
ar
X

iv
:0

81
2.

31
04

v1
  [

m
at

h-
ph

] 
 1

6 
D

ec
 2

00
8

Construction of potential systems for systems of PDEs

with multi-dimensional spaces of conservation laws

N.M. Ivanova

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01601 Kyiv, Ukraine

e-mail: ivanova@imath.kiev.ua

In this paper we consider generalization of procedure of construction of potential systems for
systems of partial differential equations with multidimensional spaces of conservation laws.
More precisely, for construction of potential systems in cases when dimension of the space
of local conservation laws is greater than one, instead of using only basis conservation laws
we use their arbitrary linear combinations being inequivalent with respect to equivalence
group of the class of systems or symmetry group of the fixed system. It appears that the
basis conservation laws can be equivalent with respect to groups of symmetry or equivalence
transformations, or vice versa, the number of independent in this sense linear combinations
of conservation laws can be grater than the dimension of the space of conservation laws.
The first possibility leads to an unnecessary, often cumbersome, investigation of equivalent
systems, the second one makes possible missing a great number of inequivalent potential
systems. Examples of all these possibilities are given.

1 Introduction

When one tries to investigate a physical process, knowledge of symmetry properties of the
modelling system of PDEs can be very useful for understanding the behavior of solutions of
the model. Thus, e.g., group invariance property of a system of differential equations allows to
generate new solutions from the known ones, to construct conservation laws, to find wide classes
of exact invariant solutions. This becomes especially important for investigation of nonlinear
models, where every single partial solution plays an important role. Even if it does not solve
any real boundary value problem, it can be used, e.g., as a testing solution for different numeric
or approximate algorithms. Moreover, for many nonlinear systems invariant solutions are the
only known solutions. This is only one reason why any new symmetry is of great importance
for systems of PDEs. In this short note we illustrate a way of construction of bigger number of
potential systems that can lead to finding new potential symmetries.

The concept of potential symmetry was introduced by Bluman at al [4, 5] in the late 80-es.
See also the related notion of quasi-local symmetry [1,2]. Namely, if at least one of equations of
a system of PDEs can be written in conserved form, then using it one can introduce potential
variable(s). Attaching equations containing the new potential variable(s) to the system, one
obtains a new system, nonlocally related to the initial one. Moreover, there exists a one-
to-one correspondence between the solutions of the initial and potential systems. Also, any
symmetry of the potential system induces symmetry of the initial system. (Generally speaking,
the inverse statement is a bit different: symmetries of initial system induce symmetries of
potential systems or equivalence transformations in the set of potential systems corresponding
to the initial system [8].) If the symmetry transformations of the local variables depend explicitly
on the potential variable(s), the obtained symmetry projects to a nonlocal for the initial system
and is called potential symmetry.

The above procedure of finding potential symmetries has been generalized in [8] by admitting
dependence of symmetries on potentials associated to several conservation laws simultaneously.
Below we will use attitude “simplest” to emphasize that the potential system is constructed with
usage of one conservation law only. Here we use slightly generalized procedure of construction
of potential systems for systems of PDEs admitting multi-dimensional spaces of conservation
laws.
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Before, for construction of potential symmetries only basis conservation laws were used.
However, such way does not guarantee that the obtained potential systems (and therefore, the
obtained potential symmetries) will be inequivalent with respect to local symmetry group of the
initial system or local equivalence group of the class of system. This may lead to unnecessary
complicated investigation of equivalent systems with, in fact, no new result. Or vice versa, there
exists a linear combination of basis conservation laws that leads to potential system inequiv-
alent to “basis” ones. In such case, considering only potential systems constructed with basis
conservation laws one can “loose” some of potential symmetries.

2 Basic notions on conservation laws and potential symmetry

For simplicity here we consider the case of simplest potential systems for systems of (1 + 1)-
dimensional equations only. Note that all below statements and notions can be easily generalized
to n-dimensional case and to general potential systems constructed using several conservation
laws simultaneously.

Let L be a system L(t, x, u(ρ)) = 0 of l PDEs L1 = 0, . . . , Ll = 0 for the unknown functions
u = (u1, . . . , um) of the independent variables t and x. Here u(ρ) denotes the set of all partial
derivatives of the functions u of order not greater than ρ, including u as the derivatives of the
zero order.

Roughly speaking, a conservation law of the system L is a divergence expression

DtT (t, x, u(r)) + DxX(t, x, u(r)) = 0 (1)

which vanishes for all solutions of L. Here Dt and Dx are the operators of total differentiation
with respect to t and x, respectively. The differential functions T and X are correspondingly
called a density and a flux of the conservation law and the tuple (T,X) is a conserved vector of
the conservation law.

The crucial notion of the theory of conservation laws is one of equivalence and triviality
of conservation laws. Two conserved vectors (T,X) and (T ′,X ′) are equivalent if there exist
functions T̂ , X̂ and H of t, x and derivatives of u such that T̂ and X̂ vanish for all solutions
of L and T ′ = T + T̂ + DxH, X ′ = X + X̂ − DtH. A conserved vector is called trivial if it is
equivalent to the zeroth vector.

The notion of linear dependence of conserved vectors is introduced in a similar way. Namely, a
set of conserved vectors is linearly dependent if a linear combination of them is a trivial conserved
vector.

Although in many simple cases conservation laws can be investigated in the above empiric
framework, for deeper analysis one often needs to consider more rigorous definitions, that can
be found, e.g., in [6, 8, 9].

Let the system L be totally nondegenerate [7]. Then application of the Hadamard lemma to
the definition of conservation law and integrating by parts imply that the left hand side of any
conservation law of L can be always presented up to the equivalence relation as a linear combi-
nation of left hand sides of independent equations from L with coefficients λµ being functions
of t, x and derivatives of u:

DtT + DxX = λ1L1 + · · · + λlLl. (2)

Formula (2) and the l-tuple λ = (λ1, . . . , λl) are called the characteristic form and the char-

acteristic of the conservation law DtT + DxX = 0 correspondingly.
The characteristic λ is trivial if it vanishes for all solutions of L. Since L is nondegenerate,

the characteristics λ and λ̃ satisfy (2) for the same conserved vector (T,X) and, therefore, are
called equivalent iff λ − λ̃ is a trivial characteristic.
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Any conservation law (1) of L allows us to deduce the new dependent (potential) variable v

by means of the equations

vx = T, vt = −X. (3)

In the case of single equation L, equations of form (3) combine into the complete potential
system since L is a differential consequence of (3). As a rule, systems of such kind admit a
number of nontrivial symmetries and so they are of a great interest. If the transformation of
some of nonlocal variables t, x or u depends explicitly on variable v, such symmetry is a nonlocal
for the initial equation (system) and is called potential symmetry.

3 New potential systems

In [6] a new approach of choosing conservation laws for introducing potentials in order to obtain
all possible inequivalent potential systems, has been proposed. More precisely, for construction
of potential systems in cases when the dimension of the space of conservation laws is greater
than one, instead of using only basis conservation laws we propose to use their arbitrary linear
combinations being inequivalent with respect to equivalence group of the class of systems or
symmetry group of the fixed system. It is appeared that the basis conservation laws can be
equivalent with respect to groups of symmetry or equivalence transformations, or vice versa, the
number of independent in this sense linear combinations of conservation laws can be grater then
dimension of the space of conservation laws. The first possibility leads to an unnecessary, often
cumbersome, investigation of equivalent systems, the second one makes possible missing a great
number of inequivalent potential systems. Below we illustrate all these three possibilities and
show an example when such systems lead to new potential symmetries.

The most classical in this sense is an example of diffusion equations, for which indeed all
possible inequivalent potential systems can be constructed with usage of basis conservation laws
only.

Example 1. Consider a class of nonlinear diffusion equations of form

ut = (A(u)ux)x, A(u) 6= const . (4)

Equivalence group G∼

1 of this class consists of transformations

t̃ = ε1t + ε4, x̃ = ε2x + ε5, ũ = ε3u + ε6, Ã = ε−1
1 ε2

2A,

where ε1, . . . , ε6 are arbitrary constants, ε1ε2ε3 6= 0.
It is well-known that for arbitrary value of A this equation possesses two linearly independent

conservation laws of form

Dt(u) + Dx(−Aux) = 0 and Dt(xu) + Dx(−xAux +
∫

Adu) = 0.

Therefore, the most general form of potential system depending on one potential that can be
constructed for (4) has the form

vx = (c1x + c2)u, vt = c1(xAux −
∫

Adu) + c2Aux.

Depending on value of c1 (is it equal to 0 or not), using translation of x from equivalence
group G∼ and trivial scaling of the potential variable this general system can be mapped to one
of the following two inequivalent systems:

v1
x = u, v1

t = Aux, or

v2
x = xu, v2

t = xAux −
∫

Adu.
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Together with potential system

v1
x = u, v1

t = Aux, v2
x = xu, v2

t = xAux −
∫

Adu,

constructed with simultaneous usage of two potentials they exhaust all possible inequivalent
potential systems that can be constructed from local conservation laws of equations of class (4).

In the second example we have a different situation: the number of inequivalent potential
systems is less than the dimension of the space of conservation laws. Although from the physical
point of view the example seems to be a bit artificial, it is an excellent illustration of such
possibility.

Example 2. Consider a class of diffusion-convection equations of form

eµ arctan x(x2 + 1)−3/2ut = (A(u)ux)x + eµ arctan x(x2 + 1)−1/2ux

with two-dimensional space of conservation laws spanned by ones with the conserved vectors

( eµt(x cos t + sin t)fu, −eµt(x cos t + sin t)(Aux + hu) + eµt cos t
∫

Adu ),

( eµt(x sin t − cos t)fu, −eµt(x sin t − cos t)(Aux + hu) + eµt sin t
∫

Adu ).

It is easy to see that under the action of equivalence transformations of time translation and
scaling of potential variable there exist only one locally inequivalent simplest potential system
having the form

vx = eµt(x cos t + sin t)fu, vt = eµt(x cos t + sin t)(Aux + hu) − eµt cos t
∫

Adu.

At last, consider the most interesting example of the class of wave equations illustrating the
possibility of construction of extra potential systems, yielding new potential symmetries.

Example 3. Consider the class of wave equations

utt = (f(u)ux)x. (5)

Its equivalence group G∼

w consists of scaling and translation transformations of t, x and u.
For this equation the following local conservation laws with characteristics of zero order are

known (see, e.g., [3]):

Dt(ut) − Dx(fux) = 0, Dt(tut − u) − Dx(tfux) = 0,

Dt(xut) − Dx(xfux −
∫

fdu) = 0, Dt(x(tut − u)) − Dx(t(xfux −
∫

fdu)) = 0.

Their characteristics are 1, t, x and tx correspondingly. Therefore, the most general simplest
potential system can be constructed with usage of local conservation law having characteris-
tic c1tx + c2x + c3t + c4, where ci are arbitrary constants.

If c1 6= 0, then without loss of generality we can assume that c1 = 1. Using equivalence
transformations x → x−c3, t → t−c2 we can reduce this characteristic to form xt+c4. Applying
additionally scaling transformations we get xt + ε, where ε = 0, 1. Considering similarly case
c1 = 0 we obtain the following inequivalent in this sense characteristics: x + εt, t and 1, where
ε = 0, 1. In such way we get the following inequivalent simplest potential systems:

v1
x = ut, v1

t = fux, (6)

v2
x = tut − u, v2

t = tfux, (7)

v3
x = xut + ε(tut − u), v3

t = xfux −
∫

fdu + εtfux, (8)

v4
x = x(tut − u) + εut, v4

t = t(xfux −
∫

fdu) + εfux. (9)
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Classification of symmetries of potential systems (6), (7), (8)|ε=0 and (9)|ε=0 is considered
in [3], while potential systems

vx = xut + tut − u, vt = xfux −
∫

fdu + tfux, (10)

vx = x(tut − u) + ut, vt = t(xfux −
∫

fdu) + fux, (11)

are new and can lead to new potential symmetries. In particular, system (11) gives potential
symmetries for equations (5) if and only if f = 1 mod G∼

w . The corresponding potential algebra
has the form

〈 1

x2 − t2
(t∂t − x∂x),

(

t +
2x

x2 − t2

)

∂t +

(

x −
2t

x2 − t2

)

∂x,

−
1

4
(3tx2 + 4x + t3)∂t −

1

4
(x3 + 3t3x + 4t)∂x +

(

v +
1

2
(t2 + x2)u

)

∂u+

(

(1 + 2tx + t2x2)u −
1

2
(t2 + x2)v

)

∂v, µ∂u + φ∂v

〉

,

where µ = µ(t, x) and φ = φ(t, x) satisfy the following system of linear equations

φt = (xt + 1)µx − tµ, φx = (xt + 1)µt − xµ.

Similarly one can prove that equation (5) with f = 1 admits potential symmetries associated
with potential system (10).
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