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INTRODUCTION

The Calculus of Variations has assumed an increasingly

important role in modern developments in analysis, geometry,

and physics. Originating as a study of certain maximum and

mini;;-6n problems not treatable by the methods of elementary

calculus, variational calculus in its present form provides

powerful methods for the treatment of differential equations,

the theory of invariants, existence theorems in geometric

function theory, variational principles in mechanics. Also

important are the applications to boundary value problems in

partial differential equations and in the numerical calcu-

lation of many types of problems which can be stated in vari-

ational form. No literature representing these diverging view-

points is to be found among standard texts on calculus of vari-

ations, and in this course an attempt will be made to do

justice to this variety of problems.

The subject matter with which calculus of variations is

concerned is a class of extremum (i.e. maximum or minimum)

problems which can be considered an extension of the familiar

class of extremum problems dealt with by elementary differen-

tial calculus. In the elementary problems one seeks extremal

values of a function of one or more (but in any case a finite

number) real variables. In the more general problems consi-

dered by calculus of variations, the functions to be extremized,

sometimes called functionals,have functions as independent

variables. The area A(f) below a curve y = f (x), for example,
is a functional since its value depends upon a whole function

f. (It is possible to treat a functional as a function of

an enumerable set of Fourier coefficients, but this attack

usually leads to almost insuperable difficulties.)

One of the earliest problems of this type was the iso-
perimetric problem considered by the ancient Greeks. This

is to find, among all closed curves of a given length, the

one which encloses the maximum area. It is intuitively

evident that the solution is a circle, but this fact has been
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satisfactorily proved only in recent times, and the corres-

ponding theorem concerning the sphere is even mare difficult.

Ttie modern development of calculus of variations,

however, began in 1696 with the formulation of the brachis-

tochrone problem by John Bernoulli. This problem is to find,

among all curves connecting two given points, that one which

has the property that a particle sliding along it under the

action of gravity alone falls from one point to the other in

the least time. This problem excited great interest among

the mathematicians of that day, and gave rise to a train of

research which is still continuing.

Subsequent developments in classical calculus of vari-

ations were the derivation of necessary conditions for an

extremum (corresponding to the conditions grad f(x1,x2,...xn)=O

for a function f of n variables ) by Euler and more rigorous-

ly by Lagrange; and the development of sufficient conditions

(corresponding to the consideration of the quadratic form in

seopnd derivatives of f(x1,x2,...xn) at a stationary point)

by Hamilton, Jacobi, and others; culiplnating in the completion

of this theory by Weierstrass.

The broader aspects of physical variational principles

were first set forth by Maupertius, and were given a firmer

foundation by the work of Euler, Hamilton, Jacobi and Gauss.

We will now consider the mathematical formulation of

several problems;

a) The Brachistoohrone

A particle P slides

under the influence of gra-

vi`.y along a curve connecting
B(xl'ul)

A and B. The velocity v at
u

any point is given by
ds _V r dt \/GISy i

so that the time of fall T is

(B ) (B) dsT C dt a
(A) (A) V Qgu

2



Suppose the curve is given by u = f(x), where f(0) = 0,

f(xl) = ul, and fix) is assumed to be piecewise differontirble.

Then cs = /17 u' Ldx. Hence the solution of the problem can
be obtained :)y findinj; the function u = f(x) w:.zch minimizes
tie integral T (e. functional)

T = 1 ` l

luu,2
dx.

V'2 -g
`0

iernoulli obtained the solution to this problem using an en-

tirely different line of reasoning. He appeoximated the path

u = f%x) by P. series of line segments dividing the distance

fr.llen into equal parts, t?.e particle velocity being sssuuned
constant through-
out each segment.
It is an eler-,entary
exercise in ce.lcalus
to 3nell's
law of refraction

A
i

N

sin i_ stn r
u W B
constant

v yr

as the condition for the path of nini-wan time across a dis-
continuity. Takinc; the li'.it es t;' a segneats are made smeller,
Bernoulli argued that the curve would'bo given by

sin A = constant
2gu

which is indeed the correct answer, characterizing ti-,e cycloid.

of course, Bernoulli's solution is only r,n indication rather

titan a -)roof, since A x
he neither justifiod 0

the limiting process,
nor showed that his

solution was unique.
B

W
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l:iniuiur. Area of a Surface of Revolution
Consider the

surface generated by `
H(x

,
revolvin,t ti.e curve AB / 2,y2
about the x-axis. If i
the equation of this l
curve is y f(x),

Were f(x1) = y2, i}

and f is piecewise differentiable, then the area of the

surface is given by the functional

x
I(f) =2tt C f/1+f' dx.

xl
The problem, then, is -co determine f so that I(f) is a

minimum. The problem can be "solved" physically by stretching

a soap film between the two circles kir;ade of wire) at P. and
B. Surface tension in the film will minimize the aret.

c) Geodesics

The curve of shortest length connecting two points in

a plane is a straight line. This need not be taken as an

axiom, but can be proved. Similarly, on the surface of a

sphere, the curve of least length is the arc of a great circle.

In general, on any sru'face, the curves of least length cone.ec-
ting pairs of points are called geodesics and their determi-

nation leads to problems in calculus of variations. In case

the surface is devolopable (i.e. one which can be deformed

into a plans without altering length -- e.g. a cone) the
eodesics are given by the corresponding straight lines

in the plane.

d) The Isoperimetric Problem

Consider a plane

closed curve given in ;)ara-

aetric form by x = ftit),

= g(t) wt,ere f and g have
piecewise continuous deri-

vatives, are of period 2r in t,
x

4



and the curve has a given length L,

27r

L f= Jy dt
0

The problem is to find, among all f and g satisfying these condi-

tions, the pair that maximizes the area A

2v

A =
f

(xy - yx) at

This problem is different from the foregoing three problems in

that we seek to extremize a functional A of two variables (the

functions f and g) subject to a prescribed condition, L= constant.

All such problems in calculus of variations are called iso-

perimetric problems; the analogy with the corresponding elementary

problem of extremizing a function F(x,y) of two real variables

subject to an auxiliary condition, say G(x,y) = 0, is evident.

We will now prove that the circle, i.e.

f(t) = al sin t ; acos t

g(t) = a2sin t - altos t

maximizes A, subject to L constant. Consider the expression

L2i = T - A
For the circle, I = 0. We then wish to show that I > 0 for all

other curves. Let t -= 27iL , where s is arc length. Then

X2 + y2 -: s2 = L2/)I7r2
and

2
T=

' 1 (X2 y2) dt

Hence

T [ (x2 ;f2) - (xy - Y) ] dt
0

2P

_ r [(x + y)2 + (J - x)2 (x2 - x2) + (y2 - y2)) dt
TT'

0



Since (x + y)2 + (y - x)2 > 0, we will consider

2r
_

2tr

Il 2 - x2)dt + (y2 - y?) dt.
0

Under the conditions imposed, we may expand x and y
in Fourier series

ODx.-. (acoa nt + basin nt)
n=0

00

y.+ (ancoa nt + bn sin nt)
n=

By taking the center of gravity of the curve as the ori-,in

(i.e. translating the axes x' = x + xo, y' = y + yo) so that

2tr 2ts

x' dt- yk dt-0

we have

so =ao =0.
Then, droppin , the primes,

20
OD(*2 - x2)dt = n (n2(a2 + b2) - (an + bn)]

0
n-1

which is positive unless an = bn = 0 for n > 1, i.e. unless

x - alcos t + basin t.

Similarly

2tr

S (,2-;2)dt>0
0

unless y - al coa t + basin t.

But in the ease that x and y are both of this form, we have

Y =41 [(I+y)2+t$-x)2) dt

Tr [(a1 + aj+bj - b1)2 + (a1 - of + b1 + b3t)2)

6



which is zero only if a1 = b1, ai = bl. Hence I > 0 unless

x = alcos t + bl sin t

y = blcos t - al sin t

which are the parametric equations of a circle.

In all the problems that we have considered so far we

have tacitly assumed that they make sense, i.e. that a solution

exists. However, this is by no means always the case. For

example, consider the AD
integral

1
dx

fo 1 + to (x)32

4)(0) a 0, 4)(1) - 1

4 x

where 0 is subject to the condition that it pass through the

two points A and B. and let us try to find a continuous - and
piecewise differentiable function 0 which -either maximizes

or minimizes 1(4)). By inspection we see that

0 c 1(0) c 1
since the integrand is positive and always less than one.

However from the figure it is easily seen that by picking

point C very close to x = 1 we can make I take values as close

to unity as we please for the curve A C B, and by taking the

ordinate of D large enough we can make I as small as we please

for the curve A D B. Since there is no admissible curve 4)

which will make I(0) take on the values 0 or 1, there is no

solution to either the minimum or maximum problem.

Let us now consider a problem in which the existence

of a solution depends on the class of admissible curves.

We look for a closed curve of minimum area, within which a

line of given length can turn through a complete revolution.
If we limit ourselves to convex curves, the solution is

given by the equilateral triangle having the given line as

7



altitude. However, if we

remove the restriction of

convexity, it can be shown

that the nre a can be made

as small as we please, and

since no solution exists

having zero area, there is

no solution to the problem.

We therefore see that in order for a

blem to be solvable, some care ;,.uat be taken in tle choice

of admissible functions.

Problems

1) Verify that the propert;'

sin A = constant

47-
characterizes the cycloid.

2) Characterize the larger great circle are between two

points on n sphere as the solution of e mini_msx problem.

Generalize to a great circle arc which winds around n times.

3) Find the shortest path

between two points A and B

lying between two convex

curves as boundaries. This

is an example of a general

type of problem in which
auxiliary conditions in the

form of inequalities are

-imposed , in contradistinction to isoperimetric ,roblems

where auxiliary equations must be satisfied).

1}) Find the path which requires the least time in ascending

a rotationally sym:.ietric mountain using, a car with its velo-

city a given function f or the angle of inclination a, such that



tto) s vo, f( 0

f(a) and fl(a) monotonic.

5) Show that any admissible function 0 tx) can be approxi-

mated by admissible functions 4l(x) and nsch that
IM can be made as small as we please and I(4)2) as close

to unity as we please, where

X(4)
dx

J

9



I. FORMALISM OF CALCULUS OF VARIATIONS

1. The uler Equation. The simplest type of problem in the

calculus of variations is to extrenlize a functional I(4) of

only one independent variable, the function 4(x). In

practice, the functional is usually an integral of a given

form, and we will henceforth restrict our discussion to

functior.als which are integrals. In General terms, then,
the simplest of problem is to extrea.ize

11) I(Q) = S F(x,O1x),08(x))dx
a

where F is a given function which we will assume Y_as conti-

nuous first particl derivatives and piecewise continuous

second partial derivatives. The function tx) will be res-

tricted to the class of admissible functions satisfying the

conditions

(2) 4(b) = B
4J(x) continuous

91(x) piecewise continuous

The brachi stothrone is an example or this type of problem.
Assuming that an -..dmissiblo function u(x) exists for

which I(u) is an extremum, we first wish to find a necessary
condition which this function roust satisfy.

Consider a function 4(x, t) such that

(3) 4(X,t) is adrr1is31ble for all t
4(x,t) And pt%x,t) are continuous

9xt(x,t) is piecewise continuous

Q(x,O) - utx)

For example, we may cl.oose 9(x,t) - u(x) + t4(x);

however, any function satisfying (3) will suffice. If we

define

(4) a(t) = I(9(x,t))

10



then G(t) has a stationary point at t = 0. Accordingly

(5) rt a r-%'X,O.,O.I)dx I
dGlt=o

t=0
s

Differentiating under the integral sign, we have

S

b

(6) [Fur. + Fu,rIJdx a 0

a

where*
(7) fi(x) fit( x,0)

According to (2), (3), and l7) we See that

(tS) is continuous
' piecewise continuous

4(a) a t(b) = 0 ,

the last equation being true since 4(a,t) - A and b(b,t) = B.

If we modify (6) by integrating; by parts, the analogy
with the oorrespondinv; necessary condition for an extremum

of a function of n variables is revealed.

(9 ) b

(FuZ+Fu,Z')dx Fu'y

l

+ J fl
_Ux- u,)4dx

a a a

(b

= S
( Fu x b'u' dx = 0 .

a

In the case of a function f(x1,...,xn) of n variables,

we may derive the necessary conditions for an extremum by

considering g(t) a f(x1(t), x2tt),...xn(t)) where the equations,

xi= xi(t) define a curve in n-diraensional space. If

txI(0),x2(0),...xn(0) is to be an extremum, then

(10)

t=0
a 0 .

Z and are usually called theIn the literature
variation of u and u' respectively, and written 6u, Out

11



In other words,

n
(11) i fxi *1 . = 0

In vector notation, tkis is the inner product

(12) grad f .'17 = 0 ,
where r is the "velocity" vector with co:n.pononts (fc1, 2,
This relation must hold for arbitrary V, from wi.ich we may
conclude that
til3) grad f = 0 ,

which is the desired necessary condition for an extremum.

Aferrin.- to (9), we see that we have an equation similar to

(11), the discrete sum being replaced by an integral, xi

and fxi by Z and (Fu - a- Fu,J respectively. By analogy,

the necessary condition corresponding to &13) would be

t14) Fu - dx 0.

This, indeed, is the well known huler equation for the

extreiizing function u. We observe, however; that

(15) rX Fu, = Fu.ut U" + Fuu, U, + Fu,x

does not exist for all admissible functions. Kence the

Luler equation (14) does not constitute an a priori satis-

factory formulation of a necessary condition since it is

not clear in advance that for an extre;aiainr function ukx),

the quantity ax Fu exists. This difficulty -way be avoided
by integrating (6) by parts in the following way:

(16) b

Sa

b

(FFZ + Fu, Z I dx udx + Z' l Fu, Fudx) dx
a I a

b x

-
st

V(PU, 5Fudx)dx = 0

12



Equation (16) must hold for all Z such that

(17) Z(a) = fi(b) = 0
4 continuous

4' piecewise continuous.

For our purposes it will be convenient to prove the following

Fundamental Lemma: if

2;1(x)f(x)dx - 0
a

i`-jr all 4 satisfying (17), and f(x) is piecewise continuous
then f(x) is a constant.
Proofs Since

b b

C'dx
0,a

it follows that, for my constant C,

b

(18) S 41tf - C)dx = 0

a

In particular, we may choose C so thrt

b

(19) (f - C)dx - 0 ; i.e. C = S fdx/(b - a)

a a
With this choice of C, it follows that the function

(f - C)dx

a

satisfies (17); hence ;ld), which must hold for all functions

4 which satisfy (17), must hold in particular for

4 a (f - C)dx ,

i.e. for Z' = f - C. It we substitute this function in (lb)

13



we obtain

(20) ` (f - C)2dx - 0 .

a

Since f(x) is piecewise continuous, this imoliea that f - C's 0

which proves the lemma.

Applying the lemma to (16) we conclude that

(21) Fix I - Fudx s C -

This is the desired necessary condition which an extreoiizing

function u must satisfy. It is, in fact, the first integral

of the Euler equation (4). Since Fu is continuous, we may

differentiate (21) and conclude that if u is an extremizing

function, dx Fur exists and is in fact, continuous, being

equal to P. deferring to (15) we observe that u" is con-

tinuous at every point when u' is continuous, provided that

Fu+ul 0 along the extremala. If we exclude the finitely

many points of discontinuity of u' we see that the extremum

function has not only a continuous first but also a continuous

second derivative. For these points i;uler's equation (14)

is a satisfactory necessary oondition.

It is important, however, to realize that t,'-is deri-

vetion of ('21) is needlessly elaborate. Since all we are

seeking is a necessar condition, it follows that any condi-

tion which an extremizing function u must satisfy for any

particular class of 4's will be a necessary condition. Now

t21) is a relation which must hold for every value of x

between a and b, i.e. it is a one parameter set of relations.

It therefore seems reasonable that if we choose almost any

one parameter family of Z's, we should be able to derive (21)

14



For exam,31e, let

(22) tx-a) a<x<a+e
/ r 1 a+E <x<Y.

r(X)_
-F;) r,,< x < rs + e

a a+e L j +r,

If we substitute (22) into (6), we obtain

+e +e

i{x- a)Fudx+ Fudx + (1 - 6(x-F))Fudx
a a+e 4

+ 6 Fudx - 1 Pu,dx 0.

a

But

S
e (x - a) Fudx 1 c 5 I Fu I dx -+ 0, as a --r 0

a
and similarly for the third terns. Also, by the Mean Value

Th:'orein a+6

1 ` Fudx = Fu,(a+(Le) , t0 < a < 1)

and

a

Futdx s Fu,( + ¢e) to < 1)

so that letting a approaoh zero, we obtain

a

Fudx + Fu, # 0
1

15



which is equivalent to (21). Many other specific one para-

meter families cen also furnish a derivation of (21).

Problems

1) Give a direct proof that if

r.(x)f(x)dx = 0

a

for all Z satisfying (17) where f(x) is continuous

then f(x) is identically zoro.

2) depeat problem (1) whore 4 is restricted to the class of

functions having conttn ous second derivatives.

3) Prove the following generalization of the Fundamental

Le* as

Any piecewise continuous fanction f(x), for which

b

Y. (k)(x)f(x)dx n 0

for all 4tx) such that 41,
z(tt) are continuous and

r.(n)ta) = Y.(n) (b) = 0

for n = 0,1,...k-1; is a polynomial of degree k-l.

Derive a,'uler's equation uainL the a;.)ecial variation
(x a)/(X - a) a < x <

Ztx, %b - x)/(b - 'F,) 4 < x < b
Z

% b

Derive Ruler's equation usint; the special variation

x-a)(C-x) a<x15
0 F.< x b

a

16
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6) Show that it F 0 F(x,u' ), (i.e. P is not a function of
u explicitly), the iuler equrtion may be solved by quadratures

in the form

u = g(x,C1)dx + C2

where u' s g(x,C1) is the explicit solution of the implicit

equation

Fu,%x,u1) - C1 .

7) Derive a similar solution of the filer equation for the

case F a P(u,u+).

8) Use the Euler equation to solve the brachistochrone pro-

blem, the problem of minimum surface of revolution, and the

problem of the shortest distance between two points of a plane.

V) The isoperimetric problem may be reduced to the ,.uler

equation in the followinC way. Consider two fixed points

P. and B on a closed curve. _,- B
Then, assuming that the

closed curve (of given

length) encloses maximum

area, the area enclosed by
..

the are AB and the chord AB must certainly be a maximum for

all arcs of the length of AB, say L.

Let the curve Al) be given by
x = 0(s)
y Vi(a)
a = are length

A: (e=0) and B: (s=L)

Then +
;2 = 1, and the area is

s*/1Ay dx= Vridsa - de
a 0 0

where *(0) *(L) = 0.
To extremize A(*) is now a simple exercise.

Obtain +y, and Q by use of the iuler equation, and then

show that if b is allowed to vary, but L is kept constant,

the taximum of A will be for a semi-oircle.

17



2. Generalizations of the sulcr equation. The Euler equation

(l!}) may be generalized along three lines by altering the form

of P to contain

a) more than one dependent variable

b) more than one independent variable

a) higher than first derivatives

or any combination of these.

a) Suppose F contains two dependent variables, so that

(23) I s I(4,ir) ' F(x,
ya

where Q and ip are admissible functions. In order that

I(u,v) be an extremum, it is necessary that Itu,v) be an

extremum with respect to u and v considered independently.

In other words, a necessary condition is the pair of

Paler equations
Fu, 0(24) Fu - ax-

Fv -
dd Fv, 0

In general, if F contains n dependent variables there

will be n Suler equations.

An example of such a system is found in the Hamilton

Principle of Least Action. Briefly, this says that if a

mechanical system be described by ai independent coordinates

gl..ogn (n degrees of freedom), then the motion of the

system -- i.e. the determination of qi = qi(t) -- will be such

as to minimize the "action" I,

1
(25) I (T(g1,...gn,41,...4n) - Ukgl,...gn)]dt ,

to

where T end U are given functions, the kinetic and potential

enerEy respectively. (Actually, the integral is not an ex-

tremum, but only stationary.) iTh L.uler equations which must

be satisfied to make I atrtionary are

(26) dq
U -- (A ) s 0 i m 1,2,...n .

t i
18



(These are, in fact, the Lagrangian equations of motion. (For

one degree of freedom, this reduces to the familiar Newton

equation F = ma.)

b) Next let us suppose that F contains two independent variables

x, y so that

(27) I(4)) = If F(x, y, 0, 0x, 4y)dxdy

R

where R is a given closed connected region in the x,y plane,

bounded by the curve C. The function will be restricted to the

class of admissible functions

(28) 4) continuous in R

x, 0y piecewise continuous in R

takes given values on C

Suppose that there is an admissible function u(x,y) for

which I(u) is an extremum. If we write
(29) 4)(x,y,t) = u(x,y) + tr(x,y)

where r is admissible except that r = 0 on C, then 0 is admissible

for all values of t, and

(30) G(t) = I(4)(x,y,t))

is an extremum at t = 0. Accordingly,

CIG

I

_
J J (

CF" + C,xFu + yFu ] dxdy = 0(31)
t=0 R x y

Since r = 0 on C, this reduces upon integration by parts to

(32)* $ r[Fu - ax Fu - ay]dxdy = 0

R
x

for all admissible We conclude that the Euler equation in

this case is

(33) Fu - a Fu - ay F u = 0
X y

We observe, however, that, as for the simple Euler equation

a0/2x is taken to mean the derivative with respect to x, holding
y, but not u or its derivatives constant:

)G = Gx + Guux + G. uxY + Gu uxx
y x
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(14) of the preceding saction, the derivation of (33) implies

the existence of second partial derivatives of u, and hence

is inapplicable to some of the admissible functions. In the

earlier case we were able to integrate by parts in a diffe-

rent order and show that for an extremizinn function u'C must

exist. We are unable to do the corresponding thing here and

hence (33) is a necessary condition only if it can be shown

that an extremiaing function possesses second partial deri-

vatives. We may, however, derive an equation corresponding

to the first integral %21) of the Ruler equction t14). To

do this we investigate (31) directly by considering t1v

following special variation rtx,y); let TGERS be an arbitrary

rectangle with sides parallel to the coordinate axes -nd con-

tained inside It, end let p(x,y) be the distance from (z,y)

to ' i; then we define
(36) 1

r.(x,y) a 4 1 -fE
0

if x,y in P@fi
if 0 < µ < a
if µ e
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Then C is admissible for any a > 0, and

x = 0 on PQ, PS

Cy = 0 on PS, RQ

= e on PS, = -a on QRx
Cy = a on RS, _ -e on PQ

If we substitute this function into (31), use the theorem

of the mean, and let a --* 0 we obtain

S R R R

Jf Fdxdy + Fdy
fQ

Fdy + ` Fdx - ( Fdx = 0
Q

P JP y S y

This may be conveniently written

(37) fJ' Fudxdy = (Fu dy - Fu dx)

O
x y

Equation (37) corresponds in our present case to the first inte-

gral (21) of the Euler equation. It no longer contains an

arbitrary function C, but now contains an arbitrary rectangle.

We may approximate any region by rectangles and hence conclude

that for any rectifiable closed curve C' bounding a region R' in

R and for any extremizing u,

(38) Si Fudxdy = N (Fu dy - Fu dx)

R'
C' x y

This is known as Haar's lemma.

The chief value of this lemma lies in the fact that it is

applicable to any admissible function since it does not presuppose

(as does the Euler equation (33)) the existence of second partial

derivatives. If we know that the extremizing function u has

continuous second partial derivatives, then the Euler equation (33)

will follow directly from (38) by use of the Green's formula

(39) f Pdx + Qdy = ff (Qx - Py)dxdy

C' R'
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In case F contains n independent variables xl,...xn

the equation eorrespondin3 to (33) is

(40) Fu -a- Fu a 0
i xi

where here, as before, the condition is necessary only if

the extremising function possesses second partial derivatives.

Two important exam le s of this type of problem.are

the Dir!.ehlet and plateau problems, namely to minimise

(41) a) Jfux + uy)dxdy

R

b) ff 1 + ux + u2 dxdy :

the first ifitegral representing, say, the potential energy

of an oleatroatatio field, and the second the area of a

surface projecting on R. With given boundary values on C,

the latter problem become that of minimizing the arse of
a surface having a given closed apace curve as its boundary.

The isuler equatidns corresponding to (41) are

(42) a) uxx + uyy M 0

b) (1 + uy)4xX r 2uxuyuxy + (1 + ux)uyy 0

The first equation is the well known j..aolaoe equation,

whose solutions are hor:.'onio funobiona, if we treat the
Dirichlet problem from the point pf view of Hearts lemma,

we get the condition

(43) # (uxdy + uydx) 4
CO

for an extremising fgnption, This must nold for all closed

rectifiable Cts tip R and hence uxdy w uydx must he an exact

differential, It follows that another function v exists

such that

(44) ux a yy ; u_ a vx
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These are the Cauchy-Riemann equations which a harmonic

function must satisfy. (In particular, assuming thot se-

cond derivatives of u and v exist, the Laplace equation

(42a) follows from (t14) by elimination of v.) *

c) Finally, let us suppose that F contains a second deri-

vative so that

(45) I(4)) _ \ F(x,4),4)',4)")dx

the class of admissible functions 0 now being such that

(46) p, Of continuous

0" piecewise continuous

4(a) = Al, 4(b) = BI

01(a) ° A2, 01(b) =
02

We again suppose, that for the function u, I(u) is an

extremum and eat m = u + t2:, where is admissible but

Z + Z 0 at a and b. Then, if
a(t) = Itu + tr.)

it follows that G(0) is an exteeinum and so

(47)
dOtt=0

J [ Fu + r.'Fu, + 4 0

a

Integrating by parts, we have

2

(48) Z(Fu - Fu, + d
TX'

-2 Fu,i)dX - 0

a
dx

Hence the iuler equation in this case is

2

(49) Fu -ax Fu +aFu"=0dx

Expanding (d2/dx2)Full we observe thet (49) is an equation of

a-
Actually, if (44) holds, continuity of the first derivatives
alone will insure (42a)--as well as existence of all higher
derivatives.
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the fourth order, and implies the existence of u"". As in
the first section (page 12) it can be shown, for example by

considering a special variation r,, that for an extremizing

function u"" must exist and hence that (49) must hold.

As en example of equation (49) we consider the problem
of determining; t:.e deflection of a loaded elastic beam.

Suppose the beam is clamped rigidly at 0 and 1, and is loaded

with a weight per unit length which varies along the x axis,

W f(x)

x

VU
Then if u(x) is the deflection of the beam at a point

x, the potential energy of the system to given by

t50) P.H. (I au"2 - uf(x)ldx

0

where u is a constant determined by the physical properties

of the beam. Since the beam is rigidly clamped at the ends,

we have u= u l = 0 at 0 and 1.
It follows from a basic principle of mechanics that the

equilibrium deflection of the beam will be such as to mini-
mize the potential energy. Hence, if u is the deflection,

it must satisfy the Euler equation for minimizing (50), namely

(51) au"" - f(x) = 0 .

This is a fourth order equation whose integration intro-

duces four constants. These iaay be determined from the four

and conditions u = u' = 0 at C and I.

In general, if P contains the n'th derivative 0(nJ(x),

so that

b

(52) 14) ° C
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than an extremizing function u will satisfy the ruler equation

2 n
n(53) u - dX P., + Full + ...(-1)n

d Fu(n) = 0
dx dx

Problems

1) Derive the Euler equation (4y) assuming that only u" is
pieoewise continuous, using integration by parts and the

results of problem 3, page 16 .

2) Do problem (1} using the special variation

Z(X) 0 X, -c x c b

3) Derive the xuler equation (33) from Ha.'r+s lemma, assu-
ming that u possesses all second partial derivatives.

3. Natural Boundary Conditions In section 1, we oonsi -

dered the stationary values of

I($) m
1

F(x,dx
a

where Q was required to be a continuous function with a

pieoewise continuous derivative and such that

$(a) -A, O(b) =B.
Suppose we now drop this last condition leaving the values

of Q(a) and 4)(b) open. Considering
0(t) = IN + t4)

in the usual way; we conclude that

b
jt=0 (FuZ + Fur?')dx = 0
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However, we may no longer require that r.(a) = 1;tb) = 0.

Hence, the integration by parts gives, for every

b b

Fuir. + (Fu - dx 0
la Sa

Consideration of a family of 4'a such that 4(a) _

Z(b) Y 0 yields the Euler equation as before. There remains

b

Put
4

= 0 ,

a

and since ?(a) and 4(b) are arbitrary, we conclude that

(54) Full = Fu,( = 0 .
x=a x=b

Thus, if we do not prescribe any end point values for the

extremizing function u, we find thQt such a function must

automatically satisfy a relrtion at each end anyway--this

is the so-called natural boundary condition. It is evident

a priori, that the c:uler equation is a necessary condition

whether or not boundary conditions are imiosed, since any

extremum, if it exists, will have definite boundary values.

For exam,le, in the problem of the minimum area of

revolution, P = 1
-+U-_7

an d

uu+
Fu-

r

1

If we prescribe u(a) = A, i.e. fix one and, but leave u(b)

free, we obtain the natural boundary condition

0 .
fence the curve which gives the minimum area of revolution

will (if b-a is small) be
that one which satisfies the

Euler equation and is hori-

zontal at x = b. If we
think of the soap film analogy

of t:.ta problem, we see that
the natural boundary condi-

tion is that the film be perpendicular to a wall at b.
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In case F contains hither derivotives the same pheno-

occurs. Instead of deriving goneral we

will consider the specific a :ample of determinir.i, the deflec-
tion of a loaded beam which is clamped at one end and at the ether

and is respectively clamped, free, or supported. ReferrinL

to the discussion on page 25, we know that the equilibrium

deflection u(x) of the beam will be such as to niniraize

S

l

(55) P.E. _ (j a(u")'` - u

0

}ere tie prescribed end conditions are u = u' = 0 at x = 0,

and

i) u = ut = 0 at x = 1 /cipmped)

ii) no condition at x = l (free)

iii) u - 0 at x = 1 (supported)

Case i) has already been discuasod (see pr a 24). It leads

to ti;e u,,aler equation of fourth order
(56) au"" - f'x) - 0

the four end conditions necessary to determine a specific

solution beini; prescribed.

':/e consider case ii) directly, i.e. let .4 = u + tZ ,
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where 4 - x' = 0 at x = 0, but r. and Zt are left free at
x a 1. Then if u minimizes (55) we will have

It=0 (
0,,,2 - 4f x))ax = (aufor^ - fZ)dx = 0

0 0

Integrating by prrts, and making,, use of the condition

ZlO) _ 4'(0) - 0, we have

atu'r4' I - u'r,r. l ) + [cu"" - f]ldx = 0
O'x=1 x=1

Hence, the 1uler equation (56) must still hold. But in addi-

tion we must have, for all 2:,
u1141 =un,Z=0 atx=l .

In other words, if we prescribe no end conditions at x = 1--

leave it free--we are automatically led to the "natural"

boundary conditions

(57) u" =u"' =0 at x=1
We still have the necessary four boundary conditions to deter-

mine the specific integral of (56).

In case iii), where we prescribe u(1) = 0 but leave

u'(l) free, we must prescribe 4(1) = 0, but leave r,1(1) free.

Then it follows that

u" = 0 at x = I
but no loner that Of = 0 there. Again we have four boun-
dary oonditions--three and one "natural".

A second type of free end condition is to leave the

ooordinetes a and b ti:emselves free, prescribing, say only
that 0 have end points on a given curve. Sizppose, for
sim;'licity, that we fia one end point a, Oka) = A, but re-

quire only that 4 b) = gkb) is a given function.

Supposing that u(x)

is an extremizing function

which intersects g(x) at

x b%0), w let 0 - ur tZ
and b b(t;. Then if
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M
0(t ) ° F(x, )dx ,

we have
b(O)

(58)
dt+ t=0

° Sa (Fur. +Fu,Z' 1dx+ F(x,u,u') I b(0) = 0
x=b(0)

Since

(5y) u(b(t)) + tr.(btt)) = g(b(t))

differentiating and setting t = 0, we conclude that

(60) b(0) _ jS b(O1)
gam( )) - u'(b(O)) '

Substituting this in (58) and integrating by parts

we obtain, for all r.
(0)

(61) (Fu -
Ux

FuI]Cdx + (Fur + grF- "')41 _ ° 0
a x b(0)

Hence an extremizing function u must satisfy the usual

Euler equation, a fixed end condition u( a) = A, plus a condition

(62) Fu, +g, Fu, 0 atx=b .
Condition (62) is called the Transverselity Condition.

Together with u(b) = g(b), u( a) = A, and the i.uler equation,
it detennines the point b and the solution u. As before
leaving the and condition free results in an automatic end

condition--in this case a relation between u and u'. The

transveraality condition t62) reduces to the previously

derived natural boundary condition (54) for the case of b

fixed, i.e. t;a fixed curve Is x = b; rnd g'tb) = m , so that

the second tam in 62) drops out leavinf; only

Fud
x=b

=0 .

In many of the specific examples considered so tar, F

was of the form
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F=P(x,u) 1+u1
In this ease the tranaversality condition (62) reduces to

u131 = -1 ,

in other words the extremizing curve u must be orthogonal

to the given curve g.

Problems

1) Show that the natural boundary condition at a free

boundary for F = F(x,4,¢', 0n) is

d
Fu, - Fun 0

Full = 0 .

2) The condition that $ have its end point, x = b, on a

fixed curve g may be reduced to the froe end condition for

fixed b by transforming tie, x,y plane so that U becomes a
vertical line. Derive the tranaversality condition in this

way.

14. Degenerate Euler Equation. The Euler equation for the
simplest problem is

(14) Fu -

ax
Fur = 0

In case F is linear in u', i.e. of the form

(63) Ftx,u,u+) as A(x,u)u+ + D(x,u)

the a ule r equation reduces to
(614) Ax-Su=0
This is no longer a differential equation but is, in fact,

an implicit relatioh which in general will define u as a

function of x. It follows that u(a) and u(b) may not be

arbitrarily prescribed in general.

The converse is also true, i.ew if the Ruler equation
degenerates from a differential equation into an ordinary

equation then h must be of tle form indicated in t63).
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For, expanding (14) we have

(65) Fu - Fu-x - 0

If (65) is not a differential equation, then the term con-
taining u" (there is only one) must disappear, i.e.
(66) Fu,u, = 0 .

But (66) implies that F is linear in u', i.e. is of the form

indicated in (63). Hence, a necessary and sufficient condi-

tion that the :ruler equation degenerate is that F be linear
in

An importEnt special case of this degeneration is when

(63) is satisfied, but also A%x,u) and B(x,u) satisfy (64)
identically. Then u will satisfy the degenerate Euler

equation and hence will extremize 1(u). In this case

IM Adu + Ddx
a

is a line integral whose value is independent of the path of

integration (i.e. of u) since we are supposing that (64) is

satisfied identically. In other words, I(u) is a constant,

and so has no proper extrenum.

In case F contains a second derivative, the Buler

equation is of fourth order

(67) u""Fu,eu,r + u"I 0

Eenoe it will degenerate to a lower order if

Funur, _ 0

I.e. if F is linear in u"

(6u) F(x,u,u',u") = Alx,u,u')u" + I3(x,u,u')

In two dimensions followin(, the sane reasoninG, we
conclude that the Auler equation (33) will degenerate if
and only if F Is linear in ux and*-.u1,

(69) A(x,Y,u) + B(x,Yru)ux + C(x,y,u)u7
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If (69) holds, the Euler equation becomes

t70) Au-Hx-Cy=0,
which in general defines u implicitly as a function of x and y.

Prob3z me

1) Show that (67) is of at most second order if (63) holds.

2) Under iat circumstances will (67) degenerate even more

(i.e. be of less than second order)?

3) Prove that if and only if F is of the form*

F ° L an
(Px-(X#Y#U) + ay(x,y,u) ,

then the degenerate iuler equation (70) becomes an identity.

As before this means that I%u) is a constant.

J}) Show that the huler equation for two independent variables

and second derivatives will degenerate if and only if P is

of the form
F(x,y,u,ux,uy,uxx,uxy,uyy) a

P(x,y,u,ux,u7)Euxxu7Y uxy] + Q(x,y,u,ux,uy)

* See footnote, page 20.
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rj. Isoperimetric Problems. Isoperimetric problems i ualculus

of variations are concerned with extremizing integrals subject
to some sort of auxiliary conditions on the dependent functions

4, *, eto. These conditions may° be given in the form of inte-
grals, functional relationships, or differential equations:

a) G(x, 4, 4', +Y, V,...)dx = 0

b) G(x, 4, v,...) = 0

c) Gt x, ' , ...) = 0 .

For the corresponding problems in elementary calculus,

a necessary condition for an extremum is given by the Euler-

Lagrange rule (sometimes called the method of Lagrangian

multipliers). We recall that according to this rule, if,

among all ;)oints (x,y) such that g(x,y) = 0, the point lxo,yo)

extreraize s f t x, y) , then-- providing gx(xo, yO ) and gy(xo' Yo )
do not both vanish--it follows that (xo,yo) is found among

the stationary points of f (x, y) + Xg(x,y) considered as a
function of two independent variables, where the constant a

is determined such that g(xo,y0) = 0. In other words xo' yo,

and i must satisfy the three equations

(72) fx(XO,yO) + agx(x0,y0) = 0

fy(xo.yo + ?gy(XO,Y0) = 0

glx0,yO) = 0 .

We shall generalize this rule to cover the present problems
in calculus of variationss

a) We first consider the simplest problem, with an integral

side condition. Stated explicitly, we are required to

extremize b
('

I(4) = S Fix,4,4' )dx
a
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among all admissible $ (see page 10), which satisfy.the addi-

tional restriction that

(74) K(4) n 1 0(x,4,4')dx = Ko (constant) .

We suppose that there is such a function u, extremizing

(73) subject to (74). Lot 4 = u(x) + tly,l(x) + t2g2tx) where

Zl and ZZ are admissible but vanish at a and b. Then

(75) I = I(t1,t2)
K = K(t1,t2)

Since we require that 4 always satisfy (74), the parameters

.t1 and t2 are not independent, but must satisfy i((t1,t2) =K
0

From our hypothesis that u is an extremizing function it

follows that I(0,0) is an extremum of I(t1,t2) for all tl,

t2 which satisfy K(t1,t2) = Ko. Pence we may apply the

Luler-Lagrange rule for ordinary functions to conclude that--

providing
Kt1

and Kt2 do not both vanish at (0,0)-- there must

be a number A so that

b

(76) 3--[I+xx) Z1[F+X0)udx=0

I = 1,2.

where we define the Euler operator

(77) d
[H]u - Hu - dx Hu,

Since (76) must bold for all 41 and Z2, we conclude that

(78) [F + x03u ° 0

The restriction that Ktl and Kt2 do not both vanish at %0,0)
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mane that

or
(79)

SjIGJudxO,Kt_ 1 or 2 .

0

(GJu$ 0.

The required generalization of the iuler-La,;rnnge rule

is hence the following: if 1(u) is an extremun subject to
K(u) = Ko, and (G]u f 0, then there is a constant X such that

[F+ ?GJu a 0. In general (7(J) is a second order differential

equation containing a parr.metor X. Its solution- will be in

the form
u = u(x,%)

since the two integration constants may be determined from the

(fixed or natural) boundary conditions. The value of a is

then determined so that

b

S G(X,u(x,A),u'(x,A))dx = K
0

s

As ax illustration, consider the problem of determining

the shape of a chain of given length L hanging under gravity.

If u(x) is the shape taken by the chain,

then u is such as to minimize the potential energy

b b

PE _ ude = + u dx

a
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subject to the usual admissibility conditions, plus the addi-

tional restriction that the length

b

V/ 1 + U12 dx = L

is a given constant. Observe that the integral to be mini-

mized is the some as the one for the problem of minimum area

of revolution, for which the solution was seen to be a cate-

nary. In this problem P = u Ti 1 + u' , 0 = 1 + uld , so

the generalized Ruler-Lagrange rule states that there is a

constant A such that

TX'
. u1 (u + a = 0(80) IF + l0)u + UI2 d

I,-+-U-
The solutions of this equation have the form u = v(x) - a

where v(x) is a solution for P = 0, henoe represents a cate-

nary. Solving (80), with u(a) = uo, u(o) °i u1, we would get

u = u(x,A). Then h would be determined so that

Sb

and the result would be a cotenary of length L between the

points a and b. The side condition is therefore seen to be

merely a restriction on the class of admissible functions.

In case P contains more dependent variables, or there are

more aide cond-tions we have: if ul,...uk extremize

I(ul,...uk) subject to tl.e n conditions

S
b

Ki = Gi(x,ul,ui,...uk,uk)dx a 0 , i = 1,2,...n

a .

then, in general, there are n constants Al,...An such that

IF + A101 + ... Anonju = 0 j = 1,2,...k .
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We next consider the problem of extremizing

(81) I010 - F(x,4,4',p,*')dx

where 4 and 4 are subject to the aide condition

(82) G(x,4,Vr) = 0 .

it will be shown that the generalized Fuler-Lagran-e rule

still anpliee here, except that X is no longer a constant, but

instead is, in general, a function of x. A proof of this may

be obtained directly by eliminating, say, +y from (b2)--i.e.

obtain * o $(x,4)--and so reducing the problem to that of the

simplest case with no aide conditions. We prefer to consider

the variation of I.
Suppose, then, that I(u,v) is an extremum under the

restriction that G(x,u,v) = 0. Let H(x,t) = u(x)+ tr.l(x)

where 41(a) = rl(b) = 0, mid 4r,x,t) = v(x) + 42tx,t) where
42 is determined, once Z1 is given, by the relation

G(x,u + trl,v + 42) = 0

automatically insuring that 2(x,0) = 0. We know that I(4,yr)
is an extremum for t = 0, and G(x,4,1y) g 0 (in t) so that for
any function 1(x)

b
d IF + xGJdxlt=0 0

Accordingly, we have

(83) Zl[F + OJu +
d_U

(F + 71GJv). dx = 0
Ft=U

a

for all admissible 41 (42 is not arbitrary). Since (63) holds

for all 1(x), we will try to find a particular Mx) so that

IF + X01, m 0. Expanding, we have, since 0 does not contain v'

(84) IF + 10JV U Fv + 1Gv - d Fv = 0
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Hence, we may solve for A if Gv 0. If Gv = 0, but GU 0,

then the roles of xl and 42 may be interchanged. If both va-

nish, the procedure breaks down. We note that since Gve = 0,

the condition 0v # 0 may be writton (G]V 0. This choice of

A leaves only the first term in (d3) ,

b

3 Zl[F + AG]udx = 0

a

Therefore, we conclude that

(F + AG]u = 0

Hence, the Euler-Lagrange rule still holds, except that A is

now a function of x: i.e. we have shown that if u. and v ex-

tremize I(4,$) subject to G(x,$,$) = 0, then there is a func-

tion A(x), such that

(F+AGJu= (F+AG]v=(J,
provided that [G]u and [G]v do not both vanish. In general

the Euler equations in u and v (if there are more dependent

variables, there will be a corresponding number of Oiler

equations) are second order differential equations with fixed

or natural and conditions; their solution will be in the form

u = u(x,A(x))
v = v(x,A(x))

The function A(x) is then determined by solving the equation

G(x,u,v) = C for A(x).
An example of this type of problem is that of geodesics

on a surface. Suppose (u,v,w) are the rectangular coordinates

of a point on a surface determined by the equation

(85) G(u,v,w) =.0 .

Then a curve on this surface may be given in the form

u = u(t), v - v(t), w - w(t),
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where u, v, and w are
not. Independent, but

must satisfy (85). The

are length of the curve,

which is defined to

be a minimum between

two fixed points for the

geodesics is given by

wA

V

u

tl
(66) Fdt u t v + w dt

to to

Hence, we seek to minimize i86) subject to (65). The Luler

equations are

d NOu - 0
+ + K

and similarly for v and w. Since the parameter t is rrbitra-

ry we may choose t = sa, where n is the are length; then

d + b + * =

and the equations become (with a different a)

u" - 10 C 0u
Vol -AOv=0

w" - XOw=O.

As soon as a specific G is given, these, together with G = 0

may be solved .for u, v; w, and l.. We observe, however, that
for any G, the geodesics must be such that the directions

Ou : Ov I Ow , u", V", wit

are parallel. Since these are the directions respectively, of

the normal to the surface and the principal normal to the curve,

we conclude that -the principal normal to a geodesic at every
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point coincides with the normal to the surface.

a) We finally consider the iaoperimetric problem having a

differential equation as a aide condition. We seek to

ext reri to

subject to the aide condition

(07) 0

This type of problem is encountered, for in non-

holonomic dynamical systems, in which the number of indepen-

dent coordinates is not equal to the number of degrees of

freedom. The Euler-Lagrange rule still holds for this case,
i.e. If u and v extremize I(4,+p) subject to t07) and if [Glut

(G]v are not both zero, then there is a function A(x) such

that

(F+hGlua (F +hGlv=0

and G(x,u,v,u',v') - 0.

The proof is more involved here because not even one of

the dependent functions, say 4, can be subjected to an arbi-

trary admissible variation. For, 'if we attempt this, 'P is
determined as the solution of a first order differential equa-

tion, but must satisfy two boundary conditions, which is in

general im)ossible. This difficulty may be overcome by con-

siderin, variations of the form $ = u + t141 + t2t2,

+y = v + (tl,t2,x) where a relation between tl and t2 is fixed

in order to satisfy. the second boundary condition.*

As an example, we consider the simplest problem of the
first section only expressed in a slightly different manner.

*For details, see Bolsa, "iariationsrechnung", p. 558 or
Hilbert, "Zur Variationreohnun6", Math. Annal. Vol. LXII, No.3.
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We nook to extremize

I = F(x,v,u)dx

subject to the condition

Bore F = F(x,v,u) and 0 = u - v'. Then, according to the rule,

there should be a function Atx) so that u - V1 = 0, and

IF + AOJu x IF + AGJ, = 0

We have, respectively

Fu+A=0
Fv - A(-1) = Fv+ AI = 0

}fence, A R -Fu. Eliminating A, we have

Fv -
d
Tx- Fu ' 0 ,

or, since u = v'

dFv =0

the usual Euler equation. Of course, this problem avoids the

difficulty inherent in the general problems since only v (and

not u) must satisfy boundary conditions, so that in this case

arbitrary variations of v are permissible.

The problem of differential equation side conditions for

the case of more then one independent variable is even more

difficult, and has only been solved in special instances.

Problems

1) By use of the Eule r-Lagrange rule, solve the isoperimetric

problem of the circle--i.e. minimize

b

Ltu) - 1 + d dx
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subject to the cundition t-iut

A(u) = udx = AO., -a constant

2) Use the Euler-Lagrange rule to find the shape of a

hanging chain (see page 35)-

e) Find the geodesics on the sphere

G(u,v,w) =u2+v2+w2 -la0
See page 39-

6. Parametric Form of the Theory. For many types of problems

having physical origins the class of admissible functions

considered up to now is too restricted. For example, in the

isoperimetric problem we seek a curve of given length which

maximizes the area enclosed between the curve aid the straight

line joining its endpoints. If the given length is suffi-

ciently small,

L <x b - a)

the maximizing are may be written in the form y - u(x),

where a < x < b
However if

L > n(b -

a solution, but

it is no longer

exprossible in the

form of a function y = u(x), a c x < b. This artificial res-
triction may be removed by expressing F in parametric form,

as follows. Consider the functional

H(x,y,x,y)dt

St

1o . .tt
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where x x(t), y = y(t) are parametric equations of an ad-

misaible curve. We roquire that for an admissible curve

x(t0) - a, x(tl) = b
y(to) = A, y(tl) = B

and that x(t) and y(t) are continuous functions of t, with

piecewise continuous derivatives such that k2 + y2 # 0 .

The important point in this case is that ror the problem to

make sense H cannot be arbitrary but must be a homogeneous

function of the first degree in x and y. This follows from

the requirement that I sould depend only upon the curve

joining the fixed end points and not upon the particular para-

metric representation used to describe that curve. Hence, if

we replace the parameter t by mother parameter r = c(t) in
a one to one way (kt >. 0), 1 should not change. We therefore
have the following equation:

C
dc,;d )

dt
.,lt z

t0 0

= H(x,q,dx,dv )dtdtST
'Co

T-F

This requires that, for T > 0

(89) H(x,Y,Td'T ff) - T H(x,y,d ,F")

In particular if t = k, a positive constant we have

H(x,y,k$,kt) = kH(x,y,*.yr)

which is the definition of a homogeneous function of the first
degree in * and $r. Thus, it a problem be expressed in para-

metric form, the intesrand must be homogeneous of first degree

in t and t.
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If * > 0 throughout the interval (toot 1), we may take

1/* in (89), end setting y' t/* (89) becomes

H(x,y,*,3) _ *H(x,y,l,y') ° ST

and we may write

t1
(90) I = H(x,y,*j)dt F'(x,y,y' )dx

o a

Thus if x always increases as the curve is traversed (which is

the case if * > 0), the homogeneous problem may be transformed

beck into the inhomogeneous problem. Of course everything

which has been done for T > 0 and * > 0 applies equally well

if the direction of the Inequality is reversed.

The integral (88) may be treated exactly as in the

other problems we have considered. We obtain, as a necessary

condition satisfied by an extremal x = x(t), y = y(t), the

pair of sistultaneoue equations

(91) Ax
JT

HX = 0

These equations must hold for the extremizing curve indepen-

dently of the choice of parameter in terms of which it is

defined. The choice of parameter is thus left to expediency

in any actual problem under consideration.

As an exruaplo, we consider the problem of determining

the geodesics on a surface, phrased in parametric form rather

than isoperimetrically (cf. page 40). Suppose the surface

G(u,v,w) = 0 is defined parametrically as u = v. = v(x,y),
w = w(x,y). That is, we have a correspondence between a region

in the x,y plane aid the surface G in the u,v,w space. A

curve on G will then be represented by a curve in the x,y

plane. If this curve be given paronatrically in the form

x = x(t), y s y(t), then the curve on the surface G = 0 will

take the form u s u(x(t),y(t)), = v(x(t),y(t)),
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W w(x(t),y(t)). It has for eloment of arc length

where

daa E$ +2Ff +G2 dt

$aUX+
VX +WX

F : uxuy + vxvy + wxwy

g uy+vY+wi

are given functions of x and y, and
A EG-F2> 0.

Denoting the radical by H, the integral to be minimized then

becomes

Buler's equations (91) for the minimizing curve become

(92) Exit + 2Fxit + Gxt2
d Ez + F'K

2H dt

E *2 + 2F i - + G .2
d F$ G3

2HH dt
H

_ 0

In general (92) constitutes a very unwieldy system of

equations. However, we recall that any parameter may be used
in place of t. In particular, If we use a parameter, s, pro-

portional to the arc length, H is a constant and the equations

(92) reduce to

(93) gxx112 + 2FxzIyt + OXY12

a 2 d (Ex' + FyI)

FsyXf2 + 2Pyxr y, + Gyy, 2 a 2 a (Fx' + 3y)
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where xt - dx, y, =
ds

. 'These equations are then the ap-

propriate system to use in determining the geodesics for any

particular surface determined by the functions u,v,w.

We remark that although the porametric formulation of

the problem results in two Euler equations (91), these equa-

tions are not independent because of the requirement that H

be homogeneous of first degree in i and j'. (This, of course,

is to be expected, since an a glivalent inhomogeneous problem

would have only one Eule r equation.) In fact, H must satisfy

the Euler homogeneity identity

(94) H = iH + 3H3

and combining (91) with (94) we obtain the single equation

(95) xxt - Hyi + R(iY 0

whore

-x3 x

which is equivalent to the system (91).

The homogeneous formulation may be carried out for the

case of more than one independent variable in a straight-

forward way, the only formal change being that the 6uler equa-

tions will be partial differential equations. We consider as

an example the:.Plateau problem of minimal surfaces already

discussed on page 22. We will now formulate this problem

parametrically.

w
This relation is obtained from (911.) by differentiating with
respect to * and j:

Hi
= Hx + *Hxx +

Ns

Ht
*Hxt+H3+tH"

hence
JRj + *H + 0 ,

which leads iamediately to the stated equation.
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Let x = x(tl,t2), y = y(tl,t2), z - z(tl,t2) be the pa-

rametric equations of a surface such that as tl,t2 traces out

the-curve g in the tl,t2_plane x,y,z traces out the fixed

apace curve r in the x,y,z space thus satisfying the boundary

condition. We wish to find the functions x,y,z for which the

area of the surface enclosed by 1' is a minimum--i.e. to
minimize the integral

where

ffi.- 0 dtldt2 a SiAldtldt2

9 E

E=xt +yt +zt
1 1 1

F= xtl ' xt2 + ytl ' 3t2 + ztl st2

0x2 +y2 +z2t2 t2 t2

The resulting Euler equations are

(96) a

W Y!

{tl) + ( xt2) = 0ZT7 at1 ,/ 2

xt t+

W

w

W7 at

W Wx

E-
At1)

+ t ( At2) = 0

Here as before the equations can be greatly simplified by a

proper choice of parameters. We can always choose t1 and t2

so that F a 0 ahd E O G, and with this choice, equations (95)

reduce to very elegant form

(97) xuu + xvv = 0

yuu+yvv'0
s

zuu + svv
0
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Problems

1) Verity that (97) results from (96) on setting F = 0, E = G.
Compare with the previous method used, page 22.
2) Use (93) to find the geodesics on a sphere, representing

the sphere parametrically by

u = sin x sin y
v= sin x 008
w=coax .

Compare with the previous methods mentioned, I.e.-in simplest

form (page 11) and in isoperimetric form (page 38).
3) Derive (95) from (91) and (94)-

7- Invariance of the Euler Equation. On page 13 we mentioned

that the Euler Equation may be thought of as a generalization

of the vector equation grad f = 0, where f = f(xl,...xn). we

recall that if the independent variables xl,...xn are trans-

formed into new variables .l(xl,...xn),...(xl,...xn) in

such a way that the Jacobian

')(xir...xn) Oorcc,a ml; ..

then if grad(x)t - 0 at a point (xl,...zn) it will follow that

grad(r)f = 0 at the corresponding point We say

that the equation grad f = 0 is invariant under transformation

of the coordinate system. We would then expect that the Eule r

equation should also be invariant under transformation of the

coordinate system. That this'is so may be verified by consi-

dering the result of replacing x by P _ fi(x) in

xl

lI F(x,u,ux)dx r
Sx

o

Ir.

'4o

1
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where v(4) = u(x(g)). A one parameter family u(x) + t4(x)
will correspond to v(X) + tt ( Y,) where r,(x(4) ) = It (y,); eubati-
tuting these expressions into the above integrals, differen-
tiatingwith respect to t and setting t = 0, we have

4EF)u(x)dx a
1 N

EH]V( )d = 0

Jxo 'so

since d4 is 4xdx and 4(x) _ q ($), we conclude that

r. ((Flu - dx = 0

or

(98) (Flu = EH)A .

In the case of more than one independent variable, a change

of coordinate system from (xl,...xn) to (1,...gh) requires
that the Ruler operator in the new system be multiplied by

the Jacobian of the transformation. We have

[F(x1,...xn; u,ux1,...ux )lu
n

_ [H($1,...; v,vY,...v )ln lvx ...xn)

where

v(l, ...) = u(xl(*41, ...Z), ...xn(11, ...)

and

H a P[xl( 1, ..V, 0 ...V,,,); v( 'l, ...fn); ux
1
('41, ...r'n),

a(x1,...xn)

a 1,... n

with

u =v +. +V ,An
XI $i ?xi gn axi
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In particular, if for a given u, [Flu = 0, then (H]v = 0, so

that the isuler equation is invariant. The property that a

curve be an extremal (i.e. a solution of Luler's equation)

remains unaltered by a transformo.ti on of the independent va-

riables.

The invariance of the Euler expression is a useful

principle in actually computing the transformed differential

expression. One of the most important differential operators

is the Laplacian Qu = uxx + uyy = -7 (b']u, where F - ux+ iu
If we wish to find Au in polar coordinates x = r coa 0,

y = r sin A, we may calculate r, r, H a r(vr+ 2 ve),
and conclude that r

(Flu n
r(HV ar Hvr -

Hve

r(rvrr + yr +
r v9A)

.

Hence, from Au IF]u

a 1 1av vrr + r yr + vAA '
a result obtained without computation of second derivatives.

Problems

1) Find Au for spherical coordinates x = r cos 0 sin C
y a r sin 0 sin 4r, z = r con $. Generalize to n dimensions.

2) Fine Au for a'4(T,y) $L a h,(x,y).
3) In n-dimensions,

nQu °Fuxixi

Let xi a :i(?;l, .4n) and 1,i a V,i(xl, ...xn), and define

ik n djrk
6 * _a a1
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Then show that

(a) D

(b)

n

11 12 In
g g ... g
21g

gnT gnn

(410 ... n ) 2

j
xl,...xn

8. The LogendreCondition. In the theory of extrema of func-

tions of a single variable, P. necessary condition for a

minimum, besides fl(x) = 0, is that f" > 0 (if it exists).
A condition somewhat analogous to this will be seen to hold

in Calculus of Varia ti ona .
Let us suppose that there in an admissible function u,

for which

b

I(u) = F(x,u,u')dx

a

is a minimum. Then G(t) = I(u + tr.) has a minimum at t = 0;

accordingly G'(0) - 0 (from which follows the buler equation

[Flu = 0) and also G"(0) > 0, assuming its existence. Hence

for every admissible ?,

M)
('b

a S [Fuuy2 + Fuu,Zr' + 0

a

We choose a special variation

0 a < x - e
+(xNJ)A E, - ex

fi(x) 1 - (x - )/e ,< x + e
0 T, +e<x<b .
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1

a b

If we suostitute this function in (99) and let e --v- 0, the

term

9+e
1 Fututdx

will dominate the left side of the inequality (9y) and deter-

mine its sign. Thus the sign of Fu,ut determines the sign

of 0"(0), and for a minimum, the weak Lj endre Condition

(100) pu,u, > 0

must hold for all points on the curve ut We .have seen (Page 31);
that Fusu, # 0 is essential in order that the Euler equation

should not degenerate. In many problems the strong l.egendre

condition Fu,ut > 0 holds, but this is still not sufficient

to guarantee a minimum. (We will see in the next chapter

that if F0 + > 0 for all admissible 4, then a solution of

the Euler equation is a minimum.)

Problems frequently take the form F = g(O) /77717
for which g/(]. + 4,2) and F¢+ > 0 if g(4) > 0 ,

so that for such a function LeCondrets condition is sufficient.

In case F contains more dependent functions, the

Legendre condition is that the matrix

(Fu1uj)
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be positive definite, that is

for all his A .

Problems

1) Verify the last statement above.
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II HAMILTON JACOBI THEO?t - SUFFICIENT CONDITIONS

1. The Legendre Transformation. Transformation from point to

line coordinates is frequently useful in the theory of diffe-

rential equations. We consider first the one dimensional case

of a curve u s f(x), which can be considered as the envelope of

its tangent lines. The tangent line at any point x,u is given

by

(1) U + xf'(x) - f(x) - f'(x)x ,
U and X being coordinates along the line. The line (1) is de-

termined by its ooordinatea (i.e. slope and intercept)

(2) 7, = f I (x)
W=xfI(x) - u

where a unique value of (,w) is assigned to each point (x,u).

The curve u = f(x) can then be represented as w = W(E) on eli-
mination of x between the equations (2), which can always be

done if f"(x) # O.* Between corresponding sets of coordinates

(x,u) and (F,w) (i.e. referring to the same point on the curve)

there exists the symmetric relation

(3) u+waxf
in virtue of (1).

The 'equations (2) allow a transformation from point to

line coordinates. To reverse this procedure we suppose w = w(4)

in given and find the envelope of the one parameter family of

lines

*If P"(x) p 0t1; = fI(x) can be solved for x, and substitution
in w = xf'(x1 - f(x) gives the required relation. Inversionof

w = f(x) instead of t fI(x) requires xf"(x) X 0
so nothing is gained. The points f"(x) = 0 (inflection points)
are singularities in line coordinates and f"tx) s 0 represents
a single straight line. Similarly W"14) a O is a cusp in point
coordinates, and W"(Z) 5 0 represents a pencil of lines through
a fixed point (no envelope). Duality is observed as points on
a line (f"(x) 9 0) and lines through a point (w"(4) = 0).

54



(4) U + w(Y') = X .

To do this we differentiate with respect to the parameter ?,

and combine with (4), setting U u and X = x (coordinates

along the envelope), obtaining

(5) rx W1( )

The duality of the transformation is evident on comparison of

(2) and (5). Elimination of F, in (5) to obtain u = f(x) is

possible if W"(Z) # 0.
Another more formal way of deriving (5) by inversion of

(2) is to differentiate equation (3) with respect to r, treating

u,w, and x as functions of 4. We have

f'(x) 4 + wt() = + x

But, since & = f+(x) from (2), this reduces to

x = w' CO ,
and the other part of (5) is obtained by substitution in (3).

The foregoing can be easily extended to the case of n

independent variables. We have u = f(xl,...xn) and introduce

as coordinates the direction numbers and intercept of the tan-

gent plane to this surface

(6) [z1 = fxi
n

w xifxf -f
L

= fn

The paramteea xi can be eliminated if the Hessian 1fx
i
x
i

I- 0,*

(i.e. the Jacobian of gsi.- fx
i

does not vanish) yielding

Tlu condition Ifxix 1 O 0 means that the family of tangent
i

planes is a smaller than n parameter family. For example, with
there is a one parameter family, i.e. a developable, or a

zero parameter family, a plane.
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w=w(41 ,...r-d .

As before, the symmetric relation

(7) u+W= xiT. i

holds, and differentiation with respect to L`,, gives

n 21x1 n axi
F-T

fxia,+w ,=x+1

which, on using T-1 fx , and then substituting in (7) results

in i

(8) x j = w
J

nu=FF - wiwr

The Legendre transformation is most frequently useful in

transforming partial differential equations in which derivatives

appear in a more complicated form than the independent variable a

2. The Distance Function - reduction to Canonical Form. In

this chapter we will be concerned with the variational problem

represented by the integral

(9) I(ul,...un) _ ` F(s; ul,...un; ui;...un) do

of which the Euler equations are

(10) Fui d Fui = 0

The solutions of (10) (extremale) represent families of curves

ui(a) in the n+l dimensional apace (a, ul,...un), it being

possible to impose on each curve 2n conditions (if we ignore

degeneracy). Thus we can consider a single curve passing
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through each point (T,k) of the space (i.e. s = T, ui = k1) and

satisfying there the intial conditions uj = kj, or consider an

extremal to connect every pair of points (T,k) (t,q) in some

neighborhood (boundary value problem), or we can consider an n

parameter family of extremals passing through the point (T,k),

leaving open the remaining n oonditions. If we restrict the

path of integration of (9) to be always taken along extremals

then a unique "distance"* I is associated with every pair of

points (T,k), (t,q) which can be connected by an extremal, thus

defining I as a funotion of the 2n + 2 variables (T; kl,,..kn;

t; gl,...qn)z

t

{11) I(T,k,t,q) = C

An essential concept in the theory of sufficient oondi-

tions is that of a field which is defined as follows: a family

of curves in a neighborhood is said to form a field if one and

only one curve of the family passes through each point of the

neighborhood. In particular an n parameter family of extremals

through a point can form a field, and in general to form a field

in n+l dimensional space an n parameter family of curves is re-

quired. If we have a neighborhood covered by a field of extre-

mals through a point, then by use of (11) it is possible to de-

fine a single valued function I over the neighborhood. In this

case it will be convenient to work in the n+2 dimensional

(I,a,u) space.

As an example consider

t

(12) I =
S

1 + (ae) ds

If F is a quadratic form in uj then the extremals are geodesics

and I is actually distance. bore generally F can be considered
a metric in a "Finsler Space" with Finsler distance I.
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for the length of a curve u(s), for which the Euler equation
2

is = 0. Here n = 1 and we have a two parameter family of
do

straight lines as extremals, joining every pair of points in

the (a,u) plane. If (T,k) is fixed we have a field consisting

of all rat's through and I(t,q) is a cone with vertex at

(0,T,k) in the three dimensional (I,t,q) space.

If in (11) we hold ('c,k) fast, I is defined as a function

of (t,q) in a neighborhood of ('c,k) and this function can then

be considered to depend on the n+l parameters (i,k). By the

usual method of elimination of parameters a partial differen-

tial equation satisfied by this n+l parameter family of func-

tions can be found, namely:

(13)

n
It ° F (t, q, q' ) - 9giFq, (t. q, q

Iqi a
Fqj

(t,q,q')

which is a relation between the n+l derivatives It,Iq expressed

implicitly in tame of n paramters gi,...gri. We observe that

the formalism for eliminating the parameters q' is exactly that

of the Legendre Transformation (cf. (6)). Rather than proceed-

ing in this way, we shall impose the Legendre transformation

at the outset, in (9), thereby obtaining the reduction of (9)

and (10) to canonical form. We observe, however, that the pro-

per Legendre transformation is applied in terns of u' (i.e. qi)

which would necessitate subjecting u to a very complicated

transformation. In order to avoid this difficulty we introduce

the functions pi = uj and consider the variational problem

(lk) I(ul, ...un; P1, ...pn) = P'(a; ul,,... n; p1, ...pn)ds
T

subject to the side conditions

Pi = uI
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This suggests the use of the Lagrange multiplier rule by which

(14) becomes

t n
I(u,p) S (F(s,u,p) + Ai(ui !Pi)lds

for which the Ruler equations are

Fui
d 711 = 0, Fpi 0

and elimination of AI finally leads us to consider

(15)

t n
I(u,p) (F(s,u,P) +c FPi(ui - pi))ds

together with the necessary restriction on F that IFpip
3

I # 0.

Since the Lagrange multiplier rule was not proved for differen-
tial equations as side conditions, we accept (15) and show in-

dependently that it is equivalent to (y). By equivalence we

mean that, although the function space over which I(u,p) is

defined is much wider (2n independent functions u and p rather

than n functions u), the extremals for both integrals are the

same. Writing down the Ruler equations of (15)

Fp = 0Fu +
F_

FP uj NJ - Pi) -
d

i

PPi + F FPiP,(uj - pi) - Ppi = FPip3(ul - Pi) ° 0

But, since IFpiPi ( ¢ 0, the second equation implies uj - pi -0,

and substitution into the first yields

d -FudFu; 0

which is the not of Ruler equations for (9). It is interesting

to ante that the variational problem (15) is degenerate, 2n
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first order equations replacing n of the second order.

In (1$) the u's and p's are independent, so the Legendre

transformation

(16) I vi Fpi (s,u,p)

n
L(a,u,v) ° F pivi - F'(s,u,p)1

can be applied treating u and a as parameters. The dependence

of L on s,u, and v is given by eliminating p from (16). The

condition for elimination is satisfied in virtue of our assump-

tion IFSipj , j 0. We now have

t n
(17) I(u,v) _ ( uj,vi - L(s,u,v))ds

which is again a degenerate variational problem in the 2n

functions (ul,...un; vl,...vn). The Euler equations of (17)

take the canonical form

f
(18) d a vi + +L ° 0

1

ui -Lv 0
To-

These transformations have their origin in classical me-

chanics, the equations (10) being Lagrange's equations of motion

for a conservative system in the generalized coordinates ui and

momenta pi (or vi), F being the differenoe between kinetic and

potential energies, and L their sum. The canonical form (18)

can of course be derived directly from (10) without reference

to a variational integral.

3. The Hamilton-Jacobi Partial Differential Lquation. We will

now consider (17) in a neighborhood in which it is assumed that

a unique extremal exists joining any two points (T,k) (t,q),

the conjugate function v taking on the values 1 and 3.
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U.8, v= a li at a = t, vi = Xi at s = T). The eatremal pass-

ing through these points can be represented by

(19) fui a Pi(s,t,q,'C,k}
vi

where

(20) (f+j(t,t,a,T,k) = qi, f1(*c,t,q,'s,k) = ki
gi(t,t,q,'r,k) = li, Si( C, t,ri, C,k) = Xi .

In order to find the partial differential equation satis-

fied by the function I(t,q,-c,k) we must calculate its partial

derivatives, It, Iqi , etc. and this can be done most concisely

by use of the variational symbol 6. Let'the independent varia-

bles be taken as functions of a parameter e; viz. t(e ), c(c),
qi(e), ki(E), li(e), X1(e); I then becomes a function of e.

We have

n dq n dk
we ts+I'r +

U-C

and letting
{

= 01, n{ - 6t, etc. we have
e=0 a=0

n n
(21) 61 = It6t + best + I 8qi + Ik bki

qi i= 1

Performing the variation in

(P(E
)

T(e) ; 1 (uj(e)vi(e) - L(s,u(e),v(e)))ds
T(e)

where
ui(E) =

vi(e) ° gi(s,t(E},q(c),t(e),k(E))
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we get
61 - (Zgi1i - L(t,q,l)jbt - (Zk17pi - L(T,k,a)18T

+ J (ui6v + vibul - Luibui - Lvbvi)ds

T

The terms E(uj - LvI )6vi in the integral vanish by (1(1) (u and

v are extremals), and on integrating by parts the remaining

terms in the integral become

t
n

(fvi6ui)t - Z(vi + Lu )6uids = (vi*uiIt
T T i i T

We now evaluate Ou at a = t and a = T. This is not equal to

8q or 6k because in 6q, the variation is performed after s is

set equal to t, that is after a has become a function of e.

Differentiating (19) we have

(22) 6u = ftbt + fg8q + fTBT + fkbk .*

However, differentiating the first relation in (20),
(23) 6q = f t 8t + ft8t + fg8q + fkbk

where f' is the derivative of f with respect to its first ar-

gument, evaluated at s = t; i.e. ft = q'. By equating coeffi-

cients of the various 8ta in (23) we see that ft = -q1, fq = 1,

ft = fk - 0 evaluated at a = t. Similarly fT is -kt, fk

ft a fq - 0 at a - T, and (22) reduces to

6ulsat - Oq - gibt
Oul BUT a 6k - k' 6,c

from which we get

F (viauI]t ' Z(libgi - ligjbt - Xi6ki + Xiki6T)

Thee subscript i is omitted.
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and finally

n n
(2k) 01 - libgi - L(t,q,l)bt - Xi0ki + L(z,k,X)O-v

We now read off

(25) It - -L(t,q,l) , Iqi ° 11

I,v L(T,kik) Ik
i

= -All

In particular if we assume the endpoint (T,k) is fixed, I as a

function of t and q satisfies the first order Hamilton-Jacobi

partial differential equation

(26) It + L(t; g1,...gn; Iql,...I q} = 0
ri

obtained by elimination of the 11 from (25).

Problem

Evaluate the partial derivatives (25) by direct differentiation

rather than variation.

The equation (26) was derived from a function I having

n+l parameters, but its importance lies in the existence of

other more general solutions, depending on arbitrary functions

rather than on a number of parameters. Those solutions will be

shown to represent distances measured from an initial surface

rather than from an initial point as above. In order to moti-

vate the manipul&;tion to follow, we will first discuss briefly

the general theory of partial differential equations of the
first order, proofs being given only when necessary for our

application.

First of all, it is clear that if from an n parameter fa-

ncily of solutions of any partial differential equation we form
an n-l parameter family by considering one of the parameters

an as a function of the others, an S f(al,...an-l), the envelope

of this solution with reaneot to its n-1 parameters is also a
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solution (since it has at every point the same tangent plane as

a known solution), and in fact depends on an arbitrary function,

namely f.

Now consider the simple case of a first order quasi-linear
partial differential equation in two independent variables

(27) aux + buy - c ,

a, b, and 0 being functions of x, y, and u. Geometrically (27)

states that at every point of a solution u(x,y) the normal to

the surface u = u(x,y) (direction components p = ux, q = uy,-1)

is perpendicular to the line element having components (a,b,c)

at this particular point. In other words the element of surface

contains the line element (a,b,o). If we integrate the ordinary

differential equations

(28)
U

a a(x,y,u), FS = b(x,y,u), dz = c(x,Y,u)

we get a two parameter field of characteristic curves in the

x,y,u space. Any solution of (27) is a one parameter family

of characteristics, and conversely. Given a non-characteristic

initial curve x = x(s), y - y(s), u = u(s), the family of cha-

racteristics intersecting this line traces out an integral sur-

face. In this way we have reduced the problem of the solution

of the partial differential equation (27) to that of the ihte-

gration of the three ordinary differential equations (28). It

is clear that two integral surfaces can intersect only along

cheracteriatioa, since to any common point belongs the whole

characteristic through that point, and conversely this property

completely characterizes the characteristic curves.

Let us now aohaider the more general equation

(29) F(x,y,u,p,q) = 0
We note that for a linear equation (a,b,a in (27) functions of

x and y alone), the characteristics are independent of u and

form a one parameter family in the x,y plane. r ram this we

would expect that the characteristics in the general case (29)
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would depend not only on u but also on p and q, and would not

be fixed curves in the x,y,u space. In order to reduce this

problem to that of ordinary differential equations it would

therefore seem reasonable to consider curves x(s), y(s), u(s),
p(s), q(s) in five dimensions. In the x,y,u space such a curve

represents a space curve x(s), y(s), u(sogether with a sur-

face element p(s), q(s) associated with ec-_h point. At a given

point (x,y,u) (29) allows a one parameter relation botween p

and q. Geometrically this means the surface element (tangent

plane) traces out a one parameter family passing through the

point, and envelopes a cone (in the quasilinear case the cone

degenerates into a line, with a one parameter family of planes

through the line). The line elements of these cones are the
oharaoteristie directions and are given by the differential

equations*

(30) dB = Fp ds = Fq .1 ds = pPp + gPq

A ourv which is a solution of the system (29) (subject to (30))

has a characteristic direction at every point, but a family of

such curves is not necessarily an integral of (29). In order

that these curves lie on an integral surface p and q must satis-

fy the two further relations

(31) 8 = - (pFu + F'x s = - (qFu + Fy )

Using (30) and (31) we have five ordinary differential equations

in the five variables x(s), y(s), u(s), p(s), q(s). In general

a solution curve will exist passing through an arbitrary initial

point xo' y0, uo' p0, qo' There is a five parameter family of

solutions, but since is admits of an arbitrary translatiozi, and
(29) is a relation between the initial values, the solutions

reduce to three parameters. Interpreted in the (x,y,u) space,

an initial value is a point (x,y,u)- and a surface element (p,q),

For proofs of the following, see Courant-Hilbert,. Vol. II,
Chapter I, par. 3.
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where (p,q) is not arbitrary but must satisfy (29) (i.e. must

be tangent to a cone). Given such an initial value a characte-

ristic curve x(s), y(s), u(s) is determined, and with it tan-

gent elements p(s), q(s) comprising a characteristic strip.

As in the quaeilinear case integral surfaces are composed of

one parameter families of characteristic curves or strips.

Given an initial curve x(s), y(s), u(s) we use the relation

s axds+dy s-pda+gcis
together with (29) to determine the remaining initial values

p(a) and q(s), the integral surface being given then by use of

(30) and (31). Here as before the characteristics represent

intersections of integral surfaces.

The general partial differential equation in n indepen-

dent variables

(32) F(xl,...,xn;u.; Pl,....,pn)

is somewhat more general than equation (26) with which we are

concerned, since the dependent variable, I, is absent in (26),

but this difference is unessential for, if instead of looking

for a solution of (32) having the form u(x1,...xn) we consider

it to be given implicitly as

(u; x11 ...xn) a 0

we can rewrite (32) as a differential equation in the n+l in-

dependent variables u, x1,...xn. We have

n

xidxi + udu 0

and

n
du = uxidxi = pidxi

i=1

Here u corresponds to I and (xl,x2,...,xn) to (t.gl,...,q

66



from which we obtain immediately

$x
pie - -,

equation (32) becoming

(33) F(xl,...xn; u; - ,...) = 0 ,

U u

in which the dependent variable 4 no longer appears. If we

oonaider the implicit relation (33) solved for u and replace

4 by I, u by t, and xi by ui we get exactly

(26) It + L(t; ul,...un; Iu ...Iu ) = 0
i n

The characteristic differential equations for (32) are

dxi- du_. n dpi-
(34) 7-5 Fpi ' do piFpi ' de (Fx1 + Fupi)

where we have 2n+l differential equations in the 2n+l variables

xi(a), u(s), pi(s). The corresponding characteristic differen-

tial equations for (26) take the form

div,
(35)

du-

Lv t
Lu

i i
dI n dit

d = e viLvi - L , - Lt

where we have sat vi a L11i and taken t for the paremieter along

the characteristic curves. Here there are 2n+2 differential

equations for the 2n+2 variables ui(t), I(t), Iu (t) - vi(t),
i

and It(t). However, we see that since I and It do not appear
in L, the 2n equations

(16)

dui dv
-44. Lvi Lui
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can be treated as a system in itself, independent of the other

two. But these are exactly the equations for the extremals of

our variational problem. We thus see that the extremals of the

integrals (14) and (15) are given by the projection in the

(u,t) space of the characteristics of the corresponding Hamil -

ton-Jacobi partial differential equation (which are in general

curves in the (I,u,t) apace). In the example

t
(12) I /l + da

the Hamilton-Jacobi equation is

of which the characteristics are straight lines in the t,u,I

apace malting angles of 1}50 with the t,u plane, and the projec-

tions (extremala) are the previously found straight lines in

the t,u plane.

We now come to our chief result that from a complete so-

lution of the Hamilton-Jacobi equation we can construct all the

extremals of our variational problem. By a complete solution

is meant a solution

(36) I(t; u1,...un; alp...an) - a
IIIL 1a1 I °

depending on the n+l parameters ai,a (the n+l at parameter a

is additive since only derivatives of I appear in the differen-

tial equation). The envelope of the n parameter family result-

ing from setting a = f(al,...an) is obtained from

(37) Iai(ti ul,...un; al,...an) - fai(al,...an) a 0

(i=l,...n) ,

by eliminating the paramtera ai in (36) and (37). For each

value of the al the intersection of (36) and (37) is a charac-

teristic, (the integral surface given by the envelope is traced
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out by allowing the ai to take all their values) so the pro-

jection of this characteristic in the t,u apace namely (37), is

the equation of an extremal (represented in (37) as the inter-

aection of n surfaces). Since the function f is arbitrary the

quantities fa = bi can be given arbitrary values, and since

IIa

i
u
i

I # 0 the n equations (37) can be solved for ui giving

(38) ui = ui(t; al,.-.an; bl,...bn)

which is the required 2n parameter family of extremala. The

theory of characteristics has been used only for motivation,

and we will now prove this statement independently.

If from a complete solution I(t; ul,...uh; al,...an),

IIuia,I ¢ 0, of the equation

(26) It + L(t,u,Iu) = 0 ,

we define the functions ui(t; a,,...an; bl,...bn) implicitly by

(39) Iai (t; ul,...un; al,...an) = bi, i=1,...n

and the conjugate functions vi(t; al,...an; bl,...bn) by

()}0) vi = Iu
i

(t; ul,...un; al,...an) ,

the ui here to be replaced by their values from (39), we get a

2n parameter family of extremals satisfying the canonical equa-

tions dui/dt = Lv
i

, dvi/dt = -Lui.

Considering I as a function of t, ui, and ai, and with ui

and vi functions of t, ai, and bi we differentiate (26) with

respect to ai (t and ui constant) and (39) with respect to t

(ai and bi constant) obtnining

+ Lv lu ait 0T j j i
's.

n au
+

1
- 0Iait

T_=l .

aiuj
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Subtracting and remembering that IIa u I 0, we have

dui/dt - Lv , the total derivative duildt implying that ai and

bi are held constant. Similarly differentiating (40) with res-

pect to t and (26) with respect to ui we have

= Iuit += Iuiu3

n

Itu
i

+ L + L
V

i

IUP = 0 .
l- i

Subtracting we obtain

d

n.1 + Lu
i

-
j`

Iujui ( i t - ' -Lv
3

) 0

which completes the proof.

We will now proceed to show that while the Hamilton-Jacobi

equation was derived by considering distance measured from a

point in the (t,u) space, an integral of the equation in gene-

ral represents distance measured from a surface in the (t,u)

space. This becomes, clear geometrically if we take for our

complete solution (36) the integral I(t,u,T,k) representing dis-

tance from tt1e point (T,k), the (T,k) being n+l parameters.

An envelope 11 is constructed by assuming some relation

f(T; kl,..,kn) = 0, and since I = 0 for every point (T,k) sa-

tisfying f = 0, also 11 = 0 on the surface f 0. Further the

envelope of "spheres" I = C is the surface I' = C, so that the

latter locus represents those points (t,u) which are at a dis-

tance C from the initial surface f(T,k) = 0.

To make this more precise we define the distance from a

given point (t,q) to a surface T(T,k) = 0, TT 0, to be the

minimum distance measured alone all extremals through the point

which intersect the surface. This is essentially the problem

of the free boundary, one endpoint (t,q) being fixed and the

other lying on the surface T(T,k) = 0. The condition that the

distance I from the point (t,q) to an arbitrary point (tr,k) on
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T = 0 be stationary with respect to variations of ('c,k) is
given by

(41)

n
bI a L(T,k,A)Ov - X,Oki - 0

1=1

using (24), while we have

n
(142) TTbT +

1
Tki Oki = 0

since ('c,k) is constrvined to lie on T = 0. Eliminating OT

between (141) and (142) (using T,c j 0) we have

n L kOI=- ( T Tk
i

- WI)Oki 0 0
1=1 T

and since the Oki are independent,

(43)
X1(T'k) ..LTk
Tk T, t T,c 6,1c

The n transvereality conditions (143) in general serve to select

one or more extremals from the point (t,q) to the surface T = 0,

and express a relation connecting the tangent plane to the sur-

face (through the Tk ) and the slope of the extremal where it
i

intersects the surface (through the X1, which are equivalent to

the k]). Equation (143) is a direct generalization of equation

(62) on p.29 of Chapter I, and in the case of geodesics where

I is actually distance, reduces to orthogonality. Dispensing

with the external point (t,q), the n conditions (143) in general

serve to determine a unique extremal from the n parameter fami-

ly through each point on the surface T = 0, thereby forming a

field of extremals transverse to the surface T = 0,* at least

*8ince only derivatives of T appear in (43), transvereality for
a surface T = 0 implies transvereality for the family of sur-
faces T = constant.
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in some nei',hborhood of the (t,u) space surrounding a region of

the surface. In such a neiGhborhood we can define a single

valued function T(t,u) taking the value zero on T = 0. If we

consider a curve t = t(e ), ui = ui(e) ly*inG in this field, we
have an extremal intersecting the curve at each point, with

initial values t(e), ki(e) lying on T = 0. The corresponding

distance function I(t,u,T,k) as a function of 2n+2 variables

satisfies equation (24). The variation 61 (which is equal to

671 for the particular variation we have chosen) can, be consi-

dered the sum of two variations, one with (t,u) fixed, and the

other with (T,k) fixed. The former vanishes in virtue of the

transversality condition (4l), so that we have

n
(44) by _ li6ui - L(t,u,l)bt

i=

from which follows ft = -L(t,u,.l) and Iu J. = 11, and by elimina-

tion of li, ft + L(t,u,u) = 0, so that the function I which we

have constructed as the distance from an arbitrary surface

T(T,k) = 0 satisfies the Iamilton-Jaoobi equation.

The converse fact that any solution of the Hamilton-Jacobi

equation represents the distance from a surface (or, as a dege-

neration, from a point) is readily verified. From a given in-

tegral l(s,u) we construct the n ordinary differential equations

dui
(45) Ts- ' Lvi (e.ui

where we have used the notation

(46) Vi = Iui (8,0 .

The solution of (45) subject to the initial conditions ui a qi

at sat are
(47) r ui = u1(s; gl,...gn)

vi s vi(e; g1,...gn)
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where the values of ui have boon substituted in (46) to get vi.

Differentiating (46) with respect to a, q being constant

dv n du n

Te = luia +
Iuiu3

d ° Iuis +
3=1

IuiuJLvi

Differentiating Ia + L(a,u,v) = 0 with respect to ui we have

n av n
Isui + Lui + =

Lvi
= Isui + L

I
+ LviIuiui 0

J=l

and subtracting from the previous result

dvi n dudas Lu ==Iuu (ds - Lv ) -0i J=l i 3 i
The constructed functions u and v are therefore an n parameter
family of extremals. Furthermore, they are transversal to the
surface I - oonst. For from

is + L(s,u,v) - 0 and Vi = Iu
i
(a,u)

we have immediately

v (s,u)i _L(suv)
IU

i
s,u is s,u

which are exactly the transversality conditions (43) for the

surface l(s,u) = const. It remains to be shown that I is cc-
tually the distance function along this family of transverse ex-

tremolo. Taking I(T,k) = 0, we have

t t n du ('t n
I{r8d4 (Ie 7 I}da - 1 ( Viuj. L(a,u,v))da, JJt t i T i-

which is exactly (17).

The foregoing concepts can be interpreted in terms of the

propagation of light through a medium having a variable index

of refraction. The light rays (extremala) are given as paths

of least time (I is a minimum). The construction of solutions
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as envelopes is exactly Huyghen's Principle for the construction

of wave fronts.

4. The two body problem. We consider the problem of determi-

ning the motion of two bodies of mass m1 and m2 acted on only

by the Newtonian gravitational force between them,

Gmlm2

(rl + r2)

where r1 and r2 are the distances of ml and m2 from the center

of mass C which we may consider fixed. From the relation

mlrl a m2r2, we have

Omlm2
1112F = - where m.12 = --

r1 (ml + m2)

so that the problem is reduced to that of a fixed mass mz at-

tracting a mass m1 at a distance r1. With C as origin we take

coordinates x and y in the plane determined by the initial po-

sition and velocity of m1. The motion is described as making

the integral (T-V)dt stationary, where T and V are the kinetic

and potential energies respectively. Taking m1 = 1 we have

T -
(x2

+ y2)/2

V = -k2/
/'X2+

y2

F = T V = (X2 + y2)/2 + k2/ x2 + y

Reducing the canonical form we use the notation z = p, y = q

and have FX = p, Fy a q yielding

L(t,x,y,p,q) = 7 (p2 + q2) - k2/ xd + y

for the Hamilton function and

$t + 1 4y) - k2/ /77=7
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for the Hamilton-Jacobi equation. Changing to polar coordinates,

x = r coo 9, y = r sin 9, this reduces to

Wt + (02r
+ -''A) =

r2.
r

A two paramter solution cnn be found by writing b as the sum of

three functions of t, r, and 9 respectively, in particular

0=at +p9+R(r) .
Substituting in the differential equation we solve for R

obtaining

2k 2
at +pe+ -- 2a dp

r0 V V/// P

To solve for the extremala we differentiate with respect to the

parameters obtaining

do
t

ro /gk 2a

r

o p P --2a/

to

r 2 2k`
P

to and 9 being arbitrary constants. The second equation gives

9 as a function of r, i.e. the particle path, while the first

gives r as a function of time. The second equation can be in-

tegrated using the substitution p = 1/s giving

9 90 - are sin
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2
Writing d and 2 a 1 + we have the conic of

k k
eccentricity a

r =
1 - t sin (0 - 00)

5. The Homogeneous Case - Geodesics. Up to now it has been

assumed that (Fui 'up p 0, but this condition excludes the im-

portant case where F is homogeneous of first order in ui,. For

this case we have
IFulu,

0, since if F is homogeneous of
J

first order, Ful is homogeneous of zero-th order, and applying

Rulers homogeneity condition

n

ujFulu 3, ° 0 ,

we see the determinant 1Fuiut 0. If in addition to being

hcmogeneous of first order in ui,'F is independent of a (which

is the case for variational problems in parametric form), the

problem can be reduced to the form already discussed by taking

un for tbv3 variable of intogratior, a. We then have

n

{t9; J = S F(u1,...un; u1,... dduwl' 1) dun
n n

as oo*:, integral, and the Hamilton-Jacobi equation becomes

(49) Jun + L(u1' ...un-l; Ju1, ...J
un-1

) = 0

who re

L(ul,...un-1' vl,...vn_1) ° pivi -F(u11 ...un-1' p11 ...pn-1)

with Pi =
dui

dun' wi = Fpi. The equation (49) is nothing more

than the homogeneity condition, since from

5
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n duJpips -F=0 pi aed. J,

_

substituting pi = pi/ pn we have

n-1
(50) Pn + Pi -Pi - F(ul,... n; pl,...pn-l,l) 0

The expressions (25) for the derivatives Jt, Ju
i

are true even

with
I u 1

0 0,* and if we substitute Jui for i = vi U.S.

11) in (50 we get exactly (49).

Let us illustrate another meti:od of attack with the case

of geodesics on an n dimensional manifold. We have

(5l) I a d8.

where Q gikujuk , the gik
being functions of the ui.

I

Prom (25) we have

(52) It = 0

Iqi

8

If we denote by (gik) the matrix reciprocal to (gik) (i.e.

n

T gijgsk a 8k1), solving (52) for qq gives

(53) q, gik1
k i=1 qi

This condition does not prevent the use of the Legendre trans-
formation, but only invalidates its inversion; in other words
the extremals of (9) are included in those of (17), and this
fact is all that is needed in deriving (25).

n1
Fuii gikgk

`` xt k T
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From the homogeneity relation

n
tF = tI
k qk k3 qk qk

,

so that multiplying through (53) by Iq and summing with respect

to k we obtain

(54) = gikx I = 1
1,k=l qi qk

which is a partial differential equation in the Iqi taking the

plane of the Hamilton-Jacobi equation. The connection between

(54) and the Hamilton-Jacobi equation is clarified by a consi-

deration of the ESuler equations of (51). We have

da
L(2) - 'g = 0

or

ds uj u

If for any admitted curve (and in particular for the extremala)

we take the parameter a to be proportional to the arc length

then Q is a constant, and (55) reduces to

(56) f (9) - PI = o

for the function Q(ul,...un; uj,...un) : C. Now, (56) suggests

that we look for the oxtremala of the integral

(57) J = 4d8
ti

subject to the condition Q = C, where Q is homogeneous but of

second order, so the Hamilton-Jacobi theory can be applied

directly. We have
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n

Q i t gikpipk ' pi
n ul

Solving for pk,

(58)

n
vi a Qpi a 2

gikpk

pk

n
La pivi -Q

=Q

n

t l gikpipk

Ir-1 gikv
v

U i,k-1 i k

and the differential equation is

(59) it + 1
n

n
gik Ju J o 0

i uk

In order to find an integral of (59) containing n parameters

we try a solution in the form J(t; ul,...un) = f(t) + J*(u1,..un)

and it follows immediately that fl(t) must be independent of t,

i.e. f(t) ° at. JO then satisfies the equation

a+1 n
9
ik3 J 30

17 i3 k;' ui uk

This differential equation in general allows an n parameter so-

lution, so a may be given the specific value - 1/!}, and we have
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(60)
n

gikju
J = 1 ,

i;-l i uk
which is (54) again.

From (58) it is apparent that Q is constant (viz. Q=1/l})
for any solution of (60), so that any n parameter integral of

(60) can be used to obtain the extremals of (51) as well as

those of (57). Using the methods outlined here it is possible

to obtain the geodesics on an ellipsoid. The surfaces

(61)
2 2 2

a +s b +s c2+a
in the paramter a, where a > b > c are given constants, repre-

sent confocal ellipsoids, one-sheeted hyperboloids, and two-

sheeted hyperboloids as -02 < a, -b2 < a < -02, -a2 < a < -b2

respectively. At a given point (x,y,z) (61) is a cubic in a

with three real roots (al, a2, a3) representing three mutually

orthogonal surfaces one of each type, through the point (x,y,z).

The parameters (a1, s2, a3) can be talcen as a new coordinate

system, and in particular, talking our given ellipsoid as al = 0,

the remaining two coordinates can be used as parameters on the

ellipse, with the transformation formulas (setting sl = u,

-s2 = v)

X = a a-u a-v
a-b a-c

Y
b b-u v-bf b-c (a-b
u-c v-o
a-c

The values of

11

?x2+ (21)2 +gii = (?x)2au) uau
912 = 921 = (au )t`) + ()() + (uaY

For details see Courant-Hilbert, Vol. I, p.195.
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822 =(a )2+(Z)2+(a )2
become

912 = (u-v)A(u)

912=0

922 = (v-u)A(v) ,

who re

AM 1 w

Also
11

a-w -w c-w

1g
` u-v)A u

912 = 0

22 _ 1
6 v-u) A v

Equation (60) takes the form

(62) A(v)J2 - A(u)J2 = (u-v)A(u)A(v)

To get a one* parameter solution of (62) we try J(u,v) _

$(u) + yr(v), and separation of variables gives

$'(U) 2
= V! - v= a

A(U)
` u

A(v)

so that

J(u,v,a) =J u+aAu du+S v+a Av dv
Differentiating with respect to a we get the two parameter

family of geodesics

(63) S a du + 1 vA+va dv = R

This can be solved for u or v in terms of elliptic functions.

#Beoause of the homogeneity this problem has essentially one
dependent variable. This is obvious if we take v, say, for
the parameter t.
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6. Sufficient conditions. Analogous to the vanishing of the
first derivative of a function f(x) of a single variable we

have found the vanishing of the first variation (leading to the

Euler equations) as a necessary condition for the minimum of a

variational problem. Corresponding to the sufficient condition

f"(x) > 0 we might look for sufficient conditions in a varia-

tional problem by investigating the second variation. Although

such considerations can lead to further necessary conditions

(e.g. the Legendre condition Fu,u, > 0, p. 65 ) they can never

lead to a sufficient condition. The reason for this is that in

order to derive a sufficient condition we must consider all

possible admissible variations, i.e. 4(x,e) = u(x) + 2:(x,e)

where Z(x,e) is an arbitrary admissible function with zero boun-

dary values, vanishing for e = 0. However, it is easy to con-

struct an admissible variation (e.g. Z - (1-x)e sin x/e2,

0 c x < 1) for which Zx(x,e) does not approach zero for a --. 0.

In this case the varied integral

I{e) J 1 F(x.4(x,e), 4x(x,e))dx

xo

does not converge to the desired integral

xI
I =

S
F(x,u,u')dx

x
0

as a --. 0, and the voriational problem does not reduce to

of minimizing a function of the single variable e. A variation

2:(x,e) which satisfies both conditions 4(x,e) -s 0, r(x,e)-- 0

as a -+ 0 is called a weak variation, and geometricplly means

that the curve u(x) is compared with curves that approximate

u(x) in slope as well as position. A curve u(x) which minimizes

an integral with respect to all weak variations is called a

weak relative minimum (relative referring to the fact that u(x)
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is a minimum only with respect to curves in its neighborhood).

For example consider

1

I = 1u'(x)2 - ut(x)3]dx

0

subject to u(O) = u(l) = 0. The extremals are straight lines,

and there is a unique extremal u = 0 satisfying the boundary

conditions. The value of I is zero for u = 0, and is positive

for all curves satisfying the condition u'(x) < 1, so u - 0

minimizes I with respect to this restricted clans of neighboring

curves. However, by taking

the admissible curve

u (0ex<e)
e

e (1-x)U = e (e<xsl.)

which approaches the extre-

u

mal u = 0 uniformly we can V x

make I negative. 0 x

We shall now proceed to establish Weierstrass' sufficient

condition for an extremal to be a strong relative minimum for

the integral

(64)

t
I(u) = F(a,u,uu )ds

subject to the boundary conditions

As (a = z, u = k) B: (s.= t, u = q)
In order to do this we must compare the values of the integral

(6t5.) over the extremal between A and B, (Ia), and an arbitrary

curve C in its neighborhood, (I0). By expressing Ie as an in-

tegral along the path C, we shall reduce this problem to a com-

parison of the integranda aloha. Assuming that the extremal in
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question can be imbodctcd in a field of extremals*, we define a

slope function p(u,s) as the slope of the extremal through the
point P = (u,s). Further we define the single valued distance

function T(P) (see MOM" which has the property that
Is = T(B) - I(A). The differential dI = Tade + Iudu is exact

and we have

(65) Ie = J (3sda + Iudu) = \ (Ia + uIlu)ds
A

T

where the integration is taken over any curve joining A to B,

and in particular over the curve C. Using (25) and (16) we

have Ie = F(a,u,P) - PFp(s,u,P) and Pp(a,u,p) so that (65)

reduces to

t

Is (F(s,u,P) + (u' - p)Fp(e,u,P))do.

and finally we have

(66) bI= Ic- Ie = J (F(a,u,u' )- F(s,u,P)- (u'-P)FP(3,u,P)Ida
ti

where the integration is taken along the path C, u' representing

the slope of the curve C and p the slope of the field at each

point. The integrand of (66)

(67) E(s,u,p,u') = F(s,u,u') - F(s,u,p) - (u'-p)Fp(3,u,n)

is known as Weiorstrass' E function. If the condition E > 0 is

satisfied at each point s, u, p in the field for all values of
u', then from (66) L I > 0 for all curves C in the field; in

*This dition will be investigated in section 7-

For the existence of I we must in general have a field of ex-
tremals transverse to some surface, but for the case of only
one dependent variable u this condition is automatically sa-
tisfied for any field.

e**This expression is known as Hilbert's Invariant Integral.
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other words lc > Is and the extremal joining A and B is actually

a minimum. We therefore conclude that a sufficient condition

for an extremal Joining two points to be a minimum is that it

be possible to imbed it in a field throughout which the condi-

tion E(s,u,p,u') > 0 holds for all values of u'. Obviously if

E > 0 for all u' p p, then we have a proper minimum with IC > Ie

for C not the extremal in question.

We can show that the weaker condition 2 0 along the ex-

tremal for all values of u' is necessary for a minimum. For,

let us assume that the extremal between A and B is a minimum

and at a point P on it E < 0 for some value W. The extremal

can be imbedded in a field emerging from A (that this condition

is necessary will be shown in the next section). By continuity

E < 0 on a small line segment PP' of slope u' where P' can be

oonnected to A by an extremal of the field. Now taking the

path AP'PB for the curve C in (66) we have E.= 0 along AP' and

PB, with E < 0 on P'P,

thereby reaching the

contradiction I. < I0'
Since P was any point

and u' any value, we

conclude that E > 0

along an extremal for

all u' is a necessary

condition for a minimum. 9

If from E > 0 for all u' along an extremal we could con-

clude the sufficient condition that E > 0 in a neighborhood

for all u' then the analog;; with functions of a single variable

would be complete (i.e. f"(x) > 0 necessary and f"(x) > 0 suf-

ficient for a minimum). Unfortunately this inference is not

true unless we impose the restriction that u' be uniformly

bounded in the neighborhood (see Boiza, Lectures on the Caculus

of Variations, p. 99).

The significance of the Legendre condition can be appre-

ciated by comparison with the h function. Using the theorem of

the mean we have
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F(s,u,u') = F(e,u,p)+(u'-p)Fp(s,u,p)+ 2(u'-p)2FPP(s,u,P)

where p + e(u'-p), 0 < 9 < 1, so (67) becomes

(68) E(s,u,p,u') = 2(u' -

p being some value between p and u'. From (66) we see that if

Fu'u'(s,u,u') > 0 at all points of the field for arbitrary va-

lues of u', then also E > 0, so this condition is sufficient.

A problem for which Fu,u,(s,u,u') > 0 fo.' all values of the

quantities a, u, u' is said to be regular, and for such a pro-

blem the oxiatence of a field of extremals guarantees a proper

minimum. The connection between the Legendre condition and

Weierstrass' E function may be interpreted geometrically in the

following way. Considering F(a,u,u') as a function of the

direction u' at a

fixed point of the F

field (e,u) (thereby

fixing p(a,u)),

E(s,u,p,u') = 0 is the

equation of the tangent

to P at the point u' = p,

and E for all u'

states that F(a,u,u')

lies above the tangent

line. The condition
u'= p u

Fu,ut(s,u,u') > 0 for

all u' means that the curve is convex, and tiierofore lies above

the tangent line. If this is true for all. points (s,u), then

the same statement can be made of E. The necessary condition

E > 0 along an extremel ircludos the wealc Legendre Fpp(s,u,p)>0,

since E > 0 for all u' implies convexity at the tangent point

u' = p. Although the strong Legendro condition Fpp(s,u,p) > 0

is neither necessary nor sufficient for a strong minimum it is

sufficient for a weak minimum. This is clear since from

FpP(s,u,p) > 0 on the extremal we can conclude that
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Fulut(s,u,ul) > 0 for (s,a) in some neighborhood of the extremal

and u' in the neighborhood of p. This means, however, that

E > 0 for weak variations by (68)) which is sufficient for a

minimum. Although Fu,ut(s,u,u') > C along an extremal for all

u' is somewhat stronger than E > 0 along an extremal, it is

still not sufficient for a strong minimum.

7. Construction of a Field - The Conjugate Point. We have ob-

served that an essential point in the theory of sufficient con-

ditions is the possibility of imbedding a Given extremal in a

field. We shall now see that this can always be done if the

endpoints of the extremal are not too far apart. In general a

one parameter family of extremals through a point will consti-

tute a field up to its envelope.,

But first of all it is important to note that if an ex-

tremal can be imbedded in a field H of extremals so that

E(s,u,p,ut) > 0 over the field, then the condition E(s,u,p*,ut)

> 0 will also hold for any other field H* over their common

(s,u) domain. For, supposing that E < 0 Eon some ut at a point

(s,u,pN), we can construct a curve C as on p. 85 for which

Ic < Ie. However, this is impossible since the curve C lies

in the field H in which le is proved to be a minimum. We there-

fore need consider tiie construction of but a single imbedding

field. it can be shown that if any imbedding field
exists, then the family of extremals through one endpoint is

such a field (see Bolza, p. 57). We therefore consider a fami-

ly of extremals u(s,a) through the endpoint A: (t,q). The

first point at which u(s,ao) is intersected again by a neigh-

boring extremal u(s, .ao+s) is Liven by the simultaneous solu-

tion of

(69) fu = uis,a0)
10 = ua(s,ao)

This first point of intersection A*: (t*,qo), is called the
conjugate point to A. If an envelope exists than A* is the
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intersection of.u(s,ao) with the envelope. Supplementing our

previous necessary and sufficient conditions we now have the

necessary condition t* < T and the sufficient condition t* < T

for a minimum. The necessity of t* < T may be indicated by the

following geometrical argument. If the oonju;ate point A* (i.e.

intersection with the envelope) lies before B, then taking ano-

ther extremal with conjugate point A** we can construct the ad-

missible curve AA**A*B, u

where the arcs AA** and A*B
itare extremals and A**A* is f A*

along the envelope. The en-

velope has the same slope

as the field at every point,

so E = 0 along it. Using

(66) we have

AA** + IA**A* IAA* ( I i > st t* t
However, since the envelope is not an extremal in general, by

connecting A** and A* by an extremal the value of IAA**Aa can

be reduced, so IAA* is not a minimum. This necessary condition

can be established more rigorously by consideration of the se-

cond variation (cf. Bolza, p. 57). The sufficiency of ti+ > T

for the existence of a field of extromals can be seen as follows.

We have ua(s,ao) 0 for t < a < T < t*, and assuming ua is

continuous we may take ua > 0 in this interval. By continuity

we also have ua(s, ao+e} > 0 for jej small enough, so that at

a fixed point a, u is a monotonic increasing function of a, co-

vering a neighborhood of e = 0 once and only once.

Lot us take the example

Z i (us2 - u2)da u(0) = 0

0
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The extremals are

u= a sina+bcos s,
and through the point (0,0)

there is the field u = a sin s.

We have
Fu,ui

= 2, p = u cot s,

E = (u' - p) , and the conjugate

point to (0,0) is (0,n). The

problem is a regular one, so the

extremal joining (0,0) to any

point (t,u) is a minimum of

t <iv.
Sunaarizing the results of this and the previous section

we have as necessary conditions for a strong minimum the Euler

equations, the weak Legendre condition Fpp(s,u,p) > 0 which is

inoluded in Weierstrass' condition E(s,u,p,u') > 0 along the

extremal, and the conjugate point condition t* > T. As suffi-

cient conditions we have the Euler equations together with ei-

ther Fu,u,(s,u,u') > 0 or E(s,u,p,u') > 0 in a neighborhood,

and t* > T. For a weak minimum we have as necessary conditions

the Euler equations, Fpp(s,u,p) > 0, end t* > T, which become

sufficient on dropping the equality signs.

Problems Show that for F = 1 + (u') the tangehts to an

extremal at a point A and at its conjugate point All intersect

on the a axis.
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SUPPLENI NTARY NOTES TO CUAPTER 11

1. The Hamilton-Jacobi Equation. In this paragraph we give a

different and more direct derivation of the Hamilton-Jaoobi

equations.

We consider a variational problem

t2

it

F(t, u, u')dt

1

where u w (u1,...,%), u' = . The fundamental concept in the

Hamilton-Jacobi theory is the distance function, or the extre-

mal integral, i.e. the above integral taken over the extremals

of the variational problem. The extremals are the solutions

of the Euler equations

ht NO Fuk

We consider a domain D in the (t,u) space in which two points

P, Q lying in D can be joined by an extremal in D in exactly

one way. Then the Integral

Q

I(P,Q) _ F(t,u,u')dt

P

taken over the extremal from P to Q is a function of the end-

points only. This integral is the so-called extremal integral,

or distance function.

In this function we first consider the point P as fixed

and let Q vary. We denote the coordinates of Q by the capital

letters T. U1,...,Un. Then

I(P,Q) = J(T,U) .

.The aim is to compute the partial derivatives JT, JU
k
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If u(t,a) denotes a family of extremals depending on a pa-

t2

rameter a we obtain from I(a) _ P(t, u(t,a), u'(t,a))dt,

1

t

( Fukuka + Pukuka)dtas Iti
2 n

enceH
dI = u Fr ka uk

tl

This is the standard computation by which the Euler equation

was derived. .)

Now using Uk = a as parameter, since = 0 at P and

auk =0 fort=T , k/
=1 fort=T , k £.

we obtain

{1) JU = Pug
k It t=T

In order to compute JT we consider the extremal integral

from P to a variable point (t,u(t)), lying on a fixed extremal

through P. This integral is given by J(t,u(t)). Then

nId
J(t,u(t)) = it + J

u uk = F(t,u,u')

Now inserting t = T we obtain

n
JT = P - JUkuk(T)

and with (1)
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(2) JT = F Fu,Ilk(T)
k

Thus we have derived the fundamental equations: (1), (2).

If P also is considered variable it is easy to get the

derivations of the extremal integral'. Denote the coordinates

of P and q by (t,u) and (T,U) respectively. Then

I(P,Q) - J(t,u; T,U) .

By definition, the partial derivatives JT and JU
k

are obtained

by keeping t and u, i.e. P, fixed. Therefore according to (1)

and (2)

n
(3) JUk = Fuk

I

JT = P - ukPu,

ITT k

Here uk(T) has to be computed as the derivative of the extremal

uk connecting P and Q.

To derive similar formulas for Jt, Juk one only has to

exchange the role of P and Q. Observing that I(Q,P) s -I(P,Q)

we find

Juk = Fuk
,

it -
ukFnk

Iit

One can write the equations (3) and (3') in another form.

Here the variation of the extremal integral is expressed by the

variation of the endpoints only.,

OJ = c JU
k

OUk + JT OT + c Juk auk + Jt at

I

OUk + (F - c Fu, q)
I

OT

()
T T

- Fu k It auk - (F - Fuk uk) It at
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From equation (3) one easily is led to the Hamilton-Jacobi

equation. We consider P fixed. Formula (3) consists of n+l

equations for the unknown functions J(U,T) and uk(T). In order

to separate the unknown functions we introduce new variables

v = (vl,...,vn) in the place of u' (ui,...,1) by setting

(5) vk = Fuk,(t,u,u')

We have to assume here that

det (Fukui) ( 0 .

Then the unknown functions uk are transformed into the unknown

functions vk. Introduce the Hamilton function H(t,u,v) by eli-

minating u' in

H s E uk vk - F(t,u,u') .

Then the equations (3) are transformed into

JU
k

= vk(T)

JT = - H(T,U,v(T)) .

If we insert vk(T) = JUk in the last equation we have in

(6) JT + H(T,U,JUk ) a 0

an equation which only involves the unknown function J. If it

is solved we find the n functions vk(T) from vk = JUk. Thus by

the Legendre transformation (5) we have reduced the (n+l) equa-

tions (3) to the one equation (6). This is the Hamilton-Jacobi

equation. It is a partial differential equation of first order,

with the simplification that the unknown function, J, does not

itself appear. We have just shown that the extremal integral

J(T,U) satisfies the Hamilton-Jaoobi equation, if one considers

the endpoint Q as variable and keeps the initial point P fixed.
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2. Correspondence between solutions of the Hamilton-Jacobi

equation and Fields. In the preceding paragraph we showed that

the extremal integral from a fixed point P to a variable one is

a solution of the Hamilton-Jacobi equation. We now want to

find all solutions of this equation. First we will show that

the extrer.ial integral taken over the extremala from a fixed sur-

face C to a variable point also is a solution of the Hamilton-

Jacobi equation. Later on we will show that these actually

give all solutions of (6).

For the proof we have to construct extremals from C to a

variable point Q with coordinates (T,U). This is a problem

with a free boundary point on the left end. A necessary condi-

tion for an extremal is the transversality condition. Let us

denote by P the point where the extremal from Q cuts C; the

coordinates of P being (t,u). Then the first variation of the

extremal integral J for fixed q is , according to (4)

8J = - Fu, 8uk - (P Put uk) 8t
k k

Here 8uk, 8t are variations on the surface C. This expression

has to vanish. Observe that the resulting equation is the

transversality condition. Thus if we consider Q variable we

obtain from (1 )

(7) 8J = F 8% + (F - 'uk uk) 8T

IT T

The contribution at P dropping out because of the transveraality

condition. Since 8Uk, 8T are independent variations we derive

the equations (3) from (7). Applying the Legendre transforma-

tion to (3) we see that J(T,U) satisfies the Hamilton-Jacobi

equation (6).

The extremal integral has the additional property of v.>-

nishing on C. Later on we will see that all solutions of the

Hamilton-Jacobi equation which vanish on a surface C are iden-

tical with the extremal integral taken from C to a variable
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point. As a matter of fact, for this purpose we only have to

prove that the solution of (6) with the initial condition J = 0

on C is unique. Then the solution has to coincide with the ex-

tremal integral.

The extremal integral has the following geometrio meaning.

From the surface C construct all extremals which out C transver-

sally. Then in a sufficiently small region, where the extremals

cover the (t,u) spade simply, the integral J(T,U) is defined as

Se dt taken over the extremal through Q = (T,U) which cuts C

transversally.

The family of extremals which out C transversally is

called a "field".

Now it is clear that the surface J = a, where a is a

small constant also cuts the above field transversally. Namely

on J = a we have

0=bJ=rFu,
f

OUk+(F-cF, u',)
I

8T
Tc T T

which is the transversality condition. Denote the surface J= a

by Ca, so that CO = C. Then all these surfaces C. cut the

field constructed above transversally. In other words: The

fields constructed transversally through Co and through Ca are

identical. These surfaces Ca play an important role in optics

where they are called wavefronts. The extremals correspond to

the light rays and the fields transversal to the Ca are called

light congruences.

We conclude: To every field of transversals through C

there corresponds a solution of the Hamilton-Jacobi equation,

namely the extremal integral taken from C along an extremal of

the field. Conversely, to every solution J* of the Hamilton-

Jacobi equation there corresponds a field. Consider the surface

Je = a and construct the field transversal to it. Then the ex-

tremal integral J taken along this field from the surface

Jo a a is also a solution of the Hamilton-Jacobi equation. Now

J+a is another solution such that Ja and J+a both are equal on
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the surface J'F = a. If we invoke the uniqueness of the solu-

tions of the Hamilton-Jacobi equation we see that J + a = Jam.

Thus the one to one correspondence between the solutions of the

Hamilton-Jacobi equation and the fields of extremals is esta-

blished.

3. Application to differential geometry. Consider the curves

on a 2-dimensional surface. The element of length is given by

ds2 = E du2 + 2F du dv + G dv2 .

when the E, F, G are functions of u,v satisfying EG - F2 > 0.

If we consider the variational problem

$ de = J/S+2Fvt + Gv' du

the extremals coincide with the geodesics and tranaversality

corresponds to orthogonality.

We consider the neighborhood of a curve C which we take

as v = 0 and try to introduce the coordinates u,v in such a way

that E, F, G attain a simple form. The coordinates we are

aiming at are the Gauss' coordinates.

For this purpose draw the geodesics transversal to C. We

label these geodesics by u = const where u is taken as the are

length from some point

on C. Now we introduce u = conat\ v = 0
v as the length along

u = constant. Then C

is given by v = 0. We

claim this coordinate

system is orthogonal,

i.e. the lines

u = constant and

V = constant out each

other transversally. This is an immediate consequence of our

general considerations.
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The geodesics u = const form a field. The extremal inte-

gral taken from C is J = v by definition. The surfaces, here

curves, J = v = constant cut the field u = constant transver-

sally as we wanted to show.

In the coordinates u,v the expressions E,F,O have a sim-

plified form. Since the coordinate system is orthogonal one

easily finds P - 0. Since for u-a constant

de = dv

by definition of v we have 0 a 1. Thus in these coordinates

the line element has the simple form

dal = E(u,v) du2 + dv

Since n was the are length along C we have

E(u,0) = 1 .

If one takes for C a geodesic one finds that

Ev(u,O) = 0 .

4. Analytical representation of a field. In the preceding pa-

ragraph we defined a field as the family of all extremals cut-

ting a surface C transversally. Therefore the extremals of the

family will depend on n parameters. We represent the extremals

of a field in canonical coordinates as u = u(t,a), v = v(t,a)

where a = al,...,an stands for n parameters. We assume C is

given by t = 4(u). Since the u(t,a) should give all the extra-

male, at least in a certain neighborhood, we require

Du
(8) dot (ask) ' 0

We now ask the question whether every family of extremals

u(t,a) depending on n parameters and satisfying (8) form a

field, i.e. cute some surface C transversally. The answer is no.
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In what follows we will derive the characterizing properties of

a field.
For this purpose we use the characteristic theory derived

in Chap II and try to oonstruct the solution J(t,u) of the Ha-

milton-Jacobi equation

(9) it + H(t,ti,J1) = 0

which is built up by the extremale of the given family. The

equations for the characteristics are, if we write w = J,

vk JUk t

uk
=

Hvk

(10) Vk = `Hv (k = 1,...,n)

t
w' = c vk Hvk - H .

The general solution is obtained by taking an n parameter famU

of solutions u = u(t,a), v = v(t,a), w = w(t,a) where

a = (al,...,an) and

Au
det w al) V 0

Then expressing the a by the u we obtain w(t,a) = J(t,u) which

is the desired solution.

Now we take for u = u(t,a), v = v(t,a) the given family

of extremals and try to determine w(t,a). Since u(t,a), v(t,a)

are extremals the first 2n equations in (10) are satisfied.

Thus there remains

w' = 1: Vk HV
k

.. H = g(t,a)

where g(t,a) is a given function. Thus we only have to give w

for some value of t. Because of w(t,a) = J(t,u) we also have

n
wak =

r
! Jur urak = yr urak
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which is given. Thus in order to determine w for t = to, we

have to integrate the n equations (11). This is only possible

if the integrability condition

daA yr urak = dQk (T vr ura

is satisfied. These equations can be written Ln the form

(12} (ak, a ] = 0

where the bracket is an abbreviation for

(ak, c ] = 1 (urak yr
a

- ur vrak)

This expression plays an important role in mechanics and

optics. It is called the "Lagrange bracket".

If the condition (12) is satisfied for t = to we can de-

termine w up to a constant for t = to from (11). Then from the

last equation of (10) it is determined for small t - t
0
up to an

additive constant. By the way this implies: If (12) is satis-

fied for t = t
0

it is satisfied for all t for which u,v are de-

fined. One can check this statement directly by showing that

(ak, c ] = 0 for the solutions of the Hamilton equations.

This property is even characteristic for Hamiltonian systems.

If in the function w(t,a) we express the a by u we find

in J(t,u) = w(t,a) a solution of (9). This function J is deter-

mined up to an additive constant. This constant is irrelevant

for the family of surfaces J = const.which cut the given family

of extremals transversally.

Thus we have seen: A "field of extremala" consists of a

family of extremals u(t,a), v(t,a), depending on n parameters,

a = (al,...,an) such that

a
dot ( ) 1 0 , (ak, ]=0 .

The last condition is empty if n = 1, since (a,a) = 0 holds by

definition of the Lagrange bracket.
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1 5. Conjugate Points. In Chapter II necessary conditions for

an extremal to give a minimum were derived, e.g. the Legendre

and the Weierstrass criteria. Both these conditions refer to

tremals which are sufficiently short. In order to make this

clear we repeat the argument for the Weieretrase oondition.

Let

I(C) F(t,u,u')dt

the integral considered and let Co be an extremal from P to

Q. We introduced-the extremal integral I0(C) which was defined

as the integral f F(t,u,u')dt taken from P along an extremal to

a variable point. In other words the extremal integral is de-

fined on the field of extremals which pass through P. We can

write thesr extremals with n parameters a = (al,...,an) in the

form u(t,a , where u(t,O) = v(

e

t) corresponds to the extremal

from P to Q. Now we considera region in the neighborhood of

u(t,O) whilah is covered simply by the u(t,a). In other words

through every point of this (t,u) neighborhood there should pass

exactly ono extremal u(t,a). Such a neighborhood exists for all

t such that:
au (t,0)

(13) Q(t) = det (- ) " o

This statement holds since for any point (t,/U") one can for suf-

ficiently small luk-vk(t)( solve the equations uk(t,a) = uk by

the implicit function theorem. Therefore we assume that in the

interval of integration ti < t < t2 condition (1) is satisfied

(t1,t2 are the t coordinates of P,Q). We have to exclude t = tl

since u(tl,a) = v(tl)

Under this assumption we can write according to (66) in

Chap.
III(0) - I(C0) - I(C) - I*(C) a J E(t,u,p,u')dt

C

where C is any curve lying in the above neighborhood which con-

nects P and Q. Here we made use of the fact that IB(C) depends

only on the endpoints of C.
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Thus we see: If in tl < t < t2 the condition (13) and the

Weierstrass condition E > 0 show that C

0

is a minimal. This

condition (13) is certainly fulfilled if It2-t11 is sufficiently

small since the parameters a can be chosen in such a way that

(13) holds for those t > ti which are close to t1.

We determine the first zero of Q(t) to the right of t1

and denote it by T, so that f,('O = 0 and A(r,) ( 0 for
t1 < t <T. Such a T need not exist in which case the condition

(13) is always satisfied. We now assume there is such a T. We

call (t ,v(C)) the "conjugate point" of P on the extremal u = v(t).

If now the interval of integration (tl,t2) contains 'r the

M'eierstrass condition doss not ensur hat Co is a minimal.
And, in fact, we are going to prove the result of Jacobi: If

t1 <,r < t2 then the extremal u = v(t) is not a minimal, provi-

ded dot (Fu,u,) / 0 along the extremal. In the special case
k x

T = t2 no general statement can be made.

We shall give a proof which is essentially due to Bliss

in this section.

Let u = v(t) + e w(t) where w(t) is a function that va-

nishes at t1 and t2. Then

it 2
I(e) F(t,u,u') dt

ti

is a function of e and the second variation will be

t2

(lii.) I"(0) =
S

!(t,w,w') dt
t1

where
(t,w,w' )

F,T
(w,'( wl' 2Wk.we

FWkwt'
+ Wk WA

Fwkwt
)

Here the argument in the derivatives of F are t,v,v'. If we

now find a function w such that I"(0) < 0, then for sufficiently

small c we have

I(e) < 1(0) .
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t2

Now S I dt represents a new variational problem with
tl

respect to the variablE! functions w. The extremal corresponds

to w - 0. It is easy to see that the conjugate point of (t1,0)

along the extremal w = 0 is (?,0). Namely if u(t,a) is a family

of extremals such that u(t,O) - v(t) then

d
Fuk (t,u,u`)

puk
(t,u,u')a-t

Differentiating these equations with respect to a and putting

a = 0 gives

(15) dt k (t,w,w') = 1k (t,w,w')

as one caneasily cheek. Here w = ua(t,0). If we apply this

consideration to the above family u(t,a) which depends on the

n parameters a = (al,...,an) we obtain n solutions

w(y)(t) _ ,3u(a 0
v

The equations (15) are the Euler equations of the varia-

.tional problem (11+). They are linear differential equations

since I is quadratic in w,w'. We found n solutions w(v) of (15)

which are independent since

(16) det Q(t) 1 0

Thus we have reduced the statements of Jacobi to the sim-

plified problem (14) which sometimes is called the accessory

problem of the given problem.

Now let us assume that t'is the first zero of p(t) be-

hind t1. Because of (16) it follows that there exist constants

c 1,...,n) which are not all zero such that-

W(t) (t)

is also a solution of (15) and W(V) = 0. Furthermore W(t) # 0

for t1 C t < T since not all the c4 are zero. Hence the
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problem (114) has an extremal solution which is not identically

zero and which passes through (t1,0) and ('C,0). For this extre-

=al we have

j(t,W,W') dt e 0 ,

as we are going to show now.

Since I is quadratic in w and 'w' we have for any constant%

l(t,1w,Aw') - x2 f(t,w,w') .

Differentiating with respect to A and putting A 1 gives

Ruler's Identity

(1wkWk
+kWO

`21
Therefore we have

t2
2 dt dt2 (Lk wk +

lw,i wk) dt
tl tl

wk 1t2 + ` 2 ( k - at
L ,',)Wk dtktl t1

For every extremal we have

It"

2 1 t2
dt Wk

l t1

Henoe
7

I (t,W,W')dt Wk ,k (t,W,W')I O 0

ti t

if we now construct the function 4(t) by

3(t)
W(t) for t1 t Y

r t t0 for
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it is continuous but has a corner at t = t and it is

,t2 z

tl

1(t,4,4')dt = } J(t,W,W')dt - 0

We We can find such a curve in every neighborhood of w=0 since

4 = E 4(t) will satisfy the same relations as $ since I is a

homogeneous function in w,w'. The function {s), however, is

not an extremal and can be replaced by a function which even

makes (14) negative. namely if this would not be possible the

function 4(t) would have to satisfy the Weisretrass-Erdmann con-

dition at t i.e. 1w, would have to be continuous at t ='r.
k

For t > z this expression is 0 since w = 4 = 0. The expressions

L,(t,W,W') are not all zero for t Otherwise we would

have for w W, t='r

§k=cFwkw, w' t+FwMwtwt

Fw,w, W = 0 for k = 1,...,n, k e

Since we assumed det (Fw,w 0 it would follow W'(t) = 0.
act.

Prom the uniqueness theorem for systems of ordinary differential

equations it would follow that W(t) C, which is a contra-

diction.

Therefore we can construct a function (t) with

,y(t a ip(tg) - 0 lying in an arbitrary neighborhood of w = 0,

such that

1

This completes the proof of the necessity of Jacobi's condition

for a minimum.

For the computation of the conjugate point it is conve-

nient to use the accessory variational problem (14) since the

Euler equations are linear and in general easier to solve than

the original Euler equation.
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Example: Conjugate points of a geodesic on a surface: Using

the Gauss coordinates which were introduced in 03 we have

J F(u,v,v') du = A(u,v) + ' du

Here v = v(u) is the variable function and u plays the role of

t. The geodesic considered is v = 0. Furthermore we have

E(u,0) = 1, Ev(u,0) = 0. The function - 1Evv(u,0) - K(u) is

called the Gauss' curvature of the surface at the point (u,0).

We compute

I(u,w,w') _ 7(w'2 + . avv w2) r 7(w'2 - Kw2)

The linear Euler equation is

(17) dJ, -J - w" + K(u) w= 0

This is called the Jacobi equation. In order to determine the

conjugate point of (u1,0) one has to construct a solution w(t)

of (17) which vanishes at u = ul but does not vanish identically.

The next zero of w(t) is the conjugate point. For K = constant,

we have w = %ffl (u-uo), if K > 0. Then the distance between

a point and its conjugate points is it/VR. For K < 0 there is

no conjugate point.

6. Application to Sturm's theory. We consider the quadratic

function (n=l).

F(t,u,u') _ I(u'2 - q(t)u2) ,

so that the Euler equation is

(18) U" + q(t)u = 0

The conjugate points with respect to the extremal u = 0 are

easily interpreted in this case. Let w(t) be a solution of the

Euler equation which vanishes for t a tl, but not identically.

Then u(t,a) aw(t) is a family of solutions through the point
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(t1,0). Furthermore as = w(t). We obtain the conjugate point

of (t1,0) as the next zero of w(t), if it exists.

According to Jacobi's criterion one can interpret the in-

terval between tl and t as the longest interval in which u = 0

is a minimal fors F dt. Observe that FU,u' = 1 and therefore

all conditions of the criterion are satisfied. From this inter-

pretation follows immediately Sturm's Separation Theorem: If

tl,t2 are consecutive zeros of a solution w(t) of (18) then in

tl < t < t2 there is exactly one zero of any other solution.

Proof: We prove first there Is at most one zero of any other

solution. If there were two consecutive zeros T 1,72 in the

above interval then ('r1,t'2) would be the longest interval in

which u = 0 is a minimal, i.e. if Z is any number greater than

Z2 (we can choose it < t2) then u = 0 is not a minimal in (11,'C).

But the interval ('1,'C) is contained in (t1,t2) and in every

interval (tl,'C) with r < t2, u = 0 is a minimal. This is a

contradiction.

If, however, there is a solution w1 which has no zero in

t1 < t < t2 then u = 0 would be a minimal in a larger interval

than (tl,t2) which again leads to a contradiction.

This theorem can be proved more directly for the equation

(18). But this argument can be generalized to more general

equations and for n > 1.

Denote the sequence of zeros of a solution w(t) by tv

such that tv < tv+l. Let v run over all integers, or only some

of them, or even none of them if there are no zeros. Lot &)(t)

be another non-vanishing solution of (18) and let'rv with

xv
< Irv+l be the sequence of zeros ofw. We choose v such that

tl < T I
< t2. According to Sturm's Separation Theorem there

exists such a zero rl of w1 Then it follows that for all v:

tv Zv < tv+1

The zeros of the w(t) and w(t) "separate" each other.

One proves easily: If ti Z 1 then tv Tv and this
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occurs only if w(t) and w(t) are proportional to each other

(linearly dependent).

In general the equation (18) can not be solved explicitly

and therefore the tv cannot be determined explicitly. That is

why it is valuable to give bounds for the tv. This is done by

Sturm's Comparison Theorem: If q(t) < Q(t) and

W11(t) + q(t) w(t) - 0

WI(t) + Q(t) W(t) = 0

and T1 < T2 are consecutive zeros of W(t) then w(t) has at most

one zero in Tl c t < T2, provided w(t) is not identically zero.

Proof: Assume there are two zeros ti < t2 of w in TI < t < T2'

Then determine a 2 in t2 < z < T2. According to Jacobi's con-
1C

dition z j' (w'2 - q(t)w2)dt has not a minimum for w = 0. In
tl

other words there is a function u(t) such that u(tl)- u(r) - 0

and

If we now define u(t) = 0 outside (t1,t) we find

(u'2 - Q(t)u2)dt
r

(u'2 - Q(t)u2)dt
TI Jtl

T

<
\

(u'2 - q(t)u2)dt < 0

4 tl
Hence u = 0 is not a minimum for $(u'2 - Qu2)dt in (Tl,T) which

is a subinterval of (Tl,T2). This is a contradiction.

This theorem implies that the zeros of w grow closer to-

gether as q(t) increases. If, for instance,

m2<q(t) <N2
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where m,M are positive constants, it follows that

N-` Itv+l - tvI =m
Namely for Q(t) - M we have

W(t) = c sin (Mt + a)

and T,+l - TV - R. Similarly for q(t) - m. The comparison

theorem gives the above result.
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III. DIRECT METH®S IN THE CALCULUS OF VARIATIONS

Introduction

The so-called direct methods in the calculus of varia-

tions represent a relatively modern trend which has established

the calculus of variations in a dominating position in mathe-

matical analysis.

Two general points of view in the calculus of variations

are relevant for various domains of mathematics, namely the for-

mation of invariants and covariants in function spaces, and the

characterization of mathematical entities by extremum proper-

ties. We shall concentrate on the second topic. Such a cha-

racterization is useful in many fields of mathematics, and often

serves to simplify more involved deductions. For examples in

the theory of numbers the greatest common divisor of two inte-

gers, a and b, can be characterized as the minimum of the ex-

pression lax + byl, where for x and y all integers are admitted

"to competition". In this course we shall confine ourselves to

the field of mathematical analysis.

In thq mathematical treatment of physical phenomena it is

often expedient to use formulations by moans of which the quan-

tities under consideration appear as extrema. An example of

that is Format's Principle in optics. In mechanics the princi-

ple of stable equilibrium has a basic importance: a system is

in stable equilibrium if, and only if, the potential energy is

a minimum. For elementary mechanics equilibrium conditions are

expressed by certain local conditions (vanishing of the sum of

all forces and moments). With the help of the calculus of va-

riations it becomes possible to characterize a state of equili-

brium by one value only, the extremum of a functional. The va-

riational equations furnish, then, the local conditions.

The classical methods of the calculus of variations can

be considered as indirect methods, in contrast to the modern di-

rect methods. The distinction is not absolute, for many
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"modern" ideas appear already at the beginning of the calculus

of variations, although without the degree of precision now

attained.

Generally speaking, the direct methods aim at solving

boundary value problems of differential equations by reducing

them to an equivalent extremum problem of the calculus of varia-

tions, and then by attacking this problem directly, a procedure

which is, so to speak, the reverse of classical calculus of

variations.

The most notable example of the direct approach goes back

to Gauss and William Thompson. They considered the boundary

value problem of the harmonic equation Au = 0 for a domain G

in the xy-plane, under the condition that the function u be re-

gular in 0 and attain prescribed continuous boundary values at

the boundary.

The classical formalism of the calculus of variations for

the integral

D[dl (42 + 42) dxdy

G

shows:

If u(x,y) furnishes the minimum of the integral when for

all functions are admitted to competition which are conti-

nuous in 0 and on its boundary, attain the prescribed boundary

values, and possess continuous first and second derivatives in

G, then u(x,y) is the solution of the boundary value problem

for D(u) = 0 in G.

Gauss and Thompson thought that, since the integral D[fl

is always positive, it must have a minimum: hence the existence

of a solution of the boundary value problem appeared established.

This reasoning was later resumed by Dirichlet, and a decisive

use of it, under the name of Diriohlet's principle, was made by

Bernhard Riemann in his epoch-making investigations on the

theory of functions. However, it was soon observed by Weier.

straw that the reasoning suffered from a very serious gap. A
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set of non-negative numbers necessarily has a greatest lower

bound, but this lower bound need not be a minimum actually at-

tained in the set. To make Dirichlet's Principle a cogent

proof, the existence of a minimum, rather than a greatest lower

bound, has to be established. That this is not a trivial mat-

ter can be seen from many simple examples of extremum problems

apparently "reasonable".

(a) Find the shortest curve

from A to 8 with the condi-

tion that it should be per- A B

pendicular to AB at A and B.
The length of the ad-

missible curves has a greatest lower bound, namely A ; however,

no shortest curve exists.

(b) Find a function 4(x) continuous, having a piecewise conti-

nuouv derivative, for which the integral

1

x2 4'(x)2 dx ,

attains the smallest possible value, with the boundary condi-

tions :

4(-1) 7 -1 4(1) = 1 .

The integral is always posi-
b{x)tive and has a greatest lo-

wer bound, namely, 0. How-

ever, we can make it as small 1

as we want, by taking for

4(x) the function represented

by APQB. It a is the die- 1 ; --w'-
tance from P to the point
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40(x) a for -e < x < e
4'(x) - 0 for -l < x < -e

Hence

or a <x<1 .

I
a

dx= e ,
I-C e

and it can be made as small as we want. But the only function

for which I = 0 is 4(x) = c, and it does not correspond to a

curve through the given end-points.

Weieratrass' criticism was met only much later by Hilbert,

when he succeeded in 1900 in establishing the existence of a

minimum for problems involving the integral D[4), and thus

opened the way for broad developments in the calculus of varia-

tions.

The direct methods thus inaugurated marked a great pro-

gress to pure and applied analysis, all of it based upon the

reduction of boundary value problems to minimum problems.

Three related goals are envisaged by such methods:

a) Existence proofs for solutions of boundary value pro-

blems,
b) Analysis of the properties of these solutions,

c) Numerical procedures for calculating the solutions.

This last point of view has been stressed by Rayleigh and, in a

broader way, by Walter Ritz, who developed powerful numerical

methods of great importance for physics and engineering.

A few examples will show how certain results concerning

minimuit problems can be attained directly.

By the formal approach the isoperimetrie property of the

circle (or of the sphere) is reduced to a differential equation,

supplemented by certain sufficient conditions, for instance,

Weierstrass' conditions. However, the direct approach leads to

the result in a straightforward way.

On the basis of Steiner's proof
*

or of the classical cal-

culus of variations, we may assume as proved that the circle is

See this proof in Courant-Robbing, What is Mathematics, P-375-
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the solution, provided a solution is assumed to exist. Hence

only the existence of a solution needs to be proved.

We consider the following problem: Among all continuous,

closed curves C having a given length L, find one which makes

the enclosed area A(C) a maximum.

Since any admissible curve C can be completely enclosed

in a circle of radius L/2, A(C) < %L2A; hence a least upper

bound M exists for all the areas, and a maximizing sequence

Cl,...,Cn1--. of admissible curves exists such that

An (C n ) -- M forn -a.oc

Each Cn can be assumed to be a convex curve, for if not,

it could be replaced by a convex admissible curve of larger

area: Cn is first replaced

by its "convex hull" Cn;

then Ui1 is magnified into a
similar admissible curve of

length L, 'n, and

A(Cn) < A(Cn) < A(tn)

(This reasoning is not valid in 3 dimensions. Let us con-

sider a sphere with a long spine. It can be replaced by a con-

vex surface enclosing a larger volume: but this surface will

also have a larger area, which prevents us from extending the

argument to more than 2 dimensions.)

We now make use of the following theorem: In a sequence

of convex curves lying in a closed domain there is a subsequence

which converges to a closed convex cur'Ve.

Hence a subsequence of curves Cn converges to a convex

curve CO since the area of a sequence of convex curves depends

continuously on the curves, and the areas An of Cn converging

to M, A(C) = M.

We now make use of a very important fact, the lower semi-

continuity of length:
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If Cn converges to C, then

lim L(Cn) > L(C)

In the present case, we then have

L(C) < L

The equality sign, however, must hold, since, if L(O) < L, C

sould be magnified into a curve of length L, whose area would

then exceed M. Thus the existence of a curve of maximum area

and length L is established.

Lower semi-continuity of length is only an example of a

property which occurs in all "reasonable" variational problems

and is of great importance for the direct methods.

Consider a function I(d), where the independent function

4 ranges over a specific "function space". Consider a sequence

of admissible functions 4n which tend to a limiting function u

in this function space. Then 1(3] is called lower semi-oontin:.

uous at the place u if

lim I(dn] > ICU] ,

no matter what sequence 4, tending to u is considered.

Compactness in Function Space, Arzela's

Theorem and Applications

In the ordinary theory of maxima or minima, the existence

of a greatest or smallest value of a function in a closed dasain

is assured by the Bolzano-Weierstrass convergence theorem: a

bounded set of points always contains a convergent subsequence.

This fact, together with the continuity of the function, serves

to secure the existence of an extreme value.

As seen before, in the talculus of variations the conti-

nuity of the function space often has to be replaced by a weak-

er property, semi-continuity; for, when bn converges to u,
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generally I(an) / 1(u). Another difficulty in the calculus of

variations arises from the fact that the Bolzano-Weierstrass

convergence theorem does not hold if the elements of the set are

no longer points on a line or in a n-dimensional space, but

functions, curves or surfaces.

As an example, we can

consider the curves ACDB in

a closed interval where 1

AD = 2/n and where C remains

at the distance 1 from AB.

These curves are continuous,

but in the sequence there is

no subsequence which converges A D B

to an admissible continuous curve.

Fortunately, however, there exists a remedy which very

often proves sufficient in the direct methods of the calculus

of variations. By a suitable restrictive condition imposed on

the functions of a set, one can again obtain a theorem analo-

gous to tr,e Bolzano-Weierstrass theorem. This condition is

that of equicontinuity.

A sot of functions f1(P),....fn(P) is eguicontinuoud in a

domain B if, given any e > 0, there exists a 8, depending on e

alone, not on the particular fn(P), such that

ifn (Q) - fn (P) l < e for IQ - Pi < 8(e)

uniformly for all P in B and all functions fa(P). This condi-

tion implies, of course, that each function separately be con-

tinuous.

As an example, let us consider the set of functions

eXY g(y) dy f(x)
0

where g(y) is any piecewise continuous function such that

Ig(y)1 < 1 and where x has an upper bound. Then
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If(x) - f()I <_ So Ig(y)I
Iexy

- e9yl dy ;

as

l exy - 0971 < C
for

Ix - 41 < 8(E)
then

If(x) - f() I < e

for Ix-&I < b(c), hence f(x) is equicontinuous for all g(y).

Of course, exy can be replaced by any continuous function

K(x,y), and the statement of equicontinuity remains true.

As another example, let us consider a sequence {fn(x)I in

an interval (xoxl) for which
l

Sxl

xo

(fn(x) ]2 dx ,<- M

where M is a fixed constant. fn(x)I is equioontinuous, since

the expression

ifIfn(x+h) - f (x)12 = I! fl(x) dxl2

by Schwartz' inequality , does not exceed
{' x+h

h { if'(x)]2 dx < Mh
x

and we have merely to take, for a given e,

2h<8(e) .

eSchwartz' inequality for integrals states that

qb
fg]2 <

Sb

f2
Sb

g2, and is proved from the relation
a n a

b
(f-9) 0
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Arzela's convergence theorem then states: Given in a closed

domain B a set of functions {f(P)' which are uniformly bounded

(i.e. If(P)l < M) and eguicontinuous, then there exists a sub-

sequence {fn(P)j which converges uniformly.

We cover the domain B with a net ft l of lattice points,
and let z be the common distance between two consecutive points.

The values of f(P) at the first lattice point form a bounded,

infinite set of numbers, and hence, according to the Bolzano-

Weierstrass theorem, there exists a sequence of these values

which converges at the first lattice point. From this sequence

we can choose a subsequence of functions which converges at the

second lattice point (the lattice points can be ordered), and

so forth for all lattice points (there is a finite number of

them). We thus obtain a subsequence of functions converging at

all the lattice points:

S1(P): f1,1(P), f2.1(P), ...

Let us now take the middle points between the lattice points

and consider the new set of lattice points thus obtained, n 2.

We similarly have a subsequence of functions of S1(P) conver-

ging at all these lattice points:

S2(P): fl,2(P)' f2,2(P), ...

Continuing this process, we obtain the following sequences:

31(P): fl,l(P), f2,1(P),..., fn,l(P),...

S2(P): f1,2(P), f2,2(P),..., fn,2(P),...

..... .................................

SI(P): fl,i(P), fn,i(P),...

Each sequence SI(P) is a subsequence of all the preceding,

and it converges at all the lattice points of the net y'(

We now choose the diagonal sequence

cc

fn(P

fl,l(P), f2p2(P),...I fn,n(P),...
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which, except for a finite number of its terms, is an infinite

subsequence of every SI(P), and hence ifn(P)I converges at all

lattice points.

There remains to show that the a:agv,.a.L subsequence

fn(P) converges uniformly at any arbitrary point Q of B. e

being given, since the diagonal sequence fn(P)) is equiconti-

nuous, there exists, uniformly for every k, an integer N(c)

such that

Ifk(Q) - fk(L)I <

for IQ-LI < 2-N(o), L being a lattice point of the net YtN.

Since {fn(P)I converges at each of the lattice points, we

can find a k(e) such that

Ifnct,) - fm(L) I < J

for m,r > 1(e).
Then, for any point P

'fn(p) - fm(P)I 1 (fn(P) - fn(L)I

+ Ifm(L) - fm(P) I
+ Ifn(L) - fm(L) I

or

Ifn(P) - fm(P) I < e .

Therefore ifn(P)1 converges uniformly.

Problem

Prove that, if a set of functions fn(P) is equicontinuous

in a closed domain, and if the fn(P) are bounded at least at

one point, then the functions fn are bounded everywhere in the

domain.

Application to geodesics: Lipschitz's condition: A set of

functions are said to satisfy Lipschitz's condition if
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f(x2) - r(xl)

x2 - xl

is uniformly bounded for all functions f(x), provided that xl

and x2 are in a closed interval.

According to Hilbert, the preceding concept immediately

permits proof of the existence of a shortest connection between

two points A and B on a given surface.

Let [x(t), y(t), z(t)] be the parametric representation

of a set of curves through two points A and B, t being the are

length or proportional to the are length. We also assume that

the length of the curves has an upper bound, then we can take

0 < t r 1. Then the functions x(t), y(t), z(t) are equiconti-

nuous+

If we assume that the functions possess pieoewise conti-

nuous derivatives, i(t), y(t), i(t), we have, t being the are

length or proportional to the are length]

a and or being two values of t,

Ix(s) - x(r)I < six(t)Idt =
Je

Ix(t)] dt j

ar

which implies

Ix(s) - x(c*) I < ( x, + y z dt
Ir

or

ix(s) - x(o-)I <cIa -QI

which means that, under the assumption made for t+ the curves

are equicontinuous.

But, even if the derivatives do not exist, the conclusion

remains the same, as it can easily be seen by representing the

length as the lowest bound of the sum
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n
xi - xi-1) + (yi - yi_l) + (zi - zi-1)2

where the least upper bound is taken with respect to modes of

inserting the intermediate points (xi, yi, zi) between A and B

on the curve, and for all n.

As the length of the curves has an upper bound, x(t),

y(t), and z(t) also have an upper bound, and, as they are equi-

continuous, there is, by Arzela's theorem, a subsequence xm(-C)

such that xm(t) converges uniformly. Similar subsequences

ym(k) and zm(7t) also converge. Therefore we can construct a

common subsequence xm(t), ym(t), zm(t), for which all three com-

ponents converge. Hence there is a limit curve C joining A and

B.

By the semi-continuity property of length,

L(C) c lim L(Cm) - d ,

whore d is the greatest lower bound of the length of the curves

joining x and B on the surface. Hence the < sign is impossible

and

L(C) = d .

There remains to show that the minimizing curve C has

piecewise continuous first and second derivatives and satisfy

Euler's equation, provided that the given surface is sufficient-

ly smooth. But this follows from the fact that C must give the

shortest length between any two of its points. If B is suffi-

ciently near A, the arc AB of C must be regular and satisfy

Eulerts equation on the basis of the classical theory of the

calculus of variations (See first part of these notes.) Hence

this property follows for the entire arc of C between the given

end-points.

Problem

1) Prove t'.e theorem used above thatt In a sequence of convex

curves cf bounded length lying in a closed domain there is a

subsequence which converges to a closed convex curve.
120



2) Prove by the method above that there exists on a torus a

shortest geodesic topologically equivalent to any prescribed

closed circuit on the torus.

Direct variational methods In the theory of integral equations.

Following Homgren, we shall indicate briefly how direct varia-

tional methods can be used for the treatment of Fredholm and

Hilbert integral equations. In the general theory of integral

equations, which was inaugurated by Fredholm, Hilbert empha-

sized the importance of the eigenvalue theory.

Let K(s,t) be a continuous and symmetric function called

the "kernel", with 0 < s < 1 and 0 < t < 1. The eigenvalue

problem is to find a function u(t) such that

`1 K(s,t) u(t) = µu(s)
0

Such functions u are called eigenfunctions and the X = 1/1,

eigenvalues.

We shall now prove the existence of one eigenvalue. We

consider the integral

I(4,4) _ K(a,t)4(s)4(t)dsdt

where 4 is piecewise continuous in the interval (0,1). We as-

sume that IK(s,t)j has an upper bound. (Integrals without in-

dication of limits shall be taken over the domain defined by

0<e < I and 0 < t < 1.)
We assume that the kernel K(s,t) is such that I(4,J) is

sometimes positive; in other words, that K(s,t) is not a so-

called "negative definite" kernel. We write
0

[4(8)J2 ds = (4,4)

Then
I(

has a least upper bound µ which is positive, and there exists a

maximizing sequence 41,...,4n,..., for which
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1U.141 --1 µ

The function 4 could be normed, that is (¢,4) = 1, but this is

not essential.

We now consider the new sequenoe do + ern, and we have

I(4n + ern, do + eY.n) < µ(dn + e ,, '!.n + cr-n)

or

I(dn,dn) + e2I(r-n,rn)

< µ((dn,dn) + 2e(4 ,zn) + e2(rn,X )) ,

or
1(dn,4n) - P(4n)14n) + 2e(I(3n, ,) -

92(I(4n,rn) - 0

The quadratic form in a will always be negative if

n) 3(I( 10-
We assume that (rn,Zn) remains bounded; hence, as

14(4n,4n) 0

jk(d,rn) - 0 .

or

S r-n(s)(1K(s,t)4n(t)dt - µ4n(s) ]do -- 0

If we write

S K(s,t)4 (t)at = in(s)

the functions In (s) are equicontinuous and equibounded; hence,

by Araela's convergence theorem, there exists a subsequence,

which we shall also call run (s), of these functions converging

uniformly to a continuous function u(s).

u(s) is not identically 0. If it were,

K(s,t)dn(t)dt
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would tend to 0. 4,(t) can be assumed to be normed, then the

upper bound µ would not be positive, which is contrary to the

hypothesis; hence u(s) is not identically 0.

With the new notation,

,$n(s)] do
becomes

Srln(s)[In(s) - µ4n(s)] do ,

and it tends to 0. We consider a special variation for Z:

rn(s) = K(s,r) ,

where r is an arbitrary parameter such that

0 < r < 1 .

Then

SK(s,r)r)n(s)da - 117n(r)

tends to 0. But rin(r) converges uniformly to u(r), hence

iK(s,r)u(s)ds = µu(r) .

If we multiply both sides by u(r) and integrate, we veri-

fy immediately that u(r) is a solution.

By the same method we can solve the inhomogeneous Prod-

holm equation

P

1K(s,t)u(t)dt - vu(s) - g(s) = 0

where v is a constant greater than µ, and g(s) a given function.

Solving this problem is equivalent to solving the follow-

ing variational problem: Find the function u for which the

integral
{'(' f

I(q) - K(s,t)4(s)4(t)ds3t - v$(c(s))2do - 2i'g(a)4(s)da

is a maximum.

The proof is left to the student.
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Dirichlet's Principle

Dirichlet's Integral. Let G be a domain of the xy-plane, the

boundary of which, y, is a Jordan curve, i.e., a continuous

curve ,ithout double points. 4(x,y) is continuous in 0 + y,

dx and 4y being piecewise continuous in 0. 4 = g on y, g being

continuous on y. Functions 4 satisfying these conditions form

a class of admissible functions. Dirichlet's integral for 4 is

defined as:

D(4) f(4 + 42)dxdy = 1ff(42 + 1 4 )r drdQ

0 r

D(4) has a greatest lower bound d, and

D(¢) > d .

Minimizing sequences. For a variational integral 1(3) a se-

quence of admissible functions 41, 4Z, 43, ... such that the

values of I(4,), I(42), I(33), ... tend to the greater lower

bound d of 1(4) is called a minimizing sequence. Wherever the

set of possible values of 1(4) is bounded from below, the exist-

ence of a minimizing sequence is insured, even though we need

not specify a definite construction of the minimizing sequence.

(Such a construction will be the main point in the task (c) of

computing numerical values.) For example, Diriohlet's integral

having a greatest lower bound d, there is a minimizing sequence

of functions 4n(x,y) for which D(4n) --> d as n - co. However,

a minimizing sequence need not converge; even if it converges

the limit function need not be admissible.

Explcit expression of Dirichlet's integral for a circle. Hada-

mard's objection. The difficulties just mentioned are clearly

shown by a fact first discovered by Hadama rd: not only is the

solvability of Dirichlet's variational problem not obvious, but

Dirichlet's minimum problem actually is unsolvable in some cases

in which the boundary value problem for the differential equa-

tion Du = 0 can be solved. Thus the idea of reducing the lat-

ter to the former seemed even more discredited.
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Let K be the unit circle, and introduce polar coordinates

r,Q. On the circumference k of K continuous boundary values

g = g(Q) are given. Consider the (not necessarily convergent)

Fourier series of g:

+ (av cos vQ + by sin ve)

Then, for r < 1, the solution of Au = 0 satisfying the boundary

condition u = g on k is given by the convergent series:

u(r,Q) = c + rv(av cos vO + by sin vQ)

If we represent by Dp(u) Dirichlet's integral for the circle of

radius p < 1 about the origin,

CID

Dp(u) = n v(ay + bV)p2v

This implies for every N

n
v

(aV+by)p2v <R v(ay+by)

where the right-hand side may be a divergent series. By let-

ting p tend to 1, we infer immediately: Dirichlet's integral

for the harmonic function

u(r,Q) _ ° + rv(av cos vA + by sin vA)
v=1

over the unit circle is given by the series

D(u) = Co v(aV + bv)

and exists if, and only if, this series converges.

Now, as pointed out by Hadamard, there exist continuous

functions g(Q) for which this series diverges; e.g. It g(Q) is

given by the uniformly convergent Fourier expansion
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°o sin U198 "
µ

Then
co

D(u) = a
µ-1 µ

which does not converge. With boundary valued such as this g,

the boundary value problem of Au = 0 can thrra fore certainly

not be reduced to a variational problem for Dirichlet's inte-

gral, and Dirichlet's principle is invalid. No full equiva-

lence between the variational problem and the boundary value

problem exists.

The Correct Formulation of Dirichlet's Principle. The last dif-

ficulty can be avoided by restricting the prescribed boundary

value in such a manner as not to exclude from the outset the

solvability of the variational problem. While for the boundary

value problem such conditions are not necessary, they are esserr

tiel to make the variational problem meaningful. Accordingly,

it will be assumed that the prescribed boundary values g are

the values on y of a function g in G + y for which D(g) is fi-

nite. In other words, we explicitly assume that there exists

at least one admissible function with a finite Dirichlet Inte-

gral. Thus one is led to the following formulation:

Dirichlet's Principle. Given a domain G whose boundary y is a

Jordan curve, let g be a function continuous in G Y, piece-

wise smooth in G, and with a finite Diriohlet integral D(g).

Let $ be the class of all functions continuous in G + y, piece-

wise smooth in G, and with the same boundary values as g. Then

the problem of finding a function for which D(4) = minimum = d,

has a unique solution $ = u. This function u is the solution

of the boundary value problem of Au = 0 with the values g on Y.
Lower semi-continuity of Dirichlet's integral for harmonic

functions. If a sequence of harmonic functions un converges to

a harmonic function u uniformly in every closed subdomain of G,

then

DG(u) < lim DG(un)
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Proof: For any closed subdomain G' of G the assumed uniform

convergence of the un implies by Harnack's theorem
a
the uni-

form convergence of the derivatives of un to those of u. Hence

DG,(u) = lim DG1(un) < lim DG(un)

and, by letting G' tend to G,

DG(u) <
I'm

DG(un) .

Proof of Dirtchle.t's Principle for the Circle. Let the domain

G be the unit circle and consider the Fourier series of the gi-

ven boundary function g(r,Q)

-°
00

(avcoo vO+bvsin v0)
v=1

This series need not converge, but for r < l the series

00
u= so +S"r2(a v vcos vO+bsin v0)-

v`;_

does converge, and u is harmonic.

Let v be any other admissible function for which D(v) is

finite, and r, = u - v. On the boundary Z = 0.

D(v) = D(u - Z) = D(u) + D(Z) - 2D(u,C) ,

where D(u,Z) represents the so-called bilinear form

D(u,Z) = (uxtx + uyry) dxdy

G

By Green's formula

D(u,Z) tau dxdy + a do
G Y

*
Harnack's theorem states: If a sequence of harmonic funotiam

converges uniformly in a domain, then their derivatives oonverfp
uniformly in every closed subdomain and the limit function is
again harmonic.
For a proof, see, e.g., Foundations of Potential Theo= by
0. D. Kellogg, p.
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The first term of the right side vanishes because Au - 0, and

the last term vanishes too because Z = 0 on y. Hence

and, as

D(u,2) = 0

D(Z) > 0

D(v) ? D(u)

which means that Dirichlet'a integral is minimum for.u.

This reasoning, however, has a gap, for Green's formula

is not applicable to u in the whole domain. In order to fill

this gap, consider the "harmonic polynomials"

un a a + r r2(av cos vA + by sin v6)
v-

and write Zn = un - v. Then

D(v) a D(un) + D(,n) - 2D(un,?n)

By Green's formula, applicable to the polynomials un,

{{

2ic Un
) - ij ZnQundxdy + } Zn d6D(Un, a)rr-n

G JO
r=1

The first term of the ri:.ht side vanishes because Qun = 0. It

can be seen that the second term vanishes too by substituting

for un its explicit expression, and by observing that the first

2n+1 Fourier coefficients of Zn are zero, so that

2,c n 2%

so
2ic

0
rndG a 0 , 1

10 Zn cob vOdO = 0, 4n sin 'QdQ = 0,

fo r v - 1,2,...,n. Hence

and

D(un,Zn) = 0

D(v) - D(un) + D(rn)
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or D(v) ? D(un)

In G the polynomials un tend to the harmonic function u with

the boundary value g, i.e., lim un = u, and the convergence is
u-;1co

uniform in every closed subdomain of G. The semi-continuity of

the Dirichlet integral for harmonic functions leads to

D(u) < lim D(un) .

This ani the preceding inequality imply

D(u) < D(v) ,

which proves the minimum property of D(u).

To prove the uniqueness, let Z be a function for which

D(Z) is finite and = 0. Then, because of the minimum proper-

ty of u,

D(u+ez) - D(u) + 2eD(u,4) + e2D(4) > d

for e positive or negative, which implies that

D(u,r-) = 0 .

Let v be any function other than u, and v - u, then

D(v) = D(u) + D(v-u)

Hence

D(u) < D(v) ,

except for D(v-u) - 0, i.e., v - u = const. But u and v having

the same boundary values

V - u = 0 .

"Distance" in function space. Triangle inequalities. Let d

and yr be two admissible functions, and write

1 (4x*x + cLA, ) dxdy
G
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With this notation

D(4) = D(b,d)

and

D(4 + *) = D(4) + D(*) + 2D(4,*)

As D(4) has a greatest lower bound, there exists a mini-

mizing sequence 41,42,... Consider the new sequence 4n + C 2;M.

These functions will be admissible if Zn and its derivatives

satisfy certain conditions of continuity and if Zn vanishes at

the boundary.

D(3n + er.n) - D(dn) + 2cD(4n,c) + e2D(rn) > d

We assume that D(4n) has an upper bound R. If we write

D(¢n) = do and Vn, the above inequality can be

written

D(4n + ern) = do + 2cVn + e2D(tn) s d

or, a fortiori,

dn+2eVn+ e2R > d

or

e2R+2eVn+do-d>0 .

This inequality is satisfied for any co if the quadratic form

is positive definate, that is if

which implies that

V
n = D(4 n,Y.n) tends uniformly to 0 as n -- co

We now take a special function Zn = 4n - dm, where m is

fixed. Then

ID(4n. dri 4m)I < Kf J
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and also

ID(4m, dm-4n)I < d

By subtracting the left-hand sides,

D(dm - 4n) < dm - d + /KTn----aT
Hence

D(4m - 4n) -' 0 as m,n -- co .

D(4 - *) can be considered as the "distance" between two

functions 4 and p in the function space under consideration.

For these "distances" the following so-called triangle inequali-

ties hold:

VUM + v45t Y

6( - < VTTT -

The fact that D(4 - 4n) -- 0 as n --- co does not imply

that 4n converges to 4. If we take 4 = 0, the following exam-

ple will snow that, although D(4n) --> 0 as n --- co, 4n need not
tend to 0.

Consider the minimum problem for D(4) in a circle of ra-

dius 1, when the admissible functions are to vanish on the boun-

dary. This minimum problem is solved by 4r. 0 and by no other

function; d = 0 is the minimum value, not merely the greatest

lower bound.

Now we defina in polar coordinates r,Q a sequence of

admissible functions 4 by

1 , forr<2pn

4n = lour-1 , forpn n<r<Pg0
, for p<nr<1
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Then

D(4 ) =

S21E

p2 (arn)2r drdQ - 2% p2 c log p2r dr - p
0p

pn

We now take pn = n. Then

D(4n) --- 0 as n -> cc ,

but does not tend to 0 at the center of the circle, where

its value is 1.
Thus a minimizing sequence cannot in general be expected

to yield the solution of the problem by a more passage to the

limit. The essential point in the "direct variational methods"

is to introduce an appropriate sequence that will guarantee

convergence.

Construction of a harmonic function u by a "smoothing process".

Consider a minimizing sequence do of admissible functions in G.

As seen by the example above, the functions 4. need not converp.

We consider a circle K in G, and we replace a function n
by a function wn such that wn = 4n outside of K and wn is har-

monic in K. By this operation we are "amooting out" dn. Di-

richlet's principle having been proved for the circle,

DK(wn) < Du(dn)
and therefore

D(!un) < D(4n)

The functions wn are admissible functions and form a new mini-

mizing sequence. Hence

D( W -wm) - 0 as n and m --aw m .

The aim will be to prove that wn - wm converges in the interior

of K, while 4n - 4m need not converge. We will use the limit

function in order to construct the solution of the Dirichlet

problem. Before carrying out this program we need several lem-

mas about harmonic functions.
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Preparations: Let u(x,y) be a continuous function with conti-

nuous first and second derivatives, satisfying the differential

equation

then

uxx + uyy = 0

u(P) u(17) dQ
c

where the integral is taken along a circle C about P.

By Gauss's theorem

fC (u + u )dady = f
e (ux ar + 117 a

)ds = 0

or

c HL"lyd9=0
C

or, be:ause of the continuity of the first derivatives of u,

d Scu''0
which means that

2n f u(P)dA = const. with respect to r
`C

If we let r tend to 0, we see that the value of the con-

stant is u(P), hence

u(P)_rttJ u(P)dO

We shall now prove the converse, namely, that if a func-

tion, which is assumed to be continuous, satisfies the mean va-

lue equality for any radius, then the function is harmonic,

n 2'a
u(P) = j 0 u(F) dG

COE

for every r.
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We multiply both aides by r and integrate with respect to

r. Hence

u(P)
17

J'J u(P) dxdy

which can be considered as the mean value theorem for the area

(the double integral is taken over the circle of radius r about

P).

In order to prove that u is differentiable, we consider

the exproasion:

7[r2 u(x+h,y) - u x.v) = 1 jj u(P)dxdy - 1 Sf u(Y)dxdy ,
Ll L2

where the first integral is

taken over the lune L1 and

the second over the lune L2

between the circles of ra-

dius r about the points (x,y)

and (x+h,y).

Denoting the two tri-

angular regions (see figure)

by T we have

T

rr ,h r

1 ` dy u(Ir)dx u(P)dyi
L1+T o -r 0 -r

where P is some point in L1+T on the segment parallel to the

x-axis. Because of the continuity of the function u,

r
u(P)dy --2-sr u(P)dy as h---* 0 ,

anct similarly for the other lune. Hence, as h - 0,

u(Y)dxdy - h-'SS 1 1u(F)dxdy u(P)dxdy u(P)dxdy
.Ll L2 Ll+T L2+T

`C u(P)dy
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where the integral on the right-hand side Is taken along the

circle C of radius r about the point (x,y). Hanes

2 u(x+h.y) - urnr (x,4Z
, I u(P)dy as h -a- 0

11
C

and u possesses a derivative ux given by the integral

1
a u(Tr)dy

nr C

by Gauss's theorem

ux = u($)dy = .S ux dxdy
nr C nr C

which means that ux possesses the same mean value property as

u. Of course, the same argument holds for uy. Hence the func-

tion u has continuous derivatives of every order.

We shall now prove that u is harmonic. Since u has con-

tinuous derivatives, we can write

u(x + h coo go y + h sin 0) z u(x,y) + h cos Aux + h sin GUY

,+ h2(u.<x cost 0 + 2uxy sin A oos A + uyy sin2 0) + OR

where R is bounded.

Integrating both sides with respect to 9 along the circle

C of radius h about P, we obtain

C
u(7)d0 = 2n u(x,y) + nh2(uxx + Uyy) + h3M ,

where In is bounded. As the mean value property has been as-

sumed for the function u,

nh2(uxx + uyy) + h3M = 0

or

(uxx + uyy) + hR = O ,

and, by letting h - 0,
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uxx +uyy= 0

which proves that u is harmonic.

As an application, we can prove that if a sequence of har-

monic functions un converges uniformly to u, then the limit

function u is harmonic. (We have made use of that theorem pre-

viously.)

2n
u = lim un - lim un(F)d9

n--;boo n-oo 0

but, because of the uniform convergence, we can interchange the

order of the operations of integration and passing to the limit,

and we obtain

12ic 2n
u = Urn un(F)dO = 1 u(P)d00 n,co JJ O

hence u is harmonic.

Lemma: Let; u be harmonic in K and let K' be a closed subdomain

of K. Then there exists a constant C depending on K,K' only,

such that

Mu(P)I < ju(PO)j t C J DK`"'
for P,PO in K' .

Consequence: Let un be a sequence of harmonic functions with

DK(un) - 0 for n -} co. In order to prove that un converges
to zero uniformly in a closed subdomain K' of K it is sufficient

to prove un(Pn) -- 0 for some point Pn in K'. Namely then from

the lemma

1Un(P)I I un(Pn) + C K
un

follows un (P) - 0'
Proof of the Lemma: Since u is harmonic in K, the same holds

for ux, u Therefore

u(P) dxdy
tth

h
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where 0h is a circle of radius h about P. We take P E K' and

choose h so small that Ch is contained in K. h depends on K,K'
only. Schwarz' inequality gives

uu (P) < - f r uX dxdy
7th

C

and
h

uX(P) + c .7 DC (u) < pK(u)
71h h ':th

Let P
0

be any other point in K'. We have

.

P
U(P) = u(Po) + 1 ux dx + uy dy

Po

Hence if L is an upper bound for the distance of P,P0 in K',

we obtain

!u(P) I < Iu(Po) I +h

Convergence ofcv n Let do be a minimizing sequence of admissi-

ble functions in G. In order to obtain a convergent sequence

from the 4n we considered a circle K in G and replaced the

function 4n by

in 0, outside K

wn a
harmonic in K

This requires that one can solve the Dirichlet problem for a

circle, which we have done already. Then the (on also form a

minimizing sequence since D(wn) c D(dn). Furthermore with

v _<n -wm

D (o -) 0- as n,m -> W .

From this we want to derive that crnra - 0 uniformly in any

closed subdomain TO of K. According to the Lemma just proved

it is sufficient to find a point Pnm in K' for which

{per} - 0 as n,m --- oo .ar-
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Through a point (xl,y) in K' we consider the parallel to the

x-axis, and let (x2,y) be

its intersection with the

boundary y of G. As e
61nm(x21y) = 0, we can write (x,Y (X 2,Y)

xl
arnm(xl,Y) - (xl,y) - y(x2,Y) fx (x,y) dxrim

2 x

which implies by Schwarz's inequality

(x,y) dxrnm(xl,y) < 1xl - x2i T
JX2

xl

x

or , as 0 is bounded

('xl

L,t c (x,y) dx

x
x

where L is a given length. By integrating between two values

of y, Yl and Y2. in K',

Yl 2 'yl Cxl
o (xl,Y) dy L

J
m dxdy

ran
Y2 Y2 x2 x

or, a fortiori, .

('yl

Y2

The integral of the left-hand side is taken along a segment of

the straight line a in K' parallel to the y-axis. Hence at

some point of a
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2 L D (o-1-nn)U_Ty2 -ylJ
Henoe = wn -turn tends uniformly to 0, and n tends uniform-ran

to a function u. u is a harmonic function because of the

theorem: If in a circle a sequence of harmonic functions con-

verges to a limit, the limit is a harmonic function.

If we let now K' tend to K, we have defined a harmonic

function u in K.

The smoothing process can be applied to any circle in G;

it leads in every such circle to the definition of a certain

harmonic function u. We assert that this construction defines

a uniquely determined function in the whole domain G. For the

proof we need only show that the functions ul and u2 resulting

from the smoo*ting in two overlapping circles Kl and K2 are

identical in the common part S of these two circles.

Let Wn and con be the minimizing sequences originating
from sequence be smoothing in the circle K1 and K2 respec-
tively. Then the mixed sequence i u , ' " J2J2, i,v2,...is also a
minimizing sequence, and therefore Ds(wn - tun) --a- 0 as n --> ox
If K' is a circle in 9, a fortiori,

DK, (Iun n} 0. W1 and wn
are harmonic In K' and con-

verge to ul and u2 respec-

tively. From the preceding

argument it follows that the

mixed sequence also conver-

ges to a harmonic function

u' in K'. Therefore u
1

and

u2 are identical with u'

in K1.

Proof that D(u) = d. Let Of be a closed subs nmain of G. at

can be covered by a finite number of circles.-.,, and by taking

the circles small enough, we can be sure that they all lie en-

tirely in 0. Then
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Go G
i

and hence

DG,{¢n - u) DK (fin - U)
i i

By the trisngle inequality

V'57 a7 < DG, n-u + /D01($)n < G, T. u + AT nj
The left side of this inequality is independent of n, therefore

G, u < g.l.b. ( G,
-u + D n )

the g.l.b. being taken over the values of n. But

DG,(an - u) -> 0 and D(an) - d as n - co

therefore
JDG, u < V/W , i.e. DG,(u) < d

Consequently, since

D(u) = lim DG,(u)
G'-?G

D(u) < d

However, u being an admissible function,

D(u) > d ,

hence

D(u) = d

Proof that the function u attains the prescribed boundary

values. The function u, so far defined in G only, can be exten-

ded continuously to y and ass'.unes the prescribed boundary va-

lues 'g on Y. More precisely: there is a quantity e(8) tending

to 0 with 8 such that for all points P in G we have

Iu(P) - g(R)i < e if the distance PR from P to a point R on y

is less than 8. This statement expresses the uniform conver-

gence of u(P) to the prescribed boundary values.
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For the proof we assume that R is one of the points on y

nearest to P, at the distance PR = 5h < 8.

We now consider the circle of radius lOh about R. 4his

circle def:.nes in u a certain subregion L.

We shall show first that h can be taken so small that

DLn is umaller than any prescribed positive number Cr-
I

DLW ) < cl for all n and for h < h(ol),

As D(4n - 4m) .-a 0, we can choose N so large that

02

DL(4n - 4m) < D(4n - dm) < i

for n,m > N; having fixed N we can choose h so small tl4t

2
DL(av) < - for v < N

By the triangle inequality

°r
2

d
2
l 2AL J` - 4N+ VIUL N

<4 + <a1
This proves the statement. Hence this is a positive function

o-1(h), tending to zero for h -? 0, independent of n, such that

DL(4n) < ci(h)

We now make use of the following

Lemma: There is a circle r = about P, with 3h < r < 14h, such

that for two points M1 and M2 on each connected are of this

circle the inequality

2s[r_
id(M2) - 4(M1)12 < -- 1 < 8x

where ai is an upper bound of DL(dn), holds,

In polar coordinates this last fact can be written

(42 + 42)r dOdr < ai
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or, by writing rQ = a, and dropping the integral over 42
r

4h

3h

dr y4 ds <a-i

By the mean value theorem for integrals there will be a value

r = r, with 3h < r < 4h, for which
2nr 2 dI¢ ds
0

On this circle r = r we have for the oscillation of 4 between

two points N.1 and M2
?2

(4(M2) - 4(Ml)j2 < 2nr -F < 81C a,2 ,

which proves the lemma. This can be written

4n(M2) - 4n(M1) < 2 dl(h)

where a-1(h) is independent of n. Ml,112 are two points on a
circle Cn which now depends on n. If its radius is denoted by
rn we have 3h < rn < 4h.

Similarly, there exists a circle r n about R with radius

Pn, 3h < pn < 4h, Y

on whoso oireum-

ference the oscil- / L
lation of 4n is

again less than
;n .

2

This circle will R

intersect the

circle Cn about

P at a point "n T. i J- i
and if n is suf-
ficiently small, r
,it will also in-

n

tersect y at a
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point Sn so that Qn and Sn are connected by an arc of this

circle in G. Therefore, since ;n = g,

14n(Qn) - g(Sn)l ; 2 0-1(h)v/N

Let un be the harmonic function in the circle Cn about P

obtained by smoothing 4n; then the value un(P) coincides with

some value of an on the circle Cn
w
and hence cannot differ

from bn (Qn) by more than 2 a,(h):

lun(P) - 4n(%)I < 2 f7Ft°rl(h) .

Finally, since g is continuous on y, h can be taken such that

Ig(Sn) - g(R) I < zr2(h) ,

where a2(h) .- 0 as h - 0. By combining the three inequalities

(un(P) - g(R) I < 4 l(h) + 02(h) ,

which proves that u attains the boundary values.

Thus u is recognized as the solution of the boundary va-

lue problem. Since it has been proved that D(u) = d and since

u is admissible in the variational problem, it solves the va-

riational problem. The proof of the uniqueness of this solu-

tion of thn variational problem is now exactly the samo as in

the case of the circle. Hence D?.richlet's principle, as we

stated it above, is established.

Alternative proof of Dirichlet's principle: We make the same

assumption as at the beginning of the first proof, and we con-

sider a minimizing sequence of-admissible functions

dl, b2,..., dn,...

At a point P we consider the circle C of radius h about

P. This c..rcle will lie entirely in 0 for all points P whose

distance from the boundary is greater then h. At P we consider

the function

by the mean value theorem.
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wn(P) = If 4n(P) dxdy

The functions 4n being continuous, the functions wl are diffe-

rentiable.

We shall now prove that, for a fixed h, uJn(P) tends uni-

formly to u(P).

For the admissible functions

D(4 as n --> co

provided that D(in) remains bounded, the functions rn have

piseewise continuous first derivatives, and Zn = 0.

Let us write

H(r.) = J' 2 dxdy

We will prove that

{r.) < CA(S) r where C is a positive constant.

We remark that we need to prove the proposition only for

a square. G being bounded, we can surround it by a square and

consider a function r. such that

'r = In G
and

r. = 0 outside of 0 but inside the square surrounding G.

Let P(x,y) be a point in a square, we take x and y-axis

parallel to the sides of the square and let x be the point whore

the parallel to the x-axis through P Intersects the side of the

square.

Then, as Z(x,y) = 0,

tax
(x,y) =

1

zx dx
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(We remark that the

parallel to the x=axis

through P must cut the boun-

dary of G at a finite num-

ber of points at most, in

order that the discontinuity P(x,y)

of the derivative Z occurs

at a finite number of points

at most. This is the only condition imposed upon the boundary

of G.)
By Schwarz's inequality

implies that

x
Z(P) - 4x dx

x

42(P) 11
2:X dx ,

IL

where L is the aide of the square or, integrating with respect

to y,

JL C2(P) dy < RD(t)

and, integrating now with respect to x,

SI 42 dxdy < Q 2 D(t) ,

which is the proposition we wanted to prove.

Let 12 be a point on the boundary y and consider a circle

of radius .C about R. We can always take L small enough, so
that the subdomain L of 0 limited by the circle is a simply

connected part of G.

We shall prove that

HL(C) <
4n212

DL(Z)

Consider a circle Cr of radius r, r < As about R. As 0,

Z(P} _ `re do
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where P is a point on Cr and where the integral is taken from

the boundary to P along Cr.

Hence, by Schwarz's inequality

?2(P)
< 21E L Z2 do

where the integral is taken along the are of Cr in L, or a

fortiori, integrating both sides with respect to a,

I Z2(P) do zs do ,

and, integrating now with respect to r,

HL W 4%212
DL(L)

For the functions wn defined above,

1Eh2( n(P) - wm(P)) = .c S (dn(F) - 4m(7)1 dxdy

C

where the rouble integral is taken over a circle C of radius h

about P. But this last equality implies that

nh2(wn(P) - Wm(P))12 < rh2HC(4n - gym)
But c(

HC(4n - dm) < HO(4n - 4m)

and, as ' - 4m = 0 on the boundary y,

HOn - 4m) D(3n - 3m

by the lemma we have proved above.

do and 4m being admissible functions,

D(dn - 4m) - 0 as n,m --> oo ,

hence

HO(4n - 4m)
and, a fortiori, HC(4n -

4m) tend to 0,

whioh implies that

wn(P) - ` m(P) also tends to 0.
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Hence, for a fixed h, n uniformly tends to a limit function

u(P).
We shall now prove that, for another h, we obtain the same

function u(P). We consider the function

*(x,y; h) = log *(1 - ) for r < h
h

= 0 forr>h .

*r=0 forr=h .

Let H be the circle of radius h about P, and K the circle

of radius k. For r. we take the function

W(h) - +Y(k) .

Using Green's formula,

D(dn,*) = 2 4 dxdy
k H

And D(dn- D(4n,*(h)) - (4n,*(k)) -a 0 as n - = Hence

ff 4n dxdy -. k S f 4n dxdy --? 0 as n -> m
H K

which shows that

uh=uk .

Hence u is defined independently of h in any open domain.

We shall show now that u has the prescribed boundary va-

lues. For Z we take the function 4n-g, which is 0 on the boun-

dary.
Let ii be the point

nearest to P on the boundary,

and PR = 2h. The circle of

radius 4h about R will deter-

mine a subdomain L in G. Let

K be a circle of radius h

about P. We have seen before that we can take h so small that,

for all n,
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DL(4n - g) < o-(h) ,

where o(h) tends to 0 with h. By the lemma proved above

HL(4n - g) 1 4n2(4h)2DL(4n - g)
or

HL(4n - g) <_ 64n2h24'(h)
But

Hence
HK(dn - g) < HL(4n - g)

r r
Hr. On - g) = ! ! (dn - g)' dxdy <

nh nh
K

By Schwarz's inequality for integrals,

(
g) dxdy)2 < f (4n - g} dxdy < 64nc+(h)

K

But the loft-hand aide is

(4)(P) - L(F))2

where g(P) is the mean value of g over K.

This is true for any n, hence, if n - co, we obtain

CUM - g(P))2

and this expression tends to 0 with h. But when h tends to 0,

g(P) tends to g(P). Hence u(P) solves the boundary value con-

dition.

We have to show now that u solves the minimum problem.

We consider a subdomain G' in G. We can cover G', except

for an arbitrarily small area e, with non-overlapping circles

Ky of radius pv, the largest radius being less than any preas-

signed value. If f is a function having an upper bound M in G',

fjofdxdynpvf(Py)
+ 6

G'
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where Pv is the center of the circle Kv, and where

Ibl < Er: .

If we take f = ux + u , then

Do,(u) s E npy (u2(Py) + u (Py)) + a
v

But

ux(P lim 1
& dxdy

pv v
nx y

and, by Schwarz's inequality,

juX(Pv) < 1 j do dxdy
:[pv Kv x

Hence

or

DG,(u) < lim D(4n) = d
n--,w

DG(u) = lim DG,(u) < d
0 --?G

But, u being admissible,

D0(u) = d

Finally we shall show that u is harmonic using

D(u,4) = 0 .

We consider the circle of radius a and the circle of radius b

about P, ard for r, we take the following function:

Z= log forb<r<a
Za 0 for r> a

and j'a log for rb
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Then
D(u,Z) = S u ds suds = 0a a b b

where the integrals are taken along the circles of radius a and

b. The last equality shows that u is harmonic.

Thus the second proof of Dirichlet's principle is comple-

ted.

Problems

1. Prove the triangle inequalities in the function space.

2. Prove the Inequality

H(z) < CD(Z) CC > 0) ,

where 4 is assumed to be 0 only on an aro of the boundary.

Numerical Procedures

The Ritz method. In giving an existence proof for a solution

to a variational problem one merely requires the exiotence of

minimizing sequences, with suitable convergence properties. In

practical applications or for purposes of computation there

still remains the problem of actually constructing a minimizing

sequence, and, furthermore, one which converges with a fair de-

gree of rapidity. The method described below was first intro-

duced by W. Ritz, who applied it to problems concerning elastic

plates.
We consider a variational integral I(T) defined over a

function class R of admissible functions. An enumerable se-

quence of functions wl,...,wn,... contained in the class R is

said to be complete if every function I in R can be approximated

by a finite linear combination

Ritz, Walter,"Uber eine noue Methods zur Lbsung gewisser Va-
riationsprobleme der mathematischen Physik "Journal f!!r die
reine and an ewandte Mathematik, Vol. 135 (1900); "Theorie der
ransversa sc w ngurgen a ner quadratischen Platte mit freien

RMndern", Annalen der Physik, Vol. 38 (190C,).
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wri = a1w
1

+ a2w2 ... + anwn

of functions belonging to the sequence (wn with preassinged

accuracy. The approximation can be understood in several senses.

Given any I in R and any e, we want a Wn such that

a) +I() - I(Wn)I < c

b) SS (I - Wn)2 dxdy < e
G

o) 11-Wnl<e

In the following we shall take the approximation in the sense a).

For example, we know from the theory of Fourier series

that the sequence of functions

sin nnx (n = 1,2,...)

forms a complete system for all functions 1(x) which are conti-

nuous,,have a pieoewise continuous derivative, and. vanish at

0 and 1.

Except for the trigonometric functions, the most impor-

tant and most useful complete system is given by the integral

powers of x, or, in two dimensions, xnym. The linear combina-

tions of such functions are polynomials. Weierstrass proved

the following important theorem.

If f(x) is an arbitrary continuous function in a closed

interval, then it may be approximated in this interval to any

desired degree of accuracy by a polynomial Pn(x), provided that

n is taken sufficiently large.

This theorem is valid for higher dimensions as well.

Returning to the given variational integral I(), we sup-

pose, in order that the problem make sense, that the integral

has a greatest lower bound 4. From this follows immediately

the existence of minimizing sequences In such that I( I) -> d.
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The Ritz method 'consists in setting up a minimizing sequence by

means of a series of auxiliary minimum problems.

We consider, for a fixed n, the integral

I(Wn) - I(alwl + ... + anwn) ,

where wi,...,wn are the first n numbers of a complete system

lwnf
for the admissible function class R. The integral then be-

comes a function of the n coefficients a1,...,an varying inde-

pendently. We next consider the problem: to find the set of

coefficients al,...an which makes I(Wn) a minimum. Oince I has

a lower bound and depends continuously on the n parameters

al,...,an, it must attain a minimum; according to the ordinary

theory of maxima and minima, the system of n equations

as I(Wn) = 0
i

serves to determine the particular values ai = of which give the

minimum. We denote the minimizing function by un = clwl + ...

+ anwn. The essence of the Ritz method is then contained in

the following theorem:

The sequence of functions ul,...,un, which are the solu-

tions to the successive minimum problems I(Wn) formed for each

n, are a minimizing sequence to the original variational problem.

First, it is seen that I(un) is a monotonically decreasing

function of n, since we may regard every function Wn-1 admissible

in the (n-l)at minimum problem as an admissible function for the

n-th minimum problem with the additional side condition an = 0.

Therefore

I(un)

Next, the existence of a minimizing sequence 1Ij to the

variational problem implies that, for some sufficiently large k,

I(lk) < d +

Since the system wl,...,wn,... Is complete, there exists a sui-

table function WA a a
1
w
1
+ + anwn such that
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IN n) < I(Ik) +

But, by definition of un,

I(un) < I(Wn)

hence
I(un) < d + e

which establishes the convergence of I(un) to d.

The process of constructing the minimizing sequence
lu1

depends on solving the system of n equations:

$a I(Wn 0
i

The process is considerably sirsplified if the given integral is

quadratic, since in that case we have a system of linear equa-

tions in the a's.

As an example, let us consider the case where on the boun-

dary I = g is a polynomial, the boundary being given by

B(x,y) = 0, We take for functions I the functions

I = g + B(x,y)(a + bx + ey + ...) .

This sequence of functions I is a minimizing sequence, and I(J)

is a function Q(a,b,c,...) of the coefficients a,b,c,..., and

the problem is reduced to finding the minimum of Q with respect

to a,b,o,... .

However, we shall now come to a method by which the func-

tions I are determined directly, without going through polyno-

mials.

Method of Finite Differences

The fundamental idea of this method Is to replace the dif-

ferential equation by a "difference equation" (an equation in-

volving finite differences), thereby reducing the problem to a

simple system of linear algebraic equations in a finite number
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We begin by covering the xy-plane with a quadratic mesh

consisting of ecares of aide h. To do this we draw in the

plane the two sets of parallel lines

x = mh (m = 0,1,2,...)

y = nh (n = 0,1,2,...)

These two families of lines intersect in points which we call

the net, or lattice, points of the mesh.

Now, instead of considering functions of the continuous

variables x and y, we consider functions which are defined only

at the lattice points of the above mesh. That is, the functions

are to be defined solely for the arguments x = mh, y = nh, where

h is some fixed number. In any bounded domain only a finite

number of lattice points will be present and hence each function

will take on only a finite number of values. It is impossible

to speak of the derivatives of such functions. Instead we de-

fine what we call the difference quotients of these discrete

valued functions
Let u(x,y) be a function defined at the lattice points of

the, xy-plane. Then the forward difference quotient of u with

respect to x at a lattice point (x,y) is defined to be

ux(x,y) =
u x+h h- _ujx yj

and the backward difference quotient with respect to x

yx(x,y) a u(x.y) u(x-h,

In general, these two difference quotients are not equal.

In a manner similar to the above we may define the second

difference quotients of a function, i.e., the difference quo-

tients o, the first difference quotients. The forward second

difference quotient is given by

= ux(x+h,y) - X(x,y) = u(x+h3y) - 2u(x.v) + u(x-h,y)

he
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Also

ux(x,y) - ux(x-h,y)
u x+h,y) - 2u(x,y) + u(x-hyu,a(x,y) _

h2

whence

We could, if we wished, consider the second difference quotients

uxx and uXx. However, the use of uxx makes for greater symmetry.

We now replace the Laplace operator Q by the difference

operator, which we denote by 46h, to apply to functions de-

fined only at the lattice points. Thus

Qh u = uxx } U y
or

Qhu 172 (u(x+h,y) + u(x,y+h) + u(x-h,y) + u(x,y-h) - Lu(x,y)].
h

The significance of this operator becomes c lear if we con-

sider a net point P0 and its four neighboring net points Pl. P2,

P3, P4. (Two net points are called neighbors if the distance

between them is h.) Hence

Qhu [u(P1) + u(P2) + u(P3) + u(P4) -Iu(PO)]
h

That is, the value of Qhu at PO is four times the excess of

the arithmetic mean of the four neighboring values over u(P0),

this excess being divided by the area h2 of the mesh.

The equation Au = 0 corresponds to the difference equa-

tion
u(P1) + (P2)+ u(P1) + u(F,

u(P'I _

Hence, in a quadratic net, the Laplace equation states that the

value of u at a lattice point P is the arithmetic mean of the

values of u at the four neighbors of P. We have seen before

that solutions of,&u = 0 possess this remarkable mean value

property, where, in that case, the neighbors of P are the points

of the circumference of a circle about P as a center.
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Boundary value problem in a net. We cover the xy-plane with a

quadratic not. Let G be any bounded domain in the xy-plane with

a piecewise smooth boundary y. The net domain Gh corresponding

to the domain G consists of all the net points which lie in G.

A net point is said to be a boundary point of Gh if not all of

its four neighbors are in G; if all four nc rttboring points are

in G, the point is said to be an interior p,aint of Gh. The

boundary Yh of Gh is defined as the set of all boundary points

of 0h.
To solve, with any specified degree of accuracy, the boun-

dary value problem of the differential equation Au = 0 for the

domain G, we replace the differential equation by the difference

equation Ahu = 0 and the domain G by the corresponding net do-

main Gh. If u = g(x,y) is the boundary function prescribed on

,y, then the boundary values at the points of yh are chosen as

follows. If a net point P of Yh lies on y, then the value of

of g(x,y) at P is taken as the value of u at P; if P does not

lie on y, we take as the value of u at P the value of g(x,y) at
a point of y near to P.

We may now solve the boundary value problem for the net

domain. Let N be the number of interior points of the net do-

main Gh. We may set up for each of the interior points the dif-

ference equation Qhu = 0. In each case this is a linear equa-

tion involving five values of u. Some of these equations con-

tain known quantities, i.e., those for points that are neighbors

of boundary points. The other equations are homogeneous. Alto-

gether we obtain a system of N linear eouations in N unknowns,

i.e., the values of u at the N interior points.

Existence and uniqueness of the solution. First we see that the

maximum and minimum values of u certainly are attained on the

boundary yh of Gh. For, if the maximum were attained at an in-
terior point P, then the value of u at one of the four neigh-

bors, say a, would be at least as large as at P, because of the

mean value property. If the value at Q is larger than that at
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P, we have a contradiction and the statement is proved. If the

two values are equal, by continuing such a process about Q. we

see that u must be constant in Gh, and again the statement is

true. The minimum property is proved similarly.

It follows that the boundary value problems

4u 3 0 in Oh

u - 0 on Yh

has a unique solution

u = 0 in Gh .

For this problem we have a system of N homogenous linear

equations. For the general boundary value problem

Ah u = 0 in Gh

u=g onYh '
we have the same N linear equations with the addition of a con-

stant in some of them, i.e., a non-homogeneous system. From

the theory of systems of linear equations the existence of the

unique solution 0 for the homogeneous system implies the exis-

tence of a unique solution for the non-homogeneous system.

Practical methods. Various practical methods have been devised

to solve quickly the system of N linear equations. When the do-

main has symmetric or special shapes, shortcuts may be found.

When this is impossible general procedures can be used. These

methods consist of processes of repeated manipulations which

may be performed mechanically.

We begin by assuming for u(x,y) at the interior net pointp

of Gh any values whatsoever. It is desirable, however, to make

this "first approximation" (which we denote by ul) in such a way

that the assumed values lie between the maximum and minimum

boundary values. We now consider two procedures.

a) Order the interior net points of Gh in some arbitrary

manner, Pl,P2,...PN. Then replace ul(Pi) (our assumed "first
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approximation" at P1) by the arithmetic mean of the assumed va-

lues ul at the four neighbors of P. Using this value, do the

same for ul(P2). Using the new values at P1 and P2, repeat the

process for uI(P3). Continue this process until the values of

ul at all N of the interior points have been "corrected". We

denote the corrected values by u2(P). They give a "second ap-

proximaticn" to the final solution. Again we start out with P1

and proceed exactly as before, to determine a "third approxima-

tion" u3(P). This process is to be continued as long as notable

differences occur between a value and its replaced value. When

this is no longer the case we consider these values to be a good

approximation to the actual solution of the boundary value pro-

:,lam.
b) Instead of proceeding as previously, where consecutive

replacements were made, we obtain a second approximation imme-

diately by replacing u1(P) by the mean value of the first appro-

ximation u1 at the four neighbors of P. Thus the second appro-

ximation is obtained directly from the first one. In the same

manner we obtain a third approximation u3 directly from u2, and

so on. After a while the values will no longer change noticea-

bly and a satisfactory solution is thus obtained.

A remarkable merit of these two methods is that, in the

long run, they tend to correct any numerical errors which may

have been made during the replacements, for we continue to take

arithmetic means as long as marked changes occur.

Convergence of the difference equation to a differential equa-

tion. If the mesh h of Gh tends to zero, then Gh -a G and

Ytr -> Y, and, furthermore, the difference equation , hu = 0

tends to the differential equation 0 in G. Likewise, the

boundary values along Yh approach the boundary values along y,

and the solution of the boundary value problem of the difference

equation tends to the solution of the corresponding boundary va-

lue problem for the differential equation.*

For a proof see R. Courant, K. Friedrichs and H. Lewy, "Uber
die partietlen Differenzengleiohungen der mathematiachan Physik;
Mathematisohe Annalen, Bd. 100 (1928). See especially pp.1l7-54.
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Method of gradients.* Besides the method of finite differences,

still another alternative to the Ritz procedure should be men-

tioned. This is the method of gradients which goes back to a

paper published by Hadamard in 1908.4* Highly suggestive as is

Hadamardts attempt, difficulties of convergence were encountered.

However, recent developments in the theory of conformal mapping

and in Plateau's problem throw new light on HFrdamard'a idea, so

that it seems justified now to expect from it not only purely

mathematical existence proofs but also a basis for numerical

treatment in suitable cases.
The principle of the method may be understood from the

elementary geometric concept of a vector gradient. Let

u = f(xl,...,xn) be a non-negative function of the n variables

xi, or, as we might say, of the position vector X = (xl,...,xn),

and let us seek to determine a vector X = X0 for which u is at

least stationary. We then proceed as follows: on the surface

u = f(x) we move a point (xi,...xn,u) so that xi(t) and u(t) be-

come functions of a time-parameter t. Then the velocity of as-

cent or descent along the line X = X(t),u = u(t) on the surface

is

n
= u = xi fx grad f.if

7=T

We now choose the line along which the motion proceeds so that

the descent is as steep as possible (lines of steepest descent).

(1) X= - grad f ,

so that

u = - (grad f)2

* On this question see R. Courant, "Variational methods for the
solution of problems of equilibrium and vibrations," Bulletin of
the American Mathematical Society, Vol. 1.9, No. 1, January .

Hadamard, J., Memoire sur is robleme d'anal se relatif e
1'e uilibre dea la ues as uee encastr s, mores presen-
t a par divers savants s rangers cad m e des Sciences de
1'Institute do France (2) Vol. 33, (1908)-
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Hence the position vector X moves according to the system of or-

dinary differential equations (1) along the lines of steepest

descent with respect to the function f. Under very general as-

sumptions, it is clear that X, starting from an arbitrary ini-

tial position, will, for t --a oo, approach a position for which

grad f = 0, and therefore for which f is stationary and possibly

a minimum. However, instead of using the continuous procedure

given by the differential equation (1), we may proceed stepwise,

correcting a set of approximations x to the solutions of the e-

quations grad f 3 0 by corrections proportional to the respect-

ive components of - grad f.

This elementary idea can be generalized to variational

problems. If we wish to determine a function u(x,y) defined in

G and having prescribed boundary values such that u is the solu-

tion of a variational problem

F(x,y,v,vx,vy) dxdy = min.(2) I(v) =
JJ.
G

then we interpret the desired function u as the limit for

t --? w of a function v(x,y,t), whose values may be chosen ar-

bitrarily for t = 0 and for all t thereafter are determined in

such a way that the expression I(v), considered as a function

I(t) of t, decreases as rapidly as possible towards its minimal

value. Of course the boundary values of v(x,y,t) are the same

as those for u(x,y), so that vt must vanish at the boundary.

If we choose v = v(x,y,t), we find

(3) I(t) _ - is vt E(v) dxdy

G

where E(v) is the Euler expression corresponding to (2).

To consider a concrete example, we suppose that

I(v) (v2 + v2) dxdy

G

so that our minimum problem amounts to determining the equili-

brium of a membrane with given boundary deflections g(s). Then
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E(v) = -2av. Incidentally (3) displays an analogy between the

Euler expression and the gradient of a function F(xls...,xn) of
n independent variables. The variation or "velocity" of r(v)

is expressed as an "inner product" of the velocity of the "inde-

pendent function" v with the Euler expression E(v), the gradient

of a functional in function space.

We now assure ourselves of a steady descent or decrease

of I(t) by choosing vt in accordance with the differential equa-

tion

(1}) vt = -k E(v) ,

where k is a positive arbitrary function of x,y. (3) then be-
comes

I(t) - S Sk(L(v))2 dxdy ,

0

and again we can infer that, for t --a- co, v(x,y,t) will tend to

the solution u(x,y) of the corresponding boundary value problem

E(u) = 0.
For the case of the membrane the differential equation (4)

becomes

(5)

the equation of heat transfer. In our interpretation this equa-

tion describes a rapid approach to a stationary state along the

"lines of steepest descent". While for the equations (4) and

(5) the convergence of v for t --a- w can be proved, serious dif-

ficulty arises if we want to replace our continuous process by

a process of stepwise corrections as would be required for nume-

rical applications. 1ach step means a correction proportional

to Av, thus introducing higher and higher derivatives of the

initial function v. Another great difficulty is presented by

rigid boundary values.

Yet there do exist classes of problems where such diffi-

culties cai be overcome if the method is extended properly.

First of all we may observe that it is not necessary to select
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the steepest descent along the gradient; it suffices to secure a

safe descent at a suitably fast rate. Furthermore, if we consi-

der problems for which the boundary value problem of the diffe-

rential equations presents no difficulty for the domain G, but

for which a degree of freedom in the boundary values is left,

then the problem reduces to one for finding those boundary va-

lues, and now all our difficulties disappear.

Application of the calculus of variations

to the eigenvalue

Extremum properties of eigenvaluea. Let ul,...,un be the com-

ponents of a vector u, and

n
Q(u,u) - Q(u) aikuiuk

k=1

be a symmetric quadratrio form, with

aik = ski

The so-called "mixed form" is

Q(u,w) = ikuiw k
k=1

Let us write n
H(u,u) - H(u) = ui

the orthogonality condition for two vectors u and w is:

H(u,w) = 0 .

In the theory of quadratic forms it is proved that by an

orthogonal transformation the vector u can be transformed into

a vector v such that the form Q(u) is transformed into r i,

with H(u) being transformed into vi. The Ai are called

ei ea nvalues or characteristic values.
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These numbers can be considered as the solutions of a se-

quence of minimum problems.

The first problem is to make Q(u) a minimum, with the sub-

sidiary condition H(u) = 1. The minimum, A1, will be attained

for a certain vector u, namely e1, and Q(e1) = al, H(e1) = 1.

The second minimum problem will be to make Q(u) a minimum,

with the two subsidiary conditions H(u) = 1, H(u,e1) = 0. The

minimum, A2, will be attained for a certain vector u, namely e2

and H(el, e2) = 0, Q(el,e2) = 0, Q(e2) = a2
The k-th minimum problem will be to make Q(u) a minimum,

with the k subsidiary conditions H(u) = 1, H(u,e1) = 0,...,

H(u,ek-1) = 0. The minimum, A k, will be attained for a certain

vector u, namely ek, and H(ei, ek) = 8ik' @(ei,ek)
= k6ik'where 81k= 1 if i=kand=0 if i/k.

We can obtain similar results for quadratic funotionals.

We consider a self-adjoint partial differential equation of the

second order

(1) L(u) + apu - (pux)x + (puy)y - qu + apu = 0 , (p > 0, p > 0)

where u is a function of two independent variables, x and y, de-

fined over a domain G, of which the boundary, r, is a conti-

nuous curve with a piecewise continuous tangent. The boundary

condition is u = 0 or, more generally, du/an + cu = 0, where ar

is a piecewise continuous function of the arc length on r and

a/an denotes differentiation along the normal to F. For the

variational problems equivalent to these eigenvalue problems the

following quadratic funetionals are to be considered:

E(j) - D(!) + po t ds ,

s;rj

D( ) P{rx + ) dxdy + , qq2 dxdy

H(j) SS p dxdy
G
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and the corresponding "mixed" forms

E(I,#) = D(I,*) 4 p 1V' de

D(,*) - if p(xx*. + Jy*y) dxdy + SJ gjir duly
G

``((
JJ' pji dxdy

G

For these expressions we have the relational

E(I + E(J) + 2E(I,*) + E(*)

H(j + qs) = H(J) + 2H(I,*) + H(p)

A function is admissible if continuous in G + r and

possessing pieoewise continuous first derivatives.

We can obtain the eigenvalues XY and the corresponding

digenrunctions u of the differential equation (1) through the

i'ollowing minimum properties:

Among all admissible functions the function for

which the expression E() is a minimum with the sub-

sidiary condition H() = 1, is an eigenfunction ul

of the differential equation (1) with the natural

boundary aondition a Pin + o-. = 0. The minimum

value of E(J) is the corresponding eigenvalue. If,

to the condition !i(1) = 1, we add the new subsi-

diary condition H(I,ul) = 0, then the solution of

this new minimum problem is an eigenfunction u2

of (1) with the same boundary condition, and the

minimum value E(u2) _ ).
2

is the corresponding ei-

genvalue. Generally the variational problem

E(1) = minimum, with the subsidiary conditions

H(!) = 1 and H(j,ui) = 0 (1 = 1,2,...k-1) has a

solution uk which is an eigenfunotiOn of (1) with

the boundary condition all/On + o-t - 0, and the mi-
nimum value E(uk) is the corresponding eigenvalue 7n.
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Instead of making E(!) a minimum with the condition

H(!) = 1, we can abandon this condition and make the quotient

E(j)/'H(j) a minimum; the solution is then Riven with an arbitra-

ry factor of proportionality.

We shall assume here that the minimum problems have a so-

lution, and show that their solutions are the eigenfunctions of

partial differential ecuation (1).

We consider the solution ul of the first variational pro-

blem, H(ul) n 1. Let r, be an admissible function and a an arbi-

trary constant, then ul + eZ is also an admissible function, and

E(ul + CZ) > A1H(u1 + Cr.)

or

2e(E(ul,Z) - )1H(u1, )) + e2(E(Z) - N1H(Z)) > 0

for every e, which implies

E(ul.Z) - A1H(ul,4) = 0

Because of Green's formula

lS L(ul) dxdy + p ZuI ds
G r

and, as the function t is arbitrary, we obtain the equation (1)

for u = ul and X = A1.
In the second minimum problem, let I be an admissible

function; then Z a I + tu1 is an admissible function, and we de-

termine t so that H(Z,ul) = 0; we obtain t = -H(ul,q). Substi-

tuting in

E(u2.Z) - ).2H(u2,Z) 0

we obtain

Vu '17) -.A2H(u2,1), + t(E(ul,u2) - X2H(u1.u2)3 = 0

The last term to 0, and we get

E(u211) - A2H(u2, p) = 0
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which is the same equation as in the first case. Hence u2 is an

eigenfunotion of (1) and A2 the corresponding eigenvalue.

In the same way, it is seen in the general case that the
equation

E(ui,J) - AIH(ui,I) = 0

holds,I being an arbitrary admissible function. For the normal

solutions of the successive minimum problems we have the rela-

tions

E(ui) = Ai

H(ui) = 1

E(ui,uk) = 0

H(ui,uk) s 0

The eigenvaluee satisfy the Inequality

An-1 An ,

for in the n-th minimum problem the domain of the functions

admitted to competition is not larger than in the (n-l)th pro-

blem. Hence the minimum An is not smaller than the minimum

An-1'

We shall simply mention here that other eigenvalue pro-

blems can be treated with the help of the calculus of variations.

The integral may be simple or multiple, and the differential

equations may be of the second order or higher.

The maximum-minimum property of the eigenvalues. We can replace

the recurrence definition of the n-th eigenvalue and the corres-

ponding eigenfunction by a definition in which the n-th eigen-

value and the n-th eigenfunction are determined without knowing

the preceding ones.

We consider the same variational problems as before, but

we replace the conditions H(j,ui) = 0 (1 = 1,2,...n-1) by the

n-l new conditions H(l,vi) = 0 (1 = l,2,...,n-l), where vl,v2,.

..vn-1 are any functions piecewise continuous in 0. It is not

decided whether the new problem has a solution. However, the

expressions D(1) and fi() have a lower bound, which depends on

the functions vl,v ,.vn-1 and which we shall call
d(vl,v2,...vn-1). 166



Given n-1 functions v1v2,...vn-1 piecewise continuous in

G, and d(v1,v ,...vn-1) being the minimum or the lower bound of

all the values that the expression E(j)/H(j) can take,-when I is

any adm!ssible function which satisfies the conditions

H(J,vi) = 0 (1 = 1,2,...,n-1), then An is equal to the greatest

value that d(v1,v2,...,vn-1) can take when all sets of admissi

ble functions are taken for v1,v`'...vn-1 This maximum-minimum

is attained for u = un and v1 = u1, v2 = u2,...,vn-1 = un-1e

To prove this statement, we remark first that for vi = ui

(1 < i < n-1), by definition, d(v1,v2,..,vn-1) = A. Then, we

shall show that for arbitrarily chosen vl,..,vn-l

d(v1,v2,...vn-1) < An. We simply have to show that there is one

function 1, satisfying the conditions H(!,vi) = 0 (i=1,2,...n-lj

for which E(P)1 An and H()= 1. We consider a linear combina-

n
tion of the first n eigenvalues, _ ci ui. The n-1 rela-

tions H(l,vi) = 0 give n-l linear homogeneous equations for de-

termining the n constants o1,029...,on;.they can always be

solved. The condition H( V 0i e 1 gives the factor of

proportionality. Now =

but

and

Hence

n
E{ ° oiokE(ui,uk) r

E(ui,uk) = 0 (1 1 k)

E(u = Ai

n
because of ci s 1 and An > Ai (i a l,..,,n),

E(j) < kn.
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Hence the minimum d(vl,..,vn-l) is not greater than Xn, and X'ZI

is the greatest value that the minimum can take.

The maximum-minimum property of eigenvalues is extremely

useful in many physical problems. It leads immediately to two

principles which we shall simply state here:

1. By strengthening the conditions in a minimum problem,

the value of the minimum is not decreased, and conversely by

weakening the conditions the minimum decreases or does not in-

crease.

2. Consider two minimum problems for the same domain of

admissible functions 1. If, for each function 1, the expression

to be minimized is not smaller in the first problem than in the

second, then the minimum in the first problem is not smaller

than in the second.

Physically, the first principle can be stated:

When a vibratory system is forced to vibrate under certain

imposed conditions, then the fundamental frequency and each har-

monic can only increase. Conversely, when the conditions under

which the system vibrates are weakened, the fundamental frequen-

cy and each harmonic can only decrease.

For further discussion of the extremum properties of ei-

genvalues we refer to Courant, R., and Hilbert, D., Methoden

der Mathematisohen Physik, vol. 1, chapter VI.
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Supplementary Notes and Exercises

1. References.

Two of the earlier works treating the Caloulus of

Variations are as follows:

Moigno-Lindel8f, Caloul des Variations (1661)

Jordan, Cours d'Analyse, Vol. III (1887)

Some later works on the Calculus of Variations, which

reflect the very important influence of the lectures of

Weleratrass, are as follows:

Kneser, Lehrbuch der Variati ngrechnung (1900)

Bolza, Lectures on the Calculus of Variations (1904)

Bolza, Vorlesungen Uber Variationsrechnung (1909)

Hadamard, Lecons sur le calcul des variations (1910)

Tonelli, Fondamenti di calcolo delle variazioni (1921)

Goursat, Cours d'Analyse mathematique, Vol. III (1923)

Bliss, Calculus of Variations (1925)

Courant-Hilbert, Methoden der mathematischen Phyaik, Vol. I (1931)
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2. Notes on the Brachistochrone problem.

Exercise: Imagine a vertical plane with two given points A and

B. Find the time required for a mass point to slide without

friction under the influence of gravity from A to B along each

of the following curves:

a) a straight line segment

b) a circular are starting vertically

c) a vertical straight line segment followed by another

straight line segment, as follows:

A

Johann Bernoulli solved the Brachistochrone problem by di-

viding the plane into horizontal strips of width wand assuming

the speed of the particle to be constant in each strip. He then

applied Snell's Law of fleftaption (as explained in the notes on

pp. 2-3), passed to the limit as w - 0, and concluded that the

required curve is characterized by the property

sin a = constant
f

where a is the angle between the tangent to the curve and the

vertical. It can easily be seen that this condition is equiva-

lent to

where It is a constant.
Exercise: Evaluate the above integral and identify the curve.

A critical evaluation of Johann Bernoulli's procedure from

the point of view of modern rigor reveals two serious gaps in

the reasoning. Conclusions should follow from assumptions by

logical reasoning. However, two very important points in
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Bernoulli's argument were not logically justified. One of these

points will become apparent upon examining Bernoulli's reasoning

in the following way: The solution S to a problem P was being

sought. In order to solve P, problems P. (corresponding to di-

viding the plane into strips of width(v) were considered, and

their solutions Su, were found. The problems P., were chosen so

that they resemble P with the P,, resembling P more and more

closely as to is chosen smaller and smaller. It was then assumed

without logical justification that the 8,,,resemble S more and

more closely as w is chosen smaller and smaller. In other words,

it was assumed without foundation that

as

Suj --ft S

Pu -- P

Although this procedure gave t4e correct result when applied to

the Brachistochrone problem, the same procedure may very well

give incorrect results for other problems.

The second gap in Bernoulli's reasoning was his tacit as-

sumption of the existence of a solution to the problem. Since

the problem sounded reasonable, he did not doubt for a moment

the existence of a solution. However, as is well known today,

even problems which sound very reasonable may not have solutions.

Bernoulli's procedure merely indicated that if there is a solu-

tion to the minimum problem, then it must be the solution which

he found, the cycloid. And, as pointed out above, even this was

not shown in a logical way. Thus, Bernoulli's procedure, al-

though highly significant for its historical interest, actually

proved nothing at all.

3. The road of quickest ascent to the top of a mountain.

Consider the problem of how to build a road up to the top

of a mountain in such a way as to minimize the length of time

it takes to get to the top for a oar whose speed is a given

function of the angle of inclination. We assume that the moun-

171



tain is symmetric about the

vertical axis through its apex, 12

which we take to be the z-axis.

If r represents the distance

from this axis, the equation

of the surface of the moun-

tain may be written as z = g(r).

The surface may be differen-

tiable at the apex, in which

case gr(0) = 0 (as in the

diagram), but this need not be Dingr : Tho curve z = g(r).

assumed; it may instead behave conically there.

A road on the mountain is represented by a curve, starting

say at a distance R from the z-axis and ending at the apex. Let

t be time, a the angle of inclination of the curve (the road)

to the horizontal, da an element of arelength along the curve,

and the dr and dz the corresponding elements of length along the

radial and vertical axes respectively. Clearly

gr(r)dr = dz = sin a de

is the projection of do on the a-axis. If the prescribed speed

v is giver, by f(a), then
g

r
(r)

a = f(a) dt =T " a sin a dr and

ST
O gr(r) 'R -gr(r)

R
f(a) s 1n a dr = 0 f(a) sin a dr

is the length of time required for the ascent.

Taking gr(r) < 0 .(except perhaps at r = 0) to insure that

the ground is always rising as the apex is approached, it is

clear that; T will be minimized if a is chosen always so as to

maximize f(a) sin a. Assuming, as is reasonable for the inter-

pretation of the problem, that f(O) - vo, f(I) = 0, and f(a) is

monotonic it follows that f(a) sin a will have a positive
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maximum for some a a, which we assume unique, satisfying

Q < a <
.2

it. However it is necessary to notice here that at the

distance r from the t-axis a is subject to the condition

a < arotan (-gr(r)), since the angle of inclination of the road

cannot exceed the maximal angle of inclination of the ground.

Assuming for simplicity that f(a) sin a is monotonic for

0 < a < a, the maximum value of f(a) sin a occurs for

a = min J 'E, - arctan gr(r) ) .

It remains to be shown that there exists a curve on the

surface with this prescribed angle of inclination. At each

point of the horizontal plane z = 0 consider the direction or

directions which are the vertical projections of directions in

the surface with angle of inclination as prescribed. There will

be one or two of them according to whether arctan gr(r) is

equal to or greater than the prescribed angle. In the first

case the direction will be

toward the z-axis, i.e. ra-

dial; in the second case the

two directions will form an

angle bisected by the radial

direction. If in the second

case we always choosd the

counter-clockwise direction,

say, then we have a unique

direction at each point (ex-

cluding r = 0), and this di-

rection field will be conti-

nuous if gr(r) is. An Inte-

gral curve of this direction

field, starting from the ini-

tial point at distanae R Diagram: Di.rectiuns in the
P , plane a = 0.

will reach the center with finite arclength if gr(r) is bounded.

Then the curve an the surface, of which this integral curve is

the vertical projection, will have the prescribed angle of
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inclination at each point, (will have finite arclength,) and

will obviously require the shortest time for ascent, since for

each value of r it minimizes the integrand of T.

The solution may, in short, be described as a curve which

has the fixed angle of inclination a (the value of a which ma-

ximizes f(a) sin a) wherever possible, and elsewhere is directed

toward the z-axis. If the surfsoa is differentiable at the apex,

this latter phenomenon (case 1) must occur in the neighborhood

of it. If it does not occur, i.e. If the curve has always the

angle of inclination a, then

T. ELOL-_621
f(a) sin a

In any case it Is obvious that the solution is unique except for

the choice (which may occur more than once) as to which way to

spiral around the mountain, clockwise or counter-clockwise,

since for any other curve the integrand in T will be larger for

some value of r (and therefore in a neighborhood) and no smaller

anywhere also.

4. The shortest connection between two points in a closed

simply-connected region.

An interesting problem is to find the shortest possible

path along which, to walk from one point to another on a winding

street bounded by well-behaved curves (where it is permissible

to walk along the boundary curves). This problem may be formu-

lated In the following way: Describe a method for finding the

shortest connection between a point A and a point B In a closed

simply-connected region bounded by a snooth curve (i.e., a con-

tinuous curve with a continuously turning tangent).

The solution to the problem can be visualized by imagining

a string attached to the point A, pulled taut, and attached to

the point B. It is intuitively clear that the string would fol-

low a path such as indicated in Figure 1, but it would be desi-

rable to describe a mathematical method for finding this path.
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Figure 1. An indication of the shortest path from
A to B furniahod by a string.

It will be assumed here that there is a solution to the

problem; i.e., that a shortest oonnect:on really exists. Lot

this solution be the curve C.

It is immediately apparent that any (connected) portion of

C consisting of interior points of the region must be a straight

line segment. For, if an interior are of C wore not a straight

line segment, a point P on this are could be selected for which

an c-neighborhood lies in the region. Then a point P* on the

arc with its distance from P less than a could also be selected,

and the chord PP* could replace the portion of C between P and

P*. This replacement would shorten the connection between A and

B, in contradiction to the assumption that C provides the short-

est connection. Thus, it follows that C consists only of

straight line segments in the interior of the region and area of

the boundary curve.

Moreover, it can be seen that the interior straight line

segments can meet the boundary only along tangent lines to the

boundary. In order to show this, let a portion of C consisting

of an interior straight line segment be denoted by C1# and let

an adjacent portion of C consisting of an arc of the boundary
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be denoted by Cb. Then, let a be the "interior angle"
*

between

CI and Cb at the point where they

Figuro 2. The interior anglo between Ci and Cb.

meet. It follows immediately that

(1)

for otherwise C could be shortened by drawing a straight line

segment between a point on Ci and a point on Cb, both points

being chosen sufficiently close to the vertex so that the

straight line segment should lie entirely within the region.

From the assumption that the boundary curve is smooth and, there-

fore, cannot have corners, it follows that

(2)

Clearly there are two angles a and p between Ci and Cb where

a + a = 27[. One of the angles has the property that there are
points within it exterior to the region arbitrarily close to the
vertex. The other angle has the property that all points with-
in it sufficiently close to the vertex are interior points of
the region. Let the lRtter angle be called the interior angle
between Ci and Cb. (See Figure 2.)
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Then, from (1) and (2), it follows that a = it, which means that

01 meets the boundary along a tsngent line. Thus, it has been,

established that C can consist only of arcs of the boundary

curve and interior straight line segments which at both endpoints

terminate as tangents to the boundary (or terminate in A or B).

The solution to the problem is now close at hand. For,

all that has to be done is consider the totality of straight

line segments with the property specified above for their end-

points. Since the boundary curve was assumed to be smooth, it

follows that the totality of all such straight line segments

constitutes a finite number. As a consequence, it is possible

to connect A with B in only a finite number of ways by paths

consisting of such straight line segments and arcs of the boun-

dary curve. Thus, the minimum problem has been reduced to se-

lecting the shortest path from a finite number. This consti-

tutes a solution to the problem. each possible path can be gi-

ven a name and listed on a piece of paper. The length of each

path can be written next to the name of the path. Then, it is

a trivial matter to go down the list and select the shortest

path. In fact, any maximum or minimum problem is completely

solved when it Is reduced to a selection from a finite number of

objects .
In the event that the boundary curve is continuous but

only piecewise smooth, the problem can be solved in the same

way with the exception that supporting lines at the corners have

to be considered In addition to the tangents. This situation

is illustrated at the point 3 in FIFure 3-
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Figure 3. A region bounded by a piecowise smooth
curve with the shortost Math contnining suupnorting
lines to the boundary at the point S.

5. The shortest connection in a plane between two points.

It is well known that the straight line segment is the

shortest plane curve connecting two points. This intuitively

evident property of the straight line can be proved in a very

simple way.

Specifically, it will now be proved that the straight line

between two points is shorter than the connection provided by

any other curve capable of being represented parametrically by

x = f(t)

y = g(t)

for as t < ji, where f and g are continuously differentiable

functions of to

The definition of the length L of such a curve will be ta-

ken as

L = j+ y dt
a

(whore
x

and q represent ati and q1 respectively). It can easily

be verified that length defined in this way Is invariant under

translations and rotations; and, therefore, the proof can be

simplified by placing the two points in question at (0,0) and
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(a,0), where a is the length of the straight line segment join-

ing the two points.

Then, since

it follows that

/7x2-+-i'72

1( , p a
IA x + y' dt > i dt w I dx = a
a I'm 0

or

L > a .

Moreover, since y vanishes identically only for the straight

line, it follows that

L > a

for all curves other than the straight line which are capable of

being represented parametrically as specified above. Thus, the

length of any such curve is greater than the length of the

straight line segment.

An alternate proof can be given with the advantage that it

does not assume the proof of the invariance of length under

translations and rotat+.ons. For this proof, let the two points

in question be (x0,70) and (x1,71). Then, the following inequa-

lity is to be established.

{xl-x0j t (Y- l < t x+ y dt

This follows directly from the following application of Schwarz's

inequality:

(3) (x1-xo)x + (yi-yo)7 < (xl-xo
(yl-yyo

x t y .

This inequality, upon integration, implies:
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(4) 1(xi_xo)+(yi_o);jdt'[ < (x x ) + (y y) J: 2+ y dt- 1' 0 1' o a

However, the integral on the left can be simplified as follows:

[(xl-xo)a + (yl-yo)y]dt =
{'

1

xl
(xl-xo)dx + J

yl
(yl-yo)dy

Spa xo yo

=
(xl-x0)2 + (yl-yo)

This simplification together with (4) implies:

(xl-xo) + (yl-yo) 2
< (xl-xo) + (yl-yo) 10 x + y dt

or, dividing by (xl-o) + (yl0)

a

((yl-yo la X72 + y dt
a

The uniqueness of the solution can be shown from this proof
by noting when the equality holds in Schwarz's inequality. The

equality sign holds in (3) only if

x :y= (x1 -x0) : (yl - yo)

that is, only if the ratio of x toy is constant. Since this

property is enjoyed only by the straight line, it follows that

the straight line is the unique minimizing curve.

6. Problems for which no solutions exist.

In Section 2, when critically evaluating Johann Bernoulli's

method for solving the brachistochrone problem, it was mentioned

that entirely reasonable-sounding maximum or minimum problems

may possess no solutions. By way of illustration, several pro-

blems of this nature will now be discussed.

An example of a very simple problem without a solution is

the followings It is required to find the shortest plane curve
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connecting two points A and B, where the further restriction is

imposed that all curves admitted to the competition must be per

pondicular at A to straight line AB. Let the length of the

straight line segment joining A and 5 be denoted by d. The

straight line segment itself, of course, does not satisfy the

perpendicularity requirement. Thus the length of every curve

which does satisfy this requirement must be greater than d.

Consequently, if there were such a curve of minimum length, its

length would be some number, say dmin' greater than d. However,

it is clear that it is possible to find curves satisfying the

requirement with lengths arbitrarily close to

d, In particular, such a curve can be found with its length

equal to some number d
0

where dmin > d
0

> d. This obviously

constitutes a contradiction since dmin was supposed to represent

the length of the shortest curve satisfying the perpendicularity

requirement. Thus, the minimum problem cannot have a solution.

In other words, the greatest lower bound of the lengths

of all curves admitted to the competition is d. Yet, the only

curve of length d Joining A and B is the straight line, which

is not admissible as a solution to the problem. As a conse-

quence, there is no admissible curve of minimum length.

An example will now be given of a two-dimensional problem

having a solution, which, when generalized to three dimensions

in a very natural and reasonable way, no longer has a solution.

The two-dimensional problem is to find the shortest con-

nection in a plane between two points A and B where the connect-

ing curve is required to pass through a point C which is not on

straight line AB. The solution obviously consists of straight

line segments AC and CB.

A corresponding problem in three dimensions would be to

find the surface of least area spanning a circle (or some other

non-self-intersecting closed plane curve) where it is required

that the surface pass through a point P not in the plane of the

circle. Clearly, the area of any such surface is greater than

the area of the disk spanning the circle. On the other hand,
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the area of the circular disk will now be shown to be the great-

est lower bound of the areas of all surfaces passing through P

and spanning the circle.

In order to see that the area of the disk is the greatest

lower bound, consider surfaces obtained in the following way.

Make a hole in the disk by

removing a small circular ,P

area from its interior. Then

consider the cone determined

by the point P and the boun-

dary of this small circular

area. The surface consisting

of the disk with the hole and

the lateral surface of the

cone is than admissible for

the problem. (See Figure IL.)

Moreover, by choosing the

hole small enough, the area

of this surface can evidently

be made as close as desired

to the area of the disk.'

Figure 4. The adriii:,;aiblo
surface with area close
to that of the disk.

Thus, the greatest lower bound of all areas of admissible

surfaces is not the area of any admissible surface, but is ra-

ther the area of the circular disk, which, of course, does not
*
That the surface areas can be made arbitrarily close to the

area of the disk can be seen very easily by considering a spe-
cial case with no essential loss of generality. Let the disk be
bounded by a unit circle, let the point P be such that the foot
of the perpendicular from it to the disk is an interior point of
the disk, and let the distance from P to the disk be unity.
Then, make the circular hole in the disk with the center at the
foot of the perpendicular from P and with radius equal to e.

The area of the disk with the hole is then A(1-E2), and the lat-

eral area of the cone is we/1_+_C1- The area of the admissible

surface is then 1(l-e2+ l+E ). This area can certainly be made
arbitrarily close to it by choosing e adffioiently small.
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pass through P. Yet, the greatest lower bound would have to be

the area of the admissible surface of least area if there were

such a surface. Therefore, there can be no admissible surface

of minimum area.

Another minimum problem without a solution is the follow-

ing: Find the function u = u(x) which minimizes the integral

x2u'2 dx

where u is required to be continuous with a piecewise continuous

first derivative and is required to satisfy the conditions

u(l) = 1 and u(-l) = -1. If there were a minimizing function,

the value of the integral for this function would have to be

positive since the integral is never negative and is different

from zero unless u' v 0 (except possible for isolated values of

x). But u' B 0 together with the requirement that u be conti-

nuous implies that u is constant. Clearly this is incompatible

with the conditions u(l) = 1 and u(-l) _ -1, and the value of

the integral for a minimizing function would have to be positive

as stated above. On the other hand, the greatest lower bound of

values of the integral for admissible functions*can be aeon to

be zero by considering the following one-parameter family of ad-

missible functions (See Figure 5):

-1 for -1 < x < -e

ue(x) = e
for -e < x < e

1 for E <x_1

The value of the integral is then:

c 2 1 2c

J-E

x
E
-2 _ T

Thus, the integral can be made arbitrarily close to zero for an

admissible function by choosing a sufficiently small, and the

minimum value of the integral could not be greater than zero;

i.e., a minimizing function does not exist.
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u

elope e

x

Figure 5. The functions ue(x)
1for which / x2u'2dx'.. 04

-1
A maximum and minimum problem which leads to a very inter-

esting situation is the following: Find a maximizing function

and also a minimizing function for the integral

1
1 2,dx

JO l+u'

where u is required to be continuous with a piecewise continuous

first derivative and is required to satisfy the conditions

u(O) = 0 and u(l) = 1. Since the integrand is always greater

than zero and never exceeds unity, and the interval of integra-

tion is of unit length, it follows that the value of the Inte-

gral for admissible functions cannot even equal unity since this

value could only occur for u' a 0. It will now be shown that

the greatest lower bound is zero and the least upper bound is

unity for the values of the integral for admissible functions.

This, of course, would imply that neither a maximizing function

nor a minimizing function exists.

A one-parameter family of admissible functions for which

the integral assumes values arbitrarily close to zero is the

following (See Figure 6):
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x for 0x<1+
u(x) ' x 1 + e

a for +a<x_
For these functions the integral becomes

l 1 2
1+e0 a +1

Similarly, a one-parameter family of admissible functions

u

slope e

slope -I
e

3x

Figure 6. The functions uu(x)

1for which f 1 7 dx ~ 0.
0 1 + u,

for which the integral assumes values arbitrarily close to

unity is the following (See Figure 7):

for 0<x<e
a

2
1 for a <x<i

For these functions, the integral becomes

1e Z -dx+ lldXa 3--+ 1 - a
201+- due a + 1

e
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U

slope i

x

Figure 7. The functions
uC

1

for which f dx -. 1
0 1 + u

However, the interesting feature of this maximum and min-

imum problem is not the more non-existence of a solution. A

much more striking property can be demonstrated for the integral

in question. It can easily be seen that any admissible function

can be approximated to any prescribed degree of accuracy by ad-

inissible functions for which the integral is arbitrarily close

to zero and also by admissible functions for which the integral

is arbitrarily close to unity. The approximating functions for

which the integral is close to zero consist of polygonal paths

made up of straight line segments of elope and - i. (bee

Figure 8.)

Au

.Nx

Figure 8. The approximating functions
for which the integral is close to zero.
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For thes,3 functions, the integral has exactly the same value as

for the ul(x) since the integrand depends only on u'2 and is

therefore constant. In the same manner, the approximating func-

tions for which the integral is close to unity consist of poly-

gonal paths made up of straight line segments of slope ± and

zero. (3ee Figure 9.) For these functions, the integral has

(1,1)

Figure q. The approximnting functions
for which the intogral is close to unity.

evidently the same value as for the u2(x) if the given admissi-

ble function is monotonic, since the integrand is piecewise con-

stant and the total length of interval for which u' equals is

the same in both cases

Thus, the rather surprising fact appears that it is possi-

ble to have a sequence of admissible functions converging to an

admissible limit function with the values of the integral con-

verging to the least upper bound or greatest lower bound of all

possible values, and yet have the value of the integral for the

limit function itself different from the least upper bound or

The result holds even if the given admissible function is not
monotonic, but the construction is then slightly more
complicated.
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greatest lower bound. In fact, in this problem, such a sequence

can be found to converge to any admissible function.

7. Semi-continuity.

Let us examine the familiar proof of Weierstrass' theorem

that every continuous function F(ul,...,un) = F(P) in a bounded

closed domain D of n-dimensional space possesses a minimum (and

a maximum) in D. From the nature of F and D we know that the

set of values of F(P) for P in D must be bounded, and hence have

a greatest lower bound d. Then there is a sequence Pn of points

of D such that F(Pn) -s d. Because D is bounded we can select a

convergent subsequence Pn of the sequence Pn, and P = lim Pn is

in D because D is closed. Then

F(F) = F(lim Pn) = lim F(Pn) = d

since F is continuous, and so F actually achieves the minimum d

fol the point P in D.

In this proof we have not made essential use of the full

strength of the continuity of F(P). For if we knew merely that

F(lim Pn) < lim F(Pn), we would obtain by the same argument that

F(P) < d, which together with the fact that F(7') > d (since

d = g.l.b. F(P) and P is in D) would again give that F(P) = d.

Hence if we define a lower semi-continuous function F(P) to be

one such that

F(lim Pn) < lint F(Pn)

for every convergent sequence Pn, we may state the following im-

proved form of Weierstrass' theorem: Every lower semi-continuous

function F(p) in a bounded closed domain D possesses a minimum

in D. If we define upper semi-continuity analogously, it can

easily be seen that a function is continuous if and only if it

is both upper and lower semi-continuous.

We may define semi-continuity also for functionals; F{u}

is lower semi-continuous if, for every sequence un(x) of admis-

sible functions which converges uniformly to an admissible

function,
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F {lim un) < iim F Jun) .

One of the reasons for the importance of this concept in the Cal-

culus of Variations is that very few funotionals that occur in

applications are continuous, whereas many of them are semi-

continuous.

A few examples follow. The functional
xl

G{u) a I F(u(x))dx, where F is a continuous function, is con-
xo

tinuous, since if un(x) converges uniformly to u(x), then

Gtuni --> G{ul. The length L{C} of a curve C is a lower semi-
continuous functional but not an upper semi-continuous one,

since if the curves 0n approximate (converge to) C then their

lengths L {Cn must at least be approximately L[C] but may be

much larger if the curves oscillate enough). The functional

I(u1 = 1 dx is neither upper nor lower semi-continuous,fo I + u'
as the previous discussion of it shows.

8. Generalization of the Fundamental Lemma.

Suppose that f(x) is a pieoewise continuous function for

a < x _< b and that

r.

[k] (x)r(x)dx 0
Sb

for every function Y,(x) such that
(k-1)

vanish at a

and b and are continuous and r,
(k] is piecewise continuous. It

can then be proved that f(x) must be a polynomial of degree at

most k-1. In the special case k=1 this is just the statement of

the Fundamental Lemma. The proof for the general case is analo-

gous to the proof for k=1j to illustrate we, shall carry it out

for k=2.

If p and q are constants, we have for any permissible ?(x),

integrating by parts,
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b
"(x)Ipx + ggdx = qj)s - k(x)P]b = 0 ,a 1

since Z and Z+ vanish at a and b. Therefore

pb
1e(x) ff(x) - Px - q1 dx = 0

y a

We now try to determine p and q such that f(x) - px - q is the

second derivative of a permissible function r.(x). Suppose that
this were the case! Y,"(x) a f(x) - px - q. Then sine
(a) = '(a) = 0,

(x) _ Ix ff(C) - pE - q} dt a Ix f(9)df - ,(x2-a2) - q(x-a)
a a

fi(x) =
Xj%

f ( )dFdj - [x
3-a 2

- a2q[x ?s
a

- a(x-a))

The requirement 4(b) _ 4'(b) - 0 provides for the determination

of p and q the two simultaneous equations

b-a (b+a

a

_[b-s)2(b+2a P +
2r-

b
q = Iss

a
f(C)d4d4

The determinant of the coefficients of p and q is given by

b-a (b+a b-a 2- (b-a) b-a 2 b+2a y b-a 0

hence there exist constants p and q with the prescribed proper-

ties. Finally, the above constructed funotton 4(x) is permis-

sible since Z" equals (x) - px q and is consequently piece-

visa continuous. Therefore

0=Jbr."(x){f(x).-px-q dx=Sb
I as I

whence f(x) a px + q, which is the desired conclusion for k=2.
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9. Derivation of Euler's equation by special variltions.

We wish to prove, by special choice of the function r.(x),

that if

b 1

{Z(x)Fu(x) + '(x)FF,(x)} dx = 0
8

for all continuous functions 4(x) which vanish at a and b and

have piecewise continuous first derivatives, then

Fu(x) - a- Fu,(x) = 0.

We illustrate the method by choosing

((x-a)(g-x) , for a < x < F. ,

Z(x) = l! 0 , for t < x < b ,

where E, is arbitrary between a and b. Then

0 = J: {(x_a) .xjF(x) + {(C-x) - (x-a))Fu,(x)I dx .

a

Differentiation with respect to 4 gives

0 + It [(x-a)Fu(x) + FF,(x)} dx
a

Clearly Fu,(f;) must be differentiable at least for a, hence

we obtain

0 = -Fu,(E) - (E-a) Fu,() + Q-a)Fu() + Fu,( )

= (-a)[Fu{E} - d Fu,())

Dividing by (E-a) and then replacing the arbitrary & by x, we

have the desired result. In a similar way Euler's equation can

be derived by choosing other specific one-parameter families of

functions fi(x).

10. Characterization of the loner great circle are.

We know that if A and B are two points on a sphere, not

diametrically opposed, then the shorter great circle are between
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them is the unique solution to the problem of finding the curve

of shortest length joining them on the sphere. We wish to cha-

racterize the longer great circle arc between them in a similar

way, in this case as the solution of a minimax problem.

Let 0 be a fixed great circle which separates A and B, let

D be a point on 6, let r(D) be the set of curves on the sphere

which go from A to B and pass through D, and let L{Y} be the

length of any curve y. Then

m? L(Y}
Yin I Q))

is achieved for a unique curve y(D), consisting of the shorter

great circle arcs from A to D and from D to B, and is a conti-

nuous function of D. Hence

max L{Y(D)} = max min L jyj
D on 8 D on 8 yin 1 (D)

is n.chievod for some D = b and the corresponding y(D). It is

easily seem that this maximizing point D is unique, that it is

the inter,-action of 0 with the longer great circle arc between

A and B, end that therefore y(15) is that longer great circle

are, as desired.

The curve from A to B which lies on the great circle de-

termined by them and goes once around the sphere, covering the

shorter arc twice, can be characterized in a similar way, in

this case using two fixed great circles neither of which sepa-

rates A and B which do not intersect on the great circle deter-

mined by A and B. The great circle arc from A to B which winds

around the sphere any specified number of times can likewise be

characterized as the solution of a minimax problem, by using a

corresponding number of fixed great circles.

11. Integration of Euler's equation in special cases.

Eule is equation can be solved by means of quadratures in

the eases that F(x,u,u') does not contain u or x explicitly and
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can be solved trivially in the case that F(x,u,u') does not con-

tain u' explicitly.

If F(x,u,u') does not depend explicitly on its third ar-

gument, Euler's equation

reduces simply to

Fu - dXFu' = Q

Fu = 0 .

This equation can be regarded as defining u implicitly as a

function of x, and Euler's equation is thus solved.

If u does not appear explicitly in F(x,u,u'), then Euler'e

equation reduces to
drxFu' -0

or

Fu' = k

where k is an arbitrary constant. This equation can be used to

find u' as a function of x (and k), and u can subsequently be

obtained by means of a quadrature.

Perhaps the most significant case is that in which x does

not occur explicitly in F(x,u,u'). In this case, the Euler

equation does not at first seem to simplify. Yet, x and u play

similar geometric roles in the variational problem, and the ab-

sence of x ought to lead to a simplification dust as the absence

of u does. In order to find this simplification, the absence

of x can be thought of as a condition which permits F to be

differentiated as follows:

3x u'Fu + u"Fu'

or

- u" Fu' u ' Fu
TX_

Subtracting u' dx Fur from both aides gives

ax
u' u' d Fu'
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or

dx (F - u'Fu,) = u'(Fu - dx Fu')

However, the right side vanishes since u is assumed to satisfy

Euler's equation, and the conclusion is that

P - u'FF, = k

where k is an arbitrary constant. Thus, the above equation

must be satisfied by any function u which satisfies Euler's

equation in the case that F does not explicitly contain x. This

equation can be used for finding u' as a function of u (and k)?

which means that du can be found as a function of u. Then, x

as a function of u can be found by means of a quadrature.

It is very important to realize, however, that although

the simplified condition

F - u'Fu, = k
and Euler's equation

F du - dx Fu, = 0

are both necessary conditions, they are not equivalent. The

exact situation, in view of the relation

d
al (F - u' Fu,) = u' (Fu

- dx Fu,) ,

is clearly that every solution of the Euler equation satisfies

the simplified condition (for some value of k), but that the

simplified condition is satisfied both by

Actually u' gay bA found to be a multi-valued function of u.
This function, for oYample, frequently contains a square root
where both the positive and negative determinations must be used.
In fact, it can be seen that if u' is a single-valued function
of u, then the continuous function u must necessarily be a mono-
tone function of x. And there are many problems where F does
not explicitly contain x, and yet the extremizing curve is not
monotone. An illustration of this point is afforded, for exam-
ple, by the problem of finding the surface of revolution of
least area or by the Brachistochrone problem. These problems
will be discussed later in Section 13-
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U' i 0

and by the solutions of Euler'a equation and by no other func-

tions. It is evident that

u = o

where c is any constant always satisfies the simplified condi-

tion (for some value of k).

Since
u = o

always satisfies the simplified condition it would be desirable

to have a simple criterion for determining whether or not it sa-

tisfies the Ruler equation in its original form. It is clear

that Fu, reduces to a constant when u is set equal to c and u'

is set equal to zero since F (and consequently Fu,) does not

contain x explicitly. Therefore, the Ruler equation

d =Fu - Nx Fu, 0

reduces simply to

Fu = 0

for functions of the form
u = c

Clearly, a necessary and sufficient condition for a function of

this form to satisfy Ruler's equation is

Fu

u = c

u'= 0
= 0

The above results can be summarized in the following

theorems

Theorem 1: If the integrand function P does not depend expli-
citly on x, then the Ruler equation

Fu-
dFu, a0
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and the "simplified condition"

F - u'Fu, = k

are related as follows:

a) Every solution of. the Euler equation is a solution of

the simplified condition for some value of k;

b) For any value of k, every solution of the simplified

condition no arc of which is of the form

u x a

(where a is a constant) is a solution of the Euler equation;

o) The function
u = c

satisfies the Euler equation if and only if

Iu=c

Fu

u'= 0
= 0

and always satisfies the simplified condition for some value of

k; or, expressed in other words (in a slightly weaker form):

The set of integral curves of the Euler equation is pre-

cisely the not of integral curves of the simplified condition

no arc of which is of the form

where

Fu

u = o

u = c
u'= 0

0

12. The shortest connection between two points on a sphere.

That the shorter great circle are connecting two points on

a sphere has minimum length among all connections on the sphere

can be proved in a quite elementary geometric way. This geome-

tric proof will now be described and then the same result will

be obtained from an analytic formulation of the problem.
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The geometric proof is based on the theorem that the sum

of the lengths of two sides of a spherical triangle (where each

side is the shorter great circle are connecting two of the ver-

tices) is greater than the length of the third side. If the

vertices of a triangle are joined by straight line

segments to the center of the sphere, it is clear that this theo-

rem is equivalent to the theorem that the sum of two face angles

of a trihedral angle is greater than the third face angle. But

this theorem about trihedral angles can be proved in a very sim-

ple way by using the fact that the sum of the lengths of any two

sides of a plane triangle is greater than the length of the

third side.

As an immediate consequence of the theorem about spherical

triangles it follows that the length of any spherical polygonal

path (made up of shorter great circle arcs) is greater than the

length of the shorter great circle are joining the end-points.

This result can be seen as follows: Shorten the spherical poly-

gronal path by joining any pair of alternate vertices (i.e., ver-

tices with exactly one other vertex between them along the sphe-

rical polygonal path) by the shorter of the two possible great

circle arcs. The theorem about spherical triangles guarantees

that this shortens the path. Then, apply the same process to

the shortened path. Repeat the process until, after a finite

number of steps, the result will be simply a great circle are

joining the two points. Thus, the shorter great circle are is

certainly shorter than the spherical polygonal path.

The result for spherical polygonal paths, however, implies

the desired result for any curve. All that remains to be shown

is that the length of any curve on-the sphere can be approximated

to any prescribed degree of accuracy by the length of an in-

scribed spherical polygonal path. It would then follow that no

curve can provide a shorter connection than the great circle arc.

In order to prove that the length of any curve on the

sphere can be approximated by the length of an inscribed ephe-

rioal polygonal path, the elementary geometric definition of the
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length of a curve will be recalled. Consider a sequence of n+l

points Pn, Pn,...,Pn on the curve in that order where Pn and Pn

are the end-points. Join consecutive points by straight line

segments, giving an inscribed space polygonal path an joining

the end-points of the curve. Let Ln denote the length of an.

Allow n to tend to infinity, choosing the points Pn (i=0,l,...,n)

so that th3 length of the longest side of the space polygonal

path should tend to zero. Then, lim Ln = L is, by definition,

the length of the curve.* rl'co

It will now be shown that the length of the spherical po-

lygonal path having the same vertices as the space polygonal

path nn approaches a limit as n - oo and that this limit is, in

fact, equal to L, the length of the curve. Let the length of

the side of the space polygonal path joining Pn-1 and Pn be de-

noted by %(I) and the length of the corresponding side of the

spherical polygonal path by An(')*. Thus, the length Ln of the

epaco polygonal path n is given by

n
L = 1(v)

n n

and the length Ln of the corresponding spherical polygonal path

is given by

Le -
n

,(V)en r = n

It remains to be proved that Ln converges and that

n-}co

Since a product of limits equals the limit of the product, and

since Ln is the product of Ln and L:/Ln, it is enough to prove

that L-/In converges and that

Curves for which the limit exists (independent of the way in

which the points PI are chosen) are called rectifiable curves.

Only such curves are of interest in the present discussion.
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Le
lim - = 1 .

rS__WW n

It is immediately obvious that

Ln > Ln
or

(5)

since area of circles are longer than the subtended chords. On

the other hand, the points PM were chosen so that the length

of the longest chord tends to zero as n tends to infinity, and

the ratio of are length to chord length in a circle of constant

radius tends to unity as the chord length tends to zero. This

implies that
X(v)e

lim n
n-+ac X17)

where the convergence is uniform with respect to v since the se-

quence of lontrest chords converges more slowly than any other

sequence of chords. In other words, for every a > 0, there

exists a number I - N(e) such that
1(v)e

- 1 < a

la

or, in view of (5) t

or

(6) Anv)a < X(v)(1 + a)n

forn;P N

An estimate for L:/Ln can now be made as follows in view of (6):
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L* 1(v)* _ 00(1 + e)n= v=1 n < v=1 1+ e
X(v) 1(v)

y_ n y= n

or

(7) nt; < l+a forn>N .
n

L

However, (7) together with (5) clearly implies that L;*/Ln con-

verges and that

Lc
lim Ln = 1

n-->co n

This in turn implies that

lim L. = L
n-?oo

which means that the length of any curve on the sphere can be

approximated b;r the lengths of inscribed spherical polygonal

paths. And, as already indicated, this implies that the shorter

great circle are joining two points on a sphere provides a con-

nection of minimum length.

The same result will now be obtained analytically by wri-

ting parametric equations for a sphere of radius r with its

center at the origin, as follows:

x = r cos 3 sin 9
(8) y = r sin 3 sin A

Az = r cos
for 0 < 4.i 2a and 0 < 9 < it where 4 and 0 can be identified in

the usual way as the angles of spherical (polar) coordinates.

Any curve on the sphere can be represented by letting 4 and 9

be functions of a parameter t, as follows:

4 = f(t)
0 = g(t)

In order to calculate are length for such a curve, (ds/dt)2 will

now be calculated as follows:
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(at )2 = (at )2 +
(at)2

+
(z)2

= r2 sin2 0 4'2 + r20,2

where 4' = d4/d.t and Of = dA/dt. Thus, the length I. of a curve

joining the points in question is given by

rtl
L = r{ sin A 4'2 + 912 dt

to

It thus appears that the problem reduces to finding a curve

which minimizes the following integral,I (omitting the unessen-

tial r):
tl

I sin A $12 + 0+ dt

to

The solution to the problem becomes immediately apparent

when the symmetry of the sphere is taken advantage of by placing

the two pointsf in a special position. Place the two points on
the same line of longitude and make the reasonable assumption

that A can be used as a parameter for the minimizing curve. In

other words, assume a solution of the form

4=G(O)
Then, the integral to be minimized is

1* _
Al

ein'A $12 + 1 d0

0

where 4' = d4/dQ. The Integrand and hence the integral is clear-

ly minimized for 4' 3 0, and the minimizing curve must be the

shorter arc of the line of longitude or great circle through the

two points.

It would be desirable, however, to reach the same conclu-

sion without placing the points in any special position and

without making any use of the geometric interpretation of 4 and

0. This will now be done with the aid of Euler's equation.

The integrand function F of the integral I for this varia-

tional problem is
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912sin Q +

The Euler equation for the two functions 4 and 0 are

F 4 ,=0

or

F
9

d- FG = Q

d sin2Q
0

at
sin Q d ' + Q1

sin Q cos Q 4'2
_ d 0

sin94' 912 d
4, t Q72

In order to simplify the Euler equations, the parameter t

will be renamed a and will be identified with are length on the

curve represented by

b y f(s)
fl= g(a)

It then follows that

(9) (ds)2 sin20 d2 + 02

where dd/da and Q = d0/da. The Euler equations can then be

written as follower

(10)

(sin2g ) = 0

ds Q = sin 9 cos Q b2

These equations represent a necessary condition for a minimizing

curve, and it will now be shown that any curve satisfying these

equations is a great circle are.

Cartesian parametric equations for the curve represented

by the functions d and 0 can be obtained by substituting 4 and

9 as functions of a into (8). This gives x, y, and z as func-

tions of a. To show that this ourve is a great circle are, it

must be shown that (x,y,s) lies on the same plane through the
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origin for all values of x. In other words, it must be shown

that there exists constants A, B, and C such that

Ax +By +Cz_ 0
where at least one of the constants is different from zero.

That is, it must be shown that x, y, and z as functions of a are

linearly dependent. This linear dependency will be demonstrated

by showing that the three functions x, y, and z all satisfy the

following differential equation:

u + u = 0
This second order linear differential equation (whose solutions,

of course, are linear combinations of sin a and coo a) cannot

have more than two independent solutions according to the theory

of differential equations, and it would follow that x, y, and

i are linearly dependent. Therefore, it should be shown that

-x

-Y

As an illustration, x will now be calculated. The function x

is given by

x=rcos4sin9
Its derivative x is given by

x= r(-sin 4 sin 0 d+ cos b cos 0
or

r(- Is in 0 sin Z0 I+ cos 4 cos 9

Differentiating once more and using the Euler equations (10),

it follows that x is. given by

7[u r(-4(cos 4 sin.9 d - sin 4 cos 0 b) + cos 4 sin 0 coa2G
d2

+ p(-sin 4 cos 0 cos 4 sin 0 A)]

The terms in 40 drop out and the terms in
a2 and 42 can be col-

lected separately while factoring out -cos 4 sin 0, giving:
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x = -r cos 4 sin 0 ((1 - cos
0)42 + o2j

or

ii = -r coo 4 sin 0 (sin 20
42 + C2)

In view of (9), it follows that

x= -r coo 4 sin 0 = -x
It can be shown in exactly the same way that jr = -y, and the

calculation for showing that z = -z is even simpler.

It has now been shown that the three functions x, y, and

z satisfy the same second order linear differential equation.

Consequently, x, y, and a as functions of a are linearly depen-

dent, and any curve satisfying the Eular equations (10) must lie

in a plane through the origin. In other words, all curves on

the sphere satisfying the Ruler equations are great circle arcs.

And, since the Ruler equations constitute a necessary condition

for a minimum, it follows that, if a minimizing curve is assumed

to exist, then a great circle arc must furnish the minimum.

13. Application of Euler'secuation to classical problems.

Three classical problems will now be solved with the aid

of Euler's equation; namely, the Brachistochrone problem, the

problem of finding the surface of revolution of least area, and

the Isoperimetric problem. Of course, in each case the existence

of a solution will be assumed and the only possible solution

will be found.

On pages 170-171 of the notes, the Brachistochrone problem

is formulated and it is shown that the total time of descent T

of a particle sliding along the curve

u = f(x)

from the point (0,0) to the point (x,,ul) is given by

T= 1 Sxl 1+ur
dx

Ag- 0
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(where the positive u-axis is chosen in the downward direction).

Thus, the Brachistochrone problem amounts to minimizing the

integral

Is l+u' dx
J 0

In this case, the function

F(x,u,u,) = 1 + u'

does not depend explicitly on x, and the following simplified

form of Euler's equatton (as found in Section 8) can be used:

F - u'Fu, = k

where k is an arbitrary constant. For the particular function

P of this problem, this equation becomes

1 + u'2
u,2

VAU- f 1-17-U72
or u 1 = k .

11+u'2

s k

In view of Theorem 1 of Section 8, it would be advisable

to determine first of all whether the solutions of the above

simplified condition of the form

u = o

satisfy the Euler equation in its original form. For the into-

grand function F of this problem, it is clear that

u = c

u'= 0
20 0
2c

and, therefore, the set of integral curves of the Euler equation

is precisely the set of integral curves of the simplified oondi-

tion no arc of which is of the form

u = o ,
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It is most convenient to find the solutions of the simpli-

fied condition in parametric form. For this purpose, it will

first be shown that u' can be used as a parameter on every curve

satisfying the Ruler equation of this particular problem; that

is, it will be shown that u" vanishes on no solution curve.

All that has to be shown is that the vanishing of u" at any

point is incompatible with the Ruler equation. If the function

F of this problem is substituted into the Ruler equation and

then u" is set equal to zero, the result turns out to be.

-1 = 0

2u3/2 1 + u'2

which clearly cannot hold at any point where u' exists. Thus

u" cannot vanish and u' can be used as a parameter.

In order to find the integral curves of

1 . k
fu /l 7-U-7

solving for u immediately expresses u in terms of the parameter

u' as follows:

1U = +u'21mi(lk

However, instead of proceeding to obtain x as a function of the

parameter u', a new parameter 0 will be introduced by the

relation

where the monotone character of the cotangent function insures

that 0 can be used as a parameter since u' can.

Expressing u in terms of the new parameter 0 gives

u=-, 1 --_
-

sinz ) (i - cos 0)2 75
(1 + cot (-g))k k 2k

Then, x as a function of the parameter 0 can be found by first

finding dx/dQ with the chain rule of differentiation, as follows:
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dx _ dx du _ 1 du _ 1 dud-dud3-_,r3-9 o d

Byt du/d0 can be calculated from the relation found above ex-

pressing u in terms of 0. The result of calculating du/d0 and

substituting is

1 sin9s (1-aos0)
cot F 2k 2k

ainoe
0 sin 0cot 7 - cos

It then follows that

x (0 - sin 0)

where the constant of integration has been set equal to zero,

which means that it has been decidod that 0 = 0 should corres-

pond to the point (0,0).

Thus, all solutions of the Euler equation are arcs of a

cycloid
*
of the form

x= (0-sing)
2k

u = -4 (1 - 008 0)
2k

or

x = a(0 - sin 9)

u = a(l - sin 9)

where 1/2k2 is renamed a. That is, the solution of the

It is unnecessary to consider the possibility of the minimi-
zing curve being more than a complete arch of a cycloid (in
which case u' could not be used as a parameter) since the time
of descent could be shortened by rounding off the cusp at the
top, thereby shortening the path and increasing the speeds.

1
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Brachistochrone problem, if it exists, must be an are of a

cycloid.*

It might be remarked that the reason that the simplified

equation was solved using u' as a parameter rather than by sol-

ving for u' as a function of u was that u' is not a single-va-

lued function of u. If the simplified equation is solved for

u', the result is

u' =+

and the plus-or-minus sign must be taken into consideration

when solving the equation. Of course, this means that integral

curves must be found which agree in direction at every point

with either of the direction fields D+ and D- (See Figure 10)

given by:

D+: u' ---i- 1

D-: u' _ - --- - 1
uk

However, Rnatead of following through with this approach, it

was preferred to solve for u as a single-valued function of u'

regarded as a parameter.

It might further be of interest to note that for certain

positions of the end-point (x1,u1), it can be seen that the path

of quickest descent takes the sliding particle lower than the

end-point and then up to the end-point (in which case the

One slight refinement might be made in the reasoning given a-
bove. Since the integrand function F is infinite at the origin,
it would be better to consider problems where the particle is
given an initial velocity v

0
and then to allow vo to tend to ze-

ro. It turns out that all that has to be done if the initial

velocity is V0 is replace u by u + (vo/2g) (where g is the con-

stant representing gravitational acceleration) in the integrand
function F. The solution in this case is also a cycloid, and
this cycloid approaches the cycloid found above when v

0
tends

to zero.
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x

T

4 .4 4 I -4 4 -4 1U=
k

Figure 10. The direction in fic2ds D+ and D.

particle switches from the D+ direction field to the D- direct-

ion field at the line u = 1/k2). On the other hand, for other

positions of the end-point (xl,ul), it can be seen that the

particle slides along a monotone are for quickest descent.

The problem of finding the surface of revolution of min-

imum area can be formulated as follows: Join two given points

(on the same side of the x-axis) in the x-u plane by a curve

such that the surface obtained by rotating the curve about the

x-axis should have minimum surface area. This area A of the

surface obtained in this way by rotating the curve

u = f(x)

around the x-axis is given by

xl

A = 2n u 1 + u' dx

x
0

and the integral to be minimized is

,xl

I= u l+u' dx
x

Clearly the function

o
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F(x,u,u') = u /,-+ u'

does not explicitly contain x and the simplified form of Euler's

equation

F - u'Fu, = k

can be used. Thus, a necessary condition for a minimum is

2U 1+u' - uu =k
1/1-+-U- 2

or

or, solved for u'

u x k

u' = + /k2-

However, instead of solving the simplified equation when

it is solved for u' in which case the plus-or-minus sign would

have to be considered, the simplified equation will be solved by

essentially the same method that was used for the Brachisto-

chrone problem; i.e., by obtaining the integral curves in para-

metric form.

It can be seen in the same way as for the Brachistochrone

problem that all solutions of the simplified equation of the mm

u = c

can be disregarded since they do not satisfy the Euler equation

in its original form, and it can also be seen that u' can be

used as a parameter. Then, solving the simplified equation for

u expresses u in terms of the parameter u' as follows:

u = k l+u' .

u = c
u' = 0

In this case, Fu = 1 1 0
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However, a new parameter 9 given by

u' =sinh0
will be introduced, where the monotone character of the hyper-

bolio sine guarantees that A can be used as a parameter since

u' can.
In torms of the new parameter 0, u is given by

u = k l+sinh'=kcos 0

Then, according to the chain rule of differentiation:

(11)

But

d x dx du _ 1 du _ 1 du
d = du d3 - it aU - sa in 0

a k ainh 9

and, therefore, (in view of (il)):

dx = k

and

x-a=k0
The integral curves are therefore:

x-a=k0
u = k coeh 0

or, upon eliminating the parameter 0:

u= k costs
which is a catenary. Again, of course, the assumption has been

made that a minimizing curve exists.

As explained on page 187 of the notes, the classical Iso-

perimetric problem can be reduced to f inding the arc of given

length L with both end-points on the x-axis such that the area

bounded. by the are and the x-axis is maximum. Let parametric

equations for the are with the arc lengths used as parameter be
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x = 4(s)
u = +y(s)

with
x2 +u2= 1

or, (assuming that x is an increasing function of s and there-

fore, taking the positive determination of the square root):

(12) x w 1 77-2 ,

where the dots denote differentiation with respect to s. The

area in question is given by

xl L VL

A a I u dx = fo ux do u u do
xo 0

and the function

F(x,u,u) = u 1 - u

for this variational problem does not depend explicitly on s.

The simplified form of Culer's equation for this case is

F - uFuak
or

or

u 1-u + uu2 a k
/I-- u

It can be seen for this problem, just as for the last two pro-

blems, that solutions of the form

u a o
.

can be disregarded and that u can be used as a parameter.

Solving the simplified equation for u in terms of the pa-

rameter a gives

(13) u = k 7
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It is clear from (13)-that the parameter u never exceeds unity

in absolute value and that a new parameter 0 can, therefore, be

introduced by the relation

u = cos 9 ,

where the monotone character of the cosine function in an appro-

priate interval insures that 9 can be used as a parameter since

u can.
In terms of the new parameter 0, u is given by

u=k/- oos 9=ksing
In order to find a in terms of 9, ds/dG will first be found as

follows:
da s ds du 1 du 1 du
ai Tu H u d ' coe 3 au

Since

it follows that

and

d = k cos 9

: k

a - a=k9
Thus, the solution (in the au-plane) is given by

a -a=k9
uksin9

or, upon eliminating the parameter 9,

u = k sin s -FL

or, since u equals zero for the initial point,

u - ksinf .

In order to obtain x as a function of a, it will be noted

that (12) and (13) together imply

x = u
F

213



and, therefore,

and

sink

x - b= -kcos s
k

Thus, the solution is

x - b = -k cos k

u = k sink

which is clearly a semi-circle. This means that the semi-ciiale

is the arc of given length with both end-points on the x-axis

such that the area bounded by the are and the x-axis is maximum.

It follows that the circle encloses maximum area among all non-

self-intersecting closed plane curves of the same perimeter

provided that such a maximizing curve exists.

lid.. Invariance and the Euler Expression.

The notion of invariance plays a major role in the mathe-

matics and physics of the twentieth century. In particular,

relativistic physics is grounded on principles of invariance.

This concept will now be discussed, and a very important rule

of invariance for Euler's equation will be brought to light.

The principle of invariance in a limited form held a fun-

damental position in the seventeenth century mechanics of Gali-

leo and Newton. This restricted concept of invariance was em-

bodied in the classical principle of relativity, which may be

formulated in the following way: If two coordinate systems K

and K* are so related that K
*
is in a state of uniform motion

of translation with respect to K (i.e., if K
;r

moves without ro-

tation at a constant velocity with respect to K), then the gen.

eral laws of mechanics have the same formulation in the K* sys-

tem as in the K system. In other words, the laws of mechanics

are "invariant under all transformational' of coordinates such

that the original and transformed systems are related by uniform

translatory motion. For example, if the Newtonian formula
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P = ma

holds with respect to an observer standing on the ground, then

it also holds with respect to an observer on a train traveling

in a straight line at constant speed. This is an expression of

the invariant way in which natural phenomena run their course

without depending on the coordinate system used to describe them.

In everyday life, a vary similar principle of invariance

would be taken for granted. If a man should change his name

from Jack to George, this change would not necessarily influence

his character and other general traits. In other words, the es-

sence of any object is invariant under all changes of names

which are merely used to label the object. And, since coordi-

nates are simply mathematical labels, It Is to be expected that

the laws of physics should be invariant under changes in the

coordinate system used for describing physical phenomena. It is

just the old story of a rose smelling as sweet by any other name.

The modern principle of relativity is based on a notion

of invariance including all transformations of coordinates. The

transformed system may be in any state of accelerated motion

with respect to the original system. Einstein envisaged the

need for physics of using mathematical entities Invariant under

all such coordinate transformations. If these invariant enti-

ties are used in writing the formulas of physics, the formulas.

would then be invariant under general coordinate transformations.

It is therefore of great interest in mathematics to investigate

invariance and invariant mathematical entities.

An extremely simple invariant mathematical entity is the

vector. In fact, vectors are useful for providi.ig insight into

geometrical and physical situat'ons just because of their inva-

riant nature; i.e,, just because they depend only on intrinsic

properties of the particular situation. Thus, it would be in

keeping with the point of the present d4aeussion to explain pre-

cisely what is meant by saying that a vector is invariant. Then,

it will be shown later that the left side of Ruler's equation

enjoys this property of invariance in a very analogous sense.
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For the sake of blmplicity, the meaning of the invariance

of the vector will be explained first only for transformations

from one rectangular Cartesian coordinate system to another of

the same type. Thus, the transformations to be considered are

combined translations and rotations. These transformations, of

course, constitute linear transformations

n

kl aikxk + pi (i = 1,2,...,n)

where the matrix of the aik is orthogonal; i.e., where

(15)
m 0 if k m

im bk
1 if k = m

An n-dimensional vector is defined as an entity which can

be realized in every n-dimensional coordinate system by giving

an ordered n-tuple of numbers (called the components of the vec-

t.._-in that coordinate system) where the n-tuples corresponding

to different coordinate systems are so inter-related that they

possess( the following property called invariance: If the coor-

dinates transform according to (14), then the components

(ui,u2,...,un) of the vector transform according to the corres-

ponding homogeneous equations

(i6) ui = aikuk (i =

In other words, the components of the vector transform like co-

ordinates or, more precisely, like differences of coordinates.

(In fact, the components of an ordinary displacement vector are

actually the differences of the coordinates of the end-points

of the displacement.) Thus, saying that a vector is invariant

means, b.l definition, that its components transform according

to (16) when the coordinates transform according to (14).

As a consequence of the invariance of a vector as defined

above, vector equations are invariant in tho sense that they

undergo no change at all when the coordinates are transformed.
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For example, if the inner product (scalar product) of the vec-

tors U and V equals the number X for a particular choice of

coordinate system; i.e., if

then the same equation is valid no natter which coordinates are

used. This follows at once from the invariance of vectors in

the following way: The inner product in the transformed coordi-

nate system, say X, is given by:

n
T _ uivi .

However, in view of (16) it follows that

n n n

or

or

X ' (f aikuk m=I aimvm)

n

i,knl aikukaimvm

n n
r

= k,m=
z1 ( aikaim)ukvm

After having changed the order of summation in this way, it fol-

lows in view of (15) that

nT='urvr=
r=

Therefore

independent of the choice of coordinate system. As an example,

work in mechanics is given for all coordinate systems by the

inner product of the vector force involved and the vector dis-

placement.

In general, saying that a mathematical entity is invariant

means that it undergoes coordinate trenaformattona according to
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a certain law which holds for all coordinate transformations.

Moreover, in order for such a law of transformation to be said

to express the invariance of the mathematical entity, it must

follow as a consequence of the law that "inner products" are in-

variant in the sense that they undergo no change at all when the

coordinate system is transformed.

Actually vectors are defined so as to be invariant not

only with respect to orthogonal linear transformations, but also

with respect to the general transformation of coordinates

ai = F1(x1 ,x2,...,xn) (i = 1,2,...,n)

which, it will be assumed, has an inverse. In this case, two

different kinds of vectors are defined, contravariant vectors

and covariant vectors. A contravariant vector (ul,u2,...,un)

is defined so as to transform like differences of coordinates

in the small; that is, like infinitesimal displacements.* On

the other hand, the law of transformation for a covariant vec-

tor (vl,v2,...,vn) is expressly designed so that the inner pro-

duct of a contravariant and covariant vector should be a scalar;

i.e., independent of the coordinate system. That is, covariant

vectors transform in such a way that

*
It is customary to use superscripts for the components of a

contravariant vector and subscripts for the components of a co-
variant vector. In fact, when the distinction is made between
the two types of vectors, it is proper to use superscripts for
the coordinates themselves since they are akin to the components
of a contravariant vector.
,wit Precisely, contravariant vectors are defined so that their
components transform according to

u n )Fi uk

whereas infinitesimal displacements transform according to the
chain rule of differentiation:

n i

dx1 = dxk
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n n_
uivi = = urvr

3=1 r-1

Examples of contravariant vectors are displacements and veloci-

ties, while examples of covariant vectors are gradients and

forces.
To sum up, there are two kinds of vectors; namely, those

which behave like infinitesimal displacements and those which

behave like gradients. Both types of vectors are defined so as

to be invariant; that is, so as to transform in very special

ways. As a result, the inner product of a vector like an infi-

nitesimal displacement and a vector like a gradient is indepen-

dent of the coordinate system.

Before proceeding to explain and demonstrate the invariant

nature of the Euler expression (i.e., the left side of Euler's

equation), it will be of interest to show first that the Euler

ernresaion is very similar to another invariant entity, the or-

dinary gradient. Just as the gradient of a function is a vec-

tor (whose components are sii.ply the first partial derivatives

of the function), it will be seen that the Euler expression is

analogous to this type of vector and might well be called the

gradient of its associated functional. In order to uncover this

gradient-like nature of the Euler expression, the extremizing

problem for a functional will now be compared with the ordinary

extremizing problem for a function of n variables (as is done

on pages 12-13 of the notes).

The extremizing problem for a function of n variables

which will be considered here is formulated as follows: Find a

necessary condition for a point (ul,u2,...,un) in ordinary n-

space to extremize the function of n variables

I - IN
,u,, ... sun)

The necessary condition will be found by displacing the point

(u1O,u2,...,un) in n-space. That Is, let the coordinates ui be

arbitrary functions of a parameter t,
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ui = ui(t) (i = 1,2,...,11)

where t = 0 corresponds to the original point; to wit:

ui = u1(0)

Thus, the point is displaced along some curve in n-apace; or,

in other words, the point is imbedded in a family of points.

Certainly, if the point (u0,u2,...,un) extremizes the function

among all. points (in a neighborhood), then it also extremizes

the function among all points of the family. This means that

any neoessary condition derived by considering the family of

points will also be a nooesaary condition for the original pro-

blem. In other words, it is good enough to find a necessary

condition for t = 0 to extremize the function I when the coor-

dinates ui are substituted as functions of t into the function

1. That is to say, a necessary condition will be found for the

function of one variable t

I(t) = I(x1(t),x2(t),...,xn(t))

to take an extreme value for t = 0. As shown in the theory of

differential calculus, a necessary condition is

t - 0

I = dtI(t) 0

The quantity j in this case is given by the chain rule of dif-

ferenttation as
t = 0

or

n dx
I = dxi dt

I = V . grad I

where the velocity vector V is simply

dx1 dx2 dxn t = 0

220



Thus, the quantity I has been expressed as the inner product of

the gradient of I and an arbitrary infinitesimal displacement

vector (an infinitesimal displacement vector being essentially

the same as a .velocity vector). The necessary condition is the

vanishing of I for arbitrary V, which implies the vanishing of

grad I (i.e., the vanishing of all the first partial derivatives

of I). But the important point for the present analogy is that

I is an inner product of grad I and an arbitrary infinitesimal

displacement vector.

A necessary condition for a function u(x) to extremize

the functional

I(3) =
Ib

F(x,4(x),4'(x)) dx

when substituted for 4(x) was found on pp. 11-17 of the notes

in an exactly analogous manner. In this case, the argument is

not a point in n-space depending on a coordinate for each of n-

subscripts, but is a function depending on the continuous range

of its independent variable. The function u(x) was "displaced"

or imbedded in an arbitrary family of admissible functions

d = $(x.t)

where t = 0 corresponds to the original function; that is

u(x) _ 3(x,0)

Certainly, if the function u(x) extremizes the functional among

all functions,then it also extremizes the functional

among all functions of the family. Thus, a necessary condition

was found for t = 0 to extremize the integral

b
I[4(x,t)] = I(t) = J dx

where the integral is simply a function of the one variable t.

The necessary condition used was, of course,
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t=o
I S dt I(t) = 0

The quantity i (called the first variation of I and sometimes

denoted by 6(I) was found in this oaae by differentiating under

the integral sign and subsequently integrating by parts, giving;

(17) 1_ I2;(pu-dFu,) dx
a

where the "infinitesimal displacement" Z is simply

z(x) = $t(x,0)

The function r,(x) (sometimes denoted by bu or u) corresponds for

any fixed value of x to a component of the infinitesimal dis-

placement V for the extremum problem for a function of n varia-

bles. That is, r. or Ou or u is of the nature of dx (or

dt) The expression for I given by (17) can be rewritten as an

inner product

I = (t,[F] u)

where the Euler expression

du - daFu'
is abbreviated by [F]u and the inner product of two functions

f(x) and g(x) is taken to be

b
(f,g) = f(x)g(x) dx

a

This definition of the inner product is a very natural generali-

zation of the definition of the inner product of two vectors

as a sum very similar to the above integral.0

Thus, the first variation I has been expressed as an inner

product of an arbitrary infinitesimal displacement Z (arbitrary

,r
For an abstract definition of an inner product over any linear

space as a bilinear form, consult any work on linear algebra.
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except for the requirement that it vanish at the end-points of

the interval) and the Euler expression [Flu. By analogy with

the corresponding result for extremizing a function of n varia-

bles, it appears that the Euler expression [Flu behaves like a

gradient and might therefore be called the gradient of the func-

tional I; i.e.

(Flu = grad I

It is therefore to be expected that the Euler expression will

possess the property of invarianoe in the same way that an ordi-

nary gradient vector does and that the invariance will stem

from the fact that the inner product of the infinitesimal dis-

placement and the gradient of the functional should be indepen-

dent of the coordinate system. However, before exhibiting this

property of invariance, the concept of the gradient of a func-

tional will be illustrated by two further examples.

In order to find the gradient of a functional, the first

variation of the functional has to be expressed as the inner

product of an arbitrary infinitesimal displacement and some

other expression. Then, this other expression is called the

gradient of the functional.

As e.n example, the gradient will now be calculated for

the functional

(18) I[ul = y,11 K(x,y)u(x)u(y) dxdy
0

with K(x,,.) K(y,x) where the integration is over the unit

square 0 _; x < 1, 0 < y < 1. The function u(x) is defined=in

the unit J.nterval and function K(x,y) is defined in the unit

square. if u(x) is imbedded in the family of functions 4(x,t)

where
u(x) = 4(x,0)

it is clear that the first variation of the functional is given

by

Y + J K(x,y)[u(x)u(y) + u(x)u(y)l dxdy
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where
t 0

u(x) is d $(x,t)

In view of the symmetry of K(x,y), I is then given by

I = 2 K(x,y)iu(x)u(y) dxdy
a

or

or

Thus

(19)

u(x)(2 0 K(x,y)u(y) dy] dxI = Il
0 p

1
I = (u(x}, 210 K(x,y)u(y) dy)

+1
grad I = 2 0 K(x,y)u(y) dy

As another example, the gradient will be calculated for

the functional

(20) I(u] =+f, F(x,y;u.(x),u(y),u'(x),u'(y)) dxdy

0
where the integration is over the unit square, where

u(0) = u(1) = 0 ,

and where F is symmetrical in x and y, in u(x) and u(y), and

also in u'(x) and u'(y). Upon imbedding u(x) in a family of

functions depending on t, (displacing u(x) into a family of

functions), it immediately follows that the first variation is

given by

I = ,J (F3u(x) + F4u(y) + FS dx u(x) + Fb dy u(y)] dxdy

Q

where Fi denotes the partial derivative of F with respect to

its i-th argument, In view of the symmetries of F, I is given

by

I ' 2 J (F3u(x) + F5 da'x u(x))dxdy
0
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or, upon integration by parts

or

or

Thus

(21)

I : 2 J, u(x) (F3 - F5 } dxdy
O

I = S1 u(x) (2l (F3 - * F5)dy)dx
0 0

r1

I = (u(x), 2I, (F3 - ax F5)dy)

('
grad I = 2{ (F3 - 2- F5)dy

4

It might be remarked that the functional in (16) is a special

case of the functional in (20), and the gradient in (21), there-

fore, reduces to the gradient in (19) upon setting

F3 = K(x,y)u(y)

F5 = 0

Thus, illustrations have been given to clarify what is

meant by calling the Euler expression (F]u the gradient of its

associated functional, and it has been indicated that gradient-

like behavior ought to imply some kind of invariance. In short,

it would seem that the stage has been set for the demonstration

of the invariance of the Euler expression. However, just one

more preliminary discussion will be made before showing this

invariance.

In order to prepare for displaying the invariant nature of

the Euler expression, a few remarks about notation for trans-

formed functions will now be made. Specifically, the notation

to be used for a function a(x) after it has undergone a trans-

formation

x = f(4)
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will be discussed. The transformed function a(f(g)) is some-

times denoted simply by a(g) and is sometimes denoted by some

new name, say p(g) or a*(g). Which of these two notations is

to be used depends on the point-of-view of the particular dis-

cussion in the following way:

If the viewpoint to be emphasized is the dependency of

some quantity on other quantities rather than functional rela-

tionships in the mathematical sense; i.e., if a is not regarded

as the name of a certain function but rather the name of a cer-

tain quantity, then writing a(x) expresses the fact that the

quantity a(x) depends on the quantity x. In this

case, the trasformation means that the quantity x depends on

the quantity g, and, therefore, the quantity a depends on the

quantity 6. This fact can be expressed by writing the symbol

a(E), which simply means that the quantity a depends on the

quantity .

On the other hand, if functional connections are being

stressed, then a new name must be used to denote the transformed

function. That is to say, if a(x) is regarded as denoting a

functional relationship in the mathematical sense (such as

2x + air.. x), then a(f(g)) (i.e.,2f(F) + sin f(g)) is a function

of g which cannot be denoted by a(g) (i.e., 2g + sin g) but

must be denoted by some new name, say a*(g).

For example, if the quantity called the volume V of a

certain system should depend on the temperature 6, a physicist

interested primarily in quantities might write

And, if the temperature A should in turn depend on the time t,

which means that the volume depends on the time t, this depen-

dency might be expressed by

V = V(t)

Here, of course, V really stands for a quantity, the volume,

and not for a functional relationship. To be more precise and
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emphasize the functional relationships involved, the same physi-

cal situation might be described mathematically by

and

and, therefore

V = q(Q)

9 = r(t)

V = q(r(t)) = q'(t)

The notation emphasizing quantities, which is widely used

by physicists, is rather simple and is good enough for many

purposes. However, this simplified notation leads to a diffi-

culty, for example, in writing symbols for partial derivatives.

As an illustration, let U denote the quantity called the inter-

nal energy of, say, a chemical system. The state of such a

system is characterized by the three thermodynamic coordinates

P, V, and 9, where P represents pressure, V represents volume,

and 9 represents (absolute) temperature. However, only two of

these thermodynamic coordinates are independent since the three

are related (for states of equilibrium) by the equation of state

which every chemical system possesses. For example, the equa-

tion of state for an ideal gas is essentially

(22)

Thus, the internal energy U may be regarded as depending on any

two of the quantities V, 9, and P. In other words, for any

particular chemical system

U = U(V,9)

expresses the fact that U deponds on V and 9, while

U = U(P,G)

expresses the fact that U can also be regarded as depending on

P and 9. This is quite simple, but the difficulty arises when

the partial derivatives of U are considered. The partial
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derivative of U with respect to 0 when U is regarded as a fggc-

tion of V and 0 and the partial derivative of U with respect to

0 when U is regarded as a function of P and 0 are partial deri

vatives of different functions and require different symbols.

Physicists denote the former partial derivative by ( )V and
13

the latter by (a U)P. The partial derivative (v, )V is called

the partial derivative of U with respect to 9 "when V is held

constant", and (9g) is called the partial derivative of U with

respect to 9 "when P is held constant". It is very important

to realize that the two partial derivatives are in general quite

different. It should be understood as stated for example, on

page 57 of Neat and Thermodynamics by M.W. Zemansky that "the

two partial derivatives (a )V and ()P are not equal. The

first is a function of 9 and V, and the second a function of 0

and P. They are different mathematically and also have a diffe-

rent physical meaning". Perhaps it can be seen most directly

that the two partial derivatives are really different by consi-

dering a sirple hypothetical example. For instance, lot U be

given by

U = V + 0

where V, 0, a;1d P are related according to (22). Then, U is

also given bj

Then, the two partial derivatives are given by

(a9)V = 1

a0)P + 1

The entire difficulty with the notation for partial derivatives

completely dis.ippears, however, if the more precise notation is

used:
U = f(V,0)

U = f(K(P,0) a g(P,Q)
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where
V = K(P,Q)

In this case, the two partial derivatives are simply aH and A.

Thus, two notations are available for transformed func-

tions. Which notation to use is governed by the nature of the

particular discussion. It is frequently desirable when the

meaning is clear to use the simplified notation in order to

keep the notation from getting unnecessarily complicated and pe-

dantic. On the other hand, the simplified notation in some

cases may lead to confusion and it would then pay to denote

transformed functions by new names.

The above discussion of notation constitutes the last pre-

liminary step, and it is now time for the coup de grace, the

demonstration of the invariance (more precisely, covariance) of

the Euler expression. In other words, it will now be shown that

tha Euler expression undergoes all transformations according to

one and the same rule. This rule will be obtained by conside-

ring the most general change of independent variable in the in-

tegral

b
I(u) = F(x,u,u') dx

e

the first variation of which of course, is

(23)

where

bi = f a(F)u(x) dx
a

d
[Flu(x) -

F.u

- dx
Fu,

Let the transformation or change of variable be given by

(2L) x = f(9)

with an inverse everywhere in the interval a x _< b, and let

a+% and b* be the numbers for which
..
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a = f(a*)
b = f(b*)

Using the simplified notation, let the function u(x) after the

transformation be denoted by u( ) and let u(g) be denoted

simply by u'(F). But, to be slightly more precise for the func-

tion F. let the function F(x,u,u') after the transformation be

denoted by G(g,u,u'); i.e., lot

F(f(g),u(g), u'(g)) G(g,u(g),u'(g))

Thus, the transformed functional is

{b*
ICU] = y G(g,u,u')f'dg

a*

and its first variation is

(25) I = }

a*
u(Gf']u(g) dg

where
(Gf']u(F,) s Guf' - ag (Gu,f'j

Comparison of (23) and (25) implies that

Ja
u(F]u(x) dx = la* u(Gf')u(g) dg

for arbitrary u; or making a change of variable in the integral

on the right in order to have the same limits of integration

for both integrals, it follows that

4a u(F]u{).dx =
Ib&

u(Gf']u(g) f dx

for arbitrary A. Since u is arbitrary, the following identity

is implied;

(Flu(x) = tat']u(g)

or

fI[Flu(x30 (Gf']u(g)



And this identity expresses the invariance of the Ruler expres-

sion or, in particular, the independence from choice of coordi-

nate system of the inner product of u and (F) u. This is the

rule according to which the Ruler expression undergoes all

transformations.

In the derivation given above for the property of inva-

riance, the simplified notation made it possible to avoid the

writing of unduly complicated expressions, but at the same time

certain steps in the reasoning mtght not be quite clear at

first. For example, the comparison of (23) and (25) might be

questioned somewhat. Therefore, In order to show that the en-

tire derivation can be justified step by step, the same deriva-

tion will now be repeated without using the simplified notation;

i.e., transformed functions will be given new names. Once this

has been done, a return can be made to the simplified notation

since any possible misunderstandings will have been cleared up.

In order to have a somewhat uniform notation for this de-

rivation, the following scheme will be followed in naming func-

tions: If a function m(x) is transformed according to (211), the

transformed function will be denoted by m*(F); and, If a func-

tion n(F) is transformed according to the iiivorse of (24), than

the transformed function will be called no(x).

Following the above convention, let the function u(x) at-

ter the transformation be denoted by i.e., let

u(f(F)) = u*(4)

and let the function F(x,u,u') after the transformation be deno-

ted by G(F,,u*,u*I); i.e., let

F(f(g),u*() d) =
4(F'u*,d)

Thus, the transformed functional I* is given by

'b*
1*(u*] G(E.u*,u#')f'(C) dg

a*
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The first variation of this functional is, of course,

(26) I+: _
1

u#(4)[Gf' ]u#(4) dC
a*

where

[Gfu ,( } - 'If'(o) -a& [Gue,( .,u*,u*I)fl(f,)] .

However, in order to compare I* with I, x will be introduced as

the variable of integration in I*, `iving

b
(27) I0 = {8 u(x)

f[Gf')u.,(E)Io

flo dx

0
where the meaning of t[Gf']u*(,r )j is as follows: The expres-

sion (Gf')ue.(V is some function of g, say

[Gf' ]u,:( ) _ 'V(F.)
0

Then, f[Gf1]u*(E)1 is given by

o

Gf' ]ue()1 'Y(f-1(x))

where
f"l

is the inverse function of f. Similarly, the function

f'o is to be taken as

f'o = f'(f'l(x))

Now, for the purpose of comparing I and I[u] and I*(u*] will

be compared first. It is clear that

I[u] = I++(u*]

is an identity with respect to the function u since making a

change of variable does not affect the value of an integral.

Thus, if u is imbedded in the family of functions 4(x,t) and u*

is imbedded in the family 4*(F,,t) where

it follows that
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I[d(x,t)l ='
and

dT
11444 ,t)]It=0

or, in other words,

IB

Using this last identity and expressing I and I* as given in

(23) and (27), it follows that

``a u(x)(p']u(x)dx = ja u(x) {[Gf' lu*(t)
{o

o dx

for arbitrary u(x) (vanishing, of course, at

thfe

end-points).

In view of-the arbitrariness of u(x), it follows that

0
[Flu(x) _ [tGr'.U*()} flo

or

(28) r'°{Flu(x) = GfI)u*
ll (&

where both aides are functions of x, or

(29) f' }[Flu(x)t = (Gf' ],,,;(F)

where both sides are functions of F. In other words, (29)

states that calculating the Euler expression of F and then

changing to new coordinates and then multiplying by the factor

f' gives the same result as first changing F to now coordinates

and then multiplying by the factor f' and then finding the

Euler expression.

However, the notation used above is really unnecessarily

pedantic for the simple situation at hand. The function u*(C)

might simply be called u(x), and similarly the other super-

scripts of stars (*) and naughta (°) might be omitted. Thus,

the relation (2$) or (29) showing the invariance of the Euler

expression can be written in the same form as previously found,

as follows:
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f+(P)u(x)
= (Cf'lu( )

This completes the second and more detailed derivation of the

rule according to which the Hauler expression undergoes transfor-

mations of coordinates; i.e., the rule which expresses the in-

variance of the Euler expression.

Thus, it appears that the formalism of the Calculus of Va-

riations insofar as the Euler expression is concerned is the

same in all coordinate systems except for the necessity of using

as a factor the derivative f' of the transformation relating

any two particular coordinate systems.

The analogous rule of transformation for the Euler expres-

sion when u is a function of two (or several) variables will

now be found. In view of the above detailed discussion, it will

be assumed that the meaning is clear when the simplified nota-

tion is used. The functional to be considered is

IN) S, F(x,y,u,p,q) dxdy

where

p = ux
q=u7

and R is a region of the xy-plane. The first variation is, of

course

(30) I = If u[F)u(x,y) dxdy
R

where
a a

(F)u(x,Y) Fu - TX- ay Fq

Let the transformation to be made be given by

x = f4m)
y = g(9,4)

with an inverse everywhere in the region R of the xy-plane, and

let R* be the region of tte 67-plane which is mapped onto the
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region R of the xy-plane. Also, let the function F(x,y,u,p,q)

after the transformation be denoted by where

The transformed functional is than

I[u) =SJ G(F.,'f,u,n,k)J dgdj
R*

where 3 represents the Jacobian of the transformation; that is

J
x

The first variation Is clearly given by

I
R

u(GJ)
R+ u(40 )

or

(31)

where

I - 5S u[ Gi ) 1 dxdy

Guj - a ((;,J) - of (GqJ)

In view of the arbitrariness of u, comparison of (30) and (31)

now yields the identity:

J[F)u(x,Y) =

This identity, of course, expresses the invarianoe of the Euler

expression, and it once again appears that the formalism is the

same for all coordinate systems except for the Jaoobian j in

this ones.

It might further be noted that if u is a function of n

variables reasoning exactly parallel to that

used above shows that the Euler expression transformea according

to

J(F)u(x1,x2,...,xn) ' (GJ)u(E1,92,.6.,(n)
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A very elementary application of the invariance of the

Euler expression is its use in transforming the Laplacian

4u = uxx + ' ry

to polar coordinates (r,G) given by

x = r cos A
y=rsin9

The transformation can, of course, be made directly, but the

transforming of the second derivatives requires considerable

calculation. With the help of Euler's expression, however, the

result will now be obtained by transforming only first deriva-

tives. The main point is to observe that the Laplacian is essen-

tially the Euler expression for the Dirichlet Integral (as indi-

cated on pp. 23-24 of the notes). In other words, if the func-

tion F is given by

-2F = ux2 +
uy2

.

then the Euler expression is simply

(32) (Flu(x,y) = Au

In order to take advantage of the invariance of the Euler ex-

pression, the daoobian 3 Is needed and can be seen to be given

by
oL3'yl = r

In order to find the transformed integrend function G, ux and

u. will have to be transformed to polar coordinates, as follows:

u = ur + uQAx r x X

tL carry + uegy

where
rxTo= cos G
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yr sin A
Ax - j - r

ry=-- =sinA
xr cos AAy = ; = r

Taus, ux and uy are given by

G is given by

ux = ur cos A - uA
sir

uy = ur sin A + uA
coz A

9

-2G =
ux2

+ UY2 = ur2 +
u02

r
and Gj is given by

-2cj = ru2 + r UA2
r

The Eule r expression for Gj is then

(33) (Gf}u(r,A) = ddr (rur) + r uAA

Substitution of (32) and (33) into

gives

and, therefore

J(k')u(x.y) x (Gi)u(r,A)

r (,u = (rur) + uAA

Qua r a (rur) +
r

uAA

Thus, the Laplacian has been transformed to polar coordinates

simply by transforming first derivatives and using the invariance

of the guler expression.

As a further application of the invariance of the Euler

expression, the £ aplaoian will now be transformed to 3-dimensio-

nal polar coordinates (spherical coordinates) and also to n-

dimensional polar coordinates. However, the transformation will
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be accomplished in an even more efficient manner than was used

above for 2-dimensional polar coordinates. The method used

above would be too complicated for the following reason: In or-

der to transform u 2 + uy2 to polar coordinates, u was so

transformed and also uy was transformed and then ux2 + uy2 was

calculated. If the attempt is made to carry out the analogous

computation for more than two dimensions, the amount of calcu-

lation involved is almost prohibitive. Therefore, before trans-

forming the Laplaoian in 3 or n dimensions, a method will first

be developed for transforming the sums of the squares of the

first partial derivatives of u into any curvilinear coordinate

system without explicitly transforming any of the partial deri-

vatives themselves.

For this purpose, let the rectangular Cartesian ooordinatea

be (xl,x2,...,xn) and let the curvilinear coordinates

( 01'42' ...1 %) be given by

xi = fi(g1,42,...,911) (i = 1,2,...,n)

where the transformation is assumed to have an inverse. Also,

let the matrix of the facobian j be denoted by J; I.e.

J=

where

11x1 ax2 axn

791 a
...

WC-1

f axl ax2 axn
Tr;2 XF-2 '" S92

dxl ax2 axn

axn axn
... a,i

dot J = j

The chain rule of differentiation gives

du = au 1 + au ax2 + ... + au axn
.14i

azl a9i
-1112 '9i axn a_i

(i = 1,2,...,n)
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or, in matrix notation,

Since it has been assumed that the transformation has an inverse,

the matrix J is non-singular and has an inverse J-l, so that

(34)

If the transpose of each side is taken and the transpose of J-1

is denoted by (J-1)', it follows that

(35) ( " au "' au) = (,u au ... u){J
xl ax2 n Al a2 an

Multiplying (34) on the left by (35) gives

'au au .. )f a2 = (d z ... )(J-1J 1 2(36) ( x

eau ,emu

However,
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( au Du
xl ""2

... axn
ax2

and

(J-1),J-1

= (J')`1J-1 =
(JJ')-1

Thus, (36) can be written in the form

(37) ()2 ° (a uu .. a--u-) a
= i t 2 Cn

or, for 3-dimensional polar coordinates (r,4,0):

ur.

(38) ux2 + uy2 + u
z

2
= (ur u4 u4

u6,

Thus, the su;a of the squares of the partial derivatives of u
can be calculated simply according to (37) (or (38)). Also, the

absolute value of the Jacobian j can be calculated from the ma-

trix JJ' according to

j = dot J = + det JJ
that is,

(39) I i I = I et JJ' I

where the vertical bars denote absolute value. -(The reason

that it is preferable to have the computation depend as much as

possible on JJ' rather than on J is that JJ' turns out to be a

much simpler matrix in significant examples.)
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Noa that the above rules have been prepared, the 3-dimen-

sional L3placian

Qu _= uxx + YY + uzz

will be transformed to polar coordinates (r,4,0) where

x = r cos 3 sin Q
y=rsin3sin0
z = r cos 0

In this case, if the integrand function F for a variational pro-

blem is given by
-2F = u

x
2 + uy2

4 u
z

2

then the Euler expression is simply

(F]u(x,y,z) = Au

In order to transform F according to (38), the matrix (JJ')-1

will be calculated. In this case, the matrix J is given by

cos 4 sin 0 sin 4 cos a cos 0

J= -r sin d sin 9 r cos 4 sla 0 0

r cos 4 cos 0 r sin d cos o

1 ;)

and, it is a simple matter to see that the product of J and its

transpose J' is given by

1 0 0

JJ$ = 0 r2sin29 0

)0

and, therefore

0 r2
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Then, according to (38), it follows that

uX2 + U72 + ur2
= ur2 + U42

+ I u92
r sin A r

and that the transformed integrand function G is given by

-2G= ur2+ 1 U42+1
7 u2

r sin 9 r
The Jacobian according to (39) is simply given by

I i I = I det J T I = Ir2sin A

where there is no need to determine whether the plus or minus

sign is to be used when the absolute bars are removed since re-

placing .1 by -j causes no change in

(40) (F)u(x,Y,z) [rail

It is then clear that Gj is given (except for a possible minus

sign) by
u 2

--2Gf = r2sin 9 ur2 +
a l

+ sin 9 u92

and

4LGf)u(r,4,A) ' (r2sin 9 ur) + {s in) } (sin 9 u9).

Substitution into (40) immediately gives the result

U
Du =

2
(r2sin 0 ur) + s) + (sin 0 uA)r sinA

f fr-
The Laplacian in ri dimensions will now be transformed to

polar coordinates in the same way. As for the definition of n-

dimensional polar coordinates, they will be defined recursively

by generalizing (n-l)-dimensional polar coordinates in the same

way that 3-dimensional polar coordinates are obtained by genera-

lizing 2-dimensional polar coordinates. It would, therefore,

be natural first of all to examine the way in which 2-dimensio-

nal polar coordinates are generalized to 3-dimensional polar

coordinates. For this purpose, let n-dimensional rectangular
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Cartesian coordinates be denoted by (x(n),x(n),...,xnn)) and let

n-dimensional polar coordinates be denoted by (r,92,93,...,An)

(where the first polar coordinate has been called r rather than

91 because it plays a geometric role different from that of the

other polar coordinates; namely, r represents a distance and

the 2's represent anples). The equations defining 2-dimensio-

nal polar coordinates are then

,(2) = r cos A2

x22) = r sin z

where 92 is usually called 9. Similarly, the equations defining

3-dimensional polar coordinates are

xi3? = r cos 92 sin 93

x23) = r sin 92 sin 93

xj3) = r cos 93

where 82 5s usually called 4 and 93 is usually called B. It is

clear when the equations are written in this way that two prin-

ciples are adhered to in the aeneralizatiou. First of all, the

geometric meaning of r as the distance from the origin is re-

tained. And secondly, the coordinates are defined so that the

3-dimensional polar coordinates applied to the 2-dimensional

subspace orthogonal to the x3 -axis at the origin should be iden-

tical with the 2-dimensional polar coordinates in this subspace.

This 1s clearly seen by settinp 93 equal to n/2. In order to

follow the same two principles, n-dimeoaional polar coordinates

will be defined in general for n > 2 as follows:

xin) = xin-1)
sin 9n (1 = 1,2,...,n-l)

xnn) = r cos 9n

Here, it can easily be seen that r represents distance from the

origin; and it is also clear that setting 9n equal to it/2 yields
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(n-l)-dimensional polar coordinates; i.e., the n-dimensional po-

lar coordinates reduce to (n-l)-dimensional polar coordinates

for the (n-1)-dimensional subspace orthogonal to the xn-axis.

Now that n-dimensional polar coordinates have been defined,

a return will be made to the original purpose of transforming

the Laplacian. If the integrand function F is given by

(au)2-2F =
1=1 dxi

then the Euler expression is given by

u-n-(F]
')2

au(X)
i= x u

Let the Jacobian for the n-dimensional case be denoted by j(n)

and its matrix by J(n). Then, in order to use (37), (J(n)J(n),)

will have to be calculated. Let it be observed first that the

matrix J(n) for n > 2 is obtained by adding one row and one co-

lumn to the matrix J(n-1) sin An as follows:

(41) J(n) =

(r) 0
sin On

cos An

0

0

(n-1) (n 1) (n-1) -r in F
I An An x2 cos An ... x cos An n

It can be seen rather easily that the product of this matrix

and its transpose is a matrix in diagonal form if the matrix
J(n_l)J(n-1),

I. in diagonal form.° However, it has already

appeared that this property is enjoyed by the matrix J(3)J(3),,

and therefore J(n)Jn), is given by

Actually, saying that J n J (n), is in diagonal form amounts
x

to saying that n-dimensional polar coordinates constitute an
orthogonal coordinate system.
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/ (n)
9 0 ... 0

. / 11

J(n)J(n),
I

0 (

2)
0

62

I
0 ...

(n)
9nn

where the gin) have to be determined. However, in view of (41).

it is clear that
(n)911 = 1

g(n) = 9(n-1)ein29
Ii ii n

(n)
= r26nn

(1 71 l,n)

and in view of the 3-dimensional case already considered, the

above recursion formula for gin) for 1 1 l,n given

gii)
gii-1)sin29. = r2 Tt sin29v (1 l i,n)

v--i+1

Clearly, (J(n)J(n)')-1 is given by

11
R(n)

(J(n)J(n)i)-1 0

where ii 16(n)'.7
gii

0 ... 0

g22
{n)

... 0

0 ...
6(n)
;(nn)

0

(i = 1,2,...,n)

The Jacobian J(n) is given (except possibly for an unessential

minus sign) by

(n) det (J
n

J
n

')
r2(n-1)

n-
(

n
11 ain2Gv)

i=2 v=i+1

=
rn-1

n-
(

n
-& sin 9v)

i=2 v=i+l
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or, if the products are combined,

(n) =
n-1 TT

sinv-2

r Ov=3 v

The transformed integrand function G is given according to (37)

by c?u 2
n-1 (=O )

-2G = ur2
+ ni + - -)2

r2 TT sin2Av r n

v--i+1

and GJ(") is given by

-2G3(n) a

1.

au2
1 (41u) 2 rn-l ft sinv"2A

r2 n sin2A v=3

v=i+l v

The Euler expresy.on for Gj is clearly given by

[Gj(n)]u(r;A)' ar(urrn-1 3sinv-2Av)+

n"3 *
v-2sin

-1
r

Av--{ i v=3 )-
ain2Av

v= i+l

t d{ 3 u rn-3 fr
sinv-2

AJAn n v=3 v

Substituting into

(F)u(x) -
n

[GJ(n)}u(r,A)

yields for n > 2:
n

16U = n 1
dr

(urrn-1

TI sinv-2Av)
rn-l 'tt s inv"2A v=3

v=3 v

aurn-3 sinv-2An-1- -,,7ai
v=3 v) + (--r n"3 7T a inv"2+

Y- n
A }

TT sin2Av
;An- dAn v=3

v

v=i+l
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Thus, the Laplacian in n dimensions has been transformed to po-

lar coordinates. It might be.noted that for n = 3, upon setting

024
C3 = o

the. same result follows that was found previously for the 3-

dimensional case.

It might further be observed that the n-dimensional Lapla-

cian can be expressed in arbitrary curvilinear coordinates

in terms of the matrix JJ'. The result can

easily be seen to be

/11

nQu= .- 1 - et J - (ulu2...un)(JJ' )
2 detMTT 3-1 l i

where
u_ ai

a4i
However, the fact that (JJ')-1 is a symmetric matrix for any J

implies that

(ul u2...un)(JJ')-1

and, therefore, it follows that

r

ul

2(bi
62...bn)(JJ')'I

u2

Au 1

n
bi...bi)(JJ'}

de ) aE i 1 2 n



In a notation often used, the elements of the matrix

are denoted by gik and dot (JJ') may be denoted, for

example, by a. Using this notation, the result can clearly be

written as follows;

Au = 1 n
a l Ik u)

EL

ai k=1 oak

Thus, it has been shown that the invariant nature of the

Euler expression provides a highly powerful tool for transform-

ing the Laplacian in n dimensions into curvilinear coordinates.

However, this application constitutes merely one phase of the

general significance of the Euler expression's invariance. The

notion of invariance holds a predominant position in modern

science and, therefore, the invariance of the Euler expression

is of major importance in itself. Moreover, it is to be expect-

ed that the Euler expression ought to be instrumental in the

construction of other invariant mathematical entities.

15. Transformation Theory.

a) Canonical Transformations.

The extremal of a variational problem

Sba
F(x,u,u') dx

satisfies the Euler equation

dt vFuv =FuF

which also can be written in the Hamiltonian form as derived in

Chapter II. For this purpose we applied the Legendre transfor-

mation

assuming dot (FU,u,) / 0 and introduced
v µ

H(x,u,v) _ u'vvv - F
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Then the Euler equations are transformed into the symmetric for...

(L2)
H
vv

This form of the differential equation is used frequently in

mechanics where H represents the energy. The unusual feature

of this system of differential equations is that it is deter-

mined by one function, namely H, only. There arises the quest-

ion in which respect these Hamiltonian systems are special.

This question will be answered in this Section.

If one introduces new coordinates in place of u,v it turns

out that the transformed system in general will not be of the

Hamiltonian form any more. This leads to the problem of charac-

terizing those coordinate transformations which transform Hamil-

tonian systems into Hamiltonian systems. These transformations

are called "canonical" and the aim of the transformation theory

is the theory of the canonical transformations.

Before going into this question it is useful to observe

that the Hamilton equations can be considered as the Euler equa-

tion of the variational problem

n
u,vv - H(x,u,v)) dt

w-

which is obtained from the old one by replacing the P by

uVVV - H(x,u,v). The Euler equation gives:

d
c_xvv Huv

0v *7
u'vvv - H) = ul - Hv

v v1 v

which are the Hamiltonian equations. This remark will be useful

for the following consideration.

Let first UV = 4v(x,p) be a transformation of the coordi-

nates uv alone into new coordinates pv. Such transformations
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are of importance in applications where one tries to simplify

the differential equation by taking into account symmetry proper-

ties, like polar coordinates are appropriate for rotationally

symmetric systems. Is it possible to find functions *v(p,q,x)

such that the transformation

uv 4v(x,P)

*v(x,P,q)

transforms (142) into a Hamiltonian system

Py =
Gqv

q'v= - Gp 7
V

Furthermore we require that the Jacobian

CJ

a(dv4V) ap G acv
dot dot = dot (a ) dot q )

k 1 p , dq P
IL

should not vanish.

The answer to this question is yes as can be seen by the

following simple argument. The equations (42) are equivalent

to the Euler equations of

jF(xiuuI)dx = j'F(x.4(Px)az 4pvPy + 4x)dx = J(x,P,Pt)dx
who re

(x,p,P') = F(x,3(P,x),l: dP, + 4x)p
v

Therefore they are equivalent to the Euler equations of this

problem dx ,pI _ . Hence introducing
v

and the corresponding Hamilton function

G(x,p,q)'E pygv - j
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we obtain a Hamiltonian system is the transformed system.

In order to compute the functions ,yv(x,p,q) just compute

qv = lP"
a

Pub
dµPy = vµ4µpy(x,p)

We assume ddt (4 )
µP

/ 0. Therefore one can solve these equa-

tions for vµ and obtain for vv = p (x,p,q) even linear functions

in q. One easily checks that dot (cl*v/aq&) 1 0.

Now we want to treat the general question of under which

conditions a transformation

uy = 6y(x,P,q)

vy = *V(x,D,q)

transforms a Hamiltonian system into a Hamiltonian system. We

make use of the fact that the Hamilton equations (42) are the

Euler equation of (I.3):

n
(v- uvvv H(x,u,v))dx = f I(x,p,q,p',gl)dx

where
n n

= 5- vv(4vx + y

P,
IL

4v q') - H(x,c,*)Z µ- pµµ qµ
We want to find sufficient conditions under which this varia-

tional problem has the same extremals as
n

( p,, - G(x,p,q))dx with some function G(x,p,q). We cer-

tainly achieve this aim if we assume that the functions I and

p,,gy - G differ only by the total derivative W(x,p,q) of

some function W(x,p,q), because then

b b
Sa

pvgv + G)dx = W(x,p,q)
a

does not depend on the curve of integration.

We have to investigate under which Conditions there exist

two functions G(x,p,q), W(x,p,q) such that

251



n
Pygy - G(X,p,q) + da W(x,p,q)

In this equation we have to replace uy,vy by c}y,*y- Equation

(45) should hold identically with respect to the variables

p,q,p',q',x. If we compare the coefficients of p' we find
µ

n
-- dypµ+Yy=qµ+Wpµ

the coefficient of q, gives

n

and fini.lly

4v Wy = W
qµ qµ

n

¢vx*x - H -G + Wx
v-

The last equation can be satisfied by appropriate choice of

G(x,p,q;. The other 2n equations should be satisfied after an

appropriate choice of W. They determine all derivatives of W:

n
Wp = -qµ + = 4Xp Yy

fµ(x,p,q)

k=1

n
Wq =

K=1
= *v = gµ(x,p,q)

and they can be solved for W if and only if the integrability

conditions

f,pv = fypµ
'

fµgy _ gvpµ gµgY = gvgµ

are fulfilled. These conditions lead to the following relations

f - fy:(b 0
µpv pu 1 puv pY pu

n
(46) fµgy - gyp = _8yµ + (dKp 4kgY*kp 0

µ µ µ
n

gµg
Y

- gYqu = (dkqp*vqY - 'iwqY*k;qN ) = 0 .
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Here 8v, denotes the Kronecker symbol: fly,, = 0 for V / µ, and

VV = 1.

To simplify the notation we introduce the Lagrange bracket

symbols

(a,tl (4ks*ltt - 4ht*+w)

where s,t are two of the variables p`,,q Then we can say

(46*) fgy,g;t

1Pv,g1i ) = 0 for v (pv,gv) = 1

are conditions which guarantee the existence of a function W and

G, such that (45) holds. Hence under these conditions the Ha-

miltonian system (42) is transformed into the Hamiltonian

system (44)
Definition: A transformation uv = 4 (x,p,q),

VV = *v(x,p,q) which satisfies the equations (46) or (464x) is

called a canonical transformation.

We just have shown that every canonical transformation

preserves the Hamiltonian character of a system of differential

equations. It is interesting that the conditions (46) do not

depend on the special Hamiltonian function.

Using matrix notation we can write the .,onditions (46) in

a very simple form: Introduce the 2n by 2n matrices

4yp dvg
0 In

In 0M= µ

,
*VP

k *vqW

where In is the n n unit matrix. Then the conditions (46) can

be written in the form

(47) M'JM = J

where M' denotes the transposed of Ni.

A matrix which satisfies the relation (47) is called sym-

plectic. These matrices play a role in different parts of ma-

thematics. All these sympleotio matrices form a group, which is
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called the symplectic group - one of the elementary groups in

the theory of Lie groups. To establish the group character we

have to show that M-1 also is symplectic. For this purpose ob-

serve that from (47) follows dot M = (det M)2 = 1 and

therefore dot M = + 1. Hence we can form M. Multiplying (1.7)

from the right by M-1 and from the left by (M')-1 one obtains

J = (M 1)'JM-1

which proves that M-1 Is symplectic. Similarly one shows that

the product of two symplectic matrices is symplectic. From the

group property of the symplectic matrices follows immediately

that the canonical transformations form a group where multipli-

cation means applying one transformation after the other.

Although this characterization of the canonical transfor-

mation is very general and algebraically satisfactory we want

to discuss another property of canonical transformations which

plays an Important role in mechanics and optics. For this pur-

pose we go back to equation (45) but consider u,p as independent

,ariables, instead of p,q. In other words we write

and

' , = av(x,u,p)

qv = Pv(x,u,p)

W = V(x,u,p)

Then we get from (45)

uv

t
qv PV =

- Vpv

and the remaining terms give

-H= -G+Vx

uyav - H p''PV - G + da V

If we now compare the coefficients of uv,pv we obtain

vv= av=V
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Therefore we have a representation of a canonical transformation

by one function V(x,u,p) which is called the "generating funo-

tion". In this representation, however, the old and the new

variables are mixed up and one has carefully to observe the order:

(48)

vv * Vu
v
(x,u,p)

4v * - VP (x,u)p)
V

If we assume dot (Vp u
) i 0, we can solve the last equation for

v
uv in terms of p,q. Inserting the result into the first equa-

tion we get vv in terms of p,q. This must give a canonical

transformation according to the derivation. Furthermore we have

an explicit representation of the new Hamiltonian

(48 ) G = Fi + V

Observe that in general the transformation of a system of diffe-

rential equations is an involved process while here the new

system is obtained directly from the Hamiltonian G. However,

one still has to invert the equation (I.8) in the way indicated

above. in particular, if the transformation does not depend ex-

plicitly on x, we have Vx = 0 and G = H. In other words G is

obtained from H by substituting the new variables.

There is another representation of a canonical system with

a generating function. In this case we pick u,q as independent

variables. Furthermore we introduce

U(q) = W + Z pvgv
V

Then (45) goes over into

uyvv - H - pvgv - G + dx U(x,u,q)

Comparing coeffioients of u,, qv we find

(49) I
vv * Uuv (x,u,q)

PV = Ugv(x,u,4)
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and

(!i.9a) G=H+Ux

In order to obtain the coordinates u,v in terms of p,q we

have to assume dot (Uq
u ) 1 0 and to zoive the second equation
v µ

(49) for u.. Notice that the function U(x,u,q) is not complete-

ly determined by the transformation. If one adds any function

of x alone the new function will generate the same transformatim.

The transformations obtained from (48) and (49) are cano-

nical transformations according to their derivation. But not

every canonical transformation can be brought into the form (48)

or the form (49). One can prove that the necessary and suffi-

cient condition for a canonical transformation

uv = 4v(x,p,q)

vv = *v(x,p,q)

to be equivalent to (48) is that

dot (iyvp ) / 0
µ

Similarly the transformation is equivalent to (9) if and only

if dot (* vq } / 0. For instance the identity transformation

vv = q,, uv = pv cannot be represented in the form (48) but in
n

the form (49) with U = uvgv
v=1

Using the generating function we can easily answer the

question, how to extend a transformation

PV = 6y(x,u)

of the u into p to a canonical transformation of the u,v varia-

bles into p,q. We assume that dot (4) ¢ 0. We try to construct

a generating function U(x,u,q) such that

Uq = 4v(x,u)
v
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For example
nF

has this property and

dot ( U = dot (dvu ) / 0
V µ

Therefore formula (49) shows how to transform the vv:

vv =
Uuv

=

which is a linear transformation between the v and the q.

Examples:

1) The transformation of rectangular coordinates into po-

lar coordinates

p= .(u2+v2)

q = arctan u

or

u = cos q
v = Ap- sin q

is canonical.

2) An interesting example is the transformation which one

obtains by extending the inversion on a circle to a canonical

transformation. The inversion can be written in the form

uv
PV ul+u2+ ... +un

or

(50)

so that

PVuv = 22
pi + p2 + ... + Pn

(p2 +...+ pn)(u +...+ u2)

(v = 1,2,...,n)

This transformation T is called an involution because it is

identical with its inverse. This property should be preserved

for the extended Canonical transformation.
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We construct a generating function U(x,u,q) and have

according to (49)
Uq

v
=

and we choose

uv

ul + u2 +...+ un

One checks easily that dot (Uu
q

) ' 0. For simplicity we

write u,v for the vectors (uv),(vv) and

Iu12u2 (u,v) = z uvvv

Similarly for p,q. Then from the first equation of (49)

qv (u,q)uv

Vu I--- --- ,

and since 1u121P12 = 1, and uv/1u12 = Pv we obtain the formula

(50') vv = lpl2gv - 2(p,g)pv

which gives the transformation of the vv.

This transformation plays a role in celestial mechanics

in the problem to describe the motion of particles in the 3-

body prob'em for a collision. A remarkable property of this

transformation is that its inverse also is rational in the coor-

dinates, nd as a matter of fact, the inverse has the same form

as the original transformation. rt is an involution. To check

this we ccmpute

( ) ) = 1u,p 1 , P

2 )(u,q) - , q
2

1

lp 1

(u,v) = 1p12(u,q) - 2(p,q)(u,p)

(p,q) - 2(p,q) = (p,q)
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Therefore we find from (50') by solving for q:

qv = 1i vv + 2-q pv = lul2vv + 2(p,q)uv = lul2vv - 2(u,v)uv.

Hence the inverse mapping

uvPV =
7-72

gy = lul2

has exactly the same form as (50), (50').

As an application we solve the Hamilton equations for

H==uY vv= 1u121v1
V=l

We make use of the above transformation (50), (50') and observe

that it does not depend explicitly on x. Therefore we obtain

the now Hamiltonian just by expressing Iul2lvl in the new varia-

bles p,q. For this purpose we compute from (50'):

Iv12 n vy - IpI41g12 - 41P12(p,q)2 + 4(p,q)2,P12

= 1p141g12

or because of ju12IpI2 = 1

1ul21v12 = 1p121g12

Then

and we hnve

iu121vi = Jul IpI Iql = Iql

H(x,u,v) = lul2lvl = Iql = G(x,p,q)

Therefore the new Hamiltonian does not depend on the p

variables at all. The Hamilton equations

pvI = 0
v gv

qv` - GpO

vv - 2(u,v)uv
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can be ac,lved explicitly:

qV(x) = qV(0)

pv(x) = Gq x + PV(0) =
q
-r- x + pV(0)

V qV

The solutions are straight lines. The above transformation

(50),(50') represents the solutions in the old coordinates u,v

explicitly, if one inserts for pV,gV the obtained functions of x.

b) Infinitesimal Canonical Transformation.

In the preceding section we introduced the canonical trans-

formations by means of their property of preserving the Hamil-

tonian character of a system of differential equations. There

is another connection which we develop now: If we consider a

system of differential equations

dw V

dx = fV(x,w) (v = 1,2,...,m)

they ddfine in a natural way a transformation. If the solution

of this system with the initial values wv = w' are denoted by

wV = g,(x,w°), then we have for every sufficiently small +xf a

transformation of the w0 into the wV. For x = 0 this Is the

identity transformation and the Jacobian equals one. Therefore

the Jacobian is different from zero for sufficiently small lxI.

) the transformations "generated"We want to oall wv = gV(x,w °

by the systems wV = fV(x,w).
We are going to prove the following statement. The sys-

tems of differential equations for which the transformations ge-

nerated by it are canonical are exactly the Hamiltonian systems.

This theorem shows-the close connection between the Hamiltonian

systems and the canonical transformations.

iefore proving this we consider transformations

(51)
UV = ¢V(x.p.q)

VV = iV(x.p,q)
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depending on a parameter x and denote it symbolically by T(x).

For small x we can write formally T(x) = T(O) + xTX(O) +... .

We ask the question what is the condition on Tx(0) and T(O) for

T(x) to be canonical? Of course T(0) has to be canonical as

one suspects by letting x = 0. What is the condition for Tx(0)?

The transformation Tx(0) is obtained from (51) as

uv = 4vx(O,P,q)

vy = *VX(O,P,q)

and is called the infinitesimal transformation of (51).
We obtain such a condition immediately from (47) by in-

troduoing the matrix

(52) M(x) _
vPµ

vqµ

* vp0 *V9 µ)

If (51) is canonical we have

M'JM = J

and differentiating with respect to x:

MXJM + M'JMx = 0

Therefore M'JMx is a symmetric matrix, since

(M'JMx)' = MXJ'M : -M'xJM = M'JMX. This is the condition for

the infinitesimal transformation to be canonical. It can be ex-

pressed in another form namely that JMXM-1 be symmetric, which

is equivalent to the old condition since

M'JMx = M'(JMxM"l)M

This also shows that JMXM-1 is symmetric if and only if M'JMx

is symmetric. Defining S = -JMXM-1 a symmetric matrix we have

with
J-1 = -J

(53) Mx = ism

as the condition for the infinitesimal transformation to be
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We apply this result to a family of transformations which

are generated by a system of differential equations

(54) wv - fv(x,w) (v = 1,...,m)

The 'transformation generated by (54) we write in the form

w v = IV (X, r)

where rv a wV(0). We define M(x) by

axVM(V)
µ

From (53) we have

X.vx = f,(x,x)

and differentiating with respect to rµ

These equations can be combined into the matrix equation

Mx = (fvw )M

Comparing this equation with (53) '.e see that the trans-

formations generated by (54) are canonical if and only if

(fvw )=is
µ

where S is a symmetric matrix. This implies m is even, so that

we can write m a 2n. To discuss this condition we define

m
rx vrµx - = vwk k rµ

(v,µ = 1,...,m) .

g11 ....,g2n by

Then

and

gV a f V+n , gVtn a j V

-J(ry) = gv

for v
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This matrix has to be symmetric. This condition is identical

with the integrability condition for a function H(x,w), such

that

Therefore

form-

(fv) = J (gv) = J(Hw ) and the system (54) has the
v

w' = J(Hw ) .

V

If we now define wv = uv, wv+n = vv for v = 1,2,...,n we have

(55) ,=v - HV uv

which shows the Hamiltonian character of the system.

Therefore the Hamiltonian systems can be characterized by

the property that the transformations generated by them are

canonical.

As a consequence of this result we obtain a simple proof

for the existence of a complete solution of the Hamilton equa-

tions: Denote the transformation generated by (55) by

uv = dv(x,p),q)

vv = *v(x,P,q)

where pv = uv(0), qv = vv(0). Then this transformation is cano-

nical and for sufficiently small +xi we have det (*vq ) 9t 0.
11

Therefore we can write the transformation in the form (L.9) with

a generating function U(x,u,q). The new Hamiltonian is given by

G(x,p,q) = H(x,u,v) + Ux

Since, however, p,q, does not depend on x, we have 0 = p' = Gq,

0 = q' = -Gp, so that G = G(x) does not depend on p or q. If

we now form S(x,u,q) = U(x,u,q) - jOxo

G(x)dx; we can take S as

a generating function of the same transformation. Then we find

that the new Hamiltonian is
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0 = H(x,u,v) + Sx

and the equation for S Is

H(x,u,Su) + Sx = 0

which is just the Hamilton Jacobi equation. The function

S(x,u,q) is a complete solution since

dot (Su q ) = det (Uu q ) / 0 .
V µ v µ

Thus we have established the existence of a complete solution

of the Hamilton Jacobi equation.

This approach allows a new interpretation of the Hamilton

Jacobi equation. The solution of the Hamilton Jacobi equation

S(x,u,q) is a generating function of a canonical transformation

for which the new Hamiltonian is G =_ 0. Then the new system is

p' = q' = 0 which is easily integrated.

Frequently it is too complicated a task to solve the Ha-

milton Jacobi equation but one succeeds in simplifying the Ha-

miltonian. For instance, in the example of the last section

H==uy vv
v=1

we found a canonical transformation such that the new Hamilto-

nian

0 =

did not depend on the pv. Therefore q,' = -Gpv = 0 and qV are

independent of x. In this way the transformation theory is used

for solving the Hamilton equation.

More important, however, is the application of the trans-

formation theory in the perturbation theory of classical mecha-

nics.* Consider a Hamiltonian H = H0 + eH1 which is close to a

*
To distinguish it from the perturbation theory of quantum

mechanics.
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Hamiltonian of a system which can be integrated. For example

in Astronomy one is interested in the motion of a planet which

moves almost on an ellipse and HO would represent the Hamilto-

nian which describes the attraction of the sun. The other p?a-

nets, however, cause some perturbation of this system which is

to be considered small. On would like to get some approximate

solution for the "perturbed" system. For this purpose assume

that the Hamilton Jacobi equation for the unperturbed system

H0(x,u,Su) + Sx = 0

can be solved. Considering S(x,u,q) as the generating function

of a canonical transformation we obtain for the new aamiltonian

G = HO(x,u,Su) + £HI(x,u,Su) + Sx - CHI(x,u,Su)

so that we can write G= eG1(x,p,q). The Hamiltonian system is

transformed into

p'y = eGlgv

qy = - CGlpv

which shows that the coordinates pv,gv only change slowly. By

approximate integration of this simplified system one can find

an approximation to the solution.

c) Application of Canonical Transformation in Optics.

In optics one investigates the effect of lenses or

other optical instruments on light rays. The basic law that

describes these prccosses is Fermat's principle which states

that Me light rays are extremely of a variational problem: A

ray st rting at P and ending at Q has the property of minimizing

the time required to travel along a curve from P to Q. For a

homoger,sous medium the light rays are straight lines and the

statement of Fermat's principle is obvious. This principle,

however, holds also for rays passing through optical instruments

providcd one considers the frequency of light as extremely

large. This is the idealization of geometrical optics.
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Therefore we can consider the light rays as extremals of

a variational problem. If we consider isotropic media only

this variational problem can be written in the form

t

4.

2n(x) x1+X2+x3dt

where x = (xl,x2,x3) and n(x) is the refraction index. This In-

dex of refraction will be discontinuous on the surface of a

lense which will make the theory as we have developed it not di-

rectly applicable. We can avoid this difficulty by replacing

n(x) by a continuous function which is a good approximation to

the discontinuous function.

We want to describe the effect of a lense on light rays.

We choose the coordinate x1 such that it passes through the

lense. The xl,x2,x3 axis are assumed to be mutually orthogonal.

Since we are only interested in rays passing through the instru-

ment wt. can rewrite the variational problem in the inhomogeneous

form
pb

dl n(x) IT77+ x3` dxl
a

where r2 = dx2/dxl; x3 = dx3/dxl. The light rays are the extre-

mals of this variational problem. Introducing the canonical va-

riablen

(S6)

Y2 ' 8x (n(x) 1 + x2 + f) = n(x)
x

/,-+-X-21-r+
x32

73 =
Ax/1 + x72 + x3

x I

n(x)

1+x12 +x37

and the Hamiltonian function

H(x,y) = x2'72 + xVy3 - n(x) 1 + x2 + XF n - y2 - y3

we can write the differential equations for the extremals in the

Hamiltonian form
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(57)
xv

yv (v = 2,3).

yv
- xv

The variables y2,73 determine the direction of the ray. Accord-

ing to the result of the last section this Hamiltonian system

generates a canonical transformation which will be characteristic

for the optical instrument. We denote the initial values of

xv,yv (v = 2,3) for x1 = 0 by gv,7v and the solutions of (57)

with these initial values by

ixv = 4v{x1,,7)
(v = 2,3)

v = *v(xl,g, 1)

where g = (g2' 3); 1 = (12,73). Then we know that the transfor-

mation of the Fv,1v into the xv,yv for every x1 are a canonical

transformation.

We now assume that the whole optical instrument lies com-

pletely in the interval 0 < x < 1. Tn other words we want to

assume that n(x) = const = n for x1 < 0 and xl > 0. In those

regions n(x) represents the refraction index of the air.

We want to study the transformation of the rays starting

in a plane xl - 0 on one side of the instrument into the corres-

ponding rays passing through a plane x1 = 1 on the other side.

Then this transformation is given by

(58)
xv V 4V (l,E,1)

(v = 2,3)
yv = +Vv(1,,>r)

which is a canonical transformation of the variables Fv,lv into

the variables xv,yv (v = 2,3).

If we now assume

dot (4vF. ) i 0 (v,µ = 2,3)
IL

we can find a generating function V(x,g) such that
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=

(59)
yv Vxv

(v = 2,3)
'(V = - Vgv

This function plays an important role in optics and is called

the "gikonal". All the optical properties of the instruments

are determined by this function. The property (59) of the

function V(x,g) can be interpreted as follows. If S(x,g) is

the extremal integral taken along an extremal from g to x, then

according to our calculations in Chapter 11 we have Sx =
yv

v
and Sg' for the direction of the corresponding extremals.

V
Therefore the function V(x,g) can be identified with the extre-

mal integral from g to x. In other words V(x,g) represents the

time in which the light travels from g to x.*

in optics one is interested in transformations which give

a sharp picture of an object; in other words transformations

that transform all rays which start in a point into rays which

pass through the image point. A transformation of this kind

is called "stigmatic". An optical instrument that produces

a transformation of this kind is called an "absolute" instru-

ment.

It is a very Interesting result of Maxwell, that every

stigmatic mapping is trivial In the sense that object and image

have the same size. In other words no enlargement is possible

with a sharp picture. An enlarging lens system can only give

approximately sharp pictures in the neighborhood of the axis.

As a matter of fact the mirror is the only optical instrument

that is known to produce a stigmatic transformation.

We, want to ptove t'taxwell's theorem. We assume we have an
isotropic medium, i.e. the variational problem Is of the form

t2 nt2

2 2- 72jn(x) xl + x2 + x3 dt F(x,x) dt

tl tl
details see: R.K. Luneburg, Mathematical Theory

of Optics, Brown University, 1944, esp. Chapter II.
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Assume there exists a stigmatic transformation of x = (x1,x2,x3)

into a point g _ (91,92,93):

Ey = 4v(x) or x, = *v(&) (v = 1,2,3)

According to the assumption all extremals starting at x inter-

sect each other at g, provided they can be continued that far.

This means x and E are conjugate points t?' 'v+gh not necessarily
consecutive ones. One proves, as for conjugate points, that the

integral
S9

F(x,x) dt

has the same value for all extremals connecting x and E There-

fore it is a function of x p(x1,x2,x3) along:

V(x) {C F(x,a) dt
x

Secondly we want a connection between the differentials

dx and dE. For this purpose consider an extremal 6 connecting

x and F , and a point y on it close to x. Let 7 = 4 (y) be its

image point. It is clear that I lies on the continuation of the

extremal f since in q all extremals starting at y intersect, es-

pecially 9. Then

y F dt - '1 F dt = E F dt - J F dt = V(x) - V(y)
x E x Y

If we now pass to the deri-

vative by letting y approach

x we have 7

(60) n(x) {dx1) + (dx2)' + (d
x3)

- n(4(x) (dE1) (dE3)

= Vx1 dxI + Vx2 dx2 + Vx
3
dx3 .
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Here dgp = ¢vxµ dxµ Is the Image of dx and this relation holds

for all dx which lie on an extremal connecting x and g. But

since both sides are analytic functions of dx this equation

holds identically for all dx. This can be interpreted as fol-

lows: If we integrate the left hand side --sr a curve g and

denote its image curve by y then

Jg n(x) xl +
2 "3' dt - Y n(t)(ji + 42 + 42)dt = V(b) - V(a)

where a,b are the initial and and points of g. In particular,

if g is a closed curve the right hand side vanishes. In other
words the integral j' F dt taken over a closed curve has the same

value if it is taken over the image curve.

The aim of the proof is to show that V is a constant.

Then the above statement will hold for any curve, not only closed

ones. For this purpose we observe that (60) holds for any vector

dx. Replace dx by A dx where X is any real number. Then the

left hand side is replaced by 1X times the left hand aide. But

the right hand side is multiplied by A. 8o if we take A = -1

the left hand side does not change but the right hand side

changes sign. Therefore

Vx
1
dxI + Vx2 dx2 + Vx3dx3 = 0

or V = const.

Therefore we nave the following result: For every stig-

matic transformation the integral JF dt taken from a point to

its image point is a constant. Furthermore

n(x) xi "2 3 dt = e 1

n( ) F,i + j2 + 473 dt
g Y

which says that the t9optical length" of a curve and its image

curve are the same.

If in particular the refraction index along g and along y

are the same constant, as would be the case for a mapping through
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a lens system with air on both aides, then the'-actual length of

g and ' would coincide. This proves Maxwell's theorem.

16. An Approximation Theorem for Minimum Problems with Side

Conditions.
In order to solve a minimum problem in which objects en-

tering into the competition are required to satisfy certain side

conditions or boundary conditions, it may be possible to appro-

ximate the given problem by others without aide conditions. In

other words. it seems reasonable to attempt to obtain the solu-

tion to a minimum problem with side conditions as the limit of

solutions to a sequence of problems without aide conditions.

For example, this strategy can be used to find the point

closest to the origin on the straight line

Ax +By +C=0 ;

that is, the point which minimizes f(x,y) where

f(x,y) R x2 +
y2

subject to the aide condition

g(x,y)
where

g(x,y) = Ax + By + C.

The solution can be obtained by first finding the point (xnyn)

which minimizes fn(x,y) given by

fn(x,y) .a f(x,y) + n(g(x,Y))2

or, in particular,

fn (x,y) a x2 + y2 + n(Ax + By + C)2

when no side conditions are imposed. It seems plausible that

jg(xn,yn)l will be small for large values of n since (xnyn
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minimizes fn(x,y) and the non-negative term n(g(x,y)]2, there-

fore, could not have a very large value. Thus, it might be ex-

pected that, as n tends to infinity, (xn,yn) will approach a

point (xco yco ) such that

g(x00 ,yam) = 0

and (x C02700) minimizes f(x,y) among all points satisfying the

side condition. In fact, it can be verified that this is pre-

cisely the case since solving the equations

x xn

xx fnl
= 2xn + 2An(Axn + Byn + C) = 0

y'yn

y n 2yn + 2Bn(Axn + Byn + C) = 0

yields
-AC n

n
a

1 +B2 )n

y
= -BCn

n 1+ (A +B )n
BC,Clearly, as n tends to infinity the point (- 2I,-2) Is2

AC

A+B A+B
approached, and it can be checked by elementary methods that

this is the closest point to the origin on the straight lino.

Of course, in order to be able to use such a method in

other problems, some theorem is needed guaranteeing that the so-

lution is produced by the limiting process. An appropriate theo-

rem will now be proved, and the theorem will then be used to

justify the passage to the limit in a significant example. Spe-

cifically, the theorem will be applied in proving a Lagrange

multiplier rule (Euler-Lagrange rule) for functions of two va-

riables. In addition, it will be indicated how the theorem

might be used to justify a procedure for obtaining the solution

to minimum problems with artificial boundary conditions as the

limit of solutions of sequences of problems in which no boundary

conditions are imposed in advance.

The underlying theorem for the approximation procedure is

the following:
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AN ArPROXIMATION THEOFEM:

Part I:

If:
a) J(P) and *(P) are lower semi-continuous real-valued

functions on a convergence space * S;

b) ir(P) > 0 for all P in S and there exist points in S

for which *(P) = 0;

c) A denotes the problem: Find a point satisfying the

aide condition
qi(P) = 0

at which I(P) takes on its least value for all P in S

satisfying the side condition;

d) At denotes the problem: Find a point for which

J(P) + tyr(P) takes on its least value for all P in S;

and

e) There exist a sequence ftnj of positive real numbers,

a sequence [Pnj of points in S, and a point FCO in S

such that to - co as n -? oo , Fn solves At , and
Pn P as n -?oo; n

then:
Pm solves A.

Part TI:
If S is compact, then condition e) of Part I is automatical-

ly satisfied. Moreover, every sequence fznj of positive

numbers such that 'tn --? OD as n - co possess a subsequence
which can be taken as the sequence ftni of condition e) of

Part I.

The proof of Part I of the theorem depends primarily on an

inequality relating the least value do for the function mini-

mized in problem At and the greatest lower bound d of the values
n

of J(P) for points satisfying the side condition imposed in

Problem A. Specifically, It will now be shown that if do is

* The term convergence space here denotes any space in which a
notion of convergence is defined.
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given by

do - .!(Pn) + tn+y (Pn )

and if d is given by

then d is finite and

d = 6.1.b. 1(P) ,

1* (P)^0]

dn_ d

This follows immediately from the tcnci, that, if P is any
point in 3 satisfying the side condition

then
*(P) = 0 ,

J(P) = J(P) + tn*(P) Z do ,

where the inequality holds since do is the least value of

(P) + tnyi(P) for all P in S. Thus,

do < -4(P)

for all P satisfying the side condition, and, consequently

(l.b0] T(P)d
n < g.

That is,

or

(61)

do < d

J(P11) + tn*(P n) < d

This last inequality can be weakened by dropping the non-

negative term tA1*(Pll), giving the inequality

(Pn) <d ,

which, together with the relation

J( POD ) < I LM I(Pn )

expressing; the lower sami-continuity of !(P), implies that

lim J(Pn) is finite and that
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j(POD ) < lim 1(Pn) < d ,

and, of course,

(62) j(POO ) < d

Moreover, the inequality expressing the lower semi-conti-

nuity of _j(P) can be slightly weakened and written as a strict

inequality as follows:

.j(POD ) - 1 < lim g(Pn) .

But, since J(P00) - 1 is less than the lower limit of the set of

numbers T(Pn), it follows that there are at most a finite num-

ber of values of n for which

(J(Pn ) < (PCD ) - 1

or, in other words, there exists a positive number N such that

J(Pn) > I(POO ) - 1 for n > N

In view of (61), it then follows that

J(PCO) - 1+tn*(Pn) < d for n > N
or

tn*(Pn) < d - J(P00 ) + 1 for n > N

In other words, the sequence of non-negative numbers tn*(Pn) is

bounded; and since to -? co as n -> co, it follows that

'.?n) -> 0 as n --> oo , and, clearly

lim_ %,(Pn) = lim *(Pn) = 0
n->,oo

However, the lower semi-continuity of *(P) implies that

*(Poo) < lim *(Pn) = 0

while condition b) of the theorem insures that

*(POD ) > 0 ,
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from which it follows that

*(Pm ) .

Thus, P00 satisfies the side condition for problem A.

Since PCO satisfies the side condition for problem it, and

since, of course,

.J(P) > d

for all points satisfying the side condition, it follows, in

particular, that

.1(00 )

But this relation together with (62) implies that

J(POD )

Finally, this equality and the fact that Pco satisfies the side

condition of problem A exactly expresses the fact that P00

solves i, completing the proof of Part I.

T).e proof of Part II is quite simple in view of the.theo-

rem which states that a lower semi-continuous function on a

compact space possesses a least value. Let rTn be any sequence

of positive numbers such that 2'n --? co as i,-> aD . Then, since
!(P) an(l *(P) are both lower somi-continuous, it follows that

T(P) + ,y,(P) is lower semi-continuous and therefore takes on
its lea:t value when P ranges over the compact space S; that is,

there exists at least one point, say 7tn, which solves At . The

compactness of S insures that the sequence of points itn has a

subsequence of points nm(n) which converges to a point in S,

say PCO . Let the point Pn be defined by

Fn = 71m(n)

and let to be defined by

to = Tm(n)
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It is clear that to -> co as n co, Pn solves Atn, and

Pn-- POD as n - co. This completes the proof of Part II and
the entire approximation theorem.

The approximation theorem can be used to prove the follow-

ing form of the Lagrange multiplier rule:

THEOREM:

If f(x,y) and g(x,y) ore continuous 2nd possess continuous

derivatives fx, fy, gx, and gy in an open region R Containing

the poir:t (xo,y,) with

(gx(xo,Yo))2 + tgy(xo,yo)]2 0 ,

and, moreover, if (xo,yo) furnishes a relative minimum for

f(x,y) among points in R satisfying the side condition

g(x,y) = 0

then there exists a number A such that

fx(xo,Yo) + Agx(xo,Yo) = 0

and

Y(xo,y0) + )1gy(xo,Yo) = C .

Before proving the theorem, it might first be remarked

that it is good enouch to show that the Jacobian a(,Y vanish-(X)
at the point (xo,yo). The vanishing of this Jacobian toge-

ther with the condition

(gsx(xo,yo))2 + (gy(xo,yo))Z > 0

is clearly tantamount to the existence of a number A with the

required properties.

The proof of the vanishing of the Jacobian will be divided

into two cases. The first and more important case is that in

which there exists in the open region R an open sub-region G

containing the point (xo,yo) such that

f(x,Y) > f(xo,yo)
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for all points in G other than (xo,yo) satisfying the side

condition

g(x,y) = 0 .

The essential feature for Case I is that (xo,yo) is the unique

point in the open region G at which f(x,y) takes on its least

value among its values at points satisfyi.rg the side condition.

In order to a'ply the approximatio; theorem, let any

closed bounded region G. contained in G with (xo,yo) as an in-

terior point be identified with the space S. In this case, of

course, S is compact and Part II of the approximation theorem

guarantees the existence of numbers to and points Pn and Pco as

specified in condition e) of Part I. Moreover, let f(x,y) be

identified with J(P) and (g(x,y)]2 with *(P), the side condition

g(x,y) - 0

being equivalent to the side condition

[gkx,y)]2 = 0

Since problem A has a unique solution (xo,yo) in this case, it

follows that POD is the point (xo,yo). F.trther, let (xn,yn)

represent the point Pn ; that is, let (xn,yn; be a point at

which f(x,y) + tn[g(x,y)]2 takes on its least value in G*.

Since (xn'yn)- (xo,Yo) as n - co and (xo,yo) is an in-

terior point of G*, it follows that there exists a positive

number Vi such that (xn,yn) is an interior point of G* for n > H.

But the fact that f(x,y) + tn[g(x,y)l2 takes on its least value

at an interior point (xn,yn) implies that the point (xn,yn) is

a stationary point. It follows that

and

fx(xn,yn) 2tng(xn,Yn)gx(xn,yn) - 0 for n > M

fy(xnyn) + 2t ng(xn,yn)gy(xn,yn) = 0 for n > M

and, consequently,
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a{
IY-yn

= 0 Porn>Md x,y
But the Jacobian is a continuous function since the partial de-

rivatives of f(x,y) and g(x,y) have been assumed to be conti-

nuous. Therefore, letting n tend to infinity yields

x= x0

(f ) y`yo
0 ,

c) x,Y

completing the proof for Case I.

Case XI is that in which there does not exist an open re-

gion G containing (xo,yo) such that

f(x,y) > f(x0,y0)

for all points In G other than (xo,y0) satisfying the side con-

dition. However, the fact that (x0,yo) is a relative minimum

point insures the existence of a neighborhood of (x0,y0) such

that

f(x,y) ? f(xo,Y0)

for all points in the neighborhood satisfying the side condition.

It follows that in Case II there exists in every neighborhood of

(xo,yo) at least one point other than (xo,yo) which satisfies

the side condition and at which

f(x,y) = f(x0,yo)

That is, (xo,y0) is. an accumulation point of a set of points at

every point of which

f(x,y) - f(x0,Yo)

and

Clearly, the mapping

g(x,y) = 0 .

u = f(x,y)
v = g(x,y)
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is not one-to,-one for neighborhoods of (xo,yo) and the inverse-

function theorem insures that

a(f. p)

x=xp

y=yo
=0

Thus, the vanishing of the Jacobian for Care II has been proved

without even using the approximation theorem, and the proof of

the multiplier rule has been completed.

Another application of the approximation theorem is in

justifying a procedure which adapts boundary value problems to

the Rayleigh-Ritz method. For example, if admissible functions

are required to vanish identically on the boundary of a region

G, then the problem of minimizing the functional

I = if F(x,y,u,ux,uy) dxdy
G

can be attacked with the Rayleigh-Ritz method only if approxi-

mating functions which vanish on the boundary can be explicitly

found. However, an approximation to the solution might be ob-

tained by minimizing the functional

toit = F(x,y,u,ux,uy) dxdy + t'E) u ds
G JJ

for a sufficiently large positive value of t. with no boundary

conditions prescribed (where u:-denotes the values of u on the

boundary of G). This problem can easily he handled with the

Pzyleigh-Ritz method since the approximating functions are not

required to satisfy any boundary conditions. However, some gua-

rantee is needed to insure that the solution to this problem

approximates the solution to the original problem. In certain

cases, the approximation theorem proviass this guarantee. If

the class of admissible functions should happen to be compact

and if the minimum problem should happen to have a unique solu-

tion, then the approximation theorem can be applied directly.
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The function T(P) can be identified with F(x,y,u,ux,uy) dxdy

and ts(P) can be identified with u2 ds. Then, the approximation

theorem insures the existence of sequences of values for t ap-

proaching infinity such that the solution to the original pro-

blem is approached as the free boundary problem is solved for

these values of t.

In addition, it might be attempted to use the approximz-

tion theorem to derive Lagrange multiplier rules for the isope-

rimetric problems of the Calculus of Variatt.ons, particularly

with partial differential equation side conditions. The main

object is, of course, to derive necessary conditions for an ob-

ject to solve a minimum problem with side conditions by using

only the approximation theorem and known necessary conditions

for minimum problems of the same type without side conditions.
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