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ABSTRACT. This paper uses Lie symmetry group methods to anal-
yse a class of partial differential equations of the form

ou 0*u ou
It is shown that when the drift function f is a solution of a fam-
ily of Ricatti equations, then symmetry techniques can be used
to find the characteristic functions and transition densities of the
corresponding diffusion processes.

1. INTRODUCTION

The purpose of this paper is to show how symmetry group meth-
ods may be used to compute characteristic functions and fundamental
solutions for partial differential equations (PDEs), of the form

ou 0%u ou

when the drift function f is a solution of one of the following three
families of Ricatti equations.

1
xf'—f+§f2:Aa:+B (1.2)
1
xf'—f+§f2:Ax2+Bx+C (1.3)
! L 2 2 3
xf—f—|—§f = Ax: + Bx —|—C’x—§ (1.4)

A, B and C' are arbitrary constants.
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We will show that if f is a solution of (1.2), or (1.4), with B = 0, then
we can obtain the characteristic function for the PDE (1.1), from the
solution u = 1, via a straightforward symmetry group transformation.
The characteristic function Uy(x,t) of (1.1) is defined to be

Ux(z,t) :/ e*)‘yp(t,x,y)dy, (1.5)
0

where p(t, z,y) is the fundamental solution or Green’s function of equa-
tion (1.1). That is, Ux(z,t) is the Laplace transform of p(t¢,x,y).
The fundamental solution can then be recovered by taking the inverse
Laplace transform of Uy. When f is a solution of (1.3) we are still
able to obtain the fundamental solution by symmetry methods, how-
ever, this case is more involved, and so we illustrate the procedure by
examples. Finally, we will consider the case when f satisfies (1.4) with
B # 0. Here our results are less complete, because we have no explicit
solutions of this Ricatti equation.

Our techniques lead to a rich class of PDEs of the form (1.1) for which
the fundamental solution may be explicitly computed. It includes as
special cases, all the well know examples, such as when the drift func-
tion f is affine. In a subsequent paper, we shall introduce a different
symmetry based approach to the problem of determining fundamental
solutions of (1.1), that provides additional explicit densities.

The problem of computing fundamental solutions for PDEs of the
form (1.1), arises for example, when one has to obtain transition den-
sities for certain diffusion processes. Consider a one dimensional gen-
eralised square root process, X = {X;,t € [0,7T]}, satisfying the Ito
stochastic differential equation (SDE)

dX, = f(X,)dt + /2X,dWV,, (1.6)

for ¢t € [0,T]. Here W is a standard Wiener process, and f is an ap-
propriate drift function. It is well known that the transition density,
p(t, z,y) for the process X, is given by the fundamental solution of the
PDE

0 0? 0

a—f - xa—;; + f(x)a—i. (1.7)
See for example Protter [Pro90] or Revuz and Yor [RY98]. For con-
ditions on f guaranteeing the existence of a unique, strong solution
of (1.6), see Protter, [Pro90]. Generalised square root processes have
important applications, particularly in finance. Several interest rate
models involve so called affine processes, which are generalised square
root processes with drift of the form f(z) = ax + b. See the paper
by Duffie And Kan, [DK94] for a discussion of this topic. Also, the
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so called minimum market model of Platen, [Pla01] for equity and cur-
rency markets involves generalised square root processes.

We will derive fundamental solutions of (1.1) in some illustrative
cases, and hence obtain transition densities for generalised square root
processes X, satisfying SDE’s of the form (1.6). Many of the funda-
mental solutions that we obtain appear to be new.

The outline of the paper is as follows. In Section 2 we introduce the
results we need from the theory of Lie group symmetries. In Sections
3 and 4, we determine the infinitesimal symmetries for the PDE (1.1).
Finally, in Sections 5, 6 and 7, we show how these symmetries can be
used to obtain characteristic functions and fundamental solutions.

2. INTRODUCTION TO SYMMETRY METHODS

A symmetry of a differential equation is a transformation which maps
solutions of the equation to other solutions. More precisely, if Hp
denotes the space of all solutions of the PDE

P(z,D%) =0 (2.1)

then a symmetry S is an automorphism of Hp. i.e S : Hp — Hp.
Thus v € Hp implies that Su € Hp.

In the 1880s Lie developed a technique for systematically determining
all groups of point symmetries for systems of differential equations.
Symmetry group methods provide a very powerful tool for the analysis
of differential equations. Indeed symmetries often provide the only
practical method for finding analytical solutions. The book by Olver
[O1v93] gives an excellent modern account of Lie’s theory of symmetry
groups. Other significant works include Miller [Mil74]|, Bluman and
Kumei [BK89], Olver [Olv95], Hydon, [Hyd00], Stephani [Ste89] and
the classic text by Ovsiannikov, [Ovs82]. The papers [Cra95], [Cra00],
[Cra94] and [CDO01] provide additional information on symmetries and
their applications.

The key to calculating group symmetries for differential equations is
a theorem of Lie, which we will state below. For the purposes of the
current work, we consider a PDE of order n in m variables, defined on
a simply connected subset @ C R™. The PDE takes the form (2.1),
where P(x,y) is an analytic function on 2 x R,

olely
Dau — m—a.
Ox{" ...0xom
Here a = (a, ..., @), is a multi-index, with o; € N for i € {1, ..., m},

and || = @1 + -+ + ay,. The extension of the theory to systems of
PDE:s is straightforward. Chapter 2 of Olver’s book [Olv93], contains

!There also exist group symmetries which are more complicated than point sym-
metries, as well as symmetries which do not have group properties. They are im-
portant in many applications, but we do not consider them here.
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a detailed and rigorous discussion of the technique which we will now
describe.

We begin by considering an arbitrary vector field, that is, a first order
differential operator of the form

- 0 0
v = ;&c(x, u)a—ﬂﬂk + o(z, u)%, (2.2)

where (z,u) € QxR. The vector field (2.2) is the infinitesimal generator
of a one parameter local Lie group, called the flow of v, which acts upon
elements (z,u) € 2 x R. We call this group G. We require a method
which allows us to determine conditions on & and ¢, which will ensure
that G is a group of symmetries for (2.1).

We define the nth prolongation of G, to be the natural extension of
the action of G, from (z,u), to the collection of all the derivatives of
u, up to order n. That is, the nth prolongation, denoted pr"G, acts on
(@, U, Ugyy -y Uz, 2, ), Where the order of the highest derivatives is n.

To determine pr"G, let D" be the n-jet mapping defined by

D" (xyu) — (T, Uy Ugyy ooy Uy, )- (2.3)
Then the n-th prolongation must satisfy
D"o G = pr"G o D" (2.4)
This condition requires that the chain rule of multi-variable calculus
holds.
The infinitesimal generator of pr"@G, is called the n-th prolongation
of v, and we denote it by pr"v. Using condition (2.4), it is possible

to derive an explicit formula for pr"v. The details are contained in
Chapter 2 of [Olv93].

Theorem 2.1 (Olver). Let v be a vector field of the form (2.2). Then
the n-th prolongation of v is
0
pr'v =v + Z ¢’ —
J

2.
S (25)

where the sum is taken over all multi-indices J, with |J| < n. The
functions ¢’ are given by

¢’ =9, (¢> - Z Skuxk> + Z Ekthg - (2.6)
k=1 k=1

Ou

Here ®; denotes the total derivative operator and u,, = Do

We illustrate the notation by considering an example. Let m = 2 and
label the dependent variables z and t. Let J = (2,1) be a multi-index.
Then

du 0 0

Uy = Upgt = —=—, Ujgp = Ugptg, aDd —— = .




SYMMETRY METHODS 5

It is standard to write ¢ for ¢’/ when J = (1,0), ¢*® = ¢’ when
J = (2,0) etc. So for example, if J = (2,2) then we would write
¢’ = @™, This is the notation we will use in this paper,

We now state a version of a theorem due to Lie. This is the central
result of the theory of Lie group symmetries. It provides necessary
and sufficient conditions for a vector field of the form (2.2), to generate
symmetries of a specified differential equation. The proof may be found
in Chapter 2 of Olver, [Olv93]. See also Lie’s original papers in [Liel2].

Theorem 2.2 (Lie). Let
P(z,D%) =0 (2.7)

be an n-th order partial differential equation as defined above. Let v
be a vector field of the form (2.2). Then v generates a one parameter
local group of symmetries of (2.7) if and only if

pr"*v[P(z, Du)] = 0, (2.8)
whenever P(x, D*u) = 0.

Applying Theorem 2.2 to a PDE yields a system of determining
equations for the functions & and ¢. In most circumstances these de-
termining equations may be solved by inspection. One thus obtains
a set of vector fields which generate all point group symmetries. The
vector fields satisfying (2.8) are referred to as infinitesimal symmetries.

One of the most important properties of these infinitesimal symme-
tries is that they form a Lie algebra under the usual Lie bracket. We
have the following result, which is also due to Lie. For a proof of
Theorem 2.3, see Chapter 2 of Olver, [O1lv93].

Theorem 2.3 (Lie). Let
P(z,D*)u =0

be a differential equation defined on M = Q2 x R". The set of all infini-
tesimal symmetries form a Lie algebra of vector fields on M. Moreover,
iof this Lie algebra is finite dimensional, the symmetry group of the sys-
tem is a local Lie group of transformations acting on M.

2.1. The One Dimensional Heat equation. As an illustrative ex-
ample of the application of Theorem 2.2, we consider the one dimen-
sional heat equation,

Upy = Uy (2.9)
This example was originally studied by Lie. To compute the symme-

tries of (2.9), we set

0 0 0
v =¢(a,t, u)a—x +T(:U,t,u)§ + ¢(x,t,u)%,
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and compute the second prolongation of v. According to Theorem 2.2,
v generates symmetries of the heat equation, if and only if

prviuge — ug] = 0 (2.10)
whenever u,, — u; = 0. The general form of the second prolongation
of v is

0
au:v:v

and hence the condition, (2.10) implies that,
¢ = " (2.12)

The functions ¢! and ¢ can be explicitly computed from the prolon-
gation formula in Theorem 2.1. This gives a set of defining equations
for £, 7 and ¢, which may readily be solved. The full details of the
calculation are in Olver’s book [Olv93], p120ff. From &, 7 and ¢ we
may determine a basis for the Lie algebra of infinitesimal symmetries.
A basis for the Lie algebra of symmetries of the one dimensional heat
equation is,

%, )
Oy +¢ autt

0
priv —V+¢ﬁD +¢t —|—¢m + ™ (2.11)

0 0 0 0 0 1 0
ViTor V2T V3T Uy VaTlo TG T 3ay
0 0 0

=o%— — = dxt— + 41— %) u—

Ve =2y —auge, Vo= dutn AP S — (@f 4 2ug

In addition, there are infinitely many infinitesimal symmetries of
the form vs = B(z,t)2 5o, where ((x,t) is an arbitrary solution of the
heat equation. The existence of these symmetries reflects the fact that
adding two solutions of the heat equation yields a third solution. These
trivial symmetries are usually ignored. We note however, that there are
circumstances in the study of non linear PDEs where such symmetries
are important. See the book by Bluman and Kumei [BK89] for a
discussion of this topic. In this paper, we shall only be interested
in nontrivial symmetries.

The process of obtaining the group transformation which is generated
by a given infinitesimal symmetry is known as exponentiating the vector
field. To exponentiate an infinitesimal symmetry, v, we solve the
system of first order ordinary differential equations (ODEs),

% =7(%,1, 1) (2.14)
di _ (z,1, 1) (2.15)

de
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subject to the initial conditions
#(0) ==z, t0)=t, u(0)=u.

If u(z,t) is a solution of the heat equation we will express the action
of the symmetry generated by v, on u by writing

u(x,t) = plexp(evy))u(z,t) (2.16)

Here @(x,t) is the new solution obtained from u by the action of the
symmetry generator v, and p(exp(evy))u(z,t) is the action of the local
group generated by vi, on u.2 The real number e is the group parameter.

Exponentiating the infinitesimal symmetries of the one dimensional
heat equation, produces the following symmetry transformations

plexp(evy))u(x,t) = u(x — €,t) (2.17)
plexp(eve))u(x,t) = u(z,t — €) (2.18)
plexp(evs))u(x,t) = eu(x, t) (2.19)
plexp(evy))u(x,t) = e_%fu(efx, e”t) (2.20)
plexp(evs))u(z, t) = ety (z — 2et, t) (2.21)
p(exp(evg))u(z,t) = \/ﬁ exp { . fiet} u <1 +x4€t, : +t472>22)

The significance of (2.17)-(2.22), is that whenever u(z, t) is a solution
of the one dimensional heat equation, and ¢ is sufficiently small, then
the right hand side of (2.17),...,(2.22) will also be a solution. The
restriction that € be ‘sufficiently small’ may be dropped if the solution
space of the heat equation is restricted in an appropriate way. The
papers [Cra95] and [Cra00] contain the technical details.

As an application, consider the symmetry (2.22). Since u(z,t) = 1
is a solution of (2.9), then by symmetry so is

i, f) = { e } (2.23)
u(r,t) = ———=ex . .
vV 1+ 4det P 1+ 4et

In (2.23), let t — ¢t — 1/4¢. and set € = 7. In this way, we obtain the
fundamental solution of the heat equation,

1 22
k(z,t) = e, 2.24
(1) = = 2:24)
from the constant solution, u = 1, by simple group transformation.
It is natural to ask whether we can obtain fundamental solutions for

other PDEs by symmetry? In a recent paper, [CDO01], Craddock and

2This notation is chosen to reflect the fact that exponentiating a vector field
produces a local representation of the underlying Lie group. See the papers [Cra95]
and [Cra00] for a discussion of the connection between group symmetries and group
representation theory.
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Dooley, have shown that for the heat equation on a nilpotent Lie group,
there always exists a symmetry which maps the constant solution to
the fundamental solution. Craddock and Dooley also investigated a
class of heat equations with drift on the real line,

ou  0%*u ou

= o Wy

They showed that the fundamental solution of (2.25) can always be

obtained from the constant solution by a symmetry transformation,

whenever the drift function f is a solution of any one of five families

of Ricatti equations. This immediately leads to a rich class of PDEs,

whose fundamental solutions can be explicitly computed by symmetry.
It also motives the remainder of this paper.

(2.25)

3. THE EQUATIONS DEFINING THE INFINITESIMAL SYMMETRIES.

In the next two sections we will determine all possible Lie symmetry
algebras for PDEs of the form (1.1). As described in Section 2, we look
for vector fields of the form

v = §(x,t,u)% + T(x,t,u)% + d)(x,t,u)%.
We observe that (1.1) is linear, and further that it is first order in ¢
and second order in z. It is a simple exercise to show that in this
case £ and 7 cannot depend upon u, and 7 must be a function of ¢
only. Furthermore, since (1.1) is second order, we need the second
prolongation of v. This was given by equation (2.11). If we apply
(2.11) to equation (1.1), then by Theorem 2.2, we see that v generates
symmetries of (1.1), if and only if

(3.1)

¢' = ™ + f(@2)0" + (Uew + fl(x)uw)f (3.2)

To proceed further, we calculate ¢', ¢* and ¢** by means of equation
(2.6) and apply the results to (3.2). We then obtain the system of
defining equations that £, 7 and ¢ must satisfy in order for v to generate
a symmetry. This leads to the equation

Or — &y + (Pu — T0) (Tae + f(T)ug) =
+ f(@)(de + (Pu — &)ua))- (3:3)

Here, subscripts denote partial differentiation.
From (3.3) we can read off individual equations for &, 7 and ¢ by
equating the coefficients of the derivatives of u. First, from the terms
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involving the zeroth derivatives of u, we see that

From the coefficients of u,, we get

The coefficients of u,, give

x(d)u - Tt) = x(¢u - 2§x) +¢. (36)

2

2, we see that we must

And finally, examining the terms involving u
have

Guu = 0. (3.7)
The solution of these equations is elementary. We first consider

(3.6). Since 7 is independent of x, we may solve the equation for £
by determining the appropriate integrating factor. We readily obtain

&=z + Vap(t). (3.8)
Here, the arbitrary function p depends upon t alone. This immediately
allows us to write

& = a7y + Vpy, (3.9)
1
§o =T+ 5:1:_%,0, (3.10)
and

I s

Eoo = —Zx 2. (3.11)
Equation (3.7) implies that ¢ must be linear in u. Thus

oz, tyu) = alz, t)u + [(z,t), (3.12)

for some functions a and . On the other hand, equation (3.4) requires
that

v = Ty + f(2)ay, (3.13)
and

We can say no more about 3 other than that it is an arbitrary solution
of the original equation (1.1). From (3.12) and (3.5) we get

—& — f(o)1 = 230, + x(ix?g)p — f(x) (7 + ﬁp)

+ (@) (27 + V), (3.15)
which upon rearrangement gives
1 1 1 s 1, flx)  f'(x) 1,
Qg = =5 T — mpt — gt 2p+ §(m - W)P - §f ()73

(3.16)
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We can immediately integrate this to obtain

1

0= o~ ot f< @) @t olt),  (3.17)

2
for some function o, of t only. We now see that
1 1 1
Qp = = 5T — Vpy + \/—(— — f(@))pr — §f($)7'tt +oi,  (3.18)
and
1 s Ld® ((5-f(x) 1.,
— = APRE R A I S : 1
g 4x 20+ = 5 772 < NG )p 2f ()7 (3.19)

Finally, we substitute these into equation (3.13) to derive the equa-
tion

1 1
— 2Ty — Tpy +

2 2f<——f( ))Pt—%f(x)nt—i—gt:

R S ) P P

o 160) (~hr— bt 1L (BELDY

(3.20)

Performing the obvious cancellations and collecting terms, we arrive
at the final defining equation
1 1
—§$Tttt —VTpy +o, = 5 (l"f” + ffl) T
3+8(xf — f+1f%) —8z(af+ [
+ 3 P
1622

(3.21)

Equation (3.21) determines 7, p and o for every choice of C? drift func-
tion f. It fixes the final structure of the symmetry group. To proceed
further, it is necessary to specify the form of f. We shall do this in the
next section.

4. COMPUTING THE INFINITESIMAL SYMMETRIES

Our aim is to use symmetry transformations to obtain fundamental
solutions of (1.1) from trivial solutions. This should only be possible
if the Lie algebra of infinitesimal symmetries contains a vector field
whose action transforms a solution in the ¢ variable. If the action of
the symmetry transformation were trivial in ¢, it could not transform
a solution which is constant in ¢, to one which is nonconstant, such as
the fundamental solution.

This motivates us to look for vector fields where the coefficient of %
is nonconstant. Examining equation (3.21), we see that the coefficients
of 7, and p depend upon the drift function f. To determine conditions
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on f in order that 7 be nonconstant, we must equate the appropriate
terms in x. Thus it is the drift term f which constrains the dimension
of the Lie algebra of symmetries of (1.1).

For convenience, we have split our analysis into four cases

4.1. Case 1. Let

af" + ff = A4,
where A is a constant. Then integration by parts gives
1
xf’—f+§f2:Ax+B. (4.1)
From (3.21) we see that
1 1 3+8B
——fUTttt Vapy + o, = —=An + <7§> p- (4.2)
2 1622
There are two obvious subcases.
4.1.1. Subcase 1a. If 34+ 8B # 0, then we must have
1
Tttt — 0, p = 0, O = —5147}. (43)

Integration yields, 7 = ¢; + 2¢3t + 4eyt?, 0 = —cy At — 2¢6A1% + ¢,
for some arbitrary constants ¢y, ..., ¢4. From this and (3.8) we see that

& = 2¢37 + 8cyat, (4.4)
and

1
a = —deqr — §f(x)(203 + 8cyt) — c3 At — 2c, At* + cs. (4.5)

Recall that a vector field generating a symmetry of (1.1) is chosen
to have the form (2.2). Our choice of basis for the Lie algebra of
symmetries is determined by the numbering of the constants appearing
in the expressions for ¢, 7 and £. Obviously there are other equivalent
choices that we could have made.

Because the Lie algebra contains vector fields of the form vz =
B(z,t)Z, in which § is any solution of (3.14), it is clear that the
Lie algebra is infinite dimensional. We also have a four dimensional
Lie subalgebra of symmetries, arising from the functions £, 7 and a. A
basis for this Lie subalgebra of point symmetries is

0
V] = a, (46)
0
Vo = U%, (47)
9 0 0

a 5 0 o O
vy = 8xt$ + 4t 5 (42 + 4f (z)t + 2A¢%) U (4.9)
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The symmetries generated by these vector field may be determined
by solving the system of ODEs given in (2.13). Here we observe that
the vector field v; generates translations in time. That is, if u(x,t) is
a solution of (1.1), then so is u(x,t + €). The vector field v, implies
that if we multiply a solution by a constant, then the result is another
solution. vj3 generates scaling symmetries in the x,¢ and u variables.
We will consider the vector field v, in the following section. Finally,
the vector fields of the form v, show that if u is a solution of (1.1) and
[ is another solution, then u + [ is also a solution. These symmetries
are straightforward consequences of the linearity of equation (1.1) and
the fact that the coefficients of the equation are constant in time.

We point out one more interesting feature. Since the Lie algebra
of symmetries is closed under Lie brackets, then we may easily obtain
new symmetries. For example, [vy4, vs] produces the new infinitesimal
symmetry

0
[va,vg] = (8xtf, + 4t° B, + (4o + 4 f (z)t + 2At7)) 5%' (4.10)
This allows us to conclude that if 3 is any solution of (1.1), then so

is 813, + 4t* By + (4x + 4f(x)t + 2A¢*) 3. We may of course compute
other such symmetries.

4.1.2. Subcase 1b. 1If 3+ 8B =0, then

1
Tue =0, pu=0, o= —§AT,¢. (4.11)
Thus from (4.1)
' L, 3
xf—f+§f :Ax—g. (4.12)

From (4.11) we obtain

T =y 4 2eat + degt?, p=ci+2ct, 0=0=—c At — 2c6At> + 5.

(4.13)
Combining this with (3.8) gives
£ = x(2¢4 + 8cst) + Va(er + 2¢5t), (4.14)
and
a = —degr — (205)V/T — 1 <1 - f(x)) (e1 + 2¢5t)
SNAY
_ % F() (21 + 8cst) — 1At — 265 AL + 3. (4.15)

We thus have a six dimensional Lie subalgebra of symmetries, plus the
infinite dimensional ideal generated by the vector fields of the form vg.
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A basis for the six dimensional subalgebra is seen to be

0 1 1 0
0

= — 4.1

Va ata ( 7)
0
v—23+2t2—(f()+14t)u— (4.19)
P T T VY ou’ ‘
0 1 /1 0

e ? o ? 0 ?

Ve = Sxtax + 4t o (dx + 4 f(x)t + 2At )uau. (4.21)

4.2. Case 2. Let
vf"+ ff' = Az + B,

A # 0, B constants. Integration by parts then yields the Ricatti equa-
tion
l 1 2 1 2
xf—f+§f :§Aa: + Bx+ D. (4.22)
Consequently, the final determining equation (3.21) reads

1 1 3+8D —4Ax?
——XT — TPy + 0y = ——(Ax + B)1, + ( 3 ) p-
2 2 16z2

(4.23)
Again we have two subcases:

4.2.1. Subcase 2a. If 3+ 8D # 0, then
B

T = A, p =0, Ut:—g’ft-

By calculations similar to Case 1, we see that a basis for the Lie algebra
of symmetries is

0
Vi = a, (424)
0

9, 0 1 9,

— \/Zt_ \/Zt_ — (A A B VAt o

vy =V Ae 8x+6 5 2( x4+ VAf(z) + B)e Us
(4.26)

vy = —xV Ae’*/z'f3 + e"/z'f2 — 1(A:U —VAf(x)+ B)e’*/z'fu2

! Oz ot 2 (%’7)

Vg = ﬂ(x,t)a%, (4.28)
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where [ is an arbitrary solution of equation (1.1).

4.2.2. Subcase 2b. 1If 3+ 8D = 0, then
3

1 1
g —f?=_A2?>+Bxr — - 4.2
of = f+5f" = 540" + Be — o, (4.29)
and
A B
Tt = ATy ptt:ZPa Ut:_ETt-

Proceeding in the same way as before leads to the following basis for
the Lie algebra of infinitesimal symmetries.

vy = \/Ee%‘/m2 1 ( x ! (1 (x))) e%mtu%, (4.30)

or 2 N 0
9,

= — 4.31

M (4.31)
0
Vs =umo (4.32)
9, 0 1 0
— A \/Zt_ \/Zt_ - A A B VAt v
vy = 2V Ae 8x+6 g 2( z+ VAf(x) + Be Uz
(4.33)
vs = e VA 4 ! VT + L(1 — f(2)) (fé‘mtu3 (4.34)
2 2z 2 ou’ '

9, o 1 0

— _ VAt Y —VatlY _ -vat, Y

v = —xV/ Ae e +e g 2(A35 VAf(z) + B)e Uz
(4.35)
vs = [B(x t)2 (4.36)

B — ) aua .
where (3 is an arbitrary solution of equation (1.1).
4.3. Case 3. Let af" + ff' = A\/xr + Bx + C. Then we have
1 2 3 1

xﬂ—f+5F:§Aﬂ+EBﬁ+C%+D. (4.37)

Consequently, equation (3.21) reads

1 1
_§thtt — \/Eptt + o0y = —5(14\/5 + Bx + C)Tt

(34—80-§Ax3-43x2>
+ p-

1622
If 3+8D # 0, then p = 0. This implies 0, = 7, = 0. Hence 7 and o are
constants.
In the case where 3 4+ 8D = 0, then
B C A

T = BTy pu = 57} + ZP, o = —57} — gﬂ-

The cases, B =0, and B # 0 are different.
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4.3.1. Subcase 3a. If B = 0 then a basis for the Lie algebra of infini-
tesimal symmetries is

vl (B (V)2
vy = % (4.39)
o ua% (4.40)
(2x-+——V/72> ———+2t£;

((O+A\/_)t+ %ﬁ W +f(x)> u% (4.41)

_ \/Eta% N (_t2+\/—_ MQ e (4.42)

3} ot
L _
<4x +2Ct + Af (z)t + ‘;16# + 2AV/xt? — A 3\/Ji(x))t3> ua%
(4.43)
Vg = B(x,t)%, (4.44)

where (3 is an arbitrary solution of equation (1.1).

4.3.2. Subcase 3b. In the case when B # 0, the calculations are similar.
A basis for the Lie algebra of infinitesimal symmetries is

wE 0 (3 — f(2)) A 6%\/§tu2
vy = \/56 o < \/_\/_ \/— —|—3\/§> (84u45)

szfwg <\rf+(LWD+A> vm D

2y/x 3V B “ou
(4.46)
0
Vs =ugo (4.47)
S (4.48)
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2A 0 0
vs = | —=+/z + VBz | VP — 4 VP
5 <3\/_\/E x)e - e ;

B 24 VB A — f(2)) 242+9BC
- (5“ SVt IO - E s T B )
« VBt (4.49)

ou

_ (24 vt 9 | —vmO
Vg = <3\/§\/§+\/§x>e 8x+€ En

B 24 VB AL — f(2)) 242+9BC
_<5x+? x—Tf(a:)+ 32\/§\/E +— 153 )
9
x e*@tu%, (4.50)
Vg = B(x,t)%, (4.51)

where (3 is an arbitrary solution of equation (1.1).

4.4. Case 4. The final case we must consider is when the drift f does
not satisfy any of the Ricatti equations of Cases 1 through 3. Here, we
must have 7,y =7, =0, p=0, o, =0.Thus the symmetry algebra
is two dimensional. A basis is

0 0

o 2 "ou

Therefore, if the drift does not satisfy one of the Ricatti equations (1.2),
(1.3) or (1.4), then only the only possible symmetries are translation
in ¢ and scaling in the u variable.

This completes our determination of the Lie algebra of symmetries
for equations of the form (1.1). There are no other possibilities. In the
next section we will show how to use the symmetries determined here
to construct fundamental solutions of (1.1) for different choices of f.

Vi =

5. FUNDAMENTAL SOLUTIONS AND CHARACTERISTIC FUNCTIONS

We will now exploit the symmetries found in the previous section to
compute characteristic functions and fundamental solutions for PDEs
of the form (1.1). We will first consider the case where the drift function
f is a solution of the Ricatti equation (1.2). We will consider the PDEs
associated with the Ricatti equations, (1.3) and (1.4) in the following
sections.

In this section we introduce a method for explicitly computing funda-
mental solutions, which involves taking the inverse Laplace transform
of the characteristic function. One immediate result of the symmetry
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analysis in the previous section is that we may often obtain the char-
acteristic function of (1.1) from a trivial solution by a straightforward
group transformation. We illustrate with an example, before stating a
theorem.

Example 5.1. The simplest case is f(x) = «, where « is constant. In
this case we have zf" + ff' =0,s0 vf — f + %fQ = B. We are thus
considering the PDE,
ou 0%u ou
which is fundamental to the theory of Bessel processes. See chapter 11
of Revuz and Yor, [RY98] for a detailed discussion of Bessel processes.
From Case 1 of Section 4, we see that a basis for the Lie algebra of
symmetries of (5.1) is

V' —2
Yoo
2 — aua

0 ? vl ol
M e T

0 0 0
vy = 8xt— + 4t* — — (4o + 4 —
4 = 8t . t " (4z + 4at)u "

0
vg = Pz, t)=—.
B ﬁ( ) )au
We are interested here in v4. We compute the action of the one

parameter local Lie group generated by vy, by solving the system of
ODEs defined in (2.13). From this we obtain

plesplevutrt) = exp { L - (o) - (5 )}

1+4et 2 1+ 4det

x t
X . 5.2
u<(1+4et)2’1+46t> (5:2)

Thus if u is any solution of (5.1), then (5.2) is also a solution, at least
for € sufficiently small. We set A = 4e, and consider the solution v = 1.
Then by symmetry,

Un(z, 1) = (14 \t) © exp{ AT } (5.3)

14Xt

is also a solution of (5.1). This is well known to be the characteris-
tic function for (5.1). It is the Laplace transform of p(t,z,y). This
transform can be inverted using the fundamental identity

L <%e> -9 eV, (5.4)
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where I, is a modified Bessel function of the first kind with order v.
See [AST72], Chapter 9 for properties of modified Bessel functions.
We then obtain the well known transition density of Bessel processes

p(t,z,y) = L7 <(1 +AD)e exp{ —A\z })

1+ At

= %2 (g) = I, 1 (@) exp {_L;ry)} . (5-5)

This example shows that it is possible to obtain the characteristic
function for the PDE (1.1) by a straightforward symmetry transforma-
tion. In fact, we can obtain characteristic functions, and hence funda-
mental solutions, for a wide class of equations by the same procedure.
The key is that the characteristic function can be viewed as a solution
of (1.1), with the initial condition

u(z,0) = e (5.6)

By symmetry, we can obtain a solution satisfying (5.6) from a solution
with initial data u(z,0) = 1.

Theorem 5.1. Let f be a solution of the Ricatti equation
1
xf’—f+§f2:Ax+B (5.7)

Then the characteristic function Uy(x,t) for the PDE (1.1) is given by

Us(x,t) = exp {—M%%Ajjﬁ) - % <F(x) o <(1fiﬁ)2>> }(5 8)

where F'(x) = f(x)/x

Proof. Clearly Uy(z,0) = e **. Now, since zf’ — f + 1 f* = Az + B,
then, from Case 1 of Section 4, equation (1.1) has an infinitesimal
symmetry of the form

.0 5 0 o O
V= Sxta—x + 4t 5 (42 + 4f (z)t + 2A¢%) U (5.9)

The exponentiation of v shows that if u is a solution of equation (1.1)
with zf' — f + 1 f? = Az + B, then so is

st = {0 (v ()

T t
5.10
Xu<(1+4et)2’1+4et)’ (5.10)

where F'(xz) = f(z)/x. Taking u = 1, and setting A\ = 4¢, we obtain
the characteristic function (5.8). O
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Let us make the following observation. If we substitute the expression
(5.8) equation (1.1), then, after some manipulations, we see that if
Uy(z,t) is a solution, we must have

— 2ANTt(2 + M) + 2(1 + At)? <:cf’ -+ %fQ

(o (we) (o) 2 ()

= —2AM3t(2 + M) + 2(1 + Mt)? (g(x) —q (ﬁ)) =0,

(5.11)

where zf' — f + %fQ = g(x). This immediately implies that we must
have

x ) _Az)t(2 + Mt)

g(:c)—g<(1+At)2 =00 (5.12)

It is clear that g(z) = Az + B is a solution of this functional equation,
as we expect.

5.1. Solving the Ricatti Equations. Before presenting our exam-
ples, we consider the problem of solving Ricatti equations of the form

of! — [+ 5 = o(a) (5.13)

Equation (5.13) can be transformed into a second order linear equation
by the change of variable f = 2xy’/y. Under this change of variables,
equation (5.13) becomes

20%y" (z) — g(w)y(z) = 0. (5.14)
The equation (5.14) can be solved by standard techniques for a wide

range of functions ¢g(z). In Theorem 5.1 we have, g(z) = Az + B. The
general solution of (5.14) for this choice of g is

y(@) = 1 Lyrran (V2AT) + at I yrggg (V2AT) . (5.15)

From (5.15), all solutions of zf’' — f+1/2f* = Ax+ B, can be obtained.

A natural question to consider is what functions are covered by Theo-
rem 5.17 It is well known that Bessel functions are related to many dif-
ferent functions. Airy functions, spheroidal wave functions, and many
other important functions which arise in mathematical physics are ac-
tually special cases of Bessel functions. (See for example Watson’s
treatise on Bessel functions, [Wat22], for an exhaustive study). For
example, whenever

o+ 1
VIT2B = ”; . neN

the solutions of (1.2) will be given by either hyperbolic functions, by
functions of the form r(y/x)/s(y/x), where r and s are polynomials, or
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a combination of both. Moreover, for such a choice of B, the resulting
characteristic function can always be explicitly inverted.

Investigation of the full range fundamental solutions which may be
obtained by our methods is beyond the scope of this paper. We shall
content ourselves with some examples to illustrate how Theorem 5.1 is
used. The fundamental solutions and transition densities obtained in
the following examples appear to be new.

Example 5.2. We consider drift functions of the form

fl@) = —=

=—, a,r>0
1"—50/.1'

Since, zf' — f + %fQ = 0, by Theorem 5.1 the characteristic function
for the PDE

ou 0%u N ar Ou
— = N
ot 012?14 jax0x’

Vs (o) = <( (1+ At)? + Jazx )exp{ —A\z } (5.17)

14 At)%(1 + jax) 1+ At

(5.16)

is

[t is now an easy matter to recover p(t, x,y), by inversion of the Laplace
transform.
We have

plti3y) = L7 <<(1(1++A:>?(211%§a2>> o {iaf) 61

where L denotes Laplace transform. Inversion of the transform is
straightforward with the aide of the relation (5.4), and standard prop-
erties of the Laplace transform.

After some manipulation, we arrive at the expression

zt+y
et x/t? ax x/t?
plthoy) = Tk <eXp{ A }+2t2A2eXp{ A

_ (z+y)
t

_ (16+7§%“)t K\/§+ “@)h <2V:_y> —|—t5(y)], (5.19)

in which ¢ is the Dirac delta function. Consequently

_ (z+y)

ety = [ % K\/g ¥ é@)f (@) " té(y)} ay

(z+y)

5.20
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is a solution of the PDE (5.16), with initial data u(x,0) = ¢(z). Dif-
ferentiation under the integral sign shows that (5.20) satisfies (5.16).
A more involved calculation shows that the solution w satisfies

lilr&u(x,t) = p(x) (5.21)

Furthermore, it is not difficult to show that

_ (z+y)
t

and hence

_z _z
t t

€ €

t dy=——-4+1———F—=1. 5.22

e_%
(1+%am)
then p(t,z,y) may be interpreted as the transition density for the gen-
eralised square root process X, satisfying the SDE

If we interpret as the probability of absorption at the origin,

CLXt
dX; = ————dt + /2X,dW,. 5.23
"1+ lax, * e (5:23)

Example 5.3. Consider the drift function

- G042

1+ )

For this choice of f we have zf' — f + %f2 = —%. Thus, by Theorem
5.1 the characteristic function for the PDE

ou  Pu  (1+3y/x)0du

ot~ o2 To(l+ o) on

(5.24)

is

e ~(() () ) gt o9

Inverting the Laplace transform gives the fundamental solution

—(z+y)

p(t,z,y) = \/w—yi(ltJr 7 <Cosh (@) + /y sinh <2\/t@)(2 56)

It can be shown that p(t,z,y) is integrable at y = 0, and that

/Ooop(t,x,y)dy =1. (5.27)

As an example, let us compute a solution of (5.24) with initial data
u(z,0) = x, which is continuous at the origin. The integration is
straightforward, and we obtain
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t (1+3yx)
AT (5.28)

It is clear that u is a solution of equation (5.24), and further,

u(w,t) = / yp(t, z,y)dy =z +
0

%1_{% u(z,t) = x,

as required. The SDE for the corresponding generalized square root
process X is of the form

(1+3vXy)
dX, = dt Vv 2X, dW;. 5.29
t= 20+ ,—Xt + t AWy (5.29)

Example 5.4. Consider the PDE

(1 + @tanh (ﬂ + @ lnx))] % (5.30)

The drift function satisfies

ou 0%u
= r— —|—

ot ox?

of = f g f =

By Theorem 5.1, the characteristic function of (5.30) is

U/\(x,t):COSh(%ﬁ(Q—Hn(W)))eXp{— Ax } (5.31)

(1 + At) cosh (i\/% (2+1n x)) (14 A1)

Again this Laplace transform is easily inverted. The kernel is
2/Ty
p(t,z,y) = [[_1 5 <—>
(1+ e\/_xﬂ/g) 2V t
teViysViT, /3 ( V7 )} (5.32)
Once more we can show that fooop(t,x,y)dy = 1. Hence (5.32) is the

transition density for the generalised square root process which satisfies
the SDE

dXt:(<1+@t (£ %1 Xt>)>dt+\/27ﬁdwt.

(5.33)

1 /3
(I>Z\/;e—(z+y)
= t

Y
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Example 5.5. Let us now consider three separate problems arising
from the equation

1 1 3
xf'—f+§f2:§x—g. (5.34)
We exhibit three different solutions to this Ricatti equation. These are,
fl(z) = % +Va, (5.35)
fi(z) = % + vz tanh(v/z), (5.36)
and
fi(x) = % + vz coth(vz). (5.37)

We shall solve the corresponding PDE for each of these drift functions
in turn.
First, the equation arising from f*! is

ou 0%u 1 ou
By Theorem 5.1 the characteristic function for (5.38) is
At + 2\/:5)2}
Uz, t) = expl ———— 2} 5.39
A0 = N p{ 41+ M) (5.39)

As in the preceding examples, the inversion of the Laplace transform
is straightforward. Inverting the transform gives the density

Pt y) = ﬁeﬁmh <w> exp {_M _ lt}

t t 4
(5.40)
Next we solve the PDE coming from f2,
ou 0*u 1 ou
— =z = tanh —. A1l
o ot (2 +/wtan WE)) oz (5.41)
By Theorem 5.1 the characteristic function for (5.41) is
1 —\z + §t?
Ui(x,t) = cosh< Ve )exp{M}.
cosh(y/z)v1+ At V1+ At 1+ M
(5.42)

Inverting the Laplace transform leads to the fundamental solution

= S o () 32 L)

t 4
(5.43)

Finally, we consider the PDE
ou

5 = T3t G + \/Ecoth(\/f)> e (5.44)
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From Theorem 5.1, the characteristic function for (5.44) is

1 ‘ Nz )\(x—l—ltZ)}
Us ,t) = h{—— 4 %
s (z, ) sinh(\/:f) ﬁ—i—)\tsm <1—|—)\t> exp{ 1+ M\

Inversion of the Laplace transform leads to

e gt () {78

For each of these cases, it is easy to verify that

/ pi(t,x,y)dy =1, i=1,2,3
0

It is also easy to generate solutions of these PDEs with, say, polynomial
initial data. For example,

o0 1 1
u(z,t) = / yp*(t, v, y)dy = ¥ + \/z tanh(/z)t + ZtQ + §t. (5.47)
0

is a solution of the PDE (5.41), with initial data, u(z,0) = x.

Example 5.6. We consider now an example of a drift function which
possesses discontinuities. The equation

1
of = f 5=,
has a solution
f(x) =1+ cot (Inyz).

This solution is discontinuous at points of the form z = e, n €
{0,1,2...}. Nevertheless, by applying Theorem 5.1, we can obtain a
characteristic function and fundamental solution for the PDE

ou 0%u ou
ik (14 cot (Inv/z)) o (5.48)
Applying equation (5.8), we arrive at the characteristic function
—Az
i . i 1 ex
Ux(z,t) = cosec (In/z) [xﬁ(l +At) =z 2(1+ )\t)l] %,
(5.49)

where ¢ = y/—1. Inversion of the Laplace transform gives the funda-
mental solution

(z+y)
et i 2/Ty i 2/Ty
p(t,z,y) = cosec (In\/z) 57 <y2[i ( ” ) —y 2l <T>) .
(5.50)
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Although the right hand side of (5.50) involves i, it is in fact real valued.
To see this we use the series expansion

(122)19

I(z) = —~ kT(v+k+1)

(5.51)

Recall that I'(zZ) = ['(z). Expanding the series for I, and collecting
terms, leads to the expression,

1 z
p(t,z,y) = Scosec (Inv/x) e~ &
NG ) [xy? xy?
Z (t_Qy) {ak sin (ln %) + by, cos (ln %) }
k=0
(5.52)
Where,

G=Re(—— 1 ) p=Tm(-—
b KD(k+144))" KT (k+ 1+ 1)

Consequently the function (5.50) is real valued. Further, using stan-
dard integrals of Bessel functions, (see chapter 10 of Abramowitz and
Stegun, [AS72|, or Chapter 13 of Watson, [Wat22] ), and (5.50), we
obtain

(t%)l) cosec(In /)
2i (1) (&)
(- +(t%>l)

=1 (5.53)

M\~

An interesting SDE with discontinuous drift function arises for the
corresponding generalised square root process. We have

4, = (1+cot (In VX)) dt + /2X,aW,. (5.54)

In a subsequent paper we will study the generalised square root process
which is defined by solutions of (5.54).

It should be clear that Theorem 5.1 is easy to apply. In fact, we point
out that the process of determining the characteristic function and the
associated fundamental solutions/transition densities may readily be
automated using a symbolic manipulation package. In this way it is
possible to quickly determine exact solutions for a range of problems
which are not covered by standard techniques.
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6. THE RICATTI EQUATION zf' — f+ 1f?=1A2> + Bz + C

Next we consider the case when the drift function satisfies the Ricatti
equation (1.3). From Section 4, Case 2, it is clear that equation (1.1)
has infinitesimal symmetries of the form

vy = x\/Ae‘/Zt—ai + eV At—aat — %(Ax + VAf(z) + B)eﬂtu—aau
0 o 1 9]
- _ A —\/Zt_ —\/Zt_ = A - A B —VAt i
vy Vv Ae 5 e p 2( r—VAf(x)+ B)e s

In order to compute fundamental solutions, we require the corre-
sponding group actions. This is given by our next result.

Proposition 6.1. Let f be a solution of (1.3) and u be a solution of
(1.1). Then, for € sufficiently small, the following functions are also
solutions of (1.1).

plexp(evs))u(x,t) =

_B_ 1 e\/At
1+ /A VAL 2VA xz 7 1
(1 eV/Ae) v va s e/

e O e |

and

plexp(eva))u(z,t) =

o5t (6‘/Zt — 6\/Z) = U zeV ! ln(e‘/Zt _ Gﬂ)
eVAt _ /A’ VA

X exp e 2! F(z)—F Lm (6.2)
2(eVAt — /Ae) 2 evVAt — ey/A ’ '

In which F'(x) = f(z)/x.

Proof. The proof is straightforward. It simply requires us to solve the
system of ODES, (2.13), which correspond to vs and vy. O

Since u = 1 is a solution of equation (1.1), then by Proposition 6.1,
so are,

B
Ul(x,t) = (1 + 6\/26‘/2'5) A

e { 2(1_jfg;iﬁt) N % (F(x) -f (ﬁ)) } ’
(6.3)
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and

_B_
UZ(x,t) = e 2! (e‘/Zt - e\/Z) A

X ex —eAw s F(z) - F 7xemt
P (e\/_t \/_6) 2 eVAt _ /A '
(6.4)

Neither of these two solutions can be immediately identified with the
characteristic function of (1.1). However it is often possible to derive
the fundamental solution from them. We illustrate the method with
examples.

Example 6.1. Consider the PDE
ou 82u 3 ou
v _ Y [ 6.5
ot o T < x) oz (6.5)
Applying equation (6.4), and setting € = A/(1 + A), we see that

3
~ (1+N)et \2 —A\z
U. t) = ———7— — 6.6
is a solution of (6.5). Next, we use the fact that multiplication of

solutions of (1.1) yields a new solution. We multiply Uy by 1/(1 4 A)2
to obtain

et = (i) el 07

which is well known to be the characteristic function for (6.5). See for
example Revuz and Yor, [RY98]. Inverting the Laplace transform, we
obtain the fundamental solution for (6.5). It is

p(t,z,y) = (et‘il)%exp{—(jttyl)} A <2‘/fy—1€t> (6.8)

where

(M3

Ly () (6.9)

T, 1(2) = zu—%r(u+ 5 !

v=3

Example 6.2. Consider the drift function f(z) = z coth (£). Here

1 1
I ~ 2 —_ 2
of — f+ 2f 5%
By (6.4) of Proposition 6.1, the equation

ou 0%u ( ) ou (6.10)

o = xﬁ + x coth o

has a solution
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sinh (525 .

From this we can derive the fundamental solution p(t,z,y) of (6.10).
Observe that

1 e? 1 —(1+e)x
ue(z,0) = 3 (sinh (2)  simh(2) {m}) - (612

z
ez2

Furthermore, we note that g(x) = is a stationary solution

sinh( §
of the equation (6.10). We therefore look for a fundamental solution
p(t,z,y) with the property that

/oo et (t,2,y)d & (6.13)
o sinh ()Y T G (2) '
We introduce the new parameter A = 2(11+_€E). The solution u, becomes
. (22+1)zet
ur(2.1) sinh (2((2)\+1)et7(2)\71))> . -2\ = 1)z
—= X .
M sinh (Z) Plal@r+ 1)er — 2a— 1))
(6.14)
By (6.13), we may write (6.14) as
L[ ef 1
t) == — M) p(t d
uA(®, 1) 2/0 <sinh(g) sinh(%)* )p( @ y)dy
e2 1 1
- ol —ptay) ], 6.15
2sinh(3) 2 (sinh (%)p( v y)) (6.15)

where £ denotes Laplace transform as before.
Rearranging equation (6.15), we obtain the fundamental solution

_sinh (§) ., —(2A1+eh) +e — D
plboy) = G ey~ (exp { 2(2\+ el — (2A— 1)) })

(6.16)

where I; is a modified Bessel function of the first kind of order 1, and
0 is the Dirac delta function. The reader may check that the same
fundamental solution is obtained if we start with the solution arising
from equation (6.3) in Proposition 6.1, as indeed we should.
Obtaining the fundamental solution in these examples is more in-
volved than was the case for Theorem 5.1. For examples coming from
(1.3), the procedure which yield the characteristic equation differs from
case to case. This makes the formulation of a theorem equivalent to
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Theorem 5.1 difficult. However, it should also be clear that applying
Proposition 6.1 often allows us to derive the fundamental solution for
equation (1.1), when the drift satisfies (1.3). We will consider this case
in more detail in a subsequent paper.

7. THE RICATTI EQUATION zf' — f + 3 f* = Az + Ba? 4+ Cx — 3

The last case which we must consider is when the drift function f is
a solution of the third Ricatti equation (1.4). There are two subcases
here. B = 0, and B # 0, In the case B = 0, we can obtain the
characteristic function by symmetry directly as we did in Theorem 5.1.
Recall that when f is a solution of (1.4), and B = 0, the PDE (1.1)
has an infinitesimal symmetry of the form

B 24 ~.\ 9  ,0
v6—<8xt+?\/§t>a +4ta—

(4:1; +2Ct + Af (z)t + ’;6 th + 24wt — A(lg_\/f(x))t?’) u%.
(7.1)

The group action generated by this symmetry allows us to determine
the characteristic function for (1.1). We have the following result.

Theorem 7.1. Let f be a solution of the Ricatti equation

xf'—f—l—%fz:AxgjLCx—; (7.2)

Then the characteristic function Uy(z,t) for the corresponding PDE
(1.1) is given by

VZ(1+ At)
V(1 + Mt) — 2243

JT At ?
xexp{2 (F(x)—F (<1+)\t_ 12(1+>‘t)2> >>}

‘e CAa+30)  2APVE(3 + ) N AP (2XE(3 + SAL) — 3)
P 1+ At (1+ At)2 108(1 + At)? ’

xt

(7.3)
where F'(x) = f(x)/x

Proof. The idea of the proof is the same as for Theorem 5.1. First we
observe that Uy(z,0) = e . In order to show that (7.3) is the char-
acteristic function we exponentiate the infinitesimal symmetry (7.1).
The only difficulty here is solving the equation

dz . 2A

— =83t + —Vait’. 7.4

o Tt + 3 Vi (7.4)
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This is facilitated by making the change of variables v/Z = y. Under
this change of variables, equation (7.4) becomes first order linear. This
leads to

. N3 Aet3
Vi = 1—det © 3(1 — 4det)? (7:5)

The rest of the calculation is straightforward. We see by symmetry,
that if u is a solution of (1.1), then so is

) 1 + 4et) NZ: Aetd  \* ¢
IL' U _
\/_ 1 + det) — 413 L+4det  3(1+4et)2) "1+ det

NG Aet? 2
X exp{2 (F(x)—F <<1+4et B 3(1+4‘5t)2> >>}

y de(z + 101%)  2ALx(3 4 det) A%t (Set(3 + 2¢t) — 3)
ex - -
P 1+ 4det (1 + 4et)? 108(1 + 4et)?

(7.6)
Taking v = 1, and setting A = 4e gives the result. O

It should be clear that if we take A = 0, in (7.3), then it reduces
to equation (5.8). In order to apply Theorem 7.1 we need solutions of
(1.4). As per the comments following Theorem 5.1, we can transform
(1.4) to the linear equation,

202" (z) — (Ax®? + Cx — g)y(x) = 0. (7.7)

The general solution of (7.7), is easily found to be

1 2C + 44 2 2C + 44 X
y(x) =x1 [ a Al 33M + ayBi 35(—31\/_) :
247} (247}
(7.8)
where Ai and Bi are the first and second kind Airy functions, and a;
and ay are arbitrary constants. Setting f = 2xy/y’ gives solutions of
(1.4).
Taking A = %, C =0,a; =1 and ay = 0, gives the solution

_ 1 Vedi(Vr)
f(z) = 5 + A/ (7.9)
Since
f(z 1 .
/ ln( )+ 41n (Ai(v/x))) , (7.10)

an application of Theorem 7.1 allows us to determine the characteristic

function for
ou 0*u VE Al (/x) Ou
= + <2+ A7) >8x (7.11)

ot _xaxz



SYMMETRY METHODS 31

However at this stage we are unable to invert the Laplace transform.
It should however be possible to invert the transform numerically. See
the paper by Craddock, Heath and Platen, [CHP00] on the numerical
inversion of Laplace transforms and the references therein.

The last case we have to consider is the case when the drift is a
solution of (1.4) and B # 0. Recall that when f was a solution of (1.4),
for B # 0, then (1.1) has two infinitesimal symmetries of the form

8 ﬁtﬁ
( \/_+\/_x> 3x+€ 5%

(g + = £f( ) — A;_\/_—Jj/(f)) +a> eﬁtua2

Ve = — (\/_\/_+\/_a:> aaere‘/Et%

- (g“—f - 3P g+ L) +a> oy O

)

ou

Where a = “2;8“7%30. At present we are unable to determine any char-
acteristic functions for (1.1) because we have not yet found any explicit
solutions of (1.4) for B # 0. Nevertheless, for completeness, we present
the group symmetries which are generated by v and vg.

Proposition 7.2. Let f be a solution of (1.4) and u be a solution of
(1.1). Then, for € sufficiently small, the following functions are also
solutions of (1.1).

plexp(evs))u(x,t)

= (14 eBer) \/ 3BVE+24(1— V1t /BeV)

3Bz

. eeVBL(2A + 3B\/T)?
X J—
P 18B(1 4 ey/BeVBt)

X exp{—% (F(x)_F ((He—{%@/ﬁt_Df))}

\/E 2 1 ex/Et
Xu((He—\/W_D> ,\/Eln <1+e\/§e\/§t)> (7.12)
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plexp(eve))u(x,t)

VBt 9%;5/2542 3BT + 214((5@lt —VeVBt — y/B)
= (/™ - eVB) ~
3B\/re 2!

o {_ 12%2?%) }

2
1 247
e F(z) - F <(\/E+3B)6 - D

eVBt — e\/B
5 2
(VT +2)e? In(eVP! — eV/B)
X u —-DJ : (7.13)
eVBt — e\/B v B
A
where F'(z) = f(x)/r, D = 35 and a = gA* + ;BC.

Proof. As for our previous cases, the proof simply involves solving the
system of ODEs (2.13) O

Taking v = 1 immediately allows us to write down solutions of (1.1)
for any f that is a solution of (1.4). Our experience with the previous
cases strongly suggests that if we can obtain solutions to (1.4) with
B # 0, then we would be able to determine the corresponding char-
acteristic function and fundamental solutions. We also note that the
solutions of (1.1) obtained by letting v = 1 in equations (7.12) and
(7.13), are closely related to the fundamental solution. In a forthcom-
ing paper we will show how to extend these solutions to directly obtain
the fundamental solution.
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