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Abstract� This paper uses Lie symmetry group methods to anal�
yse a class of partial di�erential equations of the form
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It is shown that when the drift function f is a solution of a fam�
ily of Ricatti equations� then symmetry techniques can be used
to �nd the characteristic functions and transition densities of the
corresponding di�usion processes	

�� Introduction

The purpose of this paper is to show how symmetry group meth�
ods may be used to compute characteristic functions and fundamental
solutions for partial di�erential equations �PDEs�� of the form
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� �����

when the drift function f is a solution of one of the following three
families of Ricatti equations�

xf � � f 	
�



f � � Ax 	B ���
�

xf � � f 	
�



f � � Ax� 	Bx	 C �����
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�
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A�B and C are arbitrary constants�
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We will show that if f is a solution of ���
�� or ����� with B � �� then
we can obtain the characteristic function for the PDE ������ from the
solution u � �� via a straightforward symmetry group transformation�
The characteristic function U��x� t� of ����� is de�ned to be

U��x� t� �

Z �

�

e��yp�t� x� y�dy� �����

where p�t� x� y� is the fundamental solution or Green�s function of equa�
tion ������ That is� U��x� t� is the Laplace transform of p�t� x� y��
The fundamental solution can then be recovered by taking the inverse
Laplace transform of U�� When f is a solution of ����� we are still
able to obtain the fundamental solution by symmetry methods� how�
ever� this case is more involved� and so we illustrate the procedure by
examples� Finally� we will consider the case when f satis�es ���� with
B �� �� Here our results are less complete� because we have no explicit
solutions of this Ricatti equation�
Our techniques lead to a rich class of PDEs of the form ����� for which

the fundamental solution may be explicitly computed� It includes as
special cases� all the well know examples� such as when the drift func�
tion f is a�ne� In a subsequent paper� we shall introduce a di�erent
symmetry based approach to the problem of determining fundamental
solutions of ������ that provides additional explicit densities�
The problem of computing fundamental solutions for PDEs of the

form ������ arises for example� when one has to obtain transition den�
sities for certain di�usion processes� Consider a one dimensional gen�
eralised square root process� X � fXt� t � ��� T �g� satisfying the It�o
stochastic di�erential equation �SDE�

dXt � f�Xt�dt	
p

XtdWt� �����

for t � ��� T �� Here W is a standard Wiener process� and f is an ap�
propriate drift function� It is well known that the transition density�
p�t� x� y� for the process X� is given by the fundamental solution of the
PDE

�p

�t
� x

��p

�x�
	 f�x�

�p

�x
� �����

See for example Protter �Pro��� or Revuz and Yor �RY���� For con�
ditions on f guaranteeing the existence of a unique� strong solution
of ������ see Protter� �Pro���� Generalised square root processes have
important applications� particularly in �nance� Several interest rate
models involve so called a�ne processes� which are generalised square
root processes with drift of the form f�x� � ax 	 b� See the paper
by Du�e And Kan� �DK�� for a discussion of this topic� Also� the
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so called minimum market model of Platen� �Pla��� for equity and cur�
rency markets involves generalised square root processes�
We will derive fundamental solutions of ����� in some illustrative

cases� and hence obtain transition densities for generalised square root
processes X� satisfying SDE�s of the form ������ Many of the funda�
mental solutions that we obtain appear to be new�
The outline of the paper is as follows� In Section 
 we introduce the

results we need from the theory of Lie group symmetries� In Sections
� and � we determine the in�nitesimal symmetries for the PDE ������
Finally� in Sections �� � and �� we show how these symmetries can be
used to obtain characteristic functions and fundamental solutions�


� Introduction to Symmetry Methods

A symmetry of a di�erential equation is a transformation which maps
solutions of the equation to other solutions� More precisely� if HP

denotes the space of all solutions of the PDE

P �x�D�u� � � �
���

then a symmetry S is an automorphism of HP � i�e S � HP � HP �
Thus u � HP implies that Su � HP �
In the ����s Lie developed a technique for systematically determining

all groups of point symmetries for systems of di�erential equations��

Symmetry group methods provide a very powerful tool for the analysis
of di�erential equations� Indeed symmetries often provide the only
practical method for �nding analytical solutions� The book by Olver
�Olv��� gives an excellent modern account of Lie�s theory of symmetry
groups� Other signi�cant works include Miller �Mil��� Bluman and
Kumei �BK���� Olver �Olv���� Hydon� �Hyd���� Stephani �Ste��� and
the classic text by Ovsiannikov� �Ovs�
�� The papers �Cra���� �Cra����
�Cra�� and �CD��� provide additional information on symmetries and
their applications�
The key to calculating group symmetries for di�erential equations is

a theorem of Lie� which we will state below� For the purposes of the
current work� we consider a PDE of order n in m variables� de�ned on
a simply connected subset � � R

m � The PDE takes the form �
����
where P �x� y� is an analytic function on �� R �

D�u �
�j�ju

�x��� � � � �x�mn
�

Here � � ���� � � � � �m�� is a multi�index� with �i � N for i � f�� ���� mg�
and j�j � �� 	 � � � 	 �m� The extension of the theory to systems of
PDEs is straightforward� Chapter 
 of Olver�s book �Olv���� contains

�There also exist group symmetries which are more complicated than point sym�
metries� as well as symmetries which do not have group properties	 They are im�
portant in many applications� but we do not consider them here	
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a detailed and rigorous discussion of the technique which we will now
describe�
We begin by considering an arbitrary vector �eld� that is� a �rst order

di�erential operator of the form

v �
mX
k��

�k�x� u�
�

�xk
	 ��x� u�

�

�u
� �
�
�

where �x� u� � ��R� The vector �eld �
�
� is the in�nitesimal generator
of a one parameter local Lie group� called the �ow of v� which acts upon
elements �x� u� � � � R� We call this group G� We require a method
which allows us to determine conditions on �k and �� which will ensure
that G is a group of symmetries for �
����
We de�ne the nth prolongation of G� to be the natural extension of

the action of G� from �x� u�� to the collection of all the derivatives of
u� up to order n� That is� the nth prolongation� denoted prnG� acts on
�x� u� ux�� ���� uxm���xm�� where the order of the highest derivatives is n�
To determine prnG� let Dn be the n�jet mapping de�ned by

Dn � �x� u� ��� �x� u� ux�� ���� uxm���xm�� �
���

Then the n�th prolongation must satisfy

Dn 	 G � prnG 	 Dn� �
��

This condition requires that the chain rule of multi�variable calculus
holds�
The in�nitesimal generator of prnG� is called the n�th prolongation

of v� and we denote it by prnv� Using condition �
��� it is possible
to derive an explicit formula for prnv� The details are contained in
Chapter 
 of �Olv����

Theorem ��� �Olver�� Let v be a vector �eld of the form ����	� Then
the n�th prolongation of v is

prnv � v 	
X
J

�J
�

�uJ
� �
���

where the sum is taken over all multi�indices J� with jJ j 
 n� The
functions �J are given by

�J � DJ

�
��

mX
k��

�kuxk

�
	

mX
k��

�kuJ�xk� �
���

Here DJ denotes the total derivative operator and uxk �
�u
�xk

�

We illustrate the notation by considering an example� Letm � 
 and
label the dependent variables x and t� Let J � �
� �� be a multi�index�
Then

uJ � uxxt �
��u

�x��t
� uJ�x � uxxtx� and

�

�uJ
�

�

�uxxt
�
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It is standard to write �x for �J when J � ��� ��� �xx � �J when
J � �
� �� etc� So for example� if J � �
� 
� then we would write
�J � �xxtt� This is the notation we will use in this paper�
We now state a version of a theorem due to Lie� This is the central

result of the theory of Lie group symmetries� It provides necessary
and su�cient conditions for a vector �eld of the form �
�
�� to generate
symmetries of a speci�ed di�erential equation� The proof may be found
in Chapter 
 of Olver� �Olv���� See also Lie�s original papers in �Lie�
��

Theorem ��� �Lie�� Let

P �x�D�u� � � �
���

be an n�th order partial di
erential equation as de�ned above� Let v
be a vector �eld of the form ����	� Then v generates a one parameter
local group of symmetries of ����	 if and only if

prnv�P �x�D�u�� � �� �
���

whenever P �x�D�u� � ��

Applying Theorem 
�
 to a PDE yields a system of determining
equations for the functions �k and �� In most circumstances these de�
termining equations may be solved by inspection� One thus obtains
a set of vector �elds which generate all point group symmetries� The
vector �elds satisfying �
��� are referred to as in�nitesimal symmetries�
One of the most important properties of these in�nitesimal symme�

tries is that they form a Lie algebra under the usual Lie bracket� We
have the following result� which is also due to Lie� For a proof of
Theorem 
��� see Chapter 
 of Olver� �Olv����

Theorem ��� �Lie�� Let

P �x�D��u � �

be a di
erential equation de�ned on M � ��R
n � The set of all in�ni�

tesimal symmetries form a Lie algebra of vector �elds on M � Moreover�
if this Lie algebra is �nite dimensional� the symmetry group of the sys�
tem is a local Lie group of transformations acting on M�


��� The One Dimensional Heat equation� As an illustrative ex�
ample of the application of Theorem 
�
� we consider the one dimen�
sional heat equation�

uxx � ut� �
���

This example was originally studied by Lie� To compute the symme�
tries of �
���� we set

v � ��x� t� u�
�

�x
	 ��x� t� u�

�

�t
	 ��x� t� u�

�

�u
�
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and compute the second prolongation of v� According to Theorem 
�
�
v generates symmetries of the heat equation� if and only if

pr�v�uxx � ut� � � �
����

whenever uxx � ut � �� The general form of the second prolongation
of v is

pr�v � v 	 �x
�

�ux
	 �t

�

�ut
	 �xx

�

�uxx
	 �xt

�

�uxt
	 �tt

�

�utt
� �
����

and hence the condition� �
���� implies that�

�t � �xx �
��
�

The functions �t and �xx can be explicitly computed from the prolon�
gation formula in Theorem 
��� This gives a set of de�ning equations
for �� � and �� which may readily be solved� The full details of the
calculation are in Olver�s book �Olv���� p�
��� From �� � and � we
may determine a basis for the Lie algebra of in�nitesimal symmetries�
A basis for the Lie algebra of symmetries of the one dimensional heat
equation is�

v� �
�

�x
� v� �

�

�t
� v� � u

�

�u
� v� � x

�

�x
	 
t

�

�t
� �



u
�

�u
�

v� � 
t
�

�x
� xu

�

�u
� v� � xt

�

�x
	 t�

�

�t
� �x� 	 
t�u

�

�u
�

In addition� there are in�nitely many in�nitesimal symmetries of
the form v� � ��x� t� �

�u
� where ��x� t� is an arbitrary solution of the

heat equation� The existence of these symmetries re�ects the fact that
adding two solutions of the heat equation yields a third solution� These
trivial symmetries are usually ignored� We note however� that there are
circumstances in the study of non linear PDEs where such symmetries
are important� See the book by Bluman and Kumei �BK��� for a
discussion of this topic� In this paper� we shall only be interested
in nontrivial symmetries�
The process of obtaining the group transformation which is generated

by a given in�nitesimal symmetry is known as exponentiating the vector
�eld� To exponentiate an in�nitesimal symmetry� vk� we solve the
system of �rst order ordinary di�erential equations �ODEs��

d�x

d	
����x� �t� �u� �
����

d�t

d	
����x� �t� �u� �
���

d�u

d	
����x� �t� �u� �
����
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subject to the initial conditions

�x��� � x� �t��� � t� �u��� � u�

If u�x� t� is a solution of the heat equation we will express the action
of the symmetry generated by vk on u by writing

�u�x� t� � 
�exp�	vk��u�x� t� �
����

Here �u�x� t� is the new solution obtained from u by the action of the
symmetry generator vk� and 
�exp�	vk��u�x� t� is the action of the local
group generated by vk� on u�

� The real number 	 is the group parameter�
Exponentiating the in�nitesimal symmetries of the one dimensional

heat equation� produces the following symmetry transformations


�exp�	v���u�x� t� � u�x� 	� t� �
����


�exp�	v���u�x� t� � u�x� t� 	� �
����


�exp�	v���u�x� t� � e�u�x� t� �
����


�exp�	v���u�x� t� � e�
�
�
�u�e�x� e��t� �
�
��


�exp�	v���u�x� t� � e��x	�
�tu�x� 
	t� t� �
�
��


�exp�	v���u�x� t� �
�p

� 	 	t
exp

� �	x�
� 	 	t

�
u

�
x

� 	 	t
�

t

� 	 	t

�
�
�

�

The signi�cance of �
������
�

�� is that whenever u�x� t� is a solution
of the one dimensional heat equation� and 	 is su�ciently small� then
the right hand side of �
����������
�

� will also be a solution� The
restriction that 	 be �su�ciently small� may be dropped if the solution
space of the heat equation is restricted in an appropriate way� The
papers �Cra��� and �Cra��� contain the technical details�
As an application� consider the symmetry �
�

�� Since u�x� t� � �

is a solution of �
���� then by symmetry so is

�u�x� t� �
�p

� 	 	t
exp

� �	x�
� 	 	t

�
� �
�
��

In �
�
��� let t� t� ��	� and set 	 � �� In this way� we obtain the
fundamental solution of the heat equation�

k�x� t� �
�p
�t

e�
x�

�t � �
�
�

from the constant solution� u � �� by simple group transformation�
It is natural to ask whether we can obtain fundamental solutions for

other PDEs by symmetry� In a recent paper� �CD���� Craddock and

�This notation is chosen to re�ect the fact that exponentiating a vector �eld
produces a local representation of the underlying Lie group	 See the papers �Cra���
and �Cra��� for a discussion of the connection between group symmetries and group
representation theory	
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Dooley� have shown that for the heat equation on a nilpotent Lie group�
there always exists a symmetry which maps the constant solution to
the fundamental solution� Craddock and Dooley also investigated a
class of heat equations with drift on the real line�

�u

�t
�

��u

�x�
	 f�x�

�u

�x
� �
�
��

They showed that the fundamental solution of �
�
�� can always be
obtained from the constant solution by a symmetry transformation�
whenever the drift function f is a solution of any one of �ve families
of Ricatti equations� This immediately leads to a rich class of PDEs�
whose fundamental solutions can be explicitly computed by symmetry�
It also motives the remainder of this paper�

�� The Equations Defining the Infinitesimal Symmetries�

In the next two sections we will determine all possible Lie symmetry
algebras for PDEs of the form ������ As described in Section 
� we look
for vector �elds of the form

v � ��x� t� u�
�

�x
	 ��x� t� u�

�

�t
	 ��x� t� u�

�

�u
� �����

We observe that ����� is linear� and further that it is �rst order in t
and second order in x� It is a simple exercise to show that in this
case � and � cannot depend upon u� and � must be a function of t
only� Furthermore� since ����� is second order� we need the second
prolongation of v� This was given by equation �
����� If we apply
�
���� to equation ������ then by Theorem 
�
� we see that v generates
symmetries of ������ if and only if

�t � x�xx 	 f�x��x 	 �uxx 	 f ��x�ux��� ���
�

To proceed further� we calculate �t� �x and �xx by means of equation
�
��� and apply the results to ���
�� We then obtain the system of
de�ning equations that �� � and �must satisfy in order for v to generate
a symmetry� This leads to the equation

�t � �tux 	 ��u � �t��xuxx 	 f�x�ux� �

x��xx 	 �
�xu � �xx�ux 	 �uuu
�
x 	 ��u � 
�x�uxx� 	 �uxx 	 f ��x�ux��

	 f�x���x 	 ��u � �x�ux��� �����

Here� subscripts denote partial di�erentiation�
From ����� we can read o� individual equations for �� � and � by

equating the coe�cients of the derivatives of u� First� from the terms
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involving the zeroth derivatives of u� we see that

�t � x�xx 	 f�x��x� ����

From the coe�cients of ux� we get

��t 	 f�x���u � �t� � x�
�xu � �xx� 	 f�x���u � �x� 	 f ��x��� �����

The coe�cients of uxx give

x��u � �t� � x��u � 
�x� 	 �� �����

And �nally� examining the terms involving u�x� we see that we must
have

�uu � �� �����

The solution of these equations is elementary� We �rst consider
������ Since � is independent of x� we may solve the equation for �
by determining the appropriate integrating factor� We readily obtain

� � x�t 	
p
x
�t�� �����

Here� the arbitrary function 
 depends upon t alone� This immediately
allows us to write

�t � x�tt 	
p
x
t� �����

�x � �t 	
�



x�

�
�
� ������

and

�xx � ��

x�

�
�
� ������

Equation ����� implies that � must be linear in u� Thus

��x� t� u� � ��x� t�u	 ��x� t�� ����
�

for some functions � and �� On the other hand� equation ���� requires
that

�t � x�xx 	 f�x��x� ������

and

�t � x�xx 	 f�x��x� �����

We can say no more about � other than that it is an arbitrary solution
of the original equation ������ From ����
� and ����� we get

��t � f�x��t � 
x�x 	 x�
�


x
��
� �
� f�x���t 	

�



p
x

�

	 f ��x��x�t 	
p
x
�� ������

which upon rearrangement gives

�x � ��


�tt � �



p
x

t � �

�
x�

�
� 
	

�



�
f�x�


x
p
x
� f ��x�p

x
�
� �



f ��x��t�

������
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We can immediately integrate this to obtain

� � ��


x�tt �

p
x
t 	

�



p
x
�
�



� f�x��
� �



f�x��t 	 �t�� ������

for some function � of t only� We now see that

�t � ��


x�ttt �

p
x
tt 	

�



p
x
�
�



� f�x��
t � �



f�x��tt 	 t� ������

and

�xx �
�


x�

�
�
t 	

�




d�

dx�

�
��
�
� f�x��p

x

�

� �



f ���x��t� ������

Finally� we substitute these into equation ������ to derive the equa�
tion

��


x�ttt �

p
x
tt 	

�



p
x

�
�



� f�x�

�

t � �



f�x��tt 	 t �

x

�
�


x�

�
�
t 	

�




d�

dx�

�
��
�
� f�x��p

x

�

� �



f ���x��t

�

	 f�x�

�
��


�tt � �



x�

�
� 
t 	

�




d

dx

�
��
�
� f�x��p

x

�

� �



f ��x��t

�
�

���
��

Performing the obvious cancellations and collecting terms� we arrive
at the �nal de�ning equation

��


x�ttt �

p
x
tt 	 t � ��



�xf �� 	 ff �� �t

	

�
� 	 ��xf � � f 	 �

�
f ��� �x�xf �� 	 ff ��

��x
�
�

�

�

���
��

Equation ���
�� determines �� 
 and  for every choice of C� drift func�
tion f � It �xes the �nal structure of the symmetry group� To proceed
further� it is necessary to specify the form of f � We shall do this in the
next section�

� Computing the Infinitesimal Symmetries

Our aim is to use symmetry transformations to obtain fundamental
solutions of ����� from trivial solutions� This should only be possible
if the Lie algebra of in�nitesimal symmetries contains a vector �eld
whose action transforms a solution in the t variable� If the action of
the symmetry transformation were trivial in t� it could not transform
a solution which is constant in t� to one which is nonconstant� such as
the fundamental solution�
This motivates us to look for vector �elds where the coe�cient of �

�t
is nonconstant� Examining equation ���
��� we see that the coe�cients
of �t and 
 depend upon the drift function f� To determine conditions
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on f in order that � be nonconstant� we must equate the appropriate
terms in x� Thus it is the drift term f which constrains the dimension
of the Lie algebra of symmetries of ������
For convenience� we have split our analysis into four cases

��� Case �� Let
xf �� 	 ff � � A�

where A is a constant� Then integration by parts gives

xf � � f 	
�



f � � Ax 	B� ����

From ���
�� we see that

��


x�ttt �

p
x
tt 	 t � ��



A�t 	

�
� 	 �B

��x
�
�

�

� ��
�

There are two obvious subcases�

����� Subcase a� If � 	 �B �� �� then we must have

�ttt � �� 
 � �� t � ��


A�t� ����

Integration yields� � � c� 	 
c�t 	 c�t
��  � �c�At � 
c�At

� 	 c��
for some arbitrary constants c�� ���� c�� From this and ����� we see that

� � 
c�x 	 �c�xt� ���

and

� � �c�x� �



f�x��
c� 	 �c�t�� c�At� 
c�At

� 	 c�� ����

Recall that a vector �eld generating a symmetry of ����� is chosen
to have the form �
�
�� Our choice of basis for the Lie algebra of
symmetries is determined by the numbering of the constants appearing
in the expressions for �� � and �� Obviously there are other equivalent
choices that we could have made�
Because the Lie algebra contains vector �elds of the form v� �

��x� t� �
�u
� in which � is any solution of ������ it is clear that the

Lie algebra is in�nite dimensional� We also have a four dimensional
Lie subalgebra of symmetries� arising from the functions �� � and �� A
basis for this Lie subalgebra of point symmetries is

v� �
�

�t
� ����

v� � u
�

�u
� ����

v� � 
x
�

�x
	 
t

�

�t
� �f�x� 	 At�u

�

�u
� ����

v� � �xt
�

�x
	 t�

�

�t
� 	x 	 f�x�t	 
At�



u
�

�u
� ����



�� MARK CRADDOCK AND ECKHARD PLATEN

The symmetries generated by these vector �eld may be determined
by solving the system of ODEs given in �
����� Here we observe that
the vector �eld v� generates translations in time� That is� if u�x� t� is
a solution of ������ then so is u�x� t 	 	�� The vector �eld v� implies
that if we multiply a solution by a constant� then the result is another
solution� v� generates scaling symmetries in the x� t and u variables�
We will consider the vector �eld v� in the following section� Finally�
the vector �elds of the form v�� show that if u is a solution of ����� and
� is another solution� then u	 � is also a solution� These symmetries
are straightforward consequences of the linearity of equation ����� and
the fact that the coe�cients of the equation are constant in time�
We point out one more interesting feature� Since the Lie algebra

of symmetries is closed under Lie brackets� then we may easily obtain
new symmetries� For example� �v��v�� produces the new in�nitesimal
symmetry

�v��v�� �
	
�xt�x 	 t��t 	 �x 	 f�x�t	 
At��



�
�

�u
� �����

This allows us to conclude that if � is any solution of ������ then so
is �xt�x 	 t��t 	 �x 	 f�x�t 	 
At���� We may of course compute
other such symmetries�

���
� Subcase b� If � 	 �B � �� then

�ttt � �� 
tt � �� t � ��


A�t� �����

Thus from ����

xf � � f 	
�



f � � Ax� �

�
� ���
�

From ����� we obtain

� � c� 	 
c�t	 c�t
�� 
 � c� 	 
c�t�  �  � �c�At� 
c�At

� 	 c��
�����

Combining this with ����� gives

� � x�
c� 	 �c�t� 	
p
x�c� 	 
c�t�� ����

and

� � �c�x� �
c��
p
x� �



p
x

�
�



� f�x�

�
�c� 	 
c�t�

� �



f�x��
c� 	 �c�t�� c�At� 
c�At

� 	 c�� �����

We thus have a six dimensional Lie subalgebra of symmetries� plus the
in�nite dimensional ideal generated by the vector �elds of the form v��
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A basis for the six dimensional subalgebra is seen to be

v� �
p
x
�

�x
� �



p
x

�
�



� f�x�

�
u
�

�u
� �����

v� �
�

�t
� �����

v� � u
�

�u
� �����

v� � 
x
�

�x
	 
t

�

�t
� �f�x� 	 At�u

�

�u
� �����

v� � 

p
xt

�

�x
� �


p
x� �p

x

�
�



� f�x�

�
tu

�

�u
� ��
��

v� � �xt
�

�x
	 t�

�

�t
� �x	 f�x�t 	 
At��u

�

�u
� ��
��

�
� Case �� Let
xf �� 	 ff � � Ax 	B�

A �� �� B constants� Integration by parts then yields the Ricatti equa�
tion

xf � � f 	
�



f � �

�



Ax� 	Bx 	D� ��

�

Consequently� the �nal determining equation ���
�� reads

��


x�ttt �

p
x
tt 	 t � ��



�Ax	B��t 	

�
� 	 �D � Ax�

��x
�
�

�

�

��
��

Again we have two subcases�

�
��� Subcase �a� If � 	 �D �� �� then

�ttt � A�t 
 � �� t � �B



�t�

By calculations similar to Case �� we see that a basis for the Lie algebra
of symmetries is

v� �
�

�t
� ��
�

v� � u
�

�u
� ��
��

v� � x
p
Ae

p
At �

�x
	 e

p
At �

�t
� �



�Ax 	

p
Af�x� 	B�e

p
Atu

�

�u
�

��
��

v� � �x
p
Ae�

p
At �

�x
	 e�

p
At �

�t
� �



�Ax�

p
Af�x� 	B�e�

p
Atu

�

�u
�

��
��

v� � ��x� t�
�

�u
� ��
��
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where � is an arbitrary solution of equation ������

�
�
� Subcase �b� If � 	 �D � �� then

xf � � f 	
�



f � �

�



Ax� 	Bx� �

�
� ��
��

and

�ttt � A�t 
tt �
A



� t � �B



�t�

Proceeding in the same way as before leads to the following basis for
the Lie algebra of in�nitesimal symmetries�

v� �
p
xe

�
�

p
At �

�x
� �




�p
x� �



p
x
�
�



� f�x��

�
e
�
�

p
Atu

�

�u
� �����

v� �
�

�t
�����

v� � u
�

�u
� ���
�

v� � x
p
Ae

p
At �

�x
	 e

p
At �

�t
� �



�Ax	

p
Af�x� 	B�e

p
Atu

�

�u
�

�����

v� �
p
xe�

�
�

p
At 	

�




�p
x 	

�



p
x
�
�



� f�x��

�
e�

�
�

p
Atu

�

�u
� ����

v� � �x
p
Ae�

p
At �

�x
	 e�

p
At �

�t
� �



�Ax�

p
Af�x� 	B�e�

p
Atu

�

�u
�����

v� � ��x� t�
�

�u
� �����

where � is an arbitrary solution of equation ������

��� Case �� Let xf �� 	 ff � � A
p
x 	Bx 	 C� Then we have

xf � � f 	
�



f � �




�
Ax

�
� 	

�



Bx� 	 Cx 	D� �����

Consequently� equation ���
�� reads

��


x�ttt �

p
x
tt 	 t � ��



�A
p
x	Bx 	 C��t

	

�
� 	 �D � 


�
Ax

�
� � Bx�

��x
�
�

�

�

If � 	 �D �� �� then 
 � �� This implies t � �t � �� Hence � and  are
constants�
In the case where � 	 �D � �� then

�ttt � B�t 
tt �
A



�t 	

B



� t � �C



�t � A

�

�

The cases� B � �� and B �� � are di�erent�
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����� Subcase �a� If B � � then a basis for the Lie algebra of in�ni�
tesimal symmetries is

v� �
p
x
�

�x
�
�
A

�
t�

� �
�
� f�x�



p
x

��
u
�

�u
�����

v� �
�

�t
�����

v� � u
�

�u
����

v� �

�

x 	

A




p
xt�
�

�

�x
	 
t

�

�t

�
�
�C 	 A

p
x�t	

A�

��
t� � A��

�
� f�x��t�


p
x

	 f�x�

�
u
�

�u
����

v� �
p
xt

�

�x
�
�
A

�

t� 	

p
x� ��

�
� f�x��



p
x

t

�
u
�

�u
��
�

v� �

�
�xt 	


A

�

p
xt�
�

�

�x
	 t�

�

�t
��

x	 
Ct� 	 f�x�t	
A�

��
t� 	 
A

p
xt� � A��

�
� f�x��

�
p
x

t�
�
u
�

�u
����

v� � ��x� t�
�

�u
� ���

where � is an arbitrary solution of equation ������

���
� Subcase �b� In the case when B �� �� the calculations are similar�
A basis for the Lie algebra of in�nitesimal symmetries is

v� �
p
xe

�
�

p
Bt �

�x
�
�
�




p
B
p
x� ��

�
� f�x��



p
x

	
A

�
p
B

�
e
�
�

p
Btu

�

�u
����

v� �
p
xe�

�
�

p
Bt �

�x
	

�
�




p
B
p
x	

��
�
� f�x��



p
x

	
A

�
p
B

�
e�

�
�

p
Btu

�

�u
����

v� � u
�

�u
� ����

v� �
�

�t
� ����
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v� �

�

A

�
p
B

p
x 	

p
Bx

�
e
p
Bt �

�x
	 e

p
Bt �

�t

�
�
B



x	


A

�

p
x 	

p
B



f�x�� A��

�
� f�x��

�
p
B
p
x

	

A� 	 �BC

��B

�

� e
p
Btu

�

�u
� ����

v� � �
�


A

�
p
B

p
x 	

p
Bx

�
e�

p
Bt �

�x
	 e�

p
Bt �

�t

�
�
B



x	


A

�

p
x�

p
B



f�x� 	

A��
�
� f�x��

�
p
B
p
x

	

A� 	 �BC

��B

�

� e�
p
Btu

�

�u
� �����

v� � ��x� t�
�

�u
� �����

where � is an arbitrary solution of equation ������

�� Case �� The �nal case we must consider is when the drift f does
not satisfy any of the Ricatti equations of Cases � through �� Here� we
must have �ttt � �t � �� 
 � �� t � �� Thus the symmetry algebra
is two dimensional� A basis is

v� �
�

�t
� v� � u

�

�u

Therefore� if the drift does not satisfy one of the Ricatti equations ���
��
����� or ����� then only the only possible symmetries are translation
in t and scaling in the u variable�
This completes our determination of the Lie algebra of symmetries

for equations of the form ������ There are no other possibilities� In the
next section we will show how to use the symmetries determined here
to construct fundamental solutions of ����� for di�erent choices of f�

�� Fundamental Solutions and Characteristic Functions

We will now exploit the symmetries found in the previous section to
compute characteristic functions and fundamental solutions for PDEs
of the form ������ We will �rst consider the case where the drift function
f is a solution of the Ricatti equation ���
�� We will consider the PDEs
associated with the Ricatti equations� ����� and ���� in the following
sections�
In this section we introduce a method for explicitly computing funda�

mental solutions� which involves taking the inverse Laplace transform
of the characteristic function� One immediate result of the symmetry
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analysis in the previous section is that we may often obtain the char�
acteristic function of ����� from a trivial solution by a straightforward
group transformation� We illustrate with an example� before stating a
theorem�

Example ���� The simplest case is f�x� � �� where � is constant� In
this case we have xf �� 	 ff � � �� so xf � � f 	 �

�
f � � B� We are thus

considering the PDE�

�u

�t
� x

��u

�x�
	 �

�u

�x
� �����

which is fundamental to the theory of Bessel processes� See chapter ��
of Revuz and Yor� �RY��� for a detailed discussion of Bessel processes�
From Case � of Section � we see that a basis for the Lie algebra of
symmetries of ����� is

v� �
�

�t
�

v� � u
�

�u
�

v� � 
x
�

�x
	 
t

�

�t
� �u

�

�u
�

v� � �xt
�

�x
	 t�

�

�t
� �x 	 �t�u

�

�u
�

v� � ��x� t�
�

�u
�

We are interested here in v�� We compute the action of the one
parameter local Lie group generated by v�� by solving the system of
ODEs de�ned in �
����� From this we obtain


�exp�	v���u�x� t� � exp

� �	x
� 	 	t

� �




�
ln�x�� ln�

x

�� 	 	t��
�

��

� u

�
x

�� 	 	t��
�

t

� 	 	t

�
� ���
�

Thus if u is any solution of ������ then ���
� is also a solution� at least
for 	 su�ciently small� We set � � 	� and consider the solution u � ��
Then by symmetry�

U��x� t� � �� 	 �t��� exp
� ��x
� 	 �t

�
� �����

is also a solution of ������ This is well known to be the characteris�
tic function for ������ It is the Laplace transform of p�t� x� y�� This
transform can be inverted using the fundamental identity

L��
�
�

��
e
k
�

�
�
�y
k

����
�

I����

p
ky�� ����
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where I	 is a modi�ed Bessel function of the �rst kind with order ��
See �AS�
�� Chapter � for properties of modi�ed Bessel functions�
We then obtain the well known transition density of Bessel processes

p�t� x� y� � L��
�
�� 	 �t��� exp

� ��x
� 	 �t

��

�
�

t�

�
x

y

� ���
�

I���

�


p
xy

t

�
exp

�
��x 	 y�

t

�
� �����

This example shows that it is possible to obtain the characteristic
function for the PDE ����� by a straightforward symmetry transforma�
tion� In fact� we can obtain characteristic functions� and hence funda�
mental solutions� for a wide class of equations by the same procedure�
The key is that the characteristic function can be viewed as a solution
of ������ with the initial condition

u�x� �� � e��x �����

By symmetry� we can obtain a solution satisfying ����� from a solution
with initial data u�x� �� � ��

Theorem ���� Let f be a solution of the Ricatti equation

xf � � f 	
�



f � � Ax 	B �����

Then the characteristic function U��x� t� for the PDE ��	 is given by

U��x� t� � exp

�
���x 	 �

�
At��

� 	 �t
� �




�
F �x�� F

�
x

�� 	 �t��

���
�����

where F ��x� � f�x��x

Proof� Clearly U��x� �� � e��x� Now� since xf � � f 	 �
�
f � � Ax 	 B�

then� from Case � of Section � equation ����� has an in�nitesimal
symmetry of the form

v � �xt
�

�x
	 t�

�

�t
� 	x	 f�x�t	 
At�



u
�

�u
� �����

The exponentiation of v shows that if u is a solution of equation �����
with xf � � f 	 �

�
f � � Ax	B� then so is

�u��x� t� � exp

�
��	x 	 
A	t��

� 	 	t
� �




�
F �x�� F

�
x

�� 	 	t��

���

� u

�
x

�� 	 	t��
�

t

� 	 	t

�
� ������

where F ��x� � f�x��x� Taking u � �� and setting � � 	� we obtain
the characteristic function ������



SYMMETRY METHODS �	

Let us make the following observation� If we substitute the expression
����� equation ������ then� after some manipulations� we see that if
U��x� t� is a solution� we must have

� 
A�xt�
 	 �t� 	 
�� 	 �t��
�
xf � � f 	

�



f �

�
�

x

�� 	 �t��
f �
�

x

�� 	 �t��

�
� f

�
x

�� 	 �t��

�
	
�



f �

�
x

�� 	 �t��

���

� �
A�xt�
 	 �t� 	 
�� 	 �t��
�
g�x�� g

�
x

�� 	 �t��

��
� ��

������

where xf � � f 	 �
�
f � � g�x�� This immediately implies that we must

have

g�x�� g

�
x

�� 	 �t��

�
�

Ax�t�
 	 �t�

�� 	 �t��
� ����
�

It is clear that g�x� � Ax	B is a solution of this functional equation�
as we expect�

���� Solving the Ricatti Equations� Before presenting our exam�
ples� we consider the problem of solving Ricatti equations of the form

xf � � f 	
�



f � � g�x� ������

Equation ������ can be transformed into a second order linear equation
by the change of variable f � 
xy��y� Under this change of variables�
equation ������ becomes


x�y���x�� g�x�y�x� � �� �����

The equation ����� can be solved by standard techniques for a wide
range of functions g�x�� In Theorem ��� we have� g�x� � Ax	B� The
general solution of ����� for this choice of g is

y�x� � c�x
�
� Ip�	�B

�p

Ax

�
	 c�x

�
� I�p�	�B

�p

Ax

�
� ������

From ������� all solutions of xf ��f	��
f � � Ax	B� can be obtained�
A natural question to consider is what functions are covered by Theo�

rem ���� It is well known that Bessel functions are related to many dif�
ferent functions� Airy functions� spheroidal wave functions� and many
other important functions which arise in mathematical physics are ac�
tually special cases of Bessel functions� �See for example Watson�s
treatise on Bessel functions� �Wat

�� for an exhaustive study�� For
example� whenever

p
� 	 
B �


n	 �



� n � N

the solutions of ���
� will be given by either hyperbolic functions� by
functions of the form r�

p
x��s�

p
x�� where r and s are polynomials� or
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a combination of both� Moreover� for such a choice of B� the resulting
characteristic function can always be explicitly inverted�
Investigation of the full range fundamental solutions which may be

obtained by our methods is beyond the scope of this paper� We shall
content ourselves with some examples to illustrate how Theorem ��� is
used� The fundamental solutions and transition densities obtained in
the following examples appear to be new�

Example ���� We consider drift functions of the form

f�x� �
ax

� 	 �
�
ax

� a� x � �

Since� xf � � f 	 �
�
f � � � � by Theorem ��� the characteristic function

for the PDE

�u

�t
� x

��u

�x�
	

ax

� 	 �
�
ax

�u

�x
� ������

is

U��x� t� �

�
�� 	 �t�� 	 �

�
ax

�� 	 �t���� 	 �
�
ax�

�
exp

� ��x
� 	 �t

�
� ������

It is now an easy matter to recover p�t� x� y�� by inversion of the Laplace
transform�
We have

p�t� x� y� � L��
��

�� 	 �t�� 	 �
�
ax

�� 	 �t���� 	 �
�
ax�

�
exp

� ��x
� 	 �t

��
� ������

where L denotes Laplace transform� Inversion of the transform is
straightforward with the aide of the relation ����� and standard prop�
erties of the Laplace transform�
After some manipulation� we arrive at the expression

p�t� x� y� �
e�

x�y
t

� 	 �
�
ax
L��

�
exp

�
x�t�

�

�
	

ax


t���
exp

�
x�t�

�

��

�
e�

�x�y�
t

�� 	 �
�
ax�t

��r
x

y
	
a
p
xy




�
I�

�


p
xy

t

�
	 t��y�

�
� ������

in which � is the Dirac delta function� Consequently

u�x� t� �

Z �

�

��y�e�
�x�y�
t

�� 	 �
�
ax�t

��r
x

y
	
a
p
xy




�
I�

�


p
xy

t

�
	 t��y�

�
dy

�
����e�

x
t

�� 	 �
�
ax�

	

Z �

�

��y�e�
�x�y�
t

�� 	 �
�
ax�t

�r
x

y
	
a
p
xy




�
I�

�


p
xy

t

�
dy�

���
��
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is a solution of the PDE ������� with initial data u�x� �� � ��x�� Dif�
ferentiation under the integral sign shows that ���
�� satis�es �������
A more involved calculation shows that the solution u satis�es

lim
t��

u�x� t� � ��x� ���
��

Furthermore� it is not di�cult to show that

Z �

�

e�
�x�y�
t

�� 	 �
�
ax�t

�r
x

y
	
a
p
xy




�
I�

�


p
xy

t

�
dy � �� e�

x
t

�� 	 �
�
ax�

and henceZ �

�

p�t� x� y�dy �
e�

x
t

�� 	 �
�
ax�

	 �� e�
x
t

�� 	 �
�
ax�

� �� ���

�

If we interpret e�
x
t

��	 �
�
ax�

as the probability of absorption at the origin�

then p�t� x� y� may be interpreted as the transition density for the gen�
eralised square root process X� satisfying the SDE

dXt �
aXt

� 	 �
�
aXt

dt	
p

XtdWt� ���
��

Example ���� Consider the drift function

f�x� �
�� 	 �

p
x�


�� 	
p
x�
�

For this choice of f we have xf � � f 	 �
�
f � � ��



� Thus� by Theorem

��� the characteristic function for the PDE

�u

�t
� x

��u

�x�
	
�� 	 �

p
x�


�� 	
p
x�

�u

�x
� ���
�

is

U��x� t� �

��
x

�� 	 �t��

� �
�

	

�
x

�� 	 �t��

� �
�

�
exp

n
� �x

��	�t�

o
�� 	

p
x�x

�
�

� ���
��

Inverting the Laplace transform gives the fundamental solution

p�t� x� y� �
e
��x�y�

tp
�yt�� 	

p
x�

�
cosh

�


p
xy

t

�
	
p
y sinh

�


p
xy

t

��
�

���
��

It can be shown that p�t� x� y� is integrable at y � �� and thatZ �

�

p�t� x� y�dy � �� ���
��

As an example� let us compute a solution of ���
� with initial data
u�x� �� � x� which is continuous at the origin� The integration is
straightforward� and we obtain
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u�x� t� �

Z �

�

yp�t� x� y�dy � x	
t �� 	 �

p
x�


 �� 	
p
x�

� ���
��

It is clear that u is a solution of equation ���
�� and further�

lim
t��

u�x� t� � x�

as required� The SDE for the corresponding generalized square root
process X is of the form

dXt �
�� 	 �

p
Xt�


�� 	
p
Xt�

dt	
p

Xt dWt� ���
��

Example ���� Consider the PDE

�u

�t
� x

��u

�x�
	

�
� 	

p
��


tanh

�p
��


	

p
��

�
lnx

���
�u

�x
� ������

The drift function satis�es

xf � � f 	
�



f � � � �

��
�

By Theorem ���� the characteristic function of ������ is

U��x� t� �
cosh

�
�
�

q
�
�

�

 	 ln

�
x

��	�t��

���
�� 	 �t� cosh

�
�
�

q
�
�
�
 	 lnx�

� exp

�
� �x

�� 	 �t�

�
� ������

Again this Laplace transform is easily inverted� The kernel is

p�t� x� y� �

�
x
y

� �
�

p
�
�

e
��x�y�

t

�� 	 e
p

�
�x

�
�

p
�
� �t

�
I� �

�

p
�
�

�


p
xy

t

�

	e
p

�
� y

�
�

p
�
� I �

�

p
�
�

�


p
xy

t

��
� ����
�

Once more we can show that
R�
�

p�t� x� y�dy � �� Hence ����
� is the
transition density for the generalised square root process which satis�es
the SDE

dXt �

��
� 	

p
��


tanh

�p
��


	

p
��

�
lnXt

���
dt	

p

XtdWt�

������



SYMMETRY METHODS ��

Example ���� Let us now consider three separate problems arising
from the equation

xf � � f 	
�



f � �

�



x� �

�
� �����

We exhibit three di�erent solutions to this Ricatti equation� These are�

f ��x� �
�



	
p
x� ������

f ��x� �
�



	
p
x tanh�

p
x�� ������

and

f ��x� �
�



	
p
x coth�

p
x�� ������

We shall solve the corresponding PDE for each of these drift functions
in turn�
First� the equation arising from f � is

�u

�t
� x

��u

�x�
	

�
�



	
p
x

�
�u

�x
� ������

By Theorem ��� the characteristic function for ������ is

U�
��x� t� �

�p
� 	 �t

exp

�
���t 	 


p
x��

�� 	 �t�

�
� ������

As in the preceding examples� the inversion of the Laplace transform
is straightforward� Inverting the transform gives the density

p��t� x� y� �
�p
�yt

e�
p
x cosh

�
�t	 


p
x�
p
y

t

�
exp

�
��x 	 y�

t
� �


t

�
�����

Next we solve the PDE coming from f ��

�u

�t
� x

��u

�x�
	

�
�



	
p
x tanh�

p
x�

�
�u

�x
� �����

By Theorem ��� the characteristic function for ����� is

U�
��x� t� �

�

cosh�
p
x�
p
� 	 �t

cosh

� p
xp

� 	 �t

�
exp

����x 	 �
�
t��

� 	 �t

�
�

���
�

Inverting the Laplace transform leads to the fundamental solution

p��t� x� y� �
�p
�yt

cosh�
p
y�

cosh�
p
x�
cosh

�


p
xy

t

�
exp

�
��x 	 y�

t
� �


t

�
�

�����

Finally� we consider the PDE

�u

�t
� x

��u

�x�
	

�
�



	
p
x coth�

p
x�

�
�u

�x
� ����
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From Theorem ���� the characteristic function for ���� is

U�
��x� t� �

�

sinh�
p
x�
p
� 	 �t

sinh

� p
x

� 	 �t

�
exp

�
���x 	 �

�
t��

� 	 �t

�
�

�����

Inversion of the Laplace transform leads to

p��t� x� y� �
�p
�yt

sinh�
p
y�

sinh�
p
x�
sinh

�


p
xy

t

�
exp

�
��x 	 y�

t
� �


t

�
�

�����

For each of these cases� it is easy to verify thatZ �

�

pi�t� x� y�dy � �� i � �� 
� �

It is also easy to generate solutions of these PDEs with� say� polynomial
initial data� For example�

u�x� t� �

Z �

�

yp��t� x� y�dy � x 	
p
x tanh�

p
x�t	

�


t� 	

�



t� �����

is a solution of the PDE ������ with initial data� u�x� �� � x�

Example ���� We consider now an example of a drift function which
possesses discontinuities� The equation

xf � � f 	
�



f � � ���

has a solution

f�x� � � 	 cot
	
ln
p
x


�

This solution is discontinuous at points of the form x � e�n
� n �
f�� �� 
���g� Nevertheless� by applying Theorem ���� we can obtain a
characteristic function and fundamental solution for the PDE

�u

�t
� x

��u

�x�
	
	
� 	 cot

	
ln
p
x


 �u

�x
� �����

Applying equation ������ we arrive at the characteristic function

U��x� t� � cosec
	
ln
p
x

 h

x
i
� �� 	 �t��i � x�

i
� �� 	 �t�i

i exp � ��x
�	�t

�

i�� 	 �t�

�

�����

where i �
p��� Inversion of the Laplace transform gives the funda�

mental solution

p�t� x� y� � cosec
	
ln
p
x

 e� �x�y�

t


it

�
y
i
� Ii

�


p
xy

t

�
� y�

i
� I�i

�


p
xy

t

��
�

������
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Although the right hand side of ������ involves i� it is in fact real valued�
To see this we use the series expansion

I	�z� � �
�



z�	

�X
k��

��
�
z��k

k� �� 	 k 	 ��
� ������

Recall that  �!z� �  �z�� Expanding the series for I	 and collecting
terms� leads to the expression�

p�t� x� y� �
�

t
cosec

	
ln
p
x


e�

�x�y�
t �

�X
k��

�xy
t�

�k�
ak sin

�
ln

r
xy�

t�

�
	 bk cos

�
ln

r
xy�

t�

��
�

����
�

Where�

ak � Re

�
�

k� �k 	 � 	 i�

�
� bk � Im

�
�

k� �k 	 � 	 i�

�

Consequently the function ������ is real valued� Further� using stan�
dard integrals of Bessel functions� �see chapter �� of Abramowitz and
Stegun� �AS�
�� or Chapter �� of Watson� �Wat

� �� and ������� we
obtain

Z �

�

p�t� x� y�dy �

�
�	�

t


� i
	
	
x
t�


i�
cosec�ln

p
x�


 i
	
�
t


i 	 x
t�


 i
�

�

�
�	�

t


� i
	
	
x
t�


i�

 i
	
�
t


i 	 x
t�


 i
�


ix
i
�

xi � �

� �� ������

An interesting SDE with discontinuous drift function arises for the
corresponding generalised square root process� We have

dXt �
�
� 	 cot

�
ln
p
X
��

dt	
p

XtdWt� �����

In a subsequent paper we will study the generalised square root process
which is de�ned by solutions of ������
It should be clear that Theorem ��� is easy to apply� In fact� we point

out that the process of determining the characteristic function and the
associated fundamental solutions"transition densities may readily be
automated using a symbolic manipulation package� In this way it is
possible to quickly determine exact solutions for a range of problems
which are not covered by standard techniques�
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�� The Ricatti Equation xf � � f 	 �
�
f � � �

�
Ax� 	Bx	 C

Next we consider the case when the drift function satis�es the Ricatti
equation ������ From Section � Case 
� it is clear that equation �����
has in�nitesimal symmetries of the form

v� � x
p
Ae

p
At �

�x
	 e

p
At �

�t
� �



�Ax 	

p
Af�x� 	B�e

p
Atu

�

�u

v� � �x
p
Ae�

p
At �

�x
	 e�

p
At �

�t
� �



�Ax�

p
Af�x� 	B�e�

p
Atu

�

�u

In order to compute fundamental solutions� we require the corre�
sponding group actions� This is given by our next result�

Proposition ���� Let f be a solution of ���	 and u be a solution of
��	� Then� for 	 su�ciently small� the following functions are also
solutions of ��	�


�exp�	v���u�x� t� ��
� 	 	

p
Ae

p
At
� B

�
p
A
u

�
x

� 	 	
p
Ae

p
At
�
�p
A
ln
	 e

p
At

� 	 	
p
Ae

p
At

�

� exp

�
�	Ae

p
Atx


�� 	 	
p
Ae

p
At�

� �




�
F �x�� F

�
x

� 	 	
p
Ae

p
A

���
�����

and


�exp�	v���u�x� t� �

e�
B
�
t
�
e
p
At � 	

p
A
� B

�
p
A
u

�
xe

p
At

e
p
At � 	

p
A
�
ln�e

p
At � 	

p
A�p

A

�

� exp

�
�	Ax


�e
p
At �p

A	�
� �




�
F �x�� F

�
xe

p
At

e
p
At � 	

p
A

���
� ���
�

In which F ��x� � f�x��x�

Proof� The proof is straightforward� It simply requires us to solve the
system of ODES� �
����� which correspond to v� and v��

Since u � � is a solution of equation ������ then by Proposition ����
so are�

U�
� �x� t� �

�
� 	 	

p
Ae

p
At
� B

�
p
A

� exp

�
�	Ae

p
Atx


�� 	 	
p
Ae

p
At�

� �




�
F �x�� F

�
x

� 	 	
p
Ae

p
A

���
�

�����
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and

U�
� �x� t� � e�

B
�
t
�
e
p
At � 	

p
A
� B

�
p
A

� exp

�
�	Ax


�e
p
At �p

A	�
� �




�
F �x�� F

�
xe

p
At

e
p
At � 	

p
A

���
�

����

Neither of these two solutions can be immediately identi�ed with the
characteristic function of ������ However it is often possible to derive
the fundamental solution from them� We illustrate the method with
examples�

Example ���� Consider the PDE

�u

�t
� x

��u

�x�
	

�
�



� x

�
�u

�x
�����

Applying equation ����� and setting 	 � ���� 	 ��� we see that

�U��x� t� �

�
�� 	 ��et

�� 	 ��et � �

� �
�

exp

� ��x
�� 	 ��et � �

�
�����

is a solution of ������ Next� we use the fact that multiplication of

solutions of ����� yields a new solution� We multiply �U� by ���� 	 ��
�
�

to obtain

U��x� t� �

�
et

�� 	 ��et � �

� �
�

exp

� ��x
�� 	 ��et � �

�
� �����

which is well known to be the characteristic function for ������ See for
example Revuz and Yor� �RY���� Inverting the Laplace transform� we
obtain the fundamental solution for ������ It is

p�t� x� y� �

�
et

et � �

� �
�

exp

�
��x 	 y�

et � �

�
I �

�

�


p
xyet

et � �

�
�����

where

I	� �
�
�z� � 
	�

�
� �� 	

�



�z�		

�
� I	� �

�
�z� �����

Example ���� Consider the drift function f�x� � x coth
	
x
�



� Here

xf � � f 	
�



f � �

�



x��

By ���� of Proposition ���� the equation

�u

�t
� x

��u

�x�
	 x coth

�x



� �u
�x

������

has a solution
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u��x� t� �
sinh

�
xet

��et���

�
sinh

	
x
�


 exp

� �	x

�et � 	�

�
� ������

From this we can derive the fundamental solution p�t� x� y� of �������
Observe that

u��x� �� �
�




�
e
x
�

sinh
	
x
�


 � �

sinh
	
x
�


 exp���� 	 	�x


��� 	�

��
� ����
�

Furthermore� we note that g�x� � e
x
�

sinh�x� �
is a stationary solution

of the equation ������� We therefore look for a fundamental solution
p�t� x� y� with the property thatZ �

�

e
y
�

sinh
	
y
�


p�t� x� y�dy � e
x
�

sinh
	
x
�


 � ������

We introduce the new parameter � � �	�
������ � The solution u� becomes

u��x� t� �
sinh

�
���	��xet

�����	��et��������

�
sinh

	
x
�


 exp

� ��
�� ��x


��
�	 ��et � �
�� ���

�
�

�����

By ������� we may write ����� as

u��x� t� �
�




Z �

�

�
e
y
�

sinh�y
�
�
� �

sinh�y
�
�
e��y

�
p�t� x� y�dy

�
e
x
�


 sinh�x
�
�
� �



L
�

�

sinh
	
y
�


p�t� x� y�
�
� ������

where L denotes Laplace transform as before�
Rearranging equation ������� we obtain the fundamental solution

p�t� x� y� �
sinh

	
y
�



sinh

	
x
�


L���exp���
��� 	 et� 	 et � ��x


��
�	 ��et � �
�� ���

��

�
sinh�y

�
�

sinh�x
�
�
exp

�
��e

t 	 ���x	 y�


�et � ��

�
e
�
�
t

et � �

r
x

y
I�

�


p
xyet

et � �

�
	 ��y�

�
�

������

where I� is a modi�ed Bessel function of the �rst kind of order �� and
� is the Dirac delta function� The reader may check that the same
fundamental solution is obtained if we start with the solution arising
from equation ����� in Proposition ���� as indeed we should�
Obtaining the fundamental solution in these examples is more in�

volved than was the case for Theorem ���� For examples coming from
������ the procedure which yield the characteristic equation di�ers from
case to case� This makes the formulation of a theorem equivalent to
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Theorem ��� di�cult� However� it should also be clear that applying
Proposition ��� often allows us to derive the fundamental solution for
equation ������ when the drift satis�es ������ We will consider this case
in more detail in a subsequent paper�

�� The Ricatti Equation xf � � f 	 �
�
f � � Ax

�
� 	Bx� 	 Cx� �




The last case which we must consider is when the drift function f is
a solution of the third Ricatti equation ����� There are two subcases
here� B � �� and B �� �� In the case B � �� we can obtain the
characteristic function by symmetry directly as we did in Theorem ����
Recall that when f is a solution of ����� and B � �� the PDE �����
has an in�nitesimal symmetry of the form

v� �

�
�xt	


A

�

p
xt�
�

�

�x
	 t�

�

�t
��

x 	 
Ct� 	 f�x�t	
A�

��
t� 	 
A

p
xt� � A��

�
� f�x��

�
p
x

t�
�
u
�

�u
�

�����

The group action generated by this symmetry allows us to determine
the characteristic function for ������ We have the following result�

Theorem ���� Let f be a solution of the Ricatti equation

xf � � f 	
�



f � � Ax

�
� 	 Cx� �

�
� ���
�

Then the characteristic function U��x� t� for the corresponding PDE
��	 is given by

U��x� t� �

s p
x�� 	 �t�p

x�� 	 �t�� A�
��
t�

� exp

�
�




�
F �x�� F

�� p
x

� 	 �t
� A�t�

�
�� 	 �t��

��
���

� exp

�
���x 	 �

�
Ct��

� 	 �t
�

�
�
At�

p
x�� 	 �t�

�� 	 �t��
	
A�t��
�t�� 	 �

�
�t�� ��

����� 	 �t��

�
�

�����

where F ��x� � f�x��x

Proof� The idea of the proof is the same as for Theorem ���� First we
observe that U��x� �� � e��x� In order to show that ����� is the char�
acteristic function we exponentiate the in�nitesimal symmetry ������
The only di�culty here is solving the equation

d�x

d	
� ��x�t 	


A

�

p
�x�t�� ����
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This is facilitated by making the change of variables
p
�x � y� Under

this change of variables� equation ���� becomes �rst order linear� This
leads to

p
�x �

p
x

�� 	t
	

A	t�

���� 	t��
� �����

The rest of the calculation is straightforward� We see by symmetry�
that if u is a solution of ������ then so is

U��x� t� �

s p
x�� 	 	t�p

x�� 	 	t�� A�
�
t�
u

�� p
x

� 	 	t
� A	t�

��� 	 	t��

��

�
t

� 	 	t

�

� exp

�
�




�
F �x�� F

�� p
x

� 	 	t
� A	t�

��� 	 	t��

��
���

� exp

�
�	�x 	

�
�
Ct��

� 	 	t
�

�
�
At�

p
x�� 	 	t�

�� 	 	t��
	
A�t���	t�� 	 
	t�� ��

����� 	 	t��

�
�

�����

Taking u � �� and setting � � 	 gives the result�

It should be clear that if we take A � �� in ������ then it reduces
to equation ������ In order to apply Theorem ��� we need solutions of
����� As per the comments following Theorem ���� we can transform
���� to the linear equation�


x�y���x�� �Ax��� 	 Cx� �

�
�y�x� � �� �����

The general solution of ������ is easily found to be

y�x� � x
�
�

�
a�Ai

�
�
�
�

	

C 	 �A

�

p
x



�
�A��
�
�

�
	 a�Bi

�
�
�
�

	

C 	 �A

�

p
x



�
�A��
�
�

��
�

�����

where Ai and Bi are the �rst and second kind Airy functions� and a�
and a� are arbitrary constants� Setting f � 
xy�y� gives solutions of
�����
Taking A � �

�
� C � �� a� � � and a� � �� gives the solution

f�x� �
�



	

p
xAi��

p
x�

Ai�
p
x�

� �����

Since

F �x� �

Z
f�x�

x
dx �

�




	
ln�x� 	  ln

	
Ai�

p
x�



� ������

an application of Theorem ��� allows us to determine the characteristic
function for

�u

�t
� x

��u

�x�
	

�
�



	

p
xAi��

p
x�

Ai�
p
x�

�
�u

�x
� ������
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However at this stage we are unable to invert the Laplace transform�
It should however be possible to invert the transform numerically� See
the paper by Craddock� Heath and Platen� �CHP��� on the numerical
inversion of Laplace transforms and the references therein�
The last case we have to consider is the case when the drift is a

solution of ���� and B �� �� Recall that when f was a solution of �����
for B �� �� then ����� has two in�nitesimal symmetries of the form

v� �

�

A

�
p
B

p
x	

p
Bx

�
e
p
Bt �

�x
	 e

p
Bt �

�t

�
�
B



x 	


A

�

p
x 	

p
B



f�x�� A��

�
� f�x��

�
p
B
p
x

	 �

�
e
p
Btu

�

�u
�

v� � �
�


A

�
p
B

p
x	

p
Bx

�
e�

p
Bt �

�x
	 e�

p
Bt �

�t

�
�
B



x 	


A

�

p
x�

p
B



f�x� 	

A��
�
� f�x��

�
p
B
p
x

	 �

�
e�

p
Btu

�

�u

Where � � �A�	BC
�
B

� At present we are unable to determine any char�
acteristic functions for ����� because we have not yet found any explicit
solutions of ���� for B �� �� Nevertheless� for completeness� we present
the group symmetries which are generated by v� and v��

Proposition ���� Let f be a solution of ���	 and u be a solution of
��	� Then� for 	 su�ciently small� the following functions are also
solutions of ��	�


�exp�	v���u�x� t�

�
�
� 	 	

p
Be

p
Bt
� �A��	B�

	B���

s
�B
p
x 	 
A���

p
� 	 	

p
Be

p
Bt�

�B
p
x

� exp

�
�	e

p
Bt�
A	 �B

p
x��

��B�� 	 	
p
Be

p
Bt�

�

� exp

�
��



�
F �x�� F

�� p
x

� 	 	
p
Be

p
Bt
�D

��
���
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where F ��x� � f�x��x� D � �A
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and � � �
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�
BC�

Proof� As for our previous cases� the proof simply involves solving the
system of ODEs �
����

Taking u � � immediately allows us to write down solutions of �����
for any f that is a solution of ����� Our experience with the previous
cases strongly suggests that if we can obtain solutions to ���� with
B �� �� then we would be able to determine the corresponding char�
acteristic function and fundamental solutions� We also note that the
solutions of ����� obtained by letting u � � in equations ����
� and
������� are closely related to the fundamental solution� In a forthcom�
ing paper we will show how to extend these solutions to directly obtain
the fundamental solution�
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