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Abstract

This paper uses Lie symmetry group methods to study PDEs of the formut=xuxx+f (x)ux.
We show that when the drift functionf is a solution of a family of Ricatti equations, then
symmetry techniques can be used to find a fundamental solution.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to use symmetry group methods to compute fundamental
solutions for a class of partial differential equations (PDEs), of the form,

ut = xuxx + f (x)ux, x�0. (1.1)

By a fundamental solution, we mean a kernel functionp(t, x, y) such thatu(x, t) =∫∞
0 �(y)p(t, x, y) dy is a solution of the Cauchy problem for (1.1) with u(x,0) =

�(x).
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We will show that such a fundamental solution can often be obtained by Lie sym-
metry group methods when the drift functionf is a solution of one of the following
three families of Ricatti equations:

xf ′ − f + 1
2 f

2 = Ax + B, (1.2)

xf ′ − f + 1
2 f

2 = Ax2 + Bx + C, (1.3)

xf ′ − f + 1
2 f

2 = Ax 3
2 + Bx2 + Cx − 3

8, (1.4)

whereA,B andC are arbitrary constants.
The problem of computing fundamental solutions for PDEs of the form (1.1), arises

in the study of one-dimensionalgeneralized square rootor GSR processes. LetX =
{Xt, t ∈ [0, T ]} satisfy the Itô stochastic differential equation (SDE),

dXt = f (Xt ) dt +
√

2Xt dWt (1.5)

for t ∈ [0, T ]. HereW is a standard Wiener process, andf is a drift function. It is well
known that the transition density,p(t, x, y) for X, is given by the fundamental solution
of the PDE (1.1). See for example Revuz and Yor[16].

GSR processes have applications in finance and other areas. Certain GSR processes
exhibit a property known as mean reversion, making them ideal for modelling interest
rates. For example, the GSR process with drift equal tof (x) = a − bx is used by
Cox, Ingersoll and Ross (CIR) to model bond prices. (See the book[8]). Longstaff by
contrast, models bond prices with a GSR process in which the driftf (x) = a − b√x.
(See[12] for Longstaff’s analysis and a comparison with the CIR model). The transition
densities for both the CIR model and the Longstaff model can be obtained by our
methods.

Another application of GSR processes is to the modelling of inflation rates. Typically
a central bank would like to keep inflation within a certain band, say(�,�). Such
inflation rates can be modelled by GSR processes in which the drift has discontinuities
at x = �, x = �. An instance of such a process is given by our Example 4.8. GSR
processes also play a fundamental role in theminimum market modelof Platen,[15],
which models equity and currency markets. In our Example 4.2, we present a simple
application of our methods to the pricing of an option on a commodity.

2. Symmetry methods and fundamental solutions

Symmetry group methods provide a natural approach to the problem of finding
fundamental solutions of PDEs. The book by Olver[14] gives an excellent modern
account of Lie’s theory of symmetry groups. See also the books by Miller[13] and
Bluman and Kumei[1] and the papers[2–4]. Lie himself considered symmetries of
higher order PDEs in[9,10]. The book[11] is based on Lie’s papers.
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For illustration, consider the one-dimensional heat equation. Lie showed that ifu(x, t)

is a solution of the equationuxx = ut , then so is

ũ�(x, t) = 1√
1 + 4�t

exp

{ −�x2

1 + 4�t

}
u

(
x

1 + 4�t
,

t

1 + 4�t

)
(2.1)

for � sufficiently small (see for example[14]). In (2.1), let u = 1, t → t − 1
4 �, and set

� = �. In this way, we obtain the fundamental solution of the heat equation,k(x, t) =
1√
4�t
e− x2

4t , from the constant solution,u = 1, by simple group transformation.
It is natural to ask whether we can obtain fundamental solutions for other PDEs by

similar means? In a recent paper, Craddock and Dooley[5] showed that for the heat
equation on a nilpotent Lie group, there is always a symmetry which maps the constant
solution to the fundamental solution. They also studied the equation

ut = uxx + f (x)ux. (2.2)

The fundamental solution of (2.2) can be obtained from the solutionu = 1 by a
symmetry transformation, whenever the drift functionf is a solution of any one of five
families of Ricatti equations. This immediately leads to a rich class of PDEs, whose
fundamental solutions can be explicitly computed. It also motivates the remainder of
this paper.

In the current work, our approach is to obtain an integral transform of the fundamental
solution by a symmetry transformation. In Section 4, we show that if the drift function
f satisfies (1.2), then we can obtain the solution

U�(x, t) =
∫ ∞

0
e−�yp(t, x, y) dy, (2.3)

of (1.1) from the trivial solutionu = 1 by symmetry. This is the Laplace transform
of p(t, x, y). So the fundamental solution can then be recovered by taking the inverse
Laplace transform ofU�. We shall callU� a characteristic solutionfor (1.1).

In Section 5, we treat the case whenf is a solution of (1.3). Here, we do not
immediately obtain a characteristic solution. Rather, we obtain an integral transform of
the fundamental solution which is more complicated. However, this typically reduces
to a Laplace transform. We will present some illustrative examples.

In Section 6, we treat the case whenf satisfies (1.4). For the subcase, whenB = 0, we
are again able to derive a characteristic solution from a trivial solution by a symmetry
transformation. Iff satisfies (1.4) with B �= 0, we can also obtain an integral transform
of p(t, x, y).

Our techniques lead to a rich class of PDEs with explicitly computable fundamental
solutions. Many of the fundamental solutions that our methods give appear to be new.
We also recover all the well-known examples, such as when the drift functionf is
affine.
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The method that we describe in this paper is one of two symmetry-based techniques
which allow us to construct fundamental solutions for these partial differential equations.
In a subsequent paper, we shall describe a second approach. This method yields entirely
new fundamental solutions.

3. The infinitesimal symmetries

In this section, we present a complete list ofall possible Lie symmetry algebras for
PDEs of the form (1.1). Recall that if the vector field

v = �(x, t, u)
�
�x

+ �(x, t, u)
�
�t

+ 	(x, t, u)
�
�u
, (3.1)

generates a symmetry of (1.1), thenv must satisfy Lie’s condition:

pr2 v[ut − xuxx − f (x)ux] = 0, wheneverut = xuxx + f (x)ux.

Here pr2 v denotes the second prolongation ofv. If v generates a symmetry of (1.1),
then standard symmetry group calculations lead to the following conditions on the
coefficients�, � and 	. The full details are given in[6]. Let �(x, t) be an arbitrary
solution of (1.1). Then

� = x�t +
√
x
(t), 	(x, t, u) = �(x, t)u+ �(x, t),

� = −1

2
x�t t − √

x
t +
1

2
√
x

(
1

2
− f (x)

)

 − 1

2
f (x)�t + �(t)

for some functions
 and �. Now the function � depends only ont. Set Lf =
xf ′ − f + 1

2 f
2. Then

−1

2
x�t t t − √

x
t t + �t = −1

2

d

dx

(
Lf

)
�t +

[
3 + 8Lf − 8x d

dx
(Lf )

16x
3
2

]

.

These equations fix�, �,
,� and 	 for everyC2 drift function f.
We now list the infinitesimal point symmetries of (1.1). In the following, we set

g(x) = 1
2
√
x

(1
2 − f (x)) . As usual, we write�u for �

�u etc.

Case1: Let xf ′ − f + 1
2 f

2 = Ax + B, whereA andB are constants.
Subcase1a: If 3+ 8B = 0, then a basis for the Lie algebra is:

v� = �(x, t)�u, v1 = √
x�x − g(x)u�u, v2 = �t , v3 = u�u,

v4 = 2x�x + 2t�t − (f (x)+ At)u�u, v5 = √
xt�x − (√x − g(x)t)u�u,

v6 = 8xt�x + 4t2�t − (4x + 4f (x)t + 2At2)u�u.
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Subcase1b: If 3+ 8B �= 0, then the Lie algebra is spanned by the vector fields
{v�, v2, v3, v4, v6}, from Subcase 1a.

Case2: Let xf ′ − f + 1
2 f

2 = 1
2Ax

2 + Bx + C, whereA,B and C are constants.
The extra 1

2 in the coefficient ofx2 is convenient here.
Subcase2a: If A > 0, and 3+ 8C = 0, a basis for the Lie algebra is:

v� = �(x, t)�u v1 = √
xe

1
2

√
At�x − 1

2

(√
Ax − 2g(x)

)
e

1
2

√
Atu�u, v2 = �t ,

v3 = u�u, v4 = x√Ae
√
At�x + e

√
At�t − 1

2
(Ax + √

Af (x)+ B)e
√
Atu�u,

v5 = √
xe−

1
2

√
At�x + 1

2

(√
Ax + 2g(x)

)
e−

1
2

√
Atu�u,

v6 = −x√Ae−
√
At�x + e−

√
At�t − 1

2
(Ax − √

Af (x)+ B)e−
√
Atu�u.

Subcase2b: If 3+ 8C �= 0, then the Lie algebra is spanned by the vector fields
{v�, v2, v3, v4, v6}, from the list in Subcase 2a.
Subcase2c: If A < 0, then a basis for the Lie algebra of symmetries may be
obtained from the real and imaginary parts of the vector fields in Subcases 2a
and 2b.

Case3: Let xf ′ − f + 1
2 f

2 = Ax 3
2 + Bx2 + Cx +D. If 3 + 8D �= 0, then the Lie

algebra of symmetries is spanned byv� = ��u, v1 = �t , andv2 = u�u. If 3 +8D = 0,
there are three subcases.

Subcase3a: If B = 0, then a basis for the Lie algebra consists ofv� = �(x, t)�u
and

v1 = √
x�x −

(
At

6
− g(x)

)
u�u, v2 = �t , v4 =

(
2x + A

2

√
xt2
)

�x

+2t�t −
(
(C + A√

x)t + A2

36
t3 − A

2
g(x)t2 + f (x)

)
u�u, v3 = u�u,

V5 = t
√
x�x −

(
A

12
t2 + √

x − g(x)t
)
u�u, v6 =

(
8xt + 2A

3

√
xt3
)

�x

+4t2�t −
(

4x + 2Ct2 + 4f (x)t + A2

36
t4 + 2A

√
xt2 − 2

3
Ag(x)t3

)
u�u.

Subcase3b: If B > 0, set � = 2A
3
√
B

and  = 2A2+9BC
18B . Then a basis consists of

v� = �(x, t)�u and

v1 = √
xe

1
2

√
Bt�x −

(
1

2

√
B

√
x − g(x)+ �

2

)
e

1
2

√
Btu�u,



290 M. Craddock, E. Platen / J. Differential Equations 207 (2004) 285–302

v2 = √
xe−

1
2

√
Bt�x +

(
1

2

√
B

√
x + g(x)+ �

2

)
e−

1
2

√
Btu�u,

v3 = u�u, v4 = �t , v5 =
(
�
√
x + √

Bx
)
e
√
Bt�x + e

√
Bt�t

−
(
B

2
x + 2A

3

√
x +

√
B

2
f (x)− �

2
g(x)+ 

)
e
√
Btu�u,

v6 = −
(
�
√
x + √

Bx
)
e−

√
Bt�x + e−

√
Bt�t

−
(
B

2
x + 2A

3

√
x −

√
B

2
f (x)+ 1

2
�g(x)+ 

)
e−

√
Btu�u.

Subcase3c: If B < 0, then a basis may be obtained from the real and imaginary
parts of the vector fields in Subcase 3b.

Case4: If f does not satisfy any of the Ricatti equations of Cases 1–3, the symmetry
algebra has basis:v� = ��u, v1 = �t and v2 = u�u.

4. Fundamental solutions and characteristic solutions

We will now exploit the symmetries obtained in Section 3 to compute characteristic
solutions and fundamental solutions for PDEs of the form (1.1). We will first consider
the case where the drift functionf is a solution of the Ricatti equation (1.2).

The key observation is that the characteristic solution is a solution of (1.1), with
the initial conditionu(x,0) = e−�x. By symmetry, we can obtain a solution with this
initial data from a solution with initial datau(x,0) = 1. We illustrate by an example.

Example 4.1. Let f (x) = �, � > 0. Consider the PDE

ut = xuxx + �ux. (4.1)

From Case 1 of Section 4 (4.1) has an infinitesimal symmetry

v6 = 8xt�x + 4t2�t − (4x + 4�t)u�u.

Recall that the group action generated by a vector field of the form (3.1), is obtained
by solving the first-order system of ODEs,

x̃′(�) = �(x̃, t̃ , ũ), t̃ ′(�) = �(ũ, t̃ , ũ), ũ′(�) = 	(x̃, t̃ , ũ) (4.2)

subject to the initial conditions̃x(0) = x, t̃(0) = t and ũ(0) = u. From this we obtain
the new solution,̃u�(x, t) = ũ(x̃, t̃ ).
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Solving these equations forv6, gives

ũ�(x, t) = 1

(1 + 4�t)�
exp

{ −4�x
1 + 4�t

}
u

(
x

(1 + 4�t)2
,

t

1 + 4�t

)
. (4.3)

Thus if u is any solution of (4.1), then (4.3) is also a solution, at least for� sufficiently
small. We set� = 4�, and takeu = 1. By symmetry,

U�(x, t) = 1

(1 + �t)�
exp

{ −�x
1 + �t

}
, (4.4)

is also a solution of (4.1). This is known to be a characteristic solution of (4.1). To
invert it, let L denote Laplace transformation in�. Then

L−1
(

1

�� e
k
�

)
=
(y
k

) �−1
2
I�−1(2

√
ky), � > 0, (4.5)

whereI� is a modified Bessel function of the first kind with order�.
Elementary properties of Laplace transforms and (4.5) now give,

p(t, x, y) = L−1
(

1

(1 + �t)�
exp

{ −�x
1 + �t

})

= 1

t

(
x

y

) 1−�
2

I�−1

(
2
√
xy

t

)
exp

{
− (x + y)

t

}
. (4.6)

This is the fundamental solution of (4.1) given in [16].

This example shows that it is sometimes possible to obtain a characteristic solution
of (1.1) by a symmetry transformation. In fact, we can easily establish the following
theorem.

Theorem 4.1. Let f be a solution of the Ricatti equation

xf ′ − f + 1
2 f

2 = Ax + B. (4.7)

Let

U�(x, t) = exp

{
−�(x + 1

2At
2)

1 + �t
− 1

2

(
F(x)− F

(
x

(1 + �t)2

))}
, (4.8)
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whereF ′(x) = f (x)/x and ��0. ThenU� is a characteristic solution of(1.1). That
is, U� is the Laplace transform of the fundamental solutionp(t, x, y) of (1.1).

Proof. Clearly U�(x,0) = e−�x. Sincexf ′ − f + 1
2 f

2 = Ax + B, then, from Case 1
of Section 3, Eq. (1.1) has an infinitesimal symmetry of the formv6 = 8xt�x+4t2�t −(
4x + 4f (x)t + 2At2

)
u�u.

Exponentiatingv6, we see that ifu is a solution of (1.1), then so is

ũ�(x, t) = exp

{
− (4�x + 2A�t2)

1 + 4�t
− 1

2

(
F(x)− F

(
x

(1 + 4�t)2

))}

×u
(

x

(1 + 4�t)2
,

t

1 + 4�t

)
,

where F ′(x) = f (x)/x. Taking u = 1, and setting� = 4�, we see that (4.8) is a
solution of (1.1) for all ��0.

First, let us assume thatU� is a Laplace transform. Now define
(y) = ∫∞
0 	(�)

e−�y d�, where	 is a distribution with the property that
∫∞

0 	(�)U�(x, t) d� is abso-
lutely convergent. Differentiation under the integral sign shows thatu(x, t) = ∫∞

0 	(�)
U�(x, t) d� is a solution of (1.1) with u(x,0) = 
(x). Now let p(t, x, y) be the inverse
Laplace transform ofU�. Then by Fubini’s theorem

∫ ∞

0

(y)p(t, x, y) dy =

∫ ∞

0

(∫ ∞

0
	(�)e−�yp(t, x, y) d�

)
dy

=
∫ ∞

0
	(�)

(∫ ∞

0
e−�yp(t, x, y) dy

)
d�

=
∫ ∞

0
	(�)U�(x, t) d� = u(x, t).

Henceu(x, t) = ∫∞
0 
(y)p(t, x, y) andu(x,0) = 
(x). Next, observe that

∫∞
0 p(t, x, y)

= U0(x, t) = 1, as expected. Consequently,p(t, x, y) is a fundamental solution of
(1.1).

Now, we prove thatU�(x, t) is the Laplace transform of a generalised function
p(t, x, y). The case whenA = 0 clearly yields a Laplace transform, so we assume that
A �= 0.

It is well known that a functionK(�) is a Laplace transform if it can be written in the
form K(�) = G(�)H(�), where bothG andH are Laplace transforms. (See for example

the book by Widder[17]). Now U� is the product of H�(x, t) = exp
{

1
2F

(
x

(1+�t)2

)}
andG�(x, t) = exp

{
−�(x+ 1

2At
2)

1+�t − 1
2F(x)

}
. G� is well known to be a Laplace trans-

form. We therefore have to show thatH� is a Laplace transform.
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Under the change of variablesf = 2xy′/y, the Ricatti equationxf ′ − f + 1
2 f

2 =
h(x), becomes the second-order linear ODE,

2x2y′′(x)− h(x)y(x) = 0. (4.9)

The general solution of (4.9) for h(x) = Ax + B, is

y(x) = c1x
1
2 I√1+2B

(√
2Ax

)
+ c2x

1
2 I−√

1+2B

(√
2Ax

)
. (4.10)

From (4.10), solutions ofxf ′ − f + 1
2 f

2 = Ax + B, can be obtained. NowF ′(x) =
f (x)/x. Hence 1

2 F(x) = ∫
y′(x)/y(x) dx = ln y(x). Thus H�(x, t) = y( x

(1+�t)2 ).

By (4.10), H� is a Laplace transform if
√
x

1+�t I±√
1+2B(

√
2Ax

1+�t ) is a Laplace trans-
form. By elementary properties of Laplace transforms it is sufficient to show that√
x/t

� I±√
1+2B(

√
2Ax/t
� ) is a Laplace transform. But

1

�
I±√

1+2B

(√
2Ax

t�

)
=
(√

2Ax

2t

)±√
1+2B ∞∑

n=0

(
Ax
2t2

)n
/�1+2n±√

1+2B

n!�(1 + n± √
1 + 2B)

(4.11)

with the series being absolutely convergent for� > 0. Therefore, by Theorem 30.2 of
[7] the left-hand side of (4.11) has inverse Laplace transform

L−1

(
1

�
I±√

1+2B

(√
2Ax

t�

))

=
(√

2Ax

2t
y

)±√
1+2B ∞∑

n=0

(
Ax
2t2

)n
y2n

n!�(1 + n± √
1 + 2B)�(1 + 2n± √

1 + 2B)
,

U� is therefore a Laplace Transform and hence it is a characteristic solution.�

We shall now consider some applications of this theorem.

Example 4.2.We solve the PDE,

ut = xuxx +
(

ax

1 + 1
2ax

)
ux, a > 0. (4.12)
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The drift satisfiesxf ′ − f + 1
2 f

2 = 0. Applying Theorem 4.1, we obtainF(x) =
2 ln(1 + ax). Hence, the characteristic solution for (4.12) is

U�(x, t) =
(
(1 + �t)2 + 1

2ax

(1 + �t)2(1 + 1
2ax)

)
exp

{ −�x
1 + �t

}
. (4.13)

This gives the fundamental solution

p(t, x, y) = 1

1 + 1
2ax

L−1

((
1
2ax

(1 + �t)2
+ 1

)
exp

{ −�x
1 + �t

})

= e−
(x+y)
t

(1 + 1
2ax)t

[(√
x

y
+ a

√
xy

2

)
I1

(
2
√
xy

t

)
+ t�(y)

]
, (4.14)

in which � is the Dirac delta function.
Since

∫∞
0 p(t, x, y) dy = 1, if we interpret e−

x
t

(1+ 1
2ax)t

as the probability of absorption

at the origin, thenp(t, x, y) may be viewed as the transition density for the GSR
processXt, satisfying the SDE with bounded drift

dXt = aXt

1 + 1
2aXt

dt +√
2Xt dWt . (4.15)

GSR processes with bounded drift are of interest in the modelling of price dynamics
for commodities such as oil. As an application, let us price aEuropean call optionon
a commodity whose discounted priceXt at time t satisfies (4.15). Such a call option
gives the holder the right to buy the commodity for an agreed price ofK dollars, at a
future timeT. According to standard option pricing theory, (cf.[8]), the pricecT (x, t)
of the option, at timeT − t , when the commodity price isx, is given by the solution
of (4.12) with initial data cT (x,0) = max(x −K,0). Hence the price is given by the
integral

cT (x, t) =
∫ ∞

K

(y −K)e− (x+y)
T−t

(1 + 1
2 ax)(T − t)

(√
x

y
+ a

√
xy

2

)
I1

(
2
√
xy

T − t
)
dy.

This integral would typically be evaluated numerically. We could of course perform
similar modelling with the other processes which appear in this paper.

The next few examples illustrate some applications of Theorem 4.1 where we leave
the details to the reader.
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Example 4.3. For the PDE

ut = xuxx +
(
(1 + 3

√
x)

2(1 + √
x)

)
ux.

Theorem 4.1 gives the characteristic solution

U�(x, t) =
(

1

(1 + �t)
1
2

+ x
1
2

(1 + �t)
3
2

)
exp

{
− �x
(1+�t)

}
(1 + √

x)
.

Inverting gives the fundamental solution

p(t, x, y) =
cosh

(
2
√
xy

t

)
√

�yt(1 + √
x)

(
1 + √

y tanh

(
2
√
xy

t

))
exp

{−(x + y)
t

}
.

Example 4.4. The equation

ut = xuxx +
(

1 + � tanh

(
� + 1

2
� ln x

))
ux, � = 1

2

√
5

2
(4.16)

has characteristic solution

U�(x, t) =
cosh

(√
5

8

(
2 + ln

(
x

(1+�t)2

)))
(1 + �t) cosh

(√
5

8 (2 + ln x)
) exp

{
− �x
(1 + �t)

}
.

From which we obtain

p(t, x, y) =
(
x

y

) �
2
[
I−�

(
2
√
xy

t

)
+ e2�y�I�

(
2
√
xy

t

)] exp
{−(x+y)

t

}
(1 + e2�x�)t

.

Example 4.5. For

ut = xuxx +
(

1

2
+ √

x

)
ux. (4.17)

we have,

U�(x, t) = 1√
1 + �t

exp

{−�(t + 2
√
x)2

4(1 + �t)

}
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and

p(t, x, y) = e−
√
x

√
�yt

cosh

(
(t + 2

√
x)

√
y

t

)
exp

{
− (x + y)

t
− 1

4
t

}
.

Example 4.6. If

ut = xuxx +
(

1

2
+ √

x tanh(
√
x)

)
ux, (4.18)

then Theorem 4.1 gives the characteristic solution

U�(x, t) =
cosh

( √
x√

1+�t

)
cosh(

√
x)

√
1 + �t

exp

{
−�(x + 1

4t
2)

1 + �t

}
.

Inverting the Laplace transform gives

p(t, x, y) =
cosh

(
2
√
xy

t

)
√

�yt

cosh(
√
y)

cosh(
√
x)

exp

{
− (x + y)

t
− 1

4
t

}
.

Example 4.7. The PDE

ut = xuxx +
(

1

2
+ √

x coth(
√
x)

)
ux (4.19)

has characteristic solution

U�(x, t) =
sinh

( √
x

1+�t

)
sinh(

√
x)

√
1 + �t

exp

{
−�(x + 1

4t
2)

1 + �t

}
.

From which we obtain the fundamental solution

p(t, x, y) =
sinh

(
2
√
xy

t

)
√

�yt

sinh(
√
y)

sinh(
√
x)

exp

{
− (x + y)

t
− 1

4
t

}
.

Example 4.8. Consider the PDE

ut = xuxx + (1 + cot
(
ln

√
x
)
)ux. (4.20)
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The drift is discontinuous at the pointsx = e2n�, n ∈ Z. Nevertheless, Theorem 4.1
gives a characteristic solution of (4.20) as

U�(x, t) = cosec
(
ln

√
x
)

2i(1 + �t)


 x

i
2

(1 + �t)i
−
(

x
i
2

(1 + �t)i

)−1

exp

{ −�x
1 + �t

}
,

where i = √−1. We can invert this Laplace transform. We get,

p(t, x, y) = e−
(x+y)
t

2it sin
(
ln

√
x
) (y i2 Ii

(
2
√
xy

t

)
− y− i

2 I−i
(

2
√
xy

t

))
.

To show that this fundamental solution is real valued, recall that,

I�(z) =
(

1

2
z

)� ∞∑
k=0

(1
4 z

2)k

k!�(� + k + 1)
(4.21)

and �(z̄) = �(z). Expanding the series forI±i and collecting terms, leads to the
expression,

p(t, x, y) = e−
(x+y)
t

t sin
(
ln

√
x
) ∞∑
k=0

(xy
t2

)k {
ak sin

(
ln

√
xy

t

)
+ bk cos

(
ln

√
xy

t

)}
,

where,ak = Re
(

1
k!�(k+1+i)

)
, bk = Im

(
1

k!�(k+1+i)
)
. Consequently,p(t, x, y) is real

valued.

5. The Ricatti equation xf ′ − f + 1
2 f 2 = 1

2Ax2 + Bx + C

We now consider the case whenf satisfies the Ricatti equation (1.3) with A > 0.
The case whenA < 0 can be treated by similar methods. To compute fundamental
solutions, we require the following result.

Proposition 5.1. Let f be a solution of(1.3) and u be a solution of the corresponding
PDE (1.1). Let the vector fieldsv4 and v6 be as given in Subcase2a. Then, for �
sufficiently small, the following are also solutions of(1.1):


(exp(�v4)u(x, t)) = U1
� (x, t)u

(
x

1 + �
√
Ae

√
At
,

1√
A

ln

(
e
√
At

1 + �
√
Ae

√
At

))
,


(exp(�v6)u(x, t)) = U2
� (x, t)u

(
xe

√
At

e
√
At − �

√
A
,

ln(e
√
At − �

√
A)√

A

)
,
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where
(exp(�vi ))u is the symmetry obtained fromvi , F ′(x) = f (x)/x and

U1
� (x, t) =

(
1 + �

√
Ae

√
At
) −B

2
√
A

× exp

{
−�Ae

√
Atx

2(1 + �
√
Ae

√
At )

− 1

2

(
F(x)− F

(
x

1 + �
√
Ae

√
At

))}
,

(5.1)

U2
� (x, t) = e−

B
2 t
(
e
√
At − �

√
A
) B

2
√
A

×exp

{
−�Ax

2(e
√
At − √

A�)
− 1

2

(
F(x)− F

(
xe

√
At

e
√
At − �

√
A

))}
.

(5.2)

Proof. The proof simply requires us to solve the system of ODEs, (4.2), which
correspond tov4 and v6. �

Sinceu = 1 is a solution of equation (1.1), so are,U1
� andU2

� . Although neither of
them is the characteristic solution, we can write

Ui� (x, t) =
∫ ∞

0
Ui� (y,0)p(t, x, y) dy. (5.3)

In principle we can recover the fundamental solution by inverting (5.3). In practice,
this typically reduces to inverting a Laplace transform. We shall not state a theorem.
Instead we will illustrate the process by example.

Example 5.1.A special case of a PDE which arises in interest rate modelling is

ut = xuxx +
(

3

2
− x

)
ux. (5.4)

Applying Proposition 5.1 and setting� = �/(1 + �), we see that,

Ũ�(x, t) =
(

(1 + �)et

(1 + �)et − �

) 3
2

exp

{ −�x
(1 + �)et − �

}
(5.5)
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is a solution of (5.4). This is a scalar multiple of the characteristic solution. Multiplying

Ũ� by 1/(1 + �)
3
2 gives the characteristic solution

U�(x, t) =
(

et

(1 + �)et − �

) 3
2

exp

{ −�x
(1 + �)et − �

}
. (5.6)

Inverting the Laplace transform, we obtain the fundamental solution for (5.4).

p(t, x, y) =
(

et

et − 1

) 3
2

I 1
2

(
2
√
xyet

et − 1

)
exp

{
− (x + y)
et − 1

}
, (5.7)

whereI�− 1
2
(z) = 2�− 1

2 �(� + 1
2)z

−�+ 1
2 I�− 1

2
(z).

By the same approach we may find the fundamental solution when the drift takes
the form f (x) = a − bx. Cox et al. have used these fundamental solutions to derive
bond prices. See[8].

Example 5.2. Next, we consider the PDE

ut = xuxx + x coth
(x

2

)
ux. (5.8)

Here xf ′ − f + 1
2 f

2 = 1
2x

2. By Proposition 5.1, Eq. (5.8) has a solution,

u�(x, t) =
sinh

(
xet

2(et−�)

)
sinh

(
x
2

) exp

{ −�x
2(et − �)

}
. (5.9)

Observe that,

u�(x,0) = 1

2

(
e
x
2

sinh
(
x
2

) − 1

sinh
(
x
2

) exp

{−(1 + �)x
2(1 − �)

})
. (5.10)

Furthermore, notice thatg(x) = e
x
2

sinh( x2)
is a stationary solution of (5.8). We therefore

look for a fundamental solutionp(t, x, y) with the property that,

∫ ∞

0

e
y
2

sinh
( y

2

)p(t, x, y) dy = e
x
2

sinh
(
x
2

) . (5.11)
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We introduce the new parameter� = 1+�
2(1−�) . The solutionu� becomes,

u�(x, t) =
sinh

(
(2�+1)xet

2((2�+1)et−(2�−1))

)
sinh

(
x
2

) exp

{ −(2� − 1)x

2((2� + 1)et − (2� − 1))

}
.

By (5.11), we may write,

u�(x, t) = 1

2

∫ ∞

0

(
e
y
2

sinh( y2)
− 1

sinh( y2)
e−�y

)
p(t, x, y) dy

= e
x
2

2 sinh( x2)
− 1

2
L
(

1

sinh
( y

2

) p(t, x, y)
)
. (5.12)

Equating (5.12) with the explicit expression foru� above, we obtain,

p(t, x, y) = sinh
( y

2

)
sinh

(
x
2

) L−1
(

exp

{−(2�(1 + et )+ et − 1)x

2((2� + 1)et − (2� − 1))

})

= sinh( y2)

sinh( x2)
exp

{
− (x + y)

2 tanh t2

}[
e

1
2 t

et − 1

√
x

y
I1

( √
xy

sinh t
2

)
+ �(y)

]
.

The same procedure can be used to show that iff (x) = x tanh( x2), the fundamental
solution is

p(t, x, y) = cosh( y2)

cosh( x2)
exp

{
− (x + y)

2 tanh t2

}[
e

1
2 t

et − 1

√
x

y
I1

( √
xy

sinh t
2

)
+ �(y)

]
.

Standard integrals of Bessel functions give
∫∞

0 p(t, x, y) dy = 1 for both cases. Other
examples can be treated similarly.

We should note here that it is possible to derive the fundamental solution, without
having to invert any transform. Consider the solutionsU1

� and U2
� . If we take � = 1

we can identifyU1
� |�=1 or U2

� |�=1 with multiples of the fundamental solution aty = 0.
From this we can derivep(t, x, y). Similar comments apply to the PDEs associated
with the Ricatti equations (1.2) and (1.4). We will discuss this method in a subsequent
paper.

6. The Ricatti equation xf ′ − f + 1
2 f

2 = Ax 3
2 + Bx2 + Cx − 3

8

The last case is when the drift functionf is a solution of the third Ricatti equation
(1.4). If B = 0, we can obtain characteristic solutions by symmetry directly as in
Theorem 4.1.
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Theorem 6.1. Let f be a solution of the Ricatti equation,

xf ′ − f + 1
2 f

2 = Ax 3
2 + Cx − 3

8. (6.1)

Let

U�(x, t) =
√ √

x(1 + �t)√
x(1 + �t)− A�

12 t
3

exp
{
G(�, x, t)

}

× exp

{
−1

2

(
F(x)− F

(
(12(1 + �t)

√
x − A�t3)2

144(1 + �t)4

))}
, (6.2)

whereF ′(x) = f (x)/x,

G(�, x, t) = −�(x + 1
2Ct

2)

1 + �t
−

2
3At

2√x(3 + �t)

(1 + �t)2
+ A2t4(2�t (3 + 1

2�t)− 3)

108(1 + �t)3

and ��0. ThenU� is a characteristic solution of(1.1).

Proof. The proof is similar to that of Theorem 4.1 and we omit it.�

Note that if we takeA = 0, in (6.2), it reduces to Eq. (4.8).
When B = 0, Eq. (1.4) can be solved in terms of Airy functions. We can thus

generate characteristic solutions for (1.1). Unfortunately, we have not been able to
explicitly invert the resulting Laplace transforms.

Finally, we discuss the case whenf satisfies (1.4) with B �= 0. Solutions of (1.4)
can be obtained in the following way. If we set

h′(y)
h(y)

= 1

y

(
f

(
y2

4

)
− 1

2

)
, then 2h′′(y)−

(
1

4
By2 + 1

2
Ay + C

)
h(y) = 0.

This ODE for h is easily solved in terms of hypergeometric functions.
It is not difficult to exponentiate the infinitesimal symmetries from Subcases 3b and

3c. As in the previous cases, by starting with the trivial solutionu = 1, and applying
the symmetry transformations generated byv5 and v6, we obtain integral transforms
of the fundamental solution. However, we have not yet been able to invert any of the
transforms that we have obtained. We are continuing to study this problem.
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