
Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 35–46.

Computer Package for Investigation

of the Complete Integrability

A.G. MESHKOV

Oryol State University, 95 Komsomolskaya Str., Oryol, 302015, Russia
E-mail: meshkov@esc.private.oryol.su

The problems concerned with the complete integrability of the partial differential systems
with two independent variables are considered. The algorithms and the Maple V procedures
for the investigation of complete integrability and some examples are presented.

1 General information

This paper describes a new computer package for the investigation of partial differential systems
with two independent variables. We called this package JET because of the jet space language
is used. The package includes twenty eight basic procedures in Maple V language and fifteen
auxiliary procedures. Our main aim was to create the full collection of the instruments for the
investigation of completely integrable systems. But the package can be used for other purposes
as well.

For independent variables we used the fixed (global) names t and x. And besides, t is the
temporal variable and x is the spatial one. For the dependent variables one may use any names
that must be fixed in the list with the global name vard. For example, if we deal with the
jet space J∞(R,R2) with the local coordinates (x, ui, vi) then we must assign vard:=[u, v]:.
Then the coordinates in all programs will be denoted as x, u0, v0, u1, v1, . . . and so on.

Here is the list of the basic procedures:

dif, INT, depend, DF, DN, ED, EU, ord, pot, defeq, SU, part, chn,
cho, L_E, recursion, Frechet, Noether, INoether, implectic,
symplectic, com, Jac, evsub, struct, Cmetric, Killing, triada

We comment this list in the subsequent sections. And here we mention only that all procedures
work in interactive mode. The automatic mode is impossible in view of two following reasons.
First, the computation of the higher conserved densities or Lie–Bäcklund higher symmetries of
nonlinear systems leads us to very cumbersome partial differential systems whose solutions are
unknown to science. Second, these systems often contain dozens of thousands terms. Solving
such systems is an art but not a mechanical process.

2 Differentiation and integration

Two first names in the previous list, dif and INT, are names of procedures for differentiation
and integration. There are built-in procedures diff and int for differentiation and integration
in Maple. Nevertheless we wrote our own procedures in order to make all expressions more
compact. Everybody who computes Lie–Bäcklund symmetries or conserved densities knows
that you are forced to deal with a lot of arbitrary functions. Equations arising in such problems
often are very long. The procedure depend enables to omit all arguments of all functions. The
following example shows the difference between the built-in and our procedures:

36 A.G. Meshkov

> vard:=[u, v]: depend(f(u0,v0,u1,v1)):
> a:=dif(f,v0)*dif(f,u0$3,v0),
> b:=diff(f(u0,v0,u1,v1),v0)*diff(f(u0,v0,u1,v1),u0$3,v0);

a :=
∂f

∂v0
∂4f

∂u03∂v0
, b :=

∂f(u0, v0, u1, v1)
∂v0

∂4f(u0, v0, u1, v1)
∂u03∂v0

The first expression is 3–4 times shorter than the second one. It is very important if you deal
with a long expression. The procedures dif and INT possess the same facilities as the built-in
diff and int. Moreover, INT possesses many powerful facilities for operating with arbitrary
functions. In continuation of the previous input dialog we give the next examples

> INT(a,u0);

∂f

∂v0
∂3f

∂u02∂v0
− 1

2

(
∂2f

∂u0∂v0

)2

> INT(u0^2*dif(f,u0$3), u0);

u02 ∂2f

∂u02
− 2u0

∂f

∂u0
+ 2 f

and so on. The built-in procedure int returns such integrals without having them evaluated.
The next procedure DF calculates the total derivative with respect to x on a jet space and

DN(f,n) calculates the n-th total derivative of f :

> vard:=[u]: depend(f(x,u0,u1), g(u0)):
> DF(f), DF(g), DN(g,2);

∂f

∂x
+
∂f

∂u0
u1 +

∂f

∂u1
u2,

∂g

∂u0
u1,

∂g

∂u0
u2 +

∂2g

∂u02
u12

The procedure ED computes the evolution derivative

ED(F) → Dt(F) =
∂F

∂t
+

∑
i,α

∂F

∂uα
i

DiKα,

where D is the total derivative with respect to x and Kα are the right hand sides of an evolution
system

uα
t = Kα(u). (1)

One has to input the vector field K beforehand as the list sys (sys is the global name). For
example, if you deal with the KdV equation ut = uxxx + 6uux you must enter the following
commands:

> vard:=[u]: sys:=[u3+6*u0*u1]:

Computer Package for Investigation of the Complete Integrability 37

3 Symmetries and conservation laws

The determining equation for Lie–Bäcklund symmetries of the system ut = K takes the following
form (see [1, 2] or [3] for instance):

(Dt −K ′)F = 0, (2)

where the prime denotes the Fréchet derivative

(K ′)α
β =

∂Kα

∂uβ
i

Di. (3)

Here and below the summation rule over the repeated indices is implied. The procedure Frechet
calculates the Fréchet derivative in different forms for scalar and vector cases. Let us consider
the examples.

> vard:=[u]: depend(f(u0,u1)):
> Frechet(u3+f);

array

(
0..3,

[
(0) =

∂f

∂u0
(1) =

∂f

∂u1
(2) = 0 (3) = 1

])

Here we obtained a 1-dimensional array with scalar elements (∂F/∂ui). But in the vector case
the elements of this array are square matrices:

> vard:=[u,v]: depend(f(u0,v0,u1,v1),g(u0,v0,u1,v1)):
> Frechet([u2+f, -v2+g]);

array


0..2,


 (0) =




∂f

∂u0
∂f

∂v0
∂g

∂u0
∂g

∂v0


 (1) =




∂f

∂u1
∂f

∂v1
∂g

∂u1
∂g

∂v1


 (2) =

[
1 0

0 −1

] 





To obtain the left hand side of equation (2) you do not need to use the procedure Frechet. More
simple way is provided by the procedure defeq. For example, in order to compute the third
order Lie–Bäcklund symmetries for the KdV equation you must enter the following commands:

> vard:=[u]: depend(F(t,x,u0,u1,u2,u3)):
> sys:=[u3+6*u0*u1]: flag:=0: a:=defeq([F],1);

a := ED(F) − 6u1F − 6u0D(F) −D(3)(F)

Here flag is the control variables, D(F) is DF(F) and D(3)(F) is DN(F,3). If flag=0 then the
expressions ED(F), DF(F) and DN(F,n) are not expanded. But if one assigns flag:=1 or nothing
(flag:=’flag’:) then all expressions will be expanded. Let us continue our example:

> flag:=1: a:=a: nops(");

62

This means that the expression a consists of 62 terms and there is no need to look through it.
In order to know which variables this expression contains, we use the procedure ord:

> ord(a);

[5]

38 A.G. Meshkov

This means that the order of a is equal to 5, that is, expression a contains u5. For the systems
ord(a) returns a list [m, n, . . .]. If vard=[u,v] and ord(a)=[2,3] for example, then the expression
a contains u2 and v3 and does not contain u3, u4, . . . , or v4, v5, . . .

More detailed information about the expression a can be obtained with the help of the built-in
procedure indets. Let us mention that the obtained expression a is a polynomial with respect
to the highest order variables ui, and therefore the built-in procedure degree is useful as well.
To extract the terms with u5 one can use the procedure chn (CHoose Name), but the better
way is to use the following command:

> b:=factor(chn(a,u5));

b := −3u5
(
∂2F

∂x∂u3
+
∂2F

∂u32
u4 +

∂2F

∂u3∂u0
u1 +

∂2F

∂u3∂u1
u2 +

∂2F

∂u3∂u2
u3

)

It is easy to see that b = −3u5D(∂F/∂u3). Hence the equation b = 0 implies ∂F/∂u3 = f1(t)
or F = f1(t)u3 + f2(t, x, u0, u1, u2). To continue the computation you must enter the following
commands:

> depend(f1(t), f2(t,x,u0,u1,u2)): F:=f1*u3+f2:
> a:=expand(eval(subs(Diff=dif,a))):

The last command is necessary for the recomputation of all derivatives because the procedure
dif returns the result in the inert form, for example dif(f,u0) → Diff(f,u0).

The next problem that we consider is the computation of conserved currents. The vector
function (ρ, θ) on the jet space is called the conserved current if it solves the equation

Dt ρ = Dθ, (4)

where Dt is the evolution derivative along the trajectories of the system ut = K(u). The
function ρ is said to be the conserved density and θ is said to be the density current. The
current (Df,Dt f) is conserved for any system and it is called the trivial conserved current. A
trivial current may be added to any conserved current and result will be the conserved current
again.

Equation (4) can be investigated with the help of the Euler operator E

Eα = (−D)n ∂

∂uα
n

(5)

that possesses an important property: E f = 0 if and only if f = D(F) [4]. Applying the
operator E to equation (4), we obtain the following equation for the conserved densities

EDt ρ = 0. (6)

The package JET contains the procedure EU that performs the computation according to
formula (5). To obtain the left hand side of equation (6) you must call

> EU(ED(rho),k);

where k = 1, 2, . . . , m, and m is the number of the dependent variable (or number of entry of
the list vard). These equations can be solved by the same method as it was demonstrated above
for Lie–Bäcklund symmetries.

Another way of the computation of the conserved currents is given by the procedure pot
(potential) that calculates a function f if the function φ = Df is known: pot(φ)=f. Hence if
(ρ, θ) is a conserved current then θ =pot(ED(ρ)). Let us consider the zero order conserved
densities for the KdV equation:

Computer Package for Investigation of the Complete Integrability 39

> pot(ED(u0)), pot(ED(u0^2));

u2 + 3u02, 2u0u2 − u12 + 4u13

Now let us take the expression ρ = u03 that is not a conserved density, of course:

> th:=pot(ED(u0^3)), rm;

Break, ord(rm) = [1]

th := 3u02 u2 − 3u0u12 +
9
2
u04, 3u13

This result means that ED(u03)=DF(th) + rm, where rm=3u13. rm is the global name for a
remainder when the pot is called.

When the zero order conserved density ρ exists, one can perform the following contact trans-
formation (t, x, u(t, x)) → (t, y, U(t, y)):

d y = ρ d x+ θ d t, U(t, y) = u(t, x). (7)

This transformation is analogous to the transformation between Lagrange and Euler variables
in the fluid dynamics. Therefore the procedure executing transformation (7) was called L E. Let
us transform the KdV equation, for example:

> L_E(u0,[U]);

[U t = 3U02 U1U2 + U03 U3 + 3U02 U1]

Here the second argument of L_E must be a list of new dependent variables. And besides the
procedure L E may be called with three arguments: L E(ρ, θ,VARD), where (ρ, θ) is a conserved
current and VARD is the list of new dependent variables. In this case the procedure works slightly
faster because θ is entered but is not evaluated.

4 Canonical conserved densities

In the paper [5] the necessary conditions of the complete integrability for evolution systems
were introduced. Later these conditions were explained and generalized in [6] for a wide class of
systems with two independent variables. Let the system

F (u) = 0 (8)

be transformable to the Cauchy–Kowalewski normal form with the help of transformation of
independent variables. Let us denote Φ(Dt, Dx) = F ′+, where Dt and Dx are the total differ-
entiation operators and + is the symbol of the formal conjugation. Then let us consider the
following system

Φ(Dt + θ, Dx + ρ)ψ = 0, (c, ψ) = 1, (9)

where (c, ψ) is the Euclidean scalar product and c is an arbitrary constant vector. The main
result is as follows.

40 A.G. Meshkov

If system (8) is integrable by the inverse spectral transform method then system (9) possesses
a formal solution of the following form:

ρ =
∞∑

i=−n

ρi k
i, θ =

∞∑
i=−n

θi k
i, ψ =

∞∑
i=0

ψi k
i, (10)

where k is a parameter, n > 0, ρ−n �= 0 or θ−n �= 0 and (ρi, θi), i = −n,−n+ 1, . . . are local or
weakly nonlocal conserved currents of system (8).

System (9) and expansions (10) imply a recursion relation for ρi, θi and ψi. Therefore, the
continuity equations Dtρi = Dxθi give the constraints for system (8).

Let us consider the example

ut = u3 + f(u, u1). (11)

A simple calculation gives F ′+ = Dt−D3 +f0−Df1, where f0 = ∂f/∂u0, f1 = ∂f/∂u1. Hence
equation (9) takes the form [θ − (D + ρ)3 + f0 − (D + ρ) f1] 1 = 0, or

θ − ρ3 + f0 − f1 ρ−D

(
3
2
ρ2 −Dρ− f1

)
= 0.

Setting

ρ = k−1 +
∞∑
i=0

ρi k
i, θ = k−3 +

∞∑
i=0

θi k
i,

we obtain the required recursion formula

3 ρi+2 = θi − 3
i+1∑
j=0

ρj ρi−j+1 −
i∑

j,k=0

ρj ρk ρi−j−k −D2(ρi)

− 3
2
D

(
2 ρi+1 +

i∑
j=0

ρj ρi−j

)
+ (f0 −D(f1))δi0 − f1 δi,−1 − f1 ρi,

(12)

where i = −2,−1, . . . It is obvious that

ρ0 = 0, θ0 = 0, ρ1 = −1
3
f1, . . .

The conserved densities of system (8) produced by means of formula (9) are called canonical
conserved densities. The canonical conserved densities of the KdV equation defined in (12) can
be easily obtained, using the following program:

> r:=proc(n)
> local i;
> i:=n-2; if n <= 0 then RETURN(0) fi;
> if n = 1 then RETURN(-1/3*dif(f,u1)) fi;
> th.i/3-SU(r,r,0,i+1)-1/3*SU(r,r,r,0,i) - ’DF’(r(i+1))
> -1/2*’DF’(SU(r,r,0,i))-’DN’(r(i),2)/3+(dif(f,u0)-DF(dif(f,u1)))
> *DLT(i,0)/3-dif(f,u1)*DLT(i,-1)/3-dif(f,u1)*r(i)/3
> end;

Computer Package for Investigation of the Complete Integrability 41

Here DLT is an auxiliary procedure for the Kronecker δ-symbol and SU is the procedure for
the multiple sums. For example, the call SU(A,B,C,n,m) returns the sum of the monomials
A(i)*B(j)*C(k) where i, j, k ≥ n and besides i+ j + k = m. Number of arguments of SU may
be arbitrary, and arguments of SU may be under DF or DN operators. So expressions of the type
SU(A,DF(B),DN(C,p),n,m) are admissible. Moreover we assume that the expressions θ0, θ1, . . .
must be saved under the names th0,th1,...

For systems of two and more equations canonical densities may consist of dozens of hundreds
terms. The evolution derivatives of such long expressions consist of dozens thousands terms.
Processing a large expression requires very long time. And, moreover, if the number of addends
in an expression is more than 40000 then Maple finishes the computation and informs: Object
is too large. To solve this problem we apply the procedure part. The command z:=part(F,n)
returns the list z with n entries so that each entry contains a part of the expression F and
z[1]+z[2]+...+z[n] =F. Then one can perform the required operations with each element
z[i] separately and obtain the final result. Another method is based on using the procedure
cho (CHoose Order). The call cho(F, 3) for example, collects and returns those terms from
the expression F whose orders ≥ 3. As the terms with the greatest order are interesting almost
always then the procedure cho is very useful.

5 Zero curvature representations

Let us consider the following linear overdetermined system

Ψx = U Ψ, Ψt = V Ψ, (13)

where Ψ is a column, U and V are the square matrices depending on the jet space coordinates t,
x, uα

n and a parameter λ. System (13) is compatible if and only if the following equation holds

Ut − Vx + [U, V] = 0. (14)

If equation (13) is satisfied on the solutions manifold of an evolution partial differential system
(1) but not identically then it is said that system (1) possesses the zero curvature representation.

Systems (13) and (14) are covariant under the gauge transformation:

Ψ → Ψ̃ = SΨ, U → Ũ = S U S−1 + SxS
−1, V → Ṽ = S V S−1 + StS

−1.

This transformation may be used for simplification of the matrices U and V .
To investigate equation (14) in JET-package you must enter the following commands

> depend(U(...), V(...)): matrices:={U,V}:
> z:=ED(U) - DF(V) + com(U, V);

and solve the equation z = 0. Here matrices is the global name of the set of symbolic matrices
names, com is the name of a procedure for commutator. Arguments of com may be both
symbolic matrices (names) and arrays. Procedure com knows all properties of commutators. For
example,

> com(U, 2*U+3*V}, com(V,U), dif(com(U,V),u0);

3 [U, V], −[U, V],
[
∂U

∂u0
, V

]
+

[
U,

∂V

∂u0

]

42 A.G. Meshkov

Ordering is performed automatically in the alphabetical order. Integration of com(A,B) is pos-
sible only if A and B are constants, but it suffices the analysis of equations (14). The procedure
Jac transforms the nested commutators according to the Jacobi identity:

> matrices:={U,V,A,B,C,E}:
> z1:=com(A, com(B, E)) + com(C, com(A, B)),

z1 := [A, [B, E]] + [C, [A, B]]

> Jac(z1,A,B,C), Jac(z1,A,B,B);

[A, [B, E]] − [A [B, C]] + [B, [A, C]], [C, [A, B]] + [B, [A, E]] − [E, [A, B]]

Jac searches for the first nested commutator containing the 2nd, 3rd and 4th arguments of Jac,
transforms it and returns the result. That is why different results are obtained. Here is one
more example

> z2:=com(A, com(B, C)) + com(E,com(C, com(A, B)));

z2 := [A, [B, C]] + [E, [C, [A, B]]]

> Jac(z2,A,B,C,2); Jac(z1,A,B,C,yes,2);

[A, [B, C]] + [C, [E, [A, B]]] + [[A, B], [C, E]]

[A, [B, C]] − [E, [A, [B, C]]] + [E, [B, [A, C]]]

The 5th argument 2 in the first case makes Jac to begin the search from the second addend. The
5th argument yes make Jac perform the transformation within the external commutator. The
call Jac(z1,A,B,C,yes) makes Jac to perform the transformation within the external commuta-
tor in the first addend and the error message will be returned. The call Jac(z1,A,B,C,2,yes)
is the mistake as well, both parameters 2 and yes will be ignored and the first term will be
transformed in this case.

When equation (14) is solved, the next problem is to construct the Lie algebra. Let us
consider the KdV equation as an example. After some simple calculations one can obtain the
matrices U = A1 u0 +A2 and

V = A1u2 − [A1, A2]u1 + 3A1u2
0 − 1/2u2

0 [A1, [A1, A2]] − [A2, [A1, A2]]u0,

where Ai are constant matrices. Moreover the following equations are obtained

[A1, [A2, A3]] + 2A3 = 0, [A1, A2] = A3,

[A1, [A1, A3]] = 0, [A2, [A2, A3]] = 0.
(15)

There are different ways to solve this system. For example, one can choose one of the matrices
in the Jordan normal form and try to solve the equations directly. But this way is difficult for
large algebras and the better way is investigation of equations (15) in the spirit of the ideas by
H.D. Wahlquist and F.B. Estabrook [7]. There is very useful procedure struct for obtaining the
closed algebra in this approach . The procedure struct constructs the adjoint representation
of a Lie algebra and returns the equations for unknown structural constants if the input algebra
is not closed. In our example we can use struct at once, but it is necessary to enter the basis
of the algebra beforehand. Let us assume that A1, A2 and A3 form the basis and enter the
commands:

Computer Package for Investigation of the Complete Integrability 43

> s:={com(A1,A2)=A3}: bas:=[A1,A2,A3]:
> struct(bas,s,x);

Structural constants are given by array C[i][kj]=Cˆk {ij}
Table of commutators [e i,e n]=Cˆk {in}∗e k is given by set EQ

Substitutions bas[i]=C[i] are set S, and constraints are:
z:=[[-x1 x6+x3 x4, x3 x1+x2 x6, x1+x5]]

Here the first parameter bas is the list of basis elements, the second parameter s must be a set
of commutation relations and the third parameter of struct must be a name x so that x1, x2,
. . . , are free variables. These variables are used in the table of commutators:

EQ = {[A1, A2] = A3, [A1, A3] = x1A1 + x2A2 + x3A3,

[A2, A3] = x4A1 + x5A2 + x6A3}.
The names C, EQ and S are global. The obtained list z contains the left hand sides of the
equations

−x1x6 + x3x4 = 0, x3x1 + x2x6 = 0, x1 + x5 = 0.

Solving these equations we obtain the closed table of commutators EQ. Setting for example
x1 = −x5 = 2, x2 = k, x3 = x4 = x6 = 0, where k is a parameter we obtain the standard
algebra sl(2) for the KdV:

> EQ;

{[A1, A2] = A3, [A1, A3] = 2A1 + k A2, [A2, A3] = −2A2} (16)

This algebra solves all equations (15). Constructing then a representation of the obtained Lie
algebra we can find an explicit form of the matrices U and V .

For solving the problems considered in this section the following procedures are useful: ev-
sub, Cmetric and Killing. The command evsub(A) is used for evaluation and simplification
of the elements of 2-dimensional array A. The call evsub(s,A) where s is the set of substitu-
tions is used for performing the substitutions into 2-dimensional array A. The call Cmetric()
returns the Cartan metric tensor gij of a Lie algebra. And the call Cmetric(y) returns the
quadratic form gij y

i yj . The command Killing(A,B) returns the value of the Killing form
〈A,B〉=trace(adA adB) for the pair of elements A, B of a Lie algebra.

6 Recursion operators

The recursion operator Λ of evolution system (1) satisfies the following equation

[Dt −K ′, Λ] = 0 (17)

by definition (see [1–3]). There are two procedures in JET for the computation of the recursion
operator.

If you know the zero curvature representation for your system, try call the procedure triada
that uses the algorithm published in [8, 9]. For example, the KdV equation possesses algebra
(16) and we have

> triada(U,s);[
∂3g

∂x3
+ 4u0

∂g

∂x
− k

∂g

∂x
+ 2u1 g

]

44 A.G. Meshkov

Now you should transform this equation (or system in the vector case) to the following form
Lg = k g. Then Λ = L+ [8, 9]. In our example this gives the well-known Lenard operator

Λ = D2 + 4u0 + 2u1D
−1.

When the matrices U and V are embedded in the Lie algebra of a small dimension then this
approach is acceptable. Otherwise the equation L(u, k)g = 0 is too large object. In this case
you can try calculate the recursion operator or Noether operators directly. If we set

Λ =
n∑

i=0

Fn−i(u)Di + Σ(u)D−1Γ(u), (18)

then equation (17) implies that the columns of Σ are symmetries and the rows of Γ are gradients
of conserved densities. That is, Σ satisfies equation (2) and ΓT satisfies the adjoint equation

(Dt +K ′+)ΓT = 0.

The coefficients Fi, Σ and Γ satisfy a cumbersome system that can be obtained with the help
of procedure recursion. It can be called with one or two input parameters:

> sys:=[u3+u0*u1]:
> recursion(0); recursion(1); recursion(1,2);

(F0& ∗K3) − (K3& ∗ F0)

(F1& ∗K3) − (K3& ∗ F1) + (F0& ∗K2) − (K2& ∗ F0) + n (F0& ∗D(K3))

−3 (K3& ∗D(F0)) − (rsys(3 + n)& ∗ (Σ& ∗ Γ)) + (Σ& ∗ (Γ& ∗ rsys(3 + n)))

(F1& ∗K3) − (K3& ∗ F1) + (F0& ∗K2) − (K2& ∗ F0) + n (F0& ∗D(K3))

−3 (K3& ∗D(F0))

Here &∗ is a symbol of the matrix multiplication, F0, F1 etc., Σ and Γ are exactly the coefficients
of operator (18), K0, K1 etc. are the coefficients of the operator

K ′ =
N∑

i=0

KiD
i,

rsys(i)=Ki if 0 ≤ i ≤ N and otherwise rsys(i)=0. The number N is determined by the
list sys (N = 3 in our example) and n is a nonnegative parameter. The call recursion(1,2)
means that we assume n ≥ 2. Then the result is shorter. The number of equations returned by
procedure recursion is N + n+ 1. To solve the equations for F0, F1, . . . you must substitute
there these matrices with undetermined coefficients and the matrices K0, K1, . . . that one can
obtain with help of the procedure Frechet. Matrices Σ and Γ must be calculated beforehand.
If you solve the first equation and find F0, try enter n = 0 or n = 1 and solve next equations.
If such solution does not exist then you can call recursion(i,2), i = 0, 1, . . . and solve these
equations with arbitrary n (but n ≥ 2). Then you can enter n = 2 and so on.

Computer Package for Investigation of the Complete Integrability 45

7 Noether operators

Let us consider a pair of operators Θ and J satisfying the following equations

(Dt −K ′)Θ = Θ(Dt +K ′+), (19)

(Dt +K ′+)J = J(Dt −K ′). (20)

The operator Θ is called a Noether operator and J is called the inverse Noether operator [10, 11].
Of course if Θ satisfies equation (19) then Θ−1 satisfies equation (20). But one cannot find Θ−1

or J−1 explicitly as a rule. If an evolution system admits two Noether operators Θ1 and Θ2

and Θ2 is invertible then Θ1 Θ−1
2 is the recursion operator. If two inverse Noether operators J1

and J2 exist and J2 is invertible then J−1
2 J1 is the recursion operator. Sometimes system (1)

admits Noether operator Θ and inverse Noether operator J (�= Θ−1) then ΘJ is the recursion
operator [11].

The most general form of the Noether and inverse Noether operators known today is

Θ =
n∑

i=0

θn−iD
i +AD−1B, (21)

J =
n∑

i=0

Jn−iD
i +GD−1H. (22)

Here the columns of A and rows of B are Lie–Bäcklund symmetries of system (1); the columns
of G and rows of H are gradients of the conserved densities of system (1). It happens that A = 0
or G = 0 for some systems.

The procedure Noether returns the equations for the matrices θi, A and B of operator (21).
The procedure INoether returns the equations for the matrices Ji, G and H of operator
(22). Both procedures have the same syntax as the procedure recursion: Noether(m) or
Noether(m,k). Here m is a number of the returned equation, the second parameter k is used if
you know that the order of Θ or J is greater than or equal to k.

The Noether operator of an integrable evolution system is an implectic operator and the
inverse Noether operator is a symplectic operator as a rule.

The operator Θ is called implectic if it is antisymmetric (Θ+ = −Θ) and the bracket
{f, g, h; Θ} = 〈f, Θ′[Θ g]h〉 satisfies the Jacobi identity

{f, g, h; Θ} + {g, h, f ; Θ} + {h, f, g; Θ} = 0. (23)

The operator J is called symplectic if it is antisymmetric (J+ = −J) and the bracket
[f, g, h; J] = 〈f, J ′[g]h〉 satisfies the Jacobi identity

[f, g, h; J] + [g, h, f ; J] + [h, f, g; J] = 0. (24)

The procedure implectic checks the identities Θ+ = −Θ and (23). The syntax is
implectic(L,n). Here L=[θ0, θ1, . . . , θn, A,B] is the list of the coefficients of operator (21),
the second parameter n is the order of Θ.

The procedure symplectic checks the identities J+ = −J and (24). The syntax is
symplectic(L,n). Here L=[J0, J1, . . . , Jn, G,H] is the list of the coefficients of operator (22),
the second parameter n is the order of J .

Both procedures implectic and symplectic return the text information: “Antisymmetry –
OK” or “Antisymmetry is not valid, reminder is saved as rm” Then these procedures simplify
the left hand sides of identities (23) and (24) as much as possible and return them as the results.

46 A.G. Meshkov

Conclusion

We are going to prepare the help file for our package and place it in Internet.

References
[1] Ibragimov N.H., Transformation Groups in Mathematical Physics, Moscow, Nauka, 1983.

[2] Olver P.J., Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1986.

[3] CRC Handbook of Lie Group Analysis of Differential Equations, ed. N.H. Ibragimov, London, Tokyo, CRC
Press, 1994, 1995, etc.

[4] Galindo A. and Martinez L., Lett. Math. Phys., 1978, V.2, N 5, 385–390.

[5] Chen H.H., Lee Y.C. and Liu C.S., Integrability of nonlinear Hamiltonian systems by inverse scattering
transform, Phys. Scr., 1979, V.20, N 3, 490–492.

[6] Meshkov A.G., Necessary conditions of the integrability, Inverse Problems, 1994, V.10, 635–653.

[7] Wahlquist H.D. and Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math.
Phys., 1975, V.16, 1–7.

[8] Fokas A.S. and Anderson R.L., On the use of isospectral eiganvalue problems for obtaining hereditary
symmetries for Hamiltonian systems, J. Math. Phys., 1982, V.23, N 6, 1066–1073.

[9] Meshkov A.G., Symmetries and Conservation Laws for Evolution Equations, VINITI, N 1511–85, Moscow,
1985.

[10] Fokas A.S. and Fuchssteiner B., Lett. Nuovo Cimento, 1980, V.28, 299.

[11] Fuchssteiner B. and Fokas A.S., Physica D, 1981, V.4, 47.

