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ABSTRACT For many years, it was believed that the sol-
vability of the integrability problem for a transitive Lie pseu-
dogroup depends only on the local solvability of linear differ-
ential operators arising from the abelian quotients in Guille-
min's Jordan-Hblder decomposition for the transitive Lie al-
gebra associated to the pseudogroup. We provide an example
of a transitive pseudogroup for which the integrability problem
is not solvable and whose corresponding Jordan-Holder se-
quence has only non-abelian quotients.

Introduction
The first example of a transitive Lie pseudogroup for which the
integrability problem is not solvable was given by Guillemin
and Sternberg (ref. 1). As in all previously known counter-
examples to the integrability problem for transitive pseudo-
groups, the transitive Lie algebra of formal infinitesimal
transformations of this pseudogroup has a Jordan-Holder se-
quence in which an abelian quotient appears. The nonsolva-
bility of the integrability problem for this pseudogroup arises
from the local nonsolvability of a linear differential operator
determined by this abelian quotient. In this paper, we construct
a transitive pseudogroup 1 for which the integrability problem
is not solvable and whose associated transitive Lie algebra L of
formal infinitesimal transformations admits a unique Jordan-
Holder sequence

L D I D f01
in which I is a non-abelian minimal closed ideal of L and LII
is a simple non-abelian finite-dimensional Lie algebra. Our
construction is based on the example of Guillemin and
Sternberg (ref. 1) and, just as in that paper, the nonsolvability
of the integrability problem for F comes from the local non-
solvability of the linear differential operator of Lewy (ref.
2).
The pseudogroup F is composed of local diffeomorphisms

of the complex line bundle X = S3 X C over the 3-sphere S3.
If we consider S3 as a real submanifold of C2, the Lewy operator
is the tangential Cauchy-Riemann operator 5b on S3. If z is a
complex coordinate on C, the set of all infinitesimal transfor-
mations of r corresponding to the ideal I of L consists of all real
parts of vector fields on X of the form h(O/dz), in which h is a
local complex-valued function on X which is holomorphic in
z and satisfies the tangential Cauchy-Riemann equation Obh
= 0. This realization of the ideal I does not correspond to the
formal description of I given by the structure theorem of ref.
3; however, at the end of section 2, we do recover this repre-
sentation of I by means of a formal version of the Lewy ex-
tension phenomenon.

If stated in terms of the nonlinear Spencer cohomology of ref.
4, our result says that the nonlinear cohomology H'(L) of L does
not vanish. Moreover, because LII is finite-dimensional,
H'(L/I) = 0 and so corollary 10.1 of ref. 4 implies that the
nonlinear cohomology H'(L,I) of the non-abelian minimal
closed ideal I of L does not vanish. We provide therefore a

counterexample to conjectures I and II of ref. 4. These state-
ments actually hold for the class of all transitive Lie algebras
defined by Eq. 8 of section 2, which includes our Lie algebra
L. The vanishing of the nonlinear cohomology of a transitive
Lie algebra does not depend only on the quotients appearing
in a Jordan-Holder sequence for this algebra. In fact, there is
a transitive Lie algebra L' that admits a Jordan-Holder se-
quence whose quotients are isomorphic to those of L and whose
nonlinear cohomology fI'(L') vanishes; furthermore, L' has
a unique nontrivial closed ideal I', which is isomorphic to I as
a topological Lie algebra and satisfies JtI'(L',I') = 0. Thus, the
nonlinear cohomology of a closed ideal of a transitive Lie al-
gebra depends in an essential way on its structure as a module
over that Lie algebra, even if the ideal is minimal and non-
abelian.

1. Construction of the counterexample
Let X be a manifold of class C- of dimension 2n - 1, whose
tangent bundle we denote by T(X). Let Ox be the sheaf of
complex-valued functions on X. If E is a vector bundle over X,
we denote by 6 the sheaf of sections of E over X. An almost
pseudo-complex structure of codimension one is a complex
sub-bundle Et of rank n - 1 (over C) of the complexified
tangent bundle CT(X) of X such that E" and its complex con-
jugate have a zero intersection. Let

9b:OX *

be the differential operator that is equal to the usual exterior
differential operator d:Ox - CT(X)* followed by restriction
from CT(X) to 6". Such an almost pseudo-complex structure
is a pseudo-complex structure of codimension one if and only
if it is induced by an imbedding of X into a complex manifold
W with dimcW = n, in which case Et is the intersection of
CT(X) with the restriction to X of the bundle of complex vectors
of type (0,1) tangent to W.

Let G be the three-dimensional real Lie group SU(2). We
choose a basis fx11,n2,M31 for the Lie algebra of left-invariant
vector fields on G such that the relations

[Mkln1] = nim

hold for all cyclic permutations (klm) of (1,2,3). The sub-
bundle E" of T(G) generated by the complex vector field i0
+ iq2 on G is an almost pseudo-complex structure of codi-
mension one on G. Because x1l + if2 is a nowhere-vanishing
section of E" over G, we may identify the differential operator
9b with the derivation of the sheaf Oc induced by Ml + if2.
Under the well-known identification of C with the sphere S3
C C2, each left translation of C is the restriction to S3 of a bi-
holomorphic mapping of C2 that preserves the sphere. The
almost pseudo-complex structure E" on G coincides with the
pseudo-complex structure induced by the imbedding of S3 in
C2, and the operator 0b on G coincides essentially with the
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tangential Cauchy-Riemann operator on S3, which is the fa-
mous locally nonsolvable operator of Lewy (ref. 2).

Let X be the trivial complex line bundle 7r:G X C - G over
G, viewed as a five-dimensional real manifold. If r is a vector
field on G or C, we also denote by rthe vector field it induces
on the product G X C. Let z = u + iv be a complex coordinate
for C. Let andanb be the differential operators on O9x induced
by the vector fields (O/ou) + i(a/Ov) and qj + i12 on X, re-
spectively. Let H be the closed subgroup of Gl(5,R) consisting
of all 5 X 5 matrices of the form

I3X3 03X2

a -b c e -f
b a d f e

[1]

in which a, b, c, d, e, f E R satisfy e2 + f2 . o, and '3x3 de-
notes the 3 X 3 identity matrix and 03X2 the 3 X 2 matrix all
of whose entries are equal to 0. Let BH be the H-structure on
X whose global section is the frame

?1,X2, 73,

for T(X) over X.
We now compute the pseudogroup F of all local diffeo-

morphisms of X which induce local automorphisms of BH. If
U is an open subset of X, a mapping f:U - X is given byf =
((p4/, where qp:U G and /:U -- C. In view of the definition
1 of the group H, it is easily seen that a local diffeomorphism
f = (up, i,6) of X defined on an open set U induces a local auto-
morphism of BH if and only if it satisfies the equations

(p* da = P* a = O.au av

for1 ~j<3,and

(p*I1, = 77j,

C+ = 0, Obl =O° [31
If a E G, we denote by La the left-translation of C by a and
let (pa:X -- G be the mapping La ' ir. If U is connected, by
Frobenius' theorem a mapping (p:.U - G satisfies Eqs. 2 if and
only if there exists an element a of C such that (p is the restriction
to U of (pa. Iff = ((p4/ is an element of F defined on this open
set U, it is a local automorphism of the bundle X over a left-
translation of G. If 61:U C satisfies Eqs. 3, then the mapping
f:U - X given by (w7r,%) satisfies Eqs. 2 and 3. Thus, the auto-
morphisms lea = {Pa X id and Tw = id X Tw of X, in which Tr
is the translation of C by w G C, belong to r, and so we see that
the pseudogroup F is transitive.

Let 016,{2,6s be a basis for the Lie algebra 9 of right-invariant
vector fields on G. If is a vector field defined on an open subset
U of X, we can write r uniquely in the form

M=9Ji + hiA-. h2av =1jf I~hlauTh28 ,

where fl, f2, f3, hi, h2 are real-valued functions on U. This
vector field is an infinitesimal transformation of F if and only
if

a a1f =0fkfr = ° fk [41

for 1 Sj,kS3and
Ah = 0, bh = 0O

itesimal transformation of r defined on an open connected
subset U of X is a vector field of the form

t + hi---+ h2 a

in which t is the vector field on X induced by a right-invariant
vector field on G and the complex-valued function h = h1 +
ih2 satisfies Eqs. 5.
We now construct a second H-structure BRjon X that is for-

mally equivalent to BH. Let g1, g2 be real-valued functions on
the group G and set §t = gi ° 7r, for i = 1,2. Let BHbe the H-
structure on X whose global section is the frame

(Xi + R1 7 2 + 92 a13, )

for T(X) over X. It is easily seen that a local diffeomorphism
f = (<,0) of X induces a local equivalence of BH with B, if and
only if sp satisfies Eqs. 2 for 1 < j < 3 and the equations

[6]# = °, ObI = (g5+ ig2) - P

are satisfied. Because F is transitive, to prove that BH and BR
are formally equivalent, it suffices to find for all x = (a,z) E
X a formal equivalence of BH with BH with source (e,O) and
target x, in which e is the identity element of G. In fact, because
the differential operator ab on G is formally solvable, we may
choose a complex-valued function u on G satisfying u(e) = z
and whose infinite jet at e is a formal solution of the differential
equation

ObU = (g1 + ig2) ' La [7]

on G. If {:X - C sends (b,w) into [bw + u(b)], then f =
(<pa, tp) is an automorphism of X whose infinite jet at (e,O) is a
formal equivalence of BH with BR _

Let a E G. Because the operator ab on G is not locally solv-
able at e, we'may choose the functions gi, g2 on G such that Eq.
7 has no solution u on any neighborhood of e. If a local diffeo-
morphism f = (&) defined on a neighborhood of (ez) E X
satisfies 7rf(e,z) = a and induces a local equivalence of BH with
BR, then (p = spa on a neighborhood of (e,z) and the function u
on G, defined by u(b) = 4(b,z), for b e G, is a solution of Eq.
7 on a neighborhood of e. We conclude that:
THEOREM. Let a E G. There' exist functions g1, g2 on G

such that the H-structures BH and BH are formally equivalent
-and such that there are no local equivalences f of BH with
BH defined on a neighborhood of (e,z) E X satisfying
7rf(e,z) = a.

2. Formal infinitesimal transformations
We endow the field of real numbers R and the field of complex
numbers C with the discrete topology. A transitive Lie algebra
L over R (or C) is a linearly compact topological Lie algebra
over R (or C) that possesses a fundamental subalgebra, that is,
an open subalgebra LO containing no ideals of L other than 101.
For a more detailed exposition of transitive Lie algebras, the
reader may wish to refer to ref. 3. Let A be a closed subalgebra
of a transitive Lie algebra L. We inductively define closed
subalgebras DLk(A) of L, for k > 0 by

DL0(A) = A, DLk+ 1(A) =
ft C DLk(A)|[L,{] C DLk(A)I;

[5] the closed subalgebra
in which h = hi + ih2. If U is connected, Eqs. 4 are satisfied
if and only if the functionsfj are constant; therefore, an infin-

DL "(A)2=nDLk(A)
k>O
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of L is an ideal ofL in A and contains all idealsofL in A. When
applied to a fundamental subalgebra LO of L, this construtfion
yields a family of open subalgebras DL k(LO) that form a fun-
damental system of neighborhoods of 0 in L. Let R be a real
transitive Lie algebra; assume thatR is non-abelian and simple,
i.e., having no nontrivial ideals. The commutator field KR of
R is the space of all endomorphisms u of R satisfying

u([Mn)== u(0)]
for all 4, n E£ R. This space KR is a subalgebra of the algebra of
continuous linear endomorphisms of R and, according to
proposition 4.4 of ref. 3, is actually a field isomorphic to R or
C. We shall suppose in the sequel that KR is isomorphic to C;
we may thus consider R as a transitive Lie algebra over C. Let
R0 be a fundamental C-subalgebra of R; we writeR' = R and
Rk = DRkRO, fork > 1.

Let V,W be linearly compact topological vector spaces over
C whose topological duals we denote by V*, W*. We define the
completed tensor product V @cW to be the linearly compact
topological vector space that is the topological dual of the al-
gebraic tensor product V* Oc W* endowed with the discrete
topology. There is a natural injective mapping

V0cW -V c W.

which allows us to identify V ®cW with a dense subspace of
V 6c W. If W is a linearly compact topological associative al-
gebra over C, there is a unique structure of topological Lie al-
gebra on R 0cW that extends the standard Lie algebra struc-
ture on R ®c W.

Let F denote the ring of jets of infinite order at e of com-
plex-valued functions on G. Then F is a local ring whose
maximal ideal FO consists of the jets of functions on G that
vanish at e. Set F-1 = F. If Fk is the (k + 1)-rst power of F0, the
ideals $Fk k>0 form a fundamental system of neighborhoods of
o for the Krull topology on F. The ring F, endowed with this
topology, is a linearly compact topological algebra over C. The
algebra F is the topological direct sum of FO and its closed
subspace V consisting of the jets of constant functions on G. Let
T be the Lie algebra of jets of infinite order at e of real vector
fields on G and let Tk be the subalgebra of T of jets of vector
fields that vanish to order k at e. By taking the subalgebras
fTk k>O to be a fundamental system of neighborhoods of 0 in
T. we obtain a structure of real transitive Lie algebra T such
that TO is a fundamental subalgebra of T. An element of T in-
duces a continuous derivation of F. and belongs to Tk if and
only if the derivation maps F into Fk. The action of v E T on
R Oc F determined by

r_ (n Of)= 0(D OR
for vl E R, f C F, extends uniquely to a continuous derivation
of R SCF and gives us a structure of topological T-module on
R SC F. The semi-direct product

S = (R @cF) C T

is a linearly compact topological Lie algebra over R. The closed
subalgebra

SO = (R00 0cF + R SC FO) C TO
of S is clearly of finite codimension in S and so is open. It is
easily seen that

Dsk(SO) C ( E-RI®Fm) ,Tk
l+m=k-I

for k > 0; hence Ds -(SO) = $0). It follows that SO is a funda-
mental subalgebra of S and that S is a transitive Lie algebra.

-If this a vector fieldon G, we denote by ) the jet of infinite
order of IQ at e. The homomorphism of Lie algebras 9 -> T
sending i into v is injective and we denote byM its image. The
subspace H of F consisting of all formal solutions at e of the
equation Obu = 0 is a closed subalgebra of F. Because H is equal
to the algebra of all elementsf E F satisfying the equation

(-+( 2)f= 0,
and because the right-invariant vector fields on G commute
with the left-invariant vector fields, the subspaceH of F is stable
under the action of the subalgebraM of L. If HO is the closed
ideal H n F0 of H, it is easily seen that the only element ofM
leaving HO invariant is the zero element. Moreover the algebra
H is the topological direct sum of its subspaces HO and V. We
see that

[8]L = (R@cH)-@M
is a closed subalgebra of S and that

I=ROcH
is a closed ideal of L. The quotient LII is isomorphic to the
simple non-abelian Lie algebra S.

PROPOSITION. The topological Lie algebra L is transitive,
and I is the unique nontrivial closed ideal of L and is non-
abelian.

Proof: BecauseM + TO = T and H contains V, we have
L + SO=S.

From theorem 13.2 of ref.-S, it follows that L is a.transitive Lie
algebra and LO = L n so is a fundamental subalgebra of.L. As
M n TO = (0), we have

LO=R®cH+ R0CH0.

Because R is non-abelian and V is contained in H, the ideal I
is non-abelian. If J is the closed ideal R 0-c HO of I, the quotient
I/J is isomorphic to R and so is simple; hence J is a closed
maximal ideal of I. We have

DL"(J) C DL"(LO) = 10),
and so, by the corollary to proposition 6.4 of ref. 3, I is a min-
imal closed ideal of L. Let I' be the commutator ideal of I in
L; because I' is closed, the properties of I that we have just
verified imply that I' n I = t0). If v E I', we may write v
uniquely as r 4+ ,, where4E I and GE M. Because J is an
ideal of I, the mapping ad(t) leaves J invariant; therefore so
does ad(,)). This implies that the action of v on H preserves the
subspace HO; we conclude that v = 0 and that t E I' n I.
Hence t=0 and I' = (0). Let I" be a closed ideal of L; because
I is a minimal closed ideal, the closed ideal I" n I of L must
be equal to $0) or I. If I" q I = 10), we have

[I"I] c I" ni = t0m;
because I' = 10), we deduce that I" = $0). On the other hand, if
I is contained in I", the quotient I"!I is an ideal of LII. Because
LII is simple, the ideal I" must be equal to L or I, concluding
the proof.
From the proposition, we deduce that

L D I D $0)
is the unique Jordan-Holder sequence for L in the sense of ref.
3 and its quotients are non-abelian.

If R is the transitive Lie algebra of formal holomorphic vector
fields on C at the origin 0 of C, it is easily seen from Eqs. 4 and
5 that there is an isomorphism of transitive Lie algebras from
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L to the Lie algebra of formal infinitesimal transformations of
IF at a point x E X, under which the image of I is the ideal of
all r-vertical formal infinitesimal transformations of r at x.

Finally, we outline an explicit construction of the represen-
tation of I as specified in the theorem of Guillemin (theorem
7.2 of ref. 3) on the structure of non-abelian minimal closed
ideals of transitive Lie algebras.
We identify the group C with the sphere S3 C C2 in such a

way that the identity element of C corresponds to a point xo of
C2 and that each left-translation of G is the restriction to S3 of
a biholomorphic mapping of C2 that preserves the sphere. Let
X be the ring of all formal holomorphic functions on C2 at xO,
i.e., the space of all formal solutions at xO of the equation Au =
o for a complex-valued function u on C2. ThenX is a local ring
whose maximal ideal NO consists of all formal functions ofX
which vanish at xo; endowed with the Krull topology, If is a
linearly compact topological algebra over C. The restriction
mapping from jets of functions on C2 at xO to jets of functions
on S3 at xO induces a continuous mapping p:I -- H of topo-
logical algebras; a formal analogue of the Lewy extension
phenomenon asserts that p is an isomorphism, and so we obtain
the inverse X of p. The complex Lie algebra T of formal holo-
morphic vector fields on C2 at xo is the transitive Lie algebra
of continuous derivations of I; its subalgebra TO consisting of
all formal vector fields vanishing at xo is fundamental. To each
right-invariant vector field on G corresponds a holomorphic
vector field on C2 that is tangent to S3. We therefore obtain a
continuous mapping :M -> T of real topological Lie algebras
such that

P(t(4) * g) = t * Pg,
for t E M, g E I; the image A of ,u is a real subalgebra of T
isomorphic to M. In a manner analogous to the construction of
S. we endow R 0-c I with a structure of a topological T-
module; the semi-direct product

e = (R O i) e T

is a transitive Lie algebra (over C), whose subalgebra
0 = (R° 6 + R ocWf) $ TO

is fundamental. The real subalgebra

L = (R c If) D JA

of e is closed and the unique linear mapping p'.L -1 L satis-
fying

4PQ of) =t 0 Xf,
for all t C R, f ( H, n E M is an isomorphism of topological
Lie algebras. The image under <p of the non-abelian minimal
closed ideal I is R Oc I, proving theorem 7.2 of ref. 3 for the
closed ideal I of L. However, we remark that because A is a
three-dimensional real subalgebra of T, the Lie algebra L is
not a transitive subalgebra of (e, &0), in the sense thatL + 0

.

The author is indebted to H. Goldschmidt and D. C. Spencer for
suggestions concerning the content and presentation of this paper. The
preparation of this manuscript was supported by National Science
Foundation Grant MCS 76-23465.
The costs of publication of this article were defrayed in part by the

payment of page charges from funds made available to support the
research which is the subject of the article. This article must therefore
be hereby marked "advertisement" in accordance with 18 U. S. C.
§1734 solely to indicate this fact.

1. Guillemin, V. W. & Sternberg, S. (1967) "The Lewy counterex-
ample and the local equivalence problem for G-structures," J.
Differential Geometry 1, 127-131.

2. Lewy, H. (1957) "An example of a smooth linear partial differ-
ential equation without solution," Annals of Mathematics 66,
155-158.

3. Guillemin, V. W. (1968) "A Jordan-Holder decomposition for a
certain class of infinite dimensional Lie algebras," J. Differential
Geometry 2,313-345.

4. Goldschmidt, H. & Spencer, D. (1976) "On the non-linear coho-
mology of Lie equations. I, II," Acta Mathematica 136, 103-
239.

5. Goldschmidt, H. (1976) "Sur la structure des equations de Lie: III.
La cohomologie de Spencer," J. Differential Geometry 11,
167-223.

2658 Mathematics: Conn

fP(n) = u(n)j,


