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INTRODUCTION

The Calculus of Variations has assumed an increasingly
important role in modern developments in analysis, geometry,
and physics. Originating as a study of certain maximum and
miniiiun problems not treatable by the methods of elementary
calculus, variational calculus in its present form provides
powerful methods for the treatment of differential equations,
the theory of invariants, existence theorems in geometric
function theory, variational principles in mechanics. Also
important are the applications to boundary value problems in
partial differential equations and in the numerical calcu-
lation of many types of problems which can be stated in vari-
ational form, No literature representing these diverging view-
points is to be found among standard texts on calculus of vari-
ations, and in this course an attsmpt will be made to do
Justice to this variety of problems.

The sub ject matter with which calculus of variations is
concerned is a class of extremum (i.e. maximum or minimum)
problems which can be considered an extension of the familiar
class of extremum problems dealt with by elementary differen-
tial calculus. In the elementary problems one seeks extremal
values of a function of one or more (but in any case a finite
numuber )} real variableas. In the more general problems consi-
dered by calculus of variations, the functions to be extremized,
sometimes called functionals,have functions as independent
variablos. The area A(f) below a curve y = £ (x), for example,
is a functional since its value depends upon a whole function
f. (It is possible to treat a functional as a function of
an enunerable set of Fourier coefficients, but this attack
usually leads to almost insuperable difficulties.)

One of the earliest problems of this type was the iso-
perimetric problem considered by the ancient Greeks. This
is to find, among all elosed curves of a given length, the
one which enocloses the maximum area, It is intultively
evident that the solution is a circle, but this fact has been



satisfaotorily proved only in reocent times, and the corres-
ponding theorem conocerning the sphere is even mare difficult.

The modern development of caloulus of variations,
however, began in 1696 with the formulation of the brachis-
tochrone problem by John Bernoulli. This problem is to find,
among all curves connecting two given points, that one which
has the property that a particle sliding along i1t under the
action of gravity alone falls from one point to the other in
the least time. This problem excited great interest among
the mathematicians of that day, and gave rise to a train of
research which is still ocontinuing.

Subsequent developments in claasical calculus of vari-
ations were the derivation of necessary conditions for an
extremun {oorreaponding to the oonditions grad r(xl,xe,...xn)=o

for a funotion f of n variables ) by Euler and more rigorous-
ly by Lagrange; and the development of sufficient conditions
{corresponding to the consideration of the quadratic form in
seopnd derivatives of f(xl,xz,...xn) at a stationary point)

by Hamilton, Jaocobi, and others; culpinating in the completion
of this theory by Welerstrass.

The broader aspeots of physical variational principles
were first sat forth by Maupertius, and were given a firmer
foundation by the work of Euler, Hamilton, Jacobil and Gausas.

We will now oconsider the mathematiocal formulation of
several problems:

A -y X
a) The Brachistochrone
A particle P slides \\
under the influence of gra- P\\\
v:.y along a ourve oconnecting 1 B(x,uq)
A and B. The velooity v at l Ul
u\l

any point is given by

d
v--d-%=\gu.

so that the time of fall T is

B B
re Bl ®) g

(A) (A)Y 2gu



Suppose the curve is given by u = f(x), where f£(0) = @,
fixy) = u,, and fix) is assumed to be piecewise differentisble.

Then ¢s =V 1 + u'édx. Hence the solution of the problem can
be obtained vy finding thie function u = £(x) wlach minimizes
the integral T (e functional}

T = —— - dx.

Vg .

sernoulli obtained the solution to this provlem wsing zn en-

P
1 vl l+u'2
o}

tirely different line of recsoning. He approximeted the path
u = fix) by o serles of line segments dividing the distance
frllen into equel parts, tl.e particle velocity bein; sssumed

constant througa- A 'I\ SR
out each segment. 1
It 13 an elerentary \\d

exercise in calculus
to desrive 3nell's r

law of refvaction ‘\\\\‘\\\\

u v B
312 i sin L = constant
1 r

as the condition for the path of rinimum time across a dis-
continuity. Taking the 1ivit g3 tie segmeants ere made smeller,
Bernoulll argued that the curve would bc given by
aln @ constant
2gu
which is indeed the correct answer, characterizing tie cycloid.
0f course, Bernoullits solution is only an indication rather

tian g »roof, since A -?x
he neither justified e

the limiting process,

nor showed that his

solution was unique.



v} Liniwmum Area of a Surface of Aevolution

Consider the y/\
surface fenerated by A(xl’yl)
revolvinz ti.e curve AB
soout the x~axis. If
the equation of this
curve is y = f(x}),
wiere fix,) = Yo»
and £ is plecewise differentiable, then the area of the
surface is given by the functional

x

2 -
I(f) = 2 S £/ + 002 ax.
X

1

The problem, then, is c¢o determine f so that I{f) is a
minisum. 9%he proolen can be "solved" physically by stretching
a soap film between the two oircles (mede of wire) st A and
B. Surface tension in the film will minimize the arec.
¢) Geodesics

The curve of shortest length counnecting two woints in
a plane is a straight line. This nced not be talien as an
gixriom, but can be proved. Simlilarly, on the surfesce of a
sphere, the curve of least length 1s the arc of a great circle.
In general, on any surface, the curves of least length coni.ec-
ting vairs of polnts are cclled geodesies and their determi-
nation leads to problems in calculus of variations. 1In case
the surface is developable (i.e. one which can te deformed
into a plene without sltering length =-- e.g. a cone} the
geodesics are given by the corresponding atraight lines

in the plane.
d) The Isoperimetric Provlem
Consider a plane

closed curve given in psra-
retric form by x = fit),

= = g(t) where £ and g have
plecewise continuous deri~
vatives, are of period 2¢ in ¢,
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and the curve has a given length L,

fj + y© dt

The problem 1is to find, among all f and g satisfyling these condi-
tions, the pair that maximizes the area A
2T
A=%j (xy - yx) dt
0
This problem is different from the foregoing three problems in
that we seek to extremize a functional A of two variables (the
functions f and g) subject to a prescribed condition, L= constant.
A1l such problems in calculus of variaticns are called iso-
perimetric problems; the analogy with the corresponding elementary
problem of extremizing a function F(x,y) of iwo real variables
subject to an auxiliary condition, say G{x,y) = 0, is evident.
We will now prove that the circle, i.e.
£(t) = a,sin t + a cos t

1 2
g{t) = assin t - ajcos t
maximizes A, subject to L = constant. Consider the expression
2
L
I = T - A

For the circle, I = 0. We then wish to show that I > 0 for all
other curves. Let t - 2w§, where s 1s are lengih. Then

I L
and

Hence

o
T3 f [+ 5%) - (xy - 93] at
0

= % Jf [+ 92+ (7 -x% 4 6% - %) + (3% - 57 at .
0

(S



Since (x + y)2 + (7 - x)z > 0, we will consider

2 2
1, = i (42 - xP)at + S (y2 - y2) dt.
(4]
Undoer the conditions imposed, we may expand x and y

in PFourier series

0D
XS {(a cos nt + b_sin nt)
5 n n

(o)
e '
y.,ga (ajcos nt + b! sin nt) ,

By talting the center of yravity of the curve as the orisin
(1.e. transleting the axes x' = x + X, y' =y + y,} so thrt
21 2

S)x' at = %y'dtao

=32 " =
a, &l 0.

Then, droppin: tie primes,

w6 have

0 n=

|

[

2‘“ [o2]
S (22 - x%)at = w T__ (n%(a2 + b2) - (afx + 211

bn =0 forn>1, 1.6, unless

x = 8,008 t + blsin t.

which is positive unlesas &,

Similarly
2
5 (92 - v%) at > 0
(3]
unless Y = aj cos t + bjsin t.

But in the case that x and y are both of this foim, we have

14
1= \ ey -n0®a

=ﬁ (ta; + aj+b{ - bl)z +(a) - af +by + bi)zl

6



which is zero only if a. = bi, at =p

1 1° 8 1° Hence I > 0 unless
X = a,cos t + bl sin t
¥y = blcoa t - 8y sin t

which are the parametric equations of a circle.

In all the problems that we have considered so far we
have tacitly assumed that they make asense, i.e, that a solution
exists. However, this is by no means always the case, For

example, consider the b
integral ﬂ

1
1($) -5' dx

o 1+ [" (x)]Z

B
¢(0) = 0, 0(1) = ]
A o > x

where ¢ is gub jJect to the condition that it pass through the
two points A and B, and let us try to find a continuous~ and
piecewise differentiable function ¢ which wvither maximizes
or minimizes I(¢). By inspection we see that

0<I(d)<1

since the integrand is positive and always less than one.
However from the figure it is easily seen that by picking
point C very close to x = 1 we can make I take values as close
to unity as we please for the curve A C B, and by taking the
ordinate of D large enough we can make I as small as we please
for the curve A D B, Since there is no admissible curve ¢
which will make I({) take on the values 0 or 1, there is no
solution to either the minimum or maximum problem.

Let us now consider a problem in which the existence
of a solution depends on the clasa of admissible curves.
We look for a closed curve of minimum area, within which a
line of given length can turn through a complete revolution.
If we 1limit ourselves to convex curves, the solution is
given by the equilateral triangle having the given line as

7



altitude. However, if we
remove the restriction of
convexity, it can be shown
that the area can be made
as small as we please, and
since no solution exists
having zero ares, there is
no solution to the problem.
We therefore see that in order for a variational :>ro-
blem to be solvable, some care :.ist be teken in tlre choice
of admissible functiona.

Piroblems

1) Verify that the property

sin 6 _
u

constant

characterizes the ocycloid.

2) Chearacterize the larger great circle arc bstween two
points on a sphere gs the solution of e minimax problem.
Generalize to a great circle arc which winda around n times.
3) Find the shortest path

between two points A and B B

lying between two convex

curves as boundaries., This

is an example of a general

type of probler in which

auxiliary conditions in the A

form of inequalities are

imposed { in oontradistinction to isoperimetric j;;roblems
where auxiliary eguations must be satisfied).,

4) Pind the path which requiros the least time in ascending
a rotationally symietric mountain using a car with its velo-
oity a civen funotion £ of the angle of inclination a, such that

8



£0) =v, f(5) =0,

f(a) and £'{a) monotonic. £

5) Show that any admissible function ¢ \x) can be approxi-
mated by sdnissible functions ¢,(x) and ¢, x) such that
I{¢) oan be made as small as we please and I(d))z) a8 close
to unity as we please, where

(‘1 dx
HO= ) T



I. FORMALISM OF CALCULUS OF VARIATIONS

l. The ¥uler Equation. The aimplest type of problem in the
calculus of variations is to extremize a functional I(¢) of
only one independent variable, the function ¢(x). In
practice, the funetional is usually an integral of a given
form, and we will henceforth restrict our discussion to
funetionals which are integralas. 1In general terms, then,
the simmplest type of problem is to extremize

b
1) (9} = 3 Flx,¢(x),p'{x))dx

where I’ 18 a given function which we will assume l.as conti-
nuous {irst partirl derivatives and plecewise continuous
second pairtial derivetives. ‘I'no function Q(x) will be res-
tricted to the clssa of admissidble functions satiafying the
conditions
(2) pia) = 4, (b) = B

d(x} econtinuous

¢'(x) piecewise continuous

The brachistochrone is an example of this type of problem.
Assuming that an zdmissible function w(x) exists for
whioh I{u) 1s an extremum, we first wish to find & necessary
condition whioh this function nust satisfy.
Consider a function {{x,t) such that

{3 ¢(x,t) 1s admisaible for all t
¢(x,t) snd P.\x,t) are continuous
Qxﬁ(x,t) is plecewiss continuous
$(x,0) = wix)

Por example, we may cloose $ix,t) = u{x) + t&(x);
however, any function satisfying {3) will suffice. If we
define
(&) a(t) = 1(P(x,t)) ,

10



then G(t) has a stationary point at t = 0. Accordingly

(5) gl =4 pr'x L0t )ax =0 .
Wiy T - 20 £=0

Differentiating under the integral sign, we have
b

(6) S [F“C + Fu,?;']dx =0,
a

where#

‘7) Z(x) =¢t( xlo) .

Aocording to (2), (3), and (7) we see that
(o) % 1s continuous

4! plecewise continuous

4(a) = g(b) =0,
the last equation being true since {(a,t) = A and §(b,t) = B.

If we modify (6) by integrating by parts, the anelogy

with the corresvonding necsesary condition for an extremam
of a funotion of n veriablee 18 revealed.

(9) b
Sb (F & +¥,,&')ax = F“,z| + §[F“~%§. Py, )%dx
a a

a
b
d_5u =
=S (Fy, - 55 Fyiledx =0 .
a

In the case of a function r(xl,...,xn) of n variables,

we may derive the necesgsaery conditions for an extremum by
considering g{t} ° f(x,(t), ngt),...xn(t)) where the equations,
x= x,(t) define a ourve in n-dimensional space. If

txl(O),xz(O),...xn(O) is to be an extremum, then

(10) §§l ag.

t=0

In the literature ¥§ and &' are usually called the
variation of u end u' resgpestively, and written &u, 6ut .

11



In other words,

n

> f . =0 .

=T X i

In vector notetion, this is the inner product

(11)

(12) grad £ .V =0,

where V> is the velocity" vector with componenta (il,kz,...in).
This relstion must hold for arbvitrary ¥V, from wi.ich we may
c¢onoclude that

{13) grad £ = 0,

which 1s the desired necessary condition for en extremum.
Referring to (9), we see t!:at we have en equation similar teo
{11), the diacrete sum being rspleced by an integral, xy

» . 4 : ‘
end rx1 by ¥ end [Pu I Fu,] respectively. By analogy,
thie necessary condition corressonding to {13) would be

d o =
(14) P, = ax Fur = 0-

This, indeed, is the well lLnown buler eguction for the
extrenilzing function u. We observe, however, that

(15) %E Fu' = Py ut o+ Pyyr u' * Parx

doesg not exist for all admissible functions. Lence the
Luler equation (1l) does not constitute an a priori satis-
factory forrmlation of a necessary condition since it is

not clear in advance that for an extireirizing function u(x),
the quantity %; F,+ exists. This diffioulty way be avoided

by integrating {6) by parta in the following way:

(16) - b b
(F & +F, ¥1)dx= fFudx } + SZ'\Fu, - fFudx)dx
a a a

b P
= St.'cr“,- S?udx)dx ®0 .
a

12



Equation (16) rust hold for all ¥ such that
(17) ia} = (b} =0
& oontinucus
4t piecewise continucus.
For our purposes it will be convenient to prove the following

Fundsmentel Lemmas 1if

Sb {H(x)rf{x)dx = ©
a
fur all ¢ satisfying (17), end f{x) is piecewise continuous
then f(x) ia a constant.
Proofs Sinoce

b

Sﬂ&'dx i 4
a

it follows that, for eny constant C,

b
=0‘

b
(18) S INne - Cldx =0 .
a
In perticular, we may choose C 50 thot
b
(19) Sb (f =Clax=0; 1.e.C = S fax/(b - a) .
a a

With this cholce of C, it follows that the function

S(‘ (f - Cldx

a
sgtisfies (17); hence {1¢), which must hold for all funotions
% wnich setisfy (17), must hold an particular for

= i(f-c)dx.

1,00 for Z' = £ = C. If we substitute tnis function in (1)

13



we obtain

(20) g (£ -c)lax=o0.
a
Sance f(x) is pilecewise continuous, this imdlies that £ - C5 0
which proves the lemma.
Applying the lemma to (16) we conclude that

(21) Foi = Sxpudx =C .

This is the dssired necesaasy condition which an extremlzing
function u must satisfy. It is, in fact, the first integral
of the Euler equetion (1ll). Sinee F, is continuous, we may
differentiate (21} and conclude that if u is en extremizing
funotion, %; Fu' exists end 1s in fact, continuoua, being

equal to Fu' deferring to (15) we observe that u" is con-
tinuous gt every point when u'! is continuous, provided that
Fu'u' # 0 along the extremals. If we excludie the finitely
many pointa of discontinulty of u' we see that the extremunm
function has not only & continuous first but 2lso a continuous
second derivative. for tnese points Luler's equation (1L)

is a setisfectory necessary condition.

It is important, however, to realize that tiis deri-
vetion of (21) is neeclessly elaborste. 3ince all we are
seeking is a necessarr condition, it follows that eny condi-
tion which an extremizing function u must satisfy for any
particular olass of %'s will be a necessary condition., Now
121) is a relation which muat hold for every value of x
between a end b, i.e. it is a one parameter set of relations.
It therefore seems ressonable that if we choose almost any

one parameter family of Z's, we should be able to derive (21)

14



Por example, let
-1

(22) Bx - asxsgate
{ 1 at+te<xsyg
C(x)' 1
)1-3(:!-%) E<x<sg*e
L 0 gre<cx<b
x4
1
]
X 5 X
a ate géte b 7

If we substitute (22) into (6), we obtain

+8 +e
S‘ %—(x- )P dx + S{ Fdx +SE; [ -%—(x-e)]pudx
. ate 1S

oje=
p"/%
- o
£
Do
L3
o=
™
E ) ¢
+
-
~
[
]
[ ]
e

But

+e ate
Sa %(x-a)l-"udx < S |p lax ~» 0, as € — 0
a a

and similarly for the third temi. Alasg, by the Mean Value
Th:orem 8

) p ax = F ,(atae) , 0<asx1l)

a

5‘: Fax =F (5 +Be), (csps<1),

ol

80 that lctting ¢ approach zero, we obtain

a
S‘F“dxi-l'u, *0
. 4

15




which is equivalent to (21). Many other specific one para-
meter families cen also furanish & derivation of (21},

Problems
1) Give a direct proof that if

§ Z(x)f{x)dx = 0

&
for all & satisfying (17) where f(x) is niecewise continuous
then f{x) is identically zoro.
2) Hepeat problem (1) where ¥ is restricted to the class of
functions having contipnous sscond derivatives.
3) Prove the following generaligation of the Fundemental
Lemrias

Any piecewiase continuous function f(x), for which

b
S C(kl(x)r(x)dx = Q
a
for all Z(x) such that &, X!, z[k] are continuous and

g*lia) = zI8)(p) = 0
forn = 0,1,.¢4k=1; 18 a polynomial of degree k-l.
4) Derive puler's equation using the special varietion

(x -~ a)/(g - a) a<x<E
WXE = b - x)/(b - ) ESxsb
4 : .
i
i X
| a 3 b i
5) Derive Euler's equation using the special veristion
{(x -~ a){E = x) agxs¥g
C(x.’é) a 0 E<x<b
4
/‘\ .
1 a £ v



6) 3how that 4f F = Pix,u'), {f.e. P is not a function of
u explicitly}, the suler equrtion may be solved by quadratures
in the form !
u = Y {x,C,)dx + C
\8 Yy 2

where u! = 3(3,01) is the explicit solution of the implicit
syuation
Fu,\x,u') =Cl .

7) Derive a similar solution of the Hiler equation for the
case £ = F(u,ut).
8) Use the Euler equation to solve the brachistochrone pro-
blem, the problem of minimum surface of revolution, and the
problem of the shortest distance between two points of a nlene.
Yy} The isoperimetric problem may be reduced to the iuler
equation in the followin; way. Consider two fixed points
5 and B on & closed curve. B
Then, assuming that thre
closed curve {of piven
lenzth) encloses maximum
area, tl'e area enclosed by
the arc KB and the chiord AB nust certainly be a maximum for
a1l arcs of the length of AB, say L.

Let the curve AN be given by

x = §(a) l

y = vis) A /——\'_\B
e = arc length ©
A:{8=0) end Bi(s=sL) . '

Then 0? + vz a 1, and the area is
b

A= Sa ydx = SivbdewS:v /1 - 42 ae

where y(0) = ¥(L) = 0.

To extremize A(¥) ie now a simple exercise.

Obtain ¥, and § by use of the .Juler equation, and then
show that 1f b is allowed to vary, but L is kent constant,
the waximum of A will be for a semi~circle.

17



2. Generaniizations of the Buler Equation. The Euler equation
(1) may be generalized along three lines by altering the form

of P to contain
a) more than one dependent variable
b) more than one independent variable
¢) higher than first derivatives
or any combination of these.
a) Suppose F conteins two dependent variambles, 8o that

(23) I= I(O'V) = gb F(R.0.0'.W.‘V"dx ’
‘a
where § end ¢ are admissible functions. In order that
I{u,v) be an extremum, it is necessary that Ii(u,v) be an
extremum with respesot to u and v considered independently.
In other words, a necessary condition is the peir of
Euler equations
(24) F, - §z Fur = ©
F, -4z Pye =0

In general, if F contains n dependent variebles there
will be n kuler equations.

An example of such a gystam 18 found in the Hamilton
Principle of Least Action., Briefly, this says that if a
mechanic~l system be described Ly . indenendent coordinates
CITREL W (n degrees of freedom), then the motion of the
system ~- i.e. the determination of q, = qi(t) == will be such
as to minimize the "action" I,

1
(25) I = St [T(ql,.uqn,ﬁl,.uan) - U\ql, -..qn)]dt »

to

where T end U are given functions, the kinetic and potential
eneryy respectively. {Actually, the integral is not an ex-
tremum, but only stationary.) iLe tuler equations which must
be satisfied to make I atctionary are

T-0) .48 (al ceent o
(26) ?—(—3-&'—)- T (3‘11) 20 i=1,2, n

18



(These are, in fact, the Lagrangian equatlons of motlon. (For
one degree of freedom, this reduces to the familiar Newton
equation F = ma.)

b) Next let us suppose that F contains two independent variables
X, ¥ so that

(21) () = ([ Fix v, 0, b 0pdaxay
R

where R 15 a given closed connected region in the x,y plane,
bounded by the curve C., The function will be restricted to the
class of admissible functions

{28) $ continuous in R
b, CI) piecewise continuous in R
) 'cakeb given values on C

Suppose that there is an admissible function u(x,y) for
which I{u} is an extremum. If we write

{29) d(x,y,t) = ulx,y) + t&{x,y)

where £ is admissible except that £ = O on C, then ¢ is admissible
for all values of t, and

(30) G(t) = T(d(x,y,t))
is an extremmum at ¢t = 0. Accordingly,
(31) X o H Ly 6P, 4 OyR, Jxdy = 0 .

Since £ = 0 on C, this reduces upon integration by parts to
* -2 -2 -
(32) I}[ LI, - & Fux 2laxay = 0,
for all admissible ., We conclude that the Euler equation in

this case is

(33) Fu-ga)—(Fu %Fuy”"

pd
We observe, however, that, as for the simple Euler equation

-
3G/2x 1is taken to mean the derivative with respect to x, holding
¥, but not u or its derivatives constant:

G _
a—)E_G +Gux+Guyuxy+Guxuxx .

19



(14) of the preceding section, the derivation of (33) implies
the existence of second partial derivatives of u, and hence
1s inapplicable to some of the admissible functions. In the
earlier ocase we were able to inteyrate by parts in a diffe-
rent order and show that for en extremizins function u" must
exist., We are unable to do the corresponding thing here and
lence {33} 18 a necessery ocondition only if it can be shown
that =n extremizing function posvesses second partial deri-~
vatives., We may, hLowever, derive an equation correspoading
to the first integral (21) of the Buler equction (). To
do this we investigate (31) directly Ly considering the
following special variation Y4(x,y); let FGAS be an arbitrary
rectangle with sides parallel to the ocoordinate axes -nd cone-
tained inside R, end let u(x,y) be the distonee from (x,y)

to PQIS; then we definé

(36) 1 if x,y in PQES
4Ux,y) = 43 - ple tfo<pse
0 ifu>ce
z A
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Then § is admissible for any € > O, and

£t =0 on Pg, RS

X

Cy = 0 on PS, RQ

Cx = € On Fg, = -¢ on QR
t, = € on RS, = -& on PQ

If we substitute this function £ into (31), use the theorem
of the mean, and let & —» O we obtain

s R R R
U F dxdy + j Fy 47 - J’ Fy v + f Fuydx - J Fuydx -0 .
o P Q P s

This may be conveniently written

(37) {3 J F dxdy = D§ (Fuxdy - Fuydx)

Equation (37) corresponds in our present case to the first inte-
gral {21) of the Euler eguation. It no longer contains an
arbitrary function {, but now contains an arbitrary rectangle.
We may approximate any region by rectangles and hence conclude
that for any rectifiable closed curve C' bounding a region R' in
R and for any extremizing u,

(38) H F dxdy = ﬁg (F, dy - F dx)
R ct * y

This is known as Haar's lemma.

The chlef value of this lemma lies in the fact that it is
applicable to any admissible function since it does not presuppose
(as does the Euler equation (33)) the existence of second partial
derivatives. If we know that the extremlzing function u has
continuous second partial derivatives, then the Euler equation (33)
will follow directly from (38) by use of the Green's formula

(39) § Pdx + Qdy = H (0 - Py )axay
c R

21



In ocase F contains n independent variables XyrseeXo,
the asquation sorresvondinz to (33) i»s
n
(40) F, - ;;; 5§I F, =0
where here, as before, the condition 1s necessary only if
the sxtremising function possesses second partial derivatives.,

Two imrortant ezamples of this type of problem are
the Dirichlet and Plateau problems, namely to minimige

(41) a) jf(ni + u?)dxdy

R
2 2
b) _g./1+ux+uydxdy !

the first iiitegral representing, aay, the potential energy
of an electrostatic field, and the second the ares of a
surfacs projecting on R. With given boundary values on C,
the latter problem becomes that of minimizing the ares of

a surface having a given olosed space curve aa its boundary.
The Suler equations oorresponding to (41} are

(42} a) w., + w0

X ¥ Xy X yy
The first equation is the wel) known Larlace equation,
whose solutions are harwonlo fupcpions, If we treat the
Dirichlet problem from the point of view of Haarts lemma,
we get the condition

(43) , c?(uxdy - udx) ® Q

for an extremising funption, Y¥hia must nold for all closed
rectifiable C's in R end hence u dy « u_dx must ne en exaot
differentialy It faollowa that another function v exists
such that

(4t) Uy TN Wy e
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These are the Cauchy-Riemann equations which a harmonic
function must gatisfy. (In particular, assuming thaot se-
cond derivatives of u and v exist, the Laplace equation
(4L2a) follows from (4i}) by elimination of vo)¥

o) Finally, let us suppose thet F contains a second deri-
vative 30 that

{45) ip) = iﬂx,b.b',b")dx

the class of admisaible funotions § now being suoh that
(46) $, §' continucus

" pilecewise continuous

$(a) = 4y, $(b) =B,

0'{(a) = Ay drib) = B,

We again suppose, that for the function u, I{u) is an
extremum and set § = u + t%, where Z is admisaible but
s %' =0 at a and b. Then, if
Git) = I\u + tg) ,

it rollows that G{0) is an extremum end s0

{47) %g %0 = § [ZF'“ + ('Ful + &"Fun]dx =20,
2
a
Integrating by parts, we have

d a®
(48) 2R, - gz P+ Sy plex = 0
X

a
Heroe the Kuler equation in this case 18
: 2
d d =
{49) Fo & Fur E;z Fagn =0

Expanding (da/dxz)Fu" we obaerve thet (49) is an equation of

—
Actually, if (4ly) holds, ocontinuity of the first derivativea
alone will insure (42a)--as well as existence of all higher
dorivatives.
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the fourth order, end implies the existence of u"". As in
the first section (page 12) it can be shown, for example by
consldering a special variation g, that for an extremizing
function u"" must exist and hence that (49} must hold.

A8 en exriple of equation (49) we consider the probiem
of determining tre deflection of a loaded elastic beam.
Suppose thie beam 18 clamped rigidly at 0 and 1, end is loaded
with a weipht per unit length which varies along the x axis,
W= r{x) .

[_‘\i\\i—_ij//’ >
u

Then if u{x) is the deflection of the beam at a point
X, the potential energy of the system is given by

(50) PuEe = SJ (3 au"? - ur(x)]ax ,
o

where u is a constant determined by the physical properties
of the beam. Since the beam is rigidly clemped at the ends,
we have u= u' =2 0 at 0 and 1.

It follows from a basic principle of mechanics that the
equilibrium deflection of tie beam will be such as to mini-
mize the potential energy. Hence, if u 1s the deflection,
it muat setisfy the Euler equation for minimizing (50), namely
(51) au"" - f(x) =0 .

This is a fourth order eguation whose integration intro-
duces four constants. These :ay be determined from the four
end conditions u = u' =2 0 at C and 1.

In general, if P contalns tlhe n'th derivative 0[“](x),
80 that

b

(52’ I\O) bl S.F(X,0,0’,nuO(n] )dx ’
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then an extremizing function u will satisfy the kuler equation

2 n
- d—- d - n g——
(53) Fu ax Foo * ;:E Fun + ses(-1) P Fu[n] =0.
Problems

1) Derive the Buler equstion tlvy) assuming that only u" is
plecewise continuous, using integration by parts and the
results of problem 3, page 16 .

2) Do problem (1) using the specisl variation

2z -3)2
- - )
ix) = { ( )o(

14

£ X
<X

o ®
A 1A
o«

£)

./\ > X

| a & b

3) Derive the Euler equation (33) from Ha:r's lemma, assu~
ming thet u possesses all second partial derivatives.

3. XNetural Boundary Conditiong In section 1, we oonsi~

dered the stationary velues of

I(P) = Sb P(x, §§') ax
a

where §) was required to be a continucus function with a
plecewise continuous derivative and such that

fla) = 4, {Hb) =2B.
Suppose we now drop this last ocondition leaving the values
of (a) end P(b) open. Considering

Gt) = I(u + t&)
in the usual way; we conclude that

b

= Sﬁ [p“}; + Fu,?;']dx =20 .
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However, we may no longer require that Z{a) = Zi\b) = 0,
lHence, the integration by parts gives, for every ¥,
b

b
d . =
Fu,& 5' [Fu -3 Fu,lﬁdx =0 .
&

+

a
Consideration of a family of 4'a such that 4(a) =

%(b) = 0 yields the Euler equation as before. There remains

b

F.%| =0,

a
and since %(a) and %(b) are arbitrary, we conclude that

(54) Fa|  =Fu| =0

x=a X=b

Thus, if we do not prescribe any end point values for the
extremizing function u, we find thet such a function must
automatically satisfy a relction at each end anyway--this
{8 the so=-called netural boundary condition. It is evident
a priori, that the ruler equation is a necessery condition
whether or not boundary conditions sre im:osed, since any
extremum, if it exists, will have definite boundary values.

For examsle, in the problem of the minimum area of

revolution, F =uw/ 1 + u'™ and

F = uut
u! p————jr-'
1+t

If we prescribe u(a) = A, i.e. fix one end, but leave u(b)
free, we obtain the natural boundary condition

ulb}.u'(b) =0,
Hence the curve which gives the minimum area of revolution
will (if b-a is small) be
that one which satiafies the
Buler eguation end is hori-

zontal at x = be If we /ﬁ\\\\~__J
think of the soap film enalogy

of ti.is problem, we see that l \v///"__ﬂ
the natural boundary condi-

tion is that the film be perpendiocular to a wall at b,
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In case F contains higher derivetives ti.e same pheno-
mengn occurs. Instead of deriving goneral cond:tions, we
will consider the specific example of determinirni, the deflec-
tion of a loaded beam which is clamped at one end and at the other
end is respectively olamped, free, or supported. Referrin(
to the discussion on page 25, we inow that the equilibrium
deflection u(x) of the beam will be such as to minimize

1
(55) P.E. = 'g {% atu*)? - u £ix)ldx .
0
Lere tle prescribed end conditions are u = u!' = ¢ at x = 0,
and
i1} wu=ut =0 at x=1 (clemoed)
11) ©no condition at x =1 (free)
11i) u=0 at x =1 (aunported)

\__/

——

| ~—

Case i) has slready beeén discussod (see pane 24). It lenda
to tue iuler equation of fourth order
(56) au™ - f£ix) =0 ;
the four end conditions necessary to determine a specific
solution being prescribed.

We consider case 1i) directly, 1.e. let H=wu + t% ,
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where { = 3! =2 0 at x = 0, but & and 4! are left free at
% =1, Then if u minimizes (55) we will have

d

at ($ 6" - prix))ox = | (au"g" - rZ)ax = 0 .

0
Integrating by perts, and making use of the condition
Zi0) = %'(0) = 0, we have

emo

1
o u'ty 1+ S [au"" « fjZdx = 0 .
x=1 x=1 0
Hence, the Euler equation {56) must still hold. But in addi-
tion we must Lave, for all %,
wigt =u'ry =0 et x=1.

In other worda, if we prescribe no end conditions gt x = le=
leave it free-<we are automatically led to the "natural"
boundary conditions
(57) ut = 't = o at x =1
Vie still have the necessary four boundary conditions to deter-
mine the specific intexral of (56).

In case 1i1), where we prescribe u(l) = 0 but leave
u'(l) free, we rmat prescribe %{1) = 0, but leave %'(1l) frae.
Then it follows that

u'" =0 at x =1
but no longer that u"t = 0 there. Agaln we have four boun-
dary conditions~-three presoribed and one "natural.

A second type of free end condition is to leave the
coordlnetes a ond b tieuiselves free, preacrilbing say only
that ¢ have end points on a given curve. 3uppose, for
simpiicity, that we fix one end poi;nt a, pa) = A, but re-
quire only that fib) = gib) is a given function.

Supposing that u(x)
is en extremizing function
which intersects g(x) at
x = b,0), wg let § = up t¥
end b = b(tI. Then if

a[u"Z'I
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(t)
a(t) = F(x,0,9'ax ,

wo have
b(0)

(58) g—g ta0 = S [F & +F, %! Jdx + F(x,u,u') *b(0) = 0
a x=b{ Q)

Since

(5¢) u(b(t)) + tgl{bit)) = g(blt)) ,

differentiating and setting t = 0, we conclude that

(60) b(0) = £iolo)) .

g (bi0/) « ur(p(0))

Substituting this in (58) and integrating by parte
wo obtain, for all ¥

(0)
» _d —F__ a
(61) Si (Fy =gz Py Juax + (R, +grogrlg] =0

Hence an extremizing function u must satisfy the usual
Euler equation, a fixed end condition u a} = A, plus a condition

(62) Fu,*é,—_-li‘-m'—”O at x =b .

Condition (62} i3 oslled tle Transversslity Condition.
Together with u{b) = g{b), uia) = A, end the Luler equstion,
it determines tlie point b and the solution u. As before
leaving the end gondition free results in an automatic end
condition=--in this case & relation betwesn u end u's fThe
transversality oondition 162) reduoes to the previously
derived natural boundary condition (5S4} for the case of b
fixed, i.6., tie fixed curve §8 x = b; and z2'tb) = @, so that
tre second term in ,62) drops out leaving only

F =0 .
LRPE

In many of the specific examples considered so far, F
was of the form
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F=7pPzxu)/1+ u'2

In this oase the transversality condition (62) reduces to
ulal = =] ’

in other words the oxtremizing curve u must be orthogonal

to the given ourve g.

Problems
1) 3how that the natural boundary condition at e free
boundary for F = F(x,p,p', p") is

d
Fgr =gz Fyn 7 0

Fuu =0

2) The oondition that § have its end point, x = b, on a
fixed curve g may be reduced to the froe end condition for
fixed b by transforming the x,y plane so thet i becomes a
verticsl line. Derive the transversality condition in this
way.

L. Depgenerate Euler Equation« The Euler equetion for the
simplest problem i»s

(14) Fy - §z Fye =0

In case F is linear in u', 1.e, of the form
(63} Fix,u,u!) = A(x,ulu! + B(x,u) ,
the iuvler equation reduces to

(6!].) AX - Bu =20 .

Tris 18 no longer & differential equotion but 1is, in fact,
an impliocit relatioh which in general will define u as a
funotion of x. It follows that u(a) and u{b) may not bve
arbitrarily prescribed in general.

Tl.e converse 18 elso true, i1.0v if the Euler equation
degonerates from a differential equation into an ordinary
equation then F rust be of tie form indicated in (63).
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For, expanding (1) we have

(65) Fa = Furx = Fung™@' = Fuaye

If {65) ia not a differential equation, then the term con-
taining u" (there is only one) must dissppear, i.e.

{66) Faige 20

But (66) implies that F is linear in u', i.e. is of the form
indicated in (63). Hence, a necessary and sufficient condi-
tion that the luler equation degenerate is that F be linear
in u', -

ou" = 0 ,

4n importent special cese of this degeneration is when
(63) is satisfied, but also Aix,u) and B(x,u) aetisfy (6l4)
identically. Then any u will satisfy the degenerate Euler
equation and hence will extremize I{u). In this ocase

I(u) =§ Adu + Bdx ,

a
is a line integral whose value is independent of the path of
integretion (i.e. of u) since we are supposing that (64) is
satiafied identically. In other words, I{u} is a oconstant,
and 80 hes no proper extrerium.

In oese ¥ contalns o secund derivative, the Buler

equation is of fourth order
{67) “""Funuu +u't [Le0] ¥ 400 30

Pence it will degenerste to a lower order if

F‘ullu" = o .
f.6. 17 F i8 linear in u"
(60) Fix,u,u',u") = A(x,u,u)u” + B(x,u,u') .

In two dimensions followin(, the same reasoning, we
conclude that the Buler equation (33} will degenerate if

and only if F 18 linear in u, and'-,uy,

(69) F(x,y,u,uxuy) = A{X,Y¥,u) + B(x,y,u)ux + Gtx.}';u)uy
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If (69) holds, the Euler squation becomes
{70) A“-oncy=0,

whioch in general defines u implicitly as a function of x and y.

Problsms

1) Show that (67) is of at most second order if (63) holds.
2) Under what circumstances will (67) degenerate even more
(i{s6. be of less than second order)?

3) Prove that if and only if F 18 of the form”

P= %g(lelu) + g¥(xoy:u) ’

then the degenerate tuler equation (70} becomes an identity.
As before thia means that I,u) 18 a constant.

L) GShow that the Luler equation for two independent variables
and seocond derivativea will degenerate 1f and only if P is

of the form

)} =

F(x,y,u,ux,uy,uu,uxy,uw

P(x’ypuruxnuy)(uxxuyy = uiy] + Q(xayauauxnuy) )

See footnote, page 20.

32



S5+ Isoperimetric Problems. Isoperimetric problems im vaiculus
of variations are concerned with extremizing integrals subject
to some sort of auxiliary conditions on the devendent functions
$, v, eto. These oconditions may be given in the form of inte-
grals, functional rel.tionships, or differential equations:

a) 6(x, ¢, ¢', ¥, ¥',e0eddx =20

b) G(x, ¢, w,coc) =20
c) Gix, ¢o ¢" Yy ¥'yeee) =0 &

For the corresponding problems in elementary calculus,
- necessary condition for an extremum is given by the Euler-
Lagrange rule {sometimes called the metiod of Lagranglan
miltipliera}. We recall that according to this rule, if,

among all points (Xx,y) such that g(x,y) = 0, the point ix )

Yo
extrenizes fiXx,y), then-- providing gx(xo,yo) and gy( xo,y:)
do not both vanish--it follows that (xo,yo) is found smong
the stationary pointa of f(x,¥y) + Az{x,y) considered as a
funotion of two independent varigbles, where the constant A
is determined such that gl xo,yo) = 0. In other words x,, ¥,»

and A must satisfy thie three equations
(72) fx(xo,yo) + A (X ,¥,) =0
ry(xo,yo) + Agy(xo,yo) =0
g(xo,'yo) =0 .
We shell generalizoe this rule to cover the present problems

in calculus of veriations.

a} te first conasider the simplest problem, with an integral
side oondition. Stated explieitly, we are required to
extremize b

9) = S Fix, 0,00 )ax
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among all admissible § (see page 10), which satisfy.the addi-
tional restriction that

(74) K(§) = S o(x,$,¢')dx = K, (constant) .

\le suppose that there 1s such a function u, extremizing
{73) subject to (74). Let ¢ = u{x) + t,%,{x) + t,%,(x) where
?.'.1 and ?;2 are sdmimsible but venish at a and b. Then

(75) I =1I(t),t,)
K = Kit),t,) «

Since we require that 0 always setisfy (74), the parameters

t, and t, are not independent, but must satiefy K(ty,6,) =K .
From our hypothesis that u 1s an extremizing function it
follows that I(0,0) is an extremum of I(tl.tz) for all ty,

t, which satisfy K(tl,ta) = K,+» Hence we may apply the
Euler~-Lagrange rule for ordinary functions to conclude that--
providing Kel and Kt.'2 do not bota vanish at (0,0)~- there must

be a number A so that

b
(76) st (1w = Sﬂ % (F + 2a) dax = 0
1 = 1,2.

where we define the Euler Oyerator

{77)
[H]u =H, - g_i' Hyo o

Since (76) must hold for all %, and %,, we conclude that
(78) (P+2a), =0

The restriction that K, and K, do not both vanish at 10,0)
1 2
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means that

b
Kt’1 = gcitc]udx#o, 1=lor2.
0 B
or
{79) al, £0,

The required generslization of the Buler-Lasrange rule
is hence the following: if I{u) 18 en extremum subject to
K(u) = K,» and [(}]u # 0, then there 1s a constant A such that
(F + 7\0]u s 0. In general (70) is a second order differential
equation containing a parrmeter A. Its solution will be in
‘the form

u = u{x,\)

since the two integration constants msy be determined from the
(fixed or natural) boundery conditions. The value of A is
then determined so that

b
K(A) = S G{x,u{x,A),u'(x,r))dx = Ky o
a
As e 1llustration, consider the problem of determining

the shape of a chein of given lsngth L hanging under gravity.
If u(x) is the shape talken by the chain,

Q

b - - —

a L_b 5 X
r

then u ia such as to minimize the notential energy

b b
PE = Suds= Su/l'ru'zdx,

a a
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subject to the usual admissibility conditions, plus the addi-
tionel restriction that the length

b
1/1+u'zdx=l«

1s a given constent, Obaserve that the integral to be mini-
mized is the seme as the one for the problem of minimum area
of revolution, for which the solution was seen _to be a cate-
narye In this wroblem F 2uy/ 1 +ut® , g2/ 1 +u€, s0
the generalized EBuler-Lagrange rule states thst there ie a
constant A such that

T2 . d e ut{u + A
(80) (F+ae). =/ 1 +ue - wu+A) g,
u dx GT:—;::—

The solutions of this equation have the form u = w(x) = A
where v(x) is a solution for F = 0, hence represents a cate-
nary. Solving (80}, with u(a} = u,, u(o) = vy, we would get
1 = u(x,A)s Then A would ve dstermined so thrat

b

S J1+ u'z(x,k) dx =L,

and the result would be a cotenary of length [. between the
points & end b. The side condition is therefore seen to be
merely a restriction on the class of admissible functions.

In case F contains more dependant veriebles, or there are
more side cond.tions we have: if Ugpeeeny extremize
I(ul,..-.uk) subject to the n conditions

b
Ky = S 01("'“1'“i""“k'“|'¢’°" a0, 1 31,2,eeen,
a .

then, in general, there are n constents ll"""n such that

[P+ 7‘101 +* een Knon]uj =0 J=1,2,e00k
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b} We next consider the problem of extremizing

(81) I(,¥) = S: Fix,$,4',¥,¥")ax

where ¢ end ¥ are subject to the side condition
(82) o{x,4,¥) =0 .

It will be shown that the generalized Euler-Lagraonge rule
still applies here, except that A 18 no longer a constant, Lut
instead i3, in general, a function of x. A wroof of this may
be obtained directly by eliminating, say, ¥ from {82)--1.0.
obtain ¥ = y(x,4)--and so reducing the problem to that of the
simplest case with no side conditions. We prefer to conaider
the variation oi 1.

Suppose, then, that I(u,v) is an extremum under the
restriotion that G(x,u,v) = 0. Let ¢{x,t) = u(x)+ tZ,(x)
where ¥,(a) = %,(b) = 0, and ¥\x,t) = v(x) + ,1x,t) where
Ke is determined, once ?;1 is given, by the relation

G({x,u + tﬁl;" + Cz) =0

sutomatically insuring that ,(x,0) = 0. We know that ($,v)
18 an extremum for t = O, and G{x,§,¥) = 0 {in t) so that for
any function A(x)

b
d
(P + AG)dx =0
&; Sﬂ |40

Accordingly, we have

. dz
(83) § {‘1“" +aa], + —a%-l _ ofF + m]v} dx = 0
) t=0

for all admissible &1 (&2 1s not arbitrary). Since (63) holds
for all A(x), we will try to find a particular A(x) so that
{r+ ).G]' = 0., Expanding, we have, since G does not contain v'

(84) [P+NG], =F, +2G, - gz F,, =0.
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Hence, we may solve for A if G, #£ 0. 1If 6, = 0, but G, #0,
then the roles of &1 and ‘2 may be interchanged. If both va=
nish, the procedure breeks down. We note that since le = 0,
the condition G # 0 may be written (G], # 0. This choice of
A leaves only the first term in (83) ,

b
g zl{F + hG]udx =0.
a

Therefore, we conoclude that
{F + AG]u =0 ,

Hence, the Euler-Lagrenge rule still holds, excent that A is
now & function of x: i.e. we have shown that if u.and v ex-
tremize I(¢,¥) subject to G(x,$,¥) = 0, then there is a func-
tion A(x}, such that

(F+aa), = [F+ArGl, =0,

provided that [G]u and [G]v do not both vanish. 1In general
the Euler equations in u and v {(if there are more denendent
variables, there will be a corresponding number of Euler
equations) are second order differential equetions with fixed
or natural end c¢onditions; their solution will be in the form

u = u(x,r{x))
v = v(x,A(x}) .

The function A(x) 4{s then determined by solving the equation
G(x,u,v) = € for A(X).

An example of this type of problem is that of geodesics
on a surface. Suppose (u,v,w) are the rectangular coordinates
of a point on a surface determined by the equation

(85) G(u,v,w) =0 »
Then a ocurve on this surface may be given in the form

u = u(t), v = y(t), w=wt),
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where u, v, and w are
not. independent, but

w —
must satisfy (85). The T / t‘l\..
ar¢ length of the curve, /ft'g"/\’/‘ l{
which is defined to .\“__'__,_,—-._../';
be a minimum between ' X
two fixed points for the - 1 Ju
geodeaics is given by v "\-:~~ ‘/'
e e e A
t
1 1 v v v
(86) ngt- g /uz*v2+w2 dat .
t t

Hence, we seek to minimize \86) subject to (85}. The Luler
equations are

3

d
at
./ﬁz + ‘.'2 + ‘.'2

and similarly for v end we Since the parameter t is orbitra-
ry wo may choose t = sa, where s is the arc lenyth; then

Jﬂz+02+ﬁz =%,

and the equations become (with e different A)

= AG, =0,

[ I
u AG, = 0
" .
v M‘;v =0

" .
w RG“ 0.

As soon as a specific G 1g given, these together with ¢ = 0
may be solved for u, v, w, and A, We observe, however, that
for any G, the gsodesics must be such that the directions

6, : 0,30, u", v", "

are parallel. Since these are the directions respectively, of
the normal to the surface and the principsl normal to the curve,
we conolude that the principaml normal to a geodesic at every
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point coincides with trhe normal to the surface.

¢) We finally consider the isoperimetric problem having a
differential equation as a side condition. We seek to :
extremize

b
I(Oo*) = S F(x’69*0°'o*') dx

a
sub ject to the side condition
(47) o(x,$,0r,¥,¥t) =0 .

This type of problem is encountered, for exemnle, in non-
holonomic dynamical aystems, in which the number of indepen-
dent coordinates 1is not sgqual to the number of degrees of
freedom. The Euler-lLiagrange rule still holds for this case,
1.6, 1f u and v extremize I(¢,y) subject to (07) and if [G],
[G]v are not both zero, then there 1s a function A(x) such
that

(P + AG]u s (P + kG]v a0

and G{x,u,v,u’,v!) = 0,

The proof is more involved hers because not sven one of
the dependent functions, say ¢, can be subjected to en arbi-
trery admiassible veriation. For, if we attempt this, ¢ is
determined as the solution of a first order differential equa-
tion, but must setisfy two boundzry conditions, which is in
general impossible. 1This difficulty may be overcome by con-
sidering variations of te form 0 =u + tlgl + tazz,

vV =v+ (tl,tz,x) where a relation between t, and ta is fixed
in order to satisfy the second boundary condition.#

As an example, we consider the simpleast problem of the
firet section only expressed in a slightly different manner.

* Por details, see Bolza, "Variationsrechnung", p. 558 or
Hilbert, "Zur Variationrechnung", Math. Annal. Vol. LXII, No.3.
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Wo meek to extremize
I= F(x,v,u)dx

subject to the condition

Here F = P(x,v,u} and @ ® u = vt. Then, according to the rule,
there ghould be a function A(x) 80 thet u - v! = 0, and

[F+m]u=[r+m]v=o.

We have, respectively
F,*ta= o

d =
F'v -a;k(-l) =F’v+ At =0

lience, A = 'Fu' Eliminating A, we have
a
F, - T F\l =0,
or, aince u = v!?

Fy = 3z Fye =0

the usual Euler equation. Of course, this problem avoids the
difficulty inherent in the general problems since only v (and
not u) nust satisfy boundary conditions, so that in this case
arbitrary variations of v are permissible.

The problem of Jdifferentlial equation side conditions for
the case of more than one independent variéble is even more
difficult, end has only been solved in special instances.

Problems

1) By use of the Euler-Lagrange rule, solve the isoperimetric
problem of the circle«ei.s. minimize

b
Liw) = &/14»\‘12«1;:
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subject to the cundition thut

Alu) = Sr udx = A, .a coustant
a

2) Use the Euler-Lagrange rule to find the shape of a
hanging chein (see page 35).
o) Find the geodesics on the sphers

2 2 2

G{u,v,w) =20 + v¢ + 4w =1 =0,

See page 39.

6. Paramtric Form of the Theory. For many types of problems
heving physical origins the class of admnisaible functions
considered up to nocw ls too restricted. For example, in the
isoperimetric problem we seek a curve of given length which
maximfzes the area enclosed between the curve md the straight
line Jjoining its endpoints. If the given length i{s suffi-

cliently small,
L < u(b - a)

the maximizing arc may be written in the form y = u(x),
where a < X < b .

However 1if
L >n(b - a)/2,

'he problem still (-j
has a solution, but
' ' 1”K> l >

it is no longer
exprossible in the
form of a function y = u(x), a € x < b. This artificial res-
triction may be removed by exprossing F in parametric form,
as follows. Consider the functioral

t1 L] ¢
{368) I= S H(x,y,x,y)dt ,
t

©
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where x = x(t), y = y(t) are parametric equations of an ad-
misaible curve, We roquire that for an admissible curve

x(t°)=a, x(tl) b

7(‘0) = A, Y(tl)

B

and that x(t) and y(t) are continuous functions of ¢, with
plecewise continuous derivatives such that %2 + $° A0 .

The important point in this camse is that for the problem to
make sense H cammot be arbitrary but must be a homogeneous
function of the first degree in X and ¥y. This follows from
the requirement that I sould depend only upon the curve

joining the fixed end points and not upon the particular para-
metric revresentation used to desoribe that curve. Hence, if
Wwe replace the perameter t by another psrameter T = x(t) in

a one to one way (%t > 0), I should not change. We therefore

have the following equation:

H(x,3,35 $ax .

X
Y Bx,y,%,¥)at = S‘ B(er;'.‘ %?.‘E'-'; g%’ gt'
T
to [}
ST
%o

This requires that, for T > O

H(x’yngxt':g-nr:) .
In particular if ¥ = k, a positive conatant we have
H(x,y, k&, k¥) = ki(x,y,%.5) ,

which 18 ths definition of a homogenecus function of the first
degree in % end §. Thus, if a problem be expressed in para=
metric form, the intezrand must be homogeneous of first degree
in % and §.

e

(69) Hx,7,74%, % $) =
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If % > 0 throughout the interval (t,,t 1), we may take
ta 1/% in (89), end setting y' = y/x (89) beoomas

H(x,y,%,%) = fi(x,y,1,y') = F(leoY') ’

and we may write

t
1
(90) I= j; Hi{x,¥y,%,¥)dt = SDF(x,y,y')dx .

Thus if x always increases &3 the curve 1s traversed (which is
the case if % > 0), the homogeneous problem may bs transformed
beck into the inhomogenegus problem. Cf course everything
whioh has been done for T > O and X > 0 applies equally well
if the direction of the inecuality is reversed.

The integral (48) mey be treated exactly as in the
other problems we lLiave considered. Ve obtain, as a necessary
condition satiafied by an extremal x = x(t), y = y(t), the
pair of simultaneour equations

(91) B - Jp 8y = 0
H, - =0,

Thess equations must hold for the extremizing curve indepen-
dently of the cholce of parameter in terms of which 1t 1is
def'ined. The choice of paramneter is thus left to expediency
in any actual problem under consideration.

As an exmaple, we consider the problem of determining
the geodesics on a surface, phrased in parametric form rather
than isoperimetricelly (ef. vage 4O). Suppose the surface
G{u,v,w) = 0 i8 defined parsmetrically as u = u(x,y), v. = vix,y),
w = w(x,y)+ That is, we have a corirespondencs betwe¢n a region
in the x,y plane emd the surface G in the u,v,w space. A
curve on G will then be renresented by a curve in the x,y
plane. If this curve be given parmmetrically in the form
x = x(t), ¥y = y(t), then the curve on the surface G = 0 will
take the form u = u(x(t),y(t)}, v = v(x(t),y(t)),
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w = yix(t),y{t)). It has for element of are length

dn =/ EX® + 2Pk} + G3° at

where

2 2 2
E'-‘-ux*vx-fwx

+ +
F= “xuy v J‘vy "x"'y

: 2 2 2
* + v +

are given functions of x and y, and
A= -Fso0.

Denoting the radical by H, the integral to be minimized then

becomes
1
I = Hd4t

(4]

Evler's equations (Y1) for the minimizing curve becoms

2 2
{92) E X" + 2F &¥ + G ¥ 4 EB% + 1§

. W "qE L0

. ‘2
+2ny+Gﬂ d .
- F& + GY . ,
at H *

2
Eyk

In general (92) constitutes a very unwieldy system of
equations., Kowever, we recall that any parameter may be used
in place of t. In particular, if we use a parameter, s, pro-
portional to the arc length, H 1s a constant and the equations
(92) reduce to '

(93) Exx'z + 2P x'yt + Gx1'2 = 2 g-; (Ex' + Fy')

E,x'z-rzryx'y' + 0yy|2 -2%.5 (Fx' + ayp)
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where x! = g_x_ y' = g% + 'These equations are then thle ap-

propriate system to use in determining the geodesics for any
partiocular surface determined by the functions u,v,w.-

Vo remark that although the psrametric formuletion of
the problem results in two Euler equations (Yl), these equa-~
tions are not independent bscause of the requirement that H
be homogeneous of first degree in % and §. (This, of course,
is to be expected, since an equivalent inhomogenecvus problem
would have only one Buler equation.) In fact, H must satisfy
the Euler homogeneity ldentity

(94) H = XHy + $Hy

and oombining (91) with (9ly) we obtain the single equation
(95) ny - Hyy * (2§ -%})=0, |

where

- P
¥k %
which is equivalent to the system (91}.

The homogeneous formulation may be carried out for the
case of more than one indepondont varieble in a straight-
forward waoy, the only formel change being that the iuler equa-~
tions will be partial differential equations. We consider as
an example the .Plateau problem of minimal surfeces already
discussed on page 22. We will now formulate this problem
parametrically.

® his relation is obtained from (94) by differentiating with
reapect to % and §:

* a Ho + *H-o + &H-s
Hy = Rz ¢ Hy * Mgy

iﬂu+ﬂi*~,=tﬂ”*ili”=o.
vhich leads immediately to the stated equation.
46
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Let x = x(t,,t,), ¥y = y{ty,t,), = = z(t),t,) be the pa-
rametric equations of a surface such that as "1"‘2 traces out
the ‘surve g in the tl,tz_ plane x,y,z traces out the fixed
space curve | in the x,y,z space thus satisfying the boundary
condition. We wish to find the functions x,y,2z for which the
area of the surface enclosed by [ is a minimum~-i.e. to
ninimize the integral

I'ff/—-_(}zdtldt fﬂdtdt

vhere 2 2 2
BE=x +y, +2
tl tl tl
Pax .x, +y, 5%, *+2, 12
tl tz t ta tl ta
2 2 2
G 3x +y, +12 .
ta Tt Tt
The resulting Euler equations are
3 wx"1 wx"a
(96) ( ) + A-(—=) =0
5%, A M
w
w"t Xt
= (=) + .;; 2) =0
/.
H Xt
A, + B =o0.

2
*f( z,/w)

Hore as before the equations can be greatly simplified by a
proper choice of paerameters. We can always choose t, end tz
g0 that P = 0 ghd E = G, and with this choice, equations (95)
reduce to very elegant form

(o7 IR
’uu + yvv =0

=
.ll\l M 'VV 0
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Problems

1) Verify that (97) results from {(96) on setting F = 0, E = G,
Compare with the previous method used, page 22.

2) Use {93) to find the geodeslos on a sphere, representing
the sphere parametrically by

u = gin x ain y
v = gin x coa ¥
W S 008 X o

Compare with the previous methods mantioned, 1.e. 'in simplest
form (page 11) and in isoperimetric form (page 38).
3) Derive (9%) from (Y1) and (94).

7. Invariance of the Euler Equation. On page 13 we mentioned
that the Euler Equation may be thought of as a generalization
of the vector equation grad £ = 0, where f = f(xl,...xn). Ve
recall that if the independent variables Xy,eeeX  are trans~
formed into new variables &1(x1,-..xn),...ah(xl,...xn) in

such a way that the Jacobian

a(xl.-uxn) 4
m 0or o,

then if grad( )f = 0 at a point (xl,...x } it will follow that
grad(r}f = 0 at the corresponding point (51,...5 }o We say
that the equation grad f = 0 is invariant under transformation
of the coordinate system., We would thenexpect that the Zuler
equation should also be inveriant under transfomation of the
coordinate system. Thet tuis 18 80 way be verified by consi-
dering the reault of replacing x by ¥ = ¥(x) in

1 1
I = S F(x,,u_ldx = SE Fix(g),ul(x(¥)), n;(x(;))e.’x]xdd’e;
x

o %o

1
- Sz B(%, v, v‘)d\; ’
%o L8



vhere v(%) = u(x(¥)}. A one parameter family u{x) + tZ(x)
will correspond to v(¥) + th(E) where Z(x(E)) =R (%); substi-
tuting these expressions into the above integrals, differane
tiating with respect to t and setting t = 0, we have

1 1
y ([F]u(x)dx 3 S; ‘l [H]v(;)dag 0.
%o %0

Since 4§ =5 _dx and 4(x) =R (B), we conclude that

S:: &{tr, - mlvax} ax = 0

or
(48) (Fl, = (H1.5, .

In the case of more than one independent variable, a change
of coordinate system from (xl,-..xn) to (E;l, ...;n) requires
that the Kuler operator in the new system be multiplied by
the Jecobian of the transformation. We have

)]

[F‘xl' ...xn; u,uxl,...u

xn u
3(ByseesB)
= [H(zl, -coﬁ‘; V,Vgl,ouuvcn)]v BW)
vhere
V(‘l’"";n) = u(xl(glj"'%)!"'xn(glp"'%))
and

H= F[xl(gl’ ---zn), .;.xn(;l, o-o?,n); V(;l, octg‘)‘ “x1($l, . -;n),

?(xl, .o .xn)

.e .uxn(ﬁl, coel)) m‘j

with
= agl )‘n
llxi v;]_ 3"1 + eee * V‘n axi .
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In particular, if for a given u, [F]u = 0, then [H]v = 0, 80
that the Buler equation i1s invariant. The property that a
curve be an extremal (i.e. a solution of iuler's equation)
remains unaltered by a transformotion of the independent va-
riables.
The invariance of the Euler expression is & useful

principle in actually computing the transformed differential
oxpression. One of the most important differential operato;s

- N 2.
is the Laplacian N\u = U, * U =3 {F],,, where F = uz + ug .

If we wish to find /\u in polar coordinates x = r_ cog @,

Yy = r eln 6, we msy calculate = i, v2)

) 2
o =r, H= P(Vr* 'r'z Ve ,
and gonoclude that

a'%ﬂ

1 1
(P), = (H) .5 = S(H ~

2
= - Flrv t vt 0) ‘

Hence, from Au = ~ %[F]u

1 1
Av = Ver *F V2 ? ;2 Veg

a result obtalned without computation of second derivatives.
Problems

1) Find Au for spherical coordinates x = r cos & sin ¥,
Yy ®*rsin @ sin ¥, 2 = r con ¥. Genereslize to n dimensions.

2) Finc Au for X =%(x,7), A =R(x,5).

3) 1In n-dimensions,

n
u = u .
A E By%y

Lot x, = x&(xl,...gn) and %, ‘ﬁi(xl,...xn), and define

1](’ n 3‘1.3‘1{
S T
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Then show that

s].1 G12 vee Sln 2
21 E (El,...ﬁn)
{a) D= gE E = T_—Txl""xn
snl TR Bnn
( Nv =/D Lf' 5%3‘ 'rﬂ;_: ; g ui{()

8. The Legendre Condition. In the thneory of extrema of func-
tions of a single variable, e mecessary condition for a
rinimum, beasides £'(x}) = 0, is that £" > O (if it exists).
A condition somewhat analogous to this will be seen to hold
in Calculus of Variationa.

Let us suppoge thet there is en admissible function u,
for which

b
I(u) = S F(x,u,u' )dx
a

is a minimum. Then G(t) = I(u + t%) has a minimum at t = 0;
sccordingly G'(0) = O (from which follows the Kuler equation
[F], = 0) and also G"(0) > 0, ussuming its existence. Hence
for every admissible Z,

b
(99) N N R NS L
a

We choose a special variation

o a<X<pg-~-¢

1+ (x ~5)/e E-cesxz2g

4 x) = 1 ~(x-%)e EIXx<E+te
( 0 Bte<x<b.,

51



If we suostitute this funotion in (99) and let € —» 0, the

term
E+e
Y Fu'u|dx

§-e
will dominate the left side of the inequality (99) and deter-
mine its sign. Thus the sign of Faryr determines the sign
of G"(0), and for a minimwn, the weak Lepsndre Condition

(100) F

o‘JH

uru! = 0

must hold for all points on the curve u, We have seen {page3l)
that F , , # 0 18 e3sential in order that the Suler equation
should not degenerate« In many problems the strong Legendre
condition F ,,, > 0 holds, but this is still not sufficient
to guarantee a minimum. (We will ses in the next chapter
that if F¢'¢, > 0 for all admissible §, then a solution of
the Euler equation is a minimum.)

Problems frequently tale the form F = g(¢) / 1 + ¢'2
for which Fy,p, = /(1 + $'2) and Fgopr > 0 1f () > 0,

80 that for such a function Legendref!s condition {s suffiocient.
In case F contajins more dependent functiona, the
Legendre condition 1a that the matrix

(Fupuy’
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be positive definite, that is

Z; }; “1“1Fuiu3 20

for all 7\1, xj o

Problems

1) VYerify the last statement above.
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II  HAMILTON JACOBI THEORY - SUFFICIENT CONDITIONS

l. The Legendre Transfommation. Transformation from point to
line coordinates is frequently useful in the theory of diffe-~

rential equations. We consider first the one dimensional case
of a curve u = f(x), which can be considered as the anvelope of
its tengent lines. The tangent line at any point x,u is given
by

(1) U+ xft{x) - £(x) = £1({x)X,

U and X being ooordinates along the line. The 1line (1) is de~
termined by its coordinates (i.e. slope and intercept)

(2) {x; = £1(x)

W=xf'{x) =u

where a unique value of (§,w) is assigned to each point (x,u}.
The ourve u = f(x) can then be represented as w = W(E) on eli~
mination of x between the equations (2}, which can always be
done 1f r"(x) # 0.# DBetween corresponding sets of coordinates
(x,u) and (€,w) (i.e. referring to the ssme point on the ourve)
there exists the symmetric relation

(3 u+waxg
in virtue of (1).

The equations (2) allow a transformation from point to
line coordinates. To reverse this procedure we suppose w = W(E)

is given and find the envelope of the one parameter family of
lines

*1r £(x) # 0% = f'(x) can be solved for x, and substitution
inw= xf'(xs = f(x) gives the recuired relation. Inversion
of w= xf'(x) =« f(x) instead of % = f1{x) requires xf"(x) # 0
80 nothing is gained. The points £"(x} = O (inflection points)
are singularities in line coordilnates, and f"(x) 5 O represents
a single straight line. Similarly H“zE) 3 0 is a cusp in point
coordinates, and W'(E) 3 O representa a penoil of lines through
a fixed point (no envelope). Duality is observed as points on
a 1ine (f"(x) 3 0) and lines through a point (W'(5) = 0).
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L) U+ WE) =EX .
To do this we differentlate with respect to the parameter %
and combine with (), setting U = u and X = x (coordinates
along the envelope), obtaining
(5) x = Wi (&)
T\ ='§W'(§) -W.

The duality of the trensformation is evident on comparison of
(2) and (5). Elimination of & in (5) to obtain u = f£(x) is
possible if W"(%) # o.

Another mors formal way of deriving (5) by inversion of
(2) 1s to differentiate equation {3) with respect to & treating
¥, and x as functions of §. We have

r'(x)%w'(z) = §§+x .

But, since & = f1(x) from (2), this reduces to
x = W(y) ,
and the other part of (5) is obtained by substitution in (3).
The foregoing can be easily extended to the case of n
independent variables. We have u = f(.xl,...xn) and introduce
as ooordinates the direction numbers and intercept of the tan-
gent plane to this surface

(6) = fx1

n
way xf_ -f .
B o AT
The paramters x; can be eliminated if the Hessian Ifxix | #0,%

(1,84 the Jacobian of G, = f  does not vanish) yielding
i

*Ihe condition |f, | = O means that the family of tangent
1

planes is a smeller than n paremeter family. For example, with
n=2 there is a one perameter family, i.e. a developable, or a
ser0 parameter family, a plane.
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wE W(E,l,...‘c’,n) .

As before, the symmetric relation

(1) u+tws ;2; x5,
holds, and differentiation with respect to'Ej gives
= f Zfi + W ax + = afé-&
Z‘E—I"i"‘j EJ j ET% i
::ioh, on wsing &y = Xy’ and then substituting in (7) results

(8) xy = W;J

u = ;Z;§1Wti -W.

The Legendre transformation is most frequently useful in
transforming partial diffsrential equetions in which derivatives
appear in a more complicated form then the independent variables

2. The Distance Function - feduction to Canonical Form. In
this chapter we will be concerned with the varietional problem
represented by the integral

(9) I(ul,...un) = { F(s; Uppeseu; ui,'...ur'l) ds

of which the Euler equations are

d
(10) Fui - 'E Pui =20 .
The solutions of (10) (extremals) represent families of curves
ui(s) in the n+l dimensional space (s, ul,...un), it being
possidle to impose on each curve 2n conditions (if we ignore
degeneracy). Thus we cen conalder & single ourve passing
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through each point (7t,k) of the space (i.e. 8 = «, u, = ki) and
satisfying there the intial oconditions ul = ki, or consider an
extremal to conneot every palr of points (7T,k) (t,q) in some
neighborhood (boundary value problem), or we can consider an n
parameter family of extremals passing through the point (7,k),
leaving open the remaining n oconditions. If we restrict the
path of integration of (9) to be always taken along extremals
then a unique “distance"# 1 is assooiated with every pair of
points (7,k}), {t,q) which can be connected by an extremal, thus
defining I as @ funotion of the 2n + 2 variables («; kl,,..kn;

t; ql,...qn)z

]
{11) I(t,k,t,q) = &F(s,u,u')da .

An essontial concept in the theory of sufficient condi-
tions i3 that of a field whioh is defined as follows: a family
of curves in a neighborhood is sald to form a field 1if one and
only one curve of the family passes through each point of the
neighborhood. In particular an n paremeter family of extremals
through a point can form a field, and in general to form a field
in n+l dimensional space an n parameter family of curves is re-
quired. If we have a neighborhood covered by a fleld of extre-
mals through a point, then by use of (11) it is possible to &e-
fine a single valued function I over the neighborhood. In this
tase it will be convenieni to work in the n+2 dimensional
{I,s,u) space.

A8 an example consider

o
(12) 1= {1+ @R,
T

‘If F is a quadratic form in ul then ths extremals are geodesics

and I is actually distance. liore generally F can be considered
a mtric in a "Finsler Space" with Finsler distance I.
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for the length of a curve u(s), for which the Euler equation
2

is 2—% = 0, Here n =1 and we have a two parameter family of
ds

straight lines as extremals, joining every pair of points in

the (s,u) plane. If (T,k) is fixed we have a field consisting
of all rays through (t,k} and I{t,q) 18 a cone with vertex at
{(0,%,k) in the three dimensional {I,t,q) space.

If in (11) we hold {x,k) fast, T is defined as a function
of (t,q) in a neighborhood of (tT,k) and this function can then
be considered to depend on the n+l parameters (T,k). By the
usual method of elimination of paremeters a partial differen-
tial equation satisfied by this n+l parameter family of func-
tions oan be found, namely:

n
(13) It bt F(ttq’Q') - g Qipql (t,q,q')

Iqi = Fq1 {t,q,q')
which is a relaticn between the n+l derivatives It’Iq expressed
implicitly in terms of n parsmters qi,... 'y We observe that
the formalism for eliminating the parameters q' is exactly that
of the Legendre Tranaformation (c¢f. (6)). Rather than proceecd-
ing in this way, we shall impose the Legendre transformation

at the outset, in (9), thereby obtaining the reduction of (9)
and (10) to canonical form. We observe, however, that the pro-
per Legendre transformation 1s applied in terms of u' {(i.e. q')
which would necessitate subjecting u to a very complicated
transformation. In order to avold this difficulty we introduce
the functions Py =.u1 and consider the variational problem

(14) I(u1,...un; pl,...pn) = S: ¥(s; Uppeeeld pl,...pn)ds
lr

subject to the side conditions
pi=u1 .
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Thia suggestsths use of the Lagrange multiplier mile by which
{14) becomes

t
n
I(u,p) = [F{s,u,p) + li(ui - pi)]da
{ o+ F e -,

for which the Euler equations are

4
F =%
u, ds 1 Py i

and elimirnation of Xi finally leads us to consider

&
n
1) Twp) = { (RGeup) ¢ 3 B, (ug - p e
{15 (u,p) 1{(8up) gpiui P, )lds

together with the neceasary restriction on F that |Fp p | # 0.
i

S8ince the Lagrange multiplier rule was not proved for differen=-
tial equations as side conditions, we accept (15) and show in-
dependently that it is equivalent to (v). By equivalence we
mean that, although the function space over which I(u,p) is
defined is much wider (2n independent functions u and p rather
than n funoctions u), the evxtremals for both integrals are the
same. Writing down the Luler equations of (15)

n
FuJ + ; Fpiuj(ui - pi) - %—5 ij a0
n n
ppj + - Fpipj(ul - pg) - FPJ = )1;; Fpipj(ul “pg)=o0.
But, since |F

Pipj
and subatitution into the firat yilelde

| # 0, the sesond equation implies uj - p, =0,

d
P, ~LpF, 6 =0,
“j da “j
vhich {s the set of Kuler equations for (9). It is interesting
to nnte that the variational problem (15) is degensrate, 2n
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first order equations replacing n of the second order.
In (15) the u's and p's are independent, go the Legendre
trangformation

(16) vy {(8,u,p)

a Fpi
n

L(s,u,v} = ; Pyvy - P(s,u,p)
|1

can be applied treating u and s as parameters. The dependence
of L on 8,u, and v is given by eliminating p from (16}, The
condition for elimination is satisfied in virtue of our assump~-
tion |F | # 0. We now have

PiPJ

t
{17) I(u,v) = S‘ [é ulvi - L(s,u,v)]ds

which is again a degenerate variational problem in the 2n
functions (ul""un; vl,...vn). The Euler squations of (17)
take the canoniocal form
(18) 4.
ds M1 + I'u =0
Sw-L, =0.
These transformations have their origin in classical me-
chanics, the squations (10) being Lagrange's equations of motion
for a conservative system in the generalized coordinates u, and
momenta Py (or vi), F being the difference between kinetic and
potential enargies, and L their sum. The canonical form (18)
can of course be derived directly from (10) without reference
to a variational integral.

3, The Hamilton-Jacobi Partial Differential Lquation. We will
now consider (17) in a neighborhood in which it i3 assumed that
a unique extremal exists joining any two points (%,k) (t,q),
the conjugate funotion v teking on the values 1 and A
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{1.0. vy = ).1 at 8 = t, Ve =g at 8 = T), The extremal pass-
ing through these points can be represented by
{19) u, =r,(s,t,q,%,k)
{vi = g.(8,t,q,7,k)
where i
(20) £,(t,8,q,7,k) = q, £,(%,t,q,7,k} =k,
gy (t,8,q,7,k) = 1,, 8 (%t,q,T,k) = A, .
In order to find the partial differential equation satis-~

fied by the funetion I(t,q,7%,k) we must calculate 1its partial

derivatives, It:' Iq , 8tc. and this can be done most concisely
i

by use of the varistionel symbol 6. Let the indepchdent varia-
bles Lo taken as functions of a perameter &; viz. t{e), t(e),
qi(e), ki(c), 11(e), ki(e); I then becomes a function of €.

We have
n dk i

dq
ar dt dt | 2 i
cE AR OR: AP INEINE R IE N

dI dt
and letting = O8I = 8t, etc. we have
qEl, -, g G PO ’

n n
(21) 6] = 1,0t + I_6t + I 06q, + I 6k, .

Performing the variation in

(e)
I(e) = f [zui(e)vi(e) - L{s,u{€),viec))]ds
T{e) -

where
\li(e) = fi(s,b(e).q(e);"( e)’k(E))

v,(e) = g,(s,8(e),qle),v(e),k(e))
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we got
61 = [8qi11 - L(t,q,1))6t = [zkiki - L(%,k,A)]07

n
+ § ‘a (u,ibv1 + vibul - 1'.,“‘1()1.).i - Lviﬁvi)ds .
T

The terms z(ul - L, )Ov1 in the integral vanish by (18) (u and
1 .

v are extremals), and on integrating by parts the remaining
terms in the integral become

t
% &
[zviouil - S z(vi + L, )Ouids = Z_ [viou1
3 i i= T
T
We now evaluate 6u at a = t and a = t. This is not equal to
3q or 8k because in 8q, the variation is performed after s is
set equal to t, that is after s has become a function of ¢,
Differentiating (19) we have

(22) Su = £, ot + rqoq + r,‘o': + rkblc ot

However, differentiating the first relation in (20),
(23) 0q = f16t + £, 0t + rch + £,.57 + £, 6k,

whers ! is the derivative of £ with respect to its first ar-
gument, evaluated at 8 = t; 1.e8. ' = q'« By equating coeffi-
clents of the various 8's in (23} we see that £, = -q', rq =],
=0 = 0 evaluated at 8 = t. Similarly £, = -k', . =1,
£, = fq = 0 at 8 = T, and (22) reduces to

6u| 6q ~ q'6t

a=t
oula,,‘ = ok ~ k'6T ,

from which we get

n
t - -
)f; (viouﬁ-‘ = 3(1,0q, = 1,q)6t - A, 0k, + A,k}67)

‘Tho subscript 1 1s omitted.
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and finally
n n
(24) or= E 1,00, - L(t,q,1)0t - E A Ok, + L(%,k,A}0% .

We now read off
(25) I, = <L(t,q,1) , I, =1,

I1.' = L{T,k,7A) , Ik = «A

In particular if we assume the endpoint (T,k) is fixed, I as a
function of t and q satisfies the first order Hamilton-Jacobi
partial differential equation

‘26) It + L(t; ql, o-oqn; Iql,-n-an) = 0

obtained by elimination of the 1, from {25).

Problem
Evaluate the partial derivatives (25) by direct differentistion
rather than variation.

The equation (26) was derived from a function I having
ntl perameters, but its importance lies in the existence of
other more general solutions, depending on arbitrary functions
rather than on a number of parameters. Those solutions will be
shown to represent distances measured from an initial surface
rether than from an initial point as above. In order to moti-
vate the manipulstion to follow, we will first discuss briefly
the general tneory of partial differential equations of the
first order, proofs being given only when necessary for our
application. '

First of all, it is clear that if from an n parameter fa-
mily of solutions of any partisl diiferential equation we form
an n-1 parameter family by considering one of the parameters
&, as a function of the others, a, = { By» "'“n-l)' the envelope
of this solution with resncot to its nel parameters is also a
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solution (since it has at every point the same tangent plans as
a known golution), and in fact depends on an arbitrary function,
namely f.

Now consider the simple case of a first order quasi-linear
partial differential equation in two independent variables

(27) au, +bu =c ,

a, b, and 6 being functions of x, y, and u. Goometrically (27)
statesa that at every point of a solution u{x,y) the normal to
the surface u = u(x,y) (diredtion components p = “x’ q = uy,-l)
is perpendioular to the line element having components (a,b,c)
at this particular point. In other words the element of surface
contalns the line element (a,b,0). If we integrate the ordinary
differential equations

(28) %‘x; = a(x,y,u}), %E = b(x,y,u), %‘zs‘ = c{x,y,u)

wa get a two paresmeter field of characteristic curves in the
X,y,u space. Any solution of (27) is a one parameter family
of characteristicas, and conversely. Given a non-characteristic
initial curve x = x(s), y = y(s), u = u{s), the family of cha~
racteristics intersecting this line traces out an integral sur-
face. In this way we have reduced the problem of the solution
of the partial differential equation (27) to that of the ihte-
gration of the three ordinary differential equations (28). It
is clear that two integral surfaces can intersect only along
chieracteristios, since to any oommon point belongs the whole
characteriatio through that point, and oonversely this propsrty
completely characterizes the characterlistic curves.

Let us now consider the more general egquation

(29) F(x,y,4,p,q) = 0 .

We note that for a linear equation (a,b,c in (27) functions of
x and y along), the characteristics are independent of u and
form a one parameter family in the x,y plane. &rom this we
would expect that the charactoristics in the general case (29)
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would depend not only on u but also on p and q, and would not
be fixed curves in the x,y,u space. In order to reduce this
problen to that of ordinary differentiesl equations it would
therefore seem reasonable to consider curves x(s), y(s), u(s),
p(s), q(8) in five dimensions. In the x,y,u space such a curve
represents a space curve x{(a}), y(s), ul{s/ together with a sur-
face element p(s), q(a} associated with es:h point. At a given
point {x,y,u) (29) allows a one parameter relation between p
and . Geometrically this means the surface element {tangent
plane) traces out a one parameter family passing through the
point, and envelopes a cone (in the quasilinear case the cone
degenerates into a line, with a one parameter family of planes
through the 1ine). The line elements of these cones are the
characteristic directions and are givon by the differential
squations#

ax _ ay . du ,
(30) a‘; = Fp I3 ds Fq » ds pr + qu .

A curve which is a solution of the system (29) (subject to (30))
has & characteristic direction at every point, but a family of
such curves 1s not necessarily an integral of (29). In order
that these curves lie on an integral surface p and q must satis=-
{y the two further relations

d dq -
(31) &= P, *F) G =- (aF, *F) .

Using (30) and (31) we have five ordinary differential equations
in the five variables x(s), y{s), u(s), p(s), q(s). In general
& solution curve will exist passing tiurough an arbitrary initial
point X, Yor U Po» 'qo. There is a five parameter family of
solutions, but since s admits of an arbitrary translation, and
(29) 18 a relation between the initial values, the solutions
reduce to three parameters. Interpreted in the (x,y,u) space,
an initlal value is a point (x,y,u) and a surface element {(p,q),

v;or proofs of the following, see Courant-~Hilbert, Vol, 1II,
Chapter I, par. 3.
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where (p,q) 1s not arbitrairy but nust satisfy (29) (i.e. must
be tangent to a cone). Given such an initial value a characte-
rlstic ocurve x(s), y(s), ul(s) is determined, and with it tan-
goent elements p(s), q(8) comprising a characteristic strip.

As in the quasilinear case inteyral surfaces are composed of
one parameter families of characteristic ourves or strips.
Given an initiael curve x(s), y{s), uls) we use the relation

together with (29) to determine ths remaining initial values
pl(s) and q(8), the integral surface being gliven then by use of
{(30) and (31). Here as before the characteristics represent
intersections of integral surfaces.

The general partial differential equation in n indepen=-
dent variables

(32) F( xl’ . ’.xn; ‘ui pl' f_."-‘lpn)

is somewhat more general than equation (26) with which we are
concerned, since the depcndent variable, I, is absent in (26)?
but this difference is unessential for, if instead of looking
for a aolution of (32) having the form u(xl,...xn) we consgider
it to be given implicitly as

¢(u; xl,.'.xn) 20 3

we can rewrite (32) as a differential equetion in the n+l in-
dependent variobles u, Xyseesk o We have

n
2o Ox 0% ¥ d2u = 0
and

n n
du = 2 U 4% = > Pyax

X =1

“Hors u corresponds to I and (xl.xz,....xn) %o (t.ql....,qn).
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from which we obtain immediately

¢x
= - i
Py ’@'\:‘ ’
equation {32) beooming
b, 0,
(33) F(xl.oonx ; \l; - F‘L.OOQ rg) =0 »
n u u

in which the dependent variable ¢ no longer appears. If we
oonsider the implicit relation (33) solved for ¢u and replace
by I, u by t, end xy by u; we get exactly

(26) It + L(t; \ll,o-q\ln; Iui' oo-Iu ) =0 .
n

The characteristic differential equations for (32) are

dx1 ~ du _ <& dpi _ .
(Bh) . Fpi r ds g]__- pini ’ as '(in F“pi)

vhere we have 2n+l differential equations in the 2n+l variables
xi(a), u(s), pi(s). The corresponding characteristic differen-
tial squations for {26) take the form

dv

<3
[

i n
(35) 5t = Ly, =t - Ly,
a1
dI £ .
at -{--1-; Viby, " b gt o Ly

vhere we have set vy = Lu and teken t for the parameter along
1 1)

the charaocteristic curves. Here there are 2n+2 differential
equalions for the 2n+2 variables ui(t), I{t}, I, (t) = vi(t),
1

and It(t). However, we see thut since I and I do not appear
in L, the 2n equations

du dv
(28) =t "L = " -y,
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oan be treated as a system in itself, independent of the other
two. But these are exactly the equations for the extremals of
our variational problem. We thus see that the extremals of the
intégrals (14) and (15) are given by the projection in the
(u,t) space of the charactoristics of the corresponding Hamil-
ton-Jacobi partial differential equation (which are in general
curves in the (I,u,t) space)., In the example

(12) S[/“(*

the Hamiltone-Jacobl equation is

2 2

Ip +I5=1,

of whiclh the characteristics are straight lines in the t,u,I
space making mngles of h5° with the t,u plane, and the projec-
tiona (extremals) are the previously found straight lines in
the t,u plane.

We now come to our chief result that from a complete 80~
lution of the Hamilton-Jacobil equation we cen construct all the
extremals of our variational problem. By a complete aolution
is meant a solution
(36) I(t; uj,eeett j 8yy0008 ) = @ ]I“iail #0
depending on the n+l paremeters a;,a (the n+l st parameter a
is additi{ve since only derivatives of I appear in the differen-
tial equation). The envelope of the n parameter family result-
ing from setting a = f(al,...an) is obtained from

(37) Iai(tl \ll,c.oun; &l,tooﬂn) - fai(al,...an) a0
(1=l,..-n) ’

by eliminating the paramters a, in (36) and (37). For each
value of the a, the intersection of (36) end (37) is a charace
teristic, (the integral surface given by the envelope is traced
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out by allowing the ay to take all their values) so the proe-
Jection of this characteristic in the t,u space namely (37), is
the equation of an extremal (represented in (37) as the inter-
section of n surfaces). Since the function f is arbitrary the
quentities ra = bi can be given arbitrary values, and since

haiuil A0 the n equations (37) can be solved for uy giving

‘38) ui = ui(t; al,...a

0’ bl,...bn)

whioh 18 the reguired 2n parasmeter family of extremals. The
theory of characteristics has been used only for motivation,
and we will now prove this statement independently.

If from a complete solution I{t; Uy, eeelt; al,...qn),
Iz { # 0, of the equation
uga,

(26) I, +L{t,u,I ) =0,
we define the functions u,(t; 850008 bl,...bn) implicitly by
{39) Iai(t; \ll,oc.un; Ol,o'tﬂ“) = bi' i=l,.een

and the aonjugate functions vi(t; 81,0008, bl,...bn) by

“J.O) Vi = Iui(t; ul,ououn; algoo'an) »

the u, here to be replaced by thelr values from'(39), we get a
2n parameter family of extremals satisfying the canonical equa-
tions du,/dt = Lvi, dv,/dt = -Lui.

Considering I as a function of t, vy, end a4, and with uy
and v, functions of t, a;, and b, we differentiate {(26) with
respect to a; {t and uy constant) and (39) with respect to t
(«1 and b, constant) obtaining



Subtracting and remembering that |I_ | # 0, we have
du /&t = L, , the total derivative du }dt implying that &, end

b, are held constant. Similarly differentiatiug (40) with res-
pect to t and (26) with respect to u, we have

dv n du
1 i
I Iuit * ?;; Iuiuj
n

I + L + E L I =20 .
tui ui 3= vJ ujui
Subtracting we obtain
dv n du
i
+$L = E; I (3—4 ~L )=0
dt uy = uJui t vj ’

which completes the proof.
We will now proceed to show that while the Hamilton~Jacobi
equation was derived by considering distance measured from a

point in the (t,u) space, an integral of the equation in gene-
ral represents distance measured from a surface in the (t,u)
space. This becomen: clear geometrlically if we take for our
complete solution {36) the integral I(t,u,T,k) representing dis-
tance from tue point (t,k), the (T,k) being n+l parameters.

An envélope 1! is constructed by assuming some relation

r(=; kI""kn) = 0, and since I = 0 for every point (7,k) sa-
tisfying £ = 0, also I! 0 on the surface f = 0, Further the
envelope of "spheres" I = C is the surface I' = ¢, so that the
latter locus represents those points (t,u) which are at a dis-
tance G from the initial surface f(%T,k} = O.

To make this more precise we define the distance from a
given point (t,q) to a surface T(%,k) =0, T_ # 0, to be the
minimun distance measured along all extremals through the point
which intersect the surface. This is essentiglly the problem
of the free boundary, one endpoint (t,q) being fixed and the
other lying on the surface T{T,k) = 0. The condition that the
distance I from the point (t,q) to an arbitrary point (7,k) on
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T = 0 be stationary with respect to variations of {<t,k) is
given by

n
{41} 81 = L(t,k,A)b7 = A0k, =0
i Al 4 E i 1

using (24), while we have

n
{42) T 67 + §=:1 Tkiéki =9

since (7T,k) is constrrined to lie on T = 0. Eliminating Ot
between (41) and (L2} (using T, # 0) we have

n
or = -3 (Ml g . )ek, =0,
o7 e T, T M)y

and since the bki are independent,

A, (T,k)
i* = L{T, k%)
i

The n transversality conditions (43) in generel serve to select
one or more extremals from the point (t,q) to the surface T = 0,
and expreas a relation connecting the tengent plane to the sure
face (through the Tki) and the slope of the extremal where it

intersects the surface {through the ki, which are equivalent to
the kj). Equation (43) is a direct generalization of equation
{62) on p.29 of Chapter I, and in the case of geodesics where
I is actually distance, reduces to orthogonality. Dispensing
with the external point (t,q), the n conditions (43) in general
soerve to determine a unique extremal from the n parameter fami-
ly through each point on the surface T = 0, thereby forming a
field of extremals transverse to the surface T = 0,%# at least

“Sinoe only derivatives of T appear in (43), trensversality for
a surface T = 0 implies transversality for the femily of sur-
faces T = conatant.
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in some neiphborhood of the (t,u) space surrounding a region of
the surfece. In such a neighborhood we can define a single
valued function I(t,u) taking the value zero on T = 0. If we
consider a curve t = t(e¢), u, = ui(e) lying in this field, we
have an extremal intersecting the curve at each point, with
initial values T(¢c}, ki(e) lying on T = O, The corresponding
distance function I(t,u,T,k) as a function of 2n+2 variables
satisfies equation (24). The variation 61 {which is equal to
61 for the particular varistion we have chousen) can be oconsi-
dered the sum of two veriations, one with {t,u) fixed, and the
other with {%,k) fixed. The former vanishes in virtue of the
transversality oondition (41), so that we have

n
(Lhy) oI = g 1,0u; - L(t,u,1)6t

from which follows Tt = «L(t,u,1) and Tki =1,, and by elimina-

tion of 1,, Tt + L(t,u,Tu) = 0, so that the function T which we
have constructed as the distance from an arbitrary surface
T(%,k) = 0 satisfies the Ilamilton-Jacobi equation.

The converse fact that any soclution of the Hamilton-Jacobi
equation represents the distance from a surface (or, as a dege-
neration, from a point) is readily verified. From a given in-
tegral 1(s,u) we construct the n ordinary differential equations

dui
(45} Y. TR I‘vi(a'“i"'i)
where we have used thie notation
(46) v xui(a,uf .

The solution of (4S) subject to the initial conditions u; = q,
at 8 = ¢ are

) ug = w8} g o),
l.vi = v,(s; ql,...qn) R
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. where the values of u; have peon substituted in (46) to get v
Differentiating (L6) with respect to s, q being constant

10

dv n du n
i. —
1 + I =21 + I L
da u,8 j;]_ uguy ds u, 8 %; uguyvy *

Differentiating I, + L(a,u,v) = O with respect to U, we have

. n avl n
+L +3¥ L =1 +L + L, I =20
suy uy =1 VJ 2uy suy u, §=: vy “jui ’

and subtracting from the previous result

dv n du
~i - = B =
ds I’u:l %?__—; IuiuJ(ds LVJ) 0.

The constructed functions u and v are thersfore an n parameter
family of extremals. Furthermore, they are transversal to the
surface I = const. ¥or from

I, *+ L(s,u,v) 30 and V, = Iui(a,u)

we have immediately

vileu) g uv)
iuit 8,u) Tst S,u)

which are exactly the transversality conditions (43) for the
surface 1{s,u) = const. It remains to be shown that I is ec-
tually the distance function along this family of transverse ex-
tremals. Taking I(7T,k) = O, we have

b ¢ & N,

I’Sﬁda =S (Ia + =T I“'1 af’-)ds - S (122 veul - Lis,u,v))ds
L X T

which is exactly (17).

The foregoing concepts can be interpreted in terms of the
propagation of light through a medium having & variable index
of refraction. The light rays (extremals) are given as paths
of least time (I is a minimum). The construction ol solutiona
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as envelopes 1s exactly Huyghen's Principle for the construction
of wave fronts,

4. The two body problem. We consider the problem of determi~
ning the motion of two bodlies of mass m) and m, acted on only
by the Newtonian gravitational force between them,

P = Gm,m, .
(ry + x'a)E
where ry and r, are the distances of my and m, from the center
of mass C which we may consider fixed. From the relation
mlr1 a marz. we have

Gmlm2 3
F&e *—-2—— where n';l_, 'i——-——-?
o
1

8o that the problem is reduced to that of a fixed mass mé at-

traoting a mass m at a distance Ty With C as origin we take
coordinateas x and y in the plane determined by the initial po-
sition and velocity of m . The motion is described as making

the integral (T-V)dt stationary, whera T and V are the kinetic
and potentiel energies respectively. Taking m = 1 we have

T = (2 + §2)/2
v a _k2/ / xZ + yd
P=r-vs= (3 «39)/2+x% /[x° +yz

feducing the canonical form we uge the notation x = P, i s q
and have Fi =p, P& a g ylelding

L{t,x,y,p,q) = % (p2 +a%) - x%/ S+
for the Hamilton funotion and

0 + 3002+ 02 -1 S eo
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for the Hamilton-Jacobl equation. Changing to polar coordinates,
X=rc¢os 8, y=rsein 0, this reduces to

2
1 2,1 2, _ k
¢t+§(¢r+’;2'¢e)-r .
A two paramter solution c¢an be found by writing ¢ as the sum of
three funetions of t, r, and 6 respectively, in particular
b = at + ge + R(r) .

Substituting in the differential equation we solve for R
obtaining

2 2
¢=ct+pe+gr g%—--?-z-Za dp .
r P

]

To solve for the extremals we differentiate with respect to the
parameters obtaining

°
r 2k
o -—5--'5-2-20.
G—B&I d°2 2 "% ’
To p2 -2—13---52-201

to and © being arbitrary constants, The second equation gives
@ as a function of r, i.e. the particle path, wiile the first
gives r as a function of time. The second equation can bs in-
tegrated using the substitution p = 1/ giving

2
52-;-1

=
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2
2 2a
Writing 0 = and ¢~ = /1 + we have the conioc of
2 ra
eccaentrioity ¢

0

r= ~
1 -2¢8in (0 - 90)

5. The Homopgeneous Case = Geodesics. Up to now it has been
assumed that 'Fu a I # 0, but this condition excludes the im=
1144

portant case where F is homogeneous of first order in Ugye For
this ocase we have IFulu,‘ = 0, since 1f F 1s homogeneous of
J

first order, Ful 18 honiogeneous of zero=-th order, and applying
Eulerts homogenelty condition
n

%;; u}lFuj{u‘,j =0,

we see the determinant lFuiuBl 0. If in addition to being
hcemogensous of first order in ui,'F ia independent of s {which
is the case for variational problems in parametric form}, the
problem can be ruduced to the form already discussed by taking
u, for th» verieble of intogratlion 8. We then have

n du1 dun~1
(LB) J = F(ul,nooun; ‘a‘\r"'o.o au » 1) dun >

g, n n
as oar integral, and the Hamilton-Jacobi equation becomes
(1;9) Jun + L(u.l, oacun-l; Jul,oousun-l) =0
whe re

n-
L(ulgnooun-l; vl'anovn-l) =i= pivi -F(ul,.-.un_l; pl’..’pn'l)
| T tion (4Y) is nothi
with p, ==, Vv, = F_ . he equation (4% 8 no ng more
1 dun b Py

than the homogeneity sondition, since from
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n du
$=r Pif, "F =0 Py =t

substituting p, = py/ P, we have
n=1l

(50) an * i:; pipi;i - Ii‘(ul""ul'!; pl'"'pn-l'l) =0.

The expressions (25) for the dorivatives Jt' Ju are true even

witna Pui“; & 0,# and if we subatitute J“ for Fsi = vy (1.0

1
11) in (50) we get exactly {49).
Let us illustrate another meti.od of attack with the case
of geodesios on an n dimensional manifold. We have

(51) Is= St/dds,

<

n
where Q = ; - 31k“1"ﬁ , the 8ix being functions of the u, .

From (25) we have
(52) I, =0

I

1 n
’:/5 ;%—_- Bix%:

If we denote by (gik) the matrix reciprocal to (gik) (1.0,

a = Py

szt

n
%;; gijgjk = 6?), solving (52) for q} gives

n
=3 ety

g
(53) ﬁqk 2

i

<

¥Ihis condition does not prevent the use of the lLegendre trans-
formation, but only invalidates its inversion; in other words
the extremals of (9) are included in those of (17), and this
faot is all' that is needed in deriving (25).
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From the homogeneity rolation

n n
tp = GI =
for ey gy Wle, T VR
8o that multiplying through (53) by Iq and summing with respect
to k we obtain k

(54) 3o oGtk 1o=a
1,%=1 9 Y
which 1s a partial differential equation in the Iq taking the
1

place of the Hamilton-Jacobl equation. The connection betwsen
{sh4) and the Hamilton-Jacobi equation is clarified by a consi~
deration of the Huler squations of (51). We have

(?—@ -l&ao

Oul) aui

2

or

2

2 1 ) 1l
(ﬁ%'/&')‘ﬁ%aﬂ?-o.

If for eny admitted curve (and in particular for the extremals)
we take the parameter 8 to be proportional to the arc length
then Q@ is a conatant, and {(55) reduces to

(56) & ED - 5214; =0

for the funetion Q(u;,-.suj; ul,+eoul) = 0. Now, (56) suggests
that wo look for the oxtremals of the integral

(57) B §Qda

T

subject to the condition Q = C, where Q is homogeneous but of
second order, 80 the Hamilton-Jacobi theory can be applied
direotly. We have
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n
@ 2m PP o Pyt Y

n
"1'%1"2%81@1‘ .

Solving for Pyr

1 B~ 1k
pk=5.§s Vi

n
L';:I-pivi -Q
=Q
n
%= 1P 1Py

a1l <& ik
(58) E 1,,1__,:1 g vivk

and the differential equation is

(59} 5 +L 5= Gk o5 oao,
t Ei?l;l ugtuy

In order to find an integral of {59) containing n parameters

we try a solution in the form J(t; ul""“n) = f(t) +J’4t(u1,..un)
and it follows immedistely that ft(t) must be independent of t,
i.e. £(t) = at, J# then satisfies the equation

1 B ik
o+ g 3. J =0,
L ,1,%1 Uy Y
This differential equation in general allows an n paremeter so-
lution, 8o a may be given the specific value - 1/4, and we have
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n
(60) gfr 51 =1,

1,k=1 Yy uk
which 18 (54) again,

From {58) it ia apparent that Q is constant (viz. Q=1/4)
for any solution of (60), so that any n paremeter integral of
{60) can be used to obtain the extremals of (51) as well as
thogse of (57). Using the methods outlined here it is possible
to obtaln the geodesics on an ellipsoid. The surfaces

2 e 2
(61) - + oI+ S =1
a + 8 b+ 8 c™ + 8

in the paramter s, where a > b > ¢ are glven constants, repre-
sent confocal ellipsoids, one-sheeted hyperboloids, and two-
shested hyperboloids as -0 < 8, b < 8 < -ca, -a% < 5 < -b°
respectively. At a given point (x,y,z) (61) is a cubic in s
with three real rocts (sl, 85) 33) representing three mutually .
orthogonal surfaces one of each type, through the point (x,¥,2)s
The parameters (sl, 85, 33) can be talken as a new ccordinate
system, and in particular, taking our given ellipaoid as s, =0,
the remaining two coordinates can be used as perameters on the

ellipse, with the transformation formulas (setting -8, = u,

-32 = v)
- /aEa-u;Ea-v;
x = a-bJjla-c

b{b~u){v-b
y =\/ b-cJjia-b

z = /SlEze)(v=s)
a=c Lb~C

The values of

’

2 2 PEAY
gy = (3% + (21 + (31

= a (2%)(2X 2¥y (2 8y 72
812 ¥ 81 au)(’)v) + (5%)(5%) + (;u)(av) ’

“For details see Courent-Hilbert, Vol. I, p.l19Y5.
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become
g = {u=v)A(u)
812 =0

(v-u)a(v) ,

where

al W
MW = ¢ ST TewT

Also
11 b3
8 u-vJA(u)
812 =0
22 _ 1
& T v OAlV) *

Equation {60) takes the form
(62) A(VIZZ = A(u)32 = (u-v)A(w)ALY) .

To get a one# paramoter solution of (62) we try J(u,v) =
$(u) + ¥(v), and separation of variables gives

2 2
9;_5_)_' a)” | '.%TH -y =
Alu u = yh v v e
80 that

J(u,v,a) = J‘J(u ¥ aJA({u) du + S SV * aJA(v) dv

Differentiating with respect to a we get the two parameter
family of geodesics

(63) (/T aus § /FT av=s

This can be solved for u or v in terms of elliptic functions.

aBeoauae of the homogeneity this problem has easentially one
dependent variable. This 1s obvious if we take v, say, for
the parameter t.
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6. Sufficient conditions. Analogous to the vanishing of the
first derivative of a function f{x) of a single variable we
have found the vanishing of the first variation (leading to tle
Euler equations) as a necessary condition for the minimum of a
variational problem. Corresponding to the sufficient coaditien
r"(x) > 0 we might look for sufficiont conditions in a varia-
tional problem by investigating the second variation. Although
such considerations can lead to further necessary conditions
{(e.g. the Legendre condition Fuewr 2 0, p» 65 ) they can never
lead to & sufficient condlition. The reason for this is that in
order to derive a sufficiont condition we must consider all
posaible admissible variations, i.e. ${x,€) = u(x) + Z(x,¢)
where &4(x,c) 1s an arbitrary admissible function with zero boun-
dary velues, vanishing for ¢ = 0. However, 1t 1s easy to con-
struct an admissible variation (e.g. & = {l-x)e sin x/ea,

0 £ x < 1) for which zx(x,e) does not approach zero for & —» 0.
In this case the varied integral

1
I(e) = F(x,d(x,¢), 9, (z,¢))dx
%o
does not converge to the desired integral

x
I= S P(x,u,ur }dx

X
(o]

as € = 0, and the variational problem does not reduce to th-.t
of minimizing a function of the single variable €. A variation
Z(x,€) which satisfies both conditions %4(x,¢) — O, gx(x,e)—> 0
as € ~» 0 is called a wesk variation, and geometrically means
that the curve u{x) is compared with curves that approximate
u{x) in slope as well as position. A curve u(x) which minimizes
an integral with respect to all wesk variations is called a
weak relative minimum (relative referring to the fact that u(x)
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is a minimum only with respect to ourves in its neighborhood).
For example consider

1
I= g [u'(x)2 - u'(x)3]dx
0

subject to u(0) = u(l) = 0. The extremals are straight lines,
and there is a unique extremal u = 0 satisfyling the boundary
conditions. The value of I is zero for u = 0, and is positive
for all curves satisfying the condition ut{(x) <1, sou =0
minimizes I with reapect to this restricted claas of neighboring
curves. However, by taking

the admissible ourve /F

u =’Cl-——e Sé-X) (e<xs1) (& /)

which approaches the extre-
mal w = 0 uniformly we can — >
make I negative. 0 x =1
We shall now proceed to egtablish Weierstrasa! sufficient
ocondition for an extremal to be a strong relative minimum for

the integral

X

b
(64) I{u) = S F(s,u,u')ds
T ] '
subjeot to the boundary conditions
At (a8 =17, u=k) B: (§-= t, u= q). .

In order to do this we must compare the values of the integral
(64) over the extremal between A and B, (Ie), and an arbitrary
curve C in its neighborhood, (Ic). By expressing Ie as an in-
tegral along the path C, we shall reduce this problem to a ocom-
parison of the Integrands alohe. Assuming that the extremal in
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question can be imbedded in a field of extremals#, we define a
slope function p(u,s} as the slope of the extremal through the
point P = (u,s). Further we define the single valued diatance
rfunction I(P) (see p,60fY## which has the property that
I, = T(B) - T(A)s The differential dI = I ds + T du is exact
and we have
t
- - - = =

{65} I, SB (Tsds + I du) = S {I, +uwl,)ds

A T
where the integration is taken over any curve joining A to B,
and in particular over the curve . Using (25} and (16) we
have T, = F(s,u,p) = pr(s,u,p) and T = F,(8,u,p) 80 that (65)
reduces to

\7
I, = S [F{s,u,p) + (u' - p)Fp(a,u,p)]ds. lafaled

T

and finally we have
(66) N\1= I,-1,= g (F{s,u,u’) =~ F(s,u,p)- (u'-_p)Fp(s,u,p)]tls
T

where the integration is taken along the path C, u' representing
the slope of the curve C and p the slope of the field at each
point. The integrand of (66)

(67} E(s,u,p,ut} = F(s,u,u!) -~ F(s,u,p) - (u'-p)Fp(s,u,p)

is known as Welierstrass! E function. If the condition E > O is
gatisfied at each point s, u, p in the field for all values of
u', then from (66) /\ I > 0 for ell curves C in the fleld; in

“This condition will be investigated in section 7.

**For the existence of I we must in general have a field of ex-
tremals transverse to some surface, but for the case of only
one dependent variable u this condition 1s automatically sa-
tisfied for any field.

¥ rnts expression is known &s Hilbert's Invariant Integral.
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other words I, > I and the extremal joining A and B is actually
a minimum. We therefore con¢lude that & sufficient condition
for an extremal joining two points to be a minimum is that it

be possible to imbed it in a field throughout which the condi-
tion E(s,u,p,ut) > 0 holds for all values of u'. Obviously if
E > 0 for all u' # p, then we have a proper minimum with I >1,
for C not the extremal in question.

We can show that the weaker condition & 2 0 along the ex-
tremal for all values of u' is necesgsary for a minimum. For,
let us assume that the extremal vetween A and B is a minimum
and at a point P on it E < O for some value u'., The extremal
can be imbedded in a field emerging from A (that this condition
is necessary will be shown in the next section). By continuity
E < O on a small line segment PP' of slope u' where P! can be
oconniected to A by an extremal of the field. Now talking the
path AP'PB for the curve C in (66) we have E = O along AP' and
PB, with E < O on P'P,
thereby reaching the 1 .
contradiction I° < Io'
Since P was any point ;
and u' any value, we
conclude that E > 0
along an extremal for
all ut is a necessary
condition for a minimum.

If from E > O for all u' along an extremal we could con-
clude the sufficiont condition that E > O in a neighborhood
for all u' then tho analogy witi» functions of a single variable
would be complete {(i.e. £"(x) > O necessary and f"(x) > 0 sur-
ficient for a minimum). Unfortunately this inference is not
true unless ve impose the rostriction that u' be uniformly
bounded in the neighborhood (see Bolza, Lectures on the Caculus
of Variations, p. 99).

The significance of the Legendre condition can be appre-
ciated by comparison with the I3 function. Using the theorem of

the mean we have 85
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F(’)u'u‘ ) = 3:“;9)*(“"P)Fp( ayunp) + %(u"E)ZFpp( B,U,.};)
where p = p + 6{ut-p), 0 < 8 < 1, so {67) becomes
(68) B(s,u,p,u') = 3w - %% (8,u,5)

p being some value between p and u'. From (68) we see that if
Fu,u,(s,u,u') > 0 at all points of the field for arbitrary va-
lues of u', then also E > 0, so this condition is sufficient.

A protlem for which Fu,u,(s,u,u') > 0 fo. all values of the
quantities s, u, u' is sald to be regular, and for such a pro-
blem the oxistence of a field of extremals guarantees a proper
minimum. The connection between the Legendrs condition and
Weierstrass' E function may be interpreted geometrically in the
following way. Considering F{s,u,u') as a funotion of the
direction u' at a

fixed point of the Fﬂ‘
field (s,u) (theredby
fixing p(s,u)),
E(s,u,p,u'}) = 0 ia the
equation of the tangent
to F at the point ut =3 p,
and £ >0 for all W
states that F(a,u,u')
lies above the tangont
line. The condition
Fu,u,(s,u,u') > 0 for
all u' means that the curve ies convex, and tuerefore lies above
the tangent line. If this is true for all points {(s,u), then
the same atetement can be made of E. The necessary condition

E > O along an extremsl ircludos the weak Legendre Fpp(s,u,p)go,
since E > 0 for all u' implies convexity at the tangent point

u!' = p, Although the strong Legendre condition Fpp(a,u,p) >0
is neither necessary nor sufficient for a strong minimum it is
sufficient for a weak minimwn, This 18 clear since from
Fpp(s,u,p) > 0 on the extremal we can conclude that
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Foigi{s,wut) > 6 for (s,u) in some neighborhood of the extremal
and u' in the neighborhood of p. This means, however, that

E > O for weak variations (by (68)) which 1s sufficient for a
minimum. Although Fu,u,(s,u,u') > G along an extremal for all
u' is somewhat stronger than E > 0 along an extremal, it is

still not sufficient for a strong minimum.

7. Construction of a Field ~ The Conjugate Polnt. We have ob=
served that an essenticl point in the theory of sufficient con-
ditions is the posslbtility of imbedding a given extremal in a
field. We shall now see thiat this can always be done if the
endpoints of the extremal are not too far apart. 1In general a
one parameter family of extremals through a point will conati-
tute a field up to its envelope.

But first of all it is important to note that if an exe
tremal can be imbedded in a field H of extremals so that
E(s,u,p,u') > O over the field, then the condition E(s,u,p#,ut)
> O will also hold for any other fisld H# over their common
{s,u) domagin. For, supposing that E < 0 for some u' at a point
(s,u,p%), we can construct a curve C as on p. 85 for which
Ic < Ie' However, this is impossible since the curve C lies
in the field H in which I6 is proved to be a minimum. We there-
fore need consider tue construction of but a single imbedding
field. loreover, it cen be snown that if any imbedding field
exists, then the femily of extremals throush one endpoint is
such a field (see Bolza, p. 57)« We therefore consider a fami=-
ly of extremals u(s,a) through the endpoint A: (t,q}. The
first point at which u(s,ao) is intersected again by a neigh-
boring extremal u(s,4a°+e) is given by the simultaneous solu-

tion of
(69) fu = u(s,a)

IO = ua(s,ao) .

This first point of intsrsection A#: (t#,q#), is called the
conjugate point to A. If an envelope exists than A% is the
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intersection of.u(s,ao) with the envelope. Supplementing our
previous necessary and safficient conditions we now have the
necessary condition t# < T and the sufficiont condition t# < 7
for a minimum. The necessity of ti# < T may be indicated by the
following geometrical argument. If the conjurate point A% (1i.e.
intersection with the envelope) lies before B, then taking ano-
ther extremal with conjugate point A## we can construct the ad-
missible ocurve AA#FAUB,
where the arcs AAW* and ASB

are extremals and A#sAs is A pw
along the envelope. The en- -“::;—
velope has the same slope

as the field at every point,
80 E = 0 along it. Using
(66) we have

I

AV

+ I =T

AAs ¢ , >8
t t+ T

However, since the envelope ia not an extremal in general, by

AL AREAL

connecting A## aend A% by an extremal the value of I,,..,;, can
be reduced, ao IAA* is not a minimum. This necessary sondition
can be established more rigorously by consideration of the se-
cond variation {cf. Bolza, p. 57). The sufficiency of t&# > <
for the existence of a field of extremals cen be seen as follows.
We have u (s,a ) #0fort <s <7< t# and assuming u_ 1is
continuous we may take u, > 0 in this interval. By continuity
we also have ua(s, a°+e) > 0 for |e| small enough, 3o that at
& fixed point s, u is a monotonlio lncreasing function of a, co-
vering a neighborhood of ¢ = 0 onoe and only once.

Let us take the example

I= S’ (v.x'2 - uz)da u({0) = 0 .
0
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The extremals are

u=asins + b cos s, u’
and through the point (0,0)

there ls the field u = a sin s.

We heve Fu,u =2, p =ucot s,

E = (u' = p)%, and the conjugate "
point to (0,0) is (0,w). The
problem is a regular one, so the
extremal joining (0,0) to any
point (t,u) is a minimum of

t < w.

oV

Summarizing the results of this and the previous section
we have as necessary conditions for a strong minimum the Fuler
esquations, the weak Legendre condition F_ (s,u,p) > O which ia
included in Weierstrass' condition E(s,u,p,u') > 0 along the
extremal, and the conjugate point condition t#* > 1. As suffi-
clent oonditions we have the LKuler equations together with ei-
ther F, .{s,u,u') > 0 or E(s,u,p,u'} > 0 in a neighborhood,
and ti# > T, FFor a weak minimum we have as necessary conditions
the Buler equations, Fpp(s,u,p) > 0, end t% > T, which become
sufficient on dropping the equality signs.

Problem: Show that for F = u/l + (u')2 the tangehts to an
extremal at a point A and at its conjugate point A% intersect
on the g axis.
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SUPPLEMENTARY NOTES TO CHAFTER II

1. The Hamilton-Jacobl Equation. In this paragraph we give a
different and more direst derivation of the Hamilton-Jacobi
equations.

We consider a variational problem

t2
j' F(t, u, u')dt
t

where u = (“1""’“n)' u' = %%. The fundamental concept in the
Bamilton-Jacobi theory 1s the distance function, or the extre -
mal integral, i.e. the above integral taken over the extremals
of the variational problem. The extremals are the solutions
of the Euler equations

' a

dt uﬁ w,

We consider a domain D in the (t,u) space in which two points
P, Q lying in D can be joined by an extremal in D in exactly
one way. Then the integral

Q
I(P,Q) = g F(t,u,u’)dt
P

taken over the extremal from P to Q 1s a function of the end-
points only. This integral is the so-called extremal integral,
or distance function.

In this function we first consider the point P as fixed
and let Q vary. We denote the coordinates of Q by the capital
letters T, Ul""'un' Then

1(P,Q) = JT,U}) .

The aim is to compute the partial derivatives J&, JU .
k
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If u(t,a) denotes a family of extremals depending on a pa=
t2
rameter & we obtain from I{a) = F(t, u(t,a), u'(t,a))ds,
LY
t
1

$2 n

& =Jt 1 (Fy ¥ * Fyy tealdt
1

¥2 n 4 n t2
53‘ E (Puk - a-t- Ful")uka dt + E ukﬂ?ul" . .
Hance tz
ar P
da ka ut y
%

This is the standard computation by which the Euler equation
was derived.
Now using Uk

3
a as parameter, sinoce ;;% =0 at P and

du, =0 for t =T , k¥ £
3y =1 for t =T , k= £.
we obtain
J. = .

t="

In order to compute JT we consider the extremal integral
from P to a variable point (t,u(t)), lying on a fixed extremal
through P, This integral is given by J{t,u(t)). Then

%}F J(t,u(t)) = J, + Ei; Jukué a F{t,u,u') .

Now inserting t = T we obtain

n
Jn = F = Iy W (T)
R =g
and with (1)

9



n
(2) Jp=F - E Fu‘,(u]'(('r) .

Thus we have derived the fundamental equations: (1), (2).

If P also is considered variable it is easy to get the
derivations of the extremal integral. Denote the coordinates
of P and Q by {t,u) and (7,U) respectively. Then

I(P,Q) = J(t,u; T,U) .

By definition, the partiel derivatives Jp and Juk are obtained

by keeping ¢t and u, 1.e. P, fixed. Therefore according to {1)
and (2)

n

(3) JUk = F“x'c i Jp=F- E:I; %Fu& l
T T

Here uﬁ(T) has to be computed as the derivative of the extremal

u, conneating P and Q.

To derive similar formulas for J,, J, one only has to

u

k
exchange the role of P and Q. Observing that I{Q,P) = -I(P,Q)
we find

(3') Juk = ‘F“l'c y Jg = -F+ é u]"Ful,t It .

t

One can write the equations (3) and {(3') in another form.
Here the variation of the extremal integral is expressed by the
variation of the endpoints only:

6J’=§JU oU, +J,1.o'r+§“k +J. 0%
o.r-);rul,‘l OUk+(F-§Fuiu)")t oT
T T

.:p,l ou, ~ (P - ZF,uk) Itoc

(L)
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From equation (3) one easily 1s led to the Hamilton-Jacol
squation. We consider P fixed. Formula (3) consists of n+l
equations for the unknown functions J{(U,T) and uﬁ(T). In order
to separate the unknown functions we introduce new variables
v = (vl,.a.,vn) in the place of u' = (ui,...,uﬁ) by setting

(S) vk = Fu{((t'u,u') .

We have to assume here that
det (F“x'c“i) 0 .

Then the unknown functions u& are transformed into the unknown
functions %, Introduce the Hamilton function H(t,u,v) by eli-
minating u' in

H=7J_ ub vy - Flt,u,u') .,
Then the equations (3) are transformed into
Jo = v, (T)
Uk k
Jp = - H{T,U,v{T)) .

If we insert vk(T) = JU in the last equation we have in
k
{6) JT + H(T,U,Juk) a0

an equation which only involves the unknown funotion J. If it
iz solved we find the n functions vk(T) from v, = Juk. Thus by

the Legendre transformation (5) we have reduced the (n+l) equa-
tions (3) to the one equation (6). This is the Hamilton-Jacobi
squation. It 1s a partial differential equation of first order,
with the simplification that the unknown function, J, does not

itself appear. We have just shown that the extremal integral

J{T,U) satisfies the Hamllton-Jaoobl equation, if one conaiders
the endpoint Q as variable ard keeps the initial point P fixed.
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2. Correspondence between solutions of the Hamilton-Jacobi
equation and Flelds. In the preceding paragraph we showed that
the extremal integral from a fixed point P to a variable one 1s
a solution of the Hamilton~Jacobl equation. We now want to
find all solutions of this eguation. First we will show that
the extrerial integral taken over the extremals from a fixed sure
face C to & variable point also 1s a solution of the Hamilton=-
Jucobl equation. Later on we will show that theae actually
give all solutions of (6).

For the proof we have to construct extremals from C to a
variable point Q with coordinates (T,U). This is a problem
with a free boundary point on the left end. A necessary condi-
tion for an extremal is the transversality condition. Let us
denote by P the point where the extremal from Q cuts C; the
coordinates of P being (t,u). Then the first variation of the
extremal integral J for fixed Q is , according to (4)

°J=-Zpu;(°“k’(p'§l“ul"“fc) 6t .

Here éuk, 8t are variations on the surfave C. This expression
has to vanish. Observe that the resulting equation is the
transversality condition. Thus if we consider Q variable we
obtain from (l)

= - \
(7} oJ j‘;_ F“s" lTaUk + {P }; Ful,‘ uy) A or .
The contribution at P dropping out because of the transversality
condition. Since OUk, 6T are independent variations we derive
the equations (3) from (7). Applying the Legendre transforma-
tion to (3) we see that J(T,U) satisfies the Hamilton-Jacobi
equation (6).

The extremal integral has the additional property of v.-
nishing on C. Later on we will see that all solutions of the
Hamilton-Jacobi equation which vanish on a surface C are iden-
tical with the extremal integral taken from C to a variable

94



point. As a matter of fact, for this purpose we only have to
prove that the solution of (6) with the initial condition J = 0
on C is unique. Then the solution has to coincide with the ex-
tremal integral.

The extremal integral has the following geometric meaning.
FProm the surface € construct all extremals which cut C transver-
sally. Then in a sufficlently small region, where the extremals
cover the (t,u) space simply, the integral J(T,U) ia defined as
fi dt taken over the extremal through @ = (T,U) which cuts C
transversally.

The family of extremals which cut C transversally is
called a "fleld".

Now it 18 clear that the surface J = a, where a is a
swmall constant also cuts the above fisld transversally. Nanely
on J = a we have

0= 8J = F 58U, + (F - F u')lc'r
F R | Pt T Py |

which 1s the transversality condition. Denote the surface J=a
by C,, so that C; = C. Then all these surfaces C, cut the
field constructed above transversally. In other words: The
flelds constructed transversally through C0 and through Ca are
identical. These surfaces Ca play an important role in optics
where they are called wavefrontas. The extremals correspond to
the light rays and the flelds transversal {o the C, are called
light congruences.

We conclude: To every fleld of transversals through C
there corresponds a solution of the Hamllton-Jacobl equation,
namely the extremal integral taken from C along an extremal of
the field. Conversely, to every solution J* of the Hamilton-
Jacobl egquation there corresponds a fleld. Consider the surface
*=a and conatruct the fleld transversal to it. Then the ex-
tremal integral J taken along this field from the surface
J* s o is also a solution of the Hamilton-Jacobdl equation. Now
J+a 18 another solution such that J'“ and J+a both are equal on
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the surface J“ = a. If we invoke the uniqueness of the solu-
tions of the Hamilton-Jacobi eguation we see that J + a = J“.
Thua the one to one correspondence between the solutiona of the
Hamilton-Jacobl equation and the fields of extremals is esta-
blished.

3. Application to differential geometry. Conslder the curves
on a 2-dimensional surface. The element of length i1s given by

4% = E duZ + 2F du dv + G dvZ .

when the E, F, G are functions of u,v satisfying EG - Fz > 0.
If we consider the variational problem

j ds = jd@ + 2F vl + G v'z du

the extremals coincide with t he geodesics and transversality
correasponds to orthogonality.

We conaider the neighborhood of a curve C which we take
as v = 0 and try to introduce the coordinates u,v in such a way
that E, F, G attain a simple form. Ths coordinates we are
aiming at are the Gauss' coordinates.

For this purpose draw the geodesics transversal to C. We
label these geodesics by u = const where u 1s taken as the aro
length from some point
on C. Now we introduce
v as the length along
u = constant. Then C
is given by v = 0, We
claim this coordinate
system 1s orthogonal,
1.6, the lines
u = conatant and
v = constant cut each
other transversally. This 1s an immediate conaseguence of our
general conaiderations.
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The geodesics u = const form a field. The extremal inte-
gral taken from C is J = v by definition. The surfaces, hore
curves, J = v = constant cut the field u = constant tranaver-
sélly as we wanted to show.

In the coordinates u,v the expressiona E,F,G have a 8sime
plified form. Since the coordinate system is orthogonal one
easily finds P = 0. Since for u = constant

ds = dv

by definition of v we have G = 1. Thus in these cocordinates
the line element has the simple form

2 2 2

ds€ = E{u,v) du® + av® .

8ince n was the arc length along C we have
B(u,0) = 1 .
If one takes for C a geodesic one finds that

Ev(u,O) = 0 .

4. Analytical representation of a field. In the preceding pa-
rasraph we defined a field as the family of all extremals cut-
ting a surface C transversally. Therefore the extremals of the
family will depend on n parsmeters. We represent the extremals
of a field in canonical coordinates as u = u{t,a), v = v(t,a)
where a = Qysese, @y stands for n parameters. We assume C ia
glven by t = ¢{u). Since the u(t,a) should zive all the extre-
mals, at least in a certain neighborhood, we require

a“k
(8) det ‘3‘&2) £0 .

We now ask the question whether every family of extremals
u{t,a) depending on n parameters and satisfying (8) form a
field, i.e. cuts some surface C transversally. The answer isno.
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In what follows we will derive the characterizing properties of
a fleld.

For this purpose we use the characteristic theory derived
in Chap II and try to oonstruct the golution J(t,u) of the Ha-
milton~Jacobl equation

(9) Jo + H(t,u,Ju) =0

which is built up by the extremals of the given family. The
equations for the characteristics are, 1if we write w = J,

e © Jukl

(10) V;t = «H (k = 1,-0-,!‘)

wt = %; v. H, - H .
k Vi

The general solution is obtained by taking an n parameter family
of solutions u = u(t,a), v = v(t,a), w = w(t,a) where
a= (“1"“'“n) and

>
det (5%,‘) £0 .

Then expressing the a by the u we obtaln w(t,a) = J(t,u) which
is the desired solution.

Now we take for u = u{t,a), v = v{t,a) the given family
of extremals and try to determine w(t,a). Since u(t,a), v(t,a)
are extremals the first 2n equations in (10} are satisfied.
Thua there remains

wh= 3 v, Hvk - H= g(t,a)

where g(t,a) 18 & given function. Thus we only have to give w
for some value of t. Because of w{t,a) = J(t,u) we also have

n
Yo TR Yoy e TR e e
9



which 18 given. Thue in order to determine w for t = to' we
have to Integrate the n equations (11). This 1s only possible
if the integrability condition

_ .92
gqgvr ura.k_ﬁak-(;vr-urat)
1s satisfied. These equations can be written in the form
(12) fa, a) =0
% %

where the bracket is an abbreviation for
{ ] =3 (u v - u v.. )}
'y % = ra, r%' rd ra.

This expression plays an important role in mechanics and
optica. It 1s called the "Lagrange bracket".

If the condition (12} is satisfied for t = t, we can de-
termine w up to a constant for t = t, from (11). Then from the
last equation of (10) 1t 1s determined for small t - to up to an
additive constant. By the way this: implies: If (12) is satis~
fled for t = to it 13 satisfied for all t for which u,v are de-
fined. One can check this statement directly by showing that
%g {a,, g, ] = 0 for the solutions of the Hamilton equations.
This property 1s even characteristic for Hamiltonlian systems.

If in the function w(t,a) we express the a by u we find
in J{t,u) = w(t,a) a solution of {(9). This function J is deter-
mined up to an additive constant. This constant is irrelevant
for the family of surfaces J = const.whilch cut the given family
of extremals %transversally.

Thus we have seen: A "field of extremala" conaists of a
family of extremals u{t,a}, vit,a), depending on n parameters,
a= (al,...,an) such that

duy,
dt (5g) 40 4 g gl=0 .
The last condition is empty if n = 1, 8ince (a,a] = 0 holds by
definition of the Lagrange bracket.
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8 5. Conjugate Points. In Chapter II necessary conditions for

an sxtremal to give a minimum were derived, e.g. the Legendre

and the Weierstrass criteria. Both these conditions refer to

-axtremals whioh are sufficiently short. In order to make this

T;%}gg clear we repeat the argument for the Welerstrass condition
Let

I{c) = ,E:F(t.u.u')dt

;ﬁﬁ’%he integral considered and let C  be an extremal from P to
Q. We introduced- the extremal integral I*(C) which was defined
as the integralij(t,u,u')dt taken from P along an extremal to
& variable point., 1In other words the extremal integral is dee
fined on the field of extremals which pass through P. We can
write thesec extremals with n parameters a = (01,...,an) in the
form u(t,a , where u{t,0) = v(t) corresponds to the extremal
from P to (. Now we consider a region in the neighborhood of
u{t,0) which ia covered simply by the u{t,a). In other words
through evary point of this {t,u} neighborhood there should pass
exactly ons extremal u{t,a). Such a neighborhood exlsts for all
t such thax
u, (t,0)

(13) Alt) = det( 75 ) ¥ 0
This statement holds since for any point (%,G) one can for suf-
ficiently small Iﬁk-vk(%)l solve the equationsa uk(g,a) = Gk by
the implicit funotion theorem. Therefore we assume that in the
interval of integration t, < t < t, condition (1) 1s satisfied
(tl,ta are the t coordinates of P,Q). We have to exolude ¢ = ty
sinoe u(tl,a) = v(tl) .

Under this assumption we can write according to (66) in

Chap. III(C) —I(co) = J(C) - I“(CJ = { E(t,u,p,u’)dt

where C 1s any curve lying in the above noighborhood which con-
neots P and Q. Here we made use of the fact that I *c) depends
only on the endpoints of C.
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Thus we see: If in t; <t < t, the condition (13} and the
Welerstrass condition € > 0O show that C, I1s a minimal, This
condition {13) is certainly fulfilled if lta-tli i3 sufficiently
small since the parameters a can be chosen in such a way that
{13) holds for those t > t, which are close to t,. .

We determine the first zero of /\(t) to the right of ty
and denote it by T, so that A(T) = 0 and AfH) # O for
tl < t <T. Such aT need not exist in which case the condition
(13) is always satisfied. We now assume there is such a T. We
call (T,v(T)) the "conjugate point" of P on the extremal u=v(t),

If now the interval of integration (tl,tz) contains T the
Welerstrass condition does not ensure ithat Co is a minimal.

And, in fact, we are going to prove the result of Jacobli: If
t) < T < t, then the extremal u = v(t) is not a minimal, provi-
ded det (FuﬁuL) # 0 along the extremal. In the special case

U= t, no gen;ral statement can be made.

We shall give a proof which is essentially due to Bliss
in this section.

Let u = v{t) + ¢ w(t) where w{t) is a funection that va=-
nishes at tl and ta. Then

2
I(e) = 3 Flt,u,u’) dt
Y
1s a function of & and the second variation will be
b2
(14) 1"(0) = J‘ Tt w,u') dt
1
where
E(t;"sw ) = E (" “' |u‘ + 2"}( Hi kawk * Wy Vg kaﬂt) ¢

Here the argument in the derivatives of F are t,v,v'. 1If we
now find a function w such that I"(0)} < 0, then for sufficlently
small € we have

I{e) < 1(0) .
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Now X I dt represents a new variational problem with
t

1
respect to the varlable functions w. The extremal correspondsa

tow = 0. It is easy to see that the conjugate point of (t;,0)
along the extremal w = 0 is {(T,0). Namely if u(t,a) 1s & family
of extremals such that u(t,0) = v(t) then
4 F., (t,uut) = F. (t,u,u') .
a‘e’ ul't »u,u “k su,u
Differentiating these squations with respsct to a and putting
= 0 gives

(15) g—t 1,}!{ (t,w,w') = 1’}: (t,w,w')

as one caneasily check. Here w = ua(t,o). If we apply this
consideration to the above family u(t,a} which depends on the
n parameters q = (01,...,a ) we obtain n solutions

(v)(t) = u(t,02 .
V

The equations (15) are the Euler equations of the varia-
.tional problem (1l )., They are linear differential equations
since § 18 quadratic in w,w'. We found n solutions "(v) of (15)
which are independent since

(16) det (w}("z) = A\(t) #0 .

Thus we have reduced the statements of Jacobl to the sim-
plified problem (i.} which sometimes is called the accessory
problem of the given problem.

Now let us assume that 7" 1s the first zero of A(t) be-
hind t,+ Because of {16) it follows that there exist conatants
e (£=1,...,n) which are not all zero such that

wit) = % ° "(l) (t)

18 also a solution of (15) and W(T) = 0. Furthermore W(t) # O
for ¢, <t < T asince not all the gc are zero. Hence the
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problem (14) has an extremal solution which is not identiocally
zero and which passes through (tl,o) and (T,0). For this extre-

mal we have v

P(t,W,W!') dt =0 ,

Ut;l

88 we are going to show now.
Since § 1s quadratic in w and W' we have for any constant)

Be,Aw, ') = G E(t,u,w') .

Differentiating with respect to A and putting A = 1 gives
Euler's identity

= et By v = 28

Therefore ws have

‘2 F2

2S Idt,;x (B, W+ 3, W) av
t t k Yo
1 1

R

For every extremal we have

b2 2 q
+ Z (gw - a-t- L. )"k dat .

2 1 2
I Edt'z;ﬁ—_wk L, l N
t kol
1 b
Hence
T T
f §.(t,w,W')dt = %-2: wk Q;& (t,W,w') 0.
tl ' tl

If we now sonstruat the funotion ¢{t) by

wit) for t; <t < 7
() for T xb:2%;

¥(t) =
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it 1s continuous but has a corner at t =T and it 1s
t

2 L4
f B(x,4,4')at = S (e, W,widt = 0 .
t t1

We can find such a curve in every neighborhood of w=0 since
4 = ¢ §(¢) will satisfy the same relations as § since § is «
homogeneous function in w,w'. The function 4{3}, however, 1s
not an extremal and can be replaced by & function which even
makes (1l4) negative. iamely 1f this would not be possible the
function ¢(t) would have to satisfy the Welerstrass-Erdmann con-
dition at ¢ =%, 1.e. § , would have to be continuous at t =7.

X

For t > ¥ this expression is O aince w = ¢ = 0. The expressicons
§;,(t,w,W') are not all zero for t =Y. Otherwise we would
haVe forw =W, ¢t = ¢
Q; g; F;k"i wi o+ Fou Wy
=Z “i W,=0 fork':l,ooo,n .

Since we assumed det (F 'w') # 0 1t would follow W'(T) =
n(b
From the uniqueness theorem for syatems of ordinary differential

equations 1t would follow that W(t) = C, which 1s a contra-
diction.

Tharefore we can oonstruct a functiou ¢(t) with
w(tl) = y{t,) = 0 1lying in an arbitrary neighborhood of w = 0,

such that
t

Plt,y,v')de <0 .
%

This completes the proof of the necessity of Jacobl's condition
for a minimum.

For the computation of the conjugate point 1t 13 conve-
nient to use the accessory variational problem (1) since the
Euler ecuations are linear end i{n general easier to solve than

the original Euler equatlon.
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Example: Conjurate points of a geodesic on a surface: Using
the Gauss coordinates which were introduced in 83 we have

j‘F(u,v,v') du = X\/g(u,v) + v'2 du .

Here v = v(u) 1s the variable function and u plays the role of
t. The geodesic conaidered is v = 0, Furthermore we have
E(u,0) = 1, E,{u,0) = 0. The function - %Evv(u,o) = K(u) is
called the Gauss' curvature of the surface at the point (u,0).
We ocompute

Yum,wt) = %(w'a + % B, ua) = %(w'a - Kuz)

The linear Euler equetion is
(17) 8, -F, =w+Kuyw=0 .

This 1s called the Jacobl eguation. 1In order to determines the
conjurate point of (u1,0) one has to ¢onatruct a solution w(t)
of (17) which vanishes at u = u; but does not vanish identically.
The next zero of w(t) 1s the conjugate point. For K = constant,
we have w = sin K (u-uo), Aif K > 0. Then the distance between
a point and its conjugate points is n/ yK. For K < 0 there 1is
no conjugate point.

6. Application to Styrm's theory. We consider the quadratic
funotion (n=l).

Flt,u,u') = %(u'a - Q(t)“?) ’
80 that the Euler equation is
(18) u + q{t)u=0 .

The conjugate pointa with respect to the extremal u = O are
easily interpreted in this case. Let w(t) be a solution of the
Euler squation which vanishes for ¢t = tl, but not identiocally.
Then u(t,a) = aw(t) 1s & family of solutions through the point
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(tl,O). Furthermore g% = w(t). We obtain the conjugate point
of (t1,0) as the next zero of w(t), if it exists.

According to Jacobi's criterion one can interpret the in-
terval between t, and T as the longest interval in which u = 0
is a minimal forj'F dt. Observe that Fow = 1 and therefore
all conditions of the criterion are satisfied. From this intere
pretation follows immediately Sturm's Separetlen Theorem: If
tl.tz are consecutive zeros of a soiution wl(t) of (18) then in

t1 S ¢ < t; there 1s exactly one zero of any other solution.

Proof: We prove first there 1s at most one zero of any other
solution. If there were two consecutive zeros T1,7é in the
above interval then (Tl’té) would be the longest interval in
which u = 0 18 a minimal, i.e. if T is any number greater than
T, (we can choose it < t,) then u = 0 1s not a minimal in (TI,T).
But the interval (71,1) is contained in (tl,ta) and in every
interval (tl,T) with ¥ < t,, u= 0 is a minimal. This is &
contradiotion.

Irf, however, there is a solution Wy which has no zero in
t; St <t, then u = 0 would be a minimal in a larger interval
than (t,,t;) which again leads to a contradioction.

This theorem can be proved more directly for the equation
(18). But this argument can be generalized to more general
equations and for n > 1.

Denote the sequence of z6ros of a solutlon w(t} by t,
such that tv < tv+1‘ Let Vv run over all integers, or only some
of them, or even none of them if there are no zeros. Let w(t)
be another non-vanishing solution of (18) and let'rv with
Ty < Tyal be the sequence of zeros ofw. We choose Vv such that
t) 2T, < %, According to Sturm's Separation Theorem there
exists such a zero Tl of w,. Then it follows that for all vi

1;\0 5'Tv < tv+1

The zeros of the w(t) and w(t) “separate” each other.
One proves easily: If t, =T, then t = T, and this
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occurs only if w(t) andw{t) are proportional to each other
(1tnearly dependent).

In general the ecuation {18) can not be solved explicitly
and therefore the t, cannot be determined explioitly. That 1s
why 1t i1s valuable to give bounds for the tv. This i{s done by
Sturm's Comparison Theorem: If q{t) < Q(t) and

w'(t) + q(t) wit) = 0
W'(t) + Q(t) W(t) =0

and '1‘1 < T2 are consecutive zeros of W(t) then w{t) has at most
one zero in 'I'1 <t <T,, provided w(t) 1s not identically zero.

Proof: Assume there are two zeros t; < t, of w InT) =t < T,.
Then determine a ¢ in t, < T < T According to Jacobl's con-

T
dition % f (w'2 - q(t)uz)dt haa not a minimum for w = 0. In
t

other words there is a function u(t) such that u(t1)= u(z) = 0
and
e L2 2
E {ut® - q(t)u®)at < 0 .
t

1
If we now define u{t) = 0 outaide (tl,t) wo find

T r?

‘ (w2 - a(t)u)at = 5 (ur? - q(t)u?)at

Ty ty
..r" 2

< \ (u? - q(t)ul)at <0 .

[ tl

Henoe u = 0 1s not a minimum for j(u'2 - Quz)dt in (Tl,t) which
1s a subinterval of (Tl'Ta)‘ This is a contradiction.

This theorem implies that the zeros of w grow closer to-~
gether as q(t) increases. If, for instance,

m2_<,q(t) 5M2
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where m,M are positive constants, it follows that

A
-

ﬁ = Itv+1 -tyl =
Namely for &(t) = M we have

W{t) = ¢ sin (Mt + a)

and 7,4 ~ T, = ﬁ. Similarly for q(t) = m. The comparison
theorem gives the above result.

108



III. DIRECT METH(DS IN THE CALCULUS OF VARIATIONS

Introduction

The so-called direct methods in the ecalculus of varia-
tions represent a relatively modern trend which has established
the calculus of varietions in a dominating position in mathe-
matlical analysis.

Two general points of view in the calculus of variations
are relevant for various domains of mathematlics, namely the for-
mation of invariants and covariants in function spaces, and the
characterization of mathematical entities by extremum proper-
ties. We shall concentrate on the second topic. Such a cha-
racterization is useful in many fields of mathematics, and often
serves to simplify more involved deductions. For example, in
the theory of numbers the greatest common divisor of two inte-
gers, a and b, can be characterized as the minimum of the ex-
pression |ax + by[, where for x and y all integers are admitted
"to competition®., In this course we shall confine ourselves to
the field of mathematical analysie.

In thy mathematical treatment of physical phenomena it 1s
often expedlent to use formulations by means of which the quan-
tities vunder consideration appsar as extrema, An example of
that 18 Fermat's Principle in optics. In mechanios the prinei-
ple of stable equilibrium has a basic 1lmportance: a system 1s
in stable equilibrium if, and only if, the potential energy 1is
a minimum. For elementary mechanics equilibrium conditions are
expressed by certain local conditions (vanishing of the sum of
all forces and moments). With the help of the calculus of va-
riations it becomes possible to characterize a state of equili-
brium by one value only, the extremum of a functional. The va=
riational equations furnish, then, the local conditions.

The classical methods of t he caloulus of varlations can
be considered as indirect methods, in contrast to the modern di-
rect methoda. The distinction 18 not absolute, for many

109



"modern" ideas appear already at the beginning of the calculus
of variations, although without the degree of precision now
attained.

Generally speaking, the direct methods aim at solving
boundary value problems of differential equations by reducing
them to an equivalent extremum problem of the calculus of varia-
tions, and then by attaoking this problem directly, a procedure
which 13, so to speak, the reverse of classical calculus of
varistions.

The most notable example of the direct approach goes back
to Gauss and William Thompson. They considered the boundary
value problem of the harmonic equation Z&u = 0 for a domain G
in the xy-plane, under the condition that the function u be re-
gular in G and attain prescribed continuous boundary valuea at
the boundary.

The classical formalism of the caloculus of variations for
the integral

2, 42
D(¢) = H (43 + d7) axay
G

shows ¢

If u(x,y) furnishes the minimum of the integral when for
¢ all functions are admitted to competition which are conti-
nuous in G and on its boundary, attain the prescribed boundary
values, and possess continuous first and second derivatives in
G, then ulx,y) is the solution of the boundary value problem
for D[u] = 0 in G.

Gauss and Thompson thought that, since the integral D[¢]
is alweys positive, it must have a minimum: hence the existence
of a solution of the boundary value problem appeared established.
This reasoning was later resumed by Dirichlet, and a deoisive
use of it, under the name of Dirichlet's Prinocliple, was made by
Bernhard Riemann in his epoch-making investigations on the
theory of functions. However, 1t was soon observed by Weler-
strass that the reasoning suffered fram & very serious gap. A
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set of non-negative numbers necessarily has a greatest lower
bound, but this lower bound need not be a minimum actually at-
tained in the set. To make Dirichlet's Principle a cogent
proof, the existence of a minimum, rather than a greatest lower
bound, has to be established. That this is not a trivial mat-
ter can be seen from many simple examples of extremum problems
apparently “"reasonable",

(a) Pind the shorteat curve
from A to B with the condi- /,__,—-————\
tion that it should be per- ry B
pendicular to AB at A and B.

The length of the ad-
misesble curves has a groatest lower bound, namely AB; however,
no shortest curve exlsts.

{b) Find a function ¢{x) continuous, having a piecewise conti-
nucus derivative, for which the integral

1

Iag 2 ¢1(x)2 ax
«1

attains the smallest possible value, with the boundary condi-

tions:

${(-1) = -1 d(1y=1 .

The integral is always posi-
tive and has a greatest lo- $(x)
wer bound, namely, O. How- Q
ever, we can make it as small
as we want, by taking for
¢(x) the funetion represented
by AFPQB. If ¢ 1s the dis-
tance from P to the point

{0,~1},

PR

[
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d'(x) = % for -e < x<e ,
¢'(x) = 0 for -1 < x < -¢ or e<x<1i1 .

Hence
4 2
2
I= X dx = €
L? 30

and it can be made as small as we want. But the only function
for which I = 0 is d(x) = ¢, and 1t does not correspond to a
curve through the gliven end-points.

Welerstrass' critloism was met only much later by Hilbert,
when he succeeded in 1900 in establishing the existence of a
minimum for problems involviag the integral D[(4], and thus
opened the way for broad developments in the calculus of variae
tions.

The direct methods thus inaugurated marked a great pro-
gress ‘n pure and applied analysis, all of it based upon the
reduction of boundary vezlue problems to minimum problems.

Three related goals are énvisaged by such methods:

a} Existence proofs for sclutions of boundary value pro=-
blems,

b) Analysis of the properties of these solutions,

¢) Numerical procedures for calculating the solutions.
This last point of view has been stressed by Rayleigh and, in a
broader way, by Walter Ritz, who developed powerful numerical
methods of great importance for physics and engineering.

A few examples will show how certaln results concerning
minimum problems can be attained directly.

By the formal approach the iscperimetric property of the
circle {(or of the sphere} 1s reduced to a diffarential equation,
supplemented by certain sufficlent conditions, for instance,
Welerstrass' conditions. However, the direct approach leads to
the result in a straightforward way.

On the basis of Steiner's proof * or of the classical cal-
culus of variationa, we may asaume as proved that the circle is

* See this proof in Courant-~Robbins, What is Mathematics, p.375.
112




the solution, provided a solution i3 assumed to exist. Hence
only the existence of a solution needs to be proved.

We consider the following problem: Among all continuous,
closed curves C having a given length L, find one which makes
the enclosed area A{C) a maximum.

Since any admissible curve C can be completely enclosed
in a eircle of radius L/2, A(C) < an/h; hence a least upper
bound M exists for all the areas, and a& maximiging sequence
cl,...,cn,... of admissible curves exists such that

An(cn)-—\M for n = o0 .

Each Cn can be assumed to be & convex curve, for if not,
1% could be roplaced by a convex admisasible curve of larger
area: Cn is first replaced
by its “"convex hull" T ;
then En is magnified into a
8imilar admissible curve of
length L, & , and

ate,) < A(T,) < A€ .

{This reasoning 1s not valid in 3 dimensions. Let us con-
sider a sphere with a long spine. It can be replaced by a con-
vex surface enclosing a larger volume: but this surface will
also have a larger area, which prevents us from extending the
argument to more than 2 dimensions.)

We now make use of the following theorem: In a sequence
of convex curves lying in a closed domain there 1s a subsequence
which converges to a closed convex curve.

Hence a subsequence of curves C,, converges to & convex
curve C! since the area of a sequence of convex curves dependa
coatinuously on the curves, and the areas An of Cn converglng
to M, A(C) = M.

We now make use of a very important fact, the lower semi~

continuity of lepngtht
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Ir c,, converges to C, then
1im L(C ) 2 L{C)
In the present case, we then have
L{c) =L .

The equality sign, however, must hold, since, if L{C) <L, C
oould be magnified into a curve of length L, whose area would
then exceed M. Thus the existence of & curve of maximum area
and length L 1s established.

Lower semi-continuity of length is only an example of a
property which occurs in all “reasonable® variational problems
and Is of great importance for the direct methods.

Consider a function I{d}), where the independent function
¢ ranges over a specific "funotion space". Consider a sequence
of admissible functions 6n which tend to a limiting funetion u
in this function space. Then I(4] 1s called lower semi-contip:
uoua at the place u if

lim I[én] > I(u] »

no matter what sequence 6n tending to u 1is considered.

Compactness in Function Space, Arzela's
Theorem and Applications

In the ordinary theory of maxima or minima, the existence
of a ;;reatest or smallest value of a function in a closed damain
i1s assured by the Bolzano-Welerstrass convergence theorem: a
bourded set of points always c¢ontains & convergent subsequence.
This t'act, together with the continuity of the function, serves
to secure the existence of an extreme value.

As seen before, in the éalculus of variations the donti-
nuity of the funotion space often has to be replaced by & weake-
er property, semi-continuity; for, when ¢  converges to u,
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generally I(dn) # I{u). Another difficulty in the calculus of
varlations arises from the fact that the Bolzano-Weierstrass
convergence theorem does not hold If the elements of the set are
no longer points on a line or in a n-dimensional space, but
functions, curves or surfaces.
As an example, we can
conslider the curves ACDB in
a closed interval where 1 |-===AC
AD = 2/n and where C remains
at the distance 1 from AB.
These curves are continuous,
but in the sequence there 1is
no subsequence which converges A D B
to an admissible continuous curve.

Fortunately, however, there exists a remedy which very
often proves sufficlent in the direct methods of the calculus
of varistions. By a suitable restrictive condition imposed on
the functions of a set, one can again obtain a theorem analo-
gous to the Bolzano-Welerstrass theorem. This conditlon is
that of equlcontinulty.

A set of functions fl(P),..,fn(P) 1s equicontinuoud in a
domain B i1f, given any e > 0, there exists a 8, depending on ¢
alone, not on the particular rn(P), such that

I£.(2) - £ (P} <e for |Q - P| < &(¢)

uniformly for all P in B and all functions fn(P). This candi-
tion implies, of course, that each funection separately be con-
tinuous. ,

As an example, let us consider the set of functions

rl
J o’ g(y) day = rix) ,
°

where g(y) 1s any piecewise continuous function suoch that
lg(y)] < 1 and where x has an upper bound. Then
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1
Ietx) = )1 2 [ latr)] 107 < ol ay

as
for

lx - gl < O(C) »
then

I£{x) - £(g)l < ¢

for {x-£| < 6(¢), hence f{x) is equicontinuous for all g(y).
Of course, o*¥ can be replaced by any continuous function
K(x,y}, and the statement of equicontinuity remains true.

As another example, let us conaider a sequence {fn(x)} in
an interval (xoxl) for which

*
2
g (ri{x)}“dx =M ,
X0
where M is a fixed constant. it‘n(x)} i1s equicontinuous, asince
the expreasion

2 **h 2
I, (x+n) - £ (x)|€ = IX £'(x) ax|
x
by Schwartz' inequality #, does not exseed

x+h 2
hS {r'(x)])° ax < Mh ,
X

and we have merely to take, for a gliven &,

&2
h<6(e)=’ﬁ .

* Schwartz' inequality for integrals states that

b 2_(P .2 (P o
[S gl < S £ S g, and is proved from the relation
a a a

b 2
Ia (r-gl® 2 0 . 116



Arzela's convergence theorem then states: Given in a closed

domain B a set of functions {r(?)} which are uniformly bounded
(1.e. If{P)| < M) and equicontinuous, then there exists a sub-
sequence ?h(?) which converges uniformly.

We cover the domain B with a net h’l of lattice points,
and let % be the common distance between two consecutive pointa,
The values of f{P) at the firat lattice point form a bounded,
infinite set of numbers, and hence, according to the Bolzano-
Welerastrass theorem, there exists a sequence of these values
which converges at the firast lattice pdint. From thlis sequence
we can choose a subsequence of functions which converges at the
second lattice point (the lattice pointa can be ordered), and
so forth for all lattice points {there is a finite number of
them). We thus obtain a subsequence of functions converging at
all the lattice polints:

S.(P): £y 1(P), £, (P}, ...

Let us now take the middle points between the lattice pointe
and oconsider the new set of lattlce points thus obtained, r(z.
We similarly have a subsequence of functions of Sl(P) conver-
ging at all these lattice points:

SZ(P): fl,z(P)' rz,z(P), e
Continuing this process, we obtain the following sequences:

(Pt £y ((P), £ 1(P),eeny £ 1(R),0ns
SZ(P): fl,Z(P)’ fZ,Z(P)""’ rn,Z(P)""

LI ] L R R N IR N R RN RN N

Si(P): fl'i(P), fz’i(P),.-., fn,i(P)""

BEach sequence Si(P) is a subsequence of all the preceding,
and it converges at all the lattice points of the net K g
We now choose the diagonal sequence ifn(P% :

fl’l(P). f2'2<P),-o., fn'n(P),...
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which, except for a finite number of its terms, is an infinite
subsequence of every S (P), and hence {? (P) converges at all
iattice points.

There remains to show that the azaguuai subsequence
gfn(Pf} converges uniformly at any arbitrary point Q of B. ¢
being given, since the diagonal sequence {fn(l’)} is equiconti~
nuous, there exists, uniformly for every k, an integer N(e¢)
guch that

If () - £ ()l < §

for |Q-L| < 2-N(e)' L being a lattice point of the net ff .
Since {r (Pf} converges at each of the lattice points, ue
can find a K(e) such that

€
le(v) - () < 3
for m,u > £(e).
Then, for any point P
[€,(P) = £ (P)] < |£.(P) ~ £ (L}

+ e (L) ~ ()|

+ [ (L) ~ £ (D))
or
fe (7) - £(P)| ¢

Therefore irn(ri} converges uniformly.

Problem

Prove that, if a aet of functions fn(P) is equicontinuous
in a closed domain, and if the fn(P) are bounded at least at
one point, then the fuactions fn are bounded everywhere in the
domain.

Application to qeodesics: Lipschitz's ¢onditiont: A set of
functions are said to satisfy Lipachitz's ocondition if
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r(XZ) - r(xl)
X2 %"

1s uniformly bounded for all functions f£{x), provided that xq
and x, are in a olosed interval,

According to Hilbert, the preceding concept immediately
permits proof of the existence of a shortest connection between
two points A and B on a given surface.

Let [x{t), y(t), z{(t)] be the parametric representation
of a set of curves through two points A and B, t being the arc
length or proportional to the arc length. We also assume that
the length of the curves has an upper bound, then we can take
0 <t 1. Then the functions x(t), y(t)}, 2(t) are equiconti-
nuous

If we assume that the functions possess plecewise conti-
nuous derivatives, x{(t), y(t), Z(t), we have, t being the arc
length or proportional to the arec length,

X +3°+2°=u0

8 and o belng two values of ¢,

|x(8) - x(c)] < Ssli(t)ldt = Sadli(t)lzde s

¢ '
which implies
’s 1] » .
|x(8) - x(e)| 58 \/xz, + yZ + zz dt
'

or
Ix(8) - x(or}| sCls -]

which means that, under the assumption made for t; the curves
are equlcontinuous.

But, even If the derivatives do not exlist, the conclusion
remains the same, 29 it can easily be seen by representing the
length as the lowest bound of the sum
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g/‘xi R AR A LN TRV

where the least upper bound is taken with respect to modes of
inserting the intermediate points (xi, ¥y zi) between A and B
on the curve, and for all n.

As the length of the curves has an upper bound, x(t),
y(t), and z(t) also have an upper bound, and, us they are equi-
continuous, there is, by Arzela's theorem, a subseguence xmﬁt)
such that xm(t) converges uniformly. Similar subsequences
Yult) and zm(f) also converge. Therefore we can construct a
common subsequence x (t), ym(t), zm(t), for which all three com-
ponents converge. Hence there i1a a limit curve C joining A and
B.

By the semi-continulty property of length,

L(C) < 1m L{C,) =4 ,

where d 1s the greatest lower bound of the length of the curves
Joining A and B on the surface. Hence the < sign is impossible

and
L(C) =d .

There remains to show that the minimizing curve C has
plecewise continuous first and seoond derivatives and satisfy
Euler's equation, provided that the glven surface i{s sufficlent-
ly smooth. But this follows from the fact that C must glve the
shortest length between any two of its points. If B is suffi-
clently near A, the arc AB of C must be regular and satisfy
Euler's equation on the basis of the classical theory of the
calculus of variations (Ses first part of these notes) Hence
this property follows for the entire arc of C between the given
end-points.

Problem

1) Frcve t'e theorem used above thatt! In a sequance of convex
curvea <f bounded length lying in a oclosed domain there is a

subsequence whisch converges to & closed convex curve.
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2) Prove by the method above that there exists on a torus a
shortest gecdesic topolopgically equivalent to any prescribed
closed circuit on the torus.

Direct variational methods in the theory of integral equations:
Following Homgren, we shall indicate briefly how direct varia-
tional methods can bs used for the treatment of Fredholm and
Hilbert integral equations. In the general theory of integral
equations, which was inaugurated by Fredholm, Hilbert empha-
sized the importance of the eligenvalue theory.

Let K(s,t) be a continuous and symmetric function called
the “kernel", with 0 < s <1 and 0 <t < 1. The eigenvalue
problem is to find a function u(t) such that

1l
SO K(s,t) ult) = pu(a) .

Such functions u are called elgenfunctions and the A = 1/p
elgenvalues.

We shall now prove the existence of one eligenvalue, We
consider the integral

1(4,4) =‘H'K(a,t)6(-s)d(t)dadt .

where ¢ is plecewise continuous in the interval (0,1). We as-
sume that |K(s,t)| has an upper bound. {Integrals without in-
dication of limits shall be taken over the domain defined by
0<s<land 02t <1.)

We assume that the kernel K{s,t) 1s such that I(4,$) ia
sometimes positive; in other words, that K(s,t) is not a so-
called "negative definite"™ kernel. We write

4 2
J1d(s)1° as = (4,4) .

I(
(¢,

Then

has a least upper bound p which is positive, and there exiats s
maximizing sequence 61,...,6n,..., for whioh
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The function ¢ could be normed, that is (d,4) = 1, but this is
not essential.
We now conaider the new sequonoe>dn + e{n, and we have

T, +eg, 4 + ex) s pld, +eg, Ao+ eg))
or
I(d,,d,) + 2e2(4_,5) + 212, %)
< ul(d 40 + 264,20 + 2(2,%)0]
or
x(dnaén) - “(4";‘;“) + Ze[I(én.Kn) - H-(dnrzn)]
v 2ng ,z) - wlg,8)l <0 .
The quadratic form in € will always be negative 1if
(T0d 2 ) =wlds £ 1220104, ) =uldp, 40 JOT(Z L8 ) -0l &y, %) ) 5 00
We assume that (Zn,zn) remaina bounded; hence, as
dody) - wld,d) =0
I(dn,?:n) nd i‘-(dn:&n) -~ 0 .b

or

j‘z;n(s){jx(s,c)dn(c)dc - pdn(s)]ds -~0 .

If we write
51((s,t)¢n(t)dt =9 (s) ,

the functions qn(s) are equicontinuous and equibounded; hence,
by Arzela's convergence theorem, there exists a subsequence,
which we shall also call qn(s), of these functions converging
uwniformly to a continuous function u(s).

u(s) 18 not tdentically 0. If it werse,

SK(s,t)dn(t)dt
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would tend %to O. dn(t) can be assumed to be normed, then the
upper bound g would not be positive, which 1s contrary to the
hypothesis; hence u(s) 1s not identically O.

With the new notation,

Izn(a)[SK(a,t)én(t)dt - u$n(s)] ds

becomes

featertngto) - wdytart as
and 1t tends to O. We oonsider a special varlation for X:
Z,(s) = K(s,») ,
where r is an arbitrary parameter such that
0<rs<il .
Then
XK(e,r)qn(s)ds - uqn(r)
tends to 0. But qn(r) converges uniformly to u(r), hence
jK(s,r)u(a)ds = pul(r) .

If we multiply both sides by ul(r}) and integrate, we veri-
fy immediately that u(r) is a solution.
By the same msthod we can 8olve the inhomogeneous Fred-

holm equation
(‘l

JK(s,t)u(t)dt - vu{s) - gls) =0 ,

where v 1s a constarnt greater than u, and g{(s) a given function.

Selving this problem is equivalent to solving the follow-
ing variational problem: [ind the function u for which the
integral

I{e) = Sj.K(S,t)é(sN(t)dsdt - v|l4(s))%as - 2Jg(s)é(s)ds

is a maximum.

Tae proof is left to the student.
123



Dirichlet's Frinciple
Dirichlet's integral. Let G be a domain of the Xy-plane, the
boundary of which, ¥, is a Jordsn curve, i.e., a continuous
curve vithout double points. ¢{x,y) is continuous in G + vy,
6x and éy being piecewise continuous in G. ¢ = g on y, g being
continuous on y. Functions ¢ satisfying these conditions form
a olass of admissible funoctions. Dirichlet's integral for ¢ is
defined as:

D{d) = U(éi + 6§)dxdy = ‘”(di + 'xl-"’ ¢g)r drde .
+]

D{4) has a greatest lower bound d, and

D(¢) 24 .

Minimizing sequences. For a variational integral I(é) a se-
quence of admissible functions 61, 62, 63, ... such that the
values of I(4,), I(éa), I($3), <.+ tend to the greater lower
bound d of I{¢) is called a minimizing sequence. Wherevar the
set of possible values of I{¢) is bounded from below, the existe
ence of a minimizing sequence is insured, even though we need
not specify a definite construction of the minimizing sequence.
{Such a construction will be the main point in the task (c¢) of
computing numerical values.) For example, Dirichlet's integral
having a greatest lower bound d, there 1s a minimizing sequence
of functions &n(x,y) for which D(én) ~~d as n = ». However,
a minimlzing sequence need not converge; even if it converges
the 1lim!t function need not be admissible.

Explecit expression of Dirichlet's integral for a circle. Hada-
mard's objlection. The difficulties Just mentioned are clearly
shown by a fact first discovered by Hadamard: not only is the
solvability of Diriohlet's variational problem not obvicus, but
Dirichlet's minimum problem actually is unsolvable in some cases
in which the boundary value problem for the differential equa-
tion Au = 0 can be solved. Thus the 1dea of reducing the lat-

ter to the former seemed even more discredited.
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Let K be the unit circle, and introduce polar coordinates
ry6. On the cirecumference k of K continuous boundary values
g = 8(9) sre given. Consider the (not necessarily convergent)
Fourier series of g:

Bo (o]
== + ) (av cos V@ + bv sin ve) .
v-:;

Then, for r < 1, the solution of Au = 0 satisfying the boundary
condition U = g on k 1s given by the convergent series:

a

0 2.y
u(r,oe) =+ S . r (a, coa v@ + b, sin v0) .
V=

If we represent by Dp(u) Dirichlet's integral for the sircle of
radius p < 1 about the origin,

_ @ 2 2, 2v
Dp(u) =x §= v(av + bv)p v

This implies for every N

N @©
2 2, 2V 2 2
R (2 + bS)p < ® D v(aS + b<)
= v v - = v v !
where the right-hand side may be a divergent series. By let-
ting p tend to 1, we infer immediately: Dirichlet's integral
for the harmonic funotion

a ©
u(r,8) = 1? + 3 rv(av cos V@ + b, ain vQ)

v=]

over the unit circle is glven by the series

D(u) = 7 3= v(a2 + b2
u) = m g;; v(a§ + bl)

and exists 1if, and only if, this serles converges.
Now, as pointed out by Hadamard, there exist continuous

functions g(Q) for whioh this series diverges; e.g. 1f g(¢) 1s
given by the uniformly oonvergent Fourier expanasion
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- z:; sin E .
D(u) = E& ’

which does not converge. With boundary valuea such as this E,
the boundary value prodlem of Au = 0 can therefore certainly
not be reduced to a variational problem for Dirichlet's inte-
gral, and Dirichlet's principle is invalid. No full equiva-
lence between the variational problem and the boundary value
problem exiats.

T

Then

The Correct Formulation of Dirichlet's Principle. The last dif=-
fioulty can be avolded oy restricting the prescribed boundary
value in such a manner as not to exclude from the outset the
solvability of the variational problem. While for the boundary
value problem such conditions are not necessary, they are essen+
tial to make the variatlonal problem meaningful. Accordingly,
i1t will be assumed that the prescribed boundary values g are
the values on Yy of a function g in G + y for which D{g] 1s fi-
nite. In other words, we explicitly assume that there exists
at least one admissible function with a finlte Dirichlet inte-
gral. Thus one 1s led to the following formulation:

Dirichlet's Principle. @Given a domain @ whose boundary y 1s a
Jordan curve, 1let g be a function contlnuous in G + ¥, plece~-
wise smooth in G, and with a finite Dirichlet integral D(g).
Let ¢ be the class of all functions continuous in G + y, plece-
wise smooth in G, and with the same boundary values as g. Then
the problem of finding a function for which D(¢) = minimum = d,
has a unique solutton ¢ = u. This function u is the solution
of the boundary value problem of /\u = O with the values g on ¥.

Lower semi-continuity of Dirichlet's integral for harmonic
functions. If a sequence of harmonic functions w, converges to
a harmonic funotfon u uniformly in every closed subdomaln of G,
then

DG(U) 5 m DG(un) .
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Proof: For any closed subdomain G' of G the assumed uniform
convergence of the u, implies by Harnack's theorem ® the uni-
form convergence of the derivatives of w, to those of u. Hence

Dgifu) = 1im Dy, (u ) < lim Dylw,)

and, by letting G' tend to G,
Dglu) 2 Lim Dglu ) .

Proof of Dirichlet's Princinle for the Circle. Let the domaixn
¢ be the unit circle and consider the Fourler series of the gie
ven boundary function g = g(r,e)

ao @
> (8.

-2 cos VWO + bv sin vo) .
v=1

v

This series need not converge, but for r < 1 the series

% @ 2
u= o+ §= r (av cos V@ + b, sin vo)

does converge, and u is harmonic.
Let v be any other admlssible function for which D(v) 1is

finite, and ¥ = u - v, On the boundary ¥ = 0.
D(v) = D{u = &) = D(u) + D(%)} - 20{(u,Z) ,

vwhere N{u,%) represents the so-called bilinear form
D(u,%) = ” (u, %y + W) axdy .
)
By Green's formula

D{u,Z) = - ” %Au axdy + S 252 as .
G ¥

# Harnack'!s theorem states: If a sequence of harmonic functions
converges uniformly in a domain, then their derivativea convergm
uniformly in every closed subdomain and the limit function 1s
again harmonic.

For a proof, ses, e.g., Foundations of Potential Theory by

0. D. Kallogg, P 21]. . 127



The first term of the right side vanishes because Au = 0, and
the last term vanishes too because Z = 0 on y. Henoe

D(U.?;) =0
and, as
p(g) >0 ,
D(v} > D(u} ,

which meana that Dirichlet's interral 1s minimum for u.

Thie reasoning, however, has a gap, for Green's formula
is not applicable to u in the whols domain. In order to fill
this gap, coasider the "harmonie polynomials"

8o o 2
u, =t §= r (av cos vO + b, sin vo)

and write (n =u, -V, Then

D(v) = D(u ) + D(4,) - 2D(w,, %) -

By Green's formula, applicable to the polynomials W

2%
L]
Dlu,,%,] = -‘g L, Avu dxdy + So b—?—‘ ae
r=1

The first term of the ri ht side vanishos because [&uh =0, It
can be seen that the second term vanishes too by subatituting
for U, its explicit expression, and by observing that the first
2n+l Fourier coefficients of zn are zero, 8o that

2% N2n 2%

! ed0 = O sin vodo = O,
o 4,40 = 0, Yo , cos vedo = 0, o 4N

for v 3 1,2,¢¢.,n. Hence
D(unagn) = 0 ’

D(v) = D(u ) + D(Z,)
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or D(v) > D(u_)

In G the polynomials w, tend to the harmonic function u with

the boundary velue g, i.e., 1im u_ = u, and the convergence is
u-> 1
uniform in every closed subdomain of G. The semi-continuity of

the Dirichlet integrel for harmonic functions leads to
D(u) < lim D(w) .

This and the preceding inequality imply
D(u) < D(v) ,

which proves the minimum property of D(u).

To prove the uniqueness, let ¥ be 8 function for which
D(Z) is finite and £ = 0. Then, because of the minimum proper-
ty of u,

D(u+eZ) = D(u) + 2eD(u,Z) + e2D(Z) >4 ,
for ¢ positive or negative, which implies that
D(u,Z) = 0 .
Let v be any function other than u, and { = v - u, then

D(v) = C{u) + D{v=u)
Hence
D(u) < D(V) ’

except for D(v-u) = 0, 1.6., v ~ u = const. But u and v having
the same boundary values

V-u=0 ]
"Distance" in function space. Trianpgle inequallties. Let ¢
and ¥ be two admissible functions, and write

“
D(¢d,¥) = l& (dov, + dovy) azdy
G
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With this notation

D(d) = D(é:d)
and

D(4 + y) = D{4) + D{y) + 20(d,¥y) .

As D(d) has a greatest lower bound, there exists & mini=
mizing sequence &1,62,... Consider the new saeaquence 4n + ezn.
These functions will be admissible 1if Zn and its derivatives
satiafy certain conditions of continuity and 1if Zn vanishes at
the boundary.

D4, + &%) = D(d,) + 2eD(d_,2) + ¢®D(g) 24 .

We assume that D(gn) has an upper bound R, If we write
D(én) =4 and D(dn,&n) = V,, the above lnequality canbe
written
- 2
D(dn +el ) =d +2eV + D) 24
or, a fortiori,
2
d + 2V + eR2>2d

or

2
e R+ 2V +4d, ~-420 .

This inequality is satisfied for any €, 1f the quadratic form
is positive definate, that is if

2 ?
Ve -R(a -d)zo0 ,
which implies that
v, = D(dn,(n) tends uniformly to O as n =~ @ .

We now take a apecial function Zn 3 én - dm' where m is
fixed. Then

Io(d,, 4 -4,)1 < /RE =T
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and also
ID(dg, d,4 )| < /RE=dT .

By subtracting the left-hand sides,

D(dy, - o)< /Rl@ =d) + /R(d -4 .
Henoe
D(Jm - 6n) — 0 as m,n = ® .

D(d - ¢) can be consildered as the "distance" betwesn two
functions ¢ and ¥ in the function space under oonsideration.
For these “distances" the following so-called triangle inequali-
ties hold:

VORT + OTWT > /BTG 4T
JOTIT - /OT9T < JOTE =47

The fact that D(¢ - dn) — 0 as n == @ does not imply
that én converges to ¢. If we take ¢ = O, the following exam-
ple will snow that, although D(d ) = 0 as n = o, ¢ need not
tend to O.

Consider the minimum problem for D{(4d) in a circle of ra-
dius 1, when the admissible functions are to vanish on the boun~
dary. This minimum problem 1s solved by ¢ = O and by no other
function; d = 0 is the minimum value, not merely the greatest
lower bound.

Now we defina in polar coordlnates r,9 a sequence of
admissible functions &n by

2
1 ’ for r £ Pn
log r 2
6!1: 1?2—5-1 » forpnf_rf_pn
(o} , for p, < r £ 1l .
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Then
2N np >

D) = X j " (sgﬂ)zr drdo = an
0 p:

P
)2 27

n
(-—Tl—-—-— rdr=-1—-—-—-.
erBpn OSPn

P
We now take Pp = %. Then
D(&n)—ﬁo a8 n-—=w,

but 6n does not tend to O at the center of the circle, where
its value is 1.

Thus a minimlzing sequence cannot in general be expected
to yleld the solution of the problem by a mere pasaage to the
limit. The essential point in the “direct variational methods"
is to introduce an appropriate sequence that will guarantce
convergence,

Construction of a harmonic function u by a "smootking process".
Consider a minimizing sequence én of admissible functions in G.
As seen by the example above, the functions &n need not converge.
We consider a circle K in G, and we replace a function $n
by a function w;, such thattun = &n outside of K andcun is har-
monic in K. By this operation we are “smooting out" 6n‘ Di-

richlet's prineiple having been proved for the oirele,

D (w_) < Dyld )

tA

and therefore
Dﬁun)

A

p{d,) .

The runctionstuh are admissible funections and form a new mini-
mizing sequence. Hence

D(wn-wm)a-o as nand m — © ,

The aim will be to prove that w, - w, converges in the interior
of K, whille 6n - ém need not convarge., We will use the limit
function in order to construct the solutlon of the Dirichlet
problem. Before carrying out this program we need several lem-

mas about harmonic functions.
132



Preparationg: Let u(x,y) be a continuous function with conti-
nuous first and second derivatives, satlsfying the differential
equation

u + = 0
XX “y
then v

u(P) = 3= KC u(F) a0

where the integral is taken along a circle C about P.
By Gauas's theorem

= ox 2X a
IC (uxx + uyy)dxdy -‘[C (u, ST Yy ar)ds 0
or

H

(LI
C

or, be.ause of the continuity of the first derivatives of u,

a (
=i u(P) d0 = 0
dr J ¢ ’
which means that
%ﬁ r u{P)3d0 = const. with respect tor .
ve
If we let r tend to O, we see that the value of the con-

stant 1s u(P), hence

(I
u(P) = %T-IJC u(P) a0 .
We shall now prove the converse, namely, that if a func-
tion, which 13 assumed to be continuous, satisfies the mean va-
lue equality for any radius, then the function is harmonic,

1 nex
w(P) = .2-1-(\1'0 u(?) de

for every r.
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We multiply both sides by r and integrate with respect to
r. Hence

u{P) = -—1-2- “ u({¥) dxdy ,
nr

which can be considered as the mean value theorem for the area
{the double integral is taken over the circle of radius r about
P)e

In order to prove that u is differentiable, we consider
the expression:

il u$x+h,1lﬁ- u(x,y) . % ﬂ w(PF)dxdy - ;1; H u(Plaxday ,
Ll Lz

where the first integral ls
taken over the lune L1 and
the second over the lune La
between the circles of ra-
dius r about the polnts (x,y)
and {x+h,y)}.

Dencting the two tri- ~
angular reglions (see figure)
by T we have

' rx‘ »h r .
& ‘” u(Flaxay = & | dyS u(F)ax =§ u{Fldy ,
v

L1+T - 0 -r

where P is some point in L1+T on the segment parallel to the
x-axis, Because of the continulty of the function u,

S‘r u({P)dy -—:—r u(F)dy as h == 0 ,
-y -r

and similerly for the other lune. Hence, as h = 0,

‘ 1
%gf u(F)axdy - E'ﬂ' w(F)dxdy = %;W u(P)axdy = %ﬂ‘ u(P)axdy
Iy L2 L) +T L+7

c
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where the integral on the right-hand side 1as taken along the
circle C of radius r about the point (x,y). Hence

f
A u$x+h.x! - uix,y) _. J w(Fldy ash =0 ,
c

and u possesses a derivative u, given by the integral

1
(Flay .
::c'fc“ ey

By Gauss's theorem

u, = ;%anc u{P)dy = ;%2 IJ u, dxdy ,
whioh means that u, possesses the same mean value property as
u. Of course, the same argument holds for Uy Hence the func~
tion u has continuous derivatives of every order.
We shall now prove that u is harmonic. Since u has con-
tinuous derivatives, we can write

u(x + h cos 0, y + h 8in 0) = ulx,y) + h cos Su, + h sin Ouy
2 2
+ l'x‘z(uxx cos© 0 + 2uxy sin © cos O + “yy 5in“ 0) + h3R R

where R 1s bounded.
Integrating both sides wlth respect to © along the circle
C of radius h about P, we obtain

fc u(F)do = 2n u{x,y) + nhz(uxx + uyy) + M ’
where M is bounded. As the mean value property has been as-
sumed for the function u,

2 3
nh' (uxx + uyy) + h“’h = 0 »
or
(u,, + “yy) +hRs0 ,

and, by letti h =-»0
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ut uyy =0 ,
which proves that u is harmoniec.

As an application, we can prove that if a sequence of hare
monioc functions u,  coaverges uniformly to u, then the limit
function u 1s hermonic. (We have made use of that theorem pre-
viously.)

1

27
= 11 = 11 f (F)do ;
4 n—;:o "n n-;:ozi 0 u“

but, because of the uniform convergence, we can interchange the
order of the operations of integration and passing to the limit,
and we obtain

1 yan 1 an
u = F 0 n-]i;no w (Fldo = HIO u({Pya¢ ,

hence u i3 harmonic.

Lemma: Le% u be harmonic in K and let K' be a closed subdomaln
of K. Then there existas a constant C depending on K,K' only,
such that

futp)| = lu(py)| + ¢ /OXUT  for P,y 1n K' .

Consequence: Let u, be a sequence of harmonic functions with
DK(un) ~ 0 forn - . In order to prove that u, converges

to zero uniformly in a closed subdomaein K' of K it is sufficient
to prove un(Pn) ~» 0 for some point Pn in K'. Namely then from
the lemms

b (P}| < u (P)) +C /OTa
follows un(P) ~— 0,

Proof of the Lemma: 3ince u 1s harmonic in K, the same holds

for U, uy. Therefore

=10
ux(P) = ;;z‘g ux(F) dxdy
h
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where ch is a eircle of radius h about P. We take P ¢ K' and
choose h so small thst Ch is contained in K. h depends on X,X!
only. Schwarz' inequality gives

ui(P) < iz Ej:"( ui dxdy

h
and

uglr) + wi(P) = —7 0 () s Hpoeta)

Lot Po be any other point in K'. We have

P
u(P) = u(P ) + IP u, dx + uy dy .
o
Hence if L 1as an upper bound for the distance of P,Po in X',
we nbtain

[a(P)| < [u(p,)] +7_T:- SO

th

Convergence oftun: Let én bo a minimizing sequence of admissi-
ble functions in G. In order to obtain a convergent sequence
from the 6n we oconsidered a cirole K in G and replaced the
function ¢ by

¢

harmonic in K v

n in &, outside K

This requires that one can solve the Dirichlst problem for a
circle, which we have done already. Then the Wy also form a
ninimizing sequence since D(w ) < D(dn). Furthermore with

= WA -
“hm n " %o

D(_ﬂ'nm) ~ 0 as n,m = ® .,

From this we want to derive that o = —> 0 uniformly in any
closed subdomain X' of K. According to the Lemma just proved
it 1s suffioient to find a point an in K' for whioh

T Pan) = 0 a8 n,m —> .
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Through a point (xl,y) in K' we consider the parallel to the
x-axis, and let (xz,y) be
its intersection with the

boundary y of G. As sl
anm(xa,y) = 0, we can write ‘ (x,y) (XZ’y)
Y
*1
Cpm' %1 0¥) = o (x,y) - T X2y =f o"mx(X.y) dx ,
x
2

which implies by Schwarz's ineguality

A

X
1
‘ﬁm“l:y) = Ixy - lej~ 6§mx (x,y)-dx ,
X
2

or, as G 18 bounded

2
fnm‘xl'y) -

A
t
ey

®
o
-~
5
<
o
Y

where L i3 a given l ngth. By integrating between two values
of y, ¥ and y,, in X',

1, M,
Ohm(xl'y) dy < L j ohmx (x,y) dxdy
Y2 Y2 ¥ %3

or, a fortiori,

71
J1 ”:n (x,y} ay 2 L D (o)
T2
The integral of the left-hand side 1s taken along a segment of

the straight line s in K' parallel to the y-axis. Hence at
some point of s
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62 < LD 0’ﬁn)
om =Ty - ¥, ]
Hence a;m =W, - w, tends uniformly to O, andtuh tends uniform-
ly to a function u. u is a harmonic function because of the
theorem: 1If in a eircle a sequence of harmonic functions con-
verges to a limit, the limit is a harmonioc function.

If we let now K! tend to K, we have defined a harmoniec
function u in K.

The smoothing process can be applied to any cirgle in G;
it leads in every such circle to the definition of a certain
harmonic function u. We assert that this construction defines
a uniquely determined function in the whole domain G. For the
proof we need only shcw that the functions u; and uy resulting
from the smooting in two overlapping circles Kl and KZ are
identical in the common part S of these two circles.

Letcui and uﬁ be the minimizing sequences originating
from sequence én be smoothing in the cirecle Klband KZ respec-

tively. Then the mixed sequenoelui,tui,tu%, d?g,... is 8lso a

minimizing sequence, and therefore Ds“"; ~¢u§) —> 0 ag n - o
If K' is a circle in 8, a fortiori,
DK,(lvxl1 - wﬁ) — 0, wx]; and wg

are harmonic Jn K' and con-

verge to uq and u, respec-

tively. From the preceding
argument it follows that the

mixed sequence alsa conver=

ges to a harmonlc function

u' in K'. Therefore uy and

u, are identical with u!

in K'.

Proof that D{u) = d. Let G' be a closed sub”vmain of G. It
can be covered by a finite number of circlea.Ji, and by taking
the circles small enough, we can be sure that they all lie en-

tirely in G. Then
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]
G g):;xicc

Di(dy - w) STID 4y =)

By the triangle inequality

P (il = a3 =] + /B4 T = /O (& =T + AT,

The left side of this inequality is independent of n, therefore

/Ealzuj : z.l-bo (‘/ﬁ‘}'(an"u) + /D(én) ) »

the g.l.b. being taken over the values of n. But

and hence

Dgi{d, ~u}) =0 and D(¢ ) =>d as n—>c ,

therefore

m:ﬁ, tee. Dglu) =d .

Consequontly, since

D(u)

lim  Dg(u)
G'—>G

D{u) <4 ,
However, u belng an admlgssible function,

D{u)

v

da ,
hence

D(u} el .

Proof that the function u attains the prescribed boundary
values. The function u, so far defined in G only, can be exten
ded contlinuously to y and assumes the prescribed boundary va-
lues g on y. More precisely: there 1s a quantity €(5) tending
to O with 6 such that for all points P in G we have

[u{P) - g{R){ < ¢ if the distance PR from P to & point R on ¥
is less than 8. 7This statement expresses the uniform conver-

gence of u(P) to the prescrided boundary values.
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For the proof we assume that R 1s one of the points on ¥
nearest to P, at the distance PR = 5h < &,

We now consider the circle of radius 10h about R. “his
¢irocle defines in v a certaln subreglon L.

We shall show first that h can be taken 8o small that
DL(dn) 18 umaller than any presoribed positive number &)

D (d,) < di for all n and for h < h(ey),

As D(&n - ém) —> 0, we can choose N so large that

3
DL(Jn nd ém) ﬁ D(dn - dm) < T
for n,m > N; having fixed N we cen choose h so small thet
o
D (d,) < T for v<N ,

By the triangle lnequality
2

2
o 'z
1 1 2
SPLT = BTy ¢ OET s+ <oy .
This proves the statement. Hence this 1s a positive function
ai(h), tending to zero for h — 0, independent of n, such that

2
D (d)) <oi(n) .
We now make use of the following

Lemma: There 18 & circle r = T 'about P, with 3h < ¥ < Lh, such
that for two points Ml and MZ on each connected arc of this
circle the inequality
~ 2
2‘)‘[1‘«'1

1dy) - d(m) 12 <« 2 < Bnef

where ci is an upper bound of DL(én), holdsa,
In polar coordinates this last fact can be written

I 2,1 12
IL (45 + 15 4)r acar < <
1431



or, by writing r¢ = s, and dropping the integral over 612-,

4h
[ dr\g‘éi ds 5o-f .
3h

By the mean value theorem for integralas there will be & value
r=T7, with 3h < T < 4h, for which
2
27nr '
2 1
jo 68 ds E‘E" L]
On this c¢ircle r = T we have for the oscillation of ¢ between

two points Ml and M2 2

401y - 4(v)) 12 < 2nF L < Brod
My) - @(M))i” < 2nr = < Bney
which proves the lemma. Thls cen be written

$ (M) - & (M) <2 V2R oy(n)

where ai(h) is independent of n. Ml,MZ are two pointa on a
circle C_ which now depends on n. If 1ts radius 1s denoted by
~ n ~
r, we have 3h < r, < Lh.

Similarly, there exists a circle r—n about R with radius
pna 3h < Py < 4h,
on whose olircum-~

ference the oscil-
lation of &n is
again less than
2 /2R b,

This cIrcle will
intersect the
circle Cn about
P at « point Qn
and if n is suf-
ficiently small,
}t will also in-
tersect v at a
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point Sn so that Qn and Sn are connected by an are of this
¢ircle in G. Thaerefore, since 3n = E.

14,0Q,) - g(s )| s 2v2% o3(n) .

Let w, be the harmonic function in the circle Cn about P
obtained by smoothing 6n; then the value un(P) coincides with
some value of 6n on the circle-cn * and hence cannot differ

from ‘n (Q.n) by more than 2\/2'1f01(h):
lu(P) = ¢.(Q) ] < 2 /2R (n) .
Finally, since g 1s continuous on y, h can be taken such that
lg(s,) - a(R)| =o,(n) ,
where Gé(h) — 0 as h => 0. By combining the three inequalities
[u (P) - g(R)| <k /ZR5 (h) + oy(n) ,

which proves that u attains the boundary values.

Thus u 1s recognized as the solution of the boundary va-
lue problem. Since 1t has been proved that D(u) = d and since
u is admissible in the varlational problem, it solves the va-
riational problem. The proof of the uniqueness of this solu-
tion of the variational problem 1s now exactly the same as in
the case of the circle. Hence Dirichlet's prineciple, as we
stated 1t ubove, 13 established.

Alternative proof of Dirichlet's principle: We make the same
assumption as at the beginning of the first proof, and we con-
sider a minimizing sequence of -admissible functions

dlt 62:0-01 6n""

At a point P we consider the circle ¢ of radius h about
P. This c.rcle will 1lie entirely in G for all pointe P whose
distence from the boundary 1s greater than h. At P we consider
the function

M by the mean val ue theorem.
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wy(P) = ;hlz J;f 4 (F) axay .

The functions én being continuous, the functions u, are diffe-
rentiable.

We shall now prove that, for a fixed h,tﬁn(P) tends uni-
formly to u(P}.

For the admisaible functions

D{¢ - d,;) =0 as n,m — ©
and
o(én,cn) -0 uniformly as n ~= @

provided that D(zn) remains bounded, the functions :n have
plecewlse continuous first derivatives, and 2£ = 0,
Lat us write

)
H(g) = SS&Z dxdy .
G
Wn willl prove that

H{g) < cDl{yg) , where C 13 a positive constant.

We remark that we need to prove the proposition only for
a square. G being bounded, we can surround it by a square and
conslder a function &* such that

<

24

a

Z in G

and
<

14

O outside of G but inside the square surrounding G.

Let P(x,y) be a point in a square, we take x and y-axis
parallel to the sides of the square and let X be the point whore
the parallel to the x-axis through P iutersects the side of the

square.
Then, as %(X,y) = 0,

&(x) ) = !) dx e
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(We remark that the
parallel to the x-axis
through P must cut the boun-
dary of G at a finite num-
ber of points at most; in
order that the discontinuity P(x,¥)
of the derivative Z occurs
at a finite number of points
at most. This is the only condition imposed upon the boundary
of G.)

By Schwarz's inequality

‘(;)y)

ary = [ g a
= x
implies that
(2(1’)54 2 ax ,
L

where L is the side of the square or, integrating with respect
to vy,

fL 3(p) ay = fn(x)
and, integrating now with respect to x,
”cz axay < 2% p(2) ,

whioch is the proposition we wanted to prove.

Let R be a point on the boundary vy and consider a circle
of radius { about R. We can always take £ small enough, 8o
that the subdomain L of U limited by the oircle is a sinply
connected part of G.

We shall prove that

H (0) < Un% op(z) .
Consider a oircle C, of radius r, r < £, about R. As Z = 0,
X(p) =IC, ds
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where P is & point on cr and where the integral 1s taken from
the boundary to P along Cr.
Hence, by Schwarz's inequality

Z2(p) < anf Y z:§ ds ,

where the integral 1s taken along the arc of C.in L,ora
fortiori, integrating both sides with respect to s,

]
j\c"(r) as su?2 [ 2 as
and, Ilntegrating now with respect tor,
2,2
H (Z) < b=°L° D (%)
For the functions w, defined above,

u
(W (P) - w (P)] = H [4,(F) - 4 (F)] axay ,
C

where the c¢ouble integral is taken over a circle C of radius h
about P. But this last equality implies that

(Plun(2) - a2 < mlHgdy - &)
But
Hy(dy, - d) < Hgldy, = &)

and, as ¢_ - ém = 0 on the boundary v,

Hc(én - dm) 5 :ID(én = ém)

by the lemma we have proved above.
6n and 6m being admissible functions,

D(dn - ém) -0 as n,m —> o ,
hence
Hy(d, - 4,) eand, a fortiori, Bo(d - 4} tend to O,

whioh implies that

wh(P) 'Lﬁn(P) alao tends to O.
146



Henoce, for a fixed h,tun uniformly tends to a limit function
ul(P).

We shall now prove that, for another nh, we obtain the same
funotion u{(P). We consider the function

vi(x,¥; h) = log § + %—(1 - 52-) for r <h
h

V==

0 for r >h .
(v forr=nh .

Let H be the circle of radius h about P, and K the oirele
of radius k. For Z we take the funotion

v{h) = ¢(k) .

Using Green's formula,

-

D(d,,¥) = &5 E, ¢ dxdy .
k" “m

And D(d,%) = D(d_,¥(h)) - (4 _,¥(k)) = 0 as n —> oo Hence
1| 1 [
;?‘w;én dxdy -z ‘kﬁj‘dn dxdy = 0 as n = ®,

which shows that
Up = W -
Hence u is defined independently of h in any open domain.

We shall show now thet u has the prescribed boundary va-
lues. For ¥ we take the function én-g, which is O on the boun-
dary.

Let KR be the point
nearest to P on the boundary,
and PR = 2h. The circle of
radius Lh about R will deter-
mine a subdomain L in G. Let
K be a oircle of radius h
about P, We have seen before that we can take h so small that,
for all n,
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D (4, - g) <o(h) ,
where ¢'(h) tends to O with h, By the lemma proved above

(4, - &) < uxéun)?o (d, - @)

or
H.(d_ - g) < 64n®ha(n) ..
But
Hx(dn - g) < HL(dn -8)
Hence
=7 Hldy - @) = =7 ff(dn - 8)% axdy < 6uno(n) .
K

By Schwarz's lnequality for integrals,

[—lz fj (én - 8) dxdy]2 54—12 IJ‘(dn - g)2 dxdy < &ynal(n) .
™" Tk " g

But the left~hand side is
[w,(P) - ®PIZ

where Z(P) 4s the mean value of g over K.
This 1s true for any n, hence, if n —= o, we obtaln

(u(P) - &(P)1% ,

and this expression tends to O with h. But when h tends to O,
€(P) tends to g(P). Hence u(P) solves the boundary value con-
dition.

We have to ahow now that u solves the minimum problem.

We consider a subdomein G' in G. We can cover G', except
for an arbltrarlly small area €, with non-overlapping circles
Kv of radius Pyr the largest radius being less than any preas-
signed value. If f is a function having an upper bound M in G’

5j £ dxdy = 3 _ np% £(p,) +06 ,
G! v
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where ?v is the center of the circle Kv. and where

l6] < eM

2

If we take f = uy

+ us, then

Dgy(u) = I npy [u2(P,) + u2(P )] + 8
But

u,(P)) = 1im _lz g; ¢, dxdy

and, by Schuarq's inequality,

ud(p,) 5—12-.\}!\ $ axay .
v

o, X
Hence
Dgilu) < 1im D4 ) =a ,
n=—=x
or

D = 1 <d .
ALY G'EG Dgiu) =

But, u being admiasible,
DG(u) =d .

Finally we shall show that u i{s harmonic using
D(u,{) = 0 .

We consider the circle of radius a and the circle of radius b
about P, arnd for % we take the following function:?

g = log % forb<r<a
=0 forr >a
and Z-losg- forr<b .
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Then
DN&)=ljuds-l§uds=o,
8% b b

where the integrals are taken along the circles of radius a and
b. The last equality shows that u is harmonio.

Thus the aecond proof of Dirichlet!'s principle is complee
ted.

Problems
l. Prove the triangle inequalities in the function space.
2. Prove the inequality
H(Z) =< CD(}) (¢c >0) ,

where & 1s assumed to be 0 only on an arc of the boundary.

Numerical Procedures
The Ritz method. In giving an existence proof for a solutlon
to a variational problem one merely requires the exiatence of
minimizing sequences, with suitable convergence properties. 1In

practical applications or for purposes of computation there
st1ll remains the problem of actuslly constructing a minimizing
sequence, and, furthermore, one which converges with a fair de-
gree of rapidity. The method described below was first intro-
duced by W. Ritz, who applied it to problems concerning elastiec
plates.*

Ve consider a variational integral I(Q) defined over a
function class R of admissible functlons. An enumerable sew
quence of functions WyseosyWopono contained in the class R 1s
sald to be complete if every function ¥ in R can be approximated
by a finite linear combination

" Ritz, Walter,“ﬁber eine neus Methode zur LBsung gewlsser Va-
riationsprobleme der mathematischen Physik,"Journal flr die
reine und angewandte Mathematik, Vol. 135 (1953]; "Theorle der
Transversalachwingungen einer quadratischen Platte mit freilen
Rindern", Annslen der Physik, Vol. 38 (1900).
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W S 8wy v oagW, bl o8 W
of functions belonging to the sequence "n} with preassinged
acouracy. The approximation can be understood in several senses.
Given any § in R and any ¢, we want & W suoh that

a) 1B - 1w ) <
) XGS (Q-wn)2 dxdy < ¢
o) 17 - whl <€ .

In the following we shall take the approximation in the sense &)
For example, we know from the theory of Fourier series
that the sequence of funotionse

8in nnx {n=1,2,...)

forms a complete system for all funotions E(x) which are conti-
nuous, have a plecewise continuous derivative, and. vanish at
0 and 1.

Except for the trigonometric functions, the most impor-
tant and most useful complete system 1s given by the integral
powers of x, or, in two dimensions, xnym. The linear combina-
tions of such functions are polynomials. Welerstrass pruved
the following important theorem.

If f{(x) 4s an arbitrary continuous funetion in a closed
interval, then it may be approximated in this interval to any
desired degree of accuracy by a polynomial Pn(x), provided that
n is taken s ufficiently large.

This theorem 1s valid for higher dimensions as well.

Retuming to the given variational integral I(g), we supe
pose, in order that the problem make sense, that the integral
has & greatest lower bound d. From this follows 1mmediately
the existence of minimising sequencea ﬁh such that I(Q;) -> 4.
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The Ritz method ‘consists in setting up a minimizing sequence by
means of & series of auxiliary minimum problems.
We consider, for a fixed n, the integral

I(wn) = I(alwl * a0 ¥+ anwn) s

where Wisess,W, are the first n numbers of a complete system
{"n} for the admissible function class R. The integral then be-
comes a function of the n coefficients Byspene,ly varying Iinde-
pendently. We next consider the problem: to find the set of
coefficients 8),+++8  which makes I(wn) a minimum. ®ince I has
a lower bound and depends continuously on the n parameters
B1pe00y8,, it must attain a minimwn; according to the ordinary

theory of maxima and minima, the system of n equations

ggzr(wnho
servaes to determine the particular values a, = o, which give the
minimum. We denote the minimizing function by Uy = CWy + eee
+ Cn¥n e The essence of the Ritz moethod is then contained in
the following theorem:

The sequence of functions Upseneslp, which are the solu-
tiona to the successive minimum problems I(wn) formed for each
n, are a minimizing sequence to the original variational problem.

Firat, 1t is seen that I(un) is a monotonically decreasing
function of n, since we may regard every function wn_l admissible
in the (n~1)st minimum problem as an admissible function for the
n-th minimum problem with the additional side condition 8, = 0.
Therefore

CIuw) =>0624 .

Next, the esxistence of a minimizing sequence §5} to the
variational problem implies that, for some sufficlently large k,

) <da+3 .

Since the system WoresesWopene 18 complete, there exists a sui-
table function wn e M ... + av, such that
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W) < 1) + 5.
But, by definition of .,

I(w) < I(W) ,
hence

I(un) «<d+6€¢ ,

which establishes the convergence of I(un) to d.
The process of constructing the minimizing sequence {Pn}
depends on solving the asystem of n oequations:

3
g-a—i-l(wn) =0 ,

The process is considerably sinplified if the given integral 1a
quadratic, since in that case we have a system of linear equa-
tions in the a's.

As an example, let us consider the case where on the boun-
dary Q = g 1s a polynomial, the boundary being glven by
B(x,y) = O, We take for functions § the functions

§=g+B{x,y)la+bx+ecy+ . ...) .

This sequenos of functions § 1s a minimizing sequence, and I{{)
is a function Q{a,b,¢,...} of the ccefficients a,b,c,..., and
the problem 1s redused to finding the minimum of Q with reapect
to 8,0,8,404

However, we shall now come to a method by which the func-
tions I are determined directly, without going through polyno-
mials.

Method of Finite Differences

The fundamental 1dea of this method 1s to replace the dif-
ferential equation by a "difference equation" {an squation in-
volving finite differences), thereby reducing the problem to a
simple system of linear algebralc equations in a finite nuuber
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We begln by covering the xy-plane with a quadratic mesh
consiating of .squares of side h, To do this we draw in the
plane the two sets of parallel lines

0,1,2,¢44)
0,1,2,300) «

X = mh {m
¥y = nh (n

These two families of lines intersect in points which we call
the net, or lattice, points of the mesh.

Now, instead of considering functlons of the continuous
variables x and y, we consider functiona which are defined only
at the lattice points of the above mesh. That 1s, the functions
are to be dsfined solely for the arguments x = mh, y = nh, where
h 1s some fixed number. In any bounded domain only a finite
number of lattice points will be present and hence each function
will take on only a finite number of values. It 1s 1lmpossible
to speak of the derivatives of such functlons. Instead we de-
.fine what we call the difference quotients of these discrete
valued functions

Let u(x,y) be a function defined at the lattice pointa of
the+ xy-plane. Then the forward difference quotient of u with
respeot to x at a lattice point (x,y) is derined to be

u{x+h,y)} - u(x,y)
h

ux(XDY) =

and the baokward difference quotient with respect to x

u=(x,y) = u(x.yl,; u(x-h,y)
In general, these two difference quotients sre not equal.

In a mannar similar to the above we may define the second
difference quotients of a funotion, 1.e., the difference quo-
tients ol the first difference quotients. The forward second
difference quotient 1s given by

ug{x+h,g) - u(X,¥)  y(xen,y) - 2 + u{x-h
us (x,y) = % —— e Ulxth,y) u:.x u(x
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Also

ulx,y) = :E(X.Y) - ux(x-h,y} _ u(x+h,y) - 2u{x + u{x-h
XX h h
whence

Ugx T Uxx

We could, if we wished, consider the second difference quotienta

U . and Ugse However, the use of uy, makes for greater symmetry.
'We now replace the Laplace operator Zl by the difference

operator, which we denote by [}h, to apply to functions de-

fined only at the lattioce points, Thuas

Zﬁhu = u;=+ W

or
Ay = i? (u{x+h,y) + u(x,y+h) + u(x-h,y) + u{x,y-h) - Lu(x,y)l.

The significance of this opsrator becomes c¢c lear if we con-
slder a net point Po and its four neighboring net pointe Pl’ PZ’
P3, Ph' {(Two net points are called neighbors if the distanca
between them is h.) Hence

Ay = iz [u(Py) + u(Py) + u(Py) + u(P) - Lu(Py)) .

That 1s, the value of zshu at Py 1a four times the excess of
the arithmetic mean of the four neighboring values over u(Po),
this excess being divided by the srea h™ of the mesh.

The equation Au = 0 corresponds to the difference equa-

tion

u(Po)_= u(Pl) + (P2)+ u(?J) + u(Pu) .

L

Hence, in a quadratic net, the Laplace equation states that the
value of u at a lattice point P is the arithmetic mean of the
values of u at the four nelghbors of P. We have seen before
that solutions of Au = 0 possess this remarkable mean value
property, where, in that case, the neighbors of P are the points

ol the circumfersnoe of a cirole about P as & center,
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Boundary val ue problem in a net. We cover the xy-plane with a

quadratic net. Let G be any bounded domain in the xy-plane with
a plecewise smooth boundary ¥. The net domain Gy, corresponding
to the domaln G consists of all the net points which lie in G.

A net point 1s said to be a boundary point of G, if not all of
its four nelighbors are in G; if all four no‘ghboring points are
in G, the point 18 said to be an interior point of G .. Thes
boundary n of Gh is defined as the aet of all boundary points
of Gh'

To solve, with any specified degree of accuracy, the boun=-
dary value problem of the differential equation /\u = O for the
domain G, we replace the differential equation by the difference
equation [Xhu = 0 and the domain G by the corresponding net do-
main G . If u= g{(x,y) is the boundary function prescribed on
¥, then the boundary values at the points of Yy, are chosen as
follows. If a net point P of Yn lies on ¥, then the value of
of g(x,y) at P {s taken as the value of u at P; if P does not
lie on y, we take as the value of u at P the value of g(x,y) at
a point of 4 near to P.

We may now solve the boundary vel ue problem for the net
domain. Let N be the number of interior points of the net do-
main Gh. We may s et up for sach of the interior points the dif-
ference equation Z}hu = 0. In each case this is a linear equa-
tion involving five values of u. Some of these equations con-
tain known quantities, i.e., those for points that are neighbors
of boundary points. The other equations are homogeneocus. Alto~
gether we obtain a system of N linear eocuations in N unknowns,
{.8., the vdlues of u at the N interior points.

fxistence and uniqueness of the solution., First we see that the
maximum and minimum values of u certainly are attained on the
boundary ¥, of Op For, if the maximum were attained at an in-
terior point P, then the value of u at one of the four neigh-
bors, say &, would be at least as large as at P, because of the
mean values property. If the value at Q is larger than that at
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P, we have a contradiction and the satatement is proved. If the
two values are equal, by continuing such a process about @, we
see that u must be constant in G _, and again the statement is
true, The minimum property is proved similarly.

It follows that the boundary value problems

thu a0 in @,

u=0 on ¥y,
has a unique solution
u=0 in Gh .

For this problem we have a system of N homogenous linear
equationsa. PFor the general boundary value problem

Ayu =0 in 6,

u=g on vy, ,

we have the same N linear equations with the addition of a cone
stant in some of them, 1.,e., a non-homogeneous system. From
the theory of syatems of linsar equations the exiatence of the
unique solution O for the homogeneous system implies the exis-
tence of a unique solution for the non-homogeneous system.

Practical methods. Various practical methods have been devised
to solve quickly the system of N linear equations. When the do-
main has symmetric or special shapes, shortcuts may be found.
When this 1is impossible peneral procedures can be used. These
methods consist of processes of repeated manipulations which

may be performed mechanically.

We begin by assuming for ulx,y) at the interior net points
of Gh any values whatscever. It is desirable, however, to make
this "first approximation" {which we denote by ul) in such a way
that the assumed values lle between the maximum and minimum
boundary values, We now consider two procedures.

a) Order the interior net points of G, in some arbitrary

manner, Py,P,,...Py. Then replace “I(Pi) (our assumed "first
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approximation" at Pl) by the arithmetic mean of the assumed va-
lues u, at the four neighbors of Py Using this value, do the
same for “1(P2)‘ Using the new values at P1 and PZ' repeat the
process for ul(PB)’ Continue this process until the values of
u; at all N of the interior points have been “"corrected". We
denote the corrected valuss by ua(P). They give a “second ap-
proximaticn" to the final solution. Again ws start out with Py
and proceed exactly as before, to determine a "third approxima-
tion" u,({P). Thia process ia to be continued as long as notable
differences ococur between & value and its replaced value. When
this is no longer the case we consider theae valusa to be a good
approximation to the actual solution of the boundary value pro-
i1lem,

b} Instead of proceeding as previously, where consecutive
replacements were made, we obtain a second approximation imme-
diately by replacing ul(P) by the mean value of the first appro=
ximation uy at the four neighbors of P. Thus the second appro-
ximation 1s obtained directly from the first one. In the same
manner we obtain a third approximation usg directly from uy, and
80 on. After a while the values will no longer change noticea-
bly and a satisfactory solution i1s thus obtained.

A remarkable merit of these two methods 1s that, in the
long run, they tend to correct any numerical errors which may
have been made during the replacements, for we continue to take
arithmetic means as long as marked changes occur.

Convergence of the difference equation to a differential equa-
tion. If the mesh h of G tends to zero, then G, — G and
RSNl ) and, furthermore, the difference equation [xhu = 0
tends to the differential equation /\u = C in G. Likewise, the
boundary values along Yh approach the boundary values along Yy,
and the solution of the boundary value problem of the difference
squation tends to the solution of the corresponding boundary va-
lue problem for the differential equation.*

T

* For a proof see R. Courant, K. Friedrichs and H. Lewy, "“Uber
die partiellen Differenzengleiohungen der mathematischen Phyaik!
Mathematische Annalen, Bd. 1002§19 8). BSee especially pp.47-5l.
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Msthod of gradients.* Besides the method of finite differerces,
still another alternative to the Ritz procedure should be men-
tioned. This 1s the method of gradi{ents which goes back to a
paper published by Hadamard in 1908-** Highly suggestive as is
Hadamard's attempt, dirfficulties of convergence were encounterel
However, recent developments in the theory of conformal mapping
and 1n Plateau's problem throw new light on Hedamard's 1dea, aso
that 1t seems justified now to expect from i{ not only purely
mathematical existence proofs but also a basis for numeriocal

treatment 1in suitable cases.
The principle of the method may be understood from the

elomentary geometric concept of & vector gradient. Let

us= f(xl,...,xn) be a non-negative function of the n variables
Xy, Or, as we might say, of the position vector X = (xl,...,xnh
and let us seek to determine a vector X = Xo for which u 1s at
least stationary. We then proceed as follows: on the surface
u = f(x) we move a point (xl,...xn,u) so that xi(t) and u{t) be=
come functions of a time-parameter t. Then the veloclity of as-
cent or descent along the line X = X(t),u = u{t) on the surface
is

. n . .
g% =u =,§_ Xy fxi = X grad f.

We now choose the line along which the motion proceeds so that
the descent 18 ms steep as possible {lines of steepest descent ).

(1) X= -grad £ ,
so that . 2
u= - (grad r)

* on this question see R. Courant, “Variational methods for the
solution of problems of equilibrium and vibrations," Bulletin of
the American Mathematfcal Soclety, Vol. 49, ¥o. 1, January 19L3.

s Hadamard, J., Mémolre sur le roblome d'analyse relatif &
1'équilibre des plaques &lastlques encastrgds, Mémolres presen-
tés par divers savants 6strangers

g Académie des Sciences de
1'Institute de France (2) Vol. 33, (1908).
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Hence the position vector X moves according to the system of ore
dinary differential equations (1) along the lines of steepest
descent with respect to the function f. Under very general as«
sumptions, 1t 1s clear that X, starting from an arbitrary ini-
tial position, will, for t - o, approach a pod tion for which
grad £ = 0, and therefore for which f 1s statlonary and possibly
a minimum. However, instead of using the contlinuous procedure
given by the differential aquation (1), we may proceed stepwise,
correcting a set of approximations x to the solutions of the e~
quations grad f = O by corrections provportional to the respect-
ive components of - grad f.

This elementary idea can be generalized to variational
problema. If we wish to determine a function u(x,y) defined in
G and having prescribed boundary values such that u is the solu-
tion of a variational problem

{2) I{v) = jj F(x,y,v,vx,vy) dxdy = min. ,
G

then we interpret the desired function u as the limit for

t = ® of a function v(x,y,t), whose values may be chosen ar-
bitrarily for t = 0 and for all t thereafter are determined in
such a way that the expression I(v), considered as a function
I{t) of t, decreases as rapidly as possible towards its minimal
value. Of course the boundary values of v(x,y,t) are the same
as those for ulx,y), so that v, must vanish at the boundary.

If we choose v = v(x,y,t), we find

(3) (L) = - jj v, E(v) éxdy ,
G

where E(v) 13 the Zuler expression ocorresponding to (2}.
To consider a concrete example, we suppose that

v) = K] (vi + ":’ dxdy ,
G

so that our minimum problem amounts to determining the equili-
brium of a membrans with given boundary deflections gla). Then
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E{v) = -2/Av. Incidentally (3) displays an analogy between the
Euler expression and the gradient of a function F(xl....,xn) of
n independent variables. The variation or “velocity" of I{v)
1s expressed as an "“inner product" of the velocity of the "inde-
pendent function" v with the Euler expression E(v), the gradlent
of a functional in function space.

We now agsure ourselves of a steady descent or decrease
of I(t) by chooesing vy in acoordance with the differential equae-
tion

(L) vy = -k B(v) ,

where k 18 a positive arbitrary function of x,y. (3) then be-
comes

I(t) = - ﬂm(mz axdy ,
G

and again we can infer that, for t -» o, vix,y,t) will tend to
the aolution u(x,y) of the corresponding boundary valus problem
E(u) = 0,

For the case of the menibrans the differential equation (4)
beoomes

(s} Ve = A' ’

the equation of heat transfer. In our intsrpretation this equs-
tion describes a rapid approach to a stationary state along the
"1ines of steepest descent". While for the equations (}) and
(5) the convergence of v for t - @ can be proved, asrious dif-
ficulty arises if we want to replace our contlnuous process by
a process of stepwise corrections as would be required for nume-
rical applications. HSach step means a correction proportional
to [&v, thus introducing higher and higher derivatives of the
initial function v. Another great difficulty is presented by
rigid boundary values.

Yot -hers do exiat classes of problems where such diffi-
culties ce1 be overcome 1f the method is extended properly.

First of all we may observe that it 1s not necessary to select
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the steepest descent along the gradient; it suffices to secure a
safe descent at a sufltably fast rate. Furthermore, i{f we consi-
der problems for which the boundary value problem of the diffe-
rential equations pregents no difficulty for the domain G, but
for which a degree of freedom in the boundary values is left,
then the problem reduces to one for finding those boundary va-
lues, and now all our difficulties disappear.

Application of the calculus of variations

to the eigenvalue problems

Extremum properties of eigenvalues. Let Uppeee Uy be the com-
ponents of a veotor u, &and

Q(u,u) = Qfu) = é _—
=

be a symmetric¢ quadratriec form, with

Biye = Bt ¢

The so-called '"mixed form" is

n
Q(u,w) = ; B W ) .
k=1

Let us write

n, »
H(u,u) = H(u) = ;;; ug g

the orthogonality condition for two vectors u and w is:
H{u,w}) = 0 .

In the theory of quadratic forms it is proved that by an
orthogonal transformation the vector u can be transformed into
a vector v such that the form Q(u) is tranaformed into Z:rki 1
with H(u) being transformed into J_ vi. The A, are called
eigenvaluss or characteristic values.
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These numbers can be conslidered as the solutions of a se-
quence of minimum problems.

The first problem 1s to make Q(u) a minimun, with the sub=-
sidiary eondition H(u) = 1. The minimum, Xl' will be attained
for a certain vector u, namely el, and Q(el) = Al, H(el) = 1.

The second minimum problem will be to make Q{u) a minimum,
with the two subsidiary conditions H(u) = 1, H(u,el) = 0. The
minimum, 12, will ve attained for a certain vector u, namely 02,
and H(el’ ea) = 0, Q(eltee) = 0, Q(ea) = AZ'

The k-th minimum problem will be to make Q(u) a minimum,
with the k subsidiary conditions H{u) = 1, H(u,el} = O0,...,
H(u,ek'l) = 0, The minimum, hk' will be attained for a certain
vector u, namely ek, and H(ei, ek) = 84y Q(ei,ek) = A
where 8, =1 1if 1 =k and = 0 if 1 ¥ k,

We can obtain similar results for quadratic functlonals.
We consider a self-adjoint partial differential equation of the
second order

kcik'

(1) L{u) + Apu = (pu,), + (puy)y - qu+Apu=0, {p>0, p>0)

where u is a function of two independent varlables, x and y, de-
fined over a domain G, of which the boundary, [, s a conti-
nuous curve with a plecewise continuous tangent. The boundary
condition is u = 0 or, more generally, du/en + cu = O, where o
1s a plecewise continuous function of the arc length on [ and
9/5n denotes differentiation\%iong the normal to | . For the
variational problems squivalent to these elgenvalue problems the
following quadratic functionals are to be considered:

E(§) = D(F) + % pvﬁ? ds ,
o(ﬁ.) = fg P+ T) axdy + j;fqu dxdy ,
H(§) = S;.fpﬁe dxdy
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and the corresponding "mixed" forms

E(T,v) = D(Q,v) + )[ P Qv as

p(@w) = [f i@, + u,) anay + §[a@v axay
¢ G

H(,v) = H plv axay .

G

For these expressions we have the relations!

E( + ¢) = E(J) + 2E(J,v) + E(y) ,
H(E + y) = H(E) + 2H(T,y) + H{y) .

A function § is admissible if continuous in G + [ and
possessing plecewiss continuocus firast derivatives.

We ocan obtain the eigenvalues A_ and the corresponding
éigenfunctions u of the differential equation (1) through the
following minimum properties:

Among all admissible funotions the function for
which the expression E({) is a minimum with the sub-
sidiary condition H(J) = 1, is an eigenfunction ul
of the differential ecuation (1) with the natural
boundary condition 98/0n + o = 0. The minimum
value of E(g) is the corresponding eigenvalue. 1If,
to the condition K(J) = 1, we add the new subsi-
diary condition H(F,u') = 0, then the solution of
this new minimum problem is an eigenfunction uz
of (1) with the same boundary condition, and the
minimum value E(uz) = A, 18 the corresponding ei-
genvalue. Generally the variational problem
E(§) = minimum, with the subaidiary conditions
H(J) = 1 end B(F,u) = 0 (1 = 1,2,...k=1) has a
solution uf which is an eigenfunotion of (1) with
the boundary condition oJ/on +af = 0, and the mi-
nimum value E(uk) is the corresponding eigenvalue Kn'
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Instead of making E(§) a minimum with the condition
H(Q) = 1, we can abandon this condition and make the quotient
E(F)/H(F) a minimum; the solution is then ziven with an arbitra-
ry factor of proportionality.

We shall assume here that the minimum problems have a so-
lutlon, and show that their solutions are the eipgenfunctions of
partial differential ecuation (1).

We consider the solution ul of the first variational pro-
blem, H(ul) = 1, Let Z be an admissible function and e an arbi-
trary constant, then ul + ¢% 13 also an admissible function, and

E{ut + €2) > Alﬂ(ul + £f)
or
2¢(E(u,g) - AH(ud,0)) + 2(E(D) - ME(R)) 2 0

for every ¢, which implies
E(ul,2) - A H(ul,2) = 0 .

Because of Green's formula
E(ul,o‘,') = o -YGJCL(ul) dxdy + [X_ P zul da ,

and, as the function Z 13 arbiltrary, we obtaln the equation (1)
for u = ul and A = kl.

In the sesond minimum problem, let | be an admissible
function; then £ = n + tul 1s an admisaible function, and we de-
termine t so that H(&,ul) = 0; we obtain t = -H(ul,q). Substi-
tuting in

E(u?,2) - A H(uE,2) = 0,
we obtain

E(u?,n) - A H(u?,q) + elB(u,u?) - Autul,u®)) = 0,
The last term ie O, and we get
E(u?,y) « A H(u%,n) =0 ,
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whlch 1s the same equation as in the first case. Hence u2 is an
elgenfunction of (1) and ka the corresponding eigenvalue.
In the same way, it is seen in the general case that the
equation
E(ul,q) - Aiﬂ(ui,q) = 0

holds, 7 being an arbitrary admissible function. For the normal
solutions of the succeasive minimum problems we have the rela-
tions

E(ul) = &, , E(ul,u¥) = 0

1 k »
H(ul) = 1 , H(ul,u¥) = 0 (17 1)

The eigenvalues satiasfy the insquality

A

<
n-1 - n

for in the n-th minimum problem the domain of the functions §
admitted to competition i1s not larger than in the (n-1)th pro-
blem. Hence the minimum hn is not smaller than the minimum
kn-l'

We shall slimply mention here that other eigenvalue pro-
blems can be treated with the help of the caiculus of variations.
The integral may be slmple or multiple, and the differential

equationa may be of the seoond order or higher.

The maximum-minimum property of the eigenvalues. We can replace
the recurrence definition of the n-th elgenvalue and the corres-
ponding eigenfunction by a definition in which the n-th eigen-

value and the n-th elgenfunction are determined without knowing

the preceding ones.

We consider the same variational problems as before, but
we replace the conditions H(Q,ui) 0(i1f=1,2,.,.n-1}) by the
n-1l new c¢onditions H(Q,vi) =90(L=12,...,n-1), where vl,vz,.
v are any functions plecewise continuous in G. It 1s not
decided whether the new problem has & solution. However, the
expressions D(I) and E(i) have a lower bound, which depends on
the functions vl,vz;...vn'l and which we shall call

d(vl,vz....vn'l). 166
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Given n-1 functions vl,vz,...vn'l, plecewlse continuous in

G, and d(vl,va,...v 1) being the minimum or the lower bound of
all the values that the expression E(J)/H(J) can take, .when { is
any adm'ssible function which satisfies the conditions

H(Q,vi) 0(1=1 2,...,n 1), then A 1s equal to the greatest
value that d(vl,vz,...,v ) oan take when all sets of admissi-

ble functions are taken for vl,v ,...vn'l. This maximum-minimum

1s attained for u = u® and vl = ul, v2 = ua,...,vn'l = W1,

To prove this statement, we remark first that for v1 = u1
(1 <1 < n-l), by definition, d(vi,va,..,vn'l) = An. Then, we
shall show that for arbitrarily chosen v ,..,vn'l;
d{v ,va,...vn‘ ) < l « We simply have to ahow that there 13 one
funotion §, aatisfying the conditions H(J,v ) 2 0 (1=1,2,...n-1})

for which E(§)< A and H()= 1. Ve consider & linear combina-
n

tion of the first n eigenvalues, ﬁ = E oy ui. The n-l1 rela-
i=

tions H(ﬁ,vi) = 0 give n-1 linear homogeneous equations for de-
termining the n constants 01,02,...,on;.they can always be

n
solved. The condition H(J) = ; cf = 1 gives the factor of
=

proportionality. Now

n—
E(D- 1%%21 o 0 B(uy )

but
E(ug,u ) = 0 (1 # k)
and
E(ui) =Ny .
Hence :

n@n;_; oin
n
because of ;:; of = 1and A, 21y (1=1,..4,n),

B(P) =,
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Hence the minimum d(vl,..,vn'l) 1s not greater than X“, and Km
is the greatest value that the minimum can take.

The maximum-minimum property of eigenvalues is extremely
useful in many physical problems, It leads immediately to two
principles which we shall simply state here:

1. By strengthening the conditions in a minimum problem,
the value of the minimum is not decoreased, and conversely by
weakening the conditions the minimum decreases or does not in-
crease.

2. Consider two minimum problems for the same domain of
admissible functions §. If, for each function §, the expression
to be minimized is not smaller in the first problem than in the
second, then the minimum in the first problem is not smaller
than in the second.

Physically, the first principle oan be stated:

When a vibratory system 1s forced to vibrate under coertain
imposed conditions, then the fundamental frequency and each har=-
monic can only increase. GConversely, when the conditions under
which the system vibrates are weakened, the fundamental frequen=-
¢y and each harmonic can only decrease.

For further discussion of the extremum properties of ei-
genvalues we refer to Courant, R,, and Hilbert, D., Methoden
der Mathematischen Physik, vol. 1, chapter VI.
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Supplementary Notes and Exercises

l. References.
Two of the earlier works treating the Caloulus of
Variations are as follows:

Moigno-LindelBf, Caloul des Variations (1861)
Jordan, Cours d'Analyse, Vol. III (1887)

Soms later works on the Calculus of Variationa, which
reflect the very important influence of the leotures of
Welerstrass, are as follows:

Kneser, Lehrbuch der Variatgébérechnqu (1900}

Bolza, Lectures on the Calcuiua of Variations (190l4)
Bolza, Vorlesungen Wber Variationsrechnung (1909)
Hadamard, Lecons sur le calcul des variations (1910)
Tonelli, Fondementi di calcolo delle variazioni (1921)
Goursat, Cours d'Analyse matheématique, Vol. III (1923)
Bliss, Calculus of Variations (1925)

Courant-Hilbert, Methoden der mathematischen Physik, Vol. I (19%)
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2. Notes on the Brachistochrone problem.
Exercise: Imagine a vertical plane with two given polnts A and
B. Find the time required for a mass point to slide without
friction under the influence of gravity from A to B along each
of the following curves:
a) a straight line segment
b) a circular arc starting vertically
¢} a vertical straight 1ine segment followed by another
straight line segment, as follows:
A

Johann Bermnoullil solved the Brachistochrone problem by di-
viding the plane into horizontal strips of width w and assuming
the speed of the particle to bée constant in each strip. He then
applied Snell's Law of Refrasgtion (as explained in the notes on
pp. 2-3), passed to the limit as w-—> 0, and concluded that the
required curve is characterized by the property

8in a

vu
where a is the angle between the tangent to the curve and the
vertical. It ocan easily be seen that this condition is equiva-
lent to

= constant

u

xn | S
k .

£ 1

where k 1s a conaﬁant,

Exercise: Lvaluate the above integral and identify the curve.

A oritical evaluation of Johann Bernoulli's procedurs from
the point of view of modern rigor reveamls two serious gaps in
the reasoning. Conclusiona should follow from assumptions by
logical reasoning. However, two very important points in
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Bernoulli's argument were not loglically justified. One of these
points will become apparent upon examining Bernoulli's reasoning
in the following way: The solution S to a problem P was being
sought. In order to solve P, problems P, (corresponding to di-
viding the plane into strips of width w) were considered, and
their solutions S, were found. The problems F, were chosen so
that they resemble P with the P,, resembling P more and more
closely as w is chosen smaller and smaller. It was then assumed
without loglcal justification that the S,, resemble S more and
more closely as w 18 chosen smaller and smaller. In other words,
it was assumed without foundation that

S>3
as

P

w-ap .

Although this procedure gave the correct result when applied to
the Brachistochrone problem, the same procedure may very well
give incorrect results for other problems.

The second gap in Bernoulli's reasoning was his tacit as-
sumption of the existence of a solution to the problem. Since
the problem sounded reasonable, he did not doubt for a moment
the existence of a golution. However, as 18 well known today,
even problems which sound very reasonable may not have solutions.
Bernoulli's procedure merely indicated that 1f there 1a a solu-
tion to the minimum problem, then 1%t must be the solution which
he found, the cycloid. And, as pointed out above, even thls was
not shown in a logical way. Thus, Bernoullli's procedure, al-
though highly significant for its historical interest, actually
proved nothing at all.

3+ The road of quickest ascent to the top of & mountain.
Consider the problem of how to build a road up to the top
of a mountain in such a way as to minimlze the length of time
it takes to get to the top for a car whose speed is a given
function of the angle of inclination. We assume that the moun-
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tain is symmetric about the

vertical axis through its apex, 2
which we take to be the z-axis.
If r represents the distance
from this axis, the equation

of the surface of the moun-
tain may be written as z = g(r).
The surface may be differen-
tiable at the apex, in which
case g (0) = O (a3 in the
diagram), but this need not be Dbiagram: Tho curve z = g{(r),
assumed; it may instead bshave conically there.

A road on the mountain is represented by a curve, starting
gay at a distance R from the z-axis and ending at the apex. Let
t be time, a the angle of inoclination of the curve (the road)
to the horizontdl, ds an element of arclength along the ourve,
and the dr and dz the corresponding elements of length along the
radial and vertical axes respectively. Clearly

r

g.(r)ar = dz = sin a + ds

is the projection of ds on the z-axis. If the presacribed speed
v 1s givern by f{a), then

ds . o s _ . gp(r) dr and
ag = e dt = ¥7ay ® T(aJ sin & ’
0 gn(r) 'R -g,(r)
T= jR (a) sin & 4 ° jo T(a) sfn a °F

is the lerngth of time required for the ascent.

Taking gr(r)'< 0 (except perhaps at r = 0) to insure that
the grouné 1s always rising as the apex la approached, 1t 1s
clear that T will be minimized if a is chosen always so as to
maximize rf{a) sain a. Assuming, as 1s reasonadble for the inter-
pretation of the problem, that £(0) = Vo r(%) = 0, and f(a) 1a
monotonic it follows that f(a) sin a will have & positive
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maximum for soms a = a, which we assume unique, satisfying
0<a<x g. However it 13 necessary to notice here that at the
distance r from the z-axis a is subject to the condition

a < arctan (~gr(r)), since the angle of inclination of the road
cannot exceed the maximal angle of inclination of the ground.
Assuming for simplicity that f{(a) sin a is monotonic for
0gasxg Q, the maximum value of f{a) sin & occurs for

@ = min (@, - arctan g (7)) .

It remains to be shown that there exlats a curve on the
surface with this prescribed angle of inclination. At each
point of the horizontal plans z = O consider the direction or
directions which are the vertiocal projectione of directions in
the surface with angle of inclination as prescribed. There will
be one or two of them according to whether «arctan gr(r) is
equal to or greater than the prescribed angle. In the firat
cass the direction will be
toward the z-axis, 1.e. ra-
dial; in the second cass the
two directions will form an
angle bisected by the radlal
direction. If in the second
case we always choosd the
counter-cloockwise direction,
say, then we have & unique
direction at each point {(ex-
cluding r = 0), and this di-
rection field will be contl-
nuous 1f gr(r) 1is. An inte-
gral curve of this direction
field, starting from the ini- oisgram: Directions in the
tial point at distance R, ) plane z = O,
will reach the center with finite arclength if gr(r) i3 bounded.
Then the curve on the surface, of which this integral curve 1is

the vertical projection, will have the prescribed angle of
173
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inclination at each point, (will have finife arclength,) and
will obviously require the shortest time for ascent, since for
each value of r it minimizes the integrand of T.

The solution may, in short, be described as a curve which
has the fixed angle of inclination @ (the value of a which ma-
ximizes f(a) ain a) wherever possible, and elsewhere 1is directed
toward the z-axis. If the surfacs i1s differsntiable at the apex,
thiz latter phenomenon (case 1) must occur in the neighborhood
of it. 1If it does not occur, i.e. 1f the ocurve has always the
angle of inoclination a, then

7= £00) - g(R)
r{a) sin a

In any case it 1s obvious that the solution 1s unique except for
the choice (which may occur more than once) as to which way to
spiral around the mountain, clockwise or counter-olockwise,
since for any other eurve the integrand in T will be larger for
some value of r (and therefore in a neighborhood) and no smallar
anywhere else,

li. The shortest connection between two points in a closed
simply-connected region.

An interesting problem is to find the shorteat possible
path along which to walk from one point to another on a winding
street bounded by well-behaved curves {(whers it 1s permissible
to walk along the boundary curves). Thia problem may be formu-
lated in the following way: Describe a method for finding the
shortest connectlon between a point A and a point B in a closed
simply-connected region bounded by a snooth curve (i.e., a con-
tinuous ocurve with a continuously turning tangent).

The solution to the problem can be visualized by imagining
a string attached to the point A, pulled taut, and attached to
the point B. It {s intuitively clear that the string would fol-
low a path such as indlcated in Figure 1, but 1t would be desi-
rable to describe a mathematical method for finding this path.
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Figure 1., An indication of the shortest path from
A to B furnishcd by a stringe

Tt will be assumed hers that there s a golution to the
problem; i.e., that a shortest connect:on really exists. Let
this solution be the curve C.

It 1s immediately apparent that any (connected) portion of
C consisting of interlor points of the region must be a atraight
line segment. Por, if an interlor arc of C wore not a straight
l1ine segment, a point P on this arc could be selected for which
an g-neighborhood lies in the region. Then a point P* on the
arc with its distance from P less than ¢ could also be selected,
and the chord PP” could replace the portion of C between P and
P“. This replacement would shorten the conneotion between A and
B, in contradiction to the assumption that C provides the short-
est connection. Thus, 1t follows that C consiats only of
stralght line segments in the interior of the region and arcs of
the boundary curve.

Moreover, it can be seen that the interior straight line
segmenta can meet the boundary only along tangent 1lines to the
boundary. In order to show this, let & portion of C consisting
of an interior straight line segment be denoted by Cy» and let
an adjacent portion of C oconsisting of an ars of the boundary
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be denoted by C, . Then, let a be the "interior angle" * betwesn
ci and cb at the point where they

Figure 2. The interior angle between C1 and cb.

meet. It follows immediately that
(1) a>n

for otherwise C could be shortened by drawing a straight line
segment between a point on C1 and a point on Cb, both pointa
being chosen sufficiently close to the vertex so that the
straight 1line segment should lle entirely within the region.

From the assumption that the boundary curve is smooth and, there-
fore, cannot have corners, it follows that

(2) e<n .

¥ Clearly there are two angles a and f between Ci and Cb where

a4+ f = 2n. One of the angles has the property that there are
points within it exterior to the region arbitrarily close to the
vertex. The other angle has the property that all points with-
in it sufficiently olose to the vertex are Interior points of
the reglon. Let the latter angle be called the interlor angle
betwsen C; and C,. (See Figure 2.)
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Then, from (1) and (2), it follows that a = %, which means that
(3i meets the boundary along a tangent line. Thus, it has been
established that C can consist only of arcs of the boundary
curve and interior straight line segments which at both endpoints
terminate as tangents to the boundary (or terminate in A or B).

The solution to the problem is now close at hand. For,
all that has to be done is conaider the totality of straight
line segments with the property specified above for their end-
points. Since the boundary curve was assumed to be smooth, it
follows that the totallty of all such stralght 1ine segments
constitutes a finite number. 4As a conssquence, it is posaible
to connect A with B in only & finite number of ways by paths
eonsisting of such straight line segments and arcs of the boun-
dary curve. Thus, the minimum problem has been reduced to se-
lecting the shortest path from a finite number. This consti-
tutes a solution to the problem: iEach possible path can be gi-
ven & name and listed on a plfede of paper. The length of each
path ¢can be written next to the namé of the path. Then, it is
& trivial matter to go down the 1list and selact the shortest
paths In fact, any maximum or minimum problem is complstely
solved when 1t 13 reduced to a selectfon from a finite number of
objeots.

In the event that the boundary curve is continuous but
only plecewise smooth, the problem can be aolved in the same
way with the exception that supporting lines at the corners have
to be conaidered in addition to the tangents. This situation
is 1llustrated at the point 3 in Pigure 3.
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Figure 3, A region bcundud by a piecewise smooth
curve with the shortost path containing supvorting
lines to the boundary at the polnt S,

5. The shortest connection in a plane betwsen two points.

It is well known that the straight line segment is the
shortest plane curve connecting two pointa:, This intuitively
evident property of the straight line can be proved in a very
simple way.

Specifically, it will now be proved that the straight line
between two points is shorter than the connection provided by
any other curve capable of being represented parametrically by

£r(t)
gl(t)

x
¥y

for a <t <, where £ and g are continuously differentiable
functions of t.
The definition of the length L of such a curve will be ta-

kon as

‘B s .

L= j X~ + y dt

a
(where x and § represent %% and %% respectively). it can easily
be verified that length defined in this way is invariant under

translations and rotations; and, therefore, the proof can be
e#implified by placing the two points in question at (0,0) and
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(a,0), where a 1s the length of the straight line segment join-
ing the two points.
Then, since

it follows that
8 = - B, a
X" +y dt > j xdt = J dx = a
* q 0

a
or

£

fv
®
.

Moreover, since § vanishes identically only for the straight
line, it followa that
L>a

for all curves other than the streight line which are capable of
being represented parametrically as specified above. Thus, the
length of any such curve 18 greater than the length of the
straight line segment.

An alternate proof can be given with the advantaze that 1t
does not assume the proof of the invariance of length under
translations and rotations. For this proof, let the two points
in question be ko,yo) and (xl,yl). Then, the following inequa-
lity is to be established.

p - .
/(xl-xo)z+ (yl-yo)z _<_$a X+ 3°at .

This follows directly from the following application of Schwarz's
inequality:

(3) (xl-xo)z't * (y1-y°)§ f_ﬁtl-xo)z + (yl-y:)!;/ iz + iz .

This ineguality, upon fntegration, implies:
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However, the integral on the left can be aimplified as follows:

P . . *1 71
[(xl-xo)x + (yl-yo)y]dt = j (x,-x,)dx + J (yl-yo)dy
a Xo Yo
_ 2 2
= (xy-x,)% + {y;-y,) .
This simplification together with (l) implies:

8
(xl-xo)2 + (yl-yo)2 5\//kx1~x°)2 + (yl-yo)z X Vv iz + 35 at

a

or, dividing by (xl--xo)2 + (yl-yo)z :

< 2 p s »
\//(xlnxo) + (yl-yo) < Sa X~ + y-dt .
The uniqueneasa of the solution can be shown from this proof
by noting when the equality holds in Schwarz's lnequality. The
equality sign holds in (3) only if

x:y=1(x -x) :(y ~73,)
that is, only if the ratio of x to i is constant. 3ince this
property 1s enjoyed only by the straight line, it follows that
the straight line is the unique minimizing curve.

6. Problems for which no sclutions exist.

In Section 2, when critically evaluating Johann Bernoulli's
method for eolving the brachistochrone problem, it was mentioned
that entirely reasonable-sounding maximum or minimum problems
may possess no solutions. By way of illustration, several pro-
blems of this nature will now be discussed.

An example of a very simple problem without a solution is
the following: It is required to find the shortest plane curve
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connecting two points A and B, where the further restriction is
imposed that all curves admitted to the competition must be pen
pendicular at A to straight line AB. Let the length of the
straight line segment jolning A and B be denoted by d. The
straight line segment itself, of course, does not satisfy the
perpendicularity requirement. Thus the length of every curve
which does satisfy this requirement must be greater than d.
Consequently, if thers were such a curve of minimum length, ita
length would be some number, say dmin’ greater than d. However,
it is clear that it 1s possible to find curves satisfying the
perpendiculiarity requirement with lengths arbitrarily close to
d. In particular, such a curve can be found with its length
equal to some number do where d .. > dO > d. This obviously
congtitutes a contradiction since dmin was supposed to represant
the length of the shortest curve satisfylng the perpendicularity
requirement. Thus, the minimum problem cannot have a solution.

In other words, the greatest lower bourd of the lengths
of all curves adm‘tted to the competition is d. Yet, the only
curve of length d Joining A and B is the straight line, which
is not admlssible as a solution to the problem. As a conse-
quence, there 1s no admissible curve of minimum length.

An example will now be glven of a two-dimensional problem
having & solution, which, when generalized to three dimensions
in a very natural wnd reasonable way, no longer has a solutlon.

The two-dimensional problem is to find the shortest con-
nection in a plane between two points A and B where the connect-
ing ourve 1is required to pass through a point C which is not on
straight line AB. The solution obviously consists of straight
line segments AC end CB.

A corresponding problem in three dimenslons would be to
find the surface of least area spanning a circle (or some other
non-self-intersecting closed plane curve) where it is required
that the surface pasa through a point P not in the plane of the
circle. Clearly, the area of any such surface is greater than
the area of the disk spanning the circle, On the other hend,

181



the area of the circular disk will now be ahown to be the great-
est lower bound of the areas of all surfaces passing through P
and spanning the circle.

In order to see that the area of the dlsk is the greatest
lower bound, consider surfaces obtained in the following way.
Moke a hole in the disk by
removing a small circular P
area from its interior. Then
consider the cons determined
by the point P and the boun-
dary of this smsall eircular
area. The aurface consisting
of the disk with the hole and
the lateral surface of the
cone is then admlissible for
the problem. (See Figure i.)

Moreover, by chooalng the

Figure s The admisuiblo
hole small enough, the area surrace with area close
of this surface can evidently to that of the disk,
be made as close as desired
to the area of the disk.”

Thus, the greatest lower bound of all areas of admissible
surfaces 1s not the area of any admissible surface, but 1s ra-
ther the area of the circular disk, which, of course, does not

* That the surface areas can be made arbltrarily close to the
area cf the disk can be seen very easlly by consildering a spe-
clal case with no e3ssential loss of gensrallty. Let the disk be
bounded by a unit circle, let the polnt P be such that the foot
of the perpendicular from it to the disk is an interior point of
the disk, and let the distance from P to the disk be unity.
Then, make the circular hole in the disk with the center at the
foot of the perpendicular from P and with radius squal to €.

The area of the disk with the hole 1s then n(l-ez), and the lat-
eral area of the cone 13 we/l+e¢~. The area of the admissible

surface 1s then u(l-ez+&/1+sz). This area ocan certainly be made
arbitrarily close to % by choosing ¢ sufficiently small,

182



pass through P. Yet, the greatest lower bound would have to be
the area of the admissible surface of least area if there were
such a surface. Therefore, there can be no admissible surface
of minimum area.

Another minimum problem without a solution 1s the follow-
ing: Find the funotion u = u(x) which minimizes the integral

Sl xzu'2 dx
-1

where u 13 required to be continuous with a plecewise continuous
firat derivative and is required to satisfy the conditions

u(l) = 1 and u(-1) = <1, If there were a minimizing function,
the value of the integral for this function would have to be
positive since the integral is never negative and 1s different
from zero unless u' = 0 (except possible for isolated values of
x). But u' £ 0 together with the requirement that u be conti-
nuous implies that u ie constant. Clearly'this is incompatible
with the conditions u(l) = 1 and u(-1) = -1, and the value of
the integral for a minimizing functifon would have to be positive
as stated above. On the other hand, the greatest lower bound of
valuss of the integral for admissible functions can be seen to
be zero by considering the following one-parameter family of ed-
misaible functions (See Figure 5):

1 for -1<x < -¢
ub(x) = % for -e<x<¢€
1 for e<xx<1

The value of the integral is then:

I‘ L1 -2
e & 3
Thus, the integral can be made arbitrarily closze to zero for an
admissible function by choosing € sufficiently small, and the
minimum value of the integral oould not be greater than zero;

{.6., a minimleging function does not exiat.
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A {1,1)

8lope

o)

(‘1"1)

Figure 5. The functions u®(x)
1,0
for which J y%; “dx»~ 0;
-1

A maximum and minimum problem which leads to a very inter-
esting situation is the following: Find a maximieing function
and also a minimizing funotion for the integral

jl ——1—2 dax

0 1l+u!

where u 1s required to be continuous with a plecewise continuous
first derivative and 1s required to satisfy the conditlons
u(0) = 0 and u(l) = 1. Since the integrand 1s always greater
than zero and never exceeds unity, and the interval of integra-
tion 1s of unit length, 1t follows that the value of the inte-
pgral for admissible functions cannot even equal unity since this
value could only occur for u' = 0. It will now be shown that
the greatest lower bound 1s zero and the least upper bound 1ia
unity for the values of the integral for admissible functions.
This, of course, would imply that neither a maximlzing function
nor a minimizing function exists,

A one-parameter famlly of admissible functiona for which
the integral assumes values arbidrarily close to zero 1is the
following (See Figure 6):
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X
u,{x) =
1 X,1+c¢ l1+e¢
--e--} 3 for —-Z_stl °

For these functions the integral becomes

1+¢

e

1
S 1 1
0 1+ () \[10 1+ (-3 e+ 1
[ ] —zg [
Similarly, a one-parameter family of sdmissible functions
Au
P 8lope -%

slope %

Figure 6, The functions uf(x)

1
1
ror which é -1——'-2 dx ~ O,
+u

for which the integral sssumes values arbitrarily close to
unity ia the following (See Figure 7):

for 0O<x<eg
c - -
Uy

= ol

for e<x<1 .

For these funotions, the integral becomes

r"'T'l a +Ild T—-—" +1
X X = - g .
010-2 [ e” +1
[ ]
185



L (1,1)

1
slopo +

Figure 7. The functlons u;(x)

1
for which f -—t—pe dx~ 1,
0 1+u'
However, the interesting feature of this maximum and min-

{mum problem 13 not the mere non-existence of a sclution. A
much more striking property can be demonstrated for the integral
in question. It can easily be seen that any admissible function
can be approximated to any prescribed degree of accuracy by ad-
inissible functions for which the integral {s arbitrarily close
to zero and also by admiesible functions for which the integral
is arbitrarily oclose to unity. The approximating functions for
which the integral 1s olose to zero consist of polygonal paths
made up of stralght line segments of slope i and - %. (See

c
Figure 8.)

(1,1)

> X

Figure 8. The app:oximating funotiona
for which the égtegral is close to gero,
1



For thess functions, the intezral has exactly the same value as

for the ui(x) since the integrand depends only on w'? and is

therefore constant. In the same manner, the approximating funce

tions for which the integral ia close to unity oonsist of poly=-

gonal paths made up of atraight line segments of slope #+ 5 and

zero. (3ee Pigure 9.) For these functions, the integral has
(1,1)

[ 2 L

Nu

-~ X
Cd

Figure 9., The ap roximating functions
for which the intogral iz close to unity.

evidently the sams value as for the ug_(x) i1f the given admissi-
ble function 1is monotonio, since ths integrand is piecewise con-
stant and the total length of interval for which u! equals ia
the same in both cases.*
Thus, the rather surprlsing fact appears that it is possi-
ble to have a sequence of admissible functions converging to an
admissible limit function with the values of the integral con-
verging to the least upper bound or greatest lower bound of all
possible valucs, and yet have the value of the integral for the
limit function itself different from the least unper bound or

I

€

r'I’he result holds even if the given admisaible function is not
monotonic, but the construction 1s then slightly more
complicated.
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greatest lower bound. In fact, in this problem, such a seguence
can be found to converge to any admissible function.

7. Semi-continuity.

Let us examine the familiar proof of Welerstrasa' theorem
that every continuous function F(ul,...,un) = F(P) in a vounded
closed domain D of n-dimensional space possesses a minimum {and
a maximum) in D. From the nature of F and D we know that the
sat of values of F(P) for P in D must be bounded, and hence have
a greatest lower bound d. Then there 1s a seguence Pn of points
of D such that F(Pn) —> d. Because D 1s bourded we can select a
convergent subsequence Pﬁ of the seguence Pn’ and P = 1im Pﬁ 1a
in D because D is closed. Then

NP)=FUJmP5)=1hnFUa)=d

since F is contihuous, and so F actually achieves the minimum d
fo. the point ¥ in D,

In this proof we have not made essential use of the full
strength of the continuity of F(P). For if we knew merely that
F(lim Pﬁ) < 1lim F(Pﬁ), ws would obtain by the same argument that
F(P) < d, which together with the fact that F(F) > d (since
d = g.1.b. F(P) and F 1s in D) would again give that F(F) = d.
Hence if we dafine a lower sem!'-continuous function F(P) to be
one such that

F(lim P ) < lim F(P )

for every convergent sequence Pn’ we may state the following im-
proved form of Weieratrass' theorem: Every lower semi-continuous
function F(P) in a bounded closed domain D possesses a minimum
in D, If we define upper semi-continuity analogously, it can
easily be seen that a function is continuous if and only 1if it
13 both upper and lower seml-continuous.

We may define semi-continuity also for functionals; F{u}
1s lower semi-continuous if, for every sequence un(x) of admia-
sible functions which converges uniformly to an admisaible
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One of the reasons for the importance of this concept in the Cal-
culua of Variations 1s that very few functionals that occur in
applications are continuous, whereas many of them are semi-
continuous.,

A few examples feallow. The functional

x
1

G{p} = I P(u(x))dx, where F is a continuous function, 1is con-
x

o
tinuous, since 1ir un(x) converges uniformly to u({x}), then

G%ﬁ& - G{u}. The length L{C} of a curve C 18 a lower semi-
continuous functional but not an upper semi-continuous one,
since if the ourves Cn approximate {eonverge to) C then their
lengths L{Cn} must at least be approximately L[C] but may be
much larger (if the curves oscillate enough). The functional
I{h} = f; ;—:A;Tz dx 1s neithsr upper nor lower semi-sontinuous,

as the previous disoussion of it shows.

8. Generalization of the Fundamental Lemma.
Suppose that f{x) i{s a plecewlse econtinuous function for
& € x <band that

jb gik](x)f(x)dx =0

a

for every funotion %(x) such that &,z',...,z{k'll vanish at a
and b and are continuous amd ¥ k is plecewise continuous. It
can then be provad that f(x) must bs a polynomial of degres at
most k-1. In the special case k=1 this 1s just the atatement of
the Fundamental Lemsa. The proof for the general case is analo-
gous to the proaf for k=1; to illustrate we shall earry it out
for k=2.

If p and q are constants, we have for any permissible Z(x),

integrating by parts,
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b
|| etfpx + ajax =t infox + o8 - tzpit = 0,
since ¥ and Z' vanish at a and b. Therefore
b
j C“(x){f(x) - px - q} dx = 0 .,
a

We now try to determine p and q auch that f{x) - px - q is the
second derivative of a permissible function %(x). Suppose that
thia were the caset Z"(x) = f(x) « px - q. Then since

4(a) = &'(a) = 0,

g'(x) = j: {r(g) - pf - q} dE = j'x £g)ag - B(x2-a®) - a(x-a) ,

a
xH 302 2_.2
20 = [ tteraray - B - a2(xea)) - QIEF0C - a(xea)]
ava

The requirement Z(b) = %'(b) = O provides for the determination
ol p snd qQ the two simultaneous equations

b
{o-a)(bra) ;4 (p.a)q - | noae
a

!B:eﬁéh'f_?.;ﬂ_). p+ ikzef. q = j:]: f(g)agdy .

The determinant of the coefficlents of p sand q is given by

(b-a)}(b+a) |, ’b-a)z - (b-a) Sb—alzsbiggl = [b-a 4 {0 ,

hence there exist censtants p and q with the prescribed proper-
ties. Finally, the above construsted funotlon %(x) 1s permis-
sible since X" oquals,{(x) - px - q and 1» oonsequently plece-
wise continuous. Therefore

0= g: zu(x){f(x)-- PX - q} dx = Sb

. {r(x) - PpX - q}a dx ,

whence f{x) = px + q, which is the desired oconclusion for k=2.
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9. Derivation of Euler's equation by special variations.
¥We wish to prove, by spaecial choice of the function %(x),
that 1ifr

S: {t(x)l"u(x) + zl’(x)pul(x)} dx = 0

for all continuous functions %(x) which vanish at a and b and
have plegewise continuous firat derivatives, then
Fu(x) - ﬁ' Fu'(x) = 0.

We i1llustrate the method by choosing

™

1A 1A
o

{x-a){g-x) |, for a<x
x) = { 0 , for < x

where £ 1s arbitrary between a and b. Then
14
0= X {(x.a)(g-x)pu(x) + ({E-x) - (x-n)]Fu,(x)} ax .
a .
Differentiation with respect to § gives

£
0 = -(g-a)Fy (€} + |

. {(x-a)F‘u(x) + F‘u.(x)}dx .

Clearly F ,(&) must be differentiable at least for £ ¥ a, hence
we obtain

0= -Fy,(£) - (£-a) §z Py, () + (£-a)F (E) + FyulE)
= (£-a)[F(€) - 7 FuulE)]

Dividing by (£-a) and then replacing the arbitrary £ by x, we
have the desired result. In a similar way Euler's equation can
be derived by choosing other apecific one-parameter families of
functions %(x).

10. Charucterization of the longer great circle arc.
We know that if A and B are two points on a sphere, not
diametrically opposed, then the shorter great oircle arc between
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them 1s the unique solution to the problem of finding the curve
of shortest length joining them on the sphere. We wish to cha-
racterize the longer great circle arc between them in a similar
way, in this case as the solution of a minimax problem.

Let 6 be a fixed great circle whioh separates A and B, let
D be a point on 9, let [ (D) be the set of ourves on the sphere
which go from A to B and pass through D, and let L{y} be the
length of any curve y. Then

Yin’fnm) L{ }

is achieved for a unique curve y(D), consisting of the shorter
great circle arcs from A to D and from D to B, and is a conti-
nuous function of D. Hence

max L{Y(D)} =  max min L{y}

D on Don 6 ¥ in [ (D)

13 nchieved for some D = D and the corresponding y(D). It is
easily seen that this maximizing point D 1s unigue, that it is
the intersection of & with the longer great circle arc between
A and B, snd that thorefore y(D) 1s that longer great circle
arc, as desired.

The curve from A to B which lies on the great circle de-
termined by them and goes once around the sphere, covering the
shorter arc twice, can be characterized in a similar way, in
this case using two fixed great circles neither of which sepa-
rates A and B which do not intersect on the great clrcle deter-
mined by A and B. The great circle arc from 4 to B which winds
around the sphere any specified number of times can likewise be
characterized as the solution of a minimax problem, by using a
corresponding number of fixed great circles.

11. Integration of Euler's equation in special casses.
Euler's equation can be solved by means of quadratures in
the cases that F{x,u,u') does not contain u 0r x explicitly and
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can be sonlved trivially in the case that F(x,u,u’') does not con-
tain u' oxplicitly.

If F(x,u,u') does not depend explioitly on its third ar-
gument, Buler's equation

reduces simply to

This equation ¢an be regarded as defining u implicitly as a
funetion of x, and Euler's equation 1s thus aclved.

If u does not appear expliocitly in F(x,u,u'), then Euler's
equation reduces to

or

whore k is an arbitrary constant. This equation can be used to
find u' as a funoction of x (end k), and u can subsequently be
obtained by means of a quadrature.

Perhaps the most significant case 1s thet in which x does
not occur explicitly in F(x,u,u'). In this case, the Euler
equation does not at first seem to simplify. Yet, x and u play
similar geometric roles in the variational problem, and the ab-
sence of x ought to lead to a simplification Just as the absence
of udoes. In order to find this simplification, the absence
of x can be thought of as a condition which permits F to be
differentiated as follows:

aF _ n
X = Fu +u Fu'
or
dF _ . » = 1yt
dx - W Fy TuF

Subtracting u' %; Fu' from both stdes gives

= u'Fu - u! %; F

df _ yep u'

d
- )
ax u! v ax

193

Fu'



or

Fu'

& (P-u'F,) = u(F, - ) .

1l

However, the right side vaniszhes since u is assumed to satisfy
Euler's equation, and the conclusion 1s that

F-uF, =k

where k 1s an arbitrary constant. Thus, the above equation
must be satlsfied by any function u which satisfies Euler's
sgquation in the case that F does not expliclitly contain x. This
equation can be used for finding u' as a function of u (and k)f
which means that %ﬁ can be found as & function of u. Then, x
as @ function of u can be found by means of a quadrature.

It 1s very important to realige, however, that although

the simplified condition
F-uPF, =k
and Euler's equation
d -
Fo-ax Fur =0
- are both necessary conditions, they are not equivalent. The
exact situation, in view of the relation

d d
aqx (F - u'F,) = wi(F, -5z F)

1s clearly that every sclution of the Euler equation satisfies
the simplified condition (for some value of k}, but that the
simplified condition 1s satisfied both by

* Actually u' may ba found to be a multi-valued function of u.
This function, for ovxample, frequently contains a square root
where both the positive and negative determinations must be used.
In fact, 1t can be geen that If u!' is a single-valued function
of u, then the continuous function u must necessarily be a mono~-
tone function of x. And there are many problems where F doeas
not explicitly ocontailn x, and yet the extremizing curve 1is not
monotone. An i{llustration of this point is afforded, for exam-
ple, by the problem of finding the surface of revolution of
least area or by the Brachistoshrone problem. These problems
will be discussed later in Section 13.
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ut # 0
and by the solutions of Euler's equation and by no other func-
tions. It is evident that

u=oa0
where ¢ 1is any constant always satisfles the simplified condi-
tion {for soms valus of k).

Sinoe

u=g
always satisfies the simplified condition 1t would be desirable
to have a simple criterion for determining whether or not it sa-
tisfies the Euler equation in its original form. It is clear
that Fu' reduces to a conatent when u is set equal to ¢ and u!
is set equal to zero since F (and consequently P“.) does not
contain x explicitly. Therefore, the Euler equation

d
Fa-&GFar =0
reduces simply to
Fy = s}

‘for functions of the form
u=c .

Clearly, & necessary and sufficient condition for a function of
thia form to satiafy Euler's equation ias

u=g¢

u'= 0

Fu =0 .

The above results can be summarized in the following
theoren!

Theorem 1: If the integrand function F does not depend expli-
eitly on x, then the Euler equation

d
Fy =ax Fur = 0
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and the "simplified condition"
F - u'Fu, =k

are related as follows:

a) Every solution of the Euler equation is a solution of
the simplified condition for some value of k;

b) For any value of k, every solution of the simplified
condition no arc of which 1s of the form

u=20

{where ¢ is a constant) is a solution of the Euler equation;
o) The function
us=oc
satisfies the Euler equation if and only if

u=c
u'= 0

Fu =0

and always satisfies the simplified condition for some value of
k; or, expressed in other words (in a slightly weaker form):

The set of integral curves of the Euler equation is pre-
cisely the set of integral curves of the simplified condition
no arc of which is of the form

where

12. ‘The shortest connection between two points on a sphers,

That the shorter great circle arc connecting two points on
a sphere has minimum length among all connectlons on the sphere
can be proved in a quite elementary geometric way. This geome-
tric proof will now be described, and then the same result will
be obtained from an analytie formulestion of the problem.
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The geometric proof is based on the theorem that the sum
of the lengths of two sides of a spherical triangle (where each
side is the shorter great circle arc connecting two of the ver-
tices) ls greater than the léngth of the third slde. If the
vertices of a sphe-i~al triangle are jolned by straight line
segments to the center of the sphere, it is clear that this theo-
rem is equivalent to the theorem that the sum of two face angles
of a trihedral angle 1s greater than the third face angle. But
this theorem about trihedral angles can be proved in 8 very sim-
ple way by using the fact that the sum of the lengths of any two
sides of a plane triangle 1s greater than the length of the
third side.

. As an immedlate consequence of the theorem about spherical
triangles it follows that the length of any spherical polygonal
path {made up of shorter great circle arcs)} 1s greater than the
length of the shorter great clrcle arc joining the end-points.
This result can be seen as follows: Shorten the spherical poly-
gonal path bv joining any palr of alternate vertices (i.e., ver-
tices with exactly one other vertex between them along the sphe-
rical polygonal path) by the shorter of the two possible great
cirele arcs. The theorem about spherical triangles guarantees
that this shortens the path. Then, apply the same process to
the shortened path. Repeat the process until, after a finite
number of steps, the result will be simply a great circle arc
joining the two points. Thus, the shorter great circle arc is
cortainly shorter than the spherical polygonal path.

The result for spherical polygonal paths, however, implies
the desired result for any curve. All that remalns to be shown
is that the length of any curve on-the sphere can be approximated
to any prescribed degree of accuracy by the length of an in-
scribed spherical polygonal path. It would then fallow that no
ourve can provide a shorter connectlon than the great circle arec.

In order to prove that the length of any curve on the
sphere can be approximated by the length of an insoribed sphe-
rical polygonal path, the elementary geometric definition of the

197



length of a curve will be recalled. Consider a sequence of n+l
points Pg, Pi,...,P: on the curve in that order where Pg and P:
are the end-points. Join consecutive points by straight line
segments, gliving an inscribed space polygonal path L Joining
the snd-pcints of the curve. Let L denote the lengbh of L
Allow n to tend to infinity, ohoosing the points Pi {1=0, 1,-..Jﬂ
30 that th3 length of the longest side of the 3pace polygonal
path should tend to zero. Then, limL =L is, by definition,
the length of the curve.* =00

It will now be shown that the length of the spherical po-
lygonal path having the same vertices as the space polygonal
path L approaches a 1limit as n — 00 and that this limit is, in
fact, equal to L, the length of the curve. Let the length of
the side of the apace polygonal path jolning Pé'l and P; be de-
noted by lgi) and the length of the oorresponding slde of the
spherical polygonal path by Agi)“. Thus, the length L of the
spacv polygonal path L is given by

_ o= (V)
Ln-.vzz‘i'_xn

and the length L: of the corresponding spherical polygonal path

is given by
#_ B (v)n
= E A
v=1 2

It remains to be proved that L: converges and that

1im L:= L .
n=—= 0

Sinoe a product of limits equals the limit of the product, and
sinoce L is the product of L and L /L , it 18 enough to prove
that L /L converges and that

* Gurves for which the 1limlt exists {independent of the way in
which the points Pg are ohosen) are called rectifiasble ocurves.
Only such ourves are of interest in the present discussion.
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#
Ln > Ln
or
{s) L:
>1
L

since arcs of eircles are longer than the subtended chords. On
the other hand, the points P;") were chosen so that the length
of the longest chord tends to zero as n tends to infinity, and
the ratio of are length to chord length in a oircls ef constant
radius tends to unity as the ochord length tends to serc. This
implies that

alv)e

1im -%—T- s 1
= ln'

whern the convergence ia uniform with respect to v since the se-
quence of longest chorda converges more slowly tham any other
sequense of chords. In other words, for every ¢ > O, thers
existes a number N = N(e) such that

A(V).
_?7)_ =1 <& tor n >N
*
or, in view of (5}
1(v)G
-?—-,— <] + ¢
A
or ‘
(6) x;')“ < xé"(l re) .

An estimate for L:/Ln can now be made as follows in view of (6):
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s I g
n v=1 v=1 _
N T o
Syt irta
or
(7 L
T < 1l +e forn>N .
n

However, (7) together with (%) clearly implies that L:/Ln con~
verges and that
#
Ly
1im r- = 1l .
n=>=00 n
This in turn implies that

im LY=L ,
o300

which means that the length of any curve on the sphere can be
approximated by the lengths of inscribed spherical polygonal
paths. And, as already indicated, this implles that the shorter
great circle arc jolniug two points on a sphere provides a con-
nection of minimum length.

The same result will now be obtained analytically by wri-
ting parametric equations for a sphere of radius r with its
center at the origin, as follows:

x=1rcos ¢ sin @
(8) y = r sin ¢ sin @
Z = r cos @
for 0 <d <2m and 0 < @ < % where ¢ and © can be identified in
the usual way as the angles of spherical {polar) coordinates.
Any curve on the sphere can be represented by letting ¢ and Q
be functions of a parameter t, as follows:
¢ = £(t)
Q = g(t) .
In order to calculate arc length for such a ourve, (da/’dt)2 will
now be calculated as follows:

200



§2% = (G52 + (G2 + (§8)% = 1% 41?0 $1? + r2%12

where ¢' = d4/dt and @' = d0/dt. Thus, the length L of a curve
jeining the points in question is given by

t
1l
L = rx /sinzo 1€ 4+ 01 at .,

%o

It thus appears that the problem reduses to finding a curve
whioh minimizes the following integral I {omitting the unessen-
tial r):

t
1
Is= g J s1n%0 $'¢ + 1% ar .
;to
The solution to the problem becomes immediately apparent
when the symmetry of the sphere ls taken advantage of by placing
the two points in a special position. Place ths two points on
the same line of longltude and make the reasonable assumption

that O can be used as a parameter for the minimizing curve. In
other words, assume a solution of the form

¢ = 6lo) .
Then, the integral to be minimlzed 1s

o
1
T# =§ J/ s1n®0 $'¢ + 1 4o

0O

where ¢' = d¢/d6. The integrand and hence the integral is clear-
ly minimized for ¢' 3 0, and the minimizing curve must be the
shorter arc of the line of longltude or great circle through the
two polints.

It would be desirable, howaver, to reach the same coneclu-
sion without placing the points in any special poaition and
without making any use of the geometric interpretation of ¢ and
9. This will now be done with the aid of Euler's equation.

The integrand function F of the integrel I for this varia-

tional problem is
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F(t,4,0,4',0') =/ s1a% §'¢ + 0%

The Euler equation for the two functions ¢ and © are

Fé--}t-%,:o
d
Fo-agFer =0
or 2
d ain“Q ¢' -
Tat 3 Zl 2 =0
y/sin 0 4t + o'
sin @ cos © 6'2 d et
- =2 Q .

at
Jein<o ¢t 4+ 1° / 8ine §'° + @1°

In order %0 simplify the Euler equations, the parameter t
will be renamed s and will be ldentifled with ars length on the
curve represented by

¢ = f(s)
o = gla) .
It then follows that
(9) (4212 s1n%0 §2 + 0% =1

where $ = d4/ds and © = d¢/ds. The Euler equations can then be
written as follows?

] %; (ainao J) =0
{10) . .
%E © = gin 9 cos @ 62 .

These equations represent a necessary condition for a minimizing
curve, and 1% will now be shown that any curve satisfying these
equations 1s a great clrcle arc.

Cartesian parametric equations for the curve represented
by the funotions 6 and O can be obtalined by substituting ¢ and
@ as functions of s into (8). This gives x, y, and z as func-
tions of a. To show that this ourve 1s a great circle are, 1t
must be shown that (x,y,2) lies on the smme plane through the
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origin for all values of x. In other words, 1t must be ihown
that there exists constants A, B, and C such that

Ax + By + Cz = 0

where at least one of the constants is different from zero.

That 1s, 1t must be shown that x, y, and 3 as functions of 8 are
linearly dependent. This linear dependency will be demonstrated
by showing that the three functions x, y, and z all satisfy the
following differential equation:

Q+tu=0 .,

This second order linear differential eguation {whose solutions,
of course, are linear combinations of sin s and cos a) cannot
have mors than two independent solutions according to the theory
of differential equations, and 1t would follow that x, y, and
% are linearly dependent. Therefore, it should be shown that

= eX
= -y

= =2 .

Nl X

As an 1llustration, ¥ will now be calculated. The functilon x
is given by
x=rcos¢sin0 .

Its derivative x is glven by

x=r1r(-31n ¢ 8in 6 ¢ + cos ¢ cos @ &)

r(- :—ﬁ:;g sinac * + cos ¢ cos @ Q) .

Difreventiating once more and using the Euler equations (10),
it follows that X 1s given by

or

*
X

%= r{-tl(coa ¢ stn.0 J -~ 3in ¢ coa © §) + cos ¢ ain O c08%0Q 62
+_6(-sin ¢ cos OJ - cos § stn 0 @)] .
J' 42 2
The terms in ¢@ drop out and the terme in and 0 can be col-
lected separately while factoring out -cos ¢ 8in 0, giving:
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X= -rcos ¢ aitn O ((1 « 00320)32 + 521
or . .
X = -r cos ¢ sin 0 (ain0 ¢2 + 0%) .

In view of (9}, it follows that

X==rcos ¢ sin 0 = -x .

It can be shown in exsctly the same way that ¥ = -y, and the
calculation for showing that £ = -z 1s even simpler.

It has now been shown that the three functions x, y, and
z satisfy the same second order linear differentlial equation.
Consequently, x, y, and z as functions of s are linearly depen-
dent, and any curve satisfying the Eular equations (10} must 1lie
in a plane through the origin. In other words, all curves on
the sphere satisfying the Euler equations are great circle arcs.
And, since the Euler eguations constitute a necessary condition
for a minimum, it follows that, if a minimizing curve 1s assumed
to exist, then a great circle arc must furnish the minimum.

13. Application of Buler's equation to classical problems.

Three classical problems will now be solved with the aid
of Euler'as aquation; namely, the Brachistochrone problem, the
problem of finding the surface of revolution of least ares, and
the Isoperimetric problem. Of course, in each cage the existence
of a solution will be assumed and the only possible sclution
will be found.

On pages 170-171 of the notes, the Brachistochrone problem
is formulated and it 1s shown that the total time of descent T
of a particle sliding along the curve

u = fix)
from the point {(0,0) to the point (xl,ul) is given by

T:—}—Iﬁ_@dx
7Ei, V&
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{(where the positive u-axis Js chosen in the downward direction).
Thus, the Brachistochrone problem amounts to minimizing the

integral
X
ral 2 aew?
0 vu
In this case, the function

F(x,u,u') = @
Yyu

doss not depend explicitly on x, and the following simplified
form of Euler's equation (as found in Seotion 8) can be used:

F - u'Fu, 2k

where k 1s an arbitrary constant., For the particular function
P of this problem, this equation becomes

Y1+ u'2 - ut? 2k
Ju Juv/ 1+ u'2

1 =
\/-‘I/I.'.ulz
In view of Theorem 1 of Section 8, 1t would be advisable

to determine first of all whether the solutions of the above
simplified condition of the form

or
k .

u=o
satisfy the Euler equation in its original form. For the inte-
grand function I of this problem, it is clear that

u=g¢
u'= 0

1
Fu 2 - 5:372 #£0

and, therefore, the set of integral curvea of the Euler equation
1s precisely the set of integral ourves of the simplified ocond{-

tion no arc of which 1s of the form

u=06
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It 1s most convenient to find the solutions of the simpli-
fied condition in parametric form. For this purpose, it will
first be shoun that u' can be used as a parameter on every curve
satisfying the Euler equation of this particular problem; that
13, 1%t will be shown that u" vanishes on no solution ourve,

All that has to be shown is that the vanishing of u" at any
point is incompatible with the Euler equation., If the function
F of this problem is substituted into the Euler equation and
then u" 1s set egual to zero, the result turns out to be

-1 -
2u3/2 1+ u'2

which clearly cannot hold at any point where u' exista. Thus
u" cannot vanish and u' can be used as a parameter.
In order to find the integral curves of

1
Ju/ 1+ at®

solving for u immediately expresases u in terms of the parameter
u' as follows:

s k »

- 1
kz(l + u'ZT
However, instead of proceeding to obtain x as a function of the
parameter'u', a new parameter © will be introduced by the
relation
u' = cot % ’
where the monotone character of the sotangent functlon insures
that @ can be used as a parameter since u' can.
Expressing u in terms of the new parameter O gives

1
_zil + cot (z))

Then, x as & function of the parameter Q@ ocan be found by first
finding dx/d@ with the chain rule of differentiation, as follows:

i?sn(z)z (1-0080) .
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Byt du/d0 can be calculated from the relation found above ex-
pressing u in terms of 6. The result of caloulating du/do and
substituting ia

dx 1 1

1
= ino= (1 - [~]
Betydreme-ha-emo

ainoe
9 8in @

St ZEr T8 T
It then follows that
1
x= =y (0 - sin 9)
2k
vhere the constant of integration has besn set equal to zero,
which means that it has been decided that @ = 0 should corres-~
pond to the point (0,0).
Thus, all solutions of the Euler equation are arcs of a
cyoloid‘ of the form

X = ziz (0 ~ ain @)

u = —iz (1 - cos @)

n

or
x = a{Q « gin ©)
u=a{l - sin 0}

where 1/2k2 18 renamed a. That is, the solution of the

* It 1s unnecessary to consider the possibllity of the minimi-
ting curve being more than a complete arch of a cycloid (in
which ¢ase u' could not be used as a parameter) since the time
of descent could be shortened by rounding off the cusp at the
top, thersby shortening the path and inoreasing the speeds.
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Brachistochrone problem, if it exists, must be an arc of a
cycloid.“

It might be remarked that the reason that the simplified
equation was gsolved using u' as a parameter rather than by sol-
ving for u' as a funotion of u was that u' is not a single-va-
lued function of u. If the simplified equation is solved for

ut, the result is
u =3+ / L. 1
=V ud

and the plus-or-minus sign must be taken into consideration
when solving the equation. Of course, thia means that integral
ourves must be found which agree in direction at every point
with elther of the direction fields D' and D" (See Figure 10)
glven by:

D+: ut =

D™ u' = - /:%2 -1

However, lnstead of following through wlith this approach, it
was preferred to solve for u as a single-valued function of u!
regarded as a parameter.

]

It might further be of interest to note that for certain
positions of the end-point (xl,ul), it can be seen that the path
of quickest descent takes the aliding particle lower than the
end-point and then up to the end-point (in which case the

IrOne slight refinement might be made In the reasoning c¢iven a~
bove. Since the integrand functlon F i1s infinite at the origin,
it would be better to consider problems whers the particle 1s

ziven an initial velocity Yo and then to allow Yo to tend to ze-

ro. It turns out that all that has to be done if the initial

velocity 1s v, 1s replace u by u + (vi/Zg) {(where g 1s the con-

stant representing gravitational acceleration) in the integrand
function F. The solution in this case is also a cycloid, and
this cycloid approaches the cycloid found above when Yo tends
to zero.

208



X
¥ v v v 7 T L ¥ F
AN u 7 » 7
b - 5 “» ” P -~ M
T 1 -+ 1
o o s e e e s e A v - o amws UMW -— an ws s MP W e wm - = =
% K
v
u \ 4

Figure 10, Tho direction in ficlds D' snd D".

partiocle switches from the ot direction field to the D~ direct-
ion fleld at the 1line u = l/ka). On the other hand; for other
positions of the end-point (xl,ul), 1t can be seen that the
particle slides along a monotone arc for quickest descent.

The problem of finding the surface of revolution of min-
imum area ¢an be formulated as follows: Join two given points
{on the same side of the x~-axis) in the x-u plans by a curve
such that the surface obtained by rotating the curvse about the
x-axis should have minimum surfece area. This area A of the
surface obtained in this way by rotating the ourve

u = r(x)

around the x-axis 1s glven by

x
1
A=21(X u\/1+u'2dx
x

o

and the integral to be minimized 1s

1 X
1
I= 3 uyy/l + u'” dx .
X

o
Clearly the funotion
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F(x,u,u'} = u + u'

does not explioitly contain x and the simplified form of Euler's
equation
F-u'F, =k

can be used. Thua, a necessary condition for a minimum is

2
u./li»u'z- uu! = Kk

1+ ut
or
u = k
V1 + u‘z
or, solved for u‘
r o= 1. - .
u L ;2'1

However, instead of solving the simplified equation when
it 1s solved for u' in which case the plus-or-minus sign would
have to be considered, the simplified equation will be solved by
essentially the same method that was used for the Brachisto-
chrone problem; i1.e., by obtaining the integral curves in para-
metric form. )

It can be seen in the same way as for the Brachistochrone
problem that all solutions of the simplified equation of the fim

u=e
can be disregarded since they do not satisfy the Euler equation
in 1its original form“, and it can also be seen that u' can be

used as a parameter. Then, solving the simplified equation for
u expresses u in terms of the parameter u' as follows:

u=kyl+ u'2 .

W u=c
ut= 0

In this case, F =140 .,
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Howsever, a new parameter @ given by
u' = sinh 6

will be introduced, where the monotone character of the hypers
bolioc sine guarantees that 0 can be used as a parameter asince
u' can.

In terms of the new parameter @, u is given by

u= k1l + sinhzs = k cos @ .

Then, according to the chalin rule of differentiation:

(11) dx - g_! du - 1l du = 1 du
d9 dude u'do sInhodd

But

§%= ¥ sinh ©

and, therefore, (in view of (11)):

and
X - a = ko .

The integral ocurves are therefore:

x - a = ko
u =k cosh ¢

or, upon eliminating the parameter 0:

u = k cos 5—ﬁ~3 9
which is a catenary, Again, of course, the assumption has been
made that a minimizing curve exiats.

As explained on page 187 of the notes, the classical Iso-
perimetric problem can be reduced to finding the ‘arc of given
length L with both end-points on the x-axis such that the area
bounded. by the ar¢ and the x-axis is maximum. Let parametrio
equations for the arc with the aro lengths used as parameter be
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d(s)

X =
u= yis)

with . .
xz + u2 =1

or, (assuming that x is an increasing function of s and there-
fore, taking the positive determination of the square root}:

(12) x=1 = o ,

where the dots denote differentiatlion with respect to s. The
area in question is given by

X L L _
Ae‘[ udx=f u;tds=j uv/l - e ds
x

o 0 4]

and the function
F(x,u,u) = u/l - ﬁz

for this variational problem does not depend explicitly on s.
The simplified form of Euler's equation for this case is

F - uFﬁ =k
or .2
u/l - &2 PO
1 -1
or .
Yo = k.

A -l

It ocan bo seen for this problem, just as for the last two pro-
blems, that solutlions of the form
u=g

can be disregarded and that u oan be used as a parameter.
Solving the simplified equation for u in terms of the pa-
rameter u gives

(13) u=kJ{-ﬁz .



It is clear from (13) that the parameter U never exceeds unity

in absolute valus snd that a new parameter @ can, therefore, be

introduced by the relation
u = coa © ’

where the monotcne character of the coaine function in an appro-

priate interval insures that © can be used as a parameter since

u can.

In terms of the new parameter 9, u 1s glven by

u= k1 - 00520 = k 8in 6

In order to f£ind s in terms of 9, ds/d¢ will firat be found as
follows:
%% = %% %% = i %% = oo} -] %% *

Since

%% = k cos ©
it follows that

ds Kk

a0
and

8 - a= ko .

Thus, the solution (in the

8 - a
u =k

su-plane) 1s given by

= kO
8sin

or, upon eliminating the parameter &,

u =k sin g-ﬁ-ﬁ

or, since u equals zero for the initial point,

u=k sin % M

In order to obtain x as a function of a, it will be noted
that (12) and (13) together imply

x=g
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and, therefore,
x = sin

w|o

and
X -Db

-k cos

=l
L ]

Thus, the solution is

X -~ b= <k cos

wa

)
k sin m

u

which is clearly a semi-circle. Thls means that the semi-ciicle
is the arc of given length with both end-points on the x-axis
such that the area bounded by the arc and the x-axis i3 maximum.
It follows that the circle encloses maximum esrea among all non-
self-intersecting closed plene curves ¢f the same berimeter
provided that such a maximizing curve exlsts.

l4. Invariance and the Euler Expression.

The notlion of invariance plays a major role in the mathe-
matica and physios of the twentleth century. In particular,
relativistic physics is grounded on principles of invariance.
This concept will now be discussed, and a very important rule
of invariance for Euler's equation will be brought to light.

The principle of invariance in a limited form held a fun-
damental position in the seventeenth century mechanics of Gall~
leo and Newton. This restricted concept of invariance was em-
bodied in the classical principle of relativity, which may be
formulated in the following way. If two coordinate systems K
and K are 30 related that K¥ 1s in a state 9f uniform motion
of translation with respect to K (i.e., if k¥ moves without ro-
tation at & constant velocity with respect to K), then the genr
eral laws of mechanics have the same formulation in the k¥ 8ys=-
tem as in the X system. In other words, the laws of mechanics
are "invariant under all transformations" of coordinates such
that the original and transformed systems are related by wniform
translatory motion. For example, if the Newtonian formula
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F = ma

holds with respect to an observer standing on the ground, then
it also holds with respect to an observer on a train traveling
in a straight line at constan%t speed. This 1s an expression of
the invariant way in which natural phenomena run their course
without depending on the toordinate system used to describe thems

In everyday life, a very similar principle of invariance
would be taken for granted. If a man should change his name
from Jack to George, this change would not necessarily influence
his character and other general traits. In other words, the es-
sence of any object is invariant under all changes of names
which are merely used to label the object. And, since coordi-
nates are simply mathematical labels, it ls to be expected that
the laws of physies should be invariant under changes in the
coordinate system used for describing physical phenomena. It is
Just the old story of a rose smelling as sweet by any other name.

The modern principle of relativity is based on a notion
of Invariance including all transformations of soordinates. The
transformed system may be in any state of accelerated motion
with respect to the original system. Einsteln envisaged the
need for physics of using mathematical entities invarisnt under
all such coordinate transformations. I these invariant enti-
ties are used in writing the formulas of physics, the formulas.
would then be invariant under general coordinate transformations.
It 1s therefore of great interest in mathematics to investigate
invarience and invariant mathematiocal entities.

An extremely s imple invariant mathematical entity 1is the
vector. In fact, vectors are useful for providiag insight into
geometrical and physical situat'ons jJust because of their inva-
riant nature; 1.e,, just because they depend only on intrinsic
properties of the particular situation. Thus, it would be in
keeping with the point of the present discussion to explain pre-
cisely what is meant by saying that a vector is invariant. Then,
it will be shown later that the left slde of Buler's equation
enjoys this property of invariance in a very analogous sense.

215



PFor the sake of 3implicity, the meaning of the invariance
of the vector will be explained first only for transformations
from one rectangular Cartesian coordinate system to another of
the same type. Thus, the transformations to be considered are
combined translations and rotations. These transformations, of
course, conatitute linear transformations

n
(lu.) .i-i = EI aikxk + Bi (1 = 1,2,0...“.)

where the matrix of the a,, 1s orthogonal; i.e., where

n m
(15) }f; %11%m = O =

An n-dimensional vector is defined as an entity which can

0 Ifx#m
l iIfk=m .

be realized in every n-dimensional coordinate system by glving
an ordered n-tuple of numbers {called the components of the vec-
t.."in that coordinate system) where the n-tuples corresponding
to different coordinate systems are ao inter-related that they
possess“the followlng property called invariance: If the coor~
dinates transform according to {14), then the components
(ul,uz,..},un) of the vector transform according to the corres-
ponding homogeneous equations

n

{16) ﬁi = E;; LA {1t =1,2,...,n) .

In other words, the components of the vector transform like co-
ordinates or, more precisely, like differences of coordinates.
(In fact, the components of an ordinary dlsplacement vector are
actually the differences of the coordinates of the end-points
of the dlsplacement.,) Thus, saying that a vector 1is invarlant
means, by definition, that its components transform according
to (16) when the coordinates tranaform according to (1l4).

As a consequence of the invariance of a vector as defined
above, vector equations are invarlant in tho sense that they
undergo no change at all when the coordinates are transformed.

216



For example, if the inner product (scalar product) of the vec-
tors U and V equals the number A for a particular choice of
coordinate system; l.e., 1if

U-v=a |,

then the same equation is valid no natter which coordinates are
used. Thils follows at once from the invariance of vectors in
the following way! The inner product in the transformed coordi-
nate system, say A, 1s given by:

n—-
X= E= uv, .
However, in view of (16) it follows that

3= é; (E;—I %41ty g %)
n

X =

or

a,.,.u.a, Vv
W=t ik"k im'm

or n

n
X= ( Q,, &, Ju,v .
k%%;; =y ik im""k'm

After having changed the order of summation in this way, 1t fol-
lows In view of (15) that

n
X=73 uyv =i .
r=

UsvVv=2>

Therefore

independent of the choice of coordinate system. As an example,
work in mechanlos 1s given for all coordinate aystems by the
inner product of the veotor forece involved and the vector dis-
placement.

In general, saying that a mathematical entity 1s invariant
means that it undergoes coordinate transformations according to
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a certain law which holds for all coordinate transformations.
Moreover, in order for such a law of transformation to be saild
to express the invariance of the mathematical entity, 1t must
follow as a consequence of the law that "inner products" are in-
varlant in the sense that they undergo no change at all when the
coordinate system 18 transformed.

Actually vecotors are defined so as to be invariant not
only with respect to orthogonal linear tranaformations, but also
with respect to the general transformation of coordinates

7= Pat,AR, . 1) (4 =1,2,...,n)
which, 1t will be assumed, has an inverse. In this case, two
different kinds of vectors are deflined, contravariant vectors
and covariant vectora. A contravariant vector“ (ul,ua,...,un)
is defined so as to transform like differences of coordinates
in the small; that 1s, like infinitesimal displacements. it On
the other hand, the law of transformation for a covariant vec-
tor (vl,va,...,vn) is expressly designed go that the inner pro-
duoct of a contravariant and covarlant vector should be a scalar;
i.e., independent of the coordinate system. That is, covariant
veotors transform in such a way that

’It 13 customary to use superscripts for the components of a
contravariant vector and subsc¢ripts for the components of a co-
variant vector. 1In fact, when the distinetion ls made between
the two types of vectors, 1t is proper to use superscripts for
the coordinates themselves since they are akin to the components
of a contravariant vector.

it Precisely, contravarient vectors are defined so that their
components transform according to

n i
ffi - IF uk ,
=1 8x

whereas infinitesimal displacements transform according to the
chain rule of differentiation:

4 st
d = —de .
X E T ox
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< iy, = 21:1: ulv
1= 1 r=1 r

Examples of contravariant vectors are displacements and veloci-
ties, while examples of covariant vectors are gradients and
forces.

To sum up, there are two kinds of vectors; namely, those
which behave 1like infinitesimal displacements and those which
behave like gradients. Both typea of veotors are defined so as
to be invariant; that 1s, so as to transform in very special
ways. As a result, the inner product of a vector like an infie
nitesimal displacement and a vector like a gradient 1s indepen-
dent of the coordinate syaten.

Before proceeding to explain and demonstrate the invariant
nature of the Euler expression {(i.e., the left side of Euler's
equation}), 41t will be of interest to show first that the Euler
ex resgion Is very s imilar to another invariant entity, the or-
dinary gradlent. Just as the gradlient of a function 1s a vec=-
tor (whose components are sinply the first partial derivatives
of the function), it will be seen that the Euler expression 1is
analogous to this type of vector and might well be called the
gradlent of 1ts assoclated functlomal. In order to uncover this
gradient-like nature of the Euler expression, the extremizing
problem for a functiomal will now be compared with the ordinary
extremizing problem for a function of n variables (as 1s done
on pages 12-13 of the notes).

The extremizing problem for a function of n variables
which will be considered here 1s formulated as follows: PFind a
necessary condition for a point (u;,ug,...,u:) in ordinary n-
space to extremize the function of n variables

I= I(ul,ue,cco'un)

The necessary condition will be found by displacing the point
(ug,ug,...,u;) in n-space. That is, let the coordinates L be
arbitrary functions of a parameter t,
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u = ui(t) (1 =1,2,...,n}
where t = 0O corresponds to the original point; to wit:
o _

ug = ui(O) .

Thus, the point is displaced along some curve in ne-space; or,
in other words, the point is imbedded in a family of points.
Certainly, 1f the point (ug,ug,...,ug) extrsmizes the function
among all points (in a neighborhood), then it also extremizes
the function among all points of the family. This means that
any necessary condition derived by considering the family of
points will also be a necesaary oondition for the original pro-
blem. In other words, it is good enough to find a necessary
condition for ¢ = 0 to extremize the function I when the coor-
dinates u; are substituted as functiona of t into the function
I. That 18 to say, a necessary conditlon will be found for the
function of one variable ¢t

Kt) = T(xy(t),x(t}, e, x (£))
to take an extreme value for t = 0. As shown in the theory of
differential calculus, a necessary condition 1s
t =0
I=g1e) =0 .

The quantity i in this case is given by the chain rule of dif-

ferentiation as
t=0

[
§€.
M
Al
2
[="

or .
I=V .grad I ’

vhera the velocity vector V is simply

dx1 dxz dxn t=0
Ve (goagr e dw )
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Thus, the quantity i has been expressed as the inner product of
the gradient of I and an arbitrary inflnitesimal displacement
vector (an infinitesimal displacement vector being essentlally
the same as a.velocity vector). The necessary condition is the
vanishing of I for arbitrary V, which implies the vanishing of
grad I (i.e., the vanishing of all the first partial derivatives
of I). But the important point for the present analogy is that
I1s an inner product of grad I and an arbitrary infinitesimal
displacement vector.

A necessary condition for a function u(x) to extremize
the functional

b
Ié) = j Fix,4(x),4'(x)) dx
a

when substituted for ¢(x) was found ¢on pp. 11-17 of the notes
in an exactly analogous manner. In this case, the argument 1is
not & point in n-space depending on a coordinate for each of n-
subscripts, but i3 a function depending on the continuous range
of 1ts independent variable. The function u(x) was "displaced"
or imbedded in an arbitrary family of admissible functions

4 = &(x,t) »
where t = O corresponds to the nriginal function; that is
u(x) = ¢(x,0) .

Certainly, if the function u{x) extremizes the funotional among
all adnissible functions, then it also extremizes the functional
among all functions of the family. Thus, a necessary condition
was found for t =.0 to extremize the integral

13

b
d(x,0)] = T0e) = [ Flx,d(x,8),0,65,8)) ax
a

where tne integral 1s simply a funotlon of the one varlable t.
The necessary condition used was, of course,
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. 4 lt=° 0
Isgg It) =
The quantity I {(called the first variation of I and sometimes

denoted by 6(I) was found in this came by differentiating under
the integral sign and subsequently integrating by parts, giving:

» 1D d
(17) I = L UF, - gz Fy) ax
where the "infinitesimal displacement™ % is simpiy

&x) = 4.(x,0)

The function 4(x) (sometimes denoted by Bu or u) corresponds for
any fixed value of x to a component of the infinitesimal dis-
placement V for the extremuT problem for a function of n varia-
bles. That is, { or 6u or u is of the nature of dx (or

%% - The expression for I given by (17) can be rewritten as an
inner product

I=(,(F])

where the Euler expression

Fﬁ Fu'

P

dx
is abbreviated by [F]u and the inner product of two functions
f{x) and g(x) is taken to be

(fr,g) = j: fix)gl{x) ax .
This definition of the inner product is a very natural generali-
zation of the definition of the inner product of two vectors
as a sum very similar to the aboye integral.*

Thus, the first variation I has been expressed as an inner
product of an arbitrary infinitesimal displacement ¥ (arbitrary

¥ For sn abstract definition of an inner product over any linear
space as a bilinear form, consult any work on linear algebra.
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except for the requirement that it vanish at the end-points of
the interval) and the Euler expression [F]u. By analogy with
the corresponding result for extremizing a function of n varia-
bles, it appears that the Euler expression [F]u behavesa like a
gradient and might therefore be called the aradient of the func-
tional I; i,e.

[F]u = grad I .

It 18 therefore to be expected that the Euler expression will
possess the property of invariance in the same way that an ordi-
nary gradient vector does and that the invariance willl stem
from the fact that the inner product of the infinitesimal dis-
placement and the gradient of the functional should be indepen-~
dent of the coordinate system. However, before exhibiting this
property of invariance, the concept of the gradient of a func-
tional will be 1lllustrated by two further examples.

In order to find the gradient of a functlional, the first
variation of the functional has to be expressed as the inner
product of an arbitrary infiniltesimal displacement and some
other expression. Then, this other expression is called the
gradient of the funoctional.

As tn example, the gradient will now be calculated for
the functional n
(18) I{u) = &j K{x,y)u(x)uly) dxdy

)
with K{x,:) = K{y,x) where the Integration is over the unit
square 0 :: x <1, 0 <y < 1. The function u(x) is defined:in
the unit interval and function K(x,y) is defined in the unit
square. If u{x) is imbedded in the family of functions ¢{x,t)

where
u{x)} = ¢(x,0)

it is clear that the first variation of the functional is given
by
Ia ” K(x,7)(a(x)u(y) + uix)uly)) axdy
=
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where t =0

w(x) = & bix,0) :

In view of the symmetry of K(x,y), I 1s then given by

I= 2“ K(x,y)ulx)u(y) dxdy

a
or
. nl | 1
I= J u(x)[ZJ K{x,y)u(ly) dyl] ax
(o} (o}
or
. . 1
I=(a(x), zj K(x,yuly) dy)
(o}
Thus
5
{19) grad I = 210 K(x,y)uly) dy

As another example, the gradient will be calculated for
the functional

(20) I{u] = XJ F(x,y,u{x),uly),u'(x),u (y)) dxay
g

where the integration i1s over the unit square, where
u(0) = u(1) =0 ,

and where F 1s symmetrical in x and y, in u(x) and u(y), and
also in u'(x) snd u'(y). Upon imbedding u{x) in a family of
funotions depending on t, (displacing u{x) into a family of
functions), it immediately follows that the first variation is
given by A

f= ”‘ (Fyi(x) + Fily) + Fg L ax) + F, -‘d‘—y u(y)] dxdy
a

where Fi denotes the partial derivative of F with respect to
its i-th argument, In view of the symmetries of F, I 1is given

by . ' . 4
I= aﬁe‘; [Fyulx) + Fg 37 u{x})dxdy
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or, upon integration by parts

= 2“ w(x}[Fy - & Fgl dxdy
Q

or
N 1, 1
I= jo u(x) [Zgo (F3 - f& Fs)dy]dx
or
I= (alx) z\'l(p - & F.)ay)
= (uix;, lo 3 axsy
Thus
(2 dI=2 1 2.
1) grad I = 50 (F3 - £ Fs)dy

It might be remarked that the functional in (18) s a speclial
case of the functional in (20}, and the gradient in (21}, there-
fore, reduces to the gradient in (19) upon setting

¥

[

3 K(x,y uly)

F5=0

Thus, 1llustrations have been given to clarify what 1s
meant by calling the Euler expression [I-"]u the gradlent of 1its
assoclated functional, and 1t has been 1lndicated that gradient-
like behavior ought to imply some kind of invariance. In short,
it would seem that the stage has been set for the demonstration
of the Invarlance of the Euler expression. However, just one
more preliminary discussion will be made before showing thils
invariance.

In order to prépare for displaying the invariant nature of
the Euler expression, a few remarks about notatlon for trans-
formed functions will now be made. Specificsally, the notation
to be used for a function a(x) after it has undergone a trens-
formation

x = r(g)
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will be discussed. The trangsformed function a{f(£)) is some~

times denoted simply by a{&) aend is sometimes denoted by some

new name, say P(£) or a#(g}). Which of thess two notations is

to be used depends on the point-of-view of the particular dis-
cussion in the following way:

If the viewpoint to be emphasized is the dependency of
some quantity on other quantities rather than functional rela-
tionships in the mathematical sense; 1.e., if a 18 not regarded
as the name of a certaln function but rather the name of a cer-
tain quantity, then writing a(x) expresses the fact that the
quantity a{x) depends on the quantity x, In this
case, the trasformation means that the quantity x depends on
the quantity £, and, therefore, the quantity a depends on the
quantity €. This fact can bs esxpressed by writing the symbol
a(£), which simply means that the quantity a depends on the
quantity £.

On the other hand, if functional connecticns are being
stressed, then a new neme must be used to denote the transro;med
function. That i1s to say, if a(x) 1s regarded as denoting a
functional relationship in the mathematical sense (such as
2x + sin x), then a(r(£)) (1.e.,2f(k) + sin f(£)) 18 a function
of £ which cannot be denoted by a(£) (i1.e., 2E + sin &) but
must be denoted by some new name, say a#(f).

For example, 1f the quantity called the volume V of a
certaln system should depend on the temperature &, a physicist
interested primarily in quantities might write

V = V(O) .

And, 1f the temperature © should in tum depend on the time ¢,
which means that the volume depends on the time t, this depen-
dency might be expressed by

V= V(t) .

Here, of course, V really stands for & Quantity, the volume,

and not for a functional relatlionship. To be more precise and
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emphasize the functional relationships involved, the same physi-
cal situation might be described mathematically by

v

[

q({9)

and
@

r{t)
and, therefore
V = q{r{t}) = qi(t)

The notation emphasizing quantities, which is widely used
by physicists, 1s rather simple and 1is good enough for many
purposes. However, this simplified notation leads to a diffi-
culty, for example, in writing symbols for partlal derivatives,
As an 1llustration, let U denote the quantity called the inter-
nal energy of, say, a chemical system. The astate of such a
system 1s characterized by the three thermodynamic coordinates
P, V, and 9, where P represents pressure, V represents volume,
and @ represents {absolute) temperature. However, only two of
these thermodynamic coordinates are independent since the three
are related (for states of equilibrium) by the equation of state
which every chemical system possesses. For example, the equa-
tion of state for an ideal gas is essentially

(22) V= %c,=‘.

Thus, the internal energy U may be regarded as depending on any
‘two of the quantities V, ©, and P. In other words, for any
particular chemical system

i

U u(v,9)
expresses the fact that U depends on V and €, while

U = U(P,Q)

sxpresses the fact that U can also be regarded as depending on

P and 0. This is quite simple, but the ditflculty arises when

the partial derivatives of U are oonsidered. The partial '
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derivative of U with respect to ¢ when U is regarded as a fuync-
tion of V and @ and the partial derivative of U with respect to
@ when U 1a regarded as a function of P and O are partial derl-
vatives of different functions and require different symbols.
Physicists denote the former partial derivative by (a ) and

the latter by (2 E)P' The partial derivative (5§)V ia called

the partial derivative of U with respect to © "when V 1s held
constant®, and (a )P is called the partial derivative of U with
respect to © “"when P is held constant”. 1% is very important

to realize that the two partial derlvatives are in general quite
different. It should be understood as stated for example, on
page 57 of Heat and Thermodvnamics by M.W. Zemansky that “the
two partial derivatives (gg)v and (gg)P are not equal. The
first is a function of € and V, and the second a function of €
and P. They are diflerent mathematically and also have a diffe~
rent physical meaning®. Perhaps it can be seen moat directly
that the two partial derivatives are really different by consi-
dering a siuple hypothetical example. For Instance, let U be
given by

U=V +@

where V, @, nid P are related according to {22). Then, U is
also given by
Usg+o

Then, the two partial derivatives are given by
)
Sy
Q._)P =

it

i =

+ 1 '

The entire difficulty with the notation for partial derivatives
completely disappesrs, however, if the wore precise notation isa
used:
U = £(v,eQ)
U= f(K(PnQ) b S(on)
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where
Vv = K(P,Q) .

In this case, the two partial derivatives are slimply gg and g%.

Thus, two notations are avallable for transformed funce
tions. Which notation to use 1s governed by the nsture of the
particular discussion. It is frequently desirable when the
meaning 1s clear to use the simplified notation in order to
keep the notation from getting unnecessarily complicated and pe~
dantic. On the other hand, the simplified notation in some
cases may lead to confusion and 1t would then pay to denote
transformed functions by new names.

The above dlscuasion of notatlon constitutes tine last pre-
liminary step, and it is now time for the coup de grace, the
demonstration of the invarlance (more precisely, covariance) of
the Euler expression. In other words, it will now be shown that
ths Euler expression undergoes all transformationsa according to
one and the same rule. This rule will be obtained by conside-
ring the most general change of independent variable in the in-
tegral

b
I[u) = j F{x,u,u') dx ,
a
the first variation of which of course, is

‘o b‘
{23) I-= f u{F) y ax

a ulx
where q
(Flu(x) = Fu = 3% Fur
Let the trensformation or change of variable be given by

(24) x = (&)

with an inverse everywhere in the interval a < x < b, and let
a¥ and b# be the numbers for which
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£{ax)
£{b#)

L]

a
b

Using the simplified notation, let the function u(x) after the
transformation ba denoted by u{f) and let %E u{&) be denoted
simply by u'(f). But, to be slizhtly more precise for the func-
tion P, let the funotion F(x,u,u') after the tranaformation be
denoted by G{Z,u,u’'); i.e., let

FL(E),u(g), Fr u'(€)) = G(E,ulE),u'(g)) .

Thus, the transformed functional is

bw
I(u] = X G(E,u,ut)frax
a¥
and 1ts first variation 1s
L] lb* .
{25) I= L“ u[Gf‘]u(E) dg
where

d
{Gf'}u(g) = Guf' - a-é (Gu|f') .
Comparison of (23) and (25) implies that

l‘b . ‘bw . '
J. 8Py ax = L* alore ]y ) @

for arbitrary ﬁ; or making a change of variable in the integral
on the right in order to have the same limits of integration
for both integrals, 1t follows that

Cb u(F) dx
Jo - ulx)

b . 1
1
ja u(Gr ]u(g)'?f dx
for arbitrary u. Since u is arbitrary, the following identity

is implied:

1
[F]u(x) = [Gf']u(g) Yl .
or

plp]“‘"ﬁ; [Gf']u(e) .



And this ldentity expresses the lnvarlance of the Euler expres-
sion or, in particular, the independence from choice of coordi-
nate system of the lnner product of u and [P]u. This 13 the
rule according to which the Euler expression undergoes all
transformations.

In the derivation given above for the property of inva-
riance, the simplified notatlion made it posaible to avold the
writing of unduly complicated expressions, but at the same time
certaln steps in the reasoning mijzht not be quite clear at
first. For example, the comparison of (23} and (25) might be
questioned somewhat. Therefore, in order to show that the en-
tire derivation can be justifled step by step, the same deriva-~
tion will now be repeated without using the simplified notation;
1.9., transformed functlons will be given new names. Once this
has been done, a return can be made to the simplified notation
since any possible misunderstandings will have been cleared up.

In order to have & somewhat uniform notation for this de-
rivation, the following scheme will be followed in naming func-
tions: If a funotion m{x) is transformed according to (2lj), the
transformed function will-be denoted by m#(£); and, 1f a func-
tion n{g) 18 transformed according to the iiverae of {24}, then
the transformed function will be called n°(x).

Following the above convention, lot the function ulx) af-
ter the transformation be denoted by ui{&); i.e., let

u({r{g)) = uwg)
and let the function F(x,u,u’') after the transformation be deno-
ted by G(g,u#,us#'); i.e., let

PLEC6) o) rkey 8% = e g8

Thus, the transformed functional I# is given by

Db
T#{us] = ] , GlEusust)£1E) ag .
a
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The first variation of this functional 1is, of ceourse,

. b
{26) I# = 1 o
a

uHE) (G ]y ) OF
where
(60 uqp) = OyalGsus,ust )00 (£) -%g [, (€ usust)er(g)]

However, in order to compare I*.with I, x will be introduced as
the variable of integration in I#, piving

o* b . , (] 1
(27) I#= L u(x) {[cr ]u*(E_)} -r—l-;dx

o
where the meaning of {[Gf']u*(s) is as follows: The exprese
sion [Gf']u“(z) is some function of §, say

(G ) ugey = V(E) -
Then, {[Gr']u*(e)}o 1s given by
[+]
{[Gr'lu*(g)} = y(£7(x))

where £™1 1s the inverse function of f. Similarly, the funoction
£'° 15 to be taken as

£1° = rr(e~l(x)) .

Now, for the purpcse of comparing I and I#, I[u) and I#([u#] will
be compared first. It is clear that

T(u] = I#{us]

is an identity with respect to the function w since making a
change of variable does not affect the value of an integral.
Thus, if u 13 imbedded in the family of functions $(x,t) and uw
1s {mbedded in the family ¢#(£,t) where

dHe,t) 5 d(rlE),t)

it follows that
232



I(d(x,t)) = I#(d#(g,t)])

and
4 Td(x,0)1|%0 = $& 1uldnig, )1 "0

or, in other words,

I I .

Using this last ldentity and expressing I and i“ as given in
{23) and (27), it follows that

Ib u(x){F]

b o
. . 21 VoA
. dx :'ga u(X){(bf ]u*(g)j o 4%

ulx)

for arbitrary u(x) (vanishing, of course, at the end-points).
In view of -the arbitrariness of u(x), it follows that

[ {ar p!
[P]u(x) = ltbf ]u#(g)} ’;.—6

or °
(28) 0Pl = {[Gf‘}u*(a)}
where both sides are functions of x, or

#*
(29) b {[F]u(x)} = [Gf']u,*(g)

where both sides are functions of £. In other words, (29)
states that calculating the Euler expression of F and then
changing to new coordinates and then multiplying by the factor
f' glves the same result as first changing F to new coordinates
and then multiplying by the factor ' and then finding the
Euler expreasion.

However, the notation used above 1s really unnecessarily
pedantic for the simple situation at hand. The funection us#(f)
might aimply be called u(£}, and similarly the other super=-
scripts of stars (#) and naughta (°) might be omitted. Thus,
the relation (28) or (29) showing the invariance of the Euler
expression can be written in the same form as previously found,

as follows
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f'{plu(x) = [Gf']u(g) .

This completes the second and more detalled derivation of the
rule according to which the Euler expression undergoes transfor-
mations of coordinates; 1.e., the rule which expresses the in-
variance of the Euler expression.

Thus, it appears thet the formallsm of the Calculus of Va-
rlations insofar as the Euler expression 1s concerned is the
same in all coordinate systems except for the necessity of using
as a factor the derivative f' of the transformation relating
any two particular ccordinate systems.

The analogous rule of transformation for the Euler expres-
sion when u 18 a function of two (or several) variables will
now be found. In view of the above detaliled dlscussion, 1t will
be assumed that tne meaning is clear when the simplifiaed nota-
tion is used. The functional to be considered 1ias

I{u] = Sl F(x,y,u,p,q) dxdy

where

p = u,

q = “y
and R i3 a region of the xy-plane. The filrst variation is, of
course

(30) Is= I£ Mrlu(x’y) dxdy
where 3 )
(Flutx,3) = Fu = 2x p "~ 37 Ta

Let the transformation to be made be glven by

]

X
y

£(&g,n)
gl&,y)

with an inverse sverywhere in tho reglon R of the xy-plane, and

let R+ be the reglon of tte &y-plane which 1s mapped onto the
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region R of the xy-plane. Also, let the funotion IMix,y,u,p,q)
after the tranaformation be denoted by G(&,%,u,n,k) where

"=

(3

K= u,:
The transformed functional is then

I[u] SXRJ%‘! a(ﬁ:’[ou'":’t).i dagdy

where j represents the Jacoblan of the transformation; that 1is

The first varlation is clearly given by

. ¢ (' .

I= L{ u[GJ]u‘c'”) dedq
or

L] . 1
{31) I= _LI u[GJJu(e"l) 3 dxdy
where

p

In view of the arbitrariness of G, comparison of (30) and (31)
now ylelds the identity:

(631 (g,y) * Oud - GRS N R

JLF] = (GJ]

U(EDH) '

This identity, of course, sxpresses ths invarianoe of the Eulsr
expresaion, and it once again appears that the formaliam is the
same for all cocordinate systems exoept for the Jasooblan j in

“(xvy)

this ocnse.

It might further be noted that if u isa a funotion of n
variables (xl,xz,...,xn), reaasoning exaotly parallel to that
used above ahows that the Eulsr expreasion transformes according

to

(F] = [(a4])

“(x1.32,lllpxn) u(€1052D‘°‘lEn)
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A very elementary application of the fnvariance of the
Euler expression is its use in transforming the Laplacian

Do=u o+ Uy
to polar coordinates (r,Q) given by

r cos @
r sin O ’

x
¥y

The transformation can, of course, be made directly, but the
transforming of the second derivatives requires considerable
calculation. With the help of Euler's expression, however, the
result will now be obtalned by transforming only first deriva-
tives. The main point ia to observe that the Laplacian is essen-
tially the Euler expression for the Dirichlet integral {as indi~
cated on pp. 23-2] of the notes). In other words, Af the func-
tion F is gliven by

I 2
-ZF'—ux +% ,
then the Euler expression 1s simply

(32) [Flu(x’y) = ALI .

In order to take advantage of the invariance of the Euler ex-
pression, the Jacoblsn j 1s needed and ¢an be seen to be given

by

Q‘lq +

] s 2 : = r ’
»

In order to find the transformed integrand function G, u, and
u.y will have to be transformed to polar coordinates, as follows:

= +
u, U ry uoox

uy urry + uogy

where
Yo
r_= T = ¢cos Q
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x T r
%o
ry = - T = 8in @
x
= I _cos ©
0y | > »

Towus, u, and "y are given by

- sln @
u, = u, cos Q - ug T

cos @

11y=ursin0+u° T ’

G is given by

and GJ is given by

2 2 1
-2G = u + = u + u
x Yy r " 270 '
2,1 2
* TV

=2Gj = ru,
The Euler expression for Gj 1s then
(33) (63 (o) = & (run) + Fugg

Substitutlon of (32) and (33) into

J[F]u(KIY) = [GJ]“(r’g)
glves

and, therefore

Thus, the Laplacian bas been transformed to polar coordinates
simply by transforming first derivatives end using the invariance
of the Euler expresgslon.,

As a further application of the invariance of the Euler
expression, the ~aplacian will now be transformed to 3-dimensio-
nal polar coordinates (spherical coordinates) and also to n=-
dimensional polar coordinates. However, tha transformation will
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be accomplished in an even more efficlent manner than was used
above for 2-dimensional polar coordinates. The method used
above would be too complicated for the following reason: In or-
der to tranaform ux2 + uy2 to polar coordinates, u, gas 302
transformed and also was trensformed and then u " was
calculated. If the attempt 1s made to carry out the analogous
computation for more than two dimensions, the amount of calcu-
lation involved 1s almost prohibitive. Therefors, before trans-
forming the Laplacian in 3 or n dimensions, a method will first
be developed for transforming the sums of the squares of the
first partial derivatives of u 1lnto any curvilinear coordinate
system without explicitly tranaforming any of the partial deri-
vatives themselves.

For this purpecse, let the rectangular Carteslan goordinates
be (xl,xz,...,xn) and let the curvilinear coordinates

({1,52,...,€n) be given by
xi = fi(gl’ea'.."sn) (1 = 1,2,000,“)

where the transformation 18 assumed to have an inverse. Also,
let the matrix of the .facoblan ] be denoted by J; 1.e,

axl 2x, ox
3‘6—1- 5‘5;0-.5‘:—1'
Dxl ax2 axn
Jds= 3-5-2- ;Eé-”‘s—z
oxy Xy ax,
T,
where
det J = .

The chain rule of differentliatlion glves

ox Ix ox
du . du-1 ., du’-2 24 _n =
D—gniz -a-i;agi + x2 =Y 1 + ces + oxn agi (1 1,2,-.0,“)



er, in matrix notation,

2u

/ng )Xl
= 24

852 J 2%y
21 24

3 Ix,

Since it has been assumed that the t ransformation has an inverse,
the matrix J is non-singular and has an inverse J'l, so that

2.u 24
axl agl
- Ju
(34) 28\ e gl
'5x2 3'65
2u a2
Sx, €

-

If the trenspose of each side 1s taken and the transpose of .I"l

is derioted by (J'l)', 1t follows that

Ju _Jdu -1
(35) (B - 2 52 e T

n

Multiplying (34) on the left by (35) gives

2u 2u
9%y o€,
du 3u duy[ 21 ). u du o 9uyegely,g=lf 2u |}
(36) ();IT;Z- 3-£n 3% (%—- % ;—;—n)(J ) ’E,
24 -2u
x, *n
/ ;
Howevey,
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v
[+

o
=

1
2u du o 3wy du | s w2
‘oxy axp 0 3%, 3%, |T g (5%,
Ju
axn
and
(3 Yyeg=l = (307257 o (ggr)? .

Thus, (36) can be written in the form

u
£y
n
ouy2 , (Ju du 2y -1[ 3u

o\
3¢ /

or, for 3-dimensional polar coordinates (r,d,9):
Yp

(38) ux2 + uyz + “z2 = (ur uy uQ)(JJ')"1 ug .
ug,

Thus, th¢ swn of the squares of the partial derivatives of u
can be ctlculated simply according to (37) (or (38)). Also, the
absolute value of the Jacobian j can be calculated from the ma~
trix JJ' aceording to

J=det J =t /dot (JI7}
that 1is,

(39) I3t = | LESTTITTT | ,

where the vertical bars denote absolute value. ' (The reason
that it 1s preferable to have the computation depend as much as
possible on JJ' rather than on J is that JJ' tums out to be a

much simpler matrix in significant examples.)
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Nos that the above rules have been prepared, the 3-dimen-
sional Liplacian

Au = uxx + uw + uzz
will be transformed to polar coordinates {r,$,0) where

X =1 cos ¢ sin ©
y=rsind sin @
2 r cos @

it

In this oase, i1f the integrand function F for a variationel pro-

blem is given by

- 2 2 2
-2F = u, + uy + u,

then the Euler expression is simply

[F]u(x’y'z) = Au

In order to transform F according to (38}, the matrix (JJ')'1
will be calculated. In this case, the matrix J is given by

cos ¢ sin © ain ¢ cos © cos ©
J= |-r sin ¢ sin © r cos ¢ sia © )
r cos ¢ ocos @ r sin ¢ cos © -r sin ©

and, it 1s a simple matter to see that the product of J and its
transpose J' is given by

1 0 o
JJV = 0 rasinzo 0
0 0 rz

and, therefore

1 o0 0\
(30)t = o e 0

raine /
1l
0 0
e/
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Then, according to (38}, it follows that

2 2 2 2 1 2,1
i S e T N v o e A

r sin—o

2

and that the transformed integrand funotion G is given by
2 1 2,1 2
-0--—2———2-—116 +—2-u° 0

-2G = u,
r sin @ r

The Jacobian ascording to (39) 1s simply given by

13} = | VASETTITTY | = lrzsin 0 |

where there 1s no need to determine whether the plus or minus
sign 1s to be used when the absolute bars are removed since re-
placing j by -j causes no change in

1
“4-0) [qu(x'y'z) = ‘3‘ [G‘”u(r,d,g) .

It is then clear that GJ is given (except for a possible minus
sign) by

2
2 2 4 2
-2G) = r"8in © u,” ¥ ETg_ﬁ + 8in © ug
and u
9 2 )
[GJ]u(r,é,O) =37 (rsin 0 u,) + 5& (sTa) * 5o (sin @ ugl.

Substitution into (40) immedlastely gives the result

u a
Au = : 1 {5% (r2sin © u,) + g% (ET%_ﬁ) + 55 (sin © ug)} .

sin €

The Laplacian in n dimensions will now be transformed to
poiar coordinates in the same way. As for the definition of n-
dimensional polar coordinatea, they will be defined recursively
by generallizing (n-l)~-dimensional polar coordinates in the same
way that 3-dimensional polar coordinates are obtalned by genera-
lizing 2~dimensional polar coordinates. It would, therefore,
be natural first of all to examine the way 1ln which 2-dimensio-
nal polar coordinates are generalized to 3-dimensional polar
coordlnates. For this purpose, le% n-dimensional rectangular
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Cartesian coordinates be denoted by (xin),xén),...,xgn)) and let
n-dimensional polar coordinates be denoted by (r,02,03,...,0n)
{where the first polar coordinate has been called r rather than
01 because it plays a geometric role different from that of the
other polar coordinates; namely, r represents a distance and

the @'s represent anples). The equations defining 2-dimensio-
nal polRr cooxrdinates are then

(2

(2

r cus 02

i

r sin 02

where 02 is usually called @. Similarly, the equations defining
3-dimensional polar coordinates are

x{B) = pr cos 02 sin 03
xé” = r sin 0, sin o,
ng) = r cos 03

where QZ is ususlly called & and 93 1s usually called 6. 1t 1is
clear when the equations are written in this way that two prin-
ciples are adhered to in the generalizatlion. First of all, the
geometric meanlng of r as the dlatance from the origin 1s re-
tained. And secondly, the coordlnates are defined so that the
3-dimensional polar coordinates applied to the 2-dimensional
subspace orthogonal to the x3-axis at the origin should be iden-
ticsl with the 2-dimenslonal polar coordinates in this subspace.
This is clearly seen by setting 03 equal to n/2. In order to
follow the same two principles, n-dimensional polar coordinates
will be defined in general for n > 2 as follows:

xgn) = xin-l) sin O (1 =1,2,...,n1)
(n) _
X, = r cos Qn

Here, it can easily be seen that r represents distance from the
origin; and it 1s also clear that setting °n equal to m/2 yields
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(n-1)-dimensional polar coordinates; i.e., the n-dimensional po-
lar coordinates reduce to (n-1)-dimensional polar coordinates
for the (n-l)-dimensional subspace orthogonal to the x,-axis.

Now that n-dimensional polar coordinates have been defined,
a return will be made to the original purpose of transforming
the Laplacian. If the integrand function F is given by

n

ou,e
=2F = (=——)
‘g oxXy

then the Euler expression is given by

n Qzu )
[F]u(x) = %;; S;Iz = N

Let the Jacoblan for the n-dimensional case be denoted by j
and its matrix by Jin) Then, in order to use {37), (J(n)J(n)')
will have to be calculated., Let it be ocbseryed first that the
matrix J(n) for n > 2 is obtained by adding ene row and one co-
lumn to the matrix Jin-1) sin 0  as follows:

{n)

(ﬂ-|) . cos On
J sin @ 0
b1y atn) o n 0 .
x{n"l) cas @ x‘(?n'l)cos Qn ooe x(n'l)oos o -r sin €,

It can be seen rather easily that the product of this matrix
and its transpose is a matrix in diagonal form if the matrix
3{n=1) 5(n-1), is in dlagonal form. ¥ However, it has already
appearsd that this properiy is enjoyed by the matrix J(J)J(3)',
and therefore (8 7{0)1 14 given by

* Actually, saying that JTn73(n), {3 in diagonal form amounts
to saying that n-dimensional polar coordinetes constitute an
orthogonal coordinate systen.
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) 811 cee o
LU T 0 e ... o
0 0 gr():)

where the gi?) have to be determined. However, in view of (41),

it is clear that
{n)

gy =1

1 2
g&?) = gi? Yain o, (1 # 1,n)
N

and in view of the 3-dimensional case already considered, the
above recursion formuls for 31? for 1 # 1,n gives

T
g™ = g0 Vsin2e - 12 A sin%o, (1 # £,n)

Clearly, (J(n)J<n)‘)'1 is glven by

0 cee 0
(J(n)J(n)')-l = s%ﬁ) eee 0
0 ev e 8?:)
where
g%:;) = "(lﬁ)' (1 =1,2,...,0) .
814

The Jacobian j(n) is given {except possibly for an unessentlal
minus sign) by

=)
j(n) =‘/c;et (JTn)Jm)') =/““’”qu ( 'FT sinaov)

1=2 v=1+1

n n
= o1 TE. ( T7 sin o)
{=2 v=i+l
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or, if the products are comtined,
n

J(n) = x‘l"l'l T’T Sinv-z [
v=3

The transformed integrand function G 1s given according to (37)
by

v

( aou)z
n-1 ) .
26=u?l+ e + Ly (3?2
r =Z 2 2 r n
r ITT sin Ov
v=i+l
and Gj(n) is given by
( 3\1) ’
{n -l 1 9\1,2 n»l-ﬁ ve2
=2G ] + (-5-- r sin
E 2 -X‘-z Qn v=3
sin Ov
L v-1+1 d
The Euler express.on for Gj is clearly given by
Jun-3 & v-2
1 e
[Gj(n)] ( =i(%rn-1ﬁ smv-Zo )+ﬁ _%_(;T)—ir 1—:{3 sln V)
u{r,e) ~ ar v —r n
v=3 = 1 T sinzov
v=1+1
3 (2u n-3 B v-2
+ Jon(a—o; r ;I;]; 8in o,

Substituting into

= 1  4(n}
[Fly(x) = j(n) tag'® }u(r,o)
ylelds for n > 2:

Au = 1 2 (w1 7 s1n"20,)
n-l 2 va2 Jsv T v=
r TT sin °v
=3

Ju_n-3 v-2

357 TT sin' e
a=l 5 99 v=3 Y 3 (Qun-3 v-2

+ ) + {- 1T ain e .
=7 9% n 2 20, 00 v=3
- 77 sin o, n
v=1i+1
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Thus, the Laplacian in n dimensions has been transformed to po-
lar coordinatea. It might be noted that for n = 3, upon setting

o, = ¢

03 =9

the same result follows that was found previously for the 3-
dimensional case.

It might further be obaerved that the n-dimensional Lapla-
clan can be expressed in arbitrary ocurvilinear cocordinates
(51,52,...,5n) in terma of the matrix JJ'. The result can
easily be seen to be 3

(/ i ]

o

ot{Jd 33—1(1;1112...\1“)(.1.1')'1 u, Y
P |
%

\ 4

L. -

u= 1 . 2
= /eI BT

where
_ 3

However, the fact that (.‘IJ')"1 is a symmetric matrix for any J
implies that

Y /“1
u, \ | = 2¢6% oi.,.061) (3071 w
2 1 7°2°'""n 2

w/

¢

)-1

3
'ﬁ‘; (ul uao -oun)(JJ’

cse
casn

and, therefore, it follows that
r

a 1 . 5 JITTITT(6d sk...8d) (g '1/
A = T BT s 1 020 0p) (3T
( \.
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In a notation often used, the elements of the matrix
(37')"} are denoted by gik and det {JJ') may be denoted, for
example, by a. Using this notation, the result can clearly be
written as follows:

A“g_"?‘;("i \/_Z:gik—au

Thus, it has been shown that the invariant nature of the
Euler expression provides a highly powerful tool for transform-
ing the Laplacian in n dimensions into curvilinesar coordinates.
However, this appllication constitutes merely one phase of the
general significance of the Euler expression's invariance. The
notion of 1nvariance holds a predominant position in modern
sclence and, therefore, the invariance of the Euler expression
is of major importance in 1tself. Moreover, it 1s to be expect-
ed that the Euler expression ought to be instrumental in the
construction of other invarisnt mathematical entities.

15. Transformation Theory.

a) Canonical Transformations.
The extremal of a varlational problem

b
K F(x,u,u’) dx
a

satisfles the Euler equation

d
at Fu; = Fuv
which also can be written in the Hamiltonlan form as derlived in
Chapter II. For thls purpose we applied the Legendre transfor-
mation

v, = P,
v uy,

assuming det (Fy, .} # 0 and introduced
vip
H(x,u,v) = 3 ulv, - F .
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Then the Euler equations are transformed into the symmetric for..

(y2) ' v

vy = - Huv
This form of the differential eguation 1s used frequently in
mechanics where H represents the energy. The unusual feature
of this system of differentlial equations 1s that it 1s deter-
mined by one function, namely H, only. There arlses the quest-
ion in which respect these Hamiltonlan systems are speclal.
This question will be answered in this Section.

If one introduces new csoordinates in place of u,v it turns
out that the transformed system in general wlll not be of the
Hamiltonlian form any more. This leads to the problem of charac-
terizing those coordinate transformations which transform Hamil-
tonian systems into Hamiltonlan systems. These transformations
are called “"canonical' and the aim of the transformation theory
1s the theory of the canonical transformations.

Before golng into this question it is useful to obsarve
that the Hamilton equations can be considered as the Euler equa-
tion of the varlational problem

n
{(43) S( > utv, - H{x,u,v))} dt
v=

which 1s obtained from the old one by replacing the F by
2_ulv, - H(x,u,v). The Euler equation glves:

1
vy

which are the Hamiltonian equations. This remark will be useful
for the following consideration.

Let first u, = 6v(x,p) be a transformation of the coordi-
nates u, alone into new coordinates Pys Such transformationa
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are of importance in applications where one tries to simplify

the differential equation by taking into account symmetry proper-
ties, like polar coordinates are appropriste for rotationally
aymmetric systems. Is it possible to find functions v,(p,q,x)
such that the transformation

vy \Vv(x'an)
transforms (42) into a Hamiltonian system

Py = qu

- ?
Gpv

(Lb)

ay

Furthermore we require that the Jacobian

o

Hd,ow,) o ° ad,,
det (a&(p——q")') a det g-‘k -g_g = det (5‘:) * det ( )
P’ e

should not vanish.

The answer to this question is yes as can be seen by the
following simple argument. The equations (42) are equivalent
to the Euler equations of

JF(x.u.u')dx = IF(x.é(p.x).Z U 4, )dx = Jﬁ(x.p.p‘de
where

F(x,p,p') = Fix,é(p,x),2_ tipvp{, + 4.0 .

Therefore they are equivalent to the Euler equations of this
d
problem 3 Jp) = va. Hence introducing

qv=§p{'

and the corresponding Hamilton function

6(x,p,Q)=2 p3a, - §
250



we obtain a Hamiltonian svstem as the transformed system.

In order to compute the functions wv(x,p,q) Just compute

q, = EPL = }E Fu;‘ d“Pv = };_‘ "p‘*ppf"'“ .

We assume dét ‘dpp } # 0, Therefore one can solve these squa-
tions for v, and o¥taia for v, = wv(x,p,q) even linear functions
in q. One easily checks that det (3y,/2q ) £ 0.

Now we want to treat the general quastion of under which
conditions a tranaformation

u, = 4,(x,p,q)

1]

v, = v,(x,p,q)

transforms a Hamiltonian syatem into a Hamiltonian system. We
make use of the fact that the Hamilton equations (L42) are the

Euler equation of {43):

n

) { - u{,vv - H(X,U.V))dx ‘J‘E(x;pJan'DQ' )dx
V=

where

n n
g-= 3;; vyld, + g $vp“p;‘ + dvq“qa) - H(x,4,¥) .

We want to find sufficient conditions under which this varia-
tional problem has the same extrsmals as
n
X(E PySy - G{x,p,q))dx with some function G(x,p,q}. We cer-
=

tainly achieve this aim if we assume that the functions § and
oo Pyq, - G differ only by the total derivative %; W(x,p,q) of
some function w(x,p,q), because then

b
5 (8 -~ 2_ pla, + Gldx = wix,p,q)
a a
does not depend on the curve of integration.

We have to investigate under which conditions there exist
two functions G{x,p,q), W(x,p,q) suech that
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n
(45) %;; v, - Hix,u,v) = %E; Py, - G(x,p,q) + %; wix,p,q) .

In this equation we have to replace u,,v, by dv’*v‘ Equation
{45) should hold identically with respect to the variables
pP,q,p',4',x. If we compare the coefficients of pﬁ we find

9}
d. v, =q, + W
%;; P,V ® P, '

the coefficlent of q& glives

En 4
b v e
= S TAASEE N

n
%;; dvx“'x -H=-GrW, .

The last equation can be satisfied by appropriate cholice of
G(x,p,q.;. The other 2n equations should be satisfied after an
appropriate cholce of W. They determine all derivatives of W:

and finclly

0
W = + ="
Py~ "% gzl é,p“wv £,(x,p,q)
g (x,p,q)
W, = v, = 8,(x,p,q
9 =T 9 Y pore?

and they can be solved for W if and only 1f the integrabllity
conditions

fup, = Twp, 0 Tua, T Bwp, * Buq, T Bvg,

are fulfilled. These conditions lead to the following relations

n
fupy ~ fvp, 7 P (ékp“*kbv - dkpv*kp“) =0

n
46) {4 - gvp“ = -8, + )% (dkp“wkqv - 6.(%%%) 2 0

n
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Here ovu denotes the Kronecker symbol: Ov“ = 0 for v # B, and
Oyy = 1.
To 8implify the notation we introduce the Lagrange bracket

n
(s,61 = g (g = b p¥ica)

where s,t are two of the variables pv,qu. Then we can say

symbols

[py,p,) = lay,q,) =0

(Lo#)
lpypq ) =0  forv#u; [p,q,)=1

are coniitions which guarantee the exlistence of a function W and
G, such that (45) holds. Hence under these conditions the Ha-
miltonian system (L2) is transformed into the Hamiltonian

system (LL).

Definition: A transformation u, = dv(x,p,q),

v, = ¥,(x,p,q) which satisfies the equations (46} or (L&6#) 1s
called a canonical transformation.

We juat have shown that every canonical transformation
preserves the Hamiltonlian character of a system of differential
squations. It 1s Iinteresting that the conditions (46) do not
depend on the speclal Hamiltonlan function.

Using matrix notation we can write the :onditions (46) in
a very simple form: Introduce the 2n by 2n matrices

dip dyq 0 I
M= W B J=
-1, 0

Yvp Yvg

n B

where In is the nxXn unit matrix. Then the conditions (46} can
be written in the form

(L7) MM =J

where M' denotes the transposed of M.

A matrix which satisfies the relation (47) is called sym-
plectic. These matrices play a role in different parts of ma-
thematics. All these sympleotic matrices form & group, which is
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called tlie symplectic group - one of the elementary groups in
the theory of Lle groups. To establish the group character we
have to show that M) also is symplectic. For this purpose ob-
serve that from (47) follows det M'-det M = (det H)a = 1 and
therefore det M = + 1. Hence we can form ) Multiplying (47)
from the right by ¥"L and from the left by (M')~! one obtains

J= (lyrmt

which proves that M'l is symplectic. Similarly one shows that
the product of two symplactlic matrices is symplectic. From the
group property of the symplectic matrices follows immediately
that the canonical transformations form a group where multipli-
cation means applying one transformation after the other.

Although this characterization of the canonical transfor.
mation is very general and algebraically satisfactory we want
to discuss another property of canonical transformations which
plays an important role in mechanics and optics. For this pur-
pose we go back to equation (45) but consider u,p as independent
variables, instead of p,q. In other words we write

"}; = av(x’u’p)
qV = 9v(x,11-P)
and W

V(x,u.P) .
Then we get from (LS)
d
J_ula ~H=3 pip -G+gazV .
If we now compare the coefficients of “b’?b we obtain
v, =a, =V

v v u

and the remaining terms give

-H = G + Vx .

254



Therefore we have a representation of a canonical transformation
by one function V(x,u,p} which is called the “generating func-
tion". In this representation, however, the old and the new
variables are mixed up and one has carefully to observe the order:

vy ® Vuv(xsu’p)

(4L8)
qV = - va(xv“,P) .

If we assume det (Vp " ) # 0, we can solve the last equation for
Py

u, iri terms of p,q. Inserting the result into the first equa-

tion we get vy in terms of p,q. This must give a canonlical

transformation according to the derivation. Furthermore we have

an explicit representation of the new Hamiltonian
(L,84) G=H+ Vx .

Observe that in general the transformation of a system of diffe-
rential equations is an Involved process while here the new
system is obtained directly from the Hamiltonian G. However,
one still has to invert the equation {48) in the way indicated
above. In particular, 1If the transformation does not depend ex-
plicitly on x, we have V, = O and G = H. In other words G is
obtainad from H by substituting the new variables.

There is another representation of a canonical system with
a generating function. In this case we pick u,q as independent
variables. Furthermore we introduce

U(q) = W+ Zv:pqu .
Then (LS) goes over into
> wy, - H= -2 Pay = G+ g; U(x,u,q) .

Comparing coeffiolents of uy, q; we find

v, = Uhv(xou9Q)

(49)
¥ Py = qu(x.u.q)
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and

(49#) G=H+ u,
In order to obtain the coordinates u,v in terms or p,q we
have to assume det (Uq u ) # 0 and to solve the second equation
vu

(49) for u,. Notice that the function U{x,u,q} is not complete-
ly determined by the transformation. If one adds any function
of x alone the new function will generate the same transformatian.

The transformations obtained from (48) and (4,9) are cano=-
nical transformations according to thelr derivation. But not
every canonical transformation can be brought into the form (L8)
or the form {449). One can prove that the nsecessary and suffi-
cient condition for a canonical transformation

u, 4v(xrprQ)
v, = ¥,(x,p,q)

to be equivalent to (48) is that

det(va);!o .
18

Similarly the transformation 1s equivalent to (49) if and only

1f det (qu ) # 0. For instance the identity transformation

"

v, = q,, U, = p, cannot be represented in the form (48) but in

n
the rorm (49) with U = Z:vz1 u,q,.

Using the generating {unction we can easily answer the
question, how to extend a transformation

’ pv = ét(x,u)

of the u into p to a canonical transformation of the u,v varia~
bles into p,q. Wa assume that det (6:) # 0. Ws try to construct
a generating function U(x,u,q) such that
L
qu = év(x,u) .
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For example n
U= a,45(x,u)

has this property and

-
det (quup) = det (dwp) £0 .

Therefore formula {49) shows how to transform the v,:

*
v =0 =
v u, 2: qpépuv
which is a linear transformation between the v and the q.

Examples:
1} The transformation of rectangular coordinates into po-

lar coordinates

=}l

qQ arctan %
or
u =2p cos g
v =./2p 3in q
is canonical.
2} An interesting example 1s the transformation which one
obtains by extending the inversion on a circle to a canonical
transformation. The inversion can be written in the form

u
v
pva - 7 —7 (V= l,Z,..-,n)
u *tu; o +u,
c(,;m L
u =
v 2 2 2
Py * P + ... 4 Pn
80 that

(pi oot przi)(uf Ferot urzi) =]

This transformation T is ¢alled an involution because it is
identical with its inverse, This property should be preserved
for the extended canonical transformation.
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We construct a& generating function U(x,u,q) and have
according to (49)

U =
q 2 el
v ul + uz +eoet U

= A

and we choose

One checks easily that det (Uu q ) # 0. For simplicity we
v

write u,v for the vectors (“v)'(vv) and

|u|2=§_—_u$ , (u,v) = 37 uyv, .
Similarly for p,q. Then from the first equation of (49)
q (u,qju
v uf ful

and since lulalpl2 = 1, and uv/lu{2 = p, we obtain the formula

(50) v, = lplaq\, - 2(p,aip,

which givas the transformation of the vy
This transformation plays & role in celestial mechanics
in the prcblem to degcribe the motion of particles in the 3-
body proo em for a collision. & remarkable property of this
transform: tion 18 that its inverse aiao is rational in the coor-
dinatea, . nd 83 a matter of'racij theiinverse has the same form
as the or:ginal transformation. It is an involution. To check
this we compute

(u,p) = (—B5, p) = 1

Ipl

(w,a) = (2 ) = 1!&'-31

P

]

Ip1%(u,q) - 2(p,q){u,p)
{p,q) -~ 2(p,q) = ~(p,q) .

{u,v)

1
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Therefore we find from (50') by solving for q:
W= T_%z Vv ? g%BTgl Py = Iulzvv + 2(p,qlu, = I“IZVV"Z(“'V)“V‘
P P

Hence the inverse mapping

uV
VIR
ul

q, = Iulzvv - 2(u,v)y,

has exactly the same form as (50), (50').
As an application we solve the Hamilton equations for

n n
H=3 u% /> v% = }ulzlvl .
v=] v=1

We make use of the above transformation (50}, (50'} and observe
that it does not depend explicitly on x. Therefore we obtain
the new Hamiltonian just by expressing [ul?]v] in the new varia-
bles p,q. For this purpose we compute from (50'):

n
vl = g;; v2 = |pl*al? - 4lpI3(p,a)® + U(p,a)2Ip|2
= |pl*iql®
or because of {u12|p|2 =1

halivi? = [pl%lal2 .
Then
lal?ivl = lul Ipl lal = lal
and we hnve
A(x,u,v) = lul?ivl = lal = 6(x,p,q) .

Therefore the new Hamiltonlan does not depend on the p
variables at all. The Hamilton equatlons

f o=
Py qu

9, = - Gpv =0
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can be aclved explicitly:

q,{x) = q,(0)
q
p,(x) = Gy X *+ Py(0) = ;%- x + p,(0)
v

The solutions are straight lines. The above transformation
(50),(50') represents the solutions in the old coordinates u,v
explicitly, if one inserts for P,»q, the obtained functions of x.

b) Infinitesimal Canonical Transformation.
In the preceding section we Introduced the canonical trane-

formations by means of their property of preserving the Hamil-
tonian character of a syatem of differential equations. There
is another connection which we develop now: If we consider a
aystem of differential equations

dwv

rral fv(x,w) {v=1,2,...,m
they define in a natural way a transformation. If the solution
of this system with the initial values w, = "3 are denoted by
W, = gv(x,wo), then we have for every sufficiently small x| a
transformation of the "3 into the w,. For x = 0 this 13 the
identity transformation and the Jacobian equals one. Therefore
the Jacobian is different from zero for sufficiently small |x|.
We want to oall w, = gv(x,wo) the transformatlions "generated"

by the systems wl = f (x,w}.

We are going to prove the following statement. The sys-
tems of differential equations for which the transformations ge-
nerated by it are canonical are exactly the Hamiltonian systems.
This theorem shows the close connection between the Hamiltonian
systems and the canonical transformations.

s6fore proving this we consider transformations

(51) u, = ¢,{x,p,q)
v, = ¥, {x,p,q)
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depending on a parameter x and denote it symbolically by T(x).
For small x we can write formally T{x) = T(0) + xTx(O) oo .

We ask the question what is the condition on Tx(O) and T(0) for
T{x) to be canonical? Of course T(0) has to be canonical as

one suspects by letting x = O. What ls the cohdition for T, (0)?
The transformation T (0) 1s obtained from (51) aa

uv = dvx(c'p0Q)

i

v, T ¥yx(0,P,3)

and is called the infinitesimal transformation of (51).
We obtain such a condition immedfately from (47) by in-
troduoing the matrix

[ 4 é \
(52) M(x) = \ "
¥ ]
Vp“ vg“//

If (S1) is canonical we have
M'JM = J
and differentiating with respect to x:
MigM + MIJM, = 0
Therefore M'JMx is a symmetric matrix, asince

(M'JMX)' = MJ'M = ~M'xJM = M'JMK. This is the condition for

the infinitesimal transformation to be canonical. It can be ex-
pressed in another fomm namely that JMxM"1 be symmetric, which
1s equivalent to the old condition since

- 1
M'JMx = M'(JMXM M .

This also shows that JMXM'l is symmetric if and only if M'JM_
is symmetric. Defining S = -JMXM'1 a symmetric matrix we have

with J°% = -J

{53) M = J3M

as the condition for the infinitesimal transformation to be
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We apply this result to a family of transformations which
are generated by a system of differential equations

(54) wl, = £ (x,v) (v=1,...,m
The ‘tranaformation generated by (S4) we write in the form
W, = Xv(x,r)

where r, = w (0). We define M(x) by

o v
M= (ﬁ—') (V,p,= l.noo,m) .
W
From (53) we have
ivx = fv(xll)

and differentiating with respect to r,

m
]vrv'x = Z rvw 1‘(.1‘ *

k=1 L B

These equations can be combined into the matrix equation

M, = (f

x W)M ¢

m
Comparing this equation with (53} we see that the trans-
formations generated by (54) are canonical 1f and only 1if

where 5 13 a symmetric matrix. This implies m 13 even, so that
we can write m = 2n, To discuss thia condition we define
81;"!)82n by

&, " 'twn . 8yap * r, for v=1,2,...,n o
Then

-J(r,) = g,
and , 1
S=J"g, )= (g, )
Yu Yy
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This matrix has to be symmetric. This condition 1s identical
with the integrability condition for a function H{x,w), such
that

Therefore (f,) = J (g} = J(H, ) and the aystem (54) has the
form. v
w!' = J(Hw ) .

v
If we now define Wy = Uy, Wy =V, for v=1,2,...,n we have
u; = va
(55) e
v! =
v uv

which shows the Hamiltonlan character of the system.

Therefore the Hamiltonian systems can be characterized by
the property that the transformastions generated by them are
canoriical.

As a consequence of this result we obtain a simple proof
for the existence of a complete solution of the Hamilton equa-
tions: Denote the transformation generated by (55) by

u, = ¢,(x,p,q)

!

Ve = \IIV(X;P’Q)

where p, = uv(o), q, = vv(o). Then this transformatlon 1s cano-
nical and for sufficiently small |x| we have det (qu ) # 0.

T
Therefors we can write the transformation in the form (49) with
a generating function U(x,u,q}). The new Hamiltonian is given by

G(x,p,q) = H{x,u,v} + Ux .

Since, however, p,q, does not depend on x, we have 0 = p! = Gq’
0=4q'= -G, so that G = G(x) does not depend on p or q. If
we now form S(x,u,q) = U(x,u,q) = f: G(x)dx; we can take S as
a generating function of the same transformation. Then we find
that the new Hamiltonian 1s

263



0 = H(x,u,v) + S,
and the equation for S is
H(x,u,su) + Sx =0

which is just the Hamilton Jacobli equation. The function
S{x,u,q) 1s a complete solution since

det (S“vqp) = det (quqp) Zo .
Thus we have established the existence of e complets solution
of the Hamilton Jacobl equation.

This approach allows a new Interpretation of the iamilton
Jacobl equation. The sclution of the Hamilton Jacobl equation
S{x,u,q) 1s a generating function of a canonical transformation
for which the new Hamlltonian is G = O, Then the new system 1is
p' = g' = 0 which 1s easily integrated.

Frequently it is too coaplicated a task to solve the Ha-
milton Jdacobl egquation but one succeeds in almplifying the Ha-
miltonian. For instance, in the example of the last section

n ;
R PV St

we found a canonical transformation such that the new Hamilto~

nian
g
G = q
v=T ¥
did not depend on the p, . Therefore q}, = -G, = 0 and q, are

P
independent of x. In this way the transrorma:ion theory 18 used
for solving the Hamilton equation.
More important, however, 1s the application of the trans-
formation theory in the perturbation theory of classical mecha-
nics.* Consider a Hamiltonlan H = H, + eHl which is close to a

* 1o distinguish it from the perturbation theory of quantum
mechanics.
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Hamiltonian of a system which can be integrated. For example
in Astronomy one is interested in the motion of a planet which
movea almost on an ellipse and Ho would represent the Hamilto-
nian which describes the a*traction of the sun. The other pla~
nets, however', cause some perturbation of this system which is
to be consldered small. On would like to get some approximate
solution for the "perturbed" system. For this purpose essume
that the Bamilton Jacobl equation for the unperturbed system

Ho(x,u,su) +8,=0

can be solved. Considering S{x,u,q) as the generating function
of a canonical transformation we obtain for the new 8Bamiltonian

G = Ho(x,u,su) + :Hi(x,u,su) +8, = eHl(x,u,su)

§o that we can write G= eGl(x,p,q). The Hamiltonian system is
transformed into

Py = Equv

[

' -
q,, eGlpv
which shows that the coordinsates P, 9, only change slowly. By
approximate integration of this simplified system one can find
an approximation to the solution.
¢) Application of Canonical Transformation in Optics.

In optics one investigates the effect of lenses or
other cptical instruments on light rays. The basic law that
descrives these prccasses 18 Fermat's principle which states
that tie light rays are extremals of a variational problem: A
ray st:rting at P and ending et Q has the property of minimizing
the tiie required to travel along a curve from P to Q. For a
homorer.eous medium the light rays are straight lines and the
statement of Fermat's principle 1s obvious. %This principle,
however, holds also for rays passing through optical instruments
providcd one considers the frequency of light as extremely
large. This 1s the idenlization of geometrical optics,
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Therefore we can conalder the light rays as extremals of
a varlational problem. If we consider isotropic media only
thias variational problem can be written in the form

K: frr—r
f n(x) /x] + x5 + X3 dat
1 .

where x = (xl,xa,x3) and n{x) 1s the refraction index. This in-
dex of refraction will be discontinuous on the surface of a
lense which will make the theory as we have developed it not di-
rectly applicable. We can avoild this difficulty by replacing
n{x) by a continuous function which is a good approximation to
the discontinuous function.

We want to describe the effeat of a lenss on light rays.
We choose the coordinate X such that it passes through the
lense. The Xy 1% %y axis are assumed to be mutually orthogonal.
Since we are only interested in rays passing through the instru-
ment wWe¢ can rewrite the variational problem in the inhomogensous
form

b
n{x) /1 + x4 + x1< dx
L Xy dxy
where x4 = dxa/hxl; xé = dx3/ax1. The light rays are the extre-

mals of this variational problem. Introducing the canonical va-
riables
x5
T3

1+ xé + x3

vo = 5%5 (n(x){/l + xéz + xiz) = n{x)
(56}

]

¥y = 3%}_(n(x)//i + xéz + xﬁz) = n(x) x;
/1+xé +x

2
3
and the Hamiltonian function

H(x,y) = x5y, + xiy3 - nl{x) /1 + xéz + x52 = - /0 -55 -73

we can write the differential equations for the extremals in the
Hamiltonian form
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x! = H
(57) Vool (v = 2,3).

y, = - H

v x,

The variables Y273 determine the direction of the ray. Accord-
ing to the result of the last section this Hamiltonian system
generates a canonical transformation which will be characteristic
for the optical instrument. We denote the initial values of
X, (v=2,3) for x; = 0 by £,,7, and the solutions of (57)
with these initial values by

o
il

{ Y) = ¢v(xl’€’7)
(yv wv(xllE.l ”)

where £ = (52,53); n = (q2,73). Then we know that the transafor-
mation of the Evly into the x for every x; are & canonical
transformation.

We now agsume that the whole optical instrument lies com-
pletely in the interval 0 < x < 1. 1Tn other words we want to
assume that n(x) = const = n for x; < 0 and x, > 0. In those
regions n(x) represents the refractlon index of the air.

We want to study the transformation of the rays starting
in a plane x5 = O on one side of the instrument inte the corres-

{v=2,3)

vy

ponding rays passing through a plane x = 1 on the other side.
Then this trsnaformation is given by

x, * 6v(1:€:7)

(v =2,3)
Yy = val.i.q)

(58)

which is a canonical‘transrormation of the variables gv'7v into
the variables x,,y, (v = 2,3).
If we now assume

det (&ve ) # 0 (V,“ = 2:3)
Ty
we can find a generating function V(x,E) such that
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yV = VX
(59) v (v=2,3)
MW = = vgv

This function plays an important role in optics and is called
the “Eikonal". All the optical properties of the instruments
are determined by this function. The praoperty (59} of the
function V(x,£)} can be interpreted as follows. If S(x,£)} is
the extremal integral taken along an extremal from £ to x, then
according to our calculations in Chapter II we have Sx =V,
and Sg; = =y, for the direction of the corresponding e:tremals.
Therefore the function V(x,£} can be identified with the extre-
mal integral from £ to x. In other words V{(x,£) represents the
time in which the light travels from £ to x.*

In optics one is interested in transformations which give
a sharp picture of an object; in other words transformations
that trensform all rays which start in a point into rays which
pass through the image point. A transformation of thiés kind
is called "atigmatie™. An optical instrument that produces
a transformation of this kind 1s called an "absolute" instru-
ment.

It 1s a very interesting result of Maxwell, that every
stignMatic mapping is trivial in the sense that objJect and image
have the same size. In other words no enlargement is possible
with a sharp picture. An enlarging lens system can only give
approximately sharp pictures in the neighborhood of the axis.
As & matter of fact the mirror is the only optical instrument
that is known to produce a stigmatic transformation.

Wo want to prove Maxwell's theorem. We assume we have an
isotropic medium, i.e. the variational problem is of the form

n{x) /z'(z + iz + iz dt = P{x,x) dt
tl 1 2 3 ‘tl 4

* For further details see: R.K. Luneburg, Mathematical Theory
of Optics, Brown University, 1944, eap. Chapter II,
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Assume thers exists a stigmatic transformation of x = (xl,xz.x3)
into & point £ = (51;€2u53):

gv = dv(x) or Xy = *V(E) (v =1,2,3)

According to the assumption all extremals astarting at x inter-
sect each other at £, provided they can be continued that far.

This means x and & are conjJugate points tI—uzgh not necessarily

consecutive ones. One proves, as for oonjugate points, that the
integral £ .

IEESIRT
x

has the same value for all extremals connecting x and £. There-
fore 1t is a function of x = (xl,xa.x3) along:

vix) = IE F(x,x) dt

x
Secondly we want a connection batween the differentials

dx and d£. For this purpose consider en extremal £ connecting

x and £ and a point y on 1t close to x. Let % = ¢ (y) be its

image point. It 1s clear that y 1lles on the continuetion of the

extremal £ since in 7 all extremals starting at y intersect, es-

pecially £. Then

Idet -J"'th=j‘€l“dt -qudt=V(x) - Viy)
x E X y

If we now pass to the deri- Aa",,5—‘“"""“‘-5.5\\15\‘\
vative by letting y approach £ '3
x we have 7

(60) n(x) /(ax,) + (dxy)® + (axy)*

- n(d(x)/(del? » (de,y)° o+ (d£3)z

s V_dx, +V_dx, + V_dx., .
x 1 x5 2 x3 3
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Here dgu = 4Vx dx“ 13 the image of dx and this relation holds

for all dx which lie on an extrem2l connecting x and £. But
since both sides are analytic functions of dx this equation
holds identically for all dx. This can be interpreted as fol-
lows: If we integrate the left hand side ~vor a curve g and
denote 1its image curve by y then

f n(x) /izl + izz + i;" at -j n(e)(éf + é,g + é%)dt = v{b) - V(a)
8 ¥

where a,b are the inltial and end points »f g. In particular,
if g 1s a closed curve the right hand side vanishes. In other
words the 1ntegralJ'F dt taken over a closed curve has the same
value if it 4is taken over the image curve.

The aim of the proof is to show that V is a constant.
Then the above statement will hold for any curve, not only closed
ones. For this purpose we observe that (60) holds for any vector
dx. Replace dx by A dx where A is any real number. Then the
left hand side 1is replaced by IAI times the left hand side. But
the right hand side 1s multiplied by A. 8o 1f we take A = -1
the left hand side does not change but the right hand side
changes sign. Therefore

Vxldx1 + szdxz + szdx3 = 0

or V = const.

Therefore we have the following result: For evsry stig-
matic transformation the integral |F dt taken from a point to
its image point 1s a constant. Furthermore

n(x) /3 + x5 + X3 dt = n(r) /€2 + £2 + & at
Jg 1 2 3 dy 1 2 3

which says that the "optical length" of a curve and i1ts image
gurve are the same.

If in particular the refraction index along g and along v
are the sams conatant, as would be the case for a mapping through

270




a lens system with air on both sides, then the..actual length of
g end ¥ would coincide. This proves Maxwell's theorem.

16. An Approximation Theorem for Minimum Problems with Side
Conditions.

In order to solve a minimum problem in which objects en-
tering into the competition are reguired to satisfy certain side
conditions or boundary conditions, 1t may be possible to appro-
ximate the given problem by others without side conditions. 1In
other words, it seems reasonable to attempt to obtain the solu-
tion to a minimum problem with side conditions as the limit of
solutions to a sequence of problems without side conditions.

For example, this strategy can be used to find the point
closest to the origin on the straight line

Ax +By +C =0 H

that i1s, the point which minimizes f(x,y) where

f(x,y) 2 X2+ yz

subject to the slde condition

glx,y) = 0
where

glx,y) = Ax + By + C.

The solutlion can be obtalned by first finding the point (x )

n’n
which minimiges £ (x,y) glven by
£(x,y) 2 £(x,y) + nlglx,y))?

or, in particular,

fn(x,y) = x2 ¢ ya + n{Ax + By + c)2

when no side conditions are imposed. It seems plausible that
Ig(xn,yn)[ will be small for large values of n since (x_,y )
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minimizes r;(x,y) and the non-negative term n(g(x,y)]z, thers~
fore, could not have a very large value, Thus, it might be ex-
pected that, as n tends to infinity, (xn,yn) will approach a
point (xm ,ym) such that

8(xw ,Yw ) =0

and (xoo’yoo) minimizes fix,y) among all points satisfying the
side condition. In fact, it can be verified that this is pre-
oisely the case since solving the equations

2 *a
::'i'fn, =2xn+2An(Axn+Byn+C) =0
5 I=¥n
:—y- o = 2yn+2Bn(Axn+ Byn*C) =0
yields
x = -ACn
noo1s (;2 + Ba)n
-BCn
In = .
no s (;2 + Bz)n
Clearly, as n tends to infinity the point (- 4G ,- —2592) is
AT+B A™+B

approascshed, and 1t can be checked by elementary methods that
this 1s the closest point to the origin on the straight lineo.

Of course, in order to be able to use such a method in
other problems, some theorem 1s needed guaranteeing that the so-
lution is produced by the limiting process. 4An apvropriate theo-
rem will now be proved, and the theorem will then be used to
Justify the passage to the limit in a significant example. Spe-
cifically, the theorem will be applied in proving a Lagrangs
multiplier rule (Euler-Lagrange rule) for functions of two va-
riables. In addition, it will be indicated how the theorem
mizht be used to Justify a procedure for cobtaining the solution
to minimunm probleﬁs with artificial boundary conditions as the
limit of solutions of sequences of problems in which no boundary
conditions are imposed in advance.

The underlying theorem for the approximation procedure is

the following:
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AN ATPROXIMATION THEOREM:
Part I:
ifr:

a) Q(P) and ¢(P) are lower semi-continuous real-valued
functions on a convergence space* S;

b) ¥(P) > 0 for all P in S and thers exlist points in S
for which y(P) = 0;

¢) A denotes the problem: Find a point satisfying the
side condition

¥(P} = 0

at which §(P) takes on its least value for all P in S
satisfying the slde condition;

d) A, denotes the problem: Find a polnt for which
B(P) + ty(P) takes on 1ts least value for all P in S;
and

@) There exist a sequence {tn} of positive real numbers,
a sequence Pn of points in S, and a point Fa> in 8
such that tn —> @©as n - 0, Pn solves At , and
Pﬁ—> Pa> 88 n = o ; n

then:

Poo solves A,

Part II:
If S is compact, then condition e) of Part I is automatical-~
ly satisfied. Moreover, every sequence {tn} of positive
numbers such that tn —> 0 a8 n — w possess a subsequence
which can be taken as the sequence {tnl of condition e) of
Part 1.

The proof of Part I of the theorem depends primarily on an
inequality relating the least value dn for the function minl-

mized in problem At and the greatest lower bound d of the values
n
of Q(P) for points satigfylng the slde condition imposed 1in

Problem A. Specifically, 1t will now be shown that if dn is

* The term convergence space here denotes any space in which a
notion of convergence 1ls defined.
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given by
d, = F(p.) + ¢ v(P))

and if 4 1s given by

d = g.l.b. §(P)
[¥(P)=0] ’
then d 18 finite and
d, <da .

This follows immediately from the fuci that, if P ia any
point in S satisfying the side condition

vry =0 ,
§p) = P) + t W(P) 2a, ,

then

where the Insquality holds since dn is the least value of
Q(P) + th(P) for all P in S. Thus,
4, < 3(p)

for all P satiafying the side condition, and, consequently

d_< g.l.b. G(P) ]
n MP)=0]§
That 1s,
dnf.d 14
or
(61) Q(Pn) +t WP ) <d .

This last inequality can be weakened by dropping the non-
negative term t y(P_), giving the inequality

Q(Pn) <4 ’
which, together with the relation
Be ) < 1in §2)

expressing; the lower semi-continuity of §(P}, implies that
1im 9(P ) 1s finite and that
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and, of course,
(62) B, ) <a .

Moreover, the inequality expressing the lower semi-conti-
nuity of J(P) can be slightly weakened and written as a strict
inequality as follows:

P_) -1 <1m G(P ) .

But, since §(P_) - 1 is less than the lower limit of the set of
numb ers :@(Pn), it follows that there are at most a finite num~-
ber of values of n for which

§e) <Fr ) -1
or, in other words, there exists a positive number N such that
Q(Pn)g_g(l’m)-l forn >N .
In view of (61}, it then follows that

FP,) -1+t y(P)<d forn>N
or
t WP ) <d~-FP_)+1 forn>N .

In other words, the sequence of non-nogative numbers tn\y(Pn) is
bvounded; and since tn —> o as n — ®, it follows that
’.Pn) — 0 aa n - ©, and, ¢learly

1im w(P ) = nlim wir ) =0 .

However, the lower semi-continuity of ¢(P) implies that
(P ) < Lim ¥(P) = ©

—— n i4

while condition b} of the theorem insures that

W(Pm) 20 ,
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from which 1t follows that
W(Pm) =0 .

Thus, PoD satisfies the side condition for problem A.
Since Pa: satisfies the side condition for problem &, and
gsince, of course,

§(p) 24

for all points satisfying the side condition, it follows, in
particular, that

§p )y za .

But this relation together with (62) implies that
Q(Pw) =d .

Finally, this equality and the fact that Pa) satisfies the side
conditicn of problem A exactly expresses the fact that Poo
solves ., completing the proof of Part I.

Tr.e proof of Part II 1s quite simple in view of the. theo-
rem which states that a lower semi-continuous function on a
compact space possesses a least value. Let {rn} be any sequence
of positive numbers such that Zh —> o as 1: - ® . Then, since
G(P) ani ¥{P) are both lower semi-continuous, it follows that
§(P) + tnw(P) is lower semi-continuous and therefore takes on
its least value when P ranges over the compact space S; that 1is,
there exists at least one point, say T which solves Azn. The
compactness of S insures that the sequence of polnts L has a
subsequence of points ﬂm(n) which converges to a point in S,

say Pq). Let the point Pn be defined by

Fn = Tm{n) ’
and let tn be defined by

*an = ¥m(n) ‘
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It is clear that t:n - © as n — o, Pn

solves At , and
n
Pn—> Pco as n = . This completes thse proofl of Part II and
the entire approximation theorem.
The approximation theorem can be used to prove ths follow-

ing form of ths Lagrange multliplier rule:

THEOREM :
If f{x,y) and g{x,y) are continuous and possess continuous
derivatives U fy, By» and in an open region R containing

the poir.\a (’.o ,yo) with
gx 0’}'0 zy 0’ o] ’

and, moreover, if (xo,yo) furnishes & relative minimum for
f(x,y) among points in R satisfying the side condition

glx,y) =0 ;
then thore exists & number A such that

Fel{Xgs¥o) + Ay(x5,¥,) = 0
and
fy(xo,yo) + kgy(xo,yo) =0 .,

Before proving the theorem, it might first be remarked
that it is good enoush to show that the Jacobian 3(§ ; vanish-
?
bs at the point (xo,yo). The vanishing of thias Jacoblian toge-

ther with the condition
2 2
[og(x0¥o) 1% + L@ (x,,5,)]% > 0

13 clearly tantamount to the existence of a number A with the
required properties.

The proof of the vanishing of the Jacobian will be divided
into two cases. The first and more important case is that in
which there exists in the open region R en open sub-region G
containing the point (xo,yo) such that

f(XoY) > f(xo'yo)
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for all points in G other than (x ,y,) satisfying the side
condition
glx,y) =0 .

The essential feature for Case I is that (xo,yo) is the unique
point in the open region G at which f{x,y)} takes on its least
value among its values at points satisfyliig the side condition.
In order to anply the approximatio: theorem, let any

closed bounded region Gi# contained in G with (xo,yo) as an in-
terior point be ldentified with the space S. In this case, of
course, S 1s compact and Part II of the approximation theorem
guarantees the existence of numbers tn and points Pn and Pq) as
specified 1n condition e) of Part I. Moreover, let f{x,y) be
identified with {(P) and [g(x,y)]2 with Y(P), the side condition

G(X:Y) =0
being equivalent to the side condition
(elx,y)1% =0 .

Since problem A has a unique solution (xo,yo) in this case, it
follows that P 1s the point (xo,yo). iarther, let (xn,yn)
represent the point Pn; that 1is, let (xn,yn} be a point at
which fix,y) + tn[g(x,y)]2 takes on ita least value in G#.

Since (xn,yn)—> (xo,yo) as n — o and (xo,yo) is an in-
terior point of G#, it follows that there exists a positive
number M such that (x ,yn) is an interior point of G¥% for n > M.
But the fast that r(x ,¥) ¢t [g(x,y)] takes on its least value

at an interior point (xn,yn) implies that the point (xn,yn) is
a stationary point. It follows that

fx(xn,yn) + Ztng(xn,yn)gx(xn,yn) = Q for n > M
and

To(x,,yy) + 26 e(x v e (x,yy) = 0 forn>M ;

and, consequently,
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x=
xn

y=y,

Ar,g) _
grifgy =0 forn > M

But the Jacobian {s a continuous function since the partial de-
rivatives of fix,y) and g{x,y) have been assumed to be conti-
nuous. Therefore, letting n tend to infinity ylelds

x—xo

7=y,

géi,y% =0

completing the proof for Case I.
Case II is tnat in which there does not exist an open re-
gion G containing (xo,yo) such that

£{x,y) > £(x,,y,)

for all points in G other than (xo,yo) satisfying the side con-
dition. However, the fact that (xo,yo) is a relative minimum
point insures the existencs of a neighborhood of (xo,yo) such
that

£ix,y) 2 £(x,,y,)

for all points in the neighborhood satisfying the side condition.
It follows that in Case II there exists in every neighborhood of
(xo,yo) at least one point other than (xo,yo) which satisfies

the side condition and at which

rlx,y) = f{x ,y,)

That 1s, (xo,yo) is an accumulation point of a set of points at
every point of which
£lx,y} = £(x,,y,)

and
glx,y) =0 .

Clearly, the mapping

u = r(x,y)
= glx,y)
279
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1s not one-tomone for neighborhoods of (x ) and the inverse-

function theorem insures that

0"Yo

X—-Xo

a{r. o

a((:{:,;)) =0
Thus, the vanishing of the Jacoblan for Caze II has been proved
without even using the approximation theorem, and the proof of
the multiplier rule has been completed.

Another application of the approximation theorem 1s in
justifying a procedure which adapts boundary value problems to
the Rayleigh~Ritz method. For example, if admissible functions
are required to vanish 1ldentically on the boundary of a region
G, then the problem of minimizing the functional

1= jg F(x,y,u,ux,uy) dxdy

can be attacked with the Raylelgh-Ritz method only if approxi-

mating functions which vanish on the boundary can be explicitly
found. However, an approximation to the solution might be ob-

talned by minimizing the functional

[\
=2
I, = ]‘CJ: F‘(x,y,u,ux,uy) dxdy + tY:P u” ds

for a sufficlently large positive value of t with no boundary
conditions prescribed (where u.denotes the values of u on the
boundary of G). This problem can easily be handled with the
fayleigh-Ritz method since the anproximating functions are not
required to satisfy any boundary conditions. However, some gua-
rantee 1s needed to insure that the solution to this problem
approximates the solution to the original problem. 1In certain
cases, the approximation theorem provides this guarantee. If
the class of admissible functlons should happen to be compact
and 1f the minimum probléem should happeén to have a unique solu-~
tion, then the approximation theorem can be applied directly.
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The -function Q(P) can be ldentifled with gj F(x,y,u,ux,uy) dxdy

and y(P) can be identified with§‘52 ds. Then, the approximation
theorem insures the existence of sequences of values for t ap-
proachirg infinity such that the sclution to the original pro-
blem 1s approached as the free boundary problem 1s solved for
these values of t.

In addition, 1t might be attempted to use the approxima-
tion theorem to derive Lagrange multiplior rules for the isope-
rimetric problems of the GCalculus of Variations, particularly
with partial differential equation side conditions, The main
obJect 1s, of course, to derive necessary conditions for an ob-
Ject to solve a minimum problem with side conditions by using
only the approximation theorem and known necessary conditions
for minimum problems of the same type without slde conditions.,
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