
PROJECTIVE GEOMETRY

Lecture Notes by Balázs Csikós

1. INTRODUCTION

1.1. The Invention of Perspective Drawing.
Browsing through the history of painting one recognizes that the Renaissance

brought a significant change in the description of the three-dimensional world on
the canvas.

Traditional icons, describing generally some scenes from the Bible, have golden
background, the halos of the holy persons are circular disks, the feet, legs, hands
and arms are drawn in a position parallel with the plane of the painting. When a
building appears in the picture parallel edges are drawn to be parallel in the picture
giving the image a feeling of distortion.

The Renaissance brought a rediscovery of art, literature and ideas of ancient
Greece, in particular, it raised in artists the wish to find and describe perfect
beauty and harmony. Painters of the Renaissance (Mantegna, Botticelli, Leonardo
da Vinci, Dürer, Michelangelo, Raffaello, Tiziano and others) banished from the
pictures the unnatural static poses and the empty space behind the figures. Instead
of copying the clichés of traditional painting, they started to use living people for
models and existing places for background. Therefore they had to find out how
to draw a realistic image of a spatial object and had to discover the basic rules of
perspective drawing. They observed that parallel straight lines of the space will be
represented by lines passing through a point, and that the original ratio of lengths of
segments and the angle between segments are not preserved in the drawing (unless
the segments are parallel to the canvas!) but are transformed according to rigorous
rules. For example, the diameters of a circle will have varying length in the picture
and the circle (e.g. the halo) will be represented by an ellipse (or other conic
section). With the recognition and conscious application of these rules foundations
of a new branch of geometry were laid.

1.2. The Real Projective Space, Points at Infinity.
Let us find the geometric formulation of perspective drawing. Consider a point

O in the Euclidean space E
3 that represents the eye of the observer and an arbitrary

body B in the field of vision C (which is mathematically a convex cone). Put a
transparent plate Σ between O and B. When the observer is looking at B, from
every visible point P of the surface of B a ray of light of some color arrives in
his eye. This ray crosses the transparent plate at the intersection point P ′ of the
segment OP and the plane Σ. If we paint the plate at P ′ with the appropriate
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2 PROJECTIVE GEOMETRY

color, point P becomes invisible, but it is not observable, since the ray from P is
substituted by a ray from P ′ that has the same effect in the observer’s eye. Doing
this construction for all visible points of B we get a faithful image of B on the
plate.

The procedure above leads us to the study of the projection Φ of the space onto
the plane Σ, that assigns to a point P ∈ E3 the intersection point of the straight
line OP with the plane Σ provided that O �= P and OP is not parallel to Σ. The
definition of Φ makes sense also for points not in the field of vision (e.g. ”behind
the observer”) but Φ is not defined for every point of the space. Those points for
which Φ is not defined lie in the plane Σ0 passing through O parallel to Σ.

Let us take a straight line e which is not parallel to Σ and does not go through
O. Denote by e0 the straight line passing through O parallel to e and set Q = e∩Σ0

and R = e0 ∩ Σ. When the point P moves along e the projecting rays OP sweep
out the plane Π spanned by O and e and thus the point P ′ = Φ(P ) moves along
the line e′ = Π∩Σ. Φ defines a one to one mapping between the punctured straight
lines e\{Q} and e′ \{R}. Observe that as the point P moves to infinity (no matter
in which direction) P ′ goes to R, and moving with P towards Q P ′ goes to infinity.
This suggests that we should attach to e and e′ an extra point at infinity, E∞
and E′

∞ respectively. Doing so we can extend Φ to a one to one mapping between
the augmented straight lines e ∪ {E∞} and e′ ∪ {E′

∞} by setting Φ(E∞) = R and
Φ(Q) = E′

∞. We have already met similar augmentation of the real straight line in
calculus, when we introduced the symbols ±∞. The great difference, however, is
that while in calculus we put different ideal points to the ends of the straight line
now we put the same point to both ends. Walking through this point at infinity
we can run off the straight line at one end then disappear for a moment from the
Euclidean space and then return from infinity from the other end of the straight
line.

Let us attach to every straight line in the Euclidean space a point at infinity
and let us try to extend Φ for points of Σ0 and for the ideal points as described
above. One proves easily that the ideal points of two different straight lines will be
mapped to the same point if and only if the lines are parallel. This suggests us to
assume that the ideal points of two different straight lines are the same if and only
if the straight lines are parallel. This way, there is a one to one correspondence
between points at infinity and equivalence classes of parallel straight lines, and we
may say that an ideal point is an equivalence class of parallel straight lines.

To sum up, we declare the following definitions.
• The real projective space RP 3 is the union of the Euclidean space and the set

of ideal points.
• A projective plane in RP 3 is one of the following sets

- an ordinary plane together with the ideal points represented by the straight
lines in the plane;

- the set of all ideal points, called the plane at infinity.
• A projective straight line in RP 3 is one of the following sets

- an ordinary straight line together with its ideal point;
- the set of ideal points of a projective plane. Such sets are called straight lines

at infinity.
Φ can be extended to the whole projective space with the exception of the point

O. This extension establishes a one to one correspondence between the points of
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any projective plane not going through O and the projective closure of the plane
Σ.

Projective geometry is a branch of geometry concerned with those properties of
planar figures that are unchanged by the projection Φ. Since distances and angles
are not invariant, metric concepts, which are so important in Euclidean geometry
are alien to projective geometry. This does not mean however that projective the-
orems can not be specialized to get metric theorems. Since Φ maps ordinary and
ideal points to both ordinary and ideal points, ordinary points are not distinguished
from the ideal ones. This implies another important feature of projective geome-
try, that the concept of parallelism vanishes. Indeed, in the projective space, two
different coplanar straight lines always intersect one another at exactly one point,
a straight line and a plane always has a point in common and two different planes
always intersect one another along a straight line.

1.3. The Topological Structure of the Projective Straight Line and
Plane.

A topological space is a set where the neighborhoods of points are defined in
such a way that the axioms below are satisfied.
• Every neighborhood of a point p contains p.
• If U is a neighborhood of p and U ⊂ V then V is also a neighborhood of p.
• The whole space is a neighborhood of every point.
• The intersection of two neighborhoods of p is also a neighborhood of p.
• Every neighborhood U of a point p contains a smaller neighborhood V ⊂ U of p

such that V is a neighborhood of any of its points.
Sets that are neighborhoods of any of their points are called open. Observe that

the family of open subsets describes the neighborhood structure uniquely. Indeed,
a subset U of the space is a neighborhood of the point p if and only if there exists
an open subset V ⊂ U that contains p. Thus, topology can also be introduced in
terms of open subsets. In that case, the above system of axioms is replaced by the
following equivalent system of axioms for the open subsets.
• The whole space and the empty set are open.
• The intersection of two open sets is open.
• The union of an arbitrary collection of open sets is open.

For example, in the standard topology of the Euclidean space, a subset U ⊂ E
3

is a neighborhood of the point p ∈ E3 if there exists a ball (i.e. a solid sphere)
centered at p that is contained in U .

A topology on a set X induces a topology on every subset Y ⊂ X . Namely, a
subset V ⊂ Y is a neighborhood of the point p ∈ Y in the subspace topology if
there exists a neighborhood U of p in X such that V is the trace of U in Y , i.e.
V = Y ∩U . The usual topology on the circle, sphere and other geometrical objects
lying in E3 is the subspace topology inherited from the standard topology of E3.

The concept of topological space was created with the aim to find the weakest
structure on a set that enables us to define continuity. Indeed, the usual ”ε − δ”
definition of continuity given in calculus for real functions is fully compatible with
the following more general definitions. A mapping f :X → Y between the topolog-
ical spaces X and Y is said to be continuous at p ∈ X if for every neighborhood
U ⊂ Y of f(p) in Y one can find a neighborhood V of p in X such that f(V ) ⊂ U .
The mapping f is said to be continuous if it is continuous at every point of X .
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We say that two topological spaces are topologically equivalent, or homeomorphic
if there is a one to one correspondence f between their points which is continuous
and has continuous inverse. In this case, f is called a homeomorphism. Intuitively,
two subsets of the Euclidean space are homeomorphic if shrinking and stretching
the rubber model of one of them we can get a model of the other. (For this reason,
topology has the nickname ”rubber geometry”.) During the deformation we may
also cut the model along some edges or other subsets, but if we do this, we must
later on glue together pieces that were cut apart. For example, the perimeter of a
circle and a square are homeomorphic, a disk, a solid square and a hemisphere are
homeomorphic, but a circle is not homeomorphic to a disk.

Another important construction is the identification or factor topology. In many
cases we want to construct a new topological space by gluing together two topo-
logical spaces, or identifying different points of a given space. In both cases, what
we have is a topological space X (that can be a union of two or more topological
spaces) and an equivalence relation ∼ on X that tells which points of X should
be glued together or identified. Points of the identification space X/ ∼ will be the
equivalence classes of ∼. A subset ˜U ⊂ X/ ∼ is a neighborhood of the ”point”
p̃ ∈ X/ ∼ if and only if the union of the equivalence classes that belong to Ũ is a
neighborhood of every point in p̃.

For example, gluing together the endpoints of a segment we get a topological
circle. Identifying a pair of antipodal points on a circle we get a topological space
homeomorphic to the figure 8. If two antipodal pairs are identified then the factor
space is homeomorphic to the character O. If however, every point on the circle is
identified with its antipodal pair, the identification space will be homeomorphic to
the circle.

Let us start from a rectangle T = {(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤ b} with vertices
A(0, 0), B(a, 0), C(a, b) and D(0, b). We can obtain interesting surfaces by gluing
together sides of T . If the edge

−→
AB is glued to the edge

−→
DC with the indicated

orientation we get a tube. If however, two opposite edges are glued together with
a twist, say

−→
AB is glued to

−→
CD then a Möbius band will be obtained.

Exercise. Show that the factor space obtained from the rectangle T by gluing
together the edges

−→
AB and

−→
BC is homeomorphic to the Möbius band. (Hint: Cut

the rectangle into two triangles along the diagonal BD.)
Let us consider now a point O and a projective straight line e not passing through

O. There is a natural one to one correspondence between the elements of the
following sets.
a. the projective straight line e;
b. the set O of those straight lines that lie in the plane Π spanned by O and e and

go through O. The set O is called a pencil of lines;
c. the set of antipodal pairs of points of a circle C1 centered at O;
d. the set of points of a closed semicircle H1 ⊂ C1 with the endpoints identified.
e. any circle C2 that goes through O.

If f ∈ O than it corresponds f ∩ e in e, the antipodal pair of points f ∩ C1 in
S1, the point(s) f ∩H1 in H1. If f is not tangent to C2 then it corresponds in C2

the point f ∩ C2 \ {O}, otherwise it corresponds to O.
Each of these sets carries a standard topology. The circles C1 and C2 and the

semicircle H1 are furnished with the subspace topology, from which we can derive
an identification topology on the sets c and d. We define the usual topology on
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the pencil of lines O as follows. A subset U ⊂ O of the pencil is said to be a
neighborhood of the straight line f if there exists a positive angle ε such that any
rotation of f about O with angle less than ε belongs to U .

It is not difficult to see that the one to one correspondences between the sets
b, c, d and e are homeomorphisms so the topology of the projective straight line
is uniquely defined by the requirement that it should be homeomorphic to any of
these spaces. A natural consequence of this definition is that the projective straight
line with its natural topology is topologically equivalent to the circle.

The topology of the projective plane can be treated in a similar manner. Fixing
a projective plane Σ in the space and a point O /∈ Σ, we have natural one to one
correspondences between the points of the following sets.

a’. the projective plane Σ;
b’. the set O of all straight lines through O;
c’. the set of antipodal pairs of points of a sphere S centered at O;
d’. the set of points of a closed hemisphere H ⊂ S with antipodal points of the

boundary identified.
Observe that the set e has no analog in this case. If we furnish all these

spaces with their standard topologies then they become homeomorphic. With some
surgery, we can get another realization of the space d’. Assume that the hemisphere
H is chosen in such a way that its boundary circle is parallel to the plane Σ. A
hyperbola drawn in the plane Σ cuts the ordinary Euclidean plane into three parts.
We get two convex parts, say A and C and a band B between them. Projecting
this picture to the hemisphere from O we obtain a splitting of the hemisphere into
three parts. Let us denote by ˜A, ˜B and ˜C these parts. The boundaries of ˜A and
˜C have one arc in common with the boundary of the hemisphere, say I1 and I2

respectively, while ˜B has two ones, say J1 and J2. To get the projective plane
from the hemisphere, we have to identify the arc I1 with the arc I2 and the arc J1

with the arc J2. When we glue ˜A to ˜C along I1 and I2, the resulting space is a
topological disk. When the edges J1 and J2 of ˜B are glued together, a Möbius band
is obtained. Both the disk and the Möbius band has a topological circle for their
common boundary. We conclude that the projective plane is topologically equiva-
lent to a disk and a Möbius band that are glued together along their boundaries.
It is no use to try to glue together a disk and a Möbius band together along their
boundary edges, because it is impossible in the 3-dimensional Euclidean space. The
precise statement behind this fact is that the projective plane is not homeomorphic
to any subspace of E3.

Due to the fact that the projective plane contains a Möbius band, it inherits
many of its interesting properties. For example, removing the midline of a Möbius
band the band remains connected. A related property of the projective plane is
that a straight line does not cut the plane into two pieces – it is possible to walk
from one half plane to the other through a point at infinity.
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2. LINEAR SPACES AND THE
ASSOCIATED PROJECTIVE SPACES

As we saw in the introduction, there is a natural one to one connection between
points of a real projective plane and the straight lines through a given point of the
Euclidean space. Thus, we may say that the latter set itself is a real projective
plane. Having this picture in mind we introduce higher dimensional projective
spaces.

Fixing a point in the Euclidean space, we can identify every point of the space
with its position vector. These vectors have a very rich algebraic structure. They
can be added, multiplied by scalars (real numbers), they have length, closely re-
lated to the dot product, and there is also a cross-product. Now only the first two
operations are important for us. For the Euclidean space, the set of scalars is the
set R of real numbers. R has an addition and multiplication of elements. The op-
erations listed above satisfy many algebraic identities. Since in most constructions
and theorems connected with the Euclidean space we use only the circumstance
that certain algebraic identities are fulfilled and the explicit sets and the explicit
form of the operations are irrelevant, we can increase the power of these construc-
tions and theorems by generalizing them to arbitrary sets that are equipped with
operations having the necessary properties by postulated axioms.

2.1. Groups, Rings, Division Rings and Fields.

2.1.1. Definition. A pair (X, ∗) is called a group if X is an arbitrary set,
∗:X ×X → X is a binary operation satisfying the following axioms:

(x ∗ y) ∗ z = x ∗ (y ∗ z) ∀x, y, z ∈ X (associativity);
∃! e ∈ X such that x ∗ e = e ∗ x = x ∀x ∈ X (existence of identity);

∀x ∈ X ∃! x−1 ∈ X such that x ∗ x−1 = x−1 ∗ x = e (existence of inverse).

Remark. Some assumptions in the above system of axioms are redundant. For
example, uniqueness of the identity and inverse can be proved from the other as-
sumptions.

The identity element is also called the unit element of the group and is sometimes
denoted by 1. When the operation is called ”addition” we prefer to call the identity
the zero element of the group and denote it by 0, while the inverse of an element a
is called negative a or minus a and is denoted by −a.
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2.1.2. Definition. A group (X, ∗) is said to be commutative or abelian if

x ∗ y = y ∗ x ∀x, y ∈ X (commutativity).

Examples.
• The sets Z, Q, R and C of integer, rational, real and complex numbers form a

commutative group with respect to addition.
• The sets Q∗, R∗, C∗ of non-zero rational, real and complex numbers form a

commutative group with respect to multiplication.
• The set GL(n,R) of invertible n × n matrices form a non-commutative group

with respect to multiplication.
• The set SX of all bijective (= one to one and onto) mappings of a set X onto

itself forms a non-commutative group under the composition ◦ of mappings:
(f ◦ g)(x) = f(g(x)).

2.1.3. Definition. A triple (R,+, ·) is said to be a ring if R is a set , + and ·
are binary operations called addition and multiplication, and the following axioms
are satisfied:
• (R,+) is a commutative group (called the additive group of the ring);
• multiplication is associative

(x · y) · z = x · (y · z) ∀x, y, z ∈ R;

• multiplication is distributive with respect to addition from both sides

x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x ∀x, y, z ∈ X.

2.1.4. Definiton. The ring (R,+, ·) is a ring with identity or unit element if
there exists a (unique) nonzero element e ∈ R such that

e · x = x · e = x ∀x ∈ X

Remark. Some authors include the assumption on the existence of identity in
the definition of the ring and allow the identity to be equal to the zero element of
the group.

2.1.5. Definition. A ring (R,+, ·) is a division ring or skew field if the set
R∗ = {x ∈ R | x �= 0} of nonzero elements of R form a group with respect to
the multiplication. The group (R∗, ·) is called then the multiplicative group of the
division ring.

2.1.6. Definition. A field is a division ring with commutative multiplicative
group.

Examples.
• Let m be an integer, mZ = {n ∈ Z | m divides n} the set of integer multiples of
m. (mZ,+, ·) is a ring but it is a ring with identity if and only if m = ±1.

• (Z,+, ·) is a ring with identity which is not a division ring.
• Let m be a positive integer and Zm denote the modulo m residuum classes of

integers with the usual addition and multiplication. Zm is a ring with identity
and it is a field if and only if m is a prime.

• The set Mat(n,R) of n×n matrices is a ring with respect to the usual operations,
but it is not a division ring.

• Later on we shall define the division ring H of quaternions. H serves for an
example of a division ring that is not a field.

• (Q,+, ·), (R,+, ·) and (C,+, ·) are fields.



2. LINEAR SPACES AND THE ASSOCIATED PROJECTIVE SPACES 9

2.2. Vector Spaces and their Subspaces. From this point on we fix a skew
field F. For geometrical applications, the most important examples are the fields
of real and complex numbers and the skew field of quaternions. Elements of F will
be called scalars.

2.2.1. Definition. A linear space or vector space over the skew field F is a set
V together with rules of addition and multiplication with scalars which associates
to any two elements a, b in V a sum a + b in V , and to any λ ∈ F and a ∈ V a
product λa in V , if the following axioms hold.
• (V,+) is a commutative group;
• λ(a + b) = λa + λb ∀λ ∈ F, a,b ∈ V ;
• (λ+ µ)a = λa + µa ∀λ, µ ∈ F, a ∈ V ;
• (λµ)a = λ(µa) ∀λ, µ ∈ F, a ∈ V ;
• 1a = a ∀a ∈ V , where 1 is the identity element of F.

We refer to elements of V as vectors. We shall use bold letters for vectors and
greek letters for scalars to distinguish them visually.

Example. Let us denote by Fn the set of all n-tuples x = (ξ1, . . . , ξn) consisting
of elements of F. For x = (ξ1, . . . , ξn), y = (η1, . . . , ηn) and λ ∈ F, we define the
following rules of addition and multiplication

x + y = (ξ1 + η1, . . . , ξn + ηn);

λx = (λξ1, . . . , λξn).

Fn is a vector space over F with respect to these operations.

2.2.2. Definition. A nonempty subset W of a vector space V is a subspace
of V if W is closed with respect to the addition and multiplication by scalars. In
other words, W is a subspace if for any a,b ∈W and λ ∈ F, W contains a+b and
λa.

A subspace of a vector space over F is itself a vector space over the same skew
field. The following proposition is obvious.

2.2.3. Proposition. The intersection of any family of subspaces of V is a
subspace of V .

Let S be an arbitrary subset of the vector space V . Since V contains S and V
is a subspace of itself, S is contained in at least one subspace of V . The family of
all subspaces of V that contain S has a minimal element, namely the intersection
of all subspaces in the family. This fact gives rise to the following definitions.

2.2.4. Definition. The subspace spanned or generated by a subset S of a
vector space is the smallest subspace that contains S. We shall use the notation
[S] for the subspace generated by S.

2.2.5. Definition. The sum or join
∑

i∈I Wi of the subspaces {Wi | i ∈ I} of
a vector space is the subspace generated by their union

⋃

i∈I Wi. The sum of the
subspaces W1, . . . ,Wn will also be denoted by W1 + · · ·+Wn. A sum of subspaces
Wi is a direct sum if each subspace Wi intersects the sum of the others at 0. To
indicate that this is the case, direct sums are denoted by

⊕

i∈I Wi or W1⊕· · ·⊕Wn.

2.3. Basis, Coordinates, Dimension.
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2.3.1. Definition. A linear combination of some vectors a1, . . . , an of a vector
space is a vector of the form λ1a1 + · · ·+ λnan, where λi ∈ F. A family of vectors
a1, . . . , an is linearly independent if

λ1a1 + · · ·+ λnan = 0

implies λ1 = · · · = λn = 0.

The set of all linear combinations of a family of vectors S is the subspace gener-
ated by S. A family of vectors is linearly dependent if and only if one of the vectors
is a linear combination of the others. This implies that a minimal set of generators
of a subspace of the vector space contains linearly independent vectors.

2.3.2. Proposition. Let B ⊂ V be a subset of the vector space V . Then the
following conditions for B are equivalent.
a. B is a minimal set of generators of V ;
b. B is a maximal system of linearly independent vectors;
c. B is a linearly independent family of vectors that generate V .
d. Any element of the vector space V can be written as a linear combination of the

elements of B in a unique way.

2.3.3. Definition. We call a subset B of a vector space a basis if it satisfies
one of the equivalent conditions of the proposition.

The existence of a basis follows easily if we assume that the vector space is
generated by a finite set of vectors. To prove the existence of a basis in general,
one has to apply Zorn’s lemma. To avoid the usage of set theoretical arguments,
we assume from now on that every vector space we deal with is finitely generated.

2.3.4. Definition. Let V be a vector space with basis B = (x1, . . . ,xn). The
coordinates of a vector v ∈ V with respect to the basis B are the coefficients
(λ1, . . . , λn) in the expression of v as a linear combination of B

v = λ1x1 + · · · + λnxn.

2.3.5. Theorem. Any two bases of a finitely generated vector space have the
same number of elements.

2.3.6. Definition. The number of elements of a basis of a vector space V is
the dimension of V .

The proof of the Theorem rests upon the Exchange Lemma.

2.3.7. Exchange Lemma. If the vectors a1, . . . , an generate the vector space
V and b1, . . . , bm is a family of linearly independent vectors, then n ≥ m, and we
can replace m vectors of the set a1, . . . , an with the vectors b1, . . . ,bm in such a
way that the set b1, . . . ,bm together with those ai’s that were not replaced span V .

Proof. We use induction on m. The case m = 0 is obvious. Assume now that
the assertion is proved form−1. Since any subset of a family of linearly independent
vectors is linearly independent, the induction hypothesis can be applied to the
vectors a1, . . . , an and b1, . . . ,bm−1. Without loss of generality, we may assume
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that b1, . . . ,bm−1, am, . . . , an span V . Then bm is a linear combination of these
vectors

bm = λ1b1 + · · ·+ λm−1bm−1 + µmam + · · ·+ µnan.

At least one of the coefficients µm, . . . µn is different from zero, otherwise bm would
be a linear combination of b1, . . . ,bm−1. This implies n ≥ m. On the other
hand, assuming µm �= 0 for example, we can express am as a linear combination of
b1, . . . ,bm, am+1, . . . , an

am = −µ−1
m λ1b1 −· · ·−µ−1

m λm−1bm−1 +µ−1
m bm −µ−1

m µm+1am+1 −· · ·−µ−1
m µnan.

This means that the set b1, . . . ,bm, am+1, . . . , an spans the same subspace that is
spanned by b1, . . . ,bm, am, . . . , an, but the latter set generates the whole space.
This proves the lemma. �

Proof of Theorem 2.3.5. If B1 and B2 are two bases of a vector space,
then applying the Exchange Lemma we get #B1 ≤ #B2, since B1 is a linearly
independent set, B2 is a system of generators. Changing the role of B1 and B2 we
obtain #B2 ≤ #B1, yielding #B1 = #B2. �

The following proposition is an easy consequence of the definitions.

2.3.8. Proposition. If W1 and W2 are subspaces of a finite dimensional vector
space, then W1 ⊂ W2 implies dimW1 ≤ dimW2. If W1 and W2 have the same
dimension then they are equal.

Now we prove a fundamental formula.

2.3.9. Theorem. Let W1 and W2 be two subspaces of a finite dimensional
linear space. Then

dim(W1 +W2) + dim(W1 ∩W2) = dimW1 + dimW2.

Proof. Let us choose a basis B12 = (x1, . . . ,xr) of the intersection W1 ∩W2.
Since B12 is a linearly independent subset of W1 and W2, we can extend it to
a basis of W1 and W2 respectively. Let B1 = (x1, . . . ,xr,y1, . . . ,ys) be a ba-
sis of W1, B2 = (x1, . . . ,xr, z1, . . . , zt) a basis of W2. If we prove that B12 =
(x1, . . . ,xr,y1, . . . ,ys, z1, . . . , zt) is a basis of W1 +W2 then we are ready since in
that case dim(W1 ∩W2) = r, dimW1 = r+ s, dimW2 = r+ t and dim(W1 +W2) =
r + s + t. It is clear that B12 generates W1 + W2. Let us show that it contains
linearly independent vectors. Consider a linear combination of these vectors that
gives 0

α1x1 + · · ·+ αrxr + β1y1 + · · ·+ βsys + γ1z1 + · · ·+ γtzt = 0.

Setting

w = α1x1 + · · · + αrxr + β1y1 + · · · + βsys = −γ1z1 − · · · − γtzt

the first expression for w shows that w ∈ W1, while the second gives w ∈W2, hence
w ∈W1 ∩W2. An element of W2 belongs to W1 ∩W2 if and only if expressing it as
a linear combination of the basis vectors B2 the coefficients of the vectors z1, . . . , zt

are equal to zero. Applying this to w we get that γ1 = . . . = γt = 0 and thus
w = 0. The first expression for w is a linear combination of the basis B1 that gives
zero. This is possible only if α1 = . . . = αr = β1 = . . . = βs = 0. �
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2.4. The Projective Space Associated to a Linear Space.

2.4.1. Definition. Let V be a linear space over a skew field F. Let us introduce
an equivalence relation on the set V \ {0} as follows. We say that two non-zero
vectors x,y ∈ V are equivalent if there exists a non-zero scalar λ ∈ F such that
x = λy. Equivalence classes of this relation are in one to one correspondence with
the one dimensional subspaces of V . The set of equivalence classes is called the
projective space associated to the linear space V and it is denoted by P (V ). We
shall denote the equivalence class of a vector 0 �= v ∈ V by [v] and call it the
homogeneous vector represented by v.

For the case, when V = Fn+1 we shall use the notation FPn instead of P (Fn+1).
A point of FPn is an equivalence class of an (n+1)-tuple of scalars, where two (n+1)-
tuples are equivalent if they are proportional. For x = (ξ1, . . . , ξn+1) ∈ Fn+1 \ {0},
the point represented by x is denoted by (ξ1 : · · · : ξn+1). Thus, for example,
(1 : 1 : 1) and (2 : 2 : 2) are identical, while (1 : 1 : 1) and (1 : 2 : 3) are different
points of RP 2.

2.4.2. Definition. The dimension of the projective space associated to a linear
space is defined to be one less than the dimension of the linear space

dimP (V ) = dimV − 1.

2.4.3. Definition. A subspace of the projective space P (V ) is a projective
space associated to some linear subspace W of V .

• The projectivization of the subspace {0} is the empty set. The empty set is the
only −1-dimensional subspace.

• 0-dimensional subspaces of a projective space P (V ) are projectivizations of the
1-dimensional subspaces of V , i.e., points of the projective space.

• 1-dimensional subspaces of a projective space are called straight lines, 2-dimen-
sional subspaces are called planes, m-dimensional subspaces are shortly called
m- planes. A hyperplane is a projective subspace the dimension of which is one
less than the dimension of the total space.
The following proposition is obvious.

2.4.4. Proposition.
• The projective space associated to the intersection of some linear subspaces Wi of

a linear space is the intersection of the projectivizations P (Wi) of these subspaces.
• Let S be a subset of the projective space P (V ), S′ the set of vectors in V that

represent an element of S. Then the smallest projective subspace of P (V ) that
contains S is the projectivization of the linear space spanned by S′.

Thus, we can introduce the intersection and sum or join of projective subspaces
in a natural way. We shall denote these operations with the same symbols as for
the case of linear spaces. The propositions below are direct consequences of the
analogous propositions for linear spaces.

2.4.5. Proposition.
• If P1 and P2 are projective subspaces of a projective space, and P1 ⊂ P2, then

dimP1 ≤ dimP2. If, furthermore, P1 is not equal to P2, then dimP1 is strictly
less than dimP2.
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• If P1 and P2 are two arbitrary subspaces of a projective space, then

dim(P1 + P2) + dim(P1 ∩ P2) = dimP1 + dimP2.

The last equality implies all the basic incidence theorems of the projective space.
As an example, consider two straight lines e and f in the projective space. Their
intersection may have dimension −1, 0 or 1. In the first case, the two lines have
an empty intersection and generate a 3-dimensional subspace. We call such lines
skew. In the second case, the two lines intersect one another at exactly one point
and they span a plane. In the third case, the two lines coincide. Thus, we proved
that two different coplanar lines intersect one another at exactly one point.

2.5. Projective coordinate systems. A coordinate system in an (n + 1)-
dimensional linear space V is given by a basis and is nothing else than a bijection
between V and Fn+1. Since RPn is topologically not equivalent to Rn we can not
expect the existence of a nice bijection between FPn and Fn. There are two ways
out of this difficulty: we use either homogeneous coordinates or local coordinates.

2.5.1.Homogeneous coordinates. Fix a basis B = (p1,p2, . . . ,pn+1) of V . If
the point P ∈ P (V ) is represented by the vector p ∈ V then write p as a linear
combination of the basis vectors

p =
n+1
∑

i=1

αipi.

The coefficients (α1 : · · · : αn+1) are called the homogeneous coordinates of P with
respect to the basis B. Since representatives of P are defined only up to a scalar
multiplier so are the homogeneous coordinates. This fact is indicated by the usage
of : between the coordinates. The mapping P 
→ (α1 : · · · : αn+1) defines a bijection
between P (V ) and FPn.

2.5.2.Local coordinates. By a local coordinate system we mean a bijection
between a subset X of P (V ) and F

n. Generally we use the following local coordinate
systems. Consider the subset Xi consisting of those points, the i-th homogeneous
coordinate αi of which is different from 0. Homogeneous coordinates of a point
P ∈ Xi can be normalized in a unique way so that the i-th coordinate became equal
to 1. Assigning to P the rest of the coordinates, (α−1

i α1, . . . , α
−1
i αi−1, α

−1
i αi+1, . . . ,

α−1
i αn+1), we obtain a bijection between Xi and Fn.
Observe that the complement of Xi in P (V ) is a hyperplane, thus, the projective

space is the union of Xi, that can be identified with Fn, and a hyperplane. This
decomposition of the projective space generalizes the decomposition of the real
projective space defined in the introduction into the ordinary Euclidean part and
the plane at infinity.

Homogeneous coordinates of a point are related to a basis p1, . . . ,pn+1 of the
underlying linear space. The points Pi = [pi] are vertices of a non-degenerate
simplex in the projective space, called the reference simplex of the coordinate sys-
tem. The homogeneous coordinates of Pi are (0 : · · · : 1 : · · · : 0), where the only
non-zero coordinate stands at the i-th position. The point Q whose homogeneous
coordinates are (1 : 1 : · · · : 1) is the unit point of the coordinate system. We are
going to prove that over a commutative field, homogeneous coordinates of a point
are determined by the reference simplex and the unit point.
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2.5.3. Definition. We say that a system of points in an n-dimensional projec-
tive space is in general position if any k+1 ≤ n+1 points of it span a k-dimensional
projective subspace.

Consider a system of points S = {Pi | i ∈ I} in the projective space P (V ) and
a system of representatives S = {pi | i ∈ I, [pi] = Pi}. The system S is in general
position if and only if any k + 1 ≤ dimV vectors of S span a (k + 1)-dimensional
linear subspace in V . k+1 vectors span a (k+1)-dimensional subspace if and only if
the vectors are linearly independent. Since any subsystem of a linearly independent
system is also a linearly independent system, a set S of at least dimV points is in
general position if and only if any dimV points of it span the whole space, in other
words, if no dimV points of it can be covered by a hyperplane.

Clearly, vertices of the reference simplex and the unit point of a homogeneous
coordinate system yield n + 2 points in general position. Conversely, any n + 2
points in general position can be derived this way.

2.5.4. Proposition. Let us fix n+2 points P1, . . . , Pn+1, Q in general position
in the n-dimensional projective space. Then one can choose representatives p1, . . . ,
pn+1,q for P1, . . . , Pn+1, Q such that

q = p1 + · · ·+ pn+1,

and these representatives are unique up to a common scalar multiplier.

Proof. Let us choose arbitrary representatives for p̃1, . . . , p̃n+1, q̃ for P1, . . . ,
Pn+1, Q respectively. By the general position condition, the vectors p̃1, . . . , p̃n+1

form a basis of the underlying vector space. Let us express q̃ as a linear combination
of them

q̃ = α1p̃1 + · · ·+ αn+1p̃n+1.

The αi-s in this expression can not be equal to zero, since if, for example, α1

were zero, then the vectors q̃, p̃2, . . . , p̃n+1 were linearly dependent and that would
contradict the assumption on the general position. Consequently, the choice of the
non-zero vectors

p1 = α1p̃1 . . . , pn+1 = αn+1p̃n+1, q = q̃

as representatives for P1, . . . , Pn+1, Q will satisfy all the requirements. Uniqueness
up to constant multiplier follows from the fact that having fixed a representative of
Q, the above construction leaves no more freedom in the choice of representatives
for P1, . . . , Pn+1. �

By the proposition above, any n + 2 points P1, . . . , Pn+1, Q in general position
leads to an almost unique coordinate system with reference simplex P1, . . . , Pn+1

and unit point Q. By the identity

n+1
∑

i=1

αipi =
n+1
∑

i=1

(αiλ
−1)(λpi),

if we multiply with a scalar λ ∈ F∗ the basis vectors to which homogeneous co-
ordinates are associated, the homogeneous coordinates are multiplied by λ−1 from
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the right. Since two systems (α1 : · · · : αn+1), (α′
1 : · · · : α′

n+1) of homogeneous
coordinates are considered to be the same if and only if there is a scalar λ ∈ F∗ such
that multiplying αi from the left gives α′

i for all i, for non-commutative division
rings, different coordinate systems with the same reference simplex and unit point
may give different homogeneous coordinates. However, if F is a field, homogeneous
coordinates are uniquely determined by the reference simplex and the unit point.
Thus, in this case, we may speak about the homogeneous coordinates of a point
with respect to the projective coordinate system given by the reference simplex
P1, . . . , Pn+1 and unit point Q.

Let us compare Cartesian and projective coordinates for a special choice of the
coordinate systems. Consider the 3-dimensional Euclidean space E3 with a fixed
Cartesian coordinate system. The coordinates give a one to one correspondence
between E

3 and R
3. Consider the plane defined by the equation Σ = {P (x, y, z) |

z = 1}. On this plane, we introduce the Cartesian coordinate system with origin
at (0, 0, 1) and x- and y-axis parallel to the x- and y-axis of the spatial coordinate
system respectively. The coordinates of the point P (x, y, 1) in this planar coordinate
system are (x, y). Now consider the projective closure of the plane Σ with points
at infinity. There is a one to one correspondence between the points of this plane
and the straight lines through (0, 0, 0) that form the projective plane associated
to R

3. Let us introduce a projective coordinate system on this plane choosing the
point at infinity of the x-axis for P1, the point at infinity of the y-axis for P2,
the point (0, 0, 1) for P3 and the point (1, 1, 1) for Q. Obviously, we may use the
representatives

p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1), q = (1, 1, 1).

Using these coordinate systems, consider a point P (x, y, 1) in the plane Σ.
Its coordinates in the planar Cartesian coordinate system are (x, y). The vec-
tor (x, y, 1) = xp1 +yp2 +p3 or any multiple of it represents the point P as a point
of P (R3). Thus the homogeneous coordinates of P are (x : y : 1). In other words, a
point with homogeneous coordinates (x : y : z) is an ordinary point of the plane Σ
if and only if z �= 0 and then the Cartesian coordinates of that point are (x/z, y/z).
Points with homogeneous coordinates (x : y : 0) are points at infinity. (x : y : 0)
is the point at infinity of the straight line that goes through the points (0,0) and
(x,y).

Here is another example. Let P1, P2, P3 be the vertices of a triangle on the
Euclidean plane, Q be the baricenter of the triangle. Homogeneous coordinates of
a point with respect to the pojective coordinate system determined by the reference
triangle P1, P2, P3 and unit point Q are the baricentric coordinates of the point.
Baricentric coordinates have the following meaning: if we put three small balls of
mass α1, α2, α3 respectively to the vertices of the reference triangle, then the mass
center of these three balls is at the point with baricentric coordinates (α1 : α2 : α3).
Points at infinity have baricentric coordinates with zero sum.

2.6. The Theorems of Desargues and Pappus.
To illustrate the way we can work with homogeneous vectors, we prove two

fundamental configuration theorems. These theorems are real projective theorems.
They do not involve the notions of distance, angle, area etc. All we need to formulate
them is the incidence of points and straight lines.

We start with two definitions.
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2.6.1. Definition.
• We say that two triangles ABC and A′B′C′ are in perspective from a point P

if the triads PAA′, PBB′ and PCC′ are collinear.
• We say that two triangles with sides abc and a′b′c′ are in perspective with re-

spect to the straight line p if the triads of straight lines paa′, pbb′ and pcc′ are
concurrent.

Remarks.
• This definition assumes that we have fixed a correspondence between the vertices

(and the sides) of the two triangles.
• The triangles are not necessarily coplanar.

2.6.2. Desargues’ Theorem. Two triangles are in perspective from a point if
and only if they are in perspective from a line.

Proof. Denote by ABC and A′B′C′ the vertices of the two triangles. It is
easy to see that if two corresponding vertices or two corresponding sides of the two
triangles coincide, then the two triangles are in perspective in both senses, so we
may assume that this is not the case.

Assume first that the triangles are in perspective from a point P . Since P,A,A′

are collinear, we may choose representatives p, a, a′ for these points in such a way
that a′ = p + a. Similarly, we can choose vectors b,b′, c, c′ from the underlying
vector space in such a way that B = [b], B′ = [b′], C = [c], C′ = [c′] and

b′ = p + b, c′ = p + c.

Since
a − b = (p + a) − (p + b) = a′ − b′,

the point represented by a − b lies both on the straight lines AB and A′B′, i.e.,
[a − b] = AB ∩A′B′. Similarly,

[b − c] = BC ∩B′C′, [c − a] = CA ∩ C′A′.

We have to show that the intersection points AB∩A′B′, BC∩B′C′ and CA∩C′A′

are collinear. For this purpose, it suffices to show that the representatives of these
points are linearly dependent. This is obvious, however, since the sum of the
representatives gives zero

(a − b) + (b− c) + (c − a) = 0.

To prove the converse, assume that the triangles ABC and A′B′C′ are in per-
spective with respect to a straight line. This means that the points

A” = BC ∩B′C′, B” = AC ∩A′C′, C” = AB ∩ A′B′

are collinear. Then the triangles AA′B” and BB′A” are in perspective from the
point C”. Applying the first half of Desargues’ Theorem to this pair of triangles
we obtain that these triangles are in perspective with respect to a line. In other
words, the intersection points of the corresponding sides, that is, the points

P = AA′ ∩BB′, C = AB” ∩A”B, C′ = A′B” ∩ A”B′

are collinear. Then the straight lines AA′, BB′ and CC′ meet at the point P , hence
the triangles ABC and A′B′C′ are in perspective from the point P . �

Pappus lived in the 2nd half of the third century. We know very little about
him, he lived probably in Alexandria. He wrote an eight volume series of books on
mathematics, mainly on geometry, in which we can find the following theorem.
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2.6.3. Pappus’ Theorem. Let e and f be two different straight lines of the
plane, A,B,C ∈ e and A′, B′, C′ ∈ f be six different points, all different from the
intersection point P = e ∩ f . Then the following points are collinear

A” = BC′ ∩B′C, B” = AC′ ∩A′C, C” = AB′ ∩ A′B.

Investigations on the axiomatic foundations of geometry threw a new light on
this theorem. It turned out that Pappus’ Theorem characterizes projective spaces
over a commutative field.

2.6.4. Theorem. Pappus’ Theorem is true in a projective space associated to
a linear space over a division ring F if and only if F is a field.

Proof. Let us choose representatives for P , A and A′ such that

P = [p], A = [a], B = [p + a],

A′ = [a′], B′= [p + a′].

Then
C = [p + λa] and C′ = [p + µa′]

for some λ, µ ∈ F. Since

(p + a) + a′ = (p + a′) + a,

the point represented by this vector lies both on the lines BA′ and B′A and hence
C” = AB′ ∩ A′B = [p + a + a′]. Similarly, the point represented by

(p + λa) + µa′ = (p + µa′) + λa,

lies on both CA′ and C′A, thus B” = [p + λa + µa′].
Instead of finding a representative for A”, let us determine a representative for

the intersection B”C” ∩ B′C. Since now it is not so easy to guess the answer as
in the previous cases, we show how one can compute representative vectors for
intersection points.

A representative of B”C”∩B′C must be a linear combination of p + a + a′ and
p + λa + µa′ and also a linear combination of p + a′ and p + λa. Thus, we have to
solve the equation

α(p + a + a′) + β(p + λa + µa′) = γ(p + a′) + δ(p + λa)

(α+ β)p + (α+ βλ)a + (α+ βµ)a′ = (γ + δ)p + δλa + γa′

for α, β, γ and δ. Since the vectors p, a and a′ are linearly independent, this
equation is equivalent to the following system of equations

α+ β = γ + δ

α+ βλ = δλ

α+ βµ = γ.
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Eliminating γ and δ using the last two equations, the first equation gives

α+ β = (α+ βµ) + (αλ−1 + β),

αλ−1 = βµ,

α = βµλ.

This equation is satisfied by β = 1 and α = µλ, thus we obtain

B”C” ∩B′C = [µλ(p + a + a′) + (p + λa + µa′)].

Changing the role of ABC and A′B′C′ respectively, we get

B”C” ∩BC′ = [λµ(p + a + a′) + (p + λa + µa′)].

Introducing the vectors x = p + a + a′ and y = p + λa + µa′, we can simply
write

B”C” ∩B′C = [µλx + y] B”C” ∩BC′ = [λµx + y].

It is clear that Pappus theorem is true for the triads ABC A′B′C′ if and only if
B”C”∩B′C = B”C”∩BC′. These points coincide if and only if their representatives
are proportional. Since x and y are not proportional (B” �= C”), the vectors
µλx + y and λµx + y are proportional if and only if they are equal. However,
µλx + y = λµx + y ⇐⇒ µλ = λµ.

If the division ring of scalars is a field, λ and µ commute, thus Pappus theorem
holds.

On the other hand, if F is not commutative, and say µλ �= λµ, then take three
linearly independent vectors p, a and a′ from the underlying vector space and
consider the points P = [p], A = [a], B = [p + a], C = [p + λa], A′ = [a′],
B′ = [p + a′], C′ = [p + µa′]. As it follows from the above computation, these
points yield a counterexample for Pappus’ theorem. �
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3. EXAMPLES

3.1. Projective spaces over finite fields. The simplest possible field is the
field F2 = {0, 1} of two elements. Operations are the modulo 2 addition and
multiplication. The projective plane over F2 is called the Fano plane. Let us
describe its structure.

The linear space F3
2 has 8 elements, 7 non-zero elements. Since the only non-zero

scalar is 1, two non-zero vectors are proportional if and only if they are equal, hence
the projective plane over F2 has also 7 points:

A = (1 : 0 : 0),B = (0 : 1 : 0), C = (0 : 0 : 1),

A′ = (0 : 1 : 1),B′ = (1 : 0 : 1), C′ = (1 : 1 : 0),

S = (1 : 1 : 1).

If a and b are two non-zero vectors, then there are 3 non-zero linear combinations
of a and b: a, b and a + b, thus there are 3 points on every straight line. There
are exactly 7 straight lines:

A′BC, AB′C, ABC′, ASA′, BSB′, CSC′, A′B′C′

There are two convenient ways to describe the system of straight lines.

• If ABC are represented by the vertices of a regular triangle, A′B′C′ are the mid-
points of the sides BC,AC,AB respectively and S is the center of the triangle,
then 3 points form a straight line in the Fano plane if and only if they are on a
Euclidean straight line or on the inscribed circle of the triangle ABC (see Figure
1).

• If AB′C′CA′SB are represented by consecutive vertices of a regular heptagon,
then straight lines of the Fano plane are rotations of the triangle AB′C around
the center of the heptagon (see Figure 2).
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The latter cyclic representation of the Fano plane can be generalized for projec-
tive planes over an arbitrary finite division ring. Consider now this general case.

If the division ring of scalars F has finite number of elements, say #F = q,
then an (n + 1)-dimensional linear space V over F has #V = qn+1 points and
#(V \ {0}) = qn+1 − 1. Since the number of non-zero scalars is q − 1, each
homogeneous vector is represented by q− 1 non-zero vectors. Thus, the number of
points of the n-dimensional projective space associated to V is

#P (V ) =
qn+1 − 1
q − 1

= 1 + q + · · · + qn.

Finite division rings have a well developed theory. In particular, there is a classifi-
cation theorem that lists all finite division rings. First of all, we recall Wedderburn’s
theorem.

3.1.1. Theorem (Wedderburn). Every finite division ring is a field.

Thus, commutativity of multiplication is a consequence of the division ring ax-
ioms if F is finite.

Denoting by 1 the unit element of an arbitrary field F, we set

n · 1 = sgnn (1 + · · · + 1)
︸ ︷︷ ︸

|n| times

,

where n is an arbitrary integer and

I = {n ∈ Z | n · 1 = 0}.

It is not difficult to see that there exists an integer p ≥ 0 such that I is the set of
all integer multiples of p, and p is prime or equals 0.

3.1.2. Definition. p is called the characteristic of the field F and denoted by
char F.

For a prime p, denote by Fp the field of modulo p residuum classes of integers.
If F is a field with char F = p, then the subfield of F generated by 1 consists of all
elements of the form n · 1, n ∈ Z and isomorphic to Fp. If char F = 0, then the
smallest subfield that contains 1 is isomorphic to the field Q of rational numbers.
In particular, every finite field has prime characteristic.

The following simple observation has important consequences.
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3.1.3. Proposition. If F is a subfield of F̃, then F̃ is a linear space over F.

3.1.4. Corollary. If F is a subfield of the finite field F̃, and the dimension of
F̃ as a linear space over F is n, then

#F̃ = (#F)n.

3.1.5. Corollary. The number of elements of a finite field of characteristic
p is always a power of p. If a field of pr elements is isomorphic to a subfield of a
field of ps elements, then ps = (pr)n = pr·n for some integer n, hence r divides s.

Now we formulate the classification theorem of finite fields.

3.1.6. Theorem. For every power pr of a prime p, there exists a unique (up
to isomorphism) finite field Fpr with pr elements. Fpr is isomorphic to a subfield
of Fps if and only if r divides s. In this case, Fps contains exactly one subfield
isomorphic to Fpr .

Fields appeared in mathematics first in the work of Galois, who proved with
the help of the algebraic theory of subfields of C, that the roots of a polynomial
of degree ≥ 5 can not be expressed in terms of the coefficients using only the
operations +,−, ·, / and n

√
. . .. In his honour, finite fields are called Galois fields as

well and denoted also by GF (pr); projective planes and spaces over a Galois field
are called Galois planes and spaces.

Let us explicitly describe the field Fq, q = ps and its subfields. Consider the
ring of polynomials Fp[x] of one variable x with coefficients in Fp. The polynomial
xq−1 − 1 is not irreducible. Let

xq−1 − 1 = f1(x) · . . . · fN (x)

be its factorization into the product of polynomials irreducible in Fp[x]. (Finding
this factorization requires an algorithm. At this level, we do not want to discuss
different factorization algorithms, it is enough for us that such algorithms exist.)
One can prove that the irreducible factors are different, the degree of fi is at most
s and some of the irreducible factors have degree s. Assume that the irreducible
factor f1 has degree s.

Call two polynomials in Fp[x] equivalent if their difference is divisible by f1 in the
ring Fp[x]. Clearly, every equivalence class is represented by a unique polynomial
of degree less then s. The number of polynomials of degree less then s is q = ps,
thus we have exactly q equivalence classes. Since products and sums of equivalent
polynomials are equivalent, the product and sum of equivalence classes are well de-
fined. The set of equivalence classes together with this addition and multiplication
is a field of q elements.

If k divides s, then the unique subfield of Fps consisting of pk elements is formed
by the roots of the polynomial xpk − x.

The construction of cyclic representations of projective planes (and spaces) over
finite fields is based on the following

3.1.7. Theorem. The multiplicative group of a finite field Fq is cyclic.

Proof. Applying the fact that every finite commutative group is the product
of some cyclic groups, one can see that if the multiplicative group were not cyclic,
then we could find an integer 0 < m < q − 1 such that ξm = 1 for every ξ ∈ F∗

q .
But then the polynomial xm − 1 would have more roots than its degree.
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3.1.8. Corollary. If Fpk is a subfield of Fps , and the multiplicative group of
Fps is generated by the element ξ, then the multiplicative group of Fpk consists of

powers of ξ
ps − 1
pk − 1

Proof. The subgroup generated by ξ
ps − 1
pk − 1 is the only subgroup having pk −1

elements.

Now let us describe the cyclic representation of the projective plane over the finite
field Fq. The key idea is that for a 3-dimensional vector space over Fq we may take
the field Fq3 . Non-zero vectors of this linear space form the multiplicative group of
Fq3 . Let ξ be a generator of F∗

q3 . The vectors ξi and ξj represent the same point of
the projective plane over Fq if and only if ξi−j ∈ Fq, that is, i ≡ j (mod q2 + q+1).
Thus, points of the projective plane FqP

2 can be represented by the vectors

ξ, ξ2, . . . , ξ1+q+q2
.

Let us describe these points by consecutive vertices P1, P2, . . . , Pq2+q+1 of a reg-
ular q2 + q + 1-gon in the Euclidean plane. Multiplication by ξ is an Fq-linear
transformation of Fq3, hence it yields a transformation of the projective plane
which maps a straight line to a straight line. The action of this transformation
on the vertices Pi = [ξi] is just a rotation about the center of the polygon by angle
α = 2π/(q2 + q + 1).

3.1.9. Proposition. Let e = {Pi1 , Pi2 , . . . , Piq+1} be the points of a straight
line in FqP

2. Then rotating the (q + 1)-qon e about the center by integer multiples
of the angle α we obtain q2 + q + 1 different (q + 1)-gons, each of which forms a
straight line in FqP

2.

Proof. We already know that each rotation of e forms a straight line in FqP
2,

so we only have to show that the rotations are different. Set

I = {k ∈ Z | rotation of e by angle kα equals e}.
Clearly, I consists of integer multiples of a natural number d, and we have to show
d = q2+q+1. Since q2+q+1 ∈ I, d divides q2+q+1. On the other hand, the vertex
set of e can be decomposed into the disjoint union of some regular (q2 + q + 1)/d-
gons. This yields that (q2 + q + 1)/d divides q + 1. However, q2 + q + 1 and q + 1
are relatively primes, thus their common divisor (q2 + q+ 1)/d must be equal to 1.

An easy enumeration shows that the number of straight lines in FqP
2 is exactly

q2 + q + 1. Therefore, we obtain any straight line as a rotation of e. Since any two
points in the plane are contained in a unique straight line, points of e must have
the following property:

(*) Each of the distances d(Pi, Pj) occurs exactly once among the distances between
the points of e.
Similar cyclic representation can be given for higher dimensional projective

spaces as well. The only difference is that k-dimensional subspaces are obtained
generally as rotations of more than one subpoligon of the regular (qn+qn−1+· · ·+1)-
gon.

We finish this section by formulating an unsolved problem.
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Question. Assume that among the vertices P1, . . . , Pq2+q+1 of a regular q2 +
q+1-gon we can find a (q+1)-gon e having property (*). Does it follow that q is a
power of a prime? Can we obtain all (q+ 1)-gons having property (*) as a straight
line in a cyclic representation of FqP

2?

3.2. Complex Projective Spaces and the Hopf Fibration.
According to the general scheme, the n-dimensional complex projective space

CPn is the set of complex 1-dimensional complex linear subspaces of the (n+ 1)-
dimensional complex linear space C

n+1. Since R is a subfield of C and C is a
2-dimensional linear space over R, every k-dimensional complex linear subspace
is automatically a linear space over R of dimension 2k. Thus, Cn+1 ∼= R2n+2

as real vector spaces and each 1-dimensional complex linear subspace is a real 2-
dimensional plane passing through the origin. However, not every 2-dimensional
real subspace of R2n+2 corresponds to a complex subspace. The real planes defined
by complex 1-dimensional subspaces have the remarkable property that the inter-
section of any two planes in the family contains only the origin. Consider now the
unit sphere

S2n+1 = {x ∈ R
2n+2 | ‖x‖ = 1}

and the traces of complex 1-dimensional subspaces of Cn+1 on it. What we get is a
family of disjoint great circles that cover the whole sphere. Each circle corresponds
to a complex 1-dimensional subspace, i.e. a point of CPn. This correspondence
defines a mapping π:S2n+1 → CPn. Thus, we may think of the sphere S2n+1 as a
bundle of circles and we may call these circles the fibres of the bundle. The space of
the fibres i.e. the space obtained by shrinking each fibre to a point is the complex
projective space CPn the factorization map is π. Splitting Sn+1 into circles in the
above way is called the Hopf fibration.

The precise definition of fibre bundles is given in advanced algebraic topology
or differential geometry courses. Hopf fibration is a topologically non-trivial fibre
bundle and it finds applications in algebraic topology. To show the beauty of this
construction, we shall draw a picture of the Hopf fibration for the lowest inter-
esting dimension n = 1. For S3 is lying in R4 and it is not easy to visualize a
four dimensional figure, our plan is to draw the image of the Hopf fibration un-
der a stereographic projection S3 → R3. So let us recall the definition and basic
properties of the stereographic projection.

3.3. Digression: Stereographic Projection and Inversion.
Let Sn be the unit sphere in R

n+1 and let us identify R
n with the hyperplane

{(x1, . . . , xn+1) ∈ R
n+1 | xn+1 = 0}

by the embedding
(x1, . . . , xn) �→ (x1, . . . , xn, 0).

We shall write elements of Rn+1 in the form (x, t), where x is the n-dimensional
vector formed by the first n coordinates, t is the last coordinate.

3.3.1. Definition. Let N ∈ Sn be the North Pole of the sphere, i.e. the point
represented by the vector (0, 1). We define the stereographic projection

Φ:Sn \ {N} → R
n
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by the rule that for P ∈ Sn \ {N}, Φ(P ) is the intersection point of the straight
line NP and the hyperplane Rn.

It is not difficult to find an explicit formula for the stereographic projection. For
P = (x, t) ∈ Sn \ {N}, the straight line NP contains points of the form

α(x, t) + (1 − α)(0, 1) = (αx, 1 + α(t− 1)),

where α runs over all real numbers. The last coordinate of this point is 0 if and
only if α = 1/(1 − t), consequently,

Φ: (x, t) �→ 1
1 − t

x.

Stereographic projection is closely related to another transformation, the inver-
sion.

3.3.2. Definition. Let S be a sphere of radius r centered at O in R
n+1. The

inversion with respect to S is a transformation Ψ: Rn+1 \{O} → Rn+1 \{O} defined
by the rule that the image of a point P is the unique point P ′ for which the following
two conditions hold
• P ′ is on the halfline starting from O and passing through P ;
• OP ·OP ′ = r2.

Inversion is an involutive transformation, that is, Ψ ◦ Ψ is the identity.

3.3.3. Proposition. Let S be the sphere of radius
√

2 centered at the North
Pole of the unit sphere Sn, Ψ the inversion with respect to S. Then the stereographic
projection coincides with the restriction of Ψ to Sn \ {N}.

Proof. Let P = (x, t) ∈ Sn \ {N} be a point, P ′ its stereographic projection.
N , P and P ′ are collinear by the definition of Φ. Thus it suffices to show that the
dot product of the vectors

−−→
NP = (x, t − 1) and

−−→
NP ′ = (x/(1 − t),−1) equals 2.

However, using the fact that ‖x‖2 + t2 = 1 we obtain

−−→
NP

−−→
NP ′ =

‖x‖2

1 − t
+ (1 − t) =

1 − t2

1 − t
+ (1 − t) = 2.

The following theorems formulate two important properties of inversions.

3.3.4. Theorem. The image of a sphere or hyperplane A under an inversion
is a sphere if A does not contain the center of the inversion and it is a hyperplane
otherwise.

Proof. Assume that a subset A of Rn+1 is defined by the equation

A = {x ∈ R
n+1:F (x) = 0},

where F : Rn+1 → R is an arbitrary function, then a point x belongs to the image
of A under the inversion Ψ if and only if Ψ(x) belongs to A, thus the equation of
the image is

Ψ(A) = {x ∈ R
n+1:F (Ψ(x)) = 0}.
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Choosing the origin of the coordinate system at the center of the sphere of the
inversion we have

Ψ(x) =
r2

‖x‖2
x.

Assume that A is a sphere centered at the point p and having radius R. Then the
equation of A is

A = {x ∈ R
n+1: ‖x− p‖2 −R2 = 0}.

Therefore, the Ψ-image of A has equation
∥

∥

∥

∥

r2

‖x‖2
x− p

∥

∥

∥

∥

2

−R2 = 0.

Rearranging this equation we obtain

r4

‖x‖4
‖x‖2 − 2

r2

‖x‖2
〈x,p〉 + ‖p‖2 −R2 = 0,

or equivalently,
r4 − 2r2〈x,p〉 + (‖p‖2 −R2)‖x‖2 = 0.

If ‖p‖2 = R2, i.e. A contains the origin, then this reduces to an inhomogeneous
linear equation

〈x, 2p〉 = r2.

Therefore, Ψ(A) is a hyperplane perpendicular to p passing through Ψ(2p).
On the other hand, if ‖p‖2 �= R2, then the equation of Ψ(A) is equivalent to

∥

∥

∥

∥

x− r2

‖p‖2 −R2
p
∥

∥

∥

∥

2

=
r4R2

(‖p‖2 −R2)2
.

Consequently, Ψ(A) is a sphere centered at r2

‖p‖2 −R2 p with radius

r2R
|‖p‖2 −R2| .

Now assume that A is a hyperplane. If n is a unit normal vector of A, then the
equation of A has the form

〈x,n〉 = c,

where c is a constant. The equation of Ψ(A) is

〈 r2

‖x‖2
x,n〉 = c.

If c = 0, i.e. A goes through the center of the inversion, then this equation is
equivalent to 〈x,n〉 = 0, hence Ψ(A) = A is a hyperplane. If, however, c �= 0, then
the equation of Ψ(A) can be transformed to the form

∥

∥

∥

∥

x − r2

2c
n
∥

∥

∥

∥

2

=
(

r2

2c

)2

,

which is obviously the equation of a sphere passing through the origin.
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3.3.5. Corollary. Inversion maps k-dimensional spheres and planes to k-
dimensional spheres or planes.

Proof. Lower dimensional spheres and planes can be obtained as the intersec-
tion of some spheres and hyperplanes.

3.3.6. Theorem. Inversion preserves angles in the sense that if two curves
intersect one another at a certain angle, then their images intersect each other at
the same angle. We define the angle at which two curves intersect to be the angle
between the tangent lines of the curves.

Proof. Assume the two curves intersect one another at P . Let e1 and e2 be
the tangent lines of the curves at P . The inversion takes e1 and e2 into two circles
k1 and k2 respectively. The circles k1 and k2 intersect one another at two points,
at the inversion P ′ of P and at the center O of the inversion. Since k1 is in the
plane spanned by O and e1, and the system O, e1 is symmetric to the straight line
through O perpendicular to e1, k1 is also symmetric to this line and consequently,
the tangent of k1 at O is parallel to e1. Similarly, the tangent of k2 at O is parallel
to e2. After these preliminary observations the theorem can be proved as follows.

The angle between the original curves is equal to the angle between e1 and e2.
Since the angle between two straight lines is unchanged by parallel translation,
the angle between e1 and e2 is equal to the intersection angle of k1 and k2 at O.
Reflection in the bisector hyperplane of the segment OP ′ leaves the circles k1 and
k2 invariant, and exchanges O and P ′, thus the intersection angle of k1 and k2 is
the same at O and P ′. Finally the circles k1 and k2 are tangent to the inversion of
the original curves at P ′, so the inversions of the original curves meet each other
at same angle at P ′ as the circles k1 and k2 do.

3.3.7. Corollary.
• Stereographic projection maps a k-dimensional sphere A ⊂ Sn onto a k-dimen-

sional plane or sphere depending on wether A contains the North Pole or not.
• Stereographic projection preserves angles.

3.4. The Stereographic Image of the Hopf Fibration.
Our goal now is to understand the structure of Hopf fibration by drawing its

image under the stereographic projection. Let

S3 = {(z1, z2) ∈ C
2: |z1|2 + |z2|2 = 1}

be the unit sphere,
S1 = {ε ∈ C: |ε| = 1}

be the circle of unit complex numbers. If (z1, z2) ∈ S3, then there exists a unique
real number 0 ≤ a ≤ π/2 such that

|z1| = cos a |z2| = sin a.

Let us denote by Ta the subset of S3 belonging to the same a

Ta = {(z1, z2) ∈ C
2: |z1| = cos a, |z2| = sin a}.

To get all points of Ta, we have to let z1 and z2 run over circles of radius cos a and
sin a respectively, independently of one another. If 0 < a < π/2, then these are



26 PROJECTIVE GEOMETRY

real circles, thus Ta is homeomorhic to a direct product of two circles, i.e., Ta is a
topological torus. If however a = 0 or a = π/2, then one of the circles is schrunk
to a point, so Ta becomes a circle.

Circles of the Hopf fibration, or shortly Hopf circles can be given as

{(εz1, εz2): ε ∈ S1},

where (z1, z2) is an arbitrary point on the circle. It is clear from this that if a Hopf
circle intersects the torus Ta, then it is contained in it. As a corollary, we obtain
that Ta is a disjoint union of Hopf circles. By this observation, we may split the
description of the Hopf fibration into two parts. First we describe the stereographic
images of the tori Ta and then we study how a typical torus Ta is covered by Hopf
circles.

With the usual identification of C2 and R4, every point (z1, z2) ∈ Ta ⊂ S3 can
be represented as

(cos a eiu, sina eiv) = (cos a cosu, cosa sinu, sina cos v, sina sin v),

where u and v are the arguments of the complex numbers z1 and z2 respectively.
The stereographic projection takes this point to

P (a, u, v) :=
1

1 − sin a sin v
(cos a cosu, cosa sinu, sina cos v).

Beside Hopf circles, Ta contains two other families of circles. Namely, circles of the
form

{(εz1, z2): ε ∈ S1}, and {(z1, εz2): ε ∈ S1}.
A circle in the first family can be parameterized by letting u run and keeping a
and v constant, to get a parameterization of a member of the second family, we
should let v run, while a and u are fixed. What is the stereographic image of these
circles? Looking at the explicit form of P (a, u, v) we see easily that if u varies while
a and v are fixed, then P (a, u, v) moves along a circle whose plane is parallel to
the xy-plane at height sin a cos v

1 − sin a sin v above it, the center of the circle is on the
z-axis, the radius of the circle is cos a

1 − sin a sin v . From this we may conclude that
the stereographic projection of Ta is a surface of revolution about the z-axis.

We can get a generator curve of this surface of revolution setting u = 0 and
letting v run. Then we obtain the following points in the xz-plane

P (a, 0, v) :=
1

1 − sin a sin v
(cosa, 0, sina cos v).

3.4.1. Proposition.
• If P1 and P2 are two distinct points in the Euclidean plane, λ ≥ 0 is a fixed real

number, then the locus of those points Q on the plane for which

P1Q

P2Q
= λ

is a circle if λ �= 1 and a straight line (the bisector of the segment P1P2) if λ = 1.
The circles obtained this way are the Apollonius circles of the points P1 and P2.
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• The points P (a, 0, v) run over the Apollonius circle of the points (1, 0, 0) and
(−1, 0, 0) in the xz-plane with parameter λ = tg a/2.

Proof. To prove the statement about the Apollonius circles, let us choose a
Cartesian coordinate system in the plane such that the points P1 and P2 have
coordinates (a, 0) and (−a, 0) respectively. Then the equation of the locus is

(x− a)2 + y2 = λ2((x+ a)2 + y2).

If λ = 1, then this equation reduces to x = 0, thus the locus is the y-axis, the
bisector of P1P2.

If, however, λ �= 1, we obtain the equation

(

x− 1 + λ2

1 − λ2
a

)2

+ y2 =
4

(λ− 1/λ)2
a2,

which is the equation of a circle.
The second part of the statement follows from the following computation

(

cos a
1−sin a sin v − 1

)2

+
(

sin a cos v
1−sin a sin v

)2

(

cos a
1−sin a sin v + 1

)2

+
(

sin a cos v
1−sin a sin v

)2

=
(cosa+ sin a sin v − 1)2 + (sina cos v)2

(cosa− sin a sin v + 1)2 + (sina cos v)2

=
2 + 2 sin a sin v cos a− 2 cosa− 2 sin a sin v
2 − 2 sin a sin v cos a+ 2 cosa− 2 sin a sin v

=
(1 − sin a sin v)(1 − cos a)
(1 − sin a sin v)(1 + cos a)

=
1 − cos a
1 + cos a

= tg2 a

2
.

3.4.2. Corollary. The stereographic projection of the torus Ta is a real Eu-
clidean torus, obtained by rotating about the z-axis an Apollonius circle of the pair
(1, 0, 0), (−1, 0, 0) taken in the xz-plane.

Having understood the structure of the tori Ta let us see how the Hopf circles fill
one of the tori. A Euclidean torus being a surface of revolution generated by a circle
contains obviously two families of circles. However, the stereographic projections
of the Hopf circles yield a third family of Euclidean circles on the torus. (The
existence of a third family of circles on a torus is a surprising by-product of our
considerations.) This family is invariant under rotations about the z-axis, so it is
enough to describe one such circle on each torus.

It is clear, that Hopf circles are characterized by the conditions that a and u− v
are constant. Setting u− v = 0, we obtain that the points

P (a, u, u) =
1

1 − sin a sinu
(cosa cosu, cosa sinu, sina cosu).

with a fixed run over the stereographic image of a Hopf circle on Φ(Ta). Comparing
the x- and z-coordinates of P (a, u, u) we see that this circle is contained in the plane

Σ := {(x, y, z) ∈ R
3 | z = tg a x}.
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The plane Σ goes through the y-axis and the angle between Σ and the xy-plane is
just a. Σ cuts the torus in two circles. One of them is the stereographic image C1

of the Hopf circle, the other is the reflection C2 of this circle in the xz-plane. C1

and C2 intersect one another at the points

P = (cos a, 0, sina) Q = (− cos a, 0,− sina).

Thus, by simple differential geometrical arguments, Σ is tangent to Φ(Ta) at the
points P and Q.

One can turn the above analytical description into visual pictures by loading the
formulae into a computer. Looking at the pictures we can observe an important
topological property of the Hopf fibration: any two Hopf circles are linked.

3.5. QUATERNIONS.
By Wedderburn’s Theorem (3.1.1.), every finite division ring is a field. Thus,

every division ring with non-commutative multiplication must be infinite. One of
the most important examples of non-commutative division rings is the division ring
of quaternions. The standard notation for this division ring is H in honour of
Hamilton, who first introduced and applied them.

Quaternions can be obtained from complex numbers in a way similar to as com-
plex numbers are obtained from real numbers. When we introduce complex num-
bers, we may follow two different approaches.
• We may say that a complex number is a formal linear combination x+ iy, where
x, y ∈ R are reals, i is just a symbol. In this case, we define the sum and product
of complex numbers by the formulae

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′)

(x+ iy)(x′ + iy′) = (xx′ − yy′) + i(xy′ + x′y)

• Another possible way is to define complex numbers as a subring of the ring of

2 × 2 real matrices having the form
(

x y
−y x

)

.
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The equivalence of the two definitions is given by the correspondence x+ iy ↔
(

x y
−y x

)

.

We define quaternions using the second approach. The advantage of this ap-
proach is that the verification of algebraic identities (e.g. the ring axioms) can be
reduced to algebraic identities on matrices.

Let H denote the set of 2× 2 complex matrices of the form
(

α β
−β̄ ᾱ

)

, where α

and β are arbitrary complex numbers. We shall call elements of H quaternions.

3.5.1. Proposition. H forms a division ring with respect to the usual matrix
operations.

Proof. Computing the sum and product of two elements of H we see that they
are also in H, thus, H is a subring of the ring of matrices. Indeed,

(

α β
−β̄ ᾱ

)

+
(

α′ β′

−β̄′ ᾱ′

)

=
(

α+ α′ β + β′

−(β + β′) (α+ α′)

)

(

α β
−β̄ ᾱ

) (

α′ β′

−β̄′ ᾱ′

)

=
(

αα′ − ββ̄′ αβ′ + βᾱ′

−ᾱβ̄′ − β̄α′ ᾱᾱ′ − β̄β′

)

Since H contains the unit matrix, it is a ring with a unit element. Finally, if

q =
(

α β
−β̄ ᾱ

)

�= 0, then det q = |α|2 + |β|2 �= 0, therefore q is an invertible matrix,

and its inverse is

q−1 =
1

det q

(

ᾱ −β
β̄ α

)

∈ H.

Thus, H is a division ring. �
Diagonal quaternions form a subring, which is isomorphic to the ring of complex

numbers. Identifying the complex number α with the matrix
(

α 0
0 ᾱ

)

we may

assume that H contains complex and real numbers (R ⊂ C ⊂ H).
H is not commutative, as it follows from the following more stronger proposition.

3.5.2. Proposition. q ∈ H commutes with every quaternion if and only if
q ∈ R

Proof. For q =
(

α β
−β̄ ᾱ

)

and q′ =
(

0 γ
−γ̄ 0

)

we have

qq′ − q′q =
(

β̄γ − βγ̄ (α− ᾱ)γ
(α− ᾱ)γ̄ βγ̄ − β̄γ

)

.

This implies that if q commutes with every quaternion, then β̄γ must be real and
(α − ᾱ)γ must vanish for every complex number γ. This yields β = 0 and α ∈ R,
that is q ∈ R.

On the other hand, real numbers obviously commute with every quaternion,
since they correspond to scalar multiples of the identity matrix. �

H is a 4-dimensional linear space over the real numbers. The matrices

1 =
(

1 0
0 1

)

i =
(

i 0
0 −i

)

j =
(

0 1
−1 0

)

k =
(

0 i
i 0

)
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form a basis of this vector space. Thus, every quaternion can be written uniquely
as a linear combination

q = x+ yi+ zj + wk,

where x, y, z, w are real numbers.
The notation for the first two matrices in the above basis and the replacement

of x1 with x in the linear combination are in keeping with the agreement on the
identification of complex numbers with diagonal quaternions.

3.5.3. Definition. The real part of a quaternion

q = x+ yi+ zj + wk =
(

α β
−β̄ ᾱ

)

is the real number
Re q = x = Re α =

1
2
tr q.

The imaginary part of q is

Im q = yi+ zj + wk

We call q pure imaginary, if Re q = 0.
The conjugate of q is the quaternion

q̄ = x− yi− zj − wk =
(

ᾱ −β
β̄ α

)

= det q · q−1

The linear space R4 ∼= H is equipped with the usual dot product

〈q, q′〉 = Re (q̄q′) = xx′ + yy′ + zz′ + ww′,

where q = x+ yi+ zj + wk and q′ = x′ + y′i+ z′j + w′k. The length of q can be
expressed from the equations

|q|2 = 〈q, q〉 = x2 + y2 + z2 + w2 = |α|2 + |β|2 = det q = qq̄.

3.5.4. Definition. A Euclidean vector space is a linear space over R equipped
with a scalar product

〈, 〉 : V × V → R, (v,w) �→ 〈v,w〉
satisfying the axioms

〈αv + v′,w〉 = α〈v,w〉 + 〈v′,w〉,
〈v,w〉 = 〈w,v〉,
〈v,v〉 > 0 if v �= 0.

The standard example of an n-dimensional Euclidean vector space is Rn of n×1
matrices (coloumn vectors) with the usual dot product

〈v,w〉 = vT w,

where T means transposition. As a special case, quaternions form a 4-dimensional
Euclidean vector space.
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3.5.5. Definition. Let V be a Euclidean vector space with scalar product 〈, 〉.
The group of (invertible) linear transformations preserving the scalar product is
the orthogonal group of V

O(V ) = {A : V → V |A is linear and 〈Av, Aw〉 = 〈v,w〉 ∀v,w ∈ V }

O(n) will denote the orthogonal group of R
n with the standard dot product.

For the linear space Rn of coloumn vectors, linear transformations can be identi-
fied with n×n matrices acting on vectors by multiplication from the left. A matrix
A represents an orthogonal transformation of Rn if and only if vT w = (Av)TAw =
vT (ATA)w for all v and w, i.e. ATA = I. Since the equality ATA = I implies
1 = det I = det 2A, we obtain that the determinant of an orthogonal transforma-
tion is 1 or -1. Orthogonal transformations with determinant 1 form a subgroup of
the orthogonal group, called the special orthogonal group.

3.5.6. Definition. The special orthogonal group of a Euclidean vector space
V is the group

SO(V ) = {A ∈ O(V ) | det A = 1}.
We shall denote SO(Rn) simply by SO(n).

The set S3 of all unit quaternions form a group under quaternion multiplication.
Our goal now is to show that this group is closely related to the groups SO(3) and
SO(4). First we describe the structure of an orthogonal transformation in general.

3.5.7. Lemma.
• If A is a linear transformation of an odd dimensional linear space V over R,

then V contains a 1-dimensional A invariant subspace.
• If A is a linear transformation of a real linear space V , then V contains an at

most 2 dimensional A-invariant subspace.

Proof. First we show that every linear transformation A of an odd dimensional
real linear space V has at least one eigenvector, that is, one can find a non-zero
vector v ∈ V and a number λ ∈ R such that Av = λv. Real eigenvalues of A, i.e.
those real numbers λ, for which one can find such a v, are roots of the characteristic
polynomial pA(λ) = det(A−λI). The degree of pA(λ) = −λdim V . . . is odd, hence
the limit of pA(λ) as λ tends to ±∞ is ∓∞, therefore, by Bolzano’s theorem pA

must have a real root. The eigenvector corresponding to the real eigenvalue spans
an A invariant 1-dimensional subspace in V .

If dimV is even, the characteristic polynomial of Amay not have real eigenvalues,
however, it always has complex eigenvalues. Suppose α = x+ iy ∈ C\R is a comlex
root of pA. Then, corresponding to α, there is an eigenvector v + iw of A in the
complexification

C ⊗ V = V ⊕ iV = {v + iw|v,w ∈ V }.
Taking the real and imaginary parts of A(v + iw) = α(v + iw) we obtain

Av = xv − yw, Aw = yv + xw,

showing that the subspace spanned by v and w is mapped by A into itself. �
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3.5.8. Lemma. If A is an orthogonal transformation of the Euclidean linear
space (V, 〈, 〉), W < V is an A invariant subspace, then the orthogonal complement
W⊥ = {w′ ∈ V |〈w′,w〉 = 0 ∀w ∈W} of W is also A invariant.

Proof. w′ ∈ W⊥ ⇐⇒ 〈w′,w〉 = 0 ∀w ∈ W ⇐⇒ 〈Aw′, Aw〉 = 0 ∀w ∈ W
⇐⇒ 〈Aw′,w〉 = 0 ∀w ∈W ⇐⇒ Aw′ ∈W⊥. �

3.5.9. Theorem. If A ∈ O(V ) is an orthogonal transformation of an n-
dimensional Euclidean linear space (V, 〈, 〉), then V can be decomposed into the
direct sum of A invariant orthogonal subspaces of dimension at most two in such
a way that the restrictions of A onto the 2-dimensional factors are rotations while
restrictions of A onto the 1-dimensional factors are multiplications by +1 or -1.

3.5.10. Corollary. Elements of the group SO(3) are rotations about a straight
line through the origin.

Proof. By Theorem 3.5.9, for every A ∈ SO(3), R
3 has an A invariant orthog-

onal decomposition (a) R3 = V1 ⊕ V2 ⊕ V3 with dimVi=1 or (b) R3 = V1 ⊕ V2 with
dimV1 = 2, dimV2 = 1, where A|V1 is a rotation.

(a) In the first case, the number of those Vi’s on which A acts by multiplication
with -1 is even, that is, 0 or 2. If A acts identically on each Vi, then A is the
identity, which can be thought of as a rotation about an arbitrary axis with angle
0. If, for example, A|V1 and A|V2 are reflections in the origin, A|V3 is the identity,
then A is a half turn about V3.

(b) Since the determinant of a rotation in a plane is 1, in the second case,
A|V2 must be identical, therefore, A is a rotation about the 1-dimensional subspace
V2. �

3.5.11. Theorem. For a non-zero quaternion q, conjugation ρq : H → H,
ρq : x �→ qxq−1 is special orthogonal transformation. ρq fixes real numbers and
maps the 3-dimensional space R3 of pure imaginary quaternions into itself. If q
is a unit quaternion of the form cosα + a sinα, where a is a pure imaginary unit
quaternion, then the restriction ρ̂q of ρq onto the 3-dimensional subspace of pure
imaginary quaternions is a rotation about the subspace spanned by a with angle 2α.

Proof. ρq is an orthogonal transformation since

〈ρq(x), ρq(y)〉 = Re (qxq−1qyq−1) = Re (q−1x̄q̄qyq−1)

= Re (
q

|q|2 x̄|q|
2yq−1) = Re (qx̄yq−1) = Re (x̄y) = 〈x, y〉

At the end of this computation we used the fact that the real part can be ex-
pressed as half the trace of the quaternion, therefore it is invariant under conjuga-
tion. For the same reason, ρq maps pure imaginary quaternions to pure imaginary
ones. If x ∈ R, then, since real numbers commute with every quaternion, we have

ρq(x) = qxq−1 = qq−1x = x.

To show that ρq has determinant 1, it suffices to check that its restriction ρ̂q is a
rotation about an axis. As ρq = ρ(q/|q|), it is enough to deal with the case of unit
quaternions.

Suppose that q is of the form cosα + a sinα, where a is a pure imaginary unit
quaternion. Let b be a pure imaginary unit quaternion, orthogonal to a and set
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c = ab. We claim that a, b, c form an orthonormal basis of the space of pure
imaginary quaternions, satisfying

a2 = b2 = c2 = −1, ab = c, bc = a, ca = b, ba = −c, cb = −a, ac = −b.

Observe first, that the square of a pure imaginary quaternion is -1. Indeed, the
equations q = −q̄ and qq̄ = 1 imply q2 = −1. This yields at once a2 = b2 = −1.
c is a unit quaternion since |c| = |a||b| = 1 and it is also pure imaginary since
Re c = Re ab = −Re āb = 〈a, b〉 = 0. This yields c2 = −1. Using these equations,
ac = a(ab) = a2b = −b;
cb = (ab)b = ab2 = −a;
ba = (−b)(−a) = (ac)(cb) = ac2b = −ab = −c;
bc = cb = −ā = a, ca = ac = −b̄ = b;
〈b, c〉 = Re b̄c = −Re a = 0, 〈a, c〉 = Re āc = Re b = 0;
as we claimed. The action of ρ̂q is uniquely determined by its action on the basis

vectors a, b, c. Using q−1 = q̄ = cosα− a sinα and the above formulae we obtain

ρ̂q(a) = a

ρ̂q(b) = (cos2 α− sin2 α)b+ (2 sinα cosα)c = cos(2α)b+ sin(2α)c

ρ̂q(c) = −(2 sinα cosα)b+ (cos2 α− sin2 α)c = − sin(2α)b+ cos(2α)c

Showing that ρ̂q is indeed a rotation with angle 2α about the axis spanned by a. �
3.5.12. Corollary. The mappings H∗ → SO(3) and S3 → SO(3) assigning

to a non-zero quaternion q the transformation ρ̂q are group homomorphisms onto
the group SO(3). Two elements of H

∗ are mapped to the same transformation if
and only if they are proportional over the real numbers. In particular, SO(3) is
isomorphic to the factor groups H

∗/R∗ ∼= S3/{±1}.
3.5.13. Corollary. SO(3) as a topological space (with subspace topology ob-

tained from the linear space topology on the linear space of all 3 × 3 matrices) is
homeomorphic to the real projective space.

This equivalence recovers a hidden group structure of the real projective space.

3.5.14. Theorem. For a pair of unit quaternions (q1, q2), let ρq1,q2 denote the
transformation H → H defined by

ρq1,q2(x) = q1xq
−1
2 .

Then the assignment (q1, q2) �→ ρq1,q2 is a group homomorphism from S3 × S3

onto SO(4). The kernel of this homomorphism consists of two elements (1, 1) and
(−1,−1).

Proof. ρq1,q2 preserves length of quaternions, consequently, it preserves also
scalar product of them, therefore it is an orthogonal transformation. To show that
its determinant is 1, we use topological arguments. Since S3×S3 is path connected,
we can find a continuous mapping γ : [0, 1] → S3 × S3 such that γ(0) = (1, 1) and
γ(1) = (q1, q2). The function f(t) = det ργ(t) is continuous and takes values in the
set {±1} therefore it is constant. As a consequence, det ρq1,q2 = f(1) = f(0) = 1.

To show that the mapping we are considering is a mapping onto, let us take an
arbitrary element A of SO(4), and set q = A(1). The transformation ρq−1,1 ◦ A
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fixes real numbers, and, since it is a special orthogonal transformation, it acts on
pure imaginary quaternions as a special othogonal transformation. By Corollary
3.5.12, this transformation is a conjugation by a unit quaternion q2. Denoting q1

the product qq2, we A = ρq,1 ◦ ρq2,q2 = ρq1,q2 .
If ρq1,q2 is the identity, then from ρq1,q2(1) = 1 we obtain q1 = q2, thus ρq1,q2 is

conjugation with q1. By Corollary 3.5.12, conjugation with q1 is the identity if and
only if q1 = ±1. �

3.5.15. Corollary. SO(4) as a topological space is homeomorphic to the fac-
tor space obtained from the product S3 × S3 of two spheres identifying the pairs
(v,w), (−v,−w).
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Lecture Notes by Balázs Csikós

4. THE AXIOMATIC TREATMENT OF PROJECTIVE SPACES

4.1. The Incidence Axioms of an n-Dimensional Projective Space. In
the previous units we introduced n-dimensional projective spaces, associated to a
linear space over an arbitrary division ring, subspaces of projective spaces, and
proved some basic properties of the subspaces. This way, we gave a generalization
of the 3-dimensional real projective space. Now we go on and define projective
spaces on an even more general level.

4.1.1. Definition. A system (X,S−1,S0, . . . ,Sn) is called an n-dimensional
projective space, if X is an arbitrary set, Si is a family of subsets of X the elements
of which are referred to as i-dimensional subspaces of X and the following axioms
are satisfied.
• The only −1-dimensional subspace is the empty set, that is, S−1 = {∅}.
• 0-dimensional subspaces of X are the one point subsets of X , that is, S0 = {{p} |
p ∈ X}.

• The only n-dimensional subspace of X is X , that is, Sn = {X}.
• The families Si and Sj are disjoint for i �= j. A consequence of this axiom is that

if W is a subspace, then W ∈ Si for exactly one i, thus the dimension dimW = i
of W is well defined.

• The intersection of subspaces is also a subspace.
This axiom gives rise to constructions such as the subspace spanned by an arbi-

trary subset of X and the join of subspaces. We define the subspace [A] spanned or
generated by the subset A ⊂ X as the intersection of all subspaces that contain A.
[A] is the smallest subspace that contains A. The join of some subspaces W1,W2, . . .
is the subspace generated by their union W1 +W2 + · · · = [W1 ∪W2 ∪ . . . ].
• For any two subspaces W1 and W2, the following equality holds between the

dimensions of the subspaces, their intersection and their join

dim(W1) + dim(W2) = dim(W1 ∩W2) + dim(W1 +W2).

• There exist n + 2 points in general position, that is n + 2 points such that no
n+ 1 of them lie on a hyperplane (= n− 1-dimensional subspace).

We prove some useful consequences of these axioms.
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4.1.2. Proposition. If W1 and W2 are two subspaces such that W1 ⊂ W2,
then dimW1 ≤ dimW2. If furthermore, W1 �= W2 then dimW1 < dimW2.

Proof. Let us define a sequence of subspaces W1 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = W2.
We start from V0 = W1. Suppose Vk is already defined. If Vk = W2, we stop. If
however Vk is a proper subset of W2, then we choose a point P ∈ W2 \ Vk and set
Vk+1 = Vk + {P}. Since W2 contains the subspaces Vk and {P}, it contains their
join Vk+1 as well. Application of the dimension formula gives

dimVk+1 = dimVk + dim{P} − dim ∅ = dimVk + 1.

Consequently,
dimVk = dimW1 + k.

Since the dimension of a subspace can not exceed the dimension of the total space,
the above procedure must stop at a certain place, Vl = W2 for some l. But in that
case, dimW2 = dimVl = dimW1 + l ≥ dimW1, where equality holds if and only if
l = 0 and W2 = V0 = W1. �

4.1.3. Lemma. Let W be a subspace of a projective space, dimW ≥ 0, P a
point not in W . Then the join of W and {P} is the union of all straight lines of
the form PQ = {P} + {Q}, where Q runs over W .

Proof. It is clear that for any Q ∈W , W + {P} contains both P and Q, thus
it contains their join PQ. This yields

W + {P} ⊃
⋃

Q∈W

PQ.

Now take an arbitrary point R ∈ W + {P}. If R = P , then R is covered by
any straight line of the form PQ where Q ∈ W , and such lines exist by dimW ≥
0. Assume that R �= P . The straight line PR is contained in W + {P} and
consequently, W + PR = W + {P}. By the dimension formula,

dim(W ∩ PR) = dimW + dimPR− dim(W + {P}) = 0,

that is, the straight line PR intersects W at a single point Q. But then R is covered
by the straight line PQ. This proves

W + {P} ⊂
⋃

Q∈W

PQ. �

4.1.4. Proposition. A subset W of an n-dimensional projective space is a
subspace if and only if for any two different points P Q in W , W contains the
straight line PQ = {P} + {Q}.

Proof. Since the join of two subspaces is the minimal subspace among those
that contain the two subspaces, if W is a subspace, it contains the join of any of
its two 0-dimensional subspaces {P} and {Q}.

Now assume that W is a subset of X that contains the straight line PQ for any
two different points P , Q in W . We define a sequence of subspaces of X contained
in W . We set V0 = ∅. Suppose that the subspace Vk ⊂W has already been defined.
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If Vk = W , then we stop. If Vk �= W , then we choose a point P ∈ W \ Vk and set
Vk+1 = Vk + {P}. By the lemma above, we obtain that Vk+1 is a union of straight
lines passing through P and a point Q ∈ Vk, thus it must be a subset of W . The
dimension formula yields that

dimVk+1 = dimVk + dim{P} − dim ∅ = dimVk + 1,

consequently, dimVk = k. For the dimension of subspaces is bounded by the
dimension of the space, the sequence Vk must exhaust the set W , that is, Vk = W
for some k. But then W = Vk is a subspace of X . �

4.1.5. Corollary. The family of straight lines determines the subspace struc-
ture completely. In other words, if (X,S−1,S0, . . . ,Sn) and (X, ˜S−1, ˜S0, . . . , ˜Sn)
are two n-dimensional projective space structures on the same set X and S1 = ˜S1,
then Si = ˜Si for any −1 ≤ i ≤ n.

Proof. The previous proposition characterizes subspaces of a projective space
in terms of straight lines. On the other hand, the family of all subspaces determines
the dimension of each individual subspace by the following rule. A subspace W is
k-dimensional if and only if there exists an increasing chain of subspaces V−1 ⊂
V0 ⊂ V1 ⊂ · · · ⊂ Vn such that Vi−1 �= Vi for 0 ≤ i ≤ n and Vk = W . �

LetW be a k-dimensional subspace of an n-dimensional projective space (X,S−1,
S0, . . . ,Sn). For −1 ≤ i ≤ k, set

SW
i = {A ∈ Si | A ⊂W}.

4.1.6. Proposition. The system (W,SW
−1,SW

0 , . . .SW
k ) is a k-dimensional pro-

jective space, that is, every subspace of a projective space inherits a projective space
strucrure.

Proof. The only non-trivial part of the statement is the existence of k + 2
points of W in general position. Let us take n+ 2 points of X in general position,
and call them P1, P2, . . . , Pn+2. Since joining a point to a subspace not containing
it increases the dimension of the subspace by one, we can choose n− k points out
of P1, . . . , Pn+2, say P1, . . . , Pn−k such that
Pi �∈W + {P1} + · · · + {Pi−1};
dim(W + {P1} + · · ·+ {Pi}) = k + i ∀ 1 ≤ i ≤ n− k.

We define the sets V, V1, . . . , Vk+2 in the following way.
V = {P1} + · · ·+ {Pn−k};
Vi = V + {Pn−k+i} for 1 ≤ i ≤ k + 2.
Since V is spanned by n−k points, dimV ≤ n−k−1. On the the other hand, V

and W span the whole space. Considering the dimension formula, this is possible
only if dimV = n− k − 1 and V ∩W = ∅. Then dimVi = n− k and

dim(Vi ∩W ) = dimVi + dimW − dim(Vi +W ) = (n− k) + k − n = 0,

that is, Vi meets W at a single point Qi. We claim that the points Q1, Q2, . . . , Qk+2

∈ W are in general position. Assume that this is not the case. Then k + 1 of the
points, sayQ1, . . . , Qk+1, span a ≤ k−1-dimensional subspace H. By the dimension
formula,

dim(V +H) = dimV + dimH − dim ∅ ≤ (n− k − 1) + (k − 1) + 1 = n− 1.
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On the other hand,

V +H = V + {Q1} + · · ·+ {Qk+1}
= (V + {Q1}) + · · ·+ (V + {Qk+1})
= (V + {Pn−k+1}) + · · · + (V + {Pn+1})
= V + {Pn−k+1} + · · ·+ {Pn+1} =

= {P1} + {P2} + · · · + {Pn+1} = X.

This implies
dimX = dim(V +H) ≤ n− 1.

The contradiction proves the claim. �
For the low dimensional cases, the above system of axioms can be replaced by

equivalent, more traditional systems of axioms. Consider first the case n = 2.
If X is a given set, all the essential information on a projective plane structure
(X,S−1,S0,S1,S2) on X is contained in the set of straight lines S1 since subspaces
of other dimensions are prescribed by the axioms and given together with X . Thus,
we may write shortly (X,S1) or (X,S) instead of (X,S−1,S0,S1,S2).

4.1.7. Proposition. The system (X, {∅}, {{p} | p ∈ X},S, {X}) satisfies the
incidence axioms of a 2-dimensional projective space if and only if the pair (X,S)
has the following properties.
• For any two different points P,Q in X, there exists a unique straight line e ∈ S

such that P ∈ e and Q ∈ e.
• For any two different lines e, f in S, there exists a unique point P ∈ X such that
P ∈ e and P ∈ f .

• There exist 4 points in X such that no 3 of them can be covered by a line from
S.

Proof. Assume first, that the system (X, {∅}, {{p} | p ∈ X},S, {X}) satisfies
the incidence axioms of a 2-dimensional projective space. Let P �= Q be two
different points of X . The intersection of the 0-dimensional subspaces {P} and {Q}
is the emptyset, hence −1-dimensional. Consequently, the join of these subspaces
is one-dimensional {P}+ {Q} = e ∈ S. Now assume that f ∈ S is another straight
line that covers P and Q. The intersection of e and f is a subspace the dimension
of which is at most 1. On the other hand, e ∩ f contains two different points, thus
it can not be a −1- or 0-dimensional subspace. If however dim e∩f = 1 then by the
above proposition e = e∩ f = f , that proves unicity of the straight line through P
and Q.

If e and f are two different straight lines, then their join is a subspace that
contains e as a proper subset, thus dim(e+f) ≥ 2. This is possible only if e+f = X ,
dim(e + f) = 2. This gives dim(e ∩ f) = dim e + dim f − dim(e + f) = 0, that is,
the intersection of the straight lines e and f contains a single point.

The last property in the proposition is the same as the last axiom for a 2-
dimensional projective space. The ”only if” part of the proposition is proved.

To show the ”if” part, assume now that the pair (X,S) has the properties listed
in the proposition, and let us check that the system (X, {∅}, {{p} | p ∈ X},S, {X})
satisfies the incidence axioms for a 2-dimensional projective space.

The first three axioms are fulfilled automatically.
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Since X has at least 4 points, S−1, S0 and S2 are mutually disjoint. Let A, B, C,
D be four points in general position. If e is a straight line, then one of these points,
say A, is not in e. The straight lines through AB, AC and AD are different because
of the general position condition. These straight lines intersect e at different points,
since if we had AB ∩ e = AC ∩ e = P for example, then the straight lines AB and
AC would have two different points in common, A and P . Thus, we conclude that
a straight line has at least 3 points, and consequently, S1 ∩ S−1 = S1 ∩S0 = ∅. We
also get that X is not a straight line, since otherwise, taking another straight line
e the intersection X ∩ e = e would have at least 3 points instead of 1.

It is obvious that the intersection of two subspaces is also a subspace if one of the
subspaces is the empty set, a one point set or X. The intersection of two straight
lines e and f is also a subspace, since if e = f then e∩f = e and if e �= f then e∩f
is a one point set.

The dimension formula is always satisfied automatically if one of the subspaces
contains the other. Indeed, forW1 ⊂ W2 we haveW1∩W2 = W1 andW1+W2 = W2,
and

dim(W1) + dim(W2) = dim(W1 ∩W2) + dim(W1 +W2).

There are three cases when none of the subspaces is contained in the other. When
W1 and W2 are two different points, their intersection is the empty set, their join
is the straight line through them. When one of the subspaces is a point, the other
is a straight line, not passing through the point, the intersection of the subspaces
is the empty set, the join of them is X . Finally, when W1 and W2 are two different
straight lines, their intersection is a single point, their join is X . In all three cases,
the dimension formula is true.

The last axiom is the same as the last property of the proposition. �

Now we give an alternative system of axioms for a 3-dimensional projective space.
If X is a set, the essential information on a 3-dimensional projective space structure
(X,S−1,S0,S1,S2,S3) is given by the families of straight lines S = S1 and planes
P = S2. Thus, we may refer to the projective space shortly as the system (X,S,P).

4.1.8. Proposition. Let X be an arbitrary set, S and P given families of
subsets of X, the elements of which are called straight lines and planes respectively.
Then (X, {∅}, {{p} | p ∈ X},S,P, {X}) is a 3-dimensional projective space if and
only if the system (X,S,P) satisfies the following properties.
• For any two different points P , Q in X, there exists a unique straight line e ∈ S

such that P,Q ∈ e.
• The intersection of two different planes Π, Σ in P is a straight line Π ∩ Σ ∈ S.
• If P ∈ X is a point, e ∈ S is a straight line and P /∈ e then there exists a unique

plane Σ ∈ P that contains both P and e.
• If Σ ∈ P is a plane, e ∈ S is a straight line and e �⊂ Σ then the intersection of

Σ and e is a point.
• If two different straight lines lie in a plane then they intersect one another at a

single point.
• If two different straight lines have a point in common, then they are coplanar.
• There exist 5 points in X such that no 4 of them are coplanar.

The proof of this proposition is longer than, but similar to the proof of the
2-dimensional case. Details of it are left to the reader.
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4.2. The Principle of Duality, the Dual Space.
Given an n-dimensional projective space (X,S−1,S0, . . . ,Sn), we can construct

a new projective space, the dual space, the points of which are the hyperplanes of
the original space. Any theorem that can be proved using the incidence axioms of
the n-dimensional projective space can be applied to the dual space. Every theorem
on the dual space can be interpreted as a theorem on the original space. By this
procedure, every theorem of projective geometry generates another, dual theorem,
which is valid once the original theorem is proved. This duality principle is one of
the most fundamental principles of projective geometry.

Let (X,S−1,S0, . . . ,Sn) be an n-dimensional projective space, and denote by X∗

the set of hyperplanes in X : X∗ = Sn−1. For W ∈ Si, let us define the ”anullator”
of W as follows

W⊥ = {H ∈ X∗ | H ⊃W}.
We shall say that a subset of X∗ is an i-dimensional subspace if it is the anullator
of an n− 1 − i-dimensional subspace of X . Denote by

S∗
i = {W⊥ ⊂ X∗ | W ∈ Sn−1−i}

the set of all i-dimensional subspaces of X∗.

4.2.1. Theorem. The system (X∗,S∗
−1,S∗

0 , . . . ,S∗
n) is an n-dimensional pro-

jective space.

4.2.2. Definition. (X∗,S∗
−1,S∗

0 , . . . ,S∗
n) is called the dual space of the projec-

tive space (X,S−1,S0, . . . ,Sn)

We shall prove the theorem after proving some lemmas.

4.2.3. Lemma. Let W be a subspace in a projective space X, P a point not
lying in W . Then there exists a hyperplane H in X such that H ⊃W but P /∈ H.

Proof. We shall use induction on the dimension of X . If dimX = 1, then
the statement is obvious. Assume the statement is true for spaces of dimension
< dimX . Joining points to W we can always find a hyperplane H0 that contains
W . If this hyperplane does not contain P , then we are done. If, however, P ∈ H0

then we may look at H0 as a dimX − 1 dimensional projective space that contains
P and W . By the induction hypothesis, we can find a hyperplane H1 in the space
H0 such that W ⊂ H1 �� P . (H1 will not be a hyperplane in X !). Let us choose a
point Q /∈ H0 and consider the hyperplane H = H1 + {Q}. H intersects H0 in H1,
thus it contains W but does not contain P . �

4.2.4. Corollary. If W is an arbitrary subspace in a projective space, then
W is the intersection of all hyperplanes that contain W .

W =
⋂

H∈W⊥
H.

(We use the convention that the intersection of no sets is the whole space X).

Proof. It is clear that W ⊂ ⋂

H∈W⊥ H. On the other hand, if P /∈ W then
there exists a hyperplane H ⊃W such that P /∈ H, thus W ⊃ ⋂

H∈W⊥ H. �
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4.2.5. Corollary. If W1 and W2 are two subspaces of a projective space, then
W1 ⊂ W2 if and only if W⊥

1 ⊃W⊥
2 .

Proof. If W1 ⊂ W2, then every hyperplane that contains W2 contains W1 as
well, so W⊥

2 ⊂ W⊥
1 . On the other hand, if W⊥

2 ⊂ W⊥
1 , then by the previous

corollary,
W1 =

⋂

H∈W⊥
1

H ⊂
⋂

H∈W⊥
2

H = W2. �

Proof of Theorem 4.2.1.
• X is not contained in any hyperplane, so X⊥ = ∅, S∗−1 = {∅}.
• If H ∈ X∗ is a hyperplane in X , then the only hyperplane that contains H is
H, thus H⊥ = {H}, and S∗

0 = {{H} | H ∈ X∗}.
• The empty set is contained in every hyperplane, consequently, ∅⊥ = X∗, and

S∗
n = {X∗}.

• By Corollary 4.2.4, the set W⊥ defines W , (different subspaces have different
anullators), and W has a uniquely defined dimension, so W⊥ can not belong to
both S∗

i and S∗
j for i �= j.

• The intersection of subspaces of the dual space is also a subspace by the following
identity.

W⊥
1 ∩W⊥

2 = {H ∈ X∗ | H ⊃ W1 and H ⊃W2}
= {H ∈ X∗ | H ⊃ (W1 +W2)} = (W1 +W2)⊥.

• To prove the dimension formula for the dual space, let us observe, that

W⊥
1 +W⊥

2 =
⋂

W⊥⊃W⊥
1 ,W⊥

2

W⊥ =
⋂

W⊂W1,W2

W⊥

=
⋂

W⊂W1∩W2

W⊥ = (W1 ∩W2)⊥.

Using this identity,

dimW⊥
1 + dimW⊥

2 = (dimX − dimW1 − 1) + (dimX − dimW2 − 1)

= (dimX − dim(W1 ∩W2) − 1) + (dimX − dim(W1 +W2) − 1)

= dim(W1 +W2)⊥ + dim(W1 ∩W2)⊥.

• It remains to show that X∗ has n + 2 ”points” in general position. n + 2 hy-
perplanes in X define n + 2 points in general position of the dual space if and
only if no n + 1 of the hyperplanes go through a point of X . Let us choose
n + 2 points P1, P2, . . . , Pn+2 ∈ X in general position. Any n of these points
span a hyperplane. For i �= j, let us denote by Hi,j the hyperplane spanned
by the points {P1, P2, . . . , Pn+2} \ {Pi, Pj}. We prove that the hyperplanes
H1,2, H2,3, . . . , Hn+1,n+2, Hn+2,1 are in general position. Since the role of the
points P1, P2, . . . , Pn+2 can be cyclically permuted, it suffices to show that the
first n + 1 of these hyperplanes do not share a point in common. Let us check
by induction, that

H1,2 ∩H2,3 ∩ · · · ∩Hk,k+1 =
∑

k+2≤i≤n+2

{Pi}.
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The assertion for k = 1 is just the definition of H1,2. Suppose the equation is
known for k − 1. Denote by W the subspace

H1,2 ∩H2,3 ∩ · · · ∩Hk−1,k =
∑

k+1≤i≤n+2

{Pi}.

Since Pk+1 ∈ W \ Hk,k+1, H and W span X and by the dimension formula
dim(W ∩ Hk,k+1) = dimW − 1 = n − k. The span of the n − k − 1 points
{Pi | k + 2 ≤ i ≤ n + 2 is n − k dimensional and is contained in W ∩Hk,k+1,
hence

W ∩Hk,k+1 = H1,2 ∩H2,3 ∩ · · · ∩Hk,k+1 =
∑

k+2≤i≤n+2

{Pi},

as it was to be proved. The equation for k = n+ 1 yields that the intersection
H1,2 ∩ H2,3 ∩ · · · ∩ Hn+1,n+2 is empty. With this, the theorem is completely
proved. �
Now we can formulate the duality principle more explicitly.

4.2.6. The Duality Principle. Suppose that a theorem on the subspaces
of an n-dimensional projective space can be derived from the incidence axioms
and involves the following phrases: ”i-dimensional subspace”, ”a subspace is con-
tained in another”, ”the join of some subspaces”, ”the intersection of some sub-
spaces”. Then the theorem obtained by replacing the above phrases with the phrases
”n− i−1-dimensional subspace”, ”a subspace contains another”, ”the join of some
subspaces”, ”the intersection of some subspaces” respectively, is also a consequence
of the incidence axioms.

The vocabulary of the duality principle can be extended. For any macro concept
defined on the base of the above atomic concepts we can produce a dual concept,
and the macro and its dual can be included in the vocabulary. For example, the set
of points of a straight line is often called a range of points. The set of hyperplanes
that go through a fixed 2-codimensional subspace is called a pencil of hyperplanes.
Obviously, these concepts are dual to one another. This way, if the theorem to be
dualized contains the phrase ”a range of points”, it should be substituted by the
phrase ”a pencil of hyperplanes”.

4.3. Desargues’ Theorem and the Incidence Axioms. We have already
proved Desargues’ Theorem for projective spaces associated to a linear space over a
division ring. Incidence axioms are weaker than the assumption that the projective
space is associated to a linear space, so we may pose the question whether Desar-
gues’ Theorem can be proved assuming only the incidence axioms of the space. The
answer depends on the dimension of the space. Incidence axioms of a projective
space of dimension ≥ 3 imply Desargues’ Theorem, but incidence axioms of the
plane are not enough for this.

4.3.1. Proof of Desargues’ Theorem from the Incidence axioms of an n ≥ 3-
dimensional projective space. Let the triangles ABC and A′B′C′ be in perspective
from a point P . We shall distinguish two cases.

Case A. Assume that the planes Σ = {A}+ {B}+ {C} and Σ′ = {A′}+ {B′}+
{C′} are different. The points A, B, C and P span a 3-dimensional subspace,
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which contains also the points A′, B′, C′ and the planes Σ and Σ′. Σ and Σ′ span
this 3-dimensional space, so their intersection is a straight line e by the dimension
formula. We show that the triangles ABC and A′B′C′ are in perspective with
respect to the straight line e. Let us denote by ΣAB the plane spanned by the
points A, B and P . If ΣAB were equal to Σ or Σ′, then the system would collapse
to a plane, so this is not the case. Consequently, ΣAB cuts Σ and Σ′ in a straight
line. These straight lines are

ΣAB ∩ Σ = AB and ΣAB ∩ Σ′ = A′B′.

Since e and ΣAB span a 3-dimensional space, they intersect one another at a point
PAB. Then

AB∩A′B′∩e = (ΣAB∩Σ)∩(ΣAB∩Σ′)∩(Σ∩Σ′) = ΣAB∩Σ∩Σ′ = ΣAB∩e = PAB ,

that is, the straight lines AB and A′B′ intersect one another on e. We can prove
similarly that BC cuts B′C′ and AC cuts A′C′ at points on e, so we are done.

Case B. Now we assume that the triangles ABC and A′B′C′ lie in the same
plane Σ. Since the space is at least 3-dimensional, we can find a point S /∈ Σ and
since every straight line has at least three points (in general position), we can fix
a point P̃ on the straight line SP , which is different from S and P . The plane
spanned by S, P and A contains also the points A′ and P̃ and the straight lines
SA and P̃A′. Hence, we can define the point Ã as the intersection point of the
coplanar straight lines SA and P̃A′. We introduce similarly the points

B̃ = SB ∩ P̃B′ and C̃ = SC ∩ P̃C′.

The triangles ABC and ÃB̃C̃ are in perspective from the point S, the triangles
A′B′C′ and ÃB̃C̃ are in perspective from the point P̃ . Neither of these pairs of
triangles are coplanar, so Case A gives that these pairs of triangles are in perspective
with respect to the common straight line e of the plane of ÃB̃C̃ and Σ. By this,

e ∩ AB = e ∩ ÃB̃
e ∩A′B′ = e ∩ ÃB̃

e ∩BC = e ∩ B̃C̃
e ∩B′C′ = e ∩ B̃C̃

e ∩ CA = e ∩ C̃Ã
e ∩ C′A′ = e ∩ C̃Ã,

from which

e ∩AB = e ∩ A′B′ e ∩BC = e ∩B′C′ e ∩ CA = e ∩ C′A′,

thus the triangles ABC and A′B′C′ are also in perspective from e.
In the proof of Desargues’ Theorem for projective spaces over a division ring (see

section 2.6.), we saw that the ”if” part of the theorem follows from the ”only if”
part. The arguments used there are universal and can be applied here as well to
finish the proof. �

4.3.2. Moulton’s non-desarguesian plane. The incidence axioms of a projective
plane are two poor to imply Desargues’ Theorem. This statement can be proved
by presenting a model of a projective plane, which satisfies the incidence axioms
but not Desargues’ Theorem. The first non-desarguesian planes were constructed
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by Hilbert by algebraic methods. His ideas were simplified by Moulton, who finally
arrived at a very simple model. Now we are going to describe this model.

The set of points of Moulton’s plane is the set of points of an ordinary real
projective plane. We think of the projective plane as the closure of the Euclidean
plane E2 with points at infinity, and we introduce a Cartesian coordinate system
on E2. Straight lines in Moulton’s plane are subsets of the following type
• straight lines with negative slope

{(x, y) ∈ E
2 | y = mx+ b}, where m < 0, m, b ∈ R,

together with their points at infinity;
• vertical lines

{(x, y) ∈ E
2 | y = b}, where b ∈ R,

together with their points at infinity;
• broken lines of the form

{(x, y) ∈ E
2 | y =

3
4
(mx+ b) − 1

4
| mx+ b |}, where m > 0, m, b ∈ R,

together with the point at infinity of the straight line y = mx+ b;
• the straight line at infinity.

It is easy to check that the projective plane together with this modified system
of straight lines satisfies the incidence axioms of a projective plane, however, if we
place two triangles in the plane as shown in the figure, then the triangles will be
in perspective from a line but not from a point, so Desargues’ Theorem fails to be
valid on Moulton’s plane.

4.4. Collineations.

4.4.1. Definition. Let (X,S−1, . . . ,Sn) and (Y,S′
−1, . . . ,S′

n) be two n-dimen-
sional projective spaces. We say that a mapping φ:X → Y is a collineation if φ is
a bijection and maps subspaces to subspaces, i.e., if for any subset W ⊂ X of X ,
W ∈ Si if and only if φ(W ) ∈ S′

i.
We say that two projective spaces are isomorphic if there exists a collineation

between them.
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Isomorphic projective spaces are not different (essentially the same) from the
view point of projective geometry. One of the most fundamental problems of pro-
jective geometry is to describe projective spaces up to isomorphism. A famous
theorem of Hilbert says that if a projective space is desarguesian, then it is isomor-
phic to a projective space associated to a linear space over a division ring. This way,
the classification of projective spaces of dimension ≥ 3 (since these spaces are auto-
matically desarguesian) can be reduced to an algebraic question, the classification
of division rings. Classification of projective planes, however, seems to be a very
difficult problem. Search for finite projective planes is a combinatorial problem,
and one might expect a classification for non-isomorphic finite projective planes.
Nevertheless, we do not even know how many points a finite projective plane can
have in general.

The inverse of a collineation and the composition of collineations (if defined) are
collineations as well. Thus, collineations that map a projective space to itself form
a group with respect to composition. This group is called the collineation group
of the space. The collineation group contains all the symmetries of the projective
space. The description of the collineation group of a given projective space is also a
fundamental problem of projective geometry. This problem is solved for desaguesian
spaces. For individual non-desarguesian planes the description of collineations can
be a difficult problem.

4.4.2. Exercise. Describe the collineation group of Moulton’s plane.
When we want to prove that a bijection between two projective spaces is a

collineation it is convenient to have a simply verifiable characterization of collinea-
tions. We give one in the following proposition.

4.4.3. Proposition. If a bijection φ:X → Y between two n-dimensional pro-
jective spaces has the property that for any three collinear points A, B and C in X
the points φ(A), φ(B) and φ(C) are collinear in Y , then φ is a collineation.

Proof. By our assumption, if e is a straight line in X , then φ(e) is contained
in a straight line f in Y . Let us show first that φ(e) = f . Suppose to the contrary,
that f \ φ(e) �= ∅. Then since φ is a bijection, we can find a point P1 /∈ e such
that φ(P1) ∈ f . The plane e+ {P1} is the union of straight lines of the form P1Q,
where Q runs over e. Each of these straight lines are mapped into the straihgt line
{φ(P1)} + {φ(Q)} = f , so φ({P1} + e) ⊂ f . Let us choose points P2, P3, . . . , Pn−1

in X in such a way that
• Pi /∈ e+ {P1} + · · ·+ {Pi−1};
• dim(e+ {P1} + · · ·+ {Pi}) = i+ 1.

Using induction on i we can show that φ(e+ {P1}+ · · ·+ {Pi}) ⊂ f + {φ(P2)}+
· · ·+{φ(Pi−1)}. For i = n−1 we get then that φ(X) is contained in the set spanned
by f and the points φ(P2), . . . , φ(Pn−1). However, the latter space has dimension
≤ (n − 1), so it can not be the whole space Y . This contradicts the assumption
that φ is onto.

Now let us define on Y another projective space structure calling a subset of Y
an i-dimensional subspace if and only if it is the image of an i-dimensional subspace
of X under φ. As we have seen, straight lines are the same in the original structure
and in the one just defined, hence, according to one of our previous propositions,
the two subspace structures on Y are the same. This conclusion is clearly equivalent
to the statement that φ is a collineation. �
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We know that a subspace of a projective space inherits a projective space struc-
ture from the envelopping space. The following proposition says that any two
subspaces of the same dimension are isomorphic.

4.4.4. Proposition. Let W1 and W2 be two k-dimensional subspaces of a pro-
jective space. Then W1 and W2 are isomorphic k-dimensional projective spaces.

We shall construct a collineation between W1 and W2 explicitly. For the con-
struction, we need some lemmas.

4.4.5. Lemma. A projective space can not be covered by two proper subspaces.

Proof. Let V1 and V2 be the two subspaces. If one of them contains the other,
then they have obviously no chance to cover the whole space. If none of them lies
inside the other, then we can choose points P1 ∈ V1 \ V2 and P2 ∈ V2 \ V1. Since
every straight line has at least 3 points, we can find a point Q on the straight line
P1P2 which is different from both P1 and P2. This point Q is neither in V1 nor in
V2. �

4.4.6. Lemma. Let W1 and W2 be two k-dimensional subspaces of a projective
space. Then there exists a subspace V with the following properties
• W1 ∩ V = W2 ∩ V = ∅;
• W1 + V = W2 + V = W1 +W2.

Proof. We define a sequence of subspaces V−1, V0, . . . . Let V−1 = ∅. Assume
that Vk ⊂ W1 + W2 has already been defined in such a way that W1 ∩ Vk =
W2 ∩ Vk = ∅, dimVk = k. If Vk + W1 = W1 + W2, then Vk is a good choice for
V , since V + W2 = W1 + W2 holds because of dim(V + W1) = dim(V + W2).
If V + W1 and V + W2 are proper subspaces in W1 + W2, then we can choose a
point Q ∈ W1 +W2 which is in neither of them and define Vk+1 as Vk + {Q}. By
finite dimensionality of the space, this procedure must stop at some point yielding
a suitable V . �

Proof of Proposition 4.4.4. Let V be the subspace given in the Lemma.
If dim(W1 ∩W2) = l, then dim(W1 + W2) = 2k − l, and dimV = k − l − 1. Let
Z ⊂ W1 be an m-dimensional subspace. Z and V span a k − l + m-dimensional
subspace in W1 + W2. The intersection of this subspace with W2 is also an m-
dimensional subspace. The correspondence Z ↔ (Z+V )∩W2 is a bijection between
m-dimensional subspaces of W1 and W2. In particular, it establishes a one to
one correspondence between the points of W1 and W2. This correspondence is a
collineation. �

4.4.7. Corollary. In a finite projective space, any two k-dimensional sub-
spaces have the same number of points, and the same number of i-dimensional
subspaces.

Suppose that straight lines in a finite projective space have q+ 1 points. In this
case q is called the order of the plane. Let us determine how many i-dimensional
subspaces there are in a k-dimensional subspace. Denote this number by αk

i . Let
W be a k-dimensional subspace, H a k− 1-dimensional subspace in it, P ∈ W \H.
Consider the mapping φ:W \{P} → H defined by φ(Q) = PQ∩H. φ is a mapping
onto H, since points of H are left fixed by φ. If Q ∈ H, then the preimage of Q
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contains the points of the straight line PQ other than P , consequently, #φ−1(Q) =
q. This yields the recursion formula

α1
0 = q + 1

αk
0 = #W = q#H + 1 = qαk−1

0 + 1,

from which

αk
0 = qk + qk−1 + · · · + q + 1 =

qk+1 − 1
q − 1

.

It is also clear that an i-dimensional subspace in W that goes through P cuts H in
an i − 1-dimensional subspace, and this correspondence gives a bijection between
i-dimensional subspaces in W that go through P and i− 1-dimensional subspaces
in H. Thus, there are αk−1

i−1 i-dimensional subspaces through a given point in a
k-dimensional subspace. For there are αk

0 points in a k-dimensional subspace, and
αi

0 points in an i-dimensional subspace, counting in two different way the number
of pairs (P, V ) such that P is a point in V and V is an i-dimensional subspace in
W , we get

αk
0α

k−1
i−1 = αi

0α
k
i .

Rearranging,

αk
i = αk−1

i−1

αk
0

αi
0

= αk−1
i−1

qk+1 − 1
qi+1 − 1

.

By a repeated application of this recursion formula, we obtain the following theo-
rem.

4.4.8. Theorem. The number of i-dimensional subspaces in a k-dimensional
finite projective space of order q is equal to

αk
i =

(qk+1 − 1)(qk − 1) . . . (qk−i+1 − 1)
(qi+1 − 1)(qi − 1) . . . (q − 1)

.

4.4.9. Remark. Let us introduce the notation (n)q = qn−1 + · · · + q + 1. (n)q

is a polynomial the value of which at q = 1 is n. Thus, the value of the function

(

n

k

)

q

=
(n)q(n− 1)q . . . (n− i+ 1)q

(i)q(i− 1)q . . . (1)q

is the usual binomial coefficient
(

n
k

)

for q = 1. This way,
(

n
k

)

q
is a generalization of

the ordinary binomial coefficient. Most of the basic theorems on ordinary binomial
coefficients have an extension to generalized binomial coefficients. For example, the
”q-analogue” of the standard binomial theorem is the following.

4.4.10. Generalized Binomial Theorem. If X and Y are two elements in
an algebra over the real numbers (e.g. two matrices) such that Y X = qXY , then

(X + Y )n =
n

∑

i=0

(

n

i

)

q

Xn−iY i.
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As a consequence,
(

n
i

)

q
is a polynomial of q with positive integer coefficients.

Generalized binomial coefficients are relevant to our topic through the equation

αk
i =

(

k + 1
i+ 1

)

q

.

Observe that the identity
(

n
i

)

q
=

(

n
n−k

)

q
expresses the fact concordant with the

duality principle, that the number of i- and n− i− 1-dimensional subspaces in an
n-dimensional projective space is the same.

The following theorem has many applications.

4.4.11. Theorem. Let X and X’ be two n ≥ 3-dimensional projective spaces,
H ⊂ X and H ′ ⊂ X ′ be hyperplanes, φ:H → H ′ a collineation, A,B ∈ X \H and
A′, B′ ∈ X ′ \ H ′ are different points, such that φ(AB ∩ H) = A′B′ ∩ H ′. Then
there exists a unique collineation φ̃:X → X ′ such that the restriction of φ̃ to H is
φ, φ̃(A) = A′ and φ̃(B) = B′.

Proof. Let P ∈ X be a point not lying on the straight line AB. Set M = AB∩
H, PA = AP ∩H, PB = BP ∩H, M ′ = φ(M), P ′

A = φ(PA) and P ′
B = φ(PB). The

points M , PA and PB lie on the intersection of the plane ABP and the hyperplane
H, hence they are collinear, and so are the points M ′, P ′

A and P ′
B . This implies

that the points A′, B′, P ′
A and P ′

B are coplanar, so we may take the intersection
point P ′ of the straight lines A′P ′

A and B′P ′
B . It is clear that if φ̃ has the required

properties, it has to map P to P ′. The assignment φ̃:P �→ P ′ is a bijection between
X \AB and X ′ \A′B′.

Claim. The φ̃-image of a straight line e is a straight line.

Assume first that e does not intersect AB. The planes {A} + e and {B} + e
intersect H at the straight lines eA and eB not passing through M . These straight
lines are mapped by the collineation φ onto straight lines e′A and e′B not passing
through M ′. The planes {A′} + e′A and {B′} + e′B are different and intersect one
another in a line, and this line is the image of e.

Now suppose that e intersects the straight line AB. We may assume that A /∈ e.
Let us choose a point C ∈ X \ H which does not lie in the plane spanned by A
and e. If P ∈ e \ AB, then the points C, P and PC = PC ∩H are collinear and
contained in a straight line not intersecting the line AB. Thus, by the first case, the
images of these points are also collinear. This means, that we can use the couples
A, A′ and C, C′ = φ̃(C) instead of A, A′ and B, B′ to construct the image points
of e. For e does not meet AC, the first case yields the second.

To extend φ̃ to the straight line AB we prove the following.

Claim. Let P be an arbitrary point on AB. If two straight lines e and f cross
AB at P , then φ̃-image of these straight lines meet at the same point of A′B′.

Since e and f intersect each other, they are coplanar. Choose further points
E1 �= E2 and F1 �= F2 on e and f , different from P . The straight lines E1F1

and E2F2 are coplanar and intersect each other at a point R not lying on AB.
The images φ̃(E1E2), and φ̃(F1F2) meet at φ̃(R), hence they are coplanar. The
plane spanned by them contains φ̃(e) and φ̃(f) as well, therefore these straight lines
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intersect each other. Since e{P} and f{P} are disjoint and φ̃ is a bijection between
X \AB and X ′ \A′B′, the intersection point of φ̃(e) and φ̃(f) must be on A′B′.

To finish the proof, we define φ̃(P ) for P ∈ AB as the intersection point of
φ̃(e) ∩ A′B′, where e �= AB is an arbitrary straight line through P in X . φ̃ is
obviously a collineation and the only one with the prescribed properties. �

4.4.12. Corollary. Let X and X ′ be two n ≥ 3-dimensional projective spaces,
and assume that a 2-dimensional subspace W of X is isomorhic to a 2-dimensional
subspace W ′ of X ′. Then X and X ′ are isomorphic.

Proof. Include W and W ′ into a sequence of subspaces W = W2 ⊂ W3 ⊂ · · · ⊂
Wn = X W ′ = W ′

2 ⊂ W ′
3 ⊂ · · · ⊂ W ′

n = X ′ such that dimWi = dimW ′
i = i and

extend a collineation between W and W ′ step by step, from Wk to Wk+1. �

4.4.13. Corollary. Let X be an n ≥ 3-dimensional projective space, H ⊂ X a
hyperplane, O ∈ X an arbitrary point, A and A′ are points not belonging to H such
that O, A and A′ are collinear. Then there exists a unique collineation φ̃:X → X
with the following properties
• φ̃(P ) = P for every P ∈ H;
• φ̃(e) = e for every straight line e through O;
• φ̃(A) = A′.

Proof. If O /∈ H, then we can apply the theorem for X = X ′, O = B = B′ and
φ = idH . The second property of the extension φ̃ is given by the fact that every
straight line through O contains two fixed point of φ̃, the points O and e ∩H.

If O ∈ H, the let us choose a point B /∈ OA∪H and define B′ as the intersection
point of OB and the straight line through A′ and AB ∩H. Applying the theorem
with X = X ′, H = H ′ and φ = idH we get φ̃. To check that the second property
holds, consider an arbitrary straight line e through O. Choose a point C on e
not lying on the straight line AB. The triangle ABC and its image A′B′C′ are
in perspective with respect to a line, thus, by Desargues’ Theorem, they are in
perspective from a point. This point must be the intersection point of AA′ and
BB′, that is O. Consequently, C, C′ and O are collinear, and the straight line
OC = e is mapped to the straight line OC′ = e. �

Why can we not extend a collineation between strtaight lines to planes containing
the lines? A straight line, that is a 1-dimensional projective space is nothing else
but a set with no structure on it. Any bijection between two straight lines is a
collineation. Obviously, there is no hope that we can extend any permutation of
the points of a straight line to a collineation of the plane. The reason is the following.
Although a straight line in itself has no structure, a straight line embedded into a
plane is given a structure by the way it is embedded. For example, if a straight
line lies in a desarguesian plane, then, as we shall see in the next chapter, after
fixing three points on the line, the line is induced on a division ring structure. If a
bijection between two lines in a desarguesian plane has no respect to this algebraic
structure, it does not extend to a collineation. Before we make the division ring
structure on a straight line clear, we can try to extend the identical transformation
of a straight line to a non-trivial collineation.

4.4.14. Definition. Let φ be a collineation of a plane. If each point of a
straight line is fixed by φ, then it is called an axis of the collineation. If all the
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straight lines through a point are fixed (mapped to itself) by φ, then the point is
called the center of the collineation. A collineation which has both axis and center
is called a central axial collineation.

4.4.15. Existence of Central Axial Collineations on a Desarguesian
Plane. Let e be an arbitrary straight line in a desarguesian plane X, O be an
arbitrary point, P and P ′ two different points not lying on e, such that O, P and
P ′ are collinear. Then there exists a unique central axial collineation φ that has e
as axis, O as center and maps P to P ′.

Proof. Assume Q is not on the straight line OP . We can construct φ(Q) = Q′

in the following way. The intersection point M = e ∩ PQ is a fixed point of φ, so
the point P ′Q′M must be collinear. On the other hand, the straight line OQ is
mapped to itself, so Q must lie on it. From this we get Q′ = P ′M ∩ OQ. This
way, we can define φ outside the straight line OP . If we choose a further point R,
which is neither on OP , nor on OQ, then we can use both the pair PP ′ and QQ′

to construct φ(R) = R′. An application of Desargues Theorem to the triangles
PQR and P ′Q′R′ yields that both constructions will result in the same point. The
pair QQ′ can also be used to construct the images of points lying on the straight
line OP . This way, we can extend φ to the whole plane and we can also prove
that replacing the pair PP ′ by any pair Sφ(S) the mapping φ:X → X constructed
starting from Sφ(S) is the same we have just obtained.
φ is a bijection, let us show that it is a collineation. Straight lines through O

and e are fixed by the construction. Assume now, that S �= O is an arbitrary point
not in e, and consider a straight line f through S. Set S′ = φ(S), M = e∩f and let
T ∈ f . Since we can use the pair SS′ to construct the image of T , φ(T ) = S′M∩OT .
Hence, the image of f is the straight line S′M . Varying S and f we get that every
straight line is mapped to a straight line. �

4.4.16. Corollary. Let e be a straight line on a desarguesian plane, A �= B
and A′ �= B′ points outside e such that AB ∩ e = A′B′ ∩ e. Then there exists a
unique central axial collineation that has e as axis and map A to A′ and B to B′.

I. f AB and A′B′ are not collinear, choose for O the intersection point AA′∩BB′.
The central axial collineation with axis e and center O that takes A to A′ will be
the one we are looking for.

If AB and A′B′ lie on the same line, then choose a point C not on this line
and not on e. Construct C′ in such a way that the triangles ABC and A′B′C′

be in perspective with respect to the straight line e. Denote by O the point these
triangles are in perspective from. Obviously, the central axial collineation with axis
e, center O, that maps A to A′ is good for us and it is the only one with the required
properties. �
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Lecture Notes by Balázs Csikós

5. DESARGUESIAN PROJECTIVE SPACES

One of the fundamental problems of the axiomatic foundations of projective
geometry is the description of all possible models of the system of incidence axioms
of the n-dimensional projective space. This problem is solved for n ≥ 3 and partially
solved for n = 2 by the following theorem to the proof of which we devote the present
chapter.

5.0.1. Theorem. Every desarguesian projective space (X,Si) is isomorphic to
the projective space FPn over a division ring F.

The theorem can be broken into two theorems depending on the dimension of
the space.

5.0.2. Theorem. Every desarguesian projective plane P is isomorphic to a
projective plane FP 2 over some division ring F.

If the dimension of the space is at least 3, we may omit the assumption that
Desargues’ Theorem is valid, since it can be proved from the incidence axioms
(Theorem ...), thus we obtain

5.0.3. Theorem. Every projective space of dimension ≥ 3 is isomorphic to the
projective space FPn over a division ring F.

It is enough to prove Theorem 5.0.2. Indeed, if (X,Si) is an n ≥ 3-dimensional
desarguesian projective space, then any plane P ∈ S2 in it is desarguesian as well.
If Theorem 5.0.2. holds, then P is isomorphic to the projective plane FP 2 over
some division ring F. But FP 2 is isomorphic also to any plane in the projective
space FPn, and hence, by Corollary ..., X and FPn are isomorphic.

We split the proof of Theorem 5.0.2. into two steps. First we construct a suitable
division ring F, then we construct a collineation between P and FP 2.

5.1. Construction of the division ring F.
Let e be a line, and fix two different points O and I on e. We define an operation

+ on e \ {I} in the following way. (The definition is motivated by Exercise 2-3.)
If X, Y ∈ e \ {I} are arbitrary points, then X + Y is constructed according to the
following instructions.
• Choose two arbitrary points A �= B outside e such that X = AB ∩ e;
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Construct the points
• C = AI ∩BO;
• D = CY ∩BI;
• X + Y = AD ∩ e.

5.1.1. Lemma. The above construction of X + Y is correct, i.e.,
• whenever a point is defined as the intersection of two lines, the lines are different;
• X + Y �= I;
• the position of X + Y does not depend on the choice of A and B.

Proof. The first two parts of the Lemma are obvious. Let us prove indepen-
dence on the choice of A and B. Choose two different couples A �= B and Ã �= B̃
outside e, such that AB ∩ e = ÃB̃ ∩ e = X and construct X + Y with the help of
both pairs, that is, set
• C = AI ∩BO, C̃ = ÃI ∩ B̃O;
• D = CY ∩BI, D̃ = C̃Y ∩ B̃I;
• X + Y = AD ∩ e, X+̃Y = ÃD̃ ∩ e.

By Corollary ..., we can find a central axial collineation Φ that has e for its
axis and maps A to Ã and B to B̃. Then obviously, Φ(C) = C̃, Φ(D) = D̃ and
Φ(X+Y ) = X+̃Y . However, Φ leaves points of e fixed, thus X+Y = Φ(X+Y ) =
X+̃Y as it was to be proved. �

5.1.2. Lemma. The set e \ {I} together with the operation + is a commutative
group, which we denote by FOI .

Proof. Let us show first that the addition is associative.
Choose three pointsX, Y, Z ∈ e\{I} and constructX+Y with the help of A �= B,

A,B /∈ e, X ∈ AB, i.e., set C = AI ∩ BO, D = CY ∩ BI and X + Y = AD ∩ e.
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To construct (X + Y ) + Z, we can use the auxiliary points A and D in the role of
”B”: E = AI ∩DO, F = EZ ∩DI, (X + Y ) + Z = AF ∩ e.

If we construct Y + Z with auxiliary points C and D in the role of A and B
respectively, then we see that Y + Z = CF ∩ e. Constructing now X + (Y + Z)
with the help of A and B, we get X + (Y + Z) = AF ∩ e = (X + Y ) + Z.

Next we show that O + X = X for any X ∈ e \ {I}. Choose A �= B not in e,
such that O = AB ∩ e. Then C = AI ∩ BO = A, D = CX ∩ BI = AX ∩ BI,
O +X = AD ∩ e = X .

If X ∈ e\ {I} is an arbitrary point, then we can construct a point −X such that
X + (−X) = O in the following way. Choose two different points A,B not in e
such that AB ∩ e = X . Set C = AI ∩ BO, D = AO ∩ BI, −X = CD ∩ e. Then
X + (−X) = O holds obviously.

Finally, let us prove that + is a commutative operation.
Let us construct the sum X + Y of two points with the auxiliary points A,B

as usual, i.e., set C = AI ∩ BO, D = CY ∩ BI and X + Y = AD ∩ e. To
construct Y + X we use the auxiliary points Ã = D, B̃ = C. According to the
general procedure, Y + X is obtained by setting C̃ = ÃI ∩ B̃O = DI ∩ CO = B,
D̃ = C̃X ∩ B̃I = BX ∩ CI = A and Y +X = ÃD̃ ∩ e = DA ∩ e = X + Y . �
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5.1.3. Lemma. Let O �= I and O′ �= I ′ be arbitrary points on the plane, Φ be a
collineation such that Φ(O) = O′, Φ(I) = I ′. Then the restriction of Φ onto FOI

is a group isomorphism between the commutative groups FOI and FO′I′

Proof. Obvious. �
5.1.4. Definition. Let e �= f be two different coplanar straight lines, C /∈

e ∪ f be a point in their planes. Then a perspective transformation or simply
perspectivity from e to f with center C is a mapping φ : e → f , defined by the
equality φ(P ) = CP ∩ f .

5.1.5. Lemma. If a perspectivity φ : e→ f maps the points O, I ∈ e to O′, I ′ ∈ f
respectively, then φ is a group isomorphism between FOI and FO′I′ .

Proof. The statement follows from Lemma 5.1.3 if we show that every per-
spectivity extends to a collineation of the plane. Consider the perspectivity φ and
denote the center of it by C. Let M be the intersection point of e and f , A ∈ e
be a point different from M , and set A′ = φ(A). By theorem ..., there exists a
central axial collineation Φ of the plane with center C and axis CM such that
Phi(A) = A′. We claim that the restriction of Φ onto e is φ. Since e = AM ,
we have Φ(e) = Φ(AM) = A′M = f . If B ∈ e is an arbitrary point, then Φ(B)
must lie somewhere on the line CB, since C is the center of the central axial
collineation Φ, on the other hand we also have Φ(B) ∈ f , for Φ(e) = f . Therefore,
Φ(B) = CB ∩ f = φ(B). �

5.1.6. Lemma. Let f be a straight line intersecting e at I, A,C be points not
on e∪f such that C ∈ AI, let φ : e→ f be a perspectivity with center C, ψ : f → e
be a perspectivity with center A. Then

ψ ◦ φ(X) = X + Y for all X ∈ FOI ,

where Y = ψ ◦ φ(O).

Proof. The statement is a rephrasing of the definition of X + Y . �
Our next goal is to equip the commutative groups FOI constructed above with

a multiplicative structure. For this we have to fix a third point on the line, which
will play the role of the multiplicative unit.

Let O,U, I be three different points on a straight line e, X, Y ∈ e \ {I} be two
arbitrary points. We define the point X ∗Y ∈ e\{I} by the following construction:
• choose two points A,B /∈ e such that X ∈ AB;

Set
• D = OA ∩ UB;
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• C = DY ∩BI;
• X ∗ Y = AC ∩ e.

5.1.7. Lemma. The above definition of X ∗ Y is correct, i.e.,
• whenever a point is defined as the intersection of two lines, the lines are different;
• X ∗ Y �= I;
• the position of X ∗ Y does not depend on the choice of A and B.

Proof. The proof of this lemma is completely analogous to that of Lemma
5.1.1. �

Let us denote by FOUI the set e \ I together with the operations + and ∗ given
by the points O,U, I.

5.1.8. Lemma. FOUI is a division ring.

Proof.
a) We prove first that ∗ is associative. Let X, Y, Z ∈ e \ {I} be arbitrary points.

Let us construct X ∗Y with the help of the points A,B according to the definition:
D = OA∩UB, C = DY ∩BI, X ∗Y = AC ∩ e. To construct (X ∗Y ) ∗Z let us use
the auxiliary points Ã = A and B̃ = C. Then we take the points D̃ = OÃ ∩ UB̃ =
OA∩UC, C̃ = D̃Z∩B̃I, (X ∗Y )∗Z = ÃC̃∩e. Let us construct now Y ∗Z with the
auxiliary points A′ = D and B′ = B̃ = C. Then D′ = OA′∩UB′ = OA∩UC = D̃,
C′ = D′Z ∩ B′I = D̃Z ∩ B̃I = C̃, Y ∗ Z = A′C′ ∩ e = DC̃ ∩ e. Finally, let us
construct X ∗ (Y ∗ Z) with the help of AB. The ”D”-point of the construction is
D, the ”C”-point of the construction is C̃ = C′, thus

X ∗ (Y ∗ Z) = AC′ ∩ e = (X ∗ Y ) ∗ Z. �

b) Now we show that ∗ is distributive with respect to +, i.e.,

X∗(Y +Z) = X∗Y +X∗Z and (Y +Z)∗X = Y ∗X+Z∗X for any X, Y, Z ∈ e\{I}

It is obvious from the definition of the multiplication that O ∗ Y = Y ∗ O = O
for any Y , thus distributivity holds if X = O.

Let us fix the point X �= O and denote by LX and RX the left and right
multiplication with X

LX(Y ) = X ∗ Y RX(Y ) = Y ∗X.
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Both LX and RX can be represented as compositions of two perspectivities.
Indeed, assume that we construct the product X ∗ Y for any Y with the help

of the same pair of points A,B. Let C be the intersection of BI and AU . Now if
φ : e→ AO is the perspectivity with center C and ψ : AO → e is the perspectivity
with center B, then the composition ψ ◦φ : e→ e takes Y to X ∗ Y , hence it is the
left multiplication LX by X .

As for the right multiplication, choose two different points C and D outside e
such that CD ∩ e = X and consider the point A = DO ∩ CU . If φ : e → CI is
the perspectivity with center A and ψ : CI → e is the perspectivity with center
D, then the composition ψ ◦ φ : e → e takes Y ∈ e \ {I} to Y ∗X = RX(Y ), thus
ψ ◦ φ = RX

Applying Lemma 5.1.5, we obtain that RX and LX are isomorphisms of the
commutative group FOI into itself. In particular,

X ∗ (Y + Z) = LX(Y + Z) = LX(Y ) + LX(Z) = X ∗ Y +X ∗ Z

and
(Y + Z) ∗X = RX(Y + Z) = RX(Y ) +RX(Z) = Y ∗X + Z ∗X

for any Y, Z ∈ FOI .
FOUI contains a multiplicative unit element, since U ∗X = X ∗U = X for every

X . (This identity can be derived from the definition of ∗.)
Finally, every X �= O has a right and a left inverse. Indeed, X �= O implies

that LX and RX are compositions of perspectivities, therefore invertible transfor-
mations. If we set X−1

L = R−1
X (U) and X−1

R = L−1
X (U), then obviously

X−1
L ∗X = U and X ∗X−1

R = U.
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The left and right inverse of X must coincide, since

X−1
L = X−1

L ∗ U = X−1
L ∗ (X ∗X−1

R ) = (X−1
L ∗X) ∗X−1

R = U ∗X−1
R = X−1

R .

We conclude that X has an inverse and this finishes the proof of the Lemma. �

5.1.9. Lemma. Let f be a straight line intersecting e at O, B,C be points not
in e∪ f such that C ∈ BI, let φ : e→ f be a perspectivity with center B, ψ : f → e
be a perspectivity with center C. Then

ψ ◦ φ(X) = X ∗M for all X ∈ FOUI ,

where M = ψ ◦ φ(U)

Proof. The statement is a rephrasing of the definition of X ∗M . �

5.2. Construction of the collineation between P and FP 2.
We know that for a projective plane P (V ) associated to a linear space over a

division ring F, an isomorphism between P (V ) and FP 2 is established by a ho-
mogeneous coordinate system and homogeneous coordinate systems are given by 4
points in general position. This motivates our constructions below.

Let P be a desarguesian plane and choose four points O, Ix, Iy and U in general
position. Let I be the point OU ∩ IxIy and F be the division ring FOUI . Elements
of F are points of the straight line OU different from I.

5.2.1. Lemma. Let f be an arbitrary straight line through O different from the
line OIy. For X ∈ F, let us construct the point Y ∈ F as follows. Take P = XIy∩f
and set Y = ZIx∩OU . Then the quotient X−1 ∗Y ∈ F is independent of the choice
of X.

Proof. If f �= OIx, then the mapping X 	→ Y is the composition of two
perspectivities satisfying the conditions of Lemma 5.1.9. Thus there exists M ∈ F,
independent of X , such that Y = X ∗M , or equivalently, X−1 ∗ Y = M .

If f = OIx, then Y = O for every X , thus X−1 ∗ Y = O for every X . �

Now we define a bijection Φ : P → FP 2. Let P ∈ P.
• If P /∈ IxIy, then let Φ(P ) = (X : Y : U), where X = Iy ∩OU , Y = Ix ∩OU .
• If P ∈ IxIy and P �= Iy, then choose a point Q ∈ PO, Q �= P , take X =
IyQ∩OU , Y = IxQ∩OU and set Φ(P ) = (X : Y : O). This definition is correct
by Lemma 5.2.1.

• Finally, set Φ(Iy) = (O : U : O).
It is easy to check that Φ is indeed a bijection. The following Lemma compares

the coordinates of points on two lines intersecting IxIy at the same point.

5.2.2. Lemma. Let f and f0 be two straight lines intersecting the line IxIy at
the same point If , assume O ∈ f0. Let P ∈ f be an arbitrary point different from
If . Consider the points P0 = IyP ∩f0, Y = IxP ∩OU(∈ F), Y0 = IxP0 ∩OU(∈ F).
Then the difference Y − Y0 does not depend on the choice of P .

Proof. We can represent the mapping Y0 	→ Y as the composition of four
perspectivities

Y0
θ	−→P0

φ	−→P
ψ	−→IxP ∩ f θ−1	−→Y.
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Figure for Lemma 5.2.1 Figure for Lemma 10

The centers of θ : OU → f , φ : f → f0 and ψ : f0 → f are Ix, Iy and Ix
respectively. By Lemma 5.1.3, θ is a group isomorphism between FOI and FOIf

.
By Lemma 5.1.6, for the composition ψ ◦ φ : FOIf

→ FOIf
we have

ψ ◦ φ(P0) = P0 + ψ ◦ φ(O),

where + denotes here the addition in FOIf
. Combining these two results, we obtain

Y = Y0 + θ−1 ◦ ψ ◦ φ(O). �

The following Lemma finishes the proof of the theorem.

5.2.3. Lemma. The bijection Φ : P → FP 2 is a collineation.

Proof. According to Proposition ..., it is enough to prove that the image of a
straight line f in P is contained in a straight line of FP 2.
• If f = IxIy, then the last homogeneous coordinate of Φ(P ) for P ∈ f is O,

therefore Φ(f) is contained in the line spanned by the points (U : O : O) and
(O : U : O).

• If f passes through Iy and f �= IxIy, then

Φ(f) = {(X0 : Y : U) | X0 = f ∩OU, Y ∈ F} ∪ {(O : U : O)},
thus Φ(f) is contained in the straight line spanned by (X0 : O : U) and (O : U :
O).

• If f does not go through Iy, then consider the point If = f ∩ IxIy and the
straight line f0 = OIf . By Lemma 5.2.1, there exists a constant M ∈ F such
that

Φ(f0) = {(X : X ∗M : Z) | X,Z ∈ F}
By Lemma 5.2.2, we can find a constant N ∈ F such that

Φ(f) = {(X : X ∗M +N : U) | X ∈ F} ∩ {(X : X ∗M : O)},
therefore, Φ(f) is contained in the straight line spanned by (U : M : O) and
(O : N : U). �
We have completed the proof of the theorem.
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6. THE FUNDAMENTAL THEOREM
OF PROJECTIVE GEOMETRY

When we introduced projective spaces axiomatically, we did it with the hope that
the theorems we prove on the base of the incidence axioms will be applicable to a
large variety of spaces more general than the projective spaces associated to a linear
space over a division ring. However, according to the main theorem of the previous
unit, the axiomatic approach brings more generality only for dimension 2. Dealing
only with projective spaces over a division ring we loose only non-desarguesian
projective planes.

From this point on we shall consider the projective space FPn = P (Fn+1) over
the division ring F, where n ≥ 2. Let us denote by Coll(FPn) the group of all
collineations of the space. The Fundamental Theorem of Projective Geometry
gives a description of this group. Before formulating the theorem, we define two
subgroups of Coll(FPn) and prove their characteristic properties.

6.1. The Projective General Linear Group PGL(n+ 1,F).

6.1.1. Definition. Let V and W be linear spaces over F. We call a mapping
Φ : V →W linear if

Φ(α1v1 + α2v2) = α1Φ(v1) + α2Φ(v2)

for every v1,v2 ∈ V and α1, α2 ∈ F.

Composition of linear mappings is also linear. If a linear mapping is a bijection,
then its inverse is linear as well. In particular, invertible linear transformations of
a linear space V into itself form a group, the so-called general linear group of V ,
which we shall denote by GL(V ). We shall also use the notation GL(n,F) for the
group GL(Fn).

If we fix a basis v1, . . . ,vn of the linear space V , then the images of the ba-
sis vectors under a linear transformation Φ : V → V can be written as a linear
combination of the basis vectors

Φ(vi) = a1
i v1 + · · ·+ an

i vn.
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The n×n matrix A = (aj
i ) with aj

i at the i-th position of the j-th row is the matrix
of Φ with respect to the basis v1, . . . ,vn. The assignment Φ �→ A is a one-to-one
correspondence between linear transformations from V to V and n × n matrices.
If x ∈ V has coordinates (x1, . . . , xn) with respect to the basis v1, . . . ,vn, then we
have

Φ(x) = Φ(
n

∑

i=1

xivi) =
n

∑

i=1

xiΦ(vi) =
n

∑

i=1

⎛

⎝

n
∑

j=1

xjai
j

⎞

⎠vi.

Therefore, we obtain the coordinates of Φ(x) if we multiply the row vector of
coordinates of x with the matrix A from the right.

Now let Φ ∈ GL(n+ 1,F) be an invertible linear transformation. Then Φ maps
linear subspaces of Fn+1 onto linear subspaces of the same dimension. In particular,
Φ induces a mapping on the 1-dimensional subspaces, that is on the points of the
associated projective space. This mapping

[Φ] : FPn → FPn [Φ]([x]) = [Φ(x)]

is obviously a collineation.
It is straightforward that if Φ,Ψ ∈ GL(n+ 1,F), then

[Φ ◦ Ψ] = [Φ] ◦ [Ψ] and [Φ−1] = [Φ]−1.

Thus, collineations obtained from invertible linear transformations form a subgroup
of the group of all collineations. We denote this subgroup by PGL(n + 1,F) and
call it the projective general linear group.

The assignment Φ �→ [Φ] is a surjective group homomorphism. The kernel of
this homomorphism consists of linear transformations Φ ∈ GL(n+ 1,F) such that
[Φ(x)] = [x] for every 0 �= x ∈ Fn+1. Let us find more explicit description for these
transformations.

6.1.2. Definition. A vector x �= 0 in a linear space V is said to be an eigen-
vector of the linear mapping Φ : V → V if there exists a scalar λ ∈ F such
that Φ(x) = λx. In this case λ is said to be the eigenvalue corresponding to the
eigenvector x. The scalar λ is an eigenvalue of Φ if it corresponds to an eigenvector.

Observe that if x is an eigenvector of Φ with eigenvalue λ, then for any 0 �= µ ∈ F,
the vector µx is also an eigenvector with eigenvalue µλµ−1.

It is clear from the definition that [x] ∈ FPn is a fixed point of the collineation
[Φ] ∈ PGL(n+ 1,F) if and only if x is an eigenvector of Φ.

6.1.3. Lemma. If the vectors of a basis v1, . . . ,vn+1 ∈ Fn+1 and the sum q of
the basis vectors are eigenvectors of a linear transformation Φ, then the eigenvalues
corresponding to the basis vectors are equal.

Proof. If the eigenvalue corresponding to vi is λi and the eigenvalue corre-
sponding to q is λ, then

λv1 + · · ·+ λvn+1 = Φ(q) = Φ(v1) + · · ·+ Φ(vn+1) = λ1v1 + · · · + λn+1vn+1.

Since decomposition of vectors into the linear combination of basis vectors is unique,
this equation implies λ1 = · · · = λn+1 = λ. �

Let us denote by Z(F∗) the center of the multiplicative group of F, that is the
group of those non-zero elements that commute with all elements of F∗

Z(F∗) = {λ ∈ F
∗ | λµ = µλ ∀µ ∈ F

∗}
The division ring F is a field if and only if Z(F∗) = F∗
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6.1.4. Proposition. Two linear transformations Φ,Ψ ∈ GL(n + 1,F) induce
the same collineation [Φ] = [Ψ] if and only if Φ◦Ψ−1 is multiplication with a scalar
λ ∈ Z(F∗).

Proof. [Φ] = [Ψ] if and only if [Φ ◦ Ψ−1] fixes every point of the projective
space. This happens if and only if every non-zero vector is an eigenvector of the
linear transformation Λ = Φ ◦ Ψ−1.

Let us choose a basis v1, . . . ,vn+1 and apply Lemma 6.1.3. According to the
Lemma, there exists a scalar λ ∈ F

∗ such that Λ(vi) = λvi for each basis vector.
If µ ∈ F∗ is a non-zero scalar, then µv1,v2, . . . ,vn+1 is also a basis, to which we
can apply the Lemma. In this case it yields that the eigenvalue corresponding to
µv1, that is µλµ−1 is equal to the eigenvalue corresponding to v2, that is λ. The
equality µλµ−1 = λ for all µ ∈ F∗ means λ ∈ Z(F∗). Now choose a vector x, write
it as a linear combination of the basis vectors and apply to it Λ. What we get is

Λ(x) = Λ(x1v1 + x2v2 + · · ·+ xn+1vn+1)

= x1Λ(v1) + x2Λ(v2) + · · ·+ xn+1Λ(vn+1)
= x1λv1 + x2λv2 + · · ·+ xn+1λvn+1

= λx1v1 + λx2v2 + · · ·+ λxn+1vn+1 = λx,

as it was to be proved. �
6.1.5. Corollary. The projective general group PGL(n + 1,F) is the factor

group of the general linear group GL(n+ 1,F) with respect to the normal subgroup
consisting of multiplications by scalars in Z(F∗). Since the latter group is isomor-
phic to Z(F∗), we can write

PGL(n+ 1,F) ∼= GL(n+ 1,F)/Z(F∗).

6.1.6. Definition. Let X be a set, G be a group. We say that the group G
acts on X , if we are given a mapping

T : G×X → X

such that denoting T (g, x) shortly by gx we have
• 1x = x ∀x ∈ X , where 1 ∈ G is the unit element of the group;
• g1(g2x) = (g1g2)x ∀x ∈ X, g1, g2 ∈ G.

If a G-action on X is given by the mapping T , then we can assign to every group
element g ∈ G a transformation Tg : X → X by the rule Tg(x) = gx. The first
axiom of group actions is equivalent to the requirement that T1 is the is the identity
of X , the second axiom says that Tg1 ◦ Tg2 = Tg1g2 . From these two axioms we can
derive that Tg is a bijection (a permutation of X) and its inverse is Tg−1 . Thus, we
can think of a group action also as a group homomorphism from the group G to
the permutation group of X.

For example, the collineation group and the projective general linear group act
on the projective space, the general linear group acts on the linear space in an
obvious way. When a group acts on a set X its action defines an action on the
k-point subsets, or more generally, on the family of all subsets of X . The projective
general linear group acts also on straight lines, on k-dimensional subspaces. The
isometry group of the euclidean plane act on triangles, polygons, circles, ellipses,
etc.
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6.1.7. Definition. We say that a group action T : G ×X → X is transitive
if for any x, y ∈ X there exists g ∈ G such that gx = y. The action is said to be
simply transitive if the group element g with this property is unique for any pair
of points.

6.1.8. Theorem. The group PGL(n+1,F) acts transitively on ordered (n+2)-
tuples in general position.

Proof. Let A1, . . . , An+2 B1, . . . , Bn+2 be two ordered (n + 2)-tuples in gen-
eral position. By Proposition 2.5.4, we can choose representatives a1, . . . , an+1 for
A1, . . . , An+1 and b1, . . . ,bn+1 for B1, . . . , Bn+1 such that

[a1 + · · · + an+1] = An+2 and [b1 + · · · + bn+1] = Bn+2.

According to the assumption on general position, the vectors a1, . . . , an+1 are lin-
early independent, so they form a basis of the linear space Fn+1. Similarly, the
vectors b1, . . . ,bn+1 yield a basis of Fn+1 as well. Thus, there is (a unique) linear
transformation Φ ∈ GL(n+1,F) such that Φ takes ai to bi for 1 ≤ i ≤ n+1. Then
by linearity of Φ, we have

Φ(a1 + · · · + an+1) = b1 + · · ·+ bn+1,

hence the collineation [Φ] ∈ PGL(n+ 1,F) maps Ai to Bi for 1 ≤ i ≤ n+ 2. �
6.1.9. Corollary. If F is a field, then the group PGL(n + 1,F) acts simply

transitively on ordered (n+ 2)-tuples in general position.

Proof. If there were two different projective general linear transformations
[Φ] and [Ψ] that mapped Ai to Bi for i = 1, . . . , n + 2, then the transforma-
tion [Φ−1 ◦ Ψ] ∈ PGL(n + 1,F) would be different from identity and would fix
the points A1, . . . , An+2. Therefore it suffices to show that if the transformation
[Λ] ∈ PGL(n+ 1,F), with Λ ∈ GL(n+ 1,F) fixes n+ 2 points in general position,
say A1, . . . , An+2, then [Λ] is the identity. Choosing representatives a1, . . . , an+1

for A1, . . . , An+1 in such a way that the sum a1 + · · · + an+1 represents An+2 we
obtain a basis consisting of eigenvectors of Λ such that the sum of the basis vectors
is also an eigenvector of Λ. But then, by Lemma 6.1.3. above, Λ is a multiplication
with a scalar λ ∈ F∗ and therefore [Λ] is identical. �

6.2. Collineations induced by automorphisms of F.
Recall that an automorphism of a division ring (or field) F is a bijection φ : F → F

such that
• φ(0) = 0, φ(1) = 1;
• φ(x+ y) = φ(x) + φ(y) for all x, y ∈ F;
• φ(xy) = φ(x)φ(y) for all x, y ∈ F.

Automorphisms of F form a group with respect to composition. We shall denote
this group by Aut(F). If F is not commutative, the automorphism group contains
a non-trivial subgroup Aut0(F) consisting of conjugations, i.e. transformations of
the form φa(x) = a−1xa, where a ∈ F∗. Since φa = φb if and only if ab−1 ∈ Z(F∗),
this subgroup is isomorphic to the factor group F∗/Z(F∗).

Let φ be an automorpism of F. Consider the transformation φ̃ : F
n+1 → F

n+1

defined by
φ̃ : (x1, x2, . . . , xn+1) �→ (φ(x1), φ(x2), . . . , φ(xn+1)).
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φ̃ is not a linear transformation since instead of linearity it satisfies

φ̃(λx + µy) = φ(λ)φ̃(x) + φ(µ)φ̃(y),

nevertheless, it maps k-dimensional linear subspaces of Fn+1 onto k-dimensional
linear subspaces. In particular, it induces a collineation [φ̃] of FPn by the formula

[φ̃][x] = [φ̃(x)].

Since [φ̃ ◦ ψ] = [φ̃]◦ [ψ̃] and [φ̃]−1 = [˜φ−1], collineations that are induced from an

automorphism of F form a subgroup Ãut(F) of the collineation group Coll(FPn).
If an automorphism φ is different from the identity of F, then [φ̃] is different

from the identity of FPn, since if φ(x) �= x, then

[φ̃](x : 1 : 1 : · · · : 1) = (φ(x) : 1 : 1 : · · · : 1) �= (x : 1 : 1 : · · · : 1).

Thus, the group Ãut(F) is isomorphic to the group of automorphisms of F.
The following theorem gives a characterization of those collineations that are

induced from a field automorphism.

6.2.1. Theorem. Let e1, . . . , en+1 be the standard basis in Fn+1, where ei is
the 0−1 vector whose only non-zero coordinate is at the i-th position. Let Pi ∈ FPn

be the point represented by ei and let Q be the point represented by e1 + · · ·+ en+1.
Then a collineation Ψ is induced from a field automorphism if and only if Ψ fixes
the points P1, . . . , Pn+1 and Q.

Proof. Since a field automorphism fixes 0 and 1, every collineation in ˜Aut(F)
leaves the points Pi, i = 1, . . . , n+ 1 and Q fixed.

Assume now that Ψ is a collineation fixing the points Pi, i = 1, . . . , n + 1 and
Q. In this case, Ψ maps the line PiPn+1 into itself, thus we can find a bijection
φi : F → F such that

Ψ([λei + en+1]) = [φi(λ)ei + en+1] for i = 1, . . . , n.

6.2.2. Lemma. The bijections φi : F → F are in Aut(F).

Proof. By exercises 2-3 and 2-4, the mapping θ : F → PiPn+1 defined by
λ �→ [λei + en+1] is an isomorphism between the division ring F and the division
ring FPn+1QiPi

, where Qi = [ei + en+1]. (For the definition of the division ring
FPn+1QiPi

see section 5.1.) Ψ fixes Pi, Pn+1 and Qi. Qi is fixed since it is the
intersection point of the line PiPn+1 with the hyperplane spanned by the points
{Pj | 1 ≤ j ≤ n, i �= j} and Q. This implies that the restriction of Ψ onto the
line PiPn+1 gives an automorphis of FPn+1QiPi

. Therefore, φi = θ−1 ◦ Ψ ◦ θ is an
automorphism of F. �

Let us consider the hyperplanes

Hi
λ = {(x1 : x2 : · · · : xn+1) | xi = xn+1λ}

where i = 1, 2, . . . , n, λ ∈ F.
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Hi
λ is spanned by the points {Pj | 1 ≤ j ≤ n, i �= j} and P i

λ = [λei + en+1].
Since the points {Pj | 1 ≤ j ≤ n i �= j} are fixed by Ψ, while Ψ(P i

λ) = P i
φi(λ),

Ψ(Hi
λ) = Hi

φi(λ).

This allows us to determine the Ψ-image of a point with homogeneous coordinates
(λ1 : · · · : λn : 1). Indeed, since this point is the intersection of the hyperplanes
Hi

λi
, i = 1, . . . , n, we have

Ψ(λ1 : · · · : λn : 1) = Ψ
(∩n

i=1H
i
λi

)

= ∩n
i=1H

i
φi(λi)

= (φ1(λ1) : · · · : φn(λn) : 1)

6.2.3. Lemma. The automorphisms φ1, . . . , φn are equal.

Proof. Let λ ∈ F be an arbitrary scalar and consider the point (λ : · · · : λ : 1).
This point is on the line Pn+1Q. Since the points Pn+1 and Q are fixed by Ψ, the
image of (λ : · · · : λ : 1), that is (φ1(λ) : · · · : φn(λ) : 1) is also on the line Pn+1Q.
However, points of the line Pn+1Q are characterized by the property that their first
n homogeneous coordinates are equal. �

Let us denote the automorphism φ1 = · · · = φn simply by φ and show that
Ψ = [φ̃]. Let us take an arbitrary point (λ1 : · · · : λn+1) ∈ FPn. If λn+1 �= 0, then
we already know that

Ψ(λ1 : · · · : λn+1) = Ψ(λ−1
n+1λ1 : · · · : λ−1

n+1λn : 1)

= (φ(λ−1
n+1λ1) : · · · : φ(λ−1

n+1λn) : 1)

= (φ(λ1) : · · · : φ(λn+1)) = [φ̃](λ1 : · · · : λn+1).

If λn+1 = 0, then let us represent the point (λ1 : · · · : λn : 0) as the intersection
point of the line through Pn+1 and (λ1 : · · · : λn : 1) with the hyperplane spanned by
P1, . . . , Pn. This representation shows us that Ψ(λ1 : · · · : λn : 0) is the intersection
point of the straight line through Pn+1 and (φ(λ1) : · · · : φ(λn) : 1) with the
hyperplane spanned by P1, . . . , Pn, i.e.,

Ψ(λ1 : · · · : λn : 0) = (φ(λ1) : · · · : φ(λn) : 0). �

Now we are ready to formulate

6.3. The Fundamental Theorem of Projective Geometry.
• Any collineation of the projective space FPn can be obtained as the composition

of a projective general linear transformation and a collineation induced by an
automorphism of F.

• The intersection of the subgroups PGL(n+1,F) and Ãut(F) consists of collinea-
tions corresponding to conjugations in Aut0(F). In particular,

PGL(n+ 1,F) ∩ Ãut(F) ∼= Aut0(F) ∼= F
∗/Z(F∗).

• PGL(n+ 1,F) is a normal subgroup of Coll(FPn)

Proof.
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• Let Φ be an arbitrary collineation of FPn. Let e1, . . . , en+1 be the standard
basis of Fn+1, Pi = [ei], Q = [e1 + · · ·+ en+1]. Since the group PGL(n+ 1,F) acts
transitively on ordered (n+ 2)-tuples in general position, one can find a projective
general linear transformation Ψ0 such that Φ(Pi) = Ψ0(Pi) for i = 1, . . . , n + 1
and Φ(Q) = Ψ0(Q). But then the collineation Ψ1 = Ψ−1

0 ◦ Φ leaves the points

P1, . . . , Pn+1 and Q fixed, therefore Ψ1 ∈ Ãut(F). The decomposition Φ = Ψ0 ◦Ψ1

is what we wanted to achieve.
• If Λ ∈ GL(n+ 1,F) yields a collineation which is also in Ãut(F), then [Λ] fixes

the points P1, . . . , Pn+1 and Q. This means, that the basis vectors e1, . . . , en+1 and
their sum are eigenvectors of Λ. If λ is the common eigenvalue corresponding to
these vectors, then we have

[Λ](µ1 : · · · : µn+1) = (µ1λ : · · · : µn+1λ)

= (λ−1µ1λ : · · · : λ−1µn+1λ) = [φ̃λ](µ1 : · · · : µn+1),

where φλ is the conjugation with λ.
• Recall that a subgroup H of a group G is a normal subgroup if for any h ∈ H

and g ∈ G, the conjugate g−1hg is also in H.
Let Φ ∈ PGL(n+ 1,F), Ψ ∈ Coll(FPn) be arbitrary collineations. Let us write

Ψ as Ψ0 ◦ Ψ1, where Ψ0 ∈ PGL(n+ 1,F) and Ψ1 ∈ Ãut(F). Then we have

Ψ−1 ◦ Φ ◦ Ψ = Ψ−1
1 ◦ (Ψ−1

0 ◦ Φ ◦ Ψ0) ◦ Ψ1.

Since here (Ψ−1
0 ◦Φ◦Ψ0) is in the projective general linear group, it suffices to show

that the conjugation of a projective general linear transformation with a collineation
induced by an automorphism of F is a projective general linear transformation. This
follows from the analogous statement for transformations of Fn+1: If Λ is a linear
transformation of Fn+1, φ ∈ Aut(F), then φ̃−1 ◦ Λ ◦ φ̃ is a linear transformation.
Indeed,

φ̃−1 ◦ Λ ◦ φ̃(λa + µb) = φ̃−1 ◦ Λ(φ(λ)φ̃(a) + φ(µ)φ̃(b))

= φ̃−1(φ(λ)Λ(φ̃(a)) + φ(µ)Λ(φ̃(b)))

= φ−1(φ(λ))φ̃−1(Λ(φ̃(a))) + φ−1(φ(µ))φ̃−1(Λ(φ̃(b)))

= λφ̃−1(Λ(φ̃(a))) + µφ̃−1(Λ(φ̃(b))). �

Let us recall a definition from algebra.

6.3.1. Definition. Let H1 and H2 be two subgroups of a group G. We say that
G is the semidirect product of the subgroups H1 and H2 and write G = H1 �H2

or G = H2 �H1 if
• any g ∈ G can be written as the product of an element of H1 and an element of
H2;

• the intersection H1 ∩H2 contains only the unit element of G;
• H1 is a normal subgroup of G.

If the division ring F is a field, then F∗ = Z(F∗) and the Fundamental Theorem
of Projective Geometry gives the following
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6.3.2. Corollary. If F is a field, then

Coll(FPn) ∼= PGL(n+ 1,F) � Ãut(F).

When we apply the Fundamental Theorem we have to know the automorphism
group of F. Here are some examples.

If F = GF (pr) is the Galois field of order pr, then Aut(F) is a cyclic group of
order r. The generator of the automorphism group is the automorphism φ(x) = xp.

If F = Q is the field of rational numbers, then F has no non-trivial automorphism.
Indeed, if φ : Q → Q is a field automorphism, then using induction on n we can
show first that φ(n) = n for natural numbers. For initial values n = 0, 1 the
statement follows from the definition of a field automorphism, the induction step
comes from the identity φ(n+ 1) = φ(n) + φ(1) = φ(n) + 1.

If −n is a negative integer, then from

0 = φ(0) = φ(n+ (−n)) = φ(n) + φ(−n) = n+ φ(−n)

we can derive that φ(−n) = −n, thus φ fixes all integers.
If q is an arbitrary rational number, then it has the form q = m/n, where m

and n are integers. Applying φ to q we obtain φ(q) = φ(m)/φ(n) = m/n = q, from
which we conclude that φ is the identity.

6.3.3. Corollary. The collineation group of the projective space QPn over
the rational numbers is isomorphic to the group PGL(n+ 1,Q).

The most important field for (classical) geometry is the field F = R of real num-
bers. Let us prove that the field of real numbers has no non-trivial automorphisms.

If φ : R → R is a field automorphism, then we can show that φ(q) = q for all
rational numbers just as for the case F = Q.

The key observation is that positive real numbers can be characterized in terms
of multiplication. Namely, a real number is positive if and only if it is the square
of a non-zero number. This characterization shows that φ maps positive numbers
to positive numbers.
φ preserves ordering as well. Indeed, if a < b, then b − a is positive, therefore

φ(b− a) = φ(b) − φ(a) is positive,
If φ were not the identity, then we could find a real number a such that φ(a) �= a.

Assume for example that a < φ(a). Since the set of rational numbers is dense in R,
the interval (a, φ(a)) contains a rational number q. This leads to a contradiction
since a < q, but φ(a) > q = φ(q). The case a > φ(a) can be treated similarly.

6.3.4. Corollary. The collineation group of the real projective space RPn is
isomorphic to the group PGL(n+ 1,R).

The field F = C of complex numbers is less rigid. It has infinite (2ℵ0) automor-
phisms. These automorphisms fix the rational numbers but they can thoroughly
mix up other real numbers. The only non-trivial continuous automorphism of C is
the complex conjugation z �→ z̄.
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7. CROSS-RATIO PRESERVING
TRANSFORMATIONS BETWEEN LINES

From this point on we shall consider only projective spaces FPn over a field F.

7.1. Cross-ratio.

7.1.1. Definition. Let A,B,C,D be four different points on a straight line,
and let a,b, c,d be arbitrary representatives of these points. Since the points are
collinear, we can split c and d as the linear combination of a and b

c = γ1a + γ2b

d = δ1a + δ2b.

Then the number
(A,B,C,D) =

γ2

γ1
:
δ2
δ1

is called the cross-ratio of the points A,B,C,D.

7.1.2. Proposition. The cross-ratio depends only on the points A,B,C,D but
not on the choice of the representatives.

Proof. If we choose another system of representatives

a′ = xa, b′ = yb, c′ = zc, d′ = wd,

then we have
c′ =

z

x
γ1a′ +

z

y
γ2b′

d′ =
w

x
δ1a′ +

w

y
δ2b′.

If we compute the cross-ratio with the help of the new system of representatives,
we obtain

z
y
γ2

z
xγ1

:
w
y
δ2

w
x δ1

=
γ2

γ1
:
δ2
δ1
. �

We list some important properties of the cross-ratio.

7.1.3. Proposition.
(i) The cross-ratio depends on the order of A,B,C,D in the following way

(A,B,C,D) =
1

(B,A,C,D)
=

1
(A,B,D,C)

= 1 − (A,C,B,D).

(Iterating these transpositions, we can compute the cross-ratio of any permuta-
tion.)

(ii) If a and b are linearly independent vectors, and for x ∈ F we denote by Px the
point [a + xb], then

(Px, Py, Pz, Pw) =
x− z

z − y
:
x− w

w − y
.
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This formula follows at once from the decompositions

a + zb =
z − y

x− y
(a + xb) +

x− z

x− y
(a + yb),

a + wb =
w − y

x− y
(a + xb) +

x− w

x− y
(a + yb).

(iii) In particular,if F = R and we represent the projective space as the union of the
euclidean space and the hyperplane at infinity, b is a unit vector that represents
a point at infinity, then the correspondence x↔ Px = [a+xb] is a euclidean co-
ordinate system (sometimes called a ”ruler”) on the line. This coordinate system
gives the line an orientation and the difference x− y is just the signed distance
of Px and Py, which we denote by

−−−→
PyPx. Thus we obtain that if A,B,C,D are

four different points on a directed straight line in the Euclidean space, then

(A,B,C,D) =
−→
AC
−→
CB

−→
AD
−→
DB

.

(iv) If A,B,C are collinear points in the euclidean space, D is the point at infinity
of the line AB, then the cross-ratio (A,B,C,D) can also be expressed in terms
of distances as

(A,B,C,D) = −
−→
AC
−→
CB

.

(v) (A,B,C,D) < 0 if and only if A,B separates C,D on the projective line.
(vi) The cross-ratio of four different points is never equal to 0 or 1. If we are given

three different points A,B,C on a straight line e and a number x ∈ F\{0, 1}, then
there exists a unique point D ∈ e different from A,B,C such that (A,B,C,D) =
x.

Proof. The proof is left to the reader. �
It is not difficult to follow what happens with the cross-ratio when we apply a

collineation to the points A,B,C,D.

7.1.4. Proposition. Let A,B,C,D be four different points on a line in FPn.
• If Φ ∈ PGL(n+ 1,F), then

(Φ(A),Φ(B),Φ(C),Φ(D)) = (A,B,C,D).

• If Φ = [φ̃] is a collineation induced by the field automorphism φ, then

(Φ(A),Φ(B),Φ(C),Φ(D)) = φ((A,B,C,D)).

Proof. • Assume first that Φ = [Λ], where Λ is a linear transformation. Then
the points Φ(A),Φ(B),Φ(C),Φ(D) are represented by the vectors Λ(a),Λ(b),Λ(c),Λ(d)
respectively, where a, b, c, d are representatives of A,B,C,D respectively. Now if

c = γ1a + γ2b

d = δ1a + δ2b,
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then
Λ(c) = γ1Λ(a) + γ2Λ(b)

Λ(d) = δ1Λ(a) + δ2Λ(b),

therefore
(Φ(A),Φ(B),Φ(C),Φ(D)) =

γ2

γ1
:
δ2
δ1

= (A,B,C,D).

• If Φ = [φ̃] is a collineation induced by the field automorphism φ, then the points
Φ(A),Φ(B),Φ(C),Φ(D) are represented by the vectors φ̃(a), φ̃(b), φ̃(c), φ̃(d), for
which we have

φ̃(c) = φ(γ1)φ̃(a) + φ(γ2)φ̃(b)

φ̃(d) = φ(δ1)φ̃(a) + φ(δ2)φ̃(b),

thus

(Φ(A),Φ(B),Φ(C),Φ(D)) =
φ(γ2)
φ(γ1)

:
φ(δ2)
φ(δ1)

= φ((A,B,C,D)). �

7.1.5. Corollary. A collineation of the projective space FPn preserves cross-
ratio if and only if it is a projective general linear transformation.

7.2. Characterizations of cross-ratio preserving transformations be-
tween straight lines.

7.2.1. Theorem. Let φ : e→ f be a bijection between two straight lines. Then
the following three conditions on φ are equivalent:

(i) φ preserves cross-ratio;
(ii) φ extends to a projective general linear transformation of the whole space;
(iii) φ is the composition of a finite number of perspectivities. (For the definition of

perspectivity see 5.1.4.)

Proof. The implication (ii) =⇒ (i) has already been proved in 7.1.4.
To prove (iii) =⇒ (ii) it suffices to show that every perspectivity extends to

a projective general linear transformation. Consider the perspectivity ψ : e → f
with center O. Set M = e ∪ f and let P ∈ e be an arbitrary point different from
M , P ′ = ψ(P ). Choose representative vectors a,b, c for M,P,O respectively in
such a way that b + c represents P ′. The vectors a, b, c are linearly independent,
therefore they can be extended to a basis a,b, c, e1, . . . , es. Let L be the linear
transformation which maps b to b + c and fixes all the other vectors of this basis.

We claim that the collineation associated to L is an extension of ψ. Any point
Q ∈ e can be represented by a linear combination λa + µb. [L] maps such a point
Q to the point Q′ = [λa + µ(b + c)] = [(λa + µb) + µc]. It is clear that Q′ is on
the lines f = MP ′ and also on the line OP , thus, Q′ = ψ(Q).

Before proving the implication (i)=⇒(iii), let us formulate a corollary of the
implication (iii)=⇒(i).

7.2.2. Pappus’ Theorem. Perspectivities preserve cross-ratio.

It remains to show that (i)=⇒(iii). Let A,B,C be three different points on e,
A′, B′, C′ be their images. First we show that we can map A,B,C to A′, B′, C′

respectively by the composition of some perspectivities. We distinguish three cases.
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Case a: e and f are different and coplanar. In this case, e ∩ f = M is a point.
M can be equal to at most one of A,B,C and at most one of A′, B′, C′, thus
we may assume without loss of generality that A �= M �= A′. Let g be the line
through the intersection points A” = AB′ ∩ A′B and C” = AC′ ∩ A′C, and set
A” = g∩AA′. The perspectivity from e to g with center A′ takes the points A,B,C
to A”, B”, C” respectively, while the perspectivity from g to f with center A takes
the points A”, B”, C” to A′, B′, C′ respectively, so the composition of these two
perspectivities maps A,B,C to A′, B′, C′.

Case b: e = f . Choose a straight line g coplanar with e but different from it,
and an arbitrary perspectivity from e to g that takes A,B,C to A∗, B∗, C∗ respec-
tively. Applying Case a, we can construct two perspectivities, the composition of
which takes A∗, B∗, C∗ to A′, B′, C′ respectively, therefore, we can map A,B,C to
A′, B′, C′ with the help of three perspectivities.

Case c: e and f are skew. This case can be handled similarly to Case b. Choose
a point E in e and F in f and let g be the line EF . Suppose that an arbitrary
perspectivity takes A,B,C to A∗, B∗, C∗. Applying Case a, we can construct two
perspectivities, the composition of which takes A∗, B∗, C∗ to A′, B′, C′ respectively,
therefore, we can map A,B,C to A′, B′, C′ with the help of three perspectivities.

Denote by φ̃ the composition of perspectivities that takes A,B,C to A′, B′, C′.
We show that φ = φ̃. Since both φ and φ̃ preserve cross-ratio and they coincide on
the points A,B,C we need only the following proposition.

7.2.3. Proposition. If φ and φ̃ are arbitrary cross-ratio preserving trans-
formations between the lines e and f and they coincide at three different points
A,B,C ∈ e, then they are equal.

Proof. Let D ∈ e be an arbitrary point different from A,B and C. Then we
have

(φ(A),φ(B), φ(C), φ(D)) = (A,B,C,D)

= (φ̃(A), φ̃(B), φ̃(C), φ̃(D)) = (φ(A), φ(B), φ(C), φ̃(D)),

from which we derive by 7.1.3.(vi) that φ(D) = φ̃(D).

This finishes the proof of Theorem 7.2.1. �

Pappus theorem gives rise to the following definition

7.2.4. Definition. Let a, b, c, d be four different coplanar lines, passing through
a point O. Suppose that a straight not passing through P meets a, b, c, d at the
points A,B,C,D respectively. Then we define the cross ratio of the lines a, b, c, d
by

(a, b, c, d) = (A,B,C,D).

7.3. Cross-ratio preserving transformations between coplanar lines.

7.3.1. Theorem. Let e and f be two different coplanar straight lines, C = e∩f .
A cross-ratio preserving transformation φ : e → f is a perspectivity if and only if
φ(C) = C.

Proof. It is clear that if φ is a perspectivity, then φ(C) = C.
Suppose now that φ is a cross ratio preserving transformation with φ(C) = C.

Choose two points A and B in e different from C and define O as the intersection
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point of Aφ(A) and Bφ(B). Then φ coincides with the perspectivity from e to
f with center O at three different points (A,B,C), thus, by Proposition 7.2.3, φ
coincides with this perspectivity.

7.3.2. Definition. We say that four collinear points A,B,C,D form a har-
monic range if the cross-ratio (A,B,C,D) is equal to −1.

Remarks. Since the cross-ratio of four different points is never equal to 0 and 1,
there are no harmonic ranges in projective spaces over fields of characteristic 2.

Since cross-ratio depends on the order of points, not every permutation of a har-
monic range yields a harmonic range. A permutation of the harmonic range ABCD
is a harmonic range if and only if the permutation fixes the set {{A,B}, {C,D}}.

As an application of Pappus’ Theorem (7.2.2.), we prove the so called Harmonic
Construction Theorem, which gives a method to construct the fourth point of a
harmonic range from three points of it, using only a ruler.

7.3.3. Harmonic Construction Theorem. . Let XY ZW be four points in a
plane such that no three of them are collinear, A = XY ∩ZW , B = Y Z∩WX be the
intersection points of the opposite sides of the quadrangle XY ZW , C = AB ∩XZ,
D = AB∩Y W be the intersection points of the diagonals of the quadrangle XY ZW
with the line AB. Then
• C = D if and only if charF = 2;
• if char F �= 2, then ABCD are different and form a harmonic range.

Proof. Incidence axioms of the plane imply easily, that the points X, Y, Z,
W,A,B, C are all different and D may coincide only with C. In Chapter 5 we
turned the set AB \ {B} into a group FAB isomorphic to the additive group of F.
Constructing the sum C +D with the help of the auxiliary points XY ZW , we see
that C +D = A is the 0 element of the group. Hence, C = D happens if and only
if 1 + 1 = 0 in F.

Now suppose that char F �= 2. Denote by E the intersection point XZ ∩YW . A
perspectivity with center Y takes the points ABCD to XZCE respectively, so by
Pappus’ Theorem (7.2.2.)

(A,B,C,D) = (X,Z,C,E).

Projecting back (X,Z,C,E) into the line AB from center W , we obtain

(X,Z,C,E) = (B,A,C,D).

Applying 7.1.3.(i), we get

(A,B,C,D) = (B,A,C,D) =
1

(A,B,C,D)
,

from which (A,B,C,D)2 = 1 or equivalently (A,B,C,D) = ±1. The cross-ratio of
four different points never takes the values 0, 1, so the cross-ratio (A,B,C,D) must
be equal to −1. �

7.3.4. Steiner Axis Theorem. Let e and f be different coplanar lines, φ : e→
f a cross-ratio preserving transformation between them. Then the set of intersection
points

{Xφ(Y ) ∩ Y φ(X) | X, Y ∈ e, φ(Y ) �= X �= Y �= φ(X)}
is contained in a (unique) straight line.
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7.3.5. Definition. The straight line swept by the intersection points Xφ(Y )∩
Y φ(X) is called the Steiner axis of φ.

Proof. We prove the theorem first for perspectivities. Let φ : e → f be a
perspectivity with center O, N = e ∩ f , X �= Y ∈ e, X ′ = φ(X), Y ′ = φ(Y ),
Z = XY ′ ∩ Y X ′, g = NO. We prove, that Z is located on a straight line passing
through N , the position of which does not depend on X and Y . If X or Y coincides
with N , then Z = N is contained in any line through N , so it is enough to deal
with the case when X and Y are different from N . In that case Z �= N and
we may consider the line h = NZ and the point W = h ∩ OY . Applying the
Harmonic Construction Theorem (7.3.3.) to the quadrangle NX ′ZX , we obtain
that if char F = 2 then W = O and h = NO = g, and if char F �= 2, then

(e, f, g, h) = (Y, Y ′,W,O) = −1.

In both cases, h is uniquely determined by the lines e, f, g, so it does not depend
on X and Y . We conclude that h is the Steiner axis.

Suppose now that φ is not a perspectivity. Consider the points N = e ∩ f ,
K = φ−1(N), L = φ(N). K,L,N are different points by Theorem 7.3.1. We show
that in this case, the line KL is the Steiner axis. Let us take two different points
X, Y ∈ e and set X ′ = φ(X), Y ′ = φ(Y ), Z = XY ′ ∩ X ′Y . If one of X and
Y coincides with K or N then Z coincides with K or L respectively, hence Z is
in the line KL. Suppose now that X, Y,K,N are different. Since φ is cross-ratio
preserving,

(X, Y,K,N) = (X ′, Y ′, N, L).

Applying Proposition 7.1.3.(i), we get

(X ′, Y ′, N, L) = (Y ′, X ′, L,N),

therefore, there is a cross-ratio preserving transformation between e and f that
sends X, Y,K,N to Y ′, X ′, L,N respectively. This transformation fixes N = e∩ f ,
so that it must be a perspectivity by Theorem 7.3.1. This means, that the lines
XY ′, Y X ′ and KL must go through one point (the center of perspectivity), or
equivalently, Z = XY ′ ∩ Y X ′ must lie on KL. �

Remark. Theorem 2.6.3 of Pappus follows easily from the Steiner Axis Theorem,
since if A,B,C ∈ e and A′, B′, C′ ∈ f are different points, then there is a unique
cross-ratio preserving transformation from e to f sending A,B,C to A′, B′, C′ re-
spectively, and then the points

A” = BC′ ∩ CB′ B” = CA′ ∩ AC′ C” = AB′ ∩BA′

are located on the Steiner axis of this transformation.

7.3.6. Corollary. A cross-ratio preserving transformation between two copla-
nar straight lines is a perspectivity if and only if its Steiner axis goes through the
intersection points of the lines.

Proof. Follows from the explicit description of the Steiner axis given in the
proof of Theorem 7.3.4.
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7.4. Cross-ratio preserving transfomations of a line, involutions.
By Theorem 7.2.1, the group of cross-ratio preserving transformations of a line

into itself is isomorphic to the group PGL(2,F). We know from Corollary 6.1.9 that
this group acts simply transitively on 3-tuples in general position, where 3 points
are said to be in general position if they are different. In particular, if a cross-ratio
preserving transformation of a line fixes 3 points, then it must be the identity, or
equivalently, a cross-ratio preserving transformation different from the identity has
at most two fixed points.

7.4.1. Definition. A cross-ratio preserving transformation φ : e→ e is said to
be a hyperbolic, parabolic or elliptic transformation if it has exactly 2, 1 or 0 fixed
points respectively.

Fixed points of a cross-ratio preserving transformation associated to the linear
transformation L correspond to eigenvectors of L. To find eigenvectors, first we have
to find the eigenvalues of L, which are the roots of the characteristic polynomial
p(λ) = det(L − λI), where I is the unit matrix. When L acts on a 2-dimensional
linear space, the characteristic polynomial is a second degree polynomial of the
form

p(λ) = λ2 − trLλ+ detL.

The number of eigenvalues of L and their multiplicities inform us on the possible
numbers of fixed points of [L].

It is clear that if L has two different eigenvalues in F, then [L] is a hyperbolic
transformation. If L has no eigenvalues in F then [L] is elliptic. When a second
degree polynomial with coefficients in F has a root in F, then its second root is also
in F, therefore, if [L] is a parabolic transformation, then L must have an eigenvalue
of multiplicity 2 in F. Conversely, if L has an eigenvalue of multiplicity 2 in F, then
[L] is either a parabolic transformation or the identity. Indeed, [L] must have at
least one fixed point, on the other hand, if [L] has two different fixed points, then
we can find a basis a,b of the 2-dimensional linear space consisting of eigenvectors
of L with the same eigenvalue. In that case however, L must be a constant multiple
of the identity.

If char F �= 2, then we can use the usual formula

λ1,2 =
trL± √

(trL)2 − 4 detL
2

to find the roots of the characteristic polynomial of L. Thus we have proved the
following proposition.

7.4.2. Proposition. Suppose char F �= 2. Let φ = [L] be a cross-ratio pre-
serving transformation of a straight line, different from the identity, set D =
(trL)2 − 4 detL. Then
• φ is hyperbolic if and only if D is non-zero and has a square root in F;
• φ is parabolic if and only if D = 0;
• φ is elliptic, if and only if D has no square root in F.

7.4.3. Definition. If G is a group with unit element e, a ∈ G, then there is a
unique natural number n such that the set

{m ∈ Z|am = e}
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consists of integer multiples of n. This n is called the order of a. Elements of
order 2 are called involutions. In other words, a ∈ G is an involution if and only if
a2 = e �= a.

In the following let us study involutions of the group PGL(2,F).

7.4.4. Theorem. (a) Suppose charF �= 2 Let L : V → V be a linear trans-
formation of a 2-dimensional linear space, φ = [L] : P (V ) → P (V ) the associated
cross-ratio preserving transformation of the straight line P (V ). Then φ is an invo-
lution if and only if trL = 0.

(b) If char (F) = 2, then φ is an involution if and only if trL = 0 and L is not
a scalar multiple of the identity.

Proof. The characteristic polynomial p of L has the form

p(λ) = λ2 − (L)λ+ detL.

We shall use the Cayley-Hamilton theorem, saying that every linear transformation
is a ”root” of its characteristic polynomial, that is p(L) = 0.

Suppose that φ is an involution. This means that L2 is a scalar multiple of the
identity: L2 = µI. Comparing this to the equation p(L) = 0 we obtain the equation

(detL+ µ)I = (L)L.

Since φ �= idP (V ), L can not be a scalar multiple of the identity, the last equation
implies L = (detL+ µ) = 0.

Conversely, suppose trL = 0. Then the Cayley-Hamilton theorem gives L2 =
(−detL)I, therefore, φ2 = [L2] = [(−detL)I] = idP (V ). On the other hand, φ is
not the identity, otherwise L would be a scalar multiple of the identity matrix, say
L = νI, and then L = 2ν = 0 would imply L = 0, contradicting the assumption
that L is invertible. �

7.4.5. Theorem. (a) If char F �= 2, then there are no parabolic inversions.
(b) If charF = 2, then there are no hyperbolic involutions.

Proof. (a) Suppose that the inversion φ is associated to the linear transforma-
tion L. Then, L = 0, and the characteristic polynomial of L has the form λ2 +detL
with detL �= 0. Therefore, there are either no eigenvalues of L in F or there are two
different ones. Namely, if λ is an eigenvalue, then −λ is another one, and λ �= −λ.
In the first case L has no eigenvector and φ has no fixed points, in the second L
has an eigenvector to both eigenvalues, thus φ has two fixed points.

(b) Since λ = −λ in a field of characteristic 2, L has either no eigenvalue, or one
eigenvalue of multiplicity 2. In the first case [L] has no fixed points, in the second
one [L] is elliptic. Indeed, if L had two linearly independent eigenvectors with the
same eigenvalue, then L would be a scalar multiple of the identity. �

7.4.6. Theorem. Suppose charF �= 2. If φ is a hyperbolic inversion with fixed
points F1, F2, and P is an arbitrary point different from the fixed points, then

(F1, F2, P, φ(P )) = −1.
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Proof. Let φ = [L], F1 = [a], F2 = [b], P = [αa + βb]. L has eigenvalues
±λ and its eigenvectors are a, b, therefore we may assume that La = λa and
Lb = −λb. Then we have

φ(P ) = [L(αa + βb)] = λαa − λβb,

from which, by the definition of cross-ratio,

(F1, F2, P, φ(P )) =
β

α
:
−λβ
λα

= −1. �

7.4.7. Theorem. Let A,A′, B, B′ four not necessarily different points on a line
e, such that {A,A′} ∩ {B,B′} = ∅. Then there is a unique involution φ : e → e
such that φ(A) = A′ and φ(B) = B′.

Proof. Existence. Choose representatives a and b for A and B. Since A �= B, a
and b are linearly independent. As A′ �= B, A′ can be represented by a vector of the
form a+αb. Similarly, B′ can be represented by a vector of the form βa−b. Since
A′ �= B′, their representatives are linearly independent, thus there is a unique linear
transformation L, which maps the basis a,b to the basis a + αb, βa − b. Setting
φ = [L], we have φ(A) = A′, φ(B) = B′ and φ is an involution since L = 0.

Unicity. If A = A′ and B = B′ are the fixed points of an involution then the
image of a point P /∈ {A,B} is uniquely determined by

(A,B, P, φ(P )) = −1.

(See Theorem 7.4.6.). If, for example, A �= A′, then φ is uniquely determined by
the condition that it must map the points A,A′, B to the points A′, A, B′ respec-
tively. �

7.4.8. Theorem. If char F �= 2, then any cross-ratio preserving transforma-
tion of a line into itself can be obtained as the composition of two involutions. In
particular, involutions generate the group PGL(FP 1).

Proof. Since PGL(FP 1) acts simply transitively on ordered 3-tuples of points,
it suffices to show that if A,B,C and A′, B′, C′ are two 3-tuples, then there are 2
involutions the composition of which maps A,B,C to A′, B′, C′ respectively. The
identity is the square of any involution, so it is enough to deal with transformations
different from the identity. Such a transformation has at most two fixed points,
while the straight lines have |F| + 1 ≥ 4 points, so we may assume that A and B
are not fixed points of the transformation. Then {A,B′} ∩ {A′, B} = ∅, thus, by
Theorem 7.4.7, there is an involution φ1 such that φ1(A) = B′ and φ1(B) = A′. Let
C∗ be the image of C under φ1. Clearly, {A′, B′}∩{C∗, C′} = ∅, so applying again
Theorem 7.4.7, we get an involution φ2 such that φ2(A′) = B′ and φ2(C∗) = C′.
By the construction, the composition φ2 ◦ φ1 takes A,B,C to A′, B′, C′. �


