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The familiar concept of odd and even functions can be formulated in terms of the 
composition of functions. For each real number A, let mi^ be the function that multiplies 
by h. That is, M i ~ ( x )= hx. Suppose fo is an odd function and f ,  is an even function. 
Then f o ( - x )  = -f o ( x ) ,  and f , ( - x )  = f ( x ) ,  which can be written 

and 

In other words, the odd functions are those that commute with M - , ,  and the even 
functions are those that are invariant with respect to M- I .We generalize these concepts 
by allowing the function M P I  in equations ( 1 )  and ( 2 )  to be replaced by any of an 
appropriate class of functions. 

Algebra of functional composition In this note we will only consider functions 
that map zero onto zero and which are continuous on an interval of the form ( - E ,  E ) ,  

where E may depend on the function. We are assured that the composition of any two 
such functions is defined, and that the composite function also has these properties. 
For convenience we call such functions continuously $xed at zero. The functions M I  
and Mo act as identity and zero functions, respectively, since for each f ,  M 1  o f = 
f = f o M I ,  and Mo o f = Mo = f o Mo. Although functional composition is not 
commutative, it is associative, and we usually just write f o g o h rather than ( f  o 

g )  o h ,  or f o ( g  o h ) .  There is a right distributive law: ( f  + g )  o h  = f o h  + g o h .  

Functional composition is not in general left distributive, but we do have a special 
case: MA o ( g  + h )  = MA o g + mi^ o h. We will also need to use the fact that if f is 
strictly monotonic on an open interval containing zero, then, restricted to that interval, 
f has a unique functional inverse, which we write f - ' .  The functional inverse satisfies 
the equation f o f -' = M 1  = f o f .  If f and g are invertible, then so is f o g 
and ( f  o g ) - l  = g-I o f - I .  (The basic properties of composition of functions and of 
functional inverses is covered in most calculus texts. For example see Larson [ I ]and 
Stewart [ 2 ] . )  

Symmetry functions The function M-l which appears in the definition of odd and 
even functions has two essential properties: M P 1o M-l = M I ,  and M-l is monotoni- 
cally decreasing. We will say that a function continuously fixed at zero is a symmetry 
function, or simply, a symmetry, if it is its own inverse, and is strictly decreasing in 
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an open interval containing zero. There are many symmetry functions. For example, 
for each real number a the function -x/( l  + a x )  is a symmetry. When a = 0, this 
reduces to M-l .  Also, for each a > 0 the function 

is a symmetry. 
The graphs of symmetry functions are symmetric with respect to the line y = x. 

Symmetry functions are defined by equations that are symmetric in x and y. For 
example, the function y = -x/ ( l  + ax) is the solution to the symmetric equation 
x + y + a x y  = 0. However, not every implicit solution of a symmetric equation is a 
symmetry. The equation x2  + y2 = 1 does not define any function that maps zero onto 
zero. The equation xy = 0 has the solution y = 0, but that is not a symmetry. 

S-odd and S-even functions For each symmetry S, we say that a function is S-odd 
if it satisfies the condition 

and that a function is S-even if it satisfies 

The S-odd and S-even functions corresponding to the symmetry S = M - I  are the 
ordinary odd and even functions. More interesting is the symmetry 

For every real B,  the function 

is S-even. The situation is a little more complicated when we look for corresponding 
S-odd functions. For positive B,  

and 

are S-odd. 
The function Mo is both S-odd and S-even for every symmetry. The function M I  is 

S-odd for every symmetry, but is never S-even. For any symmetry, S itself is always 
S-odd, and M I  + S is always S-even. The function M I  - S turns out to be extremely 
interesting, and is central to the discussion following equation (15). There are many 
S-odd and S-even functions for every symmetry. In fact we will show that for each 
symmetry, there is a one-to-one correspondence between the S-odd functions and the 
odd functions, and between the S-even and the even functions. We will derive formulas 
that give all the S-odd and S-even functions for arbitrary symmetries. The example 
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section below shows the computation of an S-odd and an S-even function in a more 
complicated case. 

The sets of S-odd and S-even functions share many of the properties of the odd and 
even functions. For instance, if S is any symmetry then: 

1. If f and g are S-odd, then f o g is S-odd. 

2. If f is S-even and g is S-odd, then f o g is S-even. 

3. If f is any function and g is S-even, then f o g is S-even. 

4. If f and g are S-even, then f g is S-even. 
5.  If f and g are S-even, then f + g is S-even. 

6. If f is S-even and cr is any real number, then crf is S-even 

The proofs are all elementary, and none of them depend on the symmetry properties 
of S. These are properties of functions that are commuting and invariant with respect 
to any function. There is another fact about odd and even functions that does not gen- 
eralize so easily. Every function can be written in a unique way as a sum of an odd 
function and an even function: f = f ,  + f,. We say that f ,  is the odd part of f and 
f ,  is the even part of f .  It is not hard to see that f,(x) = ( f  ( x )  - f ( - x ) ) / 2 ,  and 
f , (x)  = ( f  ( x )  + f ( - x ) ) / 2 .  Perhaps the most exciting aspect of this study is the fact 
that this result generalizes to S-odd and S-even functions for an arbitrary symmetry S 

THEOREM1. Let S be a symmetry, and let f be continuouslyfxed at zero. Then f 
can be written in a unique way as a sum of an S-odd function and an S-even function. 

Proofi Suppose f has the decomposition 

where f ,  is S-odd and f ,  is S-even. Then 

Subtracting equation ( 6 )from equation ( 5 )gives 

f - f o S = ( M I  - S) o f,. (7) 

The function M I  - S is monotonic increasing at zero. Therefore we may compose both 
sides of equation (7) from the left with ( M I  - S)-I to solve for f,: 

From equation ( 5 )we have 

This shows that if the decomposition exists, it is unique, and the S-odd and S-even 
parts must be given by equations ( 8 )and (9) .It remains to demonstrate that equations 
( 8 )  and ( 9 )  give S-odd and S-even functions, respectively. We first establish several 
identities, which will prove useful. Since ( f  - f o S) o S = ( f  o S - f ), we have 

This equation remains true if f is replaced by M I .  

( M I  - S) o S = M-1 o ( M I  - S). (11) 
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The inverse of this equation will also be useful. 

rn 
Proof that f, given by equation (8)is S-odd: 

f o o S  = (M1 - s)-lo (f - f oS)  o S  

= (MI - s)-' o M-I o (f - f o S) by equation (10) 
rn 

= S o ( M 1  -s)- '  o ( f  - f o S )  by equation (12) 

= s 0 .f,. 

Proof that ft, gillen by equation (9) is S-ellen: First note that by equation (8) (M1-
S) o f ,  = f - f o S, and therefore f o S = f - (MI  - S )  o 5,.this gives 

EXAMPLE.We leave it as an exercise to show that if S = M- I ,  then f,,and f,,are 
the ordinary odd and even parts of f.  

For a less familiar example, we now determine the S-odd and S-even parts of the 
function M2(x) = 2x with respect to the symmetry S(x) = -x / ( l  +x) .  We will need 
to know the inverse function (MI - S ) ' ( x ) ,  so we first compute 

and solve for y :  

The quadratic formula gives 

We need to take the "+" sign in the quadratic formula to make zero map to zero. The 
next step is to compute 

Composing equations (13) and (14) gives 
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Finally, since f ,  = M2 - fo ,  we have 

The reader is invited to verify algebraically that these functions are indeed S-odd and 
S-even. This can also be verified graphically. The closure of the L-shaped region in 
FIGURE1, and the rectangle in FIGURE 2 demonstrate that equations (3) and (4) hold 
at xo. 

Figure 1 The L-shaped region closes because f, is S-odd 

Figure 2 The rectangle closes because f, i s  S-even 

It is only slightly messier to compute the S-odd and S-even parts of Mi, with respect 
to S,(x) = -x/(l +ax). In this case the S-odd and S-even parts are given by 

and 
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Notice that the computations involved are relatively straightforward, with the pos- 
sible exception of the computation of the inverse of ( M I  - S ) .  In particular, it would 
not be hard to determine the S-odd and S-even parts of f (x) = sin x or ln(x + 1 )  with 
respect to S ( x )  = - x / ( l  + x ) .  

Conjugation There is a wealth of information hidden in equation ( 1  1 ). Multiplying 
equation (1 1 )  on the left by ( M I  - S)-' gives 

S = ( M I  - 3)-' o M-' o ( M I  - S ) .  (15) 

We see that every symmetry is of the form h-' o M P 1o h ,  where h is an invertible 
function. We say that an invertible function h determines a conjugation, which maps 
the set of functions continuously fixed at zero into itself. That is, if f is any such 
function, then the congugate of f is f ,  where 

f = h - ' o  f o h .  (16)  

This map is one-to-one and onto, and the inverse map is the conjugation determined 
by h-'  . Conjugations have the nice property that the conjugate of the composition of 
two functions is the composition of their conjugates. If h is invertible, and f and g are 
arbitrary, then 

/ I - '  0 ( f  0 g) 0h = ( h - '  0 f 0h )  0 ( A - '  0 g 0 h ) .  (17) 

Conjugation is an essential tool in the study of the commutativity of functions. In 
particular, we state two simple corollaries of equation 17: 

COROLLARY f with g if and only i f h p '  o f o h c~on1rrzute.s ~vith h-' o1 .  co~nrnutes 
s o h .  

COROLLARY2.  f is in\~ariarlt with respect to g if'and only lf h p '  o f o h is in~ur i -  
ant \t.ith respec,t to h- '  o g o h. 

Out- fir+t application of these idea+ 1s to characterize symmetry functions. 

THEOREM2. A fiirlc.tior.~S is a .\ymnletry,flrnc~tinn i fand only if' there ic afilrlc.tinn 
h that is strict!\. rnonotonic. or1 arl open interval cnrltairling zero such that 

S = h- '  o M-I  oh. 

Pro($ Equation ( 1 5 )  shows that S has the form h p '  o M p I  o h .  If we have S = 
h p '  o M-I o h ,  then 

S o S  = h p '  o M P l  o h  o h - '  o M P Io h = h p '  o M P I  o M-I o h  = h p '  o h  = M I  

Because h i5  strictly monotonic and M p I is strictly decreasing, S is strictly decreasing. 
The conjugating function h in Theorem 2 is not unique. If k is any odd function and 

g = k o h ,  t h e n g '  o M p Io g = h - '  o M I  o h .  
Theorem 2 gives us a recipe for constructing symmetries. Theorem 3 gives us 

recipes for the construction of all the S-odd and S-even functions corresponding to 
a given symmetry. rn 

THEOREM3. Let S = h p '  o M P I  o h be a .ryrnnzetn and let f be arbitrary Then 
f is S-odd ifand only i f h  o f o h p '  i.r odd, arld f is S-e\>en ifand only i f h  o f o h p '  
is even. 

Pro($ If S = h p '  o M-I o h ,  then M-' = h o S o h p ' .  The result follows from 
Corollaries 1 and 2. rn 
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These are practical recipes in the sense that, given h ,  we can compute S and the 
S-odd and S-even functions. If we start with a symmetry S, on the other hand, we 
know that M I  - S is an appropriate choice for h.  Note that Theorem 5 establishes a 
one-to-one correspondence between the S-odd functions and the odd functions, and 
between the S-even functions and the even functions. 

As an example of the power of Theorem 3, consider the following observations. We 
remarked above that Mo is both S-odd and S-even for every symmetry S. It is easy to 
check that Mo is the only function that is both odd and even. Since every conjugate 
of Mo is Mo, the only function that is S-odd and S-even for any symmetry is Mo. 
It is also easy to see that no even function can be strictly monotonic in every open 
interval containing zero. By Theorem 3 this is true for S-even functions with respect 
to any symmetry. The odd functions x,  -x, and x2sin(l/x) demonstrate that S-odd 
functions can be monotonically increasing, decreasing, or neither near zero. 

We might suspect that conjugation gives an easier way to determine the S-odd and 
S-even parts of a function f .  Let h = ( M I  - 3)-I. Then ,? = h-' o S o h = M-1. The 
conjugate of f ,  f = h-' o f o h ,  has a unique decomposition into odd and even parts: 
f = j<,+ f,.The inverse conjugates fo and f, of fc, and 7, are S-odd and S-even, 
respectively. But unless S = M-l it is not true that f = fo + f,. 

We conclude with a rather surprising theorem. 

THEOREM4. Let S be a symmetry. Then the S-odd parts of the functions mi^ for 
all real h commute with each other 

ProoJ By equation (8) the S-odd part of MA is ( M 1- 3)-' o MA o ( M I  - S). The 
result follows from Corollary 1 since MA o M, = MA, = M, o MA.  rn 
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In this note, I count the number of 2 by 2 matrices over the field of integers mod p 
(where p is an odd prime), with the added restriction that all eigenvalues must also 
belong to Z l p Z .  One consequence of the count is that, as p gets larger, the number of 
such matrices approaches half the total number of 2 by 2 matrices over Z l p Z .  We use 
some easy matrix theory, as well as a simple result from group theory about counting 
conjugacy classes [I]. 

Given any 2 by 2 matrix 
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