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CORRECTION TO "HARMONICALLY IMMERSED SURFACES OF R" " 

GARY R. JENSEN A N D  M A R C 0  RIGOLI 

Formulas (1.20) through (1.23) of 51 of [ l ]  are incorrect. The correct for- 
mulas given below require a revision of the results of Theorems 1.1 and 1.2 
and their remarks, while Proposition 1.1 and its Corollary 1. I actually become 
strengthened. $2 (with appropriate renormalizations given below) and $3 remain 
correct as given. 

Everything is correct through (1.19), which we take as our starting point here. 
We follow the notation and index conventions of the paper. A unitary frame 
along yf (see (1.9)) is given by (uj ,ua) where 

I i 2 1 9  
(1) u,=-(R:+iR;)e, ,  ~=I IRI I=[c (R, ) ]r , 

u, ,u2 is a special unitary basis of span,{e, ,e,) , and ua = ea . Thus yf = 

[ ~ , l ,and 

which we find useful to write as 

(3) 

Awhere the tension of f is r(f )  = (R:, + Rt2)eA, and L = L(R )eA ,where 
L ( R ~ )= (R;, - Rt2)/2- iRf2. Thus we can rewrite (1.19) as 

and, since y; d F 2  = (du, ,du,)  - (du, .u,)  (u, .du,)  = 1 1  Proj,: du, 1 1  2 , we ob- 
tain as a correction to (1.20) 

where ProjUL is orthogonal projection (with respect to the Hermitian metric of 

Cn) onto thk orthogonal complement of u, . 
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Theorem 1.2 (corrected). Let f : ( M  ,g )  -,R" be a harmonic immersion. Then 

y f :  ( M , g )-- CP" is anti-holomorphic and y; d~~ = -dg , where 

Remarks. 

1. Vdf = 47(f)ylp + iLylyl + ~ E w .  
2. Suppose f is an isometry. We may then assume yl' = f * 8' , so R = 

I .  Thus r = fi, i r (f )  = H (=mean curvature vector), V df = I1 
2(=second fundamental form), and d = -i 1 1 ~ 1 1 ~- i lLl12 = - a  ll11II = 

- 1 1  H 1 1  +~ / 2,where K is the Gaussian curvature of g . If, in addition, 
f is harmonic, then d = K/2.  

We add the index convention 2 5 a ,  b ,c 5 n , and let Xu = P,,,~u, , a 

unitary frame field along ./i . If we set r(f )= rAuA, L = LAuA, then formula 
(4) can be rewritten as 

Then V dyf = (Bflylyl + 2Bf,ylp + Bfi@)X, where 

and 7; is given by 

V T ( ~ )= (rfy, + r4p)uA,
-

Aand since Or (f )  is real, we have r i  uA = rf uA. Hence the tension of '/I, 
which is r(yf) = 4BYiXu, is 

Formula (9) reaffirms the assertion of Theorem 1.2 (corrected) that if f is 
harmonic then 7,. is harmonic. 

Theorem 1.1 (corrected). Let f :  ( M ,  g )  - R" be an aflne immersion (i.e., 
T = 0 in (1.11)). Then yf: ( M .  g )  - C P " - ~  is harmonic if and only if 
Proj,; Vr(f )= 0 modulo yl . 

Proof. Recall that f affine means that the matrices RJ = (R:~)= 0 .  It is easily 
verified that f is affine if and only if rJ = 0 = LJ . Hence, if f is affine then 
(9) becomes 

2 A 
7 ( ~ f1 = ;P*ul r ,  M A .  

IAs p*,, maps uI  isomorphically onto the tangent space of CP"-' at [u,], it 
follows that 7 ( y,.) = 0 iff rTu, = 0 ,  which proves the theorem. 
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Remark. If f is an isometry, then T (  f )  (= 2H) ,VT(f )  and L are all nor-
mal, which implies that f is affine and Proj,: VT(f )  = VT(f )  . Hence yf 
is harmonic if and only if f has parallel mean curvature vector. The Ruh-
Vilms theorem says that the usual Gauss map Tf :  M - (=complex 
quadric) is harmonic if and only if f has parallel mean curvature vector. If 
q : Q,-2 -CP"-' is the inclusion map, then yf = q o Tf . 

Our corrections give a stronger version of Proposition 1.1. 

Proposition 1.1 (corrected). If f :  ( M  ,g )  -R" is a harmonic immersion, then 
M is of analytic type (i.e., if not identically zero it has isolated zeros of well-
defined multiplicities). 

Proof. Let p E M , and let U ,z be a local complex coordinate about p . For 
U sufficientlysmall there exists a holomorphic map F :  U - C such that f 
is its real part. That is, F = f + ih , for some harmonic map h:  U + R" .-

1 2Then y,  = [ F t ], where Ft= . In fact, if y, = y, + iy, = Adz, then--

% = :(R{ + iR;)e, and = $$ = 2 % .  

Now u1 = $% = &9',so dul = Cul + &9/'d z , for some function C . 
2 4Hence dyf = (p*,,& F )d z  and thus M = - 1 Proj r A since: 

2 2 2 1 
y; d~ = 1 1  Proj F A1 1  = -11 ~ ro j , ,F112mB u: r21A14 

- -
and by Theorem 1.2. Then M ( p )  = 0 if and only if FtA F U ( p )= 0 .  As 
F'AF"is a vector valued holomorphic function, it is either identically zero or 
it has isolated zeros of well-defined multiplicities, and these are the zeros and 
multiplicities of M . 

Corollary 1.1 of [I] is true even with the affine hypothesis dropped, since that 
hypothesis is not required in the corrected version of Proposition I. 1. 

This completes the corrections of 51. In 52, the inequality (2.1) must be 
changed to 

(2.1) revised K - 2 M  2 0. 

In the line following (2.8) we must revise the definition of 2 to be 2 = v 2 g ,  
in which case g 2 E~~ and its curvature becomes 

so that 

(2.9)revised k = (k - 2M)lv2 

Finally, the second line of the first remark at the end of this section requires 
the correction M = K/2. No corrections are required in 53. 
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