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Chapter 1

Introduction to Topology

This mini-topic contains basic introduction to topology and topological spaces. It includes
definitions, results, examples and problems on: topology, topological spaces, metrics, metric
spaces, norm, inner product, normed and inner product spaces; accumulation points, closure,
interior and boundary of a set; convergence, complete spaces, compactness.
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6 CHAPTER 1. INTRODUCTION TO TOPOLOGY

1.1 Week 1

1.1.1 Sets, operations with and relations on sets, mappings.

We start by presenting the notations used in this text.

• We will denote sets by capital letters, such as A,B, S,K, X, Y ; we use small letters for
elements in the sets.

• In general, the definition of a set is given in the form:

A := {a ∈ A | a has the property... },
and we read ”A is the set of all elements a, where a has the property...”.

• We remind that by a ∈ A we mean ”the element a belongs to the set A” and similarly,
by a /∈ A we mean ”the element a does not belong to the set A”.

• By A ⊆ B we denote the inclusion of the set A in the set B; by A ⊂ B we denote
the strict inclusion of the set A in the set B.

• we denote by ∅ the set with no elements, also called the empty set.

• we denote by 2A the collection of all subsets of a set A (also known as the power set
of A);

• The following logic symbols will be used throughout the course:

∀ means ”for any elements”; ∃ means ”there exists an element”;

∃! means ”there exists a unique element”;

• We remind the main operations that can be performed with sets together with their
symbols:
-union:

⋃
-intersection:

⋂
-difference: \
-complement: C (a particular case of difference).

The result of each of these operations are also sets, and their definition is given below:

∀A,B, A ∪B := {x | x ∈ A or x ∈ B};
∀A,B, A ∩B := {x | x ∈ A and x ∈ B};
∀A,B, A\B := {x | x ∈ A and x /∈ B}

∀A ⊆ B, CB(A) := {x | x ∈ B and x /∈ A}.



1.1. WEEK 1 7

Definition 1.1.1 Given any two sets A and B, we can define the cartesian product of
the two sets by

A×B := {(a, b) | a ∈ A and b ∈ B}.,
i.e., the set of ordered pairs of elements from A and B.

We remind briefly here that we denote by f : A → B a mapping between the sets A and
B. A is the domain of f and B is the range. We denote by

f−1(b) := {a ∈ A | f(a) = b}, the pre-image of b .

For a quick reference to mappings, composition of mappings, injective (1-to-1), surjective
(onto) and bijective mappings, the reader is directed to [1], Ch. 1.

1.1.2 Zorn Lemma.

There are two relations that can exist between the elements of a set; these are:
- the equivalence relation or (RST)
- the order relation or (RAT).

We have studied equivalence relations, for example, in MATH 3130 (for a quick reminder
and examples please see Algebraic Structures, see [2], Ch. 2, Section 4, page 57 on) and
we have seen that they are extremely important in the study of subgroups and ideals. We
will only remind here the definition of an RST. Let A be a set with elements a, b, c, ..... In
what follows, for two arbitrarily chosen elements a, b ∈ A, by a ∼ b we shall understand ”the
element a is in relation with the element b”, or ”a is equivalent to b”.

Definition 1.1.2 A relation ∼ between elements of a set A is an equivalence (or RST) if
and only if it satisfies the following three properties:
1) R:=reflexivity: ∀a ∈ A, we have that a ∼ a;
2) S:=symmetry: ∀a, b ∈ A, we have that a ∼ b implies b ∼ a;
3) T:=transitivity: ∀a, b, c ∈ A, if a ∼ b and b ∼ c, then they imply a ∼ c.

We concentrate next on learning some things about RAT relations. An order relation is
customary denoted by ≤. In what follows, for two arbitrarily chosen elements a, b ∈ A, by
a ≤ b we shall understand ”the element a precedes the element b” or ”a is less than b”.

Definition 1.1.3 A relation ≤ between elements of a set A is an order (or RAT) if and
only if it satisfies the following three properties:
1) R:=reflexivity: ∀a ∈ A, we have that a ≤ a;
2) A:=antisymmetry: ∀a, b ∈ A, it is never the case that both a ≤ b and b ≤ a are true;
3) T:=transitivity: ∀a, b, c ∈ A, if a ≤ b and b ≤ c, then they imply a ≤ c.
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Definition 1.1.4 A relation ≤ is called total (or linear) order if it satisfies:

if x ≤ y and y ≤ x, then x = y, and

x < y or y > x for any distinct x, y ∈ A.

A set A together with a total order relation is called a totally ordered set.

Definition 1.1.5 Suppose that ≤ is an order relation on a set X. Then an element x ∈ X
is called maximal if any other element y ∈ X, comparable to x, satisfies y ≤ x.

We remind now the definition of the least upper bound of a set. This should be known to
the reader from Vector Calculus and/or Real Analysis courses. Here is the definition in the
most general context.

Definition 1.1.6 Suppose that A,X are two sets such that A ⊆ X. Suppose that ≤ is an
order relation on X. Then:
1) An element x ∈ X is an upper bound of A if and only if for each a ∈ A, a ≤ x; notice
that if an upper bound exists, it is not necessarily unique.
2) An element x ∈ X is a least upper bound of A or supremum of A if it is an upper
bound and is less than or equal to every other upper bound of A.

Definition 1.1.7 A set X with a linear order ≤ is called order-complete if any nonempty
totally ordered subset A ⊆ X has a supremum.

Lemma 1.1.1 (Zorn Lemma:) Let X be an order-complete set. Then X possesses at least
one maximal element. In other words, if x0 ∈ X is arbitrarily fixed and X is order-complete,
then there exists a maximal element in X so that x0 ≤ m.

Proof:[This proof could be requested for bonus marks] Since X is order-complete, then every
nonempty totally ordered subset A has a supremum. The Maximum Principle states that
the collection of all nonempty totally ordered subsets A ⊂ X has a maximal element, say B.
This means that any nonempty, totally ordered subset of X is included or is at most equal
to B. Obviously then B 6= ∅ and is totally ordered in X, hence B has a supremum, say
m ∈ X. Let x0 ∈ X arbitrarily chosen.
Claim: x0 belongs to one of the nonempty, totally ordered subsets of X.
If the Claim is true, then obviously x0 ∈ B and since m := sup B, then we have x0 ≤ m.

So all that is left to do is to prove that the Claim is true. Let

A := {A | A is a nonempty, totally ordered subset of X}
and suppose there exist at least two elements x, y ∈ X\A. Then we cannot have x < y or
x > y, otherwise the set {x, y} is a totally ordered subset of X and hence {x, y} ∈ A, which
is a contradiction with the assumption x, y ∈ X\A. The the only possibility is x = y, in
which case the set {x} is a nonempty, totally ordered subset of X, hence x ∈ A and the
Claim is true. ¤
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1.1.3 Topology, topological space, open and closed sets, neigh-
bourhood.

Definition 1.1.8 Let X be a set and let τ be a collection of subsets of X (i.e., τ ⊂ 2X).
Then τ is called a topology on X if it satisfies the following conditions:

• ∅ ∈ τ and X ∈ τ ;

• ∀ D1, D2 ∈ τ , we have that D1 ∩D2 ∈ τ ;

• ∀ Di ∈ τ , i ∈ I, we have that
⋃
i

Di ∈ τ .

Definition 1.1.9 The pair (X, τ) is called a topological space.

Remark 1.1.1 It is important to note that a set X can have multiple topologies defined on
it, hence multiple structures of topological spaces (see for example Examples 1.1.4 and 1.1.5
in the next section.)

A topology τ divides the subsets of the space into two distinct parts. The subsets D ∈ τ are
called open sets relative to τ . The subsets CXD are called closed relative to τ . We
denote by τC the collection of all closed sets in X, i.e.,

τC := {CXD | D ∈ τ}.
Definition 1.1.10 Let (X, τ) be a topological space and x ∈ X an arbitrarily fixed point. A
subset V ⊆ X is called a neighbourhood of x if

∃ D ∈ τ so that x ∈ D ⊆ V.

The point x can have more than one neighbourhood; hence the set of all neighbourhoods
of the point x is denoted by V(x).

For example, the set {a, c} in Example 1.1.4 is a neighbourhood of a in X.
Theorem 1.1.1 below gives the first examples of neighbourhoods of points in a topological

spaces.

Theorem 1.1.1 A set A ∈ X is open if and only if it contains a neighbourhood of each of
its points.

Proof: (→:) Let A be open. Then for each x ∈ A, A is a neighbourhood of x (by direct
application of Definition 1.1.9).

(←:) Suppose x ∈ A arbitrarily fixed and A contains a neighbourhood of x, i.e. ∃V
s.t. V ⊆ A. But this implies (by Definition 1.9) that there exists an open set D so that

x ∈ D ⊆ V ⊆ A. Since this is true for any x ∈ A, then A ⊆
⋃
x∈A

D ⊆
⋃
x∈A

A = A which implies

A =
⋃
x∈A

D. Since any union of open sets is open, then we have that A is open. ¤
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Remark 1.1.2 Let X, τ be a topological space and x0 ∈ X an arbitrarily chosen point.
Then any open set relative to τ that includes x0 is a neighbourhood of x0.

1.1.4 Examples and Problems

Example 1.1.1 The set of integers with the usual order is a totally ordered set.

Example 1.1.2 Let X be a set and 2X the collection of all subsets of this set. Then 2X

with the operation of inclusion of sets is a totally ordered set.

Example 1.1.3 Let E a vector space. Then E possesses a maximal linear independent set
(any of its algebraic bases).

Example 1.1.4 Let the set X = {a, b, c} and suppose we choose τ to be the following col-
lection of subsets of X:

τ = {∅, {a}, {a, b}, X}.
Then τ is a topology on X and (X, τ) is a topological space. Now choose τ̃ to be the following
collection of subsets:

τ̃ = {∅, {b}, {a, b}, {b, c}, X}.
Then τ̃ is also a topology on X.

Example 1.1.5 Let X be a set. Then the following collections of subsets form topologies
on X:
1) τd = { all subsets of X };
2) τi = {∅, X}. The topology τd is also called the discrete topology, while τi is called the
indiscrete or trivial topology.

Example 1.1.6 Let X be a set and τ a topology on X. Let A ⊂ X. Then the collection

τA := {A ∩D | D ∈ τ}

is called the subspace topology.

Example 1.1.7 Let (X, τX) and (Y, τY ) two topological spaces. Then on the cartesian prod-
uct X × Y we can define a topology by taking the collection of sets:

τX×Y := {D | D = DX ×DY , DX ∈ τX , DY ∈ τY }.

The topology τX×Y is called the product topology.
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Example 1.1.8 Let X be a set with a total order relation. Suppose that X has more than
one element. The sets

(a, b) = {x ∈ X | a < x < b}
are called order intervals. Then

τ := { the collection of all unions of subsets of the form (a,b)}

forms a topology on X, called the order topology.
An immediate illustration of this example is the following: take X := R and the usual

order between real numbers. Then the order topology on R is that given by the collection of
all unions of open intervals. The order topology on R is also called standard topology.

Problem 1.1.1 What is the difference between the definition of A\B and that of CB(A)?
When do they coincide?

Problem 1.1.2 Let A,B, S three sets. Then show that the following hold:
1) A ∩ (B\S) = (A ∩B)\S;
2) if B ⊆ A, then (A\B) ∩ S = (A ∩ S)\(B ∩ S).

Problem 1.1.3 Show that ≤ is an order relation on R, where this is the usual order between
real numbers. Is this a linear order?

Problem 1.1.4 Let C be the set of complex numbers and let ≤ be defined by z1 ≤ z2 ∈ C if
and only if |z1| < |z2|. Is this RAT?

Problem 1.1.5 If X,Y are two sets and f : X → Y a mapping, then show that
1) f−1(A ∩B) = f−1(A) ∩ f−1(B);
2) f−1(A ∪B) = f−1(A) ∪ f−1(B),
3) f−1(CY A) = CXf−1(A)
where A,B ⊆ Y , A 6= B and f−1(A) is the inverse image of the set A through f .

Problem 1.1.6 Prove DeMorgan formulae:

1) X\
⋂
i∈I

Ai =
⋃
i∈I

(X\Ai)

2) X\
⋃
i∈I

Ai =
⋂
i∈I

(X\Ai)

Problem 1.1.7 Let X = {a, b, c} and τ = {∅, {a}, {b, c}, X}. Show that τ is a topology on
X.
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Problem 1.1.8 Let X be a set and let

τf = {U ⊆ X | CXU is either finite or is equal to X}.

Show that τf is a topology on X.
(This topology is called the finite complement topology).

Problem 1.1.9 Let A = [1, 2] ⊂ R. Write the subspace topology on A, induced by the
standard topology of R.

Problem 1.1.10 Give examples of product topologies on the sets: R2, R3,...,Rn.
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1.2 Week 2

1.2.1 Accumulation points, closure, interior and boundary of a
set.

Definition 1.2.1 Let (X, τ) be a topological space, A a nonempty subset of X and x ∈ X.
Then the point x is called an accumulation (cluster or limit) point of A if and only if

∀V ∈ V(x), we have that A ∩ (V \{x}) 6= ∅.

We denote by A′ the set of all accumulation points of A.

Remark 1.2.1 It is important to note that not all accumulation points of A actually belong
to A; in fact, there are sets A which do not contain (any of) their accumulation point(s) -
see Example 1.2.1.

Theorem 1.2.1 Let (X, τ) be a topological space and A ⊆ X. Then A
⋃

A′ is always a
closed set.

Proof: [Sketch] Suppose x ∈ X\(A⋃
A′). Then there exists at least one neighbourhood

V ∈ V(x) such that A
⋂

V = ∅. Since V is a neighbourhood of each of its points, then no
point of V is an accumulation point of A. Hence A

⋃
A′ is the complement of an open set,

thus is closed. ¤

Definition 1.2.2 Let (X, τ) be a topological space and A a nonempty subset of X. Then
the smallest closed set in X that contains A is called the closure (or τ-closure) of A and
is denoted by Ac or Ā.

Remark 1.2.2 The following is true: A set A ⊆ X in a topological space (X, τ) is closed if
and only if A = Ā.

Theorem 1.2.2 below shows the relation between a set, the set of its accumulation points
and its closure.

Theorem 1.2.2 Let (X, τ) be a topological space and A any nonempty subset of X. Then
the following holds:

Ā = A
⋃

A′.

Proof: To prove this set equality, we need to show that Ā ⊆ A
⋃

A′ and also that Ā ⊇ A
⋃

A′.
(→) : Based on Theorem 1.2.1, we know that A

⋃
A′ is a closed set and obviously contains

A. Since Ā is by Definition 1.2.2 the smallest closed set that contains A, then Ā ⊆ A
⋃

A′.
(←) : Obviously A ⊆ Ā by Definition 1.2.2. (*).
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We prove A′ ⊂ Ā by contradiction. Let x ∈ A′ and assume that x /∈ Ā. Since x is an
accumulation point of A, then ∀V ∈ V(x), we have A ∩ (V \{x}) 6= ∅. (**)

From our assumption that x /∈ Ā, we get x ∈ X\Ā, which is an open set (since Ā is
closed). Thus X\Ā is a neighbourhood of any of its points, and so there exists D open so
that

x ∈ D ⊆ X\Ā. (1.1)

From set theory we have that the following is true: A ⊆ Ā =⇒ X\Ā ⊆ X\A. From (1.1)
we get then

x ∈ D ⊆ X\Ā ⊆ X\A
which implies that

D ∩ A = ∅, hence (D\{x}) ∩ A = ∅ (∗ ∗ ∗).

But (**) and (***) give a contradiction, since every open set like D is a neighbourhood of
x. This means that any x ∈ A′ belongs to Ā; together with (*), we have A∪A′ ⊆ Ā and the
proof is complete. ¤

Definition 1.2.3 Let (X, τ) be a topological space, A a nonempty subset of X and x ∈ A.
Then x is called an interior point of A if A is a neighbourhood of x. The set of all interior
points is denoted by Å.

Theorem 1.2.3 Let (X, τ) be a topological space and A any nonempty subset of X. The
set Å is always open and is the largest open subset of A.

Proof: If x ∈ Å arbitrarily chosen, then A is a neighbourhood of x, i.e., there exists an open
set D such that x ∈ D ⊆ A. Since every element in D is also an element of Å, then Å is
a neighbourhood of any of its points, so it is open. If V is an open set of A, then A is a
neighbourhood of any point of V , hence V ⊂ Å. So Å is open and contains all open subsets
of A, hence it is the largest open subset of A.

¤

Definition 1.2.4 Let (X, τ) be a topological space, A a nonempty subset of X and x ∈ A.
Then x is called a boundary point of A

if ∀V ∈ V(x) both A
⋂

V 6= ∅ & (X\A)
⋂

V 6= ∅.

The set of all boundary points is denoted by ∂A and is called the boundary of the set A.

An easier way to remember the expression of the boundary of a set is through its relation
with its closure and its interior.
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Theorem 1.2.4 Let (X, τ) be a topological space, A a nonempty subset of X. Then

∂A = Ā\Å.

Proof:[Sketch] We need to show both ∂A ⊆ Ā\Å and Ā\Å ⊆ ∂A. We show here the
implication
(→) : Let z ∈ ∂A arbitrarily fixed. Then our hypothesis is that for any V ∈ V(z), we have
both A ∩ V 6= ∅ and (X\A) ∩ V 6= ∅.

We want to show that z ∈ Ā\Å = (A ∪ A′)\Å, or equivalently,

{z ∈ A or z ∈ A′} and {z /∈ Å}.
Assume that z /∈ A′; this implies that there exists at least one V ∈ V(z) so that (V \{z})∩

A = ∅. But from the hypothesis we have that A ∩ V 6= ∅, so we can only deduce that z is
the only common element of V and A, so we get that z ∈ A and obviously z ∈ A ∪ A′.

Also, if we assume that z /∈ A, since A ∩ V 6= ∅ for any V ∈ V(z), then z ∈ (V \{z}) ∩A
and so V \{z}) ∩ A 6= ∅, hence z ∈ A′, which immediately implies z ∈ A ∪ A′.

If we assume z /∈ A and z /∈ A′, then we arrive at A ∩ V = ∅ for any V ∈ V(z), which
contradicts the hypothesis.

So, the conclusion so far is that any z ∈ ∂A has to belong to A ∪ A′. TO complete the
proof of this part of the theorem, we have to show that any z ∈ ∂A does not belong to Å.

We prove this by contradiction, so assume z ∈ Å; this means A is a neighbourhood of z
and so ∃D open so that

x ∈ D ⊆ A.

But this implies D ∩ (X\A) = ∅, which is a contradiction with our hypothesis. So z /∈ Å
and the proof is complete.

(←) : Homework. ¤
In general, our perception of topological spaces is that of R with τR. In this topology for
example, all singletons, i.e., all sets of one element {x}, are closed, since their complement
is an open set. Also, we know from previous courses that any convergent sequence has a
unique limit.

However, to think that these two facts are true in all topological spaces is wrong. Take
for example the topological space X = {a, b, c} and the topology {∅, {b}, {a, b}, {b, c}, X}.
Then the singleton {b} is open, and is certainly not closed, since its complement {a, c} is
neither open nor closed.

So, what are the topological spaces similar (in the sense of having the two properties
highlighted above) to (R, τR)? The following definiton answer our question.

Definition 1.2.5 Let (X, τ) be a topological space. The space X is called separate or
Hausdorff if it satisfies the following property:

∀ x, y ∈ X, x 6= y, ∃ U ∈ V(x), ∃V ∈ V(y) s.t. Ū ∩ V̄ = ∅.
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1.2.2 Examples and Problems

Example 1.2.1 a) Consider X = R with the standard topology and A := (0, 1]. All points
of A are accumulation points. Moreover, x = {0} is an accumulation point of A, because
any neighbourhood V of 0 in R, in the standard topology, contains an open interval (a, b)
such that 0 ∈ (a, b). Obviously, any such V has the property that (0, 1] ∩ (V − {0}) 6= ∅.

b) Now consider A = { 1
n
| n ∈ Z∗+}. Then 0 is the only accumulation point of A.

Example 1.2.2 1. The closure of the set Q is R, i.e., Q̄ = R.

2. The closure of the set C̄ = {0} ∪ (1, 2) is the set C = {0} ∪ [1, 2].

Example 1.2.3 Let Y = (0, 1] ⊂ R with the subspace topology of R. The closure of A =
(0, 1/2) in R is [0, 1/2] and the closure of A in Y is [0, 1/2] ∩ Y = (0, 1/2].

Problem 1.2.1 Show that the set R2
+ is a closed set in the standard topology of R2.

Problem 1.2.2 Show that in the discrete topology of any set X, every subset is both open
and closed.

Problem 1.2.3 Using de Morgan’s formulae (see Problem 1.1.6, previous week), show that
given a topological space (X, τ), the collection of closed subsets of X with respect to τ have
the following properties:

1. the sets φ, X are closed;

2. arbitrary intersections of closed sets are closed;

3. finite unions of closed sets are closed.

Problem 1.2.4 Let Y = [−1, 1] in R with the subspace topology induced from R. By | | we
denote the absolute value. Are the sets

1. A = {x | 1/2 < |x| < 1};

2. B = {x | 1/2 ≤ |x| < 1}

open or closed in Y with the subspace topology? Are they open or closed in R with the
standard topology?

Problem 1.2.5 Prove that a subset A of a topological space (X, τ) is closed if and only if
A contains its accumulation points.
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Problem 1.2.6 Prove that for any nonempty subsets A,B of a topological space (X, τ) the
following hold:
1) ¯̄A = Ā;
2) (A

⋃
B) = Ā

⋃
B̄.

Problem 1.2.7 Let (X, τ) be a topological space and A any nonempty subset of X. Then
the following hold:
1) a set A is open if and only if A = Å;
2) the set of all points of A which are not points of accumulation of X\A is precisely Å.

Problem 1.2.8 Let (X, τ) be a topological space and A any nonempty subset of X. Then
the following hold:
1) ∂A = Ā

⋂
(X\A); 2) Ā = A

⋃
∂A; 3) Å = A\∂A.

Problem 1.2.9 Find the boundary and the interior of each of the sets in R2, with the
standard topology:

• A = {(x, y) | y = 0};
• B = {(x, y) | x > 0, y 6= 0};
• C = A ∪B;

• D = {(x, y) | 0 < x2 + y2 ≤ 1}.
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1.3 Week 3

1.3.1 Limits, convergence and continuity in topological spaces

We have seen so far that a topology on a set defines what we called a topological structure.
We have encountered elements of this structure in previous courses, without perhaps insisting
on where they came from. Although a topology is defined by relatively simple rules that have
to be satisfied by a certain collection of subsets of the underlying space, notions well-known
to us can be defined on such spaces in their most general (topological) way.

The mathematical notions we worked with over the years are limits, convergence, con-
tinuity, differentiability, bounded sets/functions, compactness, convexity etc. We will see
next that some of them can be defined on topological spaces, while others require more
”structure” on the underlying space than just a topology. These extra ”structures” can be
metrics, norms and inner products. As we go along in the study, we see how some of these
structures relate to each other.

*

By a sequence of elements in the topological space (X, τ) we understand a function from
the integers N := {0, 1, 2, 3, ...., n...} to the space X, given by n 7→ xn; sequences in X will
be denoted by {xn}n≥0 or {xn}n.

Definition 1.3.1 Let (X, τ) be a topological space and {xn}n a sequence in X and x ∈ X.
The sequence {xn}n is said to have the limit x if ∀ V ∈ V(x), ∃ n0 > 0 so that ∀ n ≥ n0, we
have xn ∈ V .

The definition can be also remembered in the following way: the sequence {xn}n has the
limit x, if all the elements of the sequence can be found in any neighbourhood of the point
x, except maybe a finite number of them. In other words, if x is a limit of the sequence, the
elements xn of the sequence are ”extremely crowded” around x.

As expected, a sequence is called convergent if it has a limit.

Proposition 1.3.1 Let (X, τ) be a topological space and A ⊆ X a closed subset. Then given
any convergent sequence {xn}n ∈ A of elements from A, its limit also belongs to A.

Proof: Let {xn}n ∈ A such that xn → x∗, whenever n →∞. Since x∗ is the limit of xn, then
for any neighbourhood V ∈ V(x∗), we have that there exists an infinite number of elements
of the sequence {xn}n ∈ V , hence V − {x∗} ∩ A 6= ∅. This means that x∗ ∈ A′. Since A is
closed, we have that

A = Ā = A ∪ A′,

so if x∗ ∈ A′, then certainly x∗ ∈ A. ¤
Here is the first very interesting fact: the limit of a sequence in a topological space may not
be unique! The following result tells us more:
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Proposition 1.3.2 Let (X, τ) be a Hausdorff topological space and {xn}n a convergent se-
quence in X. Then the limit is unique.

Proof: Suppose {xn}n is convergent to both x, y ∈ X and that x 6= y. Then from the
definition of the Hausdorff space, there exist neighbourhoods U, V of x and respectively y
such that Ū and V̄ are distinct. Since both x, y are limits, from Definition 1.3.1, we have
that there exist nx > 0 and ny > 0 so that ∀ n ≥ max{nx, ny} we have that xn ∈ U and
xn ∈ V . But this contradicts the fact that U and V are distinct; the contradiction comes
from our supposition that {xn}n converges to two distinct limits, hence x = y and the limit
is unique. ¤
We now introduce the definition of the limit of a mapping in a topological space.

Definition 1.3.2 Let (X, τX), (Y, τY ) be two topological spaces, let A ⊆ X, x0 ∈ A′ and
f : A → Y a mapping. We say that f has the limit y0 at the point x0, i.e., lim

x→x0

f(x) = y0,

if

∀ V ∈ V(y0), ∃U ∈ V(x0) s.t. f(A ∩ (U\{x0})) ⊆ V.

Based on this definition, it is intuitively easy to guess the definition of a continuous mapping
f at the point x0, namely:

Definition 1.3.3 Let (X, τX), (Y, τY ) be two topological spaces, A ⊆ X and f : A → Y a
mapping, x0 ∈ A

⋃
A′. We say that f is continuous at the point x0, if

∀ V ∈ V(f(x0)), ∃U ∈ V(x0) s.t. f(U) ⊆ V.

In other words, f is continuous at x0 if and only if lim
x→x0

f(x) = f(x0).

Remark 1.3.1 Notice that the definitions of limit of a mapping at a point and that of
continuity make sense only for points in A

⋃
A′.

In general, to check continuity of a mapping f , one can use Definition 1.3.3 or one can use
alternative criteria, such as the ones given by the theorem below.

Theorem 1.3.1 Let (X, τX), (Y, τY ) two topological spaces, f : X → Y and τ c
X , τ c

Y be the
collection of all closed subsets of X, respectively Y , with respect to the topologies τX and τY .
Then the following statements are equivalent:
1) f is continuous on X;
2) ∀ G ∈ τY we have that f−1(G) ∈ τX ;
3) ∀ F ∈ τ c

Y , we have that f−1(F ) ∈ τ c
X ;

4) ∀A ⊆ X, f(Ā) ⊆ f(A);
5) ∀B ⊆ Y, f−1(B̄) ⊇ f−1(B).
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Proof: 1) =⇒ 2) : Let G ∈ τY arbitrarily fixed. To show that f−1(G) ∈ τX , we have to
show that it is open, i.e., that it is a neighbourhood of each of its points.

We know that f is continuous on X and f−1(G) ⊆ X, therefore f is continuous on f−1(G).
Let z ∈ f−1(G) arbitrarily chosen. Then from the continuity of f , for any neighbourhood
V ∈ V(f(z)), there exists a neighbourhood U ∈ V(z) such that f(U) ⊂ V .

But since z ∈ f−1(G) =⇒ f(z) ∈ G and G is open in the topology τY , then G is
a neighbourhood of each of its points, including a neighbourhood of f(z); hence from the
continuity of f , we can choose V := G ∈ V(f(z)) and so there exists U ∈ V(z) so that
f(U) ⊂ G. But this is the same as U ⊂ f−1(G).

So we showed that for each z ∈ f−1(G), there exists U ∈ V(z) such that U ⊂ f−1(G),
hence f−1(G) is open.

2) =⇒ 1) : Conversely, let us suppose that f−1(G) ∈ τX , for any G ∈ τY . Then for
any x ∈ X, and any V ∈ V(f(x)), there exists U := f−1(V ) open and so that x ∈ U and
f(U) ⊂ V . Therefore f is continuous on X.

1) =⇒ 3) : Let F ∈ τ c
Y ; then CY F = Y \F is an open set. Since f is continuous, then

using part 2) above, we get that f−1(Y \F ) is an open set in X. According to Problem 1.1.5,
part 3), we have that

f−1(Y \F ) = X\f−1(F ) ∈ τX .

In other words, f−1(F ) ∈ τ c
X . ¤

We introduce next a fundamental definition that is of use in the Differential Geometry part
of the course. We studied in Algebraic Structures the notion of isomorphism between
algebraic objects, such as groups and rings. An isomorphism is a bijective (1-to-1) corre-
spondence that preserves the algebraic structure involved.

The topological counterpart of isomorphisms are homeomorphisms.

Definition 1.3.4 Let (X, τX), (Y, τY ) be two topological spaces and f : X → Y . Then f is
called a homeomorphism if f is continuous, bijective and f−1 is continuous.

Thus a homeomorphism is a bijective (1-to-1) correspondence between two topological spaces
that preserves the topological structure (i.e., takes open sets in X to open sets in Y and
viceversa.)

Lemma 1.3.1 Let (X, τX), (Y, τY ) two topological spaces, and let f : X → Y be injective,
continuous with f−1 : f(X) → X also continuous. Then f : X → f(X) is a homeomorphism.
This homeomorphism is called imbedding of X into Y .

Proof: Since f is injective, then we claim that f : X → f(X) is bijective. To prove the
claim, we suppose f : X → f(X) is not bijective, which implies that f : X → f(X) is not
surjective; this is equivalent to saying that there exists y ∈ f(X) for which there is no x ∈ X
with f(x) = y; but this cannot be, since y ∈ f(X) and f(X) is, by definition, the subset of
Y that contains all images of elements from X through f . So, f : X → f(X) is bijective
and continuous hence is a homeomorphism. ¤
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1.3.2 Examples and Problems

Example 1.3.1 Give examples of continuous mappings defined on:
1) f1 : R→ R;
2) f2 : Rn → R, n = 1, 2, 3...;
3) f3 : Rn → Rm, for your choice of m 6= n ∈ {2, 3, 4...}.

Example 1.3.2 Here are some examples of homeomorphisms:
1) f : R→ R, f(x) = x + 1. Then f is continuous, is bijective and f−1(y) = y − 1.
2) g : (−1, 1) → R, g(x) = x

1−x2 . Then g is continuous, bijective and g−1(y) = 2y
1+(1+4y2)1/2 .

Example 1.3.3 There are plenty of examples of homeomorphisms in the study of differential
geometry of surfaces in R3. One example is the mapping

f : [0, 2π]× [0, 2π] → R3

f(u, v) = ((r cos u + a) cos v, (r cos u + a) sin v), r sin u),

where if we take f : [0, 2π]× [0, 2π] → f([0, 2π]× [0, 2π]) we have that f is a homeomorphism.
In fact is a famous one, showing that the rectangle [0, 2π] × [0, 2π] is homeomorphic with a
torus, which is a surface in R3, obtained, for example, by rotating a circle in the (x, z)-plane
around the z-axis. The mapping f is in fact an imbedding of the torus.

Not all continuous, bijective mappings are homeomorphisms. Here is an example:

Example 1.3.4 Let f : [0, 1) → S1, given by f(t) = (cos 2πt, sin 2πt). Here f is continuous
and 1-to-1, but f−1 is not continuous. Let’s see why. Take any open set D in [0, 1) with the
subspace topology given by τR. If f−1 is continuous, then by Theorem 1.3.1, (f−1)−1(D) =
f(D) should be open in S1 with the subspace topology given by τR2.

Now take D := [0, 1/4); then f(D) is the first quarter of the circle S1, closed at f(0) and
open at f(1/4), like in the picture below: But there is no open set V ∈ R2 that contains the

f

D

0 11/4

f(D)

point f(0) so that V ∩ S1 ⊂ D, so f−1 is not continuous.
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Problem 1.3.1 Let (X, τd), where τd is the discrete topology. Is this a Hausdorff space?
Motivate your answer.

Problem 1.3.2 Prove Theorem 1.3.1, part 3) =⇒ 1).

Problem 1.3.3 Let (R, τR) and ({0, 1}, τd) and f : R→ {0, 1} given by

{
1, if x ∈ Q;
0, if x ∈ R\Q.

Is f continuous? Motivate your answer.

Problem 1.3.4 Let f, g : (R, τR) → (R, τR) be two continuous functions. Then show that
the set {x | f(x) ≥ g(x)} is closed.

Problem 1.3.5 Let (X, τ) a Hausdorff topological space. Let A ⊂ X and f : A → X a
continuous mapping. Suppose that f can be extended to a continuous mapping g : Ā → X.
Show that g is uniquely determined by f .

Problem 1.3.6 Show that the projections on the first and second factor of a cartesian
product of topological spaces, defined by

π1 : (X, τX)× (Y, τY ) → (X, τX), π1(x, y) = x

and

π2 : (X, τX)× (Y, τY ) → (Y, τY ), π2(x, y) = y,

are continuous mappings.

Problem 1.3.7 Prove the converse of Proposition 1.3.1.

Problem 1.3.8 Are the following functions

g1(x) =

{
x, x ≤ 0

x/2, x ≥ 0
,

g2(x) =

{
x− 2, x < 0
x + 2, x ≥ 0

homeomorphisms of R? Motivate your answer.
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1.4 Week 4

1.4.1 Test 1.

Instructor Student Number Name(printed)

MATH 4290
TEST 1 February 3, 2005

ALL WORK MUST BE SHOWN PRECISELY AND THOROUGHLY. YOU ARE
ALLOWED 60 MINUTES TO COMPLETE THE TEST.

I. Give the definition of a Hausdorff topological space. [1]
If, for any x, y ∈ (X, τ), ∃U ∈ V(x) and ∃V ∈ V(y) such that Ū ∩ V̄ = ∅, then (X, τ) is

a Hausdorff space.

What does the Hausdorff condition mean for convergence of sequences? [1]

The limit of any convergent sequence in a Hausdorff space is unique.

What does the Hausdorff condition mean for singletons (i.e., one-element sets)? [1]

All singletons are closed.

What does the statement ”for every real number r, there exists a sequence of rational numbers
convergent to r” mean topologically? [1]

Q̄ = R.
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II. We recall that a set A of a topological space (X, τX) is closed if and only if for any
convergent sequence with elements in A, i.e., {xn}n ∈ A, xn → x∗ as n → ∞, we have
x∗ ∈ A.

Let f : A → (Y, τY ) a continuous mapping such that A ⊆ X is a closed set in the topological
space (X, τX) and such that Y is a Hausdorff space. Show that the graph of f , i.e., the set

graph(f) = {(x, y) ∈ A× Y | y = f(x)}

is closed. [4]

Let {xn, yn}n ∈ graph(f) such that (xn, yn) → (x, y) ∈ X × Y as n → ∞. Evidently,
yn = f(xn).

Since A is closed, using the characterization of the closed set A given in the statement,
then x ∈ A. Then to prove that graph(f) is closed in the topology of A × Y we need to
show that (x, y) ∈ graph(f) ⇔ y = f(x).

But since yn = f(xn) for any n, then the following are true:

yn = f(xn)
by continuity of f→ f(x) ∈ Y,

but also
yn → y ∈ Y.

Since Y is Hausdorff, then necessarily y = f(x) and hence graph(f) is closed.
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III. Let B = {(x, y) ∈ R2 | x = r cos θ, y = r sin θ, 0 ≤ r ≤ 1, θ ∈ (0, 2π)} be a set in the
plane with the standard topology τR2 .

Sketch the set B. [1]

Find the boundary and the interior points of B. [2]

∂B = {(x, y) ∈ R2 | x2 + y2 = 1} ∪ {(x, y) ∈ R2 | y = 0, 0 < x < 1}.
∫

B = {(x, y) ∈ R2 | x2 + y2 < 1}\{(x, y) ∈ R2 | y = 0, 0 < x ≤ 1}.

Find the closure of the set B. [1]

B̄ = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.
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IV. Let X = {a, b, c, d} and let

τ = {∅, {a, b}, {a, b, c}, X}.

Is τ a topology on X? Motivate your answer. [2]

To show that τ is a topology we need to check the 3 conditions from the definition of a
topology. Condition 1 is satisfied since τ ⊃ ∅, X. Then the following hold:

∅ ∩D = ∅, ∀D ∈ τ ;

X ∩D = D, ∀D ∈ τ ;

{a, b} ∩ {a, b, c} = {a, b}.
The resulting sets of any such intersections belong to τ , so condition 2 is satisfied.

The unions we need to check are those of 2, 3 and 4 sets from τ . Evidently:

∅ ∪D = D, ∀D ∈ τ, and

X ∪D = X, ∀D ∈ τ,

where D can be a union of other two sets in τ . Since also:

{a, b} ∩ {a, b, c} = {a, b, c},

then condition 3 is satisfied and τ is a topology.
Is this topology Hausdorff? Motivate your answer. [2]

No, it is not. If we suppose it were, then fixing a, b in X, we see that any open sets around
these 2 points always intersect. Hence we cannot find a pair of neighbourhoods of a, b whose
intersection is empty since any neighbourhood contains at leats one open set around each
point.

Another solution: Not all singletons are closed, for example {c}. The same argument
can be made with the singletons {a} or {b}.
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V. Show the following:

f−1(A ∩B) = f−1(A) ∩ f−1(B); [2]

Everyone solved these two questions correctly.

X\(
⋃
i∈I

Ai) =
⋂
i∈I

(X\Ai). [2]
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1.5 Week 5

In this chapter we study the relation between a topology and a metric, and consequently,
between a topological space and a metric space. The collection of metric spaces is contained
in that of topological spaces (in a sense made precise below), but the converse is not true.

The addition of another structure, aside from a topology, will allow us to perform more
”analysis” than before, being able to rediscover more of the notions we encountered in other
courses, such as bounded sets, complete spaces, isometric mappings etc. We also highlight
the new formulations (in metric spaces), for concepts defined so far only in topological spaces.
Again, some of them will seem extremely familiar from previous courses.

1.5.1 Metrics, metric spaces, bounded sets, the metric topology

Definition 1.5.1 Let X a non-empty set. We call a metric on X, a mapping d : X×X →
R with the following properties;

1. d(x, y) > 0 for all x 6= y ∈ X and d(x, y) = 0 iff x = y (non-degeneracy);

2. d(x, y) = d(y, x), for all x, y ∈ X (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X (triangle inequality).

Evidently, a pair (X, d), where X is a set and d a metric on X, is called a metric space.

Let us define the following sets.

Definition 1.5.2 Let (X, d) be a metric space and x0 ∈ X, r ∈ R, with r > 0. Then:

1. the open ball of radius r and center x0 in X is the set

B(x0, r) := {x ∈ X | d(x, x0) < r};

2. the closed ball of radius r and center x0in X is the set

B[x0, r] := {x ∈ X | d(x, x0) ≤ r};

3. the sphere of radius r and center x0 in X is the set

S(x0, r) := {x ∈ X | d(x, x0) = r}.

Analogously, we denote by

B(A, r) := {x ∈ X | d(x,A) < r},
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B[A, r] := {x ∈ X | d(x,A) ≤ r} and

S(A, r) := {x ∈ X | d(x,A) = r},
the open ball, closed ball and respectively the sphere of radius r and center A, where A is a
non-empty subset of X and where for any arbitrarily fixed x ∈ X we have

d(x, A) := inf
a∈A

d(x, a).

The relation between the collection of topological spaces and that of metric spaces can
be described by the following three remarks.

Remark 1.5.1 Any metric space (X, τ) is a topological space.

To see that this is the case, let us consider a metric space (X, d). We define now the following
collection of sets:

τ := {D ⊆ X | ∀ x ∈ D, ∃ ε > 0 for which B(x, ε) ⊆ D}.
It can be shown that this collection τ forms a topology on the set X; since it is induced by
the metric on the set X, we shall denote it by τm and we shall call it the metric topology.
Even more importantly, τm is always Hausdorff (if x 6= y ∈ X, then choose ε := 1

2
d(x, y);

then according to the triangle inequality, B(x, ε) and B(y, ε) are disjoint neighbourhoods of
x and y).

Remark 1.5.2 Not all topologies on a set X can be defined by a metric.

See for example the uncountable cartesian product of copies of R.

Remark 1.5.3 The topological spaces (X, τ) with the property that τ can be given by a
metric are called metrizable.

Definition 1.5.3 Let (X, dX) be a metric space.

1. A subset A ⊂ X is called bounded if there exists a number M such that

dX(a1, a2) ≤ M, for every pair a1, a2 ∈ A.

2. A mapping f : X → Y , where (Y, dY ) is also a metric space, is called bounded iff
f(X) := {y ∈ Y | there exists x ∈ X s.t. f(x) = y} is a bounded set in the space
(Y, dY ).

If A is bounded and nonempty, the diameter of A is defined to be the number

diam(A) := sup{d(a1, a2) | a1, a2 ∈ A}.
The property of a set to be bounded is not a topological property, for it depends on the
particular metric d that is used for X. For instance, if X is a metric space with metric d,
then there exists a metric d̄ that gives the topology of X (same topology as given by d), but
with respect to which every subset of X is bounded. It is defined as follows:

d̄ : X ×X → R, d̄(x, y) := min{d(x, y), 1}.
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1.5.2 Limits, convergence in metric spaces; complete spaces and
compactness

We continue the study of continuous functions, this time on metric spaces. We see that the
familiar ε− δ definitions of limits and continuity are rediscovered and we introduce/remind
the concepts of Cauchy sequence and complete space.

We also remind the definition of compact sets and we see that compatcness can be defined
with the help of sequences, rather than open coverings; the two definitions are equivalent on
metric spaces.

Definition 1.5.4 Let (X, d) be a metric space and {xn}n ∈ X a sequence. Then xn → x∗

if for any ε > 0, there exists a rank n0 > 0 so that for any n ≥ n0 we have d(xn, x∗) < ε.

Here is a definition that only makes sense in metric spaces (and not in topological spaces),
but it is crucial to defining later what is meant by complete spaces.

Definition 1.5.5 Let (X, d) be a metric space and {xn}n ∈ X a sequence. The sequence
{xn}n is called a Cauchy sequence, or a fundamental sequence, if for any ε > 0, there
exists a rank n0 > 0 so that for any m,n ≥ n0 we have d(xm, xn) < ε.

The following result follows immediately from the last two definitions.

Proposition 1.5.1 Let (X, d) be a metric space and {xn}n ∈ X a sequence. If the sequence
{xn}n is convergent, then it is a Cauchy sequence. The converse is not always true (see
Problem 1.5.2).

Proof: Let ε > 0 arbitrarily fixed and x∗ be the limit of the sequence. Then since {xn}n is
convergent, from Definition 1.4 we have that there exists n0 > 0 so that for any n ≥ n0, we
have d(xn, x∗) < ε

2
.

But now for any m,n ≥ n0, the following is true:

d(xn, xm) ≤ d(xn, x∗) + d(x∗, xm) ≤ ε

2
+

ε

2
= ε

and the proof is complete. ¤
When the converse of Proposition 1.6 is true, then the metric space (X, d) has a particular
property, that is that the notions of Cauchy sequence and convergent sequence are the same.
This can be summarized as follows:

Definition 1.5.6 A metric space (X, d) in which any Cauchy sequence is convergent is called
a complete metric space.
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In a topological space (X, τ), a set A ⊆ X is called compact if from any covering of
A with open sets, A ⊆ ⋃

i∈I Di, we can extract a finite covering of A, i.e., there exists
{1, 2, ..., m} ∈ I such that

A ⊆
m⋃

i=1

Di.

A more familiar way to think of compact sets is perhaps the one involving sequences. For
this, we need to remind the following definition:

Definition 1.5.7 Let (X, d) be a metric space and {xn}n ∈ X a sequence. If n1 < n2 < n3 <
.... < ni < ... is an increasing sequence of positive integers, then the sequence {xnk

}k∈{1,2,..,n,..}
is called a subsequence of the original sequence.

The following theorem gives us another way to check for compact sets in a metric space.

Theorem 1.5.1 Let (X, d) be a metric space. The the following are equivalent:

• X is compact.

• Any sequence {xn}n ∈ X has a convergent subsequence.

Proof: For a proof see [3], Chapter 3. ¤
Even more familiar to the reader: in Rn or Cn, the compact sets are easily identifiable, due
to the following theorem:

Theorem 1.5.2 A subset S ⊂ Rn (or of Cn) is compact iff S is closed and bounded.

1.5.3 Continuity in metric spaces

Definition 1.5.8 Let f : X → Y two metric spaces, with metrics dX and dY respectively.
Then f is continuous at x0 ∈ X if for any ε > 0, there exists δ > 0 such that

whenever y ∈ X has the property dX(y, x0) < δ then dY (f(y), f(x0)) < ε.

The following notion only makes sense only in metric spaces and is of use for the geometry
part of the course.

Definition 1.5.9 Let f : X → Y continuous between two metric spaces, with metrics dX

and dY respectively. Then f is an isometry if we have the following

dY (f(x, f(y)) = dX(x, y), ∀ x, y ∈ X.
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In other words, an isometry is a mapping that preserves the distance between points, when
we pass form one metric space to another. One easy thing to remark here is that any
isometry is an injective mapping and f−1 : f(X) → X is also an isometry. In other words,
any isometry is a homeomorphism between X and the image of X through f , f(X).

Here is an important definition which is valid in topological spaces, but we give it here in
metric spaces. The notion defined below is of wide use in Optimization and Convex Analysis.

Definition 1.5.10 Let f : X → Y two metric spaces, with metrics dX and dY respectively.
Then f is said to have a closed graph if the graph of f , i.e. the set

Gf := {(x, f(x)) | x ∈ X},

is closed in the topological space (X × Y, τX × τY ). In metric spaces, f has a closed graph
if for any {xn, yn}n ∈ Gf , so that (xn, yn) → (x, y) ∈ X × Y , then (x, y) ∈ Gf .

Theorem 1.5.3 Let f : X → Y two metric spaces, with metrics dX and dY respectively.
Then if f is continuous on X, then f has a closed graph.

Proof: See Test # 1. ¤

1.5.4 Norm and Inner product spaces

This section offers a very quick overview of 3 other structures for spaces, some of which are
more familiar than others: those of vector spaces, normed spaces and inner product spaces.
We also show the relation between these new collections of spaces and those of topological
and metric spaces.

Most of these spaces form the object of study for courses of functional analysis, which is
why we do not detail them here, but rather we define them and place them in the largest
(topological) context.

From the Linear Algebra, or Applied Matrix Algebra or Algebraic Structures, we assume
the reader is familiar with the concept of vector spaces. For a reminder, please see [2].
Here, we denote by E a generic vector space over the field K and we shall write, in short,
E a K − V S, where K is either R or C. We shall see that there exist spaces (sets) that
admit a topological structure, as well as an algebraic structure. This combination allows the
introduction of new concepts and new results. These new spaces do not form the object of
a topology course, but rather the object of a Functional Analysis course.

In this section we shall just define them and show their topological structure and give
some examples.

Definition 1.5.11 Let E be a K-VS. Let p : E → R with the properties:

1. p(x) > 0 for any x 6= 0 ∈ E;
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2. p(λx) = |λ|p(x), for any x ∈ E and λ ∈ K;

3. p(x + y) ≤ p(x) + p(y), for all x, y ∈ E.

Then p is called a norm on E and the space (E, p) is called a normed space.

We note that any norm on E gives a metric on E, by defining:

dp(x, y) := p(x− y), ∀ x, y ∈ E.

So any normed space is a metric space, hence, is a topological space. However, not all metrics
on a metric space are coming from a norm.

A normed space that is complete in the distance dp given by p, is called a complete
normed space or equivalently a Banach space.

Definition 1.5.12 Let E be a K − SV . A mapping <,>: E × E → K is called an inner
product on E if it satisfies the following properties:

1. < x, x >> 0, for any x 6= 0 ∈ E;

2. < x, y >= < y, x >, for all x, y ∈ E;

3. < αx + βy, z >= α < x, z > +β < y, z >, for all x, y, z ∈ E and α, β ∈ K.

The space (E, <, >) is called a pre-Hilbert space.

We note that from any <,> on E we can define a norm on E, by

p<,>(x) :=
√

< x, x >, ∀ x ∈ E.

So any pre-Hilbert space is a normed space; the converse is not true, in the sense that there
are normed spaces that are not pre-Hilbert.

Keeping in mind that any norm p can define a metric on E, we have

dp(x, y) := p<,>(x− y) =
√

< x− y, x− y >, ∀ x, y ∈ E,

hence we can talk about complete pre-Hilbert spaces; a pre-Hilbert space that is complete
in the metric dp is called a Hilbert space.

To summarize the relations between the various types of spaces we have encountered/studied,
we use the diagrams

pre−H spaces $ normed spaces $ metric spaces $ topological spaces,

and
Hilbert spaces $ Banach spaces $ complete metric spaces.
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1.5.5 Examples and Problems

Example 1.5.1 Here are a couple of examples of metrics.

1. Let X and d(x, y) = 1 if x 6= y and 0 if x = y;

2. Let X = Rn with d2(x, y) :=
√∑n

i=1(xi − yi)2; d2 is called the Euclidean distance.

3. Let Rn with d(x, y) = maxi=1,..,n{|xi − yi|};
4. Let S2 ⊂ R3 and dR(u, v) = arc of minimal length joining u and v.

Example 1.5.2 Rn has all the structures mentioned above, i.e., it is a topological space, a
metric space, a normed space and a Hilbert space.

Example 1.5.3 Example of Hilbert spaces, other than Rn, are the L2-spaces of integrable
functions.

Problem 1.5.1 Show that all the mappings in Example 1.5.1 are metrics. For which one
do we have τm = τd?

Problem 1.5.2 Let X = {f : [a, b] → R | f is continuous } and d : X × X → R so that

d(f, g) =
∫ b

a
|f(x)− g(x)|dx. Then

1. Show that d is a metric on X;

2. Construct a Cauchy sequence in X;

3. Show that (X, d) is not complete.

Problem 1.5.3 What are the definitions of <,>, p<,>, and dp which give τm = τR?

Problem 1.5.4 Using the fact that (R, τR) is Hausdorff show that the function f(x) = cos 1
x

is not continuous at x = 0.

Problem 1.5.5 Show that all compact subsets of R are of the form [a, b], a, b ∈ R.

Problem 1.5.6 Let X = {f : [a, b] → R | f is integrable} be a set and we define the
mapping

< f, g >=

∫ b

a

f(x)g(x)dx, ∀f, g ∈ X.

Is <,> an inner product on X? (Hint: check first whether X has a structure of R-vector
space).
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Problem 1.5.7 Let f : (X, dX) → (Y, dY ) a continuous mapping and C ⊂ X a compact
set. Is f(C) compact in Y ?

Problem 1.5.8 Let (C, dC), where dC(z1, z2) = |z1− z2|. Show that if f : (R2, d2) → (C, dC)
is given by f(x, y) = x + iy, then f is an isometry.

Problem 1.5.9 Using the definition of a compact set in a topological space, show that:

1. Any finite set is compact in R;

2. The set of positive integers is not compact.
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Chapter 2

Geometry of curves and surfaces

2.1 Week 6

For this part of the course [1] was used as reference.

2.1.1 Elements of the theory of curves

For the rest of this text, we shall denote by I a finite time interval in R, and by α :
I → R3 a parametrized curve on R3, i.e. a mapping assigning to each t ∈ I, the triplet
(α1(t), α2(t), α3(t)), or in the Vector Calculus usual notation, (x(t), y(t), z(t)) ∈ R3. The set
Im(α) ∈ R3 is called the trace of the curve α. It is possible that two curves have the
same trace (see Example 2.1.1 below).

Definition 2.1.1 Let α : I → R3 be a curve. Then

1. the curve is called differentiable or smooth if derivatives of any order exist and are
continuous;

2. the curve is called regular if α′(t) 6= 0, for all t ∈ I;

3. a point t0 ∈ I is called a singular point of α if α′(t0) = 0.

Remark 2.1.1 For each t ∈ I so that α′(t) 6= 0, there exists a well-defined straight line
containing α(t) and α′(t), called the tangent line.

In fact, the vector α′(t) = (x′(t), y′(t), z′(t)) is called the velocity vector to the curve.
We shall introduce now the following definition:

Definition 2.1.2 Let α : I → R3 be a parametrized, differentiable curve. Given t ∈ I, we
call the arc length of α from t0 ∈ I the function:

s(t) :=

∫ t

t0

|α′(t)|dt, where

37
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|α′(t)| =
√

x′(t)2 + y′(t)2 + z′(t)2 is the norm of α′(t).

Obviously, from Real Analysis we know that

d

dt
s(t) =

d

dt
(

∫ t

t0

|α′(t)|dt) = |α′(t)|.

Since α is regular, then
d

dt
s(t) always exists and is positive.

Let us make some interesting and useful remarks.

Remark 2.1.2 • It is possible that t is the arc length measured from some point t0 ∈ I.
Then this means that

s(t) = t− t0 =⇒ d

dt
s(t) = 1 = |α′(t)|, i.e.

the velocity vector has constant norm 1.

• Conversely, if |α′(t)| = 1, then

s(t) :=

∫ t

t0

|α′(t)|dt = t− t0

and we say that α is parametrized by arc length, i.e. by

s(t) = t− t0 =⇒ t := s(t) + t0.

Such curves are called parametrized by arc length.

We remind here that we denote by < ·, · > the inner product of two vectors in Rn; its
definition is

< u, v >=
n∑

i=1

uivi.

The properties of the inner product on Rn are considered known, as they were presented in
both Vector Calculus and Linear Algebra classes.

In the context of the theory of curves, the following is a property of the inner product:
If α(t) = (x1(t), y1(t), z1(t)) and β(t) = (x2(t), y2(t), z2(t)) are two parametrized differen-
tiable curves, then we can define their inner product as follows

for each t ∈ I, < α(t), β(t) >:= x1(t)x2(t) + y1(t)y2(t) + z1(t)z2(t),

and the function t 7→< α(t), β(t) > is a differentiable function with

d

dt
< α(t), β(t) >:= α′(t)β(t) + α(t)β′(t). (2.1)
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We remind next the definition of the cross product of two vectors in R3:

u ∧ v :=

∣∣∣∣
u2 u3

v2 v3

∣∣∣∣ e1 −
∣∣∣∣

u1 u3

v1 v3

∣∣∣∣ e2 +

∣∣∣∣
u1 u2

v1 v2

∣∣∣∣ e3,

where {ei}i=1,..,3 are the standard unit vectors in R3.
The relation between the inner product and the cross product in R3 is given by the

following formula:

< u ∧ v, w >:=

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
, ∀u, v, w ∈ R3. (2.2)

Here is a reminder of the properties of the cross product: for all u, v, w ∈ R3 and all a, b ∈ R
we have

• u ∧ v = −v ∧ u;

• (au + bv) ∧ w = (au ∧ w) + (bv ∧ w);

• u ∧ v = 0 iff u, v are linearly dependent;

• < u ∧ v, u >=< u ∧ v, v >= 0;

• the cross product is not associative.

Remark 2.1.3 For any two vectors u, v ∈ R3, the vector u ∧ v is normal to the plane
generated by the vectors u and v. Moreover, the norm of the vector u ∧ v is given by

< u ∧ v, u ∧ v >= |u ∧ v|2 > 0.

Based on the remark above and on relation (2.2), then {u, v, u ∧ v} is always a basis of R3.

Proposition 2.1.1 The following relation holds for any four vectors in R3:

< u ∧ v, x ∧ y >=

∣∣∣∣
< u, x > < v, x >
< u, y > < v, y >

∣∣∣∣ . (2.3)

Proof: See Problem 2.1.1 below. ¤
In our context, the cross product has the following property:
If α(t) = (x1(t), y1(t), z1(t)) and β(t) = (x2(t), y2(t), z2(t)) are two parametrized differen-
tiable curves, then the function t 7→ α(t) ∧ β(t) is a differentiable function with

d

dt
[α(t) ∧ β(t)] := α′(t) ∧ β(t) + α(t) ∧ β′(t). (2.4)
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2.1.2 Fundamental theorem of the local theory of curves

From this point on, the study of curves is conducted for curves parametrized by arc length.
We can think of a space curve as being obtained from a straight line by bending and twisting
it. The bending of the curve is called curvature; the twisting of the curve will be called
torsion. By the study of local geometry of such curves we shall understand the study of
those vectors which characterize the curve in a neighbourhood of the given point.

*

Let α : I → R3 a differentiable curve, parametrized by arc length. This implies that
|α′(s)| = 1, for any s ∈ I and so

< α′(s), α′(s) >= |α′(s)|2 = 1,

and by differentiation we get

0 =
d

ds
< α′(s), α′(s) >= 2 < α′(s), α′′(s) >,

which means that the vector α′′(s) is orthogonal on α′(t).

Definition 2.1.3 The number k(s) := |α′′(s)| is called the curvature of α at s.

Quick check The curvature of the straight line is 0.
To see this, let α(s) = us + v, with u, v ∈ R3, |u| = 1. Then α′′(s) = 0.

In general, the curvature measures how rapidly the curve pulls away from the tangent
line at s, in a neighbourhood of s.

Obviously, we can always normalize the vector α′′(s) and so we always have that

α′′(s) = |α′′(s)|n(s),

where n(s) := α′′(s)
|α′′(s)| .

Definition 2.1.4 The vector n(s) is called the normal vector to the curve at the point s.

Definition 2.1.5 The plane formed by the unit tangent vector α′(s) and the normal vector
n(s) is called the osculating plane at s.

We note that at points where the curvature k(s) = 0 the normal vector and the osculating
plane are not defined.

Definition 2.1.6 Let α : I → R3 parametrized by arc length. A point s ∈ I is called
singular of order 1 if α′′(s) = 0.
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From here on, we consider only curves without singular points of order 1.
Let us denote by t(s) := α′(s) the unit tangent vector at s. Then obviously α′′(s) =

t′(s) = n(s)k(s). The vector
b(s) := t(s) ∧ n(s)

is normal to the osculating plane.

Definition 2.1.7 The vector b(s) is called the binormal vector of α at s.

We can immediately conclude, from formula (2.3) of previous section that

|b(s)|2 = 1.

In general, |b′(s)| measures the rate of change of the neighbouring osculating planes with
the osculating plane at s, i.e. b′(s) measures how rapidly the curve pulls away from the
osculating plane at s, in a neighbourhood of s.

We notice that

b′(s) =
d

ds
b(s) =

d

ds
(t(s) ∧ n(s))

(2.4)
= t′(s) ∧ n(s) + t(s) ∧ n′(s).

But remember that t′(s) = α′′(s) which in turn is collinear with n(s), hence

b′(s) = t(s) ∧ n′(s),

so b′(s) is normal to t(s); this means that it should be proportional to the normal n(s). This
observation leads to the following

Definition 2.1.8 Let α : I → R3 parametrized by arc length such that α′′(s) 6= 0, for all
s ∈ I. The number τ(s) given by b′(s) = τ(s)n(s), for each s ∈ I, is called the torsion of
α at s.

Remark 2.1.4 • Note that if α is a plane curve (i.e., is completely contained in a plane),
then its torsion will be identically zero. Conversely, if τ(s) = 0 for all s and k(s) 6= 0,
for all s, then the curve is a plane curve.

• The torsion can be positive, zero, or negative; the curvature can only be zero or positive.

Definition 2.1.9 1. The unit vectors {t(s), n(s), b(s)} are called the Frenet trihedron

2. The following formulae




t′(s) = k(s)n(s)
n′(s) = −k(s)t(s)− τ(s)b(s)

b′(s) = τ(s)n(s)

are called the Frenet formulae.
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3. The (t, b)-plane is called the rectifying plane and the (n, b)-plane is called the nor-
mal plane.

4. The number R(s) = 1/k(s) is called the radius of curvature at s.

We have seen so far that given an arc length parametrized curve α in space, we can completely
describe the curve, in a neighbourhood of every point by computing its curvature and its
torsion. The following theorem assures us that given two functions, one of which has positive
values, there always exists a space curve whose curvature and torsion correspond to the two
given functions.

Theorem 2.1.1 (Fundamental theorem of the local theory of curves) Given differ-
entiable functions k(s) > 0 and τ(s), s ∈ I, there exists a regular parametrized curve
α : I → R3 such that s is the arc length, k(s) is the curvature and τ(s) is the torsion
of α. Moreover, any other curve ᾱ, satisfying the same conditions, differs from α by a rigid
motion (a rotation and a translation).

The proof of this theorem is fairly long and can be found in [1], Appendix to Chapter 4.

2.1.3 Examples and Problems

Example 2.1.1 The curves α1 : [0, 2π] → R2 and α2 : [0, 2π] → R2 given by

α(t) := (sin t, cos t) and α2(t) := (sin 2t, cos 2t)

have the same trace.

Example 2.1.2 Let α : [0, π] → R2 and β : [−1, 1] → R2 two parametrized curves, given by

α(t) = (cos t, sin t), β(t) = (t,
√

1− t2).

We see that they have the same trace, i.e., Im(α) = Im(β) = the upper semicircle of radius
1. However, α is parametrized by arc length while β is not.

Example 2.1.3 The circle of radius r, given by the parametrized curve α : [0, 2π] → R2,
α(t) = (r cos t, r sin t) has the constant curvature k(s) = 1/r and the radius of curvature r.

Problem 2.1.1 Prove Proposition 2.1.1.

Problem 2.1.2 Find the arc length parametrization of the circle of radius r > 0 given by
α : [0, 2π] → R2, α(t) = (r cos t, r sin t).
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Problem 2.1.3 Consider the map

α(t) =





(t, 0, e1−/t2), t > 0

(t, e−1/t2 , 0), t < 0
(0, 0, 0) t = 0

Prove that α is a differentiable curve. Prove that α is regular for all t and that the curvature

k(t) 6= 0 for all t 6= 0, t 6= ±
√

2
3

and k(0) = 0.

Problem 2.1.4 Determine the angle of intersection of the two planes 5x + 3y + 2z − 4 = 0
and 3x + 4y − 7z = 0.

Problem 2.1.5 Show that the equation of a plane passing through three noncolinear points
pi = (xi, yi, zi), i = 1, .., 3 is given by

< (p− p1) ∧ (p− p2), (p− p3) >= 0,

where p = (x, y, z) is a generic point of the plane.

Problem 2.1.6 Let u(t) = (x1(t), y1(t), z1(t)) and v(t) = (x2(t), y2(t), z2(t)) be two differ-
entiable curves defined from (a, b) into R3. If their derivatives satisfy:

u′(t) = au(t) + bv(t), v′(t) = cu(t)− av(t),

where a, b, c are constants, show that u(t) ∧ v(t) is a constant vector.

Problem 2.1.7 Given the parametrized curve (helix)

α(s) = (a cos
s

c
, a sin

s

c
, b

s

c
), s ∈ R,

where c2 = a2 + b2,

1. show that α is parametrized by arc length;

2. determine the curvature and the torsion;

3. determine the osculating plane.
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2.2 Week 7

2.2.1 The isoperimetric inequality

In this section we discuss the oldest and one of the most important properties of plane closed
curves.

Definition 2.2.1 • A closed plane curve is a regular parametrized curve α : [a, b] →
R2 such that α and all its derivatives agree at a and b, i.e.,

α(a) = α(b), α′(a) = α′(b), α′′(a) = α′′(b), ...

• The curve α is simple if t has no further self intersections, i.e., if t1, t2 ∈ [a, b), with
t1 6= t2, then α(t1) 6= α(t2).

We remind the reader that the image of a curve is called trace and we denote by C = tr(α).
We make the following assumption: we assume that a simple closed curve C in the plane
bounds a region of this plane that is called the interior of C.
We assume further that the parameter of a simple closed curve can be so chosen that if one
is going along the curve in the direction of increasing parameters, then the interior of the
curve remains always to the left (or go along the curve in the trigonometric sense). Such a
curve will be called positively oriented.

interior of C

α=tr(C)

Figure 2.1: A positively oriented curve

The isoperimetric inequality answers the following question:
Of all simple closed curves in the plane with a given length l, which one bounds
the largest area?
The Greeks knew the answer to this question, namely the curve is the circle, but a proof of
this result came much later. The proof we present here was given in 1939 by E. Schmidt.

Before we proceed to formulate and prove the theorem, we need to remind ourselves the
following fact:
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Theorem 2.2.1 (Green’s Theorem in the plane) Let α : [a, b] → R2 be a closed, posi-
tively oriented, plane curve given by α(t) = (x(t), y(t)), with C = tr(α) and R = interior(C).
Let p(x, y), q(x, y) two real functions with continuous partial derivatives px, py, qx, qy. Then:

∫

R

(qx − py)dxdy =

∫

C

(p
dx

dt
+ q

dy

dt
)dt,

where in the second integral we restricted p, q at α and the integral is taken between t = a
and t = b.

Now suppose in Green’s theorem, we take p(x, y) = −y and q(x, y) = x. Then applying the
theorem we get that

A(R) =

∫ ∫

R

dxdy =
1

2

∫ b

a

(x(t)
dy(t)

dt
− y(t)

dx(t)

dt
)dt,

where by A(R) we denoted the area of the interior of C. By integration by parts in the last
equality we get

A(R) =
1

2

[
x(t)y(t) |ba −2

∫ b

a

y(t)
dx(t)

dt
dt

]
= −

∫ b

a

y(t)
dx(t)

dt
dt =

∫ b

a

x(t)
dy(t)

dt
. (2.5)

Theorem 2.2.2 (The isoperimetric inequality) Let α be a simple, closed curve of length
l, let C = tr(α) and let A be the area of the region bounded by C. Then

l2 − 4πA ≥ 0, (2.6)

and equality holds if and only if C is a circle.

Proof: We consider the following picture (See Figure 2.2 below), where the system of axes
is centered at the center of the circle of radius r > 0 such that 2r is the distance between
the lines L,L′. We consider the circle to be parametrized by α1 : [0, l] → R2 and by the way
we chose the axes, we can see that the curves α and α1 have the property that their first
component is the same, i.e.,

α(s) = (x(s), y(s)) and α1(s) = (x(s), y1(s)), s ∈ [0, l].

We can certainly compute the areas given by the interior of the two curves, using (2.5), to
be

A =

∫ l

0

xy′ds and A1 = πr2 = −
∫ l

0

y1x
′ds.

Then

A + πr2 =

∫ l

0

(xy′ − y1x
′)ds ≤

∫ l

0

√
(xy′ − y1x′)2ds (2.7)
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interior of C

LL'

α
1
(t)

α(t)

0

2r

x

y

s=0
s=s1

Figure 2.2: The curve versus a circle

≤
∫ l

0

√
(x2 + (y1)2)(x′2 + y′2)ds = r

∫ l

0

√
x2 + y2

1ds = lr.

This means that
A + πr2 ≤ lr.

But it is always the case that the geometric mean is less than the arithmetic mean for any
two positive numbers and they are equal when the numbers are equal. This further gives:

√
A
√

πr2 ≤ 1

2
(A + πr2) ≤ lr =⇒ 4πr2A ≤ l2r2, (2.8)

and the proof of (2.6) is complete.
Now, if equality in (2.6) holds, then equality holds also in (2.8) and so A = πr2. Thus

l = 2πr and r does not depend on the orientation of C. Furthermore, we have equality in
(2.7) and from that we get

(xy′ − y1x
′)2 = (x2 + (y1)

2)(x′2 + y′2) =⇒ xx′ + y1y
′ = 0 =⇒

x

y′
=

y1

x′
=

√
x2 + y2

√
y′2 + x′2

= ±r.
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Thus x = ±ry′; since r does not depend on the orientation of C, we can interchange x and y
and get y = ±rx′. Thus x2 + y2 = r2(x′2 + y′2) = r2 (since C = tr(α) and α is parametrized
by arc length).

So C is a circle of radius r. ¤

Remark 2.2.1 The isoperimetric inequality also holds for piecewise C1-differentiable closed
curves.

2.2.2 Problems

Problem 2.2.1 Is there a simple closed curve in the plane with length equal to 6 feet and
bounding an area of 3 square feet?

Problem 2.2.2 Let α be a simple, closed, plane curve. Assume that the curvature k(s)
satisfies 0 ≤ k(s) ≤ c, where c > 0 is a constant (thus α is less curved than a circle of radius
1/c). Prove that

length of α ≥ 2π

c
.

Problem 2.2.3 Compute the curvature of the ellipse x(t) = a cos t, y(t) = b sin t, t ∈ [0, 2π],
a 6= b. How much is its torsion?

Problem 2.2.4 One often gives a plane curve in polar coordinates ρ = ρ(θ), a ≤ θ ≤ b.
Then show that the arc length is equal to

∫ b

a

√
ρ2 + (

dρ

dθ
)2dθ.

2.3 Week 8

2.3.1 Review
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2.3.2 Test 2.

Instructor Student Number Name(printed)

MATH 4290
TEST 2 March 10, 2005

ALL WORK MUST BE SHOWN PRECISELY AND THOROUGHLY. YOU ARE
ALLOWED 60 MINUTES TO COMPLETE THE TEST.

I. Give the definition of a metric space. [1]

See Notes, Definition 1.5.1.

Give the definition of the metric topology. [1]

See Notes page 29.

Let X and d(x, y) = 1 if x 6= y and 0 if x = y. Show that d is a metric. [2]

Everybody answered this question correctly.

Show that the topology given by the metric d above coincides with the discrete topology of
X. [3]

Since τm = {D ⊆ X | ∀x ∈ D,∃ε > 0 s.t. B(x, ε) ⊆ D} and B(x, ε) = {y ∈ X | d(x, y) < ε},
then it is enough to notice that for the choice of ε = 1/2 any subset D ⊆ X can be made
into an open set since it contains B(x, 1

2
) = {x} around any of its points x. Therefore τm

contains all subsets of X, thus τm = τd.

II. Let α : [a, b] → R3 a differentiable parametrized curve so that α′(t) = (1, tan t, 0).
Find the arc length parametrization of α. [2] Find the curvature and the torsion of α. [5]

This question was discarded in most papers.
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III. Consider the curve

α(t) =





(t, 0, e1−/t2), t > 0

(t, e−1/t2 , 0), t < 0
(0, 0, 0) t = 0

Prove that α is regular for all t 6= 0 and that the curvature k(t) 6= 0 for all t 6= 0, t 6= ±
√

2
3

and k(0) = 0. [6]

Everyone answered this part of the question correctly.

Is α regular of degree 1? [1]

No, α is not regular of degree 1, since α′′(t) = 0 when t = 0.

IV. Give the definition of an inner product on a vector space over R. [1]

Let E be a R − SV . A mapping <,>: E × E → R is called an inner product on E
if it satisfies the following properties:

1. < x, x >> 0, for any x 6= 0 ∈ E;

2. < x, y >=< y, x >, for all x, y ∈ E;

3. < αx + βy, z >= α < x, z > +β < y, z >, for all x, y, z ∈ E and α, β ∈ R.

How does the definition of an inner product modify if we work with a vector space over
C? (Hint: think of property #2). [1]

Property # 2 becomes
< x, y >= < y, x >, ∀x, y ∈ E.

Let X = {f : [a, b] → R | f is integrable}. We know that X is a real vector space. Show
that the mapping

< f, g >=

∫ b

a

f(x)g(x)dx, ∀f, g ∈ X

defines an inner product on X.
Write the norm given by this inner product on X, i.e. p<,>. [2]

p<,>(f) =
√

< f, f > =
√∫ b

a
f(x)2dx.
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Write the distance given by the above norm on X. [2]

d(f, g) = p<,>(f − g) =
√∫ b

a
[f(x)− g(x)]2dx.

V. State the Isoperimetric Inequality Theorem. [1]

See Notes, Theorem 2.2.2.

Consider the ellipse x(t) = a cos t, y(t) = b sin t, t ∈ [0, 2π], a 6= b. Is this a closed, simple
curve? Justify your answer. [2]

Yes, it is closed and simple. Everyone answered and motivated their answers correctly.

Compute the area of the region R encompassed by this ellipse, keeping in mind that

A(R) = −
∫ b

a

y(t)
dx(t)

dt
dt =

∫ b

a

x(t)
dy(t)

dt
dt.

[4]

Here we get ∫ 2π

0

x(t)
dy(t)

dt
dt =

∫ 2π

0

ab cos2 tdt =
ab

2

∫ 2π

0

[cos 2t + 1]dt

using the formula for cos of a double angle: cos 2t = cos2 t − sin2 t = 2 cos2 t − 1. Then by
integration we get A(R) = abπ.

What is the minimal length the ellipse can achieve? Justify your answer. [1]

From the isoperimetric inequality, we have that l2 − 4πA(R) ≥ 0 and l is minimal when
l =

√
4πA(R) =

√
4π2ab = 2π

√
ab, hence if the ellipse is a circle of radius

√
ab.



Chapter 3

Differential Geometry of Surfaces

3.1 Week 9

We start by introducing the notion of regular surface in R3. In short, a regular surface in
space is a obtained by taking pieces of a plane, deforming them and arranging them in such
a way that the resulting figure has no sharp points or edges, or self-intersections and so that
it makes sense to speak of a tangent plane at points of the figure.

3.1.1 Regular surface. Inverse images of regular values.

When we studied the geometry of curves in R2 and R3, we defined them by means of
parametrizations, or differentiable mappings α from an interval I of R into R2 of R3. We
called the image of such parametrizations the trace of α. Obviously, the trace of α is a subset
of R2 or R3. So, we can define a curve either as a differentiable map (α) or as a set (tr(α))
in R2 or R3.

I

α(t)

51
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In the same way, we can define a regular surface in R3 either as a differentiable map (we
shall see below) or as a subset of R3.

We start with the definition of a regular surface as a subset of R3.

Definition 3.1.1 A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there exist a
neighbourhood V ⊂ R3 and a map α : U → V ∩S of an open set U ⊂ R2 onto V ∩SR3 such
that:

1. α is differentiable, i.e.

α(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of all orders in
U ;

2. α is a homeomorphism, i.e. α is continuous, α−1 : V ∩ S → U exists and is also
continuous;

3. For each (u, v) ∈ U , the differential dα(u,v) is one-to-one.

The definition can be better understood on the following image:

U

(u,v)

S

V

V intersected
with S

α(u,v)=(x(u,v),y(u,v),z(u,v))

α

Condition number 3 from Definition 3.1.1 can be expressed in the more familiar form:
for each (u, v) ∈ U , the column vectors of the linear map

dαu,v =




∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v
∂z

∂u

∂z

∂v
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are linearly independent.

Another equivalent formulation of the same condition is the following:
for each (u, v) ∈ U , one of the Jacobian determinants

∂(x, y)

∂(u, v)
:=

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
,

∂(y, z)

∂(u, v)
,

∂(x, z)

∂(u, v)

is different from 0.

Example 3.1.1 Intuitively, the sphere S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} seems to fit
the requirements of a regular surface. Let us show that S2 is indeed such a surface, using
Definition 3.1.1.

We are supposed to take open pieces U of R2, deform them and put them together so
that they cover the sphere; moreover, each such correspondence between our open sets U
and pieces of S2 should satisfy the conditions of the Definition 3.1.1.

Suppose U := {(x, y) ∈ R2 | x2 + y2 < 1} and take

α1 : U → R3, given by α1(x, y) = (x, y,
√

1− (x2 + y2)).

Note that α(U) is the upper hemisphere, without the equator.
Since x2 + y2 < 1, then

√
1− (x2 + y2) has continuous partial derivatives of all orders.

Thus α1 is differentiable. Obviously, ∂(x,y)
∂(x,y)

= 1 in this case and so condition 3 is satis-

fied. For condition 2, we define α−1
1 : α(U) → U , so that α−1

1 (x, y,
√

1− (x2 + y2)) =

π(x, y,
√

1− (x2 + y2)) = (x, y), where π is the projection on the third factor of R3 (see
Problem 1.3.6, Week 3) and so α−1

1 exists and is continuous, hence α1 is a homeomorphism
on its image (see also Definition 1.3.4 and Lemma 1.3.1 Week 3).

To show that S2 is a regular surface, we need to cover it all with parametrizations of the
type of α1. We therefore need 6 of them and they are defined as follows:

• U = {(x, y) ∈ R2 | x2 + y2 < 1} and

α2 : U → R3, given by α2(x, y) = (x, y,−
√

1− (x2 + y2));

• V = {(x, z) ∈ R2 | x2 + z2 < 1} and

α3 : V → R3, given by α3(x, z) = (x,
√

1− (x2 + z2), z);

α4 : V → R3, given by α4(x, z) = (x,−
√

1− (x2 + z2), z);
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• W = {(y, z) ∈ R2 | y2 + z2 < 1} and

α5 : W → R3, given by α5(y, z) = (
√

1− (y2 + z2), y, z);

α6 : W → R3, given by α6(y, z) = (−
√

1− (y2 + z2), y, z).

Now, for each point p ∈ S2, we have found neighbourhoods in R3 and parametrizations of
open sets in R2 satisfying Definition 3.1.1, so S2 is a regular surface.

Obviously, the use of Definition 3.1.1 is not easy, so we are looking for simpler ways to
show that a surface is regular. This can be done via the two Propositions below.

Proposition 3.1.1 If f : U → R is a differentiable function on an open subset U of R2,
then the graph of f , i.e.

graph(f) = {(x, y, z) ∈ R3 | z = f(x, y)},
is a regular surface.

Definition 3.1.2 Given a differentiable map f : U ⊂ R3 → R, then a point p = (x, y, z) ∈ U
is called a critical point of f if fx = fy = fz = 0 at p.

Definition 3.1.3 If f : U ⊂ R3 → R is a differentiable map and p a critical point of f ,
then the image f(p) ∈ R is called a critical value. Finally, any point of R which is not a
critical value of f is called a regular value.

With the definitions above, we have the following result.

Proposition 3.1.2 If f : U ⊂ R3 → R is a differentiable map anda ∈ f(U) is a regular
value of f , then

f−1(a) = {(x, y, z ∈ U | f(x, y, z) = a)}
is a regular surface in R3.

Example 3.1.2 The ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1

is a regular surface, as the inverse image of the regular value 0 via the mapping f(x, y, z) =
x2

a2 + y2

b2
+ z2

c2
− 1. 0 is a regular value since fx = fy = fz = 0 only happens for the point

(0, 0, 0) which does not belong to f−1(0). In the particular case when a = b = c, then the
ellipsoid becomes the sphere S2.

Definition 3.1.4 A regular surface S is called connected if any two of its points can be
joined by a continuous curve in S.
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Both the ellipsoid and the sphere are connected surfaces.

Example 3.1.3 The hyperboloid of two sheets −x2− y2 + z2 = 1 is a regular surface given
by S = f−1(0), where f(x, y, z) = −x2 − y2 + z2 − 1. This surface is not connected (sketch
the surface at home).

The next result is a local converse result of Proposition 3.1.1.

Proposition 3.1.3 Let S ⊂ R3 be a regular surface and p ∈ S. Then there exists a neigh-
bourhood V of p in S such that V is the graph of a differentiable function which has one of
of the following three forms: z = f(x, y), y = g(x, z) or x = h(y, z).

Proposition 3.1.3 is very useful in proving that there are geometric shapes in R3 which are
not regular surfaces. Here is one example.

Example 3.1.4 The one-sheeted cone C given by z =
√

x2 + y2 is not a regular surface.
Note that we cannot conclude this just by noticing that the ”natural parametrization”

(x, y) → (x, y,
√

x2 + y2)

is not differentiable. There could be other parametrizations which satisfy Definition 3.1.1.
However, is we use Proposition 3.1.3, we could rigorously prove the claim.

Assume by contradiction that C is a regular surface. Then by Proposition 3.1.3, then
it would be, in a neighbourhood of the point (0,0,0), the graph of a differentiable function
having one of the forms z = f(x, y), y = g(x, z) or x = h(y, z). These forms give

z =
√

x2 + y2, y = ±
√

(z2 − x2), x = ±
√

z2 − y2.

In the neighbourhood of (0,0,0), neither of these functions are differentiable, hence C is not
a regular surface.

3.1.2 The differential of a differentiable mapping

In order to understand better Definition 3.1.1, condition 3, and the material in the coming
weeks, we will now make precise the notion of differential of a mapping from Rn to Rm, the
way we compute such a map and its properties.

We begin first by noticing the following:

Remark 3.1.1 For any p ∈ U ⊂ Rn, U open and w ∈ Rn, we can always find a differentiable
curve γ : (−ε, ε) → U so that γ(0) = p and γ′(0) = w.
To see this, define γ(t) = p + tw.
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Definition 3.1.5 Let F : U ⊂ Rn → Rm be a differentiable mapping. To each p ∈ U , we
associate a linear mapping dFp : Rn → Rm which is called the differential of F at p and is
defined as follows:
let w ∈ Rn and γ : (−ε, ε) → Rn be a differential curve with γ(0) = p and γ′(0) = w; then
the curve β = F ◦ γ : (−ε, ε) → Rm is also differentiable and

dFp(w) = β′(0).

We can show that the definition of dFp does not depend on γ or w, and is in fact a linear
map. In order to deduce a more simple expression of dF , let us look at Definition 3.2.5 again
for the case when n = 2 and m = 3.

Suppose that p := (u, v), that γ(t) = (u(t), v(t)), F (u, v) = (x(u, v), y(u, v), z(u, v)).
Then obviously

β(t) = F (γ(t)) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))).

Then using the Chain Rule when taking derivatives and evaluating at t = 0, we get the
following:

β′(0) =
d

dt
(F (γ(t))) |t=0= dF (γ(t)) |t=0

d

dt
(γ(t)) |t=0= dFp(w).

On the other hand,

β′(0) =
d

dt
(F (γ(t))) |t=0=

d

dt
((x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t)))) |t=0

= (
∂x

∂u

du

dt
+

∂x

∂v

dv

dt
,
∂y

∂u

du

dt
+

∂y

∂v

dv

dt
,
∂z

∂u

du

dt
+

∂z

∂v

dv

dt
) |t=0

=




∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


 |p

(
du
dt
dv
dt

)
|t=0




∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


 |p w.

From the two expressions of β′(0) we deduce that

dFp =




∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


 |p

and is therefore a linear mapping.
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Remark 3.1.2 Note that a similar computation can be carried out for arbitrary dimensions
n,m and the result will be

dFp =

(
(
∂fi

∂xj

) |p
)

i=1..,nj=1,..,m

.

When n = m, the matrix of dFp is square and its determinant is called the Jacobian deter-
minant.

Example 3.1.5 Let F : R2 → R2, F (u, v) = (u2 − v2, 2uv). Then

dFp=(u,v) =




∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


 =

(
2u −2v
2u 2v

)
.

Then if p = (1, 1), we get

dFp =

(
2 −2
2 2

)

and if w = (2, 3) we get

dFp(w) =

(
2 −2
2 2

) (
2
3

)
=

( −2
10

)
.

3.1.3 Examples and Problems

Example 3.1.6 Show that the cylinder {(x, y, z) ∈ R3 | x2 + y2 = 1} is a regular surface.
Find parametrizations of the cylinder whose coordinate neighbourhoods are covering it.

Example 3.1.7 Let f(x, y, z) = z2. Show that 0 is not a regular value of f , however, f−1(0)
is a regular surface.

Problem 3.1.1 Find a parametrization of the hyperboloid with two sheets {(x, y, z) ∈ R3 |
−x2 − y2 + z2 = 1}.
Problem 3.1.2

Problem 3.1.3 Let f(x, y, z) = (x + y + z − 1)2.
a) Find the critical points and the critical values of f .
b) For what values of c is the set f(x, y, z) = c a regular surface?

Problem 3.1.4 Let V be an open set in the xy-plane. Show that the set

(x, y, z) ∈ R3 | z = 0 and (x, y) ∈ V

is a regular surface.
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Problem 3.1.5 Show that α : U ∈ R2 → R3 given by

α(u, v) = (a sin u cos v, b sin u sin v, ccosu), a, b, c 6= 0

where 0 < u < π, 0 < v < 2π, is a parametrization for the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

Problem 3.1.6 Let α(u, v) as given in Definition 3.1.1. Verify that the differential dα(u,v)

is one-to-one if and only if
∂α

∂u
∧ ∂α

∂v
6= 0.

3.3 Week 11

We continue the study of regular surfaces in analogy to that of regular parametrized curves.
We have seen that for such a curve, we can always define the tangent vector to the curve at
any point. Similarly, we should be able to define a tangent plane to a regular surface at any
point of this surface.

3.3.1 The tangent plane to a regular surface

Let S be a regular surface in R3. We begin by giving the following definition.

Definition 3.3.1 By a tangent vector to S at p ∈ S we mean the tangent vector γ′(0)
of a differentiable parametrized curve γ : (−ε, ε) → S, with γ(0) = p.

The tangent vectors given by Definition 3.3.1 above are characterized by the following:

Proposition 3.3.1 Let S be a regular surface in R3. Let α : U ⊂ R2 → S be some
parametrization of S and let (u, v) ∈ U . Then the vector subspace of dimension 2 (the
plane)

dα(u,v)(R2) ⊂ R3

coincides with the set of tangent vectors to S at the point α(u, v).

Proof: For a proof of this result, the reader is directed to [1], Chapter 2. ¤

Remark 3.3.1 The plane dα(u,v) does not depend on the parametrization α and will be called
the tangent plane to S at p = α(u, v). It is usually denoted by TpS.

Example 3.3.1 Let C = {(x, y, z) | x2 + y2 = 1} be the cylinder of radius 1. We saw that
C is a regular surface (Week 9). Let us compute TpC, where p = ( 1√

2
, 1√

2
, 3).



3.3. WEEK 11 59

Using Proposition 3.3.1, we need to use a parametrization of C around the given point p.
We choose

α : (−1, 1)× R→ C, α(y, z) = (
√

1− y2, y, z).

Evidently p = ( 1√
2
, 1√

2
, 3) belongs to α((−1, 1)× R).

Now from Week 10, we compute the differential of the parametrization α as follows:

dα(y,z) =




−y√
1−y2

0

1 0
0 1


 .

The point (y, z) so that α(y, z) = ( 1√
2
, 1√

2
, 3) is (y, z) = ( 1√

2
, 3), so

dα( 1√
2
,3) =



−1 0
1 0
0 1


 .

Then the plane in R3 given by dα( 1√
2
,3)(R2) is computed as follows:

dα( 1√
2
,3)(

(
a
b

)
) =



−a
a
b


 ,

so
T( 1√

2
, 1√

2
,3)C = {(x, y, z) ∈ R3 | x = −y}.

We have seen that in order to check whether a surface S is regular, we can employ easier
criteria, like those in Propositions 3.1.1 and 3.1.2 of Week 9.

Based on these propositions, we have easier ways to compute the tangent planes to a
regular surface S, provided S is the graph of a 2-dimensional vector function or is the
inverse image of a regular value of a 3-dimensional vector function.

Proposition 3.3.2 Suppose S is the graph of a function f : R2 → R, f(x, y) = z. Then the
tangent plane to S at a point p = (x0, y0, z0) has the equation

z = f(x0, y0) +
∂f

∂x
|(x0,y0,z0) (x− x0) +

∂f

∂y
|(x0,y0,z0) (y − y0)

Proposition 3.3.3 Suppose 0 is a regular value of f : R3 → R and S = f−1(0). Then the
tangent plane to S at a point p = (x0, y0, z0) has the equation

∂f

∂x
|(x0,y0,z0) (x− x0) +

∂f

∂y
|(x0,y0,z0) (y − y0) +

∂f

∂z
|(x0,y0,z0) (z − z0).

These last results should be more than familiar to the reader from Vector Calculus.
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3.3.2 The normal vector.

Let S be a regular surface. Then at each p ∈ S we saw we can compute TpS. At the same
point p, there are two unit vectors that are perpendicular on TpS. Each of them is called a
normal unit vector at p. The straight line passing through p containing the normal unit
vector is called the normal line to p. By fixing a parametrization, we can make a definite
choice of a normal vector as follows:

Definition 3.3.2 Let α : U → S be a parametrization of S at p ∈ S. Then the normal
vector at each point q = α(U) is given by the rule

N(q) :=
∂α
∂u
∧ ∂α

∂v

|∂α
∂u
∧ ∂α

∂v
|(q).

Thus we obtain a differentiable map N : α(U) → R3, called the Gauss map.

3.3.3 Examples and Problems

Problem 3.3.1 Using the parametrization of S2 from Week 9, compute the tangent spaces
TpS

2 at p = (0, 0, 1) and at (0, 0,−1).

Problem 3.3.2 Determine the tangent planes of the paraboloid x2+y2−z2 = 1 at the points
(x, y, 0) and show that they are parallel to the z-axis.

Problem 3.3.3 Show that the tangent planes of a surface given by z = xf( y
x
), x 6= 0, where

f is differentiable, all pass through the origin (0,0,0).

Problem 3.3.4 The torus T is a surface generated by a rotating circle S1 of radius r about
a straight line belonging to the plane of the circle and at a distance a > r away from the
center of the circle.
a) Show that T is given by the equation z2 = r2 − (

√
x2 + y2 − a)2.

b) Show that T is a regular surface.
c) Write the equation of the tangent planes to T , using Prop. 3.3.3 above.

Problem 3.3.5 Compute the normal vector N(q) for the regular surface with parametriza-
tion α(u, v) = (v cos u, v sin u, au), a 6= 0.
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3.4 Week 12

3.4.1 Review
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