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CHAPTER
ZERO

Preface

This is a free and open source differential calculus booke Tree and open
source” part means you, as a student, can give digital vessibthis book to any-
one you want (for free). It means that if you are a teachercgou(a) give or print
or xerox copies for your students, (b) use potions for youn olass notes (if they
are published then you might need to add some acknowleddgedepending on
which parts you copied), and you can xerox even very largeqms of it to your

hearts content. The “differential calculus” part meansoners derivatives and
applications but not integrals. It is heavily based on that fialf of a classic text,
Granville’s “Elements of the Differential and Integral Callas,” quite possibly a
book your great grandfather might have used when he wagieadige. Some ma-
terial from Sean Mauch'’s excellent public domain text on kggpMathematics,

http://www.its.caltech.edu/ ~ sean/book.html

was also included.

Calculus has been around for several hundred years and thertgaf it has not
changed radically. Of course, like any topic which is taughéchool, there are
somemadifications, but not major ones in this casex(if) denotes the distance a
train has traveled in a straight line at timéhen the derivative is theelocity. If
q(t) denotes the charge on a capacitor at tinmea simple electrical circuit then
the derivative is theurrent If C'(¢) denotes the concentration of a solvent in a
chemical mixture at timethen the derivative is theeaction rate If P(¢) denotes
the population size of a country at timeéhen the derivative is thgrowth rate
If C(z) denotes the cost to manufactureinits of a production item (such as a
broom, say) then the derivative is thearginal cost

iX


http://www.its.caltech.edu/~sean/book.html

Some of these topics, electrical circuits for example, werestudied in calcu-
lus when Granville’s book was first written. However, asideni some changes
in grammar and terminology (which have been updated in grision), the math-
ematicalcontentof the calculus course taught today is basically the samiads t
taught a hundred years ago. Terminology has changed, andentalixs about
“versines” any more (they were used in navigation table®rgethe advent of
computers), but thbasic techniquebave not. Therefore, to make the book more
useful to current students, some modification and rearraggeof the material
in Granville’s old text is appropriate. Overall, though tigor and detailed expla-
nations are still at their same high level of quality.

Here is a quote form Granville’s original preface:

The author has tried to write a textbook that is thoroughlylera
and teachable, and the capacity and needs of the studeninmues
first course in the Calculus have been kept constantly in mirce
book contains more material than is necessary for the usuase of
one hundred lessons given in our colleges and engineerhapks;
but this gives teachers an opportunity to choose such dslgsdest
suit the needs of their classes. It is believed that the velaomtains
all topics from which a selection naturally would be made riegar-
ing students either for elementary work in applied scienderanore
advanced work in pure mathematics.

WILLIAM A. GRANVILLE
GETTYSBURG COLLEGE
Gettysburg, Pa.

For further information on William Granville, please see Wikipedia article at
http://en.wikipedia.org/wiki/William_Anthony_Granville
which has a short biography and links for further informatio

Granville’s book “Elements of the Differential and Inte€alculus” fell into
the public domain (in the United States - other countries imaylifferent) and
then much of it (but not all, at the time of this writing) wassoed into

http://en.wikisource.org/wiki/Elements_of_the_Diffe rential_and_Integral_Calculus

primarily by P. J. Hall. This wikisource document uses Math&hd ETEX and
some Greek letter fonts.


http://en.wikipedia.org/wiki/William_Anthony_Granville
http://en.wikisource.org/wiki/Elements_of_the_Differential_and_Integral_Calculus

In keeping with the “free and open source” aspect of thisbieek, and the
theme of updating to today’s much more technologicallytanstudents, a free
and open sourse mathematical software paclSage was used to illustrate ex-
amples throughout. You don’t need to kn@age to read the book (just ignore
the Sage examples if you want) but it certainly won'’t hurt to learn tlé about
it. Besides, you might find that with some practi8age is fun to “play with”
and helps you with homework or other mathematical problemsome of your
other classes. It is a general purpose mathematical seffragram and it may
very likely be the only mathematical software you will eveed.

This BTEX'd version is due to the second-named author, who is resplen®r
formatting, the correction of any typos in the scanned wessignificant revision
for readability, and some extra material (for example, $a@e examples and
graphics). In particular, the existence of this documenevtself primarily to
three great open source projectgXMATEX, Wikipedia, andSage . All the fig-
ures were created usirgage and then edited and converted using the excellent
open source image manipulation progr&tMP (http://www.gimp.org ).
The Sage code for each image can be found in tAgK source code, available
at

http://sage.math.washington.edu/home/wdj/teaching/c alcl-sage/

More information orSage can be found at th8age website (located at
http://www.sagemath.org ) or in the Appendix (Chapter 13) below.

Though the original text of Granville is public domain, théra material added
in this version is licensed under the GNU Free Documentdtiocanse (repro-
duced in an Appendix below), as is Wikipedia.

Acknowledgementd thank the following readers for careful proofreading and
reporting typos: Mario Pernici, Jacob Hicks, Georg Muntingnd Minh Van
Nguyen. | also thank Trevor Lipscombe for excellent stidisidvice on the pre-
sentation of the book. However, any remaining errors arysaty responsibility.
Please send comments, suggestions, proposed changesgections by email to
wdjoyner@gmail.com

Xi
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CHAPTER
ONE

Variables and functions

1.1 Variables and constants

A variableis a quantity to which an unlimited number of values can begassl.
Variables are denoted by the later letters of the alphaldats;Tin the equation of
a straight line,

x andy may be considered as the variable coordinates of a pointng@long the
line. A quantity whose value remains unchanged is calledrestant

Numerical or absolute constants retain the same value$ pnaddlems, a2, 5,
V7, T, etc.

Arbitrary constants, or parameterare constants to which any one of an unlim-
ited set of numerical values may be assigned, and they apmseag to have these
assigned values throughout the investigation. They arallysienoted by the ear-
lier letters of the alphabet. Thus, for every pair of valudstearily assigned ta
andb, the equation

r oy
I A |
a+b

represents some particular straight line.

1



1.2. INTERVAL OF A VARIABLE

1.2 Interval of a variable

Very often we confine ourselves to a portion only of the nundyetem. For
example, we may restrict our variable so that it shall takewmly such values as
lie between: andb, wherea andb may be included, or either or both excluded.
We shall employ the symbad, b], a being less than, to represent the numbers
a, b, and all the numbers between them, unless otherwise stataid.symbol
[a, b] is read the interval from to b.

1.3 Continuous variation

A variablex is said to vary continuously through an interj@l o], whenzx starts
with the valuea and increases until it takes on the valu@ such a manner as to
assume the value of every number betweendb in the order of their magni-
tudes. This may be illustrated geometrically as follows:

-
) e T
P -
T == 0

Figure 1.1: Interval fromA to B.

The origin being a0, layoff on the straight line the point$ and B corresponding
to the numbers andb. Also let the pointP correspond to a particular value of the
variablex. Evidently the intervala, 0] is represented by the segmehB. Now
asx varies continuously from to b inclusive, i.e. through the intervéd, b], the
point P generates the segmeff3.

1.4 Functions

A function f of the real numberR is a well-defined rule which associated to each
z € R a unique valuef(z). Usually functions are described algebraically using
some formula (such a&z) = =2, for all real numbers’) but it doesn’t have to be
so simple. For example,



1.5. NOTATION OF FUNCTIONS

22, if x is an integer,

f(z) = { 0, otherwise,

is a function orR but it is given by a relatively complicated rule. Namely, thée

f tells you to associate to a numbethe value) unlessr is an integer, in which
case you are to associate the valtie(In particular,f (z) is always an integer, no
matter whatr is.) This type of rule defining a function aofis sometimes called
a piecewise-defined functiorin this book, we shall usually focus on functions
given by simpler symbolic expressions. However, be awattiecewise-defined
functionsdo arise naturally in applications. For example, in electtsnivhen a

6 volt battery-powered flashlight is powered on or off usingvteh, the voltage
to the lightbulb is modeled by a piecewise-defined functidwcv has the valué
when the device is off anéwhen it is switched on.

When two variables are so related that the value of the firshbierdepends on
the value of the second variable, then the first variableigs teabe afunctionof
the second variable.

Nearly all scientific problems deal with quantities and tielas of this sort, and
in the experiences of everyday life we are continually nmgetionditions illus-
trating the dependence of one quantity on another. Fomuostdhe weight a man
is able to lift depends on his strength, other things beingaedsimilarly, the dis-
tance a boy can run may be considered as depending on theQmnee may say
that the area of a square is a function of the length of a sitkflze volume of a
sphere is a function of its diameter.

1.5 Notation of functions

The symbolf(z) is used to denote a function of and is read f of z”. In order
to distinguish between different functions, the prefixdtelels changed, a&(z),
o(x), f'(x), etc.

During any investigation the same functional symbol alwiagiicates the same
law of dependence of the function upon the variable. In thepker cases this
law takes the form of a series of analytical operations upanvariable. Hence,
in such a case, the same functional symbol will indicate #mesoperations or
series of operations, even though applied to different tjiies Thus, if

f(z) = 2* — 9z + 14,

3



1.5. NOTATION OF FUNCTIONS

then

fly) =" — 9y + 14.
Also

f(a) = a® — 9a + 14,

fo+1)=0b+1)*-9b+1)+14=0b>—Tb+6,
f(0)=0%—9-0+ 14 = 14,
f(—=1) = (=1 = 9(—1) + 14 = 24,
f(3)=3>-9-3+14 = —4,

f()=7-9-7T+14=0,

etc. Similarly,¢(z, y) denotes a function of andy, and is read ¢ of x andy”.
If

¢(x, y) =sin(z +y),

then

o(a, b) =sin(a +b),
and - -

¢(§,O> =sin—- =1
Again, if

F(z, y, z) =2z + 3y — 12z,
then
F(m, —m, m) =2m — 3m — 12m = —13m.

and

F(3,2,1)=2-343-2-12-1=0.

Evidently this system of notation may be extended indefinite
You can define a function iBage in several ways:

Sage

sage: x,y = var("x,y")

sage: f = log(sqrt(x))

sage: f(4)

log(4)/2

sage: f(4).simplify_log()

log(2)

sage: f = lambda x: (x"2+1)/2
sage: f(x)

(X2 + 1)2

sage: f(1)




1.6. INDEPENDENT AND DEPENDENT VARIABLES

1

sage: f = lambda Xx,y: xX2+y"2

sage: f(3,4)

25

sage: R.<x> = PolynomialRing(CC,"x")

sage: f = x"2+2

sage: f.roots()

[(1.41421356237309  *I, 1), (2.77555756156289e-17 - 1.41421356237309 *1, 1)]

1.6 Independent and dependent variables

The second variable, to which values may be assigned atypieasthin limits
depending on the particular problem, is calleditiependent variableor argu-
ment and the first variable, whose value is determined as sodmeastue of the
independent variable is fixed, is called thependent variableor function

Though we shall wait to introduce differentiation lateegde keep in mind that
you differentiate thelependentariable with respect to thedependenvariable.

Example 1.6.1.In the equation of an upper half-circle of radius

Yy=v - .1'2,
we typically callz the independent variable andthe dependent variable.

Frequently, when we are considering two related variabtas,in our power
to fix upon whichever we please as the independent variabiehdving once
made the choice, no change of independent variable is allowtout certain
precautions and transformations.

One quantity (the dependent variable) may be a function ofdwmore other
guantities (the independent variables, or arguments). ekample, the cost of
cloth is a function of both the quality and quantity; the aodéa triangle is a
function of the base and altitude; the volume of a rectancpaaallelepiped is a
function of its three dimensions.

IntheSage example below is the independent variable arfids the dependent
variable.

Sage
sage: t = var(t)
sage: f = function(f, t)
sage: f = cos
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sage: f(pi/2)

0

sage: (f(-3  *pi)-2 =*f(1))2
(-2 *cos(1) - 1)2

1.7 The domain of a function

The values of the independent variable for which a functfon) is defined is
often referred to as th@omainof the function, denotedomain( f).
Consider the functions

x? —2x + 5, sinx, arctanz

of the independent variable Denoting the dependent variable in each casg, by
we may write

y=1a2—2r+5, y=sinz, y=arctanz.

In each casg (the value of the function) is known, or, as we say, definedafio
values ofz. We write in this casedomain(f) = R. This is not by any means
true of all functions, as the following examples illustratithe more common
exceptions will show.

a
r—20b
Here the value of) (i.e. the function) is defined for all values ofexceptr = b.

Whenx = b the divisor becomes zero and the valugy agannot be computed from
(1.1). We write in this caselomain(y) = R — {b}.

y= (1.1)

y= . (1.2)

In this case the function is defined only for positive valukes.oNegative values

of x give imaginary values fog, and these must be excluded here, where we are
confining ourselves to real numbers only. We write in thisecdsmain(y) =

{r eR|z>0}.

y = log, x. a>0 (1.3)

6



1.8. EXERCISES

Here y is defined only for positive values of. For negative values of this
function does not exist (see 2.7).

Yy = arcsinx, y = arccos x. (1.4)

Since sines, and cosines cannot become greatertharor less than-1, it fol-
lows that the above functions are defined for all values cdnging from—1 to
+1 inclusive, but for no other values.

Sage
sage: t = var("t”)
sage: f = function(f, t)
sage: g = function('g, t)
sage: f = sin
sage: g = asin

sage: f(g(t))
t
sage: g(f(t)
t
sage: 9(f(0.2))

0.200000000000000

1.8 Exercises

1. Givenf(z) = x* — 10x? 4+ 31z — 30; show that

f(0)==30, f(y) =y’ —10y* + 31y — 30,
f(2) =0, f(a)=a’>—10a®+ 31a — 30,
fB)=f(5), flyz) =y’2" = 10y°2° + 31yz — 30,
f(1) > f(=3), f(z—2)=2a>— 162+ 83z — 140,
f(=1)=6f(6).
2. If f(z) = 2® — 32+ 2,find £(0), (1), f(=1), f (=3), F (3).

7
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EXERCISES

11.

12.

.M F(z) = 2z, find F(0), F(-3), F (

N f(x) = 2% — 1022 + 31z — 30, and¢(z) = 2* — 5522 — 210z — 216,

show that

f(2) = ¢(=2), f(3) = ¢(=3), f(5)

d(—4), £(0) + ¢(0) + 246 = 0.
), F(—

1
3

: leenF( ) =x(x—1)(z+6) (x—%)( ) show thatF(0) = F(1) =

=F(3) = ( 1=

If f(my) = =1, show that/(m)=/m) _ mi—m,

T+ f(ma) f(me) — 1+mimz”

. Mf ¢(x) = a®, show thatp(y) - ¢(z) = ¢(y + 2).
. Giveng(z) = log 172, show thaip(z) + ¢(y) = ¢ (%)

. If f(¢) = cos ¢, show thatf (¢) = f(—=¢) = —f(7 — @) = —f(7 + 9).
10.

If F(6) = tan @, show thatF'(26) = %

Here’s how to us&age to verify the double angle identity farn above:
Sage

sage:. theta = var("theta")
sage: tan(2 *theta).expand_trig()
2+tan(theta)/(1 - tan(theta)™2)

Giveny(x) = 2> + z?™ 4 1, show that)(1) = 3, (0) = 1, andy)(a) =
Y (—a), for any real numbes (Hint: Use the fact that—1)? = 1.)

If f(2) = 57, (vV2).




CHAPTER
TWO

Theory of limits

In this book, avariabledenotes a quantity which takes values in the real numbers.

2.1 Limit of a variable

If a variablev takes on successively a series of values that approachrreeate
nearer to a constant valuein such a manner that — L| becomes and remains
less than any assigned arbitrarily small positive quarttigno is said to approach
the limit L, or to converge to the limiL.. Symbolically this is writterlim,,—;,, or
more commonly

lim .
v—L

The following familiar examples illustrate what is meant:

1. As the number of sides of a regular inscribed polygon i€fimitely in-
creased, the limit of the area of the polygon is the area otitieée. In this
case the variable is always less than its limit.

2. Similarly, the limit of the area of the circumscribed pgpiy is also the area
of the circle, but now the variable is always greater thahntg.

3. Hold a penny exactly meter above the ground and observe its motion as
you release it. First it travels 1/2 the distance from theaugtb(at this stage
its distance fallen id /2 meter), then it travels 1/2 that distance from the

9



2.1. LIMIT OF A VARIABLE

ground (at this stage its distance fallerjQ + 1/4 meter), then it travels
1/2 that distance from the ground (at this stage its distéalten is1/2 +
1/4 4 1/8 meter), and so on. This leads us to the series

LA S U I
2 4 8 2k '
Since the penny hits the ground, this infinite sunh.i¢This computational

idea goes back to the Greek scholar Archimedes, c. 287 BC dBe1p
4. Consider the series
1 1 1 -1
1— 4+ - Z4... —
2 + 4 8 * +( 2

The sum of any even numbgln) of the first terms of this series is

K (2.1)

= 27 (2.2)

37 322Dy
by item 6, Chl 12§12.1. Similarly, the sum of any odd numb@r + 1) of
the first terms of the series is

1 1 1 1 1
Sont1 :1_1§+Z_§+"'_W+ﬁ7
S S|
2n+1
= =l (2.3)

-1
2
=+ 5
again by item 6, Ch. 1212.1.
Writing (2.2) and/(2.3) in the forms

2 1 2 1
. Sn s Sn = 5 a0
3 7T 3.1 2l T3 7 3.9
we have .
Jim (5_52”) = s =0
and




2.1. LIMIT OF A VARIABLE

Hence, by definition of the limit of a variable, it is seen tbhath S,,, and
So,41 are variables approachir’@ as a limit as the number of terms in-
creases without limit.

Summing up the first two, three, four, etc., terms of (2.19,gahms are found
by ((2.2) and ((2.3) to be alternately less and greater §1aii1ustrating
the case when the variable, in this case the sum of the terr({2.4), is
alternately less and greater than its limit.

Sage

sage: S = lambda n: add([(-1)i *2°(-i) for i in range(n)])
sage: RR(S(1)); RR(S(2)); RR(S(5)); RR(S(10)); RR(S(20))
1.00000000000000

0.500000000000000

0.687500000000000

0.666015625000000

0.666666030883789

You can see from th&age example that the limit does indeed seem to
approach2/3.

In the examples shown the variable never reaches its lintits i not by any
means always the case, for from the definition of the limit g&gable it is clear
that the essence of the definition is simply that the abseohltes of the difference
between the variable and its limit shall ultimately becomd aemain less than
any positive number we may choose, however small.

Example 2.1.1.As an example illustrating the fact that the variable mayctea
its limit, consider the following. Let a series of regular pgbns be inscribed in
a circle, the number of sides increasing indefinitely. Chiogsinyone of these,
construct. the circumscribed polygon whose sides touchitble @t the vertices
of the inscribed polygon. Let, and P, be the perimeters of the inscribed and
circumscribed polygons ot sides, and”' the circumference of the circle, and
suppose the values of a variaht¢o be as follows:

Pna Pn+1, C) Pn-i-la Pn+2, C) PTL+27 etc.
Then, evidently,

limx=C

Tr—00

and the limit is reached by the variable, every third valuéhefvariable being’.

11



2.2. DIVISION BY ZERO EXCLUDED

2.2 Division by zero excluded

% is indeterminate. For the quotient of two numbers is that Ibemwhich multi-
plied by the divisor will give the dividend. But any number wé&aer multiplied
by zero gives zero, and the quotient is indeterminate; hainy number whatever
may be considered as the quotient, a result which is of neevalu

5 has no meaning; being different from zero, for there exists no number such
that if it be multiplied by zero, the product will equal

Therefore division by zero is not an admissible operation.

Care should be taken not to divide by zero inadverterithe following fallacy
is an illustration. Assume that

a=>o.
Then evidently
ab = a>.
Subtracting?,
ab—b? = a®> — b
Factoring,
b(a—b) = (a+b)(a—b).
Dividing by a — b,

b=a+b.

But a = b, thereforeh = 2b, or, 1 = 2. The result is absurd, and is caused by the
fact that we divided by, — b = 0, which is illegal.

2.3 Infinitesimals

Definition 2.3.1. A variablev whose limit is zero is called an infinitesilﬂal

This is written

lim, or, lim,
v=0 v—0
and means that the successive absolute valuesiibimately become and remain
less than any positive number however small. Such a variatslaid to become

“arbitrarily small.”

'Hence a constant, no matter how small it may be, is not an fegimal.

12



2.4. THE CONCEPT OF INFINITY ¢o)

If limv = [, thenlim(v — ) = 0; that is, the difference between a variable and
its limit is an infinitesimal.

Conversely, if the difference between a variable and a cah&an infinitesi-
mal, then the variable approaches the constant as a limit.

2.4 The concept of infinity (o)

If a variablev ultimately becomes and remains greater than any assigrséil/po
number, however large, we sayis “unbounded and positive ” (or “increases
without limit”), and write

lim , or, lim , or, v — +0o0.
V=00 v—+00

If a variablev ultimately becomes and remains smaller than any assigrgadine
number, we say “unbounded and negative ” (oidecreases without limit”), and
write

lim , or, lim , or, v — —o0.
V=—00 V——00

If a variablev ultimately becomes and remains in absolute value greaerahy
assigned positive number, however large, wewsan absolute value, “increases
without limit”, or v becomes arbitrarily Iar@eand write

lim, or, lim, or, v — oo.

V=00 vV—00

Infinity (oco) is not a number; it simply serves to characterize a padramode of
variation of a variable by virtue of which it becomes arhilgelarge.

Here is aSage example illustratingim;_., 1/t = lim;—_, 1/t = 0.
Sage

sage: t = var(t)
sage: limit(1/t, t = Infinity)

20n account of the notation used and for the sake of uniforrtiiy expression — +oo is
sometimes readv*approaches the limit plus infinity”. Similarly, — —oo is read v approaches
the limit minus infinity”, andv — oo is read v, in absolute value, approaches the limit infinity”.
While the above notation is convenient to use in this conapcthe student must not forget that
infinity is not a limit in the sense in which we defined it§@.2, for infinity is not a number at all.

13



2.5. LIMITING VALUE OF A FUNCTION

0
sage: limit(1/t, t = -Infinity)
0

2.5 Limiting value of a function

Given a functionf(z). If the independent variabletakes on any series of values
such that
limz = a,
and at the same time the dependent variglole takes on a series of correspond-
ing values such that
lim f(z) = A,

then as a single statement this is written

lim f(x) = A.
Here is an example of a limit usirfgage :
Sage
sage: limit((x"2+1)/(2+x+3 * X" 2),x=infinity)
1/3
; : 2241 1
This tells us thatim, ... 5755 = 3.

2.6 Continuous and discontinuous functions

A function f(z) is said to becontinuousfor x = « if the limiting value of the
function whenr approaches the limit in any manner is the value assigned to the
function forz = a. In symbols, if

lim f(z) = f(a),

r—a

14



2.6. CONTINUOUS AND DISCONTINUOUS FUNCTIONS

then f(x) is continuous forr = a. Roughly speaking, a functiopn = f(x) is
continuous if you can draw its graph by hand without liftinguy pencil off the
paper. In other words, the graph of a continuous functionhee no “breaks.”

Example 2.6.1.The piecewise constant function

1, x>0,
u@) =93¢ »<0

is not continuous since its graph has a “break”at= 0 where it “steps up” from
0 to 1. This function models “on-off” switches in electrical engaring and is
called the unit step function or the Heaviside functiongathe brilliant engineer
Oliver Heaviside, 1850 1925).

The function is said to bdiscontinuoudor x = « if this condition is not satis-
fied. For example, if

lim f(x) = o0,

the function is discontinuous far = a.
Sage

sage: t = var(’t)

sage: Pl = plot(1/t, (t, -5, -0.1))
sage: P2 = plot(1/t, (t, 0.1, 5))
sage: show(P1+P2, aspect ratio=1)
sage: limit(1/t,t=0,dir="plus")
+Infinity

sage: limit(1/t,t=0,dir="minus")
-Infinity

The graph in Figure 2.1 suggests that, .o, 1/2 = 400 andlim, ., 1/z =
—o00, as the abov&age computation confirms.

The attention of the student is now called to the followingesawhich occur
frequently.
CASE I. As an example illustrating a simple case of a function cadus for a
particular value of the variable, consider the function

2?4

fla) =S

15



2.6. CONTINUOUS AND DISCONTINUOUS FUNCTIONS

10

-10+

Figure 2.1: The limitdim, .o, 1/ = 400, lim, o 1/x = —c0.

Forz =1, f(x) = f(1) = 3. Moreover, ifz approaches the limitin any manner,
the functionf(z) approaches as a limit. Hence the function is continuous for
r=1.

Sage

sage: x = var(’x)
sage: limit((x"2-4)/(x-2), x = 1)
3

16



2.6. CONTINUOUS AND DISCONTINUOUS FUNCTIONS

CASE II. The definition of a continuous function assumes that thetfan is
already defined for = a. If this is not the case, however, it is sometimes possible
to assign such a value to the function for= « that the condition of continuity
shall be satisfied. The following theorem covers these cases

Theorem 2.6.1.1f f(z) is not defined for: = a, and if
lim f(x) = B,

then f(z) will be continuous for: = a, if B is assumed as the value ffz) for
Tr = Q.

Thus the function
2 —4
xr— 2

is not defined forr = 2 (since then there would be division by zero). But for
every other value of,

1.2

x+2 Tt5
and
lin;(x+2) =1

thereforelim,_.» % = 4. Although the function is not defined far= 2, if we
assign it the valud for x = 2, it then becomes continuous for this value.

Sage

sage: x = var(’x)
sage: limit((x"2-4)/(x-2), x = 2)
4

A function f(x) is said to becontinuous in an intervalvhen it is continuous for
all values ofz in this intervaf.

3In this book we shall deal only with functions which are in geal continuous, that is, con-
tinuous for all values oft, with the possible exception of certain isolated values,reaults in

17



2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

2.7 Continuity and discontinuity of functions illus-
trated by their graphs

1. Consider the function?, and let

y =’ (2.4)

If we assume values for x and calculate the correspondingesadf y, we
can plot a series of points. Drawing a smooth line free-h&nough these
points: a good representation of the general behavior ofuhetion may
be obtained. This picture or image of the function is caltsgjiaph It is
evidently the locus of all points satisfying equation (2.4)

It is very easy to create the above plotSage , as the example below
shows:
Sage

sage:. P = plot(x"2,-2,2)
sage: show(P)

Such a series or assemblage of points is also calmd\ae Evidently we
may assume values af so near together as to bring the valueg,dand
therefore the points of the curve) as near together as waelea other
words, there are no breaks in the curve, and the funetfois continuous
for all values ofz.

2. The graph of the continuous functisim x, plotted by drawing the locus of
y = sin z,
It is seen that no break in the curve occurs anywhere.

3. The continuous functioarp(z) = e* is of very frequent occurrence in the
Calculus. If we plot its graph from

general being understood as valid only for such values foir which the function in question is
actually continuous. Unless special attention is calledeto, we shall as a rule pay no attention
to the possibilities of such exceptional valuesedior which the function is discontinuous. The
definition of a continuous function f(x) is sometimes roygfdut imperfectly) summed up in the
statement that a small changeairshall produce a small change fitz). We shall not consider
functions having an infinite number of oscillations in a lied region.

18



2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

-2 -15 -1 0.5 05 1 15 2

Figure 2.2: The parabola= 22

y=ce", (e=2.718--+),
we get a smooth curve as shown.
From this it is clearly seen that,

(@) whenz =0, lim,_oy(= lim, g e*) = 1;

(b) whenz > 0, y(= €") is positive and increases as we pass towards the
right from the origin;

(c) whenz < 0, y(= e*) is still positive and decreases as we pass towards
the left from the origin.

19



2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

075 —

025

Figure 2.3: The sine function.

4. The functionin x = log, x is closely related to the last one discussed. In
fact, if we plot its graph from

y = ]'Oge 'r’

it will be seen that its graph is the reflection of the graphy et ¢* about
the diagonal (the = y line). (This is because they are “inverses” of each
other:log, (e*) = x ande!®® * = 1.)

Here we see the following facts pictured:

(@) Forx =1,log, = =1log, 1 =0.
(b) Forz > 1, log, «x is positive and increases asncreases.

(c) Forl > z > 0, log, « is negative and increases in absolute value as
x, thatis,lim, g log © = —cc.

(d) Forz <0,log, xis notdefined; hence the entire graph lies to the right
of OY.

5. Consider the functioé, and set

20



2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.4: The exponential function.

Yy==
T

If the graph of this function be plotted, it will be seen thatraapproaches
the value zero from the left (negatively), the points of theve ultimately
drop down an infinitely great distance, and:aapproaches the value zero
from the right, the curve extends upward infinitely far.

The curve then does not form a continuous branch from onditie other
of the axis ofy, showing graphically that the function is discontinuous fo
z = 0, but continuous for all other values of

6. From the graph (see Figure 2.7) of

B 2x
1 — g2

Y

21



2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

05—

Figure 2.5: The natural logarithm.

it is seen that the functioﬁ% is discontinuous for the two values= =1,
but continuous for all other values of

22



2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.6: The functiong = 1/z.

7. The graph of
y=tan x

shows that the functioman x is discontinuous for infinitely many values
of the independent variablg, namely,z = =7, wheren denotes any odd
positive or negative integer.

8. The functiomrctan z has infinitely many values for a given valuexfthe
graph of equation
Yy = arctan x

consisting of infinitely many branches.

If, however, we confine ourselves to any single branch, thetfan is con-
tinuous. For instance, if we say thashall be the smallest angle (in radians)
whose tangent is, that is,y shall take on only values betweer; and 7,
then we are limited to the branch passing through the oramd,the condi-
tion for continuity is satisfied.
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

B

ot i

Figure 2.7: The functiony = 2z /(1 — 2?).

9. Similarly, arctan % is found to be a many-valued function. Confining our-
selves to one branch of the graph of

Yy = arctan —,
T

we see that as approaches zero from the leftapproaches the limitZ,
and asr approaches zero from the rightapproaches the limit-7. Hence
the function is discontinuous when = 0. Its value forr = 0 can be
assigned at pleasure.

10. As was previously mentioned pgéecewise-defined functios one which is
defined by different rules on different non-overlappingimals. For exam-
ple,
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.8: The tangent function.

—1, r < —m/2,

flz) =1 sin(z), n/2<z<m7/2,
1, /2 < .
is a continuous piecewise-defined function.
For example,
-1, =z < -2,
fle)=4 3, —2<z<3,
2, 3<ux.

is a discontinuous piecewise-defined function, with jumgrdntinuities at
r = —2andzr = 3.

Sage

sage: f = piecewise([[(-5,-2),-1],[(-2,3),3].[(3,5),2] )

25



2.8.

FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.9: The arctangent (or inverse tangent) function.

sage: f
Piecewise defined function with 3 parts,
[[(_5! _2)! _1]! [(_27 3)1 3]1 [(31 5)1 2]]

Functions exist which are discontinuous for every valudefihdependent vari-
able within a certain range. In the ordinary applicationthefCalculus, however,
we deal with functions which are discontinuous (if at all)yofor certain iso-
lated values of the independent variable; such functioaedteerefore in general
continuous, and are the only ones considered in this book.

2.8 Fundamental theorems on limits

In problems involving limits the use of one or more of the daling theorems is
usually implied. It is assumed that the limit of each varagskists and is finite.
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

051

Figure 2.10: The functiop = arctan(1/x).

Theorem 2.8.1.The limit of the algebraic sum of a finite number of variables i
equal to the algebraic sum of the limits of the several véegb
In particular,

lim[f(z) + g(z)] = lim f(z) + lim g(z).
Theorem 2.8.2.The limit of the product of a finite number of variables is elqua
to the product of the limits of the several variables.
In particular,

lim[f(2) - g(a)] = lim f(2) - lim g(z).

r—a r—a r—a

Here is aSage example illustrating these facts in a special case.

Sage
sage: t = var(t)
sage: f = exp
sage: g = sin
sage: a = var('a)
sage: L1 = limit(f(t)+g(t), t = a)
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.11: A piecewise-defined function.

sage: L2 = limit(f(t),t=a)+lim(g(t), t = a)
sage: bool(L1 == L2)

True

sage: L1; L2

sin(a) + e"a

sin(a) + e"a

sage: L1 = limit(f(t) *g(t), t = a)
sage: L2 = limit(f(t),t=a) *lim(g(t), t = a)
sage: bool(L1 == L2)

True

sage: L1; L2

e"a *sin(a)

€"a *sin(a)

Theorem 2.8.3.The limit of the quotient of two variables is equal to the deot
of the limits of the separate variables, provided the limhihe denominator is not
zero.
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.12: Another piecewise defined function.

In particular,

lim(7(2)(0)] = o=l

z—a © limy g g(x)

providedlim, ., g(x) # 0.

bl

Before proving these theorems it is necessary to establksfofowing proper-
ties of infinitesimals (Definition 2.3/1).

1. The sum of a finite number of infinitesimals is an infinitesimTo prove
this we must show that the absolute value of this sum can be iead than
any small positive quantity (ag that may be assigned2.3). That this
is possible is evident, for, the limit of each infinitesimality zero, each
one can be made less than, in absolute vafué, being the number of

infinitesimals), and therefore the absolute value of themn £an be made
less thar.

. The product of a constant# 0 and an infinitesimal is an infinitesimal. For
the absolute value of the product can always be made lessathaamall
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

positive quantity (as) by making the absolute value of the infinitesimal less
than=

le] *

3. If v is a variable which approaches a linditdifferent from zero, then the
guotient of an infinitesimal by is also an infinitesimal. For it — L,
andk is any number in absolute value less tharthen, by definition of a
limit, v will ultimately become and remain in absolute value grettian
k. Hence the quotiertt, wheree is an infinitesimal, will ultimately become
and remain in absolute value less tharand is therefore, by the previous
item, an infinitesimal.

4. The product of any finite number of infinitesimals is an iésimal. For
the absolute value of the product may be made less than arllysrasive
guantity that can be assigned. If the given product contaifastors, then
since each infinitesimal may be assumed less than theh root of ¢, the
product can be made less thaitself.

Proof of Theorem 2.8/ 1Let v, vy, vs, ... be the variables, anfl;, L, L, ...
their respective limits. We may then write
v — Ly = €1, v9— Ly =€y, v3— L3 = €3,

whereey, €, €3, ... are infinitesimals (i.e. variables having zero for a limit).
Adding

(v+va+vs+...)— L1+ Lo+ Ls+..)=(e1+ea+€e3+...).

Since the right-hand member is an infinitesimal by item (bvat§2.8), we have,
from the converse theorerfi2.3),

11II1(U1+UQ+U3+...):L1+L2+L3+...,
or,

lim(v; + va +v3+...) =limv; + limvg + limvg + .. .,

which was to be proved. O
Proof of Theorem 2.8.2.etv; anduv, be the variabled,; andL, their respective
limits, ande; ande, infinitesimals; then

vy =L+ ¢
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2.9. SPECIAL LIMITING VALUES

andvy, = Ly + €5. Multiplying,

+ €1) (L2 + €2)

vivy = (L
= L1L2 + L1€2 + LQEl + €1€9

or,

V1Ug — L]_L2 = L1€2 + L2€1 + €1€9.
Since the right-hand member is an infinitesimal by items it} @) above, 42.8),
we have, as before,

lim(vivg) = L1 Ly = lim vy - lim vy,

which was to be proved. [
Proof of Theorem 2.8.3Jsing the same notation as before,

U2—L2+€2—L_2

2 L1+€1_L1+ L1+€1 L1
L2+€2 L2 ’

or,

U1 Ly Loey — L€y

v Ly Ly(Ly + €2)
Here again the right-hand member is an infinitesimal by it8pabove, §2.8), if

Ly # 0; hence
1. U1 Ll hm U1
m(— | =—=
Vo LQ lim UQ7

which was to be proved. [
It is evident that if any of the variables be replaced by canist, our reasoning
still holds, and the above theorems are true.

2.9 Special limiting values

The following examples are of special importance in thegtfdhe Calculus. In
the following exampleg > 0 andc # 0.
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2.10. SHOW THATLIM y_, 98X =1

Eqgn number Written in the form of limits Abbreviated form aftased
() lim, .o £ = oo o =00

(2) lim, . cx = 00 c-00 =00
3) lim, .o £ = 00 = =00

(4) lim, 0 € =0 < =0

(5) lim, . . a*,= 400, whena < 1 a~>* = +o00
(6) lim, ., a* = 0, whena < 1 at™ =0

(7) lim, . . a” =0, whena > 1 a=>* =0

(8) lim, ., o a® = 400, whena > 1 at® = +o0
(9) lim, g log, = = +o00, whena < 1 log, 0 =400
(10) lim, ., log, © = —o00, whena < 1 log,(+00) = —o0
(11) lim, . log, © = —o0, whena > 1 log, 0 = —o0
(12) lim, ., log, * = 400, whena > 1 log, (4+00) = +00

The expressions in the last column are not to be consideregdpmsssing nu-
merical equalitiesdo not being a number); they are merely symbolical equations
implying the relations indicated in the first column, andw@idde so understood.

2.10 Show thatlim, 2% = 1

To motivate the limit computation of this section, usiBgge we compute a
number of values of the functio#*, asz gets closer and closer o

X

‘0.5000 0.2500 0.1250 0.06250 0.03125

) 10,9589 0.9896 0.9974 0.9994
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2.10. SHOW THATLIM y_o 8% =1

Indeed, if we refer to the table i§l2.4, it will be seen that for all angles less
than10° the angle in radians and the sine of that angle are equal ¢e theci-
mal places. To compute the table of values above uSige , simply use the
following commands.

Sage

sage: f = lambda x: sin(x)/x

sage: R = RealField(15)

sage: L = [1/27% for i in range(1,6)]; L
[1/2, 1/4, 1/8, 1/16, 1/32]

sage: [R(x) for x in L]

[0.5000, 0.2500, 0.1250, 0.06250, 0.03125]
sage: [R(f(x)) for x in L]

[0.9589, 0.9896, 0.9974, 0.9994, 0.9998]

From this we may well suspect thiin,, o 822 = 1.

€T

Let O be the center of a circle whose radius is unity.
Letarc AM = arc AM' = z, and letMT and M'T be tangents drawn to the

circle atM and M’ (see Figure 2.13).
Using the geometry in Figure 2.13), we find that

MPM < MAM' < MTM;

or2sin x < 2x < 2tan z. Dividing through by2sin x, we get

T 1
<

1<

sinx  cos x
If now = approaches the limit zero,

. X

lim —

z—0 SIn @
must lie between the constahtand lim,_.q ﬁ which is alsol. Therefore
lim, g %= = 1, or,lim,_, ¥2£ = 1 Theorem 2.8.3. O

It is interesting to note the behavior of this function framgraph, the locus of
equation
sin x
y =

X
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2.11. THE NUMBERE

Figure 2.13: Comparing andsin(x) on the unit circle.

Although the function is not defined far= 0, yet it is not discontinuous when
z = 0 if we define®22 — 1 (see Case Il i2.6).
Finally, we show how to use thf@age commandimit to compute the limit

above.
Sage

sage: limit(sin(x)/x,x=0)
1

2.11 The numbere

One of the most important limits in the Calculus is

lm(1+z)r =2.71828-- = ¢

r—0
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Figure 2.14: The functiof*,

To prove rigorously that such a limit exists, is beyond the scope of this book.
For the present we shall content ourselves by plotting tbedof the equation

y=(1+a)
and show graphically that, as=0, the function(1 + =)= (= y) takes on values in
the near neighborhood af718 .. . ., and therefore = 2.718 ..., approximately.

T ‘ -1 -.001 .001 .01 1 1 5 10
y=(1+z)t/= ‘ 2.8680 2.7195 2.7169 2.7048 25937 2.0000 1.4310 1.0096

As z — 0— from the left,y decreases and approachess a limit. Asx — 0+
from the right,y increases and also approaches a limit.

As © — oo, y approaches the limit; and asx — —1+ from the right,y
increases without limit.

Natural logarithms are those which have the numbér base. These loga-
rithms play a very important rle in mathematics. When the lss®t indicated
explicitly, the base: is always understood in what follows in this book. Thus
log, v is written simplylog v orIn v.

Natural logarithms possess the following characteristapprty: Ifz — 0 in
any way whatever,
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2.12. EXPRESSIONS ASSUMING THE FORK

201

151

Figure 2.15: The functiol + z)'/=.

log(1
lim 281 )

1
p

= limlog(l 4+ z)= =log e =Ine = 1.

X

2.12 Expressions assuming the forrg

As oo is not a number, the expression + oo is indeterminate. To evaluate
a fraction assuming this form, the numerator and denomiramg algebraic
functions, we shall find useful the following

RULE. Divide both numerator and denominator by the highest podtreovari-
able occurring in either. Then substitute the value of theatée.

Example 2.12.1.Evaluate
Solution. Substituting directly, we get
223 =322 +4 o0
llm —mM—— = —
a—oo by — 22 — 713 0
which is indeterminate. Hence, following the above rule divéde both numera-
tor and denominator by*, Then
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L 23 —322+4 . 2-324 % 2
hm—:hm“—lmz——.
z—00 by — 1% — Ta?  a—oo 5 — - =7 7

2.13 Exercises

Prove the following:

1. lim, o (224) = 1.

Solution:
i, o () =i, (1+ 1)
= lim,_.o(1) + limz — oo (2)
=140=1,
by Theorem 2.8/1
2. lim (wzﬂm) =1
' =00 |\ 5342 3
Solution:

. x4 2x ) 142
lim = lim = z

[ Dividing both numerator and denominator 1¥.]

i (142)

limy o (5 - 3)

by Theorem 2.8.3

L limp (1) Flime e (2) 140 1

o limyeo () —lim,_o(3)  0-3 3

by Theorem 2.8.1.

22—2x4+5 _ 1

3. lim,_,; o 5
3z 4622

4. lim,_,o ST =

_2
=
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: 2241 _
5. lim,_,_» o13 = D.

6. limy, .o(3az? — 2hx + 5h?) = 3az?.

7. lim, .o (ax® + bz + ¢) = 0.

. (x—k)2—2ka®
8. limy_. ) 1
' T—00 33242x—1 ~ 37

10. lim, o 525 = 0.

. cos(a—a)
11. llmaqg m = —tana.

az’+bztc _ a
dr?+ex+f — d°

12, lim, .
13. lim,_o %(ea +e7a) = a.

: 2234322
14. hmzﬂo 3 = Q.

15. lim, 0

16. lim, o -2 = 1.

: (1) _

18. lim, ,; ==L = 3.

s—1

(zth)"—a n—1

19. limy,_.g - =nx

20. limy—g [cos(f + h)=2E] = cos.

da?—x

4-3z2

21. lim, . —%.

l—cos® __ 1
62 2

22. limy_o

Here is an example of the above limit usiSgge :
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Sage

sage: theta = var("theta")
sage: limit((1 - cos(theta))/(theta"2),theta=0)
1/2

This implies that, for small values df, cos(§) = 1 — 362, (This is an
approximation accurate to several decimal placesfox: 1/4.)

23. lim,_,, ﬁ = —o0, If x Is increasing as it approaches the value

24. lim,_,, —— = +o0, if z is decreasing as it approaches the value

r—a
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CHAPTER
THREE

Differentiation

3.1 Introduction

In this chapter, we investigate the ways in which a functian change in value
as the independent variable changes. For instangé;)ifs a function oft (time),
we want to quantify what it means to talk about the “rate ofrged of f(¢).
A fundamental problem of differential calculus is to eststiola mathematically
precise measure of this change in the function.

It was while investigating problems of this sort that Newktovas led to the
discovery of the fundamental principles of calculus. Tqdagpttfried Leibniz
(1646-1716) is generally credited with independently ohgeing calculus around
the same ti

1Sir Isaac Newton (1642-1727), an Englishman, was a man ahtyst extraordinary genius.
He developed the science of calculus under the name of ‘Gihgxi Although Newton had discov-
ered and made use of the new theory as early as 1670, his fghped work in which it occurs is
dated 1687, having the titRhilosophiae Naturalis Principia Mathematica This was Newton’s
principal work. Laplace said of it, “It will always remaingeminent above all other productions
of the human mind.” See frontispiece.

2However, sedttp://en.wikipedia.org/wiki/Newton _v. _Leibniz _calculus _controversy

and the footnote i§3.9 below.
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3.2. INCREMENTS

3.2 Increments

The incrementof a variable in changing from one numerical value to another
the difference found by subtracting the first value from theond. An increment
of z is denoted by the symbdiz, read “deltar” and typically to be regarded as “a
small change in:.” (The student is warned against reading this symbol agéddel
timesz.”) Evidently this increment may be either positive or négataccording
as the variable in changing is increasing or decreasingluev&imilarly,

e Ay denotes an increment of
e A¢ denotes an increment of

e Af(x) denotes an incremerftz), etc.

Ifin y = f(x) the independent variable takes on an incrementz, thenAy
is always understood to denote the For examplé&aif= z; — x4 then

Ay =y1 —yo = f(x1) — f(20) = f(x0 + A) — f(0).

Example 3.2.1.For instance, consider the function

y = 2°.

Assumingz = 10 for the initial value ofz fixesy = 100 as the initial value of;.
Supposer increases ta = 12, that is,Ax = 2; theny increases tg = 144, and
Ay = 44. Supposer decreases to = 9, that is,Az = —1; theny increases to
y = 81, andAy = —109.

Sage

sage: x = var("x")

sage: f(x) = x2; y = f(X)

sage: Deltax = 2; x0 = 10

sage: Deltay = f(x0 + Deltax) - f(x0)
sage: Deltay
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3.3. COMPARISON OF INCREMENTS

3.3 Comparison of increments

Consider the function

= 1'2.

Assuming a fixed initial value for, let = take on an incremenkz. Theny will
take on a corresponding incremeky, and we have

y+ Ay = (v + Azx)?,

or,

y+ Ay = 2° + 27 - Az + (Az)>

Subtractingy = 22 from this,

Ay =22 - Az + (Ax)?, (3.1)

we get the incremenky in terms ofr andAx. To find the ratio of the increments,
divide (3.1) byAz, giving

A
A—isz—l—Am.

If the initial value ofz is 4, it is evident that
. Ay
Alglclilo Az 8.

Let us carefully note the behavior of the ratio of the incrateefz andy as the
increment ofr diminishes.

Initial New Increment Initial New Increment

value ofr value ofr Ax value ofy valueofy Ay %

4 5.0 1.0 16 25. 9. 9.

4 4.8 0.8 16 23.04 7.04 8.8
4 4.6 0.6 16 21.16 5.16 8.6
4 4.4 0.4 16 19.36 3.36 8.4
4 4.2 0.2 16 17.64 1.64 8.2

4 4.1 0.1 16 16.81 0.81 8.1

4 4.01 0.01 16 16.0801 0.0801 8.01
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3.4. DERIVATIVE OF A FUNCTION OF ONE VARIABLE

It is apparent that a& x decreases) y also diminishes, but their ratio takes on
the successive valués 8.8, 8.6, 8.4, 8.2, 8.1, 8.01; illustrating the fact thatﬁ—g
can be brought as near &in value as we please by makidgx small enough.
Thereforg,

Ay

A ne ~ "

3.4 Derivative of a function of one variable

The fundamental definition of the Differential Calculus is:

Definition 3.4.1. Thederivativé of a function is the limit of the ratio of the incre-
ment of the function to the increment of the independentide, when the latter
increment varies and approaches the limit zero.

When the limit of this ratio exists, the function is said toditferentiable or to
possess a derivative

The above definition may be given in a more compact form syiodlb) as
follows: Given the function

y = f(x), (3.2)

and consider: to have a fixed value. Let take on an incremen z; then the
functiony takes on an incremen y, the new value of the function being

y+Ay=f(z+Axzx). (3.3)
To find the increment of the function, subtract (3.2) fron8§3giving

Ay=flr+Ax)— f(x).
Dividing by the increment of the variablé, x, we get

Ay flz+Ax) = f(z)
= = v . (3.4)

3The student should guard against the common error of coimgjudat because the numerator
and denominator of a fraction are each approaching zeroiasitathe limit of the value of the
fraction (or ratio) is zero. The limit of the ratio may take any numerical value. In the above
example the limit is3.

4Also called the differential coefficient or the derived ftino.
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3.5. SYMBOLS FOR DERIVATIVES

The limit of this ratio whemA = approaches the limit zero is, from our definition,
the derivative and is denoted by the symg;él Therefore

dy .. flx+Ax)— f(x)
dx_Alggo Ax ’

defines thealerivative ofy [or f(x)] with respect tax. From (3.3), we also get

dy _ o Y
PE— 1im —
dxr  2Az—0 Ax
The process of finding the derivative of a function is calligterentiation

It should be carefully noted that the derivative is the liofithe ratio, not the ra-
tio of the limits. The latter ratio would assume the fogr,rwhich is indeterminate

(52.2).

3.5 Symbols for derivatives

SinceA y andA = are always finite and have definite values, the expression

Ay
Ax
is really a fraction. The symbol

dy
dx’
however, is to be regarded not as a fraction but as the ligwtatue of a fraction.
In many cases it will be seen that this symbol does possesoinal properties,
and later on we shall show how meanings may be attachég &mddz, but for
the present the symb@% is to be considered as a whole.
Since the derivative of a function af is in general also a function af, the
symbol f'(x) is also used to denote the derivativefdf:).
Hence, ify = f(z), we may write? = f’(z), which is read “the derivative of
y With respect tar equalsf prime ofz.” The symbol

d

dx
when considered by itself is called tdéferentiating operatorand indicates that
any function written after it is to be differentiated witrspect tar. Thus
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3.6. DIFFERENTIABLE FUNCTIONS

° j—g or %y indicates the derivative af with respect tar;
e L f(z) indicates the derivative of(x) with respect tor;
o -L(22% 4+ 5) indicates the derivative &fz* + 5 with respect tar;

e ' is an abbreviated form d.

The symbolD, is used by some writers insteadgf. If then

y=f(z),
we may write the identities
dy d
dx dxy of (@) = f(z)

3.6 Differentiable functions

From the theory of limits (Chapter 2), it is clear that if theidative of a function
exists for a certain value of the independent variable, timetfon itself must be
continuous for that value of the variable.

However, the converse is not always true. Functions have beestructed that
are continuous and yet possess no derivative. But in this l@oknly consider
functionsf(x) that possess a derivative for all values of the independeidhle,
save at most for some isolated (discrete) values of

3.7 General rule for differentiation

From the definition of a derivative it is seen that the proadsdifferentiating a
functiony = f(x) consists in taking the following distinct steps:
General rule for differentiatingﬁ:

e FIRST STEP. In the function replaceby = + A z, giving a new value of
the functiony + A y.

e SECOND STEP. Subtract the given value of the function frormthve value
in order to findA y (the increment of the function).

5Also called the Four-step Rule.
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3.7. GENERAL RULE FOR DIFFERENTIATION

e THIRD STEP. Divide the remaindek y (the increment of the function) by
Az (the increment of the independent variable).

e FOURTH STEP. Find the limit of this quotient, whénz (the increment of

the independent variable) varies and approaches the lerot zThis is the
derivative required.

The student should become thoroughly familiar with thigroy applying the

process to a large number of examples. Three such examplemwibe worked
out in detail.

Example 3.7.1.Differentiate3x? + 5.
Solution. Applying the successive steps in the General Rudgyet, after plac-
ing
y=3z2+5,
First step.

y+Ay=3(x+Ax)2+5=32"+6z-Ar + 3(Az)* +5.
Second step.
y+Ay =322 +6z-Ar+3(Az)2+5
Y =32 +5
Ay = 6z - Az + 3(Ax)>.
Third step.2¥ = 62 + 3 - Ax.
Fourth step 2 = 6x. We may also write this

d
— (32 +5) = 6.

dx
Here’s how to us&age to verify this (for simplicity, we set = Ax):
Sage
sage: x = var("x")
sage: h = var("h")

sage: f(x) = 3 *x2 + 5
sage: Deltay = f(x+h)-f(x)
sage: (Deltay/h).expand()
6xx + 3*h
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3.7. GENERAL RULE FOR DIFFERENTIATION

sage: limit((f(x+h)-f(x))/h,h=0)
6* X

sage: diff(f(x),x)

6* X

Example 3.7.2.Differentiatez® — 2z + 7.
Solution. Place = 2® — 2z + 7.
First step.

y+Ay = (r+Ax)3 —2(x+ Azx)+7
=24+ 327 Ax+ 3z (Az)* + (Az)® — 22 —2- Az +7

Second step.

y+Ay =2 +32% Av+ 3z (Ax)* + (Azx)® =20 —2-Ax +7
Yy =2 — 20 +7
Ay =322 Az + 3z - (Az)? + (Az)* — 2 Az

Third Step.% =32% + 3z - Ax + (Az)? — 2.
Fourth step = 32% — 2. Or,

d
E(f)’ — 224+ 7) =32% - 2.
Example 3.7.3.Differentiate 5.
Solution. Placg) = 5.
First stepy + Ay = (HZW :
Second step.

y+ Ay - (ac+cAac)2

y =

o
Third step.§% = —c - 22H4%.
Fourth step s = —c- S = 5. 04 (3) = 2.



3.7. GENERAL RULE FOR DIFFERENTIATION

Example 3.7.4.(“Cubic splines”) Differentiatef (=), where

fla) = —22% + 322, 0<ux<1,
t 0, z<Qorzxz>1.

(The polynomial—2z?2 + 322 smoothly connects the ling = 0 for z < 0 to the
liney = 1for z > 1. Such “cubic splines” are used in industry to design roads,
buildings, car bodies, ship hulls, and so on.)

The function is given in parts, so the problem must be soleseé dy-case. First,
assumé) < r < 1.

0 < x < 1: In this case, the derivative can be computed ass in the dgamp
above to show

fl(x) =62 +62, O<x<l.

This is not the final answer though! You must also deal withdases: > 1,
x < 0andx = 0,1 (as limits).

x> 1lorx <0:Heref'(z) =0.

x = 0: Note that for “small”h (by which we really meaf:| < 1),

FO+h)—f(0) [ —2hn2+3h, 0<h<l,
h 0, h < 0.

Taking the limit ash — 0 gives

£/(0) = lim

= 0.

fO+h) = f0)
h
Is f'(x) continuous at = 0? Note

lim f'(z) =0

r—0—
and
. / 7 o 2 —
xlg&f () = mlir& 62" + 62 = 0.

Therefore, the slope of the graph= f(z) is zero as you approac¢hform the left
or from the right. This tells ug’(z) is continuously differentiable at both ends.
x = 1: This is similar to the case = 0 and left to the reader.
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3.8 Exercises

Use the General Rul§3.7 in differentiating the following functions:

1. y = 322
Ans: & — 6y

2. y=1a>+2

Ans: &

8. y=22>-3
Ans: & = 4z

9.y=1-22°
Ans: & = —6g?

10. p = ab?

dp
db
2

dy
dzx
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

_ _3
y_1,2_1

Ldy . 6z
Ans: o2 = oz

Here’s how to us&age to verify this:

Sage

sage: y = 3/(x"2-1)
sage: diff(y,x)
B6*x/(X4 - 2 *X2 + 1)

y="Tr+=z
s = at® — 2bt
r = 8t + 3t?
y=
‘=g

y = ba® — cx

p =303 — 20?
S
y:x2x—5
p=1
y:%xQ—i—Qx
2 = 4a — 32?

p =30+ 02
y = ax—2|—b
5 = 342
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3.9. APPLICATIONS OF THE DERIVATIVE TO GEOMETRY

28. y =22 —-3x+6
Ans:y' =2x —3
29. s =2t +5t -8

Ans: s’ = 4t + 5 Here’s how to us&age to verify this (for simplicity, we
seth = At):
Sage

sage: h = var("h")

sage: t = var("t")

sage: s(tf) = 2 *t2 +5 *t - 8
sage: Deltas = s(t+h)-s(t)

sage: (Deltas/h).expand()

4xt + 2xh + 5

sage: limit((s(t+h)-s(t))/h,h=0)

4xt + 5

sage: diff(s(t),t)

4+t + 5

30. p=50° — 20+ 6
Ans: p' = 150* — 2

3l.y =ax® +bxr+c
Ans:y' = 2ax + b

3.9 Applications of the derivative to geometry

We consider a theorem which is fundamental in all differ@ntalculus to geom-
etry.
Let

y = f(z) (3.5)

be the equation of a cur#B.
Now differentiate((3.5) by the General Rule and interprethestep geometri-
cally.
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3.9. APPLICATIONS OF THE DERIVATIVE TO GEOMETRY

P: (z.y) 0 /
Q:z+A zy+A gy

Figure 3.1: The geometry of derivatives.

FIRST STEPy + Ay = f(x + Ax) = NQ
SECOND STEP.

y+ Ay = f(r+ Azx) = NQ
Y = f(x) =MP = NR
Ay = flo+Aa) - f(z) = RQ.
THIRD STEP.
Ay _ fatAo—f@) _ RQ _ RQ
Az MN ~ PR

Az
= tan RP(Q) = tan ¢
= slope of secant line PQ).
FOURTH STEP.
hmAI—>O ﬁ_g — hmAx_)O %;_f(z)

= % = value of the derivative at P.

53



3.9. APPLICATIONS OF THE DERIVATIVE TO GEOMETRY

But when we letAz — 0, the point@ will move along the curve and approach
nearer and nearer 18, the secant will turn abou? and approach the tangent as a
limiting position, and we have also

lima,_o % = lima, otan¢ = tant
= slope of the tangent at P.

Hence % = slope of the tangent lin€7'. Therefore

Theorem 3.9.1.The value of the derivative at any point of a curve is equahéo t
slope of the line drawn tangent to the curve at that point.

It was this tangent problem that led Leibfito the discovery of the Differential
Calculus.

Example 3.9.1.Find the slopes of the tangents to the parahpla z? at the
vertex, and at the point where= 1.
Solution. Differentiating by General Rule§3.7), we get

d
y = d—y = 2x = slope of tangent line at any point on curve.
x

To find slope of tangent at vertex, substitute- 0 in 3/ = 2z, giving

dy
o=
Therefore the tangent at vertex has the slope zero; thaissparallel to the axis
of z and in this case coincides with it.
To find slope of tangent at the poiffit, wherex = 1, substitute iny’ = 2z,
giving

0.

dy
-2 —1-
dx ’
that is, the tangent at the poifitmakes an angle af5° with the axis ofz.

5Gottfried Wilhelm Leibnitz (1646-1716) was a native of Lgig. His remarkable abilities
were shown by original investigations in several brancHdsarning. He was first to publish his
discoveries in Calculus in a short essay appearing in thiegieal Acta Eruditorum at Leipzig
in 1684. It is known, however, that manuscripts on Fluxiomgten by Newton were already in
existence, and from these some claim Leibnitz got the neasid&he decision of modern times
seems to be that both Newton and Leibnitz invented the Gadéntependently of each other. The
notation used today was introduced by Leibnitz. See frpigcse.
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Figure 3.2: The geometry of the derivative;pf= 22

3.10 Exercises

Find by differentiation the slopes of the tangents to théoWwihg curves at the
points indicated. Verify each result by drawing the curvd s tangent.

1. y = 22 — 4, wherez = 2. (Ans. 4.)
2. y =6 — 322 wherex = 1. (Ans. —6.)
3. y = 23, wherer = —1. (Ans. —3.)
4.y = 2, wherex = —1. (Ans. —3.)
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5.y =z — 2%, wherez = 0. (Ans. 1.)

6. y = —, wherez = 3. (Ans. —1.)

7.y = 32, wherez = 4. (Ans.4.)

8. y = 2% — 22 + 3, wherex = 1. (Ans.0.)
9. y =9 — 2% wherex = —3. (Ans.6.)

10. Find the slope of the tangent to the cugve 223 — 6x + 5, (a) at the point
wherez = 1; (b) at the point where = 0.
(Ans. (a)0; (b) —6.)

11. (a) Find the slopes of the tangents to the two cugves 322 — 1 and

y = 2x% 4 3 at their points of intersection. (b) At what angle do they
intersect?

(Ans. (a)£12, £8; (b) arctan 5.

Here’s how to us&age to verify these:

Sage

sage: solve(3 *Xx2 - 1 == 2 *X'2 + 3)X)
[X == -2, X == 2]

sage: g(x) = diff(3 *X'2 - 1,X)
sage: h(x) = diff(2 *X2 + 3,X)
sage: 9(2); 9(-2)

12

-12

sage: h(2); h(-2)

8

-8

sage: atan(12)-atan(8)

atan(12) - atan(8)

sage: atan(12.0)-atan(8.0)
0.0412137626583202

sage: RR(atan(4/97))
0.0412137626583202
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12. The curves on a railway track are often made parabolionm.f Suppose
that a track has the form of the parabgla= 22 (see Figure 3.2 i§3.9),
the directions of the positive-axis and positive-axis being east and north
respectively, and the unit of measuremémhile. If the train is going east
when passing through the origin, in what direction will itdp@ng

(@) Whené mi. east of they-axis?
(Ans. Northeast.)

(b) wheni mi. west of they-axis?
(Ans. Southeast.)

(©) when‘/T3 mi. east of they-axis?
(Ans. N.30°E.)

(d) when<; mi. north of thez-axis?
(Ans. E.30°S., or E.30°N.)

13. A street-car track has the form of the cubic= 3. Assume the same
directions and unit as in the last example. If a car is goingtwéen passing
through the origin, in what direction will it be going

(@) when\/i3 mi. east of they-axis? (Ans. Southwest.)
(b) when\/i3 mi. west of they-axis? (Ans. Southwest.)
(c) When% mi. north of thex-axis? (Ans. S27° 43" W.)
(d) when2 mi. south of ther-axis?

(e) when equidistant from the-axis and thegj-axis?
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CHAPTER
FOUR

Rules for differentiating standard elementary forms

4.1 Importance of General Rule

The General Rule for Differentiation, given §3.7 of the last chapter, is funda-
mental, being a step-by-step procedural implementatidhefery definition of
a derivative. It should be stressed that the student shauttddroughly familiar
with this procedure. However, the process of applying thetaexamples in gen-
eral is often either too tedious or too difficult. Consequergpecial rules have
been derived from the General Rule for differentiating dertdandard forms of
frequently occurring expressionss in order to facilitatecess.

It's convenient to express these special rules by meansrofulas, a list of
which follows. The student should not only memorize eacmida when de-
duced, but should be able to state the corresponding ruleomdsy (The extra
time it takes you to memorize the formulas will probably bpaid in the time
saved doing homework and exam problems correctly.) In tferssulasu, v, and
w denote differentiable functions af

Formulas for differentiation

de

— =0 4.1
T (4.1)
dx

— =1 4.2
T (4.2)
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4.1. IMPORTANCE OF GENERAL RULE

d du dv dw
— —w) = — _— - — 4.3
d:c<u+v w) dx + dx dx (4-3)
d dv
%(cv) =co (4.4)
Product rule: p p p
v u
%(uv) =u— + v (4.5)
Power rule: p p
_dv
e (v") = no" 1% (4.6)
d
. (") = na™! (4.7)
x
Quotient rule:
d ruy UZ—Z — ug—;
dx (;) N v? (4.8)
d /u Z—Z
nl) =% (4.9)
: -
e (log,v) =log, e - f (4.10)
d dv
. (Inv) = df (4.11)

Note Oftenlog,, e = 2.71828... the base of the natural log, is denoted(or
sometimes juslog).

d dv

L) =a'na- 4.12

o (a”) =a"Ina o ( )
d dv
Ly = e 4.13
. (e") =e T (4.13)



4.1. IMPORTANCE OF GENERAL RULE
d d d
. (u’) = vu”_lﬁ + log u u”d—z (4.14)
d d
%(Sin v) = cos U% (4.15)
. dv
%(COS v) = —sin G (4.16)
d . dv
%(cos v) = —sin v (4.17)
dv
_ e 2 _
dx(COt x) csc” v (4.18)
d dv
@(sec v) = sec v tan v (4.19)
d dv
E(CSC v) = —csc v cot v (4.20)
d dv
= (arcsin v) = —=2= 4.21
dm(arcsm v) Vi ( )
dv
— = 4.22
dx(arccos v) Niger (4.22)
d dv
e _ dx
I (arctan v) o (4.23)
dv
_ — __dz
o (arccot v) 2 (4.24)

Note Sometimesrcsin, arccos, and so on, are denotedin, acos, and so on.

d
x

d

Xz
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d—(arcsec v) =

d—(arccsc v) = —

dv
dx

Vo2 —1

dv
dx

vV —1

(4.25)

(4.26)



4.1. IMPORTANCE OF GENERAL RULE

Chain rule: y dy d
Y Yy av
- 4.27
de  dv da’ ( )
wherey is a function ofv, v a function ofz.
dy 1
dy

wherey is a function ofz.
Here’s how to see some of these usBape :

Sage
sage: t = var("t")
sage: diff(acos(t),t)
-l/sgrt(l - t°2)
sage: v = var("v")
sage: diff(acsc(v),v)
-1/(sqrt(l - 1IN°2) *V'2)
sage: x = var("x")
sage: u = function("u",x)
sage: v = function("v",x)
sage: diff(u(x) *V(X),X)
u(x) *diff(v(x), x, 1) + v(x) *diff(u(x), x, 1)
These tell us tha¢reost — _\/11_t2 and dareeser — _v\/vl2_1'
Here are some more examples usBage :
Sage
sage: x = var("x")
sage: u = function(u’, x)
sage: v = function('v’, x)
sage: diff(u/v,x)
diff(u(x), x, L/NX) - u(x) * diff(v(x), x, 1)/v(X)2

sage: diff(sin(v),x)

cos(v(x))  *diff(v(x), x, 1)
sage: diff(arcsin(v),x)
diff(v(x), x, 1)/sqrt(1 - v(x)"2)
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4.2. DIFFERENTIATION OF A CONSTANT

dv

The lastSage computation verifies tha (arcsin v) = \/%

4.2 Differentiation of a constant

The simplest type of function is one that is known to have #raesvalue for all
values of the independent variable, i.e., a constant fonctiet
y==c

denote a constant function. Agakes on an incrementz, the function does not
change in value, that ig\y = 0, and so

Ay
Ax

hm (2Y) =%
Ae—0 \ Az ) dox

Therefore,% = 0 (equation[(4.1) above)he derivative of a constant is zero.

0.

But

4.3 Differentiation of a variable with respect to itself

Lety = .
Following the General Rulg€3.7, we have

e FIRST STEPy + Ay = x + Ax.
o SECOND STEPAy = Az
e THIRD STEP.2Y = 1.

o FOURTH STEPZ = 1.

Therefore,d—g = 1 (equation/(4.2) above). The derivative of a variable wipexct
to itself is unity.
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4.4. DIFFERENTIATION OF A SUM

4.4 Differentiation of a sum

Lety = u + v — w. By the General Rule,

FIRST STEPy + Ay = u+ Au+v + Av — w — Aw.

SECOND STEPAy = Au + Av — Aw.

A Au Av Aw
THIRD STEP.AY — &u 4 Av_ 2w

FOURTH STEPZ = 4 4 d&v _ dv [Applying Theorem 2.8.1]

Therefore,d% (utv—w) = j—g +&_dv (equation/(4.3) above). Similarly, for
the algebraic sum of any finite number of functions.

The derivative of the algebraic sum of a finite number of flonstis equal to
the same algebraic sum of their derivatives.

4.5 Differentiation of the product of a constant and
a function

Lety = cv. By the General Rule,

e FIRST STEPy + Ay = ¢(v + Av) = cv + cAw.
e SECOND STEPAy = ¢ - Aw.

o THIRD STEP.£Y = c22.

e FOURTH STEP.j—g = c2 [Applying Theorem 2.8.2]

dx

Therefore, L (cv) = c2 (equation/(4.4) above).
The derivative of the product of a constant and a functiomjisaéto the product
of the constant and the derivative of the function.
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4.6. DIFFERENTIATION OF THE PRODUCT OF TWO FUNCTIONS

4.6 Differentiation of the product of two functions

Lety = uv. By the General Rule,
e FIRST STEPy + Ay = (u + Au)(v + Av). Multiplying out this becomes

y+Ay=uv+u-Av+v-Au+ Au- Av.
e SECOND STEPAy = u - Av + v - Au+ Au - Awv.
e THIRD STEP.£Y = &Y + v2 + AuL®.

e FOURTH STEPZ = u% + v [Applying Theorem 2.8.1], since when
Axr — 0, Au — 0 and(AuA”) —0.]

Therefore L (wv) = u%2 + v (equation[(4.5) above).

Product rule The derlvatlve of the product of two functiosgqual to the first
function times the derivative of the second, plus the sedanction times the
derivative of the first.

Here’s how to us&age to verify this rule in a special case:

Sage

sage: t = var("t")

sage: f = cos(t)

sage: g = exp(2 =t)

sage: diff(f *g,1)

2xe"(2 *t) xcos(t) - e°(2 *t) *sin(t)
sage: diff(f,t) * g+f * diff(g,t)
2xe"(2 *t) xcos(t) - e°(2 *t) *sin(t)

This simply compute# et cos(t) in two ways (one: directly, the second: using
the product rule) and checks that they are the same.

4.7 Differentiation of the product of any finite num-
ber of functions

Now in dividing both sides of equation (4.5) ly, this formula assumes the form

d du dv
(W) 3 Y
U U v

65



4.8. DIFFERENTIATION OF A FUNCTION WITH A CONSTANT
EXPONENT

If then we have the product ef functionsy = vyv, - - - v, Wwe may write

d dv d
H(’UIUT“U’@) . da;l %(Uz’ug“"un)
V1V2Un C%)l d UQ'UB""Udn
v1 v2 & (-
— _dz dx da:(v31)4 Un)

v1 Vo V304V
dvq dvg dv33 " dun,

dz dz Az dz d

U1 + V9 + v3 + + Vp dx U1U2 Un

= (U2U3 .. Un)% + (U1’1)3 - Un)% +---+ (U1U2 o 'Un—l)%'

The derivative of the product of a finite number of functiesqual to the sum of
all the products that can be formed by multiplying the detixeof each function
by all the other functions.

4.8 Differentiation of a function with a constant ex-

ponent
If the n factors in the above result are each equal, teve get
L) _ &
[ v

Therefore i (v") = nv" 2, (equation|(4.6) above).

Whenv = z this becomes’ (z") = nz"~! (equation/(4.7) above).

We have so far proven equation (4.6) only for the case whés a positive
integer. In§4.15, however, it will be shown that this formula holds troe &ny
value ofn, and we shall make use of this general result now.

The derivative of a function with a constant exponent is etugte product of
the exponent, the function with the exponent diminished hy, @amd the deriva-
tive of the function.

Sage
sage: t = var(’t)
sage: f = function(’f, t)
sage: g = function('g’, t)
sage: (f(t) * g(t)).diff(t) # product rule for 2 functions
f(ty =diff(g(t), t, 1) + g(b) = diff(f(t), t, 1)
sage: h = function(’h’, t)
sage: (f(t) *g(t) =h(t).diff(t) # product rule for 3 functions
f(t)y =g(t) =diff(h(t), t, 1) + f(t) +=h(t) =diff(g(t), t, 1)
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4.9. DIFFERENTIATION OF A QUOTIENT

+ g(t) «h() =diff(f(t), t, 1)

4.9 Differentiation of a quotient
Lety = “v # 0. By the General Rule,

o FIRST STEPy + Ay = 4“2,

_ utAu u _ v-Au—u-Av

e THIRD STEP.Y = "3i-"40,

d

e FOURTH STEPZ — “&-"& [Applying Theorems 2.812 and 2.8.3]

Therefore, & () % (equation|(4.8) above).

The derlvatlve of a fraction is equal to the denominator srttee derivative of
the numerator, minus the numerator times the derivativdhefdenominator, all
divided by the square of the denominator.

Sage

sage: t = var(t)

sage: f = function(f, t)

sage: g = function('g’, t)

sage: (f(t)/g(t)).diff(t)

diff(f(t), t, 1)/g(t) - f(t) = diff(g(t), t, 1)/g(t)"2
sage: (1/f(t)).diff(t)

-diff(f(t), t, 1)/f(t)"2

When the denominator is constant, set c in (4.8), giving (4.9)-% (%) =
[Since: = 4 — (.] We may also get (419) from (4.4) as follows:

“l&‘?‘

du
w() et
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4.10. EXAMPLES

The derivative of the quotient of a function by a constangisato the derivative
of the function divided by the constant.

All explicit algebraic functions of one independent vateamay be differenti-
ated by following the rules we have deduced so far.

4.10 Examples

Differentiate the foIIowin@:

1. y=a3
Solution. £ = 4 (%) = 322, (By (4.7),n = 3.)

2.y = ax* — ba?.

Solution.
j—g = L (az* — ba?)
= 4 (azt) — L(ba?) by (4.3)
= ag(z") = b (2?) by (4.4
= 4ax® — 2bz by (4.7).
3.y= x5 + 5.
Solution. " L ;
- = 5(1933) + 2:(5) by (4.3
= 323 by (4.7) and (4.1)
4. y=45 — =+ 8V
Solution.

TR 3x?)+%<7x*%)+£(8x%) by (4.9
B _4 _4
:%Jﬁ-ﬁ-%l’ 34_%;5 7 bydﬂ)and(‘l.?'.

1To the student: Though the answers are included below foff #fle problems, it may be that
your computation differs from the solution given. You shibthien try to show algebraically that
your form is that same as that given.
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4.10. EXAMPLES

5.y = (z? —3).
Solution.

Z_gyc :5(552_3)4%(372—3) by (4.6),v =x*> —3andn =5
5(x? —3)* -2 = 10z(2* — 3)*.

We might have expanded this function by the Binomial Theorsza{12.1)
and then applied (4.3), etc., but the above process is muogtiei.

6. y =+va?— a2
Solution.
d 1
# o= bt
= 5(@* —a*) 77 f(a® —2?), by (48 (v=a’— 2’ andn=5)
= }@® — o) (-20) = - .

Solution.

W= (322 +2) L (1 +522)7 + (1 +52%)7 L (322 + 2)

(by u=32242, and v = (14 522)2)
= (322 +2)L(1 +522) 2L (1 + 522) + (1 + 522)262 by (4.6), etc.
2 dx
— (322 +2)(1 + 522) " 25z + 62(1 + Ha2)2
= 2D 4 6oy/T + ba?

_ 4523416z
V14522 °

a’+a?
Vai—z2"
Solution. By (4.8), we have

8. y=

=

1
dy (@) L (@)~ (@) L (@—a?)

dz a2 —z2
_ 2x(a27:p2)+x(a[2+12)
(a2—s2)" 3
. . . 1
(multiplying both numerator and denominator by (a* — 22)?)

(a2-a2)3
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4.10. EXAMPLES
9. 5z + 322 — 6. (Ans. % = 202° + 6z)
10. y = 3ca® — 8dx + 5e. (Ans. % = 6cx — 8d)
11. y = 2°*?, (Ans. % = (a + b)z**"1)
12. y = 2™ + nx + n. (Ans. & = pa"t 4 n)
13. f(z) = 2a® — 327 + 5. (Ans. f'(z) = 22* — 3z)
14. f(z) = (a + b)z* + cx + d. (Ans. f'(z) = 2(a + b)x + )
15. L(a+ bx + ca?) = b+ 2cx.
16. %(Sym — 3y +6) =5my™ ! — 3.
17. L2072 + 3273) = —4z7% — 92",
18. 43571 —5) = —1257° — 1.
19. %(4:10% + %) = 2272 + 2.
20. Ly 2 —dy i) =20+ 255,
21. (243 + 5) = 62,
22. 4(3¢5 — 2t?) = 151 — 4.
23. L(ab* + b9) = 4a6® + b.
24. (5 2a32) = —3az.
25. L(9t5 +171) = 15t5 — ¢,
26. L (22" — 2%) = 242 — 925,
27. 1 = c0? + db? + €. (Ans.r’ = 3ch? + 2d6 + e)
28. y = 613 4 dx3 + 23, (Ans.y' = 2122 + 10x2 + 3:10%)
29. y =3z + 3z + 1. (Ans.y' = 2= + 5= — )
30. y = wtborer, (Ans.y =c— %)
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4.10. EXAMPLES

31.

32.
33.
34.
35.
36.

37.
38.

39.
40.

41.

42.

43.

44,

45.

46.

47.

_ (=13 8 B 2 1 _4
Yy = o3 (AnSy’—§x3—5x3+2x 3_|_%$ 3)
y = (223 + 2% — 5)3. (Ans.y’ = 6z(3z + 1)(22° + 2% — 5)?)
y = (22% + 2% — 5)3. (Ans.y = 6x(3z + 1)(22% + 22 — 5)?)
f(@) = (a+ba?)i. (Ans. f'(z) = %2 (a + ba?)7)
flx) = (1 +42%)(1 + 22%). (Ans. f'(x) = 4a(1 + 3z + 102%))
f(x) = (a+z)va— . (Ans. f'(x) = %)
(@) = (atz)" (b+z)". (Ans. f'(z) = (ata)™ (b+2)" [ + 55 ])
Yy = :EL” (AnS % = - nn+1
v =o(a® + 2P — a2, (Ans. Gt = =)
Differentiate the following functions
(a) £20° 4w +6)  (c) GbFar) (1) fzf —ad)
(b) %(at73+ b —9) (f) @ =a’)r (j) F(6+20)
(c) 4303 — 204 1-60) (9) L(4—o}) (k) L/atbys
(d) £ (22° + )3 (h) LVTH92 () L(22% +22%)
y =2 (Ans. 9 = Sr—ie
__ a—zx dy __
Y= (Ans. 2¥ = (aﬂ 5)
S = ﬁ (AnS. % = 31{1’32)
S 2 S S
f(s) = 8, (Ans. f'(s) = “T5)
10) = 7t (Ans. f'(6) = —2 )
F(r)= %ﬂ; (Ans. F'(r) = V1(1 — r)V/1 —12)

v =(5)" . Answ(y) = )
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4.11. DIFFERENTIATION OF A FUNCTION OF A FUNCTION

000 = ek (Al =
49. y = V/2pa. (Ans.y' = 2)

50. y = 2% — a2, (Ans.y = -2

51. y = (a5 — x3)z. (Ans.y = —/T)

52. 1 = /ag + ¢/, (Ans.r = Yatio)
53. u = 5, (Ans.u' = 5= + 277

54, p — @il (Ans. y = =TT

55. Differentiate the following functions:

4.11 Differentiation of a function of a function

It sometimes happens thatinstead of being defined directly as a functioneof
is given as a function of some other variable, sayand thatv is defined as a
function ofz. In that casey is a function ofr throughv and is called @omposite
function The process of substituting one function into anotherrnisetomes called
composition

For example, ify = 2%, andv = 1 — 2?, theny is a composite function. By
eliminatingv we may expresg directly as a function of, but in general this is
not the best plan when we wish to fi@g.

Sage
sage: t = var(t)
sage: f = function('f’, t)
sage: g = lambda v: 2 *Vv/(1-v'2)
sage: g(f(t)).diff(ty # this gives the general form, for any f

2« diff(f(t), t, 1)/(1 - f(t)"2) + 4 =f(t)"2 = diff(f(t), t, 1)/ - f(t)"2)"2
sage: f = lambda x: 1-x"2
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4.11. DIFFERENTIATION OF A FUNCTION OF A FUNCTION

sage: g(f(t)).diff(t) # this gives the specific answer in th is case
4t - (1 -t2)2) -8 *tx(1 - £72)°2/(1 - (1 - t72)2)°2

If y = f(v) andv = g(x), theny is a function ofr throughv. Hence, when we
let x take on an incremenkz, v will take on an incremenf\v andy will also take
on a corresponding incremeAty. Keeping this in mind, let us apply the General
Rule simultaneously to the two functiops= f(v) andv = g(z).

e FIRST STEPy + Ay = f(v+ Av), v + Av = g(z + Ax).
e SECOND STEP.

y+ Ay = f(v+ Av), v+ Av = g(z+ Ax)
y = f(v), v =g(x)
Ay = f(v+ Av) — f(v), Av = g(x+ Az) — g(x)

Av ! Az Az
The left-hand members show one form of the ratio of the iner@mof each
function to the increment of the corresponding variablel @e right-hand
members exhibit the same ratios in another form. Before pgssithe limit
let us form a product of these two ratios, choosing the lafiehforms for
this purpose.

This gives3 - 22, which equalsz?. Write this

e THIRD STEP.AY — [80 /() 8o _ gletAn)o(r)

Ay Ay Av
Ar  Av Az’
e FOURTH STEP. Passing to the limit,

dy dy dv
dr  dv dz’ (4.29)
by Theorem 2.8.2.This may also be written
dy _ /
== 1)-g@),
or
Y (@) f (9(a)) (4.30)
A =g g . .
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4.12. DIFFERENTIATION OF INVERSE FUNCTIONS

The above formula is sometimes referred to asctien rulefor differentiation.
If y = f(v) andv = g(x), the derivative of; with respect tar equals the product
of the derivative ofy with respect ta and the derivative of with respect tac.

4.12 Differentiation of inverse functions

Lety = f(z) be a given function of.
It is often possible in the case of functions considered is ook to solve this
equation forz, giving

T = o(y);

that is, to considey as the independent andas the dependent variable. In that
casef(x) andg(y) are said to benverse functiongand one often writeg = f~1).

When we wish to distinguish between the two it is customaryatb tbe first
one given thalirect functionand the second one tieverse functionThus, in the
examples which follow, if the second members in the first coiare taken as the
direct functions, then the corresponding members in thergkcolumn will be
respectively their inverse functions.

Example 4.12.1. e y=22+ 1,2 =4y — 1.
e y=a",r=1log,y.
e y =sin x, x = arcsin y.

The plot of the inverse function(y) is related to the plot of the functiof{z) in
a simple manner. The plot ¢gf(x) over an intervala, b) in which f is increasing
is the same as the plot @f(y) over (f(a), f(b)). The plot ofy = f(x) is the
“mirror image” of the plot ofy = ¢(z), reflected about the “diagonal ling"= z.

Example 4.12.2.If f(x) = 22, forz > 0, and¢(y) = \/y, then the graphs are
Now flip this graph about th¢5° line:
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4.12. DIFFERENTIATION OF INVERSE FUNCTIONS

-05

Figure 4.2: The functiom(y) = f~'(y) = /¥.
The graph of inverse trig functions, for exampten(xz) andarctan(z), are
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4.12. DIFFERENTIATION OF INVERSE FUNCTIONS

related in the same way.

Let us now differentiate the inverse functions

y=f(z) and = ¢(y)

simultaneously by the General Rule.

e FIRSTSTEPy + Ay = f(z + Az), 2 + Az = ¢(y + Ay)

e SECOND STEP.

y+ Ay = f(z+ Ax), r+ Ar = oy + Ay)
y = f(), = ¢(y)
= f(z + Az) — f(), Az =y + Ay) — d(y)
e THIRD STEP.
Ay flz+Ax) - f(z) Az ¢y + Ay) — ¢(y)
Az Ax ' Ay Ay '
Taking the product of the left-hand forms of these ratiosgwle%-ﬁ—; =1,
or, 2 ﬁfy
e FOURTH STEP. Passing to the limit,
1
dx o
Y
or,
, 1
fx) =

The derivative of the inverse function is equal to the remspt of the derivative
of the direct function.
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4.13. DIFFERENTIATION OF A LOGARITHM

4.13 Differentiation of a logarithm

Lef y = log,v.
Differentiating by the General Rul€3.7), considering as the independent
variable, we have

e FIRST STEP.y + Ay = log, (v + Av) .

e SECOND STEP.

Ay =log,(v+ Av) —log, v
= log, (*53)
= log, (1 + %) :

by item (8),§12.1.
e THIRD STEP. N
L= log, (1—1—%’)
= log, (1+ %)
=1log, (1+22)2.
[Dividing the logarithm byv and at the same time multiplying the exponent
of the parenthesis by changes the form of the expression but not its value

(seeitem (9)§12.1.]
e FOURTH STEP.% = %logae. [When Av — 0 % — 0. Therefore
lima, o (1+ %)T = e, from §2.11, placingr = 4]
Hence

dy d 1

i (log, v) =log, e - o (4.32)
Sincev is a function ofr and itis required to differentiateg, v with respect tar,
we must use formula (4.29), for differentiating a functidradunction, namely,

@_dy dv

de  dv dz’

2The student must not forget that this function is defined dmiypositive values of the base
and the variable.
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4.14. DIFFERENTIATION OF THE SIMPLE EXPONENTIAL FUNCTION

Substituting the value of¢ from (4.32), we get

dy _ log, e Lodv

dr 8y dr
Therefore%(loga x) =log,e- %}E (equatior; (4.10) above). When= ¢, log, e =
logee = 1, and[(4.10) becomes$ (log v) = <= (equation|(4.11) above).

Sage

sage: t = var(’t)

sage: f = function(’f, t)
sage: log(f(t)).diff(t)
diff(f(t), t, 1)/(t)

sage: f = 1172

sage: log(f(t)).diff(t)

2 +t/(1 - t72)

4.14 Differentiation of the simple exponential func-
tion
Lety = a*, a > 0. Taking the logarithm of both sides to the baseve

getlogy = vloga, orv = % = @ -log y. Differentiate with respect tg by
formula (4.11),

dv 1 1

dy loga y’
and from|(4.31),relating to inverse functions, we Q;Et: loga -y, or,

dy _ v
— =10ga-a .
dv &
Sincew is a function ofz and it is required to differentiate’ with respect tar,

we must use formula (4.29), for differentiating a functidradunction, namely,

dy _dy dv

de  dv dz
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4.15. DIFFERENTIATION OF THE GENERAL EXPONENTIAL FUNCTION

Substituting the value dj% from above, we get

dy | , dv
— =10ga-a - —.
dx & dx
Therefore, L (a¥) = loga - a* - % (equation|(4.12) ir§4.1 above).
Sage
sage: t = var(t)
sage: f = function(f, t)

sage: (37f(t)).diff(t)

log(3) *37f(t) =diff(f(t), t, 1)
sage: f = t'7

sage: (37f(t)).diff(t)

7*log(3) *t'6 *3°t7

Whena = e, loga = loge = 1, and [(4.12) become$ (¢”) = "% (equation
(4.13) in§4.1 above) .

The derivative of a constant with a variable exponent is etuéhe product of
the natural logarithm of the constant, the constant with taeable exponent, and
the derivative of the exponent.

4.15 Differentiation of the general exponential func-
tion
Lef y = u". Taking the logarithm of both sides to the baséog, y = vlog, u,

or,y = evlosy,

Differentiating by formula/(4.13),

% _ evlogu%(vlogu)
— evlogu (%Z_z + 10gu§—;) by @
= (295 Tog u)

Therefore & (u) = vu* ™2 + logu - u” %% (equation/(4.14) ig4.1 above).

dz dx

3Hereu can assume only positive values.
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4.15. DIFFERENTIATION OF THE GENERAL EXPONENTIAL FUNCTION

The derivative of a function with a variable exponent is eqadhe sum of the
two results obtained by first differentiating by (4.6), redjag the exponent as
constant, and again differentiating by (4/12), regardihg function as constant.

Letv = n, any constant; then (4.14) reduces to

d . oy du
%(u)—nu et

But this is the form differentiated ig4.8; therefore (4)6) holds true for any value
of n.

Example 4.15.1.Differentiatey = log(z? + a).
Solution. By (4.11) (withv = 2% + a), we have

dy %(xlﬁ—a)
dr —  22+4a
2z
T ox24a”

Example 4.15.2.Differentiatey = log v/1 — 2.
Solution. By (4.11) and (4.6),

1
dy _ %(1—:#32
dx (1—&?2)?
1
_ 1a—a®) 3 (-2)
- 1
(1-a2)?
_ =z
T ox2-1

Example 4.15.3.Differentiatey = a*".
Solution. By (4.12),

d 22
% =loga-a® L(3z?)

dx A
= 6zloga - a® .

Sage

sage: t,a = var('t,a)
sage: f = 3 *t2

sage: (a’f(t)).diff(t)
6*a’(3 *t"2) =xlog(a) =*t
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4.16. LOGARITHMIC DIFFERENTIATION

Example 4.15.4.Differentiatey = be” ++°.
Solution. By (4.4) and (4.13),

2 2
dy =bL (e te

dx
2 2 d
= be” T (% 4 2?)
= 2bgec T,

Example 4.15.5.Differentiatey = z¢".
Solution. By (4.14),

dy

e z etl%(x) + 2 log x%(e‘”)

err
x4 2 logx - €”
z..er (1

evx (I —|—loga:)

4.16 Logarithmic differentiation

Instead of applying (4.10) and (4.11) at once in differamt@glogarithmic func-
tions, we may sometimes simplify the work by first making useme of the
formulas 7-10 ir§12.1. Thus above lllustrative Example 4.15.2 may be solged a
follows:

Example 4.16.1.Differentiatey = log v/1 — 2.
Solution. By using 10, in12.1, we may write this in a form free from radicals
as follows:y = £ log(1 — 2?). Then

d £ (1—a?)
d_g = % . 1—x2 by @)

-z
=2 _ =z
5 =

x2—1

Example 4.16.2.Differentiatey = log / 1+

1—x2"

Solution. Simplifying by means of (10) and (8),§2.1,

y = Ylog(1+22) — log(1 — 22)
A (142 A4 (1—g?
a1 [dz1<+:2 ) _ el >] by (4.11), etc.

.z T 2z
T 14x? + 1—x2 = 1—z4-

In differentiating an exponential function, especiallyaiable with a variable
exponent, the best plan is first to take the logarithm of timetion and then dif-
ferentiate. Thus Example 4.15.5 is solved more elegantiglisvs:
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4.16. LOGARITHMIC DIFFERENTIATION

Example 4.16.3.Differentiatey = «

§12.1. Now differentiate both sides with respect:to
(") by (4.10 and

Solution. Taking the logarithm of both siddsg y = ¢” log z, by Formula 9 in
L (logx) + log w4

dy
A
y
= x-%—i—logm-ex,
or,
d = (1
—y:e” ( logzv) =e’z° (—+log:v>.
dx x
o 7)2—1—\/:1:2—5'

Example 4.16.4.Differentiatey = (4«
Solution. Taking the logarithm of both sides

logy = (2 + Va2 — 5)log(4x? — 7).

Differentiating both sides with respect 1o
1 dy x
=(2+Vz ) + log(4z® —7) -

7 2?2 -5
log(42? — 7)

2—#\/x2—5)+
2 =5

ydw
Vi 8(
4 2 24+vVx2—-5
( ) 42 — 7

dy
— = x(4x
dx
In the case of a function consisting of a number of factors gametimes con-
venient to take the logarithm before differentiating. Thus
Example 4.16.5.Differentiatey = Eﬁjggjg
Solution. Taking the logarithm of both sides
1
logy = §[log(x — 1) +log(z — 2) — log(z — 3) — log(z — 4)].
Differentiating both sides with respect 19
d
vas =3leitas —as el
— 222 —10z+11
T =) (z—2)(z—3)(z—4)
or,
dy 222 — 10x — 11
dr— (z—1)3(z—2)2(z—3)3(z —4)F
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4.17. EXAMPLES

4.17 Examples

Differentiate the foIIowin@:

1.y =log(z +a) Ans: % = 1

2. y =log(ax +b) Ans: d_g =4

3.y =log Iz, Ans: % = Az

4. y = log(2® + ) Ans:y' = %+

5. y = log(a® — 2z + 5) Ans:y = Sr=2
6. y = log,(2v + 2% Ans:y =log,e- %
7. y==xlogx Ans:y =logx + 1

8. f(x) = log(z?) Ans: f'(z) =2

9. f(z) =log’x Ans: f'(z) = %

(Hint: log® z = (log x). Use first[(4.6)p = logz, n = 3; and then[(4.11).)
10. f(z) = log &2 Ans: f'(z) = 245

a—zx a?—x?

11. f(x) = log(z+v1 + x?) Ans: f'(z) = =2

1422

12. %e” = ae™

13, Lehotd = gelotd

14. Lg% = 34 loga

15. 41og(3 — 2t%) = 3t

2t2—-3

d 14y 2
16. i log T T T

2 2 2 2
17. %eb To% — gt

4Though the answers are given below, it may be that your camtiputdiffers from the solution
given. You should then try to show algebraically that younfas that same as that given.
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4.17.

18.

19.

20.

21.

22.
23.
24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

EXAMPLES

4 gloga — 1alos]og g

4p* = 2zlogh - b*

e =57

%ae =loga-a® -e*

y = 7o Ans:y = 2log7- (x4 1)7°+2
y =" Ans:y = —2zlogc - ¢

y = log 15 Ans: % = _L_

dler(1— 2% =e”(1 -2z —2?)

i (&37) = &5

4 (z%e"") = ze(az + 2)

y=%(ee —ea) Ans: d—gy& =L(ea +ea)
y= S Ans: I = i

y = a"a" Ans:y' = a”z" ' (n + rloga)

y =a" Ans:y = z"(logz + 1)

y=a7 Ans: y = w

y = x'8” Ans:y’ = log(x?) - xlos=~1

fly) =logy-e Ans: f'(y) = e <logy + i)
f(s) = s Ans: f'(s) = 1=sles

f(z) =log(log z) Ans: f'(x) = @

F(x) = log*(log ) Ans: F'(z) = —41051(;05:”)
¢(x) = log(log" x) Ans: ¢/ () = o
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4.17. EXAMPLES

39.

40.

41.
42.
43.
44,
45.
46.
47.
48.

49.

50.

51.

52.

53.

4.
55.

Ans: ?//(y) = )

1-y

Ans: f'(z) = ——=2

Valiite 1422
y—xloér Ans.j—g =0
y=e" Ans: & — ¢ (1 + log x)z”
y= Ans: 2 = ()" (log & — 1)
v ()" Ans: 22 = (2)" (1-+ log 2
w = v® Ans: L — ¢’ e (Ltulog)
z= (%)t Ans: % = (%)t (loga —logt — 1)
y=a"" Ans: & = z="+nL(nlogz + 1)
y = Ans: % S (logx + log® = + i)
y=a a;*zQ Ans: % = (;’;’j—‘;i;l%
Compute the following derivatives:

(a) %332 logz  (f) d‘%em log x (k) gilog(a"” + %)
(b) (e =1 (g) 23" D & 108“19(1102 + 5z)
(C) %lOg %2 (h) %J}l(}gcx (Hl) di:l:Q;gi
(d) Llog 1%36 (i) Lloga®V1+2? (n) L(2?+a?)e” @
(e) fav” () £ () (0) k(2 +4)"
o (z+1)2 Ldy (1) (5x?+14a+5)
Y= Gr2pasa)s Ans: 8 = — =5y
5 3
o ((x—1)2 cdy _ _ (z=1)2(72%4302—-97)
LRSS PR ANS: g, 12(2—2) % (2—3) 5
y=aovT—z(l+1) Ans: g = 2ot

€T x2
e
y = 2°(a+32)*(a—2x)*
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Ans: & — 143122242
Ydr T (1—2?

Ans: j—g = 5zt (a+3z)%(a—2x)(a’+2ax—12x2)



4.18. DIFFERENTIATION OFRSIN V/

4.18 Differentiation of sin v

Lety = sinv. By the General Rule for Differentiation §8.7, considering as
the independent variable, we have

e FIRST STEPy + Ay = sin(v + Aw).

e SECOND STEP.

A A
Ay = sin(v + Av) — sinv = 2 cos (v + 7@) - sin 7@

e THIRD STEP.

e FOURTH STEPZ = cosv.

i Av
Sin P

(Sincelima,_.qg ( ~ ) = 1,by§2.10, andima,_.q cos (U + %) = CcOS0.)

Sincew is a function ofx and it is required to differentiateén v with respect

to x, we must use formula (A}4.11, for differentiating a function of a function,
namely,

@_dy dv

de  dv dx’

Substituting valuelZ from Fourth Step, we ge = cosv4. Therefore,

—(sinwv) = cos v

dx dx

(equation((4.15) ir§4.1 above).
The statement of the corresponding rules will now be lefhtgtudent.
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4.19. DIFFERENTIATION OFCOSV

4.19 Differentiation of cosv

Lety = cosv. By item 29,5§12.1, this may be written

(5 -v)
=Ssm/|——v].
y 2

Differentiating by formula (4.15),

& =cos(§—v) L (5-0)
—cos (5 =) (“)
= —Sinxﬁ.

(Sincecos (%) = sinw, by 29,§12.1.) Therefore,

%(cos v) = —sinvd—z,
(equation((4.16) i§4.1 above).
Sage
sage: t = var(t)
sage: f = function(f, t)

sage: cos(f(t)).diff(t)
-sin(f(t)) = diff(f(t), t, 1)

4.20 Differentiation of tan v

Lety = tanv. By item 27,§12.1, this may be written

dy cosv%(sinv)—sinv%(cosv)
dr cos? y

- COSQU%+Sin2’U%

cos? v
_ _dr  __ 2, dv
= GosZo  S€CT Vg,
Therefore,
, dv
—(tanx) = sec® v—,
dx dx

(equation((4.1]7) i4.1 above).
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4.21. DIFFERENTIATION OFCOT V/

4.21 Differentiation of cot v

Lety = cotv. By item 26,512.1, this may be writtep = & Differentiating
by formula (4.8),

dy %(tanv)
de taanvv
_ _sec QE
tan“ v
= — csc? vg—”.
X
Therefore,
, dv
—(cotv) = —csc®v—

dx
(equation|(4.17) i§4.1 above).

dx

4.22 Differentiation of secv

Lety = secv. By item 26,§12.1, this may be writtep = ——. Differentiating by
formula (4.8),

d

dy E(COS’U)
de cos? v
sinvﬁ
— dx

T cos?u.
_ 1 sinvdv

cosv cosv dr
v

= secv tan v
XL

Therefore,

d ( ) t dv
— — -
. secv secv tanv -

(equation|((4.19) 4.1 above).

4.23 Differentiation of csc v

Lety = csc v. By item 26,§12.1, this may be written

1

sinv’

y =
Differentiating by formulal(4.8),
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4.24. EXERCISES

d .
dy  _ dn (sinwv)
dx sin2dv
dv
_ _cosvg
sin? v

= —c¢scocot vfl—”.
XL

Therefore,

d( ) . dv
—(cscv) = —cscvcotv—
dx dx

(equation((4.20) ir§4.1 above).
Sage

sage: t = var(’t)

sage: f = function(’f, t)

sage: csc(f(t)).diff(t)

-cot(f(t)) * csc(f(t)) = diff(f(t), t, 1)
sage: f = tan

sage: csc(f(t)).diff(t)

-sec(t)’2 = cot(tan(t)) * csc(tan(t))
sage: f = arccos

sage: csc(f(t)).diff(t)

t/(1 - t72)°(3/2)

sage: f = arccsc

sage: csc(f(t)).diff(t)

1

4.24 Exercises

In the derivation of our formulas so far it has been necesseapply the General
Rule,§3.7, (i.e. the four steps), only for the following:
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4.24. EXERCISES

43 Lutv-—w)=L4+b_dv Algebraic sum.
4.5 4 (uv) = uL 4 vt Product.

du dv
4.8 4 (Y) = Zderds Quotient.

dv .

4.10 L (log, v) = log, e<=. Logarithm.
4.15 4 (sinv) = cosvee Sine.
4.27 &=y dv Function of a function.
4.28 &= L. Inverse functions.

These are very basic formulas for us. Not only do all the dibvenulas we have
verified so far depend on them, but those formulas we’ll ydater depend on
them as well.

Examples/exercises:
Differentiate the following:

1. y = sin(ax?) .

Z—i = cos ax2%(ax2), by 4.15(v = az®).

2. y=tany1 — x.

This may also be written; = (cos x)3.

Z—Z = 3(cos x)zd%(COS r) by4.6(v=coszandn = 3)

= 3cos’z(—sinz) byl4.16
= —3sinxzcos? .

4. y = sinnx sin” x.
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4.24. EXERCISES

10. F
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
22.

© © N ©

z—g = sinna L (sin )" + sin” 22 (sin mc) by (D(v sinnx and v = sin” x)
(sinz) + sin” z cosnaz 4t (nx) byl4.6andl4.15

= nsinna - sin" " 2 cos ¥ + nsin” z cos nx

= nsin" ! z(sin nx cos x + cos nx sin)

=nsin" tzsin(n + 1)z,

n—1_d

= sinnaz - n(sin x) o

y = sec ar
y = tan(az + b)

s = cos 3ax

s = cot(2t* + 3)
f(y) =sin2ycosy

r) = cot? b

(
F(0) =tanf — 0

f(¢) = ¢sing + cos ¢
f(t) = sin®t cost

r = acos 20

% sin? r = sin 2z

4 cosg(a:2) = —6x cos?(z?) sin(x?)
jt csc 5 = —tcsc % cot %

4 ay/cos2s = —f/sc’io—%ss

2a(1— cosf) = asin

4 (logcosz) = —tanz

4 (logtanz) = -

< (logsin®z) = 2cot x

91

Ans: j—g = asecax tanax
Ans: % = qsec?(ax + b)
Ans: Z—; = —3asin 3ax
Ans: & — —4¢ csc?(2t2 + 3)
Ans: f'(y) = 2 cos 2y cos y—sin 2y sin y
Ans: F’'(z) = —10 cot 5z csc? b
Ans: F'(0) = tan® 6
Ans: f'(¢) = ¢cos ¢
Ans: f'(t) = sin®t(3 cost — sin®t)

Ldr :
AnNs: %= —2asin 20



4.24. EXERCISES
23. %cos% = Fsin{
24. % simei2 = —923 COS 73
25. %esjm = ST cos 1
26. Lsin(logz) = w
27. L tan(logz) = @
28. %a sin® g = asin? g cosg
29. L sin(cos ) = — sin a cos(cos @)
30. L=l —ging + cos
31. y = log ,/1isine Ans: % = L
32. y =logtan (I + %) Ans: & = L
33. f(x) = sin(z + a) cos(x — a) Ans: f'(z) =
cos 2x
34. y = gt Ans: iy = na'™" sec? nx loga
35. y = e“®*sinx Ans:y’ = e (cos x—sin® )
36. y = e"logsinx Ans:y = e*(cot x+logsin z)
37. Compute the following derivatives:

38.
39.
40.

a) L sin 522

(b) = cos(a—bx) (g9) +sin’2z (1) $sintcos? L
& az o2 4 oot b
(c) 4 tan (h) f-cos’(logz)  (m) 5 cot
(d) 4L cot\/ax (i) Ltan?V1—22 (n) %\/1+COSQ¢
(e) <L sece® (j) Llog(sin®azx) (o) Llogy/1—2sin’s

%(xnesinm) — xnflesinx(n + 7 cos ZL‘)
L (e cosmz) = e (acosmz — msinmz)
(6) = Yzt Ans: f/(0) = —2nt
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4.25. DIFFERENTIATION OFARCSIN V/

41. f(g) = “Hlesndcosd) Ans: f'(¢) = €% sin ¢

42. f(s) = (scot s)? Ans: f'(s) = 2scot s(cot s—scsc? s)

43. r = s tan® 6 — tan 6 + 0 Ans: & = tan* 0

44. y = gsin® Ans: g—g = o507 (2L 4 Jogx cosx)

45. y = (sinz)” Ans: y = (sinx)*[logsinz +
x cot x|

46. y = (sinz)""* Ans:y' = (sinz)"™*(1+sec? z logsin )

47. Prove— cosv = — ban “, using the General Rule.

48. Provei cotv = — csc? 0% by replacingeot v by <=2,

smuv

4.25 Differentiation of arcsin v

Lety = arcsin v, thenv = sin .

Remember this function is defined only for valuesvobetween—1 and +1
inclusive and that this (inverse) function is many-valuttgre being infinitely
many angles (in radians) whose sines will equalhus, Figure 4.4
represents only a piece of the multi-valued inverse funatisin(x), represented
by taking the graph ofin(x) and flipping it about thel5° line. In the above
discussion, in order to make the function single-valuedly values ofy between
—5 and7 inclusive are considered; that is, the smallest angle @rares) whose
sine isv.

Differentiatingv with respect toy gives, by 4.15{% = cos y. Thereforeg! v —

C%y , by (4.31). But since» is a function ofz, this may be substituted mtﬁ =
. B (see((4.29)),giving

dy 1 dv 1 dv

de  cosy dr /1—ov2ds

Here we used the fact thatsy = /1 — sin?y = v/1 — v2. The positive sign of
the square root is taken sinces y is positive for all values of between-7 and
5 inclusive. Therefore,

d dv
— (arcsin v) = —=22

dx V12
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4.25. DIFFERENTIATION OFARCSIN V/

Figure 4.3: The inverse sinén~!  usingSage .

05

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

-151

Figure 4.4: A single branch of the functigitxz) = arcsin(x).
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4.26. DIFFERENTIATION OFARCCOSV

(equation[(4.21) i44.1 above).

4.26 Differentiation of arccos v

Lets y = arccos v; theny = cos y.

—
T

-1 0.75 0.5 0.25 0.25 05 0.75 1

Figure 4.5: A single branch of the functigitz) = arccos(x).

Differentiating with respect tg by 4.16,4 y —sin y, therefore,; dy = —SL

by (4. 31) But sincev is a function ofz, this may be substituted |n the formula
d |>
=3 2, by (4.29), giving

dy 1 dv 1 dv

dr ~ siny do  JI-oldw
(siny = y/1 — cos?y = v/1 — 02, the plus sign of the radical being taken, since
sin y is positive for all values of) betweer() andr inclusive). Therefore,
dv
— (arccos v) dx

dx :_\/1—212'

5This function is defined only for values of between—1 and +1 inclusive, and is many-
valued. In order to make the function single-valued, only&a ofy betweerd andr inclusive
are considered; that ig,the smallest angle whose cosineis
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4.27. DIFFERENTIATION OFARCTAN V

(equation|(4.22) 4.1 above).
Here’s how to us&age to compute an example of this rule:

Sage
sage: t = var("t")
sage: x = var("x")
sage: solve(x == cos(t),t)
[t == acos(X)]
sage: f = solve(x == cos(t),t)[0].rhs()
sage: f
acos(x)
sage: diff(f,x)
-1/sqrt(1 - xX°2)

This (a) computearccos directly as the inverse function ebs (Sage can use
the notatiomcos in addition toarccos), (b) computes its derivative.

4.27 Differentiation of arctan v

Le{gy = arctanv; theny = tany.
Differentiating with respect tg by (4.18),

dv = SeC2 )

dy - y?

therefore% = sec12y’ by (4.31). But sincev is a function ofz, this may be
substituted in the formulg = % . 4 by (4.29),giving

dv

dy 1 dv 1 dv
de  secty dr 1+0v2dx’
(sincesec?y = 1 4 tan’y = 1 + v?). Therefore

dv

E(arctan v) = 1 j—xv?

(equation|(4.23) 4.1 above).
6This function is defined for all values of and is many-valued. In order to make it single-

valued, only values of between-7 and 7 are considered; that is, the smallest angle (in radians)
whose tangent is.
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4.28. DIFFERENTIATION OFARCCOT V/

0.5 15 2

JATTA

Figure 4.6: The inverse cosimes~! x usingSage .

4.28 Differentiation of arccot v

Lety = arccot v; theny = cot y. This function is defined for all values of and
is many-valued.In order to make it single-valued, only ealofy betweer) and
7 are considered; that is, the smallest angle whose cotarggent

Following the method of the last section, we get

dv

o (arccot v) e

(equation((4.24) i§4.1 above).

Sage

sage: t = var(t)
sage: f = function(f, t)
sage: acot(f(t)).diff(t)
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4.29. DIFFERENTIATION OFARCSEC V

E 10 15 20

Figure 4.7: The inverse tangentn ! z usingSage .

-diff(f(t), t, 1)/(f(t)"2 + 1)
sage: arccot(f(t)).diff(t)
-diff(f(t), t, 1)/(f(t)"2 + 1)
sage: f = t'7

sage: arccot(f(t)).diff(t)
-7 +176/(1°14 + 1)

4.29 Differentiation of arcsec v

Lety = arcsecv, SOov = secy. This function is defined for all values ofexcept
those lying between-1 and+1, and is seen to be many-valued. To make the
function single-valuedy is taken as the smallest angle whose secant i§his
means that i) is positive, we confine ourselves to points on dié (Figure 4.9),
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4.29. DIFFERENTIATION OFARCSEC V/

15

05

-10 -1.5 -5 -25 Z5 5 1.5 10

-15-

Figure 4.8: The standard branchattan = usingSage .

y taking on values betwedhand? (0 may be included); and if is negative, we
confine ourselves to points on akaC, y taking on values betweear and —3
(—m may be included).

Differentiating with respect tg by (4.4), givesj—; = secytany. Therefore

dy — __1 by (4.31). But since is a function ofz, this may be substituted in

dv secytany’

the formulat = % . 4 by (4.29).giving

dy 1 dv 1 dv
de  secytanydr v — 1dx
(sincesecy = v, andtany = /secy — 1 = v/v? — 1, the plus sign of the radical

being taken, sincean y is positive for an values aof betweert) and? and between
—m and—7, including0 and—m). Therefore,

d dv

dx
—(arcsecv) = —=—
d$( ) vvv? —1
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4.30. DIFFERENTIATION OFARCCSCV

10 15 20

Figure 4.9: The inverse secant~! x usingSage .

(equation|(4.25) ir§4.1 above).

4.30 Differentiation of arccsc v

Let

Y = arccscv;

then

v = CSC .

This function is defined for all values ofexcept those lying betweenl and+1,
and is seen to be many-valued. To make the function sindilesglay is taken as
the smallest angle whose cosecant i$his means that if is positive, we confine
ourselves to points on the a#B (Figure 4.11)y taking on values betwedhand
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05

25 5 75 10

Figure 4.10: The standard branchaotsec = usingSage .

5 (5 may be included); and if is negative, we confine ourselves to points on the
arcC'D, y taking on values betweenar and—7 (-7 may be included).

Differentiating with respect tg by[4.20 and following the method of the last
section, we get

d dv

dx
—(arcescy) = ———2&—
dﬂﬁ( ) Vo2 — 1

(equation((4.26) i§4.1 above).

4.31 Example

Differentiate the following:
1. y = arctan(az?).
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4.31. EXAMPLE

IS
I

Figure 4.11: The inverse secant functiarcsc = usingSage .

Solution. By (4.23) ¢ = ax?)

dy %(aﬁ) _ 2ax
dr 1+ (az?)? 1+ a2t

2. y = arcsin(3z — 423).

Solution. By 4.21 ¢ = 3z — 42?),

dy 4 (3z — 42 B 3 — 1222 3
dv (/1 —(3z —423)2  /1—92% +242* — 1625 1 —2?

+1

2
3. y = arcsec I3

Solution. By (4.25) ¢ = 11),

22—
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05—

25 5 75 10

Figure 4.12: The standard branchaotcsc = usingSage .

d (2?41 (z2=1)2z— (2% +1)2z
dy dr \ z2-1 (22—1)2 2
dr 241 (m2+1)2 1 pon i x?2+1
r2—1 r2—1
d T 1
4, dg Aresin = ———s
d 2 _ —2z
5. Tarccot(z® —5) = e gy
d 20 2
6. s arctan =5 = 755
d 1 2
7. dCCSCom— = s

d 2 _ 2
8. - arcvers 2x° = Win

9. %arctanvl — T = _WIQ*I)

d 3 2
10. f-arcescs. = 5=

d 222 2
11. s AICVErs 205 = 17
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4.31. EXAMPLE
12. & arctan £ = P
13. 4 = =

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

dr arcsin —\/5 = o

flz) = zva? — 22 + a? arcsin £
2v/a? — 22

f(z) = Va* — 2?4aarcsin 2
_ y 2
T = rarcvers - —\/2ry —y

0 = arcsin(3r — 1)

¢ = arctan =2
—ar

5 = arcsec———
1—¢2

xT

V1—z2

d . . .
4-(warcsin x) = arcsin x +

4 (tan 6 arctan ) = sec? f arctan ¢

%[log(arccos t)] - _achcosi\/l—t2

f(y) = arccos(log y)

f(0) = arcsin v/sin 0

1—
f(¢) = arctan , /—HEz:i

p= earctan q

_ eV—e”
u = arctan

o et—et
S = arccos I
y = :L,arcsin:v

x

y = e” arctan x
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Ans:de — ¥ __
dy ’2ry—y2
do _ 3
Ans dr \V6r—9r2
.de 1
Ans: dr — 1+4r2
Lds 1
ANs: iy
Ans: f'(y) = — L

Ans: f'(0) = /1 + cscd

Ans: f'(¢)
. @ o earctan q
Ans: G = S
cdu 2
Ans: dv — evge v
.ds 2
Ans: & = e

Ans: y/ —_ xarcsinz <arcsina; +

Ans:y = e*" [

xT

1
1+x2

1

[\

log ©
V1—x2

+ z” arctan z(1 + log z)]



4.31. EXAMPLE

31. y = arcsin(sin z) Ans:y =1
32. y = arctan 3i;i§O§I Ans:y = m
33. y = arccot? +log /222 Ans:y = xi“f;

1
34. y =log ()" — jarctan x Ans:y = 1
35. y = /1 — 2% arcsin v—= Ans:y = ——M%Cii;f

36.

Compute the following derivatives:
(a) Larcsin2z? (f) 4¢*arcsin i

(b) %arctana% (9) %ea“’tanat

(k) d% arcsin /1 — y?

(1) 4L arctan(log3az)

(¢) Larcsect (h) %} tan ¢? - arctan &2 (m) “L(a®+ s?)arcsecs

4
do

arcsin a’ (n) “Larccot®:

(d) Lzarccosz (i) e

d

(e) La2arccotaxr (j) - arctanv/1+ 62 (0) £v/1—t%arcsint

Formulas/(4.29) for differentiating a function of a functi@and|(4.31) for differ-
entiating inverse junctions, have been added to the listrofi@ilas at the beginning
of this chapter as (4.27) and (4128) respectively.

In the next eight examples, first fi% and % by differentiation and then sub-
stitute the results if2 = % . & (by (4.27)) to find%Z. (As was pointed out in
§4.11, it might be possible to eliminatebetween the two given expressions so as
to find y directly as a function of, but in most cases the above method is to be
preferred.)

In general our results should be expressed explicitly imssof the independent
variable; that is 2 in terms ofz, ¢ in terms ofy, 45 in terms off, etc.

37. y =20 —4,v =322 + 1.
W — 4u; & = 6z; substituting in(4.27)% = 4v - 6z = 24z (322 + 1).
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4.31.

EXAMPLE

38.

39.

40.

41.
42.

43.

y = tan2v, v = arctan(2x —1).
I — 9sec? 2u; . substituting in((4.217),

dv ! dz = 22— 2x+1’

dy  2sec’2v  _tan*2u+1  22* -2z +1

dr 202 —22+1 "222-2x+1  2(x —2?)?
(sincev = arctan(2z — 1), tanv = 2z — 1, tan 20 = 2215).
y =32 —4v+50v=22%-5 Ans:%:
722° — 20422

2v _ _z Ldy 4
Y=32V= 51 Ans: 2% = @—2)2
y = log(a® — v?) Ans: d—g = —2tanx
y = arctan(a+v),v = €* Ans: 2 — ﬁ
_ 2s s _ 2 Ldr 3

r=e*+e° s =log(t—t%) Ans: ¢ = 4t° —
6% + 1

In the following examples first fin% by differentiation and then substitute in

d 1
= a bv@2
dx &
y
o d
to find 52.
AT . d 21Ty .
4. z=yvlty Ans: 3 = 5 = i
45. r = /T +cosy Ans: j—g = ——QW —
o 227232
— .dy _ (l+logy)?
46. z = % Ans: d_:z - loggyy
47. 1 = alog TNV Ve Ans: Z_y — YV “z_yz
Yy x a
48. r = rarcvers £—/2ry — 1 Ans: % — ?

49.

Show that the geometrical significance|of (4.28) is thattangent makes
complementary angles with the two coordinate axes.
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4.32. IMPLICIT FUNCTIONS

4.32 Implicit functions

When a relation betweenandy is given by means of an equation not solved for
y, theny is called anmplicit functionof . For example, the equation

2 —4y =0

definesy as an implicit function ofc. Evidentlyz is also defined by means of this
equation as an implicit function aof. Similarly,

P4yt —a?=0
defines anyone of the three variables as an implicit funaifdhe other two.

It is sometimes possible to solve the equation defining adighfunction for
one of the variables and thus change it into an explicit flonct For instance,
the above two implicit functions may be solved fargiving y = % andy =
+va? — 2?2 — 22; the first showingy as an explicit function of, and the second
as an explicit function of andz. In a given case, however, such a solution may
be either impossible or too complicated for convenient use.

The two implicit functions used in this section for illudicm may be respec-
tively denoted byf(z,y) = 0 andF'(z,y,z) = 0.

4.33 Differentiation of implicit functions

Wheny is defined as an implicit function af by means of an equation in the form

f(z,y) =0, (4.33)
it was explained in the last section how it might be incongahio solve fory in
terms ofzx; that is, to findy as an explicit function o so that the formulas we
have deduced in this chapter may be applied directly. Suehn$tance, would
be the case for the equation

az’ 4+ 223y —y'x — 10 = 0. (4.34)

We then follow the rule:
Differentiate, regardingy as a function ofz, and put the result equal to zefo
That s,

"Only corresponding values afandy which satisfy the given equation may be substituted in
the derivative.
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4.34. EXERCISES

%f(:z:, y) =0. (4.35)

Let us apply this rule in finding from (4.34): by|((4.35),

d
—(az® + 223y — y"z — 10) = 0,

dx
d 6 d d d
- —(2 30N (a7 10) = 0:
T-(aa”) + — (22%y) — - (y'w) — ——(10) = 0;
6a:v5+2x3@ +6x2y—y7—7xy6@ = 0;
dz dzx
dy

(22° — 7xy6)d =y’ — 6az® — 62%y;
x
@ _ y" — 6ax® — 6%y

dx 223 — TxyS

This is the final answer.
The student should observe that in general the result willago bothxz andy.

4.34 [EXxercises

Differentiate the following by the above rule:

1. y*=dpz Ans: g — 22

2 2 .2 Ldy =
2.ty =7 Ans: 2 = -z
3. V%a? + a’y? = a’b? Ans: = — 7
4. y3 — 3y + 2ax =0 Ans: (% — 3(12_ay2)
5.2k 44t =l st = -1
6]}%+y%:a% Ans %_ 3%

z)2 Y 3 dy 3b%zy%
7.2+ () =1 Ans: % — _302y7
8. y* —2ry +1* =0 Ans:d—g:y%
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10.

11.

12.

13.

14.

15.

16.

17.

2

Lt + P —3axry =0 Ans:%:zg_;sx
2_$ O,
o=y Ans: s — Vizmlosy
p* = a®cos 20 Ans: % — _a’sin20 Sipnzo
2 2 .dp __ 3a?cos 30+p?sin 0
p° cos 6 = a®sin 36 Ans.d—g—%c—ospa
cos(uv) = cv Ans: % — %
_ . do sin(6+¢)
= cos(f + ¢) Ans: %= " Temrd
Find 2 from the following equations:
(a) 2% = ay (f) zy+y*+4x=0 (k) tanx+y>=0
(b) 2% +4y* =16 (9) ya®? —y> =5 (I) cosy+322=0
(c) V*a? — a’*y®* = a®* (h) 2% — 223 = o3 (m) xcot y+y =20
= +a 1) x -+ = n =log x
(d) y* =2’ (i) 2*y° +4y =0 (n) y* =log
(e) 2% —y*> =16 (4) y* = sin 2z (0) e +2y° =0
A race track has the form of the circié + 3> = 12500. The z-axis and

y-axis are east and north respectively, and the unitnseter. If a runner
starts east at the extreme north point, in what directiohhilbe going

(a) when251/10 m east of OY?  Ans. Southeast or southwest.

(b) when254/10 m north of OX?  Ans. Southeast or northeast.

(c) when 30 rods west of OY?  Ans. E.36° 52" 12" N. or W.36° 52’ 12" N.
(d) when 200 m south of OX?

(e) when 50 m east of OY?

An automobile course is elliptic in form, the major axesrig 6 miles long
and running east and west, while the minor axi® mmiles long. If a car
starts north at the extreme east point of the course, in wiettbn will the
car be going

(a) when2 miles west of the starting point?

(b) when1/2 mile north of the starting point?
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4.35 Miscellaneous Exercises

Differentiate the following functions:

: — 1,2 . =2

1. arcsiny1 —4x Ans: Tt
2. ze” Ans: e”* (222 + 1)
3. logsin g Ans: % cot 5
4. arccos Ans: T

X . a2
5. Npop Ans: Y

Tz . log =
6. 1+log = Ans: (1+1§g x)?2
7. logsec(1 — 2x) Ans: —2tan(1 — 2z)
8. x%e? 37 Ans: ze*737(2 — 3z)

9. log 4/ % Ans: csc t

Here’s howSage tackles this one:

Sage

sage: t = var("t")

sage: diff(log(sqrt((1-cos(t))/(1+cos(t)))),t)

(cos(t) + 1)  =*(sin(t)/(cos(t) + 1)

+ (1 - cos(t) *sin(t)/(cos(t) + 1)°2)/(2 *(1 - cos(t)))

sage: diff(log(sqrt((1-cos(t))/(1+cos(t)))),t).simpl ify_trig()
-sin(t)/(cos(t)2 - 1)

Sincecos(t)? — 1 = —sin(t)?, the result returned bgage agrees with the
answer given.

10. arcsin /(1 — cos z) Ans: 1, forz > 0; —1, forz < 0.

Here’s howSage tackles this one:
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11.

12.

13.
14.
15.

16.
17.
18.
19.

20.
21.

22.
23.

Sage
sage: diff(arcsin(sqrt((1-cos(x))/2)),x)
sin(x)/((2  *sqrt(2) *sqrt(l - (1 - cos(x))/2) *sqrt(1 - cos(x)))
sage: diff(arcsin(sqgrt((1-cos(x))/2)),x).simplify_tr ig()
sin(x)/((2  *sqrt(1 - cos(x)) *sqrt(cos(x) + 1))
sage: diff(arcsin(sqrt((1-cos(x))/2)),x).simplify_ra dical()
sin(x)/((2  *sqrt(1 - cos(x)) *sqrt(cos(x) + 1))

Here we see again th&age does not simplify the result down to the final
answer. Nonethelessimplify ~ _trig is useful. Since

V1 —cos(z)\/cos(z) +1 = /1 — cos(z)? = /sin(z)? = +sin(z),

we see the answer given is correct (at least for the interwak = < 7).

2s . 2
arctanm Ans: N
o 3/_2 . T4z 3/ 2
(23: 1) 1+ Ans: 3(1+x) 14z

23 arcsin x + (22+42)V1—22

5 5 Ans: 22 arcsin x

26 20
tan” 2 + logsec” 3
arctan 3(e** 4 ¢~2)

3\ 2T
()
xtan T

(2+2)3 (22-1)8

3

x2
esec(l—?m:)
arctanv/1 — x2

52

cos z

2
etana}

log sin? %9
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

e logsin ax

Here’s howSage tackles this Exercise:

Sage

sage: a = var("a")

are’(a *x) *log(sin(a

sage: diff(exp(a *X) *log(sin(a  *X)),x)

*X)) + a *e"(a *x) *cos(a *Xx)/sin(a

*X)

sin 3¢ cos ¢

__a
24/ (b—czm)™
m arctan x

mt+x e
1+m?2 142

tan? x — log sec? x

3log(2 cos z+3sin z)+2x
13

arccot? + log /7=

(log tan(3 — z?)3
1 1
2-3t2 44t 3 4>
I

(14+2)(1—2z)(24x)
(34+x)(2—3x)

arctan(log 3z)

Here’s howSage tackles this one:

Sage

sage: diff(arctan(log(3
1/(x *(log(3 *x)"2 + 1))

*X)),X)
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35. /(b — az™)"

36.

37.

38.
39.

40.
41.
42.
43.
44,

45.
46.
47.

Here’'s howSage tackles this one:

Sage

sage: a,b,m,n = var("a,b,m,n")
sage: diff((b-a *X"m)"(n/3),x)
_axmnxxX’(m - 1) *=(b - a *xX'm)"(n/3 - 1)/3

log \/(a? — bx?)™
log \/ 45

arcsec 20

(&

(2—3z)3
1+4x

a2 —x2

CcCos T

e’ logsin x

T

arcsin ——=—

V142

arctan a”

sin? ma

a

Here’'s howSage solves this one:

Sage

sage: a,m = var("a,m")
sage: diff(@’(sin(m *X)"2),X)
2xa’sin(m =*x)"2 xlog(@a) *mcos(m *x) *sin(m *Xx)

log

cot®(log ax)

(1 — 322)ex

Vi-—a?
Y1ta3
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CHAPTER
FIVE

Simple applications of the derivative

5.1 Direction of a curve

It was shown ir§3.9, that if

y = f(z)
is the equation of a curve (see Figure|5.2), then

dy
dx

Example 5.1.1.A group of hikers are climbing a hill whose height is desadibe
by the graph of

= tan 7 = slope of line tangent to the curve at any point P.

h(z) = —a* 4+ 292% — 2902% + 1200z.

Show that the hikers are climbing downhill when= 5.
This can be verified “by hand” by computirtg(5) and checking that it is nega-
tive (see also the plot in Figure 5.1), or usifgge :

Sage

sage: x = var("x")

sage: h = x4 + 29 *x'3 - 290 *x"2 + 1200 =*X
sage: Dh = h.diff(); Dh

-4 xx"3 + 87 *x"2 - 580 *x + 1200
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5.1. DIRECTION OF A CURVE

sage: Dh(5)
-25
sage: plot(h,0,15)

The output of the above plot command is in Figure 5.1.

2000

1500

1000

500

Figure 5.1: The graph of = —2* + 292°% — 29022 + 1200z.

Thedirectionof a curve at any point is defined to be the same as the direation
the line tangent to the curve at that point. From this it felcat once that

dy
dx
At a particular point whose coordinates are known we write

= tan 7 = slope of the curve at any point P.

= slope of the curve (or tangent) at point (x1, y;).

dy
dx

:| T=T1,Y=Y1

At points such as D or F or H where the curve (or tangent) islighta the z-axis,
T =10° thereforej—g = 0 (see Figure 5.2 for the notation).
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5.1. DIRECTION OF A CURVE

Figure 5.2: The derivative = slope of line tangent to the eurv

At points such as A, B, G, where the curve (or tangent) is peligetar to the
z-axis, ™ = 90°, thereforeZ = oc.

At points such as E, where the curve is rising (moving front tefright on
curve),

T = an acute angle; therefore % = a positive number.
The curve (or tangent) has a positive slope
e to the left of B,
e between D and F, and

e to the right of G,

in Figure 5.2. At points such as C, where the curve is falling,
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5.1. DIRECTION OF A CURVE

d
7 = an obtuse angle; therefore d_y = anegative number.
x

The curve (or tangent) has a negative slope between B andidalsm between F
and G.

Example 5.1.2.Given the curvey = £ — 22 + 2 (see Figure 5/3).
(a) FindT whenz = 1.
(b) FindT whenz = 3.
(c) Find the points where the curve is parallel to thaxis.
(d) Find the points where = 45°.
(e) Find the points where the curve is parallel to the ime- 3y = 6.

5]
&
=
8]
w

Figure 5.3: The graph of = Z* — 2 + 2.

Differentiating, % = 2% — 2z = slope at any point.

@tan7 = [%]  =1-2=—1;thereforer = 135° = 3w /4.

(b) tanT = [%ng =9 — 6 = 3; thereforer = arctan 3 = 1.249....

()7 =0 tanT = fl—g = 0; thereforer? — 2z = 0. Solving this equation, we
find thatz = 0 or 2, giving points C and D where the curve (or tangent) is pdralle

to thex-axis.
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5.1. DIRECTION OF A CURVE

(d)7 = 45° tan7 = & = 1; thereforer?— 22 = 1. Solving, we getr = 1£+/2,
giving two points where the slope of the curve (or tangentisy.

(e) Slope of line =%; thereforez? — 22 = 2. Solving, we getr = 1+ /2,
giving points E and F where curve (or tangent) is parallélite- 3y = 6.

Theangle between two curvesa common point will be the angle between their
tangents at that point. This definition is analogous to tleetfzat the direction of
curve at any point is defined to be the direction of its tangéthat point.

Example 5.1.3.Find the angle of intersection of the circles

(A) 2?2 + y* — 4z =1,

(B) 22 + y* — 2y = 9.

Solution. Solving simultaneously, we find the points of is&tion to be3, 2)
and(1, —2). This can be verified “by hand” or using tBage solve command:

Sage
sage: x = var("x")
sage: y = var("y")
sage: F = X2 +y2 -4 xx-1
sage: G = X2 +y2 -2 =xy -9

sage: solve([F == 0,G == 0],x,y)
[[X == 1, y == -2], [X == 3, y == 2]]

Using (A), formulas ing4.33 give?Y = 2=z Using (B), formulas ir4.33 give
dx Y

% = = Therefore,
T 1-y

2 — 1
{ I} = —— = slope of tangent to (A) at (3, 2).
) r=3,y=2 2

[ * } = —3 = slope of tangent to (B) at (3, 2).
1_y r=3,y=2

We can check this using the commands

Sage

sage: X
sage: y

var("x")
function("'y",x)
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5.1. DIRECTION OF A CURVE

Figure 5.4: The graphs af + y? — 4z = 1, 2% + y* — 2y = 9.

sage: F = X2 +y2 -4 xx -1

sage: F.diff(x)

2xy(x) *diff(y(x), x, 1) + 2 *X - 4

sage: solve(F.diff(x) == 0, diff(y(x), x, 1))

[diff(y(x), x, 1) == (2 - x)/y(X)]

sage: G = X2 +y2 -2 =xy -9

sage: G.diff(x)

2xy(x) *diff(y(x), x, 1) - 2 *diff(y(x), x, 1) + 2 * X
sage: solve(G.diff(x) == 0, diff(y(x), x, 1))

[diff(y(x), x, 1) == -x/(y(x) - 1)]

The formula for finding the angle between two lines whose esogren; and
mo is

120



5.2. EXERCISES

my—m
tanf = #,
1+m1m2

by item 55,§12.1. Substitutingfanf = 313 _ 1; therefored = w/4 = 45°.

1+3
This is also the angle of intersection at thercQ'[nt—Q).

5.2 Exercises
The corresponding figure should be drawn in each of the fatigwexamples:

1. Find the slope of = -*; at the origin.
Ans.1 =tan 7.

2. What angle does the tangent to the cur¥g’® = a3(x + y) at the origin
make with ther-axis?
Ans. T = 135° = 3r/4.

3. Whatis the direction in which the point generating the brefy) = 322 —x
tends to move at the instant when= 1?
Ans. Parallel to a line whose slopeis

4. Show thalj—g (or slope) is constant for a straight line.

5. Find the points where the curye= z* — 322 — 92 + 5 is parallel to the
x-axis.

Ans.z = 3,z = —1.
6. At what point ony? = 222 is the slope equal t8?
Ans. (2,4).

7. At what points on the circle? + y* = r? is the slope of the tangent line
equal to—3?
3r 4r
Ans. (£2 +7)
8. Where will a point moving on the parabaja= 2% — 7z + 3 be moving
parallel to the lingy = 5z + 27
Ans. (6, —3).
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9.

10.

11.

12.

13.

14.

15.

16.

Find the points where a particle moving on the citcler y* = 169 moves
perpendicular to the lingz + 12y = 60.

Ans. (+£12, F5).

Show that all the curves of the systgra log kx have the same slope; i.e.
the slope is independent bf

The path of the projectile from a mortar cannon lies onpaabolay =
22 —a2; the unitis 1 mile, the:-axis being horizontal and theaxis vertical,
and the origin being the point of projection. Find the dir@ctof motion of
the projectile

(a) at instant of projection;
(b) when it strikes a vertical clifg miles distant.

(c) Where will the path make an inclination 43° = /4 with the horizon-
tal?

(d) Where will the projectile travel horizontally?
Ans. (@)arctan 2; (b) 135° = 37/4; (c) (%, 2); (d) (1,1).

274

If the cannon in the preceding example was situated olfsalkiof inclina-
tion 45° = /4, at what angle would a shot fired up strike the hillside?

Ans. 45° = 7 /4.

At what angles does a road following the litye— 22 — 8 = 0 intersect a
railway track following the parabolg = 8z?

AnNS. arctan %, andarctan é.

Find the angle of intersection between the parapbla 62 and the circle
2?2 + % = 16.

AnNS. arctan g\/g

Show that the hyperbol& — 3> = 5 and the eIIipsef—; + % = 1 intersect
at right angles.

Show that the circle? + 4 = 8ax and the cissoig? = 2

2a—x

(a) are perpendicular at the origin;
(b) intersect at an angle d6° = /4 at two other points.
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5.3. EQUATIONS OF TANGENT AND NORMAL LINES

17. Find the angle of intersection of the parabeta= 4ay and the Witch of
Agnesi,y = #“;2.

Ans. arctan 3 = 71°33' = 1.249....

For the interesting history of this curve, see for example
http://en.wikipedia.org/wiki/Witch_of Agnesi

18. Show that the tangents to the Folium of Descartés; 1° = 3axy at the
points where it meets the parabgfa= ax are parallel to theg-axis.

For some history of this curve, see for example
http://en.wikipedia.org/wiki/Folium_of Descartes

19. At how many points will a particle moving on the cunye- 23 —22%+x—4
be moving parallel to the-axis? What are the points?

Ans. Two; at(1, —4) and(3, —+2).

20. Find the angle at which the parabolas 3z%—1 andy = 222+ 3 intersect.

4
ANS. arctan 5

21. Find the relation between the coefficients of the comje$ + b,3*> = 1 and
asx® + byy? = 1 when they intersect at right angles.

11 _ 1 _ 1
ay b1~ b2 bo

Ans.

5.3 Equations of tangent and normal lines

This section will discuss equations of tangent and normabslj lengths of subtan-
gent and subnormal, and rectangular coordinates.

The equation of a straight line passing through the p@inty; ) and having the
slopem is

y =y =m(z — 1)
(this is item 54§12.1).

If this line is tangent to the curve= f(z) at the pointP = (x, y;) (See Figure
to visualize how these can be situated in relationshipegraph of the curve),
then from§5.1,
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5.3. EQUATIONS OF TANGENT AND NORMAL LINES

Figure 5.5: The tangent and normal line to a curve.

)
m=tant = |— .
dl' Tr=T1,Y=Y1

Therefore at a poinP = (z1,y;) on the curve, the equation of thangent line
(containing the segmefitP ) is

([
Yy—Yy = dr

The normal being perpendicular to tangent, its slope is

R {d_f] — —( {@] )
m dy r=21,y=y1 dx T=21,Y=y1

(item 55in§12.1). And since it also passes through the péint (z1,1;), we
have for the equation of thermal line(containing the segmeiN )

(@ — z1). (5.1)

1 T=T1,Y=Y1

dx

y—uy=—( |:@ )@ — x1). (5.2)

:| T=T1,Y=Y1
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5.3. EQUATIONS OF TANGENT AND NORMAL LINES

The length of the segment on the tangent line which is between(z,,y;) and

the point of contact with the-axis is called théength of the tanger{t="7'P), and

the projection of this segment on theaxis is called théength of the subtang&'\t
(= TM). Similarly, we have théength of the norma{ = PN) and thelength of

the subnorma(= M N).

In the triangl€l’ PM, tan 7 = %; thereforg

TM =

MP d
_ [ x = length of subtangent. (5.3)

dy

H MN .
In the triangleM PN, tan 7 = 35, thereforé

tanT :| T=T1,Y=Y1

MN = MPtant = 1 {@

= length of subnormal. (5.4)
dx

:| T=T1,Yy=Y1

The length of tangent £ T'P) and the length of normal £ PN) may then
be found directly from Figure 5.5, each being the hypoteraiseright triangle
having the two legs known. Thus

TP =TM>+ MP?

B \/ (y1 2] thy): +(y1)? (5.5)
= yl\/< [z_ﬂ x:xhy:yl) .

= length of tangent.

Likewise,
PN =+ MN?+ MP?
A w7
dzle=x1,y=y1 1 (56)

2
d
o ([ ) 1
= length of normal.

1The subtangenis the segment obtained by projecting the porfiaR of the tangent line onto
the z-axis).

2|f subtangent extends to the right of T, we consider it pesitif to the left, negative.

3 If subnormal extends to the right of M, we consider it positiif to the left, negative.
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The student is advised to get the lengths of the tangent aihe oormal directly
from the figure rather than by using these equations.

When the length of subtangent or subnormal at a point on a csidetermined,
the tangent and normal may be easily constructed.

5.4 Exercises

1. Find the equations of tangent and normal, lengths of agletat, subnormal
tangent, and normal at the poift ) on the cissoid/? = i

2a—x "

Figure 5.6: Graph of cissoigf = -~ with a = 1.

2a—x

; dy _  3ax?—z®
Solution. 2% = e Hence

dy.  [dy  3d*—add 5
dr, |dx r—ay—a a2 —a)?
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is the slope of tangent. Substitutinglin (5.1) gives
Yy =2r—a,

the equation of the tangent line. Substituting in (5.2) give
2y +x = 3a,

the equation of the normal line. Substitutinglin (5.3) gives

™ =2
2

the length of subtangent. Substitutinglin (5.4) gives

MN = 2a,

the length of subnormal. Also

2
PT = /(TM)%+ (MP)? = az +a? = g\/g

which is the length of tangent, and

PN = /(MN)?+ (MP)? = V4a? + a® = a\/5,
the length of normal.
2. Find equations of tangent and normal to the ellipse 2y? — 22y — 2 = 0
at the points where = 1.
Ans. At(1,0),2y =z —1L,y+2x=2. At (1,1),2y =z + 1,y + 22 = 3.
3. Find equations of tangent and normal, lengths of subtareged subnormal
at the point(z, 3,) on the circld 22 + 2 = 2.

Ans. Tr + Ny = 7’2, T1Y — T = 0, —T1, _ﬁ_

xr1

4. Show that the subtangent to the parahgdla- 4pz is bisected at the vertex,
and that the subnormal is constant and equapto

4In Exs. 3 and 5 the student should notice that if we drop theaigits in equations of tangents,
they reduce to the equations of the curves themselves.
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5. Find the equation of the tangent(at, y;) to the eIIipse;—i + Zb’—j =1.
Ans. ZF + 87 = 1.

Here’s how to find the length of tangent, normal, subtangedtsabnormal
of this in Sage using the values, = 1, b = 2 (soz? + y; = 1) and
I :4/5,y1 = 6/5

Sage

sage: x = var("x")

sage: y = var(y")

sage: F = x2 + y2/4 -1

sage: Dx = -diff(F,y)/diff(F,x); Dx; Dx(4/5,6/5)
-yl(4  *X)

-3/8

sage: Dy = -diff(F,x)/diff(F,y); Dy; Dy(4/5,6/5)
-4 * Xy

-8/3

(For thisSage calculation, we have used the fact théatz, y) = 0 im-
plies F.(x,y) + %Fy(x,y) = 0, wherey is regarded as a function af)
Therefore, we have (using (5.3))

dzx

length of subtangent = 1, {d— = (6/5)(—3/8) = —9/20,

:| T=T1,Y=Y1

(using (5.4))

dy

length of subnormal = y; {d— =(6/5)(—8/3) = —16/5,
T

:| T=Z1,Y=Y1

(using (5.5))

2
length of tangent = yl\/< [Z—ﬂxm yyl) +1 =(6/5)/1+&

— 3/73/20 = 1.2816...
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10.

11.

12.

and (using/(5.6))

2
length of normal = g dyi +1 =(6/5)4/1+%
dzle=x1,y=1y1 9

= 2/73/5 = 3.4176... .

Find equations of tangent and normal to the Witch of Agpesi% as
at the point where = 2a.

Ans. x + 2y = 4a,y = 2x — 3a.

. Prove that at any point on the catengry= g(ﬁ + e~a) the lengths of

2z

2z 2 .
subnormal and normal afge= — e~ ) and- respectively.
a

. Find equations of tangent and normal, lengths of subtaragel subnormal,

to each of the following curves at the points indicated:

(a) y=2a"at (3,5) () y=9—z*at (-3,0)
(b) y* =4z at (9, —6) (f) x* = 6y where x = —6
() 2 +5y*> =14 wherey =1 (g) 22 —ay+2x—9=0at (3,2)

(d) 2%+ y* = 25at(—3, —4) (h) 22* —y* =14 at (3, —2)

. Prove that the length of subtangenijte- «” is constant and equal ggfg—a

Get the equation of tangent to the parahdla- 202 which makes an angle
of 45° = 7 /4 with the z-axis.

Ans. y = x + 5. (Hint: First find point of contact by method of Example
5.1.2))

Find equations of tangents to the cirete+ y? = 52 which are parallel to
the line2x 4 3y = 6.

Ans.2z 4+ 3y =26 =0

Find equations of tangents to the hyperbild — 9y + 36 = 0 which are
perpendicular to the lingy + 5x = 10.

Ans. 2z — 5y += 8 = 0.
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5.5. PARAMETRIC EQUATIONS OF A CURVE

13. Show that in the equilateral hyperbday = «? the area of the triangle
formed by a tangent and the coordinate axes is constant asad teq>.

14. Find equations of tangents and normals to the cytve 222 — 22 at the
points wherer = 1.

Ans. At(1,1),2y = z+ 1,y +2x = 3. At (1,-1), 2y = —x — 1,
Yy —2x = —3.

15. Show that the sum of the intercepts of the tangent to thebptar: +y2 =
1
az.

16. Find the equation of tangent to the cuniér +y) = a*(z —y) at the origin.

17. Show that for the hypocycloig + y3 = a3 that portion of the tangent
included between the coordinate axes is constant and equal t

(This curve is parameterized by= a cos(t)?, y = asin(t)?, 0 < t < 2.
Parametric equations shall be discussed in the next séction

18. Show that the curvg = ae- has a constant subtangent.

5.5 Parametric equations of a curve

Let the equation of a curve be

F(z,y) =0. (5.7)

If « is given as a function of a third variablesay, called gparametey then by
virtue of (5.7)y is also a function of, and the same functional relation (5.7)
betweenr andy may generally be expressed by means of equations in the form

x = f(t),
{y =g(1) )

each value of giving a value ofr and a value of;. Equations/(5.8) are called
parametric equations of the curvd we eliminatet between equations (5.8), it is
evident that the relation (5.7) must result.

Example 5.5.1.For example, take equation of circle
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5.5. PARAMETRIC EQUATIONS OF A CURVE

Pty =rfory=Vr2— a2

We have

y=rsint

{x:rcost (5.9)

as parametric equations of the cirddyeing the paramef%r
If we eliminatet between equations (5.9) by squaring and adding the resudts,
have

2? +y? = r*(cos’ t +sin’t) = r?,

the rectangular equation of the circle. It is evident thatsries from0 to 27, the
point P = (z,y) will describe a complete circumference.

In §5.13 we shall discuss the motion of a poift which motion is defined by

equations such as
x = f(t),
y=g()

We call these thparametric equations of the pattine timet being the parameter.

Example 5.5.2.Newtonian physics tells us that

T =1vycosw-t,
y=—39t* +vpsina-t

are really the parametric equations of the trajectory ofc&eptil@, the timet
being the parameter. The eliminationofives the rectangular equation of the
trajectory

gz°

y=xtana — —5———.
208 cos? o

SParameterizations are not unique. Another set of paracreitiations of the first quadrant of

the circle is given byr = \/\1/% y= \/% for example.

8Subject to (downward) gravitational force but no wind resise or other external forces.
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5.5. PARAMETRIC EQUATIONS OF A CURVE

Since from|((5.8), is given as a function of, and¢ as a function of:, we have

dy  _ dy  dt by (4.27

dz dat dz

=% . L by (4.28

dt

that is,

dy _ @ _9®)

de 9 f(t)
Hence, if the parametric equations of a curve are given, wdind equations of
tangent and normal, lengths of subtangent and subnormajiaéa point on the
curve, by first finding the value c% at that point from (5.10) and then substituting

in formulas|(5.1),/(5.2), (5!3), (5.4) of the last section.

Example 5.5.3.Find equations of tangent and normal, lengths of subtarayet
subnormal to the ellipse

(5.10)

T =acosg, (5.11)
y = bsin ¢,

at the point where) = 7.

As in Figure[ 5.7 draw the major and minor auxiliary circlestbé ellipse.
Through two points B and C on the same radius draw lines ghtallthe axes
of coordinates. These lines will intersect in a paiht= (z, y) on the ellipse, be-
causer = OA = OBcos¢ = acosgp andy = AP = OD = OC'sin ¢ = bsin ¢,
or, £ = cos ¢ and? = sin ¢. Now squaring and adding, we get

2 2
% —i—‘Z—z = cos® ¢ +sin® ¢ = 1,
the rectangular equation of the ellipseis sometimes called theccentric angle
of the ellipse at the point P.

Solution. The parameter being fi% = —asin ¢, j—g = bcos ¢.
Substitutingy = 7 in the given equations (5.11), we g(e%, \%) as the point
of contact. Hencé % | = —1. Substituting in/(5.1),

T=T1,Y=Y1
b b a
-Gl )
or, bz + ay = \/2ab, the equation of tangent. Substituting/in (5.2),
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Figure 5.7: Auxiliary circles of an ellipse.

b _a (m _ 1)
V2 b v2)'
or,v2(ax — by) = a> — 1?, the equation of normal. Substituting in (5.3) and (5.4),
we find

2(h--1
V2 \ a a2’
the length of subnormal, and
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i(_2>_1
vVa\ b/ 2
the length of subtangent.

Example 5.5.4.Given equation of the cycloid in parametric form

{3: = a(f — sin ),

y = a(l — cosf),

0 being the variable parameter; find lengths of subtangebhamal, tangent,
and normal at the point whefe= 7.

The path described by a point on the circumference of a aivbieh rolls with-
out sliding on a fixed straight line is called tbgcloid Let the radius of the rolling
circle bea, P the generating point, and M the point of contact with thedilne
OX, which is calledhe baself arc PM equals OM in length, then P will touch at
O if the circle is rolled to the left. We have, denoting ang@N\? by 6,

r =0M—NM =ab —asinf = a(f — sin ),
y =PN=MC—-AC =a—acosf =a(l —cosb),

the parametric equations of the cycloid, the amgldarough which the rolling
circle turns being the paramet&r.D = 2ra is called thebase of one arclof the
cycloid, and the point V is called theertex Eliminatingé, we get the rectangular
equation

T = aarccos (U) —\/2ay — y>3.
a

TheSage commands for creating this plot are as follows:

Sage
sage: t = var("t")
sage: f1 = lambda t: [t-sin(t),1-cos(t)]
sage: pl = parametric_plot(fl(t), 0.0, 2 *pi, rgbcolor=(1,0,0))
sage: f2 = lambda t: [t+RR(pi)/2-1,t+1]
sage: p2 = parametric_plot(f2(t), -1, 1, rgbcolor=(1,0,0) )
sage: f3 = lambda t: [-t+RR(pi)/2,]
sage: p3 = parametric_plot(f3(t), -1, 1, rgbcolor=(1,0,0) )
sage: t1 = text("P", (RR(pi)/2-1+0.1,1-0.1))
sage: t2 = text("T", (-0.4,0.1))
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5.5. PARAMETRIC EQUATIONS OF A CURVE

15

Figure 5.8: Tangent line of a cycloid.

sage: t3 = text("N", (RR(pi)/2,0))
sage: show(pl+p2+p3+t1+t2+t3)

Solution:
dz dy
= —a(l- ~J = qsinf.
7 a(l — cosb), 7 asin
Substituting in[(5.10),
dy  sin0
de 1 —cosf’

the slope at any point. Singe =
(&) =
Substituting in((5.3),(5.4), (5.5), (5.6) of the last sentiwe get
length of subtangent &,
length of subnormal =,
length of tangent =\/2,

length of normal =uv/2.

, the point of contact i{”%* — a,a), and

iy

135



5.6. EXERCISES

5.6 Exercises

Find equations of tangent and normal, lengths of subtangedtsubnormal to
each of the following curves at the point indicated:

1. Curve:r = 2,2y = t;
Point: ¢t = 1.
Tangent linex — 4y + 1 = 0;
Normal line:8z + 2y — 9 = 0;
Subtangent2;
Subnormal:.

2. Curveir =t,y =t
Point: t = 2.
Tangent line12x — y — 16 = 0;
Normal line:x + 12y — 98 = 0;
Subtangent?;
Subnormal96.

3. Curve:r = t2,y = t3;
Point: ¢t = 1.
Tangent line3z — 2y — 1 = 0;
Normal line:2z + 3y — 5 = 0;
Subtangent?;
Subnormal.

4. Curve:r = 2!,y = e 4;
Point: ¢t = 0.
Tangent linex + 2y — 4 = 0;
Normal line:2z —y — 3 = 0;
Subtangent:2;
Subnormal:—3.
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5. Curve:x = sin t, y = cos 2t;
Point:t = .
Tangent line2y + 4z — 3 = 0;
Normal line:4y — 2x — 1 = 0;
Subtangent:-1;
Subnormal:—1.

Sage can help with the computations here:

Sage
sage: t = var("t")
sage: X = sin(t)
sage: y = cos(2 *t)
sage: t0 = pi/6
sage: y_x = diff(y,t)/diff(x,t)
sage: y_X

-2 *sin(2  t)/cos(t)

sage: y_Xx(t0)

-2

sage: m = y x(t0); x0 = x(t0); yO = y(t0)
sage: X,Y = var("X,Y")

sage: Y - yO == m *(X - x0)

Y - 1/2 == -2 *(X - 1/2)

The last line is the point-slope form of the tangent line of fraramet-
ric curve at that point, = 7/6 (SO, (zo,y0) = (sin(tg),cos(2ty)) =
(1/2,1/2)). We useX andY in place ofx andy so as to not over-ride
the entries thaBage has stored for them. Continuing the abdvage
computations:

Sage
sage: x_y = diff(x,t)/diff(y,t)
sage: len_subtan = y(t0) *X_y(t0); len_subtan
-1/4
sage:
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sage: len_subnor = y(t0) *y X(t0); len_subnor
-1

sage: len_tan = y(t0) *sqrt(x_y(t0)"2+1); len_tan
sqrt(5)/4

sage: len_nor = y(t0) *sqrt(y_x(t0)"2+1); len_nor
sqrt(5)/2

These tell us the length of the subtangen%%(as expected), as well as the
lengths of the subnormal, tangent and normal, using forsn{@al 0), (5.3),
(5.4), (5.5),/(5.6) of the last section.

6. Curveix =1 —t,y =t
Point:t = 3.

7. Curve:r = 3t; y = 6t — t?;
Point:t = 0.

8. Curveir =3,y = t;
Point: ¢t = 2.

9. Curvewr =3,y =t
Point:t = —1.

10. Curveir =2 — t; y = 3t%;
Point: ¢t = 1.

11. Curve:xr = cos t, y = sin 2t;
Point:t = Z.

12. Curveir = 3e7t, y = 2¢';
Point:t = 0.

13. Curver =sin t,y = 2cos t;
Point:t = 7.

14. Curve:xr = 4cos t,y = 3sin t;
Point:t = 7.
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15. Curve:
Point:

In the following curves find lengths of (a) subtangent, (rsarmal, (c) tangent,
(d) normal, at any point:

16. The curve

x =a(cost +tsint),
y = a(sint — tcost).

Ans. (a)y cot t, (b) y tan ¢, (c) =L, (d) -2

sin t! cos t”’

17. The hypocycloid (astroid)
x = 4acos® t,
y = 4asin®t.

Ans. (a)—y cot t, (b) —y tan ¢, (c) =L, (d) =%

sin t’ cos t”

18. The circle

T =1Ccost,
Yy = rsin t.
19. The cardioid

x = a(2cos t — cos 2t),
y = a(2sin t — sin 2t).

20. The folium

_
r= 477
_ 3t
V=1
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5.7. ANGLE BETWEEN RADIUS VECTOR AND TANGENT

21. The hyperbolic spiral
r=gcost
y=¢sint

5.7 Angle between radius vector and tangent

Angle between the radius vector drawn to a point on a curvetenthngent to the
curve at that point. Let the equation of the curve in polardowtes be = f(6).

Let P be any fixed pointp, 6) on the curve. ¥, which we assume as the inde-
pendent variable, takes on an incremaut thenp will take on a corresponding
incrementAp.

0.5

0.3

0.2 / 0.4 0.6 0.8

T

0.1

Figure 5.9: Angle between the radius vector drawn to a paird curve and the
tangent to the curve at that point.

Denote by Q the poirlip+ Ap, 0+ A#), as in Figure 5.)9, Draw PR perpendicular
to OQ where R is a point at a distancesafos Af from the origin. TherOQ =
p+ Ap, PR = psin Af, andOR = pcos Af. Also,
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PR PR psin Af
tan PQR = = = :
PR = = 00 —OR ~ pt Ap— peosAd
Denote byy the angle between the radius vector OP and the tangent P€. If w
now letA¢ approach the limit zero, then

(a) the point Q will approach indefinitely near P;

(b) the secant PQ will approach the tangent PT as a limitirgition; and

(c) the angle PQR will approachas a limit.

Hence
Af Al
tan ¢ = lim P lim : QPAQ
A0—0 p+ Ap — pcos N 2psin” 5 + Ap

(since, from 39§12.1,p — pcos A = p(1 — cos Af) = 2psin® %). Dividing
both numerator and denominator by, this is

psin AO - sin Af
ST el
a pA02 +A0 Hopsm% %2 + &%
Since
A d Ab
Alierilo (A_g) = d_g and hmO <sin 7) =0,
also
sin A0
A, ( Af ) !
and
. sin %
Albrilo 40 =1
by §2.10, we have
P
tan ¢ = - (5.12)
do



5.7. ANGLE BETWEEN RADIUS VECTOR AND TANGENT

From the triangle OPT we get

T=0+1. (5.13)

Having foundr, we may then findan 7, the slope of the tangent to the curve at
P. Or since, from (5.13),

tan 6 + tan ¢

tan = tan(6 +v) = 1 —tanftan

we may calculatean v from (5.12) and substitute in the formula

tan 6 + tan

. 14
1 —tanftanvy (5.14)

slope of tangent = tan7 =

Example 5.7.1.Find ¢» and in the cardioidy) = a(1 — cos #). Also find the
slope at = Z.
Solution.% = asinf. Substituting in/(5.12) gives

p  a(l—cosb) 2asin” § 0

tan'(/} = — = - —= = tan —
dp -0 ] )
= asin O 2asin 3 cos 5

by items 39 and 3%12.1. Sincean ) = tan ¢, we havey = &.
Substituting in/(5.18)r =+ & = . so

¢ tan &~ =1
an 7 = tan — = 1.
1

To find the angle of intersectiop of two curvesC' andC’” whose equations are
given in polar coordinates, we may proceed as follows:

angle TPT=angle OPT- angle OPT,

or,¢ =" — 1. Hence

tan ¢’ — tan 1
1 + tan ¢/ tan ¢’

tan ¢ = (5.15)

wheretan ¢’ andtan ¢ are calculated by (5.12) from the two curves and evalu-
ated for the point of intersection.
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5.7. ANGLE BETWEEN RADIUS VECTOR AND TANGENT

Figure 5.10: The angle between two curves.

Example 5.7.2.Find the angle of of intersection of the curves= asin 26,

p = acos 20.
Solution. Solving the two equations simultaneously, weagéhe point of inter-

section

45°
tn20=1, 20=45"=n/d, 6= =m/8.

From the first curve, using (5.12),
1 1
tant)’ = 5tan29 =3

for = £2° = 7/8. From the second curve,

1 1
tany = —3 cot 20 = —5

for 6 = £° = 1/8.
Substituting in ((5.15),

DO =
+
N[ =

ol i

tany =

—_
|
FT.

therefore)) = arctan %.
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5.8. LENGTHS OF POLAR SUBTANGENT AND POLAR SUBNORMAL

5.8 Lengths of polar subtangent and polar subnor-
mal

Draw a line NT through the origin perpendicular to the radiestor of the point
P on the curve. If PT is the tangent and PN the normal to theecair®, theh

125
1
N
C
I5
0.5+
.25
1 1 | | |
1 05 05 1 15
o]
0.25 -
0.5
-0.75— T
K By

Figure 5.11: The polar subtangent and polar subnormal.

OT = length of polar subtangent,

and

ON = length of polar subnormal

"When# increases withp, j—ﬁ is positive andp is an acute angle, as in Figure 5.11. Then the
subtangent OT is positive and is measured to the right of aarebr placed at O and looking along

OP. Whenj—z is negative, the subtangent is negative and is measured teftlof the observer.
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of the curve at P.
In the triangle OPT{an ¢ = %. Therefore

do
OT = ptany = pzd_p = length of polar subtangent. (5.16)

In the triangle OPNtan ¢ = Z%. Therefore

d
ON = taﬁw = d—g = length of polar subnormal. (5.17)

The length of the polar tangent (= PT) and the length of tharmpabrmal (= PN)
may be found from the figure, each being the hypotenuse ohatrigngle.

Example 5.8.1.Find lengths of polar subtangent and subnormal to the lezates
p* = a®cos 20.

Solution. Differentiating the equation of the curve as aplioit function with
respect td), or,2p% = —24?sin 26, % = —sin20,

Substituting in((5.16) and (5.17), we get

length of polar subtangent =—-£—,
length of polar subnormal =-<i2¢,

If we wish to express the results in termsépfind p in terms off from the given
equation and substitute. Thus, in the above; +a+v/cos 20; therefore

length of polar subtangenta cot 20/ cos 26.

5.9 Examples

1. Inthe circlep = rsin 6, find ¢ andr in terms of6.
Solution:y = 6, T = 26.

2. In the parabola = asec?, show that + ¢ = .
3. Inthe curvep? = a? cos 26, show thaRy = 7 + 46.

4. Show that) is constant in the logarithmic spiral= ¢’. Since the tangent
makes a constant angle with the radius vector, this curvisiscalled the
equiangular spiral.
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5. Given the curve = asin® &, prove thatr = 4¢).

10.

Sage can help with this problem. Using (5.12) but witin place ofé for
typographical simplicity, we have

Sage

sage: a,t = var("a,t")

sage: r = a =sin(t/3)"3

sage:. tanpsi = r/diff(r,t); tanpsi
sin(t/3)/cos(t/3)

Thereforetan(y)) = tan(d/3), sof = 3. Therefore, according to (5.13),
we haver = 6 + ¢ = 3¢ + ¢ = 41}, as expected.

. Show thatan ¢ = 6 in the spiral of Archimedeg = af. Find values of)

whend = 27 and4r.

Solution:¢) = 80°57" = 1.4128... and85°27" = 1.4913....

Find the angle between the straight limeos ¢ = 2a and the circlep =
Sasin 6.

Solution: arctan %

Show that the parabolas = asec’ ¢ andp = besc? ¢ intersect at right
angles.

Find the angle of intersection pf= asin # andp = asin 26.

Solution: At origin0?; at two other pointsrctan 3+/3.

Find the slopes of the following curves at the pointsgieasied:
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11

12.

13.

14.

15.

16.

curve point  solution (if given)
(@ p=a(l —cos,0) 0=73 —1

(b) p = asec?0 p=2a 3

(c) p=asin 46 origin 0,1,00,—1
(d) p? = a®sin 40 origin 0,1,00,—1
(e) p=asin 360 origin 0,v3,—v3
() p=acos 30 origin

(9) p=acos 20 origin

(h) p = asin 20 0=7%

(i) p=asin 30 0="5

Q) p=ab 0=1

(K) pb = a 0=73

N p=¢ 0=0

. Prove that the spiral of Archimedgs- af, and the reciprocal spiral= 7,
intersect at right angles.

Find the angle between the parabpla= asec2§ and the straight line
psin 0 = 2a.

Solution:45° = 7 /4.

Show that the two cardioigs= a(1+cos #) andp = a(1 —cos 6) cut each
other perpendicularly.

Find lengths of subtangent, subnormal, tangent, andalaf the spiral of
Archimedesy = af.

Solution: subt. :%2 tan. =2,/a? + p?, subn. =a, nor. =y/a? + p?. The
student should note the fact that the subnormal is constant.

Get lengths of subtangent, subnormal, tangent, andatannthe logarith-
mic spiralp = a’.

Solution: subt. =2, tan. =p,/1+log%a, subn. =plog a, nor. =

o/ 1+ log® a.

Whena = e, we notice that subt. = subn., and tan. = nor.

Find the angles between the curpes a(1 + cos #) andp = b(1 — cos 0).
Solution:0 and 7.
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5.10. SOLUTION OF EQUATIONS HAVING MULTIPLE ROOTS

17. Show that the reciprocal spiral= 3 has a constant subtangent.

18. Show that the equilateral hyperbo}&sin 20 = a?, p? cos 20 = b? inter-
sect at right angles.

5.10 Solution of equations having multiple roots

Any root which occurs more than once in an equation is calleduiple root
Thus3, 3, 3, —2 are the roots of

ot =723 4+ 922 + 270 — 54 = 0;

hence3 is a multiple root occurring three times. Evidently this ation may also
be written in the form
(z—3)*(x+2)=0.

Let f(x) denote an integral rational function efhaving a multiple root;, and
suppose it occurs: times. Then we may write

f(x) = (x —a)" (), (5.18)

where¢(x) is the product of the factors corresponding to all the rodtg (@)
differing froma. Differentiating (5.18),

f'(@) = (z—a)"¢'(x) + me(z)(z — )™,

or,

f'(@) = (& —a)" (z — a)¢/(z) + mo(2)]. (5.19)

Thereforef’(z) contains the factofz — a) repeatedn — 1 times and no more;
that is, thegreatest common divis¢6.C.D.) of f(x) and f'(x) hasm — 1 roots
equal toa.

In casef(z) has a second multiple rogt occurringr times, it is evident that
the G.C.D. would also contain the factar — 3)"~* and so on for any number of
different multiple roots, each occurring once mor¢ ) than in the G.C.D.

We may then state mule for finding the multiple rootsf an equatiornyf(z) = 0
as follows:

e FIRST STEP. Find’'(x).
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e SECOND STEP. Find the G.C.D.¢{z) and f/(x).

e THIRD STEP. Find the roots of the G.C.D.Each different roohef&.C.D.will
occur once more irf(z) than it does in the G.C.D.

If it turns out that the G.C.D.does not involwg then f(x) has no multiple roots
and the above process is of no assistance in the solutioe efjiration, but it may
be of interest to know that the equation has no equal, i.etipheilroots.

Example 5.10.1.Solve the equation® — 822 + 13z — 6 = 0.

Solution. Placef (z) = ® — 822 + 13z — 6.

First step.f'(r) = 3z* — 16z + 13.

Second step. G.C.D.&— 1.

Third step.z — 1 = 0, thereforer = 1.

Since 1 occurs once as a root in the G.C.D.,it will occur twitehe given
equation; that is(x — 1) will occur there as a factor. Dividing® — 82 + 132 — 6
by (z — 1) gives the only remaining factdr — 6), yielding the root. The roots
of our equation are theh 1, 6. Drawing the graph of the function, we see that at
the double root: = 1 the graph touches theaxis but does not cross it.

Note: Since the first derivative vanishes for every multiglet, it follows that
thex-axis is tangent to the graph at all points correspondingutiphe roots. If a
multiple root occurs an even number of times, the graph weillaross ther-axis
at such a point (see Figure 5.12); if it occurs an odd numbénafs, the graph
will cross.

5.11 Examples

1. 23 — 722 + 162 — 12 = 0.
Ans. 2, 2, 3.

2. 2 —622—8xr —3=0.

3.2 =723+ 92%2 +27x — 64 = 0.
Ans. 3, 3, 3, —2.

4. x* — 5% — 922 + 81z — 108 = 0.
Ans. 3, 3, 3, —4.
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a0l

30 —

10

30

Figure 5.12: plot off (z) = (x — 1)*(x — 6) illustrating a multiple root.

5. 2% + 623 + 22 — 242 + 16 = 0.
Ans. 1,1, —4, —4.

6. x* — 923 4+ 2322 — 3x — 36 = 0.
Ans. 3, 3, —1, 4.

7. 2% — 623 + 1022 —8 = 0.
Ans.2,2,1+ /3.

Sage can help with this problem.
Sage

sage: x = var("x")
sage. solve(x’4 - 6 *X'3 + 10 *X2 - 8 == 0,X)
[x == 1 - sqrt(3), x == sqgrt(3) + 1, x == 2]

150



5.11. EXAMPLES

sage: factor(x’4 - 6 *X'3 + 10 *xX2 - 8)
X -2)2 *(X2 -2 *x - 2)

This tells use that the ro@toccurs with multiplicity2.

8. 2 —x* — b + 22 +8x +4 = 0.

Sage can help with this problem.

Sage

sage: x = var("x")

sage: solve(x’5 - 15 *X'3 + 10 *X2 + 60 *x - 72 == 0,X)
[x == -3, x == 2]

sage: factor(x’5 - 15 *X'3 + 10 *X2 + 60 *x - 72)

x - 23 *=(x + 3)2

This tells use that the rod occurs with multiplicity3 amd the root—3

occurs with multiplicity2, as expected.

9. 2% — 152% + 1022 + 60x — 72 = 0.
Ans.2,2,2, —3, —3.

10. 2° — 32* — 523 4+ 1322 + 242 + 10 = 0.

Show that the following four equations have no multiple @yuoots:
11. 23 + 922 + 22 — 48 = 0.

12. 2* — 1522 — 10z + 24 = 0.

13. 2% — 32% — 62 + 142 + 12 = 0.

14. 2" — a™ = 0.
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15. Show that the condition that the equation

23 +3qr+r=0
shall have a double root i + 2 = 0.

16. Show that the condition that the equation

23+ 3prt +r=0
shall have a double root ig4p® + r) = 0.

5.12 Applications of the derivative in mechanics

Included also are applications to velocity and rectilin@ation.
Consider the motion of a point P on the straight line AB.

Figure 5.13: lllustration of rectilinear motion.

Let s be the distance measured from some fixed point as A to anyigosit
P, and lett be the corresponding elapsed time. To each valuecofresponds a
position of P and therefore a distance (or spacdjences will be a function of

t, and we may write

s = [(t)

Now lett take on an incremenk¢; thens takes on an increm&vﬁs, and

8s being the space or distance passed over in theAime
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5.12. APPLICATIONS OF THE DERIVATIVE IN MECHANICS

As
At
of P during the time intervalAt. If P moves with uniform motion, the above
ratio will have the same value for every interval of time asthie velocity at any
instant.
For the general case of any kind of motion, uniform or not, efee thevelocity
(or, time rate of change of s) at any instant as the limit of riugo % as At
approaches the limit zero; that is,

= the average velocity (5.20)

’ As
= lim —
U= A At’

or

_ ds
T dt
The velocity is the derivative of the distance (= space) wegpect to the time.
To show that this agrees with the conception we already hbvelocity, let us
find the velocity of a falling body at the end of two seconds.
By experiment it has been found that a body falling freely frast in a vacuum
near the earth’s surface follows approximately the law

v

(5.21)

s = 16.1¢2 (5.22)

wheres = space fallen in feet, = time in seconds. Apply the General Ru8,7,
to (5.22).

FIRST STEPs + As = 16.1(t + At)* = 16.1¢% + 32.2t - At + 16.1(A¢)%.

SECOND STEPAs = 32.2t - At + 16.1(At)>.

THIRD STEP.% = 32.2t + 16.1At = average velocity throughout the time
interval At.

Placingt = 2,

As

— = 64.4 + 16.1A¢ 5.23
A7 + (5.23)

which equals the average velocity throughout the time valed¢ after two sec-
onds of falling. Our notion of velocity tells us at once thai23) does not give us
the actual velocity at the end of two seconds; for even if vke tat very small,
say 145 Or 1555 of a second/ (5.23) still gives only the average velocityimuthe

1000
corresponding small interval of time. But what we do mean ey \talocity at
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5.13. COMPONENT VELOCITIES. CURVILINEAR MOTION

the end of two seconds is the limit of the average velocity whe diminishes
towards zero; that is, the velocity at the end of two secosft®m (5.23)64.4 ft.
per second.

Thus even the everyday notion of velocity which we get fromesience in-
volves the idea of a limit, or in our notation

At—0

As
v = lim <At> 64.4 ft./sec

The above example illustrates well the notion of a limitiredue. The student
should be impressed with the idea that a limiting value isfende, fixed value, not
something that is only approximated. Observe that it doemiage any difference
how small16.1At may be taken; it is only the limiting value 6fl.4 + 16.1At¢,
whenAt diminishes towards zero, that is of importance, and thateved exactly
64.4.

5.13 Component velocities. Curvilinear motion

The coordinates andy of a point P moving in thecy-plane are also functions
of time, and the motion may be defined by means of two equgti@n& f(t),
y = g(t). These are thparametric equationsf the path (se€5.5).

The horizontal compona@tvx of v is the velocity along the-axis of the pro-
jection M of P, and is therefore the time rate of change.oflence, from((5.21),
whens is replaced by, we get

_dx

r = ——. 5.24
Ve = (5.24)
In the same way we get the vertical component, or time ratbange ofy,
dy
=2, 5.25

Representing the velocity and its components by vectors,ave At once from
the figure

2 2 2
VT =0 vy,

9The equation of the path in rectangular coordinates mayndfte found by eliminating
between their equations.
10The direction ofv is along the tangent to the path.
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Figure 5.14: The components of velocity.

or,

2 2
o= (%) (Y, 520

giving the magnitude of the velocity at any instant.

If 7 be the angle which the direction of the velocity makes withitkaxis; we
have from the figure, using (5.21), (5.24), (5.25),

dy dx dy

. v v ) -
smT:—y:%; COST:—x:%; tanT:—yzg—t. (5.27)
) S ) S XL
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5.14. ACCELERATION. RECTILINEAR MOTION

5.14 Acceleration. Rectilinear motion

In generaly will be a function oft. Now let¢ take on an incremenkt, thenv

takes on an incrementv, and% is the average acceleration of P during the time

interval At. We define thecceleratioru at any instant as the limit of the rat%—
asAt approaches the limit zero; that is,

_ Av
vl WV

_dv
o dt
The acceleration is the derivative of the velocity with respe time.

or,

a (5.28)

5.15 Component accelerations. Curvilinear motion

In treatises on Mechanics it is shown that in curvilinear iotothe acceleration
is not, like the velocity, directed along the tangent, butaad the concave side,
of the path of motion. It may be resolved into a tangential ponent,a;, and a
normal componenty,, where

dv

Ea

(R is the radius of curvature. Sg&1.5.)
The acceleration may also be resolved into componentsl@ai@lthe axes of

the path of motion. Following the same plan useg5ml3 for finding component
velocities, we define the component accelerations pataltbexz-axis andy-axis,

a; = a, = (5.29)

v
.

du,, dv,
— Ay = —.
a’ Y dt

dvu, 2 dv, 2
o= (%) (), 531

which gives the magnitude of the acceleration at any instant

(5.30)

[

Also,
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5.16 Examples

1. By experiment it has been found that a body falling freebnfrrest in a
vacuum near the earth’s surface follows approximately diaesl = 16.1¢2,
wheres = space (height) in feet,= time in seconds. Find the velocity and
acceleration

(a) atany instant;
(b) at end of the first second;
(c) at end of the fifth second.

Solution. We have = 16.1¢%.
(a) Differentiating,% = 32.2t, or, from (5.21)p = 32.2t ft./sec. Differen-

tiating again, % = 32.2, or, from (5.28),a = 32.2 ft. /(sec.)?, which tells

us that the acceleration of a falling body is constant; irepthords, the
velocity increase82.2 ft./sec. every second it keeps on falling.

(b) To find v anda at the end of the first second, substitute- 1 to get
v =322 ft/sec.,a = 32.2 ft./(sec.)’.

(c) To findv anda at the end of the fifth second, substitite- 5 to get
v = 161 ft./sec.,a = 32.2 ft./(sec.).

2. Neglecting the resistance of the air, the equations ofandor a projectile
are

r=uv9cos¢-t, y=1wysing-t— 16.1t%

wherewv, = initial velocity, ¢ = angle of projection with horizon, = time
of flight in seconds;z andy being measured in feet. Find the velocity,
acceleration, component velocities, and component aeatelns

(a) atany instant;

(b) at the end of the first second, having given= 100 ft. per sec.,
¢ = 30° = 7 /6;

(c) find direction of motion at the end of the first second.
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Solution. From((5.24) and (5.25), (&) = vo cos ¢; v, = vgsin ¢ — 32.2t.
Also, from (5.26),v = /vo% — 64.4tv, sin ¢ + 1036.8t2. From (5.30) and
(5.31),a, = 0; a, = 32.2; a = 32.2.

(b) Substitutingt = 1, vy = 100, ¢ = 30° = 7/6 in these results, we
getv, = 86.6 ft./sec.,a, = 0; v, = 17.8 ft./sec.,a, = —32.2 ft./(sec.)’;
v = 88.4 ft./sec.,a = 32.2 ft./(sec.)’.

(c) T = arctan -* = arctan égg 0.2027... =~ 11°, which is the angle of

direction of motlon with the horizontal.

3. Given the following equations of rectilinear motion. &itne distance, ve-
locity, and acceleration at the instant indicated:

(@) s =t34+2t%t = 2.
Ans.s =16, v = 20, a = 16.
(b) s=t>+2t;¢t = 3.
Ans.s =15, v =8, a = 2.
() s=3—4t;t=4.
Ans.s = —13,v = —4,a = 0.
(d) z =2t —t%t=1.
Ans.z =1,v=0,a = —2.
(e)y=2t—t3t=0.
Ans.y =0,v=2,a=0.
(f) h =20t + 16t%; t = 10.
Ans. h = 1800, v = 340, a = 32.
(9) s =2sint;t= 7.
ANs.s = V2,0 =2,a = —/2.
(h) y=acos%;t = 1.
Ans.y:%,v:—%,a:—%".
(i) s=2¢e%;t=0.
Ans.s =2,v =6,a = 18.
(4) s =2t —3t;t=2.
K) x=4+1t3t=3.
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(I) y="5cos 2t;t = %.
(M) s =bsinT; t = 2.
(n) z=ae 2t =1.

(0) s =24+t t = to.

(p) s =10log 75:t = 1.

. If a projectile be given an initial velocity af00 ft. per sec. in a direction
inclined45° = /4 with the horizontal, find

(a) the velocity and direction of motion at the end of thedhand sixth
seconds;

(b) the component velocities at the same instants.

Conditions are the same as for Exercise 2.

Ans.

(a) Whent = 3, v = 148.3 ft. per sec.7 = 0.3068... = 17°35'; whent = 6,
v = 150.5 ft. per sec.; = 2.79049... = 159°53;

(b) Whent = 3, v, = 141.4 ft. per sec.p, = 44.8 ft. per sec.; when = 6,
v, = 141.4 ft. per sec.p, = —51.8 ft. per sec.

. The height (=) in feet reached in seconds by a body projected vertically
upwards with a velocity ofy, ft. per sec. is given by the formula =
vot — 16.1¢2. Find

(a) velocity and acceleration at any instant; and;if= 300 ft. per sec.,
find velocity and acceleration

(b) at end of 2 seconds;
(c) at end of 15 seconds. Resistance of air is neglected.

Ans. (a)v = vy — 32.2t, a = —32.2; (b) v = 235.6 ft. per sec. Upwards,
a = 32.2 ft. per (sec) downwards; (cp = 183 ft. per sec. Downwards,
a = 32.2 ft. per (sec) downwards.

. A cannon ball is fired vertically upwards with a muzzle ety of 644 ft.
per sec. Find (a) its velocity at the end Idf seconds; (b) for how long it
will continue to rise. Conditions same as for Exercise 5.

Ans. (a)322 ft. per sec. Upwards; (0 seconds.
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7. Atrain left a station and inhours was at a distance (space) of

s =13+ 2t 4+ 3t

miles from the starting point. Find its acceleration (a)at énd oft hours;
(b) at the end of hours.

Ans. (a)a = 6t + 4; (b) a = 16 miles/(hour}.

8. In ¢ hours a train had reached a point at the distancktbf- 4¢* + 164>
miles from the starting point.

(a) Find its velocity and acceleration.
(b) When will the train stop to change the direction of its ronf
(c) Describe the motion during the first 10 hours.

Ans. (Q)v = t3 — 12t% + 32t, a = 3t% — 24t + 32;
(b) at end of fourth and eighth hours;

(c) forward first4 hours, backward the nexthours, forward again aftey
hours.

9. The space in feet described irseconds by a point is expressed by the
formula

s = 48t — 16t°.
Find the velocity and acceleration at the entg @econds.
Ans.v = 0,0 = —32 ft. /(sec.)’.

10. Find the acceleration, having given

(@) v="t>+2tt=3.

Ans.a = 8.

(b) v =3t -3t =2.
Ans.a = —9.

(c) v=4sini; t=1Z.
Ans.a = /3.
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11.

12.

13.

14.

15.

(d) v=rcos 3t;t = 3.
Ans.a = —3r.

(€) v =>5e*;t=1.
Ans. a = 10e2.

At the end of seconds a body has a velocity3sf + 2t ft. per sec.; find its
acceleration (a) in general; (b) at the endiaieconds.

Ans. (a)a = 6t + 2 ft./(sec.)’; (b) a = 26 ft./(sec.)?

The vertical component of velocity of a point at the end eéconds is

vy, =3t> =2t +6

in ft. per sec. Find the vertical component of acceleratgraf any instant;
(b) at the end of seconds.

Ans. (a)a, = 6t — 2; (b) 10 ft./(sec.)” .

If a point moves in a fixed path so that

s =1,

show that the acceleration is negative and proportionahéoctube of the
velocity.

If the distance travelled at tintes given by

s = clet + CQe_t,

for some constants andc,, show that the acceleration is always equal in
magnitude to the space passed over.

If a point referred to rectangular coordinates move$ab t

r=a;+ascost, y=by+bysint,

for some constanis andb;,show that its velocity has a constant magnitude.
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16. If the path of a moving point is the sine curve

T = at,
y = bsin at
show (a) that the:-component of the velocity is constant; (b) that the ac-

celeration of the point at any instant is proportional taditgance from the
x-axis.

17. Given the following equations of curvilinear motion diat the given instant
® Uz, Uy, V;

L ait! ay1 al

position of point (coordinates);

direction of motion.

the equation of the path in rectangular coordinates.

@ax=t3y=tt=2.

(@) © =2sint,y =3cos t; t = .
(b) z=t,y=1t3t=1.
(h)xzsint,yzcos?t;t:f
) xz=ty=1t%t=3.

(i) z=2t,y=3¢e";t=0.

(d) x=2t,y=t2+3;t=0.

e xz=1—1ty=2t1t=2.

() x=3t,y=logt;t=1.

() x =rsint,y =rcos t;t:?jf.

(K) x=t,y=12/t;t = 3.
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5.17. APPLICATION: NEWTON’'S METHOD

5.17 Application: Newton’s method
4

Newton’s method (also known as the Newton-Raphson methaat) efficient
algorithm for finding approximations to the zeros (or ro@s real-valued func-
tion. As such, it is an example of a root-finding algorithmprbduces iteratively
a sequence of approximations to the root. It can also be wskaddta minimum
or maximum of such a function, by finding a zero in the functdinst derivative.

5.17.1 Description of the method

The idea of the method is as follows: one starts with an ingigess which is
reasonably close to the true root, then the function is apmated by its tangent
line (which can be computed using the tools of calculus),@mcomputes the x-
intercept of this tangent line (which is easily done withneémtary algebra). This
x-intercept will typically be a better approximation to thumction’s root than the
original guess, and the method can be iterated.

Supposef : [a,b] — R is a differentiable function defined on the intery@lb]
with values in the real numbeRs. The formula for converging on the root can be
easily derived. Suppose we have some current approximatiorThen we can
derive the formula for a better approximatian,, ; by referring to the diagram on
the right. We know from the definition of the derivative at aeg point that it is
the slope of a tangent at that point.

That is

rise _ Ay _ (@) =0 _ 0~ f(aa)
run - Ax Ty — Tyt B ($n+1 _Z'n).

f(w,) =

Here, f denotes the derivative of the functign Then by simple algebra we can
derive

n

We start the process off with some arbitrary initial value (The closer to the
zero, the better. But, in the absence of any intuition abowdrevtthe zero might
lie, a "guess and check” method might narrow the possieditio a reasonably
small interval by appealing to the intermediate value teeoj The method will

This section uses material modified from Wikipedia [N].
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usually converge, provided this initial guess is close gido the unknown zero,
and thatf’(xy) # 0. Furthermore, for a zero of multiplicity, the convergence
is at least quadratic (see rate of convergence) in a neighbod of the zero,
which intuitively means that the number of correct digitagbly at least doubles
in every step. More details can be found in the analysis@etielow.

Example 5.17.1.Consider the problem of finding the positive numhewith
cos(z) = x*. We can rephrase that as finding the zerg @f) = cos(z) — z3. We
have f'(x) = —sin(x) — 3z%. Sincecos(z) < 1 for all x andx?® > 1 for x > 1,
we know that our zero lies betwe@rand1. We try a starting value of, = 0.5.

vo= wp—HE = 05— =000 1 112141637097
vy = m—LEE = 0.909672693736
T3 = 19— L@ — 0867263818209
f(x2) —
Ty = I3— J{,((j;)) = 0.865477135298
v = wy— LI = 0.865474033111
T = 15— L&) — (.865474033102
fl(xs)

The correct digits are underlined in the above example. ttiqudar, x4 is cor-
rect to the number of decimal places given. We see that thebauof correct
digits after the decimal point increases frarfor x3) to 5 and10, illustrating the
guadratic convergence.

5.17.2 Analysis

Suppose that the functiohhas a zero at, i.e., f(a) = 0.

If fis continuously differentiable and its derivative does wentish ata, then
there exists a neighborhood @such that for all starting values, in that neigh-
borhood, the sequende:,,} will converge toa.

In practice this result is “local” and the neighborhood ohweergence is not
known a priori, but there are also some results on “globavemyence.” For
instance, given a right neighborhoodof a, if f is twice differentiable inJ and
if f"£0,f-f">0inU,then, for each, € U the sequence,, is monotonically
decreasing ta.
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5.17.3 Fractals

For complex functiong : C — C, however, Newton’s method can be directly
applied to find their zeros. For many complex functions, tberaary of the set
(also known as the basin of attraction) of all starting valtieat cause the method
to converge to a particular zero is a frattal

For example, the functiofi(z) = z° — 1, x € C, has five roots, equally spaced
around the unit circle in the complex plane.zf is a starting point which con-
verges to the root at = 1, colorx, yellow. Repeat this using four other colors
(blue, red, green, purple) for the other four rootsfofThe resulting image is in
Figure 5.15.

Figure 5.15: Basins of attraction faf — 1 = 0; darker means more iterations to
converge.

12The definition of a fractal would take us too far afield. Roygpeaking, it is a geometrical
object with certain self-similarity properties [F].
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CHAPTER
SIX

Successive differentiation

6.1 Definition of successive derivatives

We have seen that the derivative, if it exists, of a functibr: s also a function

of z. This new function may itself be differentiable, in whichseahe derivative
of the first derivative is called the second derivative ofdhginal function. Sim-

ilarly, the derivative of the second derivative is called third derivative; and so
on. Thus, if

y - 31’4,
& = 1223,
4 (4 = 3607,
d [d (d _
i lis (2)] = 72a,
and so on.
6.2 Notation
The symbols for the successive derivatives are usuallyeatdied as follows:
2
pam -8
d d (d d d d
@l ()] = & <7§'> =T
i (dn—1y> o dny
dx \ dxn—1 T dan



6.3. THEN-TH DERIVATIVE

If y = f(z), the successive derivatives are also denoted by

f@), (@), £ (@), fY ), oy [ ()

or

(4) (n)

T ANE T TR N T

or,
d? d? d* dr

d

6.3 Then-th derivative

For certain functions a general formula involvingnay be found in the expres-
sion for then-th derivative. To discsover this formula, the usual platoisind
a number of successive derivatives, as many as may be ngcessiiscover by
induction the formula. This formula can then (hopefully)dseven by the method
of mathematical inductidn

Example 6.3.1.Giveny = ¢, find 2.
Solution.j—g = qe?®, % = a%e™, ... ,g—i’ = q"e?,
Example 6.3.2.Giveny = log , find ££.
Solution. % = L @y — _ 1 Ay _ 12 Ay _ 125 dy _ (_qyn-1 (D)

Example 6.3.3.Giveny = sin =, find ££.

Solution. % = cos = = sin (z + %),

Py d <+7r>_ <+7r)__ Jr27r
2 sin ( x =cos |z 5 =sin( x ,
@—iin x+2—ﬂ = CO x+2—7r = sin x+3—ﬂ
dx3_d:cs 2 - os 2 -0 2

dTL
Y :sin<x+n—7r>.

dxm 2
1The mathod of inductin is usually taught in a course aftercuak. For
the curious reader, we recommend the discussion and retwerin Wikipedia
http://en.wikipedia.org/wiki/Mathematical _induction  as a good start.
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6.4. LEIBNITZ'S FORMULA FOR THEN-TH DERIVATIVE OF A
PRODUCT

6.4 Leibnitz’'s Formula for the n-th derivative of a
product

This formula expresses theth derivative of the product of two variables in terms
of the variables themselves and their successive dergtiv
If u and v are functions of, we have, from equation (4.5) 4.1 above,

Differentiating again with respect tg

d? (uv) d*u L du du dv L du du dv n d*v  d*u n 2du dv N d*v
—(uv) = —v U—— = ——V —_——tu—.
dx? dx? dede ' dede dr?  dx? dx dx dx?
Similarly,
dn(wv) = G R PG 2+ g
dx5v + 3§$12L Z;}: + 331; ng tu d:c*’

However far this process may be continued, it will be seehtttenumerical co-
efficients follow the same law as those of the Binomial Thegrana the indices
of the derivatives correspd?ldb the exponents of the Binomial Theorem. Rea-
soning then by mathematical induction from theth to the(m + 1)-st derivative

of the product, we can prouesibnitz’'s Formula

d—n(uv) B dnuv+ndn_1ud_v+ n(n —1) d”_Qualg_v+ +nd_u d"tv +u@
dzn ~ dan dzn—1 dx 2l dxn—2 dzx? dr dzn=1  dxn’

6.1)
foralln > 0.

Example 6.4.1.Giveny = e” log z, find j‘%@{ by Leibnitz’'s Formula.

. 2
Solution. Letu = e*, andv = log z; then® = 7, & = 1 du _ oo
T dx z! dx
d?v __ 1 ddu _ oz dv _l
dz? — T 22! dz® Y dz® T

Substituting in/(6.1), we get
d3y | _|_3i_3i—x 1 _|_§_i_|_£
d£3_e ogxr " 513'2 =€ ogxr " :L‘2 £E3 .
This can be verified using tifgage commands:

2To make this correspondence complet@ndv are considered a§f and4 da:U'
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6.5. SUCCESSIVE DIFFERENTIATION OF IMPLICIT FUNCTIONS

Sage

sage: x = var("x")

sage: f = exp(X)  *log(x)

sage: diff(f,x,1); diff(f,x,2); diff(f,x,3)

e'x *log(x) + e"™x/x

ex xlog(x) + 2 *e™x/x - ex/X2

ex *xlog(x) + 3 *ex/x - 3 *exXIX2 + 2 *=e™x/X3
sage: diff(f *g,%,1)

f(x) =*diff(g(x), x, 1) + g(x) * diff(f(x), x, 1)
sage: diff(f *(J,X,2)
f(x) =*diff(g(x), x, 2)+2 = diff(f(x), x, 1) *diff(g(x), x, L)\

+ g(x) *diff(f(x), x, 2)

Example 6.4.2.Giveny = 2% find % by Leibnitz’s Formula.

Solution. Letu = 2?2, andv = €%; thend = 2z, ¢ o = ae™, fl; = 2z,
Ly — g2ew, Tu — 333 = a’e™, ..., T8 =0, v = ¢"e, Substituting in
(Ll) we get
dn
d_y = 2%a"e" +2na" T xe®4n(n—1)a" 2™ = a" %" [r*a*+2nar+n(n—1)].

xn

6.5 Successive differentiation of implicit functions
To illustrate the process we shall fi@j{cag from the equation of the hyperbola

ba? — a*y? = d®b.

Differentiating with respect te, as in§4.33,

2% — Qazy@ =0,
dx
or,
dy b’z
- = —. 6.2
dr  a’y (6.2)
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6.5. SUCCESSIVE DIFFERENTIATION OF IMPLICIT FUNCTIONS

Differentiating again, remembering thats a function ofz,

2,12 _ 12 2d
d*y  a*yb —bxaﬁ.

dr? aty?

Substituting forj—g its value from|(6.2),

iy a’b*y — a’*b*x (ZQTZ) R0 — a%y?)

dx2 aty? aty?

The given equatiort’z? — a?y? = a?b?, therefore gives,

dy b

dr? ~  ayd
Sage can be made to do a lot of this work for you (though the notatioasn’t
get any prettier):

Sage
sage: x = var("x")
sage: y = function("y",x)
sage: a = var("a")
sage: b = var("b")
sage: F = x"2/a”2 - y2/b2 - 1

sage: F.diff(x)
2xx/a”2 - 2 *y(x) =diff(y(x), x, 1)/b"2
sage: F.diff(x,2)

-2 xy(x) =diff(y(x), x, 2)/b2 - 2 = diff(y(x), x, 1)°2/b"2 + 2/a"2

sage: solve(F.diff(x) == 0, diff(y(x), x, 1))

[diff(y(x), x, 1) == b2 *x/(@2 *y(x))]

sage: solve(F.diff(x,2) == 0, diff(y(x), X, 2))

[diff(y(x), x, 2) == (b"2 - &2 *diff(y(x), x, 1)72)/(a"2 *y(X))]

This basically says

b
dr a2y’
and 2 2 20 1\2
" __ @ _ b"—a (y,)
dx? aty
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Now simply plug the first equation into the second, obtainifig= —b> —1‘“_Z§Zz2/yz

Next, use the given equation in the form*bz? /y* — 1 = b?/y* to get the result
above.

6.6 EXercises
Verify the following derivatives:

1.y =42 — 622 + 42 + 7.
Ans. 3272 =122z —1).

3

2. f(z) ==
Ans. fW(z) = 2

(1—z)>"
3. fly) =1y°.
Ans. f©(y) = 6!.

6. y = (z — 3)e* + 4dze” + x.

Ans.y" = 4e*[(x — 2)e” + x + 2].
7.y=%es+ea).

Ans.y’ = L(ea +ea) =4,
8. f(z) = az® + bz +c.

Ans. f"(x) = 0.

9. f(x) =log(z + 1).

AnNS. f(4)(l’) = —ﬁ

10. f(x) = log(e” + e 7).
Ans. f"(z) = =3 )

(eazfe—x)S
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11.

12.

13.

14.

15.

16.

17.

18.

19.

r = sin af.

4 .
AnNS. % = a*sinaf = a'r.
r = tan ¢.

Ans. 2%2 = 6sect ¢ — 4sec? ¢.

r = log sin ¢.

Ans. r" = 2cot ¢ csc? .

f(t) =e"cos t.

Ans. fW(t) = —de ' cos t = —4f(t).
f(0) = Vsec26.

Ans. f7(6) = 3(7(6))5 — f0).

p = (¢* + a®) arctan <.

dp _ 4a3
ANS. 5 = @
Yy =a”.
dn
Ans. o4 = (loga)"a”.

Sage

sage: a,x = var("a,x")

sage: y = a'x

sage: diff(y,x); diff(y,x,2); diff(y,x,3); diff(y,x,4)
a’x *log(a)

a'x xlog(a)"2

a’x *log(a)’3

a'x *log(a)™4

y =log(1+ x).

dy __ n—1 (n—1)!
Ans. o4 = (—1) rajn
Y = COs ax.

Ans. % = a"cos (ax + ).

173



6.6. EXERCISES

20. y = 2" log x.

Ans, %y — (=Dt
21. Y= 1J_r:v

Hint: Reduce fraction to form-1 + = before differentiating.

22. Ify = ¢"sin z, prove thatLy — 2;’—2 +2y =0.

23. Ify = acos(log x) + bsin(log ), prove thatr? jzg + x Y+y=0.

Use Leibnitz's Formula in the next four examples:
24. y = x%a”.
Ans. £¢ = q*(log a)"%[(zlog a + n)? — n).
25. y = ze”.
Ans. L4 = (1 +n)e®.
26. f(r) = e*sin .
Ans. f(V(z) = (v/2)"e"sin (x + ).
27. f(0) = cos ab cos b.
Ans. f"(6) = (“H’) cos [(a+b)f + 2] + (a;b)n cos [(a—b)§ + 2],

28. Show that the formulas for acceleration, (5.28), (5.8®y be writteru =
d?s _ d*z o d2y
a2 o = gz dy = g2

29. y% = 4am

4, 2
Ans. & de = —;Lg,.

30. b%z? + a2y2 = a®b?.

bt L dy . 318
Ans de - a2y3l dx2 - C,44y5'

2
31 a2+ =02 Ly =
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32.

33.

34.

35.

36.

37.

vty =a®.

A3y 24z
Ans. d;féj = — 2y
ax® + 2hxy + by? = 1.

d®y _  h2—ab
Ans. dz? — (ha+by)3"
y? —2zy =

d &y = a? Ay _ _
Ans. Y= e &
sec gbcos 0 = c.

_ tan’fH—tan® ¢

AnS d(j)2 - tans 0
0 = tan(¢p + 0).

d30 _ 2(5+80%436%)
ANS. P 7 B

3a’x
(y—z)°"

Find the second derivative in the following:

(a) log(u+v)=u—v. (e) y>+a*— 3azxy = 0.

(b) e“+u=¢e"4v (f) v*=2may +2*>—a=0.
(c) s=1+te (9) y=sin(z +y)

(d) e®+st—e= (h) e*tY =y
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CHAPTER
SEVEN

Maxima, minima and inflection points

7.1 Introduction

Many practical problems occur where we have to deal with tions that have
a maximum value (or a minimum value) and it is important townehere the
extreme values of the function occur.

Example 7.1.1.A wooden box is to be built to contair)8 ft3. It is to have an
open top and a square base. What must be its dimensions intbatléne amount
of material required shall be a minimum; that is, what dimems will make the
cost the least?

Let x denote the length of side of square base in feet,;adéenote the height of
box. Since the volume of the box is givepmay be found in terms of. Thus
volume = 2%y = 108, soy = 1;’—28 Let M denote the number of square feet of
lumber required as a function of We computel/ explicitly as follows:

area of base #° sq. ft.,
area of four sides #zy = % sq. ft.

Hence

432

M= M(z)= 2>+
xr

is a formula giving the number of square feet required in arghdox having a
capacity ofl08 ft>. Draw a graph of\/(z).
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7.1. INTRODUCTION

Figure 7.1: A box with square x z base, heighy = 108/, and fixed volume.

300 —
200 —

100 —

Figure 7.2:Sage plotofy = 2% + %2, 1 < z < 10.

What do we learn from the graph?
(a) If the box is carefully drawn, we may measure the ordicateesponding to
any length & z) of the side of the square base and so determine the number of
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7.1. INTRODUCTION

square feet of lumber required.

(b) There is one horizontal tangent (RS). The ordinate frgraint of contact T
is less than any other ordinate. Hence this discovery: Omleeotboxes evidently
takes less lumber than any of the others. In other words, weinfer that the
function defined by = M (z) has a minimum value. Let us find this point on
the graph exactly, using our Calculus. Differentiatiidx) to get the slope at any
point, we have

that is, whenr = 6 the least amount of lumber will be needed.

Substituting inM (z), we see that this i8/ = 108 sq. ft.

In addition to the graph, the fact that a least valuébéxistscan be intuitively
deduced by the following argument. Let the base increase fovery small
square to a very large one. In the former case the height neugttty great and
therefore the amount of lumber required will be large. Inl#iter case, while the
height is small, the base will take a great deal of lumber. Buuition tells that
M therefore varies from a large value, decreases for a whiég, increases again
to another large value. It follows, then, that the graply ef M (z) must have a
“lowest” point corresponding to the dimensions which regqtine least amount of
lumber, and therefore would involve the least cost.

Here is how to compute the critical points &f in Sage :

Sage

sage: x = var("x")

sage: M = X2 + 432/x

sage: solve(M.diff(x)==0,x)

[x == 3 *xsqrt(3) =*I - 3, x == -3  =*sqgrt(3) ==l - 3, x == 6]

This says thatz? + 432/x)" = 0 has three roots, but only one real root - the one
reported above at = 6.
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7.1. INTRODUCTION

» Vi00—z

Figure 7.3: A rectangle with circumscribed circle.

Example 7.1.2.For instance, suppose that it is required to find the dimessod
the rectangle of greatest area that can be inscribed in le afcadiusb inches.
Consider the circle in Figure 7.3:

Inscribe any rectangle, as BCDE, where CD is the base and DE Ieetght. Let
CD = x,s0DFE = /100 — 22, and the area of the rectangle is evidently

A= A(x) = 2Vv100 — 22
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That a rectangle of maximum area mesistmay be seen as follows: Let the
base CD £ z) increase tol0 inches (the diameter); then the altitude DE (
v/100 — z2) will decrease to zero and the area will become zero. Novh&ebase
decrease to zero; then the altitude will increasetmches and the area will again
become zero. It is therefore intuitively evident that thexests in-between these
extremes a rectangle of greatest area. By a careful studyedfgtre we might
suspect that when the rectangle becomes a square its aréhbeotne greatest,
but this would be mere guessw%rkﬁ\ better way would be to plot the graph of
the functiony = A(x) and note its behavior. To aid us in drawing the graph of
A(z), we observe that

(a) from the nature of the problem it is clear thatind A(x) must both be
positive; and

(b) the values of range from zero ta0 inclusive.

Now draw the graph (we have us8dge in Figure 7.4).
What do we learn from the graph?

(a) If the rectangle is carefully drawn, we may approximéte area of the
rectangle corresponding to any valuéy measuring the length of the cor-
responding ordinate. For example, when= 3 inches, then the area is
aboutA(z) ~ 28.6 inches; and whenz$ inches, then the area is about
A(z) = 39.8 inches.

(b) There is one horizontal tangent to the cugve A(x).

The y-coordinate at the poirif’ there this tangent contacts the curve is greater
than any otheg-coordinate on the curve. We deduce from this that one of the
inscribed rectangles has a greater area than any of thesothesther words, we
may infer from this that the function defined hy= A(z) has a maximum value.
We can find this value very easily to using calculus. We olestthat atl’ the
tangent was horizontal, hence the slope will be zero at thiat fExample 5.1.2).

To find thez-coordinate of T we find the first derivative of(x), set it equal to
zero, and solve for:

!Reasoning that “by symmetry we must have base = height” lregieework in this particular
example (as we will see) but, surprisingly enough, does alat im general.
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7.1. INTRODUCTION

Figure 7.4: The area of a rectangle with fixed circumscribedec

A = 2100 — 22,

dA _ 100—222

61%0 222 100
922 A

V100—z2 0.

Solving this gives: = 5v/2. Substituting back, we gédFE = /100 — 22 = 5/2.
Hence the rectangle of maximum area inscribed in the ciscke square of area

A= CD x DE = 52 x 5\/2 = 50 square inches. The length of HT is therefore
50.

We will now proceed to the treatment in detail of the subjdcimaxima and
minima.
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7.2. INCREASING AND DECREASING FUNCTIONS

7.2 Increasing and decreasing functions

A function is said to béncreasingwhen it increases as the variable increases and
decreases as the variable decreases. A function is saiddedoeasingvhen it
decreases as the variable increases and increases asahéev@ecreases.

The graph of a function indicates plainly whether it is ires®|g or decreasing.

Example 7.2.1. (1) Consider the functioy = a*, a > 1, whose graph is
shown in Figure 7.5.

15

| | | | | | | |
1 0.75 05 0.25 025 05 075 1

L5

Figure 7.5:Sage plotofy = 2%, -1 < x < 1.

As we move along the curve from left to right the curve is mgsithat is, as
x increases the function = «” always increases. Therefoié (a > 1) is
an increasing function for all values of

(2) On the other hand, consider the functian- z)* whose graph (Figure 7.6)
is the locus of the equation= (a — z)3.

183



7.2. INCREASING AND DECREASING FUNCTIONS

1
ors|
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Figure 7.6:Sage plotofy = (2 —z)%, 1 <z < 3.

Now as we move along the curve from left to right the curve I8nig
that is, asr increases, the function = (a — z)* always decreases. Hence
(a — x)% is a decreasing function for all values.of

(3) That a function may be sometimes increasing and sometiteereasing is
shown by the graph (Figure 7.7) of

y =22 — 9% + 122 — 3.

Figure 7.7:Sage plotof y = 22% — 922 + 122 — 3,0 < 2 < 3.
As we move along the curve from left to right the curve risetsl we reach
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7.3. TESTS FOR DETERMINING WHEN A FUNCTION IS INCREASING
OR DECREASING

the point when: = 1, then it falls from that point to the point when= 2,
and to the right ofc = 2 it is always increasing. Hence

(@) fromx = —oo toz = 1 the function is increasing;
(b) fromz = 1to x = 2 the function is decreasing;
(c) fromz = 2 to x = +oo the function is increasing.

The student should study the curve carefully in order to tmeebehavior
of the function whenr = 1 andx = 2. At x = 1 the function ceases to
increase and commences to decrease;-a2, the reverse is true. At =1
and atr = 2 the tangent to the curve is parallel to thexis, and therefore
the slope is zero.

7.3 Tests for determining when a function is increas-
ing or decreasing

It is evident from Figure 7/7 that at a point where a function

y = f(z)

is increasing, the tangent in general makes an acute antjl¢heic-axis, so

slope= tan 7 = % = f'(x) = a positive number.
Similarly, at a point where a function is decreasing, thgyén in general makes
an obtuse angle with the-axis; thereford

slope= tan r = % = f'(z) = a negative number.

It follows from this that in order for a differentiable funah to change from an
increasing to a decreasing function, or vice versa, it is@sgary and sufficient
condition that the first derivative changes sign. But this ocaly happen for a

continuous derivative by passing through the value zerausTih Figure 7.7 as

2Conversely, for any given value of, if f'(x) > 0, then f(z) is increasing; iff’(z) < 0,
then f(z) is decreasing. Whef{ (z) = 0, we cannot decide without further investigation whether
f(x) is increasing or decreasing.
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we pass along the curve the derivative (= slope) changessitye points where
x = 1 andx = 2. In general, then, we have at these “turning points,”

dy o\
ar f'(z) =0.
A value ofy = f(x) satisfying this condition is called eritical point of the
function f(x).

Remark 7.3.1. The derivative is continuous in nearly all our important lapp
cations, but it is interesting to note the case when the atve/ (= slope) ofy
changes sign by “passing through” (that is, its reciprocall /y passes through
the value zero). This would evidently happen at the pointa carve where the
tangent is perpendicular to theaxis. At such “turning points” we have

d
= f/(«) = int;
or, what amounts to the same thing,

1 J—
f'(z)
For example, the functiop = 1/z? has a “turning point” atr = 0, where the

slope is infinite but the function changes from being indregagfor < 0) to
decreasing (fox > 0).

7.4 Maximum and minimum values of a function

A maximum valuef a function is one that is greater than any values immelgiate
preceding or following. Aminimum valuef a function is one that is less than any
values immediately preceding or following.

For example, in Figure 7.7, it is clear that the function hamaximum value
(y = 2) whenz = 1, and a minimum valuey(= [) whenz = 2.

The student should observe that a maximum value is not rextiggbe greatest
possible value of a function nor a minimum value the least.ifr&igure 7.7 it is
seen that the function=(y) has values to the right of = 1 that are greater than
the maximun®, and values to the left of = 1 that are less than the minimum

A function may have several maximum and minimum values. 8s@phat
Figure 7.8 represents the graph of a functfgm).
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7.4. MAXIMUM AND MINIMUM VALUES OF A FUNCTION

Figure 7.8: A continuous function.

At B, F the function is at a local maximum, and at D, G a minimumhail
some particular minimum value of a function may be greatan tome particular
maximum value is shown in the figure, the minimum value at Dgeireater than
the maximum value at G.

At the ordinary critical points D, F, H the tangent (or curvg)parallel to the
x-axis; therefore

dy
1 = —_—_ / p— 0.
slope I fi(z)

At the exceptional critical points A, B, G the tangent (or @)ris perpendicular
to thex-axis, giving

d
slope = % = f'(z) = .

One of these two conditions is then necessary in order tleatuhction shall
have a maximum or a minimum value. But such a condition is nibicgnt; for
at H the slope is zero and at A it is infinite, and yet the functh@s neither a
maximum nor a minimum value at either point. It is necessaryus to know,
in addition, how the function behaves in the neighborhooéaxth point. Thus
at the points of maximum value, B, F, the function changes fasnincreasing
to a decreasing function, and at the points of minimum valyes, the function

187



7.4. MAXIMUM AND MINIMUM VALUES OF A FUNCTION

changes from a decreasing to an increasing function. letae¥ follows from
that at maximum points

— 4y
slope= 3¢

f'(x) must change from + to -,
and at minimum points
slope= % = f'(x) must change from - to +

when we move along the curve from left to right.
At such points as A and H where the slope is zero or infinite,viduth are
neither maximum nor minimum points,

slope= % = f'(x) does not change sign.

We may then state the conditions in general for maximum amdnnoim values
of f(x) for certain values of the variable as follows:

f(x) is a maximum if f'(x) = 0, and f’(z) changes from + to —. (7.1)

f(x) is a minimum if f'(z) = 0, and f’(z) changes from — to +. (7.2)

The values of the variable at the turning points of a functos calledcritical
values thusx = 1 andz = 2 are the critical values of the variable for the function
whose graph is shown in Figure 7.7. The critical values aiiigrpoints where the
tangent is parallel to the-axis are evidently found by placing the first derivative
equal to zero and solving for real valuesxfjust as undef5.1. (Similarly, if
we wish to examine a function at exceptional turning pointere the tangent is
perpendicular to the-axis, we set the reciprocal of the first derivative equal to
zero and solve to find critical values.)

To determine the sign of the first derivative at points neaawigular turning
point, substitute in it, first, a value of the variable justttd less than the corre-
sponding critical value, and then one a little gre,gate‘rthe first gives+ (as at L,
Figure 7.8) and the second - (as at M), then the functien] has a maximum

3In this connection the term “little less,” or “trifle less,”@ans any value between the next
smaller root (critical value) and the one under considenatand the term “little greater,” or “trifle
greater,” means any value between the root under consigieatid the next larger one.
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7.5. EXAMINING A FUNCTION FOR EXTREMAL VALUES: FIRST
METHOD

value in that interval (as at I). If the first gives(as at P) and the secord(as at
N), then the function=€ y) has a minimum value in that interval (as at C).

If the sign is the same in both cases (as at Q and R), then thedarie: y) has
neither a maximum nor a minimum value in that interval (asﬂt F

We shall now summarize our results into a compact working. rul

7.5 Examining a function for extremal values: first
method

Working rule, sometimes referred to as gign test of the first derivative

e FIRST STEP. Find the first derivative of the function.

e SECOND STEP. Set the first derivative equal to S solve the resulting
equation for real roots in order to find the critical valueshaf variable.

e THIRD STEP. Write the derivative in factored form if possible.

e FOURTH STEP. Considering one critical value at a time, tessfitist deriva-
tive, first for a value a trifle less and then for a value a trifieager than the
critical value. If the sign of the derivative is firstand then—, the function
has a maximum value for that particular critical value of tagable; but if
the reverse is true, then it has a minimum value. If the siggsamt change,
the function has neither.

Remark 7.5.1. It can be helpful to draw aign graphfor the values of the deriva-
tive. This is a sketch of the real axis, with tick marks at theaal points, labeling
an interval in-between successive critical points with-&if the derivative is pos-
itive there, and labeling such an interval with-a™otherwise.

Example 7.5.1.In the problem worked out in Example 7.1.2, we showed by
means of the graph of the function

A =2xv100 — 22
4A similar discussion will evidently hold for the exceptidmiarning points B, E, and A respec-

tively.

SWhen the first derivative becomes infinite for a certain vallib® independent variable, then
the function should be examined for such a critical valudefiariable, for it may give maximum
or minimum values, as at B, E, or A (Figure 7.8). See footnof&i3.

189
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METHOD

that the rectangle of maximum area inscribed in a circle diusb inches con-
tained50 square inches. This may now be proved analytically as fallbwap-
plying the above rule.

Solution. Letf(z) = zv/100 — 22.
. 92
First step. Comput2¢”(9:) = \1/010T73$2
Second step.\l/oloT$$2 = 0 impliesz = 5v/2, which is the critical value. Only
the positive sign of the radical is taken, since, from theireabf the problem, the

negative sign has no meaning.

Third step.f'(z) = %

Fourth step. When: < 5v72, f'(z) = 225 — 4 Whenz > 52,
/ 20
@)= 756

Since the sign of the first derivative changes frento — at z = 5v/2, the
function has a maximum value

F(5V2) = 5v/2 - 5v/2 = 50.

In Sage :

Sage

sage: x = var("x")

sage: f(x) = x  *sqrt(100 - x°2)
sage: f1(x) = diff(f(x),x); f1(x)
sqgrt(100 - x°2) - x"2/sgrt(100 - x°2)
sage: crit_pts = solve(fl(x) == 0,x); crit_pts
[x == -5 *sgrt(2), x == 5 *sqrt(2)]
sage: x0 = crit_pts[1].rhs(); x0
5xsqrt(2)

sage: f(x0)

50

sage: RR(f1(x0-0.1))>0

True

sage: RR(f1(x0+0.1))<0

True

This tells us that, = 5v/2 is a critical point, at which the areai$ square inches
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METHOD

and at which the area changes from increasing to decreacmgimplies that the
area is a maximum at this point.

7.6 Examining a function for extremal values: sec-
ond method

From (7.1), it is clear that in the vicinity of a maximum valokf(x), in passing
along the graph from left to right’(x) changes fromt to 0 to —. Hencef’(x)

is a decreasing function, and §Y.3 we know that its derivative, i.e. the second
derivative & f”(z)) of the function itself, is negative or zero.

Similarly, we have, from (7.2), that in the vicinity of a mmum value off (z)
f'(x) changes from- to 0 to +. Hencef’(x) is an increasing function and by
§7.3 it follows thatf”(x) is positive or zero.

The student should observe thdt(x) is positive not only at minimum values
but also at “nearby” pointsP say, to the right of such a critical point. For, as
a point passes through P in moving from left to right, slepgan+ = j—g =
f'(x) is an increasing function. At such a point the curve is saidegconcave
upwards Similarly, f”(x) is negative not only at maximum points but also at
“nearby "points,( say, to the left of such a critical point. For, as a point passe
through(@, slope= tant = % = f'(z) is a decreasing function. At such a point
the curve is said to beoncave downwards

At a point where the curve is concave upwards we sometimethaaghe curve
has a “positive bending,]] and where it is concave downwartisegative bend-
ing.”

We may then state the sufficient conditions for maximum angdmum values
of f(x) for certain values of the variable as follows:

f(x) is a maximum if f'(x) = 0 and f”(x) = anegative number.  (7.3)

f(x)is a minimum if f'(z) = 0 and f”(z) = a positive number. (7.4)

Following is the corresponding working rule, sometimegnefd to as theecond
derivative test

e FIRST STEP. Find the first derivative of the function.
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e SECOND STEP. Set the first derivative equal to zero and sob/estsulting
equation for real roots in order to find the critical valuesha variable.

e THIRD STEP. Find the second derivative.

e FOURTH STEP. Substitute each critical value for the vagablthe second
derivative. If the result is negative, then the function imma@aximum for that
critical value; if the result is positive, the function is ammum.

When f”(x) = 0, or does not exist, the above process fails, although these m
even then be a maximum or a minimum; in that case the first rdegihen in
the last section still holds, being fundamental. Usuallg #econd method does
apply, and when the process of finding the second derivagivei too long or
tedious, it is generally the shortest method.

Example 7.6.1.Let us now apply the above rule to test analytically the fiomct

M = 2*+ 132
T

found in Example 7.1.1.

Solution. Letf(z) = 22 + 42,

First step. Computg’(z) = 2z — 22,

Second step. Solver — % = 0. (In Example 7.1.1 we gat = 6.)

Third step. Comput¢”(z) = 2 + 5.

Fourth step. Use the second derivative tegt(6) = +. Hencef(6) = 108,
minimum value.

In Sage :
Sage

sage: x = var("x")

sage: f(x) = X2 + 432/x

sage: f1(x) = diff(f(x),x); f1(x)

2x X - 432/X°2

sage: f2(x) = diff(f(x),x,2); f2(x)

864/X"3 + 2

sage:. crit_pts = solve(fl(x) == 0,x); crit_pts

[x == 3 *xsqrt(3) =*I - 3, x == -3  =*sqgrt(3) =1 - 3, X == 6]
sage: x0 = crit_pts[2].rhs(); xO

6
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sage: f2(x0)
6

sage: f(x0)
108

This tells us that, = 6 is a critical point and that” (z,) > 0, so it is @ minimum.

The work of finding maximum and minimum values may frequeb#ysimpli-
fied by the aid of the following principles, which follow at o@from our discus-
sion of the subject.

(@) The (local) maximum and minimum values of a continuousfion must
occur alternately. (In particular, you cannot have two logcaximums with-
out having a minimum in-between them.)

(b) If cis a positive constant,- f(z) is a maximum or a minimum for a given
value ofz if and only if f(x) is a maximum or a minimum at.

Consequently, in determining the critical values and tgdtan maxima and
minima, any constant factor may be omitted.

Whenc is negative¢ - f(x) is a maximum if and only iff () is a minimum,
and conversely.

(c) If cis a constantf(x) andc + f(x) have maximum and minimum values
for the same values of.

Hence a constant term may be omitted when finding criticalesabfzr and
testing.

In general we must first construct, from the conditions giiretthe problem,
the function whose maximum and minimum values are requasdyas done in
the two examples worked out §7.1. This is sometimes a problem of consider-
able difficulty. No rule applicable in all cases can be givendonstructing the
function, but in a large number of problems we may be guidethbyfollowing
general directions.

(a) Express the function whose maximum or minimum is invdlvethe prob-
lem.
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(b) If the resulting expression contains more than onlyalag, the conditions
of the problem will furnish enough relations between thaalges so that
all may be expressed in terms of a single one.

(c) To the resulting function of a single variable apply omewar two rules for
finding maximum and minimum values.

(d) In practical problems it is usually easy to tell whichtical value will give
a maximum and which a minimum value, so it is not always neggs®
apply the fourth step of our rules.

(e) Draw the graph of the function in order to check the work.

7.7 Problems

1. It is desired to make an open-top box of greatest possillene from a
square piece of tin whose side is a, by cutting equal squaresfathe
corners and then folding up the tin to form the sides. What lshbe the
length of a side of the squares cut out?

Solution. Letr = side of small square = depth of box; ther 2x = side of
square forming bottom of box, and volumélis= (a — 2x)x, which is the
function to be made a maximum by varyimgApplying rule:

First step.2¥. = (a — 2z)? — 4z(a — 22) = a* — 8ax + 1227

Second step. Solving® — 8ax + 122* = 0 gives critical values: = ¢ and

a

G
It is evident thatr = § must give a minimum, for then all the tin would
be cut away, leaving no material out of which to make a box. Eyusual
test,z = § is found to give a maximum volun@;. Hence the side of the
square to be cut out is one sixth of the side of the given square

The drawing of the graph of the function in this and the follogvproblems
is left to the student.

2. Assuming that the strength of a beam with rectangularscsestion varies
directly as the breadth and as the square of the depth, whah@dimen-
sions of the strongest beam that can be sawed out of a roundHoge
diameter isi?
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Solution. Ifx = breadth and, = depth, then the beam will have maximum
strength when the functiony? is a maximum. From the construction and
the Pythagorean theoren?, = d> — x2; hence we should test the function

f(z) = 2(d* — 2?).
First step.f'(z) = —22* + d* — z* = d* — 3.

Second stepd? — 322 = 0. Thereforeg = -4 = critical value which gives

) V3
a maximum.

Therefore, if the beam is cut so that deptfv—% of diameter of log, and

breadth =\/g of diameter of log, the beam will have maximum strength.

. What is the width of the rectangle of maximum area that cambaibed
in a given segmen® AA’ of a parabola?

Figure 7.9: An inscribed rectangle in a parabdta= (z,y).

HINT. If OC = h, BC = h — x and PP’ = 2y, therefore the area of
rectanglePDD'P"is2(h — x)y.

But since P lies on the parabold = 2pz, the function to be tested is

2(h — 2)v/2pz
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Ans. Width =2h.

4. Find the altitude of the cone of maximum volume that camieribed in a
sphere of radius (see Figure 7.10).

Figure 7.10: An inscribed cone, heighaind base radius, in a sphere.

HINT. Volume of cone = wa?y. Buta? = BC'xCD = y(2r—y); therefore
the function to be tested i&(y) = Zy°(2r — y).

Ans. Altitude of cone =r.
5. Find the altitude of the cylinder of maximum volume that ¢e inscribed
in a given right cone (see Figure 7111).

HINT. Let AU = r and BC' = h. Volume of cylinder =r22y. But from
similar triangles ABC and DBG;/x = h/(h — y), SOz = T(h—h*y) Hence
the function to be tested i(y) = Sy(h — y)>.

Ans. Altitude =3h.

6. Dividea into two parts such that their product is a maximum.

Ans. Each part 3.
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zrffr\J

Figure 7.11: An inscribed cylinder in a cone.

7. Divide 10 into two such parts that the sum of the double of one and square
of the other may be a minimum.

Ans. 9 andl.

8. Find the number that exceeds its square by the greatesbfmguantity.

1
Ans. 3

9. What number added to its reciprocal gives the least passiyh?
Ans. 1.

10. Assuming that the stiffness of a beam of rectangularscsestion varies
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11.

12.

13.

14.

15.

16.

directly as the breadth and the cube of the depth, what mus$isbereadth
of the stiffest beam that can be cut from a ldgginches in diameter?

Ans. Breadth= 8 inches.

A water tank is to be constructed with a square base anud tope and is

to hold 64 cubic yards. If the cost of the sides is $ 1 a square yard, and of
the bottom $ 2 a square yard, what are the dimensions whero#tesca
minimum? What is the minimum cost?

Ans. Side of base # yd., height =4 yd., cost $ 96.

A rectangular tract of land is to be bought for the purpafskying out a
quarter-mile track with straightaway sides and semicacehds. In addi-
tion a strip35 yards wide along each straightaway is to be bought for grand
stands, training quarters, etc. If the land costs $ 200 am adrat will be

the maximum cost of the land required?

Ans. $ 856.

A torpedo boat is anchorédmiles from the nearest point of a beach, and
it is desired to send a messenger in the shortest possitdetdira military
camp situated 5 miles from that point along the shore. If he can walk
miles an hour but row only miles an hour, required the place he must land.

Ans. 3 miles from the camp.

A gas holder is a cylindrical vessel closed at the top qah@t the bottom,
where it sinks into the water. What should be its proportiarsaf given
volume to require the least material (this would also giasteveight)?

Ans. Diameter = double the height.

What should be the dimensions and weight of a gas holdgroof), 000
cubic feet capacity, built in the most economical mannerafigheet iron
= of an inch thick and weighing Ib. per sq. ft.?

Ans. Height =137 ft., diameter =273 ft., weight =220 tons.

A sheet of paper is to contai® sq. in. of printed matter. The margins
at the top and bottom are to Ranches each and at the sidesch each.
Determine the dimensions of the sheet which will requireléast amount
of paper.

Ans.5in. by 10 in.
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17

18.

19.

20.

21.

22.

. A paper-box manufacturer has in stock a quantity of aaach30 inches
by 14 inches. Out of this material he wishes to make open-top bbyes
cutting equal squares out of each corner and then foldingpuprtm the
sides. Find the side of the square that should be cut out &r dodgive the
boxes maximum volume.

Ans. 3 inches.

A roofer wishes to make an open gutter of maximum capaditse bottom
and sides are eadhinches wide and whose sides have the same slope. What
should be the width across the top?

Ans. 8 inches.4

Assuming that the energy expended in driving a steanthoaigh the wa-
ter varies as the cube of her velocity, find her most econdmataper hour
when steaming against a current runningiles per hour.

HINT. Let v = most economical speed; then® = energy expended each
hour,a being a constant depending upon the particular conditenm, — ¢

= actual distance advanced per hour. Heﬁ_é:eis the energy expended per
mile of distance advanced, and it is therefore the functibnse minimum
is wanted.

Prove that a conical tent of a given capacity will require least amount
of canvas when the height ig2 times the radius of the base. Show that
when the canvas is laid out flat it will be a circle with a seabit52°9" =
2.6555... cut out. A bell tentl0 ft. high should then have a base of diameter
14 ft. and would requir@72 sq. ft. of canvas.

A cylindrical steam boiler is to be constructed havingpacity of1000 cu.
ft. The material for the side costs $ 2 a square foot, and ®etids $ 3 a
square foot. Find radius when the cost is the least.

1
AnNs. T ft.

In the corner of a field bounded by two perpendicular rcadpring is
situateds rods from one road anglrods from the other.

(a) How should a straight road be run by this spring and adtessorner
S0 as to cut off as little of the field as possible?

(b) What would be the length of the shortest road that couldibeacross?
Ans. (a)12 and16 rods from corner. (b}63 + 83)2 rods.

199



7.7. PROBLEMS

23.

24.

25.

26.

27.

28.

29.

30.

31.

Show that a square is the rectangle of maximum perimiea¢rcan be in-
scribed in a given circle.

Two poles of height a and b feet are standing upright aed teet apart.

Find the point on the line joining their bases such that tme stithe squares
of the distances from this point to the tops of the poles is@mum. (Ans.

Midway between the poles.) When will the sum of these distauiiEea

minimum?

A conical tank with open top is to be built to containcubic feet. Deter-
mine the shape if the material used is a minimum.

An isosceles triangle has a ba&en. long and altitude 0 in. Find the rect-
angle of maximum area that can be inscribed in it, one sideeoféctangle
coinciding with the base of the triangle.

Divide the numbet into two such parts that the sum of the cube of one part
and three times the square of the other shall have a maximlua.va

Divide the numbet: into two parts such that the product of one part by the
fourth power of the other part shall be a maximum.

A can buoy in the form of a double cone is to be made from tgquat
circular iron plates of radius. Find the radius of the base of the cone when
the buoy has the greatest displacement (maximum volume).

2
Ans.r\/;.

Into a full conical wineglass of depthand generating angtethere is care-
fully dropped a sphere of such size as to cause the greats$toow Show
that the radius of the sphere4g:sine__

SIn « cos 2«

A wall 27 ft. high is 8 ft. from a house. Find the length of the shortest
ladder that will reach the house if one end rests on the groutside of the
wall.

Ans. 13v/13.

Here’s how to solve this usin§age : Let i be the height above ground at
which the ladder hits the house andddbe the distance from the wall that
the ladder hits the ground on the other side of the wall. Bylamntiiangles,
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32.

33.

34.

h/27 = (8+d)/d =1+ %, sod + 8 = 8;2-. The length of the ladder is,
by the Pythagorean theorerf(h) = \/h? + (8 + d)? = y/h? + (8;25-)2.

Sage

sage: h = var("h")

sage: f(h) = sqrt(h"2+(8 *h/(h-27))"2)
sage: fl(h) = diff(f(h),h)

sage: f2(h) = diff(f(h),h,2)

sage: crit_pts = solve(fl(h) == 0,h); crit_pts
[h == 21 - 6 »sqrt(3) =*I, h == 6 =sqgrt(3) I + 21, h == 39, h == 0]
sage: hO = crit_pts[2].rhs(); hO
39

sage: f(h0)

13+ sqrt(13)

sage: f2(h0)

3/(4 =sqrt(13))

This saysf (k) has four critical points, but only one of which is meaningful
ho = 39. At this point, f(h) is a minimum.

A vessel is anchoretimiles offshore, and opposite a pomtniles further
along the shore another vessel is anchdrediles from the shore. A boat
from the first vessel is to land a passenger on the shore angtbeeed to
the other vessel. What is the shortest course of the boat?

Ans. 13 miles.

A steel girder5 ft. long is moved on rollers along a passageways ft.
wide and into a corridor at right angles to the passagewagladeng the
width of the girder, how wide must the corridor be?

Ans. 5.4 ft.
A miner wishes to dig a tunnel from a point A to a poin8®) feet below
and500 feet to the east of A. Below the level of A it is bed rock and above

A is soft earth. If the cost of tunneling through earth is $ @l #irough rock
$ 3 per linear foot, find the minimum cost of a tunnel.

Ans. $ 1348.53.
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35.

36.

37.

38.

39.

40.

41.

42.

43.

A carpenter ha$08 sq. ft. of lumber with which to build a box with a
square base and open top. Find the dimensions of the largesibje box
he can make.

Ans.6 x 6 x 3.

Find the right triangle of maximum area that can be contd on a line of
lengthh as hypotenuse.

Ans. % = length of both legs.

What is the isosceles triangle of maximum area that candmibed in a
given circle?

Ans. An equilateral triangle.

Find the altitude of the maximum rectangle that can beriibed in a right
triangle with basé and altitudeh.

Ans. Altitude =2.

Find the dimensions of the rectangle of maximum areactrabe inscribed
in the ellipseb?2? + a?y* = a?b>.

Ans. av/2 x b\/2; area =2ab.

Find the altitude of the right cylinder of maximum voluithat can be in-
scribed in a sphere of radius

. . o
Ans. Altitude of cylinder N

Find the altitude of the right cylinder of maximum conyeurved) surface
that can be inscribed in a given sphere.

Ans. Altitude of cylinder =r/2.

What are the dimensions of the right hexagonal prism ofrmim surface
whose volume i86 cubic feet?

Ans. Altitude =2+/3; side of hexagon 2.

Find the altitude of the right cone of minimum volume aircscribed about
a given sphere.

Ans. Altitude =4r, and volume =2 x vol. of sphere.
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44

45,

46.

47.

48.

49.

50.

. A right cone of maximum volume is inscribed in a given tigbne, the
vertex of the inside cone being at the center of the base djittem cone.
Show that the altitude of the inside cone is one third théualé of the given
cone.

Given a point on the axis of the parabgta= 2px at a distance from the
vertex; find the abscissa of the point of the curve nearest to |

Ans.z =a — p.

What is the length of the shortest line that can be drawgetairto the ellipse
b%2? + ay? = a®b? and meeting the coordinate axes?

ANs. a + b.

A Norman window consists of a rectangle surmounted bynaicsele.
Given the perimeter, required the height and breadth of inelaw when
the quantity of light admitted is a maximum.

Ans. Radius of circle = height of rectangle.

A tapestry7 feet in height is hung on a wall so that its lower edgé) is
feet above an observer’s eye. At what distance from the vialulsl he
stand in order to obtain the most favorable view? (HINT. Tesdigal angle
subtended by the tapestry in the eye of the observer mustb@maximum.)

Ans. 12 feet.

What are the most economical proportions of a tin can winail have a
given capacity, making allowance for waste? (HINT. Thereaswvaste in
cutting out tin for the side of the can, but for top and bottomeaagon of
tin circumscribing the circular pieces required is used NQTE 1. If no
allowance is made for waste, then height = diameter. NOTE &.kiddw
that the shape of a bee cell is hexagonal, giving a certaiaciyfor honey
with the greatest possible economy of wax.)

Ans. Height =2/ x diameter of base.

An open cylindrical trough is constructed by bendingwegisheet of tin at
breadti2a. Find the radius of the cylinder of which the trough forms & pa
when the capacity of the trough is a maximum.

Ans. Rad. :2;“; i.e. it must be bent in the form of a semicircle.
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51.

52.

53.

54.

55.

56.

A weightlV is to be raised by means of a lever with the fofcat one end
and the point of support at the other. If the weight is suspdricbm a point

at a distance from the point of support, and the weight of the beamwis
pounds per linear foot, what should be the length of the leverder that

the force required to lift it shall be a minimum?

Ans.z = /2 feet,

An electric arc light is to be placed directly over thetegof a circular plot
of grass100 feet in diameter. Assuming that the intensity of light varie
directly as the sine of the angle under which it strikes amiihated surface,
and inversely as the square of its distance from the surfewe high should
the light he hung in order that the best possible light stelldn a walk
along the circumference of the plot?

50
AnNS. 7 feet

The lower corner of a leaf, whose widthdsis folded over so as just to
reach the inner edge of the page.

(a) Find the width of the part folded over when the length efthease is a
minimum.

(b) Find the width when the area folded over is a minimum.
Ans. (a)%a; (b) %a.

A rectangular stockade is to be built which must have tacearea. If
a stone wall already constructed is available for one of itless find the
dimensions which would make the cost of construction thstlea

Ans. Side parallel to wall = twice the length of each end.

When the resistance of air is taken into account, thenatitin of a pen-
dulum to the vertical may be given by the formdla= ae=*! cos (nt + 7).
Show that the greatest elongations occur at equal intefvafdime.

It is required to measure a certain unknown magnitudéth precision.
Suppose that equally careful observations of the magnitude are made,
giving the resultsy, as, as, ..., a,. The errors of these observations are
evidentlyr —ay,x — as,x —ag, - - - , x —a,, Some of which are positive and
some negative. It has been agreed that the most probabke afalus such
that it renders the sum of the squares of the errors, nafmelya;)? + (z —
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57.

58.

Figure 7.12: A leafed page of width

az)? + (r —az)* + -+ + (x — a,)? a minimum. Show that this gives the
arithmetical mean of the observations as the most probaltle ofz.

(This is related to the method of least squares, discoverésHoss, a com-
monly used technique in statistical applications.)

The bending moment atof a beam of lengthi, uniformly loaded, is given
by the formula)/ = Jw(z — Jwa?, wherew = load per unit length. Show
that the maximum bending moment is at the center of the beam.

If the total waste per mile in an electric conductolis= c¢*r + % where
¢ = current in amperes (a constanty; resistance in ohms per mile, ahd

a constant depending on the interest on the investment ardefbreciation
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59.

60.

61.

62.

of the plant, what is the relation betweenr, andt when the waste is a
minimum?

ANs. cr = t.

A submarine telegraph cable consists of a core of coppeswith a cov-
ering made of non-conducting material. If x denote the rafithe radius
of the core to the thickness of the covering, it is known that $peed of
signaling varies as

1
z?log —.
x

Show that the greatest speed is attained wzhen\/%.

Assuming that the power given out by a voltaic cell is gibg the formula

 E’R
- (r+R)?¥

when E = constant electro-motive force = constant internal resistanck,
= external resistance, prove thats a maximum whem = R.

The force exerted by a circular electric current of radian a small magnet
whose axis coincides with the axis of the circle varies as

T
(a? —|—x2)%'

wherex = distance of magnet from plane of circle. Prove that thedasa
maximum whenr = £.

We have two sources of heat at A and B, which we visualiz&®endal line
(with B to the right or A), with intensities andb respectively. The total

intensity of heat at a point P between A and B at a distance fodbm A
is given by the formuld = =& + ﬁ. Show that the temperature at P
will be the lowest wherfl;—x = 22 that is, the distances BP and AP have

al/3"

the same ratio as the cube roots of the corresponding heatsities. The

1
distance of P from A ig: = —23¢_.
a3 +b3
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63.

64.

65.

66.

'Ug sin 2¢
H

The range of a projectile in a vacuum is given by the foenitil=
wherev, = initial velocity, ¢ = acceleration due to gravity; = angle of
projection with the horizontal. Find the angle of projeatiwhich gives the
greatest range for a given initial velocity.

Ans. ¢ = 45° = /4.
The total time of flight of the projectile in the last prebi is given by the

formulaT = %OTSM’. At what angle should it be projected in order to make
the time of flight a maximum?

Ans. ¢ = 90° = 7/2.

The time it takes a ball to roll down an inclined plane vatigle¢ (with
respect to the:-axis) is given by the formuld” = 2, /gsifl%. Neglecting
friction, etc., what must be the value otto make the quickest descent?

Ans. ¢ = 45° = 1 /4.

Examine the functiof: — 1)?(x + 1) for maximum and minimum values.
Use the first method.

Solution. f(z) = (x — 1)*(x + 1)3.

Firststep.f'(z) = 2(z = 1)(z + 1)+ 3(x — 1)* (@ + 1)? = (z — 1)(z +
1)2(5z — 1).

Second stepz — 1)(z + 1)*(5z — 1) = 0, z = 1, —1, £, which are critical
values.

Third step.f'(z) = 5(z — 1)(z + 1)*(z — 3).

Fourth step. Examine first for critical value= 1.

Whenz < 1, f'(z) = 5(=)(+)2(+) = —. Whenz > 1, f'(z) =
5(+)(+)2(+) = +. Therefore, whenr = 1 the function has a minimum
value f (1) = 0. Examine now for the critical value = . Whenz < 1,
f'x) = 5(=)(+)*(=) = + Whenz > 3, f'(z) = 5(=)(+)*(+) = —.
Therefore, when: = : the function has a maximum valyd:) = 1.11.

Examine lastly for the critical value = —1. Whenz < —1, f'(z) =
5(=)(=)2(—=) = +. Whenz > —1, f'(z) = 5(—)(+)2(—) = +. There-
fore, whenz = —1 the function has neither a maximum nor a minimum
value.

Examine the following functions for maximum and minimumues:
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67. (z — 3)2(z — 2).
Ans.z = %, gives max. =; « = 3, gives min. =0.

68. (v — 1)*(x — 2)°.

Ans. z = % gives max. =0.03456; x = 2, gives min. =0; = = 1, gives
neither.

69. (z —4)°(x + 2)*.
Ans.r = —2, gives max.x = % gives min;xz = 4, gives neither.

70. (z — 2)5(2z + 1)*.

o T o . .
Ans.z = —3, gives max.; = {3, gives min.;z = 2, gives neither.

71. (z +1)5(x — 5)2.

50 f—

Figure 7.13:Sage plotofy = (z 4 1)3(z — 5)2.

Ans.z = 3, gives max.;x = —1 and5, give min.

1
2
72. (22— a)3(z — a)s.

Ans.z = %“ gives max.x =1 and—%, gives min.;x = £, gives neither.

3
73. z(z — 1)*(z + 1)3.

Ans.z = 3, gives max.x = 1 and—%, gives min.;x = —1, gives neither.

1
2
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74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

z(a+ 1)*(a — )3

Ans.r = —a andg, give max.;x = —3; x = a, gives neither.

b+ c(x — a)s.
Ans. r = a, gives min. =b.

1

a—b(z—c)s.
Ans. No max. or min.
22 —Tx+6

z—10
Ans. x = 4, gives max.x = 16, gives min.
(a—2)°

a—2z °

Ans.z = 2, gives min.

IS

1—x+a?
14+z—22"

1 - -
Ans.x = 3, gives min.

x2—3x42

x243z+2°

Ans. z = /2, gives min. =12/2 — 17; x = —v/2, gives max. =12/2 —
17, z = —1, -2, give neither.

(z—a)(b—x)
x2 '
2ab

r = 297, gives max.

_(a—b)?
4ab *

a? b2
T + a—zx’

o a2 « . o a2 .
Ans.r = =, gives min.;x = %5, gives max.

Examiner? — 322 — 92+ 5 for maxima and minima, Use the second method,

47.6.

Solution. f(z) = 2* — 322 — 9z + 5.

First step.f'(z) = 32> — 6z — 9.

Second ste@z? — 62 — 9 = 0; hence the critical values are= —1 and3.
Third step.f”(x) = 6z — 6.
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Fourth step.f”(—1) = —12.
Therefore,f(—1) = 10 = maximum value. f”(3) = +12. Therefore,
f(3) = —22 = minimum value.

84. Examinein? x cos x for maximum and minimum values.

Solution. f(x) = sin® x cos .

First step.f'(x) = 2sin z cos? x — sin® z.

Second step2sin x cos? z — sin® z = 0; hence the critical values are=
nm andz = nr & arctan(—v/2) = nr £ .

Third step.f”(x) = cos x(2cos? x — Tsin® ).

Fourth step.f”(0) = +. Therefore,f(0) = 0 = minimum value.f”(7) =
—. Thereforef(r) = 0 = maximum value.f”(«) = —. Therefore,f(«a)
maximum value.f”(r — «) = +. Thereforef (m — o) minimum value.

Examine the following functions for maximum and minimumues:
87. 3x3 — 922 — 27x + 30.
Ans.z = —1, gives max. =15; x = 3, gives min. =51.
88. 223 — 2122 + 36z — 20.
Ans.z = 1, gives max. =3; x = 6, gives min. =—128.
89. & — 212 + 3z + L.
Ans.z = 1, gives max. =; x = 3, gives min. =1.
90. 223 — 1522 4 362 + 10.
Ans. z = 2, gives max. 338; x = 3, gives min. =37.

91. 3 — 922 + 152 — 3.

Ans.z = 1, gives max. =; x = 5, gives min. =—28.

92. 2% — 322 + 62 + 10.

Ans. No max. or min.

93. 2° -zt 4+ 523+ 1. x = 1, gives max. =2; x = 3, gives min. =26; = = 0,
gives neither.
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94.

95.
96.
97.
98.
99.
100.
101.

102.

103.

104.

105.

106.

107.

108.

32° — 12522 + 2160z.

r = —4 and3, give max.;x = —3 and4, give min.

223 — 322 — 12z + 4.
223 — 2122 + 362 — 20.
* — 222 +10.

ot — 4.

x3 — 8.

4 — 25,

sin z(1 + cos z).

Ans. z = 2nt + Z, give max.= 3v/3; z = 2n7 — Z, give min. = 2/3;

x = nm, give neither.

_Z
logz*®

Ans. x = e, gives min. =¢; x = 1, gives neither.

log cos .

Ans. x = nm, gives max.

aek® 4 be= k.

Ans.z = 1log \/g gives min.= 2v/ab.

x$

r =1, gives min.
e

1
Tz,
Ans. r = e, gives max.

Ccos T + sin .

Ans.r = 7, gives max. =/2. z = o gives min. =—+/2.

sin 2x — x.

Ans.z = %, gives max.;x =

4 )

—% gives min.
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109.

110.

111.

112.

113.

114.

115.

T + tan .
Ans. No max. or min.

sin® z cos x.

Ans.z = nr + %, gives max. =2+/3; z = nm — %, gives min. = 2./3;
x = nm, gives neither.

T COSs T.

BT BT I T \/ 1 \/s/-\v v B

s

20 |-

Figure 7.14:Sage plot of y = x cos(z).

Ans. z such thatr sin = = cos z, gives max/min.

sin x + cos 2x.

. 1 . . . .
Ans. arcsin 1, gives max.; = 7, gives min.

2tan z — tan? .

Ans.r = 7, gives max.

sin x

1+tanx”

Ans.r = 7, gives max.

T

l+ztanx”

x = cos z, gives max.x = — cos x, gives min.
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7.8. POINTS OF INFLECTION

7.8 Points of inflection

Definition 7.8.1. Consider the graph = f(z) is a twice continuously differen-
tiable function.Points of inflectiorseparate concave upwards sections of the graph
from concave downwards sections. They may also be definediiais pvhere

(€)) % =0 andj%g changes sign,
or

(b) 2% = 0 and %% changes sign.

Thus, ifa curvey = f(x) changes from concave upwards to concave downwards
at a point, or the from concave down to concave up, then suchi is called a
point of inflection

From the discussion df7.6, it follows at once that where the curve is concave
up, f”(z) = +, and where the curve is concave dowfi(z) = —. In order to
change sign it must pass through the vaIueEdfrence we have:

Lemma 7.8.1. At points of inflection,f”(z) = 0.

Solving the equation resulting from Lemma 7.8.1 gives thordinate(s) of
the point(s) of inflection. To determine the direction of\aaog or direction of
bending in the vicinity of a point of inflection, tegt'(x) for values ofz, first
slightly less and then slightly more than theoordinate at that point.

If f”(x) changes sign, we have a point of inflection, and the signsradutaleter-
mine if the curve is concave upwards or concave downwardsimeighborhood
of each point of inflection.

The student should observe that near a point where the csireenicave up-
wards the curve lies above the tangent, and at a point whereutive is concave
downwards the curve lies below the tangent. At a point of atiibe the tangent
evidently crosses the curve.

Following is arule for finding points of inflectionf the curve whose equation
isy = f(x). This rule includes also directions for examining the dit of
curvature of the curve in the neighborhood of each point fbéation.

e FIRST STEP. Fing”(x).

e SECOND STEP. Set”(x) = 0, and solve the resulting equation for real
roots.

bIt is assumed that’(x) and f”(z) are continuous. The solution of Exercise§Z,8, shows
how to discuss a case whef§x) and f”(z) are both infinite.
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e THIRD STEP. Writef”(z) in factor form.

e FOURTH STEP. Test”(x) for values ofr, first a trifle less and then a trifle
greater than each root found in the second steg” () changes sign, we
have a point of inflection.

When f”(z) = +, the curve is concave upws
When f”(x) = —, the curve is concave downwards.

7.9 Examples
Examine the following curves for points of inflection andadition of bending.

1. y=3a*— 423+ 1.
Solution. f(x) = 32* — 423 + 1.
First step.f”(z) = 3622 — 24x.
Second ste6x? — 242 = 0, x = % andx = 0, critical values.

Third step.f”(z) = 36x(z — 3).

Fourth step. When: < 0, f”(x) = +; and whenz > 0, f"(z) = —.
Therefore, the curve is concave upwards to the left and sendawnwards
to the right ofz = 0. Whenz < 2, f’(z) = —; and whenz > 2,
f"(x) = +. Therefore, the curve is concave downwards to the left and

concave upwards to the right of= §

The curve is evidently concave upwards everywhere to theofef = 0,

concave downwards betweéd, 1) and (2, 32), and concave upwards ev-
2 11

erywhere to the right ofz, 5= ).
2. (y—2)P°=(z—4).
Solution.y = 2 + (z — 4) 5.
First step.2 = 1(z —4)75.
Second step. When= 4, both first and second derivatives are infinite.

d?y _
Y dz? T

Third step. When: < 4 £y — 4+ put whenz > 4

' dx2

"This may be easily remembered if we say that a vessel shapedhie curve where it is
concave upwards will “hold+) water”, and where it is concave downwards will “spitf water.”
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10.

11.

We may therefore conclude that the tangeritia®) is perpendicular to the
z-axis, that to the left of4,2) the curve is concave upwards, and to the
right of (4, 2) itis concave downwards. Therefarg 2) must be considered
a point of inflection.

Ly = a2,

Ans. Concave upwards everywhere.

Ly =>5—2x —a°

Ans. Concave downwards everywhere.

3

LY =,

Ans. Concave downwards to the left and concave upwards tagheof
(0,0).

Ly =a%—32% — 92 + 0.

Ans. Concave downwards to the left and concave upwards tagheof
(17 _2>

Ly =a+ (z—0b)>.

Ans. Concave downwards to the left and concave upwards tagheaof
(b, a).

2, x> .2 3
L aty =5 —ax® + 2a”.

Ans. Concave downwards to the left and concave upwards tagheaof

(a, ).

Ly =ah

Ans. Concave upwards everywhere.

y = x* — 1223 + 4822 — 50.

Ans. Concave upwards to the left of= 2, concave downwards between
x = 2 andx = 4, concave upwards to the right of= 4.

Yy = sin .

Ans. Points of inflection are = nr, n being any integer.
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12. y = tan .
Ans. Points of inflection are x = n, n being any integer.

13. Show that no conic section can have a point of inflection.

14. Show that the graphs ef andlog = have no points of inflection.

7.10 Curve plotting

The elementary method of plotting a curve whose equatioivengn rectangular
coordinates, and one with which the student is already famik to (a) solve its
equation fory (or x), (b) take several arbitrary values of(or ), tabulate the
corresponding values af (or x), (c) plot the respective points, and (d) draw a
smooth curve through them. The result is an approximatidhg¢sequired curve.
This process is laborious at best, and in case the equatthe otirve is of a degree
higher than the second, the solved form of such an equatigromansuitable for
the purpose of computation, or else it may fail altogetheGesit is not always
possible to solve the equation fgior x.

The general form of a curve is usually all that is desired, @ldulus furnishes
us with useful methods for determining the shape of a curte vary little com-
putation.

The first derivative gives us the slope of the curve at anytpthie second deriva-
tive determines the intervals within which the curve is @rmcupward or concave
downward, and the points of inflection separate these iakenthe maximum
points are the high points and the minimum points are the lowtp on the curve.
As a guide in his work the student may follow the followingerul

Rule for plotting curves in rectangular coordinates.

e FIRST STEP. Find the first derivative; place it equal to zeadviag gives
the abscissas of maximum and minimum points.

e SECOND STEP. Find the second derivative; place it equal to; zmilving
gives the abscissas of the points of inflection.

e THIRD STEP. Calculate the corresponding ordinates of thetpaitose
abscissas were found in the first two steps. Calculate as many points
as may be necessary to give a good idea of the shape of the Eilhait a
table such as is shown in the example worked out.
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e FOURTH STEP. Plot the points determined and sketch in theectar cor-
respond with the results shown in the table.

If the calculated values of the ordinates are large, it i$ tsa®duce the scale on
they-axis so that the general behavior of the curve will be showthimvthe limits
of the paper used. Coordinate plotting (graph) paper shakhiployed.

7.11 EXxercises

Trace the following curves, making use of the above ruleoAilsd the equations
of the tangent and normal at each point of inflection.

1. y=a%— 922+ 242 — 7.
Solution. Use the above rule.
First stepy/ = 322 — 182 + 24, 32% — 18x +24 = 0, x = 2, 4.
Second stepy” = 6x — 18, 62 — 18 = 0,z = 3.

Third step.
x vy v y" Remarks Direction of Curve
o -7 + - concave down
2 13 0 - max. concave down
3 11 - 0 pt ofinfl. concave up
4 9 0 + min. concave up
6 29 + + concave up

Fourth step. Plot the points and sketch the curve. To find thateons
of the tangent and normal to the curve at the point of inflectid 11),
use formulas| (5/1), [((5.2). This gives: + y = 20 for the tangent and
3y — x = 30 for the normal.

2.y =23 —62% — 36z + 5.

Ans. Max. (—2,45); min. (6, —211); pt. of infl. (2, —83); tan. y + 48z —
13 = 0; nor. 48y — x + 3986 = 0.

We shall solve this usin§age .
Sage

sage: x = var("x")
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sage: f = X3 -6 *Xx2 -36 *x +5
sage: f1 = diff(f(x),x); f1

3xX'2 - 12 *x - 36

sage:. crit_pts = solve(fl(x) == 0, x); crit_pts
[X == 6, X == -2]

sage: f2 = diff(f(x),x,2); f2(x)

6xx - 12
sage: x0
6

sage: x1
-2

sage: f(x0); f2(x0)

-211

24

sage: f(x1); f2(x1)

45

-24

sage: infl_pts = solve(f2(x) == 0, x); infl_pts
[x == 2]

sage. p = plot(f, -5, 10)

sage: show(p)

crit_pts[0].rhs(); x0

crit_pts[1].rhs(); x1

cy =2t — 222 + 10.

Ans. Max. (0, 10); min. (£1,9); pt. of infl. (i%, @).

cy =32t — 322+ 2,

Ans. Max. (0,2); min. (£v/3, —2); pt. of infl. (£1, —1).

2
6x

Y= e

Ans. Max. (1, 3); min. (-1, —3); pt. of infl. (0, 0), (i\/ii%g)-

y = 122 — 23.
Ans. Max.(2,16); min. (-2, —16); pt. of infl. (0, 0).

Ay + a3 =322+ 4 =0.

Ans. Max.(2,0); min. (0, —1).
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7.11. EXERCISES

10.
11.

12.

13.
14.

15.

16.

17.

18.

50

-100

-150

-200

Figure 7.15: Plot for Exercise 8.11-2 = 2% — 62% — 362 + 5.

Ly =2%—32% — 92 + 9.

2+ a2 — 924+ 6 = 0.

y =23 — 622 — 152 + 2.

y(1+ 2?) = x.
aS
Y=t
—z?
y—=e".
y = S
y=(z+1)5(x— 5>

y = a3 — 3% — 24ax.

y = 18 + 36z — 322 — 223.
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7.11.

19.
20.
21.
22.
23.
24.
25.

26.
27.

28.
29.
30.
31.

EXERCISES

y=21x—2cos T.

y = 3z — 2.

y =3 — 922 + 15z — 3.

2’y =4+ 7.

4y = x* — 622 + 5.

IE3

Y= 253a2

y=sinz+ 3.

y = x2+4.

y = bx — 2a? — ga®.
_ 1422

Y= "2

Yy = — 2sin x.
y = log cos x.

y = log(1 + 2?).
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CHAPTER
EIGHT

Application to arclength and rates

8.1 Introduction

Thus far we have represented the derivativg ef f(x) by the notation

dy
%—f@)‘

We have taken special pains to impress on the student thayihieol

dy

dz
was to be considered not as an ordinary fraction wittas numerator andr as
denominator, but as a single symbol denoting the limit ofghetient

Ay
Ax
asAx approaches the limit zero.

Problems do occur, however, where it is very convenient talile to give a
meaning todz anddy separately, and it is especially useful in applications us-
ing integral calculus. How this may be done is explained anfitst part of this
chapter.

In the second part (starting wiff8.6), we apply what we know about the deriva-
tive to functions of time. If f(¢) is some quantity (for example, distance) chang-
ing with time then we can regarfi(¢) as the rate of change ¢f (for example,
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8.2. DEFINITIONS

velocity). The method of solving “related rates” problenili ne explained in the
second part of this chapter.

8.2 Definitions

If f’(:z:%is the derivative off (x) for a particular value of, andAx is an arbitrarily
chosehincrement ofr, then thedifferentialof f(x), denoted by the symbdf (z),
Is defined by the equation

df (x) = ['(x)Ax. (8.1)

If now f(z) = z, thenf’(x) = 1, and (8.1) reduces tér = Az, showing that
whenz is the independent variable, the differentialzof= dx) is identical with
Ax. Hence, ify = f(z), (8.1) may in general be written in the form

dy = f'(z) dx. (8.2)

The differential of a function equals its derivative muliggl by the differential of
the independent variable. Observe that, sihcenay be given any arbitrary value
whatever,dz is independent of. Hence,dy is a function of two independent
variablesr anddz.

Let us illustrate what this means geometrically.

Let f'(x) be the derivative off = f(z) at P, then

dy = f'(x)dz = tan 7 - dz.

Thereforedy, or df (x), is the increment of thg-coordinate on the tangent line to
the curvey = f(x) corresponding to replacingby = + dzx.

This gives the following interpretation of the derivativeafraction.

If an arbitrarily chosen increment of the independent \dea for a point(z, y)
on the curvey = f(z) is denoted byiz, then in the derivative

dy_
dr

dy denotes the corresponding increment ofgheordinate drawn to the tangent.

f'(x) = tanT,

1The term “arbitrarily chosen” essentially means that théakde A« is independent from the
variablez.
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8.3. DERIVATIVE OF THE ARCLENGTH IN RECTANGULAR
COORDINATES

Figure 8.1: The differential of a function.

8.3 Derivative of the arclength in rectangular coor-
dinates

Let s be the arcleng@nof the part of the curvg = f(z) from a given point A on
the curve to some ‘variable” point P.

Denote the increment af(= arc PQ in Figure 8/2) byAs. The definition of the
arclength depends on the assumption that, as Q approaches P,

In the limit of the ratio of chord PQ and a second infinitesincalord PQ may be
replaced by arc PQ (As).
From Figure 8.2, we have

(chord PQ)* = (Ax)* + (Ay)>. (8.3)

2Defined in integral calculus. For now, we simply assume thatet is a functions = s(x)
such that if you go along the curve from a given paihfsuch as the poinf0, f(0))) to a point
P = (z,y) thens(z) describes the arclength.
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8.3. DERIVATIVE OF THE ARCLENGTH IN RECTANGULAR
COORDINATES

Figure 8.2: The differential of the arclength.

Dividing through by(Az)?, we get

chordPQ\* Ay’
(5 (5

Now let Q approach P in the limit. Thehz — 0 and we have

ds\ > dy 2
— ) =1 - .
(&) -+ (2)

(Sincelima, o (2%2L2) = lima, o (§2) = %.) Therefore,
ds dy 2

Similarly, if we divide (8.3) by(Ay)? and pass to the limit, we get
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8.4. DERIVATIVE OF THE ARCLENGTH IN POLAR COORDINATES

dy \ \dy '

Also, from the above figure,

P Ax 0 Ay
COSlU = ————— simov = ——————.
chordP@’ chordP@

Now as Q approaches P as a limiting position: 7, and we get

de | dy
g sinT=—r. (8.5)
A

(Slncehm —W = hm Z—i, andlim W = lim —y = %) USing the
notation of dlfferentlals these formulas may be written

1+ (Zi) ] dz (8.6)

A
ds = || — 1
’ [(dy) i

respectively. Substituting the value @f from (8.6) in (8.5),

COS T =

ds

and

1
2

dy, (8.7)

1 dy
COST = ———————, Ssin7T = d—xl, (8.8)
@] @]

the same relations given by (8.5).

8.4 Derivative of the arclength in polar coordinates

In the discussion below we shall employ the same figure anddhe notation

used ing5.7.

(chord PQ)* = (PR)* + (RQ)* = (psin A0)* + (p + Ap — pcos AB)>.
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8.4. DERIVATIVE OF THE ARCLENGTH IN POLAR COORDINATES

Dividing throughout by(A6)?, we get

chordPQ\> , [sinA0\?> [Ap 1 —cos AB\ >
——) =p + (L +p ——— ) .
Af A6 Af Af

Passing to the limit a&# diminishes towards zero, we Bet

@ 2: 2+ @ 2
a0 p a0 )

ds dp 2
2
-\ + (de) (8.9)
In the notation of differentials this becomes
dp 27 2
. A
ds p+(d9>]d0 (8.10)

These relations betwegrand the differentialds, dp, anddf are correctly repre-
sented by a right triangle whose hypotenusésiand whose sides ark andpdd.
Then

ds = \/(pd0)? + (dp)?,
and dividing byd6 gives (8.9). Denoting by the angle betweedp andds, we
get at once

do
tanw = pd_p7

which is the same as ((5.12).
Example 8.4.1.Find the differential of the arc of the circl& + 3> = 2.

Solution. leferentlatlng = —£
To find ds in terms ofz we substltute in (86), giving

4273 2 273 273
dsz[—f— } dx :[y +$] dx:r—] dmzﬂ.
y? y? y? r2 — a2

3Recall: limag_.o % = limag_o &5 = %, by §8 3,hmA_,0 80 — 1, by §2.10;

2 sin? M

limag_o 7522 = limpgo —apg> = hmAeHo sin AQO ““72 =0-1= 0 by §2.10 and 39
2
in §12.1.
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8.5. EXERCISES

To find ds in terms ofy we substitute in (8.7), giving

213 2 213 213
dSZ{l—i—y—Q} dy:{x —i—y} dy:[r—] = rdy
T

2 72 /r2 — y2'

Example 8.4.2.Find the differential of the arclength of the cardigid= a(l —
cos @) in terms ofo.
Solution. Differentiatings = a sin 6.

Substituting in((8.10), gives

1
1 1 012 0
ds = [a*(1—cos 0)*+a*sin® ]2df = a[2—2 cos 0]2d0 = a [4 sin 5] df = 2asin §d9'

8.5 Exercises

Find the differential of arclength in each of the followingrees:

1. y? = 4x.

Ans.ds = HTxdx.
2.y = ax>.

Ans.ds = /1 + 4a?x2dzx.
3. y=2a>

Ans.ds = /1 + 9z4dx.
4. 3 = 22,

Ans.ds = %\/4 + Yydy.
5. 27 + y§ = a3,

Ans.ds = 3 %dy.
6. b22? + a*y? = a’b>.

Ans. ds = 1/ 2=22% 4y,

a2 22
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8.6. THE DERIVATIVE CONSIDERED AS THE RATIO OF TWO RATES

7. eYcosx=1.

ANS. ds = sec z dz.

8. p=acos6.
Ans.ds = a df.

9. p? = a®cos 26.

ANS. ds = v/sec 260d0.

10. p= aed ot a
Ans. ds = pcsc a - df.
11. p = ab.
Ans.ds = aﬁmd@.
12. p = ab.
Ans.ds = 1\/a% + p2dp.
13. 1 1 1
(a) 2* —y* = a? (h) 22 +y2 = at
(b) x* = 4ay. (i) y* = az®.
(c) y=e"+e " (j) y =log z
(d) 7y =a (k) 4 =y,
(e) y = logsec . () p= asec2§
=2atanfsinf. (m —1+sind
(f) p P
(9) p=asec*?. (n) pf = a.

8.6 The derivative considered as the ratio of two rates

Let

y=f(z)
be the equation of a curve generated by a moving point P. éislatates: andy

may then be considered as functions of the time, as explaingsl13. Differen-
tiating with respect te, by the chain rule (Formula XXV i§4.1), we have

@_ dx
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8.6. THE DERIVATIVE CONSIDERED AS THE RATIO OF TWO RATES

At any instant the time rate of changeofor the function) equals its derivative
multiplied by the time rate change of the independent vigiab
Or, write (8.11) in the form

dy

dy dy
dt /

fl—t dx

The derivative measures the ratio of the time rate of charfige@that ofz.

25—

15—

Figure 8.3: Geometric visualization of the derivative theength.
% heing the time rate of change of length of arc, we have fro26(5.

ds de\?  [dt\?
i \/(%> - (£> : (8.12)

which is the relation indicated by Figure 8.3.
As a guide in solving rate problems use the following rule.
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8.7. EXERCISES

e FIRST STEP. Draw a figure illustrating the problem. Denote by, z, etc.,
the quantities which vary with the time.

e SECOND STEP. Obtain a relation between the variables indoWwhich
will hold true at any instant.

e THIRD STEP. Differentiate with respect to the time.
e FOURTH STEP. Make a list of the given and required quantities

e FIFTH STEP. Substitute the known quantities in the resulhtbby differ-
entiating (third step), and solve for the unknown.

8.7 Exercises

1. Aman is walking at the rate 6fmiles per hour towards the foot of a tower
60 ft. high. At what rate is he approaching the top when h&iét. from
the foot of the tower?

Solution. Apply the above rule.

First step. Draw the figure. Let= distance of the man from the foot and
= his distance from the top of the tower at any instant.

Second step. Since we have a right triang)é = 22 + 3600.

Third step. Differentiating, we gety% = 222, or, % = zdx, meaning

that at any instant whatever (Rate of changg)of (%) (rate of change of

Fourth step.

=80, % = 5 miles/hour,
= 5 x 5280 ft/hour,

y =22+ 3600
= 100.

& =7

dt

Fifth step. Substituting back in the abofe= 22 x 5 x 5280 ft/hour =4
miles/hour.
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8.7. EXERCISES

2. A point moves on the parabdlg = 22 in such a way that when = 6, the
x-coordinate is increasing at the rate2oft. per second. At what rates are
they-coordinate and arclength increasing at the same instant?

Solution. First step. Plot the parabola.
Second stepby = 2.

Third step.6‘2—§/ = 2:5%, or, % =3 %. This means that at any point on the

parabola (Rate of change gfcoordinate) =(§) (rate of change of abcissa).
de __ _ dy __ _ oz ds __

Fourth step77 = 2 ft. per secondy =6, ¢ =7,y = % =6, 5 =7

Fifth step. Substituting back in the abO\%,: g x 2 = 4 ft. per second.

From the first result we note that at the pdiéit6) they-coordinate changes

twice as rapidly as the-coordinate.

If we consider the point—6,6) instead, the result i%% = —4 ft. per
second, the minus sign indicating that treoordinate is decreasing as the
x-coordinate increases.

We shall now solve this usin§age .

Sage
sage: t = var("t")
sage: x = function("x",t)
sage: y = function("y",t)

sage: egqn = 6 *y - X2
sage: solve(diff(egn,t) == 0, diff(y(t), t, 1))
[diff(y(t), t, 1) == x(b) = diff(x(t), t, 1)/3]
sage. s = sqri(x"2+y"2)
sage: diff(s,t)
(2 *y(t) *diff(y(t), t, 1)
+ 2xx(t) diff(x(t), t, 1))/(2 *sgri(y(t)"2 + x(t)°2))

H _ oz dz
This tells us that? = £ . 42 and

ds _ y(t)y'(t) + z(t)z'(t)

dt z(t)? +y(t)?
Substituting‘fl—‘f =2, =06, gives‘é—?t/ = 4. In addition, ify = 6 then this
gives® = 36//72 = 3v/2.
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8.7. EXERCISES

3. A circular plate of metal expands by heat so that its ragiaeeases uni-
formly at the rate 0f).01 inch per second. At what rate is the surface in-
creasing when the radius is two inches?

Solution. Letr = radius and y = area of plate. Then= 722, % = 27m:fli—f,
That is; at any instant the area of the plate is increasinguae inche&rx
times as fast as the radius is increasing in linear inches: 2, ‘fl—f = 0.01,

% =7, Substituting in the abové! = 27 x 2 x 0.01 = 0.04 sq. in. per

SecC.

4. A street light is hund 2 ft. directly above a straight horizontal walk on
which a boys ft. in height is walking. How fast is the boy’s shadow length-
ening when he is walking away from the light at the rate of 168der
minute?

Solution. Letr = distance of boy from a point directly under light andy
= length of boy’s shadow. By similar trianglg/ (y+x) = 5/12, ory = 2.

Differentiating,fli—f = %i—f; i.e. the shadow is Iengthenirﬁgas fast as the

boy is walking, or120 ft. per minute.

5. In a parabola/? = 12z, if x increases uniformly at the rate dfin. per
second, at what rate isincreasing whem = 3in. ?
Ans. 2 in. per sec.

6. At what point on the parabola of the last example dosttewordinate and
y-coordinate increase at the same rate?
Ans. (3,6).

7. In the functiony = 223 + 6, what is the value of at the point wherey
increaseg4 times as fast ag?
Ans.x = £+2.

8. They-coordinate of a point describing the cumve+ y? = 25 is decreasing

at the rate oB/2 in. per second. How rapidly is thecoordinate changing
when they-coordinate isl inches?

Ans. % — 2 in. per sec.

9. Find the values af at the points where the rate of changerdf- 1222 +
45 — 13 is zero.

Ans. z = 3 andb5.
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8.7. EXERCISES

10.

11.

At what point on the ellips6z? + 9y* = 400 doesy decrease at the same
rate thatr increases?

Ans. (3,19).

Where in the first quadrant does the arclength increase tag fast as the
y-coordinate?

Ans. At60° = /3.

A point generates each of the following curves (problemd4 8p-Find the rate
at which the arclength is increasing in each case:

12.

13.

14.

15.

16.
17.

18.

19.

do __
- 2,0 = 2.

Ans. % = /5.

xy = 6; Z?—Q,y:?).

Ans. % = 2,/13.
2%+ 4y* = 20
Ans. & = /2.

y? = 2x;

,dt——l,yzl.

y = a3; Ccllf =3,r=-3.

y? = a3, fg:4,y:8.

The side of an equilateral triangle2isinches long, and is increasing at the
rate of3 inches per hour. How fast is the area increasing?

Ans. 361/3 sq. in. per hour.

Find the rate of change of the area of a square when thé sdecreasing
at the rate of: units per second.

Ans. 2ab sqg. units per sec.

(a) The,volume of a spherical soap bubble increases raowy trmes as fast

as the radius? (b) When its radiustién. and increasing at the rate of2
in. per second, how fast is the volume increasing?

Ans. (a)47r? times as fast; (b327 cu. in. per sec.
How fast is the surface increasing in the last case?
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EXERCISES

20.

21.

22.

23.

24.

25.

One end of a laddei0 ft. long is leaning against a perpendicular wall
standing on a horizontal plane. Supposing the foot of thedatb be pulled
away from the wall at the rate &fft. per minute; (a) how fast is the top of
the ladder descending when the foot isft. from the wall? (b) when will
the top and bottom of the ladder move at the same rate? (c) istiea top
of the ladder descending at the ratetdf. per minute?

Ans. (a)7—78 ft. per min.; (b) wher25+/2 ft. from wall; (c) when40 ft. from
wall.

A barge whose deck i ft. below the level of a dock is drawn up to it by
means of a cable attached to a ring in the floor of the dock,ab&deing
hauled in by a windlass on deck at the rat&8df. per minute. How fast is
the barge moving towards the dock whighft. away?

Ans. 10 ft. per minute.

An elevated car i$0 ft. immediately above a surface car, their tracks inter-
secting at right angles. If the speed of the elevated c&s imiles per hour
and of the surface c& miles per hour, at what rate are the cars separating
5 minutes after they meet?

Ans. 17.9 miles per hour.

One ship was sailing south at the rate&ahiles per hour; another east at
the rate of8 miles per hour. At P.M. the second crossed the track of the
first where the first was two hours before; (a) how was the nicstdetween
the ships changing &tP.M.? (b) how at P.M.? (c) when was the distance
between them not changing?

Ans. (a) Diminishing2.8 miles per hour; (b) increasirty73 miles per hour;
(c)3:17P.M.

Assuming the volume of the wood in a tree to be proportitméhe cube
of its diameter, and that the latter increases uniformlyr ysayear when
growing, show that the rate of growth when the diamet@rfisis 36 times
as great as when the diamete6 imches.

A railroad train is running 15 miles an hour past a stati@ihft. long, the
track having the form of the parabald = 600z, and situated as shown in
Figure 8.4.
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8.7. EXERCISES

26.

27.

400 Morth

200 —

100 — -

300

-100 — - -

-200 —

300 —

400 [

Figure 8.4: Train station and the train’s trajectory.

If the sun is just rising in the east, find how fast the shadowf the loco-
motive L is moving along the wall of the station at the instant it resscthe
end of the wall.

dy _ dz Yy dy
dt 600 dt’ 300 dt *
dx

i ds dz 2 dy\ 2 ds 2 dy\2 dy\ 2
g = (G + (@) we get(3)” = (%) + (5) Now
. d . .
= 15 miles per hour =22 ft. per sec.y = 400 and%/ =?. Substituting
= 13: ft. per

Solution.y* = 600z, 2y or % = Substituting this value

of

ds
dt

. 2
back in the above, we g¢p2)? = (1 +1) ()7, or, &
second.

An express train and a balloon start from the same potheatame instant.
The former travel$0 miles an hour and the latter rises at the ratd @f
miles an hour. How fast are they separating?

Ans. 51 miles an hour.

A man6 ft. tall walks away from a lamp-post) ft. high at the rate oft
miles an hour. How fast does the shadow of his head move?

Ans. 10 miles an hour.
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EXERCISES

28.

29.

30.

31.

32.

33.

34.

The rays of the sun make an anglg@f = /6 with the horizon. A ball is
thrown vertically upward to a height 6fl ft. How fast is the shadow of the
ball moving along the ground just before it strikes the gafin

Ans. 110.8 ft. per sec.

A ship is anchored S ft. of water. The cable passes over a sheave on the
bow 6 ft. above the surface of the water. If the cable is taken imatate

of 1 ft. a second, how fast is the ship moving when there3ark. of cable
out?

Ans. 2 ft. per sec.

A man is hoisting a chest to a winddw ft. up by means of a block and
tackle. If he pulls in the rope at the rate @f ft. a minute while walking
away from the building at the rate 6fft. a minute, how fast is the chest
rising at the end of the second minute?

Ans. 10.98 ft. per min.

Water flows from a faucet into a hemispherical basin aingieri4 inches

at the rate oR cu. in. per second. How fast is the water rising (a) when
the water is halfway to the top? (b) just as it runs over? (Tdlame of a
spherical segment rr?h + ¢wh?, whereh = altitude of segment.)

Sand is being poured on the ground from the orifice of avatde pipe,
and forms a pile which has always the shape of a right ciraxdae whose
height is equal to the radius of the base. If sand is fallintpatrate o cu.
ft. per sec., how fast is the height of the pile increasingmiie height i$
ft.?

An aeroplane i528 ft. directly above an automobile and starts east at the
rate of20 miles an hour at the same instant the automobile starts et a
rate of40 miles an hour. How fast are they separating?

A revolving light sending out a bundle of parallel raysisa distance of

a mile from the shore and makésevolution a minute. Find how fast the
light is traveling along the straight beach when at a distasfd mile from
the nearest point of the shore.

Ans. 15.7 miles per min.
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35.

36.

37.

38.

39.

40.

41.

A kite is150 ft. high and200 ft. of string are out. If the kite starts drifting
away horizontally at the rate dfmiles an hour, how fast is the string being
paid out at the start?

Ans. 2.64 miles an hour.

A solution is poured into a conical filter of base radiusn. and heigh24
cm. at the rate o2 cu. cm. a second, and filters out at the raté ofi. cm.
a second. How fast is the level of the solution rising wherofa third of
the way up? (b) at the top?

Ans. (a)0.079 cm. per sec.; (b).009 cm. per sec.

A horse rung0 miles per hour on a circular track in the center of which is
a street light. How fast will his shadow move along a stralgbard fence
(tangent to the track at the starting point) when he has ceteglone eighth
of the circuit?

Ans. 20 miles per hour.

The edges of a cube aé¢ inches and are increasing at the rate) ®f2
in. per minute. At what rate is (a) the volume increasing? t(ie) area
increasing?

The edges of a regular tetrahedron Hrenches and are increasing at the
rate of0.3 in. per hour. At what rate is (a) the volume increasing? (k) th
area increasing?

An electric light hang40 ft. from a stone wall. A man is walking2 ft. per
second on a straight patb ft. from the light and perpendicular to the wall.
How fast is the man’s shadow moving when hé&ddt. from the wall?

Ans. 48 ft. per sec.

The approach to a drawbridge has a gate whose two arnte adtaut the
same axis as shown in the figure. The arm over the drivewdyyerds
long and the arm over the footwalk #syards long. Both arms rotate at
the rate of5 radians per minute. At what rate is the distance between the
extremities of the arms changing when they make an angléf = /4

with the horizontal?

Ans. 24 yd. per min.
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8.7. EXERCISES

42. A conical funnel of radiug inches and of the same depth is filled with a
solution which filters at the rate df cu. in. per minute. How fast is the
surface falling when it ig inch from the top of the funnel?

1
Ans. ;- in. per mm.

43. An angle is increasing at a constant rate. Show that tiggetd and sine
are increasing at the same rate when the angle is zero, anthé¢htangent

increases eight times as fast as the sine when the angjie is 7/3.
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CHAPTER
NINE

Change of variable

If y = f(z) is a function ofr andz is a function of some other variabiehenj—g,

d <4, etc., can be expressed in term#g),f ‘fljf, fltéf, etc.. This chapter is devoted to
explaining the techniques to find the formulas necessampéking such a change

of variables.

9.1 Interchange of dependent and independent vari-
ables

If y = f(x) is a one-to-one function of then it can be “inverted” so that =
f~(y) is a function ofy. It is sometimes desirable to transform an expression
involving derivatives ofy with respect ta: into an equivalent expression involving
derivatives ofr with respect tg;. Our examples will show that in many cases such
a change transforms the given expression into a much sirap&erOr perhaps
is given as an explicit function cgtin a problem, and it is found more convenient
to use a formula mvolvm@ﬁ, 45, etc., than one involving?, ;‘ Y etc. We shall
now find the formulas necessary for making such transfoonati

Giveny = f(x), then from item 4.28 ir§4.1, we have

dy

dz

dx

@;%o (9.1)

sig|

giving £ in terms offZ. Also, by 4.27 m@
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d*y d (dy\ d [(dy\ dy
de?  dx \dx) dy \dz ) dz’

or

Py d ( 1 ) dy

2y _ 2 () 9.2)

dz?  dy fl—y dx

2o
But £ (%) — —(%2)2; and% = L from (9.1). Substituting these in (9.2), we
dy dy dy
get
d?x
Ly _ i (9.3)

dz? <d_x)3
dy

. 2 . . .
giving % in terms of4= and<%. Similarly,

2
fode g (43)

Py @ dy 42

)
dy

and so on for higher derivatives. This transformation isecethanging the inde-
pendent variable from to y.

(9.4)

Example 9.1.1.Change the independent variable frarto y in the equation

(LY odydy  dy (dy\®
dx? drdx3  dx? \dz)
Solution. Substituting from (9.1), (9.3), (9.4),

2

. 2
d’z drdr _ &z d’z 2
a2 1 dy® dy dy? 2 1 0
N 3\ d N 5 S 3 de | T
(%)) \» (%) (%) )\

dy

Reducing, we get

a much simpler equation.
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9.2. CHANGE OF THE DEPENDENT VARIABLE

9.2 Change of the dependent variable

Let

y = f(z),

and suppose at the same times a function ofz, say

y=g(2).

d? d7y 2z d’z
We may then expre$ o5 etc., interms 0% %3, etc., as follows

In generaly is a function ofy, and sincey is a function ofz, it is evident that
is a function ofz. Hence by 4.27 o0§4.1, we have

dy _dydz _ (2 )dz
dv  dzdr
Alsog = L(g(2)L) = Ldy(z) + ¢ ()5 But Lg/(z) = Lg/(2)% =

herefore

9" g

>y, dz\> , &%z
=6 (F) e
Similarly for higher derivatives. This transformation ialled changing the de-

pendent variabldrom y to z, the independent variable remainimghroughout.
We will now illustrate this process by means of an example.

Example 9.2.1.Having given the equation
@ ?
&y _ N 2(1+4y) @ 7
dx? 1+y? \dx
change the dependent variable frgrto z by means of the relation

y = tan z.

Solution. From the above,

dy dz d%y ,, A2z ?
_— = et _— 2 _—
o = Sec 2(2 )d )Ty = sec (z )d 5+ 2sec ?(2) tan(z) R

Substituting,
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9.3. CHANGE OF THE INDEPENDENT VARIABLE

sec2(z)2 + 2sec?(z) tan(z) <

dz? dx 1+ tan? z O E

dz)2 14 2(1 + tan 2) ( 5 dz>2
and reducing, we gefz — 2 (j—;)2 = cos? z.
9.3 Change of the independent variable

Lety be a function ofr, and at the same time let(and hence alsg) be a function
of a new variable. It is required to express

dy d*y
E’ _d$27 etc.,
in terms of new derivatives havingas the independent variable. By 4.27.1,
dy _ dydx
& = dwdir O
dy _ &
- = . 9.5

dt

This is another formulation of the so-calledain rule Also

d@_cic@) d<@th_%@@

dx? ~ dx

- dx
dx o

de )~ dt \dz ) dz
But differentiating% with respect td,

d - d? dy d?zx
d (dy) _d <d—i’> N
- T _ 2\ 2 :

dt \ dx dt fl—t (d_)

t

Therefore
d2 d_l’ﬂ _dyd’zx
__dt dt? dt dx?
2 me (9:6)
(%)

and so on for higher derivatives. This transformation isecathanging the in-
dependent variable fromto ¢. It is usually better to work out examples by the
methods illustrated above rather than by using the fornuldasiced.
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Example 9.3.1.Change the independent variable franto ¢ in the differential
equation

d? d
P gty =0
wherexr = €.

Solution. 4 = ¢!, therefore
ﬁ — e_t
dx
2
Also & = ddt thereforel = ¢ '%, Also L4 = etL (&) _ dyp—td
x dx dx

dt dx’ dt " dx t dt dx

e~td (L) di_ dy.-tdl gypstituting into the last resuft = e,

d*y _ —2t@ _ @e—zt

ar” C A
Substituting these into the differential equation,

d? d d
e (€2td_tg - d—ie”) + ¢’ (etd—‘?) +y =0,

and reducing, we g i;’ +y=0.

Since the formulas deduced in the Differential Calculus gaheinvolve deriva-
tives of y with respect ta,, such formulas as the chain rule are especially useful
when the parametric equations of a curve are given. Such@rarwere given in
§5.5, and many others will be employed in what follows.

9.4 Change ofindependent and dependent variables

It is often desirable to change both independent and depéregables simulta-
neously. An important case is that arising in the transfaionarom rectangular
to polar coordinates. Since

xr = pcost, and y = psind,

the equation

flz,y) =
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9.4. CHANGE OF INDEPENDENT AND DEPENDENT VARIABLES

becomes by substitution an equation betweamdd, definingp as a function of
0. Hencep, z, y are all functions of).

Example 9.4.1.Transform the formula for the radius of curvature (11.5),

(@)

N

R

into polar coordinates.
Solution. Since in (9.5) an@ 6)is any variable on which andy depend, we

may in this case let = 6, glvmg = g, and

2 do &y dy d’x

d~y _ d6dp> 9 do?

dx? ()
0

Substituting these int&, we get

)+ (3]

&
>

R:

or

(9.7)

d
But sincex = pcosf andy = psinf, we have

Z"Z = —psm@%—cos@je

d_z = pcos@+sin9%;
% = —pcos@—Qst% +cos€%,
% — —psm6’+2c050% +SID9%

Substituting these in (9.7) and reducing,
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9.5 Exercises

Change the independent variable frarto y in the following equations.

3. x%+(j—g)3—@=0.

2
d? dx _
Ans.xﬁ -1+ <d_y> = 0.

X 2 X SCB
Ans. ( 2) = (fl—y+a> 3?-
Change the dependent variable frgro = in the following equations:

5. (14 ) (dmd 2y>+(y)2:2(1+y)j—g%,y:z2+2z.

Ans. (z + l)de =& jzg + 22 + 22.

2
6. 37?; =1+ 2&*@‘;2) (dy) y = tan z.

2
Ans. % -2 (j—;) = cos? 2.
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7. 2Ly (3yd +2xy)dx2+{2( 1)2 9y 4 342y }§g+x3y3:o,y:
e*.

Ans. Lz 9y Lz 4 35242 4 43 — ),

Change the independent variable in the following eight eqnat

2
8d_y_ff@_|_

y _
T T Tt = 0, x = cost.

Ans.%+y=0.

9. (1—x2)%—x%20,x:cos 2.
Ans.% = 0.
2'LL U 3
10. (1 — y2)§? — yfl—y +a*u=0, y=sin .
Ans. ‘C%; + au = 0.

11. 2dy+2xdy +oy=0, v=1

Ans +ay—0

12. 3d”—|—3 23’2’—#27‘1”—}—1):0, x = el
Ans.d—x;erv:O.

13. Ly 4 2o dy

ay Yy .
da? 1422 dz + (1+22)2 — 0, = =tané.

Ans. d02+y—0

14. %+suj—z+se02520.
ANS. s = arctan t.

15. 4jxg+ay—0 =1

Ans. Zzy—l—wy—l—ay—o

In the following seven examples the equations are giveniarpatric form.
. 2, .
Find 2 and %4 in each case:
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16. 2 =7 +t%,y =3+ t* — 3t

17.

18.

19.
20.
21.
22.

23.

dy _ 1 _ 2 Py
Ans.dz_l 61, 7.2

We shall solve this usin§age .

— —6.

Sage

2+t - 12 =t°3)/(2  *t)
sage: solve(D_x_of y == 0,t)

sage: (x(t0),y(t0))
(4376, 37/12)

sage: D_xx = (diff(y,tt)
sage: D_xx

sage: D_xx(t0)
-12/sqrt(6)

sage: t = var("t")

sage: X = 7 + t2

sage: y = 3 +t2 -3 *t4
sage: f = (X, y)

sage: p = parametric_plot(f, 0, 1)
sage: D_x_of y = diff(y,t)/diff(x,t); D_x_of_y

[t == -1/sqrt(6), t == 1/sqrt(6)]
sage: t0 = solve(D_x_of y == 0,t)[1].rhs()

* diff(x,t)-diff(x,t,t) « diff(y,t))/diff(x,t)"2

(2*t*(2 - 36 *1'2) - 2 *(2%t - 12 *t3)(4 *t'2)

This tells us that the critical point is &3/6,37/12) = (7.166..,3.0833..),
which is a maximum. The plot in Figure 9.1 illustrates this.

r=cott,y= sin® t.

Ans. % = —3sin*t cost, 32712/ = 3sin®t(4 — 5sin?t).

x =a(cos t+sin t),y = a(sin t — tcos t).

2y _

Ans. % = tant, 4 =

1t . 2
=170 Y=

x:2t,y:2—t2.
r=1—13y=1t.

xr =acos t,y=bsin t.

1
atcos3t”

ey . :
Transformdz—df? by assuming: = pcosf, y = psiné.

V1+(38)
(z )"

ANS.
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Figure 9.1: Plot for Exercise 11.5-16,= 7 + t?,y = 3 + t? — 3t

24. Letf(x,y) = 0 be the equation of a curve. Find an expression for its slope
(%) in terms of polar coordinates.

dy __ pcos@—i—sin@%
. a —

Ans

— -
—psinf+cos 05
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CHAPTER
TEN

Applications of higher derivatives

We have seen how the first derivative can be applied to sotwvigug-min problems
and related rate problems. In this chapter, we present sppieations of higher
derivatives. Below, we introduce the mean value theoremppikdl's rule for

limits of “indeterminant forms,” and Taylor series appnmetions.

10.1 Rolle’s Theorem

Lety = f(x) be a continuous single-valued functiomganishing forz = a and
x = b, and suppose thgt(z) changes continuously whenvaries froma to b.
The function will then be represented graphically by a earaus curve starting
at a point on thec-axis and ending at another point on thexis, as in Figure
110.1. Geometric intuition tells us that for at least one gadfiz betweer: andb
the tangent is parallel to theaxis (as at P); that is, the slope is zero.

This illustrates

Rolle’s Theorem: If f(z) vanishes whem = a andxz = b, and f(x) and f’(z)
are continuous for all values af fromz = a to x = b, thenf’(z) will be zero for
at least one value of betweeru andb.

This theorem is obviously true, because as x increasesdramnd, f(x) cannot
always increase or always decrease &screases, sincé(a) = 0 and f(b) = 0.
Hence for at least one value ofbetweena andb, f(x) must cease to increase
and begin to decrease, or else cease to decrease and begiretse; and for that
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10.1. ROLLE'S THEOREM

25—

Figure 10.1: Geometrically illustrating Rolle’s theorem.

particular value ofr the first derivative must be zero (s¢&3).
That Rolle’s Theorem does not apply whéte) or f/(x) are discontinuous is
illustrated in Figure 10.2.

L I I
1 075 05 025

Figure 10.2: Counterexamples to Rolle’s theorem.
Figure 10.2 shows

250



10.2. THE MEAN VALUE THEOREM

(a) the graph of a function which is discontinuousds) for = = ¢, a value
lying betweer: andb, and

(b) a continuous function whose first derivative is discombius (=oc) for such
an intermediate value = c.

In either case it is seen that at no point on the graph betweens andz = b
does the tangent (or curve) be,come parallel tartaeis.

10.2 The mean value theorem

Consider the quantity Q defined by the equation

f(b) = f(a)

= Q. (10.1)

or

f(b) = fla) = (b—a)Q = 0. (10.2)
Let F'(x) be a function formed by replacingby = in the left-hand member of

(10.2); that is,

F(r) = f(z) = fla) — (z — a)Q. (10.3)

From (10.2),F(b) = 0, and from|(10.3)F'(a) = 0; therefore, by Rolle’s Theorem
(see§10.1), F'(x) must be zero for at least one valuexobetween: andb, say
for ;. But by differentiating/(10.3) we get

Fl(z) = f'(z) - Q.
Therefore, sincé”(x;) = 0, then alsof’'(z,) — Q = 0, and@ = f'(z;). Substi-
tuting this value of Q in(10.1), we get the ean value theorem,

f(b) — f(a)
b—a
where in general all we know abouwt is that it lies between andb.

= f(z1), a<x <b (10.4)

The mean value theorem interpreted geometrically

Let the curve in the figure be the locusof= f(z).
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1.5

05—

Figure 10.3: Geometric illustration of the mean value teear

In the notation of Figure 10.3, takeC' = « andOD = b; thenf(a) = C'A and
f(b) = DB, giving AE = b—aandEB = f(b) — f(a). Therefore the slope of
the chord AB is

EB _ f(b) - f(a)

AE b—a

There is at least one point on the curve between A and B (as &gwhe tangent
(or curve) is parallel to the chord AB. If the abscissa of R;ishe slope at P is

tan FAB =

tan t = f'(x1) = tan FAB.
Equating these last two equations, we get
f(b) — f(a)
b—a
which is the mean value theorem.

= ['(21),
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The student should draw curves (as the onglii.1), to show that there may be
more than one such point in the interval; and curves to st on the other hand,
that the theorem may not be truefifz) becomes discontinuous for any value of
x betweeru andb (see Figure 10.2 (a)), or if’(x) becomes discontinuous (see
Figure 10.2 (b)).

Clearing (10.4) of fractions, we may also write the theorerimaform

fb) = f(a) + (b —a)f'(z1). (10.5)

Letb = a + Aq; thenb — a = Aa, and sincer; is a number lying betweemnand
b, we may write
1 =a+60-Aa,

whered is a positive proper fraction. Substituting in (10.4), wé geother form
of the mean value theorem.

fla+Aa) — f(a) = Aaf'(a+60-Aa), 0<6<1. (10.6)

10.3 The extended mean value theorem

Following the method of the last section, Ietbe defined by the equation

£(b) ~ £(a) ~ (b= a)f(a) — (x — a)"R = 0. (107

Let F(x) be a function formed by replacingby = in the left-hand member of
(10.1); that is,

F() = f(0) — f@ — (e —a)f (@) = 3 —aR (108

From (10.7),F(b) = 0; and from [(10.8),F'(a) = 0; therefore, by Rolle’s Theo-
rem, at least one value of betweeru andb, sayz; will causeF”(x) to vanish.
Hence, since

we get
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SinceF’(z,) = 0 andF'(a) = 0, it is evident thatt”(z) also satisfies the condi-
tions of Rolle’s Theorem, so that its derivative, namg&ly(z), must vanish for at
least one value aof betweem: andz,, sayxs, and therefore:; also lies between
a andb. But F"(z) = f"(z) — R; thereforeF” (zo) = f"(z2) — R = 0, and
R = f"(z5). Substituting this result in (10.7), we get

F6)= F(@)+ (b~ a)f'(a) +

In the same manner, if we defiseby means of the equation

(b—a)f"(x3), a<mxy<b.

! gy - L

9] (b—a)*f"(a) 3 (b—a)’f"(a)S = 0,

f@) = fla) = (b—a)f'(a)
we can derive the equation

f0) = f(a) +(b—a)f'(a) + 5(b—a)*f"(a) (10.9)

+%(b —a)®f"(x3),a < w3 < b,

wherezx; lies betweem andb. By continuing this process we get the general
result,

—a —a)?
f0) = f@) +E5f(0) + S5 f" ()
b—a b—a)\™™ —
Fo @) e B ()
+%f(n)(l'1), a <1 < b,

wherez; lies betweer: andb. This equation is called the extended mean value
theorem.
Applications of this theorem will be presentedsit0.15 below.

10.4 Exercises

Examine the following functions for maximum and minimumues, using the
methods above.

1. y=3z*—423+1
Ans.z = lisamin.,y = 0; z = 0 gives neither.

1Also called Taylor’s formula.
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2. y=a%— 622+ 122 + 48
Ans. z = 2 gives neither.
.y=(x—1>2*(z+1)>
Ans.z = lisamin.,y = 0; x = 1/5is a max;x = —1 gives neither.
4. Investigate) = 2° — 5z* + 52° — 1 atz = 1 andz = 3.
5. Investigate) = 2® — 322 + 32 + 7 atz = 1.

6. Show the if the first derivative of(z) which does not vanish at = a is
of odd ordem then f(z) is increasing or decreasingat= a, according to
whetherf ™ (a) is positive or negative.

10.5 Maxima and minima treated analytically

By making use of the results of the last two sections we can riegvaygeneral
discussion of maxima and minima of functions of a single petelent variable.

Given the functionf(z). Let h be a positive number as small as we please;
then the definitions given ifi7.4, may be stated as follows: If, for all valuesaof
different froma in the intervalja — h, a + hj,

f(z) — f(a) = anegative number, (10.10)
then f(z) is said to be anaximumwhenz = a. If, on the other hand,

f(z) — f(a) = apositive number, (10.11)

thenf(x) is said to be aninimumwhenz = a. Consider the following cases:

| Let f’(a) # 0. From (10.5), §10.2], replacing b by x and transposing f(a),

f(x)—fla)=(x—a)f'(x1), a<mz <z, (10.12)

Sincef'(a) # 0, and f'(z) is assumed as continuousmay be chosen so
small thatf’(z) will have the same sign af(a) for all values ofx in the
interval[a— h, a+h]. Thereforef’(x;) has the same sign g4 a) (Chap. 2).
But z — a changes sign according ass less or greater than Therefore,
from (10.12), the difference () — f(a) will also change sign, and, by
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(10.10) and((10.11)f(a) will be neither a maximum nor a minimum. This
result agrees with the discussion§ii.4, where it was shown that for all
values ofz for which f(x) is a maximum or a minimum, the first derivative
f'(x) must vanish.

Let f’(a) = 0, andf”(a) # 0. From (10.12), replacingby = and transpos-
ing f(a),

2
(o)~ fla) =
Since f"(a) # 0, and f”(z) is assumed as continuous, we may choose
our intervalla — h,a + h] so small thatf”(x2) will have the same sign as
f"(a) (Chap! 2). Alsqx — a)? does not change sign. Therefore the second
member of((10.13) will not change sign, and the differei¢e) — f(a)
will have the same sign for all values ofin the intervalla — h,a + hl,
and, moreover, this sign will be the same as the sigfi’6d). It therefore
follows from our definitions (10.10) and (10/11) that

f(x2), a<mzy<u. (10.13)

f(a)is a maximum if f'(a) =0 and f”(a) = a negative number;
(10.14)
f(a)is a minimum if f’(a) = 0 and f”(a) = a positive number (10.15)

These conditions are the samelas|(7.3) and (A4)6].

Il Let f'(a) = f"(a) = 0, andf"(a) # 0. From (10.9), §10.3], replacing

by = and transposing(a),

f(z) = fla) = %@ —a)’f"(x3), a<wy<uw (10.16)

As before, " (x3) will have the same sign 8&’(a). But(x—a)?® changes its
sign from— to + asx increases through. Therefore the differencé(x) —
f(a) must change sign, anfla) is neither a maximum nor a minimum.

Let f'(a) = f"(a) = --- = fD(a) = 0, and f™(a) # 0. By continuing
the process as illustrated in I, Il, and Ill, it is seen thah# first derivative
of f(x) which does not vanish far = a is of even order=€ n), ther?

2As in §7.4, a critical valuer = « is found by placing the first derivative equal to zero and
solving the resulting equation for real roots.
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f(a) is a maximum if f(a) = a negative number; (10.17)

f(a) is a minimum if ™ (a) = a positive number. (10.18)
If the first derivative off(x) which does not vanish far = « is of odd
order, thenf(a) will be neither a maximum nor a minimum.

Example 10.5.1.Examinezr? — 922+ 242 — 7 for maximum and minimum values.

Solution. f(z) = x* — 92% + 24z — 7. f'(x) = 32* — 18z + 24. Solving
3z — 18z + 24 = 0 gives the critical values = 2 andz = 4. Thusf/(2) = 0,
and f'(4) = 0. Differentiating againf”(x) = 6z — 18. Sincef”(2) = —6, we
know from (10.17) thaff(2) = 13 is a maximum. Sincg”(4) = +6, we know
from (10.18) thatf(4) = 9 is @ minimum.

Example 10.5.2.Examinee®+2 cos(z)+e~* for maximum and minimum values.

Solution. f(x) = e* + 2cos(x) + e %, f'(x) = e* — 2sinx — e * = 0, for
x = 0 (andx = 0 is theonly root of the equatiore” — 2sinx — e~ = 0),
f'(x) =e* —2cos(z) + e =0,forz =0, f(x) = €” + 2sinz — e * = 0,
forz =0, f®(z) = e” + 2cos(x) + e = 4, forz = 0. Hence from[(10.18),
f(0) =4 is a minimum.

10.6 Exercises

Examine the following functions for maximum and minimumued, using the
method of the last section.

1. 3zt — 423 + 1.
Ans. z = 1 gives min.= 0; z = 0 gives neither.

2. 2% — 622 + 122 + 48.
Ans. r = 2 gives neither.

3. (z—1)*(x+1)3.
Ans.z =1gives min.=0; z = é gives max.;x = —1 gives neither.

4. Investigater’ — 52* + 523 — 1, atr = 1 andz = 3.

5. Investigater® — 322 + 3z + 7, atz = 1.
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6. Show that if the first derivative of(z) which does not vanish for = a is
of odd order & n), thenf(x) is an increasing or decreasing function when
r = a, according ag™ (a) is positive or negative.

10.7 Indeterminate forms

Some singularities are easy to diagnose. Consider the @me* at the point
x = 0 (see Figure 10.4). The function evaluateslﬁtand is thus discontinuous
at that point. Since the numerator and denominator areraomis functions and
the denominator vanishes while the numerator does notgethard right limits
asx — 0 do not exist. Thus the function has an infinite discontinaityhe point
x = 0.

10 7.5

Figure 10.4:<()

More generally, a function which is composed of continuaugtions and evalu-
ates tog at a point wheres # 0 must have an infinite discontinuity there.

Other singularities require more analysis to diagnose. idenshe functions
gz S% and 222 at the pointz = 0. All three functions evaluate t§ at
that point, but have different kinds of singularities. Thestfihas a removable
discontinuity, the second has a finite discontinuity andttiiel has an infinite
discontinuity. See Figure 10.5.

An expression that evaluates (for a particular value of tidependent variable)

to g 2,000, 00 — 00, 1%, 0° or 00" is called arindeterminate formA function
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FORM

Figure 10.5: The functiong'2z, =iz _siii_ - yresp

l—cosz?

h(z) which takes an indeterminate form:at= « is not defined forr = a by the
given analytical expression. For example, suppose we have

() = 112,

where atr = a,

f(a) =0, and g(a) =0.

For this value ofr our function is not defined and we may therefore assign to it
any value we please. It is usually desirable to assign totuthetion a value that
will make it continuous when = a whenever it is possible to do so. Lipital’s
rule, given in|(10.19) below, helps us determine this valuk(a) which makesh
continuous at: = a.

10.8 Evaluation of a function taking on an indeter-
minate form

If whenz = a the functionf (z) assumes an indeterminate form, then

lim f(z)

is taken as the value gf(z) for x = a. The calculation of this limiting value is
calledevaluating the indeterminate form

The assumption of this limiting value mak¢ér) continuous forz = a. This
agrees with the theorem under Casé8.B], and also with our practice in Chapter
2, where several functions assuming the indeterminate gcmrare evaluated.
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10.9. EVALUATION OF THE INDETERMINATE FORM%

Example 10.8.1.Forz = 2 the functionZ=2 assumes the forr but

Hence4 is taken as the value of the function for= 2. Let us now illustrate
graphically the fact that if we assumeas the value of the function far = 2,
then the function is continuous far= 2. Lety = ”5:24 This equation may also
be written in the formy(z — 2) = (x — 2)(x + 2); or (z — 2)(y — 2z — 2) = 0.
Placing each factor separately equal to zero, we have2, andy = x + 2. Also,
whenz = 2, we gety = 4.

In plotting, the loci of these equations are found to be twedi Since there
are infinitely many points on a line, it is clear that when= 2, the value of
y (or the function) may be taken as any number whatever. Whesndifferent
from 2, it is seen from the graph of the function that the correspandalue of
y (or the function) is always found from = = + 2, which we saw was also the
limiting value ofy (or the function) forz = 2. It is evident from geometrical
considerations that if we assumi@s the value of the function far = 2, then the
function is continuous for = 2.

Similarly, several of the examples given in Chapter 2 illatgtrhow the limiting
values of many functions assuming indeterminate forms neajobnd by em-
ploying suitable algebraic or trigonometric transforraati, and how in general
these limiting values make the corresponding functiondicoaus at the points
In question. The most general methods, however, for evalyatdeterminate
forms depend on differentiation.

10.9 Evaluation of the indeterminate form%

Given a function of the forni% such thatf(a) = 0 andg(a) = 0; that is, the

function takes on the indeterminate for%‘rwhena is substituted forz. It is then
required to find

i L)

(See Figure 10.6.) Since, by hypothesf$s) = 0 andg(a) = 0, these graphs
intersect ata, 0).
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10.9. EVALUATION OF THE INDETERMINATE FORM%

15

y=z

y=sin(z)

0.5

0.5 1

Figure 10.6: The graphs of the functiofi&r) = x andg(z) = sin(z).

Applying the mean value theorem to each of these functicdcingb by x),
we getf(x) = f(a)+(z—a)f'(z1),a < x; < x,andg(z) = g(a)+ (x—a)g'(z2).
a < xy < x. Sincef(a) = 0 andg(a) = 0, we get, after canceling o@t — a),

f@) _ fl)
g(@) ~ gla)

Now letx — a;thenx; — a, 2y — a,andlim, ., f'(x1) = f'(a),lim, ., ¢'(z2) =

g'(a). Therefore,

f@) _ fa)

m ,
a—ag(z)  g'(a)
providedg’(a) # 0. This is a special case of the so-called
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10.9. EVALUATION OF THE INDETERMINATE FORM%

L'Hospital's Rule?: Let f(z) andg(z) be differentiable andf(a) = g(a) = 0.
Further, letg(z) be nonzero in a punctured neighborhoodrof= a, (for some
smallé, g(x) # 0forz € {0 < |x —a| < 6}). Then

lim f(z) = lim f'(z)

i=ag(z)  a—ag'(z)

The rule is named after the 17th-century Frenchman GuileadmI'Hospital,
who published the rule in his bodlnalyse des Infiniment Petits pour I'Intelligence
des Lignes Courbeqtranslation: Analysis of the infinitely small to understan
curves), the first book about differential calculus. Thiskavas first published
in the late 1600’s and basically consisted of the lectureki®fteacher Johann
Bernoulli. In particular, this rule is, in fact, due to Johd@wernoulli (1667 - 1748).

Example 10.9.1.Consider the three functiorig', s}gﬁ’ and 22 at the point
x = 0. :
. SIn T . COS T
lim = lim =1
z—0 X z—0 1
Thuss% has a removable discontinuity at= 0.
. sinx . sinzx
Im — = lim — =1
z—0t |I’| z—0t T
Sin x . SN xr
lim = lim =-1
e—0- |x|  a—0- —x

Thus%” has a finite discontinuity at = 0.

. sin x . cosx 1
Iim —— = lim — = —
z—0]1 —cosx z—0sinx 0

= o0

Thus =22 has an infinite discontinuity at = 0.

si
l—cosx

cos(z)—1
22

Example 10.9.2.We useSage to computdim, .

Sage
sage: limit((cos(x)-1)/x"2,x=0)
-1/2
sage: limit((-sin(x))/(2 * X),X=0)

3Also written L'Hopital and pronounced “low-peh-tall”.
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10.9. EVALUATION OF THE INDETERMINATE FORM%

-1/2

sage: limit((-cos(x))/(2),x=0)

-1/2

This verifies
lim cos(xz) — 1 5 —sin(x) lim — cos(z) __1)9.
z—0 €T z—0 21 z—0 2

Example 10.9.3.Let a andd be nonzero.

11m = 11m
a—oo dr? +er+ f 200 2dr+e
. 2a
= lim —
z—o0 2d
a

d

ar® + bx + ¢ ) 2ax + b

Example 10.9.4.Consider

. cosr—1
lim ———.
z—0 rsinx
This limit is an indeterminate of the forrgl Applying L'Hospital’s rule we see
that limit is equal to
i —sinx
lim ——M.
z—0 x CcOoST + SInx
This limit is again an indeterminate of the forgn We apply L'Hospital’'s rule
again.
—CoS 1

lim : = —=
z—0 —xsSinx + 2cosx 2

Thus the value of the original limit is-1. We could also obtain this result by
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10.9. EVALUATION OF THE INDETERMINATE FORM%

expanding the functions in Taylor series.

:t2 x4
cosr — 1 . (1_7+ﬂ_ )_1
1 - = lim -
vo0 s =0 1 (2 s T 12 )
2 4
r 4z .
— lim - 2954 24.736
z—0 o 5 + 130
1 2z
= lim 2902 24904
Ol =%t
1
2
Example 10.9.5.We useSage to computdim,_, 5=
Sage
sage: limit((cos(x)-1)/x"2,x=0)
-1/2
sage: limit((-sin(x))/(2 * X),x=0)
-1/2
sage: limit((-cos(x))/(2),x=0)
-1/2
This verifies
lim cos(xl -1 lim = sin(x) i = cos(x) _ 10,
z—0 X z—0 2x z—0 2

10.9.1 Rule for evaluating the indeterminate formg

Differentiate the numerator for a new numerator and difigete the denominator
for a new denominatdr The value of this new fraction for the assigned valok
the variable will be the limiting value of the original fraan.

4A warning to the student: don’t make the mistake of diffeiattig the whole expression as a
fraction using the quotient rule!
5If @ = inf, the substitution: = % reduces the problem to the evaluation of the limitfct 0.
C f@) s (2% _ g (2 )
Thush.mi_',mf ) = lim, g s lim, g (1) = limy_ing IOk Therefore the rule
holds in this case also.

w"‘ Nw"“
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10.9. EVALUATION OF THE INDETERMINATE FORM%

In case it so happens that(a) = 0 andg’(a) = 0, that is, the first derivatives
also vanish for: = a, then we still have the indeterminate fo%nand the theorem

. () o . M I (
can be applied anew to the ratlgﬁéx—) giving uslim,_, D = o) When also

f"(a) = 0andg”(a) = 0, we get in the same mannié,, ., % ;jgg;, and so
on.

It may be necessary to repeat this process several times.

Example 10.9.6. Evaluate% = =842 whena = 1.
Solution.

f(1)y 23 —3x+2 1-3+2 0

gu):aﬁ—ﬁ+4]x1:1—1—1+1 0
Therefore, this is an indeterminate form.

f(1) 32 -3 3-3 0

gu):3ﬂ—ax—J$1:3—2—1 "0
Therefore, this is an indeterminate form.

"
(1) = bz = 6 = § Ans.
g'(1)  6x—2], 2

T2z

Example 10.9.7.Evaluatelim, o =22,
Solution.

0—-0 0

f(0) ex—e_’”—2x} 1-1-0 0
g(0 r—sinz | __,

Therefore, this is an indeterminate form.

fl(0) e —e™ -2 _1+1-2 0
g(0)  l—cosz |,
Therefore, this is an indeterminate form.

f0) et —e7" 1-1 0
g"(0)  sinz |,_, 0O 0O
Therefore, this is an indeterminate form.
= ——=2. Ans.

f"0) et —e® 1+1
=0 1

g”(0)  cosz

265



10.9. EVALUATION OF THE INDETERMINATE FORM%

10.9.2 Exercises

Evaluate the following by differentiatién

z2—16

1. hmzﬂ4 2242-20"

8
AnNS. 5

2. hmm_ﬂ L

Ans. L.

n

log ©

3. lim, .1 27

Ans. 1.

T_e—T

4. lim, g =—

sinz
Ans. 2.

tanz—x
r—sinx *

5. hmx_)[)

ANS. 2.

log sin x
(r—2x)2 "

6. limm_%
1
AnNs. —5-

a®—b"

x

7. hmx_)g
Ans. log 3.

3_ar?—a’r+ad®

: T
8. lim,_,, g

Ans. 0.

f—arcsin 0

9. limg .o =557

1
AnNs. —5

10. lim,, ., *2E=500,

Ans. cos ¢.

6After differentiating, the student should in every caseusdthe resulting expression to its
simplest possible form before substituting the value ofmable.
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10.10. EVALUATION OF THE INDETERMINATE FORM>

eY+siny—1

11. lim,, o SR,

ANS. 2.

tan f+sec 6—1

12 hm9~>0 tan 0—secO+1"

Ans. 1.

sec? p—2tan ¢

13 limqp% Tfcos 49

1
ANS. 5

2

: az—z
14. lim. ., a*—2a3z+42a23—2*"

AnNs. +oo.

. (ezfez)z
15. lim,_ .o Dtz

AnNs. Ge*.

: 2 4x—2
16. lim,, ., £42=2,

x3+8
z5+32"

17. lim, o

18. lim, S22,

z—sinz

19. lim, o =2

20. lim,,_,, ‘egcos@—1)

——T .
1—sin -5

21 . 111113;_,0 tan m—331n T

sin® x

10.10 Evaluation of the indeterminate form=:

In order to compute

whenlim, ., f(z) = oo andlim,_, g(x) = oo, that is, when forx = a the
function % assumes the indeterminate foE@q we follow the same rule as that
given in§10.9 for evaluating the indeterminate fofn
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10.11. EVALUATION OF THE INDETERMINATE FORM) - oo

Rule for evaluating the indeterminate form °=: Differentiate the numerator
for a new numerator and the denominator for a new denomindioe value of
this new fraction for the assigned value of the variable balthe limiting value
of the original fraction.

A rigorous proof of this rule is beyond the scope of this boo# & left for more
advanced treatises.

Example 10.10.1.Evaluate!®Z for z = 0.
Solution.

f0) _log(x)] _ —oc
g(0) ~ esc(x)|,, oo
Therefore, this is an indeterminate form.
f'(0) 1 _ sin’z 0
¢(0)  —cscxeotw |, rcosT),_,

Therefore, this is an indeterminate form.

1"(0) 2sinx cosx

0
} = ——=0. Ans.
=0 1

¢"(0) ~  cosz — zsinz
Example 10.10.2.Let « andd be nonzero.

ar® + bxr + ¢ . 2ax + b

1m = l1m
e—oo dr? +er+ f a—o02dxr+e

10.11 Evaluation of the indeterminate form0 - co

If a function f(x) - ¢() takes on the indeterminate folimoo for = = a, we write

the given function
(@) - o) = L (orz d’ﬁ))
p(z) f(z)

SO as to cause it to take on one of the for%nsr 2, thus bringing it unde§10.9
or §10.10.
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10.12. EVALUATION OF THE INDETERMINATE FORMx — oo

Example 10.11.1 Evaluatesec(3x) cos(5z) for z = 7.
Solution. sec 3z cos 5z],_ = oo - 0. Therefore, this is an indeterminate form.

Substituting@ for sec 3z, the function become®:5< — %

¢os 3z (z)

f(3) cos5x] 0

™

g(%)  cos3x 0
Therefore, this is an indeterminate form.

f'(5)  —cos m}

0
= - = — =0. Ans.
g(3) —sinx

—1

Example 10.11.2.

. 1 . xcosx —sinx
lim (| cotz — - | = lim —mM8 —
z—0 T z—0 TrsinT

COST — xSINT — COST

= lim -
z—0 SINT + xr cosx
. —zrsinx
= lim

z—0SIN X + T CcoST
—TCcosx —sinx

= lim g
z—0 COST + COST — T SIN T
=0
Here is theSage command for this example:
Sage
sage: limit(cot(x)-1/x,x=0)
0
sage: limit((- x *CoS(X) - sin(x) )/(cos(x) + cos(x) - X * sin(x)),x=0)
0

This verifies the answer obtained “by hand” above.

10.12 Evaluation of the indeterminate formoo — oo

It is possible in general to transform the expression intoaation which will
assume either the forghor .
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10.12. EVALUATION OF THE INDETERMINATE FORM>x — oo

Example 10.12.1.Evaluatesec x — tan x for z = 7.
Solution. secz —tanz| _. = oo — oco. Therefore, this is an indeterminate
2
form. By Trigonometry,

o _ 1  sinz __ l—sinz __ (JB)
secT —tanz = cos cosz ~ cosz  g(z)°
NG _ isima] _ 11 _ 0 Therefore, this is an indeterminate form.
a(3) cosz Ja=7 0 0
f’(%) _ —cosz _ 0 _
g’(%) = m]x:ﬁ = 3= 0 ADS.

10.12.1 Exercises
Evaluate the following by differentiation

ax?+b
cx?4d”

1. lim, .
Ans. 2.
C

cotx
logz*

2. hmm_@
Ans. —oo.

log x
zn T

3. lim,—o

Ans. 0.

6. lim,_.ox cot .

Ans. 1.
s

7. limy o

Ans. 0.

Y
ey ”

8. lim, .= (7 — 2x) tan .
2

ANs. 2.

’In solving the remaining exercises in this chapter, the fda®in§2.12 may be useful, where
many special limits are evaluated.
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10.12. EVALUATION OF THE INDETERMINATE FORMx — oo

10.

11.

12.

13.

14.

15.

16. li

17.

18.

19. li

- limy oo 2 sin £.

ANS. a.

lim,_.o 2" log z. [n positive.]
Ans. 0.

limg_. = (1 — tan 0) sec 26.
Ans. 1.

limg_,(a? — ¢?) tan %
Ans. 42

log sin 2z

hmmHO logsinx *

Ans. 1.

: tan 6
hm9—>% tan 36 "

Ans. 3.

lim, .o x logsin x.

Ans. 0.

lim, 1[5 — 75]-
Ans. —1.
Sage

sage: limit(2/(x"2-1) - 1/(x-1),x=1)
-1/2
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Sage

sage: limit(1/log(x) - x/log(x),x=1)
-1

20. limg. = [sec  — tan 6].

Ans. 0.
21. hm‘z’HO |:sin22¢ o 1—0105¢] ’
Ans. %

22. lim, ., [L L} .

y—1  logy
1
Ans. 5.
: T s
23. hng)o [E - m} .
2
™
Ans. %-.

10.13 Evaluation of the indeterminate forms)?, 1°°,

ooV

Given a function of the form

J ()",

In order that the function shall take on one of the above tfowas, we must have
for a certain value of, f(z) = 0, ¢(x) = 0, giving 0°; or, f(x) = 1, ¢(x) = oo,
giving 1°°; or, f(z) = oo, ¢(x) = 0, giving oc’. Lety = f(z)*™@; taking the
logarithm of both sides gives usg y = ¢(x) log f(z). In any of the above cases
the logarithm ofy (the function) will take on the indeterminate fofim co.

Evaluating this by the process illustrated§ih0.11 gives the limit of the loga-
rithm of the function. This being equal to the logarithm o timit of the function,
the limit of the function is known.
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Example 10.13.1.Evaluater” whenz = 0.
Solution. This function assumes the indeterminate fofnor z = 0. Let
y = x%; thenlogy = zlogz = 0 - (—0), whenz = 0. By §10.11,

logx  —o0

logy 1 ?,

whenz = 0. By §10.10,

logy—5 = —2 =0,

whenz = 0. Sincey = z%, this giveslog, (z*) = 0; i.e.,z” = 1. Ans.

Example 10.13.2.Evaluate(1 + x)= whenz = 0.
Solution. This function assumes the indeterminate fafmfor + = 0. Let
y = (1+2)+; thenlogy = 2log(l 4+ x) = oo - 0 whenz = 0. By §10.11,
_1
= 180+ — 0 whenz = 0. By §10.9,y = =% = L = 1 whenz = 0. Since
y=(1+ ;,;-)1%5, this giveslog, (1 + z)+ = 1;i.e. (1 +x): = e. Ans.

Example 10.13.3.Evaluatecot x sin x for x = 0.
Solution. This function assumes the indeterminate fotthfor x = 0. Let
y = (cotx)®%; thenlogy = sinzlogcotz = 0 - oo whenz = 0. By §10.11,

2

—csctx

logy = “&CL — 2 wheng = 0. §10.10,logy = —==e— = Sz — ( when

CSCx —cscxcotx COS2 x
xz = 0.

10.14 Exercises
Evaluate the following limits.

. 1
1 lim, x7=.
Ans. L,
e

1\ tanx
o

Ans. 1.

3. limg_z (sin §)**"?.

Ans. 1.
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)
4. Timy o (142)".
Ans. e“.

5. lim, o(1 4 sin z)®°'*,
Ans. e.

6. lim, .o (2+1)".
Ans. 2.

=

7. lim, _o(e” + x):

8

Ans. e2.

8. lim,_o(cot x)ﬁ

Ans. 1.
e

9. lim._o(1 + nz)=.

Ans. e".
anm
10. limy_; (tan 22)"™" 2,
Ans. L.
11. limg_o(cos mb) a2 .
Ans. e 2",
12. lim,_o(cot x)*.
Ans. 1.
13. lim, ., (2 — 2)"" %,
Ans.ex.

14. (a)lim, . —“j;”
(b) lim,_.o (Csc T — %)

(€) lim, . yoo (14 2)°
(d) lim,_o (csc? z — =5 ). (First evaluate using L'Hospital’s rule then us-
ing a Taylor series expansion. You will find that the lattertmoel is

more convenient.)
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10.15. APPLICATION: USING TAYLOR’S THEOREM TO APPROXIMATE
FUNCTIONS.

15.
bx
lim z%/7, lim (1 + ﬁ) ,
x

Tr—00 Tr—00

wherea andb are constants.

2216
x2+4+2x—20

Ans.8/9

16. limm_,4

: r—1
17. lim, oy 2.

Ans.1/n

18. lim, ., 82

r—1"°

Ans. 1

T_o—

19 . llmxﬂo =

AnNs. 2

sin(x)

log sin(x)
(m—21x)2

20. lim, /2
Ans. —1/8

a”-b”
T

Ans.log(a/b)

f—arcsin(6)

22. lim, _, =25

Ans. —1/6.

23. lim,_, =500,

Ans. cos(¢).

10.15 Application: Using Taylor's Theorem to ap-
proximate functions.

We revisit the ideas i§10.3 above to present some applications.
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10.15. APPLICATION: USING TAYLOR’S THEOREM TO APPROXIMATE
FUNCTIONS.

Theorem 10.15.1.(Taylor's Theorem) If f(x)isn + 1 times continuously dif-
ferentiable in(a, b) then there exists a point= ¢ € (a, b) such that

F0) = fla)+ (b—a)f'(a) + L 7 (a) + - -

—a)" n —a n+1 n
+%f( )(a) + (b(nJr)l)y f( +1)(§)'

(10.20)

For the case = 0, the formula is

f() = fla) + (b—a)f'(§),
which is just a rearrangement of the terms in the theoremeoiffrtean,

Fb) ~ fla)

f1e) ===

One can use Taylor’s theorem to approximate functions wotiipmials. Con-
sider an infinitely differentiable functiofi(x) and a pointc = a. Substitutinge
for b into Equation 10.20 we obtain,

f(m) :f(a)+($—a)f’(a)+%f//(a)+...+(x;_‘!l)nf(n)(&)

z—a)"t1 s
+EG 2 ().

(10.21)

If the last term in the sum is small then we can approximateungtion with an
n'" order polynomial.

(z —a)?
2l

(z —a)"

fl@)~ fa) + (x = a)f'(a) + (@) + -+ =)

The last term in Equation 10.21 is called the remainder oethar term,

Ry = =" s g
" (n+1)! '

Since the function is infinitely differentiablef™+1)(¢) exists and is bounded.
Therefore we note that the error must vanishras 0 because of thér — a)"*!
factor. We therefore suspect that our approximation woel@ lgood one if is
close toa. Also note that:! eventually grows faster than — a)™,

lim (@~ a)

=0.
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FUNCTIONS.

So if the derivative termf 1) (¢), does not grow to quickly, the error for a certain
value ofz will get smaller with increasing and the polynomial will become a
better approximation of the function. (It is also possililattthe derivative factor
grows very quickly and the approximation gets worse withieasingn.)

Example 10.15.1.Consider the functiorf(z) = e¢*. We want a polynomial ap-
proximation of this function near the point= 0. Since the derivative aof* is e”,
the value of all the derivatives at= 0 is £ (0) = ¢” = 1. Taylor’s theorem thus
states that
ZL‘2 ZL‘S " :L,n+1 ¢
] T

s T T TR i T
for some¢ € (0,z). The first few polynomial approximations of the exponent
about the point: = 0 are

fl(m)zl
folz) =1+

The four approximations are graphed in Figure 10.7.

Note that for the range af we are looking at, the approximations become more
accurate as the number of terms increases.

Here is one way to compute these approximations uSagg :
Sage

sage: x = var("x")

sage: y = exp(x)

sage: a = lambda n: diff(y,x,n)(0)/factorial(n)
sage: a(0)

sage: a(l)

sage: a(2)

1/2

sage: a(3)

1/6

sage: taylor = lambda n: sum([a(i) +*X'i for i in range(n)])
sage: taylor(2)

X+ 1
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FUNCTIONS.

-0.75 -0.5 -0.25 0.25 0.5 075 1

L

Figure 10.7: Finite Taylor Series Approximationsiofl + =, 1 + = + 2—2 to e”.

sage: taylor(3)
X212 + x + 1
sage: taylor(4)
X36 + X2/2 + x + 1

Example 10.15.2.Consider the functiorf(z) = cosz. We want a polynomial
approximation of this function near the point= 0. The first few derivatives of
are



10.15. APPLICATION: USING TAYLOR’S THEOREM TO APPROXIMATE
FUNCTIONS.

It's easy to pick out the pattern here,

n/2
0 () = (—1)"/ cos for evenn,
(—=1)"*D/2sinx  for oddn.
Sincecos(0) = 1 andsin(0) = 0 then-term approximation of the cosine is,

2 4 6 2(n—1) r2n

T I G B (GRS VI
cosx =1 + + -+ (—1) (2(n—1))!+(2n)!

2041 6!
Here are graphs of the one-, two-, three- and four-term aqpations.

cosé.

2

Figure 10.8: Taylor Series Approximationsigfl — % -5+ j—? to cos z.

Note that for the range aof we are looking at, the approximations become more
accurate as the number of terms increases. Consider thetemp@roximation
of the cosine about = 0,

372 1'4 1.18 .1'20

cosx:1—§+z—-~-—1—8!—|—2—0!cos§.
Note that for any value of, | cos | < 1. Therefore the absolute value of the error
term satisfies,




10.15. APPLICATION: USING TAYLOR’S THEOREM TO APPROXIMATE
FUNCTIONS.

Note that the error is very small far < 6, fairly small but non-negligible for
x ~ 7 and large forr > 8. The ten term approximation of the cosine, plotted in
Figure 10.9, behaves just we would predict.

20 —

10—

4

Figure 10.9: Taylor Series Approximation bf- %2 + 5 - ”g—? + ﬂg—? to cos z.
The error is very small until it becomes non-negligiblerat: 7 and large at
r =~ 8.

Example 10.15.3.Consider the functiorf(z) = Inz. We want a polynomial
approximation of this function near the point= 1. The first few derivatives of
are

f(z)=Inx
, 1
fila) =~
@)= -
n 2
fiz)=—
FO@) = -2

The derivatives evaluated at= 1 are

fy=o0, Y1) =(=D"Yn-1), forn>1.
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10.16. EXAMPLE/APPLICATION: FINITE DIFFERENCE METHODS

By Taylor’s theorem of the mean we have,

11155:(27—1)_ (1‘—21)2 N (q;—?)l)d B (ZL‘—41)4
(:U_Tw + (—1)”’(:‘07;31”+ gan'

+ (=)™t

Figure 10.10 shows plots of the one-, two-, and three-tenpnagmations.

Figure 10.10: Taylor series (about= 1) approximations of — 1, v — 1 — (“*21)2 ,

x—l—@—i—@tolnx.

Note that the approximation gets better on the intef9akt) and worse outside
this interval as the number of terms increases. The Tayt@seonverges tth =
only on this interval.

10.16 Example/Application: finite difference meth-
ods

This is less of an application of derivatives themselvesraack of an explanation
of one technique used to numerically approximate derigatin a computer. Since
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10.16. EXAMPLE/APPLICATION: FINITE DIFFERENCE METHODS

this is a bit of an advanced topic, rather than explain thergheve shall just give
a detailed example which contains the main ideas.

Example 10.16.1.Suppose you sample a function at the discrete poiris,
n € Z. In Figure[10.11 we sample the functigitz) = sinz on the interval
[—4, 4] with Az = 1/4 and plot the data points.

1’ ® 9

05

Figure 10.11: Sine function sampling.

We wish to approximate the derivative of the function on thid goints using
only the value of the function on those discrete points. Ftisendefinition of the
derivative, one is lead to the formula

flo)~ L0 AX; —fl@) (10.22)

Taylor’s theorem states that

Ax?
Tf (€).

Substituting this expression into our formula for approaimg the derivative we
obtain

flx+Ax) = f(x)+ Az f'(z) +

fle+Ax) = f(z)  fl@)+Azf'(x) + 228 — flx) . Az
Ax B Ax = St
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10.16. EXAMPLE/APPLICATION: FINITE DIFFERENCE METHODS

Thus we see that the error in our approximation of the firsivdave is %f”(f).
Since the error has a linear factordf:, we call this a first order accurate method.
Equation| 10.22 is called thferward difference schemfer calculating the first
derivative. Figure 10.12 shows a plot of the value of thisesah for the function

f(x) = sinz and Az = 1/4. The first derivative of the functiofi'(x) = cosx is
shown for comparison.

a1
Figure 10.12: Forward Difference Scheme ApproximatiorhefDerivative.

Another scheme for approximating the first derivative isdaetered difference
scheme

£2) flx+ A:E)Q;xf(a: — A:p).

Expanding the numerator using Taylor’s theorem,

Q

flx 4+ Ax) — f(z — Ax)
2Ax
Fla) + Aaf'(@) + A8 £/(@) + A2 £7(6) — @) + Arf(x) - 5 1"(w) + 52" (w)
2Ax

Ax?
= /@) + S5 (") + (W)

The error in the approximation is quadraticAw. Therefore this is a second
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10.16. EXAMPLE/APPLICATION: FINITE DIFFERENCE METHODS

order accurate scheme. Figure 10.13 is a plot of the derévafithe function and
the value of this scheme for the functigiiz) = sinx andAz = 1/4.

0.5 |

-1 F

Figure 10.13: Centered Difference Scheme Approximatiomeferivative.

Notice how the centered difference scheme gives a betteospmtion of the
derivative than the forward difference scheme.
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CHAPTER
ELEVEN

Curvature

This is a chapter of advanced topics devoted to the elemediféerential geom-
etry of curves. Given a curvg= f(z) in the plane, we have studied how well the
tangent line at a point, = (o, yo) on the curve approximates the graph nBar
Analgously, we can study how well the a “tangent circle” abap Py = (¢, yo)

on the curve approximates the graph n€ar This “tangent circle” is called the
“circle of curvature,” its radius the “radius of curvaturand its center the “cen-
ter of curvature.” The topics covered include: the radiuswfature, curvature
(which is the inverse of the radius of curvature), circle ofature, and center of
curvature.

11.1 Curvature

The shape of a curve depends very largely upon the rate ahwihecdirection
of the tangent changes as the point of contact describesutlve.cThis rate of
change of direction is callecurvatureand is denoted byx'. We now proceed to
find its analytical expression, first for the simple case ef ¢ircle, and then for
curves in general.

11.2 Curvature of a circle

Consider a circle of radius.
In the notation of Figure 11.1, let
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11.2. CURVATURE OF A CIRCLE

Figure 11.1: The curvature of a circle.

7 = angle that the tangent at P makes with thaxis,
and
7 4+ A7 = angle made by the tangent at a neighboring pdint P

Then we say\r = total curvatureof arc PP. If the point P with its tangent be
supposed to move along the curve tptRe total curvature£ A7) would measure
the total change in direction, or rotation, of the tangentwiat is the same thing,
the total change in direction of the arc itself. Denotingstiyre length of the arc

of the curve measured from some fixed point (as A) to P, and bthe length of

the arc P R then the ratioA— measures the average change |n direction per unit
length of arE Since, from Figur@ N\s = R-Ar,or £Z = 1, itis evident
that this ratio is constant everywhere on the circle. Thlsma by definition, the
curvature of the circle, and we have

1
K=—. 111
= (1L1)

The curvature of a circle equals the reciprocal of its radius

Thus, if AT = & radians (=30°), and As = 3 centimeters, the% = g radians per

centimeter =10° per centimeter = average rate of change of direction.
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11.3. CURVATURE AT A POINT

11.3 Curvature at a point

Consider any curve. As in the last sectiaky = total curvature of the arc PP’,
and% = average curvature of the arc PP’.

Figure 11.2: Geometry of the curvature at a point.

More important, however, than the notion of the averageature of an arc is
that of curvature at a point. This is obtained as follows. gma P to approach
P along the curve; then the limiting value of the averageajluum(: %) as P
approaches P along the curve is defined astimeature at P that is,

Curvature at a point ima,_o (52) = 2.

Therefore,

d
— 2T _ curvature. (11.2)
ds

Since the angle\T is measured in radians and the length of Arcin units of
length, it follows that the unit of curvature at a point is aglian per unit of
length.
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11.4. FORMULAS FOR CURVATURE

11.4 Formulas for curvature

It is evident that if, in the last section, instead of measmithe angles which the
tangents made with the-axis, we had denoted bhyandr + A7 the angles made
by the tangents with any arbitrarily fixed line, the differsteps would in no wise
have been changed, and consequently the results are ymuoependent of the
system of coordinates used. However, since the equatioine @furves we shall
consider are all given in either rectangular or polar camtés, it is necessary
to deduce formulas foK in terms of both. We havetanT = dy by §3.9, or

T = arctan Y. Differentiating with respect ta, using (4.23) |r-

d?y
dr &

()’

ds m dy 2|7
dr dx ’

by (8.4). Dividing one equation into the other gives

Also

dr d’y
de dz?
g—s d 2 %
-1+ ()]
But
dr
dr
dzx
a _ - K.
ds
o ds
Hence
d?y
K=—4d* (11.3)

()]
If the equation of the curve be given in polar coordinat&smay be found as
follows: From (5.13),
T=0+1.
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11.4. FORMULAS FOR CURVATURE

Differentiating,
dr di)
— =14+ —.
T,
But
tanzp:%,

from (5.12). Therefore,

1) = arctan d—pp.
6
Differentiating with respect té using XX in §4.1 and reducing,

dp\? d?
d (%) —r%h
.
@ (@)
Substituting, we get

Also

by (8.9). Dividing gives

dr 2 d? dp)?
o _ P —rar+2(g5)

3
- d 212
" @)
But
dr
4o _ ﬁ — K
ds :
& ds
Hence
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11.4. FORMULAS FOR CURVATURE

P2 ()

2+ (%))

Example 11.4.1.Find the curvature of the parabaa= 4px at the left-most end
of the chord that passes through the focus and is perpeadicuihey-axis.

K

(11.4)

Solution. §£ = 2; &y = 24 = —‘*yif. Substituting in[(11.3),K =
%, giving the curvature at any point. At the left-most end & tthord
y=+4p

(p, 2p),

B 4p? B 4p? 1

p? +4p?)3  16v2p7  4V2p
While in our work it is generally only the numerical value &f that is of im-
portance, yet we can give a geometric meaning to its signouigirout our work

we have taken the positive sign of the radigﬁ + (%)2. ThereforeK will be

positive or negative at the same time tlgjgg is, i.e., (by§7.8), according as the
curve is concave upwards or concave downwards.
We shall solve this usin§age .

Sage
sage: x = var("x")
sage: p = var("p")
sage: y = sqrt(4  *p=*x)
sage: K = diff(y,x,2)/(1+diff(y,x)"2)"(3/2)
sage: K

P22 +(pix + 1)°(32)  *(p*x)(3/2))

Takingz = p and simplifying gives the result above.
Sage

sage: K.variables()

(P, x)

sage: K(p,p)

-p2/(4  *sqrt(2) *(p"2)7(3/2))
sage: K(p,p).simplify_rational()
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11.5. RADIUS OF CURVATURE

-1/(4 +sqrt(2)  *sqgrt(p™2))

Example 11.4.2.Find the curvature of the logarithmic spirak ¢’ at any point.

Solution. % = ae®® = ap; ng = a’e? = a?p.

Substituting in[(11.4)K = ﬁ.

In laying out the curves on a railroad it will not do, on accbofthe high speed
of trains, to pass abruptly from a straight stretch of trach tcircular curve. In
order to make the change of direction gradual, engineergmsa& of transition
curves to connect the straight part of a track with a circalawe. Arcs of cubical
parabolas are generally employed as transition curves.

Now we do this inSage :

Sage
sage: rho = var("rho")
sage: t = var("t")
sage: r = var("r)
sage: a = var("a")
sage: r = exp(a *t)
sage: K = (r"2-r  =diff(r,t,2)+2 * diff(r,t)"2)/(r"2+diff(r,t)"2)"(3/2)
sage: K
1l/sgri(@a™2 *e"(2 xaxt) + (2 +art))
sage: K.simplify_rational()
e"(-(a =*t)/sqrt(@2 + 1)

Example 11.4.3.The transition curve on a railway track has the shape of an arc
of the cubical parabola = %wS. At what rate is a car on this track changing its
direction (L mi. = unit of length) when it is passing through (a) the pdiit9)?
(b) the point(2, £)? (c) the point(1, £)?

Solution. % = 42, €4 — 25, Substituting in[(11.3)K = (1+2x4)%. (a) At(3,9),
K = (826)% radians per mile 28 per mile. (b) At(2,3), K = (1;% radians per
mile = 316" per mile. (c) At(1,3), K = ﬁ = 5 radians per mile 20°30' per

v
mile.

11.5 Radius of curvature

By analogy with the circle (see (11.1)), the radius of curkatf a curve at a point
is defined as the reciprocal of the curvature of the curveaitpbint. Denoting
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11.5. RADIUS OF CURVATURE

the radius of curvature bx, we hav&

1
R—E.

Or, substituting the values affrom (11.3) and/(11.4),

R=t—0 (11.5)
dz?
an®®
2 4 (de 2
[p @) ] (11.6)

- plrr2(d)”

Example 11.5.1.Find the radius of curvature at any point of the catenary
%(63 e a).
Solution. % = 1(et — ¢72); T4 = L(ei — ¢ %). Substituting in[(11.5),

If the equation of the curve is given in parametric form, fihd first and second
derivatives ofy with respect tar from (9.5) and((9.6), namely:

d
dy _u
de 4z’

dt
and

2Hence the radius of curvature will have the same sign as thetue, that is+ or —, ac-
cording as the curve is concave upwards or concave downwards

3In §9.4, the next equation is derived from the previous one bysfaming from rectangular
to polar coordinates.
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11.6. CIRCLE OF CURVATURE

d2 d_IdQ_y _ dyd’z
_dt dt? dt_dit?
dx?

N

and then substitutehe results in (11.5).

Example 11.5.2.Find the radius of curvature of the cycloid = a(t — sin t),

y = a(t — cos t).
Solution.i—f = a(l — cos t), ‘2—1’ = qgsin ¢; % = asin t, 74 = acos t. Substi-

tuting the previous example and then(in (11.5), we get

d?y

3
1 ( sint )2 2
dy _  sint d?y _ a(l—cost)acost—asintasint __ 1 andR — T—cost .
dxr =~ 1l—cost’ dx? a3(1—cost)3 ~ a(l—cost)2? - — 1 =
a(l—cost)2
—2av/2 — 2 cost.

11.6 Circle of curvature

Consider any poinP on the curve” (see Figure 11/3). The tangent drawn to the
curve atP has the same slope as the curve itselPdsee§5.1). In an analogous
manner we may construct for each point of the curve a circlesetcurvature is
the same as the curvature of the curve itself at that pointlorthis, proceed as
follows. Draw the normal to the curve &ton the concave side of the curve.

Move along this normal a distandefrom P to a pointC. With C' as a center,
draw the circle passing through. The curvature of this circle is theli = %,
which also equals the curvature of the curve itselPat

Definition 11.6.1. (First definition) The circle so constructed is called tele
of curvaturefor the point P on the curve.

In general, the circle of curvature of a curve at a point witlss the curve at that
point. This is illustrated in the Figure 11.3.

Just as the tangent at P shows the direction of the cur/e, & the circle
of curvature atP aids us very materially in forming a geometric concept of the
curvature of the curve &, the rate of change of direction of the curve and of the
circle being the same &t.

The circle of curvature can be defined as the limiting positiba secant circle,
a definition analogous to that of the tangent givef3rD.

dw\2, (dy)\2]3/2
4Substituting these last two equations/in (11.5) gikes M
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11.6. CIRCLE OF CURVATURE

Figure 11.3: The circle of curvature.

Example 11.6.1.Find the radius of curvature at the po{t 4) on the equilateral
hyperbolary = 12, and draw the corresponding circle of curvature.

Solution. % = —¥ L4 — 2 For(3,4), W = 4 &y _ 8 o
poLHEE_125_ 05
% 24 24

The circle of curvature crosses the curve at two points.

We solve for the circle of curvature usit8age . First, we solve for the inter-
section of the normaj — 4 = (—1/m)(x — 3), wherem = /(3) = —4/3, and
the circle of radius? = 125/24 about(3,4):

Sage
sage: x = var("x")
sage: y = 12/x
sage: K = diff(y,x,2)/(1+diff(y,x)"2)"(3/2)
sage: K
24/((144/X°4 + 1)°(3/2) *X"3)
sage: K(3)
24/125
sage: R = 1/K(3)
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11.6. CIRCLE OF CURVATURE

sage: m = diff(y,x)(3); m

-4/3

sage: xx = var("xx")

sage: yy = var(yy")

sage: solve((xx-3)"2+(-1/m) 2 * (xx-3)"2==R"2, xx)
[xx == -7/6, xx == 43/6]

This tells us that the normal line intersects the circle dfuaR centered at3, 4)
in 2 points, one of which is at43/6,57/8). This is the center of the circle of
curvature, so the equation(is — 43/6)% + (y — 57/8)* = R2.

10

25—

25 5 15 10 125

Figure 11.4: The circle of curvature of a hyperbola.
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11.7. EXERCISES

11.7 Exercises

1. Find the radius of curvature for each of the following @syat the point
indicated; draw the curve and the corresponding circle ofature:

(@) b*x? + a*y? = a*b?, (a,0).

Ans.R =Y.

(b) v*y* + a®y? = a®b?, (0,b).
Ans.R = .

(€) y = a* — 42® — 1822, (0,0).
Ans. R = .

(d) 162 = 42* — 25, (2,0).
Ans. R = 2.

(e) y =23, (z1,11).
_ (o3
Ans. R = Ti

() y* =27, (4,8).
Ans. R = 1(40)2.

(g) y2 = 8z, (%73)

Ans. R = 1%,

() (2)* + (£)° =1, (0,b).
Ans.R = 2.

(i) 22 = 4ay, (0,0).
Ans. R = 2a.

() (y—a*)?=2"1(0,0)
Ans.R =1

(k) v*a? — a*y* = a®V?, (21, 91)-
4024 qd 12%
Ans. R = Ui tam )
(6) e’ = sin Y, (‘Ilvyl)'
(m) y = sin z, (g, 1).

(n) y = cos z, (3, \/5)
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(0) y=1log x,z =e.
(p) 9y = 23, 2z = 3.
(q) 49? = 23, 2 = 4.
(N 22 —y?> =a? y=0.
(s) 22 +2y*> =9, (1,-2).
2. Determine the radius of curvature of the cunfg = bxz? + caz?y at the
origin.
CL2
AnS. R — %

3. Show that the radius of curvature of the witgh= @ at the vertex is

a

o
4. Find the radius of curvature of the curye- log sec x at the point(z, y1).
Ans. R = sec z;.

1
az.

5. Find K at any point on the parabo;lé + y%

1
Ans. K = —22 |
2(z+y)2

6. Find R at any point on the hypocycloid + y3 = a5.
Ans. R = 3(azy)s.

7. Find R at any point on the cycloig = r arcvers £ — \/2ry — 2.
Ans. R = 2,/2ry.

Find the radius of curvature of the following curves at aninpo

8. The circlep = asin .
Ans. R = 3.

9. The spiral of Archimedes = af.

3

Ans. R = &=2)2

p2+2a2
10. The cardioith = a(1 cosf).
R = % 2ap.

297



11.7. EXERCISES

11

12.

13.
14.

15.

16.

17.

The lemniscatg? = a? cos 26.

The parabola = asec? £.
Ans. R = 2asec® 4.

— ein30
The curve = asin’3.

The trisectrixp = 2a cos — a.

3
_ a(b—4cosh)2
Ans. R = 9—6cosf *

The equilateral hyperbo}# cos 20 = a?.

3
Ans. R = &,
a

v a(l—e?)
The conip = =—.
_a(1—e?)(1—2¢ '9+e2)%
Ans. R = (1—60052;3
The curve
x = 3t
y = 3t — t3,
t=1.
Ans. R = 6.
In Sage :

Sage

sage: t = var('t)

sage: x = 3 *t°2

sage: y = 3 *tt"3

sage: Rnum = (x.diff(t)"2+y.diff(t)"2)"(3/2)

sage: Rdenom = x.diff(t) *y.diff(t,2)-y.diff(t)
sage: R = Rnum/Rdenom

sage: R(1)

*x.diff(t,2)

298




11.7. EXERCISES

18. The hypocycloid

T = acos’t,
Y= asin® t,
t: tl-
Ans. R = 3asin t; cos t;.

In Sage :
Sage

sage: t = var('t)

sage: x = cos(t)"3

sage: y = sin(t)’3

sage: Rnum = (x.diff(t)"2+y.diff(t)"2)"(3/2)

sage: Rdenom = x.diff(t) +y. diff(t,2)-y.diff(t) * x.diff(t,2)
sage: R = Rnum/Rdenom

sage: R.simplify_trig()

-sgrt(9  xcos(t)’2 - 9  *xcos(t)"4)

You can simplify this last result even further if you want.
19. The curve
x = a(cost +tsint),
y = a(sint — tcost),

t=1.

Ans. R = %.

20. The curve

x = a(mcost + cosmt),
y = a(msint — sinmt),
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21. Find the radius of curvature for each of the followingvas at the point
indicated; draw the curve and the corresponding circle ofature:

@z=t2y=tt=1. (e)x=t,y=6t—1;t=2.
)z =t y=t3t=1. Hz=2e,y=ett=0.

(C)w=sint,y=cos 2t;t = 5. (Q)z =sint,y=2cost;t = 7.

drx=1—t,y=1t%t=3. (o=t y=1t2+2t;t=1.

22. An automobile race track has the form of the ellipde- 169> = 16, the
unit being one mile. At what rate is a car on this track chagg@mdirection

(a) when passing through one end of the major axis?
(b) when passing through one end of the minor axis?
(c) when two miles from the minor axis?

(d) when equidistant from the minor and major axes?

Ans. (a)4 radians per mile; (bfg radian per mile.

23. On leaving her dock a steamship moves on an arc of the sgogat
parabolady? = 23. If the shore line coincides with the axis 9f and the
unit of length is one mile, how fast is the ship changing itediion when
one mile from the shore?

24 . .
Ans. - radians per mile.

24. A battleshipt00 ft. long has changed its directién® while moving through
a distance equal to its own length. What is the radius of thedecin which
it is moving?

Ans. 764 ft.

25. At what rate is a bicycle rider on a circular track of halinde diameter
changing his direction?
Ans. 4 rad. per mile =13’ per rod.

26. The origin being directly above the starting point, aropkne follows ap-

proximately the spirgb = 6, the unit of length being one mile. How rapidly
is the aeroplane turning at the instant it has circled theistapoint once?
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27. A railway track has curves of approximately the form afsairom the fol-
lowing curves. At what rate will an engine change its dir@etivhen pass-
ing through the points indicated (ni. = unit of length):

@y =x3(2,8)7 (d)y =e®, = 07?
(b)y = 2% (3,9)? (e)y =cos z,z =57
©z*—y*=8,3,1)?2 (NHpd=4,0=17

11.8 Circle of curvature

The circle of curvature is sometimes called trezulating circle It was defined
from another point of view i§11.6.

Definition 11.8.1. (Second definition) If a circle be drawn through three points
Py = (x0,%), Pr = (z1,y1), P» = (22,y2) On a plane curve, and i, and P, be
made to approach, along the curve as a limiting position, then the circle will i
general approach in magnitude and position a limiting eiadlled the circle of
curvature of the curve at the poif. The center of this circle is called tlcenter

of curvature

By =({rg.yy)

B =z,

0.5 0.5 1 L5

Figure 11.5: Geometric visualization of the circle of cuura.
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11.8. CIRCLE OF CURVATURE

Let the equation of the curve be

y = f(z); (11.7)

and letzg, x1, xo be the abscissas of the poins, P, P, respectively,C' =
(o/, 5") the coordinates of the center, aftl the radius of the circle passing
through the three points. Then the equation of the circle is

(z—a) + (y—pF) = (R)
and since the coordinates of the poifis P, P, must satisfy this equation, we
have

0
24y —0)? = (R)? =0, (11.8)
0

Now consider the function of defined by

F(z)=(z—a) +(y—0) - (R),

inwhichy = f(z) using (11.7).
Then from equations (11.8) we get

F(Z‘o) = 0, F(.?Zl) = 0, F(Jfg) =0.
Hence, by Rolle’s Theoren§10.1), F’(x) must vanish for at least two values of
x, one lying between, andx, sayz’, and the other lying between andx, say
x”; that is,
F'(z")=0, F'(2")=0.

Again, for the same reaso®;’(x) must vanish for some value of between:’
andz”, sayzs; hence

F”(.CBg) =0.

Therefore the elements, ', R’ of the circle passing through the poinfs, P,
P, must satisfy the three equations

F(xg) =0, F(2)=0, F"(x3)=0.
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11.8. CIRCLE OF CURVATURE

Now let the pointsP, and P, approachP, as a limiting position; thea, x5, 2/,
2", x5 will all approachz, as a limit, and the elements (3, R of the osculating
circle are therefore determined by the three equations

F(ZL‘O) = 0, F/(l‘o) = 0, F//(l‘o) = 07
or, dropping the subscripts, which is the same thing,

(r—a)+(y—p)P*=R? (11.9)
(e =)+ (-5 =0, (11.10)
differentiating (11.9).
dy\? Py
1+ <%> +y—0)-5=0 (11.11)

differentiating [(11.10). Solving (11.10) and (11.11) for- « andy — (3, we get
(549
dIQ 1

(2]
d2y
ut (11.12)
14+( %
y—0=— 52;) ;
dax?

hence the coordinates of the center of curvature are

e[ (@)

ay
(4"
1+( ¢
B =y+—pt,

dz?

r— =

N

(11.13)

assuming-t # 0.
Substituting the values af — o andy — 3 from (11.12) in{(11.9), and solving

for R, we get

[SIIe]

1+ ()]

—
dx?

which is identical with[(11.5),§11.5]. This is summarized in the following state-

ment.

R==
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11.9. SECOND METHOD FOR FINDING CENTER OF CURVATURE

Theorem 11.8.1.The radius of the circle of curvature equals the radius ofaur
ture.

11.9 Second method for finding center of curvature

Here we shall make use of the definition of circle of curvatgiren in §11.6.
Draw a figure showing the tangent line, circle of curvatueslius of curvature,
and center of curvatur€ = («, ) corresponding to the poirt = (x,y) on the
curve. For example, in Figure 11.5, repla@eby P, replace(a/, 3') by («, ),
and imagine the tangent line to the curve drawi¥atCall the origin in the plane
O, the projection ofP to thez-axis D, the projection ofC to thez-axis A, and
call B the projection ofP onto the segment A. This is depicted in Figure 11.6.

=g =z +1

1.5

B
% P=(1,1)

0.5+

0.5 0.5 1 1.5

Figure 11.6: Circle of curvature.

Then
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11.9. SECOND METHOD FOR FINDING CENTER OF CURVATURE

a=0A=0D—-AD=0D — BP =x— BP,
6=AC=AB+ BC =DP+ BC =y+ BC.
But BP = Rsint, BC = Rcost. Hence

a=x—Rsint, [=y+ RcosT. (11.14)

Example 11.9.1.We shall solve for the radius of curvaturef= 23 — 2% + 1 at
x = 1 usingSage .

Sage

sage: y = X3-x"2+1

sage: Dy = diff(y,x)

sage: D2y = diff(y,x,x)

sage: R = (1+Dy"2)"(3/2)/D2y
sage: R(1)

1/sqrt(2)

sage: alpha = x - Dy *(1+Dy"2)/D2y
sage: beta = y + (1+Dy"2)/D2y
sage: alpha(l)

1/2

sage: beta(l)

3/2

From (8.8) f;8.3], and|(11.5) [11.5],

dy
sint = dr T
IECONE
1
COST = ———,
1+ ()]
dy 2 %
[1+ (%) }
R="—p—

da?

Substituting these back in (11/14), we get
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11.10. CENTER OF CURVATURE

dy [1 n (@)2] dy\ 2
dzx dzx 1 + (5=
o LY 5:y+—gﬂc) . (11.15)
dx? dz?

From Lemma 7.8.1§[7.8], we know that at a point of inflection

d?y

da?
Therefore, by[(11.3)§11.4], the curvaturdX = 0. From (11.5) §11.5], and
(11.15) F11.9], we see that in genera) 3, R increase without limit a%% — 0.

=0.

Example 11.9.2.Find the coordinates of the center of curvature of the pdsabo
y? = 4px corresponding (a) to any point on the curve; (b) to the vertex
Solution. ¢ = 2; Py

] de -
(@) Substltutlng in(11. 13)§ﬁ 1.8],

vy +4p® 2p Y

o=+ C— = 3z + 2p.
y? y  A4p?
y2 4p2 4p2 :
Therefore(Bx + 2p, — ) is the center of curvature corresponding to any point

on the curve.
(b) (2p, 0) is the center of curvature corresponding to the vefteR).

11.10 Center of curvature

In this section, we discuss how the center of curvature cahdaght of geomet-
ricaly as the limiting position of the intersection of nofsiat neighboring points.
Let the equation of a curve be

y=f(z). (11.16)
The equations of the normals to the curve at two neighboroigtp P, and P,

are (using/(5.2)45.3]),

)%
deo

Il
\_O
—~

8
—

|

&
N—

_l’_
—
<
=

|
<
\_/

||

o

(o — ) + (Yo —



11.10. CENTER OF CURVATURE

If the normals intersect &’ = (o, 3’), the coordinates of this point must satisfy
both equations, giving

(20— ) + (3o — F) 22 =0,
{(Il —a)+(yn — )L =0. —

Now consider the function of x defined by

6() = (e =) + (s = 1)

in whichy = f(z) using(11.16). Then equations (11.17) show that

¢(r0) =0, ¢(x1) =0.

But then, by Rolle’s Theorem{{0.1), ¢#'(z) must vanish for some value of
betweenr, andz, sayz’. Thereforen’ andj’ are determined by the two equations

¢(w9) =0, ¢(a) =0.

If now P, approache$, as a limiting position, then’ approaches,, giving

¢(x0) =0, ¢'(x0) =0,

andC’(a/, 5") will approach as a limiting position the center of curvatGiey, 5)
corresponding td, on the curve. For if we drop the subscripts and write the last
two equations in the form

d?y
2

“9
dx ’

, N dy\’ ,
=)+ - ME =0 14 () + -9

it is evident that solving for’ and 3’ will give the same results as solving (11.10)
and ((11.11) forv and 3. Hence we have the following result.

Theorem 11.10.1.The center of curvatur€' corresponding to a poinP on a
curve is the limiting position of the intersection of the mad to the curve aP
with a neighboring normal.
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11.11. EVOLUTES

11.11 Evolutes

The locus of the centers of curvature of a given curve is dalieevoluteof that
curve. Consider the circle of curvature corresponding toiatpB on a curve.
If P moves along the given curve, we may suppose the corresgpoiiuie of
curvature to roll along the curve with it, its radius varysmas to be always equal
to the radius of curvature of the curve at the paitThe curve described by the
center of the circles is the evolute.
It is instructive to make an approximate construction ofetaelute of a curve by
estimating (from the shape of the curve) the lengths of tké od curvature at
different points on the curve and then drawing them in andvihrg the locus of
the centers of curvature.

Formula (11.13) gives the coordinates of any pdimt3) on the evolute ex-
pressed in terms of the coordinates of the corresponding paiy) of the given
curve. Buty is a function ofz; therefore

[1+(%)2}% 1+ (42)°
=T — d2y ) 5:y+%
dz? dz?

give us at once the parametric equations of the evolute ims@f the parameter
x.
To find the ordinary rectangular equation of the evolute waiehtex between
the two expressions. No general process of elimination eagiven that will
apply in all cases, the method to be adopted depending omthedf the given
equation. In a large number of cases, however, the studeiiinckthe rectangular
equation of the evolute by taking the following steps:

General directions for finding the equation of the evolutesictangular coordi-
nates.

e FIRST STEP. Findy, 3 from (11.15).

e SECOND STEP. Solve the two resulting equationsif@ndy in terms of
o andg.

e THIRD STEP. Substitute these valuesicdindy in the given equation. This
gives a relation between the variablesind 5 which is the equation of the
evolute.

Example 11.11.1.Find the equation of the evolute of the parabgla= 4pz.
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11.11. EVOLUTES

3 2 1 D 1 2 3
Figure 11.7: Evolute of a parabola.

inn W 2p dy 4p?
Solution. 5% = T = T
3

First stepa = 3x + 2p, 6 = —37.

Second stepr = *=2, y = —(4p*3)3.

Third step(4p%3)3 = 4p (52) orpB? = £(a —2p)°.

Remembering thai denotes the#-coordinate” andj the “y-coordinate” of a
rectangular system of coordinates, we see that the evditie parabola) = 42>
is the “cusp”y? = 4(z — 2)3/27. The curve (dotted) and its evolute (solid) are

plotted in Figure 11.7.

Example 11.11.2.Find the equation of the evolute of the ellipgge? + a?y? =
a’b?.

SO|uti0n.§—z = T "5y 7.2 — _aQ_i

First step.a = & —=, = - =

1 1
Second stepr = (ag“_‘zQ Ly=— <£Tﬁb2> ’

Third step. (ae)3 + (b3)5 = (a® — b%)3, the equation of the evolute of the
ellipse.

When the equations of the curve are given in parametric forenpmceed to
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11.11. EVOLUTES

find 4 and %%, as in§11.5, from

dx 2
d dx d? dy d*z
dy &% Py _ G da (11.18)
dr 4z’ dz? dz )3 '
a ()

and then substitute the results in formulas (11.15). Thisgyihe parametric equa-
tions of the evolute in terms of the same parameter that egouhe given equa-
tions.

Example 11.11.3.The parametric equations of a curve are

t?+1 t3

1 YT
Find the equation of the evolute in parametric form, plotdhese and the evolute,
find the radius of curvature at the point where 1, and draw the corresponding

circle of curvature.

r =

(11.19)

Solution. % = £, 42 — 1, % — £ 44 — ¢, Substituting in above formulas
(11.18) and then in (11.15), gives
1—t*—2t! 4t 4 3t
o= p= (11.20)

the parametric equations of the evolute. Assuming valueseoparametet, we
calculatez, y; a, 3 from (11.19) and((11.20). The curve (solid) and its evolute
(dotted) are plotted in Figure 11.9.

The point(}l, 0) is common to the given curve and its evolute. The given cuave (
“cusp”) lies entirely to the right and the evolute entiredythe left ofz = }l

Example 11.11.4.Find the parametric equations of the evolute of the cycloid,

r = a(t —sint) (11.21)
y = a(l — cost).
Solution. As in Example 11.5.2, we get
dy _ sint dy 1
dr  1—cost’ dx2  al —cost)?
Substituting these results in formulas (11.15), we get tisvar:
a = a(t+sint),
(11.22)
B = —a(l — cost).
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20F
15F

10

-10F

15F

20F

Figure 11.8: Evolute of an parametric curve.

Figure 11.9: Evolute of a cycloid.

The curve (solid) and its evolute (dotted) are plotted iruFégl1.9.
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11.12. PROPERTIES OF THE EVOLUTE

11.12 Properties of the evolute
From (11.14),

a=x—Rsint, pf=y+ RcosT. (11.23)

Let us choose as independent variable the lengths of thenafteogiven curve;
thenz, y, R, T, «, (8 are functions ok. Differentiating (11.23) with respect to
gives

do dx dr - dR
Pl R cos T—ds —sin TE, (11.24)
g dy . dr dR
Bs g st HeosToo (11.25)

ds

Substituting in[(11.24) and (11.25), we obtain

But % = cos7, % = sin 7, from (8.5); and = %, from (11.1) and (11.2).

do 1 . dR . dR
I —COST—RCOST'E—SIHTE——SIHTE, (11.26)
and g 1 dR dR
g ST — RsinT - In + cos T T CosT o (11.27)

Dividing (11.27) by|((11.26) gives

dg 1 1
do cot T P— Zi ( 8)

But 22 = tan = slope of tangent to the evolute @ and % = tan 7 = slope of
tangent to the given curve at the corresponding pBiat (z, y).
Substituting the last two results in (11.28), we get

1
tanT
Since the slope of one tangent is the negative reciprocéleo$iope of the other,
they are perpendicular. But a line perpendicular to the taingie” is a normal to
the curve. Hence
A normal to the given curve is a tangent to its evolute.
Again, squaring equations (11/26) and (11.27) and addieget

tan7 = —
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da\* (dB\* [dR\’
(&) + (%) = (%) (29

But if s’ = length of arc of the evolute, the left-hnand member of (1li®Precisely
the square ofs" (from (8.12), where = s, s = s/, z = a, y = /3). Hence[(11.29)

asserts that

ds'\* _ (dR\®  _ ds' _  dR

ds )  \ds )’ ds ds
That is, the radius of curvature of the given curve increaseecreases as fast as
the arc of the evolute increases. In our figure this means that

P Cy — PC =arcCC;.

The length of an arc of the evolute is equal to the differeretevben the radii of
curvature of the given curve which are tangent to this artsabitremities.

Thus in Example 11.11.4, we observe that if we fQIgP, ( = 4a) over to the
left on the evoluteP, will reach toO’, and we have:

The length of one arc of the cycloid (68)'Q),) is eight times the length of the
radius of the generating circle.

11.13 Exercises

Find the coordinates of the center of curvature and the equaf the evolute of
each of the following curves. Draw the curve and its evolata] draw at least
one circle of curvature.

1. The hyperbol — y—l =1.

Ans.q = @I g PO evolute(aa) — (bF)F = (a? + b2)3.

2
as

w\l\)

2. The hypocyclmdr:s +y
a=xz+3x3ys, f=y+ 3x§y% evolute(a + ()7 + (o — §)3 = 243,

3. Find the coordinates of the center of curvature of theaallgiarabola/® =

CLQZE

at+15y% _aty—9y°
Ans.a = 5aZy , 3= .
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11.13. EXERCISES

4. Show that in the parabolez + y2 = az we have the relatioa + 3 =
3z +y).

5. Given the equation of the equilateral hyperkiblg = o> show that

(y + )

.3
a+5:T,Q_ﬁ:M.

a2

wln

From this derive the equation of the evoliite+ 3)3 — (o — 8)3 = 2a3.

Find the parametric equations of the evolutes of the folhgngcurves in terms
of the parametet. Draw the curve and its evolute, and draw at least one cifcle o
curvature.

6. The hypocycloid{

T = acos’t,
y = asin®t.

{a = acos®t + 3acostsint,
Ans.

B =3acos’tsint + asin®t.

= 3t2
7. Thecurve{x 3t

y = 3t —t3.
=3(1 422 —¢*
Ans. a=3(+ )
[ = —4t3.

8. The curved © = a(c9st +tsint),
y = a(sint — tcost).

o = acost
Ans.{ ’

0 = asint.
=3t
9. The curv v ’
y =t>—6.
= 4
Ans.{a 3 ’3
=6 —¢2
10. The curve{x 0
y = 2t.
ANS a =4 — 3t%,
3= —265
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=2t
11. The curve{x ’

y=t>—2.
Ans. { @~ 2
| B =32
=4t
12. The curvel * ’ )
y =3+t
= —¢3
Ans. @ ’
B =11+ 32
=9t
13. The curve{x ’
y = 2t.
ANs a="T7-—3t,
g = -2
=2t
14. The curvel * | ;
4t—t°
o = .
Ans. 4
1245
{ﬁ - Jgtt
= 143
15. The curv . 32 '
y =1
43412t
o= ===
Ans. 3 e
o 2
{g — 2t
=2t
16. The curve{x 5 ’
Yy=3-
o = 1249
Ans 3
27+4
{ﬁ =

18.2 = 2t,y = 16 — t%.
19.x =t,y = sin t.

20. 2 = %,y:3t.

21.x =12,y = ¢t®.
22.0 =ty =t

23.x =sint, y = 3cost.
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24.x =1 —cost,y =1t —sint.
25.x = cost, y = sin? t.
26.r = asect,y = btant.
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CHAPTER
TWELVE

Appendix: Collection of formulas

12.1 Formulas for reference

For the convenience of the reader we give the following listlementary formu-
las from Algebra, Geometry, Trigonometry, and Analytic Gedtry.

1. Binomial Theoremi{ being a positive integer):
(a + b)n —a" +na" b + n(grl) an—2p2 4+ n(n*g)'(”*Q) av3p 4 - -

n(n—1)(n—=2)(n—r+2) p_rtlzr—1
+ =] a + b + ..

2.nl=1-2-3-4---(n—1)n.

3. Inthe quadratic equatianc?® + bz + ¢ = 0,
whenb? — 4ac > 0, the roots are real and distinct;
whenb? — 4ac = 0, the roots are real and equal;

whenb? — 4ac < 0, the roots are complex.

4. When a quadratic equation is reduced to the fotm- pz + ¢ = 0,
p = sum of roots with sign changed, and

q = product of roots.
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12.1. FORMULAS FOR REFERENCE

5. In an arithmetical series, a +d, a + 24, ...,

n—1
s = Za+id: g[2a—|— (n —1)d].

=0

6. In a geometrical series, ar, ar?, ...,

7. logab = loga + logb.
8. log 7 = loga — logb.
9. loga™ = nloga.
10. log {/a = Lloga.
11. log1 = 0.
12. loge = 1.
13. log% = —loga.
14. % Circumference of circle 2x r.
15. Area of circle =r 2.
16. Volume of prism =Ba.
17. Volume of pyramid = Ba.
18. Volume of right circular cylinder = r2a.
19. Lateral surface of right circular cylinder2z ra.
20. Total surface of right circular cylinder2s r(r + a).

21. Volume of right circular cone 27 r(r + a).

In formulas 14-25; denotes radius, altitude, B area of base, andslant height.
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22.
23.
24,
25.
26.

27.

28.

29.

30.

31.
32.
33.
34.
35.

36.

Lateral surface of right circular coner=rs.
Total surface of right circular coner=r(r + s).
Volume of sphere 7 2.

Surface of sphere 4 2.

1 .
cscx’

1 .

secx’

sinx =

COSx =

tanx =

tanx =
cos T

cos T

cotx =

sinx *

sinx 4 cos?z = 1:

1+ tan®z = sec? z;

14 cot?zx =

sinx = cos (

CcosS T = sin (

csc? x.
5—);
5 —a);

tanx = cot (% —:1:).

sin(m — z) =sinx;

cos(m —x) = —cos;

tan(m — x)

N
— .
=
—~ —~
8
|
~— ~—

cos(x +
tan(x + y)
tan(z —y) =

sin 22 = 2sin  cos ; cos 2 = cos? x — sin? &} tan 2x =

= —tanwx.

__ tanx+tany

l—tanxtany "

tanz—tany
l+tanxtany”

1Y) = sinx cosy — cos T sin y.

y) = cosx cosy + Fsinzsiny.
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12.1. FORMULAS FOR REFERENCE

37.

38.
39.

40.

41.
42.
43.
44,
45.
46.
47.
48.

49.
50.
51.

52.

53.

54.

1
. o c oz z. o 2z 2. _ 2tanzz
sinz = 2sin £ cos £; cosx = cos® £ — sin 2,tanx——1_tan2%x.
COS21’:%+%C082$;Sin2l’=%—%COSQCB.

1+ cosz=2cos?Z:1— cosx = 2sin® Z.
2 2

LI A l—cosz. _ l+cosx. z __ l—cosx
sin § = £/ =9, cosx/2 = £,/ 5 ytan § = £ /17T

sinz + siny = 2sin 3(z + y) cos 3(z — y).

sinz — siny = 2cos (z + y) sin 3 (z — y).

cosz + cosy = —2cos 5(z + y) cos 1 (z — y).

cosz — cosy = —2sin 1(z + y) sin 3 (z — y).
a _ b _ ¢ . ;

sinA = sinB = sinC’ Law of Sines.

a? = b? + *2be cos A; Law of Cosines.

d = /(z1 — 22)? + (y1 — y2)?; distance between points;, y;) and(z2, ).

d= %; distance from linedz + By + C = 0to (z1,y1).

r=nir2 g = %; coordinates of middle point.
r =z + 2,y = yo + ¢'; transforming to new origifzy, yo).

x=1a'cosf —y'sinf,y = a'sinf + y cosf; transforming to new axes
making the angle theta with old.

x = p cosb ,y = p sin@; transforming from rectangular to polar coordi-
nates.

p = x*+y? 0 = arctanZ; transforming from polar to rectangular
coordinates.

Different forms of equation of a straight line:

(a) £ = 22 two-point form (or point-point form);

T—x1 ro—x1’

(b) £+ %=1, intercept form;
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(€) y —y1 = m(x — x), slope-point form;
(d) y = mx + b, slope-intercept form;

(e) xcosa + ysina = p, normal form ¢ is the angle the normal line
crosses the-axis andp is the length of the shortest segment between
the line in question and the origin);

() Az + By + C =0, general form.

55. tanf = i angle between two lines whose slopesrareandm..
mimse

my, = my When lines are parallel, and

m; = —— when lines are perpendicular.
m2

56. (z — a)* + (y — 3)* = r?, equation of circle with centgk, 3) and radius
r.

Many of these facts are already knowrSage :

Sage

sage: a,b = var("a,b")

sage: log(sqrt(a))

log(a)/2

sage: log(a/b).simplify_log()

log(a) - log(b)

sage: sin(a+b).simplify_trig()

cos(a) =*sin(b) + sin(a) * cos(b)
sage: cos(a+b).simplify_trig()

cos(a) *cos(b) - sin(a) *sin(b)
sage: (a+b)5

(b + a5

sage: expand((a+b)5)

b5 + 5 xaxb™4 + 10 *ra2*b"3 + 10 *a3*b"2 + 5*a’4+b + a’5

“Under the hood'Sage used Maxima to do this simplification.

321



12.2. GREEK ALPHABET

12.2 Greek alphabet

letters names| letters names
A« alpha | N,v nu
B, beta =€ Xi
'’y gamma| O,o0 omicron
A0 delta | II, 7 pi
E.e epsilon| Pp rho
Z,C Zeta 3,0 sigma
H.n eta T T tau
0,0 theta | Y,v  upsilon
1,1 iota D, ¢ phi
K,k kappa| X, x chi
A, A lambda| VU, ¢ psi
M, mu Qw omega

12.3 Rules for signs of the trigonometric functions

Quadrantf Sin Cos Tan Cot Sec Csc
First + + o+ o+ o+
Second | + - - - +
Third - + + - -
Fourth - - - + -

12.4 Natural values of the trigonometric functions

Anglein Anglein

Radians Degrees Sin Cos Tan Cot Sec Csc
0 0 0 1 0 o 1 00

T V3 V3 V3
T S SERE S

z 5 L2 2 1 1 V2 2

T RGN
5 90 1 O oo 0 oo 1

T 180 0 -1 0 oo -1

37” 270 -1 0 ~ 0 o~ -1

2T 360 0 1 0 o~ 1 00
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12.4. NATURAL VALUES OF THE TRIGONOMETRIC FUNCTIONS

You can create a table of trig values (for< 6 < 7/4 in radians) like this in
Sage:

Sage
sage: RR15 = RealField(15)
sage: radsl = [n  *0.0175 for n in range(1,6)]
sage: rads2 = [0.0875+n *0.0875 for n in range(1,9)]

sage: rads = radsl+rads2

sage: trigs = [radian’, "sin", "cos", "tan", "cot"]
sage: tbl = [[RR(y)][+[RR15(eval(x+"(%s)"%y)) for X in trig s[1:]] for y in rads]
sage: print trigs; print Matrix(tbl)

[0.01750 0.9998 0.01750  57.14]

[0.03499 0.9994 0.03502  28.56]

[0.05247 0.9986 0.05255  19.03]

[0.06994 0.9976 0.07011  14.26]

[0.08739 0.9962 0.08772  11.40]

[ 0.1741 0.9847 0.1768  5.656]

[ 0.2595 0.9658 0.2687  3.722]

[ 0.3429 0.9394 0.3650 2.740]

[ 0.4237 0.9058 0.4677  2.138]

[ 05012 0.8653 0.5792  1.726]

[ 05749 0.8182 0.7026  1.423]

[ 0.6442 0.7648 0.8423  1.187]

[ 0.7086 0.7056  1.004 0.9958]

The first column are the values sifn(z) atz € {0.01750,0.03500,...0.7875}
(measured in radians). The second, third and fourth rowshaeorresponding
values forcos, tan andcot, respectively.
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CHAPTER
THIRTEEN

Appendix: A mini-Sage tutorial

The goal for this chapﬂéris to introduce to é&5age —newcomer some ways of
using Sage in calculus, emphasizing examples over detailed explansitor
programming background. We hope that you will consult theewtetailed doc-
umentation, such as ttf&age Tutorial [T], available (free) on th8age website
if you want to learn more.

What is Sage ?

First, if you are a newcomer t8age then welcome!

Sage is a free, open-source mathematics software that supps¢zarch and
teaching in algebra, geometry, number theory, cryptograpimerical computa-
tion, and related areas. Both tBage development model and the technology in
Sage itself are distinguished by an extremely strong emphas@pamness, com-
munity, cooperation, and collaboration: we are building tlar, not reinventing
the wheel.

For an undergraduate student needing mathematical seft&age does ba-
sically the same type of computations you would Magple or Mathematica
for, but it is free. Even the heavily discounted student pricéhese programs

IMuch of the material in this chapter appears in the Tutomeih®Sage website. The author
of the Tutorial is TheSage Group and the tutorial is licensed under the Creative Conamon
attribution licensehttp://creativecommons.org/licenses/by/3.0/us/

2Since these mathematical software programs are diffesente problems can be solved more
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13.1. WAYS TO USESAGE

can be weeks (or more) of a students’ sﬂarySage is easy to use (that is, for
a beginner it is at least as easy to use as the commercial ‘&itrop”) and costs
a lot less!
A main goal forSage is to create the best available software for (among many
other mathematical topics)

e number theory (“What's the 10 millionth prime?”),
e algebra (“How many legal positions does the Rubik’s cube #igye

e geometry (“What is an algebraic equation describing thersetion of a
sphere and a cone?”),

e probability/statistics (“What is the probability of a roystraight flush in
5-card stud poker game?”), and

e numerical computation (“What is the 10 millionth digit #1?),

using the best possible GPL-compatible (open source) aoftwCurrentlySage
includes areMaxima (for calculus and other symbolic computatio8jngular
(for algebra),R (for statistics),Pari (for number theory) GAP(for more alge-
bra!), SciPy (for numerical computation), and over 60 moiage is headed
by the mathematician William Stein, who is at the UniversifyWashington, in
Seattle.Sage is free and open source and wallways remain so

Though much oSage is implemented using Python, no Python background is
needed to read this chapter nor to follow the examples inbdthik. However, to
become expert isage you will want to learn Python (a great language, used at
places such as Google and Industrial Light and Magic) at quoire.

13.1 Ways to Useésage

You can use&sage in several ways.

e Notebook graphical interface,

easily or faster irage that the others, and conversely. However,rfarstof what you will need
to do, the functionality and speed is about the same.

3Though costs are an important and practical matter, we willdlaving the cost aside, and
arguing forSage purely on the basis of quality, openness and customizgabititowever, it is
worth noting that the latest license fistathematica is reported bywikipedia to be at least
2500 US dollarsSage is free.
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13.2. LONGTERM GOALS FORSAGE

e Interactive command line,

e Programs: By writing interpreted and compiled programs3age /Python,
and

e Scripts: by writing stand-alone Python scripts that use 3age library.

The first two mentioned will be discussed below. For the fatt® ways of using
Sage , please see thBage Tutorial [T] as they are more advanced than what is
needed here.

Here is a brieSage example, to illustrate the ease-of-use and some capabilite
(More examples will be given later, but for a more completerial, please see
[T].) To find the area under the curye= 2% fromx = 0toz = 1, your can type in
the following commands to see thaage tells you the answer is/3 = 0.333....

Sage

sage: x = var(’x)

sage: integral(x"2,x,0,1)
1/3

sage: n(integral(x"2,x,0,1))
0.333333333333333

If you use theSage Notebook (described later) then you can $sge to
create an interactive application which allows you to agjmnate this area using
mid-point based rectangles. This is illustrated in Figu8el 1

Use your mouse to move the slider to vary the level of the appration. The
Sage code can be found at [W].

13.2 Longterm Goals forSage

e Useful Sage ’s intended audience is mathematics students (from high
school to graduate school), teachers, and research mdtbams. The
aim is to provide software that can be used to explore andrempet with
mathematical constructions in algebra, geometry, nuniiery, calculus,
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n @ 4
& Ixr‘\E
start [o

end |1

Numerical integrals with the midpoint rule

[} f(z)dem Y, f(z)Az

Sage numerical answer: 0.333333333333
Midpoint estimated answer: 0.32B8125

il /
7

-

0.25 0.5 0.75 1

Figure 13.1: Approximate area under= 2>

numerical computation, etcSage helps make it easier to interactively
experiment with mathematical objects.

e Efficient: Be fast.Sage uses highly-optimized mature software like GMP,
PARI, GAP, and NTL, and so is very fast at certain operations.

e Free and open sourceThe source code must be freely available and read-
able, so users can understand what the system is really @oidgnore
easily extend it. Just as mathematicians gain a deeperstadding of a
theorem by carefully reading or at least skimming the prpe@ple who do
computations should be able to understand how the calookatvork by
reading documented source code. If you 8age to do computations in a
paper you publish, you can rest assured that your readdralwdys have
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free access t®age and all its source code, and you are even allowed to
archive and re-distribute the version®dge you used.

Easy to compile: Sage should be easy to compile from source for Linux,
OS X and Windows users. This provides more flexibility fornsge modify
the system.

Cooperation: Provide robust interfaces to most other computer algelsa sy
tems, including PARI, GAP, Singular, Maxima, KASH, Magma, &g and
MathematicaSage is meant to unify and extend existing math software.

Well documented: Tutorial, programming guide, reference manual, and
how-to, with numerous examples and discussion of backgtowsthemat-
ICS.

Extensible: Be able to define new data types or derive from built-in types,
and use code written in a range of languages.

User friendly: It should be easy to understand what functionality is pro-
vided for a given object and to view documentation and soaocke. Also
attain a high level of user support.

13.3 TheSage command line

The session below shows and example of “tab-completioaft stping the begin-
ning of a command and hit the TAB ke$age will then return a list of possible
completions Very handy!

When you starGage you will get a smallSage banner and then thBage
command-line prompsage: . If you want to use the graphical user interface
(GUI), typenotebook()  at the prompt and hit return. If you are happy to work
at the command line, here is an example of what a sbage session could look

Sage

sage: 2°3

sage: t = var("t")
sage: integrate(t *Sin(t"2),t)
-cos(t"2)/2
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13.4. THESAGE NOTEBOOK

sage: plot[TAB]
plot plot_slope_field plotkin_bound_asymp
plot3d plot_vector_field plotkin_upper_bound

13.4 TheSage notebook

TheSage Notebook can be tried out for free by anyone with an internehec-
tion and a good browser attp://www.sagenb.org (this also works with
theiPhone but not all cell-phones are configured for this).

The following screenshot illustrates a Notebook worksh@ééirksheets can be
saved (as text or as @ws file in Sage worksheet format), downloaded, emailed
(for use by someone else), shared (with “collaborators”published (if created
on a publicSage server).

e ConnecttdSage running locallyor elsewherdvia ethernet).

Create embedded graphics ginand3-d).

Typeset mathematical expressions usfigpl

Add and delete input, re-executing entire block of commaatasce.

Start and interrupt multiple calculations at once.

The notebook also works witMaxima, Python , R, Singular , IATEX,
html, etc.!

Here are the commands used to create the output in the Ndtslgsion in the

330


http://www.sagenb.org

13.4. THESAGE NOTEBOOK

@ Solving algebraic equations (Sage) - Mozilla Firefox L e
Fle Edit View History Bookmarks Tools GUEI! Help

@9 - @ @ f‘? & @|http:f/wmsagenb‘comlhome{dmyner}lf E e g

[SEntenainment~ FiNews~ [7internst Search+ [Reference« [IMapsandDirec..~ [Shopping~ [ People and Co.. = [ Most Vistted~ #§Google - Bookmarks

¥ Gmail- [sage-sup.. € | 6 Record absences ) | fag-sagewki |@So\ving algebraic... § | | Help:Contents -B.. 3 | ¥rLinear Code Bound £ | A Locke andLandT.. @ | ~

SDJE. Notebook djoyner | Togule |Home | Published | Log | Settings |Report a Problem | elp | Sign cut
Werslon 223

Solving algebraic equations [ save | Saves out | Discad & gut
\umdhdmg g,znna 0755 4N byqdiufnzr -H i
) o <] ] C Ty 2R ket | ot | vt undo [ share | usic
a,b,c,d,x,y=var (*a,b,c,d,x,y')

show(solve {a%x® Hbtetc==0, x) )

; ~ (V' -tac}-b
X= ’

- 1

Vi'mdim)
vl
2

=

' show(solve (atc3+bixrc==0,x) )

sl vl [atrtbry=0, crerdty==0] x,y)
(lx=p0y=¢l

Figure 13.2:Sage screenshot

above screenshot:

Sage Notebook

a,b,c,d,x,y=var('a,b,c,d,x,y")
show(solve(a *x"2+b *x+c==0,x))
show(solve(a *X"3+b *x+c==0,x))
solve(a *x+b*y==0,c *x+d=*y==0,X,y)
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13.4. THESAGE NOTEBOOK

Sage notebook screenshot (an uploaded *.sws file)

e If you enjoy playing with the Rubik’'s cube, there are severalgpams for

solving the Rubik’s cube isage :

b S bEl (S GE)

File Edit view Go Bookmarks Tools Tabs Help

. © . @ (6] 2 & &

Back Reload Home History Bookmarks Find
[~ https://localhost:8000/home/admin/2/ B]ce
Search the web: |aunders sage
<« MGmail - Tnbox (l.. @] GAP Workshop 2007 @/ screen shots @] contributors to sa. @[ rubiks-cubel (SAGE) au
SDE Notebook admin |Home | Published |Log |Help |Sign out

save | save & close | Discard changes |

[Fite.s. Sl[pecion. - slpararr Hsis E .- 2 | 7ot ] Pevieions | share | Pubtin |

|C = RubiksCube() .move( 'R*L*D 2*B ZHL "2+ F 2+R 2+ U 3FD*RABHD "2+ F 3+B 3+ D FHF 24D ¥R 2* U 3FF~2+D"3")
C.show3d()

Click for interactive view.

v ] )|

Eﬂ;‘nter s e e o e e e

:@: B ™ wdj@wooster:..les/sar (X file:///home/wdj/tex! ) RealPlayer - oakenfoll ¢k Adobe Reader - sage- X Epiphany (2] v RaE e
8 TR 120 & KDiskFree B3 sagestuff- Kongueror € emacs@wooster.haskell  file:///home/wdj/tex < The GIMP

Figure 13.3:Sage notebook screenshot.

You can rotate the Rubik’s cube interactively with your mouse
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e If you are interested in experimenting with calcul8sge has excellent sym-
bolic computation and graphics capabilities. This is a Hotk session (to be
typed in a notebook “cell”, then executed):

Sage Notebook

var(’x’)
RR = RealField(15)
f = sin(x) *e(-x)
p = plot(f,-1,5, thickness=2)
pt_list = (RR(0),RR(0.25),RR(0.5),RR(0.75),RR(1),RR(1 .25),RR(1.5),RR(1.75),\
RR(2),RR(2.25),RR(2.5),RR(2.75),RR(3),RR(3.25),RR(3 .5))
@interact
def _(pt=pt_list):
dot = point((pt,f(pt)),pointsize=80,rgbcolor=(1,0,0))

fp = f.diff()

slope = fp(pt)

sp = plot(f(pt)+slope * (x-pt),(x,-1, 5), color="green’, thickness=2)

html(’<font color=red>Tangent to y = exp(-x)sin(x) at x = %s </font>"%RR(pt))
show(dot + p + sp, ymin = -5, ymax = 1)

When these are all typed in a single cell and executed, usiraggaptSage
displays an interactive graphic (see Figure 13.4) with @eslbar which allows
you to vary the point at which the tangent line is drawn to thegd of f(z) =
e " sin(x) using your mouse.

Such interactive commands are easy to writSage !

13.5 A guided tour

This section is a guided tour of some of what is availabl&age . For many
more examples, see ti¥age Reference Manual [R], which has thousands more
examples. Also note that you can interactively work throtigftour in theSage
notebook by clicking thélelp link.

(If you are viewing the tutorial in th&age notebook, presshift-enter
to evaluate any input cell. You can even edit the input befmessing shift-
enter. On some Macs you might have to prekgt-return rather than
shift-enter )

13.5.1 Assignment, Equality, and Arithmetic

With some minor exception§age uses the Python programming language, so
most introductory books on Python will help you to le&age .
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pt @ 0.7500

Tangent for f(x) = exp(-x)sin(x) at x = pt = 0.7500

Figure 13.4: Interact example

Sage uses= for assignment. It uses=, <=, >=, < and> for comparison:
Sage

sage: a = 5
sage: a

sage: 2 == 2
True

sage: 2 == 3
False

sage: 2 < 3
True

sage: a ==
True

Sage provides all of the basic mathematical operations:

Sage
sage: 2 = 3 # * means exponent
8
sage: 2°3 # " is a synonym for *  (unlike in Python)
8
sage: 10 % 3 # for integer arguments, % means mod, i.e., remain der 1
sage: 10/4 5/2
sage: 10//4 # for integer arguments, // returns the integer q uotient 2
sage: 4 * (10 // 4) + 10 % 4 == 10 True
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sage: 372 *4 + 2%5
38

The computation of an expression liB&2 *4 + 2%?5 depends on the order
in which the operations are applied; this is specified in theetator precedence
table” in/Arithmetical binary operator precedence

Sage also provides many familiar mathematical functions; heegjast a few
examples:

Sage

sage: sqrt(3.4)
1.84390889145858
sage: sin(5.135)
-0.912021158525540
sage: sin(pi/3)
sqrt(3)/2

As the last example shows, some mathematical expressiang fexact’ val-
ues, rather than numerical approximations. To get a nuadeajgproximation,
use either the function or the method (and both of these have a longer name,
numerical _approx , and the functiorN is the same ag)). These take op-
tional argumentgrec , which is the requested number of bits of precision, and
digits , which is the requested number of decimal digits of preaidioe default

is 53 bits of precision.
Sage

sage: exp(2)

e2

sage: n(exp(2))

7.38905609893065

sage: sqrt(pi).numerical approx()
1.77245385090552

sage: sin(10).n(digits=5)

-0.54402

sage: N(sin(10),digits=10)
-0.5440211109

sage: numerical approx(pi, prec=200)
3.1415926535897932384626433832795028841971693993751 058209749

13.5.2 Getting Help

Sage has extensive built-in documentation, accessible by typie name of a
function or a constant (for example), followed by a questitark:
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Sage

sage: tan?

Type: <class sage.calculus.calculus.Function tan>
Definition: tan( [noargspec] )

Docstring:

The tangent function

EXAMPLES:
sage: tan(pi)
0

sage: tan(3.1415)
-0.0000926535900581913
sage: tan(3.1415/4)
0.999953674278156
sage: tan(pi/4)

1

sage: tan(1/2)
tan(1/2)
sage: RR(tan(1/2))
0.546302489843790
sage: sudoku?
File: sage/localllib/python2.5/site-packages/sage/ga mes/sudoku.py
Type: <type function>
Definition:  sudoku(A)
Docstring:

Solve the 9x9 Sudoku puzzle defined by the matrix A.

EXAMPLE:
sage: A = matrix(Zz,9, [5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0,
0,3,0, 0,6,7, 3,00, 0,0,1, 15,0, 0,0,0, 0,0,0, 0,0,0, 2,0 ,8,
0,0,0, 0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,04, 15,0, 0,3,0, 0,0 2,
0,0,0, 4,9,0, 0,50, 0,0,3])
sage: A

S
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13.5.3 Basic Algebra and Calculus

Sage can perform various computations related to basic algef@alculus: for
example, finding solutions to equations, differentiatioiegration, and plotting.
See the Sage reference manual” for more examples.

Solving Equations

Solving Equations Exactly

The solve function solves equations. To use it, first specify somealdess;
then the arguments 8blve are an equation (or a system of equations), together
with the variables for which to solve:
Sage

sage: x = var(x)
sage: solve(x2 + 3  *x + 2, X)
[x == -2, x == -1]

You can solve equations for one variable in terms of others:

Sage
sage: X, b, ¢ = var(x b ¢)
sage: solve([x2 + b *X + ¢ == 0],X)
[x == (-sqrt(b2 - 4 xC) - b)/2, x == (sqrt(b2 - 4 *C) - b)/2]

You can also solve for several variables:
Sage

sage: x, y = var(x, y)
sage: solve([x+y==6, x-y==4], X, Y)
[[X =5y == 1]]

In the following example, first we solve the system symbdilca
Sage

sage: var(x y p q)
x, y, p, q)
sage: eql
sage: eq2
sage: eg3

p+q::9
q *y+p*x::_6
q *y2+p*x2==24
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sage: solve([eql,eq2,eq3,p==1],p,q.X,y)
[[p==19g==28, x == (4 *sqr(10) - 2)/3,
y == (sqrt(2)  *sqrt(5) - 4)/6],

[p==1 g ==28 x == (4 =*sqgrt(10) - 2)/3,
y == (-sqrt(2)  *sqrt(5) - 4)/6]]

For numerical approximations of the solutions, you careiadtuse:

Sage
sage: solns = solve([eql,eq2,eq3,p==1],p,q,X,y, solutio n dict=True)
sage: [[s[p]-n(30), s[g].n(30), s[x].n(30), s[y].n(30)] for s in solns]

[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]

(The functionn prints a numerical approximation, and the argument is time-nu
ber of bits of precision.)

Solving Equations Numerically

Often timessolve will not be able to find an exact solution to the equation or
equations specified. When it fails, you can fisel _root to find a numerical
solution. For example, solve does not return anything stiteg for the following
equation:

Sage

sage: theta = var(theta)
sage: solve(cos(theta)==sin(theta))
[sin(theta) == cos(theta)]

On the other hand, we can used _root to find a solution to the above equa-
tion in ranged < 6 < 7/2:

Sage

sage: find root(cos(theta)==sin(theta),0,pi/2)
0.78539816339744839

Differentiation, Integration, etc.

Sage knows how to differentiate and integrate many functions. é&@mple, to
differentiatesin(u) with respect ta:, do the following:
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Sage

sage: u = var(u)
sage: diff(sin(u), u)
cos(u)

To compute the fourth derivative effn(z?):
Sage

sage: diff(sin(x2), x, 4)
16*x4+*sin(x2) - 12  *sin(x2) - 48 *x2xcos(x2)

To compute the partial derivatives of + 17y* with respect tox andy, respec-

tively:
Sage

sage:
sage:

sage:

2% X

sage:

34xy

X, y = var(x,y)
f=x2 + 17 *y2
f.diff(x)

f.diff(y)

We move on to integrals, both indefinite and definite. To campu: sin(z?) dx
and [, =t do

Sage
sage: integral(x *sin(x2), x) # Sage always omits the "+C”
-cos(x2)/2
sage: integral(x/(x2+1), x, 0, 1)
log(2)/2

To compute the partial fraction decomposition;éjT:
Sage

sage: f = 1/((1+x) * (x-1))
sage: f.partial fraction(x)
/(2 =(x - 1)) - 1/(2 *(x + 1))
sage: print f.partial fraction(x)

1 1
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13.5.4 Plotting

Sage can produce two-dimensional and three-dimensional plots.

Two-dimensional Plots

In two dimensionsSage can draw circles, lines, and polygons; plots of functions
in rectangular coordinates; and also polar plots, contdats @nd vector field
plots. We present examples of some of these here. For mongpdes of plotting
with Sage , see also th&age Reference Manual [R].

This command produces a yellow circle of radius 1, centetéukesorigin:

Sage

sage: circle((0,0), 1, rgbcolor=(1,1,0))

You can also produce a filled circle:

Sage

sage: circle((0,0), 1, rgbcolor=(1,1,0), fill=True)

You can also create a circle by assigning it to a variabls;dbes not plot it:

Sage

sage: ¢ = circle((0,0), 1, rgbcolor=(1,1,0))

To plot it, usec.show() or show(c) , as follows:

Sage

sage: c.show()

Alternatively, evaluating.save(’filename.png’) will save the plot to
the given file.

Now, these ‘circles’ look more like ellipses because thesaate scaled differ-
ently. You can fix this:
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Sage

sage: c.show(aspect ratio=1)

The commandaghow(c, aspect _ratio=1) accomplishes the same thing,

or you can save the picture usiogave('filename.png’, aspect _ratio=1)

It's easy to plot basic functions:

Sage

sage: plot(cos, (-5,5))

Once you specify a variable name, you can create paraméitggiso:

Sage

sage: x = var(x)
sage: parametric plot((cos(x),sin(x)3),0,2 * pi,rgbcolor=hue(0.6))

You can combine several plots by adding them:

Sage

sage:
sage:
sage:
sage:
sage:
x = var(x)
= parametric plot((cos(x),sin(x)),0,2 * pi,rgbcolor=hue(0.2))
p2 = parametric plot((cos(x),sin(x)2),0,2 * pi,rgbcolor=hue(0.4))
= parametric plot((cos(x),sin(x)3),0,2 * pi,rgbcolor=hue(0.6))
show(pl+p2+p3, axes=false)

o
w
I

A good way to produce filled-in shapes is to produce a list afigdL in the ex-

ample below) and then use thelygon command to plot the shape with bound-

ary formed by those points. For example, here is a greenidelto

Sage

sage: L = [[-1+cos(pi *i/100) *(1+cos(pi *i/100)),\
.. 2 =sin(pi *i/100) *(1-cos(pi  *i/100))] for i in range(200)]
sage: polygon(L, rgbcolor=(1/8,3/4,1/2))
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(You don’t type the “...” above - they are filled in automatigdy Sage when
you type\<shift-enter> , Which is a way you can create a newline without
executing theSage command.) Typeshow(p, axes=false) to see this
without any axes.

You can add text to a plot:

Sage

sage: L = [[6 =*cos(pi *i/100)+5 =*cos((6/2) =*pi *i/100)\

6 =*sin(pi  *i/100)-5 =*sin((6/2)  *pi *i/100)] for i in range(200)]
sage: p = polygon(L, rgbcolor=(1/8,1/4,1/2))

sage: t = text("hypotrochoid", (5,4), rgbcolor=(1,0,0))

sage: show(p+t)

Calculus teachers draw the following plot frequently on tbard: not just one
branch of arcsin but rather several of them: i.e., the ploy of sin(z) for z
between—27 and 27, flipped about the 45 degree line. The followiBgge
commands construct this:

Sage

sage: v = [(sin(x),x) for x in srange(-2 * float(pi),2 * float(pi),0.1)]
sage: line(v)

Since the tangent function has a larger range than sine,ufuge the same
trick to plot the inverse tangent, you should change the mimn and maximum
coordinates for the-axis:

Sage

sage: v = [(tan(x),x) for x in srange(-2 * float(pi),2 * float(pi),0.01)]
sage: show(line(v), xmin=-20, xmax=20)

Sage also computes polar plots, contour plots and vector fieltsiffor special
types of functions). Here is an example of a contour plot:

Sage

sage: f = lambda x,y: cos(x *y)
sage: contour plot(f, (-4, 4), (-4, 4))
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Three-Dimensional Plots

Sage produces three-dimensional plots using an open sourceagackalled
[Jmol]. Here are a few examples:
Yellow Whitney’'s umbrella http://en.wikipedia.org/wikiVhitney umbrella:

Sage
sage: u, v = var(u,v)
sage: fx = u =*v
sage: fy = u
sage: fz = v2
sage: parametric plot3d([fx, fy, fz], (u, -1, 1), (v, -1, 1), \
frame=False, color="yellow")

Once you have evaluatgghrametric _plot3d , so that the plot is visible,
you can click and drag on it to rotate the figure. Tygggametric  _plot3d?
for more examples.

13.5.5 Some common issues with functions

Some aspects of defining functions (e.g., for differerdgiator plotting) can be
confusing. In this section we try to address some of the agleissues.

Here are several ways to define things which might deserve tmalted “func-
tions™

1. Define a Python function (as described for example inShge Tutorial
http://www.sagemath.org/doc/tutorial/tour_functions.html

or the Python docs dtttp://docs.python.org/tutorial/ ). These
functions can be plotted, but not always differentiatechtegrated.
Sage
sage: def f(z): return z2
sage: type(f)
<type function>
sage: f(3)
9

sage: plot(f, 0, 2)

In the last line, note the syntax. Usiptpt(f(z), 0, 2) instead will give
an error, because is a dummy variable in the definition éf and is not defined
outside of that definition. Indeed, jugz) returns an error. The following will
work in this case, although in general there are issues aitdgskould probably
be avoided (see item 4 below).
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Sage

sage: z = var("z")
sage: derivative(f(z),z)
AN

sage: plot(f(z), 0, 2)

At this point,f(z) is a symbolic expression, the next item in our list.
2. Define a “callable symbolic expression”. These can begqiodifferentiated,

and integrated.
Sage

sage: g(x) = x2
sage: g

# g sends x to x2
X |--> x2

sage: g(3)

9

sage: Dg = g.derivative(); Dg

X |--> 2 *x

sage: Dg(3)

6

sage: type(g)

<class sage.calculus.calculus.CallableSymbolicExpres sion>
sage: plot(g, 0, 2)

Note that whileg is a callable symbolic expressiag(x) is arelated, but differ-
ent sort of object, which can also be plotted, differentagtd., albeit with some

issues: see item 5 below for an illustration.
Sage

sage: type(g(x))

<class sage.calculus.calculus.SymbolicArithmetic>
sage: g(x).derivative()

2% X

sage: plot(g(x), 0, 2)

3. Use a pre-defineBlage ‘calculus function’. These can be plotted, and with

a little help, differentiated, and integrated.
Sage

sage: type(sin)

<class sage.calculus.calculus.Function sin>

sage: plot(sin, 0, 2)

sage: type(sin(x))

<class sage.calculus.calculus.SymbolicComposition>
sage: plot(sin(x), 0, 2)
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By itself, sin cannot be differentiated, at least not to prodocs .
Sage

sage: f = sin
sage: f.derivative()
0

Usingf = sin(x) instead ofsin works, but it is probably even better to use
f(x) = sin(x) to define a callable symbolic expression.
Sage

sage: S(x) = sin(x)
sage: S.derivative()
X |--> cos(x)

Here are some common problems, with explanations:
4. Accidental evaluation.

Sage
sage: def h(x):
. If x<2:
return O
.. else:
return x-2
The issueplot(h(x), 0, 4) plots the liney = = — 2, not the multi-line
function defined byr. The reason? In the commaphbt(h(x), 0, 4) , first

h(x) is evaluated: this means pluggirgnto the functionh, which means that

X <2 is evaluated.
Sage

sage: type(x<2)
<class sage.calculus.equations.SymbolicEquation>

When a symbolic equation is evaluated, as in the definitioh,af it is not
obviously true, then it returns False. THux) evaluates tx-2 , and this is the
function that gets plotted.

The solution: don’t uselot(h(x), 0, 4) ; iInstead, use
Sage

sage: plot(h, 0, 4)
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5. Accidentally producing a constant instead of a function.

Sage
sage: f = x
sage: g = f.derivative()
sage: g
1

The problem:g(3) , for example, returns an error, saying “ValueError: the
number of arguments must be less than or equal to 0.”
Sage

sage: type(f)
<class sage.calculus.calculus.SymbolicVariable>
sage: type(9)
<class sage.calculus.calculus.SymbolicConstant>

g is not a function, it's a constant, so it has no variables@asged to it, and you
can’t plug anything into it.
The solution: there are several options.

e Definef initially to be a symbolic expression.
Sage

sage: f(x) = x

# instead of f = x
sage: g = f.derivative()
sage: g

X |-->1

sage: g(3)

1

sage: type(g)
<class sage.calculus.calculus.CallableSymbolicExpres sion>

e Orwithf as defined originally, defing to be a symbolic expression.
Sage

sage: f = x

sage: g(x) = f.derivative() # instead of g = f.derivative()

sage: g

X |-->1

sage: g(3)

1

sage: type(9)

<class sage.calculus.calculus.CallableSymbolicExpres sion>
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e Orwithf andg as defined originally, specify the variable for which you are
substituting.
Sage

sage:
sage:
sage:

X
f.derivative()

QaQ —

sage: g(x=3) # instead of g(3)

Please see theage Tutorial for more details and examples.

13.6 Tryit!

Sage users are aommunity Please join us!

http://www.sagemath.org/
http://www.sagenb.com/
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CHAPTER
FOURTEEN

Appendix: GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright(©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

ihttp://fsf.org/¢,

Everyone is permitted to copy and distribute verbatim copies of this licenserdot,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other funiciotaseful
document “free” in the sense of freedom: to assure everyone traiedfreedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially
Secondarily, this License preserves for the author and publisher d@ongst credit for
their work, while not being considered responsible for modifications mgadé¢hers.

This License is a kind of “copyleft”, which means that derivative workihie document
must themselves be free in the same sense. It complements the GNU Germi@l Pu
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free aeftve-
cause free software needs free documentation: a free progratd sleone with manuals
providing the same freedoms that the software does. But this License lisnitet] to
software manuals; it can be used for any textual work, regardlessbjéct matter or
whether it is published as a printed book. We recommend this License piigdipa
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
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This License applies to any manual or other work, in any medium, that cortaioisce
placed by the copyright holder saying it can be distributed under the tdrtims dicense.
Such a notice grants a world-wide, royalty-free license, unlimited in duratoumse that
work under the conditions stated herein. THotument’, below, refers to any such
manual or work. Any member of the public is a licensee, and is addres$gduds You
accept the license if you copy, modify or distribute the work in a way reqgparmission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated intthan
language.

A “Secondary Sectiohis a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authoreddtitument
to the Document’s overall subject (or to related matters) and contains nattsihgould
fall directly within that overall subject. (Thus, if the Document is in part dlesk of
mathematics, a Secondary Section may not explain any mathematics.) The rkigtions
could be a matter of historical connection with the subject or with related mabteos,
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections’ are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Dotismeleased
under this License. If a section does not fit the above definition of $ecgithen it is not
allowed to be designated as Invariant. The Document may contain zer@im&ections.

If the Document does not identify any Invariant Sections then thereare.n

The “Cover Texts’ are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document &seslaunder
this License. A Front-Cover Text may be at most 5 words, and a BagkiJext may be
at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is kuftatre-
vising the document straightforwardly with generic text editors or (for irmagenposed
of pixels) generic paint programs or (for drawings) some widely availditzie/iing editor,
and that is suitable for input to text formatters or for automatic translation toietyaf
formats suitable for input to text formatters. A copy made in an otherwisespeaant file
format whose markup, or absence of markup, has been arrangedax trdiscourage
subsequent modification by readers is not Transparent. An image forn@tTsanspar-
ent if used for any substantial amount of text. A copy that is not “Traresp” is called
“Opaqué’.

Examples of suitable formats for Transparent copies include plain AS@ibut markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly #edle
DTD, and standard-conforming simple HTML, PostScript or PDF desidaetiuman
modification. Examples of transparent image formats include PNG, XCF &adfaque

350



formats include proprietary formats that can be read and edited only pyigtary word
processors, SGML or XML for which the DTD and/or processing toatsrent generally
available, and the machine-generated HTML, PostScript or PDF prddycsome word
processors for output purposes only.

The “Title Page’ means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requiregearap the
title page. For works in formats which do not have any title page as such, Paile”
means the text near the most prominent appearance of the work’s titledprgahe
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section ‘Entitled XYZ ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translxtéZ in
another language. (Here XYZ stands for a specific section name menkeloeg such as
“Acknowledgements, “ Dedications’, “ Endorsements, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states th
this License applies to the Document. These Warranty Disclaimers are amustdebe
included by reference in this License, but only as regards disclaimincamtégs: any
other implication that these Warranty Disclaimers may have is void and haset eff
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, arlctérese notice
saying this License applies to the Document are reproduced in all copigshat you
add no other conditions whatsoever to those of this License. You may adécisnical
measures to obstruct or control the reading or further copying of thieegou make or
distribute. However, you may accept compensation in exchange forscoligou dis-
tribute a large enough number of copies you must also follow the conditiorgiios 3.

You may also lend copies, under the same conditions stated above, andypulstiely
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printeergp
of the Document, numbering more than 100, and the Document’s license rexjizeas
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Cover Texts, you must enclose the copies in covers that carry, clazdlyegibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Badler Texts on the
back cover. Both covers must also clearly and legibly identify you as thésper of
these copies. The front cover must present the full title with all wordseofitle equally
prominent and visible. You may add other material on the covers in additiopyi@p
with changes limited to the covers, as long as they preserve the title of the Dotcana:
satisfy these conditions, can be treated as verbatim copying in othectgspe

If the required texts for either cover are too voluminous to fit legibly, yawusthput the
first ones listed (as many as fit reasonably) on the actual cover, atiduw®the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering mareli®0,
you must either include a machine-readable Transparent copy along aeith@paque
copy, or state in or with each Opaque copy a computer-network locatiom frbich
the general network-using public has access to download using ptdolidesd network
protocols a complete Transparent copy of the Document, free of addedahaf you use
the latter option, you must take reasonably prudent steps, when youdisyibution of
Opaque copies in quantity, to ensure that this Transparent copy will rémeiaccessible
at the stated location until at least one year after the last time you distribut@aou®
copy (directly or through your agents or retailers) of that edition to théiqub

It is requested, but not required, that you contact the authors of doairdent well
before redistributing any large number of copies, to give them a chanoevale you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under thdittons
of sections 2 and 3 above, provided that you release the Modified Warsiter precisely
this License, with the Modified Version filling the role of the Document, thus licens
distribution and modification of the Modified Version to whoever possessepywof it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from thatef th
Document, and from those of previous versions (which should, if there any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permissio

B. List on the Title Page, as authors, one or more persons or entitiesisigofor
authorship of the modifications in the Modified Version, together with at leaest fi
of the principal authors of the Document (all of its principal authors, ia& fewer
than five), unless they release you from this requirement.
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. State on the Title page the name of the publisher of the Modified Versiongas th
publisher.

. Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacetti¢ather
copyright notices.

. Include, immediately after the copyright notices, a license notice givinguhkc
permission to use the Modified Version under the terms of this License, inrtime fo
shown in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections ayudresl Cover
Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled “History”, Preserve its Title, and add to iteam
stating at least the title, year, new authors, and publisher of the Modifisibvieas
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Documeiveas

on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

. Preserve the network location, if any, given in the Document for pabless to
a Transparent copy of the Document, and likewise the network locatigas @i
the Document for previous versions it was based on. These may bel ptattee
“History” section. You may omit a network location for a work that was puldih
at least four years before the Document itself, or if the original publishé¢he
version it refers to gives permission.

. For any section Entitled “Acknowledgements” or “Dedications”, Presé¢he Title
of the section, and preserve in the section all the substance and torehaffehe
contributor acknowledgements and/or dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in thxéiand in
their titles. Section numbers or the equivalent are not considered ghg séction
titles.

. Delete any section Entitled “Endorsements”. Such a section may not bel@uclu
in the Modified Version.

. Do not retitle any existing section to be Entitled “Endorsements” or to comflict
title with any Invariant Section.
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O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendieggtralify as
Secondary Sections and contain no material copied from the Documerntayat your
option designate some or all of these sections as invariant. To do this, adtitliéeto
the list of Invariant Sections in the Modified Version’s license notice. &hiées must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothingr
dorsements of your Modified Version by various parties—for examplermatnts of peer
review or that the text has been approved by an organization as theititbe@definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, aasbage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts iMthdified
Version. Only one passage of Front-Cover Text and one of BadkeiC@xt may be added
by (or through arrangements made by) any one entity. If the Documeatgliecludes
a cover text for the same cover, previously added by you or by agraegt made by the
same entity you are acting on behalf of, you may not add another; but ypuepkace
the old one, on explicit permission from the previous publisher that ad@ealdirone.

The author(s) and publisher(s) of the Document do not by this Liceimegpgrmission
to use their names for publicity for or to assert or imply endorsement of aogifidd
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under thisé.icens
der the terms defined in section 4 above for modified versions, providegahanclude
in the combination all of the Invariant Sections of all of the original documemshod-
ified, and list them all as Invariant Sections of your combined work in its §earotice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multipitiédé
Invariant Sections may be replaced with a single copy. If there are multipdeidmt Sec-
tions with the same name but different contents, make the title of each suchmsettjae
by adding at the end of it, in parentheses, the name of the original autpoabbsher of
that section if known, or else a unique number. Make the same adjustmentstecticn
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the variou
original documents, forming one section Entitled “History”; likewise combing set-
tions Entitled “Acknowledgements”, and any sections Entitled “Dedicationstu friust
delete all sections Entitled “Endorsements”.
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6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documentsaglea
under this License, and replace the individual copies of this License ivatii@us docu-
ments with a single copy that is included in the collection, provided that you fatew
rules of this License for verbatim copying of each of the documents in af odspects.

You may extract a single document from such a collection, and distributenidodlly
under this License, provided you insert a copy of this License into thaartt document,
and follow this License in all other respects regarding verbatim copyitiggdflocument.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and @mismt
documents or works, in or on a volume of a storage or distribution medium, is ealled
“aggregate” if the copyright resulting from the compilation is not used to limitegel
rights of the compilation’s users beyond what the individual works permihef\the
Document is included in an aggregate, this License does not apply to threnattes in
the aggregate which are not themselves derivative works of the Do¢umen

If the Cover Text requirement of section 3 is applicable to these copies @fdhument,
then if the Document is less than one half of the entire aggregate, the DotsiQewver
Texts may be placed on covers that bracket the Document within the aggyrey the
electronic equivalent of covers if the Document is in electronic form. Qtiserthey
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transsatib
the Document under the terms of section 4. Replacing Invariant Sectionsavitiations
requires special permission from their copyright holders, but you nwyde translations
of some or all Invariant Sections in addition to the original versions of thesaiant
Sections. You may include a translation of this License, and all the licenseesdtic
the Document, and any Warranty Disclaimers, provided that you also incladeitiinal
English version of this License and the original versions of those notiwbdiaclaimers.
In case of a disagreement between the translation and the original vefsios License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications™*His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typicatyuire
changing the actual title.
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9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document exceexpressly
provided under this License. Any attempt otherwise to copy, modify, suldeeor dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license fagparticular
copyright holder is reinstated (a) provisionally, unless and until the ragipyholder ex-
plicitly and finally terminates your license, and (b) permanently, if the copytighder
fails to notify you of the violation by some reasonable means prior to 60 dégstae
cessation.

Moreover, your license from a particular copyright holder is reinstatthanently if
the copyright holder notifies you of the violation by some reasonable m#dasss the
first time you have received notice of violation of this License (for anykyvfnom that
copyright holder, and you cure the violation prior to 30 days after yeaeipt of the
notice.

Termination of your rights under this section does not terminate the licengestas
who have received copies or rights from you under this License.uf yights have been
terminated and not permanently reinstated, receipt of a copy of some drthd same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of thé Bee
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problemsnmems. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version numbere Bticument
specifies that a particular numbered version of this License “or any latsion” applies
to it, you have the option of following the terms and conditions either of thatifspec
version or of any later version that has been published (not as alydft¢ Free Software
Foundation. If the Document does not specify a version number of thehke; you may
choose any version ever published (not as a draft) by the Free Seffwaindation. If
the Document specifies that a proxy can decide which future versidhgdficense can
be used, that proxy’s public statement of acceptance of a version penthaauthorizes
you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World \&id
Web server that publishes copyrightable works and also provides peabfarcilities for
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anybody to edit those works. A public wiki that anybody can edit is amgre of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained iretlsite means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA’ means the Creative Commons Attribution-Share Alike 3.0 licengs p
lished by Creative Commons Corporation, a not-for-profit corporatigh & principal
place of business in San Francisco, California, as well as future dopglsions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in papart of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and lif a
works that were first published under this License somewhere othethisaMMC, and
subsequently incorporated in whole or in part into the MMC, (1) had nerctexts or
invariant sections, and (2) were thus incorporated prior to NovemtiQB.

The operator of an MMC Site may republish an MMC contained in the site un@er C
BY-SA on the same site at any time before August 1, 2009, provided the dMijible
for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of thaddda the
document and put the following copyright and license notices just aftditid@age:

Copyright © YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Taxris

no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cdesats, replace the
“with ... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.
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If you have Invariant Sections without Cover Texts, or some other caatibim of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, w@menend releas-
ing these examples in parallel under your choice of free software licensk as the GNU
General Public License, to permit their use in free software.
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d
4,145

acceleration, 156

angle between two curves, 119
arclength|, 223, 225

arctan, 23

argument, 5

binomial theorem, 317

center of curvature, 301
chain rule; 74, 242
circle of curvature, 293
circle, area formula, 318
composition|, 72
concave down, 191
concave upward, 191
cone, volume formula, 319
constant, 1
continuous, 14
continuous in an interval, 17
critical point, 186
critical value; 188
curvature, 285, 287
curve, 18
cardioid) 139, 147
catenary, 129
cissoid| 122
cycloid, 134

INDEX

Folium of Descartes, 139
hyperbolic spiral, 140
hypocycloid (astroid), 139
lemniscate, 145
logarithmic spiral, 147
spiral of Archimedes, 147
Witch of Agnesi, 123
cylinder, volume formula, 318

dependent variable| 5
derivative, 44
difference scheme
centered, 283
forward] 283
differentiable; 44
differential[ 222
differentiating operator, 45
differentiation, 45
chain rule; 62
power rule, 60
product rule, 60
quotient rule, 60
direction of a curve, 116
discontinuous, 15
domain| 6

equations of a line, 320
evolute| 308
exp, 18
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finite difference equations, 282
function, 3,5
decreasing, 183
increasing, 183
piecewise-defined, 24
composite, 72
inverse, 74
piecewise-defined, 3
function:implicit, 107

geometric series, 318

graph, 18

greatest common divisor (GCD), 148
hypocycloid, 130

increment, 42

independent variable, 5
indeterminate form, 259
inflection point, 213

law of cosines, 320
law of sines|, 320
Leibnitz's Formula, 169
length of the normal, 125
length of the subnormal, 125
length of the subtangent, 125
length of the tangent, 125
In,’20
logs

addition rule, 318

power rule, 318

maximum| 255

maximum value, 186

Mean Value Theorem, 252, 253
Extended, 253, 254

minimum, 255

minimum value, 186

multiple root, 148
normal line] 125

parameter, 130

parameters, 1

parametric equations, 130, 154
parametric equations of the path, 131
point of inflection, 213

polar coordinate formulals, 320

prism, volume formula, 318

pyramid, volume formula, 318

quadratic formula, 317

Rolle’s Theorem, 249
roots of polynomials, 148
rule for finding extremal values, 189, 191
rule for finding points of inflection, 213
rule for multiple roots, 148

rule for plotting curves, 216

second derivative test, 191

sign graph, 189

sign test of the first derivative, 189
sin,[18

sphere, volume formula, 319

strategy for finding local extrema, 193
strategy for related rates, 229

subtangent, 125
tan, 23

tangent ling, 124, 125

Taylor’'s Formula, 276

Taylor’s formula, 254

Taylor’'s Theorem, 276

total curvature, 286

trigonometric function identities, 319
turning points|, 186
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variable| 1
velocity, 153
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