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Les cas où l’on peut intégrer une équation
différentielle sont extrêmement rares, et
doivent être regardés comme des exceptions;
mais on peut considérer une équation
différentielle comme définissant une fonction,
et se proposer d’étudier les propriétés de
cette fonction sur l’équation différentielle
elle-même.

Charles Briot et Jean-Claude Bouquet,
1859.



Preface

Nonlinear differential or difference equations are encountered not only in mathemat-
ics, but also in many areas of physics (evolution equations, propagation of a signal
in an optical fiber), chemistry (reaction-diffusion systems) and biology (competition
of species).

The purpose of this book is to introduce the reader to nonperturbative methods
allowing one to build explicit solutions to these equations. A prerequisite task is to
investigate whether the chances of success are high or low, and this can be achieved
without any a priori knowledge of the solutions, with a powerful algorithm called
the Painlevé test. If the equation under study passes the Painlevé test, the equation is
presumed integrable in some sense, and one can try to build the explicit information
displaying this integrability:

• for an ordinary differential equation, the closed form expression of the general
solution;

• for a partial differential equation, the nonlinear superposition formula to build
soliton solutions;

and similar elements in the discrete situation. If on the contrary the test fails, the
system is nonintegrable or even chaotic, but it may still be possible to find solutions.
Indeed, the methods developed for the integrable case still apply and may in prin-
ciple produce all the available pieces of integrability, such as the solitary waves of
evolution equations, or solutions describing the collision of solitary waves, or the
first integrals of dynamical systems, etc.

The examples chosen to illustrate these methods are mostly taken from physics.
These include on the integrable side the nonlinear Schrödinger equation (contin-
uous and discrete), the Korteweg–de Vries equation, the Boussinesq equation, the
Hénon–Heiles Hamiltonians, and on the nonintegrable side the complex Ginzburg–
Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto–
Sivashinsky equation (phase turbulence), the reaction-diffusion model of Kolmogo-
rov–Petrovski–Piskunov (KPP), the Lorenz model of atmospheric circulation and
the Bianchi IX cosmological model which are both chaotic.

vii



viii Preface

Written at a graduate level, the book contains tutorial text as well as detailed
examples and describes the state of the art in some current areas of research.

Brussels, Robert Conte
February 2008 Micheline Musette



Outline

In Chap. 1, we insist that a nonlinear equation should not be considered as the pertur-
bation of a linear equation. We illustrate using two simple examples the importance
of taking account of the singularity structure in the complex plane to determine the
general solution of nonlinear equations. We then present the point of view of the
Painlevé school to define new functions from nonlinear ordinary differential equa-
tions (ODEs) possessing a general solution which can be made single valued in its
domain of definition (Painlevé property, PP).

In Chap. 2, we present a local analysis, called the Painlevé test, in order to in-
vestigate the nature of the movable singularities (i.e. whose location depends on
the initial conditions) of the general solution of a nonlinear differential equation.
The simplest of the methods involved in this test was historically introduced by
Sophie Kowalevski [257] and later turned into an algorithm by Bertrand Gambier
[163]. For equations possessing the Painlevé property, the test is by construction
satisfied, therefore we concentrate on equations which generically fail the test, in
order to extract some constructive information on cases of partial integrability. We
first choose four examples describing physical phenomena, for which the test selects
cases which may admit closed form particular solutions1 or first integrals.

This procedure is illustrated in several examples.
In the first example, the Lorenz model of atmospheric circulation [284]

dx
dt

= σ(y− x),
dy
dt

= rx− y− xz,
dz
dt

= xy−bz,

the test isolates four sets of values of the parameters (b,σ ,r).
We next consider the Kuramoto–Sivashinsky equation (KS),

ut + νuxxxx + buxxx + µuxx + uux = 0, ν �= 0,

1 By definition, a solution is called particular if it can be obtained from the general solution by
setting some constants of integration to numerical values.
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x Outline

an equation which describes the propagation of flames on a vertical wall, and we
analyze for simplicity the ODE for its stationary flow. The test first detects the pres-
ence of movable multivaluedness2 in the general solution whatever the parameters
(ν,b,µ), then it displays the possible existence of particular solutions without mov-
able branching.

We then analyze the one-dimensional cubic complex Ginzburg–Landau equation
(CGL3),

iAt + pAxx + q|A|2A− iγA = 0, pqγ �= 0, (A, p,q) ∈ C , γ ∈ R.

This is a generic equation which describes many physical phenomena, such as the
propagation of a signal in an optical fiber [10], or spatiotemporal intermittency in
spatially extended dissipative systems [296]. The test first uncovers the generic non-
integrable nature of this PDE, then it selects as values of the parameters (p,q,γ)
those (q/p ∈ R,γ = 0) of the nonlinear Schrödinger equation (NLS), an equation
which is integrable in many acceptations. Finally it shows the possible existence of
particular single valued solutions in the CGL3 case Im(q/p) �= 0.

The next example is the Duffing–van der Pol oscillator

E(u) ≡ u′′ +(au2 + b)u′ − cu + β u3 = 0.

It is chosen to illustrate a weaker form of the test (weak Painlevé test) in which
the general solution is allowed to possess more than one determination around a
movable singularity, but only a finite number (weak Painlevé property), like the
square root function.

The last example is the two-degree of freedom Hamiltonian system

H =
1
2
(p2

1 + p2
2 + ω1q2

1 + ω2q2
2)+ αq1q2

2 −
1
3

β q3
1 +

c3

2q2
2

, α �= 0

q′′1 + ω1q1 −β q2
1 + αq2

2 = 0,

q′′2 + ω2q2 + 2αq1q2 − c3q−3
2 = 0,

in which α,β ,ω1,ω2,c3 are constants. In the case c3 = 0,β/α = 1, it was introduced
by Hénon and Heiles to describe the chaotic motion of a star in the axisymmetric
potential of a galaxy [198]. It is now known as the cubic Hénon–Heiles Hamiltonian
system (HH3). The test selects only three values β/α = −1,−6,−16.

The last two sections (2.2 and 2.3) deal with two fairly common situations when
the test, as initiated by Sophie Kowalevski, is inconclusive, because of the insuffi-
cient number of arbitrary constants in the local representation of the general solu-
tion.

Chapter 3 is devoted to the explicit integration of nonlinear ODEs by methods
based on singularities, mainly taking the examples of the previous chapter. We pro-

2 A point where multivaluedness occurs is classically called a critical point or ramification point
or branch point.
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cess successively the integrable (Sect. 3.1) and partially integrable (Sect. 3.2) situa-
tions.

In Sect. 3.1.1, in the four cases when the Lorenz model passes the Painlevé test,
we give a systematic method to compute the polynomial first integrals and we per-
form the full integration in terms of elliptic or Painlevé functions.

In Sects. 3.1.2 and 3.1.3, one looks for the traveling waves3 of two important evo-
lution equations, respectively the Korteweg–de Vries equation (KdV), which gov-
erns the propagation of waves in shallow water [39, 256],

but + uxxx − 6
a

uux = 0, (a,b) constant,

and the nonlinear Schrödinger equation (NLS),

iAt + pAxx + q|A|2A = 0, pq �= 0, A ∈ C , (p,q) ∈ R.

This is an easy task because the ODEs have the Painlevé property and, from their
general traveling wave, which is an elliptic function, one defines the various physi-
cally relevant particular solutions (pulses, fronts).

In Sect. 3.2, the partially integrable situation is mainly illustrated through the two
examples of the equations for the traveling waves of the KS equation and the CGL3
equation, which have been seen to fail the Painlevé test.

In Sect. 3.2.1.2, we introduce the concept of general analytic solution of a non-
integrable ODE, defined as the closed form particular single valued solution which
depends on the maximum possible number of integration constants, and we count
precisely this number. We then look for two classes of solutions which are not too
difficult to obtain and which have a great physical interest, the doubly periodic ones
(elliptic) and the simply periodic ones (trigonometric).

Those particular solutions which are doubly periodic (elliptic) are easy to find
because of necessary conditions arising from a nice property of elliptic functions.
These conditions and the associated solutions are established in Sect. 3.2.2.

Among the particular solutions which are simply periodic (trigonometric), some
are also easy to find by representing the possible solution as a polynomial in one
elementary variable τ or two elementary variables (σ ,τ) which obey fundamental
nonlinear first order ODEs. These truncation methods are described in Sects. 3.2.3
(for KS) and 3.2.4 (for CGL3).

In Sect. 3.2.5, in order to overcome the limitations of the truncation methods, by
implementing an old theorem of Briot and Bouquet (1856), we introduce a method
able to find all the doubly periodic or simply periodic solutions of a given ODE,
while any truncation method can only find some of these. Instead of searching an
expression for the solution, it builds an intermediate, equivalent information, namely
the first order autonomous ODE satisfied by the unknown solution. For KS and
CGL3, it provides no new result, this fact will be explained in Sect. 3.2.8 as an
application of the Nevanlinna theory.

3 A traveling wave of a given PDE E(u,x, t) = 0 is any solution of the reduction ξ = x− ct if it
exists.
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Section 3.2.6 deals with the Duffing–van der Pol oscillator when it passes the
weak Painlevé test. In a particular case when a first integral exists, the resulting
ODE can be mapped by a special transformation (hodograph) to another equation
possessing the Painlevé property.

In Sect. 3.2.7, we display an example (the Bianchi IX cosmological model in vac-
uum), in which the necessary conditions to pass the test are used in a constructive,
unusual way, in order to isolate all possible single valued solutions. The perturbative
method of Sect. 2.2 shows the probable existence of one additional solution to the
known ones.

In Sect. 3.2.8, we briefly present additional results on the KS equation which are
obtained by the Nevanlinna theory. This theory, which is not based on singularity
analysis, gives a complementary insight on the analytic structure of the solutions.

Chapter 4 deals with the extension to nonlinear partial differential equations
(PDEs) of the Painlevé property and Painlevé test previously introduced for ODEs.
In Sect. 4.1, we mention solutions of a PDE which are also solutions of some ODEs,
i.e. what is called a reduction. In Sect. 4.2, we introduce the quite important class of
soliton equations, together with their main properties: existence of an N-soliton so-
lution and of a remarkable transformation called the Bäcklund transformation (BT).
In Sect. 4.3, we extrapolate to PDEs the notion of integrability and the definition of
the Painlevé property. After defining in Sect. 4.4.1 the expansion variable χ which
minimizes the computation of the Laurent series representing the local solution, we
present in Sect. 4.4.2 the successive steps of the Painlevé test, on the example of the
KdV equation in order to establish necessary conditions for the Painlevé property.
Finally, in Sect. 4.4.3, we apply the test to the equation of Kolmogorov–Petrovski–
Piskunov (KPP) [255, 383] to generate necessary conditions for the existence of
closed form particular solutions.

The subject of Chap. 5 is the “integration” of nonlinear PDEs. Constructive al-
gorithms must be devised to establish the Painlevé property and ultimately to find
explicit solutions. Known as the singular manifold method (SMM), these algorithms
are the natural extension of the truncation methods already encountered in Chap. 3.

In Sect. 5.1, we first extract from the numerous results of the Painlevé test some
global information about the analytic property of the solutions. In Sect. 5.2, we re-
call the two main approaches to build the so called N-soliton solution and briefly
introduce the main integrability tools of the soliton equations: Lax pair, Darboux
transformation, Bäcklund transformation, nonlinear superposition formula and the
Crum transformation. The precise definitions are then given in Sect. 5.3, with ap-
plication to two physically important equations, the KdV and Boussinesq equations
[39], which are integrable by the inverse spectral transformation method (IST) [1].

In order to establish the Painlevé property of the PDEs under consideration, the
challenge is to derive these integrability items by using methods based only on the
singularity structure of the equations.

In Sect. 5.5.1 we present the basic ideas of this singular manifold method mainly
consisting in converting the local information provided by the Painlevé test into the
above mentioned (global) integrability items. The next two sections are respectively
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devoted to the SMM in the case of equations possessing the PP (Sect. 5.6) and in
the case of partially integrable equations, i.e. equations which fail the Painlevé test
but nevertheless admit particular singlevalued solutions (Sect. 5.7).

More precisely, in Sect. 5.6.1 we process the Korteweg-de Vries and Boussinesq
equations, which possess only one family of movable singularities. Their two non-
linear superposition formulae are found to be the same, the reason being that the
KdV and Boussinesq equations are two different reductions of a 2+1-dimensional
IST-integrable equation, the Kadomtsev–Petviashvili (KP) equation [243]. How-
ever, the two reductions induce two different solitonic behaviors: KdV only de-
scribes the overtaking interaction of solitary waves, while Boussinesq may also de-
scribe the head-on collision of solitary waves.

In Sect. 5.6.2, the SMM is applied to two IST-integrable equations (sine-Gordon,
modified KdV) which possess two families of movable singularities, and again ob-
tain for both equations the same form of the NLSF.

In Sect. 5.6.3, we apply the SMM to two other integrable PDEs which have a
third order Lax pair, the Sawada–Kotera (SK) [387] and Kaup–Kupershmidt (KK)
[246, 148] equations. The key ingredient is to consider, in the list of Gambier [163]
of second order first degree nonlinear ODEs possessing the PP, the very few equa-
tions which are linearizable into a third order ODE, yielding simultaneously the Dar-
boux transformation and the x-part of the Lax pair. In addition to the auto-Bäcklund
transformation and the NLSF in each case, the SMM provides a BT between SK
and KK.

We next apply the SMM to partially integrable PDEs. In Sect. 5.7.1, we han-
dle the Fisher equation [140], which models the evolution of mutant genes or the
propagation of flames. In this one-family equation, by finding a particular solution
of the necessary conditions generated by the Painlevé test, one obtains two elliptic
solutions [8].

In Sect. 5.7.2, we handle the KPP reaction-diffusion equation, possessing two
opposite families. The output is two one-soliton solutions (one tanh and one sech),
and a degenerate two-soliton without coupling factor.

In the last section (5.8), we examine what these integrability items become when
an integrable PDE reduces to an ODE:

◦ Lax pair → isomonodromic deformation
◦ Bäcklund transformation → birational transformation
◦ nonlinear superposition formula → contiguity relation.

In Chap. 6, we give an illustration on the various ways to “integrate” a Hamilto-
nian system using two examples of Hamiltonian systems with two degrees of free-
dom: the cubic HH Hamiltonian introduced in Sect. 2.1.5, three cases of which pass
the Painlevé test, and the quartic HH Hamiltonian (HH4),

H =
1
2
(P2

1 + P2
2 + Ω1Q2

1 + Ω2Q2
2)+CQ4

1 + BQ2
1Q2

2 + AQ4
2

+
1
2

(
α
Q2

1

+
β
Q2

2

)
+ γQ1, B �= 0,



xiv Outline

Q′′
1 + Ω1Q1 + 4CQ3

1 + 2BQ1Q2
2 −αQ−3

1 + γ = 0,

Q′′
2 + Ω2Q2 + 4AQ3

2 + 2BQ2Q2
1 −β Q−3

2 = 0,

in which A,B,C,α,β ,γ,Ω1,Ω2 are constants. The Painlevé test selects four sets
of values of these constants, A : B : C = 1:2:1, 1:6:1, 1:6:8, 1:12:16 (the notation
A : B : C = p : q : r stands for A/p = B/q = C/r = arbitrary).

These various ways to integrate are

◦ (Liouville integrability) to find a second invariant in involution with the Hamil-
tonian, which is however insufficient to perform a global integration; we recall
the seven first integrals which establish this integrability for both HH3 (Sect.
6.2.1) and HH4 (Sect. 6.3.1);
◦ (Arnol’d–Liouville integrability) to find the variables which separate the Hamilton–
Jacobi equation, thus leading to a global integration; this has been done for HH3
(Sect. 6.2.2), and nearly finished for HH4 (Sect. 6.3.2);
◦ (Painlevé property) to find an explicit closed form single valued expression
for the general solution q j(t),Q j(t); this has been done in all seven cases (Sects.
6.2.3 and 6.3.3), via birational transformations to fourth order ODEs isolated and
integrated by Cosgrove.

Chapter 7 deals with discrete nonlinear equations. After some generalities, in
Sect. 7.1 we consider the logistic map of Verhulst,

un = aun−1(1−un−1),

a paradigm of chaotic behavior [405, 139], which admits a continuum limit to the
Riccati equation. From the point of view of integrability, the logistic map is a “bad”
discretization of the Riccati equation, because it cannot be linearized, and it must
be replaced by a “good” discrete equation, i.e. one which preserves the property
of linearizability. More generally, the goal is to extend the Painlevé property to the
discrete world.

Section 7.2 presents an outlook of the difficulty to give an undisputed definition
for the discrete Painlevé property.

In Sects. 7.3.1, 7.3.2 and 7.3.3, we present the three main methods of the discrete
Painlevé test: the singularity confinement method [184], the criterium of polynomial
growth [206], and the perturbation of the continuum limit [88].

In order to prove the discrete Painlevé property, one can either linearize the dis-
crete equation, or explicitly integrate or, as admitted by most researchers, exhibit a
discrete Lax pair.

In Sect. 7.4, we return to the question of finding a “good” discretization of the
Riccati equation; this results in the homographic map

un =
a1un−1 + a2

a3un−1 + a4
.

The notion of discrete Lax pair is introduced in Sect. 7.5.
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We then describe two examples of exact discretizations, i.e. for which the ana-
lytic expression of the general solution is the same for the continuous and discrete
equations.

In Sect. 7.6.1 we consider the question of discretizing the nonlinear ODE for the
modulus v = |ψ | of the linear Schrödinger equation, namely [133, 305, 358],

v′′ + f v + c2v−3 = 0,

usually called the Ermakov–Pinney equation. Again, the property to be preserved is
the linearizability, since the starting equation is linear.

In Sect. 7.6.2 we recall the remark by Baxter and Potts that the addition formula
of the Weierstrass function ℘ can be identified to an exact discretization of the
Weierstrass equation. This is the foundation for a family of special two-component
rational maps [367, 368] which, like its continuous counterpart, is a starting point to
isolate discrete equations which may possess the discrete PP.

In Sect. 7.7, we briefly review two related problems. The first problem, still open
but of a very high physical interest in optical fibers, is to find exact solitary waves
(dark and bright) for the nonintegrable discrete nonlinear Schrödinger equation,

iut + p
u(x + h,t)+ u(x−h,t)−2u(x)

h2 + q|u|2u = 0, i2 = −1, pq �= 0.

In the context of optical fibers or Bose–Einstein condensation [10], this equation
is not obtained as a discretization of NLS but it arises by a direct construction.
The second one is to isolate discrete versions of the nonlinear Schrödinger equation
which might possess the discrete Painlevé property, and one such equation is the
Ablowitz and Ladik [4] discrete equation.

Finally, in Sect. 7.8, after setting up the natural problem to extend to the dis-
crete world the six transcendents of Painlevé, we introduce the two methods which
have been devised to handle it. In the analytic method (Sect. 7.8.1), the procedure
starts from the addition formula of the elliptic function, takes some inspiration from
the method of Painlevé and Gambier and produces a rather long list of discrete
Pn equations, but no proof exists that the list is exhaustive. The geometric method
(Sect. 7.8.2) first displays the importance of two groups describing the continu-
ous Pn, then uses the theory of rational surfaces to build an object which admits
the largest of the just mentioned groups, object interpreted as the master discrete
Painlevé equation e−P6, whose coefficients have an elliptic dependence on the in-
dependent variable. The main properties of all these d−Pn are then summarized in
Sect. 7.8.3.

After an FAQ chapter, a few appendices collect material too technical to be pre-
sented in the main text.
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E.2 Bilinear Representation of a Bäcklund Transformation . . . . . . . . . . . 225



Contents xxi

F Algorithm for Computing Laurent Series . . . . . . . . . . . . . . . . . . . . . . . . . 229

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253



Acronyms

AKNS Ablowitz, Kaup, Newell and Segur
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Chapter 1
Introduction

Abstract A nonlinear equation should not be considered as the perturbation of a
linear equation. We illustrate using two simple examples the importance of taking
account of the singularity structure in the complex plane to determine the general
solution of nonlinear equations. We then present the point of view of the Painlevé
school to define new functions from nonlinear ordinary differential equations pos-
sessing a general solution which can be made single valued in its domain of defini-
tion (the Painlevé property).

1.1 Singularities in the Complex Plane

Given some nonlinear differential equation, an intuitive approach to find a solution
is to split the equation into the sum of a so-called linear part and a perturbation. Let
us explain, using two examples, why this should not be done.

Consider the following elementary nonlinear equations

u′ = k(1−u2), ′ =
d
dx

, (1.1)

v′2 = k2v2(1− v2), (1.2)

with the aim of finding their general solution,

u = tanhk(x− x0), (1.3)

v =
1

coshk(x− x0)
= sechk(x− x0). (1.4)

The arbitrary complex constant x0 is linked to the initial condition u(xi) = ui,v(xi) =
vi by the relation

ui = tanhk(xi − x0), vi = sechk(xi − x0). (1.5)

1
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On the real axis, u and v have no singularities but, in the complex plane, the
singularities of u and v are a countable number of simple poles, located at x =
x0 + (2n + 1)iπ/(2k),n ∈ Z . Such singularities are by definition said to be mov-
able, as opposed to fixed, because their location depends on the initial conditions,
i.e. on the constants of integration. The general solution of any linear differential
equation has no movable singularity because it depends linearly on the constants of
integration.

1.1.1 Perturbative Method

In the perturbative method [199], one first determines the stationary points, which
leads to u0 =±1 and v0 = 0,±1, then one perturbs the solution in the neighborhood
of a stationary point by expanding it in series of a small parameter ε . Under this
perturbation

u =
∞

∑
n=0

εnun, u0 = 1, (1.6)

Equation (1.1) splits accordingly into

∞

∑
n=0

εnEn = 0, E0 ≡ 0. (1.7)

E1 ≡−u′1 −2ku0u1 = 0, (1.8)

E2 ≡−u′2 −2ku0u2 − ku2
1 = 0, · · · (1.9)

Choosing u1 = c1e−2kx with c1 arbitrary, this infinite set of linear equations with the
same homogeneous part admits the particular solution

un = 2−n+1cn
1e−2knx, n ≥ 1, (1.10)

which defines a geometric series, and its sum provides the general solution of (1.1)

u = 1 +
εc1e−2kx

1− (εc1/2)e−2kx
= tanhk(x− x0), x0 =

1
2k

log
(
−εc1

2

)
· (1.11)

Equation (1.2) is handled slightly differently because of its nonlinearity in the
highest derivative. One first takes its derivative,

v′′ = k2v(1−2v2), (1.12)

to make the first perturbed equation E1 = 0 linear in the highest derivative. Then the
computation is quite similar: the expansion v = ∑∞

n=0 εnvn around v0 = 0 generates
an infinite set of linear equations with the same homogeneous part. Choosing v1 =
c1e−kx, with c1 arbitrary, the particular solutions are
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v2n+1 = (−4)−n
(

c1e−kx
)2n+1

, v2n = 0, n = 1,2, · · · (1.13)

Therefore the series for v is geometric and it sums into:

v =
εc1e−kx

1 +(εc1/2)2e−2kx ≡ sechk(x− x0), x0 =
1
k

log
εc1

2
, (1.14)

which represents the general solution of (1.2).
Why is this perturbative method not efficient for equations more complicated

than (1.1)–(1.2)? There are several reasons for this:

1. In order to obtain the general term un, one must solve a recurrence relation, a
difficult task even for a linear recurrence relation.

2. The resummation must be performed in closed form1 and this is generically im-
possible; indeed, any solution which is not in closed form is what Painlevé calls
“illusoire”, in a sense to be developed soon.

3. After performing the resummation, one must check whether the closed form ex-
pression is valid everywhere except at a few points, called singularities; the lo-
cation of these singularities cannot be restricted to the real axis but must be ex-
tended to the whole complex plane C ; in the above example, the reason for the
finite value of the radius of convergence is the presence of a simple pole on the
imaginary axis at x = x0 ± iπ/(2k).

To summarize, the main reason for the generic inapplicability of this perturbative
method is that the singularity structure has not been taken into account: the mov-
able singularity which is present in the exact solution is absent at all orders of the
perturbation.

1.1.2 Nonperturbative Method

Let us now present a nonperturbative method, which yields the same result in a
finite number of steps because it takes the singularity structure into account from
the beginning.

Since nonlinear ODEs generically possess movable singularities, let us first es-
tablish the behavior of the general solution of (1.1) near such a movable singularity
x = x0. Assuming this behavior to be algebraic, this amounts to computing the pos-
sible values of the leading power p and the leading coefficient u0 defined by

u ∼
χ→0

u0χ p, u0 �= 0, χ = x− x0, (1.15)

with p not a positive integer. Then

1 This will be defined precisely later. For the moment, it is sufficient to know that an example of
such a closed form is u = ψ ′/ψ, with ψ the solution of any linear equation.
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u′ ∼ pu0χ p−1 + u′0χ p ∼ pu0χ p−1, (1.16)

so u0 can be assumed constant when determining the leading behavior. The various
terms of (1.1) then contribute as

term −u′ +k −ku2

leading power p−1 0 2p
leading coefficient −pu0 k −ku2

0

and the l.h.s. of the ODE, which must vanish, evaluates to

E(u) ≡ −u′ + k(1−u2)
=

(−pu0χ p−1 + O(χ p)
)
+ kχ0 − k

(
u2

0χ2p + O(χ2p+1)
)

(1.17)

= E0χq + O(χq+1) = 0. (1.18)

The condition u0 �= 0 implies the equality of at least two of the three leading powers,
the two equal powers being lower than or equal to the third one. As to the condition
E0 = 0, it expresses the vanishing of the sum of the two corresponding leading
coefficients. Out of the three possibilities

(q = p−1 = 0 ≤ 2p) and (−pu0 + k = 0), (1.19)

(q = 0 = 2p ≤ p−1) and (k− ku2
0 = 0), (1.20)

(q = p−1 = 2p ≤ 0) and (−pu0 − ku2
0 = 0), (1.21)

only the third one defines a solution,

p = −1, q = −2, u0 = 1/k. (1.22)

To summarize, the local behavior of u is that of a simple pole,

u ∼
χ→0

k−1χ−1, χ = x− x0. (1.23)

In order to turn this local information into a global one, one then establishes
a parallel with a well known generator of simple poles, namely the logarithmic
derivative operator. If some function ψ(x) has an algebraic behavior ψ ∼ ψ0(x−
x0)p near x0 (with ψ0 and p any complex numbers), under action of the logarithmic
derivative operator,

D =
d
dx

log, (1.24)

this behavior (whatever it is, regular or singular, multivalued or singlevalued) be-
comes that of a simple pole of residue p,

d
dx

logψ ∼ p
x− x0

. (1.25)
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The crucial point is then to match (1.23) and (1.25), by introducing the transfor-
mation from u to ψ defined by

u = k−1 d
dx

logψ . (1.26)

This transformation, called the singular part transformation, maps the Riccati ODE
(1.1) to the second order ODE

ψ ′′ − k2ψ = 0, (1.27)

which has no more movable singularities since it is linear. Therefore its general
solution is known,

ψ = ccoshk(x− x1), (c,x1) arbitrary, (1.28)

and this provides the closed form single valued expression (1.3) for the general
solution of the Riccati ODE (1.1).

With our second example (1.2), one similarly obtains the two local behaviors

v ∼
χ→0

± ik−1χ−1, χ = x− x0. (1.29)

This complex value ±ik−1 for the residue should be no surprise, since it is the root of
an algebraic equation with real coefficients. The map from v to ψ must now involve
two functions ψ1,ψ2, and indeed, if one defines the singular part transformation as

v = ik−1(logψ1)′ − ik−1(logψ2)′, (1.30)

in which ψ1 and ψ2 are two different solutions of the same second order linear
equation

ψ ′′ − k2

4
ψ = 0, (1.31)

which can be chosen as

ψ1 = c1 cosh
k
2
(x− x1), ψ2 = c2 cosh

k
2
(x− x2), (1.32)

the expression (1.30) satisfies the ODE (1.2), provided x1,x2,k obey the relation

k(x1 − x2) = iπ + 2miπ , m ∈ Z , (1.33)

with the correspondence of notation x0 = (x1 + x2)/2.
Therefore, the fact of taking account of the singularity structure (one family of

simple poles, two families of simple poles with opposite residues, etc) allows one
to establish an explicit closed form link towards another ODE (in our examples a
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linear ODE) which has no movable singularities, ipso facto performing the explicit
integration of the nonlinear ODE.

The purpose of this book is to explain how to explicitly build analytic solutions
of nonlinear differential equations, whether ordinary or partial, by nonperturbative
methods such as the simple one presented above.

Since all the exact solutions one can derive by any method necessarily obey the
singularity structure of the equation in the complex plane, it is therefore a prerequi-
site to study these singularities. For instance, the solutions (1.3)–(1.4) have respec-
tively one family and two families of movable simple poles, therefore one must be
able to detect, directly on their ODEs without knowing the solutions in advance,
respectively one family and two families of movable simple poles.

1.2 Painlevé Property and the Six Transcendents

How can this be generalized? This is the whole problem of the explicit integration
of ODEs. To integrate an ODE, according to a definition attributed to Poincaré, is
to express its general solution as a finitely many term explicit expression, possibly
multivalued, built from elementary objects called functions. A function in turn is
defined as a map which can be made singlevalued in its whole domain of definition.
Any linear ODE defines a function because its general solution can be made singl-
evalued, by classical uniformization procedures such as cuts in the complex plane.
Typical examples are all the “special functions” of mathematical physics defined by
some linear equation (exponential and trigonometric functions, functions of Bessel,
Hermite, Legendre, Gauss, . . . ). Therefore, with the above definition, a large class of
ODEs are considered as integrated2: linear ODEs, linearizable ODEs, ODEs whose
general solution is rational in the solution of a linear equation, . . .

In order to extend the class of available functions, L. Fuchs and Poincaré stated
the problem of defining new functions from algebraic nonlinear differential equa-
tions. One such function had already been discovered by Jacobi when he solved the
motion of the pendulum. In this Hamiltonian system

H =
1
2

ml2
(

dθ
dt

)2

+ mgl(1− cosθ ), (1.34)

the problem is to find the position (characterized by the angle θ of the pendulum
of length l and mass m with the vertical axis) as a function of the time t. After
equating H to its constant value E , one obtains a first order second degree equation
(the degree is by definition the polynomial degree in the highest derivative) which
is often “integrated by separation of variables” as

2 For instance, the stationary Schrödinger equation of quantum mechanics, called the Sturm–
Liouville equation by mathematicians, is considered as integrated. To solve the spectral problem is
outside the scope of this volume.
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u = tan
θ
2

, t = t0 +
∫ u

u0

√
2ml2du√

(1 + u2)(E(1 + u2)−2mglu2)
, (1.35)

which expresses the time t as an elliptic integral of the position u. However, this
does not answer the question, which was to express the position as a function of
time. Indeed, the above answer is as bad as would be a multivalued expression like

t = t0 +
∫ u

u0

du
1 + u2 = t0 + Arctanu−Arctanu0, (1.36)

instead of the singlevalued answer

u =
u0 + tan(t − t0)

1−u0 tan(t − t0)
. (1.37)

This classical problem, called inversion of the elliptic integral, was solved by Abel
and Jacobi, who proved that, for the pendulum, the coordinates (l cosθ , l sinθ ) of
the position are singlevalued expressions of the time,

sin
θ
2

= k sn

(√
g
l
(t − t0),k

)
, k =

√
E

mgl
, (1.38)

cos
θ
2

= dn

(√
g
l
(t − t0),k

)
. (1.39)

The symbols sn(x,k) and dn(x,k), in which k is a constant, denote two of the twelve
Jacobi elliptic functions (Appendix C), which all satisfy equations of the type

(
du
dx

)2

−P(u) = 0, (1.40)

with P a polynomial independent of x of degree four with complex coefficients. The
general solution of (1.40) is singlevalued not only on the real x axis but in the whole
complex plane. Considering the complex plane is mandatory to unveil the beautiful
property of this function, which is to be a doubly periodic meromorphic function,
a characteristic property of elliptic functions. This equation is form invariant under
a transformation which plays a fundamental role in the present theories, the homo-
graphic transformation or homography,

u �→ αu + β
γu + δ

, (α,β ,γ,δ ) complex constants, αδ −β γ �= 0. (1.41)

The canonical representative in this equivalence class is the Weierstrass equation

u′2 = 4u3 −g2u−g3 = 4(u− e1)(u− e2)(u− e3), (1.42)
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in which g2,g3,e1,e2,e3 are complex constants and one zero of the polynomial P
has been moved to infinity by choosing −δ/γ equal to the affix of that zero. The
peculiarity of the homographic group is to be the unique bijection of the complex
plane (to which one has added the point at infinity) to itself, this is why this group
does not alter the singularity structure of the elliptic equation.

Another characteristic property of the elliptic equation, much more important in
our context than the previous one, is to be the unique first order algebraic ODE able
to define a “new” function in the above sense, i.e. from a nonlinear ODE.

This question (of defining new functions) has been investigated at higher orders
(up to six for special classes) by the Painlevé school (Painlevé, Gambier, Chazy,
Garnier) and its followers (Bureau, Exton, Martynov, Cosgrove). Its mathematical
formulation [349, p. 2]

Déterminer toutes les équations différentielles algébriques du premier ordre, puis
du second ordre, puis du troisième ordre, etc., dont l’intégrale a ses points critiques
fixes.3

naturally leads to the definition of a property of differential equations.

Definition 1.1. If the general solution of an ODE can be made singlevalued, one
says that such an ODE possesses the Painlevé property (PP).

A class of transformations which leaves invariant the singularity structure of u
and therefore the PP of the ODE for u is the homographic group (also called Möbius
group and denoted PSL(2,C ))

(u,x) �→ (U,X), u(x) =
α(x)U(X)+ β (x)
γ(x)U(X)+ δ (x)

, X = ξ (x),

(α,β ,γ,δ ,ξ ) functions, αδ −β γ �= 0, (1.43)

which depends on four arbitrary functions and generalizes the group (1.41).
At present time, only second order nonlinear equations have defined additional

functions, the six ones discovered by Painlevé and Gambier, called Painlevé tran-
scendents Pn,n = 1, . . . ,64

P1 : u′′ = 6u2 + x,

P2 : u′′ = δ (2u3 + xu)+ α,

P3 : u′′ =
u′2

u
− u′

x
+

αu2 + γu3

4x2 +
β
4x

+
δ
4u

,

P4 : u′′ =
u′2

2u
+ γ

(
3
2

u3 + 4xu2 + 2x2u

)
−2αu +

β
u

,

P5 : u′′ =
[

1
2u

+
1

u−1

]
u′2 − u′

x
+

(u−1)2

x2

[
αu +

β
u

]
+ γ

u
x

+ δ
u(u + 1)

u−1
,

3 To determine all the algebraic differential equations of first order, then second order, then third
order, etc., whose general solution has no movable critical points.
4 We adopt for P3 the choice made by Painlevé in 1906 [350] to replace his original choice of 1900
[348].
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P6 : u′′ =
1
2

[
1
u

+
1

u−1
+

1
u− x

]
u′2 −

[
1
x

+
1

x−1
+

1
u− x

]
u′

+
u(u−1)(u− x)

x2(x−1)2

[
α + β

x
u2 + γ

x−1
(u−1)2 + δ

x(x−1)
(u− x)2

]
,

in which α,β ,γ,δ are arbitrary complex parameters5. Their only singularities (in
the complex ex plane for P3,P5, in the x plane for the four others) are movable
poles, with in addition three fixed critical singularities for P6, conveniently located
at points x = ∞,0,1. Their main properties are briefly presented in the Appendix B.

We will not detail how these six equations were discovered, and we will only
show, in Chap. 3, how to integrate given nonlinear ODEs with: linear ODEs, the
elliptic equation, the six Painlevé equations.

A frequent question is (see the FAQ section), by which miracle these six func-
tions, discovered from purely mathematical considerations, occur so widely in
physics. The answer should now be evident: they are just functions defined by an
ODE (like the exponential function is defined by the ODE u′−u = 0) and, as soon as
the ODE governing the physical system possesses some singlevaluedness, the ellip-
tic and Painlevé functions are likely to contribute to the corresponding singlevalued
expression. A famous example is the two-dimensional Ising model, in which the
two-point correlation function is a P6 function of the temperature [239] for param-
eter values of α,β ,γ,δ identical to those of the case of Picard (Appendix formula
(B.3)) modulo transformations (B.15).

There is nothing more behind all this, and nothing less, than the explicit integra-
tion of nonlinear ODEs.

5 Without loss of generality, one can assume δ (δ −1) = 0 in P5, γ(γ −1) = 0,δ (δ −1) = 0 in P3.
See Appendix B.4.



Chapter 2
Singularity Analysis: Painlevé Test

Abstract In this chapter, we present the Painlevé test on various examples of non-
linear ODEs,

E(x,u(N), ...,u′,u) = 0, ′ =
d
dx

, (2.1)

This is a local analysis which can be implemented as an algorithm to provide nec-
essary conditions for the Painlevé property.
This method is historically due to Sophie (Sonya) Kowalevski and Bertrand Gam-
bier, with many elements already in Hoyer [227]1. In the motion of a rigid body
around a fixed point, Kowalevski required the general solution to be a single valued
function of time not only on the real axis but also in the complex plane and, by apply-
ing only a subset of the method which we are going to describe, she isolated a fourth
case of possible singlevaluedness (the “Kowalevski case”) which she succeeded to
explicitly integrate [257], thus constructively proving the singlevaluedness. Gambier
developed a direction initiated by Appelrot and made the method algorithmic. This
method was later rediscovered by Ablowitz, Ramani and Segur [5]. As to Painlevé,
he himself never used “le procédé connu de Madame Kowalevski . . . dont le car-
actère nécessaire n’était pas établi” [349, pp. 10,83] [351, pp. 196,269]. We will not
present in this book the α method of Painlevé [351] because it is more difficult to
implement.

2.1 Kowalevski–Gambier Method

We present here its main subset, which consists in checking the existence of all
possible local representations, near a movable singularity x− x0 = 0, of the general
solution as a locally single valued expression, e.g. the Laurent series

1 Paul Hoyer and Sophie Kowalevski were both students of Weierstrass.

11



12 2 Singularity Analysis: Painlevé Test

u =
+∞

∑
j=0

u jχ j+p, −p ∈ N , E =
+∞

∑
j=0

E jχ j+q, −q ∈ N , (2.2)

with coefficients u j,E j independent of the expansion variable χ . In case the ODE
explicitly depends on x, the computed coefficients will depend on x0; as noticed by
Gambier [163, p. 50], this can be avoided by defining χ by the property χ ′ = 1
rather than χ = x− x0, and the computed coefficients then depend on x. The reader
interested in the full, detailed version of the test can refer to [76, p. 160].

2.1.1 Lorenz Model

As a first example, let us consider the system2,

dx
dt

= σ(y− x),
dy
dt

= rx− y− xz,
dz
dt

= xy−bz. (2.3)

In the first step, as already explained in Sect. 1.1.2, one has to determine all the
possible families of movable singularities, i.e. all the leading behaviors

χ → 0 : x ∼ x0χ p1 ,y ∼ y0χ p2 ,z ∼ z0χ p3 , (x0,y0,z0) �= (0,0,0), χ ′ = 1, (2.4)

with at least one p j not a positive integer. The various terms contribute as

−x′ σy −σx −y′ rx −y −xz −z′ xy −bz
p1 −1 p2 p1 p2 −1 p1 p2 p1 + p3 p3 −1 p1 + p2 p3

the terms −σx, −y and −bz are less singular than, respectively, x′,y′,z′, and one
obtains the unique possibility⎧⎨

⎩
q1 = p1 −1 = p2,
q2 = p2 −1 = p1 + p3,
q3 = p3 −1 = p1 + p2,

E0 =

⎧⎨
⎩

−p1x0 + σy0 = 0,
−p2y0 − x0z0 = 0,
−p3z0 + x0y0 = 0,

(2.5)

This defines two families,

p = (−1,−2,−2), q = (−2,−3,−3), (2.6)

x0 = 2i, y0 = −2iσ−1, z0 = −2σ−1, i2 = −1. (2.7)

A first necessary condition for the PP is that all components of p be integer, and in
the present example it is satisfied.

After completion of this first step, one must check, for each family, whether it
is possible to compute all the coefficients u j, j ≥ 1 of the Laurent series (2.2). The

2 One could equivalently process the scalar third order equation (2.24), and this would yield the
same results. However, as a general rule, any elimination increases the volume of expressions.
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recursion relation for computing the j-th coefficient (x j,y j,z j) of the Laurent series
takes the form, in matrix notation,

P j

⎛
⎝x j

y j

z j

⎞
⎠+ Q j = 0, (2.8)

in which P j is a square matrix depending only on j and the leading behavior
p,x0,y0,z0,

P j =

⎛
⎝− j− p1 σ 0

−z0 − j− p2 −x0

y0 x0 − j− p3

⎞
⎠ =

⎛
⎝ − j + 1 σ 0

2σ−1 − j + 2 −2i
−2iσ−1 2i − j + 2

⎞
⎠ , (2.9)

and the column vector Q j depends on all the previously computed coefficients
(xl,yl ,zl), l = 0, . . . , j−1,

Q j =

⎛
⎝ −σx j−1

−∑ j−1
k=1 xkz j−k + rx j−1 − y j−1

∑ j−1
k=1 xky j−k −bz j−1

⎞
⎠ . (2.10)

Therefore solving the recursion relation is a linear algebra problem, and three pos-
sibilities can occur.

1. If j is not a zero of the determinant of P j, the value of (x j,y j,z j) is uniquely
determined;

2. If j is a zero of the determinant of P j and if the vector Q j is orthogonal to the
kernel of the transpose of P j, the solution (x j,y j,z j) exists and it depends on as
many (at least one) arbitrary coefficients as the dimension of the kernel;

3. If j is a zero of the determinant of P j and if the vector Q j is not orthogonal to the
kernel of the transpose of P j, the Laurent series does not exist and the test fails.

The second step is to directly determine the locations j at which arbitrary coeffi-
cients may enter the Laurent series. These values j, the zeros of the determinant of
P j, are computed as follows. Considering the dominant terms (subset of the terms
which define the dominant behavior),

Ê(x,y,z) ≡
⎧⎨
⎩

−x′ + σy
−y′ − xz
−z′ + xy,

(2.11)

one computes their derivative (i.e. the linearized system near the point (x = x0χ p1 ,y =
y0χ p2 ,z = z0χ p3))

lim
ε→0

Ê(x + εX ,y + εY,z+ εZ)− Ê(x,y,z)
ε

≡
⎧⎨
⎩

−X ′ + σY
−Y ′ − zX − xZ
−Z′ + yX + xY .

(2.12)
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Near χ = 0, this weighted homogeneous linear system for (X ,Y,Z) admits a power
law solution

X ∼ Xjχ j+p1 , Y ∼ Yjχ j+p2 , Z ∼ Zjχ j+p3 , (2.13)

and the coefficients of the lowest powers of χ in the linear system (2.12) evaluate to⎧⎨
⎩

−( j + p1)Xj + σYj = 0,
−( j + p2)Yj − z0Xj − x0Zj = 0,
−( j + p3)Zj + y0Xj + x0Yj = 0.

(2.14)

Expressing that the solution (Xj,Yj,Zj) is nonzero results in the vanishing of the
determinant of the matrix P j of the system, see (2.9),

detP j = −( j + 1)( j−2)( j−4) = 0. (2.15)

This equation (2.15) is called the indicial equation [232, Chap. XV], its roots are
called Fuchs indices of the linear system (2.12) and, by a slight abuse of language,
of the nonlinear system (2.3). For any ODE, the number of Fuchs indices is at most
equal to the differential order of the ODE.

The value j = −1 seems unable to introduce an arbitrary constant since it is
not a positive integer, but it represents in fact the arbitrary constant t0. This results
from a theorem of Poincaré: given a solution of the nonlinear system defined by the
dominant terms (2.11), in the present case

(x,y,z) = (2iχ−1,−2iσ−1χ−2,−2σ−1χ−2), χ = t − t0, (2.16)

its derivative with respect to any arbitrary constant in it (here t0) is a solution of the
linearized system (2.12), here

(X ,Y,Z) = ∂t0(x,y,z) = (−2iχ−2,4iσ−1χ−3,4σ−1χ−3), (2.17)

which indeed corresponds to j = −1 in (2.13). Therefore, for any family of any
nonlinear ODE (and even PDE), the value −1 is always a Fuchs index.

The third step is to check whether or not, at each Fuchs index, the orthogonality
condition is satisfied.

At j = 1, one finds

x1 = (3σ −2b−1)i/3, y1 = 2i, z1 = 2σ−1(3σ −b + 1), (2.18)

At j = 2, the recursion relation admits a solution only under the condition

Q2 ≡ (b−2σ)(b + 3σ −1) = 0, (2.19)

in which case this solution is

x2 = arbitrary, y2 = σ−1x2 +(3σ −2b−1)i/3,
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z2 = −iσ−1x2 −σ−1(3σ −2b−1)(3σ −b + 1)/9 + r−1. (2.20)

At j = 4, one similarly introduces an arbitrary coefficient x4 under the single condi-
tion

Q4 ≡ −4i(b−σ −1)(b−6σ + 2)x2 − (4/3)(b−3σ + 5)bσr

+(−4 + 10b + 30b2−20b3−16b4)/27

+(−38b−56b2− (28/3)b3 + 88σ + 86b2σ)σ/3

−32σ/9 + 70bσ2−64σ3−58bσ3 + 36σ4 = 0, (2.21)

which splits into two conditions since x2 must remain arbitrary. The third step ter-
minates here, since no obstruction can occur above the highest Fuchs index j = 4,
and this terminates the Painlevé test.

What is the conclusion of the test? Only if the general solution has been repre-
sented can some conclusion be drawn.

If the three generated conditions on (b,σ ,r) are satisfied, there exists a Laurent
series depending on three arbitrary coefficients (t0,x2,x4), so one has represented the
general solution by a locally singlevalued expression, and one says that the Lorenz
model passes the Painlevé test. However, this does not imply that the model has the
Painlevé property.

The three generated conditions on (b,σ ,r) are called for brevity no-log condi-
tions, because, if at least one of them is not satisfied, a local representation of the
general solution still exists, which is a double series in χ and log χ (see [280] for
the Lorenz model), called a psi-series.

Unless the three generated conditions on (b,σ ,r) are satisfied, the Laurent series
with the leading behavior (2.7) does not exist and the test fails.

The three conditions admit only four solutions

(b,σ ,r) = (1,1/2,0),(2,1,1/9),(0,1/3,r),(1,0,r), (2.22)

which will be further examined in Sect. 3.1.1 from the point of view of their explicit
integration.

The fourth solution (σ = 0) should not be rejected on the ground that the system
(2.3) becomes linear. Indeed, there exists a scaling law in the model, and the system
rewritten for (x,σy,σz) has no such restriction. An easy way to remove it is to
eliminate y and z and to consider the single third order ODE for x(t) [391],

y = x + x′/σ , z = r−1− [(σ + 1)x′ + x′′]/(σx), (2.23)

xx′′′ − x′x′′ + x3x′ + σx4 +(b + σ + 1)xx′′+(σ + 1)(bxx′ − x′2)
+b(1− r)σx2 = 0. (2.24)

This ODE has exactly the same no-log conditions as the dynamical system.
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2.1.2 Kuramoto–Sivashinsky (KS) Equation

Since the KS equation,

ut + νuxxxx + buxxx + µuxx + uux = 0, ν �= 0, (2.25)

is invariant under the Galilean transformation (u,x,t)→ (u+c,x−ct,t), its traveling
wave reduction is defined as

u(x,t) = c +U(ξ ), ξ = x− ct,

νU ′′′′ + bU ′′′+ µU ′′+UU ′ = 0, (ν,b,µ) ∈ R, ν �= 0, (2.26)

which integrates once as (renaming U as u for consistency with (2.2))

νu′′′ + bu′′+ µu′+
u2

2
+ A = 0, (2.27)

in which A is the integration constant. It has a chaotic behavior [296], and it depends
on two dimensionless parameters, b2/(µν) and νA/µ3.

We follow the steps in Sect. 2.1.1. In the first step, one looks for all the singular
dominant behaviors

χ → 0 : u ∼ u0χ p, u0 �= 0, χ ′ = 1, (2.28)

with p not a positive integer. The terms u′′ and u′ are less singular than u′′′, the term
A is regular and cannot contribute, and so the dominant behavior is governed by the
dominant terms Ê

Ê(u) ≡ νu′′′ + u2/2, (2.29)

which contribute the terms

νp(p−1)(p−2)u0χ p−3 +(1/2)(u0χ p)2, (2.30)

and, since u0 is nonzero, generate the two conditions

p−3 = 2p, νp(p−1)(p−2)u0 +(1/2)u2
0 = 0, u0 �= 0. (2.31)

Their unique solution is p =−3,u0 = 120ν, and the common value of the two pow-
ers is q = p−3 = 2p = −6.

In the second step, for each dominant behavior, the indicial equation is com-
puted as already indicated in Sect. 2.1.1 One builds the linearized equation near the
solution which behaves like u0χ p

lim
ε→0

Ê(u + εw)− Ê(u)
ε

= (ν∂ 3
x +(u0χ p + . . .))w = 0, (2.32)
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then one requires this linear ODE for w to have a nonidentically zero power law
solution w = W χ j+p near χ = 0,

lim
χ→0

χ− j−q(ν∂ 3
x + u0χ p)χ j+p (2.33)

= ν( j−3)( j−4)( j−5)+ 120ν = ν( j + 1)( j2 −13 j + 60) (2.34)

= ν( j + 1)

(
j− 13 + i

√
71

2

)(
j− 13− i

√
71

2

)
= 0. (2.35)

The third step (to check the possibility to compute the sequence of coefficients
u j of the Laurent series for u) concludes without computation to the existence of the
series, in which however two of the three arbitrary constants are missing.

In this example, the test as presented in Sect. 2.1.1 is indecisive since the obtained
Laurent series does not represent the general solution, just a particular solution.
In order to test the missing part of the solution for possible multivaluedness, one
must undertake a perturbation [82], as follows. Denoting u(0) the particular solution
computed above,

u(0) = 120νχ−3−15bχ−2 +
15(16µν−b2)

4×19ν
χ−1 +

13(4µν−b2)b
32×19ν2 + O(χ), (2.36)

one defines another solution u by the Taylor series

u = u(0) + εu(1) + ε2u(2) + . . . , (2.37)

in which the small parameter ε is not in the ODE (2.27). This splits the nonlinear
ODE (2.27) according to the powers of ε into an infinite sequence

E(u) =
+∞

∑
n=0

εnEn(u(0), . . . ,u(n)), (2.38)

∀n : En = 0, (2.39)

and the additional requirement of this perturbative test is that each u(n) should be
single valued near χ = 0. The equation E0 is just the nonlinear equation (2.27), so
one must proceed to n = 1. Equation E1 = 0 is nothing but the linearized equation
around u(0)

(
ν

d3

dx3 + b
d2

dx2 + µ
d
dx

+ u(0)
)

u(1) = 0, (2.40)

therefore its indicial equation is identical to that already computed, see (2.35) and,
according to classical results on linear ODEs of the Fuchsian type [232, Chap. XV],
it admits three linearly independent solutions

u(1) = c jχ j+pRegular(χ), (2.41)
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in which j is a Fuchs index and “Regular” denotes a converging Taylor series of χ ,
so the local (near ε = 0 and χ = 0) representation of u is now

u(x0,εc+,εc−) = 120νχ−3{Regular(χ)
+ε[c−1χ−1Regular(χ)

+ c+χ (13+i
√

71)/2Regular(χ)

+ c−χ (13−i
√

71)/2Regular(χ)]+O(ε2)}. (2.42)

The contribution c−1 is irrelevant, since, according to a result of Poincaré, the Fuchs
index−1 only represents the constant x0, already present in the unperturbed solution
u(0), and at this perturbation order n = 1 the obtained solution contains three arbi-
trary constants (x0,εc+,εc−) and now locally represents the general solution. The
test terminates here, with a conclusion of failure due to the presence of irrational
Fuchs indices.

In fact, the test could have been stopped with the same conclusion immediately
after having established the indices, formula (2.35), because all indices but −1 are
irrational.

An important result, to be used in Sect. 3.2.5.2, is the existence of the converging
Laurent series (2.36) depending on the movable constant x0.

The ODE (2.27) admits other Laurent series in the variable (u−√−2A)−1, but
they provide no additional information.

Remark. If one would consider the Taylor series whose existence is stated by the
famous theorem of existence of Cauchy,

U = U0 + χU ′
0 +

1
2

χ2U ′′
0 +

1
6

χ3
(
−bU ′′

0 − µU ′
0 −

U2
0

2
−A

)
+ . . . , (2.43)

one could never distinguish between chaos and integrability (“les méthodes dérivées
de la doctrine de Cauchy ne semblaient pas susceptibles de répondre” [349, p. 6]).
This feature displays the superiority of the Laurent series (which has a singularity)
over the Taylor one (which has no singularity inside the disk of convergence).

Finally, although this is not part of the Painlevé test, let us introduce here the
quite useful notion of singular part operator D , which generalizes the logarithmic
derivative operator already presented in Sect. 1.1. This operator is defined as the
linear differential operator which represents all the singular terms of the Laurent
series (2.36),

u−D log(ξ − ξ0) = O(1),

D = 60ν∂ 3
ξ + 15b∂ 2

ξ +
15(16µν−b2)

76ν
∂ξ . (2.44)
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2.1.3 Cubic Complex Ginzburg–Landau (CGL3) Equation

The complex equation3

iAt + pAxx + q|A|2A− iγA = 0, pqγ �= 0, (A, p,q) ∈ C , γ ∈ R. (2.45)

admits a scaling limit [362, 275] under which the variable u = argA obeys the KS
PDE (2.25), this is the reason why the KS equation is often called the phase equa-
tion. We will consider the two-component system [64]{

iAt + pAxx + qA2B− iγA = 0,

−iBt + p̄Bxx + q̄B2A + iγB = 0,
(2.46)

in which B is not assumed to be the complex conjugate of A. Indeed, for γ = 0 and
p,q real, this sytem (2.46), then known as the AKNS system [3], is IST-integrable
whatever be (A,B), and the nonlinear Schrödinger equation (NLS),

iAt + pAxx + q|A|2A = 0, pq �= 0, A ∈ C , (p,q) ∈ R. (2.47)

is just one of its reductions, namely the complex conjugate reduction B = A.
Since the Painlevé test for PDEs will only be defined in Chap. 4, let us process

the traveling wave reduction of the system (2.46),

A(x,t) → eiωtA(ξ ), B(x,t) → e−iωtB(ξ ), ξ = x− ct, (2.48)

and rename ξ as x, which defines an ODE system for A(x),B(x). Fortunately, this
will make no difference to the result of the test.

Let us denote the dominant behavior as

A ∼ A0χ p1 , B ∼ B0χ p2 , χ ′ = 1, ′ =
d
dx

(2.49)

in which (A0,B0, p1, p2) are complex constants to be determined. Since the terms
iAt ,−iγA,−iBt , iγB are less singular, the dominant terms Ê are

Ê(A,B) ≡ (
pAxx + qA2B, p̄Bxx + q̄B2A

)
, (2.50)

they contribute to the following powers,

pAxx qA2B pBxx +qB2A
p1 −2 2p1 + p2 p2 −2 p1 + 2p2

and generate the set of equations

3 Only the imaginary part of γ can be absorbed in the definition of A, not the real part. As to the
contribution of a group velocity term −ivAx, it can be absorbed in the definition of x since v is real.
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p1 −2 = 2p1 + p2, pp1(p1 −1)+ qA0B0 = 0,
p2 −2 = p1 + 2p2, pp2(p2 −1)+ qA0B0 = 0.

(2.51)

It is convenient to introduce the six real parameters dr,di,sr,si,gr,gi,

dr + idi =
q
p
, sr − isi =

1
p
, gr + igi =

γ + iω
p

+
1
2

c2srsi +
i
4

c2s2
r . (2.52)

In the CGL3 case di �= 0, the equations (2.51) admit two solutions for (p1, p2,A0B0)
[53]

p1 = −1 + iα, p2 = −1− iα,

A0B0 =
3(3dr + ε1∆)

2d2
i

, α =
3dr + ε1∆

2di
, ∆ =

√
9d2

r + 8d2
i , ε2

1 = 1. (2.53)

In the case di = 0, they admit the unique solution

p1 = −1, p2 = −1, A0B0 = −2
p
q
, (2.54)

which corresponds to the limit di → 0,α → 0,ε1 = −sign(dr) in (2.53).
The CGL3 equation therefore admits two families for AB (and four for

√
AB),

and the noninteger values for the leading powers p1, p2 imply the failure of the test
for the CGL3 equation when written in the variables (A,B). However, when written
in other variables, e.g. (AB,gradlog(A/B)), the CGL3 equation is still algebraic
and the leading powers become integer (−2,−1 in the just mentioned variables).
Therefore, at this stage of the leading powers, one should declare failure only if
there exists no algebraic writing with integer leading powers.

Let us proceed to the second step. The indicial equation is the determinant of the
second order matrix

P j =
(

2qA0B0 qA2
0

qB2
0 2qA0B0

)
+diag(p( j−1 + iα)( j−2 + iα), p( j−1− iα)( j−2− iα). (2.55)

If one replaced in this determinant A0B0 and α with their algebraic values (2.53),
the resulting algebraic expression in j,dr,di,εi would look quite ugly and the roots
j would be difficult to obtain. What should be done instead [53, 86, 90] is to solve
the system (2.51) as a linear system on C , which is the case for the unknowns
(A0B0, p,q), {

A0B0 = − p
q
(1− iα)(2− iα),

p = K p(1− iα)(2− iα), q = Kq(1 + iα)(2 + iα),
(2.56)

in which K is an irrelevant arbitrary nonzero complex constant. With such a reso-
lution, in the determinant the variables (p,q,K) are factored out and the result only
depends on j and the real variable α ,
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|p|−2 detP j = ( j + 1) j( j2 −7 j + 6α2 + 12) = 0, (2.57)

yielding the set of Fuchs indices [53],

j = −1,0,
7 +

√
1−24α2

2
,

7−√
1−24α2

2
. (2.58)

For each of the two families, and for generic values of (p,q), two of the four indices
are irrational, and this fact cannot be changed by considering other variables like
AB,gradlog(A/B). The conclusion is that, for the same reason as in the KS equation,
the stationary reduction of the CGL3 PDE fails the test.

The condition that the four irrational Fuchs indices be integer (such a condition,
that numbers should be integer, is called a diophantine condition) constrain p,q
by the condition Im(p/q) = 0, i.e. di = 0,α = 0. Let us then compute the no-log
conditions arising at the indices 0,3,4. With a rescaling of A and B, one can assume
p and q to be real. At j = 0, one arbitrary constant is introduced, the ratio A0/B0.
At j = 3, one can similarly introduce an arbitrary constant A3 = −B3, but at j = 4,
the two recursion relations are [249],

A4 −B4 = 0, p−2γ2 = 0, (2.59)

and only when γ vanishes can the general solution be represented as a locally singl-
evalued expression, namely

A =
√
−2

p
q

eiϕ0 χ−1
(

1 + c3χ3 + c4χ4 + O(χ5)
)

, χ = x− x0, (2.60)

B =
√
−2

p
q

e−iϕ0 χ−1
(

1− c3χ3 + c4χ4 + O(χ5)
)

, (2.61)

the four arbitrary constants being x0,ϕ0,c3,c4, associated to the respective indices
−1,0,3,4.

The conclusion is that, for the stationary reduction At = 0,Bt = 0, the CGL3
equation for (A,B) passes the Painlevé test if and only if p/q is real and γ vanishes.
As will be seen in Chap. 4, this conclusion would be unchanged by applying the test
directly to the CGL3 PDE, therefore the CGL3 PDE passes the test iff it reduces to
the NLS equation.

2.1.4 Duffing–van der Pol Oscillator

The van der Pol oscillator

u′′ +(au2 + b)u′ − cu = 0 (2.62)
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was designed by van der Pol in 1922 to explain the triode oscillator, the friction term
au2 making the energy finite when b is negative. This model is famous [28] because,
for a > 0,b < 0,c < 0, one can prove the existence, uniqueness and stability of a
special closed trajectory called a limit cycle by Poincaré.

If one includes the next nonlinearities, the equation becomes

E(u) ≡ u′′ +(au2 + b)u′ − cu + du2 + β u3 = 0, (2.63)

and, like (2.62), it admits the two families [38]

u ∼ u0χ−1/2, u2
0 =

3
2a

, Fuchs indices = −1,
3
2
. (2.64)

The Fuchs index 3/2 is not integer but it is not an irrational number like for KS
or CGL3. In such a case (positive rational number), a Laurent series, which has
only integer powers, cannot represent the general solution. Such a representation is
achieved [369] by a generalization of the Laurent series called the Puiseux series
[207] containing integer powers of χ1/2,

u =
+∞

∑
2 j=0

u jχ j−1/2 = u0χ−1/2 + u1/2 + u1χ1/2 + u3/2χ1 + . . . , (2.65)

E(u) =
+∞

∑
2 j=0

E jχ j−5/2, ∀ j : E j = 0, (2.66)

in which one must check whether the coefficient u3/2 is arbitrary or not. The alge-
braic equations for u j are⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E0 ≡ u0

4
(3−2au2

0) = 0,

E1/2 ≡−au2
0u1/2 = 0,

E1 ≡−1 + 2au2
0

4
u1 − a

2
u0u2

1/2 −
b
2

u0 + β u3
0 = 0,

E3/2 ≡ 3β u2
0u1/2 + du2

0 = 0,

(2.67)

their resolution is quite similar to the Laurent case, i.e. it must be done by increasing
values of j. At the Fuchs index j = 3/2, under penalty of a movable logarithm, the
coefficient d must be set to zero, resulting in the series

u = χ−1/2
(

u0 +
3β −ab

2a
u0χ + u3/2χ3/2 + . . .

)
, (2.68)

in which the coefficient u3/2 is arbitrary. The ODE (2.63) with d = 0 (usually called
the Duffing–van der Pol oscillator) passes a weaker form of the Painlevé test called
the weak Painlevé test [369, 180], and the associated global property which the
ODE may possess is a weaker form of the Painlevé property: around any movable
singularity, the general solution is required to take only a finite number of deter-
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minations, this number being prescribed in advance or not. This weaker form was
studied in detail by Painlevé in [346, Leçons 5–10,13,19].

Remark. Despite the invariance of the Duffing–van der Pol oscillator under
u →−u, the ODE for u2 still involves a Puiseux series instead of a Laurent series,
because the values of the Fuchs indices (−1,3/2) are invariant under the change
u → u2.

The integration of this Duffing–van der Pol oscillator is examined in Sect. 3.2.6.

2.1.5 Hénon–Heiles System

This cubic Hamiltonian system is defined by

H =
1
2
(p2

1 + p2
2 + ω1q2

1 + ω2q2
2)+ αq1q2

2 −
1
3

β q3
1 +

c3

2q2
2

, α �= 0, (2.69)

q′′1 + ω1q1 −β q2
1 + αq2

2 = 0, (2.70)

q′′2 + ω2q2 + 2αq1q2 − c3

q3
2

= 0. (2.71)

Before analyzing the system (2.70)–(2.71), let us give some background. Taking
the most general two-degree of freedom, classical (as opposed to quantum), time-
independent Hamiltonian of the physical type (i.e. the sum of a kinetic energy and
a potential energy),

H =
1
2
(p2

1 + p2
2)+V(q1,q2), (2.72)

let us determine all the potentialsV (q1,q2) such that some unspecified integer power
q

n j
j (t) of the general solution is a single valued function of the complex time t.

In the case of one degree of freedom, with the additional requirement that V is
rational, this problem only admits two solutions,

n = ±1, H =
p2

2
+

4

∑
j=1

c jq
j, (2.73)

n = ±2, H =
p2

2
+ aq−2 + c2q2 + c4q4 + c6q6. (2.74)

In both cases, qn is an elliptic function and, in the second case, q is generically
multivalued.

The equations of motion for q j(t) are obtained by eliminating the momenta p1, p2

between the Hamilton’s equations of motion,

dp j

dt
= −∂V (q1,q2)

∂q j
,

dq j

dt
= q′j = p j, j = 1,2 (2.75)
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which results in the system of two coupled second order ordinary differential equa-
tions

q′′j +
∂V (q1,q2)

∂q j
= 0, j = 1,2 (2.76)

together with the first integral

H ≡ q′1
2

2
+

q′2
2

2
+V (q1,q2) = E. (2.77)

Following basic principles stated by Painlevé [348] which are outside the scope
of this volume, the Painlevé test preselects [97] a finite number of admissible poten-
tials V , depending on a finite number of arbitrary constants. Two of these preselected
potentials are in addition rational in q1,q2, these are the cubic Hénon–Heiles Hamil-
tonians (HH3) (2.69) and the quartic Hénon–Heiles Hamiltonians (HH4) (2.78),

H =
1
2
(P2

1 + P2
2 + Ω1Q2

1 + Ω2Q2
2)+CQ4

1 + BQ2
1Q2

2 + AQ4
2

+
1
2

(
α
Q2

1

+
β
Q2

2

)
+ γQ1, B �= 0, (2.78)

Q′′
1 + Ω1Q1 + 4CQ3

1 + 2BQ1Q2
2 −αQ−3

1 + γ = 0, (2.79)

Q′′
2 + Ω2Q2 + 4AQ3

2 + 2BQ2Q2
1 −β Q−3

2 = 0, (2.80)

so named according to their global degree in (q1,q2).
Finally, the “usual” Painlevé test (i.e. the subset introduced in previous sections)

selects seven potentials, three cubic [58, 147, 82] and four quartic [369, 179].
These seven potentials were initially isolated by the condition that a special sec-

ond integral of the motion should exist [204]. The difference between the two ap-
proaches is worth being emphasized: requiring singlevaluedness generates neces-
sary conditions on V (q1,q2), while requiring the existence of a second integral of
motion only results in sufficient conditions since one must give as an input [204] the
form of the additional first integral (e.g. quartic in the momenta).

In the present section, we perform the Painlevé test on the cubic Hamiltonian
(2.69), more precisely on the system made of the two equations of the motion
(2.70)–(2.71), in order to select the admissible values of the constants in (2.69).

Analyzing a system like (2.70)–(2.71) requires the introduction of several leading
behaviors, here one for q1 and one for q2. This typical situation for systems may lead
to the useless consideration of apparently different cases, implying a waste of time
and effort. This is indeed the case here since, as the interested reader can check,
q1 admits the only leading power −2, while q2 admits the three leading powers
2,−3/2,4 (the fractional power is acceptable since the system is still algebraic in
the variables (q1,q2

2) which only admit integer leading powers). It is elementary to
eliminate either q2

2 from (2.70) or q1 from (2.71), but the resulting fourth order ODE
for q1 can be written in a much simpler form [147].

The elimination of c3 between (2.69) and (2.71) first provides
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q2q′′2 + q′2
2 + 2ω2q2

2 + 4αq1q2
2 + ω1q2

1 − (2β/3)q3
1−2E = 0, H = E,

then the elimination of q2
2 with (2.70) yields

q′′′′1 +(8α −2β )q1q′′1 −2(α + β )q′21 − 20
3

αβ q3
1

+(ω1 + 4ω2)q′′1 +(6αω1 −4β ω2)q2
1 + 4ω1ω2q1 + 4αE = 0, (2.81)

and this ODE is much simpler to process, because q1 has only one admissible lead-
ing power, namely movable double poles.

This elimination of q2 and c3 establishes the identification [147] of the HH3
Hamiltonian system to the stationary flow ut = 0 of the fifth order conservative PDE

ut +
(

uxxxx +(8α −2β )uuxx−2(α + β )u2
x −

20
3

αβ u3
)

x
= 0, (2.82)

and the result which we are going to establish is that the only values of β/α which
make (2.81) pass the Painlevé test are precisely the only values for which the PDE
(2.82) is a soliton equation.

The leading behavior of (2.81) q1 ∼ q1,0χ−2 does not involve ω1,ω2,E ,

120q1,0 + 6(8α −2β )q2
1,0 −8(α + β )q2

1,0 − (20/3)αβ q3
1,0 = 0, (2.83)

and it defines two families, q1,0 = 3/α and q1,0 =−6/β . Then, the indicial equation

(i−2)(i−3)(i−4)(i−5)+(8α−2β )((i−2)(i−3)+ 6)q1,0

+8(α + β )(i−2)q1,0−20αβ q2
1,0 = 0, (2.84)

yields the following Fuchs indices

p = −2, q1,0 = − 3
α

, indices (−1,10,r1,r2), r1 + r2 = 5, (2.85)

p = −2, q1,0 =
6
β

, indices (−1,5,s1,s2), s1 + s2 = 10, (2.86)

in which ri and si are the roots of the equations

r2 −5r + 12 + 6γ = 0, s2 −10s+ 24 + 48γ−1 = 0, γ =
β
α

. (2.87)

Thus, one first has to solve the diophantine conditions that, for every family of
(2.81), the four indices are distinct integers.

The general method to solve these conditions has been developed by classical
authors [59, 46, 104]. For the class

q′′′′1 = Aq1q′′1 + Bq′1
2 +Cq3

1. (2.88)

the leading coefficient q1,0 obeys the second degree equation
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Cq1,0
2 + 2(3A + 2B)q1,0−120 = 0, (2.89)

and the indicial equation, after division by i+ 1, is

i3 −15i2 +(86−Aq1,0)i−240 + 2(3A + 2B)q1,0 = 0. (2.90)

The method [46] is to establish, for each of the two roots q1,0 = s1,s2 of (2.89),
a lower bound and an upper bound for the product Nj = 240− 2(3A + 2B)s j of
the three Fuchs indices. One eliminates as many coefficients A,B,C as possible by
replacing (2.89) by the equivalent information

C = − 120
s1s2

, 3A + 2B = 60
s1 + s2

s1s2
, (2.91)

which makes the indicial equation to depend on s1,s2 and only one fixed coefficient

i3 −15i2 +(86−As1)i−120

(
1− s1

s2

)
= 0, (2.92)

i3 −15i2 +(86−As2)i−120

(
1− s2

s1

)
= 0. (2.93)

The remaining coefficient A then does not contribute to the condition that each prod-
uct Nj, j = 1,2 is integer. Since the two products N1,N2 only depend on one variable,

N1 = 120

(
1− s1

s2

)
, N2 = 120

(
1− s2

s1

)
, (2.94)

an elimination is possible which yields a condition involving only N1 and N2, which
is the desired diophantine condition [46, (2.15) p. 80]

1
N1

+
1

N2
=

1
120

. (2.95)

This equation admits 63 solutions [104, (2.27)].
Here, the diophantine conditions are simple enough to be handled directly. They

can be parametrized as follows [82],

r2 − r1 = 2k−1,s2 − s1 = 2l, r1 < r2, s1 < s2, (2.96)

kl(ri + 1)(ri −10)(si + 1)(si −5) �= 0, (2.97)

with k and l two positive integers. A straightforward elimination yields

γ =
48

1− l2 , l2 = 1 +
1152

23 +(2k−1)2 , (2.98)

and this diophantine equation for (k, l) has only four solutions, listed in Table 2.1.
To finish the Painlevé test, one still has to compute the no-log conditions for each

of the two families and each of the four selected values of β/α . The result [58, 82] is
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Table 2.1 Cubic Hénon–Heiles system. Solution of the diophantine conditions. The last column
is the name of the soliton equation (2.82) for the value of β/α (SK for Sawada–Kotera, KdV5 for
fifth order Korteweg–de Vries, KK for Kaup–Kupershmidt).

β/α k, l r1, r2 s1, s2 Name
−1 1,7 2,3 −2,12 SK
−2 3,5 0,5 0,10
−6 6,3 −3,8 2,8 KdV5
−16 10,2 −7,12 3,7 KK

summarized in Table 2.2. In the case β/α = −6, the test succeeds unconditionally.
In the case β/α = −2, for which the two families coincide, the test fails uncondi-
tionally at the index 10, because the coefficient q1,5 must remain arbitrary. In the
cases β/α = −1 and −16, the test selects one additional condition involving ω1

and ω2.

Table 2.2 Cubic Hénon–Heiles system. Necessary conditions for the absence of movable loga-
rithms in (2.81), arising from the positive Fuchs indices, for the four cases of Table 2.1 and the
two families q1,0 = 3/α and q1,0 = −6/β . The identically satisfied conditions are not listed, the
Laurent coefficients are denoted q1, j , and the symbol P denotes a polynomial of its arguments.

β/α Family Fuchs index No-log condition
−1 −3/α 2 ω1 −ω2 = 0,
−1 −3/α 10 (ω1 −ω2)P(q1,2,q1,3,ω1,ω2,E) = 0,

−1 6/β 12 (ω1 −ω2)q2
1,5 = 0,

−2 0 undefined
−2 10 q2

1,5 = 0,

−16 −3/α 12 (ω1 −16ω2)(q1,10 +P(ω1,ω2,E)) = 0,
−16 6/β 5 (ω1 −16ω2)q1,3 = 0,
−16 6/β 7 (ω1 −16ω2)q1,5 = 0.

Therefore, the necessary conditions that the cubic Hénon–Heiles system passes
the Painlevé test result in three sets of values for the parameters,

(SK) : β/α = −1,ω1 = ω2, (2.99)

(KdV5) : β/α = −6, (2.100)

(KK) : β/α = −16,ω1 = 16ω2. (2.101)

These conditions are shown to be sufficient in Sect. 6.2.2, where the explicit inte-
gration is performed.
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2.2 Fuchsian Perturbative Method

There exist two situations making the method of Kowalevski and Gambier incon-
clusive:

1. presence of negative integers among the set of Fuchs indices of the linearized
equation,

2. insufficient number of Fuchs indices in the linearized equation.

These are dealt with in Sects. 2.2 and 2.3 respectively.
If one sets aside the ever present Fuchs index −1, it may happen that some family

possesses at least one Fuchs index which is a negative integer. In such a case, the
Laurent series (2.2) fails to locally represent the general solution, and the missing
part of the solution may contain multivaluedness, therefore the Painlevé test must
be extended to test this possibility.

From the presence of a negative integer Fuchs index, one should not assume the
existence of a movable essential singularity like e1/(x−x0). For instance, the ODE
with a meromorphic general solution [348, 82]

u′′ + 3uu′+ u3 = 0, u =
1

x−a
+

1
x−b

, (2.102)

with a and b arbitrary, is linearizable into a third order equation,

u =
ψ ′

ψ
, ψ ′′′ = 0, (2.103)

and, despite the meromorphy of its general solution u, one of its two families,

(F1) p = −1,u0 = 1, indices (−1,1),
(F2) p = −1,u0 = 2, indices (−2,−1),

admits the negative Fuchs index −2.
The method [149, 82] to unveil the information contained in the negative integer

indices is to define a perturbation close to the identity

x unchanged, u =
+∞

∑
n=0

εnu(n) : E =
+∞

∑
n=0

εnE(n) = 0, (2.104)

where, like for the α-method of Painlevé, the small parameter ε is not in the original
equation.

Then, the single equation (2.1) is equivalent to the infinite sequence

n = 0 E(0) ≡ E(x,u(0)) = 0, (2.105)

∀n ≥ 1 E(n) ≡ E′(x,u(0))u(n) + R(n)(x,u(0), . . . ,u(n−1)) = 0, (2.106)
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in which E′ is the derivative of the equation, like in (2.40), and R(1) is identically
zero. From a basic theorem of Poincaré [76, Theorem II, §5.3], necessary conditions
for the PP are

- the general solution u(0) of (2.105) has no movable critical points,
- the general solution u(1) of (2.106) has no movable critical points,
- for every n ≥ 2 there exists a particular solution of (2.106) without movable

critical points.

Order n = 0 is not different from the original equation (2.1) for the unknown u(0),
so one takes for u(0) the already computed (particular) Laurent series (2.2).

Order n = 1 is identical to the linearized equation

E(1) ≡ E′(x,u(0))u(1) = 0, (2.107)

and one must check the existence of N independent solutions u(1) locally singleval-
ued near χ = 0, where N is the order of (2.1).

The two main implementations of this perturbation are the Fuchsian perturbative
method [149, 82], described hereafter, and the nonFuchsian perturbative method
[318], described in the next section.

The Fuchsian perturbative method is adapted to the presence of negative integer
indices in addition to the ever present value −1, and it generates additional no-log
conditions. Denoting by ρ the lowest integer Fuchs index, ρ ≤ −1, the Laurent
series for u(1)

u(1) =
+∞

∑
j=ρ

u(1)
j χ j+p, (2.108)

represents a particular solution containing a number of arbitrary coefficients equal
to the number of Fuchs indices, counting their multiplicity. If this number equals N,
it represents the general solution of (2.107). Let us illustrate the method with two
examples [76, §5.7.3].

The first example is the equation

u′′ + 4uu′+ 2u3 = 0, (2.109)

which possesses the single family

p = −1, q = −3, E(0)
0 = u(0)

0 (u(0)
0 −1)2 = 0, indices (−1,0), (2.110)

with the puzzling fact that u0 ≡ u(0)
0 should be at the same time equal to 1 according

to the equation E(0)
0 = 0, and arbitrary according to the index 0. The necessity of

performing a perturbation arises from the multiple root of the equation for u(0)
0 ,

responsible for the insufficient number of arbitrary parameters in the zeroth order
series u(0). The application of the method provides

u(0) = χ−1 (the series terminates), (2.111)

E ′(x,u(0)) = ∂ 2
x + 4χ−1∂x + 2χ−2, (2.112)
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u(1) = u(1)
0 χ−1, u(1)

0 arbitrary, (2.113)

E(2) = E ′(x,u(0))u(2) + 6u(0)u(1)2
+ 4u(1)u(1)′

= χ−2(χ2u(2))′′ + 2u(1)2

0 χ−3 = 0, (2.114)

u(2) = −2u(1)2

0 χ−1(log χ −1). (2.115)

The movable logarithmic branch point is therefore detected in a systematic way at
order n = 2 and index i = 0. This result was of course found long ago by the α-
method [348, §13, p 221].

Quite similarly, the no-log condition labelled “undefined” in Table 2.2 is in fact

the failed condition Q(2)
0 ≡ −40α((u(1)

−1)
′ + u(1)

0 )2 = 0 [82], found at perturbation
order n = 2 from the Fuchs index 0, i.e. without the need for a lengthy computation
to test the index 10.

The second example is a fourth order ODE isolated by Bureau [46, p. 79]

u′′′′ + 3uu′′ −4u′2 = 0, (2.116)

which possesses the two families

p = −2,u(0)
0 = −60, ind. (−3,−2,−1,20), Ê = u′′′′+ 3uu′′ −4u′2, (2.117)

p = −3,u(0)
0 arbitrary, indices (−1,0), Ê = 3uu′′ −4u′2. (2.118)

The second family has a Laurent series (p : +∞) which happens to terminate [82]

u(0) = c(x− x0)−3 −60(x− x0)−2, (c,x0) arbitrary. (2.119)

For this family, the Fuchsian perturbative method is then useless, because the two
arbitrary coefficients corresponding to the two Fuchs indices are already present at
zeroth order.

The first family provides, at zeroth order, only a two-parameter expansion and,
when one checks the existence of the perturbed solution

u =
+∞

∑
n=0

εn

[
+∞

∑
j=0

u(n)
j χ j−2−3n

]
, (2.120)

one finds that coefficients u(0)
20 ,u(1)

−3,u
(1)
−2,u

(1)
−1 can be chosen arbitrarily, and, at order

n = 7, one finds two violations [82]

Q(7)
−1 ≡ u(0)

20 u(1)7

−3 = 0,Q(7)
20 ≡ u(0)2

20 u(1)6

−3 u(1)
−2 = 0, (2.121)

implying the existence of a movable logarithmic branch point. This method is easily
computerizable.
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2.3 NonFuchsian Perturbative Method

Whenever the number of indices is less than the differential order of the equation,
the Fuchsian perturbative method fails to build a representation of the general so-
lution, thus possibly missing some no-log conditions. The missing solutions of the
linearized equation (2.107) are of the nonFuchsian type near χ = 0.

In Sect. 2.2, the fourth order equation (2.116) has been shown to fail the test after
a computation which is practically untractable without a computer. Let us prove the
same result directly [318]. The linearized equation

E(1) = E ′(x,u(0))u(1) ≡ [∂ 4
x + 3u(0)∂ 2

x −8u(0)
x ∂x + 3u(0)

xx ]u(1) = 0, (2.122)

is known globally for the second family because the two-parameter solution (2.119)
is closed form, therefore one can test all the singular points χ of (2.122). These
are χ = 0 (nonFuchsian) and χ = ∞ (Fuchsian), and the key to the method is the
information obtainable from χ = ∞. Let us first lower by two units the order of the
linearized equation (2.122), by taking advantage of the knowledge of the two global
single valued solutions u(1) = ∂x0 u(0) and ∂cu(0), i.e. u(1) = χ−4,χ−3,

u(1) = χ−4v : [∂ 2
x −16χ−1∂x + 3cχ−3−60χ−2]v′′ = 0, (2.123)

Then the local study of χ = ∞ is unnecessary, since one recognizes the Bessel equa-
tion. The two other solutions in global form are

c �= 0 : v′′1 = χ−3
0F1(24;−3c/χ) = χ17/2J23(

√
12c/χ), (2.124)

v′′2 = χ17/2N23(
√

12c/χ), (2.125)

where the hypergeometric function 0F1(24;−3c/χ) is single valued and possesses
an isolated essential singularity at χ = 0, while the function N23 of Neumann is
multivalued because of a log χ term.



Chapter 3
Integrating Ordinary Differential Equations

Abstract The problem addressed in this chapter is, given an ODE which may admit
a singlevalued solution, to find it explicitly in closed form. Two kinds of ODE are
considered.
The first kind is made of ODEs which pass the Painlevé test, in which case the
goal is to find their general solution, and our three main examples will be: the four
cases of the Lorenz model isolated in Sect. 2.1.1, the traveling wave reduction of
the Korteweg–de Vries equation, and the traveling wave reduction of the nonlinear
Schrödinger equation. In these three examples, the general solution can indeed be
found and is represented either by elliptic functions or by Painlevé functions.
The second kind is made of ODEs which fail the Painlevé test, but which do not fail
it too badly, leaving open the possibility of a particular singlevalued solution. This
second kind of ODE is much more difficult to handle, because of the nonexistence of
a closed form general solution, making inapplicable most of the powerful methods
available for the ODEs of the first kind. One must first count the maximal number
of integration constants in the largest particular singlevalued solution, which we call
for convenience the general analytic solution.
The methods of integration can then be divided into two classes, one “sufficient”
and one “necessary”.

In the first class, one looks for solutions u in a given class of expressions (usually
polynomials) in some intermediate variable which obeys a given first order ODE
(e.g. Riccati, Weierstrass, projective Riccati). Then, by a direct computation, one
checks whether there indeed exist solutions in the given class. The solutions with a
simple profile (such as tanh for a front, sech for a pulse), are easily found by this
class of methods. The work involved can be done by hand but all solutions outside
the given class are surely missed.

In the second class of methods [320], presented in Sect. 3.2.5, rather than directly
looking for the unknown solution

u = f (ξ − ξ0), (3.1)

33
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in which ξ0 is a constant of integration, one looks as an intermediate piece of infor-
mation for the first order nonlinear ODE

F(u,u′) = 0, (3.2)

obtained by eliminating ξ0 between (3.1) and its derivative, in which F is as un-
known as f . Indeed, provided that f is singlevalued, by a classical theorem there is
equivalence between the knowledge of the solution f and that of the subequation F
which it satisfies.

3.1 Integrable Situation

Using six examples of ODEs which pass the Painlevé test, we explain how to find
the first integrals if they exist, and then to perform the explicit integration.

3.1.1 First Integrals and Integration of the Lorenz Model

A first integral of an N-th order ODE is by definition a function of x,u(x),u′(x),
. . . ,u(N−1) which takes a constant value at any x, including the movable singularities
of u.

Since the Lorenz model (2.3) is autonomous, first integrals can be defined as the
product of eλ t by an expression only depending on x,y,z, for instance P(x,y,z)eλ t ,
with P polynomial and λ constant. One should not search for first integrals in this
class simply by putting an upper bound on the global degree of the polynomial P in
the three variables [388]. Indeed, P must have no movable singularities, therefore
the admissible polynomials P are provided by a generating function built from the
singularity degrees (−1,−2,−2) of (x,y,z) (see (2.7)) [280]

1
(1−αx)(1−α2y)(1−α2z)

= 1 + αx + α2(
x2 + y + z

)
+ α3 (

x3 + xy + xz
)

+ α4 (
x4 + x2y + y2 + x2z+ yz+ z2)+ . . . (3.3)

and this defines the basis, ordered by singularity degrees,

(1), (x), (x2,y,z), (x3,xy,xz), (x4,x2y,y2,x2z,yz,z2), . . . (3.4)

The existence of the two families (2.7) splits the possible first integrals into two
disjoint classes according to their parity under the mapping (x,y,z) �→ (−x,−y,z).
The odd first integrals are generated by the basis

(x), (y), (x3,xz), (x2y,yz), . . . (3.5)
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and the even ones by

(1), (x2,z), (xy), (x4,y2,x2z,z2), (x3y,xyz), . . . (3.6)

The smallest admissible singularity degree is two and the associated candidate is the
even linear combination

K = (c0 + c1x2 + c2z)eλ t , (3.7)

which indeed provides one first integral [390]

K1 = (x2 −2σz)e2σt , b = 2σ . (3.8)

Six polynomial first integrals are known [390, 264] with a singularity degree equal
to two or four (in accordance with the Fuchs indices (2.15)), they all have an even
parity1 and it can be proven [283] that they are the only ones in the polynomial class.
The case b = 2σ involved in (3.8) is one of the two solutions of Q2 = 0 (2.19), and
an interesting open problem is to find a first integral, if any, associated to the second
solution b = 1−3σ of Q2 = 0.

In order to find first integrals of dynamical systems, an original approach has been
developed [40], which has no relation with singularities but which takes advantage
of basic properties in linear algebra. This approach is explained well in [177].

For the four values of (b,σ ,r) for which the test succeeds, the explicit integration
happens to be possible, and it has been performed in [390] for the first three cases
and in [438] for the fourth case. Each case admits at least one of the following first
integrals [390]

(2σ ,σ ,r) : K1 = (x2 −2σz)e2σt , (3.9)

(0,1/3,r) : K2 =
[−9x4 + 12x2(z− r)+ 4(y2 + 2xy)

]
e4t/3/12, (3.10)

(1,σ ,0) : K3 = (y2 + z2)e2t , (3.11)

therefore the elimination of y and z from (2.23) defines a second order ODE for x(t)
in which Kj represents the origin of t, itself associated with the Fuchs index −1.

3.1.1.1 Case (1,1/2,0)

Since K1 and K3 are both first integrals, x(t) obeys a first order ODE,

(
dx
dt

)2

+ x
dx
dt

+
1
4

(
x2 −K1e−t)2

+
x2

4
− K3

2
e−2t = 0, (3.12)

1 This is not a rule. The ODE with two opposite families u′′′ −6u2u′ +au′′ −2au3 = 0 admits the
odd first integral K = (u′′ −2u3)eax.
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and there exists a simultaneous change of dependent and independent variables
(x,t) → (X ,T ) in the class (1.43),

x = e−t/2X , T = e−t/2, (3.13)

which maps it to the autonomous, elliptic equation

(
dX
dT

)2

+(X2 −K1)2 −K3 = 0, (3.14)

whose general solution is single valued.

3.1.1.2 Case (2,1,1/9)

The second order ODE for x(t)

d2x
dt2 + 2

dx
dt

+
x3

2
+

(
8
9
− K1

2
e−2t

)
x = 0, (3.15)

cannot be made autonomous by a transformation (1.43), therefore the strategy is
to map it to one nonautonomous equation among the fifty equations of the list of
Gambier [163, 232, 116] (see Appendix A). In order to decide which equation is
suitable in this list, the method [348] is to write (3.15) in the canonical form

d2x
dt2 = A2(x,t)

(
dx
dt

)2

+ A1(x,t)
dx
dt

+ A0(x, t). (3.16)

Since the ODE passes the Painlevé test, as shown by Painlevé [348, p. 258] [349,
p. 74], the coefficient A2 is the sum of at most four simple poles in x (possibly
including x = ∞), whose sum of residues is equal to two

A2(x,t) = ∑
j

r j

x−a j(t)
, ∑

j
r j = 2, (3.17)

and the number of poles and the set of residues {r j} is invariant under the homo-
graphic transformations (1.43). In the present case, the value A2 = 0 means the
single pole x = ∞ with residue 2 (in order to check it, change x → 1/x). The method
is then to select the few Gambier equations which have the same number of poles
and the same set of residues {r j}, here one pole with residue two, finally to map the
ODE (3.15) to one of these Gambier equations by a transformation (1.43). Here the
suitable Gambier equation is either P2 or P12. To choose between P2 and P1, one
also matches the structure of singularities (two movable simple poles with opposite
residues for P2 and x(t), one movable double pole for P1), which now selects P2 as

2 As noticed by Painlevé [347], the ODE u′′ = δ (2u3 +xu)+ γ(6u2 +x)+β u+α , which includes
P2 and P1, has the PP, therefore, at least for the criterium of residues, P2 and P1 are not different.
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the unique possible match. Indeed, the particular transformation (1.43)

x = ae−2t/3X , T =
i
2

a−3/2e−2t/3, K1 =
3
8

ia3, (3.18)

maps (3.15) to

d2X
dT 2 = 2X3 + TX + α, α = 0. (3.19)

3.1.1.3 Case (0,1/3,r)

The second-order equation for x(t) is

d2x
dt2 − 1

x

(
dx
dt

)2

+
x3

4
+

K2

3x
e−4t/3 = 0. (3.20)

For K2 = 0 this equation admits the first integral

1
x2

(
dx
dt

)2

+
x2

4
= A2, (3.21)

and the general solution x = ±2iA/sinhA(t − t0). For K2 �= 0, the coefficient A2

defined by (3.16) decomposes as

A2(x,t) =
1
x

+
1

x−∞
, (3.22)

therefore the unique possible nonautonomous match in the list of Gambier is P3.
Indeed, the transformation

x = c1X , T = ce−2t/3, c2
1 = −4γ

9
, c2 =

27K2

4γδ
, (3.23)

realizes the mapping to

X ′′ =
X ′2

X
− X ′

T
+

αX2 + γX3

4T 2 +
β

4T
+

δ
4X

, α = β = 0. (3.24)

3.1.1.4 Case (1,0,r)

Because of the scaling invariance, the first integral (3.11) is also a first integral
[438] of the third order equation (2.24) for (b,σ ,bσr) = (1,σ ,0), which includes
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the particular case of interest to us (b,σ ,bσr) = (1,0,0),

(b,σ ,bσr) = (1,0,0) : K2 = lim
σ→0

σ2K3 =

[(
x′′ + x′

x

)2

+ x′2
]

e2t . (3.25)

For K = 0, the general solution is

x = ik tanh
k
2
(t − t0)− i, i2 = −1, (k, t0) arbitrary. (3.26)

For K �= 0, the ODE has second degree, therefore the classification of Gambier
cannot be used. Instead of looking in higher classifications, one can take the usual
parametric representation

x′′ + x′

x
= Ke−t cosλ , x′ = Ke−t sinλ , (3.27)

and build the second order ODE for λ (t). This ODE,

λ ′′ −Ke−t sinλ = 0, x(t) = λ ′(t) (3.28)

is not algebraic, but the variable eiλ obeys an algebraic second order first degree
ODE which is easy to map, as done in previous cases, to the P3 equation. The
overall result is the general solution

x = i+ 2i
d
dt

logw(ξ (t)), i2 = −1, ξ = ae−t , (3.29)

in which w(ξ ) is the particular third Painlevé function defined by

d2w
dξ 2 =

1
w

(
dw
dξ

)2

− dw
ξ dξ

+
αw2 + γw3

4ξ 2 +
β
4ξ

+
δ

4w
, (3.30)

α = 0, β = 0, γδ = −(K/a)2. (3.31)

To conclude this example of the Lorenz model, it represents a good illustration of
the power of the Painlevé test: the four values of (b,σ ,r) selected by the test indeed
correspond to dynamical systems having the Painlevé property.

3.1.2 General Traveling Wave of KdV Equation

The KdV PDE3

3 Although the constants (a,b) can be scaled out, retaining them makes the conversion between
different conventions easier.
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but + uxxx − 6
a

uux = 0, (a,b) constant, (3.32)

is invariant under a Galilean transformation (u,x,t)→ (u−(ab/6)c,x−ct, t), there-
fore it is convenient to define its traveling wave reduction as

u = −ab
6

c +U, ξ = x− ct, (3.33)

which leads to the ODE

U ′′′ − 6
a

UU ′ = 0. (3.34)

The singularities of U are a movable double pole, with the Fuchs indices −1,4,6,
therefore the possible first integrals can only have the singularity degrees 4 and 6.

As a consequence of the conservative form of the KdV equation, the third order
ODE (3.34) is a total derivative. Its primitive,

U ′′ − 3
a

U2 + ag2 = 0, (3.35)

with g2 an integration constant, admits the integrating factor U ′, which yields

1
2

U ′2 − 1
a

U3 + ag2U + 2a2g3 = 0, (3.36)

in which g3 is another integration constant. The two first integrals g2,g3 have the
respective singularity degrees 4 and 6, in agreement with the prediction from the
Fuchs indices.

The equation (3.36) is identical to the Weierstrass equation (1.42), under the
rescaling

U = 2au, X = x, (3.37)

which belongs to the homographic group (1.43), therefore its general solution is the
elliptic function

U(ξ ) = 2a℘(ξ − ξ0,g2,g3), (3.38)

a singlevalued expression which depends as expected on three arbitrary complex
constants g2,g3,ξ0.

The physically interesting traveling wave u is obtained by selecting the three
complex constants g2,g3,ξ0 so as to ensure the decreasing of u to some background
value B when ξ →±∞, which requires

−3
a
(B−κ)2 + ag2 = 0, κ = −abc

6
, (3.39)

−1
a
(B−κ)3 + ag2(B−κ)+ 2a2g3 = 0, (3.40)
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i.e.

g2 = 3

(
B−κ

a

)2

, g3 = −
(

B−κ
a

)3

. (3.41)

For such values of g2,g3, the doubly periodic elliptic function ℘ degenerates to a
hyperbolic trigonometric function, according to the classical formula

∀x,d : ℘(x,3d2,−d3) = 2d− 3d
2

coth2

√
3d
2

x. (3.42)

In the resulting complex solution,

u = −ab
6

c + 2a

(
2

B−κ
a

− 3(B−κ)
2a

coth2

√
3(B−κ)

2a
(ξ − ξ0)

)
, (3.43)

the singularities, which are movable double poles located at

ξ = ξ0 + inπ/k,n ∈ Z , k2 = 3
B−κ

2a
, (3.44)

are moved outside the real axis of ξ by a shift on ξ0, equivalent to the change of
coth for tanh, resulting in the final, bell-shaped, solitary wave solution (Fig. 3.1),

u = B−2ak2 sech2 (
kx−4k3t/b + 6k(B/a)t/b− kξ0

)
. (3.45)

3.1.3 General Traveling Wave of NLS Equation

Given the nonlinear Schrödinger equation (NLS),

iAt + pAxx + q|A|2A = 0, pq �= 0, (p,q) ∈ R, (3.46)

its traveling wave is defined by

A(x,t) =
√

M(ξ )ei(−ωt + ϕ(ξ )), ξ = x− ct, (3.47)

which generates the complex equation

M′′

2M
− M′2

4M2 + iϕ ′′ −ϕ ′2 + iϕ ′ M′

M
− i

p
cM′

2M
+

1
p

(
cϕ ′ + ω

)
+

q
p

M = 0,

(3.48)

whose real and imaginary parts define the third order system in (M,ϕ ′),
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Fig. 3.1 KdV bell-shaped solitary wave (3.45), for the values a = −1,b = 1,ξ0 = 0,B = 0.2, t =
0,k = 0.5.

⎧⎪⎪⎨
⎪⎪⎩

M′′

2M
− M′2

4M2 −
(

ϕ ′ − c
2p

)2

+
q
p

M +
ω
p

+
c2

4p2 = 0,

ϕ ′′ +
(

ϕ ′ − c
2p

)
M′

M
= 0.

(3.49)

According to the results in Sect. 2.1.3, the field M has movable double poles,
with the Fuchs indices (−1,0,3,4), see (2.58). The indices −1 and 0 correspond to
the two “angles” ξ0,ϕ0 (the irrelevant origins of ξ and ϕ), and the two others (3,4)
to two “actions” to be found.
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The second equation of the system (3.49) admits the integrating factor M, result-
ing in the first integral

Mϕ ′ − c
2p

M = K1. (3.50)

Since this relation is homographic, it is equivalent to consider either ϕ ′ or M. After
elimination of ϕ ′, the first equation of the system (3.49) admits the integrating factor
M′, resulting in another first integral

M′2

M
+

2q
p

M2 +
(

c2 −4ω p
p2

)
M + 4

K2
1

M
= K2. (3.51)

The two first integrals K1,K2 have the respective singularity degrees 3 and 4, in
accordance with the Fuchs indices. Up to an affine transformation, the elliptic equa-
tion (3.51) is identical to the Weierstrass equation (1.42), and the general solution
(M,ϕ ′) is elliptic,

M = −2
p
q

(℘(ξ − ξ0,g2,g3)− e0) , ϕ ′ =
c

2p
+

K1

M
, e0 =

4ω p− c2

12p2 , (3.52)

with the notation

K2 = −4
p
q

(
6e2

0 −
g2

2

)
, K2

1 = −
(

p
q

)2

(4e3
0 −g2e0 −g3). (3.53)

It depends on four fixed constants, p,q,c,ω (fixed because they appear in the def-
inition of the ODE), and three movable constants ξ0,g2,g3. Out of these three, one
(ξ0) represents the translational invariance, and the two important ones are (g2,g3)
or equivalently (K1,K2). Introducing a by℘(a)= e0, the solution can also be written
as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
M = −2

p
q

(℘(ξ − ξ0)−℘(a)),

ϕ ′ =
c

2p
+

j
2

℘′(a)
℘(ξ − ξ0)−℘(a)

, j2 = −1,

℘(a) = (4ω p− c2)/(12p2),

(3.54)

The modulus |A|=√
M is single valued if℘′(a) = 0, otherwise it is multivalued and

behaves like (ξ ± a)1/2 near ξ = ∓a. Since the variables e±iargA display the same
kind of branching, a compensation occurs making the two fields A and Ā single
valued. Indeed, the quadrature for ϕ is classical [9, §18.7.3],

℘′(a)
∫

dξ
℘(ξ )−℘(a)

= 2ζ (a)ξ + logσ(ξ −a)− logσ(ξ + a), (3.55)

in which the meromorphic function ζ is the primitive of −℘, the odd entire function
σ(z) behaves like z near z = 0, and the overall expressions of eiωtA and e−iωt Ā in
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terms of ξ are indeed globally singlevalued (but not elliptic) [83]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eiωtA =

√
−2p

q

√
℘(ξ )−℘(a) ei jζ (a)ξ

(
σ(ξ −a)
σ(ξ + a)

)i j/2

eicξ/(2p), j2 = −1,

e−iωt Ā =

√
−2p

q

√
℘(ξ )−℘(a) e−i jζ (a)ξ

(
σ(ξ −a)
σ(ξ + a)

)−i j/2

e−icξ/(2p).

(3.56)

Remark. This multivaluedness of the modulus
√

M also occurs in the stationary
linear Schrödinger (Sturm–Liouville) equation of quantum mechanics

ψ ′′ + f (x)ψ = 0, (3.57)

with ψ complex and f real, see details in Sect. 7.6.1.
Those traveling waves which decay exponentially fast at ξ = ±∞ are obtained

by requiring that the elliptic functions (doubly periodic in C ) degenerate to trigono-
metric functions (simply periodic in C ), according to the formula (3.42). One may
alternatively use the correspondence with the Jacobi functions

℘
(

x√
e1 − e3

,g2,g3

)
= e1 +(e1 − e3)cs2(x,k), k2 =

e2 − e3

e1 − e3
, (3.58)

followed by the well known degeneracy of the Jacobi functions to trigonometric
functions. One thus finds

1. the bright solitary wave [442], which only exists in the focusing regime pq > 0,

pq > 0 : A =
√

2
p
q

k sech(k(x− ct))×

e
i

c
2p

x + ip[k2 − (
c

2p
)2]t

. (3.59)

2. the dark solitary wave [444], which only exists in the defocusing regime pq < 0,

pq < 0 : A =
√
−2

p
q

[
k
2

tanh(
k
2
(x− ct))− i(K− c

2p
)
]
×

e
iKx−2ip[

k2

4
+(K − c

2p
)2 +

1
2

K2]t
. (3.60)

The reason why the explicit integration of the traveling wave reduction of both
KdV and NLS has been a quite easy task is their Painlevé property. For instance,
the first integrals (g2,g3 for KdV, K1,K2 for NLS) can be generated by a systematic
method involving the Lax pair [274, 147] and not by inspection as we have presented
it.
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For ODEs which do not possess the Painlevé property, finding all the possible
particular single valued solutions is not at all easy. Let us examine this question.

3.2 Partially Integrable Situation

We now introduce the main methods to find particular single valued solutions of
ODEs which fail the Painlevé test. These include truncation methods and a sube-
quation method, and the output is typically all those solutions which are elliptic or
degenerate of elliptic, i.e. rational in one exponential ekx or rational in x.

3.2.1 Traveling Wave Reduction of KS and CGL3

The ODEs considered in the remaining part of this chapter are those which fail
the Painlevé test but which do not fail it too much, leaving open the possibility for
closed form single valued particular solutions to exist. The goal is then to find all
such solutions.

The two main examples handled will be the traveling wave reduction of the
Kuramoto–Sivashinsky equation (2.25) defined by (2.27)

νU ′′′ + bU ′′+ µU ′+
U2

2
+ A = 0, ν �= 0. (3.61)

and of the CGL3 equation (2.45) defined by (3.47), resulting in the complex equa-
tion

M′′

2M
− M′2

4M2 + iϕ ′′ −ϕ ′2 + iϕ ′ M′

M
− i

p
cM′

2M
+

1
p

(
cϕ ′ + ω

)
+

q
p

M− iγ
p

= 0,

whose real and imaginary parts define the third order system in (M,ϕ ′),⎧⎪⎪⎨
⎪⎪⎩

M′′

2M
− M′2

4M2 −ϕ ′2 − si

(
cM′

2M
+ γ

)
+ sr

(
cϕ ′ + ω

)
+ drM = 0,

ϕ ′′ + ϕ ′ M′

M
− sr

(
cM′

2M
+ γ

)
− si

(
cϕ ′ + ω

)
+ diM = 0,

(3.62)

with the notation (2.52).
These two examples are not really independent since there exists a perturbation,

in the spirit of Sect. B.1, which maps the CGL3 PDE to the KS PDE [362, 276].
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3.2.1.1 Nonexistence of a First Integral

As opposed to the KdV reduction (3.35), the ODE (2.27), whose local singularity
analysis has been performed in Sect. 2.1.2, admits no integrating factor. Let us first
prove this quite important point.

When performed on the family U ∼ 2aχ−2 of the KdV reduction (3.34) and
its successive first integrals (3.35), (3.36), the local singularity analysis yields the
sequence of embedded Fuchs indices

(−1,4,6) → (−1,6) → (−1). (3.63)

Realizing a similar sequence for KS(
−1,

13 + i
√

71
2

,
13− i

√
71

2

)
→

(
−1,

13− i
√

71
2

)
→ (−1), (3.64)

would dissociate a complex index from its complex conjugate, which is impossible,
therefore the ODE (2.27) admits no first integral.

A similar result holds for the CGL3 system (3.62).

3.2.1.2 Counting of the Arbitrary Constants

When the ODE (2.1) is assumed nonintegrable, like (2.27) or the system (3.62), the
number of integration constants which can be present in any closed form solution
is strictly smaller than the differential order of the ODE. This difference, which is
an indicator of the amount of integrability of the ODE, can be precisely computed
from a local analysis.

Two local representations of the general solution of (2.1) exist. The first one,
also the most well known, is useless for our purpose. This is the Taylor series near
a regular point, whose existence, unicity, convergence, holomorphy, etc is stated by
the famous existence theorem of Cauchy, e.g. (2.43) for the KS ODE (2.27). The
reason why it is useless is its inability to make a distinction between chaotic ODEs
such as (2.27) and integrable ODEs such as u′′′ −12uu′−1 = 0 (P1).

The second one is the Laurent series (or more generally psi-series and/or Puiseux
series) near a movable singular point x0, which has been considered in various
examples in Chap. 2. This one does provide the expected information.

In the Kuramoto–Sivashinsky ODE (2.27), it has been argued essentially with
physical considerations [402] that the two irrational indices (13± i

√
71)/2 are re-

sponsible for the dense movable branching of the solution in the complex plane and
consequently for the chaotic behavior. The only way to remove such a behavior is
to require εc+ = εc− = 0, i.e. ε = 0 in (2.42), thus restricting to a single arbitrary
constant the analytic part of the solution.

A similar reasoning can be made for the CGL3 equation and its two irrational
indices (7±√

1−24α2)/2, (2.58).
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The question is then to turn this local information into a global one, i.e. to find
the closed form singlevalued expression depending on the maximal number (here
one) of movable constants.

We will call unreachable any constant of integration which cannot participate
in any closed form solution. The KS ODE (2.27) has two unreachable integration
constants, the third one, x0, being irrelevant since it reflects the invariance of (2.27)
under a translation of x.

We will also call the general analytic solution the closed form solution which
depends on the maximal possible number of reachable integration constants, and
our goal is precisely to exhibit a closed form expression for this general analytic
solution, whose local representation is a Laurent series like (2.36).

The above notions (irrelevant, unreachable) belong to an equation, not to a solu-
tion. Let us introduce another integer number, attached to a solution, allowing one
to measure its distance to the general analytic solution.

The distance of a closed form solution to the general analytic solution is defined
as the number of constraints between the fixed constants and the reachable relevant
movable constants.

For the KS ODE (2.27), the fixed constants are ν,b,µ ,A, the movable constant
x0 is irrelevant, the movable constants c1 = εc+,c2 = εc− are unreachable, so the
distance d is the number of constraints among the fixed constants.

For the CGL3 system (3.62), the movable constants x0,ϕ0 are irrelevant, the
movable constants associated with the indices (7±√

1−24α2)/2 are unreachable,
so the distance d is also the number of constraints among the fixed constants. In
[197], another counting, based on the various possible topological structures (fronts,
sources, sinks, etc) is made for CGL3 and provides the same results.

Table 3.1 summarizes this counting for the two nonintegrable ODEs considered
in this section. For convenience, and also because of their high physical interest, we
include in this table the traveling wave reduction of the following related PDEs,

1. the one-dimensional quintic complex Ginzburg–Landau equation (CGL5),

iAt + pAxx + q|A|2A + r|A|4A− iγA = 0, pr �= 0, Im(p/r) �= 0, (3.65)

(A, p,q,r) ∈ C , γ ∈ R,

2. the Swift–Hohenberg equation [398, 277] (SH)

iAt + bAxxxx + pAxx + q|A|2A + r|A|4A− iγA = 0, br �= 0, (3.66)

(A,b, p,q,r,) ∈ C , γ ∈ R,

in which b, p,q,r,γ are constants,
3. two coupled one-dimensional CGL3 equations

E ≡
{

iAt + ivAx + pAxx + q(|A|2 + δ |B|2)A− iγA = 0,

iBt − ivBx + pBxx + q(|B|2 + δ |A|2)B− iγB = 0,
(3.67)
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in which the coupling parameter δ is a complex constant and v is the (real) group
velocity. These describe for instance the amplitudes of two lasers [380], or the
spatiotemporal intermittency [11, 202], or hydrothermal waves [48].

Table 3.1 Integer numbers involved in the characterization of the general analytic solution of
a nonintegrable ODE. The vocabulary (irrelevant, unreachable) is defined in Sect. 3.2.1.2. The
column “Available” indicates the number of relevant, reachable integration constants, this is the
algebraic sum “Order” – “Irrelevant” – “Unreachable”.

Equation Order Irrelevant Unreachable Available

CGL3 4 2 = ξ0,ϕ0 2 0
2 CGL3 8 3 = ξ0,ϕA,0,ϕB,0 5 0
CGL5 4 2 = ξ0,ϕ0 2 0

KS 3 1 = ξ0 2 0
SH 8 2 = ξ0,ϕ0 6 0

For both the KS equation (2.25) and the CGL3 equation (2.45), there is some
experimental evidence (this is not a proof) for the existence of the general analytic
solution. Indeed, computer simulations as well as real experiments (for a review,
see [376]) sometimes display regular patterns in the (x, t) plane, and some of them
are described by some analytic solution. For the remaining patterns, the guess is that
there should exist analytic expressions, to be found, corresponding to these patterns.
For the KS equation (2.25), one thus observes a homoclinic4 solitary wave [403,
Fig. 7] u = f (ξ ),ξ = x− ct, while all solutions known to date are heteroclinic. For
the CGL3 equation (2.45) the existence of a fourth physically interesting solution
has been predicted [196], which is a distance-one homoclinic hole solution with an
arbitrary velocity c.

Let us now turn to the methods which may be able to provide the general analytic
solution, of course in closed form.

3.2.2 Elliptic Traveling Waves

Having found an elliptic function for the general traveling wave of KdV and NLS,
one might wonder whether the general analytic solution of either KS or CGL3 can
also be elliptic. It appears that this question (to characterize all the elliptic solutions)
is much easier to answer [224] than the one to characterize all the trigonometric
solutions.

Indeed, elliptic functions (i.e. doubly periodic functions in the complex plane)
enjoy the following nice property. Inside a period parallelogram, any elliptic func-

4 When the real variable ξ = x− ct goes to ±∞, the solution is said to be homoclinic if the two
limits of the solution are the same, otherwise it is called heteroclinic.
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tion possesses as many zeroes as poles (counting multiplicity), and the sum of the
residues at the poles is necessarily zero. For instance, the function℘has two simple
zeroes and one double pole, the Laurent expansion at this pole is

℘(x,g2,g3) =
1
x2 +

g2

20
x2 +

g3

28
x4 +O(x6), (3.68)

and the coefficient of x−1 is zero. Similarly, any one of the twelve Jacobi functions
pq has two simple zeroes and two simple poles, with a polar expansion

pq(x,k) = ± c
x− x0

+O(x− x0), c �= 0, (3.69)

so the sum of the two residues is again zero.

3.2.2.1 Necessary Conditions for Elliptic Solutions

Let us now assume that either the KS ODE (2.27) or the CGL3 system (3.62) pos-
sesses an elliptic solution. For the KS ODE (2.27), which admits only one family of
movable triple poles, this implies a period parallelogram containing one triple pole
and three simple zeroes, and the residue criterium from the Laurent series (2.36) is
the necessary condition [224]

b2 −16µν = 0. (3.70)

For the CGL3 system (3.62), as seen from the NLS limit handled in Sect. 3.1.3,
the relevant variable to consider is M or ϕ ′; these variables admit two families of
movable singularities represented by the Laurent series

di �= 0 :

⎧⎪⎨
⎪⎩

M =
9dr ±3∆

2d2
i

χ−2
(

1 +
csi

3
χ +O(χ2)

)
,

ϕ ′ =
c

2pr
+O(χ),

(3.71)

with the degeneracy di = 0 to the single family

di = 0 :

⎧⎪⎨
⎪⎩

M = − 2
dr

χ−2
(

1 +
csi

3
χ +O(χ2)

)
,

ϕ ′ =
c

2pr
+O(χ),

(3.72)

If the solution were elliptic, the period parallelogram would contain two double
poles and four simple zeroes, with the necessary condition of vanishing of the sum
of the two residues in (3.71),

di �= 0 : drcsi = 0. (3.73)



3.2 Partially Integrable Situation 49

Under the degeneracy di = 0 to one Laurent series (3.72), i.e. one double pole and
two simple zeroes, the necessary condition becomes

di = 0 : csi = 0, (3.74)

therefore the overall necessary condition is

∀di : drcsi = 0. (3.75)

Infinitely many such necessary conditions exist, by requiring a similar property from
any rational function of M and its derivatives, e.g. Mn or ϕ ′n with n integer, and the
final necessary conditions are [224, 416]{

di �= 0,∀dr : csi = 0, gr = 0, gi = 0,
di = 0 : csi = 0.

(3.76)

Under the degeneracy g3
2 − 27g2

3 = 0 of elliptic to trigonometric, this residue
criterium unfortunately does not survive, and more elaborate methods are necessary
to characterize all the trigonometric solutions of an ODE, this will be the subject of
Sects. 3.2.5 and 3.2.8.

3.2.2.2 The Elliptic Solutions

Knowing the necessary conditions (3.70) and (3.76) for the KS ODE (2.27) or the
CGL3 system (3.62) to possess an elliptic solution, let us establish these solutions.

There exist two kinds of methods to possibly find these elliptic solutions. The
first kind [320] has the advantage of requiring no additional assumption and of being
able to find all the elliptic solutions, but it sometimes requires the use of computer
algebra. It will be presented in Sect. 3.2.5. The second kind, which we now present,
has the advantage of being very simple and the drawback of being unable to find
those elliptic solutions which are outside some class of expressions since this class
is given as an input.

Like all other methods introduced in Sects. 3.2.3.2 and 3.2.4, this latter method a
priori assumes a given class of expressions compatible with the structure of singu-
larities. In the KS case, knowing the triple pole u ∼ 120νχ−3 of the KS ODE (2.27)
and the double pole of the Weierstrass function ℘, a compatible assumption is the
polynomial expression [153, 260]

u = c0℘′ + c1℘+ c2, c0 �= 0. (3.77)

After substitution in the KS ODE (2.27) and elimination of the derivatives of℘with

℘′′ = 6℘2 − g2

2
, (3.78)

℘′2 = 4℘3 −g2℘−g3, (3.79)
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the l.h.s. of (2.27) becomes an expression similar to (3.77), i.e. a polynomial in℘,℘′
of degree one in ℘′,

E(u) = E3,0℘3 + E1,1℘℘′+ E2,0℘2 + E0,1℘′ + E1,0℘+ E0,0 = 0, (3.80)

and one has to solve the six determining equations E j,k = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E3,0 ≡ c0(120ν + 2c0) = 0,
E1,1 ≡ 12bc0 + c0c1 + 12νc1 = 0,

E2,0 ≡ 6µc0 + 6bc1 +
c2

1

2
= 0,

E0,1 ≡ c0c2 + µc1 = 0,

E1,0 ≡ c1c2 − 1
2

g2c2
0 −18νg2c0,

E0,0 ≡ A−12νg3c0 +
1
2

(
c2

2 −bg2c1 − µg2c0 −g3c2
0

)
,

(3.81)

for the five unknowns c0,c1,c2,g2,g3. As a general rule, such determining equations
must be solved by decreasing order of the singularity degree, here −6,−5,−4,−3,
−2,0, like for the computation of the Laurent series. The result is [153, 260]⎧⎪⎨

⎪⎩
u = −60ν℘′ −15b℘− bµ

4ν
,

b2 = 16µν, g2 =
µ2

12ν2 , g3 =
13µ3 + νA

1080ν3 ,
(3.82)

therefore the necessary condition (3.70) is sufficient.
Consider now the CGL3 system (3.62) with the necessary conditions (3.76). In

the CGL3 case properly defined as di �= 0, the two Laurent series for M and ϕ ′
terminate,

di �= 0, csi = gr = gi = 0, M =
9dr ±3∆

2d2
i (x− x0)2

, ϕ ′ = constant(x− x0)−1, (3.83)

therefore CGL3 admits no elliptic solution [224]. In the real Ginzburg–Landau case
di = 0 with the necessary conditions csi = 0,gr = 0 (3.76), the notation (2.52) shows
the identity of the system (3.62) to that of the NLS case, therefore the solution is
elliptic and mathematically identical to (3.52). This elliptic traveling wave has been
beautifully extrapolated [54, Eqns. (2.11), (3.7), (3.8ab)] to a solution representing
the collision of two fronts, with a dependence on both x and t, given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
di = 0, si = 0 : |A|2 = − 2

dr

℘(Φ(x,t))
Φ2

x
,

Φ =
3

∑
j=1

Cje
kjx+ω jt , (k j,ω j) = constant.

(3.84)
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3.2.3 Trigonometric Traveling Waves of KS

Let us determine particular traveling waves of the KS ODE (2.27) which are rational
in one exponential function ekx (in the present section the independent variable ξ is
renamed x for coherence with other sections).

3.2.3.1 Gauge Transformation

There exists a trivial case when the general analytic solution is known, this is

b = 0, µ = 0, A = 0, U = 120ν(x− x0)−3. (3.85)

Despite the lack of interest of this solution, the natural question of whether this case
is gauge-equivalent to a nontrivial case must be investigated. This question is: under
a T (α,β ;g) transformation

(U,x) �→ (V,X) : U(x) = α(x)V (X)+ β (x), X = g(x), (3.86)

depending on three adjustable functions (α,β ,g), can the ODE (2.27) be converted
to the ODE

ν
d3V
dX3 +

V 2

2
= 0 (3.87)

by some choice of the three adjustable functions? With the notation

Λ =
α ′

α
+

b
3ν

, (3.88)

the transformed ODE reads

ν
d3V
dX3 + 3ν(g′)−1

(
Λ +

g′′

g′

)
d2V
dX2

+(g′)−2
[

µ − b2

3ν
+ 3ν

(
Λ ′ +Λ 2 +Λ

g′′

g′
+

g′′′

3g′

)]
dV
dX

+ α(g′)−3 V 2

2

+(g′)−3
[

β +
2b3

27ν2 − bµ
3ν

+
(

µ − b2

3ν

)
Λ + νΛ ′′ + 3νΛΛ ′ + νΛ 3

]
V

+α−2
(

A + νβ ′′′+ bβ ′′+ µβ ′+
β 2

2

)
= 0. (3.89)

The identification requires five conditions (constant nonzero value for the coefficient
of V 2, zero value for the coefficients of V ′′,V ′,V and for the term independent of
V ′′′,V ′′,V ′,V ). The first condition yields g′ = α1/3, the second one Λ = b/(12ν),
the third one b2/(µν) = 144/47, the fourth one β = 5bµ/(47ν), the fifth one A =
−1800/473. The gauges α and g result from the two successive quadratures
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α ′

α
= − b

4ν
, α = c3

1e−bx/(4ν),

g′ = c1e−bx/(12ν), g = c1

(
−12ν

b
e−bx/(12ν)−g0

)
, (3.90)

with (c1,g0) arbitrary constants of integration. In the original variable U(x), the
solution is independent of c1,

U = e−bx/(4ν)120ν

(
−12ν

b
e−bx/(12ν)−g0

)−3

+
5bµ
47ν

· (3.91)

Using elementary trigonometry, this is a third degree polynomial in tanh(k/2)(x−
x0), with νk2/µ = 1/47 and x0 arbitrary, a result first obtained by Kudryashov [259]
by a different method.

More solutions expressible as such third degree polynomials can be found by the
method explained in the next section.

3.2.3.2 Polynomials in tanh

The assumption (3.77) made in Sect. 3.2.2.2 expressed the consistency between the
triple pole of the KS ODE (2.27) and the double pole of the elementary elliptic
function ℘.

If one chooses for the elementary function one with a simple pole instead of
a double pole, one should be able to find more solutions. This is one of the two
principles of the method introduced in this section. The second principle is that this
elementary function with a simple pole, let us call it τ , should be defined as the
general solution of a first order nonlinear ODE possessing the Painlevé property,
so as to be sure that this general solution is single valued. As a direct consequence
of the residue condition recalled in Sect. 3.2.2.1, this desired function cannot be
elliptic.

All the first order nonlinear ODEs with the PP have been characterized by the
classical authors (Briot and Bouquet, Lazarus Fuchs, Poincaré, Painlevé) and there
exists only one such first order nonlinear ODE with the two additional properties:
(i) to be autonomous, (ii) to have only one family of movable simple poles. This
privileged equation is the Riccati equation with constant coefficients, normalized so
as to have residue one,

τ ′ + τ2 +
S
2

= 0, S = −k2

2
= constant ∈ C . (3.92)

Because of the elementary transformations between tanh,cotanh, tan,cotan, these
four functions are not considered as distinct in the present volume and the general
solution of (3.92) is written as

τ =
k
2

tanh
k
2
(x− x0), (3.93)
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with k and x0 complex. The limit 1/(x− x0) of τ when k → 0 is recovered by first
transforming tanh to cotanh by a shift of x0.

An a priori assumption for a closed form solution expressing the consistency
between the structure of singularities of the KS ODE (2.27) (one family of movable
poles of order −p = 3) and the structure of singularities of the Riccati ODE (3.92)
(one family of movable simple poles) is therefore that u is a polynomial in τ [69, 84]

u =
−p

∑
j=0

c jτ− j−p, c0 �= 0, (3.94)

with c j constants to be determined. By elimination of the derivatives of τ from
(3.92), the l.h.s. of (2.27) is a similar polynomial (−q = 6 for this ODE)

E(u) =
−q

∑
j=0

E jτ− j−q = 0, (3.95)

and this polynomial must identically vanish,

∀ j ∈ [0,−q] : E j = 0. (3.96)

Before writing down and solving these determining equations, let us make this
assumption even simpler, by taking advantage of the singular part operator D (2.44).
Introducing an entire function ψ as the general solution of the second order linear
ODE with constant coefficients

ψ ′′ +
S
2

ψ = 0, (3.97)

one has

τ =
ψ ′

ψ
=

d
dξ

logψ , (3.98)

therefore D logψ is a polynomial similar to (3.94). Moreover, since the Laurent
series (2.36) near ξ0 is unique, the difference between these two polynomials of τ is
regular near ξ0, therefore this is a constant.

As a consequence, the previous assumption⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
−p

∑
j=0

c jτ− j−p, c0 �= 0,

τ ′ + τ2 +
S
2

= 0, S = −k2

2
= constant,

E(u) =
−q

∑
j=0

E jτ− j−q = 0,

∀ j ∈ [0,−q] : E j = 0.

(3.99)
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is identical to and can be replaced by the simpler one⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = D logψ +U,

ψ ′′ +
S
2

ψ = 0, S = −k2

2
= constant,

E(u) =
−q

∑
j=−p

E jχ j+q = 0, χ =
ψ
ψ ′ = τ−1,

∀ j ∈ [−p,−q] : E j = 0.

(3.100)

in which D is the singular part operator (2.44), and U and k2 are constants to be
determined. The computation of E j only involves the elimination of ψ ′′ and higher
derivatives of ψ .

The advantages of (3.100) over (3.99) are numerous:

1. fewer unknowns (U,k2 instead of c j,k2),
2. fewer equations since the first equations E j = 0, j = 0, . . . ,−p−1 are identically

zero by definition of D ,
3. and, most important, the possibility to replace the linear ODE defining ψ by any

other linear ODE, since this respects the singularity structure.

This assumption (3.100) is nothing other than the reduction to ODEs of the fa-
mous truncation method initially designed for PDEs by Weiss et al. (WTC) [431].
It amounts to looking for solutions of the type

u = D logψ +U, (3.101)

in which D is the singular part operator D , (2.44), ψ a given entire function (i.e.
without any singularity at a finite distance, such as ex,coshx), and U an adjustable
function which has no singularities at the zeros of ψ . Naturally, ψ is defined by a
differential equation, for instance a linear one with constant coefficients. Assuming
a first order linear ODE for ψ yields nothing, for D log(c1ekx) has no movable singu-
larities. The assumption of a second order linear ODE for ψ as in (3.100) generates
the system [84]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E j = 0, j = 0,1,2,

E3 = 120νU −300bνS +
195b3

76ν
− 210

19
bµ ,

E4 = 60

(
−4ν2S2 − 20

19
µνS +

11
192 µ2

)
+

152b4

32×192ν2

− 615b2µ
4×192ν

−15bU +
1575
38

b2S,

E5 =
S
2

E3 − 15(b2 −16µν)
76ν

U,

E6 = E(U)−30

(
µ2

19
S +

20
19

µνS2 −4ν2S3
)

− 15
2

bUS +
15b2µ
152ν

S +
1575

76
b2S2.

(3.102)
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This system of four equations in two unknowns (U,S) is easy to solve because it is
overdetermined. The linear equation j = −p is first solved for U ,

U =
5
2

bS +
7bµ

4×19ν
− 13b3

32×19ν2 (3.103)

Then the system j = 4,5,6 admits six solutions, listed in Table 3.2, all represented
by

u = 120ντ3 −15bτ2 +
(

60
19

µ −30νk2 − 15b2

4×19ν

)
τ

+
5
2

bk2 − 13b3

32×19ν2 +
7µb

4×19ν
, τ =

k
2

tanh
k
2
(ξ − ξ0). (3.104)

Table 3.2 The six trigonometric solutions of KS, (2.27), with the notation k2 =−2S. They all have
the form (3.104). The last line is a degeneracy of the elliptic solution (3.82).

b2/(µν) νA/µ3 νk2/µ
0 −4950/193 , 450/193 11/19, −1/19

144/47 −1800/473 1/47
256/73 −4050/733 1/73

16 −18, −8 1, −1

The solitary waves b = 0 (see Fig. 3.2) were found by Kuramoto and Tsuzuki
[263], and the three other values of b2/(µν) were added by Kudryashov [259].

The distance (as defined in Sect. 3.2.1.2) of these six trigonometric solutions to
the general analytic solution is two, while the elliptic solution (3.82) has distance
one. Therefore the problem remains open to find the general analytic solution, this
will be investigated again in Sect. 3.2.5.

3.2.4 Trigonometric Traveling Waves of CGL3

The local singularity analysis has been performed in Sect. 2.1.3, and the presence
of two irrational Fuchs indices forbids the existence of the three-parameter general
solution of the third order system (3.62) and only allows a one-parameter particular
solution, see the counting in Sect. 3.2.1.2. The problem is then, for any value of
(p,q,γ,c,ω), to find this general analytic solution in closed form.

In order to apply a truncation method such as the one defined in Sect. 3.2.3.2,
one must first determine a variable whose dominant behavior is single valued. This
is the case of neither (A, Ā), nor (|A|,argA), and the limiting case NLS (Sect. 3.1.3)
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Fig. 3.2 KS, heteroclinic traveling wave of Kuramoto and Tsuzuki, (3.104) with ν = 1, µ = 1,b =
0,k2 = 11/19.

suggests considering either M = |A|2 or ϕ ′, variables which obey the system (3.62)
of two real equations.

Making two independent assumptions, one for M and one for ϕ ′, might create
some undesirable constraints and prevent finding some solutions. Let us therefore
first eliminate ϕ between the system (3.62), which results in

ϕ ′ =
csr

2
+

G′ −2csiG
2M2(gr −diM)

,
(

ϕ ′ − csr

2

)2
=

G
M2 , (3.105)

(G′ −2csiG)2 −4GM2(diM−gr)2 = 0, (3.106)

G =
1
2

MM′′ − 1
4

M′2 − csi

2
MM′ + drM

3 + giM
2, (3.107)

and let us concentrate on the single third order second degree equation (3.106) for
M = |A|2.

The variable M admits two families of movable double pole-like singularities
(3.71) with singular part operators

D± =
9dr ±3∆

2d2
i

(
− d2

dξ 2 +
csi

3
d

dξ

)
. (3.108)
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The ODE (3.106) depends on five fixed parameters dr,di,gr,gi,csi, out of which
only three are essential (gr,gi,c, equivalent to γ,ω ,c). Indeed, just like for NLS,
p and q (i.e. dr + idi and sr − isi) can be rescaled to convenient numerical values
making rational the Laurent series coefficients, such as

p = −1−3i, q = 4−3i,

dr =
1
2
, di =

3
2
, sr = − 1

10
, si = − 3

10
, ∆ =

9
2
· (3.109)

Since the field M presents two families of movable double pole-like singularities,
the one-family truncation introduced in Sect. 3.2.3.2 cannot yield the general ana-
lytic solution and the method must be extended. In Sect. 3.2.4.1 one performs this
one-family truncation (polynomials in τ), and one finds all the solutions known to
date except one.

In Sect. 3.2.4.2, a two-family truncation method is introduced, but, in the CGL3
case, it fails to provide any solution.

3.2.4.1 Polynomials in tanh

The solutions in which M is a polynomial in τ are searched for by the one-family
truncation (3.99) or equivalently (3.100). In the present case, the assumption⎧⎨

⎩
M = D± logψ + m,

ψ ′′ +
S
2

ψ = 0, S = −k2

2
= constant,

(3.110)

with D± defined in (3.108), transforms (3.106) into a truncated Laurent series

14

∑
j=2

E jχ j−14 = 0, E0 ≡ 0, E1 ≡ 0, (3.111)

and one must solve the 13 determining equations E j = 0 for two unknowns (S,m)
and, essentially, three parameters (gr,gi,c). As seen from the first few determining
equations written for the numerical values (3.109),

(D+ case) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M = 4

(
− d2

dξ 2 − c
10

d
dξ

+ m

)
logψ ,

E2 ≡ 57
100

c2 −156m+ 13k2 + 4gi + 16gr = 0,

E3 ≡
(

39
25

c2 + 432m−28k2−16gi−48gr

)
c = 0,

(3.112)

this presents no difficulty and, in the CGL3 case properly defined as di �= 0, one ob-
tains three solutions for each sign (physically, only three solutions are admissible),
whose respective distance to the general analytic solution is one, two, two. These
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are⎧⎪⎨
⎪⎩

M = −2

[(
τ − c

20

)2
+

( c
10

)2
]
, ϕ ′ − csr

2
= τ +

c
20

+
c

5M

(
τ2 − k2

4

)
,

k2 = −7
( c

10

)2 − 4
3

gr, 3gi + 2gr +
3c2

50
= 0,

(3.113)

⎧⎨
⎩M = −2

(
τ2 − k2

4

)
, ϕ ′ − csr

2
= τ,

k2 = 2gr, c = 0, gi = 0,

(3.114)

⎧⎪⎪⎨
⎪⎪⎩

M = −2

(
τ ± k

2

)2

, ϕ ′ − csr

2
= τ − c

20
,

k2 =
( c

10

)2
, gr = 0, gi − c2

50
= 0,

(3.115)

and⎧⎪⎨
⎪⎩

M = 4

[(
τ − c

20

)2
+

( c
20

)2
]
, ϕ ′ − csr

2
= −2τ +

c
20

+
c

5M

(
τ2 − k2

4

)
,

k2 = −
( c

10

)2
+

2
3

gr, 3gi −gr +
3c2

80
= 0,

(3.116)

⎧⎨
⎩

M = 4τ2, ϕ ′ − csr

2
= −2τ,

k2 =
2
3

gr, c = 0, 3gi −gr = 0,
(3.117)

⎧⎪⎪⎨
⎪⎪⎩

M = 4

(
τ ± k

2

)2

, ϕ ′ − csr

2
= −2τ − c

10
,

k2 =
( c

10

)2
, gr = 0, gi − c2

50
= 0.

(3.118)

In the original variable A, these solutions are easier to express in complex nota-
tion [86]. Denoting (A2

0,α) one of the two real roots of the complex equation

(−1 + iα)(−2 + iα)p + A2
0q = 0, (3.119)

these six complex solutions are the following.

1. A heteroclinic source or propagating hole [25] (see Fig. 3.3)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A = A0

[
k
2

tanh
k
2

ξ − iqpi

2(1− iα)p|p|2di
c

]
ei[−ωt + Φ],

Φ = α logcosh
k
2

ξ +
qi

2|p|2di
cξ ,

iγ −ω
p

=
(

c
2p

)2

− (2−3iα)
k2

4
,

(3.120)
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in which the velocity c is arbitrary. Indeed, the real and imaginary parts of the
last equation define the value of ω and a linear relation between c2 and k2, see
[86, (79)].

2. A homoclinic pulse or solitary wave [352]⎧⎨
⎩

A = A0(−ik sechkx)ei[α logcoshkx−ωt],
iγ −ω

p
= (1− iα)2k2, c = 0.

(3.121)

3. A heteroclinic front or shock [334]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A = A0
k
2

[
tanh

k
2

ξ + ε
]

e
i[α logcosh

k
2

ξ +
3pr + α pi

6|p|2 cξ −ωt]
,

iγ −ω
p

=
(

c
2p

)2

+
k2

4
,

k
2

= ε
pic

6|p|2 , ε2 = 1.

(3.122)

None of these six solutions requires any constraint on p,q,γ .
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Fig. 3.3 CGL3, heteroclinic source or propagating hole (3.120). The plotted curves x →
((k/2) tanh kξ/2 + ac)2 +(bc)2, with a = 0.2,b = 0.5,k2 + 2c2 = 2,ξ = x− ct, t = 1, display the
qualitative dependence of the solution on the arbitrary velocity c.
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3.2.4.2 Polynomials in tanh and sech

The existence of a fourth physically interesting solution has been predicted [196],
which is a homoclinic hole with an arbitrary velocity c, which should exist for one
constraint among the fixed coefficients of the system (3.62). This is another motiva-
tion to investigate it by a method, which we now describe, which fully respects the
singularity structure (two families for M).

Since the elementary variable τ defined in (3.92) has only one family, one must
introduce another elementary variable, let us call it σ , with the following proper-
ties: (i) to possess two families of movable simple poles, (ii) to be defined by some
autonomous first order ODE with the PP, (iii) not to be elliptic. From the classical re-
sults on first order nonlinear ODEs with the PP, the defining ODE must have a genus
equal to zero and a degree at least equal to two. Such an ODE has been encountered
at the very beginning of this volume, see (1.2). In order to couple its singularities
(two simple poles with opposite residues) with those of (3.92) (one simple pole),
the variables (τ,σ) will be defined as the general solution of the following coupled
system [236, 85] (the reason for the replacement k → 2k will soon be apparent),{

τ ′ + τ2 − k2 + kµσ = 0,
σ ′ + στ = 0.

(3.123)

This system is part of a larger class of linearizable systems called projective Riccati
systems [12]. It admits a first integral which we conveniently denote µ since the
system only depends on (µ ,σ) by the product µσ ,

k2 − τ2 −2kµσ
(µσ)2 = constant = −µ−2, (3.124)

and its general solution is⎧⎪⎪⎨
⎪⎪⎩

τ =
k sinhk(x− x0)

coshk(x− x0)+ coshka
, µ = cothka,

σ =
k sinhka

coshk(x− x0)+ coshka
,

(3.125)

in which the two constants of integration are x0 and a.
In place of (3.99), the assumption for solutions polynomial in (τ,σ) is (taking

account of the first integral)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
1

∑
l=0

−p−l

∑
j=0

c j,lσ lτ j, (c−p,0,c−p−1,1) �= (0,0),

τ ′ + τ2 − k2 + kµσ = 0, σ ′ + στ = 0,

k2 − τ2 −2µkσ + σ2 = 0,

E(u) =
1

∑
l=0

−q−l

∑
j=0

E j,lσ lτ j,

∀ j ∈ [0,−q],∀l : E j,l = 0.

(3.126)

The practical computation [85] presents no difficulty, except that one must discard
the cases of linear dependence between τ and σ , i.e. the two values µ = ±1. The
value µ = 0 represents the particular case

µ = 0 : τ = k tanhk(x− x0), σ = ik sechk(x− x0). (3.127)

The truncation (3.126) has the disadvantage of breaking the symmetry between τ
and σ , since a degree one must be assumed in one of the two elementary variables to
take the first integral into account. A more elegant formulation consists in replacing
the above assumption (3.126) by the equivalent of (3.100). The projective Riccati
system (3.123) is mapped by the transformation (note the symmetry between τ and
σ ) [86] ⎧⎪⎨

⎪⎩
τ =

d
dx

logψ1 +
d
dx

logψ2,

σ =
d
dx

logψ1 − d
dx

logψ2,
(3.128)

into the linear system(
ψ1

ψ2

)
x
=

k
2sinhka

(
coshka −1

1 −coshka

)(
ψ1

ψ2

)
, (3.129)

whose general solution is

ψ1 = cosh
k
2
(x− x0 + a), ψ2 = cosh

k
2
(x− x0 −a), (3.130)

i.e. ψ1 and ψ2 are two different solutions of the same linear ODE

ψ ′′
j −

k2

4
ψ j = 0, j = 1,2. (3.131)

Given the two singular part operators D±, (3.108), the sum M = D+ logψ1 +
D− logψ2, when evaluated modulo (3.131), is a polynomial in the two variables
(logψ j)′, j = 1,2 linked by the first integral µ . The advantage over (3.124) is the
characterization of this first integral, the ratio of two constant Wronskians of (3.131),
by the relation
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ψ1,x

ψ1

ψ2,x

ψ2
=

k2

4
− µ

k
2

[
ψ1,x

ψ1
− ψ2,x

ψ2

]
, (3.132)

which splits the polynomial of two variables into the sum of two polynomials of one
variable.

To conclude, there is much advantage in replacing the dissymetric assumption
(3.126) with the symmetric one (two-family version of (3.100)) [86, App. A]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = D+ logψ1 +D− logψ2 +U,

ψ ′′
1 +

S
2

ψ1 = 0, ψ ′′
2 +

S
2

ψ2 = 0, S = −k2

2
= constant,

ψ ′
1

ψ1

ψ ′
2

ψ2
=

k2

4
− µ

k
2

[
ψ ′

1

ψ1
− ψ ′

2

ψ2

]
,

E =

(−q

∑
j=1

E− j

(
ψ ′

1

ψ1

) j
)

+ E0 +

(−q

∑
j=1

E j

(
ψ ′

2

ψ2

) j
)

,

∀ j ∈ [q,−q] : E j = 0.

(3.133)

In the particular case µ = 0, this truncation reduces to the one presented in [356].
When applied to the variable u = M in the CGL3 case di �= 0, the determining

equations E j = 0 in the movable parameters k2,µ ,m admit no solution, and this
again reflects the difficulty of CGL3. Would such a solution exist, its expression
would be

M =

⎛
⎝3

√
9d2

r + 8d2
i

2d2
i

τ + c1

⎞
⎠σ +

9dr

2d2
i

τ2 + c3τ + c4, (3.134)

and the constraint c3 = 0 would define a homoclinic hole solution, just like the (yet
analytically unknown) one of van Hecke.

Remark. As can be guessed from the writings (3.120) and (3.121), the homoclinic
pulse, which presents a sech two-family behavior, is quite easy to obtain by (3.133)
if one represents the two multivalued original fields (A, Ā) by three fields (Z, Z̄,Θ)
defined by [86]

A = ZeiΘ , Ā = Z̄e−iΘ , Z ∈ C , Θ ∈ R. (3.135)

The three fields (Z, Z̄,gradΘ) are then locally single valued near a movable singu-
larity, and they have two families of movable simple poles (in the notation of (2.53),
the sign ε1 is fixed),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z
A0

= χ−1 +
pi + 3ipr + ipiα

6|p|2 c− iΘ0,x +O(χ),

Θ = α logψ +Θ0,
ψx

ψ
= χ−1,

A2
0 =

3(3dr + ε1∆)
2d2

i

, α =
3dr + ε1∆

2di
, ∆ =

√
9d2

r + 8d2
i , ε2

1 = 1.

(3.136)
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The truncation (3.133) of this set of three fields⎧⎨
⎩

Z = A0∂x logψ1 −A0∂x logψ2 + X + iY,
Z̄ = A0∂x logψ1 −A0∂x logψ2 + X − iY,
Θ = α logψ1 + α logψ2 +Θ0,

(3.137)

is the most efficient way [86, App. A] to obtain the pulse solution (3.121).
Remark. One important advantage of (3.133) over (3.126) is the possibility to

change the definition of the linear system for ψ j. In particular, taking a third order
linear equation with constant coefficients instead of a second order one provides
immediately the solution “collision of two shocks” [333, 334], which only exists for
pr = 0, and whose degeneracy qr = 0 is identical to the similar solution (5.261) of
KPP.

Let us terminate this section by an important remark. Given a one-family equa-
tion, performing its two-family truncation is useless and cannot yield results ad-
ditional to those of the one-family truncation. This is a direct consequence of the
elementary identities

tanhz− 1
tanhz

= −2isech
[
2z+ i

π
2

]
, tanhz+

1
tanhz

= 2tanh
[
2z+ i

π
2

]
. (3.138)

The sum of two logarithmic derivatives cannot generate a sech.

3.2.5 General Method to Find Elliptic Traveling Waves

The methods described in Sects. 3.2.2.2, 3.2.3.2 and 3.2.4.2 share a built-in restric-
tion, which prevents them from finding the desired result even in some elementary
cases. For instance, if one considers the rational trigonometric solution

u =
tanh(ξ − ξ0)

2 + tanh2(ξ − ξ0)
, (3.139)

and builds the first order ODE which it obeys (this is a common way to construct
examples),

u′2 +
(

12u2 − 3
2

)
u′ + 36u4− 17

2
u2 +

1
2

= 0, (3.140)

then none of the above truncation methods ((3.77), (3.100), (3.133)) succeeds in
finding its solution.

Similarly, in our two main examples of the traveling waves of KS and CGL3, the
general analytic solution could not be obtained, the best achievement being solutions
with a distance unity to the general analytic solution, and the problem remains open,
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1. in the KS equation (2.27), to extrapolate the traveling wave (3.104) by removing
the constraints between the fixed parameters listed in Table 3.2,

2. in the CGL3 equation (3.106), to extrapolate the propagating hole solution
(3.120) of Bekki and Nozaki to one more arbitrary constant by removing the
constraint between the fixed parameters.

The natural generalization of such a situation is an N-th order autonomous alge-
braic ODE (2.1), for which any solution is necessarily

u = f (ξ − ξ0), (3.141)

in which ξ0 is movable. Provided the elimination of ξ0 between (3.141) and its
derivative is possible, one obtains the first order nonlinear autonomous ODE

F(u,u′) = 0, (3.142)

in which F is as unknown as f .
However, f (ξ −ξ0) is now the general solution of (3.142) (while it is only a par-

ticular solution of (2.1)), and there exist classical results on first order autonomous
ODEs which are in addition algebraic. Let us therefore assume from now on that
the dependence of f on ξ0 is algebraic (this is a sufficient condition for F to be
algebraic).

To summarize: given the N-th order ODE (2.1) and its particular solution f
(3.141), and assuming the dependence of f on ξ0 to be algebraic, one is able to
derive a first order ODE (3.142) which is algebraic.

Conversely, given an algebraic first order ODE F = 0 (3.142), is it possible to
go back to f ? This question has been answered positively by Briot and Bouquet,
L. Fuchs, Poincaré and put in final form by Painlevé [346, pp. 58–59].

Theorem 3.1. Given the algebraic first order autonomous ODE F = 0 (3.142), if its
general solution is singlevalued, then

1. Its general solution is an elliptic function, possibly degenerate, and its expression
is known in closed form.

2. The genus of the algebraic curve (3.142) is one or zero.
3. There exists a positive integer m and (m+1)2 complex constants a j,k, with a0,m �=

0, such that the polynomial F has the form

F(u,u′) ≡
m

∑
k=0

2m−2k

∑
j=0

a j,ku ju′k = 0, a0,m �= 0. (3.143)

Then, assuming f to be singlevalued with an algebraic dependence on ξ0,

1. It is equivalent to search for the solution f or for the first order equation F = 0.
2. The solution f can only be elliptic (i.e. rational in ℘ and ℘′), or a rational func-

tion of eax with a constant, or a rational function of x.
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Since the most singular term u′m must balance another term in (3.143), this condi-
tion sets m to have the lower bound −p. For instance, with p =−3 as in the KS ODE
(2.27), for m = 1 or m = 2 no other term can match the power a0,m(ξ − ξ0)(p−1)m,
therefore one must set m ≥ 3. There also exists an upper bound for m, whose value
depends on the structure of singularities of (2.1). Indeed, if the local analysis of (2.1)
displays nk distinct families of movable poles of order dk, k = 1, . . . ,K, assuming
the solution to be elliptic, this upper bound is [43, p. 277] [193, part II, chap. IX,
p. 329], [207, p. 424]

upper bound m = ∑
k

nkdk = number of poles, counting multiplicity. (3.144)

The explicit form (3.143) of F makes it much easier to look for F than for f , and
an algorithm has been devised [320] which yields explicitly all possible subequa-
tions F = 0, (3.143), then, using an algorithm [222] due to Poincaré, all solutions f
in the canonical form

u = R(℘′,℘) = R1(℘)+℘′R2(℘), (3.145)

in which R1,R2 are two rational functions, with the possible degeneracies

R(℘′,℘) −→ R(eaξ ) −→ R(ξ ), (3.146)

in which R denotes rational functions.
The input data and assumptions of this algorithm are:

1. an N-th order autonomous algebraic ODE (2.1), N ≥ 2,
2. a Laurent series representing its general analytic solution,
3. a first order autonomous algebraic ODE (3.142) sharing its general solution with

(2.1).

The algorithm is [320, Sect. 5]:

1. Compute finitely many terms of the Laurent series,

u = χ p

(
J

∑
j=0

u jχ j +O(χJ+1)

)
, χ = ξ − ξ0. (3.147)

where p is −3 for the KS equation (2.27), and −2 for the CGL3 equation (3.106).
This series excludes the contribution of the irrational Fuchs indices such as (13±
i
√

71)/2 for KS or (7 ±√
1−24α2)/2 for CGL3. It depends on at least one

movable constant ξ0.
2. Choose a positive integer m in the range −p ≤ m ≤ total number of poles and

define the first order ODE (3.148),

F(u,u′) ≡
m

∑
k=0

[(m−k)(p−1)/p]

∑
j=0

a j,ku ju′k = 0, a0,m �= 0, (3.148)
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in which [z] denotes the integer part function. The upper bound on j implements
the selection rule

m(p−1)≤ p j +(p−1)k, (3.149)

identically satisfied if p = −1, that no term can be more singular than u′m. The
polynomial F contains at most (m+ 1)2 unknown constants a j,k.

3. Require the Laurent series to satisfy the Briot and Bouquet ODE (3.148), i.e. re-
quire the identical vanishing of the Laurent series for the l.h.s. F(u,u′) up to the
order J

F ≡ χm(p−1)

(
J

∑
j=0

Fjχ j +O(χJ+1)

)
, ∀ j : Fj = 0. (3.150)

If it has no solution for a j,k, increase m and return to first step.
4. For every solution, integrate the first order autonomous ODE (3.148).

The third step generates a linear, infinitely overdetermined, system of equations
Fj = 0 for the unknown coefficients a j,k. This is quite an easy task to solve such a
system. Practically, using the algorithm given in App. F, one computes just enough
terms of the Laurent series to define a slightly overdetermined system.

If the ODE (2.1) is autonomous, the present method delivers all its solutions
which are either elliptic or degenerate elliptic, i.e. rational in one exponential eax or
rational in x.

Before proceeding with examples, let us examine how the results of this method
compare with those of the one- and two-family truncation methods. The class of so-
lutions u captured by these truncation procedures is typically [86] the polynomials
in tanh(k/2)(x− x0) of degree −p for the one-family truncation, and the polyno-
mials in tanh and sech (or more generally in τ and σ , (3.125)) of global degree
−p for the two-family truncation. By elimination of x0 between u and u′, these two
classes satisfy a first order algebraic differential equation (3.143), and it is easy to
check that its degree m is respectively −p for the polynomials in tanh, and −2p for
the polynomials in tanh and sech. Indeed, for instance in the case of second degree
polynomials in tanh, this amounts to eliminating tanh between the two polynomial
equations {

tanh2 +2a tanh+b−u = 0,

2(tanh+a)(1− tanh2)−u′ = 0,
(3.151)

which results in5

5 This formula, due to Sylvester, expresses the resultant of two polynomials of degrees m and n as
a determinant of order m+n.
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0 −2 −2a 2 2a−u′
−2 −2a 2 2a−u′ 0
0 0 1 2a b−u
0 1 2a b−u 0
1 2a b−u 0 0

∣∣∣∣∣∣∣∣∣
(3.152)

= (u′ −4a(u−b + a2))2 −4(u−b + 2a2−1)2(u−b + a2) = 0, (3.153)

a subequation with a degree m = 2 = −p, having genus zero.
Therefore, with the choice m = −p, one finds at least all the results of the one-

family truncation, and with the choice m = −2p, at least all the results of the two-
family truncation. Moreover, since (3.143) is form invariant under an homography
on u, one also finds all the rational functions respectively in tanh(k/2)(x− x0) of
degree −p (like (3.140)) and in tanh and sech of global degree −p.

Before applying this method to the two previously studied chaotic equations, let
us give a tutorial example.

3.2.5.1 Application to KdV

Consider the third order autonomous ODE (3.34), which is the traveling wave re-
duction of KdV, with the aim of finding the first order elliptic subequation (3.36).

Since p = −2, the bounds on m are 2 ≤ m ≤ 2, and one defines F with the
selection rule (3.149) and a0,2 = 1,

F ≡U ′2 + a0,1U
′ + a1,1UU ′ + a0,0 + a1,0U + a2,0U

2 + a3,0U
3. (3.154)

One first computes, with the algorithm given in Appendix F, slightly more than
six Laurent coefficients,

U = 2aχ−2 +U4χ2 +U6χ4 +
U2

4

6a
χ5 + . . . , (3.155)

then one inserts this series in (3.154) to generate the linear system (3.150),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 ≡ 16a2a0,2 + 8a3a3,0 = 0,

F1 ≡−8a2a1,1 = 0,

F2 ≡ 4a2a2,0 = 0,
F3 ≡−4aa0,1 = 0,

F4 ≡ 2aa1,0 −16aa0,2U4 + 12a2a3,0U4 = 0,
F5 ≡ 0,

F6 ≡ a0,0 + 4aa2,0U4 −32aa0,2U6 + 12a2a3,0U6 = 0,
. . .

(3.156)

Therefore the subequation is

U ′2 − (2/a)U3 + 20U4U + 56aU6 = 0, (3.157)
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in which U4 and U6 are the two arbitrary constants arising from the Fuchs indices
4 and 6. This equation is of course identical to (3.36), but the way to obtain it is
systematic and does not require any ability to find first integrals.

3.2.5.2 Application to KS

The Laurent series of (2.27) is (2.36).
In the second step, the bounds on m are 3 ≤ m ≤ 3. With the normalization

a0,3 = 1, the subequation contains ten coefficients, which are first determined by the
Cramer system of ten equations Fj = 0, j = 0 : 6,8,9,12. The remaining infinitely
overdetermined nonlinear system for (ν,b,µ ,A) contains as greatest common divi-
sor (gcd) b2 −16µν (see (3.70)), which defines a first solution

b2

µν
= 16, us = u +

3b3

32ν2 ,

(
u′ +

b
2ν

us

)2 (
u′ − b

4ν
us

)
+

9
40ν

(
u2

s +
15b6

1024ν4 +
10A

3

)2

= 0. (3.158)

After division by this factor, the remaining system for (ν,b,µ ,A) with b2 −16µν �=
0 admits exactly four solutions (stopping the series at j = 16 is enough to obtain the
result), identical to those listed in Table 3.2 (Sect. 3.2.3.2), each solution defining a
first order third degree subequation,

b = 0,(
u′ +

180µ2

192ν

)2 (
u′ − 360µ2

192ν

)
+

9
40ν

(
u2 +

30µ
19

u′ − 302µ3

192ν

)2

= 0, (3.159)

b = 0, u′3 +
9

40ν

(
u2 +

30µ
19

u′ +
302µ3

193ν

)2

= 0, (3.160)

b2

µν
=

144
47

, us = u− 5b3

144ν2 ,

(
u′ +

b
4ν

us

)3

+
9

40ν
u4

s = 0, (3.161)

b2

µν
=

256
73

, us = u− 45b3

2048ν2 ,

(
u′ +

b
8ν

us

)2 (
u′ +

b
2ν

us

)
+

9
40ν

(
u2

s +
5b3

1024ν2 us +
5b2

128ν
u′

)2

= 0.

(3.162)

In order to integrate the two sets of subequations (3.158), (3.159)–(3.162), one
must first compute their genus6, which is one for (3.158), and zero for (3.159)–
(3.162). Therefore (3.158) has the elliptic general solution,

6 For instance with the Maple command genus of the package algcurves [222], which implements
an algorithm of Poincaré.
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⎪⎩

u = −60ν℘′ −15b℘− bµ
4ν

,

b2 = 16µν, g2 =
µ2

12ν2 , g3 =
13µ3 + νA

1080ν3 ,
(3.163)

initially found [153, 260] by assuming u polynomial in ℘ and ℘′. This solution,
which succeeds in extrapolating the trigonometric functions of the solitary wave of
Kuramoto and Tsuzuki, is best expressed with the singular part operator D (2.44),
as

u = D logσ − bµ
4ν

, (3.164)

in which σ is the entire function defined by Weierstrass as

(logσ)′ = ζ , ζ ′ = −℘. (3.165)

This result is equivalent to having extrapolated the entire function cosh to the entire
function σ of Weierstrass, see (C.21) in the Appendix.

As to the general solution of the four others (3.159)–(3.162), this is the third de-
gree polynomial (3.104) in tanhk(ξ − ξ0)/2 already found by the one-family trun-
cation method.

These four solutions constitute all the analytic results currently known on (2.27).

3.2.5.3 Application to CGL3

The first order subequation of (3.106) is defined as

F ≡
m

∑
k=0

[3(m−k)/2]

∑
j=0

a j,kM jM′k = 0, (3.166)

and the two Laurent series as (3.71).
To avoid carrying unpleasant square roots, we take the numerical values (3.109),

which imply ∆ = 9/2, and the two Laurent series are

M− = χ−2
(
−2 +

c
5

χ +
(

gr

3
− gi

6
− c2

200

)
χ2 +O(χ3)

)
, (3.167)

M+ = χ−2
(

4− 2c
5

χ +
(

16gr

39
+

4gi

39
+

19c2

1300

)
χ2 +O(χ3)

)
. (3.168)

The existence of two Laurent series, rather than only one, is a feature which the
subequation must also possess, and this has the effect of setting the lower bound to
m = 4 instead of 2. Indeed, the lowest degree subequations

F2 ≡ M′2 + M′(a1,1M + a0,1)+ a3,0M3 + a2,0M2 + a1,0M + a0,0 = 0, (3.169)
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F3 ≡ M′3 + M′2(a1,2M + a0,2)+ M′(a3,1M3 + a2,1M2 + a1,1M + a0,1)

+a4,0M4 + a3,0M3 + a2,0M2 + a1,0M + a0,0 = 0, (3.170)

have the respective dominant terms M′2 +a3,0M3 and M′3 +a3,1M′M3, which define
only one family of movable double poles.

If one nevertheless sets m = 2, the subequation (3.169) can only be satisfied
by one series, thus preventing the full desired result to be obtained. However, the
computation is much simpler and already provides results, so let us perform it first.

Let us consider the series (3.167). The six coefficients a j,k of (3.169) are first
computed as the unique solution of the linear system of six equations Fj = 0, j =
0,1,2,3,4,6. Then the J +1−6 remaining equations Fj = 0, j = 5,7 : J, which only
depend on the fixed parameters (gr,gi,c), have the greatest common divisor (gcd)
3gi + 2gr + 3c2/50, and this factor defines the first solution

3gi + 2gr +
3c2

50
= 0,(

M′ +
c
5

M +
c3

250

)2

+ 2

(
M +

c2

50

)(
M− c2

50
− 2

3
gr

)2

= 0. (3.171)

After division par this gcd, the system of three equations Fj = 0, j = 5,7,8, provides
two and only two other solutions, which are

M′2 + 2(M−gr)M2 = 0, c = 0, gi = 0, (3.172)(
M′ +

2c
5

M

)2

+ 2M3 = 0, gr = 0, gi − c2

50
= 0. (3.173)

and all the remaining equations Fj = 0, j ≥ 9, are identically satisfied.
With the other series (3.168), the results are similarly

3gi −gr +
3c2

80
= 0,(

M′ +
c
5

M− c3

500

)2

−
(

M− c2

100

)(
M +

c2

100
− 2

3
gr

)2

= 0, (3.174)

M′2 −M

(
M− 2

3
gr

)2

= 0, c = 0, gi =
1
3

gr, (3.175)

(
M′ +

c
5

M
)2 −M3 = 0, gr = 0, gi − c2

50
= 0. (3.176)

Finally, for each of these two sets of three subequations, the fourth step finds
a zero value for the genus and returns the general solution of the first order sube-
quation as a rational function of ea(ξ−ξ0), which basic trigonometric identities al-
low us to convert to the second degree polynomials in (k/2) tanhk(ξ − ξ0)/2 listed
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in (3.113)–(3.115) and (3.116)–(3.118). These solutions are therefore identical to
(3.120), (3.121), and (3.122).

Therefore, with this lower bound m = 2, one already recovers all the presently
known first order subequations. With the correct two-family lower (and upper)
bound m = 4, which corresponds to 18 unknowns a j,k and at least 24 terms in the
series, there is no solution other than the six above (three for each Laurent series).
This situation is quite similar to the absence of solution in the class (3.134), and it
reflects the difficulty of the CGL3 equation.

For the CGL5 equation (3.65), one new elliptic solution has been obtained [417]
by this method.

3.2.6 First Integral of the Duffing–van der Pol Oscillator

Since it passes the weak Painlevé test, the Duffing–van der Pol oscillator ((2.63)
with d = 0) may have a general solution with a finite amount of movable algebraic
branching [346, Leçons 5–10,13,19], but finding it is still an open problem. No first
integral is known, except in one particular case isolated by the method of infinitesi-
mal symmetries [57]

3abβ + a2c−9β 2 = 0 : K =
(

3a
du
dx

+(3ab−9β )u + a2u3
)

e3β t/a, (3.177)

and this first integral has the only singularity degree which is allowed by the Fuchs
indices, 3/2. This first order equation, which still has the algebraic branching u ∼
u0(x−x0)−1/2, can be mapped in at least two cases [57] to an ODE with the Painlevé
property. The transformation involved is in each case a hodograph transformation,
defined in the more general PDE case in 4.12. In the first case K = 0, the hodograph
transformation (u,x) → (U,X)

3abβ + a2c−9β 2 = 0, K = 0 : dx = u−1dX , u = U (3.178)

maps the Abel equation (3.177) to the Riccati equation

dU
dX

+
a
3

U2 + b− 3β
a

= 0. (3.179)

In the second case K �= 0, after a preliminary transformation which conserves the
PP,

u = e−β x/aU, X = k3e−2β x/a, (3.180)

(3.177) becomes

k3
dU
dX

− a2

6β
U3 +

(
1
2

+
a2c
6β 2

)
k3

X
U +

K
6β

= 0. (3.181)
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In the particular case when the coefficient of U vanishes this ODE for U(X) is
again an Abel equation, which a similar hodograph transformation maps to a Riccati
equation ⎧⎪⎪⎨

⎪⎪⎩
b = 4

β
a

, c = −3

(
β
a

)2

, K = −8a2K3
1 , k3 = − a2

6β
,

U = V + K1, dX =
dY

V + 3K1
,

dV
dY

+V 2 + 3K2
1 = 0.

(3.182)

3.2.7 Singlevalued Solutions of the Bianchi IX Cosmological
Model

Sometimes, the no-log conditions generated by the test provide some global infor-
mation, which can then be used to integrate.

The Bianchi IX cosmological model in vacuum can be defined by the metric
[270]

ds2 = σ2dt2 − γαβ dxα dxβ , (3.183)

γαβ = ηabea
α eb

β , η = diag(A,B,C), (3.184)

in which ea
α are the components of the three frame vectors, and σ2 = ±1 accord-

ing to whether the metric is Minkovskian or Euclidean. Introducing the so-called
logarithmic time τ by the hodograph transformation

dτ =
dt√
ABC

, (3.185)

this gives rise to the six-dimensional system of three second order ODEs

σ2(logA)′′ = A2 − (B−C)2 and cyclically, ′ = d/dτ, (3.186)

or equivalently

σ2(logω1)′′ = ω2
2 + ω2

3 −ω2
2 ω2

3 /ω2
1 and cyclically, (3.187)

under the change of variables

A = ω2ω3/ω1, ω2
1 = BC and cyclically. (3.188)

The sign σ2 is irrelevant for the singularity structure, so we choose σ = 1.
One of the families [98, 273]

A = χ−1 + a2χ + O(χ3), χ = τ − τ2,

B = χ−1 + b2χ + O(χ3), (3.189)
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C = χ−1 + c2χ + O(χ3),

has the Fuchs indices −1,−1,−1,2,2,2, and the Kowalevski–Gambier test detects
no logarithms at the triple index 2. The Fuchsian perturbative method (see Sect. 2.2)

A = χ−1
N

∑
n=0

εn
2+N−n

∑
j=−n

a(n)
j χ j, χ = τ − τ2, and cyclically, (3.190)

then detects movable logarithms at (n, j)= (3,−1) and (5,−1) [273], and the no-log

conditions depend on the six movable coefficients a(0)
2 ,b(0)

2 ,c(0)
2 ,a(1)

−1,b
(1)
−1,c

(1)
−1. This

first proves the nonintegrable nature of Bianchi IX, a question which had remained
open for a long time [119]. In addition, the enforcement of these no-log conditions
generates the three solutions:

(b(0)
2 = c(0)

2 and b(1)
−1 = c(1)

−1) or cyclically, (3.191)

a(0)
2 = b(0)

2 = c(0)
2 = 0, (3.192)

a(1)
−1 = b(1)

−1 = c(1)
−1. (3.193)

These are constraints which reduce the number of arbitrary coefficients to, respec-
tively, four, three and four, thus defining particular solutions which may have no
movable critical points.

The first constraint (3.191) implies the equality of two of the components
(A,B,C), and thus defines the 4-dimensional subsystem B = C [401], whose gen-
eral solution is single valued,

A =
k1

sinhk1(τ − τ1)
, B = C =

k2
2 sinhk1(τ − τ1)

k1 sinh2 k2(τ − τ2)
. (3.194)

The second constraint (3.192) amounts to suppressing the triple Fuchs index 2,
thus defining a 3-dimensional subsystem with a triple Fuchs index −1. One can
indeed check that the perturbed Laurent series (3.190) is identical to that of the
Darboux–Halphen system [109, 192]

ω ′
1 = ω2ω3 −ω1ω2 −ω1ω3, and cyclically, (3.195)

whose general solution is single valued7.
The third and last constraint (3.193) amounts to suppressing two of the three

Fuchs indices −1, thus defining a 4-dimensional subsystem whose explicit writing
is yet unknown. With the additional constraint

a(0)
2 + b(0)

2 + c(0)
2 = 0, (3.196)

7 This is a particular case of the class studied by Hoyer [227], however explicitly discarded by this
author.
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the Laurent series (3.189) is identical to that of the 3-dimensional Euler system
(1750) [26], describing the motion of a rigid body around its center of mass

ω ′
1 = ω2ω3, and cyclically, (3.197)

whose general solution is elliptic,

ω j = −
√

℘(τ − τ0,g2,g3)− e j, j = 1,2,3, (τ0,g2,g3) arbitrary, (3.198)

℘′2 = 4(℘− e1)(℘− e2)(℘− e3) = 4℘3−g2℘−g3. (3.199)

The 4-dimensional subsystem (the one without (3.196)) defines an extrapolation to
four parameters of this elliptic solution, quite probably single valued, whose closed
form is still unknown (see [81] for further investigations).

One thus retrieves by analysis all the results of the geometric assumption of self-
duality [171], and even slightly more.

A similar analysis performed on the dynamical system defined in the proper time
t [395] does not provide new closed form solutions.

3.2.8 Results of the Nevanlinna Theory on KS and CGL3

By studying the growth of solutions u(x) near the complex point x = ∞, one can
sometimes deduce important global properties, such as a rational dependence of u
on x. This theory, known as Nevanlinna theory, is briefly introduced in Appendix D.
There are however two main differences with the approach of Painlevé:

1. the solution u(x) is assumed to be meromorphic, as opposed to being without
movable critical singularities,

2. the solution u(x) is a particular solution of the considered ODE, as opposed to
the general solution.

By using only the two inequalities (D.15) and (D.16) of the Appendix, the appli-
cation of this theory to the KS example (2.27) yields the following quite remarkable
results [132]. If u(x) is assumed meromorphic with finitely many poles, then it can
only be u = 120ν(x− x0)−3, with b = µ = A = 0. If u(x) is assumed meromorphic
with infinitely many poles, then it can only be the elliptic solution (3.82) or one of
the six trigonometric solutions of Table 3.2. Let us recall that Nevanlinna theory
can say nothing when the considered solution is assumed nonmeromorphic. Similar
results can probably be obtained for the CLG3 traveling wave.

This proves that the unknown general analytic solution of (2.27) is surely not
meromorphic. In order to get some hint on the possible analytic form of this general
analytic solution, one can experimentally investigate the singularities of this solu-
tion in the complex plane, by computing the Padé approximants [42] of the Laurent
series (2.36). Padé approximants are a powerful tool to study the singularities of the
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unknown sum of a given Taylor series, and more generally to perform the summa-
tion of divergent series.

Given the first N + 1 terms of a Taylor series near x = 0,

SN =
N

∑
j=0

c jx
j, (3.200)

the Padé approximant [L,M] of the series is the unique rational function

[L,M] = ∑L
l=0 alxl

∑M
m=0 bmxm

, b0 = 1, (3.201)

obeying the condition

SN − [L,M] = O(xN+1), L+ M = N. (3.202)

The extension to Laurent series presents no difficulty. In particular, for L and M
large enough, Padé approximants are exact on rational functions.

-4 -2 0 2 4

-4

-2

0

2

4

Padé(Laurent)     [30,30]

µ = 1/4

ν = 1

b = 1

A = -69133/64

(g
3
 = -1)

Fig. 3.4 Singularities of the Padé approximant [L/M] of the unknown general analytic solution of
KS ODE (2.27) (courtesy of Tony Yee Tat-leung). The numerical values are L = 30,M = 30,ν =
1,b = 1, µ = 1/4,A = −69133/64.

The advantage of [L,M] over SN (which has no poles) is to display the global
structure of singularities of the series.
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From a thorough investigation [439] of the singularities of the sum of the Laurent
series (2.36) one concludes (this is not a proof): for generic values of (ν,b,µ ,A), no
multivaluedness is detected, no cuts are detected, and the singularities seem to be
arranged in a nearly doubly periodic pattern, the elementary cell being made of one
triple pole and three simple zeroes (Fig. 3.4). This suggests that the unknown general
analytic solution, which is quite probably single valued but surely not meromorphic,
could be expressible as a deformation of an elliptic function, something like

∀ν,b,µ ,A : u = f0(ξ − ξ0)+D logσ(ξ − ξ0,G2(ξ − ξ0),G3(ξ − ξ0)), (3.203)

in which σ would be a deformation of the entire function of Weierstrass, G2,G3

deformations of the usual constant arguments of the σ function. As shown by a
direct computation, this assumption is however insufficient to yield any new result,
and other directions are currently under investigation [446].



Chapter 4
Partial Differential Equations: Painlevé Test

Abstract This chapter deals with the extension to nonlinear partial differential
equations (PDEs) of the Painlevé property and Painlevé test previously introduced
for ODEs. After mentioning reductions, we introduce the quite important class of
soliton equations, together with their main properties: existence of a N-soliton so-
lution and of a remarkable transformation called the Bäcklund transformation (BT).
We then extrapolate to PDEs the notion of integrability and the definition of Painlevé
property. After defining the expansion variable χ which minimizes the computation
of the Laurent series representing the local solution, we present the successive steps
of the Painlevé test, on the example of the KdV equation in order to establish neces-
sary conditions for the Painlevé property. Finally, we apply the test to the equation
of Kolmogorov–Petrovski–Piskunov (KPP) to generate necessary conditions for the
existence of closed form particular solutions.

Let us first recall that our ultimate goal is to present methods, based only on
singularity considerations, in order to build explicit solutions to the PDEs under
consideration.

Consider a nonlinear PDE in several independent variables x, t, . . .,

E(u,x,t, . . .) = 0. (4.1)

Its singularities are not isolated in the space of the independent variables (x, t, . . .),
that is to say they are not located in the neighborhood of a point (x0, t0), but they lie
on a codimension one manifold

ϕ(x,t, . . .)−ϕ0 = 0, (4.2)

in which the singular manifold variable ϕ is an arbitrary function of the independent
variables and ϕ0 an arbitrary movable constant.

A similar manifold, also represented by (4.2) but this time regular, is involved in
the famous theorem of Cauchy–Kowalevski which states the local existence, unic-
ity, analyticity, etc of a solution in its neighborhood. This theorem, whose precise
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formulation can be found in classical textbooks [178], introduces a notion which is
also relevant to the point of view of singularities.

Definition 4.1. A movable manifold is called characteristic if it makes inapplicable
the existence theorem of Cauchy–Kowalevski.

Practically, a characteristic manifold (4.2) is one for which the Cauchy series
involves no contribution from the highest derivatives of the PDE (4.1).

For instance, the movable manifold ϕ −ϕ0 ≡ t − t0 = 0 is characteristic for the
KdV equation (3.32) since the relation ϕx = 0 forbids the series of Cauchy to contain
any contribution from the highest derivative uxxx.

Even in the ODE case, the movable singularity can be defined as ϕ(x)−ϕ0 = 0,
since the implicit functions theorem allows this to be locally inverted to x− x0 = 0
provided the condition ϕ ′(x0) �= 0 to be noncharacteristic is satisfied; this freedom
in choosing the arbitrary function ϕ may then be used profitably to construct exact
solutions which would be impossible to find with the restriction ϕ(x) = x [426, 325].

The main difficulty with PDEs as compared to ODEs is that the notion of general
solution is not well defined [178, Vol. III Chap. XXIV], so the question of integra-
tion is addressed differently. The principal method is to build a link to some linear
system, and, for “integrable” (in a sense to be defined below) PDEs there exist two
classes of such links.

The first class is made of the explicitly linearizable PDEs, such as the Burgers
equation,

ut +
2
a

uux + uxx = 0, (4.3)

linearizable into the heat equation by the so-called Hopf–Cole transformation [152,
Part IV pp. 101, 106]

u = a
ψx

ψ
, ψxx + ψt = 0. (4.4)

The second class is made of PDEs which admit a nonlinear version of the Fourier
transform, called the inverse spectral transform (IST). This IST technique, dis-
covered for the KdV equation by Gardner, Greene, Kruskal and Miura [165] and
generalized to other equations independently by Zakharov and Shabat [442] and
Ablowitz, Kaup, Newell and Segur [3], allows one, given some class of initial data,
to perform a global resolution of the Cauchy problem. Presenting this powerful
technique is outside the scope of this volume, and the interested reader can refer to
e.g. [271] or [1].

4.1 On Reductions

There exist certain classes of solutions of a PDE which are also solutions of some
ODE called reductions. We have already seen in the previous chapter the traveling
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wave reduction of various PDEs. For instance, the KdV and KS equations admit
another reduction u(x,t) �→U(X) [5, 399]

u = 2a(U − t/b), X = x−6(t/b)2, U ′′ −6U2 −X + K = 0, (4.5)

u = U −2at, X = x + at2, νU ′′′ + bU ′′+ µU ′+
U2

2
−2aX + K = 0, (4.6)

in which K denotes an integration constant. For KdV, U(X) obeys the first Painlevé
equation, while for KS no analytic solution is known to this ODE. In such a case,
the question of finding solutions of the PDE via reductions splits into the search for
reductions, followed by the search for solutions of an ODE.

Searching for reductions is too large a domain to be covered by this volume, and
we refer to textbooks [345, 343] or to reviews adapted to the present context such
as [67]. As to the search for solutions of an ODE, it has been dealt with in Chap. 3
on the integration of ODEs.

From the point of view of the Painlevé property, one will also have to distinguish
two types of reductions, the characteristic ones and the noncharacteristic ones.

Definition 4.2. A reduction of a PDE in N independent variables to a PDE in N −
1 independent variables is called noncharacteristic if it preserves the differential
order.

A conjecture has been proposed by Ablowitz, Ramani and Segur [6] according
which, given a PDE integrable in the sense of the inverse spectral transform method
(IST), any noncharacteristic reduction to an ODE implies the Painlevé property for
that ODE. This is verified using many examples, of which we present a few here.

1. The self-dual Yang–Mills equations admit reductions to all six Painlevé equa-
tions [300].

2. The KdV equation (3.32) admits the reduction [143]

u = a(3t/b)−2/3
(

U(ξ )− ξ
2

)
, ξ = (3t/b)−1/3x,

U ′′′ −6UU ′+ 2ξU ′+U = 0, (4.7)

the reduced ODE has the PP [59, pp. 339, 343] and its general solution is an
algebraic transform of P2,

U = W ′ +W2 +
ξ
2

= 0, W ′′ −2W3 − ξW −A = 0, A = arbitrary. (4.8)

Another method for integrating (4.7) will be given in Sect. 5.8.
3. The NLS equation (2.47) admits the reduction [35]

A = tia
√

Y ′(ξ )ei(ξ 2+
∫
(Y/Y ′)dξ ), ξ = xt−1/2, a real, (4.9)

and the ODE for Y (ξ ) is an algebraic transform of the generic fourth Painlevé
equation.
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4. The three-wave resonant interaction system [441],{
u j,t + c ju j,x − iūkūl = 0,

ū j,t + c jū j,x + iukul = 0, i2 = −1,
(4.10)

in which ( j,k, l) denotes any permutation of (1,2,3), c j are the constant values
of the group velocities, with (c2 − c3)(c3 − c1)(c1 − c2) �= 0, admits a reduction
ξ = x/t [252] whose general solution [298, 83] is an algebraic transform of the
generic sixth Painlevé equation.

We will come back to this conjecture at the end of Sect. 4.3.

4.2 Soliton Equations

There exists a quite important class of PDEs which display many physically interest-
ing solutions; these are the so-called soliton equations. A number of them have been
encountered in previous chapters: the Korteweg–de Vries equation, the nonlinear
Schrödinger equation, the three PDEs (2.82) associated to the cubic Hénon–Heiles
Hamiltonian.

A presentation of these equations can be found in e.g. [271, 49], [1, p. 19], or
[125, p. 15]. In a few words, they are characterized by their possessing a class of
solutions describing the nonlinear interaction of an arbitrary number N of elemen-
tary waves (often called “solitons” by physicists), with the nice property that these
elementary waves may retain their shape after the nonlinear interaction.

The existence of this class of solutions with N arbitrary is one criterium of inte-
grability, among many others [440]. Indeed, as opposed to the case of ODEs, there
is no unique definition for the integrability of a nonlinear PDE.

In order to provide a consistent exposition, we first need a precise definition for
these various items.

Definition 4.3. (Already given on p. xi) A traveling wave of a given PDE E(u,x,t)=
0 is any solution of the reduction ξ = x− ct if it exists.

Definition 4.4. A solitary wave of a given PDE E(u,x,t) = 0 is a traveling wave
such that the solution itself or its derivative obeys some decreasing conditions when
the real variable ξ = x− ct goes to ±∞.

For instance, the traveling wave (3.38) of KdV is not a solitary wave, unless it re-
duces to (3.45), a solution which decreases exponentially fast to the background B.

Other examples of solitary waves are the various traveling waves encountered
in previous chapters, such as1 (1.11), (1.14), (3.45), (3.59), (3.60), (3.104), (3.120),
(3.121), (3.122).

1 All these waves decrease exponentially fast at infinity, but this is not a rule. An example of
algebraic decreasing is the algebraic solitary wave of the Benjamin–Ono PDE [27, 344, 1].
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Before a correct definition can be given for the above mentioned solution repre-
senting the nonlinear interaction of N elementary waves, a quite important notion is
required.

Definition 4.5. ([20], [114, Vol. III Chap. XII], [374]) A Bäcklund transformation
(BT) between two given PDEs

E1(u,x,t) = 0, E2(U,X ,T ) = 0 (4.11)

is a pair of relations
Fj(u,x,t,U,X ,T ) = 0, j = 1,2 (4.12)

with some transformation between (x,t) and (X ,T ), in which Fj depends on the
derivatives of u(x,t) and U(X ,T ), such that the elimination of u (resp. U) between
(F1,F2) implies E2(U,X ,T ) = 0 (resp. E1(u,x,t) = 0). In case the two PDEs are the
same, the BT is also called the auto-BT.

Example 4.1. The Liouville equation

Liouville: E(u) ≡ uxt + αeu = 0 (4.13)

admits two BTs, one not so interesting auto-BT and the BT

(u− v)x = αλ e(u+v)/2, (4.14)

(u + v)t = −2λ−1e(u−v)/2, (4.15)

to a linear equation called the d’Alembert equation

d’Alembert: E(v) ≡ vxt = 0. (4.16)

Since the general solution of the latter equation is v = f (x) + g(t), with f and g
arbitrary functions, this last BT allows one to obtain the general solution of the
Liouville equation, an easy exercise with the result

eu = − 2
α

F ′(x)G′(t)
(F(x)+ G(t))2 . (4.17)

Needless to say that such a situation is nongeneric.

The practical use of an auto-BT is to build a new solution from an old one, even
if this seed solution is trivial.

Definition 4.6. One calls any constant solution of a given PDE the vacuum solu-
tion.

Such trivial solutions are u = arbitrary constant for KdV, mKdV, u = 0 for sine-
Gordon, NLS, etc. It is precisely by iterating such trivial solutions with the BT that
physically interesting solutions can be built (this will be done in Sect. 5.6).
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Remark. A plane wave solution generically does not exist for a nonlinear PDE,
with the notable exception of phase invariant equations such as the NLS (2.47), the
CGL3 (2.45), or the CGL5 (3.65), therefore it cannot contribute to the definitions
involving the soliton equations.

Definition 4.7. A one-soliton solution is the first iterate of the vacuum solution via
the Bäcklund transformation.

Many authors also require the one-soliton solution to be a solitary wave. The name
soliton commonly used in place of either “one-soliton solution” (the bright one-
soliton and dark one-soliton of the NLS have been seen in Sect. 3.1.3) or “solitary
wave” is not used in this volume in order to avoid such a confusion.

Definition 4.8. An N-soliton solution, with N an arbitrary positive integer, is the
N-th iterate of the vacuum solution via the Bäcklund transformation.

Definition 4.9. A soliton equation is a partial differential equation admitting an
N-soliton solution with N arbitrary.

Examples of soliton PDEs are: the KdV equation, the NLS equation, the Benja-
min–Ono equation [27, 344, 1]. These PDEs possess many remarkable properties
[146], such as a Hamiltonian or a bi-Hamiltonian structure, which implies an infinite
number of conservation laws2. In fact, these soliton PDEs come into hierarchies, and
for instance KdV is the base member of the so-called KdV hierarchy. There exist
only a finite number of such hierarchies, which can be beautifully described in the
framework of the theory of Sato [381], see tutorial introductions in [337, 384].

Examples of nonsoliton PDEs (we will say, equivalently, partially integrable
equations) are: the CGL3 equation, the KS equation, the KPP equation. They only
admit a finite number of conservations laws and N-soliton solutions with N small
(N = 1 for CGL3 and KS, N = 2 for KPP).

The quite important difference between soliton and nonsoliton PDEs best appears
on the solitary wave solution. In the “dark one-soliton solution” (3.60) of the NLS
(a soliton PDE), the parameters k and c are arbitrary and independent (movable in
the language of singularities). On the contrary, in the “propagating hole solution”
(3.120) of CGL3 (a nonsoliton PDE), these two parameters are constrained by the
relation a1k2 + a2c2 = 1, in which a1 and a2 are real constants only depending on
the coefficients (p,q,γ) of CGL3 (fixed in the language of singularities).

4.3 Painlevé Property for PDEs

In order to find these physically interesting solutions (one-soliton, N-soliton) by
singularity-based methods, a prerequisite is to extrapolate to PDEs the powerful

2 A conservation law of a PDE like (4.1) is any relation of the form ∂xX(u,ux, . . .) +
∂tT (u,ux, . . .) = 0, e.g. the definition itself (3.32) of the KdV equation.
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methods of Chap. 3 (truncations, etc), a task which in turn requires the extrapola-
tion to PDEs of the notions up to now only defined for ODEs: Painlevé property
(Definition 1.1 Sect. 1.2), Painlevé test (Chap. 2). Skipping this task would just turn
the methods presented in Chap. 5 into recipes. We insist that the definitions for PDEs
should be an extrapolation of those for ODEs.

Since the Painlevé test investigates whether the Painlevé property may be satis-
fied, the property must be defined before the test, and such a definition must involve
a global property. The concept of general solution, which is central in the ODE case,
is insufficient since it is ill-defined (see the very beginning of this chapter). Indeed,
this is only in nongeneric cases like the Liouville equation (4.13) that the general
solution of a PDE can be built explicitly. The Bäcklund transformation is also in-
sufficient because, under a reduction PDE→ODE, the BT reduces to a birational
transformation (note the same initials BT; an example will be given in Sect. 5.8),
and a birational transformation is not involved in the definition of the PP for ODEs.
However, an adequate combination of these two items (general solution, Bäcklund
transformation) does provide definitions [94] which are indeed extrapolations of the
ODE case.

Definition 4.10. A PDE in N independent variables is said to be integrable if at
least one of the following properties holds.

1. Its general solution can be obtained, and it is an explicit closed form expression,
possibly presenting movable critical singularities.

2. It is linearizable.
3. For N > 1, it possesses an auto-BT which, if N = 2, depends on an arbitrary

complex constant, the Bäcklund parameter.
4. It possesses a BT to another integrable PDE.

Examples of these various situations are, respectively:

1. the Liouville PDE uxt + eu = 0 with its general solution (4.17); also the PDE
uxut +uuxt = 0 with the general solution u =

√
f (x)+ g(t) which presents mov-

able critical singularities;
2. the Burgers PDE ut + uxx + 2uux = 0, linearizable into the heat equation ψt +

ψxx = 0;
3. the KdV PDE ut +uxxx−6uux = 0, which possesses an auto-BT depending on an

arbitrary complex cosntant;
4. the modified KdV PDE ut + uxxx −6u2ux = 0, which possesses a BT to the KdV

equation.

We now have enough elements to give a definition of the Painlevé property for
PDEs which is indeed an extrapolation of the one for ODEs. Such a definition must
evidently refer to the movable singularities, defined by the movable singular mani-
fold (4.2).

Definition 4.11. The Painlevé property (PP) of a PDE is the absence of movable
critical singularities near any noncharacteristic manifold, and its integrability (Def-
inition 4.10).
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Practically, checking the absence of movable critical singularities can only be
done locally, this is precisely the purpose of the Painlevé test, which is why the
construction of a Bäcklund transformation is the second part of the definition.

A weak Painlevé property can be defined similarly to the ODE case (see Sect.
2.1.4). In particular one can include in this category all equations which can be
mapped to an equation having the (full) PP by the following transformation.

Definition 4.12. Given a PDE E(u,x,t), one calls a hodograph transformation a
transformation in which one of the new independent variables depends on the old
dependent variable.

Such transformations have been studied e.g. in [374, 66]. Their interest is to
possibly map PDEs having only the weak PP to PDEs having the (full) PP. Consider
for instance the quasilinear equation

UT +U3UXXX = 0, (4.18)

introduced by Harry Dym [258] in relation to the classical problem of vibrating
strings. Under the hodograph transformation

(U,X ,T ) → (u,x,t) : dX = Udx, U = u,T = t, (4.19)

it is mapped to the intermediate equation [248] (see details in [200])

ut + uxxx −3u−1uxuxx +
3
2

u−2u3
x = 0, (4.20)

an equation which is then mapped to the modified KdV equation, a semilinear equa-
tion

v =
ux

u
: vt + vxxx − 3

2
v2vx = 0. (4.21)

Since the modified KdV has the PP, one concludes that the Harry Dym equation
(4.18) possesses the weak PP.

Another example is the quasilinear equation[226]

mT +UmX + bUXm = 0, UXX −U −m = 0, (4.22)

which has the weak PP in only two cases [173], b = 2 and b = 3, defining respec-
tively the Camassa–Holm equation [159, 50] for b = 2, and the Degasperis–Procesi
equation [151, 118] for b = 3. Under the hodograph transformation [158, 226]

(U,X ,T ) → (u,x,t) : m = −pb, dx = p(dX −udT ), t = T, (4.23)

it is mapped to the semilinear PDE

(
p−1)

t +
(

p(log p)xt + pb
)

x
= 0, (4.24)
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and this latter equation can be shown [159, 226] to have the (full) PP only for b = 2
and b = 3.

The PP for PDEs is invariant under the natural extension of the homographic
group (1.43), and classifications similar to those of ODEs have also been performed
for PDEs, see Appendix A.3.7. Classifications based on other criteria, such as the
existence of an infinite number of conservation laws [304], isolate more PDEs, and
it would be interesting to check that, under the group of transformations generated
by Bäcklund transformations and hodograph transformations, each of them is equiv-
alent to a PDE with the PP.

From the above definition of the PP for PDEs, it follows that the conjecture stated
in Sect. 4.1 is true at least for those IST-integrable PDEs which in addition have the
PP.

4.4 Painlevé Test

After introducing the expansion variable which minimizes the size of the computa-
tions, we present the PDE Painlevé test on two examples, one integrable to display
the advantage of the optimal variable, one partially integrable to build some con-
structive information.

4.4.1 Optimal Expansion Variable

According to Definition 4.11, one must check the existence of a Laurent series near
every noncharacteristic movable singular manifold, therefore one must first define
an expansion variable χ for the Laurent series. There is indeed no reason to confuse
the roles of the singular manifold variable ϕ and the expansion variable χ . Two
requirements must be respected: firstly, χ must vanish as ϕ − ϕ0 when ϕ → ϕ0;
secondly, the structure of singularities in the ϕ complex plane must be in one-to-
one correspondence with that in the χ complex plane, so χ must be a homographic
transform of ϕ −ϕ0 (with coefficients depending on the derivatives of ϕ).

The Laurent series for u and E involved in the Kowalevski–Gambier part of the
test are defined as

u =
+∞

∑
j=0

u jχ j+p, −p ∈ N , E =
+∞

∑
j=0

E jχ j+q, −q ∈ N ∗ (4.25)

with coefficients u j,E j independent of χ and only depending on the derivatives of
ϕ .

In order to minimize the size of the computation, which quickly becomes very
large, one must carefully choose the expansion variable χ .
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There exists an optimal choice of χ for which the coefficients exhibit the highest
invariance and therefore are the shortest possible, this is [70]

χ =
ϕ −ϕ0

ϕx − ϕxx

2ϕx
(ϕ −ϕ0)

=
[

ϕx

ϕ −ϕ0
− ϕxx

2ϕx

]−1

, ϕx �= 0, (4.26)

in which x denotes any independent variable whose component of gradϕ does not
vanish.

Indeed, the gradient of χ evaluates to

χx = 1 +
S
2

χ2, (4.27)

χt = −C +Cxχ − 1
2
(CS +Cxx)χ2. (4.28)

a Riccati system whose coefficients only depend on (S,C) defined as

S = {ϕ ;x} =
ϕxxx

ϕx
− 3

2

(
ϕxx

ϕx

)2

, (4.29)

C = −ϕt/ϕx. (4.30)

The quantity S is named the Schwarzian (or the Schwarzian derivative) of ϕ . These
two quantities are invariant under the group of homographic transformations

ϕ �→ aϕ + b
cϕ + d

, ad−bc �= 0, (4.31)

in which a,b,c,d are arbitrary complex constants. Therefore, the expansion coef-
ficients u j,E j, which by definition only depend on the coefficients of the second
degree polynomials of χ in the r.h.s. of (4.27)–(4.28), are invariant under this ho-
mographic group. These two invariants are linked by the cross-derivative condition

X ≡ ((ϕxxx)t − (ϕt)xxx)/ϕx = St +Cxxx + 2CxS +CSx = 0, (4.32)

identically satisfied in terms of ϕ .
For the practical computation of (u j,E j) as functions of (S,C) only, i.e. what

is called the invariant Painlevé analysis, the above explicit expressions of (S,C,χ)
in terms of ϕ are not required, the variable ϕ disappears, and the only necessary
information is the gradient of the expansion variable χ defined by (4.26).

Note that the Riccati system (4.27)–(4.28), under the transformation

χ =
ψ
ψx

, (4.33)

is linearized into the second order scalar system,
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L1ψ ≡ ψxx +
S
2

ψ = 0, (4.34)

L2ψ ≡ ψt +Cψx − Cx

2
ψ = 0, (4.35)

2[L1,L2] ≡ X = St +Cxxx +CSx + 2CxS = 0. (4.36)

The above choice (4.26) of χ which generates homographically invariant coeffi-
cients is the simplest one, but it is not the most general one. The most general choice
is the variable Y which must satisfy the same two requirements as above: firstly, Y
must vanish as ϕ −ϕ0 (i.e. as χ) when ϕ → ϕ0; secondly, the structure of singulari-
ties in the ϕ complex plane must be in one-to-one correspondence with that in the Y
complex plane, so Y must be a homographic transform of ϕ −ϕ0 (with coefficients
depending on the derivatives of ϕ). The most general such variable is defined by
[315, 357]

Y−1 = B(χ−1 + A), B �= 0. (4.37)

Since a homography conserves the Riccati nature of an ODE, the variable Y satisfies
a Riccati system, easily deduced from the canonical one (4.27)–(4.28) satisfied by
χ . One will take advantage of this freedom on A and B in Sect. 5.6.2.

This replacement of ϕ −ϕ0 by either χ or Y looks very much like a resummation
of the Laurent series, just like the geometric series

+∞

∑
j=0

x j, x → 0, (4.38)

becomes a finite sum in the resummation variable X = x/(1− x)

1

∑
J=0

XJ, X → 0. (4.39)

4.4.2 Integrable Situation, Example of KdV

To illustrate the test, let us take as an example the Korteweg-de Vries equation
(3.32)

E ≡ but + uxxx − 6
a

uux = 0. (4.40)

The successive steps are the same as for an ODE, see Sect. 2.1.1, so we will only
briefly recall them.

In the first step, the dominant terms are found to be Ê(u) ≡ uxxx − (6/a)uux,
and the leading powers p and q do not depend on the choice of χ and result from
p−3 = 2p−1 = q, i.e. p = −2,q = −5.
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With the choice of expansion variable χ = ϕ −ϕ0 originally made by Weiss et
al. [431], the leading coefficient is given by

(−2)(−3)(−4)ϕ3
x u0 − (6/a)u0(−2)ϕxu0 = 0, u0ϕx �= 0, (4.41)

resulting in the single family u0 = 2aϕ2
x . With the optimal choice (4.26), this is just

the constant u0 = 2a.
In the second step, the Fuchs indices are evidently independent of the choice of

χ . With the choice (4.26), their computation is

lim
ε→0

Ê(u + εw)− Ê(u)
ε

= (∂ 3
x − (6/a)u0χ p∂x − (6/a)pu0χ p−1)w = 0, (4.42)

lim
χ→0

χ− j−q(∂ 3
x − (6/a)u0χ p∂x − (6/a)pu0χ p−1)χ j+p (4.43)

= ( j−2)( j−3)( j−4)−12( j−2)+24 = ( j + 1)( j−4)( j−6) = 0, (4.44)

therefore the test will end after checking the highest positive index 6 for possible
movable logarithms.

As to the Laurent series to be computed in the third step, its terms strongly de-
pend on the choice of χ . With the choice χ = ϕ −ϕ0, the series is

u = 2aϕ2
x χ−2 −2aϕxxχ−1 + ab

ϕt

6ϕx
+

2a
3

ϕxxx

ϕx
− a

2

[
ϕxx

ϕx

]2

+ O(χ), χ = ϕ −ϕ0.

(4.45)
and its coefficients u j depend on all the derivatives of ϕ , making tedious the com-
putation up to j = 6. With the choice (4.26), it is much easier to check that no
logarithms enter the series at j = 4 and j = 6, leading to the much shorter series

u = 2aχ−2 −ab
C
6

+
2aS

3
−2a(bC−S)xχ + u4χ2

+
(

a
3
(SSxx + 2Sxxx)+

ab
3

(4SCx −5Cxxx)− ab2

6
(Ct +CCx)+ u4,x

)
χ3

+ u6χ4 + O(χ5), (4.46)

in which the coefficients u4 and u6 are arbitrary functions of (x,t). This ends the
test, which therefore passes for this particular equation.

A frequent worry when performing the test is: is there any restriction (or advan-
tage, or inconvenient) to perform the test with χ (4.26) or Y (4.37) rather than with
ϕ −ϕ0? The precise answer is : the three Laurent series are equivalent (their set of
coefficients are in one-to-one correspondence, only their radii of convergence are
different). As a consequence, the Painlevé test, which involves the infinite series, is
insensitive to the choice, and the costless choice (the one which minimizes the com-
putations) is undoubtedly χ defined by its gradient (4.27)–(4.28) (to perform the
test, one can even set, following Kruskal [238], S = 0,Cx = 0). If the same question
were asked not about the Painlevé test but about proving the Painlevé property by
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the singular manifold method formulated in Sect. 5.5.1, the answer would be quite
different, and it is given in Sect. 5.5.2.

When processing a quasilinear equation such as (4.18) or (4.22), the typical out-
put is rational values (instead of integer values) for the leading powers and the
Fuchs indices, like in the ODE case (2.68). Detailed examples can be found in
e.g. [425, 173].

Remark. One might wonder whether the KdV equation (4.40) can be “general-
ized” by replacing the constant coefficients by functions of (x, t) and adding sub-
dominant terms like uxx, etc, also with variable coefficients. If one requires this
variable coefficient KdV to pass the Painlevé test, then the answer [44] is negative.
Indeed, after the variable coefficients have been constrained by the Painlevé test, the
resulting equation KdV(U,X ,T ) can always be mapped to the constant coefficient
KdV(u,x, t) by a homographic transformation

u =
α(x,t)U + β (x,t)
γ(x,t)U + δ (x,t)

, X = ξ (x,t), T = τ(x,t). (4.47)

The same can be proven for the NLS equation [161, 65].

4.4.3 Partially Integrable Situation, Example of KPP

The Kolmogorov–Petrovskii–Piskunov (KPP) equation [255, 322]

E(u) ≡ but −uxx + γuux + 2d−2(u− e1)(u− e2)(u− e3) = 0, (4.48)

with (b,γ,d2) real and e j real and distinct, is encountered in reaction-diffusion sys-
tems and prey-predator models (the optional convection term uux [383] is quite im-
portant in physical applications to prey-predator models). Keeping symbolic values
for the three fixed points u = e j instead of, e.g., e j = (0,1,a), has the advantage of
displaying the identity of solutions often presented as different.

The first step, to search for the families u ∼ u0χ p,E ∼ E0χq,u0 �= 0, results in
the dominant terms

Ê(u) ≡−uxx + γuux + 2d−2u3, (4.49)

which provide two families (p,u0)

p = −1,q = −3,−2− γu0 + 2d−2u2
0 = 0. (4.50)

The necessary condition that all values of p be integer is satisfied.
In the second step, the linearized equation is

(Ê ′(u))w ≡ (−∂ 2
x + γu∂x + γux + 6d−2u2)w = 0, (4.51)

then its Fuchs indices i near χ = 0 are the roots of the indicial equation
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P(i) = −(i+ 1)(i−4− γu0) = 0, (4.52)

and one must enforce the necessary condition that, for each family, these two indices
be distinct integers [149, 82]. Considering each family separately would produce a
countable number of solutions, which is incorrect. The two families must be con-
sidered simultaneously

γu0, j = i j −4, (i j −4)2 − γ2d2

2
(i j −4)− γ2d2 = 0, j = 1,2, (4.53)

with the aim of solving the diophantine condition that the two values i1, i2 of the
Fuchs index 4+ γu0 be integer. The elimination of the adimensional parameter γ2d2

between the sum and the product of the two roots

(i1 −4)+ (i2−4) =
γ2d2

2
, (i1 −4)(i2 −4) = −γ2d2, (4.54)

yields

1
i1 −4

+
1

i2 −4
= −1

2
. (4.55)

This is typically the kind of diophantine equation encountered when systematically
looking for ODEs possessing the Painlevé property (see (2.95) and Appendix A), its
advantage is to have a finite number of solutions, which are [45, (9.2)]

γ2d2 = 0, (i1, i2) = (4,4), u0 = (−d,d), (4.56)

γ2d2 = 2, (i1, i2) = (3,6), γu0 = (−1,2), (4.57)

γ2d2 = −16, (i1, i2) = (0,0), γu0 = (−4,−4), (4.58)

γ2d2 = −18, (i1, i2) = (−2,1), γu0 = (−6,−3). (4.59)

It would be wrong at this stage to discard negative integer indices. Indeed, in lin-
ear ODEs such as (4.51), the single valuedness required by the Painlevé test restricts
the Fuchs indices to integers, whatever their sign.

The recurrence relation for the next coefficients u j,

∀ j ≥ 1 : E j ≡ P( j)u j + Q j({ul | l < j}) = 0 (4.60)

depends linearly on u j and nonlinearly on the previous coefficients ul . Let us pro-
ceed with the first case only, γ = 0 (the usual KPP equation).

The third and last step is then to require, for any admissible family and any Fuchs
index i, that the no-logarithm condition

∀i ∈ Z , P(i) = 0 : Qi = 0 (4.61)

holds true. One thus finds the Laurent series
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u
d

= χ−1 +
s1

3d
− b

6
C +

(
a2 − b

36
C2 +

S + bCx

6

)
χ (4.62)

+
(

a1

2
+

a2bC
2

− Sx

24
− bCxx

12
+ b2 7CCx + 3Ct

72
− b3C3

54

)
χ2 +O(χ3),

and, at index i = 4, the two conditions, one for each sign of d [69],

Q4 ≡ C[(bdC + s1 −3e1)(bdC + s1 −3e2)(bdC + s1 −3e3)
−3b2d3(Ct +CCx)] = 0, s1 = e1 + e2 + e3, (4.63)

are not identically satisfied, so the PDE fails the test. This ends the test.
The system of two no-log conditions (4.63) implies

(2e1 − e2 − e3)(2e2 − e3 − e1)(2e3 − e1 − e1)C = 0, (4.64)

therefore a necessary condition for the Painlevé property is that either C = 0 or one
of the three fixed points be equidistant from the two others. In Sect. 5.7.2, it will be
seen that the first possibility C = 0 is sufficient for the Painlevé property, while the
second one is not sufficient.

If instead of the PDE (4.48) one considers its reduction u(x, t) =U(ξ ),ξ = x−ct
to an ODE,

− d2U
dξ 2 +(γU −bc)

dU
dξ

+ 2d−2(U − e1)(U − e2)(U − e3) = 0, γ = 0, (4.65)

then C = constant = c, and the two conditions Q4 = 0 select the seven values c = 0
and c2 = (s1 − 3ek)2(bd)−2,k = 1,2,3. For all these values, the necessary condi-
tions are then sufficient since the general solution U(ξ ) is singlevalued (equation
numbered 8 in the list of Gambier [163] reproduced in [232]).

This KPP equation is partially integrable in the sense that, despite its failing the
Painlevé test, it admits particular solutions which have no movable critical singular-
ities, as will be shown in Sect. 5.7.2.



Chapter 5
From the Test to Explicit Solutions of PDEs

Abstract In this chapter we exploit the information provided by the Painlevé test in
order to obtain, firstly the Bäcklund transformation so as to prove the Painlevé prop-
erty, secondly solutions in closed form. Although partially integrable and noninte-
grable equations, i.e. the majority of physical equations, admit no Bäcklund trans-
formation, they retain part of the properties of (fully) integrable PDEs, and this is
why the methods presented in this chapter apply to both cases as well. Such partially
integrable examples are handled in Sect. 5.7.

5.1 Global Information from the Test

Despite its local nature, the Painlevé test yields a lot of global information, of which
the most important pieces are the following.

– The number of families. This information may exclude some types of solutions.
For instance, if an equation admits only one family, like the Fisher equation or the
KdV equation, it cannot admit solitary waves of the type u = sech. A necessary
condition for solutions u = sech to exist is the existence of at least two families
(u0, p) and (u′0, p) with the same singularity degree p, like mKdV or CGL3.
– The singular part operator of each family, introduced in Sect. 2.1.2. This is
of direct use to make the correct assumption for searching the Lax pair (case of
an integrable equation) or particular solutions (integrable or nonintegrable equa-
tion).
– The subset of positive integer values of the Fuchs indices of a given family. In
case the equation is an ODE, these integers are the only possible values for the
singularity degree of a first integral (see example of Lorenz model Sect. 3.1.1).
– The conditions for the absence of movable logarithmic branching (no-log con-
ditions).

93
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5.2 Building N-Soliton Solutions

Most of the explicit solutions which will be found are in fact N-soliton solutions
(see Definition 4.8) or, in the partially integrable case, their degeneracy. There exist
two main approaches to build this N-soliton solution.

The first approach uses the following tools, which will be defined precisely in
Sect. 5.3:

– the Lax pair, a set of two linear differential operators, the commutativity con-
dition of which is identical to the nonlinear PDE E(u) = 0. Its existence is a
criterium of integrability, however insufficient in itself to build solutions.
– the Darboux transformation, a gauge transformation which preserves the co-
variance of the Lax pair. This is the elementary tool to build a new solution from
an existing solution, even if this existing solution is trivial, such as the vacuum
solution u = 0.
– the Crum transformation, which is the Nth iterate of the Darboux transforma-
tion. Starting from any known solution, this transformation allows one to build a
solution depending on 2N more arbitrary parameters, and the only computation
is that of a determinant.

The second approach is more easily implemented in the framework of singularity
analysis, and the tools involved are:

– the Lax pair,
– the singular part transformation, expressing the difference u−U of two solu-
tions as a logarithmic derivative defined with the singular part operator D . In the
nonintegrable case, this transformation still exists but it only allows one to build
particular solutions [84], and it would be an error to conclude the existence of a
BT.
– the Bäcklund transformation [20] (BT), already defined in Def. 4.5. Historically
defined before the Darboux transformation, this transformation, which is made
of two nonlinear PDEs, has been later shown [60] to be nonelementary since it
results from the Lax pair and the singular part transformation by the elimination
of the wave vector ψ .
– the nonlinear superposition formula (NLSF), which, given three solutions in-
volved in two copies of the BT, allows one to obtain a fourth solution by a purely
algebraic process, i.e. without integration.

This is this second approach which will be developed in the remaining of this
chapter, but let us first give more precise definitions.

5.3 Tools of Integrability

In order to illustrate the definitions given in this section, we will mainly take two
examples, the Korteweg-de Vries equation already presented as (4.40),
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KdV(u) ≡ but + uxxx − 6
a

uux = 0,

and the Boussinesq equation

Bq(u) ≡ ε2
(

β 2

3
uxx + u2

)
xx

+ utt = 0, ε2 and β 2 real. (5.1)

Both PDEs are two different reductions of the same 2 + 1-dimensional PDE, the
Kadomtsev–Petviashvili (KP) equation [243],

KP(u) ≡ ε2
(

β 2

3

(
ux1x1x1 + ux3

)
+

(
u2)

x1

)
x1

+ ux2x2 = 0, (5.2)

Physically, x1 and x2 are space coordinates, x3 is the time, u is real, and the constants
ε2 and β 2 are real.

The behavior of the solutions strongly depends on the sign of ε2β 2, and two
different names are given to KP: KP-I for ε2β 2 = −1, KP-II for ε2β 2 = 1. The
reduction of KP to KdV is

∂x2 u = 0, x1 = x, x3 = t/b, β 2 = −a, (5.3)

and the reduction of KP to Boussinesq is

∂x3 u = 0, x1 = x, x2 = t. (5.4)

5.3.1 Lax Pair

Definition 5.1. Given a nonlinear PDE E(U)= 0, one calls the Lax pair a set of two
linear operators L1,L2 depending on a solution U of the PDE, whose commutativity
condition is equivalent to the condition E(U) = 0,

([L1,L2] = 0) ⇐⇒ E(U) = 0. (5.5)

If u depends on two independent variables, the Lax pair must in addition depend on
an arbitrary complex parameter called the spectral parameter.

These two operators can be scalar or matrix operators. Scalar representations of
the Lax pairs of our examples are,
for the KdV equation (4.40) [274]{

L1 ≡ ∂ 2
x −U/a−λ ,

L2 ≡ b∂t + 4∂ 3
x −6(U/a)∂x−3Ux/a, [L1,L2] = (1/a)E(U), (5.6)

for the Boussinesq equation (5.1) [443],



96 5 From the Test to Explicit Solutions of PDEs⎧⎨
⎩

L1 ≡ ∂ 3
x +(3/(2β 2))(U∂x +(1/2)Ux)+ (3/(4εβ 3))R−λ ,

L2 ≡ ∂t −β ε∂ 2
x − (ε/β )U,

[L1,L2] =
{

Rt + ε2(U2 +(β 2/3)Uxx)x)
}

+(Ut −Rx)∂x,
(5.7)

and for the KP equation (5.2) [129, 445],⎧⎪⎨
⎪⎩

L1 ≡−ε−1β−1∂x2 + ∂ 2
x1

+ β−2U,

L2 ≡ ∂ 3
x1

+(3/(2β 2))(U∂x1 +(1/2)Ux1)+ (3/(4εβ 3))R− (1/4)∂x3,

[L1,L2] =
{

Rx2 + ε2
(

β 2

3

(
Ux1x1x1 +Ux3

)
+

(
U2

)
x1

)}
+(Ux2 −Rx1)∂x1 .

(5.8)

In (5.7) or (5.8), by the elimination of the auxiliary field R defined by either Ut −
Rx = 0 or Ux2 −Rx1 = 0, one checks that the vanishing of the commutator [L1,L2] is
indeed equivalent to the Boussinesq or the KP equation for U .

In the two 1+1-dimensional cases, the Lax pair depends on the spectral parameter
λ , and the operator L1 is called scattering operator. In the 2+1 case of KP, the two
equations defining the Lax pair are linear partial differential equations, therefore the
notion of spectral parameter is meaningless.

The reductions (5.3) and (5.4) which act on KP to yield KdV and Boussinesq
also act on the Lax pair of KP to yield those of the reduced PDEs,

Lj,KdV = P−1Lj,KPP, j = 1,2, P = eελ x2 , (5.9)

Lj,Bq = P−1L3− j,KPP, j = 1,2, P = e−λ x3 , (5.10)

and these are the reductions which introduce the spectral parameter λ .
It is possible to obtain these Lax pairs from singularity considerations only, this

will be done in Sects. 5.6.1.1, 5.6.1.2, 5.6.2, and 5.6.3.
Besides the above scalar representation for a Lax pair, there exist several other

equivalent representations.
The Lax representation [274] is a pair of linear operators (L,P) (scalar or matrix)

defined by

L1 = L−λ , L2 = ∂t −P, L1ψ = 0, L2ψ = 0, λt = 0, (5.11)

in which the elimination of the scalar λ yields

Lt = [P,L], (5.12)

i.e. , thanks to the isospectral condition λt = 0, a time evolution analogous to the
one in Hamiltonian dynamics.

The zero-curvature representation is a pair (L,M) of linear operators independent
of (∂x,∂t)

L1 = ∂x −L, L2 = ∂t −M, L1ψ = 0, L2ψ = 0,

[∂x −L,∂t −M] = Lt −Mx + LM−ML = 0. (5.13)

The common order N of the matrices is called the order of the Lax pair.
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The projective Riccati representation is a first order system of 2N − 2 Riccati
equations in the unknowns ψ j/ψ1, j = 2, . . . ,N, equivalent to the zero-curvature
representation (5.13).

The string representation or Sato representation [241]

[P,Q] = 1. (5.14)

This very elegant representation, reminiscent of Hamiltonian formalism, uses the
Sato definition of a microdifferential operator (a differential operator with positive
and negative powers of the differential operator ∂ ) and of its differential part de-
noted ()+ (the subset of its nonnegative powers), e.g.

Q = ∂ 2
x −u, (5.15)

L = Q1/2 = ∂x − (1/4){u,∂−1
x }, (5.16)

(L)+ = ∂x, (5.17)(
L3)

+ = ∂ 3
x − (3/4){u,∂x} = P, (5.18)(

L5
)

+
= ∂ 5

x − (5/4){u,∂ 3
x }+(5/16){3u2+ uxx,∂x}, (5.19)

in which {a,b} denotes the anticommutator ab+ba. See [120] for a tutorial presen-
tation.

Examples of these various representations will be encountered later in the text.

5.3.2 Darboux Transformation

Definition 5.2. Given a nonlinear PDE E(u) = 0 and its Lax pair, one calls a Dar-
boux transformation (DT) [110, 301] a gauge transformation which at the same
time preserves the covariance of the Lax pair and increases the number of arbitrary
constants in the solution U appearing in the Lax pair.

To write explicitly this transformation, it is now necessary to introduce the wave
vector ψ and to write the scalar Lax pairs as L1(U,λ )ψ = 0,L2(U,λ )ψ = 0, because
the DT acts on the triplet (ψ ,U,λ ).

In the case of KdV, starting from the scalar Lax pair (5.6) for the triplet (Ψ ,U,Λ)
(we use upper case notation for the input, lower case for the iterate),

L1(U,Λ)Ψ = 0, L2(U,Λ)Ψ = 0, (5.20)

following Darboux [110], one first introduces an intermediate triplet (θ ,U,µ) also
satisfying the Lax pair,

L1(U,µ)θ = 0, L2(U,µ)θ = 0, (5.21)
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in which U is the same as in (5.20), µ is different from Λ and the wave vector θ is
nonzero. Then, under the transformation

(Ψ ,U,Λ) → (ψ ,u,λ ) :

⎧⎨
⎩

ψ = GΨ = θ∂x(θ−1Ψ),
u = U + 2a∂ 2

x logθ ,
λ = Λ ,

(5.22)

the new triplet (ψ ,u,λ ) is such that

G(θ )Lj(U,Λ) = Lj(u,λ )G(θ ), j = 1,2, (5.23)

therefore the commutativity condition of the transformed operators Lj(u,λ ) is
equivalent to E(u) = 0. The iterated field u in (5.22) depends on two more arbi-
trary constants than the initial field U in (5.20).

Remark 1. The simpler covariant transformation

(Ψ ,U,Λ) → (ψ ,u,λ ) :

⎧⎨
⎩

ψ = Ψ−1,
u = U + 2a∂ 2

x logΨ ,
λ = Λ ,

(5.24)

does not increase the number of arbitrary constants and is therefore not a DT. This
involution, which shares with the true DT the transformation on U , is however quite
easy to derive knowing the singular part operator D = 2a∂ 2

x of KdV.
Remark 2. The formulae (5.22) for the DT do not involve t-derivatives, and in fact

the original work of Darboux [110] only dealt with the Sturm–Liouville ordinary
differential equation

ψxx +(−U/a−λ )ψ = 0. (5.25)

Remark 3. At the KP level, depending on the sign of ε2β 2, the Lax pair [129]
is (KP-II case) or is not (KP-I case) self-adjoint, therefore the intermediate wave
vector θ is generically complex for KP-I, and so is the solution u appearing in the
iterated Lax pair. If one wants the iterated u to be real, which may be required by
physical considerations, one must also consider the adjoint Lax pair and introduce
[278, 329] two gauge operators such as the G in (5.22). The resulting transformation,
which will not be described here, is called the binary Darboux transformation.

Remark 4. When the scalar scattering problem (5.25) is written in matrix form

∂x

(
ψ
ψx

)
=

(
0 1

λ −u 0

)(
ψ
ψx

)
, (5.26)

it is convenient to also write the Darboux transformation in matrix form [223],(
ψ
ψx

)
= (µ −Λ)−1/2

( −y 1
y2 +Λ − µ −y

)(
Ψ
Ψx

)
, y =

θx

θ
, (5.27)
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in which (µ −Λ)−1/2 is an irrelevant normalization factor intended at making unity
the determinant of the matrix. This will be used in Sect. 7.6.1.

5.3.3 Crum Transformation

Definition 5.3. Given a nonlinear PDE E(u) = 0 and its Darboux transformation,
one calls the Crum transformation [108, 301] the Nth iterate of the Darboux
transformation.

With the Darboux transformation, one can devise an iteration on (ψ ,u,λ ) [170]
to build solutions depending on the set of successive values λ1, . . . ,λn, . . . The total
cost is the integration of just one linear system, since the potential denoted U in
(5.21) does not change throughout the iteration. The N-th iterate (ψ ,u,λ )N can then
be expressed in a closed form involving N different copies of the starting point
(ψ ,u,λ )0 = (θ0,U,λ ), each copy corresponding to a different λk.

In the KdV case for instance, starting from the vacuum u0 = 0, the N wave func-
tions θ j, j = 1, . . . ,N, are chosen as particular solutions of the linear system (5.6)
with a zero potential, {

θxx −λ jθ = 0,
θt + 4θxxx = 0,

(5.28)

i.e.

θ j = A j coshk j(x−4k2
j t + δ j), k2

j = λ j, j = 1, . . . ,N, (5.29)

in which A j and δ j are 2N arbitrary constants of integration. Let us also denote θ0

another solution of (5.28) for another value λ0 = λ . The Nth iterate is then [422]⎧⎨
⎩

uN = −2a∂ 2
x logW(θ1, . . . ,θN),

ψN = W(θ1, . . . ,θN ,θ0)
W(θ1, . . . ,θN) ,

(5.30)

in which the Wronskian is the determinant

W(θ1, . . . ,θN) = det(∂ i−1
x θ j) =

∣∣∣∣∣∣∣∣
θ1 θ ′

1 . . . θ (N−1)
1

θ2 θ ′
2 . . . θ (N−1)

2
. . . . . . . . . . . .
θN θ ′

N . . . θ (N−1)
N

∣∣∣∣∣∣∣∣
. (5.31)

The wave vectors ψN and θ0 obey the Lax pair (5.6) for the same spectral parameter
λ and for the respective potentials uN and 0.

This solution, which depends on 2N arbitrary complex constants k j,δ j, is called
the N-soliton solution. It enjoys nice properties, well documented in [125], among
them elastic collisions (see Fig. 5.1).
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Fig. 5.1 KdV. Two-soliton solution displaying the elastic collision of two one-soliton solutions
(reproduced from Figure 4.3 page 76 in [125]).

5.3.4 Singular Part Transformation

The Laurent series (4.25) is the sum of a singular part (usually called principal
part, made of the first −p terms j = 0, . . . ,−p− 1) and a regular part made of the
remaining terms j = −p, . . . ,+∞. The singular part can be represented by a linear
differential operator.

Definition 5.4. Given a family of movable singularities represented by the Laurent
series (4.25), one calls the singular part operator of this family the linear differ-
ential operator D uniquely defined by the property

u−D logψ = O(1), χ =
ψ
ψx

. (5.32)
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For the various families previously encountered ((4.41) for KdV, (4.50) for KPP,
(2.31) for the KS PDE (2.25)), these operators are, respectively, D = −2a∂ 2

x , D =
u0∂x and (2.44) in which ∂ξ is replaced by ∂x.

As to the regular part of the Laurent series, it is of no direct help because the
Laurent series is not a closed-form solution. Since this is the only directly available
piece of information and since a finite (closed form) expression is required for an
exact solution, let us represent, following the idea of Weiss, Tabor, and Carnevale
[431], an unknown exact solution u as the sum of a singular part, characterized by
the singular part operator D , and of a regular part denoted U .

Definition 5.5. Given a PDE with only one family of movable singularities, one
calls the singular part transformation the representation of a solution u as the
sum

u = D logτ +U, E(u) = 0, (5.33)

in which D is the singular part operator of the family, τ is a function (“tau-
function”1) linked to the wave vector ψ of the Lax pair to be found, and U an
unspecified field.

The aim of the representation (5.33) is to devise a choice of link between τ and
ψ such that the field U in (5.33) be another solution of the same PDE, like it is in
the Darboux transformation (second equation in (5.22)).

In case the PDE has two families, the representation (5.33) is replaced by [317]

u = D1 logτ1 +D2 logτ2 +U, (5.34)

the operator D f and the function τ f being attached to each family f .

5.3.5 Nonlinear Superposition Formula

The Bäcklund transformation has been defined in Definition 4.5 Sect. 4.2. Before
defining the nonlinear superposition formula, we need to state a theorem.

Theorem 5.1. (Bianchi permutability theorem [31])
Given a nonlinear PDE E(u)= 0 and its auto-Bäcklund transformation BT(u,U,λ )=
0, if one applies this BT to a given solution un−1 with two different spectral parame-
ters, BT(un−1,un,λn) = 0, BT(un−1, ũn,λn+1) = 0, then there exists a fourth solution
un+1 which can be obtained by either BT(un,un+1,λn+1) = 0 or BT(ũn,un+1,λn) =
0, i.e. by permuting the two spectral parameters.

The content of this theorem is schematically represented by the Bianchi diagram,
Fig. 5.2.

1 More precisely the ratio of two tau-functions in the sense of Sato [241].



102 5 From the Test to Explicit Solutions of PDEs

un−1 un+1

un

ũn

λn

λn+1

λn+1

λn

Fig. 5.2 Bianchi diagram. Its four branches are described in theorem 5.1.

No general demonstration of this theorem seems to be known [374], and one has
to prove it for every PDE admitting an auto-Bäcklund transformation.

Definition 5.6. Given a nonlinear PDE E(u) = 0 and any four different solutions
un−1,un, ũn,un+1 involved in the Bianchi permutability theorem, one calls the non-
linear superposition formula (NLSF) [113, 31] a relation yielding explicitly
(i.e. without any integration) the fourth solution un+1

2 in terms of the three others.

If such an NLSF exists, this proves ipso facto the Bianchi permutability theorem.
Example. The most elementary example of an equation admitting a NLSF is the

Riccati equation

du
dx

= a2(x)u2 + a1(x)u + a0(x), (5.35)

already encountered in many instances, see (1.1), (3.92), (3.179) and (4.27). Given
three particular solutions u1,u2,u3 of (5.35), another solution is defined by the rela-
tion

(u,u1,u2,u3) = c, (5.36)

in which the l.h.s. is the crossratio

(x1,x2,x3,x4) =
(x3 − x1)(x4 − x2)
(x3 − x2)(x4 − x1)

, (5.37)

of the four solutions and c is an arbitrary complex constant. Moreover, since c is
arbitrary, this fourth solution is the general solution of (5.35).

The end of the present chapter is devoted to the derivation of the Bäcklund trans-
formation, and therefore of explicit solutions, by methods only based on singulari-
ties, globally known as the singular manifold method. Since the BT results from the
Lax pair and the singular part transformation by an elimination [60], one will first
search for these two simpler elements.

Examples will be given in Sects. 5.6.1.1, 5.6.1.2, 5.6.2, and 5.6.3.

2 Or some primitive of it.
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5.4 Choosing the Order of Lax Pairs

In the algorithm to be presented in Sect. 5.5.1, it is necessary to provide as an
input a Lax pair in scalar form and its order (two, three, etc), with undetermined
coefficients. Such Lax pairs are defined in the present section, together with the
constraints imposed on these coefficients by the commutativity condition.

It is sometimes appropriate to represent an n-th order Lax pair by the 2(n− 1)
equations satisfied by an equivalent (n−1)-component pseudopotential Y of Riccati
type, the first component of which is chosen as

Y1 = ψx/ψ , (5.38)

in which ψ is a scalar component of the Lax pair.

5.4.1 Second-Order Lax Pairs and Their Privilege

The general second-order scalar Lax pair reads, in the case of two independent
variables (x,t),

L1ψ ≡ ψxx −dψx −aψ = 0, (5.39)

L2ψ ≡ ψt −bψx − cψ = 0, (5.40)

[L1,L2] ≡ X0 + X1∂x, (5.41)

X0 ≡ −at + axb + 2abx + cxx − cxd = 0, (5.42)

X1 ≡ −dt +(bx + 2c−bd)x = 0. (5.43)

The coefficient d could be set to zero by the linear change ψ �→ exp[
∫

ddx/2]ψ , but
this would modify X0 and X1 and thus the commutator could be no more equivalent
to the nonlinear PDE under study.

The Lax pair (5.39)–(5.40) is identical to a linearized version of the Riccati sys-
tem satisfied by the most general expansion variable Y defined by (4.37), under the
correspondence

Y−1 = B

(
ψx

ψ
+ A

)
, B �= 0, (5.44)

d = 2A, a = Ax −A2 −S/2, b = −C, c = Cx/2 + AC+
∫

Atdx, (5.45)

and the commutator of the Lax pair is (4.32).
In particular, when the coefficient d is zero, the correspondence with the Lax pair

(4.34)–(4.35) is [315]

χ =
ψ
ψx

, B = 1, A = 0, (5.46)
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a = −S/2, b = −C, c = Cx/2, d = 0. (5.47)

Therefore second order Lax pairs are privileged in the singularity approach, in the
sense that their coefficients can be identified with the elementary homographic in-
variants S,C of the invariant Painlevé analysis and, if appropriate, A,B. Conversely,
when the Lax order is higher than two, these homographic invariants S,C are use-
less and they should not be considered; this has historically been the reason of some
errors described for instance in [78, section 8].

5.4.2 Third-Order Lax Pairs

The third-order scalar Lax pair will be defined as (the coefficient of ψxx in L1 is
assumed zero here for simplification)

L1ψ ≡ ψxxx −aψx−bψ = 0, (5.48)

L2ψ ≡ ψt − cψxx −dψx − eψ = 0, (5.49)

[L1,L2] ≡ X0 + X1∂x + X2∂ 2
x , (5.50)

X0 ≡ −bt −aex + exxx + bxxc

+3bcxx + 3bxcx + 3bdx + bxd = 0, (5.51)

X1 ≡ −at + 3exx + 2bxc + axxc + dxxx + 3acxx + 2adx

+3axcx + 3bcx + axd = 0, (5.52)

X2 ≡ (2ac + cxx + 3dx + 3e)x = 0. (5.53)

An equivalent two-component pseudopotential is the projective Riccati one Y =
(Y1,Y2) [12, 315, 316],

Y1 =
ψx

ψ
, Y2 =

ψxx

ψ
, (5.54)

Y1,x = −Y 2
1 +Y2, (5.55)

Y2,x = −Y1Y2 + aY1 + b, (5.56)

Y1,t = −(dY1 + cY2 + ac + dx)Y1 +(cx + d)Y2 + ex + bc (5.57)

= (cY2 + dY1 + e)x, (5.58)

Y2,t = −(dY1 + cY2)Y2 +(2acx + axc + bc + dxx + ad + 2ex)Y1

+(cxx + 2dx + ac)Y2 + 2bcx + bxc + bd + exx, (5.59)

Y1,tx −Y1,xt = X1 + X2Y1, (5.60)

Y2,tx −Y2,xt = −X0 + X2Y2. (5.61)
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5.5 Singular Manifold Method

We now have all the ingredients to give a general exposition of the method in the
form of an algorithm. The present exposition largely follows the lines of [319],
updated in the lecture notes [78].

This method is known as the singular manifold method or truncation method
because it selects the beginning of a Laurent series and discards (“truncates”) the
remaining infinite part. Since its introduction by WTC [431], it has been improved
in many directions [315, 134, 164, 317, 87, 357, 319], and we present here the
current state of the method.

5.5.1 Algorithm

Consider a PDE (4.1) with either one family of movable singularities or two families
of movable singularities with the same singularity degree p and different values of
u0, and denote D1,D2 the two singular part operators.

First step. Assume a singular part transformation defined either as (5.33) (one-
family case) or as (5.34) (two-family case), with u a solution of the PDE under
consideration, U an unspecified field, and τ f one or two functions.

Second step. Choose the order two, then three, then . . . , for the unknown Lax
pair, and define one or two (as many as the number of families) scalars ψ f from
the component(s) of its wave vector (e.g. the scalar wave vector if the PDE has one
family and the pair is defined in scalar form).

Third step. Choose an explicit link F

∀ f : D f logτ f = F(ψ f ), (5.62)

the same for each family f , between the functions τ f and the scalars ψ f defined
from the Lax pair. As will be shown in Sect. 5.6.3.1, at each scattering order, there
exists only a finite number of choices (5.62), among them the most frequent one

∀ f : D f logτ f = D f logψ f , i.e. τ f = ψ f . (5.63)

Fourth step. Define the “truncation” and solve it, that is to say: with the assump-
tions (5.33) or (5.34) for a singular part transformation, (5.62) for a link between τ f

and ψ f , (5.39)–(5.40) or (5.48)–(5.49) or other for the Lax pair in ψ , express E(u)
as a polynomial in the derivatives of ψ f which is irreducible modulo the Lax pair.
For the just mentioned Lax pairs and a one-family PDE, this amounts to eliminate
any derivative of ψ of order in (x,t) higher than or equal to (2,0) or (0,1) (second
order case) or to (3,0) or (0,1) (third order), thus resulting in a polynomial of one
variable ψx/ψ (second order) or two variables ψx/ψ ,ψxx/ψ (third order).

The l.h.s. E(u) of the equation thus becomes, for the second order Lax pair
(5.39)–(5.40) in the particular “Gel’fand–Dikii” case d = 0,
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E(u) =
−q

∑
j=0

E j(S,C,U)(ψ/ψx) j+q (5.64)

and for the third order Lax pair (5.48)–(5.49),

E(u) = ∑
k≥0

∑
l≥0

Ek,l(a,b,c,d,e,U)(ψx/ψ)k(ψxx/ψ)l. (5.65)

Since one has no more information on this polynomial E(u) except the fact that it
must vanish, one requires that it identically vanishes, by solving the set of determin-
ing equations

∀ j E j(S,C,U) = 0 (one-family PDE, second order) (5.66)

∀k ∀l Ek,l(a,b,c,d,e,U) = 0 (one-family PDE, third order) (5.67)

for the unknown coefficients (S,C) or (a,b,c,d,e) as functions of U , and one estab-
lishes the constraint(s) on U by eliminating (S,C) or (a,b,c,d,e). The strategy of
resolution relies on some basic principles (never increase the differential order, en-
force all cross-derivative conditions, etc) which mathematically deal with the con-
struction of a differential Groebner basis [297, 37], and a detailed example (the
Kuramoto–Sivashinsky PDE (2.25)) is handled in [78].

The constraints on U reflect the integrability level of the PDE. If the only con-
straint on U is to satisfy some PDE, one is on the way to an auto-BT if the PDE for
U is the same as the PDE for u, or to a BT between the two PDEs.

In the integrable case, the second, third and fourth steps must be repeated until a
success occurs. The process is successful if and only if all the following conditions
are met:

1. U comes out with one constraint exactly, namely to be a solution of some PDE,
2. (if an auto-BT is desired) the PDE satisfied by U is identical to (4.1),
3. the vanishing of the commutator [L1,L2] is equivalent to the vanishing of the PDE

satisfied by U ,
4. in the 1 + 1-dimensional case only, the PDE satisfied by U is identical to (4.1),

the coefficients depend on an arbitrary constant λ , the spectral or Bäcklund pa-
rameter.

In the nonintegrable case, one is happy with any solution. For instance, solutions
u polynomial in tanhk(x− ct) or in the two variables tanhk(x− ct),sechk(x− ct)
are described by constant values of (S,C,A,B) in (5.39)–(5.40), and the determining
equations are no more differential but algebraic.

At this stage, one has obtained the singular part transformation and the Lax pair.
Fifth step. Obtain the two equations for the BT by eliminating τ f and ψ f [60]

between the singular part transformation and the Lax pair. This sometimes difficult
operation when the order n of the Lax pair is too high may become elementary by
considering the equivalent Riccati representation of the Lax pair and eliminating
the appropriate components of Y rather than ψ . Assume for instance that τ = ψ ,
D = ∂x, and the PDE has only one family. Then (5.33) reads
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Y1 = u−U (5.68)

with Y1 defined in (5.38), and the BT is computed as follows: eliminate all the com-
ponents of Y but Y1 between the equations for the gradient of Y, then in the resulting
equations substitute Y1 as defined in (5.68).

If the computation of the BT requires the elimination of Y2 between (5.55)–
(5.59), this BT is

Y1,xx + 3Y1Y1,x +Y3
1 −aY1 −b = 0, (5.69)

Y1,t − (cY1,x + cY 2
1 + dY1 + e)x = 0, (5.70)

(Y1,xx)t − (Y1,t)xx = X0 + X1Y1 + X2Y 2
1 = 0, (5.71)

in which Y1 is replaced by an expression of u−U , e.g. (5.68).
Although, let us repeat, the method equally applies to integrable as well as non-

integrable PDEs, examples are split according to that distinction, to help the reader
to choose his/her field of interest.

5.5.2 Level of Truncation and Choice of Variable

This section is self-contained, and mainly aimed at those readers accustomed to
performing the WTC truncation. Although some paragraphs might be redundant
with Sect. 5.5.1, it may help the reader by presenting a complementary point of
view.

Let us assume in this section that the unknown Lax pair is second order. Then the
truncation defined in the fourth step of Sect. 5.5.1 is performed in the style of Weiss
et al. [431], i.e. with a single variable. This WTC truncation consists in forcing
the series (4.25) to terminate; let us denote p and q the singularity degrees of u and
E(u), −p′ the rank at which the series for u terminates, and −q′ the corresponding
rank of the series for E

u =
−p′

∑
j=0

u jZ
j+p, u0u−p′ �= 0, E =

−q′

∑
j=0

E jZ
j+q, (5.72)

in which the truncation variable Z chosen by WTC is Z = ϕ −ϕ0. Since one has no
more information on Z, the method of WTC is to require the separate vanishing of
each of the truncation equations

∀ j = 0, . . . ,−q′ : E j = 0. (5.73)

In earlier presentations of the method, one had to prove by recurrence that, as-
suming that enough consecutive coefficients u j vanish beyond j = −p′, then all
further coefficients u j would vanish. This painful task is useless if one defines the
process as done above.
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The first question to be solved is: what are the admissible values of p′, i.e. those
which respect the condition u−p′ �= 0?

The answer depends on the choice of the truncation variable Z. In Sect. 4.4.1
three choices were presented, Z = either ϕ −ϕ0, χ or Y , respectively defined by
equations (4.2), (4.26), (4.37), with the property that any two of their inverse are
linearly dependent.

The advantage of χ or Y over ϕ −ϕ0 is the following. The gradient of χ (resp. Y )
is a polynomial of degree two in χ (resp. Y ), so each derivation of a monomial aZk

increases the degree by one, while the gradient of ϕ −ϕ0 is a polynomial of degree
zero in ϕ −ϕ0, so each derivation decreases the degree by one. Consequently, one
finds two solutions and only two to the condition u−p′ �= 0 [356]:

1. p′ = p,q′ = q, in which case the three truncations are identical, since the three
sets of equations E j = 0 are equivalent (the finite sum ∑E jZ j+q is just the same
polynomial of Z−1 written with three choices for its base variable),

2. for χ and Y only, p′ = 2p,q′ = 2q, in which case the two truncations are different
since the two sets of equations E j = 0 are inequivalent (they are equivalent only
if A = 0).

To perform the first truncation p′ = p,q′ = q, one must then choose Z = χ since Y
brings no more information and ϕ −ϕ0 creates equivalent but lengthier expressions.

To perform the second truncation p′ = 2p,q′ = 2q, one must choose Z = Y , since
χ would create the a priori constraint A = 0.

The second question to be solved is: given some PDE with such and such struc-
ture of singularities, and assuming that one of the above two truncations is relevant
(which is a separate topic), which one should be selected?

The answer lies in the two elementary identities [86]

tanhz− 1
tanhz

= −2isech
[
2z+ i

π
2

]
, tanhz+

1
tanhz

= 2tanh
[
2z+ i

π
2

]
. (5.74)

Let us explain why in the two examples already presented in Sect. 1.1, the ODEs
whose general solution is tanh(x− x0) and sech(x− x0),

E ≡ u′ + u2 −1 = 0, u = tanh(x− x0), (5.75)

E ≡ v′2 + a−2v4 − v2 = 0, v = asech(x− x0), (5.76)

(it is for convenience that we do not set a = 1). Equation (5.75) has the single family

p = −1,q = −2,u0 = 1, Fuchs indices = (−1), (5.77)

and (5.76) has the two opposite families

p = −1,q = −4,v0 = ia, Fuchs indices = (−1), (5.78)

in which ia denotes any square root of −a2. The first truncation



5.6 Application to Integrable Equations 109

u =
−p

∑
j=0

u jχ j+p, E =
−q

∑
j=0

E jχ j+q, ∀ j : E j = 0, (5.79)

generates the respective results

u = χ−1, S = −2, (5.80)

v = iaχ−1, E2 ≡ a2(1−S) = 0, E3 ≡ 0, E4 ≡−a2S2/4, (5.81)

thus providing (after integration of the Riccati ODE (4.27)) the general solution of
(5.75), and no solution at all for (5.76).

The second truncation

u =
−2p

∑
j=0

u jY
j+p, E =

−2q

∑
j=0

E jY
j+q, ∀ j : E j = 0, (5.82)

generates the respective results

u = B−1Y−1 +(1/4)BY, A = 0, S = −1/2, B arbitrary, (5.83)

v = iaB−1Y−1 − (1/4)iaBY, A = 0, S = −1/2, B arbitrary, (5.84)

thus providing, thanks to the identities (5.74), the general solution for both equa-
tions.

The conclusions from this exercise which can be generalized are :

1. for PDEs with only one family, the second truncation brings no additional infor-
mation as compared to the first one and is always useless;

2. for PDEs with two opposite families (two opposite values of u0 for a same value
of p), the first truncation can never provide the general solution and can only pro-
vide particular solutions, while the second one may provide the general solution.

This defines the guidelines to be followed in the next sections of this chapter. The
question of the relevance of the parameter B, which seems useless in the above two
examples, is addressed in Sect. 5.6.2.

5.6 Application to Integrable Equations

In the integrable case, the method must yield all the elements of integrability up to
and including the nonlinear superposition formula. Let us apply the method succes-
sively to a one-family equation with a second order Lax pair (KdV, Sect. 5.6.1.1),
a one-family equation with a third order Lax pair (Boussinesq, Sect. 5.6.1.2), two
two-family equations with a second order Lax pair (sine-Gordon, modified KdV,
Sect. 5.6.2), and two one-family equations with a third order Lax pair, Sect. 5.6.3.
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5.6.1 One-Family Cases: KdV and Boussinesq

In this case the SMM can be viewed as an extrapolation to PDEs of the truncation
defined for ODEs in Sect. 3.2.3.2.

5.6.1.1 The Case of KdV

As shown in Sect. 4.4.2, the Painlevé test is satisfied, and the question is now to
prove the Painlevé property. The use of singularity analysis to derive the results of
the present section is mostly due to WTC [431], and its homographically invariant
presentation can be found in [312].

From the Laurent series (4.46), one deduces the singular part operator,

D = −2a∂ 2
x . (5.85)

If one assumes the singular part transformation,

u = U +D logτ, E(u) = 0, (5.86)

the choice of the second-order scalar Lax pair (4.34)–(4.35) for ψ , and the link
(5.63) between τ and ψ , the solution (5.86) becomes a Laurent series in χ with
finitely many terms,

u = 2aχ−2 +U + aS = −2a∂ 2
x logψ +U, χ =

ψ
ψx

, (5.87)

and the identification with the (infinite) Laurent series (4.46) first provides the value
of U

U =
4aS−abC

6
. (5.88)

Inserting the finite Laurent series (5.87) into the KdV equation, and eliminating any
derivative of χ from (4.27)–(4.28), one generates a finite Laurent series which must
be identically zero. This defines only two determining equations

E3 ≡ −2a(bC−S)x = 0, (5.89)

E5 ≡ a
3
(SSx + 2Sxxx)− ab

6
(4SCx + 5Cxxx)− ab2

6
(Ct +CCx) = 0, (5.90)

together with the cross-derivative condition (4.32). Indeed, E0,E1 are identically
zero because of the expression (5.85) of D , E2 is zero because of the value (5.88) of
U , and E4 is zero because 4 is a Fuchs index. The elimination of Cxxx and Sx between
E3,E5 and the cross-derivative condition (4.32) yields the relation

(bC−S)t = 0, (5.91)
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which, together with E3 = 0, integrates as

bC−S−6λ = 0, (5.92)

in which λ is an arbitrary complex constant of integration. This equation (5.92),
which is called [431] the singular manifold equation (SME), is the constraint on
ϕ for the truncation to exist. It has by definition the property that all the determin-
ing equations (here E3 = 0,E5 = 0) are differential consequences of the SME. The
system (5.88), (5.92) is then solved for (S,C)

S = −2λ − (2/a)U, bC = 4λ − (2/a)U, (5.93)

and the cross-derivative condition (4.32) expresses that U is another solution of
KdV. Therefore one has obtained the singular part transformation (5.86) and the
second order Lax pair{

ψxx − (U/a + λ )ψ = 0,
bψt +(4λ −2U/a)ψx +(Ux/a)ψ = 0.

(5.94)

This Lax pair can also be written, at the reader’s taste, with a second equation inde-
pendent of λ , {

ψxx − (U/a + λ )ψ = 0,
bψt + 4ψxxx −6(U/a)ψx−3(Ux/a)ψ = 0,

(5.95)

or in the zero-curvature representation (5.13)

L =
(

0 1
U/a + λ 0

)
, (5.96)

M = b−1
( −Ux/a 2U/a−4λ
−Uxx/a + 2(U/a + λ )(U/a−2λ) Ux/a

)
, (5.97)

or in the Riccati representation for ω = χ−1 (see (4.27)–(4.28) and (4.32))

ωx = −S
2
−ω2 =

(
U
a

+ λ
)
−ω2, (5.98)

ωt = (−Cω +Cx/2)x = b−1((2U/a−4λ )ω−Ux/a)x. (5.99)

In order to derive the auto-Bäcklund transformation of KdV, one should eliminate
τ and ψ between: the singular part transformation (5.86), the link (5.63) and one
convenient form of the Lax pair. If one introduces the so-called potential field v of u
defined by u = vx,U = Vx, then the singular part transformation relation (5.86) can
be integrated once to yield

ω = (v−V)/(−2a), (5.100)
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so the elimination reduces to the substitution of the value of ω into the Riccati
system (5.98)–(5.99). This auto-BT of KdV reads

a(v +V)x = −2a2λ +(v−V)2/2, (5.101)

ab(v +V)t = −(v−V)(v−V)xx + 2(V 2
x + vxVx + v2

x), (5.102)

after suitable differential consequences of the x-part have been added to the t-part
in order to suppress λ and cubic terms in (5.102). One notices the invariance under
a permutation of v and V .

The difference u−U (or v−V ) of the two solutions involved in the BT obeys
a PDE called by definition the modified equation [60] of the considered PDE, here
KdV. This modified equation is obtained by eliminating U between (5.98)–(5.99),
and the result is the modified Korteweg–de Vries equation (mKdV),

mKdV(w) ≡ bwt +
(
wxx −2w3/α2 + 6νw

)
x = 0, (5.103)

with the identification

w = αω ,ν = λ . (5.104)

Remark. Two different names are sometimes given to the mKdV equation (5.103),
depending on whether ν is zero (modified KdV) or nonzero (extended modified
KdV), but there is no reason to distinguish them. Indeed, they can be identified
by simply redefining the time variable: mKdV(ν �= 0,x, t,u(x, t)) = mKdV(ν =
0,x,T,u(x,T )), t = T − x/(6ν). The reason why we do not set the constant ν to
zero is the relation ν = λ with λ arbitrary, a relation which comes out of the above
definition for modified equation.

This PDE (5.103) also has the Painlevé property, and the system (5.98)–(5.99) is
the Bäcklund transformation between KdV and mKdV ([269, (5.16)], [424]). The
first half (5.98) of this BT between KdV and mKdV is an algebraic transformation

U = a

(
wx

α
+

w2

α2 − ν

)
, (5.105)

called by definition the Miura transformation [306] from mKdV to KdV.
Let us now derive the nonlinear superposition formula (NLSF). Among the two

equations (5.101)–(5.102), the one with the lowest differential order is (5.101). Let
us consider this latter equation written for the four branches of the Bianchi diagram
represented in Fig. 5.2,⎧⎪⎪⎨

⎪⎪⎩
a(vn−1 + vn)x − (vn−1 − vn)2/2 + 2a2λn = 0,

a(vn−1 + ṽn)x − (vn−1 − ṽn)2/2 + 2a2λn+1 = 0,

a(vn + vn+1)x − (vn − vn+1)2/2 + 2a2λn+1 = 0,

a(ṽn + vn+1)x − (ṽn − vn+1)2/2 + 2a2λn = 0.

(5.106)
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There exist two linear combinations, (1,−1,−1,1) and (1,−1,1,−1), whose result
yields vn+1 as an explicit algebraic transform of (vn−1,vn, ṽn). These two NLSF are

vn+1 = vn−1 + 4a2 λn+1 −λn

ṽn − vn
, (5.107)

vn+1 = −vn−1 +(vn + ṽn)−2a∂x log(vn − ṽn). (5.108)

The first one [423] is simpler but the second one [218] is more general as will be
seen at the end of Sect. 5.6.1.2. Both NLSF are able to yield the expression (5.30)
for the N-soliton solution.

5.6.1.2 The Case of Boussinesq

Let us first briefly perform the Painlevé test on (5.1), as detailed in Sect. 4.4.2.
Since the Boussinesq equation is a conservation law, it is cheaper (in the sense of

shorter expressions to compute) to process the one-component “potential” form

pBq(v) ≡ vtt + ε2 (
(vx)2 +(β 2/3)vxxx

)
x = 0, u = vx, (5.109)

or even the “second potential” equation

ppBq(w) ≡ wtt + ε2 (
(wxx)2 +(β 2/3)wxxxx

)
= 0, u = vx = wxx. (5.110)

Whatever the considered equation among these three equivalent forms, there exists
only one family of movable singularities⎧⎨

⎩
Bq : p = −2, q = −6, indices (−1,4,5,6), D = 2β 2∂ 2

x ,
pBq : p = −1, q = −5, indices (−1,1,4,6), D = 2β 2∂x,

ppBq : p = 0−, q = −4, indices(−1,0,1,6), D = 2β 2,
(5.111)

(the notation p = 0− means a logarithmic behavior w ∼ 2β 2 log χ), and one has to
compute the coefficients of the Laurent series up to j = 6 in order to check that,
indeed, the equation passes the Painlevé test [429].

Let us assume for the would-be singular part transformation the relation (in the
“second potential” equation to shorten the computations),

w = 2β 2 logτ +W, ppBq(w) = 0, (5.112)

and let us choose for the link between τ and ψ the identity (5.63).
Let us first assume that ψ satisfies the second-order scalar Lax pair (4.34)–(4.35).

This is equivalent to the usual WTC truncation in the invariant formalism [70], as
already performed in Sect. 5.6.1.1,

ppBq(w) ≡
4

∑
j=0

E jχ j−4 = 0, (5.113)



114 5 From the Test to Explicit Solutions of PDEs

and this generates the three determining equations

E2 ≡ (4/3)β 2ε2S−2C2 −4ε2Wxx = 0, (5.114)

E3 ≡−2(Ct −CCx − (β 2ε2/3)Sx) = 0, (5.115)

E4 ≡ (SE2 −E3,x)/2 +C2
x + β 2ppBq(W ) = 0. (5.116)

From the last equation E4 = 0, the desired solution ppBq(W ) = 0 cannot be generic
since this would imply Cx = 0, so this second-order assumption fails to provide the
auto-BT. However, it does provide another information, namely a BT between the
Boussinesq PDE and another PDE. Indeed, under the natural parametric represen-
tation of the conservation law E3 = 0 (which, by the way, would be the singular
manifold equation if the second order were the correct order),

S = 3zt −3(β ε)2z2
x/2, C = (β ε)2zx, (5.117)

the field z, by the cross-derivative condition (4.32), satisfies the PDE [217]

ztt +((β ε)2/3)zxxxx + 2(β ε)2zt zxx −2(β ε)4z2
xzxx = 0. (5.118)

Going to third order, the assumption (5.112) and (5.63), with ψ solution of the
scalar Lax pair (5.48)–(5.49), generates the expression (5.65), i.e.

ppBq(w) ≡
2

∑
k=0

2

∑
l=0

Ek,lY
k
1 Y l

2 , k + l ≤ 2. (5.119)

These six determining equations Ek,l = 0, plus the three cross-derivative conditions
Xj = 0, j = 0,1,2, are solved as follows in the Gel’fand–Dikii case f = 0: [316, 319]

E02 ≡ (β ε)2 − c2 = 0 ⇒ c = β ε,
E11 ≡ d = 0 ⇒ d = 0,
E20 ≡ 3Vx + 2β 2a = 0 ⇒ a = −3Vx/(2β 2),
E10 ≡ εVxx −β ex = 0 ⇒ ex = β−1εVxx,
X1 ≡ 3Vxt + 3β εVxxx + 4β 3εbx = 0 ⇒ b = g(t)−3(β−2Vxx + β−3ε−1Vt)/4,
X0 ≡ (3/(4εβ 2))pBq(V ) = 0 ⇒ V satisfies the PDE (5.109),
E00 ≡ 2β 2g′(t) = 0 ⇒ g(t) = λ ,

(5.120)
in which λ is an arbitrary constant. Returning to the conservative field U = Vx, the
coefficients a,b,c,d,e are

a = −(3/2)β−2U, b = λ − (3/4)β−2Ux − (3/4)β−3ε−1R,

c = β ε, d = 0, e = β−1εU, (5.121)

X0 = Rt + ε2(U2 +(β 2/3)Uxx)x, X1 = Ut −Rx, X2 = 0,

and they define a third-order Lax pair of the Boussinesq equation (5.1) [443, 445,
307], identical to (5.7).

The BT results from the substitution of Y1 = (v−V)/(2β 2) into (5.69)–(5.70),
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(v−V)xx + 3β−1ε−1(v +V)t + 3β−2(v−V)(v +V)x

+ β−4(v−V)3 −8β 2λ = 0, (5.122)

(v +V)xx −β−1ε−1(v−V)t + β−2(v−V)(v−V)x = 0. (5.123)

The modified Boussinesq equation [217] which is by definition the PDE obeyed
by the difference v −V , is obtained by elimination of v + V and is found to be
(5.118), with the correspondence Y1 = β εzx. Like for the KdV equation (Sect.
5.6.1.1), after a short computation left to the reader, this leads to the BT between the
Boussinesq and the modified Boussinesq equations, whose x-part is

U = −β 3εzxx −β 4εz2
x + β 2zt . (5.124)

Let us now derive the nonlinear superposition formula (NLSF). The two equa-
tions (5.122)–(5.123) have the same differential order, but the second one has the
advantage of being a conservation law, allowing us to lower the differential order
with a quadrature after the elimination of the t-derivatives. In the notation of Sect.
5.6.1.1, there is only one combination of the four copies of (5.123) able to achieve
that, (1,−1,1,−1), the result being

vn+1 = −vn−1 +(vn + ṽn)+ 2β 2∂x log(vn − ṽn). (5.125)

This ends the processing of the Boussinesq equation.
Various remarks are in order.

1. The NLSF (5.108) of KdV and (5.125) of Boussinesq are identical because they
are in fact the NLSF [61] of their common parent KP, and because this NLSF of
KP is independent of ∂x2 and ∂x3 . For the Painlevé analysis of KP, see [430].

2. According to Definition 4.7, the one-soliton solution of either KdV or Boussi-
nesq or KP is given by the formula (5.30) for N = 1, in which θ1 is a particular
solution of the linear system with constant coefficients defined by the Lax pair
L1(U,λ )θ1 = 0,L2(U,λ )θ1 = 0 taken for U = 0. This particular solution is cho-
sen as the sum of two exponentials (even in the Boussinesq case where L1 is a
third order operator). The result for KdV is the particular solitary wave (3.45) in
which the background is B = 0,

u = 2ak2 sech2(kx−ωt), ω = −2
3

ak3. (5.126)

The one-soliton of Boussinesq only differs from that of KdV by the dispersion
relation,

u = −2β 2k2 sech2(kx−ωt), ω2 = −ε2β 2

3
k4. (5.127)

3. For both KdV and Boussinesq, the N-soliton solution is expressed as the loga-
rithmic derivative of the Wronskian (5.31), but the entries ∂ i−1

x θ j are different



116 5 From the Test to Explicit Solutions of PDEs

because their scattering operator L1 (Eqs. (5.6) and (5.7) taken for U = 0) has a
different order (two for KdV, three for Boussinesq).

5.6.2 Two-Family Cases: Sine-Gordon and Modified KdV

The sine-Gordon equation (SG)

SG(u) ≡ uxt + αeu + a1e−u = 0, αa1 �= 0, (5.128)

(we make no difference between sine- and sinh-Gordon since a change u → iu
does not alter the structure of singularities in the complex plane) and the modified
Korteweg-de Vries equation (mKdV) (5.103)

mKdV(w) ≡ bwt +
(
wxx −2w3/α2 + 6νw

)
x = 0, (5.129)

share many features. Let us first notice that, in the field eu, SG is algebraic. The main
feature of interest to us is the structure of singularities. More precisely let us show
that, for both equations, the field u (resp. w) possesses two families with opposite
singular part operators.

The field eu of SG possesses the two nonopposite families{
eu ∼−(2/α)ϕxϕt(ϕ −ϕ0)−2, indices (−1,2), D1 = (2/α)∂x∂t ,
e−u ∼ (2/a1)ϕxϕt(ϕ −ϕ0)−2, indices (−1,2), D2 = −(2/a1)∂x∂t ,

(5.130)

therefore the same linear combination of eu,e−u as the one appearing in the defini-
tion of SG defines an assumption (5.34)

eu +(a1/α)e−u = (2/α)∂x∂t(logτ1 − logτ2)+W̃ , E(u) = 0, (5.131)

in which the two singular part operators ±(2/α)∂x∂t are opposite.
In the case of mKdV, its definition as a conservation law makes its processing

for the potential field r (w = rx) cheaper, there exist only two families and they have
opposite singular part operators (α denotes any square root of α2),{

mKdV : p = −1, q = −4, w0 = α, indices (−1,3,4), D = α∂x,
pmKdV : p = 0−, q = −3, r0 = α, indices(−1,0,4), D = α.

(5.132)

To conclude this local analysis, both PDEs have the same assumption (5.34) (af-
ter taking two quadratures of (5.131)),

SG : u = −2(logτ1 − logτ2)+W, SG(u) = 0, (5.133)

pmKdV : r = α(logτ1 − logτ2)+ R, pmKdV(r) = 0, (5.134)

in which the sum of the two opposite singular parts
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D logτ1 −D logτ2 (5.135)

only depends on the variable

Y =
τ1

τ2
. (5.136)

As compared to the one-family situation of Sects. 5.6.1.1 and 5.6.1.2, this new
situation of two opposite families leads to an implementation of the SMM [317, 357]
which used to be called the two-singular manifold method, and which is as follows.

Let us restrict ourselves here to identity links (5.63) between the two τ and the
two ψ functions, so Y = ψ1/ψ2. If we restrict ourselves further to a second-order
Lax pair, ψ1 and ψ2 are the two wave vector components of the most general second
order Lax pair in matrix form and, since only the ratio ψ1/ψ2 contributes to (5.133)
and (5.134), it is convenient to represent the scalar Lax pair (5.39)–(5.40) by its
equivalent Riccati system for Y , defined by (4.37) and (4.27)–(4.28).

So the truncation to be solved is defined as introduced in (5.82) [357] (for second
order Lax pairs only)

u = D logY +U, (5.137)

Y−1 = B(χ−1 + A), (5.138)

E(u) =
−2q

∑
j=0

E j(S,C,A,B,U)Y j+q, (5.139)

∀ j E j(S,C,A,B,U) = 0, (5.140)

in which nothing is imposed on U . Let us solve this truncation for SG and mKdV.

5.6.2.1 The Sine-Gordon Equation

Replacing (5.137) by (5.133), the system (5.140) is made of five determining
equations in the unknowns (S,C,A,B,W ) [357, 95]

E0 ≡ αB2eW −2C = 0, (5.141)

E1 ≡ 2(Cx + 2AC) = 0, (5.142)

E2 ≡ 0, (Fuchs index) (5.143)

E3 ≡−σt −σ(Cx + 2AC) = 0, (5.144)

E4 ≡ σ (Cσ +(Cx + 2AC)x)/2 + a1B−2e−W = 0, (5.145)

with the abbreviation

σ = S + 2A2 −2Ax, (5.146)

and, together with the cross-derivative condition (4.32), they are solved as follows,
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E0 : eW =
2C

αB2 , (5.147)

E1 : A = −1
2
(logC)x, (5.148)

E3 : σ = −F(x), S = −F(x)+
C2

x

2C2 −
Cxx

C
, (5.149)

E4 : CCxt −CxCt + F(x)C3 + a1αF(x)−1C = 0, (5.150)

X : a1F ′(x) = 0. (5.151)

in which F is a function of integration. The last line introduces a spectral parameter
by

F(x) = 2λ 2. (5.152)

Then E4 expresses that logC is linearly related to a second solution U of the PDE

C =
α
2

λ−2eU , E(U) = 0, (5.153)

and one has obtained the singular part transformation

u = −2logy +U, y = λ BY, (5.154)

in which y satisfies the Riccati system

yx = λ +Uxy−λ y2, (5.155)

yt = −α
2

λ−1(eU +(a1/α)e−Uy2), (5.156)

(logy)xt − (logy)tx = SG(U). (5.157)

The linearization

y = ψ1/ψ2 (5.158)

yields the second-order matrix Lax pair

(∂x −L)
(

ψ1

ψ2

)
= 0, L =

(
Ux/2 λ

λ −Ux/2

)
, (5.159)

(∂t −M)
(

ψ1

ψ2

)
= 0, M = −(α/2)λ−1

(
0 eU

−(a1/α)e−U 0

)
. (5.160)

The auto-BT [111] results from the substitution y = e−(u−U)/2 into (5.155)–
(5.156)

(u +U)x = −4λ sinh
u−U

2
, (5.161)

(u−U)t = λ−1
(

αe(u+U)/2 + a1e−(u+U)/2
)

. (5.162)
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The SME results from the elimination of U , this is [357]

S +C−1Cxx − 1
2

C−2C2
x + 2λ 2 = 0, (5.163)

and it coincides, but this is not generic, with the one [428, 70] obtained from the
one-family truncation in χ .

Remark. The reason for the presence of the apparently useless parameter B in
Definition (4.37) is to allow the precise correspondence (5.63)

τ1 = ψ1, τ2 = ψ2 (5.164)

for some choice of B, namely

B = λ−1, y = Y, W = U. (5.165)

In order to derive the NLSF, one can choose either equation among (5.161)–
(5.162) because of the Lorentz invariance x ↔ t. There exists a unique linear combi-
nation of the four copies of (5.161) which eliminates all first order derivatives, with
a result [268]

tanh
un+1 −un−1

4
=

λn+1 + λn

λn+1 −λn
tanh

un − ũn

4
, (5.166)

a formula which can be solved for un+1, like in the KdV case (5.107).
In the pure sine-Gordon case zxt − sin z = 0, obtained with the choice α =

−1/2,a1 = 1/2,u = εiz,ε2 = 1, let us write the one-soliton solution and the breather
solution. Starting from the vacuumU = 0, one integrates the Riccati system (5.155)–
(5.156) with constant coefficients as

y = tanhθ , θ = λ x +
t

4λ
+ θ0, (5.167)

and the one-soliton solution results from the singular part transformation (5.154),

e−u/2 = tanhθ , tanh(u/4) = e−2θ , ux = 4iλ sech(2θ − iπ/2), (5.168)

i.e. in the physical variable z = −εiu,

tan(z/4) = −εe−2θ+iπ/2, zx = 4ελ sech(2θ − iπ/2). (5.169)

The two-soliton solution u2SS is obtained without integration by setting un−1 = 0 in
the NLSF (5.166) and taking for un and ũn two copies of this one-soliton,

tanh
u2SS

4
=

λ2 + λ1

λ2 −λ1

sinh(θ1 −θ2)
sinh(θ1 + θ2)

. (5.170)

In the physical variable z = −εiu, the breather solution zb [271] is defined as the
particular two-soliton solution in which λ1 and λ2 are complex conjugate and the
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constant shifts θ0 are chosen so that the denominator has no zeros on the real axis,

tan
zb

4
= ε

k
q

sinq(x− t/(k2 + q2)+ δn)
coshk(x + t/(k2 + q2)+ δd)

, λ1 = k + iq, λ2 = k− iq. (5.171)
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Fig. 5.3 The breather solution (5.171) of sine-Gordon as a function of x, with k = 3,q = 3,δn =
0,δd = 0, for the five equispaced values of t = −5,−2.5,0,2.5,5.

5.6.2.2 The Modified Korteweg–de Vries Equation

Replacing (5.137) by (5.134), the system (5.140) is also made of five determining
equations in the unknowns (S,C,A,B,R) [357], with the notation (5.146) for σ

E1 ≡ 6αA−6(R−α logB)x = 0, (5.172)

E2 ≡ α(2Ax + 4A2 −bC−2σ + 6ν)−α−1(E1 + 6αA)2/6 = 0, (5.173)

E3 ≡ p-mKdV(R−α logB)− (3/2)α−1σx −2AE2 −E2,x

+(σ −4A2 − (1/3)α−1E1,x −2Ax)E1 −2AE1,x, (5.174)

E4 ≡ expression vanishing with E1,E2,E3,E5, (5.175)

E5 ≡ (3/4)ασσx +(1/4)σ2E1 = 0, (5.176)
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X ≡ St +Cxxx + 2CxS +CSx = 0. (5.177)

They depend on (R,B) only through the combination R−α logB. Equation j = 4
is a differential consequence of equations j = 1,2,3,5, because 4 is a Fuchs index,
and the other equations have been written so as to display how they are solved:

E1 : A = α−1(R−α logB)x, (5.178)

E5 : σ = −2(λ 2(t)− ν), λ arbitrary function, (5.179)

E2 : bC = 2Ax −2A2 + 4λ 2(t)+ 2ν, (5.180)

E3 : p-mKdV(R−α logB) = 0, (5.181)

X : λ ′(t) = 0. (5.182)

Thus, their general solution can be expressed in terms of a second solution W of the
mKdV equation (5.103) and an arbitrary complex constant λ [357]

W = (R−α logB)x, A = W/α,

bC = 2Wx/α −2W2/α2 + 2ν + 4λ 2,

S = 2Wx/α −2W2/α2 + 2ν−2λ 2, (5.183)

and the cross-derivative condition X1 = 0 ((5.43)) is equivalent to the mKdV equa-
tion (5.103) for W , which proves that one has obtained a singular part transformation
and a Lax pair.

The singular part transformation is

w = α∂x logy +W, y = λ BY, (5.184)

and the Riccati representation of the Lax pair is

yx

y
= λ (

1
y
− y)−2

W
α

+
ν

λ
y, (5.185)

b
yt

y
=

1
y

(
−4λ

W
α

+
(

2
Wx

α
+ 2

W2

α2 −2ν−4λ 2
)

y

)
x
. (5.186)

In the same manner as in the KdV truncation, these two Riccati equations can
also be interpreted as the BT between the mKdV equation and the PDE satisfied by
the pseudopotential y, called the Chen–Calogero–Degasperis–Fokas PDE [60].

The auto-BT of mKdV is obtained by the substitution (we choose B = λ−1)

y = exp

{
α−1

∫
(w−W )dx

}
= exp

r−R
α

(5.187)

in the two equations for the gradient of y, resulting in [420, 269, 60]

(r + R)x + 2αλ sinh
r−R

α
= 0, (5.188)
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(r + R)t −2λ (r−R)xx cosh
r−R

α
+ 2λ

R2
x + r2

x

α
sinh

r−R
α

= 0. (5.189)

The SME, obtained by the elimination of W between S and C,

bC−S−6λ 2 = 0, (5.190)

is identical to that of the KdV equation (5.92), and it does not coincide with the one
[431] obtained from the one-family truncation in χ .

Since the x-parts (5.161) and (5.188) of the BT of SG and mKdV are identical,
the nonlinear superposition formula of mKdV [420, 269, 60] is identical to that of
SG,

tanh
rn+1 − rn−1

2α
=

λn+1 + λn

λn+1 −λn
tanh

rn − r̃n

2α
. (5.191)

Remark. The invariance of mKdV (5.103) under the involution w �→ −w provides
an elegant way [290] to derive the BT of the KdV equation and its hierarchy.

5.6.3 Third Order: Sawada–Kotera and Kaup–Kupershmidt

The fifth order nonlinear partial differential equation (2.82),

ut +
(

uxxxx +(8α −2β )uuxx−2(α + β )u2
x −

20
3

αβ u3
)

x
= 0, (5.192)

has already been encountered in Sect. 2.1.5 for its link with the cubic Hénon–Heiles
Hamiltonian system (2.70)–(2.71). The conditions (2.99), (2.100) or (2.101) found
by the Painlevé test when analyzing the cubic HH system are precisely the same
values as those selected by another criterium, that the PDE (5.192) possesses non-
trivial infinitesimal symmetries [160]. The corresponding PDEs, which possess N-
soliton solutions, are called respectively Sawada–Kotera (SK) [387], higher-order
KdV (KdV5) [274], and Kaup–Kupershmidt (KK) [246, 148] equations.

We discard here the KdV5 PDE, which is the second equation in the KdV hier-
archy, because its scattering problem is identical to that of KdV, already derived by
singularity analysis in Sect. 5.6.1.1.

The SK and KK equations, whose explicit writing is (5.200) and (5.202) be-
low, are linked by a Bäcklund transformation [148] and their scattering problem has
the same order three [246]. Both possess an auto-Bäcklund transformation, and the
challenge is to derive, by singularity analysis only, the singular part transformation,
Lax pair and auto-Bäcklund transformation for each equation, the BT between SK
and KK, and the two nonlinear superposition formulae.

There is no difficulty in obtaining all these elements for SK with the procedure
used in Sect. 5.6.1.2 for Boussinesq, see [316]. However, in the case of KK, a real
difficulty exists, and the deep reason [319] lies in the conjunction of two features:
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the scattering order is higher than two, and the link between τ and ψ is different
from τ = ψ .

The first feature (scattering order higher than two) implies the irrelevance of the
singular manifold equation to obtain the Lax pair, see Sect. 5.4.1 for more details.
Several authors [427, 373] have nevertheless used the SME in order to try and derive
the Lax pair and the DT, in particular by uncovering a nice discrete invariance in the
SME [427], but the best they could achieve was the desired result with the constraint
λ = 0, thus preventing the iteration of the Darboux transformation.

The second feature (nature of the link between τ and ψ) could lead to infinitely-
many possible assumptions. This is not the case, and one can prove [319] that only a
finite number of such links are allowed, for a reason going back to the classification
of Gambier [163]. Let us detail this quite important point [319].

5.6.3.1 Help from the Gambier Classification

Let us consider the ODE obtained by eliminating ∂t between the two equations
defining the (as yet unknown) BT. This nonlinear ODE for Y = u−U , with coeffi-
cients depending on U and, in the 1+1-dimensional case, on an arbitrary constant λ ,
has two properties. Firstly, it is linearizable since it results from the Lax pair, a lin-
ear system, and the DT by an elimination process [60]. Secondly, it has the Painlevé
property since it is linearizable. Therefore, if its order is small (at most three), it be-
longs to the appropriate finite list (classification) established by the Painlevé school
between 1900 and 1910. This very strong property restricts the admissible choices
(5.62) to a finite number of possibilities. Moreover, these very special nonlinear
ODEs provide a link to both the Lax pair, via their linearizing transformation, and
the singular part transformation, via an involution which leaves them invariant.

The only nonlinear ODE of first order and first degree with the PP is the Ric-
cati equation, linearizable into a second order linear equation and defining a unique
choice (5.62) for describing scattering problems which have order two.

Next, the nonlinear ODEs of order two and degree one with the Painlevé property
which are also linearizable have been listed by Gambier himself, p. 21 of his thesis
[163], these are the equations numbered 5, 6, 14, 24, 25, 27, in his classification of
fifty equations inequivalent under the homographic group of transformations, with
the respective orders for the associated linear equations, i.e. , in our context for the
unknown scattering problem: 3, 2, 2, 2, 3, 2 (and 4 or 3 for the case n = 2 in equation
27).

Therefore, the only two generic choices for describing scattering problems of
third order are the two classes of equivalence numbered 5 and 25 by Gambier. The
representative equation of interest to us in each class of equivalence is what Painlevé
calls the complete equation (in the present section, the ′ symbol means ∂x)

Y ′′ + 3YY ′ +Y3 + rY + q = 0, G5

Y ′′ −3Y ′2/(4Y)+ 3YY ′/2 +Y3/4−q′(Y ′ +Y 2)/(2q)− rY −q = 0, G25
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in which q and r are two arbitrary functions. These two classes are equivalent un-
der the birational group, as shown by the explicit transformation [163] between
G5(y;q,r) and G25(Y ;Q,R)

Y =
Q

2z′ + z2 − (Q′/Q)z−R
, z = y +

Q′

2Q
, 2y =

Y ′

Y
+Y − Q′

Q
, (5.193)

r = −R +
Q′′

Q
− 5Q′2

4Q2 , q = −Q
2
− R′

2
+

Q′′′

2Q
− 7Q′Q′′

4Q2 +
5Q′3

4Q3 . (5.194)

The linearizing transformations are

G5 Y =
τ ′

τ
=

ψ ′

ψ
, ψ ′′′ + rψ ′ + qψ = 0, (5.195)

G25

⎧⎪⎪⎨
⎪⎪⎩

Y =
τ ′

τ
=

q
2z′ + z2 − (q′/q)z− r

, z =
ψ ′

ψ
,

ψ ′′′ − 3q′

2q
ψ ′′ −

(
r +

q′′

q
− q′2

q2

)
ψ ′ −

(
r′

2
+

q
2
− q′r

2q

)
ψ = 0.

(5.196)

The corresponding involutions

G5 (Y,q,r) → (−Y,−q,r + 6Y ′), (5.197)

G25 (Y,q,r) → (−Y,−q,r−3Y ′ − (q′/q)Y ), (5.198)

will be seen to define the singular part transformation.
In the particular case of G25 when q is constant, the link (5.196) can be integrated

explicitly

τ = ψψ ′′ − (1/2)(ψ ′)2 − (r/2)ψ2, τ ′ = (q/2)ψ2. (5.199)

To go back to the singular manifold method, in its third step, the assumption for a
link (5.62) becomes, at the third scattering order, a choice between the two and only
two above linearization formulas (5.195) and (5.196), and the associated linear third
order ODEs for ψ replace the assumption (5.48). Consequently, in the determining
equations of the fourth step, the unknowns (a,b) are replaced by the unknowns (q,r)
of the Gambier equations G5 and G25.

These two and only two possibilities were rediscovered in 1980 in the context of
scattering theory by Caudrey [56] and Kaup [246].

Let us apply this to the Sawada–Kotera and Kaup–Kupershmidt equations.

5.6.3.2 Singularity Structure of SK and KK Equations

It is convenient to handle the potential form of each equation. Denoting u = vx,
the conservative and potential equations are defined as
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SK(u) ≡ β ut +
(

uxxxx +
30
α

uuxx +
60
α2 u3

)
x
= 0, (5.200)

pSK(v) ≡ β vt + vxxxxx +
30
α

vxvxxx +
60
α2 v3

x = 0, (5.201)

KK(u) ≡ β ut +
(

uxxxx +
30
α

uuxx +
45
2α

u2
x +

60
α2 u3

)
x
= 0, (5.202)

pKK(v) ≡ β vt + vxxxxx +
30
α

vxvxxx +
45
2α

v2
xx +

60
α2 v3

x = 0. (5.203)

Each equation has two families of movable singularities, whose leading order (in
potential form) v ∼ v0χ p and Fuchs indices are the following [427]

pSK,F1 : p = −1, v0 = α, indices −1,1,2,3,10, (5.204)

pSK,F2 : p = −1, v0 = 2α, indices −2,−1,1,5,12, (5.205)

pKK,F1 : p = −1, v0 = α/2, indices −1,1,3,5,7, (5.206)

pKK,F2 : p = −1, v0 = 4α, indices −7,−1,1,10,12, (5.207)

and both the SK and KK equations pass the Painlevé test [427]. The singular part
operator D attached to a given family is D = v0∂x.

The existence of two families is kind of misleading, because all three integrable
PDEs in the class (5.192) belong to a hierarchy, the base member of which has only
one family, so one of the two families of SK and KK is irrelevant for the SMM. For
KdV5, this base member is the third order KdV equation. This “minus one” member
of the SK hierarchy was initially written by Hirota and Satsuma [216],

pSK−1 : vxxt +
6
α

vxvt = 0, (5.208)

and successfully processed [315, 316] by the SMM. For the KK hierarchy, the “mi-
nus one” member is defined as [436]

pKK−1 : vtvxxt − 3
4

v2
xt +

6
α

vxv2
t = 0. (5.209)

This equation has only one family and it can be equivalently written as [226]

pKK−1 : wxxx + 4zwx + 2zxw = 0, zt =
3
4

(
w2)

x , z = vx. (5.210)

Therefore, in order to apply the SMM to SK and KK, the relevant family to consider
is the one corresponding to the unique family of (5.208) or (5.209) under the map-
ping from the base member to the next member in the hierarchy. This single relevant
family is F1, (5.204) and (5.206).

Practically, the SMM is applied as follows. Let us assume the one-family sin-
gular part transformation (5.33) and, successively, the second-order scalar Lax pair
(5.39)–(5.40), then, for the third-order scalar one, the couple made of the t-part
(5.49) and either the x-part (5.195) or the x-part (5.196).
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As to the link between τ and ψ , at second order this is the identity, while at third
order it can be either the linearizing transformation of the fifth Gambier equation or
that of the twenty-fifth Gambier equation.

Therefore, at the fourth step of the singular manifold method, for each PDE, one
has only three possibilities to examine: order two and Riccati, order three and G5,
order three and G25. This is done briefly in the next two sections, the full details
being available in [427, 319] and in summer school lecture notes [78, 314].

5.6.3.3 Truncation with a Second Order Lax Pair

The one-family truncation for SK and KK with the assumption

v = v0∂x logτ +V, τ = ψ (5.211)

where V is unconstrained and ψ is a solution of the second order Lax pair (5.39)–
(5.40), fails to introduce an arbitrary complex constant during the resolution of the
truncation equations. However, it provides in both cases the BT between the SK and
KK equations. The quickest way to obtain this result is to perform the truncation of
the conservative form of KK, which generates⎧⎪⎪⎨

⎪⎪⎩
u =

α
2

∂ 2
x logτ +U, τ = ψ ,

E2 ≡U − αS
12

= 0,

E4 ≡ Sxx + S2/4−βC = 0.

(5.212)

With the values of S and C determined by the last two equations, the cross-derivative
condition (4.32) expresses that the constant level coefficient U obeys the SK equa-
tion. Next, the solutions u of KK and U of SK can be written only in terms of χ (see
(4.27)),

U = −α((χ−1)x + χ−2)/6, u = α(2(χ−1)x − χ−2)/6, (5.213)

and the elimination of χ yields the BT between SK and KK (w = vpSK , W = vpKK),

α(w+W/2)x +(w−W)2 = 0, (5.214)[
(w−W )(72W2

x /α2 + 6Wxxx/α)−72wxWxx/α −3Wxxxx
]

x

+2(w−W)t = 0, (5.215)

a result previously obtained by Hirota [215]. As to the inverse χ−1 of the expansion
variable, it obeys another fifth order PDE having the Painlevé property, the Fordy–
Gibbons equation [148].

Because of the failure of this truncation to introduce an arbitrary constant in the
scattering problem, one has to consider a third order Lax pair.
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5.6.3.4 Truncation with a Third Order Lax Pair and G5

Assuming the link τ = ψ of the G5 linearizing transformation (5.195), and the
third order Lax pair defined by the x-part (5.195) and the t-part (5.49), the process
is successful for SK but not for KK. It provides the scalar Lax pair of SK [427, 73]:

L1 = ∂ 3
x + 6

U
α

∂x −λ , (5.216)

L2 = β ∂t +(18
Ux

α
−9λ )∂ 2

x +(36
U2

α2 −6
Uxx

α
)∂x −36λ

U
α

, (5.217)

previously obtained in the bilinear formalism by Satsuma and Kaup [386].

5.6.3.5 Truncation with a Third Order Lax Pair and G25

We finally perform the truncation of KK assuming the third order for the scattering
problem, the G25 linearizing transformation (5.196) between τ and ψ , and the third
order Lax pair defined by the x-part (5.196) and the t-part (5.49). The first piece of
information found during the resolution [319] is

qx = 0, (5.218)

which allows one to use the integrated version (5.199) of the link between τ and ψ .
The final result is the scalar Lax pair

L1 = ∂ 3
x + 6

U
α

∂x + 3
Ux

α
−λ , (5.219)

L2 = β ∂t −9λ ∂ 2
x +(3

Uxx

α
+ 36

U2

α2 )∂x −3
Uxxx

α
−72

UUx

α2 −36λ
U
α

, (5.220)

first found by Kaup [246], and the singular part transformation

u = (α/2)∂ 2
x logτ +U, τ = ψψxx − (1/2)ψ2

x + 3(U/α)ψ2, τx = λ ψ2, (5.221)

a result initially obtained in [279].

5.6.3.6 Bäcklund Transformation

The elimination leading to the BT can be reduced to a mere substitution (fifth step
of the SMM), provided the third order Lax pair is represented as an equivalent non-
linear first order system in two components (the so-called pseudopotential [424]),
one of them being τx/τ so as to write the singular part transformation as

SK : Y1 =
τx

τ
=

ψx

ψ
=

v−V
α

, (5.222)
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KK : Z =
τx

τ
= 2

v−V
α

. (5.223)

The second component of this pseudopotential is chosen conveniently as

SK : Y2 =
ψxx

ψ
, (5.224)

KK : Y1 =
ψx

ψ
. (5.225)

The system for (Y1,Y2) in the SK case is the canonical projective Riccati system
(5.55)–(5.59), and the system for (Y1,Z−1) is another type of linearizable Riccati
system [319].

The final result for SK is the auto-BT [316]

(v−V)xx/α + 3(v−V)(v +V)x/α2 +(v−V)3/α3 −λ = 0, (5.226)

β (v−V)t/α − (3/2)[(v−V)xxxx/α
+(5(v−V)(v +V)xxx + 15(v +V)x(v−V)xx)/α2

+(15(v−V)2(v−V)xx + 30(v−V)(v +V)2
x)/α3

+30(v−V)3(v +V)x/α4 + 6(v−V)5/α5]x = 0, (5.227)

a result due to [386, 122].
For KK, the resulting auto-BT is

(v−V)xx/α − (3/4)(v−V)2
x/(α(v−V))

+ 3(v−V)(v +V)x/α2 +(v−V)3/α3 −λ = 0, (5.228)

β (v−V)t/α − (3/2)[2(v−V)xxxx/α + 60(v−V)3(v +V)x/α4

+ 12(v−V)5/α5 +(10(v−V)(v +V)xxx + 30(v +V)x(v−V)xx

+ 15(v−V)x(v +V)xx)/α2 +(30(v−V)2(v−V)xx

+ 60(v−V)(v +V)2
x + 15(v−V)(v−V)2

x)/α3]x = 0. (5.229)

The x-part (5.228) was first given for λ = 0 in [373], the reason for this restriction
being the (implicit) consideration of a second order scattering problem, and the
result with an arbitrary λ can only be found by assuming a third order scattering
problem [319].

5.6.3.7 Nonlinear Superposition Formula

For both SK and KK, the half of the BT which allows one to lower the differential
order is the x-part (5.226) and (5.228). In the notation introduced in Definition 5.6
and equations like (5.106), the linear combination of the four copies of (5.226) and
(5.228) which lowers the differential order is (1,−1,1,−1) for both, yielding a first
order ODE for vn+1.

For SK, this first order ODE has degree one, this is the Riccati equation
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(vn+1 − vn−1)x +
1
α

(v2
n+1 − v2

n−1)

+ (vn+1 − vn−1)
(

vn,x − ṽn,x

ṽn − vn
− 1

α
(vn + ṽn)

)
= 0. (5.230)

For KK, this first order ODE has degree two,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(vn+1,x +
2
α

v2
n+1 −Avn+1 + αB)2 =

α2C2(vn − vn+1)(ṽn − vn+1)
(vn − vn−1)(ṽn − vn−1)

,

A =
2
α

(vn + ṽn)+
ṽn,x − vn,x

ṽn − vn
,

B =
2

α2 vnṽn +
ṽn,xvn − vn,xṽn

α(ṽn − vn)
,

C = B +
1
α

(
vn−1,x +

2
α

v2
n−1 −Avn−1

)
.

(5.231)

The differential order can be lowered once more if one introduces the tau-
function f ,

SK : v = α∂x log f , (5.232)

KK : v =
α
2

∂x log f . (5.233)

Indeed, for SK, the second order linear ODE for fn+1 can be integrated by
quadratures, leading to the NLSF

fn+1 = K1(t) fn−1

∫ x Dx( fn · f̃n)
f 2
n−1

dx, (5.234)

in which Dx is the Hirota operator [213] and K1(t) is an irrelevant nonzero function
of integration. This formula was first obtained [229] with the bilinear formalism of
Hirota, shortly presented in Appendix E.

For KK, the second order ODE for fn+1 has degree two and it belongs to a type
also integrated by quadratures by Appell [16]. Indeed, fn+1 obeys a third order linear
ODE, and the general solution of this Appell equation is [410, 321]⎧⎪⎪⎪⎨

⎪⎪⎪⎩
fn+1

fn−1
= K2

1 + K1K2R + K2
2

(
fn f̃n

f 2
n−1

−R2

)
,

(∂xR)2 =
(

fn

fn−1

)
,x

(
f̃n

fn−1

)
,x

,

(5.235)

in which K1(t),K2(t) are two functions of integration, whose values are K1 = 0,K2 =
arbitrary. Therefore, the NLSF is [410, 321]

fn+1 = fn−1

[
fn f̃n

f 2
n−1

−R2

]
, (∂xR)2 =

(
fn

fn−1

)
,x

(
f̃n

fn−1

)
,x

. (5.236)
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This NLSF provides an alternative to a perturbation scheme [201] for building
the N-soliton solution, whose expression for KK is [285, 314],⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u =

α
2

∂ 2
x logτ(N), τ(N) = det

[∫ x
ψiψ jdx

]
1≤i, j≤N

∀i : ψi = Aie
pix + 9p5

i t + Bie
rix + 9r5

i t ,
p3

i = r3
i = λi, p2

i + piri + r2
i = 0, pi �= ri,

(5.237)

where λi,Ai,Bi are arbitrary constants. This expression for the N-soliton solution
coincides with the result [285] obtained by reduction of the C-KP hierarchy.

For instance, the one-soliton solutions are, for SK,

u = α∂ 2
x log

[
1 + ekx−k5t+δ

]
, (5.238)

for KK,

u =
α
2

∂ 2
x log

[
1 + 4ekx−k5t+δ + e2(kx−k5t+δ )

]
. (5.239)

At the two-soliton level, the tau-function τ(2) is the sum of four terms for SK and
nine terms for KK [201, 321].

This ends our series of examples in the integrable case. When the order of the
scattering operator L1 is higher than three, the SMM applies as well [150]. Fortu-
nately, it may happen that the operator L2 has an order much lower than that of L1.
Such an example is handled in [412] . If the order of L2 is three and if L2 is factor-
izable, the so-called t-part of the BT will be simple and the x-part complicated, as
opposed for instance to the SK and KK cases. The reason is that 1 + 1-dimensional
integrable PDEs are in fact reductions [241] of 2 + 1-dimensional integrable PDEs,
for which none of the operators L1 and L2 depends on a single independent variable.

5.7 Application to Partially Integrable Equations

The methods previously introduced in this chapter still apply but, since the PDE is
assumed to fail the Painlevé test, instead of yielding a Lax pair, they only provide
explicit particular solutions.

5.7.1 One-Family Case: Fisher Equation

This equation [140, 255]

5β ut −uxx +
6
δ

(u−a1)(u−a2) = 0, s1 = a1 + a2, s2 = a1a2, (5.240)
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initially built for modelizing the evolution of mutant genes [140], also governs the
neutron population in a nuclear reactor [51], or the propagation of flames, see the
review [376]. The two fixed points a1,a2 typically represent different populations.

It admits the single family of movable singularities

u ∼ δ χ−2, Fuchs indices = (−1,6), D = δ (β ∂t − ∂ 2
x ), (5.241)

leading to the Laurent series

u
δ

= χ−2 −βCχ−1 + βCx +
S
3
− β 2

12
C2 +

s1

2δ

+
(

β 2

12
(5Ct + 7CCx)− β

6
(CS + 3Cxx)− β 3

12
C3 − 1

12
Sx

)
χ

+O(χ2), (5.242)

and it fails the Painlevé test at index 6, i.e. the coefficient u6 is arbitrary if and only
if the following no-log condition is satisfied,

Q6 ≡−3β 2δ−2(a1 −a2)2C2 + 3β 6C6 −18β 5C3(Ct +CCx) (5.243)

+
β 4

3
(3C2

t + 8CCtt + 14CCtCx + 11C2C2
x + 16C2Cxt + 8C3Cxx) = 0.

This expression is independent of S, and this PDE for C(x,t) has not yet been in-
tegrated. In the particular case a1 = a2, its reduction Cx = 0 is an ODE reducible
to quadratures [378]. In the even more particular case when C is a constant c, the
relations ϕt +Cϕx = 0 and St +CSx = 0 define the Laurent series as the traveling
wave reduction u(x,t) = U(ξ ),ξ = x− ct, of the Fisher equation, and the reduced
ODE passes the Painlevé test [8] if and only if c takes one of the five values defined
by Q6 = 0,

c = 0, c4 =
(a1 −a2)2

β 4δ 2 . (5.244)

In such a case, the ODE for U(ξ ) belongs to the equivalence class of the Weierstrass
equation (1.42) (equation number 3 in Gambier’s list [163]), and its general solution
is, for c = 0 the Weierstrass function itself,

c = 0 : u =
s1

2
+ δ℘(x− x0,g2,g3), g2 = 3

(a1 −a2)2

δ 2 , (5.245)

in which the two movable constants are x0,g3, and for c �= 0 the single valued ex-
pression [8]⎧⎨

⎩ c4 =
(a1 −a2)2

β 4δ 2 : u =
s1

2
+ δe2kξ℘(

ekξ −1
k

−X0,0,g3)− δk2

2
,

ξ = x− ct, k = −β c,
(5.246)
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in which the two movable constants are X0,g3.
The singular manifold method cannot yield a Lax pair since the PDE fails the

test, but it can provide particular solutions, which we now search. Assuming the
one-family singular part transformation (5.86), the choice of the second-order scalar
linear system (4.34)–(4.35), and the link (5.63) between τ and ψ , the truncation is
defined quite similarly to that performed in Sect. 5.6.1.1,

u = δ
(
β ∂t − ∂ 2

x

)
logψ +U

= δ χ−2 −β δCχ−1 +
δ
2

S +
δβ
2

Cx +U, χ =
ψ
ψx

. (5.247)

By identifying to the Laurent series (5.242), it provides the value of U ,

U =
s1

2
− δβ 2

12
C2 − δ

6
S +

δβ
2

Cx, (5.248)

and defines the two determining equations

E3 ≡ β 3C3 + β 2(−5Ct −7CCx)+ β (2SC+ 6Cxx)+ Sx = 0, (5.249)

E4 ≡ −3(a1 −a2)2

2δ 2 +
β 4

24
C4 − β 3

6
(5CCt + 6C2Cx)

+
β 2

6
(−17SC2 + 37C2

x + 30Cxt −14CCxx)

+
β
6

(16St + 3CSx + 30SCx)+
S2

6
− 1

3
Sxx = 0, (5.250)

together with the cross-derivative condition (4.32). The no-log condition (5.243) is
a differential consequence of these three coupled PDEs (this is easily proven by the
elimination of S), but their general solution is still unknown.

The particular solutions (S,C) = constant always admitted by such a system lead
to a stationary wave (case c = 0) or a traveling wave (case c �= 0) [8, (20)] which are
the trigonometric degeneracies 4g3

2 −27g2
3 = 0 of the elliptic solutions (5.245) and

(5.246),

u =
s1

2
+ δ

(
β ∂t − ∂ 2

x

)
logcosh

k
2
(x− ct) =

s1

2
+ δ

(
χ−2 −β cχ−1− β 2c2

4

)
,

k = −β c, χ−1 =
k
2

tanh
k
2
(x− ct), c4 = 0 or

(a1 −a2)2

β 4δ 2 . (5.251)

These heteroclinic solutions link the two fixed points a1 and a2.
In order to find the general solution of the overdetermined system (5.249),

(5.250), (4.32), there exists an algorithm known as the construction of a differen-
tial Groebner basis [297, 37], a tutorial description of which can be found in [78].
One first eliminates ∂t by solving E3 = 0 for Ct and E4 = 0 for St ; next, the condition
(4.32) is solved for Sxx, and the original system is equivalent to three new equations
expressing Ct ,St ,Sxx as polynomials in Sx,S,C,Cx,Cxx,Cxxx. After elimination of Sx
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and S, one obtains a sixth order ODE for C (not containing ∂t ), which we failed to
integrate. This difficulty reflects the nonintegrability of the Fisher equation. There
exists a particular scaling solution,

a1 = a2 : S = − 3
2x2 , C = −3±√

6
β x

, (5.252)

but its interest is minor because the two fixed points are equal. The corresponding
solution u is,

a1 = a2 : u =
s1

2
+ δ

2(4±√
6)x2 + 4(2±√

6)β−1t

(x2 + 2(3±√
6)β−1t)2

. (5.253)

When one assumes the one-family singular part transformation (5.86) with the
link (5.63) between τ and ψ and the third order linear system (5.48)–(5.49) for ψ ,
one finds a unique solution,

a1 = a2 : U =
s1

2
, ψxxx = 0, ψt =

3±√
6

β
ψxx, (5.254)

which again represents the rational solution (5.253),

a1 = a2 : u =
s1

2
+ δ

(
β ∂t − ∂ 2

x

)
logψ , ψ = x2 + 2(3±

√
6)β−1t. (5.255)

As to sech solutions, they cannot exist because the Fisher equation has only one
family.

5.7.2 Two-Family Case: KPP Equation

We restrict ourselves here to the properly defined KPP equation, i.e. without the
convection term γuux introduced in [383],

E(u) ≡ but −uxx + 2d−2(u− e1)(u− e2)(u− e3) = 0. (5.256)

The Painlevé test, performed in Sect. 4.4.3, fails but provides the following con-
structive information,

1. existence of two families with opposite singular part operators,

p = −1, u0 = ±d, indices (−1,4), D = ±d∂x, (5.257)

2. for each family, one necessary condition at index 4 for the absence of movable
logarithms, (4.63).

Let us turn this information into exact solutions, by applying the numerous re-
sources of the singular manifold method. The a priori expected solutions are
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1. u = c1 + c2 tanh(k/2)(x− ct), with k,c,c1,c2 constant, because the PDE is au-
tonomous and has the singularity degree p = −1,

2. u = c1 + c2 sechk(x− ct), because in addition the PDE has two families with the
same p = −1 and opposite singular part operators,

3. u = elliptic function of x, as evident if u does not depend on t.

In fact, we are going to see that the SMM can also provide other solutions, among
them a degenerate two-soliton solution.

It is convenient to introduce the symmetric notation⎧⎨
⎩

s1 = e1 + e2 + e3,

a1 = (2e1 − e2 − e3)(2e2 − e3 − e1)(2e3 − e1 − e1)/(27d3),
a2 =

(
(e2 − e3)2 +(e3 − e1)2 +(e1 − e2)2)/(18d2).

(5.258)

In order to find single valued exact solutions, the various methods which can be
applied are

1. enforcement of one of the two no-log conditions (4.63),
2. enforcement of the two no-log conditions,
3. one-family truncation with a second order assumption,
4. one-family truncation with a third order assumption,
5. two-family truncation with a second order assumption,
6. two-family truncation with a third order assumption.

Enforcing one or two of the no-log conditions yields intricate expressions [53,
78], unless C takes a constant value c, whose admissible values are c = 0 and

one condition enforced: c =
3en − s1

bd
, n = 1,2,3, (5.259)

two conditions enforced: c = ±3(e2 − e3)
2bd

, 2e1 − e2 − e3 = 0. (5.260)

The relation ϕt +cϕx = 0 then restricts ϕ , the Laurent expansion for u and u itself to
depend only on x−ct, thus defining the traveling wave reduction u(x, t) =U(ξ ),ξ =
x−ct. The reduced ODE for U(ξ ) then belongs to the class investigated by Painlevé
and Gambier, and the conclusions are the following. For the two opposite values
(5.260) of c enforcing the two no-log conditions, it has the Painlevé property and
its general solution is elliptic. For the three values (5.259) of c enforcing only one
no-log condition, the reduced ODE still fails the test, and all one can say at this
stage is that its general solution is multivalued.

The one-family truncation (5.86) with τ = ψ yields the same result whether one
chooses the second order assumption (4.34)–(4.35) [53, 72] or the third order as-
sumption (5.48)–(5.49) [53, 71, 86]. The computation is immediate at third order
or with the noninvariant WTC formalism at second order (truncation in ϕ −ϕ0),
while it is quite involved at second order in the invariant formalism with (S,C) as
the unknowns, see [78] for full details. The common result of these truncations is
a solution, displayed in Fig. 5.4, which represents the collision of two fronts (each
front links two of the fixed points u = e j) [247]
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u =
s1

3
+ d∂x logΨ3, (5.261)

in which Ψ3 is the entire function

Ψ3 =
3

∑
n=1

Cnekn(x +(3/b)knt), kn =
3en − s1

3d
, Cn arbitrary, (5.262)

i.e. the general solution of the third order linear system with constant coefficients
[86] {

ψxxx −3a2ψx −a1ψ = 0,
bψt −3ψxx = 0.

(5.263)

The degeneracy C1 = 0 of this solution,

u =
e2 + e3

2
+

e2 − e3

2
tanh

(
e2 − e3

2d
(x +

3(e2 + e3)
2bd

t)
)

, (5.264)

is the single front which links the two fixed points e2 and e3.
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Fig. 5.4 KPP, collision of two fronts. The function u(x, t) is plotted as a function of x at the suc-
cessive times t = 0,2,4,6,8, with the parameters values b = 1,d = 1,e j = (0,2,−1),Cj = (1,1,1).

The two-family truncation with a second order assumption (5.137)–(5.140) [85,
86, 356] generates five determining equations, whose general solution is still un-
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known. Their particular solution for which (S,C,A,B) are constant is quite easy to
find since the determining equations become algebraic, one already knows from the
elementary identities (5.74) that it is polynomial in tanh and sech. The result is a
stationary pulse (homoclinic orbit) which only exists for a1 = 0,

u = e j +
el − em√

2
sech i

el − em

d
√

2
(x− x0), a1 = 0, 2e j − el − em = 0, (5.265)

and it depends on the arbitrary constant x0.
The collision solution (5.261) can further be extrapolated because of a spe-

cial feature of the KPP equation (shared by all PDEs having a Laurent series
u = c0χ−1 + c1C + c2 +O(χ),c j = constant, see (4.62)). After having defined the
WTC-style truncation

u = d∂x log(ϕ −ϕ0)+U, U = constant,

E(u) =
3

∑
j=0

E j(ϕxx/ϕx,ϕt/ϕx)
(

ϕ −ϕ0

ϕx

) j−3

, ∀ j : E j = 0, (5.266)

and found its solution as indicated above, U = s1/3,ϕ −ϕ0 = Ψ3 one defines the
change of function u �→ f [54],

u = s1/3 +(d∂x logΨ3) f (Ψ3), (5.267)

which transforms (4.48) into

U ′′ −2U3 + 2a1Ψ−3
3,x = 0, U(ψ) = f (ψ)/ψ . (5.268)

This is an ODE iff a1 = 0, in which case the solution is the singlevalued expression
[54],

a1 = 0 : u = s1/3 + dψx

√
℘(ψ), ψ = Ψ3, g3 = 0, g2 arbitrary. (5.269)

This solution exists whenever one root e j is at the middle of the two others, and
it depends on the four arbitrary constants C1,C2,C3,g2. Its degeneracy g2 = 0
(i.e. ℘(ψ) = ψ−2) is the degeneracy a1 = 0 of the collision of two fronts solution
(5.261).

5.8 Reduction of the Singular Manifold Method to the ODE Case

Since the Painlevé property of a PDE is by definition preserved under a nonchar-
acteristic reduction to an ODE, one might wonder why, nowhere in Chap. 3, have
the tools of the Lax pair, singular part transformation, Bäcklund transformation and
nonlinear superposition formula been used.
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The reason is that they are easier to define and use at the PDE level, this is why
we did not introduce them for ODEs in the first place. In fact, all these tools survive
under a reduction, i.e. they can all be defined for ODEs. There is no difficulty in
performing the reduction of the above mentioned tools, but there is a difficulty about
the implementation of the singular manifold method to ODEs. Before examining
this difficulty, let us first perform the reductions.

Consider the example of the modified Korteweg–de Vries equation (5.103) with
its Lax pair in Riccati representation (5.186), singular part transformation (5.184),
auto-BT (5.188)–(5.189) and NLSF (5.191). This PDE admits a reduction to the
second Painlevé equation [7],

W = β + α(3t/b)−1/3U(ξ ), ξ = (3t/b)−1/3(x−6νt/b),
(U ′′ −2U3 − ξU)′ = 0. (5.270)

5.8.1 From Lax Pair to Isomonodromic Deformation

There is no difficulty in performing this reduction, and no guess work is involved.
In order to reduce the Lax pair of mKdV to a Lax pair of P2 [142], it is convenient
to represent the Lax pair as the one-form

dy = yxdx + ytdt, (5.271)

in which y is the scalar of the Riccati representation (5.186) of the Lax pair. Were
the Lax pair defined in the zero-curvature representation (L,M) (5.13), the one-form
would be

dψ = L(W,x,t,λ )ψdx + M(W,x,t,λ )ψdt, (5.272)

in which ψ is the two-component vector defined by the correspondence y = ψ1/ψ2.
The goal is to deduce a similar Lax pair for P2

dz = (a2z2 + a1z+ a0)dξ +(b2z2 + b1z+ b0)dµ , (5.273)

in which the six scalars a j,b j only depend on U,ξ and a scalar µ which is the ODE
spectral parameter. Starting from (5.271), one first eliminates W , x, dx from (5.270),
and U ′′ from U ′′ = 2U3 + ξU + A to obtain

dy =
(
−2Udξ +

(
2A + 8λ (λ − νλ−1)(3t/b)2/3U

) dt
3t

)
y

−2U ′(λ − (λ − νλ−1)y2)
dt
3t
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+(3t/b)1/3
(

dξ +
(

2U2 + ξ −4λ (λ − νλ−1)(3t/b)2/3
) dt

3t

)
× (λ +(λ − νλ−1)y2). (5.274)

This introduces µ as the additive term to either 2A or 2U2 + ξ ,

µ = k(3t/b)1/3, k2 = λ
(

λ − ν

λ

)
,

dµ
µ

=
dt
3t

, (5.275)

and allows the further elimination of t and dt. Finally, the remaining dependence on
λ/k is removed by the change

y = (λ/k)z, (5.276)

or, in the zero-curvature representation, by

ψ = PΨ , P = diag((λ/k)1/2,(λ/k)−1/2). (5.277)

The final Lax pair of P2 is defined by the one-form

dz
z

=
(
−2Udξ +

(
2A
µ

+ 8µU

)
dµ

)
−2

(
z−1 + z

)
U ′dµ

+
(
z−1 − z

)(
µdξ +(2U2 + ξ −4µ2)dµ

)
, (5.278)

i.e., in the Riccati representation

zξ

z
= µ

(
1
z
− z

)
−2U, (5.279)

zµ

z
=

2A
µ

+ 8µU −2
(
z−1 + z

)
U ′ +

(
z−1 − z

)
(2U2 + ξ −4µ2), (5.280)

and in the zero-curvature traceless representation [3, 142]

L =
(−U µ

µ U

)
,

M =
(

Aµ−1 + 4µU 2U2 + ξ −4µ2 −2U ′
2U2 + ξ −4µ2 + 2U ′ −(Aµ−1 + 4µU)

)
. (5.281)

Another Lax pair has been established for P2 [240]

L =
1
2

(
t + 2U 1
−2z −t

)
, z = U ′ −U2 − ξ

2
,

M =
1
2

(
2t2 + 2z+ ξ 2t −2U

−4tz−2(1−2A + 2Uz) −2t2 −2z− ξ

)
, (5.282)

and the equivalence of these two Lax pairs is still an open question [338].
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Conversely, given the linear differential equation

d
dµ

ψ =
(

a1µ−1 + a2µ a3 − µ2 −a4

a3 − µ2 + a4 −(a1µ−1 + a2µ)

)
ψ , ψ =

(
ψ1

ψ2

)
, (5.283)

which has the same dependence on µ as (5.281) but with unspecified coefficients
a j, it is possible to constrain these coefficients so as to generate the nonlinear P2
equation, by a method known as the isomonodromic deformation method, the pa-
rameters a j being called the deformation parameters. For a tutorial introduction to
this powerful method, we refer to summer school lecture notes [291]. This creates a
very deep connection between linear ODEs and a special class of nonlinear ODEs,
essentially made of those which have the Painlevé property.

The Lax pair of an ODE is quite important in itself since the Painlevé property
can be proven from the Lax pair only, as opposed to the PDE case where the proof
requires the knowledge of the Lax pair and the singular part transformation. In the
case of P6 for instance, in addition to the analytic proof of Painlevé [350, ¶2], the
Painlevé property has been established with the only knowledge of the Lax pair
by various authors like Richard Fuchs [157], Malmquist [293, ¶30 and p. 89] and
Malgrange [292].

5.8.2 From BT to Birational Transformation

In order to reduce the auto-BT (5.188)–(5.189) of mKdV, let us denote the reduced
conservative fields as follows,

rx = w = β + α(3t/b)−1/3u(ξ ), u′′ −2u3 − ξ u−α = 0,

Rx = W = β + α(3t/b)−1/3U(ξ ), U ′′ −2U3 − ξU −A = 0. (5.284)

With the relation (5.270) between ∂x and ∂ξ the singular part transformation (5.184)
reduces to

u−U = ∂ξ logz. (5.285)

The two PDEs defining the auto-BT (5.188)–(5.189) reduce to a system indepen-
dent of (ν,µ),

{
(u′ +U ′)2 − (u2 −U2)2 = 0,

u′2 −U ′2 − (u−U)(α + A +(u +U)(ξ + u2 +U2)) = 0,
(5.286)

and their solution is [288]

u′ = ε
(

u2 +
ξ
2

+
α + A

2(u +U)

)
, U ′ = −ε

(
U2 +

ξ
2

+
α + A

2(u +U)

)
, (5.287)
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expressions which define a birational transformation between u and U3. The two
parameters α and A are not directly constrained by the Bäcklund transformation,
and an elimination is required to find their relationship,

A−α + ε = 0, ε2 = 1. (5.288)

Because of the discrete invariance (u,x,α) → (−u,x,−α) of P2, its birational
transformation depends on two signs, not one as displayed in (5.287), and the final
writing is [92, (67)]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
u−U

= U ′ + S∞D
(

U2 +
x
2

)
= u′ + s∞d

(
u2 +

x
2

)
,

u′′ = d2(2u3 + xu)+ α, α = −dθ ,

U ′′ = D2(2U3 + xU)+ A, A = −DΘ ,

sθ = −SΘ + 1, s∞d = S∞D, s2 = S2 = s2
∞ = S2

∞ = 1,
N = (1/2)−SΘ = sθ −1/2 = (1/2)(sθ −SΘ).

(5.289)

While the auto-Bäcklund transformation of a PDE links two solutions of the same
PDE, its reduction to a birational transformation connects particular solutions of two
different copies of the same ODE.

One can also reduce the BT between KdV and mKdV ((5.98)–(5.99)and (5.104)).
Indeed, the KdV equation admits a reduction with the same similarity variable
xt−1/3 [143, 343] (the shift −ξ/2 in U is pure convenience)

u = a(3t/b)−2/3
(

U(ξ )− ξ
2

)
, ξ = (3t/b)−1/3x,

U ′′′ −6UU ′+ 2ξU ′+U = 0, (5.290)

and this third order ODE was proven by Chazy to possess the Painlevé property [59,
class XIII]. The reduced BT is

W ′ +W2 −U +
ξ
2

= 0, (5.291)

U ′′ − ξW ′ −2U ′W +(2U − ξ )W2 −2

(
U − ξ

2

)2

= 0, (5.292)

reduced mKdV : W ′′ −2W3 − ξW −A = 0, A = arbitrary, (5.293)

reduced KdV : U ′′′ −6UU ′+ 2ξU ′+U = 0, (5.294)

and its first half (5.291) provides the general solution of (5.290) as an algebraic
transform of P2. By a straightforward elimination, one generates a relation between
U,U ′,U ′′ and A only which defines A as a first integral of (5.290),

3 By a fortunate coincidence, the initials BT are common to Bäcklund transformation and birational
transformation.
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−U ′′+
U ′2

2U
+ 2U2 − ξU −

(
A + 1

2

)2

2U
= 0, (5.295)

an ODE which bears the number 34 in Gambier’s classification [163]. Finally, the
elimination of W ′,W ′′ between (5.291), its derivative and (5.293) yields a polyno-
mial relation between W,U,U ′,A which has first degree in W . To conclude, under
the reduction xt−1/3, the BT between KdV and mKdV reduces to a birational trans-
formation between P2 and G34 [163, p. 31]⎧⎪⎨

⎪⎩
U = W ′ +W2 +

ξ
2

,

W =
U ′ −A− 1

2

2U
.

(5.296)

As a consequence of this equivalence between P2 and G34 under the group of bi-
rational transformations, G34 could be an admissible choice to represent the equiv-
alence class in place of P2. The reason for choosing P2 is its unique singularity
W = ∞, while G34 has the two singularities U = ∞,04.

An even simpler exercise, which we leave to the reader, is to consider the station-
ary reduction ∂t = 0,ξ = x for both KdV and mKdV, to perform the reduction of the
BT between the two PDEs and to recover the well known homography (a subgroup
of the group of birational transformations) between the Weierstrass equation and the
other elliptic equation.

5.8.3 From NLSF to Contiguity Relation

The NLSF, which involves four solutions of mKdV, should not be reduced from the
formula (5.191). Indeed, this formula results from an elimination, and the correct
way to perform the reduction is to first reduce the elementary components, i.e. the
BT, then to perform the elimination. The result, as we now see, is an algebraic
relation between three solutions of P2, not among four solutions, and the reason is
the first integral A introduced by the reduction.

Let us start from the reduction of the auto-BT, i.e. the birational transformation
(5.289). The process of lowering the differential order involves the elimination of
the derivatives u′ and U ′, and this is achieved as follows [145].

1. Consider a birational transformation such as (5.289), i.e. the direct birational
transformation and its inverse

u = f (U,U ′,x,θ ,Θ), θ = g(Θ), (5.297)

U = F(u,u′,x,Θ ,θ ), Θ = G(θ ). (5.298)

4 It is for exactly the same reason that, among the elliptic functions having two poles per period, the
choice of Weierstrass (one function with a double pole) is much preferable to the choice of Jacobi
(three functions with two simple poles), see the arguments of Halphen [193, Chap. VIII p. 253].
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2. Rewrite the direct birational transformation as the forward iterate vn+1 = v̄ and
the inverse birational transformation as the backward iterate vn−1 = v of the same
value of a discrete variable v = u,

vn+1 = v̄ = f (v,v′,x,g(θ ),θ ), v = vn, v′ = v′n, (5.299)

vn−1 = v = F(v,v′,x,G(θ ),θ ), v = vn, v′ = v′n. (5.300)

3. Eliminate the single derivative v′ between these two relations,

C(v̄,v,v,x,θ ) = 0. (5.301)

Such a relation without any derivative is called a contiguity relation. As noted
by Garnier [168], this is an extension to nonlinear equations of the similar notion
introduced by Gauss for the (linear) hypergeometric equation.

In the case of (5.289), these two equations for v̄,v are⎧⎪⎪⎨
⎪⎪⎩

1
2 + θn

v̄− v
= v′ + S∞D

(
v2 +

x
2

)
,

1
2 −θn

v− v
= v′ + s∞d

(
v2 +

x
2

)
,

(5.302)

and their difference generates the contiguity relation

1
2 + θn

v̄− v
+

1
2 −θn

v− v
+(s∞d−S∞D)(2v2 + ξ ) = 0. (5.303)

As compared with the NLSF (5.191), this contiguity relation involves three solutions
v̄,v,v of three different P2 equations (against four different solutions un−1, un, ũn,
un+1 of the same PDE), the independent variable z = nh is introduced by solving the
recurrence relation on θ , and the variable ξ has become a mere parameter introduced
by the nonautonomous reduction.

For the master equation P6, the elementary birational transformation, first found
by Okamoto [341], is even simpler because it clearly displays the equivalence of the
four singular points u = ∞,0,1,x [91],

x(x−1)U ′

U(U −1)(U − x)
= 2

s jθ j −S jΘ j

u−U
−

(
S0Θ0

U
+

S1Θ1

U −1
+

SxΘx −1
U − x

)
, (5.304)

x(x−1)u′

u(u−1)(u− x)
= −2

S jΘ j − s jθ j

u−U
−

(
s0θ0

u
+

s1θ1

u−1
+

sxθx −1
u− x

)
. (5.305)

In this relation, j is anyone of the four singular points (∞,0,1,x), the monodromy
exponents θ j,Θ j are defined by their squares,

θ 2
∞ = 2α, θ 2

0 = −2β , θ 2
1 = 2γ, θ 2

x = 1−2δ , (5.306)

Θ 2
∞ = 2A, Θ 2

0 = −2B, Θ 2
1 = 2Γ , Θ 2

x = 1−2∆ , (5.307)



5.8 Reduction of the Singular Manifold Method to the ODE Case 143

the eight signs s j,S j are arbitrary and independent, and the recurrence relation
among the monodromy exponents is

s jθ j = S jΘ j − 1
2

(
∑SkΘk

)
+

1
2

, S jΘ j = s jθ j − 1
2

(
∑ skθk

)
+

1
2
· (5.308)

The corresponding contiguity relation [327, (1.5)] [91] is the sum of six simple poles
(including v = ∞)

ϕ(n + 1/2)
v̄− v

+
ϕ(n−1/2)

v− v
=

s0θ0 −S0Θ0

v
+

s1θ1 −S1Θ1

v−1
+

sxθx −SxΘx

v− x
,

ϕ(n) =
1
2
(s∞θ∞ + s0θ0 + s1θ1 + sxθx −1), (5.309)

in which θ is taken at the center point z = z0 + nh.

5.8.4 Reformulation of the Singular Manifold Method: an
Additional Homography

While there is no special difficulty, as seen above, for performing the reduction
on the various items of the singular manifold method, there does exist a difficulty
for reducing the method itself, i.e. for generating determining equations similar to
(5.66), (5.67) or (5.140).

Consider a Painlevé ODE Pn which admits a birational transformation, i.e.
n = 2,3,4,5,6, with the goal of finding this birational transformation by a method
only based on the singularities (singular manifold method). The singular part trans-
formation assumption is [175]

u = u0Z−1 +U, u0 �= 0, (5.310)

Z′ = 1 + z1Z + z2Z2, z2 �= 0, (5.311)

in which u obeys a Pn equation, and let us assume for simplicity that U also obeys
the same Pn equation with different parameters (as compared to the PDE case, this is
an additional assumption). The unknowns (Z,z1,z2) are to be determined as rational
functions of (x,U,U ′). After this is done, the relation (5.310) represents half of the
birational transformation.

This assumption (5.310)–(5.311), is indeed successful [175] when applied to
Pn,n = 2,3,4,5 but it fails for P6 unless the following crucial point is implemented
[91]. For second order first degree ODEs such as Pn, the Riccati variable Z and the
derivative U ′ are not independent. Indeed, any N-th order, first degree ODE with the
Painlevé property is necessarily [346, pp. 396–409] a Riccati equation for U (N−1),
with coefficients depending on x and the lower derivatives of U , in our case

U ′′ = A2(U,x)U ′2 + A1(U,x)U ′ + A0(U,x). (5.312)
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Since the group of invariance of a Riccati equation is the homographic group, the
variables U ′ and Z are linked by a homography. Let us define it as

(U ′ + g2)(Z−1 −g1)−g0 = 0, g0 �= 0. (5.313)

This allows us to obtain the two coefficients z j of the Riccati pseudopotential
equation (5.311) as explicit expressions of (g j,∂U g j,∂xg j,A2,A1,A0,U ′). Indeed,
eliminating U ′ between (5.312) and (5.313) defines a first order ODE for Z, whose
identification with (5.311) modulo (5.313) provides three relations,

g0 = g2
2A2 −g2A1 + A0 + ∂xg2 −g2∂U g2, (5.314)

z1 = A1 −2g1 + ∂Ug2 − ∂x logg0 +(2A2 − ∂U logg0)U ′, (5.315)

z2 = −g1z1 −g2
1 −g0A2 − ∂xg1 − (∂Ug1)U ′. (5.316)

Therefore, the natural unknowns in the present problem are the two functions
g1,g2 of the two variables (U,x), and not the two functions (z1,z2) of the three
variables (U ′,U,x).

The truncation then presents no difficulty and it does provide straightforwardly
[91] the birational transformation for all the Pn equations which admit one, includ-
ing the one for P6 (5.305).

Table 5.1 contains a qualitative summary of the various features of a PDE which
possesses the Painlevé property when the PDE is reduced to an ODE.

Table 5.1 Respective tools of integrability of a PDE having the PP and any of its noncharacteristic
reductions to an ODE.

Tool PDE ODE

linear representation Lax pair isomonodromic deformation
difference of two sol. Singular part transformation Darboux transformation
invariance Bäcklund transformation birational transformation
build solutions nonlinear superposition formula contiguity relation
general solution N/A no movable critical sing.



Chapter 6
Integration of Hamiltonian Systems

Abstract In this chapter, we illustrate the various ways to “integrate” a Hamilto-
nian system using two examples with two degrees of freedom: the cubic (HH3) and
quartic (HH4) Hénon–Heiles Hamiltonians. These various ways to integrate are

◦ (Liouville integrability) to find a second invariant in involution with the Hamil-
tonian, which is however insufficient to perform a global integration;
◦ (Arnol’d–Liouville integrability) to find the variables which separate the Hamilton–
Jacobi equation, thus leading to a global integration;
◦ (Painlevé property) to find an explicit closed form single valued expression
for the general solution q j(t),Q j(t); this has been done in all seven cases (Sects.
6.2.3 and 6.3.3), via birational transformations to fourth order ODEs isolated and
integrated by Cosgrove.

6.1 Various Integrations

When a system of nonlinear ODEs can be represented by a Hamiltonian system for
q j(t), p j(t), one can think of three types of integrability, and we will perform them
all when this is possible.

The first type is the integration in the sense of Liouville, i.e. the obtention of a
second constant of the motion in involution with the Hamiltonian, so as to prove the
reducibility to quadratures. This is however insufficient to prove the global single
valuedness, as displayed by the pendulum example in the introduction, Sect. 1.2.

The second type is the Arnol’d–Liouville integrability, a stronger version of the
Liouville integrability introduced by Arnol’d [18, Chap. 9], which consists in finding
an explicit canonical transformation converting the original Hamiltonian system to
a new Hamiltonian system in which the Hamilton–Jacobi equation (see below (6.5))
is separated, i.e. has a l.h.s. equal to a sum F(Q1,P1)+G(Q2,P2). These privileged
new coordinates are called Darboux coordinates or separating variables.

The third type, described in Chap. 3, is to find an explicit closed form single
valued expression for the general solution q j(t). For the three cases of the cubic

145
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Hénon–Heiles system which have been selected by the Painlevé test, (2.99)–(2.101),
this is done in Sect. 6.2.3.

One should keep in mind that the first and third above mentioned types are inde-
pendent, see the FAQ section.

In the Arnol’d–Liouville integrability, when the second invariant has degree at
most two in the momenta p j, there exists a classical method [396] (mainly based on
the decomposition of quadratic forms) to obtain explicitly the separating variables.
Two of the seven cases (β/α = −6 of HH3 and A : B : C = 1 : 2 : 1 of HH4) belong
to this Stäckel class (Sects. 6.2.2.1 and 6.3.2.1). The five remaining cases (and even
all the seven cases) are processed via a détour to soliton equations, as follows:

◦ each of the seven cases is a reduction of a soliton equation (SK, a higher order
KdV [274] and KK for β/α =−1,−6,−16, a system of two coupled NLS equa-
tions [294] for 1 : 2 : 1, and various systems of two coupled KdV-type equations
[21] for the three other HH4 cases);
◦ among these various soliton equations, there exist three Bäcklund transfor-
mations, a consequence of which is an equivalence (birational transformation)
between the pairs (−1,−16) of HH3, (1 : 6 : 1,1 : 6 : 8) and (1 : 12 : 16,5 : 9 : 4)
of HH4, in which 5 : 9 : 4 denotes a companion Hamiltonian outside the Hénon–
Heiles class [21]; this restricts the remaining number of cases to three pairs;
◦ in each of the three pairs, one of the two elements (−1, 1 : 6 : 1, 1 : 12 : 16) has
a second invariant of degree two for nongeneric values of the parameters which
appear in the Hamiltonian; a clever use of the birational transformation allows
one to perform the separation of variables in all cases but two.

6.2 Cubic Hénon–Heiles Hamiltonians
Three cases, (2.99)–(2.101), have been selected by the Painlevé test.

6.2.1 Second Invariants
The integrability in the sense of Liouville is first established because in the three
cases there exists a second constant of the motion [124, 203, 180] in involution with
the Hamiltonian,

(SK) : K = K2
0 + 3c3(3p2

1q−2
2 + 4αq1 + 2ω2), (6.1)

K0 = 3p1 p2 + αq2(3q2
1 + q2

2)+ 3ω2q1q2,

(KdV5) : K = 4α p2(q2 p1 −q1 p2)+ (4ω2 −ω1)(p2
2 + ω2q2

2 + c3q−2
2 )

+α2q2
2(4q2

1 + q2
2)+ 4αq1(ω2q2

2 − c3q−2
2 ), (6.2)

(KK) : K = (3p2
2 + 3ω2q2

2 + 3c3q−2
2 )2 + 12α p2q2

2(3q1 p2 −q2p1)

−2α2q4
2(6q2

1 + q2
2)+ 12αq1(−ω2q4

2 + c3)−12ω2c3. (6.3)
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Remark. The last first integral (6.3) can be extrapolated [204] to the presence of
an additional term +c4/(6q6

2) in (2.69). This case c4 �= 0 does not have the Painlevé
property, but it admits a Lax pair [225] and therefore has the weak Painlevé prop-
erty. The first integral (6.2) also admits an extrapolation [225] to the presence of an
additional term +q1/q4

2 in (2.69), see (6.16) below.

6.2.2 Separation of Variables

The relevant quantity for finding the separating variables is the Hamilton–Jacobi
equation [18, Chap. 9] for the action S(q j,t),

∂S
∂ t

+ H(q1,q2, p1, p2,t) = 0, p1 =
∂S
∂q1

, p2 =
∂S
∂q2

. (6.4)

In the particular case of an autonomous Hamiltonian like HH3, this nonlinear first
order PDE for S reduces to

H(q1,q2, p1, p2)−E = 0. (6.5)

6.2.2.1 Case β/α = −6 (KdV5)

Since both invariants H,K are quadratic in the momenta p j, the method of Stäckel
[396] applies, and the separation of variables is realized by the canonical transfor-
mation to parabolic coordinates [124, 13, 433]

(q1,q2, p1, p2) → (s1,s2,r1,r2), (6.6)

q1 = −(s1 + s2 + ω1 −4ω2)/(4α), q2
2 = −s1s2/(4α2), (6.7)

p1 = −4α
s1r1 − s2r2

s1 − s2
, p2

2 = −16α2 s1s2(r1 − r2)2

(s1 − s2)2 . (6.8)

Indeed, the two invariants H,K take the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H =
f (s1,r1)− f (s2,r2)

s1 − s2
,

K = 2
s1s2

s1 − s2

(
f (s1,r1)

s1
− f (s2,r2

s2

)
,

f (s,r) = − s2(s+ ω1 −4ω2)2(s−4ω2)−64α4c3

32α2s
+ 8α2r2s,

(6.9)

therefore the Hamilton–Jacobi equation H −E = 0 (6.5) allows the introduction of
a separating constant,

f (s1,r1)−Es1 = f (s2,r2)−Es2 = constant, (6.10)
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the value of which is given by an elimination with the equation for K,

f (s j,r j)−Esj +
K
2

= 0, j = 1,2. (6.11)

The first task, to find the separating variables, is achieved.
Then, to perform the explicit integration, one builds the differential system for

(s1,s2) by eliminating the two momenta r1,r2 between (6.11) and the Hamilton
equations of the motion,

s′1 =
∂H
∂ r1

= 16α2 s1

s1 − s2
r1, s′2 =

∂H
∂ r2

= 16α2 s2

s2 − s1
r2. (6.12)

The result,

(s1 − s2)s′1 =
√

P(s1), (s2 − s1)s′2 =
√

P(s2), (6.13)

P(s) = s2(s+ ω1 −4ω2)2(s−4ω2)+ 32α2Es2 −16α2Ks−64α4c3, (6.14)

is a classical system called hyperelliptic system, and the main property of interest
to us is that the symmetric polynomials of s1,s2, i.e. the sum s1 + s2 and the prod-
uct s1s2, are meromorphic functions of the independent variable t. This proves the
Painlevé property for this HH3 system in the variables q1 and q2

2. In particular, it was
a posteriori a good idea to eliminate q2 when looking for the dominant behaviors,
since only q2

2 is singlevalued.
The algebraic curve of the (x,y) plane defined by

y2 = P(x), (6.15)

with P the above fifth degree polynomial, is called a hyperelliptic curve, and its
genus g, defined by 2g + 1≤ degP ≤ 2g + 2, is two.

Remark. The extrapolation

H =
1
2
(p2

1 + p2
2)+ cq1 + αq1q2

2 + 2αq3
1 +

c3

2q2
2

+
c5q1

q4
2

, α �= 0 (6.16)

also admits separating variables [225], however associated with a hyperelliptic curve
of genus three, and the general solution presents a finite amount of movable branch-
ing (weak Painlevé property).

6.2.2.2 Cases β/α = −1 (SK) and −16 (KK)

These two cases are best handled simultaneously, because there exists a canoni-
cal transformation [33, 379] between the variables of HH3.SK, which we denote
here (Q1,Q2,P1,P2), and the variables of HH3.KK, denoted (q1,q2, p1, p2). With
the normalization
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HSK =
1
2
(P2

1 + P2
2 + Ω1Q2

1 + Ω1Q2
2)+

1
2

Q1Q2
2 +

1
6

Q3
1 −

1
8

λ 2Q−2
2 , (6.17)

HKK =
1
2
(p2

1 + p2
2 + 16ω2q2

1 + ω2q2
2)+

1
4

q1q2
2 +

4
3

q3
1 −

1
2

λ 2q−2
2 , (6.18)

this canonical transformation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = −6

(
p2

q2
+

λ
q2

2

)2

−q1, Q2 =
√

Ω
2q4

2

,

q1 = −3
2

(
− P2

Q2
+

λ
2Q2

2

)2

−Q1, q2 =
√

Γ
Q2

,

P1 = 12
p3

2

q3
2

+ 6q1
p2

q2
− p1 + 6λ

q1

q2
2

+ 36λ
p2

2

q4
2

+ 36λ 2 p2

q5
2

+ 12
λ 3

q6
2

,

p1 = 3
P3

2

Q3
2

+ 3Q1
P2

Q2
−P1 − 3

2
λ

Q1

Q2
2

− 9
2

λ
P2

2

Q4
2

+
9
4

λ 2 P2

Q5
2

− 3
8

λ 3

Q6
2

,

P2 =
(
− p2

q5
2

+
λ
q6

2

)√
Ω +

λ q4
2√

Ω
,

p2 =
(
− P2

2Q2
2

+
λ

4Q3
2

)√
Γ − λ Q2√

Γ
,

Ω1 = 16ω2, c = Ω 2
1 ,

Γ = −12Q2P1P2 −6Q2
1Q2

2 −2Q4
2 + 6Ω 2

1 Q2
2 + 6λ P1,

Ω = 48
(

3q4
2k2

2,0 + 6λ q1q5
2 p2 + 12λ q3

2p3
2 −λ q6

2p1

+3λ 2q1q4
2 + 18λ 2q2

2 p2
2 + 12λ 3q2 p2 + 3λ 4) ,

k2
2,0 = p4

2 −q6
2/72−q2

1q4
2/12 + q1q2

2 p2
2 −q3

2p1 p2/3 + Ω 2
1q4

2/12.

(6.19)

In order to find simultaneously the separating variables of HH3.SK and HH3.KK,
one proceeds as follows [372].

1. There exists a canonical transformation which trivially separates one of the two
Hamilton–Jacobi equations in the particular case λ = 0, this is the rotation

Q̃1 = Q1 + Ω2/(2α)+ Q2, P̃1 = (P1 + P2)/2, (6.20)

Q̃2 = Q1 + Ω2/(2α)−Q2, P̃2 = (P1 −P2)/2. (6.21)

The separated Hamilton–Jacobi equation is that of SK,

λ = 0 : HSK −E = f (Q̃1, P̃1)+ f (Q̃2, P̃2)−E = 0, (6.22)

f (q, p) = p2 +
1
12

q3 −4ω2
2 q. (6.23)

2. One then writes the two invariants H,K of the other case (KK) in these new vari-
ables Q̃1,Q̃2, P̃1, P̃2. This requires applying the canonical transformation (6.19),



150 6 Integration of Hamiltonian Systems

and the trick1 is to take this canonical transformation for λ = 0. More pre-
cisely, the canonical transformation between q j, p j and Q̃1,Q̃2, P̃1, P̃2 is defined
as [372, 413] ⎧⎪⎪⎨

⎪⎪⎩
q1 = −6

(
P̃1 − P̃2

Q̃1 − Q̃2

)2

− Q̃1 + Q̃2

2
,

q2
2 = 24

f (Q̃1, P̃1)− f (Q̃2, P̃2)
Q̃1 − Q̃2

,

(6.24)

and the two invariants of the KK case take the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

HKK = f (Q̃1, P̃1)+ f (Q̃2, P̃2)− λ 2

96
Q̃1 − Q̃2

f (Q̃1, P̃1)− f (Q̃2, P̃2)
,

KKK =
λ 2

6
(Q̃1 + Q̃2)+ 2( f (Q̃1, P̃1)− f (Q̃2, P̃2))2

+
λ 4

242

(
Q̃1 − Q̃2

f (Q̃1, P̃1)− f (Q̃2, P̃2)

)2

.

(6.25)

Therefore, the Hamilton–Jacobi equation HKK −E = 0 allows the introduction
of a separating constant [413],

( f (Q̃1, P̃1)−E)2 − λ 2

4
Q̃1 = ( f (Q̃2, P̃2)−E)2 − λ 2

4
Q̃2 = const, (6.26)

the value of which is given by an elimination with the equation for K,

( f (Q̃ j, P̃j)−E)2 − λ 2

4
Q̃ j + K = 0, j = 1,2. (6.27)

Since the Hamilton–Jacobi equations of the KK and SK cases are exchanged
under the canonical transformation, the Hamilton–Jacobi equation of the SK case
is ipso facto separated, by the same separating variables.

3. Next, one performs the explicit integration in the KK case. The equations of the
motion for HKK, (6.25), are

Q̃′
1 =

∂HKK

∂ P̃1
= P̃1

(
2−λ 2 Q̃1 − Q̃2[

f (Q̃1, P̃1)− f (Q̃2, P̃2)
]2

)
, (6.28)

Q̃′
2 =

∂HKK

∂ P̃2
= P̃2

(
2−λ 2 Q̃2 − Q̃1[

f (Q̃1, P̃1)− f (Q̃2, P̃2)
]2

)
, (6.29)

and the elimination of the momenta (P̃1, P̃2) yields the system [413]

1 This is not really a trick. Indeed, the present SK and KK Hamiltonian systems are the reductions
of two sets of coupled KdV-like PDEs [21], and the transformation from (q j, p j) to (Q̃1, Q̃2, P̃1, P̃2)
is the reduction of some precise Bäcklund transformation.
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(s1 − s2)s′1 =
√

P(s1), (s2 − s1)s′2 =
√

P(s2), (6.30)

P(s) =
(

s2 − K
λ 2

)3

− ω1ω2

3

(
s2 − K

λ 2

)
− λ

9
s+

2E
9

, (6.31)

with the notation

Q̃1 = −3s2
1 +

12K
λ 2 , Q̃2 = −3s2

2 +
12K
λ 2 . (6.32)

Therefore the general solution (q1,q2
2) of HH3 in the KK case is a meromor-

phic function of time, defined by a genus two hyperelliptic system. Its explicit
expression is, in the original variables,

q1 = −3
2

[(
s′1 + s′2
s1 + s2

)2

− (s2
1 + s2

2)−
2K
λ 2

]
, (6.33)

q−2
2 =

s1 + s2

2λ
. (6.34)

4. Finally, the general solution in the SK case is obtained by carrying the general
solution from the KK case with the canonical transformation (6.19). The result is

Q1 = −3

[
(s′1 + s′2)+ (s2

1 + s2
2 + s1s2)− K

λ 2

]
, (6.35)

Q2
2 = 18(s1 + s2)

[
(s1 + s2)

(
s2

1 + s2
2 −

3K
2λ 2

)
− (s1s′1 + s2s′2)

]
. (6.36)

6.2.3 Direct Integration

In order to perform the integration of the equations of Hamilton in the spirit of
the theory of the integration advocated by Painlevé, it is sufficient to integrate the
equivalent fourth order ODE (2.81) in the three cases isolated by the Painlevé test.

All fourth order first degree ODEs with the Painlevé property in the class

u(4) = P(u′′′,u′′,u′,u;x), (6.37)

in which P is polynomial in u′′′, . . . ,u with coefficients analytic in x, have been
enumerated [59, 46, 104] and, at least in the autonomous case, integrated (Ap-
pendix A.3.5). In the particular case when the leading behavior of u is made of
movable double poles as in (2.81), it comprises five ODEs, three nonautonomous
(denoted F-I, F-V, F-VI in [104]) and two autonomous (denoted F-III, F-IV). Three
out of these five equations can be readily identified with the three cases of (2.81),
these are F-III, F-IV and the autonomous restriction de F-V (here denoted a-F-V).
Their general solution, established in these classifications, is meromorphic and ex-
pressed with hyperelliptic functions of genus two [104] defined by the hyperelliptic
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system, ⎧⎪⎨
⎪⎩

(s1 − s2)s′1 =
√

P(s1), (s2 − s1)s′2 =
√

P(s2),

P(s) =
6

∑
j=0

c js
j.

(6.38)

The canonical form of these three equations is (the fixed constants are denoted
by Greek letters, the movable ones by K1,K2 or A,B)

F-III

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′′′ = 15uu′′+
45
4

u′2 −15u3 + αu + β ,

u =
(

s′1 + s′2
s1 + s2

)2

− (s2
1 + s2

2)−2A,

P(s) = (s2 + A)3 − α
3

(s2 + A)+ Bs+
β
3

,

(6.39)

F-IV

⎧⎪⎨
⎪⎩

u′′′′ = 30uu′′ −60u3 + αu + β ,

u =
1
2

(
s′1 + s′2 + s2

1 + s1s2 + s2
2 + A

)
,

P(s) = same as F-III,

(6.40)

a-F-V

⎧⎪⎪⎨
⎪⎪⎩

u′′′′ = 20uu′′+ 10u′2 −40u3 + αu + κx + β , κ = 0,

u =
1
4
(s1 + s2),

P(s) = s5 −2αs3 + 8β s2 + 32K1s+ 16K2.

(6.41)

Therefore the correspondence is

KdV5
a-F-V

⎧⎪⎨
⎪⎩

q1 = − u
α
− ω1 + 4ω2

20α
, κV = 0, αV =

3ω2
1 −16ω1ω2 + 48ω2

2

10
,

βV = 2E +
(ω1 + 4ω2)(ω2

1 −12ω1ω2 + 16ω2
2)

200α2 ,

SK
F-IV

⎧⎪⎨
⎪⎩

q1 = − 3u
2α

− ω1

2α
,

αIV = ω2
1 , βIV =

E
3
− ω3

1

36α2 , K1,IV = − c3

36
, K2,IV =

K
64 ,

KK
F-III

{
q1 = −αu

2
− ω2

2α
, αIII = 16ω2

2 , βIII = 8E − 32
3α2 ω3

2 . (6.42)

The various constants involved (c3,E,K) are either movable or fixed depending
on the considered system. In the equations of motion (2.70)–(2.71), the constant
c3 is fixed and the constants E,K are movable. In the fourth order equation (2.81),
the constant E is fixed, the constants c3,K are movable. This gives an additional
insight on the HH system. Indeed, the constant c3 is a first integral of the fourth
order equation (2.81), therefore setting c3 = 0 would prevent finding the general
solution of (2.81), and the inverse square terms in the HH Hamiltonian (2.69) must
be present. In fact, the particular solution for c3 = 0 is much easier to obtain. For
the SK case it already appears in the thesis of Chazy [59],
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⎪⎪⎩

−α
6

(Q1 ±Q2)− ω2

12
=℘(t − t1,g2,g3,±) =℘±,

g2 =
ω2

2

12
, g3,± = −α2

18

(
E ±

√
K

3
− ω3

2

12α2

)
,

(6.43)

the corresponding solution in the KK case being [372]⎧⎨
⎩ αq1 +

ω2

2
=

3
16

[
−4(℘+ +℘−)+ (log(℘+−℘−))′2

]
,

q−2
2 = α2

√
K(℘+−℘−),

(6.44)

with the same values for g2,g3,±.

6.3 Quartic Hénon–Heiles Hamiltonians

We now perform the same study, however much more briefly, for the “quartic” HH
Hamiltonians.

These quartic HH Hamiltonians all have the necessary form (2.78), in which the
constants A,B,C,α,β ,γ,Ω1 and Ω2 are further selected by the “usual” Painlevé test
[369, 179], and the equations of the motion (2.79)–(2.80) pass the Painlevé test in
only four cases with the result⎧⎪⎪⎨

⎪⎪⎩
A : B : C = 1 : 2 : 1, γ = 0,
A : B : C = 1 : 6 : 1, γ = 0, Ω1 = Ω2,
A : B : C = 1 : 6 : 8, α = 0, Ω1 = 4Ω2,
A : B : C = 1 : 12 : 16, γ = 0, Ω1 = 4Ω2.

(6.45)

6.3.1 Second Invariants

For each of these four cases there exists a second constant of motion K [204, 21, 22]
in involution with the Hamiltonian,

1:2:1 : K = (Q2P1 −Q1P2)
2 + Q2

2
α
Q2

1

+ Q2
1

β
Q2

2

− Ω1 −Ω2

2
×(

P2
1 −P2

2 + Q4
1 −Q4

2 + Ω1Q2
1 −Ω2Q2

2 +
α
Q2

1

− β
Q2

2

)
,

A =
1
2
, (6.46)

1:6:1 : K =
(

P1P2 + Q1Q2

(
−Q2

1 + Q2
2

8
+ Ω1

))2

−P2
2

κ2
1

Q2
1

−P2
1

κ2
2

Q2
2

+
1
4

(
κ2

1 Q2
2 + κ2

2 Q2
1

)
+

κ2
1 κ2

2

Q2
1Q2

2

,

α = −κ2
1 , β = −κ2

2 , A = − 1
32

, (6.47)
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1:6:8 : K =
(

P2
2 − Q2

2

16
(2Q2

2 + 4Q2
1 + Ω2)+

β
Q2

2

)2

−1
4

Q2
2(Q2P1 −2Q1P2)2

+γ
(
−2γQ2

2 −4Q2P1P2 +
1
2

Q1Q4
2 + Q3

1Q2
2 + 4Q1P2

2

−4Ω2Q1Q2
2 + 4Q1

β
Q2

2

)
, A = − 1

16
, (6.48)

1:12:16 : K =
(

8(Q2P1 −Q1P2)P2 −Q1Q4
2 −2Q3

1Q2
2 + 2Ω1Q1Q2

2 −8Q1
β
Q2

2

)2

+
32α

5

(
Q4

2 + 10
Q2

2P2
2

Q2
1

)
, A = − 1

32
, (6.49)

therefore the Liouville integrability is established.

6.3.2 Separation of Variables

The question of finding the separating variables is much more difficult. There exist
powerful methods to achieve this [393, 409], but they are too technical to be pre-
sented here, moreover their application to the full HH4 cases has, to the best of our
knowledge, not yet been performed. We briefly give the results achieved to date.

6.3.2.1 Case 1:2:1 (Manakov System)

Since the two constants of the motion H and K are quadratic in the momenta, one
can apply the method of Stäckel [396] to find the separating variables. The canonical
transformation to elliptic coordinates [434],⎧⎪⎨

⎪⎩
q2

j = (−1) j (s1 + ω j)(s2 + ω j)
ω1 −ω2

, j = 1,2

p j = 2q j
ω3− j(r2 − r1)− s1r1 + s2r2

s1 − s2
, j = 1,2

(6.50)

transforms the invariants to
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H = −g(s1,r1)−g(s2,r2)
s1 − s2

,

K = −g(s1,r1)−g(s2,r2)+ (s1 + s2 + ω1 + ω2)
g(s1,r1)−g(s2,r2)

s1 − s2

− α + β
2

,

g(s,r) = 2(s+ ω1)(s+ ω2)r2 − s3

2
− ω1 + ω2

2
s2 − ω1ω2

2
s

− ω1 −ω2

2

(
α

s+ ω1
− β

s+ ω2

)
,

(6.51)

therefore the Hamilton–Jacobi equation H −E = 0 allows the introduction of a sep-
arating constant, conveniently chosen equal to the value K of the second invariant
(6.46)

−2g(s j,r j)−E(2s j + ω1 + ω2)− α + β
2

= K, j = 1,2. (6.52)

The Hamilton equations in the new coordinates are identical to the hyperelliptic
system (6.38), with

P(s) = s(s+ ω1)2(s+ ω2)2 −α(s+ ω2)2 −β (s+ ω1)2

−(s+ ω1)(s+ ω2) [E(2s+ ω1 + ω2)−K] . (6.53)

6.3.2.2 Cases 1:6:1 and 1:6:8

There exists a canonical transformation [21] between the two Hamiltonians 1:6:1
and 1:6:8 therefore it is sufficient to solve either case.

We need to use a different notation for the two sets of coordinates,

1 : 6 : 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =
1
2
(P2

1 + P2
2 )+

ω1

2
(Q2

1 + Q2
2)−

1
32

(Q4
1 + 6Q2

1Q2
2 + Q4

2)

− 1
2

(
κ2

1

Q2
1

+
κ2

2

Q2
2

)
= E,

K =
(

P1P2 + Q1Q2

(
−Q2

1 + Q2
2

8
+ ω1

))2

−P2
2

κ2
1

Q2
1

−P2
1

κ2
2

Q2
2

+
1
4

(
κ2

1 Q2
2 + κ2

2 Q2
1

)
+

κ2
1 κ2

2

Q2
1Q2

2

,

(6.54)

and
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1 : 6 : 8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =
1
2
(p2

1 + p2
2)+

ω2

2
(4q2

1 + q2
2)−

1
16

(8q4
1 + 6q2

1q2
2 + q4

2)

− γq1 +
β

2q2
2

= E,

K =
(

p2
2 −

q2
2

16
(2q2

2 + 4q2
1 + ω2)+

β
q2

2

)2

− 1
4

q2
2(q2 p1 −2q1p2)2

+ γ
(
−4q2p1 p2 +

1
2

q1q4
2 + q3

1q2
2 + 4q1p2

2

−2γq2
2 −4ω2q1q2

2 + 4q1
β
q2

2

)
.

(6.55)

This transformation conserves the two invariants E and K, it reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = − P1

Q1
+

P2

Q2
+

κ1

Q2
1

+
κ2

Q2
2

, q2 = 2
√

Ω

p1 =
(

P1

Q1

)2

−
(

P2

Q2

)2

+
Q2

1 −Q2
2

4
−2κ1

P1

Q3
1

−2κ2
P2

Q3
2

+
κ2

1

Q4
1

− κ2
2

Q4
2

,

p2 =
√

Ω
(
− P1

Q1
− P2

Q2
+

κ1

Q2
1

− κ2

Q2
2

)
+

κ1 −κ2

2
√

Ω
,

Ω = 2
P1P2

Q1Q2
− Q2

1 + Q2
2

4
+ 2

κ2

Q2
2

P1

Q1
−2

κ1

Q2
1

P2

Q2
−2

κ1

Q2
1

κ2

Q2
2

+ 2ω1,

ω2 = ω1, γ =
κ1 + κ2

2
, β = −(κ1 −κ2)2,

(6.56)

and its inverse is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 =
√

∆−, Q2 =
√

∆+,

P1 =
√

∆−
(
− p2

q2
− q1

2
− κ1 −κ2

q2
2

)
+

κ1√
∆−

,

P2 =
√

∆+

(
− p2

q2
+

q1

2
− κ1 −κ2

q2
2

)
− κ2√

∆+
,

∆± = ∓2p1 −q2
1 −

q2
2

2
+ 4

p2
2

q2
2

±q1
p2

q2

+ 8(κ1 −κ2)
p2

q3
2

±4(κ1 −κ2)
q1

q2
2

+ 4
(κ1 −κ2)2

q4
2

+ 4ω2.

(6.57)

At the present time, separating variables have only been found in the particular
case γ = 0 of 1:6:8, which corresponds to κ2

1 = κ2
2 of 1:6:1. The separation of vari-

ables is achieved [411] in a manner quite similar to the two dual cases SK and KK
of the cubic Hamiltonian HH3, done in Sect. 6.2.2.2.

1. The invariance of 1:6:1 under the exchange of the two particles suggests consid-
ering the canonical transformation
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Q̃1 =
1
2
(Q1 + Q2)2, Q̃2 =

1
2
(Q1 −Q2)2,

P̃1 =
1
2

P1 + P2

Q1 + Q2
, P̃2 =

1
2

P1 −P2

Q1 −Q2
,

(6.58)

which transforms the Hamiltonian H1:6:1 into

H1:6:1 = f (Q̃1, P̃1)+ f (Q̃2, P̃2)

− κ2
1(√

Q̃1 +
√

Q̃2

)2 − κ2
2(√

Q̃1 −
√

Q̃2

)2 , (6.59)

f (q, p) = 2qp2 − 1
16

q2 +
ω1

2
q, (6.60)

thus trivially separating the Hamilton–Jacobi equation H1:6:1 −E = 0 in the par-
ticular case κ1 = κ2 = 0,

κ1 = κ2 = 0 : f (Q̃ j, P̃j)− E
2

+(−1) jK = 0, j = 1,2 (6.61)

in which the separating constant K is conveniently chosen equal to the second
integral of the motion (6.54).

2. One then writes the two invariants H,K of the 1:6:8 case in these new variables
Q̃1,Q̃2, P̃1, P̃2. This requires application of the canonical transformation (6.56),
and the trick is again to take this canonical transformation for κ1 = κ2 = 0. More
precisely, the canonical transformation between q j, p j and Q̃1,Q̃2, P̃1, P̃2 is de-
fined as [414]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̃1 = 4
p2

2 + z

q2
2

−q2
1 −

q2
2

2
+ 4ω1,

Q̃2 = 4
p2

2 − z

q2
2

−q2
1 −

q2
2

2
+ 4ω1,

P̃1 =
2q3

1q2
2 + q1(q4

2 + 8z)−8ω1q1q2
2 −8q2p1 p2 + 8q1p2

2

16q2(q2 p1 −2q1p2)
,

P̃2 =
2q3

1q2
2 + q1(q4

2 −8z)−8ω1q1q2
2 −8q2p1 p2 + 8q1p2

2

16q2(q2 p1 −2q1p2)
,

64z2 =
(
2q2

1q2
2 + q4

2 −8ω1q2
2 −8p2

2

)2 −64q2
2 (q2 p1 −−2q1p2)

2 .

(6.62)

The transformed Hamilton–Jacobi equation H1:6:1 −E = 0, which takes the form

g(Q̃1, P̃1)−g(Q̃2, P̃2)

−4γ
√

Q̃1Q̃2
P̃1 − P̃2

Q̃1 − Q̃2

(
f (Q̃1, P̃1)− f (Q̃2, P̃2)

)
= 0,

g(q, p) = (2 f (q, p)−E)2 +
δ
8

q, (6.63)
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is therefore separated in the particular case γ = 0, and the value of the separating
constant is given by the second integral of the motion (6.54),

γ = 0, g(Q̃ j, P̃j)−K = 0, j = 1,2. (6.64)

The general solution in this particular case is

1 : 6 : 8
γ = 0

:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q1 =
(s2

2 −C)s′1 +(s2
1 −C)s′2

(s1 + s2)
√

s2
1 −C

√
s2

2 −C
, C =

K

4κ2
1

q2
2 =

E
s1 + s2

,

P(s) = (s2 −C)
[
(s2 −C)2 + 4c(s2 −C)+ 2(κ1s+ E)

]
.

(6.65)

The expressions (6.65) cannot be written as rational functions of s1,s2,s′1,s
′
2 but are

nevertheless meromorphic [138, 308]. The corresponding 1:6:1 solution is

1 : 6 : 1
κ2

1 = κ2
2

:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q2
1 + Q2

2

4
= s2

1 + s2
2 + s1s2 − (s′1 + s′2)−C,

Q2
1 −Q2

2

4
=

(s2
1 −C)(s2

2 −C)− (s2
2 −C)s′1 − (s2

1 −C)s′2√
s2

1 −C
√

s2
2 −C

.
(6.66)

6.3.2.3 Case 1:12:16

Let us normalize the invariants as (α = −κ2
1 ,β = −4κ2

2 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =
1
2
(p2

1 + p2
2)+

ω
8

(4q2
1 + q2

2)−
1

32
(16q4

1 + 12q2
1q2

2 + q4
2)

− 1
2

(
κ2

1

q2
1

+
4κ2

2

q2
2

)
= E,

K =
(

8(q2 p1 −q1 p2)p2 −q1q4
2 −2q3

1q2
2 + 2ωq1q2

2 + 32q1
κ2

2

q2
2

)2

− 32κ2
1

5

(
q4

2 + 10
q2

2p2
2

q2
1

)
.

(6.67)

The separating variables have been found only in the two particular cases αβ = 0,
these are [411]
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2
1 = (s1 + s2)2 + αG2/G1 + 4αG2G3/

(
G2

1(s1 − s2)2)
+
√−αs1s2G2G4/G3

1 −α
√−αG2

2G5/
(
G3

1(s
2
1 − s2

2)
)

q2
2 = −4Ks2

1s2
2

G1
G1 = −40α(s1 + s2)+ Ks1s2 −40

√−α(s2
2r1 + s2

1r2)
G2 = 80s1s2(s1 + s2)
G3 = −20α(s3

1 + s3
2)+ K(s2

1 + s2
2)+ 40Es2

1s2
2(s1 + s2)

+ 5s3
1s3

2(s1 + s2)(3s2
1 −2s1s2 + 3s2

2)
G4 = K2s1s2(r1s2 + s1r2)−80

√−αr1r2 (Ks1s2 −40(s1s2)) (s1 + s2)
G5 = 20(s1r1 − s2r2)(Ks1s2 −20α(s1 + s2))

+ s1s2(r1s2 − s1r2)
(
K + 20(2E + s2

1s2
2)(s1 + s2)

)

(6.68)

in which s1,s2 obey the canonical hyperelliptic system (6.38), with

αβ = 0 : P(s) = s6 −ωs3 + 2Es2 +
K
20

s−α − β
4

. (6.69)

The subcase α = 0 is quite easy to integrate since both invariants H and
√

K
are quadratic in the momenta, a case where the method of Stäckel [396, 397] can
be applied to build the separating variables. Indeed, the coordinates defined by the
canonical transformation (6.68) are then parabolic,⎧⎨

⎩
q1 = s1 + s2, q2

2 = −4s1s2,

p1 =
s1r1 − s2r2

s1 − s2
, p2 = q2

r1 − r2

2(s1 − s2)
,

(6.70)

the Hamiltonian becomes

α = 0 : H =
f (s1,r1)− f (s2,r2)

2(s1 − s2)
, f (s,r) = sr2 − s5 + ωs3 +

β
4s

, (6.71)

therefore the Hamilton–Jacobi equation H −E = 0 allows one to introduce a sepa-
rating constant

α = 0, f (s j,r j)−2s jE −K = 0, j = 1,2, (6.72)

with K identical to the second constant of the motion. The Hamilton equations in
the separating coordinates

α = 0 : s′j = (−1) j+1 s jr j

s1 − s2
, j = 1,2, (6.73)

then reduce to the canonical hyperelliptic system (6.38).
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6.3.3 Painlevé Property

In the cubic case, the quickest proof of the Painlevé property is the identification
of the fourth order ODE (2.81) in the three admissible cases with three classified
ODEs, see Sect. 6.2.3.

The similar elimination of q2 and q′′′1
2 between the three equations (2.78)–(2.80)

yields a fourth order first degree ODE for q1 [96]

−q′′′′1 + 2
q′1q′′′1

q1
+

(
1 + 6

A
B

)
q′′1

2

q1
−2

q′1
2q′′1
q2

1

+ 8

(
6

AC
B

−B−C

)
q2

1q′′1

+ 4(B−2C)q1q′1
2 + 24C

(
4

AC
B

−B

)
q5

1

+
[

12
A
B

ω1 −4ω2 +
(

1 + 12
A
B

)
µ
q1

−4

(
1 + 3

A
B

)
α
q4

1

]
q′′1

+ 6
A
B

α2

q7
1

+ 20
α
q5

1

q′1
2 −12

A
B

µα
q4

1

+ 4

(
3

A
B

ω1 −ω2

)(
µ − α

q3
1

)
−2µ

q′1
2

q2
1

+ 6

(
A
B

µ2 + 2Bα −8
AC
B

α
)

1
q1

+
(

6
A
B

ω2
1 −4ω1ω2 −8BE

)
q1

+ 48
AC
B

µq2
1 + 4

(
12

AC
B

−B−4C

)
ω1q3

1 = 0. (6.74)

Fourth order first degree ODEs with the Painlevé property have the necessary
form [349]

u′′′′ = A2(u′′,u′,u;x)u′′′2 + A1(u′′,u′,u;x)u′′′ + A0(u′′,u′,u;x), (6.75)

with A j rational in u′′, algebraic in u′ and u, analytic in x, but the class of interest to
us (A2 = 0, which implies a polynomial dependence of A1 and A0 on u′′) has only
been studied for A1 and A0 polynomial in (u′,u), so the results of Sect. 6.2.3 cannot
be transposed to the quartic case2.

It can nevertheless be proven [96] that all four quartic cases have the Painlevé
property (general solution single valued in the complex time t). This involves build-
ing birational transformations to at least one of the classified fourth order ODEs
mentioned in Sect. 6.2.3 [46, 59, 104], respectively: autonomous F-V for 1:2:1, au-
tonomous F-VI for 1:6:1 and 1:6:8, F-III or F-IV for 1:12:16. We will not give here
these developments, because they are rather lengthy and not yet optimal (some open
questions are stated in [96]).

Only one case is quite easy to settle, this is the 1:2:1 case,

2 In the 1:12:16 case with in addition α = 0, this ODE (6.74) is the autonomous restriction of an
equation considered by Kitaev [253, (5.9)] in the hierarchy of the second Painlevé equation, and
reproduced by Cosgrove [106, (6.141)]. Therefore the ODE [106, (6.141)] accepts complementary
terms, which represent the contribution of α in the 1:12:16 Hamiltonian.
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H =
1
2
(p2

1 + p2
2)+

1
2
(ω1q2

1 + ω2q2
2)+

1
2
(q4

1 + 2q2
1q2

2 + q4
2)

+
1
2

(
α
q2

1

+
β
q2

2

)
= E, (6.76)

let us process it here. The symmetries of the system suggest the change of variables

x = q2
1 + q2

2, y = q2
1 −q2

2. (6.77)

Linear combinations of the four equations (2.79), (2.80), (6.76), (6.46) generate the
two ODEs,⎧⎨

⎩
(ω1 −ω2)(y′′ + 8xy)+ x′2 + 2(ω2

1 −ω2
2)y + 4x3

+ 2(ω1 + ω2)x2 + 2(ω1 −ω2)x−8Ex + 4(α + β + K) = 0,

x′′ + 2(ω1 −ω2)y + 6x2 + 2(ω1 + ω2)x−4E = 0,

(6.78)

and the elimination of y yields a fourth order ODE for the variable x in the polyno-
mial class (6.37),

x′′′′ +(20x + 4ω1 + 4ω2)x′′ + 10x′2 + 40x3

+8(ω1 + ω2)(3x2 −E)+ (16ω1ω2 −E)x−8(α + β + K) = 0. (6.79)

This latter ODE can be identified to the autonomous F-V ODE (6.41), with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = x +
ω1 + ω2

5
, κV = 0,

αV = 16E + 4(ω1 −ω2)2 +
4
5
(ω1 + ω2)2,

βV =
8

25
(ω1 + ω2)

(
2(ω1 + ω2)2 −10ω1ω2 −15E

)−8(α + β + K),

(6.80)

therefore q2
1 + q2

2 is a meromorphic function of time and, under the birational trans-
formation between x and y,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x =
(

1
8

Y ′2 +
1

16
(ω1 −ω2)2(ω1 + ω2)+

α + β
2

− K
2

)
1

Y 2

− Y ′′

4Y
− ω1 + ω2

4
,

y = Y − ω1 −ω2

2
=

1
ω1 −ω2

(
−1

2
x′′ −3x2 − (ω1 + ω2)x + 2E

)
,

(6.81)

q2
1 and q2

2 are also meromorphic (but q1 and q2 are multivalued).
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6.4 Final Picture for HH3 and HH4

Among the classical potentials V (q1,q2) rational in q1,q2, only seven (three “cubic”
ones, four “quartic”) pass the Painlevé test. These Hénon–Heiles Hamiltonians have
the following properties [97].

1. In the seven cases the general solution is a singlevalued function of the complex
time t, whose only singularities are movable poles, explicitly expressed via a
canonical hyperelliptic system with genus two.

2. Since each of the seven cases can be mapped to a fourth-order ODE which is
complete in the Painlevé sense, it is impossible to add any term to the Hamilto-
nian without destroying the Painlevé property. The seven Hénon–Heiles Hamil-
tonians are complete.

The main open problems are to find the separating variables in three of the
generic quartic cases.



Chapter 7
Discrete Nonlinear Equations

Abstract We first explain why the logistic map, which admits a continuum limit
to the Riccati equation, is a bad discretization of the latter. We then present the
difficulty to give an undisputed definition for the discrete Painlevé property, and
introduce the three main methods of the discrete Painlevé test: the singularity con-
finement method [184], the criterium of polynomial growth [206], and the pertur-
bation of the continuum limit [88]. Later, we recall the remark by Baxter and Potts
that the addition formula of the Weierstrass function ℘ is an exact discretization of
the Weierstrass equation. Finally, we introduce the two main methods able to build
discrete Painlevé equations: (i) an analytic method which starts from the addition
formula of the elliptic function, takes inspiration from the method of Painlevé and
Gambier and produces a rather long, but incomplete, list of discrete Pn equations;
(ii) a geometric method based on the theory of rational surfaces, which builds ex
abrupto the master discrete Painlevé equation e−P6, whose coefficients have an
elliptic dependence on the independent variable. The main properties of all these
d−Pn are summarized. This chapter also includes discrete Ermakov–Pinney equa-
tions and discrete nonlinear Schrödinger equations.

7.1 Generalities

When the equation for u(x) is no more differential but involves a finite number of
values of x, it is called a discrete equation. Let us start with two examples.

1. The logistic map

un = aun−1(1−un−1), (7.1)

in which un is short for u(x− x0),x = nh.
2. the three-point mapping [184]

163
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un+1 + un + un−1− αn + β
un

= 0. (7.2)

In both examples, the points xn are arithmetically consecutive (equispaced on a
line), and one also uses the name finite-difference equation.

It is convenient to introduce the shorthand notation

u = un, u = un+1, u = un−1, u = un+2, . . . (7.3)

The logistic map (7.1) was introduced in 1845 by Verhulst to describe the evo-
lution of a population living in a closed domain. It displays a chaotic behavior
[405, 139] but, when h → 0, it admits a continuum limit to a linearizable first or-
der ODE. To find this limit, one must expand the uk’s as Taylor series of h up to
order one only (indeed, with two discrete points, one cannot generate a second or-
der derivative, so the continuum limit, if it exists, is necessarily a first order ODE)

un = u(x), un−1 = u(x−h) = u(x)−hu′+O(h2), (7.4)

leading to

a(u−hu′)(1−u + hu′)−u + h.o.t. = 0. (7.5)

Both u(x) and a must have a dependence on h for the limit to be a first order ODE.
Defining the scaling transformation

u(x) = hbU(x), (7.6)

(7.5) becomes

U ′ + hb−1U2 −2hbUU ′ + hb+1U ′2 +
1−a

ah
U + h.o.t. = 0, (7.7)

and one requires the limit to exist (this will request scaling a as well) and to be
nonlinear (this determines the exponent b from the coefficient of U2). This scaling
on both the field un and the parameter a is called the double scaling limit. The final
result is

b = 1, a = 1 + hA, U ′ +U2 −AU = 0. (7.8)

Therefore the chaotic logistic map admits as its continuum limit a linearizable first
order nonlinear equation, the Riccati equation, which possesses the (continuous)
Painlevé property.

The second example (7.2) apparently possesses no continuum limit, but this
equation is not chaotic and has some regularity properties, to be presented in Sect.
7.3.1.

If one now considers the inverse path (going from continuous to discrete), it is
natural to state that the logistic map is a bad discretization of the Riccati equation,
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in the sense that the linearizability is not preserved. Therefore, two basic questions
arise:

1. How to define a “good” discrete equation?
2. How to distinguish between a “good” and a “bad” discrete equation?

Remark. The word “discretization” has two meanings, which should not be con-
fused. For numerical analysts, given an N-th order continuous differential equation,
some initial data and a required precision, the question is to perform a local in-
tegration, and the mean is to develop a discretization scheme able to achieve the
required precision. The order of the discretization scheme (e.g. fourth order Runge–
Kutta) has no relation with the order N of the continuous equation. On the contrary,
the question of discretization formulated above is global in the sense that it must
preserve some global property of the equation, such as: singlevaluedness or multi-
valuedness of the general solution, differential order (i.e. number of arbitrary con-
stants in the general solution), and more generally integrability (in a broad sense) or
nonintegrability.

The first of the above two questions is equivalent to defining a discrete Painlevé
property, which in the case of discrete equations admitting a continuum limit must
be an extrapolation of the (continuous) Painlevé property, but which must also be
defined for discrete equations without continuum limit.

The second question is equivalent to devising a discrete Painlevé test, in order to
generate necessary conditions for a discrete equation to possess the discrete Painlevé
property.

We will mainly consider three types of algebraic discrete equations, in which the
discrete points (in number N + 1, N ≥ 1) are contiguous on a one-dimensional or a
two-dimensional lattice.

1. difference equations, in which the points xn = x0 + nh are equispaced on a line,

∀x ∀h : E(x,h,{u(x + kh), k− k0 = 0, . . . ,N}) = 0, (7.9)

algebraic in the values of the field variable, with coefficients analytic in x and the
stepsize h,

2. q-difference equations, in which the points xn = x0qn are equispaced on a circle,

∀x ∀q : E(x,q,{u(xqk), k− k0 = 0, . . . ,N}) = 0, (7.10)

algebraic in the values of the field variable, with coefficients analytic in x and the
stepsize q,

3. e-difference equations [377], in which the dependence on n of the coefficients of
the equation is elliptic.

In particular, we only give one example of a discrete PDE.
The definitions of order and degree given for continuous ODEs naturally extend

to discrete equations. By definition, the order is one less than the number of contigu-
ous points in the discrete equation, and the degree is the highest of the two polyno-
mial degrees of the l.h.s. E of the equation in the two extreme discrete points (u(x)
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and u(x+Nh) for difference equations, u(x) and u(xqN) for q-difference equations),
where E is assumed polynomial.

Discrete equations were in particular studied by Laguerre [266], mainly as three-
term (N = 2) recurrence relations between coefficients of orthogonal polynomials.
This long remained a mathematical subject [392, 155], which then extended to topo-
logical field theory [30, 234]. Finally, the discrete equation

E ≡−(u−2u + u)/h2 + 2(u+ u + u)u + x = 0, (7.11)

already considered by the authors of last five references, was again encountered
by statistical physicists in two-dimensional quantum gravity [41, 123, 191] who
recognized it as a discrete analogue of the first Painlevé equation P1

E ≡−u′′+ 6u2 + x = 0. (7.12)

The same happened simultaneously with a discrete analogue of the second
Painlevé equation P2 [353, 326] (in the particular case α = 01)

E ≡−(u−2u + u)/h2 +(u+ u)u2 + xu + α = 0 (7.13)

E ≡−u′′ + 2u3 + xu + α = 0. (7.14)

7.2 Discrete Painlevé Property

As opposed to the continuous case, there is not yet an undisputed definition for the
discrete Painlevé property. Two definitions have been proposed,

1. [88] There exists a neighborhood of h = 0 (resp. q = 1) at every point of which
the general solution x → u(x,h) (resp. x → u(x,q)) has no movable critical sin-
gularities.

2. [2, p. 902] The Nevanlinna2 order of growth of the solutions at infinity is finite,
and all series representing the general solution should contain no digamma func-
tions3,

but none is satisfactory.
Indeed, the first one says nothing about discrete equations without continuum

limit such as (7.2), and the second one is not applicable to the continuous P6 equa-
tion, whose Nevanlinna order of growth is undefined.

1 In order to find α nonzero, physical models must get rid of the parity assumption on u, and this
creates technical complications.
2 Nevanlinna theory is presented shortly in Appendix D.
3 The digamma functions, according to these authors, are in the discrete world the analogues of the
movable logarithms in the continuous world.
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Despite the lack of consensus on this definition, a discrete Painlevé test has been
developed to generate necessary conditions for the above properties. This is the
subject of the next three sections.

Of exceptional importance at this point is the singularity confinement method
[184], which tests with great efficiency a property not yet rigorously defined, but
which for sure will be an important part of the good definition of the discrete
Painlevé property.

The discrete PP is invariant under the discrete analogue of (A.5), which is the
group of nonlocal discrete birational transformations

u = r(x,h or q,U,U ,U , . . .),
U = R(X ,H or Q,u,u,u, . . .), X = ξ (x,h or q), H = η(h), Q = κ(q), (7.15)

(r and R rational in U,U ,U , . . . ,u,u,u, . . ., analytic in x and the stepsize, ξ ,η ,κ
analytic). There exist two discrete analogues of the homographic subgroup (1.43),
and both may be useful to establish the discrete equivalent of the classification of
Gambier. The first one is the group of transformations (7.15) which in the contin-
uum limit reduce to the homographic transformations (1.43), where (a,b,c,d,ξ ) are
arbitrary analytic functions of x and of the stepsize. The second one is the group of
local homographic transformations (r and R homographic in U and u, independent
of U ,U , . . . ,u,u, . . ., analytic in x and the stepsize, ξ ,η ,κ analytic).

7.3 Discrete Painlevé Test

We now present the three methods which can presently yield necessary conditions
for the discrete Painlevé property.

7.3.1 Method of Singularity Confinement

Devised by Grammaticos et al. [184], this test relies on the principle that, if a sin-
gularity is of the polar type, then far enough away from its location it is impossible
to feel it. More precisely, if the field u displays a pole at a point x0 in the complex
plane x

u(x) ∼ u0χ p, χ = x− x0 → 0, u0 �= 0, −p ∈ N , (7.16)

it is generically regular at every point x0 + x1 in which x1 is not infinitesimal

∀x1, |x1| >> 0 : u(x0 + x1) �= ∞. (7.17)

When u obeys a discrete equation of order N, the implementation of this “condition
for confinement” consists in requiring the property (7.17) for N consecutive iterates,
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a condition which generically guarantees the same property for the next iterates; the
polar behavior is then felt only during a finite number of iterations.

More specifically, one first checks (confinement in the past) the existence of an
initial condition made of N regular values u(x−Nh), . . . ,u(x−h) ensuring a singular
value for u(x) ∼ u0/ε , in which ε symbolizes a vanishing quantity and u0 has a
nonzero finite value in the limit ε → 0. One computes the next iterates, which may
be singular or not, and one requires the existence of N regular consecutive iterates,
in order to also ensure confinement in the future.

Let us take as an example the second order first degree rational map [184]

un+1 + un + un−1−an − bn

un
= 0, bn �= 0, (7.18)

which includes (7.2) as a particular case.
The only singularity to be tested for confinement is the pole un = 0, therefore one

assumes the initial condition

un = arbitrary finite nonzero value, un+1 = ε. (7.19)

The successive iterates are

un+2 =
bn+1

ε
+ an+1−un − ε, (7.20)

un+3 = −bn+1

ε
+ an+2−an+1 + un +

bn+2

bn+1
ε +O(ε2), (7.21)

un+4 = an+3 −an+2− bn+3 + bn+2 −bn+1

bn+1
ε

+
(an+1 −un)(bn+2 + bn+3)−an+2bn+3

b2
n+1

ε2 +O(ε3), (7.22)

un+5 =
an+3 −an+2 +O(ε)

(an+3 −an+2)ε +O(ε2)
, (7.23)

so un+2 and un+3 are singular, un+4 is regular, and one requires un+5 to be regular at
ε = 0. A first necessary condition is

∀n : an+3 −an+2 = 0. (7.24)

The updated value

un+5 =
bn+4 −bn+3 −bn+2 + bn+1 +O(ε)
(−bn+3 −bn+2 + bn+1)ε +O(ε2)

, (7.25)

yields the second necessary condition

∀n : bn+4 −bn+3 −bn+2 + bn+1 = 0, (7.26)

and the new updated value
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un+5 =
bn+4 +O(ε)

abn+3 +(un −a)bn+1 +O(ε)
, (7.27)

is generically regular. Moreover, the dependence of the fifth iterate un+5 on the
initial condition (un,ε) has not been lost, so the map emerges unaltered from the
singularity. This ends the method of singularity confinement.

The two necessary conditions (7.24) and (7.26) integrate as [184]

an = a, bn = αn + β + γ(−1)n, (7.28)

in which (a,α,β ,γ) are arbitrary constants, therefore the equation selected by the
test has the general form

un+1 + un + un−1 −a− αn + β + γ(−1)n

un
= 0. (7.29)

It will be shown in Sect. 7.5 that (7.29) has the discrete Painlevé property. Let us
only investigate here its continuum limit.

In front of the (−1)n term in (7.29), a question arises: how to avoid setting γ = 0
without any good reason, i.e. how to give a meaning to the continuum limit of (−1)n

(or more generally to jn in which j is a p-th root of unity)? The solution [182,
p. 461] is to split the single field un into two coupled fields, by denoting differently
un according to whether n is even or odd. Therefore, when γ is nonzero, the single
equation (7.29) is represented as the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u2m = vm−1/4, u2m+1 = wm−1/4,

E1 ≡ wm + vm + wm−1 −a− 2αm−α/2 + β + γ
vm

= 0,

E2 ≡ vm+1 + wm + vm −a− 2αm+ α/2 + β − γ
wm

= 0.

(7.30)

It is important to remark that the order (two here) is not changed, since the map now
expresses (vm+1,wm+1) in terms of (vm,wm) instead of un+1 in terms of (un,un−1).

For γ = 0,a �= 0, the continuum limit of (7.29) to an ODE for U(x) is computed
by assuming

nh =
x−b0

a0
, u(x) = c0(1 + c1U(x)), c0c1 �= 0, (7.31)

in which the constants a0,b0,c0 can be arbitrarily chosen. An expansion up to sec-
ond order derivatives leads to

x−b0

c2
0c1

α(a0h)−3

+(1/c1)
(−3 + c−2

0 β + c−1
0 a +(ac−1

0 −6)c1U −3c2
1U2)(a0h)−2

− (1 + c1U)U ′′+ h.o.t. = 0, (7.32)
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and one then requires the limit equation to have second order and to be nonlinear.
The result is the P1 equation (the coefficients of U ′′,U2,x, which are nonzero nu-
merical constants, are set to their usual values −1,6,1),

{−U ′′ + 6U2 + x = 0, c1 = −2a2
0h2, a = 6c0 + Ah3,

α = −2a5
0c2

0h5 + α̃h6, β = −3c2
0 − c0Ah3 + β̃h4,

(7.33)

in which (a0,c0) can take any numerical value and the constants (A, α̃, β̃ ) are regular
when h goes to zero. These last three constants represent the arbitrariness of the
initial parameters (a,α,β ), which should be preserved, so they should not be set to
zero.

For γa �= 0, the assumption for a continuum limit is governed by the parity invari-
ance (vm,wm,h,α,γ) → (wm,vm,−h,−α,−γ) of the system (7.30) [182, p. 461],

mh =
x−b0

a0
,

vm + wm

2
= c0(1 + c2h2W (x)),

vm −wm

2
= c0c1hV (x), (7.34)

it is sufficient to expand vm+1 and wm−1 to first order in h, and the result is the first
order system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
h→0

E1 + E2

h2 = V ′ − c1

a0
V 2 + 4

c2

a0c1
W − 2α̃

a2
0c2

0c1
x = 0,

lim
h→0

E1 −E2

h3 = W ′ − c2
1

c2
VV ′ − 2c1

a0
VW +

c1A
a0c0c2

V +
2γ̃ − α̃
2a0c2

0c2
= 0,

a = 2c0 + Ah2, α = α̃h3, β = c2
0 +(β̃ − c0A)h2,

γ = γ̃h3, b0 =
a0β̃
2α̃

+ Bh,

(7.35)

in which (a0,c0,c1) are arbitrary pure numbers, and (A, α̃ , β̃ , γ̃) arbitrary constants
regular at h = 0.

This system for (V,W,x) is readily identified to the birational transformation
(5.296) between a P2 equation for V (x) and a G34 equation for W + ((4c2 +
a0c1)V ′+(4c2 +a2

0)(V
2 +x/2))/(4c2), with c2

1 = a2
0. Therefore the continuum limit

of the single equation (7.29) when γa �= 0 is the second Painlevé equation, while that
of the system (7.30) is richer since it is the birational transformation between G34
and P2.

Finally, for a = 0, no continuum limit of either (7.30) or (7.29) seems to exist
[182, p. 464].

7.3.2 Method of Polynomial Growth

Let us first define the degree of an N-th order rational map
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un+1 = R(un,un−1, . . . ,un−N+1), (7.36)

as the polynomial degree of an equivalent first order N-dimensional map when writ-
ten in homogeneous coordinates.

For instance, given the second order map (7.18), one first defines two coordinates
(pn,qn), e.g. (

pn

qn

)
=

(
un−1

un

)
, (7.37)

then three homogeneous coordinates (yn,zn,tn),

pn

zn
=

qn

yn
=

1
tn

, (7.38)

so as to convert the original map to the homogeneous polynomial map⎛
⎝yn+1

zn+1

tn+1

⎞
⎠ =

⎛
⎝−y2

n − ynzn + anyntn + bnt2
n

y2
n

yntn

⎞
⎠ . (7.39)

Evidently, any common factor to (yn+1,zn+1,tn+1) should be divided out. The degree
dn of the map is defined as the common global polynomial degree of yn,zn,tn, n ≥ 0,
in a generic initial condition (y0,z0,t0) (here d0 = 1,d1 = 2).

It has been conjectured [137, 418] that any rational map which is not chaotic
should have a degree dn with a growth at most polynomial in n, therefore satisfying
the necessary condition

lim
n→+∞

logdn

n
= 0. (7.40)

Based on this conjecture, a quite powerful indicator of integrability of rational
maps has been proposed [206] for testing whether the growth is at most polynomial.

With the map (7.18), one checks that the growth is polynomial.
A much more interesting map is [206]

un+1 + un−1−un − a
u2

n
= 0, a �= 0, (7.41)

equivalent to the homogeneous polynomial map⎛
⎝yn+1

zn+1

tn+1

⎞
⎠ =

⎛
⎝y3

n − y2
nzn + at3

n
y3

n
y2

ntn

⎞
⎠ . (7.42)

Given the arbitrary initial condition
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⎝y0

z0

t0

⎞
⎠ (7.43)

the degrees of the successive iterates are 1,3,9,27, . . ., but an accident occurs for
n = 5. Indeed the three homogeneous polynomials y5,z5,t5 have the gcd (greatest
common divisor) y8

0, so a cancellation occurs in the rational functions pn,qn.
In the language of the singularity confinement method, the initial singularity⎛

⎝y0

z0

t0

⎞
⎠ =

⎛
⎝ε

b
1

⎞
⎠ , ε → 0, (7.44)

is confined since the fifth iterate⎛
⎝y5

z5

t5

⎞
⎠ =

⎛
⎝ bε8 + . . .
−ε9 + . . .
ε8 + . . .

⎞
⎠ , (7.45)

which is equivalently representable as⎛
⎝y5

z5

t5

⎞
⎠ =

⎛
⎝ b + . . .
−ε + . . .
1 + . . .

⎞
⎠ , (7.46)

contains the same information as the initial condition in the limit ε → 0, so the map
passes the test of singularity confinement.

The map is simple enough for the degrees dn to be computed [206],

dn = 1,3,9,27,73,195,513, . . ., lim
n→+∞

logdn

n
= log

3 +
√

5
2

. (7.47)

The growth is exponential and indeed a numerical study displays a chaotic behavior
[206, Fig. 1].

Therefore, despite its passing the singularity confinement test, the map (7.41)
should be declared as not having the discrete Painlevé property, and the criterium of
polynomial growth must be part of the discrete Painlevé test.

Let us remark that no continuum limit of (7.41) is known.

7.3.3 Method of Perturbation of the Continuum Limit

Consider the discrete equation (7.9) or (7.10), and assume it admits a continuum
limit.

The perturbation defined by an expansion of u as a Taylor series in the lattice
stepsize [88]
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x unchanged, h = ε, q = eε , u =
+∞

∑
n=0

εnu(n), a = analytic (A,ε), (7.48)

generates an infinite sequence of differential equations E(n) = 0

E =
+∞

∑
n=0

εnE(n)(x,u(0), . . . ,u(n)), (7.49)

E(n) ≡ E(0)(x,u(0))
′
u(n) + R(n)(x,u(0), . . . ,u(n−1)) = 0, n ≥ 1, (7.50)

whose first one n = 0 is the “continuum limit”. The next ones n≥ 1, which are linear
inhomogeneous, have the same homogeneous part E(0)′u(n) = 0 independent of n,
defined by the derivative of the equation of the continuum limit, while their inhomo-
geneous part R(n) (“right-hand side”) comes at the same time from the nonlinearities
and the discretization.

This perturbation of the continuum limit is entirely analogous to the perturba-
tive method of the continuous case, either in its Fuchsian version (Sect. 2.2) [82]
or in its nonFuchsian one (Sect. 2.3) [318], depending on the nature, Fuchsian or
nonFuchsian, of the linearized equation E(1) = 0 at a singular point of u(0).

The simplicity of the method is best seen on the Euler scheme for the Bernoulli
equation [88]

E ≡ u(x + h)−u(x)
h

+ u(x)2 = 0, (7.51)

i.e. the logistic map (7.1) of Verhulst, a paradigm of chaotic behavior which should
therefore fail the test. Let us expand the terms of (7.51) according to the perturbation
(7.48) up to an order in ε sufficient to build the first equation E(1) = 0 beyond the
continuum limit E(0) = 0

u = u(0) + u(1)ε +O(ε2), (7.52)

u2 = u(0)2
+ 2u(0)u(1)ε +O(ε2), (7.53)

u(x + h) = u(x)+ u′(x)h +(1/2)u′′(x)h2 +O(h3), (7.54)

u(x + h)−u(x)
h

= u(0)′ +(u(1)′ +(1/2)u(0)′′)ε +O(ε2). (7.55)

The equations of orders n = 0 and n = 1

E(0) = u(0)′ + u(0)2
= 0, (7.56)

E(1) = E(0)′u(1) + (1/2)u(0)′′ = 0, E(0)′ = ∂x + 2u(0). (7.57)

have the general solution

u(0) = χ−1,χ = x− x0, x0 arbitrary, (7.58)

u(1) = u(1)
−1χ−2 − χ−2 logψ , ψ = x− x0, u(1)

−1 arbitrary, (7.59)
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and the movable logarithm establishes the failure of the test as soon as order n = 1,
at the Fuchs index i = −1.

Remark. The only restriction on u(0) is not to be what is called a singular solution
(not obtainable from the general solution by assigning values to the arbitrary data),
i.e. it can be either the general solution (as above) or a particular one, it can also be
either global (as above) or local (Laurent series).

As another example, one can process a straightforward discretization of P1,

E ≡ −(u−2u + u)h−2 + 3λ1(u + u)u + 6λ2u2 + 6λ3uu+ g = 0. (7.60)

with ∑λk = 1, and g an unspecified function of x. The result [88] is the selection of
three values of the weights

−→λ , with g = x.
The first value

−→λ = (2/3,1/3,0) corresponds to the d−P1 (7.11) found in quan-
tum gravity and is identical, up to some translation, to the case γ = 0 of (7.29);
since it has a Lax pair, the condition is then sufficient. The second value (1,0,0)
(case a = 0 in [184]) corresponds to a d−P1 with a second order Lax pair [88]. The
third value (1/2,1/4,1/4) defines an equation equivalent to that for (1,0,0) under
a discrete birational transformation (7.15) [370].

7.4 Discrete Riccati Equation

Consider the continuous Riccati equation

−du/dx + αu2 + 2β u + γ = 0, (7.61)

in which α,β ,γ may depend on x. The property to be preserved here is the lineariz-
ability, in addition to the order one and the degree one. The discretization of du/dx
is classical, with a second order remainder,

u(x + h/2)−u(x−h/2)
h

= u′(x)+
1

24
u′′′(x)h2 + O(h4). (7.62)

There exists only one polynomial discretization of u2 which preserves the order
one (usage of two points, x + h/2 et x− h/2) and the degree one (in u = u(x +
h/2) and u = u(x−h/2)), this is uu, whose remainder has second order. Hence the
solution [214]

−(u−u)/h + αuu +(β1u+ β2u)+ γ = 0, (7.63)

in which (α,β1,β2,γ) are arbitrary discretizations of (α,β ,γ). It is invariant under
(h,β1,β2) → (−h,β2,β1). The map u → u is therefore homographic.

Whatever be the discretization of (α,β ,γ), the equation can be linearized either
into a system of two first order coupled equations,

u = v/w : (v− v)/h = β2v + γw, (w−w)/h = β1w−αv, (7.64)
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or, under the transformation

u(x) = − (1−hβ1(x))(ξ (x + h/2)− ξ (x−h/2))
hα(x + h/2)ξ (x−h/2)

, (7.65)

into a second order equation[
α(ξ − ξ )−α(ξ − ξ )

]
/h2 + α(β1 + β2)(ξ − ξ )/h−ααγξ

−α(β1 −β2)(ξ − ξ )/h−β2

[
αβ1(ξ − ξ )+ αβ1(ξ − ξ )

]
= 0. (7.66)

It therefore possesses the discrete PP.

Remarks.

1. The Euler scheme
−(u−u)/h + αu2 + 2β u + γ = 0 (7.67)

is identical, at least for constant values of α,β ,γ , to the map of Verhulst (lo-
gistic map) whose behavior is generically chaotic. It possesses no symmetry, as
opposed to the well discretized equation (7.63), invariant under (h,β1,β2) →
(−h,β2,β1).

2. From the singularities point of view, the homographic correspondence between u
and u in (7.63) remedies a key omission of (7.67), which is the absence of a pole
depending on the initial condition u(0) (movable pole).

7.5 Discrete Lax Pairs

After the discrete Painlevé test has generated some necessary conditions for the
discrete equation under study to possess the discrete PP, one must prove or disprove
the Painlevé property.

In the continuous ODE case described in Sect. 5.8, it has been recalled that,
from the (continuous) Lax pair, one can prove the (continuous) Painlevé property.
Following most researchers, we will admit that, in the discrete case, the existence of
a discrete Lax pair is a constructive proof of the discrete Painlevé property.

Let us first define a discrete Lax pair. Let us consider the Lax pair of a (continu-
ous) ODE E(x,u) = 0, (5.13){

∂xψ = Lψ , ∂µψ = Mψ ,
(C ≡ ∂µL− ∂xM + LM−ML = 0) ⇔ (E = 0), (7.68)

in which µ is the spectral parameter, and let us restrict here to the difference type
equations (7.9).

One requires the differential order in the column vector ψ to be conserved, there-
fore ψ must be discretized with two points, which we denote ψ = ψ(x + h/2) and
ψ = ψ(x− h/2). As to the operator L, it must be discretized with as many points
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u as required by the differential order of the equation under consideration, points
which we denote u = u(x + h),u = u(x),u = u(x− h) for a second order equation.
In order to keep a linear correspondence between the continuous operators (L,M)
and their discrete counterparts, it is then convenient to discretize ∂xψ = Lψ in a
dissymmetric-looking way and to introduce [32] the linear operator A linking ψ to
ψ , thus defining the discrete Lax pair (A,B,z,ψ ,h) as [233]⎧⎨

⎩
ψ = Aψ , ∂zψ = Bψ ,

(K ≡ ∂zA + AB−BA = 0) ⇔ (E = 0)
(7.69)

(it is an easy exercise to establish the expression for K).
The continuum limit is then{ A−1

h
→ L, (dz/dµ)B → M,

(dz/dµ)(∂zA + AB−BA)/h → ∂µL− ∂xM + LM−ML,
(7.70)

with some link F(µ ,z,h) = 0 between the spectral parameters µ and z.
For a second order equation E(u,u,u,x,h) = 0, the operators A and B must have

the u−dependences A(u,u,u),B(u,u).
Remark. The definition is invariant under the stepsize reversal

(E,A,B,x,h,u,u,u) → (E,A−1,B,x,−h,u,u,u). (7.71)

No discrete equivalent is known to the singular manifold method, i.e. one does
not know how to take advantage of the singularity structure of a discrete equation in
order to build a discrete Lax pair and the discrete analogues of the tools presented
in Sect. 5.2. Therefore, given a discrete equation which passes the discrete test, its
Lax pair is often guessed from the knowledge of the continuous Lax pair.

For the equation (7.29) previously isolated by the test of singularity confinement,
such a discrete Lax pair is [182, p. 494]

A =

⎛
⎝(β −αn/2− γ(−1)n)/u 1 0

0 0 1
z 0 0

⎞
⎠ , (7.72)

B =

⎛
⎝λ1 u 1

z αn/2 + γ(−1)n a−u−u
zu z 1 + α(n−1)/2− γ(−1)n

⎞
⎠ , (7.73)

in which λ1 is constant. This Lax pair is valid even in the case a = 0 where no
continuum limit is known.
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7.6 Exact Discretizations

We now give two examples of discrete equations in which the discrete field also
obeys the (continuous) ODE which is the continuum limit of the considered discrete
equation.

7.6.1 Ermakov–Pinney Equation

If one assumes that the field u(x) which satisfies the linear Schrödinger (Sturm–
Liouville) equation

ψ ′′ + f (x)ψ = 0, (7.74)

is a complex field ψ = veiS and the potential f remains real, like in quantum me-
chanics, the modulus v obeys a second order nonlinear ODE,

v′′ + f v + c2v−3 = 0, c = constant,

first introduced by Ermakov [133] and later considered by Pinney [358], there-
fore often called Ermakov–Pinney equation. Its movable branching v ∼ v0(x −
x0)1/2,v2

0 = 2c, can be removed, thanks to the parity, by considering the ODE for
w = v2,

ww′′ − 1
2

w′2 + 2 f (x)w2 + 2c2 = 0. (7.75)

In the continuous case, the Sturm–Liouville equation enjoys many beautiful
properties, among them its equivalence [346, p. 230] (see details in [75]) with the
Riccati equation and the Schwarz equation. It is therefore natural to investigate
whether this is still the case after discretization, and this section summarizes the
main results achieved so far.

The properties of the (continuous) ODE (7.75) are

1. its general solution is a nonlinear superposition of two solutions of a linear
equation; indeed, given any two linearly independent solutions ψ+,ψ− of the
Schrödinger equation

ψ ′′ + f ψ = 0, (7.76)

with a Wronskian equal to 2c, the general solution of (7.75) is

w = ψ+ψ− =
2c

(log(ψ+/ψ−))′
, ψ ′

+ψ−−ψ ′
−ψ+ = 2c; (7.77)

This proves the Painlevé property for (7.75).
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2. as a member of the class number 22 of Gambier [162], it is linearizable by elim-
ination of c into the third order equation

w′′′ + 4 f w′ + 2 f ′w = 0; (7.78)

3. the equation for u = w−1 is transformed into a Schwarzian equation under the
singular part transformation [74]

u = w−1 =
1
2c

(logϕ)′, (7.79)

{ϕ ;x}−2 f = 0. (7.80)

The two formulae (7.77) and (7.79) are identical under the correspondence

ϕ =
ψ+

ψ−
. (7.81)

Consider now the problem of discretizing (7.75) while conserving as many of the
above properties as possible.

From the Darboux transformation (5.22) rewritten in matrix form,(
Ψ
Ψ ′

)
= κ−1

( −y 1
y2 −κ2 −y

)(
ψ
ψ ′

)
, y =

θ ′

θ
, (7.82)

in which κ is an arbitrary nonzero constant, Hone [223] found a birational transfor-
mation which maps (7.75) to an equation of the same form

WW ′′ − 1
2

W ′2 + 2FW 2 + 2C2 = 0. (7.83)

This is

w =
(yW − (1/2)W ′)2 −C2

κ2W
, W =

(yw+(1/2)w′)2 − c2

κ2w
, (7.84)

y2 = κ2 − f + F
2

, (7.85)

C2 − c2 = 0, ( f ′ + F ′)2 + 2( f −F)2( f + F −2κ2) = 0. (7.86)

Let us now define discrete variables by

Ψ = ψ , W = w, F = f . (7.87)

As indicated in Sect. 5.8, one then builds [223] the contiguity relation√
c2 + κ2ww +

√
c2 + κ2ww + wΩ = 0, (7.88)

Ω = −
√

κ2 − ( f + f )/2−
√

κ2 − ( f + f )/2,
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a second order discrete equation for w, which has second degree after removal of
the square roots involving w.

In the continuous variable

Z =
w′

2
− yw, (7.89)

the degree of the contiguity relation becomes unity [223],

κ2(Z + Z)(Z + Z)−ΩΩ(Z2 − c2) = 0. (7.90)

The two discrete equations (7.88) and (7.90) both admit a continuum limit h →
0 to the Ermakov–Pinney equation, an exercise which is left to the reader. Since
the discrete field w in (7.88) also obeys the continuous Ermakov–Pinney equation
(7.75), one says that the discretization (7.88) is exact.

Remark. The two discrete equations (7.88) and (7.90) were first given in [68] in
the particular case

κ =
1
h
, Ω = −2

h
+ h f . (7.91)

Equations (7.88) and (7.90) have the discrete Painlevé property. Indeed, the
two functions ψ+,ψ− of (7.77) which satisfy the continuous Schrödinger equation
(7.76) also satisfy, as seen from the Darboux transformation and its inverse, the same
second order discrete linear equation

κψ + Ωψ + κψ = 0, (7.92)

with the discrete Wronskian

ψ−ψ+−ψ+ψ− =
2c
κ

. (7.93)

From Definition (7.89) of Z and the Darboux transformation (7.82), the elimina-
tion of derivatives ψ ′

+,ψ ′− leads to a formula expressing Z in terms of two solutions
of the same linear equation,

Z =
κ
2

(ψ+ψ− + ψ−ψ+) , (7.94)

identical to that in [68].
The elimination of ϕ = ψ+/ψ− between (7.90), (7.94), and (7.93) provides the

discrete analogue of (7.80)

(ϕ −ϕ)(ϕ −ϕ)

(ϕ −ϕ)(ϕ −ϕ)
− ΩΩ

κ2 = 0. (7.95)

This discrete Schwarzian was first given by Faddeev and Takhtajan [136].
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Finally, the elimination of c by discrete differentiation linearizes both (7.88) and
(7.90) into two different third order discrete linear equations admitting (7.78) as a
continuum limit.

7.6.2 Elliptic Equation

The (continuous) elliptic equation has two usual kinds of normalized forms (Ap-
pendix C), the one of Weierstrass and the twelve ones of Jacobi (to which we will
prefer the three ones h1,h2,h3 of Halphen, Appendix Sect. C.2), defined by the first
and second order equations

℘′2 = 4℘3 −g2℘−g3, (7.96)

℘′′ = 6℘2 −g2/2, (7.97)

h′α = −hβ hγ , (7.98)

h′′α = hα(2h2
α −3eα), (7.99)

in which g2,g3,eα are constants and (α,β ,γ) is an arbitrary permutation of (1,2,3).
As noticed in the context of discretization by Baxter [24] and Potts [364], the

addition formulae (C.7) and (C.19) ipso facto define an exact discretization scheme
for the first order equations (7.96) and (7.98). This is obvious by renaming (x1,x2) as
(x−h/2,h). A scheme for the second order equations (7.97) and (7.99) then results
from the difference of the discrete first order equations taken for (x1,x2) = (x,h)
and (x−h,h). The results are [364, 365, 366],

(u−u)2℘(h) = 2uu(u+ u)− (g2/2)(u+ u)−g3

−[(uu + g2/4)2 + g3(u+ u)]℘−1(h), (7.100)

(u−2u + u)℘(h) = 2u(u+ u + u)−g2/2

−[u2(u+ u)+ (g2/2)u + g3]℘−1(h), (7.101)

(u−u)2 h2
α(h) = (uu)2 −2(h′α(h)+ h2

α(h))uu + 9eβ eγ , (7.102)

(u−2u + u)h2
α(h) = u2(u + u)−2(h′α(h)+ h2

α(h))u. (7.103)

Remarks.

1. The general solution of (7.100) and (7.102) is by construction ℘(x− x0,g2,g3)
and hα(x− x0,g2,g3), where the step h is arbitrary, i.e. not necessarily small.
These equations therefore possess the discrete PP. Equations (7.101) and (7.103)
also possess the discrete PP since they admit a discrete Lax pair [89].

2. Order and degree are conserved by the four discretizations.
3. From these schemes of infinite order, the Laurent expansion of ℘(h) around its

double pole h = 0, or of hα(h) around its simple pole, defines the second order
schemes
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(u−2u + u)h−2 = 2u(u+ u + u)−g2/2, (7.104)

(u−2u + u)h−2 = u2(u+ u)+ 3eαu, (7.105)

which possess a discrete Lax pair [89] and therefore have the discrete PP.
4. If one replaces in (7.102) (or (7.100)) the three fixed coefficients by arbitrary

constants, then applies to the resulting equation

a(u−u)2 = (uu)2 + buu + c, (7.106)

an arbitrary homography, one generates a first order second degree discrete equa-
tion

P(u,u,c j) = 0, (7.107)

depending on six arbitrary constants c j and having second degree separately in u
and u4. The latter equation was considered and integrated (with elliptic functions
of course!) in 1973 by Baxter [24] in the eight-vertex model, as a commutation
condition of the Yang–Baxter, or star–triangle relations. These Yang–Baxter re-
lations [237], which are second order discrete tensorial equations, play in the
discrete domain a role as central as the one played by the Yang–Mills equations
in the continuous domain.

The exceptional importance of these exact discretizations, and in particular of the
six-parameter equation (7.107), will be emphasized in Sect. 7.8.

7.7 Discrete Versions of NLS

The discrete version of the nonlinear Schrödinger equation which naturally occurs
in most physical problems is not derived as a discretization of the NLS, but as the
output of some assumption not involving a stepsize, and the resulting equation is
generically (the denominator h2 is pure convenience)

iun,t + p
un+1 + un−1−2un

h2 + q|un|2un = 0, pq �= 0, (7.108)

with p and q real. This is the case in Bose–Einstein condensation [359] and in ideal
optical fibers [10]. Its only analytic solution known so far is the plane wave

un = aei(knh−ωt), ω −4psin2 kh
2

+ q|a|2 = 0. (7.109)

4 This freedom can be increased [230, 251]. For instance [251], if the starting equation u = hα (x)
or u = ℘(x) is replaced by u = hα(x + (−1)nγ) or u = ℘(x + (−1)nγ) and the system is split
according to the parity of n as done in (7.30), the degrees in u and u become four.
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One very interesting and open question is to find, if it exists, a closed form expres-
sion for the bright and/or dark solitary wave of (7.108).

From the point of view of the Painlevé property, (7.108) fails the three methods
of the Painlevé test (Sects. 7.3.1, 7.3.2 and 7.3.3), therefore, in the language of Sect.
7.1, it is a bad discretization of the NLS equation.

An inverse method to find a good discretization of the NLS is to discretize the
Lax pair of the (continuous) NLS equation, which leads to the Ablowitz–Ladik [4]
discrete NLS

iun,t + p
un+1 + un−1 −2un

h2 + qunun
un+1 + un−1

2
= 0. (7.110)

This equation possesses by construction the discrete Painlevé property. A discretiza-
tion of the NLS equation itself in the polynomial class could not isolate [265] an-
other integrable discrete NLS (in contrast for instance with the discretization (7.60)
which admits three solutions).

An instructive approach [141] is to consider the NLS-type equation

iun,t + p
un+1 + un−1−2un

h2 + q

(
un+1 + un−1

2
F(|un|)+ unG(|un|)

)
= 0,

(7.111)

and to determine the couples of functions (F,G) which allow the solutions sech and
tanh of the continuous NLS. One such physically relevant equation is the saturable
discrete nonlinear Schrödinger equation

iut + p
u(x + h,t)+ u(x−h,t)−2u(x)

h2 + q
|u|2u

1 + ν(qh2/p)|u|2 = 0, pqν �= 0,

(7.112)

which admits various elliptic solitary waves [250, 62]; in the continuum limit, these
solutions require that ν → 1/2, making the limit of (7.112) equal to the NLS equa-
tion.

7.8 A Sketch of Discrete Painlevé Equations

A major problem is to find new discrete transcendental functions, i.e. to extend to
the discrete world the discovery of the six transcendents of Painlevé. This amounts
to establishing a discrete analog of the classification of all second order first degree
nonlinear ODEs which possess the PP, see Appendix Sect. A.3.2. For each discrete
type (difference equation, q-difference, e-difference), one has

1. to build a discrete analog of the α-method so as to forget no equation;
2. to define groups of invariance for the discrete PP so as to arrange the equations

in distinct equivalence classes. The discrete birational group has been defined in
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(7.15), but proving the equivalence of two given discrete equations under this
group is quite difficult;

3. to prove the PP for an equation which passes the discrete Painlevé test. As said
in Sect. 7.5, we will admit that it is sufficient to exhibit a discrete Lax pair;

4. to define a discrete analog of the notion of irreducibility (Appendix Sect. A.2).
This has not been done yet.

This huge task has been tackled from two quite different approaches, an analytic
one and a geometric one, which we now briefly present.

7.8.1 Analytic Approach

This relies on the following remark. In the list of 50 equations of Gambier [163]
(Appendix Sect. A.3.2), all autonomous equations either are linearizable or admit
a first integral defining a first order second degree elliptic ODE, while all nonau-
tonomous equations admit a coalescence to an autonomous equation of the list.
Therefore, starting only from the most general first order second degree elliptic

ODE, one should be able, in principle, to generate the full classification. For in-
stance, the elimination of the constant K between the equation

u′2 = 2

[
αu− β

u
− γ

u−1
− δ

u−a
+ K

]
u(u−1)(u−a) (7.113)

and its derivative yields an equation (numbered 48 in Gambier’s list) which is the
autonomous limit of the sixth Painlevé equation P6. To proceed from the 48-th Gam-
bier equation to P6, one merely replaces the constant coefficients by arbitrary func-
tions of x, which are then selected by requiring this nonautonomous equation to pass
the Painlevé test.

This idea has been extended to the discrete equations [371] with great success.
The starting point is the six-parameter first order second degree discrete autonomous
equation (7.107), obtained by eliminating hα(x) between u = hα (x) and u = hα(x+
h) then by performing a homography. By eliminating one of the six parameters c j

between P(u,u,c j) = 0 and P(u,u,c j) = 0, one generates a family of five-parameter
second order first degree discrete autonomous equations

Q(u,u,u,c j) = 0, (7.114)

(the degree of the polynomial Q in its first three arguments is 1,4,1). This fam-
ily of equations, first introduced in [302, 367, 368] and sometimes called the QRT
mapping, is a direct consequence of the addition formula of elliptic functions. After
changing the constants in (7.114) to functions of x and requiring the nonautonomous
equation to pass the discrete Painlevé test, the selected equations are likely to pos-
sess the discrete Painlevé property, and a search for their Lax pair may settle this
final point. Many d−Pn and q−Pn equations have been isolated by this proce-
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dure (detailed in lecture notes [182]), in particular a q−P6 equation with a Lax pair
(discovered in [181] and identified as such in [242])⎧⎪⎪⎨

⎪⎪⎩
ynyn−1 =

st(xn −a)(xn −b)
(xn − c)(xn −d)

,

xnxn+1 =
cd(yn − p)(yn − r)
(yn − s)(yn − t)

,
prcd
abst

= q,
(7.115)

in which c,d,s,t are constants and a,b, p,r are proportional to qn. Both xn and yn

admit a continuum limit to P6 and the relation between limxn and limyn is the ele-
mentary birational transformation (5.305) of P6 [182, p. 463]. However, the above
procedure cannot guarantee that all the discrete Painlevé equations have been found
since it is only sufficient.

7.8.2 Geometric Approach

The Painlevé transcendents were isolated from two different points of view: the
construction of new functions defined by nonlinear ODEs (Painlevé and Gambier),
and the monodromy which preserves the deformation of linear differential equations
[156, 240]. By exploring a third, geometric approach, Sakai [377] uncovered in
two features of the continuous Pn the key to the construction of all the discrete Pn
(additive d−Pn, multiplicative q−Pn and elliptic e−Pn).

These two features are

1. the group of symmetries which leave invariant each Pn, detailed in Sect. B.4;
2. another group arising from the space of initial conditions as constructed in [339]

by the blowing-up procedure (éclatement in French).

Both groups can be represented by diagrams of the Dynkin type (Table 7.1), and

their comparison is quite instructive. In terms of complexity of the groups (E(1)
8 is

the richest, A(1)
1 the poorest), one list is increasing, the other is decreasing, and P6

is the only common point. Most of all, this provides the information that the richest

group E(1)
8 should play a quite important role.

Table 7.1 Comparison of two sets of Dynkin diagrams. The first line lists the diagrams of the
affine Weyl groups representing the elementary birational transformations. The second line shows
the diagrams describing the configurations of irreducible components of the “vertical leaves”.

Feature P1 P2 P3 P4 P5 P6

Birational transfo None A(1)
1 (2A1)(1) A(1)

2 A(1)
3 D(1)

4

Vertical leaves E(1)
8 E(1)

7 D(1)
6 E(1)

6 D(1)
5 D(1)

4
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This role was uncovered by a very beautiful construction starting from the theory
of rational surfaces and ending in the master discrete Painlevé equation [377]. Ped-
agogical details can be found in [331] and [245, §6 and 7]. In one of its equivalent
geometric constructions, one starts from the most general cubic curve in the plane.

Such a curve is characterized by nine parameters (like the group E(1)
8 ) and has genus

one, its natural parametric representation in homogeneous coordinates (x1,x2,x3) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = −σ(u)σ(u + c2)σ(u− c2),
x2 = −σ(u)σ(u + c1)σ(u− c1),
x3 = −σ(u− c0)σ(u− c1)σ(u− c2),

c1 =
ω1

2
, c2 =

ω2

2
, c0 = −c1 − c2,

(7.116)

in which σ is the entire function of Weierstrass and ω1,ω2 the associated half-
periods. Then the master equation e−P6 can be represented as a rational relation
between ten points: eight belonging to the same cubic curve (the so-called “pa-
rameters” of e−P6), and two others (the so-called “independent” and “dependent”

variables). Its affine Weyl group is E(1)
8 by construction, but its Lax pair is still un-

known. As compared to P6, it depends on four more parameters.
The explicit expression for e−P6 is far from short, but some codimension one

e−P6 (i.e. depending on one less arbitrary parameter) can be written in a few lines,
such as [336, (12)]⎧⎪⎪⎨

⎪⎪⎩
xn−1 −℘(λ n + an)
xn−1 −℘(λ n + bn)

× xn −℘(−2λ n + cn)
xn −℘(−2λ n + dn)

× xn+1 −℘(λ n + en)
xn+1 −℘(λ n + fn)

= F(n,(−1)n).
(7.117)

Here, an, . . . , fn are linear combinations of a constant, a period-3 function ϕ(n), a
period-4 function ω(n), and finally a parity-dependent term (−1)nγ with γ constant,
and the r.h.s. F is independent of xn and involves similar values of the elliptic
function ℘.

7.8.3 Summary of Discrete Painlevé Equations

It is outside the scope of the present volume to give a complete description of all the
discrete analogues of the Painlevé equations. The interested reader can refer to the
thesis of Sakai [377] and to subsequent reviews [245, 183].

Some of their important properties are

1. The coefficients of their equation have a dependence on n which is elliptic (e-
discrete) or degenerate of elliptic (trigonometric en logq, rational), in full analogy
to the first order autonomous ODEs which have the Painlevé property (Appendix
Sect. A.3.1).
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2. The master elliptic-difference equation can generate by confluence all the dis-
crete Painlevé equations. Naturally, the e-type degenerates to the q-type then to
the difference type. This can be described by a coalescence tree with e−P6 at
the top and the continuous Pn at the bottom, see diagram in [377].

3. e−P6 and all the q−P6 and d−P6 admit P6 as their continuum limit.
4. e−P6 admits classical solutions (as defined in Sect. A.2). The analogue of the

hypergeometric function for P6 is the elliptic hypergeometric function 10E9 [244]
introduced in [154] and studied in [394]. By coalescence, this generates various
generalizations of the hypergeometric function, such as the Askey–Wilson poly-
nomials. See [332] for a review.

5. The best description of all these discrete equations is made by their associated
affine Weyl groups.



Chapter 8
FAQ (Frequently Asked Questions)

Abstract This chapter contains frequently asked questions or frequently encoun-
tered incorrect statements.

Q. Why is the solution of u′+u2 +S/2 = 0, with S constant, always presented as
a tanh, whatever the sign of S?

A. This is a matter of taste. Indeed, in the complex domain, there is no need

to introduce four functions (tanh,cotanh, tan,cotan) to represent the solution of this
equation, one is enough. We prefer tanh for it is the only one to be bounded on the
real axis, a feature appreciated for the solitary waves of physics.

Q. Linear ODEs have no dominant balance, therefore they fail the P test.
A. Wrong. All linear ODEs have by definition the PP, therefore the test must be

formulated so as to let them pass.

Q. What is the general solution of the P2 equation? It is written nowhere.
A. Each Pn equation has for general solution the Pn function, by construction!

This tautology only reflects the original problem, to define functions from nonlin-
ear ODEs. There exist nongeneric values of α,β ,γ,δ for which the Pn equations
possess solutions (called classical, Appendix Sect. A.2) expressible with classical
functions only (elliptic function and solutions of linear equations). In the P2 case,
these are α − 1/2 equal to an integer (there then exists a one-parameter solution
which is an algebraic transform of the Airy function), and α equal to an integer (for
which there exists a zero-parameter solution rational in x).

Q. When an ODE is reducible to quadratures, is it integrable in the Painlevé
sense?

A. The two properties are independent, here are examples of the four situations.

1. reducible to quadratures, integrable in the Painlevé sense: elliptic equation,
2. reducible to quadratures, not integrable in the Painlevé sense: u′ = u3,
3. not reducible to quadratures, integrable in the Painlevé sense: P1 equation,
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4. not reducible to quadratures, not integrable in the Painlevé sense: KS ODE u′′′+
(1/2)u2 + K = 0.

Integrating by quadratures only was the old way, and Jacobi proved its insufficiency
on the pendulum example.

Q. Is the Riccati equation integrable?
A. First define “integrable”. If “integrable” means “reducible to a quadrature”,

the answer is no, unless a particular solution u0 is known. If “integrable” means
“possessing the Painlevé property”, the answer is yes, since the equation can be
mapped by a closed form transformation to a linear equation.
Note that, if three particular solutions are known, the general solution is given by
the crossratio formula (5.36).

Q. The PP of an ODE is defined as all solutions having no other movable singu-
larities than poles.

A. Two words are wrong, “all” and “poles”. “All” because, out of the three

kinds of solutions admitted by an ODE (general, particular, singular, see details in
[76, p. 100]), only the general solution is involved in the definition of the PP. For
instance, the third order second degree ODE [59, p. 360]

(u′′′ −2u′u′′)2 + 4u′′2(u′′ −u′2 −1) = 0, (8.1)

admits the single valued general solution,

u =
ec1x + c2

c1
+

c2
1 −4
4c1

x + c3, (8.2)

and also a singular solution (envelope solution) with a movable critical singularity,
defined by canceling the discriminant of (8.1)

u′′ −u′2 −1 = 0, u = C2 − logcos(x−C1). (8.3)

For first and second order ODEs having the PP, it is true that the movable singular-
ities are only poles. But, from third order on, the ODEs having the PP may present
various types of noncritical movable singularities, and “une discussion qui écarterait
d’avance certaines singularités comme invraisemblables serait inexistante.”1 [349,
p. 6]. The best known example is the celebrated Chazy’s equation of class III

u′′′ −2uu′′+ 3u′2 = 0, (8.4)

whose general solution is only defined inside or outside a circle characterized by
the three initial conditions (two for the center, one for the radius); this solution is
holomorphic in its domain of definition and cannot be analytically continued be-
yond it. This equation therefore has the PP, and the only singularity is a movable

1 A discussion which would from the beginning discard some singularities as being unlikely would
be nonexistent.
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analytic essential singular line which is a natural boundary. For more details, see the

arguments of Painlevé [76, §2.6] and Chazy [76, §5.1].

Q. This equation passes the Painlevé test, therefore it has the Painlevé property.
A. The word “therefore” is wrong since passing the test is only necessary, not

sufficient, for the PP. As an algorithm, the test must terminate after a finite number
of steps, and Picard [355] built the beautiful example of an ODE with the general
solution u =℘(λ log(x− c1)+ c2,g2,g3), namely

u′′ − u′2

4u3 −g2u−g3

(
6u2 − g2

2

)
− u′2

λ
√

4u3 −g2u−g3
= 0, (8.5)

which has the PP iff 2π iλ is a period of the elliptic function ℘. This is a transcen-
dental condition on (λ ,g2,g3) impossible to obtain in a finite number of algebraic
steps such as the Painlevé test.

Q. For the PP, movable essential singularities are forbidden.
A. Wrong. Essential singularities may be critical or noncritical, and only the

movable essential critical singularities are forbidden. The ODE with the general
solution c1e1/(x−c2) has the Painlevé property, but the ODE with the general solution
[349, p. 5]

u = tan log(c1x + c2), (8.6)

which is

u′′ = u′2
2u−1
u2 + 1

(8.7)

has not the PP since the movable point x = −c2/c1 is essential and critical. The
difficulty with essential singularities is that they cannot be uncovered by algebraic
procedures such as the test of Kowalevski and Gambier. Details on this difficulty are
well documented in Painlevé [349, §4 and 5].

Q. Resonance −1 is always compatible.
A. (In our vocabulary, The no-log condition at Fuchs index −1 is always satis-

fied.) This is wrong. A counterexample is given in Sect. 3.2.7. Other examples can
be found in [82].

Q. A negative Fuchs index indicates a movable essential singularity.
A. This is wrong. The meromorphic expression

u =
1

x−a
+

1
x−b

, (a,b) arbitrary, (8.8)

is the general solution of
u′′ + 3uu′+ u3 = 0, (8.9)

an ODE in the class of Painlevé and Gambier which has the two families,
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(F1) p = −1,u0 = 1, indices (−1,1),
(F2) p = −1,u0 = 2, indices (−2,−1).

See [82] for the associated Laurent series.

Q. In the WTC truncation (Sect. 5.5.2), since the “constant level coefficient” u−p

is another solution of the PDE, one has obtained a Bäcklund transformation.
A. Wrong, for two reasons. Firstly, this feature of u−p is true for any PDE,

integrable or not. Secondly, for PDEs which do admit a BT, after completion of the
singular manifold method the coefficient u−p is never the second solution involved
in the BT. More in [84, 77].



Appendix A
The Classical Results of Painlevé and Followers

In the process of searching for new functions defined by a differential equation
(cf. text on p. 8), one must input a class of ODEs, e.g. the most general n-th order
m-th degree ODE,

P(u(n),u(n−1), . . . ,u′,u;x) = 0, (A.1)

in which P is a polynomial of all its arguments but the last one, of degree m in the
highest derivative, with an analytic dependence on x. Since this is a formidable task,
these classes are often restricted to simpler classes such as (6.37) (n = 4,m = 1 and
coefficient unity for the term u(4)), but there is no good reason for that. Naturally (see
the FAQ section), linear ODEs are excluded since they already have the Painlevé
property.

The output of such a search is twofold (this is the “double interest” of differential
equations):

1. some new functions (defined from the general solution of an ODE which is irre-
ducible to a lower differential order or to a linear equation),

2. an exhaustive list (called classification) of ODEs which includes the ones defin-
ing new functions, and which are explicitly integrated with functions found at a
lower order.

The importance of these classifications is worth being emphasized. If one has an
ODE in such an already studied class (e.g. second order second degree binomial-
type ODEs [107] u′′2 = F(u′,u,x) with F rational in u′ and u, analytic in x), and
which is suspected to have the PP (for instance because one has been unable to
detect any movable critical singularity, see Chap. 2), then two cases are possible:
either there exists a transformation (1.43) mapping it to a listed equation, in which
case the ODE has the PP and is explicitly integrated, or such a transformation does
not exist, and the ODE does not have the PP.

For instance, the class n = 1,m = 1 of first order first degree equations

u′ = F(u,x), (A.2)
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with F rational in u and analytic in x, only yields the Riccati equation

u′ = a2(x)u2 + a1(x)u + a0(x), (A.3)

and defines no new function since the Riccati equation is linearizable,

u = − ϕ ′

a2ϕ
, ϕ ′′ −

(
a′2
a2

+ a1

)
ϕ ′ + a0a2ϕ = 0. (A.4)

A.1 Groups of Invariance of the Painlevé Property

In these classifications, it is sufficient to take one representative equation by class of
equivalence of the PP. There exist two such relations of equivalence.

The first group of invariance is the homographic group defined in the text, (1.43).
This is precisely the group of invariance of the Riccati equation. Since it con-
serves the crossratio of four points, its main practical use is, given an ODE with
three polar singularities U = p1(x), p2(x), p3(x), to change it to an equivalent ODE
whose poles u are set at predefined locations, e.g. (∞,0,1), via the homography
(U, p1(x), p2(x), p3(x)) = (u,∞,0,1). This is what has been done for choosing a
representative of P6 in its equivalence class, see p. 8.

The second group [346, 163] is the group of birational transformations, in short
the birational group (u,x) ↔ (U,X){

u = r(x,U,dU/dX , . . . ,dn−1U/dXn−1) = 0, x = Ξ(X),
U = R(X ,u,du/dx, . . . ,dn−1u/dxn−1) = 0, X = ξ (x),

(A.5)

(n order of the equation, r and R rational in U,u and their derivatives, analytic in
x,X). This group admits as a subgroup the group of homographic transformations.

Example. Given the ODE u′′ − 2u3 = 0 and the new dependent variable U =
u′ + u2, the algebraic elimination of (u′,u′′) among these two equations and the
derivative of the second one yields the inverse transformation u = U ′/(2U), which,
once inserted in the direct transformation, yields the transformed equation UU ′′ −
U ′2/2−2U3 = 0.

There exist other groups of transformations of nonlinear ODEs which do not
conserve the PP. The most important one is the group of point transformations which
considers the variables u and x as equivalent geometric coordinates,

u = f (X ,U), x = g(X ,U), U = F(x,u), X = G(x,u). (A.6)

The class of second order first degree ODEs invariant under (A.6) is

u′′ +
3

∑
j=0

A j(u,x)u′ j = 0 (A.7)
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(as compared to the class (3.16), it contains an additional coefficient A3), and it has
been extensively studied by Roger Liouville [282], Tresse [404] and Cartan [55].
The subgroup of ”fiber-preserving” transformations

u = f (X ,U), x = g(X), U = F(x,u), X = G(x), (A.8)

also violates the PP but it conserves the integrability in the sense of Poincaré as
defined on p. 6, and its equivalence classes are called Cartan equivalence classes
[55].

These last two groups provide an additional insight to that of Painlevé, which for-
bids the exchange of the dependent and independent variables as done for instance
in Sect. 3.2.6.

A.2 Irreducibility. Classical Solutions

In order to be declared new, a function (general solution of some nonlinear ODE
with the PP) must be shown to obey neither a nonlinear ODE of lower differential
order nor a linear ODE of any order. To understand the difficulty, it is sufficient to
consider the fourth order ODE for u(x) defined by

u = u1 + u2, u′′1 = 6u2
1 + x, u′′2 = 6u2

2 + x. (A.9)

This ODE (easy to write by the elimination of u1,u2) has a general solution which
depends transcendentally on the four constants of integration, and it is reducible to
P1, a second order equation.

The initial definition of irreducibility as given by the “groupe de rationalité” of
Jules Drach [351, vol. III p. 14], [348, p. 246], [363] relied on the infinite dimen-
sional differential Galois theory, which Picard and Vessiot continued to develop,
and is so difficult that it is not yet finished. Painlevé believed that the theory could
be completed soon, and so used unproven results of Drach in his argumentation.
This was pointed out by Roger (not Joseph) Liouville in a passionate discussion
with Painlevé in the Comptes rendus [351, vol. III, pp. 81–114]. A precise, purely
algebraic, definition of irreducibility has been given by Umemura [407]. This is the
following.

Given a class of differential equations, e.g. the linear ODEs and the first order
ODEs, a function is called classical with respect to that class if it can be built from
solutions of ODEs in that class by the following operations,

addition,
multiplication, division,
composition of functions,
derivation,
integration (once, i.e. taking the primitive),
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algebraic function (i.e. root of algebraic equations whose coefficients are func-
tions in the considered class).

The two notions “classical solution” and “irreducibility” are of course equivalent.
The above definition shares many features with the algorithm of Risch and Norman
in computer algebra (which decides whether the primitive of a class of expressions,
e.g., rational functions, is inside or outside the class).

Examples.

1. With respect to the linear equations, the solution of the Weierstrass equation is
nonclassical.

2. With respect to the set made of linear equations plus the Weierstrass equation,
the solution of Picard (B.3) for P6 is nonclassical, because g2 and g3 are not
constant.

3. With respect to the set made of the linear equations plus the first order equations
having the Painlevé property, the general solution of any of the six Painlevé equa-
tions is nonclassical (except for nongeneric values of the parameters α,β ,γ,δ
listed in Sect. B.8).

Even if an ODE is irreducible, for nongeneric values of its fixed parameters
it may admit particular solutions which are also solutions of either a lower or-
der nonlinear ODE or a linear ODE. For instance, P6 (defined on p. 8) admits for
2α = −2β = λ 2,2γ = 1−2δ = µ2 the zero-parameter solution u =

√
x.

A.3 Classifications

Each equation is characterized by one representative in its equivalence class. For
instance, under the homographic group, the ODE (3.20) for x(t) in the case b =
0,σ = 1/3 of the Lorenz model is not distinct from the P3 equation with α = β =
0, γ = δ = 1. A recent list of achieved classifications can be found in Cosgrove
[104, 106].

A.3.1 First Order Higher Degree ODEs

First order algebraic ODEs

F(u′,u,x) = 0, (A.10)

with F polynomial in u,u′, analytic in x, define only one function, the Weierstrass
elliptic function ℘, new in the sense that its ODE

u′2 −4u3 + g2u + g3 = 0, (g2,g3) arbitrary complex constants, (A.11)
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is not reducible to a linear ODE. Its singularities are movable double poles.
For the classifications, one must distinguish [361, Vol. III p. 26] the autonomous

case (F independent of x) of the nonautonomous case. Let g be the genus of the
curve (u,u′) → F(u,u′,x) = 0 for a generic value of x.

In the autonomous case, the genus is necessarily 1 or 0. When g = 1, there is
only one class of equivalence of the birational group, and a suitable representative
is the Weierstrass equation (A.11). When g = 0, the general solution is rational in
either (ea(x−x0) − 1)/a or in its limit x− x0, therefore the ODE is linearizable into
u′ −au−1 = 0, and neither group is relevant.

In the nonautonomous case, the genus can be arbitrary, see details in Poincaré
[361, vol. III p. 26], Valiron [408, vol. II, §141 p. 286] and [309].

A.3.2 Second Order First Degree ODEs

The class

u′′ = F(u′,u,x), (A.12)

with F rational in u′, algebraic in u, analytic in x, has been fully processed by
Painlevé [348] and Gambier [163].

The classification contains 53 equivalence classes under the homographic group
(50 with a rational dependence of F in u and 3 with an algebraic dependence), and
24 equivalence classes under the birational group. Their list can be found in various
locations [163, 232, 116]. Among these 24, six classes are irreducible [to a first
order or linear equation] and define the six Painlevé transcendents listed on p. 8.
Given an ODE in the class (A.12) and having the PP, the method to identify it to one
of the 53 classes is well explained in [116] and can be found in Sect. 3.1.1.2.

The reduction of the 53 classes has also been done under the fiber preserving
point group (A.8) [228] and under the point group (A.6) [19]. A beautiful result is
that all six Pn equations are equivalent to [19]

d2U
dX2 + f (U,X) = 0, (A.13)

i.e. without contribution of the first derivative, e.g. for P6

d2U
dX2 + ∑

j=∞,0,1,x

θ 2
j

d
dU

℘(U + c jω1 + d jω2) = 0, (A.14)

in which 2ω1,2ω2 are the periods of the Weierstrass elliptic function℘and (c j,d j)=
(0,0),(1,0),(0,1),(1,1). This compact writing was initially found in 1906 by
Painlevé [350] by extending the representation of Picard [354] to the generic
case (θ∞,θ0,θ1,θx) �= (0,0,0,0), then later retrieved by geometrical considerations
[295, 19].
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It should also be mentioned that Garnier [169] classified the set of two-dimensio-
nal systems

u′ = F(u,v),v′ = G(u,v), (A.15)

with F and G homogeneous polynomials.

A.3.3 Second Order Higher Degree ODEs

General necessary conditions have been established by Painlevé [348, p. 252] [349,
p. 67] for an arbitrary order and a degree one.

Only partial classifications exist at second order and a degree higher than one.
For second degree, preliminary investigations have been carried out by Bureau [47].
For an arbitrary degree the subset of binomial equations

u′′n = F(x,u,u′),n ≥ 2, (A.16)

with F rational in u′ and u, has been classified for n = 2 [107, 103] and for n ≥ 2
[102].

A.3.4 Third Order First Degree ODEs

The classification of third order first degree ODEs

u′′′ =
2

∑
j=0

A j(u′,u,x)u′′ j
, (A.17)

has been nearly finished by Chazy [59]. The subset A2 = 0 comprises 13 classes
under the homographic group, its classification has been continued by Bureau [46],
Exton [135] and completed by Cosgrove [105].

A.3.5 Fourth Order First Degree ODEs

Only the subclass

u′′′′ = F(u′′′,u′′,u′,u;x), (A.18)

with F polynomial in u′′′,u′′,u′, rational in u, analytic in x, has been investigated.
Several examples were encountered in the text, Sect. 6.2.3. After some preliminary
results obtained by Chazy [59], Bureau [46], Exton [135] and Martynov [299], with
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the further restriction F polynomial in u1, Cosgrove finished the classification, find-
ing 12 classes inequivalent under the homographic group when u has simple poles
[106], and 5 classes when it has double poles [104].

Four of the 17 isolated ODEs could not be integrated (with linear equations, ellip-
tic functions or Painlevé transcendents). They have a transcendental dependence on
the four constants of integration [262], but their irreducibility is not proven, there-
fore one cannot yet claim that they define new functions. These are (we have added
the Fif-IV fifth order equation [104] which shares the same properties)

F-V u′′′′ = 20uu′′+ 10u′2 −40u3 + αu + κx + β , (A.19)

F-VI u′′′′ = 18uu′′+ 9u′2 −24u3 + αu2 +
α2

9
u + κx + β , (A.20)

F-XVII u′′′′ = 10u2u′′ + 10uu′2 −6u5

−10δ (u′′ −2u3)+ (λ x + µ)u + γ, (A.21)

F-XVIII u′′′′ = −5u′u′′ + 5u2u′′ + 5uu′2 −u5 +(λ x + α)u + γ, (A.22)

Fif-IV u′′′′′ = 18uu′′′+ 36u′u′′ −72u2u′ + 3λ u′′

+
1
x

{
u′′′′ −18uu′′ −9u′2 + 24u3−3λ u′+ κ

}
+

λ x
2

(
5u′′′ −36uu′

)− λ 2x
2

(
2xu′ + u

)
. (A.23)

Remark. The same feature (transcendental dependence but unproven irreducibil-
ity) is also observed in the Garnier system [167], which admits P6 as a degeneracy.

These five equations are reductions of various soliton equations, F-V of KdV5
[7, 261], F-VI of a coupled KdV system [126], F-XVII of modified KdV5 [142]
F-XVIII of a fifth-order PDE [148].

At least three soliton systems of two equations, which are all reductions of the
KP hierarchy, admit a reduction to F-VI. One system has order 6+6 [176], another
the order 5+3 [121], and the shortest system the order 3+3,{

ut − 1
2

(
uxx + au2 + 6v

)
x = 0,

vt + vxxx + auvx = 0.
(A.24)

The latter system, isolated in [126], admits the reduction

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

au = −6U +
α
12

, av = V −κt, ξ = x +
α
4

t,(
U ′′ −6U2 − α

3
U −V

)′
= 0, V ′′′ −6UV ′ +

α
3

V ′ −κ = 0,(
−U ′′′′+ 18UU ′′+ 9U ′2 −24U3 + αU2 +

α2

9
U + κξ

)′
= 0.

(A.25)

1 This excludes (6.74).
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A.3.6 Higher Order First Degree ODEs

Some results exist for fifth [135, 104, 106] (see e.g. (A.23) in the previous section)
and sixth [135] order equations in the class

u(n) = P(u(n−1), ...,u;x), (A.26)

with P analytic in x and polynomial in its other arguments.

A.3.7 Second Order First Degree PDEs

After preliminary indications by Hlavatý [221], second order semilinear PDEs have
been classified, both in the hyperbolic/elliptic case [100] (no such distinction is
made by the Painlevé property) and in the parabolic case [101]. No new PDE has
been isolated, and all the previously known PDEs were found (Burgers, Liouville,
sine-Gordon, Tzitzéica, etc).



Appendix B
More on the Painlevé Transcendents

The classical results are well documented in [235]. For an up to date summary of
the (mainly geometric) properties of the Painlevé transcendents, we refer the reader
to the nice review [231].

The master equation P6 was first written by Picard [354] in 1889 in a particular
case. Let ϕ be the elliptic function defined by

ϕ : y �→ ϕ(y,x), y =
∫ ϕ

∞

dz√
z(z−1)(z− x)

, (B.1)

and let ω1(x),ω2(x) be its two half-periods. Then the function

u : x �→ u(x) = ϕ(c1ω1(x)+ c2ω2(x),x), (B.2)

with (c1,c2) arbitrary constants, has no movable critical singularities, and it obeys a
second order ODE which is P6 in the particular case α = β = γ = δ −1/2 = 0. Its
explicit expression is [346, pp. 506–508, 512–513]⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u =
x + 1

3
+ 4℘(ω ,g2,g3),

x(x−1)
d2ω
dx2 +(2x−1)

dω
dx

+
ω
4

= 0,

g2 =
x2 − x + 1

12
, g3 =

2x3 −3x2 −3x + 2
432

,

(B.3)

therefore ω is any linear combination of the two linearly independent half-periods
ω1(x),ω2(x).

Despite its integration with elliptic functions, this “Picard case” is not a clas-
sical solution in the sense defined in Sect. A.2. As noticed by Painlevé [349, §19
p. 26], it is part of the differential equations describing the dependence of the ellip-
tic functions on their invariants, established by Halphen [193, vol. I, pp. 252–253
and 291–331].
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The complete P6 is absent in [349] because of an omission in the tables of
Painlevé. It was first established by R. Fuchs [156], who considered a second or-
der linear ODE for ψ(t) with four Fuchsian singularities of crossratio x (located for
instance at t = ∞,0,1,x), with in addition, as prescribed by Poincaré [360, pp. 217–
220] for the isomonodromy problem, one apparent singularity t = u,

− 2
ψ

d2ψ
dt2 =

A
t2 +

B
(t −1)2 +

C
(t − x)2 +

D
t(t −1)

+
3

4(t −u)2

+
a

t(t −1)(t − x)
+

b
t(t −1)(t −u)

, (B.4)

(A,B,C,D) being constants and (a,b) parameters. The requirement that the mon-
odromy matrix (which transforms two independent solutions ψ1,ψ2 when t goes
around a singularity) be independent of the nonapparent singularity x (isomon-
odromy condition) results in the constraint that u, as a function of x, obeys P6.

B.1 Coalescence Cascade

Most results on the Pn equations can be deduced from the sole consideration of P6
by a confluence process [350]. This process is an extension of the confluence (or co-
alescence, or degeneracy, these are all synonyms) among second order linear ODEs
which, starting from the hypergeometric equation of Gauss, yields successively the
equations of Whittaker, Weber–Hermite, Bessel, Airy.

The P6 equation defined on p. 8 depends on four parameters α,β ,γ,δ and the
coefficient of u′2 possesses four poles (∞,0,1,x) having the same residue 1/2. The
coalescence scheme of these four poles

(1/2,3/2)
↗ ↘

(1/2,1/2,1/2,1/2) → (1/2,1,1/2) (2)
↘ ↗

(1,1)

(B.5)

defines from P6(u,x,α,β ,γ,δ ) four equations with four parameters, chosen as fol-
lows by Garnier [167]1

P6 : u′′ =
1
2

[
1
u

+
1

u−1
+

1
u− x

]
u′2 −

[
1
x

+
1

x−1
+

1
u− x

]
u′

+
u(u−1)(u− x)

x2(x−1)2

[
α + β

x
u2 + γ

x−1
(u−1)2 + δ

x(x−1)
(u− x)2

]
,

1 This choice is not unique, and another P4′ has been proposed [338] which enjoys the same
properties.
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P5 : u′′ =
[

1
2u

+
1

u−1

]
u′2 − u′

x
+

(u−1)2

x2

[
αu +

β
u

]
+ γ

u
x

+ δ
u(u + 1)

u−1
,

P4′ : u′′ =
u′2

2u
+ γ

(
3
2

u3 + 4xu2 + 2x2u

)
+ 4δ (u2 + xu)−2αu +

β
u

,

P3 : u′′ =
u′2

u
− u′

x
+

αu2 + γu3

4x2 +
β
4x

+
δ
4u

,

P2′ : u′′ = δ (2u3 + xu)+ γ(6u2 + x)+ β u + α,

J : u′′ = 2δu3 + 6γu2 + β u + α.

The added equation J (like “Jacobi”) is the autonomous limit of P2′. As compared
to the usual choice listed on p. 8, the additional symbols γ in P4 and δ in P2 have
been added to represent the signs of the two opposite residues ±u0 of each family
of movable simple poles, and the coefficient δ in P4 can be set to zero when γ �= 0.

Table B.1 collects various basic data on the above Pn equations, such as leading
behavior, Fuchs indices and monodromy exponents.
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Table B.1 [Reproduced from [92]] Useful data for the Pn equations. We follow the notation of
Okamoto [340], rather than the one of Jimbo and Miwa [240], and each monodromy exponent θ j,
including θ∞, has a square rational in α ,β ,γ ,δ . The successive lines are : the singularity order q
of the Pn equation and the positive Fuchs index i, the value of the first coefficient u0 of the Laurent
series for u, the notation for the square root of u0, the definition of the monodromy exponents θ ,
the components of the column vector θ .

P2′ P3 P4′ P5 P6
q, i −3,4 −4,2 −4,3 −5,1 −6,1
u0 d−1 2c−1x c−1 θ−1

∞ x θ−1
∞ x(1− x)√

d2 = δ c2 = γ c2 = γ θ 2
∞ = 2α θ 2

∞ = 2α
α −dθ∞ 2cθ∞ 2cθ∞ θ 2

∞/2 θ 2
∞/2

β −2dθ0 −8θ 2
0 −θ 2

0 /2 −θ 2
0 /2

γ c2 c2 −dθ1 θ 2
1 /2

δ d2 −d2 −d2/2 (1−θ 2
x )/2

θ (θ∞ )
(

θ∞
θ0

) (
θ∞
θ0

) ⎛
⎝θ∞

θ0
θ1

⎞
⎠

⎛
⎜⎝

θ∞
θ0
θ1
θx

⎞
⎟⎠

When studying Lax pairs, birational transformations, etc, the above sequence of
equations is more advantageous to consider than the usual sequence on p. 8. Indeed,
the latter emphasizes the irreducibility at the expense of the conservation of the
number of parameters, while the former allows one to make full use of the four
parameters α,β ,γ,δ . The successive coalescences

P4′
↗ ↘

P6 → P5 P2′ → J
↘ ↗

P3

(B.6)

of an equation E(x,u,α,β ,γ,δ ) = 0 to another equation E(X ,U,A,B,C,D) = 0 are
described by affine transformations (x,u,α,β ,γ,δ ) → (X ,U,A,B,C,D,ε),

6 → 5 : (x,u,α,β ,γ,δ ) = (1 + εX ,U,A,B,ε−1C− ε−2D,ε−2D),
5 → 4′ : (x,u,α,β ,γ,δ ) = (1 + εX ,εU/2,2Cε−4 + 28Dε−3,B/4,

−4Cε−4 −60Dε−3,

2Aε−2 −2Cε−4 −32Dε−3),
5 → 3 : (x,u,α,β ,γ,δ ) = (X ,1 + εU,ε−1A/4 + ε−2C/8,

− ε−2C/8,εB/4,ε2D/8),
4′ → 2′ : (x,u,α,β ,γ,δ ) = (ε2X/4,1 + εU,−4Bε−4 + 96Cε−5 −24Dε−6,

16Aε−3 −8Bε−4 + 48Cε−5 −8Dε−6,

−32Cε−5 + 16Dε−6,48Cε−5 −16Dε−6),
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3 → 2′ : (x,u,α,β ,γ,δ ) = (1 + ε2X/2,1 + εU,

16Bε−4 −64Cε−5−32Dε−6,

32Dε−6,−8Bε−4 + 48Cε−5 + 16Dε−6,

16Aε−3 −8Bε−4 + 16Cε−5 −16Dε−6),
2′ → J : (x,u,α,β ,γ,δ ) = (εX ,ε−1U,ε−3A,ε−2B,ε−1C,D)

in which ε goes to zero. The classical coalescence among the Pn listed on p. 8 can be
found in [350, 163]. The confluence for the monodromy exponents θ , established
in [340], is recalled in Table B.2. All these transformations are affine, and this is
certainly the reason why in 1906 Painlevé changed his original choice of P32.

Table B.2 [Reproduced from [92]] Confluence of the monodromy exponents. The parameters c,d
(which essentially represent signs) also participate to the confluence. The choice of square roots is
such that there are only + signs in the successive values θ∞ + θ0 + θ1 + θx, θ∞ + θ0 + θ1, 2θ∞ +
2θ0, θ∞ +θ0, 2θ∞.

x u θ∞ θ0 θ1 θx c d
6 → 5 1+ εX U θ∞ θ0 θ1 − ε−1d ε−1d + ε
5 → 4 1+ εX εU/2 −2cε−2 2θ0 2θ∞ +2cε−2 2cε−2 −2θ∞
5 → 3 X 1+ εU θ∞ + ε−1c/2 −ε−1c/2 θ0 εd/2
4 → 2 εX/4− ε−1 ε−1 +U −ε−3d θ∞ + ε−3d 4ε−1d
3 → 2 1+ ε2X/2 1+ εU 4dε−3 2θ∞ −4dε−3 −4dε−3 2θ∞ +4dε−3

B.2 Invariance Under Homographies

The permutations of the four singular points ∞,0,1,x of P6 which leave this equation
invariant act as homographies on x and u. These 24 permutations are generated by
the three elements (θ ,x,u) → (Θ ,X ,U),

Hbacd : Θ = (θ0,θ∞,θ1,θx), xX = 1, uU = 1, (B.7)

Hbcad : Θ = (θ0,θ1,θ∞,θx), x(1−X) = 1, (u−1)U = 1, (B.8)

Hbadc : Θ = (θ0,θ∞,θx,θ1), x = X , uU = x. (B.9)

Four of these twenty-four also conserve x, the identity and

Hdcba : Θ = (θx,θ1,θ0,θ∞), (u− x)(U − x) = x(x−1), (B.10)

Hbadc : Θ = (θ0,θ∞,θx,θ1), uU = x, (B.11)

2 The old choice of P3 is probably responsible for the absence of the Hamiltonian of P3 in
Malmquist [293].
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Hcdab : Θ = (θ1,θx,θ∞,θ0), (u−1)(U −1) = 1− x. (B.12)

For generic values of α,β ,γ,δ , the confluence defines the following homogra-
phies leaving invariant the Pn(α,β ,γ,δ ),

P6 (u,x,α,β ,γ,δ ) → (1/u,1/x,−β ,−α,γ,δ ),
→ (1−1/u,1−1/x,−β ,−γ,α,δ ),
→ (x/u,x,−β ,−α,−δ + 1/2,−γ + 1/2),

P5 (u,x,α,β ,γ,δ ) → (u,−x,α,β ,−γ,δ ),
→ (1/u,x,−β ,−α,−γ,δ ),

P4′ (u,x,α,β ,γ,δ ) → (ku,kx,k2α,β ,k4γ,k3δ ),
P4 (u,x,α,β ) → (ku,kx,k2α,β ), k4 = 1,

P3 (u,x,α,β ,γ,δ ) → (λ u,µx,λ−1µ−1α,λ µ−1β ,λ−2µ−2γ,λ 2µ−2δ ),
→ (u−1,x,−β ,−α,−δ ,−γ), (B.13)

P2′ (u,x,α,β ,γ,δ ) → (ku,k2x,k−3α,k−4β ,k−5γ,k−6δ ),
P2 (u,x,α) → (ku,k2x,k−3α), k6 = 1,

P1 (u,x) → (ku,k2x), k5 = 1,

(B.14)

in which k,λ ,µ are arbitrary nonzero constants.

B.3 Invariance Under Birational Transformations

There exists another group of invariance, which maps a Pn equation to itself while
changing its parameters (this therefore does not apply to P1). Already encountered
in the text for P2 (5.289) and P6 (5.305), this group acts on the equation for u as a
birational transformation and on the monodromy exponents as an affine transforma-
tion (relation (5.308) in the case of P6).

Before applying the confluence to the elementary birational transformation T6

of P6, one should be aware of the noncommutativity of the permutation of the four
singularities of P6 on one hand, the convention adopted for defining the lower Pn
equations on the other hand (e.g., at the P5 level, two equivalent singularities plus
another one, chosen once and for all as (∞,0) and 1). This results in two distinct
sequences [92].

B.3.1 Normal Sequence

The choice of (1,x) as the coalescing pair (adopted in Table B.2) leads to
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P6 :

⎛
⎜⎝

s∞θ∞
s0θ0

s1θ1

sxθx

⎞
⎟⎠ =

1
2

⎛
⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

S∞Θ∞
S0Θ0

S1Θ1

SxΘx

⎞
⎟⎠+

1
2

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ , (B.15)

P5 :

⎛
⎝s∞θ∞

s0θ0

s1θ1

⎞
⎠ =

1
2

⎛
⎝ 1 −1 −1
−1 1 −1
−2 −2 0

⎞
⎠

⎛
⎝S∞Θ∞

S0Θ0

S1Θ1

⎞
⎠+

1
2

⎛
⎝1

1
2

⎞
⎠ , s∞d = S∞D, (B.16)

P4 :

(
s∞θ∞
s0θ0

)
=

1
2

(−1 −3
−1 1

)(
S∞Θ∞
S0Θ0

)
+

1
4

(
3
1

)
, s∞c = S∞C, (B.17)

P3 :

(
s∞θ∞
s0θ0

)
=

(
0 −1
−1 0

)(
S∞Θ∞
S0Θ0

)
+

(
1
1

)
, s∞c = S∞C, s0d = S0D, (B.18)

P2 : (sθ∞ ) = −(SΘ∞ )+ (1) , s∞d = S∞D, (B.19)

and (we omit the signs, they can easily be restored)3

P6 :
N

u−U
=

x(x−1)U ′

U(U −1)(U − x)
+

Θ0

U
+

Θ1

U −1
+

Θx −1
U − x

, (B.20)

P5 :
N

u−U
=

xU ′

U(U −1)2 +
Θ0

U
+

Θ1 −1
U −1

+
Dx

(U −1)2
, (B.21)

P4 :
N

u−U
=

U ′

U
+

4Θ0

U
+CU + 2Cx, (B.22)

P3 :
N

u−U
=

xU ′

U2 +
Θ0 −1

U
+

Dx
2U2 − C

2
, (B.23)

P2 :
N

u−U
= U ′ + DU2 + D

x
2

, (B.24)

with

P6 : N = 1−Θ∞−Θ0 −Θ1−Θx = (1/2)∑(θ j −Θ j), (B.25)

P5 : N = 1−Θ∞−Θ0 −Θ1 = (1/2)∑(θ j −Θ j), (B.26)

P4 : N = −2(1−2Θ∞−2Θ0) = 2∑(θ j −Θ j), (B.27)

P3 : N = 1−Θ∞−Θ0 = (1/2)∑(θ j −Θ j), (B.28)

P2 : N =
1
2
−Θ∞ = (1/2)(θ∞−Θ∞). (B.29)

For the signs s j = 1, all the shifts are positive, and, for the signs s j = S j, the
linear part has determinant −1. The sum of the shifts remains equal to two (except
for P4 and P2 because of a global rescaling, see Table B.1).

3 The second half of each birational transformation, not written, is deduced from the first half
by exchanging the lowercase and uppercase notation, as done in the text (5.289). With such a
convention, each transformation is an involution.
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Since the affine representations (B.15)–(B.19) are involutions when the signs
satisfy s j = S j, only half of the birational representation needs to be written, the
second half resulting from the permutation of (u,θ ,c,d) and (U,Θ ,C,D).

These transformations were first found respectively, for P5 by Okamoto [342],
for P4 by Murata [310], for P3 by Gromak [185, Eqs. (14)–(15)], for P2 by Luka-
shevich [288].

B.3.2 Biased Sequence

After performing on T6 the permutation Hdcba (B.10) and suitable sign reversals
so as to conserve the involution property (Sa,Sb,Sc,Sd denote the operators which
change the sign of, respectively, θ∞, θ0, θ1, θx),

T6,b = SaSdT6HdcbaSdSa, (B.30)

the application of the confluence to the involution T6,b yields

P6 :

⎛
⎜⎝

s∞θ∞
s0θ0

s1θ1

sxθx

⎞
⎟⎠ = −1

2

⎛
⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

S∞Θ∞
S0Θ0

S1Θ1

SxΘx

⎞
⎟⎠+

1
2

⎛
⎜⎝
−1
1
1
−1

⎞
⎟⎠ , (B.31)

P5 :

⎛
⎝s∞θ∞

s0θ0

s1θ1

⎞
⎠ = −1

2

⎛
⎝ 1 −1 −1
−1 1 −1
−2 −2 0

⎞
⎠

⎛
⎝S∞Θ∞

S0Θ0

S1Θ1

⎞
⎠+

1
2

⎛
⎝−1

1
0

⎞
⎠ ,

s∞d = −S∞D, (B.32)

P4 :

(
s∞θ∞
s0θ0

)
= −1

2

(−1 −3
−1 1

)(
S∞Θ∞
S0Θ0

)
+

1
4

(−1
1

)
, s∞c = −S∞C, (B.33)

P3 :

(
s∞θ∞
s0θ0

)
= −

(
0 −1
−1 0

)(
S∞Θ∞
S0Θ0

)
, s∞c = −S∞C, s0d = −S0D, (B.34)

P2 : ( sθ∞ ) = (SΘ∞ ) , s∞d = −S∞D, (B.35)

and

P6 :
−Nx(x−1)

(u− x)(U − x)− x(x−1)
= (U − x)

×
(

x(x−1)U ′

U(U −1)(U − x)
+

Θ0

U
+

Θ1

U −1
+

Θ∞ −Θ0 −Θ1

U − x

)
, (B.36)

P5 :
−2Dx

(u−1)(U −1)
= (U −1)

(
xU ′

U(U −1)2 +
Θ0

U
+

Θ∞ −Θ0

U −1
+

Dx
(U −1)2

)
, (B.37)

P4 : 2C(u +U) =
U ′

U
+

4Θ0

U
+CU −2Cx, (B.38)



B.4 Invariance Under Affine Weyl Groups 207

P3 :
Dx
uU

= −C, (B.39)

P2 : u +U = 0. (B.40)

In (B.36), the constant N is any expression among

N = ∑(θ 2
k −Θ 2

k ) (B.41)

= 1 + S∞Θ∞ −S0Θ0 −S1Θ1 + SxΘx (B.42)

= −1− s∞θ∞ + s0θ0 + s1θ1 − sxθx (B.43)

= −2(s∞θ∞ −SxΘx) = 2(s0θ0 −S1Θ1)
= 2(s1θ1 −S0Θ0) = −2(sxθx −S∞Θ∞). (B.44)

At the P3 level, the transformation reduces to the permutation of the two singular
points (∞,0), a homography on u which leaves P3 invariant. Therefore, at the P2
level this is just the parity.

The biased affine representations (B.31)–(B.35) and the normal ones (B.15)–
(B.19) have opposite linear parts (this results from our involution convention), but
the sum of the biased shifts is zero.

The transformation for P5 has first been obtained by Gromak [186, (10)–(11)],
and the one for P4 by Lukashevich [287].

If one denotes T6,b, T5,b and T4,b the biased transformations, T6,u, T5,u and T4,u

the normal ones, and H the unique homography of P5 which conserves x,

P5 : H(x,u,θ∞,θ0,θ1) = (x,u−1,θ0,θ∞,θ1), (B.45)

the relations

T6,u = SaSdT6,bHdcbaSdSa, (B.46)

T5,u = SaT5,bSaScT5,bSaH, (B.47)

T4,u = SaT4,bSbT4,bSa, (B.48)

(the relation (B.48) is due to [23]) show that, at the P5 and P4 levels, the biased
birational transformations are more elementary than the unbiased ones.

B.4 Invariance Under Affine Weyl Groups

Under the birational group, the Pn equations define six classes of equivalence,
leading to the historical labelling as P1, . . . ,P6. This labelling can be refined with
the classes of equivalence of another group, the group of affine transformations
which acts on the monodromy exponents in the birational transformations, see Sect.
B.3, (B.31)–(B.35) and (B.15)–(B.19). Indeed, these affine transformations generate
groups known as affine Weyl groups, whose generators are reflections and transla-
tions, well introduced for instance in [435].
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Let us present the affine Weyl group of P6 [339]. As a consequence of the affine
transformations (B.15), there exists a group of reflections (a synonym is Coxeter
group) leaving P6 invariant. Indeed, if one denotes

κ0 =
1−θ∞−θ0 −θ1 −θx

2
, (κ1,κ2,κ3,κ4) = (θ∞,θ0,θ1,θx), (B.49)

this group is generated by the five reflections σi through the planes κi = 0,

σi(κ j) = κ j −κici j, C = (ci j) =

⎛
⎜⎜⎜⎝

2 −1 −1 −1 −1
−1 2 0 0 0
−1 0 2 0 0
−1 0 0 2 0
−1 0 0 0 2

⎞
⎟⎟⎟⎠ . (B.50)

This group is of a particular type called affine Weyl group of type D(1)
4 , denoted

W (D(1)
4 ) or simply D(1)

4 , and it is characterized by its Cartan matrix C = (ci j).
All the affine transformations (B.31)–(B.35) and (B.15)–(B.19) can similarly be

represented by some affine Weyl group and, since the definition of the monodromy
exponents Table B.1 assumes some constants to be nonzero, one must split the P5
and P3 equations into cases represented by different affine Weyl groups.

In order to classify the Pn equations under both criteria (irreducibility, affine
Weyl groups), one must discard (i) reducible equations (the only one is P3 for α =
β = γ = δ = 0, which integrates as u = c1xc2 ) and (ii) any equation birationally
equivalent to an equation already in the list (the only one is P5 for δ = 0, birationally

equivalent to P3-D(1)
6 [185]). The result is a list of eight (instead of six) equations

[377] enumerated in Table B.3.

Table B.3 List of the eight Painlevé equations which are irreducible, inequivalent and with distinct
affine Weyl groups. The last column indicates the number of essential parameters in the equation.

Dynkin diagram Affine Weyl group Painlevé equation Param

D(1)
4 D(1)

4 P6 4

D(1)
5 A(1)

3 P5,δ �= 0 3

E(1)
6 A(1)

2 P4 2

D(1)
6 (2A1)(1) P3, γδ �= 0 2

D(1)
7 A(1)

1 P3, (γ �= 0,δ = 0) or (γ = 0,δ �= 0) 1

D(1)
8 Σ2 P3, γ = δ = 0, (α ,β ) �= (0,0) 0

E(1)
7 A(1)

1 P2 1

E(1)
8 None P1 0
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B.5 Invariance Under Nonbirational Transformations

For nongeneric values of the parameters α,β ,γ,δ , the eight Painlevé equations (ex-

cept P1 and P3 with D(1)
8 Dynkin diagram, see Table B.3) are invariant under an

algebraic, nonbirational, noncanonical4 transformations [406]. These transforma-
tions are extensions of the Goursat transformation of the hypergeometric equation,

F

(
a,b,

a + b + 1
2

;x

)
= F

(
a
2
,

b
2
,

a + b + 1
2

;4x(1− x)
)

. (B.51)

For instance, when all monodromy exponents θ j of P6(u,x,θ j) are ±1, this equation
is invariant under (u,x,θ j) → (U,X ,Θ j), with

x =
1
2

+
X1/2 + X−1/2

4
, u =

1
2

+
X1/2U−1 + X−1/2U

4
,

θ j = (ε1,ε1,ε2,ε2), Θ j = (2ε1,0,0,2ε2), ε2
1 = ε2

2 = 1. (B.52)

The exhaustive list of such transformations can be found in [406].

B.6 Hamiltonian Structure

Each Pn possesses a Hamiltonian structure, with H(q, p,x) polynomial in the canon-
ical variables q and p,

dq
dx

= −∂H
∂ p

,
dp
dx

=
∂H
∂q

, u = q. (B.53)

These Hamiltonians obey the coalescence and their expression is [293],

4 Under this transformation, the symplectic form dp∧dq−dH∧dx is multiplied by a small integer,
2 for (B.52).
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P6 : H =
q(q−1)(q− x)

x(x−1)

[
p2 −

(
θ0

q
+

θ1

q−1
+

θx −1
q− x

)
p

−θ 2
∞ − (θ0 + θ1 + θx −1)2

4q(q−1)(q− x)

]
,

P5, δ �= 0 : H =
q(q−1)2

x

[
p2 +

(
θ0

q
+

θ1 + 1
q−1

+
dx

(q−1)2

)
p

−θ 2
∞ − (θ0 + θ1 + 1)2

4q(q−1)

]
,

P4′ : H = qp2 +
[

cq2 + 2

(
cx +

δ
c

)
q + 4θ0

]
p

+
[

c(2θ∞ + 2θ0 + 1)+
δ 2

c2

]
q,

P3 : H =
q2

x

[
p2 +

(
a0

q
+

dx
2q2 +

a1

2

)
p +

a2

q2

+
2a0a1 −α

8q
+

a2
1 − γ
16

+
(β −2d + 2a0d)x

q3

]
, δ = −d2,

P2′ : H =
p2

2
+

d
2

(
2q3 + xq + q

)−αq− β
2

q2 − γ(2q3 + xq),

(B.54)

in which the a j in P3 are arbitrary constants which can be used to match the three
varieties of P3, see Table B.3.

B.7 Lax Pairs

All Pn equations admit second order Lax pairs.
In scalar form, this second order Lax pair of P6 [156] easily defines Lax pairs

for the lower Pn equations under action of the coalescence [167]. These scalar Lax
pairs are linear in α,β ,γ,δ and characterized by the two homographic invariants
(S,C), with the cross-derivative condition Z = 0

∂ 2
t ψ +(S/2)ψ = 0, (B.55)

∂xψ +C∂tψ − (1/2)Ctψ = 0, (B.56)

Z ≡ Sx +Cttt +CSt + 2CtS = 0. (B.57)

The value of S is given by

−S
2

=
3/4

(t −u)2 +
β1u′ + β0

(t −u)e1
+

[(β1u′)2 −β 2
0 ]e0 + fG(u)

e2
+ fG(t), (B.58)

in which the function fG and the various scalars are defined in Table B.4. However,
these scalar Lax pairs do not unveil the invariance under Weyl groups (Appendix
B.4).
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Table B.4 Coalescence of the scalar Lax pairs of the Painlevé equations

P6 P5 P4′ P3 P2′

β1 − x(x−1)
2(u− x)

− x
2(u−1)

1/4 − x
2u

−1

β0 −u+1/2 −u+1/2 1/2 −1/2 0

fG(z)

a
z2 +

b
(z−1)2

+
c

(z− x)2 +
d

z(z−1)

a
z2 − bx

(z−1)3

+
cx2

(z−1)4 +
d

(z−1)2

− a
z2 − δ (z+2x)

4

−b− γ(z+2x)2

16

a− bx
z3

+
cx2

z4 +
d
z

2αz+β z2

+2γ(2z3 + xz)
+δ (z4 + xz2)

α 2(a+b+ c+d +1) 2(a+d +1) −4b 8d
β −2(a+1/4) −2(a+1/4) −8a−2 8b
γ 2(b+1/4) 2b 16a
δ −2c −2c −16c

e0
u− x

u(u−1)
1/u 1/u 1 1

e1 t(t −1) t(t −1) −t t 1
e2 t(t −1)(t − x) t(t −1)2 t t2 1

−C
t(t −1)(u− x)
(t −u)x(x−1)

t(t −1)(u−1)
(t −u)x

2
t

t −u
tu

(t −u)x
1/2
t −u

As to the matrix form of the Lax pair of P6 [240], it presents two main advantages
over the scalar form: (i) to remove the apparent singularity t = u unavoidable in the
scalar form; (ii) to display the invariance under affine Weyl groups. However it also
presents various minor drawbacks [281], including: (i) meromorphic dependence
on one of the four monodromy exponents θ j, (ii) uneasy confluence, and they seem
difficult to remove [80]. The original Lax pair [240] can be made traceless and with
elements Li j,Mi j rational in u′,u,x. Introducing the Pauli matrices σk

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (B.59)

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
,σ jσk = δ jk + iε jklσl,

this Lax pair is [291, 281],

∂xψ = Lψ , ∂tψ = Mψ , (B.60)

with

L = − Mx

t − x
+ L∞, M =

M0

t
+

M1

t −1
+

Mx

t − x
, (B.61)

L∞ = − (Θ∞ −1)(u− x)
2x(x−1)

σ3, (B.62)

2M∞ = Θ∞σ3, (B.63)
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2M0 = z0σ3 − u
x

σ+ +(z2
0 −θ 2

0 )
x
u

σ−, (B.64)

2M1 = z1σ3 +
u−1
x−1

σ+− (z2
1 −θ 2

1 )
x−1
u−1

σ−, (B.65)

2Mx =
(

(θ 2
0 − z2

0)
x
u
− (θ 2

1 − z2
1)

x−1
u−1

)
σ−− u− x

x(x−1)
σ+

−(Θ∞ + z0 + z1)σ3, (B.66)

z0 =
1

2Θ∞x(u−1)(u− x)

[(
x(x−1)u′ − (u−1)(u−Θ∞(u− x))

)2

−(Θ 2
∞ + θ 2

0 )x(u−1)(u− x)+ θ 2
1(x−1)u(u− x)−θ 2

x x(x−1)u(u−1)
]
,

z1 =
−1

2Θ∞(x−1)u(u− x)

[(
x(x−1)u′ −u(u−1−Θ∞(u− x))

)2

+(Θ 2
∞ + θ 2

1 )(x−1)u(u− x)−θ 2
0 x(u−1)(u− x)−θ 2

x x(x−1)u(u−1)
]
,

(2α,−2β ,2γ,1−2δ ) = ((Θ∞ −1)2,θ 2
0 ,θ 2

1 ,θ 2
x ), M∞ = −M0 −M1 −Mx.

The meromorphic dependence (denominatorΘ∞) comes from the assumption M∞ =
(Θ∞/2)σ3.

B.8 Classical Solutions

The classical solutions (defined in Appendix A.2) admitted by the eight irreducible
Pn (Table B.3) have all been found, except for P6 where the list is not yet exhaus-
tive. P1 admits no such solution. Classical solutions have a dependence on the two
constants of integration which is less than twice transcendental.

A first set depends rationally on one arbitrary constant, its seed is the Riccati
equation defined by equating to zero the l.h.s. N and the r.h.s. of the birational
transformations (B.20)–(B.24). All the elements in the set are generated from the
seed by repeated applications, in any order, of (i) the birational transformation, (ii)
the homographies leaving invariant the Pn equation, see details in [190]. For the
respective Pn equations n = 6,5,4,3,2, they depend on 3,2,1,1,0 arbitrary complex
constants θ j, and 4,3,2,2,1 arbitrary integer constants. Naturally, this sequence can
be generated from the Riccati subequation of P6 [157] by the coalescence. All these
solutions obey a first order, any degree, genus zero ODE which is, by construc-
tion, linearizable into, respectively, the Gauss hypergeometric, Whittaker, Weber–
Hermite, Bessel and Airy equations.

The second set depends on no constant at all. If one excludes particular solu-
tions of the above Riccati equations, these solutions are rational functions for P2–
P5 (more precisely rational in x for P2 [437, 419], P4 [287], P5 [286], rational in

x1/2 for the D(1)
6 −P3 [311], rational in x1/3 for the D(1)

7 −P3 [187] ) and algebraic
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functions for P6. Their list cannot be generated by the confluence. The rational ones
only exist for the following constraints among the monodromy exponents⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P2 : θ∞ = n,

P3 D(1)
6 γδ �= 0 :

θ∞ −θ0

2
= n,

P3 D(1)
7 γ = 0, αδ �= 0 :

β
2
√−δ

= n,

P4 : 2θ∞ = m, 2θ0 = 2n−m+ 1,
P4 : 2θ∞ = m, 2θ0 = 2n−m+ 1/3,
P5, δ �= 0 : (θ∞ = n, θ0 + θ1 = m) or (θ0 = n, θ∞ + θ1 = m), m+ n odd,

(B.67)

in which m and n denote arbitrary integers, and all of them are generated by the
birational and homographic transformations from the following seeds,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P2 : u = 0, n = 0,

P3 D(1)
6 γδ �= 0 : u = z, z2 =

d
c

x, n = 0,

P3 D(1)
7 γ = 0, αδ �= 0 : u = z2, z3 = α−1/2dx, n = 0,

P4 : u = −2x, α = 0, β = −2, m = 0, n = 0,

P4 : u = −2
3

x, α = 0, β = −2
9
, m = 0, n = 0,

P5,δ �= 0 : u = −1, α + β = 0, γ = 0.

(B.68)

The classical solutions of P6 disctinct from the Riccati ones are necessarily alge-
braic. The simplest one,

u =
√

x, θ 2
j = (λ 2,λ 2,µ2,µ2), (B.69)

with λ ,µ arbitrary, is equivalently described by an algebraic curve P(u,x) = 0 of
degree two and genus zero. Under birational transformations, the genus is conserved
but the degree changes, therefore, in order to represent the algebraic solutions, it
is important to minimize the degree with the help of birational transformations.
Since these solutions have not yet all been found, we will not list them all, the
interested reader can refer to [130, 220, 389, 131, 254, 34]. Some solutions [130,
131] are associated with the five regular three-dimensional polyhedra of Plato (cube,
tetrahedron, octahaedron, dodecahedron, icosahedron), such as for the cube [130,
254, 188] (genus zero, degree three)

x−6xu + 3u2 + 3xu2 + x2 −2u3 = 0, θ = (2a,1/3,a,a), a arbitrary,(B.70)

for the tetrahedron [130, 254] (genus zero, degree six)

2xu3 −u4 −6x2u2 + 2x2u + 2x2u3 + xu4 − x2u4 − x3 + 2x3u = 0,

θ = (1/2,a,a,a), a arbitrary. (B.71)

As another example, the solution [34]
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x =
(5s2 −8s+ 5)(7s2−7s+ 4)

s(s−2)(s+ 1)(2s−1)(4s2−7s+ 7)
, u =

(7s2 −7s+ 4)2

s3(4s2 −7s+ 7)2 ,

θ =
(2,2,2,4)

7
, (B.72)

with genus zero and degree ten, can be linked to a group of Klein.



Appendix C
Brief Presentation of the Elliptic Functions

The trigonometric functions u = sin,cos, tan,cotan,sinh,cosh, tanh,coth all obey a
nonlinear first order ODE of the type

u′n + a + bu2 = 0, n = 1 or 2, (C.1)

and Abel and Jacobi have proven that the first order second degree ODE

u′2 + A + Bu2 +Cu4 = 0, (C.2)

which includes as particular cases all the equations (C.1), has a general solution
which is single valued and therefore defines a function. This function, known as the
“cnoidal wave” by physicists and as the “Jacobi elliptic function” by mathemati-
cians, realizes an extrapolation of the above trigonometric functions to one more
parameter.

There exist several equivalent definitions of the elliptic functions u(x), for in-
stance

1. doubly periodic functions having two incommensurate periods T1,T2,

∃T1,T2, T1/T2 /∈ Q, ∀n1,n2 ∈ Z : u(x + n1T1 + n2T2) = u(x), (C.3)

2. general solution of the first order m-th degree ODE with constant coefficients,

F(u,u′) ≡
m

∑
k=0

2m−2k

∑
j=0

a j,ku ju′k = 0, a0,m �= 0, (C.4)

when it has no movable critical singularities and the algebraic curve F(X ,Y ) = 0
has genus one.

215
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C.1 The Notation of Jacobi and Weierstrass

Jacobi has defined twelve “Jacobi functions” pq(z,k) as the general solution of equa-
tions (C.2) in which A,B,C only depend on one adimensional complex constant
called the modulus k, and p,q are four letters among s,c,d,n. By moving to ∞ one of
the four zeros u j of u′ in (C.2) with a homography u(z) → u j + b/(℘(x)−a), with
x/z constant, Weierstrass has defined a very convenient normalized form, called the
Weierstrass elliptic equation

(
d℘
dx

)2

= 4℘3 −g2℘−g3 = 4(℘− e1)(℘− e2)(℘− e3), (C.5)

a differential consequence of which is

d2℘
dx2 = 6℘2 − g2

2
. (C.6)

Elliptic functions possess an addition formula, i.e. an algebraic relation between
the values of the function at the three points (x1,x2,x1 + x2), with (x1,x2) arbitrary.

℘(x1 + x2)+℘(x1)+℘(x2) =
1
4

(
℘′(x1)−℘′(x2)
℘(x1)−℘(x2)

)2

, (C.7)

The link between the Jacobi modulus k and the constants of Weierstrass

k2 = m =
e2 − e3

e1 − e3
, (C.8)

unfortunately breaks the invariance under permutation of the roots e j, this follows
from the requirement of Jacobi that two of his twelve functions (cn,sn) should ex-
trapolate the cos and sin functions. As a consequence, computations involving the
Jacobi functions are not very practical because they need to use a large number of
formulae [9, Chap. 16] [289]. For reference only, we give the basic ones involving
the copolar trio (sn,cn,dn) (preferred by physicists, for they are bounded on the real
axis, see Fig. C.1) and the copolar trio (cs,ds,ns) (preferred by mathematicians, for
they share the same simple pole at the origin)

sn′(z) = cn(z)dn(z), cn′(z) = −dn(z)sn(z), dn′(z) = −msn(z)cn(z), (C.9)

−dn2 +1−m = −mcn2 = msn2−m, (C.10)

cs′(z) = −ds(z)ns(z), ds′(z) = −ns(z)cs(z), ns′(z) = −cs(z)ds(z), (C.11)

cs2 +1−m = ds2 = ns2−m. (C.12)

Exercise. Prove the equivalence of the twelve Jacobi equations under the class of
transformations

u(z,k) →U(Z,K), u = λU, Z = µz, (λ ,µ) = constant. (C.13)
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Hint: since (C.2) admits AC/B2 as an invariant under this transformation, it is suf-
ficient to check that the induced relation between the two moduli k and K indeed
has a solution (complex of course). For instance, with u = sn,U = cn, there are two
possibilities,

u = cn, U = sn,

⎧⎪⎨
⎪⎩

µ2 = − 1
m

, λ 2 =
m

m−1
, m(1−M) = 1,

µ2 =
1

1−m
, λ 2 = 1, (1−m)(1−M) = 1.

(C.14)

An important practical consequence is the possibility to represent the solution
sn(z,k) (for instance) of some nonlinear ODE as twelve equivalent complex ex-
pressions.

1 2 3 4 5 6 7

-1

-0.5

0.5

1

Fig. C.1 The copolar trio (sn,cn,dn) of Jacobi, over one real period, for the value k = 1/3. The
curves of sn,cn are close to those of sin,cos, and dn never vanishes.

C.2 The Symmetric Notation of Halphen

Since ℘′ is single valued, the three functions

hα(x) =
√

℘(x)− eα , α = 1,2,3, (C.15)

are single valued, and Halphen [193, Chap. VIII p. 253] has emphasized their nu-
merous advantages over the notation pq of Jacobi. The square roots in (C.15) are
chosen so that each hα(x) has a residue +1 at its simple pole x = 0. This copolar
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trio is closely related to the copolar trio (cs,ds,ns) of Jacobi [193, Chap II, (16)
p. 46],

cs(z)
h1(x)

=
ds(z)
h2(x)

=
ns(z)
h3(x)

=
x
z

=
1√

e1 − e3
, k2 = m =

e2 − e3

e1 − e3
, (C.16)

and its advantage is the invariance under any permutation of (1,2,3) of all the for-
mulae involving hα , including the solutions of physical nonlinear ODEs [63].

When dealing with an ODE or a discrete equation, the only formulae required
are
the derivation formula

h′α(x) = −hβ (x)hγ (x), (C.17)

the algebraic dependence relations

h2
β (x)+ eβ = h2

γ (x)+ eγ , (C.18)

the addition formula

hα (x + y) =
h2

α(x)h2
α(y)− (eα − eβ )(eα − eγ)

hα(x)hβ (y)hγ (y)+ hα(y)hβ (x)hγ(x)
, (C.19)

the Laurent expansion at the origin [193, Chap VII p. 237] [193, Chap IX p. 304]

hα(x) =
1
x
− eα

x
2

+
(
g2 −5e2

α
) x3

40
+(5g3 −7eαg2)

x5

26.5.7
+ O(x7), (C.20)

and the degeneracy to trigonometric functions [193, Chap VIII (75) p. 289]⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g2 =
4
3

( π
2ω

)4
, g3 =

8
27

( π
2ω

)6
, −eα

2
= eβ = eγ = −3g3

2g2
,

σβ (x) = σγ(x) = exp

(
1
6

( πx
2ω

)2
)

, σα(x) = σβ (x)cos
πx
2ω

,

σ(x) =
2ω
π

σβ (x)sin
πx
2ω

, hα(x) =
π

2ω
cotg

πx
2ω

.

(C.21)

From (C.17) and (C.18), one deduces the differential equation

(
h′α(x)

)2 = (h2
α(x)+ eβ − eα)(h2

α(x)+ eγ − eα), (C.22)

and from (C.19) the expression of the three elliptic functions hα as rational functions
of ℘ and ℘′ (a characteristic property of the elliptic functions),

hα(2u) = − (℘(u,g2,g3)− eα)2 − (eα − eβ )(eα − eγ)
℘′(u,g2,g3)

. (C.23)



Appendix D
Basic Introduction to the Nevanlinna Theory

There exist two theories, respectively due to the Nevanlinna brothers [323, 324] for
the first one, and to Wiman and Valiron [408, §207] for the second one, which may
give an additional insight to the solutions of nonlinear differential equations.

However, while the scope of the theory of Painlevé is the singlevaluedness (at the
movable singularities) of the general solution of nonlinear differential equations, the
theory of Nevanlinna deals with meromorphic functions of one complex variable and
the theory of Wiman and Valiron with entire functions of one complex variable (for
extension to meromorphic functions with a finite number of poles, see e.g.[29]),
i.e. two subclasses of the class of singlevalued functions. Moreover, when these
functions obey a nonlinear differential equation, they are usually only particular
solutions. It is quite important to keep these main differences in mind. Let us now
briefly introduce the Nevanlinna theory. Complete expositions can be found in [432,
207, 267], and additional results on the Painlevé transcendents in [189, 195].

Let us first precisely define the word meromorphic, because it is sometimes used
with two meanings.

A function f (x) is said to be locally meromorphic near x = a iff its Laurent series
near x = a contains a finite number of negative powers.

A function f (x) is said to be globally meromorphic iff its only singularities at a
finite distance are poles.

Examples.

1. The function x → 1/x + log(x− 1) is locally meromorphic near x = 0 but not
globally meromorphic.

2. The functions x → e1/x,x → ℘(ex,g2,g3) are singlevalued but not (globally)
meromorphic.

In the remaining part of this section, f denotes a globally meromorphic (and we
will simply say meromorphic) function whose value at x = 0 is neither 0 nor ∞.
Rational functions are particular meromorphic functions whose growth at infinity
is measured by their degree (defined as the maximum value of the degrees of the
numerator and denominator). Let us first define a similar notion for meromorphic
functions.

219
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1. The function (sometimes called unintegrated counting function) n(r, f ) is defined
as the number of poles of f (counting multiplicity) in the domain |z| < r.

2. The counting function (also called integrated counting function) N(r, f )

N(r, f ) =
∫ r

0

n(t, f )−n(0, f )
t

dt + n(0, f ) logr. (D.1)

3. The proximity function m(r, f ) measures how close f is to ∞. It is defined as

m(r, f ) =
1

2π

∫ 2π

θ=0
log+ | f (reiθ )|dθ , (D.2)

where, for any positive number α , one denotes log+ α = max{0, logα}.
4. The main quantity is the Nevanlinna characteristic. It is defined as the sum

T (r, f ) = m(r, f )+ N(r, f ). (D.3)

This characteristic function T (r, f ) generalizes to meromorphic functions the no-
tion of degree of a rational function. Indeed, it enjoys the properties, for any mero-
morphic functions f ,g and any positive integer n,

T (r, f g) ≤ T (r, f )+ T (r,g), (D.4)

T (r, f n) = nT (r, f ), (D.5)

T (r, f + g) ≤ T (r, f )+ T (r,g)+ O(1), (D.6)

T (r,1/ f ) = T (r, f )+ O(1). (D.7)

These properties are consequences of similar properties of N(r, f ) and m(r, f ), for
instance

m(r, f g) ≤ m(r, f )+ m(r,g). (D.8)

The order of growth of a meromorphic function is defined as

σ( f ) = limsup
r→+∞

logT (r, f )
logr

. (D.9)

When f is entire, this coincides with the usual definition

σ( f ) = limsup
r→+∞

log logM(r, f )
logr

, M(r, f ) = max
|z|=r

| f (z)|. (D.10)

For instance, the entire functions zn,ez,sinπz,exp(zn),exp(expz) have the re-
spective orders 0,1,1,n,∞. The rational functions are characterized by the prop-
erty T (r, f ) = O(logr), therefore their order is zero. The meromorphic functions
P1,P2,P4 have the orders 5/2,3,4. The P6 function being nonmeromorphic, its
order is not defined and the Nevanlinna theory is not applicable to it.

This ends the main definitions.
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For applications to differential equations, the most important property is the fol-
lowing lemma.

Lemma of the logarithmic derivative (Nevanlinna).
If f is meromorphic, then

m(r, f ′/ f ) = O(logT (r, f )+ logr), r → ∞, r �∈ E, (D.11)

where E is some exceptional set of finite length.
If f has no essential singularity at infinity, the term logr can be omitted. The

exceptional set E may indeed occur but it makes no harm in most applications.
If f has a pole of order k, hence f ′ a pole of order k + 1, the upper bound 2 for

|(k + 1)/k| yields the inequality

N(r, f ′) ≤ 2N(r, f ). (D.12)

Combining the above lemma (D.11) and the property (D.8), one obtains

T (r, f ′) = N(r, f ′)+ m(r, f ′) ≤ 2N(r, f )+ m(r, f f ′/ f )
≤ 2N(r, f )+ m(r, f )+ m(r, f ′/ f ) ≤ (2 + o(1))T(r, f ).

Thus

∀n ∈ N : T (r, f (n)) = O(T (r, f )). (D.13)

If f has no poles, we obtain the upper bound

T (r, f ′) = m(r, f ′) = m(r, f f ′/ f ) ≤ m(r, f )+ m(r, f ′/ f )
≤ (1 + o(1))T(r, f ), (D.14)

and, by recurrence,

∀n ∈ N : T (r, f (n)) ≤ (1 + o(1))T(r, f ). (D.15)

Similarly, if L( f ) is a linear differential polynomial of f with rational coefficients,
and if f has only a finite number of poles, one has the upper bound

T (r,L( f )) ≤ (1 + o(1))T(r, f ). (D.16)

The inequalities (D.15) and (D.16) are the key ingredients to the proof that, for
some particular nonlinear ODEs, any meromorphic solution if it exists can only be
elliptic. An elegant application to the KS ODE (2.27) has been made by Eremenko
[132]; its results are presented in Sect. 3.2.8.

Another application of the Nevanlinna theory in the context of the present book
is its probable relation with a good definition of the discrete Painlevé property [2],
see Sect. 7.2. Indeed, the upper bound (D.14) also exists in the discrete case [2]
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rε ≥ 1 : T (r, f (z±1)) ≤ (1 + ε)T(r + 1, f (z))+ κ , (D.17)

with κ equal to some constant.



Appendix E
The Bilinear Formalism

For all soliton equations, most expressions (the equation itself, its Bäcklund trans-
formation, etc) can be considerably shortened if one uses a compact notation intro-
duced by Hirota [208]1. The bilinear operator D is a first order differential operator
acting on a couple of functions f and g, defined by

Dxj f .g =
(

∂x j − ∂x′j

)
f (x1, · · · ,xl) f (x′1, · · · ,x′l)|x′j=x j

. (E.1)

For instance, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dx f .g = fxg− f gx,

D2
x f .g = fxxg−2 fxgx + f gxx,

D3
x f .g = fxxxg−3 fxxgx + 3 fxgxx − f gxxx,

Dn
x f .g = Dn−1

x ( fxg− f gx) ,
DxDt f .g = fxt g− fxgt − ftgx + f gxt .

(E.2)

Any sum of such monomials whose coefficients are independent of the usual deriva-
tives ∂x j is called by definition a (Hirota) bilinear form (even if it is a quadratic form
in case g = f ). This formalism presents a strong analogy [219] with a variety of de-
terminant known as Pfaffian.

E.1 Bilinear Representation of a PDE

Given a 1+1-dimensional soliton PDE defined by the differential polynomial equa-
tion

P(∂x,∂t ,u) = 0, (E.3)

1 This notation can be traced back to Clebsch, and Borel [36] used it, under the name “forme
binaire”, to represent the newly discovered P1 and P2 equations.
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one first computes the singular part operator D of each family, introduced in Sect.
2.1.2 (not to be confused with the above Hirota D operator!). In case the PDE ad-
mits more than one family, there exists a privileged family2, which must be selected.
Depending on the structure of singularities, one then introduces one or several fields
f ,g via the singular part transformation. In the simplest case of one field, this trans-
formation is

u = D log f . (E.4)

Then (E.3), which is now a differential polynomial

P(∂x,∂t , f ) = 0, (E.5)

can be rewritten as a Hirota differential polynomial (bilinear form)3

P(Dx,Dt ) f . f = 0, (E.6)

in which P is a polynomial, i.e. without any usual derivative ∂x,∂t .
For instance, the KdV equation

but + uxxx − 6
a

uux = 0, (a,b) constant, (E.7)

admits a single family of movable double poles, and the transformation

u = −2a∂ 2
x log f (E.8)

maps it to

−2a

((
bDxDt + D4

x

)
f . f

f 2

)
x

= 0, (E.9)

which, after taking one primitive, is indeed a Hirota bilinear form(
bDxDt + D4

x

)
f . f + F(t) f 2 = 0. (E.10)

This equation does not depend any more on the coefficient a of the nonlinear term
in (E.7), and this is a typical feature of these bilinear representations.

More examples and details on this powerful technique can be found in various
summer school lecture notes, e.g. [205, 384].

2 Examples are (5.204) and (5.206), respectively for the SK and KK equations. Most of the time,
this privileged family only has positive Fuchs indices.
3 Such a form only implies the existence of a two-soliton solution, and there do exist [204] PDEs
which admit three-soliton solutions but not four-soliton solutions.
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E.2 Bilinear Representation of a Bäcklund Transformation

Knowing the bilinear form (E.6) of a soliton PDE, there exists a method [212] to
derive a representation of its Bäcklund transformation as a set of two bilinear equa-
tions. Like the singular manifold method presented in Sect. 5.5, it requires at some
point the input of an order for the spectral problem.

In the example of KdV, the goal is to obtain the two equations (5.101)–(5.102)
knowing only (E.10). Consider two different solutions f and F of the bilinear PDE
(E.10). One first switches to the variables sum and difference

log f − logF = V, log f + logF = W, (E.11)

and eliminates the highest derivative in W to obtain

bVxt +Vxxxx + 6VxxWxx = 0. (E.12)

One must generate two bilinear equations from this single non-bilinear equation.
The canonical basis Vmx,nt ,Wmx,nt used to represent (E.12) proves inconvenient, and
there exists an optimal basis of differential polynomials in two variables known as
the binary Bell polynomials Ym,n [172] defined as

( f F)−1Dm
x Dn

t f .F = Ym,n(V,W ), V = log
f
F

, W = log f F, (E.13)

whose first elements are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y0,0(V,W ) = 1,
Y1,0(V,W ) = Vx,

Y2,0(V,W ) = Wxx +V 2
x ,

Y1,1(V,W ) = Wxt +VxVt ,

Y3,0(V,W ) = Vxxx + 3VxWxx +V 3
x .

(E.14)

In this basis, the single equation (E.12) becomes

∂x (bY0,1 +Y3,0)−3(Y1,0∂xY2,0 −Y2,0∂xY1,0) = 0, (E.15)

and the assumption which, in the singular manifold method, corresponds to a second
order Lax pair is a linear dependence between Y2,0,Y1,0,Y0,0,

Y2,0 + a1Y1,0 + a0Y0,0 = 0. (E.16)

Equation (E.15) can then be integrated once,

bY0,1 +Y3,0 −3a0Y1,0 + KY0,0 = 0, (E.17)

with K an arbitrary function of t. Since the two equations (E.16)–(E.17) are linear
in the binary Bell polynomials and therefore expressible in bilinear form
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D2

x + a1Dx + a0
)

f .F = 0,(
bDt + D3

x −3a0Dx + K
)

f .F = 0,
(E.18)

this is the desired result. A translation V →V + c1x+ c2t allows one to set the coef-
ficients a1 and K to zero, leaving a0 as the only essential parameter, then identified
as the spectral parameter λ .

For reference, the main PDEs considered in the text are representable as follows
(the representation may not be unique),

KdV :
(
bDxDt + D4

x

)
f . f = 0, u = −2a∂ 2

x log f , (E.19)

Bq :
(
D2

t +(ε2β 2/3)D4
x

)
f . f = 0, u = 2β 2∂ 2

x log f , (E.20)

KP :

(
ε2β 2

3
D4

x1
+ ε2Dx1 Dx3 + D2

x2

)
f . f = 0, u = 2β 2∂ 2

x log f , (E.21)

mKdV :
(
D3

x −bDt
)

g. f = 0, D2
xg. f = 0, u = α∂x Log( f/g), (E.22)

SG :

{
(DxDt − µ) f . f + g2 = 0, (DxDt − µ)g.g + f 2 = 0,
u = (2/a)Log(g/ f ),

(E.23)

NLS :

{(
prD

2
x + iDt

)
f .g = 0,

(
prD2

x − iDt
)

h.g = 0,

D2
xg.g− f h = 0, A = f/g, Ā = h/g,

(E.24)

SK :
(

Dx(β Dt + D5
x)

)
f . f = 0, u = α∂ 2

x Log f , (E.25)

KK :

{(
D6

x + 16β DxDt

)
f . f + 15D2

x f .g = 0, D4
x f . f = f g,

u = (α/2)∂ 2
x Log f ,

(E.26)

The credits are: KdV [208], Boussinesq [217, 218], KP [382], mKdV [209], SG
[210], NLS [211], SK [36, 59, 386], KK [241].

A probably complete list of soliton equations has been produced in this represen-
tation [241].

The corresponding bilinear representation of their BT is (the second solution is
denoted with a prime)

KdV :
(
D2

x + λ
)

f . f ′ = 0,
(
bDt + D3

x −3λ Dx
)

f . f ′ = 0, (E.27)

Bq :
(
β εD3

x + 3DxDt −4β ελ
)

f . f ′ = 0,
(
β εD2

x −Dt
)

f . f ′ = 0, (E.28)

KP :

{(
β εD2

x1
+ Dx2

)
f . f ′ = 0,(

3εDx3 + β 2εD3
x1
−3β Dx1Dx2

)
f . f ′ = 0,

(E.29)

mKdV :

{
Dx f ′.g = λ g f ′,

(
D3

x + 3λ Dx + bDt
)

g′.g = 0,

Dxg′. f = λ f ′g,
(
D3

x + 3λ Dx + bDt
)

f ′. f = 0,
(E.30)

SG :

{
Dxg′.g = λ f ′ f , Dt f ′.g = λ−1g′ f ,
Dx f ′. f = λ g′g, Dtg

′.g = λ−1 f ′g,
(E.31)
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NLS :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dx(g′. f + f ′.g)− µ( f ′g− f g′) = 0 (p = 1,q = 1),
Dx(g′.h + h′.g)− µ(h′g−hg′) = 0,

iDt(g′. f + f ′.g)− (D2
x + λ )( f ′g− f g′) = 0,

−iDt(g′.h + h′.g)− (D2
x + λ̄)(h′g−hg′) = 0,

(iDt + D2
x + 2µDx + 2µ2−λ )g′.g− f ′.h = 0,

(−iDt + D2
x + 2µ̄Dx + 2µ̄2− λ̄)g′.g−h′. f = 0,

(E.32)

SK :
(
D3

x −λ
)

f . f ′ = 0,
(

D5
x + 5λ D2

x − (2/3)β Dt

)
f . f ′ = 0, (E.33)

KK :

⎧⎪⎨
⎪⎩

(
D4

x −8λ Dx
)

f . f ′ − ( f ′g + f g′)/2 = 0,(
18D5

x −32β Dt

)
f .g−15(Dx f ′.g−Dx f .g′) = 0,

D4
x f . f − f g = 0, D4

x f ′. f ′ −gg′ = 0.

(E.34)

Again, the credits are: KdV [212], Boussinesq [218, 330], KP [218], mKdV [209],
SG [210], NLS [328], SK [386], KK [319].



Appendix F
Algorithm for Computing Laurent Series

Such a computation is required in many methods presented in this book, therefore it
must be done efficiently. The common way is to substitute u by a finite sum

u =
J

∑
j=0

u jχ j+p, (F.1)

to split the resulting l.h.s. E(u) of the equation into a similar sum

E(u) =
J′

∑
j=0

E jχ j+q, (F.2)

to discard those coefficients E j in the range J < j ≤ J′, and to solve the set of J + 1
equations E j = 0 for the J + 1 unknowns u j. This algorithm is time and storage
consuming, therefore it should not be implemented.

To avoid generating terms to be discarded later on, there exists a perturbation pro-
cess equivalent to this computation, which is just an application of the very powerful
α-method of Painlevé [348], this is [76, (5.26)]

x = x0 + εX , u = (εX)p
+∞

∑
n=0

(εX)nu(n)(x), E = (εX)q
+∞

∑
n=0

(εX)nE(n)(x). (F.3)

Its implementation generates the following optimal algorithm1 (for simplicity, we
assume that the leading order u ∼ u0χ p,E(u) ∼ E0χq has already been computed,
that the equation is an autonomous ODE, and we omit the handling of the Fuchs
indices and no-log conditions).

Input:
E some expression, polynomial in u(x),u’(x), etc
p singularity degree of u

1 The language used, called Algebraic manipulation program [128], has a syntax very close to that
of Reduce.
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q singularity degree of E
u_0 leading coefficient of u
t[0:J] empty array

Output:
t[0:J] coefficients of the Laurent series
zero a remainder which must be zero.

Program:
Laurent(u,x,E,p,q,u_0,t) {symbolic zero,j,J;
declare fr function,t array;
zero=x**(-q)*let u=(function(x) x**p*(u_0+x*fr(x))) in E;
t[0]=u_0;J=highbound(t,1);let x**(J+1)=0 active;
for j=1 to J do {
t[j]=Solve(fr(x),coeff(zero,x,j));
zero=let once fr=(function(x) uj+x*fr(x)) in zero;
zero=let uj=t[j] in poly(zero,uj);};

let x**(J+1)=0 inactive;write 0==zero; /* Must print "true" *
};
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2.2 Cubic Hénon–Heiles system. No-logarithm conditions . . . . . . . . . . . . 27

3.1 Characterization of the general analytic solution of a nonintegrable
ODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Kuramoto–Sivashinsky equation. The six trigonometric solutions. . . . 55

5.1 Action of reductions on the Lax pair, etc, of a PDE. . . . . . . . . . . . . . . . 144

7.1 Duality of the Dynkin diagrams of the continuous Painlevé equations.184
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Université des sciences et technologies de Lille, 1994).

38. T. Bountis, L. Drossos, M. Lakshmanan, and S. Parthasarathy, On the nonintegrability of a
family of Duffing–van der Pol oscillators, J. Phys. A 26 (1993) 6927–6942.
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61. Hsing-Hen Chen, A Bäcklund transformation in two dimensions, J. Math. Phys. 16 (1975)
2382–2384.

62. Chow K.-w. and R. Conte, Stationary doubly periodic wave of the saturable discrete nonlin-
ear Schrödinger equation, to be submitted (2008).

63. Chow K.-w., R. Conte and Neil Xu, Analytic doubly periodic wave patterns for the integrable
discrete nonlinear Schrödinger (Ablowitz–Ladik) model, Phys. Lett. A 346 (2006) 422–429.
http://arXiv.org/abs/nlin.PS/0509005

64. D. V. Chudnovsky, G. V. Chudnovsky, and M. Tabor, Painlevé property and multicomponent
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133. V. P. Ermakov, Équations différentielles du deuxième ordre. Conditions d’intégrabilité sous
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163. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont
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plane, viii+303 pages (de Gruyter, Berlin, 2002).

190. V. I. Gromak and N.A. Lukashevich, The analytic solutions of the Painlevé equations, 157
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4 (1968) 1413–1420 [English : Diff. equ. 4 (1968) 732–735].
287. N. A. Lukashevich, Theory of the fourth Painlevé equation, Differentsial’nye Uravneniya 3
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point of isomonodromic deformations, J. Phys. A: Math. Gen. 39 (2006) 12129-12151. Spe-
cial issue “One hundred years of Painlevé VI”.
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J. Math. Phys. 34 (1993) 2385–2393.

373. C. Rogers and S. Carillo, On reciprocal properties of the Caudrey–Dodd–Gibbon and Kaup–
Kupershmidt hierarchies, Physica Scripta 36 (1987) 865–869.
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Bäcklund
parameter, 83, 106
transformation, 81, 106, 112, 114, 121, 122,

126
transformation (auto–), 81, 121

background, 39, 80
Bell polynomials, 225
Bessel equation, 212
Bianchi

diagram, 101, 128
permutability theorem, 101

Bianchi IX cosmological model, xii
bilinear

Bäcklund transformation, 225

form, 223
formalism, 129, 223

birational transformation, 140, 141, 178, 192
Boussinesq equation, xii, 95, 113
branch point, x
breather solution, 120
Burgers equation, 83, 198

Camassa–Holm equation, 84
Cartan equivalence classes, 193
Cartan matrix, 208
CGL5 equation, 71
chaos, 18, 45
characteristic

manifold, 78, 84, 85
reduction, 79, 136, 144

classical
function, 187, 193
solution, 186, 187, 193, 199, 212

classification, 38, 85, 123, 152, 167, 182, 191,
194

cnoidal waves, 215
coalescence, 183, 186, 200, 204, 210
complete equation, 123, 162
complex Ginzburg–Landau (CGL3) equation,

x, xi, 19, 47, 55, 64, 69, 82
confluence, 200
conservation law, 82, 85, 113–116
contiguity relation, 142, 178
continuum limit, 164, 166, 167, 169, 172, 176,

179, 180, 182, 184, 186
perturbation of the, 172

covariance, 94
Coxeter group, 208
criterium of polynomial growth, xiv
critical, 9, 29
critical point, x

253



Index

crossratio, 102, 192
Crum transformation, 94, 99

d’Alembert equation, 81
Darboux

coordinates, 145
transformation, 94, 97–99, 101, 123, 144,

178
transformation (binary), 98

Darboux–Halphen system, 73
dedication, v
deformation parameters, 139
Degasperis–Procesi equation, 84
degeneracy, 200
degree, 6, 165, 170, 219
determining equations, 50, 53, 57, 62, 106,

110, 111, 114, 117, 120, 124, 132, 135,
143

differential part, 97
diophantine condition, 21, 25, 26, 90
discrete

d−P1 equation, 166, 174
d−P2 equation, 166
d−P6 equation, 184, 186
d−Pn equation, 183–185
e−P6 equation, 186
e−Pn equation, 184
q−P6 equation, 183, 186
q−Pn equation, 183, 184
elliptic equation, 183
elliptic equation of Jacobi, 180
elliptic equation of Weierstrass, 180
equation, 163
Lax pair, 176
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