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Introduction

In this dissertation we study a new method for solving partial differential equations. The
method is a generalization of the symmetry methods developed by Lie and the method of
Darboux. We call this method the projection method. Sometimes we also speak of (vector)
pseudosymmetries.

We study projections in the context of two special classes of partial differential equations.
These two classes are the first order systems in two independent and two dependent variables
and the second order scalar equations in two independent variables. The equation manifold
for a first order system has dimension 6 and the equation manifold for a second order equation
has dimension 7. For both types of equations there is a canonical rank 4 distribution that (in
the case of contact geometry) completely describes the equation. The analysis of this rank 4
distribution, or the dual Pfaffian system, is called the geometric theory of partial differential
equations and is another main subject of this dissertation.

The analysis of the geometry of partial differential equations was started in the 19th cen-
tury by mathematicians including Monge, Darboux, Lie, Goursat, Cartan and Vessiot. After
a period of relatively few developments, this branch of mathematics has seen a revival in re-
cent years with contributions from Bryant et al. [14], Gardner and Kamran [38], Juráš [44],
Stormark [64], Vassiliou [66] and many others. The author’s thesis advisor prof.dr. J.J. Duis-
termaat was also interested in the geometric approach to partial differential equations and his
study led to the article [25] in which he analyzes the minimal surface equation. The method
used to find solutions for the minimal surface equation in the article is a special case of the
real method of Darboux in the elliptic case. The analysis of the minimal surface equation was
done by taking the quotient of the system by the translation symmetries. The projection onto
the quotient manifold is an example of the projections studied in this dissertation. In suitable
local coordinates this method corresponds to the Weierstrass representation.

Duistermaat recognized that also for other types of equations such projections could exist
and could be used in solving the equations. While for the minimal surface equation the
projection is generated by symmetries, projections not generated by symmetries also exist.
These projections can still be used to solve partial differential equations.

This dissertation has three main components. The first is the structure theory for first
order systems and second order equations. This is developed in chapters 4, 5 and 6. The
second component is the theory of Darboux integrability. In Chapter 8 we introduce Darboux
integrability and give a complete classification of the first order systems that are Darboux
integrable on the first order jets. In Chapter 10 we give a geometric construction of the Lie
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algebras associated to Darboux integrable equations by Vessiot [69, 70]. The last component
is the projection method that appears in various forms throughout the thesis. The projection
can be either tangent to or transversal to the contact distribution. The first case leads to
projections to a base manifold, these are studied in Chapter 7. The transversal projections are
studied in Chapter 9. Chapter 11 contains a summary of the different projection methods.

Assumptions. We assume the reader is familiar with the basic concepts of differential ge-
ometry, such as Lie groups, vector fields, differential forms, tensors and representations. We
also assume that the reader has some basic notion of a partial differential equation. Finally we
assume the reader is familiar with exterior differential systems, integral elements, the Cartan-
Kähler theorem and the method of equivalence. An introduction to these topics can be found
in Ivey and Landsberg [43]. A more detailed analysis of exterior differential systems and
the Cartan-Kähler theorem can be found in Bryant et al. [13]. The method of equivalence is
described in more detail in Gardner [37]. In Chapter 1 we repeat the basic definitions for the
objects used in this dissertation and give more precise references.

Notation and conventions. The end of a proof will be indicated by the symbol �. The end
of a definition, example or remark by the symbol �. In the text we will use the Einstein
summation convention.

For convenience we assume that all functions and structures defined in this dissertation
are smooth (C∞). Whenever we apply the Cartan-Kähler theorem, we assume the structures
involved are analytic. We will also assume that (unless stated otherwise) all vector bundles
(distributions, Pfaffian systems, etc.) are locally of constant rank. This means we will almost
always avoid any singularities. The condition seems quite restrictive, but often we can restrict
to open subsets away from the singularities. The constant-rank assumption ensures that we
can switch between vector fields and pointwise constructions. Most constructions are local
constructions. If it is necessary (for obvious reasons) to restrict to a small neighborhood to
carry out constructions or computations, then we will not always explicitly mention this.

Computations. Almost all of the computations in this dissertation have either been per-
formed with or checked with computer algebra systems. In particular MAPLE [71] and
MATHEMATICA [75] have been used extensively. For calculations with vector fields and
differential forms the packages JETS [7] by Mohamed Barakat and Gehrt Hartjen, the pack-
age VESSIOT [3] by Ian Anderson and the MAPLE package DIFFORMS have been used. Some
special purpose packages have been written by the author and are available on the author’s
homepage [32].

Dissertation. This dissertation is a continuation of the work in my Master’s thesis [31]. One
of the main questions we had when I finished my Master’s thesis, was whether we could gen-
eralize the projection method for the minimal surface equation [25] to a more general class of
equations. When I started working on this problem in 2002, I used computer algebra systems
(MAPLE) to see if there are any finite order obstructions to the existence of a projection. It
soon turned out that this is a computationally very difficult problem and the approach taken
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(brute force calculations) did not give much intuition for the problem. At that time I also met
Mohamed Barakat from whom I learned his computer algebra system JETS [7]. I also started
reading the book on exterior differential systems by Bryant et al. [13].

In 2003 I started working on symmetries of partial differential equations [58, 59] and on
Darboux integrability [44, 64, 66]. Both topics are closely related to the projection method:
every system with enough symmetries allows a projection and the Darboux integrable equa-
tions provide examples of projections that are not generated by symmetries.

One of the turning points in my research was the introduction to the work of McKay [51,
52]. McKay developed a structure theory for first order systems and one of the questions he
asked at the end of his thesis is whether a second order equation can be projected to a first
order system or not. His question is a question about possible projections! Inspired by this
question I started reading his work and learned very soon that first order systems and second
order equations have a very similar structure. I also learned that many of the structures
Duistermaat and I had found using distributions for second order equations corresponded
directly to structures for first order systems McKay had found using differential forms and
the method of equivalence.

In the first half of 2005 Barakat, Duistermaat and I tried to apply the theory of jet
groupoids (developed by Pommaret [61]) to our geometric structures. The theory works
better for first order systems than for second order equations. For first order systems the the-
ory allowed us to find the number of continuous invariants of a first order system at a given
order. In the summer of 2005 I also visited Florida, USA. Together with Robert Bryant I
developed a method for calculating pseudosymmetries of second order equations (these are
special examples of projections).

In the remainder of 2005 and 2006 we used the structure theory we have developed to
study classifications of Darboux integrable equations, generalizations of Darboux integrabil-
ity, pseudosymmetries and other topics related to our research.





Chapter 1

General theory

1.1 Notation

1.1.1 Differential ideals
The space of all k-forms on a smooth manifold M will be denoted by �k(M); the algebra of
smooth differential forms on M is denoted by�∗(M). The algebraic ideal generated by a set
of differential forms α j will be denoted by {α j

}alg; the differential ideal (see Section 1.2.2)
generated by the same set of elements is denoted by {α j

}diff.
If we have a set of 1-forms α j we can form both the algebraic ideal in the algebra�∗(M)

and the ideal of 1-forms in the module �1(M). The C∞(M)-module generated by a set of
differential forms as a module in �1(M) will be denoted by span(α1, . . . , α j ). This is both
an ideal in the C∞(M)-module �1(M) and a subbundle of T ∗M .

We denote the interior product of a vector X with a k-form ω by X ω.

1.1.2 Dual vector fields
The space of vector fields on a manifold M is denoted by X (M). Given a basis of differential
forms θ j , j = 1, . . . , n, we define the dual vector fields as the vector fields X j that satisfy
θ i (X j ) = δi

j . We will write ∂/∂θ j or ∂θ j for the vector field X j dual to θ j . Note that the
vector field ∂θ1 cannot be determined from the differential form θ1 alone. We need the full
basis θ j , j = 1, . . . , n in order to determine ∂θ1 .

If we have introduced local coordinates x1, . . . , xn on a manifold, then we have a natural
basis of differential forms θ j

= dx j , j = 1, . . . , n. We will then write ∂x j for the vector field
∂θ j = ∂dx j .

Example 1.1.1. Consider the basis of differential forms on R3 given by θ1
= dx , θ2

=

dy + 4dx , θ3
= dz + xdx . The dual vector fields are given by

∂θ1 = ∂x − 4∂y − x∂z, ∂θ2 = ∂y, ∂θ3 = ∂z . �



2 General theory

1.1.3 Vector bundles
Let E , F and G be vector bundles over the base manifold M . We will write F ×M G for the
fibered product of F and G. This is the vector bundle over M for which the fiber over x ∈ M
is (F ×M G)x = Fx × Gx . If F and G are vector subbundles of E we use the notation F + G
for the vector subbundle of E defined by (F + G)x = { X + Y ∈ Ex | X ∈ Fx , Y ∈ Gx }.
If for every point x ∈ M the vector space Ex is the direct sum of Fx and Gx , we will write
E = F ⊕ G. This notation should not be confused with the Whitney sum of F and G.

1.1.4 Jet bundles
Let M and N be smooth manifolds. The jet bundle of k-jets of functions from M to N will
be denoted by Jk(M, N ). The k-jet of a smooth function φ : M → N at a point x will be
denoted by jk

x φ. If we have coordinates x1, . . . , xm for M and y1, . . . , yn for N , then we
can introduce coordinates x i , ya, pa

i for J1(M, N ). The 1-jet of a function φ : M → N
at x is given by (x i , ya, pa

i ) = (x i , φa(x), (∂φa/∂x i )(x)). On the second order jet bundle
J2(M, N ) we have coordinates x i , ya, pa

i , pa
i j , etc.

On every jet bundle there is a natural ideal of contact forms. In the local coordinates
introduced above this ideal is generated by contact forms of the form

θa
I = dpa

I − pa
I,kdxk,

with I a multi-index I = (i1, . . . , is).
Every transformation of the base manifold M × N can be prolonged to a unique trans-

formation on the jet bundle Jk(M, N ) that preserves the contact ideal. This prolongation is
called the induced point transformation. The prolongation might only be defined on a subset.
In a similar way we can prolong vector fields on the base manifolds to unique vector fields
on the jet bundle that are symmetries of the contact structure on the jet bundle.

We will use the terminology base transformations for the transformations of the base
manifold, point transformations for the induced transformations on the jet bundle and contact
transformation for the general transformations on the jet bundle that preserve the contact
structure. For a more detailed discussion of jet bundles and prolongations see Olver [59,
Chapter 4] or Bryant et al. [13, Section I.3].

1.2 Basic geometry
In this section we discuss some basic topics in differential geometry. We will only give
definitions and some examples and refer the reader for proofs or more detailed theory to
other sources.

1.2.1 Lie groups
Given a Lie group G with identity element e we will denote the Lie algebra as g = TeG. The
right translation and left translation by an element g ∈ G on the Lie group will be denoted
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by Rg and Lg , respectively. We also write gL and gR for the Lie algebras of left- and right-
invariant vector fields, respectively. Given an element X ∈ g there is a unique left-invariant
vector field X L that satisfies X L(e) = X . In formula:

X L(g) = (Te Lg)(X) =
d
dt

∣∣∣∣
t=0

g(exp t X).

Similarly, X R is the unique right-invariant vector field with X R(e) = X . We will identify the
Lie algebra g with the space gL of left-invariant vector fields.

Lemma 1.2.1. The left-invariant and right-invariant vector fields act as derivatives of right-
and left multiplications, respectively. Let8t

= exp(t X L) be the flow of X L after time t. Then

8t
= Rexp(t X).

For each Lie group there is a unique right-invariant g-valued 1-form αR , the right-invari-
ant Maurer-Cartan form. This form is defined as

(αR)g(X) = (Tg Rg−1)(X) = (Te Rg)
−1(X).

There is also a unique left-invariant Maurer-Cartan form, defined as

(αL)g(X) = (Tg Lg−1)(X) = (Te Lg)
−1(X).

The Maurer-Cartan forms satisfy the structure equations

dαL(X, Y ) = −[αL(X), αL(Y )], dαR(X, Y ) = [αR(X), αR(Y )]. (1.1)

Matrix groups

If G is realized as a subgroup of GL(n,R), then the Maurer-Cartan forms can be written as

αR = (dg)g−1, αL = g−1(dg).

Example 1.2.2 (Affine group). The affine group Aff(n) is the group of affine transforma-
tions of Rn . An affine transformation of Rn is a transformation of the form x 7→ Ax +b with
A ∈ GL(n,R) and b ∈ Rn . The affine group is the semi-direct product of GL(n,R) and Rn .
A matrix representation of Aff(n) is given by the space of (n + 1)× (n + 1)-matrices(

A b
0 I

)
, (1.2)

with A ∈ GL(n,R) and b ∈ Rn . The group operation is the usual matrix multiplication.
In the case of Aff(1) we can use coordinates a ∈ R∗, b ∈ R and the representation

g = (a, b) 7→

(
a b
0 1

)
∈ GL(2,R).



4 General theory

The left- and right-invariant Maurer-Cartan forms are given by

αL = g−1dg =

(
a−1

−a−1b
0 1

)(
da db
0 0

)
=

(
a−1da a−1db

0 0

)
,

αR =

(
a−1da a−1da + db

0 0

)
.

A basis for the left-invariant vector fields is

X1 = a∂a, X2 = a∂b (1.3)

and a basis for the right-invariant vector fields is

Y1 = a∂a + b∂b, Y2 = ∂b. (1.4)
�

1.2.2 Exterior differential systems
Let M be a smooth manifold. The algebra of differential forms on M is a graded algebra
�∗(M) =

⊕
k �

k(M). An ideal I in�∗(M) is an additive subgroup of�∗(M) that is closed
under the wedge product (for α ∈ I and β ∈ �∗(M) the form α ∧ β is in I ). An ideal
is called homogeneous if the ideal is a direct sum I =

⊕
k I k with I k

⊂ �k(M). In this
dissertation all ideals are assumed to be homogeneous. A differential ideal is a homogeneous
ideal I that is not only closed under addition and the wedge product, but also under exterior
differentiation. An exterior differential system on M is a differential ideal I ⊂ �∗(M). For
a more complete introduction to exterior algebras and exterior differential ideals see Bryant
et al. [13, pp. 6–18].

Integrable elements and integral manifolds

For a k-form ω and a linear subspace E ⊂ Tx M we denote by ωE the restriction ω|E×...×E
of ω to E .

Definition 1.2.3 (Integral element). A linear subspace E ⊂ Tx M is an integral element of I
if ωE = 0 for all ω ∈ I. The set of integral elements of dimension k of an exterior differential
system I will be denoted by Vk(I).

We define the polar space of a k-dimensional integral element E at x to be

H(E) = { X ∈ Tx M | α(X, e1, . . . , ek) = 0 for all ω ∈ Ik+1
}.

We define r(E) = dim H(E) − k − 1. This number is called the extension rank of E . A
maximal integral element is an integral element E for which r(E) = −1. The maximal
integral elements are precisely the integral elements that are not contained in any integral
element of larger dimension.
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Definition 1.2.4 (Integral manifold). A submanifold S of M is called an integral manifold
of I if for the natural inclusion ι : S → M we have ι∗ω = 0 for all ω ∈ I. 	

An integral manifold is called maximal if for every point in the manifold the tangent space
at that point is a maximal integral element. Definition 1.2.4 can be given for any smooth map
from a k-dimensional manifold S to M . This would allow for instance for immersed integral
manifolds that can be used in global applications.

A k-form is called decomposable if it can be written as a monomial ω = ω1
∧ . . . ∧ ωk

with ω j , j = 1, . . . , k all 1-forms.

Definition 1.2.5 (Independence condition). An exterior differential system with indepen-
dence condition on a manifold M is a pair (I, �) where I is an exterior differential ideal and
� a decomposable n-form such that �x 6∈ Ix for all x ∈ M . Two independence forms �,�′

are equivalent if and only if �′
≡ f� mod I for some f ∈ C∞(M).

The n-dimensional integral elements of an exterior differential system I with indepen-
dence condition � are the n-dimensional integral elements E of I for which �|E 6= 0. 	

Example 1.2.6 (Independence condition). An independence condition is used often as a
transversality condition. For example the graphs of the 1-jets of functions z(x) are submani-
folds of J1(R). These submanifolds are integral manifolds of the exterior differential system

I = {dz − pdx}diff .

The converse is not true. For example the submanifold S defined by x = z = constant is an
integral manifold of I, but S does not correspond (not even locally) to the graph of the 1-jet
of a function z(x).

We define the independence condition � = dx . Then it is clear that �|S = 0. The
integral manifolds S of I that satisfy �|S 6= 0 can locally be written as the graphs of 1-jets
of functions. �

Prolongations

Let Grn(T M) be the Grassmannian of n-planes in T M . This is a bundle π : Grn(T M) → M
over the base manifold M . A point in the Grassmannian Grn(T M) is given by a pair (x, E)
where X ∈ M and E is a linear subspace of Tx M . Often we will denote a point in the
Grassmannian only by E and write x = π(E). For every point (x, E) we define CE =

(T(x,E)π)−1(E) ⊂ T(x,E) Grn(T M). We define I(x,E) = (CE )
⊥. An equivalent definition is

I(x,E) = π∗(E⊥). The bundle I defines the canonical contact system on Grn(T M).
Every n-dimensional submanifold of T M can be lifted to a unique integral submanifold

of the exterior differential system on Grn(T M) generated by I . For a submanifold U ⊂ M
this lift is defined as

U → Grn(T M) : u 7→ (u, TuU ).

This lifting gives a local one-to-one correspondence between submanifolds of M and integral
manifolds of (Grn(T M), I ) that are transversal to the projection π .
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Let I be an exterior differential system on M . The n-dimensional integral elements of
I form a subset M (1)

= Vn(I) ⊂ Grn(T M). If the space of integral elements is (locally)
a smooth manifold, then we can pull back the contact structure on Grn(T M) to M (1). This
defines a new exterior differential system I(1) on M (1). The pair (M (1), I(1)) is called the
prolongation of (M, I). The integral manifolds of I are locally in one-to-one correspondence
with the integral manifolds of I(1) that are transversal to the projection M (1)

→ M .

1.2.3 Theory of Pfaffian systems

Definition 1.2.7 (Pfaffian system). Let M be a smooth manifold. A Pfaffian system I on M
is a subbundle of the cotangent bundle. The dimension or rank of the Pfaffian system is the
rank of I as a vector bundle. Our definition of the rank of a Pfaffian system is different from
the Engel half-rank and the Cartan rank of a Pfaffian system (see Bryant et al. [13, p. 45] or
Gardner [35, §3]). 	

Remark 1.2.8. In the 19th century a Pfaffian system was a system of equations of the form
ω1 = a11dx1 + a12dx2 + . . .+ a1ndxn = 0,
ω2 = a21dx1 + a22dx2 + . . .+ a2ndxn = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
ωs = as1dx1 + as2dx2 + . . .+ asndxn = 0.

The dx j are formal expressions that have in modern times the interpretation of differential
forms. In most modern texts a Pfaffian system is defined as a subbundle of the cotangent
space or even as an algebraic ideal of differential forms. If the system is of constant rank 1,
then we can even take the dual distribution as the definition of a Pfaffian system. For most
applications the different definitions are equivalent. �

Every Pfaffian system defines an exterior differential system generated by the sections of
the Pfaffian system. Let θ j be a basis for I . The corresponding exterior differential ideal I is
generated algebraically by the forms θ j and dθ j . Conversely, the essential information in the
exterior differential system is already given by the 1-forms, so we can write I = I ∩�1(M)
for the Pfaffian system. An independence condition � = ω1

∧ . . . ωn for a Pfaffian system
is completely determined by the bundle J = span(I, ω1, . . . , ωn). We have I ⊂ J ⊂ T ∗M
and rank J/I = n. The independence condition � defines a non-zero section of 3n(J/I ).

Definition 1.2.9. Let I be a Pfaffian system. The exterior derivative induces a map

δ : I → �2(M)/{I }alg.

The (first) derived system of I is defined as I (1) = ker δ. By induction we define the derived
flag as I ( j+1)

= (I ( j))(1). 	



1.2 Basic geometry 7

Definition 1.2.10. Let I be an exterior differential ideal. We define

A(I)x = { ξx ∈ Tx M | ξx Ix ⊂ Ix },

C(I) = A(I)⊥ ⊂ T ∗M. 	

The space C(I) is called the retracting space or Cartan system of the exterior differential
ideal. The rank of C(I) at a point x is the class of I at x .

The class of a Pfaffian system I is by definition the class of the exterior differential ideal
generated by I . The class is equal to the corank of the Cauchy characteristics of I ⊥. Let I be
a Pfaffian system of rank s. Then I is called integrable if dI ≡ 0 mod I .

Theorem 1.2.11 (Frobenius theorem). Let I be an integrable Pfaffian system of rank s.
Then there are local coordinates y1, . . . , yn such that the Pfaffian system I is generated by
the 1-forms dy1, . . . , dys .

Lemma 1.2.12 (Cartan’s lemma). Let V be a finite-dimensional vector space and let
v1, . . . , vk be linearly independent elements of V . If

k∑
i=1

wi ∧ vi = 0

for vectors wi , then there exist scalars hi j , symmetric in i and j , such that wi =
∑

j hi jv j .

Proof. See Ivey and Landsberg [43, Lemma A.1.9] or Sternberg [63, Theorem 4.4]. There is
also a higher-degree version of the lemma in which the wk are multi-vectors; this version is a
consequence of the more general Cartan-Poincaré lemma, see Bryant et al. [13, Proposition
2.1]. �

For Pfaffian systems generated by a single 1-form α there are normal forms. Suppose we
have the single equation α = 0. We define the rank of the equation to be the integer r for
which

(dα)r ∧ α 6= 0, (dα)r+1
∧ α = 0.

The rank r of the equation is invariant under scaling of the 1-form and is equal to the Engel
half-rank of the Pfaffian system span(α). We also define the integer s by

(dα)s 6= 0, (dα)s+1
= 0.

One quickly sees that either r = s or r = s + 1. The theorem of Pfaff gives a normal form
for α depending on the invariants r, s.

Theorem 1.2.13 (Pfaff theorem). Let α be 1-form for which r and s are locally constant.
Then α has the normal form

α = y0dy1
+ . . .+ y2r dy2r+1, if r + 1 = s,

α = dy1
+ y2dy3

+ . . .+ y2r dy2r+1, if r = s.

Here the y j are part of a local coordinate system.

Proof. See Bryant et al. [13, Theorem II.3.4]. �
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1.2.4 Distributions
The objects dual to (constant-rank) Pfaffian systems are distributions. We give here the basic
definitions and reformulate some of the previous results in terms of distributions.

Definition 1.2.14. A distribution on a smooth manifold M of rank k is a subbundle of the
tangent bundle T M of rank k. 	

We will also use the term vector subbundle of the tangent bundle or vector subbundle
instead of the term distribution. The name distribution is more common in the literature, but
has the drawback of also having a different meaning as a generalized function. Another name
used in the literature is a vector field system. The distribution spanned by the vector fields
X1, . . . , Xn is denoted by span(X1, . . . , Xn).

Remark 1.2.15. For a distribution V and a vector field X we say that X is contained in V
and write X ⊂ V if Xm ∈ Vm for all points m. This corresponds to saying that X is contained
in V pointwise. The notation X ⊂ V is quite natural if we define a vector field as a section
X : M → T M and identify X with its image X (M). If X is not contained in V this means
that there exists a point m such that Xm 6∈ Vm . This does not imply that Xm 6∈ Vm for all
points m. We will say that X is pointwise not contained in V if the stronger statement. that
Xm 6∈ Vm for all m, holds.

If we write X ∈ V , then usually X is a vector with X ∈ Vm for some point m. �

Let I be a constant-rank Pfaffian system. The distribution V dual to I is defined as

Vx = { X ∈ Tx M | θ(X) = 0, θ ∈ I }.

We will denote the dual distribution by I ⊥.
We say a linear subspace E ⊂ T M is an integral element of V if E is an integral element

of the dual Pfaffian system. We denote the k-dimensional integral elements of V by Vk(V).

Definition 1.2.16. Let V be a distribution. The distribution spanned by all smooth vector
fields of the form [X, Y ] for X, Y ⊂ V is called the derived bundle of V and denoted by V ′.

For a Pfaffian system I with dual distribution V we have I (1) = (V ′)⊥. By taking re-
peated derived bundles we arrive at the completion Vcompl of the bundle. This completion is
integrable.

Definition 1.2.17. Given a distribution V we define the Cauchy characteristic system C(V)
as

C(V)x = { Xx ∈ Vx | X, Y ⊂ V, [X, Y ] ⊂ V }.

A vector field X is a Cauchy characteristic vector field for V if X ⊂ C(V). For smooth
constant-rank distributions the Cauchy characteristic vector fields are precisely the vector
fields X for which [X, Y ] ⊂ V for all Y ⊂ V . 	
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Definition 1.2.18. We say a distribution V on M is in involution if for all vector fields
X, Y ⊂ V we have [X, Y ] ⊂ V . A distribution V is in involution if and only if C(V) = V .
A distribution is called integrable if locally there are coordinates x1, . . . , xm such that the
distribution is given by V = span(∂x1 , . . . , ∂xk ). 	

Theorem 1.2.19 (Frobenius theorem). Let V be a smooth constant-rank distribution of M.
Then V is integrable if and only if V is in involution.

If a distribution is integrable, then the maximal integral manifolds have dimension equal
to the rank of the distribution. Locally these integral manifolds define a foliation of the
manifold M . The individual integral manifolds are called the leaves of the distribution.

An invariant for a distribution V is a function I on M such that X (I ) = 0 for all X ⊂ V .
This is equivalent to V ⊂ ker(dI ). Classically, the invariants of a distribution are called first
integrals. We say that m invariants I 1, . . . , I m are functionally independent at a point x if the
rank of the Pfaffian system span(dI 1, . . . , dI m) is equal to m at x . An integrable rank k dis-
tribution on an n-dimensional manifold has locally precisely n − k functionally independent
invariants. If I 1, . . . , I n are invariants of a distribution, then we will write {I 1, . . . , I 2

}func
for the set of all functions that are functionally dependent with I 1, . . . , I n .

Example 1.2.20. Consider the overdetermined first order system of partial differential equa-
tions for the function z of the variables x and p given by

zx = −αz, z p = −βz. (1.5)

Here α and β are arbitrary functions of x and p. The first order jet bundle J1(R2,R) has
coordinates x, p, z, zx , z p and contact form

θ = dz − zx dx − z pdp.

Let M be the submanifold of the first order jet bundle defined by the two equations (1.5) and
use x , z and p as coordinates on M . The solutions of the system (1.5) are locally in one-to-
one correspondence with the 2-dimensional integral manifolds of the exterior differential on
M generated by the single 1-form

θ = dz + αzdx + βzdp

with independence condition � = dx ∧ dy. The integral manifolds are precisely the integral
manifolds of the distribution V dual to θ . We have

dθ = d(αz) ∧ dx + d(βz) ∧ dp

= (αpzdp + αdz) ∧ dx + (βx zdx + βdz) ∧ dp

≡ (αp − βx )zdx ∧ dp mod θ.

The distribution is integrable at points where the compatibility condition (αp − βx )z = 0 is
satisfied. Since the system is linear, z(x, p) = 0 is always a solution. Near points where
(αp − βx ) 6= 0 there are no other solutions to the system. At each point (x0, p0) where
αp − βx = 0 on a small neighborhood, the distribution is integrable. It follows from the
Frobenius theorem that there is a unique integral manifold of the system through the point
(x0, p0, z0). �
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1.2.5 Lie brackets modulo the subbundle
Let V be a distribution on a smooth manifold M . Then the Lie brackets define a smooth
map from 0(T M)× 0(T M) → 0(T M) and by restriction a smooth map 0(V)× 0(V) →

0(T M). The value [X, Y ]m at a point m depends not only on Xm and Ym , but also on the
first order derivatives of X and Y at m. For this reason the Lie brackets do not define a tensor,
but are a first order differential operator. However, the value of [X, Y ]m modulo Vm does not
depend on the first order derivatives.

Lemma 1.2.21. The Lie brackets of vector fields on M restrict to a tensor

[·, ·]/V : V ×M V → T M/V. (1.6)

We call this tensor the Lie brackets modulo the subbundle, and we often denote them as
[·, ·]/V .

Proof. Let X, Y be smooth vector fields in V and assume that Xm = 0. Suppose that ω ∈

�1(M) and ω(V) = 0. Then ω(X) = ω(Y ) = 0 and therefore

ωm([X, Y ]m) = −(dω)m(Xm, Ym)+ X (ω(Y ))m − Y (ω(X))m
= −(dω)m(0, Ym) = 0.

So ωm([X, Y ]m) is zero for all 1-forms ω dual to V . This implies that [X, Y ]m ∈ Vm and
hence that [X, Y ]m mod Vm does only depend on the value of X at m and not on the first
order derivative of X . By symmetry it follows that [X, Y ]m also does not depend on the
derivatives of Y . �

Since the Lie brackets restricted to V ×M V take values in the derived bundle V ′, the Lie
brackets modulo the subbundle even define a tensor V ×M V → V ′/V .

The Lie brackets modulo the subbundle give a simple characterization of the integral
elements of a distribution (see Section 1.2.4). A k-plane E ⊂ Tx M is an integral element for
V if and only if E ⊂ Vx and the Lie brackets modulo V vanish when restricted to E × E .

1.2.6 Projections and lifting
Let φ : M → B be a smooth map. If φ is a diffeomorphism we can define the push forward
φ∗ X of a vector field X at y = φ(x) as (φ∗ X)y = (Txφ)Xx . Locally we can define the push
forward of a vector field under an immersion in the same way. If φ is a smooth map, then in
general there is no push forward of a vector field X . The reason is that for two points x1, x2

with φ(x1) = φ(x2) = y the vectors

(Tx1φ)(X) and (Tx2φ)(X)

might not be equal. If for all points x1, x2 with φ(x1) = φ(x2) these vectors are equal, we
say that X projects down to B and we write φ∗ X for the projected vector field. In a similar
way, we can project distributions V on M to B if for all points x in the fiber φ−1(y) the image
(Txφ)(V) is equal to a fixed linear subspace Wφ(x) of Tφ(x)B.
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Example 1.2.22. Let φ : R2
= R × R → R be the projection onto the first component. On

R2 take coordinates x, y and define the vector fields

X = x∂x , Y = x∂x + y∂y, Z = (1 + y2)∂x .

The vector fields X and Y project to the base manifold, the vector field Z does not project.
The bundle Z = span(Z) does project to R. �

Lemma 1.2.23 (Lie brackets of projected vector fields). Let π : M → B be a smooth
map. Let V , W be two vector fields on M that project to vector fields v = π∗V andw = π∗W
on B, respectively. Then the commutator [V,W ] projects down to B and π∗[V,W ] = [v,w].

Let M → B be a submersion. Given a vector field v on the base manifold B it is always
possible to find a vector field V on the bundle M such that V projects down to v. The freedom
we have in the choice of the vector field is precisely a section of the vertical bundle V(M). If
we have a connection on M , i.e., a distribution on M of rank equal to dim B that is transversal
to the projection, then there is a unique lift of every vector field below.

1.2.7 The frame bundle and G-structures
Definition 1.2.24. Let G be a Lie group and M a smooth manifold. A principal fiber bundle
over M with structure group G is a fiber bundle π : P → M together with a smooth right
action of G on P such that:

• G acts freely on P .

• M is the quotient space of P by the G-action, i.e., M = P/G.

• P is locally trivial. This means that for every point x ∈ M there is a neighborhood
U of x such that π−1(U ) is isomorphic with U × G. More precisely: locally there
is a diffeomorphism τ : π−1(U ) → U × G such that π |π−1(U ) = π1 B τ where
π1 : U × G → U is projection on the first component and τ intertwines the action of
g̃ ∈ G on π−1(U ) with the action (x, h) 7→ (x, hg̃) on U × G. 	

Furthermore, one has the following theorem [28, Theorem 1.11.4]: if G acts freely and
properly on P , then there is a unique structure of a principal bundle P → M such that the
action of G on P is the one of the principal bundle.

Definition 1.2.25. Let M be a smooth m-dimensional manifold. A frame on M , or more
precisely a frame field, is an ordered set of vector fields X1, . . . , Xm such that at every point
x ∈ M the vector fields form a basis of Tx M . In a similar way we define a coframe to be
an ordered set of m linearly independent 1-forms. A local frame or local coframe on M is a
frame or coframe defined on an open subset of M . 	

The map X 7→
(
(x, (c1, . . . , cn)) 7→

∑n
j=1 c j X j (x)

)
is a bijection from the set of all

frames on M to the set of all (inverses of) trivializations of T M .
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Remark 1.2.26. The existence of a global coframe θ1, . . . , θm implies the existence of a
global non-vanishing m-form, i.e., θ1

∧ . . .∧ θm . This implies that the manifold is orientable
and has trivial tangent bundle. Hence there are global obstructions against the existence of a
global coframe on a manifold. �

Since a coframe forms a basis for the differential 1-forms at each point, we can express
the exterior derivative of the coframe differentials in terms of the coframe itself. We can write

dθ i
= 1/2

∑
j,k

T i
jkθ

j
∧ θk

=

∑
j<k

T i
jkθ

j
∧ θk (1.7)

for unique anti-symmetric functions T i
jk . The functions T i

jk are called the structure functions
of the coframe.

Definition 1.2.27. Let E → M be a smooth rank n vector bundle over M and V a fixed
vector space of dimension n. The frame bundle FE of E is defined as the bundle over M for
which the fiber Fx E over x is equal to the set of all linear isomorphisms Ex → V . On FM
we have a right GL(V ) action defined by

G × FE → FE : (g, u) 7→ g · u = g−1u.

The action is proper and free and exhibits FE as a principal GL(V )-bundle. 	

The definition above is the definition of a V -valued frame bundle. When we refer to a
frame bundle without explicitly mentioning V , we will assume V = Rn . A point b ∈ FE will
often be denoted by a pair (x, u) with x ∈ M and u ∈ Lin(Ex , V ). We will mainly use the
frame bundle of the tangent space. For a manifold M we will use the notation FM to indicate
the frame bundle F(T M). A section of FM defines both a framing and a coframing on M .

On the frame bundle there is a natural V -valued differential form called the tautological
1-form or soldering form. For a frame bundle π : FE → M it is defined at a point b = (x, u)
by

ωb = u B Tbπ. (1.8)

If we choose a basis for V , then the components ω j form a basis for the semi-basic forms on
FM .

Remark 1.2.28. Some authors [26] define the frame bundle of the tangent space analogously
as the set of linear isomorphisms f : Rn

→ Tx M (the right action is defined by g · f = f Bg).
Sometimes the frame bundle is also defined as a basis for the tangent space [47, Section I.5] or
as a set of equivalence classes for coordinate charts [63]. These definitions are all equivalent
to our definitions. The only important choice one has to make is whether to use the right or
the left action on the bundle. �

Definition 1.2.29. Let G be a closed Lie subgroup of GL(n,R). A G-structure on a smooth
manifold M is a reduction of the frame bundle FM to a principal G-bundle F ⊂ FM . Alter-
natively, a G-structure on M is defined by a section of the quotient bundle FM/G. 	
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For every diffeomorphism M → M̃ there is a natural diffeomorphism 8 : FM → FM̃ .
For an element in b : Tx M → V ∈ FM we define 8(b) as the composition of the inverse of
the tangent map Tx M → Tφ(x)M̃ with b. This gives the map b̃ = 8(b) : Tφ(x)M̃ → V in
FM̃ . This diffeomorphism is called the lift of φ or the induced identification of FM with FM̃ .

Definition 1.2.30. Let B → M and B̃ → M̃ be two G-structures. The two structures B
and B̃ are equivalent if there is a diffeomorphism φ : M → M̃ such that the lifted map
8 : FM → FM̃ maps B to B̃.

If the G-structures B and B̃ are defined by sections s : M → F(M)/G and s̃ : M̃ →

F(M̃)/G, respectively, then the G-structures are equivalent if there is a diffeomorphism φ

such that 8∗s̃ = s.

Proposition 1.2.31. The two G-structures π : B → M and π̃ : B̃ → M̃ are equivalent if
and only if there exists a map 8 : B → B̃ such that 8∗(ω̃) = ω.

Proof. If φ : M → M̃ is an equivalence of the G-structures, then the lift 8 satisfies the
condition. Conversely, let 9 be a map that preserves the soldering forms. The kernel of
the soldering form is equal to the tangent space of the fibers B → M . Hence any map 9
that preserves the soldering forms must induce a map φ : M → M̃ such that the following
diagram commutes.

B
9 //

π

��

B̃

π̃

��
M

φ // M̃

Let b = (x, u) and b̃ = 9(b) = (x̃, ũ). Then

ωb = (9∗ω̃)b = ω̃b̃ B Tb9 = ũ B Tb̃π̃ B Tb9 = ũ B Txφ B Tbπ.

At the same time ωb = u B Tbπ and hence u = ũ B (Txφ). This implies ũ = u B (Txφ)
−1

=

8(u). �

Let B → M be a G-structure. For every point b ∈ B we define the map µb : G → B :

g 7→ g · b. The left-invariant Maurer-Cartan form on G is denoted by αL .

Definition 1.2.32. A connection form for the G-structure B is a g-valued differential form γ

on B such that for all b ∈ B, we have µ∗

b(γ ) = αL . 	

A connection H on the bundle π : B → M (here we mean bundle as a fiber bundle,
without the additional G-structure) is a choice of complement Hb to the fibers of the bundle.
At every point b = (x, u) of the bundle we have Hb ⊕ Tu(Bx ) = Tu B. Suppose γ is a
connection form on B. For every point b ∈ B we can define Hb = ker γ . This defines a
connection on the bundle B → M . Conversely, for any connection H we can define a unique
connection form by requiring that for all points b in B we have ker γb = Hb and µ∗

bγ = αL .
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A connection form can have the additional property that the connection form is G-equi-
variant in the sense that R∗

g(γ ) = Adg−1(γ ). The G-equivariance of γ is equivalent to the
G-invariance of the corresponding connection H . See Duistermaat [26, Section 8] for more
details. McKay [53] uses the terminology pseudoconnection for a connection and connection
for a G-equivariant connection.

Proposition 1.2.33. Let B → M be a G-structure with soldering form ω. Then the structure
equations for ω can be written as

dω = −γ ∧ ω + T (ω ∧ ω), (1.9)

with γ a connection form for the G-structure. A g-valued form γ is a connection form if and
only if the structure equation (1.9) holds for a certain choice of torsion T : 32V ⊗ B → V .

Example 1.2.34 (Connections). Let M = R2 with coordinates x, y. Let G = SO(2) and
parameterize the elements of the group as

g(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

The left-invariant Maurer-Cartan form is given by

αL =

(
0 −dφ

dφ 0

)
.

Let B be the G-structure defined by G and the coframe (dx, dy)T . Then B = R2
× (R/2πZ)

and a point (x, y, φ) corresponds to the coframe g−1(dx, dy)T at (x, y) ∈ R2. The soldering
form is given by ω = g−1(dx, dy)T and the structure equations are dω = −γ ∧ω. The form
γ = αL is the unique torsion-free connection form. The connection is G-equivariant.

Next consider the group G of diagonal matrices diag(a, b). The left-invariant Maurer-
Cartan form is given by

αL =

(
a−1da 0

0 b−1db

)
.

The group defines a G-structure with soldering form given by ω = g−1(dx, dy)T . The
structure equations are dω = −γ ∧ ω. Here γ can be chosen as(

a−1da 0
0 b−1db

)
+

(
h1dx 0

0 h2dy

)
.

Here h1 and h2 are arbitrary functions. The connection form γ is G-equivariant if and only
if the functions h1 and h2 depend only on x and y (and not on the group parameters a, b). �



1.2 Basic geometry 15

1.2.8 The Cartan-Kähler theorem

The Cartan-Kähler theorem is a very general existence theorem for solutions of analytic ex-
terior differential systems. The theorem is explained and proved rigorously in Bryant et al.
[13]. Some easier texts with examples are Olver [59] and Ivey and Landsberg [43]. There are
basically two versions of the Cartan-Kähler theorem: a “non-linear” one for arbitrary exterior
differential system and a “linear” one for linear Pfaffian systems. The linear version has the
advantage that the difficult concepts of (regular) integral elements and integral flags can be
replaced by a more algorithmic analysis of the structure equations of the system. The main
disadvantage is of course that the linear version can only be used to analyze the linear Pfaffian
systems.

In this Ph.D. thesis we will need only the linear version (except in one example), so
therefore we present the linear version here. Another reason is that whenever we have a
general exterior differential system the first prolongation of this system is a linear Pfaffian
system. The presentation below uses the notation from Ivey and Landsberg [43]. Its purpose
is to establish notation and to remind the reader of the different concepts involved.

Linear Pfaffian systems. Recall that a Pfaffian system I with independence condition �
can equivalently be defined as two bundles (I, J ) with rank J/I = n. If � is defined by
� = ω1

∧ . . .∧ωn , then the corresponding bundle J is defined by J = span(I, ω1, . . . , ωn).

Definition 1.2.35 (Linear Pfaffian system). Let M be a smooth manifold and (I, J ) a Pfaff-
ian system with independence condition. The system (I, J ) is called a linear Pfaffian system
if dI ≡ 0 mod J . 	

The independence condition defines a natural affine structure in the space Grn(T M, �)
of n-planes E that satisfy �E 6= 0. The integral elements of a linear Pfaffian system with
independence condition define affine linear subspaces of Grn(T M, �), hence the name linear
Pfaffian system. For a more detailed discussion see Bryant et al. [13, Chapter IV, §2].

Example 1.2.36 (Linear Pfaffian systems).

• Let M be a system of partial differential equations given as a submanifold of the jet
bundle Jk(Rn,Rs). The pull back of the contact ideal on Jk(Rn,Rs) to M defines a
linear Pfaffian system.

• Every prolongation of an exterior differential system with an independence condition
is a linear Pfaffian system. �

From here on we will choose a basis θa , 1 ≤ a ≤ s for the Pfaffian system I and forms ωi ,
1 ≤ i ≤ n that represent a basis for the bundle J/I . We will write down structure equations
in terms of these bases and define concepts such as Cartan characters and prolongations in
terms of these. A more geometric approach is also possible, but this would complicate the
theory we need in this dissertation.
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Definition 1.2.37 (Structure equations). Let (I, J ) be a Pfaffian system with basis θa for I
and basis ωi for J/I . Choose 1-forms πα such that θa, ωi , πα forms a basis of differential
forms. The exterior derivatives of the forms θa are given by

dθa
≡ πa

i ∧ ωi
+ T a

i jω
i
∧ ω j

+ N a
αβπ

α
∧ πβ mod I. (1.10)

for unique functions T a
i j = −T a

ji , N a
αβ = −N a

βα and 1-forms πa
i = Aa

αiπ
α . The equa-

tions (1.10) are called the structure equations of the linear Pfaffian system. 	

A Pfaffian system is linear if and only if N a
α,β = 0. The terms T a

i jω
i
∧ ω j are sometimes

written as T a(ω ∧ ω) and are called the torsion of the system. The torsion terms T a
i j are

not unique since we can always redefine the forms πα . For this reason the torsion is called
apparent torsion.

Example 1.2.38 (Absorption of torsion). Let M = R4 with coordinates x , y, z and p. Con-
sider the Pfaffian system I generated by θ = dz − pdx − zdy with independence condition
� = ω1

∧ ω2, with ω1
= dx , ω2

= dy. Let J = span(I, ω1, ω2) and π1
= −dp. Then

dθ = −dp ∧ ω1
− dz ∧ ω2

≡ π1
∧ ω1

− pω1
∧ ω2 mod I

≡ 0 mod J.

Hence (I, J ) is a linear Pfaffian system. We can absorb the apparent torsion by redefining
π1

= −dp + pω2. Then

dθ ≡ π1
∧ ω1 mod I. (1.11)

�

Tableaux.

Definition 1.2.39. Let V and W be vector spaces. A tableau A is a linear subspace of
Hom(V,W ) = W ⊗ V ∗.

Let A ⊂ W ⊗ V ∗ be a tableau and assume dim V = n. A flag in V is a sequence of
linear subspaces V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V with dim Vi = i . Any choice of basis
v j for V defines a flag by V j = 〈v1, . . . , v j 〉. We define Ak = {α ∈ A | α(Vk) = 0 }. We
define s1 = dim A − dim A1 and then by induction s1 + . . . + sk = dim A − dim Ak . The
sum s1 + s2 + . . . + sn is equal to the dimension of the tableau A. The numbers s1, . . . , sn
are called the characters of the tableau with respect to the flag chosen.

For a generic flag the values of the dim Ak are minimal and hence the values of s1 +

. . .+ sk are maximal. The values of the characters sk for a generic flag are called the Cartan
characters of the tableau A. The Cartan characters satisfy s1 ≥ s2 ≥ . . . ≥ sn and are
invariant under the action of GL(V )× GL(W ) on W ⊗ V ∗.

Remark 1.2.40. With respect to bases for V and W we can write the tableau A as a linear
subspace of the space of (s × n)-matrices. A tableau of dimension a can be represented by a
(s × n)-matrix with entries given by 1-forms on Ra .
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For a generic choice of basis for V the first Cartan character s1 is equal to the number
of independent entries in the first column of the matrix, s1 + s2 is equal to the number of
independent entries in the first two columns of the matrix, etc. In examples this gives an
easy method to determine the Cartan characters by looking at the matrix representation of the
tableau. �

Given a tensor product V ∗
⊗V ∗ there exists a canonical splitting V ∗

⊗V ∗
= S2V ∗

⊕32V ∗

into symmetric and anti-symmetric parts. We use this splitting to define for any tableau
A ⊂ W ⊗ V ∗ the maps σ : A ⊗ V → W ⊗ S2V and δ : A ⊗ V → W ⊗32V by

A ⊗ V →

(
W ⊗ S2V ∗

)
⊕

(
W ⊗32V ∗

)
: x 7→ σ(x)⊕ δ(x).

The first prolongation A(1) of a tableau A is defined as the kernel of the map δ. We can write
this symbolically as A(1) = A ⊗ V ∗

∩ W ⊗ S2V ∗. We can use a similar splitting of higher
order tensor products ⊗

l V ∗ to define the higher order prolongations of a tableau.

Definition 1.2.41 (Prolongation of a tableau). Let A ⊂ W ⊗ V ∗ be a tableau. We define
the l-th prolongation of A by

A(l) =
(

A ⊗ (⊗l V ∗)
)
∩
(
W ⊗ S(l+1)V ∗

)
. (1.12)

	

Lemma 1.2.42. Let A be a tableau with Cartan characters s1, s2, . . . , sn . Then

dim A(1) ≤ s1 + 2s2 + . . .+ nsn . (1.13)

Definition 1.2.43. A tableau A is involutive if dim A(1) = s1 + 2s2 + . . .+ nsn . 	

Example 1.2.44 (Tableau). Let V = R2, W = R2 and define the tableau A ⊂ W ⊗ V ∗ by
the set of matrices (

a −b
b a

)
for a, b ∈ R. The Cartan characters are s1 = 2 and s2 = 0. �

Cartan-Kähler theorem. Let (I, J ) be a linear Pfaffian system on M with basis θ i , 1 ≤

a ≤ s for I , basis θa, ωi , 1 ≤ i ≤ n for J and basis θa, ωi , π ε (1 ≤ ε ≤ α) for the 1-forms
on M . We have the structure equations

dθa
= Aa

εiπ
ε
∧ ωi

+ T a
i jω

i
∧ ω j . (1.14)

At each point x the coefficients Aa
εi (x) define a tableau Ax ⊂ W ⊗ V ∗ with W = I ∗

x ,
V = (J/I )∗x . The tableau is spanned by elements of the form Aa

ε j∂θa ⊗ ω j .
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The torsion T a
i j defines a section T of the bundle W ⊗ 32V ∗

= I ∗
⊗ 32(J/I ). By

redefining a form π ε we can change the apparent torsion. If we redefine π ε 7→ π ε + eεi ω
i ,

then

Aa
ε jπ

ε
∧ ω j

7→ Aa
ε jπ

ε
∧ ω j

+ Aa
ε j e

ε
i ω

i
∧ ω j .

Hence the apparent torsion is changed by a term Aa
ε j e

ε
i ω

i
∧ ω j . The freedom we have to

change the apparent torsion by modifying the forms π ε , is precisely equal to δ(A ⊗ V ∗).
Using this freedom to eliminate the apparent torsion is called absorption of torsion. See
Example 1.2.38 for a small example. The quotient of the torsion bundle I ∗

⊗ 32(J/I ) by
the image of δ is H (0,2)(A) = I ∗

⊗32(J/I )/ im δ and is called the intrinsic torsion 1. The
torsion T induces a section [T ] of the intrinsic torsion bundle. At points where [T ] 6= 0
there exist no integral elements. Hence the vanishing of the intrinsic torsion is a necessary
condition for the existence of integral manifolds.

If Ax is the tableau associated to a linear Pfaffian system, then the first prolongation A(1)x
is isomorphic to the space Vn(I )x of integral elements at the point x . We say the linear
Pfaffian system is in involution at x if the corresponding tableau Ax is in involution. If the
system is in involution, then the Cartan characters of the tableau Ax are locally constant and
we define the Cartan characters of the linear Pfaffian system as the characters of the tableau
Ax . Theorem 1.2.45 below shows that the involutivity of the tableau (which is an algebraic
property) together with the vanishing of the torsion implies that the corresponding system of
partial differential equation is in involution (there are no hidden integrability conditions) and
there exist n-dimensional integral manifolds. The use of Definition 1.2.43 to check whether
a linear Pfaffian system is in involution or not is called Cartan’s test.

Theorem 1.2.45 (Cartan-Kähler theorem for linear Pfaffian systems). Let (I, J ) be an
analytic linear Pfaffian system on M with rank J/I = n. Let x ∈ M and U a neighborhood
of x such that:

• The intrinsic torsion vanishes, i.e., [T ] = 0.

• The system is in involution.

Then there exist integral manifolds of dimension n through the point x that depend on sl
functions of l variables.

Example 1.2.46 (continuation of Example 1.2.38). Consider the linear Pfaffian system
defined in Example 1.2.38 with the structure equations (1.11). The tableau for this system is
given by the (1 × 2)-matrices (

π1 0
)
.

The Cartan characters are s1 = 1 and s2 = 0. The first prolongation has dimension one
and the tableau is in involution. By the Cartan-Kähler theorem the integral manifolds of the

1The notation H (0,2)(A) is inspired by the fact that the intrinsic torsion is part of the Spencer cohomology groups
of the tableau. See Ivey and Landsberg [43, pp. 180–181].
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system can be parameterized by one function of one variable. Indeed, the integral manifolds
can be given in parametric form as

z(x, y) = c exp(y)+ φ(x), p(x, y) = φ′(x),

with c a constant and φ an arbitrary function. �

1.2.9 Clean intersections

We will formulate the regularity conditions for the equivalence of coframes in terms of clean
intersections. The terminology was introduced by Raoul Bott [11, pp. 194–199] and is ex-
plained in Duistermaat and Guillemin [27, p. 63].

Let X, Y, Z be smooth manifolds and f : X → Z , g : Y → Z smooth maps. We can
then form the fibered product

F = { (x, y) ∈ X × Y | f (x) = g(y) }.

The diagram below is useful to keep in mind.

F
π1 //

π2

��

X

f
��

Y
g // Z

We define the map τ : X × Y → Z × Z : (x, y) 7→ ( f (x), g(y)) and the diagonal
1 = { (z, z) ∈ Z × Z }. We say that the maps f and g have a clean intersection at p = (x, y)
if F is a smooth submanifold of X × Y at p and Tp F equals { (V,W ) ∈ Tp(X × Y ) |

Tx f (V ) = Ty g(W ) }. Another formulation of this last condition is that the tangent space
Tp F is equal to (Tpτ)

−1(T( f (x),g(y))1). Instead of saying that f and g intersect cleanly we
can also say that τ intersects the diagonal 1 cleanly at p. We say that f and g have a clean
intersection if f and g intersect cleanly at all points p ∈ F .

A clean intersection is a generalization of a transversal intersection. If two maps f0 :

X → Z0 and g0 : X → Z0 have transversal intersection and Z0 is a submanifold of Z
embedded as ι : Z0 → Z , then the maps f : X → Z = ι B f0 and g : X → Z : ι B g
have a clean intersection. Not all clean intersection have the nice structure of a transversal
intersection embedded in a higher dimensional manifold, see Example 1.2.48.

Example 1.2.47 (Clean intersection). Let X = R, Y = R and Z = R3. Let f : X → Z
and g : Y → Z be two curves intersecting at a point z, i.e., z = f (x) = g(y) for certain
x ∈ X and y ∈ Y . If f ′(x) 6= 0, g′(y) 6= 0 and f ′(x) 6= g′(y), then the curves f and
g have a clean intersection. The linear space at z spanned by Tx f (Tx X) and Ty g(TyY ) has
codimension one in Tz Z and hence the intersection is not transversal. �
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f

g

Figure 1.1: Clean intersection of two space curves (Example 1.2.47)

→→

Figure 1.2: Clean intersection that is singular (Example 1.2.48)

Example 1.2.48 (Singular clean intersection). Let X = R2 be a plane. We map X to a
cylinder in R3 using the map (x1, x2) 7→ (cos(x1), sin(x1), x2). Then we map this cylinder
in R3 to a cone in R3 using the map (z1, z2, z3) 7→ (z1z3, z2z3, z3). The composition gives
the map

f : X → R3
: (x1, x2) 7→ (cos(x1)x2, sin(x1)x2, x2),

that maps X to a cone and the line x2 = 0 to the singular point (0, 0, 0). Let Y = R0 and
take the map g : Y → Z : 0 7→ (0, 0, 0). Then F ⊂ X × Y consists of the product of the line
x2 = 0 in X and the single point 0 in Y . The intersection of f and g is clean even though the
image of X is not a submanifold at z = (0, 0, 0). �
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1.2.10 Equivalence of coframes
In this section we will analyze the equivalence of coframes under general diffeomorphisms.
The notation in this section and the definition of classifying space and structure map are
taken from Olver [59, Chapter 8]. The main Theorem 1.2.54 on the equivalence of coframes
is stated and proved under weaker conditions then the equivalent theorem in [59].

Definition 1.2.49. Let θ1, . . . , θm be a coframe on M and θ̃1, . . . , θ̃m a coframe on M̃ . The
equivalence problem for coframes is to decide whether these exists a (local) diffeomorphism
8 : M → M̃ such that

8∗θ̃ i
= θ i , 1 ≤ i ≤ m. (1.15)

	

We will write dθ i
= T i

jkθ
j
∧θk for the structure equations of θ and similar for θ̃ . Because

the exterior derivative operator d commutes with the pullback 8∗, the formula (1.15) implies
that 8∗(dθ̃ i ) = dθ i . In terms of the structure functions for the two coframes this equation
becomes

T̃ i
jk(8(x))8

∗θ̃ j
∧8∗θ̃ j

= T i
jk(x)θ

j
∧ θk .

This implies that 8∗T̃ i
jk = T i

jk . From this last equation we see that the structure functions
of a coframe are very important when determining the equivalence class of the coframe. In
particular if the frames θ i and θ̃ i are equivalent and T i

jk is constant in a neighborhood of
x then T̃ i

jk is constant in a neighborhood of 8(x). So if the coframe on M has constant
structure functions and the coframe on M̃ has non-constant structure functions, then these
coframes cannot be equivalent.

Example 1.2.50. Let M = R2 with coordinates (x, y) and define two coframes θ1
= dx ,

θ2
= dy and θ̃1

= dx , θ̃2
= (1 + x2)dy. Then we have dθ1

= dθ2
= dθ̃1

= 0, dθ̃2
=

xdx ∧ dy. From this we can read off the structure functions

T 1
12 = T 2

12 = 0,

T̃ 1
12 = 0, T̃ 2

12 =
1
2

x .

The other structure functions follow by the asymmetry properties. The first frame has con-
stant structure functions. The second frame will have non-constant structure functions in any
coordinate system and therefore both frames are non-equivalent. �

By making a careful analysis of the structure functions of a coframe one can completely
solve the equivalence problem for coframes. Below we will define the concepts necessary to
formulate Theorem 1.2.54 and Theorem 1.2.58. These theorems are the main theorems we
need in this dissertation.

Definition 1.2.51. We define the coframe derivative ∂ I/∂θ j with respect to a coframe θ j of
a function I by

dI =
∂ I
∂θ j θ

j . (1.16)
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If X j is the frame dual to θ j , then ∂ I/∂θ j
= X j (I ) = dI (X j ). Note that the coframe deriva-

tives do not necessarily commute since the coframes are not always derived from coordinate
coframes. 	

Definition 1.2.52. Let M be an m-dimensional manifold and θ j , 1 ≤ j ≤ m a coframe on
M . For a multi-index σ = (i, j, k, l1, . . . , ls) with 1 ≤ i, j, k ≤ m, 0 ≤ s we define the
structure invariant Tσ as

Tσ =
∂s T i

jk

∂θ ls∂θ ls−1 · · · ∂θ l1
. (1.17)

The integer s is called the order of σ . 	

The multi-indices σ with the properties described in the definition we call the structure
indices. The Tσ with σ of order s form the most general structure invariants of order s
corresponding to the coframe. The structure invariants are invariants for the coframe just
as the structure functions. In order for two coframes to be equivalent we need the structure
invariants to be the same. The converse is also true, with some regularity assumptions on
the coframe: if all the structure invariants are the same, then the corresponding coframes are
equivalent.

There are many relations between the structure functions. The knowledge of all structure
equations Tσ for which s ≤ S and

j < k, 1 ≤ l1 ≤ . . . ≤ ls ≤ m, (1.18)

is sufficient to determine all structure functions of order at most S. This follows from the fact
that the T i

jk are anti-symmetric in j, k and the commutation relations [∂θ j , ∂θk ] = −2T i
jk∂θ i .

The collection of structure indices of order s ≤ S that satisfy (1.18) is denoted by IS . The
number of structure indices in IS is qs(m) =

1
2 m2(m − 1)

(m+s
m

)
.

Definition 1.2.53. Let M be an m-dimensional manifold with coframe θ . The s-th order
classifying space K(s) of M is the qs(m)-dimensional Euclidean space Rqs (m). On the classi-
fying space we introduces coordinates zσ , where σ is a structure index in Is . The s-th order
structure map is defined as

T (s) : M → K(s)
: x 7→ Tσ (x), σ ∈ IS .

Let ρs denote the rank of the s-th order structure map. 	

Let θ and θ̃ be two coframes on M and M̃ , respectively. If T (s)(x) = T̃ (s)(x̃), then we
have by definition Tσ = T̃σ for all structure indices σ ∈ Is . Using the commutation relations
between the coframe derivatives we can then prove that Tσ = T̃σ for all structure indices σ
or order at most s. For example consider the two structure indices σ = (i, j, k, 1, 2) and
τ = (i, j, k, 2, 1). Both indices have order 2 but σ ∈ I2, while τ 6∈ I2. However

Tτ =
∂2T i

jk

∂θ1θ2 = X1 X2T i
jk = X2 X1T i

jk + [X1, X2]T i
jk

= Tσ − 2T l
12 Xl T i

jk .
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So the structure function with index τ has been expressed in structure functions with indices
in I2.

The structure map of a coframe almost completely describes the properties of the coframe.
Together with some regularity conditions on the coframe we can prove the main theorem.

Theorem 1.2.54 (Equivalence of coframes). Let θ and θ̃ be coframes on n-dimensional
manifolds M and M̃, respectively. Let Zs = K(s)

= Rqs (n) and define

τs : M × M̃ → Zs × Zs : (x, x̃) 7→ (T (s)(x), T̃ (s)(x̃)). (1.19)

In the product Zs × Zs we define the diagonal 1s = { (z, z) ∈ Zs × Zs }.
Assume that for a certain order s the two following conditions are satisfied:

• The map τs has a clean intersection with 1s . In other words, the two structure maps
T (s) and T̃ (s) have a clean intersection. This implies that Fs = τ−1

s (1s) is a smooth
submanifold of M × M̃.

• The manifolds Fs and Fs+1 are equal and non-empty, so there is point f = (x, x̃) ∈ Fs .

Then there exists a local equivalence φ between the two coframes θ and θ̃ with φ(x) = x̃ .

Proof. Note that T(x,x̃)(M × M̃) is canonically equivalent to Tx M × Tx̃ M̃ . We start with the
definition of a distribution V on M × M̃ . The distribution is spanned by all pairs of vectors
(V,W ) in Tx M × Tx̃ M̃ such that V and W have the same trivialization. In formula:

V(x,x̃) = { (V,W ) ∈ T(x,x̃)(M × M̃) | θ
j

x (V ) = θ̃
j

x̃ (W ), 1 ≤ j ≤ n }.

Another description of V is that V is spanned by the vector fields (X j , X̃ j ) in T (M × M̃).
Here X j and X̃ j are the dual frames to θ j and θ̃ j , respectively. From the definition it is clear
that V has rank n.

We claim that at all points (x, x̃) ∈ Fs the distribution V is contained in T(x,x̃)Fs . Let σ
be a structure index of order s or smaller. The condition that Fs = Fs+1 together with the
remarks on page 22 on changing the order of coframe derivatives imply that

LX j Tσ (x) = Tσ, j (x) = T̃σ, j (x̃) = LX̃ j
T̃σ (x̃), (1.20)

for all σ ∈ Is . But this implies that the vector field (T(x,x̃)τ)(X j , X̃ j ) is tangent to the
diagonal1s in Zs . The condition that τs has clean intersection with1s implies that (X j , X̃ j )

is contained in the tangent space to Fs .
Since V is contained in T Fs this defines a rank n distribution on Fs . The commutator of

two vector fields in V is

[(X j , X̃ j ), (Xk, X̃k)] = ([X j , Xk], [X̃ j , X̃k]) = (T i
jk X i , T̃ i

jk X̃ i ). (1.21)

On Fs the values of T (s) and T̃ (s) are equal and therefore the values of T i
jk and T̃ i

jk are equal
as well. Hence

[(X j , X̃ j ), (Xk, X̃k)] = T i
jk(X i , X̃ i ) ⊂ V. (1.22)
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This proves that V is integrable. The definition of V also makes clear that V is transversal to
the projections M × M̃ → M and M × M̃ → M̃ . The integral manifolds V can be found
using the Frobenius theorem. These integral manifolds are precisely the graphs of (local)
equivalences between θ and θ̃ . �

Definition 1.2.55. A coframe θ on M is regular of rank r if for some s ≥ 0 the ranks of T (s)

and T (s+1) are equal to r and constant on M . The smallest integer s for which this condition
holds is called the order of the coframe. A coframe is called fully regular if for all orders
s ≥ 0 the structure map T (s) is regular. 	

If a coframe is regular, then the image of the s-th order structure map is a submanifold of
K(s) and we speak of the classifying manifold.

Example 1.2.56.

• The standard coframe θ1
= dx , θ2

= dy on R2 is a fully regular coframe of rank 0
(and therefore of order 0).

• The coframe θ1
= exp(y)dx , θ2

= dy on R2 has structure equations

dθ1
= −θ1

∧ θ2, dθ2
= 0.

The coframe is fully regular, has rank 0 and has order 0.

• The coframe θ1
= dx + exp(x)dy, θ2

= dy on R2 has structure equations

dθ1
= exp(x)θ1

∧ θ2, dθ2
= 0.

The only non-zero structure function of order 0 is J = T 1
12 = exp(x). To find the rank

and order of the coframe we calculate the structure invariants of order 1.

∂ J
∂θ1 = exp(x),

∂ J
∂θ2 = (exp(x))2.

These structure invariants are functionally dependent on J . The rank of T (1) is 1. The
coframe is fully regular with order 0 and rank 1. �

Definition 1.2.57. A local symmetry of a coframe θ on a manifold M is a local diffeomor-
phism φ : M → M such that φ∗(θ j ) = θ j , j = 1, . . . ,m. 	

For sufficiently regular coframes the symmetry group is a finite-dimensional local Lie
group.

Theorem 1.2.58 (Symmetry group of coframe). If θ is a regular coframe of rank r on an
m-dimensional manifold M, then the symmetry group of θ is a local Lie group of dimension
(m − r).
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Proof. This is Theorem 14.16 in Olver [59]. We give a proof based on Theorem 1.2.54 above.
We adopt the same notation as in the theorem.

Let θ be a coframe on M and let θ̃ be a copy of θ on M̃ = M . The condition that the
coframe is regular implies that for some order s the structure map T (s) is a regular map with
rank r . This means the image of T (s) is a smooth r -dimensional submanifold U of Zs .

Choose a point (x, x̃) ∈ M × M̃ with x = x̃ . Since both T (s) and T̃ (s) have the same
image U we can consider the map η : M × M̃ → U : (x, x̃) 7→ T (s)(x) − T̃ (s)(x̃). The
map η is a smooth submersion and hence locally the inverse image Fs = η−1(0) is a smooth
codimension r submanifold of M × M̃ . The intersection of τs with the diagonal is a clean
intersection. This follows from the fact that Tx T (s)(Tx M) = TuU = Tx̃ T̃ (s)(Tx̃ M̃).

From the definitions it follows that Fs+1 ⊂ Fs . Since by assumption T (s+1) is a regular
map of order r , also Fs+1 as a submanifold of dimension 2n−r and hence Fs = Fs+1. Hence
all the conditions in Theorem 1.2.54 are satisfied. The local equivalences form a group and
correspond to the integral manifolds of the distribution V . Since V is a rank n distribution on
the (2n − r)-dimensional submanifold Fs , the space of integral manifolds is a manifold of
dimension n − r . �

Example 1.2.59. Let θ be a regular coframe of rank zero on an open subset M of R2. Then
either

dθ1
= dθ2

= 0

and the symmetry group is the (local) 2-dimensional translation group of R2, or

dθ1
= αθ1

∧ θ2, dθ2
= βθ1

∧ θ2

with (α, β) 6= (0, 0) and the symmetry group has Lie algebra isomorphic to aff(1), the affine
group.

For example take θ1
= dx , θ2

= dy + ydx . Then dθ1
= 0 and dθ2

= −θ1
∧ θ2. The

infinitesimal symmetries are spanned by ∂x and ∂x + exp(−x)∂y . �

1.2.11 The method of equivalence
In the previous section we have analyzed the equivalence of coframes. Although we could
(in principle) give a complete solution to the problem, there are many problems that cannot
be formulated as an equivalence problem for coframes. Very often a geometric structure can
be formulated in terms of a coframe and a structure group acting on this frame. If this is the
case, then we can apply the method of equivalence to solve the equivalence problem for the
structure. In this section we present an outline of the main steps in the method. The method
was introduced by Cartan, see [19] for example. The method was given a proper formulation
in Gardner [36] and Gardner [37].

Geometric formulation

Example 1.2.60 (Equivalence of Riemannian metrics). Let ds2 and ds̃2 be Riemannian
metrics on the manifolds M and M̃ respectively. First we note that since ds2 and ds̃2 are posi-
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tive definite, symmetric forms, we can introduce local coframes ω1, . . . , ωm and ω̃1, . . . , ω̃m

on M and M̃ such that the metrics are given by

ds2
=

∑
i

(ωi )2, ds̃2
=

∑
i

(ω̃i )2.

The local equivalence of two metrics is then equivalent to the existence of a (local) diffeo-
morphism 8 : M → M̃ such that

8∗(ω̃i ) = gi
j (x)ω

j

for an (m × m)-matrix valued function g that takes values in the orthogonal group O(m). �

Example 1.2.61 (Equivalence of differential equations). Consider a first order ordinary
differential equation defined by

dz
dx

= F(x, z).

On the first order jet bundle of R2 we have coordinates x, y, p and the contact form θ =

dz − pdx . Let M be the hypersurface in the jet bundle defined by the equation p = F(x, z).
We define the two forms

θ1
= dz − Fdx, θ2

= dx .

The form θ1 is the pullback of the contact form θ on J1(R2). Solutions of the differential
equation are in one-to-one correspondence with integral surfaces of θ1. Since the contact
form θ1 can be scaled by arbitrary functions, the structure of our differential equation is
encoded in the coframe θ1, θ2 with structure group

G =

{(
a 0
b c

)
| a, c 6= 0

}
. �

In the two examples above we could describe a geometric structure by specifying a partic-
ular coframe θ on a manifold M and a structure group G. The structure group is assumed to
be a Lie subgroup of GL(n,R). The coframe and the structure group G together determine a
G-structure on M . The set of all coframes obtained from θ by multiplication with an element
in G forms a principal G-bundle in the frame bundle FM .

An equivalence of two geometric structures defined by a coframe θ on M and a coframe θ̃
on M̃ is an equivalence of the corresponding G-structures B and B̃. This is a diffeomorphism
φ : M → M̃ such that

φ∗(θ̃) = gθ, (1.23)

where g is a function valued in the structure group G.
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On B we have the pullback of the soldering form. This pullback is equal to ω = g−1θ .
Every equivalence φ : M → M̃ lifts to a map 8 : B → B̃. Then the condition

φ∗(θ̃) = gθ (1.24)

is equivalent to

8∗(ω̃) = ω. (1.25)

Action on the invariants

Let B be a G-structure with soldering form ω. The structure equations for ω can be written
as

dω = −γ ∧ ω + T (ω ∧ ω).

These structure equations are very similar to the structure equations for linear Pfaffian sys-
tems. The torsion T depends on the structure group and we can normalize some of the torsion
coefficients. If this is possible the structure group reduces to a smaller structure group and
we can write down the reduced structure equations.

The structure group induces an action on the invariants. We can either calculate this ac-
tion directly (the parametric method), or calculate the infinitesimal action using the structure
equations. The calculation of the infinitesimal action using d2ω = 0 is called the intrinsic
method (see Olver [59, pp. 358–361], Brockett et al. [12, pp. 168–170] and Gardner [37]).

Technique of the graph

Let B be a G-structure with structure equations for the soldering form ω given by

dω = −γ ∧ ω + T (ω ∧ ω).

We assume the torsion T is constant. Then we can solve the equivalence problem using the
Cartan-Kähler theorem. Let B̃ → M̃ be a copy of B → M . Every symmetry of G-structures
φ : M → M̃ lifts to a map 8 : B → B̃ that matches the soldering forms on B and B̃. The
graph of such a symmetry is an integral manifold of B × B̃ for the exterior differential system
generated by � = ω − ω̃. The graphs of equivalences all satisfy the independence condition
that ω1

∧ ω2
∧ . . . ∧ ωn

6= 0. The assumption of constant torsion implies that

d� = −γ ∧ ω − γ̃ ∧ ω̃

≡ −(γ − γ̃ ) ∧ ω mod �.

This is a linear Pfaffian system with zero torsion. If the system is in involution, then there exist
integral manifolds by the Cartan-Kähler theorem. The involutivity condition only depends on
the structure of the Lie group G. The involutivity can be checked by calculating the Cartan
characters and the dimension of the first prolongation of the Lie algebra of G.
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Prolongation

To apply the Cartan-Kähler theorem the system needs to be in involution. If the system is
not in involution we can prolong the equivalence problem. For details on this prolongation
(which should not be confused with the prolongation of the exterior differential system itself)
we refer to Olver [59, Chapter 12].

Example 1.2.62 (Conformal geometry). Consider a Riemannian metric on R2 given by
ds2

= (θ1)2 + (θ2)2. We want to analyze the possible equivalences of this metric under
conformal transformations. The group CO(2,R) is the group of matrices of the form g = λS
with S ∈ SO(2,R), λ 6= 0. If we use λ and φ as parameters (φ is the usual angle of rotation
for SO(2,R)), then the left-invariant and right-invariant Maurer-Cartan forms are equal and
are given by

αL = αR =

(
dλ/λ −dφ
dφ dλ/λ

)
.

The structure equations for the lifted coframe ω = g−1θ on B = R2
× CO(2,R) become

dω = −

(
α −β

β α

)
∧ ω,

for certain one-forms α, β. All torsion has been absorbed by a suitable choice of α, β, but
there are still two group parameters. The Cartan characters are s1 = 2 and s2 = 0 and the
dimension of the first Lie algebra prolongation is 2 (see Example 1.2.44). Therefore Cartan’s
test is satisfied and the system is in involution. We conclude that in the analytic setting all
metrics on R2 are conformally equivalent. The symmetry group of a given conformal metric
depends on two functions of one variable. �

Example 1.2.63 (Conservation of flow lines). A coframe θ = (θ1, θ2) determines a frame
on R2 and this determines two vector fields (up to scalar multiples) on R2. The flow lines of
these vector fields give a double foliation of R2. We want to know whether for every pair of
foliations there exists a diffeomorphism mapping one foliation into the other.

Our problem is encoded by our coframe and the group G = GL(1,R)×GL(1,R). Indeed,
the foliation is determined by the span (over C∞(R)) of the vector fields determined by the
coframe and the group G leaves these invariant. We parameterize the group by matrices
diag(a, b), ab 6= 0. A basis for the left-invariant forms is α = a−1da, β = b−1db, the
structure equations for the lifted coframe after absorption of torsion are

dω = −

(
α 0
0 β

)
∧ ω.

At first sight it might appear that s1 = s2 = 1, but by taking different coordinates we see that
s1 = 2 and s2 = 0. The dimension of the first Lie algebra prolongation is 2, Cartan’s test
is satisfied and all analytic double foliations are locally equivalent under analytic diffeomor-
phisms of the plane.
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C2

(0, 0)
C1(s, 0)

(s, t)
(0, t)

Figure 1.3: Construction of canonical coordinates for flow lines

This conclusion is also true in the C∞ setting. At a special point x, y we can parameterize
the curves C1 and C2 passing through this point with parameters s and t , respectively. Then
we map the point (s, t) to the intersection of the flow curve that intersects C1 at s and the
flow curve that intersects C2 at t . See Figure 1.3. This defines a local diffeomorphism that
maps the flow lines to the standard flow lines defined by the coframe dx , dy. �

1.3 Contact transformations
A contact structure on a manifold of dimension (2n+1) is given by the kernel of a maximally
non-degenerate 1-form α. The condition that α is maximally non-degenerate is

(dα)n ∧ α 6= 0.

A maximally non-degenerate 1-form is called a contact form. All contact structures are lo-
cally equivalent. This follows from the proposition below which is a consequence of Theo-
rem 1.2.13.

Proposition 1.3.1. Let α be a contact form. Then there are local coordinates z, x1, . . . , xn ,
p1, . . . , pn such that

α = dz −

n∑
j=1

p j dx j .

The integral manifolds of maximal dimension of a contact structure C are integral manifolds
of dimension n. These maximal integral manifolds are called Legendre submanifolds of C,
see Arnol′d et al. [6, pp. 312–316].
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Example 1.3.2 (First order contact manifold). Let Z be a manifold of dimension n + 1.
Let P be the Grassmannian of n-planes in T Z . Let π be the projection P → Z . The points
in P are denoted as pairs p = (z, E) with z ∈ Z and E ∈ Grn(Tz Z). On P we define a
contact structure C by

Cp = (Tpπ)
−1(E).

The pair (P, C) is called the first order contact manifold of the base manifold Z . If Z =

R2
×R, then the first order jet bundle J(R2,R) is an open subset of P . The contact structures

on J(R2,R) and P are identical. �

Let (P, C) be a contact manifold of dimension 2n + 1. A Legendre fibration [6, p. 313] is
a projection π : P → Z to a manifold Z of dimension n + 1 such that π is a submersion
and the fibers of P → Z are Legendre submanifolds of P . The manifold Z is called the base
manifold of the fibration. The first order contact manifold of a manifold of dimension n + 1
defines a Legendre fibration. Locally every Legendre fibration to a manifold of dimension
n + 1 is equivalent to the first order contact manifold of Rn+1. This is proved in Duistermaat
[24, Proposition 2.12].

1.3.1 Parameterization of infinitesimal contact transformations
Let P be a manifold of dimension 2n + 1 with a contact form α and dual plane field C. A
contact transformation is a diffeomorphism that preserves the contact structure. This implies
that if α is a contact form for the contact structure, then any contact transformation φ satis-
fies φ∗α ≡ 0 mod α. An infinitesimal contact transformation is a vector field X such that
[X, Y ] ⊂ C for all Y ⊂ C. In terms of the contact form α the vector field X is an infinitesimal
contact transformation if LXα = gα for an arbitrary function g. The (infinitesimal) con-
tact transformations are also called (infinitesimal) symmetries of the contact structure. The
1-parameter subgroup of transformations defined by integration of an infinitesimal contact
transformation defines a 1-parameter subgroup of contact transformations.

We will show that the infinitesimal contact transformations of a contact manifold of di-
mension 2n + 1 can be parameterized using one function of 2n + 1 variables. The idea for
the construction below is from Kobayashi [46, Section I.7].

The quotient T P/C is a canonical line bundle over P . Since at all points x ∈ P we have
α(Cx ) = 0 the contact form can be seen as a 1-form on T P/C. There is a unique section s of
T P/C such that α(s) = 1. Now we can define

α̃ = sα ∈ (T P/C)⊗�1(P)

as a 1-form on P with values in T P/C. The form α̃ is independent of the choice of repre-
sentative α. The line bundle T P/C → P with the form α̃ also encodes the contact structure
since ker α̃x = Cx .

The form α̃ defines a map from the vector fields on P to sections of T P/C by X 7→ α̃(X).
We claim that this map is an isomorphism from the infinitesimal automorphisms of the contact
structure to the sections of the line bundle T P/C.
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Proof. Let X be an infinitesimal symmetry for which α̃(X) = 0. Then X must be contained
in C. Since X is a symmetry we must have [X, Y ] ⊂ C for all Y ⊂ C. But the Lie brackets
modulo C are non-degenerate, hence X = 0. This proves the map is injective.

To prove that the map is surjective we let h be a section of T P/C. We take a representative
α of the contact structure and define S to be the unique vector field satisfying

α(S) = 1, S dα = 0.

By multiplying S with a suitable function φ we can arrange that α̃(φS) = h. We want to
construct an infinitesimal automorphism X such that α̃(X) = h. We decompose X as φS+Y ,
with Y ⊂ C. The condition that X is an infinitesimal symmetry is [X, Z ] ≡ 0 mod C for all
Z ∈ C. Hence

[Y, Z ] ≡ Z(φ)S mod C.

Since the Lie brackets are non-degenerate there is a unique element Y ⊂ C such that Z 7→

[Y, Z ] mod C is equal to the linear map C → T M/C : Z 7→ Z(φ)S. �

This implies there is a one-to-one correspondence between the infinitesimal contact symme-
tries and the sections of the canonical bundle T P/C. After a local trivialization of T P/C
these sections are given by a single function of 2n + 1 variables.

Example 1.3.3. Consider the contact structure on P = J1(R2) = R3. We use coordinates x ,
z, p for P . The contact form is given by α = dz − pdx . The dual contact distribution C is
generated by ∂x + p∂z and ∂p. We take S = ∂z as a representative element for the section s
of T P/C. Note that α(S) = 1 and S dα = 0. From the general theory above we know that
for every section φS of T M/C there is a unique infinitesimal symmetry X = φS + Y of C
such that α̃(X) = φS. The vector field Y satisfies (dx ∧dp)(Y, Z)+φ(Z) = 0 for all Z ∈ C.
Using a basis for C we can calculate the vector field Y . We find that

X = φ∂z − φp(∂x + p∂z)+ (φx + pφz)∂p.

The function φ is an arbitrary function of x , z and p.
Take for example φ = −p. Then we find X = ∂x and this integrates to the contact

transformation (x, z, p) 7→ (x + ε, z, p). If we take φ = −(1/2)(p2
+ x2), then we find the

infinitesimal symmetry X = p∂x − x∂p + (1/2)(p2
− x2)∂z , which generates the Legendre

transformation (x, z, p) 7→ (−p, z − xp, x). �

1.3.2 Reeb vector fields and strict contact transformations
In some of the literature a contact structure is given by a contact form α on a manifold of
dimension 2n +1. The difference with our definition is that our contact structure is defined as
the kernel of a contact form and contact forms which are proportional correspond to the same
contact structure. We will distinguish these contact structures from our contact structures
by calling them strict contact structures. From Proposition 1.3.1 it follows that all strict
contact structures on R3 are locally equivalent. The symmetries of a strict contact structure
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on R3 depend on one function of two variables. This can be proved using the Cartan-Kähler
theorem.

Given a contact form α there is a unique vector field R such that

α(R) = 1, R dα = 0. (1.26)

This vector field is called the Reeb vector field for the contact form α.
For every Reeb vector field R we have

LRα = R dα + d(α(R)) = 0 + d(1) = 0.

Hence R is an infinitesimal symmetry of the contact form α and hence an infinitesimal contact
symmetry of the contact structure C. Conversely, let R be an infinitesimal contact symmetry
of the contact structure defined by α that is pointwise not contained in C. Then we can scale
the contact form by a non-zero function such that α(R) = 1. Since R is an infinitesimal
contact symmetry we have LRα = f α for a non-zero function f . On the other hand we have
LRα = R dα = 0 and hence R dα = f α. By taking the interior product with R we find
f = 0. So R is an infinitesimal symmetry of α and an infinitesimal contact symmetry.

Example 1.3.4. For a contact structure on R5 we can always introduce coordinates x , y, z,
p, q such that the contact form is given by α = φ(dz − pdx − qdy), with φ a function of the
coordinates x, y, z, p, q . The Reeb vector field is then given by

R = φ−2((φ + pφp + qφq)∂z + φp∂x + φq∂y + (φx + pφz)∂p + (φy + qφz)∂q). �

1.3.3 Contact transformations and point transformations
Let P be the projectivized cotangent bundle of Z . We assume that Z has dimension n + 1.
We say that the bundle P → Z is the first order contact manifold of Z , since the elements
of P represent the first order contact of n-dimensional submanifolds of Z . The points in
P consist of pairs (z, E) where z ∈ Z and E is an n-dimensional linear subspace of Tz Z .
Every transformation φ : Z → Z lifts to a tansformation 8 on P that preserves the contact
structure. The lift 8 is defined as 8 : P → P : (z, E) 7→ (φ(z), TzφE) and is called the
prolongation of φ.

We consider infinitesimal contact transformations of P and are interested in those trans-
formations that are not prolonged base transformations. Not all contact transformations are
point transformations in local coordinates. For example consider the base manifold Z with
coordinates x, y, z and the first order contact bundle P of Z with coordinates x, y, z, p, q.
The point (x, y, z, p, q) corresponds to the linear subspace of T(x,y,z)Z spanned by the vec-
tors ∂x + p∂z and ∂y+q∂z . The Legendre transformation x̃ = p, ỹ = q, z̃ = z−px−qy, p̃ =

−x, q̃ = −y is not a point transformation. On the other hand the infinitesimal contact trans-
formation defined by the vector field a∂p + b∂q for constants a, b is also not a point transfor-
mation, but after applying the Legendre transformation the vector field becomes a∂x̃ + b∂ỹ
which is the prolongation of an infinitesimal base transformation. We want to know which
infinitesimal contact transformations are point transformations for a suitable choice of base
coordinates.
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Theorem 1.3.5. Let (P, C) be a contact manifold with infinitesimal contact transformation
V . If Vp 6= 0, then in a neighborhood of p ∈ P there exists a projection to a base manifold
Z such that V is the prolongation of an infinitesimal base transformation in Z.

Proof. The case n = 0 is trivial, so we may assume n > 0. At the point p choose a hy-
persurface H in P such that the tangent space of H at p is generic with respect to both C
and V . The contact distribution C restricts on H to a codimension one bundle C̃ = T H ∩ C.
Since the distribution C̃ has rank 2n − 1, corank 1 and is as non-degenerate as possible (this
follows from the maximal non-degeneracy of C), it has 1-dimensional Cauchy characteris-
tics. Locally, the quotient of H under C(C̃) is an (2n − 1)-dimensional contact manifold. In
this contact manifold we can choose a foliation by integral curves. The integral curves lift
to integral surfaces of the distribution C̃ in H . This lifting is done by taking the flow of the
integral curves by the Cauchy characteristics.

We have a hypersurface H that is foliated by integral surfaces. These integral surfaces
are contained in C and hence they define Legendre submanifolds for C. The vector field V
was transversal to T H at p. Hence we can take the flow of H by V . This defines a local
foliation of P by Legendre manifolds. The quotient of P by these Legendre manifolds is
locally well-defined and defines a projection π : P → Z . It is not difficult to check that Z is
a base manifold for the contact manifold P . The vector field V preserves (by definition) the
fibers of this projection and hence V projects to a vector field on Z . �

Corollary 1.3.6. Any infinitesimal first order contact transformation V without a fixed point
can be written in local coordinates as ∂z .

For infinitesimal contact transformations with fixed points, the construction above fails.
In general for these contact transformations there need not exist a choice of coordinates such
that the transformation is a prolonged base transformation. The author is not aware of any
general theory here (such as obstructions to the existence of such coordinates in terms of the
eigenvalues of the vector field), but we can give a counterexample to the previous theorem in
the case of fixed points.

Example 1.3.7 (Legendre vector field). Consider the first order contact manifold of R2 with
coordinates x, z, p and contact form α = dz − pdx . We define the Legendre vector field V
as

V = p∂x − x∂p + (1/2)(p2
− x2)∂z .

Since LV (α) = 0 this vector field generates a 1-parameter family of contact transformations.
Explicit integration yields

x(t) = x0 cos(t)+ y0 sin(t),
p(t) = y0 cos(t)− x0 sin(t),

z(t) = z0 + (1/2)x0 y0 cos(2t)− (1/4)x2
0 sin(2t)+ (1/4)y2

0 sin(2t).

For t = π/2 we find the Legendre transformation x̃ = p, z̃ = z − px, p̃ = −x . Every
foliation that is invariant under the flow of V must have the z-axis as an element of the
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foliation. But the z-axis does not define a Legendre manifold since α does not restrict to zero.
Therefore for any choice of base coordinates, i.e., a choice of foliation of the contact manifold
by Legendre manifolds, the vector field V will not preserve the leaves of the foliation through
the z-axis. We conclude that V cannot be an infinitesimal point transformation. �



Chapter 2

Surfaces in the Grassmannian

In this chapter we study hyperbolic surfaces in the Grassmannian of 2-planes in a 4-dimen-
sional vector space V . This type of surface occurs naturally in the study of partial differential
equations. See the beginning of Section 2.3 for the relation between these surfaces and partial
differential equations. The elliptic surfaces have already been described by McKay [51, 52]
using complex numbers.

For hyperbolic surfaces we will define the equivalent of complex numbers: the hyperbolic
numbers. The hyperbolic numbers form an algebra with properties very similar to the com-
plex numbers and provide a convenient way to organize the calculations. For the compact
hyperbolic surfaces we obtain a topological classification, like the classification for compact
elliptic surfaces described in Gluck and Warner [39]. A compact hyperbolic surface is ei-
ther a torus or a Klein bottle. We also study a special class of hyperbolic surfaces called
the geometrically flat surfaces. We show that, even though the condition for a surface to
be geometrically flat is quite rigid, there exist several different classes of geometrically flat
surfaces.

We conclude the study by giving a calculation of the local invariants of hyperbolic sur-
faces under the action of the general linear transformations of the vector space V . Because
the group acting is finite-dimensional, we can give a complete description of the invariants at
all orders. We also give a geometric construction of the invariants similar to the construction
given in McKay [51, pp. 25–30]. This geometric construction of the invariants will be used
in Section 5.3 to make a connection to the invariants of first order systems.

2.1 Grassmannians

Let V be an n-dimensional vector space. The Grassmannian Grk(V ) is defined as the set of all
k-dimensional linear subspaces of V . The k-dimensional linear subspaces of V are also called
k-planes in V . The group GL(V ) acts transitively on V and this induces a transitive action
on Grk(V ). The stabilizer group of a k-plane L is the group H = { g ∈ GL(V ) | g(L) = L }.
The Grassmannian is a homogeneous space G/H of dimension k(n − k).
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Given an element L ∈ Grk(V ) we can introduce local coordinates for Grk(V ) in the
following way. Select a complementary subspace M such that L ⊕ M = V . Let Gr0

k(V,M)
be the open subset of Grk(V ) of k-planes that have zero intersection with M .

Lemma 2.1.1. The space Lin(L ,M) is diffeomorphic to Gr0
k(V,M) through the map

A ∈ Lin(L ,M) 7→ { x + Ax | x ∈ L } ∈ Grk(V ).

The diffeomorphisms described in the previous lemma for different k-planes L , M pro-
vide coordinate charts for Grk(V ). The coordinate transformations between these charts are
rational maps.

Sometimes we are interested in the oriented k-planes. The stabilizer group H̃ of the
oriented k-planes is smaller than the stabilizer group H of the unoriented k-planes. The
manifold G̃rk(V ) of oriented k-planes is equal to the quotient G/H̃ . Locally Grk(V ) and
G̃rk(V ) are diffeomorphic. The space of oriented k-planes is a 2-fold cover of the space of
unoriented k-planes.

In the case of 2-planes in V = R4 there is another view of the Grassmannian. Every
2-plane can be represented by 2 linearly independent vectors v,w. Such a pair defines an
element v ∧ w of 32(V ). Since 34(V ) ∼= R the map

λ : 32(V ) → 34(V ) : x 7→ x ∧ x

can be viewed as a homogeneous polynomial of degree 2. The elements v∧w that represent a
2-plane all satisfy λ(v∧w) = v∧w∧v∧w = 0. Conversely, if an element x ∈ 32(V )\{ 0 }

satisfies λ(x) = 0, then it can be written as x = v ∧ w for two linearly independent vectors
v,w ∈ V .

Lemma 2.1.2. The Grassmannian of 2-planes in a 4-dimensional vector space V is isomor-
phic to

N = { x ∈ 32(V ) | x 6= 0, λ(x) = x ∧ x = 0 }/R∗
⊂ P(32(V )).

Let Ñ = { x ∈ 32(V ) | x 6= 0, x ∧ x = 0 }. So the non-zero elements of Ñ modulo a
scalar represent 2-planes. For a point x ∈ N the tangent space x + Tx N to N at x is a linear
subspace of 32V . The zero set of λ defines a smooth quadratic hypersurface in P(32(V )).
The description of the Grassmannian as a smooth quadratic in P5 is due to Plücker [60]. The
oriented Grassmannian is isomorphic to the quadratic defined by λ in 32(V )/R+.

2.1.1 Conformal quadratic form
Lemma 2.1.3. Let P be a k-plane in Grk(Rn). Then TP Grk(Rn) is canonically isomorphic
to Lin(P,Rn/P).

Proof. We introduce local coordinates near P by choosing a complementary (n − k)-plane
Q. The linear maps Lin(P, Q) are isomorphic with a neighborhood of P in Grk(Rn). Since
Q was chosen transversal to P , there is a natural isomorphism from Q to Rn/P . The tangent
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space of Lin(P, Q) is just Lin(P, Q) and hence we find an identification of TP Grk(Rn) with
Lin(P,Rn/P), depending on a choice of a transversal plane Q.

We will show that the identification of TP Grk(Rn) with Lin(P,Rn/P) does not depend
on the choice of a transversal plane Q. Let Q′ be another transversal plane. Then Q′ is of
the form { x + Bx | x ∈ Q } for a linear map B : Q → P . This also gives the identification
of Q, Q′ and Rn/P . A tangent vector at P is represented by a curve X (t) in Lin(P, Q) with
X (0) = 0. The elements on the curve are k-planes defined by { z + X (t)z | z ∈ P }. We can
rewrite the curve as

z + X (t)z = (I − B X (t)) z + (X (t)+ B X (t)) z. (2.1)

Note that for small t the map I − B X (t) is a linear isomorphism P → P . For X (t) near
zero we can make a different parameterization with (I − B X (t))z = y. Then the curve is
represented by a map P → Q′ given by

(X (t)+ B X (t))(I − B X (t))−1.

The curve in the Grassmannian is given by y + (X (t)+ B X (t))(I − B X (t))−1 y. Differenti-
ating the both representations gives X ′(t) for the first representation and X ′(t)+ B X ′(t) for
the representation (2.1). But as representative elements for Lin(P,Rn/P) the forms X ′(t)
and X ′(t)+ B X ′(t) are equal, since B X ′(t) ∈ P . �

On the tangent space of the Grassmannian of 2-planes in R4 there is a conformally in-
variant quadratic form. In the case that n = 4 and k = 2, we can identify Lin(P,R4/P)
after a choice of basis in P and R4/P with the space of 2 × 2-matrices. The determinant of
a 2 × 2-matrix defines a quadratic form of signature (2, 2). This gives a quadratic form on
the tangent space of Gr2(R4) that depends on the choice of basis. Modulo a scalar factor this
quadratic form is well-defined and hence we have an invariant conformal quadratic form ξ

on the tangent space. For other introductions to this conformal quadratic form see Akivis and
Goldberg [1, pp. 19–23] or McKay [51, pp. 19–20].

Remark 2.1.4. Another way to define the conformal quadratic form is to use the representa-
tion of the Grassmannian as N ⊂ P(32(V )). The conformal quadratic form λ : µ 7→ µ ∧ µ

defining N is trivial on N , but since N is a not a linear space this map is not trivial on the
tangent space. Write µ(t) = µ0 + tµ̇+O(t2) for a curve in N . Then the conformal quadratic
form on the tangent space is given by ξ : µ̇ 7→ µ̇ ∧ µ̇.

We should warn the reader not the confuse the two forms: λ is a conformal quadratic form
on P(32(V )) that defines the Grassmannian, ξ is a conformal quadratic form on the tangent
space of the Grassmannian. �

The group P GL(4,R) acts on PV and this induces a transformation of Gr2(V ). The
conformal isometries induced from the action of P GL(V ) are given in local coordinates by

A 7→ (c + d A)(a + bA)−1. (2.2)

These transformations are also called Möbius transformations. In the local coordinates given
by 2 × 2-matrices A for the Grassmannian, the conformal quadratic form on the tangent
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space is given by A 7→ det(A). From the form in local coordinates we see that the conformal
structure on the Grassmannian is equivalent to the flat conformal structure on R4.

Lemma 2.1.5. The conformal isometry group of Gr2(V ) is equal to P GL(4,R). The group
P GL+(4,R) of orientation preserving projective linear transformations is the conformal
isometry group of G̃r2(V ).

Proof. Every element of P GL(4,R) induces a transformation of the form (2.2). These trans-
formations are conformal and the action of A ∈ GL(4,R) is non-trivial on the Grassmannian
if and only if A ∈ RI . In Section A.5.4 we proof that every conformal transformation can be
obtained from P GL(4,R). �

A 2-dimensional linear subspace of the tangent space T Gr2(R4) will be called a tangent
2-plane or just a tangent plane. For every tangent 2-plane E the conformal quadratic form on
Gr2(R4) restricts to a conformal quadratic form on E .

Definition 2.1.6. A tangent 2-plane in T Gr2(R4) is called elliptic if the conformal quadratic
form restricts to a positive or negative definite non-degenerate quadratic form. A tangent
2-plane in T Gr2(R4) is called hyperbolic if the conformal quadratic form restricts to a non-
degenerate quadratic form of signature (1, 1). 	

A quadratic form ξ on a vector space W is equivalent to a symmetric bilinear form on W .
Any conformal quadratic form defines an isotropic cone C = {w ∈ W ⊗ C | ξ(w) = 0 }. If
W is 2-dimensional and the conformal quadratic form is non-degenerate, then the isotropic
cone consists of two distinct complex one-dimensional linear subspaces which are called
the characteristic lines of the conformal quadratic form. If the conformal quadratic form is
definite, then the intersection of the isotropic cone with W consists of the origin. If the form
is indefinite, then the intersection of the isotropic cone with W consists of two 1-dimensional
lines in W . We call these lines the characteristic lines as well.

Theorem 2.1.7. The general linear group GL(4,R) acts transitively on the Grassmannian
of 2-planes. At each point in the Grassmannian the stabilizer subgroup of that point acts
transitively on the elliptic tangent planes and also transitively on the hyperbolic tangent
planes.

Proof. Since the Grassmannian was realized as a homogeneous space it is clear that GL(4,R)
acts transitively. The action of the stabilizer group is analyzed in Appendix A.5.3. The orbits
of the elliptic and hyperbolic 2-planes are the only two open orbits in the tangent space to the
Grassmannian. �

2.1.2 Plücker coordinates
We have described the Grassmannian Gr2(V ) as the space of elements q in32(V ) that satisfy
q ∧ q = 0 modulo a scalar factor. In this section we will use the eigenspaces of the Hodge
∗ operator to further explain the structure of the Grassmannian Gr2(V ) and the conformal
quadratic form ξ .
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Let e1, e2, e3, e4 form a basis for V . With respect to the volume form� = e1∧e2∧e3∧e4
we have the Hodge star operator ∗ : 32(V ) → 32(V ). The operator depends on the choice
of basis and the choice of the volume form �, but since the Grassmannian is defined as a
subspace of the projective space P32(V ) the choice of volume form is not essential.

We define

α1 = (1/2)(e1 ∧ e2 + e3 ∧ e4),

α2 = (1/2)(e1 ∧ e3 − e2 ∧ e4),

α3 = (1/2)(e1 ∧ e4 + e2 ∧ e3).

β1 = (1/2)(e1 ∧ e2 − e3 ∧ e4),

β2 = (1/2)(e1 ∧ e3 + e2 ∧ e4),

β3 = (1/2)(e1 ∧ e4 − e2 ∧ e3).

(2.3)

The forms αi , β j satisfy

αi ∧ β j = 0, αi ∧ α j = δi j�, βi ∧ β j = −δi j�.

The eigenspaces of the Hodge operator are E+ = 〈α j
〉, E− = 〈β j

〉 corresponding to the
eigenvalues 1 and -1 of ∗, respectively. We can decompose any η ∈ 32(V ) in terms of these
eigenspaces. Write η = X iαi + Y jβ j . The coefficients X i , Y j can be used to parameter-
ize the Grassmannian and are called Plücker coordinates. The name Plücker coordinates is
misleading because the coefficients do not define real coordinates for Gr2(V ). A pair (X, Y )
only defines an element of the Grassmannian if the Plücker form λ is zero and two elements
that are a scalar multiple of each other define the same element in the Grassmannian.

The conformal quadratic form λ acts on η as

λ(η) = η ∧ η = (X iαi + Y jβ j ) ∧ (X iαi + Y jβ j )

= X i X jαi ∧ α j + Y i Y jβi ∧ β j = |X |
2
− |Y |

2.

Lemma 2.1.8. Let S+ and S− be two copies of the 2-sphere S2
⊂ R3. Then the map

S+
× S−

→ 32(V )/R+
: (X, Y ) 7→ X iα j + Y jβ j

defines a diffeomorphism from S+
× S− to the oriented Grassmannian.

This result is from Gluck and Warner [39]. Since (X, Y ) ∈ S+
× S− satisfies |X |

2
=

|Y |
2

= 1, the image of this map is contained in N . Is is not difficult to see that the map
defines an isomorphism from S+

× S− to N .

2.1.3 Incidence relations
Let V be a vector space of dimension n and let L0 be a point in Grk(V ). We define 6L0 =

{ L ∈ Gr2(V ) | L ∩ L0 6= 0 }. Locally we can describe the set6L0 as the subset of (n−k)×k
matrices which have non-trivial kernel. If we choose a transversal (n − k)-plane M and
use the local coordinates from Lemma 2.1.1, then 6L0 ∩ Gr0

k(V,M) = { A ∈ Lin(L0,M) |

ker A 6= 0 }. If n = 2k, then 6L0 is determined by the k × k-matrices with determinant zero.
This is a hypersurface in the Grassmannian with a conical singularity at the zero matrix.
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We consider the special case n = 2k = 4. Here we have only a singularity at L0 itself.
Consider the map

6L0 \ { L0 } → Gr1(L0) : L 7→ L ∩ L0.

The map is surjective and the fiber above a point l ∈ P1(L0) is equal to Il = { L ∈ Gr2(V ) |

l ⊂ L , L 6= L0 }. The set Il is equal to Gr2(V/ l) minus the point L0, so this is a plane R2.

2.2 Hyperbolic theory

2.2.1 Hyperbolic numbers
Hyperbolic numbers are closely related to complex numbers. In the next chapters we will use
them to write structure equations in a compact way and to organize the calculations.

Definition 2.2.1. On R2 we define a multiplication by(
x1
x2

)
·

(
y1
y2

)
=

(
x1 y1
x2 y2

)
. (2.4)

The set R2 with this multiplication is an algebra D over R, which we call the hyperbolic
numbers. Multiplication of a hyperbolic number with a scalar is given by

R × D → D :

(
λ,

(
x1
x2

))
7→

(
λx1
λx2

)
. 	

A hyperbolic number x for which x1 = x2 is called real hyperbolic. A hyperbolic number
for which x1 = −x2 is called imaginary hyperbolic, or imaginary for short. We write h for
the special number (1,−1)T . We can then write every hyperbolic number x as x = a + h · b,
with a, b ∈ R. The number h has the property h2

= 1 ∈ D.
The algebra D is isomorphic to the ring R[X ]/(X2

− 1) of polynomials in the variable X
modulo the ideal generated by X2

−1. The map a+hb 7→ a+bX is an algebra isomorphism.
The complex numbers are isomorphic to R[X ]/(X2

+ 1). This shows that there is close
relation between D and the complex numbers. The algebra D is also known as the split-
complex numbers, double numbers or countercomplex numbers. See Wikipedia [74] for a
complete list with references.

Definition 2.2.2. Let x = (x1, x2)
T be a hyperbolic number. The flip of x is defined as

x F
=

(
x2
x1

)
. 	

The flip operation is the equivalent of the conjugation on complex numbers. Note that
for all hyperbolic numbers (a + hb)F

= a − hb and (x F )F
= x , so the flip operation is

indeed very similar to the conjugation of complex numbers. The ring of hyperbolic numbers
has zero divisors. For example (1 + h)(1 − h) = 1 − h2

= 0. We will write D∗ for the group
of invertible hyperbolic numbers. We define the square of the norm of a hyperbolic number
by |x |

2
= xx F . The element |x |

2 is real hyperbolic, so we can treat it as a real number. The
value of |x |

2 can be negative, so using the name norm for |a| can be a bit misleading.
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Matrix representation of hyperbolic numbers

In the following it is useful to have several different representations of hyperbolic numbers.
The first one is the representation as elements of R2. In this section we will represent the
hyperbolic numbers as a suitable subgroup of the algebra of 2 × 2-matrices.

We write D for the space of 2 × 2-diagonal matrices. Note that D is a commutative
algebra. With a hyperbolic number x , i.e., a pair of variables x1, x2, we can associate a
diagonal 2 × 2-matrix x = (x1, x2). This defines an isomorphism

D → D :

(
x1

x2

)
7→

(
x1 0
0 x2

)
.

On D we have an involution which maps x to the diagonal matrix x F
= (x2, x1). The

involution is an algebra homomorphism, i.e., for all x, y ∈ D we have (x + y)F
= x F

+ yF

and (xy)F
= x F yF . Define L to be the matrix

L =

(
0 1
1 0

)
. (2.5)

Then the flip operation can also be written in terms of matrix multiplication x F
= Lx L−1.

Functions

The usual operations from algebra and differential geometry can be applied to D-valued func-
tions and differential forms on a manifold M . For example the exterior differential operator
d can be applied to a 1-form ω = (ω1, ω2)T ∈ D ⊗�(M) as

dω =

(
dω1

dω2

)
∈ D ⊗�2(M).

The precise meaning of constructions with elements from D will usually be clear from the
context. If we have a hyperbolic variable z and a function w of z that takes values in D,
then we define ∂w/∂zF

= (∂w1/∂z2, ∂w2/∂z1)T . We say the function w is hyperbolic
holomorphic if ∂w/∂zF

= 0.

2.2.2 Hyperbolic structures
A hyperbolic structure is the analogue of an almost complex structure, see Chern et al. [20,
Chapter 7] or Kobayashi and Nomizu [48, Chapter IX]. Some authors also use the term
(almost) product structure.

Definition 2.2.3 (Hyperbolic structure). Let V be a 2n-dimensional real vector space. A
hyperbolic structure on V is an endomorphism K : V → V such that K 2

= I and the
eigenvalues ±1 of K both occur with geometric multiplicity n. 	

The condition that K 2
= I implies that the eigenspaces V± of K for the eigenvalues ±1

span V . Hence the algebraic multiplicity will always equal the geometric multiplicity.
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Definition 2.2.4 (Alternative definition of hyperbolic structure). Let V be a 2n-dimensio-
nal vector space. A hyperbolic structure on V is a direct sum decomposition V = V+ ⊕ V−

into a positive and negative part with dim V+ = dim V− = n.

Proof. Given a direct sum decomposition of V we can define an endomorphism K : V → V
by requiring K to be the identity on V+ and minus the identity on V−. It is easy to check
that K defines a hyperbolic structure. Conversely, given a hyperbolic structure on V we can
define V± to be the eigenspace corresponding to the eigenvalue ±1. �

If V is a vector space with hyperbolic structure K , then we can multiply the vectors in V
by hyperbolic numbers. For x = a +hb a hyperbolic number and Y ∈ V we define the scalar
multiplication by

D × V → V : (x, Y ) 7→ aY + bK Y.

This turns V into a module over D.
For a vector X we denote by X+ + X− the decomposition of X into eigenvectors for the

hyperbolic structure. We say a vector is generic with respect to the hyperbolic structure if
X+ 6= 0 and X− 6= 0. Another equivalent definition of a generic vector is that the vectors X
and K X are linearly independent in V .

Example 2.2.5 (Involutions). Let V = R4 and consider the following three linear maps

K1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , K2 =


1 1 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

K3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
All maps K1, K2, K3 have eigenvalues ±1, but only K3 defines a hyperbolic structure. The
matrix K1 does not have the proper multiplicities for the eigenvalues and K2 has a nilpotent
part so that (K2)

2
6= I . �

Example 2.2.6 (Standard hyperbolic structure). Let V = R2n . The standard hyperbolic
structure on V is given by the diagonal matrix K with entries Ki i = (−1)i+1. The standard
hyperbolic structure on R2 is given by

K0 =

(
1 0
0 −1

)
. �
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Remark 2.2.7. A hyperbolic structure on an even dimensional vector space does not deter-
mine an orientation. This is in contrast with a complex structure that does determine an
orientation. Consider for example the standard hyperbolic structure on R4 given by

K0 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .
The linear map given by the diagonal matrix A = (1,−1, 1, 1) preserves the hyperbolic
structure, i.e., AK = K A, but is orientation reversing. �

2.2.3 Almost product manifolds
An almost product structure K on a manifold M is a hyperbolic structure on the tangent
space at every point of the manifold. The pair (M, K ) is called an almost product manifold
or hyperbolic manifold. For all points x in M the almost product structure K gives Tx M
the structure of a D-module. Given an almost product manifold M with hyperbolic structure
K : T M → T M we can define the hyperbolic Nijenhuis tensor.

Definition 2.2.8. Let (M, K ) be an almost product structure. The map

N = [K , K ] : T M ×M T M → T M

(X, Y ) 7→ [K X, K Y ] − K [K X, Y ]

− K [X, K Y ] + K 2
[X, Y ].

(2.6)
	

is a tensor. We call this tensor the (hyperbolic) Nijenhuis tensor.

The Nijenhuis tensor is defined for general endomorphisms K : T M → T M . See
Kobayashi and Nomizu [48, p. 123]. The cases K 2

= 1 and K 2
= −1 are the most interest-

ing.
Just like the Nijenhuis tensor for almost complex structures, the hyperbolic Nijenhuis

tensor is anti-symmetric. It also is hyperbolic anti-linear in both variables, i.e., for X, Y ∈

T M and a, b ∈ D we have

N (aX, bY ) = aF bF N (X, Y ).

The vanishing of the Nijenhuis tensor in the hyperbolic case is equivalent to a (local)
direct product structure of the bundle, in the smooth category. Suppose that the hyperbolic
structure on a manifold M is given by K : T M → T M . Since K is a hyperbolic structure
we know that K 2

= I and the multiplicity of the eigenvalues +1 and −1 is the same.
Let the distribution F be given by all vectors of the form X + K X and the distribution G

by the vectors of the form Y + K Y . So F corresponds to the eigenspace of K for eigenvalue
1 and G to the eigenspace of K for eigenvalue −1. Then the algebraic properties of K imply
that F and G are smooth vector subbundles of constant rank. We prove that F is integrable.
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Let X ′
= (X + K X) ⊂ F and Y ′

= (Y + K Y ) ⊂ F be two arbitrary vector fields in the
bundle F . The Lie bracket of X and Y is given by

Z = [X + K X, Y + K Y ] = [X, Y ] + [X, K Y ] + [K X, Y ] + [K X, K Y ].

The condition that Z ⊂ F is given by

0 = Z − K Z = [X, Y ] + [X, K Y ] + [K X, Y ] + [K X, K Y ]

− K ([X, Y ] + [X, K Y ] + [K X, Y ] + [K X, K Y ])

= [K X, K Y ] − K [X, K Y ] − K [K X, Y ] + [X, Y ]

− K ([K X, K Y ] − K [X, K Y ] − K [K X, Y ] + [X, Y ])

= N (X, Y ).

The vanishing of the Nijenhuis tensor is equivalent to both F and G being integrable. If both
F and G are integrable, then this defines a decomposition of M into a direct product manifold
with F and G equal to the tangent spaces of the components. If an almost product manifold
has vanishing Nijenhuis tensor we say the structure is integrable and the manifold is a direct
product manifold.

Example 2.2.9 (Surfaces with an almost product structure). Consider a manifold of
dimension two with an almost product structure. The almost product structure defines two
rank one distributions on the surface. The integral curves of these distributions are called the
characteristic curves for the surface. Since the Nijenhuis tensor is anti-symmetric it must
vanish and hence the surface is (locally) a direct product manifold. The tangent spaces of the
components are the eigenspaces of the almost product structure K . The tangent spaces are
also equal to the distributions mentioned above. Just as complex surfaces, the surfaces with an
almost product structure have no local invariants. Locally all these surfaces are equivalent.�

Let M be an almost product manifold with hyperbolic structure K : T M → T M . Recall
that h ∈ D is the hyperbolic number (1,−1)T . A hyperbolic holomorphic function on M is
a D-valued function f on M that satisfies h B (d f ) = (d f ) B K . A surface in M is called
a hyperbolic pseudoholomorphic curve if the tangent space to the surface is K -invariant and
the eigenspaces of K have non-zero intersection with the tangent space to the surface. The
notions of a hyperbolic holomorphic function and a hyperbolic pseudoholomorphic curve are
the equivalents to holomorphic functions and pseudoholomorphic curves for almost complex
structures.

2.2.4 Hyperbolic groups
The reader probably is already familiar with the fact that the complex groups GL(n,C) can
be embedded in GL(2n,R). We will show that in the same way we can embed the hyperbolic
groups GL(n,D) into the general linear group GL(2n,R). The D-linear endomorphisms
Lin(Dn,Dn) from Dn to Dn can be identified with the n × n-matrices with entries in D. The
maps that are invertible are the D-linear automorphisms, which we denote by GL(n,D). The
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group GL(n,D) is the set of elements x ∈ Lin(Dn,Dn) that are invertible. The invertible
elements x are precisely the elements which have an invertible determinant.

To each hyperbolic number we can associate a 2 × 2-matrix, see Section 2.2.1. For every
element x in Lin(Dn,Dn) we can define an element of Lin(R2n,R2n) by replacing the entries
of x by the corresponding 2×2-matrices. This gives an embedding of GL(n,D) in GL(2n,R).

Example 2.2.10. Let x ∈ Lin(D2,D2) be given by
(

a1
b1

) (
a2
b2

)
(

a3
b3

) (
a4
b4

)
 .

This element is mapped to the 4 × 4-matrix
a1 0 a2 0
0 b1 0 b2
a3 0 a4 0
0 b3 0 b4

 ∈ Lin(R4,R4). �

Decomposition

Let V be R2n with the standard hyperbolic structure K , see Example 2.2.6. There is a unique
decomposition of elements Ã ∈ LinK (V, V ) into a K -linear and K -antilinear part. We can
write any 2n × 2n matrix as Ã = A′

+ B with

A′
= ( Ã + K ÃK )/2, B = ( Ã − K ÃK )/2.

Note that K A′
= A′K and K B = −BK . The decomposition of Ã into A′ and B can be

compared to the decomposition of a matrix into its complex-linear and complex-antilinear
part.

For any L ∈ GL(V ) for which L2
= I and K L = −L K the map X 7→ X L is an

isomorphism from the K -linear matrices to the K -antilinear matrices. This allows us to
identify the K -linear and K -antilinear matrices. In the case n = 2 we take L to be the matrix
given in (2.5). We can write any 2n × 2n matrix as Ã = A′

+ A′′L with

A′
= ( Ã + K ÃK )/2, A′′

= BL = (( Ã − K ÃK )/2)L .

The matrix A′ is called the hyperbolic part of Ã and A′′L = ( Ã − K ÃK )/2 is called the
anti-hyperbolic part of Ã (with respect to K ). By abuse of language we will also call A′′

the anti-hyperbolic part of Ã. The elements A′ and A′′ can be regarded as elements from
Lin(Dn,Dn) through the identification described in the previous section.

Example 2.2.11. Let

Ã =

(
a b
c d

)
∈ Lin(R2,R2).
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Then for the standard hyperbolic structure we have

A′
=

(
a 0
0 d

)
, A′′

=

(
0 b
c 0

)
L =

(
b 0
0 c

)
.

A vector x = (x1, x2)T multiplied by the 2 × 2-matrix Ã can be written as

Ãx = A′x + A′′x F
=

(
ax1 + bx2
dx2 + cx1

)
. �

2.3 Microlocal analysis
Let S be a surface in the Grassmannian. The conformal quadratic form on the tangent space
of the Grassmannian restricts to a quadratic form on the tangent space of S. For generic
tangent spaces the form is non-degenerate and is either definite or indefinite. If the conformal
quadratic form is definite this defines an almost complex structure on the surface and if the
form is indefinite this defines an almost product structure on the surface. The surfaces with
an almost complex structure or almost product structure are always integrable and have no
local invariants. So studying the surfaces itself is not very interesting.

However the surfaces are embedded in the Grassmannian and it is very interesting to study
the surfaces in the Grassmannian under the conformal isometry group of the Grassmannian.
We call the analysis of the surfaces in the Grassmannian under the conformal isometry group
of the Grassmannian the microlocal analysis. The reason for this is that we will see in the fol-
lowing chapters that first order systems and second order equations naturally define surfaces
in the Grassmannian Gr2(R4). For example a first order system is defined by a codimension
2 surface in Gr2(T B) for a 4-dimensional base manifold B. In the fiber above Gr2(Tb B) each
point b ∈ B the equation defines a surface. Moreover, the base transformations that leave a
point b invariant act on Gr2(Tb B) by conformal isometries. Here we write down the theory
of surfaces to which the conformal quadratic form restricts to an indefinite quadratic form
(the hyperbolic case). The elliptic case was already done by McKay in [51, Chapter 4]. By
doing the hyperbolic case we can verify the results of McKay, and find differences between
the elliptic and hyperbolic cases.

2.3.1 Hyperbolic surfaces in the Grassmannian
Let S be a surface in Gr2(R4). At each point s ∈ S the tangent space Ts S has dimension two
and the conformal quadratic form restricts to a conformal quadratic form on Ts S. We call the
point s elliptic if the quadratic form is positive or negative definite and hyperbolic if the form
is non-degenerate indefinite. A surface for which all points are elliptic or hyperbolic is called
an elliptic surface or hyperbolic surface, respectively.

Remark 2.3.1. In the literature the name hyperbolic surface is used for surfaces of constant
negative curvature. The hyperbolic surfaces we introduce only have a conformal quadratic
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structure, so we cannot speak of the curvature of the surface. Another name for our sur-
faces would be conformal Lorentz surface. An introduction to Lorentz surfaces is given in
Weinstein [72]. �

For a hyperbolic surface the conformal quadratic form restricts on the tangent space of
the surface to a non-degenerate conformal quadratic form of signature (1, 1). The kernel of
the quadratic form is given by two lines in the tangent space. The vectors in the two lines
are called the characteristic vectors. Since these characteristic vectors depend smoothly on
the point of the surface, the characteristic vectors locally define a pair of transversal rank one
distributions. The integral curves of these distributions are called the characteristic curves.

Local coordinates

Let L0 be the plane in Gr2(R4) spanned by the two vectors (1, 0, 0, 0)T and (0, 1, 0, 0)T .
The elements in 6L0 (except for L0 itself) are all of the form

R

cosα
sinα

0

+ R


−ρ sinα
ρ cosα
cosβ
sinβ

 ,
with α, β, ρ arbitrary. We choose M = R(0, 0, 1, 0)T + R(0, 0, 0, 1)T as a 2-plane that is
transversal to L0. We identify the open subset Gr0

2(V,M) with the space of all 2×2-matrices
using the correspondence

(
a b
c d

)
7→ R


1
0
a
c

+ R


0
1
b
d

 .
With this correspondence we have

L0 =

(
0 0
0 0

)
, 6L0 ∩ Gr0

2(V,M) = {

(
a b
c d

)
| ad − bc = 0 }.

The tangent space at a point L in the Grassmannian is given in these local coordinates by the
space of 2 × 2-matrices as well. The conformal quadratic form ξ on T Gr2(R4) is given in
these local coordinates at a point L by the determinant

ξL : TL Gr2(R4) → R :

(
A B
C D

)
7→ AD − BC.

If we describe a hyperbolic surface in local coordinates we will often use the coordinates
introduced above. The general hyperbolic surface can be written in parametric form as(

p(a, b) q(a, b)
r(a, b) s(a, b)

)
. (2.7)
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Since the group GL(V ) acts transitively on the hyperbolic 2-planes in the tangent space, we
can always find a local parameterization of the form(

a q(a, b)
r(a, b) b

)
.

Another natural choice of local coordinates is a reparameterization of a, b such that the char-
acteristic curves are given by the lines a = constant and b = constant.

Theorem 2.3.2. Any hyperbolic surface in G̃r2(R4) ∼= S+
× S− can locally be written as

the image of φ : R × R → S+
× S−

: (x, y) 7→ (s, t) such that ∂s/∂x 6= 0 and ∂t/∂y 6= 0.

Proof. This follows from the description of the isomorphism between in Gr2(V ) and S+
×S−

in Section 2.1.2 and an analysis of the condition of hyperbolicity similar to the analysis in
McKay [51, p. 20]. �

Hyperbolic tori

Every hyperbolic structure on a 4-dimensional vector space determines a hyperbolic surface.
Let V be a vector space and K a hyperbolic structure on V . Then we define the hyperbolic
torus as the set of all 2-planes that are K -invariant and satisfy the non-degeneracy condition
that K restricted to the 2-plane is not equal to ±I . We write Gr2(V, K ) for the hyperbolic
torus associated to K . The elements of Gr2(V, K ) are called hyperbolic lines. This definition
can be compared to the definition of the complex lines for a complex structure in McKay
[51, p. 14]. The space of 2-dimensional complex-linear subspaces for a complex structure J
on V will be written as Gr2(V, J ). The hyperbolic torus defined by a hyperbolic structure
is topologically indeed a torus. If we let V± ⊂ V be the eigenspaces of the hyperbolic
structure K , then Gr1(V+) × Gr1(V−) → Gr2(V ) : (l1, l2) 7→ l1 + l2 is an isomorphism
Gr1(V+)× Gr1(V−) → Gr2(V, K ).

Example 2.3.3 (continuation of Example 2.2.6). The hyperbolic lines for the standard hy-
perbolic structure are given by a torus Gr2(R4, K ) in the Grassmannian Gr2(R4). The hyper-
bolic lines can be parameterized using φ, θ as

R


cos θ

0
sin θ

0

+ R


0

cosφ
0

sinφ

 .
Such a plane can also be represented by the bi-vector

q = (cos(θ)e1 + sin(θ)e3) ∧ (cos(φ)e2 + sin(φ)e4)

= cos(θ) cos(φ)e1 ∧ e2 + cos(θ) sin(φ)e1 ∧ e4

− sin(θ) cos(φ)e2 ∧ e3 + sin(θ) sin(φ)e3 ∧ e4 ∈ 32(R4).
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The Plücker coordinates from Section 2.1.2 are equal to

X1 = cos(θ) cos(φ)+ sin(θ) sin(φ) = cos(θ − φ),

Y1 = cos(θ) cos(φ)− sin(θ) sin(φ) = cos(θ + φ),

X2 = 0, Y2 = 0,
X3 = cos(θ) sin(φ)− sin(θ) cos(φ) = sin(φ − θ),

Y3 = cos(θ) sin(φ)+ sin(θ) cos(φ) = sin(θ + φ). �

Intersection curves

In this section we will analyze the intersection of a hyperbolic surface with the set 6L0 for
L0 a point on the hyperbolic surface.

Let S be a hyperbolic surface and L0 a point on S. The manifold6L0 has dimension three
and has a singularity at L0. We want to prove that locally the intersection of S and 6L0 looks
like two lines intersecting transversally at L0. First we introduce local coordinates around
the point L0 in the Grassmannian. The surface S is then given as a two-dimensional surface
in the space of 2 × 2-matrices and the point L0 corresponds to the zero matrix. Since the
general linear group acts transitively on the hyperbolic tangent planes, we can arrange by a
coordinate transformation that the tangent space to S is spanned at the point L0 by the two
tangent vectors

X1 =

(
1 0
0 0

)
, X2 =

(
0 0
0 1

)
.

In these coordinates we can parameterize the surface S using two coordinates a, b as

σ : U ⊂ R2
→ S : (a, b) 7→

(
a φ(a, b)

ψ(a, b) b

)
,

with φ and ψ functions that vanish up to first order in a, b.
The manifold 6L0 is given by the 2-planes that have non-trivial intersection with L0.

These planes are precisely the planes for which the 2×2-matrix in local coordinates has zero
determinant. Then S ∩ 6x0 is given by the condition ab − φ(a, b)ψ(a, b) = 0. But the
product φ(a, b)ψ(a, b) is of order 4 in a and b, hence by the Morse lemma (Lemma A.4.3)
this set looks locally like the zero set of ab which is a cross at the origin. We call the two
curves the intersection curves of the surface S through the point L0.

Example 2.3.4. Let K be the standard hyperbolic structure on R4, see Example 2.2.6. Let
S = Gr2(R4, K ) be the surface of hyperbolic lines in R4 for this hyperbolic structure. The
elements of S can be represented by pairs of vectors

cosφ
0

sinφ
0

 ,


0
cosψ

0
sinψ

 .
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In the local coordinates introduced above we have

S ∩ Gr0
2(V,M) = {

(
a 0
0 d

)
| a, d ∈ R }.

The intersection of S and 6L0 is easy to calculate and is given by

S ∩6L0 ∩ Gr0
2(V,M) = {

(
a 0
0 d

)
| ad = 0 }

= {

(
a 0
0 0

)
| a ∈ R } ∪ {

(
0 0
0 d

)
| d ∈ R }.

So the intersection of 6L0 with S looks like a pair of lines intersecting at L0.
The induced conformal quadratic form on the tangent space to S is given by AD. It is

clear from this that the characteristic curves on S are spanned by the tangent vectors(
1 0
0 0

)
and

(
0 0
0 1

)
.

For every point L on the surface the characteristic curves through L are equal to the intersec-
tion curves through L defined by 6L ∩ S. �

We have proved that for a general hyperbolic surface S and point L0 on this surface
the intersection 6L0 ∩ S looks locally like two curves intersecting transversally at L0. We
can compare this pair of curves with the characteristic curves through the same point L0
and this might provide us with some invariants. It can also happen that the characteristic
curves through L0 and the curves determined by 6L0 ∩ S are identical (see Example 2.3.4
above). In the local coordinates introduced before, the points L in 6L0 are determined by the
condition det(L − L0) = 0. The tangent space at every point is also represented by the space
of 2 × 2-matrices. The conformal quadratic form on the tangent space is also given by the
determinant det. This shows that the characteristic vectors are those vectors in the tangent
space for which det = 0. It is then clear that the tangent vectors to the characteristic curves
and the intersection curves 6L ∩ S are equal at every point L on the surface.

What happens outside the point L? The set 6L is still determined by the condition
det L = 0. The two examples below make clear that the intersection curves and charac-
teristic curves through a point do not necessarily agree. At the point itself the curves agree
up to first order, but outside the point they might diverge.

Example 2.3.5. Take the same local coordinates as in the previous example, but take S given
by matrices of the form (

a 0
φ(a, b) b

)
.

The characteristic curves are given by the lines a = constant and b = constant. For every
point (a, b) the union of the intersection curves through this point is equal to the set of points
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(ã, b̃) that satisfy

det
((

ã 0
φ(ã, b̃) b̃

)
−

(
a 0

φ(a, b) b

))
= (ã − a)(b̃ − b) = 0.

The points that satisfy this condition are precisely given by the union of the two lines ã = a
and b̃ = b. So for this example the characteristic curves through the point (a, b) and the
intersection curves through (a, b) are identical. �

Example 2.3.6. We consider the surface defined in local coordinates for the Grassmannian
by the matrices (

a a2

a2 b

)
.

The intersection curves through the origin follow from the equation

det
(

a a2

a2 b

)
= ab − a4

= a(b − a3) = 0.

Here we can explicitly factorize the equation and this gives the intersection curves a = 0 and
b = a3. The characteristic vectors at a point a, b are(

1 2a
2a 4a2

)
and

(
0 0
0 1

)
.

We can integrate these two vector fields to give the characteristic curves. Integrating the
first vector field yields the characteristic curves (a(t), b(t)) = (a0 + t, b0 + (4/3)((a0 +

t)3 − (a0)
3)). Integration of the second vector field gives (a(t), b(t)) = (a0, b0 + t). We

immediately see that the intersection curves a = constant overlap with the characteristic
curves, but the other intersection curves do not overlap with the characteristic curves. �

Compact hyperbolic surfaces

The condition that a surface in the Grassmannian is hyperbolic implies that at each point of
the surface there are two characteristic lines in the tangent space. Locally, we can always
choose a basis of the tangent space consisting of two non-zero vector fields tangent to these
characteristic lines. We can locally make the choice of such a basis unique by choosing a
metric on the surface, an order for the two characteristic lines (so we label one of the charac-
teristics as the first and the other as the second characteristic line) and a positive direction for
each of the characteristic lines

We can also choose a global metric for the surface (for example the metric induced from
the diffeomorphism with S+

× S−), but it is not always possible to make a global choice of
order of the characteristics and directions. We can always pass to a cover of the surface on
which the basis of vector fields is globally defined. We need at most a 8 : 1 cover for this.
First a 2 : 1 cover for the ordering of the characteristic lined and then two times a 2 : 1 cover
for the direction of each of the characteristic lines.
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Next consider the case of a compact hyperbolic surface. The covering surface is also
compact and it is orientable. The covering surface has a trivial tangent space and this implies
the surface has Euler characteristic zero; topologically the surface is a torus. The zero Euler
characteristic is invariant under the cover map and hence the original surface is a compact
surface with Euler characteristic zero and must be either a torus or a Klein bottle. The original
surface is a torus if it is orientable and a Klein bottle if the surface is non-orientable. There
exist explicit examples of compact surfaces in both the oriented and unoriented Grassmannian
that are diffeomorphic to a Klein bottle, see the examples below. The hyperbolic torus defined
by a hyperbolic structure is a compact hyperbolic surface that is homeomorphic to a torus.

Gluck and Warner [39] proved that every connected compact elliptic surface in the ori-
ented Grassmannian can be deformed through elliptic surfaces to a Riemann sphere given by
the complex lines for a complex structure on V . Also see the remarks in McKay [51, pp.
17, 23] on the relation between compact elliptic surfaces and fibrations of S3

⊂ R4 by great
circles. For the hyperbolic surfaces the situation is not that simple. A compact hyperbolic
surface can be topologically a torus or Klein bottle and these different types of surfaces can
never be deformed into each other.

But even two compact hyperbolic surfaces that are both topologically a torus cannot al-
ways be deformed into each other. The oriented and unoriented Grassmannian are both con-
nected but the oriented Grassmannian (which is the product of two spheres) is simply con-
nected and hence the first fundamental group is trivial. The unoriented Grassmannian has
fundamental group π1(Gr2(V )) ' Z/2Z. There exist compact hyperbolic surfaces in the un-
oriented Grassmannian for which one of the generators of the fundamental group of the torus
defines a non-trivial element in the fundamental group of the unoriented Grassmannian, but
also compact hyperbolic surfaces for which the generators are all trivial in the fundamental
group of the unoriented Grassmannian. Examples of both types are given in Example 2.3.10.
The different types can not be deformed into each other.

If there are no topological obstructions against deformations (for example for the surfaces
in the oriented Grassmannian), then it is not known whether it is possible to deform two
surfaces into each other or not.

Example 2.3.7. We consider the oriented Grassmannian G̃r2 as the product of two spheres
S+

× S−. A family of immersed compact surfaces in the Grassmannian is given by

8 : (s, t) 7→

cos(s)
0

sin(s)

×

 cos(t)
sin(αs) sin(t)
cos(αs) sin(t)

 .
The tangent space at a point of the surface is spanned by the two vectors

8s =
∂8

∂s
=

− sin(s)
0

cos(s)

×

 0
(α) cos(αs) sin(t)
−α sin(αs) sin(t)

 ,
8t =

∂8

∂t
=

0
0
0

×

 − sin(t)
sin(αs) cos(t)
cos(αs) cos(t)

 .
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Solving the characteristic equation ξ(a8s + b8t ) = 0, where ξ is the conformal quadratic
from on the tangent space of the Grassmannian, yields

a = ±
b√

1 − α2 + α2 cos2(s)
.

For |α| < 1 the surface has two distinct real characteristics at each point and hence the surface
is hyperbolic.

For α = 0 we have an embedded torus. The standard torus T = R/(2πZ)× R/(2πZ) is
embedded as two great circles; the explicit parameterization is given by

T → S+
× S−

: (s, t) 7→

cos(s)
0

sin(s)

 ,
cos(t)

0
sin(t)

 .
For α = 1/2 the surface is a globally defined and compact surface K ; topologically the
surface is a Klein bottle. A 2 : 1 cover of the torus T̃ = R/(4πZ) × R/(2πZ) to the Klein
bottle K ⊂ S+

× S− is

T̃ → S+
× S−

: (s, t) 7→

cos(s)
0

sin(s)

 ,
 cos(t)

sin(s/2) sin(t)
cos(s/2) sin(t)

 . �

Example 2.3.8. We consider the oriented Grassmannian G̃r2(V ) as the product S+
× S− of

two spheres. The unoriented Grassmannian Gr2(V ) is isomorphic to the quotient of S+
× S−

by the involution (x, y) 7→ (−x,−y). Let T be the torus R/(2πZ) × R/(2πZ) and define
the immersion

8 : T → S+
× S−

: (s, t) 7→


√

1 − z2 cos(2s)
√

1 − z2 sin(2s)
z

 ,
 cos(t)

cos(s) sin(t)
sin(s) sin(t)

 , �

with 0 < z < (1/2)
√

3 a constant. The image of 8 is a Klein bottle in the oriented Grass-
mannian. The map 8 is a 2-fold over of this Klein bottle. The projection to the unoriented
Grassmannian gives an embedding of the Klein bottle in the unoriented Grassmannian.

Example 2.3.9. Let γ : R/2πZ → S+ be an embedding of the circle into the 2-sphere with
the properties γ (s + π) = −γ (s) for all s and |γ ′(s)| > 1 for all s. Such embeddings are
easy to construct by taking deformations of great circles and then reparameterizing by arc
length. We define T = R/2πZ × R/2πZ and 8 : T → G̃r2(V ) by

8(s, t) =

(
γ (s), (cos s cos t, sin s cos t, sin t)T

)
.
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Then

a
∂8

∂s
+ b

∂8

∂t
=

aγ ′(s),

−a sin s cos t − b cos s sin t
a cos s cos t − b sin s sin t

b cos t

 .
The square of the length of the first vector minus the square of the length of the second vector
equals a2

|γ ′(s)|2 −(a2 cos2(t)+b2) = a2(|γ ′(s)|2 −cos2(t))−b2. This is an indefinite non-
degenerate quadratic form in a, b at all points. Hence the surface defined by8 is a hyperbolic
surface. The image of the torus T is a torus in the oriented Grassmannian. The projection
of G̃r2(V ) to Gr2(V ) induces a 2 : 1 cover of the torus over a Klein bottle in the unoriented
Grassmannian. �

Example 2.3.10 (Compact hyperbolic surfaces and the fundamental group). Let T be
the torus R/(2πZ) × R/(2πZ) and let z be a constant with 0 < z < 1/2. We define two
compact hyperbolic surfaces in Gr2(V ) = (S+

× S−)/(−I,−I ) by

81
: T → Gr2(V ) : (s, t) 7→


√

1 − z2 cos(s)
√

1 − z2 sin(s)
z

 ,
cos(t)

sin(t)
0

 ,
82

: T → Gr2(V ) : (s, t) 7→

cos(s/2)
sin(s/2)

0

 ,
cos(t)

sin(t)
0

 .
Both maps 81,82 are embeddings of the torus T into the unoriented Grassmannian.

Let γ be the curve in T defined by s 7→ (s, 0). Then γ defines a non-trivial element [γ ]

in the fundamental group of T . The embedding 8 j induces a homomorphism 8
j
∗ from the

fundamental group π1(T ) to π1(Gr2(V )). The image (81)∗([γ ]) is trivial in π1(Gr2(V )), the
image (82)∗([γ ]) is non-trivial in π1(Gr2(V )). �

2.3.2 Geometrically flat surfaces

We define a hyperbolic surface to be geometrically flat if the characteristic curves and the
intersection curves are identical. From Example 2.3.4 it is clear the the hyperbolic tori are
geometrically flat. The converse is not true. For example the surfaces parameterized in Ex-
ample 2.3.5 are all geometrically flat. But these surfaces depend on the arbitrary function
φ(a, b). The hyperbolic structures are parameterized by 8 coordinates, they are isomorphic
to GL(4,R)/GL(2,D). The condition that a point is in the hyperbolic torus for a hyperbolic
structure imposes two restrictions. The hyperbolic tori through a given point of the Grassman-
nian depend on 6 coordinates. So not all these surfaces can be hyperbolic tori and this proves
the class of all geometrically flat surfaces is much larger then the class of all hyperbolic tori.

To analyze the structure of geometrically flat surfaces we start with en elementary lemma.
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Lemma 2.3.11. Let V = R4 and let L1, L2, L3 be 2-dimensional linear subspaces such that
dim L1 ∩ L2 = dim L1 ∩ L3 = dim L2 ∩ L3 = 1. Then the L j are all contained in a 3-
dimensional linear subspace L = L1 + L2 + L3 or the three subspaces have a 1-dimensional
linear subspace l = L1∩L2∩L3 in common. It is also possible that L1, L2, L3 are contained
in a 3-dimensional subspace and have a 1-dimensional line in common.

Proof. Assume that L1 ∩ L2 ∩ L3 = { 0 }, so the subspaces have no line in common. Pick
vectors e1, e2, e3 in V such that L1 ∩ L2 = Re1, L1 ∩ L3 = Re2 and L2 ∩ L3 = Re3.
We cannot have Re1 = Re2 since this would imply that Re1 ⊂ L1 ∩ L2 ∩ L3. Hence
L1 = Re1 + Re2. Since { 0 } = L1 ∩ L2 ∩ L3 = L1 ∩ Re3 we see that e3 is not in the span
of e1, e2. Hence the vectors e1, e2, e3 are linearly independent. From the construction of e1,
e2, e3 it is clear that L1 + L2 + L3 = Re1 + Re2 + Re3 and that dim(L1 + L2 + L3) = 3.�

Let S be a geometrically flat surface in Gr2(V ). Let L1, L2, L3 be three different points on
the same characteristic curve γ . Since the surface is geometrically flat, one of the intersection
curves through the point L1 must be identical to the characteristic curve γ . Therefore both
L2 and L3 must have non-zero intersection with L1 and for the same reason L2 and L3 must
have non-zero intersection. Recall that the points Lk are elements of the Grassmannian and
hence 2-dimensional linear subspaces of V . Because the points L1, L2 and L3 are different
points, the intersections must be 1-dimensional and we can apply Lemma 2.3.11. This leads
to the conclusion that there are three types of characteristic curves γ on a geometrically flat
surface.

1) All points L on γ have a line l1 in common and are contained in a three-dimensional
subspace l3.

2) All points L on γ have a line l1 in common. The points L are not contained in a
subspace of dimension three.

3) All points L on γ are contained in a three-dimensional subspace l3. The points on γ
do not have a line in common.

We say a characteristic curve is of type (2′) if the characteristic curve is either of type (1) or
of type (2). We say a characteristic curve is of type (3′) if the characteristic curve is either of
type (1) or of type (3). For a hyperbolic surface the type of the characteristic curves does not
need to be constant. An example of such a surface is given in Example 2.3.12.

Let S : (a, b) 7→ x(a, b) ∈ Gr2(V ) be a hyperbolic surface such that the characteristic
curves are given by the equations a = constant and b = constant. Whenever we have a
hyperbolic surface parameterized in this way, we will call the curves defined by b = constant
the horizontal characteristic curves and the curves a = constant the vertical characteristic
curves. For a surface with (locally) constant type there are nine possibilities: the horizontal
characteristic curves can have type (1), (2) or (3) and the vertical characteristic curves as well.
If we allow to switch the characteristic curves, then there are only six types. We will say a
geometrically flat surface if of type (i, j) if the horizontal characteristic lines are of type (i)
and the vertical characteristics of type ( j).
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Example 2.3.12 (Changing type). Let Px0,x1(x) be a smooth bump function that is zero out-
side the region x0 < x < x1 and non-zero inside this region. For example we can take

Px0,x1(x) =


0 for x ≤ x0,

exp
(

−1
(x−x0)2

)
exp

(
−1

(x1−x)2

)
for x0 < x < x1,

0 for x1 ≤ x .

We then define φ1(a) = P0,1(a), φ2(a) = P2,3(a), ψ1(b) = P0,1(b), ψ2(b) = P2,3(b). Let S
be the surface be defined in local coordinates (see Section 2.3.1) by the matrix

A =

(
a φ1(a)ψ1(b)

φ2(a)ψ2(b) b

)
.

The embedding S → Gr2(V ) defined by the matrix A in local coordinates is denoted by
x : (a, b) 7→ x(a, b). The embedding x defines a hyperbolic surface and at each point (a, b)
the matrices ∂A/∂a and ∂A/∂b are singular. This means that the characteristic curves are
given by the lines a = constant and b = constant. To show that the intersection curves
coincide with the characteristic curves consider an arbitrary point (a, b). The point x(ã, b̃)
is contained in 6x(a,b) if and only if det(A − Ã) = 0. Consider the points (ã, b). For these
points we have

det(A(a, b)− A(ã, b)) = det
(

a − ã (φ1(a)− φ1(ã))ψ1(b)
(φ2(a)− φ2(ã))ψ2(b) 0

)
= (φ1(a)− φ1(ã)) (φ2(a)− φ2(ã)) ψ1(b)ψ2(b).

Since ψ1(b)ψ2(b) is identically zero this shows that all points (ã, b) are in 6x(a,b). This
proves that the characteristic curves b = constant coincide with the intersection curves. A
similar analysis shows that also the lines a = constant coincide the with intersection curves.

The hyperbolic surface in this example has changing type of characteristics. We denote
the different types by (i , j). The pair (i , j) means that the horizontal characteristics (b =

constant) have type (i) and the vertical characteristics (b = constant) have type ( j). In
Figure 2.1 the different regions on the surface are separated by black lines and the types are
indicated.

For example in the region 1 ≤ a ≤ 2, 1 ≤ b ≤ 2 the surface has type (2, 3). In this region
the surface is parameterized by

A =

(
a 0

φ2(a)ψ2(b) b

)
.

The horizontal characteristics have b constant. The points on a line b = constant are 2-
planes that all have the line spanned by the vector (0, 1, 0, b)T in common. The vertical
characteristics have a constant. The points on such a characteristic are all 2-planes in the
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φ2 6= 0φ1 6= 0

ψ1 6= 0

ψ2 6= 0(3, 3)

(1, 3)

(1, 2)

(1, 2)

(3, 2)

(1, 2)

(1, 3)

(2, 3)

(1, 3)
a →

b
→

(2, 3)

(3, 1) (3, 1)

(2, 1)(2, 1)

(1, 1)

(2, 1)

(2, 1)

Figure 2.1: Geometrically flat surface with changing type of curves

3-dimensional subspace spanned by the vectors
1
0
a
0

 ,


0
1
0
0

 ,


0
0
0
1

 .
This single example shows that all possible combinations of type (i, j) exist for hyperbolic
surfaces. �

Example 2.3.13 (Geometrically flat surface of type (2′, 2′)). Let γ and δ be two curves
in Gr1(R4) and define 0(s, t) = γ (s) + δ(t). Assume that γ (0) 6= δ(0) and the tangent
map of 0 at (0, 0) is injective. Then 0 (locally near L0 = 0(0, 0)) defines a surface S in
Gr2(R4). If the tangent plane TL0 S to the surface at L0 is a hyperbolic tangent plane, then S
is a hyperbolic surface near L0.

This surface has the property that every point L = 0(s, t0) on the curve φt0 : s 7→ 0(s, t0)
contains the line δ(t0). Hence the intersection curves through the points L on this curve are all
tangent to the curve φt0 . Since the intersection curves are always tangent to the characteristic
curves this proofs that φt0 is a characteristic curve for the surface. In a similar way it follows
that the curves ψs0 : t 7→ 0(s0, t) are characteristic curves and intersection curves for the
points on ψs0 .

This surface is geometrically flat and the type is (2′,2′) because the points on the charac-
teristic line φt0 have the 1-dimensional linear subspace δ(t0) in common and the points on the
characteristic line ψs0 have the 1-dimensional linear subspace γ (s0) in common. �



58 Surfaces in the Grassmannian

Example 2.3.14 (Geometrically flat surfaces in local coordinates). Choose local coor-
dinates a, b such that the characteristic curves are given by a = constant and b = constant.
Parameterize the surface in local coordinates as

1 0
0 1

p(a, b) q(a, b)
r(a, b) s(a, b)

 .
The condition that the surface is geometrically flat, is precisely that for all points (a, b) and
(ã, b̃) for which either a = ã or b = b̃ we have

( p̃ − p)(s̃ − s)− (r̃ − r)(q̃ − q) = 0.

One can check that the examples in local coordinates of geometrically flat surfaces in this
section all satisfy this condition. �

Type (2′, 3′). Let S be a geometrically flat hyperbolic surface in Gr2(V ) of type (2′, 3′). We
assume that we have introduced coordinates a, b such that the characteristic curves of type
(2′) are given by b = constant (the horizontal curves) and the characteristic curves of type
(3′) are given by a = constant (the vertical curves).

For every point x(a, b) ∈ Gr2(V ) the points on the horizontal characteristic curve γ1
through x(a, b) have a line l1(b) in common. The points on the vertical characteristic curve
γ2 are all contained in a three-dimensional subspace l3(a). The lines l1(b) and the three-
dimensional spaces l3(a) satisfy the relation

l1(b) ⊂ x(a, b) ⊂ l3(a).

This relation implies that ⋃
b

l1(b) ⊂

⋂
a

l3(a).

We use the notation
∑

b l1(b) to denote the span of the elements in
⋃

b l1(b). Then it is clear
that

∑
bl1(b) is a linear subspace of

⋂
a l3(a).

The lines l1(b) and the three-dimensional subspaces l3(a)must both vary as we vary a and
b. For example if l1(b) is constant near x0 = (a0, b0), then near x0 all points on the surface
have a single line l1 = l2(b0) in common. But then near x0 the intersection 6x(a0,b0) ∩ S is
equal to S and this is not possible. This implies that there is a unique two-dimensional linear
subspace L such that ∑

b

l1(b) = L =

⋂
a

l3(a). (2.8)

The special point L is not a point on the surface. If L = Rl1(b)+ Rl1(b̃) then this would
imply that the two intersection curves corresponding to l1(b) and l1(b̃) both intersect L . But
the surface is of type (2′,3′) so no point has two characteristic curves of type (2′).
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Example 2.3.15 (Compact surfaces of type (2′, 3′)). In this example we will make a con-
struction of a large class of compact hyperbolic surfaces of class (2′, 3′). Recall that for any
surface of type (2′, 3′) there is a unique 2-plane L that satisfies the equation (2.8). We define

FL = { (l1, l2, l3) ∈ Gr1(V )× Gr2(V )× Gr3(V ) | l1 ⊂ L , l1 ⊂ l2 ⊂ l3, L ⊂ l3 }. (2.9)

The first component l1 will be related to the common line of points on the characteristics
of type (2′) and the third component l3 will be related the the three-dimensional subspace
spanned by the points on the characteristics of type (3′). The space FL is a smooth manifold
of dimension 3.

We will analyze the two projections

π2 : FL → Gr2(V ) : (l1, l2, l3) 7→ l2, (2.10)
π1,3 : FL → Gr1(L)× Gr1(V/L) : (l1, l2, l3) 7→ (l1, l3/L). (2.11)

The projection π1,3 : FL → Gr1(L) × Gr1(V/L) is surjective. The fiber above a point
(l1, l3/L) is diffeomorphic to Gr1(l3/ l1). This shows π2 is a P1 bundle over Gr1(L) ×

Gr1(V/L).
At the points l2 6= L in the image of π2 we have

π−1
2 (l2) = { (l1, l2, l3) ∈ FL | l1 = l2 ∩ L , l3 = l2 + L }.

So π2 is injective over the complement of L in Gr2(V ). The rank of Tπ2 over this comple-
ment is 3. For the special point L we have

π−1
2 (L) = { (l1, L , l3) ∈ FL | l1 ∈ Gr1(L), L ⊂ l3 ∈ Gr1(V/L) }.

This shows that Tπ2 has rank one at the points in FL that project to L . We have an isomor-
phism

π−1
2 (L) → Gr1(L)× Gr1(V/L) : (l1, L , l3) 7→ (l1, l3/L).

This shows that the inverse image π−1
2 (L) defines a special section of the bundle π1,3 : FL 7→

Gr1(L)× Gr1(V/L).
Let F ′

L = { (l1, l2, l3) ∈ FL | l2 6= L }. and let π ′

1,3 be the restriction of π1,3 to the bundle
F ′

L . The fiber above a point (l1, l3) is isomorphic to Gr1(l3/ l1) \ L ∼= P1
\ { 0 }. This gives

π ′

1,3 : F ′

L → Gr1(L)× Gr1(V/L) the structure of an affine line bundle.
For any (local) section σ of the bundle π ′

1,3 we can consider the composition π2 B σ :

Gr1(L)× Gr1(V/L) → Gr2(V ). The map is embedding since π ′

2 : F ′
→ Gr2(V ) has rank 3

and is injective. Global sections of this bundle exist. Take for example a transversal 2-plane
M such that V = L ⊕ M . A global section of π ′

1,3 is given by (l1, l3) 7→ (l1, l1 + M ∩

l3, l3). This is map from a torus to the Grassmannian. The hyperbolic surface defined by
the composition of this section with π ′

2 is the hyperbolic torus Gr2(V, K ) for the hyperbolic
structure K defined by V = L ⊕ M . After a choice of global section the line bundle F ′

L
becomes a rank one vector bundle over Gr1(L)× Gr1(V/L). The sections of this bundle can
locally be parameterized by exactly one function of two variables. The global sections define
compact geometrically flat surfaces of type (2′, 3′). �
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Example 2.3.16 (continuation of Example 2.3.5). In local coordinates the construction in
the previous example leads to a surface as described in Example 2.3.5. For a point (a, b) on
the surface the line in common to all points on the characteristic b = constant is given by
(0, 1, 0, b)T . The 3-dimensional spaces l3(a) given by a = constant are given by the span of

1
0
a
0

 ,


0
1
0
0

 ,


0
0
0
1

 .
The unique 2-plane equal to the union of the l1(b) and equal to the intersection of the l3(a) is
L = Re1 +Re3. The coordinate b is a local coordinate for Gr1(L) and a is a local coordinate
for Gr1(V/L). �

Type (1, 1). We will prove that any geometrically flat surface S in Gr2(V ) of type (1, 1) is
locally given by the hyperbolic lines for a unique hyperbolic structure on V . Note that every
surface of this type is a special case of a surface of type (2′, 3′). Locally we can make a choice
of horizontal and vertical characteristic lines. The horizontal lines are both of type (2′) and of
type (3′) and the same holds for the vertical characteristics. This means that by switching the
characteristic lines there are two ways in which we can view a surface of type (1, 1) as a (2′,
3′) surface. For any point L on the surface let l+1 (L) be the unique line that all points on the
horizontal characteristic curve have in common and l−1 (L) be the unique line that all points
on the vertical characteristic curve have in common. In a similar way let l+3 (L) be the unique
3-dimensional space spanned by all points in the horizontal curve and l−3 (L) the unique 3-
dimensional space spanned by all points in the vertical curve. Recall that the surfaces of type
(2′, 3′) all have a unique 2-plane L associated to them. Since a surface of type (1, 1) can be
viewed in two different ways as a (2′, 3′) surface we find two invariant 2-planes L+ and L−.
To be more precise: we define L+ as the unique 2-plane such that

∑
l+1 (L) = L+

=
⋂

l−3 (L)
and L− as the unique 2-plane such that

∑
l−1 (L) = L−

=
⋂

l+3 (L). It is not difficult
to see that L+

∩ L−
= { 0 } and hence the two planes define a hyperbolic structure K on

V = L+
⊕ L−.

Let M be a point in the surface S. Then L+
∩ M = l+1 (M) and L−

∩ M = l−1 (M). Hence
M is a point in the hyperbolic torus Gr2(V, K ). Since S and Gr2(V, K ) both have dimension
two this proves that locally S = Gr2(V, K ).

2.3.3 Normal form calculations

In this section we calculate a normal form for the hyperbolic surfaces at a special point.
The group acting on the surface is the group of conformal isometries of Gr2(V ). In the next
section we will give a geometric interpretation of this normal form calculation. The geometric
picture is needed to make the connection to first order systems and second order equations in
Chapter 5 and Chapter 6.
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Zero and first order. We want to bring a hyperbolic surface S in Gr2(V ) into a normal form
using the group GL(V ). We could also use the projective group P GL(V ) since the scalar
multiplications do not act on Gr2(V ). In the calculations below it is always easy to translate
the actions of GL(V ) and P GL(V ) into each other. Since the group acts transitively on the
points in Gr2(V ) and on the hyperbolic tangent spaces at that point (see Appendix A.5), we
can always choose a basis e1, e2, e3, e4 for V such that the point L ∈ S is given by Re1 +Re2
and the tangent space to the surface at L is given by the linear maps in Lin(L , V/L) that are
diagonal matrices with respect to the bases e1, e2 for L and e3, e4 for V/L .

In the local coordinates introduced in Section 2.3.1 the surface is given by the matrices

A =

(
p q
r s

)
. (2.12)

The matrix A corresponds to the 2-plane spanned by the two vectors
1
0
p
r

 ,


0
1
q
s

 .
The matrix A can also be viewed as a linear map L → M , with M = Re3 + Re4. In this
view the matrix A corresponds to the 2-plane spanned by vectors of the form x + Ax , x ∈ L .
The special point L corresponds to the zero matrix. If we use p, s as local coordinates, then
q and r are functions of p and s. We will bring the surface in normal form by constructing
a normal form for the Taylor expansions of q(p, s) and r(p, s). The normalization at order
zero was the choice of special point L . This normalization corresponds to q(0, 0) = 0 and
r(0, 0) = 0. The normalization at order one was the choice of tangent space to S at L . This
corresponds to q = O(p, s)2, r = O(p, s)2.

The group GL(V ) can be parameterized by the 4 × 4 matrices(
ã b̃
c̃ d̃

)
,

with ã, b̃, c̃, d̃ all 2 × 2-matrices. The subgroup H0 = GL(V )L that leaves invariant L is
given by the matrices with c̃ = 0. We compute the action of GL(V )L on the tangent space
TL S. Let

g =

(
ã b̃
0 d̃

)
.

Then g acts on A as

g · A = d̃ A(ã + b̃A)−1.

Note this action might not be well-defined for all g since we are working in local coordinates
for Gr0

2(V,M), but it is well-defined for elements g near the identity. On the tangent space
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this induces the action B 7→ d̃ Bã−1. This conformal action is transitive on the hyperbolic
planes and we can always arrange that B is a diagonal matrix.

The structure group that leaves invariant L and TL S is the group H1 = GL(V )L ,TL S of
matrices (

a b̃
0 d

)
∈ GL(V ), (2.13)

with either a, d ∈ D or a, d both anti-diagonal, i.e., a, b ∈ L D. This group has dimension 8
(or dimension 7 if we are working with the projective group).

Second order. The space of second order contacts to a hyperbolic surface for which the
first order part is in normal form has dimension 6. The action of the group (2.13) induces an
action on this space by affine transformations. If we use the local coordinates (2.12), then
the first order normalizations correspond to q = q11 p2/2 + q12 ps + q22s2/2 + O(p, s)3,
r = r11 p2/2 + r12 ps + r22s2/2 +O(p, s)3. The action on A is given by

A 7→ d A(a + b̃A)−1
= d Aa−1

− d Aa−1b̃Aa−1
+O(|A|

3).

We will calculate the action of the connected component of the group H1. The action of the
other component can be calculated in a similar fashion. We write

a =

(
a1 0
0 a2

)
, b̃ =

(
b11 b12
b21 b22

)
, d =

(
d1 0
0 d2

)
.

Working out this action using p, s as coordinates and only keeping terms of order 2 and lower
yields

A 7→ Ã =

(
p̃ q̃
r̃ s̃

)
=

(
d1a−1

1 p − d1a−2
1 p2b11 d1a−1

2 q − d1a−1
2 a−1

1 b12 ps
d2a−1

1 r − d2a−1
1 a−1

2 b21 ps d2a−1
2 s − d2a−2

2 b22s2

)
+O(p, s)3.

We use p̃ = d1a−1
1 p − d1a−2

1 b11 p2 and s̃ = d2a−1
2 s − d2a−2

2 b22s2 as new local coordinates.
Since p̃, s̃ are diagonal in p, s up to first order, this preserves the normal form. We can
express q̃ and r̃ in the new coordinates p̃, s̃; the final result is

q̃11 = (a1)
2a−1

2 d−1
1 q11, q̃12 = a1d−1

2 q12 − d−1
2 b12, q̃22 = d1d−2

2 a2q22,

r̃11 = d2d−2
1 a1qr1, r̃12 = a2d−1

1 r12 − d−1
1 b21, r̃22 = a−1

1 (a2)
2d−1

2 r22.
(2.14)

The action is indeed by affine transformations. Note that the group coefficients b11, b22 do
not appear in these expressions so this part of the group does not act on the second order
contact. Using the group parameters b12, b21 we can always arrange that q̃12 = r̃12 = 0. On
the remaining four coefficients the generic orbits have dimension three. There is one invariant
given by

I =
q11r22

r11q22
. (2.15)
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The invariant is a rational function in the coefficients of the second order jets of a hyperbolic
surface. If r11q22 = 0 but q11r22 6= 0, then we say the invariant takes the value ∞. If
both q11r22 = 0 and r11q22 = 0, then this invariant is not well-defined (by making small
perturbations the invariant can have any possible value).

Remark 2.3.17. We will analyze the action of the other component of H1 on the second
order coefficients. Let

g =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ H1.

The action on a surface in local coordinates is

A =

(
p q
r s

)
7→

(
0 1
1 0

)(
p q
r s

)(
0 1
1 0

)−1

=

(
s r
q p

)
.

If we write p̃ = s, s̃ = p, q̃ = r , r̃ = q and assume that q, r are normalized and of the form

q = q11 p2/2 + q12 ps + q22s2/2, r = r11 p2/2 + r12 ps + q22r2/2,

then

q̃11 = r22, q̃12 = r12, q̃22 = r11,

r̃11 = q22, r̃12 = q12, r̃22 = q11.

The new invariant Ĩ is equal to the original invariant

Ĩ =
q̃11r̃22

r̃11q̃22
=

q11r22

r11q22
= I.

So I is really invariant under the full group H1. �

Third and higher order. We will conclude the normal form calculations by showing that
for generic structures (all terms q11, q22, r11, q22 unequal to zero, or equivalently the invariant
I is well-defined, non-zero and finite) the group acts freely. If we are at a generic point, then
we can normalize the second order coefficients to q12 = r12 = 0, q11 = r11 = q22 = 1 and
r22 = I . The structure group reduces to the group HS consisting of matrices

g = φ

(
I b
0 I

)
∈ GL(V ),

with φ ∈ R∗ and b ∈ D. The scalar factor φ is not important since the group only acts by
projective transformations.
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The action on the third order part is relatively easy to calculate because the structure group
has reduced to such a small group. The action of g on the matrix A is

g : A 7→ Ã = A(I + bA)−1
= A − AbA + AbAbA +O(|A|)4. (2.16)

At the special point L we have A = 0 and the first order part of A is diagonal. Therefore we
can write A = A1 + A2 + A3 with A1 ∈ D and the second and third order parts A2 and A3
anti-diagonal and homogeneous of degree 2 and 3 in A1, respectively. We then expand the
expression (2.16) and group the diagonal and anti-diagonal terms

Ã = A − AbA + AbAbA +O(|A|)4

= (A1 − bA2
1 + b2 A3

1)+ (A2 + A3 − (A1bA2 + A2bA1))+O(|A|)4.

The new diagonal part is given by Ã1 = A1 − bA2
1 + b2 A3

1. The old part can be expressed in
the new part as A1 = Ã1 + bÃ2

1 + b2 Ã3
+ O(| Ã|)4. The second order part is given by A2.

This term is homogeneous of degree 2 in A1 and hence also homogeneous of degree 2 in Ã1.
So the action of HS does not change the second order part, as is required. In particular we
have q̃ = q11 p̃2/2 + q22s̃2/2, r̃ = r11 p̃2/2 + r22s̃2/2.

The third order part is formed by three terms: A2 has a contribution, A3 has a contribution
and A1bA2 + A2bA1 has a contribution. Let us assume the first order part A1 was diagonal
of the form (p, s) and the second order part A2 was of the form(

0 q11 p2/2 + q22s2/2
r11 p2/2 + r22s2/2 0

)
.

Then the components of A1 are expressed in the components of Ã1: p = p̃ + b1 p̃2
+O( p̃3),

s = s̃ + b2s̃2
+O(s̃3). The contribution of A2 to Ã3 consists of the third order terms in(

0 q11( p̃ + b1 p̃2)2/2 + q22(s̃ + b2s̃2)2/2
r11( p̃ + b1 p̃2)2/2 + r22(s̃ + b2s̃2)2/2 0

)
.

These are (
0 q11b1 p̃3

+ q22b2s̃3

r11b1 p̃3
+ r22b2s̃3 0

)
.

The contribution of A3 to Ã3 is given by the coefficients of A3. The contribution of A1bA2 +

A2bA1 to Ã3 follows from

A1bA2 + A2bA1 =

(
p 0
0 s

)(
b1 0
0 b2

)(
0 q
r 0

)
+

(
0 q
r 0

)(
b1 0
0 b2

)(
p 0
0 s

)
=

(
0 pb1q + qb2s

sb2r + rb1 p 0

)
=

(
0 p̃b1q̃ + q̃b2s̃

s̃b2r̃ + r̃b1 p̃ 0

)
+O(p, s)4.
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Combining the different terms we see that

Ã3 = A3 +

(
0 q11b1 p̃3

+ q22b2s̃3

r11b1 p̃3
+ r22b2s̃3 0

)
+

(
0 p̃b1q̃ + q̃b2s̃

s̃b2r̃ + r̃b1 p̃ 0

)
.

For the action on the third order coefficients to be free is necessary and sufficient that at least
two out of the four coefficients q11, r11, q22 and r22 are non-zero. For a generic point this
action is free. Hence by normalizing two suitable third order coefficients the structure group
reduces to the scalar multiplications. The remaining six third order coefficients are invariants
for the surface.

For higher order contact at each order n there are precisely 2(n + 1) more derivatives.
Since the structure group already acted freely at order 3 (for generic structures) we find at
each order precisely 2(n + 1) additional differential invariants.

Order of contact for characteristic and intersection curves. We already know that the
characteristic curves and the intersection curves through a point have the same tangent vec-
tors, i.e., they have the same first order contact. We will show that for every hyperbolic
surface the two curves have contact of order at least two.

Using the group action we can arrange that any hyperbolic surface can be written in the
normal form

A =

(
p q
r s

)
,

with q = q11 p2/2+q22s2/2+O(p, s)3, r = r11 p2/2+r22s2/2+O(p, s)3 . The intersection
curves through the point 0 are determined by

0 = det A = ps − (1/4)
(

q11r11 p4
+ (q11r22 + q22r11)p2s2

+ q22r22s4
)

+O(p, s)5.

The intersection curve tangent to s = 0 (the horizontal intersection curve) is of the form

s =
1
4

q11r11 p3
+O(p4). (2.17)

The other intersection curve (vertical intersection curve) is of the form

p =
1
4

q22r22s3
+O(s4). (2.18)

The direction of the characteristics at a point is given by the vector (P, S) that satisfies
det (P(∂A/∂p)+ S(∂A/∂s)) = 0. This is equal to

0 = det
(

P
(

1 q11 p
r11 p 0

)
+ S

(
0 q22s

r22s 1

))
= det

(
P q11 pP + q22sS

r11 pP + r22sS S

)
= P S − (q11r11 p2 P2

+ (r11q22 + r22q11)ps P S + r22q22s2S2).

(2.19)
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We analyze the characteristic vectors along the intersection curve (2.17). The characteristic
vectors are all of the form S = cP for c a small constant depending on the point p, s. We
substitute S = cP in the equation (2.19). This yields

0 =

(
c − (q11r11 p2

+ (r11q22 + r22q11)psc + r22q22s2c2)
)

P2.

Hence on the first intersection curve

c = q11r11 p2
+O(p4)c +O(p6)c2

= q11r11 p2
+O(p)6.

On the intersection curve the direction of the characteristics is given by (P, S) with

S =

(
q11r11 p2

+O(p)6
)

P.

The tangent vector to the intersection curve follows by differentiation of (2.17) and is equal
to the vector (P ′, S′) with

S′
=

(
3
4

q11r11 p2
+O(p3)

)
P ′.

The characteristic curves and intersection curves have at least second order contact. The
contact is truly second order if and only if r11q11 6= 0. For the vertical characteristic curves
and vertical intersection curves the contact is of second order as well, and truly of second
order if and only if q22r22 6= 0. The second order contact and the factor 3/4 between the two
curves if the contact is truly third order can be seen in Example 2.3.6.

Example 2.3.18 (Invariants for geometrically flat surfaces).

• Consider the geometrically flat surface of type (2′, 3′) from Example 2.3.5 and Exam-
ple 2.3.16. The local coordinates are already suited for calculating the invariants. If
φ(a, b) = q11a2/2 + q12ab + q22b2/2 + O(a, b)3, then the second order invariant I
is undefined since both the numerator and the denominator are zero.

• In local coordinates define the geometrically flat surface of type (2′, 2′) by(
p q(s)

r(p) s

)
,

with r(p) = r11 p2/2 +O(p3), q(s) = q22s2/2 +O(s3). The points on the character-
istic line p = p0 all have the line l1(p0) = R(1, 0, p0, r(p0))

T in common. The points
on the characteristic line s = s0 all have the line l1(s0) = R(0, 1, q(s0), s0)

T in com-
mon. If the surface is generic enough, i.e., r11, q22 6= 0, the invariant I is well-defined
and equal to zero.
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• In local coordinates define the geometrically flat surface of type (3′, 3′) by(
p q(p)

r(s) s

)
,

with r(s) = r22s2/2 + O(s)3, q(p) = q11 p2/2 + O(p)3. If the surface is generic
enough, i.e., r22, q11 6= 0, the invariant I is well-defined and has value ∞. �

2.3.4 Moving frames
In this section we will construct a bundle over a hyperbolic surface in the Grassmannian that
describes the normalizations we have made in the previous section. The reason for introduc-
ing these bundles is that they will allow us to make a connection to the invariants of first order
systems in Section 5.3. The reader can skip the remainder of this chapter until that section.

The points in the fiber of the bundle over a point L ∈ S will provide local coordinates
for Grassmannian near L in which the surface is normalized in the way described in the
previous section. The idea for this bundle is from McKay [51, Section 4.3] but we give a
different presentation. This presentation allows us to translate the invariants on the bundle to
the invariants in local coordinates and this allows us to calculate these invariants in examples.

Moving frames at order zero

First we choose basis e0
1, e0

2, e0
3, e0

4 for V . We define BV = GL(V ) and define the projection
π : BV → Gr2(V ) : g 7→ g−1(Re0

1 + Re0
2). The left action of GL(V ) on BV induces an

action on Gr2(V ). The stabilizer group of the point L0 = Re0
1 + Re0

2 is equal to the group
H0, which is the group of matrices (

ã b̃
0 d̃

)
∈ GL(V ), (2.20)

with ã, d̃ ∈ GL(2,R) and b̃ an arbitrary 2×2-matrix. This shows BV the is a H0 bundle over
the Grassmannian.

Let S be a hyperbolic surface that is embedded as ι : S → Gr2(V ). We can then form the
pullback bundle B0 = ι∗ BV .

B0 = ι∗ BV //

π0

��

BV

π

��
S � � ι // Gr2(V )

A point in the bundle B0 is given by a pair (s, g) ∈ S × BV such that ι(s) = π(g) ∈ Gr2(V ).
Since the map ι is an embedding, the point g already determines the point s and for this
reason we will denote a point in B0 often by the element g ∈ BV alone.
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Any point g ∈ B0 defines a frame e j = g−1(e0
j ) for V . This frame for V introduces

local coordinates for Gr2(V ) in the following way. Use e1, e2 as a basis for a 2-plane L =

Re1 + Re2 and use e3, e4 as a basis for the 2-plane M = Re3 + Re4. Recall the open
subset Gr0

2(V,M) ⊂ Gr2(V ) is isomorphic to the linear maps from L to M . The matrix
representations of these maps with respect to the bases e1, e2 for L and e3, e4 for M provide
local coordinates for Gr0

2(V,M). We say that these local coordinates are induced by the
element g ∈ BV .

If g is a point in the fiber of B0 over the point L , then in the local coordinates induced by
g the point L corresponds to the zero matrix. Recall that choosing coordinates such that the
point L corresponds to the zero matrix is the first step in constructing a normal form for the
surface in local coordinates (see Section 2.3.3). We say that the bundle B0 over S is adapted
up to order zero because all points g ∈ B0 induce local coordinates for S in which the surface
is normalized up to order zero in the sense of Section 2.3.3.

The next step in our construction is to construct a bundle B1 over S such that the points
g ∈ B1 over L induce local coordinates near L in which the surface is adapted up to first
order. We will also see that the normalizations in local coordinates correspond to relations
between the components of the pullback of the right-invariant Maurer-Cartan on BV to the
bundle B1.

Remark 2.3.19. McKay [51, Section 4.4] used the relations between the components of the
Maurer-Cartan form to define the different bundles. In contrast, we show that these relations
can be used as an alternative definition of the bundles. We use the relations to calculate value
of invariants for specific surfaces. We need the calculations in local coordinates to be able to
make a precise analysis of the action of GL(V ) on the jets of hyperbolic surfaces. �

Remark 2.3.20 (Frenet frames). The construction described in this section is similar to the
construction of Frenet frames for space curves. See for example Ivey and Landsberg [43, pp.
23–26]. We start with a geometric object S that is a submanifold of the base manifold M .
The base manifold is realized as the homogeneous space M = G/H for a Lie group G. The
group H is the isotropy group of the action of G on M . The points g ∈ G correspond to
points in M by the projection g 7→ gH . But we want that the points g ∈ G also contain
some information about the geometry at the point gH . For example in the case of hyperbolic
surfaces the points g ∈ G provided local coordinates for the hyperbolic surface near the point
gH ∈ M . The geometric object is embedded in G/H as ι : S → G/H . The pullback ι∗G is
a H bundle over S. We then find reductions of this H bundle in such a way that the reduced
bundles consist of points g that are adapted to the geometry of S near gH .

In the case of Frenet coframes the group G is ASO(3), the semi-direct product of the
translations and rotations in R3. The elements in ASO(3) are pairs (x, R) with x ∈ R3 and
R ∈ SO(3) a rotation. We define the projection ASO(3) → M = R3

: (x, R) 7→ x . The
action of ASO(3) on itself then defines a transitive action on M . The stabilizer group of the
origin in M = R3 is H ∼= SO(3). The base space M is isomorphic to G/H . The rotation R
defines an orthonormal frame at the point x by rotation of the standard basis vectors in R3.
The geometric object is a space curve c(t) parameterized by arc length. The pullback B0 is
the bundle over S for which the fibers over x = gH ∈ S are the points { (x, R) ∈ ASO(3) |

R ∈ SO(3) }. A first reduction of B0 is the reduction to the bundle B1 ⊂ B0 for which the fiber
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(B1)x over a point x = c(0) ∈ S is equal to { (x, R) ∈ ASO(3) | x = c(0), R(e1) = c′(t) }.
The bundle B1 is a SO(2) reduction of B0. If the curve is generic we can make a second
normalization. The vector c′′(t)/|c′′(t)| is non-zero and perpendicular to c′(t) and we can
arrange that Re1 = c′(t), Re2 = c′′(t)/|c′′(t)|. This defines a unique frame at the point c(t)
which is called the Frenet frame.

In the table below the different objects for Frenet frames and our construction for hyper-
bolic surfaces are given.

Frenet frames Hyperbolic surfaces
Base manifold R3 Gr2(V )
Geometric object Space curve Hyperbolic surface
G ASO(3) GL(4,R)
Isotropy group H SO(3) H0

Geometric interpretation Frenet frame Local coordinates
Invariants Curvature κ , torsion τ f , g, e

�

Remark 2.3.21. We have chosen to work with the unoriented Grassmannian and the group
GL(V ). The whole theory can also be done for the oriented planes with some minor modi-
fications. We then have G̃r(V ) as the base space and use the group GL+(V ) of orientation
preserving linear transformations. Since we are mostly interested in the local theory the dif-
ference between the two approaches is not essential.

Another choice is related to the fact that the scalar multiplications do not act on Gr2(V ).
This means that we can also choose to work with the group of projective linear transfor-
mations P GL(V ). We have chosen to work with GL(V ) because this group has a natural
representation as matrix groups. Another option would be to choose a volume form on V .
Then the group SL(V ) is isomorphic to P GL+(V ) and we can use a matrix representation of
SL(V ) as a representation for P GL+(V ). �

The Maurer-Cartan form

On the bundle BV the right-invariant Maurer-Cartan form is defined as αR = (dg)g−1. This
is a 1-form on BV with values in the Lie algebra g = gl(V ). We will see below that the
normalizations in local coordinates correspond to relations between the components of the
pullback of the Maurer-Cartan form to the bundles B0 and B1. It is convenient to write the
Maurer-Cartan form as

αR = (dg)g−1
=

(
ξ η

ϑ ζ

)
, (2.21)

for 1-forms ξ, η, ϑ, ζ valued in the space of 2 × 2-matrices. Using the decomposition of
2 × 2-matrices in Section 2.2.4 we have D-valued 1-forms η′, η′′, . . . , ζ ′, ζ ′′.
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The right-invariant Maurer-Cartan form satisfies the structure equations dαR = αR ∧ αR .
This implies the following set of structure equations for the components

d



ξ ′

ξ ′′

η′

η′′

ϑ ′

ϑ ′′

ζ ′

ζ ′′


=



ξ ′′
∧ ξ ′′F

+ η′
∧ ϑ ′

+ η′′
∧ ϑ ′′F

ξ ′
∧ ξ ′′

+ ξ ′′
∧ ξ ′F

+ η′
∧ ϑ ′′

+ η′′
∧ ϑ ′F

ξ ′
∧ η′

+ ξ ′′
∧ η′′F

+ η′
∧ ζ ′

+ η′′
∧ ζ ′′F

ξ ′
∧ η′′

+ ξ ′′
∧ η′F

+ η′
∧ η′′

+ η′′
∧ ζ ′F

ϑ ′
∧ ξ ′

+ ζ ′
∧ ϑ ′

+ ϑ ′′
∧ ξ ′′F

+ ζ ′′
∧ ϑ ′′F

ϑ ′
∧ ξ ′′

+ ζ ′′
∧ ϑ ′F

+ ϑ ′′
∧ ξ ′F

+ ζ ′
∧ ϑ ′′

ϑ ′
∧ η′

+ ϑ ′′
∧ η′′F

+ ζ ′′
∧ ζ ′′F

ϑ ′
∧ η′′

+ ϑ ′′
∧ η′F

+ ζ ′
∧ ζ ′′

+ ζ ′′
∧ ζ ′F


. (2.22)

The right-invariant Maurer-Cartan form transforms under the left multiplications by the ad-
joint action. We have (L∗

hαR)g = Ad(h) B (αR)g .
Since dim B0 = 14 there will be relations between the 1-forms ξ, η, ϑ, ζ on the pullback

bundle. Later we will use the structure group H0 of B0 over S to normalize these relations.
Note that the four 1-forms ϑ ′, ϑ ′F

, ϑ ′′, ϑ ′′F vanish on the fibers of the bundle B0 → S and
hence there must be relations between these forms since S is only two-dimensional.

Moving frames at order one

We have constructed the principal H0 bundle B0 over a hyperbolic surface S. This bundle
was adapted to the geometry of S in the sense that in the local coordinates induced by a point
g ∈ B0 the point s ∈ S is given by the zero matrix. The next step is to reduce the bundle B0
to a bundle B1 that is adapted to the surface up to order one.

Let the surface be given in local coordinates as

A =

(
p q
r s

)
,

and assume that, at the point L given by A = 0, the coordinates are adapted up to first order.
This means that q = O(p, s)2 and r = O(p, s)2. In other words the first order part of A at
L , given by dA, is diagonal.

A section of the bundle B0 is given by

S → B0 : A 7→ g0 =

(
I 0

−A I

)
.

Since the structure group for B0 is the group H0 (see (2.20)) the points in the bundle B0
can be parameterized as hg0 for h ∈ H0. Let us calculate the pullback of the right-invariant
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Maurer-Cartan form on BV to B0. The Maurer-Cartan form at a point hg0 ∈ B0 is given by

(αR)hg0 = (dhg0)(hg0)
−1

= (dh)h−1
+ h(dg0)g−1

0 h−1

= (dh)h−1
+

(
ã b̃
0 d̃

)(
0 0

−dA 0

)(
ã b̃
0 d̃

)−1

= (dh)h−1
+

(
−b̃(dA)ã−1 b̃(dA)ã−1b̃d̃−1

−d̃(dA)ã−1 d̃(dA)ã−1b̃d̃−1

)
.

(2.23)

The term (dh)h−1 has no contribution to the bottom left part ϑ of αR . Hence the action of h
on the bottom left part is by a conformal action. We can always arrange by a suitable choice
of ã, d̃ that ϑ ′′

= 0. The stabilizer group of ϑ ′′
= 0 is given by the subgroup H1 consisting

of matrices

h1 =

(
a b̃
0 d

)
∈ GL(4,R) (2.24)

for which a, d ∈ D or a, d ∈ L D. So either a, d are both diagonal or both anti-diagonal. We
define the bundle B1 as the subbundle of B0 for which ϑ ′′

= 0. The calculation above shows
that B1 is a H1 reduction of B0.

Remark 2.3.22. The condition that (d̃ϑ ã−1)
′′

= 0 if ϑ ′′
= 0 is precisely that a′′

= d ′′
= 0

or a′
= d ′

= 0 . Indeed, let ã−1
= k̃. Then

d̃ϑ ã−1
= d̃ϑ k̃ = d ′ϑ ′k′

+ d ′′ϑ ′F k′′F
+ d ′ϑ ′k′′L + d ′′ϑ ′F k′L .

Since ϑ ′ and ϑ ′F are linearly independent we find the two equations d ′k′′
= 0 and d ′′k′

= 0.
Since ã and d̃ are invertible this implies either d ′′

= k′′
= a′′

= 0 or d ′
= k′

= a′
= 0. �

Remark 2.3.23. McKay also defines a bundle B1 for the elliptic surfaces, but does not men-
tion the fact that the full structure group that preserves the equation ϑ ′′

= 0 has two connected
components. In McKay [51, p. 28] he defines a bundle B1 which is the elliptic equivalent of
one of the connected components of our bundle B1. The fact that he only uses the connected
component might be related to the orientation that he uses, but he does not explicitly mention
this. This omission also occurs in McKay [52, p. 14] (in this article the bundle has the name
B2, which is confusing with the notation in McKay’s thesis [51] and this dissertation). �

We have defined B1 by the condition ϑ ′′
= 0. If the surface is given in local coordinates

induced by g ∈ B0 by the 2 × 2-matrix A and dA is diagonal at g, then equation (2.23)
shows that g ∈ B1. All other points g̃ in the same fiber of B1 as g are related by an element
of H1. The local coordinates induced by g̃ are then related to the local coordinates induced
by g by a transformation by an element of H1. From the discussion about the normal form
in local coordinates for a hyperbolic surface at order one starting on page 61 it follows that
the transformations in H1 are precisely the transformations that leave invariant the condition
that dA is diagonal. Hence for all g̃ in the fiber of B1 the surface in local local coordinates
induced by g̃ is normalized up to order one in the sense of Section 2.3.3.
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Moving frames at order two

For any point in B1 the pullback of Maurer-Cartan form takes values in g. Since B1 has
dimension 2 + 8 = 10 the image of the tangent space of B1 under αR is a 10-dimensional
subspace of g. The Maurer-Cartan form of the structure group H1 is of the form

(dh)h−1
=

(
da db̃
0 dd

)(
a b̃
0 d

)−1

=

(
(da)a−1

−a−1(da)b̃d−1
+ (db̃)d−1

0 (dd)d−1

)
.

The tangent space to the fiber of the projection B1 → S at a point is mapped by the Maurer-
Cartan form to the eight-dimensional Lie algebra h1 of H1 in g. So the tangent space of B1 is
mapped by the Maurer-Cartan form to a 2-dimensional linear subspace in g/h1. If we move
in the direction transversal to the fibers, then ϑ ′

6= 0. Also on B1 the form ϑ ′′
= 0. This

implies that the 2-dimensional linear space in g/h1 is determined by relations

ξ ′′
= f ϑ ′

+ e1(ϑ
′)F , ζ ′′

= e2ϑ
′
+ g(ϑ ′)F ,

with f , g, e1 and e2 all D-valued functions on B1.
We will calculate the consequences of the reduction from B0 to B1 for the structure equa-

tions (2.22). Since ϑ ′′
= 0 we find directly that 0 = dϑ ′′

= ϑ ′
∧ ξ ′′

+ ζ ′′
∧ ϑ ′F . By Cartan’s

lemma (Lemma 1.2.12) we conclude that(
ξ ′′

ζ ′′

)
=

(
f e

−e g

)(
ϑ ′

ϑ ′F

)
,

for functions f, g, h valued in the hyperbolic numbers. So e = e1 = e2. This equality is a
consequence of the equality of mixed second order derivatives in local coordinates. Let h1
be the matrix from (2.24) with a, d ∈ D. The action by left multiplication on B1 acts on the
Maurer-Cartan form by the adjoint representation.

Ad(h1)αR

=

(
a b̃
0 d

)(
ξ η

ϑ ζ

)(
a−1

−a−1b̃d−1

0 d−1

)
=

(
a b̃
0 d

)(
ξ ′

+ ξ ′′L η′
+ η′′L

ϑ ′ ζ ′
+ ζ ′′L

)(
a−1

−a−1b̃d−1

0 d−1

)
=

(
aξ ′

+ aξ ′′L + b̃ϑ ′ aη′
+ aη′′L + b̃ζ ′

+ b̃ζ ′′L
dϑ ′ dζ ′

+ dζ ′′L

)(
a−1

−a−1bd−1

0 d−1

)
=

(
aξ ′a−1

+ aξ ′′La−1
+ b̃ϑ ′a−1

∗

dϑ ′a−1 dϑ ′(−a−1b̃d−1)+ cζ ′d−1
+ cζ ′′Ld−1

)
=

(
ξ ′

+ aa−1 F
ξ ′′L + b̃a−1ϑ ′

∗

da−1ϑ ′ dϑ ′(−a−1bd−1)+ ζ ′
+ dd−1 F

ζ ′′L

)
.
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We have ξ ′′
= f ϑ ′

+ eϑ ′F and ϑ̃ ′
= da−1ϑ ′. The transformed components are

ξ̃ ′′
= aa−1 F

ξ ′′
+ b′′a−1 F

ϑ ′F

= aa−1 F
( f ϑ ′

+ eϑ ′F
)+ b′′a−1 F

ϑ ′F

= aa−1 F
f ad−1ϑ̃ ′

+ aa−1 F
eaF d−1 F

(ϑ̃ ′)F
+ b′′a−1 F

ad−1ϑ̃ ′

= a2a−1 F
d−1 f ϑ̃ ′

+ (ae + b′′)d−1 F
(ϑ̃ ′)F ,

ζ̃ ′′
= −da−1b′′d−1 F

ϑ ′
+ dd−1 F

ζ ′′

= −da−1b′′d−1 F
ϑ ′

+ dd−1 F
(−hϑ ′

+ gϑ ′F
)

= (−da−1b′′d−1 F
− dd−1 F

e)ϑ ′
+ dd−1 F

gϑ ′F

= (−da−1b′′d−1 F
− dd−1 F

e)ad−1ϑ̃ ′ + dd−1 F
gaF d−1 F

(ϑ̃ ′)F

= (−b′′d−1 F
− ad−1 F

e)ϑ̃ ′ + dd−2 F
gaF (ϑ̃ ′)F

= −(b′′
+ ae)d−1 F

ϑ̃ ′ + aF dd−2 F
g(ϑ̃ ′)F .

From this we can read off that f, g, e transform as(
a b
0 d

)
·

 f
g
e

 =

 a2(a−1)F d−1 f
aF d(d−2)F g

(ae + b′′)(d−1)F

 . (2.25)

We can recognize these transformations as the transformation rules (2.14) for the second
order coefficients for a hyperbolic surface in local coordinates. We will prove that the second
order coefficients in local coordinates indeed correspond to the functions f , g and e.

Suppose a hyperbolic surface is given in local coordinates by matrices

A =

(
p q
r s

)
.

We assume that at the origin the surface is adapted and so we can write q = q11 p2/2 +

q12 ps + q22s2/2 + O(p, s)3, r = r11 p2/2 + r12 ps + r22s2/2 + O(p, s)3. We want to
calculate the bundle B1 so that we can calculate the relations between ξ ′′, ζ ′′ and ϑ ′. Since
the group H1 acts transitively on the fibers of B1, it is enough to find a section of the bundle
B1. Calculating this section exactly is difficult, but for our purposes it will be enough to find
this section up to order 2 at a special point. We will prove the equalities we need at the special
point and the result then follows from the transformation rules.

A section of B0 over the surface is given by

g0 =

(
I 0

−A I

)
.

We can make this into a section of B1 by multiplying with a suitable element of H0. We take

h =

(
ã 0
0 d̃

)
with ã =

(
1 c1
c2 1

)
, d̃ =

(
1 c3
c4 1

)
.
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Then g1 = hg0 is a section of B0. The pullback of the Maurer-Cartan form over this section
is given by

(αR)g1 = d(hg0)(hg0)
−1

= (dh)h−1
+ h(dg0)g−1

0 h−1

= (dh)h−1
+

(
ã 0
0 d̃

)(
0 0

−dA 0

)(
ã 0
0 d̃

)−1

= (dh)h−1
+

(
0 0

−d̃(dA)ã−1 0

)
.

The section g1 of B0 is a section of B1 if the lower left block is diagonal. The term (dh)h−1

has no contribution to the lower left block. The term d̃(dA)ã−1 is equal to

d̃(dA)ã−1
=

(
1 c1
c2 1

) dp
q11 pdp + q22sds
+ q12(sdp + pds)

r11 pdp + r22sds
+ r12(sdp + pds) ds

( 1 c3
c4 1

)−1

=


dp +O(p, s)

q11 pdp + q12(sdp + pds)
+ q22sds + c1dp + c3ds
+O(p, s)2

r11 pdp + r12(sdp + pds)
+ r22sds + c4dp + c2ds
+O(p, s)2

ds +O(p, s)

 .

By taking

c1 = −(q11 p + q12s)+O(p, s)2, c3 = −(q12 p + q22s)+O(p, s)2,

c4 = −(r11 p + r12s)+O(p, s)2, c2 = −(r12 p + r22s)+O(p, s)2,

we find a section g1 = hg0 of the bundle B1.
Then the general element of B1 is given by h1g1 for h1 ∈ H1. The Maurer-Cartan form

is given by

(αR)h1g1 = d(h1g1)(h1g1)
−1

= (dh1)h−1
1 + h1(dg1)(g−1

1 )h−1
1 .

Here

d(g1)(g1)
−1

=

(
dã 0

(dd̃)A + d̃(dA) dd̃

)
g−1

1

=

(
(dã)ã−1 0

(dd̃)Aã−1
+ d̃(dA)ã−1

− (dd̃)d̃−1ã Aã−1 (dd̃)d̃−1

)
.
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In the origin we have A = 0 and dA =

(
dp 0
0 ds

)
. Hence ϑ ′

= (dp, ds)T , ϑ ′′
= 0. Also

ã−1
=

(
1 −q11 p − q12s

−r12 p − r22s 1

)−1

+O(p, s)2

=

(
1 q11 p + q12s

r12 p + r22s 1

)
+O(p, s)2,

(dã)ã−1
=

(
0 −q11dp − q12ds

−r12dp − r22ds 0

)
+O(p, s)2.

The component ξ ′′ of the Maurer-Cartan form is given by ((dã)ã−1)
′′ since the term (dh1)h−1

1
has no contribution and at the special point h1 is the identity matrix. Hence

ξ ′′
=

(
−q11dp
−r22ds

)
+

(
−q12ds
−r12dp

)
=

(
−q11
−r22

)
ϑ ′

+

(
−q12
−r12

)
(ϑ ′)F .

In a similar way we can calculate that

ζ ′′
=

(
q12
r12

)
ϑ ′

+

(
−q22
−r11

)
(ϑ ′)F .

This means that at g1 we the values of f, g, e correspond to the second order jets of the
surface in local coordinates.

Higher order

Since a is invertible we can transform h into zero by choosing a unique element b′′. This
reduces the bundle B1 to a new bundle, which we denote by BS . The structure group of the
bundle is the parabolic subgroup of GL(2,D) given by matrices of the form(

a b
0 c

)
.

On BS we have ξ ′′
= f ϑ ′, ζ ′′

= g(ϑ ′)F . The functions f, g are functions on BS that
transform under the action given in formula (2.25). The functions to not descent to the surface
S, hence they are not invariants. From the action we can see that the functions f, g do define
a pair of relative invariants. The expression | f |

2/|g|
2 is invariant under the structure group

and is equal to the invariant I .

Example 2.3.24. Let K be the standard hyperbolic structure on R4. The standard basis for
R4 we denote by e0

j and we define L0 = Re0
1 + Re0

2. The group P GL(2,D) as a subgroup
of P GL(4,R) acts transitively on the set of all hyperbolic lines. It is not difficult to see that
G = P GL(2,D) is precisely the bundle BS over the hyperbolic surface S = Gr2(V, K ). We
can introduce local coordinates a, b, c, d for G, where a, b, c, d ∈ D and1 = ad −bc ∈ D∗

and the elements in G are represented by the matrices(
a b
c d

)
.
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The pullback of the right-invariant Maurer-Cartan form on GL(4,R) to G is(
ξ η

ϑ ζ

)
= 1−1

(
dda − cdb −bda + adb
ddc − cdd −bdc + add

)
.

We see that for this pullback we have the relations ϑ ′′
= 0, ξ ′′

= ζ ′′
= 0. Hence the

projection G → Gr2(R4, K ) : g 7→ g−1(L0) is a bundle over Gr2(R4, K ) that is a subbundle
of B1. The relations ξ ′′

= ζ ′′
= 0 show that the invariants f , g and e are zero for the

surface. �



Chapter 3

Geometry of partial differential
equations

In this chapter we introduce the two main classes of partial differential equations that are
the subject of this dissertation. The classes are the determined first order systems of partial
differential equations for two unknown functions of two variables and the second order scalar
partial differential equations in the plane. These two classes of equations have a very similar
geometric structure and this is precisely the reason that we can develop the theory for these
systems in parallel.

Small variations of these systems, such as introducing more dependent or independent
variables, considering under- or overdetermined systems or higher order equations can lead
to systems of partial differential equations for which the geometry is completely different
from the geometry in the two systems mentioned above. This makes it difficult to apply the
theory to be developed in this dissertation to these other types of systems.

3.1 Ordinary differential equations
We start with describing the geometry of ordinary differential equations to show the methods
used. Consider the ordinary differential equation

z′′
= F(x, z, z′). (3.1)

The solutions to this equation are functions z(x) that satisfy z′′(x) = F(x, z(x), z′(x)). The
graph of a 2-jet of a solution is a submanifold of the second order jet bundle J2(R). On
J2(R) we have coordinates x, z, p = zx , h = zxx and the two contact forms θ1

= dz − pdx ,
θ2

= dp − hdx . To each function f we associate the submanifold

S f = { (x, f (x), f ′(x), f ′′(x)) ∈ J2(R2) | x ∈ R }.

The submanifolds S f are integral manifolds of the Pfaffian system I = span(θ1, θ2).
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If f is a solution to the differential equation (3.1), then S f is a submanifold of the hyper-
surface M ⊂ J2(R) defined by h = F(x, z, p). Conversely, every integral manifold of the
Pfaffian system I restricted to M for which dx 6= 0 is locally the graph of a solution. The
correspondence between solutions of (partial) differential equations and integral manifolds
of a Pfaffian system (or more general an exterior differential ideal) will be used many times.

3.2 Second order scalar equations
We consider a second order partial differential equation for the unknown function z and the
independent variables x, y. We introduce the coordinates x , y, z, p = zx , q = zy , r = zxx ,
s = zxy , t = zyy for the second order contact bundle J2(R2,R). The use of p, q and
r, s, t for the first and second order derivatives, respectively, was introduced by Monge. The
coordinates x, y, z, p, q, r, s, t are called Monge coordinates or classical coordinates. The
most general form of such an equation is given by

F(x, y, z, p, q, r, s, t) = 0. (3.2)

We require that that (Fr , Fs, Ft ) 6= 0, so that (3.2) defines a truly second order equation. If
Fr 6= 0, then we can (locally) solve for r and rewrite the equation as

r = ρ(x, y, z, p, q, s, t). (3.3)

If Fr = 0 at a point, then we can either solve for one of the other second order variables or
we can make a coordinate transformation x 7→ x + y, y 7→ x − y or x 7→ y, y 7→ x such
that in the new coordinates Fr 6= 0.

Let us analyze the geometry of such an equation. On the second order jet bundle the
equation (3.2) or (3.3) defines a hypersurface M . On the second order contact bundle we
have the contact forms

θ0
= dz − pdx − qdy,

θ1
= dp − rdx − sdy, θ2

= dq − sdx − tdy.
(3.4)

These contact forms pull back to contact forms on M , which will also be denoted by θ j .
Assume that Fr 6= 0 and that we can solve for r as r = ρ(x, y, z, p, q, s, t). On the hyper-
surface M the contact forms are

θ0
= dz − pdx − qdy,

θ1
= dp − ρdx − sdy, θ2

= dq − sdx − tdy.
(3.5)

The solutions of the partial differential equation (3.2) are locally in one-to-one correspon-
dence with the integral manifolds of the Pfaffian system generated by the forms (3.5) that
satisfy the independence condition dx ∧ dy 6= 0.

The distribution V dual to the contact forms is spanned by

∂x + p∂z + ρ∂p + s∂q , ∂y + q∂z + s∂p + t∂q ,

∂s, ∂t .
(3.6)
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A simple calculation shows that

C(V) = span ( 0 ) , V ′
= span

(
V, ∂p, ∂q

)
,

C(V ′) = span (∂s, ∂t ) , V ′′
= span

(
V ′, ∂z

)
= T M.

These expressions are only expressions in local coordinates, but since ρ was general we can
see that all systems that come from second order scalar equations have a rank 4 distribution
V with the properties that rankV ′

= 6, rankV ′′
= 7, rank C(V ′) = 2, C(V ′) ⊂ V . These

conditions on V describe the entire geometry of the equation. We will see in Section 4.1 that
distributions with these properties can locally be written as a second order equation.

3.3 First order systems
Consider a first order system of partial differential equations in the independent variables
x1, . . . , xn and dependent variables u1, . . . , us defined by the equations

Fλ(x, u, p) = 0 λ = 1, . . . , c. (3.7)

Here pi
j stands for the first order derivative ∂ui/∂x j . We can define this system in a co-

ordinate invariant way as follows. Let B be an open subset of Rn
× Rs and consider the

Grassmann bundle Grn(T B) of n-planes over B. If we assume the equations (3.7) are of
constant maximal rank c and we can solve for the first order variables p, then the equations
define a codimension c submanifold M of the Grassmann bundle and the canonical projection
π : M → B is a submersion. On the Grassmann bundle Gr2(T B)we have the contact system
I , which is generated by the contact forms θ i

= dui
− pi

j dx j , i = 1, . . . , s. The pullbacks
of the contact forms define the contact system on M . This contact system is of constant rank
and defines the contact distribution V = I ⊥. Solutions u(x) of the system (3.7) correspond
to integral manifolds of the contact system on M .

We will specialize to the case n = s = c = 2. For such first order systems we will write
x, y for the independent variables, u, v for the dependent variables and p = ux , q = u y, r =

vx , s = vy for the first order derivatives. The equation manifold M has dimension 6. From
this point on we adopt the convention that, unless stated otherwise, a first order system is a
first order system of two partial differential equations in two independent and two dependent
variables. The definition of such a system can be given by equations in local coordinates, in
terms of a distribution on a 6-dimensional manifold or in terms of a codimension 2 Pfaffian
system.

Any codimension 2 first order system is defined by two equations F1
= 0, F2

= 0 and
can be characterized as follows. If we define ω1

= dx , ω2
= dy, then the structure equations

for the contact forms are

dθ ≡

(
π1

1 π1
2

π2
1 π2

2

)
∧ ω mod I.

Notice that any system satisfies dθ ≡ 0 mod J , J = span(I, ω1, ω2). Hence the graphs
of solutions to the partial differential equation correspond to integral manifolds of the linear
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Pfaffian system (I, J ). Since dω ≡ 0 mod J , the distribution dual to J is an integrable
rank two distribution. The leaves of this distribution are precisely the fibers of the projection
M → B. The contact distribution V on M is the distribution dual to I . The Lie brackets
modulo the subbundle define a tensor V ×M V → T M/V . We will see later that for elliptic
and hyperbolic systems this tensor is non-degenerate (the precise definition of non-degenerate
is given in Appendix A.1). We will use these properties to define a generalization of a first
order system in which there is no distinguished set of independent or dependent variables.

Definition 3.3.1. A generalized first order system under contact geometry is a smooth mani-
fold M of dimension 6 with a rank 4 distribution V such that the Lie brackets modulo the
subbundle is a non-degenerate map V ×M V → T M/V . A generalized first order system un-
der point geometry is a generalized first order system (M,V) with an integrable distribution
U ⊂ V .

A contact transformation of a first order system is a diffeomorphism leaving invariant V .
A point transformation is a diffeomorphism leaving invariant both V and U .

The discussion above shows that any elliptic or hyperbolic first order system defines a
generalized first order system under contact geometry and a generalized first order system
under point geometry as well. In Section 4.6.1 we will see that any analytic generalized first
order system can be written locally as an elliptic or hyperbolic system of partial differential
equations. The parabolic first order systems can also be formulated on a 6-dimensional mani-
fold with rank 4 distribution. The author is not aware of conditions on V that guarantee that
(M,V) is locally equivalent to a first order parabolic system. For some non-generic distri-
butions (for example if the distribution is integrable), there are no corresponding systems of
equations.

The definition (3.3.1) of a generalized first order system under point geometry is very
similar to the definition in McKay [51, p. 37] of almost generalized Cauchy-Riemann equa-
tions. The only differences are that McKay only defines the systems for equations of elliptic
type (for the type of first order system see Section 4.6) and that he introduces an orientation
for the manifold M .

Remark 3.3.2. A structure theory of first order systems in terms of vector fields was already
introduced by Vessiot [67]. Dual to the formulation in vector fields there is a formulation
in differential forms. For first order elliptic systems McKay [51] has developed the struc-
ture theory in great detail. The structure theory using differential forms and vector fields is
developed by Vassiliou for hyperbolic systems [65, 66]. �



Chapter 4

Contact distributions for partial
differential equations

In this chapter we will formulate the structure theory of second order scalar partial differential
equations in the plane in terms of contact distributions. Vessiot [67, p. 307] already gave a
beautiful geometric characterization of these equations, see Theorem 4.1.2. The papers by
Vessiot have been summarized by Stormark [64, Section 5.2, Chapter 11] and Duistermaat
[25, Section 3.6]. Here we give our own formulation and extend the structure theory given
by these authors.

The theory for first order systems is very similar, but we will not explicitly derive the
results for these systems. In Section 4.6 the theory for first order systems is discussed. As an
application of the theory we will construct a framing on the equation manifold of a first order
system that is invariant under general contact transformations. This framing can then be used
to define invariants for the system. This section is complementary to the theory in Chapter 5
and 6. In those chapters differential forms and the method of equivalence are used to develop
a structure theory.

4.1 The contact distribution
Let F(x i , z, pi , hi j ) = 0 be a second order scalar partial differential equation in n indepen-
dent variables x1, . . . , xn . The function F defines a hypersurface in the second order contact
bundle Q. This second order contact bundle has local coordinates x i , z, pi , hi j . The contact
forms on Q are generated by

θ0
= dz − p j dx j , θ i

= dpi
− hi j dx j , i = 1, . . . , n.

The distribution V dual to the contact forms has dimension n + n(n + 1)/2.

Definition 4.1.1. Let M be a smooth manifold and V a smooth distribution on M . The pair
(M,V) is called a Vessiot system in n variables if it satisfies the following conditions:
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• The codimension of V in T M is equal to n + 1.

• For every m ∈ M the Cauchy characteristic space C(V)m of V at m is equal to zero.

• For every m ∈ M the derived bundle V ′
m has codimension one in Tm M .

• For every m ∈ M , C(V ′)m is contained in Vm and has codimension equal to 2n + 1 in
Tm M . 	

Theorem 4.1.2. Let (M,V) be a Vessiot system in n variables. Then locally the system
is isomorphic to the system defined by a smooth hypersurface in the second order contact
bundle for a manifold of dimension n + 1.

Proof. This theorem is Proposition 3.8 in Duistermaat [24]. The theorem for the case n = 2
is given in Stormark [64, Theorem 11.1]. The original for n = 2 is due to Vessiot [68].

Locally the characteristics C(V ′) define a projection π : M → P = M/C(V ′). The
bundle V ′ projects to a codimension one bundle C ⊂ T P . The pair (P, C) is a contact
manifold of dimension 2n + 1. For every m ∈ M the subspace Vm projects to a codimension
n +1 (dimension n) subspaceWm ⊂ Cp, p = π(m). The subspaceWm defines a point in the
second order contact bundle Q over P . The fibers of Q → P have dimension n(n + 1)/2. If
we vary m along the fiber π−1(p) thenWm will vary in Cp. Let ι : M → Q : m 7→ Wm ∈ Q.

We will prove that ι is an immersion and hence locally ι defines an embedding M → Q.
Let πQ be the projection Q → M . Since πQ B ι = π , the kernel of T ι is contained in
ker(Tπ) = C(V ′). Suppose that Xm ∈ ker Tm ι ⊂ C(V ′). Extend X to a smooth vector
field contained in C(V ′). Since Tm ι(Vm) = Wm and Tm ι(Xm) = 0, it follows that [X, Y ] ⊂

V + C(V ′) = V for all Y ⊂ V . But then X ⊂ C(V). Since C(V) = 0 this implies X = 0.
The image of Mp under ι defines a hypersurface in the fiber Q p over p. Hence M is

mapped to a hypersurface in the second order contact bundle Q that is transversal to the
projection Q → P . �

The Vessiot theorem says that locally the study of Vessiot systems (M,V) is equivalent
to the study of partial differential equations. The transformations that leave invariant the
distribution V are the contact transformations of (M,V). In the sections below we will study
the geometry of Vessiot systems (M,V).

4.2 Structure on V
We continue our analysis of second order equations. We define a generalized second order
equation to be a Vessiot system (M,V) in 2 variables. Since locally the generalized second
order equations are equivalent to second order scalar partial differential equations by the
Vessiot theorem, we will often omit the adjective generalized.

We will use the contact distribution V and the Lie brackets modulo the subbundle to create
more structure on the equation manifold. We specialize to the case n = 2, hence rankV = 4,
rankV ′

= 6 and rankV ′′
= rank(T M) = 7. The Lie brackets restrict to a bilinear form
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λ = [·, ·]/V : V ×M V → V ′/V on V to the derived bundle V ′/V which is called the Lie
brackets modulo the subbundle. For any form ξ ∈ (V ′/V)∗ we can make the composition
ξ B λ which is a 2-form on V . Then (ξ B λ)∧ (ξ B λ) defines a 4-form on V . After a choice of
a volume form volV on V we can define a quadratic form Q on (V ′/V)∗ by

(ξ B λ) ∧ (ξ B λ) = Q(ξ)volV . (4.1)

The form Q modulo non-zero scalar factors is an invariantly defined conformal quadratic
form. The definiteness of this quadratic form is contact invariant and determines the type
of the equation. We say the system is elliptic, hyperbolic or parabolic in the case that Q is
definite, indefinite or degenerate, respectively. Note that the positive definite case is identified
with the negative definite case by means of multiplication of the conformal quadratic form by
a factor -1. In the elliptic and hyperbolic case the map λ : V×M V → V ′/V is non-degenerate
in the sense of Appendix A.1.

Our definition of the type of a Vessiot system agrees with the classical definition of the
type of a second order equation, see the example below. Since our definition is contact
invariant, this shows immediately that the classical definition is contact invariant as well. A
contact invariant definition of the type of a second order scalar equations was also given by
Gardner and Kamran [38, p. 63]. Their definition is equivalent to our definition. They make
the remark that their definition is contact invariant, but do not compare the definition to the
classical definition in terms of the symbol of a partial differential equation.

Example 4.2.1 (Symbol of a second order partial differential equation). In classical
theory a second order partial differential equation is a hypersurface in the second order con-
tact bundle of a 3-dimensional manifold that is transversal to the projection to the first order
contact manifold. If x, y are two independent coordinates and z the dependent coordinate,
then the equation is given by

F(x, y, z, zx , zy, zxx , zxy, zyy) = 0. (4.2)

The type of the equation is defined using the symbol of the equation. At a point we can
linearize the equation with respect to the highest order variables. The result is a linear partial
differential operator and we define the symbol of the equation at the point m to be the symbol
of the linearization. The linearization of (4.2) at a point m is given by

Lz = Fr (m)
∂2z
∂x2 + Fs(m)

∂2z
∂x∂y

+ Ft (m)
∂2z
∂y2 . (4.3)

We write X for the manifold with coordinates x, y. The symbol is given by the quadratic
form on T ∗ X

(ξx , ξy) ∈ T ∗ X 7→ Frξx
2
+ Fsξxξy + Ftξy

2. (4.4)

The type of the equation is elliptic or hyperbolic if this quadratic form is definite or indefinite,
respectively. We will show that the classical definition of the type of the equation (4.2)
corresponds to the type of the Vessiot system defined by this equation.
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The second order contact bundle has local coordinates x , y, z, p, q , r , s, t . The contact
forms are

θ0
= dz − pdx − qdy,

θ1
= dp − rdx − sdy,

θ2
= dq − sdx − tdy.

(4.5)

The equation (4.2) defines a hypersurface M in the second order contact bundle. The contact
forms θ j pull back to contact forms on M . The contact distribution V on M is equal to
span(θ0, θ1, θ2)⊥. We choose e5 = ∂p, e6 = ∂q . The vector fields e5, e6 define a basis for
V ′/V . Define ξ : V ′/V → R by ξ1e5

+ ξ2e6. So ξ(a∂p + b∂q) = aξ1 + bξ2.
Recall that λ : V ×M V → V ′/V was the Lie brackets modulo the subbundle. The

composition ξ B λ : V ×M V → R is equal to the restriction of the 2-form

ξ1dθ1
+ ξ2dθ2

= ξ1(dx ∧ dr + dy ∧ ds)+ ξ2(dx ∧ ds + dy ∧ dt)

to V ×M V and (ξ B λ) ∧ (ξ B λ)/2 equals the restriction of the 4-form

(ξ1)
2dr ∧ dx ∧ ds ∧ dy + (ξ1ξ2)dr ∧ dx ∧ dt ∧ dy + (ξ2)

2ds ∧ dx ∧ dt ∧ dy.

We assume that Fr 6= 0. If Fr = 0, then either Fs 6= 0 or Ft 6= 0 and we can carry
out a calculation similar to the one below leading to the same conclusions. The form � =

dx ∧ dy ∧ ds ∧ dt restricts to a non-zero volume form on V and on V the contact forms (4.5)
vanish. Since the hypersurface M is defined by F = 0, the form Fr dr +Fsds+Ft dt+Fpdp+

Fqdq + Fx dx + Fydy + Fzdz is zero on M . We can use this to calculate that restricted to
V ×M V

Fr (ξ B λ) ∧ (ξ B λ) =

(
−Ft (ξ1)

2
+ ξ1ξ2 Fs − Fr (ξ2)

2
)
�.

Since Fr 6= 0 the conformal quadratic form defining the type of the Vessiot system is

ξ 7→ −Ft (ξ1)
2
+ ξ1ξ2 Fs − Fr (ξ2)

2.

If we compare this form to the conformal quadratic form (4.4) then we see that the discrim-
inant of both quadratic forms is (Fs)

2
− 4Ft Fr . Hence the two definitions of the type of a

second order equation agree. �

If Q is non-degenerate then the isotropic cone (see page 38) consists of two distinct lines.
We can choose two non-zero points ζ1, ζ2 such that each point is contained in a different line
of the isotropic cone. In the elliptic case these points are complex. The isotropic elements ζ1
and ζ2 are forms on V ′/V and we can define the characteristic 2-forms

ζ1,2 B λ : V ×M V → R.

(in the elliptic case the quadratic forms are complex valued). Since (ζ j Bλ)∧ (ζ j Bλ) = 0 the
characteristic 2-forms are decomposable. We can then define the characteristic distributions
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F = ker(ζ1 B λ) and G = ker(ζ2 B λ). The distributions F and G are called Monge systems in
the classical literature (see Stormark [64]). For X ⊂ F , Y ⊂ G and Z ⊂ V we have

(ζ1 B λ)(X, Z) = 0, (ζ2 B λ)(Z , Y ) = 0.

This implies that (ζ1 B λ)(X, Y ) = (ζ2 B λ)(X, Y ) = 0. But then (ζ B λ)(X, Y ) = 0 for all
ζ ∈ (V ′/V)∗ and therefore λ(X, Y ) = 0. Classically this property of the Monge systems is
written as [F,G] ≡ 0 mod V .

Example 4.2.2 (Wave equation). The second order scalar equation zxy = 0 is called the
wave equation. We use the classical coordinates x , y, z, p, q, r , t as coordinates on the
equation manifold. The Monge systems for the wave equation are given by

F = span
(
∂x + p∂z + r∂p, ∂r

)
, G = span

(
∂y + q∂z + r∂q , ∂t

)
.

The derived sequence of F is given by

F ′
= span

(
∂x + p∂z, ∂r , ∂p

)
, F ′′

= span
(
∂x , ∂r , ∂p, ∂z

)
and F ′′′

= F ′′. The distribution F has three invariants: y, q and t . �

Example 4.2.3. We consider the hyperbolic second order partial differential equation r +

s = 0. We use the variables x, y, z, p, q, r, t as coordinates on the equation manifold. The
contact distribution V is given by span(Dx , Dy, ∂r , ∂t ) with Dx = ∂x + p∂z + r∂p − r∂q ,
Dy = ∂y +q∂z −r∂p + t∂q . The derived bundle is V ′

= span(V ′, ∂p, ∂q). We define e5 = ∂p,
e6 = ∂q . The projections of e5 and e6 in V ′/V we denote by ẽ5 and ẽ6, respectively.

The equation is already linear in the highest order variables. Hence at every point the
symbol of the partial differential equation is given by

ξ 7→ (ξx )
2
+ ξxξy . (4.6)

With respect to the basis e1 = Dx , e2 = Dy , e3 = ∂r , e4 = ∂t for V introduced above,
the Lie brackets modulo the subbundle are given by the matrix

0 0 −ẽ5 + ẽ6 0
0 0 ẽ5 −ẽ6

ẽ5 − ẽ6 −ẽ5 0 0
0 ẽ6 0 0

 .
Let ξ ∈ (V ′/V)∗ be given by ξ1ẽ5

+ ξ2ẽ6. Then ξ B λ has the matrix representation
0 0 −ξ1 + ξ2 0
0 0 ξ1 −ξ2

ξ1 − ξ2 −ξ1 0 0
0 ξ2 0 0

 .
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As a two-form restricted to V ×M V we can represent ξ B λ as

(−ξ1 + ξ2)dx ∧ dr + ξ1dy ∧ dr − ξ2dy ∧ dt.

Then (ξ B λ)∧ (ξ B λ) ∈ 34(V∗) is equal to 2(−ξ1 + ξ2)ξ2 dx ∧ dy ∧ dr ∧ dt . The conformal
quadratic form defining the type of the equation is (ξ1 − ξ2)ξ2. This quadratic form and the
quadratic form in (4.6) both have positive discriminant so the equation is indeed hyperbolic.
As isotropic elements we can choose ζ1 = (1, 0), ζ2 = (1, 1). The characteristic 2-forms on
V ×M V are

ζ1 B λ = (dx − dy) ∧ dr, ζ2 B λ = dy ∧ (dr − dt).

The Monge systems are

F = span
(
Dx + Dy, ∂t

)
, G = span (Dx , ∂r + ∂t ) .

We leave it to the reader to check that the Monge systems satisfy [F,G] ≡ 0 mod V . �

For hyperbolic systems we can use the Monge systems to define an operator J on V by
J |F = id, J |G = − id. Note that V = F ⊕ G so J defines a hyperbolic structure on V .
The operator J is invariantly defined up to a minus sign, i.e., up to a choice of one of the
two characteristic systems. Since [F,G] ⊂ V and the Lie brackets modulo the subbundle are
non-degenerate, the derived bundle of F has rank 3. The same is true for G. It follows that
V ′

= F ′
⊕ G′ and V ′/V = (F ′/F) ⊕ (G′/G). There is a unique hyperbolic structure JV ′/V

on V ′/V such that the Lie brackets modulo the subbundle define a map V ×M V → V ′/V
that is linear with respect to the hyperbolic structures J and JV ′/V . This hyperbolic structure
is defined by JV ′/V |F ′/F = id, JV ′/V |G′/G = − id. An alternative definition would be
JV ′/V |ker ζ1 = id, JV ′/V |ker ζ2 = − id. The hyperbolic structure J on V can be extended to a
hyperbolic structure J on V ′ by J |F ′ = id, J |G′ = − id. Note that J 2

= id on V ′. Since V
is invariant under J , the extension J : V ′

→ V ′ induces a map J : V ′/V → V ′/V . This map
is equal to JV ′/V . Because of the definition of J we will write V+ = F and V− = G for the
Monge systems.

In the elliptic case we have complex Monge systems and we can define J as an operator
on V ⊗ C. We define J |F = i and J |G = −i . Since J 2

= −1 on V ⊗ C this indeed defines
a complex structure on V ⊗ C. Let us proof that the restriction of J to V defines a complex
structure on V . We can write any vector X ∈ V ⊗ C as X = X+ + X−, with X+ and X− the
components of X in the characteristic systems F and G, respectively. The isotropic elements
ζ1 are ζ2 can be chosen to be complex conjugated. This implies that (ζ1 B λ) ∧ (ζ1 B λ)

and (ζ2 B λ) ∧ (ζ2 B λ) are complex conjugated as well and hence F and G are complex
conjugated. If X ∈ V , i.e., X is real, then X = X̄ and hence X+ + X− = X+ + X−. It
follows that X+ = X− and X = X++ X+. Then J X = i X+− i X− = i X+− i X+ and hence
J X = J X . So J X is in V again and J defines an operator J : V → V with J 2 X = −X .
Again there is a unique extension of J to V ′ such that J defines a complex structure on V ′

and λ is complex-bilinear.

Remark 4.2.4. In the analytic setting we can complexify any elliptic system and arrive in
this way at a hyperbolic system for complex variables. �
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4.3 The integral elements
The structure of the integral elements at a point x ∈ M is completely determined by the
type of the equation. We will give a geometric picture of the space of 2-dimensional integral
elements V2(V)m depending on the type of the equation. Recall from Section 1.2.4 that a
2-plane E is an integral element for the distribution V if and only if E ⊂ V and the Lie
brackets modulo V vanish on E . The 1-dimensional integral elements are the 1-dimensional
linear subspaces of V . The distribution V has no 3-dimensional integral elements.

Proposition 4.3.1. Let (M,V) be an elliptic or hyperbolic first order system. A linear sub-
space E of V of dimension two is an integral element if and only if J (E) = E, i.e., E is
J -invariant.

The proof of the proposition follows from the definition of J using the Monge systems and
the fact that a linear subspace E of a distribution is an integral element if and only if E ⊂ V
and the Lie brackets modulo the subbundle vanish when restricted to E×E . Proposition 4.3.1
leads to the following geometric description of the space of 2-dimensional integral elements.

Elliptic case The complex Monge systems define a unique complex structure on V . The
integral elements are precisely the complex 1-dimensional complex-linear subspaces
in V . So V2(V)m is the complex projective line for the complex vector space (Vm, Jm)

and therefore can be identified with the Riemann sphere.

Hyperbolic case Every integral element E has 1-dimensional intersections E+ = E ∩ F ,
E− = E ∩G with the Monge systems. The mapping (X, Y ) 7→ X +Y from PF×M PG
to V2(V) is bijective. Because PFm and PGm are both diffeomorphic to a circle, V2(V)m
is diffeomorphic to a torus.

Parabolic case For a parabolic equation the two Monge systems coincide and hence there
is only one (rank two) characteristic system F . A 2-dimensional subspace of V is an
integral element if and only if the intersection of E and F is non-zero. The space of
integral elements has a cone-type singularity at the integral element E = F and looks
like a constricted torus (see Figure 4.1). The constricted point is equal to the integral
element E .

Integral manifolds. Using the Cartan-Kähler theorem one can prove in the analytic setting
that for each integral element E at x there exists an integral manifold through the point x with
tangent space equal to E . These integral manifolds can be parameterized using two functions
of one variable. See Theorem 6.1.6.

The 2-dimensional integral manifolds of V have at each point a tangent space that is
equal to a 2-dimensional integral element E . The 2-plane E is J -invariant and hence each
element E has a complex structure or a hyperbolic structure depending on the type of the
equation. On the integral manifold this defines an almost complex structure or almost product
structure depending on the type of equation. Since the dimension is two this structure is
always integrable. This means that the 2-dimensional integral manifolds of a hyperbolic
equation have a double foliation by characteristic curves (see Example 2.2.9).
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Figure 4.1: Space of 2-dimensional integral elements for the parabolic equations

4.4 The Nijenhuis tensor

Until this point the structure for elliptic, hyperbolic and parabolic cases were very similar and
we could use the same constructions. From this point on we will assume that the system is
either elliptic or hyperbolic. These two cases are very similar and although the proofs and
constructions in both cases are not identical, they closely related.

In the elliptic case we have constructed a complex structure JV on V and a complex struc-
ture JV ′/V on V ′. In the hyperbolic case we have a hyperbolic structure on V and V ′/V . We
have given an extension of the complex structure to V ′ using the derived bundles of the Monge
systems. To give additional motivation for this extension of J we will consider the Nijenhuis
tensor. For convenience the analysis below will be done for the elliptic case. However, in the
hyperbolic case everything will be the same with complex replaced by hyperbolic.

Recall that the Nijenhuis tensor for an almost complex structure or almost product struc-
ture J is given by the expression

N (X, Y ) = [J, J ](X, Y ) = [J X, JY ] − J [J X, Y ] − J [X, JY ] + J 2
[X, Y ]. (4.7)

Since J is only defined on V ′ this expression is not well-defined for all vectors X, Y . But for
X, Y ⊂ V we have J X, JY, [X, Y ], [J X, Y ], [X, JY ] ⊂ V ′ so we can define the map

N : V ×M V → T M.

We will call this map the Nijenhuis tensor as well. We will consider extensions of the complex
structure on V to a complex structure on V ′ such that the induced structure on V ′/V makes
the Lie brackets modulo the subbundle complex-linear. We will see that there is a unique
extension of the complex structure to V ′ such that the Nijenhuis tensor vanishes on V ×M V .

By choosing a splitting s of the exact sequence

0 → V → V ′
s
� V ′/V → 0
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we can identify V ′ with V×MV ′/V . Any such identification will extend our complex structure
to a complex structure J : V ′

→ V ′ such that

J |V = JV , J |V ′/V = JV ′/V .

The complex structure J has the property J (V) ⊂ V . Let K be another complex structure
on V ′ for which the restriction to V and V ′/V equals JV and JV ′/V , respectively. Write
D = K − J . Then for X ∈ V we have

D(X) = K (X)− J (X) = JV (X)− JV (X) = 0.

Hence D(V) = 0. Since D(V) = 0 and D is a map from V ′ to V ′ it induces a map D|V ′/V :

V ′/V → V ′/V . But D|V ′/V = KV ′/V − JV ′/V = 0, so D(V ′) ⊂ V . This implies D2
= 0,

hence D acts as a boundary operator. Finally we have

0 = K 2
− J 2

= (J + D)2 − J 2

= J 2
+ J D + D J + D2

− J 2
= J D + D J.

(4.8)

Hence D is complex-antilinear with respect to the complex structure J (and complex-antilin-
ear with respect to the structure K as well). The complex-antilinear maps D : V ′

→ V ′ with
the properties

D(V) = 0, D(V ′) ⊂ V, (4.9)

can be described in the following way. Choose a complex-antilinear form v : V ′/V → C
with v 6= 0; such a form is unique up to a complex scalar factor. We can regard v as a
complex-antilinear form on V ′ that is identically zero on V . The map

δ 7→
(
Dδ : V ′

→ V ′
: X 7→ v(X)δ

)
from V to the space of complex-antilinear maps D : V ′

→ V ′ with the properties (4.9) is
bijective.

To make our extension to J to V ′ unique we will consider the Nijenhuis tensor. It is clear
that N restricted to V ×M V takes values in V ′. From the J -linearity of the Lie brackets
modulo V it follows that in fact N (V,V) ⊂ V . So the Nijenhuis tensor defines an anti-
symmetric bi-J -antilinear V-valued form on V . By counting dimensions we can easily see
that such a form is uniquely determined by the value on a pair X, Y ∈ V . We can write
N (X, Y ) = w(X, Y )ν for ν ∈ V and w an anti-symmetric bi-antilinear C-valued form (or
D-valued form in the hyperbolic setting).

Let K = J + D as above and assume D = Dδ for a certain δ ∈ V . Then for X, Y ⊂ V

[K , K ](X, Y ) = [(J + D)X, (J + D)Y ] − (J + D)[(J + D)X, Y ]

− (J + D)[X, (J + D)Y ] + (J + D)2[X, Y ]

= [J X, JY ] − (J + D)[J X, Y ] − (J + D)[X, JY ] + J 2
[X, Y ]

= [J, J ](X, Y )− D[J X, Y ] − D[X, JY ]

= w(X, Y )ν − v([J X, Y ] + [X, JY ])δ

= w(X, Y )ν − v(2J [X, Y ])δ.
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The map (X, Y ) 7→ v(2J [X, Y ]) is an anti-symmetric bi J -antilinear C-valued form, just as
w. Such a form is determined up to a scalar factor. Hence there is a unique δ ∈ V such that
w(X, Y )ν − v(2J [X, Y ])δ = 0 and hence the Nijenhuis tensor [K , K ] for K vanishes on V .
We have proved

Proposition 4.4.1. For an elliptic (hyperbolic) system there is a unique almost complex struc-
ture (almost product structure) J on V ′ such that the Lie brackets modulo V are J -linear and
the Nijenhuis tensor N = [J, J ] vanishes on V ×M V .

Finally we will show that the almost complex structure defined in the proposition above
using the Nijenhuis tensor and almost complex structure defined in the previous section using
the derived bundles of the Monge systems are identical. Let J be the almost complex structure
defined by the Monge systems. Assume that X is a vector field in F and Y a vector field in
G. Then J X = i X , JY = −iY and therefore

N (X, Y ) = [J X, JY ] − J [J X, Y ] − J [X, JY ] + J 2
[X, Y ]

= [i X,−iY ] − J [i X, Y ] − J [X,−iY ] − [X, Y ]

= [X, Y ] − i J [X, Y ] + i J [X, Y ] − [X, Y ] = 0.

In a similar way we can prove that for X, Y ∈ F and X, Y ∈ G we have N (X, Y ) = 0. This
shows that the Nijenhuis tensor vanishes on V ×M V for this almost complex structure and
hence must be equal to the almost complex structure from Proposition 4.4.1.

There is no complex structure or almost product structure on the equation manifold since
the equation manifold is of dimension 7. The operator J is only defined as a map V ′

→ V ′

and therefore we cannot define N on the whole tangent space. Can we extend J or N in a
natural way to a larger domain?

Let us start with an analysis of the Nijenhuis tensor. We could define the Nijenhuis tensor
on V ×M V because for all X, Y ⊂ V we have [X, Y ] ⊂ V ′ and J is defined on V ′. We
can in fact define N (X, Y ) for all vector fields X, Y ⊂ V ′ for which [X, Y ] ⊂ V ′. Note that
this condition only depends on the values of X and Y at a point and not on the first order
derivatives of X and Y . The Lie brackets modulo V ′ define an antisymmetric bilinear map
κ : V ′

×M V ′
→ T M/V ′. The set 0 = { (X, Y ) ∈ V ′

×M V ′
| κ(X, Y ) = 0 } is the largest

set on which we can define the Nijenhuis tensor using the complex structure J : V ′
→ V ′.

The structure of the set 0m can vary with the point m ∈ M and also depends on the system
(M,V). For this reason we will restrict ourselves to a subset of 0.

The condition [X, Y ] ⊂ V ′ for all Y ⊂ V ′ is precisely the definition of the Cauchy
characteristic subspace C(V ′). We can therefore define

N : V ′
×M C(V ′) → V ′

: (X, Y ) 7→ [J, J ](X, Y ).

This gives an extension of the tensor N defined in the previous section at each point m ∈ M
to the set (Vm × Vm) ∪ (V ′

m × C(V ′)m). If we use the Nijenhuis tensor in the context of
second order partial differential equations we will mean this extension, unless stated other-
wise. We will use this extension later to characterize the Monge-Ampère equations. Since
N is identically zero when restricted to V ×M V the interesting properties of the Nijenhuis
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tensor are determined by the restriction to V ′
×M C(V ′). The extension satisfies the prop-

erty N |V×M C(V ′) = 0 and therefore is completely determined by the restriction of N to
(V ′/V) ×M C(V ′). Both V ′/V and C(V ′) are complex one-dimensional. This together with
the complex-antilinearity of N implies that the tensor N is completely determined by its value
on a pair of non-zero vectors X ∈ V ′/V , Y ∈ C(V ′). For hyperbolic equations the Nijenhuis
tensor is determined by its value on a pair of vectors X ∈ V ′/V , Y ∈ C(V ′) that are generic
with respect to the hyperbolic structure. For any generic element Y ∈ C(V ′) we can define
the map

A = A(Y ) : V ′
→ V ′

: X 7→ N (X, Y ).

The image of A equals the image D of N . For an elliptic system the image of N can have
complex rank 0 or 1. For a hyperbolic system the rank of the image can be 0, 1 or 2. If the
image is non-zero, then it is not contained in V . This follows from theory to be developed in
Chapter 6. The statement follows from Lemma 6.1.2.

Example 4.4.2. Consider the hyperbolic equations of the form

s = φ(x, y, z, p, q).

If the equation is Darboux integrable (see Section 8) with 2 or 3 invariants for each charac-
teristic system, then the equation is called a hyperbolic Goursat equation.

We define Dx = ∂x + p∂z + r∂p + φ∂q , Dy = ∂y + q∂z + φ∂p + t∂q and

F1 = Dx + Dy(φ)∂t , F2 = ∂r ,

G1 = Dy + Dx (φ)∂r , G2 = ∂t ,

F3 = ∂p, G3 = ∂q , Z = ∂z .

The characteristic systems are given by F = span(F1, F2), G = span(G1,G2). The de-
rived bundle of V is spanned by F , G, F3 and G3. The Cauchy characteristics are C(V ′) =

span(F2,G2). The hyperbolic structure on V ′ is given by

J (F1) = F1, J (F2) = F2, J (F3) = F3,

J (G1) = G1, J (G2) = G2, J (G3) = G3.

The Nijenhuis tensor on (V ′/V)×M C(V ′) is identically zero. �

Example 4.4.3 (s = r2). The characteristic systems are given by

F = span
(
F1 = Dx , F2 = ∂r + 4r2∂t

)
, G = span

(
G1 = Dy − 2r Dy,G2 = ∂t

)
.

Let F3 = [F1, F2] = −∂p − 2r∂q , G3 = [G1,G2] = −∂q . The hyperbolic structure acts as
the identity on F ′

= span(F1, F2, F3) and as minus the identity on G′
= span(G1,G2,G3).

The Nijenhuis tensor is determined by

N (F3, F2) = 0, N (G3,G2) = 8∂q .

The image D of the Nijenhuis tensor has rank 1. Note that N (G3,G2) 6≡ 0 mod V . �
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Example 4.4.4 (3r t2 + 1 = 0). Consider the equation 3r t3
+ 1 = 0 for t 6= 0. The charac-

teristic systems are given by

F = span
(
F1 = Dx − (1/t2)Dy, F2 = ∂t − (1/t2)∂s

)
,

G = span
(
G1 = Dx + (1/t2)Dy,G3 = ∂t + (1/t2)∂s

)
,

with Dx = ∂x + p∂z − (1/(3t3))∂p + s∂q and Dy = ∂y + q∂z + s∂p + t∂q .
The image of the Nijenhuis tensor on F is spanned by b1 = −t∂y − tq∂q + (1 − st)∂p;

the image of N on G is spanned by b2 = t∂y + tq∂q + (1 + st)∂p. So D has rank 2. Since
[b1, b2] = 0 the bundle D is integrable. �

Example 4.4.5 (Generic image for the Nijenhuis tensor). Consider the equation r =

φ(x, y)t2 with φ(x, y) an arbitrary function with φ(x, y) > 0. For points with t > 0 this
defines a hyperbolic equation. Let κ =

√
2φ(x, y)t . The Monge systems are given by

F = span
(
F1 = Dx + κDy − t Dy(κ)∂t , F2 = ∂s + κ−1∂t

)
,

G = span
(
G1 = Dx − κDy + t Dy(κ)∂t ,G2 = ∂s − κ−1∂t

)
.

The image D of the Nijenhuis tensor has rank 2. The derived bundle D′ has rank 3. �

Example 4.4.6. We consider the second order equation s = pq . This is a Monge-Ampère
equation that is Darboux integrable on the second order jet bundle. In local coordinates
x, y, z, p, q, r, t we define the vector fields

F1 = ∂x + p∂z + r∂p + pq∂q + (pt + pq2)∂t , F2 = ∂r , F3 = −∂p,

G1 = ∂y + q∂z + pq∂p + t∂q + (pr + pq2)∂t , G2 = ∂t , G3 = −∂q .

The distribution V is spanned by F1,G1, F2,G2. The Nijenhuis tensor restricted to C(V ′)×M
(V ′/V) is determined by N (F2, F3) and N (G2,G3). We can check that

N (F2, F3) = 0, N (G2,G3) = 0.

So the Nijenhuis tensor is identically zero. �

4.5 Invariant framings
If we assume the system is generic in the sense that rankD = 2 and perhaps some other
conditions we can adapt to framing even further. Recall that for each non-zero generic Y ⊂

C(V ′) we have defined the map A(Y ) : V ′
→ V ′. We can restrict this map to the image D

of the Nijenhuis tensor. We then get a map A(Y ) : D → D that is complex-antilinear or
hyperbolic-antilinear in the elliptic and hyperbolic case, respectively. If rankD = 2, then
rank(D/V) = 2 as well. This fact can be proved using Lemma 6.1.2. Because A(V) = 0
it follows that the map A(Y ) : D → D has rank two and is invertible. The element Y is
unique up to a factor φ in C or D. The map ρ = A(Y ) B A(Y ) : D → D is complex-linear
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or hyperbolic-linear and invertible. This means that the map ρ is determined by scalar factor,
i.e., ρ : D → D : X 7→ ψX . Then

A(φY ) B A(φY ) = |φ|
2ρ = (|φ|

2ψ) id .

We can choose φ such that the norm of |φ2
|ρ equals 1. This determines an element φY ∈

C(V ′) up to a rotation (a rotation is multiplication by an element exp(iφ) in the elliptic
case and multiplication by (a, 1/a)T in the hyperbolic case). We will return to the problem
of finding an invariant (co)framing when we have developed the necessary structure theory
using differential forms. See Section 6.1.3.

4.6 First order systems
For first order systems of partial differential equations we have a 6-dimensional equation
manifold M and a distribution V of rank 4. The non-degeneracy of the Lie brackets modulo
V implies that the derived bundle has rank 6; it is equal to T M . Just as for second order
equations we can analyze the Lie brackets modulo the subbundle. Since for both first order
systems and second order equations the distribution V satisfies rankV = 4, rankV ′

= 6 the
analysis of the Lie brackets leads to the same structures. In particular we find a conformal
quadratic form on (V ′/V)∗ and define the system to be elliptic or hyperbolic if this form
is definite or indefinite. Depending on the type of the system we find two Monge systems
V+ = F , V− = G in V or V ⊗ C. For hyperbolic systems we define a hyperbolic structure
J on V by J |V±

= ±1 and for elliptic systems we define a complex structure on V ⊗ C by
J |V±

= ±i . The integral elements have the same structure as for second order equations.

Theorem 4.6.1. Let (M,V) be a generalized elliptic (hyperbolic) first order system. There
is a unique complex structure (almost product structure) J on T M = V ′ such that:

• The Lie brackets modulo the subbundle define a complex-bilinear (or hyperbolic-bilin-
ear) map λ : V ×M V → T M.

• The Nijenhuis tensor N = [J, J ] is identically zero when restricted to V ×M V .

We define the type of a generalized first order system using the conformal quadratic form
on V ′/V defined by ξ 7→ (ξ B λ) ∧ (ξ B λ). Just as for second order equations (see Exam-
ple 4.2.1), this definition of type corresponds to the classical definition of the type of a first
order system. The symbol for a first order system is a quadratic form on the cotangent space
with values in the 2 × 2-matrices. By taking the determinant of these 2 × 2-matrices we find
a conformal quadratic form that determines the type.

There is another (equivalent) definition of the type of a first order system M ⊂ Gr2(T B).
The fibers Mb ⊂ Gr2(Tb B) over a point b ∈ B are surfaces in the Grassmannian Gr2(Tb B).
In Section 2.3.1 we defined the type of a surface in the Grassmannian. A first order system is
elliptic or hyperbolic precisely when the fibers Mb, b ∈ B are elliptic or hyperbolic surfaces
in the Grassmannian Gr2(Tb B), see Remark 4.6.2.
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Remark 4.6.2 (Type of first order system). Suppose we have a first order system M ⊂

Gr2(T B). We choose local coordinates x, y, u, v for B. We let x, y, u, v, p, q, r, s be the
corresponding local coordinates for Gr2(T B). The equation manifold M has codimension
two in Gr2(T B) and is transversal to the projection Gr2(T B) → M . This means that we can
give a parameterization of M using two coordinates a, b and

p = p(x, y, u, v, a, b), q = q(x, y, u, v, a, b),

r = r(x, y, u, v, a, b), s = s(x, y, u, v, a, b).

For each point b ∈ B the 2 × 2-matrices (
p q
r s

)
form local coordinates for Gr2(Tb B). The conformal quadratic form on the tangent space is
given by the determinant, see Section 2.1.1. The tangent spaces to the fibers Mb are spanned
by the two vectors

A =

(
pa qa
ra sa

)
, B =

(
pb qb
rb sb

)
. (4.10)

A vector µ1 A + µ2 B in the tangent space of Mb is in the isotropic cone for the conformal
quadratic form if and only if

det(µ1 A + µ2 B) = det
(
µ1 pa + µ2 pb µ1qa + µ2qb
µ1ra + µ2rb µ1sa + µ2sb

)
= 0. (4.11)

The expression above is a quadratic form in µ1, µ2 and on page 46 we defined the type of the
tangent plane using the sign of the discriminant of this quadratic form.

Recall that the type of the system (M,V) was defined using a conformal quadratic form
defined in terms of the Lie brackets modulo V . A choice of isotropic elements for this con-
formal quadratic form leads to the Monge systems (which are complex in the elliptic case).
For the projection M → B the tangent spaces to the fibers are contained in V and are integral
elements of V . The vectors X in V (or V⊗C) that are contained in one of the Monge systems
have the property that the rank of the map V → V ′/V : Z 7→ λ(X, Z) is one, instead of two
for a generic element X .

In the local coordinates introduces above the contact distribution V is spanned by

X = ∂x + p∂u + r∂v, Y = ∂y + q∂u + s∂v,

A = ∂a, B = ∂b.
(4.12)

The tangent space to the fibers is spanned by the vectors A, B. Note that the vector A in
T M corresponds to the vector pa∂p + qa∂q + ra∂r + sa∂s in T Gr2(T B). Hence the vectors
A, B in (4.12) correspond to the vectors A, B defined in (4.10), through the embedding M →

Gr2(T B). We use ∂u and ∂v as representatives for a basis of V ′/V . Let V = µ1 A + µ2 B.
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Then

λ(V, X) = (µ1 pa + µ2 pb)∂u + (µ1ra + µ2rb)∂v mod V,
λ(V, Y ) = (µ1qa + µ2qb)∂u + (µ1sa + µ2sb)∂v mod V,
λ(V, A) = 0,
λ(V, B) = 0.

(4.13)

The rank of the image of the map Z 7→ λ(V, Z) is equal to the rank of the matrix
µ1 pa + µ2 pb µ1ra + µ2rb
µ1qa + µ2qb µ1sa + µ2sb

0 0
0 0

 . (4.14)

This rank is one if and only if the determinant of the upper 2 × 2-part of this matrix is zero.
This determinant is equal to the determinant in (4.11). This proves that the type of the system
is equal to the type of each surface in Gr2(Tb B). Moreover, the characteristic lines of the
surface Mb in Gr2(Tb B) are equal to the intersections of the tangent space to Mb with the
Monge systems of the system (M,V). �

4.6.1 Vessiot theorem for first order systems

We will prove in this section that in the analytic setting a generalized first order system
(M,V) is locally equivalent to a first order system of two partial differential equations for
two functions in two variables. We start with a weaker version of the theorem that is true also
in the C∞ setting.

Theorem 4.6.3 (Weak Vessiot theorem). Let (M,V,U) be generalized first order system
under point geometry. On M the distribution U is a rank two integrable subbundle of V .

Then locally the quotient of M by U defines a base manifold B and the first order system
M is canonically equivalent to a first order system M̃ ⊂ Gr2(T B).

Proof. Let π : M → B be the projection to the quotient of M by the leaves of U . In general
this projection is only locally defined. Then π is a smooth submersion and Tπ maps Vm to
a 2-dimensional linear subspace of Tb M , b = π(m). Now define φ : M → Gr2(T B) by
m 7→ Tmπ(Vm) ∈ Gr2(Tπ(m)B). The fact that the Lie brackets on V are non-degenerate
implies that the map φ is an immersion and hence φ locally defines a diffeomorphism M →

M̃ = φ(M) ⊂ Gr2(T B). Let π̃ be the projection M̃ → B.

M

π

��

φ // M̃ ⊂ Gr2(T B)

π̃
yyrrrrrrrrrrr

B
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We have to prove that the distribution V is mapped to the distribution Ṽ dual to the pull-
back of the contact system on Gr2(T B). Note that π = π̃ B φ. For a vector X ∈ Vm we have
Tmπ(X) ∈ φ(m) ⊂ Tπ(m)B. At the same time Tmπ(X) = (Tφ(m)π̃)(TmφX). So the vector
X̃ = Tmφ(X) ∈ Tφ(m)M̃ ⊂ Tφ(m) Gr2(T B) is mapped under π̃ to a vector in φ(m). But then
X̃ is in the contact distribution on Gr2(T B) (for the definition of this contact distribution see
Section 1.2.2). �

To prove that any generalized first order system (M,V) is locally equivalent to a first order
system of partial differential equations it is sufficient to show that there exists a local foliation
of M by 2-dimensional integral manifolds of V . Then the previous theorem shows the system
is equivalent to a first order system of partial differential equations. We will construct a linear
Pfaffian system in involution for which the solutions are integral manifolds of V . Then the
Cartan-Kähler theorem guarantees that there exists a local foliation by integral manifolds.

Let θ1, θ2 be a basis of differential forms for V⊥. For a hyperbolic first order system the
2-dimensional integral elements of V are hyperbolic lines for the hyperbolic structure on V .
Locally we can choose two sections φ,ψ of V2(V) → M such that at each point m ∈ M the
two integral planes φ(m), ψ(m) are transversal. This means that Vm = φ(m) ⊕ ψ(m). We
then choose 1-forms ω1, ω2, π1, π2 such that the forms θ1, θ2, ω1, ω2, π1, π2 are a basis for
T ∗M and ω1, ω2 vanish on φ and π1, π2 vanish on ψ . The structure equations for θ1 and θ2

are of the form

dθa
= Aa

ε jπ
ε
∧ ω j mod θ1, θ2.

The terms ω1
∧ ω2 and π1

∧ π2 do not appear in these structure equations because the 2-
planes φ(m) and ψ(m) are integral elements for V and hence dθ1 and dθ2 vanish on the
integral elements.

The integral manifolds of V are integral manifolds for the linear Pfaffian system defined
by I = span(θ1, θ2), J = span(θ1, θ2, ω1, ω2). The structure equations show that the Pfaff-
ian system has no intrinsic torsion. The basis transformations of θ1, θ2 and ω1, ω2 induce an
action of the conformal group on the tableau defined by Aa

εi . This means that we can arrange
in the hyperbolic case or elliptic case

π =

(
π1 0
0 π2

)
, or π =

(
π1

−π2

π2 π1

)
, respectively.

Theorem 4.6.4 (Vessiot theorem for real-analytic first order systems). Let M be a real
analytic manifold of dimension 6 with a codimension 2 real-analytic distribution V . If the Lie
brackets modulo the subbundle λ : V ×M V → T M/V are non-degenerate, then the system
(M,V) is locally contact equivalent to an elliptic or hyperbolic first order system of partial
differential equations.

Proof. The condition that the Lie brackets are non-degenerate implies that the system is ei-
ther hyperbolic or elliptic. We assume the system is hyperbolic, the elliptic system can be
treated in a similar way. The discussion above shows we can choose an adapted coframing
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θ1, θ2, ω1, ω2, π1, π2 such that I = span(θ1, θ2) = V⊥ and

dθ1
≡ −π1

∧ ω1 mod I, dθ2
≡ −π2

∧ ω2 mod I.

This linear Pfaffian system has tableau of the form(
π1 0
0 π2

)
.

This tableau is in involution and we can use a variation of the Cartan-Kähler theorem to
conclude there exists a local foliation by integral manifolds of V . The variation of the Cartan-
Kähler theorem is described on pages 86–87 in Bryant et al. [13]. The foliation locally
defines an integrable rank 2 subdistribution of V and a projection π to a base manifold. One
can then continue as in the proof of the weak Vessiot theorem (4.6.3). �

The author’s thesis advisor prof.dr. J.J. Duistermaat and the author have good reasons to
believe the theorem is also true in the C∞ setting. If we follow the proof of the theorem
using the Cartan-Kähler theorem we arrive at a system of partial differential equations in
Kowalevski form. The existence of solutions for this system in the C∞ setting would prove
the Vessiot theorem for first order systems. This system can be solved using the Kowalevski
theorem, but this requires the structures to be analytic. The system of equations is a coupled
system of an ordinary differential equation and a determined hyperbolic system. We believe
that by setting up a contraction in an appropriate space we can prove existence of solutions.
The author has checked that the theory of Yang [76] cannot be applied directly to the exte-
rior differential system that is found when analyzing the conditions for existence of a local
foliation by integral manifolds of the system.

Example 4.6.5 (First order wave equation). The first order system defined by

u y = 0, vx = 0, (4.15)

is called the first order wave equation. The reason for the name first order wave equation is
that the system is the quotient of the wave equation zxy = 0 under the symmetry ∂z . Note
that the first order wave equation is a system of partial differential equations and not a single
equation.

If we use x, y, u, v, p = ux , s = vy as coordinates for the equation manifold, then the
Monge systems are given by

F = span
(
∂x + p∂u, ∂p

)
, G = span

(
∂y + s∂v, ∂s

)
.

Both Monge systems have 3 invariants. �

Example 4.6.6 (Cauchy-Riemann equations). Let B be a 4-dimensional manifold with an
integrable almost complex structure J B

: T B → T B. Since the almost complex structure
is integrable we can introduce complex coordinates x + iy, u + iv for the manifold B. The
complex structure on the tangent space to B defined by J B , is given in these coordinates by
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multiplication with i . A holomorphic curve in B is a real 2-dimensional surface for which
the tangent space is complex-linear.

Every holomorphic curve can (after a change of coordinates) locally be written as the
graph of the functions u(x, y), v(x, y). The condition that the graph of u and v defines a
holomorphic curve in (B, J B) is given by the Cauchy-Riemann equations

ux = vy, u y = −vx . (4.16)

Solutions of the Cauchy-Riemann equations are called holomorphic functions.
The Cauchy-Riemann equations form an elliptic first order system. The equations (4.16)

define a codimension two submanifold M of Gr2(T B). If we use x, y, u, v, p = ux , r = vx
as coordinates for M , then the contact distribution is given by

V = span
(
∂x + p∂u + r∂v, ∂y − r∂u + p∂v, ∂p, ∂r

)
.

The almost complex structure on M defined by the complex Monge systems is integrable.
We can give M the complex coordinates x + iy, u + iv, p + ir . �

4.6.2 The full Nijenhuis tensor

For second order equations we had the Cauchy characteristics C(V ′) that we could use to
extend the Nijenhuis tensor. For first order systems V ′

= T M and hence the map J is defined
on the entire tangent space so we can define the full Nijenhuis tensor N : T M → T M .

We will start to make a classification of the first order systems depending on the structure
of the image and kernel of the Nijenhuis tensor. Let D = im N = { N (X, Y ) ∈ T M |

X, Y ∈ T M } be the image of the Nijenhuis tensor. The Nijenhuis tensor is identically zero
on V ×M V by definition. Also the bi-J -antilinear map on (V ′/V) ×M (V ′/V) induced by
J is equal to zero because the complex dimension of V ′/V is one and N is bi-J -antilinear.
Together this implies the Nijenhuis tensor is already determined by the induced map

N : V ×M (V ′/V) → T M.

Recall that an element Y ∈ V ′/V is generic for J if Y+ 6= 0 and Y− 6= 0. For an elliptic
system every non-zero Y ∈ V ′/V is generic. For a generic element Y ∈ V ′/V we define
A(Y ) : T M → T M : X 7→ N (X, Y ). The image D of N is equal to the image of A. The
image of the Nijenhuis tensor can have rank 0, 1, 2, 3 or 4. In the elliptic case the image can
only have rank 0, 2 or 4 (complex rank 0, 1 or 2).

Example 4.6.7. Consider the first order system depending on two parameters c1, c2 defined
by the equations u y = c1v and vx = c2u. We introduce coordinates x, y, u, v, p = ux , s =

vy for the equation manifold M . The Monge systems are given by

F = span
(
F1 = ∂x + p∂u + c2u∂v + c1c2v∂s, F2 = ∂p

)
,

G = span
(
G1 = ∂y + c1v∂u + s∂v + c1c2u∂p,G2 = ∂s

)
.
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The reader can check that the Monge systems satisfy the conditions [F,G] ⊂ V and T M =

F ′
⊕ G′. Let F3 = [F1, F2] = −∂u , G3 = [G1,G2] = −∂v . With respect to the basis F1,

G2, F2, G2, F3, G3 for T M the hyperbolic structure is given by the matrix
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 .

The image of N is spanned by d1 = N (F1, F3) = 4c2∂v and d2 = N (G1,G3) = 4c1∂u .
Depending on the values of the constants c1 and c2 the rank of D is 0, 1 or 2. �

Generic image. The maximal rank of the image D of the Nijenhuis tensor is four. We will
discuss the various possibilities for the Nijenhuis tensor in this case.

Lemma 4.6.8. If rankD = 4, then the rank of D/V in T M/V is equal to two.

Proof. We give the proof for the elliptic case. The proof for the hyperbolic case can be done
using Lemma 5.2.8 from Chapter 5. Since D/V ⊂ T M/V and rank(T M/V) = 2 the image
D/V can have rank at most two. If D/V = 0 then Lemma 4.6.14 shows that D = 0. Hence
if rankD = 4, then rank(D/V) 6= 0. The image D is J -invariant and therefore the real rank
of D/V cannot be one and has to be two. �

Define B1 = { X ∈ V | A(Y )(X) ∈ V }. It is easy to see that B1 does not depend on the
element Y chosen (as long as Y is generic with respect to J ). In terms of the Nijenhuis tensor
B1 is equal to { X ∈ V | N (X, Y ) ∈ V, for all Y ∈ T M }. The rank of the distribution B1 is
at least 2. We define B2 = D ∩ V = A(B1) ⊂ V .

The properties of the Nijenhuis tensor imply that both B1 and B2 are J -invariant. There
are several possibilities: either B1 = B2, V = B1 ⊕ B2 or in the hyperbolic case we might
have a mixed case. The case V = B1 ⊕ B2 is the generic situation and in Section 4.7.2 we
construct an invariant framing on the equation manifold of the system.

We analyze the case B1 = B2.

Lemma 4.6.9. Assume rankD = 4. If B1 = B2, then the bundle B1 is integrable.

Proof. In the proof we need some theory from Chapter 5. The reader can skip the proof on
first reading. The proof is for hyperbolic systems, for the elliptic systems there is a similar
proof. The bundle B1 is an invariantly defined subbundle of V and hence we can choose an
adapted coframing (5.14) with B1 as a distinguished subbundle. Using the structure group
we can arrange that T2F = 1, U2F = 0, V2F = 0. Since B1 = B2 we have U3F = 0 and since
rankD = 4 we have V3F ∈ D∗. From Lemma 5.2.8 we find that U3F + T2F (S3F )F

= 0 and
hence S3F = 0. This proves that B1 is integrable. �
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The integrable distribution B1 gives this class of systems a natural structure under point
geometry. The author has the feeling that the class of equations for which B1 = B2 might
be empty, although there is no proof yet. It is also unknown if there are any equations in the
mixed case. The class of equations for which V = B1 ⊕ B2 contains the generic equations;
an example is given below.

Example 4.6.10. Consider the hyperbolic first order system given by

u y = (vy)
2
+ v, vx = (ux )

2
+ u.

We can define the following basis for the tangent space:

F1 = ∂x + p∂u + (p2
+ u)∂v + ∂p −

(
s2

+ 2pu + 2p3
+ v

H

)
∂s,

F2 = ∂p,

F3 = 2s∂u + ∂v + 2
−8ps3

+ 2pu + 2p3
+ v + 3s2

H2 ∂p

+ 6
4vs2

+ 4s2
+ 2su − 2sp2

+ p
H2 ∂s,

G1 = ∂y + (s2
+ v)∂u + s∂v +

(
2sv + 2s3

+ u + p2

H

)
∂p + ∂s,

G2 = ∂s,

G3 = 2∂u + 4p∂v + 12
s − 2ps2

+ 4up2
+ 4p4

+ 2pv
H2 ∂p

+ 4
u + 3p2

− 8p3s + 2s3
+ 2sv

H2 ∂s,

with H = 1 − 4ps.
The distribution dual to the contact forms is V = span(F1,G1, F2,G2), the almost pro-

duct structure is defined by span(F1, F2, F3)⊕ span(G1,G2,G3). The Nijenhuis tensor has
generic image (rankD = 4, B1 ∩ B2 = 0). We have B1 = span(F1,G1), B2 = span(F2,G2)

and the image of B2 ×M T M under the Nijenhuis tensor is span(F3,G3). �

4.6.3 Complexification of the tangent space

In this section we discuss the complexification T M ⊗ C of the tangent space T M in more
detail. In the elliptic setting this complexification can be used to define the complex char-
acteristic systems of V . With the complexification many proofs that work in the hyperbolic
setting can be copied to the elliptic setting. We note that for this complexification we do not
need the system to be analytic. In the 19th century a common technique was to complexify
the entire manifold, for this construction we need M and V to be real analytic!
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Let (M,V) be an elliptic first order system. The almost complex structure on M will be
denoted by J . We will start by characterizing the complex structure J in terms of subspaces
of T M ⊗ C. Define

V± = { X ∈ V ⊗ C | J X = ±i X }. (4.17)

The reader can check that the distributions V± are equal to the previously defined Monge
systems. The complexification V ⊗ C is equal to the direct sum V+ ⊕ V−. This allows us to
restrict the projection operators

π± : T M ⊗ C → T M ⊗ C : X 7→ (1/2)(1 ∓ i J )X. (4.18)

to projection operators π± : V → V±.
Let λ be the Lie brackets modulo V . The complex-bilinearity of λ implies that [V+,V−] ⊂

V ⊗ C. Indeed, let X ⊂ V+, Y ⊂ V−. Then we have

4[X, Y ] ≡ 4[π+ X, π−Y ]

≡ [X − i J X, Y + i JY ]

≡ [X, Y ] + [J X, JY ] − i[J X, Y ] + i[X, JY ]

≡ λ(X, Y )+ J 2λ(X, Y )− i Jλ(X, Y )+ i Jλ(X, Y )

≡ 0 mod V.

The complex characteristic systems V± have complex rank 2. By definition we have that
V± ⊂ (V±)

′. From this it follows that the bundles (V±)
′/V± have complex rank at most 1.

The non-degeneracy of the Lie brackets implies that the complex rank of (V±)
′ is indeed 3.

Since [V,V] = T M we have

T M ⊗ C = [V ⊗ C,V ⊗ C] = [V+ + V−,V+ + V−]

= [V+,V+] + [V−,V−] + [V+,V−] + [V−,V+]

⊂ (V+)
′
+ (V−)

′
+ (V ⊗ C)

⊂ (V+)
′
+ (V−)

′.

Since rank(V±)
′
= 3 and rank T M ⊗ C = 6 this implies T M ⊗ C = (V+)

′
⊕ (V−)

′. We
write (V ′)± for the projections π±(V ′

⊗C) = π±(T M ⊗C). Since (V±)
′
⊂ T M± (since λ is

complex-bilinear) it follows from the ranks of the bundles that (V±)
′
= (V ′)± and hence we

can write unambiguously V ′
± for (V±)

′ or (V ′)±. For X, Y ∈ T M we write X = X+ + X−

and Y = Y+ + Y− with X± = π±(X) and Y± = π±(Y ). On the pair X, Y the Nijenhuis
tensor acts as

N (X, Y ) = [J X, JY ] − J [J X, Y ] − J [X, JY ] + J 2
[X, Y ]

= −2([X+, Y+] + [X−, Y−])− 2i J ([X+, Y+] − [X−, Y−]).

We can rewrite this as

N (X, Y ) = −4[X+, Y+]− − 4[X−, Y−]+. (4.19)
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For hyperbolic systems the hyperbolic structure K on the tangent space gives similar
constructions, but we do not need to complexify. In the hyperbolic setting the characteristic
systems are real and contained in the tangent bundle. In particular we can define V+ and V−

as the eigenspaces of K : V → V for the eigenvalues 1 and −1, respectively. We define
projection operators

π± : T M → T M : X 7→ (1/2)(1 + K )X (4.20)

and can write T M as the direct sum V ′
+ ⊕ V ′

−. The Nijenhuis tensor acts on X, Y ∈ T M as

N (X, Y ) = 4[X+, Y+]− + 4[X−, Y−]+. (4.21)

We will prove the following lemma both in the hyperbolic and the elliptic setting. In both
settings a central role will be played by the characteristic systems. By using general properties
of the characteristic systems the proof works for both first order systems and second order
equations.

Lemma 4.6.11. Let (M,V) be a first order system (Definition 3.3.1) or second order scalar
equation (a Vessiot system in two variables). DefineM± = V ′

±⊕V∓. Then [V ′
±,V∓] = M±.

Proof. It is clear that both V ′
± and V∓ are contained in [V ′

±,V∓]. So we need to prove that
[V ′

±,V∓] ⊂ M± = V ′
± ⊕ V∓.

Let X, Y ⊂ V± and Z ⊂ V∓. From the Jacobi identity we have

[[X, Y ], Z ] = [X, [Y, Z ]] + [[X, Z ], Y ].

We use that [V±,V∓] ⊂ V in the hyperbolic setting and [V±,V∓] ⊂ V ⊗ C in the elliptic
setting. We write VHE for either V or V ⊗ C depending on the context. Then

[[X, Y ], Z ] ⊂ [V±,VHE
] + [VHE,V±] ⊂ M±.

Since the vector fields [X, Y ] with X, Y ⊂ V± span V ′
± this concludes the proof. �

4.6.4 Čap and Eastwood
In the paper Some special geometry in dimension six [18] Čap and Eastwood study the geom-
etry of a codimension two distribution on a manifold of dimension 6. In the elliptic case they
use the distribution to construct a unique complex structure, for the hyperbolic case they have
similar results. The remarkable thing is that their construction of the almost complex struc-
ture is different from our construction. The structure of Čap and Eastwood and our structure
turns out to be the same, but the proof is non-trivial.

Let (M, H) be a smooth connected manifold M of dimension 6 together with a codimen-
sion two distribution H and an orientation on M . Čap and Eastwood find (just like we did in
Section 4.2) that the Lie brackets define an anti-symmetric bilinear map H ×M H → T M/H ,
or a vector bundle map L : H ∧ H → T M/H . They define the system to be elliptic or hy-
perbolic in the case that L ∧ L as a tensor in 0(34 H∗

⊗ S2(T M/H)) is non-degenerate
definite or non-degenerate indefinite, respectively. This characterization corresponds to our
formulation in Section 4.2. Then they prove there exists a unique almost complex structure
on M .
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Theorem 4.6.12 (Theorem on page 2 in Čap and Eastwood [18]). Suppose (M, H) is
elliptic. Then M admits a unique almost complex structure JCE : T M → T M characterized
by the following properties:–

i) JCE preserves H;

ii) the orientation on M induced by JCE is the given one;

iii) L : H ×M H → T M/H is complex-bilinear for the induced structures, or equivalently
[ξ, η] + JCE[JCEξ, η] ∈ 0(H) for ξ, η ∈ 0(H);

iv) [ξ, η] + JCE[JCEξ, η] − JCE[ξ, JCEη] + [JCEξ, JCEη] ∈ 0(H) for ξ ∈ 0(T M), η ∈

0(H).

Furthermore, the tensor S : T M/H ⊗ H → T M/H induced by

S(ξ, η) = [ξ, η] + JCE[JCEξ, η] mod H for ξ ∈ 0(T M), η ∈ 0(H)

is the obstruction to JCE being integrable.

Let us analyze this theorem step by step by comparing it to our construction of the almost
complex structure. The first condition that JCE preserves the distribution H is in the definition
of our almost complex structure. We have not chosen an orientation on M , so we do not have
the second property in the theorem. However, choosing a different orientation would only
give JCE a different sign. The complex-bilinearity of JCE follows from our definition of J
on T M/H , see Section 4.2. The equivalent formulation of Čap and Eastwood is in terms of
sections of H , but one can easily check that the conditions depend only on the value of the
section at a particular point and not on the derivatives.

Finally we have to analyze the last condition in the theorem. The expression

F = [ξ, η] + JCE[JCEξ, η] − JCE[ξ, JCEη] + [JCEξ, JCEη] (4.22)

looks like the Nijenhuis tensor, but is not a true tensor. The expression F depends on the
first order derivatives of η. The Nijenhuis tensor on the other hand is a true tensor, i.e., the
expression

N (ξ, η) = J 2
[ξ, η] − J [Jξ, η] − J [ξ, Jη] + [Jξ, Jη] (4.23)

at a point m ∈ M only depends on the values ξm and ηm .
We will use the complexification of the tangent bundle to prove that the almost complex

structure defined by Čap and Eastwood is identical to our almost complex structure.

Theorem 4.6.13. The almost complex structure JCE defined in Theorem 4.6.12 is equal to
the almost complex structure J defined in Theorem 4.6.1.

Proof. In the analysis above we have already shown that the almost complex structure J
satisfies the conditions (i)–(iii) in Theorem 4.6.12. It remains to show that J satisfies the final
condition (iv). The uniqueness of the almost complex structure JCE then implies J = JCE.
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Let X, Y be vector fields in T M with Y ⊂ V . Write X = X+ + X−, Y = Y+ + Y− with
X± ⊂ V ′

±, Y± ⊂ V±. The expression in the fourth condition of Čap and Eastwood is

[X, Y ] + J [J X, Y ] − J [X, JY ] + [J X, JY ]

= [X+ + X−, Y+ + Y−] + i J [X+ − X−, Y+ + Y−]

− i J [X+ + X−, Y+ + Y−] − [X+ − X−, Y+ − Y−]

= [X+ + X−, Y+ + Y−] + i J [X+ − X−, Y+ + Y−]

− i J [X+ + X−, Y+ − Y−] − [X+ − X−, Y+ − Y−]

= 2([X+, Y−] + [X−, Y+])+ 2i J ([X+, Y−] − [X−, Y+])

= 2[X+, Y−]− + 2[X−, Y+]+.

From Lemma 4.6.11 we know that [X+, Y−] ⊂ V ′
+ ⊕ V− and hence [X+, Y−]− ⊂ V− ⊂

V ⊗ C. In the same way [X−, Y+]+ ⊂ V ⊗ C. Together this yields

[X, Y ] + J [J X, Y ] − J [X, JY ] + [J X, JY ] = 2[X+, Y−]− + 2[X−, Y+]+ ⊂ V ⊗ C.

We conclude that our J satisfies the defining conditions of the almost complex structure of
Čap and Eastwood. �

In the article Čap and Eastwood also define an almost product structure for the hyperbolic
systems. Their almost product structure in the hyperbolic case is identical to our almost
product structure for hyperbolic first order systems.

4.6.5 The flat case
If the Nijenhuis tensor is identically zero, then there is a unique complex structure on the
manifold M and the manifold is complex-analytic. This is the Newlander-Nirenberg theorem,
first proved in Newlander and Nirenberg [57].

Lemma 4.6.14. Let (M,V) be a hyperbolic or elliptic first order system with Nijenhuis ten-
sor N. If N (T M ×M T M) ⊂ V then N = 0.

Proof. We give the proof for elliptic systems. The proof for hyperbolic systems is identical
with the simplification that we do not need to complexify. The rank of a bundle is the complex
rank for elliptic systems and the real rank for hyperbolic systems.

Let X = X+ + X−, Y = Y+ + Y− be sections of T M ⊗ C, with X+, X− and Y+,Y− the
components of X and Y , respectively, in T M+ and T M−. From equation (4.19) we see that
im N ⊂ V is equivalent to [V±,V ′

±] ⊂ M±. We always have [V±,V∓] ⊂ V ⊗ C ⊂ M±.
Consider the Cauchy characteristic system C(M±). From the above we have V± ⊂ C(M±).
Since Cauchy characteristic systems are integrable we also have V ′

± ⊂ C(M±).
The space C(M±) is equal to the kernel of the Lie brackets modulo M±. Because the

corank of M± in V ′
= T M is 1 the Lie brackets modulo M± define a conformal bilin-

ear anti-symmetric form on M±. The kernel of an anti-symmetric bilinear form has even
codimension and hence rank C(M±) = 1, 3, 5. We already know that [M±,M±] = V ′ so
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V ′
± ⊂ C(M±) 6= M±. Since rankV ′

± = 3 we conclude that C(M±) must have rank 3 and
hence C(M±) = V ′

±. Therefore V ′
± is integrable, so [V ′

±,V ′
±] ⊂ V ′

±. From equation (4.19)
we conclude that N = 0. �

Remark 4.6.15. The statement of the lemma is equivalent to the last part of Theorem 4.6.12.
The vanishing of the tensor S introduced in that theorem is equivalent to the condition that
N takes values in V . In terms of differential forms the lemma can also be proved, see
Lemma 5.2.8. �

Proposition 4.6.16. Let M be a complex-analytic manifold and V a complex-linear distri-
bution on M. By complex-linear we mean that JV ⊂ V . We assume that the Lie brackets
modulo V define a complex-bilinear map from V ×M V → T M/V and that [V,V] spans
T M. Then V is holomorphic.

Proof. Let V have complex dimension n and complex codimension c in M . Since M is
complex-analytic we can assume there are complex coordinates x1, . . . , xn , z1, . . . , zc for M
such that the ideal I dual to the distribution V is spanned by

θ i
= dzi

−

n∑
µ=1

ai
µdxµ, i = 1, . . . , n.

We will use the summation convention where roman indices will run from 1 to n and Greek
indices will run from 1 to c. The exterior derivative of θ i is given by

dθ i
≡ −dai

α ∧ dxα

≡ −

(
∂ai
α

∂xβ
dxβ ∧ dxα +

∂ai
α

∂ x̄β
dx̄β ∧ dxα +

∂ai
α

∂z j dz j
∧ dxα +

∂ai
α

∂ z̄ j dz̄ j
∧ dxα

)
≡ −

(
∂ai
α

∂xβ
+ a j

β

∂ai
α

∂z j

)
dxβ ∧ dxα −

(
∂ai
α

∂ x̄β
+ ā j

β

∂ai
α

∂ z̄ j

)
dx̄β ∧ dxα

≡ Si
α,βdxα ∧ dxβ + T i

α,βdxα ∧ dx̄β mod I,

with Si
α,β = −Si

β,α ,

Si
α,β =

1
2

(
∂ai
α

∂xβ
+ a j

β

∂ai
α

∂z j −
∂ai
β

∂xα
− a j

α

∂ai
β

∂z j

)
,

T i
α,β =

∂ai
α

∂ x̄β
+ ā j

β

∂ai
α

∂ z̄ j .

Since the Lie brackets modulo V are complex-bilinear and non-degenerate we must have
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T i
α,β = 0 for all i, α, β and for every i there must be a non-zero Si

α,β . We calculate

0 =
∂

∂ x̄α
T i
µ,β =

∂

∂ x̄α

(
∂ai
µ

∂ x̄β
+ ā j

β

∂ai
µ

∂ z̄ j

)

=
∂

∂ x̄β

(
∂ai
µ

∂ x̄α

)
+
∂ ā j
β

∂ x̄α
∂ai
µ

∂ z̄ j + ā j
β

∂2ai
µ

∂ x̄α∂ z̄ j

=
∂

∂ x̄β

(
−ā j

α

∂ai
µ

∂ z̄ j

)
+
∂ ā j
β

∂ x̄α
∂ai
µ

∂ z̄ j + ā j
β

∂

∂ z̄ j

(
−āk

α

∂ai
µ

∂ z̄k

)

= −
∂ ā j
α

∂ x̄β
∂ai
µ

∂ z̄ j − ā j
α

∂2ai
µ

∂ x̄β∂ z̄ j +
∂a j
β

∂xα
∂ai
µ

∂ z̄ j − ā j
β

∂ āk
α

∂ z̄ j

∂ai
µ

∂ z̄k − ā j
β āk
α

∂2ai
µ

∂ z̄ j∂ z̄k

=

(
−
∂a j
α

∂xβ
+
∂a j
β

∂xα
− ak

β

∂a j
α

∂zk

)
∂ai
µ

∂ z̄ j − ā j
α

∂

∂ z̄ j

(
∂ai
µ

∂ x̄β

)
− āk

β ā j
α

∂2ai
µ

∂ z̄k∂ z̄ j

=

(
−
∂a j
α

∂xβ
+
∂a j
β

∂xα
− ak

β

∂a j
α

∂zk

)
∂ai
µ

∂ z̄ j + ā j
α

∂

∂ z̄ j

(
āk
β

∂ai
µ

∂ z̄k

)
− ā j

α āk
β

∂2ai
µ

∂ z̄k∂ z̄ j

=

(
−
∂a j
α

∂xβ
+
∂a j
β

∂xα
− ak

β

∂a j
α

∂zk + ak
α

∂a j
β

∂zk

)
∂ai
µ

∂ z̄ j

= −2Si
α,β

∂ai
µ

∂ z̄ j .

The condition that [V,V] spans T M implies that for every index i we can select a pair α, β
such that Si

α,β 6= 0. It follows that ∂ai
µ/∂ z̄ j

= 0 for all i, j, µ. From the fact that T i
α,β = 0

it then follows that ∂ai
µ/∂ x̄α for all i, α, µ as well. The functions ai

µ are holomorphic and
hence V is holomorphic. �

Remark 4.6.17. The cases where V has complex dimension 0 or 1 or complex codimension
0 are all trivial. The lowest dimensional non-trivial example is therefore the case where
dimC M = 3 and dimC V = 2. This case is precisely the case of the Cauchy-Riemann
equations (see Example 4.6.6). �

Example 4.6.18. The condition that [V,V] spans T M is necessary. Consider the manifold M
of complex dimension 4 with complex coordinates x = x1

+ i x2, y = y1
+ iy2, z = z1

+ i z2,
p = p1

+ i p2 and the complex 1-forms α = dz − (y + p̄)dx , β = dp. The distribution dual
to these 1-forms is given in real coordinates by

∂x1 + (y1
+ p1)∂z1 + (y2

− p2)∂z2 , ∂y1 ,

∂x2 + (−y2
+ p2)∂z1 + (y1

+ p1)∂z2 , ∂y2 .

The distribution V satisfies all the conditions for the theorem, except that [V,V] 6= T M . The
distribution V is not holomorphic. �
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There is also a version of Proposition 4.6.16 for almost product structures.

Proposition 4.6.19. Let M be a direct product manifold M1 × M2 with hyperbolic structure
K and V a distribution on M that is K -invariant. We assume that the Lie brackets modulo V
define a K -bilinear map from V×M V → T M/V and that [V,V] spans T M. Then V is splits
into two distributions V1 and V2 on M1 and M2, respectively, and V is equal to the direct sum
of V1 and V2.

First order systems for which the almost complex structure is integrable are complex analytic
systems. Similarly, if the system is hyperbolic with integrable almost product structure, then
the system M is a direct product M1 × M2. On each component M j we have a contact
structure. Since all contact structures are equivalent under contact transformations all flat
hyperbolic systems are equivalent to the direct product of two contact structures. An example
in local coordinates is the first order wave equation, see Example 4.6.5.

4.6.6 Summary
Let (M,V) be an elliptic first order system. Write JV and JT M/V for the complex struc-
tures on V and V ′/V that make the Lie brackets modulo the subbundle complex-bilinear (see
Section 4.2).

Let J be an almost complex structure on M such that JV ⊂ V , J |V = JV , and the by J
induced endomorphism on T M/V equal to JT M/V . Let T± be the eigenspaces in T M ⊗ C of
the operator J for the eigenvalues ±. Define the tensor

C : V ×M (T M/V) → T M/V : (X, Y ) 7→ [X, JY ] − J [X, Y ] mod V.

Then the following statements are equivalent.

a) The Nijenhuis tensor of J is identically zero on V ×M V .

b) The almost complex structure J equals the almost complex structure of Čap and East-
wood, in other words C is J -linear with respect to the first variable.

c) T± = V ′
±.

d) [V±, T∓] ⊂ span(T∓,V±).

Let J satisfy one of the equivalent conditions above. Then the following four statements are
equivalent.

i) N (V ×M T M) ⊂ V .

ii) C = 0.

iii) [V±,V ′
±] ⊂ span(V ′

±,V∓).

iv) N = 0.
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4.7 Invariant framings and orders for first order systems
In this section we study elliptic and hyperbolic first order systems under contact geometry.
Such a system is given by a 6-dimensional manifold with a rank 4 distribution on which
the Lie brackets modulo the subbundle are non-degenerate. We will give a summary of the
various structures on the equation manifold we have introduced in the previous sections and
keep track of the order of the various structures. Then we will give for the generic systems a
framing that is invariant under the transformations leaving invariant the contact distribution.
With the invariant framing we will be able to define two invariants for first order systems.

4.7.1 Orders

The structure of the manifold, i.e., the distribution V is by definition of order zero. The
structure introduced by the Lie brackets modulo the subbundle (such as the Monge systems
and the complex or hyperbolic structure J on V) is of first order since we have to differentiate
the distribution once to calculate the Lie brackets modulo the subbundle.

For a given bundleW we can define the Lie brackets modulo the subbundle λ = [·, ·]/W :

W ×M W → T M/W . This is a tensor and hence defines at every point a structure on the
manifold M . The order of this tensor is equal to the order of the bundleW plus one. The fact
that the degree of the tensor is one order higher than the order of W follows from the fact
that we need to know the derivative ofW at a point x in order to calculate λx : Wx ×Wx →

Tx M/Wx .

Example 4.7.1. On R3 with coordinates x, y, z define the distributions V and W by

V = span
(
∂x , ∂y

)
, W = span

(
∂x , ∂y + x∂z

)
.

At the origin the bundles V andW are identical and V = V0 = W0 is spanned by the vectors
e1 = (∂x )0 and e2 = (∂y)0. The Lie brackets modulo the subbundle are given at the origin by

[·, ·]/V : V × V → R3/V : (e1, e2) 7→ 0 mod V,

[·, ·]/W : V × V → R3/V : (e1, e2) 7→ (∂z)0 mod V . �

Remark 4.7.2. Our definition of order might be a bit confusing. The distribution V is in
our definition a structure of order zero, but the distribution is defined in the tangent space
of the equation manifold and hence is expressed in the first order derivatives of the equation
manifold M . In other words, the distribution is an expression in the coordinates for the
Gr2(T M) and these coordinates are first order in the coordinates of the underlying manifold
M .

When we have a base manifold B for M things may be even more confusing. The mani-
fold M is a submanifold of Gr2(T B) where B is a base manifold for M . Hence the distribu-
tion is a second order expression in the coordinates for B. �
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For each order 0, 1, 2, 3, 4 we give a description of the structures we have found so far.

Order 0. We are given the manifold M and V ⊂ T M . These two structures contain all the
information at this order. Unless we define some additional structure (such as a base
manifold for M) there is no additional structure to be found.

Order 1. By taking Lie brackets modulo V we find a unique complex structure or hyper-
bolic structure on V and on T M/V (up to a choice of orientation, or sign of the com-
plex structure). With these structures we have a complex-linear or hyperbolic-linear
quadratic form V ×M V → T M/V . At this order this is all the structure we can find.

Order 2. We can extend the structures found above to an almost complex structure or almost
product structure on the entire tangent space. Recall that we can make a unique choice
of almost complex structure or almost product structure by requiring the Nijenhuis
tensor to vanish on V ×M V . Note that the Nijenhuis tensor is a third order object, but
the restriction of the Nijenhuis tensor to V ×M V → T M/V is only a second order
object!

At this order we also have the tensors C : V ×M T M/V → T M/V : (X, Y ) 7→

[X, JY ] − J [X, Y ] and N : V ×M T M/V → T M/V : (X, Y ) 7→ C(J X, Y ) −

JC(X, Y ) mod V . The bundleB1 is also of order 2 sinceB1 is equal to the intersection
of V with the kernel of the map N : V ×M V → T M/V .

Order 3. Using the full almost complex structure we can calculate the full Nijenhuis tensor.
The distributionB2 is of order 3 sinceB2 = N (B1, T M). The imageB3 = N (B2, T M)
of B2 is of order 3 as well.

Order 4. In the generic setting we expect many invariants at order 4. At order 3 we can
construct an invariant coframing and the structure functions of the invariant coframe are
all continuous invariants (up to a discrete symmetry). Many of the structure functions
will be trivial, but not all of them.

4.7.2 The invariant framing
Depending on the system the distributions B1, B2 and D can have different ranks. To make
full use of the structure present at a certain order we have to make some assumptions on the
ranks of the different distributions.

The rank of the image D of N is an obvious choice to consider. For an elliptic system
the Nijenhuis tensor is anti-symmetric conjugate-bilinear and hence the image D has real
rank 0, 2 or 4. If the image has rank 0 the system is a complex contact manifold of complex
dimension 3, see Section 4.6.5. For rank 4 we can construct an invariant coframing under
some additional assumptions, see the paragraphs below. For rank 2 we have too little freedom
to construct a normal form for the system but too much freedom to create an invariant framing.
In Section 7.1 we will return to the systems with rankD = 2.

For generic elliptic systems (Nijenhuis tensor has image of dimension 4 and B1 6= B2)
we can proceed as follows. The distribution B1 is a complex 1-dimensional and J -invariant
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subspace of V . The image B2 = N (B1, T M) is a complex 1-dimensional invariant subspace
of V . In the generic situation B1 6= B2. We will assume from here on this is the case. Then
B3 = N (B2, T M) is a rank 2 distribution and T M = B1 ⊕ B2 ⊕ B3. Choose a vector field
e3 ⊂ B3 and define A : T M → T M : X 7→ N (X, e3). Pick e1 ⊂ B1 and e2 ⊂ B2. The
triple (e1, e2, e3) is unique up to multiplications with complex scalar factors. We have

[e1, e2] ≡ αe3 mod V,
A(e1) = βe2,

A(e2) = γ e3,

for certain complex functions α, β, γ .
We can scale the representative vectors e j by complex numbers φ,ψ, χ to ẽ1 = φe1,

ẽ2 = ψe2, ẽ3 = χe3. We find new coefficients

α̃ = φψα/χ, β̃ = φ̄χ̄β/ψ, γ̃ = ψ̄χ̄γ /χ.

We can normalize these all to 1, we find that

φ2
= βγ̄ /(ᾱβ̄2γ ),

ψ = φφ̄ᾱβ̄/γ̄ ,

χ = φψα.

After the normalization we are left with a discrete symmetry to transform e1 → ±e1, e2 7→

e2, e3 7→ e3. Hence every generic elliptic first order system has a up to a discrete symmetry
a unique invariant framing. The invariant framing is of order 3.

4.7.3 The hyperbolic case

In the hyperbolic case similar statements hold, but we need some more assumptions on the
generality of the system. For example in the hyperbolic setting the image of the Nijen-
huis tensor can be 0, 1, 2, 3, or 4 dimensional. We can apply the same theory, but work
with hyperbolic variables (x, y)T instead of complex variables x + iy. When we choose a
representative element in B1, B2 or A(B2)we must always make a generic choice with respect
to the almost product structure, i.e., take an element X such that X and J X are linearly
independent and hence span a 2-dimensional space. If X is picked in T M±, then J X = ±X
and hence X and J X are not linearly independent. An element X is generic for the almost
product structure if and only of X+ 6= 0 and X− 6= 0. Another problem can arise when we
have to normalize the coframe. The hyperbolic formula for φ is φ2

= βγ F/(αF (βF )2γ ).
The right hand side is not necessarily positive, and the square root could be imaginary. We
can solve this by either working with a complex coframe or normalizing β and γ to 1 and α
to (1, 1)T , (1,−1)T , (−1, 1)T or (−1,−1)T .
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4.8 Continuous invariants
The structure theory developed so far has not provided us with any continuous invariants. For
example in Riemannian geometry the scalar curvature is a continuous invariant (of second
order in the metric). For our systems we have found invariant structures, such as the almost
complex structure, the image and kernel of the Nijenhuis tensor. In this section we will show
that at first and second order there are no continuous local invariants. At the third order there
are precisely two continuous invariants.

To analyze the continuous local invariants we make use of the theory of jet groupoids
and natural bundles. This theory [8] was explained to the author by Mohamed Barakat. The
existence of invariants at order three is confirmed by a geometric construction of the invariants
in Section 4.8.2.

4.8.1 Jet groupoids

The diffeomorphism group of a smooth manifold acts on every geometric structure on the
manifold. If we are interested in the action of the diffeomorphism group on the finite order
part of a structure, then we only need to study the finite order jets of diffeomorphisms. A
problem with these finite order jets is that, while the jets of diffeomorphisms fixing a point
form a group, the jets of general diffeomorphisms do not form a group. Let jr

xφ0 and jr
yφ1 be

two jets of diffeomorphisms based at the points x and y. We can only make the composition
jr
yφ1 B jr

xφ0 if φ0(x) = y. For this reason the jets of smooth functions do not form a group.
The jets of functions φ that leave x fixed do form a group. The calculations of jets can
conveniently be described in terms of jet groupoids.

We give a brief introduction to groupoids and jet groupoids. A full introduction can be
found in Moerdijk and Mrčun [54], Mackenzie [50] or Pommaret [62].

Definition 4.8.1. A groupoid is a small category in which every morphism is invertible. 	

More concrete: a groupoid consists of a set of objects X = G(0), called the base space,
and a set of morphisms or arrows G = G(1) ⇒ X , called the total space. We also have the
source projection s : G → X and target projection t : G → X . We can make the composition
of two morphisms g, h ∈ G if t (h) = s(h). This composition defines a multiplication map
G ×X G → G. The condition that every morphism is invertible implies that for every
morphism g from x to y there is a unique inverse g−1 from y to x . For every point x in the
base there is a unique unit morphism idx from x to x . For all morphisms g with target x we
have idx Bg = g and for all morphisms g with source x we have g B idx = g.

For every pair x, y ∈ X we will denote by G(x, y) the morphisms from x to y. By
G(x,−), G(−, x) and Gx = G(x, x) we denote the morphisms with s(g) = x , t (g) = x
and s(g) = t (g) = x , respectively. We also say they define the set of all morphisms to x , the
morphisms from x and the morphisms over x , respectively. Since all morphisms are invertible
it follows that t (G(x,−)) = s(G(−, x)). We let Gx = t (G(x,−)) = s(G(−, x)) be the
orbit of base point x under the morphisms in G. We say a groupoid G ⇒ X is transitive if
Gx = X .
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Example 4.8.2 (Groupoid examples).

Pair groupoid Let X be any set. The pair groupoid of X is the groupoid of pairs of elements
in X . The set X acts as the base space. The total space is given by X × X with s
and t the natural projections onto the first and second component, respectively. Two
morphisms (x, y) and (a, b) can be multiplied if and only if y = a and in that case
(x, y) · (a, b) = (x, b).

Equivalence groupoid Let X be a set and let ∼ be an equivalence relation on X . The equiv-
alence groupoid of X is a subgroupoid of the pair groupoid of X . The set X is the base
space and for every pair x, y ∈ X there is a single morphism from x to y if and only if
x ∼ y.

Groups Every group G is a groupoid in a natural way. The base space consist of a single
point e and the total space is equal to the group G. For a general groupoid G ⇒ X the
morphisms G(x, x) over a point x in the base form a group. �

A Lie groupoid is a groupoid G ⇒ X for which G and X are smooth manifolds and all
maps are smooth and the source and target maps are submersions. With these definitions it
follows that Gx is a Lie group and t : G(x,−) → Gx is a principal Gx -bundle.

The inverse mapping theorem says that a diffeomorphism φ : M → M is invertible near a
point x if and only of the total derivative of φ at x is invertible. We say an r -jet jr

x is invertible
if the first order part is invertible.

Definition 4.8.3. Let X be smooth manifold. Define 5q = 5q(X) = 5q(X × X) ⊂

Jq(X, X) by the condition that the first order part of an element of Jq(X, X) is invertible.
Then 5q is a transitive Lie groupoid and is called the jet groupoid of X . The groupoid 5q is
the fiber bundle over X × X for which the fibers are invertible jets from x to y.

A jet groupoidRq is a subset of5q that is closed with respect to all groupoid operations.
A jet groupoid is also called a system of Lie equations. 	

Let E = X × X and introduce coordinates (x, y) for E . Then the variables x , y and yi
j =

∂ yi/∂x j form local coordinates for J1(X, X). The jet groupoid is defined by det(yi
j ) 6= 0.

On every jet groupoid 5q we have an identity section id : X → 5q given by the q-jet of the
identity on X . We will write 5q(x, y) for the morphisms in 5q(X) with source x and target
y.

Example 4.8.4 (Jet groupoid of R). Let X = R and introduce coordinates (x, y) for X × X .
The 1-jet of a diffeomorphism φ : X → X at x is equal to (x, φ(x), φ′(x)). The total space
of the first order jet groupoid of X is isomorphic to R2

× R∗ and has coordinates (x, y, yx ).
The source and target projections are the projection onto the first and second component,
respectively. The composition of two 1-jets (x, y, yx ) and (y, z, zx ) is (x, y, yx ) ·(y, z, zy) =

(x, z, yx zy). Inversion is given by (x, y, yx ) 7→ (y, x, 1/yx ). �
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Example 4.8.5 (Jet groupoid of linear transformations). The linear transformations of
X = R are the maps x 7→ y = ax . The 1-jets (x, y, yx ) of linear transformations all satisfy
the condition xyx − y. Since the composition of two linear transformations is again a linear
transformation we expect the set of all 1-jets of invertible linear transformations to define a
jet groupoid.

Suppose (x, y, yx ) and (y, z, zx ) are two 1-jets of invertible linear transformations and let
(x, z, zx ) = (x, y, yx )·(y, z, zx ). The composition of these two jets is given in Example 4.8.4.
Then

xzx − z = xzy yx − yzy = zy(xyx − y) = 0.

Also y(1/yx )− x = (1/yx )(y − xyx ) = 0. Hence the subset of 51(X) defined by

R = { (x, y, yx ) ∈ 51(X) | xyx − y = 0 }

is closed under the groupoid operations. Hence R is a jet groupoid. �

The gauge groupoid construction. Every transitive Lie groupoids is equivalent to a prin-
cipal bundle. See for example Moerdijk and Mrčun [54, pp. 114–115]. Let P → M be
a principal bundle with structure group H . The structure group acts on the direct product
bundle P × P and we can form the associated fiber bundle Gauge(P) = P ×H P . This
fiber bundle is a groupoid. The morphisms are the orbits of the diagonal action of H on
P × P . The source and target projection are given by projection onto the first and second
component of P × P followed by projection with π , respectively. The composition is defined
such that P × P → P ×H P is a groupoid homomorphism from the pair groupoid to the
gauge groupoid. The bundle Gauge(P) is called the gauge groupoid or Ehresmann groupoid
of the principal bundle P . Conversely, let G ⇒ X be a transitive groupoid. The sequence
Gx → G(x,−) → X defines a principal Gx -bundle. The gauge groupoid of this principal
bundle is isomorphic to G ⇒ X .

Example 4.8.6. Let X be a smooth manifold and FX the frame bundle of X . The frame
bundle is a principal bundle with structure group G = GL(V ). Then the gauge groupoid
FX ×G FX is isomorphic to 51(X). Suppose (x, u), (x ′, u′) are points in FX with x, x ′

∈ X
and u, u′ linear maps Tx X → V and Tx ′ X → V , respectively. Then the map FX × FX →

51(X) : (x, u), (x ′, u′) 7→ (x, x ′, (u′)−1
B u) factorizes through the projection FX × FX →

FX ×G FX and the isomorphism FX ×G FX → 51(X) �

Geometric structures. Many geometric structures can be given as reductions of the frame
bundle. For example in Riemannian geometry a reduction of the frame bundle FX to an
O(n)-bundle defines a metric on X . Via the gauge groupoid construction this corresponds to
the following. If we choose a frame for Tx X and we use the frame to identify Tx X with Rn ,
then the group O(n) acts on Tx X . The action of O(n) on Tx X induces an action on51(x, x).
We define the natural bundle by

F = 51(−, x)/O(n).
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The group 51(x, x) acts on F from the left. The sections of the natural bundle F → X
correspond to Riemannian metrics.

For a general jet groupoid Rq we define the natural bundle by

F = 5q(−, x)/Rq(x, x).

The sections of the natural bundle define geometric structures of the same type as the original
geometric structure. Other geometric structure with their corresponding structure groups are
almost complex structures (GL(n,C)), Kähler structures (U(n)) and symplectic structures
(Sp(2n,R)).

Action of the diffeomorphism group. The diffeomorphisms of the base manifold X act
on the geometric structure. This means that we can lift the action of any diffeomorphism
to an action in the natural bundle. We are interested in the diffeomorphisms that leave in-
variant the geometric structure defined by the section of the natural bundle. If the structure
is transitive we can restrict our attention to the diffeomorphism group fixing a base point y.
The diffeomorphism group acts transitively on Fy . The diffeomorphism group then acts by
prolongation on the jet bundles Jr (F) of the natural bundle. If this action is not transitive
at a certain order, then we have found differential invariants of the geometric structure. To
calculate these differential invariants we note that the full diffeomorphism group acts on Fr
only by a finite order part.

First order systems. The generalized first order order systems described in this chapter are
defined by a rank 4 distribution on a 6-dimensional manifold, or equivalently as section of
Gr2(T M).

Let V be any rank four distribution on M . We define the jet groupoid R as the groupoid
of jets { j1

x φ ∈ 51(M) | (Txφ)(Vx ) = Vφ(x) }. We define the group G(4, 6) as the group of
matrices (

GL(4,R) Lin(2, 4)
0 GL(2,R)

)
⊂ GL(6,R).

The group G(4, 6) is a codimension 8 subgroup of GL(6,R). Choose a point x ∈ M and
an identification of Tx M with R6 such that Vx is spanned by the first four basis vectors in
R6. With this identification R(x, x) is isomorphic to G(4, 6). The natural bundle F =

51(−, x)/R(x, x) has dimension 14 (the fibers of the bundle over M have dimension equal
to 8). The natural bundle is diffeomorphic to Gr2(T M). A section of the natural bundle
corresponds to a rank 4 distribution on M .

The space of r -jets of rank 4 distributions on M equal to the prolongation Jr (F) of the
natural bundle. Every local diffeomorphism of M acts on the r -jets of distributions. This
gives an action of 5q(x, x) on Jq−1(F)x . The action of 5q(X) on J0(F) = F is transitive,
this follows from the fact that the group GL(6,R) acts transitively on the 4-dimensional linear
subspaces of R6. Hence to study the invariants of the action it is sufficient to study the action
of 5q(x, x) on Jq−1(F)x .
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Order r dim Jr (F)x dim5r+1(x, x) Orbit Codimension

0 8 36 8 0
1 56 162 56 0
2 224 498 224 0
3 672 1254 670 2
4 1680 2766 1634 46

Table 4.1: Action of the diffeomorphism group on jets of distributions

The package JETS by Mohamed Barakat [7] has implemented routines to calculate the
action of the diffeomorphism group on a geometric structure order by order. At each order q
we calculate the dimension of the fibers of prolongation of the natural bundle Jr (F) → M ,
the dimension of group 5q(x, x) acting and the maximal dimension of the orbits.

The codimension of the orbits with maximal dimension gives an upper bound for the
number of (local) invariants for the rank 4 distributions on M . Near a generic orbit any
transversal section locally defines invariants of the action. These invariants are only local
and it can very well be that near non-generic orbits the invariants are not defined at all. The
results of the calculation are in Table 4.1.

We see that there are no invariants at order 2. At order 3 there are at most 2 continuous
invariants. These are invariants of the generic orbits. For non-generic orbits (these correspond
to non-generic first order systems) these invariants might not be well-defined. At order 4 there
are at most 44 additional invariants.

Remark 4.8.7. The generic first order systems are defined by generic rank 4 distributions in
a 6-dimensional manifold. The second order equations are defined by rank 4 distributions
in a 7-dimensional manifold. However, the distributions for second order equations are far
from generic. This can clearly be seen in definition of a Vessiot system, Definition 4.1.1. The
conditions for a rank 4 distribution on a 7-dimensional manifold to define a Vessiot system do
not only depend on the value of the distribution V at a point, but on V ′ as well and hence on
first order derivative of V ′. The same is true for the first order systems under point geometry
(rank 4 distributions with an integrable rank 2 subdistribution in R6).

This implies that we cannot define the second order equations by arbitrary sections of
the Grassmannian Gr2(T M), M a manifold of dimension 7. We need to define the second
order equations as a structure on a higher order bundle and this complicates the calculation
of invariants. �

4.8.2 Invariants at order 3
In the previous section we explained how we can calculate an upper bound on the number
of invariants at each order. We concluded that the first invariants appear at order 3 and at
this order there can be at most two functionally independent ones. In this section we make a
geometric construction of these third order invariants.
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We assume that we have a hyperbolic first order system that is generic in the sense
that rankD = 4 and B1 ∩ B2 = span(0). We use the genericity to construct an invari-
ant coframing e1, e2, e3 as described in Section 4.7.3. Then the distributions B1, T M+ and
T M− are of order 2. We can define the distribution W± = (B1)± ⊕ T M∓ and this dis-
tribution is of order 2 as well. The Lie brackets modulo W± define an invariant tensor
W± ×M W± → T M/W± of order 3. Most coefficients of this tensor have already been
normalized, but not all of them. The Lie bracket of (e1)+ and (e3)− modulo W+ is invari-
antly defined. Since e1 and e3 are of order 3, this expression is of order 3. We can write this
as [(e1)+, (e3)−] = (k1)+(e2)+ + (k2)+(e3)+ mod W+. The normalizations made so far
imply (k2)+ = 0 but (k1)+ defines an invariant of order 3. For the other distribution W−

we can define [(e1)−, (e3)+] = (k1)−(e2)− + (k2)−(e3)− mod W−. This gives a second
invariant (k1)−.

At order 4 there are many invariants, and we make no attempt in classifying them. Since
we have an invariant frame we have an invariant coframe as well. All the structure functions
and coframe derivatives of this invariant coframe define invariants of the system.

Remark 4.8.8. In the next chapter we will develop a structure theory in differential forms
for first order systems. In terms of an adapted coframing the invariants constructed are given
by the coefficients S1F after we have normalized T2F = U3F = S3F = 1 and T3F = U2F =

V2F = V3F = S2F = 0. �

Example 4.8.9 (Invariant framing). Consider the first order system

u y = (ux )
2
+ (vy)

2, vx = u.

We will use x, y, u, v, p = ux , s = vy as coordinates on the equation manifold M . The
calculations for this example can be found on the authors homepage [32]. Let Dx = ∂x +

p∂u + u∂v , Dy = ∂y + (p2
+ s2)∂u + s∂v . Take H =

√
2p2 + 6s2/4. On T M we define the

framing

e1 = H∂p,

e2 = −
1

32H2

(
Dy + pDx + 2s(p2

+ s2)∂p + 4ps2∂s

)
,

e3 = −
1

16H

(
Dx −

ps(p2
− s2)

4H2 ∂p + (p2
+ s2)∂s

)
,

e4 =
H
2
∂s,

e5 = (1/16)(∂u + 6s∂p + 2p∂s),

e6 =
1

64H

(
∂v + 2s∂u + 16H2∂p +

ps(3p2
+ 5s2)

2H2 ∂s

)
.

The contact distribution is V = span(e1, e2, e3, e4) and the almost product structure on T M
is given by span(e1, e3, e5) ⊕ span(e2, e4, e6). A calculation of the Nijenhuis tensor shows
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that B1 = span(e1, e2), B2 = span(e3, e4) and B3 = span(e5, e6). In the frame we have the
following normalizations

[e1, e3] ≡ −e5 mod V,
[e2, e4] ≡ e6 mod V,
N (e1, e5) = e4, N (e2, e6) = e3,

N (e3, e5) = e6, N (e4, e6) = e5.

Hence this framing is an invariant framing for a first order hyperbolic system as described in
Section 4.7.3. The third order invariants are (k1)+ = 0 and (k1)− = s(p2

+ 2s2)/(16H3).
Because the framing e1, e2, e3 is invariant under contact transformations it follows from

Theorem 1.2.58 that the contact symmetry group of the system is finite-dimensional. The
dual coframe to the invariant framing is of rank one at generic points.

A calculation of this symmetry group using the MAPLE package JETS yields that the
contact symmetry group of the system is 5-dimensional. The infinitesimal symmetries are
given by

X1 = ∂x , X2 = ∂y, X3 = ∂v,

X4 = 2∂u + x∂v,

X5 = x∂x + 2y∂y + v∂v − p∂p − s∂s .

(4.24)

The symmetries X1, X2 and X3 correspond to translations in the x , y and v directions. The
symmetry X4 is a combined translation in the direction u and a scaling of v by a factor exp(x).
The last symmetry X5 is a scaling symmetry. �





Chapter 5

First order systems

In this chapter we develop the structure theory for first order systems in terms of differential
forms. We also make connections to the theory of hyperbolic surfaces developed in Sec-
tion 2.3.1 and theory developed by other mathematicians. For example hyperbolic exterior
differential systems in Section 5.5.1 and linear partial differential operators in Section 5.5.2.
We start with an analysis of the structure theory for hyperbolic systems. Then we review the
elliptic theory and apply this to study base transformations.

The two different structure theories (distributions and differential forms) will be used
together in Chapter 8 and Chapter 9. In these chapters we will need aspects from both theories
to obtain our results.

5.1 Contact transformations and symmetries

An external contact transformation between two first order systems M ⊂ Grn(T B), M̃ ⊂

Grn(T B̃) is a local diffeomorphism φ from an open subset of Grn(T B) to some open subset
of Grn(T B̃) such that

• M is mapped to M̃

• The contact system is preserved, i.e., φ∗( Ĩ ) ≡ 0 mod I . Another way of saying this
is that the dual distributions should be mapped to each other: for all m in the domain
of φ we should have Tmφ(Vm) = Ṽφ(m).

An internal contact transformation is a (local) diffeomorphism M → M̃ that preserves the
pullback of the contact system of the Grassmannian. Another equivalent definition is that an
internal contact transformation is local diffeomorphism of Grn(T B) to Grn(T B̃) such that

• M is mapped to M̃

• The contact system is preserved on M , i.e., φ∗( Ĩ )m ≡ 0 mod Im for all points m ∈ M .
In terms of the dual distributions this condition is that for all m ∈ M with m in the
domain of φ we should have Tmφ(Vm) = Ṽφ(m).
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In the following we will mean by a contact transformation always an internal contact transfor-
mation. Every external contact transformation restricts to an internal contact transformation,
but the converse is not true.

Let π : Grn(T B) → B and π̃ : Grn(T B̃) → B̃ be the projections to the base manifolds.
For every (local) diffeomorphism ψ : B → B̃ of the base manifolds, there is a unique
contact transformation 9 : Grn(T B) → Grn(T B̃) such that π̃ B 9 = ψ B π . The contact
transformation 9 is defined by 9 : L ∈ Gr2(Tb B) 7→ Tbψ(L) ∈ Gr2(Tψ(b) B̃). We call this
the lift or induced map of ψ . This definition is very similar to the definition of the lift of an
equivalence of G-structures described on page 13. The contact transformations that are lifts
of diffeomorphisms of the base are called point transformations.

In the special situation that B = B̃ and M = M̃ we call an external contact transformation
an external symmetry of M . An internal symmetry is an internal contact transformation from
M to M . It is clear that any external symmetry restricts to an internal symmetry, but con-
versely not every internal symmetry extends to an external symmetry. For more information
on internal and external symmetries see the paper by Anderson et al. [5].

We make an important observation for a codimension c system. Let s = dim B − n. For
the contact system on M ⊂ Grn(T B) for s > 2 the fibers of the projection Gr2(T B) → B are
integral manifolds for which the tangent spaces are maximal integral elements of dimension
ns − c. In contrast, the graphs of 1-jets of functions u(x) define n-dimensional integral
manifolds. The tangent spaces are n-dimensional maximal integral elements. Whenever
ns − c > n the fibers of the projection M → B are geometrically different from the generic
integral manifolds. This implies the following theorem:

Theorem 5.1.1. Let M be a codimension c system in Grn(T B). If ns − c > n, then all inter-
nal symmetries of the equation are external symmetries and are induced from base transfor-
mations.

Proof. Any symmetry must map the fibers (which are integral manifolds of maximal dimen-
sion) to fibers and therefore induces a transformation on the base. It is easily checked that
the symmetry defined by the prolongation of this base transformation must be equal to the
original symmetry. �

For c = 0 this theorem is a special case of Bäcklund’s theorem. Bäcklund’s theorem
deals with the external contact transformations.

The systems with n = 1 are ordinary differential equations. The first interesting systems
of partial differential equations occur for n = s = 2. If c = 1, then there are no interesting
internal symmetries. An analysis of the cases c = 3, 4 using the structure equations for
the system is done in Bryant et al. [13, Chapter VII, §2]. In this dissertation we study the
determined first order systems n = s = c = 2.

Example 5.1.2. Consider the first order jet bundle M = J1(R,R2). This jet bundle can be
seen as an open subset of the Grassmannian Gr1(T B) of 1-planes in B = R × R2. We take
local coordinates x , u, v for the base manifold. We have coordinates x , u, v, p = ux , r = vx
for M . The contact system is generated by two 1-forms θ1

= du − pdx , θ2
= dv− rdx . The
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dual distribution V has basis

X = ∂x + p∂u + r∂v, ∂p, ∂r . (5.1)

Every non-zero vector in V spans a 1-dimensional integral element, hence V1(V) = PV . At
each point of M there is only one 2-dimensional integral element and it is spanned by the
vectors ∂p, ∂r . The integral elements of maximal dimension (two in this example) form an
integrable distribution. The leaves of this distribution are precisely the fibers of the projection
Gr1(T B) → B. �

5.2 Hyperbolic structure theory
In this section we will develop the structure theory for first order hyperbolic systems. The
theory will use differential forms as the main objects, in contrast with the structure theory
using distributions developed in the previous chapter.

Many classical mathematicians (Lie, Vessiot, Cartan) studied equations of hyperbolic
type. The equations of elliptic type were assumed to be analytic and then treated in complex
coordinates (where everything is hyperbolic). This complexification is also used in Stormark
[64, pp. 279–280].

Some recent authors [4, 38, 44, 66] deal only with hyperbolic systems. In contrast the
work of McKay [51, 52] only deals with the elliptic case. McKay believed the elliptic case is
simpler because we can use the familiar concepts of complex structures. Below we will see
that using hyperbolic variables and almost product structures, the structure theory introduced
by McKay is almost identical in the hyperbolic and elliptic cases.

5.2.1 Point geometry

In this section we develop a structure theory for first order systems using differential forms
and structure equations. We will rediscover the almost product structure and the Nijenhuis
tensor as invariant structures. The starting point is a base manifold of dimension four and a
codimension two submanifold M in Gr2(T B) that is transversal to the projection Gr2(T B) →

B. The intersection of the tangent space to the fibers of the projection and the tangent space
to M defines a rank two integrable distribution. The leaves of this distribution define the base
foliation. The contact system on Gr2(T B) pulls back to a contact system on M . On M we
can choose 1-forms θ1, θ2 that form a basis for the contact system. We can then choose two
additional 1-forms ω1, ω2 such that the distribution defining the base foliation is equal to the
dual of span(θ1, θ2, ω1, ω2). We complete the coframe by choosing two additional 1-forms
π1, π2.

Recall that FM is the bundle of frames (or coframes) on the manifold B. The coframe θ1,
θ2, ω1, ω2, π1, π2 constructed above defines a special section of the bundle of frames. In this
section we will start with the subbundle of FM that contains all coframes θ1, θ2, ω1, ω2, π1,
π2 such that span(θ1, θ2) is the contact system and span(θ1, θ2, ω1, ω2)⊥ is the distribution
given by the tangent space of the fibers of M → B. We will then reduce this bundle step by
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step to bundles for which the sections are coframes on M that are adapted to the geometry on
M . The final result is Definition 5.2.3 in which the bundle of adapted coframes is defined.

For convenience we will assume that on (M,V) we have made a choice of positive and
negative Monge system. This will reduce the structure group by a discrete factor and this will
make the notation much easier. In local coordinates the independence condition for solutions
to the systems will be given by ω1

∧ ω2
6= 0.

Remark 5.2.1. The constructions in this section are similar to the sections 6.2 – 6.4 in
McKay [51] where a structure theory for elliptic systems is developed. For elliptic systems
it turned out to be useful to write everything in complex coordinates. For hyperbolic systems
we use hyperbolic numbers to express the structure equations. Note that in McKay [51] the
action of the structure group on A on top of page 39 and Proposition 12 are incorrect, since e
should be complex-linear as well. The final results of McKay in that section are correct. �

We will write θ for the D-valued differential form (θ1, θ2)T and similarly for ω and π .
From the definition of a first order system it follows that the structure equations are given by

d

θω
π

 = −

α̃ 0 0
β̃ γ̃ 0
δ̃ ε̃ ζ̃

 ∧

θω
π

−

 Ã ∧ ω

0
0


for 2 × 2-matrices α̃, β̃, γ̃ , δ̃, ε̃, Ã. The structure group for the coframe is the group of
matrices ã 0 0

b̃ c̃ 0
d̃ ẽ f̃

 ∈ GL(6,R).

Modulo I = span(θ1, θ2) we have dθ i
≡ −Ai

jkπ
j
∧ ωk . We write Ã for the matrix ( Ã)ik =

Ai
jkπ

j . The structure group acts on the matrix Ã as Ã 7→ ã Ãc̃−1. This is a conformal action,
see Section A.5. Using a transformation of the coframing we can arrange that in fact (this
follows from the assumption the system is hyperbolic)

dθ ≡ −

(
π1

∧ ω1

π2
∧ ω2

)
≡ −π ∧ ω mod I. (5.2)

This normalization reduces the structure group. In the reduced structure group a′′
= c′′

=

e′′
= 0 and f = ac−1. The diagonal matrix diag(L , L , L), with L given in (2.5), does

preserve the normalization (5.2) and interchanges the two Monge systems. Our choice of
a positive Monge system eliminates the component of the structure group that includes the
matrix diag(L , L , L).
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We arrive at a coframing with structure equations

d



θ1

θ2

ω1

ω2

π1

π2

 = −


α1 0 0 0 0 0
0 α2 0 0 0 0
β1 βI γ1 0 0 0
βI I β2 0 γ2 0 0
δ1 δI ε1 0 α1 − γ1 0
δI I δ2 0 ε2 0 α2 − γ2

 ∧



θ1

θ2

ω1

ω2

π1

π2



−


π1

∧ ω1

π2
∧ ω2

0
0
0
0

+



ξ1
∧ θ2

ξ2
∧ θ1

η1
∧ ω2

η2
∧ ω1

εI ∧ ω2
+ E1π

1
∧ π2

εI I ∧ ω1
+ E2π

2
∧ π1


and structure group given by matrices in GL(6,R) of the form

a 0 0
b̃ c 0
d̃ e ac−1

 =



a1 0 0 0 0 0
0 a2 0 0 0 0
b1 bI c1 0 0 0
bI I b2 0 c2 0 0
d1 dI e1 0 a1c−1

1 0
dI I d2 0 e2 0 a2c−1

2

 . (5.3)

In the notation with hyperbolic numbers introduced above the structure equations are given
in the more compact form

d

θω
π

 =

α 0 0
β̃ γ 0
δ̃ ε α − γ

 ∧

θω
π

−

π ∧ ω

0
0

+

 ξ ∧ θ F

η ∧ ωF

ε′′ ∧ ωF
+ Eπ ∧ π F

 ,
where α, γ , ε are diagonal matrices. For convenience we have written α instead of α′, and
similar for γ and ε. We can absorb terms in α, β̃, γ, δ̃, ε̃ such that ξ = Ã2ω + Ã3π and
η = B̃3π for 2 × 2-matrices Ã2, Ã3, B̃3. We analyze the structure equations by calculating
the consequences of d2θ = 0 modulo θ, θ F . We find

0 = d2θ ≡ α ∧ dθ − dπ ∧ ω + π ∧ dω − ξ ∧ dθ F

≡ −α ∧ π ∧ ω + (α − γ ) ∧ π ∧ ω + ε′′ ∧ ωF
∧ ω

− Eπ ∧ π F
∧ ω − π ∧ γ ∧ ω

+ π ∧ η ∧ ωF
+ ξ ∧ π F

∧ ωF

≡ (−Eω + B3
′′ωF

+ A3
′ωF ) ∧ π ∧ π F

+ (−ε′′ − A2
′π F ) ∧ ω ∧ ωF .

From this we can conclude that E = 0, A3
′
+B3

′′
= 0 and (ε′′+A2

′π F )∧θ∧θ F
∧ω∧ωF

= 0.
Since we can absorb terms θ, ω from ε′′ into δ̃ and ε′ we can arrange that ε′′ = −A2

′π F .
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The new structure equations are

d

θω
π

 = −

α 0 0
β̃ γ 0
δ̃ ε α − γ

 ∧

θω
π

−

π ∧ ω

0
0

+

 ξ ∧ θ F

η ∧ ωF

−A2
′π F

∧ ωF

 ,
with A2

′
∈ D. We again calculate d2θ , but this time only modulo θ .

0 = d2θ ≡ α ∧ dθ − dπ ∧ ω + π ∧ dω

+ d( Ã2ω + Ã3π) ∧ θ F
− ( Ã2ω + Ã3π) ∧ dθ F

≡ −α ∧ π ∧ ω + α ∧ ( Ã2ω + Ã3π) ∧ θ F
+ δ′′ ∧ θ F

∧ ω

+ (α − γ ) ∧ π ∧ ω + A2
′π F

∧ ωF
∧ ω − π ∧ β ′′

∧ θ F

− π ∧ γ ∧ ω + π ∧ η ∧ ωF
+ d( Ã2ω + Ã3π) ∧ θ F

+ ( Ã2ω + Ã3π) ∧ αF
∧ θ F

+ ( Ã2ω + Ã3π) ∧ π F
∧ ωF

≡ α ∧ ( Ã2ω + Ã3π) ∧ θ F
+ δ′′ ∧ θ F

∧ ω + A2
′π F

∧ ωF
∧ ω

− π ∧ β ′′
∧ θ F

+ π ∧ (−A3
′π F ) ∧ ωF

+ d( Ã2ω + Ã3π) ∧ θ F

− ( Ã2ω + Ã3π) ∧ αF
∧ θ F

+ (A2
′ω + A3

′π) ∧ π F
∧ ωF

≡
[
d( Ã2ω + Ã3π)− δ′′ ∧ ω + β ′′

∧ π + α ∧ ( Ã2ω + Ã3π)

+ αF
∧ ( Ã2ω + Ã3π)

]
∧ θ F

≡ (dA2
′
− δ′′ + A2

′α − A2
′αF ) ∧ ω ∧ θ F

+ (dA2
′′

+ A2
′′α − A2

′′αF ) ∧ ωF
∧ θ F

+ (dA3
′
+ β ′′

+ A3
′α − A3

′αF ) ∧ π ∧ θ F

+ (dA3
′′

+ A3
′′α − A3

′′αF ) ∧ π F
∧ θ F

+ (A2
′dω + A2

′′dωF
+ A3

′dπ + A3
′′dπ F ) ∧ θ F mod θ.

We introduce the forms

∇ A2
′
= dA2

′
− δ′′ + A2

′(α − αF
− γ )− A3ε,

∇ A2
′′

= dA2
′′

+ A2
′′(α − αF

− γ F )− A3
′′εF ,

∇ A3
′
= dA3

′
+ β ′′

+ A3
′(γ − αF ),

∇ A3
′′

= dA3
′′

+ A3
′′(α − 2αF

+ γ F ).

(5.4)

Remark 5.2.2. The notation ∇ is inspired by the fact that the forms ∇ A j are in fact covariant
derivatives with respect to the connection chosen. See McKay [53]. �
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With this we have

0 = d2θ ≡ (∇ A2
′
∧ ω + ∇ A2

′′
∧ ωF

+ ∇ A3
′
∧ π + ∇ A3

′′
∧ π F ) ∧ θ F

+ (A2
′ B̃3π ∧ ωF

+ A2
′′(B̃3)

Fπ F
∧ ω

− A2
′′ A3

′′π F
∧ ωF

+ A3
′′(A2

′)Fπ ∧ ω) ∧ θ F mod θ.

(5.5)

This proves that the 1-forms ∇ A∗ are semi-basic with respect to θ , θ F , ω, ωF , π , π F . The
forms α, β̃, γ , δ̃, ε define a connection and to this connection we can associate a covariant
derivative acting on equivariant tensors on the bundle. The construction of a covariant deriva-
tive is equivalent to the covariant derivative that is constructed when we have a G-equivariant
connection on a principal bundle. The construction of covariant derivatives in the context
of connections that are not G-equivariant is described briefly in McKay [53]. The torsion A
satisfies

dA = ∇ A + ρ(α, . . . , ε)A,

where ∇ A is the covariant derivative and ρ is an affine representation of the Lie algebra on
the torsion bundle. Compare this to (5.4).

When moving in a fiber of the bundle of adapted coframes over M we have ∇ A = 0, since
∇ A is semi-basic. Therefore dA is determined by the representation ρ. The terms β ′′ and δ′′

in (5.4) ensure that if we move in the direction of the vectors dual to β ′′, only A2
′ will change,

so we can transform A2
′ into zero. Similarly for δ′′ and A3

′. From the calculations above it
follows that we can restrict to a subbundle on which A2

′
= A3

′
= 0. The reduced structure

group is the subgroup of the previous structure group (5.3) for which b′′
= d ′′

= 0. If at
the same time we rearrange the terms involving β ′′, δ′′, then we find the structure equations
below.

We rename the terms T2F = A2
′′, T3F = A3

′′, and S2F = −B3
′. At the same time we

have new terms U2, U2F , U3F , V2, V2F , V3F , S1F ∈ D because the structure group is reduced.
With this new notation the structure equations become

d

θω
π

 = −

α 0 0
β γ 0
δ ε α − γ

 ∧

θω
π

−

 π ∧ ω

π ∧ (S1F θ F
+ S2FωF )

0


+

 T2FωF
∧ θ F

+ T3Fπ F
∧ θ F

U2ω ∧ θ F
+ U2FωF

∧ θ F
+ U3Fπ F

∧ θ F

V3π ∧ θ F
+ V2FωF

∧ θ F
+ V3Fπ F

∧ θ F

 .
We can absorb the term U2ω∧ θ F into γ . A calculation of d2θ modulo θ, ωF , π F yields that
V3 = −U2 and hence V3 and U2 are absorbed at the same time.

We have constructed an adapted coframing by normalization of the structure functions.
Without making any further assumptions on the structure functions we cannot make any
further normalizations.
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Definition 5.2.3 (Adapted coframing for hyperbolic first order system). Let θ, ω, π be
a coframing on a hyperbolic first order system under point geometry. We say the coframing
is adapted if it satisfies the structure equations

dθ = −

α 0 0
β γ 0
δ ε α − γ

 ∧

θω
π

+

−π ∧ ω

−π ∧ σ

0


+

 T2FωF
∧ θ F

+ T3Fπ F
∧ θ F

U2FωF
∧ θ F

+ U3Fπ F
∧ θ F

V2FωF
∧ θ F

+ V3Fπ F
∧ θ F

 .
(5.6)

Here σ = S1F θ F
+ S2FωF . The bundle of all adapted coframes is written as BM . The calcu-

lations above show that for any hyperbolic first order system the bundle BM is a reduction of
FM with structure group H . The group H is the group of invertible matricesa 0 0

b c 0
d e ac−1

 ∈ GL(6,R), (5.7)

with a, b, c, d, e ∈ D. 	

For future reference we write down the covariant derivatives of all the torsion functions.

∇T2F = dT2F + T2F (α − αF
− γ F )− T3F ε

F ,

∇T3F = dT3F + T3F (α − 2αF
+ γ F ),

∇S1F = dS1F − βF S2F + S1F (2γ − α − αF ),

∇S2F = dS2F + S2F (2γ − α − γ F ),

∇U2F = dU2F + βU2F + U2F (γ − γ F
− αF )− U3F ε

F ,

∇U3F = dU3F + βU3F + U3F (γ + γ F
− 2αF ),

∇V2F = dV2F + δV2F + εU2 + V2F (α − αF
− γ − γ F )− V3F ε

F ,

∇V3F = dV3F + δV3 + εU3 + V3F (α − 2αF
+ γ F

− γ ).

(5.8)

The covariant derivatives above give the infinitesimal action of the structure group on the
invariants. We will also calculate this action directly.

Action of the structure group. Let G be the structure group preserving this adapted cofram-
ing, i.e., G is the group of lower triangular matrices in GL(3,D) with diagonal entries
(a, c, ac−1). We want to analyze the action of this structure group on the invariants S =
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(S1F , S2F ), T = (T2F , T3F ), U and V . Let

g =

a 0 0
b c 0
d e ac−1

 ,
g−1

=

 a−1 0 0
−ba−1c−1 c−1 0

a−2be − a−2cd −a−1e a−1c

 =

â 0 0
b̂ ĉ 0
d̂ ê âĉ−1

 (5.9)

and define (θ̃ , ω̃, π̃)T = g−1(θ, ω, π)T . The new structure equations for θ̃ become

dθ̃ = d(a−1θ) ≡ −a−1(da)a−1
∧ θ + a−1dθ

≡ a−1(−π ∧ ω + τ1 ∧ θ F )

≡ −π̃ ∧ ω̃ + a−1τ1 ∧ θ F mod θ̃ .

The last term transforms as

a−1τ1 ∧ θ F
= a−1(T2F , T3F ) ∧ (ωF , π F )T ∧ aF ¯̃

θ

= a−1(T2F , T3F ) ∧

(
c 0
e ac−1

)F

(ω̃F , π̃ F )T ∧
¯̃
θ

= a−1(T̃2F , T̃3F ) ∧ (ω̃F , π̃ F )T ∧ θ̃ F

= τ̃1 ∧ θ̃ F .

Combining this we see the invariants transform as(
T̃2F

T̃3F

)
= a−1aF

(
cF eF

0 aF (cF )−1

)(
T2F

T3F

)
.

The calculations for ω and π are more involved, but since d8̃ = d(g−18) = −g−1(dg) ∧

g−18 + g−1d8 and we are interested in the action of G on the invariants S, T,U, V (and
not on the connection forms α, β, . . . , ε) we can restrict ourselves to the action caused on
the torsion component the structure equations, i.e., we only calculate the action of G on the
torsion bundle. We have

dω̃ ≡ b̂dθ + ĉdω

≡ b̂(−α ∧ θ − π ∧ ω + τ1 ∧ θ F )+ ĉ(−β ∧ θ − γ ∧ ω − π ∧ σ + τ2 ∧ θ F )

≡ b̂τ1 ∧ θ F
− ĉπ ∧ σ + ĉτ2 ∧ θ F

≡ −ĉac−1π̃ ∧ σ + b̂τ1 ∧ θ F
+ ĉτ2 ∧ θ F mod θ̃ , ω̃.

The terms τ1 ∧ θ F and τ2 ∧ θ F transform in precisely the same way as the term τ1 ∧ θ F we
already encountered when calculating dθ̃ .
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Define the following representations of the structure group on D2

πτ : G → Aut(D2) : g 7→ aF
(

cF eF

0 aF (cF )−1

)
,

πσ : G → Aut(D2) : g 7→ ac−1
(

aF bF

0 cF

)
.

It is not difficult to check that under the action of G the invariants S = (S1F , S2F ) transform
under the representation ĉπσ and the invariants T,U, V transform as

T̃ = a−1πτT,

Ũ = b̂πτT + ĉπτU,

Ṽ = d̂πτT + êπτU + a−1cπτV .

The invariants T3F and S2F transform as

T3F 7→ a−1(aF )2(cF )−1T3F , S2F 7→ ac−2cF S2F .

Hence both T3F and S2F are relative invariants. By a relative invariant we mean that the zero
set T3F = 0 is invariant under the structure group.

The structure group has dimension 10 and has an affine representation on the 16-dimen-
sional linear space with coordinates T2F , T3F , U2F , U3F , V2F , V3F , S1F , S2F ∈ D. Hence for
generic first order systems we expect 6 real invariants at this order. One of the invariants is
|T3F |

2/|S2F |
2, if this quotient is well-defined. At points where S2F ∈ D∗, T3F ∈ D∗ the orbits

of the structure group have dimension 9 or 10, depending on the values of V2F and U2F .
A possible normalization scheme in the generic situation: use b to transform S1F = 0,

use e to transform T2F = 0, use d to transform V3F = 0. The pair a, c acts on T3F , S2F

with 3-dimensional orbits. The remaining freedom after normalization is (a, c) 7→ (φa, φc).
Then the last degree of freedom φ acts on U2F , U3F , V2F .

Example 5.2.4. We consider the system q = r , q = φ(s). This first order systems can
be obtained from the second order equation zxy = φ(zyy) by taking the quotient by the
symmetry ∂z (see Chapter 9). By calculating dθ for an initial coframing θ, ω, π we can find
by some trial and error the following adapted coframing:

θ1
= (du − pdx − rdy)− φ′(dv − qdx − sdy),

θ2
= dv − qdx − sdy,

ω1
= dx, ω2

= dy + φ′dx,

π1
= dp − φ′′ds, π2

= ds.
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The structure equations are

dθ1
= −π1

∧ ω1
− φ′′π2

∧ θ2,

dθ2
= −π2

∧ ω2,

dω1
= 0, dω2

= φ′′π2
∧ ω1,

dπ1
= dp − φ′′ds, dπ2

= 0.

We see that the coframing is indeed adapted and that all invariants vanish, except for T3F =

(−φ′′, 0) and S2F = (0,−φ′′). �

Example 5.2.5. We consider the system q = r , s = G(x, y, u, v)2 p. A calculation with
MAPLE gives the following adapted coframing:

θ1
= (du − pdx − rdy)+ G−1(dv − qdx − (G2 p)dy),

θ2
= (du − pdx − rdy)− G−1(dv − qdx − (G2 p)dy),

ω1
= G−1dx + dy, ω2

= G−1dx − dy,

π1
= Gdp + dr + (pGG̃x )ω

2
+ Hθ2, π2

= Gdp − dr + 2pGG̃xω
1
+ K θ1.

Here G̃x = Gx + pGu + rGv , H = G̃ y + GG̃x + 2pGGu − 2pG2Gv , K = −G̃ y + GG̃x +

2pGGu + 2pG2Gv . The invariants are T3F = 0, S1F = S2F = 0, U3F = 0, V2F = V3F = 0,

T2F = (K − pGu, H − PGu),

U2F =
(Gu − GGv

4G
,

Gu + GGv

4G

)T
.

Notice that S2F = 0. In Chapter 7 we will see that S2F vanishes for all quasi-linear equa-
tions. �

Example 5.2.6. Take q = r , s = φ(p) with φ an arbitrary function for which φ(0) =

0, φ′(0) = 1. For convenience we introduce H =
√
φ′(p), K = −(1/8)φ′′(s)/φ′(s). A

MAPLE calculation gives the following adapted coframing.

θ1
= (du − pdx − rdy)+ H−1(dv − qdx − (G2 p)dy),

θ2
= (du − pdx − rdy)− H−1(dv − qdx − (G2 p)dy),

ω1
= dx + Hdy, ω2

= dx − Hdy,

π1
= dp + H−1dr + K θ2, π2

= dp − H−1dr + K θ1.

The invariants are T2F = 0, U2F = 0, V2F = V3F = 0,

T3F = (−K ,−K )T ,

L =
2φ′′′(p)φ′(p)− 3φ′′(p)2

32φ′(p)2
,

U3F = (L , L)T , S1F = (L , L)T , S2F = (K ,−K )T .

Again S1F , T2F and U2F are zero. The invariant S2F is unequal to zero, indicating that we are
dealing with a non-linear system of equations. �
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5.2.2 Contact geometry
If (M,V) is a first order system we can forget about possible base manifolds and only work
with the distribution V . The geometry we then have is the geometry invariant under contact
transformations. For these systems we can also construct adapted coframings. We start with
a slightly bigger structure group, since we do not have to preserve ω modulo θ .

For hyperbolic equations under contact geometry we can find an adapted coframing
θ, ω, π such that the contact ideal is given by I = span(θ1, θ2) and the structure equations
are

dθ = −

α 0 0
β γ ζ

δ ε α − γ

 ∧

θω
π

+

−π ∧ ω

0
0


+

 T2FωF
∧ θ F

+ T3Fπ F
∧ θ F

U2FωF
∧ θ F

+ U3Fπ F
∧ θ F

V2FωF
∧ θ F

+ V3Fπ F
∧ θ F

 .
(5.10)

We call this an adapted coframing for hyperbolic first order systems under contact geometry.
The structure group that preserves the form of this adapted coframing is given by

x =

a 0 0
b c g
d e f

 , (5.11)

where all coefficients are hyperbolic numbers and a = c f − eg ∈ D∗. The action of this
structure group on the invariants

T = (T2F , T3F )
T , U = (U2F ,U3F )

T , V = (V2F , V3F )
T , (5.12)

is given by the representations

πτ = aF
(

cF gF

eF f F

)T
,

T̃ = âπτT,

Ũ = b̂πτT + ĉπτU + ĝπτV,

Ṽ = d̂πτT + êπτU + f̂ πτV .

(5.13)

The action on T is important later in the classification of Darboux integrable systems. Note
that the action on T is already determined by the action of the group H of matrices(

c g
e f

)
∈ GL(2,D).

5.2.3 Comparison with distributions
In Chapter 4 we have analyzed the structure on the equation manifold of a first order system
(M,V) in terms of the distribution V . In the previous sections we have developed a structure



5.2 Hyperbolic structure theory 131

theory for the first order systems in terms of adapted coframings on the equation manifold.
We will give the correspondence between the different structures for the hyperbolic systems.
For elliptic systems similar statements hold.

Let (M,V) be a generalized first order system and let θ , ω, π be an adapted coframing as
in (5.10). The Monge systems are given by

span
(
θ1, θ2, ω2, π2)⊥ and span

(
θ1, θ2, ω1, π1)⊥,

respectively. The coefficients T2F , T3F , U2F , U3F , V2F , V3F are the coefficients of the Nijen-
huis tensor.

5.2.4 Relations between the invariants
The invariants are not completely independent. We will prove several relations. We start with
a lemma about the invariants for systems under contact geometry with a distinguished rank 2
subbundle of V . Every system under point geometry is such a system, since the foliation to
the base manifold provides the subbundle.

Definition 5.2.7. A first order system with a distinguished subbundle is a first order system
(M,V) with a rank 2 subdistribution W of V . An adapted coframing for such a system is
given by an adapted coframing (θ, ω, π) for (M,V) such that the distinguished subdistribu-
tion is given by the kernel of span(θ, ω). The structure equations for an adapted coframing
are

dθ = −

α 0 0
β γ 0
δ ε α − γ

 ∧

θω
π

+

−π ∧ ω

−π ∧ σ

0


+

 T2FωF
∧ θ F

+ T3Fπ F
∧ θ F

U2FωF
∧ θ F

+ U3Fπ F
∧ θ F

V2FωF
∧ θ F

+ V3Fπ F
∧ θ F

 .
(5.14)

Here σ = S1F θ F
+ S2FωF

+ S3FωF . The structure group is given by

x =

a 0 0
b c 0
d e ac−1

 ∈ GL(D, 3). 	

If S3F = 0, then the distinguished subbundle is integrable and provides a foliation. The
system is then equivalent to a first order system under point geometry.

Lemma 5.2.8 (First order T lemma). Let θ, ω, π be an adapted coframing (5.14). If T3F =

0, then U3F + T2F (S3F )F
= 0 and V3F + T2F (S2F )F

= 0.

Proof. Assume T3F = 0. We calculate d2θ modulo θ, ω, ωF :

0 = d2θ ≡ π ∧ dω + T2F dωF
∧ θ F

≡ U3Fπ ∧ π F
∧ θ F

− T2Fπ
F

∧ σ F
∧ θ F

≡ U3Fπ ∧ π F
∧ θ F

− T2F (S3F )
Fπ F

∧ π ∧ θ F .
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Hence U3F + T2F (S3F )F
= 0. A similar calculation modulo the differential forms θ , π and

ωF yields V3F + T2F (S2F )F
= 0. �

Lemma 5.2.9. Let θ, ω, π be an adapted coframing (5.14) with T3F = U3F = V3F = 0.
Then T2F (S2F )F

= 0 and T2F (S3F )F
= 0. If T2F ∈ D∗, then S2F = S3F = 0 and S1F = 0.

Proof. By assumption we have T3F = U3F = V3F = 0. From the previous lemma it follows
that T2F (S2F )F

= T2F (S3F )F
= 0. If T2F ∈ D∗, then by the equations above S2F = S3F = 0.

We calculate d2ω modulo θ , ω, θ F :

0 = d2ω ≡ −dπ ∧ σ + π ∧ dσ

≡ π ∧ S1F dθ F
≡ −S1Fπ ∧ π F

∧ ωF .

Hence also S1F = 0. �

Example 5.2.10. Consider the hyperbolic first order system

u y =
(xp + u)2

4y
, vx =

(yb − v)2

4x
. (5.15)

Let ψ = −4 + pxsy − pxv + usy − uv. An adapted coframing is

θ1
= (4/ψ)du − (4p/ψ)dx − (px + u)2/ψdy,

θ2
= (2/ψ)

(
px + u

y
dv −

(px + u)(v − sy)2

4
dx + s(px + u)xdy

)
,

ω1
= 4/ψdx − 2(px + u)/(yψ)dy,

ω2
=

−(sy − v)(px + u)
ψ

dx +
2(px + u)x

yψ
dy,

π1
= dp, π2

= ds.

The almost product structure is integrable. Locally this system is contact equivalent to the
first order wave equation. However, for this coframing

S1F = 0, S2F =
1
ψ

(
4x/(px + u)

y(px + u)

)
.

Since S2F is a relative invariant under point transformations this system cannot be equivalent
with the first order wave equation under point transformations. �

5.2.5 Hyperbolic surfaces
A first order system M with projection π : M → B to a base manifold can be embedded
in a natural way in Gr2(T B). The embedding is given in the Vessiot theorem for first order
systems in Section 4.6.1. The fibers of M → B define surfaces in the fibers of Gr2(T B) →

B. Invariants of such surfaces are studied in Section 2.3.
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Example 5.2.11 (Equation surfaces in the Grassmannian). Let B be a base manifold with
coordinates x, y, u, v. The Grassmannian Gr2(T B) has local coordinates x, y, u, v, p, q, r, s.
We will consider the fiber above the base point b = (x, y, u, v) ∈ B. A point p, q, r, s in
the fiber corresponds to the 2-plane in V = Tb B spanned by the vectors ∂x + p∂u + r∂v and
∂y + q∂u + s∂v .

We take e1 = ∂x , e2 = ∂y , e3 = ∂u , e4 = ∂v as a basis for Tb B. Then the point p, q, r, s
corresponds to the element in 32(V ) given by

η = (e1 + pe3 + re4) ∧ (e2 + qe3 + se4)

= e1 ∧ e2 + qe1 ∧ e3 + se1 ∧ e4 + pe3 ∧ e2 + pse3 ∧ e4

+ re4 ∧ e2 + rqe4 ∧ e3.

On E = 32(V ) we can consider the eigenspaces of the Hodge ∗ operator just as in Sec-
tion 2.1.2 and introduce Plücker coordinates. The decomposition into the eigenspaces is
given by

η = (1 + ps − qr)α1 + (q + r)α2 + (s − p)α3

+ (1 − ps + qr)β1 + (q − r)β2 + (s + p)β3.
(5.16)

Consider the Cauchy-Riemann equations p = s, q = −r . The decomposition is given by

η = (1 + p2
+ r2)α1 + (1 − p2

− r2)β1 − 2rβ2 + 2pβ3.

Clearly the compactification of the image of the Cauchy-Riemann equation in the oriented
Grassmannian Gr2(T M) ∼= S+

× S− is represented by the graph of the map S+
→ S−

: s 7→

(1, 0, 0). The conformal quadratic form defined on the tangent space to the Grassmannian is
given by ξ : η̇ 7→ η̇ ∧ η̇. In the coordinates p, r the conformal quadratic form is

η̇ ∧ η̇ = −4(ṙ2
+ ṗ2).

On the surface defined by the Cauchy-Riemann equation the conformal quadratic form is
negative definite and hence the surface is elliptic.

In a similar way we can check that the hyperbolic system q = r = 0 has image in S+
×S−

given by

η = (1 + ps)α1 + (s − p)α3
+ (1 − ps)β1 + (p + s)β3.

The conformal quadratic form is η̇ ∧ η̇ = −4 ṗṡ. �

5.3 Local and microlocal invariants
In Section 2.3 we have analyzed the microlocal invariants of hyperbolic surfaces. We also
found some local invariants for hyperbolic first order systems, see sections 5.2.1 and 5.2.2.
In this section we will show there is a correspondence between these two kinds of invariants.

For the elliptic case McKay has also derived invariants for an elliptic surface in the Grass-
mannian. He calls these invariants microlocal invariants and identifies them with the local
invariants of the equation manifold. See McKay [51, pp. 28–29, 49–50].
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5.3.1 Basic idea

Let M ⊂ Gr2(T B) be a hyperbolic first order system and let us consider the geometry of this
system under point transformations. At each point b0 ∈ B we have the tangent space Tb0 B.
The fiber M0 over b0 ∈ B is both a submanifold of M and of Gr2(Tb0 B). As a submanifold of
Gr2(Tb0 B) the surface M0 defines a hyperbolic surface. The base transformations of the sys-
tem, i.e., the local diffeomorphisms of B, that fix the point b0 induce an action on Tb0 B. This
action is given by the tangent map of the transformation and this is a linear transformation.
Therefore the action of the point transformations on M0 ⊂ Gr2(Tb0 B) is the action of the
general linear group on the hyperbolic surfaces as described in Section 2.3. The microlocal
invariants of hyperbolic surfaces must therefore also be invariants of first order systems.

5.3.2 Bundle map

Suppose we are given a first order system as a smooth manifold M ⊂ Gr2(T B) with projec-
tion p : M → B. Fix a point b0 ∈ B and define M0 to be p−1(b0). We write ιM : M0 → M
for the natural embedding of M0 in M . Recall that M0 is a hyperbolic surface in Gr2(Tb0 B)
and in Section 2.3.4 we have constructed a bundle BM0 over this surface. In this chapter we
have also constructed the bundle BM → M , which is the bundle of all adapted coframings
over M (see Definition 5.2.3). We will construct a bundle map ι∗M BM → BM0 over M0 that
will identify the local invariants with the microlocal invariants.

A point f in BM is a point m ∈ M together with an adapted coframing θ , ω, π for Tm M .
Fix a point m0 ∈ M0 = p−1(b0) and consider the derivative Tm0 p : Tm0 M → Tb0 B. The
kernel of Tm0 p is given by the vectors at m0 that satisfy θ = ω = 0. This implies that the
1-forms θ , ω are mapped to 1-forms 2(m0), �(m0) on Tb0 M . The forms 2, � depend on
the point m0 chosen. Note that the value of2(m0) and�(m0) does only depend on the value
of the coframe θ, ω, π at m0 and not on the derivatives of the coframe. Therefore we can also
write2( f0), �( f0) for the linear maps Tb0 B → D that depend on a point f0 in the bundle of
adapted coframes BM over M .

The pair (�,2) gives a linear map Tb0 B → R4. If we let V = Tb0 B and identify R4 with
V , then this defines an element of GL(V ). This construction gives us a map µ from ι∗M (BM )

to B0 which is a bundle map over M0. Next we want to prove that µ maps not only into B0
but in fact into BM0 ⊂ B0 and that the microlocal invariants (functions on BM0 ) correspond
to local invariants (functions on BM ).

The bundle map is is written in the diagram below. We let V = Tb0 B.

BM0
� � // B0

��

// BV

��
ι∗M BM

µ?

OO

//

��

µ

<<yyyyyyyy
M0

� � ι //
� _

ιM

��

Gr2(V )

BM // M
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The dimension of BM is 16, the base manifold M is 6-dimensional and we have a 10-
dimensional structure group. The pullback bundle ι∗M (BM ) has dimension 12 (four less than
BM ). The map µ maps this bundle to BM0 which has dimension 8. Hence the map has a
4-dimensional kernel. Four degrees of freedom are lost since the structure group of ι∗M (BM )

contains transformations of the coframe where π is changed and the bundle map µ does not
depend on π .

5.3.3 The local-microlocal dictionary
We claim that the map µ is in fact a bundle map ι∗M BM → BM0 . A proof will be given in the
next section.

Let V = Tb0 B. On the pullback bundle ι∗M BM we have at each point f an adapted
coframing (θ, ω, π) for the tangent space to M0 at the point m (m is the base point of f for
the bundle ι∗M BM → M0). Under the map µ the components ξ, η, ϑ, ζ of the Maurer-Cartan
form on B0 are pulled back to

ξ ′
= −γ, ξ ′′

= −S2Fπ,

η′
= −β, η′′

= U3Fπ
F

− S1Fπ,

ϑ ′
= −π, ϑ ′′

= 0,

ζ ′
= −α, ζ ′′

= T3Fπ
F .

(5.17)

In particular the microlocal invariants f and g correspond to the local invariants S2F and T3F .

5.3.4 Proof of the correspondence
Note that we have defined the map µ as a map from BM → B0, but in fact µ is already
defined as a map from the bundle of unadapted coframings θ, ω, π to B0. We will prove that
the adaptations from an unadapted coframing on M to an adapted coframing correspond to
the normalizations of the Maurer-Cartan form in the microlocal setting.

We start with the bundle B̃M of coframes for which the kernel of span(θ) is equal to the
contact distribution and the kernel of span(θ, ω) is tangent to the projection M → B. The
sections of this bundle are the unadapted coframes for the first order systems. Let (θ, ω, π)
be the pullback of the soldering form to B̃M . We start with the structure equations for the
components θ and ω.

dθ = −α ∧ θ − c1,1π ∧ ω − c1,Fπ ∧ ωF
− cF,1π

F
∧ ω − cF,Fπ

F
∧ ωF

+ τ1 ∧ θ F ,

dω = −β ∧ θ − γ ∧ ω − π ∧ σ + dF,Fπ
F

∧ ωF
+ τ2 ∧ θ F .

Here σ = S1F θ F
+ S2FωF , τ1 = T2ω+ T2FωF

+ T3π + T3Fπ F and τ2 = U2ω+ U2FωF
+

U3π + U3Fπ F . These are the most general structure equations for which dθ ≡ dω ≡ 0
mod θ, θ F , ω, ωF .

The map µ is a map from ι∗M B̃M to B0. We calculate how µ varies when we move along
a fiber of ι∗M B̃M → B. Let Z be a vector field on ι∗M B̃M tangent to the fibers of ι∗M B̃M → B.
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Let X be a vector field on B and take a lift X̃ to ι∗M B̃M such that π(X̃) = 0. Let ft be equal
to exp(t Z) f0. Then we have

d
dt

∣∣∣∣
t=0

2( ft )(X) =
d
dt

∣∣∣∣
t=0

θ ft (X̃) = LZ (θ(X̃)) = (LZθ)(X̃)+ θ(LZ X̃)

= (LZθ)(X̃) = dθ(Z , X̃)

= −α(Z)θ(X̃)−

∑
i, j=1,F

ci, jπ
i (Z)ω j (X̃)+ τ1(Z)θ F (X̃)

= −α(Z)2( f0)(X)−

∑
i, j=1,F

ci, jπ
i (Z)� j ( f0)(X)

+ τ1(Z)2( f0)
F (X),

d
dt

∣∣∣∣
t=0

�( ft )(X) = −β(Z)2( f0)(X)− γ (Z)�( f0)(X)

− π(Z)σ (X̃)+ dF,Fπ
F (Z) ∧ ωF (X̃)+ τ2(Z)θ F (X̃).

(5.18)

The map µ can be viewed as a map ι∗M B̃M → GL(V ). Then dµ is a 1-form on ι∗M BM

that takes values in Lin(V, V ). We can then define (dµ)µ−1 as the multiplication of dµ with
(µ)−1. This is a 1-form on the pullback ι∗M B̃M of the bundle of coframes on M , valued in the
linear maps from V to V . From the structure equations (5.18) we can read off that

(dµ)µ−1
=

(
−γ − S2π + dF,Fπ

F L −β − S1πL + U3Fπ F L
−c1,1π − cF,1π

F
− c1,FπL − cF,Fπ

F L −α + T3Fπ F L + T3FπL

)
.

(5.19)

On the other hand the 1-form (dµ)µ−1 is equal to the pullback of the Maurer-Cartan
form on B0 to ι∗M B̃M . So the components of (dµ)µ−1 correspond to the pullbacks of the
components of the Maurer-Cartan form.

The first normalization on the microlocal level is arranging ϑ ′′
= 0. We can see that

this corresponds to making the terms c1,F and cF,F zero. The first step in the adaptation of
the local coframe is to make dθ ≡ −π ∧ ω mod θ, θ F . This corresponds to making cF,1,
c1,F and cF,F zero. So the first step in the adaptation of the local coframing implies the first
normalization at the microlocal level. This proves that the map µ : ι∗M BM → B0 descends to
a map µ : ι∗M BM → B1.

We can continue and check that for each normalization at the microlocal level, there is
a corresponding normalization at the local level. Note that at the local level there are more
steps, for example the term cF,1 is eliminated at the local level, but is not present at the
microlocal level. At the end we have the bundle of adapted coframings at the local level, the
bundle BM0 at the microlocal level and a map µ : ι∗M BM → BM0 .
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5.4 Elliptic systems

In this section we discuss the structure theory for elliptic first order systems. Since the struc-
ture theory for hyperbolic systems was already discussed in detail in Section 5.2.1, we only
give the final results for the adapted coframe.

5.4.1 Structure equations

Recall that (see Section 3.3) any elliptic first order system with a projection to a base manifold
B can be described as a 6-dimensional manifold M with contact forms θ1, θ2 and forms
ω1, ω2 describing the projection to B.

We can complete these 1-forms to a complex coframe 8 = (θ, ω, π)T on M . In McKay
[51] it is shown that the coframe can be chosen such that the following structure equations
are satisfied

d

θω
π

 = −

α 0 0
β γ 0
δ ε α − γ

 ∧

θω
π

− π ∧

ωσ
0

+

τ1
τ2
τ3

 ∧ θ̄ , (5.20)

where

σ = S1̄θ̄ + S2̄ω̄,

τ1 = T2̄ω̄ + T3̄π̄ , τ2 = U2̄ω̄ + U3̄π̄ , τ3 = V2̄ω̄ + V3̄π̄ .
(5.21)

Let G be the structure group preserving this adapted coframing, i.e., G is the group of lower
triangular matrices with diagonal entries (a, c, ac−1). Let

g =

a 0 0
b c 0
d e ac−1

 ,
g−1

=

 a−1 0 0
−ba−1c−1 c−1 0

a−2be − a−2cd −a−1e a−1c

 =

â 0 0
b̂ ĉ 0
d̂ ê âĉ−1

 .
(5.22)

We can calculate the action the structure group G on the invariants just as in Section 5.2.1.
Define the following representations of G: πτ : G → Aut(C2), πσ : G → Aut(C2) by

πτ (g) = ā
(

c̄ ē
0 āc̄−1

)
, (5.23)

πσ (g) = ac−1
(

ā b̄
0 c̄

)
. (5.24)

Under the action of G the invariants S = (S1̄, S2̄) transform under the representation ĉπσ and
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the invariants T,U, V transform as

T̃ = a−1πτT,

Ũ = b̂πτT + ĉπτU,

Ṽ = d̂πτT + êπτU + a−1cπτV .

5.4.2 Transformations of the base foliation

On the equation manifold M the contact forms θ1, θ2 together with the independence forms
ω1, ω2 determine an elliptic system. The system is determined by the two bundles I =

span(θ j ) and J = span(θ j , ωk). Any (infinitesimal) group of internal symmetries must map
I to a bundle Ĩ = I and J to a new bundle J̃ . If J = J̃ , then we are dealing with a prolonged
point transformation and hence an external symmetry. The internal contact symmetries that
cannot be extended to external contact symmetries are characterized by transformations for
which J 6= J̃ .

Let us analyze the transformations of the foliation defined by J . For both the old pair
(I, J ) and the new pair (I, J̃ ) we can choose adapted coframing θ, ω, π and θ̃ , ω̃, π̃ . When
we express the structure equations for this new coframing using the structure equations of
the old coframing, we can determine conditions under which the new coframing defines the
same system.

First note that since Ĩ = I we know that θ̃ = cθ , c ∈ C∗ (this follows from the fact that
θ in an adapted coframing is completely determined up to a positive scalar factor). Using the
structure group G̃ we can arrange c = 1, i.e., θ̃ = θ .

From the contact structure group (the hyperbolic version is given in equation (5.11)), it
follows that our transformation is of the form

θ̃ = θ,

ω̃ = A1θ + A2ω + A3π,

π̃ = B1θ + B2ω + B3π,

with A2 B3 − A3 B2 = 1. Using two more degrees of freedom in the structure group we can
arrange A1 = B1 = 0. So for any transformation mapping the equation to a new first order
equation we can arrange that the transformation of the adapted coframe is of the form

θ̃ = θ,

ω̃ = A2ω + A3π,

π̃ = B2ω + B3π.

(5.25)

We analyze how the transformation defined above acts on the differential invariants. We
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calculate

dθ̃ = dθ = −α ∧ θ − π ∧ ω + τ1 ∧ θ̄

= −α ∧ θ̃ − (−B2ω̃ + A2π̃) ∧ (B3ω̃ − A3π̃)

+ T2̄(B3 ¯̃ω − Ā3 ¯̃π) ∧
¯̃
θ + T3̄(−B2 ¯̃ω + A2 ¯̃π) ∧

¯̃
θ

= −α̃ ∧ θ̃ − π̃ ∧ ω̃ + τ̃1 ∧
¯̃
θ,

with

α̃ = α, τ̃1 = T̃2̄
¯̃ω + T̃3̄

¯̃π,

T̃2̄ = B3T2̄ − B2T3̄, T̃3̄ = A2T3̄ − A3T2̄.

We define the representation

ρτ : SL(2,C) → Aut(C2) :

h =

(
A2 A3
B2 B3

)
7→

(
B3 −B2

−A3 A2

)
.

The transformation of the base foliation will act on the invariants T as T̃ = ρτ (h)T . In a
similar way we can derive the action of the transformation on the other invariants as

T̃ = ρτ (h)T,

Ũ = A2ρτ (h)U + A3ρτ (h)V,

Ṽ = B2ρτ (h)U + B3ρτ (h)V .

(5.26)

The invariants S do not transform properly (the transformed variables S̃ do not only depend
on the values of A2, A3, B2 and B3, but on the first order derivatives of A2, A3, B2, B3 as
well).

Notice that in order for the transformation to define a new foliation by solutions we should
have σ̃ ≡ 0 mod ¯̃

θ, ¯̃ω. This gives restrictions on the functions A j , B j that are allowed. In
principle these can be expressed in terms of θ, ω, π, α, γ, ε. In coordinate invariant terms
these restrictions are d J̃ ≡ 0 mod J̃ . The new system (I, J̃ ) gives a projection to a new
base manifold B̃. This defines a new first order system and we can ask the question if this
new system is equivalent to the old system by a point transformation.

Theorem 5.4.1. Let M be an elliptic first order system with base manifold with invariants
T2̄ 6= 0, T3̄ = 0. Then all internal symmetries are induced from base transformations and
hence are point symmetries (and hence external symmetries).

Proof. If we have a transformation that acts non-trivial on the foliation we must have A3 6= 0.
Notice that T̃3̄ = A2T3̄ − A3T2̄ = −A3T2̄. Since A3 6= 0 and T̃3̄ 6= 0 this implies T̃3̄ 6= 0.
But T3̄ is a relative invariant under point geometry and hence the new equation cannot be
equivalent to the original one. �
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5.4.3 Examples

Example 5.4.2 (A class of equations with only point symmetries). Consider the gener-
alized elliptic systems defined by s = p, q = −r + F(x, y, u, v). From the contact forms
θ1

= du − pdx + (r − F)dy, θ2
= dv − rdx − pdy and the independence forms ω1

= dx ,
ω2

= dy we can choose the following complex coframing

θ = θ1
+ iθ2,

ω = ω1
+ iω2

= dx + idy,

π = dp + i(dr − F̃x dx)− (i/4)(Fu + i Fv)θ̄ ,

where F̃x = Fx + pFu . By adding the term −F̃x dx to π we have the structure equations
dθ ≡ −π ∧ ω mod θ, θ̄ and the term −(i/4)(Fu + i Fv)θ̄ completes the adaptation.

The structure equations for θ, ω and π are

dθ = −(−(1/2)(Fu − i Fv)ω2) ∧ θ − π ∧ ω + (i/4)(Fu + i Fv)ω̄ ∧ θ̄ ,

dω = 0,

dπ = −δ ∧ θ − ε ∧ ω − (α − γ ) ∧ π + τ3 ∧ θ̄ ,

for certain 1-forms δ, ε and τ3 = V2̄ω̄. We arrive at T2̄ = (i/4)(Fu + i Fv), T3̄ = 0. From
Theorem 5.4.1 we conclude if if either Fu 6= 0 or Fv 6= 0 then every internal symmetry is the
prolongation of a base transformation. �

Example 5.4.3 (Cauchy-Riemann equations). Consider the Cauchy-Riemann equations
s = p, q = −r . An adapted coframing is given by θ = (du− pdx+rdy)+i(dv−rdx− pdy),
ω = dx + idy, π = dp + idr . The exact structure equations are

dθ = −π ∧ ω, dω = 0, dπ = 0.

We will consider transformations of the coframing as described previously. We take the
element (

A2 A3
B2 B3

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
∈ SL(2,C).

The new coframe θ̃ = θ , ω̃ = cos(φ)ω−sin(φ)π , π̃ = sin(φ)ω+cos(φ)π has the same struc-
ture equations. This transformation therefore provides a good candidate for a 1-parameter
family of internal symmetries of the Cauchy-Riemann equations. The new forms θ̃ , ω̃ pro-
vide a new foliation of the manifold M . The tangent spaces to the leaves of this foliation are
spanned by

∂π̃1 = cos(φ)∂p + sin(φ)(∂x + p∂u + r∂v),

∂π̃2 = cos(φ)∂r + sin(φ)(∂y − r∂u + p∂v).
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For the quotient manifold of the first order system and this foliation we can use the coordi-
nates x̃ = cos(φ)x − sin(φ)p, ỹ = cos(φ)y − sin(φ)r ,

ũ = u + (1/2) tan(φ)r2
− (1/2) tan(φ)p2,

ṽ = v − tan(φ)pr.

Using the projection map π : M 7→ B̃ : (x, y, u, v, p, r) 7→ (x̃, ỹ, ũ, ṽ) we can construct a
new first order system. The distribution V dual to θ is mapped under Tπ to the 2-dimensional
bundle

span
(
cos(φ)∂x̃ + p∂ũ + r∂ṽ, cos(φ)∂ỹ − r∂ũ + p∂ṽ

)
.

This map defines a contact transformation M → M̃ ⊂ Gr2(T B̃) by (x, y, u, v, p, r) 7→

(x̃, ỹ, ũ, ṽ, p̃ = p/ cos(φ), q̃ = −r/ cos(φ), r̃ = r/ cos(φ), s̃ = p/ cos(φ)). The image
is clearly the 2-dimensional surface in the Grassmann bundle of M̃ that corresponds to the
Cauchy-Riemann equations on M̃ . �

5.5 Miscellaneous

5.5.1 Hyperbolic exterior differential systems
Both Bryant et al. [14, 15] and Vassiliou [66] have defined the concept of a hyperbolic
exterior differential system.

Definition 5.5.1. A hyperbolic exterior differential system of class s is an exterior differen-
tial system (M, I) on a manifold M of dimension s + 4 such that there exists a coframing
θ1, . . . , θ s, ω1, . . . , ω4 such that

I =
{
θ1, . . . , θ s, ω1

∧ ω3, ω2
∧ ω4}

alg. 	

Such a coframing is called an admissible local coframing. A more intrinsic definition
is given in Bryant et al. [14, p. 31] but the definition above is enough for our purposes.
Vassiliou defines (Definition 2.10 in Vassiliou [66]) a manifold of (p, q)-hyperbolic type as
a hyperbolic exterior differential system with some additional conditions. These additional
conditions allow him to treat the manifolds of (p, q)-hyperbolic type as generalizations of
Darboux integrable equations with p or q invariants for each characteristic system. We will
give examples of hyperbolic exterior differential systems with class 0, 1 and 2. These exam-
ples will make clear that the theory of hyperbolic exterior differential systems is very relevant
to our first order systems and second order equations.

Let us give an alternative definition of the hyperbolic exterior differential systems. Let
(M, I) be a hyperbolic exterior differential system as in Definition 5.5.1. The distribution
W dual to the 1-forms θ1, . . . , θ s is a rank 4 distribution on M . The 2-forms ω1

∧ ω3,
ω2

∧ ω4 restrict to two non-zero two forms on W . We define W+ = ker(ω2
∧ ω4

|W ) and
W− = ker(ω1

∧ ω3
|W ). The two rank two distributions W± define a hyperbolic structure
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on W (up to a change of the characteristic systems). Conversely, a rank 4 distribution W
on a (4 + s)-dimensional manifold with a hyperbolic structure on W defines a hyperbolic
manifold of class s. The 2-dimensional integral elements for (M,W+,W−) at a point x
are the 2-dimensional linear subspaces E of Wx for which E ∩ (W+)x and E ∩ (W−)x
are 1-dimensional. In particular (W+)x and (W−)x are not integral elements of the system.
We can also say that the 2-dimensional integral elements at x are the hyperbolic lines for
the hyperbolic structure on Wx . For this reason we can also give the following alternative
definition of an hyperbolic exterior differential system.

Definition 5.5.2 (Alternative definition of hyperbolic exterior differential system). A
hyperbolic exterior differential system of class s is a manifold M of dimension 4+ s together
with a rank 4 distribution W with a hyperbolic structure K on W . We write the system as
(M,W+,W−). 	

Example 5.5.3. On R4 with coordinates x, y, p, q define the hyperbolic exterior differential
system

I = {dx ∧ dp, dy ∧ dq}diff. (5.27)

In terms of the alternative definition Definition 5.5.2 we can give the hyperbolic exterior dif-
ferential system by the two characteristic systems W+ = span(∂x , ∂p), W− = span(∂y, ∂q).
These two distributions define an integrable almost product structure on M . The integral
manifolds of I are precisely the hyperbolic pseudoholomorphic curves for this integrable
almost product structure. �

Example 5.5.4 (Monge-Ampère equations). Consider the Monge-Ampère equation

E(zxx zyy − z2
xy)+ Azxx + Bzxy + Czyy + D, (5.28)

where A, B, C , D and E are functions of the first order variables x, y, z, p = zx , q = zy .
The graphs of 1-jets of solutions of the equation correspond to integral surfaces of the exterior
differential system I on J1(R2,R) generated by

θ = dz − pdx − qdy,

9 = Edp ∧ dq + Adp ∧ dq + B(dq ∧ dy + dx ∧ dp)

+ Cdx ∧ dq + Ddx ∧ dy.

If the Monge-Ampère equation is hyperbolic, then I defines a hyperbolic exterior differential
system of class s = 1. �

Example 5.5.5 (Hyperbolic exterior differential systems of class s = 2). Every hy-
perbolic first order system (M,V) defines a hyperbolic exterior differential system of class
s = 2. If θ, ω, π is an adapted coframing, then the exterior differential ideal I is gener-
ated by {θ1, θ2, dθ1, dθ2

}alg. Note that the contact distribution V of the first order system
corresponds to the distribution W determined by I.

The converse is not true. A general hyperbolic exterior differential system of class s = 2
might have an integrable distribution W . The conditions for the distribution W to determine
a first order system are described in Theorem 4.6.4. �
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Example 5.5.6 (Second order scalar equations). Also the Vessiot systems (M,V) associ-
ated to hyperbolic second order scalar equations are hyperbolic exterior differential systems,
but this time of class s = 3. The conditions on V imply that not every hyperbolic exterior dif-
ferential system of class s = 3 corresponds to a second order partial differential equation. �

The prolongation of a hyperbolic exterior differential system of class k is a hyperbolic
exterior differential system of class k + 2. This proved for example in Bryant and Griffiths
[16, Section 1.3]. This means that if we are studying prolongations of first order systems or
second order scalar equations, we are still studying hyperbolic exterior differential systems.

As an elliptic analogue we can define

Definition 5.5.7 (Elliptic exterior differential system). Let M be a manifold of dimension
4 + s. Let V be a rank 4 distribution on M and J : V → V a complex structure. The pair
(M,V, J ) is called an elliptic exterior differential system of class s. 	

The equations for pseudoholomorphic curves in a 4-dimensional almost complex mani-
fold, the elliptic first order systems and elliptic second order scalar partial differential equa-
tions are examples of elliptic exterior differential systems of class s = 0, s = 2 and s = 3,
respectively.

5.5.2 Linear hyperbolic systems
Let E , F be two rank 2 vector bundles over a smooth 2-dimensional manifold X . Consider
a hyperbolic linear partial differential operator K : C∞(E) → C∞(F). In local coordinates
x = (x1, x2)T for X , u = (u1, u2)T for E and f = ( f 1, f 2)T for F the operator K is given
by

K u = A1 ∂u
∂x1 + A2 ∂u

∂x2 + Bu.

Here A1, A2, B are 2×2-matrices. The type of the operator K is determined by the principal
symbol of K , which is defined as the matrix σ(x, ξ) = A1(x)ξ1 + A2(x)ξ2. The operator
K is hyperbolic or elliptic if det σ(x, ξ) is a quadratic form in ξ with positive or negative
discriminant, respectively. Transformations of the coordinates of the form x = x(y), u =

S(y)v, f = T (y)g act on the principal symbol as

( Ãβ)p
m = (T −1)

p
k (A

α)kl Sl
m
∂ yβ

∂xα
.

Under this action the sign of the discriminant of the quadratic form is unchanged and hence
the type of operator is unchanged. Using this action (the action of T and S is in fact the action
of the conformal group CO(2, 2), see Appendix A.5) we can arrange that

A1
=

(
0 0
0 1

)
, A2

=

(
1 0
0 0

)
.
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Next we will transform the operator K into a normal form. The normal form is inspired
by a corresponding normal form in the elliptic case, see Duistermaat [23]. The complex
variables are replaced by hyperbolic variables, i.e., elements of the algebra D introduced
before. After transformation of the principal symbol into normal form the operator is given
by

K u =
∂u
∂x F + a(x, x F )u + b(x, x F )uF .

Here we have written symbolically ∂u/∂x F
= A1∂u2/∂x1

+ A2∂u1/∂x2 and a, b are D-
valued functions of the base variables x, x F . Next we solve the system of ordinary differential
equations for the D-valued function c

∂c
∂x F = a(x, x F ), c(0) = 0.

We apply the transformation u(x) = exp(−c(x, x F ))ũ(x) (the exponential of a D-valued
function is defined as a formal power series, or equivalently as the exponential applied to the
components). In the new coordinates we have

K̃ ũ = K u = exp(−c(x))
∂ ũ
∂x F + b(x, x F ) exp(−c(x))ũF .

By applying a scale transformation with exp(−c) we arrive at the normal form (we drop the
tilde in the notation)

K u =
∂u
∂x F + b(x, x F )uF . (5.29)

Remark 5.5.8. The principal symbol of K is a linear map

σ(x, ξ) : Ex → Fx

that is linear in ξ ∈ (Tx X)∗. The condition that K is hyperbolic is precisely that the conformal
quadratic form ξ 7→ det σ(x, ξ) is non-degenerate indefinite. The equation det σ(x, ξ) =

0 then has two real characteristic solutions ζ1,2 ∈ (Tx X)∗. The dual distributions to ζ1,2
determine an almost product structure on X . Since σ(x, ζ j ) is of rank 1 the distributions
E j = ker σ(x, ζ j ) and F j = im σ(x, ζ j ) determine almost product structures on the bundles
E → X and F → X . �

Example 5.5.9. We use the normal form of a linear equation to analyze the invariants. For
convenience we take the normal form ∂w/∂zF

+ b(z, zF )wF
= 0 which is better adapted to

our previous notations, but is equivalent to the normal form (5.29) by a simple substitution
of the variables w 7→ u, z 7→ x . The equation written down explicitly in the coordinates
w = (u, v)T , z = (x, y)T is

u y + b1v = 0, vx + b2u = 0.
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We define q = −bwF , p = ∂zw = (ux , vy)
T and the coframing

θ = dw − pdz − qdzF ,

ω = dz,

π = dp + (bzw
F

+ bq F )ωF .

(5.30)

The structure equations are

dθ = −π ∧ ω − bωF
∧ θ F ,

dω = 0,

dπ = −(−bbFωF ) ∧ θ − (−bzzw
F

− bF p + b(bF )zw)ω
F

∧ ω

− bzω
F

∧ θ F .

We see T2F = −b, V2F = −bz and the other torsion coefficients are zero. �

Next we consider coordinate transformations that leave the normal form (5.29) invariant.
We want to prove that these transformations must be of diagonal form, i.e., x1

= φ(y1),
x2

= ψ(y2), etc. From the analysis of the principal symbol it follows that coordinate trans-
formations that preserve the normal form must preserve the almost product structures on X ,
E and F . We see that any transformation leaving the normal form (5.29) invariant must be of
the form

x = φ(y, yF ),

u = S(y, yF )v, f = T (y, yF )g.
(5.31)

with φ a D-valued function and S, T two 2 × 2-matrices. The matrices S, T should satisfy
either a) S, T ∈ D∗ or b) S, T ∈ L D∗. This follows from the requirement that the base
variables are preserved (i.e., no contact transformations), the equation should remain linear
in the dependent variable and the almost product structures must be preserved. We plug the
transformations (5.31) into the formal form (5.29). If we are in case a), then the result is

g = T −1
(
∂y
∂x F

∂(Sv)
∂y

+
∂ yF

∂x F
∂(Sv)
∂ yF + bSFvF

)
=

∂y
∂x F T −1S

∂v

∂y
+
∂ yF

∂x F T −1S
∂v

∂ yF +
∂y
∂x F T −1 ∂S

∂y
v +

∂ yF

∂x F T −1 ∂S
∂ yF v + bT −1SFvF .

The first term shows that ∂y/∂x F
= 0. The third term automatically vanishes and the fourth

term implies that ∂S/∂ yF
= 0. We conclude that x = φ(y) and S(y, yF ) are both hyperbolic

holomorphic.
If we are in case b), then a similar analysis shows that ∂y/∂x = 0 and ∂S/∂y = 0. In

both cases we see that the normal form introduces an almost product structure on the base
manifold and the bundles E, F . The transformations in case b) correspond to transformations
that interchange the two characteristic systems.





Chapter 6

Structure theory for second order
equations

In this chapter we define an adapted coframing for second order scalar equations. The con-
struction of this adapted coframing is similar to the construction of adapted coframings for
first order systems in the previous section. Instead of deriving the results again, we will refer
to Gardner and Kamran [38] for the main results.

We will use the adapted coframing to define the Monge-Ampère invariant. We also de-
scribe the relation between our theory (which is the theory of Gardner and Kamran) and the
theory by Juráš [44, 45]. Finally, we give a counterexample to a proposition in [38] about the
relations between the class of the characteristic systems and the number of invariants of the
characteristic systems.

6.1 Contact geometry of second order equations
The structure theory for second order equations can be done in a way similar to that of first or-
der systems. We will use some existing theory and work with differential forms. The structure
theory derived below is only valid for the contact geometry of the system. If one is interested
in the point geometry, one has to add some restrictions to the structure group involved and
one can not always make all the normalizations that are done below. We assume the second
order equation is hyperbolic. Just as for first order systems the theory is almost identical for
elliptic systems, but for convenience we only do the hyperbolic case. The parabolic systems
have very different structure theory, see Bryant and Griffiths [17] for example.

Let M be the 7-dimensional equation manifold associated to a hyperbolic second order
scalar partial differential equation. On M we have the pullback of the contact ideal I and
the pair (M, I ) completely describes the geometry. The dual distribution V = I ⊥ defines a
Vessiot system (M,V). The derived system I (1) is 1-dimensional and is spanned by a contact
form θ0.
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Theorem 6.1.1 (Proposition 5.5 in [38]). We can choose generators θ0, θ1, θ2 for I such
that the following structure equations hold:

dθ0
≡ −θ1

∧ ω1
− θ2

∧ ω2 mod θ0,

dθ1
≡ −π1

∧ ω1
+ T 1

3Fπ
2
∧ θ2 mod θ0, θ1,

dθ2
≡ −π2

∧ ω2
+ T 2

3Fπ
1
∧ θ1 mod θ0, θ2.

Note that the last two equations can be written in the more compact form1

dθ ≡ −π ∧ ω + T3Fπ
F

∧ θ F mod θ0, θ.

Here we have written

θ = (θ1, θ2)T , ω = (ω1, ω2)T , π = (π1, π2)T ∈ D ⊗�(M).

From the structure equations it is not difficult to see that I (1) = span(θ0),

C(I (1)) = span
(
θ0, θ1, θ2, ω1, ω2)

and I ⊂ C(I (1)). Hence from the theorem of Vessiot (Theorem 4.1.2) it follows that any
system with the structure equations from Theorem 6.1.1 is locally equivalent to a second
order scalar equation. A closer look at the structure equations implies that the second order
equation is hyperbolic.

We also want structure equations for ω and π . The exterior derivative of ω and π can be
written modulo θ, ω, π as

dω ≡ U2F ,3Fω
F

∧ π F
+ U2Fω

F
∧ θ F

+ U3Fπ
F

∧ θ F ,

dπ ≡ V2F ,3Fω
F

∧ π F
+ V2Fω

F
∧ θ F

+ V3Fπ
F

∧ θ F .
(6.1)

We will show that U2F ,3F = 0. Calculate d2θ modulo θ0, θ, θ F , ω. We have

0 ≡ d2θ ≡ π ∧ dω ≡ π ∧ U2F ,3Fω
F

∧ π F .

Hence the term U2F ,3F vanishes. A similar calculation of d2θ modulo θ0, θ , θ F and π yields
V2F ,3F = 0.

Lemma 6.1.2 (T lemma). Assume the structure equations from Theorem 6.1.1 and equation
(6.1). If T j

3 = 0, then U j
3F = V j

3F = 0, for j = 1, 2.

Proof. The proof of the lemma is similar to the proof of the first order T lemma (5.2.8). The
main difference that we have to work modulo the additional term θ0. Assume T 1

3F = 0. We
calculate d2θ modulo θ0, θ1, ω1 and θ2

∧ ω2.

d2θ1
≡ −dπ1

∧ ω1
+ π1

∧ dω1
≡ π1

∧ (U 1
3Fπ

2
∧ θ2).

Hence U 1
3F = 0. A similar calculation modulo θ0, θ1, π1, θ2

∧ω2 yields V 1
3F = 0. Calculating

d2θ2 modulo similar terms gives U 2
3F = V 2

3F = 0. �

1Modulo θ0 means that we work modulo (1 + h)θ0 and (1 − h)θ0.
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Proposition 6.1.3. By redefining ω1, ω2, π1, π2 we can arrange that

dω1
≡ dπ1

≡ 0 mod θ0, θ1, ω1, π1,

dω2
≡ dπ2

≡ 0 mod θ0, θ2, ω2, π2.
(6.2)

Proof. It is clear from the above that we can always write

dω1
≡ U 1

2Fω
2
∧ θ2

+ U 1
3Fπ

2
∧ θ2 mod θ0, θ1, ω1, π1.

The coefficient U 1
2F can be absorbed by adding multiples of θ0 to ω1. If T 1

3F = 0, then
U 1

3F = 0 by Lemma 6.1.2. Otherwise we can absorb U 1
3F by adding multiples of θ1. The

forms ω2, π1 and π2 can be treated in the same manner. �

We can write dω ≡ −π∧(S1F θ F
+S2FωF

+S3Fπ F ). Calculate d2θ0 modulo θ0, ω1, ω2.
We find

0 = d2θ0
≡ θ1

∧ dω1
+ θ2

∧ dω2

≡ θ1
∧ π1

∧ S1
3Fπ

2
+ θ2

∧ π2
∧ S2

3Fπ
1.

Hence S3F = 0.

Definition 6.1.4. A coframing for a hyperbolic second order scalar equation is called adapted
if it has the structure equations

dθ0
≡ −θ1

∧ ω1
− θ2

∧ ω2 mod θ0

dθ ≡ −π ∧ ω + T3Fπ
F

∧ θ F mod θ0, θ

dω ≡ −π ∧ σ mod θ0, θ, ω,

dπ ≡ 0 mod θ0, θ, ω, π.

(6.3)

with σ = S1F θ F
+ S2FωF . Theorem 6.1.1 and Proposition 6.1.3 together imply that every

second order equation has an adapted coframing. 	

The structure group G that leaves invariant this adapted coframing depends on the value
of T3F . If T3F ∈ D∗, then the structure group is given by the set of all matrices of the form

c0 0 0 0
cθ a 0 0
0 0 c 0
0 0 e ac−1

 ⊂ GL(7,R), (6.4)

with a, c ∈ D∗, e ∈ D, c0 ∈ R∗, cθ ∈ D, c0 = ac and cθ = c0(cF )−1T3F eF . If T3F = 0,
then the structure group is larger and given by the set of all matrices of the form

c0 0 0 0
0 a 0 0
0 b c 0
0 d e ac−1


with c0 = ac.
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Remark 6.1.5. There is a canonical foliation present defined by dθ0
= dθ = dω = 0.

The quotient manifold is a first order contact manifold. This makes the contact geometry of
second order systems much more rigid than for first order systems. For first orders systems
under contact geometry we have the freedom of switching the role of ω and π . �

6.1.1 Generality of solutions of a second order equation
For hyperbolic equations the characteristic Cauchy problem is well-posed. The general solu-
tion of a hyperbolic second order equation depends on two functions of one variable. In terms
of initial conditions one can think of these functions as prescribing the value of the function
and the value of the first order derivative along a non-characteristic curve. For analytic equa-
tions one can prove this using the Cartan-Kähler theorem, see the theorem below.

Theorem 6.1.6. Let X be an integral element for an analytic hyperbolic second order scalar
partial differential equation. Then the general solution to the equation with tangent space
equal to the integral element depends on two functions of one variable.

Proof. Solutions to the equation are integral manifolds of the contact system I spanned by
θ0, θ1 and θ2. The structure equations are given by

d

θ0

θ1

θ2

 ≡

 0 0
π1 0
0 π2

 ∧

(
ω1

ω2

)
mod I.

The Cartan characters are s1 = 2, s2 = 0. The dimension of the first prolongation is 2, hence
the system is in involution. The statement of the theorem follows from the Cartan-Kähler
theorem. �

6.1.2 Monge-Ampère invariants
The structure group of the adapted coframing from Definition 6.1.4 depends on the values of
T3F , S1F and S2F . The structure group may even vary from point to point. To continue our
analysis we are forced to make a choice of one of the different branches that are determined
by the invariants. But first we concentrate on some invariants that are defined in all cases.

Suppose we are given an adapted coframing as in Definition 6.1.4. The structure equa-
tions for ω can be written as

dω ≡ −π ∧ (S1F θ
F

+ S2Fω
F ) mod θ0, θ, ω.

By looking at d2θ0 modulo θ0, θ1
∧ω1, θ2

∧ω2 we find that S1F = 0 and T3F = (S2F )F . Let
us calculate the action of the structure group (6.4) on T3F . Let (θ̃ , ω̃, π̃)T = g−1(θ, ω, π)T

Then

dθ̃ = −a−1(da) ∧ θ̃ + a−1dθ

≡ a−1(−π ∧ ω + T3Fπ
F

∧ θ F )

≡ −π̃ ∧ ω̃ + a−1(aF )2(cF )−1T3F π̃
F

∧ θ̃ F mod θ̃ .
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Hence T̃3F = a−1(aF )2(cF )−1T3F . Under the action of the remaining structure group we
have

T3F 7→
(aF )2

acF T3F =
(aF )3c

c2
0

T3F ,

S2F 7→
acF

c2 S2F =
a3cF

c2
0

S2F .

(6.5)

Hence T3F = −(S2F )F is a relative contact invariant. Later we will see that the vanishing
of this invariant is a necessary and sufficient condition for the system to be equivalent to a
Monge-Ampère equation (this is Theorem 5.3 in Gardner and Kamran [38]).

6.1.3 Analysis of T

The values of the invariants T j
3F determine the classes of the characteristic systems M1

=

span(θ0, θ1) and M2
= span(θ0, θ2).

Proposition 6.1.7 (Proposition 5.6 in Gardner and Kamran [38]). We have class(M1) =

7 or class(M1) = 6 in the case T 1
3F 6= 0 or T 1

3F = 0, respectively. The same is true for M2

and T 2
3F .

Depending on the classes of M1 and M2 we can further reduce the structure group.

Proposition 6.1.8. Suppose class(M1) = class(M2) = 7, i.e., T3F ∈ D∗. We can normalize
T3F to either (1, 1)T or (1,−1)T . The structure group reduces to a 3-dimensional group of
the form 

±φ2 0 0 0 0 0 0
(cθ )1 φ 0 0 0 0 0
(cθ )2 0 ±φ 0 0 0 0

0 0 0 ±φ 0 0 0
0 0 0 0 φ 0 0
0 0 0 e1 0 ±1 0
0 0 0 0 e2 0 ±1


, (6.6)

with cθ = φ(±1, 1)T eF T3F . A transformation of the form

−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


, (6.7)

transforms T3F to −T3F .
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Proof. Recall that since T 1
3F and T 2

3F are non-zero, the structure group is already reduced to
the form (6.4). The transformation defined by the matrix (6.7) clearly leaves invariant the
adapted coframing and transforms T3F to −T3F .

The action of the structure group on T3F is by multiplication with (aF )3c/c2
0. By choosing

c0 = a1a2 we can make a transformation T3F 7→ (a2
2, a2

1)
T T3F . By a suitable choice of a1

and a2 we can arrange that T 1
3F = ±1 and T 2

3F = ±1. With a transformation of the form (6.7)
we can then arrange T3F = (1,±1)T . �

In the case T3F ∈ D∗ we do not arrive at an invariant coframe. We could analyze the
invariants of the structure equations for the reduced structure group (6.6). Another method is
to prolong the system one time. The first prolongation of the Lie algebra corresponding to the
reduced structure group is trivial and hence on the prolonged equation manifold there is an
invariant coframing. We conclude that the symmetry group of a second order equation with
T3F ∈ D∗ is finite-dimensional. Since the prolonged manifold has dimension 9, the maximal
symmetry group is a 9-dimensional Lie group. Equations with a 9-dimensional symmetry
group exist [38, Proposition 5.11].

6.2 Miscellaneous

6.2.1 Juráš

In his dissertation Juráš [44] develops a structure theory for second order scalar equations.
The work is a continuation of Anderson and Kamran [4] and the results from his disserta-
tion have been published in Juráš and Anderson [45]. The structure theory developed is a
theory in local coordinates, although Juráš shows that some of his constructions are contact
invariant. The theory uses the variational bicomplex and hence has to be formulated on an
infinite jet bundle. The use of local coordinates (in particular the use of specific independent
and dependent coordinates) and the fact that Juráš works on the infinite jet bundle makes it
difficult to compare his theory to our theory. Still we can make a connection between both
theories. In the remainder of this section we assume the reader is familiar with the work of
Juráš (either [44] or [45]).

Let us start with a trivial bundle π : R3
→ R2 with coordinates x, y, z on R3 and pro-

jection (x, y, z) 7→ (x, y). The coordinates x, y will be the independent variables and z will
be the dependent variable. The infinite prolongation of J∞(E) is defined as the inverse limit
of the finite order jet bundles Jk(E). On the infinite jet bundle J∞(E) we have coordinates
x, y, z, zx , zy, zxx , etc. We have a projection π∞

k : J∞(E) → Jk(E). To a hyperbolic second
order partial differential equation

F(x, y, z, zx , zy, zxx , zxy, zyy) = 0,

we can associate the equation manifold R∞
⊂ J∞(E). The equation manifold is defined by

all prolongations of the equation F = 0. On the infinite jet bundle R∞, Juráš constructs an
adapted coframing 2, σ , τ , ξ1, ξ2, . . . , η1, η2, etc.
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Given the equation F = 0 we can also construct a finite order adapted coframing. We can
take for example two distinct roots (λ, µ) of the characteristic equation

∂F
∂zxx

λ2
−
∂F
∂zxy

λµ+
∂F
∂zyy

µ2
= 0.

Then we define θx = dzx − zxx dx − zxydy, θy = dzy − zxydx − zyydy and

θ0
= dz − pdx − qdy,

θ1
= λ1θx + µ1θy, θ2

= λ2θx + µ2θy,

ω1
= µ2dx + λ2dy, ω2

= µ1dx + λ1dy,

π1
= λ1dr + µ1ds, π2

= λ1dr + µ1ds.

This coframing is adapted in the sense of Definition 6.1.4. Also see the formulas for adapted
coframings in Gardner and Kamran [38, formula 3.32].

Our adapted coframing is defined on a hypersurface R2 in the second order jet bundle
J2(E). Under the projection π∞

2 this adapted coframing is pulled back to a set of linearly
independent forms on R∞. The pullbacks are 1-forms of adapted order 2 or lower. It is not
difficult to see that

(π∞

2 )
∗θ0

= c0ρ2,

(π∞

2 )
∗ω1

= c1σ, (π∞

2 )
∗ω2

= c2τ,

(π∞

2 )
∗θ1

≡ a1η1 mod 2,

(π∞

2 )
∗θ2

≡ b1ξ1 mod 2,

(π∞

2 )
∗π1

≡ a2η2 mod 2, η3, ξ3, η4, ξ4, . . . ,

(π∞

2 )
∗π2

≡ b2ξ2 mod 2, η3, ξ3, η4, ξ4, . . . ,

(6.8)

where a j , b j , c j are scalar factors. We will not try to make the correspondence more precise
by analyzing the scalar factors. We note that to make the correspondence between our fi-
nite order adapted coframing and the coframing by Juráš more precise, we could prolong our
coframing to a higher order jet bundle and then make the pullback. One of the main achieve-
ments of Juráš is that he succeeded in constructing an adapted coframing for all orders at
once.

In Proposition 4.4 of [44] Juráš defined two relative contact invariants Mσ and Mτ . In
Theorem 10.4 on page 80 he proves that the vanishing of these two invariants is equivalent
to the equation being of Monge-Ampère type. The function Mσ is defined as the coefficient
of τ ∧ ξ2 in dσ ; the function Mτ as the coefficient of σ ∧ η2 in dσ . From the equations
(6.8) we can see that Mσ and Mτ correspond up to a scalar factor to the invariants S1

2F

and S2
2F , respectively. We can even see that the transformation properties of these relative

invariants under contact transformations are identical. Compare formula (4.62) in [44] with
our transformation formula (6.5). Here l corresponds to c0, m to 1/c1 and n to 1/c2.

We can make a table of corresponding objects in the theory of Juráš, the theory of Gardner
and Kamran [38] and the theory by McKay [51] and this dissertation.
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Juráš Gardner and Kamran McKay, Eendebak

θ ω1 θ0

η1, ξ1 π2, π3 θ1, θ2

- U, V T 1
3F , T 2

3F

σ, τ ω4, ω6 ω1, ω2

η2, ξ2 ω5, ω7 π1, π2

Mσ ,Mτ - S1
2F , S2

2F

The correspondence in this table is not exact, but gives an idea of the different objects. The
relations are almost always up to a scalar factor and some action of the structure group. The
equality T3F = −(S2F )F proven in Section 6.1.2 provides the relation between the invariants
U, V of Gardner and Kamran and the invariants Mσ ,Mτ of Juráš.

6.2.2 Counterexample
In the article [38] Gardner and Kamran discuss the geometry and characteristic systems of
second order scalar equations in the plane. Given an adapted coframing (Definition 6.1.4) the
characteristic systems are defined as M1

= span(θ0, θ1), M2
= span(θ0, θ2). Recall that the

class of M1 is defined as the corank of the Cauchy characteristic system of (M1)⊥. An equa-
tion is said to be of generic type if class(M1) = class(M2) = 7, see Definition 5.2 in [38]. In
the article a normal form for the equations of generic type is constructed. Then Corollary 5.9
in [38] states (without proof) that the equations of generic type have no Riemann invariants
(a Riemann invariant is an invariant of either one of the Monge systems, see [38, Definition
5.4] or [14, §1.4.1]). This statement is incorrect, a counterexample is given below.

Example 6.2.1 (Counterexample to Corollary 5.9 in [38]). Consider the equation 3r t3
+

1 = 0. This equation was suggested by Niky Kamran but the equation already is an example
in Goursat [40, Exemple IV, p. 130]. The characteristic systems are given by

F = span
(
F1 = Dx − (1/t2)Dy, F2 = ∂t − (1/t2)∂s

)
,

G = span
(
G1 = Dx + (1/t2)Dy,G3 = ∂t + (1/t2)∂s

)
,

with Dx = ∂x + p∂z − (1/(3t3))∂p + s∂q and Dy = ∂y + q∂z + s∂p + t∂q . The invariants
for F and G are IF = {s + 1/t, x(s + 1/t)− q}func and IG = {s − 1/t, x(s − 1/t)− q}func,
respectively.

The characteristic system dual to the Pfaffian system M1 is spanned by F , G and G3 =

[G1,G2] = (2/t3)(∂y +q∂z + (s −1/t)∂p). The characteristic system dual to M2 is spanned
byF,G and F3 = [F1, F2]. A direct calculation yields that the Cauchy characteristics of both
M1 and M2 are zero and hence class(M1) = class(M2) = 7. So even though the equation is
of generic type it has Riemann invariants. �



Chapter 7

Systems and equations with
non-generic Nijenhuis tensor

In this chapter we will study the first order systems and second order scalar equations that
have a non-generic Nijenhuis tensor. In the case of first order systems this will lead directly
to the equations for pseudoholomorphic curves. The elliptic first order systems that are equa-
tions for pseudoholomorphic curves will be given a contact invariant description in terms of
the rank of the Nijenhuis tensor. In the case of second order scalar equations a non-generic
Nijenhuis tensor will lead to Monge-Ampère equations. The equations for pseudoholomor-
phic curves and the Monge-Ampère equations have in common that the projection to the base
manifold or to the first order contact bundle, respectively, preserves the complex structure (or
hyperbolic structure) on the contact distribution.

7.1 Pseudoholomorphic curves

Let (B, J ) be a manifold B with an almost complex structure J . The 2-dimensional sub-
manifolds that have tangent spaces that are invariant under J are called pseudoholomorphic
curves or J -curves. Pseudoholomorphic curves have been introduced by Gromov [41] and
have been used in studying symplectic manifolds.

Locally the condition for a submanifold to define a pseudoholomorphic curve defines
an elliptic system of partial differential equations. In particular if B has dimension 4 the
system of equations is a determined elliptic system of two equations for two functions of two
independent variables. In this section we will study the systems that are contact equivalent to
this type of equations.

The equations for pseudoholomorphic curves of an almost complex structure are closed
under point transformations, but not under contact transformations. The fact that these equa-
tions are not closed under contact transformations was a motivation for McKay to develop
his theory of pseudocomplex structures, see McKay [52, pp. 1–2].
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Below we give a list of 4 classes of elliptic systems that are closed under contact transfor-
mations. We will prove that each class is contained in the next one, but strictly smaller. We
also give a geometric characterization of the classes and discuss possible normal forms for
equations in the different classes.

i) The elliptic systems that have an integrable almost complex structure. These systems
are locally contact equivalent to the Cauchy-Riemann equations, see Section 4.6.5.
Locally these systems can be written as the equations for pseudoholomorphic curves
for an integrable almost complex structure.

ii) The Darboux integrable elliptic first order systems. In Chapter 8 a classification has
been made of these systems under contact transformations.

iii) The class of elliptic first order systems that is closed under contact transformations and
includes the equations for pseudoholomorphic curves of almost complex structures.
We will prove that this class includes the Darboux integrable systems (and in fact is
much larger). On the other hand, we will see that this class does not contain all the
elliptic systems. We will give a simple characterization of this class in terms of the
Nijenhuis tensor. The author is not aware of a geometric description of this class in the
literature.

iv) The general elliptic first order system. This class is more or less by definition closed
under contact transformations. McKay uses the term pseudocomplex structures or gen-
eralized Cauchy-Riemann equations for this class; Gromov uses the term elliptic sys-
tem and calls the solutions E-curves in analogy with J -curves.

Another class of equations are the equations for pseudoanalytic functions, see Bers [9]. These
equations are the elliptic systems of linear, first order partial differential equations in two
unknowns and in two independent variables (but other equivalent definitions also exist). The
canonical form for such a system is ∂w/∂ z̄ = aw + bw̄. The condition that the system
is linear, is not invariant under point transformations. It would be interesting if there is a
geometric condition on an elliptic system that allows it to be written as a linear system.

7.1.1 Projection to an almost complex structure
Let M be a manifold with an almost complex structure J and π : M → B a projection to a
manifold B. We will analyze the projections that intertwine the almost complex structure on
M with an almost complex structure on B. For every point m ∈ M we want to have a map
J B

m : Tπ(m)B → Tπ(m)B such that

Tmπ B Jm = J B
m B Tmπ. (7.1)

Assume that at a point m ∈ M the map J B
m exists. The projection Tmπ is a surjective linear

map. It follows that J B
m must be a linear map and it is unique. From

J B
m B J B

m B Tmπ = J B
B Tmπ B Jm = Tmπ B Jm B Jm = −Tmπ
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it follows that (J B
m )

2
= − id and hence J B

m defines a complex structure on Tπ(m)B. The map
J B

m is linear so J B
m (0) = 0 and therefore Jm(ker Tmπ) ⊂ ker Tmπ . Because Jm is injective

it follows Jm(ker Tmπ) = ker Tmπ . Hence the fibers of the projection π are J -invariant.
If the fibers have dimension two, the fibers are pseudoholomorphic curves in M . The map
Tmπ induces a linear isomorphism pm : Tm M/ ker(Tmπ) → Tπ(m)B. Since ker(Tmπ) is
Jm-linear, the complex structure Jm induces a complex structure on Tm M/ ker(Tmπ). Then

pm B Jm = J B
m B pm (7.2)

and it follows that J B
m = pm B Jm B p−1

m . So if a map J B
m satisfying (7.1) exists, then it is unique

and defines a complex structure on Tπ(m)B. If ker(Tmπ) is Jm-linear, then we can define J B
m

by (7.2). Hence the condition that J B
m exists is precisely that ker(Tmπ) is Jm-linear.

If the fibers of the projection are J -invariant, then at every point m ∈ M there is a unique
complex structure J B

m on each tangent space Tπ(m)B. We say the almost complex structure
on M projects to B if J B

m is independent of the point m in the fiber π−1(b), b = π(m) for
each b ∈ B. If this is the case, then we write J B

b instead of J B
m . We say the projection π

intertwines the almost complex structure J on M with the almost complex structure J B on
B. The analysis above shows that if π intertwines J with an almost complex structure on B,
then this almost complex structure is unique.

Suppose π : M → B is a projection that intertwines the almost complex structures J
and J B on M and B, respectively. The Nijenhuis tensor on M and on B is defined in terms
of the Lie brackets and the almost complex structures. The projection intertwines the almost
complex structures and the Lie brackets as well (see Lemma 1.2.23). Therefore for vectors
X, Y in Tm M we have

Tπ(N (X, Y )) = N (Tπ(X), Tπ(Y )).

It follows that if J is integrable, then J B is integrable as well. The converse is not true in
general.

We specialize to the situation that (M,V) is an elliptic first order system, π : M → B
a base projection and J is the almost complex structure for this first order system defined in
Section 4.6. We want to study the systems for which the projection π intertwines the almost
complex structure J with an almost complex structure on B.

The fact that ker(Tmπ) is J -invariant and 2-dimensional together with the fact that the
distribution V is J -invariant, implies that either ker(Tmπ) ⊂ V or Tm M = ker(Tmπ)⊕Vm . In
this section we will study the projections for which ker(Tmπ) ⊂ V , we call these projections
the base projections. The projections for which Tm M = ker(Tmπ)⊕Vm are called transversal
projections and are studied in Chapter 8 on Darboux integrability and in Section 9.4 where
generalized Darboux projections are introduced.

Pseudoholomorphic curves. Let B be a 4-dimensional manifold with an almost complex
structure J B . A surface in B is a pseudoholomorphic curve if the tangent space to the surface
at every point is a J B-linear subspace of the tangent space. The space of all 2-dimensional
linear subspaces of Gr2(Tb B) that are J B-linear is given by Gr2(Tb B, J B

b ). We will write
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Gr2(T B, J B) for the bundle over B with fiber above a point b equal to Gr2(Tb B, J B
b ). This

bundle is an elliptic first order system and is equal to the system of equations for pseudoholo-
morphic curves for J B .

If an elliptic first order system (M,V) has a base projection π that intertwines the almost
complex structure J on M with an almost complex structure J B on B, then the system is
canonically contact equivalent to the equations for pseudoholomorphic curves of J B . Recall
the proof of the weak Vessiot theorem (4.6.3). For any point m ∈ M the subspace Tmπ(Vm)

is a 2-dimensional linear subspace of Tπ(m)B. This defines a map φ : M → Gr2(T B) : m 7→

Tmπ(Vm) and this defines a contact transformation M 7→ φ(M) ⊂ Gr2(T B).
Since V is J -invariant, the projected space Tmπ(Vm) is J B-invariant as well. Hence the

solutions of the first order system (M,V) have tangent spaces that are J B-linear. This proves
the projections of solutions of (M,V) are pseudoholomorphic curves for J B . The image
φ(M) is contained in Gr2(T B, J B) and because the fibers of M̃ → B and Gr2(T B, J B) →

M are 2-dimensional this shows that locally M is contact equivalent to the equations for
pseudoholomorphic curves on B, i.e., φ(M) is equivalent to Gr2(T B, J B).

Conditions for the existence of a projection. We have seen that the equations for pseu-
doholomorphic curves correspond to elliptic first order systems with a projection to a base
manifold that intertwines almost complex structures. In the paragraphs below we will analyze
the existence of such intertwining projections.

We will start with a theorem about these systems that is the beginning of a geometric
description of the third class (iii) on page 156.

Theorem 7.1.1 (Theorem 3 in McKay [51]). Let (M,V) be an elliptic first order system
with projection π : M → B to a base manifold B and adapted coframing (5.20) θ, ω, π .
Then the almost complex structure on M projects to an almost complex structure on M if and
only if T3̄ = 0 and S2̄ = 0.

Proof. The almost complex structure on M is given by the complex forms θ , ω and π . Since
the fibers of the projection are spanned by the vector fields dual to π the complex structure
J B

m is determined by θm and ωm . The condition that J B
m is independent of the point in the

fiber above the point π(m) is equivalent to the following four equations modulo θ, ω, π, π̄

L∂π θ ≡ 0, L∂π̄ θ ≡ 0,
L∂πω ≡ 0, L∂π̄ω ≡ 0.

Then from the structure equations (5.20) we can read off easily that the conditions translate
to T3̄ = 0 and S2̄ = 0. �

The theorem allows us to recognize the systems (M,V) that allow a projection to an
almost complex structure. The theorem below gives the geometric characterization of the
third class of equations given at the beginning of this chapter.

Theorem 7.1.2. An elliptic first order system (M,V) is the system of equations for pseudo-
holomorphic curves of an almost complex manifold (B, J B) if and only if rankD = 0 or
rankD = 2.



7.1 Pseudoholomorphic curves 159

The base projection from the system to the manifold with almost complex structure is
unique if and only if rankD = 2. If rankD = 2, then the tangent spaces of the fibers of the
projection M → B are equal to B1.

Proof. If D = 0, then the invariants T2̄, T3̄ are zero for any adapted coframing. The system
is contact equivalent to the Cauchy-Riemann equations and we are done. The discussion of
the Nijenhuis tensor above shows that all projections project to an integrable almost complex
structure. From Example 5.4.3 it follows that multiple projections exist.

If rankD 6= 0, then (T2̄, T3̄) 6= 0 and the Nijenhuis tensor is not identically zero. The
bundle B1 (defined on page 99) has rank 2. The bundle B1 is the unique rank 2 bundle U for
which T3F = 0 if we arrange that U is dual to span(θ, θ̄ , ω, ω̄). Hence from Theorem 7.1.1
it follows that B1 is the only candidate for a projection that intertwines the almost complex
structure on M with an almost complex structure on B.

First we will prove that the condition rankD = 2 is necessary for an intertwining pro-
jection to exist. Suppose we have an adapted coframing for which B1 is a distinguished
subbundle. For the existence of an intertwining projection we need that S3F = 0 (B1 inte-
grable) and S2F = 0. Since T2F 6= 0 it follows from an elliptic version of Lemma 5.2.8 that
U3̄ = 0, V2̄ = 0 and hence rankD = 2.

We assume that rankD = 2 and prove that this implies that B1 is integrable. Choose
an adapted framing such that the bundle B1 is a distinguished bundle for the system, see
Definition 5.2.7. Then B1 is dual to span(θ, θ̄ , ω, ω̄). From the definitions of B1 and the
adapted coframing for a distinguished bundle it follows that T3̄ = 0. The rank conditions on
D imply that T2̄ 6= 0 and U3̄ = V3̄ = 0. Since we have not proved yet that B1 is integrable
we have structure equations

dθ ≡ −π ∧ ω + T2̄ω̄ ∧ θ̄ mod θ,

dω ≡ −π ∧ σ + U2̄ω̄ ∧ θ̄ mod θ, ω,

dπ ≡ V2̄ω̄ ∧ θ̄ mod θ, ω, π.

From an elliptic version of the first order T lemma (Lemma 5.2.8) it follows that S3̄ = S2̄ = 0.
Hence B1 is integrable and provides a foliation to a base manifold. Since T3̄ = S2̄ = 0 the
complex structure on V projects down to the base manifold. �

Example 7.1.3. Consider the elliptic first order system

vy = ux + u, vx = −u y .

We introduce coordinates x, y, u, v, p = ux , q = u y for the equation manifold. The complex
characteristic systems are given by

V+ = span
(
Dx − i Dy + i p∂q , ∂p + i∂q

)
with Dx = ∂x + p∂u−q∂v , Dy = ∂y+q∂u+(p+u)∂v and V− which is the complex conjugate
of V+. The projection to the base manifold is π : M → B : (x, y, u, v, p, q) 7→ (x, y, u, v).
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The projection π intertwines the almost complex structure on M with the almost complex
structure J B on B given by the matrix

0 1 0 u
−1 0 u 0
0 0 0 1
0 0 −1 0

 ,
with respect to the basis ∂x , ∂y , ∂u , ∂v . �

Lifting an almost complex structure. The equations for pseudoholomorphic curves of an
almost complex structure define an elliptic first order system. Here we construct a coframing
for the first order system from the almost complex structure on the base manifold.

Let B be a four-dimensional manifold with almost complex structure J B
: T B → T B.

We can introduce a complex coframing α, β such that the forms α, β are (1, 0)-forms with
respect to the almost complex structure J B . The image of the Nijenhuis tensor of J B has
rank at most 2. This follows from the fact that the Nijenhuis tensor is an anti-symmetric
bi-J B-antilinear map T B → T B. We can therefore arrange that

dα ≡ Qᾱ ∧ β̄ mod α, β,
dβ ≡ 0 mod α, β.

We can introduce complex coordinates p, q for the fibers of the bundle Gr2(T B) → B
by letting p, q correspond to the 2-plane defined by the kernel of θ = α − pβ − qβ̄. A
surface in B is a pseudoholomorphic curve if the tangent spaces to the surface are J B-linear.
This defines an equation on Gr2(T B) and it is not difficult to see that the J B-linear 2-planes
are given precisely by q = 0. The equation q = 0 defines a submanifold M of Gr2(T B)
of dimension six. Hence the equations for a surface in B to be a pseudoholomorphic curve
correspond to the system M ⊂ Gr2(T B).

Let us introduce a coframing on M . We can write dα = Qᾱ ∧ β̄ + ζ1 ∧ α + ζ2 ∧ β

and dβ = ξ1 ∧ α + ξ2 ∧ β. On M we define the complex coframe θ = α − pβ, ω = β,
π = dp − ζ2 − pζ1 − pξ2 − p2ξ1. The fibers of the projection to B are spanned by ∂π and
∂π̄ . The structure equations for the coframe are

dθ ≡ −π ∧ ω + Qθ̄ ∧ ω̄ mod θ,
dω ≡ 0 mod θ, ω,

dπ ≡ V2̄ω̄ ∧ θ̄ mod θ, ω, π.

(7.3)

If we compare this to the structure equations (5.20) we see that the complex coframing θ , ω,
π defines an adapted coframing for M . If the almost complex structure J B is non-integrable,
then Q 6= 0 and then also the almost complex structure on M is non-integrable. In that case
the fibers of the projection to B are spanned by the bundle B1 as described in the section
above.
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Projections of almost product structures. For six-dimensional manifolds M with an al-
most product structure K we can also consider projections π to a 4-dimensional manifold B
such that the projection intertwines the almost product structure on M with an almost product
structure on B. If K B

m satisfies

Tmπ B Km = K B
m B Tmπ, (7.4)

then K B
m is a linear map with K B

m B K B
m equal to the identity on B. The tangent spaces to

the fibers of the projection must be K -invariant. From K B
m B K B

m = id it does not follow
automatically that K B

m defines a hyperbolic structure on Tπ(m)B. It can happen that the op-
erator K B

m does not have the proper multiplicities for the eigenvalues ±1. If K B
m exists, then

it is unique. If for all points m ∈ M the map K B
m only depends on the fiber and defines an

almost product structure, then we say the almost product structure on M projects to an almost
product structure on B (which is uniquely determined by K ).

Example 7.1.4 (Quasi-linear systems). A quasi-linear first order system is a system of the
form

f1 p + f2q + f3r + f4t = 0, g1 p + g2q + g3r + g4t = 0,

with f j , g j functions of the variables x , y, u, v. If the system is hyperbolic, then this defines
a system of equations for hyperbolic pseudoholomorphic curves.

The converse is not automatically true. For example the hyperbolic first order system

ps − qr = 0, r = 1

is not quasi-linear. But this system defines a system for hyperbolic pseudoholomorphic
curves. The Monge systems are

V+ = span
(
∂x + p∂u + ∂v, ∂p

)
, V− = span

(
∂y − s∂x , ∂s

)
.

The derived bundles of the Monge systems have a well-defined projection to the base mani-
fold with coordinates x , y, u, v. Locally the system is contact equivalent to the first order
wave equation. �

7.1.2 The Darboux integrable systems
In Section 8.1.4 we define Darboux integrability of elliptic and hyperbolic exterior differ-
ential systems. For elliptic first order systems the definition corresponds to the following.
An elliptic first order system (M,V) is Darboux integrable if there exist two holomorphic
functions z, w for the almost complex structure on M for which span(dz, dw) has real rank
four and the kernel (which has rank two) is transversal to the contact distribution V . This
definition is clearly contact invariant since the only structures used in the definition are the
contact distribution V and the almost complex structure on M and these structures are both
invariant under contact transformations. Hence the Darboux integrable systems are closed
under contact transformations.
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For a general manifold M of dimension 2n with almost complex structure J the existence
of k linear independent holomorphic functions at a point m implies that the rank of the image
of the Nijenhuis tensor is at most 2n − 2k. See for example Muškarov [56, Theorem 2.1, p.
286]. The existence of two holomorphic functions for a first order system then implies that
the image of the Nijenhuis tensor has rank at most two. For first order systems this is also
showed explicitly in Section 8.1.4. Since the rank of D is at most two, we conclude from
Theorem 7.1.2 that all Darboux integrable elliptic first order systems can be written as the
equations for the pseudoholomorphic curves of an almost complex structure.

In Chapter 8 we will make a classification of Darboux integrable elliptic first order sys-
tems. From the normal forms of the three different classes (the Cauchy-Riemann equations,
the affine case, and the almost complex case, see Section 8.3) we can clearly see that these
systems have projections to a base manifold with an almost complex structure and that the
projection intertwines the two almost complex structures.

7.1.3 Almost product structures
For the hyperbolic first order systems there is the class of systems that can be written as the
equations for integral surfaces for an almost product structure. This class is the hyperbolic
equivalent of the third class from the list of classes on page 156.

For the elliptic systems the rank of D completely determines whether a system can be
written as a system for an almost complex structure. For the hyperbolic systems the charac-
teristic systems are not conjugate to each other, so there can be an asymmetry in the system.
A consequence is that for hyperbolic systems there are more possibilities for the rank of D
and the rank does not completely determine the possible projections.

Theorem 7.1.5. Let (M,V) be a hyperbolic first order system. Then we have the following
possibilities for the ranks of D and D/V:

• rankD = 3, 4. There exist no projections to an almost product manifold.

• rankD = rankD/V = 2. There exists a unique projection to a base manifold that pre-
serves the almost product structures. The tangent spaces to the fibers of this projection
are given by B1.

• rankD = 2, rankD/V = 1. This case does not have an elliptic equivalent. There
exists no projection to an almost product manifold.

• rankD = 1. The condition rankD = 1 alone is not enough to determine whether there
exist projections or not. Within this class we can distinct three different subclasses:

i) There exist multiple projections for the structure.

ii) There exists a unique projection.

iii) There exist no projections.

All three cases occur, see Example 7.1.7 and Example 7.1.8.
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• rankD = 0. The system is then equivalent (under a contact transformation) to the sys-
tem u y = vx = 0 (see Example 4.6.5). This system allows many different projections.
The elliptic equivalent of this class is the class of Cauchy-Riemann equations.

Proof. The proof of the theorem is similar to the proof for the elliptic systems. We only have
to point out the differences.

Assume that U is an integrable distribution such that the projection along the leaves of
U projects the almost complex structure on M . Then from a hyperbolic version of The-
orem 7.1.1 it follows T3F = S2F = 0. Since U is integrable S3F = 0 as well. From
Lemma 5.2.8 it follows that U3F = V3F = 0. But then both distributions N (T M+, T M+)

and N (T M−, T M−) have rank at most one. For the cases rankD = 3, 4 and rankD = 2,
rankD/V = 1 we have either rank(N (T M+, T M+)) > 1 or rank(N (T M−, T M−)) > 1.
Hence for these cases there exists no projection intertwining the almost product structure.

The condition rankD = rankD/V = 2 implies that there is a unique foliation for which
there exists an adapted coframing such that T3F = 0 and T2F ∈ D∗. The proof is then similar
to the proof on page 159. The condition rankD = 2 is not sufficient. For rankD = 2,
rankD/V = 1 there exist no projections and Example 7.1.6 shows such systems exist.

In the case rankD = 1 there are 3 possibilities. The existence of the three cases is proven
by the examples. �

Example 7.1.6. This is an example of a system where rankD = 2, but rankD/V = 1. So the
ranks of the bundles are not symmetric with respect to the characteristic systems. Consider
the system defined by

u y = (ux )
2, vx = u.

On the equation manifold with coordinates x, y, u, v, p, s we introduce the framing

F1 = Dx + a2∂s, F2 = ∂p, F3 = [F1, F2] = −∂u − 2p∂s,

G1 = Dy − 2pDx , G2 = ∂s, G3 = [G1,G2] = −∂v.

The characteristic systems are F = span(F1, F2) and G = span(G1,G2). The hyperbolic
structure J acts on the basis as J (F j ) = F j , J (G j ) = −G j .

The image D of the Nijenhuis tensor is spanned by N (G1,G3) = 4∂v = −4G3 and
N (G2,G3) = −8∂s = −8G2. Note that D is contained in the derived system G′ and that
rankD/V = 1. The bundle B1 equals span(F1, F2,G2). �

Example 7.1.7 (Multiple projections for rank D = 1). Consider the first order system

u y = v, vx = 0. (7.5)

The projection onto the coordinates x, y, u, v projects the system onto a base manifold with
non-integrable almost product structure. An adapted coframing for the system is

θ1
= du − pdx − vdy,

θ2
= dv − sdy,

ω1
= dx, π1

= dp,

ω2
= dy, π2

= ds.
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The structure equations for the coframe are

dθ1
= −π1

∧ ω1
+ ω2

∧ θ2,

dθ2
= −π2

∧ ω2,

dω1
= dπ1

= 0,

dω2
= dπ2

= 0.

(7.6)

On the base manifold we have coordinates x, y, u, v and a basis for the tangent space is ∂x ,
∂y , ∂u , ∂v . With respect to this basis the almost product structure is given by

K =


1 0 0 0
0 −1 0 0
0 −2v 1 0
0 0 0 −1

 .
The projected characteristic systems are W+ = span(∂x , ∂u) and W− = span(∂y + v∂u, ∂v).

Another projection for this equation is given by the adapted coframing

θ1
= du − pdx − vdy,

θ2
= dv − sdy,

ω1
= dx + dp, π1

= dp,

ω2
= dy, π2

= ds.

The structure equations are the same as in (7.6). This gives a foliation to a base manifold gen-
erated by the integrable distribution span(∂p − ∂x , ∂s). Hence projection onto the variables
x̃ = x + p, y, u, v gives another projection to an almost product manifold. �

Example 7.1.8. Some systems with rankD = 1 have a unique projection and some systems
have no projection at all. An example is the system

u y = φ(x, y)vy + c(ux )
2, vx = 0, (7.7)

for a generic enough φ(x, y). For c = 1 this system has no projection to an almost product
structure. For c = 0 the projection to the base manifold B defined by (x, y, u, v, p, q) 7→

(x, y, u, v) intertwines the almost product structure on the equation manifold with an almost
product structure on the base manifold. This projection is the only base projection of the
almost product structure for this system. �
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7.2 Monge-Ampère equations
The Monge-Ampère equations are a very special class of scalar second order equations in the
plane. Here we study the geometry of these equations and give a list of different characteri-
zations of Monge-Ampère equations.

The history of Monge-Ampère equations starts with a problem posed by Gaspard Monge
in an article [55]. In this article he consideres the problem of optimally transporting a pile of
dirt from a given location to another location. The condition that the transportation is optimal
is defined in terms of a cost function. Monge originally considered the total distance as a
cost function. The problem for a general cost function is known as the Monge-Kantorovich
transport problem. In Ampère [2] the optimal solution to the problem for the specific cost
function |x − y|

2 was shown to be equivalent to a solution to an equation of the form

(φxxφyy − φ2
xy)ρT (φx , φy) = ρ0(x).

This is special case of what is today known as a Monge-Ampère equation. The general
Monge-Ampère equation has the form

Azxx + Bzxy + Czyy + D + E(zxx zyy − z2
xy) = 0, (7.8)

with A, B,C, D, E functions of the first order coordinates x, y, z, p, q. The equation has ap-
plications in differential geometry, geometrical optics and optimization theory. The principal
symbol of the equation (7.8) is given by

ξ 7→ (A + t E)(ξx )
2
+ (B − 2s E)ξxξy + (C + r E)(ξy)

2.

The discriminant is equal to (B −2s E)2 −4(A+ t E)(C +r E). Restricted to the hypersurface
defined by the Monge-Ampère equation this is equal to B2

− 4AC . Hence the equation (7.8)
is hyperbolic if and only if B2

− 4(AC + DE) > 0. This condition does not depend on the
second order coordinates r, s, t . In the following we will concentrate on hyperbolic Monge-
Ampère equations.

7.2.1 Geometry
The Monge-Ampère equations are second order equations, but they have the special property
that they can also be formulated as an exterior differential system on the first order jet bundle.
Recall that any second order scalar equation defines a Vessiot system (Definition 4.1.1) of
dimension 7 with a canonical projection to a first order contact manifold P . For a hyperbolic
equation we have two characteristic systems V± with derived bundles V ′

±. For each point
m ∈ M the projection π maps the rank 3 distribution V ′

± to a two-dimensional linear subspace
W±(m) ⊂ Tp P , p = π(m). We will analyze the condition thatW±(m) is independent of the
point m in the fiber π−1(p). If this condition is satisfied, then the projection π defines rank
2 distributions W± in P . We say that the bundles V ′

± project down to P under the projection
π . We will see that the equations for which the characteristic systems project down to P are
precisely the equations that are contact equivalent to a Monge-Ampère equation.
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Example 7.2.1. Consider the Sine-Gordon equation zxy = sin(2z). An adapted coframing
for this second order equation is given by

θ0
= dz − pdx − qdy,

θ =

(
dp − rdx − sin(2z)dy
dq − sin(2z)dx − tdy

)
,

ω =

(
dx
dy

)
,

π =

(
dr − 2p cos(2z)dy
dt − 2q cos(2z)dx

)
.

The structure equations for this coframe are

dθ0
≡ −θ1

∧ ω1
− θ2

∧ ω2 mod θ0,

dθ ≡ −π ∧ ω mod θ0, θ,

dω = 0
dπ ≡ 0 mod θ, ω, π.

The Monge systems are

V+ = span
(
∂x + p∂z + r∂p + sin(2z)∂q + 2q cos(2z)∂t , ∂r

)
,

V− = span
(
∂y + q∂z + sin(2z)∂p + t∂q + 2p cos(2z)∂r , ∂t

)
.

The projection π : M → P to the first order contact bundle projects the derived bundles of
the Monge systems to the two characteristic systems

W+ = span
(
∂x + p∂z + sin(2z)∂q , ∂p

)
, W− = span

(
∂y + q∂z + sin(2z)∂p, ∂q

)
.

On the first order jet bundle we can define

θ = dz − pdx − qdy,

91
= (dp − sin(2z)dy) ∧ dx, 92

= (dq − sin(2z)dx) ∧ dy.

The integral manifolds of the exterior differential system {θ,91, 92
}diff are graphs of 1-jets

of functions z(x, y) that satisfy the Sine-Gordon equation. Indeed, when 91 is restricted to
the graph of the 1-jet of a function z(x, y) then

(dp − sin(2z)dy) ∧ dx =
(
zxx dx + zxydy − sin(2z)dy

)
∧ dx

= −
(
zxy − sin(2z)

)
dx ∧ dy.

Note that 92
= 91

− dθ , so we did not need to include 92 in the definition of our exterior
differential system. �
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We will analyze when the systems V ′
± project down to the first order contact bundle. The

fibers of the projection to the first order bundle are given by C(V ′) = C(V ′)+ ⊕C(V ′)−, with
C(V ′)± = C(V ′) ∩ V±. For a good projection we need

[C(V ′)+,V ′
+] ⊂ span

(
V ′

+,C(V ′)
)
, (7.9a)

[C(V ′)+,V ′
−] ⊂ span

(
V ′

−,C(V ′)
)
, (7.9b)

[C(V ′)−,V ′
+] ⊂ span

(
V ′

+,C(V ′)
)
, (7.9c)

[C(V ′)−,V ′
−] ⊂ span

(
V ′

−,C(V ′)
)
. (7.9d)

The equations above say precisely that the bundle C(V ′) defines a vector pseudosymmetry
(see Section 9.4) for the two bundles V ′

±. Another way to formulate the conditions is the
following. Take an adapted coframing (6.3). Then the bundles V ′

+ and V ′
− are equal to

the distributions dual to span(θ0, θ2, ω2, π2) and span(θ0, θ1, ω1, π1), respectively. The
conditions that V ′

± project down the the first order contact manifold are

T 1
3F = U 1

3F = 0, (7.10a)

S1
2F = S1

1F = 0, (7.10b)

S2
2F = S2

1F = 0, (7.10c)

T 2
3F = U 2

3F = 0, (7.10d)

(the sublabels correspond to those of (7.9)).
Define the distributions M± by M± = V ′

± ⊕ V∓. Note that these distributions are
dual to the Pfaffian systems M± defined on page 151. The class of M± is defined as the
corank of C(M±). This corresponds with the definition of the class of M±. Translation of
Proposition 6.1.7 to the language of distributions yields the following lemma.

Lemma 7.2.2. The rank of C(M±) is equal to 0 or 1. If class(M±) = 6, then rank C(M±) =

1 and C(M±) = C(V ′)±; if class(M±) = 7, then C(M±) = span(0).

Lemma 7.2.3. Let (M,V) be the Vessiot systems of a second order scalar partial differential
equation. The following 5 statements are equivalent:

i) The classM+ = 6 and classM− = 6.

ii) The Nijenhuis tensor on M is identically zero.

iii) The integrable distribution C(V ′) generates a projection of the distributions V ′
±. The

conditions (7.9) hold.

iv) Any vector field in C(V ′)± is a symmetry of V ′
± and any vector field in C(V ′)± is a

pseudosymmetry (see Section 9.1) of V ′
∓.

v) The rank of V ′′
± equals four.

If the conditions above hold, then C(M±) = C(V ′)± = C(V ′
±).
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Proof. We do the proof in the hyperbolic setting. The proof for the elliptic case follows by
complexifying the tangent space. Choose an adapted coframing θ, ω, π for the system. The
first condition is equivalent to T3F = 0 by Proposition 6.1.7. The vanishing of the Nijenhuis
tensor is equivalent to T3F = 0 as well. The condition (iii) is equivalent to T3F = S1F =

S2F = U3F = 0. The condition (iv) is equivalent to T3F = S1F = S2F = U3F = V3F = 0.
The equivalence of the first four statements follows from Lemma 6.1.2 and the analysis of
S1F , S2F in Section 6.1.2.

For any second order equation rankV ′
± = 3. The derived bundle V ′′

± has rank 4 or 5, from
the structure equations (6.3) it follows that V ′′

± = 4 is equivalent to the first condition. �

We have studied the conditions for the bundles V ′
± to project to the first order contact

bundle in quite some detail. Let us describe the geometry on the first order contact bundle
a bit more. The distribution V ′′

+ ∩ V ′′
− is invariantly defined on M . For a Monge-Ampère

equation the rank is 1, for a generic equation (T3F ∈ D∗) the rank is three. For a Monge-
Ampère equation we can define in a similar way Z = W ′

+ ∩W ′
− on the first order contact

bundle. Under the projection M → P the bundle V ′′
+ ∩ V ′′

− projects to Z . Recall that the
bundle V ′ projects to a contact structure W on P .

Let (M,V) be a Monge-Ampère equation with projection to (P,W). For some Monge-
Ampère equations we can choose a contact form ω such that the Reeb vector field R of ω
spans Z . A direct calculation shows that all equations of the form s = φ(x, y, z) have this
property. If such a contact form exists then it is unique up to a constant scalar. Since ω is
defined up to a constant scalar also the volume form � = ω ∧ dω ∧ dω is invariantly defined
up to a constant scalar. This proves that all contact symmetries of such a Monge-Ampère
equation are volume preserving diffeomorphisms up to a constant scalar factor. This property
is used in Example 9.3.10 to construct all contact symmetries of the wave equation.

Example 7.2.4 (continuation of Example 7.2.1). The characteristic bundles are

W+ = span
(
∂x + p∂z + sin(2z)∂q , ∂p

)
, W− = span

(
∂y + q∂z + sin(2z)∂p, ∂q

)
.

It is clear that Z = W ′
+ ∩W ′

− = span(∂z). The vector field ∂z is the Reeb vector field for
the contact form θ0. In the local coordinates dz ∧ dx ∧ dy ∧ dp ∧ dp is the invariant volume
form. �

Example 7.2.5. Not all Monge-Ampère equations have the property that Z is generated by a
Reeb vector field. For example the equation s = y2t is a hyperbolic Monge-Ampère equation.
The contact form and the characteristic 2-forms are given by

θ0
= dz − pdx − qdy,

91
= dx ∧ (dp + y2dq),

92
= (dy − y2dx) ∧ dq.

The characteristic systems are

W+ = span
(
∂x + p∂z + y2(∂y + q∂z), ∂p

)
, W− = span

(
∂y + q∂z, ∂q − y2∂p

)
.
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The distribution Z is spanned by Z = ∂z + 2y∂p. There is no function φ such that the Reeb
vector field R corresponding to the contact form φθ0 is a multiple of Z . �

We have seen that the Monge-Ampère equations (M,V) have a natural projection M →

P to a contact manifold (P,W). For hyperbolic equations the Monge systems V± project to
rank 2 distributions W± = Tπ(V±) such that W = W+ ⊕W−. The relation [V+,V−] ⊂

V implies that [W+,W−] ⊂ W . The triple (P,W+,W−)) defines a hyperbolic exterior
differential system of class s = 1 with as additional condition [W+,W−] ⊂ W . Also see
Example 5.5.4. We will prove that the converse is also true.

Proposition 7.2.6. Let (P,W) be a contact manifold of dimension 4 with a splitting W =

W+ ⊕W− such that [W+,W−] ⊂ W .
Then there exists a Monge-Ampère equation (M,V) such that (P,W) is the first order

contact manifold for this Monge-Ampère equation and the projection M → P intertwines
the Monge systems V± with the distributions W±.

Proof. Let Q be the bundle over P for which the fiber Q p above a point p ∈ P consists
of the 2-dimensional integral elements of the distribution W . In other words, if Z is a base
manifold for P , then Q is the second order contact bundle of Z . We define a hypersurface
M in Q as follows. A 2-plane E ⊂ Wp is in Mp if and only if dim(E ∩W+) = dim(E ∩

W−) = 1. In other words, Mp consists of the 2-dimensional integral planes of the hyperbolic
exterior differential system (M,W+,W−). Then M is a hypersurface in Q transversal to the
projection Q → P and defines a Vessiot system in two coordinates. This is a Monge-Ampère
equation with the required properties. �

Hence an alternative definition of a hyperbolic Monge-Ampère equation is a contact
manifold (P,W) with a hyperbolic structure on W such that [W+,W−] ⊂ W .

7.2.2 Equivalent definitions of Monge-Ampère equations
One of the first geometric characterizations of Monge-Ampère equations is due to Vessiot.
In Vessiot [68, Chapitre III] he characterizes the linear equations and the Monge-Ampère
equations in terms of the derived characteristic systems of the Monge systems. The condition
he uses, translated to our notation, is that the Cauchy characteristics of V ′

± ⊕ V∓ are equal
to C(V ′)± [68, p. 311]. A dual formulation in terms of differential forms is given by The-
orem 5.3 in Gardner and Kamran [38]. Gardner and Kamran do not mention the results of
Vessiot in their paper.

Below we give a list of different geometric characterizations of the hyperbolic Monge-
Ampère equations. The elliptic Monge-Ampère equations have similar descriptions. We have
the following equivalent formulations (i) to (iv) of hyperbolic Monge-Ampère equations:

i) A hyperbolic Monge-Ampère equation is a hyperbolic second order scalar equation of
the form

E(r t − s2)+ Ar + Bs + Ct + D = 0,

for functions A, B,C, D, E of the first order variables x, y, z, p, q.
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ii) In the analytic setting a Monge-Ampère equation is a second order equation that can
locally be transformed by a contact transformation into a quasi-linear equation. Hence
the Monge-Ampère equations are the smallest group of equations invariant under con-
tact transformations that include the quasi-linear equations.

iii) A Monge-Ampère equation is a hyperbolic exterior differential system (P,W+,W−)

of class s = 1 such that (P,W) is a contact manifold and [W+,W−] ⊂ W .

iv) A Monge-Ampère equation is a hyperbolic Vessiot system in two variables (M,V) (see
Definition 4.1.1 on page 81) that satisfies one of the following equivalent conditions:

a) The Cauchy characteristics of V ′
± ⊕ V∓ are equal to C(V ′)±.

b) The Cauchy characteristics of V ′
± are equal to C(V ′)±.

c) The rank of V ′′
± is equal to 4.

d) class(M1) = class(M2) = 1.

e) The Nijenhuis tensor on C(V ′)×M V ′ is identically zero.

f) The canonical projection to the first order contact manifold projects the char-
acteristic systems V+ and V− onto two characteristic subsystems W+ and W−,
respectively.

Proof. The equivalence (i) with (iv) has been showed many times in the literature. See for
example the appendix on Monge-Ampère equations in Bryant and Griffiths [17, pp. 216–
218]. The equivalence to (ii) is proved in Lychagin et al. [49]. For the equivalence of (iii)
and (iv) and the different conditions (a)– (f) in (iv) see the discussions in this chapter. �



Chapter 8

Darboux integrability

The method of Darboux to integrate partial differential equations was introduced by Gaston
Darboux in a paper [21] in 1870. If an equation is Darboux integrable, then the solutions of
equation can be obtained by solving ordinary differential equations (integration of functions).

After the original articles by Darboux the main reference seems to be Goursat [40]. Other
texts include Stormark [64, Chapter 11], Forsyth [33] and the modern approach using infinite
jet bundles by Anderson and Juráš [4, 44, 45]. A classification of the hyperbolic Goursat
equations (Example 4.4.2) is obtained by Vessiot [69, 70]. A modern exposition of the work
of Vessiot is given by Stormark [64]. The elliptic and hyperbolic first order systems have
been analyzed by McKay [51] and Vassiliou [65, 66], respectively. Both analyze the Darboux
integrability property, although they use different methods.

In this chapter we will study some properties of the Darboux integrable equations. In
particular we will see that any Darboux integrable equation is a special example of our pro-
jection method (pseudosymmetry method), discussed in more detail in Chapter 9. We also
give a classification of the hyperbolic Darboux integrable first order systems under contact
and point transformations at the first order. At the end of this chapter we make an analysis of
the homogeneous Darboux integrable equations. Both Vessiot and Vassiliou develop a struc-
ture theory for Darboux integrable equations in terms of invariant Lie algebras. In Chapter 10
we will give a geometric interpretation of this structure theory.

We formulate Darboux integrability for hyperbolic exterior differential systems with some
additional properties. Special examples are first order systems and second order scalar equa-
tions that are Darboux integrable in the classical sense. In Chapter 10 we will generalize
Darboux integrability to more general structures. We say the system is Darboux integrable
if each characteristic system has at least 2 invariants that satisfy some transversality condi-
tions to be discussed in Section 8.1.2. The term Darboux integrability is also used if one
of the prolongations of system has characteristic systems with 2 or more invariants. If we
want to express this kind of Darboux integrability, we will always write this explicitly. See
Section 8.1.5 for an example of higher order Darboux integrability.
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8.1 Some properties of Darboux integrable systems
In this section we give a description of the method of Darboux and discuss some of the
properties of the method.

8.1.1 Base and transversal projections
The projections in this section should not be confused with the base projections of a first
order systems or second order equation. The base projections are always generated by an
integrable pair of vector fields X, Y such that X, Y ⊂ V . These base projections are treated
in detail in Chapter 7.

The projections in this chapter are transversal to the contact distribution V in the sense
that every projection π gives an injective map Txπ : Vx → Tπ(x)B. We call these projections
transversal projections or generalized Darboux projections. In this chapter only Darboux
projections will be discussed. In chapters 9 and 11 also other transversal projections will be
discussed.

8.1.2 The method of Darboux as a projection
We will give a definition of the method of Darboux for hyperbolic exterior differential sys-
tems of arbitrary class s. The method of Darboux was originally introduced for second order
partial differential equations. Recall from Section 5.5.1 that the Vessiot systems for second
order scalar equations define hyperbolic exterior differential systems of class s = 3. For
second order partial differential equations our definition corresponds to the original method
(although we use different notation).

Definition 8.1.1. Let (M,V+,V−) be a hyperbolic exterior differential system of class s
(Definition 5.5.2) that satisfies [V+,V−] ⊂ V = V+ ⊕V−. The system is Darboux integrable
if there are two invariants I 1

+, I 2
+ for V+ and two invariants I 1

−, I 2
− for V− such that the forms

dI 1
+, dI 2

+, dI 1
−, dI 2

− are linearly independent and the kernel of span(dI 1
+, dI 2

+, dI 1
−, dI 2

−)

(which is a rank s distribution on M) is transversal to V = V+ ⊕ V−. 	

For a Darboux integrable system with invariants I 1
+, I 2

+, I 1
−, I 2

− we define locally a pro-
jection π : M → B ⊂ R2

× R2 by m 7→ (I 1
+(m), I 2

+(m), I 1
−(m), I 2

−(m)). For any point
in M we can arrange by restriction to some smaller neighborhood that B = B1 × B2. This
projection is called the Darboux projection for the system and the invariants. The conditions
in Definition 8.1.1 imply that π is a submersion and for all points m ∈ M the linear map
Tmπ : Vm → Tπ(m)B is a bijection. The characteristic systems V+ and V− project to the
tangent spaces of the first and second component of B ⊂ R2

× R2, respectively. Hence the
projection intertwines the hyperbolic structure on V with the direct product structure on B.

If the characteristic systems V+ and V− have p and q invariants and the system is Darboux
integrable, we say the system is (p, q)-Darboux integrable. This terminology was introduced
by Vassiliou [66] in his analysis of Darboux integrable systems.

In the special case of a hyperbolic first order system (which is a hyperbolic exterior differ-
ential system of class s = 2) the manifold M has dimension 6 and carries a natural hyperbolic



8.1 Some properties of Darboux integrable systems 173

structure on the entire tangent space and not only on the distribution V . If the system is Dar-
boux integrable, then any Darboux projection is a special case of the transversal projections
of almost product structures discussed in Section 7.1.1.

We regard two Darboux projections as different if the fibers of the projections are differ-
ent. For a Darboux integrable hyperbolic exterior differential system there can exist multiple
Darboux projections. This is for example the case for the wave equation or the Cauchy-
Riemann equations. For the existence of multiple Darboux projections it is necessary that
at least one of the characteristic systems has more than two invariants. This implies that for
most Darboux integrable systems there is a unique Darboux projection.

Solutions. If a hyperbolic exterior differential system is Darboux integrable, then we can
construct the general 2-dimensional integral manifold of the system by solving equations and
integration. In contrast, the 2-dimensional integral manifolds of a general hyperbolic exterior
differential system can only be found by solving partial differential equations.

Assume that (M,V+,V−) is a hyperbolic exterior differential system and π : M → B is
a Darboux projection. First we select a hyperbolic pseudoholomorphic curve for the almost
product structure on B. Since the almost product structure on B is integrable we can do this
as follows. We can select two curves in B1 and B2 and the direct product of these curves gives
a surface S in B. The tangent space of this surface is the direct sum of the tangent spaces to
the two curves and since the tangent spaces to the curves are contained in the tangent spaces
of the components B1, B2, the tangent space is a hyperbolic line. Hence S is a hyperbolic
pseudoholomorphic curve. Conversely, locally every hyperbolic pseudoholomorphic curve is
the direct product of two curves.

The inverse image of S in M is a codimension 2 submanifold S̃ and both Ṽ+ = V+ ∩ T S̃
and Ṽ−+ = V− ∩ T S̃ are rank 1 distributions on S̃. Together they form the rank 2 distribution
Ṽ = V ∩ T S̃ = Ṽ+ ⊕ Ṽ−. Take any pair of vector fields X, Y such that X ⊂ Ṽ+ and
Y ⊂ Ṽ−. Since X and Y are vector fields on S̃, the commutator [X, Y ] is contained in T S̃.
But we also have [X, Y ] ⊂ [V+,V−] ⊂ V . But then [X, Y ] ⊂ Ṽ = V ∩ T S̃. Since Ṽ has
rank two this shows that Ṽ is integrable. The leaves of Ṽ are integral manifolds of Ṽ and
hence integral manifolds of V as well. From the hyperbolic pseudoholomorphic curve S we
have constructed a family of 2-dimensional integral manifolds of the system. Locally this
family depends on a choice of a point in a fiber of the projection; so this family depends on s
constants.

The converse is true as well. The tangent space of any 2-dimensional integral manifold U
of (M,V+,V−) is contained in V and hence U is transversal to the projection. The projection
π(U ) is a 2-dimensional submanifold of B that is a pseudoholomorphic curve for the almost
product structure on B. We summarize these remarks in the theorem below.

Theorem 8.1.2. Let (M,V+,V−) be a Darboux integrable hyperbolic exterior differential
system of class s and let π : M → B be a Darboux projection. Then the projection by
π and the lifting of pseudoholomorphic curves gives a one-to-one correspondence between
pseudoholomorphic curves of the projected manifold and s-dimensional families of integral
manifolds of (M,V+,V−).
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Remark 8.1.3. There are many different approaches to Darboux integrability. We emphasize
the projection and after projection the lifting of solutions on the base manifold. This lifting
is an integration procedure.

Juráš and Anderson [45] emphasize the view that Darboux integrability implies the exis-
tence of additional equations in involution with the original system. These additional equa-
tions are given by relations between the invariants. This is the view of McKay [51, Section
9.2–9.3] as well.

The existence of integrable rank 2 subsystems in ideals dual to the Monge systems is used
in Bryant et al. [14, p. 65] and Ivey and Landsberg [43, pp. 217–222]. �

8.1.3 Darboux semi-integrability
A hyperbolic system is called semi-integrable by the method of Darboux if at least one of
the characteristic systems has 2 invariants I 1

+, I 2
+ such that span(dI 1

+, dI 2
+) has rank two

and span(dI 1
+, dI 2

+)
⊥

∩ V has rank two. If a system is semi-integrable by the method of
Darboux, then the integral manifolds can be found by solving ordinary differential equations.
For example see Bryant et al. [14, p. 70]. We prove this result here a hyperbolic first order
system. In the example below we will use a variation of the proof to construct the general
solution of a Darboux integrable system that has three invariants for one of the characteristic
systems.

Theorem 8.1.4. For a hyperbolic first order system that is Darboux semi-integrable the
initial-value problem on a non-characteristic curve can be solved by solving ordinary dif-
ferential equations.

Proof. Let the hyperbolic first order system be defined by a 6-dimensional manifold M with
characteristic systems V+, V−. Let γ : (a, b) ⊂ R → M be an integral curve of V . This
means that γ ′(t) ∈ V for all t ∈ (a, b). The curve γ represents the initial data. The condition
that γ is non-characteristic is given by the condition that for all t ∈ (a, b) the vector γ ′(t) is
not contained in V+ and not contained in V−.

Let I 1
+, I 2

+ be invariants of V+ for which the system is Darboux semi-integrable. We
define the projection π : M → R2

: m 7→ (I 1
+(m), I 2

+(m)). The composition π Bγ is a curve
δ in R2. The condition that γ is non-characteristic implies that δ is an immersion.

Define M̃ to be the inverse image of δ. Then M̃ has dimension five and the distributions
W+ = V+ ∩ T M̃ andW− = V− ∩ T M̃ have rank two and one, respectively. The distribution
W = W+ ⊕W− on M̃ has rank three andW ′ has rank 4. From the properties of V it follows
that the Cauchy characteristics of W are 1-dimensional and equal to C(W) = W−.

The initial curve γ defines a curve in M̃ . The flow of this integral curve by the Cauchy
characteristics of W defines a 2-dimensional surface S in M̃ . This is an integral surface of
W since γ is an integral curve of W . It follows that the surface in M defined by the surface
S in M̃ is an integral surface of V . �

Example 8.1.5. Consider the hyperbolic system defined by the equations u y = 0, vx =

u. We have coordinates x, y, u, v, p, s on the equation manifold M , with the characteristic
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systems

F = span
(
∂x + p∂u + u∂v, ∂p

)
, G = span

(
∂y + s∂v, ∂s

)
.

The bundle G has the three invariants x, u, p. Let π be the projection M → B = R3
:

(x, y, u, v, p, s) 7→ (x, u, p). The bundle F projects to the distribution

Tπ(F) = span
(
∂x + p∂u, ∂p

)
.

The most general integral curve of the projected bundle is given by u = φ(x), p = φ′(x).
The inverse image of this curve is a 4-dimensional manifold M̃ with coordinates x , y, v, s.
The distributions F and G restrict the two distributions

F̃ = F ∩ T M̃ = span (∂x + φ(x)∂v) , G̃ = G ∩ T M̃ = span
(
∂y + s∂v, ∂s

)
.

The bundle F̃ is equal to C(Ṽ); the Cauchy characteristics of Ṽ = F̃ ⊕ G̃. The invariants of
F̃ are y, w = v −

∫
φ(x) and s. Locally we can take the quotient of M̃ by the Cauchy char-

acteristics. The quotient B̃ is 3-dimensional with coordinates y, w, s and the distribution G̃
projects to the distribution on B̃ given by span(∂y + s∂w, ∂s). Finding 2-dimensional integral
manifolds of the original system corresponds to finding integral curves of this distribution
on B̃. The most general curve is easily seen to be w = ψ(y), s = ψ ′(y). The flow of this
curve by the Cauchy characteristics F̃ is the 2-dimensional manifold parameterized by x, y
and v = w +

∫
φ(x), s = ψ ′(y). Together with u = φ(x) and p = φ′(x) this defines the

general solution of the system:

u = φ(x), v = ψ(y)+

∫ x
φ(x). �

8.1.4 Elliptic Darboux integrability
For elliptic exterior differential systems (in particular the elliptic first order systems and el-
liptic second order equations) we can define Darboux integrability in a similar way as was
done for the hyperbolic exterior differential systems in Section 8.1.2.

Let (M,V, J ) be an elliptic exterior differential system (see Definition 5.5.7). We can
define the complex eigenspaces V± ⊂ V ⊗ C of the operator J . Let I be a complex valued
function that satisfies idI (X) = (dI B J )(X) for all X ∈ V . Then (dI )(X + i J X) =

(dI )(X)+ i(dI )(J X) = (1 + i2)(dI ) = 0 and hence dI (V−) = 0. The converse is also true.
If dI is an invariant for V−, then restricted to V we have idI = dI B J .

We say an elliptic exterior differential system is Darboux integrable if [V+,V−] ⊂ V and
the distribution V− has two complex invariants I 1, I 2 such that the projection M → C2

:

m 7→ (I 1(m), I 2(m)) has rank 4 and is transversal to V . It then follows automatically that
the complex conjugates of I 1 and I 2 are invariants for V+. The projection intertwines the
almost complex structure on V with the complex structure on C2. Every holomorphic curve
in C2 corresponds locally to a s-dimensional family of 2-dimensional integral manifolds of
(M,V, J ). An equivalent formulation of [V+,V−] ⊂ V is that [J X, X ] ⊂ V for all X ⊂ V .
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In the case of a Darboux integrable elliptic first order system (M,V) the Darboux pro-
jection is a special case of the transversal projections of almost complex structures discussed
in Section 7.1.1. In particular the fibers of the projection have tangent spaces that are invari-
ant for the almost complex structure on M and the fibers are pseudoholomorphic curves. A
complex invariant of V− is an invariant of V ′

− as well. If we choose an adapted coframing
θ, ω, π , then a function I is an invariant of V− if and only if dI ≡ 0 mod θ, θ̄ , ω, π . But
every invariant of V− is an invariant of V ′

− as well and therefore dI ≡ 0 mod θ, ω, π . This
implies that I is a holomorphic function for the almost complex structure on M .

In his Ph.D. thesis [51] McKay also has made an analysis of the elliptic first order systems.
We give a short description of McKay’s concept of Darboux integrability in the elliptic case,
a summary of McKay [51, paragraph 9.1–9.3]. Consider an elliptic first order system on
a manifold M with adapted coframing θ , ω, π . The adapted coframing on the equation
manifold induces an almost complex structure on M . Using this almost complex structure
we can define the operators ∂ and ∂̄ as d f = ∂ f + ∂̄ f , ∂ f ≡ 0 mod θ̄ , ω̄, π̄ and ∂̄ f ≡ 0
mod θ, ω, π . Suppose we have two holomorphic functions z, w : M → C, i.e., ∂̄z = ∂̄w =

0. We also assume these functions have linearly independent differentials modulo θ . Then
the projection M → C2

: m 7→ (z(m), w(m)) is a Darboux projection.
Let U be an integral surface of M and assume that dz is linearly independent when re-

stricted to U (we case also treat the case that dw is linearly independent). Then the image
of U under z is locally surjective and there is a relation w = f (z), between z and w. The
function f is holomorphic since both z and w are holomorphic and U is an integral sur-
face. Conversely, given a holomorphic map f : C → C we can restrict ourselves to the
4-dimensional submanifold of M defined by the relation z = f (w). The differential equa-
tion θ = 0 becomes integrable when restricted to this submanifold, i.e., on the submanifold
dθ ≡ 0 mod θ, θ̄ . The leaves of the integrable Pfaffian system θ = 0 on the submanifold
are integral manifolds of the system.

Example 8.1.6. We consider a linear elliptic equation ∂w/∂ z̄ = b(z, z̄)w̄. An adapted
coframing for this equation is given by

θ = dw − pdz − bw̄dz̄,

ω = dz,

π = dp − (bzw̄ + bq̄)dz̄.
(8.1)

Here q = bw̄. We will show that a sufficient condition for the equation to be Darboux
integrable is

∂2 log b
∂z∂ z̄

= |b|
2. (8.2)

By calculating the complex Monge systems for a general function b or by using the cofram-
ing (5.30) one can proof that the condition is necessary as well.

We take z̃ = z and p̃ = p − (∂log(b)/∂z)w = p − (bz/b)w as holomorphic functions.
From dz̃ = dz = ω it is clear that z̃ holomorphic. We assume that equation (8.2) holds. A
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short calculation gives

d p̃ = dp −

(
∂2 log b
∂2z

)
wω −

(
∂2 log b
∂z∂ z̄

)
wω̄ − (bz/b)dw

= dp −

(
∂2 log b
∂2z

)
wω − |b|

2wω̄ − (bz/b)(θ + pω + bw̄ω̄)

= π − (bz/b)θ −

(
∂2 log b
∂2z

)
wω −

(
pbz

b

)
ω.

Thus p̃ is holomorphic and clearly dz̃ and d p̃ are linearly independent modulo θ . The exis-
tence of holomorphic functions implies that there are relations between the invariants. Indeed,
dz̃ = ω gives τ2 = 0 and d p̃ gives −(bz/b)τ1 + τ3 = 0.

The system is Darboux integrable and we can use the two holomorphic functions to in-
tegrate the equation in the following way. Choose a holomorphic function f and define the
curve p̃ = f (z̃) in the space with coordinates z̃, p̃. The inverse image of this curve under
the projection (z, p, w) 7→ (z̃, p̃) is a manifold of dimension four with complex coordinates
(z, w). The contact form θ restricts on this manifold to the differential form

2 = dw −

(
f +

∂log b
∂z

w

)
dz − bw̄dz̄.

The form 2 is closed modulo 2, 2̄ and therefore we can solve w as a function of z using
ordinary integration techniques. This gives a solution to the equation that depends on the
arbitrary holomorphic function f and a complex integration constant. �

For elliptic first order systems McKay also analyzes when we can have enough holomor-
phic functions for Darboux integrability. A function f can be used for Darboux’s method if
d f = f1θ + f1̄θ̄ + f2ω + f3π . But then

0 = d2 f = f1∂̄θ + f1̄∂̄ θ̄ + f2∂̄ω + f3∂̄π = − f1̄π̄ ∧ ω̄.

So we see that in fact f is holomorphic and

0 = d2 f = f1∂̄θ + f2∂̄ω + f3∂̄π

= ( f1τ1 + f2τ2 + f3τ3) ∧ θ̄ .

The existence of the holomorphic function f therefore implies a linear relation between the
invariants. The coefficients of τ1, τ2, τ3 are the coefficients of the Nijenhuis tensor and
Darboux integrability implies that the rank of the image of the Nijenhuis tensor D is at most
two. The transversality condition in Darboux integrability then implies that τ2 and τ3 are
linearly dependent on τ1. Using the structure group we can arrange that τ2 = τ3 = 0. McKay
then makes a distinction into three cases of Darboux integrability, depending on the type of
the invariant τ1 = T2̄ω̄+T3̄π̄ . He defines generic Darboux integrability (T3̄ 6= 0), non-generic
Darboux integrability (T2̄ 6= 0, T3̄ = 0) and flat Darboux integrability (T2̄ = T3̄ = 0).
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Remark 8.1.7. Darboux integrability implies that there are at least two linear relations be-
tween the torsion terms τ1, τ2 and τ3. The converse is not true. There are system that are not
Darboux integrable, but that do have two relations between the torsion terms. As an example
consider the elliptic first order system p − s = 2u, q + r = −2v. An adapted complex
coframing is given by

θ = du − pdx − qdy + i (dv − (−q − 2v)dx − (p − 2u)dy) ,

ω = dx + idy,

π = dp − idq − 2uω̄ − θ.

The structure equations are

dθ ≡ −π ∧ ω mod θ,
dω = 0,
dπ ≡ ω̄ ∧ θ mod ω, π.

It is clear that τ2 = τ3 = 0 and hence that there are two linear relations. The derived
systems of V± stabilize at dimension 5 and therefore each complex Monge system only has
one invariant. The system is not Darboux integrable. �

8.1.5 Higher order Darboux integrability
If the characteristic systems F , G do not have at least two invariants each, then we cannot
apply the method of Darboux directly. It is possible to prolong the system. If the prolonged
systems F (1), G(1) have enough invariants we can apply the method of Darboux to the pro-
longed system M (1).

Example 8.1.8. Consider the second order equation s = zp. Also see Juráš [44, Example 5
on p. 22] and Goursat [40, Tome II, Exemple V, p. 134]. The characteristic systems are given
by

F = span
(
Dx + (pq + z2 p)∂t , ∂r

)
, G = span

(
Dy + (p2

+ zr)∂r , ∂t
)
,

with Dx = ∂x + p∂z + r∂p + zp∂q and Dy = ∂y + q∂z + zp∂p + t∂q . The bundle F has
invariants y and q−z2/2; the bundle G only has x as an invariant. The equation is not Darboux
integrable on the second order jet bundle. We can prolong the system. We parameterize the
integral elements of V in a neighborhood of span(Dx , Dy) using two parameters a, b as

span
(
Dx + (pq + z2 p)∂t + a∂r , Dy + (p2

+ zr)∂r + b∂t
)
.

One can think of a and b as the third order derivatives zxxx and zyyy , respectively.
The characteristic systems on the prolonged manifold are given by

F1 = span
(

Dx + (pq + z2 p)∂t + a∂r + (3qzp + tp + z3 p)∂b, ∂a

)
,

G1 = span
(

Dy + (p2
+ zr)∂r + b∂t + (3r p + az)∂a, ∂b

)
.
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The invariants at third order are {y, q − z2/2, b + (z4/4) − z2q − zt}func and {x, (2pa −

3t2)/(2p2)}func. Each prolonged characteristic system has at least two invariants, hence the
equation is Darboux integrable at the third order. �

8.2 Hyperbolic Darboux integrability
A hyperbolic first order system is Darboux integrable if there are at least two functionally
independent invariants for each of the characteristic systems and these invariants define a
Darboux projection that is transversal to the contact distribution. In terms of differential
forms and an adapted coframing this means a pair of D-valued functions I1, I2 such that
dI j ≡ 0 mod θ, ω, π, θ F . The transversality condition is equivalent to the condition that
dI1 and dI2 are linearly independent modulo θ .

Using such a pair of functions we can define a projection onto an open subset of R4
= D2.

The Monge systems project into a direct product of R2
× R2. We call this a Darboux projec-

tion, also see Definition 10.3.6. More on this projection and the construction of solutions of
the system can be found in [44, 64, 65, 66].

8.2.1 Relations between invariants
Let θ, ω, π be an adapted coframing (5.10). From the structure equations it follows, just
as in the elliptic case, that invariants I must satisfy dI = f1θ + f2ω + f3π and d2 I =

( f1τ1 + f2τ2 + f3τ3)∧θ
F modulo θ, ω, π . The existence of invariants for the system implies

the existence of linear relations between the terms τ1, τ2 and τ3 and hence relations between
the invariants T,U, V (see equation (5.12)).

Remark 8.2.1. Darboux integrability implies relations between the invariants, but the con-
verse is not true. An example is given by q = u + v, r = u − v. An adapted coframing is
given by

θ1
= du − pdx − (u + v)dy,

θ2
= dv − (u − v)dx − sdy,

ω1
= dx, ω2

= dy,

π1
= dp + (v − u − p)ω2

+ θ1
= dp + du − pdx − (p + 2u)dy,

π2
= ds + (s − u − v)ω1

− θ2.

The structure equations are

dθ = −(ω − ωF ) ∧ θ − π ∧ ω + ωF
∧ θ F ,

dω = 0,

dπ = −(ω − ωF ) ∧ θ +

(
−p + u − v

−(v + s + u)

)
ω ∧ ωF

+ h(ω + ωF ) ∧ π.
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The invariants U, V are identically zero, but dπ1
≡ −θ1

∧ω2 mod ω1, π1. This implies the
hyperbolic structure does not have enough invariants to be Darboux integrable. An example
of an elliptic system with this property is given in Example 8.1.7. �

Remark 8.2.2. The fact that an invariant of the distribution dual to span(θ, θ F , ω, π) is an
invariant of the distribution dual to span(θ, ω, π) corresponds to the fact that an invariant of
the vector field system V must also be an invariant of the derived system V ′. The system
span(θ, ω, π) is precisely the derived system of span(θ, θ F , ω, π). �

8.2.2 Classification under contact transformations
In this section we will give a classification of Darboux integrable hyperbolic first order sys-
tems under contact transformations. Consider the action (5.13) of the contact structure group
on the invariant T = (T2F , T3F ). This action has 4 orbits, but if we also allow a change of
characteristic systems there are only 3 orbits to consider.

Assuming that the orbit type of the invariants T2F , T3F is locally constant we have to
consider three possibilities for the invariants T2F , T3F . We have locally either:

• T = 0. The flat case.

• (T 1
2F , T 1

3F ) = 0, (T 2
2F , T 2

3F ) 6= 0. The case (T 1
2F , T 1

3F ) 6= 0, (T 2
2F , T 2

3F ) = 0 can be
reduced to this case by switching the characteristic systems. The systems in this class
are all (2, 3)-Darboux integrable. In principle it would be possible for this case to
contain branches with (2, 2)-Darboux integrable equations, but it turns out that this
is not the case. If T 1

= 0, then U 1
= V 1

= 0 and hence the distribution dual to
span(θ1, θ2, ω1, π1) has 3 invariants.

• (T 1
2F , T 1

3F ) 6= 0, (T 2
2F , T 2

3F ) 6= 0. This is the most generic situation for Darboux inte-
grable systems. All first order systems in this class are (2, 2)-Darboux integrable.

Flat Darboux integrability

In the case of flat Darboux integrability τ1 = 0, hence T2F = T3F = 0. In geometric terms
this means that the image of the Nijenhuis tensor is contained in V . From Lemma 4.6.14
it follows that also τ2 = τ3 = 0. Hence the almost product structure is integrable and the
equation manifold has a natural direct product structure. In Section 4.6.5 we already showed
that all such systems are contact equivalent.

We can choose hyperbolic coordinates w, z, p and an adapted coframing

θ = dw − pdz, ω = dz, π = dp.

The structure equations for this coframing are

dθ = −π ∧ ω, dω = 0, dπ = 0.

In local coordinates this system corresponds to the first order wave equation (Example 4.6.5)
defined by u y = 0, vx = 0.
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Under point geometry not all flat Darboux integrable systems are equivalent. This follows
from the fact that the first order wave equation is not invariant under contact transformations
and the condition to be flat, i.e., the Nijenhuis tensor vanishes, is invariant under contact
transformations. For an example see Example 5.2.10.

Remark 8.2.3. McKay remarks in [51, page 97] that for elliptic first order systems the con-
dition T2̄ = T3̄ = 0 implies the system is equivalent to the Cauchy-Riemann equations. He
does not specify whether this is under point or contact geometry. This is a bit confusing since
he is working with point geometry in his thesis, but the result is not true under point geom-
etry. A counterexample can be given by taking an elliptic version of Example 5.2.10. Under
contact geometry all systems with T2̄ = T3̄ = 0 are indeed equivalent to the Cauchy-Riemann
equations. �

(2, 3)-Darboux integrability

Every (2, 3)-Darboux integrable first order system is locally contact equivalent to the system
u y = v, vx = 0. We prove this by starting with a 6-dimensional manifold M with a (2, 3)-
Darboux integrable hyperbolic structure and introducing suitable coordinates by adjusting the
coframing.

We start with an initial D-valued coframing θ , ω, π with the usual structure equations,
see (5.10),

dθ ≡ −π ∧ ω mod θ, θ F .

Since the equation is (2, 3)-Darboux integrable we can assume the system θ2, ω2, π2 is com-
pletely integrable. The form θ2 satisfies dθ2

6= 0 mod θ2 and hence we can introduce
coordinates y, v, s and adapt the coframing such that θ2

= dv − sdy, ω2
= dy, π2

= ds.
Let us show how the variables y, v and s can be constructed. Let V+ be the characteristic

system dual to span(θ1, θ2, ω2, π2) and V− the system dual to span(θ1, θ2, ω1, π1). Then
V ′

+ is integrable and locally we can make the projection M → B = M/V ′
+. The bundle

V− projects to a bundle Ṽ−. The bundle Ṽ− is not integrable and hence defines a contact
structure. On the quotient space we can choose coordinates y, v, s such that θ̃ = dv − sdy,
ω̃ = dy, π̃ = ds is a basis of differential forms and θ̃ is a form dual to Ṽ−. For θ̃ we have
the structure equation dθ̃ = −π̃ ∧ ω̃. The differential forms θ̃ , ω̃, π̃ pull back to semi-basic
forms θ2, ω2, π2 on M . It is not difficult to check that θ2 is a characteristic contact form for
the system on M .

The characteristic system V− dual to span(θ1, θ2, ω1, π1) has two invariants. This im-
plies we can adapt the coframing to

dθ1
= −α1

∧ θ1
− π1

∧ ω1
+ T 1

2Fω
2
∧ θ2

+ T 1
3Fπ

2
∧ θ2,

dω1
≡ 0 mod θ1, ω1, π1,

dπ1
≡ 0 mod θ1, ω1, π1.

The pair (T 1
2F , T 1

3F ) is non-zero, since otherwise V− would have 3 invariants and then the
system is equivalent to the first order wave equation. We can adapt the coframing to make
T 1

2F = 1, T 1
3F = 0.
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Let I, J be two functionally independent invariants of V−. By definition we have dI ≡

a1θ
1
+ b1ω

1
+ c1π

1. We calculate d2 I and find

0 = d2 I ≡ a1dθ1
≡ a1ω

2
∧ θ2 mod θ1, ω1, π1.

Hence a1 = 0. A similar calculation can be made for J and we can conclude that

dI = b1ω
1
+ c1π

1, dJ = b2ω
1
+ c2π

1,

for certain functions b1, c1, b2, c2. We can make a transformation of coframing such that in
the new coframing ω1

= dI and π1
= dJ . By looking at the representations (5.13) we can

see that we can make this transformation and keep the normalizations T3F = 0, U = V = 0.
The new coframing already has greatly reduced structure equations

dθ1
= −α1

∧ θ1
− π1

∧ ω1
+ T 1

2Fω
2
∧ θ2,

dθ2
= −π2

∧ ω2,

dω1
= 0, dω2

= 0,

dπ1
= 0, dπ2

= 0.

Since ω1 and π1 are exact we can find functions x , p such that ω1
= dx and π1

= dp. Then
because span(θ1, ω1, ω2) is integrable, we can find a function u such that

θ1
= du − Adx − Bdy,

perhaps with a scaling of θ1. By calculating dθ1 and comparing this with our previous ex-
pressions for dθ1 we find

A = p + φ(x, y), B = v + ψ(x, y).

The coframing we have introduced is precisely the coframing associated to u y = v+ψ(x, y),
vx = 0. By replacing u with u +

∫ y
ψ we arrive at the normal form

u y = v, vx = 0. (8.3)

The general solution of this system was given in Example 8.1.5. An adapted coframing in
local coordinates is

θ1
= du − pdx − vdy,

θ2
= dv − sdy,

ω1
= dx, ω2

= dy

π1
= dp, π2

= ds.

(8.4)

The structure equations are

dθ1
= −π1

∧ ω1
+ ω2

∧ θ2,

dθ2
= −π2

∧ ω2,

dω1
= 0, dω2

= 0

dπ1
= 0, dπ2

= 0.
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(2, 2)-Darboux integrability

The starting point of our analysis is the adapted coframing (5.10). The theory in this section
is the hyperbolic equivalent of the theory of McKay in [51, Section 9.5]. An important
difference with the theory of McKay is that we do the analysis in the contact geometry setting.
In Section 8.2.3 we will also analyze the systems under point geometry.

First we choose a coframing in which T2F = 1, T3F = U2F = U3F = V2F = V3F = 0.
This reduces the bundle and structure group such that on vertical vectors we have (this follows
from the covariant derivatives of the invariants, see equations (5.8) on page 126)

α − αF
− γ F

= 0, β = 0, δ = 0, ζ = 0.

Write µ = γ − αF
+ α (hence µ is zero on vertical vectors, i.e., µ is zero modulo θ , θ F , ω,

ωF , π , π F ). We can arrange

d

θω
π

 = −

α 0 0
0 αF

− α 0
0 ε 2α − αF

 ∧

θω
π


+

 −π ∧ ω + ωF
∧ θ F

−π ∧ σ + θ ∧ β + ω ∧ µ

−π ∧ µ+ θ ∧ δ

 ,
with

µ ≡ 0 mod ωF , π, π F ,

δ ≡ 0 mod θ F , ωF , π, π F ,

β ≡ 0 mod θ F , ω, ωF , π, π F ,

σ ≡ 0 mod θ F , ωF , π F .

(8.5)

Our reduced structure group is of the forma 0 0
0 aF a−1 0
0 e a2(aF )−1

 ∈ GL(3,D). (8.6)

We calculate the consequences of d2θ = 0 modulo θ . We find

0 = d2θ ≡ α ∧ dθ − dπ ∧ ω + π ∧ dω + dωF
∧ θ F

− ωF
∧ dθ F

≡ −α ∧ π ∧ ω + α ∧ ωF
∧ θ F

+ (2α − αF ) ∧ π ∧ ω

+ π ∧ µ ∧ ω + π ∧ (α − αF ) ∧ ω + π ∧ ω ∧ µ

+ (αF
− α) ∧ ωF

∧ θ F
− π F

∧ σ F
∧ θ F

+ ωF
∧ µF

∧ θ F
+ ωF

∧ αF
∧ θ F

≡ −π F
∧ σ F

∧ θ F
− µF

∧ ωF
∧ θ F mod θ.
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Hence σ ≡ 0 mod θ, π, θ F and µ ≡ 0 mod θ, ω, θ F . This implies σ ≡ 0 mod θ F , i.e.,
S2F = S3F = 0, and µ = 0. Calculating d2ω and d2π modulo θ, ω, π yields

β ≡ δ ≡ 0 mod θ, θ F , ω, ωF , π.

The fact that the system is Darboux integrable and we have normalized U = V = 0
implies that dω ≡ dπ ≡ 0 mod ω, π , i.e., the pair ω, π is completely integrable. Using this
it follows β ≡ 0 mod ω, π and δ ≡ 0 mod π . Then

0 = d2ω ≡ (αF
− α) ∧ (−π ∧ σ)− ((2α − αF ) ∧ π) ∧ σ − π ∧ dσ

≡ −α ∧ π ∧ σ − π ∧ dσ

≡ −π ∧ S1F dθ F
≡ −S1Fπ ∧ (−π F

∧ ωF ) mod θ, θ F , ω.

Hence S1F = 0 and σ = 0. Again calculating d2ω, but this time modulo θ, ω we find β ≡ 0
mod ω. Write β = Bω, δ = Pπ . Then we have

d

θω
π

 = −

α 0 0
0 αF

− α 0
0 ε 2α − αF

 ∧

θω
π

−

π ∧ ω

0
0

+

ωF
∧ θ F

Bθ ∧ ω

Pθ ∧ π

 .
Calculate

0 = d2θ =

(
−dα −

(
(P + B)π + ωF)

∧ ω
)

∧ θ,

0 = d2ω =

(
d(α − αF )+ (dB − Bα) ∧ θ + BωF

∧ θ F
)

∧ ω,

0 = d2π =

(
−dε + ε ∧ (αF

− 2α)+ (dP − αP) ∧ θ

+ ωF
∧ θ F

− P(2α − αF ) ∧ θ
)

∧ π.

(8.7)

From this we deduce (take linear combinations of the first two equations) that P = −B and
dα−ω∧ωF

≡ 0 mod θ . Write dα = −ξ ∧ θ +ω∧ωF . Using this in the second equation
of (8.7) we get ξ ≡ −B Fω modulo θ, θ F , ωF . Then

d2α ≡ −ξ ∧ π ∧ ω + ξ ∧ ωF
∧ θ F

+ B Fω ∧ ωF
∧ θ F mod θ.

Then ξ ≡ −B Fω mod θ and dα = −(B Fθ + ωF ) ∧ ω. From the second line in equation
(8.7) we get dB = Bα mod θ, ω. We can absorb the θ term in ξ , so we may assume
ξ = −B Fω. Using d2α again we find

dB = Bα + B Fω. (8.8)

From now on we need to distinguish three separate cases: B = 0, B ∈ D∗ and B a non-zero
zero-divisor. The reason is we have only 1 invariant left at this stage, the function B. The
remaining structure group is 4-dimensional and has the form (8.6). The group acts on B as

B 7→ a−1 B.
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This action has 4 orbits, but two of these orbits are equivalent if we switch the two character-
istic systems.

The cases B = 0, B ∈ D∗ and B a non-zero zero-divisor are called the almost product,
affine and mixed case, respectively. The naming of the cases is inspired from the work of
McKay. The affine case is a Darboux integrable system for which the associated Lie algebra
of tangential symmetries, see Chapter 10, is the affine Lie algebra aff(1). The affine group
appears on the bottom of page 94 in McKay [51], but the author does not know whether
McKay was aware of the tangential symmetries. The almost product case is in a certain sense
the closest to the flat case where we have a direct product structure. The Lie group associated
to the system is the two-dimensional abelian Lie group. The mixed case does not appear in
the work of McKay. In the mixed case one characteristic systems behaves as in the affine
case and the other as in the almost product case, hence the name.

Affine case. The systems in the first case B ∈ D∗ are called the affine Darboux integrable
systems. We can scale B to 1 ∈ D. Then the coframe is uniquely defined up to adding a
factor ω to π . We have α = −ω. The structure equations are

d

θω
π

 =

 ω ∧ θ − π ∧ ω + ωF
∧ θ F

ωF
∧ ω + θ ∧ ω

−ε ∧ ω + 2ω ∧ π − ωF
∧ π − θ ∧ π

 . (8.9)

The structure group has dimension two and the Cartan characters are s1 = 2, s2 = 0.
The system is in involution, so all analytic affine Darboux integrable equations are contact
equivalent. We will continue by finding a normal form for this class. This analysis will
also show that all affine Darboux integrable systems are equivalent and every affine Dar-
boux integrable system is contact equivalent to a real analytic affine Darboux integrable
system. Since dω ≡ 0 mod ω we can find hyperbolic coordinates z and a D∗-valued
function w such that ω = wdz. Substituting this into dω and solving for θ we obtain
θ = (1/w)(dw − wwF dzF

− qdz) for an unknown function q. Using this in the struc-
ture equations for θ we find π = (1/w2)dq − (q/w3

+ 1/w)dw − Hdz. We make the
substitution q = w(p +w) and use z, w, p as coordinates on the equation manifold. We find
the following coframing for the equation:

θ = (1/w)
(

dw − w(p + w)dz − wwF dzF
)
,

ω = wdz,

π = (1/w)(dp − Fdz).

(8.10)

Here F is an arbitrary function of the variables z, w, p. Conversely, given any function F the
above coframe defines an elliptic system on the manifold with coordinates z, w, p.

Assume that we are working with ω ∧ωF as an independence condition. On any integral
surface we can write w, p as functions of z. Since θ = θ F

= 0 on any integral surface
we find 0 = dθ = −π ∧ ω = −dp ∧ dz = −((∂p/∂zF )/(wwF ))ω ∧ ωF . The function
z is a hyperbolic holomorphic function on the equation manifold. The function p satisfies
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∂p/∂zF
= 0, so p is hyperbolic holomorphic. The function w satisfies the system

∂w

∂z
= w(p + w), (8.11a)

∂w

∂zF = wwF . (8.11b)

The converse is also true. If w satisfies ∂w/∂zF
= wwF , then defining p by the equation

(8.11a) above gives a hyperbolic holomorphic function p.

Example 8.2.4. The transformations in the variables z,w, p that leave the normal form (8.11)
invariant can be easily determined from the structure equations. First notice that if we intro-
duce new coordinates Z ,W, P then from the invariance of ω it follows W dZ = wdz, hence Z
is a hyperbolic holomorphic function of z and ∂W/∂zF

= 0. Then W dZ = W Z ′dz = wdz
implies that W = w/Z ′. By analyzing the transformation of θ we arrive at the following
transformations

Z = Z(z),

W = w/Z ′,

P =
p − Z ′′/Z ′

Z ′
.

(8.12)
�

Example 8.2.5 (General solution for affine Darboux integrable system). The equation
∂w/∂zF

= wwF is the normal form for the class of hyperbolic affine Darboux integrable
equations. We give an explicit expression for the general solution of the equation using the
method of Darboux.

First we solve the system of equations (8.11) for p = 0. We have a system of four
equations for the two functions w1, w2 in the variables x1, x2. The compatibility equations
are satisfied (since p = 0 is hyperbolic holomorphic) and by ordinary integration we arrive
at the most general solution of the equation

w =
N

1 − N z − (N z)F . (8.13)

Here N ∈ D∗ is a constant and w is defined for z = (x1, x2)T in a suitable neighborhood of
0 ∈ D.

We will use the equations (8.12) to transform the general system into a system for which
p = 0. We can then use our special solution (8.13) to find the general solution. We assume p
is a hyperbolic holomorphic function and want to solve the system (8.11). We can transform
the system for this function p into the system in the coordinates (Z ,W, P) for which P = 0
by solving the equation p − Z ′′/Z ′

= 0. We find Z(z) =
∫

exp(
∫

p(z)). Since exp(
∫

p(z))
takes values in D∗, the function Z(z) is invertible. If we let W be the most general solution
of the system for P = 0, given by (8.13), then W = N/(1 − N Z − (N Z)F ). The general
solution of (8.11b) is given by

w = W Z ′
=

f ′(z)

1 − f (z)− f (z)F . (8.14)



8.2 Hyperbolic Darboux integrability 187

Here f (z) is an arbitrary hyperbolic holomorphic function. In terms of the original function
p we have f (z) = N

∫
exp(

∫
p(z)). �

Almost product case. The second is case is B = 0. The structure equations are

d

θω
π

 = −

α 0 0
0 αF

− α 0
0 ε 2α − αF

 ∧

θω
π

−

−π ∧ ω + ωF
∧ θ F

0
0

 , (8.15)

and dα = ω∧ωF . Notice that d(α+αF ) = 0, hence we can write α = ξ + hη where ξ = dt
and η are real hyperbolic forms and h is the hyperbolic imaginary number with matrix re-
presentation diag(1,−1). By applying a transformation θ 7→ exp(t)θ, π 7→ exp(t)π, ε 7→

exp(t)ε we can eliminate the term dt from the structure equations. The new structure equa-
tions are

dθ = −hη ∧ θ − π ∧ ω + ωF
∧ θ F ,

dω = 2hη ∧ ω,

dπ = −ε ∧ ω − 3hη ∧ π,

dξ = 0,

dη = −hω ∧ ωF .

The structure equations for ω and η are those of the Lie group SL(2,R). We can introduce
coordinates z = (z1, z2), φ such that

ω =
ehφdz

1 − zzF ,

η = (1/2)dφ + (1/2)
1

1 − zzF (zdzF
− zF dz).

Write9 = ehφ/2/
√

1 − zzF . If we make a transformation of the coframe that leaves invariant
the normalizations made so far, then we can only scale ω by a purely imaginary hyperbolic
number. This means we cannot arrange that dω = 0 and T2F = 1 at the same time. The
best thing we can do is scale ω such that the new ω is exact and the new invariant T2F is real
hyperbolic.

We apply the transformation θ 7→ 9θ , ω 7→ 9−2ω, π 7→ 93π , ε 7→ 95ε. In the new
coframing we have

dθ = dz ∧

(
π +

zF

1 − zzF θ

)
+

1
1 − zzF dzF

∧ θ F ,

ω = dz,

dπ = −ε̃ ∧ ω = dz ∧ ε̃,

(8.16)
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with ε̃ = ε+ (3zF/(1 − zzF ))π . Then using the relative Poincaré lemma A.2.3 we can write

θ = dw − Adz − BdzF ,

ω = dz,

π = dp − Cdz,

(8.17)

for functions A, B,C . It follows that ε̃ = dC + κdz. By substitution of these expressions in
the coframing (8.16) we find

A = p +
wzF

1 − zzF + F(z, zF ),

B =
wF

1 − zzF + G(z, zF ).

The functions F,G cannot be arbitrary but must satisfy the equation

−
∂F
∂zF +

∂G
∂z

+
zF G − G F

1 − zzF . (8.18)

The transformations that leave invariant the coframing (8.17) and structure equations (8.16)
above are the transformations z 7→ z, w 7→ w + φ(z, zF ), p 7→ p + ψ(z), with ψ a
hyperbolic holomorphic function. Under such a transformation the functions F,G transform
as

F 7→ F + φzF/H + ψ − φz,

G 7→ G + φF/H − φzF .

The condition that the new G is identically zero is a determined hyperbolic system for φ,
which means we can find a φ such that G = 0. Then if we choose φ = 0 the equation to
transform F to zero reduces to F + ψ = 0. Since G = 0 was transformed to zero, the
condition (8.18) guarantees that ∂F/∂zF

= 0, hence we can transform F to zero. We have
arrived at the final coframing for our equations

θ = dw −

(
p +

wzF

1 − zzF

)
dz −

wF

1 − zzF dzF ,

ω = dz,

π = dp − Cdz.

(8.19)

All almost product Darboux integrable equations are equivalent under contact transforma-
tions.

Mixed case. We expect a class of equations here in the hyperbolic case that has no elliptic
equivalent, but it turns out that this class of equations is empty. Recall that our invariant B
must satisfy the equation (8.8). If B 6= 0 but B 6∈ D∗, then we can assume B1

= 0, B2
6= 0.

From the structure equation it follows that dB1
= B1α1

+ B2ω1, hence 0 = B2ω1. This
would imply ω1

= 0 which is not possible. Hence there are no equations of mixed type.
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8.2.3 Point transformations

If we consider point transformations, then the different equivalence classes under contact
transformations will split into several equivalence classes for the point transformations.

McKay [51, Chapter 9] made an analysis of Darboux integrable elliptic first order systems
under point transformations. The fact that he works with point transformations follows from
the structure group he uses, see pages 36–40. His analysis of the class of “generic Darboux
equations” in Section 9.4 is incorrect due to some calculational errors. With his methods
we could make the analysis of the different classes complete. However, we can use our
classification under contact transformations to arrive at the same results faster.

Generic and non-generic Darboux integrable equations

For the (2, 2)-Darboux integrable equations the Nijenhuis tensor has an image with rank 2.
The bundle B1 has rank 2. From the adapted coframings (8.9) and (8.15) we can see that
for all (2, 2)-Darboux integrable systems the distribution B1 is integrable. The fact that B1
is integrable if the rank of D is two was already proved for elliptic first order systems in
Section 7.1, see the proof of Theorem 7.1.2.

The leaves of B1 locally define a foliation of the equation manifold M . We can use this
foliation to construct a base manifold. For equations under point symmetries we also have a
foliation to the base manifold.

Definition 8.2.6. Let (M,V) be a generalized hyperbolic or elliptic first order system with
M → B a projection to a base manifold and assume the system is (2, 2)-Darboux integrable.

If the distribution defined by the tangent spaces of the projection to the base manifold
is equal to the distribution B1 we call the system non-generic. If the distributions are not
identical we call the system generic. 	

For the non-generic equations the point transformations and contact transformations are
the same: the fibers of the projection to the base manifold are leaves of the invariant distribu-
tion B1 and hence they are invariantly defined.

Lemma 8.2.7. Suppose we are given an adapted coframing (5.6) for a hyperbolic first order
system under point geometry. The system is non-generic if and only if T3F 6= 0.

The non-generic systems

The normal forms for the almost product and the affine Darboux integrable systems that have
been given in the previous sections are automatically non-generic. The contact transforma-
tions of these non-generic systems are equal to the point symmetries. The symmetry groups
are infinite-dimensional and transitive.
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The generic systems: almost product case

Using the fact that we can arrange T2F ,U, V to be zero we can restrict to a subbundle on
which we have structure equations

dθ = −α ∧ θ − π ∧ ω + π F
∧ θ F ,

dω = −(2α − αF ) ∧ ω + π ∧ σ,

dπ = −(αF
− α) ∧ π,

dα = π ∧ π F .

(8.20)

with σ = S1θ + S1F θ F
+ S2ω + S2FωF . The structure group for this bundle is the group of

diagonal matrices with entries (a, a2(aF )−1, aF a−1), a ∈ D∗.
After some calculations we arrive at the following normal form for the adapted coframing.

θ = dw −

(
wpF

1 − |p|2
− z

)
dp −

wF

1 − |p|2
dpF ,

ω = dz − φdp,

π = dp.

(8.21)

Here φ is an arbitrary function satisfying the equation

φpF + φFφzF +
wF

1 − |p|2
φw +

(
pwF

1 − |p|2
− z

)
φwF = 0. (8.22)

This conditions follows from d2ω ≡ 0 mod θ, θ F , ω, ωF . By writing down the charac-
teristic systems F,G and calculating the derived bundles one can easily check that for any
function φ satisfying the equation above, the coframe (8.21) defines a (2, 2)-Darboux inte-
grable system. The structure equations are

dθ = −π ∧ ω +
1

1 − |p|2
π F

∧ θ F ,

dω = φwπ ∧ θ + φzπ ∧ ω + π ∧ (φzFω
F

+ φwF θ
F ),

dπ = 0.

The Cartan-Kähler theorem guarantees that there is a family of analytic functions φ depend-
ing on two functions of five variables that satisfy equation (8.22). The group of transforma-
tions of the base manifold depends on four functions of four variables. This shows that there
is a continuous family of almost product Darboux integrable systems that are not equivalent
under point transformations.
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The generic systems: affine case

We apply the transformation ω 7→ π , π 7→ −ω + φπ to the structure equations (8.9). This
leads to the following structure equations

dθ = π ∧ θ − π ∧ ω + π F
∧ θ F ,

dω = (−θ − π F ) ∧ ω + π ∧ (S1θ + S1F θ
F

+ S2ω + S2Fω
F ),

dπ = π F
∧ π + (θ ∧ π).

(8.23)

We can use the local coordinates from equation (8.10) to introduce coordinates for the
generic equations. Every generic system has coordinates z, w, p such that

θ = w−1(dw − w(p + w)dz − wwF dzF),
ω = dp + φdz,

π = −dz.

(8.24)

The coframing is not fully adapted, but the contact distribution is given by θ = 0 and the
projection to the base manifold is given by θ = ω = 0. The function φ is arbitrary except
that we need dθ ≡ dω ≡ 0 mod θ, θ F , ω, ωF . This is equivalent to the system

φzF − φpFφ
F

+ φw(ww
F )+ φwF

(
wF (pF

+ wF )
)
.

Just as for the almost product case there is a continuous family of non-equivalent affine Dar-
boux integrable systems under point geometry.

The generic systems: flat and (2,3) case

Under point transformations the (2, 3)-integrable systems and the flat systems split into dif-
ferent classes. We will only give some examples, but will not try to give a complete clas-
sification. An example of two flat systems that are contact equivalent, but not equivalent
under point transformations are the system from Example 5.2.10 and the first order wave
equation (4.15).

Example 8.2.8. Consider the first order system

u y = vx , ux + (vx )
2

= 0. (8.25)

The system is hyperbolic near points vx 6= 0. We use coordinates x, y, u, v, a = u y, b = vy .
An adapted coframing is given by

θ1
= −a−1(du + (a2/2)dx − ady),

θ2
= a−1 (dv − adx − bdy)− a−1θ1,

ω1
= dx −

1
a

dy, ω2
=

1
a

dy,

π1
= da, π2

=
1
a

da + db.

(8.26)
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The structure equations for this coframe are

dθ1
≡ −π1

∧ ω1 mod θ1

dθ2
≡ −π2

∧ ω2
+

1
a2π

1
∧ θ1 mod θ2,

dω1
≡ π1

∧ a−1ω2 mod θ1, ω1, dω2
≡ 0 mod θ2, ω2,

dπ1
≡ 0 mod θ1, ω1, π1, dπ2

≡ 0 mod θ2, ω2, π2.

(8.27)

A calculation of the derived systems shows quickly that the equation is (2, 3)-Darboux in-
tegrable. However, the invariant T 2

3F = 1/(2a2) is non-zero and hence the system is not
equivalent to the system (8.3) (which has T3F = 0) by a point transformation. �

8.3 Elliptic Darboux integrability

The structure in the elliptic setting is very similar to the structure in the hyperbolic setting. A
difference is that in the elliptic setting we can make all kinds of connections to the theory of
Riemann surfaces. The author is not aware of an equivalent to this in the hyperbolic setting.

Theorem 8.3.1. Under contact equivalence there are 3 different classes of Darboux inte-
grable elliptic systems. These classes are:

Cauchy-Riemann equations. These are characterized by the fact that the almost complex
structure is integrable.

Affine case. We can introduce a complex coframing with structure equations

d

θω
π

 =

 ω ∧ θ − π ∧ ω + ω̄ ∧ θ̄

ω̄ ∧ ω + θ ∧ ω

−ε ∧ ω + 2ω ∧ π − ω̄ ∧ π − θ ∧ π

 . (8.28)

Almost complex case. We can introduce a complex coframing with structure equations

d

θω
π

 = −

α 0 0
0 ᾱ − α 0
0 ε 2α − ᾱ

 ∧

θω
π

−

−π ∧ ω + ω̄ ∧ θ̄

0
0

 . (8.29)

The structure group consists of the matrices in GL(3,C) of the forma 0 0
0 ā/a 0
e 0 a2/ā

 .
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Proof. The proof is identical to the analysis of hyperbolic Darboux integrable systems. The
(2, 3)-Darboux integrable systems cannot occur in the elliptic setting since the complex in-
variants of the characteristic systems always occur in pairs.

The classification also follows from the classification of McKay [51, Section 9.4–9.8] of
the Darboux integrable systems under point symmetries and taking together the classes that
are equivalent under contact transformations. �

Example 8.3.2 (Affine Darboux integrability). See McKay [51, pp. 92–94] and McKay
[52, p. 37]. Take a Riemann surface with local coordinate z. The canonical bundle for the
surface is the bundle of (1, 0)-forms. Take a local section ξ for this bundle. In local coordi-
nates the section ξ can be written as ξ = wdz. We can write down two invariant equations
for the section ξ :

dξ = 0, (8.30)

dξ = ξ̄ ∧ ξ. (8.31)

The first equation can be written in local coordinates as ∂w/∂ z̄ = 0. The solutions of the
equation are precisely the holomorphic (1, 0)-forms. The second equation can be written in
local coordinates as

∂w

∂ z̄
= |w|

2.

This is precisely the normal form for the affine Darboux integrable elliptic first order systems.
The geometrical significance of the solutions to this equation is unclear to the author.

We can find some special solutions by writing w = u + iv. Then we find the coupled
system of equations

ux − vy = 2(u2
+ v2), u y + vx = 0.

The second equations implies that there is a potential s such that (u, v) = (sx ,−sy). The first
equation then becomes

sxx + syy = 2(s2
x + s2

y).

Solutions with sy = 0 are given by s = (1/2) ln(x + c). Hence u = 1/(2(x + c)), v = 0. �

Example 8.3.3 (Almost complex Darboux integrability). The almost complex Darboux
integrable system has the normal form ∂w/∂ z̄ = w̄/(1−|z|2). On the unit disk in the complex
plane we have a metric and volume form

ds2
=

|dz|2

(1 − |z|2)
, � =

dz ∧ dz̄
1 − |z|2

.

Write ξ = wdx . Then the equation ∂w/∂ z̄ = w̄/(1 − |z|2) can be written as

dξ = ξ̄ ∧ ω,

with ω = dz/(1 − |z|2). Again there is the question if the equation above has a geometric
interpretation in the context of complex Riemann surfaces. �
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8.4 Homogeneous Darboux integrable systems

We make an analysis of the homogeneous (2, 2)-Darboux integrable elliptic systems. Here we
mean by homogeneous that the group of point symmetries acting on the system is transitive
and hence at least 6-dimensional. We will see that the symmetry groups are finite-dimensional
for the generic equations and hence we can write the equation manifolds as M = G/H , where
G is the symmetry group of the equation and H the isotropy subgroup. We also show that the
flat case and the (2, 3)-case are homogeneous, i.e., they have a transitive symmetry group.

McKay also made an analysis of this type of systems [51, Section 9.4.7]. The analysis of
McKay is sketchy, although most of the gaps can be filled. Furthermore some of the classes
he finds are empty, and finally he misses the classes of generic affine equations.

8.4.1 Flat case

Under contact transformations the flat case has a large symmetry group. The adapted cofram-
ing θ, ω, π has structure equations

dθ = −α ∧ θ − π ∧ ω,

dω = −β ∧ θ − γ ∧ ω − η ∧ π,

dπ = −δ ∧ θ − ε ∧ ω − (α − γ ) ∧ π,

with structure group G given by matrices of the forma 0 0
b c g
d e f

 ⊂ GL(3,C),

with 1 = c f − eg = a 6= 0.
The Cartan characters are s1 = 6, s2 = 4, s3 = 2 and the dimension of the first pro-

longation is 20. Hence the system is in involution and there is a transitive symmetry group
depending on 2 real functions of 3 real variables.

There are several different orbits of the point symmetry group in the flat equations. The
orbit corresponding to the normal form ux = vy , u y = −vx has a symmetry group depending
on 4 real functions of 2 variables.

Example 8.4.1 (Cauchy-Riemann equations in local coordinates). In local coordinates
an adapted coframing for the Cauchy-Riemann equations is given by

θ = dw − pdz, ω = dz, π = dp.

The contact transformations near the identity are all defined by a new foliation

θ = dw − pdz, ω = dz + φdp, π = dp.



8.4 Homogeneous Darboux integrable systems 195

The structure equations for this new coframing are

dθ = −π ∧ ω,

dω = −π ∧ dφ

= −π ∧ (φw̄ θ̄ + (φz̄ + p̄φw̄)ω̄ + (φ p̄ − φ̄φz̄ − φ̄ p̄φw̄)π̄),

dπ = 0.

The condition that the new coframing defines a foliation to a base manifold is dθ ≡ dω ≡ 0
mod θ, θ̄ , ω, ω̄. This is precisely equivalent to the condition that φ p̄ − φ̄(φz̄ + p̄φw̄). For the
new equation to be equivalent to the Cauchy-Riemann equations under point transformations
we need that φ is a holomorphic function of z, w, p. �

8.4.2 (2, 3)-Darboux integrable systems

The author has not analyzed the contact or point symmetry groups of these systems in detail.
Under contact symmetries the symmetry group is transitive and at least 6-dimensional. This
follows from the coframing (8.4), which has constant structure coefficients and hence has
a transitive symmetry group. The full symmetry group is much larger (and probably not
finite-dimensional)

8.4.3 Affine systems

The structure equations for the generic affine elliptic systems are given by

dθ = π ∧ θ − π ∧ ω + π̄ ∧ θ̄ ,

dω = (−θ − π̄) ∧ ω + π ∧ (S1θ + S1̄θ̄ + S2ω + S2̄ω̄),

dπ = π̄ ∧ π + (θ ∧ π).

(8.32)

These equations are the elliptic equivalent of (8.23). The structure group has been reduced to
the identity. If our system is to be homogeneous, then all the remaining torsion coefficients
should be constant. We calculate the structure equations for the system using (8.32) under
the assumption that the S∗ are constant.

d2θ = 0, d2π = 0,

d2ω = (−1 − S2 − S2̄S2̄)ω ∧ π ∧ π̄ + (−1 − S2)θ ∧ ω ∧ π

+ (2S1 + S2̄S2̄)θ ∧ π̄ ∧ π + (2S2̄ − S1̄ + S2̄S2)π ∧ ω̄ ∧ π̄

+ (3S1̄ + S1 + S2̄S1)θ̄ ∧ π̄ ∧ π + 2S1̄θ ∧ π ∧ θ̄

+ 2S2̄θ ∧ π ∧ ω̄ + S2̄π ∧ θ̄ ∧ ω̄.

(8.33)

From this it follows immediately that we should have S1 = S1̄ = S2̄ = 0, S2 = −1. There
is only one homogeneous generic affine Darboux integrable system. The symmetry group is
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finite-dimensional and has dimension six. The structure equations are

dθ = π ∧ θ − π ∧ ω + π̄ ∧ θ̄ ,

dω = (−θ − π̄) ∧ ω − π ∧ ω,

dπ = π̄ ∧ π + (θ ∧ π).

(8.34)

8.4.4 Almost complex systems
The structure equations for the generic almost complex elliptic systems are given by

dθ = −α ∧ θ − π ∧ ω + π̄ ∧ θ̄ ,

dω = −(2α − ᾱ) ∧ ω − π ∧ σ,

dπ = −(ᾱ − α) ∧ π,

dα = π ∧ π̄ .

(8.35)

The remaining structure group is 2-dimensional and is given by matrices of the forma 0 0
0 a2/ā 0
0 0 ā/a


with a a non-zero complex number.

We continue by splitting the 1-form α into a real and imaginary part.

α = η + iζ. (8.36)

The new structure equations are

dθ = −(η + iζ ) ∧ θ − π ∧ ω + π̄ ∧ θ̄ ,

dω = −(η + 3iζ ) ∧ ω − π ∧ σ,

dπ = 2iζ ∧ π,

dη = 0,
dζ = −iπ ∧ π̄ ,

(8.37)

with

σ = S1θ + S1̄θ̄ + S2ω + S2̄ω̄. (8.38)

The action of the remaining structure group is by rotation of the complex numbers S1, S1̄, S2,
S2̄. Let us first prove that S2 cannot be zero on an open subset by calculating the structure
equations for ω. We have

0 = d2ω ≡ (dS2 + 2i S2ζ ) ∧ ω ∧ π − (3 + |S2̄|
2)π̄ ∧ ω ∧ π mod θ, θ̄ , ω̄.

From this equation it follows that S2 cannot be zero, since otherwise we would need 3 +

|S2̄|
2

= 0.
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Ideal Equation

θ, θ̄ , ω 8i Z3S2̄ − S̄2S2̄ − S1̄ = 0
θ, θ̄ , ω̄ |S2̄|

2
+ 12|Z3|

2
− 2i Z3S2 = 0

θ, ω, ω̄ S1S2̄ − 6i Z3S1̄ − S1 = 0
θ̄ , ω, ω̄ S1̄S2̄ − 4i S1 Z3 = 0

Table 8.1: Equations for the structure coefficients

We can arrange that S2 is purely imaginary using the freedom in the structure group. The
remaining structure group is only 1-dimensional and consists of matricesa 0 0

0 a 0
0 0 1

 ,
with a real. The 1-form ζ reduces to a semi-basic form that we write as

ζ = Z1θ + Z1θ̄ + Z2ω + Z2ω̄ + Z3π + Z3π̄ .

The coefficients Z j cannot be arbitrary functions since ζ still has to satisfy the structure
equation dζ = −iπ ∧ π̄ .

On the reduced bundle the remaining 1-dimensional structure group leaves the structure
coefficients S∗ and Z3 invariant. If our equation is homogeneous this implies these structure
coefficients must be constant. We calculate dζ + iπ ∧ π̄ modulo θ , θ̄ , ω, ω̄. We find

dζ + iπ ∧ π̄ ≡ (i − 4i |Z3|
2)π ∧ π̄ ≡ 0.

Hence Z3 must have norm 1/2.
By calculating d2ω modulo different ideals we find several equations for the structure

coefficients S∗ and Z3. The generators of the ideals and the corresponding equations are
given in Table 8.1. From the second equation it follows that Z3 must be real and hence
Z3 = ±1/2. The choice for Z3 = 1/2 or Z3 = −1/2 corresponds to choosing one of the two
(complex) characteristic systems. We continue our analysis with Z3 = 1/2.

Remark 8.4.2. The branches with Z3 = −1/2 are all equivalent under a discrete transfor-
mation of coframe to one of the equations with Z3 = 1/2. The structure constants S∗ are all
transformed by complex conjugation. �

Solving the system of equations for the S∗ in Table 8.1, yields 4 classes of solutions. The
four classes are labelled by suit, as was done in McKay [51, p. 89], and are given in Table 8.2.

In all different branches we have found values for Z3 and the S∗. We still have to de-
termine the values of Z1 and Z2. The fact that the remaining structure group still acts on
these coefficients slightly complicates our analysis. By taking a suitable combination of the
structure equations, we can find a coefficient that is invariant under the structure group. This
leads to the conclusion that Z1 = 0 in all cases. In the clubs case Z2 = r exp(iψ) with
ψ = π/4 − φ/2 and r a real function; in the other cases Z2 = 0.
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♣ ♥ ♠ ♦

S1 0 36 0 6
S1̄ 0 −24i 0 6i
S2 −4i −12i −3i −7i
S2̄ exp(iψ) 3 0 −2

Table 8.2: Four cases for the homogeneous generic almost complex Darboux integrable equa-
tions

Clubs case. The structure group acts on r by a scaling, so r is not automatically constant.
However we know that for any system of equations we need

d2ω = 0, dζ + (iπ ∧ π̄) = 0.

We take a linear combination of these two expressions that does not involve η and dr . A
calculation using MAPLE yields

d2ω + 3i(dζ − (−iπ ∧ π̄)) ∧ ω = 16r(exp(i(2φ − π)/4)ω ∧ π ∧ ω̄ = 0.

This implies that r = 0, hence Z2 = 0. With this the full structure equations become

dθ = −(η + iζ ) ∧ θ − π ∧ ω + π̄ ∧ θ̄ ,

dω = −(η + 3iζ ) ∧ ω − π ∧ (−4iω + exp(iψ)ω̄),
dπ = 2iζ ∧ π,

dη = 0,

(8.39)

with ζ = (1/2)(π + π̄). We have a continuous family of homogeneous Darboux integrable
systems. Each class is labeled by S2̄ = exp(iψ) and has a 7-dimensional transitive symmetry
group by Theorem 1.2.58.

Other cases. In the hearts, spades and diamonds case all structure equations are satisfied.
We have a unique coframe on a 7-dimensional manifold with structure equations

dθ = −(η + iζ ) ∧ θ − π ∧ ω + π̄ ∧ θ̄ ,

dω = −(η + 3iζ ) ∧ ω − π ∧ σ,

dπ = 2iζ ∧ π,

dη = 0,

(8.40)

with ζ = (1/2)(π + π̄) and the coefficients in σ given in Table 8.2. Since all the structure
functions are constant, the symmetry group is transitive and 7-dimensional.
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♣ ♥ ♠ ♦

S1 0 36 0 6
S1̄ 0 −24i 0 6i
S2 −4i −12i −3i −7i
S2̄ exp(iψ) 3 0 −2
Z1 0 0 0 0
Z2 0 0 0 0
Z3 1/2 1/2 1/2 1/2

Table 8.3: Full table of coefficients the homogeneous generic almost complex Darboux inte-
grable equations





Chapter 9

Pseudosymmetries

A symmetry is a transformation that preserves all structure present in an object. A pseu-
dosymmetry is a transformation that preserves only part of the structure, but the part that is
preserved depends on the pseudosymmetry itself. Let us try to explain this with a picture.
Consider Figure 9.1. We have drawn schematically a vector field in the plane. The vector
field has a symmetry in the horizontal direction. In the vertical direction there is no symme-
try: if we translate the vectors in the vertical direction the vectors are not identical. However,
if we translate the vectors in the vertical direction and then “forget about the projection di-
rection”, in other words project onto the horizontal line, then the vectors are the same. We
say that the vertical translations define a pseudosymmetry for this vector field. This is dif-
ferent from saying that we are only looking at the horizontal component of the vector field.
For example, consider the diagonal translations. These translations are not symmetries. The
diagonal translations are also not pseudosymmetries, because the projection of the vectors
onto the anti-diagonal is different. The diagonal translations are symmetries however for the
horizontal component of the vector field.

In the remainder of this chapter we will give a more precise definitions of pseudosymme-
tries in the context of distributions and partial differential equations. But we think this picture
of pseudosymmetries is worthwhile to keep in mind.

Our original interest for these pseudosymmetries comes from projections of second order
partial differential equations to first order systems. These projections are a generalization of
the symmetry methods developed by Lie to solve (partial) differential equations. See Hydon
[42] for an introduction to these methods. The precise structure that a pseudosymmetry has
to preserve depends on the application. In this chapter we discuss the pseudosymmetries
of distributions (Section 9.1) and of (partial) differential equations (Section 9.2). After the
definition of pseudosymmetries for partial differential equations we will describe a method
to calculate pseudosymmetries for second order equations. In Section 9.5 we will discuss the
relation of pseudosymmetries to integrable extensions and Bäcklund transformations.
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Vectorfield Symmetry projection

No well-defined projectionPseudosymmetry projection

Figure 9.1: Vector field with pseudosymmetries
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9.1 Pseudosymmetries of distributions
Let M be a manifold and V ⊂ T M a distribution. A (local) symmetry φ of V is a (local)
diffeomorphism such that φ∗(V) ⊂ V . Since φ is a diffeomorphism we have in fact φ∗(V) =

V . The infinitesimal version of a symmetry is a vector field V such that [V,V] ⊂ V .
For every non-zero vector field V we can locally form the quotient B of M by the integral

curves of V . Let π : M → B be the projection. A symmetry V has the property that

π∗(Vm) ⊂ Tπ(m)B

depends only on the point b = π(m) ∈ B and not on the point m in the fiber π−1(b). We say
the distribution V projects down to a distribution W = π∗(V) on B. If V is transversal to V ,
then W has the same rank as V . If V is contained in V , then the rank of W is the rank of V
minus one.

This property of symmetries motivates the following definition.

Definition 9.1.1. Let M be a manifold and V ⊂ T M a distribution. A pseudosymmetry of V
is a vector field V such that [V,V] ⊂ V + V . Here V + V indicates the distribution spanned
by V and V . 	

If we take the quotient manifold B of M by the integral curves of a pseudosymmetry
V , then locally we have a well-defined projection π : M → B. If either V ⊂ V or V is
pointwise not contained in V , then the condition that V is a pseudosymmetry ensures that the
bundle V projects to a constant rank distribution W on B.

To check that a vector field V is a (pseudo)symmetry of a distribution V we only need
to check [V, X ] ≡ 0 mod V(+V ) for a set of generators X of V . The condition that V
is a pseudosymmetry is not a linear condition. Hence the partial differential equations that
express that [V, X ] ≡ 0 mod V+V are non-linear equations. This makes the computation of
pseudosymmetries of a distribution more complicated than the calculation of the symmetries
of a distribution.

For our applications we are also interested in more general objects. We are interested in
integrable subbundles U such that

[U,V] ⊂ V + U . (9.1)

If U∩V has constant rank, then locally the distribution V projects to a distribution on the quo-
tient manifold M/U . We call these bundles U vector pseudosymmetries of the distribution.
More can be found in Section 9.4.

Lemma 9.1.2. Let V be a symmetry or pseudosymmetry of the distribution V . Then for any
function f the vector field f V is a pseudosymmetry as well. Indeed, for X ⊂ V

[ f V, X ] = f [V, X ] + X ( f )V ⊂ V + V .

The converse is not true; not every pseudosymmetry can be scaled to a symmetry. The
space of symmetries is a vector space over the constants. The space of pseudosymmetries is
in general not a vector space.
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We have defined the concept of a pseudosymmetry as a vector field for which the integral
curves locally define a projection. We want to stress that the important part of a pseudosym-
metry is the projection that is (locally) given by taking the quotient of the manifold by the
integral curves of the vector field. This is also reflected by the fact that multiplying a pseu-
dosymmetry by a non-zero scalar function does not change the integral curves. Another
definition of a pseudosymmetry of a distribution V would therefore be a rank one distribution
U for which the condition (9.1) holds.

Example 9.1.3 (Pseudosymmetries of distributions).

• Let M = R3 with coordinates x , y, z and let V be the distribution spanned by the vector
fields ∂x and ∂y + z∂z . Then V1 = ∂x and V2 = ∂y are a symmetries of V and W = ∂z
is a pseudosymmetry of V .

• Consider on R4 with coordinates x, y, z, u the following distributions:

V1 = span
(
∂x + y∂y

)
, V2 = span

(
∂z + ∂y

)
,

V3 = span
(
∂x + ∂u

)
and V = V1 + V2 + V3.

The vector field V = ∂y is a pseudosymmetry for V1, V2, V3 and V . For each of the
V j we can find a suitable function φ j such that φ j∂y is a symmetry of V j . With a little
work we can check that ex−u∂y is a true symmetry of all distributions.

• Let M = R3 and V = span(∂x + y∂y + 2z∂z). Then both ∂y and ∂z are pseudosym-
metries, but ∂y + ∂z is not. On the other hand ∂y + y∂z is a pseudosymmetry. �

Example 9.1.4 (True pseudosymmetry). On R4 with coordinates x , y, z, p define the
distribution

V = span
(
∂y + exp(z)∂z, ∂x + p∂z, ∂p

)
and the vector field V = ∂z . Then it is clear that V is a pseudosymmetry of the bundle V . We
try to find a function φ(x, y, z, p) such that φV is a symmetry. Then we must have

[φV, ∂y + exp(z)∂z] = (φ exp(z)− φy − exp(z)φz)∂z ≡ 0 mod V,
[φV, ∂x + p∂z] = −(φx + pφz)∂z ≡ 0 mod V,

[φV, ∂p] = −φp∂z ≡ 0 mod V.

From the last equation it follows φp = 0. Then the second equation implies φz = 0 and
φx = 0. The first equation reduces to φ exp(z)− φy = 0. Since φ can only depend on y the
only solution is φ = 0. The pseudosymmetry is therefore a true pseudosymmetry in the sense
that there is no symmetry having the same integral curves. �
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9.1.1 Invariant concepts
With a distribution we can associate many new objects in an invariant way. These objects,
such as derived bundles and characteristic systems, are all invariant under symmetries of the
distribution. We want to generalize as much of these concepts to pseudosymmetries as we
can.

Theorem 9.1.5. Let V be a pseudosymmetry of V . Then V is a pseudosymmetry of the de-
rived bundle V ′.

Proof. Let X ⊂ V ′. We can assume that either X ⊂ V or X = [Y, Z ] with Y, Z ⊂ V .
In the first case it is clear that [V, X ] ⊂ V + V ⊂ V ′

+ V . In the second case we have
[V, [Y, Z ]] = −[Y, [Z , V ]] − [Z , [V, Y ]] ⊂ [Y,V + V ] + [Z ,V + V ] ⊂ V ′

+ V . �

Unfortunately many other structures such as Cauchy characteristics and characteristic
systems are not invariant under pseudosymmetries.

Example 9.1.6 (Pseudosymmetries and Cauchy characteristics). Let M = R4 with
coordinates x, p, z, y . We define the distribution V = span(∂x + p∂z, ∂p, ∂y). Then C(V) =

span(∂y). The vector field X = ∂z is a symmetry of V . We have [V,V] ≡ 0 mod V and
[V,C(V)] ≡ 0 mod C(V). Hence X is a symmetry of C(V) as well. The vector field
V = ∂z + y∂p is a pseudosymmetry of V . But [V,C(V)] = span(∂p) 6≡ 0 mod C(V)+ V ,
so V is not a pseudosymmetry of C(V). This proves at the same time that V cannot be scaled
to a true symmetry. �

9.1.2 Formulation in differential forms
We can either work with distributions or differential forms. Since these objects are dual to
each other every concept that can be (invariantly) defined in terms of distributions can be
formulated in terms of differential forms and vice versa. The equivalent of the Lie bracket is
the differential operator d; they are related by the formula dω(X, Y ) = Xω(Y ) − Yω(X) −

ω([X, Y ]). In the experience of the author pseudosymmetries are more easily described with
vector fields, but for sake of completeness we will also give a description in terms of differ-
ential forms.

Let V be a vector subbundle of T M and let I be the ideal generated by the forms dual to
V , i.e., the 1-forms θ such that θ(X) = 0 for all X ∈ V . Generated here means generated as
a C∞(M)-module in �1(M).

A symmetry X of an ideal I is a vector field such that LX (θ) ≡ 0 mod I for all θ ∈ I .
Define W = V + X and let J = W⊥. Then X is a pseudosymmetry of V if and only if
LXθ ≡ 0 mod I for all θ ∈ J . This is equivalent to LXθ ≡ 0 mod I for all θ ∈ I with
θ(X) = 0.

9.1.3 Symmetries of pseudosymmetries
Let V be a distribution. For any pair of infinitesimal symmetries X, Y of V the Lie bracket
[X, Y ] is again a symmetry. The infinitesimal symmetries of V form a Lie algebra S. Let V be
a pseudosymmetry of V . We can use the symmetries of V to generate new pseudosymmetries.
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Theorem 9.1.7. Let V be a distribution, V a pseudosymmetry and 8 a symmetry of the
distribution. Then 8∗V is a pseudosymmetry of V .

Proof. By definition of a symmetry we have 8∗V = V . Let W = 8∗(V ). We want to prove
that [W, Y ] ⊂ V + W .

Since 8 is a diffeomorphism we have [W, Y ] = [8∗(V ), Y ] = 8∗([V,8−1
∗ (Y )]) ⊂

8∗([V,V]). But V is a pseudosymmetry of V and hence 8∗([V,V]) ⊂ 8∗(V + V) =

8∗(V )+ V . This shows that [W, Y ] ⊂ W + V . �

For any infinitesimal symmetry X of V the theorem above shows that exp(t X)V is a
1-parameter family of pseudosymmetries of V . This suggests that by differentiation with
respect to t at t = 0 we might find that [X, V ] is a pseudosymmetry for V as well. Exam-
ple 9.1.8 below shows this is not true. For V,W pseudosymmetries the Lie brackets [V, X ]

and [V,W ] are in general not pseudosymmetries.

Example 9.1.8. Consider the distribution on R3 with coordinates x, p, z generated by

∂x + p∂z, ∂p.

Then V = x∂p + ∂z is a pseudosymmetry and X = ∂x is a symmetry of the bundle. The
commutator [V, X ] = −∂p is not a pseudosymmetry of the bundle. On the other hand,
the flow of V by the vector field X is equal to exp(t X)∗V = (x + t)∂p + ∂z and this is a
pseudosymmetry for all t . �

9.2 Pseudosymmetries for differential equations
In Chapter 4 we have seen that we can formulate the structure of first order systems and
second order equations as distributions on the equation manifold. We will use this to define
pseudosymmetries for certain classes of partial differential equations. These pseudosymme-
tries of partial differential equations all have in common that they are pseudosymmetries for
the characteristic systems. This implies that if we locally take the quotient of the equation
manifold by the pseudosymmetry, then the characteristic systems project to well-defined dis-
tributions on the quotient manifold.

9.2.1 Ordinary differential equations

Theorem 9.2.1. Any pseudosymmetry of a rank one distribution that is not contained point-
wise in the distribution is a multiple of a symmetry.

Proof. Let the distribution be generated by a smooth non-zero vector field X . If V is a
pseudosymmetry of the distribution, then [V, X ] ≡ gV mod V for a certain smooth function
g. Then φV is a symmetry of the bundle if [φV, X ] ≡ φgV − X (φ)V ≡ 0 mod V . The
equation X (φ)− gφ = 0 can be solved locally to give a non-zero solution φ. �
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Example 9.2.2. The condition that V is pointwise not contained in V is necessary, since
otherwise the function g might have singularities. Consider the distribution spanned by X =

∂x and the pseudosymmetry V = x2∂y + ∂x . The commutator is [X, V ] = 2x∂y ≡ 0
mod V, V . For x 6= 0 we have [X, V ] ≡ 2x−1V mod V . We can scale the pseudosymmetry
by the function x−2 at the points x 6= 0. The vector field x−2V = ∂y + x−2∂x is a symmetry
of X , but not well-defined at x = 0. �

Corollary 9.2.3. Every pseudosymmetry of a scalar ordinary differential equation that is
transversal to the flow of the equation is a multiple of a symmetry.

Proof. Let x be the independent and z the dependent variable. Introduce coordinates x , z,
zx = z1, zxx = z2, . . ., zn for the equation manifold. Solving for the highest order variable
we can write the equation as zn = F(x, z, z j ). The contact distribution is generated by the
single vector field ∂x + z1∂z + z2∂z1 + . . . zn−2∂zn−1 . The result follows from the previous
theorem. �

The same result holds for certain classes of determined ordinary differential equations.
So any interesting pseudosymmetries will have to be found for partial differential equations.

Example 9.2.4 (continuation of Example 9.1.4). Example 9.1.4 is in fact a geometric for-
mulation of the following system M1. Let z be a function of the variables x, y and define the
equation zy = exp(z). Let J 1(R2) be the first jet bundle of R2. This bundle has coordinates
x, y, z, p = zx , q = zy . Restriction of the contact ideal on J 1(R2) to the equation manifold
defined by q = zy = exp(z) gives the system described in Example 9.1.4. Very closely
related is the system M2 defined by the ordinary differential equation z′

= ez , where z is a
function of y.

For the first system M1 the vector field ∂z is a true pseudosymmetry (this was proven in
the example above). For the second system M2 we can multiply by ez to obtain the symmetry
ez∂z . �

9.2.2 Second order scalar partial differential equations
A second order scalar partial differential equation is defined in local coordinates by a smooth
function F on the second order jet bundle J2(R2). The equation manifold M is the 7-
dimensional manifold defined by F = 0. The contact structure on J2(R2) restricts to a
contact structure on M and the dual system is a codimension 3 distribution V ⊂ T M . Con-
versely, any codimension 3 distribution with some conditions defines a second order scalar
partial differential equation. The conditions are given in Definition 4.1.1 and Theorem 4.1.2.

A symmetry for a second order scalar partial differential equation is a vector field V such
that [V, X ] ⊂ V for all X ⊂ V . This implies that all structures derived from V are also
preserved. For example the derived bundle V ′, the Cauchy-characteristics C(V ′), the splitting
into characteristic subsystems V+ and V−, etc.

A pseudosymmetry is a vector field V on M that preserves the structure on M , modulo
the vector field itself. If we take the quotient manifold B = M/ span(V ), then the structure
on M should project to B. But what structures should be preserved? In any case the vector
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subbundle V , since this is the defining structure for the partial differential equation. But
preserving V might not be enough, since the fact that V is a pseudosymmetry for V does not
automatically imply that V is a pseudosymmetry for all derived structures. We are interested
in projecting and lifting solutions of partial differential equations. Motivated by this condition
we say that

Definition 9.2.5. Let (M,V) be a Vessiot system. A vector field V is a pseudosymmetry of
the system if V is pointwise not contained in V and V is a pseudosymmetry of both Monge
systems. 	

In the elliptic case we can also require that V preserves V and the complex structure on
V . The fact that V cannot lie in V itself implies that on the quotient system we again have
two characteristic bundles of rank two.

Let V be a pseudosymmetry on (M,V) and let B be the quotient system of M by the
integral curves of V (this quotient might be defined only locally). The projection M → B
is denoted by π . The characteristic systems V± project to rank 2 characteristic systems W±

on B. The conditions on V± imply that [W+,W−] ≡ 0 mod W and both W+ and W− are
not integrable. The projected bundles W± therefore define a hyperbolic first order system.
Suppose that S is an integral surface for this first order system. The integral surface is foliated
by the characteristic curves. The tangent spaces to the characteristic curves are given at each
point by T S∩W±. The inverse image π−1(S) has dimension three and VS = Tπ−1(S)∩V =

(Tπ−1(S)∩V+)⊕(Tπ−1(S)∩V−) is a rank 2 distribution on π−1(S). Since the distribution is
integrable we can construct the integral surfaces using the Frobenius theorem. These integral
surfaces have tangent space contained in VS ⊂ V and hence are integral surfaces for V . In
this way we have lifted an integral surface of the first order system to a family of integral
surfaces of the Vessiot system.

Theorem 9.2.6. Let V be a pseudosymmetry of a Vessiot system (M,V). Then locally the
quotient B of M by the integral curves of V is a first order system (B,W). The projection
π : B → M projects the Monge systems of (M,V) to the Monge systems of (B,W). There
is a one-to-one correspondence between integral manifolds of (B,W) and 1-dimensional
families of integral manifolds of (M,V).

Example 9.2.7. Under the symmetry ∂z the Laplace equation zxx + zyy is projected to the
Cauchy-Riemann equations ux = −vy , ux = vx . �

For second order scalar equations in two independent variables we know that all internal
symmetries are external symmetries. This is proved for example in Gardner and Kamran
[38, Theorem 5.1]. Also all higher order contact symmetries are induced from first order
symmetries. For pseudosymmetries the situation is a bit more complicated. Examples of
true pseudosymmetries turned out to be rather difficult to find. For a pseudosymmetry there
is no notion of prolongation, since a pseudosymmetry does not have to preserve the contact
structure.

For second order scalar partial differential equations in two independent variables we
have the following result.
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Theorem 9.2.8. Any pseudosymmetry of a hyperbolic second order scalar partial differential
equation that is the prolongation of a first order contact transformation is a symmetry.

Proof. The prolongation of any first order contact transformation is a second order contact
transformation. If this is a pseudosymmetry, then the prolongation maps the equation mani-
fold to itself. Then the pseudosymmetry is a contact transformation that preserves the equa-
tion manifold and hence a symmetry. �

This shows that any interesting pseudosymmetries should act non-trivially on the fibers
of the projection to the first order contact manifold. Let us analyze the symmetries in more
detail.

Theorem 9.2.9. Any infinitesimal symmetry of a second order equation for which the cor-
responding first order contact transformation has no fixed points can be written as pz for
suitable coordinates x, y, z, p, q for the first order contact manifold.

Proof. The equation manifold M has a natural projection π : M → P to a first order contact
manifold. Any infinitesimal symmetry of the system is an infinitesimal contact transforma-
tion. This contact transformation must be a prolonged infinitesimal point transformation X
of the first order contact manifold P . Since X has no fixed points we can write in suitable
local coordinates as ∂z , see Corollary 1.3.6. So we can choose coordinates x, y, z, p, q for
P such that the contact structure on P is given by the contact form dz − pdx − qdy and X
equals ∂z . �

Remark 9.2.10. It is important that the infinitesimal symmetry has no fixed points on the
first order contact manifold. For example consider the vector field X = x2∂z on Z with
coordinates x, y, z. The prolongation to the first order jet bundle is x2∂z + 2x∂zx and the
prolongation to the second order jet bundle is x2∂z+2x∂zx +2∂zxx . So the second prolongation
of X has no fixed points, while X and the first prolongation of X have fixed points. �

This restricts the class of first order systems that can be obtained by a symmetry reduction
from a second order equation. Any symmetry can be locally written in the form X = ∂z . The
second order equation is then invariant under translations in the direction of z and can be
written in the form F(x, y, p, q, r, s, t) = 0. The quotient of the equation by X is a first
order system is of the form

q = r, F(x, y, u, v, p, q, s) = 0,

for a function F . The first equation q = r defines the Lagrangian subspace 3b ⊂ Gr2(Tb B)
at each point. Then the equation surface is a hypersurface in the Lagrangian subspace. These
surfaces are far from generic. In particular the second order invariant I defined in (2.15) has
value one or is undefined.

Example 9.2.11 (Scaling a pseudosymmetry to a symmetry). Consider the equation
r = t + p. The distribution is V = { Dx , Dy, ∂s, ∂t }, with Dx = ∂x + p∂z + (t + p)∂p + s∂q
and Dy = ∂y + q∂z + s∂p + t∂q . The characteristic systems are given by

F = span
(
Dx + Dy + s∂s, ∂s + ∂t

)
, G = span

(
Dx − Dy + s∂s, ∂s − ∂t

)
.
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The vector field V = ∂z + ∂p is a pseudosymmetry of the equation; this can be checked by a
direct calculation. The vector field is not a prolonged first order contact transformation since
V is not a symmetry of V .

However when multiplied by a suitable function φ the vector field becomes a symmetry.
We can also check this by calculation. Suppose that φV is a symmetry.

[φV, Dx + Dy + s∂s] ≡ φV − (Dx + Dy + s∂s)(φ)V mod F,
[φV, Dx − Dy + s∂s] ≡ −(Dx − Dy + s∂s)(φ)V mod G,

[φV, ∂s + ∂t ] ≡ −φs V mod F,
[φV, ∂s − ∂t ] ≡ −φt V mod G.

The last two equations imply φs = φt = 0 and then the first and second one together imply
φq = φp = φz = φy = 0. From the first equation we see φ − φx , hence we can take
φ = C exp(x) as the general solution. The vector field exp(x)(∂z + ∂p) is a symmetry of the
system. �

Remark 9.2.12. A method to find exact solutions of partial differential equations introduced
(under a different name) by Bluman and Cole [10] is the use of nonclassical symmetries.
For a more recent introduction see Hydon [42]. These nonclassical symmetries are defined
on finite order jets bundles (in contrast with generalized symmetries, which are defined on
infinite jet bundles), but are in general different from pseudosymmetries. The nonclassical
symmetries also have the property that if X is a nonclassical symmetry, then λX is a nonclas-
sical symmetry for every function λ. For second order scalar equations in two variables, the
nonclassical symmetries are disjoint with the true pseudosymmetries. �

Example 9.2.13 (True pseudosymmetry for second order equation). Consider the wave
equation s = 0. The characteristic systems are given by

F = span
(
F1 = ∂x + p∂z + r∂p, F2 = ∂r

)
, G = span

(
G1 = ∂y + q∂z + t∂q ,G2 = ∂t

)
.

Define the vector field V by ∂z + p∂p + (p2
+ r)∂r . We have

[V, F1] ≡ pV mod F,
[V, F2] = −∂r ≡ 0 mod F,
[V,G1] = 0,
[V, F2] = 0.

Thus V is a pseudosymmetry. The vector field φV is a symmetry if and only if φ satisfies
the system of equations F1φ = pφ, G1φ = 0, (p2

+ r)F2(φ) + φ = 0, φt = 0. The only
solution to this system is φ = 0, hence V is a true pseudosymmetry. Note that V preserves
the characteristic subsystem of V ′ and hence induces a first order vector field. This first order
vector field ∂z + p∂p is not a contact transformation. �
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9.2.3 First order systems
For a first order system we define a pseudosymmetry as a vector field that is transversal
to the contact distribution and is a pseudosymmetry of both characteristic Monge systems.
The quotient of a first order system by a pseudosymmetry is a manifold P of dimension 5
and the Monge systems project to two rank two distributions W±. For elliptic equations
the projected distributions W± are distributions in the complexification of the tangent space.
From the properties of the Monge systems it follows that [W+,W−] ⊂ W = W+ ⊕ W−.
For a hyperbolic first order system the projection is a hyperbolic exterior differential system
of class s = 1. If the distribution W = W+ ⊕ W− is a contact distribution (maximally
non-degenerate), then the projected system is a hyperbolic Monge-Ampère equation in the
sense of Proposition 7.2.6.

Example 9.2.14 (Pseudosymmetry for the contact distribution). Consider the first order
system u y = exp(u), vx = 0. This system is contact equivalent to the first order wave
equation (4.15), but in these coordinates the pseudosymmetries will be more simple. We
introduce coordinates x, y, u, v, p = ux , s = vy on the equation manifold. The system is
hyperbolic and the two characteristic systems are given by

F = span
(
F1 = ∂x + p∂u, F2 = ∂p

)
,

G = span
(
G1 = ∂y + exp(u)∂u + s∂v + exp(u)p∂p,G2 = ∂s

)
.

Define the vector field V = ∂u . Then we have

[V, F1] = 0, [V, F2] = 0,
[V,G1] ≡ exp(u)V mod V,
[V,G2] = 0.

So V is a pseudosymmetry of V . But [V,G1] = exp(u)∂u + exp(u)p∂p 6≡ 0 mod V,G.
Thus V is not a pseudosymmetry of G. This also proves that the pseudosymmetry V cannot
be scaled to a symmetry of V by any factor. �

Example 9.2.15 (continuation of Example 9.2.14). We continue with the first order
system u y = exp(u), vx = 0. A pseudosymmetry of V = F ⊕ G that is also a pseu-
dosymmetry of the Monge systems is W = ∂u + p∂p. In fact any vector field of the form
W + F(x, p exp(−u), y + exp(−u))∂p is a pseudosymmetry for F and G. Note that W is a
symmetry of the system when multiplied by exp(u). �

Example 9.2.16. Take the first order system defined by u y = 0, vx = u2/2. We write
p = ux , s = vy . The characteristic systems are given by

F = span
(
∂x + p∂u + (u2/2)∂v, ∂p

)
,

G = span
(
∂y + s∂v, ∂s

)
.

A true pseudosymmetry of the system is given by V = ∂u +∂v+u∂p. Note that V is a symme-
try of G and a pseudosymmetry of F . Using the 1-parameter group of symmetries generated
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by the infinitesimal symmetry x∂x +v∂v+ p∂p +s∂q we find the family of pseudosymmetries
∂u + c∂v + u∂p for c an arbitrary constant. Another family of pseudosymmetries that can be
obtained in this way, is given by (1/4c2u2

− u + 1)∂u + ∂v + (c2 pu/2 − c(u2/2 − p)+ u)∂p.
All these pseudosymmetries can be scaled by arbitrary functions.

Let M/ span(V ) be the quotient of M by the integral curves of the pseudosymmetry V .
On the quotient manifold we can use coordinates x, y, ũ = u − v, p̃ = p − u2/2, s̃ = −s.
The projected characteristic systems are

F = span
(
∂x + p̃∂ũ, ∂ p̃

)
, G = span

(
∂y + s̃∂ũ, ∂s̃

)
.

This system is equivalent to the first order wave equation (Example 4.6.5). The general
solution is given in parametric form by

ũ = α(x)+ β(y), p̃ = α′(x), q̃ = β ′(y).

This defines an integral manifold of the projected system that can be lifted to an integral
manifold of the original system. If we make the coordinate transformation ũ = u − v, ṽ = v,
then the original system is transformed to the first order system ũ y +ṽy = 0, ṽx = (ũ+ṽ)2/2.
Substitution of the general solution ũ = α + β into this system leads to an overdetermined
first order system in ṽ for which the compatibility conditions are satisfied:

ṽy = −β ′(y), ṽx =
(α + β + ṽ)2

2
.

Integration of this system using the Frobenius theorem leads to the general solution for u and
v. �

The projected system for a pseudosymmetry of a first order system is a manifold of di-
mension 5 with two rank two distributions W+, W−. These bundles satisfy the conditions of
a hyperbolic exterior differential system of class s = 1. We have the additional relations

• [W+,W−] ⊂ W = W+ ⊕W− ,

• rank([W,W]) = 5, hence either W+ or W− is not integrable.

It could be that there are more relations that hold in general. The examples below show that
there is quite some freedom in the projected structures.

Example 9.2.17 (Projected bundle). The total bundle V = W+ ⊕ W− for the projected
structure can be a contact distribution, but this is not always the case. Consider the system
defined by u y = vx = 0, see Example 4.6.5. The vector field ∂u − ∂v is a symmetry of
this system. The quotient system has coordinates x, y, p, s, z = u + v and the projected
characteristic bundles are given by

W+ = span
(
∂x + p∂z, ∂p

)
, W− = span

(
∂y + s∂z, ∂s

)
.

A form dual to the distribution W = W+ ⊕W− is θ = dz − pdx − sdy. It is clear that this
is a contact form.

If we take the symmetry ∂v , then we find a projected system with coordinates x , y, u, p,
s and characteristic systems W+ = span(∂x + p∂u, ∂p), W− = span(∂y, ∂s). The form dual
to W+ ⊕W− is equal to du − pdx . �
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9.2.4 Monge-Ampère equations
Recall that in Section 7.2.1 we showed that a hyperbolic Monge-Ampère equation can be
formulated as a rank 4 distribution W on a first order contact manifold P together with a
hyperbolic structure on W that satisfied some additional properties.

Definition 9.2.18. A pseudosymmetry for a Monge-Ampère equation (P,W+,W−) is a vec-
tor field V that is a pseudosymmetry of both characteristic systems. In formula:

[W±, V ] ≡ 0 mod W±, V . (9.2)
	

If V is a pseudosymmetry for the Monge-Ampère equation (P,W) pointwise not con-
tained in W , then locally we can define the quotient manifold B = P/ span(V ). The con-
dition (9.2) implies that the bundles W± project down to rank 2 bundles U± on B. The
projected bundles define an almost product structure or almost complex structure on B de-
pending on the type of the equation. The integral manifolds of (P,W) project to integral
manifolds of this structure on B. Conversely, if we have an integral surface for the almost
product or almost complex structure on B, then we can lift this to an integral surface of the
Monge-Ampère equation. This lift depends only on the choice of a point in the fiber above a
point on the surface.

Example 9.2.19 (Wave equation). On the first order jet bundle P we introduce coordinates
x, y, z, p, q . The solutions of wave equation zxy = 0 are in correspondence with the integral
manifolds of the bundles W± defined by

W+ = span
(
∂x + p∂z, ∂p

)
, W− = span

(
∂y + q∂z, pq

)
.

The contact symmetries of this system depend on two functions of two variables. This will
be proved in the examples in Section 9.3.2.

Consider the family of vector fields depending on two functions α, β defined by

V = ∂z + β(x, p)(∂x + p∂z)− α∂p. (9.3)

We scale V by a function φ. A simple calculation yields that

[∂x + p∂z, φV ] ≡ (φx + pφz)V + φαV mod W+,

[∂p, φV ] ≡ φpV + φβV mod W+,

[∂y + q∂z, φV ] ≡ (φy + qφz)V mod W−,

[∂q , φV ] ≡ φq V mod W−.

(9.4)

Hence V is a pseudosymmetry for all functions α, β. The condition that V can be scaled to a
true symmetry is given by the system of equations

(φx + pφz)+ φα = 0, φpV + φβ = 0,
φy + qφz = 0, φq = 0.
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From this system it immediately follows that φ is a function of the variables x, p and should
satisfy

φx = −φα, φp = −φβ. (9.5)

The compatibility conditions for this system are αp = βx , see Example 1.2.20. �

9.3 Decomposition method
We want to calculate the pseudosymmetries of a second order scalar partial differential equa-
tion in two independent variables. The quotient of the equation by this pseudosymmetry will
be a first order system. First we give a geometric formulation of both systems and then we
give a method for finding pseudosymmetries. The idea for the method was developed by
Robert Bryant and the author during a visit of the author to Robert Bryant at Duke University
in July 2005. We also give several examples. We develop the theory for hyperbolic systems.
A similar construction for elliptic systems is possible, with the complication that one has to
work with complex systems.

9.3.1 Solution method
Suppose we have a second order partial differential equation and want to find all pseudosym-
metries. Writing down a general vector field (modulo a scalar factor) and then writing down
the conditions for this vector field to be a pseudosymmetry gives a system of 16 equations for
6 unknown functions of 7 variables. Solving this system is quite difficult in practice.

Let (M,V) be hyperbolic system determined by a second order scalar partial differential
equation in two independent variables. Then we can choose an adapted coframing θ0, θ1, θ2,
ω3, ω4, ω5, ω6 such that V is the dual distribution to θ0, θ1, θ2 and

dθ0
≡ θ1

∧ ω3
+ θ2

∧ ω4 mod θ0, (9.6a)

dθ1
≡ ω3

∧ ω5 mod θ0, θ1, θ2, (9.6b)

dθ2
≡ ω4

∧ ω6 mod θ0, θ1, θ2. (9.6c)

See Definition 6.1.4. We will writeF = V+ = span(∂ω3 , ∂ω5) and G = V− = span(∂ω4 , ∂ω6)

for the Monge systems.

Lemma 9.3.1. Any pseudosymmetry (and hence every symmetry) of a hyperbolic, elliptic
or parabolic second order equation is pointwise not contained in the derived bundle of the
contact distribution on an open dense subset.

Proof. Let (M,V) be the equation manifold with contact distribution V . Let V ′ be the derived
bundle and V ′′ the second derived bundle. We have dimV ′′

= 7, so V ′′
= T M . Let V be

a pseudosymmetry of V . Then the non-degeneracy of V implies that V is pointwise not
contained in V on an open dense subset. The vector field V must also be a pseudosymmetry
of V ′, see Theorem 9.1.5. Assume V is contained in V ′ on a non-empty open subset of M .
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Then since V is a pseudosymmetry of V ′ we have [V, X ] ⊂ V ′ for all X ⊂ V ′. But then V is
in C(V ′). For these systems C(V ′) ⊂ V and this gives a contradiction. �

Remark 9.3.2. For a second order equation and a pseudosymmetry V there can be closed
sets for which Vx ∈ Vx . For example take the wave equation described in Example 4.2.2.
The vector field X = ∂x is the infinitesimal symmetry of the wave equation that generates the
translations in the x-direction. The characteristic bundle F is spanned by ∂x + p∂z + r∂p, ∂r .
For all points m for which p = r = 0 we have (∂x )m ∈ Fm . �

From here on we will concentrate on pseudosymmetries V for which Vm 6∈ Vm for all
points m. These pseudosymmetries are interesting because they generate nice projections to
first order systems. The lemma above shows that for any pseudosymmetry the set of points
where this condition might not be satisfied is a closed set of lower dimension.

Assuming that Vm 6∈ Vm we can adapt the coframing such that θ0(V ) = 1 and θ1,2(V ) =

ω3,4,5,6(V ) = 0. Any vector field on T M determines a section of the bundle T M/V . We
define the map

ρ : X (M) → 0(T M/V) : X 7→ X̃ = X mod V.

Lemma 9.3.3. Any pseudosymmetry V is uniquely determined by the section Ṽ = ρ(V ) of
T M/V .

Proof. Suppose V and W = V + X are both pseudosymmetries of (M,V) and W̃ = Ṽ .
Then X ⊂ V . Since V and W are pseudosymmetries we have [V,V] ⊂ V + RV and
[W,V] ⊂ V+RV . But then also [X,V] ⊂ V+RV . Since X is in V and V 6⊂ V ′ this implies
that [X,V] ⊂ V . But the bundle V has no Cauchy characteristics so this implies X = 0 and
hence V = W . �

So a pseudosymmetry is uniquely determined by the corresponding section in T M/V . In
turn such a section uniquely determines a basis for T M/V up to scalar factors. The bundles
V ′

+/V and V ′
−/V are invariant bundles in T M/V and T M/V = span(V)⊕(V ′

+/V)⊕(V ′
−/V).

By choosing non-zero vectors V1 in (V ′
+/V) and V2 in (V ′

−/V) we have a basis V , V1, V2 for
T M/V that is invariant up to scalar factors. We already have invariantly defined the system
M0

= span(θ0) dual to V ′ and the two systems M1
= span(θ0, θ1) and M2

= span(θ0, θ2).
We choose new differential forms θ1 and θ2 in M1 and M2, respectively, such that

θ1(V ) = 0, θ2(V ) = 0. (9.7)

Given the section Ṽ of T M/V this determines θ0, θ1 and θ2 up to scalar factors. The fact
that Ṽ determines θ1 and θ2 uniquely, suggest looking for a condition on θ1 and θ2 such that
Ṽ is a pseudosymmetry.

Lemma 9.3.4. Let V be a pseudosymmetry of (M,V) and define θ1, θ2 as in (9.7). Then the
equations

(dθ1)2 ∧ θ1
∧ θ2

= 0, (dθ2)2 ∧ θ1
∧ θ2

= 0 (9.8)

hold.
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Proof. The equation (dθ1)2 ∧ θ1
∧ θ2

= 0 can be rephrased as dθ1 decomposes modulo
θ1, θ2 or dθ1 is a decomposable 2-form on V = span(θ1, θ2)⊥. If dθ1 does not decompose
modulo θ1, θ2, then we have

dθ1
≡ ω3

∧ ω5
+ α ∧ θ0 mod θ1, θ2

for some 1-form α that is non-zero modulo θ0, θ1, θ2, ω3, ω5. So α is non-zero when re-
stricted to the distribution V− = span(∂ω4 , ∂ω6). In particular we can assume that α =

c4ω
4

+ c6ω
6 and not all c j are zero. Assume (without loss of generality) that c4 6= 0. Then

we have

θ1([V, ∂ω4 ]) = −dθ1(V, ∂ω4) = c4 6= 0.

So [V,V−] 6⊂ V− + RV and hence V is not a pseudosymmetry of the characteristic bundle
V−. This proves that (dθ1)2 ∧θ1

∧θ2
= 0. A similar argument shows (dθ2)2 ∧θ1

∧θ2
= 0.�

So if V is a pseudosymmetry, then there are dθ1 and dθ2 that decompose modulo θ1,
θ2. Recall that the structure equations (9.6) only require θ1 and θ2 to decompose modulo
θ0, θ1, θ2.

Remark 9.3.5. A more geometric proof of the lemma above is as follows. If V is a pseu-
dosymmetry of a second order equation, then the quotient system will be a first order system.
For this first order system we can find an adapted coframing with characteristic forms θ̃1, θ̃2.
Recall that for first order systems the characteristic contact forms satisfy the decomposition
equation

(dθ̃1)2 ∧ θ̃1
∧ θ̃2.

The pullbacks π∗θ̃1, π∗θ̃2 of θ̃1 and θ̃2 are equal to θ1 and θ1 modulo a term θ0. But
since θ1(V ) = 0 and π∗θ̃1(V ) = 0 (since the pullbacks are semi-basic) they must be the
same. The decomposition equation for θ̃1, θ̃2 can also be pulled back and this provides the
decomposition equation for θ1, θ2. �

Now we come the the key idea of the method. In order for the vector field V dual to θ0

to be a pseudosymmetry it is necessary and sufficient that dθ1 and dθ2 decompose modulo
θ1, θ2.

Theorem 9.3.6. Let θ0, θ1, θ2, ω3, ω4, ω5, ω6 be an adapted coframing (9.6). The vector
field V = ∂θ0 dual to θ0 is a pseudosymmetry for the equation if and only if

(dθ1)2 ∧ θ1
∧ θ2

= 0, (dθ2)2 ∧ θ1
∧ θ2

= 0. (9.9)

Proof. The necessity of the conditions (9.9) was already proved in Lemma 9.3.4. We will
prove that the conditions are sufficient. The characteristic subsystems are spanned by F =

{ ∂ω3 , ∂ω5 } and G = { ∂ω4 , ∂ω6 }. We will prove that [V,F] ≡ 0 mod V,F . The case
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[V,G] ≡ 0 mod V,G can be proved in a similar way. The condition we have to prove is
equivalent to

θ1([V, ∂ω3 ]) = 0,

θ2([V, ∂ω3 ]) = 0,

ω4([V, ∂ω3 ]) = 0,

ω6([V, ∂ω3 ]) = 0,

θ1([V, ∂ω5 ]) = 0,

θ2([V, ∂ω5 ]) = 0,

ω4([V, ∂ω5 ]) = 0,

ω6([V, ∂ω5 ]) = 0.

(9.10)

From these eight equations we will prove that 2 representative ones are satisfied, the other six
are similar. Using equation (A.4) we have

θ1([V, ∂ω3 ]) = −dθ1(V, ∂ω3)+ V (θ1(∂ω3))− ∂ω3(θ
1(V ))

= −dθ1(V, ∂ω3)+ V (0)− ∂ω3(0)

= (ω5
∧ ω3)(V, ∂ω3) = 0.

So the first equation is satisfied. Next we consider the fifth equation.

ω4([V, ∂ω3 ]) = −dω4(V, ∂ω3)+ V (ω4(∂ω3))− ∂ω3(ω
4(V ))

= −dω4(V, ∂ω3)+ V (0)− ∂ω3(0)

= −dω4(V, ∂ω3).

From the structure equations we find

0 = d2θ2
≡ dω4

∧ ω6
− ω4

∧ dω6 mod θ1, θ2, ω3
∧ ω5, ω4

∧ ω6.

This implies that dω4
≡ 0 mod θ1, θ2, ω4, ω6, ω5 and therefore ω4([V, ∂ω3 ]) = 0. The

other six equations from (9.10) are similar. �

Finding the pseudosymmetries is therefore equivalent to finding the coframings that are
adapted properly in the sense that dθ1 and dθ2 decompose modulo θ1, θ2. This condition is
equivalent to

(dθ1)2 ∧ θ1
∧ θ2

= 0,

(dθ2)2 ∧ θ1
∧ θ2

= 0.
(9.11)

The pair θ1, θ2 then determines a section Ṽ of T M/V up to a scalar factor and by Lemma 9.3.3
there is a unique pseudosymmetry V .

We can parameterize all possible choices of adapted θ1, θ2 using two functions p1, p2
and the transformation θ1

7→ θ1
+ p1θ

0, θ2
7→ θ2

+ p2θ
0. The condition that the 2-forms

dθ1 and dθ2 decompose translates to a system of partial differential equations for p1 and p2.
The good thing about this method for finding pseudosymmetries is that the calculation

has been split into two steps. The first step is to determine a pair of adapted contact forms θ1,
θ2 that satisfies the decomposition equation (9.11). This corresponds to choosing a suitable
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section Ṽ of T M/V . To find such a pair we have to solve a system of equations for two
unknown functions p1, p2. The second step is to extend Ṽ to a pseudosymmetry V . The
theory above proves this extension always exists and is unique. In practice we search for an
adapted coframing, i.e., we have to adapt ω3, ω4, ω5, ω6 by calculating dθ1 and dθ2. Then
we can define V as the dual vector field to θ0.

Other advantages are that the system of partial differential equations for p1, p2 is a system
of only 4 equations for two unknown functions, instead of 16 equations for 7 functions if we
start with a general vector field. Also we have formulated our problems in terms of differential
forms and can therefore use Cartan’s method of equivalence and the Cartan-Kähler theorem
to tackle the problem. An example of the method is given in the examples 9.3.8 and 9.3.13.

In general the equations (9.11) yield four quasi-linear equations for the 2 unknown func-
tions p1, p2. This system is overdetermined, so in general there will be no pseudosymme-
tries. We work out these equations explicitly. Assume that we have an adapted coframing
as in (9.6). We write ω0

= θ0, ω1,2
= θ1,2

+ p1,2θ
0 and � = ω0

∧ ω1
∧ ω2. There exist

1-forms a j , b j , c j , j = 0, 1, 2 with b0 = ω3, c0 = ω4 such that the structure equations for
θ j are given by

dθ0
= a0θ

0
+ b0θ

1
+ c0θ

2,

dθ1
= ω3

∧ ω5
+ a1 ∧ θ0

+ b1 ∧ θ1
+ c1 ∧ θ2,

dθ2
= ω4

∧ ω6
+ a2 ∧ θ0

+ b2 ∧ θ1
+ c2 ∧ θ2.

(9.12)

Let 2 = θ0
∧ θ1

∧ θ2. The first decomposition equation can be written as

0 = (dω1)2 ∧ ω1
∧ ω2

=
(
dθ1

+ dp1 ∧ θ0 + p1dθ0
)2

∧ (θ1
+ p1θ

0) ∧ (θ2
+ p2θ

0)

= 2ω3
∧ ω5

∧ dp1 ∧ θ0
∧ θ1

∧ θ2

+
(
ω3

∧ ω5
+ a1 ∧ θ0

+ b1 ∧ θ1
+ c1 ∧ θ2

+ p1(a0θ
0
+ b0θ

1
+ c0θ

2)
)2

∧ (θ1
+ p1θ

0) ∧ (θ2
+ p2θ

0)

= 2dp1 ∧2 ∧ ω3
∧ ω5

+ 2(a1 + p1a0) ∧2 ∧ ω3
∧ ω5

− 2p1(b1 + p1b0) ∧2 ∧ ω3
∧ ω5

− 2p2(c1 + p1c0) ∧2 ∧ ω3
∧ ω5

= 2
(
dp1 + a1 + p1(a0 − b1)− p2

1b0 − p2c1 − p1 p2c0
)
∧2 ∧ ω3

∧ ω5.

And the second decomposition equation reduces to

0 =
(
dθ2

+ dp2 ∧ θ0
+ p2dθ0

)2
∧ (θ1

+ p1θ
0) ∧ (θ2

+ p2θ
0)

= 2
(
dp2 + a2 + p2(a0 − c2)− p2

2b0 − p1c2 − p1 p2b0
)
∧2 ∧ ω4

∧ ω6.

In local coordinates there are 4 first order equations for the two unknown functions p1 and
p2. The equations are quasi-linear and polynomial in p1, p2.
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Remark 9.3.7 (Cartan’s test). If we add the functions p1, p2 as new variables to the sys-
tem, then we are looking for 7-dimensional integral planes of the exterior differential ideal I
generated by the two 6-forms (9.11) defined above. The space of integral elements V7(I) has
codimension 4, since we have 4 first order equations in p1, p2.

Let π1
= dp1, π2

= dp2. We can define the integral flag

E1 = {∂ω0} ⊂ E2 = { ∂ω0 , ∂ω1 } ⊂ . . . ,

. . . ⊂ E7 = {∂ω0 , ∂ω1 , ∂ω2 , ∂ω3 + p1 p2∂π2 , ∂ω5 , ∂ω4 + p1 p2∂π1 , ∂ω6}.

The codimensions of the polar spaces are c0 = c1 = c2 = c3 = c4 = 0, c5 = 1, c6 = 1.
Cartan’s test is not satisfied, hence the system is not in involution. �

Example 9.3.8 (Liouville equation). We will calculate the pseudosymmetries of the Liou-
ville equation s = exp(z). We start with the initial coframing

ω0
= dz − pdx − qdy,

ω1
= dp − rdx − ezdy,

ω2
= dq − ezdx − tdy,

ω3
= dx, ω4

= dy,

ω5
= dr − ez pdy, ω6

= dt − ezqdx .

In the notation of (9.12) above we have a0 = 0, b0 = ω3, c0 = ω4, a1 = ezω4, b1 = c1 = 0,
a2 = ezω3, b2 = c2 = 0. The conditions for p1 and p2 are

dp1 + ezω
4
− p1 p2ω

4
≡ 0 mod ω0,1,2,3,5,

dp2 + ezω
3
− p1 p2ω

3
≡ 0 mod ω0,1,2,4,6.

A special family of solutions is given by p2 = qh(y) − h(y)2 + h′(y) − t)/(q − h(y)),
p1 = ez∂ p2/∂t for an arbitrary function h(y). There is a similar family of solutions with p1
and p2 interchanged. The family of pseudosymmetries determined by the family is

∂y+h(y)∂z +

(
qh(y)− h(y)2 + h′(y)

)
∂q

+

(
h(y)3 − qh(y)2 + 2th(y)− 3h(y)h′(y)+ qh′(y)+ h′′(y)

)
∂t .

We can scale these by a factor exp(−
∫ y h(y)dy) to be true symmetries of the system. �

Remark 9.3.9. There are no apparent generalizations of the method described in this section
to other types of partial differential equations. The method for finding pseudosymmetries
is closely related to the structures of second order scalar equations and first order systems,
which are very similar. Also the contact forms θ0, θ1, θ2 are special in the sense that they
together already determine the structure of the system. For pseudosymmetries of first order
systems the resulting systems are not determined by the projected distribution alone. The
decomposition into characteristic systems has to be given. �
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9.3.2 Pseudosymmetries of the wave equation
Example 9.3.10 (Contact symmetry group of the wave equation). The wave equation is
a Monge-Ampère equation that can be formulated as a hyperbolic exterior differential system
I of class s = 1 on the first order contact manifold with variables x, y, z, p, q. The system
I is generated by

θ = dz − pdx − qdy, 91
= dx ∧ dp, 92

= dy ∧ dq.

See for example Ivey and Landsberg [43, Section 6.4]. The forms θ,91, 92 are unique up to
a scalar factor. We want to show that the group of contact symmetries of this system depends
on two functions of two variables.

Let σ be a contact symmetry. For simplicity we assume that we have labelled the two
characteristic systems and σ does not interchange the two characteristic systems. Then we
must have

σ ∗(dx ∧ dp) = C(x, p)dx ∧ dp, σ ∗(dy ∧ dq) = D(y, q)dy ∧ dq,

for functions C, D and hence any σ must be of the form x̃ = a(x, p), p̃ = b(x, p), ỹ =

m(y, q) and q̃ = n(y, q). The contact form θ must be preserved, hence we have

σ ∗(dz − pdx − qdy) = µ(dz − pdx − qdy),

for a function µ. By taking the exterior derivative we find

σ ∗(dx ∧ dp + dy ∧ dq) = dµ ∧ θ + µ(dx ∧ dp + dy ∧ dq).

From this is follows that dµ ≡ 0 mod θ . Since dθ 6≡ 0 mod θ this in turn implies that µ is
a constant and C = D = µ. Since C, D are constant we must also have

σ ∗(pdx) = Cpdx + d( f (x, p)), σ ∗(qdy) = Dqdy + d(g(y, q))

with f, g certain functions. Then we can calculate

σ ∗(dz) = σ ∗(θ)+ σ ∗(pdx)+ σ ∗(qdy) = µdz + d( f (x, p)+ g(y, q)).

From this it follows

σ ∗(x) = a(x, p), σ ∗(p) = b(x, p),

σ ∗(y) = m(y, q), σ ∗(q) = n(y, q),

σ ∗(z) = const +µz + f (x, p)+ g(y, q).

The condition that σ ∗(θ) = µθ implies that we have four relations between the unknown
functions a, b,m, n, f, g

f p − bap = 0, fx − ax b + µp = 0,
gq − nmq = 0, gy − m yn + µq = 0.

(9.13)
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The preservation of 91 and 92 implies the equations

ax bp − apbx = µ, m ynq − mqny = µ. (9.14)

Note that the last two equations are precisely the compatibility equations for the system (9.13)
as a system of partial differential equations for the two unknown functions f and g. For
arbitrary functions a, m we can first solve the system (9.14). The solutions b, n depend on
two more arbitrary functions of one variable. Then we can solve the system (9.13) since the
compatibility equations for the system are satisfied. The functions a, b, m, n, f , g and µ
together define a (local) symmetry of the wave equation.

Let us give a geometric interpretation of the construction above. The contact form θ and
the two characteristic forms 91 and 92 together determine the two characteristic systems
W+ and W− (see Section 5.5.1). The contact form θ is determined up to a constant. This
implies there is a Reeb vector field Z unique up to a scalar constant. This Reeb vector field
determines a unique foliation of the equation manifold M . The Reeb vector field is contained
in the rank 1 bundle Z = W+ ∩W−. Let π : M → B be the projection onto the quotient
space of M by the foliation. The characteristic systems project to integrable bundles W̃+,
W̃− on B and give B a direct product structure B1 × B2.

M

π1×π2
��

B1 × B2 = M/Z

The Reeb vector field is a symmetry of θ and hence dθ projects down to a 2-form � on B
that is determined up to a scalar factor. The non-degeneracy of the contact structure implies
that � restricts on each component B j to a volume form � j .

Every contact symmetry of the wave equation must preserve the fibers of the projection π
and induce a map on B1 and B2 that preserves�1 and�2, respectively. We can now construct
all local contact symmetries of the wave equation in three steps.

1. Choose a constant scale factor µ.

2. Choose two (local) diffeomorphisms φ1, φ2 of B1 and B2, respectively, that scale the
volume forms by a factor µ.

3. Lift the map φ = φ1 × φ2 on B to a (local) diffeomorphism on M . Let M̃ be a copy
of M . We will lift the graph of φ to an integral manifold of M × M̃ that is (locally) the
graph of a contact symmetry. A contact symmetry is given by a 5-dimensional integral
manifold for the exterior differential system on M × M̃ generated by 2 = θ − θ̃ and
91

− 9̃1 with independence condition given by dx ∧ dy ∧ dz ∧ dp ∧ dq. The graph
of φ is a submanifold of dimension four in B × B̃. Let S = (π1 × π2)

−1(gr(φ)) be
the inverse image of this graph. Then S is a submanifold of dimension six in M × M̃ .
The form 2 is not closed on M × M̃ , but the pullback of 2 to S is closed. Hence
on the manifold S we have a closed 1-form 2|S . The integral surfaces of this closed
form can be found using the Frobenius theorem and dependent on one constant c. The
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integral surfaces are of dimension 5 and are integral surfaces of the exterior differential
system generated by2 = θ− θ̃ and91

−9̃1 and hence define contact transformations.
This choice of constant c corresponds to the contact transformation z 7→ z + c, i.e.,
translation in the z coordinate.

As an example we will construct the Legendre transformation. In the local coordinates
m = (x, y, z, p, q) we have Z = span(∂z), π1 : M → B1 = R2

: m 7→ (x, p) and
π2 : M → B2 = R2

: m 7→ (y, q). Introduce coordinates x̃, ỹ, z̃, p̃, q̃ on a copy M̃ of the
equation manifold M .

1. We choose scale factor µ = 1.

2. As volume-preserving diffeomorphisms we take φ1 : R2
→ R2

: (x, p) 7→ (−p, x)
and φ2 : R2

→ R2
: (y, q) 7→ (−q, y) .

3. On the pullback S we can introduce coordinates x, y, z, p, q, z̃. The inclusion S →

M × M̃ is given by (x, y, z, p, q, z̃) 7→ ((x, y, z, p, q), (−p,−q, z̃, x, y)). The pull-
back of 2 equals

2|S = dz − pdx − qdy − (dz̃ + xdp + ydq)

= dz − d(xp)− d(yq)− dz̃.

The integral manifolds are given by z̃ = z − px − qy + c. The choice c = 0 gives the
Legendre transformation. �

Example 9.3.11 (Contact symmetry group using Cartan-Kähler). There is another
method to analyze the “dimension” of the space of contact symmetries. We formulate the
contact symmetry problem for the wave equation as an equivalence problem on the first order
contact manifold P . We introduce the coframing θ0

= dz − pdx − qdy, θ1
= dp, θ2

= dq ,
θ3

= dx , θ4
= dy. To this coframing we have to associate the structure group G consisting

of the matrices

g =


c0 0 0 0 0
0 c11 0 c13 0
0 0 c22 0 c42
0 c31 0 (c0 + c31c13)/c11 0
0 0 c42 0 (c0 + c42c24)/c22

 .
The group maps θ0 to a multiple of θ0 and preserves the ideals span(dx, dp) and span(dy, dq).
Also the structure equation dθ0

≡ θ3
∧ θ1

+ θ4
∧ θ2 mod θ0 is preserved. We have formu-

lated the structure of the wave equation in the form of an equivalence problem and can apply
the method of equivalence to determine the symmetries. We write ω = g−1θ for the lifted
coframe on P × G. The tableau associated to this system has the form

5 =


γ0 0 0 0 0
0 γ11 0 γ13 0
0 0 γ22 0 γ24
0 γ31 0 γ0 − γ11 0
0 0 γ42 0 γ0 − γ22

 .
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The Cartan characters are s1 = 5, s2 = 2, s3 = s4 = s5 = 0. The dimension of the first
prolongation is 8, so the system is not in involution. We write the structure equations as

dω = −γ̃ ∧ ω + T (ω ∧ ω).

Here γ̃ is the connection form and T respresents the torsion of the system. We can parame-
terize the possible connection forms by

γ̃ = γ +


0 0 0 0 0
0 h1ω

1
+ h3ω

3 0 h3ω
1
+ h5ω

3 0
0 0 h2ω

2
+ h4ω

4 0 h4ω
2
+ h6ω

4

0 h7ω
1
− h1ω

3 0 −h1ω
1
− h3ω

3 0
0 0 h8ω

2
− h2ω

4 0 −h2ω
2
− h4ω

4

 ,

where γ is the left-invariant Maurer-Cartan form of the Lie group G.
Let H be the 8-dimensional abelian group with coordinates h1, . . . , h8. Consider the

system ω, γ̃ on the manifold P × G × H . The structure equations are

dω = −γ̃ ∧ ω + T (ω ∧ ω),

dγ̃ = −γ̃ ∧ γ̃ +
0 0 0 0 0
0 η1

∧ ω1
+ η3

∧ ω3 0 η3
∧ ω1

+ η5
∧ ω3 0

0 0 η2
∧ ω2

+ η4
∧ ω4 0 η4

∧ ω2
+ η6

∧ ω4

0 η7
∧ ω1

− η1
∧ ω3 0 −η1

∧ ω1
− η3

∧ ω3 0
0 0 η8

∧ ω2
− η2

∧ ω4 0 −η2
∧ ω2

− η4
∧ ω4


where η j

≡ dh j modulo terms γ̃ and ω. There is no torsion and the Cartan characters are
s1 = 6, s2 = 2, s3 = 0. The dimension of the first prolongation is 10. Since s1 + 2s2 = 10,
the system is in involution and from the Cartan-Kähler theorem it follows the general contact
symmetry depends on 2 functions of 2 variables. �

Example 9.3.12 (Pseudosymmetries for the wave equation). In this example we will ap-
ply the method described in Section 9.3 to the wave equation. We start with the following
adapted coframing for the wave equation

θ0
= dz − pdx − qdy,

θ1
= dp − rdx,

θ2
= dq − tdy,

ω3
= dx, ω4

= dy,

ω5
= dr, ω6

= dt.
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The structure equations for this coframe are

dθ0
= −θ1

∧ θ3
− θ2

∧ θ4,

dθ1
= −ω5

∧ ω3,

dθ2
= −ω6

∧ ω4,

dω3
= 0, dω5

= 0,

dω4
= 0, dω6

= 0.

We introduce new contact forms θ̃1,2
= θ1,2

+ p1,2θ
0. We want to find all functions p1, p2

such that θ̃1 and θ̃2 decompose modulo θ̃1, θ̃2. The condition is given by equation (9.11),
which reduces in this case to

(dp1 + p1 p2ω
4) ≡ 0 mod θ0, θ1, θ2, ω3, ω5,

(dp2 + p1 p2ω
3) ≡ 0 mod θ0, θ1, θ2, ω4, ω6.

In local coordinates these two equations are equivalent to the system of equations ∂ p1/∂ω
4

=

−p1 p2, ∂ p1/∂ω
6

= 0, ∂ p2/∂ω
3

= −p1 p2, ∂ p2/∂ω
5

= 0, or equivalently

∂ p1

∂y
+ q

∂ p1

∂z
+ t

∂ p1

∂q
= −p1 p2,

∂ p1

∂t
= 0,

∂ p2

∂x
+ p

∂ p2

∂z
+ r

∂ p2

∂p
= −p1 p2,

∂ p2

∂r
= 0.

There seems to be no exact method to solve these equations. In the generic situation (p1, p2 6=

0) the solutions of this system depend on 2 functions of two variables. The calculations are
in Example 9.3.13 below.

However, we can find a special 3-parameter family of solutions by taking p2 = 0. Then
the most general solution for p1 is just p1 = a(x, p, r). We find a new coframing

θ̃0
= dz − pdx − qdy,

θ̃1
= dp − rdx + a(x, p, r)(dz − pdx − qdy),

θ̃2
= dq − tdy.

Note that

dθ̃1
≡
(
ω3

− arθ
0)

∧
(
ω5

+ (ax + rap − a2)θ0) mod θ̃1, θ̃2

dθ̃2
= ω4

∧ ω6.

So we should adapt our coframing and redefine ω3, ω5, ω4, ω6 to

ω̃3
= ω3

− ar θ̃
0,

ω̃5
= ω5

+ (ax + rap − a2)θ̃0,

ω̃4
= ω4, ω̃6

= ω6.
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We have found a new adapted coframing that defines a pseudosymmetry. The vector field
dual to θ̃0 is

V = (1 + par )∂z + (rar − a)∂p − (ax + rap − a2)∂r + ar∂x . (9.15)

Let us check that the vector field V is a pseudosymmetry of the system. The characteristic
systems for the wave equation are given by

F = span
(
F1 = ∂x + p∂z + r∂p,G1 = ∂r

)
,

G = span
(
G1 = ∂y + q∂z + t∂q ,G2 = ∂t

)
.

We calculate the Lie brackets of ψV with representative elements from the characteristic
bundles.

[ψV, F1] ≡ −(aψ + F1(ψ))V mod F,
[ψV, F2] ≡ −F2(ψ)V mod F,
[ψV,G1] ≡ −G1(ψ)V mod G,
[ψV,G2] ≡ −G2(ψ)V mod G.

Hence V is a pseudosymmetry. We can only scale V to a true symmetry if we can solve the
system

G1(ψ) = G2(ψ) = F2(ψ) = 0, F1(ψ) = −aψ.

This implies ψ = ψ(x, p) with ψx + rψp = −aψ . A necessary condition for this to be
solvable is that a is linear in r and hence of the form a = α + βr . When substituted into the
equation this yields the system

ψx + αψ = 0, ψp + βψ = 0.

From Example 1.2.20 it follows that this system has non-zero solutions if and only if αx =

βp. So we have found a family of pseudosymmetries depending on 1 function of 3 variables
for which most pseudosymmetries cannot be scaled to a true symmetry.

We conclude with two final remarks. First note that by taking a pseudosymmetry of the
form p1 = p1(x, p, r), p2 = 0 the projected system will be Darboux integrable. It has
3 invariants for the first characteristic system and 2 or 3 for the second. Second note that
the first order part of V for a = α + rβ corresponds precisely the the pseudosymmetry V
described in Example 9.2.19. �

Example 9.3.13 (Prolonging to involution). In the previous example we arrived at a sys-
tem of partial differential equations (9.3.12) that we could not solve explicitly. In this example
we will formulate the system as an exterior differential system and apply the Cartan-Kähler
theorem. Let M be the equation manifold of the wave equation and let N = M × R2 On N
we use coordinates x , y, z, p, q , r , t , p1, p2. We have a basis of differential forms on this
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manifold given by

θ0
= dz − pdx − qdy,

θ1
= dp − rdx,

θ2
= dq − tdy,

ω3
= dx,

ω5
= dr,

π1
= dp1,

ω4
= dy,

ω6
= dt,

π2
= dp2.

We let ω0
= θ0, ω1

= θ1
+ p1θ

0, ω2
= θ2

+ p2θ
0 and � = ω0

∧ ω1
∧ ω2. The functions

p1, p2 that determine pseudosymmetries determine 7-dimensional integral manifolds of the
exterior differential ideal I generated by two 5-forms

91
= (dω1)2 ∧ ω1

∧ ω2, 92
= (dω2)2 ∧ ω1

∧ ω2.

Conversely, every 7-dimensional integral manifold of I that satisfies the independence con-
dition

� ∧ ω3
∧ ω4

∧ ω5
∧ ω6

6= 0 (9.16)

determines a pair of functions p1, p2 and hence a pseudosymmetry.
The properties of the integral manifolds can be found by applying the Cartan-Kähler

theorem. Before we can apply this theorem we first have to eliminate torsion. We also have
to prolong the system several times so that the system is in involution. Prolonging the system
has the additional benefit that the new system is a linear Pfaffian system.

To prolong the system we have the consider the manifold of all integral planes of dimen-
sion 7. The integral planes that satisfy the independence condition are parameterized by

π1
= p1, jω

j , π2
= p2, jω

j .

Substituting these into the forms 91, 92, d91, d92 yields 6 equations; these equations
determine the integral elements.

p1,4 = p1 p2, p1,6 = 0,
p1,2 = p1 p2,6 + p2 p2,6,

p2,3 = p1 p2, p2,5 = 0,
p2,1 = p2 p1,5 + p1 p2,5.

(9.17)

We restrict to the submanifold defined by the equations (9.17). This submanifold is locally
equivalent to M × R2

× R8. We have the original manifold N = M × R2 with the variables
p1, p2 and the new coordinates p1,0, p1,1, p1,3, p1,4, p2,0, p2,2, p2,5, p2,6. The integral
manifolds of the original system (N , I) are lifted to integral manifolds of the system on
N × R8 defined by the pullbacks of

α1
= π1 − p1, jω

j , α2
= π2 − p2, jω

j .
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The structure equations for α1 and α2 are

dα1
= τ 1,0

∧ ω0
+ τ 1,1

∧ ω1
+ p1τ

2,6
∧ ω2

+ τ 1,3
∧ ω3

+ τ 1,5
∧ ω5,

dα2
= τ 2,0

∧ ω0
+ τ 2,2

∧ ω2
+ p2τ

1,6
∧ ω1

+ τ 2,4
∧ ω4

+ τ 2,6
∧ ω6.

(9.18)

Here we have written

τ 1,0
= dp1,0 − (p2 p1,0 + p1 p2,0)ω

4
− (p2,6 p1,0)ω

2,

τ 1,1
= dp1,1 − (p2,6 p1,1 + p1 p1,5 p2,6)ω

2
− (p2 p1,1 + p1 p2 p1,5)ω

4,

τ 1,3
= dp1,3 − (p1,0)ω

1
− ((p1)

2 p2,6 + p1,3 p2,6)ω
2

− (p2 p1,3 + (p1)
2 p2)ω

4
− (2p1,1 − p2,0/p2)ω

5,

τ 1,5
= dp1,5 − (p2,6 p1,5)ω

2
− (−p1,1 + p2,0/p2)ω

3
− (p2 p1,5)ω

4.

The expressions for τ 2,0, τ 2,2, τ 2,4 and τ 2,6 are similar to the expressions above since the
entire system is symmetric in the characteristic systems. By interchanging the pairs (1, 2),
(3, 4) and (5, 6) we find the correct expressions. For example

τ 2,0
= dp2,0 − (p1 p2,0 + p2 p1,0)ω

3
− (p1,5 p2,0)ω

1.

In the calculations below an expression τ ∗ will always be equal to dp∗ modulo some terms
ωk . We will not write down the full expressions since these are complicated and are not
necessary to understand the results.

To the linear Pfaffian system generated by α1 and α2 corresponds the tableau(
τ 1,0 τ 1,1 p1τ

2,6 τ 1,3 0 τ 1,5 0
τ 2,0 p2τ

1,5 τ 2,2 0 τ 2,4 0 τ 2,6

)
.

We assume from here on that p1 6= 0 and p2 6= 0. The Cartan characters are s1 = s2 =

s3 = s4 = 2, s5 = s6 = s7 = 0. The dimension of the first prolongation is 16. Since
s1 + 2s2 + 3s3 + 4s4 = 20 ≥ 16, Cartan’s test is not satisfied and the system is not in
involution.

We continue with a of the system. This turns out to be the most efficient way to arrive at a
system in involution, of course a full prolongation would lead to the same result. We expand
the variables p1,5, p2,6 and add the new variables p1,5, j , p2,6, j , j = 0, . . . , 6. We define the
contact forms

α1,5
= dp1,5 − p1,5, jω

j , α2,6
= dp2,6 − p2,6, jω

j .

We are looking for integral manifolds of the system generated by α1, α2, α1,5 and α2,6. First
we have to analyze and absorb any torsion present. For example we have

dα1
≡ (p1,0 − p1 p2,6,4 − p1 p2,2) ω

2
∧ ω4

+ p1 p2,6,6 ω
2
∧ ω6 mod ω0, ω1, ω3, ω5.
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Both terms in the equation above represent intrinsic torsion. We can eliminate this torsion
by restricting to the submanifold defined by p2,6,6 = 0, p1,0 = p1 p2,6,4, + p1 p2,2. We can
continue in this way and by analyzing the structure equations for α1, α2 we find 10 equations
in total. We eliminate the torsion by restricting to the submanifold defined by

p1,5,5 = 0, p2,6,6 = 0,
p1,0 = p1 p2,6,4, + p1 p2,2, p2,0 = p2 p1,5,3 + p2 p1,1,

p1,5,6 = 0, p2,6,5 = 0,
p1,5,4 = p2 p1,5, p2,6,3 = p1 p2,6,

p1,5,2 = p1,5 p2,6 + p1 p2,6,5, p2,6,1 = p1,5 p2,6 + p2 p1,5,6.

We continue with the structure equations for α1,5, α2,6. We eliminate

p1,5,0 = p1,5(p2,2 − p2,6,4), p2,6,0= p2,6(p1,1 − p1,5,3).

At this moment we are dealing with a system on a 19-dimensional manifold. The differential
ideal is generated by four 1-forms and we are looking for 7-dimensional integral manifolds.
The tableau is of the form

p1(τ
2,2

− τ 2,6,4) τ 1,1 0 τ 1,3 0 0 0
p2(τ

1,1
− τ 1,5,3) 0 τ 2,2 0 τ 2,4 0 0

p1,5 p1(τ
2,2

− τ 2,6,4) τ 1,5,1 0 τ 1,5,3 0 0 0
p2,6 p2(τ

1,1
− τ 1,4,3) 0 τ 2,6,2 0 τ 2,6,4 0 0

 .
The Cartan characters are s1 = s2 = 4, s3 = s4 = s5 = s6 = s7 = 0. The dimension of the
first prolongation is 8. Since s1 + 2s2 = 12 > 8, Cartan’s test is not satisfied and the system
is not in involution.

We prolong the system again. We introduce

α1,1
= dp1,1 − p1,2, jω

j , α2,2
= dp2,1 − p2,2, jω

j ,

α1,5,3
= dp1,5,3 − p1,5,3, jω

j , α2,6,4
= dp2,6,4 − p2,6,4, jω

j .

Next we restrict to the submanifold defined by

p1,1,2 = p1 p1,5 p2,6 + p1,1 p2,6, p1,1,4 = p2 p1,1 + p1 p2 p1,5,

p1,1,5 = p1,5,1, p1,1,6 = 0,
p1,5,3,6 = 0, p1,5,3,5 = p1,5,1,

p1,5,3,1 = −p1,5 p2,2 + p1,5 p2,6,4 + p1,1,1,

p1,5,3,3 = p1,1,3 − p1 p2,2 + p1 p2,6,4,

p1,1,0 = p1,1 p2,2 + p1 p1,5 p2,2 + p1 p2 p1,5 p2,6 − p2,6,4 p1,1 − p1 p2,6,4,1,

p1,5,3,2 = p1 p2,6 p1,5 + p2,6 p1,5,3,

p1,5,3,4 = p1 p2 p1,5 + p2 p1,5,3,

p1,5,3,0 = p2,2 p1,5,3 − p1,5,3 p2,6,4 + p1 p1,5 p2,2 + p1 p2 p2,6 p1,5 − p1,5 p2,6,4,3,
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and the equations obtained from the equations above by using the symmetry of the system.
On this submanifold there is no torsion any more. The tableau for the system has the form

0 0 0 τ 1,3 0 0 0
0 0 0 0 τ 2,4 0 0
0 τ 1,5,1 0 0 0 0 0
0 0 τ 2,6,2 0 0 0 0
0 τ 1,1,1 0 τ 1,1,3 0 τ 1,5,1 0
0 0 τ 2,2,2 0 τ 2,2,4 0 τ 2,2,6

0 τ 1,1,1 0 τ 1,1,3 0 τ 1,5,1 0
0 0 τ 2,2,2 0 τ 2,2,4 0 τ 2,2,6


.

The Cartan characters are s1 = 6, s2 = 2 and the other characters are zero. The tableau has
dimension 8 and the dimension of the first prolongation is 10. Since s1+2s2 = 10, the system
is in involution. The general pseudosymmetry of the wave equation depends on 2 functions
of 2 variables. �

9.4 Vector pseudosymmetries
Recall that we have defined a vector pseudosymmetry of a distribution V on M as an inte-
grable distribution U such that [U,V] ≡ 0 mod span(V,U). Because U is integrable, we
can locally always construct the quotient manifold B = M/ span(U). The condition that U
is a vector pseudosymmetry together with the condition that V ∩ U has constant rank implies
that the distribution V projects to a distribution Ṽ on B.

Example 9.4.1. We have already seen many examples of vector pseudosymmetries in the
previous chapters.

• The projections of Monge-Ampère equations (M,V) from the second order equation
manifold to the first order contact bundle are vector pseudosymmetries. The vector
pseudosymmetry is U = C(V ′). This is a vector pseudosymmetry for the two distribu-
tions V ′

±.

• The projections of hyperbolic first order systems (M,V) to a base manifold with almost
product structure (Section 7.1.3). The vector pseudosymmetry is given by the bundle
B1. This is a vector pseudosymmetry for V ′

±.

The elliptic first order systems that project to an almost complex structure are also
examples of projections generated by vector symmetries if we extend the concept of
vector pseudosymmetry in the obvious way to the complexified tangent bundle.

• All Darboux integrable second order equations and all Darboux integrable first order
systems are examples as well. For a Darboux integrable equation or system the tangent
spaces to the fibers of the Darboux projection form an integrable distribution. This
distribution is a vector pseudosymmetry for the characteristic systems.
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It is a good exercise to go through one or more of these examples and check that the projec-
tions are indeed vector pseudosymmetries for the structures mentioned. �

Example 9.4.2. On M = R4 with coordinates x , y, p, q introduce the distributions

V = span
(
∂x + q∂p, ∂y + exp(p)∂q

)
,

U = span
(
∂p, ∂q

)
.

The distribution U is integrable and [V,U] ≡ 0 mod span(V,U), so U is a vector pseu-
dosymmetry for V . There are are no pseudosymmetries of V of the form α∂p + β∂q . This
proves that the projection generated by the vector pseudosymmetry U can not be given as the
composition of two (pseudo)symmetry projections. �

Let (M,V) be a first order system or second order scalar equation. We assume the system
(M,V) is hyperbolic. We are interested in integrable distributions U transversal to V that
are vector pseudosymmetries for both Monge systems of (M,V). The condition that U is a
vector pseudosymmetry for both Monge systems is

[U,V±] ≡ 0 mod span (V±,U) .

Such a distribution locally defines a projection M → B of M onto a 4-dimensional base
manifold such that the Monge systems V± on M are projected to transversal rank 2 distribu-
tions W± on B. Since B has dimension four, the distributions W± define on B an almost
product structure.

The 2-dimensional integral manifolds of (M,V) are locally in correspondence with the
2-dimensional integral manifolds of the almost product structure on B. This correspondence
was already described in the context of the method of Darboux (see Section 8.1.2 for the
method of Darboux as a projection method) and in the context of pseudosymmetries.

Note that this is a generalization of the method of Darboux. Whereas for a Darboux
integrable equation (or system) the projected almost product structure is integrable, this does
not need to happen for a general projection generated by a vector pseudosymmetry. Therefore
we can call the vector pseudosymmetries of this type generalized Darboux projections.

Definition 9.4.3 (Generalized Darboux projection). Let (M,V) be a hyperbolic first or-
der system or hyperbolic second order equation. A transversal vector pseudosymmetry for
(M,V) is an integrable distribution U that is transversal to V and a vector pseudosymme-
try of both Monge systems. The projection generated by U is called a generalized Darboux
projection. 	

Example 9.4.4 (Constant mean curvature surfaces). Consider the equation for constant
mean curvature surfaces

(1 + q2)r − 2pqs + (1 + p2)t
(1 + pq + q2)(3/2)

= C.

Here C is a constant equal to the mean curvature of the surface. For constant mean curvature
zero the equation is called the minimal surface equation. For any value of the mean curvature
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C , the equation is an elliptic second order equation. We can therefore write the equation as a
manifold M with rank 4 distribution V and a complex structure on V .

The constant mean curvature equation is translation invariant in the x , y and z directions.
This means that we can use U = span(∂x , ∂y, ∂z) as a vector pseudosymmetry for V and
the complex characteristic systems of V (the Monge systems). The quotient of the equation
manifold by U is a manifold B with an almost complex structure. The projection π : M → B
intertwines the complex structures on V and T B.

For the minimal surface equation the projection is a Darboux projection and the projected
almost complex structure is integrable. By taking holomorphic curves in the base manifold
B and lifting these curves to M we can parameterize all minimal surfaces. In suitable local
coordinates this is precisely the Weierstrass representation of minimal surfaces (see Dierkes
et al. [22, Section 3.3]). The constant mean curvature equation for non-zero curvature is not
Darboux integrable. This implies that the almost complex structure on the base manifold B
is not integrable, and the projection defines a generalized Darboux projection. �

The projections of the minimal surface equation and of the constant mean curvature equa-
tions have the special property that the distribution U is spanned by symmetries of the equa-
tion.

Suppose we have a hyperbolic second order equation with a 3-dimensional Lie algebra of
symmetries. This Lie algebra spans an integrable distribution U on the equation manifold M
for the equation. At points where U is transversal to the contact distribution of V this defines
vector pseudosymmetry for the equation. The projections generated by vector pseudosym-
metries of this type are called symmetry projections. Examples of equations with symmetry
projections are easy to construct. Any second order equation of the form F(p, q, r, s, t) has
the translations as a 3-dimensional symmetry group. The Lie algebra spans an integrable
distribution that is transversal to the contact distribution on an open subset. For first order
systems invariant that are translation invariant in the x and y directions we can define vector
pseudosymmetries and symmetry projections in the same way, except that the distribution U
will have rank two.

In Chapter 10 we will see that the Darboux projections for many Darboux integrable
equations or systems are not symmetry projections. In Chapter 11 we will give examples of
equations that have a generalized Darboux projection that is neither a Darboux projection nor
a symmetry projection.

9.5 Miscellaneous

9.5.1 Integrable extensions

Integrable extensions are in a certain sense the converse to pseudosymmetries. The concept
is defined in Bryant and Griffiths [17, p. 659] and in Ivey and Landsberg [43, §6.5]. Below
we give some examples of the construction of integrable extensions using conservation laws.
But first we explain the basic idea. A conservation law for a system of partial differential
equations is a 1-form that is closed on the solutions of the system. If we can formulate the
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system as an exterior differential system I in a manifold M , then a conservation law is a 1-
form α such that dα ≡ 0 mod I. For any solution to the system, or equivalently any integral
manifold of the exterior differential system, the form α pulls back to a closed form and hence
there is a potential v such that dv = α. Note that v is not a potential for the entire system
since α is not closed.

Given a conservation law α we can add a pseudopotential v to the system by considering
the product manifold M ′

= M ×R and the exterior differential system I ′ generated by I and
dv − α. Any solution to the original system yields a family of solutions of the new system
(M ′, I ′) by integration of the form dv − α. Conversely, any integral manifold of the new
system produces an integral manifold of the original system by the projection M × R → M .
The new system (M ′, I ′) is called the integrable extension of (M, I) by the conservation law
α.

In the examples below the projection M ′
→ M is given by the integral curves of the

vector field. This vector field is a symmetry or pseudosymmetry for the lifted system.

Example 9.5.1 (Wave equation). Consider the first order wave equation (Example 4.6.5)
u y = vx = 0. We let I be the Pfaffian system dual to the contact distribution. The ideal I is
spanned by the two contact forms θ1

= du − pdx and θ2
= dv − sdy. A conservation law

for this system is given by

α = udx + vdy.

Indeed, dα = du ∧ dx + dv ∧ dy = 0 mod I . We add the pseudopotential z as a new
coordinate together with the 1-form dz − udx − vdy. The lifted system is generated by the
three 1-forms θ , θ1 and θ2. In coordinates z, x , y, u, v, p = ux , s = vy these are given by

θ = dz − udx − vdy,

θ1
= du − pdx, θ2

= dv − sdy.

The lifted system is precisely the exterior differential system for the wave equation zxy = 0.�

Example 9.5.2 (Liouville equation). In this example we use a conservation law of the Li-
ouville equation to construct an integrable extension. Then we use the general solution of the
Liouville equation to find the general solution of the new system. The contact ideal for the
Liouville equation is generated by θ0

= dz − pdx − qdy and the characteristic 1-forms are

θ1
= dp − rdx − exp(z)dy, θ2

= dq − exp(z)dx − tdy.

We consider the two conservation laws defined by

α = exp(z)dx + (1/2)q2dy, β = (1/2)p2dx + exp(z)dy.

It is not difficult to check that dα = dβ = 0 on solutions of the Liouville equation.
We make an integrable extension using the conservation law α. We add the pseudopoten-

tial A and the 1-forms dA − α. The extension has coordinates A, x, y, z, p, q, r, t . For every
solution z(x, y) of the Liouville equation we can find integral manifolds of the closed form
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dA − α. The lifted system is precisely the prolongation of the first order system for the two
functions z, A given by

Ax = exp(z), Ay = (1/2)(zy)
2. (9.19)

The vector field ∂A is a pseudosymmetry of the prolonged characteristic systems.
For a given function z that satisfies the Liouville equation, the solutions of the sys-

tem (9.19) are a 1-parameter family of functions A(x, y) that satisfy the differential equation

Axy = Ax
√

2Ay . (9.20)

Conversely, for any solution A of the equation above we can define

z(x, y) = log
(
∂A(x, y)
∂x

)
.

Then z is a solution to the Liouville equation.
The general solution to the Liouville equation can be expressed as

z(x, y) = log
(

2φ′(x)ψ ′(y)
(φ(x)+ ψ(y))2

)
,

for arbitrary functions φ,ψ . The system obtained by substitution of this solution in the
equations (9.19) yields the (rather complicated) solution

A(x, y) =
(φ + ψ)

∫
ψ ′′/(ψ ′)2dy − 2ψ ′

+ C(φ + ψ)

φ + ψ
,

where C is an arbitrary constant of integration.
We note that the equation (9.20) is Darboux semi-integrable. One of the characteris-

tic systems has three invariants, the other system has only one first order invariant. So the
integration of this equation by solving ordinary differential equations alone is not very sur-
prising. �

9.5.2 Bäcklund transformations
Bäcklund transformations are closely related to pseudosymmetries. We do not develop any
general theory here but we will give several examples to illustrate that the concept of a pseu-
dosymmetry can be used to understand Bäcklund transformations.

Whenever we have two different pseudosymmetries of a system we can construct a Bäck-
lund transformation between the two quotient systems. In Example 9.5.3 below we construct
a Bäcklund transformation between two first order systems that are not equivalent under con-
tact transformations.

Example 9.5.3. Consider the wave equation zxy = 0. The equation manifold M is 7-dimen-
sional and we can introduce the coordinates x, y, z, p, q, r, t . The two characteristic systems
are given by

F = span
(
∂x + p∂z + r∂p, ∂r

)
, G = span

(
∂y + q∂z + t∂q , ∂t

)
.
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We will look at the projections generated by the symmetry V1 = ∂z and the pseudosymmetry
V2 = ∂z − p∂p − r∂r .

The quotient of M by V1 we denote by M1. On M1 we have coordinates x, y, u = p, v =

q, a = r, b = t . The characteristic systems project down to

F1 = span
(
∂x + a∂u, ∂a

)
, G1 = span

(
∂y + b∂v, ∂b

)
.

These bundles define precisely the equations u y = vx = 0.
The quotient of M by V2 we denote by M2. On M2 we can use the 6 invariants of V2

as coordinates. We choose x, y, ũ = p exp(z), ã = (r + p2) exp(z), ṽ = q, b̃ = t . The
characteristic systems project down to

F2 = span
(
∂x + ã∂ũ, ∂ã

)
, G2 = span

(
∂y + ũṽ∂ũ + b̃∂ṽ, ∂b̃

)
.

These bundles define precisely the first order system u y = uv, vx = 0. This system is
(2, 3)-Darboux integrable.

The two projections together give a Bäcklund transformation from the system M1 to the
system M2. Starting with a solution u(x, y), v(x, y) of the system M1 we can construct a
potential w(x, y) that satisfies wx = u, wy = v. This potential is a solution to the wave
equation and is unique up to a constant. Then we project this solution to the system M2. We
find ũ = u exp(w), ṽ = v. We can easily check that the pair ũ, ṽ is a solution to the system
M2. �

Example 9.5.4 (Cole-Hopf transformation). The Cole-Hopf transformation is a transfor-
mation between the dissipative version for Burgers’ equation

ut = (ux + u2)x

and the heat equation

vt = vxx .

For any solution u of Burgers’ equation there exists a potential w such that wx = u and
wt = ux +u2. If we then define v = exp(w), the function v is a solution to the heat equation.
Conversely, for any solution v of the heat equation we can take (ln v)x = vx/v as a solution
to Burgers’ equation.

Let M be the infinite equation manifold for the heat equation, with internal coordinates
x, y, v, vx , vxx , . . .. Let V be a vector field on M and suppose we want that the quotient
of M by V gives the equation manifold of Burgers’ equation. Then V must leave x, t, u =

ln(v)x = vx/v invariant and also leave uxx , uxxx , . . . invariant. We write v j for the j-th order
derivative of v with respect to x . It is clear that V must be of the form V =

∑
n αn∂vn . We

define α0 = v and calculate the other coefficients order by order. (Making another choice of
α0 would lead to the same results).

V (u) = V (vx/v) = α1/v − vxα0/v
2.
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Hence α1 = vxα0/v = vx . Continuing in this way we find quickly that

V = v∂v + v1∂v1 + v2∂v2 + . . . .

The vector field V is just the scaling symmetry of the heat equation. This is a true symmetry
that is already defined on the second order jet bundle.

Note that one solution to Burgers’ equation yields a 1-parameter family of solutions to the
heat equation. A solution to the heat equation however yields only one solution to Burgers’
equation. For this reason the Cole-Hopf transformation is not always regarded as a Bäcklund
transformation. It is an example of a classical symmetry reduction. �

Example 9.5.5 (KdV and mKdV). Some classical Bäcklund transformations can be formu-
lated as pseudosymmetries on an infinite jet bundle. The example below is a very famous
example of a Bäcklund transformation. Here we formulate the transformation as taking the
quotient by a pseudosymmetry defined on an infinite jet bundle.

There is a Bäcklund transformation between the Korteweg-de Vries (KdV) equation and
the modified Korteweg-de Vries (mKdV) equation. We take as representations of these two
equations

ut = −uxxx − 6uux , (KdV)

vt = −vxxx − 6(µ− v2)vx . (mKdV)

The transformation that maps solutions of the mKdV equation to solutions of the KdV equa-
tion is

u = vx − v2
+ µ. (9.21)

The converse transformation is through an integration procedure. For µ = 0 this is the Miura
transformation. See Ivey and Landsberg [43, p. 234] or [73] for more details.

We introduce the equation manifold M for the mKdV equation with coordinates x , t , v,
vx = v1, vxx = v2, . . . and the equation manifold B for the KdV equation with coordinates
x , t , u, u1, u2, . . .. On M we define the total vector fields X = ∂x + v1∂v + v2∂v1 + . . . and

T = ∂t + (−v3 − 6(µ− v2)vx )∂v + X (−v3 − 6(µ− v2)vx )∂v1 + . . . .

These two total vector fields span the contact distribution on the infinite jet bundle. On B we
define the total vector fields X B = ∂x + v1∂v + . . . and

TB = ∂t + (−u3 − 6uux )∂u + X B(−u3 − 6uux )∂u1 + . . . .

The transformation (9.21) defines a projection π : M → B. The point (x, t, v, v1, . . .) on
M is mapped to the point (x, y, u, u1, . . .) on B with un = Xn(vx − v2

+ µ). Under the
projection the total vector fields X and T on M are mapped to the total vector fields X B and
TB on B, respectively.

We define the vector field V =
∑

n αn∂vn with α0 = 1, α1 = 2v, αn = V Xn−1(v2).
The vector field V is well-defined, one can calculate the terms αn order by order. The term
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αn only depends on the part of V of order n − 1. For example α1 = V (v2) = 2v and
α2 = V X (v2) = V (2vv1) = 2V (v)v1 + 2vV (V1) = 2v1 + 4v2. Note that V is constructed
such that V (vn − Xn−1(v2)) = V Xn−1(vx − v2

+ µ) = 0. This expresses that V leaves
un invariant for all n ≥ 0. Since V leaves invariant x , t , u, u1, . . . , the quotient of M by
the integral curves of V gives the transformation u = vx − v2

+ µ. Hence the projection
π from M to B is defined by taking quotient of M by the integral curves of the vector field
V . We will show that V is a pseudosymmetry of the contact structure on M in the sense that
[V, X ] ≡ 0 mod V and [V, T ] ≡ 0 mod V

We claim that [V, X ] = 2vV and will proof this order by order. First note that V =

∂v + 2v∂v1 + (2v1 + 4v2)∂v2 plus higher order terms. Then

[V, X ] = (2v∂v + . . .)− (X (2v)∂v1 + . . .) = 2v∂v + . . . .

So [V, X ] = 2vV modulo terms ∂v1 and higher order. Now suppose [V, X ] = 2vV up to
order m. Then we find

[V, X ] = [

∑
n

αn∂vn , ∂x +

∑
n

vn+1∂vn ]

=

∑
n

αn+1∂vn − X (αn)∂vn

=

∑
n

(αn+1 − X (V Xn−1(v2)))∂vn

=

∑
n

(αn+1 − V Xn(v2)− [X, V ]Xn−1(v2))∂vn

=

∑
n

[V, X ]Xn−1(v2))∂vn .

Note that Xn−1(v2) is of order n − 1 in x . Therefore by our induction assumption we have

[V, X ] =

m∑
n=1

2vV Xn−1(v2))∂vn + . . .

=

m∑
n=1

2vαn∂vn + . . . = 2vV + . . . ,

where the ellipsis mean order m + 1 or higher. By induction we have [V, X ] = 2vV .
By a direct calculation we find

V X (vt ) = −4vv2 + α2(−6µ+ 6v2)− 2v3 − 16v4
= V T (v2).

Using the commutation relations we then find for all n ≥ 0

V Xn(vt ) = V T Xn−1(v2).

We want to prove that [V, T ] = κt V for a differential function κt . By calculating the first
few terms of [V, T ] by hand we quickly find that κt must be equal to (−12vµ+ 4v3

− 2v2)



9.5 Miscellaneous 237

and that [V, T ] = κt V holds for the lowest order terms. Assume the statement holds up to
order m. Using the properties of V found already and the fact that [X, T ] = 0 we calculate

[V, T ] =

∑
n

V Xn(vt )∂vn − T V Xn−1(v2)∂vn

=

∑
n

(V Xnvt − V T Xn−1(v2)+ [V, T ]Xn−1(v2))∂vn

=

∑
n

[V, T ]Xn−1(v2)∂vn

=

m∑
n=0

κt V Xn−1(v2)∂vn + . . .

= κt V + . . . (terms of order m + 1 and higher).

We have proved the induction step and hence [V, T ] = κt V . The vector field V preserves the
total vector fields modulo V itself and hence V is a pseudosymmetry.

The vector fields V cannot be scaled to a symmetry. To make φV into a symmetry means
solving 2vφ − X (φ) = 0, κtφ − T (φ) = 0. This is not possible with a differential function
φ, i.e., a function depending on a finite number of jet coordinates. We can say that the
Bäcklund transformation from the KdV equation to the mKdV equation is an example of a
pseudosymmetry projection. �

Example 9.5.6 (Sine-Gordon equation). An auto-Bäcklund transformation is a Bäcklund
transformation from a system to the system itself. A classical example of an auto-Bäcklund
transformation is that of the Sine-Gordon equation. Consider the system

ux − vx = λ sin(u + v),

u y + vy = λ−1 sin(u − v).
(9.22)

For any solution u, v of the system, the individual functions u and v both satisfy the Sine-
Gordon equation

uxy = sin(2u). (9.23)

Conversely, for any solution u of the Sine-Gordon equation the system (9.22) reduces to a
compatible determined system for v. Hence we can solve v by integration. The transforma-
tion from u to v using this procedure is an auto-Bäcklund transformation of the Sine-Gordon
equation. We will formulate this transformation in terms of a pseudosymmetry. The system
is formulated on a higher order bundle than in the normal presentation. We need this one
order higher to be able to define the pseudosymmetries.

The system (9.22) is a hyperbolic first order system. In coordinates x , y, u, v, a = ux ,
b = vy the two characteristic systems are given by

span(∂x + a∂u + (a − λ sin(u + v))∂v + sin(v) cos(v)∂b, ∂a),

span(∂y + −(b − λ−1 sin(u − v))∂u + b∂v + sin(u) cos(u)∂a, ∂b).
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We prolong this system one time. The prolongation (M (1),F (1),G(1)) is a hyperbolic exterior
differential system of class s = 4. We introduce two additional coordinates A, B. The
prolonged characteristic systems are given by

F (1) = span
(
∂x + a∂u + (a − λ sin(u + v))∂v

+ sin(v) cos(v)∂b + A∂a + b(2 cos(v)2 − 1)∂B, ∂A
)
,

G(1) = span
(
∂y + −(b − λ−1 sin(u − v))∂u + b∂v

+ sin(u) cos(u)∂a + a(2 cos(u)2 − 1)∂A, ∂B
)
.

For the prolonged system we want to find pseudosymmetries. We want the first pseudosym-
metry to project onto a system describing the equation uxy = sin(2u). Using the ansatz

V = ∂v + α∂b + β∂B

and the condition that V leaves invariant x, y, u, ux , uxx , we quickly find that we should take

V1 = ∂v + −λ−1(cos(u) cos(v)+ sin(u) sin(v))∂b

− λ−1(2b(sin(u) cos(v)− cos(u) sin(v))− λ−1)∂B .

By direct calculation we find that V1 is a true pseudosymmetry of the distributions F (1) and
G(1). In a similar way we find that

V2 = ∂u + λ(cos(u) cos(v)− sin(u) sin(v))∂a

− λ
(
2a(sin(u) cos(v)+ cos(u) sin(v))− λ

)
∂A

is a pseudosymmetry of F (1) and G(1). The vector field V2 leaves v and the derivatives of v
with respect to y invariant.

The quotient of the 8-dimensional equation manifold M (1) by the integral curves of V1 is a
7-dimensional manifold with two characteristic bundles. By introducing proper coordinates it
is not difficult to see that this manifold is precisely the equation manifold for the Sine-Gordon
equation for u. In the same way the quotient of M (1) by V2 is equal to the equation manifold
of the Sine-Gordon equation for v.

The auto-Bäcklund transformation of the Sine-Gordon equation can be described as fol-
lows. We start with a solution of the Sine-Gordon equation. We can lift this solution to a
1-parameter family of solutions of the hyperbolic exterior differential system M (1) using the
pseudosymmetry V1. Then projection to the equation manifold of the Sine-Gordon equation
using the other pseudosymmetry V2 yields a 1-parameter family of solutions of the Sine-
Gordon equation.

�
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M (1)

prolongation

V1

xxrrrrrrrrrr
V2
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Sine-Gordon
uxy = sin(2u)

oo auto-Bäcklund //_____________

OO

Sine-Gordon
vxy = sin(2v)

M
system (9.22)

Figure 9.2: Bäcklund transformation for the Sine-Gordon equation.





Chapter 10

Tangential symmetries

We give a geometric construction of the tangential symmetries described by Vassiliou [66].
These tangential symmetries are a geometric realization of the Lie algebras associated to Dar-
boux integrable equations by Vessiot [69, 70]. Our geometric construction makes it possible
to generalize a large part of the results to a much more general setting.

10.1 Reciprocal Lie algebras
Let g be an n-dimensional Lie algebra and let α : g → X (M) be an injective representation
of g in the space of vector fields on M . In the theory to be developed below we will work lo-
cally and M will be of the same dimension as g, so we can think of M as an open subset of Rn .
We say the representation is locally transitive if α(g) locally generates as a C∞(M)-module
the space of vector fields X (M). If dim M = dim g = n, then a transitive representation
defines an injective map g → X (M) and we can identify g with its representation as vector
fields on M .

A Lie algebra of vector fields on M is a Lie subalgebra of X (M). For any Lie algebra g
of vector fields on M we can define the evaluation map

ev(g)x : g → Tx M : X 7→ X (x).

A Lie algebra g of vector fields on M is locally transitive if for each point in x ∈ M the
evaluation map ev(g)x is a linear isomorphism from g onto Tx M .

Example 10.1.1. Let g be the 2-dimensional abelian Lie algebra spanned by the two vectors
e1, e2. A representation of g is given by the map g → X (R2)

e1 7→ ∂x1 , e2 7→ ∂x2 .

Let aff(1) be the 2-dimensional affine algebra. This algebra is spanned by e1, e2 and
[e1, e2] = e2. A representation is given by

e1 7→ ∂x1 − x2∂x2 , e2 7→ ∂x2 . �
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We define the centralizer of g to be the Lie algebra of vector fields that commute with g.

Theorem 10.1.2. Let M be a smooth manifold. Let g be an n-dimensional locally transi-
tive Lie subalgebra of X (M). Then the centralizer h is an n-dimensional locally transitive
Lie algebra of vector fields. The Lie algebra g is anti-isomorphic with h in the sense that
for every point x ∈ M the linear isomorphism αx = (ev(h)x )−1

B ev(g)x is a Lie algebra
anti-homomorphism. In particular for all vector fields X, Y ∈ g we have αx ([X, Y ]) =

−[αx (X), αx (Y )].

Proof. Let x ∈ M . Let G denote the local Lie group of diffeomorphisms which is generated
by g (see for example Duistermaat and Kolk [28, Section 1.8]). Then ev(g)x is equal to
the tangent mapping at the identity element of g 7→ g(x). Since ev(g)x is bijective we can
conclude from the inverse mapping theorem that there is an open neighborhood of the identity
element in G such that φ : g 7→ g(x) is a diffeomorphism onto an open neighborhood V of
x in M . Under this diffeomorphism every element X ∈ g (which is a vector field on M) is
identified with the left-invariant vector field X L on G.

Every Y ∈ h locally defines a vector field Ỹ on G (by the diffeomorphism φ). The vector
field Ỹ is invariant under the action of g and hence is invariant under the infinitesimal right
multiplications. But then Y is right-invariant as well and hence Ỹ = Y R . This shows that
h is generated by the right-invariant vector fields. The right-invariant vector fields define a
locally transitive Lie algebra of vector fields on G and hence on M .

Finally we note that X L
7→ X R is a Lie algebra anti-homomorphism from the Lie algebra

of left-invariant vector fields to the Lie algebra of right-invariant vector fields and this proves
the last part of the theorem. �

If g is a locally transitive Lie algebra of vector fields, then the centralizer h is locally
transitive as well and g is the centralizer of h. We say that g and h are reciprocal Lie algebras
and h is the reciprocal Lie algebra of g.

Example 10.1.3 (Reciprocal Lie algebra). Consider the affine Lie algebra aff(1), repre-
sented by the two vector fields

e1 = ∂x1 − x2∂x2 , e2 = ∂x2 .

Then the reciprocal Lie algebra is generated by

f1 = ∂x1 , f2 = exp(−x1)∂x2 .

Note that [e1, e2] = e2 and [ f1, f2] = − f2 so the structure constants for both Lie algebras
are related by a minus sign. �

We will end this section with a lemma on reciprocal Lie algebras. We will use this lemma
in Section 10.3.1.

Lemma 10.1.4. Let M be a smooth connected manifold with Lie algebras of vector fields g,
h. We assume that i) for all X ∈ g and Y ∈ h we have [X, Y ] = 0 and ii) for all x ∈ M
the evaluation maps ev(g)x : g → Tx M and ev(h)x : h → Tx M are surjective. Then for all
x ∈ M the maps ev(g)x and ev(h)x are injective and hence g, h are reciprocal Lie algebras
of dimension equal to the dimension of M.
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Proof. Suppose that X ∈ g with X (x) = 0. Let H be the local Lie group of local diffeomor-
phisms with Lie algebra h. It follows from (ii) that H acts locally transitive on M and from (i)
that X is invariant under the action of H . This implies that X is identically zero on a neigh-
borhood of x . It follows that the zero-set of X is open. Since X is continuous the zero-set is
closed as well and since we have assumed M is connected X = 0. This proves that ev(g)x is
injective for all points x ∈ M . The rest of the lemma follows from Theorem 10.1.2. �

10.2 Reciprocal Lie algebras on Lie groups

Theorem 10.2.1 (Lie’s Third Fundamental Theorem). Let g be a finite-dimensional Lie
algebra. Then there is a simply connected Lie group G with Lie algebra equal to g.

Proof. See Duistermaat and Kolk [28, Theorem 1.14.3]. �

The Lie algebra g = TeG of a Lie group G is equal to the tangent space of G at the identity
element. The Lie brackets on g can either be defined using the adjoint action (induced from
the conjugation map on G) or using the left-invariant vector fields on G. Using the right-in-
variant vector fields is also possible, but this leads to a an anti-homomorphic Lie algebra. In
our conventions (Section 1.2.1) the map X 7→ X L which maps a vector X ∈ g to the left-in-
variant vector field X L with X L

e = X is a Lie algebra homomorphism. The map X 7→ X R is a
Lie algebra anti-homomorphism. For details on the relation between the different definitions
of a Lie algebra see Frankel [34, pp. 402, 486] and Duistermaat and Kolk [28, pp. 2–3, 41].

Theorem 10.2.2. The left- and right-invariant vector fields on a Lie group commute. The
center of the Lie algebra is equal to the vector fields that are both left- and right-invariant.

Proof. Note that for any Lie group G the left and right multiplication are commutative, i.e.,
Lx Rz y = Rz Lx y = xyz, for all x, y, z ∈ G. From this it follows that

Tyz Lx B Ty Rz = Txy Rz B Ty Lx .

The left-invariant vector fields act by right translations (Lemma 1.2.1). This implies that the
right-invariant vector fields are invariant under the flow generated by left-invariant vector
fields and hence the left-invariant and right-invariant vector fields commute. A vector field X
that is both left- and right-invariant commutes with both left- and right-invariant vector fields.
Hence X is in the center of both gL and gR . Conversely, if X is in the center of gL , then X L

commutes with all left-invariant vector fields. From the theory of reciprocal Lie algebras it
follows that X L must be a right-invariant vector field. �

The left- and right-invariant vector fields on a Lie group commute and this implies that
the left- and right-invariant vector fields are reciprocal Lie algebras.
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Example 10.2.3. The left- and right-invariant vector fields on the affine group from Exam-
ple 1.2.2 are reciprocal.

[X1, Y1] = [a∂a, a∂a + b∂b] = 0,
[X1, Y2] = [a∂a, ∂b] = 0,
[X2, Y1] = [a∂b, a∂a + b∂b] = 0,
[X2, Y2] = [a∂b, ∂b] = 0. �

10.3 Darboux integrable pairs of distributions
In this section we will consider a pair of distributionsF,G on a manifold M . We assume some
properties of the bundles and show that this leads to a very rigid structure on the manifold.
We denote by nF and nG the number of invariants of the bundles F and G, respectively. As
usual we assume all objects defined are of constant rank.

Definition 10.3.1. Let M be an n-dimensional manifold with two distributions F,G. We call
F,G ⊂ T M a pair of Darboux integrable distributions on M if F,G are of constant rank
and the following conditions hold:

• The intersection of F and G is empty.

• V = F ⊕ G has no invariants.

• [F,G] ≡ 0 mod F ⊕ G.

• The number of invariants for each of the bundles is equal to the rank of the other bundle,
i.e., nF = rank(G) and nG = rank(F).

The triple (M,F,G) is called a Darboux integrable system or a Darboux integrable pair of
distributions. 	

Remark 10.3.2. The condition that V has no invariants is not essential. If V has p invariants,
then the completion of V is an integrable distribution of codimension p. We can restrict
ourselves to the leaves of this distribution and on each leaf the pair F , G can form a pair
of Darboux integrable distributions. For simplicity we will always assume that V has no
invariants. �

Remark 10.3.3. It can happen that F has more invariants than the rank of G (or G more
invariants than the rank of F , or both). In this case we can often carry out a construction
very similar to the construction to be described below. In particular the Darboux integrability
property is preserved. �

Example 10.3.4. Let M = R2 with coordinates x, y. Then we can take F to be spanned by
the vector field ∂x and G spanned by ∂y . The bundle F has y as an invariant, the bundle G
has x as an invariant. The triple (M,F,G) is a Darboux integrable pair of distributions.

This can be generalized. For every direct product M1 × M2 the distributions F = T M1
and G = T M2 define a Darboux integrable pair of distributions on M1 × M2. �
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Example 10.3.5. Consider the equation manifold associated to the Liouville equation. On
this manifold we have two natural distributions defined by the characteristic systems. In
coordinates x, y, z, p, q, r, t we have

F = span
(
∂x + p∂z + r∂p + exp(z)∂q + q exp(z)∂t , ∂r

)
,

G = span
(
∂x + q∂z + exp(z)∂p + t∂q + p exp(z)∂r , ∂t

)
.

The bundle F has two invariants y, t −q2/2 and the bundle G has two invariants x, r − p2/2.
The bundles F and G form a pair of Darboux integrable distributions. All Darboux integrable
equations provide examples of pairs of Darboux integrable distributions. �

Given a pair of Darboux integrable distributions F , G there is a natural projection onto
the space of invariants. The completions of F and G are integrable and hence they define a
foliation of M of codimension nF and nG , respectively.

Definition 10.3.6. Locally define B1 to be the quotient of M by the completion of G and B2
to be the quotient of M by the completion of F . Let π1 and π2 be the projection of B on
B1 and B2, respectively. The projection π = π1 × π2 : M → B = B1 × B2 is a natural
projection onto the manifold B = B1 × B2 of dimension nG + nF . We call such a projection
a Darboux projection. 	

The tangent spaces to the fibers of the Darboux projection are equal to the integrable
distribution Z = Fcompl

∩ Gcompl. We write z for the Lie algebra of vector fields tangent
to the projection. The vector fields z are precisely the vector fields in the distribution Z .
The functions that are invariants of F are functions in π∗

1 (C
∞(B1)). The functions that are

invariants of G are functions in π∗

2 (C
∞(B2)).

Lemma 10.3.7. The distributions F and G project onto B. The image of F is equal to the
tangent space of B1 × { pt } and the image of G is equal to the tangent space of { pt } × B2.

Proof. The last condition in Definition 10.3.1 implies that dim B = rankV . The together
with the fact that V has no invariants implies that the projection of V is onto T B. Since
F is contained in Fcompl and B2 is defined locally as the foliation of M by the leaves of the
completion ofF , the projection of vectors inF is contained in the tangent space to B1×{ pt }.
SinceF has rank nG andF is transversal to the projection π (since V is transversal) the image
of F under Tmπ has rank nG and must be equal to the tangent space to B1 × { pt }. For G a
similar argument works. �

Since the bundles F and G project nicely onto B we can lift vectors and vector fields on
B to vectors and vector fields on M . Another way of saying this is that V = F ⊕ G provides
a connection for the bundle M → B. We have the following commutative diagram.

M

π

��

V //

Tπ
��

	

F ⊕ G

Tπ1×Tπ2
��

B T B // T B1 × T B2
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Remark 10.3.8. The reason for calling the pair F , G a pair of Darboux integrable distribu-
tions is that classical Darboux integrability falls under this definition and one of the main
properties is preserved, namely the construction of integral manifold by explicit parameteri-
zation.

Suppose we are looking for 2-dimensional integral manifolds of the bundle V that satisfy
the independence condition that at each point the tangent space of the integral manifold in-
tersected with both F and G is non-empty. We can parameterize these integral manifolds in
the following way. Select a curve γ1 in B1 and a curve γ2 in B2. The product of these two
curves is a surface S in B. The distribution V restricts on the inverse image of S under π to a
Frobenius distribution of rank 2. The leaves of this distribution are integral manifolds of V .�

10.3.1 Lie algebras of tangential symmetries
Let (M,F,G) be a Darboux integrable pair of distributions. Select locally a basis of commut-
ing vector fields F̃1, . . . , F̃nG , nG = rankF for B1 and G̃1, . . . , G̃nF for B2, i.e., [F̃i , F̃ j ] =

0, [G̃i , G̃ j ] = 0. As vector fields on B = B1 × B2 we then automatically have [F̃i , G̃ j ] = 0.
We can lift these vector fields to unique vector fields in M by requiring that the lifted vector
fields are contained in V . We write Fi and G j for the lift of F̃i and G̃ j , respectively. Since
the vector fields Fi and G j are contained in F and G, respectively, their Lie brackets [Fi ,G j ]

must be contained in V . On the other hand, the projections have Lie bracket [F̃i , G̃ j ] equal
to zero and therefore [Fi ,G j ] must be contained in the tangent space of the fibers of the pro-
jection. But V is transversal to the fibers of the projection and it follows that [Fi ,G j ] = 0.
SinceF has nF invariants, the codimension of the completion ofF is equal to nF on an open
dense subset. The same is true for G. To carry out our constructions we will sometimes need
to restrict to a suitable open subset on which this is the case.

We will use the vector fields Fi and G j to construct various Lie algebras on the fibers
of the projection. We only make a choice of vector fields to make the constructions and the
proofs easier, most of the Lie algebras that we construct are independent of the choice of Fi
and G j .

We define f as the Lie algebra of vector fields (over R, not over C∞(M)) generated by
Fi , 1 ≤ i ≤ rankF . This Lie algebra is contained in the Lie algebra of vector fields in the
completion of F and is not necessarily finite-dimensional. We define g as the Lie algebra of
vector fields generated by Gi , 1 ≤ i ≤ rankG.

For two vector fields Fi , F j the Lie bracket [Fi , F j ] is tangent to the fibers of the projec-
tion π . This follows from the fact that the Fi are lifts of commuting vector fields and hence
Tπ([Fi , F j ]) = [F̃i , F̃ j ] = 0. This implies that the derived Lie algebras f′ and g′ consist of
vector fields that are tangential to the projection. Since the generators Fi for f are not tangen-
tial we find that f′ = f ∩ z. The elements of f′ commute with the elements in g and hence the
elements of f′ are symmetries of G that are tangential to the projection π .

Definition 10.3.9. Let (M,F,G) be a Darboux integrable pair of distributions with projec-
tion π : M → B1 × B2. We define the tangential symmetries of F and G as the space of all
vector fields in z that are symmetries of the distributions F and G, respectively. We write f̃
and g̃ for the tangential symmetries of G and F , respectively. 	
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The name tangential characteristic symmetries was introduced by Vassiliou [66]. The
discussion above shows that the vector fields in f′ are all tangential symmetries of G. We will
see below (Lemma 10.3.10) that the tangential symmetries can be expressed in terms of the
Lie algebras f′ and g′.

For every point b ∈ B = B1 × B2 we write Mb for the fiber π−1(b). We write zb for the
vector fields on Mb. For the tangential vector fields z we define the restriction map

ρb : z → zb. (10.1)

The restriction map is a Lie algebra homomorphism.
Since the vector fields in f′ and g′ are tangential we can define the restriction maps ρb :

f′ → zb and ρb : g′
→ zb as well. We denote the image of f′ under ρb by f′b and the image

of g′ under ρb by g′

b. Since the Lie algebras f′ and g′ commute, the Lie algebras f′b and g′

b are
commuting Lie algebras of vector fields on Mb.

The distribution F has codimension nF on an open dense subset. Therefore on an open
dense subset the vector fields in the Lie algebra f′ span the tangent space to the fiber. We can
choose a set of vector fields X1, . . . , Xm (m is the dimension of the fibers) in f′ such that the
restriction of these vector fields to a fiber Mb is a basis for f′b. Let X be a tangential symmetry
of G. Since the vector field X is tangential we can write X = c j X j for certain functions c j .
Since X is a tangential symmetry, the commutator of X with G is contained in G and hence
for all Y ⊂ G

[X, Y ] ≡ [c j X j , Y ] ≡ c j [X j , Y ] − Y (c j )X j ≡ Y (c j )X j ≡ 0 mod G.

This implies Y (c j ) = 0 for all Y ⊂ G and hence the c j are functions of the invariants
of G only, so c j

∈ π∗

1 (C
∞(B1)). This proves that the tangential symmetries of G are a

π∗

1 (C
∞(B1))-module over the Lie algebra f′. We have proved

Lemma 10.3.10. The tangential symmetries of G are a π∗

1 (C
∞(B1))-module over f′. The

tangential symmetries of F are a π∗

2 (C
∞(B2))-module over g′.

The Lie algebras f′ and g′ depend on the choice of commuting vector fields F̃i and G̃ j ,
respectively. The Lie algebras of tangential symmetries f̃ and g̃ are independent of this choice.
This is clear from Definition 10.3.9. In the lemma below we show that the Lie algebras f′b
and g′

b are also independent of the choice of commuting vector fields.

Lemma 10.3.11. For every point b ∈ B the Lie algebras f′b and g′

b on Mb are invariantly
defined reciprocal Lie algebras. The type of the Lie algebra does not depend on the point
b ∈ B.

Proof. The Lie algebra f′ is tangential to the fibers of the projection. Since F has only
nF = rankG invariants, it follows that for y in an open dense subset of M the image of the
evaluation map ev(f′)y : f′ → Ty Mb spans the tangent space Ty Mπ(y). This in turn implies
that for all points x in an open subset of Mb the evaluation map ev(f′b)x : f′b → Tx Mb is
surjective. The same is true for g′

b. Hence we can apply Lemma 10.1.4 to f′b and g′

b and
conclude that f′b and g′

b are reciprocal Lie algebras on Mb. From the definitions it follows
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directly that the Lie algebra f′b only depends on the choice of vector fields Fi , and not on the
choice of the vector fields G j . In the same way g′

b does only depend on the choice of G j . On
the other hand, f′b is the centralizer of g′

b in the fiber Mb and hence f′b only depends on the
choice of G j . This implies that f′b is invariantly defined.

Make a choice of m vector fields X i in f′ such that at each point the vector fields span the
tangent space to the fibers of the projection. Locally, near a point x ∈ Mb, we can think of
the vector fields X i as a a section of the homomorphism ρb : f′ → g′

b.
Since the vector fields X i span the tangent space to the fiber and the commutator of two

tangential vector fields is tangential again, we have [X i , X j ] = ck
i j X k for certain functions

ck
i j . Since the X i commute with g it follows that the functions ck

i j depend only on the invari-
ants of G. If we restrict to one of the leaves of the completion of G, then the invariants of G
are constant and hence the coefficients ck

i j will be constant. Locally the leaves are foliated by
the fibers of the projection and the fact that the coefficients ck

i j depend only on the invariants
of G shows that all fibers Mb in the same leaf of the completion of G have an isomorphic Lie
algebra f′b. So if we move in the direction of the completion of G, then the type of f′b does not
change. For the same reason the Lie algebras g′

b for all fibers Mb in a leaf of the completion
of F have the same type.

The type of f′b is equal to the type of g′

b (reciprocal Lie algebras are anti-isomorphic).
Therefore if we move in the directions of F and G the type of both g′

b and f′b does not change.
Hence the type of the reciprocal Lie algebras on the fibers is independent of the choice of
fiber Mb. �

We conclude that the fibers of the projection carry an invariant structure of two reciprocal
Lie algebras. Since the type is locally constant, the type of the Lie algebra is an invariant of
the Darboux integrable pair of distributions.

The next step is to extend the Lie algebras on the fibers to Lie algebras on M .

Lemma 10.3.12. On M there exist finite-dimensional Lie subalgebras L, R of f̃ and g̃, re-
spectively, such that for all fibers Mb the restriction map ρb defines a Lie algebra isomor-
phism to the Lie algebras on the fibers. The Lie algebras L and R are commuting.

Proof. Choose a basis of vector fields X j for z contained in f′. The Lie brackets of the X j
define the structure coefficients

[X i , X j ] = ck
i j Xk . (10.2)

We already know that these structure coefficients are functions in π∗

1 (C
∞(B1)). Choose

a fiber Mb0 . Since the type of the Lie algebra is constant for each fiber there exists for
every point b1 ∈ B1 a linear transformation µ̃(b1) ∈ GL(m,R) such that the vector fields
Yi = µ̃(b1)

j
i X j have the same structure constants as the restrictions of X j to the fiber Mb0 .

Locally we can arrange that µ̃ : B1 → GL(m,R) is a smooth map, see Remark 10.3.13.
The new vector fields Y j have the structure of a finite-dimensional Lie algebra L and

this Lie algebra consists of tangential symmetries of G. In the same way we can construct a
finite-dimensional Lie subalgebra R of g̃. �
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We call L and R tangential Lie algebras of symmetries of G and F , respectively. The
choice of a basis for the tangential Lie algebras is not unique. We can for example multiply
a basis X j of L with a matrix ck

j ∈ GL(m,R) ⊗ π∗

1 (C
∞(B1)). For all points x ∈ M the

matrix ck
j (x) acts on the structure constants of L . If for all points x the matrix ck

j (x) is in
the stabilizer of the structure constants, then the vector fields ck

j Xk define a Lie algebra of
tangential symmetries as well.

Remark 10.3.13. Let L be the space of Lie algebra structures on Rm . This space is an
algebraic variety in Cm = 32(Rm)∗ ⊗ Rm defined by anti-symmetry and the Jacobi identity.
The group G = GL(m,R) acts on Cm . The vector fields X j from Lemma 10.3.12 define a
map µ : B1 → Cm by assigning to a point b1 ∈ B1 the structure constants of X j in a fiber
above b1 (the structure coefficients are independent of the point in B2). Since the vector fields
X i are smooth, the map µ is smooth as well. By assumption the image of µ is contained in a
single orbit A of the action of G.

Let a be equal to µ(x). Then the orbit A is equal to G/Ga , where Ga is the stabilizer
subgroup of the point a in the orbit. We want to prove that there is a smooth lift of the map µ
to a map µ̃ : B1 → GL(m,R) such that the diagram below is commutative.

GL(m)

��
B1

µ //

µ̃
;;x

x
x

x
x

A

We have to be carefull here because the map µ is continuous with respect to the topology on
A induced from the surrounding space Cm . The structure on A as the homogeneous space
G/Ga might be different. From the theory in Section A.3 it follows that µ is a smooth map
to G/Ga . The projection G → G/Ga is a principal fiber bundle and hence there is a smooth
lift of µ. �

Theorem 10.3.14. Let (M,F,G) be a Darboux integrable system. Let nF and nG be the
rank of F and G, respectively. Then locally there is a unique local Lie group H such that the
manifold M is of the form

B1 × B2 × H,

with B1 ⊂ RnG , B2 ⊂ RnF . The Darboux projection π is given by the projection on B1 × B2.
The tangential symmetries of F and G are tangent to the fibers of π and restricted to each
fiber they form reciprocal Lie algebras. The left- and right-invariant vector fields on H define
the tangential Lie algebras of symmetries on M.

Example 10.3.15 (Wave equation). On R5 with coordinates x, y, z, p, q introduce the fol-
lowing two distributions:

F = span
(
∂x + p∂z, ∂p

)
, G = span

(
∂y + q∂z, ∂q

)
.
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The invariants of F are y, q and the invariants of G are x, p. The Darboux projection is given
by

π : M → R2
× R2

: (x, y, z, p, q) 7→ (x, p)× (y, q).

As a set of commuting vector fields we take F̃1 = ∂x , F̃2 = ∂p, G̃1 = ∂y , G̃2 = ∂y . The lifts
to vector fields on M are given by

F1 = ∂x + p∂z, F2 = ∂p,

G1 = ∂y + q∂z, G2 = ∂q .

Define F3 = [F1, F2] = −∂z and G3 = [G1,G2] = −∂z . The fibers of the projection
are isomorphic to R with coordinate z. On the leaves of the completion of G (i.e., x and p
constant) we have a 3-dimensional Lie algebra with structure equations

[F1, F2] = F3, [F1, F3] = 0, [F2, F3] = 0.

The same holds for the leaves of the completion of F . The fibers of the projection are 1-
dimensional and have the structure of a 1-dimensional abelian Lie algebra (generated by the
vector field ∂z). �

In each fiber Mb of the projection, we have the center of the Lie algebra on the fiber. The
center of f′b is equal to the center of g′

b. We write cb for the center of the Lie algebra on Mb.
The distribution C spanned by cb, b ∈ B, is integrable and hence defines a local foliation of
the fibers.

Lemma 10.3.16. The tangential vector fields that are symmetries of both F and G are the
tangential vector fields for which the restriction to a fiber is in the center of the Lie algebra
of tangential symmetries. In particular, these vector fields are contained in C.

Proof. Restricted to each fiber Mb the vector field is invariant under both f′b and g′

b. By
Theorem 10.2.2 the restriction must be contained in cb. �

This lemma shows that most Darboux projections are not a symmetry reduction. The
Darboux projection can be a symmetry reduction if and only if the Lie group associated to
the equation is abelian. All Darboux integrable equations or systems with non-abelian Lie
group are examples of true vector pseudosymmetries.

Remark 10.3.17. Given a Lie group there is no systematic way of constructing a correspond-
ing Darboux integrable system. Even if we can construct such a system, there is no guarantee
that this system corresponds to a prolonged first order system or second order equation. Des-
pite this, Vessiot [69, 70] succeeded in using the classification of 3-dimensional Lie algebras
to construct a classification of all hyperbolic Goursat equations. �

Example 10.3.18. Consider the second order equation

s =
az

(x + y)2
. (10.3)
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This equation is Darboux integrable on the k +1-jets if a = k(k +1). Hence for a = k(k +1)
the (k − 1)-th prolonged equation manifold has dimension 5 + 2k and the prolonged Monge
systems define a Darboux integrable pair of distributions.

We work out the case k = 2 in detail. The prolonged equation manifold has coordinates
x , y, z, p, q , r , t , zxxx , zyyy . The prolonged characteristic systems are F = span(F1, F2),
G = span(G1,G2) with

F1 = ∂x + p∂z + r∂p + σ∂q + zxxx∂r + Y (σ )∂t + Y (Y (σ ))∂zyyy ,

F2 = ∂zxxx ,

G1 = ∂y + q∂z + σ∂p + t∂q + X (σ )∂r + zyyy∂t + X (X (σ ))∂zxxx ,

G2 = ∂zyyy .

Here σ = 6z/(x + y)2, X = ∂x + p∂z + r∂p + σ∂q and Y = ∂y + q∂z + σ∂p + t∂q . Both
characteristic systems have two invariants,

IF =

{
y, zyyy + 6

q + t (x + y)
(x + y)2

}
func

,

IG =

{
x, zxxx + 6

p + r(x + y)
(x + y)2

}
func

.

If we make a transformation to the variables x̃ = x , ỹ = y, z̃ = z, p̃ = p, q̃ = q, r̃ = r ,
t̃ = t , ã = zxxx + 6(p + r(x + y))/(x + y)2, b̃ = zyyy + 6(q + t (x + y))/(x + y)2, then
we can easily construct the Darboux projection, choose commuting vector fields, lifts these
vector fields to M and calculate the tangential symmetries. Translated back to the original
variables we find that the tangential symmetries of F are spanned by

L1 = ∂t − 6H∂zyyy ,

L2 = ∂q − 6H∂t + 30H2∂zyyy ,

L3 = ∂z − 6H∂q + 24H2∂b − 108H3∂zyyy ,

L4 = H∂z − H2∂p − 3H2∂q + 2H3∂r

+ 10H3∂t + 6H4∂zxxx + 42H4∂zyyy ,

L5 = H2∂z − 2H3(∂p + ∂q)

+ 6H4(∂r + ∂t )− 24H4(∂zxxx + ∂zyyy ),

with H = (x + y)−1. The tangential symmetries of G are given by the same expressions, but
with x , p, r and zxxx replaced by y, q , t and zyyy , respectively. The tangential symmetries
commute and the Lie group associated to this Darboux integrable system is the 5-dimensional
abelian Lie group. �
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10.3.2 First order Darboux integrable systems

In Section 8.2.2 we made a complete classification of the (2, 2)-Darboux integrable hyper-
bolic first order systems. We found that under contact transformations there are only two
equivalence classes: the almost product system and the affine system. In the examples below
we will calculate the tangential symmetries for these systems.

In Vassiliou [65, Theorem 3] a normal form for Darboux integrable hyperbolic first order
systems is given. Vassiliou uses the low dimensions of the distributionsF , G and the manifold
M to arrive at a normal form in local coordinates for the lifts of the commuting vector fields
and the tangential Lie algebras. For this class of equations his normal form is a much stronger
form than our constructions (which are valid in a more general setting). His normal form
allows Vassiliou to conclude that the type of the Lie algebra is locally a full invariant for
the hyperbolic Darboux integrable first order systems. In [65, Theorem 5] Vassiliou gives
examples of almost product and hyperbolic affine Darboux integrable systems.

Example 10.3.19 (Tangential symmetries for the hyperbolic affine Darboux integrable
system). We will discuss the tangential symmetries of the system ∂w/∂zF

= wwF . An
adapted coframing for this system was given in (8.10). In the coordinates z, w, p the dual
framing is given by

∂θ = w∂w,

∂ω = w−1(∂z + w(p + w)∂w + wwF∂wF
)
,

∂π = w∂p.

(10.4)

The characteristic systems are given by the components of span(∂ω, ∂π ). The Darboux pro-
jection is onto the variables z, p. The vector fields tangent to the Darboux projection are
spanned by the components of ∂θ = w∂w. The tangential symmetries are given by

X1 = ∂θ F = wF∂wF , X2 = wF∂θ + wF∂θ F .

The commutator is [X1, X2] = X2. The components (X1)
1, (X2)

1 span the tangential Lie
algebra of symmetries of F , the components (X1)

2, (X2)
2 span the tangential Lie algebra of

symmetries of G.
If we write z = (z1, z2)

T , w = (w1, w2)
T and p = (p1, p2)

T , then the characteristic
systems are

F = span
(
(w1)

−1 (∂z1 + w1(p1 + w1)∂w1 + w1w2∂w2

)
, w1∂p1

)
,

G = span
(
(w2)

−1 (∂z2 + w2(p2 + w2)∂w2 + w2w1∂w1

)
, w2∂p2

)
.

The tangential symmetries of F are given by (X1)
1

= w2∂w2 and (X2)
1

= w2(w1∂w1 +

w2∂w2). �
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Example 10.3.20 (Tangential symmetries for the almost product Darboux integrable
system). We consider the equation ∂w/∂zF

= wF/(1 − zzF ). An adapted coframing in
the coordinates z, w, p is given in (8.19). We have ∂θ = ∂w and the characteristic systems
are given by the components of

F = span

(
∂z +

(
p +

wzF

1 − zzF

)
∂w +

( wF

1 − zzF

)F

∂wF , ∂p

)
⊂ D ⊗ V.

Let H = 1 − zzF . The tangential Lie algebras of symmetries are given by the components of

X1 = ∂wF , X2 =
1
H
∂w +

1
zF H

∂wF ,

with [X1, X2] = 0. �





Chapter 11

Projections

In the previous chapters we have seen special cases of a more general method to analyze
systems of partial differential equations. The basic idea is the following. Suppose we have
some geometric structure on a manifold M . Given a projection π : M → B to some lower
dimensional manifold, we can try to carry the structure on M over to a structure on B. This
is not always possible and often the structure on B will contain less information than the
original structure on M . But sometimes the remaining structure on B is enough, for example
to find solutions to a partial differential equation. We call all these methods “projection”
methods. In this chapter we will give a brief overview of the different projection methods
and give more examples.

In this dissertation the concept of a (vector) pseudosymmetry has been used to give a
unified description of various existing methods (symmetry reductions, Darboux integrabil-
ity, pseudoholomorphic curves) and some new methods (base projections, true pseudosym-
metries) related to partial differential equations. We hope the reader has seen that these
pseudosymmetries can be useful in the context of partial differential equations. But even in
other parts of mathematics the concept might be useful. Whenever a symmetry is used in
a mathematical construction, it is possible that a pseudosymmetry can be used in the same
construction for a wider class of objects. Hopefully, in the future pseudosymmetries can be
found and applied to more fields in mathematics.

11.1 Projection methods

In this section we review the different projection methods. In Figure 11.1 there is a schematic
picture of the different methods. All projections methods described have in common that
they can be reduced to the projection of certain distributions or structures constructed from
the distributions (such as almost product structures, Monge systems, etc.) on a manifold to
the quotient manifold. An important difference between many projections is that some of the
projections are transversal to the distributions (generalized Darboux projections) and some of
the projections have fibers contained in the distributions (the base projections in Chapter 7).
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Symmetry reductions. Symmetry methods for partial differential equations were intro-
duced by Sophus Lie in the 18th century. The literature on this subject and the many ap-
plications are enormous. For some basic introductions and more references see Olver [58],
Duzhin and Chebotarevsky [30] and Hydon [42].

For any system of ordinary differential equations or partial differential equations with a
symmetry we can take the quotient of the system by this symmetry. On the quotient manifold
there will be a new system of equations. Two examples of symmetry reductions of ordinary
differential equations are given below.

Example 11.1.1. Consider the second order ordinary differential equation

z′′
= (y2

+ x−2)3/2.

For the equation manifold we can use coordinates x, z, p = ∂z/∂x . The contact distribution
is given by span(∂x + p∂z + (y2

+ x−2)3/2∂p). A symmetry of the contact distribution is
given by the vector field V = −x∂x + z∂z + 2p∂p. Two invariants of the vector field are
X = xz, P = x2 p. If we make a projection (x, z, p) 7→ (X, P), then the contact distribution
is projected to the rank 1 distribution span(∂X + (2P + (X2

+ 1)3/2)/(P + X)∂P ). Hence
the equation is reduced to the first order ordinary differential equation

P ′
=

2P + (X2
+ 1)3/2

P + X
. �

Example 11.1.2. Consider the ordinary differential equation y′
= (2/5)(y2

+ x−2). The
equation has a one-parameter symmetry group generated by −x∂x +y∂y . The finite version of
the symmetry is (x, y) 7→ (exp(−ε)x, exp(ε)y). We can solve this equation by introducing
new coordinates x̃, ỹ in which the symmetry takes the simple form ∂ỹ . We take x̃ = xy,
ỹ = ln(y). The symmetry V is given in the new coordinates by ∂ỹ and the equation transforms
to

ỹ′
=

2(x̃2
+ 1)

x̃(2x̃2 + 5x̃ + 2)
.

The new equation does not depend on ỹ and can be integrated at once. The general solution
is

ỹ =
5
3

ln(2x̃ + 1)− ln(x̃)−
5
3

ln(x̃ + 2)+ C1,

with C1 an arbitrary integration constant. Transforming back to the original variables and
solving for y yields the solution

y =
3

2(x − Cx8/5)
−

2
x
. �



11.1 Projection methods 257

Base projections. Base projections are projections for which the tangent spaces to the fibers
are contained in the contact distribution. The projections of first order systems to a base
manifold with almost product or almost complex structure and the projections of Monge-
Ampère equations to the first order contact bundle are examples of base projections.

For example for a Monge-Ampère equation (M,V) the fibers of the projection are gener-
ated by the vector fields in C(V ′) and these are contained in the contact distribution V .

Darboux integrability. The method of Darboux can be formulated as a projection method
for hyperbolic (or elliptic) exterior differential systems of class s > 0. For Darboux integra-
bility we need enough functionally independent invariants such that projection onto the space
of invariants defines a transversal projection.

The Darboux projections have the special property that the projected structure is inte-
grable. This means that we can explicitly give all solutions of the projected structure in terms
of holomorphic functions (elliptic systems) or two functions of one variable (hyperbolic sys-
tems). These solutions can then be lifted to solutions of the original system by an integration
procedure.

We mention here that most Darboux integrable equations are not generated by symmetries
of the equation, so in general the method does not fall under the symmetry reductions. In
Chapter 10 we showed that a Darboux projection is generated by symmetries if and only if
the Lie group associated to the equation is abelian.

Pseudosymmetries. We have described pseudosymmetries as the projections from second
order equations to first order systems, the projections of first order systems to Monge-Ampère
equations and the projections of Monge-Ampère equations to almost product or almost com-
plex structures. See sections 9.2.2–9.2.4. The calculation of pseudosymmetries is be rather
difficult since the equations are non-linear equations. In contrast, the equations for symme-
tries of a system of partial differential equations are linear equations. Nevertheless, for second
order scalar equations we could use the geometry of the system to simplify the calculation of
pseudosymmetries.

Vector pseudosymmetries. All examples of projection methods mentioned above fall under
the general definition of a vector pseudosymmetry. Typical examples of vector pseudosym-
metries are second order equations with a 3-dimensional symmetry group of translations or
first order systems with a 2-dimensional symmetry group of translations. Examples are the
wave equation, the Laplace equation and the minimal surface equation.

Also the Darboux integrable equations are examples of vector pseudosymmetries. In
the next section there are two examples (Example 11.2.3 and Example 11.2.4) of systems
with vector pseudosymmetries that are neither symmetry reductions nor Darboux projections.
In the literature the author has not found examples of the use of vector pseudosymmetries
for systems that are not Darboux integrable and do not have enough symmetries to make a
projection.
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Infinite
pseudosym.

Symmetry
reductions

Projection methods

Pseudoholomorhpic curves

projections
Darboux

Transversal projections

Base projections

Pseudosymmetries

Generalized Darboux
projections

Figure 11.1: Overview of the different projection methods

Infinite pseudosymmetries. The pseudosymmetries on infinite jet bundles have been de-
scribed in a couple of examples in Section 9.5.2. In this dissertation we did not develop
the machinery to work on these manifolds, but we hope the examples have made clear that
some of the classic Bäcklund transformations can be understood using pseudosymmetries. In
Section 9.5.1 also the relation to integral extensions is explained.

11.2 Examples

Example 11.2.1 (Telegraph equation). The telegraph equation s = z has characteristic sys-
tems

F = span
(
∂x + p∂z + r∂p + z∂q + q∂t , ∂r

)
,

G = span
(
∂y + q∂z + z∂p + t∂q + p∂r , ∂t

)
.

The invariants of the systems are IF = {y}func and IG = {x}func. With the method of Laplace
[44] we can prove this equation is not Darboux integrable at any order.



11.2 Examples 259

The symmetries ∂x , ∂y and V = z∂z + p∂p + q∂q + r∂r + t∂t span a rank 3 integrable
distribution that is transversal to V at generic points. Hence the projection onto the invariants
of this distribution defines a generalized Darboux projection. For the generalized Darboux
projection we can use the projection variables p̃ = p/z, q̃ = q/z, r̃ = r/z, t̃ = t/z. The
projected systems are

F̃ = span
(
(− p̃2

+ r̃)∂ p̃ + (1 − p̃q̃)∂q̃ − p̃t̃∂t̃ , ∂r̃
)
,

G̃ = span
(
(−q̃2

+ t̃)∂q̃ + (−1 − p̃q̃)∂ p̃ − q̃r̃∂r̃ , ∂t̃
)
.

The projected system defines an almost product structure on the manifold with coordinates
p̃ = p/z, q̃ = q/z, r̃ = r/z, t̃ = t/z. �

Example 11.2.2 (Liouville equation). The Liouville equation

s = exp z (11.1)

is a very well-known equation. The equation has characteristic subsystems

F = span
(
∂x + p∂z + r∂p + exp(z)∂q + q exp(z)∂t , ∂r

)
,

G = span
(
∂y + q∂z + exp(z)∂p + +t∂q + p exp(z)∂r , ∂t

)
.

The invariants for the two Monge systems are IF = {y, t − q2/2}func and IG = {x, r −

p2/2}func. Since each system has two invariants, the equation is Darboux integrable. The
Darboux projection is generated by the vector fields ∂z , ∂p + p∂r and ∂q + q∂t .

The tangential characteristic symmetries of F are

R1 = ∂q + q∂t , R2 = ∂z + q∂q + q2∂t ,

R3 = q∂z + exp(z)∂p + (q2/2)∂q + exp(z)p∂r + (q3/2)∂t ,

and the tangential characteristic symmetries of G are

L1 = ∂p + p∂t , L2 = ∂z + p∂p + p2∂r ,

L3 = p∂z + (p2/2)∂p + exp(z)∂q + (p3/2)∂r + exp(z)q∂t .

The Lie algebras generated by L j and R j are reciprocal and isomorphic to sl(2,C).
A calculation of the symmetries of the equation reveals that all point symmetries are pro-

longations of ξ∂x +η∂y +(ξx +ηy)∂z for arbitrary functions ξ, η. A symmetry of the equation
is V = x∂x − ∂z − p∂p − 2r∂r . For x 6= 0 the projection π(m) = (x exp z, y, px, q, r x2, t)
projects the Liouville equation to a first order system. �

Example 11.2.3 (Non-symmetry projection). So far we have seen only projections that
were either generated by symmetries of the equation or Darboux projections, i.e., generated
by invariants. There are also projections that are not generated by these symmetries and are
also not a Darboux projection.
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Consider the class of hyperbolic second order equations r − g(x, y)2t = h(x, y) for
arbitrary functions g, h with g(0) = 1, g′(0) 6= 0. For general g, h this equation is not
Darboux integrable and has small symmetry group; the characteristic systems are

F = span
(

Dx − g(x, y)Dy +

(
2g(x, y)t

∂g(x, y)
∂y

+
∂h(x, y)
∂y

)
∂s, ∂t + g(x, y)∂s

)
,

G = span
(

Dx + g(x, y)Dy +

(
2g(x, y)t

∂g(x, y)
∂y

+
∂h(x, y)
∂y

)
∂s, ∂t − g(x, y)∂s

)
,

with Dx = ∂x + p∂z + (g(x, y)2t + h(x, y))∂p + s∂q , Dy = ∂y + q∂z + s∂p + t∂q . From the
form of the characteristic systems above, we can easily see that the distributions span(∂z) and
span(∂z, ∂p, ∂q) generate a projection π1 to a first order system and a transversal projection
π3 to a four-dimensional almost product manifold, respectively. For special equations, e.g.,
g(x, y) = 1+ x2, h(x, y) = 0 or g(x, y) = 1+exp x, h(x, y) = 0 one can indeed check that
the equation is not Darboux integrable and the projection π3 is not a symmetry projection.

The projection π3 has some another interesting features. If we take the quotient of the
system by the symmetry ∂z we find a first order system equivalent to ux − g(x, y)2vy =

h(x, y), u y = vx . The vector fields ∂p and ∂q are no symmetries of the original equation, but
the projections to the first order systems are symmetries. So while the projection π3 is not a
symmetry projection it factorizes through 2 symmetry projections.

Note that even though the Nijenhuis tensor restricted to V ′
×M V ′ is identically zero, the

projected structure is not integrable. This is because the projection does respect the structure
on V , but does not respect the structure on V ′. �

Example 11.2.4. Consider the class of hyperbolic equations r − h(t) = φ(z) for a arbitrary
functions h, φ with h(0) = 1, h′(0) 6= 0. For generic h, φ this equation is not Darboux inte-
grable and has symmetry group too small to make transversal projections. The characteristic
systems are

F = span
(
Dx +

√
h′(t)Dy + qφ′(z)∂s, ∂t +

√
h′(t)∂s

)
,

G = span
(
Dx −

√
h′(t)Dy + qφ′(z)∂s, ∂t −

√
h′(t)∂s

)
.

We see the equation always has a transversal projection onto the variables x, y, t, s. The
equation also has projections to a first order system generated by either one of the symmetries
∂x , ∂y . �

Example 11.2.5 (r + t = p + q). In the elliptic case it is often more convenient to work
with the complex structure on the bundle V , than complexifying the system (which can only
be done in the analytic setting), applying the hyperbolic theory and converting the results
back. The equation r + t = p + q is elliptic and analytic. We use the equation to eliminate
the variable r . The complex characteristic systems on the equation manifold M are

F = span
(
Dx + i Dy + (s + t)∂t , ∂s − i∂t

)
,

G = span
(
Dx − i Dy + (s + t)∂t , ∂s + i∂t

)
,
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with Dx = ∂x + p∂z + (p + q − t)∂p + s∂q , Dy = ∂y + q∂z + s∂p + t∂q . The invariants
are IF = {x + iy}func, IG = {x − iy}func. The equation has only one invariant for each of the
characteristic systems and is therefore not Darboux integrable on the second order equation
manifold.

• The equation is quasi-linear. Hence the projection M → B : m 7→ (x, y, u, v) is
a base projection that intertwines the almost complex structure on M with an almost
complex structure on the base manifold B. The first order system M is equivalent to
the system of equations for pseudoholomorphic curves in B.

• The equation is translation invariant and the infinitesimal symmetry V = ∂z generates
the projection π : M → B : m 7→ (x, y, p, q, r, s). The projected manifold has
the structure of an elliptic first order system that is equivalent to the system u y = vx ,
ux = −vy + u + v.

• The equation is translation invariant and the vector fields ∂x , ∂y , ∂z generate a transver-
sal projection π : M → B : m 7→ (p, q, r, s). The characteristic systems are projected
to the distributions

F̃ = span (e1 + ie2, e3 + ie4) , G̃ = span (e1 − ie2, e3 − ie4) ,

with

e1 = (−t + p + q)∂p + s∂q , e2 = s∂p + t∂q + (s + t)∂t ,

e3 = ∂s, e4 = −∂t .

The projection maps V onto T B at the points (p + q − t)t − s2
6= 0. At such points

the complex structure on V is pushed down to an almost complex structure on B. With
respect to the basis e1, e2, e3, e4 this almost complex structure is given by the matrix

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (11.2)

The structure is not integrable as can be checked by calculating the corresponding
Nijenhuis tensor.

• A second transversal projection is provided by the map π : M → B : m 7→ (x, y, r, s).
In this case we have e1 = ∂x , e2 = ∂y + (s + t)∂t , e3 = ∂s , e4 = −∂t and the projected
almost complex structure with respect to this basis e j again has the form (11.2).

A 2-plane given by span(∂x + α∂s + β∂t , ∂y + γ ∂s + δ∂t ) is complex with respect to
the almost complex structure if and only if β + γ = 0 and δ − α − (s + t) = 0.
The equations for pseudoholomorphic curves for the almost complex structure on the
projected manifold therefore correspond to the first order elliptic system

sy + tx = 0, ty − sx = s + t. �
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Example 11.2.6 (continuation of Example 8.1.6). In Example 8.1.6 we found that the li-
near elliptic first order system defined by

∂w

∂ z̄
= b(z, z̄)w̄

is Darboux integrable for certain functions b. In this example we will construct projections
from the equation manifold of this first order system to a 4-dimensional base manifold with an
integrable almost complex structure such that the projection intertwines the complex structure
on the contact distribution with the complex structure on the base manifold.

We will start with a description of the Darboux projection in the case the system is Dar-
boux integrable. Then we will consider another projection which is different from the Dar-
boux projection.

Darboux projection. Inspired by the Darboux integrability we consider a projection onto
the pair of complex variables z̃, p̃. One can easily see that the contact distribution
dual to θ is mapped by the tangent map of the projection onto the tangent space of the
projected space, i.e., the projection is transversal to V = θ⊥. To see that the complex
structure on V is also preserved we first apply the coordinate transformation z̃ = z,
w̃ = w, p̃ = p − ∂log(b)/∂z.

The adapted coframing (8.1) is given in the new coordinates by

θ̃ = dw̃ − ( p̃ + (bz̃/b)w̃)dz − bw̄dz̄,

ω̃ = dz̃,

π̃ = d p̃ + d((bz̃/b)w̃)− (bz̃w̄ + bq̄)dz̄

= d p̃ + (bz/b)θ + (bz̃/b)( p̃ + (bz̃/b)w)ω + (bz/b)bw̄ ¯̃ω

+

(∂2 log b
∂ z̃2

)
w̃ω + |b|

2w̃ω̄ − (bz̃w̄ + |b|
2w̃) ¯̃ω

= d p̃ + (bz/b)θ + (bz̃/b)( p̃ + (bz̃/b)w)ω

+ (bz/b)bw̄ ¯̃ω +

(∂2 log b
∂ z̃2

)
w̃ω − bz̃w̄ ¯̃ω.

If we want we can adapt the coframing such that π̃ = d p̃. The structure equations for
θ̃ are

θ̃ ≡ −π̃ ∧ ω̃ mod θ̃ , ¯̃
θ.

A complex basis for the complexified contact distribution V ⊗ C is given in these
coordinates by the vector fields X = ∂z̃ + ( p̃ + (bz/b)w)∂w̃ + b ¯̃w∂ ¯̃ω, X̄ , P = ∂ p̃ and
P̄ . Since these vector fields are dual to the adapted coframing, the complex structure
with respect to the basis of V defined by the vector fields is constant. The projection
onto the coordinates z̃, p̃ intertwines the complex structures.
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Non-Darboux projection. We use the coordinates x, y, u, v, P = ux , Q = u y on the equa-
tion manifold. We will use real coordinates from now on. We use a capital P and Q
here to avoid confusion with the p and q introduced before. A basis for the contact
distribution in real coordinates is given by

∂x + P∂u + (−Q + βv + αu)∂v,

∂y + Q∂u + (P + βu − αv)∂v,

∂P , ∂Q .

Here we have written b(z, z̄) = α(x, y) + iβ(x, y). The complex structure on the
distribution with respect to this basis is given by

J =


0 1 0 0

−1 0 0 0
0 G 0 −1

−G 0 1 0

 ,
with G = βyv + β2u + αyu + αxv + α2u − βx u. The condition that the projection
onto the variables x, y, P, Q is a good projection, is precisely that the matrix J is
independent of the coordinates u and v, i.e.,

αy − βx + α2
+ β2

= 0, αx + βy = 0. (11.3)

If the two conditions (11.3) are satisfied, then we have a good projection and more-
over, G is identically zero so the projected almost complex structure is integrable. A
calculation yields that these two conditions (11.3) imply that ∂2(log b)/∂z∂ z̄ = |b|

2/4
(notice the factor 4), although the converse is not true. So unless b = 0 the Darboux
integrable systems do not have a projection onto the variables x , y, P , Q. �

Example 11.2.7. Every non-generic affine Darboux integrable hyperbolic first order system
can be written in local coordinates as

u y = uv, vx = vu.

An adapted coframing is given by

θ1
= du − pdx − uvdy, θ2

= dv − uvdx − sdy,

ω1
= vdx, ω2

= udy,

π1
= (1/v)dp −

u2
+ p

uv
(du − pdx),

π2
= (1/u)ds −

v2
+ s

uv
(dv − sdy),

in the coordinates x, y, u, v, p = ux , s = vy . The invariants of the characteristic system are
{x,−u + p/u}func and {y,−v + s/v}func.
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Since u y = vx we can identify u y and vx with the first order derivatives of a function z.
The system lifts to a second order equation zxy = zx zy . This equation has 3 invariants for
each of the characteristic subsystems and is therefore contact equivalent to the wave equation.

One can transform the equation s = pq into the wave equation s = 0. The symmetry
∂z used to project to the first order system is then transformed to the scaling symmetry v =

z∂z + p∂p + q∂q + r∂r + t∂t . The wave equation can also be projected using the symmetry
w = ∂z . The system projects to a first order system given by u y = vx = 0. We see that
are two different projections possible of the wave equation, yielding two non-equivalent first
order systems. �

Example 11.2.8 (Integration using projection and the method of Laplace). Consider the
second order equation (in classical coordinates)

s = 2
√

pq
x + y

.

The equation is a hyperbolic Goursat equation and is Darboux integrable. The invariants for
the two characteristic systems are{

x,
r

√
p

+
2
√

p
x + y

}
func

,

{
y,

t
√

q
+

2
√

q
x + y

}
func

.

We could integrate this equation using the method of Darboux, but we use a different method
here. The method was applied by Goursat [40, Chapitre IX, no. 191] and is an example of a
combination of two methods: a symmetry reduction and the method of Laplace.

The equation has ∂z as a symmetry. The quotient manifold has the structure of a first order
system of partial differential equations. If we introduce the coordinates u =

√
p, v =

√
q,

then this system is given by

ux =
v

x + y
, vy =

u
x + y

. (11.4)

We can eliminate either u or v from these equations. The result is the second order equation

uxy +
1

x + y
u y −

u
(x + y)2

or vxy +
1

x + y
vx −

v

(x + y)2
,

respectively. The (generalized) Laplace invariants of the equation for u are h = 1/(x + y)2

and k = 0. Since k = 0 we can integrate the equation equation using the method of Laplace.
For this particular equation we can write

0 = uxy +
1

x + y
u y −

u
(x + y)2

=
∂

∂y

(
ux +

u
x + y

)
.

Hence ux + u/(x + y) = B(y) and u = A′
+ (B − A)/(x + y) for two arbitrary functions

A(x) and B(y). From the system (11.4) we find v = B ′
+ (A − B)/(x + y). We can easily
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integrate the solution for u and v to the general solution for z. We find

z(x, y) = z(0, 0)+

∫ (x,y)

(0,0)

(
A′

+
B − A
x + y

)2

dx +

(
B ′

+
A − B
x + y

)2

dy.

Note that for the general solution z we have

r
√

p
+

2
√

p
x + y

= 2ux +
2u

x + y
= 2A′′(x),

t
√

q
+

2
√

q
x + y

= 2vy +
2v

x + y
= 2B ′′(y).

This gives a functional relation between the invariants in each characteristic system in terms
of A′′ and B ′′. Our method yields the same solutions as the method of Darboux.

This example is also discussed in Juráš [44, Example 4 on p. 20]. He also arrives at a
general solution for z using the method of Darboux. His solution is a true general solution
in the sense that there are no additional integrations to be carried out. His parameterization
has the disadvantage that the independent variables x, y are not used as the parameterization
coordinates. �

11.3 Future research
This dissertation leaves open a great number of questions. Some are very specific and some
have a more general scope. Below we will discuss two points which the author thinks are
worth considering for future research.

First there is the concept of pseudosymmetries. In this dissertation we have showed that
many familiar concepts (the method of Darboux, pseudoholomorphic curves, Bäcklund trans-
formations, integral extentions) can be understood in the context of pseudosymmetries. Ex-
amples of equations that can be analyzed using pseudosymmetries that do not fall into existing
methods have also been given. Even though these examples have been given, so far there is
mainly a theoretical basis for pseudosymmetries. It is a challenging task to find more exam-
ples of pseudosymmetries in applications or even to find and analyze solutions of systems
that could not be analyzed using other techniques.

A second problem is the use of computer algebra systems in computations and the deve-
lopment of theory. For this dissertation the use of MAPLE with the packages JETS, VESSIOT
and DIFFORMS has been absolutely essential. But even while these packages proved essen-
tial, there is a lot of room for improvement. Two problems have could be solved with some
time and more efficient computer programs are the following. First there is the class of first
order systems for which the image of Nijenhuis tensor has rank 4, but and the two distribu-
tions B1 and B2 are equal. A brute force calculation of this type of equations might lead to an
example of such a system or a proof of the non-existence. A second problem is the calculation
of pseudosymmetries of second order scalar equations (Section 9.3). There are obstructions
to the existence of such symmetries. For two specific examples these obstructions have been
calculated, but in the general case there are obstructions as well.





Appendix A

Various topics

This chapter contains several theorems and topics that have not been included in the main
text.

A.1 Pfaffian of a matrix
Let A be an anti-symmetric 2n × 2n-matrix. With A we can associate a bi-vector ω =

ai j ei ∧ e j . We define the Pfaffian of A by the equation

1
n!
ωn

= Pf(A)e1 ∧ . . . ∧ e2n .

For an anti-symmetric 2n × 2n-matrix the Pfaffian is equal to the square root of the determi-
nant of the matrix.

Example A.1.1. Let

A =


0 a12 a13 a14

−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

 .
Then Pf(A) = a12a34 − a13a24 + a23a14. �

Let B be an anti-symmetric bilinear map R4
×R4

→ R2. For a linear map ξ : R2
→ R the

composition ξ B B is an anti-symmetric bilinear form on R4. The matrix representation of this
bilinear form is an anti-symmetric 4 × 4-matrix with entries linear in ξ . The Pfaffian of this
matrix is a quadratic form in ξ . We say the anti-symmetric bilinear form B is non-degenerate
if the discriminant of this quadratic form is non-zero. Every generic anti-symmetric bilinear
form on R4 with values in R2 is non-degenerate in this sense.
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A.2 The relative Poincaré lemma
Let M be a smooth manifold and 8 a homotopy of M with two maps φ0, φ1 : M → M . To
be more precise, 8 is a smooth map

8 : [0, 1] × M → M : (t, x) 7→ 8(t, x)

such that

φ0(t) = 8(t, x), φ1(t) = 8(1, x).

Let ι : M → R × M be defined as ιt (x) = (t, x) and let i be the interior product map,
i.e., iX (ω) = X ω. We define the operator H : �k(M) → �k−1 by

Hα =

∫ 1

0
(ιt

∗
B i ∂

∂t
B8∗)α dt. (A.1)

Theorem A.2.1 (Homotopy lemma). Let ω be a k-form, 8 a smooth homotopy and the op-
erator H defined as in (A.1). Then

φ1
∗ω = φ0

∗ω + d(Hω)+ H(dω). (A.2)

Proof. The proof is taken from Duistermaat and Kolk [29, Homotopy Lemma 8.9.5]. Let
τh : R × M → R × M : (t, x) 7→ (t + h, x). We have φt = 8 B ιt and

d
dt
φt

∗ω =
d
dt
(8 B ιt )

∗ω =
d

dh

∣∣∣∣
h=0

ι∗t+h8
∗ω

=
d

dh

∣∣∣∣
h=0

(τh B ιt )
∗8∗ω = ιt

∗L ∂
∂t
(8∗ω)

= ιt
∗

B [d B i ∂
∂t

+ i ∂
∂t

B d]8∗ω

= (d B ιt
∗

B i ∂
∂t

B8∗)(ω)+ (ιt
∗

B i ∂
∂t

B8∗)(dω).

Then

φ1
∗ω − φ0

∗ω =

∫ 1

0

d
dt
φt

∗(ω) dt = d(Hω)+ H(dω). �

Let S be a smooth submanifold of M and write ιS for the embedding of S in M . A
homotopy of M with S is a homotopy 8 such that φ1 is the identity on M and φ0 is a
projection of M onto S. In particular there exists a map φ : M → S such that φ0 = ψ B ιS .

Corollary A.2.2 (Poincaré lemma). Let ω be a closed form. Then locally ω is exact.

Proof. This follows from the homotopy formula with 8 a homotopy of a neighborhood with
a point. Then ω = 0 + d(Hω)+ H(0) = d(Hω). �
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Lemma A.2.3 (Relative Poincaré lemma). Let ω be a k-form and I an integrable Pfaffian
system for which

dω ≡ 0 mod I.

Then locally there exists a (k − 1)-form µ such that ω ≡ dµ mod I .

Proof. Let I be generated by the linearly independent 1-forms dx i , i = 1, . . . , n on a mani-
fold M . Since the Pfaffian system I is integrable we can consider the leaves of the distribution
dual to the dx i . The quotient B of the manifold by these leaves locally defines a smooth mani-
fold. Let π be the projection M → B and s a section of the bundle. We can always find a
smooth homotopy8 of M with the image S of the section s such that the leaves of I contract
to their intersection with S. Then the homotopy formula implies

ω = φ1
∗ω = φ0

∗ω + d(Hω)+ H(dω).

By construction φ0 = s B π and hence φ0
∗ω = π∗(s∗ω). The form s∗ω is a 1-form on B

and hence π∗(s∗ω) is semi-basic with respect to the bundle M → B. Since the 1-forms in I
form a basis for the semi-basic forms of M → B we see that π∗(s∗ω) ≡ 0 mod I . Let us
analyze the term H(dω). Since dω ≡ 0 mod I we have dω = α j ∧ dx j for certain 1-forms
α j and

H(dω) =

∫ 1

0
(ιt

∗
B i ∂

∂t
B8∗)(dω) dt

=

∫ 1

0
ιt

∗
B i ∂

∂t
B8∗(α j ∧ dx j ) dt

=

∫ 1

0
ιt

∗
B i ∂

∂t
(8∗(α j ) ∧8∗(dx j )) dt.

Since the x i are constant along the fibers of M → B, the x i and dx i are invariant under φt
and hence

H(dω) =

∫ 1

0
ιt

∗
B i ∂

∂t
(8∗(α j ) ∧ dx j ) dt

=

∫ 1

0
ιt

∗
B i ∂

∂t
(8∗(α j )) dt ∧ dx j

= H(α j ) ∧ dx j
≡ 0 mod I.

Together this implies ω ≡ d(Hω) mod I . �

Corollary A.2.4. Let ω be a differential 1-form and I an integrable Pfaffian system for which

ω 6≡ 0 mod I, dω ≡ 0 mod I.

Then ω ≡ dz mod I for a smooth non-constant function z.
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A.3 Orbits of Lie group actions
In this section we analyze the action of a Lie group G on a smooth manifold. The Lie
group is assumed be second-countable, in particular it has at most countably many connected
components. We will show that maps into orbits of the Lie group can be lifted to the Lie
group itself.

Let G be a Lie group with a smooth action on a manifold M . Let m be a point in M , Gm
the orbit through x and Gm the stabilizer of the point m. In formula:

Gm = { g · m ∈ M | g ∈ G }, Gm = { g ∈ G | g · m = m }.

The stabilizer group Gm is a closed subgroup of G and αm : G/Gm → M : gGm 7→ g · m
is an immersion with image equal to the orbit Gm. Since we have taken the quotient by the
stabilizer group the map αm is injective and hence the orbit Gm is equal to G/Gm as sets. The
quotient G/Gm has the unique structure of a differentiable manifold such that the projection
G → G/Gm defines a principal fiber bundle with structure group Gm [28, Corollary 1.11.5].

The quotient topology of the orbit Gm = G/Gm is not always equal to the subspace
topology of Gm ⊂ M . For example, consider the action of R on the torus T = R/2πZ ×

R/2πZ given by g · (x, y) = (x + g, y +
√

2g). The orbits are immersed submanifolds.
The stabilizer subgroup of a point consists of the identity element. Hence Gm = { 0 } and
Gm ∼= G/Gm = G. The subspace topology is different from the quotient topology. Every
open interval in R defines an open subset in G/Gm , but the image of the interval is not open
in the subspace topology on Gm.

For an element X ∈ g we write X M for the vector field on M defined by the infinitesimal
action of G on M . So X M (m) = d/dt |t=0 exp(t X) · m. Let gm = { X ∈ g | X M (m) = 0 }.
Hence gm is equal to the Lie algebra of Gm . Let g(m) equal { X M (m) | X ∈ g }. The linear
space g(m) ⊂ Tm M is equal to the image of G/Gm under TeGmαm .

Lemma A.3.1. If φ : S → M is a smooth map with image contained in the orbit Gm, then
φ : S → G/Gm is smooth as well.

Proof. Suppose that φ(s) = m. Since the orbit is an immersed manifold, there is an open
neighborhood U of the identity in G such that U maps onto an open neighborhood of m in
the orbit Gm. It is sufficient to show that an open neighborhood of s is mapped by φ into the
image of U under g 7→ g · x .

Choose a linear complement h of gm in g. In M we choose a submanifold S such that
m ∈ S and Tm S ⊕ gm = Tm M . From the inverse mapping theorem it follows that there are
open neighborhoods h0 of 0 in h and S0 of m in S such that the map

µ : h0 × S0 → M : (X, s) 7→ exp(X) · s (A.3)

is a local diffeomorphism onto an open subset of M . Since µ(X, s) ∈ Gm if and only if
s ∈ Gm, we have µ−1(Gm) = h0 × (S0 ∩ Gm).

Let S00 be an open neighborhood of m in S0 such that the closure of S00 as a subset in M
is contained in S0. We want to prove that (S00 ∩ Gm) is a countable subset of S00.
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Let g j Gm be a sequence in G/Gm that converges to gGm such that g j · m ∈ S00. We can
choose the elements g j such that g j → g ∈ G. We can restrict h0 to an open neighborhood
of 0 and choose a neighborhood B of the identity in Gm such that the map h0 × B → G :

(X, b) 7→ exp(X)b is a local diffeomorphism onto a neighborhood of the identity element in
G. But then g−1g j = exp(X j )b j for sequences X j ∈ h and b j ∈ Gm such that X j → 0 in
h0 and b j → e in Gm as j → ∞. Then g j · m = g · exp(X j ) · b j · m = g · exp(X j ) · m =

exp(Ad g(X j )) · g · m. The definition of S00 implies that the limit g · m of the sequence
g j · m is contained in the closure of S00 in M , and hence in S0. The lineair space g(g · m) is
equal to { X M (g · m) | X ∈ h }. But this space is complementary to Tg·m S0. The sequence
g j · m = exp(Ad g(X j )) · g · m in S0 is close to g · m ∈ S0. This sequence is also in the
direction of g(g · m) from g · m. We conclude that for large j we must have g j · m = g · m.

Hence the collection of gGm ∈ G/Gm for which g · m ∈ S00 is a discrete subset of
G/Gm . Since G has countably many connected components, G is the union of countably
many compact sets. The same is true for G/Gm and we conclude that the collection of
gGm ∈ G/Gm for which g · m ∈ S00 is countable.

Let φ : U → M be a smooth map with image φ(U ) contained in the orbit Gm. Let
u ∈ U and m = φ(u). We can select an open subset U0 containing u such that the image of
this open subset is contained in the open subset µ(h0 × S00) constructed above. Let π be the
projection of h0 × S00 onto S00. Then π Bµ−1

Bφ is a continuous map from U0 to S00 and by
assumption the image of this map is contained in S00 ∩ Gm. Since S00 ∩ Gm is a countable
subset of S00 we conclude that the image of π B µ−1

B φ is a single point. Since m = φ(u)
we conclude that (π Bµ−1

Bφ)(U0) = { m } and (µ−1
Bφ)(U0) ⊂ h0 ×{ m }. This shows that

φ defines a smooth map φ : U → G/Gm . �

A.4 Miscellaneous
The Lie derivative of a differential form can be defined using the exterior derivative and the
interior product. Sometimes another definition of the Lie derivative is used and then the
definition below is a proposition.

Definition A.4.1 ((H.) Cartan’s magic formula, homotopy identity).

LXω = X dω + d(ω(X)). 	

The relation between the exterior derivative of differential forms and the Lie brackets of
vector fields is given by the following proposition.

Proposition A.4.2.

dω(X, Y ) = X (ω(Y ))− Y (ω(X))− ω([X, Y ]) (A.4)

Theorem A.4.3 (Morse lemma). Let f : Rn
→ R be a smooth function with a nondegener-

ate critical point a. Then there exist local coordinates x1, . . . , xn near a such that

f (x) = f (a)+ (x1)2 + (x2)2 + . . .+ (xk)2 − (xk+1)2 − . . .− (xn)2.

Here k is the index of f at a.



272 Various topics

A.5 Grassmannians and conformal actions
In this section we study the Grassmannian Gr2(R4) and the action by conformal transforma-
tions of P GL(4,R) on the Grassmannian.

A.5.1 The conformal group
Let n = p + q and consider Rn with a conformal quadratic form of signature (p, q). With
respect to a suitable basis this quadratic form is given by

x 7→ xT
(

Ip 0
0 Iq

)
x .

The conformal group CO(p, q) is the group of linear transformations that preserves this qua-
dratic form up to a scalar factor. We have CO(p, q) ∼= SO(p, q) × H , where H = R∗ is
the group of scalar multiplications (which are sometimes called homotheties in this context).
The dimension of CO(p, q) is n(n − 1)/2 + 1. In the special case p = q = 2 we have
CO(2, 2) ∼= SL(2)× SL(2)× H . See Akivis and Goldberg [1]

A.5.2 Local coordinates
Let V be a vector space of dimension 4 and and consider the action of the group G = GL(V )
on V . The action of G on V induces an action on the Grassmannian M = Gr2(V ) and this
action is transitive. We will analyze the orbits of this action on the tangent space T M .

We identify V with R4. We introduce local coordinates for the Grassmannian in the form
of 2 × 2-matrices A. The matrix A corresponds to the 2-plane spanned by vectors in the
image of (

I
A

)
.

Alternatively, we can define the 2-plane corresponding to A as the inverse image of R2
×{ 0 }

under the map Ã ∈ GL(4,R) defined by

Ã =

(
I 0

−A I

)
.

The group G acts on first representation by multiplication on the left. On Ã an element
g ∈ G acts by multiplication on the right with the g−1. The action of g ∈ GL(V ) on the
Grassmannian in local coordinates is given by

g =

(
ã b̃
c̃ d̃

)
: A 7→ (c̃ + d̃ A)(ã + b̃A)−1.

We let x0 be the point in the Grassmannian that corresponds to A = 0. The stabilizer
group H of x0 is equal to the set of matrices(

ã b̃
0 d̃

)
, (A.5)
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with ã, d̃ invertible 2 × 2-matrices and b̃ an arbitrary 2 × 2-matrix.

A.5.3 Action on the tangent space
We want to know how the stabilizer H acts on the tangent space of the Grassmannian. Sup-
pose that

t 7→

(
I

t X

)
is a curve through the point x0 that represents a tangent vector in the Grassmannian. The
group H acts on this curve as

t 7→

(
ã + b̃t X

d̃t X

)
.

The matrix represents an element in the Grassmannian and an equivalent representation is

t 7→

(
I

d̃t X (ã + b̃t X)−1

)
∼=

(
I

d̃t Xã−1
+O(t2)

)
.

So the action of H on the tangent space in local coordinates is given by(
ã b̃
0 d̃

)
· X = d̃ Xã−1. (A.6)

A.5.4 Conformal isometry group of the Grassmannian
In this section we will show that the conformal isometry group of the Grassmannian Gr2(R4)

is given by P GL(4,R). The discussion in this section gives the proof of Lemma 2.1.5. For
the conformal isometries of the oriented Grassmannian the same reasoning holds, with minor
changes to the groups involved.

Let M be a manifold of dimension n with a conformal structure of signature (p, q). For
n > 3 a conformal transformation is completely determined by the action on the second order
jets. In particular if φ1, φ2 are two conformal transformations with j2φ1(x) = j2φ2(x) for a
point x in M , then φ1 = φ2 on a neighborhood of x . See Kobayashi [46].

We will show that the group P GL(4,R) acts transitively on the second order jets of
conformal transformations. This proves that for every conformal transformation φ of the
Grassmannian there is a transformation ψ induced from A ∈ P GL(4,R) such that ψ−1

B φ

is equal to the identity on the 2-jets and hence equal to the identity on an open neighborhood.
Since Gr2(R4) is connected it follows that ψ = φ.

The action of the group P GL(4,R) on the Grassmannian is transitive. Hence we can
consider the subgroup H of transformations in P GL(4,R) that fix a point in the Grassman-
nian. In the previous section we have seen that these transformations are represented by
the matrices of the form (A.5). The action of H on the tangent space of the Grassman-
nian is given by X 7→ d̃ Xã−1. This is an injective representation of H̃ = GL(2,R) ×
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GL(2,R)/R∗ ∼= SL(2,R)× SL(2,R)× R∗. The 1-jets of conformal transformations fixing
a point are a subset of the conformal transformations CO(2, 2). This group is isomorphic to
SL(2,R)× SL(2,R)× R∗, see Section A.5.1. Since H̃ has the same dimension as CO(2, 2),
the same number of connected components and H̃ ⊂ CO(2, 2) we conclude that H̃ acts
transitively on the 1-jets of conformal transformations.

Finally we have to consider the action on the second order jets. The full group P GL(4,R)
has dimension 15. The dimension of the subgroup P GL(4,R) fixing a point and a 1-jet is
4. This is equal to the dimension of the Lie algebra prolongation of co(2, 2) (see McKay
[53, p. 29]). Since the Lie algebra prolongation is connected, we can conclude that the group
P GL(4,R) acts transitively on the 2-jets of conformal transformations.

A.5.5 Orbits
In this section we consider the action of the conformal group CO(2, 2) ∼= (GL(2,R) ×

GL(2,R))/R∗ ∼= SL(2,R)× SL(2,R)× R∗ on the space W of 2 × 2-matrices given by

(ã, d̃) · X 7→ d̃ Xã−1.

This action is a conformal action in the sense that the action preserves the conformal quadratic
form X 7→ det(X). The conformal group is described in Bryant et al. [13, Section 7.1, Case
2, p. 272] and in McKay [51, p. 9].

The conformal action induces an action on the linear subspaces of dimension 2 in W .
This action has 5 orbits, representatives for the 5 orbits are given by

W1 = {

(
0 0
x1 x2

)
| x i

∈ R },

W2 = {

(
0 x1

0 x2

)
| x i

∈ R },

W3 = {

(
x1 x2

x2 0

)
| x i

∈ R },

W4 = {

(
x1 0
0 x2

)
| x i

∈ R },

W5 = {

(
x1

−x2

x2 x1

)
| x i

∈ R }.

The last two orbits are open and represent the hyperbolic planes and elliptic planes, respec-
tively. For example on W4 the conformal quadratic form det takes the form x1x2 (signature
(1, 1)) and on W5 the conformal quadratic form takes the form (x1)

2
+(x2)

2 (signature (2, 0)).



Bibliography

[1] Akivis M.A. and Goldberg V.V.: Conformal Differential Geometry and its Generaliza-
tions. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York,
1996. A Wiley-Interscience Publication.
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Samenvatting

Dit proefschrift gaat over het gebruik van (pseudo)symmetrieën in het oplossen en begrijpen
van partiële differentiaalvergelijkingen.

Symmetrieën en pseudosymmetrieën
In het dagelijks leven komen we veel symmetrieën tegen. Veel voorbeelden van symmetrieën
zijn te vinden in het werk van de Nederlandse kunstenaar M.C. Escher (1898 – 1972). In
Figuur D.1(a) staat een voorbeeld van een afbeelding met symmetrie. De symmetrieën in
deze figuur zijn de translaties. Er zijn diagonale en verticale translaties mogelijk. We kunnen
een symmetrie uitdelen. We houden dan een deel van de oorspronkelijke afbeelding over die
in zekere zin alle informatie bevat. In Figuur D.1(b) is het quotiënt van de hele afbeelding
onder de symmetrie weergegeven. Zo’n quotiënt wordt ook wel een fundamenteel domein
genoemd. Omgekeerd, als een fundamenteel domein en het type van de symmetriegroep
gegeven zijn, dan kunnen we de oorspronkelijke afbeelding reconstrueren.

We kunnen nog een stap verder gaan. De zwarte en de witte vissen in de figuur hebben
allemaal dezelfde vorm. Als we enkel op de vorm letten en niet op de kleur, dan is translatie
over de afstand van één vis ook een symmetrie. We noemen deze vorm van symmetrie een
pseudosymmetrie omdat maar een deel van de aanwezige structuur (namelijk de vorm) is
behouden en een ander deel (namelijk de kleur) verloren gaat.

De pseudosymmetrieën in dit proefschrift gaan nog een stap verder. Bekijk Figuur 9.1 op
pagina 202. Hierin is een vectorveld getekend (de zwarte pijlen) die een symmetrie hebben
in de horizontale richting. In de verticale richting is er geen symmetrie: de pijlen op dezelfde
verticale lijn staan in een verschillende richting. Kijken we echter enkel naar de component
van het vectorveld loodrecht op de translatierichting, dan is wel sprake van een symmetrie. De
horizontale component van de pijlen op een verticale lijn is altijd even groot. Dus translatie in
de verticale richting geeft een pseudosymmetrie van het vectorveld. Belangrijk hierbij is dat
de structuur die behouden wordt, namelijk de horizontale component, afhangt van de keuze
van de pseudosymmetrie (verticale translaties).

Partiële differentiaalvergelijkingen
Partiële differentiaalvergelijkingen worden gebruikt in allerlei takken van de wetenschap om
modellen op te stellen. Voorbeelden zijn de bewegingsvergelijkingen uit de klassieke mecha-
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(a) Figuur met symmetrie

(b) Quotiënt (c) Quotiënt onder pseudosymmetrie

Figuur D.1: Symmetrieën. All M.C. Escher Works c© 2006 The M.C. Escher Company – the
Netherlands. All rights reserved. Used by permission. http://www.mcescher.com

nica, reactie-diffusie vergelijkingen uit de chemie en populatie modellen uit de mathemati-
sche biologie.

Als voorbeeld kan men de beweging van een blad aan de oppervlakte van een stromen-
de rivier bekijken. De positie van het blad wordt geven door middel van twee functies
x1(t), x2(t) die van de tijd t afhangen. De stroming van de rivier wordt beschreven door
op elke plaats de snelheid en de richting van de stroming te geven. De stroming wordt dus
gegeven door een vectorveld v(x) = (v1(x), v2(x)) dat van de plaats afhangt. De afgeleide
dx/dt beschrijft de verandering van de plaats van het blad. Deze is gelijk aan de snelheid v
waarmee de rivier stroomt op de plaats waar het blad zich op dat moment bevindt.

In de wiskunde worden dit soort relaties beschreven met behulp van differentiaalvergelij-
kingen. De differentiaalvergelijking die de beweging van het blad beschrijft, wordt gegeven
door

x ′
= v(x).

Een oplossing van deze differentiaalvergelijking is een functie x(t) die voldoet aan de relatie
x ′(t) = v(x(t)).

http://www.mcescher.com
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In ons voorbeeld kon de differentiaalvergelijking beschreven worden met behulp van een
vectorveld. Het vectorveld schrijft voor in welke richting de oplossingen mogen bewegen.
Meer algemene partiële differentiaalvergelijkingen kunnen we beschrijven door middel van
contact distributies. Een distributie wordt gegeven door een verzameling van vectorvelden.
Voor elk punt geven deze vectorvelden de verschillende richtingen aan waarin een oplossing
van de differentiaalvergelijking mag bewegen.

Veel partiële differentiaalvergelijkingen die van belang zijn in allerlei takken van de we-
tenschap bezitten symmetrieën. De Noorse wiskundige Sophus Lie (1842 – 1899) was één
van de eerste wiskundigen die symmetrieën van differentiaalvergelijkingen gebruikte om de
vergelijkingen op te lossen. Ook partiële differentiaalvergelijkingen kunnen we uitdelen naar
een symmetrie. Het quotiënt is een nieuwe partiële differentiaalvergelijkingen die vaak een-
voudiger is dan de oorspronkelijke vergelijking. Door deze nieuwe vergelijkingen op te los-
sen, kan men vaak ook oplossingen vinden van de oorspronkelijke vergelijking.

Ook pseudosymmetrieën kunnen gebruikt worden om partiële differentiaalvergelijkin-
gen te reduceren tot nieuwe vergelijkingen. Dit proces is echter minder eenvoudig dan voor
gewone symmetrieën. Omdat pseudosymmetrieën geen exacte symmetrieën zijn (er gaat in-
formatie verloren), moet uitgezocht worden welke informatie men nodig heeft om ervoor te
zorgen dat bij het uitdelen een nieuwe partiële differentiaalvergelijking ontstaat en deze ook
nuttig is om de oorspronkelijke vergelijking mee te bestuderen.

Inhoud
We geven nu een kort overzicht van de wiskundige inhoud van het proefschrift. Het proef-
schrift gaat over de contact structuren van partiële differentiaalvergelijkingen. Deze contact
structuren geven een meetkundige beschrijving van de vergelijkingen in termen van het op-
spansel van een aantal vectorvelden. Het opspansel van een aantal vectorvelden wordt ook
wel een distributie genoemd. De belangrijkste klassen van partiële differentiaalvergelijkin-
gen in dit proefschrift zijn de eerste orde stelsels van twee vergelijkingen voor twee functies
van twee variabelen en de tweede orde scalaire vergelijkingen in twee variabelen. Door de
lage dimensies van deze twee klassen ontstaat een hele rijke meetkundige structuur.

Het proefschrift begint met Hoofdstuk 1 waarin de notatie wordt vastgelegd en een aantal
definities en begrippen worden ingevoerd die in de rest van het proefschrift nodig zijn.

In Hoofdstuk 2 worden vervolgens hyperbolische getallen en hyperbolische oppervlak-
ken besproken. De hyperbolische getallen bestaan uit de elementen (x, y) ∈ R2 met ver-
menigvuldiging (x1, y1) · (x2, y2) = (x1x2, y1 y2). Deze hyperbolische getallen vervullen
de rol voor hyperbolische vergelijkingen die de complexe getallen hebben voor elliptische
vergelijkingen. Ook worden oppervlakken in de Grassmanniaan van 2-dimensionale lineaire
deelruimten van een 4-dimensionale vectorruimte bestudeerd. Deze oppervlakken zijn van
belang voor de microlokale analyse van eerste orde stelsels.

In de hoofdstukken 3, 4, 5 en 6 wordt een structuurtheorie ontwikkeld voor eerste orde
stelsels en tweede orde vergelijkingen. De stelling van Vessiot (pagina 82) geeft een exacte
beschrijving van de contact structuur van tweede orde scalaire partiële differentiaalvergelij-
kingen. Voor eerste orde stelsels is er een vergelijkbare stelling (Theorem 4.6.4). De struc-
tuurtheorie wordt vervolgens gebruikt om invarianten van differentiaalvergelijkingen mee te
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bepalen en verbanden te leggen met het werk van Gardner and Kamran [38], Juráš [44] en
McKay [51].

Één van de structuren die wordt gevonden in Hoofdstuk 4 voor elliptische eerste orde
stelsels is een bijna-complexe structuur op de contact distributie. Het blijkt dat we de verge-
lijkingen voor pseudoholomorfe krommen voor een bijna-complexe structuur exact kunnen
beschrijven met behulp van de Nijenhuis tensor voor eerste orde stelsels. Dit wordt be-
schreven in Hoofdstuk 7. Voor tweede orde vergelijkingen leidt een zelfde analyse van de
Nijenhuis tensor tot de Monge-Ampère vergelijkingen.

In Hoofdstuk 9 wordt een definitie gegeven van pseudosymmetrieën voor distributies,
voor eerste orde stelsels en voor tweede orde vergelijkingen. Er wordt een methode be-
schreven (ontwikkeld samen met Robert Bryant) om deze pseudosymmetrieën efficiënt uit te
rekenen voor tweede orde vergelijkingen. Ook wordt het verband gelegd tussen pseudosym-
metrieën en de begrippen integreerbare uitbreiding en Bäcklund transformatie.

In de hoofdstukken 8 en 10 bestuderen we Darboux integreerbaarheid. De methode van
Darboux is in de 19e eeuw geı̈ntroduceerd door Gaston Darboux. Het oplossen van een
eerste orde stelsel of tweede orde vergelijking die voldoende invarianten bevat voor beide
karakteristieke systemen, wordt hiermee gereduceerd tot het oplossen van gewone differenti-
aalvergelijkingen. De methode van Darboux is een speciaal geval van een pseudosymmetrie
waarbij het quotiënt een bijzonder eenvoudige structuur heeft. Generalisaties van de methode
van Darboux waarbij het quotiënt een iets minder mooie structuur heeft, worden beschreven
onder de naam vector pseudosymmetrieën in Hoofdstuk 11. Het quotiënt is dan een systeem
voor pseudoholomorfe krommen voor een bijna-complexe of bijna-product structuur.

Tot slot wordt in Hoofdstuk 11 een overzicht gegeven van de verschillende projectie me-
thoden die behandeld zijn. Ook wordt aangegeven wat mogelijkheden zijn voor toekomstig
onderzoek.
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