
Periodica Mathematica Hungarica Vol. 48 (1–2), 2004, pp. 151–164

THE SECOND-ORDER ORDINARY DIFFERENTIAL
EQUATION:

CARTAN, DOUGLAS, BERWALD

M. Crampin (Gent)

Abstract

This paper is a re-examination of Cartan’s theory of the second-order ordinary
differential equation, from a modern perspective; the opportunity is taken to point
out some relations between his results and the work of Douglas and Berwald on the
geometry of paths.

1. Introduction

This paper is devoted to the explication of some aspects of Cartan’s theory of
the second-order ordinary differential equation in his famous article ‘Sur les variétés
à connexion projective’ [3]; and in particular, to pointing out the relationship be-
tween his results and those obtained independently and by different methods by
Douglas [5] and Berwald [1].

One of Cartan’s main aims in [3] was to give a geometrical interpretation
of a result obtained by A. Tresse in 1896, concerned with finding necessary and
sufficient conditions for the existence of a so-called point transformation x̄ = x̄(x, y),
ȳ = ȳ(x, y) taking the equation

d2y

dx2
= f

(
x, y,

dy

dx

)
to

d2ȳ

dx̄2
= 0.

These conditions can be expressed in terms of two invariants (strictly speaking,
relative invariants) of a second-order ordinary differential equation, a and b. If the
right-hand side is denoted by f(x, y, y′), then a = − 1

6fy′y′y′y′ (subscripts indicate
partial derivatives); the first of Tresse’s conditions is that a = 0. When this holds
we can write f = A+3By′+3Cy′2 +Dy′3, where A, B, C and D are functions of x
and y; in such a case b is a linear function of y′ whose coefficients depend on A, B,
C, D and their first and second partial derivatives with respect to x and y. Tresse’s
second condition is that b should vanish identically. Cartan was able to show that a

Mathematics subject classification number: 34A26, 53B10.
Key words and phrases: Cartan projective connection, projective differential geom-

etry of sprays, second-order ordinary differential equation.

0031-5303/2004/$20.00 Akadémiai Kiadó, Budapest
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and b are components of the curvature of a connection associated with the second-
order ordinary differential equation, and thereby interpret Tresse’s conditions in
terms of the properties of the connection.

Several other noteworthy, though less familiar, facts about the invariants a
and b appear in Cartan’s paper. For example, the final paragraph begins ‘. . . Nous
laissons au lecteur le soin de vérifier l’existence des invariants intégraux∫

4
√

abω2,

∫∫∫ √
abω1ω2ω2

1 ,

∫∫
a

1
8 b

5
8 ω1ω2,

∫∫
a

5
8 b

1
8 ω2ω2

1 .’

(Here ω1 = dx, ω2 = dy−y′dx, ω2
1 = dy′−fdx, and Cartan writes exterior products

without the wedge sign.) I shall carry out this ‘exercise for the reader’ later in this
paper, and explain where the unexpected powers come from.

Cartan’s concept of a connection is very different from Ehresmann’s, a point
that is made admirably clear by Sharpe in his recent book [9]. So far as I am
aware, there has been no attempt to give an account of the part of Cartan’s projec-
tive connection paper that deals with the general second-order ordinary differential
equation from the perspective of Sharpe’s book. In addition, the overlap between
the results of Cartan and those of Douglas and Berwald has tended to be ignored.
This paper tries to put these matters to rights.

I shall begin with the second of these points, by sketching those parts of
Douglas’s general theory of paths which are relevant to the discussion (Section 2).
I shall then give a brief outline of Sharpe’s approach to Cartan’s theory (Section 3),
and exemplify it with a simple account of Cartan’s normal projective connection
for the affine case (the first part of the projective connection paper) (Section 4).
I shall then turn to the second-order ordinary differential equation, and derive the
normal projective connection for this situation (Section 5). Finally, I shall establish
the existence of the invariant integrals, and mention one or two other interesting
consequences of Cartan’s analysis.

2. Projective geometry of sprays

So far as this paper is concerned, the important point about the general
geometry of paths [5] is that it deals with the projective differential geometry of
sprays.

I denote by τ : T 0M → M the tangent bundle of M with the zero section
deleted. Coordinates on T 0M will generally be written (xi, ui). A spray Γ on T 0M
is a second-order differential equation field

ui ∂

∂xi
− 2Γi ∂

∂ui

whose coefficients Γi are homogeneous of degree 2 in the ui; if they are quadratic
in the ui then the spray is affine. Two sprays Γ, Γ̂ are projectively equivalent if
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Γ̂i = Γi + αui, where the function α is homogeneous of degree 1 in the ui. The
horizontal distribution associated with a spray is spanned by the vector fields

Hi =
∂

∂xi
− Γj

i

∂

∂uj
, Γj

i =
∂Γj

∂ui
.

The vertical vector field ∂/∂ui will sometimes be denoted by Vi. The Berwald
connection associated with a spray Γ is the connection on the pullback bundle
τ∗TM → T 0M with

∇Hi

∂

∂xj
= Γk

ij

∂

∂xk
=

∂Γk
i

∂uj

∂

∂xk
, ∇Vi

∂

∂xj
= 0.

Its curvature can be broken down into two components according as the vector field
arguments are taken to be horizontal or vertical. The first is the Berwald curvature

(∇Vi∇Hj −∇Hj∇Vi −∇[Vi,Hj ]

) ∂

∂xk
= Bl

kij

∂

∂xl
where Bl

kij =
∂Γ l

jk

∂ui
.

This component of the curvature has no affine counterpart – in fact its vanish-
ing is the necessary and sufficient condition for the spray to be affine. The other
component is the Riemann curvature

(∇Hi∇Hj −∇Hj∇Hi −∇[Hi,Hj ]

) ∂

∂xk
= Rl

kij

∂

∂xl

where Rl
kij = Hi

(
Γ l

jk

) − Hj

(
Γ l

ik

)
+ Γ l

imΓm
jk − Γ l

jmΓm
ik.

It has the usual symmetries, and reduces to the ordinary curvature tensor when the
spray is affine. By taking traces we obtain tensors Bij = Bk

kij , Rij = Rk
ikj ; by the

cyclic identity Rk
kij = Rij − Rji.

From the basic projective transformation rule we find that

Ĥi = Hi − αVi − αiu
jVj , where αi =

∂α

∂ui
;

Γ̂k
ij = Γk

ij +
(
αiju

k + αiδ
k
j + αjδ

k
i

)
, where αij =

∂2α

∂ui∂uj
.

By taking a trace we obtain Γ̂j
ij = Γj

ij + (n + 1)αi, whence the quantity

Πk
ij = Γk

ij −
1

n + 1
(
Γl

ilδ
k
j + Γl

jlδ
k
i + Biju

k
)

is projectively invariant. Douglas calls it the fundamental invariant and says in
effect that every projective invariant is expressible in terms of it and its partial
derivatives. Note that Πj

ij = Πj
ji = 0. On the face of it, if we take

α = − 1
n + 1

Γj
j = − 1

n + 1
∂Γj

∂uj

then the transformed spray has Πk
ij for its connection coefficients. However, Γj

j is
not strictly speaking a function: its transformation law under coordinate transforma-
tions of the xi (and the induced transformations of the ui) involves the determinant
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of the Jacobian of the coordinate transformation. Moreover, the Πk
ij are not compo-

nents of a tensor, nor even of a connection, and this has to be borne in mind when
forming projective invariants from it.

I shall work tensorially, but I shall point out the simplifications that arise when
one chooses the spray whose connection coefficients with respect to some coordinates
are the Πk

ij ; I shall indicate when objects calculated with respect to such a spray
are non-tensorial by setting their kernel letters in black-letter. Thus it follows from
the fact that the traces of Πk

ij vanish that Bij = 0, and also that Rk
kij = 0, so that

Rji = Rij .
An easy calculation leads to the following transformation formula for Bl

kij :

B̂l
kij = Bl

kij + αijkul + αijδ
l
k + αjkδl

i + αikδl
j ,

where αijk denotes a third partial derivative of α. Then by taking a trace B̂ij =
Bij + (n + 1)αij , whence

Dl
kij = Bl

kij −
1

n + 1
(
ul∇Vk

Bij + Bijδ
l
k + Bjkδl

i + Bikδl
j

)

is a projectively invariant tensor – the Douglas tensor. Since Bij = 0, Dl
kij = Bl

kij .
The vanishing of the Douglas tensor is the necessary and sufficient condition for a
spray to be projectively equivalent to an affine one.

The projective transformation of the Riemann curvature is given by

R̂l
kij = Rl

kij + ∇Hiα
l

jk −∇Hj α
l
ik + (ααjk + αjαk)δl

i − (ααik + αiαk)δl
j ,

where αk
ij is the difference tensor of the connection coefficients. It follows (after a

lengthy calculation) that if

P l
kij = Sl

kij −
1

n2 − 1
(
Qjkδl

i − Qikδl
j − (Qij − Qji)δl

k

)
,

where Sl
kij = Rl

kij −
1

n + 1
(
ul∇Vk

(Rij − Rji)
)
,

Sij = Sk
ikj and Qij = Sij + nSji, then P l

kij is a projectively invariant tensor. It is
the counterpart of the projective curvature tensor of the affine theory, to which it
reduces in the affine case. It has the same symmetries as the Riemann curvature,
and in addition all of its traces vanish.

Since Rij is symmetric, Sl
kij = Rl

kij , whence Sij = Rij , so that

P l
kij = Rl

kij −
1

n − 1
(
Rjkδl

i − Rikδl
j

)
.

When n ≥ 3 the vanishing of both the Douglas and the projective curvature
tensors is the necessary and sufficient condition for a spray to be projectively flat.
In dimension 2, however, a tensor with the symmetries of the Riemann tensor is
determined by its traces, and if they vanish so does the tensor. So the projective
curvature tensor is identically zero in dimension 2. Comparison with the affine case
(as discussed by Schouten [8] for example) suggests that in order to find a projective
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invariant in dimension 2 which serves instead of the projective curvature tensor we
should consider ∇HiQjk − ∇Hj Qik, which I will write Qkij . This transforms as
follows:

Q̂kij = Qkij + (n2 − 1)P l
mij(αlδ

m
k + umαkl).

Thus in dimension 2, Qkij is projectively invariant. It reduces to its counterpart
in the affine case, whose vanishing is the necessary and sufficient condition for a
2-dimensional affine spray to be projectively flat.

In dimension 2 Qkij has 2 components; but ukQkij is also projectively invari-
ant and has just 1 component, and in the affine case its vanishing is equivalent to
the vanishing of Qkij . This quantity was originally defined by Berwald [1] so I shall
call it the Berwald projective invariant.

A second-order differential equation

d2y

dx2
= f(x, y, y′), y′ =

dy

dx

defines, and is defined by, the projective equivalence class of the 2-dimensional spray
with x1 = x, x2 = y, Γ1 = 0, Γ2 = (u1)2f(xi, y′), y′ = u2/u1. Formulae for the
Douglas tensor and the Berwald invariant for such a spray can be found in Shen’s
book on spray geometry [10]. Each component of the Douglas tensor for this spray
is a multiple of fy′y′y′y′ , the factor being a simple expression in u1 and u2. Note that
the second-order differential equation is projectively equivalent to an affine spray
if and only f is cubic in y′. The Berwald invariant is a complicated expression in
the partial derivatives of f up to the fourth order; when fy′y′y′y′ = 0 it reduces to
Tresse’s second invariant.

3. Cartan’s theory of connections

The Berwald connection is essentially nothing more than its covariant deriva-
tive operator, and so belongs to the class of connections introduced by Levi-Civita
and formalized by Ehresmann. But Cartan’s idea of a connection has nothing to do
with covariant differentiation; instead, it is based on Klein’s concept of geometry.

For Klein, a geometrical space is a homogeneous space of a Lie group G, that
is, a manifold M on which G acts transitively (and I shall assume effectively). If
H is the stabilizer of some ξ0 ∈ M , then M can be identified with the coset space
G/H ; G is a right principle H-bundle over M with projection g �→ gξ0.

The group G, whose Lie algebra I denote by g, comes equipped with a left-
invariant g-valued 1-form µ, its Maurer-Cartan form, which enjoys the following
properties:

• for any X ∈ g, 〈X̃, µ〉 = X where X̃ is the left-invariant vector field on G
corresponding to X ∈ g;

• for each g ∈ G, µg : TgG → g is an isomorphism;
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• for each g ∈ G, R∗
gµ = Ad(g−1)µ;

• dµ + 1
2 [µ ∧ µ] = 0.

Since G will be a matrix group in the applications, and some formulae are
easier to write down for matrix groups, I shall henceforth assume that G is a matrix
group. For a matrix group µ = g−1dg.

Given a curve t �→ X(t) in g, and a point g0 ∈ G, there is a unique curve t �→
g(t) in G such that 〈ġ(t), µ〉 = X(t) and g(0) = g0; it is a solution of the differential
equation ġ = gX . The curve ξ(t) = g(t)ξ0 in M is called the development of X(t)
into M through ξ1 = g0ξ0. If γ is a local section of G over some neighbourhood of
ξ1 in M , then g(t) = γ(ξ(t))h(t) for some curve t �→ h(t) in H ; the curves ξ(t) and
h(t) satisfy the differential equation

h−1ḣ + h−1〈ξ̇, γ∗µ〉h = g−1ġ = X.

According to Sharpe [9], a Cartan geometry on a manifold M modelled on
a Klein geometry (G, H) is a right principle H-bundle π : P → M with dim P =
dimG = dimH + dimM , and a g-valued 1-form ω on P , the Cartan connection
form, such that

• for X ∈ h (the Lie algebra of H), 〈X̃, ω〉 = X where X̃ is the vertical vector
field on P generated by X through the action of H ;

• for each p ∈ P , ωp : TpP → g is an isomorphism;
• for each h ∈ H , R∗

hω = Ad(h−1)ω.
The curvature Ω of a Cartan connection is the g-valued 2-form

Ω = dω + 1
2 [ω ∧ ω], or Ωi

j = dωi
j + ωi

k ∧ ωk
j .

Its vanishing is the necessary and sufficient condition for the Cartan geometry to be
locally diffeomorphic to the Klein geometry on which it is modelled. The curvature
satisfies the Bianchi identitiy dΩ = [Ω ∧ ω]. The torsion of the Cartan connection
is the g/h-valued 2-form ρ(Ω) (where ρ : g → g/h is the projection).

If t �→ p(t) is a curve in P then t �→ 〈ṗ(t), ωp(t)〉 is a curve in g which can be
developed into G/H ; its development is ξ(t) = g(t)ξ0 where 〈ġ, µ〉 = 〈ṗ, ω〉. But µ
and ω transform identically under the action of H , which means that ξ(t) depends
only on π(p(t)); it is called the development of x(t) into G/H . If the Klein geometry
contains straight lines, a curve in M is called a geodesic of the Cartan geometry if
its development through any point is a straight line.

The definition of a Cartan geometry given above is conceptually the most
satisfactory but not the best to work with. For calculational purposes it is better
to choose a gauge (as indeed Cartan always did). By a gauge I mean a local section
σ of P . The gauged Cartan connection form is σ∗ω, a g-valued local 1-form on M ;
σ∗ω|x is an injective map TxM → g, and ρ◦σ∗ω|x : TxM → g/h is an isomorphism.
If σ̂ is another gauge then on the intersection of their domains σ̂(x) = σ(x)h(x) for
some H-valued function h; then

σ̂∗ω = h−1(σ∗ω)h + h−1dh, σ̂∗Ω = h−1(σ∗Ω)h.

I shall use a gauge henceforth, and ignore the σ∗.
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The differential equation for a development, when expressed in a gauge, is

h−1ḣ + h−1〈ξ̇, µ〉h = 〈ẋ, ω〉;
here µ is the gauged Maurer-Cartan form. This comprises dim g equations for
dim g/h unknowns ξ and dim h unknowns h.

Cartan’s method of analyzing connections is first to fix the gauge by imposing
conditions on the connection form, and then fix the connection by imposing gauge-
invariant conditions on the curvature. The first part of the procedure leads to a
standard gauge. The second part, which is carried out in the standard gauge, leads
to the so-called normal connection for that geometry. Very often, the first step
leading to a normal connection is to make the torsion zero. I shall exemplify this
procedure in the next section.

4. Cartan’s normal projective connection
for affine sprays

We now consider Cartan geometries modelled on projective geometry. Projec-
tive space RPn consists of lines through the origin in Rn+1 (coordinates (ξ0, ξ1, . . .
. . . , ξn)). In order to avoid some complications I shall restrict n to be even. Then
the group SL(n + 1) = G acts transitively and effectively on RPn, and H , the sta-
bilizer of the ξ0-axis, is the subgroup of SL(n + 1) consisting of matrices with zeros
below the diagonal in the first column.

If ω is a connection form and ω̃ = h−1ωh + h−1dh, where h ∈ H ,

ω =
[

ω0
0 ω0

i

ωi
0 ωi

j

]
and h =

[
h0

0 h0
i

0 hi
j

]
, i, j = 1, 2, . . . , n

then

ω̃0
0 = ω0

0 − h0
j h̄

j
iω

i
0 + h̄0

0dh0
0, ω̃i

0 = h0
0h̄

i
jω

j
0

where the overbar signifies (an element of) the inverse matrix (n×n or 1× 1 as the
case may be). The ωi

0 must be linearly independent, so if ωi
0 = ω i

0jdxj the equations
h0

0h̄
i
kωk

0j = δi
j have a unique solution for h0

0 and hi
j (again assuming n + 1 odd):

h0
0 = (det(ω i

0j))
1/(n+1), hi

j = (det(ω i
0j ))

1/(n+1)ω i
0j .

With this choice, ω̃i
0 = dxi. Then if we define h0

i by h0
i dxi = h0

0ω
0
0 + dh0

0, we will
have ω̃0

0 = 0. Therefore, for any Cartan projective connection there is a unique
choice of gauge such that

ω =
[

0 ω0
i

dxi ωi
j

]
.

The curvature Ω of such a connection has Ωi
0 = −ω i

jkdxj ∧ dxk where ωi
j =

ω i
jkdxk; so the connection has zero torsion if and only if ω i

jk is symmetric in its lower
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indices. Since ω takes its values in sl(n + 1), the Lie algebra of SL(n + 1), it has
zero trace, so ω i

ij = 0.
Now projective space certainly contains straight lines, so any Cartan projec-

tive geometry has geodesics; I now proceed to find them. There is an obvious local
section γ of SL(n + 1) over RPn:

γ(ξ1, ξ2, . . . , ξn) =
[

1 0
ξi δi

j

]
;

the Maurer-Cartan form in this gauge is

µ =
[

0 0
ξi 0

]
.

The development equations are

h−1ḣ + h−1

[
0 0
ξ̇i 0

]
h =

[
0 ω0

ij ẋ
j

ẋi ω i
jk ẋk

]
.

These give

ẋi = h0
0h̄

i
j ξ̇

j

ω i
jk ẋk = h̄i

k

(
ḣk

j + ξ̇kh0
j

)
0 = h̄0

0ḣ
0
0 − h0

j h̄
j
k ξ̇k,

and another (vector) equation which is of no interest. It follows that

ẍi + ω i
jk ẋj ẋk = 2h̄0

0(h
0
j ẋ

j)ẋi (mod ξ̈j),

so x(t) is a geodesic in the sense of Cartan if and only if it is a geodesic (in the
ordinary sense) of the projective class of affine sprays with coefficients ω i

jk . But
ω i

ij = 0, so these coefficients are collectively the fundamental invariant of this class
of affine sprays, and we may set ω i

jk = Π i
jk.

I now assume that we are given an affine connection, up to projective equiv-
alence, and that the Cartan connection is adapted to it as just described. I seek
to determine the remaining elements of the connection by further conditions on the
curvature, so as to fix them uniquely and therefore obtain a normal connection.
First, Ω0

0 = −ω0
ijdxi ∧ dxj ; thus if we take ω0

ij to be symmetric we will have Ω0
0 = 0.

Then

Ωi
j = dωi

j + ωi
k ∧ ωk

j + ωi
0 ∧ ω0

j = 1
2

(
Ri

jkl + δi
kω0

jl − δi
lω

0
jk

)
dxk ∧ dxl.

Thus if Ωi
j = 1

2Ωi
jkldxk ∧ dxl, with Ωi

jkl skew in k and l,

Ωi
jkl = Ri

jkl + δi
kω0

jl − δi
lω

0
jk .

So Ωi
jkl can be made trace-free by choosing (n − 1)ω0

jk = −Rjk, in which case
Ωi

jkl = P i
jkl (= 0 for n = 2). That is to say, given a projective equivalence class

of affine connections, on any coordinate patch there is a unique sl(n + 1)-valued
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torsion-free Cartan projective connection whose geodesics are those of the given
projective class, such that Ω0

0 = 0 and Ωk
ikj = 0. It is called the normal projective

connection, and in the standard gauge it is given by

ω =
[

0 − 1
n−1Rijdxj

dxi Π i
jkdxk

]
.

The curvature of the normal projective connection is

Ω =
[

0 1
n−1Ri[j|k]dxj ∧ dxk

0 1
2P i

jkldxk ∧ dxl

]
,

where the brackets in the suffix indicate skew-symmetrization and the solidus ‘co-
variant differentiation’ with respect to the fundamental invariant. In case n = 2 the
normal projective connection satisfies, and is determined by, the condition Ωi

j = 0.

5. Cartan’s normal projective connection
for a second-order differential equation

In order to develop a connection theory for general second-order differential
equations, not just those of affine type, it is necessary to use a different model
geometry. Cartan deals only with a single differential equation, and I shall do the
same; but the relevant model geometry is easy to describe in an arbitrary number
of dimensions. As a space it is PT (RPn), the projective tangent bundle of RPn.
Each point of PT (RPn) consists of a line through the origin in Rn+1 and a 2-
plane containing the line. The group SL(n + 1) acts transitively on PT (RPn), and
effectively for n even (which I assume to be the case, as before). The stabilizer of
the point consisting of the ξ0-axis and the ξ0ξ1-plane is the subgroup H of SL(n+1)
of matrices with zeros below the main diagonal in the first and second columns; so
we can identify PT (RPn) with SL(n + 1)/H . In the case of interest, n = 2, H is
just the group of unideterminantal upper triangular 3×3 matrices, so I shall denote
it by T .

A ‘manifold of elements with projective connection’ is a Cartan geometry
on the projective tangent bundle PTM of a 2-dimensional manifold M , modelled
on PT (RP2) = SL(3)/T , in which the projective tangent bundle structures are
compatible in the following sense. First, note that any curve in M has a natural lift
to PTM obtained by adjoining to each point on it its tangent line at that point.
The compatibility conditions are that the development into PT (RP2) of a vertical
curve in PTM is vertical, and the development into PT (RP2) of a lifted curve in
PTM is a lifted curve.

Before proceeding, it will be useful to calculate the effects of a gauge trans-
formation on the strictly lower triangular terms in a connection form ω. Suppose
that

ω =


 ∗ ∗ ∗

u ∗ ∗
w v ∗


 and h =


 A D F

0 B E
0 0 C


 with ABC = 1.



160 m. crampin

Since h−1dh is upper triangular it has no effect on the relevant terms, and

h−1ωh =


 ∗ ∗ ∗

AB−1u − A2Ew ∗ ∗
AC−1w BC−1v + C−1Dw ∗


 .

The effect of a change of gauge on a curvature form which is strictly upper triangular
will also be useful: if

Ω =


 0 U ∗

0 0 V
0 0 0


 then h−1Ωh =


 0 A−1BU ∗

0 0 B−1CV
0 0 0


 .

We may introduce local coordinates on PTM by taking local coordinates
(x, y) on M , and by noting that every equivalence class of tangent vectors

u
∂

∂x
+ v

∂

∂y

for which u �= 0 has a unique representative of the form

∂

∂x
+ y′ ∂

∂y
;

then (x, y, y′) are local coordinates on PTM . With respect to these coordinates, a
curve in PTM is vertical if its tangent vector is annihilated by dx and dy, and a
curve in PTM is a natural lift if its tangent vector is annihilated by the so-called
contact form dy − y′dx. It is easy to see that

(ξ, η, η′) �→

 1 0 0

ξ 1 0
η η′ 1




is a local section of SL(3) → PT (RP2), and that the corresponding gauged Maurer-
Cartan form is 

 0 0 0
dξ 0 0

dη − η′dξ dη′ 0


 .

Let us write the connection form ω on PTM as

ω =


 ω0 ω1 ω2

ω1 ω1
1 ω1

2

ω2 ω2
1 ω2

2


 .

The development equations for a curve σ in PTM give

aξ̇ − b(ξ̇ − η′η̇) = 〈σ̇, ω1〉, c(ξ̇ − η′η̇) = 〈σ̇, ω2〉
for some functions a(t), b(t), c(t). The compatibility conditions therefore require
that if σ is vertical 〈σ̇, ω1〉 = 〈σ̇, ω2〉 = 0, while if σ is a lift 〈σ̇, ω2〉 = 0. It follows
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that ω1 = αdx + βdy, ω2 = γ(dy − y′dx) for some functions α, β and γ on PTM .
Then by a change of gauge with

A = ((α + y′β)γ)−1/3, B = (α + y′β)A, C = γA, E = βγA

we can make ω1 = dx and ω2 = dy − y′dx. We can further choose D such that
the dy component of ω2

1 vanishes, so that ω2
1 = k(dy′ − fdx) for some functions k

and f on PTM ; k must be nonzero since the forms ω1, ω2 and ω2
1 must be linearly

independent. The remaining gauge freedom is just

h =


 1 0 F

0 1 0
0 0 1


 ,

and with such h,

h−1ωh + h−1dh =


 ω0 − Fω2 ∗ ∗

ω1 ω1
1 ∗

ω2 ω2
1 ω2

2 + Fω2


 .

We may therefore choose the gauge for any projective connection on a manifold of
elements so that ω1 = dx, ω2 = dy−y′dx = θ, ω2

1 = k(dy′−fdx) = kφ, and ω0−ω1
1

does not contain θ. This is the standard gauge for a projective connection on a
manifold of elements.

A geodesic of this projective connection is a curve whose development satisfies
η̇− η′ξ̇ = 0 and η̇′ = 0; that is, a geodesic is a curve whose tangents are annihilated
by both θ and φ, and is therefore a solution of the second-order differential equation

d2y

dx2
= f

(
x, y,

dy

dx

)
.

To put it another way, the geodesics are the base integral curves of the vector field

Γ =
∂

∂x
+ y′ ∂

∂y
+ f

∂

∂y′ ,

the ‘second-order differential equation field’ corresponding to the projective connec-
tion.

It may be shown, following Cartan, that given a second-order differential
equation there is a unique sl(3)-valued projective connection ω whose geodesics are
its solution curves, whose curvature form Ω is strictly upper triangular with Ω1

2 a
multiple of θ ∧ φ. Note that the form of Ω is unchanged by a gauge transformation
(though of course its entries will in general be changed). This connection is called
the normal projective connection of Γ. In the standard gauge ω is given explicitly
in terms of the basis of 1-forms {dx, θ, φ} and Γ by


− 1

3fy′dx + 1
6fy′y′θ fydx + λθ + 1

2fy′y′φ µdx + νθ − 1
6fy′y′y′φ

dx 2
3fy′dx + 1

6fy′y′θ 1
6fy′y′θ

θ φ − 1
3fy′dx − 1

3fy′y′θ


 ,
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the coefficients λ, µ and ν being given by

λ = 2
3fyy′ − 1

6Γ(fy′y′), µ = 1
3 (fyy′ − Γ(fy′y′)), ν = − 1

6 (fy′fy′y′ + Γ(fy′y′y′)).

The curvature is

Ω =


 0 bdx ∧ θ hdx ∧ θ + kθ ∧ φ

0 0 aθ ∧ φ
0 0 0




with a = − 1
6fy′y′y′y′ ; Cartan says ‘it is pointless to calculate b, h and k explicitly’,

but in fact b turns out to be the Berwald projective invariant of the spray determined
by Γ. By the Bianchi identity, h and k are given in terms of a and b by

k = 1
3fy′a − Γ(a), h = by′ .

6. The invariant integrals

I now show that a and b are relative invariants – that is, that they get mul-
tiplied by certain factors under a coordinate transformation on M , so that if either
vanishes in one coordinate system (on M) it does so in all.

Let ω̂ be the normal projective connection corresponding to the given differ-
ential equation Γ, expressed in terms of coordinates x̂, ŷ, ŷ′, where x̂ = x̂(x, y),
ŷ = ŷ(x, y) is a coordinate transformation on the base manifold M , which is ex-
tended to a coordinate transformation on PTM . Since ω̂ is a projective connection
associated with Γ, when expressed in terms of x, y and y′ it is gauge equivalent
to a projective connection ω in standard gauge; since the curvature form Ω̂ of ω̂ is
strictly upper triangular, so is that of ω.

Set x̂xŷy − x̂y ŷx = J �= 0 (the Jacobian determinant), and set Ξ = x̂x + y′x̂y.
The induced transformation of y′ is y′ �→ Ξ−1(ŷx + y′ŷy). Contact 1-forms are
relative invariants of coordinate transformations on the base; in fact θ̂ = JΞ−1θ.
Furthermore dx̂ = Ξdx + x̂yθ = Ξdx (mod θ). Finally, φ̂ vanishes on Γ, so must
take the form φ̂ = rθ + sφ for some functions r and s; but

〈∂/∂y′, θ〉 = 0, 〈∂/∂y′, φ〉 = 1, 〈∂/∂y′, φ̂〉 =
∂ŷ′

∂y′ ,

whence s = JΞ−2, and φ̂ = JΞ−2φ (mod θ). Thus θ̂∧φ̂ ∝ θ∧φ, so the curvature of ω
is of precisely the same form as the curvature of the normal projective connection in
the original coordinates; but the normal projective connection in the standard gauge
is uniquely determined by the fact that its curvature is strictly upper triangular
with Ω1

2 a multiple of θ ∧φ, so ω is the normal projective connection in the original
coordinates.

We have ω = h−1ω̂h+h−1dh where (in the notation of the preceeding section)
AB−1 = Ξ−1, AC−1 = J−1Ξ and BC−1 = J−1Ξ2. Then Ω̂ = hΩh−1, or

âθ̂ ∧ φ̂ = J−1Ξ2aθ ∧ φ, b̂dx̂ ∧ θ̂ = Ξ−1bdx ∧ θ,
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so that
â = J−3Ξ5a, b̂ = (JΞ)−1b.

This confirms that a and b are relative invariants. Knowing their transformation
laws, one can explain the remark about the existence of invariant integrals. Note
for example that â5b̂ = (J−2Ξ3)8a5b and θ̂ ∧ φ̂ = (J2Ξ−3)θ ∧ φ; thus â

5
8 b̂

1
8 θ̂ ∧ φ̂ =

a
5
8 b

1
8 θ ∧ φ. The others work in a similar fashion.

If both a and b vanish, then by the Bianchi identity the curvature vanishes and
the structure is locally diffeomorphic to PT (RP2) with the straight line geodesic
spray. The vanishing of a alone has the following equivalent consequences: f is
cubic in y′; the Douglas tensor vanishes; the differential equation is projectively
affine. In such a case the connection should reduce to a projective connection of
the first kind (the kind considered in Section 4), and in particular it should give
rise to a connection form on the base manifold M . It is instructive to see how this
arises. The requisite condition is that for any vector field V vertical with respect
to the projection PTM → M , LV ω should be infinitesimally gauge equivalent to
ω by a gauge transformation of the first kind. That is to say, there should be a
function K taking its values in h, the Lie algebra of this gauge group, such that
LV ω = [ω, K] + dK. Now

LV ω = V dω + d〈V, ω〉 = V Ω + [ω, 〈V, ω〉] + d〈V, ω〉,
and 〈V, ω〉 takes its values in h. But

V Ω =


 0 0 −kθ

0 0 −aθ
0 0 0


 ,

so if a = 0, V Ω = 0 and ω satisfies the requisite condition with K = 〈V, ω〉.
The significance of b vanishing alone can be explained as follows. If we set

� =


−ω2

4 ω1
2 −ω2

ω2
1 −ω1

1 ω1

−ω2 ω1 −ω0


 =


 ∗ ∗ ∗

φ ∗ ∗
−θ dx ∗


 ,

then the curvature Π of � (given by Π = d� + [� ∧ �]) takes the form

Π =


 0 aθ ∧ φ ∗

0 0 bdx ∧ θ
0 0 0


 ;

the positions of a and b are interchanged. If b = 0 then by a similar argument to
the one already used, for any vector field W which is a multiple of the second-order
differential equation field Γ, LW � = [�, L] + dL where L = 〈�, W 〉 is an h-valued
function, and therefore � reduces to a normal projective connection of the first kind
on N = PTM/〈Γ〉, the quotient of PTM by the flow of Γ. There is an unsuspected
duality here, which will be clearer if we write S for the manifold of elements. Then
S is doubly fibred: we have the original fibration S → M , but also the fibration
S → N in which the differential equation field becomes vertical, and the original
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vertical fibres become the integral paths of a new second-order differential equation
field. Then b = 0 is the condition for the new second-order differential equation
field to be projectively affine. In the underlying Klein geometry, this interchange of
roles is just the usual duality transformation of projective geometry. This duality is
discussed in general terms by Bryant [2], and in more detail in [4]; see also [6], [7].
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