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Abstract

We obtain fundamental solutions for PDEs of the form ut = σxγ uxx + f (x)ux − μxru by showing that
if the symmetry group of the PDE is nontrivial, it contains a standard integral transform of the fundamen-
tal solution. We show that in this case, the problem of finding a fundamental solution can be reduced to
inverting a Laplace transform or some other classical transform.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we show how to compute fundamental solutions for every partial differential
equation (PDE) of the form

ut = σxγ uxx + f (x)ux − μxru, (1.1)

which possesses a sufficiently large symmetry group. These PDEs are important in financial
mathematics and other areas. We extend a technique due to Craddock and Platen [4], who studied
the γ = 1, μ = 0 case. Their method reduces the problem to the evaluation of a single inverse
Laplace transform, which is given as an explicit function of the drift f . Such a method has

* Corresponding author.
E-mail address: mark.craddock@uts.edu.au (M. Craddock).
0022-0396/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2006.07.011



M. Craddock, K.A. Lennox / J. Differential Equations 232 (2007) 652–674 653
many benefits. For example, it is quite direct since it does not require changes of variables or the
solution of an ordinary differential equation, and it may be implemented numerically.

Craddock and Platen’s analysis relies upon an apparent curiosity. Namely, that for a large class
of PDEs, one of the multipliers (see Section 2), in the Lie point symmetry group is the Laplace
transform of the fundamental solution. This approach is however incomplete, as Craddock and
Platen were not able to handle every class of PDEs they studied. We give the complete solution
to the problem.

It turns out that what Craddock and Platen discovered is a special case of a more general
phenomenon. We prove that for at least one of the vector fields in the sl2 part of the Lie symmetry
algebra, the multiplier of the symmetry, or a slight modification of the multiplier, is always
a classical integral transform of the fundamental solution of the PDE. We show that Laplace
transforms of the fundamental solutions arise naturally, as do other classical transforms, such as
the Whittaker and Hankel transforms. A priori, it is not at all obvious that this should be true.
This curious fact suggests a connection between Lie symmetry analysis and harmonic analysis,
which should be investigated further.

The method also yields a quite elementary derivation of the so called heat kernel on the
Heisenberg group. Most derivations of this heat kernel are far from elementary. See, for ex-
ample, Gaveau [5] and Jorgensen and Klink [6]. We reduce the problem to inverting a Laplace
transform. In fact, we will recover more than just the heat kernel. We obtain a family of solutions
containing the heat kernel.

2. Lie symmetries as integral transforms

For the theory of Lie symmetries we refer to Olver’s book [10]. For simplicity we consider
only a single linear equation

ut = P
(
x,u(n)

)
, x ∈ Ω ⊆ R, (2.1)

with independent variables x and t and dependent variable u. Here u(n) denotes u and its first n

derivatives in x. The essence of Lie’s method is that we look for vector fields of the form

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u, (2.2)

which generate one parameter groups preserving solutions of the given PDE. Since every PDE
of the form (2.1) has time translation symmetries as well as an infinite-dimensional Lie al-
gebra of symmetries which comes from the superposition of solutions, we call them trivial
symmetries. When we refer to the dimension of a Lie symmetry algebra, we mean the di-
mension of the algebra excluding the infinite-dimensional ideal generated by superposition of
solutions.

We denote by ũε = ρ(exp εv)u(x, t) the action on solutions generated by v. Typically we have

ρ(exp εv)u(x, t) = σ(x, t; ε)u(
a1(x, t; ε), a2(x, t; ε)), (2.3)

for some functions σ,a1 and a2. We call σ the multiplier and a1 and a2 the change of variables
of the symmetry.
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Now suppose that (2.1) has a fundamental solution p(t, x, y). Then the function

u(x, t) =
∫
Ω

f (y)p(t, x, y) dy, (2.4)

solves the initial value problem for (2.1) with appropriate initial data u(x,0) = f (x).
The idea is to connect the solutions (2.3) and (2.4). We take a stationary (time independent)

solution u = u0(x). So in this case

ρ(exp εv)u0(x) = σ(x, t; ε)u0
(
a1(x, t; ε)). (2.5)

Setting t = 0 and using (2.4) suggests the relation∫
Ω

σ(y,0; ε)u0
(
a1(y,0; ε))p(t, x, y) dy = σ(x, t; ε)u0

(
a1(x, t; ε)). (2.6)

Since σ and a1 are known, we have a family of integral equations for p(t, x, y).

Consider the example of the one-dimensional heat equation ut = uxx. If u(x, t) solves the
heat equation, then for ε small enough, so does

ũε = e−εx+ε2t u(x − 2εt, t). (2.7)

Taking u0 = 1, Eq. (2.5) gives

∞∫
−∞

e−εyp(t, x − y)dy = e−εx+ε2t , (2.8)

where p(t, x) is the one-dimensional heat kernel. Thus the multiplier in the symmetry (2.7) is
nothing more than the two-sided Laplace transform of p(t, x − y). We can recover p(t, x − y)

by inverting (2.8).
A second well-know symmetry of the heat equation is

ũε = 1√
1 + 4εt

exp

{ −εx2

1 + 4εt

}
u

(
x

1 + 4εt
,

t

1 + 4εt

)
. (2.9)

Using u0 = 1 again we obtain

∞∫
−∞

e−εy2
p(t, x − y)dy = 1√

1 + 4εt
exp

{ −εx2

1 + 4εt

}
. (2.10)

Equation (2.10) is an integral transform. It is easy to verify that p(t, x) = 1√
4πt

e−x2/4t is
a solution of the integral equation (2.10). Directly inverting the transform is more problematic
since we do not know of an explicit inversion theorem and the inverse transform will be unique
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only up to the addition of an arbitrary odd function. However, using the fact that p is positive
and setting z = y2 gives

∞∫
−∞

e−εy2
p(t, x − y)dy =

∞∫
0

e−εzG(t, x, z) dz,

where G(t, x, z) = (p(t, x − √
z ) + p(t, x + √

z ))/2
√

z. Thus the multiplier in the symme-
try (2.9) is the Laplace transform of G(t, x, z). Inverting the Laplace transform gives

G(t, x, z) = 1√
4πt

exp

{−(x2 + z)

4t

}
cosh(x

√
z/2t)√

z
.

From this we can recover p(t, x). A more satisfactory method of extracting the fundamental
solution from (2.10) is developed in Section 7. Our overall aim is to show that exploiting the
relationship (2.6) yields a fundamental solution for any PDE of the form (1.1) with nontrivial
symmetry group.

3. Symmetries of generalized bond pricing equations

A zero coupon bond is a security which pays the holder one unit of currency at maturity.
A readable account of the theory of bond pricing by PDE methods is contained in the book [7].

Assume that the risk neutral spot rate of interest X satisfies the stochastic differential equation

dXt = f (Xt , t) dt + b(Xt , t) dWt , X0 = x, (3.1)

where W is a standard Wiener process. The function f is known as the drift and b the volatility.
Let u be a solution of the PDE

ut = 1

2
b(x, t)2uxx + f (x, t)ux − xu, x � 0, (3.2)

with initial condition u(x,0) = 1. It can be shown that the price at time t of a zero coupon bond
maturing at time T , is given by u(x,T − t).

We concentrate here on interest rate models of the form

dXt = f (Xt ) dt + √
2σXt dWt .

This corresponds to γ = 1 in (1.1). We will illustrate the general principles for the γ = 1 case.
We will proceed by computing the Lie symmetries of the PDE (1.1) with γ = 1. The case r = 1
contains the bond pricing equation for this class of interest rate models. Its symmetries were
completely described by Lennox in [9]. The μ = 0 case was analysed by Craddock and Platen
in [4]. The case of arbitrary γ in (1.1) is considered in Section 7.

Proposition 3.1. The partial differential equation

ut = σxuxx + f (x)ux − μxru (3.3)
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with r �= −1 has a nontrivial Lie algebra of symmetries if and only if the drift function f is a
solution of one of the following families of Ricatti equations

σxf ′ − σf + 1

2
f 2 + 2μσxr+1 = Ax + B, (3.4)

σxf ′ − σf + 1

2
f 2 + 2μσxr+1 = A

2
x2 + Bx + C, (3.5)

σxf ′ − σf + 1

2
f 2 + 2μσxr+1 = A

2
x2 + 2

3
Bx

3
2 + Cx − 3

8
σ 2. (3.6)

If r = −1 the right-hand side of Eqs. (3.4)–(3.6) is replaced by σxf ′ − σf + 1
2f 2 + 2μσ lnx.

The proof of this result is essentially the same as the μ = 0 case given in [4]. The factors of
1
2 and 2

3 multiplying the constants A and B in (3.5) and (3.6) are a notational convenience. For
our purposes we need only the following facts: when f is a solution of (3.4), then there is an
infinitesimal symmetry

v1 = xt∂x + 1

2
t2∂t − 1

2σ

(
x + tf (x) + 1

2
At2

)
u∂u. (3.7)

When f is a solution of (3.5) there is an infinitesimal symmetry of the form

v1 = xe−√
At∂x − e−√

At

√
A

∂t + e−√
At

2σ

(√
Ax − f (x) + B√

A

)
u∂u. (3.8)

When f is a solution of (3.6) with A = 0 there is an infinitesimal symmetry

v1 =
(

xt + B

12

√
xt3

)
∂x + 1

2
t2∂t

− 1

2σ

(
x + B

2

√
xt2 + tf (x) − σB

24
√

x
t3 + B

12
√

x
t3f (x) + C

2
t2 + B2

144
t4

)
u∂u.

When f is a solution of (3.6) with A �= 0 then there is an infinitesimal symmetry

v1 = e−√
At

(
x + 2B

3A

√
x

)
∂x − e−√

At

√
A

∂t

+ e−√
At

(√
A

2σ
x + 2B

√
x

3σ
√

A
− f (x)

2σ
+ B

6A
√

x
− Bf (x)

3σA
√

x
+ C

2σ
√

A
+ B2

9σA3/2

)
u∂u.

(3.9)

A complete classification of the infinitesimal symmetries is in [9]. It may be readily
checked that the symmetry algebras in all cases are either the Lie algebras of SL(2,R) × R or
SL(2,R) � H3 where H3 is the three-dimensional Heisenberg group. The vector fields listed
above all come from sl2.
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For example, consider the case of the Lie symmetry algebra when f satisfies (3.4). Introduce
the standard basis for sl2 given by

k1 =
(

0 1
0 0

)
, k2 =

(−1 0
0 1

)
, k3 =

(
0 0

−1 0

)
.

Calculating the commutator table for the Lie symmetries shows that v1 given by (3.7) is equiva-
lent to the matrix element k3. The time translation symmetry v2 = ∂t is equivalent to k1 and the
Lie bracket of v1 and v2 produces a vector field which is equivalent to the basis vector k2. Similar
comments can be made about the Lie symmetry algebras when the drift f satisfies one of the
other classes of Ricatti equations. In general, all the vector fields listed here correspond to k3.

It is also worth noting that all the known symmetry methods for obtaining fundamental solu-
tions, such as the group invariant solution method of Bluman, Cole and Kumei (cf. [2]) will only
work for the drifts described in Proposition 3.1.

4. Laplace transforms of fundamental solutions

The first case to consider is when f satisfies (3.4). The next result generalizes [4, Theo-
rem 4.1]. The case r = 1 is in [9].

Theorem 4.1. Let f be an analytic solution of the Ricatti equation

σxf ′ − σf + 1

2
f 2 + 2μσxr+1 = Ax + B. (4.1)

Let u0(x) be an analytic solution of (3.3) which is independent of t and

Uλ(x, t) = exp

{
1

2σ

(
F

(
x

(1 + σλt)2

)
− F(x)

)
− λ(x + A

2 t2)

(1 + σλt)

}
u0

(
x

(1 + σλt)2

)
, (4.2)

where F ′(x) = f (x)/x. Then

Uλ(x, t) =
∞∫

0

u0(y)pμ(t, x, y)e−λy dy,

where pμ(t, x, y) is a fundamental solution of (3.3).

Proof. We exponentiate the vector field (3.7) to see that if u0(x) is a stationary solution of the
PDE (3.3) where f satisfies (3.4), then Uλ(x, t) given by (4.2) is also a solution. Since u0 and
f are analytic, then for each t > 0, Uλ is analytic in 1/λ and therefore is a Laplace transform
in y of u0(y)pμ(t, x, y) for some distribution pμ. Since Uλ(x,0) = u0(x)e−λx we must have
p(0, x, y) = δx(y), the Dirac measure weighted at x. To see that pμ is a fundamental solution
of (3.3), observe that if we integrate a test function ϕ(λ) with sufficiently rapid decay against Uλ

then the function u(x, t) = ∫ ∞
Uλ(x, t)ϕ(λ)dλ is a solution of (3.3). We also have
0
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u(x,0) =
∞∫

0

Uλ(x,0)ϕ(λ)dλ =
∞∫

0

u0(x)e−λxϕ(λ)dλ = u0(x)Φ(x),

where Φ is the Laplace transform of ϕ. Next observe that

∞∫
0

u0(y)Φ(y)pμ(t, x, y) dy =
∞∫

0

∞∫
0

u0(y)ϕ(λ)pμ(t, x, y)e−λy dλdy

=
∞∫

0

∞∫
0

u0(y)ϕ(λ)pμ(t, x, y)e−λy dy dλ

=
∞∫

0

ϕ(λ)Uλ(x, t) dx = u(x, t).

We know that u(x,0) = u0(x)Φ(x). Thus integrating initial data u0Φ against pμ solves the
Cauchy problem for (3.3), with this initial data. Hence pμ is a fundamental solution. �

We will give some financial applications. To obtain drift functions, we set f (x) = 2σxy′(x)/

y(x). This transforms Eq. (3.4) with r = 1 to the linear ODE

2σ 2x2y′′(x) + (
2μσx2 − Ax − B

)
y(x) = 0. (4.3)

This has general solution

y(x) = e
−ix

√
μ√

σ xβ/2
(

a1F1

(
α,β,

2ix
√

μ√
σ

)
+ bΨ

(
α,β,

2ix
√

μ√
σ

))
, (4.4)

where a and b are constants,

α =
−(

iA − 2
√

μσ
3
2 − 2

√
μ

√
1 + 2B

σ 2 σ
3
2
)

4
√

μσ 3/2
, β = 1 +

√
1 + 2B

σ 2
,

1F1 is Kummer’s confluent hypergeometric function and Ψ is Tricomi’s confluent hypergeomet-
ric function, given by [1, formula (13.1.6)]. This implies that f is analytic.

To obtain a stationary solution u0 we solve

σxuxx + f (x)ux − μxu = 0. (4.5)

We set u = ũ(x)e
∫

ϕ(x)dx with ϕ(x) = − 1
2σx

f (x). An easy calculation shows that ũ satisfies the
ODE

2σ 2x2ũxx − (Ax + B)ũ = 0. (4.6)

Equation (4.6) is solved in terms of Bessel functions. Hence u0 is also analytic.
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Example 4.1. If A = 0, then

y(x) = a
√

xJη

(
x
√

μ/σ
) + b

√
xYη

(
x
√

μ/σ
)
. (4.7)

Here η = 1
2

√
1 + 2B/σ 2, Jη, Yη are Bessel functions of the first and second kinds and a

and b are arbitrary constants. If B = 0, a = 0 and b = 1 we obtain the drift function f (x) =
2x

√
μσ cot(x

√
μ
σ

).

A stationary solution of the corresponding bond pricing equation is u0(x) = csc(x
√

μ
σ

). Ap-

plying Theorem 4.1 we obtain

Uλ(x, t) = exp

{ −λx

1 + tλσ

}
csc

(
x

√
μ

σ

)
.

Computing the inverse Laplace transform gives

pμ(t, x, y) = exp

{−(x + y)

σ t

}( √
x√

yσ t
I1

(
2
√

xy

σ t

)
+ δ(y)

) sin
(
y

√
μ
σ

)
sin

(
x

√
μ
σ

) .

The bond price B(x, t, T ) when the risk neutral spot rate of interest x follows the SDE dXt =
2Xt

√
σ cot( Xt√

σ
)dt + √

2σXt dWt , is then

B(x, t, T ) =
∞∫

0

p1(T − t, x, y) dy = e
{ −x(T −t)

1+σ(T −t)2
} sin

(
x√

σ+σ 3/2(T −t)2

)
sin

(
x√
σ

) .

With the fundamental solution we can also price options on bonds, interest rate swaps, interest
rate caps and many other instruments. For example, a European call/put option is the right to
buy/sell an underlying asset for a fixed strike price at some date in the future. The price of a call
option with strike E on the zero coupon bond B is simply

C(B,x, t, T ) =
∞∫

0

max
(
B(y, t, T ) − E,0

)
p1(T − t, x, y) dy.

Example 4.2. Setting A = 0, B = 4σ 2, a = 1 and b = 1 in the general solution (4.4) we obtain
the drift function

f (x) = −2σ

g(x)

(
g(x) + μx2

√
σ

(
sin

(
x

√
μ

σ

)
− cos

(
x

√
μ

σ

)))
,

where g(x) = (x
√

μ + √
σ ) cos(x

√
μ

) + (x
√

μ − √
σ ) sin(x

√
μ

).

σ σ
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Omitting the details, we obtain via Theorem 4.1 a fundamental solution of ut = σxuxx +
f (x)ux − μxu. It is

pμ(t, x, y) = 1

σ t
exp

{
−x + y

σ t

}(
x

y

) 3
2

I3

(
2
√

xy

σ t

)
g(y)

g(x)
.

The corresponding bond price may now readily be obtained.
Many such examples are possible. The drifts which arise can be very complex, and so allow

for very different kinds of interest rate dynamics.

4.0.1. Stochastic volatility models
Consider the problem of pricing a European option under stochastic volatility. The time evolu-

tion of the underlying asset St is modelled by the SDE dSt = rS dt +√
vt dW 1

t and the volatility
vt satisfies dvt = f (vt ) dt + a

√
vt dW 2

t .
We assume that the two Wiener processes W 1,W 2 are uncorrelated. The value of an option at

time t with expiry T and payoff g is denoted V (S, v, t). It can be shown that V must satisfy the
PDE

Vt + 1

2
vS2VSS + rSVS + 1

2
a2vVvv + f (v)Vv − rV = 0, (4.8)

subject to V (S, v,T ) = g(S, v). For a discussion of stochastic volatility models see the book by
Joshi [7]. Letting S = lnx, t → T − t and V̂ (ξ, v, t) = ∫ ∞

−∞ V (x, v, t)e−iξx dx leads to the PDE

Ut = 1

2
a2vUvv + f (v)Uv − μvU, (4.9)

with α = r(iξ − 1), μ = 1
2 (ξ2 + iξ) and U = e−αt V̂ . If pμ(t, v, y) is the fundamental solution

of (4.9), then

V̂ (ξ, v, t) = eα(T −t)

∞∫
0

ĝ(ξ, y)pμ(T − t, v, y) dy.

From which we can determine V . Consequently, for our models, the problem of pricing an
option under stochastic volatility is reduced to the evaluation of an integral.

5. Whittaker transforms of fundamental solutions

Let us consider the vector field v1 from (3.8). Craddock and Platen were only able to handle
some special cases for this symmetry. Here we present the complete solution to the problem.

Exponentiating v1 and replacing ε with −ε we see that if u0(x) is a stationary solution of
Eq. (3.3), then with F ′(x) = f (x)/x,

U−ε(x, t) = e− Bt
2σ exp

{ −√
Axε

2σ(e
√

At − ε)
+ 1

2σ

(
F

(
xe

√
At

e
√

At − ε

)
− F(x)

)}

× (
e
√

At − ε
) B

2σ
√

A u0

(
xe

√
At

√
At

)
(5.1)
(e − ε)
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is also a solution of (3.3). We assume that u0 is not left invariant by this symmetry. If it is, then
the analysis we present fails. However if (5.1) leaves u0 invariant, we may use a second sl2
symmetry, generated by

v2 = xe
√

At∂x + e
√

At

√
A

∂t − e
√

At

2σ

(√
Ax + f (x) + B√

A

)
u∂u.

This symmetry will not fix u0. The analysis we present here can be repeated for that symmetry
and the results are essentially identical.

We assume that A > 0. The case A < 0 can be handled by a slight modification of our ar-
gument. We write U−ε(x, t) as an integral of its initial value against our fundamental solution.
Then we have

∞∫
0

U−ε(y,0)pμ(t, x, y) dy = U−ε(x, t). (5.2)

To identify this as a known integral transform we observe that the solution u0 may be written
as u0(x) = ũ0(x)e−F(x)/2σ where ũ0 satisfies the ODE 2σ 2x2ũ′′

0(x) − ( 1
2Ax2 + Bx + C)×

ũ0(x) = 0. This has solution

ũ0(x) = e
−√

Ax
2σ x

β
2

(
a1F1

(
α,β,

√
Ax

σ

)
+ bΨ

(
α,β,

√
Ax

σ

))
, (5.3)

where α = B

2σ
√

A
+ 1

2β , β = 1 +
√

1 + 2C

σ 2 . With a = 0, b = 1, this gives

U−ε(x, t) = e− Bt
2σ

(
e
√

At − ε
) B

2σ
√

A
− β

2 x
β
2 e− F(x)

2σ exp

{−√
Ax(e

√
At + ε)

2σ(e
√

At − ε)

}

× Ψ

(
α,β,

√
Axe

√
At

σ (e
√

At − ε)

)
. (5.4)

Therefore, with η = B

2σ
√

A
− 1

2β , Eq. (5.2) reads

U−ε(x, t) = (1 − ε)η

∞∫
0

y
β
2 e− F(y)

2σ exp

{
−

√
Ay(1 + ε)

2σ(1 − ε)

}
Ψ

(
α,β,

√
Ay

σ(1 − ε)

)
pμ(t, x, y) dy.

Upon setting λ =
√

A
σ(1−ε)

this becomes

∞∫
0

e−λy(λy)
β
2 Ψ (α,β,λy)hμ(t, x, y) dy = λ

B

2σ
√

A U√
A/(σλ)−1(x, t),

where hμ(t, x, y) = (
√

A)ηe

√
Ay−F(y)

2σ pμ(t, x, y).

σ
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Let Wk+1/2,ν(z) = e−z/2z1/2+νΨ (ν − k,1 + 2ν, z) be the second Whittaker function (see
[1, formula (13.1.33)]). If 1 + 2ν = β , ν − k = α, then the previous integral becomes

∞∫
0

e− λy
2 W

k+ 1
2 ,ν

(λy)hμ(t, x, y) dy = λ
B

2σ
√

A U√
A/(σλ)−1(x, t).

We may write this as

∞∫
0

e− λy
2 (λy)−k− 1

2 Wk+1/2,ν(λy)(λy)k+ 1
2 hμ(t, x, y) dy = λ

B

2σ
√

A U√
A/(σλ)−1(x, t).

If h̃μ(t, x, y) = yk+ 1
2 hμ(t, x, y), then this becomes

∞∫
0

e− λy
2 (λy)−k− 1

2 Wk+1/2,ν h̃μ(t, x, y) dy = λ
B

σ
√

A U√
A/(σλ)−1(x, t). (5.5)

The final integral in (5.5) is the so-called Whittaker transform of h̃μ.

Definition 5.1 (The Whittaker transform). The Whittaker transform of a suitable function φ is
defined by

(Wk,νφ)(λ) = Φ(λ) =
∞∫

0

(λy)−k−1/2e−λy/2Wk+1/2,ν(λy)φ(y) dy. (5.6)

An inversion theorem for this transform is known. For a suitable constant ρ we have

φ(y) = 1

2πi

�(1 + ν − k)

�(1 + 2ν)

ρ+i∞∫
ρ−i∞

(λy)−k−1/2eλy/2Mk−1/2,ν(λy)Φ(λ)dλ.

The function Mk−1/2,ν is the first Whittaker function given by [1, formula (13.1.32)]. The in-
tegral is taken in the principal value sense. For a discussion of the transform, see [3, p. 110].
Note that Brychkov and Prudnikov call this the Meijer transform. There does not seem to be a
general naming convention in the literature regarding these transforms. Unfortunately, theorems
guaranteeing that a given function is a Whittaker transform seem to be difficult to prove, so our
next result is not as strong as Theorem 4.1.

Theorem 5.2. Let f be a solution of (3.5) for μ �= 0. Let

η = B

2σ
√

A
− 1

2
β, ν = 1

2

√
1 + 2C/σ 2 and k + 1

2
= − B

2σ
√

A
.

Let U√
A/(λσ)−1(x, t) be given by (5.1). Suppose that λ

B

σ
√

A U√
A/(λσ)−1(x, t) is the Whittaker

transform of a function h̃μ(t, x, y). Then
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h̃μ(t, x, y) =
(√

A

σ

)η

yk+ 1
2 e

√
Ay−F(y)

2σ pμ(t, x, y),

where pμ is a fundamental solution of the PDE (3.3).

Note. If μ = 0 this theorem is still valid if we simply replace the stationary solution given with
u0 = 1. It is also easy to show that if A → 0 then this result reduces to Theorem 4.1.

Proof of Theorem 5.2. From the initial value for λ
B

σ
√

A U√
A/(λσ)−1(x, t), it is clear that its

Whittaker transform must be of the form h̃μ(t, x, y), where p(0, x, y) = δx(y). To show that
pμ is a fundamental solution, we use the same argument as in the proof of Theorem 4.1.
We need to know that the Whittaker transform has the right operational properties, such as∫ ∞

0 f (x)(Wk,νg)(x) dx = ∫ ∞
0 (Wk,νf )(x)g(x) dx. This is the case. For a discussion of this and

other operational properties of the Whittaker transform see [8, Chapter 7]. �
Note. Fortunately, it is possible to explicitly prove that for a wide range of parameters we do
indeed have a Whittaker transform. For example, if Re(ν − k) > −1 then h̃μ can be shown to be
a Whittaker transform. Two other special cases are presented now.

5.1. Some special cases

5.1.1. The case B

2σ
√

A
+ 1

2 = 1
2

√
1 + 2C

σ 2

Set ν = 1
2

√
1 + 2C

σ 2 . Since Ψ (2ν,1 + 2ν, x) = x−2ν , then for this choice of parameters the
problem reduces to inverting a Laplace transform. We consider only the case A > 0. We obtain
after a straightforward calculation

∞∫
0

exp

{−√
Ay(1 + ε)

2σ(1 − ε)
− F(y)

2σ

}
y

1
2 −ν(1 − ε)−1+2νpμ(t, x, y) dy

= e
√

At
(
e
√

At − ε
)−1+2ν

x
1
2 −ν exp

{−√
A(e

√
At + ε)

2σ(e
√

At − ε)
− F(x)

2σ

}
. (5.7)

We set λ =
√

A(1+ε)
2σ(1−ε)

. After some further calculations this reduces to

∞∫
0

e−λyy
1
2 −νe− F(y)

2σ pμ(t, x, y) dy

= e− F(x)
2σ

( √
A

σ(e
√

At − 1)

)1−2ν

e
√

At

× exp

{ −√
Ax

2σ tanh
(√

At
2

) + m

λ +
√

A
2σ

coth
(√

At
2

)}(
λ +

√
A

2σ
coth

(√
At

2

))−1+2ν

,

where m = Ax
2σ

cosech2(
√

At
2 ). Inversion of this Laplace transform is straightforward. There are

two cases.
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If ν �= 1
2 then

pμ(t, x, y) = 4ν

√
x

y

√
Ae( 1

2 +ν)
√

At

4σ sinh
(√

At
2

) e
F(y)−F(x)

2σ exp

{
−

√
A(x + y)

2σ tanh
(√

At
2

)}
I−2ν

(
2
√

Axy

σ sinh
(√

At
2

))
.

If ν = 1
2 then the fundamental solution is given by

pμ(t, x, y) = e
F(y)−F(x)

2σ exp

{
−

√
A(x + y)

2σ tanh
(√

At
2

)}( √
A

2σ sinh
(√

At
2

)√
x

y
I1

(
2
√

Axy

σ sinh
(√

At
2

))
+ δ(y)

)
.

(5.8)

5.1.2. The case B = 0
If B = 0 then we make use of the fact that

(λx)
1
2 +νe−λxΨ (1/2 + ν,1 + 2ν,λx) = 2−ν

√
λx/πKν(λx), (5.9)

where Kν is a modified Bessel function. This implies that

U
σλ/

√
A−1(x, t) =

(√
A

σ

)η 2−ν

√
π

∞∫
0

√
λyKν(λy)e

√
Ay

2σ
− F(y)

2σ pμ(t, x, y) dy.

This so-called K transform can be inverted. We have

(√
A

σ

)η 2−ν

√
π

e

√
Ay−F(y)

2σ pμ(t, x, y) =
ρ+i∞∫

ρ−i∞
(λy)

1
2 Iν(λy)U

σλ/
√

A−1(x, t) dλ,

for a suitable constant ρ. Here Iν is the modified Bessel function of the first kind. Notice that for
A < 0 we obtain the Hankel transform of the fundamental solution.

5.1.3. The case a = 1, b = 0
If we had taken a = 1, b = 0 in (5.3), we would arrive at the so-called 1F1 transform, described

in [3, p. 115]. We leave the details of this calculation to the interested reader.

6. The final class of Ricatti equations

Now suppose that the drift function f satisfies the Ricatti equation σxf ′ − σf + 1
2f 2 +

2μσxr+1 = A
2 x2 + 2

3Bx
3
2 + Cx − 3

8σ 2. When A = 0 we obtain the Laplace transform of the
fundamental solution. The result here generalizes Theorem 6.1 of Craddock and Platen [4]. The
proof is identical to that of Theorem 4.1 above and we omit it.

Theorem 6.1. Let f be a solution of the Ricatti equation,

σxf ′ − f + 1
f 2 + 2μσxr+1 = Ax

3
2 + Cx − 3

σ 2. (6.1)

2 8
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Let u0(x) be an analytic solution of (3.3) which is independent of t . Let

F ′(x) = f (x)/x, H(λ, x, t) = (12(1 + λσ t)
√

x − Aλ(σ t)3)2

144(1 + λσ t)4
and

G

(
λ,x,

t

σ

)
= −λ(x + 1

2Ct2)

1 + λt
−

2
3At2√x(3 + λt)

(1 + λt)2
+ A2t4(2λt(3 + 1

2λt) − 3)

108(1 + λt)3
.

Then for λ � 0, Uλ(x, t) = ∫ ∞
0 u0(y)pμ(t, x, y)e−λy dy, where pμ(t, x, y) is a fundamental

solution of (3.3) and

Uλ(x, t) =
√ √

x(1 + λσ t)√
x(1 + λσ t) − Aλ

12 (σ t)3
exp

{
G(λ,x, t)

}
u0

(
H(λ,x, t)

)
× exp

{
− 1

2σ

(
F(x) − F

(
H(λ,x, t)

))}
. (6.2)

The case when A �= 0 in (3.6) turns out to be similar to that of the previous section, though
because of the nature of the symmetries, it is perhaps not quite as elegant.

Let D = 2B
3A

, E = 1√
A

( C
2σ

+ B2

9σA
) and F ′(x) = f (x)/x. For simplicity we will begin with the

μ = 0 case and again assume that A > 0. The cases A < 0 and μ �= 0 can be handled similarly.
To solve the Ricatti equation (3.6) we set

y = 2
√

x and
h′(y)

h(y)
= 1

σy

(
f

(
y2

4

)
− σ

2

)
,

then we obtain a second order ODE for h which is solvable in terms of confluent hypergeometric
functions. Omitting the rather straightforward details this leads to

exp

{
1

2σ
F(x)

}
= x

1
4 e−

√
A(x+2D

√
x )

2σ

×
(

c1Ψ

(
−α

2
,

1

2
,

√
A(D + √

x )
2

σ

)
+ c21F1

(
β,

1

2
,

√
A(D + √

x )
2

σ

))
,

(6.3)

where α = − 1
2 + 2B2−9CA

9σA3/2 and β = −4B2+9(2AC+σA3/2)

36σA3/2 and c1 and c2 are arbitrary constants.
We will take the solution corresponding to c2 = 0, c1 = 1.

We exponentiate the infinitesimal symmetry (3.9). Let u(x, t) be a solution of (3.3), then the
following is also a solution:
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ρ
(
exp(εv1)

)
u(x, t) = (

1 + εe−√
At

)−E

√√√√ √
xe

√
At/2

e

√
At
2 (D + √

x ) − D
√

e
√

At + ε

× exp

{√
Aε(

√
x + D)2

2σ(e
√

At + ε)
+ 1

2σ
F

((
e

√
At
2 (D + √

x )√
e
√

At + ε
− D

)2)}

× exp

{
− 1

2σ
F(x)

}
u

((
e

√
At
2 (D + √

x )√
e
√

At + ε
− D

)2

, ln
(
e
√

At + ε
))

.

(6.4)

Since we have assumed that μ = 0 we may take a stationary solution u0(x) = 1. After can-
cellations, this leads to the following solution of (3.3)

Uε(x, t) = (
1 + εe−√

At
)−E

e

√
At
4 exp

{
−

√
A(

√
x + D)2

2σ

(
e
√

At − ε

e
√

At + ε

)}

× Ψ

(
−α

2
,

1

2
,

√
A(

√
x + D)2

σ(e
√

At + ε)

)/
hα(x), (6.5)

with hα(x) = exp{−
√

A(
√

x+D)2

2σ
}Ψ (−α

2 , 1
2 ,

√
A

σ
(
√

x + D)2).
From this point the analysis is similar to that of the previous section for the case of the Ricatti

equation (3.5). We wish to interpret Eq. (2.6) as a known integral transform. We set λ =
√

A
σ(1+ε)

.

Thus (2.6) becomes

∞∫
0

e−λ(
√

y+D)2
Ψ

(
−α

2
,

1

2
, λ(

√
y + D)2

)
gα(y)pμ(t, x, y) dy = Uλ(x, t),

where gα(y) = (
√

A
σ

)E exp{
√

A
2σ

(
√

y + D)2}/hα(y) and Uλ(x, t) = λ−EU√
A/(σλ)−1(x, t). Upon

setting z = (
√

y + D)2 we have

∞∫
0

e−λzΨ

(
−α

2
,

1

2
, λz

)
H

(√
z − |D|)g̃α(z)p̃μ(t, x, z) dω(z) = Uλ(x, t), (6.6)

where H is the Heaviside step function and g̃α and p̃μ are the obvious transformed functions

and dω(z) = (
√

z−|D|√
z

) dz. If we set ν = −1/4, k = α/2 − 1/4 then (6.6) becomes

∞∫
e− λz

2 (λz)−k− 1
2 W

k+ 1
2 ,ν

(λz)Gα(z)p̃μ(t, x, z) dz = λ−k− 1
4 Uλ(x, t),
0
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where Gα(z) = H(
√

z − D)g̃α(z)(
√

z − D)zk− 1
4 . We can thus apply the inversion formula for

the Whittaker transform to recover the fundamental solution. Again, the proof of the next result
follows the same pattern as for Theorem 4.1.

Theorem 6.2. Let f be a solution of the Ricatti equation (3.6). Let Uε(x, t) be as given by
(6.5). Further let Gα(z) be as defined above and k = −α/2 − 1/4, ν = −1/4. Suppose that

U√
A/(λσ)−1(x, t) = λ−k− 1

4 (σλ/
√

A)−EU√
A/(σλ)−1(x, t) is a Whittaker transform of a function

Gα(z)p(t, x, z). Then

Gα(z)p(t, x, z) =
ρ+i∞∫

ρ−i∞
(λy)−k−1/2eλy/2Mk−1/2,ν(λy)U√

A/(λσ)−1(x, t) dλ, (6.7)

and p̃(t, x, (
√

y + D)2) is a fundamental solution of (1.1) for the given drift.

Note. This result can easily be extended to the μ �= 0 case. Just replace Uε(x, t) in the integral
(6.7) by Uε(x, t) multiplied by the appropriate stationary solution u0 of the PDE, as per the
symmetry (6.4).

Example 6.1. Suppose that μ = 0 and (2B2 − 9CA)/9σA
3
2 = 3

2 . Further assume that E > 0. It
is straightforward to invert the transform for these values and we obtain the fundamental solution

p(t, x, y) = 2
1
2 −E

√
y

(
√

y + D)

(√
x + D√
y + D

) 1
2 −E

exp

{√
AEt

2
+ G(x,y, t)

}

× I
E− 1

2

(√
A(

√
x + D)(

√
y + D)

σ sinh(
√

At
2 )

)(
1 − e−√

At
)−1

H
(√

y + D − |D|),
where G(x,y, t) = −√

A([(√y+D)2−(
√

x+D)2]+((
√

x+D)2+(
√

y+D)2) coth(
√

At
2 ))

2σ
.

7. The case of arbitrary γ

We have shown that for every class of Ricatti equation in Proposition 3.1, there is an sl2 sym-
metry whose action comes from a well-known integral transform of the fundamental solution.
Similar results can be established for PDEs of the form (1.1) with γ �= 1. There are various spe-
cial cases which need to be considered in order to present a complete picture, but this can be done
by following the method described here. Rather than embarking on an exhaustive treatment, we
will content ourselves with an illustrative result for the general case and some examples.

Theorem 7.1. Suppose that g(x) = x1−γ f (x), γ �= 2, r + 2 − γ �= 0 and that g satisfies the
Ricatti equation σxg′ −σg+ 1

2g2 +2σμxr+2−γ = 2σAx2−γ +B , where A and B are constants.
Then Eq. (1.1) has a symmetry of the form
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Uε(x, t) = 1

(1 + 4εt)(1−γ )/(2−γ )
exp

{−4ε(x2−γ + σ(2 − γ )2At2)

σ (2 − γ )2(1 + 4εt)

}
× exp

{
1

2σ

(
F

(
x

(1 + 4εt)2/(2−γ )

)
− F(x)

)}
u

(
x

(1 + 4εt)2/(2−γ )
,

t

1 + 4εt

)
,

where F ′(x) = f (x)/xγ . Suppose further that the natural domain of (1.1) is x � 0. Let Uε be
the value of Uε when u = u0 is a stationary solution of the PDE (1.1). Then

∞∫
0

e−λy2−γ

u0(y)pμ(t, x, y) dy = U 1
4 λσ(2−γ )

(x, t), (7.1)

where pμ(t, x, y) is a fundamental solution. If the equation is defined on R then

∞∫
−∞

e−λy2−γ

u0(y)pμ(t, x, y) dy = U 1
4 λσ(2−γ )

(x, t). (7.2)

Proof. A straightforward application of Lie’s prolongation algorithm shows that when g satisfies
the given Ricatti equation, there is an infinitesimal symmetry of the form

v = 8xt

2 − γ
∂x + 4t2∂t −

(
4x2−γ

σ (2 − γ )2
+ 4x1−γ tf (x)

σ (2 − γ )
+ 4(1 − γ )

2 − γ
t + 4At2

)
u∂u.

Exponentiating the symmetry gives Uε. The remainder of the proof is similar to that of Theo-
rem 4.1. �

The integral transform in (7.1) can obviously be reduced to a Laplace transform. We present
an example.

Example 7.1. Let γ = 0. The Ricatti equation in Theorem 7.1 is easily solved by the change

of variables g = 2xσy′/y. One solution gives the drift f (x) = −σ
2x

+ 2
√

x
√

μ
√

σ cot(
2x

3
2
√

μ

3
√

σ
).

A stationary solution of the corresponding PDE is u0(x) = x
3
2 csc(

2x
3
2
√

μ

3
√

σ
). Applying Theo-

rem 7.1 gives

Uε(x, t) = x3/2

(1 + 4εt)7/4
exp

{ −εx2

σ(1 + 4εt)

}
csc

(
2x

3
2
√

μ

3
√

σ

)
.

The substitution z = y2 in (7.1) turns it into a Laplace transform. Taking the inverse leads to the
fundamental solution

p(t, x, y) = 1

2σ t
x

3
4 y

1
4 exp

{−(x2 + y2)

4σ t

}
I 3

4

(
xy

2σ t

) sin(
2y3/2√μ

3
√

σ
)

sin(
2x3/2√μ

3
√

σ
)
.
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Extracting the fundamental solution from (7.2) is not quite so straightforward. Fortunately there
is an effective way of doing this. The basic approach is to integrate the symmetries with respect
to the group parameter.

The heat equation has two stationary solutions u0(x) = 1 and u1(x) = x. From these we
obtain the symmetry solutions

U0
ε (x, t) = 1√

1 + 4εt
e

−εx2
1+4εt , U1

ε (x, t) = x

(1 + 4εt)
3
2

e
−εx2
1+4εt . (7.3)

Now let ϕ(ε) and ψ(ε) have sufficient decay to guarantee the convergence of the integrals in

u(x, t) =
∞∫

0

ϕ(ε)U0
ε (x, t) dε +

∞∫
0

ψ(ε)U1
ε (x, t) dε. (7.4)

The function u(x, t) is a solution of the heat equation with u(x,0) = Φ(x2) + xΨ (x2), where Φ

and Ψ are the Laplace transforms of ϕ and ψ. The solutions U0
ε and U1

ε may be represented as
Laplace transforms

U0
ε (x, t) = 1√

4t
e− x2

4t

∞∫
0

e−εze− z
4t

1√
πz

cosh

(√
zx

2t

)
dz, (7.5)

U1
ε (x, t) = 1√

4t
e− x2

4t

∞∫
0

e−εze− z
4t

1√
π

sinh

(√
zx

2t

)
dz. (7.6)

Using these in (7.4) and reversing the order of integration gives

u(x, t) =
∞∫

0

1√
4πt

e− x2+z
4t

[
Φ(z)

cosh
(√

zx

2t

)
√

z
+ Ψ (z) sinh

(√
zx

2t

)]
dz.

Letting z = y2 this becomes after simplification,

u(x, t) =
∞∫

0

1√
4πt

e− x2+y2

4t
[
e

xy
2t

(
Φ

(
y2) + yΨ

(
y2)) + e− xy

2t
(
Φ

(
y2) − yΨ

(
y2))]dy

=
∞∫

0

1√
4πt

e− (x−y)2

4t
(
Φ

(
y2) + yΨ

(
y2))dy +

∞∫
0

1√
4πt

e− (x+y)2

4t
(
Φ

(
y2) − yΨ

(
y2))dy.

(7.7)

Letting y → −y in the second integral gives

u(x, t) =
∞∫

1√
4πt

e− (x−y)2

4t
(
Φ

(
y2) + yΨ

(
y2))dy. (7.8)
−∞
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Since u(x,0) = Φ(x2) + xΨ (x2) this implies that p(t, x − y) = 1√
4πt

e− (x−y)2

4t which is correct.
Let us now use this procedure to determine the fundamental solution for another PDE.

Example 7.2. Consider the equation ut = uxx + 2 tanh(x)ux. This is defined for all x ∈ R. So
we are in the situation of (7.2) in Theorem 7.1. Stationary solutions are u0(x) = 1 and u1(x) =
tanhx. From the symmetry in Theorem 7.1 we obtain the two symmetry solutions

U0
ε (x, t) = 1√

1 + 4εt
exp

{−ε(x2 + 4t2)

1 + 4εt

}
cosh( x

1+4εt
)

coshx
, (7.9)

U1
ε (x, t) = 1√

1 + 4εt
exp

{−ε(x2 + 4t2)

1 + 4εt

}
sinh( x

1+4εt
)

coshx
. (7.10)

The solution u(x, t) = ∫ ∞
0 ϕ(ε)U0

ε (x, t) dε + ∫ ∞
0 ψ(ε)U1

ε (x, t) dε satisfies the initial condition
u(x,0) = Φ(x2) + tanhxΨ (x2), where Φ and Ψ are the Laplace transforms of ϕ and ψ . Now

U0
ε (x, t) =

∞∫
0

e−t−εz− x2+z
4t

coshx

1

2
√

4πzt

[
cosh

(√
z(x + 2t)

2t

)
+ cosh

(√
z(x − 2t)

2t

)]
dz and

U1
ε (x, t) =

∞∫
0

e−t−εz− x2+z
4t

coshx

1

2
√

4πzt

[
cosh

(√
z(x + 2t)

2t

)
− cosh

(√
z(x − 2t)

2t

)]
dz.

We use these representations in the integrals defining u and reverse the order of integration. Then
we let z = y2 and expand the hyperbolic cosines to get

u(x, t) =
∞∫

0

1√
πt

e− x2+y2

4t
−tΦ

(
y2) coshy cosh

(
xy

2t

)
sechx dy

+
∞∫

0

1√
πt

e− x2+y2

4t
−tΨ

(
y2) sinhy sinh

(
xy

2t

)
sechx dy

=
∞∫

0

e−t 1√
4πt

e− (x−y)2

4t
coshy

coshx

(
Φ

(
y2) + tanhyΨ

(
y2))dy

+
∞∫

0

e−t 1√
4πt

e− (x+y)2

4t
coshy

coshx

(
Φ

(
y2) − tanhyΨ

(
y2))dy.

The replacement y → −y in the second integral leads to

u(x, t) =
∞∫

e−t 1√
4πt

e− (x−y)2

4t
coshy

coshx

(
Φ

(
y2) + tanhyΨ

(
y2))dy.
−∞
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This implies that the desired fundamental solution is

p(t, x, y) = e−t 1√
4πt

exp

{
− (x − y)2

4t

}
coshy

coshx
. (7.11)

That this is the fundamental solution can be readily checked. It is also straightforward to verify
that

∞∫
−∞

e−εy2
e−t 1√

4πt
exp

{
− (x − y)2

4t

}
coshy

coshx
dy = U0

ε (x, t), (7.12)

as required by Theorem 7.1.

Using this procedure, the reader may check that

p(t, x, y) = e−t 1√
4πt

exp

{
− (x − y)2

4t

}
sinhy

sinhx
(7.13)

is a fundamental solution for ut = uxx + 2 coth(x)ux valid for x �= 0. Other examples can be
computed the same way.

One may prove results similar to Theorem 7.1 which cover every possible drift for which there
is a nontrivial Lie algebra of symmetries. For example, if

σxg′ − σg + 1

2
g2 + 2σμxr+2−γ = Ax4−2γ

4 − 2γ
+ Bx2−γ

2 − γ
+ C, γ �= 2,

then we have a Whittaker-type transform giving the fundamental solution. There are also theo-
rems analogous to Theorems 6.1 and 6.2. We leave these and the γ = 2 case to the reader. We
will conclude by relating the γ = 0 case to an important equation in nilpotent harmonic analysis.

8. The heat equation on the Heisenberg group

We choose a basis for the Heisenberg Lie algebra, by setting X = ∂
∂x

+ y ∂
∂z

, Y = ∂
∂y

− x ∂
∂z

and Z = ∂
∂z

. The sub-Laplacian is then X2 + Y 2 and so the heat equation on the Heisenberg
group may be expressed as

Ut = Uxx + Uyy + 2yUxz − 2xUyz + (
x2 + y2)Uzz. (8.1)

This possesses few symmetries, but it is invariant under rotations, so the heat kernel itself should
also be invariant under rotations. We therefore make the change of variables r = √

x2 + y2. This
reduces the heat equation to

Ut = Urr + 1

r
Ur + r2Uzz, r � 0. (8.2)
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Taking the Fourier transform in z gives

ut = urr + 1

r
ur − λ2r2u, where (8.3)

u(r, t;λ) =
∞∫

−∞
U(r, z, t)e−iλz dλ. (8.4)

This PDE does have useful symmetries. However instead of considering (8.3), we will study

ut = urr + 1

r
ur − (

λ2r2 − 2|λ|)u. (8.5)

If u is a solution of (8.5), then w = e−2|λ|t u(r, t) is a solution of (8.3). We consider (8.5) because

it has a stationary solution u0(r) = e− |λ|
2 r2

. Equation (8.3) has Bessel functions as stationary
solutions. These lead to Hankel type transforms, which are harder to invert than Laplace trans-
forms.

Proposition 8.1. A basis for the Lie algebra of symmetries of (8.5) is given by

v1 = 2|λ|re4|λ|t ∂r + e4|λ|t ∂t − 2λ2r2e4|λ|t u∂u,

v2 = −2|λ|re−4|λ|t ∂r + e−4|λ|t ∂t − 2
(
λ2r2 − 2|λ|)e−4|λ|t u∂u, v3 = ∂t , v4 = u∂u,

and there is an infinite-dimensional ideal spanned by vector fields of the form vβ = β(r, t)∂u,
where β is an arbitrary solution of (8.5).

We are only interested here in v2. If u0(r) = e− |λ|r2

2 then an elementary calculation shows that

ρ
(
exp(εv2)

)
u0(r) = e4|λ|t

e4|λ|t − 4|λ|ε exp

{−|λ|r2

2

(
e4|λ|t + 4|λ|ε
e4|λ|t − 4|λ|ε

)}
.

From this solution we can recover the heat kernel for both (8.5) and (8.3), as well as the heat
kernel for the Heisenberg group. The main result is the following.

Theorem 8.2. The heat kernel for the PDE (8.5) is

p(t, r, ξ) = |λ|ξe2|λ|t

sinh(2|λ|t) exp

{−|λ|(r2 + ξ2)

2 tanh(2|λ|t)
}
I0

( |λ|rξ
sinh(2|λ|t)

)
,

where Iν is the modified Bessel function of the first kind.

Proof. If p(t, r, ξ) is the heat kernel, then given a solution u(r, t) we must have u(r, t) =∫ ∞
0 u(ξ,0)p(t, r, ξ) dξ. Applying this to the solution ρ(exp εv2)u0(r), we obtain

∞∫
p(t, r, ξ)

1 − 4|λ|ε exp

{−|λ|ξ2

2

(
1 + 4|λ|ε
1 − 4|λ|ε

)}
dξ = e4|λ|t

e4|λ|t − 4|λ|ε exp

{−|λ|r2

2

(
e4|λ|t + 4|λ|ε
e4|λ|t − 4|λ|ε

)}
.

0
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We set s = |λ|
2 (

1+4|λ|ε
1−4|λ|ε ). After some simplification this gives

∞∫
0

e−sξ2
p(t, r, ξ) dξ = |λ|e2|λ|t

2 sinh(2|λ|t) exp

{ −|λ|r2

2 tanh(2|λ|t)
}

× 1

s + |λ|
2 coth(2|λ|t) exp

{
k

s + |λ|
2 coth(2|λ|t)

}
, (8.6)

where k = λ2r2cosech2(2|λ|t)/4. Setting η = ξ2 converts this into a Laplace transform. The
right-hand side of (8.6) can be inverted. With η replaced by ξ2 this gives

p(t, r, ξ) = |λ|ξe2|λ|t

sinh(2|λ|t) exp

{−|λ|(r2 + ξ2)

2 tanh(2|λ|t)
}
I0

( |λ|rξ
sinh(2|λ|t)

)
, (8.7)

which is the desired result. �
For suitable ϕ the following integral defines solutions of (8.5),

u(r, t) =
∞∫

0

ϕ(ξ)
|λ|ξe2|λ|t

sinh(2|λ|t) exp

{−|λ|(r2 + ξ2)

2 tanh(2|λ|t)
}
I0

( |λ|rξ
sinh(2|λ|t)

)
dξ.

Since u(r, t) = ∫ ∞
0 ϕ(ξ)e−2|λ|tp(t, r, ξ) dξ is a solution of (8.3) for suitable initial data ϕ, we

can obtain solutions of the heat equation on H3 by setting

U(r, z, t) =
∞∫

−∞

|λ|
2π sinh(2|λ|t) exp

{ −|λ|r2

2 tanh(2|λ|t)
}
eiλzK(r,λ, t) dλ, (8.8)

where the kernel K is given by

K(r,λ, t) =
∞∫

0

ξ exp

{ −|λ|ξ2

2 tanh(2|λ|t)
}
I0

( |λ|rξ
sinh(2|λ|t)

)
ϕ(ξ) dξ. (8.9)

An obvious choice is to take K = 1. This is achieved by setting ξϕ(ξ) = δ(ξ), which gives the
following solution of (8.1)

h(r, z, t) =
∞∫

−∞

|λ|
2π sinh(2|λ|t) exp

{ −|λ|r2

2 tanh(2|λ|t)
}
eiλz dλ. (8.10)

This is, up to scalar multiple, the heat kernel for H3 obtained by Gaveau and others. We have
thus obtained a family of solutions of the heat equation which contains the heat kernel.

The natural question to ask is whether the methods used here can be applied to other heat
equations on nilpotent Lie groups? There are reasons to believe that this is in fact the case. This
question will be addressed in future work.
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