn − sN = aN+1 + aN+2 + · · · + an,

tn − tN = bN+1 + bN+2 + · · · + bn.

Then 0 < sn − sN � tn − tN for all n > N since 0 < am � bm for
all m > N . Since we are given in (a) that

∑
bk converges, we have

by definition that the sequence {tn} is convergent, and hence bounded
(Theorem 1.7.6). That is, there is a number K such that 0 < tn � K

for all n ∈ N, and so 0 < sn � K − tN + sN for n > N . Hence

0 < sn � max{s1, s2, . . . , sN , K − tN + sN}
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for all n ∈ N, and so the sequence {sn} is also bounded. As we just
stated, this implies that {sn}, and thus the series

∑
ak, is convergent.

This proves (a), and then (b) follows immediately since if the series
∑

bk

were convergent then so would be the series
∑

ak, giving a contradiction.

As an example, we will show that the series
∑

1/k2 is convergent. It
is not easy to apply the definition directly to show this, but we can show
directly that the series

∑
2/k(k+1) converges, and can then use this in

a comparison test. We have only to note that

n∑
k=1

2
k(k + 1)

= 2
n∑

k=1

(
1
k
− 1

k + 1

)
= 2
((

1 − 1
2

)
+
(

1
2
− 1

3

)
+ · · · +

(
1
n
− 1

n + 1

))
= 2
(

1 − 1
n + 1

)
→ 2.

That is, the sequence of partial sums of
∑

2/k(k + 1) converges, so
the series converges (and its sum is 2). Then we note that, for k � 1,

1
k2

� 2
k(k + 1)

,

since this is equivalent to k + 1 � 2k. Hence, by the comparison test,∑
1/k2 converges.
The series

∑
1/k, which we know diverges, and the series

∑
1/k2,

which we have just shown converges, are very commonly used in com-
parison tests to show that other series are divergent or convergent. An-
other series which is used very often in this regard, and with which we
assume familiarity, is the geometric series

∞∑
k=0

axk = a + ax + ax2 + · · · ,

where a and x are real. This converges for any x in the open interval
(−1, 1), and diverges otherwise. Its sum, when it converges, is a/(1−x).
(Note that ‘k = 0’ in the summation, instead of the usual ‘k = 1’, has
the natural meaning indicated.)

We will consider here only one of the tests of convergence and di-
vergence deducible from the comparison test. (Others are given in the
exercises at the end of this section.)
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Let
∑

ak be a positive series and set

rn =
an+1

an

for all n ∈ N. If there exists a number r, with 0 < r < 1, such that
rn � r for all n greater than some positive integer N , then the series∑

ak is convergent; if rn � 1 for all n greater than some integer N , then
the series

∑
ak is divergent.

This is known as the ratio test. It is proved, in the test for convergence,
by noting that

an =
an

an−1

an−1

an−2

an−2

an−3
· · · aN+2

aN+1

aN+1

aN
aN � rn−NaN ,

when n > N . Then a favourable comparison may be made between the
series

∑
ak and the geometric series

∑
aNr−N rk, which converges since

0 < r < 1. To prove the test for divergence, we note that rn � 1 when
n > N so that an+1 � an � · · · � aN+1 > 0. Hence we cannot possibly
have an → 0 (which, by Theorem 1.8.3, is necessary for the convergence
of
∑

ak).
As an application of the ratio test, we prove that the series

∞∑
k=0

xk

k!

converges for any value of x. Since the test applies only to positive series,
we consider instead the series

∞∑
k=0

|x|k
k!

,

for x �= 0, and may set r = 1
2 (for convenience). We have

|x|n+1

(n + 1)!

/ |x|n
n!

=
|x|

n + 1
� 1

2

whenever n � 2|x|−1, and so (choosing N to be an integer greater than
2|x| − 1), we have proved the convergence of the latter series. Conver-
gence for x = 0 is clear, so that in effect we have proved the original
series to be absolutely convergent. Hence, by Theorem 1.8.5, that series
converges for any value of x.

This means that we may define a real-valued function, traditionally
denoted by exp, by the equation

exp(x) =
∞∑

k=0

xk

k!
, x ∈ R.
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We will assume here the fact, found in calculus texts, that

exp(x) = ex

for all x ∈ R.
In a similar way, functions sin and cos are defined by the equations

sin(x) =
∞∑

k=0

(−1)kx2k+1

(2k + 1)!
, x ∈ R,

cos(x) =
∞∑

k=0

(−1)kx2k

(2k)!
, x ∈ R.

These are just the familiar sine and cosine functions.
Though not relevant to our development, we end this section by re-

calling the binomial theorem, which is to be used in Chapter 6. It states
that, for any numbers a and b and any positive integer n,

(a + b)n = an +
(

n

1

)
an−1b +

(
n

2

)
an−2b2 + · · · +

(
n

n − 1

)
abn−1 + bn,

where we have used the binomial coefficient(
n

r

)
=

n!
r!(n − r)!

, r = 0, 1, 2, . . . , n.

(Recall that 0! = 1.)

Review exercises 1.8

(1) Show that
∞∑

k=1

1
k(k + 2)

=
3
4
,

∞∑
k=1

1
k(k + 1)(k + 2)

=
1
4
.

(2) (a) Let
∑

ak and
∑

bk be two positive series, with an � Cbn

for all n ∈ N and some positive number C. Show that
if
∑

bk converges then
∑

ak converges, and if
∑

ak di-
verges then

∑
bk diverges.

(b) Let
∑

ak and
∑

bk be two positive series, with the prop-
erty that lim(an/bn) = 1. Use (a) to show that

∑
ak

converges if and only if
∑

bk converges. (This is the limit
comparison test.)

(3) (a) Prove the root test for convergence: Let
∑

ak be a positive
series. If a

1/n
n < r for all n ∈ N and some number r,

0 < r < 1, then
∑

ak is convergent.
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(b) Hence show that the series a+b+a2+b2+a3+b3+a4+· · · ,
where 0 < a < b < 1, is convergent.

(4) Determine whether the following series are absolutely convergent,
conditionally convergent or divergent:

∞∑
k=1

(−1)k+1

√
k2 + 1

,

∞∑
k=1

(−1)k+1

k2 + 1
,

∞∑
k=1

(−1)k+1k√
k2 + 1

.

1.9 Functions of a real variable

We are mainly concerned in this section with certain properties of a
function f : D → R, where usually D ⊆ R. These are the classical real-
valued functions of a real variable. The more important results for our
purpose require D to be a compact set, but most comments will be valid
for any point set D. We recall that the graph of f is the subset of R2

consisting of points (x, f(x)) for x in the domain D of f . This has a
common pictorial representation, the details of which will be assumed.

There will be a brief reference, at the end of the section, to real-valued
functions of two or more real variables and to complex-valued functions
of a real variable. However, unless we specify otherwise, the domain and
range of any function are to be taken as sets of real numbers.

We begin by giving the definition of a continuous function. Continuity
of a function (and of a mapping generally) is one of the most important
notions of analysis, so the following discussion paves the way for our use
of continuous functions in applications and also indicates apt definitions
to come in the following chapters.

Definition 1.9.1 A function f is said to be continuous at a point x0

in its domain if for any number ε > 0 there exists a number δ > 0
such that, whenever x is in the domain of f and |x−x0| < δ, we have
|f(x) − f(x0)| < ε.

This is the usual definition, to be thought of in rough terms as saying
that f(x) will be close in value to f(x0) whenever x is close to x0. For
our purposes, with our emphasis on the convergence of sequences, the
alternative provided by the following theorem is often more useful.

Theorem 1.9.2 A function f is continuous at a point x0 in its domain
if and only if, whenever {xn} is a convergent sequence in the domain
of f with limxn = x0, then {f(xn)} is also a convergent sequence and
lim f(xn) = f(x0).
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Briefly: f is continuous at x0 if and only if f(xn) → f(x0) whenever
xn → x0.

To prove this, suppose first that f is continuous at x0 and let {xn}
be any sequence in the domain of f , convergent to x0. For each n ∈ N,
f(xn) is a point in the range of f , so {f(xn)} is a well-defined sequence,
which we need to show converges to f(x0). Let ε > 0 be given. Since
f is continuous at x0, there exists δ > 0 such that |f(x) − f(x0)| < ε

whenever |x − x0| < δ (and when x is in the domain of f). Also, since
{xn} is a convergent sequence in the domain of f , and limxn = x0, there
exists a positive integer N such that |xn − x0| < δ whenever n > N .
Therefore, provided n > N , we have |f(xn)− f(x0)| < ε and this proves
that the sequence {f(xn)} converges, with limit f(x0).

Suppose next, in proving the converse, that f is not continuous at x0.
We will show that there exists a sequence {xn} in the domain of f , con-
verging to x0, but such that the sequence {f(xn)} is not convergent. This
will complete the proof of the theorem. To say that f is not continuous
at x0 means that there exists a number ε0 > 0 such that, whatever the
number δ > 0, there is a number x in the domain of f with |x− x0| < δ

but for which |f(x) − f(x0)| � ε0. For this ε0, choose δ = 1/n, and let
xn be such a number x, so that |xn − x0| < δ but |f(xn) − f(x0)| � ε0.
In this way, we have constructed sequences {xn} and {f(xn)}: the se-
quence {xn} converges to x0 but the sequence {f(xn)} cannot be con-
vergent. This is what we set out to do.

We say that a function is continuous on a subset of its domain if it is
continuous at every point of that subset. Such a subset, which may be
the whole domain, is commonly an open or closed interval. The function
is said to be discontinuous at any point of its domain at which it is not
continuous, and such a point is called a discontinuity of the function.

As an example, we can introduce here the greatest-integer function. It
has domain R and range Z and is denoted by [x], where x ∈ R. This is
defined to be the integer in the half-open interval (x−1, x]. Thus, [3.24] is
the integer in (2.24, 3.24], namely 3, and similarly [−7.8] = −8, [π] = 3,
[28] = 28. The greatest-integer function [x] is discontinuous when x ∈ Z.
To see this, let c be any integer and consider the sequence {c− 1/n}, or
c − 1, c − 1

2 , c − 1
3 , . . . . Clearly, c − 1/n → c, but [c − 1/n] = c − 1 for

all n ∈ N since c is an integer. At any other value, not an integer, the
greatest-integer function is continuous.

The sum, product and quotient of two functions are defined as follows.
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Definition 1.9.3 If f and g are two functions, then their sum f + g,
product fg and quotient f/g are functions defined by the equations

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),(
f

g

)
(x) =

f(x)
g(x)

.

Their domains are the intersection of the domains of f and g, exclud-
ing, in the case of f/g, points x where g(x) = 0.

We can use precisely the same definitions for functions f : X → R and
g : X → R, where X is any set. Then f+g, fg and f/g are also functions
from X into R, except that points x where g(x) = 0 are excluded from
the domain of f/g.

A constant function is a function k with domain R such that k(x) = c

for all x ∈ R and some number c. The preceding definition of the
product of two functions includes the case where one of the functions is
the constant function k. Thus kg is the function, whose domain is the
domain of g, such that (kg)(x) = cg(x). This function is usually written
simply as cg, such as 3g or (−5)g. When c = −1, we write −g instead
of (−1)g.

By simply combining Theorems 1.7.14 and 1.9.2, we obtain the fol-
lowing.

Theorem 1.9.4 If f and g are functions which are continuous on their
domains, then the functions f + g, fg and f/g are continuous on their
domains.

This result is useful in determining whether a complicated-looking
function is continuous, since we may be able to decompose it into sums,
products or quotients of simpler functions which are known to be con-
tinuous.

We also note the following. If f is a given function, then by |f | we
mean the function given by

|f |(x) = |f(x)|,
and having the same domain as f . It is easy to show that |f | is contin-
uous at any points where f is.

As we have mentioned, we are particularly interested in functions
whose domains are compact sets, but for the discussion here we will take
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a slightly simpler approach and suppose those sets are closed intervals.
When the functions are continuous, they possess properties which are
made use of in a vast number of applications, as we will see. Moreover,
these are properties which may readily be generalised and we carry out
that generalisation in Chapter 4. The interest in closed intervals rests on
the fact that if {xn} is a real-valued sequence such that xn ∈ [a, b], say,
for all n, then limxn, when it exists, is also a point of [a, b]. This follows
from Theorem 1.7.7. In contrast, we cannot always say that the limit of
a sequence of points in an open interval also belongs to the interval.

The following theorems give two of those properties. The first refers
to bounded functions: a function f : D → R is bounded if |f(x)| � M

for some positive number M and all x ∈ D.

Theorem 1.9.5 If the domain of a function is a closed interval and the
function is continuous on the interval, then it is bounded.

Theorem 1.9.6 If the domain of a function is a closed interval and the
function is continuous on the interval, then it attains its minimum and
maximum values.

To say that f attains its minimum and maximum values means that
there exist points xm and xM in the domain, [a, b] say, such that

f(xm) = min
x∈[a,b]

f(x) and f(xM ) = max
x∈[a,b]

f(x).

We will discuss the theorems before giving their proofs. Theorems like
these two should be looked on as useful not only for the conclusions they
state, but for the conditions they give as sufficient for those conclusions
to hold. Drop either of the conditions (the domain being a closed interval
and the function being continuous), and the conclusion can no longer be
guaranteed.

For example, consider the functions

g1(x) =
1
x

, 0 < x � 1;

g2(x) = x, 0 < x < 1;

g3(x) =


1
x

, |x| � 1, x �= 0,

0, x = 0.

The domain of g1 is the half-open interval (0, 1]. This function is
continuous on its domain, since if x0 is any point in it (so 0 < x0 � 1)
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and {xn} is a sequence in the domain converging to x0 (so 0 < xn � 1
for all n ∈ N and xn → x0), then

g1(xn) =
1
xn

→ 1
x0

= g1(x0),

that is, the sequence {g1(xn)} converges to g1(x0). However, the func-
tion is not bounded, since we cannot have |g1(x)| � M for all x ∈ (0, 1]
no matter what the value of M > 0: just take x ∈ (0, 1/M) (assuming
M � 1) so that

|g1(x)| =
∣∣∣∣ 1x
∣∣∣∣ = 1

x
> M if 0 < x <

1
M

.

Also, the function does not attain its maximum value, since in fact not
even supx∈(0,1] g1(x) exists. However, g1 does attain its minimum; it is
the value g1(1) = 1.

The function g2 is continuous, but its domain is not a closed interval.
It is easy to see that infx∈(0,1) g2(x) = 0 and supx∈(0,1) g2(x) = 1, but we
do not have g2(x) = 0 or g2(x) = 1 for any x ∈ (0, 1). So g2 is bounded,
but does not attain its maximum or minimum values.

For g3, the domain is the closed interval [−1, 1], but the function
is discontinuous at 0. To see that it is discontinuous at 0, consider
the sequence {1/n}, all of whose terms are in the domain of g3, and
which converges to 0. However, g3(1/n) = n for all n ∈ N, so certainly
{g3(1/n)} does not converge to g3(0) = 0. Like g1, this function is not
bounded.

For the proof of Theorem 1.9.5, to be specific consider the func-
tion f : [a, b] → R and suppose that f is continuous on [a, b] but not
bounded. We will obtain a contradiction. Since f is not bounded, for
any n ∈ N there exists a point xn ∈ [a, b] such that |f(xn)| > n. This
gives rise to a bounded sequence {xn}. (Do not confuse the different
uses of the word ‘bounded’.) It follows from the Bolzano–Weierstrass
theorem for sequences (Theorem 1.7.11) that there is a convergent subse-
quence {xnk

} of this sequence, and its limit, x0 say, must belong to [a, b].
Since f is continuous at x0, we have xnk

→ x0 (as k → ∞), and hence
f(xnk

) → f(x0). The convergent sequence {f(xnk
)} must be bounded

(Theorem 1.7.6), so we cannot have |f(xnk
)| > nk for all k ∈ N, since

nk may be as large as we please. This is the desired contradiction arising
from the assumption that f is not bounded.

We now use this result in the proof of Theorem 1.9.6. The proof
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will be given only in the case of the maximum value, the proof for the
minimum value being analogous.

Let the continuous function be f : [a, b] → R. By the preceding result,
we know that f is bounded on [a, b]. That is, the set {f(x) : a � x � b} is
bounded, so its least upper bound, M say, exists (Theorem 1.5.7). Thus
f(x) � M for all x ∈ [a, b]. The theorem will follow if we can show that
f(xM ) = M for some xM ∈ [a, b]. If this is not true, so that M−f(x) > 0
for all x ∈ [a, b], then the function g, where g(x) = 1/(M − f(x)),
a � x � b, is continuous by Theorem 1.9.4. Then it too is bounded, by
the preceding result, so 1/(M − f(x)) � C, say, with C > 0. It follows
that f(x) � M −1/C for all x ∈ [a, b], and this contradicts the fact that
M is the least upper bound of the set {f(x) : a � x � b}.

Again it is worth noting the ultimate dependence of these results on
our axiom of completeness (Axiom 1.5.4), via Theorems 1.7.11 and 1.5.7.

There are corresponding definitions and results for real-valued func-
tions of two or more real variables. Without going into much detail,
we will give some of the theory for functions of two variables. Such a
function is f : D × E → R, where D and E are sets of real numbers
so that the domain is a set of ordered pairs of real numbers. The im-
age of (x, y) under f is written as f(x, y), rather than the more strictly
correct f((x, y)).

The function f is continuous at a point (x0, y0) in its domain if for
any number ε > 0 there exists a number δ > 0 such that, whenever
(x, y) is in the domain of f and both |x − x0| < δ and |y − y0| < δ,
then |f(x, y) − f(x0, y0)| < ε. An equivalent formulation may be given
in terms of sequences (but will be omitted here). When D and E are
closed intervals, it may be shown that if f is continuous on its domain
then it is bounded. Here, that means there exists a number M > 0 such
that |f(x, y)| � M for all points (x, y) in the domain of f . We will make
considerable use of this result in our examples and applications. It is
of course the obvious analogue of Theorem 1.9.5, and is also a special
instance of a theorem to be proved in Chapter 4.

It is necessary to mention also in this section that in many of our
examples and applications we will make use of elementary properties of
the following.

(a) The functions exp, log, sin and cos.

(b) The derivative of a function, and its left and right derivatives. (A
function is said to be differentiable on a closed interval [a, b] if its
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right derivative exists at a, its derivative exists at each point of
(a, b) and its left derivative exists at b.)

(c) The definite integral of a function over an interval. (A function
is said to be integrable over an interval if its integral exists on
that interval. All integrals in this book are Riemann integrals,
which may be thought of as the usual integrals of a first calculus
course.)

(d) Partial derivatives.

(e) Double integrals.

(f) Ordinary differential equations.

These topics are too large to be able to review them adequately here.
In any case, such a review would not be pertinent to our mainstream
since our general theory will not specifically use any of these concepts
and no generalisations of them will be given (though many have been
developed). Other than for the simplest properties, we will however
carefully describe whatever result is being used at its first occurrence.
Our notation for derivatives and integrals will be quite standard.

A topic that we will be generalising in Chapter 9 is that of Fourier
series, and some acquaintance with the classical treatment of trigono-
metric Fourier series will be helpful there.

There is little that needs to be said about complex-valued functions
of a real variable. The imaginary unit i may be treated as an ordinary
constant and any property common to the real-valued functions given
by the real and imaginary parts of the original function may be taken as
true for that function also. For example, for the function f : [a, b] → C,
if the functions fr : [a, b] → R given by fr(x) = Re f(x) (x ∈ [a, b]) and
fj : [a, b] → R given by fj(x) = Im f(x) (x ∈ [a, b]) are both integrable
over [a, b], then f will be integrable over [a, b], and∫ b

a

f(x) dx =
∫ b

a

fr(x) dx + i

∫ b

a

fj(x) dx.

Although we will generally be precise in our handling of functions,
speaking of ‘the function f ’, for example, there will be occasions where
a looser (and common) approach is more immediately suggestive and
elegant, and we will drop our formalities on those occasions. For exam-
ple, it is easier to speak of the set of functions {1, x, x2, . . . } than the
set {fk : fk(x) = xk, k = 0, 1, 2, . . . }. And we have already used the
notation [x] for the greatest-integer function.
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Review exercises 1.9

(1) Let the function f : D → R be continuous at x0 ∈ D ⊆ R, and
suppose f(x0) > 0. Show that there exists a number δ > 0 such
that f(x) > 0 for x ∈ (x0 − δ, x0 + δ) ∩ D.

(2) Let the function f : [a, b] → R be continuous on [a, b]. Suppose
there is a number c, 0 < c < 1, with the property that for every
x ∈ [a, b] there exists y ∈ [a, b] such that |f(y)| � c|f(x)|. Show
that f(x0) = 0 for some x0 ∈ [a, b].

(3) Take D ⊆ R. For a function f : D → R such that f(x) � 0 for all
x ∈ D, the function

√
f : D → R is defined by

√
f(x) =

√
f(x),

for x ∈ D. If, further, f is continuous at x0 ∈ D, show that
√

f

is continuous at x0.
(4) Use trigonometric identities and the fact that | sin x| � |x| for

all x ∈ R to show that the functions sin and cos are continuous
on R.

1.10 Uniform convergence

A sequence was defined as a mapping whose domain is the set N. We
said that the range of a sequence may be any set. Until now, we have
only considered sequences where the range was a set of real or complex
numbers, but we intend in this section to look at sequences which have as
their range a set of real-valued functions of a real variable. All functions
in this section will be of that type.

Let C[a, b] denote the set of all real-valued functions whose domain is
the closed interval [a, b] and which are continuous on that domain. We
could, for example, consider properties of a sequence F : N → C[a, b].
Writing F (1) = f1, F (2) = f2, and so on, in the usual way, this is a
sequence {fn} in which every term is a function continuous on [a, b].

We have as yet no notion of convergence for such a sequence. It
may seem strange at first that we are soon to define two different ways
in which a sequence of functions may be said to converge. It may be
possible for a sequence to be deemed convergent under one definition
but not under the other, but if it is convergent under both definitions
then it will turn out that the limit is a function which is the same in
both cases. In our example where the range is a subset of C[a, b], it will
be of interest to know whether the limit, if it exists, is again a member
of C[a, b]. We will see that this is assured under one of the definitions
but not the other. This question has some similarity with our earlier
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concern as to whether the limit of every convergent sequence of real
numbers chosen from some interval was also a member of that interval:
the answer was ‘yes’ only when the interval was closed. Such questions
are typical of those that will be asked, and answered, in more general
contexts later on.

Let {fn} be a sequence of functions, all having the same domain D.
For any x0 ∈ D, the numbers f1(x0), f2(x0), f3(x0), . . . , that is, the
images of x0 under the terms of the sequence, themselves form a sequence
of real numbers. This sequence {fn(x0)} is precisely the same type of
sequence as those we have considered earlier, and of course we have
a definition of convergence for such sequences. Possibly, whatever the
point x ∈ D, the real-valued sequence {fn(x)} will converge. In that
case, there exists a function f , with domain D, such that

f(x) = lim fn(x).

This suggests the first of the definitions: in this situation, the sequence
of functions is termed convergent and the function f is called the limit
of the sequence. Because we have another definition coming up, this one
is distinguished by referring to pointwise convergence and the pointwise
limit. We notice that for pointwise convergence we need nothing more
than our earlier idea of convergence of real-valued sequences.

This definition may be written formally as follows. A sequence {fn}
of functions with domain D is said to converge pointwise to a function f

with domain D if, given a number ε > 0, for each x ∈ D there exists a
positive integer N(x) such that

|fn(x) − f(x)| < ε whenever n > N(x).

We write lim fn = f or fn → f and call f the pointwise limit of {fn}.
Otherwise the sequence is termed divergent.

Compare this with the second definition.

Definition 1.10.1 A sequence {fn} of functions with domain D is
said to converge uniformly to a function f with domain D if, given
a number ε > 0, there exists a positive integer N such that, for all
x ∈ D,

|fn(x) − f(x)| < ε whenever n > N.

We write fn ⇒ f and call f the uniform limit of {fn}.
There is a crucial difference in the wording of this second form of conver-
gence, which we note is to be called ‘uniform convergence’ to distinguish
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it from pointwise convergence. This is in the phrases ‘for each x ∈ D

. . . N(x)’ and ‘N . . . for all x ∈ D’. By N(x) in the definition of point-
wise convergence we mean, in the usual way, the value of a function
N : D → N at x. That is, the number N required in showing that the
sequence {fn(x)} converges depends on the number x ∈ D (as well as
on the choice of ε). For uniform convergence, however, the N that needs
to be determined may depend on the choice of ε but must not depend
on the number x ∈ D.

As an example, consider the sequence {fn}, where

fn(x) =
nx

nx + 1
, 0 � x � 1.

Graphs of fn, for n = 1, 3, 10, 20, 100, are given in Figure 4. The
sequence is pointwise convergent, with pointwise limit f where

f(x) =

{
0, x = 0,

1, 0 < x � 1.

To see this, we observe that, given ε > 0, |fn(0) − f(0)| = 0 < ε for n
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larger than any positive integer, while, when 0 < x � 1,

|fn(x) − f(x)| =
∣∣∣∣ nx

nx + 1
− 1
∣∣∣∣ = 1

nx + 1
<

1
nx

< ε

provided n > 1/εx. Then, in the definition of pointwise convergence,
we can define the function N by N(0) = 1 and N(x) = 1 + [1/εx] for
0 < x � 1. (We have made use of the greatest-integer function [x].)
Although here N depends explicitly on x, this does not deny that a
different approach might come up with an expression for N which does
not depend on x. That is, we have not shown that {fn} is not uniformly
convergent. We can do this by first noting that∣∣∣∣fn

(
1
n

)
− f

(
1
n

)∣∣∣∣ = 1
2
.

Then, setting ε = 1
2 , we cannot possibly find N so that |fn(x)−f(x)| < 1

2

for all x in the domain [0, 1] and all n > N .
The dots in Figure 4 indicate the pointwise convergence of {fn} to f ,

showing terms from the real-valued sequences {fn(0.2)} and {fn(0.6)}.
Suppose now we take the sequence {gn}, where

gn(x) =
nx

nx + 1
, 1

2 � x � 1.

Like the former sequence, this one is pointwise convergent, with point-
wise limit g, where

g(x) = 1, 1
2 � x � 1,

but moreover gn ⇒ g; the sequence is uniformly convergent. This time
we make the following calculation: given ε > 0, then, whenever n > 2/ε,
we have

|gn(x) − g(x)| =
1

nx + 1
<

1
nx

<
ε

2
· 2 = ε,

for all x in [12 , 1], making explicit use of the fact that x � 1
2 . That is,

we may take N to be any positive integer greater than 2/ε, and this
number is independent of x. The right-hand half of Figure 4 shows the
graphs of five terms of {gn}. The figure illustrates the basic idea of
uniform convergence: once a value of ε is given there must be a positive
integer N so that all the terms gN+1, gN+2, . . . have graphs lying in the
strip of width 2ε about the graph of the limit function g. We have set
ε = 0.1 in the figure and it is apparent that we may take N = 19, since
g20, g21, . . . all have their graphs in the shaded portion. A corresponding
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picture was not possible for the former sequence {fn}, with any value
of ε less than 1.

It should be observed that we could similarly prove the uniform con-
vergence of any sequence {hn}, where

hn(x) =
nx

nx + 1
, 0 < a � x � 1,

the point being that we must avoid allowing x to be too close to 0, which
is a discontinuity of the limit f of the first example.

A simple comparison of the two definitions shows that any sequence
of functions that is uniformly convergent must also be pointwise conver-
gent, but we have just seen that a pointwise convergent sequence need
not be uniformly convergent.

The following theorem gives a useful test for determining whether a
sequence of functions is uniformly convergent.

Theorem 1.10.2 A sequence {fn} of functions with domain D con-
verges uniformly to the function f if there is a real-valued sequence {an}
such that an → 0 and

|fn(x) − f(x)| � |an|
for all x ∈ D and all n ∈ N.

The proof of this theorem is easy. Given ε > 0, we know (since an → 0)
that there exists a positive integer N such that |an| < ε whenever n > N .
This N is independent of x ∈ D, and |fn(x) − f(x)| � |an| < ε for all
x ∈ D whenever n > N , so the sequence {fn} converges uniformly to f ,
as required.

In the example above of the sequence {hn}, we have hn → h, where
h(x) = 1 (0 < a � x � 1), and

|hn(x) − h(x)| =
1

nx + 1
� 1

na + 1

for all n ∈ N, since a � x. But 1/(na + 1) → 0, so the sequence is
uniformly convergent.

We now return to the question posed at the beginning of this section:
whether the limit of a sequence of continuous functions, when it exists,
is again a continuous function. Our example of the sequence {fn}, where
fn(x) = nx/(nx + 1) (0 � x � 1), shows that pointwise convergence of
the sequence is not sufficient to ensure continuity of the limit, because
each term fn here is continuous (as is easily shown) whereas the limit
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function has a discontinuity at x = 0. However, the next result shows
that whenever the convergence is uniform then the limit function is
continuous.

Theorem 1.10.3 Let the sequence {fn} of functions with domain D be
uniformly convergent, with limit f . If fn is continuous on D for each
n ∈ N, then also f is continuous on D.

To prove this, let x0 be any point in D and let {xm}∞m=1 be a sequence
in D such that xm → x0. Choose any number ε > 0. Because fn ⇒ f ,
there exists a positive integer N1 such that

|f(xm) − fn(xm)| < 1
3ε for all m ∈ N and all n > N1

and

|f(x0) − fn(x0)| < 1
3ε for all n > N1.

(The fact that the convergence is uniform means that the single inte-
ger N1 may be used for all the points x0 and xm, m ∈ N.) Choose
any n > N1. Then, since fn is continuous at x0, there exists a positive
integer N such that

|fn(xm) − fn(x0)| < 1
3ε whenever m > N,

and so

|f(xm) − f(x0)| = |(f(xm) − fn(xm))

+ ((fn(xm) − fn(x0)) + (fn(x0) − f(x0))|
� |f(xm) − fn(xm)|

+ |fn(xm) − fn(x0)| + |fn(x0) − f(x0)|
< 1

3ε + 1
3ε + 1

3ε = ε,

whenever m > N . This proves that f(xm) → f(x0), so f is continuous
at x0. Thus f is continuous at all points of D, as required.

We have proved that, under the conditions of the theorem, when {xm}
is any convergent sequence in D whose limit is in D,

lim
n→∞

(
lim

m→∞ fn(xm)
)

= lim
m→∞

(
lim

n→∞ fn(xm)
)

.

That is, the interchange of limit operations is valid. When {fn} is the
non-uniformly convergent sequence of our earlier example, in Figure 4,
and xm → 0, the left-hand side here is 0 and the right-hand side is 1.
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The next two theorems show that uniform convergence enters also into
other questions involving an interchange of limit operations.

Theorem 1.10.4 Let {fn} be a sequence of functions, integrable on their
domain [a, b] and uniformly convergent with limit f . For each n ∈ N,
define a function gn by

gn(x) =
∫ x

a

fn(t) dt, a � x � b.

Then the sequence {gn} also converges uniformly on [a, b]. Furthermore,
lim gn = g, where

g(x) =
∫ x

a

f(t) dt.

That is, under the conditions of the theorem, for each x ∈ [a, b],

lim
∫ x

a

fn(t) dt =
∫ x

a

lim fn(t) dt.

The proof follows. Choose ε > 0. Since fn ⇒ f , there exists a positive
integer N such that

|fn(x) − f(x)| <
ε

b − a

for all x ∈ [a, b] and all n > N . Then

|gn(x) − g(x)| =
∣∣∣∣∫ x

a

fn(t) dt −
∫ x

a

f(t) dt

∣∣∣∣
=
∣∣∣∣∫ x

a

(fn(t) − f(t)) dt

∣∣∣∣
�
∫ x

a

|fn(t) − f(t)| dt

<
ε

b − a

∫ x

a

dt =
ε

b − a
(x − a)

� ε

b − a
(b − a) = ε,

for all x ∈ [a, b], provided n > N . Since N is independent of x ∈ [a, b],
this proves that gn ⇒ g on [a, b].

Notice our use in this proof of the following two results. They will
occur many times in the rest of this book without special mention.
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(a) If f and g are integrable functions on [a, b] and f(x) � g(x) for
all x ∈ [a, b], then ∫ b

a

f(x) dx �
∫ b

a

g(x) dx.

(b) If a function f is integrable on [a, b], then so is the function |f |,
and ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ � ∫ b

a

|f(x)| dx.

The inequality in (b) is an integral version of |a + b| � |a|+ |b|, where
a and b are any numbers. Assuming the integrability of |f |, it is proved
using (a) and the fact that −|f(x)| � f(x) � |f(x)| for all x ∈ [a, b].
In the proof of Theorem 1.10.4, we also made the assumption that the
limit function f is integrable on [a, b] when each fn is.

Theorem 1.10.5 Let {fn} be a sequence of functions, differentiable on
their domain [a, b] and pointwise convergent with limit f . If the deriva-
tives f ′

n are continuous on [a, b] for all n ∈ N and if the sequence {f ′
n}

is uniformly convergent, then lim f ′
n = f ′.

That is, under the conditions of the theorem (which should be carefully
noted, particularly that it is the sequence of derivatives that is required
to be uniformly convergent), the limit of the derivatives is the derivative
of the limit.

The proof follows. There must exist a function h such that f ′
n ⇒ h.

We will show that h = f ′. By Theorem 1.10.3, h is continuous on [a, b],
and, by Theorem 1.10.4, gn → g, where

gn(x) =
∫ x

a

f ′
n(t) dt = fn(x) − fn(a), a � x � b,

g(x) =
∫ x

a

h(t) dt, a � x � b.

However, for each x ∈ [a, b],

gn(x) = fn(x) − fn(a) → f(x) − f(a),

so g(x) = f(x)− f(a), for each x, since (as we will prove later in a more
general context) the limit of a convergent sequence is unique. By the
Fundamental Theorem of Calculus, since h is continuous the function g

is differentiable on [a, b] and g′ = h. Then, in turn, we have that f is
differentiable on [a, b], and f ′ = g′ = h, as required.
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We move on to consider next corresponding results for series of func-
tions. Given a sequence {fn} of functions with a common domain, the
series

∑
fk is said to be pointwise or uniformly convergent on that do-

main if the sequence of partial sums {sn} is pointwise or uniformly con-
vergent, respectively. (As usual, sn = f1 + f2 + · · ·+ fn for each n ∈ N,
but now, of course, sn is a function for each n.) Since convergence of
a series of functions is defined in terms of convergence of a certain se-
quence of functions, there is little required to extend the three preceding
theorems to series.

Theorem 1.10.6 Let the series
∑

fk of functions with domain D be
uniformly convergent with sum s. If fn is continuous on D for each
n ∈ N, then also s is a continuous function on D.

We only need to note that since fn is continuous on D for each n, then
also sn =

∑n
k=1 fk is continuous on D for each n (using an extension of

Theorem 1.9.4), and then Theorem 1.10.3 may be applied.

Theorem 1.10.7 Let
∑

fk be a series of functions, each integrable on
the domain [a, b], and let the series be uniformly convergent with sum s.
Then s is integrable on [a, b], and∫ x

a

s(t) dt =
∞∑

k=1

∫ x

a

fk(t) dt

for each x ∈ [a, b].

This result is expressed roughly by saying that a uniformly convergent
series of functions may be integrated term by term, or that summing a
series and then integrating the sum is the same as integrating each term
and then summing the integrals. It is proved by defining functions gn

by

gn(x) =
∫ x

a

sn(t) dt =
∫ x

a

n∑
k=1

fk(t) dt =
n∑

k=1

∫ x

a

fk(t) dt

(a � x � b, n ∈ N) and then using Theorem 1.10.4.

There is also an analogue of Theorem 1.10.5, which we need not re-
produce.

Finally, we give a useful test by which a series of functions may some-
times be shown to be uniformly convergent.
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Theorem 1.10.8 (Weierstrass M-test) Let {fn} be a sequence of
functions with domain D, and let

∑
Mk be a convergent positive series

for which

|fn(x)| � Mn

for all x ∈ D and each n ∈ N. Then the series
∑

fk is uniformly
convergent on D.

To prove this, we note first that, by the comparison test (Theo-
rem 1.8.6), the series

∑
fk(x) is absolutely convergent, and hence con-

vergent (Theorem 1.8.5), for each x ∈ D. Therefore, the series
∑

fk is
pointwise convergent on D, with sum s, say. Set

sn = f1 + f2 + · · · + fn, tn = M1 + M2 + · · · + Mn,

for each n ∈ N. (Note that each sn is a function, each tn a real number.)
Then sn → s and tn → t, say. For each x ∈ D, if n > m,

|sn(x) − sm(x)| =
∣∣∣∣ n∑
k=m+1

fk(x)
∣∣∣∣

�
n∑

k=m+1

|fk(x)| �
n∑

k=m+1

Mk = tn − tm.

The sequences {|sn(x) − sm(x)|}∞n=1 and {tn − tm}∞n=1 are both con-
vergent, so, by Theorem 1.7.8,

|s(x) − sm(x)| � t − tm,

for each m ∈ N and all x ∈ D. Since t − tm → 0 (as m → ∞), the
sequence {sm}∞m=1 is uniformly convergent on D, by Theorem 1.10.2.
This completes the proof.

Review exercises 1.10

(1) (a) Find lim fn, where fn(x) = xn/(1 + xn), for 0 � x � 1
and n ∈ N, and show that the convergence of {fn} to its
limit is not uniform.

(b) Find lim gn, where gn(x) = xn/(1 + xn), for 0 � x � a,
where 0 < a < 1, and n ∈ N, and show that the conver-
gence of {gn} to its limit is uniform.
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(2) Define a sequence {fn} of functions by fn(x) = xe−nx, for x � 0
and n ∈ N. Show that 0 � fn(x) � (en)−1 for all x and n, and
hence that fn ⇒ 0.

(3) Let a sequence {fn} of functions be defined by fn(x) = xn/n, for
0 � x � 1 and n ∈ N. Show that fn ⇒ f , say, and f ′

n → g, say,
but g(1) �= f ′(1).

(4) Let fn(x) = x(1 − x)n−1, for 0 � x � 1 and n ∈ N. Show that∑∞
k=1 fk converges, but not uniformly.

(5) Let {fn} be a sequence of functions with domain D. Show that
if
∑

fk is uniformly convergent on D then fn ⇒ 0 on D.

1.11 Some linear algebra

We have indicated a few times our intention to ‘add’ elements of a set
together. This step enriches the basic structure of a set and so allows
more statements to be made about sets. These statements can then be
applied in areas where a corresponding notion is already present. The
groundwork will be given here briefly. In Chapter 6 and subsequent
chapters, the strength of this idea will become apparent.

A simple way to proceed, and the one we will adopt, is to suppose our
sets to be vector spaces. A vector space is a set on the elements of which
two operations have been defined. The operations must satisfy a list of
properties designed to make them accord with our experience of addition
and multiplication by scalars in a number of areas. Reversing the line
of thought, those areas then become examples of the abstract notion of
a vector space, and any further properties found in the abstract setting
may be given concrete forms in the examples.

A prime example, and the reason behind the name, is the set of or-
dinary three-dimensional vectors. If u and v are such vectors, then
Figure 5(a) shows other related vectors, namely −u, 2v and u + v. If
f and g are two functions defined and continuous on the interval [a, b],
then we can speak of the related functions −f , 2g and f + g, which
are also continuous on [a, b]. (See Definition 1.9.3 and Theorem 1.9.4,
and the graphs of these functions in Figure 5(b).) These two different
subject areas have one aspect in common: their elements are combined
together in exactly corresponding ways.

More examples will follow the precise definition of a vector space.
By scalars in this definition, we mean complex numbers. This will be
commented on below.
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Figure 5

Definition 1.11.1 A vector space (or linear space) is a nonempty
set V of objects, called vectors, elements or points, such that

(a) for any x, y ∈ V , there exists a unique vector in V called the sum
of x and y, and denoted by x + y,

(b) for any x ∈ V and any scalar α, there exists a unique vector in V

called the scalar multiple of x by α, and denoted by αx.

It is required that (for any x, y, z ∈ V and scalars α, β),

(i) there exists a vector in V , called a zero vector and denoted
by θ, for which x + θ = x,

(ii) there exists a vector in V , called a negative of x and denoted
by −x, for which x + (−x) = θ,

(iii) x + y = y + x,
(iv) x + (y + z) = (x + y) + z,
(v) α(x + y) = αx + αy,
(vi) (α + β)x = αx + βx,
(vii) (αβ)x = α(βx),
(viii) 1x = x.

The requirements (iii) to (viii) are simply properties that together en-
sure the ability to carry out in this general setting any of the manipula-
tions commonly done with, say, three-dimensional vectors or continuous
functions with a common domain. Many similar-looking results can be
obtained very quickly: for example,

(ix) 0x = θ,
(x) αθ = θ,
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(xi) (−1)x = −x.

We will prove (ix) shortly, as an example of the method. Commenting
on (xi), notice that this implies that a negative of a vector is unique,
since here we have −x expressed as (−1)x and such a scalar multiple is
unique, by (b). In the same vein,

(xii) if θ′ is a vector in V such that x + θ′ = x for all x ∈ V , then
θ′ = θ. That is, the zero vector is unique.

The proof of (ix) follows from that of (xii). We note that if θ′ has the
stated property, then

θ = θ + θ′ by hypothesis

= θ′ + θ by (iii)

= θ′ by (i),

proving (xii). Now (ix) is proved as follows. For any x ∈ V ,

x + 0x = 1x + 0x by (viii)

= (1 + 0)x by (vi)

= 1x

= x by (viii),

so 0x = θ, by (xii).
The properties (iii) to (xii) and other simple manipulative results will

be used from here on without special reference to this list.
Two comments on notation: we will denote the vector space itself

by V , since this is unlikely to cause confusion with the set V on which
the operations are defined, and we will write x−y for x+(−y) (x, y ∈ V ).

Notice that the terms ‘sum’ and ‘scalar multiple’ and words like ‘ad-
dition’, and the notations for these, are merely based on habit. They
could have been avoided by talking of the existence of two mappings,
f : V × V → V and g : C × V → V , and then agreeing to write x + y

for f(x, y) and αx for g(α, x) (x, y ∈ V , α ∈ C). We could write (v)
for example as g(α, f(x, y)) = f(g(α, x), g(α, y)), but this is hardly very
suggestive.

More strictly, what we have defined is known as a complex vector
space, since all the scalars in the definition are complex numbers. If the
scalars are restricted to be real numbers, then the resulting system is
called a real vector space. We will therefore use the latter term when we
are specifically concerned with a vector space in which the scalars are to
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be real numbers, but otherwise it will be assumed that the scalars are
complex numbers.

Whenever an example of a vector space is proposed, it needs to be
tested whether sums and scalar multiples of its elements again belong
to the space, to accord with (a) and (b) of the definition, and whether
the axioms (i) to (viii) are satisfied.

For instance, on the set C2 of ordered pairs of complex numbers, we
may define addition and scalar multiplication by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2),

α(x1, x2) = (αx1, αx2)

(α, x1, x2, y1, y2 ∈ C). The right-hand sides are again ordered pairs of
complex numbers, as required by (a) and (b). We have

(x1, x2) + (0, 0) = (x1 + 0, x2 + 0) = (x1, x2)

for any (x1, x2) ∈ C2, so a zero vector, namely (0, 0), exists; we have

(x1, x2) + (−x1,−x2) = (x1 − x1, x2 − x2) = (0, 0),

so a negative exists for each (x1, x2) ∈ C2, namely (−x1,−x2); and so
on down the list verifying (iii) to (viii). Hence we are entitled to call C2

a vector space when addition and scalar multiplication are defined as
above. Such verifications are generally tedious and, as here, we often
omit checking (iii) to (viii) and trust our instincts instead.

For vectors in the set Cn, we define

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn), α ∈ C,

and, as for C2, we may verify that we have a vector space. On the set Rn,
whose elements are n-tuples of real numbers, we may define addition and
scalar multiplication in precisely the same way. But this does not give
us a (complex) vector space, since i(x1, x2, . . . , xn) = (ix1, ix2, . . . , ixn)
does not belong to Rn when (x1, x2, . . . , xn) does. However, Rn is a real
vector space with the above definitions, the scalars now being real, too.

By the vector space Cn and the real vector space Rn we will always
mean the spaces just defined, namely, with addition and scalar multi-
plication precisely as given here. It is important to realise that these
operations could be defined differently on the same sets Cn and Rn but
these would result either in different vector spaces, or things that are
not vector spaces at all.
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The set C[a, b] of continuous functions on the closed interval [a, b] is
a real vector space when we define f + g and αf by

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x)

(f, g ∈ C[a, b], α ∈ R). This of course conforms with the earlier use of
these operations. The zero vector in the space is the function θ where
θ(x) = 0 for a � x � b, and the negative of any f ∈ C[a, b] is the
function −f where (−f)(x) = −f(x) for a � x � b. It is crucial to notice
how (a) and (b) of the definition are satisfied: whenever f, g ∈ C[a, b] we
also have f + g ∈ C[a, b] and αf ∈ C[a, b], by Theorem 1.9.4. (We could
well have chosen some other criterion, such as that the functions be
differentiable on [a, b]. Sums and scalar multiples of such functions are
again differentiable on [a, b]. But this leads to different vector spaces.)

As a final example at this stage, consider the set c of all convergent
complex-valued sequences. If, for any two such sequences {xn} and {yn},
we define

{xn} + {yn} = {zn}, where zn = xn + yn for each n ∈ N,

α{xn} = {wn}, where wn = αxn for each n ∈ N, α ∈ C,

then c may readily be shown to be a vector space, by virtue of Theo-
rem 1.7.14.

We specify now that whenever in this book we use vector spaces whose
elements are n-tuples, functions or sequences, then the operations of
addition and multiplication by scalars will always be defined as we have
defined them for the spaces Cn, C[a, b] and c.

We next define the concept of a vector subspace.

Definition 1.11.2 Let V be a vector space and let W be a nonempty
subset of V . Then W is called a subspace of V if x+ y ∈ W whenever
x, y ∈ W , and αx ∈ W whenever x ∈ W , α ∈ C.

Thus, a subspace of a vector space is a subset which contains as members
all sums and scalar multiples of any of its elements. Under this definition,
the vector space V is certainly a subspace of itself. Also, the subset {θ},
consisting of only the zero vector of V , is a subspace of V because
θ + θ = θ ∈ {θ} and αθ = θ ∈ {θ} for any α ∈ C.

Since 0x = θ, it follows that θ is in fact an element of any subspace W

of V . And, since (−1)x = −x, it follows that any subspace contains the
negatives of all its elements. The axioms (iii) to (viii) of Definition 1.11.1
hold for elements in the subspace W , since those elements belong also
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to V . Putting these statements together, we see that the subspace W is
a vector space in its own right. The converse is also true: if W and V

are both vector spaces with addition and scalar multiplication defined
in the same way, and if W (as a set) is a subset of V (as a set), then W

is a subspace of V .
We can give many examples of subspaces of the vector spaces given

above.
The vector space W of ordered triples of complex numbers of the form

(x1, x2, 0) (x1, x2 ∈ C, the third element of every triple being zero) is a
subspace of C3, since

(x1, x2, 0) + (y1, y2, 0) = (x1 + y1, x2 + y2, 0) ∈ W,

α(x1, x2, 0) = (αx1, αx2, 0) ∈ W, α ∈ C.

There is obviously a natural connection between this subspace W of C3

and the vector space C2, though the spaces cannot be called the same:
the elements of C2 are ordered pairs, not triples. The connection is
properly described by noting that there is a one-to-one correspondence
f : W → C2 (see Section 1.4) such that

f(x + y) = f(x) + f(y),

f(αx) = αf(x),

for x, y ∈ W , α ∈ C. This is the mapping defined by

f(x1, x2, 0) = (x1, x2), x1, x2 ∈ C.

Through the mapping f , or its inverse f−1, all manipulations carried
out in one of the spaces may be precisely reflected in the other. Such
a mapping is termed a vector space isomorphism and the spaces W

and C2 are called isomorphic. These terms will be discussed more fully
in Chapter 9.

The set of all differentiable functions defined on the interval [a, b] is
easily shown to be a real vector space: we will denote it by C(1)[a, b].
This is a subspace of C[a, b], since every differentiable function is con-
tinuous. Another useful real vector space is the set of all polynomial
functions restricted to the interval [a, b]. This space is denoted by P [a, b]
and is a subspace of C(1)[a, b] since every polynomial function is differ-
entiable. It is easily checked that if U , V , W are vector spaces and U is
a subspace of W and W is a subspace of V , then U is also a subspace
of V . Hence, here, P [a, b] is also a subspace of C[a, b]; this can readily
be seen directly.
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The vector space c of all convergent sequences has a number of sub-
spaces which will be referred to throughout the book. One which we may
mention now is the space of all sequences which converge with limit 0.
This vector space is denoted by c0.

All the remaining definitions relevant to our purposes are gathered in
the following.

Definition 1.11.3 Let {v1, v2, . . . , vn} be a set of vectors in a vector
space V .

(a) Any vector of the form

α1v1 + α2v2 + · · · + αnvn,

where α1, α2, . . . , αn ∈ C, is called a linear combination of v1,
v2, . . . , vn and the scalar αk is called the coefficient of vk, for
k = 1, 2, . . . , n.

(b) If a linear combination of the vectors v1, v2, . . . , vn equals the
zero vector in V and at least one coefficient is not 0, then the set
{v1, v2, . . . , vn} is called linearly dependent. Otherwise the set is
called linearly independent.

(c) The set of all linear combinations of the vectors v1, v2, . . . , vn

is a subspace of V called the span of {v1, v2, . . . , vn}, denoted
by Sp{v1, v2, . . . , vn}. This subspace is said to be spanned or
generated by v1, v2, . . . , vn.

(d) If the set {v1, v2, . . . , vn} is linearly independent and

Sp{v1, v2, . . . , vn} = V,

then it is called a basis for V . In that case, V is said to have
dimension n, and to be finite-dimensional. If there does not exist
any finite set of vectors that is a basis for V , then V is called
infinite-dimensional. The dimension of the vector space {θ} is 0.

There are a number of comments that need to be made. In particular,
we must justify some statements occurring in (c) and (d).

Rephrasing the second part of (b), the set {v1, v2, . . . , vn} is linearly
independent if the equation

α1v1 + α2v2 + · · · + αnvn = θ

can only be true when α1 = α2 = · · · = αn = 0. For example, in C3 the
vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} are linearly independent, because if

α1(1, 0, 0) + α2(0, 1, 0) + α3(0, 0, 1) = θ,
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then, equivalently, (α1, α2, α3) = θ = (0, 0, 0), so that α1 = α2 = α3 = 0.
Notice that if {v1, v2, . . . , vn} is a linearly independent set of vectors,
then it cannot include the zero vector, for if v1 = θ, say, then

1v1 + 0v2 + 0v3 + · · · + 0vn = θ,

and the first coefficient is not 0.
It needs to be verified that the span of a set of vectors in a vector

space is indeed a subspace of the space, as asserted in (c). Consider the
set S = {v1, v2, . . . , vn} of vectors in a vector space V . If x, y ∈ SpS,
then for some scalars αk, βk (k = 1, 2, . . . , n),

x = α1v1 + α2v2 + · · · + αnvn, y = β1v1 + β2v2 + · · · + βnvn,

and so

x + y = (α1 + β1)v1 + (α2 + β2)v2 + · · · + (αn + βn)vn ∈ SpS,

αx = (αα1)v1 + (αα2)v2 + · · · + (ααn)vn ∈ SpS, α ∈ C,

That is, x + y and αx are again linear combinations of v1, v2, . . . , vn

and so belong to SpS. Thus SpS is a subspace of V .
Turning to (d), we need to show that if {v1, v2, . . . , vn} is a basis for

a vector space V , then any other basis for V has the same number of
elements. Otherwise, the definition of dimension for a vector space does
not make much sense. Suppose the set {u1, u2, . . . , um} of vectors in V

is also a basis for V , and suppose m > n. Each vector uj is a linear
combination of v1, v2, . . . , vn since the set {v1, v2, . . . , vn} is a basis
for V , so we may write in particular

u1 = α1v1 + α2v2 + · · · + αnvn

for some scalars α1, α2, . . . , αn, which cannot all be 0. We may suppose
α1 �= 0, so that

v1 =
1
α1

u1 − α2

α1
v2 − · · · − αn

α1
vn.

This gives v1 as a linear combination of the vectors u1, v2, v3, . . . , vn.
Every vector in V is a linear combination of v1, v2, . . . , vn, so now
every vector in V may be expressed as a linear combination of u1, v2,
v3, . . . , vn. In particular, this applies to the vector u2:

u2 = γ1u1 + β2v2 + β3v3 + · · · + βnvn

for some scalars γ1, β2, β3, . . . , βn. In this, it cannot be the case that
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β2 = β3 = · · · = βn = 0, for then u2 = γ1u1 and the equation

γ1u1 + (−1)u2 + 0u3 + · · · + 0um = θ

denies the linear independence of {u1, u2, . . . , um}, since at least one
coefficient here is nonzero. We may suppose β2 �= 0, so that

v2 = −γ1

β2
u1 +

1
β2

u2 − β3

β2
v3 − · · · − βn

β2
vn.

As before, this allows us to express any vector in V , in particular u3,
as a linear combination of u1, u2, v3, v4, . . . , vn. This process may be
continued until we conclude that every vector in V may be expressed
as a linear combination of u1, u2, . . . , un. But this is not possible,
since expressing un+1 as such a linear combination contradicts the linear
independence of u1, u2, . . . , un, . . . , um. Our assumption that m > n

must therefore be wrong, so we cannot have two bases for V with one
having more elements than the other. This implies that all bases of a
finite-dimensional space contain the same number of elements. (That
number is the number we call the dimension of the space.)

We have shown that the vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} are linearly
independent in C3. They also span the space, for if (x1, x2, x3) is any
vector in C3, then

(x1, x2, x3) = x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 0, 1),

expressing the vector as a linear combination of (1, 0, 0), (0, 1, 0) and
(0, 0, 1). Hence these vectors are a basis for C3, which is therefore of
dimension 3. Likewise, the real vector space R3 also has dimension 3
(the above three vectors again being a basis) and this agrees with the
common usage of the term ‘three-dimensional space’.

In the same way, we may show that Cn is a finite-dimensional space:
it has dimension n and the set

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
of n-tuples (in which the kth has kth component equal to 1 and the
others equal to 0, for k = 1, 2, . . . , n) is a basis.

A convenient way to show that a particular vector space is infinite-
dimensional is to show that it has an infinite-dimensional subspace. We
need a little preparation before verifying this, and will then apply it to
the spaces C[a, b] and c.

It is necessary to prove that, for a vector space of dimension n, any
set of n linearly independent vectors in the space is a basis. Suppose V
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is a vector space with dimension n, and let S = {u1, u2, . . . , un} be a
set of n linearly independent vectors in V . These vectors will be shown
to be a basis for V if we can show that SpS = V . Suppose there is a
vector u ∈ V such that u /∈ Sp S, and consider the equation

α1u1 + α2u2 + · · · + αnun + αu = θ

for scalars α1, α2, . . . , αn, α. We must have α = 0 (otherwise u ∈ SpS).
That leaves us with α1u1 +α2u2 + · · ·+αnun = θ, so we must also have
α1 = α2 = · · · = αn = 0, since S is a linearly independent set. This
implies that the set {u, u1, u2, . . . , un} is linearly independent, and then,
precisely as in the discussion concerning Definition 1.11.3(d), this leads
to a contradiction. (Take m = n + 1 and u = un+1 in that discussion.)
Hence u ∈ SpS whenever u ∈ V , so the set S is a basis for V .

Next we prove that in an infinite-dimensional vector space there ex-
ists a set of n vectors which is linearly independent, regardless of the
value of the positive integer n. If this is not the case, then there is
an integer N such that {v1, v2, . . . , vN} is linearly independent, while
{v1, v2, . . . , vN , v} is linearly dependent, for all other vectors v in the
space. This means that all other vectors in the space are linear combi-
nations of v1, v2, . . . , vN , or that these vectors span the space. Hence
they are a basis for the space, contradicting the fact that it is infinite-
dimensional.

Now we can prove the result indicated.

Theorem 1.11.4 A vector space is infinite-dimensional if it has an
infinite-dimensional subspace.

There is little more to do. Let W be an infinite-dimensional subspace
of a vector space V , and suppose that V is finite-dimensional, with
dimension n, say. By what was just said, there exists a set of n linearly
independent vectors in W , which, since they belong also to V , must
be a basis for V . Every vector in V , which includes all those in W ,
is expressible as a linear combination of these basis vectors, so they
span W . Hence that set of n vectors is also a basis for W , contradicting
the fact that W is infinite-dimensional.

Now to our examples.
It is easy to see that the real vector space P [a, b] of polynomial func-

tions defined on [a, b] is infinite-dimensional. We simply note that any
proposed basis must be a set containing a finite number of polynomial
functions, but no polynomial function with degree higher than any of
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those in the basis could possibly be expressed as a linear combination of
them. Since P [a, b] is a subspace of C[a, b], Theorem 1.11.4 immediately
implies that C[a, b] is also infinite-dimensional.

To see that the space c of convergent sequences is infinite-dimensional,
we consider the subspace of sequences all of whose terms are zero after
some finite number of terms. It is evident that these indeed constitute
a subspace of c. It is an infinite-dimensional subspace since, no matter
how many sequences a proposed basis may contain, we may always find
another sequence with more nonzero terms than any of those in the
proposed basis. Such a sequence could never be a linear combination of
the others. Then Theorem 1.11.4 may be applied.

A little thought shows that the space P [a, b] and the subspace of c

constructed above are not as unlike as they might at first appear. Let
cR be the latter subspace, where we restrict the sequences to be real-
valued and use real scalars only, so that cR is a real vector space. A
typical member of cR is the sequence

a0, a1, a2, a3, . . . , an−1, an, 0, 0, 0, . . .

where a0, a1, . . . , an are any real numbers. Compare this with a typical
element of P [a, b]: the polynomial p, where

p(t) = a0 + a1t + a2t
2 + a3t

3 + · · · + an−1t
n−1 + antn, a � t � b.

Adding elements of cR and multiplying them by scalars can in fact be
accomplished in the space P [a, b] by suppressing all but the coefficients in
the polynomials. The reverse is similarly true. We have here an example
of isomorphic vector spaces, as introduced following Definition 1.11.2.
This explains in part the applicability of Theorem 1.11.4 to the two
examples.

In this section, we wish also to mention a few simple properties of
matrices. A matrix is a set of mn numbers, called elements, arranged
in m rows and n columns, and indicated in general fashion as

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


Here, ajk is the element in the jth row and kth column (j = 1, 2, . . . , m;
k = 1, 2, . . . , n). This matrix may be given more simply as (ajk). The
size of the matrix is written as m×n, indicating the numbers of its rows
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and columns. An m×1 matrix (having only one column) is also referred
to as a column vector ; a 1 × n matrix (having only one row) as a row
vector. The elements of a matrix may be real or complex numbers, and
it is convenient to think of an m×1 column vector as an element of Rm

or Cm.
The transpose of an m × n matrix (ajk) is the n × m matrix (akj)

obtained by writing all the rows as columns. In particular, the transpose
of a row vector is a column vector. The operation of taking the transpose
is indicated by a superscript T . Thus (ajk)T = (akj) and

(
b1 b2 . . . bm

)T
=


b1

b2

...
bm

 .

In text, like right here, we will write row and column vectors more
conveniently as (a1, a2, . . . , an) and (b1, b2, . . . , bm)T , for example.

The conjugate of the matrix A = (ajk) is the matrix A defined by
A = (ajk). That is, to obtain the conjugate of a matrix, take the
conjugate of each of its elements.

The set of all matrices of a given size is a vector space under the
definitions

(ajk) + (bjk) = (cjk), where cjk = ajk + bjk,

α(ajk) = (djk), where djk = αajk, α ∈ C.

That is, matrices (of the same size) are added by adding corresponding
elements, and a matrix is multiplied by a scalar by multiplying all el-
ements by that scalar. The zero of this vector space is the matrix, of
the same size as all matrices in the space, having all elements 0. (If the
matrices are restricted to having real elements only, then a real vector
space is obtained by restricting the scalars to be real numbers only.)

Two matrices may be multiplied together according to the following
rule. If (ajk) is an m×n matrix and (bjk) is an n× p matrix, then (and
only for such sizes) the product exists, and

(ajk)(bjk) = (cjk)

where (cjk) is an m × p matrix, and

cjk =
n∑

i=1

ajibik, j = 1, 2, . . . , m; k = 1, 2, . . . , p.
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Notice that the product (bjk)(ajk) is not defined unless p = m. When
A is a square matrix (having the same number of rows and columns),
we may form the product AA, denoted by A2, and extend this to obtain
any power An, n ∈ N.

It is not difficult to prove that (BC)T = CT BT , for any matrices B

and C for which the product BC exists.
Illustrating these definitions, we have 1 2

3 4
5 6

T

=
(

1 3 5
2 4 6

)
,

(
1 i

2 − i 3 + 4i

)
=
(

1 −i

2 + i 3 − 4i

)
, 1 2

3 4
5 6

+

 7 8
9 10

11 12

 =

 8 10
12 14
16 18

 ,

−2

 1 2
3 4
5 6

 =

 −2 −4
−6 −8
−10 −12

 ,

 1 2
3 4
5 6

( 7 8
9 10

)
=

 25 28
57 64
89 100

 .

Systems of linear equations may very conveniently be expressed in
terms of matrices. The system

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...

am1x1 + am2x2 + · · · + amnxn = bm,

of m equations in n unknowns x1, x2, . . . , xn may be written

Ax = b

where

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 , x =


x1

x2

...
xn

 , b =


b1

b2

...
bm

 .
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A square matrix is called a unit matrix, or an identity matrix, if all
its elements are 0 except those on the main diagonal (top left to bottom
right) which are all 1. An identity matrix is commonly denoted by I,
or In when it is necessary to show explicitly that its size is n × n. This
matrix has the property

IA = AI = A,

when A is a square matrix of the same size as I.
If A is a given square matrix, then a matrix B (of the same size as A)

is called an inverse of A if

AB = BA = I.

We commonly write A−1 for B and it is easy to show that the inverse
of a square matrix, if one exists, is unique. It is shown in books on
linear algebra that a condition for an n × n matrix to have an inverse
is that its columns, considered as elements of Rn or Cn, be linearly
independent. An equivalent condition is that the determinant of the
matrix be nonzero. (There is one instance, in Chapter 9, where we need
some knowledge of determinants, but we will not review that theory
here.)

If Ax = b is the system of linear equations mentioned above, where
now A is a square matrix possessing an inverse, then the system has
a solution, given by x = A−1b. This is easily checked: A(A−1b) =
(AA−1)b = Ib = b. We have used here the associative property of
matrix multiplication: A(BC) = (AB)C, where A, B, C are matrices
and all the indicated products exist. Furthermore, the solution A−1b is
unique. Putting b = θ here (θ is a zero matrix, of size n×1 if A is n×n),
we see that the only solution of Ax = θ is x = θ when the inverse A−1

exists. On the other hand, if the inverse does not exist then it can be
shown that there are infinitely many other solutions (called nontrivial
solutions) of the system of equations.

Determining the inverse of a matrix is rarely easy, and often methods
of approximation are used to solve systems of equations such as that
above, to a given degree of accuracy. This will be one of our major
examples in Chapter 3.

Review exercises 1.11

(1) (a) Show that the set V of all 2× 2 matrices (ajk) is a vector
space of dimension 4, by finding a basis for V with four
elements.
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(b) Show that the subset of V consisting of those 2×2 matrices
(ajk) with a11+a22 = 0 is a subspace of V , and find a basis
for this subspace.

(2) Let P2 be the real vector space of all polynomial functions on R,
of degree at most 2. Let t ∈ R be fixed. Show that {p1, p2, p3},
where p1(x) = 1, p2(x) = x+ t, p3(x) = (x+ t)2, is a basis for P2.
Express a+ bx+ cx2 (a, b, c ∈ R) as a linear combination of these
basis vectors.

(3) Let S and T be subspaces of a vector space V . Their sum is
defined as S + T = {s + t : s ∈ S, t ∈ T }. Show that S + T

is also a subspace of V . If S and T are finite-dimensional, show
that S + T is finite-dimensional and that the union of bases of S

and T is a basis of S + T .

(4) Deduce a condition for the matrix A =
(

a b

c d

)
to have an in-

verse and then obtain a formula for A−1 as an explicit 2 × 2
matrix.

1.12 Setting off

We are about to begin our journey through space. We will visit many
spaces: topological spaces, metric spaces, normed vector spaces, Banach
spaces, inner product spaces, Hilbert spaces. These are not the foreign
worlds of the fictional space traveller. Instead, they offer real, down-to-
earth means by which our own world may be explored a little further.
We have discussed previously how these are some of a vast hierarchy
of spaces, each containing a little more structure than the one before,
and how each item of structure may be related to some property of the
real numbers. This is an important principle to be kept in mind as
we proceed ‘through space’. The other principle of importance that we
have talked of is the similarity that becomes apparent in various fields of
mathematics when they are bared to their essentials. This underlies the
applicability of abstract methods and should also be kept continually in
view.
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Metric Spaces

2.1 Definition of a metric space

In Chapter 1 we went into some detail regarding properties of convergent
sequences of real or complex numbers. The essential idea of convergence
is that distances between points of the sequence and some other point
become smaller and smaller as we proceed along the sequence. We need
not restrict this notion to sequences of numbers and indeed, in discussing
uniform convergence of sequences of real-valued functions with a com-
mon domain, we have already extended it. All that is required to speak
of convergence of a sequence of elements of any particular set is that
a meaning be given to the concept of the distance between points of
that set. If we can come up with an adequate definition of ‘distance
between points’ that is applicable in a totally general setting, then any
consequences of that definition will be reflected in particular examples.

Thus we arrive at our first instance of an abstract space (apart from
our introduction to vector spaces). A metric space is an arbitrary set X

together with a real-valued mapping d defined on pairs of elements x

and y in X such that the number d(x, y) suitably represents the idea
of the distance between the points x and y. Defining d so that it does
this job is not easy: we wish to ensure that the single definition can, in
its various applications, fully account for what we already understand
by distances between numbers on a line or between points in the plane,
and that it can distinguish functions whose graphs are close together or
far apart. An example of a desirable property is: d(x, y) = d(y, x) for
all x, y ∈ X . That is, the distance between points x and y in X must
be the same as the distance between y and x. This may seem pedantic,
but this approach is vital when we move to abstract settings so that full

84
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applicability and generality are available. A formal definition of metric
space follows.

Definition 2.1.1 A metric space is a nonempty set X together with
a mapping d : X × X → R+ with the properties

(M1) d(x, y) = 0 if and only if x = y (x, y ∈ X),
(M2) d(x, y) = d(y, x) for all x, y ∈ X ,
(M3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X .

This metric space is denoted by (X, d) and the mapping d is called
the metric (or distance function) for the space.

The properties (M1), (M2) and (M3) must be viewed with regard to the
above discussion. We have already predicted the appearance of (M2).
The property (M1) says that points are zero distance apart if and only if
they coincide. Notice that d(x, y) > 0 when x �= y since the range of the
mapping d is a subset of R+, the set of all nonnegative real numbers.
The property (M3) says that the distance between any two points is
never greater than the sum of their distances to a third point. Thinking
of this in terms of points in the plane, it is simply the statement that
the length of any side of a triangle is never greater than the sum of the
lengths of the other two sides, and for this reason the inequality of (M3)
is known as the triangle inequality.

A metric space is not fully described unless both the set and the metric
are given. This accounts for the notation (X, d). It is quite possible, as
examples below will show, to define different metrics for the same set X .
If d1 and d2 are different metrics defined on X , then (X, d1) and (X, d2)
are different metric spaces. However, when there is no possibility of
confusion about which metric is being used for a given set X at a given
time, then X alone is often used to denote the metric space as well.

2.2 Examples of metric spaces

In each of the following examples, it needs to be checked that the pro-
posed metric indeed satisfies Definition 2.1.1. The checking is omitted
in some examples, since it is a consequence of that for more general
examples that come later, and in others it is left as an exercise.

(1) Let X be any nonempty set of real numbers and define d by

d(x, y) = |x − y|, x, y ∈ X.
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This is the usual definition of distance between two points on a line, and
is called the natural metric for such a set X .

(2) Let X be any nonempty set of points in the plane (so X may be
considered as a subset of R2) and define d by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2) are any two points of X . This is the
usual definition of distance between two points in a plane. The triangle
inequality of (M3) says very explicitly here that the length of any side of
a plane triangle is not greater than the sum of the lengths of the other
two sides,

(3) For the same set X as in (2), we may define a different metric d′ by

d′(x, y) = max {|x1 − y1|, |x2 − y2|} .

Under this metric, we are saying that the length of any line segment is
to be understood as the larger of its projections on the coordinate axes.
This gives an indication of the possible distortions that can occur in our
intuitive notions of ‘length’: the ‘square’ in Figure 6 is in fact a circle
in the metric space (R2, d′), the circle with centre (x1, y1) and radius a,
since the distance between the centre and any point on it is a.

(x1, y1)
y1

y1 − a

y1 + a

x1 − a x1 x1 + a

Figure 6

Since this metric d′ and the metric d of Example (2) may have different
values for the same points x, y ∈ X , the metric spaces (X, d) and (X, d′)
are different, though they use the same set X of points in the plane.

We will carry out the verification that d′ is a metric. The definition
of absolute value implies immediately that d′(x, y) � 0 for all x, y ∈ X

so certainly the range of d′ is a subset of R+. Also, (M1) and (M2) are
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easily seen to hold. The only problem, and this is commonly but not
always the case, is to verify (M3). The reasoning in the following should
be watched carefully. The same method is used in many other examples.

Let z = (z1, z2) be any third point in X . Letting j be either 1 or 2,
we have

|xj − zj| = |(xj − yj) + (yj − zj)|
� |xj − yj | + |yj − zj|
� max

k=1,2
|xk − yk| + max

k=1,2
|yk − zk|.

Since this is true for both j = 1 and j = 2, we have

max
k=1,2

|xk − zk| � max
k=1,2

|xk − yk| + max
k=1,2

|yk − zk|,
or

d′(x, z) � d′(x, y) + d′(y, z),

verifying (M3) for the mapping d′.

(4) Let X be any nonempty set in Rn, so that X consists of ordered
n-tuples of real numbers, and define d by

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are points of X . This is a
generalisation of Examples (1) and (2), which correspond to the special
cases n = 1 and n = 2, respectively. The mapping d here is known as
the Euclidean metric for such a set X , and we will now specify that
whenever we refer to the metric space Rn (rather than just the set Rn)
then we mean the metric space (X, d) of this example with X = Rn.
Putting this another way, reference to the metric space Rn will always
imply that the Euclidean metric is being used. The term Euclidean space
is often used for the metric space Rn.

Verification that this d is in fact a metric again comes down to checking
(M3). That is, we must prove that√√√√ n∑

k=1

(xk − zk)2 �

√√√√ n∑
k=1

(xk − yk)2 +

√√√√ n∑
k=1

(yk − zk)2,

where z = (z1, z2, . . . , zn) is any third point of X . This is a consequence
of the Cauchy–Schwarz inequality, which we give now as a theorem.
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We will need another form of this very useful inequality shortly, and in
Chapter 8 a general form will be given that includes these earlier ones
as special cases.

Theorem 2.2.1 (Cauchy–Schwarz Inequality) Let (a1, a2, . . . , an)
and (b1, b2, . . . , bn) be any points in Rn. Then( n∑

k=1

akbk

)2

�
( n∑

k=1

a2
k

)( n∑
k=1

b2
k

)
.

This is proved by the following device. We introduce the function ψ

defined by

ψ(u) =
n∑

k=1

(aku + bk)2, u ∈ R.

Then

ψ(u) =
( n∑

k=1

a2
k

)
u2 + 2

( n∑
k=1

akbk

)
u +

n∑
k=1

b2
k,

and we see that ψ(u) is a quadratic form in u. That is, it has the form
Au2 + 2Bu + C. Being a sum of squares, ψ(u) � 0 for all u. Hence the
discriminant (2B)2−4AC cannot be positive. Divide by 4: B2−AC � 0,
or ( n∑

k=1

akbk

)2

−
( n∑

k=1

a2
k

)( n∑
k=1

b2
k

)
� 0.

This proves the theorem.

We need another inequality, based on this one.

Theorem 2.2.2 For any points (a1, a2, . . . , an), (b1, b2, . . . , bn) in Rn,
we have √√√√ n∑

k=1

(ak + bk)2 �

√√√√ n∑
k=1

a2
k +

√√√√ n∑
k=1

b2
k.

Taking square roots of both sides of the Cauchy–Schwarz inequality
gives ∣∣∣∣ n∑

k=1

akbk

∣∣∣∣ �
√√√√ n∑

k=1

a2
k

√√√√ n∑
k=1

b2
k,
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so certainly

n∑
k=1

akbk �

√√√√ n∑
k=1

a2
k

√√√√ n∑
k=1

b2
k.

But then

n∑
k=1

a2
k + 2

n∑
k=1

akbk +
n∑

k=1

b2
k �

n∑
k=1

a2
k + 2

√√√√ n∑
k=1

a2
k

√√√√ n∑
k=1

b2
k +

n∑
k=1

b2
k

or

n∑
k=1

(ak + bk)2 �

√√√√ n∑
k=1

a2
k +

√√√√ n∑
k=1

b2
k

2

.

Taking square roots now gives the inequality of Theorem 2.2.2.

To check that the triangle inequality holds for the Euclidean metric,
we simply put ak = xk − yk and bk = yk − zk in the second theorem.

(5) Another metric for the set Rn is the mapping d1, where

d1(x, y) =
n∑

k=1

|xk − yk|.

This also reduces to the metric of Example (1) when n = 1.
(Both the Euclidean metric and the metric d1 just defined are special

cases of the metric dp, where

dp(x, y) =
( n∑

k=1

|xk − yk|p
)1/p

,

with p � 1. The verification of (M3) for this mapping for general values
of p requires a discussion of the Hölder inequality and the Minkowski
inequality, which are generalisations of the inequalities in Theorems 2.2.1
and 2.2.2, respectively. We will not be making use of these metric spaces
(Rn, dp).)

(6) A third metric for the set Rn is given by the mapping d∞, where

d∞(x, y) = max
1�k�n

|xk − yk|.

When n = 1, we again obtain the metric of Example (1), while when
n = 2 we obtain that of Example (3). The method of Example (3) is
used in showing that d∞ is a metric.
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(The notation d∞ is used because the sequence {dp(x, y)}∞p=1 has limit
d∞(x, y) for any x, y ∈ Rn, where dp is the metric just mentioned, with
p ∈ N. It is left as an exercise to prove this statement.)

(7) We may obtain metrics for the set Cn (or for nonempty subsets
of Cn) by simple adjustments to Examples (4), (5) and (6). The metric d,
where

d(x, y) =

√√√√ n∑
k=1

|xk − yk|2,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are now n-tuples of com-
plex numbers, is again referred to as the Euclidean metric and again is
the metric implied by reference to Cn as a metric space. Verification of
(M3) for this metric will follow from some work below.

(8) We now introduce one of the most important spaces of modern
analysis, the metric space l2. This is a generalisation of the metric
space Cn in which, loosely speaking, we allow n to be arbitrarily large.
A little thought will suggest that ‘arbitrarily large n-tuples’ are no more
than (infinite) sequences. The Euclidean metric then becomes an infinite
series and we therefore need some constraints to ensure that the series
converges for all pairs of points in the space.

Definition 2.2.3 Denote by l2 the set of all complex-valued sequences
x1, x2, . . . for which the series

∑∞
k=1 |xk|2 converges. Define a metric d

on l2 by

d(x, y) =

√√√√ ∞∑
k=1

|xk − yk|2,

where x and y are the sequences x1, x2, . . . and y1, y2, . . . , respectively.
This metric space is itself denoted by l2.

We must justify this definition by showing that d(x, y) is always finite
for any x and y in the set l2, and that the requirements of a metric are
satisfied by d.

To show that d(x, y) is finite, we recall the inequality of Theorem 2.2.2
and set ak = |xk|, bk = |yk|. Since |xk−yk|2 � (|xk|+|yk|)2 = (ak+bk)2,
we obtain √√√√ n∑

k=1

|xk − yk|2 �

√√√√ n∑
k=1

|xk|2 +

√√√√ n∑
k=1

|yk|2.
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On the right-hand side, we have partial sums for the series
∑∞

k=1 |xk|2
and
∑∞

k=1 |yk|2 and these series converge, since this is the condition that
x, y ∈ l2. As the terms of these series are nonnegative, we have√√√√ n∑

k=1

|xk − yk|2 �

√√√√ ∞∑
k=1

|xk|2 +

√√√√ ∞∑
k=1

|yk|2,

showing that the partial sums of the series
∑∞

k=1 |xk − yk|2 form a
bounded sequence. This ensures the convergence of the latter series
and furthermore we see that

d(x, y) =

√√√√ ∞∑
k=1

|xk − yk|2 �

√√√√ ∞∑
k=1

|xk|2 +

√√√√ ∞∑
k=1

|yk|2,

so that d(x, y) is finite. This is a common form of argument which we
will considerably abbreviate in future.

It remains to verify that d is indeed a metric. The definition of the
modulus of a complex number answers all questions except, once again,
the truth of the triangle inequality. We use the same basic inequal-
ity as above (in Theorem 2.2.2), this time setting ak = |xk − yk| and
bk = |yk − zk|, where z1, z2, . . . is any third element of l2. Noting that

|xk − zk| = |(xk − yk) + (yk − zk)| � |xk − yk| + |yk − zk| = ak + bk,

we have √√√√ n∑
k=1

|xk − zk|2 �

√√√√ n∑
k=1

|xk − yk|2 +

√√√√ n∑
k=1

|yk − zk|2

(which is all that is required to prove (M3) for the metric space Cn) and
then, by a similar argument to that above,√√√√ n∑

k=1

|xk − zk|2 �

√√√√ ∞∑
k=1

|xk − yk|2 +

√√√√ ∞∑
k=1

|yk − zk|2

so that √√√√ ∞∑
k=1

|xk − zk|2 �

√√√√ ∞∑
k=1

|xk − yk|2 +

√√√√ ∞∑
k=1

|yk − zk|2.

This verifies (M3) for the metric of l2.
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(9) Let l1 be the set of all complex-valued sequences x1, x2, . . . for which
the series

∑∞
k=1 |xk| converges. Define d by

d(x, y) =
∞∑

k=1

|xk − yk|,

where x and y are the sequences x1, x2, . . . and y1, y2, . . . , respectively,
in l1. It is easy to show that d(x, y) is finite for all x, y ∈ l1 and that d

defines a metric for l1. This metric space is itself also denoted by l1, and
may be thought of as a generalisation of the metric space of Example (5).

(It should be evident that there is a further generalisation of the metric
spaces l2 and l1 along the lines of that in the remark following Exam-
ple (5). This leads to metric spaces known as the lp spaces. We will
only require the special cases p = 1 and p = 2.)

(10) In the theory of functions of a complex variable, use is sometimes
made of the so-called chordal metric. This is the metric d, where

d(x, y) =
|x − y|√

(1 + |x|2)(1 + |y|2) , x, y ∈ C.

Thinking of x and y as points in the complex plane, the significance of the
name may be seen as follows. Place a sphere of unit diameter above the
plane, just touching it at the origin, and join the north pole of the sphere
to the points x, y in the plane. It may be shown (for example, using
ordinary vector methods) that the chord joining the points where these
lines intersect the sphere has ordinary (or Euclidean) length d(x, y).
With this interpretation, the triangle inequality is intuitively clear.

(11) The next three examples concern the set of all continuous functions
defined on the closed interval [a, b]. This set was denoted by C[a, b] at
the beginning of Section 1.10. Define d by

d(x, y) = max
a�t�b

|x(t) − y(t)|,

where x and y are any two functions in C[a, b], t being used for the
independent variable. It is by virtue of Theorem 1.9.6 that we know
d(x, y) is a finite number for all x, y ∈ C[a, b]: the function |x − y| is
continuous when x and y are and, since its domain is a closed interval,
it attains its maximum value at at least one point of the domain. Some
writers replace ‘max’ in the definition of d by ‘sup’ though this is not
necessary here, but this has led to the name sup metric for d. We will
refer to d by its alternative common name: the uniform metric. There
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x

y

a b

Figure 7

will be many subsequent references to this metric space (C[a, b], d), which
from now on we will denote by C[a, b] alone.

We are now introducing what may be a novel notion of ‘distance’
between functions. For the functions x and y whose graphs are shown
in Figure 7, this ‘distance’, under the uniform metric, is the length of
the heavy vertical line segment. There is perhaps little advantage to be
gained by still thinking in terms of distance. It may be preferable to
consider the metric as measuring the ‘degree of difference’ between the
functions. The essential notion remains that the closer the functions are
to each other, the smaller this difference is.

We must verify that d above is indeed a metric. By definition of
absolute value, certainly d(x, y) ∈ R+ for any x, y ∈ C[a, b]. If x = y,
then d(x, y) = 0; if x �= y, then for some t0 in [a, b], x(t0) �= y(t0), so

d(x, y) � |x(t0) − y(t0)| > 0,

and hence d(x, y) �= 0. Thus (M1) is verified. Easily, (M2) is also true.
For (M3), if z is any third function in C[a, b] and t is any point in [a, b],
then

|x(t) − z(t)| � |x(t) − y(t)| + |y(t) − z(t)|
� max

a�t�b
|x(t) − y(t)| + max

a�t�b
|y(t) − z(t)|.

In particular, this is true wherever the function |x− z| attains its maxi-
mum value, so d(x, z) � d(x, y) + d(y, z), as required.

(12) Another metric for the same set C[a, b] is given by

d(x, y) =
∫ b

a

|x(t) − y(t)| dt.
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A function that is continuous over a closed interval is integrable over
that interval, so d(x, y) certainly exists for any x, y ∈ C[a, b]. The veri-
fication of the axioms for this metric is easy, though care must be taken
with (M1): note how essential it is that the functions be continuous. In
Figure 7, the degree of difference between the functions x and y, under
this metric, is the area of the shaded region. The metric space of this
example will be denoted by C1[a, b].

(13) A third metric for the set C[a, b] is given by

d(x, y) =

√∫ b

a

(x(t) − y(t))2 dt.

In verifying (M1), the same note as in Example (12) is relevant. For the
triangle inequality, an integral version of the Cauchy–Schwarz inequality
must first be obtained. See Exercise 2.4(6). We will denote this metric
space by C2[a, b].

(14) Our final example shows that a metric may be defined for any
nonempty set X , without any specification as to the nature of its ele-
ments. We define d by

d(x, y) =

{
0, x = y,

1, x �= y,

where x, y ∈ X . It is a simple matter to check that (M1), (M2) and (M3)
are satisfied. This metric is called the discrete metric, or the trivial met-
ric, for X , and serves a useful purpose as a provider of counterexamples.
What is not true in this metric space cannot be true in metric spaces
generally.

2.3 Solved problems

(1) Let (X, d) be a metric space. For any points x, y, z ∈ X , prove that

|d(x, z) − d(y, z)| � d(x, y).

Solution. By property (M3) of a metric, d(x, z) � d(x, y) + d(y, z), so
that

d(x, z) − d(y, z) � d(x, y).

This is half the desired result. Then, interchanging x and y, we have
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d(y, z) − d(x, z) � d(y, x), which, using property (M2), is equivalent to

d(x, z) − d(y, z) � −d(x, y),

and this is the other half.

(2) Let (X, d) be a metric space. Show that the mapping d′, where

d′(x, y) =
d(x, y)

1 + d(x, y)
, x, y ∈ X,

is also a metric for X .

Solution. All properties of a metric, except (M3), are immediately true
for d′ since they are true for d. So we only have to show that the triangle
inequality holds for d′. Since d is a metric for X , we know, from (M3),
that

d(x, z) � d(x, y) + d(y, z),

for x, y, z ∈ X . Then

d(x, z) + d(x, z)d(x, y) + d(x, z)d(y, z)

� d(x, y) + d(y, z) + d(x, z)d(x, y) + d(x, z)d(y, z).

Rearranging this, we have

d(x, z)
1 + d(x, z)

� d(x, y) + d(y, z)
1 + d(x, y) + d(y, z)

,

so
d(x, z)

1 + d(x, z)
� d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)
1 + d(x, y) + d(y, z)

� d(x, y)
1 + d(x, y)

+
d(y, z)

1 + d(y, z)
,

since d(y, z) � 0 and d(x, y) � 0. Thus

d′(x, z) � d′(x, y) + d′(y, z),

and (M3) is proved for d′.

Another approach to this solution uses the function f , defined by

f(u) =
u

1 + u
, u ∈ R+.

This can be shown, by the methods of calculus if you like, to be a non-
decreasing function on R+. That is, if 0 � u1 � u2, then f(u1) � f(u2).
Taking u1 = d(x, z) and u2 = d(x, y)+ d(y, z), we can then finish off the
solution as above.
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2.4 Exercises

(1) If (X, d) is a metric space, and x, y, z, u ∈ X , prove that

|d(x, z) − d(y, u)| � d(x, y) + d(z, u).

(2) If (X, d) is a metric space, and x1, x2, . . . , xn ∈ X (n � 2), prove
that

d(x1, xn) � d(x1, x2) + d(x2, x3) + · · · + d(xn−1, xn).

(3) Let d1 and d2 be two metrics for the same set X . Show that d3

and d4, where

d3(x, y) = d1(x, y) + d2(x, y),

d4(x, y) = max{d1(x, y), d2(x, y)}

(x, y ∈ X), are also metrics for X .
(4) Refer to Examples 2.2(5) and 2.2(6). Verify that d1 and d∞ are

metrics for Rn.
(5) Refer to Example 2.2(9). Show that d(x, y) is finite for all x, y ∈ l1

and that d defines a metric for l1.
(6) Let f and g be continuous functions defined on [a, b].

(a) Derive the integral form of the Cauchy–Schwarz inequality:

(∫ b

a

f(t)g(t) dt

)2

�
(∫ b

a

(f(t))2 dt

)(∫ b

a

(g(t))2 dt

)
.

(b) Show that there is equality if and only if f = βg for some
number β.

(c) Use this Cauchy–Schwarz inequality to deduce the triangle
inequality for the mapping d of Example 2.2(13).

(7) Let X be the set of all continuous functions defined on the whole
real line which are zero outside some interval (not necessarily the
same interval for different functions). Show that

d(x, y) = max
t∈R

|x(t) − y(t)|, x, y ∈ X,

defines a metric for X .
(8) Take any n ∈ N and let X be the set of all n × n matrices
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with complex elements. If A = (ajk) and B = (bjk) are any two
members of X , show that d1 and d2, where

d1(A, B) = max
1�j�n, 1�k�n

|ajk − bjk|,

d2(A, B) = max
1�k�n

n∑
j=1

|ajk − bjk|,

are both metrics for X .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

(9) Let X be the set of all complex-valued sequences. Show that the
mapping d, where

d(x, y) =
∞∑

k=1

1
2k

|xk − yk|
1 + |xk − yk| ,

with x = {xn} ∈ X and y = {yn} ∈ X , is a metric for X . This
metric space is commonly denoted by s.

(10) Let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two fixed elements
of Rn. Prove that

lim
p→∞

( n∑
k=1

|xk − yk|p
)1/p

= max
1�k�n

|xk − yk|.

(11) There are different and more economical ways of defining the
axioms for a metric space. Let X be any nonempty set and let
ρ : X × X → R be a mapping such that

(a) ρ(x, y) = 0 if and only if x = y (x, y ∈ X), and
(b) ρ(x, y) � ρ(z, x) + ρ(z, y) (x, y, z ∈ X).

Show that ρ is a metric for X .
(12) A weaker set of axioms than those for a metric is sufficient for

many applications. Often the ‘only if’ requirement in (M1) is
omitted, so that distinct elements may be zero distance apart.
Then the mapping d : X×X → R+ satisfying d(x, x) = 0 (x ∈ X)
and (M2) and (M3) is called a semimetric for X and (X, d) is
called a semimetric space. Show that (X, d) is a semimetric space,
but not a metric space, when

1 Exercises before the dotted line, here and later, are designed to assist an under-
standing of the preceding concepts and in some cases are referred to subsequently.
Those after the line are either harder practice exercises or introduce theoretical
ideas not later required.
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(a) X is the set of all integrable functions on [a, b], and

d(f, g) =
∫ b

a

|f(t) − g(t)| dt (f, g ∈ X);

(b) X is the set of all differentiable functions on [a, b], and

d(f, g) = max
a�t�b

|f ′(t) − g′(t)| (f, g ∈ X).

2.5 Convergence in a metric space

A sequence has been defined in Definition 1.7.1 as a mapping from N
into some set X . If a metric d has been defined for X , we may speak
then of sequences in the metric space (X, d).

Because we will often be dealing with metric spaces whose elements
are themselves sequences, it is useful to adopt the following convention
on notation. If an element of a metric space is itself a sequence (such
as occurs in the spaces l1 and l2), then it will be denoted, for exam-
ple, by (x1, x2, . . . ), and may be thought of as an extended n-tuple. A
sequence of elements of a metric space will continue to be denoted as
{xn}∞n=1 or {xn} or x1, x2, . . . , for example. Thus, a sequence denoted
by (x1, x2, . . . ) is a particular element of a particular metric space and
each xk is a ‘component’ of this element, whereas a sequence denoted
by {xn} is a mapping from N into the space and each xk is an element
of the space.

At the beginning of this chapter, it was pointed out that the idea of a
metric is all that is required in order to speak generally of convergence of
a sequence. Theorem 1.7.5 and Definition 1.7.13 suggest the following.

Definition 2.5.1 A sequence {xn} in a metric space (X, d) is said
to converge to an element x ∈ X if for any number ε > 0 there exists
a positive integer N such that

d(xn, x) < ε whenever n > N.

Then x is called the limit of the sequence, and we write xn → x or
limxn = x (adding ‘n → ∞’ when needed for clarification).

An alternative way of putting this is to require that the real-valued
sequence {dn}, where dn = d(xn, x), converge with limit 0. Thus xn → x

if and only if d(xn, x) → 0.
Two important points must be noticed about the definition. First, the

element x to which the sequence {xn} in X converges must itself be an
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element of X . Secondly, the metric by which the convergence is defined
must be the metric of the metric space (X, d): the fact that d(xn, x) → 0
does not imply that d′(xn, x) → 0, where d′ is a different metric for the
same set X .

To illustrate the first point, suppose (X, d) is the open interval (0, 1),
with the natural metric. The sequence 1

2 , 1
3 , 1

4 , . . . , all of whose terms
belong to this space, cannot be called convergent since the only candidate
for its limit, namely 0, does not belong to the space. For the second
point, consider the same sequence as a subset this time of the closed
interval [0, 1]. Under the natural metric, the sequence converges to 0
(which now is an element of the space), but if d′ is the discrete metric
of Example 2.2(14), then the sequence does not converge to 0, since
d′(xn, 0) = 1 for every term xn in the sequence.

The following observation, which we have alluded to previously, is
elementary in nature but useful in tidying up proofs of other results.

Theorem 2.5.2 If a sequence in a metric space is convergent, then the
limit is unique.

We anticipated this in Definition 2.5.1 when we spoke of ‘the’ limit of
a sequence (but see Exercise 2.9(14)). To prove the theorem, we suppose
that {xn} is a convergent sequence in a metric space (X, d) and both
xn → x and xn → y (x, y ∈ X). It follows from the properties of a
metric that, for any n ∈ N,

0 � d(x, y) � d(x, xn) + d(xn, y) = d(xn, x) + d(xn, y).

Since d(xn, x) → 0 and d(xn, y) → 0, we must have d(x, y) = 0, or x = y,
proving the uniqueness of the limit.

We investigate now how convergence in some particular metric spaces
may be related to our earlier ideas of convergence.

Let (X, d) be the metric space Cm and let {xn} be a sequence in
this space. Each term of the sequence is an ordered m-tuple of complex
numbers: we will write xn = (xn1, xn2, . . . , xnm) so that xnk is the kth
component of the nth term of the sequence {xn} (k = 1, 2, . . . , m;
n ∈ N). Suppose the sequence converges to an element x (in Cm, of
course) and write x = (x·1, x·2, . . . , x·m). Then

d(xn, x) =

√√√√ m∑
k=1

|xnk − x·k|2 → 0.
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Since

0 � |xnk − x·k| �

√√√√ m∑
k=1

|xnk − x·k|2

for each k = 1, 2, . . . , m, we must also have xnk → x·k (as n → ∞)
for each k. That is, all the ordinary complex-valued sequences {xnk}∞n=1

are convergent. Conversely, if xnk → x·k for each k, then d(xn, x) → 0.
This may be expressed by saying that convergence of a sequence in Cm

is equivalent to convergence by components. The same may clearly be
said of the metric space Rm.

However, now let (X, d) be the metric space l2, introduced in Defini-
tion 2.2.3, and let {xn} be a convergent sequence in l2, with limxn = x.
Each term xn is a complex-valued sequence, as is the limit x: we write
xn = (xn1, xn2, . . . ), for each n ∈ N, and x = (x·1, x·2, . . . ), in accor-
dance with the note at the beginning of this section. For each n, the
condition that xn ∈ l2 is that the series

∑∞
k=1 |xnk|2 converges. Since

the sequence {xn} converges,

d(xn, x) =

√√√√ ∞∑
k=1

|xnk − x·k|2 → 0

and again it follows that xnk → x·k (as n → ∞) for each k ∈ N. Thus,
convergence of a sequence in l2 implies convergence by components.

The following example shows that this time the converse is not true.
Consider the sequence {en}, where

e1 = (1, 0, 0, 0, . . . ),

e2 = (0, 1, 0, 0, . . . ),

e3 = (0, 0, 1, 0, . . . ),

and so on, all components of en being 0 except for the nth component
which is 1 (n ∈ N). The sequence of kth components converges to 0 for
each k, but x = (0, 0, 0, 0, . . . ) is certainly not lim en, since d(en, x) = 1
for each n. That lim en does not exist will follow immediately from some
work below.

Finally here we consider a sequence {xn} in the metric space C[a, b].
If the sequence is convergent, and lim xn = x, then, given ε > 0, we can
find a positive integer N so that

max
a�t�b

|xn(t) − x(t)| < ε
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whenever n > N . Then certainly, when n > N , |xn(t) − x(t)| < ε

for all t in [a, b]. This N is independent of the choice of t in [a, b], so,
recalling Definition 1.10.1, the sequence {xn} is uniformly convergent
on [a, b]. This works also in reverse, so we conclude that convergence of
a sequence in C[a, b] is equivalent to uniform convergence of the sequence
on [a, b]. This is why the metric for C[a, b] is called the uniform metric.

We summarise these results.

Theorem 2.5.3

(a) A sequence in Cn or Rn converges if and only if the sequence of
k th components converges for each k = 1, 2, . . . , n.

(b) If a sequence in l2 converges, then the sequence of k th components
converges for each k ∈ N.

(c) A sequence in C[a, b] converges if and only if the sequence con-
verges uniformly on [a, b].

Look again now at Definition 2.5.1, on convergence of a sequence in
a metric space. This definition has an unfortunate drawback in that
to test a sequence for convergence we must beforehand make at least
an educated guess as to whether or not it converges and to what its
limit might be. A similar situation was noted for real-valued sequences
and there a useful alternative was provided by the Cauchy convergence
criterion in Theorem 1.7.12. This provides a test for convergence that
depends only on the actual terms of the sequence. If the test works it
provides no information on the limit of the sequence but this is often
of secondary importance to the basic question of the existence of that
limit. It would be easy to write down an exact analogue of that test for
metric spaces in general, but unfortunately the analogue would not be
true for all metric spaces. Those in which it is true are called complete.
We now lead up to a precise definition of that term.

Definition 2.5.4 A sequence {xn} in a metric space (X, d) is called
a Cauchy sequence if for any number ε > 0 there exists a positive
integer N such that

d(xn, xm) < ε whenever m, n > N.

Therefore, by the Cauchy convergence criterion, we can state that every
Cauchy sequence in the metric space R is convergent.
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Definition 2.5.5 If every Cauchy sequence in a metric space con-
verges, then the space is said to be complete.

Hence we say that R is complete, in agreement with our earlier dis-
cussions of the completeness of the real number system. As we have
indicated before, the set Q of rational numbers, on which we impose the
natural metric, is not complete. An example of a Cauchy sequence in Q
which does not converge is the sequence

0.1, 0.101, 0.101001, 0.1010010001, . . . .

This is clearly a Cauchy sequence, but since the only conceivable limit is
a number whose decimal expansion is neither terminating nor periodic,
the sequence cannot have a limit which is a rational number. Other
examples of metric spaces which are not complete will be given shortly.

We can however make the following general statement.

Theorem 2.5.6 If a sequence in a metric space is convergent, then it
is a Cauchy sequence.

To prove this, we suppose that {xn} is a convergent sequence in a
metric space (X, d), with lim xn = x. Let ε > 0 be given. We know that
there exists an integer N such that, when m, n > N , both d(xn, x) < 1

2ε

and d(xm, x) < 1
2ε. Then

d(xn, xm) � d(xn, x) + d(x, xm)

= d(xn, x) + d(xm, x) < 1
2 ε + 1

2ε = ε,

whenever m, n > N . Hence {xn} is a Cauchy sequence.

It is the fact that the converse of this theorem is not true that prompts
the notion of complete metric spaces, and, as we have illustrated, all of
this is suggested by the earlier work on real-valued sequences.

A little while back, we introduced the sequence {en} in l2, where
e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), . . . . We can show now that this
sequence does not converge. To do this, we need only note that when
n �= m we have d(en, em) =

√
2. Hence {en} is not a Cauchy sequence

and so, by the preceding theorem, it is not convergent.

2.6 Examples on completeness

(1) We have shown that the metric space R is complete and that the
set Q, with the natural metric, is not complete.
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(2) Let (X, d) be the metric space C, consisting of the set of all complex
numbers with the natural metric d(x, y) = |x − y| (x, y ∈ C). We will
show that C is a complete metric space. Let {xn} be a Cauchy sequence
in C. For each n ∈ N, write xn = un + ivn, where un and vn are
real numbers and i =

√−1. Because {xn} is a Cauchy sequence, for
any ε > 0 there is a positive integer N such that |xn − xm| < ε when
m, n > N . But

|un − um| = |Re(xn − xm)| � |xn − xm|,
and also |vn − vm| � |xn − xm|, so {un} and {vn} are Cauchy sequences
in R. Since R is complete, these sequences are convergent, and we can
write limun = u and lim vn = v, say, for some real numbers u, v. Put
x = u + iv. Then x ∈ C. Furthermore, x = limxn, because

0 � d(xn, x) = |xn − x| = |(un + ivn) − (u + iv)|
= |(un − u) + i(vn − v)| � |un − u| + |vn − v| < ε

for any ε > 0, provided n is large enough. Hence we have proved that the
Cauchy sequence {xn} is convergent, so C is a complete metric space.

This proof has been written out in full detail. A similar process is
followed in Examples (3) and (5) below. The general technique is to
take a Cauchy sequence in the space, postulate a natural limit for the
sequence, show that it is an element of the space, and then verify that
it is indeed the limit.

(3) The metric space l2 is complete. Let {xn} be a Cauchy sequence
in l2. We must show that the sequence converges. For each n ∈ N, write
xn = (xn1, xn2, . . . ). By definition of the space l2, the series

∑∞
k=1 |xnk|2

converges for each n. Since {xn} is a Cauchy sequence, for any ε > 0
there is a positive integer N such that√√√√ ∞∑

k=1

|xnk − xmk|2 < ε

when m, n > N , using the definition of the metric for l2. That is,
∞∑

k=1

|xnk − xmk|2 < ε2, m, n > N,

so we must have

|xnk − xmk| < ε, m, n > N,
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for each k ∈ N. Then, for each k, {xnk} is a Cauchy sequence in C so
limn→∞ xnk exists since C is complete. Write limn→∞ xnk = x·k and
set x = (x·1, x·2, . . . ). We will show that x ∈ l2 and that {xn} converges
to x. This will then mean that l2 is complete. We note first that for any
r = 1, 2, . . . ,

r∑
k=1

|xnk − xmk|2 < ε2, m, n > N,

so that, keeping n fixed and using the fact that limm→∞ xmk = x·k,
r∑

k=1

|xnk − x·k|2 � ε2, n > N,

by Theorem 1.7.7. For points

(a1, a2, . . . , ar), (b1, b2, . . . , br), (c1, c2, . . . , cr) ∈ Cr,

the triangle inequality in Cr gives us√√√√ r∑
k=1

|ak − ck|2 �

√√√√ r∑
k=1

|ak − bk|2 +

√√√√ r∑
k=1

|bk − ck|2.

Replacing ak by x·k, bk by xnk and ck by 0, we have√√√√ r∑
k=1

|x·k|2 �

√√√√ r∑
k=1

|x·k − xnk|2 +

√√√√ r∑
k=1

|xnk|2

� ε +

√√√√ r∑
k=1

|xnk|2 � ε +

√√√√ ∞∑
k=1

|xnk|2

if n > N . The convergence of the final series here thus implies the con-
vergence of

∑∞
k=1 |x·k|2, so that indeed x ∈ l2. Moreover, an inequality

a few lines back shows further that√√√√ ∞∑
k=1

|xnk − x·k|2 � ε, n > N,

and this implies that the sequence {xn} converges to x. This completes
the proof that l2 is complete.

(4) The metric spaces Rn and Cn are complete. This is easily shown
by adapting the method of Example (3).

(5) The metric space C[a, b] is complete. Let {xn} be a Cauchy sequence
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in C[a, b]. Then, for any ε > 0, we can find N so that, using the definition
of the metric for this space,

max
a�t�b

|xn(t) − xm(t)| < ε

when m, n > N . Certainly then for each particular t in [a, b] we have

|xn(t) − xm(t)| < ε, m, n > N,

so {xn(t)} is a Cauchy sequence in R. But R is complete, so the sequence
{xn(t)} converges to a real number, which we will write as x(t), for each t

in [a, b]. This determines a function x, defined on [a, b]. In the preceding
inequality, fix n (and let m → ∞) to give

|xn(t) − x(t)| � ε, n > N.

The N here is independent of t in [a, b], so we have shown that the
sequence {xn} converges uniformly on [a, b] to x. Using the theorem
that the uniform limit of a sequence of continuous functions is itself
continuous (Theorem 1.10.3), our limit function x must be continuous
on [a, b]. That is, x ∈ C[a, b]. Furthermore, uniform convergence on
[a, b] is equivalent to convergence in C[a, b] (Theorem 2.4.3(c)). Thus
the Cauchy sequence {xn} converges to x, completing the proof that
C[a, b] is complete.

(6) The metric space C1[a, b] (defined in Example 2.2(12)) is not com-
plete. That a metric space is not complete can always be shown by a
single example of a Cauchy sequence in the space that does not converge.

We will give an example of such a sequence when a < 0 and 1 < b.
Similar examples could be devised for other values of a and b, but see
Exercise 2.9(12) to show that some care is necessary. Let {xn} be the
sequence of functions for which

xn(t) =


0, a � t � 0,

nt, 0 < t <
1
n

,

1,
1
n

� t � b,

Figure 8 shows the graphs of typical functions xm and xn (where we
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xn xm

1

0 1 ba 1
n

1
m

Figure 8

have taken m < n). Using the definition of the metric for C1[a, b],

d(xn, xm) =
∫ b

a

|xn(t) − xm(t)| dt ( = area of shaded region)

=
1
2

∣∣∣∣ 1m − 1
n

∣∣∣∣ < ε

when m and n are sufficiently large, no matter how small ε is. Hence
{xn} is a Cauchy sequence in C1[a, b]. However, the sequence does not
converge. To see this, let g be the function defined on [a, b] by

g(t) =

{
0, a � t � 0,

1, 0 < t � b,

and let f be any continuous function on [a, b]. Then, for any t in [a, b]
and any n ∈ N,

|g(t) − f(t)| = |(g(t) − xn(t)) + (xn(t) − f(t))|
� |g(t) − xn(t)| + |xn(t) − f(t)|,

so ∫ b

a

|g(t) − f(t)| dt �
∫ b

a

|g(t) − xn(t)| dt +
∫ b

a

|xn(t) − f(t)| dt.

The integral on the left is
∫ 0

a
|f(t)| dt +

∫ b

0
|1 − f(t)| dt. Since f is con-

tinuous, this sum must be positive. The first integral on the right is
arbitrarily small for large enough n, as we see in the same way that
{xn} was shown to be a Cauchy sequence. It follows from this that
we cannot have d(xn, f) =

∫ b

a
|xn(t) − f(t)| dt → 0, no matter what

the function f is (remembering that f must be continuous). Hence the
sequence {xn} does not converge.
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(7) The same choice of {xn} as in Example (6) shows that the metric
space C2[a, b], of Example 2.2(13), is not complete.

2.7 Subspace of a metric space

Let (X, d) be a metric space and let S be any nonempty subset of X . By
definition, d is a mapping from X × X into R+. By the restriction of d

to S, we mean the mapping dS : S×S → R+ such that dS(x, y) = d(x, y),
x, y ∈ S. It is immediately clear that dS is a metric for S, so that (S, dS)
is a metric space. As dS is nothing more than the mapping d when
considered as a mapping of the points in S alone, we normally drop the
subscript on dS . This leads us to the notion of a subspace of a metric
space.

Definition 2.7.1 Let (X, d) be a metric space. The metric space
obtained by restricting d to a nonempty subset of X is called a subspace
of (X, d).

We have in fact already met many subspaces. The wording of Exam-
ple 2.2(2) means that the metric space (X, d) in that example is a sub-
space of R2. Similar wording was used in Examples 2.2(1), 2.2(3) and
2.2(4).

Let {xn} be a sequence in a subspace (S, d) of a metric space (X, d)
and suppose that xn → x, when we consider {xn} as a sequence in X .
By definition of convergence of a sequence in a metric space, we must
have x ∈ X . If we also have x ∈ S, then (S, d) is called a closed subspace
of (X, d). Putting this another way, we have the following definition.

Definition 2.7.2 A subspace S of a metric space X is said to be
(sequentially) closed if it contains the limits of all the sequences in S

which converge in X .

The more correct, but clumsier, term is ‘sequentially closed’. We will
stay with the simpler term for now, but in Chapter 5 we will see the
word ‘closed’ used in a different way, and we will then need to be more
careful with our terminology.

It will not be unexpected, because of the nomenclature used, that a
closed interval with the natural metric is a closed subspace of R. This is
little more than a restatement of Theorem 1.7.7. It is left as an exercise
to verify that the subset {z : z ∈ C, |z| � c} of C is a closed subspace
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of C for any positive number c. Such a set is referred to as a closed disc
in C.

It is apparent that any metric space can be considered as a subspace of
itself. This immediately implies that all metric spaces are closed, since
no sequence in a metric space can be considered to be convergent unless
its limit is contained in the space.

An enlightening consequence of this is provided by the metric space
consisting of the open interval (a, b) with the natural metric. Like all
metric spaces, this one is closed, but it is certainly not closed when
considered as a subspace of R. To be particular, let the open interval
be (0, 1) and consider the sequence 1

2 , 1
3 , 1

4 , . . . . In the metric space
consisting of (0, 1) with the natural metric, this is not a convergent
sequence (its ‘limit’ is not in the space). It is however a Cauchy sequence,
so this metric space is not complete. Of course, as a sequence in R,
it has limit 0. This should be looked at carefully in the light of the
statement above on closed intervals. That the metric space (0, 1) is
neither complete nor closed as a subspace of R is a particular case of
the following theorem, which is the main result of this section.

Theorem 2.7.3 A subspace of a complete metric space is complete if
and only if it is closed.

Thus, in a complete metric space, the notions of completeness and
closedness of subspaces coincide. To prove the theorem, we suppose
that S is a subspace of a complete metric space X , and show first that if
S is closed then it is complete. Let {xn} be a Cauchy sequence in S. As
S is a subspace of X and X is complete, then {xn}, as a sequence in X ,
must converge. But S is closed, so the limit of the sequence must belong
to S. Thus the Cauchy sequence {xn} converges in S, so S is complete.
Next, we prove the converse: if S is complete, then it is closed. This
time, let {xn} be any sequence in S and suppose that, as a sequence
in X , it converges with limit x, say. Then {xn} is a Cauchy sequence
in X (Theorem 2.5.6) and hence also in S. But since S is complete, we
must have x ∈ S, so S is closed.

Having just taken the time to talk carefully of subspaces of metric
spaces, we must now foreshadow a loosening of expression. It is common
to speak of a subset of a metric space, rather than of a subspace, and we
will shortly follow this practice. If we do not do this then the language
becomes too confused once we have introduced vector spaces into the
discussion. Anticipating a little, a set on which we impose the axioms
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of a vector space may also be considered as a metric space, and the
two notions of subspace (of a vector space and of a metric space) do not
coincide. In general, we will later prefer to mean by a subspace the more
established idea of a vector subspace.

Speaking of subsets rather than subspaces also allows us conveniently
to refer to the empty set as a subset of a metric space. The empty set
is in fact always considered to be a closed subset of any metric space.

2.8 Solved problems

(1) Let P be the set of all polynomial functions (of all degrees) defined
on [0, 1] and define d by

d(x, y) = max
0�t�1

|x(t) − y(t)|, x, y ∈ P.

Prove that (P, d) is a metric space, but that it is not complete. Prove
also that (P, d) is a subspace of C[0, 1], but, as a subspace, is not closed.

Solution. Every polynomial function is continuous; d is the restriction
to P of the uniform metric of the metric space C[0, 1]. These obser-
vations prove that (P, d) is a subspace of C[0, 1], so certainly (P, d)
is a metric space. (This may also be shown directly.) To prove that
(P, d) is not complete, consider (as one of many similar examples) the
sequence {xn}, where

xn(t) =
n∑

k=0

(
t

2

)k

= 1 +
t

2
+

t2

22
+ · · · + tn

2n
, 0 � t � 1.

As desired, xn ∈ P for each n ∈ N. This sequence is a Cauchy sequence
in (X, d), for, taking m < n,

d(xn, xm) = max
0�t�1

∣∣∣∣ n∑
k=0

(
t

2

)k

−
m∑

k=0

(
t

2

)k∣∣∣∣
= max

0�t�1

n∑
k=m+1

(
t

2

)k

=
n∑

k=m+1

1
2k

=
1

2m
− 1

2n
,

and this is arbitrarily small for large enough m, n. However, the sequence
does not converge in P , because the only candidate for limxn is the
function given by 2/(2− t), 0 � t � 1 (using the formula for the limiting
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sum of a geometric series), and this is not a polynomial function. Hence
(P, d) is not complete. As C[0, 1] is complete, it immediately follows
from Theorem 2.7.3 that, as a subspace of C[0, 1], (P, d) is not closed.

For the second of these solved problems, we will need the following
definition.

Definition 2.8.1

(a) Let (X, d) be a metric space, and let S be a nonempty subset
of X . The number δ(S) defined by

δ(S) = sup{d(x, y) : x, y ∈ S}

is called the diameter of the set S.

(b) A subset of a metric space is said to be bounded if it is empty or
if it has a finite diameter.

(2) Show that any Cauchy sequence in a metric space is bounded.

Solution. More precisely, we are to show that the range of any Cauchy
sequence is a bounded set. Let {xn} be a Cauchy sequence in a metric
space (X, d). Then, given any ε > 0, there exists a positive integer N

such that d(xn, xm) < ε whenever m, n > N . In particular, choosing
m = N + 1, d(xn, xN+1) < ε whenever n > N . For those n � N , there
being only a finite number of them, the set of distances d(xn, xN+1) is
bounded (in the ordinary sense). Write

K = max{d(xn, xN+1) : n = 1, 2, . . . , N}.

Then surely, for all n ∈ N, we have d(xn, xN+1) < K+ε. By the triangle
inequality, we then have, for any n, p ∈ N,

d(xn, xp) � d(xn, xN+1) + d(xp, xN+1) < 2(K + ε).

This provides an upper bound for the set of all distances d(xn, xp), so
its least upper bound exists (Theorem 1.5.7). But this means that the
diameter of the subset of X given by the terms of the sequence {xn} is
finite. That is, the Cauchy sequence {xn} is bounded.



2.9 Exercises 111

2.9 Exercises

(1) Use the inequality of Exercise 2.4(1) to prove that if {xn} and
{yn} are convergent sequences in a metric space and lim xn = x,
lim yn = y, then d(xn, yn) → d(x, y), where d is the metric for
the space.

(2) Let {xn} and {yn} be two Cauchy sequences in a complete metric
space, with metric d. Prove that they have the same limit if and
only if d(xn, yn) → 0.

(3) Refer to Example 2.6(6). Show that the sequence {xn} in that
example is not a Cauchy sequence in C[a, b] (where a < 0 and
1 < b).

(4) Show that any convergent sequence in a metric space is bounded.
(More precisely, show that the range of any convergent sequence
is a bounded set.)

(5) Let X be any nonempty set and impose on it the discrete metric.
(See Example 2.2(14).) Determine whether the resulting metric
space is complete.

(6) Prove that the metric space Cn is complete.
(7) Show that the metric space (Rn, d∞) is complete, d∞ being the

metric of Example 2.2(6).
(8) Prove that the metric space l1 (Example 2.2(9)) is complete.
(9) Let X be the set of all bounded real-valued sequences. Define a

mapping d on X × X by d(x, y) = sup{|xk − yk| : k ∈ N} where
x = (x1, x2, . . . ), y = (y1, y2, . . . ) are elements of X . Prove that
(X, d) is a metric space and that it is complete. This space is
commonly denoted by m.

(10) If {zn} is a complex-valued sequence, and zn → z, prove that
|zn| → |z|. Hence show that the subset {w : w ∈ C, |w| � c}
of C is closed for any positive number c.

(11) Let Y be the set of all complex-valued sequences (y1, y2, . . . ) for
which |yk| � 1/k, k ∈ N. Define d by

d(x, y) =

√√√√ ∞∑
k=1

|xk − yk|2, x, y ∈ Y.

Prove that (Y, d) is a subspace of l2, and that it is closed.
(12) Why does the counterexample in Example 2.6(6) fail when a = 0?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(13) Show that the metric space s (Exercise 2.4(9)) is complete. Show
also that convergence in s is equivalent to convergence by com-
ponents.

(14) In a semimetric space (Exercise 2.4(12)), convergence of a se-
quence is defined as it is in a metric space. Let (X, d) be the
semimetric space of Exercise 2.4(12)(b), with a = 0, b = 1

2 . Show
that the sequence {xn}, where xn(t) = tn (0 � t � 1

2 ) is conver-
gent and that any constant function on [0, 1

2 ] serves as its limit.
(Hence, convergent sequences in semimetric spaces need not have
unique limits.)

(15) An ultrametric space (X, d) is a nonempty set X together with a
‘distance’ function d : X × X → R+ satisfying (M1), (M2) and,
in place of (M3),

d(x, z) � max{d(x, y), d(y, z)} for every x, y, z ∈ X.

Show that

(a) an ultrametric space is a metric space;
(b) if d(x, y) �= d(y, z), then d(x, z) = max{d(x, y), d(y, z)},

x, y, z ∈ X ;
(c) a sequence {xn} in X is a Cauchy sequence (defined as in

metric spaces) if and only if d(xn, xn+1) → 0.



3

The Fixed Point Theorem and its
Applications

3.1 Mappings between metric spaces

Let (X, d) and (Y, d′) be metric spaces. The definition of a mapping
A : (X, d) → (Y, d′) involves nothing more than the definition already
given of a mapping A : X → Y (Definition 1.3.1(a)). The fact that the
sets X and Y now have metrics associated with them does not alter the
basic notion that to each element x ∈ X the mapping A assigns a unique
element y ∈ Y . The other parts of Definition 1.3.1 are also still used
in the context of metric spaces. There are however certain changes of
notation which have become established.

We denote the image y of x ∈ X by y = Ax, no longer using paren-
theses, as in the familiar y = f(x), unless they are necessary to avoid
ambiguity. The composition of two mappings (see Definition 1.3.3) is
also denoted differently. If A : X → Y and B : Y → Z are two mappings
between metric spaces, then the composition of A with B is denoted
simply by BA. The order of the letters here is important, and natural:
if x ∈ X , then

(BA)x = B(Ax).

As Ax ∈ Y , we have B(Ax) ∈ Z so BA is a mapping from X into Z,
as it should be. The mapping BA is often also called a product of A

and B.
When A maps a metric space (or simply a set) into itself, it is possible

to form the product of A with A, obtaining the mapping AA, which for
natural reasons is denoted by A2. We can then form the product A(A2),
denoted by A3, and in general may speak of the mapping An : X → X

defined inductively by

Anx = A(An−1x), x ∈ X, n = 2, 3, 4, . . . .

113
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By A1 we of course mean the mapping A itself. It is often useful to
use A0 for the identity mapping I on X defined by Ix = x, x ∈ X .

Let A : X → Y , B : Y → Z, C : Z → W be mappings, where X , Y ,
Z, W are any sets. Then the products C(BA) and (CB)A both exist,
and

C(BA) = (CB)A.

That is, the associative law is obeyed. To prove this, we let x ∈ X be
arbitrary and then the result follows from:

(C(BA))x = C((BA)x) = C(B(Ax)) = (CB)(Ax) = ((CB)A)x.

For now, we will indicate just two examples of mappings on metric
spaces. The first is the mapping A : C[a, b] → R defined by Ax = y,
where x ∈ C[a, b] and

y =
∫ b

a

x(t) dt.

Here, A maps each continuous function defined on [a, b] onto the unique
real number which is its integral over [a, b]. Since the domain of A

is the set C[a, b], we are assured that every x in the set does indeed
have an image y ∈ R: this is only a restatement of the fact that every
continuous function over a closed interval is integrable over that interval.
The second example concerns the Euclidean space Rn. Its elements
are n-tuples of real numbers. If the n-tuples are written as columns,
then they can be considered as column vectors, or n × 1 matrices. The
mapping in mind is B : Rn → Rm defined by the equation Bx = y,
where x = (x1, x2, . . . , xn)T ∈ Rn and B = (bjk) is an m × n matrix
whose elements bjk are real. Then indeed y = (y1, y2, . . . , ym)T is an
element of Rm and

yj =
n∑

k=1

bjkxk, j = 1, 2, . . . , m.

It is standard, and we have followed the practice, that in this example the
mapping and the matrix by which the mapping is defined are indicated
by the same letter.

In these examples, one mapping works on continuous functions, the
other on n-tuples of real numbers. What do they have in common? Only
this: the domain of each mapping is a complete metric space. Hence if
we can conclude anything in general terms about mappings on complete
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metric spaces, then we will immediately have concrete applications pro-
vided by these (and other) examples.

Since we are dealing now with metric spaces, it should be clear that
there is no difficulty in coming up with an adequate definition of conti-
nuity for a mapping. As models for such a definition, we have a choice
between Definition 1.9.1 and Theorem 1.9.2. We choose the latter be-
cause of its emphasis on sequences.

Definition 3.1.1 Let X and Y be metric spaces. We say a mapping
A : X → Y is continuous at x ∈ X if, whenever {xn} is a convergent
sequence in X with limit x, {Axn} is a convergent sequence in Y

with limit Ax. The mapping A is said to be continuous on X if it is
continuous at every point of X .

3.2 The fixed point theorem

Probably the most common problem in mathematics, in all branches and
at all levels, is: given the mapping A and the image y, solve for x the
equation Ax = y. In the example above of the mapping B : Rn → Rm,
this problem is that of solving a set of simultaneous linear equations.
Another instance is the need to solve an equation of the form f(x) = 0,
where f is an ordinary real-valued function. This equation is easy to
solve when f is a linear or quadratic function, but for most other func-
tions some method of approximating the roots of the equation is usually
employed.

Newton’s method provides a means for doing this under certain con-
ditions. We suppose x0 to be an approximation to the root and then
calculate x1 = x0 − f(x0)/f ′(x0). Then x1 will be a better approxima-
tion, and we may repeat the process with x1 replacing x0 to obtain a
still better approximation x2, and so on. Such a process is said to be
iterative. Desirable features of any iterative process are that the succes-
sive iterates (x0, x1, x2, . . . here) indeed converge to the desired point (a
root of f(x) = 0 here) and that they converge rapidly in the sense that
not too many iterates need to be computed before sufficient accuracy is
obtained.

In Application 3.3(1), we will see an alternative approach to the prob-
lem of solving an equation of the form f(x) = 0, using a different iter-
ative process. This will be just one of many examples arising from the
fixed point theorem, which under fairly broad conditions allows us to
find or estimate the solution x of an equation of the form Ax = x. We
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are concerned in this section only with mappings from a metric space X

into itself. Thus if x ∈ X and Ax = y, then also y ∈ X . The following
definitions are pertinent.

Definition 3.2.1 Let A be a mapping from a metric space (X, d)
into itself.

(a) A point x ∈ X such that Ax = x is called a fixed point of the
mapping A.

(b) If there is a number α, with 0 < α < 1, such that for every pair
of points x, y ∈ X we have

d(Ax, Ay) � αd(x, y),

then A is called a contraction mapping, or simply a contraction.
The number α is called a contraction constant for A.

The reason for calling A a contraction in (b) is clear: since α < 1, the
effect of applying the mapping A is to decrease the distance between
any pair of points in X . We see that the problem we indicated, that
of solving the equation Ax = x, amounts to asking for the fixed points
of A. The fixed point theorem below says that there always exists a
fixed point of A when A is a contraction and the space X is complete,
and that this fixed point is unique. Before stating this more formally,
and proving it, we show that any contraction mapping is continuous.

Theorem 3.2.2 If A is a contraction mapping on a metric space X

then A is continuous on X.

The proof is simple. Suppose {xn} is a sequence in (X, d) converging
to x and let α be a contraction constant for A. Then

0 � d(Axn, Ax) � αd(xn, x) < d(xn, x),

so Axn → Ax because xn → x.

The following is the main theorem of this chapter.

Theorem 3.2.3 (Fixed Point Theorem) Every contraction mapping
on a complete metric space has one and only one fixed point.

To prove this, let A be a contraction mapping, with contraction con-
stant α, on a complete metric space (X, d). Take any point x0 ∈ X and
let {xn} be the sequence (in X) defined recursively by

xn = Axn−1, n ∈ N.
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Thus x1 = Ax0, x2 = Ax1 = A(Ax0) = A2x0,

x3 = Ax2 = A(A2x0) = A3x0,

and so on, so that we may write xn = Anx0. We will show that {xn} is
a Cauchy sequence. Notice that, for any integer k > 1,

d(xk, xk−1) = d(Akx0, A
k−1x0) = d(A(Ak−1x0), A(Ak−2x0))

� αd(Ak−1x0, A
k−2x0) � α2d(Ak−2x0, A

k−3x0)
...

� αk−1d(Ax0, x0).

Now, taking 1 � m < n for definiteness,

d(xn, xm) = d(Anx0, A
mx0)

� d(Anx0, A
n−1x0) + d(An−1x0, A

n−2x0)

+ · · · + d(Am+1x0, A
mx0)

� αn−1d(Ax0, x0) + αn−2d(Ax0, x0) + · · · + αmd(Ax0, x0)

= αm(1 + α + α2 + · · · + αn−m−1)d(x1, x0)

<
αm

1 − α
d(x1, x0),

using the limiting sum of a geometric series, which we may do since
0 < α < 1. Since αm → 0 (as m → ∞), we must have d(xn, xm) < ε

for any ε > 0 whenever m and n are sufficiently large. Hence {xn} is
a Cauchy sequence. We see now why we insist that X be a complete
metric space: the existence of limxn is assured. We set x = limxn and
will show that x is a fixed point of A. For this, we note that, for any
positive integer n,

0 � d(Ax, x) � d(Ax, xn) + d(xn, x)

= d(Ax, Axn−1) + d(xn, x) � αd(x, xn−1) + d(xn, x),

and so d(Ax, x) = 0 since d(xn, x) → 0 (and d(x, xn−1) → 0). Thus
Ax = x, so indeed x is a fixed point of A. Finally, to show that it is the
only one, we suppose that y is another, so also Ay = y. Then

d(x, y) = d(Ax, Ay) � αd(x, y),

which, since α < 1, can only be true if d(x, y) = 0; that is, if x = y.
Hence there is just one fixed point of A.

Notice how simple it is, in theory, to obtain the fixed point. We
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take any starting point x0 and then repeatedly apply the mapping A.
The sequence x0, Ax0, A

2x0, . . . will converge to the fixed point. This
is the iteration process that we foreshadowed, the points Anx0 (n = 0,
1, 2, . . . ) being the successive iterates. In practice, there are important
questions of where to start the process and when to stop it. That is, how
do we choose x0 and how many iterates must we take to approximate
the fixed point with sufficient accuracy? The contraction mapping itself
must often be approximated by some other mapping and this again
raises questions of accuracy. We will return to this point at the end
of the chapter. For reasons which are clear, the fixed point theorem is
often referred to as the method of successive approximations.

We will soon consider a number of applications. In the fourth of
these, a generalisation of the fixed point theorem will be needed and it
is convenient to state and prove it at this stage.

Theorem 3.2.4 Let A be a mapping on a complete metric space and
suppose that A is such that An is a contraction for some integer n ∈ N.
Then A has a unique fixed point.

Let the metric space be X . According to the fixed point theorem, the
mapping An has a unique fixed point x ∈ X , so that Anx = x. Noting
that

An(Ax) = An+1x = A(Anx) = Ax,

we see that Ax is also a fixed point of An. But there can be only one,
so Ax = x and thus x is also a fixed point of A. Now, any fixed point y

of A is also a fixed point of An since

Any = An−1(Ay) = An−1y = · · · = Ay = y.

It follows that x is the only fixed point of A.

3.3 Applications

(1) Let f be a function with domain [a, b] and range a subset of [a, b].
Suppose there is some positive constant K < 1 such that

|f(x1) − f(x2)| � K|x1 − x2|,
for any points x1, x2 ∈ [a, b]. (Then f is said to satisfy a Lipschitz
condition, with Lipschitz constant K.) The fixed point theorem assures
us that the equation f(x) = x has a unique solution for x in [a, b].
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This is because of the following. First, f may be considered as a
mapping from the metric space consisting of the closed interval [a, b] with
the natural metric into itself, and this metric space is complete because
it is a closed subspace of R (Theorem 2.7.3). Second, the Lipschitz
condition, with 0 < K < 1, states that this mapping f is a contraction.
Hence f has a unique fixed point.

If f is a differentiable function on [a, b], with range a subset of [a, b],
and if there is a constant K such that

|f ′(x)| � K < 1,

for all x in [a, b], then again the equation f(x) = x has a unique solu-
tion for x in [a, b]. This is a simpler test than the preceding one, but
applies only to differentiable functions. Its truth is a consequence of the
mean value theorem of differential calculus: for any x1, x2 ∈ [a, b], with
x1 < x2, there is at least one point c, x1 < c < x2, such that

|f(x1) − f(x2)| = |f ′(c)(x1 − x2)| = |f ′(c)| |x1 − x2| � K|x1 − x2|,
and so f satisfies the Lipschitz condition with constant K < 1.

As an example, we show that the equation

4x5 − 2x2 − 4x + 1 = 0

has precisely one root in the interval [0, 1
2 ]. Introduce the function f ,

where

f(x) = x5 − 1
2x2 + 1

4 , 0 � x � 1
2 .

The given equation is equivalent to the equation f(x) = x, so we seek
information about the fixed points, if any, of f . The domain of f is
[0, 1

2 ]. Its range is shown as follows to be a subset of [0, 1
2 ]. We have, for

0 < x < 1
2 , f ′(x) = 5x4 − x. This is 0 when x = 1/ 3

√
5, and we calculate

that f(0), f(1/ 3
√

5) and f(1
2 ) all lie in [0, 1

2 ]. Also

|f ′(x)| = |5x4 − x| � 5x4 + x � 5
16 + 1

2 < 1

for all x in [0, 1
2 ]. All the required conditions are met, so f has a single

fixed point, and this is the required root of the original equation.
To find the root, we can take x0 = 0. The first three iterates are

x1 = f(0) = 0.25, x2 = f(0.25) .= 0.2197, x3 = f(0.2197) .= 0.2264, and
the next three are x4

.= 0.2250, x5
.= 0.2253, x6

.= 0.2252. (The use of
the symbol .= implies that the result is given correct to the number of
decimal places appearing on the right of the symbol.) To three decimal
places, the root is 0.225.
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(2) Consider the system
n∑

k=1

ajkxk = bj , j = 1, 2, . . . , n,

of n linear equations in n unknowns x1, x2, . . . , xn, where ajk and bj are
real numbers for each j and k. Introducing the n × n matrix A = (ajk)
and the column vectors x = (x1, x2, . . . , xn)T , b = (b1, b2, . . . , bn)T , the
system can be written in matrix form as Ax = b, and must be solved
for x. Letting C = (cjk) be the matrix I − A, where I is the n × n

identity matrix, this equation may be written (I − C)x = b, or

Cx + b = x.

Considering the elements of Rn to be column vectors, we define a map-
ping M : Rn → Rn by

Mx = Cx + b,

so that our matrix equation is replaced by the equation

Mx = x.

Hence the solutions of the original system are related to the fixed
points of the mapping M . Since Rn is a complete metric space, there
will be just one solution if M is a contraction mapping.

Let y = (y1, y2, . . . , yn)T and z = (z1, z2, . . . , zn)T be two points of Rn

and let d denote the Euclidean metric:

d(y, z) =

√√√√ n∑
j=1

(yj − zj)2.

Since My is the vector Cy + b, with jth component
∑n

k=1 cjkyk + bj

(j = 1, 2, . . . , n), and similarly for Mz, we have

d(My, Mz) =

√√√√ n∑
j=1

(( n∑
k=1

cjkyk + bj

)
−
( n∑

k=1

cjkzk + bj

))2

=

√√√√ n∑
j=1

( n∑
k=1

cjk(yk − zk)
)2

�

√√√√ n∑
j=1

(( n∑
k=1

c2
jk

)( n∑
k=1

(yk − zk)2
))

,
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by the Cauchy–Schwarz inequality, Theorem 2.2.1. Thus we have

d(My, Mz) �

√√√√ n∑
j=1

n∑
k=1

c2
jk · d(y, z),

so certainly M will be a contraction if

0 <

n∑
j=1

n∑
k=1

c2
jk < 1.

In terms of the original matrix A, this condition requires that ajk be
near 0 when j �= k and near 1 when j = k.

Different sufficient conditions for M to be a contraction can be ob-
tained by choosing different metrics on the set Rn, as long as the re-
sulting metric space is complete. We are totally free to take whichever
metric best serves our purpose. For instance, with the metric d∞, where

d∞(y, z) = max
1�k�n

|yk − zk|,

we know that (Rn, d∞) is complete (Exercise 2.9(7)), and

d∞(My, Mz) = max
1�j�n

∣∣∣∣( n∑
k=1

cjkyk + bj

)
−
( n∑

k=1

cjkzk + bj

)∣∣∣∣
= max

1�j�n

∣∣∣∣ n∑
k=1

cjk(yk − zk)
∣∣∣∣

� max
1�j�n

n∑
k=1

|cjk| |yk − zk|

� max
1�j�n

n∑
k=1

|cjk| · max
1�k�n

|yk − zk|

= max
1�j�n

n∑
k=1

|cjk| · d∞(y, z),

so that M will be a contraction under this metric if

0 < max
1�j�n

n∑
k=1

|cjk| < 1,

that is, if the sums of the absolute values of the elements in the rows
of C are all less than 1 (and C has at least one nonzero element).

A third condition is obtained in Exercise 3.5(3). It only takes one of
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the conditions to be satisfied to ensure the existence of the unique fixed
point.

Once M is known to be a contraction, its fixed point can be found, at
least approximately, by iteration. If x0 is any column vector, then we
have successively

x1 = Mx0 = Cx0 + b,

x2 = Mx1 = Cx1 + b = C(Cx0 + b) + b = C2x0 + Cb + b,

x3 = Mx2 = Cx2 + b = C3x0 + C2b + Cb + b,

and so on, the sequence {xn} converging to the unique solution x of
Ax = b, where A = I − C. There are of course other tests for whether
a system of linear equations has solutions, and other methods of finding
them. However, the above is very simple. The tests essentially require
only the operation of addition on the elements of C or their squares,
and, if either condition is satisfied, the solution may be obtained to any
desired degree of accuracy (subject to computational precision) in terms
of powers of C. There is no need to determine the rank, determinant or
inverse of any matrix . It must be realised, though, that we have only
obtained sufficient conditions: if none of the conditions is met, solutions
may still exist.

As a simple example, consider the system of equations

16x − 3y + 4z = 7,

6x + 7y − 4z = 4,

y + 4z = 15.

Dividing the equations respectively by 16, 8 and 4 gives the equivalent
system

x − 3
16y + 1

4z = 7
16 ,

3
4x + 7

8y − 1
2z = 1

2 ,
1
4y + z = 15

4 .

In the notation above, we have

A =

 1 − 3
16

1
4

3
4

7
8 − 1

2

0 1
4 1

 , C = I − A =

 0 3
16 − 1

4

− 3
4

1
8

1
2

0 − 1
4 0

 ,

and we find that the sum of the squares of the elements of C is 253
256 , less

than 1, so our system possesses a unique solution which may be found
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by iteration. Notice that, in this example, the sum of the absolute values
of the elements in the second row of C is 3

4 + 1
8 + 1

2 = 11
8 , so our second

condition is of no use here, though the first is. However, other examples
can be constructed where the reverse is true.

(3) Our third application of the fixed point theorem is to prove an
important theorem on the existence of a solution to the first-order dif-
ferential equation

dy

dx
= f(x, y)

with initial condition y = y0 when x = x0. The result is a form of
Picard’s theorem.

Two conditions are imposed on f : first, f is continuous in some rect-
angle {(x, y) : |x − x0| � a, |y − y0| � b}; second, f satisfies a Lipschitz
condition on y, uniformly in x, in the rectangle. The latter means that
there is a positive constant K such that

|f(x, y1) − f(x, y2)| � K|y1 − y2|
for any x in [x0 − a, x0 + a] and any y1, y2 in [y0 − b, y0 + b]. Since f is
continuous in the rectangle, it must be bounded there (see Section 1.9),
so there is a positive constant M such that |f(x, y)| � M .

Under these conditions, we will prove that there is a positive number h

such that in [x0 − h, x0 + h] there is a unique solution to the differential
equation.

Write the differential equation equivalently in integral form as

y(x) = y0 +
∫ x

x0

f(t, y) dt,

incorporating the initial condition. Let h be a number satisfying

h > 0, h <
1
K

, h � a, h � b

M
.

Denote by J the closed interval [x0 − h, x0 + h] and write C[J ] for
C[x0 − h, x0 + h]. Let F be the subset of C[J ] consisting of continuous
functions defined on J for which

|y(x) − y0| � b, x ∈ J, y ∈ C[J ].

Referring to Figure 9, F is the set of all continuous functions with graphs
in the shaded rectangle. Impose the uniform metric on F , so that F

becomes a subspace of the complete metric space C[J ].
We will show that F is a closed subspace, so that, by Theorem 2.7.3,
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y0 − b

y0

y0 + b

x0 − a x0 + ax0 − h x0 x0 + h

Figure 9

F is a complete metric space. Let {yn} be a sequence of functions in F

which, as a sequence in C[J ], converges. Write y = lim yn (so y ∈ C[J ]).
By definition of the uniform metric, given ε > 0 we can find a positive
integer N such that

max
x∈J

|yn(x) − y(x)| < ε, n > N.

Also, for each x ∈ J and each n ∈ N,

|yn(x) − y0| � b.

Hence, for each x ∈ J , and n > N ,

|y(x) − y0| � |y(x) − yn(x)| + |yn(x) − y0| < ε + b.

But ε is arbitrary, so we must have

|y(x) − y0| � b

for all x ∈ J . This shows that y ∈ F , so F is a closed subspace of C[J ].
Now define a mapping A on F by the equation Ay = z, where y ∈ F

and

z(x) = y0 +
∫ x

x0

f(t, y(t)) dt, x ∈ J.

We will show that z ∈ F and that A is a contraction mapping. Then the
fixed point theorem will imply that A has a unique fixed point. That is,
we will have shown the existence of a unique function y ∈ F such that
Ay = y, which means

y(x) = y0 +
∫ x

x0

f(t, y(t)) dt, x ∈ J.
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This will complete the proof of the existence on J of a unique solution
of our differential equation.

To show that z ∈ F , we see that, for x ∈ J ,

|z(x) − y0| =
∣∣∣∣∫ x

x0

f(t, y) dt

∣∣∣∣
�
∣∣∣∣∫ x

x0

|f(t, y)| dt

∣∣∣∣ � M |x − x0| � Mh � b.

Thus z ∈ F (so A maps F into itself). To show that A is a contraction,
take y, ỹ ∈ F . Set z = Ay, z̃ = Aỹ. Let d denote the uniform metric.
Then, for x ∈ J ,

|z(x) − z̃(x)| =
∣∣∣∣∫ x

x0

(f(t, y) − f(t, ỹ)) dt

∣∣∣∣
�
∣∣∣∣∫ x

x0

|f(t, y) − f(t, ỹ)| dt

∣∣∣∣
� K

∣∣∣∣∫ x

x0

|y(t) − ỹ(t)| dt

∣∣∣∣
� K · max

x∈J
|y(x) − ỹ(x)| · |x − x0| � Khd(y, ỹ).

We then have

d(z, z̃) = max
x∈J

|z(x) − z̃(x)| � Khd(y, ỹ).

That is, d(Ay, Aỹ) � αd(y, ỹ), where α = Kh. But 0 < α < 1 and so A

is a contraction.

It is easy to check that this result may be applied successfully to, for
example, the linear first-order differential equation

dy

dx
+ P (x)y = Q(x), y(x0) = y0,

to ensure a unique solution in some interval about x0, provided the
functions P and Q are continuous.

An example of a differential equation where it cannot be applied is
the equation

dy

dx
= 2|y|1/2, y(0) = 0.

It is impossible to satisfy the Lipschitz condition for small values of |y|:
the inequality ||y1|1/2 − |y2|1/2| � K|y1 − y2| cannot hold for any con-
stant K if we take y2 = 0 and |y1| < 1/K2. In fact, this equation has
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at least two solutions for x in any interval containing 0. These are the
functions defined by the equations

y = 0 and y =

{
x2, x � 0,

−x2, x < 0.

(4) The differential equation in (3) was considered by first transforming
it into an integral equation. We intend now to study two standard types
of integral equations, in each case obtaining conditions which ensure a
unique solution.

(a) Any equation of the form

x(s) = λ

∫ b

a

k(s, t)x(t) dt + f(s), a � s � b,

involving two given functions k (of two variables) and f , an unknown
function x, and a nonzero constant λ, is called a Fredholm integral equa-
tion (of the second kind).

Suppose f is continuous on the interval [a, b], and k is continuous
on the square [a, b] × [a, b]. Then k is bounded: there exists a positive
constant M so that, in the square, |k(s, t)| � M .

Take any continuous function x on [a, b] and define a mapping A on
C[a, b] by y = Ax, where

y(s) = λ

∫ b

a

k(s, t)x(t) dt + f(s).

We will obtain a condition for A to be a contraction. Note in the first
place that, since k, x and f are continuous, so is y, and so indeed A

maps the complete metric space C[a, b] into itself. Now, if d denotes the
uniform metric of C[a, b], and if y1 = Ax1, y2 = Ax2 (x1, x2 ∈ C[a, b]),
then

d(y1, y2) = max
a�s�b

|y1(s) − y2(s)|

= max
a�s�b

∣∣∣∣λ∫ b

a

k(s, t)(x1(t) − x2(t)) dt

∣∣∣∣
� |λ| · max

a�s�b

∫ b

a

|k(s, t)| |x1(t) − x2(t)| dt

� |λ|M(b − a) · max
a�s�b

|x1(s) − x2(s)|

= |λ|M(b − a)d(x1, x2),
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and hence A is a contraction mapping provided

|λ| <
1

M(b − a)
.

Thus, provided the constant λ satisfies this inequality, we are assured
that the original Fredholm integral equation has a unique solution. This
solution may be found by iteration, taking any function in C[a, b] as
starting point.

As an example, consider the equation

x(s) =
1
2

∫ 1

0

stx(t) dt +
5s

6
.

In the above notation, λ = 1
2 , a = 0, b = 1, k(s, t) = st, f(s) = 5s/6.

For s, t ∈ [0, 1], we have |k(s, t)| = st � 1, so take M = 1. The inequality
for λ is satisfied, so a unique solution is assured. To find it, let us take
as starting point the function x0 where x0(s) = 1, 0 � s � 1. Then we
obtain

x1(s) =
1
2

∫ 1

0

st dt +
5s

6
=

13s

12
,

x2(s) =
1
2

∫ 1

0

st
13t

12
dt +

5s

6
=

73s

72
,

x3(s) =
1
2

∫ 1

0

st
73t

72
dt +

5s

6
=

433s

432
,

and we are led to suggest

xn(s) =
2 · 6n + 1

2 · 6n
s, n ∈ N.

This should be verified by mathematical induction. The solution of the
integral equation is limxn: the function x, where x(s) = s, 0 � s � 1.

(b) An equation of the form

x(s) = λ

∫ s

a

k(s, t)x(t) dt + f(s), a � s � b,

where k, f and λ are as before, is called a Volterra integral equation
(of the second kind). Note that the upper limit on the integral is now
variable. We impose the same conditions on k and f , and give M the
same meaning, and will show that this time there is a solution for all
values of λ, rather than only for sufficiently small values of |λ|.
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Let B be the mapping of C[a, b] into itself defined by Bx = y, where
x ∈ C[a, b] and

y(s) = λ

∫ s

a

k(s, t)x(t) dt + f(s).

Again it is clear that the fixed points of B are solutions of Volterra’s
equation. We will show that a positive integer n exists such that Bn is a
contraction. Then, by Theorem 3.2.4, B will have a unique fixed point.

Take any functions x1, x2 ∈ C[a, b]. We show by induction that, for
s ∈ [a, b] and n ∈ N,

|(Bnx1)(s) − (Bnx2)(s)| � |λ|nMn (s − a)n

n!
max

a�t�b
|x1(t) − x2(t)|.

Certainly, the statement is true when n = 1, for then

|(Bx1)(s) − (Bx2)(s)| =
∣∣∣∣λ∫ s

a

k(s, t)(x1(t) − x2(t)) dt

∣∣∣∣
� |λ|

∫ s

a

|k(s, t)| |x1(t) − x2(t)| dt

� |λ|M · max
a�t�s

|x1(t) − x2(t)| ·
∫ s

a

dt

� |λ|M · max
a�t�b

|x1(t) − x2(t)| · (s − a).

Now assume the statement to be true when n = j. Then

|(Bj+1x1)(s) − (Bj+1x2)(s)|
= |(B(Bjx1))(s) − (B(Bjx2))(s)|

=
∣∣∣∣λ∫ s

a

k(s, t)((Bjx1)(t) − (Bjx2)(t)) dt

∣∣∣∣
� |λ|

∫ s

a

|k(s, t)| |(Bjx1)(t) − (Bjx2)(t)| dt

� |λ|M |λ|jM j

j!
· max

a�t�b
|x1(t) − x2(t)| ·

∫ s

a

(t − a)j dt

=
|λ|j+1M j+1

j!
· max

a�t�b
|x1(t) − x2(t)| · 1

j + 1
(s − a)j+1,

and thus it is true also when n = j + 1. This concludes the induction.
We can now infer that

|(Bnx1)(s) − (Bnx2)(s)| � |λ|nMn (b − a)n

n!
max
a�t�b

|x1(t) − x2(t)|,
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since s � b. Therefore, if d is the uniform metric, we have

d(Bnx1, B
nx2) � (|λ|M(b − a))n

n!
d(x1, x2)

for all n ∈ N. Choose n so large that (|λ|M(b − a))n < n!. (This may
always be done since the sequence {cn/n!} converges to 0 for any real
number c. One way to see this is to note that the series

∑∞
k=0 ck/k!

converges for any c (to ec), and then to apply Theorem 1.8.3.) For such
a value of n, Bn is a contraction and hence B has a unique fixed point.
Thus, regardless of the value of λ, the Volterra equation always has a
unique solution.

As before, this solution can be found by iteration. The successive
approximations are x0, x1, x2, . . . , where

xn(s) = λ

∫ s

a

k(s, t)xn−1(t) dt + f(s), n ∈ N,

with any function in C[a, b] chosen as x0.

The fact that the Volterra equation always has a unique solution im-
plies a simple proof of another important existence theorem in the study
of differential equations. Let p, q and g be any functions in C[a, b] and
let α and β be any real numbers. We will show that there exists exactly
one function y defined on [a, b] with a continuous second-order derivative
such that

y′′(x) + p(x)y′(x) + q(x)y(x) = g(x), a � x � b,

and satisfying y(a) = α and y′(a) = β.
For the proof, we suppose at first that there is such a function y. Let u

be any number in [a, b]. Then, defining a function z ∈ C[a, b] by z = y′′,
we have ∫ u

a

z(t) dt = y′(u) − y′(a) = y′(u) − β

and∫ x

a

∫ u

a

z(t) dt du =
∫ x

a

(y′(u) − β) du

= y(x) − y(a) − β(x − a) = y(x) − α − β(x − a).

But, inverting the order of integration,∫ x

a

∫ u

a

z(t) dt du =
∫ x

a

∫ x

t

z(t) du dt =
∫ x

a

z(t)(x − t) dt,
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so that

y(x) = α + β(x − a) +
∫ x

a

z(t)(x − t) dt.

Since y is assumed to satisfy the original differential equation, we have,
substituting back y, y′ and y′′,

z(x) + p(x)
(

β +
∫ x

a

z(t) dt

)
+ q(x)

(
α + β(x − a) +

∫ x

a

z(t)(x − t) dt

)
= g(x).

This can be written

z(x) =
∫ x

a

(−p(x) − q(x)(x − t))z(t) dt

+ g(x) − βp(x) − q(x)(α + β(x − a)),

which has the form

z(x) =
∫ x

a

k(x, t)z(t) dt + f(x),

a Volterra equation of the type we have considered. Now, working back-
wards, if z is the unique solution of this Volterra equation then the
function y, where

y(x) = α + β(x − a) +
∫ x

a

z(t)(x − t) dt,

is the required unique solution of the differential equation with its given
initial conditions.

3.4 Perturbation mappings

Often in applications it is necessary to approximate a mapping in some
way. For example, as we will see, a desirable property of mappings
(on vector spaces) is linearity, so that it is common to approximate a
nonlinear mapping by a linear one. We will now investigate the errors
that can arise when a contraction mapping is uniformly approximated
by another mapping in the following sense. Let (X, d) be a metric space
and let A be a mapping from X into itself. We call a mapping Ã on X

a perturbation, or uniform approximation, of the mapping A if there is
some number ε > 0 such that

d(Ãw, Aw) � ε
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for all w ∈ X .
Suppose A is a contraction with contraction constant α (so 0 < α < 1).

Let (X, d) be complete, so that, by the fixed point theorem, A has a
unique fixed point, x say. Choose any point x0 ∈ X , set x̃0 = x0, and
define sequences {xn} and {x̃n} in X by xn = Axn−1, x̃n = Ãx̃n−1,
where Ã is the above perturbation of A. Write d̃n = d(x̃n, x̃n+1) for
n = 0, 1, 2, . . . , and set δ = ε/(1 − α). This sets up the notation for
the following result, which has a number of uses in the field of numerical
analysis.

Theorem 3.4.1 In the notation above,

(a) d(xn, x̃n) < δ for n = 0, 1, 2, . . . ,
(b) d(x, x̃1) � 2δ + (3 − α)d̃0/(1 − α),
(c) for any number c > 0, we can find a positive integer N so that

d(x, x̃n) � δ + c when n � N .

Each of these should be interpreted ‘in words’. For instance, (c) says
that the sequence of iterates under Ã can be brought to within a dis-
tance δ, in effect, of the fixed point of A by continuing long enough.
Note that the starting point of the iteration for Ã is still arbitrary and
that we say nothing at all about the existence of lim x̃n. The proofs use
little beyond the triangle inequality. We give them in turn.

(a) We use induction to prove that

d(xn, x̃n) � (1 + α + · · · + αn−1)ε, n ∈ N.

The statement is certainly true when n = 1, for

d(x1, x̃1) = d(Ax0, Ãx̃0) = d(Ax0, Ãx0) � ε,

since x0 = x̃0. Now suppose it is true when n = k. Then

d(xk+1, x̃k+1) = d(Axk, Ãx̃k) � d(Axk, Ax̃k) + d(Ax̃k, Ãx̃k)

� αd(xk, x̃k) + ε � α(1 + α + · · · + αk−1)ε + ε

= (1 + α + α2 + · · · + αk)ε,

so the inequality holds also when n = k + 1. Hence it is true for all
positive integers n. But then, since 0 < α < 1,

d(xn, x̃n) < (1 + α + α2 + · · · )ε =
ε

1 − α
= δ,

for all such n, and d(x0, x̃0) = 0 < δ.
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(b) Using a result in the proof of the fixed point theorem (Theorem
3.2.3), we have

d(xk, xk−1) � αk−1d(Ax0, x0) = αk−1d(x1, x0) � αk−1(d̃0 + ε)

for any integer k > 1, and this is true also when k = 1 since

d(x0, x1) � d(x0, x̃1) + d(x̃1, x1)

= d(x̃0, x̃1) + d(Ãx0, Ax0) � d̃0 + ε.

In the proof of the fixed point theorem, we also deduced that

d(xn, xm) <
αm

1 − α
d(x1, x0),

where m and n are any positive integers, with m < n. For fixed m,
the real-valued sequence {d(xn, xm)}∞n=1 converges to d(x, xm), since
xn → x, and using Exercise 2.9(1). Hence, making use of Theorem 1.7.7,

d(x, xm) � αm

1 − α
d(x1, x0) � αm

1 − α
(d̃0 + ε)

for any integer m ∈ N. Now,

d(x, x̃1) � d(x, xm) + d(xm, xm−1) + · · · + d(x1, x0) + d(x0, x̃1)

� αm

1 − α
(d̃0 + ε) + (αm−1 + αm−2 + · · · + α + 1)(d̃0 + ε) + d̃0

<
1

1 − α
(d̃0 + ε) +

1
1 − α

(d̃0 + ε) + d̃0

=
2

1 − α
(d̃0 + ε) + d̃0 =

3 − α

1 − α
d̃0 + 2δ.

(c) Using (a) and a result from the proof of (b), we have, for n = 0,
1, 2, . . . ,

d(x, x̃n) � d(x, xn) + d(xn, x̃n) � αn

1 − α
(d̃0 + ε) + δ.

Then, no matter how small c is, we may choose n so large that

d̃0 + ε

1 − α
αn � c,

since α < 1.
This ends the proof.

In problems involving perturbation mappings it is generally conve-
nient to arrange matters so that the mapping works in a closed proper
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subspace of a complete metric space. Such a subspace is complete (The-
orem 2.7.3) so the fixed point theorem and the preceding results are still
true when applied to the elements of the subspace. Doing this allows
further estimation of the size of those elements.

To illustrate the use of a perturbation mapping, we will show how a
certain type of nonlinear integral equation can be solved approximately
by relating it to a Fredholm integral equation.

The nonlinear integral equation that we will consider is

x(s) = λ

∫ b

a

k(s, t, x(t)) dt + µf(s), a � s � b,

where λ and µ are real constants, with 0 < |µ| < 1 and λ as yet un-
qualified, f is a continuous function on [a, b] with |f(t)| � H for some
number H and all t in [a, b], and k is a continuous function of three vari-
ables satisfying a Lipschitz condition in the third variable, uniformly in
the others:

|k(s, t, u1) − k(s, t, u2)| � M |u1 − u2|
for some number M , all s, t ∈ [a, b] and any u1, u2 ∈ [−H, H ]. We will
suppose that the function k has the special form

k(s, t, u) = (g(s, t) + θ(s, t, u))u, |θ(s, t, u)| < η,

where g and θ are continuous, and η is some (small) positive number.
Notice that u is not an independent variable, but rather u = x(t), where
x is the unknown function, and t ∈ [a, b] is independent. The solu-
tion x of the integral equation is required to satisfy |x(t)| � H for all t

in [a, b]. As in Application 3.3(1), the Lipschitz condition will be satis-
fied when ∂k/∂u exists and |∂k(s, t, u)/∂u| � M for all s, t ∈ [a, b] and
u ∈ [−H, H ].

The above suggests that we work in the complete metric space C[a, b],
but restrict ourselves to the subspace F of C[a, b] consisting of con-
tinuous functions x for which |x(t)| � H , a � t � b. Exactly as in
Application 3.3(3), F can be shown to be a closed subspace of C[a, b],
so F is a complete metric space.

Define the mapping A on F by Ax = y (x ∈ F ) where

y(s) = λ

∫ b

a

k(s, t, x(t)) dt + µf(s).

The fixed points of A, if any, are our required solutions of the integral
equation.
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We prove first that, if

|λ| � 1 − |µ|
M(b − a)

,

then A maps F into itself. To see this, note in the first place that, since
k(s, t, u) = (g(s, t) + θ(s, t, u))u, we have k(s, t, 0) = 0 for s, t ∈ [a, b].
Then, by the Lipschitz condition (with u1 = u and u2 = 0), we have
|k(s, t, u)| � M |u| for all s, t, u. Now, take x ∈ F and put y = Ax.
Then, for all s ∈ [a, b], we have

|y(s)| =
∣∣∣∣λ∫ b

a

k(s, t, x(t)) dt + µf(s)
∣∣∣∣

� |λ|
∫ b

a

|k(s, t, x(t))| dt + |µf(s)|

� |λ|M
∫ b

a

|x(t)| dt + |µ| |f(s)|

� |λ|MH(b − a) + |µ|H
= (|λ|M(b − a) + |µ|)H � H

if |λ|M(b − a) + |µ| � 1, as stated.
We next prove that this condition on λ implies further that A is a con-

traction mapping. Let d denote the uniform metric of F . If x1, x2 ∈ F

and Ax1 = y1, Ax2 = y2, then, for any s ∈ [a, b],

|y1(s) − y2(s)| =
∣∣∣∣λ∫ b

a

(k(s, t, x1(t)) − k(s, t, x2(t))) dt

∣∣∣∣
� |λ|

∫ b

a

|k(s, t, x1(t) − k(s, t, x2(t))| dt

� |λ|M
∫ b

a

|x1(t) − x2(t)| dt

� |λ|M · max
a�t�b

|x1(t) − x2(t)| · (b − a)

and in particular we have

d(y1, y2) = d(Ax1, Ax2) � |λ|M(b − a)d(x1, x2).

But |λ|M(b − a) � 1 − |µ| < 1, and we may assume that λ �= 0, so A is
a contraction.

The fixed point theorem now implies that there is a unique solution
in F of our nonlinear integral equation, provided 0 < |µ| < 1 and
|λ| � (1 − |µ|)/M(b − a). This solution may be found by iteration,
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but conceivably this could be very difficult. Fredholm equations are
much easier to handle, and so we introduce the mapping Ã by Ãx = y

where x ∈ F and

y(s) = λ

∫ b

a

g(s, t)x(t) dt + µf(s),

with a, b, λ, µ, f and g as above. By our definition, Ã is a perturbation
of A, for, if x ∈ F ,

d(Ax, Ãx) = max
a�s�b

∣∣∣∣λ∫ b

a

(k(s, t, x(t)) − g(s, t)x(t)) dt

∣∣∣∣
� |λ| · max

a�s�b

∫ b

a

|θ(s, t, x(t))| |x(t)| dt

� |λ|ηH(b − a).

Hence in Theorem 3.4.1 we take ε = |λ|ηH(b − a) and α = |λ|M(b− a),
so that

δ =
ε

1 − α
=

|λ|ηH(b − a)
1 − |λ|M(b − a)

.

We notice of course that δ is small if η is. Thus we can solve a nonlinear
integral equation which is ‘almost’ a Fredholm equation by solving that
Fredholm equation. This stands to reason. But we have done more.
We have a precise estimate of the errors involved in the process. One
interesting point remains to be stressed. There is nothing in the above
that says that Ã is a contraction mapping, so that although we use the
iterates under Ã to approximate the fixed point of A, there may in fact
be no fixed points of Ã, or there may be many!

3.5 Exercises

(1) Refer to Application 3.3(1). The figure below shows the graphs
of two differentiable functions defined on an interval [a, b] and
having ranges in [a, b]. In (a), the function f is such that, for
some constant K and all x ∈ [a, b], 0 < f ′(x) � K < 1; in (b),
f is such that −1 < −K � f ′(x) < 0 in [a, b]. Reproduce the
diagrams.

Set x0 = a and in each case sketch a scheme by which the
iterates x1 = f(x0), x2 = f(x1), x3 = f(x2), . . . may be seen to
approach the fixed point of f (which is the x-coordinate of the
point of intersection of y = x and y = f(x)). Sketch other figures
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to show the possible nonexistence of a fixed point when the range
of f is not a subset of [a, b], or the possible existence of many
fixed points when the condition |f ′(x)| � K < 1 is violated.

a

b

a b

Y

X

y = x

y = f(x)

(a)

a

b

a b

Y

X

y = x

y = f(x)

(b)

(2) In the following, show that the given equation has a unique root
in the given interval.

(a) x4 + 8x3 + 32x − 32 = 0, [0, 1]
(b) sinx + 2 sinhx − 8x + 2 = 0, [0, 1

2π]

In (b), use a calculator to approximate the first four iterates to
the root, starting with x0 = 0 and using the method of successive
approximations.

(3) For the set Rn of n-tuples of real numbers, let the metric be
d1(x, y) =

∑n
k=1 |xk − yk|, where x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn) are points of Rn. (See Example 2.2(5).) Show
that this defines a complete metric space R1, say. Define a map-
ping M from R1 into R1 by y = Mx, where x ∈ R1 and

yj =
n∑

k=1

cjkxk + bj , j = 1, 2, . . . , n,

with all cjk, bj ∈ R. Prove that M is a contraction mapping
on R1 if

0 < max
1�k�n

n∑
j=1

|cjk| < 1.

(Refer to Application 3.3(2), and compare the above result with
the sufficient conditions obtained there for the solution of Ax = b

to exist uniquely.)
(4) Use the fixed point theorem to show that the following systems

of equations have unique solutions. (No adjustment of the co-
efficients, by dividing an equation through by some number, for
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example, should be necessary.)

(a) 3
4x − 1

2y + 1
8z = 2 (b) 1

4x − 1
6y + 2

5z = x − 3

1
6x + 1

3y = −1 1
2x + 2

3y − 1
4z = y + 1

− 2
5x + 1

4y + 5
4z = 1 − 1

8x − 1
4z = z + 5

(5) Show that the integral equation

x(s) =
1
3

∫ 1

0

stx(t) dt + es − s

3

may be solved by the method of successive approximations. Start-
ing with x0(s) = 1, find the first few iterates and show that

xn(s) = es − s

2 · 32n−1
, n ∈ N.

Hence find x(s).
(6) Solve the Volterra integral equation

x(s) =
1
2

∫ s

0

t

s2
x(t) dt +

7s2

8

by an iterative process, beginning with x0(s) = s. (Hint: Show
that the iterates can be given as xn(s) = (1/6n)s+((8n−1)/8n)s2,
n ∈ N.)

(7) It is worth noting that integral equations can often be solved by
more direct methods.

(a) Solve

x(s) =
1
4

∫ 1

0

st2x(t) dt + s

by first reasoning that any solution x must have the form
x(s) = cs for some constant c.

(b) Solve

x(s) =
1
3

∫ 2

0

x(t) dt + s2

by first integrating the equation with respect to s over
[0, 2], and also by adapting the method of (a).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(8) Let A be a mapping from a complete metric space (X, d) into
itself. Prove that if the contraction condition is weakened to

d(Ax, Ay) < d(x, y)

(for all x, y ∈ X , x �= y) then the existence of a fixed point of A

is no longer assured.
(9) Show how the fixed point theorem may be used to find the unique

root of the equation F (x) = 0 when F is a differentiable function
on [a, b] such that F (a) < 0, F (b) > 0 and 0 < K1 � F ′(x) � K2

for some constants K1, K2 and all x in [a, b]. (Hint: Introduce
the function f , where f(x) = x−λF (x), a � x � b, and choose λ

so that f has a unique fixed point. Show that this point is the
required root of F (x) = 0.)

Apply this technique to the equation of Exercise (2)(a).
(10) Let c be the set of all convergent complex-valued sequences and

define a mapping d : c × c → R+ by

d(x, y) = sup
1�k

|xk − yk|,

where x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are elements of c.

(a) Prove that (c, d) is a metric space and that it is complete.
(The set c was introduced in Section 1.11. The above
metric is the one usually associated with c, so c is also
commonly used to denote this metric space.)

(b) Define a mapping A on c by

A(x1, x2, x3, . . . ) =
(

1
2x2,

1
3x3,

1
4x4, . . .

)
.

Prove that A is a contraction and hence that A has a
unique fixed point (immediately obtained by inspection).
Suppose this point is to be obtained by iteration and let
x(0), x(1), x(2), . . . denote the successive iterates. Taking
x(0) =

(
1, 1

2 , 1
3 , 1

4 , . . .
)
, show that x(n) has kth component

k!
(n + k − 1)!(n + k)2

, n = 0, 1, 2, . . . , k = 1, 2, . . . .

(c) Define a mapping B on c by

B(x1, x2, x3, . . . )

=
(
1 + 1

2x2 + 1
3x3, 1 + 1

2x3 + 1
3x4, 1 + 1

2x4 + 1
3x5, . . .

)
.
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Prove that B is a contraction. Find the fixed point of B

(by any means).

(11) In the notation of Section 3.4, prove that, for any n ∈ N,

d̃n � 2ε + αd̃n−1,

and hence that d̃n < d̃n−1 if d̃n−1 > 2δ.



4

Compactness

4.1 Compact sets

Before introducing the main ideas of this chapter, we will establish a
simple result concerning subsequences of sequences in metric spaces.

The definition of a subsequence of a sequence in Definition 1.7.2 is
equally valid for a sequence in a metric space. We have remarked be-
fore that subsequences of convergent (real-valued) sequences are them-
selves convergent and have the same limit as the original sequence, and
the proof of the corresponding statement in metric spaces generally is
asked for in Exercise 4.5(1). The example 1

2 , 2, 1
3 , 3, 1

4 , 4, . . . shows that
a sequence having a convergent subsequence certainly need not itself
converge, for this sequence clearly diverges but has 1

2 , 1
3 , 1

4 , . . . as a con-
vergent subsequence. We can however say the following.

Theorem 4.1.1 In a metric space, any Cauchy sequence having a con-
vergent subsequence is itself convergent, with the same limit.

To prove this, let {xn} be a Cauchy sequence in a metric space (X, d)
and let {xnk

} be a convergent subsequence of {xn}. Set x = limk→∞ xnk
.

Then, given ε > 0, we know there exists a positive integer K such
that d(xnk

, x) < 1
2ε when k > K. As {xn} is a Cauchy sequence, we

also know that a positive integer N exists such that d(xn, xm) < 1
2ε

when m, n > N . We may assume that K > N . If k > K, then
nk � k > K > N and

d(xn, x) � d(xn, xnk
) + d(xnk

, x) < 1
2ε + 1

2ε = ε

whenever n > N . Hence indeed the sequence {xn} converges, with
limit x.

Completeness was introduced because of a need to categorise those

140
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metric spaces having a property corresponding to the Cauchy conver-
gence criterion for real numbers. It is another classical property of real
numbers that leads us to the notion of compactness. If a metric space
is complete, then the convergence of any sequence in the space is as-
sured once it can be shown to be a Cauchy sequence. If the space is
not complete then there is no such assurance. It would be useful in
the latter case to have a criterion which ensures at least the existence
of some convergent sequences in the space, whether or not their actual
determination is possible. Since this does not impose as much on us, we
look to the real number system for something earlier in our treatment
of the real number system than the Cauchy convergence criterion. The
answer is supplied by the Bolzano–Weierstrass theorem for sequences
(Theorem 1.7.11). This says that there exists a convergent subsequence
of any (real-valued) sequence, as long as that sequence is bounded, and
this prompts our definition of compactness.

Definition 4.1.2 A subset of a metric space is called (sequentially)
compact if every sequence in the subset has a convergent subsequence.

Some remarks are necessary. First, we will generally speak of compact
sets (or subsets) rather than using the more correct term ‘subspace’.
This is in line with the comment at the end of Section 2.7.

Secondly, we must comment on the use of the word ‘compact’, which
we have seen before, in Section 1.6. The definition there for point sets
does not seem to be too close to that above, which is why this version
is referred to more strictly as sequential compactness. For the moment,
in this chapter, we will use ‘compact’ as defined in Definition 4.1.2, and
we will also use ‘closed’ as defined in Definition 2.7.2. Some of the
discussion that follows, and some of the results, look very similar to the
work of Section 1.6. All of this will be brought together and explained
in considerable detail in the next chapter.

It should be noted that for a subsequence in some set to be convergent,
we require its limit also to belong to the set. Many writers do not make
this demand of compact sets and speak additionally of a set as being
relatively compact or compact in itself when referring to what we have
simply called a compact set. Notice finally that Definition 4.1.2 can be
applied to the metric space itself, so a metric space is compact if every
sequence in it has a convergent subsequence.

We remark that the empty set is considered to be a compact subset
of any metric space.
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There are some immediate consequences of the above definition.

Theorem 4.1.3 If a metric space is compact, then it is complete.

This follows from Theorem 4.1.1, for any Cauchy sequence in a com-
pact metric space has a convergent subsequence, by definition of com-
pactness, and hence itself converges.

Another way of putting the theorem gives a better emphasis: if a
metric space is not complete, then it is not compact. However, it is
possible for a metric space to be complete and not compact: the metric
space R is complete but the sequence 1, 2, 3, . . . in R has no convergent
subsequence, so R is not compact.

Theorem 4.1.4 Every compact set in a metric space is closed.

In the terminology of other authors, just mentioned, this result would
be stated as: a set is relatively compact if and only if it is closed and
compact. For us, however, it is little more than our insistence on com-
pact sets containing the limits of their convergent subsequences.

Again, the metric space R provides a counterexample to the converse:
R is closed, but not compact.

The next theorem provides more insight into what compact sets look
like. We recall first, from Definition 2.8.1, that a bounded subspace
(S, d) of a metric space is one for which the diameter supx,y∈S d(x, y) is
finite.

Theorem 4.1.5 Every compact set in a metric space is bounded.

Again, the converse of the theorem is false, but R no longer serves to
show this since R is not bounded. For a counterexample, we may take
any open interval: Theorem 4.1.4 implies that such an interval is not a
compact subset of R, although it is bounded.

The question arises as to which subsets of R are (sequentially) com-
pact. We know that any such subsets must be both closed and bounded,
and a little thought shows that the converse is also true. This is implied
by the Bolzano–Weierstrass theorem for sequences. So the compact sub-
sets of R are therefore fully identified. The more general question (What
are the compact subsets of Rn?) will be looked at shortly. We must first
give a proof of Theorem 4.1.5, and this requires a little effort for which
drawing pictures is helpful. The proof is by contradiction.

The result is clear for the empty set. Let S be a nonempty compact
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set in a metric space (X, d) and suppose that S is not bounded. Choose
any element x1 ∈ S. We cannot have d(x, x1) < 1 for all x ∈ S, for
then we would have δ(S) � 2, where δ(S) is the diameter of S. So
there is a point x2 ∈ S such that d(x2, x1) � 1. We write λ1 = 1 and
λ2 = λ1 + d(x2, x1) = 1 + d(x2, x1). We cannot have d(x, x1) < λ2 for
all x ∈ S, for then we would have δ(S) � 2λ2. So there is a point x3 ∈ S

such that d(x3, x1) � λ2. Write λ3 = λ1 + d(x3, x1) = 1 + d(x3, x1).
This process can be continued indefinitely: we obtain a sequence {xn}
of points of S and an increasing sequence {λn} of numbers such that

d(xn, x1) = λn − 1 � λn−1, n = 2, 3, . . . .

Then, for any integers m and n, with n > m � 2,

λm � λn−1 � d(xn, x1)

� d(xn, xm) + d(xm, x1) = d(xn, xm) + λm − 1,

so that d(xn, xm) � 1. It follows from this that the sequence {xn} cannot
have a convergent subsequence, and this contradicts the statement that
S is a compact set. Hence, S is bounded.

Another instructive counterexample to the converse of this theorem is
provided by a certain subset of the metric space l2. We let S be the sub-
set of points e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, 0, . . . ), e3 = (0, 0, 1, 0, 0, . . . ),
. . . . It is clear that, if d is the metric of l2, d(em, en) =

√
2 whenever

m �= n, so that δ(S) =
√

2, and S is bounded. But by the same token, no
sequence in S (other than those with a finite range) can have a conver-
gent subsequence. So S is not compact. Notice that this subset of l2 is
also closed: the only convergent sequences in l2 consisting of points of S

must be those having a finite range and the limit of any such sequence
is certainly again an element of S.

We stated that the only compact subsets of R are those that are both
closed and bounded, although, as we have just seen, subsets of l2 that
are closed and bounded need not be compact. The general question of
determining which subsets of a metric space are compact is an important
one with many uses, for example in approximation theory, as we will see.
We will answer the question now for Rn (leaving Cn as an exercise) and
later will look to the space C[a, b]. Compact subsets of l2 have been
identified, but we will not go into this more difficult problem.

Theorem 4.1.6 A subset of Rn is compact if and only if it is both closed
and bounded.
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This is a direct generalisation of the result when n = 1. The two
preceding theorems show that closedness and boundedness are necessary
conditions for a set in a metric space to be compact. In particular this
applies to the space Rn. We must show further that together they are
sufficient in Rn.

To this end, we let S be a closed, bounded subset of Rn, and we may
assume that S is nonempty. Let {xm}∞m=1 be any sequence in S. We
show that {xm} has a convergent subsequence, and this will prove that
S is compact. Let ∆ be the diameter of S. Since S is bounded, ∆ is
finite, and, by definition of the metric in Rn,√√√√ n∑

k=1

(yk − zk)2 � ∆

whatever the points (y1, y2, . . . , yn) and (z1, z2, . . . , zn) in S. Let the
latter be some particular point in S. Then√√√√ n∑

k=1

y2
k �

√√√√ n∑
k=1

(yk − zk)2 +

√√√√ n∑
k=1

z2
k � ∆ +

√√√√ n∑
k=1

z2
k.

(Set ak = yk − zk and bk = zk in Theorem 2.2.2.) Put

M = ∆ +

√√√√ n∑
k=1

z2
k.

Since

|yk| �

√√√√ n∑
k=1

y2
k � M

for each k, we see that any point of S has bounded components (us-
ing ‘bounded’ here in the old sense of point set theory). In the se-
quence {xm}, write xm = (xm1, xm2, . . . , xmn) for m ∈ N. Each xmk

is a real number and {xm1} (that is, the sequence of first components
of the points of the sequence {xm}) is a sequence in R. For each m,
we know that |xm1| � M , so the sequence {xm1} has a convergent
subsequence {xmk1}, by the Bolzano–Weierstrass theorem for sequences
(Theorem 1.7.11). Form the sequence {(xmk1, xmk2, . . . , xmkn)} in Rn

(by choosing from {xm} those terms whose first components belong to
the subsequence {xmk1} of {xm1}). This is a subsequence of {xm} with
the property that its sequence of first components converges. From this
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subsequence we take the sequence in R of its second components and,
as above, obtain a convergent subsequence of it. This allows us to form
a new sequence in Rn which is a subsequence of {xm} with the property
that its sequences of first and second components separately converge.
(The new first components form a subsequence of the preceding first
components. This is a subsequence of a convergent sequence, so it is
itself convergent.) This sifting process may be continued through to the
nth components, and we finally emerge with a subsequence of {xm} hav-
ing the property that each of the n sequences of components separately
converges. Since convergence in Rn is equivalent to convergence by com-
ponents (Theorem 2.5.3(a)), and since S is closed, this last subsequence
must converge to some point in S. Thus we have shown the existence of
a convergent subsequence of {xm}, so S is compact.

4.2 Ascoli’s theorem

We turn next to the problem of identifying the compact subsets of C[a, b].
This will also require a sifting process similar to that just used in Rn in
order to obtain a convergent subsequence, but the criteria that we impose
on the sets are more complicated. We need the following definitions.

Definition 4.2.1 Let F be a family (or set) of functions, each with
domain D.

(a) We say the family F is uniformly bounded on D if there is a
positive number M such that |f(x)| � M for all f ∈ F and all
x ∈ D.

(b) We say F is equicontinuous on D if, given any number ε > 0,
there exists a number δ > 0 such that, for any f ∈ F ,

|f(x′) − f(x′′)| < ε whenever x′, x′′ ∈ D and |x′ − x′′| < δ.

Uniform boundedness of a family of functions is a property well described
by its name: each function in the family must be bounded and the same
bound (M in the definition) must serve for the whole family. It is a
property not dependent on any metric that may be defined on F , whereas
the notion of a bounded set in Definition 2.8.1 does depend on the metric
for the space. However, if F is a subset of C[a, b], with its uniform metric,
then the concepts of boundedness and uniform boundedness coincide.
This is not true for subsets of the metric space C1[a, b], for example.
The proofs of these statements are left as an exercise.
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To understand the definition of equicontinuity, recall Definition 1.9.1
on the continuity of a function at a point: a function f is continuous at
a point x0 in its domain if for any number ε > 0 there is a number δ

such that, whenever x is in the domain of f and |x − x0| < δ, we have
|f(x)− f(x0) < ε. If, in that definition, the same δ will do for all points
in the domain, then the function is called uniformly continuous. Going
further, when we have a family of functions and all can be shown to
be uniformly continuous on the domain and still only one value of δ is
needed, then the family is equicontinuous.

The set of functions {x, x2, x3, . . . } on [0, 1] is an example of a family
which is not equicontinuous. Like uniform boundedness, equicontinuity
is a property of a family F of functions which is independent of any
metric defined on F . But if the functions of the equicontinuous family
F have domain [a, b] and F is given the uniform metric, then it is clear
that F is a subspace of C[a, b].

The criteria for compactness of a subset of C[a, b] are given in the
following theorem.

Theorem 4.2.2 (Ascoli’s Theorem) A subset F of the metric space
C[a, b] is compact if F is closed, uniformly bounded and equicontinuous.

Let {fn} be a sequence in F . The proof shows explicitly the existence
of a convergent subsequence of {fn} and consists of six main steps.

(a) It follows from Theorem 1.4.3(a) that the set of rational numbers
in the interval [a, b] is countable. Suppose that {x1, x2, . . . } is a listing
of those rational numbers.

(b) Since F is uniformly bounded, there exists a number M > 0 such
that, for all x ∈ [a, b] and all n ∈ N, we have |fn(x)| � M .

In particular, then |fn(x1)| � M for all n, so the sequence {fn(x1)}
in R is bounded. By the Bolzano–Weierstrass theorem for sequences,
there exists a convergent subsequence {fnk

(x1)} of {fn(x1)} and this
picks out from the sequence {fn} a subsequence {fnk

} converging point-
wise at x1.

Write this subsequence as
{
f

(1)
n

}∞
n=1

, rather than {fnk
}∞k=1, and apply

similar reasoning to
{
f

(1)
n

}
: this time, |f (1)

n (x2)| � M for all n, so
the sequence

{
f

(1)
n (x2)

}
in R has a convergent subsequence

{
f

(1)
nk (x2)

}
which allows us to pick out from

{
f

(1)
n

}
a subsequence

{
f

(1)
nk

}
, to be

written
{
f

(2)
n

}
, with the property of pointwise convergence at x1 and x2.

This process can be continued indefinitely, producing sequences
{
f

(m)
n

}
,
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m ∈ N, and for each m the sequence is a subsequence of {fn} converging
pointwise at x1, x2, . . . , xm. Further, each sequence is a subsequence of
the one before it.

(c) We have described the formation of sequences

f
(1)
1 , f

(1)
2 , f

(1)
3 , . . . ,

f
(2)
1 , f

(2)
2 , f

(2)
3 , . . . ,

f
(3)
1 , f

(3)
2 , f

(3)
3 , . . . ,

...

Consider the diagonal sequence f
(1)
1 , f

(2)
2 , f

(3)
3 , . . . , that is,

{
f

(n)
n

}
, which

we will write as {fn}. (The superscript is an index, not a power. We
write the sequence this way to distinguish it from {fn}, of which it
is a subsequence.) For each L ∈ N, the sequence fL, fL+1, . . . is a
subsequence of

{
f

(L)
n

}
, so fL, fL+1, . . . converges pointwise at x1, x2,

. . . , xL. Adding terms at the beginning of a sequence does not change the
nature of its convergence, so the sequence {fn} converges also at x1, x2,
. . . , xL. Since this is true for all L, we conclude that the sequence {fn}
converges at all points x1, x2, . . . .

(d) To conclude the proof of the compactness of F , we will show that
the sequence {fn} is convergent (rather than simply pointwise conver-
gent at all rational points in [a, b], which is what we have just shown).
Take any number ε > 0. Since the functions of {fn} are a subset of F ,
the equicontinuity condition may be applied: there exists a number δ > 0
such that, for any n ∈ N,

|fn(x′) − fn(x′′)| < 1
3ε

whenever |x′−x′′| < δ and x′ and x′′ are in [a, b]. Knowing this number δ,
we can choose, say, K rational points in [a, b], where K depends on ε,
so that any point of [a, b] is within δ of one of those rational points.
By renumbering if necessary, we can let those rational points be x1, x2,
. . . , xK , so |x−xi| < δ for any x ∈ [a, b] and at least one i ∈ {1, 2, . . . , K}.

(e) Since {fn(xi)} converges for each i = 1, 2, . . . , K, there exists a
positive integer N (also depending on ε) such that

|fn(xi) − fm(xi)| < 1
3ε

for all i = 1, 2, . . . , K, when m, n > N .
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(f) Let x be any point in [a, b] and, as in (d), choose a point xi from
{x1, x2, . . . , xK} such that |x − xi| < δ. Then

|fn(x) − fn(xi)| < 1
3 ε,

for all n ∈ N, and

|fn(x) − fm(x)| � |fn(x) − fn(xi)| + |fn(xi) − fm(xi)|
+ |fm(xi) − fm(x)|

< 1
3ε + 1

3ε + 1
3ε = ε,

provided m, n > N . It follows that

max
a�x�b

|fn(x) − fm(x)| < ε

when m, n > N , so {fn} is a Cauchy sequence in F . But F is a closed
subset of the complete metric space C[a, b], so, by Theorem 2.7.3, F is
complete. Hence the Cauchy sequence {fn} converges, as required, so
F is compact.

The converse of Ascoli’s theorem is also true: any compact subset of
C[a, b] is uniformly bounded and equicontinuous. We will not need the
implication in this direction. (Some writers include the converse, due to
Arzelá, in the statement of Ascoli’s theorem.)

An alternative statement of Ascoli’s theorem, having no direct ref-
erence to the metric of C[a, b], is the following. From any uniformly
bounded, equicontinuous sequence of functions defined on a closed in-
terval may be chosen a subsequence which converges uniformly on the
interval. The truth of this is evident from the above proof. It needs
only to be noted that convergence in C[a, b] is equivalent to uniform
convergence over [a, b] (Theorem 2.5.3(c)).

A simple sufficient condition for a family of functions to be equicon-
tinuous is that all functions of the family satisfy a Lipschitz condition
with the same Lipschitz constant. Precisely: a family F of functions
defined on an interval [a, b] is equicontinuous if, for all f ∈ F and any
points x′, x′′ ∈ [a, b], there is a number K such that

|f(x′) − f(x′′)| � K|x′ − x′′|.
To see this, we take an arbitrary ε > 0 and put δ = ε/K. Then, if
|x′ − x′′| < δ, we have

|f(x′) − f(x′′)| � K|x′ − x′′| < Kδ = ε,
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for all f ∈ F , so that F is indeed an equicontinuous family. Moreover,
if the functions of F are all differentiable on [a, b] then there is an even
simpler test: the family F is equicontinuous if there is a positive con-
stant K such that |f ′(x)| � K for all f ∈ F and all x ∈ [a, b]. This
follows from the mean value theorem, as in Application 3.3(1).

4.3 Application to approximation theory

One of the most important theorems of classical analysis finds a natural
generalisation in the context of compact sets in a metric space. In its
turn, the generalised result also assumes considerable importance and
has numerous applications. The theorem in question is Theorem 1.9.6,
which asserts that a function defined on a closed interval and continuous
there actually attains its maximum and minimum values at some points
of the interval. As might be anticipated, the clue to the generalisation
lies in our insistence on a closed interval as the domain of the function.
Closed intervals are compact subsets of R, so we consider in general the
effect of a continuous mapping on a compact set in a metric space.

Theorem 4.3.1 Let A : X → Y be a continuous mapping between metric
spaces X and Y , and let S be a nonempty compact subset of X. Then
the image A(S) is a compact subset of Y .

Briefly, this says that the image under a continuous mapping of a
compact set is again a compact set. We will later set Y = R to obtain
the generalisation mentioned above. Let {yn} be a sequence in A(S).
For each n ∈ N, there is at least one point w ∈ S such that Aw = yn.
Choose one and call it xn. Then {xn} is a sequence in S and Axn = yn.
Since S is compact, {xn} has a convergent subsequence {xnk

}, with
limit x, say. Then x ∈ S, so Ax ∈ A(S). Now, Axnk

= ynk
and

Axnk
→ Ax since A is continuous, so {ynk

} is a convergent subsequence
of {yn}. Hence, A(S) is compact, as required.

Now take Y = R in this theorem. Then A(S) is a compact subset of R,
and so A(S) is closed and bounded. We know, using Theorems 1.5.7 and
1.5.10, that such a subset of R contains as members its least upper bound
and greatest lower bound. If these numbers are yM and ym, respectively,
then we have shown the existence of points xM and xm in S such that
AxM = yM and Axm = ym. We have proved the following.
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Theorem 4.3.2 If f is a real-valued continuous mapping on a metric
space X and S is any nonempty compact set in X, then there exist
points xM and xm in S such that

f(xM ) = max
x∈S

f(x) and f(xm) = min
x∈S

f(x).

We can now prove a basic existence theorem on best approximations
in a metric space.

Theorem 4.3.3 Given a nonempty compact subset S of a metric space
(X, d) and a point x ∈ X, there exists a point p ∈ S such that d(p, x) is
a minimum.

We need to prove the existence of some point p ∈ S which is such that
d(p, x) � d(w, x) for all w ∈ S. Put differently, p must satisfy

d(p, x) = min
w∈S

d(w, x).

But this is an immediate consequence of Theorem 4.3.2, for in that the-
orem we let f be the mapping from X into R defined by f(y) = d(y, x)
(y ∈ X) and need only check that f is continuous on X . If {yn} is a
sequence in X and yn → y, then

|f(yn) − f(y)| = |d(yn, x) − d(y, x)| � d(yn, y),

by Solved Problem 2.3(1), so f(yn) → f(y) since d(yn, y) → 0. Hence
indeed f is continuous on X , and this completes the proof.

The point p in this theorem is called a best approximation in S of
the point x in X . There is nothing in the theorem to describe how
such a point may be obtained in any practical situation, and there is
no suggestion that p is the only point with the given property. These
are serious drawbacks in terms of applications. Later, when we have
imposed more structure on our sets, we will reconsider the problem of
best approximation, including the above difficulties. For now, we can
only say they are inherent in the small amount of structure we have
allowed ourselves.

The following example in R2 illustrates the possible non-uniqueness of
a best approximation. Let S be the set {(y1, y2) : 0 < a2 � y2

1 +y2
2 � b2}

in R2 (see Figure 10). It is easy to see that S is both closed and bounded,
so it is compact (Theorem 4.1.6). The points x1 and x2 clearly have
unique best approximations in S, namely p1 and p2, respectively. The
point x3 however, at the centre of the circles, has any number of best
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x2

p2

x3

x1

p1

a b

S

Figure 10

approximations, namely any point on the inner boundary of S. Notice
that there are no best approximations of x1 and x2, for example, in the
set {(y1, y2) : 0 < a2 < y2

1 + y2
2 < b2}: p1 and p2 are excluded from

consideration since the new set does not include the boundaries of S.
Of course, the new set is not closed, so it is not compact, and Theorem
4.3.3 does not apply.

The following is an application of Theorem 4.3.3 which makes use of
Ascoli’s theorem (Theorem 4.2.2).

Suppose a, b, c, d are any numbers chosen from a closed interval
[−M, M ]. The family F of functions f of the form

f(x) = a sin bx + c cos dx, 0 � x � π,

is uniformly bounded and equicontinuous, since |f(x)| � |a| + |c| � 2M

and |f ′(x)| � |ab|+ |cd| � 2M2 for all x ∈ [0, π] and any f ∈ F . Since F

may be considered as a (closed) subset of C[0, π], Ascoli’s theorem now
implies that it is compact in C[0, π]. Hence, by Theorem 4.3.3, for any
continuous function g defined on [0, π], there exist values of a, b, c and d

in [−M, M ] such that

max
0�x�π

|g(x) − (a sin bx + c cosdx)|

is a minimum. For an obvious reason, a function f ∈ F with such values
of a, b, c and d is called a minimax approximation of g. As discussed
above, it is not necessarily unique.
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4.4 Solved problems

(1) Let (X, d) be a compact metric space and let A be a mapping from X

into itself such that

d(Ax, Ay) < d(x, y)

for x, y ∈ X , x �= y. Prove that A has a unique fixed point in X .

Solution. Let {xn} be a convergent sequence in X with lim xn = x.
Then 0 � d(Axn, Ax) < d(xn, x) → 0, so A is continuous. Define a
mapping B : X → R by Bx = d(x, Ax), x ∈ X . By Exercise 2.9(1), we
have Bxn = d(xn, Axn) → d(x, Ax) = Bx, so B is continuous. It now
follows from Theorem 4.3.2, since X is compact, that minx∈X Bx exists,
and equals By, say (y ∈ X). That is, d(y, Ay) � d(x, Ax) for all x ∈ X .
Suppose d(y, Ay) > 0. In that case,

B(Ay) = d(Ay, A(Ay)) < d(y, Ay) = By,

and this contradicts the minimal property of y. Hence d(y, Ay) = 0, so
Ay = y and y is a fixed point of A. It is the only one, for if z ∈ X

were another then we would have d(y, z) = d(Ay, Az) < d(y, z), which
is absurd. Hence A has a unique fixed point in X .

The result proved above should be considered in conjunction with the
fixed point theorem. See also Exercise 3.5(8).)

For the second of these solved problems, we will need the following
definition.

Definition 4.4.1 Let (X, d) be a metric space, S be a nonempty
subset of X and ε > 0 be a given number. A subset Z of X is
called an ε-net for S if, for any x ∈ S, there exists z ∈ Z such that
d(x, z) < ε.

(2) Prove that, whatever the positive number ε, a nonempty compact
subset of X contains a finite ε-net, that is, an ε-net consisting of only a
finite number of points.

Solution. Let S be a nonempty compact subset of X and suppose S does
not contain a finite ε-net for some value ε0 of ε. Choose any point x1 ∈ S.
There must be a point x2 ∈ S such that d(x2, x1) � ε0 (otherwise the
set {x1} consisting of the one point x1 is a finite ε0-net for S). Further,
there must be a point x3 ∈ S such that d(x3, x1) � ε0, d(x3, x2) � ε0
(otherwise the set {x1, x2} is a finite ε0-net for S). Continuing in this
manner, we find points x4, x5, . . . in S such that d(xn+1, x1) � ε0,
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d(xn+1, x2) � ε0, . . . , d(xn+1, xn) � ε0 (n ∈ N). But this means that
we have obtained a sequence {xn} in S such that d(xn, xm) � ε0 for all
m, n (m �= n), so there can be no convergent subsequence, contradicting
the compactness of S. Hence S contains a finite ε-net, for all ε > 0.

Virtually all of the techniques of numerical analysis, such as the
method of finite differences, in the end owe their validity to this result,
since necessarily those techniques require the division of the domain of
interest into only finitely many sub-domains.

4.5 Exercises

(1) Prove that any subsequence of a convergent sequence in a metric
space is itself convergent, and has the same limit as the sequence.

(2) (a) Prove that any finite subset of a metric space is compact.
(b) Let x be the limit of a convergent sequence {xn} in a metric

space. Prove that the set {x, x1, x2, x3, . . . } is compact.
(3) Prove that every closed subset of a compact metric space is com-

pact.
(4) Determine whether the union and intersection of compact subsets

of a metric space are compact.
(5) Let X be any nonempty set and impose on X the discrete metric

(Example 2.2(14)). Determine whether X is compact, and which
subsets of X are compact.

(6) Prove that a subset of Cn is compact if and only if it is closed
and bounded.

(7) Let F be a subset of C[a, b]. Prove that F is a uniformly bounded
family if and only if it is bounded. Show however that if F is
considered as a subset of C1[a, b] (Example 2.2(12)), then F may
be bounded but not uniformly bounded.

(8) Let K and α be given positive numbers and let F be a subset of
C[a, b] for which, for all f ∈ F and any points x′, x′′ ∈ [a, b],

|f(x′) − f(x′′)| � K|x′ − x′′|α.

Show that F is equicontinuous.
(9) Let F be a bounded subset of C[a, b]. Prove that the set of all

functions g, where

g(x) =
∫ x

a

f(t) dt

(f ∈ F , a � x � b), is uniformly bounded and equicontinuous.
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(10) Prove that Theorem 4.1.5 is a consequence of the result proved
in Solved Problem 4.4(2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(11) Let g be a continuous function of two variables satisfying a Lip-
schitz condition in the second variable. Let A : C[a, b] → R be a
mapping defined by

Ax =
∫ b

a

g(t, x(t)) dt, x ∈ C[a, b].

Prove that A is continuous and hence show that, if the domain
of A is restricted to a compact subset of C[a, b], then there exists
a function x such that

∫ b

a g(t, x(t)) dt is a minimum.
(12) If a subset of a metric space contains a finite ε-net for every ε > 0,

then it is called totally bounded.

(a) Prove that a totally bounded set is bounded.
(b) Give an example in l2 of a bounded set that is not totally

bounded.
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Topological Spaces

5.1 Definitions and examples

A topological space is a more basic concept than a metric space. Its
building blocks are open sets, as suggested by the work for real numbers
along the lines of that in Section 1.6.

The abstract idea of a metric space provides a useful and quite visual
example of a topological space. Through much of this chapter, we will
relate our work to corresponding ideas in metric spaces. In previous
chapters, we have spent some time on closed sets and compact sets.
These were defined specifically in the context of metric spaces, and each
definition made use of the notion of a convergent sequence. The same
terms will be used again in this chapter, but they will be redefined in the
more general context of topological spaces. To distinguish the different
approaches, we will be careful in this chapter to refer to the earlier
notions as sequentially closed sets and sequentially compact sets.

So a set is sequentially closed if convergent sequences in the metric
space that belong to the set have their limits in the set, and a set is
sequentially compact if every sequence in the set has a convergent sub-
sequence. These are the old definitions; new ones will come soon. It will
turn out, and these are two of the important results of this chapter, that
the old definitions and the new definitions coincide in metric spaces.

The term ‘topology’ refers to the work of this chapter in general, but
is also used in the technical sense given by the following definition.

Definition 5.1.1 A topology on a nonempty set X is a collection T

of subsets of X with the properties

(T1) X ∈ T and ∅ ∈ T ,
(T2)

⋃
T∈S T ∈ T for any subcollection S of T ,

(T3) T1 ∩ T2 ∈ T whenever T1, T2 ∈ T .

155



156 5 Topological Spaces

The pair (X, T ) is called a topological space.
The sets T ∈ T are called the open sets in (X, T ). Any subset S

of X is said to be closed in (X, T ) if its complement ∼S (that is, X\S)
is an open set in (X, T ).

We often refer to X alone as a topological space, with the understanding
that the topology is a certain collection T of subsets of X . It quickly
follows from (T3) that the intersection of any finite number of open
sets in X is also an open set in X , while (T2) states that the union of
arbitrarily many (perhaps uncountably many) open sets in X is also an
open set in X .

Let us remark now that we are not interested in the various unim-
portant exceptions that arise when X has just one element, so we will
always assume that our topological spaces have at least two elements.

In our discussion of the real number system, Theorem 1.6.2 said in
other words that the open sets defined then in R are a topology for R.
That is, (R, T ) is a topological space, where T is the collection of all
open sets as given by Definition 1.6.1. This is called the usual topology
on R, and is always the one we mean when R is referred to as a topo-
logical space. In this space, consider the open intervals (−1/n, 1/n), for
n ∈ N. These are certainly open sets in R. The number 0 belongs to
all of them, but no other number does, so

⋂∞
n=1(−1/n, 1/n) = {0}. It

is easy to see that {0} is a closed set in R, so this example suggests
why, in (T3), we restrict ourselves to the intersection of only two (or, in
effect, finitely many) open sets.

There are two simple topologies that exist for any set X . These are
the discrete topology, which is the collection of all subsets of X , and the
indiscrete topology, which is simply {∅, X}. They are denoted by T max

and T min, respectively. It is easy to see that these are indeed topologies
for X , and, as the symbols suggest, they are the biggest and smallest
possible collections of subsets of X which are topologies.

The following definition sometimes allows us to compare different
topologies on the same set.

Definition 5.1.2 If T 1 and T 2 are two topologies on a set X and
T 1 ⊆ T 2, then T 1 is said to be weaker than T 2, and T 2 to be
stronger than T 1.

Then if T is any topology on X , we must have T min ⊆ T ⊆ T max,
so that, amongst the topologies on a set, the indiscrete topology is the
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weakest of all and the discrete topology is the strongest of all. Alterna-
tive terms for ‘weaker’ and ‘stronger’ are coarser and finer, respectively.

Two concepts that are useful in identifying properties of open and
closed sets are given next.

Definition 5.1.3 Let X be a topological space.

(a) The interior of a subset S of X is the union of all open sets
contained in S. It is denoted by intS or S◦.

(b) The closure of a subset S of X is the intersection of all closed
sets containing S. It is denoted by clS or S.

We think of the interior of a set as the largest open set contained in it,
and its closure as the smallest closed set containing it.

The following example illustrates much of the above.
Take X = {1, 2, 3, 4, 5} and

T 1 = {∅, {1}, {2}, {1, 2}, X},
T 2 = {∅, {1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, X},
T 3 = {∅, {1}, {1, 2}, {1, 2, 3}, X},
T 4 = {∅, {1}, {2}, {1, 2}, {2, 3, 4}, X}.

We see that T 1 is a topology for X because ∅ and X are present, the
union of any combination of sets in T 1 is also an element of T 1, and
the intersection of any two sets in T 1 is an element of T 1 (so (T1),
(T2) and (T3) are satisfied). In the same way, T 2 is also a topology
for X , and, since T 1 ⊆ T 2, the topology T 1 is weaker than T 2. We
see that T 3 is a third topology for X ; it is also weaker than T 2 but is
neither weaker nor stronger than T 1. In the topological space (X, T 2),
the closed sets are X , {2, 3, 4, 5}, {1, 3, 4, 5}, {3, 4, 5}, {4, 5}, {5} and ∅,
while the set {2, 3}, for example, is neither open nor closed; the interior
of {2, 3} is {2} and its closure is {2, 3, 4, 5}. The collection T 4 is not a
topology on X since {1} ∪ {2, 3, 4} = {1, 2, 3, 4} /∈ T 4 (so (T2) is not
satisfied).

Perhaps the most enlightening example is that where X is a metric
space. There is a standard way to use the metric on X to define open
sets in the metric space, so that every metric space has an associated
metric topology. At the same time, it should be realised that there are
many examples of topological spaces that do not arise this way, such as
those in the preceding paragraph.
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Definition 5.1.4 Let (X, d) be a metric space.

(a) The set {x : x ∈ X, d(x, x0) < r}, where x0 ∈ X and r > 0,
is called an open ball in X . Specifically, it is the open ball with
centre x0 and radius r, and is denoted by b(x0, r).

(b) A subset T of X is open if T = ∅ or if every point in T is the
centre of an open ball that is a subset of T .

(c) The metric topology for X is the collection of open sets, as just
defined. It is denoted by Td.

Rephrasing (b) when T �= ∅, we say T is an open set in X if, for
each x ∈ T , there exists an open ball b(x, r) such that b(x, r) ⊆ T .
The verification that this collection Td of open sets does indeed define a
topology for the metric space X is left as an exercise. Whenever we refer
to a metric space as a topological space, we assume it has the metric
topology.

The δ-neighbourhoods that we used in Chapter 1 are examples of open
balls in R. It is in R3 (with the Euclidean metric) that all of this is most
familiar. There, the open balls are ordinary three-dimensional spheres of
various radii, and the open sets can be thought of as all sorts of bunches
of tiny spheres.

In the metric space C[a, b], if x0 is the function given by x0(t) = 1
for a � t � b, then b(x0, ε) is the set of all continuous functions x with
1 − ε < x(t) < 1 + ε for a � t � b. Their graphs all lie in the strip of
width 2ε lying along the graph of x0.

5.2 Closed sets

In this section, we will show first that, for any metric space, the closed
sets under the metric topology are precisely the sequentially closed sets
of Chapter 2. We will follow this with another characterisation of closed
sets which looks more like our work on point sets in Section 1.5, and
does not rely on a metric.

Theorem 5.2.1 Let (X, d) be a metric space, and let Td be the metric
topology on X. A subset of X is closed in (X, Td) if and only if it is
sequentially closed in (X, d).

To prove this, suppose first that S is a closed subset of X . Then we
must show that it is sequentially closed. So assume S �= ∅, let {xn} be
a convergent sequence in S, and put x = lim xn. If x ∈ ∼S, then, since
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∼S is an open set in X , there is an open ball b(x, ε) contained in ∼S.
Then d(xn, x) � ε for all n, and this contradicts the fact that xn → x.
Hence x ∈ S, so S is sequentially closed.

Next, let S be a sequentially closed nonempty subset of X . To show
that S is closed, we must show that ∼S is an open set. If this is not
true, then there is a point x ∈ ∼S such that every open ball centred
at x contains a point of S. For each n ∈ N, let xn be a point of S

contained in the ball b(x, 1/n). Then {xn} is a sequence of points in S,
and d(xn, x) < 1/n for all n ∈ N, so limxn = x. Since x /∈ S, this
contradicts the statement that S is sequentially closed. Hence ∼S is
open, and S is closed.

So we know now that, in a metric space, sets which are closed in
the sense that their complements are open can be described through
the idea of convergent sequences in the metric space. The discussion of
convergence of sequences given in Section 1.7 made a great deal of use
of the earlier Section 1.5, on point sets. We can use the ideas there to
give another way of thinking about closed sets.

Definition 5.2.2 Let X be a topological space.

(a) If x is any point in X and U is an open set in X which contains x,
then U is called a neighbourhood of x.

(b) The point x ∈ X is called a cluster point for a subset S of X if
every neighbourhood of x contains a point of S other than x.

(c) The set of all cluster points of a subset S of X is called the derived
set of S, and is denoted by S′.

Neighbourhoods here are much the same as the δ-neighbourhoods of
Section 1.5, but the latter have a certain symmetry which is neither
available nor necessary in general. The definition of a cluster point is
very much like that in Definition 1.5.2. Other authors now commonly
use the term limit point for what we have just defined as a cluster point.
That would be in conflict with our Definition 1.5.8, so we will stay with
the older terminology. Notice, in (b), that x need not be a point of S.

If T = T max, so that every subset of X is an open set, then {x}
is a neighbourhood of x ∈ X which does not contain any other point
of X . Hence no point of X can be a cluster point of any subset of X .
Suppose, on the other hand, that T = T min. Then every point x ∈ X

is a cluster point of every subset of X , except {x} and ∅, since X is the
only neighbourhood of x.
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A subset of a topological space is easily identified as closed if its de-
rived set is known.

Theorem 5.2.3 A set S in a topological space is closed if and only if it
contains its cluster points, that is, S ⊇ S′.

To prove this, let X be the topological space and suppose first that S

is closed. If S = X then obviously S ⊇ S′. Otherwise, ∼S is open and
nonempty. If x ∈ ∼S, then ∼S is a neighbourhood of x containing no
point of S. So x is not a cluster point for S; that is, x /∈ S′. Taking the
contrapositive, if x ∈ S′ then x ∈ S, so S′ ⊆ S.

Next, suppose that S′ ⊆ S. We have to show that ∼S is open. Since ∅

is an open set, we may assume ∼S �= ∅, so take x ∈ ∼S. Then there is a
neighbourhood U of x such that U ⊆ ∼S. This is so, because otherwise
every neighbourhood of x would contain a point of S, which would mean
that x is a cluster point for S. That is, x ∈ S′ ⊆ S, contradicting the
statement that x ∈ ∼S. The union of all such neighbourhoods U for all
such points x is a set V , and V ⊆ ∼S. Any point of ∼S belongs to some
such neighbourhood, and hence to their union V . Thus ∼S = V . Since
V is a union of open sets, it is itself open, so ∼S is open.

Exercise 5.7(5), below, gives yet another way of thinking of closed
sets, in terms of the closure of a set.

5.3 Compact sets

In any metric space (X, d) containing at least two points x and y, we
can always find open balls centred at x and y and not intersecting. For
example, take the open balls b(x, r) and b(y, r), with r < 1

2d(x, y). Not
all topological spaces have this kind of property. It turns out to be the
minimal required property to allow us to carry on much of the analysis
that we are used to. These spaces have their own name.

Definition 5.3.1 A topological space (X, T ) is called a Hausdorff
space, and T is called a Hausdorff topology, if for every pair of distinct
points x, y ∈ X there is a neighbourhood Ux of x and a neighbour-
hood Uy of y such that Ux ∩ Uy = ∅.

Briefly, X is a Hausdorff space if distinct points in the space have dis-
joint neighbourhoods. As we have just shown, every metric space is a
Hausdorff space. So is every set with the discrete topology, T max. How-
ever, the indiscrete topology T min is not Hausdorff. In the hierarchy of
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spaces that we have often spoken of, we see that Hausdorff spaces sit
between topological spaces in general and metric spaces.

A Hausdorff space is one of a number of types of topological spaces
with different levels of ‘separation’. We can visualise what this means
by comparing Hausdorff spaces with (X, T min), for any X : the points
of the latter cannot be separated at all in the sense that every point is
contained within the same open set. This in fact is the reasoning behind
the term ‘indiscrete’ for this topology. The discrete topology, on the
other hand, has maximal separation of its points, since each point of a
discrete topological space is in effect itself an open set.

The Hausdorff separation property is sufficient to allow a generalisa-
tion of some of the work on compactness in Section 1.6. Compactness
itself is defined much as it was there.

Definition 5.3.2 A subset S of a topological space X is compact if
any collection of open sets in X whose union contains S has a finite
subcollection whose union contains S.

As before, we commonly refer to open coverings of S, and say that S is
compact if every open covering of S has a finite subcovering. Recall that
we are distinguishing compactness, as just defined, from the sequential
compactness of Chapter 4. The next theorem is a generalisation of
Theorem 1.6.5.

Theorem 5.3.3 Every compact subset of a Hausdorff space is closed.

To prove this, let S be a compact subset of a Hausdorff space X . The
result is clear if S = X , so assume S �= X . We will show that S is closed
by showing that S ⊇ S′, and employing Theorem 5.2.3. For this, we
will suppose that x ∈ ∼S and will show that x is not a cluster point
for S. For each point y ∈ S, there are disjoint neighbourhoods Uy of x

and Vy of y, as X is Hausdorff. The collection {Vy : y ∈ S} is an open
covering of S, so, as S is compact, there is a finite subcollection Vy1 ,
Vy2 , . . . , Vyn , say, of these that is a covering of S. For the corresponding
neighbourhoods Uy1 , Uy2 , . . . , Uyn of x, put U =

⋂n
k=1 Uyk

. Then, since
U is a finite intersection of open sets, it is itself an open set and is in
fact a neighbourhood of x, which is disjoint from

⋃n
k=1 Vyk

and hence
from S. So x is not a cluster point for S.

In this theorem, the condition that X be a Hausdorff space cannot be
dropped. This is shown by the following example, in which open sets
are also compact.
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Let X be an infinite set and let T = {T : T ⊆ X, T = ∅ or ∼T is
finite}. Then it is not difficult to see that T is a topology for X . Take
any subset S of X , and let U be one set chosen from an open covering
of S. Since ∼U is finite, only finitely many further sets in that open
covering would be required to give us, with U , a finite subcovering of S.
Thus, every subset of X is compact.

We turn our attention next to proving that, in a metric space, the two
notions of compactness and sequential compactness coincide. In order
to break up the proof, it is convenient to introduce two further notions.
We will say that a metric space X has the Bolzano–Weierstrass property
if every infinite subset of X has a cluster point. This is obviously a
property suggested by Theorem 1.5.3, the Bolzano–Weierstrass theorem.
And we will say that X is countably compact if every countable open
covering of X has a finite subcovering. (By a ‘countable open covering’,
we mean a countable collection of open sets whose union is X .)

Then we can prove the following.

Theorem 5.3.4 Let (X, d) be a metric space. The following statements
are equivalent:

(a) X is compact,
(b) X is countably compact,
(c) X has the Bolzano–Weierstrass property,
(d) X is sequentially compact.

The scheme of the proof is to show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (b)
⇒ (a), where ⇒ is read as ‘implies’. Then each statement will imply
each of the others, so that all four are equivalent.

If X is compact, then in particular X is countably compact, so (a)
implies (b).

Suppose X is countably compact, but does not have the Bolzano–
Weierstrass property. Then there is an infinite subset, Y say, of X that
does not have a cluster point. Let S be any countably infinite subset
of Y . Then S also has no cluster point in Y , so each point x ∈ S has a
neighbourhood Ux containing no other point of Y . In a trivial way, by
Theorem 5.2.3, S must be a closed set, so ∼S is open. Then the union
of all neighbourhoods Ux, with ∼S, is a countable open covering of X .
But X is countably compact, so we must have a contradiction since no
finite subcovering could contain all points of S. Thus (b) implies (c).

Now suppose X has the Bolzano–Weierstrass property, and let {xn}
be any sequence in X . If the range of the sequence is finite, then it clearly
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has a convergent subsequence. Otherwise, the range is infinite and there-
fore has a cluster point, x say. Every neighbourhood of x contains some
term xn of the sequence, different from x, so the open ball b(x, 1/k)
contains a point xnk

, for k ∈ N, different from x. Since d(xnk
, x) < 1/k

for each k, {xnk
}∞k=1 is a convergent subsequence of {xn}. So X is

sequentially compact, and (c) implies (d).
Let X now be sequentially compact, and suppose there is a countable

open covering {T1, T2, . . . } of X that has no finite subcovering. Then
all of the sets Un = ∼⋃n

k=1 Tk (n ∈ N) are nonempty. For each n, let
xn be a point in Un, so that xn /∈ Tk for k = 1, 2, . . . , n. We will show
that the sequence {xn} has no convergent subsequence, contradicting
the statement that X is sequentially compact, and thus showing that
(d) implies (b). Suppose there is a subsequence {xnk

} which converges,
with limit x. We must have x ∈ TN for some N ∈ N, and then xnk

∈ TN

for all k > K, say. We can assume K > N and then, since nk � k, we
have a contradiction of the statement above that xnk

/∈ Tnk
.

Finally, we must prove that (b) implies (a). We begin by noting that
if X is countably compact then it is sequentially compact (as we have
already proved) and hence, by the result of Solved Problem 4.4(2), it
contains a finite ε-net for each ε > 0. This means that there exists a
set E(ε) = {u1, u2, . . . , un} ⊆ X such that, if x ∈ X then x ∈ b(uk, ε)
for some k = 1, 2, . . . , n. For each n ∈ N, there is a corresponding
finite set E(1/n) and, by Theorem 1.4.2, their union F =

⋃∞
k=1 E(1/k)

is countable and the collection V = {b(u, 1/n) : u ∈ F, n ∈ N} of open
balls in X is countable. Let x be any point of X , and U any neighbour-
hood of x. We can clearly find m ∈ N such that b(x, 1/m) ⊆ U , and
then we can find u ∈ F such that d(u, x) < 1/2m. Thus,

x ∈ b

(
u,

1
2m

)
⊆ b

(
x,

1
m

)
,

so we have shown that there exists an open ball B ∈ V which is such
that x ∈ B ⊆ U .

To complete the proof that (b) implies (a), let U be an arbitrary
open covering of X and let V 0 consist of those B ∈ V for which there
is an open set U ∈ U with B ⊆ U . Let UB be such a set U . The set
U 0 = {UB : B ∈ V 0} is a countable subcollection of U . We will show
that it is also a covering of X . For this purpose, take any x ∈ X . For
some U ∈ U , we have x ∈ U , and, as above, there exists B ∈ V such
that x ∈ B ⊆ U . Then, for the corresponding set UB ⊇ B, we have
x ∈ UB. Thus, U 0 is an open covering of X . Since X is countably
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compact, U 0 has a finite subcovering of X , and hence so too does U .

This proof is easily adapted to show that any subset of a metric space
is compact if and only if it is sequentially compact.

5.4 Continuity in topological spaces

It is not difficult to define convergence of a sequence in a topological
space along the lines of Definition 2.5.1. Then we will use this in a
definition of continuity of mappings between topological spaces in the
manner of Definition 3.1.1.

Definition 5.4.1

(a) A sequence {xn} in a topological space X is convergent to a point
x ∈ X if, given any neighbourhood U of x, there exists a positive
integer N such that xn ∈ U whenever n > N . As usual, we say
the sequence has limit x, and we write xn → x.

(b) Let X and Y be topological spaces. A mapping A : X → Y is
said to be sequentially continuous at x ∈ X if, whenever {xn} is
a convergent sequence in X with limit x, {Axn} is a convergent
sequence in Y with limit Ax. The mapping A is sequentially
continuous on X if it is sequentially continuous at every point
of X .

We have, from the beginning in Section 1.9, thought of this approach to
continuity through convergent sequences as an alternative to the orig-
inal ‘ε–δ’ version of Definition 1.9.1. Theorem 1.9.2 showed the two
approaches to be equivalent in R. We will shortly give the generalisa-
tion of that original approach to mappings between topological spaces,
and it will turn out that it is not equivalent to the sequential continu-
ity which we have just defined. In metric spaces, though, the two are
equivalent.

We first need a further concept to do with functions. Let X and Y

be any sets, and let f : X → Y be a function from X into Y . We recall
that, when C ⊆ X , the set {y : y ∈ Y, y = f(x) for some x ∈ C} is
called the image f(C) of C. Furthermore, if D ⊆ Y , then we call the
set {x : x ∈ X, f(x) ∈ D} the inverse image, or preimage, of D. This
subset of X is denoted by f−1(D). The notation must not be confused
with that for an inverse function. The following theorem lists a number
of properties of images and inverse images.
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Theorem 5.4.2 Let f : X → Y be a function from a set X into a set Y .
Let C1, C2 and C be subsets of X, and let D1, D2 and D be subsets of Y .

(a) f(C1) ⊆ f(C2) if C1 ⊆ C2; f−1(D1) ⊆ f−1(D2) if D1 ⊆ D2.
(b) f(C1∪C2) = f(C1)∪f(C2); f−1(D1∪D2) = f−1(D1)∪f−1(D2).
(c) f(C1∩C2) ⊆ f(C1)∩f(C2); f−1(D1∩D2) = f−1(D1)∩f−1(D2).
(d) f(C1\C2) ⊆ f(C1); f−1(D1\D2) = f−1(D1)\f−1(D2).
(e) C ⊆ f−1(f(C)); f(f−1(D)) ⊆ D.

Results corresponding to those in (b) and (c) are true for unions and
intersections of arbitrarily many sets. The second result of (d) may
be given in a natural way as f−1(∼D) = ∼f−1(D), where we have
written D for D2. We will prove just (c), here. The proof of the rest of
the theorem is left as an exercise.

Consider the first result in (c). If f(C1 ∩ C2) = ∅, the result is clear,
so suppose f(C1 ∩ C2) �= ∅ and let y ∈ f(C1 ∩ C2). Then y = f(x) for
some x ∈ C1 ∩ C2. Since x ∈ C1 and x ∈ C2, then f(x) ∈ f(C1) and
f(x) ∈ f(C2), so f(x) ∈ f(C1)∩f(C2). Thus f(C1∩C2) ⊆ f(C1)∩f(C2),
and we are done.

For the second result, suppose that f−1(D1 ∩ D2) �= ∅ and take any
x ∈ f−1(D1 ∩ D2). Then f(x) ∈ D1 ∩ D2 so f(x) ∈ D1 and f(x) ∈ D2.
Hence x ∈ f−1(D1) and x ∈ f−1(D2), so x ∈ f−1(D1) ∩ f−1(D2). It
follows that f−1(D1 ∩ D2) ⊆ f−1(D1) ∩ f−1(D2), and this is true also
if f−1(D1 ∩ D2) = ∅. Next, suppose f−1(D1) ∩ f−1(D2) �= ∅ and
take x ∈ f−1(D1) ∩ f−1(D2). Then x ∈ f−1(D1) and x ∈ f−1(D2), so
f(x) ∈ D1 and f(x) ∈ D2. Hence f(x) ∈ D1∩D2, so x ∈ f−1(D1∩D2).
This time, we conclude that f−1(D1) ∩ f−1(D2) ⊆ f−1(D1 ∩ D2), and
this is true also if f−1(D1)∩ f−1(D2) = ∅. The result now follows.

The ε–δ definition of continuity of a real-valued function f at x0 may
be viewed as describing a relationship between neighbourhoods. The
values of f(x) such that |f(x) − f(x0)| < ε lie in a certain neighbour-
hood V of f(x0), and the values of x such that |x − x0| < δ are in a
neighbourhood U of x0. The definition states that f is continuous at x0

if f(x) ∈ V whenever x ∈ U ; that is, if x ∈ f−1(V ) whenever x ∈ U ; that
is, if U ⊆ f−1(V ). This is how we arrive at our definition of continuity
in topological space.

Definition 5.4.3 Let X and Y be topological spaces. We say that
a mapping A : X → Y is continuous at x ∈ X if, given any neigh-
bourhood V of Ax, there exists a neighbourhood U of x such that
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U ⊆ A−1(V ). The mapping A is continuous on X if it is continuous
at every point of X .

We will give some equivalent formulations of continuity in topological
space, and then will relate this to sequential continuity.

Theorem 5.4.4 Let A : X → Y be a mapping between topological spaces.
The following statements are equivalent:

(a) A is continuous on X,
(b) A−1(T ) is an open set in X for each open set T in Y ,
(c) A−1(S) is a closed set in X for each closed set S in Y .

The equivalence of (a) and (b) justifies a common alternative definition
of continuity: the mapping is continuous on X if the inverse image of
every open set in Y is an open set in X . We will prove the theorem
according to the scheme: (a) ⇒ (b) ⇒ (c) ⇒ (b) ⇒ (a).

Suppose A is continuous on X and T is open in Y . For each point
y = Ax ∈ T , there is a neighbourhood Ux of x in X which is such that
Ux ⊆ A−1(T ). It follows that A−1(T ) is equal to the union of all such
open sets Ux, and is consequently itself an open set. So (a) implies (b).
To show that (b) implies (c), suppose that S is a closed set in Y , so
∼S is an open set in Y . We are assuming (b) is true, so A−1(∼S) is
open in X . By Theorem 5.4.2 (d), A−1(S) = ∼A−1(∼S), so A−1(S) is a
closed set in X . The same argument, interchanging ‘open’ and ‘closed’,
shows that (c) implies (b). Finally, to show that (b) implies (a), let
x ∈ X and let V be a neighbourhood of Ax. Then A−1(V ) is an open
set in X so it is a neighbourhood of x, and itself serves to show that A

is continuous at x.

Theorem 5.4.5 Let X and Y be topological spaces, and let A : X → Y

be a continuous mapping on X. Then A is sequentially continuous on X.

To prove this, take any point x ∈ X and let {xn} be a sequence in X

convergent to x. Let V be a neighbourhood of Ax. By Theorem 5.4.4
and the continuity of A, A−1(V ) is a neighbourhood of x, so a positive
integer N exists such that xn ∈ A−1(V ) for n > N . Then Axn ∈ V for
n > N , so Axn → Ax. Hence, A is sequentially continuous at x.

We will give an example now to show that the converse of this theorem
is not true, so continuity and sequential continuity are not equivalent in
general. Take the set R, and let T be the collection of sets consisting
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of ∅ and the complements of countable subsets of R. It is easy enough
to verify that T is a topology on R. Let {xn} be a convergent sequence
in (R, T ). Let its limit be x and its range be S. Then S\{x} is a
countable set, so its complement is a neighbourhood of x. In order
for this set to contain all terms xn for large enough n, we must have
xn = x for all n > N , say. That is, the range S of {xn} must be
finite. Now consider the identity map I : (R, T ) → (R, T ′), where T ′

is the usual topology on R, and consider such a sequence {xn}. If
n > N , then we have Ixn = xn = x = Ix so I is certainly sequentially
continuous on R. However, choose any nonempty set T ′ ∈ T ′, for which
∼T ′ is uncountable. (For example, let T ′ be any open interval.) Then
I−1(T ′) = T ′, but T ′ /∈ T since T ′ �= ∅ and T ′ is not the complement
of a countable subset of R. Hence, I is not continuous on R.

In metric spaces, the two forms of continuity do coincide. That is
what we prove next.

Theorem 5.4.6 Let X and Y be metric spaces. A mapping A : X → Y

is continuous on X if and only if A is sequentially continuous on X.

Following on from the preceding theorem, it is only necessary to show
that if A is sequentially continuous at some point x ∈ X then it is con-
tinuous at x. Put y = Ax and let V be a neighbourhood of y. By
definition of an open set in the metric topology (Definition 5.1.4), there
exists an open ball bY (y, ε) in Y with bY (y, ε) ⊆ V . Suppose A is not
continuous at x. Then, since open balls are open sets in the metric topol-
ogy (to be proved in Exercise 5.6(4)), there is no open ball bX(x, δ) in X

such that bX(x, δ) ⊆ A−1(bY (y, ε)), whatever the value of δ. (Otherwise,
bX(x, δ) ⊆ A−1(V ), by Theorem 5.4.2(a), and then A is continuous at x.)
Then, for each n ∈ N, there is a point xn in X such that xn ∈ bX(x, 1/n)
and xn /∈ A−1(bY (y, ε)). This generates a sequence {xn}, and clearly
xn → x. So Axn → y since A is sequentially continuous at x. Then for
all sufficiently large n we must have Axn ∈ bY (y, ε). This is a contra-
diction, so A must indeed be continuous at x.

5.5 Homeomorphisms; connectedness

A particular type of continuous mapping that is basic to the further
study of topology is given in the following definition.

Definition 5.5.1 Let X and Y be topological spaces. A homeomor-
phism between X and Y is a continuous bijection A : X → Y , with
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the property that A−1 is also continuous. If such a homeomorphism
exists, then X and Y are said to be homeomorphic.

Recall that a bijection is a one-to-one onto mapping, and that a bijection
always has an inverse mapping. So there is a one-to-one correspondence
between the points of homeomorphic spaces. Furthermore, the property
of continuous mappings that inverse images of open sets are open sets,
and the fact that a homeomorphism and its inverse are both continuous,
mean that there is a one-to-one correspondence between the open sets
of homeomorphic spaces. For these reasons, topologically speaking, two
homeomorphic spaces are considered to be essentially identical.

A topological property is one which is common to homeomorphic topo-
logical spaces and is made evident by the homeomorphism. Topology
itself can be thought of as the study of topological properties. Com-
pactness is one such property. Completeness, in metric space, is not a
topological property: examples can be given of homeomorphic metric
spaces where one is complete and the other is not. Topology is often
known colloquially as ‘rubber sheet geometry’. This term comes about
by considering a topological space as drawn (in some sense) on a rubber
sheet. Homeomorphic images of that space result from stretching and
bending the sheet, provided it does not tear. Thus, a circle is topologi-
cally identical to any ellipse, or to any rectangle.

It is therefore important to be able to determine whether a mapping
is a homeomorphism. One such result in this direction is Theorem 5.5.3,
below. The following result is required first. It is the generalisation of
Theorem 4.3.1 to topological spaces.

Theorem 5.5.2 Let A : X → Y be a continuous mapping between topo-
logical spaces X and Y , and let S be a compact subset of X. Then A(S)
is a compact subset of Y .

For the proof, let V be an open covering of A(S). Since A is con-
tinuous, A−1(V ) is an open set in X , for each V ∈ V . We will show
that U = {A−1(V ) : V ∈ V } is an open covering of S. If x ∈ S, then
Ax ∈ A(S) so that Ax ∈ V for some V ∈ V . Then x ∈ A−1(V ). So
indeed U is an open covering of S. Since S is compact, there is a finite
subcovering {A−1(V1), A−1(V2), . . . , A−1(Vn)}, say, chosen from U . If
y ∈ A(S), then y = Ax for some x ∈ S, and x ∈ A−1(Vk) for some
k = 1, 2, . . . , n. Then Ax = y ∈ Vk. This shows that {V1, V2, . . . , Vn}
is a finite subcovering of A(S), chosen from V . Hence A(S) is compact.
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Theorem 5.5.3 Let X be a compact topological space, Y a Hausdorff
space, and A : X → Y a continuous bijection. Then A is a homeomor-
phism.

All the conditions for A to be a homeomorphism are present except
for the continuity of A−1, so this is all we need to show. Since A−1

is a mapping from Y onto X , and (A−1)−1 = A, we must show that
the image A(T ) of an arbitrary open set T in X is an open set in Y .
Theorem 1.6.6 stated that a closed subset of a compact set is compact.
That was with reference to R, but there is a direct analogue, proved
the same way, for any topological space. So, since ∼T is a closed subset
of the compact space X , it is compact. By the preceding theorem and
Theorem 5.3.3, A(∼T ) is a compact subset of Y , and is closed. So
∼A(∼T ) is open. By Theorem 5.4.2(d), ∼A(∼T ) = A(T ), and so we
are finished.

We will end this chapter with a few comments regarding another im-
portant topological property, connectedness. This notion may be fa-
miliar from complex variable theory, where the domain of an analytic
function is typically required to be an open connected set.

The term ‘separation’ arose earlier in this chapter. We now give it a
precise meaning. Connectedness is then defined as a lack of separation.

Definition 5.5.4

(a) A separation, or partition, of a subset S of a topological space X

is a disjoint pair (T1, T2) of open sets in X with the properties:

(i) T1 ∩ S �= ∅ and T2 ∩ S �= ∅,
(ii) S = (T1 ∩ S) ∪ (T2 ∩ S).

(b) A subset of a topological space is connected if it has no separation.

The definition may be more easily visualised in terms of the special case
S = X : a separation of the topological space X is a disjoint pair of
nonempty open sets T1 and T2 such that X = T1 ∪ T2. We can say that
X is connected if it cannot be expressed as a union of disjoint nonempty
open sets. Otherwise, X is disconnected. Intuitively, a connected set
consists of one piece.

When a topological space X has a separation, we can write X = T1∪T2

for disjoint open sets T1 and T2. These sets are then the complements
of each other, so they are also both closed. It is easy to see that X is
connected if and only if ∅ and X are the only subsets of X which are
both open and closed.
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It follows from the definition that the set {x} is connected for any
point x of a topological space (X, T ). When T = T max, these are the
only connected subsets of X , while if T = T min every subset of X is
connected. In R, with the usual topology, the only connected sets are
the sets consisting of a single point and all the various intervals described
at the beginning of Section 1.5. We will omit the proof of this statement.

Under a continuous mapping, a connected set stays connected. That
is the content of the next theorem.

Theorem 5.5.5 Let A : X → Y be a continuous mapping between topo-
logical spaces. If S is a connected subset of X then A(S) is a connected
subset of Y .

To prove this, suppose there exists a separation (T1, T2) of A(S). Then
we will show that (S1, S2), where S1 = A−1(T1) and S2 = A−1(T2), is
a separation of S, contradicting the fact that S is connected. Certainly,
S1 and S2 are open sets in X , since T1 and T2 are open in Y and A is
continuous. If x ∈ S1 ∩ S2, then we easily see that Ax ∈ T1 ∩ T2. But
T1 ∩ T2 = ∅, so S1 ∩ S2 = ∅. We know that T1 ∩ A(S) �= ∅. Take
any point y ∈ T1 ∩ A(S) and say y = Ax. Then x ∈ A−1(T1) = S1 and
x ∈ S, so S1 ∩S �= ∅, and similarly S2 ∩S �= ∅. Finally, suppose x ∈ S,
so that Ax ∈ A(S) = (T1 ∩ A(S)) ∪ (T2 ∩ A(S)). If Ax ∈ T1 ∩ A(S)
then x ∈ A−1(T1∩A(S)) = A−1(T1)∩A−1(A(S)), by Theorem 5.4.2(c).
In particular, x ∈ A−1(T1) = S1, so x ∈ S1 ∩ S. If Ax ∈ T2 ∩ A(S),
then we proceed similarly, and conclude that x ∈ (S1 ∩ S) ∪ (S2 ∩ S),
so that S ⊆ (S1 ∩ S) ∪ (S2 ∩ S). The reverse inclusion is obvious, so
S = (S1 ∩ S) ∪ (S2 ∩ S). We have shown that (S1, S2) is a separation
of S, as required.

5.6 Solved problems

In the first of these solved problems, we will need the following definition.

Definition 5.6.1

(a) An open base for a topological space X is a collection U of open
sets in X with the property that every open set in X is the union
of sets in U .

(b) A topological space which has a countable open base is said to be
second countable, or to satisfy the second axiom of countability.
(We do not need the definition of a first countable space.)
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(1) Prove Lindelöf ’s Theorem: Let X be a second countable space and
let S be a nonempty subset of X . If S =

⋃
T∈S T for some collection S

of open sets in X , then S is the union of a countable subcollection of
sets in S .

Solution. Let U be a countable open base for X . Any point x ∈ S

satisfies x ∈ Tx for some Tx ∈ S and thus x ∈ Ux ⊆ Tx for some
Ux ∈ U , since Tx is a union of sets in U by definition of an open base.
The collection {Ux : Ux ∈ U , x ∈ S} is certainly countable, and its
union is S. The corresponding collection {Tx : Tx ∈ S , Ux ⊆ Tx} then
clearly satisfies the requirements of the theorem.

(2) Let f and g be two functions from a topological space X into R,
with the usual topology. Prove that f + g is continuous on X if f and g

are.

Solution. Put h = f + g, take any point x ∈ X , and write y = h(x). Let
V be a neighbourhood of y. We must show that there is a neighbour-
hood U of x such that U ⊆ h−1(V ). Since V is an open set in R, we can
find ε > 0 such that (y − ε, y + ε) ⊆ V . Let V1 and V2 be the intervals

V1 = (f(x) − 1
2ε, f(x) + 1

2ε), V2 = (g(x) − 1
2ε, g(x) + 1

2 ε).

Since f and g are continuous, there are neighbourhoods U1, U2 of x such
that U1 ⊆ f−1(V1) and U2 ⊆ g−1(V2). The intersection U1 ∩ U2 is also
a neighbourhood of x. For any point x′ ∈ U1 ∩U2, we have x′ ∈ U1 and
x′ ∈ U2, so

|y − h(x′)| = |(f(x) + g(x)) − (f(x′) + g(x′))|
� |f(x) − f(x′)| + |g(x) − g(x′)| < 1

2ε + 1
2ε = ε.

That is, h(x′) ∈ V , or x′ ∈ h−1(V ). Thus U1 ∩ U2 ⊆ h−1(V ), so we
may take U = U1∩U2, showing that f + g is continuous at x, and hence
on X .

5.7 Exercises

(1) Let X = {a, b, c, d},
T 1 = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}

and T 2 = {∅, {a}, {a, b}, {a, c}, {a, b, c}, X}.
(a) Verify that T 1 and T 2 are topologies on X .
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(b) In (X, T 1), find the closed sets, and find the interiors and
closures of {a}, {c} and {a, c}.

(c) Do the same in (X, T 2).

(2) In the topological spaces (X, T max) and (X, T min), what are intS

and S for any subset S of X?
(3) In any topological space X , prove: (a) X and ∅ are closed sets,

(b) arbitrary intersections of closed sets are closed, (c) finite
unions of closed sets are closed.

(4) (a) In a metric space, prove that every open ball is an open
set. That is, for each x belonging to an open ball b(x0, r)
in a metric space, show that there is an open ball b(x, ε)
satisfying b(x, ε) ⊆ b(x0, r).

(b) Verify that the metric topology Td of Definition 5.1.4 de-
fines a topology on every metric space.

(5) (a) Let S be a subset of a topological space. Prove that
S = S ∪ S′.

(b) Let S1, S2 be subsets of a topological space, with S1 ⊆ S2.
Prove that S1 ⊆ S2.

(6) Let X be a topological space, and let S be a subset of X . Prove:
(a) S is closed, (b) S ⊆ S, (c) S is closed if and only if S = S.

(7) Let X be a Hausdorff space. Show that, for each x ∈ X , the
subset {x} is closed.

(8) Prove that the discrete topology is the only Hausdorff topology
on a finite set.

(9) Prove parts (a), (b), (d) and (e) of Theorem 5.4.2.
(10) (a) In the topological space (X, T min), show that any sequence

is convergent, and any point of X is its limit.
(b) Prove that any convergent sequence in a Hausdorff space

has a unique limit.
(11) Let T 1 and T 2 be two topologies on a set X . Show that the

identity map I : (X, T 1) → (X, T 2), for which Ix = x for all
x ∈ X , is continuous if and only if T 1 is stronger than T 2.

(12) Prove that two metric spaces (X1, d1) and (X2, d2) are homeo-
morphic if there exists a mapping A of X1 onto X2 such that

αd1(x, y) � d2(Ax, Ay) � βd1(x, y)

for some positive real constants α and β, and all x, y ∈ X1.
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(13) Let X and Y be connected subsets of a topological space, and
suppose X ∩ Y �= ∅. Prove that X ∪ Y is connected.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(14) Let f and g be two functions from a topological space X into R,
with the usual topology. Prove that fg is continuous on X if f

and g are.
(15) A topological space X is called a T1-space if, given any two dis-

tinct points of X , each has a neighbourhood which does not con-
tain the other.

(a) Show that every Hausdorff space is a T1-space.
(b) Prove that a topological space X is a T1-space if and only

if, for every x ∈ X , {x} is a closed set.
(c) Show that every finite T1-space has the discrete topology.

(16) Prove that a collection U of open sets in a topological space
(X, T ) is an open base for X if and only if for each T ∈ T and
each x ∈ T there exists U ∈ U such that x ∈ U ⊆ T .
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Normed Vector Spaces

6.1 Definition of a normed vector space; examples

In this and the following chapters we will give an indication of the ad-
vantages to be gained by superimposing onto vector spaces the ideas we
have developed for metric spaces. It is worthwhile spending a few lines
now to enlarge on the reasons previously given for wanting to do this.

All the work of Chapters 2, 3 and 4 was developed from the three
axioms (M1), (M2) and (M3) for a metric space. The numerous appli-
cations that we have given from many fields are a pointer to just how
much can be developed in this way. In all of those applications, the
metric was defined in a way suggested by our ultimate aim within the
application and we then made use of the general theorems deduced ear-
lier. Within each application our knowledge of the subject matter of
that application allowed us to carry out the usual manipulations that
occur in any piece of mathematics. A common operation was of course
the addition of elements. The pertinent point is that this could only be
done within applications because, according to the axioms of a metric
space X , no meaning is attached to any form of sum of elements of X .
Imagine therefore what extra general theorems could be obtained if in
the axioms themselves we did incorporate such an operation.

In a vector space we may add elements together. We may also multi-
ply them by scalars. These operations alone give rise to a vast number
of applications, as any book on linear algebra will show. When we incor-
porate the idea of a metric (which allows us to speak of the convergence
of sequences of elements in the space), we may combine the two fields of
algebra and analysis, and this is a basic feature of modern analysis.

In Section 1.11, we detailed most of what we need to know about
vector spaces. Remember that whenever we use vector spaces whose

174
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elements are n-tuples, functions or sequences, the operations of addition
and multiplication by scalars will be as given for the spaces Cn, C[a, b]
and c. We remark that, as in metric spaces, we will generally refer to
the elements of a vector space as ‘points’.

One vector space we will need which has not previously been men-
tioned, as a vector space, is the space l2. This is defined on the same set
as the corresponding metric space, namely the set of all complex-valued
sequences (x1, x2, . . . ) for which

∑∞
k=1 |xk|2 converges. The convergence

of this series implies that xn → 0 (Theorem 1.8.3), so the set l2 is a sub-
set of the set c0 of all complex-valued sequences that converge with
limit 0. To show that l2 is indeed a vector space, we may show that
it is a subspace of the vector space c0. According to Definition 1.11.2,
this follows by showing that x + y ∈ l2 when x, y ∈ l2 and that αx ∈ l2
when x ∈ l2, α ∈ C. The latter is easy. For the former, we note that
(|xk| − |yk|)2 � 0, so

|xk + yk|2 � (|xk| + |yk|)2 � 2(|xk|2 + |yk|2)
for any complex numbers xk, yk. Then the convergence of

∑ |xk|2 and∑ |yk|2 implies that of
∑ |xk + yk|2. That l2 is an infinite-dimensional

vector space may be shown in precisely the same way that c was shown
to be infinite-dimensional following Theorem 1.11.4.

By use of the discrete metric of Example 2.2(14), we have seen that
any set can be made into a metric space. When that set is a vector
space, it soon becomes evident that the use of a metric alone does not
allow us to take full benefit of the vector space properties of the set.
The following illustrates this. Denoting as usual the zero vector of a
vector space X by θ, and imposing a metric d on X , the number d(θ, x)
represents the distance between θ and x. Using only the metric space
axioms, it is impossible to prove the very desirable and natural property

d(θ, 2x) = 2d(θ, x), x ∈ X.

This equation is in fact false when d is the discrete metric and x �= θ.
Something further is required to relate the two types of structure to each
other and to allow anything new to be developed.

The quantity d(θ, x) provides the clue. For ordinary three-dimensional
vectors, the distance between θ and x is referred to as the length or
magnitude of x. This is the notion that we will abstract. For any
point x in a vector space, we will define a new quantity, called the
norm of x and denoted by ‖x‖, to generalise the idea of the length of
a vector. We will carefully specify the properties it must have, so that
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in particular we will have ‖2x‖ = 2‖x‖, getting around the problem
described above. Then ‖x − y‖ will denote the length of the vector x−y,
or in other words (thinking again of ordinary three-dimensional vectors)
the distance between x and y. But this would be d(x, y), allowing us to
retrieve the metric space properties.

In the definition and discussion that follow, do not be dismayed by
the blank look of ‖ ‖. This is simply a symbol (conforming to a long-
established convention) for a certain mapping. Its image at a point x is
denoted by ‖x‖ and this allows a visual interpretation as a generalisation
of the length |x| of an ordinary vector x.

Definition 6.1.1 A normed vector space is a vector space X together
with a mapping ‖ ‖ : X → R+ with the properties

(N1) ‖x‖ = 0 if and only if x = θ (x ∈ X),
(N2) ‖αx‖ = |α| ‖x‖ for all x ∈ X and every scalar α,
(N3) ‖x + y‖ � ‖x‖ + ‖y‖ for all x, y ∈ X .

This normed vector space is denoted by (X, ‖ ‖) and the mapping
‖ ‖ is called the norm for the space.

It is possible to define different norms for the same vector space X .
These may be written for example as ‖ ‖1, ‖ ‖2, . . . and then (X, ‖ ‖1),
(X, ‖ ‖2), . . . are different normed vector spaces. This notation is anal-
ogous to that for metric spaces but here it has a much less satisfying
look. There is a correspondingly greater tendency, which we will follow,
to denote the normed vector space itself by X and to introduce with-
out prior specification ‖x‖ for the norm of a point x ∈ X . Only in a
few instances in this book (though such instances are common in deeper
topics) will we be considering in the same context different norms for
the same vector space, so no confusion should arise.

The term ‘normed vector space’ is commonly abbreviated to normed
space.

It is left as an exercise to prove that any normed space X can now be
given a metric in a natural way by defining

d(x, y) = ‖x − y‖, x, y ∈ X,

as we anticipated above. In verifying (M3), use will be made of (N3)
alone; the latter is also termed a triangle inequality. In concert with our
preliminary remarks, we now go a step further and specify that the only
metric ever to be used in conjunction with a given normed space X will
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be that defined by d(x, y) = ‖x − y‖, x, y ∈ X . This is called the metric
associated with, or generated by, or induced by, the norm.

In the following examples of normed spaces, the verification of (N1),
(N2) and (N3) is easy, the triangle inequality in each case following from
the work done for the associated metric.

The vector space Cn may be normed by defining

‖x‖ =

√√√√ n∑
k=1

|xk|2,

where x = (x1, x2, . . . , xn) ∈ Cn. This is called the Euclidean norm
for Cn and is the norm we always mean when we refer to the normed
space Cn. The associated metric is of course the Euclidean metric.
Other norms can be defined for this vector space; for example,

‖x‖ = max
1�k�n

|xk|.

The real vector space Rn may be similarly normed. The Euclidean
norm is

‖x‖ =

√√√√ n∑
k=1

x2
k,

where x = (x1, x2, . . . , xn) ∈ Rn, and is the norm always implied by
reference to the normed space Rn.

The vector space l2 is normed when we define

‖x‖ =

√√√√ ∞∑
k=1

|xk|2,

where x = (x1, x2, . . . ) is any element of l2. Note that for any x ∈ l2,
‖x‖ is finite by the very definition of the space l2.

By the normed space C[a, b], we will always mean the real vector space
C[a, b] with norm given by

‖x‖ = max
a�t�b

|x(t)|, x ∈ C[a, b].

This is called the uniform norm. Other norms on the same vector space
are given by

‖x‖ =
∫ b

a

|x(t)| dt and ‖x‖ =

√∫ b

a

(x(t))2 dt,
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and, by reference to the associated metrics, these normed spaces are
denoted by C1[a, b] and C2[a, b], respectively.

6.2 Convergence in normed spaces

We have stated that we will consider a given normed space to be a
metric space in one way only, that for which the metric is generated by
the norm. Then all the notions associated with the convergence of a
sequence in a metric space are easily transferred to normed spaces. We
summarise these.

A sequence {xn} in a normed space is convergent if for any number
ε > 0 there exists an element x ∈ X and a positive integer N such that

‖xn − x‖ < ε whenever n > N.

Again we write xn → x, or limxn = x, and call x the limit of the
sequence. The sequence {xn} is a Cauchy sequence if, given ε > 0, there
exists a positive integer N such that

‖xn − xm‖ < ε whenever m, n > N.

When every Cauchy sequence in a normed space converges, the associ-
ated metric space is complete. This term may be applied to the normed
space itself. Complete normed spaces occur so predominantly in all of
modern analysis that a special term is used for them.

Definition 6.2.1 A complete normed vector space is called a Banach
space.

All the theorems of Section 2.5 still hold: the limit of a convergent
sequence in a normed space is unique; any convergent sequence in a
normed space is a Cauchy sequence. The discussion of convergence in the
spaces Rn, Cn, l2 and C[a, b], given in conjunction with Theorem 2.5.3,
also remains valid. All of these are Banach spaces.

The fixed point theorem for normed spaces says that every contrac-
tion mapping on a Banach space has a unique fixed point. As you
would expect, a contraction mapping on a normed space X is a map-
ping A : X → X for which there is a number α, with 0 < α < 1, such
that ‖Ax − Ay‖ � α‖x − y‖ for any x, y ∈ X .

In the same vein, a subset of a normed space is sequentially compact if
every sequence in the subset has a convergent subsequence. (Recall the
note at the end of Section 2.7: a compact subset of a normed space X
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certainly need not be a subspace of X in the sense of a vector subspace.)
Since every normed space is a metric space, there is a metric topology
induced by the norm and consequently a normed space may be defined
to be compact in the topological sense of Definition 5.3.2. Then, by
Theorem 5.3.4, a normed space is compact if and only if it is sequen-
tially compact, so we may always use the simpler term ‘compact’ in the
present context. There are natural analogues for normed spaces of all
the theorems of Chapter 4, on compactness.

In a vector space, where we may add elements together, we have avail-
able the idea of an infinite series. Once the space is normed it is a simple
matter to come up with a definition of convergence of a series entirely
analogous to that of Definition 1.8.1 for series of real or complex num-
bers. Let X be a normed vector space, let {xn} be a sequence in X

and let sn =
∑n

k=1 xk. Then {sn} is also a sequence in X and, as in
Definition 1.8.1, we say the series

∑∞
k=1 xk (or simply

∑
xk) converges

if lim sn exists. In that case, we say lim sn is the sum of the series. It is
a natural generalisation of Definition 1.8.4 to call the series

∑
xk abso-

lutely convergent if the series
∑ ‖xk‖ (of real numbers) is convergent.

In the discussion of Figure 3 on page 47, we pointed out in picturesque
fashion that the convergence of an absolutely convergent series of real
numbers is a consequence of the completeness of the real number system.
We will now state and prove the generalisation to Banach spaces of
Theorem 1.8.5. We will also prove the converse, that if every absolutely
convergent series in a normed space converges then the space must be a
Banach space. Applied to R, this means that we may finish off the ring
of arrows in Figure 3 with an arrow from 1.8.5 to 1.5.4. Hence all the
theorems on the outer ring of Figure 3 are actually equivalent, so any
one of them could have been taken as an axiom to generate the theory
leading to the others.

Theorem 6.2.2 A normed vector space X is a Banach space if and only
if every absolutely convergent series in X is convergent.

To prove this, suppose first that X is a Banach space and that
∑

xk

is an absolutely convergent series in X . Then, by definition,
∑ ‖xk‖

converges. Let ε > 0 be given. Using the triangle inequality (N3) and
Theorem 1.8.2, ∥∥∥∥ n∑

k=m

xk

∥∥∥∥ �
n∑

k=m

‖xk‖ < ε
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for all sufficiently large integers m, n (m � n). This implies that the
partial sums

∑n
k=1 xk form a Cauchy sequence. Since X is a Banach

space (that is, X is complete), it follows that
∑∞

k=1 xk converges, as
required.

A deeper argument is required for the converse. We will be calling on
Theorem 4.1.1, that a Cauchy sequence with a convergent subsequence
is itself convergent. We suppose now that every absolutely convergent
series in X is convergent, and let {xn} be a Cauchy sequence in X .
Then, for any ε > 0, we can find a positive integer N so that

‖xn − xm‖ < ε

when m, n > N . In particular, we may take ε = 1/2k with k = 1, 2, . . .

in turn and find the corresponding integers N1, N2, . . . . We may assume
N1 < N2 < · · · . Now choose any integers n1, n2, . . . with nk > Nk for
each k. Then for each k we also have nk+1 > Nk and so

‖xnk+1 − xnk
‖ <

1
2k

.

It follows that
∞∑

k=1

‖xnk+1 − xnk
‖ �

∞∑
k=1

1
2k

= 1,

so the series
∑ ‖xnk+1 − xnk

‖ is convergent. This means that the se-
ries
∑

(xnk+1 − xnk
) is absolutely convergent and by assumption it is

therefore also convergent. Thus its sequence {sm}∞m=1 of partial sums
converges. But

sm =
m∑

k=1

(
xnk+1 − xnk

)
= (xn2 − xn1) + (xn3 − xn2) + · · · + (xnm+1 − xnm

)
= xnm+1 − xn1 .

Now, xn1 is some fixed term of {xn}, so the sequence {xnm+1}∞m=1 con-
verges. This is a convergent subsequence of the Cauchy sequence {xn}
and so, by Theorem 4.1.1, {xn} itself converges. Hence the normed
space X is complete; that is, X is a Banach space.

A consequence of this theorem is that in every normed space which is
not complete there must be an absolutely convergent series that is not
convergent. We will give an example to illustrate this strange-looking
notion.
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The normed space C1[a, b], for which we define ‖f‖ =
∫ b

a
|f(x)| dx

for any continuous function f defined on [a, b], is not complete. This
was shown in Example 2.6(6). In the space C1[0, 2], consider the se-
quence {fn} where

fn(x) =

1 − n2x

2
, 0 � x <

2
n2

,

0,
2
n2

� x � 2.

It is easy to check that

‖fn‖ =
∫ 2

0

|fn(x)| dx =
1
n2

for n ∈ N, so
∑ ‖fk‖ is a convergent series. This means that

∑
fk is an

absolutely convergent series in this normed space. If it were also to be
a convergent series, then the sequence {sm}∞m=1, where sm =

∑m
k=1 fk,

would have to converge: its limit would again have to be a continuous
function defined on [0, 2]. To show that this is not possible, let g be any
function belonging to C1[0, 2] and define a function h, with domain [0, 2]
but discontinuous at 0, by

h(x) =
k∑

j=1

(
1 − j2x

2

)
,

2
(k + 1)2

< x � 2
k2

,

with h(0) fixed but unspecified. It can be seen that for any x > 0, we
have h(x) = sm(x) for all m large enough. Now∫ 2

0

|g(x) − h(x)| dx �
∫ 2

0

|g(x) − sm(x)| dx +
∫ 2

0

|sm(x) − h(x)| dx

for any positive integer m. The integral on the left must be positive
because g is continuous while h is continuous on (0, 2] but unbounded.
The final integral must approach 0 as m → ∞. Therefore, we can-
not have ‖g − sm‖ → 0, no matter what the function g is. Hence the
sequence {sm} does not converge.

6.3 Solved problems

(1) Let V be a vector space of dimension n, and let {v1, v2, . . . , vn} be
a basis for V . Prove that

(a) we may define a norm for V by ‖x‖ = max1�k�n |αk|, where
x =
∑n

k=1 αkvk ∈ V ,



182 6 Normed Vector Spaces

(b) if {xm}∞m=1 is a sequence in V , and xm =
∑n

k=1 αmkvk, then,
with the norm of (a), convergence of {xm} is equivalent to the
convergence of each sequence {αmk}∞m=1, for k = 1, 2, . . . , n.

Solution. (a) If x = θ, then α1 = α2 = · · · = αn = 0, by the linear
independence of {v1, v2, . . . , vn}, so ‖x‖ = 0; conversely, if ‖x‖ = 0,
then α1 = α2 = · · · = αn = 0, so x = θ. This verifies (N1). For (N2),
we have, for any scalar α,

‖αx‖ =
∥∥∥∥ n∑

k=1

(ααk)vk

∥∥∥∥ = max
1�k�n

|ααk| = |α| max
1�k�n

|αk| = |α| ‖x‖.

Finally, let y =
∑n

k=1 βkvk be another vector in V . For each k,

|αk + βk| � |αk| + |βk| � max
1�k�n

|αk| + max
1�k�n

|βk| = ‖x‖ + ‖y‖
so

‖x + y‖ =
∥∥∥∥ n∑

k=1

(αk + βk)vk

∥∥∥∥ = max
1�k�n

|αk + βk| � ‖x‖ + ‖y‖,

verifying (N3).
(b) Suppose xm → x, say, and put x =

∑n
k=1 αkvk. Given ε > 0, there

is a positive integer N such that ‖xm − x‖ = max1�k�n |αmk − αk| < ε

when m > N . Then |αmk − αk| < ε when m > N for each k = 1, 2,
. . . , n. This means that each sequence {αmk}∞m=1 in C (or R, if V is a
real vector space) is convergent.

Conversely, suppose each sequence {αmk}∞m=1 in C (or R) converges,
and set αk = limm→∞ αmk, k = 1, 2, . . . , n. Then, given ε > 0, for
each k there is a positive integer Nk such that |αmk − αk| < ε when
m > Nk. If we set N = max{N1, N2, . . . , Nn} and x =

∑n
k=1 αkvk,

then ‖xm − x‖ = max1�k�n |αmk − αk| < ε when m > N , so the se-
quence {xm} converges. This completes the proof.

(2) Let t be the vector space of complex-valued sequences x for which
the series

∞∑
k=1

|xk+1 − xk|

converges, where x = (x1, x2, . . . ). Show that

(a) ‖x‖ = |x1| +
∑∞

k=1 |xk+1 − xk| defines a norm for t,
(b) with this norm, t is a Banach space.
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Solution. (a) We must verify (N1), (N2) and (N3) for the definition
‖x‖ = |x1| +

∑∞
k=1 |xk+1 − xk|. Certainly, by definition of t, the ex-

pression on the right is always finite. Furthermore, that expression is
positive unless x = θ, and ‖θ‖ = 0, so (N1) is true. It is also quickly
seen that (N2) is true. For (N3), if y = (y1, y2, . . . ) is another element
of t, and n is any positive integer, then

n∑
k=1

|(xk+1 + yk+1) − (xk + yk)| =
n∑

k=1

|(xk+1 − xk) + (yk+1 − yk)|

�
n∑

k=1

|xk+1 − xk| +
n∑

k=1

|yk+1 − yk|

�
∞∑

k=1

|xk+1 − xk| +
∞∑

k=1

|yk+1 − yk|.

Also, |x1 + y1| � |x1| + |y1|, and it follows that

‖x + y‖ = |x1 + y1| +
∞∑

k=1

|(xk+1 + yk+1) − (xk + yk)|

� |x1| + |y1| +
∞∑

k=1

|xk+1 − xk| +
∞∑

k=1

|yk+1 − yk|

= ‖x‖ + ‖y‖,
as required.

(b) We must show that t is complete with this norm. The procedure
is the same as in metric spaces. Let {xn} be a Cauchy sequence in t,
and write xn = (xn1, xn2, . . . ), n ∈ N. Given ε > 0, we know there is a
positive integer N so that ‖xn − xm‖ < ε when m, n > N ; that is,

|xn1 − xm1| +
∞∑

k=1

|(xn,k+1 − xm,k+1) − (xnk − xmk)| < ε

when m, n > N . Noting that, for any j = 2, 3, . . . ,

xnj − xmj = xn1 − xm1 +
j−1∑
k=1

((xn,k+1 − xm,k+1) − (xnk − xmk)),

we have

|xnj − xmj | � |xn1 − xm1| +
j−1∑
k=1

|(xn,k+1 − xm,k+1) − (xnk − xmk)|

� |xn1 − xm1| +
∞∑

k=1

|(xn,k+1 − xm,k+1) − (xnk − xmk)| < ε
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when m, n > N . Hence {xnj} is a Cauchy sequence in C for each
j = 2, 3, . . . , and the same is clearly true when j = 1. Since C is a
Banach space, we know limn→∞ xnj exists for all j. Put x·j = limxnj

and write x = (x·1, x·2, . . . ). It remains to show that x ∈ t and that
xn → x. For any positive integer K, we know that

|xn1 − xm1| +
K∑

k=1

|(xn,k+1 − xm,k+1) − (xnk − xmk)| < ε

when m, n > N . Fixing n, and using the fact that limm→∞ xmk = x·k
for all k, we obtain

|xn1 − x·1| +
K∑

k=1

|(xn,k+1 − x·,k+1) − (xnk − x·k)| � ε.

Once we know that x ∈ t, this inequality will imply that ‖xn − x‖ � ε

when n > N ; that is, xn → x. But the last displayed inequality implies
that

K∑
k=1

|(xn,k+1 − x·,k+1) − (xnk − x·k)| � ε

(n > N), and so

K∑
k=1

|x·,k+1 − x·k|

=
K∑

k=1

|x·,k+1 − xn,k+1 + xn,k+1 − xnk + xnk − x·k|

=
K∑

k=1

|(xn,k+1 − x·,k+1) − (xnk − x·k) + (xnk − xn,k+1)|

�
K∑

k=1

|(xn,k+1 − x·,k+1) − (xnk − x·k)| +
K∑

k=1

|xn,k+1 − xnk|

� ε +
∞∑

k=1

|xn,k+1 − xnk|,

when n > N . The final expression is finite since xn ∈ t, so the series∑∞
k=1 |x·,k+1 − x·k| converges; that is, x ∈ t. The proof is finished.
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6.4 Exercises

(1) Let X be a normed vector space and let d be the associated
metric, given by d(x, y) = ‖x − y‖ for x, y ∈ X .

(a) Verify that d is indeed a metric.
(b) For any x, y, z ∈ X and any scalar α, prove that

d(x + z, y + z) = d(x, y) and d(αx, αy) = |α|d(x, y).

(Such a metric is called translation invariant and homoge-
neous.)

(2) In a normed space, prove that

(a) ‖x − y‖ � | ‖x‖ − ‖y‖ |,
(b) ‖(1/α)x‖ = 1 if α = ‖x‖, x �= θ.

(3) (a) Let {xn} and {yn} be convergent sequences in a normed
space, with lim xn = x, lim yn = y. Prove that xn + yn →
x + y.

(b) Let {xn} be a convergent sequence in a normed space,
with lim xn = x, and let {αn} be a convergent sequence of
scalars, with lim αn = α. Prove that αnxn → αx.

(c) Let {xn} be a convergent sequence in a normed space,
with lim xn = x. Prove that ‖xn‖ → ‖x‖. (Thus, ‖ ‖ is a
continuous mapping on a normed space.)

(4) (a) For the vector space Cn of n-tuples x = (x1, x2, . . . , xn) of
complex numbers, prove in full that

‖x‖c = max{|x1|, . . . , |xn|}, ‖x‖o = |x1| + · · · + |xn|
are valid definitions of norms.

(b) The norms ‖ ‖c and ‖ ‖o are sometimes referred to as the
cubic and octahedral norms, respectively, for the vector
space Cn. If ‖ ‖ is the Euclidean norm for Cn, prove
that, when x ∈ Cn,

(i) ‖x‖c � ‖x‖ � √
n ‖x‖c,

(ii) ‖x‖ � ‖x‖o � √
n ‖x‖,

(iii)
1
n
‖x‖o � ‖x‖c � ‖x‖o.

(5) Prove that a nonempty subset S of a normed space is bounded
if and only if there is a positive number M such that ‖x‖ � M

for all x ∈ S. (Hint: This is to be deduced as a consequence of
Definition 2.8.1.)
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(6) Let P be the set of all polynomial functions p. Show that P is a
normed real vector space when

‖p‖ = |a0| + |a1| + · · · + |an|,
where p(t) = a0+a1t+ · · ·+antn (and a0, a1, . . . , an ∈ R). Show,
however, that P is not a Banach space.

(7) Let V be a vector space of dimension n and let {v1, v2, . . . , vn}
be a basis for V . Prove that we may define a norm for V by

‖x‖ =
n∑

k=1

|αk|,

where x =
∑n

k=1 αkvk ∈ V . Deduce a theorem analogous to that
of Solved Problem 6.3(1)(b).

(8) Define a sequence {xn} of functions continuous on [0, 1] by

xn(t) =


nt, 0 � t <

1
n

,

1,
1
n

� t � 1.

Show that {xn} is convergent (with limit x, where x(t) = 1,
0 � t � 1) when considered as a sequence in C1[0, 1], but not
convergent when considered as a sequence in C[0, 1].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(9) Let {xn} be a sequence in a normed space and suppose that
the series

∑∞
k=1(xk − xk+1) is absolutely convergent. Determine

whether {xn} is (a) Cauchy, (b) convergent.
(10) In the normed space l2, let

u1 = (−1, 1, 0, 0, . . . ),

u2 = (0,−1, 1, 0, . . . ),

u3 = (0, 0,−1, 1, . . . ), . . . .

Show that the series
∑∞

k=1 uk/2k is absolutely convergent and
deduce that ∥∥∥∥ ∞∑

k=1

uk

2k

∥∥∥∥ =
1√
3
,

∞∑
k=1

∥∥∥∥uk

2k

∥∥∥∥ =
√

2.

(11) Recall that c0 is the vector space of all sequences (x1, x2, . . . ) for
which xn → 0.
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(a) Show that c0 is a Banach space under the norm

‖x‖ = max
k�1

|xk|, x = (x1, x2, . . . ) ∈ c0.

(b) Let e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), e3 = (0, 0, 1, . . . ),
. . . . Prove that the series

∑∞
k=1 ek/k is convergent but not

absolutely convergent in c0. Find the sum of the series.

(12) If X is a vector space, a seminorm for X is a mapping ν : X → R+

satisfying ν(θ) = 0, ν(αx) = |α|ν(x), ν(x + y) � ν(x) + ν(y), for
x, y ∈ X and any scalar α. (The second requirement of (N1)
is omitted; compare this with the definition of a semimetric in
Exercise 2.4(12).)

Let P be the real vector space of all polynomial functions.
Prove that

ν(p) = |p(0)| + |p′(0)| + |p′′(0)|, p ∈ P,

defines a seminorm for P , but not a norm. Determine all poly-
nomial functions p ∈ P for which ν(p) = 0 and show that they
form a subspace of P .

6.5 Finite-dimensional normed vector spaces

A number of theorems will be proved in this section giving a quite de-
tailed account of completeness and compactness in finite-dimensional
normed vector spaces. These will lead to some approximation theory,
extending the result of Theorem 4.3.3.

The work was actually begun in Solved Problem 6.3(1) where it was
shown in the first place that a norm can always be defined for a finite-
dimensional vector space, namely by setting

‖x‖ = max
1�k�n

|αk|

where x =
∑n

k=1 αkvk and {v1, v2, . . . , vn} is a basis for the space, and
in the second place that under this norm the convergence of a sequence
in the space is equivalent to the separate convergence of the sequences
of coefficients of the basis vectors. The existence of a second norm for
this vector space, namely that given by

‖x‖ =
n∑

k=1

|αk|,

is a consequence of Exercise 6.4(7). There are other norms that can
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always be defined for a finite-dimensional vector space, but the second
theorem of this section will show that they are all the same in the sense
that sequences convergent under one particular norm will also be conver-
gent under any other. This is not the case for infinite-dimensional vector
spaces. In Exercise 6.4(8), we gave a sequence of continuous functions
defined on [0, 1] which is convergent when considered as a sequence in
C1[0, 1] but not when considered as a sequence in C[0, 1].

Because we will be comparing different norms for the same vector
space, we will specify now that throughout this section V will be a
vector space of dimension n, the set {v1, v2, . . . , vn} of vectors in V will
be a basis for V , α’s with or without subscripts will be scalars, and the
first norm mentioned above will be distinguished by writing it as ‖ ‖∞.
Thus

‖x‖∞ = max
1�k�n

|αk|

when x =
∑n

k=1 αkvk. All the statements of this section are equally valid
when V is replaced by a real vector space. Only very minor adjustments
would be required to handle this.

We begin with a theorem about compact sets in V , under this special
norm.

Theorem 6.5.1 The subset {x : x ∈ V, ‖x‖∞ � 1} of (V, ‖ ‖∞) is
compact.

The proof uses mathematical induction on the dimension n of the
vector space. Bear in mind below that the norm ‖ ‖∞ depends on n,
but we will not clutter the notation by making this explicit.

Suppose the space has dimension 1 and that the vector v is a basis
for the space. Then any vector x in the space can be written as x = αv,
and ‖x‖∞ = |α|. Let Q1 = {x : ‖x‖∞ � 1} be the subset of the theorem
for this vector space of dimension 1 and let Z = {α : α ∈ C, |α| � 1}.
Define a mapping A : Z → Q1 by Aα = αv = x. The closed disc Z is
compact in C (Exercise 4.5(6)), and clearly A(Z) = Q1, so that once we
have shown A to be a continuous mapping it will follow from Theorem
4.3.1 that Q1 is compact. If α is any point in Z and {αm} is any sequence
in Z convergent to α, then the equations

‖Aαm − Aα‖∞ = ‖αmv − αv‖∞ = ‖(αm − α)v‖∞ = |αm − α|
imply that Aαm → Aα, so indeed A is continuous.

Now suppose the theorem to be true when the dimension n of V
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satisfies n = h − 1 for some integer h > 1. We will show that it is then
also true when n = h. In general, write

Qi = {x : x ∈ V, ‖x‖∞ � 1},
when n = i, i ∈ N. We know Q1 is compact and are assuming that
Qh−1 is compact. Let {xm} be a sequence in Qh and write

xm =
h∑

j=1

αmjvj = αm1v1 +
h∑

j=2

αmjvj ,

for m ∈ N. Now {αm1v1} is a sequence in a vector space of dimension 1
and

‖αm1v1‖∞ = |αm1| � max
1�j�h

|αmj | = ‖xm‖∞ � 1

so {αm1v1} is a sequence in Q1, which is compact. Hence there is a con-
vergent subsequence {αmk1v1}∞k=1 of {αm1v1}. The sequence {xmk

}∞k=1

is therefore a subsequence of {xm} such that the sequence of coeffi-

cients of v1 converges. The sequence
{∑h

j=2 αmkjvj

}∞
k=1

belongs to

the vector space Sp{v2, v3, . . . , vh} (defined in Definition 1.11.3(c)), of
dimension h − 1, and since∥∥∥∥ h∑

j=2

αmkjvj

∥∥∥∥
∞

= max
2�j�h

|αmkj | � max
1�j�h

|αmkj | = ‖xmk
‖∞ � 1,

for each k ∈ N, it is a sequence in Qh−1, which is assumed to be compact.
It therefore has a convergent subsequence, so that, by applying the result
of Solved Problem 6.3(1)(b), we are able to pick out from the original
sequence {xm} a convergent subsequence, showing that Qh is compact.

Now we can clarify our earlier statement about different norms for a
finite-dimensional vector space being all much the same. The relevant
definition follows.

Definition 6.5.2 Two norms ‖ ‖1 and ‖ ‖2 for a vector space X

are said to be equivalent if there exist positive numbers a and b such
that

a‖x‖1 � ‖x‖2 � b‖x‖1

for all x ∈ X .
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Following on from the definition, we then also have

1
b
‖x‖2 � ‖x‖1 � 1

a
‖x‖2

for any x ∈ X , so the definition is quite symmetrical. The normed spaces
(X, ‖ ‖1) and (X, ‖ ‖2) are different, but the point is that if the norms
are equivalent then any sequence {xn} of points in X which converges in
one of the normed spaces converges also in the other: to say the sequence
converges in (X, ‖ ‖1) means ‖xn − x‖1 → 0 for some x ∈ X , but since
0 � ‖xn − x‖2 � b‖xn − x‖1 for all n, we also have ‖xn − x‖2 → 0,
so {xn} converges also in (X, ‖ ‖2). The same can be said of Cauchy
sequences: a sequence which is Cauchy in one of the normed spaces will
be Cauchy in the other.

A special instance of the next theorem was given in Exercise 6.4(4),
in which three different norms for the vector space Cn were shown to be
equivalent in pairs.

Theorem 6.5.3 Any two norms for a finite-dimensional vector space
are equivalent.

We will only prove that any norm ‖ ‖ for our vector space V is equiv-
alent to the norm ‖ ‖∞. That is, we will show that there exist positive
numbers a and b such that

a‖x‖∞ � ‖x‖ � b‖x‖∞
for any x ∈ V . This readily implies the theorem, but the details are left
as an exercise.

In Theorem 6.5.1, we showed that the subset Q = {x : ‖x‖∞ � 1} of V

is compact. It is another simple exercise to use this fact, in conjunction
with Exercise 4.5(3), to conclude that the set Q′ = {x : ‖x‖∞ = 1}
in V is also compact. On any normed space, the norm is a continuous
mapping (Exercise 6.4(3)(c)) so we may invoke Theorem 4.3.2 to ensure
the existence of points xM and xm in Q′ such that

‖xM‖ = max
x∈Q′

‖x‖, ‖xm‖ = min
x∈Q′

‖x‖.

Thus ‖xm‖ � ‖x‖ � ‖xM‖ for all x ∈ Q′. Also, since ‖xm‖∞ = 1, we
cannot have xm = θ, so ‖xm‖ > 0. For any nonzero vector x ∈ V , we
have ∥∥∥∥ 1

‖x‖∞ x

∥∥∥∥
∞

=
1

‖x‖∞ ‖x‖∞ = 1,
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so (1/‖x‖∞)x ∈ Q′. Hence, for x �= θ,

‖xm‖ �
∥∥∥∥ 1
‖x‖∞ x

∥∥∥∥ � ‖xM‖.

We thus have

‖xm‖ ‖x‖∞ � ‖x‖ � ‖xM‖ ‖x‖∞
or a‖x‖∞ � ‖x‖ � b‖x‖∞, where a = ‖xm‖ > 0 and b = ‖xM‖, and
this is clearly true also when x = θ. Hence the norms ‖ ‖ and ‖ ‖∞ are
equivalent.

To lead into our next theorem, we note that if we can prove that
the finite-dimensional vector space V is complete under the norm ‖ ‖∞
then it will quickly follow from the preceding theorem that V is complete
regardless of the norm defined for it. This is just another way of putting
the earlier comment that a Cauchy sequence in V with one norm is
again a Cauchy sequence with any equivalent norm, and similarly for a
convergent sequence. We will have proved the following.

Theorem 6.5.4 Every finite-dimensional normed vector space is a Ban-
ach space.

Hence we prove that the normed space (V, ‖ ‖∞) is complete. Let
{xm} be a Cauchy sequence in this space. Then, given any ε > 0, there
exists a positive integer N such that

‖xm − xj‖∞ = max
1�k�n

|αmk − αjk| < ε

when j, m > N , where we write xm =
∑n

k=1 αmkvk, for m ∈ N. Then
|αmk − αjk| < ε when j, m > N , for each k = 1, 2, . . . , n, so {αmk}∞m=1

is a Cauchy sequence in C for each k. Since C is complete, each of these
sequences converges so, by the result of Solved Problem 6.3(1)(b), the
sequence {xm} converges, and the theorem follows.

We will employ a similar technique for the next theorem.

Theorem 6.5.5 A subset of any finite-dimensional normed vector space
is compact if and only if it is both closed and bounded.

This provides a generalisation of Theorem 4.1.6, in which we deter-
mined that the compact subsets of Rn are precisely those that are closed
and bounded. We must prove here the sufficiency of the condition, since
we know, by Theorems 4.1.4 and 4.1.5, that any compact subset must be
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closed and bounded. We do this first for a closed and bounded subset S

of V , with norm ‖ ‖∞.
There is little to do. We observe that the proof of Theorem 6.5.1

could have been carried through in the same way to prove that the
subset Q(L) = {x : ‖x‖∞ � L} of (V, ‖ ‖∞) is compact for any positive
number L. Since S is bounded, a value of L certainly exists so that S is
a subset of Q(L). Since S is closed, we may then use Exercise 4.5(3) to
infer that S is compact.

Now let ‖ ‖ be any other norm for V and let S be a closed, bounded
subset of V with respect to this other norm. We leave it as an exercise
to show that, because of the equivalence of all norms on V , S is also
closed and bounded with respect to ‖ ‖∞. Thus S is a compact subset
of (V, ‖ ‖∞) by what was just said, so any sequence {xm} in S has a
subsequence {xmk

} which is convergent with respect to ‖ ‖∞. But the
equivalence of the norms implies that this subsequence is also convergent
with respect to ‖ ‖, and so the result follows.

6.6 Some approximation theory

The preceding theorem has far-reaching consequences in approximation
theory. In terms of normed spaces, Theorem 4.3.3 stated: given a com-
pact subset S of a normed space X and a point x ∈ X , there exists a
point p ∈ S such that ‖p − x‖ is a minimum. Proving that S is com-
pact in a given situation may be difficult, but the result we prove next
replaces compactness of S by a much more easily tested condition: the
same conclusion is true if S is a finite-dimensional subspace of X .

Theorem 6.6.1 A finite-dimensional subspace of a normed vector space
contains at least one point of minimum distance from a given point.

To prove this, continue with the notation above and take any point
p0 ∈ S. Consider the set

Y = {y : y ∈ S, ‖y − x‖ � ‖p0 − x‖}.

If there is a point p ∈ S such that ‖p − x‖ is a minimum, then certainly
p ∈ Y , so the desired result will follow from Theorem 4.3.3 if we can
show that Y is compact. Since Y is a subset of the finite-dimensional
space S, the compactness of Y will follow by the preceding theorem once
it has been shown to be closed and bounded. This is not difficult. First,
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Y is bounded since

‖y‖ = ‖(y − x) + x‖ � ‖y − x‖ + ‖x‖ � ‖p0 − x‖ + ‖x‖,
for any y ∈ Y . Secondly, Y is closed since if {yn} is any sequence of
points in Y that is convergent as a sequence in S, and lim yn = y say,
then for any ε > 0 we can find n large enough to ensure that

‖y − x‖ � ‖y − yn‖ + ‖yn − x‖ < ε + ‖p0 − x‖.
Then the arbitrariness of ε implies that ‖y − x‖ � ‖p0 − x‖, so y ∈ Y .

As an example of this existence theorem, we have the following. In
the notation above, let X = C[0, 1] and let S be the set of all polyno-
mial functions on [0, 1] of degree less than some fixed positive integer r.
Then S is a vector space of dimension r (the set of functions defined by
{1, t, t2, . . . , tr−1}, 0 � t � 1, is a basis for S) and S may be taken as
a subspace of C[0, 1]. Given a function f ∈ C[0, 1], the theorem implies
that there is a polynomial function p ∈ S such that

‖p − f‖ = max
0�t�1

|p(t) − f(t)|

is a minimum.
This leads us to Weierstrass’ famous approximation theorem: if we

are not restricted in the degree of the polynomial functions, then there
exists a polynomial function p such that ‖p − f‖ is as small as we please.
We take this up in the next section.

Theorem 6.6.1 has the same drawbacks as the earlier Theorem 4.3.3:
there is no suggestion that there is only one best approximation nor any
indication of how to find such a point. The theorem assures us only
of the existence of at least one best approximation. By imposing more
structure on a normed space we can at least give in general terms a
sufficient condition for the best approximation to be unique.

Definition 6.6.2 A normed space X is said to be strictly convex if
the equation

‖x + y‖ = ‖x‖ + ‖y‖,
where x, y ∈ X , x �= θ, y �= θ, holds only when x = βy for some (real)
positive number β.

The triangle inequality tells us that ‖x + y‖ � ‖x‖+‖y‖ for any x, y ∈ X .
If x = βy and β > 0, it is readily checked that ‖x + y‖ = ‖x‖ + ‖y‖.
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However equality can hold in the triangle inequality in some normed
spaces in cases other than this, as we show below for C[a, b], so such
spaces are not strictly convex.

Now we can put a few things together.

Theorem 6.6.3 If X is a strictly convex normed space, then a finite-
dimensional subspace of X contains a unique best approximation of any
point in X.

That is, the best approximation whose existence is implied by the
earlier Theorem 6.6.1 is unique when the space is strictly convex. To
prove this, let S be a finite-dimensional subspace of X and let x be a
given point in X . We suppose x /∈ S since otherwise x is obviously its
own unique best approximation. By Theorem 6.6.1, there exists at least
one point p ∈ S such that ‖x − p‖ is a minimum. Suppose that p′ ∈ S

shares this property. Set

‖x − p‖ = ‖x − p′‖ = d.

Now, since S is a vector space, 1
2 (p + p′) ∈ S and

d � ‖x − 1
2 (p + p′)‖ = ‖ 1

2 (x − p) + 1
2 (x − p′)‖

� 1
2‖x − p‖ + 1

2‖x − p′‖ = d.

Hence ‖x − 1
2 (p + p′)‖ = d so 1

2 (p + p′) is also a best approximation
of x. (This averaging process can be continued indefinitely to show the
existence of infinitely many best approximations in a normed space once
there are two different best approximations.) It follows that

‖x − 1
2 (p + p′)‖ = 1

2‖x − p‖ + 1
2‖x − p′‖,

from which, since X is strictly convex,

x − p = β(x − p′)

for some number β > 0. If β �= 1, we get

x =
1

1 − β
p − β

1 − β
p′.

This is impossible since it represents x as belonging to the vector space S,
whereas x /∈ S. So we must have β = 1. Thus p = p′ and we have proved
that the best approximation is unique.
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To see that C[a, b] is not a strictly convex normed space, we take the
following simple example. The functions f , g, where

f(t) = bt, g(t) = t2, a � t � b,

are such that ‖f‖ = ‖g‖ = b2 while ‖f + g‖ = 2b2 = ‖f‖ + ‖g‖. But
certainly f �= βg for any number β. (We have assumed here that |a| < b.)

However, as is to be shown in Exercise 6.10(5), the normed space
C2[a, b] is strictly convex . It follows then from Theorem 6.6.3 that for
any function f ∈ C2[a, b] there is a unique polynomial function p of given
degree or less such that

‖f − p‖ =

√∫ b

a

(f(x) − p(x))2 dx

is a minimum. This function p is called the best least squares polynomial
approximation of f , and will be more fully discussed in Chapter 8.

6.7 Chebyshev theory

Although Theorem 6.6.3 does not apply to the space C[a, b], since it
is not strictly convex, it can be shown nonetheless that any function
in this space does have a unique best approximation from the set of
all polynomial functions of degree less than a given integer. This is
a consequence of some work initiated by Chebyshev. We will not go
very far into that theory, contenting ourselves mainly with the problem
of approximating a polynomial function of degree r by one of smaller
degree.

Since we will be working here with the norm of the space C[a, b], the
approximations we will obtain are known as uniform approximations.
They are also called minimax approximations, as noted at the end of
Chapter 4. In general, the best uniform approximation of a function
will not be the same as its best least squares approximation, or its best
approximation under many other criteria that may be used. We note
that in the context of approximation theory, the uniform norm is often
referred to as the Chebyshev norm.

Specifically, we will seek in the first place the best uniform approxi-
mation of xr by a polynomial function of the form a0 + a1x + a2x

2 +
· · · + ar−1x

r−1, over the interval [−1, 1]. Thus we must determine the
numbers a0, a1, . . . , ar−1 so that

max
−1�x�1

|xr − (a0 + a1x + a2x
2 + · · · + ar−1x

r−1)|
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is a minimum. Write

Pa(x) = xr − ar−1x
r−1 − · · · − a1x − a0,

the subscript a indicating the dependence of Pa on the coefficients. Such
a polynomial function, where the coefficient of the term of highest degree
(called the leading coefficient) is 1, is said to be monic. Our immediate
problem can be phrased this way: To find the monic polynomial function
of degree r which best approximates the zero function over [−1, 1], with
the uniform norm.

The set of all monic polynomial functions is not a vector space, but
our first formulation of the problem shows, by Theorem 6.6.1, that a
solution certainly exists. Thus there exist values for a0, a1, . . . , ar−1

such that

max
−1�x�1

|xr − (a0 + a1x + a2x
2 + · · · + ar−1x

r−1)| = ‖Pa‖

is minimised. Let this minimum value be m, so for any other monic
polynomial function Pb on [−1, 1], of degree r, we have ‖Pb‖ � m. Con-
sider a function which has alternate maxima and minima, with values
m and −m, at r + 1 points x0, x1, . . . , xr−1, xr , where

−1 = x0 < x1 < · · · < xr−1 < xr = 1.

(See Figure 11, where we have r = 6.) Certainly, this function has
norm m. For the moment, we will assume that there is a monic polyno-
mial function of degree r with this property. Under that assumption, we
will show there is in fact at most one, and later we will actually create
such a function. In the interim, we may continue to use Pa to denote
the function.

Suppose Pc is any other monic polynomial function of degree r also
satisfying |Pc(x)| � m on [−1, 1]. Then the difference Pa − Pc is a
polynomial function of degree at most r − 1 satisfying

(Pa − Pc)(−1) � 0 if, say, Pa(−1) = m, as in Figure 11,

(Pa − Pc)(x1) � 0,

(Pa − Pc)(x2) � 0,

...

(Pa − Pc)(xr−1) � 0 if, say, Pa(1) = m, as in Figure 11,

(Pa − Pc)(1) � 0.

Since (Pa − Pc)(x) is alternately positive and negative, or is 0, at the
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m

−m

−1 x1 x2 x3 x4 x5 1

Pa

Pc

Figure 11

r +1 points −1, x1, x2, . . . , xr−1, 1, it must equal 0 at at least r points.
Being a polynomial function of degree at most r − 1, this is impossible
unless in fact Pc = Pa.

Under the assumption that there is such a monic polynomial func-
tion Pa, this proves its uniqueness. To actually find it, we observe that
trigonometric functions, the sine and cosine in particular, possess an os-
cillatory property like that described above. (This is termed the equal-
ripple property in approximation theory.) In fact, cos rθ is alternately 1
and −1 for r+1 values of θ in the interval [0, π], including the endpoints.
If we set

x = cos θ and Tr(x) = cos rθ,

then Tr has domain [−1, 1] and has the desired equal-ripple property.
We will show that Tr is a polynomial function of degree r, so that, once
we divide by its leading coefficient to make it monic, we will have the
required function Pa.

Now,

T0(x) = 1, T1(x) = x, −1 � x � 1,

and, since

cos(r + 1)θ = 2 cos θ cos rθ − cos(r − 1)θ,
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we have

Tr+1(x) = 2xTr(x) − Tr−1(x), r = 1, 2, . . . , −1 � x � 1.

It follows by mathematical induction that Tr is a polynomial function
of degree r. It also follows that Tr has leading coefficient 2r−1 (for
r � 1) and that ‖Tr‖ = 1. These polynomial functions are known as the
Chebyshev polynomials. The next few are

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

all for −1 � x � 1.
The monic polynomial function Pa = 21−rTr is thus the one satisfying

our initial problem. It has maximum modulus m = 21−r in the interval
[−1, 1] and takes on the values m and −m alternately at the r+1 points

x = cos
kπ

r
, k = 0, 1, . . . , r,

with zeros between them at the points

x = cos
(2k + 1)π

r
, k = 0, 1, . . . , r − 1.

Our original problem here was to find the best approximation of a
polynomial function of degree r from the polynomial functions of degree
less than r, under the uniform norm. We will answer this on [−1, 1]. Let
pr be the given function. Then we require a polynomial function q, of
degree less than r, such that ‖pr − q‖ is a minimum. Put another way,
we require q so that pr−q is the best approximation of the zero function
on [−1, 1]. But this is λTr where the number λ is chosen so that λTr and
pr − q have the same leading coefficient. If pr has leading coefficient ar,
then 2r−1λ = ar so that λ = 21−rar. The required polynomial is thus
pr − 21−rarTr.

As an example, suppose we wish to approximate the polynomial func-
tion p3(x) = x3 − 2x2 + 2 on [−1, 1] by one of lower degree. Here, r = 3
and ar = 1 so the required function pr − 21−rarTr is given by

x3 − 2x2 + 2 − 2−2(4x3 − 3x) = −2x2 + 3
4x + 2.

It follows that solving the equation 2x2 − 3
4x− 2 = 0, which we may do

easily to high accuracy, will give information on the roots of the equation
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x3−2x2 +2 = 0, which is not so easy to obtain. The quadratic equation
has the root −0.830, to three decimal places, in [−1, 1]. The cubic can be
shown to have the root −0.839, to the same degree of accuracy. This idea
certainly provides at least a method of finding a decent starting point
for an iterative solution of the cubic equation. Notice that the other
root of the quadratic equation has no relevance since it lies outside the
interval [−1, 1].

6.8 The Weierstrass approximation theorem

We gave the gist of the Weierstrass theorem following Theorem 6.6.1.
Before stating it more formally, we will prepare some preliminary results.

The notion of uniform continuity of a function was mentioned briefly
in Section 4.2. Though our main application will require the elementary
form already given, we will take the opportunity here to present the
ideas in a more general setting.

Definition 6.8.1 Let X and Y be normed vector spaces. A mapping
A : S → Y is said to be uniformly continuous on a subset S of X if,
for any number ε > 0, there exists a number δ > 0 such that

‖Ax′ − Ax′′‖ < ε whenever x′, x′′ ∈ S and ‖x′ − x′′‖ < δ.

Suppose S = X here and that δ is the number stated in the defini-
tion. If x is any point of X and {xn} is any sequence in X convergent
to x, then there exists a positive integer N so that ‖xn − x‖ < δ when
n > N . It follows immediately that ‖Axn − Ax‖ < ε when n > N .
Hence Axn → Ax so that the mapping A is also continuous on X . Of
more interest is that we can give a partial converse of this result.

Theorem 6.8.2 Suppose X and Y are normed vector spaces and that
A : S → Y is a mapping continuous on a nonempty compact subset S

of X. Then A is uniformly continuous on S.

To prove this, we will suppose that A is not uniformly continuous on S.
This means that that there is some number ε > 0 such that, regardless
of the value of δ, there are points x′, x′′ ∈ S with ‖x′ − x′′‖ < δ but for
which ‖Ax′ − Ax′′‖ � ε. Take δ = 1/n, for n = 1, 2, . . . in turn, and
for each n let x′

n, x′′
n be points in S (known to exist by our supposition)

such that

‖x′
n − x′′

n‖ <
1
n

and ‖Ax′
n − Ax′′

n‖ � ε.
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As S is compact, the sequence {x′
n} has a convergent subsequence {x′

nk
},

with limit x, say. Take any number η > 0. There exists a positive
integer K such that ‖x′

nk
− x‖ < 1

2η when k > K. We may suppose
K > 2/η. For such k, nk � k > 2/η and

‖x′′
nk

− x‖ � ‖x′′
nk

− x′
nk
‖ + ‖x′

nk
− x‖ <

1
nk

+
η

2
< η,

so that {x′′
nk
} is a convergent subsequence of {x′′

n}, also with limit x.
Further, the sequence x′

n1
, x′′

n1
, x′

n2
, x′′

n2
, . . . must then have limit x and

so, since A is continuous on S, the sequence Ax′
n1

, Ax′′
n1

, Ax′
n2

, Ax′′
n2

,
. . . in Y must converge with limit Ax. Hence there is an integer N such
that, when k > N ,

‖Ax′
nk

− Ax′′
nk
‖ � ‖Ax′

nk
− Ax‖ + ‖Ax′′

nk
− Ax‖ < 1

2ε + 1
2ε = ε,

and this gives us a contradiction. Thus A is indeed uniformly continuous
on S.

It follows in particular that a real-valued function that is continuous
on a closed interval is also uniformly continuous.

An interesting property of uniform continuity, whose proof is asked
for in Exercise 6.10(12), is the following: If {xn} is a Cauchy sequence
in X , and A : X → Y is uniformly continuous, then {Axn} is a Cauchy
sequence in Y . This is not true of mappings that are only continuous.
The function f , where

f(x) =
x

1 − x
, 0 � x < 1,

is continuous, and {1 − 1/n} is a Cauchy sequence in its domain. How-
ever, f(1− 1/n) = n− 1 and {n− 1} is certainly not a Cauchy sequence
in R. Of course, f is not uniformly continuous.

In an unexpected and clever way, the binomial theorem, reviewed at
the end of Section 1.8, enters our proof of the Weierstrass theorem. This
is via the following identities:

(a)
n∑

k=0

(
n

k

)
xk(1 − x)n−k = 1,

(b)
n∑

k=0

(k − nx)2
(

n

k

)
xk(1 − x)n−k = nx(1 − x).

Here, n is any positive integer and x is any real number.
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We stated the binomial theorem in the form

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk

in Section 1.8, so we need only set a = 1 − x and b = x to obtain (a).
To prove (b), note that it is certainly true when x = 0 or 1 and assume
henceforth that x �= 0, x �= 1. Differentiate the identity (a) with respect
to x:

n∑
k=0

(
n

k

)(
kxk−1(1 − x)n−k − (n − k)xk(1 − x)n−k−1

)
= 0,

so

1
x

n∑
k=0

k

(
n

k

)
xk(1 − x)n−k =

1
1 − x

n∑
k=0

(n − k)
(

n

k

)
xk(1 − x)n−k.

Then(
1
x

+
1

1 − x

) n∑
k=0

k

(
n

k

)
xk(1 − x)n−k =

n

1 − x

n∑
k=0

(
n

k

)
xk(1 − x)n−k,

and, using (a), we obtain

(c)
n∑

k=0

k

(
n

k

)
xk(1 − x)n−k = nx.

Now differentiate this identity with respect to x:
n∑

k=0

k

(
n

k

)(
kxk−1(1 − x)n−k − (n − k)xk(1 − x)n−k−1

)
= n,

so

1
x

n∑
k=0

k2

(
n

k

)
xk(1 − x)n−k

= n +
1

1 − x

n∑
k=0

k(n − k)
(

n

k

)
xk(1 − x)n−k.

Then (
1
x

+
1

1 − x

) n∑
k=0

k2

(
n

k

)
xk(1 − x)n−k

= n +
n

1 − x

n∑
k=0

k

(
n

k

)
xk(1 − x)n−k,

and, using (c),
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(d)
n∑

k=0

k2

(
n

k

)
xk(1 − x)n−k = nx(1 − x) + n2x2.

From (a), (c) and (d), we now have

n∑
k=0

(k − nx)2
(

n

k

)
xk(1 − x)n−k

= nx(1 − x) + n2x2 − 2nx · nx + n2x2 · 1 = nx(1 − x),

and (b) is proved.
We come to the main theorem.

Theorem 6.8.3 (Weierstrass Approximation Theorem) Given
any function f ∈ C[0, 1] and any number ε > 0, there exists a poly-
nomial function p such that ‖p − f‖ < ε.

It is not too difficult to extend this to obtain a similar result for
functions in C[a, b], and we will leave the details as an exercise.

Let {pn} be the sequence of polynomial functions on [0, 1] defined by

pn(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1 − x)n−k,

where f is the given function in C[0, 1]. These are known as the Bern-
stein polynomials for f . The first three are

p1(x) = f(0)(1 − x) + f(1)x,

p2(x) = f(0)(1 − x)2 + 2f(1
2 )x(1 − x) + f(1)x2,

p3(x) = f(0)(1 − x)3 + 3f(1
3 )x(1 − x)2 + 3f(2

3 )x2(1 − x) + f(1)x3.

We have, using (a),

|f(x) − pn(x)| =
∣∣∣∣ n∑
k=0

(
f(x) − f

(
k

n

))(
n

k

)
xk(1 − x)n−k

∣∣∣∣
�

n∑
k=0

∣∣∣∣f(x) − f

(
k

n

)∣∣∣∣ (n

k

)
xk(1 − x)n−k.

Since f is continuous on a closed interval, it is uniformly continuous.
Take any number ε > 0. Then there is a number δ > 0 such that, for any
points x′, x′′ in [0, 1] satisfying |x′−x′′| < δ, we have |f(x′)−f(x′′)| < 1

2ε.
We choose such a δ and maintain it through the following. Let x0 be
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a fixed point in [0, 1] and partition the set S = {0, 1, . . . , n} into two
disjoint parts:

S1 =
{

k : k ∈ S,

∣∣∣∣kn − x0

∣∣∣∣ < δ

}
,

S2 =
{

k : k ∈ S,

∣∣∣∣kn − x0

∣∣∣∣ � δ

}
.

Using an obvious abbreviation, we have

|f(x0) − pn(x0)| �
∑
k∈S1

+
∑
k∈S2

<
ε

2

∑
k∈S1

(
n

k

)
xk

0(1 − x0)n−k

+ 2‖f‖
∑
k∈S2

(
n

k

)
xk

0(1 − x0)n−k,

since |f(x0) − f(k/n)| < ε/2 when k ∈ S1, and since∣∣∣∣f(x0) − f

(
k

n

)∣∣∣∣ � |f(x0)| +
∣∣∣∣f (k

n

)∣∣∣∣ � 2 max
0�x�1

|f(x)| = 2‖f‖.

Now, using (a),∑
k∈S1

(
n

k

)
xk

0(1 − x0)n−k �
n∑

k=0

(
n

k

)
xk

0(1 − x0)n−k = 1,

and, using (b),

nx0(1 − x0) =
n∑

k=0

(k − nx0)2
(

n

k

)
xk

0(1 − x0)n−k

= n2
n∑

k=0

(
n

k

)(
k

n
− x0

)2

xk
0(1 − x0)n−k

� n2
∑
k∈S2

(
n

k

)(
k

n
− x0

)2

xk
0(1 − x0)n−k

� n2δ2
∑
k∈S2

(
n

k

)
xk

0(1 − x0)n−k.

Then ∑
k∈S2

(
n

k

)
xk

0(1 − x0)n−k � x0(1 − x0)
nδ2

� 1
4nδ2

,
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as x0(1 − x0) = 1
4 − (x0 − 1

2 )2 � 1
4 .

We thus obtain

|f(x0) − pn(x0)| <
ε

2
+

‖f‖
2nδ2

for all x0 in [0, 1] and all n. Choose n > ‖f‖/εδ2, so that ‖f‖/nδ2 < ε,
and we have

|f(x0) − pn(x0)| <
ε

2
+

ε

2
= ε.

As this is true for all x0 in [0, 1], it follows that

max
0�x�1

|f(x) − pn(x)| = ‖f − pn‖ < ε.

We have thus exhibited a polynomial function p such that ‖f − p‖ < ε.

There is a simple application of the Weierstrass theorem to a problem
in statistics. For any function f , continuous on [0, 1], the moments of f

are the numbers
∫ 1

0
xnf(x) dx, for n = 0, 1, 2, . . . . (When f is the

probability density function of a continuous random variable, then this
is precisely the definition of the moments of the random variable.) We
will prove that if all the moments of f are 0, then f must be the zero
function on [0, 1]. It follows that any continuous function on [0, 1] is
uniquely determined by its moments: if two such functions both had the
same moments then all the moments of their difference would be 0, and
so the difference would be the zero function. In statistics, the moments of
a continuous random variable uniquely determine its probability density
function.

To prove the result, take any number ε > 0 and let M be such that
|f(x)| � M for all x in [0, 1]. By the Weierstrass theorem, there exists
a polynomial function p such that

|f(x) − p(x)| <
ε

M
,

for all x in [0, 1]. Since all moments of f are zero, and since p is a
polynomial function, we have

∫ 1

0 f(x)p(x) dx = 0. Hence

0 �
∫ 1

0

(f(x))2 dx =
∫ 1

0

f(x)(f(x) − p(x)) dx

�
∫ 1

0

|f(x)| |f(x) − p(x)| dx < M · ε

M
= ε.

But ε is arbitrary, so we must have
∫ 1

0 (f(x))2 dx = 0. It follows now,
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since f is continuous, that f(x) = 0 for all x in [0, 1], as we set out to
prove.

We end this section with a slightly more specialised form of the Weier-
strass theorem. It will be called on in Chapter 9.

Theorem 6.8.4 Given any function f ∈ C[0, 1] and any number ε > 0,
there exists a polynomial function p, all of whose coefficients are rational
numbers, such that ‖p − f‖ < ε.

Certainly, by the Weierstrass theorem itself, there exists a polynomial
function q such that ‖q − f‖ < 1

2ε. Suppose q has degree r, and

q(x) =
r∑

k=0

akxk, 0 � x � 1,

where some or all of the coefficients a0, a1, . . . , ar may be irrational.
For each coefficient ak we can find a rational number bk so that

|bk − ak| � ε

2(r + 1)
.

Let p be the polynomial function given by

p(x) =
r∑

k=0

bkxk, 0 � x � 1.

Then, for all x in [0, 1],

|p(x) − q(x)| =
∣∣∣∣ r∑
k=0

(bk − ak)xk

∣∣∣∣
�

r∑
k=0

|bk − ak| |x|k �
r∑

k=0

ε

2(r + 1)
=

ε

2
,

so ‖p − q‖ � 1
2ε. Hence

‖p− f‖ � ‖p − q‖ + ‖q − f‖ < ε,

and this proves the theorem.

6.9 Solved problems

(1) Determine a cubic function which is an approximation of the func-
tion sin over the interval [−1, 1] with error less than 0.001.
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Solution. We know that

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ,

the series converging for any value of x ∈ R. An immediate suggestion
for a cubic function approximating sin is that given by x− 1

6x3. However,
sin 1 − (1 − 1

6 ) > 0.008 so this cubic function is not within the given
error bound on [−1, 1]. The series does provide a quintic function which
approximates sin with acceptable accuracy on [−1, 1], since elementary
considerations show that∣∣∣∣sin x −

(
x − x3

6
+

x5

120

)∣∣∣∣ � |x|7
7!

� 1
7!

< 0.0002

when |x| � 1.
We obtain an expression for this quintic function in terms of the

Chebyshev polynomials:

x − x3

6
+

x5

120
= T1(x) − 1

6
· 1
4
(3T1(x) + T3(x))

+
1

120
· 1
16

(10T1(x) + 5T3(x) + T5(x))

=
169
192

T1(x) − 5
128

T3(x) +
1

1920
T5(x).

Since |T5(x)| � 1 when |x| � 1, omitting the term 1
1920T5(x) will admit

a further error of at most 1
1920 < 0.0006 which gives a total error less

than 0.0008, still within the given bound. Now,

169
192

T1(x) − 5
128

T3(x) =
169
192

x − 5
128

(4x3 − 3x) =
383
384

x − 5
32

x3,

and the cubic function we end with has the desired property.

This solution demonstrates the technique known as economisation of
power series, used in numerical analysis.

(2) Find the linear function (polynomial function of degree 1) that is the
best uniform approximation of the function sin on the interval [0, 1

2π].

Solution. Theorem 6.6.1 implies the existence of such a linear function
and the work of Chebyshev, referred to in Section 6.7, shows its unique-
ness. That the approximation we derive below is unique is clear enough
in this particular example, but we will not go into a full justification of
this fact.

Define the error function E by

E(x) = (a + bx) − sin x, 0 � x � 1
2π.
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1O ξ 1
2
π

1

Y

X

y =
x

y = 0.1
15 + 0.6

64x

y = sin x

y = a + bx
y = 0.10

5 + 0.63
7x

Figure 12

We wish to determine values for the constants a and b so that

‖E‖ = max
0�x�π/2

|E(x)|

is a minimum. Look at Figure 12. It is clear that varying the values of a

and b allows two of the three indicated values of |E| (the lengths of the
heavy vertical line segments at x = 0, x = 1

2π and x = ξ for some ξ in
(0, 1

2π)) to be decreased but at the expense of increasing the third. The
best values of a and b are those for which these three values of |E| are
equal. Two further unknowns are introduced: the value of ξ where this
occurs and the common value EM of |E| at the three points.

We have |E(x)| = EM at x = 0, x = ξ and x = 1
2π; that is,

a = EM ,

(a + bξ) − sin ξ = −EM ,

(a + 1
2bπ) − 1 = EM .

A fourth equation, allowing the determination of the four unknowns,
follows by noting that the function −E has a minimum value when
x = ξ so, setting the derivative of −E equal to 0 at x = ξ, we have

cos ξ − b = 0.

From the first and third equations, b = 2/π, so ξ = cos−1(2/π), and
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adding the first two equations leads to

a =
1
2

(
sin
(

cos−1 2
π

)
− 2

π
cos−1 2

π

)
=

1
2π

√
π2 − 4 − 1

π
cos−1 2

π
.

Using three places of decimals, the required linear function is given by
0.105 + 0.637x.

The error EM in using the approximation above is less than 0.106.
For comparison, we note that the best least squares approximation of
sin over [0, 1

2π] is the function given by 8(π − 3)/π2 + 24(4− π)x/π3, or
0.115 + 0.664x to three decimal places. This line, and the line y = x,
are also shown in Figure 12.

6.10 Exercises

(1) Show that the fact that any two norms for a finite-dimensional
vector space are equivalent follows from the fact that any norm
for the space is equivalent to ‖ ‖∞. (See Theorem 6.5.3.)

(2) Prove that the subset {x : ‖x‖∞ = 1} of a finite-dimensional
vector space is compact. (See the proof of Theorem 6.5.3.)

(3) Prove that a subset of a finite-dimensional vector space that is
closed and bounded with respect to some norm for the space is
closed and bounded also with respect to any other norm for the
space.

(4) Prove that, whatever the norm for a finite-dimensional vector
space, convergence of a sequence in the space is equivalent to
convergence of the sequences of coefficients.

(5) Show that C2[a, b] is a strictly convex normed space. (Hint: See
Exercise 2.4(6).)

(6) Find T6(x), T7(x), T8(x). Obtain x6, x7, x8 as linear combina-
tions of the Chebyshev polynomials.

(7) Prove that Tr(−x) = (−1)rTr(x), for r = 0, 1, 2, . . . .
(8) Use Chebyshev polynomials to obtain the fourth-degree polyno-

mial 191
192 − 29

32x2 + 1
4x4 as an approximation for e−x2

, having uni-
form error less than 0.05 for x in [−1, 1].

(9) Show that the best uniform approximation of 8x4−38x3+11x2−
3x−27 over [−1, 1] by a cubic polynomial is −38x3+19x2−3x−28.
Obtain the best uniform quadratic approximation of this cubic
function and find the zero of the quadratic function in [−1, 1].
(This could serve as a first trial in an iterative solution for the
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zero in [−1, 1] of the original quartic function. This zero is −0.75,
to two decimal places.)

(10) Find the linear function that is the best uniform approximation of
the function given by

√
x on the interval (a) [0, 1], (b) [1, 4]. Set

x = 5
4 in (b) to show that

√
5 = 2.25, approximately. Estimate

the error using the maximum error found in (b).
(11) Find the linear function that is the best uniform approximation

of the function given by 1/(1 + x) on the interval [0, 1].
(12) Prove that the sequence of images of the terms of a Cauchy se-

quence under a uniformly continuous mapping is again a Cauchy
sequence.

(13) Prove that a contraction mapping is uniformly continuous.
(14) Generalise the Weierstrass theorem to show that, given ε > 0, for

any function f ∈ C[a, b] there is a polynomial function p so that
‖p− f‖ < ε. (Hint: Define a function g by g(y) = f(a+(b−a)y).
Then g ∈ C[0, 1] so there is a polynomial function q such that
‖q − g‖ < ε. Set p(x) = q((x − a)/(b − a)), so p is a polynomial
function with the desired property.)

(15) Let f ∈ C(1)[a, b], which is the space of all differentiable functions
defined on [a, b], with the uniform norm. Show that, if ε > 0 is
given and p is a polynomial function such that ‖p − f ′‖ < ε, then
‖q − f‖ < ε(b−a), where q is the polynomial function defined by
q(x) =

∫ x

a
p(t) dt + f(a).

(16) Find the best uniform quadratic approximations for the functions
indicated by (a) 1/(1 + x2), (b) |x|, both on [−1, 1].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(17) (a) Suppose X is a strictly convex normed vector space. Show
that ‖ 1

2 (x + y)‖ < 1 if x, y ∈ X and ‖x‖ = ‖y‖ = 1, x �= y.
(b) Prove the converse of the result in (a).

(18) Verify that the Chebyshev polynomial Tr is a solution of the
differential equation

(1 − x2)
d2y

dx2
− x

dy

dx
+ r2y = 0.
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Mappings on Normed Spaces

7.1 Bounded linear mappings

In this chapter, we are concerned with mappings between normed vector
spaces. We will see applications to numerical analysis, the theory of
integral equations, and quantum mechanics.

There is nothing new in the notion of a mapping A : X → Y when
X and Y are normed spaces beyond what we have described for map-
pings between metric spaces. We have already used such mappings, for
example in the discussion of uniform continuity. However, the fact that
X and Y are vector spaces for which norms have been defined allows us
to distinguish more easily different types of mappings and therefore to
develop more precise theories for those different types.

The simplest class of mappings between vector spaces, taking fullest
advantage of the vector space properties, turns out to be the most im-
portant in practice. These are the linear maps.

Definition 7.1.1 A mapping A : X → Y , where X and Y are vector
spaces, is said to be linear when

A(α1x1 + α2x2) = α1Ax1 + α2Ax2

for any points x1, x2 ∈ X and any scalars α1, α2.

It is not required here that X and Y be normed. When we insist on
normed spaces we are able, in a certain sense, to measure the size of
mappings. This leads to our second class.

Definition 7.1.2 A mapping A : X → Y , where X and Y are normed
vector spaces, is said to be bounded when there exists a constant K > 0

210
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such that

‖Ax‖ � K‖x‖
for all x ∈ X .

The magnitude of the number K here gives the size of the mapping A

in a way to be made precise in the next section. We remark that this
definition uses the notation ‖ ‖ for the norms of both X and Y , though
these may well be different. This is a common practice which we have
already used in discussing uniform continuity, and will continue to follow.
Notice also that the use of the word ‘bounded’ is quite different from
earlier uses of that word. In particular, we must carefully distinguish
the earlier idea of a bounded function: a function f for which there is a
constant K > 0 such that |f(x)| � K for all x in the domain of f .

Bounded mappings need not be linear, but it is the class of mappings
that are both bounded and linear on which we will spend most of our
time. So much so, that we give such mappings a special name.

Definition 7.1.3 A bounded linear mapping between normed vector
spaces is called an operator.

Thus, we emphasise, whenever we refer to an operator we mean a map-
ping that is both linear and bounded. It turns out that operators are
always continuous. To show this, we need first the following result, which
is a surprising one at first glance.

Theorem 7.1.4 A linear mapping that is continuous at any given point
of a normed vector space X is continuous on X.

Suppose A is a linear mapping continuous at a point x0 ∈ X . Then
we must show that A is continuous at any other point x ∈ X . Let
{xn} be a convergent sequence in X , with limit x; that is, xn → x.
But then xn − x + x0 → x0 and, since A is continuous at x0, we have
A(xn−x+x0) → Ax0. Since A is linear, we have Axn−Ax+Ax0 → Ax0

and hence Axn → Ax. That is, A is continuous at x.

Now we prove the result mentioned above, and its converse.

Theorem 7.1.5 Let A be a linear mapping on a normed space X. Then
A is continuous on X if and only if it is bounded.

To prove this, suppose first that A is bounded: ‖Ax‖ � K‖x‖ for
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some number K > 0 and all x ∈ X . Take any point x ∈ X and let {xn}
be a sequence in X with lim xn = x. Let ε be any positive number. For
all n large enough, we have ‖xn − x‖ < ε/K. But then, using in turn
the linearity and boundedness of A,

‖Axn − Ax‖ = ‖A(xn − x)‖ � K‖xn − x‖ < ε,

for such n. Thus A is continuous at x and, by the preceding theorem, A

is continuous on X .
For the converse, suppose that A is continuous on X but that A is

not bounded. We will obtain a contradiction. Since A is not bounded,
for each positive integer n there is a point xn ∈ X so that

‖Axn‖ > n‖xn‖.

Notice that we cannot have xn = θ, because Aθ = θ for any linear map
(to be proved as an exercise). Hence ‖xn‖ �= 0 for any n. Define a
sequence {yn} in X by

yn =
1

n‖xn‖ xn.

Then, for all n,

‖Ayn‖ =
∥∥∥∥A( 1

n‖xn‖ xn

)∥∥∥∥ =
∥∥∥∥ 1

n‖xn‖ Axn

∥∥∥∥ =
1

n‖xn‖ ‖Axn‖ > 1.

But

‖yn‖ =
1

n‖xn‖ ‖xn‖ =
1
n

so ‖yn‖ < ε for any ε > 0 if n is large enough. Hence the sequence {yn}
converges to the zero vector θ in X . Since A is continuous on X , it is
in particular continuous at θ so Ayn → Aθ = θ. This is contradicted by
the fact that ‖Ayn‖ > 1 for all n, so A must indeed be bounded.

As a result of this theorem, we may use the words ‘bounded’ and
‘continuous’ interchangeably when referring to a linear mapping on a
normed space.

One example of an operator on a normed space X is the mapping A

defined by

Ax = βx, x ∈ X,
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for some fixed scalar β. It is indeed linear, since

A(α1x1 + α2x2) = β(α1x1 + α2x2)

= α1(βx1) + α2(βx2) = α1Ax1 + α2Ax2

(x1, x2 ∈ X , scalars α1, α2). And it is bounded, since

‖Ax‖ = ‖βx‖ = |β| ‖x‖
so ‖Ax‖ � K‖x‖ for some constant K (such as |β| or any larger number).
If β = 1, A is the identity operator or unit operator on X and is denoted
by I. Thus I maps every element of X into itself. If β = 0, A is called
the zero operator on X and maps every element of X into θ.

For a second example, we take the mapping A : C[a, b] → C[a, b] de-
fined by the equation Ax = y where

y(s) = λ

∫ b

a

k(s, t)x(t) dt, x ∈ C[a, b], a � s � b.

Here, k is a function of two variables, which is continuous in the square
[a, b] × [a, b], and λ is a given nonzero real number. The mapping A is
linear, since, for x1, x2 ∈ C[a, b], scalars α1, α2, and any s in [a, b],

(A(α1x1 + α2x2))(s) = λ

∫ b

a

k(s, t)(α1x1(t) + α2x2(t)) dt

= α1λ

∫ b

a

k(s, t)x1(t) dt + α2λ

∫ b

a

k(s, t)x2(t) dt

= (α1Ax1)(s) + (α2Ax2)(s);

that is, A(α1x1 + α2x2) = α1Ax1 + α2Ax2. Also, A is bounded. To see
this, let M be a positive constant such that |k(s, t)| � M for (s, t) in the
square. Then

‖Ax‖ = ‖y‖ = max
a�s�b

|y(s)| = max
a�s�b

∣∣∣∣λ∫ b

a

k(s, t)x(t) dt

∣∣∣∣
� |λ| max

a�s�b

∫ b

a

|k(s, t)| |x(t)| dt

� |λ|M max
a�t�b

|x(t)| · (b − a)

= |λ|M(b − a)‖x‖.
Thus, for K = |λ|M(b−a), say, we have ‖Ax‖ � K‖x‖ for all x ∈ C[a, b],
so A is bounded. This verifies that A is indeed an operator.
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7.2 Norm of an operator

If A is an operator from a normed space X into some other normed
space, we know there is some constant K such that ‖Ax‖ � K‖x‖ for
all x ∈ X . The ‘smallest possible’ value of K such that this inequality
holds provides the measure of the size of A that we mentioned above.
Anticipating a little, that value is called the norm of A and is denoted
by ‖A‖. We will show soon that this name and the notation are quite
consistent with the idea of a norm for a vector space. The following
theorems take us logically to that point.

Theorem 7.2.1 Let A be an operator on a normed vector space X. Set

a = inf{K : ‖Ax‖ � K‖x‖, x ∈ X},

b = sup
{‖Ax‖

‖x‖ : x ∈ X, x �= θ

}
,

c = sup{‖Ax‖ : x ∈ X, ‖x‖ = 1},
d = sup{‖Ax‖ : x ∈ X, ‖x‖ � 1}.

Then

(a) ‖Ax‖ � a‖x‖ for all x ∈ X,
(b) a = b = c = d.

The number a here is the number we will later explicitly define to be
the norm of A. The theorem shows that any one of the expressions for b,
c or d could equally well be chosen as the definition.

To prove (a), we only need to note that, by definition of greatest lower
bound (inf), we have ‖Ax‖ < (a + ε)‖x‖, for any ε > 0 and all x ∈ X .
Then the result follows because ε is arbitrary.

We will prove (b) by showing that a � b � c � d � a.
For any nonzero x ∈ X , we have b � ‖Ax‖/‖x‖ so ‖Ax‖ � b‖x‖, and

this is true also when x = θ. Thus b belongs to the set

{K : ‖Ax‖ � K‖x‖, x ∈ X}
and since a is the greatest lower bound of this set, we have a � b. (This
is a common form of argument, used often below.) Next, for x ∈ X ,
x �= θ,

‖Ax‖
‖x‖ =

∥∥∥∥ 1
‖x‖ Ax

∥∥∥∥ =
∥∥∥∥A( x

‖x‖
)∥∥∥∥ � c,

since A is linear and x/‖x‖ has norm 1; so b � c. Then we observe that
the set {x : x ∈ X, ‖x‖ = 1} is a subset of {x : x ∈ X, ‖x‖ � 1}, so
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c � d. Finally, suppose ‖x‖ � 1 (x ∈ X). Then, by (a), ‖Ax‖ � a and
so we have d � a. This completes the proof.

Let X and Y be normed spaces. It is reasonable to suppose that in
general there are many different operators from X into Y . We want to
consider in the following paragraphs the set of all such operators, and
will denote this set by B(X, Y ). This is not a totally new idea: B(X, Y )
has some likeness to the set C[a, b], all of whose elements are functions
from the interval [a, b] into R.

We will prove that B(X, Y ) is a vector space, and that it may be
normed. We will use the following natural definitions of addition and
scalar multiplication of operators by scalars: if A, A1 and A2 are any
operators in B(X, Y ) and α is any scalar, we define mappings A1 + A2

and αA by

(A1 + A2)x = A1x + A2x, (αA)x = αAx,

where x ∈ X . We need to show that A1+A2 and αA are in fact operators
in B(X, Y ) and that the axioms of a vector space are satisfied with these
definitions.

Since Y is a vector space, it is immediate that A1 +A2 and αA indeed
map X into Y . It is left as an exercise to show that they are linear
maps. Since A1 and A2 are bounded, there exist constants K1 and K2

such that ‖A1x‖ � K1‖x‖ and ‖A2x‖ � K2‖x‖ for all x ∈ X . Then

‖(A1 + A2)x‖ = ‖A1x + A2x‖
� ‖A1x‖ + ‖A2x‖
� K1‖x‖ + K2‖x‖ = (K1 + K2)‖x‖

for all x ∈ X , so A1 + A2 is also bounded. Similarly,

‖(αA)x‖ = ‖αAx‖ = |α| ‖Ax‖ � (|α|K)‖x‖
for all x ∈ X and some constant K, since A is bounded, so αA is also
bounded. This proves that A1 + A2 ∈ B(X, Y ) and αA ∈ B(X, Y ).

The verification of the vector space axioms for B(X, Y ) is easy. (The
axioms are listed in Definition 1.11.1.) The negative −A of an operator
A ∈ B(X, Y ) is the operator (−1)A and the zero vector in B(X, Y ) is
the operator mapping each point in X into the zero vector in Y . Of the
remaining axioms, we will prove here that A1 + A2 = A2 + A1, for any
A1, A2 ∈ B(X, Y ), and (αβ)A = α(βA), for any A ∈ B(X, Y ) and any
scalars α, β. Take any x ∈ X . Then these follow since

(A1 + A2)x = A1x + A2x = A2x + A1x = (A2 + A1)x
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and

((αβ)A)x = (αβ)Ax = α(βAx) = α((βA)x) = (α(βA))x.

In these we have used the vector space properties of Y .
Hence we have proved the following result.

Theorem 7.2.2 The set B(X, Y ) of all operators from X into Y is a
vector space.

The vector space is itself denoted by B(X, Y ). We will show soon how
B(X, Y ) may be normed.

Definition 7.2.3 For any operator A ∈ B(X, Y ), the norm of A,
denoted by ‖A‖, is the number

‖A‖ = inf{K : ‖Ax‖ � K‖x‖, x ∈ X}.
We have anticipated this. Theorem 7.2.1 gives alternative expressions
for ‖A‖ and proves the important inequality

‖Ax‖ � ‖A‖ ‖x‖, x ∈ X.

There are many occasions below where we use this inequality.
To find the norm of a given operator, we may use whichever of the

expressions in Theorem 7.2.1 is the more convenient. For the operator
A : X → X where Ax = βx, considered above, we have immediately

‖A‖ = sup{‖Ax‖ : x ∈ X, ‖x‖ = 1}
= sup{|β| ‖x‖ : x ∈ X, ‖x‖ = 1} = |β|.

In particular, for the identity operator I, we have

‖I‖ = 1.

Now we are able to complete the development of the normed space
B(X, Y ).

Theorem 7.2.4 The vector space B(X, Y ) is normed by virtue of the
definition of the norm of an operator.

We must verify (N1), (N2) and (N3) (Definition 6.1.1). We leave the
verification of (N1) as an exercise, with the remark that ‘obvious’ will
not do as an answer. To prove (N2), take any operator A ∈ B(X, Y )
and any scalar α. Then, for any x ∈ X ,

‖(αA)x‖ = ‖αAx‖ = |α| ‖Ax‖ � (|α| ‖A‖)‖x‖,
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so ‖αA‖ � |α| ‖A‖. We will prove also that ‖αA‖ � |α| ‖A‖. This is
clear when α = 0, so we may suppose that α �= 0. Then

‖Ax‖ = ‖(α−1α)Ax‖ = ‖α−1(αA)x‖
= |α|−1‖(αA)x‖ � |α|−1‖αA‖ ‖x‖

so ‖A‖ � |α|−1‖αA‖, or ‖αA‖ � |α| ‖A‖, as required. Thus, (N2) is
verified. For (N3), we have, for any operators A1, A2 ∈ B(X, Y ) and all
x ∈ X ,

‖(A1 + A2)x‖ = ‖A1x + A2x‖ � ‖A1x‖ + ‖A2x‖
� ‖A1‖ ‖x‖ + ‖A2‖ ‖x‖ = (‖A1‖ + ‖A2‖)‖x‖,

so ‖A1 + A2‖ � ‖A1‖+ ‖A2‖. This is (N3), completing the proof of the
theorem.

Notice that in proving that B(X, Y ) is a normed vector space, we
rely very little on the vector space properties of X , but heavily on those
of Y . In this light, the following result, which is of great importance in
functional analysis, is not as surprising as it first appears.

Theorem 7.2.5 If Y is a Banach space, then so is B(X, Y ).

This is true regardless of whether X is a Banach space or not! There
is a quite standard proof, in which we take any Cauchy sequence in
B(X, Y ) and show that it converges. However, we will prove the theorem
as an application of Theorem 6.2.2, by showing that every absolutely
convergent series in B(X, Y ) is convergent.

Let
∑∞

k=1 Ak be an absolutely convergent series of elements (which
are operators) in B(X, Y ). Then the real-valued series

∑∞
k=1 ‖Ak‖ con-

verges. Write yn =
∑n

k=1 Akx, where x is some fixed element of X .
Then yn ∈ Y for each n ∈ N. With n > m for definiteness, we have

‖yn − ym‖ =
∥∥∥∥ n∑

k=m+1

Akx

∥∥∥∥ �
n∑

k=m+1

‖Akx‖

�
n∑

k=m+1

‖Ak‖ ‖x‖ � ε‖x‖

for any ε > 0 provided m is large enough. This shows that {yn} is a
Cauchy sequence in Y and, since Y is a Banach space, the sequence
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converges. Define a mapping A : X → Y by

Ax = lim yn =
∞∑

k=1

Akx, x ∈ X.

It is easy to show that A is linear. Further, for any x ∈ X and any
n ∈ N,

n∑
k=1

‖Akx‖ �
n∑

k=1

‖Ak‖ ‖x‖ �
∞∑

k=1

‖Ak‖ ‖x‖,

so
∑∞

k=1 ‖Akx‖ is convergent. Then, using the continuity of ‖ ‖ (from
Exercise 6.4(3)(c)),

‖Ax‖ =
∥∥∥∥lim n∑

k=1

Akx

∥∥∥∥ = lim
∥∥∥∥ n∑

k=1

Akx

∥∥∥∥
� lim

n∑
k=1

‖Akx‖ �
∞∑

k=1

‖Ak‖ ‖x‖,

so A is bounded. Hence A ∈ B(X, Y ). Finally, we have, for any x ∈ X

and any η > 0,∥∥∥∥(A −
n∑

k=1

Ak

)
x

∥∥∥∥ =
∥∥∥∥ ∞∑

k=n+1

Akx

∥∥∥∥ �
∞∑

k=n+1

‖Akx‖

�
∞∑

k=n+1

‖Ak‖ ‖x‖ < η‖x‖,

when n is large enough, since
∑

Ak is absolutely convergent. Hence,∥∥∥∥A −
n∑

k=1

Ak

∥∥∥∥ < η,

for such n, or
∑n

k=1 Ak → A. That is, the series
∑∞

k=1 Ak is convergent
(with sum A), and this completes the proof on applying Theorem 6.2.2.

We have proved in passing here that if {An} is a sequence in B(X, Y )
and
∑

Ak is convergent, then ‖∑Ak‖ �
∑ ‖Ak‖, generalising the tri-

angle inequality in B(X, Y ) to infinite series.

7.3 Functionals

The term ‘functional’ is given to a certain type of mapping.
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Definition 7.3.1 Let X be a (real or complex) vector space. A
functional on X is a mapping f : X → K, where K is the set of
scalars (either R or C) for X . The image under f of a point x ∈ X is
denoted by f(x).

Notice that for functionals we revert to the older notation used for real-
valued functions, which are of course themselves examples of functionals
when their domain is R. The following are further examples:

(a) f : Rn → R, where f(x) =
∑n

k=1 akxk, x = (x1, . . . , xn) ∈ Rn

and (a1, . . . , an) ∈ Rn is fixed;
(b) f : C[a, b] → R, where f(x) =

∫ b

a
x(t) dt, x ∈ C[a, b];

(c) f : l2 → C, where f(x) = xj , x = (x1, x2, . . . ) ∈ l2 and j ∈ N is
fixed;

(d) f : X → R, where f(x) = ‖x‖, x ∈ X , if X is a normed space.

As for mappings between vector spaces generally, the functional f is
linear if

f(α1x1 + α2x2) = α1f(x1) + α2f(x2),

for any x1, x2 ∈ X and any scalars α1, α2. It is left as an exercise to
verify that (a), (b) and (c) above give examples of linear functionals,
but (d) does not.

The definitions and properties given earlier for mappings between
normed spaces carry over to a functional f on X , when X is normed.
We quickly repeat these.

The functional f is continuous at a point x ∈ X if whenever {xn} is
a sequence in X converging to x then {f(xn)} is a sequence of scalars
converging to f(x). If f is linear and continuous at any particular point
of X , then it is continuous at all points of X . The functional f is
bounded in X if there is some constant M > 0 such that |f(x)| � M‖x‖
for all x ∈ X . The least such constant M (strictly, the infimum of
such constants) is called the norm of f , denoted by ‖f‖. Theorem 7.2.1
implies alternative expressions for ‖f‖ when f is linear. For all x ∈ X ,
we have |f(x)| � ‖f‖ ‖x‖. For linear functionals on a normed space, the
conditions of boundedness and continuity are equivalent.

As above, let K be either R or C, depending on whether X is a real
or complex vector space. Then B(X, K) is the space of all bounded
linear functionals on X . As K is complete, Theorem 7.2.5 implies that
this space B(X, K) is a Banach space, whether or not X is. The space
of functionals B(X, K) is called the dual space of the space X , and is
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usually denoted simply by X ′. Rephrasing the above, the dual of a
normed vector space is always a Banach space. This is a result with
many far-reaching consequences, but they are beyond the scope of this
book.

We have stated that a linear functional is continuous if and only if it is
bounded. There is another useful necessary and sufficient condition for
a linear functional to be continuous. It applies specifically to functionals
and not to more general mappings.

Theorem 7.3.2 A linear functional f on a normed vector space X is
continuous on X if and only if the set

N(f) = {x : x ∈ X, f(x) = 0}
is closed.

The set N(f) is a subset of X , easily shown in fact to be a subspace
of X , called the null space or kernel of f . It is the set of all points
of X whose images are 0 under f . (More generally, the null space of
a mapping A : X → Y , where X and Y are vector spaces, is the set
N(A) = {x : x ∈ X, Ax = θ}.)

To prove the theorem, we suppose first that f is continuous on X and
let {xn} be a sequence in the null space N(f) of f , which, as a sequence
in X , converges with limit x, say. To show that N(f) is closed, we must
prove that x ∈ N(f). Now, f(xn) = 0 for all n, so lim f(xn) = 0. Since
f is continuous on X , we must also have f(x) = lim f(xn) = 0. Thus
x ∈ N(f), as required.

The converse is more difficult to prove. We suppose now that N(f)
is closed and must prove that f is continuous on X . By Theorem 7.1.4,
it is sufficient to prove that f is continuous at the zero vector θ of X .
Then let {xn} be a sequence in X with limit θ. We must show that
f(xn) → 0, since f(θ) = 0.

Possibly, there is a positive integer M such that xn ∈ N(f) for all
n > M . Then f(xn) = 0 when n > M , so f(xn) → 0 as required.

If this is not the case, then for infinitely many terms of {xn} we have
xn /∈ N(f). Let {yn} be the subsequence of {xn} resulting from the
removal of all terms for which xn ∈ N(f). Then f(yn) �= 0 for any n,
and still yn → θ. Put

tn =
1

f(yn)
yn

for n ∈ N, so that f(tn) = 1 for all n.
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Now |f(yn)| � 0 for all n, so if we can show that lim |f(yn)| = 0 then it
will follow that lim |f(yn)| = 0. (A review of the notion of limit superior,
in Section 1.7, may be required.) The proof will be by contradiction.
Suppose lim |f(yn)| �= 0. Then there must be some number δ > 0 such
that |f(yn)| > δ for infinitely many n. We may therefore choose a
subsequence {ynk

} of {yn} with the property that |f(ynk
)| > δ for all

k ∈ N. Then

‖tnk
‖ =

1
|f(ynk

)| ‖ynk
‖ <

1
δ
‖ynk

‖

for all k, so tnk
→ θ since ynk

→ θ. We notice that, for any k,

f(tn1 − tnk
) = f(tn1) − f(tnk

) = 1 − 1 = 0,

since f is linear, so tn1 − tnk
∈ N(f). But {tn1 − tnk

}∞k=1 is a convergent
sequence in X , all of whose terms belong to N(f), and N(f) is closed.
Hence limk→∞(tn1 − tnk

) = tn1 − θ = tn1 ∈ N(f). This contradicts the
fact that f(tn1) = 1. Hence lim |f(yn)| = 0. Thus f(yn) → 0 and so
f(xn) → 0 since f(xn) = 0 when xn �= ym for any m. This completes
the proof.

7.4 Solved problems

(1) For the linear functional f : C[a, b] → R, where

f(x) =
∫ b

a

x(t) dt, x ∈ C[a, b],

show that ‖f‖ = b − a.

Solution. The norm for C[a, b] is as usual understood to be the uniform
norm. Then, for any x ∈ C[a, b],

|f(x)| =
∣∣∣∣∫ b

a

x(t) dt

∣∣∣∣ � ∫ b

a

|x(t)| dt

� max
a�t�b

|x(t)| ·
∫ b

a

dt = (b − a)‖x‖,

so f is bounded and ‖f‖ � b−a. Consider the function x0 ∈ C[a, b] given
by x0(t) = 1 for a � t � b. We see immediately that f(x0) = b − a > 0
and ‖x0‖ = 1. If ‖f‖ < b − a, then

b − a = |f(x0)| � ‖f‖ ‖x0‖ < (b − a)‖x0‖ = b − a.

This is impossible, so ‖f‖ = b − a, as required.
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For the second of these solved problems, we will need the following
definition.

Definition 7.4.1 Let X and Y be normed vector spaces (both real
or both complex) and let A : S → Y be a linear mapping from a
subspace S of X into Y .

(a) The subset {(x, Ax) : x ∈ S} of X × Y is called the graph of A,
denoted by GA.

(b) Let {xn} be any sequence in S with the following properties: as a
sequence in X , {xn} is convergent to x and the sequence {Axn}
in Y is convergent to y. If x ∈ S and Ax = y, then the mapping A

is said to be closed.

(2) Let X and Y be normed vector spaces and let A : S → Y be a linear
mapping from a subspace S of X into Y . Prove the following.

(a) With the definitions

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

α(x, y) = (αx, αy)

(x1, x2, x ∈ X , y1, y2, y ∈ Y , α scalar), X × Y is a vector space
and the graph GA of A is a subspace of X × Y .

(b) With the further definition

‖(x, y)‖ = ‖x‖ + ‖y‖, x ∈ X, y ∈ Y,

X × Y is a normed vector space. (The norms for X and Y may
be different, but we use ‖ ‖ here for both, and for the norm
for X × Y .)

(c) The linear mapping A is closed if and only if its graph GA is
closed.

Solution. (a) It is straightforward to verify that X×Y is a vector space.
(The zero of the space is (θ, θ) where the θ’s are the zeros of X and Y ,
respectively.) To show that GA is a subspace of X × Y , let x1, x2 ∈ S

so (x1, Ax1), (x2, Ax2) ∈ GA. Then x1 + x2 ∈ S and

(x1, Ax1) + (x2, Ax2) = (x1 + x2, Ax1 + Ax2)

= (x1 + x2, A(x1 + x2)) ∈ GA.

Also, for any x ∈ S and any scalar α, αx ∈ S and

α(x, Ax) = (αx, αAx) = (αx, A(αx)) ∈ GA.
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We have used the given definitions of addition and multiplication by
scalars in X × Y , and the fact that A is a linear mapping.

(b) is left as an exercise.
(c) Suppose first that the mapping A is closed and let {(xn, Axn)}

be a sequence of points of GA (so xn ∈ S for all n) which converges as
a sequence in X × Y . Put (x, y) = lim(xn, Axn). To show that GA is
closed, we must show that (x, y) ∈ GA. Given any ε > 0, we can find a
positive integer N such that

‖(xn, Axn) − (x, y)‖ < ε

when n > N . Thus, for such n,

‖xn − x‖ + ‖Axn − y‖ = ‖(xn − x, Axn − y)‖ < ε,

by definition of the norm for X × Y . Then both

‖xn − x‖ < ε and ‖Axn − y‖ < ε

when n > N . Hence xn → x and Axn → y. But we are given that
the mapping A is closed, so we have x ∈ S and Ax = y. Therefore
lim(xn, Axn) = (x, Ax) ∈ GA, so GA is closed, as required.

Conversely, suppose GA is closed. Let {xn} be a sequence of points
of S which converges to x as a sequence in X and is such that the
sequence {Axn} in Y converges to y. We must show that x ∈ S and
Ax = y. Each term of the sequence {(xn, Axn)} is in GA, and since

‖(xn, Axn) − (x, y)‖ = ‖(xn − x, Axn − y)‖
= ‖xn − x‖ + ‖Axn − y‖,

we must have (xn, Axn) → (x, y). It follows that (x, y) ∈ GA, since GA

is closed, and hence that x ∈ S and y = Ax. Thus the mapping A is
closed, and the proof is finished.

7.5 Exercises

(1) If X , Y are vector spaces and A : X → Y is a linear mapping,
show that

(a) A(x1 + x2) = Ax1 + Ax2, for any x1, x2 ∈ X ,
(b) A(αx) = αAx, for any x ∈ X and any scalar α,
(c) Aθ = θ.

Show that any mapping A satisfying (a) and (b) is linear.
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(2) Define a mapping A : C[a, b] → C[a, b] by Ax = y where

y(s) = λ

∫ b

a

k(s, t)x(t) dt, x ∈ C[a, b], a � s � b.

Here, C[a, b] is considered to be a vector space, with its usual
uniform norm. Some analysis in Section 7.1 showed in effect that

‖A‖ � |λ|M(b − a),

where M is the maximum value of |k(s, t)| for a � s � b and
a � t � b.

Show that the mapping A is still bounded when considered as
a mapping from the normed space C1[a, b] into itself, and from
the normed space C2[a, b] into itself. That is, consider the effects
of the different norms. In each case, show also that the same
estimate for ‖A‖ as that above may be obtained.

(3) Let g be a fixed continuous function on [a, b] and let A be the map-
ping of C[a, b] into itself defined by Ax = y, where y(t) = g(t)x(t),
a � t � b. Show that A is an operator. Do the same when A is
considered as a mapping from C1[a, b] into itself.

(4) Let A1 and A2 be linear mappings between vector spaces X

and Y . Show that A1 + A2 and αA, for any scalar α, are also
linear mappings from X into Y .

(5) Complete the proof of Theorem 7.2.4 by verifying (N1).
(6) Verify that the functionals of examples (a), (b) and (c) in Sec-

tion 7.3 are linear, while that of (d) is not.
(7) For the linear functional f of example (c) in Section 7.3, show

that ‖f‖ = 1.
(8) Prove (b) in Solved Problem 7.4(2).
(9) If X and Y are normed vector spaces, show that ‖ ‖′ is a norm

for X × Y where

‖(x, y)‖′ = max{‖x‖, ‖y‖}, x ∈ X, y ∈ Y,

and that ‖ ‖′ is equivalent to the norm ‖ ‖ for X ×Y defined in
Solved Problem 7.4(2).

(10) If X and Y are Banach spaces, show that X ×Y is also a Banach
space, under either of the norms for X × Y mentioned in the
preceding exercise.

(11) Prove that any operator between normed spaces is closed. (In
Section 7.10, we will show that the converse is not true: closed
linear mappings need not be continuous.)
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(12) Show that all operators are uniformly continuous.
(13) Let A : X → X be an operator on a normed space X . Suppose

there is a point x �= θ and a scalar λ such that Ax = λx. Prove
that |λ| � ‖A‖. (If such x and λ exist, then x is called an eigen-
vector of A corresponding to the eigenvalue λ.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(14) Let A be a linear mapping from a normed space X into a normed
space Y . Prove that A is bounded if and only if A maps bounded
sets in X into bounded sets in Y .

(15) Suppose A is a closed operator from a subspace S of a normed
space X into a normed space Y . Show that if Y is a Banach space
then S is a closed subspace of X .

(16) Let A : X → Y be a closed mapping between normed spaces X

and Y , and let S be a compact subset of X . Show that A(S) is
a closed subset of Y .

7.6 Inverse mappings

When X and Y are any sets and A is a one-to-one mapping from X

onto Y , we know (Definition 1.3.2) that there exists the inverse mapping
A−1 : Y → X , such that A−1y = x when Ax = y (x ∈ X , y ∈ Y ). In
a formal way at least, this allows us to write down the solution of the
equation Ax = y when y is a given point in Y : the solution is just
x = A−1y, and this solution is unique. In specific applications, although
the problem may be easily presented as ‘solve Ax = y, given y’, it is
often not easy to determine whether the mapping A is onto and one-to-
one, and even if the mapping is such, so that the inverse exists, it may
be difficult to exhibit the inverse within the terms of the application.
We will be deducing some further conditions which ensure the existence
of the inverse of a mapping.

Our first theorem is not in that direction. It simply gives us a useful
property of the inverse of a linear mapping, when it exists.

Theorem 7.6.1 If X and Y are vector spaces, and A : X → Y is a
linear mapping for which the inverse A−1 exists, then A−1 is also a
linear mapping.

To prove this, we must show that

A−1(α1y1 + α2y2) = α1A
−1y1 + α2A

−1y2
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for any y1, y2 ∈ Y and any scalars α1, α2. Let A−1y1 = x1 and
A−1y2 = x2 (so x1, x2 ∈ X). Then Ax1 = y1 and Ax2 = y2 and, since
A is linear,

A(α1x1 + α2x2) = α1Ax1 + α2Ax2 = α1y1 + α2y2.

But this says that

A−1(α1y1 + α2y2) = α1x1 + α2x2 = α1A
−1y1 + α2A

−1y2,

so the theorem is proved.

Suppose A : X → Y is a linear mapping between vector spaces X

and Y with the property that the only solution of the equation Ax = θ

(x ∈ X) is x = θ. In that case, if x1 and x2 are points of X such that
Ax1 = Ax2, then A(x1 − x2) = θ and so we must have x1 − x2 = θ,
or x1 = x2. This means that the mapping A is one-to-one. If it is also
onto, then this property of A is thus sufficient to ensure the existence of
the inverse A−1. We can also prove the converse of this result. Suppose
A : X → Y is a linear mapping between vector spaces whose inverse A−1

exists, and let x ∈ X be a point for which Ax = θ. Then, uniquely,
x = A−1θ = θ, since A−1 is a linear mapping, so x = θ is the only
solution of the equation Ax = θ. We have proved the following.

Theorem 7.6.2 The inverse A−1 of an onto linear mapping A : X → Y

between vector spaces X, Y exists if and only if the only solution of the
equation Ax = θ, x ∈ X, is x = θ.

Another way of putting the condition of this theorem is to require
that N(A) = {θ}, where N(A) is the null space of the mapping A. It
then follows by Theorem 7.3.2 that if a linear functional f on a normed
space X has an inverse, then f is continuous on X . This is because the
subset {θ} of X is certainly closed.

We next give another necessary and sufficient condition for an onto
linear mapping between normed spaces to have an inverse.

Theorem 7.6.3 Let A : X → Y be an onto linear mapping between
normed spaces X and Y . The inverse A−1 exists, and is bounded, if and
only if there is a constant m > 0 such that ‖Ax‖ � m‖x‖ for all x ∈ X.

Proving this, suppose the inequality holds for all x ∈ X and some
m > 0. Then if Ax = θ, we must have ‖x‖ = 0, so x = θ. Hence A−1
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exists, by Theorem 7.6.2. Take any y ∈ Y and put A−1y = x. The
inequality ‖Ax‖ � m‖x‖ is, equivalently,

‖A−1y‖ � 1
m
‖y‖.

This shows that A−1 is bounded (and moreover that ‖A−1‖ � 1/m).
For the converse, if A−1 exists and is bounded, then, for any y ∈ Y ,

‖A−1y‖ � ‖A−1‖ ‖y‖. That is, ‖x‖ � ‖A−1‖ ‖Ax‖, where x = A−1y. If
y = θ, the zero vector in Y , then x = A−1y = θ, the zero vector in X , and
trivially in this case ‖Ax‖ � m‖x‖ for any m > 0. Otherwise, ‖y‖ > 0 so,
by Theorem 7.6.2, A−1y = x �= θ and we have 0 < ‖x‖ � ‖A−1‖ ‖Ax‖.
Thus ‖A−1‖ > 0 and again we have ‖Ax‖ � m‖x‖ for all nonzero x ∈ X ,
if we choose m = 1/‖A−1‖, for example.

The next theorem is basic to the applications that follow. We recall
that I is the identity operator on a normed space X ; that is, Ix = x for
all x ∈ X .

Theorem 7.6.4 Let A be an operator from a normed space X into itself
and suppose ‖A‖ < 1. Suppose also that the operator I − A is onto.
Then the inverse (I − A)−1 exists, and

‖(I − A)−1‖ � 1
1 − ‖A‖ .

This is a straightforward consequence of the preceding theorem. Using
the triangle inequality, for any x ∈ X ,

‖x‖ � ‖x − Ax‖ + ‖Ax‖ � ‖x − Ax‖ + ‖A‖ ‖x‖.
Hence

‖(I − A)x‖ = ‖Ix − Ax‖ = ‖x − Ax‖ � (1 − ‖A‖)‖x‖.
By Theorem 7.6.3 and its proof, applied to the operator I − A with
m = 1 − ‖A‖ > 0, the result follows.

We will prove next that we may drop the assumption above that I−A

is onto if we assume instead that X is a Banach space. More specifically,
we will prove that I − A must be onto when X is a Banach space. To
do this, we need to show that if y is any point in X , then there is some
point x ∈ X such that (I − A)x = y. So let y ∈ X be arbitrary. We
introduce the mapping B : X → X by

Bx = Ax + y, x ∈ X.
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(If y �= θ, then B is not linear. Such a mapping as B here, where A is
linear, is called affine.) For any points x′, x′′ ∈ X , we have

‖Bx′ − Bx′′‖ = ‖Ax′ − Ax′′‖ = ‖A(x′ − x′′)‖ � ‖A‖ ‖x′ − x′′‖.

When 0 < ‖A‖ < 1, this implies that B is a contraction mapping on X .
As X is now assumed to be a Banach space, the fixed point theorem
(Theorem 3.2.2) tells us that the mapping B has a unique fixed point.
That is, there exists a unique point x ∈ X such that Bx = x. But then
Ax + y = x, or y = (I − A)x, as we wished to show.

The fixed point theorem implies further that the solution of the equa-
tion y = (I − A)x may be found by successive approximations. Let the
successive iterates be x0, x1, x2, . . . and take x0 = y. Then

x1 = Bx0 = Ax0 + y = Ay + y,

x2 = Bx1 = Ax1 + y = A(Ay + y) + y = A2y + Ay + y,

x3 = Bx2 = Ax2 + y = A(A2y + Ay + y) + y = A3y + A2y + Ay + y,

and so on; in general,

xn = Any + An−1y + · · · + A2y + Ay + y.

The sequence {xn} is therefore the sequence of partial sums of the series∑∞
k=0 Aky (in which by A0 we mean the identity operator I). Since

{xn} converges to the fixed point x of B, the series is convergent with
sum x. But on the other hand, x = (I − A)−1

y.
We summarise all this as follows.

Theorem 7.6.5 Let A be an operator from a Banach space X into itself,
and suppose that ‖A‖ < 1. Then the operator I −A is onto, the inverse
(I − A)−1 exists, and, for any y ∈ X,

(I − A)−1
y =

∞∑
k=0

Aky.

Notice that we may look on the final conclusion as a result about the
operator A alone:

(I − A)−1 =
∞∑

k=0

Ak if ‖A‖ < 1.

A full justification of this statement is called for in Exercise 7.9(7). This
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then appears to be a very satisfying generalisation of sorts of the familiar
result on geometric series:

(1 − a)−1 =
∞∑

k=0

ak if |a| < 1.

7.7 Application to integral equations

We have considered the Volterra equation

x(s) = λ

∫ s

a

k(s, t)x(t) dt + f(s)

before, in Chapter 3. Again, λ is an arbitrary nonzero constant, k is a
function of two variables which is continuous in the triangle

T = {(s, t) : a � s � b, a � t � s},
and f ∈ C[a, b]. In this section, we will give an alternative approach to
the problem of solving the Volterra equation. The corresponding work
for the Fredholm equation is easier and the development is left as an
exercise.

In the Volterra equation, we suppose x ∈ C[a, b] and define an opera-
tor K from the Banach space C[a, b] into itself by Kx = y, where

y(s) = λ

∫ s

a

k(s, t)x(t) dt.

The fact that K is an operator follows as at the end of Section 7.1. The
Volterra equation may be written

f(s) = x(s) − λ

∫ s

a

k(s, t)x(t) dt, a � s � b,

and so we see that this may be expressed very succinctly as

f = (I − K)x.

Our aim is then immediately clear: if we can show that the inverse of
the operator I − K exists, then the solution of the Volterra equation is

x = (I − K)−1f.

We will then need a special argument (not required in the analogous
treatment of the Fredholm equation) to show that

x =
∞∑

j=0

Kjf.
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(The reason for the special treatment is that we can prove that ‖Kn‖ < 1
for n large enough, but cannot prove that ‖K‖ < 1.)

We show first of all that the mappings K2, K3, . . . may be given
similar definitions to that of K. Define a sequence {kn} of functions of
two variables by

k1(s, t) = k(s, t),

kn(s, t) =
∫ s

t

k(s, u)kn−1(u, t) du, n = 2, 3, . . . ,

for a � t � s � b. Then for the mapping Kn, we have y = Knx, where
x ∈ C[a, b] and

y(s) = λn

∫ s

a

kn(s, t)x(t) dt.

This is proved by induction as follows. When n = 1, the result is simply
the definition of K. Assume the result is true when n = m and suppose
y = Km+1x. Then

y(s) = (Km+1x)(s)

= (K(Kmx))(s)

= λ

∫ s

a

k(s, u)
(

λm

∫ u

a

km(u, t)x(t) dt

)
du

= λm+1

∫ s

a

∫ u

a

k(s, u)km(u, t)x(t) dt du

= λm+1

∫ s

a

∫ s

t

k(s, u)km(u, t)x(t) du dt

= λm+1

∫ s

a

km+1(s, t)x(t) dt,

This shows the result holds when n = m + 1, so our expression for Kn

is established.
We now set M = max(s,t)∈T |k(s, t)| and will prove that

|kn(s, t)| � Mn(s − t)n−1

(n − 1)!
, n ∈ N,

for all (s, t) in the triangle T . Again, we will use induction. When n = 1,
the result is clear by definition of M . Assume the result is true when
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n = m. Then, for n = m + 1 we have

|km+1(s, t)| =
∣∣∣∣∫ s

t

k(s, u)km(u, t) du

∣∣∣∣
�
∫ s

t

|k(s, u)| |km(u, t)| du

� M
Mm

(m − 1)!

∫ s

t

(u − t)m−1 du

=
Mm+1

(m − 1)!

[
1
m

(u − t)m

]s
t

=
Mm+1(s − t)m

m!
,

and the result for n = m + 1 is seen to hold. This induction is now
complete.

Next we will use the two preceding results to prove that, for each
n ∈ N, ‖Kn‖ is bounded and

‖Kn‖ � |λ|nMn(b − a)n

n!
.

It will then follow that ‖Kn‖ < 1 for all sufficiently large n. Choose any
x ∈ C[a, b]. Then

‖Knx‖ = max
a�s�b

∣∣∣∣λn

∫ s

a

kn(s, t)x(t) dt

∣∣∣∣
� max

a�s�b
|λ|n
∫ s

a

|kn(s, t)| |x(t)| dt

� |λ|n
∫ s

a

Mn(s − t)n−1

(n − 1)!
dt · max

a�t�s
|x(t)|

� |λ|nMn

(n − 1)!

[−1
n

(s − t)n

]s
a

· max
a�t�b

|x(t)|

=
|λ|nMn

n!
(s − a)n‖x‖ � |λ|nMn

n!
(b − a)n‖x‖.

This implies that the mapping Kn is bounded and furthermore that
‖Kn‖ � (|λ|M(b − a))n/n!, as required.

It is easy to see that Kn is a linear mapping for each n ∈ N, so the
boundedness of each Kn could be quickly deduced from the following
result. If X , Y and Z are normed spaces and A : X → Y , B : Y → Z

are operators, then the product BA is also an operator, from X into Z,
and

‖BA‖ � ‖B‖ ‖A‖.
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The proof of this is left as an exercise. It follows that if Y = X , so that
the mappings An (for n = 2, 3, . . . ) exist, then they are in fact operators
on X , and ‖An‖ � ‖A‖n. For the operator K above, we could use the
fact that ‖K‖ � |λ|M(b − a) (obtained as in Exercise 7.5(2)) to deduce
that ‖Kn‖ � ‖K‖n � (|λ|M(b − a))n. This is certainly not as good as
the estimate in the preceding paragraph.

Take any n ∈ N and any x ∈ C[a, b]. By repeated use of the rules for
combining operators, given after the proof of Theorem 7.2.1, and using
the result ‖I‖ = 1, we have

‖(I − Kn)x‖ = ‖(I + K + K2 + · · · + Kn−1)((I − K)x)‖
� ‖I + K + K2 + · · · + Kn−1‖ ‖(I − K)x‖
�
(‖I‖ + ‖K‖ + ‖K2‖ + · · · + ‖Kn−1‖) ‖(I − K)x‖

�
(

1 +
n−1∑
j=1

|λ|jM j(b − a)j

j!

)
‖(I − K)x‖

<

∞∑
j=0

(|λ|M(b − a))j

j!
‖(I − K)x‖

= e|λ|M(b−a)‖(I − K)x‖.
Hence

‖(I − K)x‖ > e−|λ|M(b−a)‖(I − Kn)x‖.
In particular, choose n so that ‖Kn‖ < 1 and put q = ‖Kn‖. Then
‖Knx‖ � q‖x‖ and

‖(I − Kn)x‖ = ‖x − Knx‖ � ‖x‖ − ‖Knx‖
� ‖x‖ − q‖x‖ = (1 − q)‖x‖.

Thus

‖(I − K)x‖ > e−|λ|M(b−a)(1 − q)‖x‖
for all x ∈ C[a, b].

We are going to apply Theorem 7.6.3, with m = e−|λ|M(b−a)(1−q), to
show that (I − K)−1 exists. This can be done as soon as we show that
I − K is an onto operator. Since n has been chosen so that ‖Kn‖ < 1,
Theorem 7.6.5 assures us that the operator I − Kn is onto. Thus, for
any y ∈ C[a, b] we know there exists x ∈ C[a, b] such that (I−Kn)x = y.
But then

(I − Kn)x = (I − K)((I + K + K2 + · · · + Kn−1)x) = y,
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implying the existence of a function z ∈ C[a, b] such that (I −K)z = y.
This means I − K is onto, and Theorem 7.6.3 may be applied.

As we indicated at the beginning of this section, the solution of the
Volterra equation, written as f = (I −K)x, is thus x = (I − K)−1

f . To
show now that this solution is given by

x =
∞∑

j=0

Kjf

it is sufficient to return to the inequalities

‖Kj‖ � (|λ|M(b − a))j

j!
, j ∈ N.

By a simple comparison test (Theorem 1.8.6), it then follows that the
series

∑ ‖Kjf‖ is convergent. Thus the series
∑

Kjf is absolutely
convergent and so, by Theorem 6.2.2 since C[a, b] is a Banach space, it
is also convergent. To show that the sum of the series

∑∞
j=0 Kjf is x,

we may use the continuity of the operator I − K as follows:

(I − K)
( ∞∑

j=0

Kjf

)
= (I − K)

(
lim

n→∞

n∑
j=0

Kjf

)

= lim(I − K)
( n∑

j=0

Kjf

)

= lim
( n∑

j=0

Kjf −
n∑

j=0

Kj+1f

)
= lim(If − Kn+1f)

= f − limKn+1f = f,

since ‖Knf‖ � ‖Kn‖ ‖f‖ → 0. Hence
∑∞

j=0 Kjf = (I − K)−1
f = x.

The solution of the Volterra equation

x(s) = λ

∫ s

a

k(s, t)x(t) dt + f(s)

thus always exists uniquely and is given by

x(s) = f(s) +
∞∑

j=1

λj

∫ s

a

kj(s, t)f(t) dt.

In practice, it is convenient to invert the order of summation and inte-
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gration and so write

x(s) = f(s) +
∫ s

a

f(t)
∞∑

j=1

λjkj(s, t) dt.

Using Theorem 1.10.7, term-by-term integration is indeed permissible
here because, by an earlier result,

|λjkj(s, t)| � |λ|jM j(s − t)j−1

(j − 1)!
� |λ|M (|λ|M(b − a))j−1

(j − 1)!

for j ∈ N and all (s, t) ∈ T , and, by the Weierstrass M -test (Theo-
rem 1.10.8), the series

∑∞
j=1 λjkj(s, t) is uniformly convergent in t.

As an example, we will solve the equation

x(s) =
∫ s

0

(t − s)x(t) dt + es.

Here we have λ = 1, k(s, t) = t − s and f(s) = es. We obtain

k1(s, t) = t − s,

k2(s, t) =
∫ s

t

(u − s)(t − u) du

= −
∫ t−s

0

(t − s − v)v dv [t − u = v]

= −
[
1
2
(t − s)v2 − 1

3
v3

]t−s

0

= −1
6
(t − s)3,

k3(s, t) = −
∫ s

t

(u − s) · 1
6
(t − u)3 du

=
1
6

∫ t−s

0

(t − s − v)v3 dv

=
1
6

[
1
4
(t − s)v4 − 1

5
v5

]t−s

0

=
1

120
(t − s)5,

and in general, as should be verified by induction,

kj(s, t) =
(−1)j+1

(2j − 1)!
(t − s)2j−1.
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Hence

x(s) = es +
∫ s

0

et
∞∑

j=1

(−1)j+1 (t − s)2j−1

(2j − 1)!
dt

= es +
∫ s

0

et sin(t − s) dt

=
1
2
(es + sin s + cos s).

7.8 Application to numerical analysis

Before going into this further application of Theorem 7.6.5, we require
a little more information about products of mappings.

We know that the associative law is satisfied: if X , Y , Z, W are any
sets and A : X → Y , B : Y → Z and C : Z → W are mappings, then
C(BA) = (CB)A.

When the sets are vector spaces, we may ask whether the distributive
laws are satisfied. The answer is interesting. We can easily prove that
if X , Y , Z are vector spaces and A : Y → Z, B : Y → Z, C : X → Y are
any mappings, then

(A + B)C = AC + BC.

We simply note that, for any x ∈ X ,

((A + B)C)x = (A + B)(Cx) = A(Cx) + B(Cx)

= (AC)x + (BC)x = (AC + BC)x.

There is however another distributive law, and this second law is not
generally satisfied. We can show this much: if X , Y , Z are vector
spaces and A : Y → Z, B : X → Y , C : X → Y are mappings, then,
provided A is linear,

A(B + C) = AB + AC.

To do this, take any x ∈ X . Then

(A(B + C))x = A((B + C)x) = A(Bx + Cx).

Now, because A is linear,

A(Bx + Cx) = A(Bx) + A(Cx) = (AB)x + (AC)x = (AB + AC)x.

Of course, both distributive laws are satisfied if we are concerned
throughout only with linear mappings, or operators in particular. (The
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second distributive law only requires that A(y1 + y2) = Ay1 + Ay2 for
all y1, y2 ∈ Y . Such mappings are called additive. If A(αy) = αAy for
all y ∈ Y and all scalars α, then A is called homogeneous. A mapping is
linear if and only if it is both additive and linear. See Exercise 7.5(1).)

For the next few preliminary results, we suppose that A maps a set X

onto itself.
It is clear that if I is the identity mapping on X , then IA = A and

AI = A.
If A−1 exists, then for any x ∈ X we have

A−1(Ax) = x and A(A−1x) = x

so that we may write

A−1A = I and AA−1 = I.

We now prove the following converse of this result. Two cases need
to be identified. If B maps X into itself and BA = I, then the inverse
of A exists and A−1 = B; if C maps X onto itself and AC = I, then the
inverse of A exists and A−1 = C.

To prove this, note first that the second statement follows from the
first since it implies that the inverse of C exists and C−1 = A; but then
C = (C−1)−1 = A−1. Now suppose BA = I. Since A is an onto map,
for any given y ∈ X there must be at least one x ∈ X such that Ax = y.
For any such x,

x = Ix = (BA)x = B(Ax) = By.

This implies that there is in fact just one such x, since it is the image
of y under B. That is, the equation Ax = y has a unique solution for x.
Hence A−1 exists, and

A−1 = IA−1 = (BA)A−1 = B(AA−1) = BI = B.

Finally, we prove that if A and B both map X onto itself and both
have inverses, then the product BA has an inverse, and

(BA)−1 = A−1B−1.

This follows from the preceding result, since A−1B−1 certainly maps X

into itself and, using the associative law twice,

(A−1B−1)(BA) = ((A−1B−1)B)A = (A−1(B−1B))A = A−1A = I.

Our interest in this section is in finding bounds for the relative errors
that occur in the kinds of approximations which we must often make in
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practice. This question has been considered previously, in Section 3.4,
for the particular type of approximating mapping known as a pertur-
bation, and for a particular type of problem. In the context now of a
normed space X , we were at that time concerned with solving an equa-
tion of the form Ax = x (x ∈ X) for some mapping A on X , and we
considered the effect of using an approximating mapping Ã for which
‖Ãw − Aw‖ < ε for all w ∈ X and some number ε > 0.

We begin here with a different problem: that of solving for x ∈ X

the equation Ax = v, where v is a given nonzero point in X . We sup-
pose now that X is a Banach space and that A is an operator on X

whose inverse A−1 exists and is bounded (so A−1 is also an operator).
Of course, we have simply x = A−1v. But knowing that A−1 exists
does not imply that we can actually find it in a given practical situa-
tion. Furthermore, and this is the particular aspect we will consider, the
operator A itself may not be known with any certainty. This is so, for
example, when measured quantities are involved. If A is approximated
by a mapping Ã, which we also assume to be bounded and linear and
having an inverse, then we must investigate the difference A−1v− Ã−1v.
In general, we can do no more than obtain an estimate for the absolute
normed error ‖A−1v − Ã−1v‖, or, preferably, the relative normed error
‖A−1v − Ã−1v‖/‖A−1v‖.

Our assumptions on Ã imply that there is an operator E on X such
that Ã = A + E. We prove that, provided

‖E‖ <
1

‖A−1‖ ,

then automatically the inverse (A + E)−1 exists and

‖(A + E)−1‖ � ‖A−1‖
1 − ‖A−1‖ ‖E‖ .

To do this, we define a mapping B on X by B = −A−1E. Then B is
easily seen to be linear and bounded, and

‖B‖ = ‖A−1E‖ � ‖A−1‖ ‖E‖ < 1.

Hence Theorem 7.6.5 applies: the operator I − B has an inverse and,
from Theorem 7.6.4,

‖(I − B)−1‖ � 1
1 − ‖B‖ � 1

1 − ‖A−1‖ ‖E‖ .

We may write, using the associative law and the second distributive law,

A + E = AI + (AA−1)E = A(I + A−1E) = A(I − B),
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expressing A+E as a product of operators, each of which has an inverse.
Using our preliminary work, we then know that (A + E)−1 exists, and
(A + E)−1 = (I − B)−1

A−1. Hence

‖(A + E)−1‖ = ‖(I − B)−1
A−1‖

� ‖(I − B)−1‖ ‖A−1‖ � ‖A−1‖
1 − ‖A−1‖ ‖E‖ ,

which is the desired result.
Suppose x = A−1v is to be approximated by (A + E)−1v, which we

will call y, say. Then, as we mentioned, we want an estimate of the
relative error ‖x − y‖/‖x‖. (Since v �= θ, of course x �= θ.) To obtain
such an estimate, we write

x − y = A−1v − (A + E)−1
v

= ((A + E)−1(A + E))A−1v − (A + E)−1
v

= (A + E)−1(((A + E)A−1)v − Iv)

= (A + E)−1(Iv + (EA−1)v − v)

= (A + E)−1(Ex),

so that

‖x − y‖ � ‖(A + E)−1‖ ‖E‖ ‖x‖.
Then, using the preceding result,

‖x − y‖
‖x‖ � ‖A−1‖ ‖E‖

1 − ‖A−1‖ ‖E‖
and this is a result of considerable practical significance.

The quotient ‖E‖/‖A‖ is a measure of the relative error in replacing
the operator A by the operator A+E. The estimate of the relative error
in x may be expressed in terms of this:

‖x − y‖
‖x‖ � ‖A‖ ‖A−1‖

1 − ‖A‖ ‖A−1‖(‖E‖/‖A‖) · ‖E‖
‖A‖ .

Writing

k(A) = ‖A‖ ‖A−1‖,
we have

‖x − y‖
‖x‖ � k(A)

1 − k(A)(‖E‖/‖A‖) · ‖E‖
‖A‖ .
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The number k(A) is called the condition number of the operator A. It
arises in a number of numerical applications of the above type. To see
its significance, write γ = k(A)‖E‖/‖A‖. Then γ = ‖A−1‖ ‖E‖ < 1, so
γ/(1 − γ) may be expanded in a geometric series:

γ

1 − γ
= γ + γ2 + γ3 + · · · .

Thus, to a first-order approximation in which we ignore γ2 and higher
powers of γ, the relative error in x is k(A) times the relative error in A.

Notice that

1 = ‖I‖ = ‖AA−1‖ � ‖A‖ ‖A−1‖ = k(A),

so that the condition number k(A), which may be defined for any oper-
ator A having a bounded inverse, always satisfies k(A) � 1. If A is such
that k(A) = 1, then A is said to be perfectly conditioned, while operators
with large condition numbers are called ill-conditioned.

The most common numerical application of the condition number oc-
curs when solving systems of linear equations. To illustrate this, we will
consider the equations

x1 + 2x2 = 4,

1.0001x1 + 2.001x2 = 4.001.

It may be checked that their solution is x1 = 2.5, x2 = 0.75. Superfi-
cially, it would appear that a good approximation to the solution would
be obtained by considering instead the equations

y1 + 2y2 = 4,

y1 + 2.001y2 = 4.001,

in which there is only a very slight change in one of the coefficients. We
find that y1 = 2, y2 = 1, which is a considerable change in the solution.
This is an example of an ill-conditioned system: a slight change in the
data gives rise to a large change in the solution. To make the situation
even more drastic, we could argue that the solution of the original system
should be roughly like that of

z1 + 2z2 = 4,

z1 + 2z2 = 4.001;

but this of course has no solution at all. Or we could say that both
equations are roughly just

u1 + 2u2 = 4,
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and this, as a system in its own right, has both pairs (2.5, 0.75) and
(2, 1) as solutions (u1, u2), among infinitely many others.

Now we will relate this example to the preceding theory. Consider the
mapping A : Rn → Rn given by Ax = y, where A is determined by the
n× n matrix (ajk) of real numbers ajk and x = (x1, x2, . . . , xn)T ∈ Rn.
As usual, we denote the matrix also by A. Then y = (y1, y2, . . . , yn)T ,
where

yj =
n∑

k=1

ajkxk, j = 1, 2, . . . , n.

Considering Rn as a real vector space, it is easy to see that A is a linear
mapping. For simplicity in what follows, we will assume that Rn is
normed by

‖x‖ = max
1�j�n

|xj |.

The mapping A is bounded, since

‖Ax‖ = ‖y‖ = max
1�j�n

∣∣∣∣ n∑
k=1

ajkxk

∣∣∣∣
� max

1�j�n

n∑
k=1

|ajk| |xk| �
(

max
1�j�n

n∑
k=1

|ajk|
)
‖x‖.

Hence A is an operator and

‖A‖ � max
1�j�n

n∑
k=1

|ajk|.

To see that in fact we have equality here, suppose

max
1�j�n

n∑
k=1

|ajk| =
n∑

k=1

|amk|.

That is, suppose the maximum occurs when j = m, and consider the
point x′ = (x′

1, x
′
2, . . . , x

′
n) ∈ Rn, where

x′
k =


amk

|amk| , amk �= 0,

1, amk = 0,
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for k = 1, 2, . . . , n. We see that ‖x′‖ = 1, and then

‖A‖ = ‖A‖ ‖x′‖ � ‖Ax′‖

= max
1�j�n

∣∣∣∣ n∑
k=1

ajkx′
k

∣∣∣∣ � ∣∣∣∣ n∑
k=1

amkx′
k

∣∣∣∣ = n∑
k=1

|amk|.

Hence

‖A‖ = max
1�j�n

n∑
k=1

|ajk|,

the greatest of the row-sums of the absolute values of elements of the
matrix A.

Note finally that if the inverse of the operator A exists, then it is
determined by the inverse matrix A−1.

Our example concerned the operator A : R2 → R2 with matrix

A =
(

1 2
1.0001 2.001

)
.

In general, the matrix
(

a b

c d

)
has inverse

1
ad − bc

(
d −b

−c a

)
when ad �= bc, so

A−1 =
1

0.0008

(
2.001 −2

−1.0001 1

)
.

We deduce that

‖A‖ = 3.0011, ‖A−1‖ =
4.001
0.0008

= 5001.25,

so the condition number k(A) exceeds 15,000. This is large.
In the example, we approximated the equation

A

(
x1

x2

)
=
(

4
4.001

)
by

(A + E)
(

y1

y2

)
=
(

4
4.001

)
,
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where E =
(

0 0
−0.0001 0

)
. Then

‖E‖ = 0.0001, ‖E‖ ‖A−1‖ = 0.500125 < 1,

so the estimate of relative error in the solution that we obtained above
may be applied. If x = (x1, x2)T and y = (y1, y2)T , then

‖x − y‖
‖x‖ � ‖A−1‖ ‖E‖

1 − ‖A−1‖ ‖E‖ =
0.500125
0.499875

,

which is just greater than 1. In fact,

‖x‖ = 2.5, ‖x − y‖ = ‖(2.5 − 2, 0.75 − 1)‖ = 0.5,

so ‖x − y‖/‖x‖ = 0.2.
It should be realised that the condition number for an operator de-

pends on the norm adopted. Both the actual and the estimated relative
errors in the above problem likewise depend on the norm. We chose in
the example a norm for Rn that is simple to evaluate in terms of the
matrix defining an operator. The result,

‖A‖ = max
1�j�n

n∑
k=1

|ajk|,

is one example of a matrix norm, and others may be obtained by taking
different norms for Rn. In particular, if we choose the Euclidean norm
for Rn, then the corresponding matrix norm turns out to be given by
‖A‖ =

√|λM |, where λM is the eigenvalue of the matrix AT A, greatest
in absolute value. (See Exercise 7.5(13). If, there, X = Rn and A is
defined by a matrix as here, then the notions of eigenvalue and eigen-
vector, of an operator and of a matrix, coincide.) Another example of a
matrix norm is given in Exercise 7.9(10).

We end this section with another approximation problem in which the
condition number arises. Again suppose that X is a normed space (not
necessarily Banach) and that A is an operator on X having a bounded
inverse. As before, let v be a given nonzero point in X and again suppose
we wish to solve the equation Ax = v for x ∈ X . This time, suppose
y ∈ X is tried as an approximation to x. We will obtain bounds on the
relative error ‖x − y‖/‖x‖.

We note first that

‖v‖ = ‖Ax‖ � ‖A‖ ‖x‖ and ‖x‖ = ‖A−1v‖ � ‖A−1‖ ‖v‖.
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Putting Ay = w, we also have

‖v − w‖ = ‖Ax − Ay‖ = ‖A(x − y)‖ � ‖A‖ ‖x− y‖,
‖x − y‖ = ‖A−1v − A−1w‖ = ‖A−1(v − w)‖ � ‖A−1‖ ‖v − w‖.

Then
‖v − w‖
‖A‖ · 1

‖A−1‖ ‖v‖ � ‖x − y‖
‖x‖ � ‖A−1‖ ‖v − w‖ · ‖A‖

‖v‖
and this may be written

1
k(A)

‖v − w‖
‖v‖ � ‖x − y‖

‖x‖ � k(A)
‖v − w‖
‖v‖ .

In particular, when k(A) = 1 we see that

‖x − y‖
‖x‖ =

‖v − w‖
‖v‖ .

7.9 Exercises

(1) Let K : C[a, b] → C[a, b] be the operator A of Exercise 7.5(2).

(a) Show that the Fredholm equation

x(s) = λ

∫ b

a

k(s, t)x(t) dt + f(s)

may be written simply as f = (I − K)x.
(b) Prove that (I − K)−1 exists provided |λ| < 1/M(b − a),

and in that case the solution of the integral equation is

x =
∞∑

j=0

Kjf.

(2) Continuing, define a sequence {kn} of functions of two variables
by

k1(s, t) = k(s, t),

kn(s, t) =
∫ b

a

k(s, u)kn−1(u, t) du, n = 2, 3, . . . ,

where a � s � b, a � t � b. Prove that

(a) if y = Knx, for x ∈ C[a, b], n ∈ N, then

y(s) = λn

∫ b

a

kn(s, t)x(t) dt,

(b) |kn(s, t)| � Mn(b − a)n−1.
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(3) Continuing, show that the Fredholm equation in (1)(a) has solu-
tion

x(s) = f(s) +
∫ b

a

f(t)
∞∑

j=1

λjkj(s, t) dt,

provided |λ| < 1/M(b − a).
(4) Solve the following Fredholm integral equations by the above

method:

(a) x(s) =
1
2

∫ 1

0

stx(t) dt +
5s

6
,

(b) x(s) =
1
4

∫ π/2

0

stx(t) dt + sin s,

(c) x(s) =
1
4

∫ 2

1

s

t
x(t) dt + f(s), for any function f that is

continuous on [1, 2].

(5) Solve the following Volterra integral equations:

(a) x(s) =
∫ s

0

(t − s)x(t) dt + s,

(b) x(s) =
∫ s

1

s

t
x(t) dt + ses,

(c) x(s) =
∫ s

1

s

t
x(t) dt + s.

(6) Let X , Y , Z be normed spaces and let A : X → Y , B : Y → Z

be operators. Prove that

(a) the product BA is an operator that maps X into Z, and

‖BA‖ � ‖B‖ ‖A‖,

(b) if Y = X , then ‖Ak‖ � ‖A‖k, for k = 2, 3, . . . ,
(c) if A has an inverse, then Ak (k = 2, 3, . . . ) has an in-

verse, (Ak)−1 = (A−1)k (which we write as A−k), and
‖A−k‖ � ‖A‖−k.

(7) Let A be an operator from a Banach space X into itself. Show
that

∑∞
k=0 Ak is convergent if ‖A‖ < 1, and that then( ∞∑

k=0

Ak

)
x =

∞∑
k=0

Akx

for any x ∈ X .
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(8) Let X be a normed space and let A be a mapping on X for which
A−1 exists.

(a) Prove that (γA)−1 = γ−1A−1 for any scalar γ �= 0.
(b) Let E = αA for a scalar α �= −1. Prove that (A + E)−1

exists.
(c) Let v ∈ X be given, v �= θ. If Ax = v and (A + E)y = v,

prove that

‖x − y‖
‖x‖ =

|α|
|1 + α| .

(9) Define an operator A : R2 → R2 by

A(x1, x2) =
(

1 1
1 0.991

)(
x1

x2

)
.

Find the condition number of A. Compare the solutions of the
systems

x1 + x2 = 3,

x1 + 0.991x2 = 2.98,
and

y1 + y2 = 3,

y1 + 0.99y2 = 2.98,

both exactly and using the estimate of Section 7.8. (Assume R2

is normed by ‖(x1, x2)‖ = max{|x1|, |x2|}.)
(10) Let A : Rn → Rn be a mapping defined by an n × n matrix

(ajk), and suppose Rn is normed by ‖x‖ =
∑n

k=1 |xk|, where
x = (x1, x2, . . . , xn). Show that A is bounded and deduce the
matrix norm:

‖A‖ = max
1�k�n

n∑
j=1

|ajk|.

(Hint: Show that ‖A‖ � max1�k�n

∑n
j=1 |ajk| =

∑n
j=1 |ajm|,

say, and deduce that equality must hold by considering the point
(0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, where the mth component is 1 and all
others are 0.)

(11) Let A be an operator on a normed space X and suppose A has
a bounded inverse. Let B and C be operators on X such that
AB = C. Suppose A and C are known and B is to be approxi-
mated by an operator B̃. Prove that

‖B̃ − B‖
‖B‖ � k(A)

‖AB̃ − C‖
‖C‖ .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(12) Let A be an operator on a normed space X for which A−1 exists
and is bounded.

(a) Prove that if λ is an eigenvalue of A, then λ−1 is an eigen-
value of A−1. (See Exercise 7.5(13).)

(b) Write

L = sup{|λ| : Ax = λx, x ∈ X, x �= θ},
l = inf{|λ| : Ax = λx, x ∈ X, x �= θ}.

Prove that k(A) � L/l.

(13) Let A : X → Y be a mapping between normed spaces X and Y .

(a) If A is additive, show that A(ρx) = ρAx for all x ∈ X and
all ρ ∈ Q.

(b) If, further, A is continuous, prove that A is homogeneous,
and hence linear.

7.10 Unbounded mappings

In this chapter, we have been almost solely concerned with operators,
that is, bounded linear mappings. There is a much fuller general theory
for operators than for unbounded linear mappings. Perhaps this is to be
expected, since the latter are not continuous (Theorem 7.1.5).

Fortunately, many problems involving unbounded mappings can be
rearranged to involve only bounded ones. We will shortly see that the
mapping which takes a differentiable function into its derivative is un-
bounded. However, problems involving such mappings can often be
reorganised to involve mappings defined by integrals, like those in Sec-
tion 7.7, and these are bounded. This happened in effect in Section 3.3
where the existence theorem for second-order linear differential equa-
tions was established by transforming the differential equation into a
Volterra integral equation.

We will not give much theory here for unbounded mappings, but will
be content to indicate through an example that the appearance of un-
bounded mappings is sometimes unavoidable.

Let us denote by C′[a, b] the real vector space of functions that have
a continuous derivative on [a, b]. Previously, we have used the space
C(1)[a, b] of differentiable functions defined on [a, b]. These spaces are
not the same: we have C′[a, b] ⊆ C(1)[a, b], but not the reverse. The
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following function f illustrates this. Take

f(x) =

x2 sin
1
x

, −1 � x � 1, x �= 0,

0, x = 0.

We have

f ′(0) = lim
h→0

h2 sin(1/h) − 0
h

= 0,

while, when x �= 0,

f ′(x) = 2x sin
1
x
− cos

1
x

.

Hence f ′(x) �→ f ′(0) as x → 0, so f belongs to C(1)[−1, 1] but not to
C′[−1, 1].

We define C′[a, b] to have the uniform norm that we use for C[a, b].
Let D : C′[a, b] → C[a, b] be the mapping defined by

Df = f ′.

It is easy to see that D is linear. We will show that it is unbounded.
For this purpose, consider the function g ∈ C′[a, b] where g(x) = sin ωx,
for some positive real number ω. We have

‖g‖ = max
a�x�b

| sin ωx| = 1

(assuming b > a + 2π/ω), and

‖Dg‖ = ‖g′‖ = max
a�x�b

|ω cosωx| = |ω| = ω‖g‖.

Hence we cannot have ‖Dg‖ � K‖g‖ for some fixed number K and
all g ∈ C′[a, b], since ω may be arbitrarily large. This shows that the
mapping D is indeed unbounded.

As as alternative demonstration of this, consider the sequence {fn} of
functions in C′[a, b] given by

fn(x) =
sin n2x

n
.

We have lim fn = θ (the zero vector of C′[a, b], the function identically
zero in [a, b]), but f ′

n(x) = n cosnx so Dfn �→ Dθ. That is, D is not
continuous at θ so D is unbounded, by Theorem 7.1.5.

In Definition 7.4.1(b), we introduced the idea of a closed mapping.
Any operator between normed spaces is closed (Exercise 7.5(11)), but
we will show now that the converse of this is not true. Specifically, we



248 7 Mappings on Normed Spaces

will show that the mapping D above is closed, although we saw it to be
unbounded.

To do this, let {fn} be a sequence of functions in C′[a, b] for which
fn → f and Dfn → g. For D to be closed, we must show that f ∈ C′[a, b]
and that g = Df . Refer to Theorem 1.10.5. For each n, the deriva-
tives f ′

n belong to C[a, b] by definition of the space C′[a, b], and the
sequence {f ′

n} is uniformly convergent on [a, b] since this is what con-
vergence means with the uniform norm. Hence lim f ′

n = f ′, so f ′ = g.
Further, f ′ is continuous on [a, b] since it is the limit of a uniformly
convergent sequence of continuous functions (Theorem 1.10.3). That is,
f ∈ C′[a, b], and so D is closed.

Our main example in this section is from quantum mechanics. It
makes use of the following theorem.

Theorem 7.10.1 Let A and B be linear mappings from a normed vector
space into itself and suppose that AB−BA = αI for some scalar α �= 0.
Then A and B cannot both be bounded.

To prove this, we will suppose that A and B are both bounded. Note
first that if ‖B‖ = 0 then

|α| = ‖αI‖ = ‖AB − BA‖ � ‖AB‖ + ‖BA‖ � 2‖A‖ ‖B‖ = 0.

Since α �= 0, this is impossible, so ‖B‖ �= 0. We use induction to prove
that

ABn − BnA = αnBn−1, n ∈ N.

When n = 1, this is clear. (As usual, B0 is I.) Assume the result when
n = m. Then, when n = m + 1, using the distributive laws for linear
mappings,

ABm+1 − Bm+1A = (ABm − BmA)B + Bm(AB − BA)

= αmBm−1B + Bm(αI) = α(m + 1)Bm,

as required. Then, for n ∈ N,

‖αnBn−1‖ = ‖ABn − BnA‖
� ‖ABn‖ + ‖BnA‖
� ‖A‖ ‖Bn‖ + ‖Bn‖ ‖A‖
= 2‖A‖ ‖Bn−1B‖
� 2‖A‖ ‖Bn−1‖ ‖B‖,
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so

‖A‖ ‖B‖ ‖Bn−1‖ � 1
2
‖αnBn−1‖ =

1
2
|α|n ‖Bn−1‖.

There are now two cases. First, perhaps ‖Bn‖ �= 0 for any integer
n � 2. Then ‖A‖ ‖B‖ � 1

2 |α|n and this is impossible if A and B are
both bounded, as n may be arbitrarily large. Alternatively, ‖Bm‖ = 0
for some integer m � 2. In that case, from the above,

|α|m ‖Bm−1‖ � 2‖A‖ ‖Bm‖,

so that also ‖Bm−1‖ = 0, and in the same way ‖Bm−2‖ = 0, . . . ,
‖B2‖ = 0, ‖B‖ = 0, and again we arrive at a contradiction. Hence, as
required, A and B are not both bounded.

In quantum mechanics, there are natural (and philosophical) difficul-
ties involved in measuring quantities associated with the the motion
of atomic particles. These quantities, called observables, are, by the
axioms of quantum mechanics, represented by certain mappings. The
mappings allow us to speak, for example, of the statistical distribution
of the possible velocities of a particle, rather than of its actual velocity.
Heisenberg’s uncertainty principle claims that it is fundamentally im-
possible to describe precisely all aspects of the motion of any particle,
essentially because the act of measuring one aspect of the motion neces-
sarily changes other aspects. It is therefore important to know if there
are quantities that can be measured simultaneously.

It turns out that if A and B are mappings associated with certain
observables, then simultaneous measurement of those observables is pos-
sible if and only if AB = BA. We can show here only that the basic
mappings of quantum mechanics cannot all be bounded.

Let ψ be a one-dimensional wave function. For our purposes, this
is any function of position x and of time t, which is such that both ψ

and ∂ψ/∂x, for fixed t, belong to C′[a, b]. The momentum and position
mappings P and X , respectively, are defined on C′[a, b] into itself by

Pψ = −i�
∂

∂x
ψ, Xψ = xψ,

where � = h/2π (h is Planck’s constant) and i =
√−1. (For the purely

illustrative purpose of this discussion, we treat i as an ordinary con-
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stant.) We see that

(PX)ψ = P (Xψ)

= P (xψ)

= −i�
∂

∂x
(xψ)

= −i�

(
x

∂

∂x
ψ + ψ

)
= x

(
−i�

∂

∂x
ψ

)
− i�ψ

= X(Pψ) − i�Iψ

= ((XP ) + (−i�)I)ψ,

and hence

PX − XP = −i�I.

Theorem 7.10.1 then implies that at least one of the mappings P and X

must be unbounded. (In fact, P is a straightforward differential mapping
and, like D above, can be shown directly to be unbounded.)

The earlier remarks imply that the position and momentum of an
atomic particle cannot be measured simultaneously.
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Inner Product Spaces

8.1 Definitions; simple consequences

We introduced normed spaces with a discussion on the desirability of
being able to add together the elements of a metric space. For that
reason we began working with vector spaces rather than arbitrary sets.
The same argument as in the earlier discussion could apply to the desir-
ability of being able to multiply together the elements of a metric space,
and it is not necessary to repeat it here.

There are various ways of defining a product, each way serving its own
end and yet each generalising the notion of the product of real numbers.
One way is to suppose that the underlying set of all we have developed
so far is no longer a vector space only but also has the properties of
a ring or a field in which multiplication of elements is already defined.
This line can be developed into the theory of Banach algebras.

What we do here requires no such basic structural alteration: we will
continue to work in a vector space and will say that a product is defined
whenever we have a function of pairs of elements of the space that sat-
isfies four axioms or requirements to be listed below. Specifically, this
is called an inner product, and may be viewed more easily as a gen-
eralisation of the familiar scalar product of ordinary three-dimensional
vectors. The common definition of the scalar product of two vectors uses
the angle between the vectors. Working in reverse, we can use the inner
product to define the angle between elements of quite arbitrary vector
spaces. Except in one important instance, this does not generally give
rise to any useful interpretations.

As usual, we will assume that the scalars in a general vector space are
complex numbers unless we specify otherwise. We will denote the inner
product of two points x, y in a vector space X by 〈x, y〉, and this may

251
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be looked upon as the image of a peculiar-looking mapping 〈 , 〉 from
X ×X into C. Thus: 〈 , 〉 (x, y) = 〈x, y〉. Note that the inner product
of two vectors is a complex number.

Definition 8.1.1 An inner product space is a vector space X together
with a mapping 〈 , 〉 : X × X → C with the properties

(IP1) 〈x, x〉 > 0 for all x ∈ X , x �= θ,
(IP2) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X ,
(IP3) 〈αx, y〉 = α 〈x, y〉 for all x, y ∈ X and every scalar α,
(IP4) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for all x, y, z ∈ X .

This inner product space is denoted by (X, 〈 , 〉) and the mapping
〈 , 〉 is called the inner product for the space.

If 〈 , 〉1, 〈 , 〉2, . . . denote different inner products for the same vector
space X , then (X, 〈 , 〉1), (X, 〈 , 〉2), . . . are different inner product
spaces. Only rarely will we consider more than one inner product for
any vector space, so we will always write X , say, by itself to denote the
inner product space, with inner product assumed to be 〈 , 〉.

An inner product is sometimes called a scalar product, and alternative
names for an inner product space are Euclidean space, unitary space and
pre-Hilbert space. Other notations in common use for the inner product
are 〈 | 〉, ( , ) and ( | ). Certain authors replace the main parts of
(IP3) and (IP4) by 〈x, αy〉 = α 〈x, y〉 and 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉,
respectively. This has some significance in the case of (IP3), but not for
(IP4), as will become apparent from (a) and (b), immediately below.

The bar over 〈y, x〉 in (IP2) denotes the complex conjugate. It follows
from (IP2), with x = y, that 〈x, x〉 is always a real number, and in
(IP1) we specify that this number must be positive when x �= θ. Defi-
nition 8.1.1 applies equally well when X is a real vector space, the only
difference being that the inner product of two vectors is then always a
real number. In that case (IP2) becomes in essence 〈x, y〉 = 〈y, x〉, and
we speak of a real inner product space.

There are a number of immediate consequences of Definition 8.1.1.
These include:

(a) 〈x, βy〉 = β 〈x, y〉 for all x, y ∈ X and every scalar β,
(b) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ X ,
(c) 〈x, θ〉 = 〈θ, y〉 = 0 for all x, y ∈ X .

We prove (a) as follows:

〈x, βy〉 = 〈βy, x〉 = β 〈y, x〉 = β 〈y, x〉 = β 〈x, y〉 .
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To show that 〈θ, y〉 = 0, we use (IP4) in writing

〈θ, y〉 = 〈θ + θ, y〉 = 〈θ, y〉 + 〈θ, y〉 ,

and the result is clear. The proofs of (b) and the other half of (c) are
left as exercises.

Another consequence, encompassing both (IP3) and (IP4), is

(d)
〈 n∑

k=1

αkxk, y

〉
=

n∑
k=1

αk 〈xk, y〉 for all x1, x2, . . . , xn, y ∈ X and

all scalars α1, α2, . . . , αn.

This is proved by mathematical induction. When n = 1, the result
is simply (IP3). Suppose the result is true when n = m. Then, when
n = m + 1,〈m+1∑

k=1

αkxk, y

〉
=
〈 m∑

k=1

αkxk + αm+1xm+1, y

〉

=
〈 m∑

k=1

αkxk, y

〉
+ 〈αm+1xm+1, y〉

=
m∑

k=1

αk 〈xk, y〉 + αm+1 〈xm+1, y〉

=
m+1∑
k=1

αk 〈xk, y〉 ,

as required.
In the same vein, we also have

(e)
〈

x,
m∑

j=1

βjyj

〉
=

m∑
j=1

βj 〈x, yj〉 for all x, y1, y2, . . . , ym ∈ X and all

scalars β1, β2, . . . , βm;

and, most generally,

(f)
〈 n∑

k=1

αkxk,

m∑
j=1

βjyj

〉
=

n∑
k=1

m∑
j=1

αkβj 〈xk, yj〉.

The proof of (f) is left as an exercise. We will subsequently use (a)
to (f) without specific reference to this list.

As our first example of an inner product space, we take the vector
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space Cn of n-tuples of complex numbers and define for it an inner
product by

〈x, y〉 =
n∑

k=1

xkyk,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are any elements of Cn.
It is necessary to verify that this does indeed define an inner product.

For (IP1), we have

〈x, x〉 =
n∑

k=1

xkxk =
n∑

k=1

|xk|2 > 0

when x �= θ. For (IP2),

〈y, x〉 =
n∑

k=1

ykxk =
n∑

k=1

ykxk =
n∑

k=1

ykxk = 〈x, y〉 .

For (IP3),

〈αx, y〉 =
n∑

k=1

αxkyk = α
n∑

k=1

xkyk = α 〈x, y〉 ,

where α ∈ C. Finally, for (IP4), if z = (z1, z2, . . . , zn) ∈ Cn,

〈x + y, z〉 =
n∑

k=1

(xk + yk)zk =
n∑

k=1

xkzk +
n∑

k=1

ykzk = 〈x, z〉 + 〈y, z〉 .

As a final extension of our symbolism, this inner product space is itself
denoted by Cn. This is a natural notation, for a reason that will appear.

Notice that it would not be sufficient to define the inner product for
the vector space Cn by the equation

〈x, y〉 =
n∑

k=1

xkyk,

since then neither (IP1) nor (IP2) would be satisfied. But this equation
does define an inner product for the real vector space Rn and the re-
sulting real inner product space is itself denoted by Rn. Here we have
the expected generalisation of the equation

x · y = x1y1 + x2y2 + x3y3,

where x = x1 i+ x2 j + x3 k and y = y1 i + y2 j+ y3 k are familiar three-
dimensional vectors. Thinking in reverse, it is the need to have a similar
definition of an inner product for Cn to this one for Rn, and the need to
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maintain the condition in (IP1), that led to the axiom (IP3), in which
taking the complex conjugate at first sight seems odd.

For the vector space l2 of complex-valued sequences (x1, x2, . . . ) for
which the series

∑∞
k=1 |xk|2 converges, we define an inner product by

〈x, y〉 =
∞∑

k=1

xkyk

where x = (x1, x2, . . . ) and y = (y1, y2, . . . ) belong to l2. To verify that
this series of complex numbers always converges, we make use of the
Cauchy–Schwarz inequality (Theorem 2.2.1). If m � n, we have∣∣∣∣ n∑

k=m

xkyk

∣∣∣∣ � n∑
k=m

|xkyk| =
n∑

k=m

|xk| |yk| �

√√√√ n∑
k=m

|xk|2
√√√√ n∑

k=m

|yk|2,

and the result follows using Theorem 1.8.2, since x, y ∈ l2. The ver-
ification of (IP1) to (IP4) for this inner product is similar to that for
the inner product for Cn. This definition will be the only one to be
defined on l2 and, as before, the resulting inner product space will also
be denoted by l2.

For our final examples at this time, we turn to function spaces. It
may have been noticed that in Cn, Rn and l2, we have in each case
that 〈x, x〉 = ‖x‖2, an equation relating the inner product to the norm
for these spaces. Indeed, this is why it is natural to maintain the same
notation for the inner product spaces as for the normed spaces. We will
indicate later that there is no way to define an inner product for the
normed space C[a, b] of continuous functions on [a, b] so that the same
equation holds, the norm for C[a, b] of course being the uniform norm.
As we make explicit below, it is desirable for this equation always to
hold, so we will have little further use for the space C[a, b].

However, we can define, for continuous functions x, y on [a, b],

〈x, y〉 =
∫ b

a

x(t)y(t) dt,

and then

〈x, x〉 =
∫ b

a

(x(t))2 dt,

which is ‖x‖2 for the normed space C2[a, b]. That this does define an
inner product is easily verified, and so we speak of the real inner product
space C2[a, b].
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The above discussion suggests that perhaps any inner product space X

can be considered as a normed space if we define

‖x‖ =
√
〈x, x〉, x ∈ X.

To show that this is in fact true, we must verify the axioms for a norm
(Definition 6.1.1) for the mapping whose value at x is

√〈x, x〉. For (N1),
we certainly have 〈θ, θ〉 = 0 and, if x �= θ, 〈x, x〉 > 0 by (IP1). For (N2),
we have √

〈αx, αx〉 =
√

αα 〈x, x〉 =
√
|α|2 〈x, x〉 = |α|

√
〈x, x〉.

Only (N3) remains to be verified.
The verification of (N3) follows easily once we have established the

general Cauchy–Schwarz inequality, which we state tentatively as fol-
lows: For any vectors x, y in an inner product space,

| 〈x, y〉 |2 � 〈x, x〉 〈y, y〉 .

This generalises the earlier forms of the Cauchy–Schwarz inequality in
Theorem 2.2.1 and Exercise 2.4(6). Then (N3) is derived as follows. If
x, y ∈ X ,

〈x + y, x + y〉 = 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= 〈x, x〉 + 〈x, y〉 + 〈x, y〉 + 〈y, y〉
= 〈x, x〉 + 2 Re 〈x, y〉 + 〈y, y〉
� 〈x, x〉 + 2| 〈x, y〉 | + 〈y, y〉
� 〈x, x〉 + 2

√
〈x, x〉 〈y, y〉 + 〈y, y〉

= (
√
〈x, x〉 +

√
〈y, y〉)2;

that is, √
〈x + y, x + y〉 �

√
〈x, x〉 +

√
〈y, y〉.

This indeed is (N3).
We now specify that the only norm ever to be used in conjunction

with a given inner product space X will be that defined by

‖x‖ =
√

〈x, x〉, x ∈ X.

This is similar in intent to the statement that a normed space is only
considered as a metric space when the metric is given by

d(x, y) = ‖x − y‖, x, y ∈ X.
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The reasoning behind our maintaining the names Cn, Rn, l2 and
C2[a, b] for certain inner product spaces as well as normed spaces and
metric spaces should now be very clear.

Now we must prove the Cauchy–Schwarz inequality that we have just
used. By virtue of the specification made for norms on inner product
spaces, we may state the inequality differently as follows.

Theorem 8.1.2 (General Cauchy–Schwarz Inequality) For any
points x, y in an inner product space,

| 〈x, y〉 | � ‖x‖ ‖y‖.

Note that the proof we now give is quite different in approach from
that given for Theorem 2.2.1. If y = θ, the inequality is certainly true,
so we may suppose that y �= θ. Then ‖y‖ > 0. Let α be any scalar.
Then

0 � ‖x + αy‖2 = 〈x + αy, x + αy〉
= 〈x, x〉 + 〈x, αy〉 + 〈αy, x〉 + 〈αy, αy〉
= 〈x, x〉 + α 〈x, y〉 + α 〈y, x〉 + αα 〈y, y〉
= ‖x‖2 + α〈x, y〉 + α( 〈x, y〉 + α‖y‖2).

Now set α = −〈x, y〉 /‖y‖2. We see that 〈x, y〉 + α‖y‖2 = 0 and so

0 � ‖x‖2 − 〈x, y〉 〈x, y〉
‖y‖2

= ‖x‖2 − | 〈x, y〉 |2
‖y‖2

.

Thus the inequality is proved.

We said before that there is no way the normed space C[a, b] can be
considered as an inner product space in a consistent fashion. This is a
consequence of the next theorem, in which we establish what is known
as the parallelogram law for inner product spaces. It generalises the
statement that the sum of the squares of the diagonals of a parallelogram
equals the sum of the squares of its sides.

Theorem 8.1.3 For any points x, y in an inner product space,

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.
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The proof is a direct calculation. We have

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈y, x〉 .

Expand ‖x − y‖2 in a similar way and add the expressions to give the
theorem.

It is easy to show by an example that the parallelogram law does not
hold for C[a, b], so C[a, b] is not an inner product space. We give an
example in C[0, 1]. Define functions x and y by

x(t) = t, y(t) = 1 − t, 0 � t � 1.

Then (x + y)(t) = 1 and (x − y)(t) = 2t − 1. We see that

‖x‖ = max
0�t�1

|t| = 1,

and similarly ‖y‖ = ‖x + y‖ = ‖x − y‖ = 1.
Since every inner product space is also a normed space, we can speak of

convergent sequences in an inner product space, and of Cauchy sequences
and so on, by introducing into the space the norm that is defined by the
inner product. To illustrate this idea, we will prove:

Theorem 8.1.4 If {xn} and {yn} are sequences in an inner product
space, which converge to x and y, respectively, then {〈xn, yn〉} is a con-
vergent sequence in C, with limit 〈x, y〉.

To say that the sequence {xn} converges to x means, as usual, that
‖xn − x‖ → 0, where now we understand that the inner product space
has been normed by taking ‖w‖ =

√〈w, w〉 for each w in the space.
Similarly for the sequence {yn}. To prove that 〈xn, yn〉 → 〈x, y〉, we
write

〈xn, yn〉 − 〈x, y〉 = 〈xn, yn〉 − 〈xn, y〉 + 〈xn, y〉 − 〈x, y〉
= 〈xn, yn − y〉 + 〈xn − x, y〉 ,

so that

| 〈xn, yn〉 − 〈x, y〉 | � | 〈xn, yn − y〉 | + | 〈xn − x, y〉 |
� ‖xn‖ ‖yn − y‖ + ‖xn − x‖ ‖y‖,

using the Cauchy–Schwarz inequality. Every convergent sequence is
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bounded, so ‖xn‖ < C for some constant C and all n, and ‖yn − y‖ → 0,
‖xn − x‖ → 0. Hence, as required, 〈xn, yn〉 → 〈x, y〉.

8.2 Orthonormal vectors

We have mentioned that introducing an inner product into a vector
space allows us to generalise the notion of angle between two vectors.
The definition is suggested by recalling that if x = x1 i+x2 j+ x3 k and
y = y1 i + y2 j + y3 k are ordinary nonzero three-dimensional vectors,
then the angle between them is ω, where 0 � ω � π and

cosω =
x · y
|x| |y| =

x1y1 + x2y2 + x3y3√
x2

1 + x2
2 + x2

3

√
y2
1 + y2

2 + y2
3

.

With the standard definition of norm and inner product for R3, the
right-hand side here is precisely 〈x, y〉 /(‖x‖ ‖y‖) (writing x for x and y

for y). Thus we say that for any nonzero vectors x, y in a real inner
product space, the angle between them is the number

cos−1 〈x, y〉
‖x‖ ‖y‖ .

(Since in any case we make little use of this notion, we are restricting
ourselves to real spaces here. Certain difficulties arise with the analo-
gous idea for complex inner product spaces.) It is a consequence of the
Cauchy–Schwarz inequality that this angle always exists, because that
inequality states that −1 � 〈x, y〉 /(‖x‖ ‖y‖) � 1. By definition of the
inverse cosine function, the angle is in the interval [0, π].

However, this concept has little application in general. The major
exception is in the notion of orthogonality. If the ordinary vectors x, y
above are perpendicular (or orthogonal), then the angle between them
is π/2 and x · y = 0. The first statement in the following definition is a
natural generalisation of this.

Definition 8.2.1 Two vectors x, y in an inner product space X are
called orthogonal if 〈x, y〉 = 0. We then write x ⊥ y. A subset S of X

is called an orthogonal set in X if x ⊥ y for all x, y ∈ S (x �= y). If,
moreover, ‖x‖ = 1 for all x ∈ S, then S is called an orthonormal set
in X .

Notice that θ ⊥ x for any x in an inner product space. Clearly, y ⊥ x if
and only if x ⊥ y.
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The familiar unit vectors i, j, k of ordinary vector analysis provide an
example of an orthonormal set in R3. These vectors may of course also
be written as (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. Another example
of an orthonormal set in R3 is{(

1√
3
,

1√
3
,

1√
3

)
,

(−1√
2
,

1√
2
, 0
)

,

(−1√
6
,
−1√

6
,

2√
6

)}
.

In the inner product space l2, an example of an orthonormal set is
{(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . . }. Any subset of this set is
also an orthonormal set in l2.

The set {cos t, cos 2t, cos 3t, . . . } (−π � t � π) of functions in the real
inner product space C2[−π, π] is an orthogonal set, since

〈cosmt, cosnt〉 =
∫ π

−π

cosmt cosnt dt =

{
π, m = n,

0, m �= n,

for m, n ∈ N. Clearly the set is orthonormal once each member is
divided by

√
π. A ‘bigger’ orthogonal set in the same space is the set

{1, sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t, . . . } (−π � t � π) and of course
any subset of this set will again be an orthogonal set in C2[−π, π].

Before moving on now to some general results, we need to extend parts
of Definition 1.11.3, dealing with linear independence and the span of a
set of vectors, so that those notions may be applied to infinite sets of
vectors.

Definition 8.2.2 Let S be a nonempty set of vectors in a vector
space V .

(a) The set S is called linearly independent if every finite subset of it
is linearly independent in the original sense.

(b) The span of S, denoted by SpS, is the subspace of V consisting
of all linear combinations of finite numbers of vectors in S.

In (b), it is easy to verify that Sp S is indeed a subspace of V , in satis-
faction of Definition 1.11.2.

As an example, in the real vector space C[a, b], consider the infinite
set S = {1, t, t2, t3, . . . } (a � t � b). This is linearly independent,
since a linear combination of finitely many vectors in S is a polynomial
function on [a, b], and this is the zero function on [a, b] only when all
coefficients are 0. The span of S is the subspace of C[a, b] consisting of
all polynomial functions defined on [a, b].
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From the next two results, we will be assured that a finite-dimensional
inner product space always has a basis which is an orthonormal set.

Theorem 8.2.3 An orthogonal set of nonzero vectors in an inner prod-
uct space is linearly independent.

To prove this, let S be the orthogonal set and let {x1, x2, . . . , xn} be
an arbitrary finite subset of S. The result will follow when we show that
this subset is linearly independent. Suppose that

α1x1 + α2x2 + · · · + αnxn = θ

for some scalars α1, α2, . . . , αn. We take the inner product of both sides
with xk for k = 1, 2, . . . , n in turn, obtaining

〈α1x1 + α2x2 + · · · + αnxn, xk〉 = 〈θ, xk〉 = 0.

Expanding the left-hand side,

α1 〈x1, xk〉 + α2 〈x2, xk〉 + · · · + αn 〈xn, xk〉 = 0.

But {x1, x2, . . . , xn} is an orthogonal set and xk �= θ for any k, so only
one of the inner products on the left is nonzero, namely 〈xk, xk〉. Thus
we have αk 〈xk, xk〉 = 0, which implies that αk = 0. Since this is true
for all k = 1, 2, . . . , n, the set {x1, x2, . . . , xn} is linearly independent,
as required.

Theorem 8.2.4 If S is a linearly independent countable set of vectors
in an inner product space X, then there exists an orthogonal set T in X

such that SpT = SpS.

To relate this to the introductory comment, we consider the special
case in which S is a basis for X (implying that S is a finite set and that
X is finite-dimensional). Then Sp S = X . Conceivably, the set T of the
theorem includes the zero vector θ of X , but if that is the case then it
is clear that Sp(T \{θ}) = SpT . In either case, we have an orthogonal
set of nonzero vectors which, by the theorem, spans X . But that set is
linearly independent by Theorem 8.2.3, and hence is a basis for X .

The theorem says somewhat more than this, in that X need not be
finite-dimensional and S need not be a finite set. In the proof, we
actually construct the set T from the given set S. The method is known
as the Gram–Schmidt orthonormalisation process.

We suppose that S is an infinite set, so we may write S = {x1, x2, . . . }.
If S is a finite set, the procedure described below is clearly equally valid.
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x1 = z1

z2, such
that z2 ⊥ z1

α21z1

x2

Figure 13

We will construct first an orthogonal set {z1, z2, . . . } in X that spans
the same subspace as S does and will then set yk = zk/‖zk‖, for each
k ∈ N. (The construction will ensure that ‖zk‖ �= 0.) Then ‖yk‖ = 1
for each k and {y1, y2, . . . } will be our orthonormal set T such that
SpT = SpS. We proceed step by step to indicate the general method.

First we set z1 = x1, and then z2 = x2 + α21z1, where α21 is a scalar
to be chosen such that 〈z2, z1〉 = 0. This requires 〈x2 + α21z1, z1〉 = 0,
or 〈x2, z1〉 + α21 〈z1, z1〉 = 0, so that we take

α21 = −〈x2, z1〉
‖z1‖2

.

We cannot have ‖z1‖ = 0, for then x1 = z1 = θ and a linearly indepen-
dent set of vectors, such as S, cannot include the zero vector. Thus z2

is a certain linear combination of x2 and z1, that is, of x2 and x1. The
significance of α21 is indicated in Figure 13.

We next set z3 = x3 + α32z2 + α31z1, and will choose α32 and α31

so that 〈z3, z1〉 = 0 and 〈z3, z2〉 = 0. To have 〈z3, z1〉 = 0, we require
〈x3 + α32z2 + α31z1, z1〉 = 0, or

〈x3, z1〉 + α32 〈z2, z1〉 + α31 〈z1, z1〉 = 0;

but 〈z2, z1〉 = 0 by construction, so

α31 = −〈x3, z1〉
‖z1‖2

.

To have 〈z3, z2〉 = 0, we require 〈x3 + α32z2 + α31z1, z2〉 = 0, or

〈x3, z2〉 + α32 〈z2, z2〉 + α31 〈z1, z2〉 = 0
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and so

α32 = −〈x3, z2〉
‖z2‖2

.

We cannot have ‖z2‖ = 0, for then z2 = x2 + α21z1 = x2 + α21x1 = θ so
that x2 = −α21x1. This is not possible since x1 and x2 are vectors in a
linearly independent set.

We now have enough to suggest the general approach. We write
z1 = x1 and

zn = xn +
n−1∑
k=1

αnkzk, n = 2, 3, . . . ,

and verify by induction that if

αnk = −〈xn, zk〉
‖zk‖2

,

then 〈zn, zm〉 = 0 for m, n ∈ N (m �= n). As above, we cannot have
‖zk‖ = 0 for any k since this would imply that {x1, x2, . . . , xk} is a lin-
early dependent set of vectors. The induction argument is as follows. We
have already settled the first few cases. Now suppose that 〈zk, zm〉 = 0
for all integer values of k and m from 1 to n−1 (k �= m). Then we have,
for any m = 1, 2,. . . , n − 1,

〈zn, zm〉 =
〈

xn +
n−1∑
k=1

αnkzk, zm

〉

= 〈xn, zm〉 +
n−1∑
k=1

αnk 〈zk, zm〉

= 〈xn, zm〉 + αnm 〈zm, zm〉

= 〈xn, zm〉 − 〈xn, zm〉
‖zm‖2

‖zm‖2

= 0.

Hence {z1, z2, . . . } is an orthogonal set in X . It is clear that each vec-
tor zn is a linear combination of x1, x2, . . . , xn and that each vector xn

is a linear combination of z1, z2, . . . , zn. It follows that SpT = SpS,
completing the proof of Theorem 8.2.4.

The construction used in this proof is perhaps as important as the
theorem itself. So much so, that we will state it more explicitly.
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Theorem 8.2.5 Let {x1, x2, . . . } be a linearly independent set of vectors
in an inner product space. Put

z1 = x1, zn = xn −
n−1∑
k=1

〈xn, zk〉
‖zk‖2

zk, for n = 2, 3, . . . ,

and yn = zn/‖zn‖ for each n. Then {y1, y2, . . . } is an orthonormal set
in the space.

The Gram–Schmidt orthonormalisation process may be applied to the
basic power functions {tk : k = 0, 1, . . . , a � t � b} in the real inner
product space C2[a, b]. When a = −1, b = 1, the polynomial functions
that result are known as the Legendre polynomials. Denoting these by
P0, P1, . . . , they are therefore such that∫ 1

−1

Pj(t)Pk(t) dt = 0, j �= k;
∫ 1

−1

(Pk(t))2 dt = 1.

The calculations for the first few Legendre polynomials are left as an
exercise, being a little simpler than those in the example we will shortly
do. The first five are

P0(t) =
√

2
2

,

P1(t) =
√

6
2

t,

P2(t) =
√

10
4

(3t2 − 1),

P3(t) =
√

14
4

(5t3 − 3t),

P4(t) =
3
√

2
16

(35t4 − 30t2 + 3),

all on [−1, 1].
The Legendre polynomials are one instance of a number of sets of

polynomial functions that have received much attention. All of these
arise as particular cases of a different definition for the inner product
on the set of continuous functions on [a, b]. Let w be a given integrable
function defined on (a, b), and such that w(t) > 0 for all t ∈ (a, b). It is
easily verified that

〈x, y〉 =
∫ b

a

w(t)x(t)y(t) dt

defines an inner product for continuous functions x, y on [a, b]. The
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resulting real inner product space is said to have weight function w. We
will denote it by Cw[a, b]. Thus C2[a, b] = Cw[a, b] with w(t) = 1.

The various sets of polynomial functions just referred to are the results
of taking different weight functions with special values for a and b. We
will take

a = −1, b = 1, w(t) =
1√

1 − t2
, −1 < t < 1,

and will now apply the Gram–Schmidt process to the functions 1, t,
t2, . . . , −1 � t � 1.

Use the notation of Theorem 8.2.5. For k ∈ N, define functions xk by
xk(t) = tk−1, −1 � t � 1. Then z1 = x1 and

z2 = x2 − 〈x2, z1〉
‖z1‖2

z1.

Now,

‖z1‖2 =
∫ 1

−1

dt√
1 − t2

= 2
[
sin−1 t

]1
0

= π,

while

〈x2, z1〉 =
∫ 1

−1

w(t)x2(t)z1(t) dt =
∫ 1

−1

t dt√
1 − t2

= 0,

since the integrand is an odd function (a common argument, used often
below). Thus z2 = x2, or z2(t) = t, −1 � t � 1. Next,

z3 = x3 − 〈x3, z1〉
‖z1‖2

z1 − 〈x3, z2〉
‖z2‖2

z2,

and

〈x3, z1〉 =
∫ 1

−1

t2 dt√
1 − t2

=
∫ π/2

−π/2

sin2 φdφ =
π

2
[t = sin φ],

‖z2‖2 =
∫ 1

−1

t2 dt√
1 − t2

=
π

2
,

〈x3, z2〉 =
∫ 1

−1

t3 dt√
1 − t2

= 0.

Thus

z3(t) = x3(t) − π/2
π

z1(t) − 0 = t2 − 1
2
, −1 � t � 1.
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Next,

z4 = x4 − 〈x4, z1〉
‖z1‖2

z1 − 〈x4, z2〉
‖z2‖2

z2 − 〈x4, z3〉
‖z3‖2

z3,

and

〈x4, z1〉 =
∫ 1

−1

t3 dt√
1 − t2

= 0,

〈x4, z2〉 =
∫ 1

−1

t4 dt√
1 − t2

=
∫ π/2

−π/2

sin4 φdφ =
3π

8
,

‖z3‖2 =
∫ 1

−1

(t2 − 1
2 )2√

1 − t2
dt =

∫ 1

−1

t4 − t2 + 1
4√

1 − t2
dt =

3π

8
− π

2
+

π

4
=

π

8
,

〈x4, z3〉 =
∫ 1

−1

t3(t2 − 1
2 )√

1 − t2
dt = 0.

Thus

z4(t) = x4(t) − 0 − 3π/8
π/2

z2(t) − 0 = t3 − 3
4
t, −1 � t � 1.

Also,

‖z4‖2 =
∫ 1

−1

(t3 − 3
4 t)2√

1 − t2
dt =

∫ 1

−1

t6 − 3
2 t4 + 9

16 t2√
1 − t2

dt

=
∫ π/2

−π/2

sin6 φdφ − 9π

16
+

9π

32
=

5π

16
− 9π

32
=

π

32
.

The first four required polynomial functions, orthonormal in this space
Cw[−1, 1], are yn = zn/‖zn‖, for n = 1, 2, 3, 4. That is,

y1(t) =

√
1
π

,

y2(t) =

√
2
π

t,

y3(t) =

√
8
π

(
t2 − 1

2

)
=

√
2
π

(2t2 − 1),

y4(t) =

√
32
π

(
t3 − 3

4
t

)
=

√
2
π

(4t3 − 3t),

all on [−1, 1].
It will be observed that y1, . . . , y4 here are multiples of the Chebyshev

polynomials T0, . . . , T3 of Section 6.7. Those polynomials were defined
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by

Tn(t) = cosnθ where t = cos θ, n = 0, 1, . . . .

We can show in general that the polynomials Tn are orthogonal in the
space Cw[−1, 1] (with w(t) = 1/

√
1 − t2 ) by noting that

∫ π

0

cosmθ cosnθ dθ =


π, m = n = 0,
π

2
, m = n �= 0,

0, m �= n.

Substituting t = cos θ, we have

〈Tm, Tn〉 =
∫ 1

−1

Tm(t)Tn(t)√
1 − t2

dt =


π, m = n = 0,
π

2
, m = n �= 0,

0, m �= n.

It is clear that with the factors
√

1/π,
√

2/π, as in y1, . . . , y4, the
Chebyshev polynomials are orthonormal.

Thus the Gram–Schmidt orthonormalisation process applied to the
powers 1, t, t2, . . . leads to the Legendre polynomials in C2[−1, 1]
and the Chebyshev polynomials in Cw[−1, 1] (with w(t) = 1/

√
1 − t2 ).

These are included in the following table detailing various classes of or-
thonormal polynomials that have been studied. (Where the table implies
a = −∞, say, the inner product is to be defined in a natural way by
a certain improper integral. There will be no problems concerning the
convergence of the integrals or the verification of (IP1) to (IP4).)

a b w(t) Name

−1 1 1 Legendre polynomials
−1 1 1/

√
1 − t2 Chebyshev polynomials

−1 1
√

1 − t2 Chebyshev polynomials
(of the second kind)

−1 1 (1 − t)λ(1 + t)µ; λ, µ > −1 Jacobi polynomials
0 ∞ tλe−t, λ > −1 Laguerre polynomials

−∞ ∞ e−t2 Hermite polynomials

8.3 Least squares approximation

In Section 6.6, we considered the problem of best approximation in a
normed space. In Theorem 6.6.3, we stated that a unique solution exists
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to this problem when the space is strictly convex. (Recall that a normed
space X is strictly convex if, whenever ‖x + y‖ = ‖x‖ + ‖y‖, x, y ∈ X ,
x �= θ, y �= θ, we must have x = βy for some number β > 0.) It is
therefore very pleasing that we can show that any inner product space
is strictly convex. This is the content of our first theorem below. We then
deduce a simple formula that gives the best approximation and apply this
in a further discussion of least squares polynomial approximations. The
term least squares approximation is used generally for approximation
problems in inner product spaces, for a reason that will become apparent.

Theorem 8.3.1 Inner product spaces are strictly convex.

Let X be an inner product space and suppose ‖x + y‖ = ‖x‖ + ‖y‖
for some nonzero vectors x, y ∈ X . To prove the theorem, we must show
that x − βy = θ for some number β > 0. Since

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= ‖x‖2 + 2 Re 〈x, y〉 + ‖y‖2

and

(‖x‖ + ‖y‖)2 = ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2,

the condition ‖x + y‖ = ‖x‖+‖y‖ implies that Re 〈x, y〉 = ‖x‖ ‖y‖. But
then, using the Cauchy–Schwarz inequality,

‖x‖ ‖y‖ = Re 〈x, y〉 � | 〈x, y〉 | � ‖x‖ ‖y‖,
so we must have | 〈x, y〉 | = ‖x‖ ‖y‖. It follows (see the proof of Theo-
rem 8.1.2) that ∥∥∥∥x − 〈x, y〉

‖y‖2
y

∥∥∥∥2 = ‖x‖2 − | 〈x, y〉 |2
‖y‖2

= 0,

and hence we take β = 〈x, y〉 /‖y‖2, completing the proof. (Note that β

is real and positive, since Re 〈x, y〉 = | 〈x, y〉 | = ‖x‖ ‖y‖ > 0.)

As indicated, we can now invoke Theorem 6.6.3. We do that in the
next theorem, in which we show also how to obtain the best approxima-
tion.

Theorem 8.3.2 A finite-dimensional subspace S of an inner product
space X contains a unique best approximation of any point x ∈ X. If
{y1, y2, . . . , yn} is a basis for S and is orthonormal, then the best ap-
proximation of x is

∑n
k=1 〈x, yk〉 yk.
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We are assuming of course that the subspace S has dimension n. The
existence of a basis {y1, . . . , yn} that is an orthonormal set in X is a
consequence of Theorem 8.2.4, because, given any basis, such a basis
can be obtained by the Gram–Schmidt process, Theorem 8.2.5.

For the second statement of the theorem, take any point
∑n

k=1 αkyk

(α1, . . . , αn ∈ C) in S. Then∥∥∥∥x −
n∑

k=1

αkyk

∥∥∥∥2 =
〈

x −
n∑

k=1

αkyk, x −
n∑

k=1

αkyk

〉

= 〈x, x〉 −
〈

x,

n∑
k=1

αkyk

〉
−
〈 n∑

k=1

αkyk, x

〉

+
〈 n∑

k=1

αkyk,

n∑
j=1

αjyj

〉

= ‖x‖2 −
n∑

k=1

αk 〈x, yk〉 −
n∑

k=1

αk〈x, yk〉 +
n∑

k=1

αkαk,

since 〈yk, yj〉 = 0 when j �= k and 〈yk, yk〉 = 1. For any complex
numbers z1 and z2, we have

|z1 − z2|2 = (z1 − z2)(z1 − z2) = |z1|2 − z1z2 − z1z2 + |z2|2,

so∥∥∥∥x −
n∑

k=1

αkyk

∥∥∥∥2 =
n∑

k=1

(
|αk|2 − αk〈x, yk〉 − αk 〈x, yk〉 + | 〈x, yk〉 |2

)
+ ‖x‖2 −

n∑
k=1

| 〈x, yk〉 |2

=
n∑

k=1

|αk − 〈x, yk〉 |2 + ‖x‖2 −
n∑

k=1

| 〈x, yk〉 |2.

Clearly, the final expression is least when we choose αk = 〈x, yk〉 for
each k. Since our problem is to find p ∈ S such that ‖x − p‖ is a
minimum, we conclude that

p =
n∑

k=1

〈x, yk〉 yk,

as required.
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Because the solution p here is unique, the same point would have been
obtained whatever orthonormal basis we began with. Thus

n∑
k=1

〈x, yk〉 yk =
n∑

k=1

〈x, y′
k〉 y′

k

for any orthonormal sets {y1, . . . , yn}, {y′
1, . . . , y

′
n} spanning the same

subspace of an inner product space X , when x ∈ X . This is not an easy
result to prove if we do not take into account that either expression gives
the best approximation of x in the subspace.

The next theorem is a direct consequence of these calculations.

Theorem 8.3.3 If {y1, y2, . . . , yn} is an orthonormal set in an inner
product space X, and x ∈ X, then

n∑
k=1

| 〈x, yk〉 |2 � ‖x‖2.

This is known as Bessel’s inequality. To prove it, we simply note that

0 �
∥∥∥∥x −

n∑
k=1

〈x, yk〉 yk

∥∥∥∥2 = ‖x‖2 −
n∑

k=1

| 〈x, yk〉 |2.

Theorem 8.3.2 has a simple geometric interpretation. Consider Fig-

ure 14, in which we want the best approximation of
−→
OX (in R3) by a
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vector in the horizontal plane (the subspace of R3 in which all vectors

have third component 0, shown shaded). The vectors
−→
OA,

−→
OB span this

plane, and from them are constructed orthonormal vectors
−→
OL,

−→
OM .

The required best approximation of
−→
OX is

−→
OT since any other vector

from X to the plane has length exceeding |
−→
XT |. We obtain

−→
OT as

−→
OR +

−→
RT ( =

−→
OR +

−→
OS), where

−→
OR is the projection of

−→
OX on

−→
OL

and
−→
OS is the projection of

−→
OX on

−→
OM . From ordinary vector algebra,

−→
OR = (

−→
OX ·

−→
OL)

−→
OL and

−→
OS = (

−→
OX ·

−→
OM)

−→
OM , so

−→
OT = (

−→
OX ·

−→
OL)

−→
OL + (

−→
OX ·

−→
OM)

−→
OM,

which is precisely the answer given by Theorem 8.3.2. Bessel’s inequality
in this situation is also clear:

|
−→
OR|2 + |

−→
OS|2 = |

−→
OR|2 + |

−→
RT |2 = |

−→
OT |2

= |
−→
OX |2 − |

−→
XT |2 � |

−→
OX |2.

In practice, a common method for determining the best least squares
approximation is indicated in the following theorem. The need to con-
struct an orthonormal basis is avoided.

Theorem 8.3.4 Let {x1, x2, . . . , xn} be a basis for a subspace S of an
inner product space X. Let x ∈ X be given. If

∑n
k=1 βkxk is the best

least squares approximation in S of x, then

n∑
k=1

βk 〈xk, xi〉 = 〈x, xi〉 , i = 1, 2, . . . , n.

These equations, called the normal equations, are a system of n linear
equations in n unknowns, from which the coefficients β1, . . . , βn may be
obtained.

To prove the theorem, let {y1, . . . , yn} be an orthonormal basis for S,
so that

∑n
k=1 〈x, yk〉 yk is another expression for the best least squares

approximation in S of x. Note that, for any j = 1, 2, . . . , n,〈
x −

n∑
k=1

〈x, yk〉 yk, yj

〉
= 〈x, yj〉 −

n∑
k=1

〈x, yk〉 〈yk, yj〉

= 〈x, yj〉 − 〈x, yj〉 = 0.
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Then, if xi =
∑n

j=1 γijyj gives xi (i = 1, . . . , n) as a linear combination
of y1, . . . , yn,〈

x −
n∑

k=1

〈x, yk〉 yk, xi

〉
=
〈

x −
n∑

k=1

〈x, yk〉 yk,
n∑

j=1

γijyj

〉

=
n∑

j=1

γij

〈
x −

n∑
k=1

〈x, yk〉 yk, yj

〉
= 0,

so that 〈x −∑n
k=1 βkxk, xi〉 = 0 for any i = 1, . . . , n. Hence

〈x, xi〉 −
n∑

k=1

βk 〈xk, xi〉 = 0, i = 1, . . . , n,

as we wished to show.

As an illustration of this theorem, we will obtain the best least squares
linear approximation to the function sin on [0, π/2]. This will be a
function whose graph is the line y = β1 + β2t, shown in Figure 12, at
the end of Chapter 6. Relating this problem to Theorem 8.3.4, we are
considering the function sin ∈ C2[0, π/2] and approximating it in the
subspace spanned by {x1, x2}, where x1(t) = 1, x2(t) = t, 0 � t � π/2.
By that theorem, the best least squares approximation in this subspace
is β1x1 + β2x2, where

β1 〈x1, x1〉 + β2 〈x2, x1〉 = 〈sin, x1〉 ,

β1 〈x1, x2〉 + β2 〈x2, x2〉 = 〈sin, x2〉 .

Now,

〈x1, x1〉 =
∫ π/2

0

(x1(t))2 dt =
∫ π/2

0

dt =
π

2
,

〈x2, x1〉 =
∫ π/2

0

x2(t)x1(t) dt =
∫ π/2

0

t dt =
1
2

(π

2

)2
,

〈x2, x2〉 =
∫ π/2

0

(x2(t))2 dt =
∫ π/2

0

t2 dt =
1
3

(π

2

)3
,

〈sin, x1〉 =
∫ π/2

0

sin(t)x1(t) dt =
∫ π/2

0

sin t dt = 1,

〈sin, x2〉 =
∫ π/2

0

sin(t)x2(t) dt =
∫ π/2

0

t sin t dt = 1.
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The system of equations becomes

π

2
β1 +

π2

8
β2 = 1,

π2

8
β1 +

π3

24
β2 = 1,

from which

β1 =
8π − 24

π2
, β2 =

96 − 24π

π3
.

The line y = β1x1(t) + β2x2(t) is thus y = 8(π − 3)/π2 + 24(4− π)t/π3,
as stated in Solved Problem 6.9(2).

8.4 The Riesz representation theorem

As another application of the Gram–Schmidt orthonormalisation pro-
cess, we will prove an important result known as the Riesz representa-
tion theorem. This gives us a characterisation, or representation, of the
set of all linear functionals on a finite-dimensional inner product space.
It will be recalled (Definition 7.3.1) that a linear functional on such a
space X is a linear mapping from X into C, the set of scalars for X . (If
X is a real inner product space, only minor changes need to be made to
what follows.)

Let v ∈ X be some fixed vector. An example of a linear functional
on X is the mapping f given by

f(x) = 〈x, v〉 , x ∈ X.

Since inner products of points in X are complex numbers, this is indeed
a functional. It is linear, because

f(α1x1 + α2x2) = 〈α1x1 + α2x2, v〉
= α1 〈x1, v〉 + α2 〈x2, v〉 = α1f(x1) + α2f(x2),

for any x1, x2 ∈ X and α1, α2 ∈ C. The Riesz theorem says that there
are in fact no other types of linear functionals on a finite-dimensional
inner product space: any linear functional on the space X above must
have the form 〈x, w〉 for some unique point w ∈ X . Specifically:

Theorem 8.4.1 (Riesz Representation Theorem) Let X be a finite-
dimensional inner product space and let f be a linear functional on X.
Then there exists a unique point v ∈ X such that f(x) = 〈x, v〉 for all
x ∈ X.
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The proof follows. Suppose the dimension of X is n and that the
set {x1, x2, . . . , xn} is a basis for X . By virtue of the Gram–Schmidt
orthonormalisation process, we may assume that this is an orthonormal
set, for if it were not then the process would allow us to construct another
basis which was an orthonormal set. Consider the vector

v =
n∑

k=1

f(xk)xk

and define a functional fv on X by fv(x) = 〈x, v〉. As above, fv is linear.
We will show that the functionals f and fv coincide: f(x) = fv(x) for
all x ∈ X . We note first that for any basis vector xj we have

fv(xj) = 〈xj , v〉 =
〈

xj ,

n∑
k=1

f(xk)xk

〉
=

n∑
k=1

f(xk) 〈xj , xk〉 = f(xj),

since 〈xj , xk〉 = 0 for k �= j and 〈xj , xj〉 = ‖xj‖2 = 1. Thus fv and f

agree for any basis vector. Then, for any x =
∑n

k=1 αkxk ∈ X ,

fv(x) = fv

( n∑
k=1

αkxk

)
=

n∑
k=1

αkfv(xk)

=
n∑

k=1

αkf(xk) = f

( n∑
k=1

αkxk

)
= f(x).

Thus, fv and f indeed coincide on X . It remains to show that no vector
other than v has the same effect. To do this, suppose u ∈ X is such that
f(x) = 〈x, u〉 = 〈x, v〉 for all x ∈ X . Then we have 〈x, u − v〉 = 0 for
all x ∈ X . In particular, then 〈u − v, u − v〉 = 0, so u − v = θ. That is,
u = v so v is unique and this completes the proof.

The following is a simple consequence of this theorem.

Theorem 8.4.2 All linear functionals on finite-dimensional inner prod-
uct spaces are bounded.

We now know that if f is a linear functional on a finite-dimensional
space X , then there is a point v ∈ X such that f(x) = 〈x, v〉 for all
x ∈ X . But then, by the Cauchy–Schwarz inequality (Theorem 8.1.2),

|f(x)| = | 〈x, v〉 | � ‖x‖ ‖v‖
so f is bounded.

We can say more. The inequality |f(x)| � ‖v‖ ‖x‖ implies that
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‖f‖ � ‖v‖. In fact, we show that ‖f‖ = ‖v‖. This is seen by noting
that |f(v)| = | 〈v, v〉 | = ‖v‖2 so that we cannot have |f(x)| < ‖v‖ ‖x‖
for all x ∈ X .

There are many other versions of the Riesz representation theorem,
giving corresponding types of results in other spaces. We will deduce
another in connection with Hilbert space, later. The benefit in being
able to characterise a whole class of entities (in the above, the class of
all linear functionals on finite-dimensional inner product spaces) should
by now be recognised. The Riesz theorem, and a variation known as the
Riesz–Fréchet theorem, are the springboard for many important results
in advanced analysis and functional analysis.

8.5 Solved problems

(1) Find the best least squares quadratic approximation on [−1, 1] of
the function f , where

f(x) =
1

1 + x2
, −1 � x � 1.

(Equivalently, we could say: Find numbers a0, a1, a2 such that∫ 1

−1

(
1

1 + x2
− a0 − a1x − a2x

2

)2

dx

is a minimum.)

Solution. Since the Legendre polynomials P0, P1, . . . form an orthonor-
mal set in C2[−1, 1], Theorem 8.3.2 assures us that the best least squares
quadratic approximation of f on [−1, 1] is the function

g1 =
2∑

k=0

〈f, Pk〉Pk.

Then

g1(x) =
2∑

k=0

〈f, Pk〉Pk(x) =
2∑

k=0

Pk(x)
∫ 1

−1

Pk(t)
1 + t2

dt.

We need the integrals∫ 1

−1

dt

1 + t2
=

π

2
,

∫ 1

−1

t dt

1 + t2
= 0,

∫ 1

−1

t2 dt

1 + t2
= 2 − π

2
.
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Substituting the expressions for P0, P1, P2 in Section 8.2, we have

g1(x) =
√

2
2

· π

2
√

2
+ 0 +

√
10
4

(3x2 − 1) ·
√

10
4

(
3
(
2 − π

2

)
− π

2

)
=

3π

2
− 15

4
− 15

4
(π − 3)x2.

To three decimal places,

g1(x) = 0.962− 0.531x2.

Note that another method is available: find the normal equations as
in the example following Theorem 8.3.4.

The function g1 obtained here may be compared with the best uniform
quadratic approximation g2 of f , given by

g2(x) =
√

2
2

+
1
4
− 1

2
x2

= 0.957− 0.5x2, −1 � x � 1,

to three decimal places. This was obtained in Exercise 6.10(16)(a). The
best least squares Chebyshev quadratic approximation g3 of f is given
by

g3(x) =
7
√

2
2

− 4 − 2(3
√

2 − 4)x2

= 0.950 − 0.485x2, −1 � x � 1,

to three decimal places. This is obtained in the same way as the func-
tion g1, using the normalised Chebyshev polynomials y1, y2, y3, given to-
wards the end of Section 8.2, and the weight function w(t) = 1/

√
1 − t2,

−1 < t < 1. The integral∫ 1

−1

dx

(1 + x2)
√

1 − x2
=

π√
2

is required. The error functions Ek = f − gk, for k = 1, 2, 3, are plotted
in Figure 15.

(2) Let {x1, x2, . . . } be an (infinite) orthonormal set in an inner product
space X and let u be a given point in X . Define a sequence {un} in X

by

un =
n∑

k=1

〈u, xk〉xk, n ∈ N.

Show that {un} is a Cauchy sequence.
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0.06

−1 10

E3

E1

E3

E1

Figure 15

Solution. We need to consider ‖un − um‖. Taking n > m for definite-
ness,

‖un − um‖2 = 〈un − um, un − um〉

=
〈 n∑

k=m+1

〈u, xk〉 xk,

n∑
j=m+1

〈u, xj〉xj

〉

=
n∑

k=m+1

n∑
j=m+1

〈u, xk〉 〈u, xj〉 〈xk, xj〉

=
n∑

k=m+1

〈u, xk〉 〈u, xk〉

=
n∑

k=m+1

| 〈u, xk〉 |2,

using the fact that the set {x1, x2, . . . } is orthonormal in X . By Bessel’s
inequality (Theorem 8.3.3),

n∑
k=1

| 〈u, xk〉 |2 � ‖u‖2,

so the series
∑ | 〈u, xk〉 |2 converges. The result follows using Theo-

rem 1.8.2.
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8.6 Exercises

(1) For vectors in an inner product space, prove that

(a) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 , (b) 〈x, θ〉 = 0.

(2) Prove (f) in Section 8.1.
(3) For vectors in a complex inner product space, prove that

〈x, y〉 + 〈y, x〉 =
1
2
(‖x + y‖2 − ‖x − y‖2

)
and

〈x, y〉 − 〈y, x〉 =
i

2
(‖x + iy‖2 − ‖x − iy‖2

)
,

and hence deduce the polarisation identity:

〈x, y〉 =
1
4

4∑
k=1

ik‖x + iky‖2.

(4) Let X be a finite-dimensional vector space. Show that an inner
product may be defined for X .

(5) Let {xn}, {yn} be Cauchy sequences in an inner product space.
Prove that {〈xn, yn〉} is a convergent sequence in C.

(6) Let {y1, y2, . . . , yn} be a subset of an inner product space X and
suppose x ⊥ yk for some x ∈ X and all k = 1, . . . , n. Prove that
x ⊥∑n

k=1 αkyk for any scalars α1, . . . , αn.
(7) Let {xn} be a convergent sequence in an inner product space X ,

with lim xn = x. If there exists y ∈ X such that 〈xn, y〉 = 0 for
all n ∈ N, prove that 〈x, y〉 = 0.

(8) Let {xn}, {yn} be sequences in an inner product space such that
xn → θ and {yn} is bounded. Prove that 〈xn, yn〉 → 0.

(9) In an inner product space, show that if x and y are orthonormal
vectors, then x+y and x−y are orthogonal. Interpret this result
geometrically.

(10) Let X be an inner product space. If x, y ∈ X and x ⊥ y, prove
that ‖x + y‖2 = ‖x‖2 + ‖y‖2. More generally, if {x1, x2, . . . , xn}
is an orthogonal set in X , prove that∥∥∥∥ n∑

k=1

xk

∥∥∥∥2 =
n∑

k=1

‖xk‖2.

(These are the Pythagorean identities. They are generalisations
of Pythagoras’ theorem of ordinary geometry.)
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(11) Apply the Gram–Schmidt orthonormalisation process

(a) to the vectors (1, 1, 0), (1, 0, 1), (0, 1, 1) in R3 to find an
orthonormal basis for this space;

(b) to the vectors (1, 1, i), (1, i, 0), (i, 0, 0) in C3 to find an
orthonormal basis for this space;

(c) to find an orthonormal set of vectors that spans the same
subspace of R4 as the set

{(2, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0)}.

(12) (a) Verify that the first four Legendre polynomials P0, . . . , P3

are as given in Section 8.2.
(b) Find the first four Hermite polynomials. (Note: the inte-

gral
∫∞
−∞ e−t2 dt =

√
π will be required.)

(13) Find the linear function that is the best least squares approxima-
tion of the function

√
x on the interval (a) [0, 1], (b) [1, 4].

(14) Use Legendre polynomials to show that the best least squares
quadratic polynomial approximation of |x|, for −1 � x � 1, is
(3 + 15x2)/16.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(15) Let {xn} be a sequence in an inner product space X such that
‖xn‖ → ‖x‖ (in R) for some x ∈ X and 〈xn, x〉 → 〈x, x〉 (in C).
Prove that xn → x.

(16) For points in a real inner product space, show that 〈x, y〉 = 0 if
and only if ‖αx + y‖ � ‖y‖ for all real numbers α.

(17) For x, y, z in an inner product space, prove that

‖x − z‖ = ‖x − y‖ + ‖y − z‖

if and only if there is a real number a, 0 � a � 1, such that
y = ax + (1 − a)z.

(18) Let S be any nonempty subset of an inner product space X . The
set {x : x ∈ X , 〈x, y〉 = 0 for all y ∈ S} is called the annihilator
of S, denoted by S⊥. Prove that (a) {θ}⊥ = X , (b) whatever the
set S, the set S⊥ is a closed subspace of X .

(19) Carry out the calculations to find the function g3 in Solved Prob-
lem 8.5(1).
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(20) Let X be the vector space of all functions continuous on a closed
interval [a, b]. Define a mapping ( | ) on X × X by

(x | y) =
n∑

k=1

x(tk)y(tk), x, y ∈ X,

for some fixed n ∈ N and fixed points t1, t2, . . . , tn ∈ [a, b].

(a) Show that this does not define an inner product for X , but
the equation

ν(x) =
√

(x | x), x ∈ X,

defines a seminorm ν for X . (See Exercise 6.4(12).)
(b) Define orthogonality with respect to ( | ) on X as for

inner products. Take a = 0, b = 2π and prove that the
set {1, cos t, cos 2t, . . . , cos(N − 1)t} in X is orthogonal if
n = 2N and tk = kπ/N for k = 1, 2, . . . , n. (Hint:
Reduce the sum to a finite geometric series by use of the
identities cos(A + B) + cos(A − B) = 2 cosA cosB and
eiθ = cos θ + i sin θ.)

(Such seminorms and ‘inner products’ as in this exercise have
considerable application in approximation theory.)

(21) The n × n matrix (〈xj , xk〉) is called the Gram matrix of the
vectors x1, x2, . . . , xn in an inner product space. Show that
these vectors are linearly independent if and only if their Gram
matrix has nonzero determinant. (Hint: See Theorem 8.3.4.)
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Hilbert Space

9.1 Definition of Hilbert space

A Hilbert space has the same relationship to an inner product space as
a Banach space has to a normed space. Since any inner product space
is a normed space, the norm being determined by the inner product as
in Section 8.1, nothing new is involved in the notion of completeness for
an inner product space.

Definition 9.1.1 A complete inner product space is called a Hilbert
space.

It follows that every Hilbert space is also a Banach space, though the
converse is certainly not true: C[a, b] is a Banach space but not a
Hilbert space, since it is not even an inner product space. Any finite-
dimensional inner product space is complete (Theorem 6.5.4), so all
finite-dimensional inner product spaces are Hilbert spaces.

As a metric space, we have seen that C2[a, b] is not complete, and so it
cannot be complete as an inner product space. That is, C2[a, b] is not a
Hilbert space. As our main example of a Hilbert space, except for finite-
dimensional ones like Cn, we are thus left with the space l2. There is an
important analogue of the space C2[a, b], where the integral for the space
is developed in a different manner from the usual (Riemann) integral,
so that, as one consequence, the space turns out to be complete. The
Lebesgue integral is an example of such an integral, but its treatment is
beyond the scope of this book.

However, much of what follows will be valid for inner product spaces
in general, and, although we have only one example here of an infinite-
dimensional Hilbert space, there is plenty to discuss just with regard
to l2. This was in fact the space originally studied by David Hilbert,

281
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and it was attempts to generalise it that led to the notion of Hilbert
space.

An essential part of any discussion of Hilbert space is the idea of
separability. In Section 9.3, we will define what we mean by a separable
Hilbert space. It turns out that, in a sense to be made clear, l2 is in fact
the only separable Hilbert space. The function space that we alluded to
above, the analogue of C2[a, b], appears then as just a version of l2. It was
largely the realisation of this that showed that the original theories of
quantum mechanics, Heisenberg’s matrix formulation and Schrödinger’s
wave formulation, were equivalent.

9.2 The adjoint operator

In Section 8.4, we proved the Riesz representation theorem for finite-
dimensional inner product spaces. Our first aim here is to give the
corresponding theorem for Hilbert spaces. Then the knowledge that all
(bounded) linear functionals on a Hilbert space have a specific form will
gives rise to the highly important notion of an operator adjoint to a
given operator.

Theorem 9.2.1 If f is a bounded linear functional on a Hilbert space X,
then there exists a unique point v ∈ X such that f(x) = 〈x, v〉 for all
x ∈ X.

Note that here we require the functional to be bounded, whereas in
the former case boundedness was a consequence of the Riesz theorem.
In Section 7.3, we wrote X ′ to denote the space of all bounded linear
functionals on the normed space X , and called it the dual space of X .
This theorem therefore says that if X is a Hilbert space, then f ∈ X ′

only if f(x) = 〈x, v〉 for some v ∈ X and all x ∈ X . The converse
of Theorem 9.2.1 is also true, its proof being similar to the argument
following Theorem 8.4.2.

The proof of Theorem 9.2.1 is considerably more involved than that
for Theorem 8.4.1. We give it in a number of steps.

(a) As in the proof of Theorem 8.4.1, we can rest assured that if any
such point v can be found, then it will be unique.

(b) Recall (see Theorem 7.3.2) that the null space N(f) of f is the
subspace {x : x ∈ X, f(x) = 0}. Suppose N(f) = X . Then we may
take v = θ since f(x) = 0 = 〈x, θ〉 for all x ∈ X . Therefore, for the rest
of the proof we suppose that N(f) �= X .
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(c) We need the following result. Given a closed subspace S of a Hilbert
space X and a point x ∈ X, there exists a point p ∈ S such that ‖p − x‖
is a minimum. (This has separate applications in approximation theory.
Compare it with Theorem 4.3.3.)

For the proof, we set d = infy∈S ‖y − x‖. By definition of greatest
lower bound, there must be a sequence {yn} in S such that ‖yn − x‖ → d.
By Theorem 8.1.3 (the parallelogram law), for any m, n ∈ N,

‖(yn − x) + (ym − x)‖2 + ‖(yn − x) − (ym − x)‖2

= 2‖yn − x‖2 + 2‖ym − x‖2,

from which

‖yn − ym‖2 = 2‖yn − x‖2 + 2‖ym − x‖2 − 4
∥∥∥∥yn + ym

2
− x

∥∥∥∥2.
Since S is a subspace of X , we must have 1

2 (yn + ym) ∈ S, and therefore
‖ 1

2 (yn + ym) − x‖ � d. Then

‖yn − ym‖2 � 2‖yn − x‖2 + 2‖ym − x‖2 − 4d2 < ε

for any ε > 0, provided m and n are large enough. Hence {yn} is a
Cauchy sequence which, since X is complete (being a Hilbert space),
must converge. Set p = lim yn. Since S is closed, we have p ∈ S.
Finally, since ‖ ‖ is a continuous mapping on X (Exercise 6.4(3)(c)),

‖p− x‖ = ‖lim yn − x‖ = lim ‖yn − x‖ = d,

and our result is proved.
(d) Since f is bounded it is continuous, and so, by Theorem 7.3.2, the

subspace N(f) of X is closed. We have assumed N(f) �= X . Choose a
point x ∈ X such that x /∈ N(f). By (c), there is a point p ∈ N(f) such
that ‖p− x‖ = d = miny∈N(f) ‖y − x‖. Put w = p− x. We cannot have
w = θ, for then p = x; but p ∈ N(f) and x /∈ N(f). We will show that
w ⊥ z for every z ∈ N(f).

Take any particular point z ∈ N(f), z �= θ, and any scalar α. Then
p + αz ∈ N(f), and

‖w + αz‖ = ‖(p + αz) − x‖ � d = ‖w‖.
Therefore,

0 � ‖w + αz‖2 − ‖w‖2 = 〈w + αz, w + αz〉 − 〈w, w〉
= α 〈w, z〉 + α 〈z, w〉 + |α|2‖z‖2.
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In particular, with α = −〈w, z〉 /‖z‖2, we have

0 � −〈w, z〉
‖z‖2

〈w, z〉 − 〈w, z〉
‖z‖2

〈z, w〉 +
| 〈w, z〉 |2
‖z‖4

‖z‖2 = −| 〈w, z〉 |2
‖z‖2

.

Clearly, this can only be possible if 〈w, z〉 = 0.
(e) To complete the proof of Theorem 9.2.1, we let w be a point in X

such that w �= θ and w ⊥ z for every z ∈ N(f). This is in accord
with (d). Put

v =
f(w)w
‖w‖2

.

It is a matter of verifying now that f(x) = 〈x, v〉 for all x ∈ X . We need
to observe that, for any x ∈ X , we have f(x)w − f(w)x ∈ N(f), since

f(f(x)w − f(w)x) = f(x)f(w) − f(w)f(x) = 0.

Then w ⊥ (f(x)w − f(w)x), or

0 = 〈f(x)w − f(w)x, w〉 = f(x)‖w‖2 − f(w) 〈x, w〉 .

It follows that

f(x) − 〈x, v〉 = f(x) −
〈

x,
f(w)w
‖w‖2

〉
= f(x) − f(w)

‖w‖2
〈x, w〉 = 0,

and the proof is finished.

The notion of an adjoint operator is arrived at as follows.
We take any operator A mapping a Hilbert space X into a Hilbert

space Y . Thus A ∈ B(X, Y ), as defined in Section 7.2. To avoid con-
fusion, we will write the inner products for X and Y as 〈 , 〉X and
〈 , 〉Y , respectively. Let y be an arbitrary fixed point in Y and define
a functional f on X by

f(x) = 〈Ax, y〉Y , x ∈ X.

It is easy to check that f is linear. Moreover, f is bounded since

|f(x)| = | 〈Ax, y〉Y | � ‖Ax‖ ‖y‖ � (‖A‖ ‖y‖)‖x‖,
using the Cauchy–Schwarz inequality (Theorem 8.1.2). Then Theo-
rem 9.2.1, above, may be employed: there must exist a unique point
v ∈ X such that f(x) = 〈x, v〉X for all x ∈ X . Hence we can write

〈Ax, y〉Y = 〈x, v〉X
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for some v ∈ X and all x ∈ X . The point v ∈ X is determined by
the choice of the point y ∈ Y . Let A∗ be the mapping from Y into X

which associates v ∈ X with y ∈ Y . That is, A∗ : Y → X is defined by
A∗y = v, where 〈Ax, y〉Y = 〈x, v〉X for all x ∈ X . This mapping A∗ is
called the adjoint of the operator A. We will repeat this below, after
showing that A∗ is also linear and bounded.

For y1, y2 ∈ Y , suppose A∗y1 = v1, A∗y2 = v2. Take α1, α2 ∈ C and
set A∗(α1y1 + α2y2) = w. Then, for any x ∈ X ,

〈x, w〉X = 〈Ax, α1y1 + α2y2〉Y
= α1 〈Ax, y1〉Y + α2 〈Ax, y2〉Y
= α1 〈x, v1〉X + α2 〈x, v2〉X
= 〈x, α1v1 + α2v2〉X ,

so that, as in the uniqueness part of the proof of Theorem 8.4.1, we have
w = α1v1 + α2v2. That is,

A∗(α1y1 + α2y2) = α1A
∗y1 + α2A

∗y2

so A∗ is linear. To show that A∗ is bounded, we reintroduce the func-
tional f above. As we did following the proof of Theorem 8.4.2, we can
show that ‖f‖ = ‖v‖. Also, from the above, we have ‖f‖ � ‖A‖ ‖y‖,
where A∗y = v. Hence, for any y ∈ Y ,

‖A∗y‖ = ‖v‖ = ‖f‖ � ‖A‖ ‖y‖.
This shows that A∗ is bounded and that ‖A∗‖ � ‖A‖.

We are therefore justified in calling A∗ an operator in the following
definition.

Definition 9.2.2 If X and Y are Hilbert spaces, the adjoint of the
operator A ∈ B(X, Y ) is the operator A∗ ∈ B(Y, X) determined by
the equation

〈Ax, y〉Y = 〈x, A∗y〉X , x ∈ X, y ∈ Y.

When Y = X , we call the operator A self-adjoint if A∗ = A.

For a self-adjoint operator A on a Hilbert space X it is clear that
〈Ax, y〉X = 〈x, Ay〉X for all x, y ∈ X .

Just above, we showed that ‖A∗‖ � ‖A‖ for any operator A between
Hilbert spaces. We will show now that in fact ‖A∗‖ = ‖A‖. By A∗∗

below, we mean the adjoint of the operator A∗.
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Theorem 9.2.3 For any operator A between Hilbert spaces, we have
A∗∗ = A and ‖A∗‖ = ‖A‖.

Let A map X into Y . Using the definition of an adjoint operator
twice, we have

〈y, Ax〉Y = 〈Ax, y〉Y = 〈x, A∗y〉X = 〈A∗y, x〉X = 〈y, A∗∗x〉Y ,

for all x ∈ X and y ∈ Y . Hence Ax = A∗∗x for all x ∈ X , so A∗∗ = A,
as required. Furthermore, as well as the inequality ‖A∗‖ � ‖A‖, we now
also have ‖A‖ = ‖A∗∗‖ � ‖A∗‖, so ‖A∗‖ = ‖A‖.

A vast amount of theory has been developed for adjoint operators,
self-adjoint operators and associated concepts. In particular, the ideas
have been extended to include unbounded mappings. As an indication
of the need for this theory, we mention that in quantum mechanics, for
example, all the mappings that are associated with observable quantities
are self-adjoint.

We have previously referred briefly to the eigenvalues of a mapping:
for any linear mapping A from a vector space X into itself, a scalar λ is
an eigenvalue of A if there is a nonzero vector x ∈ X such that Ax = λx;
and then x is an eigenvector of A corresponding to the eigenvalue λ. If
the mapping A − λI, where as usual I is the identity mapping on X , is
onto, then it follows from Theorem 7.6.2 that the mapping (A − λI)−1

exists if and only if λ is not an eigenvalue of A.
We can quickly obtain some useful information on the eigenvalues and

eigenvectors of a self-adjoint operator on a Hilbert space.

Theorem 9.2.4 Let A be a self-adjoint operator on a Hilbert space.
Then

(a) the eigenvalues of A are real,
(b) eigenvectors of A corresponding to distinct eigenvalues are or-

thogonal.

Let the Hilbert space here be X . To prove (a), suppose λ is an eigen-
value of A, so that Ax = λx for some x ∈ X , x �= θ. Since A is
self-adjoint, we have 〈Ax, y〉 = 〈x, Ay〉 for all y ∈ X , and in particular
this is true when y = x. Then

λ 〈x, x〉 = 〈λx, x〉 = 〈Ax, x〉 = 〈x, Ax〉 = 〈x, λx〉 = λ 〈x, x〉 .

As x �= θ, we have λ = λ and so λ must be real.
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For (b), we suppose λ and µ are eigenvalues of A, with λ �= µ, and
that x and y, respectively, are corresponding eigenvectors. Then

λ 〈x, y〉 = 〈λx, y〉 = 〈Ax, y〉 = 〈x, Ay〉 = 〈x, µy〉 = µ 〈x, y〉 .

Now, µ = µ by (a), and λ �= µ, so we must have 〈x, y〉 = 0. This
completes the proof.

We end this section by deriving the adjoint operator for any matrix
operator on Cn.

Consider the elements of Cn to be column vectors and let the operator
A : Cn → Cn be given by the n× n matrix A = (ajk). (It is convenient
here to depart from our usual practice and denote the matrix differently
from the operator.) We will show that the adjoint A∗ is given by the
n × n matrix A∗ = AT

. Here, A is the conjugate of A, defined in
Section 1.11.

With the above interpretation of the elements of Cn, it is clear that,
for x, y ∈ Cn,

〈x, y〉 = xT y.

Then, since Ax = Ax,

〈Ax, y〉 = 〈Ax, y〉 = (Ax)T y = xTAT y

= xTAT
y = xTA∗y = 〈x,A∗y〉 .

But 〈Ax, y〉 = 〈x, A∗y〉 by definition of A∗, so A∗y = A∗y for all y ∈ Cn,
and hence A∗ is determined by the matrix A∗.

The matrix A above is called Hermitian when A∗ = A. In that case,
the corresponding operator A is self-adjoint. In the following paragraph,
we will illustrate the preceding theorem by taking

A =

 2 1 − i i

1 + i 1 0
−i 0 1

 ,

which is clearly seen to be Hermitian.
The eigenvalues and eigenvectors of an operator determined by a ma-

trix are taken as belonging to the matrix itself, so that their definitions
then coincide with those given in linear algebra courses. We want to find
those scalars λ such that Ax = λx for some nonzero x ∈ C3. Writing
this equation as (A−λI)x = θ, where I here is the 3×3 identity matrix,
we therefore employ one of the conditions that a homogeneous system of
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linear equations have a nontrivial solution, namely that the coefficient
matrix A− λI have determinant 0. That is,∣∣∣∣∣∣

2 − λ 1 − i i

1 + i 1 − λ 0
−i 0 1 − λ

∣∣∣∣∣∣ = 0,

or, expanding the determinant,

λ3 − 4λ2 + 2λ + 1 = 0.

The roots of this equation are 1 and (3 ± √
13 )/2, so that these are

the eigenvalues of A. Note that they are all real, in accord with Theo-
rem 9.2.4(a). For the eigenvectors, we find in turn nontrivial solutions
of the equation (A−λI)x = θ, where λ has each of the three values just
given. It may be checked that we may take

x1 =

 0
1

1 + i

 , x2 =

 1
2 (
√

13 + 1)
1 + i

−i

 , x3 =

 1
2 (
√

13 − 1)
−(1 + i)

i

 ,

as eigenvectors corresponding to the eigenvalues 1, (3 +
√

13 )/2 and
(3−√

13 )/2, respectively. Note that, for j �= k, 〈xj , xk〉 = xT
j xk = 0, in

accord with Theorem 9.2.4(b).
The preceding discussion applies equally well, with simplifications, to

matrix operators on Rn. The matrix for the adjoint of such an operator
is then just the transpose of the original matrix. A matrix operator
on Rn is self-adjoint if and only if its matrix is symmetric, that is, equal
to its transpose.

9.3 Separability

Before we can go further in a discussion of Hilbert space, we need the
notion of separability. We will define this term for topological spaces.
Since any inner product space is a normed space, any normed space is
a metric space, and, by virtue of the metric topology, any metric space
is a topological space, we will be able to carry the definition through to
inner product spaces. We need to recall the definition of the closure of a
subset S of a topological space (Definition 5.1.3): the closure of S is the
intersection of all closed sets that contain S. Properties of the closure
of a set were given in Exercises 5.7(5) and 5.7(6).

We also recall, from Definition 2.7.2, that S is a sequentially closed
subset of a metric space X if S is a nonempty subset of X such that
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all sequences in S that converge as sequences in X have their limits
also in S. It is an easy matter conceptually to make S closed if it is
not already closed: simply add to S the limits of those sequences in it
that converge to points not in it. The result is the closure of S. This
process is simply making use of results in the above-mentioned exercises:
S = S ∪ S′, and S is closed if and only if S = S.

The relevant definitions will now be given in topological space, and
then quickly related to metric space.

Definition 9.3.1

(a) A subset S of a topological space X is said to be dense in X if
S = X .

(b) A topological space X is called separable if there is a subspace of
X which is countable and dense in X .

Roughly speaking, a subset S of a metric space X is therefore dense
in X if it consists of all of X except at most for the limits of sequences
in S which converge in X . We say that the rationals are dense in the
reals because any irrational number can always be given as the limit of
a sequence of rational numbers, or, equivalently, because there always
exists a rational number arbitrarily close to any given irrational number.
This is made more precise, and more general, in the following theorem.

Theorem 9.3.2 A subset S of a metric space (X, d) is dense in X if
and only if for every x ∈ X and every number ε > 0 there exists a point
y ∈ S such that d(x, y) < ε.

For the proof, suppose first that S is dense in X . Choose any x ∈ X

and any ε > 0. If x ∈ S, then simply take y = x. Otherwise, since
X = S = S ∪ S′, x is a cluster point of S so certainly there exists y ∈ S

such that d(x, y) < ε. For the converse, given x ∈ X , take ε = 1/n for
each n = 1, 2, . . . in turn, and so generate a sequence {yn} in S such
that d(x, yn) < 1/n. Then yn → x, so x ∈ S ∪ S′ = S. That is, X ⊆ S,
so S is dense in X .

Now we can turn to examples of separable spaces. These all depend on
two facts: the set Q of rational numbers is countable (Theorem 1.4.3(a)),
and the cartesian product of any finite number of countable sets is again
a countable set (Theorem 1.4.2(a)).

We stated just above that the rationals are dense in the reals; further-
more, the rationals are countable. This is all that is required for our
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first example: the metric space (normed space, inner product space) R
is separable. It has a countable dense subset, namely Q. The space Rn

is separable, since the set of all points (x1, x2, . . . , xn) ∈ Rn, in which
each xk is rational, is a countable dense subset of Rn. (This subset is
just Qn.) Also, the space Cn is separable, since the set of all points
(x1, x2, . . . , xn) ∈ Cn, in which each xk has rational real and imaginary
parts, is a countable dense subset of Cn. (The proofs that the indicated
subsets are dense are similar to the proof below in the case of l2.)

By invoking the special form of the Weierstrass approximation the-
orem given in Theorem 6.8.4, we can prove that the metric space (or
the normed space) C[a, b] is separable. A countable dense subset is the
set of all polynomial functions on [a, b] with rational coefficients. The
details are left as an exercise.

Finally, we show that the metric space l2 is separable. As above,
we must exhibit a countable dense subset of l2. We show that such
a subset is the set S of all sequences (y1, y2, . . . ) of complex num-
bers in which each yk has rational real and imaginary parts and for
which there is some positive integer m (depending on y ∈ S) such that
ym+1 = ym+2 = · · · = 0. This set S is indeed a subset of l2, since

∞∑
k=1

|yk|2 =
m∑

k=1

|yk|2,

and this is certainly finite. Let x = (x1, x2, . . . ) be any point of l2. Then,
by definition of l2, for any number ε > 0 there exists a positive integer n

so that
∞∑

k=n+1

|xk|2 <
ε2

2
.

Because the rationals are dense in the reals, it follows that we can find
a point y ∈ S such that

|xk − yk| <
ε√
2n

for k = 1, 2, . . . , n, with yn+1 = yn+2 = · · · = 0. We then have, if d is
the metric for l2,

d(x, y) =

√√√√ ∞∑
k=1

|xk − yk|2 =

√√√√ n∑
k=1

|xk − yk|2 +
∞∑

k=n+1

|xk|2

<

√
n · ε2

2n
+

ε2

2
= ε.
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By Theorem 9.3.2, thus S is dense in l2. Furthermore, S is countable
and so we have proved the following.

Theorem 9.3.3 The Hilbert space l2 is separable.

9.4 Solved problems

(1) Let A be a linear mapping from an inner product space X into itself.
Prove that

〈x, Ay〉 + 〈y, Ax〉 =
1
2
( 〈x + y, A(x + y)〉 − 〈x − y, A(x − y)〉 )

and

〈x, Ay〉 − 〈y, Ax〉 =
i

2
( 〈x + iy, A(x + iy)〉 − 〈x − iy, A(x − iy)〉 )

for any vectors x, y ∈ X .

Solution. The identities follow readily by expanding the right-hand sides.
For the second one, for example, we have

〈x+iy, A(x + iy)〉 − 〈x − iy, A(x − iy)〉
= 〈x + iy, Ax + iAy〉 − 〈x − iy, Ax − iAy〉
= 〈x, Ax〉 − i 〈x, Ay〉 + i 〈y, Ax〉 + 〈y, Ay〉

− ( 〈x, Ax〉 + i 〈x, Ay〉 − i 〈y, Ax〉 + 〈y, Ay〉 )

= −2i( 〈x, Ay〉 − 〈y, Ax〉 ).

(2) Show that the following conditions on an operator A on a Hilbert
space X are equivalent:

(a) A is self-adjoint,
(b) 〈Ax, x〉 = 〈x, Ax〉 for all x ∈ X ,
(c) for all x ∈ X , 〈Ax, x〉 is real.

Solution. We show that the three statements are equivalent by showing
that, schematically, (a) ⇒ (b) ⇒ (c) ⇒ (a). (When this is done, either
(b) or (c) may be taken as a necessary and sufficient condition for the
operator A to be self-adjoint.)

If A is self-adjoint, then 〈Ax, y〉 = 〈y, Ax〉 for all x, y ∈ X , so in
particular, when y = x, we have 〈Ax, x〉 = 〈x, Ax〉 for all x ∈ X . Thus
(a) implies (b).

By definition of an inner product, for any x ∈ X , 〈Ax, x〉 = 〈x, Ax〉.
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If, further, (b) is true, then we have 〈Ax, x〉 = 〈Ax, x〉, and so 〈Ax, x〉 is
a real number. Thus (b) implies (c).

The final step is not quite as easy. The right-hand sides of the equa-
tions in Solved Problem (1) contain complex numbers of the form 〈z, Az〉
for some z ∈ X . In each case, when we assume (c) to be true, we have
〈z, Az〉 = 〈Az, z〉 = 〈Az, z〉. Then we see that those right-hand sides are
unchanged by interchanging x and Ax, and y and Ay. The same must
be true of the left-hand sides, so that, for all x, y ∈ X ,

〈x, Ay〉 + 〈y, Ax〉 = 〈Ax, y〉 + 〈Ay, x〉 ,

〈x, Ay〉 − 〈y, Ax〉 = 〈Ax, y〉 − 〈Ay, x〉 .

Adding these equations gives 〈x, Ay〉 = 〈Ax, y〉, so (c) implies (a).

(3) Let S be a subspace of a Hilbert space X . Suppose 〈x, y〉 = 0 for
all x ∈ S only when y = θ. Prove that S is dense in X . Conversely,
suppose S is dense in X . Prove that if 〈x, y〉 = 0 for all x ∈ S, then
y = θ, uniquely.

Solution. We suppose first that 〈x, y〉 = 0 for all x ∈ S only when
y = θ. The proof that S is then dense in X will be by contradiction,
so suppose that S �= X . Since S is a subspace of X , then S is also a
subspace of X by Exercise 9.5(5) (to be proved). Part (d) in the proof of
Theorem 9.2.1 applies equally well for any closed subspace of X which is
a proper subset of X (like N(f) there, and S here), so we may conclude
here that there exists a nonzero point w ∈ X such that 〈x, w〉 = 0 for all
x ∈ S. This contradicts the hypothesis, so S is dense in X , as required.

For the converse, suppose S is dense in X , so S = X . Suppose also
that 〈x, y〉 = 0 for all x ∈ S and some y ∈ X . Any point z ∈ X is the
limit of some sequence {zn} in S. Now, 〈zn, y〉 = 0 for all n, so 〈z, y〉 = 0
by Exercise 8.6(7). That is, 〈z, y〉 = 0 for all z ∈ X . In particular, when
z = y, we have 〈y, y〉 = 0 so y = θ, and the result is proved.

9.5 Exercises

(1) Prove that the identity operator on a Hilbert space is self-adjoint.
(2) If A is any operator from a Hilbert space into itself, and A∗ is its

adjoint, prove that the operators A∗A, A+ A∗ and i(A−A∗) are
self-adjoint.
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(3) Let X be a Hilbert space and A and B operators from X into
itself. Prove that

(a) (AB)∗ = B∗A∗,
(b) if A and B are self-adjoint then AB is self-adjoint if and

only if AB = BA.

(4) Verify that the matrix 1 2
3 i
√

3 0
− 2

3 i
√

3 0 1
0 1 2


is Hermitian, and find its eigenvalues and corresponding eigen-
vectors.

(5) Prove that the closure of a subspace of a normed space is also a
subspace of that space.

(6) Show that the metric space (X, d) is separable, when X = Rn

and d(x, y) =
∑n

k=1 |xk − yk|, with x = (x1, x2, . . . , xn) ∈ Rn,
y = (y1, y2, . . . , yn) ∈ Rn.

(7) Prove that the normed space C[a, b] is separable. (Hint: Use
Theorem 6.8.4.)

(8) Define operators A and B from l2 into itself by

A(x1, x2, . . . ) = (x2, x3, x4, . . . ),

B(x1, x2, . . . ) = (x1,
1
2x2,

1
3x3, . . . ).

(a) Show that any number λ with |λ| < 1 is an eigenvalue
of A. Find corresponding eigenvectors.

(b) Find the adjoint A∗ and show that A∗ has no eigenvalues.
(c) Show that B is self-adjoint. Find its eigenvalues and cor-

responding eigenvectors and show that Theorem 9.2.4 is
satisfied.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(9) Prove that the set of self-adjoint operators on a Hilbert space X

is a real vector space which is a closed subset of X ′.
(10) Prove that, for any operator A from a Hilbert space X into itself,

‖AA∗‖ = ‖A∗A‖ = ‖A‖2.

(Hint: Show that ‖Ax‖2 � ‖A∗A‖ ‖x‖2 for any x ∈ X and recall
that ‖A‖ = sup{‖Ax‖ : x ∈ X, ‖x‖ = 1}.)
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9.6 Complete orthonormal sets; generalised Fourier series

Whenever we have spoken of a linear combination of vectors in a vector
space, we have quite explicitly been referring only to finite linear combi-
nations; that is, linear combinations of only a finite number of vectors.
To do otherwise immediately means that we are dealing with infinite
series of vectors and this has certainly not been the case in this context.
The possibility of infinite linear combinations cannot even arise within
the theory of vector spaces alone since we cannot talk of infinite series
without some concept of convergence, and this requires that a norm or
something similar be defined for the space.

This has nothing to do with whether or not the vector space is finite-
dimensional. We have already extended to infinite sets the notions of
linear independence and span (see Definition 8.2.2), so it is easy now to
extend also the definition of a basis (Definition 1.11.3(d)): an infinite
set that is linearly independent and spans a vector space may be called
a basis for that space. It is still only finite linear combinations that are
involved. For example, the set of functions {1, x, x2, . . . } is then a basis
for the vector space of all polynomial functions. Such a function is a
linear combination of only finitely many of 1, x, x2, . . . .

However, for other infinite-dimensional vector spaces, such as C[a, b]
or l2, the situation may not be as clear. In the case of l2, any further
discussion would appear to be prompted by the fact that for Cn the set
of n-tuples {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)} is a basis. This
suggests that we ask if the set

E = {(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . . }

is a basis for l2. We quickly see that this is not the case, because a vector
such as (1, 1

2 , 1
3 , 1

4 , . . . ), which is in l2 and has infinitely many nonzero
components, could not be given as a finite linear combination of vectors
in E. It hardly seems likely that we could easily find any other set that
would be a basis for l2.

If we write en for the element of E with 1 in the nth place, and
allow the notion of infinite linear combinations, then it is easily checked
that with the norm for l2 the point (1, 1

2 , 1
3 , 1

4 , . . . ) can be expressed as∑∞
k=1(1/k)ek. Similarly, any point (x1, x2, . . . ) in l2 can be written as∑∞
k=1 xkek. A proof of this is called for in Exercise 9.8(1).
It is the aim of this section to generalise this idea. We will obtain

necessary and sufficient conditions for the existence of this kind of ‘basis’,
which involves infinite linear combinations, when the vector space is a
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separable inner product space. We stress that this will not be a basis
in the original sense, since that term implies reference to finite linear
combinations only. Along with that, we will obtain various properties
of such a ‘basis’ and additional properties available when the space is
complete.

We will not be able to give a corresponding development here for
the space C[a, b], since it is not an inner product space. It should be
mentioned that for C[a, b], and for any infinite-dimensional vector space,
it can be proved that a basis (in this context, known as a Hamel base)
does exist, just as 1, x, x2, . . . give a basis for the space of polynomial
functions. Such bases, even if they could be exhibited, would be of little
use since they would surely be too complicated for practical purposes.

Although we cannot handle C[a, b] here, we can find a ‘basis’, allow-
ing infinite linear combinations, when we consider continuous functions
on [a, b] as belonging to C2[a, b]. We will carry this out soon, for the case
a = −1, b = 1, when we have described our aim more precisely. It is
apparent that these ‘bases’ we are talking of depend on the inner prod-
uct for the space. The ‘basis’ that we will find for C2[a, b] will not work
for the other spaces Cw[a, b] of the preceding chapter. These are defined
on the same vector space but have different inner products, dependent
on the weight function w. And certainly it cannot be considered as a
‘basis’ with the norm of C[a, b].

The following definition is adopted as our starting point.

Definition 9.6.1 Let T be an orthonormal set in an inner product
space X . If SpT is dense in X , that is, if SpT = X , then the set T is
said to be complete.

Of course, this use of the word ‘complete’ is quite distinct from its earlier
use. A complete orthonormal set is sometimes referred to as a complete
orthonormal system, or as an orthonormal basis. We will avoid the latter
term since it suggests an ordinary basis that happens to be orthonormal.
However, as we now show, this is in fact precisely the case when T is a
finite set.

Theorem 9.6.2 A finite complete orthonormal set in an inner product
space is a basis for the space.

To prove this, let T be a finite complete orthonormal set in an inner
product space X . Then Sp T is a finite-dimensional subspace of X , so
SpT is complete (Theorem 6.5.4), the norm for X being generated by the
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inner product in the usual way. Hence SpT is closed (Theorem 2.7.3),
so Sp T = SpT . Since the orthonormal set T is complete, this means
SpT = X . Finally, by Theorem 8.2.3, it follows that T is a linearly
independent set, and so T is a basis for X , as we said.

This case, when T is a finite set, is not very interesting since it in-
volves us in nothing new. When T is not a finite set, but is countable
say, then indeed we must take into account the infinite linear combi-
nations mentioned above. That is, infinite series must be considered.
For suppose T = {x1, x2, . . . } and α1, α2, . . . is any given sequence of
scalars. Then yn =

∑n
k=1 αkxk belongs to SpT for any n ∈ N. Because

we are looking at the closure of Sp T , we must consider the limits of all
sequences in Sp T , and in the case of the sequence {yn} this is just an
infinite series.

The set E = {e1, e2, . . . }, considered above, is an orthonormal set
in l2. The fact that for any point x = (x1, x2, . . . ) ∈ l2 we may write
x =
∑∞

k=1 xkek means that E is a complete orthonormal set in l2.
Now we can consider in more detail the space C2[−1, 1]. Let f be a

given function in C2[−1, 1]. By the Weierstrass approximation theorem
(Theorem 6.8.3), we know that, given any n ∈ N, we can find a positive
integer m (depending on n) and numbers a0n, a1n, . . . , amn such that

|f(t) − (a0n + a1nt + · · · + amntm)| <
1
n

for all t ∈ [−1, 1]. Squaring both sides of this inequality and then inte-
grating from −1 to 1 gives∫ 1

−1

(f(t) − (a0n + a1nt + · · · + amntm))2 dt <
2
n2

.

It is clear from the definition of the Legendre polynomials, in Section 8.2,
that the powers tk here can be expressed as linear combinations of P0(t),
P1(t), . . . , Pk(t) for k = 1, 2, . . . , m. If P denotes the set of Legendre
polynomials, then we have shown that for each n ∈ N there exists a
polynomial function Qn ∈ SpP such that

‖f − Qn‖ =

√∫ 1

−1

(f(t) − Qn(t))2 dt <

√
2

n
.

The sequence {Qn} thus converges in C2[−1, 1], and limQn = f . Hence,
f ∈ SpP and so Sp P = C2[−1, 1]. Since P is an orthonormal set
in C2[−1, 1], it is therefore a complete orthonormal set.

The set P of Legendre polynomials is certainly a countable set, so, as
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one consequence of the Fourier series theorem to be given soon, there
exist real numbers α0, α1, . . . such that f =

∑∞
k=0 αkPk. That theorem

will also show that the numbers αk are unique and easily computable.
Thus we will have a situation in C2[−1, 1] analogous to that in l2, where
we can write x =

∑∞
k=1 xkek for any x = (x1, x2, . . . ) ∈ l2. We see

now more explicitly the point of this section. Once we have a complete
countable orthonormal set in an inner product space, it will turn out to
be a simple matter to express any point in the space as an infinite linear
combination of the vectors in the orthonormal set. The partial sums of
such series provide handy approximations of those points.

We have just found a complete orthonormal set in C2[−1, 1]. The
existence of such a set in general is indicated in the following theorem.

Theorem 9.6.3 An inner product space is separable if and only if it
contains a complete orthonormal set that is countable.

We prove the necessity of the condition first.
Suppose the inner product space X is separable. Then, by definition,

X contains a countable dense subset, S say. There exists a subset S0

of S such that S0 is linearly independent and such that SpS0 = SpS.
Certainly, S0 is countable. The Gram–Schmidt process (Theorem 8.2.4)
assures us that there is a countable orthonormal set T in X for which
SpT = SpS0. To say S is dense in X means S = X . Now, S ⊆ SpS

and SpS ⊆ X , so X = S ⊆ SpS ⊆ X = X . Thus SpS = X and
hence SpT = X . As required, X contains a complete orthonormal set,
namely T , that is countable.

Now, for the sufficiency, suppose T = {x1, x2, . . . } is a countable
complete orthonormal set in X . Let S be the set of all finite linear
combinations

∑n
k=1 αkxk of vectors in T for which Re αk and Imαk are

rational numbers for all k = 1, 2, . . . , n. Then S is countable because Q
is. We will show that S is dense in X , thus proving that X is separable.
Let w be any vector in X and let ε > 0 be arbitrary. Since T is a complete
orthonormal set in X , X = SpT and so for some positive integer m and
some scalars β1, β2, . . . , βm there is a vector x =

∑m
k=1 βkxk ∈ Sp T such

that ‖w − x‖ < ε/2. Fix this m, and choose, as we may do, complex
numbers α1, α2, . . . , αm with rational real and imaginary parts such
that

|βk − αk| <
ε

2m
for k = 1, 2, . . . , m.
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Then y =
∑m

k=1 αkxk is a vector in S and

‖w − y‖ � ‖w − x‖ + ‖x − y‖ = ‖w − x‖ +
∥∥∥∥ m∑

k=1

(βk − αk)xk

∥∥∥∥
<

ε

2
+

m∑
k=1

|βk − αk| ‖xk‖ < ε,

since ‖xk‖ = 1 for all k. This indeed proves that S is a dense subset
of X , and our proof is finished.

Thus we see that the notions of separability and countability of a
complete orthonormal set are equivalent concepts in an inner product
space, and thus in a separable inner product space it makes sense at
least formally to talk of an infinite linear combination of the vectors of
a complete orthonormal set. What we want to show is that any vector
in the space can be expressed as such an infinite linear combination.

As discussed above, this will be one consequence of the Fourier se-
ries theorem. The connection with the more familiar theory of Fourier
series, and the fact that we are giving a generalisation, becomes ap-
parent when it is realised that in the older theory we take a func-
tion f , with domain R and periodic with period 2π, and try to ex-
press it as an infinite linear combination of the functions in the set
T = {1, sin t, cos t, sin 2t, cos 2t, . . . } by an equation of the form

f(t) =
1
2
a0 +

∞∑
k=1

(ak cos kt + bk sinkt).

The set T , with its functions restricted to [−π, π], has been shown be-
fore to be orthogonal in C2[−π, π]. Just as we did for the Legendre
polynomials in C2[−1, 1], we can show that it is a complete orthonormal
set in C2[−π, π], once its elements are normalised. To do this requires a
trigonometric version of the Weierstrass approximation theorem, and we
will not give the details. When the above Fourier series representation
exists, we recall that the coefficients ak and bk are given by the formulas

ak =
1
π

∫ π

−π

f(t) cos kt dt, k = 0, 1, 2, . . . ,

bk =
1
π

∫ π

−π

f(t) sin kt dt, k = 1, 2, . . . .

Ignoring the factor 1/π, which is the normalisation factor, these integrals
are the inner products in C2[−π, π] of the given function f with the
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functions of T . Such will be precisely the coefficients in our infinite
linear combinations of the general theorem, which now follows.

Theorem 9.6.4 (Generalised Fourier Series Theorem) Let X be
a separable inner product space. Suppose T = {x1, x2, . . . } is a complete
orthonormal set in X. Then each of the following is true.

(a) For any point u ∈ X, we have

u =
∞∑

k=1

〈u, xk〉xk.

(b) For any points u, v ∈ X, we have

〈u, v〉 =
∞∑

k=1

〈u, xk〉 〈xk, v〉 .

(c) For any point u ∈ X, we have

‖u‖2 =
∞∑

k=1

| 〈u, xk〉 |2.

(d) If a point u ∈ X is such that 〈u, xn〉 = 0 for all n ∈ N, then
u = θ.

(e) If points u, v ∈ X are such that 〈u, xn〉 = 〈v, xn〉 for all n ∈ N,
then u = v.

Conversely, if any of the statements (a), (b) or (c) is true for some
orthonormal set T = {x1, x2, . . . } in X, then T is complete.

Furthermore, if X is a Hilbert space then either of the statements (d)
and (e) also implies that the orthonormal set T is complete.

Notice that the existence of such a set as T here is implied by Theo-
rem 9.6.3. The series on the right in (a) is called the Fourier series for
the point u, and the numbers 〈u, xn〉 are called Fourier coefficients of u.
Compare this with the classical trigonometric example, just described.
The equations in (b) and (c) are known as Parseval’s identities. In (c),
we see how Bessel’s inequality (Theorem 8.3.3) may be strengthened
with the additional hypothesis. An orthonormal set S = {x1, x2, . . . }
in X satisfying the condition in (d) is often called total, in that no further
nonzero vectors can be added to S so that the new set remains orthogo-
nal. It is in this sense that we have called such a set ‘complete’. In (e), it
is seen that the Fourier coefficients of a vector uniquely determine that
vector.
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Now for the proof of the theorem. We are supposing initially that T is
a complete orthonormal set in X . Then SpT = X . Let ε be any positive
number. Given the point u ∈ X , we know there is a sequence {wn}
in SpT such that wn → u. We may write, for each n ∈ N,

wn =
tn∑

k=1

αnkxk

for some scalars αnk and some tn ∈ N (the coefficients in the sum and
its number of terms varying from term to term of the sequence). There
exists a positive integer N such that ‖u − wn‖ < ε when n > N . But
then, by Theorem 8.3.2,∥∥∥∥u −

tn∑
k=1

〈u, xk〉xk

∥∥∥∥ �
∥∥∥∥u −

tn∑
k=1

αnkxk

∥∥∥∥ < ε

for n > N . We may assume t1 < t2 < · · · (if necessary by including

extra α’s all equal to 0), so
{∑tn

k=1 〈u, xk〉xk

}∞
n=1

is a convergent sub-

sequence, with limit u, of the sequence {∑n
k=1 〈u, xk〉xk}. The latter

is a Cauchy sequence, by Solved Problem 8.5(2), and hence, by Theo-
rem 4.1.1, is itself convergent with limit u. Thus

u =
∞∑

k=1

〈u, xk〉xk,

and statement (a) is true.
Then, to verify statement (b), we may write u = lim un and v = lim vn,

where

un =
n∑

k=1

〈u, xk〉xk, vn =
n∑

j=1

〈v, xj〉 xj ,

for n ∈ N. Using the fact that T is an orthonormal set in X , we have

〈un, vn〉 =
n∑

k=1

n∑
j=1

〈u, xk〉 〈v, xj〉 〈xk, xj〉

=
n∑

k=1

〈u, xk〉 〈v, xk〉 =
n∑

k=1

〈u, xk〉 〈xk, v〉 .

By Theorem 8.1.4, 〈un, vn〉 → 〈u, v〉 and hence (b) is true.
Knowing that, we see immediately that (c) is true by putting v equal

to u in (b). And then, if in (c) we put 〈u, xk〉 = 0 for all k ∈ N, we must
have ‖u‖ = 0, so u = θ and (d) is true. In turn, under the hypothesis
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of (e) we have 〈u − v, xn〉 = 0 for all n ∈ N and so u− v = θ, and u = v.
Thus (e) must be true.

Moving to the converse, we show first that (c) ⇒ (a), where as usual
we read ⇒ as ‘implies’. We showed above that (a) ⇒ (b), and that
(b) ⇒ (c), so this will mean that all three of these statements are equiv-
alent, any one implying the others. Then we need only show that one of
them implies that T is a complete orthonormal set to finish the proof of
that part of the theorem.

So suppose that T = {x1, x2, . . . } is an orthonormal set in X , and
that (c) is true. As in the proof of Theorem 8.3.3, we have

0 �
∥∥∥∥u −

n∑
k=1

〈u, xk〉xk

∥∥∥∥2 � ‖u‖2 −
n∑

k=1

| 〈u, xk〉 |2.

By assumption, the final expression here may be made as small as we
please by choosing n large enough, so

∑n
k=1 〈u, xk〉xk → u. Thus, (a) is

true.
Now we show that the truth of (a) implies that T is a complete or-

thonormal set in X . Assuming (a), if u is any point in X then we may
write u = limun, where

un =
n∑

k=1

〈u, xk〉 xk.

Then un ∈ SpT for all n, so u ∈ Sp T . This means X ⊆ SpT . Since
clearly SpT ⊆ X , then SpT = X , as required.

Finally, we assume further that X is a Hilbert space, and suppose
again that T = {x1, x2, . . . } is an orthonormal set in X . We will show,
assuming (d) to be true, that T must be complete. Let v ∈ X be any
point and consider the sequence {un}, where

un =
n∑

k=1

〈v, xk〉xk, n ∈ N.

By Solved Problem 8.5(2), {un} is a Cauchy sequence in X . But X is
now assumed to be complete, so the sequence converges, with limit w,
say. Using Theorem 8.1.4, for each j ∈ N,

〈v − w, xj〉 = lim
n→∞ 〈v − un, xj〉 = 〈v, xj〉 − lim

n→∞

〈 n∑
k=1

〈v, xk〉xk, xj

〉
.
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But for each j, if n � j then〈 n∑
k=1

〈v, xk〉xk, xj

〉
=

n∑
k=1

〈v, xk〉 〈xk, xj〉 = 〈v, xj〉 ,

by the orthonormality of T . Hence 〈v − w, xj〉 = 0 for each j. Since we
are assuming that (d) is true, we thus have v − w = θ. Hence v = w, or

v =
∞∑

k=1

〈v, xk〉xk.

This shows (a) to be a consequence of (d), and in the preceding para-
graph we saw that when (a) is true, the set T is complete.

The proof of the generalised Fourier series theorem is finished when
we show that (d) is true if (e) is. For this, suppose that (e) is true and
that (d) is not. Then there is a point z �= θ in X such that 〈z, xn〉 = 0
for all n ∈ N. In that case, we have 〈u, xn〉 = 〈u + z, xn〉 for all n and
any point u ∈ X . By (e), this means u = u + z, or z = θ, and this is a
contradiction. Hence (d) is true when (e) is, so that (e) must also imply,
via (d), that T is complete.

Notice from the statement of this theorem and its proof that the
essence of the theorem can be given by the scheme:

T complete ⇐⇒ (a) ⇐⇒ (b) ⇐⇒ (c) =⇒ (d) ⇐⇒ (e)

for any inner product space X , with

(c) ⇐= (d)

when X is a Hilbert space. (The arrowheads indicate the direction of
implication.)

Let us stress again that the convergence of a Fourier series is dependent
upon the norm generated by the inner product for the space in which we
are working. Reverting to the classical trigonometric case, if we write,
for −π � t � π,

x1(t) =
1√
2π

,

x2(t) =
1√
π

sin t, x3(t) =
1√
π

cos t,

x4(t) =
1√
π

sin 2t, x5(t) =
1√
π

cos 2t,
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and so on, so {x1, x2, . . . } is a complete orthonormal set in C2[−π, π],
then we have shown that, for any continuous function f on [−π, π],

lim
n→∞

∫ π

−π

(
f(t) −

n∑
k=1

(∫ π

−π

f(t)xk(t) dt

)
xk(t)

)2

dt = 0.

This is often described by saying that the classical Fourier series for f

converges in mean square to f , and says nothing about the uniform
convergence, say, of the series.

If {x1, x2, . . . } is a complete orthonormal set in an inner product
space X , then, since

∑∞
k=1 | 〈u, xk〉 |2 converges for any u ∈ X by (c) of

the Fourier series theorem, we must have 〈u, xn〉 → 0 (Theorem 1.8.3).
For the trigonometric case above, this means∫ π

−π

f(t)xn(t) dt → 0,

from which we conclude that∫ π

−π

f(t) cosnt dt → 0 and
∫ π

−π

f(t) cosnt dt → 0,

for any function f , continuous on [−π, π]. This is a version of a result
known as the Riemann–Lebesgue lemma.

We have shown that the Legendre polynomials P0, P1, . . . form a
complete orthonormal set in C2[−1, 1]. Thus any function f , continuous
on [−1, 1], has a Fourier series

∑∞
k=0 〈f, Pk〉Pk which converges (in mean

square) to f . The other orthonormal sets of polynomials listed at the
end of Section 8.2 can also be shown to be complete in their respective
inner product spaces. As in the preceding paragraph, this implies, for
Chebyshev polynomials for example, that∫ 1

−1

f(t)Tn(t)√
1 − t2

dt → 0

for any function f , continuous on [−1, 1].

9.7 Hilbert space isomorphism

At the beginning of this chapter, it was stated that in a certain sense l2
is the only infinite-dimensional separable Hilbert space. We now clarify
that statement.

What we intend to show is that any infinite-dimensional separable
Hilbert space X is isomorphic to l2. To do this, we must exhibit a
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certain kind of mapping, called an isomorphism, from X onto l2. The
notion of isomorphism is an essential tool of modern algebra, with im-
portant applications in modern analysis. Isomorphisms may be defined
between elements of various classes of sets all of which, within any class,
have the same algebraic structure. Thus we may speak for example of
vector space isomorphisms (as we did in Section 1.11) or inner prod-
uct space isomorphisms (or, in algebra, of group or field isomorphisms).
The definition of an isomorphism may vary from class to class but in
all cases an isomorphism between two sets of some class is a one-to-one
correspondence (or bijection) between those sets which is such that the
algebraic operations in one of the sets is precisely reflected in the other.

In a vector space isomorphism, for example, we require that the sum of
two vectors in one space equal the sum of their images in the other space,
and similarly for multiplication by scalars. In an inner product space
isomorphism, we require further that the value of the inner product for
two vectors in one space equal the value of the inner product for their
images in the other space. Separable Hilbert spaces have no further
algebraic structure beyond that of inner product spaces so that we will
only need to define, more precisely than this, what we mean by an
inner product space isomorphism. Because we need a preliminary result,
important in its own right, we will delay briefly giving that definition.

Theorem 9.7.1 If (α1, α2, . . . ) is any point in l2 and X is an infinite-
dimensional separable Hilbert space, then there exists a point w ∈ X for
which α1, α2, . . . are the Fourier coefficients with respect to a given com-
plete orthonormal set {x1, x2, . . . } in X. Moreover, ‖w‖2 =

∑∞
k=1 |αk|2.

For the proof, we introduce the sequence {wn} in X given by

wn =
n∑

k=1

αkxk, n ∈ N.

If n > m,

‖wn − wm‖2 = 〈wn − wm, wn − wm〉

=
〈 n∑

k=m+1

αkxk,

n∑
j=m+1

αjxj

〉

=
n∑

k=m+1

n∑
j=m+1

αkαj 〈xk, xj〉 =
n∑

k=m+1

|αk|2,

because the set {x1, x2, . . . } is orthonormal. As (α1, α2, . . . ) belongs
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to l2, the last sum here tends to 0 as m → ∞. Hence {wn} is a Cauchy
sequence. As X is a Hilbert space, this sequence converges to w, say, and
of course w ∈ X . To show that α1, α2, . . . are the Fourier coefficients
of w, we note that

〈wn, xk〉 =
〈 n∑

j=1

αjxj , xk

〉
=

n∑
j=1

αj 〈xj , xk〉 = αk,

for each k ∈ N, provided n � k. We then have, using Theorem 8.1.4,

〈w, xk〉 = lim
n→∞ 〈wn, xk〉 = αk

for k ∈ N, and this is what we had to show.
It is left as an exercise to show further that, for the vector w obtained

above, we have

‖w‖2 =
∞∑

k=1

|αk|2.

Theorem 9.7.1 is known as the Riesz–Fischer theorem. Now we give
the definition discussed above.

Definition 9.7.2 An inner product space X is said to be isomorphic
to an inner product space Y if there exists a one-to-one mapping A

of X onto Y which is linear and which ‘preserves inner products’, in
that, for any vectors x1, x2 ∈ X ,

〈x1, x2〉 = 〈Ax1, Ax2〉 .

The mapping A is called an isomorphism of X onto Y .

Notice that here we are using the same notation for the inner products
for both X and Y .

Since the mapping A is linear, it also has the desired properties of
preserving sums and scalar multiples. We know (see Section 7.6) that in
this situation the inverse mapping A−1 exists and is linear. Furthermore,
if for any vectors y1, y2 ∈ Y we have A−1y1 = x1 and A−1y2 = x2, then

〈y1, y2〉 = 〈Ax1, Ax2〉 = 〈x1, x2〉 =
〈
A−1y1, A

−1y2

〉
.

Hence A−1 is an isomorphism of Y onto X , so that also Y is isomorphic
to X . We thus say simply that X and Y are isomorphic inner product
spaces when such a mapping A exists.

It is not difficult to show that if X , Y and Z are inner product spaces,
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with X and Y isomorphic and Y and Z isomorphic, then also X and Z

are isomorphic. The details are left as an exercise.
We have been leading up to the following important theorem.

Theorem 9.7.3 Any infinite-dimensional separable Hilbert space is iso-
morphic to l2.

Of course, we are referring here to inner product space isomorphisms.
From the comment just above, it follows that all infinite-dimensional
separable Hilbert spaces are mutually isomorphic. The importance of
this result in quantum mechanics was mentioned at the beginning of this
chapter.

Let X be an infinite-dimensional separable Hilbert space. The the-
orem will be proved when we have exhibited an isomorphism from X

onto l2. Since X is separable, it contains a countable complete or-
thonormal set {x1, x2, . . . }, say. By (a) of the Fourier series theorem
(Theorem 9.6.4), it follows that for any point u ∈ X we may write

u =
∞∑

k=1

αkxk, αk = 〈u, xk〉 , k ∈ N,

and, by (c) of the same theorem, we know that the series
∑∞

k=1 |αk|2
converges. Thus with any point u ∈ X we may associate the point
ξ = (α1, α2, . . . ) in l2, where αk = 〈u, xk〉 for k ∈ N. Let A be the
mapping from X into l2 such that Au = ξ. We will show that A is the
desired isomorphism.

Certainly, A is an onto mapping, for this is precisely what Theorem
9.7.1 tells us: for any point ξ ∈ l2, there is a point w ∈ X such that
Aw = ξ.

To show that A is one-to-one, suppose that Au1 = ξ1 and Au2 = ξ2,
where u1, u2 ∈ X and u1 �= u2. Then there is at least one index k

for which 〈u1, xk〉 �= 〈u2, xk〉, by (e) of the Fourier series theorem. For
this k, ξ1 and ξ2 differ in their kth components and so cannot be equal.
This indeed shows that A is one-to-one.

For any points u1, u2 ∈ X and any scalars β1, β2, we have

〈β1u1 + β2u2, xk〉 = β1 〈u1, xk〉 + β2 〈u2, xk〉

for each k ∈ N. Hence A(β1u1 + β2u2) = β1Au1 + β2Au2. That is, A is
a linear mapping.

It remains to show that A preserves inner products. For this, we
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use (b) of the Fourier series theorem: for any points u1, u2 ∈ X , we have

〈u1, u2〉 =
∞∑

k=1

〈u1, xk〉 〈u2, xk〉.

But, by definition of the inner product for l2, this says precisely that
〈u1, u2〉 = 〈Au1, Au2〉, as required, and this proves the theorem.

It can be shown in a similar fashion that any complex inner product
space, of dimension n, is isomorphic to Cn, and this is left as an exercise.

9.8 Exercises

(1) (a) Consider l2 as a normed space and let ek be the point in l2
with all components 0 except for the kth, which is 1. Show
that, if x = (x1, x2, . . . ) ∈ l2, then x =

∑∞
k=1 xkek.

(b) Give an example in which this series for x is not absolutely
convergent.

(2) Complete the proof of Theorem 9.7.1 by proving that

‖w‖2 =
∞∑

k=1

|αk|2.

(3) Let X , Y , Z be inner product spaces and suppose the mappings
A : X → Y and B : Y → Z are isomorphisms. Prove that the
mapping BA is an isomorphism of X onto Z.

(4) Prove that any (complex) inner product space of dimension n is
isomorphic to Cn.

(5) Let {x1, x2, . . . } be the usual complete orthonormal set (of trigo-
nometric functions) in C2[−π, π] and let f and g be continuous
functions on [−π, π]. Define functions Fn, Gn (n ∈ N) and G for
−π � u � π by

Fn(u) =
n∑

k=1

〈f, xk〉xk,

Gn(u) =
∫ u

−π

n∑
k=1

〈f, xk〉xk(t)g(t) dt,

G(u) =
∫ u

−π

f(t)g(t) dt.

By the Fourier series theorem, {Fn} converges in mean square
to f . Prove that {Gn} converges uniformly on [−π, π] to G. Prove
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also that the same is true for any function g for which |g|2 is
integrable on [−π, π].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(6) A linear mapping U from a Hilbert space X onto itself is called
unitary if 〈Ux, Uy〉 = 〈x, y〉 for all x, y ∈ X .

(a) Show that U is an operator and that ‖U‖ = 1.
(b) Show that UU∗ = U∗U = I (the identity operator on X),

where U∗ is the adjoint of U .
(c) Show that {Ux1, Ux2, . . . } is a complete orthonormal set

in X , whenever {x1, x2, . . . } is, if X is separable.

(7) A bounded sequence {yn} in a Hilbert space X is said to be
weakly convergent if the sequence {〈z, yn〉} in C converges for ev-
ery z ∈ X. Use the Riesz representation theorem (Theorem 9.2.1)
to show that there exists y ∈ X such that lim 〈z, yn〉 = 〈z, y〉 for
every z ∈ X .

(8) Continuing, the sequence {yn} is then said to converge weakly
to y, and we write yn

w→ y. In contrast, if yn → y (in norm, as
usual) we may say the sequence {yn} converges strongly.

(a) Show that if yn → y then yn
w→ y.

(b) Show that if yn
w→ y and ‖yn‖ → ‖y‖ then yn → y. (See

also Exercise 8.6(15).)

(9) Continuing, show that any complete orthonormal set in l2 forms
a sequence which converges weakly, but not strongly, to θ ∈ l2.
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Selected Solutions

Exercises 2.4

(1) Take any x, y, z, u ∈ X . Using (M3), we have

d(x, z) � d(x, y) + d(y, z) � d(x, y) + d(y, u) + d(u, z),

d(y, u) � d(y, x) + d(x, u) � d(y, x) + d(x, z) + d(z, u),

Using (M2), these imply, respectively,

d(x, z) − d(y, u) � d(x, y) + d(z, u),

d(x, z) − d(y, u) � −d(y, x) − d(z, u) = −(d(x, y) + d(z, u)).

Then |d(x, z) − d(y, u)| � d(x, y) + d(z, u), as required.

(3) We will verify (M3) for d4, using the fact that it is true for d1 and d2.
Take any x, y, z ∈ X . Then

d1(x, y) � d1(x, z) + d1(z, y)

� max{d1(x, z), d2(x, z)} + max{d1(z, y), d2(z, y)}
= d4(x, z) + d4(z, y).

In exactly the same way, also d2(x, y) � d4(x, z)+d4(z, y), and it follows
then that d4(x, y) = max{d1(x, y), d2(x, y)} � d4(x, z) + d4(z, y).

(7) Let x, y be elements of X and assume that the function x is zero
outside the the interval I and the function y is zero outside the interval J .
(Note that I and J may be disjoint.) Clearly, x− y is zero outside (that
is, in the complement of) I ∪ J . Let the left and right endpoints of I

be a and b, respectively, and let those of J be c and d, respectively.
Then I ∪ J ⊆ [min{a, c}, max{b, d}]. Define a function f on this closed
interval by f(t) = |x−y|(t) = |x(t)−y(t)|. Then f is continuous since x

and y are, and hence f attains its maximum value (by Theorem 1.9.6).

312
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Since (x − y)(t) = 0 for t outside the interval, so |x − y| also attains its
maximum value. This shows that d(x, y) is well defined, and in fact it
is clear that d(x, y) = maxt∈I∪J |x(t) − y(t)|.

It is also clear from this formulation that d satisfies requirements (M1)
and (M2) of a metric. To verify (M3), let x, y, z be elements of X ; that
is, x, y, z are continuous functions defined on R, which are zero outside
the intervals I, J , K, say. We have

d(x, z) = max
t∈R

|x(t) − z(t)| = max
t∈I∪K

|x(t) − z(t)| = max
t∈I∪J∪K

|x(t) − z(t)|,

since I ∪ K ⊆ I ∪ J ∪ K and x(t) = z(t) = 0 for t outside I ∪ K. Then,
with similar reasoning for x − y and y − z,

d(x, z) = max
t∈I∪J∪K

|x(t) − z(t)|
� max

t∈I∪J∪K
|x(t) − y(t)| + max

t∈I∪J∪K
|y(t) − z(t)|

= max
t∈I∪J

|x(t) − y(t)| + max
t∈J∪K

|y(t) − z(t)|
= d(x, y) + d(y, z).

This shows that (M3) is satisfied.

Exercises 2.9

(1) Take any ε > 0. Since limxn = x and lim yn = y, there exist positive
integers N1 and N2 such that

d(xn, x) <
ε

2
for n > N1 and d(yn, y) <

ε

2
for n > N2.

Let N = max{N1, N2}. Then, using the inequality in Exercise 2.4(1),
we have

|d(xn, yn) − d(x, y)| � d(xn, x) + d(yn, y) <
ε

2
+

ε

2
= ε,

for n > N . This shows that d(xn, yn) → d(x, y).

(5) Let {xn} be a Cauchy sequence in (X, d), where d is the discrete
metric. There exists a positive integer N such that d(xn, xm) < 1 when
m, n > N . Then xn = xN+1 when n > N , since d is the discrete metric.
Now take any ε > 0. Then d(xn, xN+1) = 0 < ε when n > N , and hence
the Cauchy sequence converges (to xN+1). So (X, d) is complete.

(10) The triangle inequality in C implies that ||u| − |v|| � |u − v| for
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any u, v ∈ C. Take any ε > 0. Since zn → z, we have

0 � ||zn| − |z|| � |zn − z| < ε,

for all n large enough, implying that |zn| → |z|.
Now let S = {w ∈ C : |w| � c}, where c is any positive number, and

let {zn} be a sequence in S which converges in C. Then |zn| � c for
all n ∈ N. Put z = lim zn. We will show that |z| � c, so that z ∈ S

and this will prove that S is closed. If this is not so then |z| > c; let
ε = |z| − c > 0. From the earlier result, we have |zn| → |z|, so there
exists a positive integer N such that ||zn| − |z|| < ε = |z| − c, when
n > N . In particular, for such n, |zn| − |z| > −(|z| − c), or |zn| > c.
This contradicts the statement that |zn| � c for all n ∈ N. Therefore
we must have |z| � c.

(12) When a = 0, the sequence {xn} in Example 2.6(6) is given by

xn(t) =

{
nt, 0 � t � 1/n,

1, 1/n � t � b,

for n ∈ N. This is still a Cauchy sequence. However, we will show that
it is a convergent sequence in C1[0, b], its limit being the (continuous)
function h, given by h(t) = 1 for 0 � t � b. For this,

d(xn, h) =
∫ b

0

|xn(t) − h(t)| dt

=
∫ 1/n

0

|nt − 1| dt =
∫ 1/n

0

(1 − nt) dt =
1
2n

,

so xn → h, as stated. Hence this sequence cannot serve to show that
C1[a, b] is not complete.

Exercises 3.5

(2)(b) The given equation is equivalent to 1
8 sinx + 1

4 sinh x + 1
4 = x.

Consider the function f defined by f(x) = 1
8 sin x + 1

4 sinh x + 1
4 , for

0 � x � 1
2π. We have 0 � sinx � 1 and 0 � sinh x � sinh(1

2π) < 2.4, so
that

1
4

� f(x) � 1
8

+
1
4

sinh
π

2
+

1
4

< 1.
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Thus the range of f is a subset of its domain [0, 1
2π]. Also,

|f ′(x)| =
∣∣∣∣18 cosx +

1
4

coshx

∣∣∣∣
� 1

8
| cosx| + 1

4
coshx � 1

8
+

1
4

cosh
π

2
< 1.

Therefore, f(x) = x (and hence the given equation) has a unique root in
[0, 1

2π]. With x0 = 0, the next iterate to this root, using the method of
successive approximations, is x1 = f(x0) = 0.25, and the next few are
x2 = f(x1)

.= 0.3440, x3 = f(x2)
.= 0.3799, x4 = f(x3)

.= 0.3936. (The
actual root is 0.4022, to four decimal places.)

(4)(b) The given system is equivalent to

3
4x + 1

6y − 2
5z = 3,

− 1
2x + 1

3y + 1
4z = −1,

1
8x + 5

4z = −5.

Let A be the matrix of coefficients from the left-hand sides, and put

C = I − A =


1
4 − 1

6
2
5

1
2

2
3 − 1

4

− 1
8 0 − 1

4

 .

The sums of the absolute values of the elements in the three columns
of C are all less than 1. Thus the condition developed in Exercise 3.5(3)
for the existence of a unique solution to a system of linear equations is
satisfied (but the two earlier such conditions are not, in this case).

(7)(b) This is a Fredholm integral equation. In the notation of the
text, we have |k(s, t)| = 1 for all s, t ∈ [0, 2], so that, taking M = 1,
λ = 1

3 < 1
2 = 1/M(b − a). So the equation has a unique solution.

We solve the integral equation first by integrating both sides with
respect to s over [0, 2]:∫ 2

0

x(s) ds =
∫ 2

0

(
1
3

∫ 2

0

x(t) dt

)
ds +

∫ 2

0

s2 ds =
2
3

∫ 2

0

x(t) dt +
8
3
.

Since
∫ 2

0
x(s) ds =

∫ 2

0
x(t) dt, so

∫ 2

0
x(t) dt = 8. Hence we obtain the

solution x(s) = 8
3 + s2.

Alternatively, we observe that
∫ 2

0 x(t) dt = c, for some number c. Then
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x(s) = 1
3c + s2. Substituting this into the integral equation, we have

c

3
+ s2 =

1
3

∫ 2

0

( c

3
+ t2
)

dt + s2 =
1
3

(
2c

3
+

8
3

)
+ s2,

from which c = 8, so that x(s) = 8
3 + s2.

Exercises 4.5

(2)(b) Let S = {x, x1, x2, . . . }. Let σ be a sequence in S that contains
infinitely many distinct elements of S but does not include x as a term.
Form a subsequence of σ by choosing elements from σ in increasing
order of their subscripts. This will be a subsequence of {xn}, and hence
will be convergent to x by the result of Exercise 4.5(1). Any sequence
in S that contains infinitely many distinct elements of S, including x,
has a subsequence σ in which x is omitted, and this may be treated
as above. Any sequence in S that contains only finitely many distinct
elements of S will have a constant subsequence, and constant sequences
are convergent. Hence any sequence in S has a convergent subsequence,
so S is compact.

(4) We prove first that a union of finitely many compact subsets of a
metric space is compact. It is sufficient to show that if S1 and S2 are
compact subsets of a metric space X then S = S1∪S2 is also a compact
subset of X . The more general result will follow by induction. Any
sequence {xn} in S must have subsequence {xnk

} all of whose terms are
in S1, or all of whose terms are in S2. Since S1 and S2 are compact,
{xnk

} itself has a convergent subsequence which will thus be a convergent
subsequence of {xn}. This shows that S is compact.

We note however that the union of an infinite number of compact
subsets of a metric space need not be compact. For example, consider
the subsets Sn = [n, n+1], for n ∈ Z, of the metric space R. For each n,
Sn is closed and bounded and hence is a compact subset of R. But⋃∞

n=−∞ Sn = R is not compact.
Now we prove that the intersection of any number of compact subsets

of a metric space is compact. Let T be any nonempty set, finite or
infinite, perhaps uncountable, and suppose, for each t ∈ T , that St is
a compact subset of some metric space. Put S =

⋂
t∈T St. Assume

S �= ∅ (else certainly S is compact). If {xn} is a sequence in S then
also {xn} is a sequence in St, for t ∈ T . Since St is compact, {xn} has a
convergent subsequence with limit x ∈ St. Since this is true for all t ∈ T ,
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then x ∈ S, so {xn}, as a sequence in S, has a convergent subsequence.
Hence S is compact.

(9) Let G be the set of all functions g, where g(x) =
∫ x

a
f(t) dt, for

f ∈ F , a � x � b. Since F is a bounded subset of C[a, b], so F is a
uniformly bounded family (by the result of Exercise 4.5(7)). Then there
exists M > 0 such that |f(x)| � M for all f ∈ F , a � x � b. Thus, for
all g ∈ G and a � x � b,

|g(x)| =
∣∣∣∣∫ x

a

f(t) dt

∣∣∣∣ � ∫ x

a

|f(t)| dt � M(x − a) � M(b − a).

Hence G is uniformly bounded. Also, given ε > 0, take δ = ε/M . Then
for all g ∈ G we have

|g(x′) − g(x′′)| =

∣∣∣∣∣
∫ x′

a

f(t) dt −
∫ x′′

a

f(t) dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ x′′

x′
f(t) dt

∣∣∣∣∣
�
∣∣∣∣∣
∫ x′′

x′
|f(t)| dt

∣∣∣∣∣ � M |x′ − x′′| < Mδ < ε,

whenever x′, x′′ ∈ [a, b] and |x′ − x′′| < δ. This shows that G is equicon-
tinuous.

Exercises 5.7

(2) Let S be any subset of X . In (X, T max), intS = S = S. In
(X, T min), intS = ∅ except that intX = X , and S = X except that
∅ = ∅.

(4) (a) Let b(x0, r) be an open ball in a metric space (X, d), and take any
x ∈ b(x0, r). Put ε = r − d(x0, x). We will show that b(x, ε) ⊆ b(x0, r),
and this will imply that b(x0, r) is an open set. So take any y ∈ b(x, ε).
Since d(x, y) < ε, we have

d(x0, y) � d(x0, x) + d(x, y) < (r − ε) + ε = r.

Thus y ∈ b(x0, r), and this shows that b(x, ε) ⊆ b(x0, r), as required.
(b) We must verify (T1), (T2) and (T3) for the metric topology Td

on a metric space (X, d).
We have ∅ ∈ Td, by definition, and clearly the whole space X is open,

so X ∈ Td. This confirms (T1).
Let S be any subcollection of Td and consider

⋃
T∈S T . Take any

x ∈ ⋃
T∈S T ; then x ∈ T for some T ∈ S . Since T ∈ Td (that is, T is an
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open set), there is an open ball b(x, r) such that b(x, r) ⊆ T ⊆ ⋃T∈S T .
This shows that

⋃
T∈S T ∈ Td, confirming (T2).

Let T1, T2 ∈ Td. Take any x ∈ T1 ∩ T2. Then x ∈ T1 and, since T1

is open, there is an open ball b(x, r1) ⊆ T1. Similarly, there is an open
ball b(x, r2) ⊆ T2. Let r = min{r1, r2}. Then b(x, r) ⊆ b(x, ri) ⊆ Ti for
i = 1 and 2, so that b(x, r) ⊆ T1 ∩ T2. This shows that T1 ∩ T2 ∈ Td,
confirming (T3).

(7) To prove that {x} is a closed subset of a Hausdorff space X , for
any x ∈ X , we will prove that {x} contains its cluster points. Let y be
any cluster point of {x} and assume that y /∈ {x}. Then we have y �= x.
Since X is a Hausdorff space, there exist neighbourhoods Ux of x and Uy

of y such that Ux ∩Uy = ∅. Hence the neighbourhood Uy of y does not
contain any point of {x}. This contradicts the fact that y is a cluster
point of x. Hence we must have y ∈ {x}.
(10) (a) Let {xn} be a sequence in (X, T min) and let x be any point in
this space. Since T min = {∅, X}, so X is the only neighbourhood of x.
Furthermore, xn is a point in this neighbourhood for all n � 1. Hence,
xn → x.

(b) Let {xn} be a convergent sequence in a Hausdorff space X , and
suppose that {xn} has two distinct limits, x and y. Then x, y ∈ X

and x �= y, so there exist disjoint neighbourhoods Ux of x and Uy of y.
Since xn → x and xn → y, there exist positive integers N1 and N2

such that xn ∈ Ux for n > N1, and xn ∈ Uy for n > N2. Then, if
N = max{N1, N2}, we have xn ∈ Ux∩Uy for n > N , and this contradicts
the fact that Ux ∩Uy = ∅. Hence a convergent sequence in a Hausdorff
space cannot have distinct limits: the limit must be unique.

(11) We use the fact that a mapping A : (X, T 1) → (X, T 2) is con-
tinuous if and only if A−1(T ) ∈ T 1 whenever T ∈ T 2 (from Theorem
5.4.4). Suppose the identity map I : (X, T 1) → (X, T 2) is continuous,
and let T ∈ T 2. Then T = I−1(T ) ∈ T 1. Hence T 2 ⊆ T 1. Conversely,
suppose T 2 ⊆ T 1 and let T ∈ T 2. Then I−1(T ) = T ∈ T 1, so I is
continuous. We have shown that I is continuous if and only if T 2 ⊆ T 1,
that is, if and only if T 1 is stronger than T 2.

Exercises 6.4

(3)(b) Noticing that

αnxn − αx = α(xn − x) + (αn − α)x + (αn − α)(xn − x)
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makes the following proof not so obscure.
Take any ε > 0. Then let η > 0 be such that η|α| < 1

3ε (which
allows for the possibility that α = 0), η‖x‖ < 1

3ε (which allows for the
possibility that x is the zero vector) and η2 < 1

3ε. Since xn → x and
αn → α, we can find positive integers N1, N2 such that ‖xn − x‖ < η

when n > N1 and |αn − α| < η when n > N2. Then, provided n is
greater than both N1 and N2, we have

‖αnxn − αx‖ � |α| ‖xn − x‖ + |αn − α| ‖x‖ + |αn − α| ‖xn − x‖
< η|α| + η‖x‖ + η2 < ε.

Hence αnxn → αx.

(5) Suppose ‖x‖ � M for some M > 0 and all x ∈ S and let d be
the metric induced by the norm ‖ ‖. Take any points x, y ∈ S. Then
‖x‖ � M and ‖y‖ � M , and

d(x, y) = ‖x − y‖ � ‖x‖ + ‖ − y‖ = ‖x‖ + ‖y‖ � 2M.

Hence sup{d(x, y) : x, y ∈ S} � 2M , so S has a finite diameter. Thus S

is bounded.
Conversely, suppose S is bounded, with diameter ∆. Let x0 be some

particular point of S. Then, for any x ∈ S,

‖x‖ = ‖(x − x0) + x0‖ � ‖x − x0‖ + ‖x0‖ � ∆ + ‖x0‖.

That is, taking M = ∆ + ‖x0‖, we have ‖x‖ � M for all x ∈ S, as
required to complete the proof.

(6) We will give the verification of (N3) here, for the normed space P .
Let p, q, where p(t) = a0 + a1t + · · ·+ antn, q(t) = b0 + b1t + · · ·+ bmtm

be elements of P and assume that n � m. Then

(p + q)(t) = (a0 + b0) + (a1 + b1)t + · · · + (am + bm)tm

+ am+1t
m+1 + · · · + antn,

so that

‖p + q‖ = |a0 + b0| + |a1 + b1| + · · · + |am + bm| + |am+1| + · · · + |an|
� (|a0| + |a1| + · · · + |an|) + (|b0| + |b1| + · · · + |bm|)
= ‖p‖ + ‖q‖.

This confirms (N3).
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However, P is not a Banach space. To see this, consider (among many
possible examples) the sequence {pn} in P given by

pn(t) =
n∑

k=0

tk

k!
, n ∈ N.

If n > m, then we have pn(t) − pm(t) =
∑n

k=m+1 tk/k!, so

‖pn − pm‖ =
1

(m + 1)!
+ · · · + 1

n!
.

Since
∑∞

k=0 1/k! is a convergent series, this is arbitrarily small for m

sufficiently large (by the Cauchy convergence criterion), so {pn} is a
Cauchy sequence in P . But the only candidate for lim pn must be the
function p given by p(t) = et. Since the exponential function is not a
polynomial function, {pn} is not convergent in P .

Exercises 6.10

(6) For −1 � x � 1,

T6(x) = 32x6 − 48x4 + 18x2 − 1,

T7(x) = 64x7 − 112x5 + 56x3 − 7x,

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1;

x6 = 1
32T6(x) + 3

16T4(x) + 15
32T2(x) + 5

16T0(x),

x7 = 1
64T7(x) + 7

64T5(x) + 21
64T3(x) + 35

64T1(x),

x8 = 1
128T8(x) + 1

16T6(x) + 7
32T4(x) + 7

16T2(x) + 35
128T0(x).

(10) Answer: (a) 1
8 + x, (b) 17

24 + 1
3x.

(11) If the required function is a + bx, 0 � x � 1, for some a, b, then
the error function E is given by

E(x) = a + bx − 1
1 + x

, 0 � x � 1.

Let the maximum absolute error be EM , occurring when x = ξ. A sketch
of the graph of 1/(1 + x) on [0, 1] will confirm that to find a and b (and
EM and ξ) we must solve the equations

a − 1 = −EM , a + bξ − 1
1 + ξ

= EM ,

a + b − 1
2

= −EM , b +
1

(1 + ξ)2
= 0.
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We find that b = − 1
2 and a = (2

√
2 + 1)/4, so the linear function that

is the best uniform approximation of 1/(1 + x) on [0, 1] is 0.957− 0.5x,
using three decimal places for a.

(12) Let A : X → Y be a uniformly continuous mapping, for normed
spaces X , Y . Then, given ε > 0, there exists a number δ > 0 such that
‖Ax′ − Ax′′‖ < ε whenever x′, x′′ ∈ X and ‖x′ − x′′‖ < δ. Now let
{xn} be a Cauchy sequence in X . Then for this value of δ there exists
a positive integer N such that ‖xn − xm‖ < δ whenever m, n > N . But
then ‖Axn − Axm‖ < ε whenever m, n > N , so {Axn} is a Cauchy
sequence in Y .

(16) Answer: (a) 1
2

√
2 + 1

4 − 1
2x2, (b) 1

8 + x2.

Exercises 7.5

(2) First, consider A as a mapping from C1[a, b] into itself. Then, for
any x ∈ C1[a, b], we have ‖x‖ =

∫ b

a |x(t)| dt. Thus

‖Ax‖ = ‖y‖ =
∫ b

a

|y(s)| ds =
∫ b

a

∣∣∣∣λ∫ b

a

k(s, t)x(t) dt

∣∣∣∣ds

� |λ|
∫ b

a

∫ b

a

|k(s, t)| |x(t)| dt ds � |λ|M
∫ b

a

(∫ b

a

|x(t)| dt

)
ds

= |λ|M(b − a)‖x‖,
for all x ∈ C1[a, b]. Hence A is bounded and ‖A| � |λ|M(b − a).

Now consider A as a mapping from C2[a, b] into itself. Then, for any

x ∈ C2[a, b], we have ‖x‖ =
√∫ b

a
(x(t))2 dt. Using the integral form of

the Cauchy–Schwarz inequality, we have, for a � s � b,

(y(s))2 = λ2

(∫ b

a

k(s, t)x(t) dt

)2

� λ2

(∫ b

a

(k(s, t))2 dt

)(∫ b

a

(x(t))2 dt

)
� λ2M2(b − a)‖x‖2.

Then, for any x ∈ C2[a, b], we have

‖Ax‖ = ‖y‖ =

√∫ b

a

(y(s))2 ds �

√∫ b

a

λ2M2(b − a)‖x‖2 ds

= |λ|M√
b − a‖x‖

√∫ b

a

ds = |λ|M(b − a)‖x‖.
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Hence A is bounded and ‖A| � |λ|M(b − a).

(7) Using the definition of the norm for l2, we have

|f(x)| = |xj | �

√√√√ ∞∑
k=1

|xk|2 = ‖x‖,

so f is bounded and ‖f‖ � 1. Consider now x0 = (0, . . . , 0, 1, 0, . . . ) ∈ l2,
in which the jth component is 1 and the others are all 0. Then ‖x0‖ = 1
and f(x0) = 1. If ‖f‖ < 1, then 1 = |f(x0)| � ‖f‖ ‖x0‖ < 1 · 1 = 1, a
clear contradiction. Therefore, ‖f‖ = 1.

(10) Consider the normed space X × Y , which we will assume initially
to be normed by ‖(x, y)‖ = ‖x‖+‖y‖ (x ∈ X , y ∈ Y ). Let {(xn, yn)} be
a Cauchy sequence in this space. Then, given ε > 0, there is a positive
integer N such that

‖(xn, yn) − (xm, ym)‖ = ‖(xn − xm, yn − ym)‖
= ‖xn − xm‖ + ‖yn − ym‖ < ε

whenever m, n > N . Thus ‖xn − xm‖ < ε and ‖yn − ym‖ < ε whenever
m, n > N and so {xn} is a Cauchy sequence in X and {yn} is a Cauchy
sequence in Y . Since X and Y are Banach spaces, so {xn} and {yn}
converge in X and Y , respectively. Put x = limxn and y = lim yn,
so x ∈ X , y ∈ Y , and therefore (x, y) ∈ X × Y . We will show that
(xn, yn) → (x, y). Let K1, K2 be positive integers such that

‖xn − x‖ <
ε

2
for n > K1 and ‖yn − y‖ <

ε

2
for n > K2.

If we take K = max{K1, K2}, then

‖(xn, yn) − (x, y)‖ = ‖(xn − x, yn − y)‖
= ‖xn − x‖ + ‖yn − y‖ <

ε

2
+

ε

2
= ε

when n > K. Hence {(xn, yn)} → (x, y), so X × Y is a Banach space
when X and Y are Banach spaces.

It follows that the same is true when X×Y is normed alternatively by
‖(x, y)‖′ = max{‖x‖, ‖y‖}, since the norms ‖ ‖′ and ‖ ‖ are equivalent
(Exercise 7.5(9)).

(11) Let X , Y be normed spaces and A : X → Y be an operator, so
that the mapping A is linear and bounded. Let {xn} be a sequence in X

which converges to x, say, and which is such that the sequence {Axn}
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in Y is also convergent, to y, say. To show that A is closed, we must
show that Ax = y. For this, we have

0 � ‖Ax − y‖ = ‖(Ax − Axn) + (Axn − y)‖
� ‖Ax − Axn‖ + ‖Axn − y‖
= ‖A(x − xn)‖ + ‖Axn − y‖
� ‖A‖ ‖x − xn‖ + ‖Axn − y‖.

Since ‖xn − x‖ → 0 and ‖Axn − y‖ → 0, we must have ‖Ax − y‖ = 0,
or Ax = y, as required.

Exercises 7.9

(1) (a) Introduce the operator K : C[a, b] → C[a, b] by Kx = y, where
y(s) = λ

∫ b

a k(s, t)x(t) dt, for x ∈ C[a, b] and a � s � b. Then the given
Fredholm equation may be given as f(s) = x(s)−(Kx)(s), for a � s � b,
or simply f = (I − K)x, where I is the identity operator on C[a, b].

(b) It is known (see Exercise 7.5(2)) that ‖K‖ � |λ|M(b − a), so
‖K‖ < 1 if |λ| < 1/M(b − a). Then it is a known result (Theorem
7.6.5) that (I − K)−1 exists and (I − K)−1f =

∑∞
j=0 Kjf . But from

f = (I − K)x, we have x = (I − K)−1f , and the result follows.

(2) (a) We use mathematical induction. The result is true when n = 1,
since k1 = k. Assume the result is true when n = m, where m � 1, and
suppose that y = Km+1x. Then

y(s) = (Km+1x)(s) = (K(Kmx))(s)

= λ

∫ b

a

k(s, u)
(

λm

∫ b

a

km(u, t)x(t) dt

)
du

= λm+1

∫ b

a

∫ b

a

k(s, u)km(u, t)x(t) dt du

= λm+1

∫ b

a

(∫ b

a

k(s, u)km(u, t) du

)
x(t) dt

= λm+1

∫ b

a

km+1(s, t)x(t) dt.

This shows that the result is then also true when n = m + 1, and hence
it is true for all n ∈ N.

(b) Again, use induction. The result is clearly true when n = 1.
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Assume the result is true when n = m, where m � 1. Then

|km+1(s, t)| =
∣∣∣∣∫ b

a

k(s, u)km(u, t) du

∣∣∣∣ � ∫ b

a

|k(s, u)| |km(u, t)| du

� M · Mm(b − a)m−1

∫ b

a

du = Mm+1(b − a)m,

so the result is true also when n = m+1. Hence it is true for all n ∈ N.

(3) Putting the preceding results together, we have, if |λ| < 1/M(b−a),

x(s) =
∞∑

j=0

(Kjf)(s) = f(s) +
∞∑

j=1

λj

∫ b

a

kj(s, t)f(t) dt

= f(s) +
∫ b

a

f(t)
∞∑

j=1

λjkj(s, t) dt.

(4) Answer: (a) x(s) = s, (b) x(s) = sin s + 24s/(96 − π3), (c) x(s) =
f(s) + (s/3)

∫ 2

1 (f(t)/t) dt.

(5) Answer: (a) x(s) = sin s, (b) x(s) = s2es, (c) x(s) = ses−1.

(8) (a) Observe first that if (γA)x = θ then γ(Ax) = θ, so Ax = θ since
γ �= 0. But then x = θ since A−1 exists, and this implies that (γA)−1

exists. (We have made two applications of Theorem 7.6.2.) Therefore,
if y = (γA)x, where x ∈ X , then x = (γA)−1y. On the other hand, we
have y = γ(Ax), so that Ax = γ−1y. Then x = A−1(γ−1y) = γ−1A−1y.
Hence (γA)−1 = γ−1A−1.

(b) Let γ = 1 + α �= 0. We have A + E = A + αA = (1 + α)A = γA,
so, by (a), (A + E)−1 exists and, furthermore,

(A + E)−1 = (γA)−1 = γ−1A−1 =
1

1 + α
A−1.

(c) We have x = A−1v and, from (b),

y = (A + E)−1v =
1

1 + α
A−1v.

Then

‖x − y‖ =
∥∥∥∥A−1v − 1

1 + α
A−1v

∥∥∥∥ =
∥∥∥∥ α

1 + α
A−1v

∥∥∥∥
=
∥∥∥∥ α

1 + α
x

∥∥∥∥ =
|α|

|1 + α| ‖x‖,

and the result follows.
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(11) Since B is approximated by B̃, so there is an operator E on X

such that B̃ = B + E. Hence B̃ − B = E and, since AB = C, so
AB̃−C = A(B +E)−AB = AE. Using the result of Exercise 7.9(6)(a),
we have both ‖C‖ = ‖AB‖ � ‖A‖ ‖B‖, so ‖B‖ � ‖C‖/‖A‖, and

‖E‖ = ‖A−1AE‖ � ‖A−1‖ ‖AE‖.
Thus

‖B̃ − B‖
‖B‖ =

‖E‖
‖B‖ � ‖A−1‖ ‖AE‖

‖C‖/‖A‖ = k(A)
‖AB̃ − C‖

‖C‖ ,

as required, since ‖A‖ ‖A−1‖ is the condition number k(A).

Exercises 8.6

(4) Let V be a finite-dimensional vector space and let {v1, . . . , vn} be
a basis for V . For vectors x =

∑n
k=1 αkvk and y =

∑n
k=1 βkvk in V

define a mapping 〈 , 〉 : V × V → C by 〈x, y〉 =
∑n

k=1 αkβk. It is
straightforward to verify that this defines an inner product for V .

(5) We prove that {〈xn, yn〉} is a Cauchy sequence in C. Then the
sequence will be convergent, since C is complete. Notice first that since
{xn} and {yn} are Cauchy sequences, they are bounded so there exist
positive constants K, L such that ‖xn‖ � K, ‖yn‖ � L for all n ∈ N.
Let ε > 0 be given and let N1, N2 ∈ N be such that ‖xn −xm‖ < ε/(2L)
when n > N1 and ‖yn − ym‖ < ε/(2K) when n > N2. We then have,
provided m, n > max{N1, N2},
| 〈xn, yn〉 − 〈xm, ym〉 | = | 〈xn, yn〉 − 〈xn, ym〉 + 〈xn, ym〉 − 〈xm, ym〉 |

= | 〈xn, yn − ym〉 + 〈xn − xm, ym〉 |
� | 〈xn, yn − ym〉 | + | 〈xn − xm, ym〉 |
� ‖xn‖ ‖yn − ym‖ + ‖xn − xm‖ ‖ym‖
< K

ε

2K
+ L

ε

2L
= ε,

using the general Cauchy–Schwarz inequality. Hence {〈xn, yn〉} is a
Cauchy sequence, as required.

(10) Since x⊥y, we have 〈x, y〉 = 〈y, x〉 = 0. Also, 〈x, x〉 = ‖x‖2 and
〈y, y〉 = ‖y‖2. Then

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= ‖x‖2 + ‖y‖2,
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as required. More generally, if {x1, . . . , xn} is an orthogonal set in X ,
we have ∥∥∥∥ n∑

k=1

xk

∥∥∥∥2 =
〈 n∑

k=1

xk,

n∑
j=1

xj

〉
=

n∑
k=1

n∑
j=1

〈xk, xj〉 .

But 〈xk, xj〉 = 0 for k �= j, so the terms on the right are all zero except
for those with k = j. Since 〈xk, xk〉 = ‖xk‖2 for k = 1, . . . , n, it follows
that ‖∑n

k=1 xk‖2 =
∑n

k=1 ‖xk‖2, as required.

(11) (a) Answer:{(
1√
2
,

1√
2
, 0
)

,

(
1√
6
,
−1√

6
,

2√
6

)
,

(−1√
3
,

1√
3
,

1√
3

)}
,

using the vectors in the given order.
(b) Answer: Obtain{(

1√
3
,

1√
3
,

i√
3

)
,

(
2 − i

2
√

3
,
−1 + 2i

2
√

3
,
1 − i

2
√

3

)
,

(
i

2
,
1
2
,
1 − i

2

)}
using the vectors in the given order, or {(i, 0, 0), (0, i, 0), (0, 0, i)} using
the vectors in the reverse order.

(c) Answer: {u1, u2, u3}, where

u1 =
(

2√
5
, 0,

1√
5
, 0
)

,

u2 =
( −2

3
√

5
, 0,

4
3
√

5
,

5
3
√

5

)
,

u3 =
( −2

3
√

13
,

3√
13

,
4

3
√

13
,

−4
3
√

13

)
,

using the vectors in the given order.

(13) Answer: (a) 4
15 + 4

5x, (b) 20
27 + 44

135x.

Exercises 9.5

(2) Let A be an operator on a Hilbert space X .
By definition of the adjoint A∗, and using the fact that A∗∗ = A, we

have, for all x, y ∈ X , 〈A∗Ax, y〉 = 〈Ax, A∗∗y〉 = 〈Ax, Ay〉 = 〈x, A∗Ay〉.
Hence (A∗A)∗ = A∗A, so A∗A is self-adjoint.

Next, for all x, y ∈ X ,

〈(A + A∗)x, y〉 = 〈Ax + A∗x, y〉 = 〈Ax, y〉 + 〈A∗x, y〉
= 〈x, A∗y〉 + 〈x, Ay〉 = 〈x, A∗y + Ay〉 = 〈x, (A∗ + A)y〉 .
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Hence (A + A∗)∗ = A∗ + A = A + A∗, so A + A∗ is self-adjoint. The
proof that i(A − A∗) is self-adjoint is similar.

(4) Answer: The eigenvalues and corresponding eigenvectors are −1,
(
√

3, 3i,−i)T ; 2 + 1
3

√
3, (2i,

√
3 + 1,

√
3 + 3)T ; and 2− 1

3

√
3, (2i,

√
3− 1,√

3 − 3)T .

(8) (a) In order that Ax = λx for some number λ and some nonzero
point x = (x1, x2, . . . ) ∈ l2, we must have

(x2, x3, x4, . . . ) = (λx1, λx2, λx3, . . . ).

Taking x1 = 1, this implies xk = λk−1 for k = 1, 2, . . . . Notice that, by
definition of l2, x = (1, λ, λ2, . . . ) ∈ l2 provided

∑∞
k=0 |λ|2k is convergent.

This is the case when |λ| < 1. Thus any such number λ is an eigenvalue
of A and (1, λ, λ2, . . . ) is a corresponding eigenvector.

(b) Take any points x = (x1, x2, . . . ) ∈ l2 and y = (y1, y2, . . . ) ∈ l2,
and suppose A∗y = z = (z1, z2, . . . ) ∈ l2. Using the definition of the
inner product in l2, we have

〈Ax, y〉 = 〈(x2, x3, . . . ), (y1, y2, . . . )〉 = x2y1 + x3y2 + x4y3 + · · · ,

〈x, A∗y〉 = 〈(x1, x2, . . . ), (z1, z2, . . . )〉 = x1z1 + x2z2 + x3z3 + · · · .

Since 〈Ax, y〉 = 〈x, A∗y〉 for any x, y ∈ l2, we must have z1 = 0, z2 = y1,
z3 = y2, . . . , so the adjoint A∗ is given by

A∗(y1, y2, y3, . . . ) = (0, y1, y2, . . . ).

If λ is an eigenvalue of A∗, then A∗y = λy = (λy1, λy2, λy3, . . . ), imply-
ing that λy1 = 0 and λyk = yk−1 for k = 2, 3, . . . . It may be checked
that whether λ = 0 or λ �= 0, we obtain y = (0, 0, 0, . . . ) = θ, the zero
of l2; but the zero vector cannot be an eigenvector. Hence A∗ has no
eigenvalues.

(c) Let B∗ be the adjoint of B. Take any points x = (x1, x2, . . . ) ∈ l2
and y = (y1, y2, . . . ) ∈ l2. Suppose B∗y = z = (z1, z2, . . . ) ∈ l2. By
definition of the inner product in l2, we have

〈Bx, y〉 =
〈
(x1,

1
2x2, . . . ), (y1, y2, . . . )

〉
= x1y1 + 1

2x2y2 + 1
3x3y3 + · · · ,

〈x, B∗y〉 = 〈(x1, x2, . . . ), (z1, z2, . . . )〉 = x1z1 + x2z2 + x3z3 + · · · .

For these to be equal for all x and y, we must have z1 = y1, z2 = 1
2y2,

z3 = 1
3y3, . . . , so that B∗y = By. Hence B∗ = B, so B is self-adjoint. If

λ is an eigenvalue of B, and x is a corresponding eigenvector, then the
equation Bx = λx implies λxk = xk/k, for each k = 1, 2, . . . . Since
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x �= θ, there is some k such that xk �= 0 and thus λ = 1/k for this k.
Then, for all j = 1, 2, . . . with j �= k, we have xj/k = xj/j so that
xj = 0. Taking xk = 1, we may thus give the eigenvector corresponding
to the eigenvalue 1/k as (0, . . . , 0, 1, 0, . . . ), where the 1 is in the kth
place, for k = 1, 2, . . . . We observe that these eigenvalues are real and
the eigenvectors corresponding to distinct eigenvalues are orthogonal, in
accord with Theorem 9.2.4.

Exercises 9.8

(1) (a) Take any ε > 0. Using the definition of the norm in l2, we have∥∥∥∥x −
n∑

k=1

xkek

∥∥∥∥ =
∥∥∥∥ ∞∑

k=n+1

xkek

∥∥∥∥ = ‖(0, . . . , 0, xn+1, xn+2, . . . )‖

=

√√√√ ∞∑
k=n+1

|xk|2 < ε,

provided n is large enough, since
∑ |xk|2 converges. We have shown

that
∑n

k=1 xkek → x, that is, x =
∑∞

k=1 xkek.
(b) The series for x is absolutely convergent if the series

∑∞
k=1 ‖xkek‖

of real numbers is convergent. Take xk = 1/k for k ∈ N. Then

‖xkek‖ =
∥∥∥∥(0, . . . , 0,

1
k
, 0, . . .

)∥∥∥∥
=

√
02 + · · · + 02 +

1
k2

+ 02 + · · · =
1
k

,

and
∑

1/k diverges. Hence this is an example in which the series for x

is not absolutely convergent.

(3) We must show that the mapping BA : X → Z is a linear bijection
that preserves inner products. For this, we make use of the correspond-
ing properties of the mappings A : X → Y and B : Y → Z.

To show that BA is onto, take any z ∈ Z. Let y ∈ Y be such that
By = z and let x ∈ X be such that Ax = y. Then (BA)x = B(Ax) =
By = z, so BA is onto.

To show that BA is one-to-one, suppose that (BA)x1 = (BA)x2 for
x1, x2 ∈ X . Then B(Ax1) = B(Ax2) so Ax1 = Ax2, and then x1 = x2,
so BA is one-to-one.

To show that BA is linear, take any x1, x2 ∈ X and any scalars α1, α2.
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Then

(BA)(α1x1 + α2x2) = B(A(α1x1 + α2x2))

= B(α1Ax1 + α2Ax2)

= α1B(Ax1) + α2B(Ax2)

= α1(BA)x1 + α2(BA)x2,

so BA is linear.
Finally, to show that BA preserves inner products, take x1, x2 ∈ X .

Then

〈(BA)x1, (BA)x2〉 = 〈B(Ax1), B(Ax2)〉 = 〈Ax1, Ax2〉 = 〈x1, x2〉 ,

so BA preserves inner products.

(5) Take any ε > 0. We need to find a positive integer N such that
|Gn(u) − G(u)| < ε for all n > N and all u ∈ [−π, π]. Suppose |g|2
is integrable on [−π, π] (which will be the case if g is continuous on
[−π, π]), and put H =

∫ π

−π
|g(t)|2 dt. (We may assume H > 0 —the

result is obvious otherwise.) Since {Fn} converges in mean square to f ,
there exists a positive integer N such that∫ π

−π

( n∑
k=1

〈f, xk〉xk(t) − f(t)
)2

dt <
ε2

H

for n > N . We now have, for any u ∈ [−π, π],

|Gn(u) − G(u)| =
∣∣∣∣∫ u

−π

( n∑
k=1

〈f, xk〉xk(t) − f(t)
)

g(t) dt

∣∣∣∣
�
∫ u

−π

∣∣∣∣ n∑
k=1

〈f, xk〉xk(t) − f(t)
∣∣∣∣ |g(t)| dt

�

√√√√∫ u

−π

( n∑
k=1

〈f, xk〉xk(t) − f(t)
)2

dt

√∫ u

−π

(g(t))2 dt

<

√
ε2

H

√
H = ε,

using the Cauchy–Schwarz inequality for integrals. The proof is finished.
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ℵ0, 19
absolute value, 4, 54
adjoint, 285
annihilator, 279
approximation theory, 149, 192, 280,

283
Arzelá, 148
Ascoli’s theorem, 146

B(X, Y ), 215
Banach space, 178
basis, 75, 294

orthonormal, 295
Bernstein polynomials, 202
Bessel’s inequality, 270, 299
best approximation, 150, 194, 268
bijection, 11
binomial coefficient, 51
binomial theorem, 51, 201
Bolzano–Weierstrass property, 162
Bolzano–Weierstrass theorem, 23

for sequences, 40
bounds, lower and upper, 21, 35

c, 19
c, 73
C, 5
Cn, 8, 72, 80, 90, 177, 254
C[a, b], 59, 73, 93, 177
C1[a, b], 94, 178
C2[a, b], 94, 178, 255

C(1)[a, b], 74
C′[a, b], 246
Cw[a, b], 265
cardinal number, 19
cartesian product, 7
Cauchy convergence criterion, 41, 45
Cauchy sequence, 101, 178
Cauchy–Schwarz inequality, 88, 96, 256,

257

Chebyshev
norm, 195
polynomials, 198, 266

of the second kind, 267
theory, 195

closed disc, 108
closed set, 28, 107, 156
closure, 157
cluster point, 22, 35, 159

greatest, least, 25, 36
collection, 29
compactness, 29, 141

countable, 162
relative, 141

comparison test, 48
complement, 7
complete orthonormal set, 295
completeness, 4, 25, 42, 47, 57, 102, 179
complex number, 5
condition number, 239
conjugate, 5, 80
connectedness, 169
continuum hypothesis, 19
contraction constant, 116
contraction mapping, 116
convergence

absolute, 46, 179
in mean square, 303
pointwise, 60
of a sequence, 36, 43, 98, 164, 178
of a series, 45, 179
strong, 308
uniform, 59
weak, 308

countability, 14

δ-neighbourhood, 20
de Morgan’s laws, 9
definite integral, 58, 65
derivative, 57

330
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derived set, 159
determinant, 82
diameter, 110
differential equations, 58, 123, 129
dimension, 75
distance function, 85
distributive laws, 235
domain, 10
double integral, 58
dual space, 219, 282

ε-net, 152
economisation of power series, 206
eigenvalue, eigenvector, 225, 286
empty set, 6, 8
equal-ripple property, 197
equicontinuity, 145
equivalent norms, 189
error, 237
Euclidean space, 87, 252

finite differences, 153
fixed point, 116
fixed point theorem, 116, 152
Fourier coefficients, 299
Fourier series, 58, 298, 299
Fourier series theorem, 297, 299
Fredholm integral equation, 126, 243
functional, 13, 218

analysis, 3
functions, 10, 52, see mappings

bounded, 55
complex-valued, 58
composition of, 13
constant, 54
continuous, 52, 53
identity, 14
inverse, 13
one-to-one, 11
onto, 11
uniformly bounded, 145
weight, 265

Gram matrix, 280
Gram–Schmidt orthonormalisation

process, 261
graph, 52, 222
greatest lower bound, 21, 35
greatest-integer function, 53

Hamel base, 295
harmonic series, 46
Hausdorff space, 160
Heine–Borel Theorem, 31
Heisenberg, 282
Heisenberg’s uncertainty principle, 249
Hermite polynomials, 267

Hilbert, 282
Hilbert space, 281
Hölder inequality, 89
homeomorphism, 167

image, 11, 164
inverse, 164

imaginary part, 5
infimum, 22
injection, 11
inner product, 252
inner product space, 252
integer, 4
integral equations, 2, 137

Fredholm, 126, 243
nonlinear, 133
Volterra, 127, 229

interior, 157
intersection, 7
intervals, 20
irrational number, 4
isomorphism, 74, 305

Jacobi polynomials, 267

kernel, 220

l1, 92
l2, 90, 175, 177, 255
lp, 92
Laguerre polynomials, 267
least squares approximation, 195, 267
least upper bound, 21, 35
least upper bound axiom, 26
Lebesgue integral, 281
Legendre polynomials, 264
limit, 36, 98

greatest, least, 26, 36
inferior, superior, 36
point, 26, 159

limit comparison test, 51
Lindelöf’s theorem, 171
linear combination, 75
linear dependence, 75, 260
linear mapping, 210
linear space, 70
Lipschitz condition, 118

m, 111
map, 13
mappings, 13, 113, see functions

additive, 236
affine, 228
bounded, 210
closed, 222
continuous, 115, 164, 165
contraction, 116
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homogeneous, 236
identity, 114, 213
ill-conditioned, 239
inverse, 225
linear, 210
momentum, 249
perfectly conditioned, 239
perturbation, 130
position, 249
product of, 113, 231
unitary, 308

matrix, 79
Hermitian, 287
inverse, 82, 241
symmetric, 288

maximum, minimum, 21, 35
metric, 85, 176

associated, 177
chordal, 92
discrete, 94
Euclidean, 87
homogeneous, 185
induced, 177
natural, 86
sup, 92
translation invariant, 185
trivial, 94
uniform, 92

metric space, 44, 85
closed, 107
complete, 102

metric topology, 157
minimax approximation, 151, 195
Minkowski inequality, 89
modulus, 5
moments, 204

N, 5
neighbourhood, 20, 159
nested intervals axiom, 25, 42, 47
Newton’s method, 115
norm, 175, 256

Chebyshev, 195
cubic, 185
of a functional, 219
matrix, 242
octahedral, 185
of an operator, 216

normal equations, 271
normed space, 176

strictly convex, 193, 268
null set, 6
null space, 220
numerical analysis, 131, 153, 235

observables, 249
one-to-one correspondence, 14

open ball, 158
open base, 170
open covering, 30, 161

countable, 162
open set, 28, 156
operator, 13, 211

adjoint, 285
ordered pair, 6
orthonormal set, 259

complete, 295
total, 299

parallelogram law, 257
Parseval’s identities, 299
perturbation, 130, 237
Picard’s theorem, 123
point set, 20
polarisation identity, 278
pre-Hilbert space, 252
preimage, 164
probability density function, 204
Pythagorean identities, 278

Q, 5, 17
quantum mechanics, 248, 282

R, R+, 5, 17
Rn, 8, 72, 80, 87, 177, 254
range, 11
ratio test, 50
rational number, 4
real number, 4
real part, 5
restriction, 107
Riemann integral, 58
Riemann–Lebesgue lemma, 303
Riesz representation theorem, 273, 282
Riesz–Fischer theorem, 305
Riesz–Fréchet theorem, 275
root test, 51
rubber sheet geometry, 168

s, 97
scalar, 69

multiple, 70
product, 251, 252

Schrödinger, 282
second axiom of countability, 170
self-adjoint operator, 285
semimetric space, 97
seminorm, 187
separability, 288
separation, 161, 169
sequence, 33

Cauchy, 101, 178
complex-valued, 42
convergent, 36, 43, 98, 164, 178
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decreasing, increasing, 38
monotone, 38
uniformly convergent, 60

series, 45
absolutely convergent, 46, 179
conditionally convergent, 46
geometric, 49, 229
harmonic, 46
uniformly convergent, 67

sets, 3
bounded, 21, 110
closed, 28, 107, 156
compact, 29, 143, 161, 178
countable, 15
derived, 159
disjoint, 9
empty, 6, 8
finite, infinite, 15
open, 28, 156
orthonormal, 259
point, 20
totally bounded, 154

span, 75, 260
subsequence, 34, 140
subset, 6

dense, 289
subspace, 73, 107
successive approximations, 118
sum

partial, 45
of a series, 45, 179
of vectors, 70

supremum, 22
surjection, 11

T1-space, 173
topological property, 168
topological space, 156

second countable, 170
separable, 289

topology, 28, 155, 168
coarser, finer, 157
discrete, 156
Hausdorff, 160
indiscrete, 156
metric, 158
stronger, weaker, 156

transpose, 80
triangle inequality, 85, 176

ultrametric space, 112
uniform approximation, 130, 195
uniform continuity, 146, 199
uniformly bounded functions, 145
union, 7, 15, 29
unit operator, 213
unitary space, 252

vector space, 70, 71
normed, 176

vectors, 69, 70
orthogonal, 259

Volterra integral equation, 127, 229

wave function, 249
Weierstrass M -test, 68
Weierstrass approximation theorem,

193, 202, 205, 209
weight, 265

Z, 5
zero operator, 213
zero vector, 70
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