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CHAPTER

ZERO

Preface

This is a free and open source differential calculus book. The “free and open
source” part means you, as a student, can give digital versions of this book to any-
one you want (for free). It means that if you are a teacher, youcan (a) give or print
or xerox copies for your students, (b) use potions for your own class notes (if they
are published then you might need to add some acknowledgement, depending on
which parts you copied), and you can xerox even very large portions of it to your
hearts content. The “differential calculus” part means it covers derivatives and
applications but not integrals. It is heavily based on the first half of a classic text,
Granville’s “Elements of the Differential and Integral Calculus,” quite possibly a
book your great grandfather might have used when he was college age. Some ma-
terial from Sean Mauch’s excellent public domain text on Applied Mathematics,

http://www.its.caltech.edu/ ˜ sean/book.html

was also included.
Calculus has been around for several hundred years and the teaching of it has not

changed radically. Of course, like any topic which is taughtin school, there are
somemodifications, but not major ones in this case. Ifx(t) denotes the distance a
train has traveled in a straight line at timet then the derivative is thevelocity. If
q(t) denotes the charge on a capacitor at timet in a simple electrical circuit then
the derivative is thecurrent. If C(t) denotes the concentration of a solvent in a
chemical mixture at timet then the derivative is thereaction rate. If P (t) denotes
the population size of a country at timet then the derivative is thegrowth rate.
If C(x) denotes the cost to manufacturex units of a production item (such as a
broom, say) then the derivative is themarginal cost.

ix
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Some of these topics, electrical circuits for example, werenot studied in calcu-
lus when Granville’s book was first written. However, aside from some changes
in grammar and terminology (which have been updated in this version), the math-
ematicalcontentof the calculus course taught today is basically the same as that
taught a hundred years ago. Terminology has changed, and no one talks about
“versines” any more (they were used in navigation tables before the advent of
computers), but thebasic techniqueshave not. Therefore, to make the book more
useful to current students, some modification and rearrangement of the material
in Granville’s old text is appropriate. Overall, though therigor and detailed expla-
nations are still at their same high level of quality.

Here is a quote form Granville’s original preface:

The author has tried to write a textbook that is thoroughly modern
and teachable, and the capacity and needs of the student pursuing a
first course in the Calculus have been kept constantly in mind.The
book contains more material than is necessary for the usual course of
one hundred lessons given in our colleges and engineering schools;
but this gives teachers an opportunity to choose such subjects as best
suit the needs of their classes. It is believed that the volume contains
all topics from which a selection naturally would be made in prepar-
ing students either for elementary work in applied science or for more
advanced work in pure mathematics.

WILLIAM A. GRANVILLE
GETTYSBURG COLLEGE
Gettysburg, Pa.

For further information on William Granville, please see the Wikipedia article at
http://en.wikipedia.org/wiki/William_Anthony_Granville ,
which has a short biography and links for further information.

Granville’s book “Elements of the Differential and Integral Calculus” fell into
the public domain (in the United States - other countries maybe different) and
then much of it (but not all, at the time of this writing) was scanned into

http://en.wikisource.org/wiki/Elements_of_the_Diffe rential_and_Integral_Calculus

primarily by P. J. Hall. This wikisource document uses MathML and LATEX and
some Greek letter fonts.

x

http://en.wikipedia.org/wiki/William_Anthony_Granville
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In keeping with the “free and open source” aspect of this textbook, and the
theme of updating to today’s much more technologically-aware students, a free
and open sourse mathematical software packageSage was used to illustrate ex-
amples throughout. You don’t need to knowSage to read the book (just ignore
theSage examples if you want) but it certainly won’t hurt to learn a little about
it. Besides, you might find that with some practiceSage is fun to “play with”
and helps you with homework or other mathematical problems in some of your
other classes. It is a general purpose mathematical software program and it may
very likely be the only mathematical software you will ever need.

This LATEX’d version is due to the second-named author, who is responsible for
formatting, the correction of any typos in the scanned version, significant revision
for readability, and some extra material (for example, theSage examples and
graphics). In particular, the existence of this document owes itself primarily to
three great open source projects: TEX/LATEX, Wikipedia, andSage . All the fig-
ures were created usingSage and then edited and converted using the excellent
open source image manipulation programGIMP (http://www.gimp.org ).
TheSage code for each image can be found in the LATEX source code, available
at

http://sage.math.washington.edu/home/wdj/teaching/c alc1-sage/ .

More information onSage can be found at theSage website (located at
http://www.sagemath.org ) or in the Appendix (Chapter 13) below.

Though the original text of Granville is public domain, the extra material added
in this version is licensed under the GNU Free DocumentationLicense (repro-
duced in an Appendix below), as is Wikipedia.

Acknowledgements: I thank the following readers for careful proofreading and
reporting typos: Mario Pernici, Jacob Hicks, Georg Muntingh, and Minh Van
Nguyen. I also thank Trevor Lipscombe for excellent stylistic advice on the pre-
sentation of the book. However, any remaining errors are solely my responsibility.
Please send comments, suggestions, proposed changes, or corrections by email to
wdjoyner@gmail.com .
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CHAPTER

ONE

Variables and functions

1.1 Variables and constants

A variable is a quantity to which an unlimited number of values can be assigned.
Variables are denoted by the later letters of the alphabet. Thus, in the equation of
a straight line,

x

a
+
y

b
= 1

x andy may be considered as the variable coordinates of a point moving along the
line. A quantity whose value remains unchanged is called aconstant.

Numerical or absolute constants retain the same values in all problems, as2, 5,√
7, π, etc.
Arbitrary constants, or parameters, are constants to which any one of an unlim-

ited set of numerical values may be assigned, and they are supposed to have these
assigned values throughout the investigation. They are usually denoted by the ear-
lier letters of the alphabet. Thus, for every pair of values arbitrarily assigned toa
andb, the equation

x

a
+
y

b
= 1

represents some particular straight line.
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1.2. INTERVAL OF A VARIABLE

1.2 Interval of a variable

Very often we confine ourselves to a portion only of the numbersystem. For
example, we may restrict our variable so that it shall take ononly such values as
lie betweena andb, wherea andb may be included, or either or both excluded.
We shall employ the symbol[a, b], a being less thanb, to represent the numbers
a, b, and all the numbers between them, unless otherwise stated.This symbol
[a, b] is read the interval froma to b.

1.3 Continuous variation

A variablex is said to vary continuously through an interval[a, b], whenx starts
with the valuea and increases until it takes on the valueb in such a manner as to
assume the value of every number betweena andb in the order of their magni-
tudes. This may be illustrated geometrically as follows:

Figure 1.1: Interval fromA toB.

The origin being atO, layoff on the straight line the pointsA andB corresponding
to the numbersa andb. Also let the pointP correspond to a particular value of the
variablex. Evidently the interval[a, b] is represented by the segmentAB. Now
asx varies continuously froma to b inclusive, i.e. through the interval[a, b], the
pointP generates the segmentAB.

1.4 Functions

A functionf of the real numbersR is a well-defined rule which associated to each
x ∈ R a unique valuef(x). Usually functions are described algebraically using
some formula (such asf(x) = x2, for all real numbersx) but it doesn’t have to be
so simple. For example,

2



1.5. NOTATION OF FUNCTIONS

f(x) =

{

x2, if x is an integer,
0, otherwise,

is a function onR but it is given by a relatively complicated rule. Namely, therule
f tells you to associate to a numberx the value0 unlessx is an integer, in which
case you are to associate the valuex2. (In particular,f(x) is always an integer, no
matter whatx is.) This type of rule defining a function ofx is sometimes called
a piecewise-defined function. In this book, we shall usually focus on functions
given by simpler symbolic expressions. However, be aware that piecewise-defined
functionsdo arise naturally in applications. For example, in electronics, when a
6 volt battery-powered flashlight is powered on or off using a switch, the voltage
to the lightbulb is modeled by a piecewise-defined function which has the value0
when the device is off and6 when it is switched on.

When two variables are so related that the value of the first variable depends on
the value of the second variable, then the first variable is said to be afunctionof
the second variable.

Nearly all scientific problems deal with quantities and relations of this sort, and
in the experiences of everyday life we are continually meeting conditions illus-
trating the dependence of one quantity on another. For instance, the weight a man
is able to lift depends on his strength, other things being equal. Similarly, the dis-
tance a boy can run may be considered as depending on the time.Or, we may say
that the area of a square is a function of the length of a side, and the volume of a
sphere is a function of its diameter.

1.5 Notation of functions

The symbolf(x) is used to denote a function ofx, and is read “f of x”. In order
to distinguish between different functions, the prefixed letter is changed, asF (x),
φ(x), f ′(x), etc.

During any investigation the same functional symbol alwaysindicates the same
law of dependence of the function upon the variable. In the simpler cases this
law takes the form of a series of analytical operations upon that variable. Hence,
in such a case, the same functional symbol will indicate the same operations or
series of operations, even though applied to different quantities. Thus, if

f(x) = x2 − 9x+ 14,
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then
f(y) = y2 − 9y + 14.

Also
f(a) = a2 − 9a+ 14,

f(b+ 1) = (b+ 1)2 − 9(b+ 1) + 14 = b2 − 7b+ 6,

f(0) = 02 − 9 · 0 + 14 = 14,

f(−1) = (−1)2 − 9(−1) + 14 = 24,

f(3) = 32 − 9 · 3 + 14 = −4,

f(7) = 72 − 9 · 7 + 14 = 0,

etc. Similarly,φ(x, y) denotes a function ofx andy, and is read “φ of x andy”.
If

φ(x, y) = sin(x+ y),

then
φ(a, b) = sin(a+ b),

and
φ
(π

2
, 0
)

= sin
π

2
= 1.

Again, if
F (x, y, z) = 2x+ 3y − 12z,

then
F (m, −m, m) = 2m− 3m− 12m = −13m.

and
F (3, 2, 1) = 2 · 3 + 3 · 2 − 12 · 1 = 0.

Evidently this system of notation may be extended indefinitely.
You can define a function inSage in several ways:

Sage

sage: x,y = var("x,y")
sage: f = log(sqrt(x))
sage: f(4)
log(4)/2
sage: f(4).simplify_log()
log(2)
sage: f = lambda x: (xˆ2+1)/2
sage: f(x)
(xˆ2 + 1)/2
sage: f(1)
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1.6. INDEPENDENT AND DEPENDENT VARIABLES

1
sage: f = lambda x,y: xˆ2+yˆ2
sage: f(3,4)
25
sage: R.<x> = PolynomialRing(CC,"x")
sage: f = xˆ2+2
sage: f.roots()
[(1.41421356237309 * I, 1), (2.77555756156289e-17 - 1.41421356237309 * I, 1)]

1.6 Independent and dependent variables

The second variable, to which values may be assigned at pleasure within limits
depending on the particular problem, is called theindependent variable, or argu-
ment; and the first variable, whose value is determined as soon as the value of the
independent variable is fixed, is called thedependent variable, or function.

Though we shall wait to introduce differentiation later, please keep in mind that
you differentiate thedependentvariable with respect to theindependentvariable.

Example 1.6.1.In the equation of an upper half-circle of radius1,

y =
√

1 − x2,

we typically callx the independent variable andy the dependent variable.

Frequently, when we are considering two related variables,it is in our power
to fix upon whichever we please as the independent variable; but having once
made the choice, no change of independent variable is allowed without certain
precautions and transformations.

One quantity (the dependent variable) may be a function of two or more other
quantities (the independent variables, or arguments). Forexample, the cost of
cloth is a function of both the quality and quantity; the areaof a triangle is a
function of the base and altitude; the volume of a rectangular parallelepiped is a
function of its three dimensions.

In theSage example below,t is the independent variable andf is the dependent
variable.

Sage
sage: t = var(’t’)
sage: f = function(’f’, t)
sage: f = cos
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sage: f(pi/2)
0
sage: (f(-3 * pi)-2 * f(1))ˆ2
(-2 * cos(1) - 1)ˆ2

1.7 The domain of a function

The values of the independent variable for which a functionf(x) is defined is
often referred to as thedomainof the function, denoteddomain(f).

Consider the functions

x2 − 2x+ 5, sin x, arctanx

of the independent variablex. Denoting the dependent variable in each case byy,
we may write

y = x2 − 2x+ 5, y = sinx, y = arctanx.

In each casey (the value of the function) is known, or, as we say, defined, for all
values ofx. We write in this case,domain(f) = R. This is not by any means
true of all functions, as the following examples illustrating the more common
exceptions will show.

y =
a

x− b
(1.1)

Here the value ofy (i.e. the function) is defined for all values ofx exceptx = b.
Whenx = b the divisor becomes zero and the value ofy cannot be computed from
(1.1). We write in this case,domain(y) = R − {b}.

y =
√
x. (1.2)

In this case the function is defined only for positive values of x. Negative values
of x give imaginary values fory, and these must be excluded here, where we are
confining ourselves to real numbers only. We write in this case, domain(y) =
{x ∈ R | x ≥ 0}.

y = loga x. a > 0 (1.3)
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Here y is defined only for positive values ofx. For negative values ofx this
function does not exist (see 2.7).

y = arcsinx, y = arccos x. (1.4)

Since sines, and cosines cannot become greater than+1 nor less than−1, it fol-
lows that the above functions are defined for all values ofx ranging from−1 to
+1 inclusive, but for no other values.

Sage

sage: t = var("t’’)
sage: f = function(’f’, t)
sage: g = function(’g’, t)
sage: f = sin
sage: g = asin
sage: f(g(t))
t
sage: g(f(t))
t
sage: g(f(0.2))
0.200000000000000

1.8 Exercises

1. Givenf(x) = x3 − 10x2 + 31x− 30; show that

f(0) = −30, f(y) = y3 − 10y2 + 31y − 30,

f(2) = 0, f(a) = a3 − 10a2 + 31a− 30,

f(3) = f(5), f(yz) = y3z3 − 10y2z2 + 31yz − 30,

f(1) > f(−3), f(x− 2) = x3 − 16x2 + 83x− 140,

f(−1) = 6f(6).

2. If f(x) = x3 − 3x+ 2, find f(0), f(1), f(−1), f
(

−1
2

)

, f
(

4
3

)

.
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3. If f(x) = x3 − 10x2 + 31x − 30, andφ(x) = x4 − 55x2 − 210x − 216,
show that

f(2) = φ(−2), f(3) = φ(−3), f(5) = φ(−4), f(0) + φ(0) + 246 = 0.

4. If F (x) = 2x, findF (0), F (−3), F
(

1
3

)

, F (−1).

5. GivenF (x) = x(x−1)(x+6)
(

x− 1
2

) (

x+ 5
4

)

, show thatF (0) = F (1) =
F (−6) = F

(

1
2

)

= F
(

−5
4

)

= 0.

6. If f(m1) = m1−1
m1+1

, show that f(m1)−f(m2)
1+f(m1)f(m2)

= m1−m2

1+m1m2
.

7. If φ(x) = ax, show thatφ(y) · φ(z) = φ(y + z).

8. Givenφ(x) = log 1−x
1+x

, show thatφ(x) + φ(y) = φ
(

x+y
1+xy

)

.

9. If f(φ) = cosφ, show thatf(φ) = f(−φ) = −f(π − φ) = −f(π + φ).

10. If F (θ) = tan θ, show thatF (2θ) = 2F (θ)
1−[F (θ)]2

.

Here’s how to useSage to verify the double angle identity fortan above:

Sage

sage: theta = var("theta")
sage: tan(2 * theta).expand_trig()
2* tan(theta)/(1 - tan(theta)ˆ2)

11. Givenψ(x) = x2n + x2m + 1, show thatψ(1) = 3, ψ(0) = 1, andψ(a) =
ψ(−a), for any real numbera (Hint: Use the fact that(−1)2 = 1.)

12. If f(x) = 2x−3
x+7

, find f(
√

2).
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CHAPTER

TWO

Theory of limits

In this book, avariabledenotes a quantity which takes values in the real numbers.

2.1 Limit of a variable

If a variablev takes on successively a series of values that approach nearer and
nearer to a constant valueL in such a manner that|v − L| becomes and remains
less than any assigned arbitrarily small positive quantity, thenv is said to approach
the limit L, or to converge to the limitL. Symbolically this is writtenlimv=L, or
more commonly

lim
v→L

.

The following familiar examples illustrate what is meant:

1. As the number of sides of a regular inscribed polygon is indefinitely in-
creased, the limit of the area of the polygon is the area of thecircle. In this
case the variable is always less than its limit.

2. Similarly, the limit of the area of the circumscribed polygon is also the area
of the circle, but now the variable is always greater than itslimit.

3. Hold a penny exactly1 meter above the ground and observe its motion as
you release it. First it travels 1/2 the distance from the ground (at this stage
its distance fallen is1/2 meter), then it travels 1/2 that distance from the
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2.1. LIMIT OF A VARIABLE

ground (at this stage its distance fallen is1/2 + 1/4 meter), then it travels
1/2 that distance from the ground (at this stage its distancefallen is1/2 +
1/4 + 1/8 meter), and so on. This leads us to the series

1

2
+

1

4
=

1

8
+ · · · + 1

2k
+ · · · .

Since the penny hits the ground, this infinite sum is1. (This computational
idea goes back to the Greek scholar Archimedes, c. 287 BC c. 212BC.)

4. Consider the series

1 − 1

2
+

1

4
− 1

8
+ · · · + (

−1

2
)k + · · · . (2.1)

The sum of any even number(2n) of the first terms of this series is

S2n = 1 − 1
2

+ 1
4
− 1

8
+ · · · + 1

22n−2 − 1
22n−1

=
1

22n −1

− 1
2
−1

= 2
3
− 1

3·22n−1 ,

(2.2)

by item 6, Ch. 12,§12.1. Similarly, the sum of any odd number(2n+ 1) of
the first terms of the series is

S2n+1 = 1 − 1
2

+ 1
4
− 1

8
+ · · · − 1

22n−1 + 1
22n

=
− 1

22n+1 −1

− 1
2
−1

= 2
3

+ 1
3·22n ,

(2.3)

again by item 6, Ch. 12,§12.1.

Writing (2.2) and (2.3) in the forms

2

3
− S2n =

1

3 · 22n−1
, S2n+1 −

2

3
=

1

3 · 22n

we have

lim
n→∞

(

2

3
− S2n

)

= lim
n→∞

1

3 · 22n−1
= 0,

and

lim
n→∞

(

S2n+1 −
2

3

)

= lim
n→∞

1

3 · 22n
= 0.
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2.1. LIMIT OF A VARIABLE

Hence, by definition of the limit of a variable, it is seen thatbothS2n and
S2n+1 are variables approaching2

3
as a limit as the number of terms in-

creases without limit.

Summing up the first two, three, four, etc., terms of (2.1), the sums are found
by ((2.2) and ((2.3) to be alternately less and greater than2

3
, illustrating

the case when the variable, in this case the sum of the terms of((2.1), is
alternately less and greater than its limit.

Sage

sage: S = lambda n: add([(-1)ˆi * 2ˆ(-i) for i in range(n)])
sage: RR(S(1)); RR(S(2)); RR(S(5)); RR(S(10)); RR(S(20))
1.00000000000000
0.500000000000000
0.687500000000000
0.666015625000000
0.666666030883789

You can see from theSage example that the limit does indeed seem to
approach2/3.

In the examples shown the variable never reaches its limit. This is not by any
means always the case, for from the definition of the limit of avariable it is clear
that the essence of the definition is simply that the absolutevalue of the difference
between the variable and its limit shall ultimately become and remain less than
any positive number we may choose, however small.

Example 2.1.1.As an example illustrating the fact that the variable may reach
its limit, consider the following. Let a series of regular polygons be inscribed in
a circle, the number of sides increasing indefinitely. Choosing anyone of these,
construct. the circumscribed polygon whose sides touch the circle at the vertices
of the inscribed polygon. Letpn andPn be the perimeters of the inscribed and
circumscribed polygons ofn sides, andC the circumference of the circle, and
suppose the values of a variablex to be as follows:

Pn, pn+1, C, Pn+1, pn+2, C, Pn+2, etc.

Then, evidently,

lim
x→∞

x = C

and the limit is reached by the variable, every third value ofthe variable beingC.
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2.2. DIVISION BY ZERO EXCLUDED

2.2 Division by zero excluded
0
0

is indeterminate. For the quotient of two numbers is that number which multi-
plied by the divisor will give the dividend. But any number whatever multiplied
by zero gives zero, and the quotient is indeterminate; that is, any number whatever
may be considered as the quotient, a result which is of no value.
a
0

has no meaning,a being different from zero, for there exists no number such
that if it be multiplied by zero, the product will equala.

Therefore division by zero is not an admissible operation.
Care should be taken not to divide by zero inadvertently.The following fallacy

is an illustration. Assume that
a = b.

Then evidently
ab = a2.

Subtractingb2,
ab− b2 = a2 − b2.

Factoring,
b(a− b) = (a+ b)(a− b).

Dividing by a− b,
b = a+ b.

But a = b, thereforeb = 2b, or, 1 = 2. The result is absurd, and is caused by the
fact that we divided bya− b = 0, which is illegal.

2.3 Infinitesimals

Definition 2.3.1. A variablev whose limit is zero is called an infinitesimal1.

This is written

lim
v=0

, or, lim
v→0

,

and means that the successive absolute values ofv ultimately become and remain
less than any positive number however small. Such a variableis said to become
“arbitrarily small.”

1Hence a constant, no matter how small it may be, is not an infinitesimal.
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If lim v = l, thenlim(v − l) = 0; that is, the difference between a variable and
its limit is an infinitesimal.

Conversely, if the difference between a variable and a constant is an infinitesi-
mal, then the variable approaches the constant as a limit.

2.4 The concept of infinity (∞)

If a variablev ultimately becomes and remains greater than any assigned positive
number, however large, we sayv is “unbounded and positive ” (or “increases
without limit”), and write

lim
v=+∞

, or, lim
v→+∞

, or, v → +∞.

If a variablev ultimately becomes and remains smaller than any assigned negative
number, we say “unbounded and negative ” (or “v decreases without limit”), and
write

lim
v=−∞

, or, lim
v→−∞

, or, v → −∞.

If a variablev ultimately becomes and remains in absolute value greater than any
assigned positive number, however large, we sayv, in absolute value, “increases
without limit”, or v becomes arbitrarily large2, and write

lim
v=∞

, or, lim
v→∞

, or, v → ∞.

Infinity (∞) is not a number; it simply serves to characterize a particular mode of
variation of a variable by virtue of which it becomes arbitrarily large.

Here is aSage example illustratinglimt=∞ 1/t = limt=−∞ 1/t = 0.

Sage

sage: t = var(’t’)
sage: limit(1/t, t = Infinity)

2On account of the notation used and for the sake of uniformity, the expressionv → +∞ is
sometimes read “v approaches the limit plus infinity”. Similarly,v → −∞ is read “v approaches
the limit minus infinity”, andv → ∞ is read “v, in absolute value, approaches the limit infinity”.
While the above notation is convenient to use in this connection, the student must not forget that
infinity is not a limit in the sense in which we defined it in§2.2, for infinity is not a number at all.
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0
sage: limit(1/t, t = -Infinity)
0

2.5 Limiting value of a function

Given a functionf(x). If the independent variablex takes on any series of values
such that

limx = a,

and at the same time the dependent variablef(x) takes on a series of correspond-
ing values such that

lim f(x) = A,

then as a single statement this is written

lim
x→a

f(x) = A.

Here is an example of a limit usingSage :

Sage

sage: limit((xˆ2+1)/(2+x+3 * xˆ2),x=infinity)
1/3

This tells us thatlimx→∞
x2+1

2+x+3∗x2 = 1
3
.

2.6 Continuous and discontinuous functions

A function f(x) is said to becontinuousfor x = a if the limiting value of the
function whenx approaches the limita in any manner is the value assigned to the
function forx = a. In symbols, if

lim
x→a

f(x) = f(a),
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thenf(x) is continuous forx = a. Roughly speaking, a functiony = f(x) is
continuous if you can draw its graph by hand without lifting your pencil off the
paper. In other words, the graph of a continuous function canhave no “breaks.”

Example 2.6.1.The piecewise constant function

u(x) =

{

1, x ≥ 0,
0, x < 0,

is not continuous since its graph has a “break” atx = 0 where it “steps up” from
0 to 1. This function models “on-off” switches in electrical engineering and is
called the unit step function or the Heaviside function (after the brilliant engineer
Oliver Heaviside, 1850 1925).

The function is said to bediscontinuousfor x = a if this condition is not satis-
fied. For example, if

lim
x→a

f(x) = ∞,

the function is discontinuous forx = a.
Sage

sage: t = var(’t’)
sage: P1 = plot(1/t, (t, -5, -0.1))
sage: P2 = plot(1/t, (t, 0.1, 5))
sage: show(P1+P2, aspect_ratio=1)
sage: limit(1/t,t=0,dir="plus")
+Infinity
sage: limit(1/t,t=0,dir="minus")
-Infinity

The graph in Figure 2.1 suggests thatlimx→0+ 1/x = +∞ and limx→0− 1/x =
−∞, as the aboveSage computation confirms.

The attention of the student is now called to the following cases which occur
frequently.
CASE I. As an example illustrating a simple case of a function continuous for a
particular value of the variable, consider the function

f(x) =
x2 − 4

x− 2
.
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Figure 2.1: The limitslimx→0+ 1/x = +∞, limx→0− 1/x = −∞.

Forx = 1, f(x) = f(1) = 3. Moreover, ifx approaches the limit1 in any manner,
the functionf(x) approaches3 as a limit. Hence the function is continuous for
x = 1.

Sage

sage: x = var(’x’)
sage: limit((xˆ2-4)/(x-2), x = 1)
3
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2.6. CONTINUOUS AND DISCONTINUOUS FUNCTIONS

CASE II . The definition of a continuous function assumes that the function is
already defined forx = a. If this is not the case, however, it is sometimes possible
to assign such a value to the function forx = a that the condition of continuity
shall be satisfied. The following theorem covers these cases.

Theorem 2.6.1.If f(x) is not defined forx = a, and if

lim
x→a

f(x) = B,

thenf(x) will be continuous forx = a, if B is assumed as the value off(x) for
x = a.

Thus the function

x2 − 4

x− 2

is not defined forx = 2 (since then there would be division by zero). But for
every other value ofx,

x2 − 4

x+ 2
= x+ 2;

and
lim
x→2

(x+ 2) = 4

thereforelimx→2
x2−4
x−2

= 4. Although the function is not defined forx = 2, if we
assign it the value4 for x = 2, it then becomes continuous for this value.

Sage

sage: x = var(’x’)
sage: limit((xˆ2-4)/(x-2), x = 2)
4

A function f(x) is said to becontinuous in an intervalwhen it is continuous for
all values ofx in this interval3.

3In this book we shall deal only with functions which are in general continuous, that is, con-
tinuous for all values ofx, with the possible exception of certain isolated values, our results in
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

2.7 Continuity and discontinuity of functions illus-
trated by their graphs

1. Consider the functionx2, and let

y = x2 (2.4)

If we assume values for x and calculate the corresponding values of y, we
can plot a series of points. Drawing a smooth line free-hand through these
points: a good representation of the general behavior of thefunction may
be obtained. This picture or image of the function is called its graph. It is
evidently the locus of all points satisfying equation (2.4).

It is very easy to create the above plot inSage , as the example below
shows:

Sage

sage: P = plot(xˆ2,-2,2)
sage: show(P)

Such a series or assemblage of points is also called acurve. Evidently we
may assume values ofx so near together as to bring the values ofy (and
therefore the points of the curve) as near together as we please. In other
words, there are no breaks in the curve, and the functionx2 is continuous
for all values ofx.

2. The graph of the continuous functionsin x, plotted by drawing the locus of
y = sin x,

It is seen that no break in the curve occurs anywhere.

3. The continuous functionexp(x) = ex is of very frequent occurrence in the
Calculus. If we plot its graph from

general being understood as valid only for such values ofx for which the function in question is
actually continuous. Unless special attention is called thereto, we shall as a rule pay no attention
to the possibilities of such exceptional values ofx for which the function is discontinuous. The
definition of a continuous function f(x) is sometimes roughly (but imperfectly) summed up in the
statement that a small change inx shall produce a small change inf(x). We shall not consider
functions having an infinite number of oscillations in a limited region.
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ILLUSTRATED BY THEIR GRAPHS

Figure 2.2: The parabolay = x2.

y = ex, (e = 2.718 · · · ),
we get a smooth curve as shown.

From this it is clearly seen that,

(a) whenx = 0, limx→0 y(= limx→0 e
x) = 1;

(b) whenx > 0, y(= ex) is positive and increases as we pass towards the
right from the origin;

(c) whenx < 0, y(= ex) is still positive and decreases as we pass towards
the left from the origin.
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.3: The sine function.

4. The functionln x = loge x is closely related to the last one discussed. In
fact, if we plot its graph from

y = loge x,

it will be seen that its graph is the reflection of the graph ofy = ex about
the diagonal (thex = y line). (This is because they are “inverses” of each
other: loge (ex) = x andeloge x = x.)

Here we see the following facts pictured:

(a) Forx = 1, loge x = loge 1 = 0.

(b) Forx > 1, loge x is positive and increases asx increases.

(c) For1 > x > 0, loge x is negative and increases in absolute value as
x, that is,limx→0 log x = −∞.

(d) Forx ≤ 0, loge x is not defined; hence the entire graph lies to the right
of OY .

5. Consider the function1
x
, and set
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.4: The exponential function.

y =
1

x

If the graph of this function be plotted, it will be seen that asx approaches
the value zero from the left (negatively), the points of the curve ultimately
drop down an infinitely great distance, and asx approaches the value zero
from the right, the curve extends upward infinitely far.

The curve then does not form a continuous branch from one sideto the other
of the axis ofy, showing graphically that the function is discontinuous for
x = 0, but continuous for all other values ofx.

6. From the graph (see Figure 2.7) of

y =
2x

1 − x2
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ILLUSTRATED BY THEIR GRAPHS

Figure 2.5: The natural logarithm.

it is seen that the function2x
1−x2 is discontinuous for the two valuesx = ±1,

but continuous for all other values ofx.
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.6: The functiony = 1/x.

7. The graph of
y = tan x

shows that the functiontanx is discontinuous for infinitely many values
of the independent variablex, namely,x = nπ

2
, wheren denotes any odd

positive or negative integer.

8. The functionarctan x has infinitely many values for a given value ofx, the
graph of equation

y = arctan x

consisting of infinitely many branches.

If, however, we confine ourselves to any single branch, the function is con-
tinuous. For instance, if we say thaty shall be the smallest angle (in radians)
whose tangent isx, that is,y shall take on only values between−π

2
and π

2
,

then we are limited to the branch passing through the origin,and the condi-
tion for continuity is satisfied.
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.7: The functiony = 2x/(1 − x2).

9. Similarly,arctan 1
x
, is found to be a many-valued function. Confining our-

selves to one branch of the graph of

y = arctan
1

x
,

we see that asx approaches zero from the left,y approaches the limit−π
2
,

and asx approaches zero from the right,y approaches the limit+π
2
. Hence

the function is discontinuous whenx = 0. Its value forx = 0 can be
assigned at pleasure.

10. As was previously mentioned, apiecewise-defined functionis one which is
defined by different rules on different non-overlapping intervals. For exam-
ple,
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2.7. CONTINUITY AND DISCONTINUITY OF FUNCTIONS
ILLUSTRATED BY THEIR GRAPHS

Figure 2.8: The tangent function.

f(x) =







−1, x < −π/2,
sin(x), π/2 ≤ x ≤ π/2,
1, π/2 < x.

is a continuous piecewise-defined function.

For example,

f(x) =







−1, x < −2,
3, −2 ≤ x ≤ 3,
2, 3 < x.

is a discontinuous piecewise-defined function, with jump discontinuities at
x = −2 andx = 3.

Sage

sage: f = piecewise([[(-5,-2),-1],[(-2,3),3],[(3,5),2] ])
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.9: The arctangent (or inverse tangent) function.

sage: f
Piecewise defined function with 3 parts,

[[(-5, -2), -1], [(-2, 3), 3], [(3, 5), 2]]

Functions exist which are discontinuous for every value of the independent vari-
able within a certain range. In the ordinary applications ofthe Calculus, however,
we deal with functions which are discontinuous (if at all) only for certain iso-
lated values of the independent variable; such functions are therefore in general
continuous, and are the only ones considered in this book.

2.8 Fundamental theorems on limits

In problems involving limits the use of one or more of the following theorems is
usually implied. It is assumed that the limit of each variable exists and is finite.
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.10: The functiony = arctan(1/x).

Theorem 2.8.1.The limit of the algebraic sum of a finite number of variables is
equal to the algebraic sum of the limits of the several variables.

In particular,
lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

Theorem 2.8.2.The limit of the product of a finite number of variables is equal
to the product of the limits of the several variables.

In particular,
lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x).

Here is aSage example illustrating these facts in a special case.

Sage

sage: t = var(’t’)
sage: f = exp
sage: g = sin
sage: a = var(’a’)
sage: L1 = limit(f(t)+g(t), t = a)
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.11: A piecewise-defined function.

sage: L2 = limit(f(t),t=a)+lim(g(t), t = a)
sage: bool(L1 == L2)
True
sage: L1; L2
sin(a) + eˆa
sin(a) + eˆa
sage: L1 = limit(f(t) * g(t), t = a)
sage: L2 = limit(f(t),t=a) * lim(g(t), t = a)
sage: bool(L1 == L2)
True
sage: L1; L2
eˆa * sin(a)
eˆa * sin(a)

Theorem 2.8.3.The limit of the quotient of two variables is equal to the quotient
of the limits of the separate variables, provided the limit of the denominator is not
zero.
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

Figure 2.12: Another piecewise defined function.

In particular,

lim
x→a

[f(x)/g(x)] =
limx→a f(x)

limx→a g(x)
,

providedlimx→a g(x) 6= 0.

Before proving these theorems it is necessary to establish the following proper-
ties of infinitesimals (Definition 2.3.1).

1. The sum of a finite number of infinitesimals is an infinitesimal. To prove
this we must show that the absolute value of this sum can be made less than
any small positive quantity (asǫ) that may be assigned (§2.3). That this
is possible is evident, for, the limit of each infinitesimal being zero, each
one can be made less than, in absolute value,ǫ

n
(n being the number of

infinitesimals), and therefore the absolute value of their sum can be made
less thanǫ.

2. The product of a constantc 6= 0 and an infinitesimal is an infinitesimal. For
the absolute value of the product can always be made less thanany small
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2.8. FUNDAMENTAL THEOREMS ON LIMITS

positive quantity (asǫ) by making the absolute value of the infinitesimal less
than ǫ

|c| .

3. If v is a variable which approaches a limitL different from zero, then the
quotient of an infinitesimal byv is also an infinitesimal. For ifv → L,
andk is any number in absolute value less thanL, then, by definition of a
limit, v will ultimately become and remain in absolute value greaterthan
k. Hence the quotientǫ

v
, whereǫ is an infinitesimal, will ultimately become

and remain in absolute value less thanǫ
k
, and is therefore, by the previous

item, an infinitesimal.

4. The product of any finite number of infinitesimals is an infinitesimal. For
the absolute value of the product may be made less than any small positive
quantity that can be assigned. If the given product containsn factors, then
since each infinitesimal may be assumed less than then − th root of ǫ, the
product can be made less thanǫ itself.

Proof of Theorem 2.8.1.Let v1, v2, v3, . . . be the variables, andL1, L2, L3, . . .
their respective limits. We may then write

v1 − L1 = ǫ1, v2 − L2 = ǫ2, v3 − L3 = ǫ3,

whereǫ1, ǫ2, ǫ3, . . . are infinitesimals (i.e. variables having zero for a limit).
Adding

(v1 + v2 + v3 + . . . ) − (L1 + L2 + L3 + ...) = (ǫ1 + ǫ2 + ǫ3 + . . . ).

Since the right-hand member is an infinitesimal by item (1) above (§2.8), we have,
from the converse theorem (§2.3),

lim(v1 + v2 + v3 + . . . ) = L1 + L2 + L3 + . . . ,

or,

lim(v1 + v2 + v3 + . . . ) = lim v1 + lim v2 + lim v3 + . . . ,

which was to be proved.
Proof of Theorem 2.8.2.Let v1 andv2 be the variables,L1 andL2 their respective

limits, andǫ1 andǫ2 infinitesimals; then

v1 = L1 + ǫ1
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2.9. SPECIAL LIMITING VALUES

andv2 = L2 + ǫ2. Multiplying,

v1v2 = (L1 + ǫ1)(L2 + ǫ2)
= L1L2 + L1ǫ2 + L2ǫ1 + ǫ1ǫ2

or,

v1v2 − L1L2 = L1ǫ2 + L2ǫ1 + ǫ1ǫ2.

Since the right-hand member is an infinitesimal by items (1) and (2) above, (§2.8),
we have, as before,

lim(v1v2) = L1L2 = lim v1 · lim v2,

which was to be proved.
Proof of Theorem 2.8.3.Using the same notation as before,

v1

v2

=
L1 + ǫ1
L2 + ǫ2

=
L1

L2

+

(

L1 + ǫ1
L2 + ǫ2

− L1

L2

)

,

or,

v1

v2

− L1

L2

=
L2ǫ1 − L1ǫ2
L2(L2 + ǫ2)

.

Here again the right-hand member is an infinitesimal by item (3) above, (§2.8), if
L2 6= 0; hence

lim

(

v1

v2

)

=
L1

L2

=
lim v1

lim v2

,

which was to be proved.
It is evident that if any of the variables be replaced by constants, our reasoning

still holds, and the above theorems are true.

2.9 Special limiting values

The following examples are of special importance in the study of the Calculus. In
the following examplesa > 0 andc 6= 0.
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2.10. SHOW THATLIMX→0
SIN X
X

= 1

Eqn number Written in the form of limits Abbreviated form often used
(1) limx→0

c
x

= ∞ c
0

= ∞

(2) limx→∞ cx = ∞ c · ∞ = ∞

(3) limx→∞
x
c

= ∞ ∞
c

= ∞

(4) limx→∞
c
x

= 0 c
∞ = 0

(5) limx→−∞ ax,= +∞ , whena < 1 a−∞ = +∞

(6) limx→+∞ ax = 0, whena < 1 a+∞ = 0

(7) limx→−∞ ax = 0, whena > 1 a−∞ = 0

(8) limx→+∞ ax = +∞, whena > 1 a+∞ = +∞

(9) limx→0 loga x = +∞, whena < 1 loga 0 = +∞

(10) limx→+∞ loga x = −∞, whena < 1 loga(+∞) = −∞

(11) limx→0 loga x = −∞, whena > 1 loga 0 = −∞

(12) limx→+∞ loga x = +∞, whena > 1 loga(+∞) = +∞

The expressions in the last column are not to be considered asexpressing nu-
merical equalities (∞ not being a number); they are merely symbolical equations
implying the relations indicated in the first column, and should be so understood.

2.10 Show thatlimx→0
sin x
x = 1

To motivate the limit computation of this section, usingSage we compute a
number of values of the functionsin x

x
, asx gets closer and closer to0:

x 0.5000 0.2500 0.1250 0.06250 0.03125
sin(x)
x

0.9589 0.9896 0.9974 0.9994 0.9998
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2.10. SHOW THATLIMX→0
SIN X
X

= 1

Indeed, if we refer to the table in§12.4, it will be seen that for all angles less
than10o the angle in radians and the sine of that angle are equal to three deci-
mal places. To compute the table of values above usingSage , simply use the
following commands.

Sage

sage: f = lambda x: sin(x)/x
sage: R = RealField(15)
sage: L = [1/2ˆi for i in range(1,6)]; L
[1/2, 1/4, 1/8, 1/16, 1/32]
sage: [R(x) for x in L]
[0.5000, 0.2500, 0.1250, 0.06250, 0.03125]
sage: [R(f(x)) for x in L]
[0.9589, 0.9896, 0.9974, 0.9994, 0.9998]

From this we may well suspect thatlimx→0
sin x
x

= 1.
LetO be the center of a circle whose radius is unity.
Let arc AM = arc AM ′ = x, and letMT andM ′T be tangents drawn to the

circle atM andM ′ (see Figure 2.13).
Using the geometry in Figure 2.13), we find that

MPM ′ < MAM ′ < MTM ′;

or 2 sin x < 2x < 2 tan x. Dividing through by2 sin x, we get

1 <
x

sin x
<

1

cos x
.

If now x approaches the limit zero,

lim
x→0

x

sin x

must lie between the constant1 and limx→0
1

cos x
, which is also1. Therefore

limx→0
x

sin x
= 1, or, limx→0

sin x
x

= 1 Theorem 2.8.3.
It is interesting to note the behavior of this function from its graph, the locus of

equation

y =
sin x

x
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2.11. THE NUMBERE

Figure 2.13: Comparingx andsin(x) on the unit circle.

Although the function is not defined forx = 0, yet it is not discontinuous when
x = 0 if we definesin 0

0
= 1 (see Case II in§2.6).

Finally, we show how to use theSage commandlimit to compute the limit
above.

Sage

sage: limit(sin(x)/x,x=0)
1

2.11 The numbere

One of the most important limits in the Calculus is

lim
x→0

(1 + x)
1
x = 2.71828 · · · = e
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2.11. THE NUMBERE

Figure 2.14: The functionsin(x)
x

.

To prove rigorously that such a limite exists, is beyond the scope of this book.
For the present we shall content ourselves by plotting the locus of the equation

y = (1 + x)
1
x

and show graphically that, asx=̇0, the function(1 + x)
1
x (= y) takes on values in

the near neighborhood of2.718 . . . , and thereforee = 2.718 . . . , approximately.

x -.1 -.001 .001 .01 .1 1 5 10
y = (1 + x)1/x 2.8680 2.7195 2.7169 2.7048 2.5937 2.0000 1.4310 1.0096

As x → 0− from the left,y decreases and approachese as a limit. Asx → 0+
from the right,y increases and also approachese as a limit.

As x → ∞, y approaches the limit1; and asx → −1+ from the right,y
increases without limit.

Natural logarithms are those which have the numbere for base. These loga-
rithms play a very important rle in mathematics. When the baseis not indicated
explicitly, the basee is always understood in what follows in this book. Thus
loge v is written simplylog v or ln v.

Natural logarithms possess the following characteristic property: If x → 0 in
any way whatever,
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2.12. EXPRESSIONS ASSUMING THE FORM∞∞

Figure 2.15: The function(1 + x)1/x.

lim
log(1 + x)

x
= lim log(1 + x)

1
x = log e = ln e = 1.

2.12 Expressions assuming the form∞∞
As ∞ is not a number, the expression∞ ÷ ∞ is indeterminate. To evaluate
a fraction assuming this form, the numerator and denominator being algebraic
functions, we shall find useful the following
RULE. Divide both numerator and denominator by the highest power of the vari-
able occurring in either. Then substitute the value of the variable.

Example 2.12.1.Evaluate
Solution. Substituting directly, we get

lim
x→∞

2x3 − 3x2 + 4

5x− x2 − 7x3
=

∞
∞

which is indeterminate. Hence, following the above rule, wedivide both numera-
tor and denominator byx3, Then
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lim
x→∞

2x3 − 3x2 + 4

5x− x2 − 7x3
= lim

x→∞

2 − 3
x

+ 4
x3

5
x2 − 1

x
− 7

= −2

7
.

2.13 Exercises

Prove the following:

1. limx→∞
(

x+1
x

)

= 1.

Solution:

limx→∞
(

x+1
x

)

= limx→∞
(

1 + 1
x

)

= limx→∞(1) + limx→ ∞
(

1
x

)

= 1 + 0 = 1,

by Theorem 2.8.1

2. limx→∞

(

x2+2x
5−3x2

)

= −1
3
.

Solution:

lim
x→∞

(

x2 + 2x

5 − 3x2

)

= lim
x→∞

(

1 + 2
x

5
x2 − 3

)

[ Dividing both numerator and denominator byx2.]

=
limx→∞

(

1 + 2
x

)

limx→∞
(

5
x2 − 3

)

by Theorem 2.8.3

=
limx→∞(1) + limx→∞

(

2
x

)

limx→∞
(

5
x2

)

− limx→∞(3)
=

1 + 0

0 − 3
= −1

3
,

by Theorem 2.8.1.

3. limx→1
x2−2x+5
x2+7

= 1
2
.

4. limx→0
3x3+6x2

2x4−15x2 = −2
5
.
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5. limx→−2
x2+1
x+3

= 5.

6. limh→0(3ax
2 − 2hx+ 5h2) = 3ax2.

7. limx→∞(ax2 + bx+ c) = ∞.

8. limk→0
(x−k)2−2kx3

x(x+k)
= 1.

9. limx→∞
x2+1

3x2+2x−1
= 1

3
.

10. limx→∞
3+2x
x2−5x

= 0.

11. limα→π
2

cos(α−a)
cos(2α−a) = − tanα.

12. limx→∞
ax2+bx+c
dx2+ex+f

= a
d
.

13. limz→0
a
2
(e

z
a + e−

z
a ) = a.

14. limx→0
2x3+3x2

x3 = ∞.

15. limx→∞
5x2−2x

x
= ∞.

16. limy→∞
y
y+1

= 1.

17. limn→∞
n(n+1)

(n+2)(n+3)
= 1.

18. lims→1
s3−1
s−1

= 3.

19. limh→0
(x+h)n−xn

h
= nxn−1.

20. limh=0

[

cos(θ + h) sinh
h

]

= cos θ.

21. limx→∞
4x2−x
4−3x2 = −4

3
.

22. limθ→0
1−cos θ
θ2

= 1
2
.

Here is an example of the above limit usingSage :
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Sage

sage: theta = var("theta")
sage: limit((1 - cos(theta))/(thetaˆ2),theta=0)
1/2

This implies that, for small values ofθ, cos(θ) ∼= 1 − 1
2
θ2. (This is an

approximation accurate to several decimal places for|θ| < 1/4.)

23. limx→a
1

x−a = −∞, if x is increasing as it approaches the valuea.

24. limx→a
1

x−a = +∞, if x is decreasing as it approaches the valuea.
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CHAPTER

THREE

Differentiation

3.1 Introduction

In this chapter, we investigate the ways in which a function can change in value
as the independent variable changes. For instance, iff(t) is a function oft (time),
we want to quantify what it means to talk about the “rate of change” of f(t).
A fundamental problem of differential calculus is to establish a mathematically
precise measure of this change in the function.

It was while investigating problems of this sort that Newton1 was led to the
discovery of the fundamental principles of calculus. Today, Gottfried Leibniz
(1646-1716) is generally credited with independently discovering calculus around
the same time2.

1Sir Isaac Newton (1642-1727), an Englishman, was a man of themost extraordinary genius.
He developed the science of calculus under the name of “Fluxions.” Although Newton had discov-
ered and made use of the new theory as early as 1670, his first published work in which it occurs is
dated 1687, having the titlePhilosophiae Naturalis Principia Mathematica. This was Newton’s
principal work. Laplace said of it, “It will always remain preeminent above all other productions
of the human mind.” See frontispiece.

2However, seehttp://en.wikipedia.org/wiki/Newton v. Leibniz calculus controversy
and the footnote in§3.9 below.
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3.2. INCREMENTS

3.2 Increments

The incrementof a variable in changing from one numerical value to anotheris
the difference found by subtracting the first value from the second. An increment
of x is denoted by the symbol∆x, read “deltax” and typically to be regarded as “a
small change inx.” (The student is warned against reading this symbol as “delta
timesx.”) Evidently this increment may be either positive or negative. according
as the variable in changing is increasing or decreasing in value. Similarly,

• ∆y denotes an increment ofy,

• ∆φ denotes an increment ofφ,

• ∆f(x) denotes an incrementf(x), etc.

If in y = f(x) the independent variablex, takes on an increment∆x, then∆y
is always understood to denote the For example, if∆x = x1 − x0 then

∆y = y1 − y0 = f(x1) − f(x0) = f(x0 + ∆) − f(x0).

Example 3.2.1.For instance, consider the function

y = x2.

Assumingx = 10 for the initial value ofx fixesy = 100 as the initial value ofy.
Supposex increases tox = 12, that is,∆x = 2; theny increases toy = 144, and
∆y = 44. Supposex decreases tox = 9, that is,∆x = −1; theny increases to
y = 81, and∆y = −19.

Sage

sage: x = var("x")
sage: f(x) = xˆ2; y = f(x)
sage: Deltax = 2; x0 = 10
sage: Deltay = f(x0 + Deltax) - f(x0)
sage: Deltay
44
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3.3. COMPARISON OF INCREMENTS

3.3 Comparison of increments

Consider the function

y = x2.

Assuming a fixed initial value forx, let x take on an increment∆x. Theny will
take on a corresponding increment∆y, and we have

y + ∆y = (x+ ∆x)2,

or,

y + ∆y = x2 + 2x · ∆x+ (∆x)2.

Subtractingy = x2 from this,

∆y = 2x · ∆x+ (∆x)2, (3.1)

we get the increment∆y in terms ofx and∆x. To find the ratio of the increments,
divide (3.1) by∆x, giving

∆y

∆x
= 2x+ ∆x.

If the initial value ofx is 4, it is evident that

lim
∆x→0

∆y

∆x
= 8.

Let us carefully note the behavior of the ratio of the increments ofx andy as the
increment ofx diminishes.

Initial New Increment Initial New Increment
value ofx value ofx ∆x value ofy value ofy ∆ y ∆y

∆x

4 5.0 1.0 16 25. 9. 9.
4 4.8 0.8 16 23.04 7.04 8.8
4 4.6 0.6 16 21.16 5.16 8.6
4 4.4 0.4 16 19.36 3.36 8.4
4 4.2 0.2 16 17.64 1.64 8.2
4 4.1 0.1 16 16.81 0.81 8.1
4 4.01 0.01 16 16.0801 0.0801 8.01
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It is apparent that as∆x decreases,∆ y also diminishes, but their ratio takes on
the successive values9, 8.8, 8.6, 8.4, 8.2, 8.1, 8.01; illustrating the fact that∆y

∆x

can be brought as near to8 in value as we please by making∆x small enough.
Therefore3,

lim
∆x→0

∆y

∆x
= 8.

3.4 Derivative of a function of one variable

The fundamental definition of the Differential Calculus is:

Definition 3.4.1. Thederivative4 of a function is the limit of the ratio of the incre-
ment of the function to the increment of the independent variable, when the latter
increment varies and approaches the limit zero.

When the limit of this ratio exists, the function is said to bedifferentiable, or to
possess a derivative.

The above definition may be given in a more compact form symbolically as
follows: Given the function

y = f(x), (3.2)

and considerx to have a fixed value. Letx take on an increment∆x; then the
functiony takes on an increment∆ y, the new value of the function being

y + ∆ y = f(x+ ∆x). (3.3)

To find the increment of the function, subtract (3.2) from (3.3), giving

∆ y = f(x+ ∆x) − f(x).

Dividing by the increment of the variable,∆x, we get

∆y

∆x
=
f(x+ ∆x) − f(x)

∆x
. (3.4)

3The student should guard against the common error of concluding that because the numerator
and denominator of a fraction are each approaching zero as a limit, the limit of the value of the
fraction (or ratio) is zero. The limit of the ratio may take onany numerical value. In the above
example the limit is8.

4Also called the differential coefficient or the derived function.
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3.5. SYMBOLS FOR DERIVATIVES

The limit of this ratio when∆x approaches the limit zero is, from our definition,
the derivative and is denoted by the symboldy

dx
. Therefore

dy

dx
= lim

∆x→0

f(x+ ∆x) − f(x)

∆x
.

defines thederivative ofy [or f(x)] with respect tox. From (3.3), we also get

dy

dx
= lim

∆x→0

∆y

∆x

The process of finding the derivative of a function is calleddifferentiation.
It should be carefully noted that the derivative is the limitof the ratio, not the ra-

tio of the limits. The latter ratio would assume the form0
0
, which is indeterminate

(§2.2).

3.5 Symbols for derivatives

Since∆ y and∆x are always finite and have definite values, the expression

∆y

∆x

is really a fraction. The symbol

dy

dx
,

however, is to be regarded not as a fraction but as the limiting value of a fraction.
In many cases it will be seen that this symbol does possess fractional properties,
and later on we shall show how meanings may be attached tody anddx, but for
the present the symboldy

dx
is to be considered as a whole.

Since the derivative of a function ofx is in general also a function ofx, the
symbolf ′(x) is also used to denote the derivative off(x).

Hence, ify = f(x), we may writedy
dx

= f ′(x), which is read “the derivative of
y with respect tox equalsf prime ofx.” The symbol

d

dx

when considered by itself is called thedifferentiating operator, and indicates that
any function written after it is to be differentiated with respect tox. Thus
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3.6. DIFFERENTIABLE FUNCTIONS

• dy
dx

or d
dx
y indicates the derivative ofy with respect tox;

• d
dx
f(x) indicates the derivative off(x) with respect tox;

• d
dx

(2x2 + 5) indicates the derivative of2x2 + 5 with respect tox;

• y′ is an abbreviated form ofdy
dx

.

The symbolDx is used by some writers instead ofd
dx

. If then

y = f(x),

we may write the identities

y′ =
dy

dx
=

d

dx
y = Dxf(x) = f ′(x).

3.6 Differentiable functions

From the theory of limits (Chapter 2), it is clear that if the derivative of a function
exists for a certain value of the independent variable, the function itself must be
continuous for that value of the variable.

However, the converse is not always true. Functions have been constructed that
are continuous and yet possess no derivative. But in this bookwe only consider
functionsf(x) that possess a derivative for all values of the independent variable,
save at most for some isolated (discrete) values ofx.

3.7 General rule for differentiation

From the definition of a derivative it is seen that the processof differentiating a
functiony = f(x) consists in taking the following distinct steps:

General rule for differentiating 5:

• FIRST STEP. In the function replacex by x + ∆x, giving a new value of
the function,y + ∆ y.

• SECOND STEP. Subtract the given value of the function from thenew value
in order to find∆ y (the increment of the function).

5Also called the Four-step Rule.
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3.7. GENERAL RULE FOR DIFFERENTIATION

• THIRD STEP. Divide the remainder∆ y (the increment of the function) by
∆x (the increment of the independent variable).

• FOURTH STEP. Find the limit of this quotient, when∆x (the increment of
the independent variable) varies and approaches the limit zero. This is the
derivative required.

The student should become thoroughly familiar with this rule by applying the
process to a large number of examples. Three such examples will now be worked
out in detail.

Example 3.7.1.Differentiate3x2 + 5.
Solution. Applying the successive steps in the General Rule,we get, after plac-

ing

y = 3x2 + 5,

First step.

y + ∆ y = 3(x+ ∆x)2 + 5 = 3x2 + 6x · ∆x+ 3(∆x)2 + 5.

Second step.
y + ∆ y = 3x2 + 6x · ∆x+ 3(∆x)2 + 5
y = 3x2 + 5
∆ y = 6x · ∆x+ 3(∆x)2.

Third step.∆y
∆x

= 6x+ 3 · ∆x.
Fourth step.dy

dx
= 6x. We may also write this

d

dx
(3x2 + 5) = 6x.

Here’s how to useSage to verify this (for simplicity, we seth = ∆x):

Sage

sage: x = var("x")
sage: h = var("h")
sage: f(x) = 3 * xˆ2 + 5
sage: Deltay = f(x+h)-f(x)
sage: (Deltay/h).expand()
6* x + 3 * h
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3.7. GENERAL RULE FOR DIFFERENTIATION

sage: limit((f(x+h)-f(x))/h,h=0)
6* x
sage: diff(f(x),x)
6* x

Example 3.7.2.Differentiatex3 − 2x+ 7.
Solution. Placey = x3 − 2x+ 7.

First step.

y + ∆y = (x+ ∆x)3 − 2(x+ ∆x) + 7
= x3 + 3x2 · ∆x+ 3x · (∆x)2 + (∆x)3 − 2x− 2 · ∆x+ 7

Second step.

y + ∆y = x3 + 3x2 · ∆x+ 3x · (∆x)2 + (∆x)3 − 2x− 2 · ∆x+ 7
y = x3 − 2x+ 7
∆y = 3x2 · ∆x+ 3x · (∆x)2 + (∆x)3 − 2 · ∆x

Third step.∆y
∆x

= 3x2 + 3x · ∆x+ (∆x)2 − 2.
Fourth step.dy

dx
= 3x2 − 2. Or,

d

dx
(x3 − 2x+ 7) = 3x2 − 2.

Example 3.7.3.Differentiate c
x2 .

Solution. Placey = c
x2 .

First step.y + ∆y = c
(x+∆x)2

.
Second step.

y + ∆y = c
(x+∆x)2

y = c
x2

∆y = c
(x+∆x)2

− c
x2 = −c·∆x(2x+∆x)

x2(x+∆x)2
.

Third step.∆y
∆x

= −c · 2x+∆x
x2(x+∆x)2

.

Fourth step.dy
dx

= −c · 2x
x2(x)2

= − 2c
x3 . Or, d

dx

(

c
x2

)

= −2c
x3 .
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3.7. GENERAL RULE FOR DIFFERENTIATION

Example 3.7.4.(“Cubic splines”) Differentiatef(x), where

f(x) =

{

−2x3 + 3x2, 0 < x < 1,
0, x ≤ 0 or x ≥ 1.

(The polynomial−2x3 + 3x2 smoothly connects the liney = 0 for x < 0 to the
line y = 1 for x > 1. Such “cubic splines” are used in industry to design roads,
buildings, car bodies, ship hulls, and so on.)

The function is given in parts, so the problem must be solved case-by-case. First,
assume0 < x < 1.

0 < x < 1: In this case, the derivative can be computed ass in the examples
above to show

f ′(x) = −6x2 + 6x, 0 < x < 1.

This is not the final answer though! You must also deal with thecasesx > 1,
x < 0 andx = 0, 1 (as limits).
x > 1 or x < 0: Heref ′(x) = 0.
x = 0: Note that for “small”h (by which we really mean|h| < 1),

f(0 + h) − f(0)

h
=

{

−2h2 + 3h, 0 < h < 1,
0, h ≤ 0.

Taking the limit ash→ 0 gives

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= 0.

Is f ′(x) continuous atx = 0? Note

lim
x→0−

f ′(x) = 0

and

lim
x→0+

f ′(x) = lim
x→0+

−6x2 + 6x = 0.

Therefore, the slope of the graphy = f(x) is zero as you approach0 form the left
or from the right. This tells usf ′(x) is continuously differentiable at both ends.
x = 1: This is similar to the casex = 0 and left to the reader.
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3.8 Exercises

Use the General Rule,§3.7 in differentiating the following functions:

1. y = 3x2

Ans: dy
dx

= 6x

2. y = x2 + 2

Ans: dy
dx

= 2x

3. y = 5 − 4x

Ans: dy
dx

= −4

4. s = 2t2 − 4

Ans: ds
dt

= 4t

5. y = 1
x

Ans:dy
dx

= − 1
x2

6. y = x+2
x

Ans: dy
dx

= −−2
x2

7. y = x3

Ans: dy
dx

= 3x2

8. y = 2x2 − 3

Ans: dy
dx

= 4x

9. y = 1 − 2x3

Ans: dy
dx

= −6x2

10. ρ = aθ2

Ans: dρ
dθ

= 2aθ

11. y = 2
x2

Ans: dy
dx

= − 4
x3
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3.8. EXERCISES

12. y = 3
x2−1

Ans: dy
dx

= − 6x
(x2−1)2

Here’s how to useSage to verify this:

Sage

sage: y = 3/(xˆ2-1)
sage: diff(y,x)
-6 * x/(xˆ4 - 2 * xˆ2 + 1)

13. y = 7x2 + x

14. s = at2 − 2bt

15. r = 8t+ 3t2

16. y = 3
x2

17. s = − a
2t+3

18. y = bx3 − cx

19. ρ = 3θ3 − 2θ2

20. y = 3
4
x2 − 1

2
x

21. y = x2−5
x

22. ρ = θ2

1+θ

23. y = 1
2
x2 + 2x

24. z = 4x− 3x2

25. ρ = 3θ + θ2

26. y = ax+b
x2

27. z = x3+2
x
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28. y = x2 − 3x+ 6

Ans: y′ = 2x− 3

29. s = 2t2 + 5t− 8

Ans: s′ = 4t+ 5 Here’s how to useSage to verify this (for simplicity, we
seth = ∆t):

Sage

sage: h = var("h")
sage: t = var("t")
sage: s(t) = 2 * tˆ2 + 5 * t - 8
sage: Deltas = s(t+h)-s(t)
sage: (Deltas/h).expand()
4* t + 2 * h + 5
sage: limit((s(t+h)-s(t))/h,h=0)
4* t + 5
sage: diff(s(t),t)
4* t + 5

30. ρ = 5θ3 − 2θ + 6

Ans: ρ′ = 15θ2 − 2

31. y = ax2 + bx+ c

Ans: y′ = 2ax+ b

3.9 Applications of the derivative to geometry

We consider a theorem which is fundamental in all differential calculus to geom-
etry.

Let

y = f(x) (3.5)

be the equation of a curveAB.
Now differentiate (3.5) by the General Rule and interpret each step geometri-

cally.
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3.9. APPLICATIONS OF THE DERIVATIVE TO GEOMETRY

Figure 3.1: The geometry of derivatives.

• FIRST STEP.y + ∆y = f(x+ ∆x) = NQ

• SECOND STEP.

y + ∆y = f(x+ ∆x) = NQ
y = f(x) = MP = NR
∆y = f(x+ ∆x) − f(x) = RQ.

• THIRD STEP.
∆y
∆x

= f(x+∆x)−f(x)
∆x

= RQ
MN

= RQ
PR

= tanRPQ = tanφ
= slope of secant line PQ.

• FOURTH STEP.

lim∆x→0
∆y
∆x

= lim∆x→0
f(x+∆x)−f(x)

∆x

= dy
dx

= value of the derivative at P.
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3.9. APPLICATIONS OF THE DERIVATIVE TO GEOMETRY

But when we let∆x → 0, the pointQ will move along the curve and approach
nearer and nearer toP , the secant will turn aboutP and approach the tangent as a
limiting position, and we have also

lim∆x→0
∆y
∆x

= lim∆x→0 tanφ = tan τ
= slope of the tangent at P.

Hence ,dy
dx

= slope of the tangent linePT . Therefore

Theorem 3.9.1.The value of the derivative at any point of a curve is equal to the
slope of the line drawn tangent to the curve at that point.

It was this tangent problem that led Leibnitz6 to the discovery of the Differential
Calculus.

Example 3.9.1.Find the slopes of the tangents to the parabolay = x2 at the
vertex, and at the point wherex = 1

2
.

Solution. Differentiating by General Rule, (§3.7), we get

y′ =
dy

dx
= 2x = slope of tangent line at any point on curve.

To find slope of tangent at vertex, substitutex = 0 in y′ = 2x, giving

dy

dx
= 0.

Therefore the tangent at vertex has the slope zero; that is, it is parallel to the axis
of x and in this case coincides with it.

To find slope of tangent at the pointP , wherex = 1
2
, substitute iny′ = 2x,

giving

dy

dx
= 1;

that is, the tangent at the pointP makes an angle of45o with the axis ofx.

6Gottfried Wilhelm Leibnitz (1646-1716) was a native of Leipzig. His remarkable abilities
were shown by original investigations in several branches of learning. He was first to publish his
discoveries in Calculus in a short essay appearing in the periodical Acta Eruditorum at Leipzig
in 1684. It is known, however, that manuscripts on Fluxions written by Newton were already in
existence, and from these some claim Leibnitz got the new ideas. The decision of modern times
seems to be that both Newton and Leibnitz invented the Calculus independently of each other. The
notation used today was introduced by Leibnitz. See frontispiece.
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Figure 3.2: The geometry of the derivative ofy = x2.

3.10 Exercises

Find by differentiation the slopes of the tangents to the following curves at the
points indicated. Verify each result by drawing the curve and its tangent.

1. y = x2 − 4, wherex = 2. (Ans.4.)

2. y = 6 − 3x2 wherex = 1. (Ans.−6.)

3. y = x3, wherex = −1. (Ans.−3.)

4. y = 2
x
, wherex = −1. (Ans.−1

2
.)

55



3.10. EXERCISES

5. y = x− x2, wherex = 0. (Ans.1.)

6. y = 1
x−1

, wherex = 3. (Ans.−1
4
.)

7. y = 1
2
x2, wherex = 4. (Ans.4.)

8. y = x2 − 2x+ 3, wherex = 1. (Ans.0.)

9. y = 9 − x2, wherex = −3. (Ans.6.)

10. Find the slope of the tangent to the curvey = 2x3 − 6x+ 5, (a) at the point
wherex = 1; (b) at the point wherex = 0.

(Ans. (a)0; (b)−6.)

11. (a) Find the slopes of the tangents to the two curvesy = 3x2 − 1 and
y = 2x2 + 3 at their points of intersection. (b) At what angle do they
intersect?

(Ans. (a)±12, ±8; (b) arctan 4
97

.)

Here’s how to useSage to verify these:

Sage

sage: solve(3 * xˆ2 - 1 == 2 * xˆ2 + 3,x)
[x == -2, x == 2]
sage: g(x) = diff(3 * xˆ2 - 1,x)
sage: h(x) = diff(2 * xˆ2 + 3,x)
sage: g(2); g(-2)
12
-12
sage: h(2); h(-2)
8
-8
sage: atan(12)-atan(8)
atan(12) - atan(8)
sage: atan(12.0)-atan(8.0)
0.0412137626583202
sage: RR(atan(4/97))
0.0412137626583202
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12. The curves on a railway track are often made parabolic in form. Suppose
that a track has the form of the parabolay = x2 (see Figure 3.2 in§3.9),
the directions of the positivex-axis and positivey-axis being east and north
respectively, and the unit of measurement1 mile. If the train is going east
when passing through the origin, in what direction will it begoing

(a) when1
2

mi. east of they-axis?
(Ans. Northeast.)

(b) when1
2

mi. west of they-axis?
(Ans. Southeast.)

(c) when
√

3
2

mi. east of they-axis?
(Ans. N.30oE.)

(d) when 1
12

mi. north of thex-axis?
(Ans. E.30oS., or E.30oN.)

13. A street-car track has the form of the cubicy = x3. Assume the same
directions and unit as in the last example. If a car is going west when passing
through the origin, in what direction will it be going

(a) when 1√
3

mi. east of they-axis? (Ans. Southwest.)

(b) when 1√
3

mi. west of they-axis? (Ans. Southwest.)

(c) when1
2

mi. north of thex-axis? (Ans. S.27o 43′ W.)

(d) when2 mi. south of thex-axis?

(e) when equidistant from thex-axis and they-axis?
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CHAPTER

FOUR

Rules for differentiating standard elementary forms

4.1 Importance of General Rule

The General Rule for Differentiation, given in§3.7 of the last chapter, is funda-
mental, being a step-by-step procedural implementation ofthe very definition of
a derivative. It should be stressed that the student should be thoroughly familiar
with this procedure. However, the process of applying the rule to examples in gen-
eral is often either too tedious or too difficult. Consequently, special rules have
been derived from the General Rule for differentiating certain standard forms of
frequently occurring expressionss in order to facilitate process.

It’s convenient to express these special rules by means of formulas, a list of
which follows. The student should not only memorize each formula when de-
duced, but should be able to state the corresponding rule in words. (The extra
time it takes you to memorize the formulas will probably be repaid in the time
saved doing homework and exam problems correctly.) In theseformulasu, v, and
w denote differentiable functions ofx.

Formulas for differentiation

dc

dx
= 0 (4.1)

dx

dx
= 1 (4.2)
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4.1. IMPORTANCE OF GENERAL RULE

d

dx
(u+ v − w) =

du

dx
+

dv

dx
− dw

dx
(4.3)

d

dx
(cv) = c

dv

dx
(4.4)

Product rule:
d

dx
(uv) = u

dv

dx
+ v

du

dx
(4.5)

Power rule:
d

dx
(vn) = nvn−1 dv

dx
(4.6)

d

dx
(xn) = nxn−1 (4.7)

Quotient rule:
d

dx

(u

v

)

=
v du
dx

− u dv
dx

v2
(4.8)

d

dx

(u

c

)

=
du
dx

c
(4.9)

d

dx
(loga v) = loga e ·

dv
dx

v
(4.10)

d

dx
(ln v) =

dv
dx

v
(4.11)

Note: Often loge, e = 2.71828... the base of the natural log, is denotedln (or
sometimes justlog).

d

dx
(av) = av ln a · dv

dx
(4.12)

d

dx
(ev) = ev

dv

dx
(4.13)
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4.1. IMPORTANCE OF GENERAL RULE

d

dx
(uv) = vuv−1du

dx
+ log u · uv dv

dx
(4.14)

d

dx
(sin v) = cos v

dv

dx
(4.15)

d

dx
(cos v) = − sin v

dv

dx
(4.16)

d

dx
(cos v) = − sin v

dv

dx
(4.17)

d

dx
(cot x) = − csc2 v

dv

dx
(4.18)

d

dx
(sec v) = sec v tan v

dv

dx
(4.19)

d

dx
(csc v) = − csc v cot v

dv

dx
(4.20)

d

dx
(arcsin v) =

dv
dx√

1 − v2
(4.21)

d

dx
(arccos v) = −

dv
dx√

1 − v2
(4.22)

d

dx
(arctan v) =

dv
dx

1 + v2
(4.23)

d

dx
(arccot v) = −

dv
dx

1 + v2
(4.24)

Note: Sometimesarcsin, arccos, and so on, are denotedasin, acos, and so on.

d

dx
(arcsec v) =

dv
dx

v
√
v2 − 1

(4.25)

d

dx
(arccsc v) = −

dv
dx

v
√
v2 − 1

(4.26)
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4.1. IMPORTANCE OF GENERAL RULE

Chain rule:
dy

dx
=
dy

dv
· dv
dx
, (4.27)

wherey is a function ofv, v a function ofx.

dy

dx
=

1
dx
dy

, (4.28)

wherey is a function ofx.
Here’s how to see some of these usingSage :

Sage

sage: t = var("t")
sage: diff(acos(t),t)
-1/sqrt(1 - tˆ2)
sage: v = var("v")
sage: diff(acsc(v),v)
-1/(sqrt(1 - 1/vˆ2) * vˆ2)
sage: x = var("x")
sage: u = function("u",x)
sage: v = function("v",x)
sage: diff(u(x) * v(x),x)
u(x) * diff(v(x), x, 1) + v(x) * diff(u(x), x, 1)

These tell us thatd arccos t
dt

= − 1√
1−t2 and darccsc v

dv
= − 1

v
√
v2−1

.
Here are some more examples usingSage :

Sage

sage: x = var("x")
sage: u = function(’u’, x)
sage: v = function(’v’, x)
sage: diff(u/v,x)
diff(u(x), x, 1)/v(x) - u(x) * diff(v(x), x, 1)/v(x)ˆ2
sage: diff(sin(v),x)
cos(v(x)) * diff(v(x), x, 1)
sage: diff(arcsin(v),x)
diff(v(x), x, 1)/sqrt(1 - v(x)ˆ2)
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4.2. DIFFERENTIATION OF A CONSTANT

The lastSage computation verifies thatd
dx

(arcsin v) =
dv
dx√
1−v2 .

4.2 Differentiation of a constant

The simplest type of function is one that is known to have the same value for all
values of the independent variable, i.e., a constant function. Let

y = c

denote a constant function. Asx takes on an increment∆x, the function does not
change in value, that is,∆y = 0, and so

∆y

∆x
= 0.

But

lim
∆x→0

(

∆y

∆x

)

=
dy

dx
= 0.

Therefore,dc
dx

= 0 (equation (4.1) above).The derivative of a constant is zero.

4.3 Differentiation of a variable with respect to itself

Let y = x.
Following the General Rule,§3.7, we have

• FIRST STEP.y + ∆y = x+ ∆x.

• SECOND STEP.∆y = ∆x

• THIRD STEP.∆y
∆x

= 1.

• FOURTH STEP.dy
dx

= 1.

Therefore,dy
dx

= 1 (equation (4.2) above). The derivative of a variable with respect
to itself is unity.
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4.4 Differentiation of a sum

Let y = u+ v − w. By the General Rule,

• FIRST STEP.y + ∆y = u+ ∆u+ v + ∆v − w − ∆w.

• SECOND STEP.∆y = ∆u+ ∆v − ∆w.

• THIRD STEP.∆y
∆x

= ∆u
∆x

+ ∆v
∆x

− ∆w
∆x

.

• FOURTH STEP.dy
dx

= du
dx

+ dv
dx

− dw
dx

. [Applying Theorem 2.8.1]

Therefore, d
dx

(u + v − w) = du
dx

+ dv
dx

− dw
dx

(equation (4.3) above). Similarly, for
the algebraic sum of any finite number of functions.

The derivative of the algebraic sum of a finite number of functions is equal to
the same algebraic sum of their derivatives.

4.5 Differentiation of the product of a constant and
a function

Let y = cv. By the General Rule,

• FIRST STEP.y + ∆y = c(v + ∆v) = cv + c∆v.

• SECOND STEP.∆y = c · ∆v.

• THIRD STEP.∆y
∆x

= c∆v
∆x

.

• FOURTH STEP.dy
dx

= c dv
dx

. [Applying Theorem 2.8.2]

Therefore, d
dx

(cv) = c dv
dx

(equation (4.4) above).
The derivative of the product of a constant and a function is equal to the product

of the constant and the derivative of the function.
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4.6 Differentiation of the product of two functions

Let y = uv. By the General Rule,

• FIRST STEP.y + ∆y = (u+ ∆u)(v + ∆v). Multiplying out this becomes

y + ∆y = uv + u · ∆v + v · ∆u+ ∆u · ∆v.

• SECOND STEP.∆y = u · ∆v + v · ∆u+ ∆u · ∆v.

• THIRD STEP.∆y
∆x

= u∆v
∆x

+ v∆u
∆x

+ ∆u∆v
∆x

.

• FOURTH STEP.dy
dx

= u dv
dx

+ v du
dx

. [Applying Theorem 2.8.1], since when
∆x→ 0, ∆u→ 0, and

(

∆u∆v
∆x

)

→ 0.]

Therefore, d
dx

(uv) = u dv
dx

+ v du
dx

(equation (4.5) above).
Product rule: The derivative of the product of two functions is equal to the first

function times the derivative of the second, plus the secondfunction times the
derivative of the first.

Here’s how to useSage to verify this rule in a special case:

Sage

sage: t = var("t")
sage: f = cos(t)
sage: g = exp(2 * t)
sage: diff(f * g,t)
2* eˆ(2 * t) * cos(t) - eˆ(2 * t) * sin(t)
sage: diff(f,t) * g+f * diff(g,t)
2* eˆ(2 * t) * cos(t) - eˆ(2 * t) * sin(t)

This simply computesd
dt

(e2t cos(t) in two ways (one: directly, the second: using
the product rule) and checks that they are the same.

4.7 Differentiation of the product of any finite num-
ber of functions

Now in dividing both sides of equation (4.5) byuv, this formula assumes the form

d
dx

(uv)

uv
=

du
dx

u
+

dv
dx

v
.
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4.8. DIFFERENTIATION OF A FUNCTION WITH A CONSTANT
EXPONENT

If then we have the product ofn functionsy = v1v2 · · · vn, we may write

d
dx

(v1v2···vn)

v1v2···vn
=

dv1
dx

v1
+

d
dx

(v2v3···vn)

v2v3···vn

=
dv1
dx

v1
+

dv2
dx

v2
+

d
dx

(v3v4···vn)

v3v4···vn

=
dv1
dx

v1
+

dv2
dx

v2
+

dv3
dx

v3
+ · · · +

dvn
dx

vn

d
dx

(v1v2 · · · vn)
= (v2v3 · · · vn)dv1dx + (v1v3 · · · vn)dv2dx + · · · + (v1v2 · · · vn−1)

dvn

dx
.

The derivative of the product of a finite number of functions is equal to the sum of
all the products that can be formed by multiplying the derivative of each function
by all the other functions.

4.8 Differentiation of a function with a constant ex-
ponent

If the n factors in the above result are each equal tov, we get

d
dx

(vn)

vn
= n

dv
dx

v
.

Therefore, d
dx

(vn) = nvn−1 dv
dx

, (equation (4.6) above).
Whenv = x this becomesd

dx
(xn) = nxn−1 (equation (4.7) above).

We have so far proven equation (4.6) only for the case whenn is a positive
integer. In§4.15, however, it will be shown that this formula holds true for any
value ofn, and we shall make use of this general result now.

The derivative of a function with a constant exponent is equalto the product of
the exponent, the function with the exponent diminished by unity, and the deriva-
tive of the function.

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: g = function(’g’, t)
sage: (f(t) * g(t)).diff(t) # product rule for 2 functions
f(t) * diff(g(t), t, 1) + g(t) * diff(f(t), t, 1)
sage: h = function(’h’, t)
sage: (f(t) * g(t) * h(t)).diff(t) # product rule for 3 functions
f(t) * g(t) * diff(h(t), t, 1) + f(t) * h(t) * diff(g(t), t, 1)
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4.9. DIFFERENTIATION OF A QUOTIENT

+ g(t) * h(t) * diff(f(t), t, 1)

4.9 Differentiation of a quotient

Let y = u
v
v 6= 0. By the General Rule,

• FIRST STEP.y + ∆y = u+∆u
v+∆v

.

• SECOND STEP.∆y = u+∆u
v∆v

− u
v

= v·∆u−u·∆v
v(v+∆v)

.

• THIRD STEP.∆y
∆x

=
v∆u

∆x
−u∆v

∆x

v(v+∆v)
.

• FOURTH STEP.dy
dx

=
v du

dx
−u dv

dx

v2
. [Applying Theorems 2.8.2 and 2.8.3]

Therefore, d
dx

(

u
v

) v du
dx

−u dv
dx

v2
(equation (4.8) above).

The derivative of a fraction is equal to the denominator times the derivative of
the numerator, minus the numerator times the derivative of the denominator, all
divided by the square of the denominator.

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: g = function(’g’, t)
sage: (f(t)/g(t)).diff(t)
diff(f(t), t, 1)/g(t) - f(t) * diff(g(t), t, 1)/g(t)ˆ2
sage: (1/f(t)).diff(t)
-diff(f(t), t, 1)/f(t)ˆ2

When the denominator is constant, setv = c in (4.8), giving (4.9) d
dx

(

u
c

)

=
du
dx

c
.

[Since dv
dx

= dc
dx

= 0.] We may also get (4.9) from (4.4) as follows:

d

dx

(u

c

)

=
1

c

du

dx
=

du
dx

c
.
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4.10. EXAMPLES

The derivative of the quotient of a function by a constant is equal to the derivative
of the function divided by the constant.

All explicit algebraic functions of one independent variable may be differenti-
ated by following the rules we have deduced so far.

4.10 Examples

Differentiate the following1:

1. y = x3.

Solution. dy
dx

= d
dx

(x3) = 3x2. (By (4.7), n = 3.)

2. y = ax4 − bx2.

Solution.

dy
dx

= d
dx

(ax4 − bx2)
= d

dx
(ax4) − d

dx
(bx2) by (4.3)

= a d
dx

(x4) − b d
dx

(x2) by (4.4)
= 4ax3 − 2bx by (4.7).

3. y = x
4
3 + 5.

Solution.
dy
dx

= d
dx

(x
4
3 ) + d

dx
(5) by (4.3)

= 4
3
x

1
3 by (4.7) and (4.1)

4. y = 3x3

5√
x2

− 7x
3√
x4

+ 8
7
√
x3

Solution.

dy
dx

= d
dx

(

3x
13
5

)

+ d
dx

(

7x−
1
3

)

+ d
dx

(

8x
3
7

)

by (4.3)

= 39
5
x

8
5 + 7

3
x−

4
3 + 24

7
x−

4
7 by (4.4) and (4.7).

1To the student: Though the answers are included below for allof the problems, it may be that
your computation differs from the solution given. You should then try to show algebraically that
your form is that same as that given.
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4.10. EXAMPLES

5. y = (x2 − 3)5.

Solution.

dy
dx

= 5(x2 − 3)4 d
dx

(x2 − 3) by (4.6), v = x2 − 3 and n = 5
5(x2 − 3)4 · 2x = 10x(x2 − 3)4.

We might have expanded this function by the Binomial Theorem (see§12.1)
and then applied (4.3), etc., but the above process is much simpler.

6. y =
√
a2 − x2.

Solution.

dy
dx

= d
dx

(a2 − x2)
1
2

= 1
2
(a2 − x2)−

1
2
d
dx

(a2 − x2), by (4.6) (v = a2 − x2, and n = 5)

= 1
2
(a2 − x2)−

1
2 (−2x) = − x√

a2−x2 .

7. y = (3x2 + 2)
√

1 + 5x2.

Solution.

dy
dx

= (3x2 + 2) d
dx

(1 + 5x2)
1
2 + (1 + 5x2)

1
2
d
dx

(3x2 + 2)

(by (4.5) , u = 3x2 + 2, and v = (1 + 5x2)
1
2 )

= (3x2 + 2)1
2
(1 + 5x2)−

1
2
d
dx

(1 + 5x2) + (1 + 5x2)
1
2 6x by (4.6), etc.

= (3x2 + 2)(1 + 5x2)−
1
2 5x+ 6x(1 + 5x2)

1
2

= 5x(3x2+2)√
1+5x2 + 6x

√
1 + 5x2

= 45x3+16x√
1+5x2 .

8. y = a2+x2√
a2−x2 .

Solution. By (4.8), we have

dy
dx

=
(a2−x2)

1
2 d

dx
(a2−x2)−(a2+x2) d

dx
(a2−x2)

1
2

a2−x2

= 2x(a2−x2)+x(a2+x2)

(a2−x2)−
3
2

(multiplying both numerator and denominator by (a2 − x2)
1
2 )

=
3
x

2
x−x3

(a2−x2)
3
2
.
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4.10. EXAMPLES

9. 5x4 + 3x2 − 6. (Ans. dy
dx

= 20x3 + 6x)

10. y = 3cx2 − 8dx+ 5e. (Ans. dy
dx

= 6cx− 8d)

11. y = xa+b. (Ans. dy
dx

= (a+ b)xa+b−1)

12. y = xn + nx+ n. (Ans. dy
dx

= nxn−1 + n)

13. f(x) = 2
3
x3 − 3

2
x2 + 5. (Ans.f ′(x) = 2x2 − 3x)

14. f(x) = (a+ b)x2 + cx+ d. (Ans.f ′(x) = 2(a+ b)x+ c)

15. d
dx

(a+ bx+ cx2) = b+ 2cx.

16. d
dy

(5ym − 3y + 6) = 5mym−1 − 3.

17. d
dx

(2x−2 + 3x−3) = −4x−3 − 9x−4.

18. d
ds

(3s−4 − s) = −12s−5 − 1.

19. d
dx

(4x
1
2 + x2) = 2x−

1
2 + 2x.

20. d
dy

(y−2 − 4y−
1
2 ) = −2y−3 + 2y−

3
2 .

21. d
dx

(2x3 + 5) = 6x2.

22. d
dt

(3t5 − 2t2) = 15t4 − 4t.

23. d
dθ

(aθ4 + bθ) = 4aθ3 + b.

24. d
dα

(5 − 2α
3
2 ) = −3α

1
2 .

25. d
dt

(9t
5
3 + t−1) = 15t

2
3 − t−2.

26. d
dx

(2x12 − x9) = 24x11 − 9x8.

27. r = cθ3 + dθ2 + eθ. (Ans. r′ = 3cθ2 + 2dθ + e)

28. y = 6x
7
2 + 4x

5
2 + 2x

3
2 . (Ans.y′ = 21x

5
2 + 10x

3
2 + 3x

1
2 )

29. y =
√

3x+
√

3x+ 1
x
. (Ans.y′ = 3

2
√

3x
+ 1

3
3√
x2

− 1
x2 )

30. y = a+bx+cx2

x
. (Ans.y′ = c− a

x2 )
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4.10. EXAMPLES

31. y = (x−1)3

x
1
3

. (Ans.y′ = 8
3
x

5
3 − 5x

2
3 + 2x−

1
3 + 1

3
x−

4
3 )

32. y = (2x3 + x2 − 5)3. (Ans.y′ = 6x(3x+ 1)(2x3 + x2 − 5)2)

33. y = (2x3 + x2 − 5)3. (Ans.y′ = 6x(3x+ 1)(2x3 + x2 − 5)2)

34. f(x) = (a+ bx2)
5
4 . (Ans.f ′(x) = 5bx

2
(a+ bx2)

1
4 )

35. f(x) = (1 + 4x3)(1 + 2x2). (Ans.f ′(x) = 4x(1 + 3x+ 10x3))

36. f(x) = (a+ x)
√
a− x. (Ans.f ′(x) = a−3x

2
√
a−x)

37. f(x) = (a+x)m(b+x)n. (Ans.f ′(x) = (a+x)m(b+x)n
[

m
a+x

+ n
b+x

]

)

38. y = 1
xn . (Ans. y

x
= − n

xn+1 )

39. y = x(a2 + x2)
√
a2 − x2. (Ans. dy

dx
= a4+a2x2−4x4√

a2−x2 )

40. Differentiate the following functions:

(a) d
dx

(2x3 − 4x+ 6) (e) d
dt

(b+ at2)
1
2 (i) d

dx
(x

2
3 − a

2
3 )

(b) d
dt

(at7 + bt5 − 9) (f) d
dx

(x2 − a2)
3
2 (j) d

dt
(5 + 2t)

9
2

(c) d
dθ

(3θ
3
2 − 2θ

1
2 + 6θ) (g) d

dφ
(4 − φ

2
5 ) (k) d

ds

√

a+ b
√
s

(d) d
dx

(2x3 + x)
5
3 (h) d

dt

√
1 + 9t2 (l) d

dx
(2x

1
3 + 2x

5
3 )

41. y = 2x4

b2−x2 . (Ans. dy
dx

= 8b2x3−4x5

(b2−x2)2
)

42. y = a−x
a+x

. (Ans. dy
dx

= − 2a
(a+x)2

)

43. s = t3

(1+t)2
. (Ans. ds

dt
= 3t2+t3

(1+t)3
)

44. f(s) = (s+4)2

s+3
. (Ans.f ′(s) = (s+2)(s+4)

(s+3)2
)

45. f(θ) = θ√
a−bθ2 . (Ans.f ′(θ) = a

(a−bθ2)
3
2
)

46. F (r) =
√

1+r
1−r . (Ans.F ′(r) =

√
1(1 − r)

√
1 − r2)

47. ψ(y) =
(

y
1−y

)m

. (Ans.ψ′(y) = mym−1

(1−y)m+1 )
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4.11. DIFFERENTIATION OF A FUNCTION OF A FUNCTION

48. φ(x) = 2x2−1
x
√

1+x2 . (Ans.φ′(x) = 1+4x2

x2(1+x2)
3
2
)

49. y =
√

2px. (Ans.y′ = p
y
)

50. y = b
a

√
a2 − x2. (Ans.y′ = − b2x

a2y
)

51. y = (a
2
3 − x

2
3 )

3
2 . (Ans.y′ = − 3

√

y
x
)

52. r =
√
aφ+ c

√

φ3. (Ans. r′ =
√
a+3cφ

2
√
φ

)

53. u = vc+vd

cd
. (Ans.u′ = vc−1

d
+ vd−1

c
)

54. p = (q+1)
3
2√

q−1
. (Ans.p′ = (q−2)

√
q+1

(q−1)
3
2

)

55. Differentiate the following functions:

(a) d
dx

(

a2−x2

a2+x2

)

(d) d
dy

(

ay2

b+y3

)

(g) d
dx

x2√
1−x2

(b) d
dx

(

x3

1+x4

)

(e) d
ds

(

a2−s2√
a2+s2

)

(h) d
dx

1+x2

(1−x2)
3
2

(c) d
dx

(

1+x√
1−x

)

(f) d
dx

√
4−2x3

x
(i) d

dt

√

1+t2

1−t2

4.11 Differentiation of a function of a function

It sometimes happens thaty, instead of being defined directly as a function ofx,
is given as a function of some other variable, sayv, and thatv is defined as a
function ofx. In that casey is a function ofx throughv and is called acomposite
function. The process of substituting one function into another is sometimes called
composition.

For example, ify = 2v
1−v2 , andv = 1 − x2, theny is a composite function. By

eliminatingv we may expressy directly as a function ofx, but in general this is
not the best plan when we wish to finddy

dx
.

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: g = lambda v: 2 * v/(1-vˆ2)
sage: g(f(t)).diff(t) # this gives the general form, for any f
2* diff(f(t), t, 1)/(1 - f(t)ˆ2) + 4 * f(t)ˆ2 * diff(f(t), t, 1)/(1 - f(t)ˆ2)ˆ2
sage: f = lambda x: 1-xˆ2
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4.11. DIFFERENTIATION OF A FUNCTION OF A FUNCTION

sage: g(f(t)).diff(t) # this gives the specific answer in th is case
-4 * t/(1 - (1 - tˆ2)ˆ2) - 8 * t * (1 - tˆ2)ˆ2/(1 - (1 - tˆ2)ˆ2)ˆ2

If y = f(v) andv = g(x), theny is a function ofx throughv. Hence, when we
letx take on an increment∆x, v will take on an increment∆v andy will also take
on a corresponding increment∆y. Keeping this in mind, let us apply the General
Rule simultaneously to the two functionsy = f(v) andv = g(x).

• FIRST STEP.y + ∆y = f(v + ∆v), v + ∆v = g(x+ ∆x).

• SECOND STEP.

y + ∆y = f(v + ∆v), v + ∆v = g(x+ ∆x)
y = f(v), v = g(x)

∆y = f(v + ∆v) − f(v), ∆v = g(x+ ∆x) − g(x)

• THIRD STEP.∆y
∆v

= f(v+∆v)−f(v)
∆v

, ∆v
∆x

= g(x+∆x)−g(x)
∆x

.

The left-hand members show one form of the ratio of the increment of each
function to the increment of the corresponding variable, and the right-hand
members exhibit the same ratios in another form. Before passing to the limit
let us form a product of these two ratios, choosing the left-hand forms for
this purpose.

This gives∆y
∆v

· ∆v
∆x

, which equals∆y
∆x

. Write this

∆y

∆x
=

∆y

∆v
· ∆v

∆x
.

• FOURTH STEP. Passing to the limit,

dy

dx
=
dy

dv
· dv
dx
, (4.29)

by Theorem 2.8.2.This may also be written

dy

dx
= f ′(v) · g′(x),

or

dy

dx
= g′(x)f ′(g(x)). (4.30)
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4.12. DIFFERENTIATION OF INVERSE FUNCTIONS

The above formula is sometimes referred to as thechain rulefor differentiation.
If y = f(v) andv = g(x), the derivative ofy with respect tox equals the product
of the derivative ofy with respect tov and the derivative ofv with respect tox.

4.12 Differentiation of inverse functions

Let y = f(x) be a given function ofx.
It is often possible in the case of functions considered in this book to solve this

equation forx, giving

x = φ(y);

that is, to considery as the independent andx as the dependent variable. In that
casef(x) andφ(y) are said to beinverse functions(and one often writesφ = f−1).

When we wish to distinguish between the two it is customary to call the first
one given thedirect functionand the second one theinverse function. Thus, in the
examples which follow, if the second members in the first column are taken as the
direct functions, then the corresponding members in the second column will be
respectively their inverse functions.

Example 4.12.1. • y = x2 + 1, x = ±√
y − 1.

• y = ax, x = loga y.

• y = sin x, x = arcsin y.

The plot of the inverse functionφ(y) is related to the plot of the functionf(x) in
a simple manner. The plot off(x) over an interval(a, b) in whichf is increasing
is the same as the plot ofφ(y) over (f(a), f(b)). The plot ofy = f(x) is the
“mirror image” of the plot ofy = φ(x), reflected about the “diagonal line”y = x.

Example 4.12.2.If f(x) = x2, for x > 0, andφ(y) =
√
y, then the graphs are

Now flip this graph about the45o line:
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4.12. DIFFERENTIATION OF INVERSE FUNCTIONS

Figure 4.1: The functionf(x) = x2.

Figure 4.2: The functionφ(y) = f−1(y) =
√
y.

The graph of inverse trig functions, for example,tan(x) and arctan(x), are
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4.12. DIFFERENTIATION OF INVERSE FUNCTIONS

related in the same way.

Let us now differentiate the inverse functions

y = f(x) and x = φ(y)

simultaneously by the General Rule.

• FIRST STEP.y + ∆y = f(x+ ∆x), x+ ∆x = φ(y + ∆y)

• SECOND STEP.

y + ∆y = f(x+ ∆x), x+ ∆x = φ(y + ∆y)
y = f(x), x = φ(y)

∆y = f(x+ ∆x) − f(x), ∆x = φ(y + ∆y) − φ(y)

• THIRD STEP.

∆y

∆x
=
f(x+ ∆x) − f(x)

∆x
,

∆x

∆y
=
φ(y + ∆y) − φ(y)

∆y
.

Taking the product of the left-hand forms of these ratios, weget ∆y
∆x

·∆x
∆y

= 1,

or, ∆y
∆x

= 1
∆x
∆y

.

• FOURTH STEP. Passing to the limit,

dy

dx
=

1
dx
dy

, (4.31)

or,

f ′(x) =
1

φ′(y)
.

The derivative of the inverse function is equal to the reciprocal of the derivative
of the direct function.
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4.13. DIFFERENTIATION OF A LOGARITHM

4.13 Differentiation of a logarithm

Let2 y = logav.
Differentiating by the General Rule (§3.7), consideringv as the independent

variable, we have

• FIRST STEP.y + ∆y = loga(v + ∆v) .

• SECOND STEP.

∆y = loga(v + ∆v) − loga v
= loga

(

v+∆v
v

)

= loga
(

1 + ∆v
v

)

.

by item (8),§12.1.

• THIRD STEP.
∆y
∆x

= 1
∆v

loga
(

1 + ∆v
v

)

= loga
(

1 + ∆v
v

) 1
∆v

= 1
v
loga

(

1 + ∆v
v

) v
∆v .

[Dividing the logarithm byv and at the same time multiplying the exponent
of the parenthesis byv changes the form of the expression but not its value
(see item (9),§12.1.]

• FOURTH STEP.dy
dv

= 1
v
loga e. [When ∆v → 0 ∆v

v
→ 0. Therefore

lim∆v→0

(

1 + ∆v
v

) v
∆v = e, from §2.11, placingx = ∆v

v
.]

Hence

dy

dv
=

d

dv
(loga v) = loga e ·

1

v
. (4.32)

Sincev is a function ofx and it is required to differentiateloga v with respect tox,
we must use formula (4.29), for differentiating a function of a function, namely,

dy

dx
=
dy

dv
· dv
dx
.

2The student must not forget that this function is defined onlyfor positive values of the basea
and the variablev.
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4.14. DIFFERENTIATION OF THE SIMPLE EXPONENTIAL FUNCTION

Substituting the value ofdy
dv

from (4.32), we get

dy

dx
= loga e ·

1

v
· dv
dx
.

Therefore,d
dx

(loga x) = logs e ·
dv
dx

v
(equation (4.10) above). Whena = e, loga e =

logee = 1, and (4.10) becomesd
dx

(log v) =
dv
dx

v
(equation (4.11) above).

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: log(f(t)).diff(t)
diff(f(t), t, 1)/f(t)
sage: f = 1-tˆ2
sage: log(f(t)).diff(t)
-2 * t/(1 - tˆ2)

4.14 Differentiation of the simple exponential func-
tion

Let y = av, a > 0. Taking the logarithm of both sides to the basee, we
get log y = v log a, or v = log y

log a
= 1

log a
· log y. Differentiate with respect toy by

formula (4.11),

dv

dy
=

1

log a
· 1

y
;

and from (4.31),relating to inverse functions, we getdy
dv

= log a · y, or,

dy

dv
= log a · av.

Sincev is a function ofx and it is required to differentiateav with respect tox,
we must use formula (4.29), for differentiating a function of a function, namely,

dy

dx
=
dy

dv
· dv
dx
.
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4.15. DIFFERENTIATION OF THE GENERAL EXPONENTIAL FUNCTION

Substituting the value ofdy
dx

from above, we get

dy

dx
= log a · av · dv

dx
.

Therefore, d
dx

(av) = log a · av · dv
dx

(equation (4.12) in§4.1 above).

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: (3ˆf(t)).diff(t)
log(3) * 3ˆf(t) * diff(f(t), t, 1)
sage: f = tˆ7
sage: (3ˆf(t)).diff(t)
7* log(3) * tˆ6 * 3ˆtˆ7

Whena = e, log a = log e = 1, and (4.12) becomesd
dx

(ev) = ev dv
dx

(equation
(4.13) in§4.1 above) .

The derivative of a constant with a variable exponent is equalto the product of
the natural logarithm of the constant, the constant with the variable exponent, and
the derivative of the exponent.

4.15 Differentiation of the general exponential func-
tion

Let3 y = uv. Taking the logarithm of both sides to the basee, loge y = v loge u,
or, y = ev log u.

Differentiating by formula (4.13),

dy
dx

= ev log u d
dx

(v log u)
= ev log u

(

v
u
du
dx

+ log u dv
dx

)

by (4.5)
= uv

(

v
u
du
dx

+ log u dv
dx

)

Therefore, d
dx

(uv) = vuv−1 du
dx

+ log u · uv dv
dx

(equation (4.14) in§4.1 above).

3Hereu can assume only positive values.
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4.15. DIFFERENTIATION OF THE GENERAL EXPONENTIAL FUNCTION

The derivative of a function with a variable exponent is equalto the sum of the
two results obtained by first differentiating by (4.6), regarding the exponent as
constant, and again differentiating by (4.12), regarding the function as constant.

Let v = n, any constant; then (4.14) reduces to

d

dx
(un) = nun−1du

dx
.

But this is the form differentiated in§4.8; therefore (4.6) holds true for any value
of n.

Example 4.15.1.Differentiatey = log(x2 + a).
Solution. By (4.11) (withv = x2 + a), we have

dy
dx

=
d

dx
(x2+a)

x2+a

= 2x
x2+a

.

Example 4.15.2.Differentiatey = log
√

1 − x2.
Solution. By (4.11) and (4.6),

dy
dx

=
d

dx
(1−x2)

1
2

(1−x2)
1
2

=
1
2
(1−x2)−

1
2 (−2x)

(1−x2)
1
2

= x
x2−1

.

Example 4.15.3.Differentiatey = a3x2
.

Solution. By (4.12),

dy
dx

= log a · a3x2 d
dx

(3x2)

= 6x log a · a3x2
.

Sage

sage: t,a = var(’t,a’)
sage: f = 3 * tˆ2
sage: (aˆf(t)).diff(t)
6* aˆ(3 * tˆ2) * log(a) * t
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4.16. LOGARITHMIC DIFFERENTIATION

Example 4.15.4.Differentiatey = bec
2+x2

.
Solution. By (4.4) and (4.13),

dy
dx

= b d
dx

(

ec
2+x2

)

= bec
2+x2 d

dx
(c2 + x2)

= 2bxec
2+x2

.

Example 4.15.5.Differentiatey = xe
x
.

Solution. By (4.14),

dy
dx

= exxe
x−1 d

dx
(x) + xe

x
log x d

dx
(ex)

= exxe
x−1 + xe

x
log x · ex

= exxe
x ( 1

x
+ log x

)

4.16 Logarithmic differentiation

Instead of applying (4.10) and (4.11) at once in differentiating logarithmic func-
tions, we may sometimes simplify the work by first making use of one of the
formulas 7-10 in§12.1. Thus above Illustrative Example 4.15.2 may be solved as
follows:

Example 4.16.1.Differentiatey = log
√

1 − x2.
Solution. By using 10, in§12.1, we may write this in a form free from radicals

as follows:y = 1
2
log(1 − x2). Then

dy
dx

= 1
2

d
dx

(1−x2)

1−x2 by (4.11)
= 1

2
· −2

1−x2 = x
x2−1

.

Example 4.16.2.Differentiatey = log
√

1+x2

1−x2 .
Solution. Simplifying by means of (10) and (8), in§12.1,

y = 1
2
[log(1 + x2) − log(1 − x2)]

dy
dx

= 1
2

[

d
dx

(1+x2)

1+x2 −
d

dx
(1−x2)

1−x2

]

by (4.11), etc.

= x
1+x2 + x

1−x2 = 2x
1−x4 .

In differentiating an exponential function, especially a variable with a variable
exponent, the best plan is first to take the logarithm of the function and then dif-
ferentiate. Thus Example 4.15.5 is solved more elegantly asfollows:
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4.16. LOGARITHMIC DIFFERENTIATION

Example 4.16.3.Differentiatey = xe
x
.

Solution. Taking the logarithm of both sides,log y = ex log x, by Formula 9 in
§12.1. Now differentiate both sides with respect tox:

dy
dx

y
= ex d

dx
(log x) + log x d

dx
(ex) by (4.10) and (4.5)

= ex · 1
x

+ log x · ex,
or,

dy

dx
= ex · y

(

1

x
log x

)

= exxe
x

(

1

x
+ log x

)

.

Example 4.16.4.Differentiatey = (4x2 − 7)2+
√
x2−5.

Solution. Taking the logarithm of both sides,

log y = (2 +
√
x2 − 5) log(4x2 − 7).

Differentiating both sides with respect tox,

1

y

dy

dx
= (2 +

√
x2 − 5)

8x

4x2 − 7
+ log(4x2 − 7) · x√

x2 − 5
.

dy

dx
= x(4x2 − 7)2+

√
x2−5

[

8(2 +
√
x2 − 5)

4x2 − 7
+

log(4x2 − 7)√
x2 − 5

]

.

In the case of a function consisting of a number of factors it is sometimes con-
venient to take the logarithm before differentiating. Thus,

Example 4.16.5.Differentiatey =
√

(x−1)(x−2)
(x−3)(x−4)

.
Solution. Taking the logarithm of both sides,

log y =
1

2
[log(x− 1) + log(x− 2) − log(x− 3) − log(x− 4)].

Differentiating both sides with respect tox,

1
y
dy
dx

= 1
2

[

1
x−1

+ 1
x−2

− 1
x−3

− 1
x−4

]

= − 2x2−10x+11
(x−1)(x−2)(x−3)(x−4)

,

or,

dy

dx
= − 2x2 − 10x− 11

(x− 1)
1
2 (x− 2)

1
2 (x− 3)

3
2 (x− 4)

3
2

.
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4.17 Examples

Differentiate the following4:

1. y = log(x+ a) Ans: dy
dx

= 1
x+a

2. y = log(ax+ b) Ans: dy
dx

= a
ax+b

3. y = log 1+x2

1−x2 Ans: dy
dx

= 4x
1−x4

4. y = log(x2 + x) Ans: y′ = 2x+1
x2+x

5. y = log(x3 − 2x+ 5) Ans: y′ = 3x2−2
x3−2x+5

6. y = loga(2x+ x3) Ans: y′ = loga e · 2+3x2

2x+x3

7. y = x log x Ans: y′ = log x+ 1

8. f(x) = log(x3) Ans: f ′(x) = 3
x

9. f(x) = log3 x Ans: f ′(x) = 3 log2 x
x

(Hint: log3 x = (log x)3. Use first (4.6),v = log x, n = 3; and then (4.11).)

10. f(x) = log a+x
a−x Ans: f ′(x) = 2a

a2−x2

11. f(x) = log(x+
√

1 + x2) Ans: f ′(x) = 1√
1+x2

12. d
dx
eax = aeax

13. d
dx
e4x+5 = 4e4x+5

14. d
dx
a3x = 3a3x log a

15. d
dt

log(3 − 2t2) = 4t
2t2−3

16. d
dy

log 1+y
1−y = 2

1−y2

17. d
dx
eb

2+x2
= 2xeb

2+x2

4Though the answers are given below, it may be that your computation differs from the solution
given. You should then try to show algebraically that your form is that same as that given.
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18. d
dθ
alog a = 1

θ
alog θ log a

19. d
ds
bs

2
= 2x log b · bs2

20. d
dv
ae

√
v = ae

√
v

2
√
v

21. d
dx
ae

x
= log a · aex · ex

22. y = 7x
2+2x Ans: y′ = 2 log 7 · (x+ 1)7x

2+2x

23. y = ca
2−x2

Ans: y′ = −2x log c · ca2−x2

24. y = log ex

1+ex Ans: dy
dx

= 1
1+ex

25. d
dx

[ex(1 − x2] = ex(1 − 2x− x2)

26. d
dx

(

ex−1
ex+1

)

= 2ex

(ex+1)2

27. d
dx

(x2eax) = xeax(ax+ 2)

28. y = a
2
(e

x
a − e−

x
a ) Ans: dy

dx
= 1

2
(e

x
a + e−

x
a )

29. y = ex−e−x

ex+e−x Ans: dy
dx

= 4
(ex+e−x))2

30. y = xnax Ans: y′ = axxn−1(n+ x log a)

31. y = xx Ans: y′ = xx(log x+ 1)

32. y = x
1
x Ans: y′ = x

1
x (1−log x)

x2

33. y = xlog x Ans: y′ = log(x2) · xlog x−1

34. f(y) = log y ·ey Ans: f ′(y) = ey
(

log y + 1
y

)

35. f(s) = log s
es Ans: f ′(s) = 1−s log s

ses

36. f(x) = log(log x) Ans: f ′(x) = 1
x log x

37. F (x) = log4(log x) Ans: F ′(x) = 4 log3(log x)
x log x

38. φ(x) = log(log4 x) Ans: φ′(x) = 4
x log x
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39. ψ(y) = log
√

1+y
1−y Ans: ψ′(y) = 1

1−y2

40. f(x) = log
√
x2+1−x√
x1+1+x

Ans: f ′(x) = − 2√
1+x2

41. y = x
1

log x Ans: dy
dx

= 0

42. y = ex
x

Ans: dy
dx

= ex
x
(1 + log x)xx

43. y = cx

xx Ans: dy
dx

=
(

c
x

)x (
log c

x
− 1
)

44. y =
(

x
n

)nx
Ans: dy

dx
= n

(

x
n

)nx (
1 + log x

n

)

45. w = ve
v

Ans: dw
dv

= ve
v
ev
(

1+v log v
v

)

46. z =
(

a
t

)t
Ans: dz

dt
=
(

a
t

)t
(log a− log t− 1)

47. y = xx
n

Ans: dy
dx

= xx
n+n−1(n log x+ 1)

48. y = xx
x

Ans: dy
dx

= xx
x
xx
(

log x+ log2 x+ 1
x

)

49. y = a
1√

a2−x2 Ans: dy
dx

= xy log a

(a2−x2)
3
2

50. Compute the following derivatives:

(a) d
dx
x2 log x (f) d

dx
ex log x (k) d

dx
log(ax + bx)

(b) d
dx

(e2x − 1)4 (g) d
dx
x33x (l) d

dx
log1 0(x2 + 5x)

(c) d
dx

log 3x+1
x+3

(h) d
dx

1
x log x

(m) d
dx

2+x2

e3x

(d) d
dx

log 1−x2√
1+x

(i) d
dx

log x3
√

1 + x2 (n) d
dx

(x2 + a2)ex
2+a2

(e) d
dx
x
√
x (j) d

dx

(

1
x

)x
(o) d

dx
(x2 + 4)x.

51. y = (x+1)2

(x+2)3(x+3)4
Ans: dy

dx
= − (x+1)(5x2+14x+5)

(x+2)4(x+3)5

52. y = ((x−1)
5
2

(x−2)
3
4 (x−3)

7
3

Ans: dy
dx

= − (x−1)
3
2 (7x2+30x−97)

12(x−2)
7
4 (x−3)

10
3

53. y = x
√

1 − x(1 + x) Ans: dy
dx

= 2+x−5x2

2
√

1−x

54. y = x(1+x2)√
1−x2 Ans: dy

dx
= 1+3x2−2x4

(1−x2

3
2

55. y = x5(a+3x)3(a−2x)2 Ans: dy
dx

= 5x4(a+3x)2(a−2x)(a2+2ax−12x2)
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4.18. DIFFERENTIATION OFSINV

4.18 Differentiation of sin v

Let y = sin v. By the General Rule for Differentiation in§3.7, consideringv as
the independent variable, we have

• FIRST STEP.y + ∆y = sin(v + ∆v).

• SECOND STEP.

∆y = sin(v + ∆v) − sin v = 2 cos

(

v +
∆v

2

)

· sin ∆v

2
.

• THIRD STEP.

∆y

∆v
= cos

(

v +
∆v

2

)

(

sin ∆v
2

∆v
2

)

.

• FOURTH STEP.dy
dx

= cos v.

(Sincelim∆v→0

(

sin ∆v
2

∆v
2

)

= 1, by§2.10, andlim∆v→0 cos
(

v + ∆v
2

)

= cos v.)

Sincev is a function ofx and it is required to differentiatesin v with respect
to x, we must use formula (A),§4.11, for differentiating a function of a function,
namely,

dy

dx
=
dy

dv
· dv
dx
.

Substituting valuedy
dx

from Fourth Step, we getdy
dx

= cos v dv
dx

. Therefore,

d

dx
(sin v) = cos v

dv

dx

(equation (4.15) in§4.1 above).
The statement of the corresponding rules will now be left to the student.
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4.19. DIFFERENTIATION OFCOSV

4.19 Differentiation of cos v

Let y = cos v. By item 29,§12.1, this may be written

y = sin
(π

2
− v
)

.

Differentiating by formula (4.15),

dy
dx

= cos
(

π
2
− v
)

d
dx

(

π
2
− v
)

= cos
(

π
2
− v
) (

− dv
dx

)

= − sin x dv
dx
.

(Sincecos
(

π
2

)

= sin v, by 29,§12.1.) Therefore,

d

dx
(cos v) = − sin v

dv

dx
,

(equation (4.16) in§4.1 above).

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: cos(f(t)).diff(t)
-sin(f(t)) * diff(f(t), t, 1)

4.20 Differentiation of tan v

Let y = tan v. By item 27,§12.1, this may be written

dy
dx

=
cos v d

dx
(sin v)−sin v d

dx
(cos v)

cos2 v

=
cos2 v dv

dx
+sin2 v dv

dx

cos2 v

=
dv
dx

cos2 v
= sec2 v dv

dx
.

Therefore,

d

dx
(tanx) = sec2 v

dv

dx
,

(equation (4.17) in§4.1 above).
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4.21 Differentiation of cot v

Let y = cot v. By item 26,§12.1, this may be writteny = 1
tan v

. Differentiating
by formula (4.8),

dy
dx

= −
d

dx
(tan v)

tan2 v

= − sec2 dv
dx

tan2 v

= − csc2 v dv
dx
.

Therefore,
d

dx
(cot v) = − csc2 v

dv

dx

(equation (4.17) in§4.1 above).

4.22 Differentiation of sec v

Let y = sec v. By item 26,§12.1, this may be writteny = 1
cos v

. Differentiating by
formula (4.8),

dy
dx

= −
d

dx
(cos v)

cos2 v

=
sin v dv

dx

cos2 v

= 1
cos v

sin v
cos v

dv
dx

= sec v tan v dv
dx
.

Therefore,
d

dx
(sec v) = sec v tan v

dv

dx

(equation (4.19) in§4.1 above).

4.23 Differentiation of csc v

Let y = csc v. By item 26,§12.1, this may be written

y =
1

sin v
.

Differentiating by formula (4.8),
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dy
dx

= −
d

dx
(sin v)

sin2 v

= − cos v dv
dx

sin2 v

= − csc v cot v dv
dx
.

Therefore,

d

dx
(csc v) = − csc v cot v

dv

dx

(equation (4.20) in§4.1 above).

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: csc(f(t)).diff(t)
-cot(f(t)) * csc(f(t)) * diff(f(t), t, 1)
sage: f = tan
sage: csc(f(t)).diff(t)
-sec(t)ˆ2 * cot(tan(t)) * csc(tan(t))
sage: f = arccos
sage: csc(f(t)).diff(t)
t/(1 - tˆ2)ˆ(3/2)
sage: f = arccsc
sage: csc(f(t)).diff(t)
1

4.24 Exercises

In the derivation of our formulas so far it has been necessaryto apply the General
Rule,§3.7, (i.e. the four steps), only for the following:
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4.3 d
dx

(u+ v − w) = du
dx

+ dv
dx

− dw
dx

Algebraic sum.
4.5 d

dx
(uv) = u dv

dx
+ v du

dx
. Product.

4.8 d
dx

(

u
v

)

=
v du

dx
−u dv

dx

v2
. Quotient.

4.10 d
dx

(loga v) = loga e
dv
dx

v
. Logarithm.

4.15 d
dx

(sin v) = cos v dv
dx

Sine.
4.27 dy

dx
= dy

dv
· dv
dx
. Function of a function.

4.28 dy
dx

= 1
dx
dy

. Inverse functions.

These are very basic formulas for us. Not only do all the otherformulas we have
verified so far depend on them, but those formulas we’ll verify later depend on
them as well.

Examples/exercises:
Differentiate the following:

1. y = sin(ax2) .

dy

dx
= cos ax2 d

dx
(ax2), by 4.15(v = ax2).

2. y = tan
√

1 − x.

dy
dx

= sec2
√

1 − x d
dx

(1 − x)
1
2 , by 4.17)v =

√
1 − x)

= sec2
√

1 − x · 1
2
(1 − x)−

1
2 (−1)

= − sec2
√

1−x
2
√

1−x .

3. y = cos3 x.

This may also be written,y = (cosx)3.

dy
dx

= 3(cosx)2 d
dx

(cos x) by 4.6(v = cosx and n = 3)
= 3 cos2 x(− sin x) by 4.16
= −3 sin x cos2 x.

4. y = sinnx sinn x.
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dy
dx

= sinnx d
dx

(sinx)n + sinn x d
dx

(sinnx) by (4.5)(v = sinnx and v = sinn x)
= sinnx · n(sin x)n−1 d

dx
(sinx) + sinn x cosnx d

dx
(nx) by 4.6and 4.15

= n sinnx · sinn−1 x cos x+ n sinn x cosnx
= n sinn−1 x(sinnx cos x+ cosnx sinx)
= n sinn−1 x sin(n+ 1)x.

5. y = sec ax Ans: dy
dx

= a sec ax tan ax

6. y = tan(ax+ b) Ans: dy
dx

= a sec2(ax+ b)

7. s = cos 3ax Ans: ds
dx

= −3a sin 3ax

8. s = cot(2t2 +3) Ans: ds
dt

= −4t csc2(2t2 +3)

9. f(y) = sin 2y cos y Ans: f ′(y) = 2 cos 2y cos y−sin 2y sin y

10. F (x) = cot2 5x Ans:F ′(x) = −10 cot 5x csc2 5x

11. F (θ) = tan θ − θ Ans: F ′(θ) = tan2 θ

12. f(φ) = φ sinφ+ cosφ Ans: f ′(φ) = φ cosφ

13. f(t) = sin3 t cos t Ans: f ′(t) = sin2 t(3 cos t− sin2 t)

14. r = a cos 2θ Ans: dr
dθ

= −2a sin 2θ

15. d
dx

sin2 x = sin 2x

16. d
dx

cos3(x2) = −6x cos2(x2) sin(x2)

17. d
dt

csc t2

2
= −t csc t2

2
cot t

2

2

18. d
ds
a
√

cos 2s = − a sin 2s√
cos 2s

19. d
dθ
a(1 − cos θ) = a sin θ

20. d
dx

(log cosx) = − tanx

21. d
dx

(log tanx) = 2
sin 2x

22. d
dx

(log sin2 x) = 2 cotx
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23. d
dt

cos a
t

= a
t2

sin a
t

24. d
dθ

sin 1
θ2

= − 2
θ3

cos 1
θ2

25. d
dx
esinx = esinx cos x

26. d
dx

sin(log x) = cos(log x)
x

27. d
dx

tan(log x) = sec2(log x)
x

28. d
dx
a sin3 θ

3
= a sin2 θ

3
cos θ

3

29. d
dα

sin(cosα) = − sinα cos(cosα)

30. d
dx

tanx−1
secx

= sin x+ cosx

31. y = log
√

1+sinx
1−sinx

Ans: dy
dx

= 1
cosx

32. y = log tan
(

π
4

+ x
2

)

Ans: dy
dx

= 1
cosx

33. f(x) = sin(x + a) cos(x − a) Ans: f ′(x) =
cos 2x

34. y = atannx Ans: y′ = natannx sec2 nx log a

35. y = ecosx sin x Ans: y′ = ecosx(cos x−sin2 x)

36. y = ex log sinx Ans: y′ = ex(cotx+log sinx)

37. Compute the following derivatives:

(a) d
dx

sin 5x2 (f) d
dx

csc(log x) (k) d
dt
ea−b cos t

(b) d
dx

cos(a− bx) (g) d
dx

sin3 2x (l) d
dt

sin t
3
cos2 t

3

(c) d
dx

tan ax
b

(h) d
dx

cos2(log x) (m) d
dθ

cot b
θ2

(d) d
dx

cot
√
ax (i) d

dx
tan2

√
1 − x2 (n) d

dφ

√

1 + cos2 φ

(e) d
dx

sec e3x (j) d
dx

log(sin2 ax) (o) d
ds

log
√

1 − 2 sin2 s

38. d
dx

(xnesinx) = xn−1esinx(n+ x cos x)

39. d
dx

(eax cosmx) = eax(a cosmx−m sinmx)

40. f(θ) = 1+cos θ
1−cos θ

Ans: f ′(θ) = − 2 sin θ
(1−cos θ)2
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41. f(φ) = eaφ(a sinφ−cosφ)
a2+1

Ans: f ′(φ) = eaφ sinφ

42. f(s) = (s cot s)2 Ans: f ′(s) = 2s cot s(cot s−s csc2 s)

43. r = 1
3
tan3 θ − tan θ + θ Ans: dr

dθ
= tan4 θ

44. y = xsinx Ans: dy
dx

= xsinx
(

sinx
x

+ log x cos x
)

45. y = (sinx)x Ans: y′ = (sinx)x[log sinx +
x cot x]

46. y = (sinx)tanx Ans: y′ = (sinx)tanx(1+sec2 x log sinx)

47. Prove d
dx

cos v = − sin v dv
dx

, using the General Rule.

48. Prove d
dx

cot v = − csc2 v dv
dx

by replacingcot v by cos v
sin v

.

4.25 Differentiation of arcsin v

Let y = arcsin v, thenv = sin y.
Remember this function is defined only for values ofv between−1 and +1

inclusive and that this (inverse) function is many-valued,there being infinitely
many angles (in radians) whose sines will equalv. Thus, Figure 4.4
represents only a piece of the multi-valued inverse function of sin(x), represented
by taking the graph ofsin(x) and flipping it about the45o line. In the above
discussion, in order to make the function single-valued, only values ofy between
−π

2
and π

2
inclusive are considered; that is, the smallest angle (in radians) whose

sine isv.
Differentiatingv with respect toy gives, by 4.15,dv

dy
= cos y. Thereforedy

dv
=

1
cos y

, by (4.31). But sincev is a function ofx, this may be substituted intody
dx

=
dy
dv

· dv
dx

(see (4.29)),giving

dy

dx
=

1

cos y
· dv
dx

=
1√

1 − v2

dv

dx
.

Here we used the fact thatcos y =
√

1 − sin2 y =
√

1 − v2. The positive sign of
the square root is taken sincecos y is positive for all values ofy between−π

2
and

π
2

inclusive. Therefore,

d

dx
(arcsin v) =

dv
dx√

1 − v2
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4.25. DIFFERENTIATION OFARCSINV

Figure 4.3: The inverse sinesin−1 x usingSage .

Figure 4.4: A single branch of the functionf(x) = arcsin(x).
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4.26. DIFFERENTIATION OFARCCOSV

(equation (4.21) in§4.1 above).

4.26 Differentiation of arccos v

Let5 y = arccos v; theny = cos y.

Figure 4.5: A single branch of the functionf(x) = arccos(x).

Differentiating with respect toy by 4.16,dv
dy

= − sin y, therefore,dy
dv

= − 1
sin y

,
by (4.31). But sincev is a function ofx, this may be substituted in the formula
dy
dx

= dy
dv

· dv
dx

, by (4.29), giving

dy

dx
= − 1

sin y
· dv
dx

= − 1√
1 − v2

dv

dx

(sin y =
√

1 − cos2 y =
√

1 − v2, the plus sign of the radical being taken, since
sin y is positive for all values ofy between0 andπ inclusive). Therefore,

d

dx
(arccos v) = −

dv
dx√

1 − v2
.

5This function is defined only for values ofv between−1 and+1 inclusive, and is many-
valued. In order to make the function single-valued, only values ofy between0 andπ inclusive
are considered; that is,y the smallest angle whose cosine isv.
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4.27. DIFFERENTIATION OFARCTAN V

(equation (4.22) in§4.1 above).
Here’s how to useSage to compute an example of this rule:

Sage

sage: t = var("t")
sage: x = var("x")
sage: solve(x == cos(t),t)
[t == acos(x)]
sage: f = solve(x == cos(t),t)[0].rhs()
sage: f
acos(x)
sage: diff(f,x)
-1/sqrt(1 - xˆ2)

This (a) computesarccos directly as the inverse function ofcos (Sage can use
the notationacos in addition toarccos), (b) computes its derivative.

4.27 Differentiation of arctan v

Let6y = arctan v; theny = tan y.
Differentiating with respect toy by (4.18),

dv

dy
= sec2 y;

thereforedy
dv

= 1
sec2 y

, by (4.31). But sincev is a function ofx, this may be

substituted in the formulady
dx

= dy
dv

· dv
dx

, by (4.29),giving

dy

dx
=

1

sec2 y
· dv
dx

=
1

1 + v2

dv

dx
,

(sincesec2 y = 1 + tan2 y = 1 + v2). Therefore

d

dx
(arctan v) =

dv
dx

1 + v2

(equation (4.23) in§4.1 above).
6This function is defined for all values ofv, and is many-valued. In order to make it single-

valued, only values ofy between−π
2 and π

2 are considered; that is, the smallest angle (in radians)
whose tangent isv.
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4.28. DIFFERENTIATION OFARCCOT V

Figure 4.6: The inverse cosinecos−1 x usingSage .

4.28 Differentiation of arccot v

Let y = arccot v; theny = cot y. This function is defined for all values ofv, and
is many-valued.In order to make it single-valued, only values ofy between0 and
π are considered; that is, the smallest angle whose cotangentis v.

Following the method of the last section, we get

d

dx
(arccot v) = −

dv
dx

1 + v2

(equation (4.24) in§4.1 above).

Sage

sage: t = var(’t’)
sage: f = function(’f’, t)
sage: acot(f(t)).diff(t)
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4.29. DIFFERENTIATION OFARCSEC V

Figure 4.7: The inverse tangenttan−1 x usingSage .

-diff(f(t), t, 1)/(f(t)ˆ2 + 1)
sage: arccot(f(t)).diff(t)
-diff(f(t), t, 1)/(f(t)ˆ2 + 1)
sage: f = tˆ7
sage: arccot(f(t)).diff(t)
-7 * tˆ6/(tˆ14 + 1)

4.29 Differentiation of arcsec v

Let y = arcsecv, sov = sec y. This function is defined for all values ofv except
those lying between−1 and+1, and is seen to be many-valued. To make the
function single-valued,y is taken as the smallest angle whose secant isv. This
means that ifv is positive, we confine ourselves to points on arcAB (Figure 4.9),
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4.29. DIFFERENTIATION OFARCSEC V

Figure 4.8: The standard branch ofarctan x usingSage .

y taking on values between0 and π
2

(0 may be included); and ifv is negative, we
confine ourselves to points on arcDC, y taking on values between−π and−π

2

(−π may be included).
Differentiating with respect toy by (4.4), givesdv

dy
= sec y tan y. Therefore

dy
dv

= 1
sec y tan y

, by (4.31). But sincev is a function ofx, this may be substituted in

the formulady
dx

= dy
dv

· dv
dx

, by (4.29).giving

dy

dx
=

1

sec y tan y

dv

dx
=

1

v
√
v2 − 1

dv

dx

(sincesec y = v, andtan y =
√

sec y − 1 =
√
v2 − 1, the plus sign of the radical

being taken, sincetan y is positive for an values ofy between0 andπ
2

and between
−π and−π

2
, including0 and−π). Therefore,

d

dx
(arcsecv) =

dv
dx

v
√
v2 − 1
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4.30. DIFFERENTIATION OFARCCSCV

Figure 4.9: The inverse secantsec−1 x usingSage .

(equation (4.25) in§4.1 above).

4.30 Differentiation of arccsc v

Let

y = arccsc v;

then

v = csc y.

This function is defined for all values ofv except those lying between−1 and+1,
and is seen to be many-valued. To make the function single-valued,y is taken as
the smallest angle whose cosecant isv. This means that ifv is positive, we confine
ourselves to points on the arcAB (Figure 4.11),y taking on values between0 and
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4.31. EXAMPLE

Figure 4.10: The standard branch ofarcsec x usingSage .

π
2

(π
2

may be included); and ifv is negative, we confine ourselves to points on the
arcCD, y taking on values between−π and−π

2
(−π

2
may be included).

Differentiating with respect toy by 4.20 and following the method of the last
section, we get

d

dx
(arccscv) = −

dv
dx

v
√
v2 − 1

(equation (4.26) in§4.1 above).

4.31 Example

Differentiate the following:

1. y = arctan(ax2).
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4.31. EXAMPLE

Figure 4.11: The inverse secant functionarccsc x usingSage .

Solution. By (4.23) (v = ax2)

dy

dx
=

d
dx

(ax2)

1 + (ax2)2
=

2ax

1 + a2x4
.

2. y = arcsin(3x− 4x3).

Solution. By 4.21 (v = 3x− 4x3),

dy

dx
=

d
dx

(3x− 4x3)
√

1 − (3x− 4x3)2
=

3 − 12x2

√
1 − 9x2 + 24x4 − 16x6

=
3√

1 − x2
.

3. y = arcsec x2+1
x2−1

.

Solution. By (4.25) (v = x2+1
x2−1

),
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4.31. EXAMPLE

Figure 4.12: The standard branch ofarccsc x usingSage .

dy

dx
=

d
dx

(

x2+1
x2−1

)

x2+1
x2−1

√

(

x2+1
x2−1

)2 − 1
=

(x2−1)2x−(x2+1)2x
(x2−1)2

x2+1
x2−1

· 2x
x2−1

= − 2

x2 + 1
.

4. d
dx

arcsin x
a

= 1√
a2−x2

5. d
dx

arccot(x2 − 5) = −2x
1+(x2−5)2

6. d
dx

arctan 2x
1−x2 = 2

1+x2

7. d
dx

arccsc 1
2x2−1

= 2√
1−x2

8. d
dx

arcvers 2x2 = 2√
1−x2

9. d
dx

arctan
√

1 − x = − 1
2
√

1−x(2−x)

10. d
dx

arccsc 3
2x

= 2
9−4x2

11. d
dx

arcvers 2x2

1+x2 = 2
1+x2
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4.31. EXAMPLE

12. d
dx

arctan x
a

= a
a2+x2

13. d
dx

arcsin x+1√
2

= 1√
1−2x−x2

14. f(x) = x
√
a2 − x2 + a2 arcsin x

a
Ans: f ′(x) =

2
√
a2 − x2

15. f(x) =
√
a2 − x2+a arcsin x

a
Ans: f ′(x) =

(

a−x
a+x

) 1
2

16. x = rarcvers y
r
−
√

2ry − y2 Ans: dx
dy

= y√
2ry−y2

17. θ = arcsin(3r − 1) Ans: dθ
dr

= 3√
6r−9r2

18. φ = arctan r+a
1−ar Ans: dφ

dr
= 1

1+r2

19. s = arcsec 1√
1−t2 Ans: ds

dt
= 1√

1−t2

20. d
dx

(x arcsin x) = arcsin x+ x√
1−x2

21. d
dθ

(tan θ arctan θ) = sec2 θ arctan θ tan θ
1+θ2

22. d
dt

[log(arccos t)] = − 1
arccos t

√
1−t2

23. f(y) = arccos(log y) Ans: f ′(y) = − 1

y
√

1−(log y)2

24. f(θ) = arcsin
√

sin θ Ans: f ′(θ) = 1
2

√
1 + csc θ

25. f(φ) = arctan
√

1−cosφ
1+cosφ

Ans: f ′(φ) = 1
2

26. p = earctan q Ans: dp
dq

= earctan q

1+q2

27. u = arctan ev−e−v

2
Ans: du

dv
= 2

ev+e−v

28. s = arccos e
t−e−t

et+e−t Ans: ds
dt

= − 2
ev+e−v

29. y = xarcsin x Ans: y′ = xarcsin x
(

arcsin x
x

+ log x√
1−x2

)

30. y = ex
x
arctan x Ans: y′ = ex

x [ 1
1+x2 + xx arctanx(1 + log x)

]
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4.31. EXAMPLE

31. y = arcsin(sinx) Ans: y′ = 1

32. y = arctan 4 sinx
3+5 cosx

Ans: y′ = 4
5+3 cos x

33. y = arccota
x

+ log
√

x−a
x+a

Ans: y′ = 2ax2

x4−a4

34. y = log
(

1+x
1−x
) 1

4 − 1
2
arctan x Ans: y′ = x2

1−x4

35. y =
√

1 − x2 arcsin x−x Ans: y′ = −x arcsin x√
1−x2

36. Compute the following derivatives:

(a) d
dx

arcsin 2x2 (f) d
dt
t3 arcsin t

3
(k) d

dy
arcsin

√

1 − y2

(b) d
dx

arctan a2x (g) d
dt
earctan at (l) d

dz
arctan(log 3az)

(c) d
dx

arcsecx
a

(h) d
dφ

tanφ2 · arctanφ
1
2 (m) d

ds
(a2 + s2)arcsec s

2

(d) d
dx
x arccos x (i) d

dθ
arcsin aθ (n) d

dα
arccot2α

3

(e) d
dx
x2arccotax (j) d

dθ
arctan

√
1 + θ2 (o) d

dt

√
1 − t2 arcsin t

Formulas (4.29) for differentiating a function of a function, and (4.31) for differ-
entiating inverse junctions, have been added to the list of formulas at the beginning
of this chapter as (4.27) and (4.28) respectively.

In the next eight examples, first finddy
dv

and dv
dx

by differentiation and then sub-
stitute the results indy

dx
= dy

dv
· dv
dx

(by (4.27)) to finddy
dx

. (As was pointed out in
§4.11, it might be possible to eliminatev between the two given expressions so as
to find y directly as a function ofx, but in most cases the above method is to be
preferred.)

In general our results should be expressed explicitly in terms of the independent
variable; that is,dy

dx
in terms ofx, dx

dy
in terms ofy, dφ

dθ
in terms ofθ, etc.

37. y = 2v2 − 4, v = 3x2 + 1.
dy
dv

= 4v; dv
dx

= 6x; substituting in (4.27),dy
dx

= 4v · 6x = 24x(3x2 + 1).
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4.31. EXAMPLE

38. y = tan 2v, v = arctan(2x− 1).
dy
dv

= 2 sec2 2v; dv
dx

= 1
2x2−2x+1

; substituting in (4.27),

dy

dx
=

2 sec2 2v

2x2 − 2x+ 1
= 2

tan2 2v + 1

2x2 − 2x+ 1
=

2x2 − 2x+ 1

2(x− x2)2

(sincev = arctan(2x− 1), tan v = 2x− 1, tan 2v = 2x−1
2x−2x2 ).

39. y = 3v2 − 4v + 5, v = 2x3 − 5 Ans: dy
dx

=
72x5 − 204x2

40. y = 2v
3v−2

, v = x
2x−1

Ans: dy
dx

= 4
(x−2)2

41. y = log(a2 − v2) Ans: dy
dx

= −2 tanx

42. y = arctan(a+v), v = ex Ans: dy
dx

= ex

1+(a+ex)2

43. r = e2s+ es, s = log(t− t2) Ans: dr
dt

= 4t3 −
6t2 + 1

In the following examples first finddx
dy

by differentiation and then substitute in

dy

dx
=

1
dx
dy

by (4.28)

to find dy
dx

.

44. x = y
√

1 + y Ans: dy
dx

= 2
√

1+y
2+3y

= 2x
2y+3y2

45. x =
√

1 + cos y Ans: dy
dx

= −2
√

1+cos y
sin y

=

− 2√
2−x2

46. x = y
1+log y

Ans: dy
dx

= (1+log y)2

log y

47. x = a log
a+
√
a2−y2
y

Ans: dy
dx

= −y
√
a2−y2
a2

48. x = rarcvers y
r
−
√

2ry − y2 Ans: dy
dx

=
√

2r−y
y

49. Show that the geometrical significance of (4.28) is that the tangent makes
complementary angles with the two coordinate axes.
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4.32. IMPLICIT FUNCTIONS

4.32 Implicit functions

When a relation betweenx andy is given by means of an equation not solved for
y, theny is called animplicit functionof x. For example, the equation

x2 − 4y = 0

definesy as an implicit function ofx. Evidentlyx is also defined by means of this
equation as an implicit function ofy. Similarly,

x2 + y2 + z2 − a2 = 0

defines anyone of the three variables as an implicit functionof the other two.
It is sometimes possible to solve the equation defining an implicit function for

one of the variables and thus change it into an explicit function. For instance,
the above two implicit functions may be solved fory, giving y = x2

4
andy =

±
√
a2 − x2 − z2; the first showingy as an explicit function ofx, and the second

as an explicit function ofx andz. In a given case, however, such a solution may
be either impossible or too complicated for convenient use.

The two implicit functions used in this section for illustration may be respec-
tively denoted byf(x, y) = 0 andF (x, y, z) = 0.

4.33 Differentiation of implicit functions

Wheny is defined as an implicit function ofx by means of an equation in the form

f(x, y) = 0, (4.33)

it was explained in the last section how it might be inconvenient to solve fory in
terms ofx; that is, to findy as an explicit function ofx so that the formulas we
have deduced in this chapter may be applied directly. Such, for instance, would
be the case for the equation

ax6 + 2x3y − y7x− 10 = 0. (4.34)

We then follow the rule:
Differentiate, regardingy as a function ofx, and put the result equal to zero7.

That is,
7Only corresponding values ofx andy which satisfy the given equation may be substituted in

the derivative.
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4.34. EXERCISES

d

dx
f(x, y) = 0. (4.35)

Let us apply this rule in findingdy
dx

from (4.34): by (4.35),

d

dx
(ax6 + 2x3y − y7x− 10) = 0,

d

dx
(ax6) +

d

dx
(2x3y) − d

dx
(y7x) − d

dx
(10) = 0;

6ax5 + 2x3 dy

dx
+ 6x2y − y7 − 7xy6 dy

dx
= 0;

(2x3 − 7xy6)
dy

dx
= y7 − 6ax5 − 6x2y;

dy

dx
=
y7 − 6ax5 − 6x2y

2x3 − 7xy6
.

This is the final answer.
The student should observe that in general the result will contain bothx andy.

4.34 Exercises

Differentiate the following by the above rule:

1. y2 = 4px Ans: dy
dx

= 2p
y

2. x2 + y2 = r2 Ans: dy
dx

= −x
y

3. b2x2 + a2y2 = a2b2 Ans: dy
dx

= − b2x
a2y

4. y3 − 3y + 2ax = 0 Ans: dy
dx

= 2a
3(1−y2)

5. x
1
2 + y

1
2 = a

1
2 Ans: dy

dx
= −

√

y
x

6. x
2
3 + y

2
3 = a

2
3 Ans: dy

dx
= − 3

√

y
x

7.
(

x
a

)2
+
(

y
b

) 2
3 = 1 Ans: dy

dx
= −3b

2
3 xy

1
3

a2

8. y2 − 2xy + b2 = 0 Ans: dy
dx

= y
y−x
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4.34. EXERCISES

9. x3 + y3 − 3axy = 0 Ans: dy
dx

= ay−x2

y2−ax

10. xy = yx Ans: dy
dx

= y2−xy log y
x2−xy log x

11. ρ2 = a2 cos 2θ Ans: dρ
dθ

= −a2 sin 2θ
ρ

12. ρ2 cos θ = a2 sin 3θ Ans: dρ
dθ

= 3a2 cos 3θ+ρ2 sin θ
2ρ cos θ

13. cos(uv) = cv Ans: du
dv

= c+u sin(uv)
−v sin(uv)

14. θ = cos(θ + φ) Ans: dθ
dφ

= − sin(θ+φ)
1+sin(θ+φ)

15. Find dy
dx

from the following equations:

(a) x2 = ay (f) xy + y2 + 4x = 0 (k) tan x+ y3 = 0
(b) x2 + 4y2 = 16 (g) yx2 − y3 = 5 (l) cos y + 3x2 = 0
(c) b2x2 − a2y2 = a2b2 (h) x2 − 2x3 = y3 (m) x cot y + y = 0
(d) y2 = x3 + a (i) x2y3 + 4y = 0 (n) y2 = log x

(e) x2 − y2 = 16 (j) y2 = sin 2x (o) ex
2
+ 2y3 = 0

16. A race track has the form of the circlex2 + y2 = 12500. Thex-axis and
y-axis are east and north respectively, and the unit is1 meter. If a runner
starts east at the extreme north point, in what direction will he be going

(a) when25
√

10 m east of OY? Ans. Southeast or southwest.
(b) when25

√
10 m north of OX? Ans. Southeast or northeast.

(c) when 30 rods west of OY? Ans. E.36o 52’ 12” N. or W.36o 52’ 12” N.
(d) when 200 m south of OX?
(e) when 50 m east of OY?

17. An automobile course is elliptic in form, the major axis being6 miles long
and running east and west, while the minor axis is2 miles long. If a car
starts north at the extreme east point of the course, in what direction will the
car be going

(a) when2 miles west of the starting point?

(b) when1/2 mile north of the starting point?
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4.35. MISCELLANEOUS EXERCISES

4.35 Miscellaneous Exercises

Differentiate the following functions:

1. arcsin
√

1 − 4x2 Ans: −2√
1−4x2

2. xex
2

Ans: ex
2
(2x2 + 1)

3. log sin v
2

Ans: 1
2
cot v

2

4. arccos a
y

Ans: a

y
√
y2−a2

5. x√
a2−x2 Ans: a2

(a2−x2)
3
2

6. x
1+log x

Ans: log x
(1+log x)2

7. log sec(1 − 2x) Ans: −2 tan(1 − 2x)

8. x2e2−3x Ans: xe2−3x(2 − 3x)

9. log
√

1−cos t
1+cos t

Ans: csc t

Here’s howSage tackles this one:

Sage

sage: t = var("t")
sage: diff(log(sqrt((1-cos(t))/(1+cos(t)))),t)
(cos(t) + 1) * (sin(t)/(cos(t) + 1)

+ (1 - cos(t)) * sin(t)/(cos(t) + 1)ˆ2)/(2 * (1 - cos(t)))
sage: diff(log(sqrt((1-cos(t))/(1+cos(t)))),t).simpl ify_trig()
-sin(t)/(cos(t)ˆ2 - 1)

Sincecos(t)2 − 1 = − sin(t)2, the result returned bySage agrees with the
answer given.

10. arcsin
√

1
2
(1 − cosx) Ans: 1

2
, for x > 0; −1

2
, for x < 0.

Here’s howSage tackles this one:
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4.35. MISCELLANEOUS EXERCISES

Sage

sage: diff(arcsin(sqrt((1-cos(x))/2)),x)
sin(x)/(2 * sqrt(2) * sqrt(1 - (1 - cos(x))/2) * sqrt(1 - cos(x)))
sage: diff(arcsin(sqrt((1-cos(x))/2)),x).simplify_tr ig()
sin(x)/(2 * sqrt(1 - cos(x)) * sqrt(cos(x) + 1))
sage: diff(arcsin(sqrt((1-cos(x))/2)),x).simplify_ra dical()
sin(x)/(2 * sqrt(1 - cos(x)) * sqrt(cos(x) + 1))

Here we see again thatSage does not simplify the result down to the final
answer. Nonetheless,simplify trig is useful. Since

√

1 − cos(x)
√

cos(x) + 1 =
√

1 − cos(x)2 =
√

sin(x)2 = ± sin(x),

we see the answer given is correct (at least for the interval−π < x < π).

11. arctan 2s√
s2−1

Ans: 2
(1−5s2)

√
s2−1

12. (2x− 1) 3

√

2
1+x

Ans: 7+4x
3(1+x)

3

√

2
1+x

13. x3 arcsinx
3

+ (x2+2)
√

1−x2

9
Ans: x2 arcsin x

14. tan2 θ
3

+ log sec2 θ
3

15. arctan 1
2
(e2x + e−2x)

16.
(

3
x

)2x

17. xtan x

18. (x+2)
1
3 (x2−1)

2
5

x
3
2

19. esec(1−3x)

20. arctan
√

1 − x2

21. z2

cos z

22. etanx
2

23. log sin2 1
2
θ
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24. eax log sin ax

Here’s howSage tackles this Exercise:

Sage

sage: a = var("a")
sage: diff(exp(a * x) * log(sin(a * x)),x)
a* eˆ(a * x) * log(sin(a * x)) + a * eˆ(a * x) * cos(a * x)/sin(a * x)

25. sin 3φ cos φ

26. a

2
√

(b−cxn)m

27. m+x
1+m2 · e

m arctan x√
1+x2

28. tan2 x− log sec2 x

29. 3 log(2 cosx+3 sinx)+2x
13

30. arccota
x

+ log
√

x−a
x+a

31. (log tan(3 − x2)3

32. 2−3t
1
2 +4t

1
3 +t2

t

33. (1+x)(1−2x)(2+x)
(3+x)(2−3x)

34. arctan(log 3x)

Here’s howSage tackles this one:

Sage

sage: diff(arctan(log(3 * x)),x)
1/(x * (log(3 * x)ˆ2 + 1))
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35. 3
√

(b− axm)n

Here’s howSage tackles this one:

Sage

sage: a,b,m,n = var("a,b,m,n")
sage: diff((b-a * xˆm)ˆ(n/3),x)
-a * m* n* xˆ(m - 1) * (b - a * xˆm)ˆ(n/3 - 1)/3

36. log
√

(a2 − bx2)m

37. log
√

y2+1
y2−1

38. earcsec 2θ

39.
√

(2−3x)3

1+4x

40.
3√a2−x2

cosx

41. ex log sin x

42. arcsin x√
1+x2

43. arctan ax

44. asin2mx

Here’s howSage solves this one:

Sage

sage: a,m = var("a,m")
sage: diff(aˆ(sin(m * x)ˆ2),x)
2* aˆsin(m * x)ˆ2 * log(a) * m* cos(m * x) * sin(m * x)

45. cot3(log ax)

46. (1 − 3x2)e
1
x

47. log
√

1−x2

3√1+x3
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CHAPTER

FIVE

Simple applications of the derivative

5.1 Direction of a curve

It was shown in§3.9, that if

y = f(x)

is the equation of a curve (see Figure 5.2), then

dy

dx
= tan τ = slope of line tangent to the curve at any point P.

Example 5.1.1.A group of hikers are climbing a hill whose height is described
by the graph of

h(x) = −x4 + 29x3 − 290x2 + 1200x.

Show that the hikers are climbing downhill whenx = 5.
This can be verified “by hand” by computingh′(5) and checking that it is nega-

tive (see also the plot in Figure 5.1), or usingSage :
Sage

sage: x = var("x")
sage: h = -xˆ4 + 29 * xˆ3 - 290 * xˆ2 + 1200 * x
sage: Dh = h.diff(); Dh
-4 * xˆ3 + 87 * xˆ2 - 580 * x + 1200
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5.1. DIRECTION OF A CURVE

sage: Dh(5)
-25
sage: plot(h,0,15)

The output of the above plot command is in Figure 5.1.

Figure 5.1: The graph ofy = −x4 + 29x3 − 290x2 + 1200x.

Thedirectionof a curve at any point is defined to be the same as the directionof
the line tangent to the curve at that point. From this it follows at once that

dy

dx
= tan τ = slope of the curve at any point P.

At a particular point whose coordinates are known we write

[

dy

dx

]

x=x1,y=y1

= slope of the curve (or tangent) at point (x1, y1).

At points such as D or F or H where the curve (or tangent) is parallel to thex-axis,
τ = 0o, thereforedy

dx
= 0 (see Figure 5.2 for the notation).
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5.1. DIRECTION OF A CURVE

Figure 5.2: The derivative = slope of line tangent to the curve.

At points such as A, B, G, where the curve (or tangent) is perpendicular to the
x-axis,τ = 90o, thereforedy

dx
= ∞.

At points such as E, where the curve is rising (moving from left to right on
curve),

τ = an acute angle; therefore
dy

dx
= a positive number.

The curve (or tangent) has a positive slope

• to the left of B,

• between D and F, and

• to the right of G,

in Figure 5.2. At points such as C, where the curve is falling,
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5.1. DIRECTION OF A CURVE

τ = an obtuse angle; therefore
dy

dx
= a negative number.

The curve (or tangent) has a negative slope between B and D, and also between F
and G.

Example 5.1.2.Given the curvey = x3

3
− x2 + 2 (see Figure 5.3).

(a) Findτ whenx = 1.
(b) Findτ whenx = 3.
(c) Find the points where the curve is parallel to thex-axis.
(d) Find the points whereτ = 45o.
(e) Find the points where the curve is parallel to the line2x− 3y = 6.

Figure 5.3: The graph ofy = x3

3
− x2 + 2.

Differentiating,dy
dx

= x2 − 2x = slope at any point.
(a) tan τ =

[

dy
dx

]

x=1
= 1 − 2 = −1; thereforeτ = 135o = 3π/4.

(b) tan τ =
[

dy
dx

]

x=3
= 9 − 6 = 3; thereforeτ = arctan 3 = 1.249....

(c) τ = 0o, tan τ = dy
dx

= 0; thereforex2 − 2x = 0. Solving this equation, we
find thatx = 0 or 2, giving points C and D where the curve (or tangent) is parallel
to thex-axis.
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5.1. DIRECTION OF A CURVE

(d) τ = 45o, tan τ = dy
dx

= 1; thereforex2−2x = 1. Solving, we getx = 1±
√

2,
giving two points where the slope of the curve (or tangent) isunity.

(e) Slope of line =2
3
; thereforex2 − 2x = 2

3
. Solving, we getx = 1 ±

√

5
3
,

giving points E and F where curve (or tangent) is parallel to2x− 3y = 6.

Theangle between two curvesat a common point will be the angle between their
tangents at that point. This definition is analogous to the fact that the direction of
curve at any point is defined to be the direction of its tangentat that point.

Example 5.1.3.Find the angle of intersection of the circles
(A) x2 + y2 − 4x = 1,
(B) x2 + y2 − 2y = 9.
Solution. Solving simultaneously, we find the points of intersection to be(3, 2)

and(1,−2). This can be verified “by hand” or using theSage solve command:

Sage

sage: x = var("x")
sage: y = var("y")
sage: F = xˆ2 + yˆ2 - 4 * x - 1
sage: G = xˆ2 + yˆ2 - 2 * y - 9
sage: solve([F == 0,G == 0],x,y)
[[x == 1, y == -2], [x == 3, y == 2]]

Using (A), formulas in§4.33 givedy
dx

= 2−x
y

. Using (B), formulas in§4.33 give
dy
dx

= x
1−y . Therefore,

[

2 − x

y

]

x=3,y=2

= −1

2
= slope of tangent to (A) at (3, 2).

[

x

1 − y

]

x=3,y=2

= −3 = slope of tangent to (B) at (3, 2).

We can check this using the commands

Sage

sage: x = var("x")
sage: y = function("y",x)
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5.1. DIRECTION OF A CURVE

Figure 5.4: The graphs ofx2 + y2 − 4x = 1, x2 + y2 − 2y = 9.

sage: F = xˆ2 + yˆ2 - 4 * x - 1
sage: F.diff(x)
2* y(x) * diff(y(x), x, 1) + 2 * x - 4
sage: solve(F.diff(x) == 0, diff(y(x), x, 1))
[diff(y(x), x, 1) == (2 - x)/y(x)]
sage: G = xˆ2 + yˆ2 - 2 * y - 9
sage: G.diff(x)
2* y(x) * diff(y(x), x, 1) - 2 * diff(y(x), x, 1) + 2 * x
sage: solve(G.diff(x) == 0, diff(y(x), x, 1))
[diff(y(x), x, 1) == -x/(y(x) - 1)]

The formula for finding the angle between two lines whose slopes arem1 and
m2 is
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5.2. EXERCISES

tan θ =
m1 −m2

1 +m1m2

,

by item 55,§12.1. Substituting,tan θ =
− 1

2
+3

1+ 3
2

= 1; thereforeθ = π/4 = 45o.

This is also the angle of intersection at the point(1,−2).

5.2 Exercises

The corresponding figure should be drawn in each of the following examples:

1. Find the slope ofy = x
1+x2 at the origin.

Ans. 1 = tan τ .

2. What angle does the tangent to the curvex2y2 = a3(x + y) at the origin
make with thex-axis?

Ans. τ = 135o = 3π/4.

3. What is the direction in which the point generating the graph of y = 3x2−x
tends to move at the instant whenx = 1?

Ans. Parallel to a line whose slope is5.

4. Show thatdy
dx

(or slope) is constant for a straight line.

5. Find the points where the curvey = x3 − 3x2 − 9x + 5 is parallel to the
x-axis.

Ans. x = 3, x = −1.

6. At what point ony2 = 2x3 is the slope equal to3?

Ans. (2, 4).

7. At what points on the circlex2 + y2 = r2 is the slope of the tangent line
equal to−3

4
?

Ans.
(

±3r
5
,±4r

5

)

8. Where will a point moving on the parabolay = x2 − 7x + 3 be moving
parallel to the liney = 5x+ 2?

Ans. (6,−3).
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9. Find the points where a particle moving on the circlex2 + y2 = 169 moves
perpendicular to the line5x+ 12y = 60.

Ans. (±12,∓5).

10. Show that all the curves of the systemy = log kx have the same slope; i.e.
the slope is independent ofk.

11. The path of the projectile from a mortar cannon lies on theparabolay =
2x−x2; the unit is 1 mile, thex-axis being horizontal and they-axis vertical,
and the origin being the point of projection. Find the direction of motion of
the projectile

(a) at instant of projection;

(b) when it strikes a vertical cliff3
2

miles distant.

(c) Where will the path make an inclination of45o = π/4 with the horizon-
tal?

(d) Where will the projectile travel horizontally?

Ans. (a)arctan 2; (b) 135o = 3π/4; (c) (1
2
, 3

4
); (d) (1, 1).

12. If the cannon in the preceding example was situated on a hillside of inclina-
tion 45o = π/4, at what angle would a shot fired up strike the hillside?

Ans. 45o = π/4.

13. At what angles does a road following the line3y − 2x − 8 = 0 intersect a
railway track following the parabolay2 = 8x?

Ans. arctan 1
5
, andarctan 1

8
.

14. Find the angle of intersection between the parabolay2 = 6x and the circle
x2 + y2 = 16.

Ans. arctan 5
3

√
3.

15. Show that the hyperbolax2 − y2 = 5 and the ellipsex
2

18
+ y2

8
= 1 intersect

at right angles.

16. Show that the circlex2 + y2 = 8ax and the cissoidy2 = x3

2a−x

(a) are perpendicular at the origin;

(b) intersect at an angle of45o = π/4 at two other points.
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17. Find the angle of intersection of the parabolax2 = 4ay and the Witch of
Agnesi,y = 8a3

x2+4a2 .

Ans. arctan 3 = 71o33′ = 1.249....

For the interesting history of this curve, see for example
http://en.wikipedia.org/wiki/Witch_of_Agnesi .

18. Show that the tangents to the Folium of Descartes,x3 + y3 = 3axy at the
points where it meets the parabolay2 = ax are parallel to they-axis.

For some history of this curve, see for example
http://en.wikipedia.org/wiki/Folium_of_Descartes .

19. At how many points will a particle moving on the curvey = x3−2x2+x−4
be moving parallel to thex-axis? What are the points?

Ans. Two; at(1,−4) and(1
3
,−104

27
).

20. Find the angle at which the parabolasy = 3x2−1 andy = 2x2+3 intersect.

Ans. arctan 4
97

.

21. Find the relation between the coefficients of the conicsa1x
2 + b1y

2 = 1 and
a2x

2 + b2y
2 = 1 when they intersect at right angles.

Ans. 1
a1

− 1
b1

= 1
b2
− 1

b2
.

5.3 Equations of tangent and normal lines

This section will discuss equations of tangent and normal lines, lengths of subtan-
gent and subnormal, and rectangular coordinates.

The equation of a straight line passing through the point(x1, y1) and having the
slopem is

y − y1 = m(x− x1)

(this is item 54,§12.1).

If this line is tangent to the curvey = f(x) at the pointP = (x1, y1) (see Figure
5.5 to visualize how these can be situated in relationship tothe graph of the curve),
then from§5.1,
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5.3. EQUATIONS OF TANGENT AND NORMAL LINES

Figure 5.5: The tangent and normal line to a curve.

m = tan τ =

[

dy

dx

]

x=x1,y=y1

.

Therefore at a pointP = (x1, y1) on the curve, the equation of thetangent line
(containing the segmentTP ) is

y − y1 = (

[

dy

dx

]

x=x1,y=y1

)(x− x1). (5.1)

The normal being perpendicular to tangent, its slope is

− 1

m
= −

[

dx

dy

]

x=x1,y=y1

= −(

[

dy

dx

]

x=x1,y=y1

)−1

(item 55 in§12.1). And since it also passes through the pointP = (x1, y1), we
have for the equation of thenormal line(containing the segmentPN )

y − y1 = −(

[

dx

dy

]

x=x1,y=y1

)(x− x1). (5.2)
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The length of the segment on the tangent line which is betweenP = (x1, y1) and
the point of contact with thex-axis is called thelength of the tangent( = TP ), and
the projection of this segment on thex-axis is called thelength of the subtangent1

(= TM ). Similarly, we have thelength of the normal( = PN ) and thelength of
the subnormal(= MN ).

In the triangleTPM , tan τ = MP
TM

; therefore2

TM =
MP

tan τ
= y1

[

dx

dy

]

x=x1,y=y1

= length of subtangent. (5.3)

In the triangleMPN , tan τ = MN
MP

; therefore3

MN = MP tan τ = y1

[

dy

dx

]

x=x1,y=y1

= length of subnormal. (5.4)

The length of tangent (= TP ) and the length of normal (= PN ) may then
be found directly from Figure 5.5, each being the hypotenuseof a right triangle
having the two legs known. Thus

TP =
√

¯TM
2
+ M̄P

2

=

√

(

y1

[

dx
dy

]

x=x1,y=y1

)2

+ (y1)2

= y1

√

(

[

dx
dy

]

x=x1,y=y1

)2

+ 1

= length of tangent.

(5.5)

Likewise,

PN =
√

M̄N
2
+ M̄P

2

=

√

(

[

dy
dx

]

x=x1,y=y1

)2

+ (y1)2

= y1

√

(

[

dy
dx

]

x=x1,y=y1

)2

+ 1

= length of normal.

(5.6)

1Thesubtangentis the segment obtained by projecting the portionTP of the tangent line onto
thex-axis).

2If subtangent extends to the right of T, we consider it positive; if to the left, negative.
3 If subnormal extends to the right of M, we consider it positive; if to the left, negative.
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The student is advised to get the lengths of the tangent and ofthe normal directly
from the figure rather than by using these equations.

When the length of subtangent or subnormal at a point on a curveis determined,
the tangent and normal may be easily constructed.

5.4 Exercises

1. Find the equations of tangent and normal, lengths of subtangent, subnormal
tangent, and normal at the point(a, a) on the cissoidy2 = x3

2a−x .

Figure 5.6: Graph of cissoidy2 = x3

2a−x with a = 1.

Solution. dy
dx

= 3ax2−x3

y(2a−x)2 . Hence

dy1

dx1

=

[

dy

dx

]

x=a,y=a

=
3a3 − a3

a(2a− a)2
= 2
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is the slope of tangent. Substituting in (5.1) gives

y = 2x− a,

the equation of the tangent line. Substituting in (5.2) gives

2y + x = 3a,

the equation of the normal line. Substituting in (5.3) gives

TM =
a

2
,

the length of subtangent. Substituting in (5.4) gives

MN = 2a,

the length of subnormal. Also

PT =
√

(TM)2 + (MP )2 =

√

a2

4
+ a2 =

a

2

√
5,

which is the length of tangent, and

PN =
√

(MN)2 + (MP )2 =
√

4a2 + a2 = a
√

5,

the length of normal.

2. Find equations of tangent and normal to the ellipsex2 + 2y2 − 2xy− x = 0
at the points wherex = 1.

Ans. At (1, 0), 2y = x− 1, y + 2x = 2. At (1, 1), 2y = x+ 1, y + 2x = 3.

3. Find equations of tangent and normal, lengths of subtangent and subnormal
at the point(x1, y1) on the circle4 x2 + y2 = r2.

Ans. xlx+ y1y = r2, x1y − y1x = 0, −x1,−y12

x1
.

4. Show that the subtangent to the parabolay2 = 4px is bisected at the vertex,
and that the subnormal is constant and equal to2p.

4In Exs. 3 and 5 the student should notice that if we drop the subscripts in equations of tangents,
they reduce to the equations of the curves themselves.
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5. Find the equation of the tangent at(x1, y1) to the ellipsex
2

a2 + y2

b2
= 1.

Ans. x1x
a2 + y1y

b2
= 1.

Here’s how to find the length of tangent, normal, subtangent and subnormal
of this in Sage using the valuesa = 1, b = 2 (so x2 + y2

4
= 1) and

x1 = 4/5, y1 = 6/5.

Sage

sage: x = var("x")
sage: y = var("y")
sage: F = xˆ2 + yˆ2/4 - 1
sage: Dx = -diff(F,y)/diff(F,x); Dx; Dx(4/5,6/5)
-y/(4 * x)
-3/8
sage: Dy = -diff(F,x)/diff(F,y); Dy; Dy(4/5,6/5)
-4 * x/y
-8/3

(For thisSage calculation, we have used the fact thatF (x, y) = 0 im-
pliesFx(x, y) + dy

dx
Fy(x, y) = 0, wherey is regarded as a function ofx.)

Therefore, we have (using (5.3))

length of subtangent = y1

[

dx

dy

]

x=x1,y=y1

= (6/5)(−3/8) = −9/20,

(using (5.4))

length of subnormal = y1

[

dy

dx

]

x=x1,y=y1

= (6/5)(−8/3) = −16/5,

(using (5.5))

length of tangent = y1

√

(

[

dx
dy

]

x=x1,y=y1

)2

+ 1 = (6/5)
√

1 + 9
64

= 3
√

73/20 = 1.2816... ,
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and (using (5.6))

length of normal = y1

√

(

[

dy
dx

]

x=x1,y=y1

)2

+ 1 = (6/5)
√

1 + 64
9

= 2
√

73/5 = 3.4176... .

6. Find equations of tangent and normal to the Witch of Agnesiy = 8a3

4a2+x2 as
at the point wherex = 2a.

Ans. x+ 2y = 4a, y = 2x− 3a.

7. Prove that at any point on the catenaryy = a
2
(e

x
a + e−

x
a ) the lengths of

subnormal and normal area
4
(e

2x
a − e−

2x
a ) and y2

a
respectively.

8. Find equations of tangent and normal, lengths of subtangent and subnormal,
to each of the following curves at the points indicated:

(a) y = x3 at (1
2
, 1

8
) (e) y = 9 − x2 at (−3, 0)

(b) y2 = 4x at (9,−6) (f) x2 = 6y where x = −6

(c) x2 + 5y2 = 14 where y = 1 (g) x2 − xy + 2x− 9 = 0 at (3, 2)

(d) x2 + y2 = 25at(−3,−4) (h) 2x2 − y2 = 14 at (3,−2)

9. Prove that the length of subtangent toy = ax is constant and equal to1
log a

.

10. Get the equation of tangent to the parabolay2 = 20x which makes an angle
of 45o = π/4 with thex-axis.

Ans. y = x + 5. (Hint: First find point of contact by method of Example
5.1.2.)

11. Find equations of tangents to the circlex2 + y2 = 52 which are parallel to
the line2x+ 3y = 6.

Ans. 2x+ 3y ± 26 = 0

12. Find equations of tangents to the hyperbola4x2 − 9y2 + 36 = 0 which are
perpendicular to the line2y + 5x = 10.

Ans. 2x− 5y ± 8 = 0.
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13. Show that in the equilateral hyperbola2xy = a2 the area of the triangle
formed by a tangent and the coordinate axes is constant and equal toa2.

14. Find equations of tangents and normals to the curvey2 = 2x2 − x3 at the
points wherex = 1.

Ans. At (1, 1), 2y = x + 1, y + 2x = 3. At (1,−1), 2y = −x − 1,
y − 2x = −3.

15. Show that the sum of the intercepts of the tangent to the parabolax
1
2 +y

1
2 =

a
1
2 .

16. Find the equation of tangent to the curvex2(x+y) = a2(x−y) at the origin.

17. Show that for the hypocycloidx
2
3 + y

2
3 = a

2
3 that portion of the tangent

included between the coordinate axes is constant and equal to a.

(This curve is parameterized byx = a cos(t)3, y = a sin(t)3, 0 ≤ t ≤ 2π.
Parametric equations shall be discussed in the next section.)

18. Show that the curvey = ae
x
c has a constant subtangent.

5.5 Parametric equations of a curve

Let the equation of a curve be

F (x, y) = 0. (5.7)

If x is given as a function of a third variable,t say, called aparameter, then by
virtue of (5.7)y is also a function oft, and the same functional relation (5.7)
betweenx andy may generally be expressed by means of equations in the form

{

x = f(t),

y = g(t)
(5.8)

each value oft giving a value ofx and a value ofy. Equations (5.8) are called
parametric equations of the curve. If we eliminatet between equations (5.8), it is
evident that the relation (5.7) must result.

Example 5.5.1.For example, take equation of circle
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5.5. PARAMETRIC EQUATIONS OF A CURVE

x2 + y2 = r2 or y =
√
r2 − x2.

We have
{

x = r cos t

y = r sin t
(5.9)

as parametric equations of the circle,t being the parameter5.
If we eliminatet between equations (5.9) by squaring and adding the results,we

have

x2 + y2 = r2(cos2 t+ sin2 t) = r2,

the rectangular equation of the circle. It is evident that ift varies from0 to 2π, the
pointP = (x, y) will describe a complete circumference.

In §5.13 we shall discuss the motion of a pointP , which motion is defined by
equations such as

{

x = f(t),

y = g(t)

We call these theparametric equations of the path, the timet being the parameter.

Example 5.5.2.Newtonian physics tells us that
{

x = v0 cosα · t,
y = −1

2
gt2 + v0 sinα · t

are really the parametric equations of the trajectory of a projectile6, the timet
being the parameter. The elimination oft gives the rectangular equation of the
trajectory

y = x tanα− gx2

2v2
0 cos2 α

.

5Parameterizations are not unique. Another set of parametric equations of the first quadrant of
the circle is given byx =

√
2t√

1+t2
, y = 1−t√

1+t2
, for example.

6Subject to (downward) gravitational force but no wind resistance or other external forces.
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5.5. PARAMETRIC EQUATIONS OF A CURVE

Since from (5.8)y is given as a function oft, andt as a function ofx, we have

dy
dx

= dy
dt

· dt
dx

by (4.27)
= dy

dt
· 1

dx
dt

by (4.28)

that is,

dy

dx
=

dy
dt
dx
dt

=
g′(t)

f ′(t)
. (5.10)

Hence, if the parametric equations of a curve are given, we can find equations of
tangent and normal, lengths of subtangent and subnormal at agiven point on the
curve, by first finding the value ofdy

dx
at that point from (5.10) and then substituting

in formulas (5.1), (5.2), (5.3), (5.4) of the last section.

Example 5.5.3.Find equations of tangent and normal, lengths of subtangentand
subnormal to the ellipse

{

x = a cosφ,

y = b sinφ,
(5.11)

at the point whereφ = π
4
.

As in Figure 5.7 draw the major and minor auxiliary circles ofthe ellipse.
Through two points B and C on the same radius draw lines parallel to the axes
of coordinates. These lines will intersect in a pointP = (x, y) on the ellipse, be-
causex = OA = OB cosφ = a cosφ andy = AP = OD = OC sinφ = b sinφ,
or, x

a
= cosφ and y

b
= sinφ. Now squaring and adding, we get

x2

a2
+
y2

b2
= cos2 φ+ sin2 φ = 1,

the rectangular equation of the ellipse.φ is sometimes called theeccentric angle
of the ellipse at the point P.

Solution. The parameter beingφ, dx
dφ

= −a sinφ, dy
dφ

= b cosφ.

Substitutingφ = π
4

in the given equations (5.11), we get
(

a√
2
, b√

2

)

as the point

of contact. Hence
[

dy
dx

]

x=x1,y=y1
= − b

a
. Substituting in (5.1),

y − b√
2

= − b

a

(

x− a√
2

)

,

or, bx+ ay =
√

2ab, the equation of tangent. Substituting in (5.2),
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5.5. PARAMETRIC EQUATIONS OF A CURVE

Figure 5.7: Auxiliary circles of an ellipse.

y − b√
2

=
a

b

(

x− a√
2

)

,

or,
√

2(ax−by) = a2−b2, the equation of normal. Substituting in (5.3) and (5.4),
we find

b√
2

(

− b

a

)

= − b2

a
√

2
,

the length of subnormal, and
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5.5. PARAMETRIC EQUATIONS OF A CURVE

b√
2

(

−a
b

)

= − a√
2
,

the length of subtangent.

Example 5.5.4.Given equation of the cycloid in parametric form
{

x = a(θ − sin θ),

y = a(1 − cos θ),

θ being the variable parameter; find lengths of subtangent, subnormal, tangent,
and normal at the point whereθ = π

2
.

The path described by a point on the circumference of a circlewhich rolls with-
out sliding on a fixed straight line is called thecycloid. Let the radius of the rolling
circle bea, P the generating point, and M the point of contact with the fixed line
OX, which is calledthe base. If arc PM equals OM in length, then P will touch at
O if the circle is rolled to the left. We have, denoting angle POM by θ,

x = OM −NM = aθ − a sin θ = a(θ − sin θ),
y = PN = MC − AC = a− a cos θ = a(1 − cos θ),

the parametric equations of the cycloid, the angleθ through which the rolling
circle turns being the parameter.OD = 2πa is called thebase of one archof the
cycloid, and the point V is called thevertex. Eliminatingθ, we get the rectangular
equation

x = a arccos

(

a− y

a

)

−
√

2ay − y2.

TheSage commands for creating this plot are as follows:
Sage

sage: t = var("t")
sage: f1 = lambda t: [t-sin(t),1-cos(t)]
sage: p1 = parametric_plot(f1(t), 0.0, 2 * pi, rgbcolor=(1,0,0))
sage: f2 = lambda t: [t+RR(pi)/2-1,t+1]
sage: p2 = parametric_plot(f2(t), -1, 1, rgbcolor=(1,0,0) )
sage: f3 = lambda t: [-t+RR(pi)/2,t]
sage: p3 = parametric_plot(f3(t), -1, 1, rgbcolor=(1,0,0) )
sage: t1 = text("P", (RR(pi)/2-1+0.1,1-0.1))
sage: t2 = text("T", (-0.4,0.1))
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5.5. PARAMETRIC EQUATIONS OF A CURVE

Figure 5.8: Tangent line of a cycloid.

sage: t3 = text("N", (RR(pi)/2,0))
sage: show(p1+p2+p3+t1+t2+t3)

Solution:
dx

dθ
= a(1 − cos θ),

dy

dθ
= a sin θ.

Substituting in (5.10),

dy

dx
=

sin θ

1 − cos θ
,

the slope at any point. Sinceθ = π
2
, the point of contact is

(

πa
2
− a, a

)

, and
[

dy
dx

]

x=x1,y=y1
= 1.

Substituting in (5.3), (5.4), (5.5), (5.6) of the last section, we get
length of subtangent =a,
length of subnormal =a,
length of tangent =a

√
2,

length of normal =a
√

2.
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5.6 Exercises

Find equations of tangent and normal, lengths of subtangentand subnormal to
each of the following curves at the point indicated:

1. Curve:x = t2, 2y = t;

Point: t = 1.

Tangent line:x− 4y + 1 = 0;

Normal line:8x+ 2y − 9 = 0;

Subtangent:2;

Subnormal:1
8
.

2. Curve:x = t, y = t3;

Point: t = 2.

Tangent line:12x− y − 16 = 0;

Normal line:x+ 12y − 98 = 0;

Subtangent:2
3
;

Subnormal:96.

3. Curve:x = t2, y = t3;

Point: t = 1.

Tangent line:3x− 2y − 1 = 0;

Normal line:2x+ 3y − 5 = 0;

Subtangent:2
3
;

Subnormal:3
2
.

4. Curve:x = 2et, y = e−t;

Point: t = 0.

Tangent line:x+ 2y − 4 = 0;

Normal line:2x− y − 3 = 0;

Subtangent:−2;

Subnormal:−1
2
.
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5. Curve:x = sin t, y = cos 2t;

Point: t = π
6
.

Tangent line:2y + 4x− 3 = 0;

Normal line:4y − 2x− 1 = 0;

Subtangent:−1
4
;

Subnormal:−1.

Sage can help with the computations here:

Sage

sage: t = var("t")
sage: x = sin(t)
sage: y = cos(2 * t)
sage: t0 = pi/6
sage: y_x = diff(y,t)/diff(x,t)
sage: y_x
-2 * sin(2 * t)/cos(t)
sage: y_x(t0)
-2
sage: m = y_x(t0); x0 = x(t0); y0 = y(t0)
sage: X,Y = var("X,Y")
sage: Y - y0 == m * (X - x0)
Y - 1/2 == -2 * (X - 1/2)

The last line is the point-slope form of the tangent line of the paramet-
ric curve at that pointt0 = π/6 (so, (x0, y0) = (sin(t0), cos(2t0)) =
(1/2, 1/2)). We useX andY in place ofx andy so as to not over-ride
the entries thatSage has stored for them. Continuing the aboveSage
computations:

Sage

sage: x_y = diff(x,t)/diff(y,t)
sage: len_subtan = y(t0) * x_y(t0); len_subtan
-1/4
sage:
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sage: len_subnor = y(t0) * y_x(t0); len_subnor
-1
sage: len_tan = y(t0) * sqrt(x_y(t0)ˆ2+1); len_tan
sqrt(5)/4
sage: len_nor = y(t0) * sqrt(y_x(t0)ˆ2+1); len_nor
sqrt(5)/2

These tell us the length of the subtangent is−1
4

(as expected), as well as the
lengths of the subnormal, tangent and normal, using formulas (5.10), (5.3),
(5.4), (5.5), (5.6) of the last section.

6. Curve:x = 1 − t, y = t2;

Point: t = 3.

7. Curve:x = 3t; y = 6t− t2;

Point: t = 0.

8. Curve:x = t3; y = t;

Point: t = 2.

9. Curve:x = t3, y = t2;

Point: t = −1.

10. Curve:x = 2 − t; y = 3t2;

Point: t = 1.

11. Curve:x = cos t, y = sin 2t;

Point: t = π
3
.

12. Curve:x = 3e−t, y = 2et;

Point: t = 0.

13. Curve:x = sin t, y = 2 cos t;

Point: t = π
4
.

14. Curve:x = 4 cos t, y = 3 sin t;

Point: t = π
2
.
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15. Curve:

Point:

In the following curves find lengths of (a) subtangent, (b) subnormal, (c) tangent,
(d) normal, at any point:

16. The curve

{

x = a(cos t+ t sin t),

y = a(sin t− t cos t).

Ans. (a)y cot t, (b) y tan t, (c) y
sin t

, (d) y
cos t

.

17. The hypocycloid (astroid)

{

x = 4a cos3 t,

y = 4a sin3 t.

Ans. (a)−y cot t, (b)−y tan t, (c) y
sin t

, (d) y
cos t

.

18. The circle

{

x = r cos t,

y = r sin t.

19. The cardioid

{

x = a(2 cos t− cos 2t),

y = a(2 sin t− sin 2t).

20. The folium

{

x = 3t
1+t3

y = 3t2

1+t3
.
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21. The hyperbolic spiral

{

x = a
t
cos t

y = a
t
sin t

5.7 Angle between radius vector and tangent

Angle between the radius vector drawn to a point on a curve andthe tangent to the
curve at that point. Let the equation of the curve in polar coordinates beρ = f(θ).

Let P be any fixed point(ρ, θ) on the curve. Ifθ, which we assume as the inde-
pendent variable, takes on an increment∆θ, thenρ will take on a corresponding
increment∆ρ.

Figure 5.9: Angle between the radius vector drawn to a point on a curve and the
tangent to the curve at that point.

Denote by Q the point(ρ+∆ρ, θ+∆θ), as in Figure 5.9, Draw PR perpendicular
to OQ where R is a point at a distance ofρ cos ∆θ from the origin. ThenOQ =
ρ+ ∆ρ, PR = ρ sin ∆θ, andOR = ρ cos ∆θ. Also,
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5.7. ANGLE BETWEEN RADIUS VECTOR AND TANGENT

tanPQR =
PR

RQ
=

PR

OQ−OR
=

ρ sin ∆θ

ρ+ ∆ρ− ρ cos ∆θ
.

Denote byψ the angle between the radius vector OP and the tangent PT. If we
now let∆θ approach the limit zero, then

(a) the point Q will approach indefinitely near P;

(b) the secant PQ will approach the tangent PT as a limiting position; and

(c) the angle PQR will approachψ as a limit.

Hence

tan ψ = lim
∆θ→0

ρ∆θ

ρ+ ∆ρ− ρ cos ∆θ
= lim

∆θ→0

ρ∆θ

2ρ sin2 ∆θ
2

+ ∆ρ

(since, from 39,§12.1,ρ − ρ cos ∆θ = ρ(1 − cos ∆θ) = 2ρ sin2 ∆θ
2

). Dividing
both numerator and denominator by∆θ, this is

= lim
∆θ→0

ρ sin ∆θ
∆θ

2ρ sin2 ∆θ
2

∆θ
+ ∆ρ

∆θ

= lim
∆→0

ρ · sin ∆θ
∆θ

ρ sin ∆θ
2
· sin ∆θ

2
∆θ
2

+ ∆ρ
∆θ

.

Since

lim
∆θ→0

(

∆ρ

∆θ

)

=
dρ

dθ
and lim

∆θ→0

(

sin
∆θ

2

)

= 0,

also

lim
∆θ→0

(

sin ∆θ

∆θ

)

= 1

and

lim
∆θ→0

sin ∆θ
2

∆θ
2

= 1

by §2.10, we have

tan ψ =
ρ
dρ
dθ

(5.12)
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From the triangle OPT we get

τ = θ + ψ. (5.13)

Having foundτ , we may then findtan τ , the slope of the tangent to the curve at
P. Or since, from (5.13),

tan τ = tan(θ + ψ) =
tan θ + tanψ

1 − tan θ tanψ

we may calculatetan ψ from (5.12) and substitute in the formula

slope of tangent = tan τ =
tan θ + tanψ

1 − tan θ tanψ
. (5.14)

Example 5.7.1.Find ψ andτ in the cardioidψ = a(1 − cos θ). Also find the
slope atθ = π

6
.

Solution. dψ
dθ

= a sin θ. Substituting in (5.12) gives

tanψ =
ρ
dρ
dθ

=
a(1 − cos θ)

a sin θ
=

2a sin2 θ
2

2a sin θ
2
cos θ

2

= tan
θ

2
,

by items 39 and 37,§12.1. Sincetanψ = tan θ
2
, we haveψ = θ

2
.

Substituting in (5.13),τ = θ + θ
2

= 3θ
2

. so

tan τ = tan
π

4
= 1.

To find the angle of intersectionφ of two curvesC andC ′ whose equations are
given in polar coordinates, we may proceed as follows:

angle TPT′ = angle OPT′ - angle OPT,

or,φ = ψ′ − ψ. Hence

tan φ =
tan ψ′ − tan ψ

1 + tan ψ′ tan ψ
, (5.15)

wheretan ψ′ andtan ψ are calculated by (5.12) from the two curves and evalu-
ated for the point of intersection.
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Figure 5.10: The angle between two curves.

Example 5.7.2.Find the angle of of intersection of the curvesρ = a sin 2θ,
ρ = a cos 2θ.

Solution. Solving the two equations simultaneously, we getat the point of inter-
section

tan 2θ = 1, 2θ = 45o = π/4, θ =
45

2

o

= π/8.

From the first curve, using (5.12),

tanψ′ =
1

2
tan 2θ =

1

2
,

for θ = 45
2

o
= π/8. From the second curve,

tanψ = −1

2
cot 2θ = −1

2
,

for θ = 45
2

o
= π/8.

Substituting in ((5.15),

tanψ =
1
2

+ 1
2

1 − 1
4

=
4

3
.

thereforeψ = arctan 4
3
.
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5.8 Lengths of polar subtangent and polar subnor-
mal

Draw a line NT through the origin perpendicular to the radiusvector of the point
P on the curve. If PT is the tangent and PN the normal to the curve at P, then7

Figure 5.11: The polar subtangent and polar subnormal.

OT = length of polar subtangent,

and

ON = length of polar subnormal

7Whenθ increases withρ, dθ
dρ

is positive andρ is an acute angle, as in Figure 5.11. Then the
subtangent OT is positive and is measured to the right of an observer placed at O and looking along
OP. Whendθ

dρ
is negative, the subtangent is negative and is measured to the left of the observer.
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of the curve at P.
In the triangle OPT,tan ψ = OT

ρ
. Therefore

OT = ρ tanψ = ρ2dθ

dρ
= length of polar subtangent. (5.16)

In the triangle OPN,tanψ = ρ
ON

. Therefore

ON =
ρ

tanψ
=
dρ

dθ
= length of polar subnormal. (5.17)

The length of the polar tangent (= PT) and the length of the polar normal (= PN)
may be found from the figure, each being the hypotenuse of a right triangle.

Example 5.8.1.Find lengths of polar subtangent and subnormal to the lemniscate
ρ2 = a2 cos 2θ.

Solution. Differentiating the equation of the curve as an implicit function with
respect toθ, or,2ρdρ

dθ
= −2a2 sin 2θ, dρ

dθ
= −a2 sin 2θ

ρ
.

Substituting in (5.16) and (5.17), we get

length of polar subtangent =− ρ3

a2 sin 2θ
,

length of polar subnormal =−a2 sin 2θ
ρ

.

If we wish to express the results in terms ofθ, find ρ in terms ofθ from the given
equation and substitute. Thus, in the above,ρ = ±a

√
cos 2θ; therefore

length of polar subtangent =±a cot 2θ
√

cos 2θ.

5.9 Examples

1. In the circleρ = r sin θ, findψ andτ in terms ofθ.

Solution:ψ = θ, τ = 2θ.

2. In the parabolaρ = a sec
θ
2 , show thatτ + ψ = π.

3. In the curveρ2 = a2 cos 2θ, show that2ψ = π + 4θ.

4. Show thatψ is constant in the logarithmic spiralρ = eaθ. Since the tangent
makes a constant angle with the radius vector, this curve is also called the
equiangular spiral.
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5. Given the curveρ = a sin3 θ
3
, prove thatτ = 4ψ.

Sage can help with this problem. Using (5.12) but witht in place ofθ for
typographical simplicity, we have

Sage

sage: a,t = var("a,t")
sage: r = a * sin(t/3)ˆ3
sage: tanpsi = r/diff(r,t); tanpsi
sin(t/3)/cos(t/3)

Therefore,tan(ψ) = tan(θ/3), soθ = 3ψ. Therefore, according to (5.13),
we haveτ = θ + ψ = 3ψ + ψ = 4ψ, as expected.

6. Show thattan ψ = θ in the spiral of Archimedesρ = aθ. Find values ofψ
whenθ = 2π and4π.

Solution:ψ = 80o57′ = 1.4128... and85o27′ = 1.4913....

7. Find the angle between the straight lineρ cos θ = 2a and the circleρ =
5a sin θ.

Solution:arctan 3
4
.

8. Show that the parabolasρ = a sec2 θ
2

andρ = b csc2 θ
2

intersect at right
angles.

9. Find the angle of intersection ofρ = a sin θ andρ = a sin 2θ.

Solution: At origin0o; at two other pointsarctan 3
√

3.

10. Find the slopes of the following curves at the points designated:
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curve point solution (if given)

(a) ρ = a(l − cos, θ) θ = π
2

−1
(b) ρ = a sec2 θ ρ = 2a 3
(c) ρ = a sin 4θ origin 0, 1,∞,−1
(d) ρ2 = a2 sin 4θ origin 0, 1,∞,−1

(e) ρ = a sin 3θ origin 0,
√

3,−
√

3
(f) ρ = a cos 3θ origin
(g) ρ = a cos 2θ origin
(h) ρ = a sin 2θ θ = π

4

(i) ρ = a sin 3θ θ = pi
6

(j) ρ = aθ θ = π
2

(k) ρθ = a θ = π
2

(l) ρ = eθ θ = 0

11. Prove that the spiral of Archimedesρ = aθ, and the reciprocal spiralρ = a
θ
,

intersect at right angles.

12. Find the angle between the parabolaρ = asec2 θ
2

and the straight line
ρ sin θ = 2a.

Solution:45o = π/4.

13. Show that the two cardioidsρ = a(1+cos θ) andρ = a(1−cos θ) cut each
other perpendicularly.

14. Find lengths of subtangent, subnormal, tangent, and normal of the spiral of
Archimedesρ = aθ.

Solution: subt. =ρ
2

a
, tan. = ρ

a

√

a2 + ρ2, subn. =a, nor. =
√

a2 + ρ2. The
student should note the fact that the subnormal is constant.

15. Get lengths of subtangent, subnormal, tangent, and normal in the logarith-
mic spiralρ = aθ.

Solution: subt. = ρ
log a

, tan. = ρ
√

1 + 1
log2 a

, subn. =ρ log a, nor. =

ρ
√

1 + log2 a.

Whena = e, we notice that subt. = subn., and tan. = nor.

16. Find the angles between the curvesρ = a(1 + cos θ) andρ = b(1− cos θ).

Solution:0 and π
2
.
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17. Show that the reciprocal spiralρ = a
θ

has a constant subtangent.

18. Show that the equilateral hyperbolasρ2 sin 2θ = a2, ρ2 cos 2θ = b2 inter-
sect at right angles.

5.10 Solution of equations having multiple roots

Any root which occurs more than once in an equation is called amultiple root.
Thus3, 3, 3, −2 are the roots of

x4 − 7x3 + 9x2 + 27x− 54 = 0;

hence3 is a multiple root occurring three times. Evidently this equation may also
be written in the form

(x− 3)3(x+ 2) = 0.

Let f(x) denote an integral rational function ofx having a multiple roota, and
suppose it occursm times. Then we may write

f(x) = (x− a)mφ(x), (5.18)

whereφ(x) is the product of the factors corresponding to all the roots of f(x)
differing froma. Differentiating (5.18),

f ′(x) = (x− a)mφ′(x) +mφ(x)(x− a)m−1,

or,

f ′(x) = (x− a)m−1[(x− a)φ′(x) +mφ(x)]. (5.19)

Thereforef ′(x) contains the factor(x − a) repeatedm − 1 times and no more;
that is, thegreatest common divisor(G.C.D.) off(x) andf ′(x) hasm − 1 roots
equal toa.

In casef(x) has a second multiple rootβ occurringr times, it is evident that
the G.C.D. would also contain the factor(x− β)r−1 and so on for any number of
different multiple roots, each occurring once more inf(x) than in the G.C.D.

We may then state arule for finding the multiple rootsof an equationf(x) = 0
as follows:

• FIRST STEP. Findf ′(x).
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• SECOND STEP. Find the G.C.D.off(x) andf ′(x).

• THIRD STEP. Find the roots of the G.C.D.Each different root of the G.C.D.will
occur once more inf(x) than it does in the G.C.D.

If it turns out that the G.C.D.does not involvex, thenf(x) has no multiple roots
and the above process is of no assistance in the solution of the equation, but it may
be of interest to know that the equation has no equal, i.e. multiple, roots.

Example 5.10.1.Solve the equationx3 − 8x2 + 13x− 6 = 0.
Solution. Placef(x) = x3 − 8x2 + 13x− 6.
First step.f ′(x) = 3x2 − 16x+ 13.
Second step. G.C.D. =x− 1.
Third step.x− 1 = 0, thereforex = 1.
Since 1 occurs once as a root in the G.C.D.,it will occur twice in the given

equation; that is,(x−1)2 will occur there as a factor. Dividingx3−8x2 +13x−6
by (x− 1)2 gives the only remaining factor(x− 6), yielding the root6. The roots
of our equation are then1, 1, 6. Drawing the graph of the function, we see that at
the double rootx = 1 the graph touches thex-axis but does not cross it.

Note: Since the first derivative vanishes for every multipleroot, it follows that
thex-axis is tangent to the graph at all points corresponding to multiple roots. If a
multiple root occurs an even number of times, the graph will not cross thex-axis
at such a point (see Figure 5.12); if it occurs an odd number oftimes, the graph
will cross.

5.11 Examples

1. x3 − 7x2 + 16x− 12 = 0.

Ans. 2, 2, 3.

2. x4 − 6x2 − 8x− 3 = 0.

3. x4 − 7x3 + 9x2 + 27x− 64 = 0.

Ans. 3, 3, 3, −2.

4. x4 − 5x3 − 9x2 + 81x− 108 = 0.

Ans. 3, 3, 3, −4.
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Figure 5.12: plot off(x) = (x− 1)2(x− 6) illustrating a multiple root.

5. x4 + 6x3 + x2 − 24x+ 16 = 0.

Ans. 1, 1, −4, −4.

6. x4 − 9x3 + 23x2 − 3x− 36 = 0.

Ans. 3, 3, −1, 4.

7. x4 − 6x3 + 10x2 − 8 = 0.

Ans. 2, 2, 1 ±
√

3.

Sage can help with this problem.
Sage

sage: x = var("x")
sage: solve(xˆ4 - 6 * xˆ3 + 10 * xˆ2 - 8 == 0,x)
[x == 1 - sqrt(3), x == sqrt(3) + 1, x == 2]
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sage: factor(xˆ4 - 6 * xˆ3 + 10 * xˆ2 - 8)
(x - 2)ˆ2 * (xˆ2 - 2 * x - 2)

This tells use that the root2 occurs with multiplicity2.

8. x5 − x4 − 5x3 + x2 + 8x+ 4 = 0.

Sage can help with this problem.

Sage

sage: x = var("x")
sage: solve(xˆ5 - 15 * xˆ3 + 10 * xˆ2 + 60 * x - 72 == 0,x)
[x == -3, x == 2]
sage: factor(xˆ5 - 15 * xˆ3 + 10 * xˆ2 + 60 * x - 72)
(x - 2)ˆ3 * (x + 3)ˆ2

This tells use that the root2 occurs with multiplicity3 amd the root−3
occurs with multiplicity2, as expected.

9. x5 − 15x3 + 10x2 + 60x− 72 = 0.

Ans. 2, 2, 2, −3, −3.

10. x5 − 3x4 − 5x3 + 13x2 + 24x+ l0 = 0.

Show that the following four equations have no multiple (equal) roots:

11. x3 + 9x2 + 2x− 48 = 0.

12. x4 − 15x2 − 10x+ 24 = 0.

13. x4 − 3x3 − 6x2 + 14x+ 12 = 0.

14. xn − an = 0.
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15. Show that the condition that the equation

x3 + 3qx+ r = 0

shall have a double root is4q3 + r2 = 0.

16. Show that the condition that the equation

x3 + 3px2 + r = 0

shall have a double root isr(4p3 + r) = 0.

5.12 Applications of the derivative in mechanics

Included also are applications to velocity and rectilinearmotion.
Consider the motion of a point P on the straight line AB.

Figure 5.13: Illustration of rectilinear motion.

Let s be the distance measured from some fixed point as A to any position of
P, and lett be the corresponding elapsed time. To each value oft corresponds a
position of P and therefore a distance (or space)s. Hences will be a function of
t, and we may write

s = f(t)

Now let t take on an increment∆t; thens takes on an increment8 ∆s, and

8s being the space or distance passed over in the time∆t.
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∆s

∆t
= the average velocity (5.20)

of P during the time interval∆t. If P moves with uniform motion, the above
ratio will have the same value for every interval of time and is the velocity at any
instant.

For the general case of any kind of motion, uniform or not, we define thevelocity
(or, time rate of change of s) at any instant as the limit of theratio ∆s

∆t
as ∆t

approaches the limit zero; that is,

v = lim
∆t→0

∆s

∆t
,

or

v =
ds

dt
(5.21)

The velocity is the derivative of the distance (= space) with respect to the time.
To show that this agrees with the conception we already have of velocity, let us

find the velocity of a falling body at the end of two seconds.
By experiment it has been found that a body falling freely fromrest in a vacuum

near the earth’s surface follows approximately the law

s = 16.1t2 (5.22)

wheres = space fallen in feet,t = time in seconds. Apply the General Rule,§3.7,
to (5.22).

FIRST STEP.s+ ∆s = 16.1(t+ ∆t)2 = 16.1t2 + 32.2t · ∆t+ 16.1(∆t)2.
SECOND STEP.∆s = 32.2t · ∆t+ 16.1(∆t)2.
THIRD STEP. ∆s

∆t
= 32.2t + 16.1∆t = average velocity throughout the time

interval∆t.
Placingt = 2,

∆s

∆t
= 64.4 + 16.1∆t (5.23)

which equals the average velocity throughout the time interval ∆t after two sec-
onds of falling. Our notion of velocity tells us at once that (5.23) does not give us
the actual velocity at the end of two seconds; for even if we take ∆t very small,
say 1

100
or 1

1000
of a second, (5.23) still gives only the average velocity during the

corresponding small interval of time. But what we do mean by the velocity at
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the end of two seconds is the limit of the average velocity when ∆t diminishes
towards zero; that is, the velocity at the end of two seconds is from (5.23),64.4 ft.
per second.

Thus even the everyday notion of velocity which we get from experience in-
volves the idea of a limit, or in our notation

v = lim
∆t→0

(

∆s

∆t

)

= 64.4 ft./sec.

The above example illustrates well the notion of a limiting value. The student
should be impressed with the idea that a limiting value is a definite, fixed value, not
something that is only approximated. Observe that it does not make any difference
how small16.1∆t may be taken; it is only the limiting value of64.4 + 16.1∆t,
when∆t diminishes towards zero, that is of importance, and that value is exactly
64.4.

5.13 Component velocities. Curvilinear motion

The coordinatesx andy of a point P moving in thexy-plane are also functions
of time, and the motion may be defined by means of two equations9, x = f(t),
y = g(t). These are theparametric equationsof the path (see§5.5).

The horizontal component10 vx of v is the velocity along thex-axis of the pro-
jection M of P, and is therefore the time rate of change ofx. Hence, from (5.21),
whens is replaced byx, we get

vx =
dx

dt
. (5.24)

In the same way we get the vertical component, or time rate of change ofy,

vy =
dy

dt
. (5.25)

Representing the velocity and its components by vectors, we have at once from
the figure

v2 = vx
2 + vy

2,

9The equation of the path in rectangular coordinates may often be found by eliminatingt
between their equations.

10The direction ofv is along the tangent to the path.
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Figure 5.14: The components of velocity.

or,

v =
ds

dt
=

√

(

dx

dt

)2

+

(

dy

dt

)2

, (5.26)

giving the magnitude of the velocity at any instant.

If τ be the angle which the direction of the velocity makes with the x-axis; we
have from the figure, using (5.21), (5.24), (5.25),

sin τ =
vy
v

=
dy
dt
ds
dt

; cos τ =
vx
v

=
dx
dt
ds
ds

; tan τ =
vy
vx

=
dy
dt
dx
dt

. (5.27)
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5.14 Acceleration. Rectilinear motion

In general,v will be a function oft. Now let t take on an increment∆t, thenv
takes on an increment∆v, and∆v

∆t
is the average acceleration of P during the time

interval∆t. We define theaccelerationa at any instant as the limit of the ratio∆v
∆t

as∆t approaches the limit zero; that is,

a = lim
∆t→0

(

∆v

∆t

)

,

or,

a =
dv

dt
(5.28)

The acceleration is the derivative of the velocity with respect to time.

5.15 Component accelerations. Curvilinear motion

In treatises on Mechanics it is shown that in curvilinear motion the acceleration
is not, like the velocity, directed along the tangent, but toward the concave side,
of the path of motion. It may be resolved into a tangential component,at, and a
normal component,an where

at =
dv

dt
; an =

v2

R
. (5.29)

(R is the radius of curvature. See§11.5.)
The acceleration may also be resolved into components parallel to the axes of

the path of motion. Following the same plan used in§5.13 for finding component
velocities, we define the component accelerations parallelto thex-axis andy-axis,

ax =
dvx
dt

; ay =
dvy
dt
. (5.30)

Also,

a =

√

(

dvx
dt

)2

+

(

dvy
dt

)2

, (5.31)

which gives the magnitude of the acceleration at any instant.
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5.16 Examples

1. By experiment it has been found that a body falling freely from rest in a
vacuum near the earth’s surface follows approximately the law s = 16.1t2,
wheres = space (height) in feet,t = time in seconds. Find the velocity and
acceleration

(a) at any instant;

(b) at end of the first second;

(c) at end of the fifth second.

Solution. We haves = 16.1t2.

(a) Differentiating,ds
dt

= 32.2t, or, from (5.21),v = 32.2t ft./sec. Differen-
tiating again,dv

dt
= 32.2, or, from (5.28),a = 32.2 ft./(sec.)2, which tells

us that the acceleration of a falling body is constant; in other words, the
velocity increases32.2 ft./sec. every second it keeps on falling.

(b) To find v anda at the end of the first second, substitutet = 1 to get
v = 32.2 ft./sec.,a = 32.2 ft./(sec.)2.

(c) To find v anda at the end of the fifth second, substitutet = 5 to get
v = 161 ft./sec.,a = 32.2 ft./(sec.)2.

2. Neglecting the resistance of the air, the equations of motion for a projectile
are

x = v0 cosφ · t, y = v0 sinφ · t− 16.1t2;

wherev0 = initial velocity, φ = angle of projection with horizon,t = time
of flight in seconds,x and y being measured in feet. Find the velocity,
acceleration, component velocities, and component accelerations

(a) at any instant;

(b) at the end of the first second, having givenv0 = 100 ft. per sec.,
φ = 300 = π/6;

(c) find direction of motion at the end of the first second.
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Solution. From (5.24) and (5.25), (a)vx = v0 cosφ; vy = v0 sinφ− 32.2t.
Also, from (5.26),v =

√

v0
2 − 64.4tv0 sinφ+ 1036.8t2. From (5.30) and

(5.31),ax = 0; ay = 32.2; a = 32.2.

(b) Substitutingt = 1, v0 = 100, φ = 300 = π/6 in these results, we
getvx = 86.6 ft./sec.,ax = 0; vy = 17.8 ft./sec.,ay = −32.2 ft./(sec.)2;
v = 88.4 ft./sec.,a = 32.2 ft./(sec.)2.

(c) τ = arctan vy

vx
= arctan 17.8

86.6
= 0.2027... ≈ 11o, which is the angle of

direction of motion with the horizontal.

3. Given the following equations of rectilinear motion. Find the distance, ve-
locity, and acceleration at the instant indicated:

(a) s = t3 + 2t2; t = 2.

Ans. s = 16, v = 20, a = 16.

(b) s = t2 + 2t; t = 3.

Ans. s = 15, v = 8, a = 2.

(c) s = 3 − 4t; t = 4.

Ans. s = −13, v = −4, a = 0.

(d) x = 2t− t2; t = 1.

Ans. x = 1, v = 0, a = −2.

(e) y = 2t− t3; t = 0.

Ans. y = 0, v = 2, a = 0.

(f) h = 20t+ 16t2; t = 10.

Ans. h = 1800, v = 340, a = 32.

(g) s = 2 sin t; t = π
4
.

Ans. s =
√

2, v =
√

2, a = −
√

2.

(h) y = a cos πt
3

; t = 1.

Ans. y = a
2
, v = −πa

√
3

6
, a = −π2a

18
.

(i) s = 2e3t; t = 0.

Ans. s = 2, v = 6, a = 18.

(j) s = 2t2 − 3t; t = 2.

(k) x = 4 + t3; t = 3.

158



5.16. EXAMPLES

(l) y = 5 cos 2t; t = π
6
.

(m) s = b sin πt
4

; t = 2.

(n) x = ae−2t; t = 1.

(o) s = a
t
+ bt2; t = t0.

(p) s = 10 log 4
4+t

; t = 1.

4. If a projectile be given an initial velocity of200 ft. per sec. in a direction
inclined45o = π/4 with the horizontal, find

(a) the velocity and direction of motion at the end of the third and sixth
seconds;

(b) the component velocities at the same instants.

Conditions are the same as for Exercise 2.

Ans.
(a) Whent = 3, v = 148.3 ft. per sec.,τ = 0.3068... = 17o35′; whent = 6,
v = 150.5 ft. per sec.,τ = 2.79049... = 159o53′;

(b) Whent = 3, vx = 141.4 ft. per sec.,vy = 44.8 ft. per sec.; whent = 6,
vx = 141.4 ft. per sec.,vy = −51.8 ft. per sec.

5. The height (=s) in feet reached int seconds by a body projected vertically
upwards with a velocity ofv0 ft. per sec. is given by the formulas =
v0t− 16.1t2. Find

(a) velocity and acceleration at any instant; and, ifv0 = 300 ft. per sec.,
find velocity and acceleration

(b) at end of 2 seconds;

(c) at end of 15 seconds. Resistance of air is neglected.

Ans. (a)v = v0 − 32.2t, a = −32.2; (b) v = 235.6 ft. per sec. Upwards,
a = 32.2 ft. per (sec.)2 downwards; (c)v = 183 ft. per sec. Downwards,
a = 32.2 ft. per (sec.)2 downwards.

6. A cannon ball is fired vertically upwards with a muzzle velocity of 644 ft.
per sec. Find (a) its velocity at the end of10 seconds; (b) for how long it
will continue to rise. Conditions same as for Exercise 5.

Ans. (a)322 ft. per sec. Upwards; (b)20 seconds.
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7. A train left a station and int hours was at a distance (space) of

s = t3 + 2t2 + 3t

miles from the starting point. Find its acceleration (a) at the end oft hours;
(b) at the end of2 hours.

Ans. (a)a = 6t+ 4; (b) a = 16 miles/(hour)2.

8. In t hours a train had reached a point at the distance of1
4
t4 − 4t3 + 16t2

miles from the starting point.

(a) Find its velocity and acceleration.

(b) When will the train stop to change the direction of its motion?

(c) Describe the motion during the first 10 hours.

Ans. (a)v = t3 − 12t2 + 32t, a = 3t2 − 24t+ 32;

(b) at end of fourth and eighth hours;

(c) forward first4 hours, backward the next4 hours, forward again after8
hours.

9. The space in feet described int seconds by a point is expressed by the
formula

s = 48t− 16t2.

Find the velocity and acceleration at the end of3
2

seconds.

Ans. v = 0,a = −32 ft./(sec.)2.

10. Find the acceleration, having given

(a) v = t2 + 2t; t = 3.

Ans. a = 8.

(b) v = 3t− t3; t = 2.

Ans. a = −9.

(c) v = 4 sin t
2
; t = π

3
.

Ans. a =
√

3.
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(d) v = r cos 3t; t = π
6
.

Ans. a = −3r.

(e) v = 5e2t; t = 1.

Ans. a = 10e2.

11. At the end oft seconds a body has a velocity of3t2 + 2t ft. per sec.; find its
acceleration (a) in general; (b) at the end of4 seconds.

Ans. (a)a = 6t+ 2 ft./(sec.)2; (b) a = 26 ft./(sec.)2

12. The vertical component of velocity of a point at the end oft seconds is

vy = 3t2 − 2t+ 6

in ft. per sec. Find the vertical component of acceleration (a) at any instant;
(b) at the end of2 seconds.

Ans. (a)ay = 6t− 2; (b) 10 ft./(sec.)2 .

13. If a point moves in a fixed path so that

s =
√
t,

show that the acceleration is negative and proportional to the cube of the
velocity.

14. If the distance travelled at timet is given by

s = c1e
t + c2e

−t,

for some constantsc1 andc2, show that the acceleration is always equal in
magnitude to the space passed over.

15. If a point referred to rectangular coordinates moves so that

x = a1 + a2 cos t, y = b1 + b2 sin t,

for some constantsai andbi,show that its velocity has a constant magnitude.
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16. If the path of a moving point is the sine curve

{

x = at,

y = b sin at

show (a) that thex-component of the velocity is constant; (b) that the ac-
celeration of the point at any instant is proportional to itsdistance from the
x-axis.

17. Given the following equations of curvilinear motion, find at the given instant

• vx, vy, v;

• ax, ay, a;

• position of point (coordinates);

• direction of motion.

• the equation of the path in rectangular coordinates.

(a) x = t2, y = t; t = 2.

(g) x = 2 sin t, y = 3 cos t; t = π.

(b) x = t, y = t3; t = 1.

(h) x = sin t, y = cos 2t; t = π
4
.

(c) x = t2, y = t3; t = 3.

(i) x = 2t, y = 3et; t = 0.

(d) x = 2t, y = t2 + 3; t = 0.

(e) x = 1 − t2, y = 2t; t = 2.

(j) x = 3t, y = log t; t = 1.

(f) x = r sin t, y = r cos t; t = 3π
4

.

(k) x = t, y = 12/t; t = 3.
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5.17 Application: Newton’s method
11

Newton’s method (also known as the Newton-Raphson method) isan efficient
algorithm for finding approximations to the zeros (or roots)of a real-valued func-
tion. As such, it is an example of a root-finding algorithm. Itproduces iteratively
a sequence of approximations to the root. It can also be used to find a minimum
or maximum of such a function, by finding a zero in the function’s first derivative.

5.17.1 Description of the method

The idea of the method is as follows: one starts with an initial guess which is
reasonably close to the true root, then the function is approximated by its tangent
line (which can be computed using the tools of calculus), andone computes the x-
intercept of this tangent line (which is easily done with elementary algebra). This
x-intercept will typically be a better approximation to thefunction’s root than the
original guess, and the method can be iterated.

Supposef : [a, b] → R is a differentiable function defined on the interval[a, b]
with values in the real numbersR. The formula for converging on the root can be
easily derived. Suppose we have some current approximationxn. Then we can
derive the formula for a better approximation,xn+1 by referring to the diagram on
the right. We know from the definition of the derivative at a given point that it is
the slope of a tangent at that point.

That is

f ′(xn) =
rise

run
=

∆y

∆x
=
f(xn) − 0

xn − xn+1

=
0 − f(xn)

(xn+1 − xn)
.

Here,f ′ denotes the derivative of the functionf . Then by simple algebra we can
derive

xn+1 = xn −
f(xn)

f ′(xn)
.

We start the process off with some arbitrary initial valuex0. (The closer to the
zero, the better. But, in the absence of any intuition about where the zero might
lie, a ”guess and check” method might narrow the possibilities to a reasonably
small interval by appealing to the intermediate value theorem.) The method will

11This section uses material modified from Wikipedia [N].

163



5.17. APPLICATION: NEWTON’S METHOD

usually converge, provided this initial guess is close enough to the unknown zero,
and thatf ′(x0) 6= 0. Furthermore, for a zero of multiplicity1, the convergence
is at least quadratic (see rate of convergence) in a neighbourhood of the zero,
which intuitively means that the number of correct digits roughly at least doubles
in every step. More details can be found in the analysis section below.

Example 5.17.1.Consider the problem of finding the positive numberx with
cos(x) = x3. We can rephrase that as finding the zero off(x) = cos(x)− x3. We
havef ′(x) = − sin(x) − 3x2. Sincecos(x) ≤ 1 for all x andx3 > 1 for x > 1,
we know that our zero lies between0 and1. We try a starting value ofx0 = 0.5.

x1 = x0 − f(x0)
f ′(x0)

= 0.5 − cos(0.5)−0.53

− sin(0.5)−3×0.52 = 1.112141637097

x2 = x1 − f(x1)
f ′(x1)

= 0.909672693736

x3 = x2 − f(x2)
f ′(x2)

= 0.867263818209

x4 = x3 − f(x3)
f ′(x3)

= 0.865477135298

x5 = x4 − f(x4)
f ′(x4)

= 0.865474033111

x6 = x5 − f(x5)
f ′(x5)

= 0.865474033102

The correct digits are underlined in the above example. In particular,x6 is cor-
rect to the number of decimal places given. We see that the number of correct
digits after the decimal point increases from2 (for x3) to 5 and10, illustrating the
quadratic convergence.

5.17.2 Analysis

Suppose that the functionf has a zero ata, i.e.,f(a) = 0.
If f is continuously differentiable and its derivative does notvanish ata, then

there exists a neighborhood ofa such that for all starting valuesx0 in that neigh-
borhood, the sequence{xn} will converge toa.

In practice this result is “local” and the neighborhood of convergence is not
known a priori, but there are also some results on “global convergence.” For
instance, given a right neighborhoodU of a, if f is twice differentiable inU and
if f ′ 6= 0, f · f ′′ > 0 in U , then, for eachx0 ∈ U the sequencexk is monotonically
decreasing toa.

164



5.17. APPLICATION: NEWTON’S METHOD

5.17.3 Fractals

For complex functionsf : C → C, however, Newton’s method can be directly
applied to find their zeros. For many complex functions, the boundary of the set
(also known as the basin of attraction) of all starting values that cause the method
to converge to a particular zero is a fractal12

For example, the functionf(x) = x5 − 1, x ∈ C, has five roots, equally spaced
around the unit circle in the complex plane. Ifx0 is a starting point which con-
verges to the root atx = 1, colorx0 yellow. Repeat this using four other colors
(blue, red, green, purple) for the other four roots off . The resulting image is in
Figure 5.15.

Figure 5.15: Basins of attraction forx5 − 1 = 0; darker means more iterations to
converge.

12The definition of a fractal would take us too far afield. Roughly speaking, it is a geometrical
object with certain self-similarity properties [F].
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CHAPTER

SIX

Successive differentiation

6.1 Definition of successive derivatives

We have seen that the derivative, if it exists, of a function of x is also a function
of x. This new function may itself be differentiable, in which case the derivative
of the first derivative is called the second derivative of theoriginal function. Sim-
ilarly, the derivative of the second derivative is called the third derivative; and so
on. Thus, if

y = 3x4,
dy
dx

= 12x3,
d
dx

(

dy
dx

)

= 36x2,
d
dx

[

d
dx

(

dy
dx

)]

= 72x,

and so on.

6.2 Notation

The symbols for the successive derivatives are usually abbreviated as follows:

d
dx

(

dy
dx

)

= d2y
dx2 ,

d
dx

[

d
dx

(

dy
dx

)]

= d
dx

(

d2y
dx2

)

= d3y
dx3 ,

... ...
d
dx

(

dn−1y
dxn−1

)

= dny
dxn .
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If y = f(x), the successive derivatives are also denoted by

f ′(x), f ′′(x), f ′′′(x), f (4)(x), ..., f (n)(x);

or
y′, y′′, y′′′, y(4), ..., y(n);

or,
d

dx
f(x),

d2

dx2
f(x),

d3

dx3
f(x),

d4

dx4
f(x), ...,

dn

dxn
f(x).

6.3 Then-th derivative

For certain functions a general formula involvingn may be found in the expres-
sion for then-th derivative. To discsover this formula, the usual plan isto find
a number of successive derivatives, as many as may be necessary to discover by
induction the formula. This formula can then (hopefully) beproven by the method
of mathematical induction1.

Example 6.3.1.Giveny = eax, find dny
dxn .

Solution. dy
dx

= aeax, d
2y
dx2 = a2eax, . . . , d

ny
dxn = aneax.

Example 6.3.2.Giveny = log x, find dny
dxn .

Solution. dy
dx

= 1
x
, d

2y
dx2 = − 1

x2 , d
3y
dx3 = 1·2

x3 , d
4y
dx4 = 1·2·3

x4 , . . . d
ny
dxn = (−1)n−1 (n−1)!

xn .

Example 6.3.3.Giveny = sin x, find dny
dxn .

Solution. dy
dx

= cos x = sin
(

x+ π
2

)

,

d2y

dx2
=

d

dx
sin
(

x+
π

2

)

= cos
(

x+
π

2

)

= sin

(

x+
2π

2

)

,

d3y

dx3
=

d

dx
sin

(

x+
2π

2

)

= cos

(

x+
2π

2

)

= sin

(

x+
3π

2

)

. . .

dny

dxn
= sin

(

x+
nπ

2

)

.

1The mathod of inductin is usually taught in a course after calculus. For
the curious reader, we recommend the discussion and references in Wikipedia
http://en.wikipedia.org/wiki/Mathematical induction as a good start.
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6.4. LEIBNITZ’S FORMULA FOR THEN -TH DERIVATIVE OF A
PRODUCT

6.4 Leibnitz’s Formula for the n-th derivative of a
product

This formula expresses then-th derivative of the product of two variables in terms
of the variables themselves and their successive derivatives.

If u and v are functions ofx, we have, from equation (4.5) in§4.1 above,

d

dx
(uv) =

du

dx
v + u

dv

dx
.

Differentiating again with respect tox,

d2

dx2
(uv) =

d2u

dx2
v +

du

dx

dv

dx
+
du

dx

dv

dx
+ u

d2v

dx2
=
d2u

dx2
v + 2

du

dx

dv

dx
+ u

d2v

dx2
.

Similarly,

d3

dx3 (uv) = d3u
dx3 + d2u

dx2
dv
dx

+ 2d
2u
dx2

dv
dx

+ 2du
dx

d2v
dx2 + du

dx
d2v
dx2 + u d

3v
dx3

= d3u
dx3 v + 3d

2u
dx2

dv
dx

+ 3du
dx

d2v
dx2 + u d

3v
dx3 .

However far this process may be continued, it will be seen that the numerical co-
efficients follow the same law as those of the Binomial Theorem, and the indices
of the derivatives correspond2 to the exponents of the Binomial Theorem. Rea-
soning then by mathematical induction from them-th to the(m+ 1)-st derivative
of the product, we can proveLeibnitz’s Formula

dn

dxn
(uv) =

dnu

dxn
v+n

dn−1u

dxn−1

dv

dx
+
n(n− 1)

2!

dn−2u

dxn−2

d2v

dx2
+· · ·+ndu

dx

dn−1v

dxn−1
+u

dnv

dxn
,

(6.1)
for all n > 0.

Example 6.4.1.Giveny = ex log x, find d3y
dx3 by Leibnitz’s Formula.

Solution. Letu = ex, andv = log x; then du
dx

= ex, dv
dx

= 1
x
, d2u
dx2 = ex,

d2v
dx2 = − 1

x2 , d
3u
dx3 = ex, d

3v
dx3 = 2

x3 .
Substituting in (6.1), we get

d3y

dx3
= ex log x+

3ex

x
− 3ex

x2
= ex

(

log x+
3

x
− 3

x2
+

2

x3

)

.

This can be verified using theSage commands:

2To make this correspondence complete,u andv are considered asd
0u

dx0 and d0v
dx0 .
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6.5. SUCCESSIVE DIFFERENTIATION OF IMPLICIT FUNCTIONS

Sage

sage: x = var("x")
sage: f = exp(x) * log(x)
sage: diff(f,x,1); diff(f,x,2); diff(f,x,3)
eˆx * log(x) + eˆx/x
eˆx * log(x) + 2 * eˆx/x - eˆx/xˆ2
eˆx * log(x) + 3 * eˆx/x - 3 * eˆx/xˆ2 + 2 * eˆx/xˆ3
sage: diff(f * g,x,1)
f(x) * diff(g(x), x, 1) + g(x) * diff(f(x), x, 1)
sage: diff(f * g,x,2)
f(x) * diff(g(x), x, 2)+2 * diff(f(x), x, 1) * diff(g(x), x, 1)\

+ g(x) * diff(f(x), x, 2)

Example 6.4.2.Giveny = x2eax, find dny
dxn by Leibnitz’s Formula.

Solution. Letu = x2, andv = eax; then du
dx

= 2x, dv
dx

= aeax, d2u
dx2 = 2x,

d2v
dx2 = a2eax, d3u

dx3 = 0, d3v
dx3 = a3eax, . . . , d

nu
dxn = 0, dnv

dxn = aneax. Substituting in
(6.1), we get

dny

dxn
= x2aneax+2nan−1xeax+n(n−1)an−2eax = an−2eax[x2a2+2nax+n(n−1)].

6.5 Successive differentiation of implicit functions

To illustrate the process we shall findd
2y
dx2 from the equation of the hyperbola

b2x2 − a2y2 = a2b2.

Differentiating with respect tox, as in§4.33,

2b2x− 2a2y
dy

dx
= 0,

or,

dy

dx
=
b2x

a2y
. (6.2)
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6.5. SUCCESSIVE DIFFERENTIATION OF IMPLICIT FUNCTIONS

Differentiating again, remembering thaty is a function ofx,

d2y

dx2
=
a2yb2 − b2xa2 dy

dx

a4y2
.

Substituting fordy
dx

its value from (6.2),

d2y

dx2
=
a2b2y − a2b2x

(

b2y
a2y

)

a4y2
= −b

2(b2x2 − a2y2)

a4y3
.

The given equation,b2x2 − a2y2 = a2b2, therefore gives,

d2y

dx2
= − b4

a2y3
.

Sage can be made to do a lot of this work for you (though the notationdoesn’t
get any prettier):

Sage

sage: x = var("x")
sage: y = function("y",x)
sage: a = var("a")
sage: b = var("b")
sage: F = xˆ2/aˆ2 - yˆ2/bˆ2 - 1
sage: F.diff(x)
2* x/aˆ2 - 2 * y(x) * diff(y(x), x, 1)/bˆ2
sage: F.diff(x,2)
-2 * y(x) * diff(y(x), x, 2)/bˆ2 - 2 * diff(y(x), x, 1)ˆ2/bˆ2 + 2/aˆ2
sage: solve(F.diff(x) == 0, diff(y(x), x, 1))
[diff(y(x), x, 1) == bˆ2 * x/(aˆ2 * y(x))]
sage: solve(F.diff(x,2) == 0, diff(y(x), x, 2))
[diff(y(x), x, 2) == (bˆ2 - aˆ2 * diff(y(x), x, 1)ˆ2)/(aˆ2 * y(x))]

This basically says

y′ =
dy

dx
=
b2x

a2y
,

and

y′′ =
d2y

dx2
= −b

2 − a2(y′)2

a2y
.
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Now simply plug the first equation into the second, obtainingy′′ = −b2 1−a−2b2x2/y2

a2y
.

Next, use the given equation in the forma−2b2x2/y2 − 1 = b2/y2 to get the result
above.

6.6 Exercises

Verify the following derivatives:

1. y = 4x3 − 6x2 + 4x+ 7.

Ans. d
2y
dx2 = 12(2x− 1).

2. f(x) = x3

1−x .

Ans. f (4)(x) = 4!
(1−x)5 .

3. f(y) = y6.

Ans. f (6)(y) = 6!.

4. y = x3 log x.

Ans. d
4y
dx4 = 6

x
.

5. y = c
xn . y′′ = n(n+1)c

xn+2 .

6. y = (x− 3)e2x + 4xex + x.

Ans. y′′ = 4ex[(x− 2)ex + x+ 2].

7. y = a
2
(e

x
a + e−

x
a ).

Ans. y′′ = 1
2a

(e
x
a + e−

x
a ) = y

a2 .

8. f(x) = ax2 + bx+ c.

Ans. f ′′′(x) = 0.

9. f(x) = log(x+ 1).

Ans. f (4)(x) = − 6
(x+1)4

.

10. f(x) = log(ex + e−x).

Ans. f ′′′(x) = −8(ex−e−x)
(ex−e−x)3

.
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11. r = sin aθ.

Ans. d
4r
dθ4

= a4 sin aθ = a4r.

12. r = tan φ.

Ans. d
3r
dφ3 = 6 sec6 φ− 4 sec2 φ.

13. r = log sin φ.

Ans. r′′′ = 2 cot φ csc2 φ.

14. f(t) = e−t cos t.

Ans. f (4)(t) = −4e−t cos t = −4f(t).

15. f(θ) =
√

sec 2θ.

Ans. f ′′(θ) = 3[f(θ)]5 − f(θ).

16. p = (q2 + a2) arctan q
a
.

Ans. d
3p
dq3

= 4a3

(a2+q2)2
.

17. y = ax.

Ans. d
ny
dxn = (log a)nax.

Sage

sage: a,x = var("a,x")
sage: y = aˆx
sage: diff(y,x); diff(y,x,2); diff(y,x,3); diff(y,x,4)
aˆx * log(a)
aˆx * log(a)ˆ2
aˆx * log(a)ˆ3
aˆx * log(a)ˆ4

18. y = log(1 + x).

Ans. d
ny
dxn = (−1)n−1 (n−1)!

(1+x)n .

19. y = cos ax.

Ans. d
ny
dxn = an cos

(

ax+ nπ
2

)

.
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20. y = xn−1 log x.

Ans. d
ny
dxn = (n−1)!

x
.

21. y = 1−x
1+x

.

Ans. d
ny
dxn = 2(−1)n n!

(1+x)n+1 .

Hint: Reduce fraction to form−1 + 2
1+x

before differentiating.

22. If y = ex sin x, prove thatd
2y
dx2 − 2 dy

dx
+ 2y = 0.

23. If y = a cos(log x) + b sin(log x), prove thatx2 d2y
dx2 + x dy

dx
+ y = 0.

Use Leibnitz’s Formula in the next four examples:

24. y = x2ax.

Ans. d
ny
dxn = ax(log a)n−2[(x log a+ n)2 − n].

25. y = xex.

Ans. d
ny
dxn = (x+ n)ex.

26. f(x) = ex sin x.

Ans. f (n)(x) = (
√

2)nex sin
(

x+ nπ
4

)

.

27. f(θ) = cos aθ cos bθ.

Ans. fn(θ) = (a+b)n

2
cos
[

(a+ b)θ + nπ
2

]

+ (a−b)n

2
cos
[

(a− b)θ + nπ
2

]

.

28. Show that the formulas for acceleration, (5.28), (5.30), may be writtena =
d2s
dt2

, ax = d2x
dt2

, ay = d2y
dt2

.

29. y2 = 4ax.

Ans. d
2y
dx2 = −4a2

y3
.

30. b2x2 + a2y2 = a2b2.

Ans. d
2y
dx2 = − b4

a2y3
; d

3y
dx2 = − 3b6x

a4y5
.

31. x2 + y2 = r2. d2y
dx2 = − r2

y3
.
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32. y2 + y = x2.

Ans. d
3y
dx3 = − 24x

(1+2y)5
.

33. ax2 + 2hxy + by2 = 1.

Ans. d
2y
dx2 = h2−ab

(hx+by)3
.

34. y2 − 2xy = a2.

Ans. d
2y
dx2 = a2

(y−x)3 ;
d3y
dx3 = − 3a2x

(y−x)5 .

35. sec φ cos θ = c.

Ans. d
2θ
dφ2 = tan2 θ−tan2 φ

tan3 θ
.

36. θ = tan(φ+ θ).

Ans. d
3θ
dφ3 = −2(5+8θ2+3θ4)

θ8
.

37. Find the second derivative in the following:

(a) log(u+ v) = u− v. (e) y3 + x3 − 3axy = 0.
(b) eu + u = ev + v. (f) y2 − 2mxy + x2 − a = 0.
(c) s = 1 + tes. (g) y = sin(x+ y).
(d) es + st− e = 0. (h) ex+y = xy.
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CHAPTER

SEVEN

Maxima, minima and inflection points

7.1 Introduction

Many practical problems occur where we have to deal with functions that have
a maximum value (or a minimum value) and it is important to know where the
extreme values of the function occur.

Example 7.1.1.A wooden box is to be built to contain108 ft3. It is to have an
open top and a square base. What must be its dimensions in orderthat the amount
of material required shall be a minimum; that is, what dimensions will make the
cost the least?
Let x denote the length of side of square base in feet, andy denote the height of
box. Since the volume of the box is given,y may be found in terms ofx. Thus
volume = x2y = 108, soy = 108

x2 . LetM denote the number of square feet of
lumber required as a function ofx. We computeM explicitly as follows:

area of base =x2 sq. ft.,
area of four sides =4xy = 432

x
sq. ft.

Hence

M = M(x) = x2 +
432

x

is a formula giving the number of square feet required in any such box having a
capacity of108 ft3. Draw a graph ofM(x).
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7.1. INTRODUCTION

Figure 7.1: A box with squarex× x base, heighty = 108/x2, and fixed volume.

Figure 7.2:Sage plot of y = x2 + 432
x

, 1 < x < 10.

What do we learn from the graph?
(a) If the box is carefully drawn, we may measure the ordinatecorresponding to

any length (= x) of the side of the square base and so determine the number of
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7.1. INTRODUCTION

square feet of lumber required.
(b) There is one horizontal tangent (RS). The ordinate from its point of contact T

is less than any other ordinate. Hence this discovery: One ofthe boxes evidently
takes less lumber than any of the others. In other words, we may infer that the
function defined byM = M(x) has a minimum value. Let us find this point on
the graph exactly, using our Calculus. DifferentiatingM(x) to get the slope at any
point, we have

dM

dx
= 2x− 432

x2
.

At the lowest point T the slope will be zero. Hence

2x− 432

x2
= 0;

that is, whenx = 6 the least amount of lumber will be needed.
Substituting inM(x), we see that this isM = 108 sq. ft.
In addition to the graph, the fact that a least value ofM existscan be intuitively

deduced by the following argument. Let the base increase from a very small
square to a very large one. In the former case the height must be very great and
therefore the amount of lumber required will be large. In thelatter case, while the
height is small, the base will take a great deal of lumber. Ourintuition tells that
M therefore varies from a large value, decreases for a while, then increases again
to another large value. It follows, then, that the graph ofy = M(x) must have a
“lowest” point corresponding to the dimensions which require the least amount of
lumber, and therefore would involve the least cost.

Here is how to compute the critical points ofM in Sage :

Sage

sage: x = var("x")
sage: M = xˆ2 + 432/x
sage: solve(M.diff(x)==0,x)
[x == 3 * sqrt(3) * I - 3, x == -3 * sqrt(3) * I - 3, x == 6]

This says that(x2 + 432/x)′ = 0 has three roots, but only one real root - the one
reported above atx = 6.
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7.1. INTRODUCTION

Figure 7.3: A rectangle with circumscribed circle.

Example 7.1.2.For instance, suppose that it is required to find the dimensions of
the rectangle of greatest area that can be inscribed in a circle of radius5 inches.
Consider the circle in Figure 7.3:
Inscribe any rectangle, as BCDE, where CD is the base and DE is theheight. Let
CD = x, soDE =

√
100 − x2, and the area of the rectangle is evidently

A = A(x) = x
√

100 − x2.
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That a rectangle of maximum area mustexistmay be seen as follows: Let the
base CD (= x) increase to10 inches (the diameter); then the altitude DE (=√

100 − x2) will decrease to zero and the area will become zero. Now let the base
decrease to zero; then the altitude will increase to10 inches and the area will again
become zero. It is therefore intuitively evident that thereexists in-between these
extremes a rectangle of greatest area. By a careful study of the figure we might
suspect that when the rectangle becomes a square its area would be the greatest,
but this would be mere guesswork1. A better way would be to plot the graph of
the functiony = A(x) and note its behavior. To aid us in drawing the graph of
A(x), we observe that

(a) from the nature of the problem it is clear thatx andA(x) must both be
positive; and

(b) the values ofx range from zero to10 inclusive.

Now draw the graph (we have usedSage in Figure 7.4).
What do we learn from the graph?

(a) If the rectangle is carefully drawn, we may approximate the area of the
rectangle corresponding to any valuex by measuring the length of the cor-
responding ordinate. For example, whenx = 3 inches, then the area is
aboutA(x) ≈ 28.6 inches2; and whenx9

2
inches, then the area is about

A(x) ≈ 39.8 inches2.

(b) There is one horizontal tangent to the curvey = A(x).

They-coordinate at the pointT there this tangent contacts the curve is greater
than any othery-coordinate on the curve. We deduce from this that one of the
inscribed rectangles has a greater area than any of the others. In other words, we
may infer from this that the function defined byy = A(x) has a maximum value.
We can find this value very easily to using calculus. We observed that atT the
tangent was horizontal, hence the slope will be zero at that point (Example 5.1.2).
To find thex-coordinate of T we find the first derivative ofA(x), set it equal to
zero, and solve forx:

1Reasoning that “by symmetry we must have base = height” happens to work in this particular
example (as we will see) but, surprisingly enough, does not hold in general.
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Figure 7.4: The area of a rectangle with fixed circumscribed circle.

A = x
√

100 − x2,
dA
dx

= 100−2x2√
100−x2 ,

100−2x2√
100−x2 = 0.

Solving this givesx = 5
√

2. Substituting back, we getDE =
√

100 − x2 = 5
√

2.
Hence the rectangle of maximum area inscribed in the circle is a square of area
A = CD×DE = 5

√
2× 5

√
2 = 50 square inches. The length of HT is therefore

50.

We will now proceed to the treatment in detail of the subject of maxima and
minima.
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7.2 Increasing and decreasing functions

A function is said to beincreasingwhen it increases as the variable increases and
decreases as the variable decreases. A function is said to bedecreasingwhen it
decreases as the variable increases and increases as the variable decreases.

The graph of a function indicates plainly whether it is increasing or decreasing.

Example 7.2.1. (1) Consider the functiony = ax, a > 1, whose graph is
shown in Figure 7.5.

Figure 7.5:Sage plot of y = 2x, −1 < x < 1.

As we move along the curve from left to right the curve is rising; that is, as
x increases the functiony = ax always increases. Thereforeax (a > 1) is
an increasing function for all values ofx.

(2) On the other hand, consider the function(a− x)3 whose graph (Figure 7.6)
is the locus of the equationy = (a− x)3.
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Figure 7.6:Sage plot of y = (2 − x)3, 1 < x < 3.

Now as we move along the curve from left to right the curve is falling;
that is, asx increases, the functiony = (a − x)3 always decreases. Hence
(a− x)3 is a decreasing function for all values ofx.

(3) That a function may be sometimes increasing and sometimes decreasing is
shown by the graph (Figure 7.7) of

y = 2x3 − 9x2 + 12x− 3.

Figure 7.7:Sage plot of y = 2x3 − 9x2 + 12x− 3, 0 < x < 3.

As we move along the curve from left to right the curve rises until we reach
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OR DECREASING

the point whenx = 1, then it falls from that point to the point whenx = 2,
and to the right ofx = 2 it is always increasing. Hence

(a) fromx = −∞ to x = 1 the function is increasing;

(b) fromx = 1 to x = 2 the function is decreasing;

(c) fromx = 2 to x = +∞ the function is increasing.

The student should study the curve carefully in order to notethe behavior
of the function whenx = 1 andx = 2. At x = 1 the function ceases to
increase and commences to decrease; atx = 2, the reverse is true. Atx = 1
and atx = 2 the tangent to the curve is parallel to thex-axis, and therefore
the slope is zero.

7.3 Tests for determining when a function is increas-
ing or decreasing

It is evident from Figure 7.7 that at a point where a function

y = f(x)

is increasing, the tangent in general makes an acute angle with thex-axis, so

slope= tan τ = dy
dx

= f ′(x) = a positive number.

Similarly, at a point where a function is decreasing, the tangent in general makes
an obtuse angle with thex-axis; therefore2

slope= tan τ = dy
dx

= f ′(x) = a negative number.

It follows from this that in order for a differentiable function to change from an
increasing to a decreasing function, or vice versa, it is a necessary and sufficient
condition that the first derivative changes sign. But this canonly happen for a
continuous derivative by passing through the value zero. Thus in Figure 7.7 as

2Conversely, for any given value ofx, if f ′(x) > 0, thenf(x) is increasing; iff ′(x) < 0,
thenf(x) is decreasing. Whenf ′(x) = 0, we cannot decide without further investigation whether
f(x) is increasing or decreasing.
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we pass along the curve the derivative (= slope) changes signat the points where
x = 1 andx = 2. In general, then, we have at these “turning points,”

dy

dx
= f ′(x) = 0.

A value of y = f(x) satisfying this condition is called acritical point of the
functionf(x).

Remark 7.3.1. The derivative is continuous in nearly all our important appli-
cations, but it is interesting to note the case when the derivative (= slope) ofy
changes sign by “passing through∞” (that is, its reciprocal1/y passes through
the value zero). This would evidently happen at the points ona curve where the
tangent is perpendicular to thex-axis. At such “turning points” we have

dy

dx
= f ′(x) = inf;

or, what amounts to the same thing,

1

f ′(x)
= 0.

For example, the functiony = 1/x2 has a “turning point” atx = 0, where the
slope is infinite but the function changes from being increasing (for x < 0) to
decreasing (forx > 0).

7.4 Maximum and minimum values of a function

A maximum valueof a function is one that is greater than any values immediately
preceding or following. Aminimum valueof a function is one that is less than any
values immediately preceding or following.

For example, in Figure 7.7, it is clear that the function has amaximum value
(y = 2) whenx = 1, and a minimum value (y = l) whenx = 2.

The student should observe that a maximum value is not necessarily the greatest
possible value of a function nor a minimum value the least. For in Figure 7.7 it is
seen that the function (= y) has values to the right ofx = 1 that are greater than
the maximum2, and values to the left ofx = 1 that are less than the minimum1.

A function may have several maximum and minimum values. Suppose that
Figure 7.8 represents the graph of a functionf(x).
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Figure 7.8: A continuous function.

At B, F the function is at a local maximum, and at D, G a minimum. That
some particular minimum value of a function may be greater than some particular
maximum value is shown in the figure, the minimum value at D being greater than
the maximum value at G.

At the ordinary critical points D, F, H the tangent (or curve)is parallel to the
x-axis; therefore

slope =
dy

dx
= f ′(x) = 0.

At the exceptional critical points A, B, G the tangent (or curve) is perpendicular
to thex-axis, giving

slope =
dy

dx
= f ′(x) = ∞.

One of these two conditions is then necessary in order that the function shall
have a maximum or a minimum value. But such a condition is not sufficient; for
at H the slope is zero and at A it is infinite, and yet the function has neither a
maximum nor a minimum value at either point. It is necessary for us to know,
in addition, how the function behaves in the neighborhood ofeach point. Thus
at the points of maximum value, B, F, the function changes froman increasing
to a decreasing function, and at the points of minimum value,D, G, the function
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changes from a decreasing to an increasing function. It therefore follows from
§7.3 that at maximum points

slope= dy
dx

= f ′(x) must change from + to -,

and at minimum points

slope= dy
dx

= f ′(x) must change from - to +

when we move along the curve from left to right.
At such points as A and H where the slope is zero or infinite, butwhich are

neither maximum nor minimum points,

slope= dy
dx

= f ′(x) does not change sign.

We may then state the conditions in general for maximum and minimum values
of f(x) for certain values of the variable as follows:

f(x) is a maximum if f ′(x) = 0, and f ′(x) changes from + to − . (7.1)

f(x) is a minimum if f ′(x) = 0, and f ′(x) changes from − to + . (7.2)

The values of the variable at the turning points of a functionare calledcritical
values; thusx = 1 andx = 2 are the critical values of the variable for the function
whose graph is shown in Figure 7.7. The critical values at turning points where the
tangent is parallel to thex-axis are evidently found by placing the first derivative
equal to zero and solving for real values ofx, just as under§5.1. (Similarly, if
we wish to examine a function at exceptional turning points where the tangent is
perpendicular to thex-axis, we set the reciprocal of the first derivative equal to
zero and solve to find critical values.)

To determine the sign of the first derivative at points near a particular turning
point, substitute in it, first, a value of the variable just a little less than the corre-
sponding critical value, and then one a little greater3. If the first gives+ (as at L,
Figure 7.8) and the second - (as at M), then the function (= y) has a maximum

3In this connection the term “little less,” or “trifle less,” means any value between the next
smaller root (critical value) and the one under consideration; and the term “little greater,” or “trifle
greater,” means any value between the root under consideration and the next larger one.
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value in that interval (as at I). If the first gives− (as at P) and the second+ (as at
N), then the function (= y) has a minimum value in that interval (as at C).

If the sign is the same in both cases (as at Q and R), then the function (= y) has
neither a maximum nor a minimum value in that interval (as at F)4.

We shall now summarize our results into a compact working rule.

7.5 Examining a function for extremal values: first
method

Working rule, sometimes referred to as thesign test of the first derivative.

• FIRST STEP. Find the first derivative of the function.

• SECOND STEP. Set the first derivative equal to zero5 and solve the resulting
equation for real roots in order to find the critical values ofthe variable.

• THIRD STEP. Write the derivative in factored form if possible.

• FOURTH STEP. Considering one critical value at a time, test the first deriva-
tive, first for a value a trifle less and then for a value a trifle greater than the
critical value. If the sign of the derivative is first+ and then−, the function
has a maximum value for that particular critical value of thevariable; but if
the reverse is true, then it has a minimum value. If the sign does not change,
the function has neither.

Remark 7.5.1. It can be helpful to draw asign graphfor the values of the deriva-
tive. This is a sketch of the real axis, with tick marks at the critical points, labeling
an interval in-between successive critical points with a “+” if the derivative is pos-
itive there, and labeling such an interval with a “−” otherwise.

Example 7.5.1. In the problem worked out in Example 7.1.2, we showed by
means of the graph of the function

A = x
√

100 − x2

4A similar discussion will evidently hold for the exceptional turning points B, E, and A respec-
tively.

5When the first derivative becomes infinite for a certain value of the independent variable, then
the function should be examined for such a critical value of the variable, for it may give maximum
or minimum values, as at B, E, or A (Figure 7.8). See footnote in §7.3.
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that the rectangle of maximum area inscribed in a circle of radius5 inches con-
tained50 square inches. This may now be proved analytically as follows by ap-
plying the above rule.

Solution. Letf(x) = x
√

100 − x2.
First step. Computef ′(x) = 100−2x2√

100−x2 .

Second step.100−2x2√
100−x2 = 0 impliesx = 5

√
2, which is the critical value. Only

the positive sign of the radical is taken, since, from the nature of the problem, the
negative sign has no meaning.

Third step.f ′(x) = 2(5
√

2−x)(5
√

2+x)√
(10−x)(10+x)

.

Fourth step. Whenx < 5
√

2, f ′(x) = 2(+)(+)√
(+)(+)

= +. Whenx > 5
√

2,

f ′(x) = 2(+)(+)√
(−)(+)

= −.

Since the sign of the first derivative changes from+ to − at x = 5
√

2, the
function has a maximum value

f(5
√

2) = 5
√

2 · 5
√

2 = 50.

In Sage :

Sage

sage: x = var("x")
sage: f(x) = x * sqrt(100 - xˆ2)
sage: f1(x) = diff(f(x),x); f1(x)
sqrt(100 - xˆ2) - xˆ2/sqrt(100 - xˆ2)
sage: crit_pts = solve(f1(x) == 0,x); crit_pts
[x == -5 * sqrt(2), x == 5 * sqrt(2)]
sage: x0 = crit_pts[1].rhs(); x0
5* sqrt(2)
sage: f(x0)
50
sage: RR(f1(x0-0.1))>0
True
sage: RR(f1(x0+0.1))<0
True

This tells us thatx0 = 5
√

2 is a critical point, at which the area is50 square inches
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and at which the area changes from increasing to decreasing.This implies that the
area is a maximum at this point.

7.6 Examining a function for extremal values: sec-
ond method

From (7.1), it is clear that in the vicinity of a maximum valueof f(x), in passing
along the graph from left to right,f ′(x) changes from+ to 0 to −. Hencef ′(x)
is a decreasing function, and by§7.3 we know that its derivative, i.e. the second
derivative (= f ′′(x)) of the function itself, is negative or zero.

Similarly, we have, from (7.2), that in the vicinity of a minimum value off(x)
f ′(x) changes from− to 0 to +. Hencef ′(x) is an increasing function and by
§7.3 it follows thatf ′′(x) is positive or zero.

The student should observe thatf ′′(x) is positive not only at minimum values
but also at “nearby” points,P say, to the right of such a critical point. For, as
a point passes through P in moving from left to right, slope= tan τ = dy

dx
=

f ′(x) is an increasing function. At such a point the curve is said tobe concave
upwards. Similarly, f ′′(x) is negative not only at maximum points but also at
“nearby ”points,Q say, to the left of such a critical point. For, as a point passes
throughQ, slope= tan τ = dy

dx
= f ′(x) is a decreasing function. At such a point

the curve is said to beconcave downwards.
At a point where the curve is concave upwards we sometimes saythat the curve

has a “positive bending,]] and where it is concave downwardsa “negative bend-
ing.”

We may then state the sufficient conditions for maximum and minimum values
of f(x) for certain values of the variable as follows:

f(x) is a maximum if f ′(x) = 0 and f ′′(x) = a negative number. (7.3)

f(x) is a minimum if f ′(x) = 0 and f ′′(x) = a positive number. (7.4)

Following is the corresponding working rule, sometimes referred to as thesecond
derivative test.

• FIRST STEP. Find the first derivative of the function.
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• SECOND STEP. Set the first derivative equal to zero and solve the resulting
equation for real roots in order to find the critical values ofthe variable.

• THIRD STEP. Find the second derivative.

• FOURTH STEP. Substitute each critical value for the variable in the second
derivative. If the result is negative, then the function is amaximum for that
critical value; if the result is positive, the function is a minimum.

Whenf ′′(x) = 0, or does not exist, the above process fails, although there may
even then be a maximum or a minimum; in that case the first method given in
the last section still holds, being fundamental. Usually this second method does
apply, and when the process of finding the second derivative is not too long or
tedious, it is generally the shortest method.

Example 7.6.1.Let us now apply the above rule to test analytically the function

M = x2 +
432

x

found in Example 7.1.1.
Solution. Letf(x) = x2 + 432

x
.

First step. Computef ′(x) = 2x− 432
x2 .

Second step. Solve2x− 432
x2 = 0. (In Example 7.1.1 we gotx = 6.)

Third step. Computef ′′(x) = 2 + 864
x3 .

Fourth step. Use the second derivative test.f ′′(6) = +. Hencef(6) = 108,
minimum value.

In Sage :
Sage

sage: x = var("x")
sage: f(x) = xˆ2 + 432/x
sage: f1(x) = diff(f(x),x); f1(x)
2* x - 432/xˆ2
sage: f2(x) = diff(f(x),x,2); f2(x)
864/xˆ3 + 2
sage: crit_pts = solve(f1(x) == 0,x); crit_pts
[x == 3 * sqrt(3) * I - 3, x == -3 * sqrt(3) * I - 3, x == 6]
sage: x0 = crit_pts[2].rhs(); x0
6
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sage: f2(x0)
6
sage: f(x0)
108

This tells us thatx0 = 6 is a critical point and thatf ′′(x0) > 0, so it is a minimum.

The work of finding maximum and minimum values may frequentlybe simpli-
fied by the aid of the following principles, which follow at once from our discus-
sion of the subject.

(a) The (local) maximum and minimum values of a continuous function must
occur alternately. (In particular, you cannot have two local maximums with-
out having a minimum in-between them.)

(b) If c is a positive constant,c · f(x) is a maximum or a minimum for a given
value ofx if and only if f(x) is a maximum or a minimum atx.

Consequently, in determining the critical values and testing for maxima and
minima, any constant factor may be omitted.

Whenc is negative,c ·f(x) is a maximum if and only iff(x) is a minimum,
and conversely.

(c) If c is a constant,f(x) andc + f(x) have maximum and minimum values
for the same values ofx.

Hence a constant term may be omitted when finding critical values ofx and
testing.

In general we must first construct, from the conditions givenin the problem,
the function whose maximum and minimum values are required,as was done in
the two examples worked out in§7.1. This is sometimes a problem of consider-
able difficulty. No rule applicable in all cases can be given for constructing the
function, but in a large number of problems we may be guided bythe following
general directions.

(a) Express the function whose maximum or minimum is involved in the prob-
lem.
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(b) If the resulting expression contains more than only variable, the conditions
of the problem will furnish enough relations between the variables so that
all may be expressed in terms of a single one.

(c) To the resulting function of a single variable apply one of our two rules for
finding maximum and minimum values.

(d) In practical problems it is usually easy to tell which critical value will give
a maximum and which a minimum value, so it is not always necessary to
apply the fourth step of our rules.

(e) Draw the graph of the function in order to check the work.

7.7 Problems

1. It is desired to make an open-top box of greatest possible volume from a
square piece of tin whose side is a, by cutting equal squares out of the
corners and then folding up the tin to form the sides. What should be the
length of a side of the squares cut out?

Solution. Letx = side of small square = depth of box; thena− 2x = side of
square forming bottom of box, and volume isV = (a− 2x)2x, which is the
function to be made a maximum by varyingx. Applying rule:

First step.dV
dx

= (a− 2x)2 − 4x(a− 2x) = a2 − 8ax+ 12x2.

Second step. Solvinga2 − 8ax + 12x2 = 0 gives critical valuesx = a
2

and
a
6
.

It is evident thatx = a
2

must give a minimum, for then all the tin would
be cut away, leaving no material out of which to make a box. By the usual
test,x = a

6
is found to give a maximum volume2a

3

27
. Hence the side of the

square to be cut out is one sixth of the side of the given square.

The drawing of the graph of the function in this and the following problems
is left to the student.

2. Assuming that the strength of a beam with rectangular cross section varies
directly as the breadth and as the square of the depth, what are the dimen-
sions of the strongest beam that can be sawed out of a round logwhose
diameter isd?
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Solution. Ifx = breadth andy = depth, then the beam will have maximum
strength when the functionxy2 is a maximum. From the construction and
the Pythagorean theorem,y2 = d2 − x2; hence we should test the function

f(x) = x(d2 − x2).

First step.f ′(x) = −2x2 + d2 − x2 = d2 − 3x2.

Second step.d2 − 3x2 = 0. Therefore,x = d√
3

= critical value which gives
a maximum.

Therefore, if the beam is cut so that depth =
√

2
3

of diameter of log, and

breadth =
√

1
3

of diameter of log, the beam will have maximum strength.

3. What is the width of the rectangle of maximum area that can beinscribed
in a given segmentOAA′ of a parabola?

Figure 7.9: An inscribed rectangle in a parabola,P = (x, y).

HINT. If OC = h, BC = h − x andPP ′ = 2y; therefore the area of
rectanglePDD′P ′ is 2(h− x)y.

But since P lies on the parabolay2 = 2px, the function to be tested is
2(h− x)

√
2px
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Ans. Width = 2
3
h.

4. Find the altitude of the cone of maximum volume that can be inscribed in a
sphere of radiusr (see Figure 7.10).

Figure 7.10: An inscribed cone, heighty and base radiusx, in a sphere.

HINT. Volume of cone =1
3
πx2y. Butx2 = BC×CD = y(2r−y); therefore

the function to be tested isf(y) = π
3
y2(2r − y).

Ans. Altitude of cone =4
3
r.

5. Find the altitude of the cylinder of maximum volume that can be inscribed
in a given right cone (see Figure 7.11).

HINT. Let AU = r andBC = h. Volume of cylinder =πx2y. But from
similar triangles ABC and DBG,r/x = h/(h − y), sox = r(h−y)

h
. Hence

the function to be tested isf(y) = r2

h2y(h− y)2.

Ans. Altitude = 1
3
h.

6. Dividea into two parts such that their product is a maximum.

Ans. Each part= a
2
.
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Figure 7.11: An inscribed cylinder in a cone.

7. Divide10 into two such parts that the sum of the double of one and square
of the other may be a minimum.

Ans. 9 and1.

8. Find the number that exceeds its square by the greatest possible quantity.

Ans. 1
2
.

9. What number added to its reciprocal gives the least possible sum?

Ans. 1.

10. Assuming that the stiffness of a beam of rectangular cross section varies
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directly as the breadth and the cube of the depth, what must bethe breadth
of the stiffest beam that can be cut from a log16 inches in diameter?

Ans. Breadth= 8 inches.

11. A water tank is to be constructed with a square base and open top, and is
to hold64 cubic yards. If the cost of the sides is $ 1 a square yard, and of
the bottom $ 2 a square yard, what are the dimensions when the cost is a
minimum? What is the minimum cost?

Ans. Side of base =4 yd., height =4 yd., cost $ 96.

12. A rectangular tract of land is to be bought for the purposeof laying out a
quarter-mile track with straightaway sides and semicircular ends. In addi-
tion a strip35 yards wide along each straightaway is to be bought for grand
stands, training quarters, etc. If the land costs $ 200 an acre, what will be
the maximum cost of the land required?

Ans. $ 856.

13. A torpedo boat is anchored9 miles from the nearest point of a beach, and
it is desired to send a messenger in the shortest possible time to a military
camp situated15 miles from that point along the shore. If he can walk5
miles an hour but row only4 miles an hour, required the place he must land.

Ans. 3 miles from the camp.

14. A gas holder is a cylindrical vessel closed at the top and open at the bottom,
where it sinks into the water. What should be its proportions for a given
volume to require the least material (this would also give least weight)?

Ans. Diameter = double the height.

15. What should be the dimensions and weight of a gas holder of8, 000, 000
cubic feet capacity, built in the most economical manner outof sheet iron
1
16

of an inch thick and weighing5
2

lb. per sq. ft.?

Ans. Height =137 ft., diameter =273 ft., weight =220 tons.

16. A sheet of paper is to contain18 sq. in. of printed matter. The margins
at the top and bottom are to be2 inches each and at the sides1 inch each.
Determine the dimensions of the sheet which will require theleast amount
of paper.

Ans. 5 in. by 10 in.

198



7.7. PROBLEMS

17. A paper-box manufacturer has in stock a quantity of cardboard30 inches
by 14 inches. Out of this material he wishes to make open-top boxesby
cutting equal squares out of each corner and then folding up to form the
sides. Find the side of the square that should be cut out in order to give the
boxes maximum volume.

Ans. 3 inches.

18. A roofer wishes to make an open gutter of maximum capacitywhose bottom
and sides are each4 inches wide and whose sides have the same slope. What
should be the width across the top?

Ans. 8 inches.4

19. Assuming that the energy expended in driving a steamboatthrough the wa-
ter varies as the cube of her velocity, find her most economical rate per hour
when steaming against a current runningc miles per hour.

HINT. Let v = most economical speed; thenav3 = energy expended each
hour,a being a constant depending upon the particular conditions,andv−c
= actual distance advanced per hour. Henceav3

v−c is the energy expended per
mile of distance advanced, and it is therefore the function whose minimum
is wanted.

20. Prove that a conical tent of a given capacity will requirethe least amount
of canvas when the height is

√
2 times the radius of the base. Show that

when the canvas is laid out flat it will be a circle with a sectorof 15209′ =
2.6555... cut out. A bell tent10 ft. high should then have a base of diameter
14 ft. and would require272 sq. ft. of canvas.

21. A cylindrical steam boiler is to be constructed having a capacity of1000 cu.
ft. The material for the side costs $ 2 a square foot, and for the ends $ 3 a
square foot. Find radius when the cost is the least.

Ans. 1
3√3π

ft.

22. In the corner of a field bounded by two perpendicular roadsa spring is
situated6 rods from one road and8 rods from the other.

(a) How should a straight road be run by this spring and acrossthe corner
so as to cut off as little of the field as possible?

(b) What would be the length of the shortest road that could be run across?

Ans. (a)12 and16 rods from corner. (b)(6
2
3 + 8

2
3 )

3
2 rods.
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23. Show that a square is the rectangle of maximum perimeter that can be in-
scribed in a given circle.

24. Two poles of height a and b feet are standing upright and are c feet apart.
Find the point on the line joining their bases such that the sum of the squares
of the distances from this point to the tops of the poles is a minimum. (Ans.
Midway between the poles.) When will the sum of these distances be a
minimum?

25. A conical tank with open top is to be built to containV cubic feet. Deter-
mine the shape if the material used is a minimum.

26. An isosceles triangle has a base12 in. long and altitude10 in. Find the rect-
angle of maximum area that can be inscribed in it, one side of the rectangle
coinciding with the base of the triangle.

27. Divide the number4 into two such parts that the sum of the cube of one part
and three times the square of the other shall have a maximum value.

28. Divide the numbera into two parts such that the product of one part by the
fourth power of the other part shall be a maximum.

29. A can buoy in the form of a double cone is to be made from two equal
circular iron plates of radiusr. Find the radius of the base of the cone when
the buoy has the greatest displacement (maximum volume).

Ans. r
√

2
3
.

30. Into a full conical wineglass of deptha and generating anglea there is care-
fully dropped a sphere of such size as to cause the greatest overflow. Show
that the radius of the sphere isα sinα

sinα cos 2α
.

31. A wall 27 ft. high is 8 ft. from a house. Find the length of the shortest
ladder that will reach the house if one end rests on the groundoutside of the
wall.

Ans. 13
√

13.

Here’s how to solve this usingSage : Let h be the height above ground at
which the ladder hits the house and letd be the distance from the wall that
the ladder hits the ground on the other side of the wall. By similar triangles,
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h/27 = (8 + d)/d = 1 + 8
d
, sod + 8 = 8 h

h−27
. The length of the ladder is,

by the Pythagorean theorem,f(h) =
√

h2 + (8 + d)2 =
√

h2 + (8 h
h−27

)2.

Sage

sage: h = var("h")
sage: f(h) = sqrt(hˆ2+(8 * h/(h-27))ˆ2)
sage: f1(h) = diff(f(h),h)
sage: f2(h) = diff(f(h),h,2)
sage: crit_pts = solve(f1(h) == 0,h); crit_pts
[h == 21 - 6 * sqrt(3) * I, h == 6 * sqrt(3) * I + 21, h == 39, h == 0]
sage: h0 = crit_pts[2].rhs(); h0
39
sage: f(h0)
13* sqrt(13)
sage: f2(h0)
3/(4 * sqrt(13))

This saysf(h) has four critical points, but only one of which is meaningful,
h0 = 39. At this point,f(h) is a minimum.

32. A vessel is anchored3 miles offshore, and opposite a point5 miles further
along the shore another vessel is anchored9 miles from the shore. A boat
from the first vessel is to land a passenger on the shore and then proceed to
the other vessel. What is the shortest course of the boat?

Ans. 13 miles.

33. A steel girder25 ft. long is moved on rollers along a passageway12.8 ft.
wide and into a corridor at right angles to the passageway. Neglecting the
width of the girder, how wide must the corridor be?

Ans. 5.4 ft.

34. A miner wishes to dig a tunnel from a point A to a point B300 feet below
and500 feet to the east of A. Below the level of A it is bed rock and above
A is soft earth. If the cost of tunneling through earth is $ 1 and through rock
$ 3 per linear foot, find the minimum cost of a tunnel.

Ans. $ 1348.53.
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35. A carpenter has108 sq. ft. of lumber with which to build a box with a
square base and open top. Find the dimensions of the largest possible box
he can make.

Ans. 6 × 6 × 3.

36. Find the right triangle of maximum area that can be constructed on a line of
lengthh as hypotenuse.

Ans. h√
2

= length of both legs.

37. What is the isosceles triangle of maximum area that can be inscribed in a
given circle?

Ans. An equilateral triangle.

38. Find the altitude of the maximum rectangle that can be inscribed in a right
triangle with baseb and altitudeh.

Ans. Altitude = h
2
.

39. Find the dimensions of the rectangle of maximum area thatcan be inscribed
in the ellipseb2x2 + a2y2 = a2b2.

Ans. a
√

2 × b
√

2; area =2ab.

40. Find the altitude of the right cylinder of maximum volumethat can be in-
scribed in a sphere of radiusr.

Ans. Altitude of cylinder =2r√
3
.

41. Find the altitude of the right cylinder of maximum convex(curved) surface
that can be inscribed in a given sphere.

Ans. Altitude of cylinder =r
√

2.

42. What are the dimensions of the right hexagonal prism of minimum surface
whose volume is36 cubic feet?

Ans. Altitude =2
√

3; side of hexagon =2.

43. Find the altitude of the right cone of minimum volume circumscribed about
a given sphere.

Ans. Altitude =4r, and volume =2× vol. of sphere.
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44. A right cone of maximum volume is inscribed in a given right cone, the
vertex of the inside cone being at the center of the base of thegiven cone.
Show that the altitude of the inside cone is one third the altitude of the given
cone.

45. Given a point on the axis of the parabolay2 = 2px at a distancea from the
vertex; find the abscissa of the point of the curve nearest to it.

Ans. x = a− p.

46. What is the length of the shortest line that can be drawn tangent to the ellipse
b2x2 + a2y2 = a2b2 and meeting the coordinate axes?

Ans. a+ b.

47. A Norman window consists of a rectangle surmounted by a semicircle.
Given the perimeter, required the height and breadth of the window when
the quantity of light admitted is a maximum.

Ans. Radius of circle = height of rectangle.

48. A tapestry7 feet in height is hung on a wall so that its lower edge is9
feet above an observer’s eye. At what distance from the wall should he
stand in order to obtain the most favorable view? (HINT. The vertical angle
subtended by the tapestry in the eye of the observer must be ata maximum.)

Ans. 12 feet.

49. What are the most economical proportions of a tin can whichshall have a
given capacity, making allowance for waste? (HINT. There isno waste in
cutting out tin for the side of the can, but for top and bottom ahexagon of
tin circumscribing the circular pieces required is used up.NOTE 1. If no
allowance is made for waste, then height = diameter. NOTE 2. We know
that the shape of a bee cell is hexagonal, giving a certain capacity for honey
with the greatest possible economy of wax.)

Ans. Height =2
√

3
π
× diameter of base.

50. An open cylindrical trough is constructed by bending a given sheet of tin at
breadth2a. Find the radius of the cylinder of which the trough forms a part
when the capacity of the trough is a maximum.

Ans. Rad. =2a
π

; i.e. it must be bent in the form of a semicircle.
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51. A weightW is to be raised by means of a lever with the forceF at one end
and the point of support at the other. If the weight is suspended from a point
at a distancea from the point of support, and the weight of the beam isw
pounds per linear foot, what should be the length of the leverin order that
the force required to lift it shall be a minimum?

Ans. x =
√

2aW
w

feet.

52. An electric arc light is to be placed directly over the center of a circular plot
of grass100 feet in diameter. Assuming that the intensity of light varies
directly as the sine of the angle under which it strikes an illuminated surface,
and inversely as the square of its distance from the surface,how high should
the light he hung in order that the best possible light shall fall on a walk
along the circumference of the plot?

Ans. 50√
2

feet

53. The lower corner of a leaf, whose width isa, is folded over so as just to
reach the inner edge of the page.

(a) Find the width of the part folded over when the length of the crease is a
minimum.

(b) Find the width when the area folded over is a minimum.

Ans. (a)3
4
a; (b) 2

3
a.

54. A rectangular stockade is to be built which must have a certain area. If
a stone wall already constructed is available for one of the sides, find the
dimensions which would make the cost of construction the least.

Ans. Side parallel to wall = twice the length of each end.

55. When the resistance of air is taken into account, the inclination of a pen-
dulum to the vertical may be given by the formulaθ = ae−kt cos (nt + η).
Show that the greatest elongations occur at equal intervalsπ

n
of time.

56. It is required to measure a certain unknown magnitudex with precision.
Suppose thatn equally careful observations of the magnitude are made,
giving the resultsa1, a2, a3, . . . , an. The errors of these observations are
evidentlyx−a1, x−a2, x−a3, · · · , x−an, some of which are positive and
some negative. It has been agreed that the most probable value ofx is such
that it renders the sum of the squares of the errors, namely(x− a1)

2 + (x−
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Figure 7.12: A leafed page of widtha.

a2)
2 + (x − a3)

2 + · · · + (x − an)
2, a minimum. Show that this gives the

arithmetical mean of the observations as the most probable value ofx.

(This is related to the method of least squares, discovered by Gauss, a com-
monly used technique in statistical applications.)

57. The bending moment atx of a beam of lengthℓ, uniformly loaded, is given
by the formulaM = 1

2
wℓx− 1

2
wx2, wherew = load per unit length. Show

that the maximum bending moment is at the center of the beam.

58. If the total waste per mile in an electric conductor isW = c2r + t2

r
, where

c = current in amperes (a constant),r = resistance in ohms per mile, andt =
a constant depending on the interest on the investment and the depreciation
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of the plant, what is the relation betweenc, r, andt when the waste is a
minimum?

Ans. cr = t.

59. A submarine telegraph cable consists of a core of copper wires with a cov-
ering made of non-conducting material. If x denote the ratioof the radius
of the core to the thickness of the covering, it is known that the speed of
signaling varies as

x2 log
1

x
.

Show that the greatest speed is attained whenx = 1√
e
.

60. Assuming that the power given out by a voltaic cell is given by the formula

P =
E2R

(r +R)2
,

whenE = constant electro-motive force,r = constant internal resistance,R
= external resistance, prove thatP is a maximum whenr = R.

61. The force exerted by a circular electric current of radiusa on a small magnet
whose axis coincides with the axis of the circle varies as

x

(a2 + x2)
5
2

.

wherex = distance of magnet from plane of circle. Prove that the force is a
maximum whenx = a

2
.

62. We have two sources of heat at A and B, which we visualize on the real line
(with B to the right or A), with intensitiesa andb respectively. The total
intensity of heat at a point P between A and B at a distance ofx from A
is given by the formulaI = a

x2 + b
(d−x)2 . Show that the temperature at P

will be the lowest whend−x
x

= b1/3

a1/3 . that is, the distances BP and AP have
the same ratio as the cube roots of the corresponding heat intensities. The

distance of P from A isx = a
1
3 d

a
1
3 +b

1
3
.
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63. The range of a projectile in a vacuum is given by the formulaR =
v20 sin 2φ

g
,

wherev0 = initial velocity, g = acceleration due to gravity,φ = angle of
projection with the horizontal. Find the angle of projection which gives the
greatest range for a given initial velocity.

Ans.φ = 45o = π/4.

64. The total time of flight of the projectile in the last problem is given by the
formulaT = 2v0 sinφ

g
. At what angle should it be projected in order to make

the time of flight a maximum?

Ans.φ = 90o = π/2.

65. The time it takes a ball to roll down an inclined plane withangleφ (with

respect to thex-axis) is given by the formulaT = 2
√

2
g sin 2φ

. Neglecting

friction, etc., what must be the value ofφ to make the quickest descent?

Ans.φ = 45o = π/4.

66. Examine the function(x− 1)2(x+ 1)3 for maximum and minimum values.
Use the first method.

Solution.f(x) = (x− 1)2(x+ 1)3.

First step.f ′(x) = 2(x − 1)(x + 1)3 + 3(x − 1)2(x + 1)2 = (x − 1)(x +
1)2(5x− 1).

Second step.(x− 1)(x+ 1)2(5x− 1) = 0, x = 1,−1, 1
5
, which are critical

values.

Third step.f ′(x) = 5(x− 1)(x+ 1)2(x− 1
5
).

Fourth step. Examine first for critical valuex = 1.

When x < 1, f ′(x) = 5(−)(+)2(+) = −. When x > 1, f ′(x) =
5(+)(+)2(+) = +. Therefore, whenx = 1 the function has a minimum
valuef(l) = 0. Examine now for the critical valuex = 1

5
. Whenx < 1

5
,

f ′(x) = 5(−)(+)2(−) = +. Whenx > 1
5
, f ′(x) = 5(−)(+)2(+) = −.

Therefore, whenx = 1
5

the function has a maximum valuef(1
5
) = 1.11.

Examine lastly for the critical valuex = −1. Whenx < −1, f ′(x) =
5(−)(−)2(−) = +. Whenx > −1, f ′(x) = 5(−)(+)2(−) = +. There-
fore, whenx = −1 the function has neither a maximum nor a minimum
value.

Examine the following functions for maximum and minimum values:
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67. (x− 3)2(x− 2).

Ans. x = 7
3
, gives max. =4

27
; x = 3, gives min. =0.

68. (x− 1)3(x− 2)2.

Ans. x = 8
5
, gives max. =0.03456; x = 2, gives min. =0; x = 1, gives

neither.

69. (x− 4)5(x+ 2)4.

Ans. x = −2, gives max.;x = 2
3

gives min;x = 4, gives neither.

70. (x− 2)5(2x+ 1)4.

Ans. x = −1
2
, gives max.;x = 11

18
, gives min.;x = 2, gives neither.

71. (x+ 1)
2
3 (x− 5)2.

Figure 7.13:Sage plot of y = (x+ 1)
2
3 (x− 5)2.

Ans. x = 1
2
, gives max.;x = −1 and5, give min.

72. (2x− a)
1
3 (x− a)

2
3 .

Ans. x = 2a
3

, gives max.;x = 1 and−1
3
, gives min.;x = a

2
, gives neither.

73. x(x− 1)2(x+ 1)3.

Ans. x = 1
2
, gives max.;x = 1 and−1

3
, gives min.;x = −1, gives neither.
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74. x(a+ x)2(a− x)3

Ans. x = −a and a
3
, give max.;x = −a

2
; x = a, gives neither.

75. b+ c(x− a)
2
3 .

Ans. x = a, gives min. =b.

76. a− b(x− c)
1
3 .

Ans. No max. or min.

77. x2−7x+6
x−10

.

Ans. x = 4, gives max.x = 16, gives min.

78. (a−x)3
a−2x

.

Ans. x = a
4
, gives min.

79. 1−x+x2

1+x−x2 .

Ans. x = 1
2
, gives min.

80. x2−3x+2
x2+3x+2

.

Ans. x =
√

2, gives min. =12
√

2 − 17; x = −
√

2, gives max. =−12
√

2 −
17; x = −1,−2, give neither.

81. (x−a)(b−x)
x2 .

x = 2ab
a+b

, gives max. =(a−b)2
4ab

.

82. a2

x
+ b2

a−x .

Ans. x = a2

a−b , gives min.;x = a2

a+b
, gives max.

83. Examinex3−3x2−9x+5 for maxima and minima, Use the second method,
§7.6.

Solution.f(x) = x3 − 3x2 − 9x+ 5.

First step.f ′(x) = 3x2 − 6x− 9.

Second step,3x2 − 6x− 9 = 0; hence the critical values arex = −1 and3.

Third step.f ′′(x) = 6x− 6.
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Fourth step.f ′′(−1) = −12.

Therefore,f(−1) = 10 = maximum value. f ′′(3) = +12. Therefore,
f(3) = −22 = minimum value.

84. Examinesin2 x cos x for maximum and minimum values.

Solution.f(x) = sin2 x cos x.

First step.f ′(x) = 2 sin x cos2 x− sin3 x.

Second step.2 sin x cos2 x − sin3 x = 0; hence the critical values arex =
nπ andx = nπ ± arctan(−

√
2) = nπ ± α.

Third step.f ′′(x) = cos x(2 cos2 x− 7 sin2 x).

Fourth step.f ′′(0) = +. Therefore,f(0) = 0 = minimum value.f ′′(π) =
−. Therefore,f(π) = 0 = maximum value.f ′′(α) = −. Therefore,f(α)
maximum value.f ′′(π − α) = +. Therefore,f(π − α) minimum value.

Examine the following functions for maximum and minimum values:

87. 3x3 − 9x2 − 27x+ 30.

Ans. x = −1, gives max. =45; x = 3, gives min. =−51.

88. 2x3 − 21x2 + 36x− 20.

Ans. x = 1, gives max. =−3; x = 6, gives min. =−128.

89. x3

3
− 21x2 + 3x+ 1.

Ans. x = 1, gives max. =7
3
; x = 3, gives min. =1.

90. 2x3 − 15x2 + 36x+ 10.

Ans. x = 2, gives max. =38; x = 3, gives min. =37.

91. x3 − 9x2 + 15x− 3.

Ans. x = 1, gives max. =4; x = 5, gives min. =−28.

92. x3 − 3x2 + 6x+ 10.

Ans. No max. or min.

93. x5−5x4 +5x3 +1. x = 1, gives max. =2; x = 3, gives min. =−26; x = 0,
gives neither.
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94. 3x5 − 125x2 + 2160x.

x = −4 and3, give max.;x = −3 and4, give min.

95. 2x3 − 3x2 − 12x+ 4.

96. 2x3 − 21x2 + 36x− 20.

97. x4 − 2x2 + 10.

98. x4 − 4.

99. x3 − 8.

100. 4 − x6.

101. sin x(1 + cos x).

Ans. x = 2nπ + π
3
, give max.= 3

4

√
3; x = 2nπ − π

3
, give min. = 3

4

√
3;

x = nπ, give neither.

102. x
log x

.

Ans. x = e, gives min. =e; x = 1, gives neither.

103. log cos x.

Ans. x = nπ, gives max.

104. aekx + be−kx.

Ans. x = 1
k

log
√

b
a
, gives min.= 2

√
ab.

105. xx.

x = 1
e
, gives min.

106. x
1
x .

Ans. x = e, gives max.

107. cos x+ sin x.

Ans. x = π
4
, gives max. =

√
2. x = 5π

4
, gives min. =−

√
2.

108. sin 2x− x.

Ans. x = π
6
, gives max.;x = −π

6
, gives min.
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109. x+ tan x.

Ans. No max. or min.

110. sin3 x cos x.

Ans. x = nπ + π
3
, gives max. =3

16

√
3; x = nπ − π

3
, gives min. =− 3

16

√
3;

x = nπ, gives neither.

111. x cos x.

Figure 7.14:Sage plot of y = x cos(x).

Ans. x such thatx sin x = cos x, gives max/min.

112. sin x+ cos 2x.

Ans. arcsin 1
4
, gives max.;x = π

2
, gives min.

113. 2 tan x− tan2 x.

Ans. x = π
4
, gives max.

114. sinx
1+tanx

.

Ans. x = π
4
, gives max.

115. x
1+x tanx

.

x = cos x, gives max.;x = − cos x, gives min.
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7.8. POINTS OF INFLECTION

7.8 Points of inflection

Definition 7.8.1. Consider the graphy = f(x) is a twice continuously differen-
tiable function.Points of inflectionseparate concave upwards sections of the graph
from concave downwards sections. They may also be defined as points where

(a) d
2y
dx2 = 0 and d2y

dx2 changes sign,
or

(b) d
2x
dy2

= 0 and d2x
dy2

changes sign.

Thus, if a curvey = f(x) changes from concave upwards to concave downwards
at a point, or the from concave down to concave up, then such a point is called a
point of inflection.

From the discussion of§7.6, it follows at once that where the curve is concave
up, f ′′(x) = +, and where the curve is concave down,f ′′(x) = −. In order to
change sign it must pass through the value zero6; hence we have:

Lemma 7.8.1.At points of inflection,f ′′(x) = 0.

Solving the equation resulting from Lemma 7.8.1 gives thex-coordinate(s) of
the point(s) of inflection. To determine the direction of curving or direction of
bending in the vicinity of a point of inflection, testf ′′(x) for values ofx, first
slightly less and then slightly more than thex-coordinate at that point.

If f ′′(x) changes sign, we have a point of inflection, and the signs obtained deter-
mine if the curve is concave upwards or concave downwards in the neighborhood
of each point of inflection.

The student should observe that near a point where the curve is concave up-
wards the curve lies above the tangent, and at a point where the curve is concave
downwards the curve lies below the tangent. At a point of inflection the tangent
evidently crosses the curve.

Following is arule for finding points of inflectionof the curve whose equation
is y = f(x). This rule includes also directions for examining the direction of
curvature of the curve in the neighborhood of each point of inflection.

• FIRST STEP. Findf ′′(x).

• SECOND STEP. Setf ′′(x) = 0, and solve the resulting equation for real
roots.

6It is assumed thatf ′(x) andf ′′(x) are continuous. The solution of Exercise 2,§7.8, shows
how to discuss a case wheref ′(x) andf ′′(x) are both infinite.
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• THIRD STEP. Writef ′′(x) in factor form.

• FOURTH STEP. Testf ′′(x) for values ofx, first a trifle less and then a trifle
greater than each root found in the second step. Iff ′′(x) changes sign, we
have a point of inflection.

Whenf ′′(x) = +, the curve is concave upwards7.
Whenf ′′(x) = −, the curve is concave downwards.

7.9 Examples

Examine the following curves for points of inflection and direction of bending.

1. y = 3x4 − 4x3 + 1.

Solution.f(x) = 3x4 − 4x3 + 1.

First step.f ′′(x) = 36x2 − 24x.

Second step.36x2 − 24x = 0, x = 2
3

andx = 0, critical values.

Third step.f ′′(x) = 36x(x− 2
3
).

Fourth step. Whenx < 0, f ′′(x) = +; and whenx > 0, f ′′(x) = −.
Therefore, the curve is concave upwards to the left and concave downwards
to the right ofx = 0. Whenx < 2

3
, f ′′(x) = −; and whenx > 2

3
,

f ′′(x) = +. Therefore, the curve is concave downwards to the left and
concave upwards to the right ofx = 2

3
.

The curve is evidently concave upwards everywhere to the left of x = 0,
concave downwards between(0, 1) and(2

3
, 11

27
), and concave upwards ev-

erywhere to the right of(2
3
, 11

27
).

2. (y − 2)3 = (x− 4).

Solution.y = 2 + (x− 4)−
1
3 .

First step.dy
dx

= 1
3
(x− 4)−

2
3 .

Second step. Whenx = 4, both first and second derivatives are infinite.

Third step. Whenx < 4, d
2y
dx2 = +; but whenx > 4, d

2y
dx2 = −.

7This may be easily remembered if we say that a vessel shaped like the curve where it is
concave upwards will “hold (+) water”, and where it is concave downwards will “spill (−) water.”
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We may therefore conclude that the tangent at(4, 2) is perpendicular to the
x-axis, that to the left of(4, 2) the curve is concave upwards, and to the
right of (4, 2) it is concave downwards. Therefore(4, 2) must be considered
a point of inflection.

3. y = x2.

Ans. Concave upwards everywhere.

4. y = 5 − 2x− x2.

Ans. Concave downwards everywhere.

5. y = x3.

Ans. Concave downwards to the left and concave upwards to the right of
(0, 0).

6. y = x3 − 3x2 − 9x+ 9.

Ans. Concave downwards to the left and concave upwards to the right of
(1,−2).

7. y = a+ (x− b)3.

Ans. Concave downwards to the left and concave upwards to the right of
(b, a).

8. a2y = x3

3
− ax2 + 2a3.

Ans. Concave downwards to the left and concave upwards to the right of
(a, 4a

3
).

9. y = x4.

Ans. Concave upwards everywhere.

10. y = x4 − 12x3 + 48x2 − 50.

Ans. Concave upwards to the left ofx = 2, concave downwards between
x = 2 andx = 4, concave upwards to the right ofx = 4.

11. y = sin x.

Ans. Points of inflection arex = nπ, n being any integer.
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12. y = tan x.

Ans. Points of inflection are x = n, n being any integer.

13. Show that no conic section can have a point of inflection.

14. Show that the graphs ofex andlog x have no points of inflection.

7.10 Curve plotting

The elementary method of plotting a curve whose equation is given in rectangular
coordinates, and one with which the student is already familiar, is to (a) solve its
equation fory (or x), (b) take several arbitrary values ofx (or y), tabulate the
corresponding values ofy (or x), (c) plot the respective points, and (d) draw a
smooth curve through them. The result is an approximation tothe required curve.
This process is laborious at best, and in case the equation ofthe curve is of a degree
higher than the second, the solved form of such an equation may be unsuitable for
the purpose of computation, or else it may fail altogether, since it is not always
possible to solve the equation fory or x.

The general form of a curve is usually all that is desired, andcalculus furnishes
us with useful methods for determining the shape of a curve with very little com-
putation.

The first derivative gives us the slope of the curve at any point; the second deriva-
tive determines the intervals within which the curve is concave upward or concave
downward, and the points of inflection separate these intervals; the maximum
points are the high points and the minimum points are the low points on the curve.
As a guide in his work the student may follow the following rule.

Rule for plotting curves in rectangular coordinates.

• FIRST STEP. Find the first derivative; place it equal to zero; solving gives
the abscissas of maximum and minimum points.

• SECOND STEP. Find the second derivative; place it equal to zero; solving
gives the abscissas of the points of inflection.

• THIRD STEP. Calculate the corresponding ordinates of the points whose
abscissas were found in the first two steps. Calculate as many more points
as may be necessary to give a good idea of the shape of the curve. Fill out a
table such as is shown in the example worked out.
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• FOURTH STEP. Plot the points determined and sketch in the curve to cor-
respond with the results shown in the table.

If the calculated values of the ordinates are large, it is best to reduce the scale on
they-axis so that the general behavior of the curve will be shown within the limits
of the paper used. Coordinate plotting (graph) paper should be employed.

7.11 Exercises

Trace the following curves, making use of the above rule. Also find the equations
of the tangent and normal at each point of inflection.

1. y = x3 − 9x2 + 24x− 7.

Solution. Use the above rule.

First step.y′ = 3x2 − 18x+ 24, 3x2 − 18x+ 24 = 0, x = 2, 4.

Second step.y′′ = 6x− 18, 6x− 18 = 0, x = 3.

Third step.

x y y′ y′′ Remarks Direction of Curve
0 -7 + - concave down
2 13 0 - max. concave down
3 11 - 0 pt. of infl. concave up
4 9 0 + min. concave up
6 29 + + concave up

Fourth step. Plot the points and sketch the curve. To find the equations
of the tangent and normal to the curve at the point of inflection (3, 11),
use formulas (5.1), ((5.2). This gives3x + y = 20 for the tangent and
3y − x = 30 for the normal.

2. y = x3 − 6x2 − 36x+ 5.

Ans. Max. (−2, 45); min. (6,−211); pt. of infl. (2,−83); tan. y + 48x −
13 = 0; nor. 48y − x+ 3986 = 0.

We shall solve this usingSage .

Sage

sage: x = var("x")
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sage: f = xˆ3 - 6 * xˆ2 - 36 * x + 5
sage: f1 = diff(f(x),x); f1
3* xˆ2 - 12 * x - 36
sage: crit_pts = solve(f1(x) == 0, x); crit_pts
[x == 6, x == -2]
sage: f2 = diff(f(x),x,2); f2(x)
6* x - 12
sage: x0 = crit_pts[0].rhs(); x0
6
sage: x1 = crit_pts[1].rhs(); x1
-2
sage: f(x0); f2(x0)
-211
24
sage: f(x1); f2(x1)
45
-24
sage: infl_pts = solve(f2(x) == 0, x); infl_pts
[x == 2]
sage: p = plot(f, -5, 10)
sage: show(p)

3. y = x4 − 2x2 + 10.

Ans. Max.(0, 10); min. (±1, 9); pt. of infl.
(

± 1√
3
, 85

9

)

.

4. y = 1
2
x4 − 3x2 + 2.

Ans. Max.(0, 2); min. (±
√

3,−5
2
); pt. of infl. (±1,−1

2
).

5. y = 6x
1+x2 .

Ans. Max.(1, 3); min. (−1,−3); pt. of infl. (0, 0),
(

±
√

3,±3
√

3
2

)

.

6. y = 12x− x3.

Ans. Max.(2, 16); min. (−2,−16); pt. of infl. (0, 0).

7. 4y + x3 − 3x2 + 4 = 0.

Ans. Max.(2, 0); min. (0,−1).
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Figure 7.15: Plot for Exercise 8.11-2,y = x3 − 6x2 − 36x+ 5.

8. y = x3 − 3x2 − 9x+ 9.

9. 2y + x3 − 9x+ 6 = 0.

10. y = x3 − 6x2 − 15x+ 2.

11. y(1 + x2) = x.

12. y = 8a3

x2+4a2 .

13. y = e−x
2
.

14. y = 4+x
x2 .

15. y = (x+ l)
2
3 (x− 5)2.

16. y = x+2
x3 .

17. y = x3 − 3x2 − 24x.

18. y = 18 + 36x− 3x2 − 2x3.
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19. y = x− 2 cos x.

20. y = 3x− x3.

21. y = x3 − 9x2 + 15x− 3.

22. x2y = 4 + x.

23. 4y = x4 − 6x2 + 5.

24. y = x3

x2+3a2 .

25. y = sin x+ x
2
.

26. y = x2+4
x

.

27. y = 5x− 2x2 − 1
3
x3.

28. y = 1+x2

2x
.

29. y = x− 2 sin x.

30. y = log cos x.

31. y = log(1 + x2).
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CHAPTER

EIGHT

Application to arclength and rates

8.1 Introduction

Thus far we have represented the derivative ofy = f(x) by the notation

dy

dx
= f ′(x).

We have taken special pains to impress on the student that thesymbol

dy

dx

was to be considered not as an ordinary fraction withdy as numerator anddx as
denominator, but as a single symbol denoting the limit of thequotient

∆y

∆x

as∆x approaches the limit zero.
Problems do occur, however, where it is very convenient to beable to give a

meaning todx anddy separately, and it is especially useful in applications us-
ing integral calculus. How this may be done is explained in the first part of this
chapter.

In the second part (starting with§8.6), we apply what we know about the deriva-
tive to functions of timet. If f(t) is some quantity (for example, distance) chang-
ing with time then we can regardf ′(t) as the rate of change off (for example,
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8.2. DEFINITIONS

velocity). The method of solving “related rates” problems will be explained in the
second part of this chapter.

8.2 Definitions

If f ′(x) is the derivative off(x) for a particular value ofx, and∆x is an arbitrarily
chosen1 increment ofx, then thedifferentialof f(x), denoted by the symboldf(x),
is defined by the equation

df(x) = f ′(x)∆x. (8.1)

If now f(x) = x, thenf ′(x) = 1, and (8.1) reduces todx = ∆x, showing that
whenx is the independent variable, the differential ofx (= dx) is identical with
∆x. Hence, ify = f(x), (8.1) may in general be written in the form

dy = f ′(x) dx. (8.2)

The differential of a function equals its derivative multiplied by the differential of
the independent variable. Observe that, sincedx may be given any arbitrary value
whatever,dx is independent ofx. Hence,dy is a function of two independent
variablesx anddx.

Let us illustrate what this means geometrically.
Let f ′(x) be the derivative ofy = f(x) at P, then

dy = f ′(x)dx = tan τ · dx.

Thereforedy, or df(x), is the increment of they-coordinate on the tangent line to
the curvey = f(x) corresponding to replacingx by x+ dx.

This gives the following interpretation of the derivative as a fraction.
If an arbitrarily chosen increment of the independent variablex for a point(x, y)

on the curvey = f(x) is denoted bydx, then in the derivative

dy

dx
= f ′(x) = tan τ,

dy denotes the corresponding increment of they-coordinate drawn to the tangent.

1The term “arbitrarily chosen” essentially means that the variable∆x is independent from the
variablex.
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8.3. DERIVATIVE OF THE ARCLENGTH IN RECTANGULAR
COORDINATES

Figure 8.1: The differential of a function.

8.3 Derivative of the arclength in rectangular coor-
dinates

Let s be the arclength2 of the part of the curvey = f(x) from a given point A on
the curve to some ‘variable” point P.

Denote the increment ofs (= arc PQ in Figure 8.2) by∆s. The definition of the
arclength depends on the assumption that, as Q approaches P,

lim

(

chordPQ
arcPQ

)

= 1.

In the limit of the ratio of chord PQ and a second infinitesimal, chord PQ may be
replaced by arc PQ (=∆s).

From Figure 8.2, we have

(chord PQ)2 = (∆x)2 + (∆y)2. (8.3)

2Defined in integral calculus. For now, we simply assume that there is a functions = s(x)
such that if you go along the curve from a given pointA (such as the point(0, f(0))) to a point
P = (x, y) thens(x) describes the arclength.
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8.3. DERIVATIVE OF THE ARCLENGTH IN RECTANGULAR
COORDINATES

Figure 8.2: The differential of the arclength.

Dividing through by(∆x)2, we get

(

chordPQ
∆x

)2

= 1 +

(

∆y

∆x

)2

.

Now let Q approach P in the limit. Then∆x→ 0 and we have

(

ds

dx

)2

= 1 +

(

dy

dx

)2

.

(Sincelim∆x→0

(

chordPQ
∆x

)

= lim∆x→0

(

∆s
∆x

)

= ds
dx

.) Therefore,

ds

dx
=

√

1 +

(

dy

dx

)2

. (8.4)

Similarly, if we divide (8.3) by(∆y)2 and pass to the limit, we get
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8.4. DERIVATIVE OF THE ARCLENGTH IN POLAR COORDINATES

ds

dy
=

√

(

dx

dy

)2

+ 1.

Also, from the above figure,

cos θ =
∆x

chordPQ
, sin θ =

∆y

chordPQ
.

Now as Q approaches P as a limiting positionθ → τ , and we get

cos τ =
dx

ds
, sin τ =

dy

ds
. (8.5)

(Sincelim ∆x

chordPQ = lim ∆x
∆x

= dx
ds

, andlim ∆y

chordPQ = lim ∆y
∆s

= dy
ds

.) Using the
notation of differentials, these formulas may be written

ds =

[

1 +

(

dy

dx

)2
] 1

2

dx (8.6)

and

ds =

[

(

dx

dy

)2

+ 1

] 1
2

dy, (8.7)

respectively. Substituting the value ofds from (8.6) in (8.5),

cos τ =
1

[

1 +
(

dy
dx

)2
] 1

2

, sin τ =
dy
dx

[

1 +
(

dy
dx

)2
] 1

2

, (8.8)

the same relations given by (8.5).

8.4 Derivative of the arclength in polar coordinates

In the discussion below we shall employ the same figure and thesame notation
used in§5.7.

(chord PQ)2 = (PR)2 + (RQ)2 = (ρ sin ∆θ)2 + (ρ+ ∆ρ− ρ cos ∆θ)2.
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8.4. DERIVATIVE OF THE ARCLENGTH IN POLAR COORDINATES

Dividing throughout by(∆θ)2, we get

(

chordPQ
∆θ

)2

= ρ2

(

sin ∆θ

∆θ

)2

+

(

∆ρ

∆θ
+ ρ · 1 − cos ∆θ

∆θ

)2

.

Passing to the limit as∆θ diminishes towards zero, we get3

(

ds

dθ

)2

= ρ2 +

(

dρ

dθ

)2

,

ds

dθ
=

√

ρ2 +

(

dρ

dθ

)2

. (8.9)

In the notation of differentials this becomes

ds =

[

ρ2 +

(

dρ

dθ

)2
] 1

2

dθ. (8.10)

These relations betweenρ and the differentialsds, dρ, anddθ are correctly repre-
sented by a right triangle whose hypotenuse isds and whose sides aredρ andρdθ.
Then

ds =
√

(ρdθ)2 + (dρ)2,

and dividing bydθ gives (8.9). Denoting byψ the angle betweendρ andds, we
get at once

tanψ = ρ
dθ

dρ
,

which is the same as ((5.12).

Example 8.4.1.Find the differential of the arc of the circlex2 + y2 = r2.
Solution. Differentiating,dy

dx
= −x

y
.

To findds in terms ofx we substitute in (8.6), giving

ds =

[

1 +
x2

y2

]
1
2

dx =

[

y2 + x2

y2

]
1
2

dx =

[

r2

y2

]
1
2

dx =
rdy√
r2 − x2

.

3Recall: lim∆θ→0
chordPQ

∆θ
= lim∆θ→0

∆s
∆θ

= ds
dθ

, by §8.3;lim∆→0
sin ∆θ

∆θ
= 1, by §2.10;

lim∆θ→0
1−cos ∆θ

∆θ
= lim∆θ→0

2 sin2 ∆θ
2

∆θ
= lim∆θ→0 sin ∆θ

2 · sin ∆θ
2

∆θ
2

= 0 · 1 = 0, by §2.10 and 39

in §12.1.
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8.5. EXERCISES

To findds in terms ofy we substitute in (8.7), giving

ds =

[

1 +
y2

x2

]
1
2

dy =

[

x2 + y2

x2

]
1
2

dy =

[

r2

x2

]
1
2

=
rdy

√

r2 − y2
.

Example 8.4.2.Find the differential of the arclength of the cardioidρ = a(l −
cos θ) in terms ofθ.

Solution. Differentiating,dρ
dθ

= a sin θ.
Substituting in (8.10), gives

ds = [a2(1−cos θ)2+a2 sin2 θ]
1
2dθ = a[2−2 cos θ]

1
2dθ = a

[

4 sin2 θ

2

] 1
2

dθ = 2a sin
θ

2
dθ.

8.5 Exercises

Find the differential of arclength in each of the following curves:

1. y2 = 4x.

Ans. ds =
√

1+x
x
dx.

2. y = ax2.

Ans. ds =
√

1 + 4a2x2dx.

3. y = x3.

Ans. ds =
√

1 + 9x4dx.

4. y3 = x2.

Ans. ds = 1
2

√
4 + 9ydy.

5. x
2
3 + y

2
3 = a

2
3 .

Ans. ds = 3

√

a
y
dy.

6. b2x2 + a2y2 = a2b2.

Ans. ds =
√

a2−e2x2

a2−x2 dx.
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8.6. THE DERIVATIVE CONSIDERED AS THE RATIO OF TWO RATES

7. ey cos x = 1.

Ans. ds = sec x dx.

8. ρ = a cos θ.

Ans. ds = a dθ.

9. ρ2 = a2 cos 2θ.

Ans. ds =
√

sec 2θdθ.

10. ρ = aeθ cot a.

Ans. ds = ρ csc a · dθ.

11. ρ = aθ.

Ans. ds = aθ
√

1 + log2 adθ.

12. ρ = aθ.

Ans. ds = 1
a

√

a2 + ρ2dρ.

13.
(a) x2 − y2 = a2. (h) x

1
2 + y

1
2 = a

1
2 .

(b) x2 = 4ay. (i) y2 = ax3.
(c) y = ex + e−x. (j) y = log x.
(d) xy = a. (k) 4x = y3.
(e) y = log sec x. (l) ρ = a sec2 θ

2
.

(f) ρ = 2a tan θ sin θ. (m) ρ = 1 + sin θ.
(g) ρ = a sec3 θ

3
. (n) ρθ = a.

8.6 The derivative considered as the ratio of two rates

Let

y = f(x)

be the equation of a curve generated by a moving point P. Its coordinatesx andy
may then be considered as functions of the time, as explainedin §5.13. Differen-
tiating with respect tot, by the chain rule (Formula XXV in§4.1), we have

dy

dt
= f ′(x)

dx

dt
. (8.11)
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8.6. THE DERIVATIVE CONSIDERED AS THE RATIO OF TWO RATES

At any instant the time rate of change ofy (or the function) equals its derivative
multiplied by the time rate change of the independent variable.

Or, write (8.11) in the form

dy
dt
dx
dt

= f ′(x) =
dy

dx
.

The derivative measures the ratio of the time rate of change of y to that ofx.

Figure 8.3: Geometric visualization of the derivative the arclength.

ds
dt

being the time rate of change of length of arc, we have from (5.26),

ds

dt
=

√

(

dx

dt

)2

+

(

dt

dt

)2

. (8.12)

which is the relation indicated by Figure 8.3.
As a guide in solving rate problems use the following rule.
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• FIRST STEP. Draw a figure illustrating the problem. Denote byx, y, z, etc.,
the quantities which vary with the time.

• SECOND STEP. Obtain a relation between the variables involved which
will hold true at any instant.

• THIRD STEP. Differentiate with respect to the time.

• FOURTH STEP. Make a list of the given and required quantities.

• FIFTH STEP. Substitute the known quantities in the result found by differ-
entiating (third step), and solve for the unknown.

8.7 Exercises

1. A man is walking at the rate of5 miles per hour towards the foot of a tower
60 ft. high. At what rate is he approaching the top when he is80 ft. from
the foot of the tower?

Solution. Apply the above rule.

First step. Draw the figure. Letx = distance of the man from the foot andy
= his distance from the top of the tower at any instant.

Second step. Since we have a right triangle,y2 = x2 + 3600.

Third step. Differentiating, we get2y dy
dt

= 2xdx
dt

, or, dy
dt

= x
y
dx
dt

, meaning

that at any instant whatever (Rate of change ofy) =
(

x
y

)

(rate of change of

x).

Fourth step.

x = 80, dx
dt

= 5 miles/hour,
= 5 × 5280ft/hour,

y =
√
x2 + 3600

= 100.
dy
dt

=?

Fifth step. Substituting back in the abovedy
dt

= 80
100

× 5 × 5280 ft/hour =4
miles/hour.
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8.7. EXERCISES

2. A point moves on the parabola6y = x2 in such a way that whenx = 6, the
x-coordinate is increasing at the rate of2 ft. per second. At what rates are
they-coordinate and arclength increasing at the same instant?

Solution. First step. Plot the parabola.

Second step.6y = x2.

Third step.6dy
dt

= 2xdx
dt

, or, dy
dt

= x
3
· dx
dt

. This means that at any point on the
parabola (Rate of change ofy-coordinate) =

(

x
3

)

(rate of change of abcissa).

Fourth step.dx
dt

= 2 ft. per second,x = 6, dy
dt

=?, y = x2

6
= 6, ds

dt
=?

Fifth step. Substituting back in the above,dy
dt

= 6
3
× 2 = 4 ft. per second.

From the first result we note that at the point(6, 6) they-coordinate changes
twice as rapidly as thex-coordinate.

If we consider the point(−6, 6) instead, the result isdy
dt

= −4 ft. per
second, the minus sign indicating that they-coordinate is decreasing as the
x-coordinate increases.

We shall now solve this usingSage .
Sage

sage: t = var("t")
sage: x = function("x",t)
sage: y = function("y",t)
sage: eqn = 6 * y - xˆ2
sage: solve(diff(eqn,t) == 0, diff(y(t), t, 1))
[diff(y(t), t, 1) == x(t) * diff(x(t), t, 1)/3]
sage: s = sqrt(xˆ2+yˆ2)
sage: diff(s,t)
(2 * y(t) * diff(y(t), t, 1)

+ 2* x(t) * diff(x(t), t, 1))/(2 * sqrt(y(t)ˆ2 + x(t)ˆ2))

This tells us thatdy
dt

= x
3
· dx
dt

and

ds

dt
=
y(t)y′(t) + x(t)x′(t)
√

x(t)2 + y(t)2
.

Substitutingdx
dt

= 2, x = 6, gives dy
dt

= 4. In addition, ify = 6 then this
gives ds

dt
= 36/

√
72 = 3

√
2.
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3. A circular plate of metal expands by heat so that its radiusincreases uni-
formly at the rate of0.01 inch per second. At what rate is the surface in-
creasing when the radius is two inches?

Solution. Letx = radius and y = area of plate. Theny = πx2, dy
dt

= 2πxdx
dt

,
That is; at any instant the area of the plate is increasing in square inches2πx
times as fast as the radius is increasing in linear inches.x = 2, dx

dt
= 0.01,

dy
dt

=?. Substituting in the above,dy
dt

= 2π × 2 × 0.01 = 0.04π sq. in. per
sec.

4. A street light is hung12 ft. directly above a straight horizontal walk on
which a boy5 ft. in height is walking. How fast is the boy’s shadow length-
ening when he is walking away from the light at the rate of 168 ft. per
minute?

Solution. Letx = distance of boy from a point directly under lightL, andy
= length of boy’s shadow. By similar triangle,y/(y+x) = 5/12, ory = 5

7
x.

Differentiating, dy
dt

= 5
7
dx
dt

; i.e. the shadow is lengthening5
7

as fast as the
boy is walking, or120 ft. per minute.

5. In a parabolay2 = 12x, if x increases uniformly at the rate of2 in. per
second, at what rate isy increasing whenx = 3 in. ?

Ans. 2 in. per sec.

6. At what point on the parabola of the last example do thex-coordinate and
y-coordinate increase at the same rate?

Ans. (3, 6).

7. In the functiony = 2x3 + 6, what is the value ofx at the point wherey
increases24 times as fast asx?

Ans. x = ±2.

8. They-coordinate of a point describing the curvex2 + y2 = 25 is decreasing
at the rate of3/2 in. per second. How rapidly is thex-coordinate changing
when they-coordinate is4 inches?

Ans. dx
dt

= 2 in. per sec.

9. Find the values ofx at the points where the rate of change ofx3 − 12x2 +
45x− 13 is zero.

Ans. x = 3 and5.
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10. At what point on the ellipse16x2 + 9y2 = 400 doesy decrease at the same
rate thatx increases?

Ans. (3, 16
3
).

11. Where in the first quadrant does the arclength increase twice as fast as the
y-coordinate?

Ans. At 60o = π/3.

A point generates each of the following curves (problems 12-16). Find the rate
at which the arclength is increasing in each case:

12. y2 = 2x; dx
dt

= 2, x = 2.

Ans. ds
dt

=
√

5.

13. xy = 6; dy
dt

= 2, y = 3.

Ans. ds
dt

= 2
3

√
13.

14. x2 + 4y2 = 20; dx
dt

= −1, y = 1.

Ans. ds
dt

=
√

2.

15. y = x3; dx
dt

= 3, x = −3.

16. y2 = x3; dy
dt

= 4, y = 8.

17. The side of an equilateral triangle is24 inches long, and is increasing at the
rate of3 inches per hour. How fast is the area increasing?

Ans. 36
√

3 sq. in. per hour.

18. Find the rate of change of the area of a square when the sideb is increasing
at the rate ofa units per second.

Ans. 2ab sq. units per sec.

19. (a) The,volume of a spherical soap bubble increases how many times as fast
as the radius? (b) When its radius is4 in. and increasing at the rate of1/2
in. per second, how fast is the volume increasing?

Ans. (a)4πr2 times as fast; (b)32π cu. in. per sec.

How fast is the surface increasing in the last case?
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20. One end of a ladder50 ft. long is leaning against a perpendicular wall
standing on a horizontal plane. Supposing the foot of the ladder to be pulled
away from the wall at the rate of3 ft. per minute; (a) how fast is the top of
the ladder descending when the foot is14 ft. from the wall? (b) when will
the top and bottom of the ladder move at the same rate? (c) whenis the top
of the ladder descending at the rate of4 ft. per minute?

Ans. (a) 7
78

ft. per min.; (b) when25
√

2 ft. from wall; (c) when40 ft. from
wall.

21. A barge whose deck is12 ft. below the level of a dock is drawn up to it by
means of a cable attached to a ring in the floor of the dock, the cable being
hauled in by a windlass on deck at the rate of8 ft. per minute. How fast is
the barge moving towards the dock when16 ft. away?

Ans. 10 ft. per minute.

22. An elevated car is40 ft. immediately above a surface car, their tracks inter-
secting at right angles. If the speed of the elevated car is16 miles per hour
and of the surface car8 miles per hour, at what rate are the cars separating
5 minutes after they meet?

Ans. 17.9 miles per hour.

23. One ship was sailing south at the rate of6 miles per hour; another east at
the rate of8 miles per hour. At4 P.M. the second crossed the track of the
first where the first was two hours before; (a) how was the distance between
the ships changing at3 P.M.? (b) how at5 P.M.? (c) when was the distance
between them not changing?

Ans. (a) Diminishing2.8 miles per hour; (b) increasing8.73 miles per hour;
(c) 3 : 17 P.M.

24. Assuming the volume of the wood in a tree to be proportional to the cube
of its diameter, and that the latter increases uniformly year by year when
growing, show that the rate of growth when the diameter is3 ft. is 36 times
as great as when the diameter is6 inches.

25. A railroad train is running 15 miles an hour past a station800 ft. long, the
track having the form of the parabolay2 = 600x, and situated as shown in
Figure 8.4.
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Figure 8.4: Train station and the train’s trajectory.

If the sun is just rising in the east, find how fast the shadowS of the loco-
motiveL is moving along the wall of the station at the instant it reaches the
end of the wall.

Solution.y2 = 600x, 2y dy
dt

= 600dx
dt

, or dx
dt

= y
300

dy
dt

. Substituting this value

of dx
dt

in ds
dt

=

√

(

dx
dt

)2
+
(

dy
dt

)2
, we get

(

ds
dt

)2
=
(

y
300

dy
dt

)2
+
(

dy
dt

)2
. Now

ds
dt

= 15 miles per hour =22 ft. per sec.,y = 400 and dy
dt

=?. Substituting

back in the above, we get(22)2 =
(

16
9

+ 1
) (

dy
dt

)2
, or, dy

dt
= 131

5
ft. per

second.

26. An express train and a balloon start from the same point atthe same instant.
The former travels50 miles an hour and the latter rises at the rate of10
miles an hour. How fast are they separating?

Ans. 51 miles an hour.

27. A man6 ft. tall walks away from a lamp-post10 ft. high at the rate of4
miles an hour. How fast does the shadow of his head move?

Ans. 10 miles an hour.
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28. The rays of the sun make an angle of30o = π/6 with the horizon. A ball is
thrown vertically upward to a height of64 ft. How fast is the shadow of the
ball moving along the ground just before it strikes the ground?

Ans. 110.8 ft. per sec.

29. A ship is anchored in18 ft. of water. The cable passes over a sheave on the
bow 6 ft. above the surface of the water. If the cable is taken in at the rate
of 1 ft. a second, how fast is the ship moving when there are30 ft. of cable
out?

Ans. 5
3

ft. per sec.

30. A man is hoisting a chest to a window50 ft. up by means of a block and
tackle. If he pulls in the rope at the rate of10 ft. a minute while walking
away from the building at the rate of5 ft. a minute, how fast is the chest
rising at the end of the second minute?

Ans. 10.98 ft. per min.

31. Water flows from a faucet into a hemispherical basin of diameter14 inches
at the rate of2 cu. in. per second. How fast is the water rising (a) when
the water is halfway to the top? (b) just as it runs over? (The volume of a
spherical segment =1

2
πr2h+ 1

6
πh3, whereh = altitude of segment.)

32. Sand is being poured on the ground from the orifice of an elevated pipe,
and forms a pile which has always the shape of a right circularcone whose
height is equal to the radius of the base. If sand is falling atthe rate of6 cu.
ft. per sec., how fast is the height of the pile increasing when the height is5
ft.?

33. An aeroplane is528 ft. directly above an automobile and starts east at the
rate of20 miles an hour at the same instant the automobile starts east at the
rate of40 miles an hour. How fast are they separating?

34. A revolving light sending out a bundle of parallel rays isat a distance oft
a mile from the shore and makes1 revolution a minute. Find how fast the
light is traveling along the straight beach when at a distance of1 mile from
the nearest point of the shore.

Ans. 15.7 miles per min.
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35. A kite is150 ft. high and200 ft. of string are out. If the kite starts drifting
away horizontally at the rate of4 miles an hour, how fast is the string being
paid out at the start?

Ans. 2.64 miles an hour.

36. A solution is poured into a conical filter of base radius6 cm. and height24
cm. at the rate of2 cu. cm. a second, and filters out at the rate of1 cu. cm.
a second. How fast is the level of the solution rising when (a)one third of
the way up? (b) at the top?

Ans. (a)0.079 cm. per sec.; (b)0.009 cm. per sec.

37. A horse runs10 miles per hour on a circular track in the center of which is
a street light. How fast will his shadow move along a straightboard fence
(tangent to the track at the starting point) when he has completed one eighth
of the circuit?

Ans. 20 miles per hour.

38. The edges of a cube are24 inches and are increasing at the rate of0.02
in. per minute. At what rate is (a) the volume increasing? (b)the area
increasing?

39. The edges of a regular tetrahedron are10 inches and are increasing at the
rate of0.3 in. per hour. At what rate is (a) the volume increasing? (b) the
area increasing?

40. An electric light hangs40 ft. from a stone wall. A man is walking12 ft. per
second on a straight path10 ft. from the light and perpendicular to the wall.
How fast is the man’s shadow moving when he is30 ft. from the wall?

Ans. 48 ft. per sec.

41. The approach to a drawbridge has a gate whose two arms rotate about the
same axis as shown in the figure. The arm over the driveway is4 yards
long and the arm over the footwalk is3 yards long. Both arms rotate at
the rate of5 radians per minute. At what rate is the distance between the
extremities of the arms changing when they make an angle of45o = π/4
with the horizontal?

Ans. 24 yd. per min.
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42. A conical funnel of radius3 inches and of the same depth is filled with a
solution which filters at the rate of1 cu. in. per minute. How fast is the
surface falling when it is1 inch from the top of the funnel?

Ans. 1
4π

in. per mm.

43. An angle is increasing at a constant rate. Show that the tangent and sine
are increasing at the same rate when the angle is zero, and that the tangent
increases eight times as fast as the sine when the angle is60o = π/3.
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CHAPTER

NINE

Change of variable

If y = f(x) is a function ofx andx is a function of some other variablet then dy
dx

,
d2y
dx2 , etc., can be expressed in terms ofdy

dt
, dx
dt

, d
2y
dt2

, etc.. This chapter is devoted to
explaining the techniques to find the formulas necessary formaking such a change
of variables.

9.1 Interchange of dependent and independent vari-
ables

If y = f(x) is a one-to-one function ofx then it can be “inverted” so thatx =
f−1(y) is a function ofy. It is sometimes desirable to transform an expression
involving derivatives ofy with respect tox into an equivalent expression involving
derivatives ofxwith respect toy. Our examples will show that in many cases such
a change transforms the given expression into a much simplerone. Or perhapsx
is given as an explicit function ofy in a problem, and it is found more convenient
to use a formula involvingdx

dy
, d

2x
dy2

, etc., than one involvingdy
dx

, d
2y
dx2 , etc. We shall

now find the formulas necessary for making such transformations.
Giveny = f(x), then from item 4.28 in§4.1, we have

dy

dx
=

1
dx
dy

,
dx

dy
6= 0 (9.1)

giving dy
dx

in terms ofdx
dy

. Also, by 4.27 in§4.1,
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d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dy

(

dy

dx

)

dy

dx
,

or

d2y

dx2
=

d

dy

(

1
dx
dy

)

dy

dx
. (9.2)

But d
dy

(

1
dx
dy

)

= −
d2x
dy2

( dx
dy )

2 ; and dy
dx

= 1
dx
dy

from (9.1). Substituting these in (9.2), we

get

d2y

dx2
= −

d2x
dy2
(

dx
dy

)3 , (9.3)

giving d2y
dx2 in terms ofdx

dy
and d2x

dy2
. Similarly,

d3y

dx3
= −

d3x
dy3

dx
dy

− 3
(

d2x
dy2

)2

(

dx
dy

)5 , (9.4)

and so on for higher derivatives. This transformation is called changing the inde-
pendent variable fromx to y.

Example 9.1.1.Change the independent variable fromx to y in the equation

3

(

d2y

dx2

)2

− dy

dx

d3y

dx3
− d2y

dx2

(

dy

dx

)2

= 0.

Solution. Substituting from (9.1), (9.3), (9.4),

3






−

d2x
dy2
(

dx
dy

)3







2

−
(

1
dx
dy

)






−

d3x
dy3

dx
dy

− 3
(

d2x
dy2

)2

(

dx
dy

)5






−






−

d2x
dy2
(

dx
dy

)3







(

1
dx
dy

)2

= 0.

Reducing, we get
d3x

dy3
+
d2x

dy2
= 0,

a much simpler equation.
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9.2 Change of the dependent variable

Let

y = f(x),

and suppose at the same timey is a function ofz, say

y = g(z).

We may then expressdy
dx

, d
2y
dx2 etc., in terms ofdz

dx
, d

2z
dx2 , etc., as follows

In general,z is a function ofy, and sincey is a function ofx, it is evident thatz
is a function ofx. Hence by 4.27 of§4.1, we have

dy

dx
=
dy

dz

dz

dx
= ψ′(z)

dz

dx
.

Also d2y
dx2 = d

dx

(

g′(z) dz
dx

)

= dz
dx

d
dx
g′(z) + g′(z) d

2z
dx2 . But d

dx
g′(z) = d

dz
g′(z) dz

dx
=

g′′(z) dz
dx

. Therefore,

d2y

dx2
= g′′(z)

(

dz

dx

)2

+ g′(z)
d2z

dx2
.

Similarly for higher derivatives. This transformation is called changing the de-
pendent variablefrom y to z, the independent variable remainingx throughout.
We will now illustrate this process by means of an example.

Example 9.2.1.Having given the equation

d2y

dx2
= 1 +

2(1 + y)

1 + y2

(

dy

dx

)2

,

change the dependent variable fromy to z by means of the relation

y = tan z.

Solution. From the above,

dy

dx
= sec2(z)

dz

dx
,
d2y

dx2
= sec2(z)

d2z

dx2
+ 2 sec2(z) tan(z)

(

dz

dx

)2

,

Substituting,
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sec2(z)
d2z

dx2
+ 2 sec2(z) tan(z)

(

dz

dx

)2

= 1 +
2(1 + tan z)

1 + tan2 z

(

sec2 z
dz

dx

)2

,

and reducing, we getd
2z
dx2 − 2

(

dz
dx

)2
= cos2 z.

9.3 Change of the independent variable

Let y be a function ofx, and at the same time letx (and hence alsoy) be a function
of a new variablet. It is required to express

dy

dx
,

d2y

dx2
, etc.,

in terms of new derivatives havingt as the independent variable. By 4.27§4.1,
dy
dt

= dy
dx

dx
dt
, or

dy

dx
=

dy
dt
dx
dt

. (9.5)

This is another formulation of the so-calledchain rule. Also

d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dt

(

dy

dx

)

dt

dx
=

d
dt

(

dy
dx

)

dx
dt

.

But differentiatingdy
dx

with respect tot,

d

dt

(

dy

dx

)

=
d

dt

(

dy
dt
dx
dt

)

=
dx
dt
d2y
dt2

− dy
dt
d2x
dt2

(

dx
dt

)2 .

Therefore

d2y

dx2
=

dx
dt
d2y
dt2

− dy
dt
d2x
dx2

(

dx
dt

)3 , (9.6)

and so on for higher derivatives. This transformation is called changing the in-
dependent variable fromx to t. It is usually better to work out examples by the
methods illustrated above rather than by using the formulasdeduced.
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Example 9.3.1.Change the independent variable fromx to t in the differential
equation

x2 d
2y

dx2
+ x

dy

dx
+ y = 0

wherex = et.
Solution. dx

dt
= et, therefore

dt

dx
= e−t .

Also dy
dx

= dy
dt

dt
dx

; thereforedy
dx

= e−t dy
dt

. Also d2y
dx2 = e−t d

dx

(

dy
dt

)

− dy
dt
e−t dt

dx
=

e−t d
dt

(

dy
dt

)

dt
dx

− dy
dt
e−t dt

dx
. Substituting into the last resultdt

dx
= e−t,

d2y

dx2
= e−2td

2y

dt2
− dy

dt
e−2t.

Substituting these into the differential equation,

e2t
(

e−2td
2y

dt2
− dy

dt
e−2t

)

+ et
(

e−t
dy

dt

)

+ y = 0,

and reducing, we getd
2y
dt2

+ y = 0.

Since the formulas deduced in the Differential Calculus generally involve deriva-
tives of y with respect tox, such formulas as the chain rule are especially useful
when the parametric equations of a curve are given. Such examples were given in
§5.5, and many others will be employed in what follows.

9.4 Change of independent and dependent variables

It is often desirable to change both independent and dependent variables simulta-
neously. An important case is that arising in the transformation from rectangular
to polar coordinates. Since

x = ρ cos θ, and y = ρ sin θ,

the equation

f(x, y) = 0
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becomes by substitution an equation betweenρ andθ, definingρ as a function of
θ. Henceρ, x, y are all functions ofθ.

Example 9.4.1.Transform the formula for the radius of curvature (11.5),

R =

[

1 +
(

dy
dx

)2
] 3

2

d2y
dx2

,

into polar coordinates.
Solution. Since in (9.5) and (9.6),t is any variable on whichx andy depend, we

may in this case lett = θ, giving dy
dx

=
dy
dθ
dx
dθ

, and

d2y

dx2
=

dx
dθ

d2y
dθ2

− dy
dθ

d2x
dθ2

(

dx
dθ

)3 .

Substituting these intoR, we get

R =

[

(

dx
dθ

)2
+
(

dy
dθ

)2

(

dx
dθ

)2

]
3
2

÷
dx
dθ

d2y
dθ2

− dy
dθ

d2x
dθ2

(

dx
dθ

)3 ,

or

R =

[

(

dx
dθ

)2
+
(

dy
dθ

)2
] 3

2

dx
dθ

d2y
dθ2

− dy
dθ

d2x
dθ2

. (9.7)

But sincex = ρ cos θ andy = ρ sin θ, we have

dx

dθ
= −ρ sin θ + cos θ

dρ

dθ
;

dy

dθ
= ρ cos θ + sin θ

dρ

dθ
;

d2x

dθ2
= −ρ cos θ − 2 sin θ

dρ

dθ
+ cos θ

d2ρ

dθ2
;

d2y

dθ2
= −ρ sin θ + 2 cos θ

dρ

dθ
+ sin θ

d2ρ

dθ2
.

Substituting these in (9.7) and reducing,
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R =

[

ρ2 +
(

dρ
dθ

)2
] 3

2

ρ2 + 2
(

dρ
dθ

)2 − ρd
2ρ
dθ2

.

9.5 Exercises

Change the independent variable fromx to y in the following equations.

1. R =

h

1+( dy
dx)

2
i

3
2

d2y

dx2

Ans.R = −
h

1+( dx
dy )

2
i

3
2

d2x
dy2

.

2. d2y
dx2 + 2y

(

dy
dx

)2
= 0.

Ans. d
2x
dy2

− 2y dx
dy

= 0.

3. x d
2y
dx2 +

(

dy
dx

)3 − dy
dx

= 0.

Ans. x d
2y
dx2 − 1 +

(

dx
dy

)2

= 0.

4.
(

3a dy
dx

+ 2
)

(

d2y
dx2

)2

=
(

a dy
dx

+ 1
)

dy
dx

d3y
dx3 .

Ans.
(

d2x
dy2

)2

=
(

dx
dy

+ a
)

d3x
dy3

.

Change the dependent variable fromy to z in the following equations:

5. (1 + y)2
(

d3y
dx3 − 2y

)

+
(

dy
dx

)2
= 2 (1 + y) dy

dx
d2y
dx2 , y = z2 + 2z.

Ans. (z + 1)d
3x
dx3 = dz

dx
d2z
dx2 + z2 + 2z.

6. d2y
dx2 = 1 + 2(1+y)

1+y2

(

dy
dx

)2
, y = tan z.

Ans. d
2z
dx2 − 2

(

dz
dx

)2
= cos2 z.
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7. y2 d3y
dx3 −

(

3y dy
dx

+ 2xy2
)

d2y
dx2 +

{

2
(

dy
dx

)2
2xy dy

dx
+ 3x2y2

}

dy
dx

+x3y3 = 0, y =

ez.

Ans. d
3z
dx3 − 2x d

2z
dx2 + 3x2 dz

dx
+ x3 = 0.

Change the independent variable in the following eight equations:

8. d2y
dx2 − x

1−x2
dy
dx

+ y
1−x2 = 0, x = cos t.

Ans. d
2y
dt2

+ y = 0.

9. (1 − x2) d
2y
dx2 − x dy

dx
= 0, x = cos z.

Ans. d
2y
dz2

= 0.

10. (1 − y2)d
2u
dy2

− y du
dy

+ a2u = 0, y = sin x.

Ans. d
2u
dx2 + a2u = 0.

11. x2 d2y
dx2 + 2x dy

dx
+ a2

x2y = 0, x = 1
z
.

Ans. d
2y
dz2

+ a2y = 0.

12. x3 d3v
dx3 + 3x2 d2v

dx2 + x dv
dx

+ v = 0, x = et.

Ans. d
3v
dx3 + v = 0.

13. d2y
dx2 + 2x

1+x2
dy
dx

+ y
(1+x2)2

= 0, x = tan θ.

Ans. d
2y
dθ2

+ y = 0.

14. d2u
ds2

+ sudu
ds

+ sec2 s = 0.

Ans. s = arctan t.

15. x4 d2y
dx2 + a2y = 0, x = 1

z
.

Ans. d
2y
dz2

+ 2
z
dy
dz

+ a2y = 0.

In the following seven examples the equations are given in parametric form.
Find dy

dx
and d2y

dx2 in each case:
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16. x = 7 + t2, y = 3 + t2 − 3t4.

Ans. dy
dx

= 1 − 6t2, d
2y
dx2 = −6.

We shall solve this usingSage .
Sage

sage: t = var("t")
sage: x = 7 + tˆ2
sage: y = 3 + tˆ2 - 3 * tˆ4
sage: f = (x, y)
sage: p = parametric_plot(f, 0, 1)
sage: D_x_of_y = diff(y,t)/diff(x,t); D_x_of_y
(2 * t - 12 * tˆ3)/(2 * t)
sage: solve(D_x_of_y == 0,t)
[t == -1/sqrt(6), t == 1/sqrt(6)]
sage: t0 = solve(D_x_of_y == 0,t)[1].rhs()
sage: (x(t0),y(t0))
(43/6, 37/12)
sage: D_xx = (diff(y,t,t) * diff(x,t)-diff(x,t,t) * diff(y,t))/diff(x,t)ˆ2
sage: D_xx
(2 * t * (2 - 36 * tˆ2) - 2 * (2 * t - 12 * tˆ3))/(4 * tˆ2)
sage: D_xx(t0)
-12/sqrt(6)

This tells us that the critical point is at(43/6, 37/12) = (7.166.., 3.0833..),
which is a maximum. The plot in Figure 9.1 illustrates this.

17. x = cot t, y = sin3 t.

Ans. dy
dx

= −3 sin4 t cos t, d
2y
dx2 = 3 sin5 t(4 − 5 sin2 t).

18. x = a(cos t+ sin t), y = a(sin t− t cos t).

Ans. dy
dx

= tan t, d
2y
dx2 = 1

at cos3 t
.

19. x = 1−t
1+t

, y = 2t
1+t

.

20. x = 2t, y = 2 − t2.

21. x = 1 − t2, y = t3.

22. x = a cos t, y = b sin t.

23. Transform
x dy

dx
−y

q

1+( dy
dx)

2 by assumingx = ρ cos θ, y = ρ sin θ.

Ans. ρ2
q

ρ( dρ
dθ )

2 .
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Figure 9.1: Plot for Exercise 11.5-16,x = 7 + t2, y = 3 + t2 − 3t4.

24. Letf(x, y) = 0 be the equation of a curve. Find an expression for its slope
(

dy
dx

)

in terms of polar coordinates.

Ans. dy
dx

=
ρ cos θ+sin θ dρ

dθ

−ρ sin θ+cos θ dρ
dθ

.
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CHAPTER

TEN

Applications of higher derivatives

We have seen how the first derivative can be applied to solvingmax-min problems
and related rate problems. In this chapter, we present some applications of higher
derivatives. Below, we introduce the mean value theorem, L’Hôpital’s rule for
limits of “indeterminant forms,” and Taylor series approximations.

10.1 Rolle’s Theorem

Let y = f(x) be a continuous single-valued function ofx, vanishing forx = a and
x = b, and suppose thatf ′(x) changes continuously whenx varies froma to b.
The function will then be represented graphically by a continuous curve starting
at a point on thex-axis and ending at another point on thex-axis, as in Figure
10.1. Geometric intuition tells us that for at least one value ofx betweena andb
the tangent is parallel to thex-axis (as at P); that is, the slope is zero.
This illustrates

Rolle’s Theorem: If f(x) vanishes whenx = a andx = b, andf(x) andf ′(x)
are continuous for all values ofx fromx = a to x = b, thenf ′(x) will be zero for
at least one value ofx betweena andb.

This theorem is obviously true, because as x increases froma to b, f(x) cannot
always increase or always decrease asx increases, sincef(a) = 0 andf(b) = 0.
Hence for at least one value ofx betweena andb, f(x) must cease to increase
and begin to decrease, or else cease to decrease and begin to increase; and for that
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10.1. ROLLE’S THEOREM

Figure 10.1: Geometrically illustrating Rolle’s theorem.

particular value ofx the first derivative must be zero (see§7.3).
That Rolle’s Theorem does not apply whenf(x) or f ′(x) are discontinuous is

illustrated in Figure 10.2.

Figure 10.2: Counterexamples to Rolle’s theorem.

Figure 10.2 shows
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10.2. THE MEAN VALUE THEOREM

(a) the graph of a function which is discontinuous (=∞) for x = c, a value
lying betweena andb, and

(b) a continuous function whose first derivative is discontinuous (=∞) for such
an intermediate valuex = c.

In either case it is seen that at no point on the graph betweenx = a andx = b
does the tangent (or curve) be,come parallel to thex-axis.

10.2 The mean value theorem

Consider the quantity Q defined by the equation

f(b) − f(a)

b− a
= Q, (10.1)

or

f(b) − f(a) − (b− a)Q = 0. (10.2)

Let F (x) be a function formed by replacingb by x in the left-hand member of
(10.2); that is,

F (x) = f(x) − f(a) − (x− a)Q. (10.3)

From (10.2),F (b) = 0, and from (10.3),F (a) = 0; therefore, by Rolle’s Theorem
(see§10.1),F ′(x) must be zero for at least one value ofx betweena andb, say
for x1. But by differentiating (10.3) we get

F ′(x) = f ′(x) −Q.

Therefore, sinceF ′(x1) = 0, then alsof ′(x1) − Q = 0, andQ = f ′(x1). Substi-
tuting this value of Q in (10.1), we get the ean value theorem,

f(b) − f(a)

b− a
= f ′(x1), a < x1 < b (10.4)

where in general all we know aboutx1 is that it lies betweena andb.

The mean value theorem interpreted geometrically.

Let the curve in the figure be the locus ofy = f(x).
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10.2. THE MEAN VALUE THEOREM

Figure 10.3: Geometric illustration of the mean value theorem.

In the notation of Figure 10.3, takeOC = a andOD = b; thenf(a) = CA and
f(b) = DB, givingAE = b − a andEB = f(b) − f(a). Therefore the slope of
the chord AB is

tanEAB =
EB

AE
=
f(b) − f(a)

b− a
.

There is at least one point on the curve between A and B (as P) where the tangent
(or curve) is parallel to the chord AB. If the abscissa of P isx1 the slope at P is

tan t = f ′(x1) = tan EAB.

Equating these last two equations, we get

f(b) − f(a)

b− a
= f ′(x1),

which is the mean value theorem.

252



10.3. THE EXTENDED MEAN VALUE THEOREM

The student should draw curves (as the one in§10.1), to show that there may be
more than one such point in the interval; and curves to illustrate, on the other hand,
that the theorem may not be true iff(x) becomes discontinuous for any value of
x betweena andb (see Figure 10.2 (a)), or iff ′(x) becomes discontinuous (see
Figure 10.2 (b)).

Clearing (10.4) of fractions, we may also write the theorem inthe form

f(b) = f(a) + (b− a)f ′(x1). (10.5)

Let b = a+ ∆a; thenb− a = ∆a, and sincex1 is a number lying betweena and
b, we may write

x1 = a+ θ · ∆a,
whereθ is a positive proper fraction. Substituting in (10.4), we get another form
of the mean value theorem.

f(a+ ∆a) − f(a) = ∆af ′(a+ θ · ∆a), 0 < θ < 1. (10.6)

10.3 The extended mean value theorem

Following the method of the last section, letR be defined by the equation

f(b) − f(a) − (b− a)f ′(a) − 1

2
(x− a)2R = 0. (10.7)

Let F (x) be a function formed by replacingb by x in the left-hand member of
(10.1); that is,

F (x) = f(x) − f(a) − (x− a)f ′(a) − 1

2
(x− a)2R. (10.8)

From (10.7),F (b) = 0; and from (10.8),F (a) = 0; therefore, by Rolle’s Theo-
rem, at least one value ofx betweena andb, sayx1 will causeF ′(x) to vanish.
Hence, since

F ′(x) = f ′(x) − f ′(a) − (x− a)R,

we get

F ′(x1) = f ′(x1) − f ′(a) − (x1 − a)R = 0.
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SinceF ′(x1) = 0 andF ′(a) = 0, it is evident thatF ′(x) also satisfies the condi-
tions of Rolle’s Theorem, so that its derivative, namelyF ′′(x), must vanish for at
least one value ofx betweena andx1, sayx2, and thereforex2 also lies between
a andb. But F ′′(x) = f ′′(x) − R; thereforeF ′′(x2) = f ′′(x2) − R = 0, and
R = f ′′(x2). Substituting this result in (10.7), we get

f(b) = f(a) + (b− a)f ′(a) +
1

2!
(b− a)2f ′′(x2), a < x2 < b.

In the same manner, if we defineS by means of the equation

f(b) − f(a) − (b− a)f ′(a) − 1

2!
(b− a)2f ′′(a) − 1

3!
(b− a)2f ′′(a)S = 0,

we can derive the equation

f(b) = f(a) +(b− a)f ′(a) + 1
2!
(b− a)2f ′′(a)

+ 1
3!
(b− a)3f ′′′(x3), a < x3 < b,

(10.9)

wherex3 lies betweena and b. By continuing this process we get the general
result,

f(b) = f(a) + (b−a)
1!
f ′(a) + (b−a)2

2!
f ′′(a)

+ (b−a)3
3!

f ′′′(a) + · · · + (b−a)(n−1)

(n−1)!
f (n−1)(a)

+ (b−a)n

n!
f (n)(x1), a < x1 < b,

wherex1 lies betweena andb. This equation is called the extended mean value
theorem1.

Applications of this theorem will be presented in§10.15 below.

10.4 Exercises

Examine the following functions for maximum and minimum values, using the
methods above.

1. y = 3x4 − 4x3 + 1

Ans. x = 1 is a min.,y = 0; x = 0 gives neither.

1Also called Taylor’s formula.
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2. y = x3 − 6x2 + 12x+ 48

Ans. x = 2 gives neither.

3. y = (x− 1)2(x+ 1)3

Ans. x = 1 is a min.,y = 0; x = 1/5 is a max;x = −1 gives neither.

4. Investigatey = x5 − 5x4 + 5x3 − 1 atx = 1 andx = 3.

5. Investigatey = x3 − 3x2 + 3x+ 7 atx = 1.

6. Show the if the first derivative off(x) which does not vanish atx = a is
of odd ordern thenf(x) is increasing or decreasing atx = a, according to
whetherf (n)(a) is positive or negative.

10.5 Maxima and minima treated analytically

By making use of the results of the last two sections we can now give a general
discussion of maxima and minima of functions of a single independent variable.

Given the functionf(x). Let h be a positive number as small as we please;
then the definitions given in§7.4, may be stated as follows: If, for all values ofx
different froma in the interval[a− h, a+ h],

f(x) − f(a) = a negative number, (10.10)

thenf(x) is said to be amaximumwhenx = a. If, on the other hand,

f(x) − f(a) = a positive number, (10.11)

thenf(x) is said to be aminimumwhenx = a. Consider the following cases:

I Let f ′(a) 6= 0. From (10.5), [§10.2], replacing b by x and transposing f(a),

f(x) − f(a) = (x− a)f ′(x1), a < x1 < x, (10.12)

Sincef ′(a) 6= 0, andf ′(x) is assumed as continuous,h may be chosen so
small thatf ′(x) will have the same sign asf ′(a) for all values ofx in the
interval[a−h, a+h]. Thereforef ′(x1) has the same sign asf ′(a) (Chap. 2).
But x − a changes sign according asx is less or greater thana. Therefore,
from (10.12), the differencef(x) − f(a) will also change sign, and, by
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(10.10) and (10.11),f(a) will be neither a maximum nor a minimum. This
result agrees with the discussion in§7.4, where it was shown that for all
values ofx for whichf(x) is a maximum or a minimum, the first derivative
f ′(x) must vanish.

II Let f ′(a) = 0, andf ′′(a) 6= 0. From (10.12), replacingb by x and transpos-
ing f(a),

f(x) − f(a) =
(x− a)2

2!
f ′′(x2), a < x2 < x. (10.13)

Sincef ′′(a) 6= 0, andf ′′(x) is assumed as continuous, we may choose
our interval[a − h, a + h] so small thatf ′′(x2) will have the same sign as
f ′′(a) (Chap. 2). Also(x− a)2 does not change sign. Therefore the second
member of (10.13) will not change sign, and the differencef(x) − f(a)
will have the same sign for all values ofx in the interval[a − h, a + h],
and, moreover, this sign will be the same as the sign off ′′(a). It therefore
follows from our definitions (10.10) and (10.11) that

f(a) is a maximum if f ′(a) = 0 and f ′′(a) = a negative number;
(10.14)

f(a) is a minimum if f ′(a) = 0 and f ′′(a) = a positive number (10.15)

These conditions are the same as (7.3) and (7.4), [§7.6].

III Let f ′(a) = f ′′(a) = 0, andf ′′′(a) 6= 0. From (10.9), [§10.3], replacingb
by x and transposingf(a),

f(x) − f(a) =
1

3!
(x− a)3f ′′′(x3), a < x3 < x. (10.16)

As before,f ′′′(x3) will have the same sign asf ′′′(a). But(x−a)3 changes its
sign from− to + asx increases througha. Therefore the differencef(x)−
f(a) must change sign, andf(a) is neither a maximum nor a minimum.

IV Let f ′(a) = f ′′(a) = · · · = f (n−l)(a) = 0, andf (n)(a) 6= 0. By continuing
the process as illustrated in I, II, and III, it is seen that ifthe first derivative
of f(x) which does not vanish forx = a is of even order (= n), then2

2As in §7.4, a critical valuex = a is found by placing the first derivative equal to zero and
solving the resulting equation for real roots.
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f(a) is a maximum if f (n)(a) = a negative number; (10.17)

f(a) is a minimum if f (n)(a) = a positive number. (10.18)

If the first derivative off(x) which does not vanish forx = a is of odd
order, thenf(a) will be neither a maximum nor a minimum.

Example 10.5.1.Examinex3−9x2+24x−7 for maximum and minimum values.
Solution. f(x) = x3 − 9x2 + 24x − 7. f ′(x) = 3x2 − 18x + 24. Solving

3x2 − 18x + 24 = 0 gives the critical valuesx = 2 andx = 4. Thusf ′(2) = 0,
andf ′(4) = 0. Differentiating again,f ′′(x) = 6x − 18. Sincef ′′(2) = −6, we
know from (10.17) thatf(2) = 13 is a maximum. Sincef ′′(4) = +6, we know
from (10.18) thatf(4) = 9 is a minimum.

Example 10.5.2.Examineex+2 cos(x)+e−x for maximum and minimum values.
Solution. f(x) = ex + 2 cos(x) + e−x, f ′(x) = ex − 2 sin x − e−x = 0, for

x = 0 (andx = 0 is the only root of the equationex − 2 sin x − e−x = 0),
f ′′(x) = ex − 2 cos(x) + e−x = 0, for x = 0, f ′′′(x) = ex + 2 sinx − e−x = 0,
for x = 0, f (4)(x) = ex + 2 cos(x) + e−x = 4, for x = 0. Hence from (10.18),
f(0) = 4 is a minimum.

10.6 Exercises

Examine the following functions for maximum and minimum values, using the
method of the last section.

1. 3x4 − 4x3 + 1.

Ans. x = 1 gives min.= 0; x = 0 gives neither.

2. x3 − 6x2 + 12x+ 48.

Ans. x = 2 gives neither.

3. (x− 1)2(x+ 1)3.

Ans. x = 1 gives min.= 0; x = 1
5

gives max.;x = −1 gives neither.

4. Investigatex6 − 5x4 + 5x3 − 1, atx = 1 andx = 3.

5. Investigatex3 − 3x2 + 3x+ 7, atx = 1.
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6. Show that if the first derivative off(x) which does not vanish forx = a is
of odd order (= n), thenf(x) is an increasing or decreasing function when
x = a, according asf (n)(a) is positive or negative.

10.7 Indeterminate forms

Some singularities are easy to diagnose. Consider the function cosx
x

at the point
x = 0 (see Figure 10.4). The function evaluates to1

0
and is thus discontinuous

at that point. Since the numerator and denominator are continuous functions and
the denominator vanishes while the numerator does not, the left and right limits
asx → 0 do not exist. Thus the function has an infinite discontinuityat the point
x = 0.

Figure 10.4:cos(x)
x

.

More generally, a function which is composed of continuous functions and evalu-
ates toa

0
at a point wherea 6= 0 must have an infinite discontinuity there.

Other singularities require more analysis to diagnose. Consider the functions
sinx
x

, sinx
|x| and sinx

1−cosx
at the pointx = 0. All three functions evaluate to0

0
at

that point, but have different kinds of singularities. The first has a removable
discontinuity, the second has a finite discontinuity and thethird has an infinite
discontinuity. See Figure 10.5.

An expression that evaluates (for a particular value of the independent variable)
to 0

0
, ∞
∞ , 0 ·∞, ∞−∞, 1∞, 00 or∞0 is called anindeterminate form. A function
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FORM

Figure 10.5: The functionssinx
x

, sinx
|x| , sinx

1−cosx
, resp..

h(x) which takes an indeterminate form atx = a is not defined forx = a by the
given analytical expression. For example, suppose we have

h(x) =
f(x)

g(x)
,

where atx = a,

f(a) = 0, and g(a) = 0.

For this value ofx our function is not defined and we may therefore assign to it
any value we please. It is usually desirable to assign to the function a value that
will make it continuous whenx = a whenever it is possible to do so. L’Hôpital’s
rule, given in (10.19) below, helps us determine this value of h(a) which makesh
continuous atx = a.

10.8 Evaluation of a function taking on an indeter-
minate form

If whenx = a the functionf(x) assumes an indeterminate form, then

lim
x=a

f(x)

is taken as the value off(x) for x = a. The calculation of this limiting value is
calledevaluating the indeterminate form.

The assumption of this limiting value makesf(x) continuous forx = a. This
agrees with the theorem under Case II [§2.6], and also with our practice in Chapter
2, where several functions assuming the indeterminate form0

0
were evaluated.
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Example 10.8.1.Forx = 2 the functionx
2−4
x−2

assumes the form0
0

but

lim
x→2

x2 − 4

x− 2
= 4.

Hence4 is taken as the value of the function forx = 2. Let us now illustrate
graphically the fact that if we assume4 as the value of the function forx = 2,
then the function is continuous forx = 2. Let y = x2−4

x−2
This equation may also

be written in the formy(x − 2) = (x − 2)(x + 2); or (x − 2)(y − x − 2) = 0.
Placing each factor separately equal to zero, we havex = 2, andy = x+ 2. Also,
whenx = 2, we gety = 4.

In plotting, the loci of these equations are found to be two lines. Since there
are infinitely many points on a line, it is clear that whenx = 2, the value of
y (or the function) may be taken as any number whatever. Whenx is different
from 2, it is seen from the graph of the function that the corresponding value of
y (or the function) is always found fromy = x + 2, which we saw was also the
limiting value of y (or the function) forx = 2. It is evident from geometrical
considerations that if we assume4 as the value of the function forx = 2, then the
function is continuous forx = 2.

Similarly, several of the examples given in Chapter 2 illustrate how the limiting
values of many functions assuming indeterminate forms may be found by em-
ploying suitable algebraic or trigonometric transformations, and how in general
these limiting values make the corresponding functions continuous at the points
in question. The most general methods, however, for evaluating indeterminate
forms depend on differentiation.

10.9 Evaluation of the indeterminate form 0
0

Given a function of the formf(x)
g(x)

such thatf(a) = 0 andg(a) = 0; that is, the

function takes on the indeterminate form0
0

whena is substituted forx. It is then
required to find

lim
x→a

f(x)

g(x)
.

(See Figure 10.6.) Since, by hypothesis,f(a) = 0 andg(a) = 0, these graphs
intersect at(a, 0).
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Figure 10.6: The graphs of the functionsf(x) = x andg(x) = sin(x).

Applying the mean value theorem to each of these functions (replacingb by x),
we getf(x) = f(a)+(x−a)f ′(x1), a < xl < x, andg(x) = g(a)+(x−a)g′(x2).
a < x2 < x. Sincef(a) = 0 andg(a) = 0, we get, after canceling out(x− a),

f(x)

g(x)
=
f ′(x1)

g′(x2)
.

Now letx→ a; thenxl → a, x2 → a, andlimx→a f
′(x1) = f ′(a), limx→a g

′(x2) =
g′(a). Therefore,

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
, (10.19)

providedg′(a) 6= 0. This is a special case of the so-called
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L’Hospital’s Rule 3: Let f(x) andg(x) be differentiable andf(a) = g(a) = 0.
Further, letg(x) be nonzero in a punctured neighborhood ofx = a, (for some
smallδ, g(x) 6= 0 for x ∈ {0 < |x− a| < δ}). Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

The rule is named after the 17th-century Frenchman Guillaume de l’Hospital,
who published the rule in his bookl’Analyse des Infiniment Petits pour l’Intelligence
des Lignes Courbes(translation: Analysis of the infinitely small to understand
curves), the first book about differential calculus. This book was first published
in the late 1600’s and basically consisted of the lectures ofhis teacher Johann
Bernoulli. In particular, this rule is, in fact, due to JohannBernoulli (1667 - 1748).

Example 10.9.1.Consider the three functionssinx
x

, sinx
|x| and sinx

1−cosx
at the point

x = 0.

lim
x→0

sin x

x
= lim

x→0

cos x

1
= 1

Thus sinx
x

has a removable discontinuity atx = 0.

lim
x→0+

sin x

|x| = lim
x→0+

sin x

x
= 1

lim
x→0−

sin x

|x| = lim
x→0−

sin x

−x = −1

Thus sinx
|x| has a finite discontinuity atx = 0.

lim
x→0

sin x

1 − cos x
= lim

x→0

cos x

sin x
=

1

0
= ∞

Thus sinx
1−cosx

has an infinite discontinuity atx = 0.

Example 10.9.2.We useSage to computelimx→0
cos(x)−1

x2 .

Sage

sage: limit((cos(x)-1)/xˆ2,x=0)
-1/2
sage: limit((-sin(x))/(2 * x),x=0)

3Also written L’Hôpital and pronounced “low-peh-tall”.
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-1/2
sage: limit((-cos(x))/(2),x=0)
-1/2

This verifies

lim
x→0

cos(x) − 1

x2
= lim

x→0

− sin(x)

2x
= lim

x→0

− cos(x)

2
= −1/2.

Example 10.9.3.Let a andd be nonzero.

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
= lim

x→∞

2ax+ b

2dx+ e

= lim
x→∞

2a

2d

=
a

d

Example 10.9.4.Consider

lim
x→0

cos x− 1

x sin x
.

This limit is an indeterminate of the form0
0
. Applying L’Hospital’s rule we see

that limit is equal to

lim
x→0

− sin x

x cos x+ sinx
.

This limit is again an indeterminate of the form0
0
. We apply L’Hospital’s rule

again.

lim
x→0

− cos x

−x sin x+ 2 cos x
= −1

2

Thus the value of the original limit is−1
2
. We could also obtain this result by
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expanding the functions in Taylor series.

lim
x→0

cos x− 1

x sin x
= lim

x→0

(

1 − x2

2
+ x4

24
− · · ·

)

− 1

x
(

x− x3

6
+ x5

120
− · · ·

)

= lim
x→0

−x2

2
+ x4

24
− · · ·

x2 − x4

6
+ x6

120
− · · ·

= lim
x→0

−1
2

+ x2

24
− · · ·

1 − x2

6
+ x4

120
− · · ·

= −1

2

Example 10.9.5.We useSage to computelimx→0
cos(x)−1

x2 .
Sage

sage: limit((cos(x)-1)/xˆ2,x=0)
-1/2
sage: limit((-sin(x))/(2 * x),x=0)
-1/2
sage: limit((-cos(x))/(2),x=0)
-1/2

This verifies

lim
x→0

cos(x) − 1

x2
= lim

x→0

− sin(x)

2x
= lim

x→0

− cos(x)

2
= −1/2.

10.9.1 Rule for evaluating the indeterminate form0
0

Differentiate the numerator for a new numerator and differentiate the denominator
for a new denominator4. The value of this new fraction for the assigned value5 of
the variable will be the limiting value of the original fraction.

4A warning to the student: don’t make the mistake of differentiating the whole expression as a
fraction using the quotient rule!

5If a = inf, the substitutionx = 1
z

reduces the problem to the evaluation of the limit forz = 0.

Thuslimx→inf
f(x)
g(x) = limz→0

−f ′( 1

z ) 1

z2

−g′( 1

z ) 1

z2

= limz→0
f ′( 1

z )
g′( 1

z )
= limx→inf

f ′(x)
g′(x) . Therefore the rule

holds in this case also.
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In case it so happens thatf ′(a) = 0 andg′(a) = 0, that is, the first derivatives
also vanish forx = a, then we still have the indeterminate form0

0
, and the theorem

can be applied anew to the ratiof
′(x)
g′(x)

giving us limx→a
f(x)
g(x)

= f ′′(a)
g′′(a)

. When also

f ′′(a) = 0 andg′′(a) = 0, we get in the same mannerlimx→a
f(x)
g(x)

= f ′′′(a)
g′′′(a)

, and so
on.

It may be necessary to repeat this process several times.

Example 10.9.6.Evaluatef(x)
g(x)

= x3−3x+2
x3−x2−x−1

whenx = 1.
Solution.

f(1)

g(1)
=
x3 − 3x+ 2

x3 − x2 + 1

]

x=1

=
1 − 3 + 2

1 − 1 − 1 + 1
=

0

0
.

Therefore, this is an indeterminate form.

f ′(1)

g′(1)
=

3x2 − 3

3x2 − 2x− 1

]

x=1

=
3 − 3

3 − 2 − 1
=

0

0
.

Therefore, this is an indeterminate form.

f ′′(1)

g′′(1)
=

6x

6x− 2

]

x=1

=
6

6 − 2
=

3

2
. Ans.

Example 10.9.7.Evaluatelimx→0
ex−e−x−2x
x−sinx

.
Solution.

f(0)

g(0
=
ex − e−x − 2x

x− sin x

]

x=0

=
1 − 1 − 0

0 − 0
=

0

0
.

Therefore, this is an indeterminate form.

f ′(0)

g′(0)
=
ex − e−x − 2

1 − cos x

]

x=0

=
1 + 1 − 2

1 − 1
=

0

0
.

Therefore, this is an indeterminate form.

f ′′(0)

g′′(0)
=
ex − e−x

sin x

]

x=0

=
1 − 1

0
=

0

0
.

Therefore, this is an indeterminate form.

f ′′′(0)

g′′′(0)
=
ex − e−x

cos x

]

x=0

=
1 + 1

1
= 2. Ans.
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10.9.2 Exercises

Evaluate the following by differentiation6.

1. limx→4
x2−16

x2+x−20
.

Ans. 8
9
.

2. limx→1
x−1
xn−1

.

Ans. 1
n
.

3. limx→1
log x
x−1

.

Ans. 1.

4. limx→0
ex−e−x

sinx
.

Ans. 2.

5. limx→0
tanx−x
x−sinx

.

Ans. 2.

6. limx→π
2

log sinx
(π−2x)2

.

Ans.−1
8
.

7. limx→0
ax−bx
x

.

Ans. log a
b
.

8. limr→a
r3−ar2−a2r+a3

r2−a2 .

Ans. 0.

9. limθ→0
θ−arcsin θ

sin3 θ
.

Ans.−1
6
.

10. limx→φ
sinx−sinφ

x−φ .

Ans. cosφ.

6After differentiating, the student should in every case reduce the resulting expression to its
simplest possible form before substituting the value of thevariable.
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11. limy→0
ey+sin y−1
log(1+y)

.

Ans. 2.

12. limθ→0
tan θ+sec θ−1
tan θ−sec θ+1

.

Ans. 1.

13. limφ→π
4

sec2 φ−2 tanφ
1+cos 4φ

.

Ans. 1
2
.

14. limz→a
az−z2

a4−2a3z+2az3−z4 .

Ans. +∞.

15. limx→2
(ex−e2)2

(x−4)ex+e2x
.

Ans. 6e4.

16. limx→1
x2+x−2
x2−1

.

17. limx→−2
x3+8
x5+32

.

18. limx→0
sin 2x
x

.

19. limx→0
x−sinx
x3 .

20. limx→1
log cos(x−1)

1−sin πx
2

.

21. limx→0
tanx−sinx

sin3 x
.

10.10 Evaluation of the indeterminate form∞
∞

In order to compute

lim
x→a

f(x)

g(x)

when limx→a f(x) = ∞ and limx→a g(x) = ∞, that is, when forx = a the
function f(x)

g(x)
assumes the indeterminate form∞∞ , we follow the same rule as that

given in§10.9 for evaluating the indeterminate form0
0
.
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Rule for evaluating the indeterminate form ∞
∞ : Differentiate the numerator

for a new numerator and the denominator for a new denominator. The value of
this new fraction for the assigned value of the variable willbe the limiting value
of the original fraction.

A rigorous proof of this rule is beyond the scope of this book and is left for more
advanced treatises.

Example 10.10.1.Evaluatelog x
cscx

for x = 0.
Solution.

f(0)

g(0)
=

log(x)

csc(x)

]

x=0

=
−∞
∞ .

Therefore, this is an indeterminate form.

f ′(0)

g′(0)
=

1
x

− csc x cotx

]

x=0

= − sin2 x

x cos x

]

x=0

=
0

0
.

Therefore, this is an indeterminate form.

f ′′(0)

g′′(0)
= − 2 sin x cos x

cos x− x sin x

]

x=0

= −0

1
= 0. Ans.

Example 10.10.2.Let a andd be nonzero.

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
= lim

x→∞

2ax+ b

2dx+ e

= lim
x→∞

2a

2d

=
a

d

10.11 Evaluation of the indeterminate form0 · ∞
If a functionf(x) ·φ(x) takes on the indeterminate form0 ·∞ for x = a, we write
the given function

f(x) · φ(x) =
f(x)

1
φ(x)

(

or =
φ(x)

1
f(x)

)

so as to cause it to take on one of the forms0
0

or ∞
∞ , thus bringing it under§10.9

or §10.10.
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10.12. EVALUATION OF THE INDETERMINATE FORM∞−∞

Example 10.11.1.Evaluatesec(3x) cos(5x) for x = π
2
.

Solution. sec 3x cos 5x]x=π
2

= ∞ · 0. Therefore, this is an indeterminate form.

Substituting 1
cos 3x

for sec 3x, the function becomescos 5x
cos 3x

= f(x)
g(x)

.

f(π
2
)

g(π
2
)

=
cos 5x

cos 3x

]

x=π
s

=
0

0
.

Therefore, this is an indeterminate form.

f ′(π
2
)

g′(π
2
)

=
− cos x

− sin x

]

x=π
s

=
0

−1
= 0. Ans.

Example 10.11.2.

lim
x→0

(

cotx− 1

x

)

= lim
x→0

x cos x− sin x

x sin x

= lim
x→0

cos x− x sin x− cosx

sin x+ x cos x

= lim
x→0

−x sin x

sin x+ x cos x

= lim
x→0

−x cos x− sin x

cos x+ cosx− x sin x

= 0

Here is theSage command for this example:
Sage

sage: limit(cot(x)-1/x,x=0)
0
sage: limit((- x * cos(x) - sin(x) )/(cos(x) + cos(x) - x * sin(x)),x=0)
0

This verifies the answer obtained “by hand” above.

10.12 Evaluation of the indeterminate form∞−∞
It is possible in general to transform the expression into a fraction which will
assume either the form0

0
or ∞

∞ .
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Example 10.12.1.Evaluatesec x− tanx for x = π
2
.

Solution. sec x− tanx]x=π
2

= ∞ − ∞. Therefore, this is an indeterminate
form. By Trigonometry,

sec x− tanx = 1
cosx

− sinx
cosx

= 1−sinx
cosx

= f(x)
g(x)

.
f(π

2
)

g(π
2
)

= 1−sinx
cosx

]

x=π
2

= 1−1
0

= 0
0
. Therefore, this is an indeterminate form.

f ′(π
2
)

g′(π
2
)

= − cosx
− sinx

]

x=π
2

= 0
−1

= 0. Ans.

10.12.1 Exercises

Evaluate the following by differentiation7.

1. limx→∞
ax2+b
cx2+d

.

Ans. a
c
.

2. limx→0
cotx
log x

.

Ans.−∞.

3. limx=∞
log x
xn .

Ans. 0.

4. limx→∞
x2

ex .

Ans. 0.

5. limx→∞
ex

log x
.

Ans.∞.

6. limx→0 x cot πx.

Ans. 1
π
.

7. limy→∞
y
eay .

Ans. 0.

8. limx→π
2
(π − 2x) tanx.

Ans. 2.
7In solving the remaining exercises in this chapter, the formulas in§2.12 may be useful, where

many special limits are evaluated.
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9. limx→∞ x sin a
x
.

Ans. a.

10. limx→0 x
n log x. [n positive.]

Ans. 0.

11. limθ→π
4
(1 − tan θ) sec 2θ.

Ans. 1.

12. limφ→a(a
2 − φ2) tan πφ

2a
.

Ans. 4a2

π
.

13. limx→0
log sin 2x
log sinx

.

Ans. 1.

14. limθ→π
2

tan θ
tan 3θ

.

Ans. 3.

15. limφ→π
2

log(φ−π
2 )

tanφ
.

Ans. 0.

16. limx→0
log x
cotx

.

Ans. 0.

17. limx→0 x log sinx.

Ans. 0.

18. limx→1

[

2
x2−1

− 1
x−1

]

.

Ans.−1
2
.

Sage

sage: limit(2/(xˆ2-1) - 1/(x-1),x=1)
-1/2

19. limx→1

[

1
log x

− x
log x

]

.

Ans.−1.
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10.13. EVALUATION OF THE INDETERMINATE FORMS00, 1∞, ∞0

Sage

sage: limit(1/log(x) - x/log(x),x=1)
-1

20. limθ→π
2
[sec θ − tan θ].

Ans. 0.

21. limφ→0

[

2
sin2 φ

− 1
1−cosφ

]

.

Ans. 1
2
.

22. limy→1

[

y
y−1

− 1
log y

]

.

Ans. 1
2
.

23. limz→0

[

π
4z

− π
2z(eπz+1)

]

.

Ans. π
2

8
.

10.13 Evaluation of the indeterminate forms00, 1
∞,

∞0

Given a function of the form

f(x)φ(x).

In order that the function shall take on one of the above threeforms, we must have
for a certain value ofx, f(x) = 0, φ(x) = 0, giving 00; or, f(x) = 1, φ(x) = ∞,
giving 1∞; or, f(x) = ∞, φ(x) = 0, giving ∞0. Let y = f(x)φ(x); taking the
logarithm of both sides gives us,log y = φ(x) log f(x). In any of the above cases
the logarithm ofy (the function) will take on the indeterminate form0 · ∞.

Evaluating this by the process illustrated in§10.11 gives the limit of the loga-
rithm of the function. This being equal to the logarithm of the limit of the function,
the limit of the function is known.
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Example 10.13.1.Evaluatexx whenx = 0.
Solution. This function assumes the indeterminate form00 for x = 0. Let

y = xx; thenlog y = x log x = 0 · (−∞), whenx = 0. By §10.11,

log y
log x

1
x

=
−∞
∞ ,

whenx = 0. By §10.10,

log y
1
x

− 1
x2

= −x = 0,

whenx = 0. Sincey = xx, this givesloge(x
x) = 0; i.e.,xx = 1. Ans.

Example 10.13.2.Evaluate(1 + x)
1
x whenx = 0.

Solution. This function assumes the indeterminate form1∞ for x = 0. Let
y = (1 + x)

1
x ; then log y = 1

x
log(1 + x) = ∞ · 0 whenx = 0. By §10.11,

y = log(1+x)
x

= 0
0
, whenx = 0. By §10.9,y =

1
1+x

1
= 1

1+x
= 1 whenx = 0. Since

y = (1 + x)
1

1+x , this givesloge(1 + x)
1
x = 1; i.e. (1 + x)

1
x = e. Ans.

Example 10.13.3.Evaluatecotx sin x for x = 0.
Solution. This function assumes the indeterminate form∞0 for x = 0. Let

y = (cotx)sinx; thenlog y = sinx log cotx = 0 · ∞ whenx = 0. By §10.11,

log y = log cot x
cscx

= ∞
∞ whenx = 0. §10.10,log y =

− csc2 x
cot x

− cscx cotx
= sinx

cos2 x
= 0, when

x = 0.

10.14 Exercises

Evaluate the following limits.

1. limx→1 x
1

1−x .

Ans. 1
e
.

2. limx→0

(

1
x

)tanx
.

Ans. 1.

3. limθ→π
2
(sin θ)tan θ.

Ans. 1.
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4. limy→∞

(

1 + a
y

)y

.

Ans. ea.

5. limx→0(1 + sinx)cotx.

Ans. e.

6. limx→∞
(

2
x

+ 1
)x

.

Ans. e2.

7. limx→0(e
x + x)

1
x .

Ans. e2.

8. limx→0(cotx)
1

log x .

Ans. 1
e
.

9. limz→0(1 + nz)
1
z .

Ans. en.

10. limφ→1

(

tan πφ
4

)tan πφ
2 .

Ans. 1
e
.

11. limθ→0(cosmθ)
n
θ2 .

Ans. e−
1
2
nm2

.

12. limx→0(cotx)x.

Ans. 1.

13. limx→a

(

2 − x
a

)tan πx
2a .

Ans. e
2
π .

14. (a) limx→0
x−sinx
x3

(b) limx→0

(

csc x− 1
x

)

(c) limx→+∞
(

1 + 1
x

)x

(d) limx→0

(

csc2 x− 1
x2

)

. (First evaluate using L’Hospital’s rule then us-
ing a Taylor series expansion. You will find that the latter method is
more convenient.)
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10.15. APPLICATION: USING TAYLOR’S THEOREM TO APPROXIMATE
FUNCTIONS.

15.

lim
x→∞

xa/x, lim
x→∞

(

1 +
a

x

)bx

,

wherea andb are constants.

16. limx→4
x2−16

x2+x−20

Ans. 8/9

17. limx→1
x−1
xn−1

.

Ans. 1/n

18. limx→1
log x
x−1

.

Ans. 1

19. limx→0
ex−e−x

sin(x)

Ans. 2

20. limx→π/2
log sin(x)
(π−2x)2

Ans.−1/8

21. limx→0
ax−bx
x

Ans. log(a/b)

22. limx→0
θ−arcsin(θ)

θ2

Ans.−1/6.

23. limx→φ
sin(x)−sin(φ)

x−φ .

Ans. cos(φ).

10.15 Application: Using Taylor’s Theorem to ap-
proximate functions.

We revisit the ideas in§10.3 above to present some applications.
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10.15. APPLICATION: USING TAYLOR’S THEOREM TO APPROXIMATE
FUNCTIONS.

Theorem 10.15.1.(Taylor’s Theorem) If f(x) is n + 1 times continuously dif-
ferentiable in(a, b) then there exists a pointx = ξ ∈ (a, b) such that

f(b) = f(a) + (b− a)f ′(a) + (b−a)2
2!

f ′′(a) + · · ·
+ (b−a)n

n!
f (n)(a) + (b−a)n+1

(n+1)!
f (n+1)(ξ).

(10.20)

For the casen = 0, the formula is

f(b) = f(a) + (b− a)f ′(ξ),

which is just a rearrangement of the terms in the theorem of the mean,

f ′(ξ) =
f(b) − f(a)

b− a
.

One can use Taylor’s theorem to approximate functions with polynomials. Con-
sider an infinitely differentiable functionf(x) and a pointx = a. Substitutingx
for b into Equation 10.20 we obtain,

f(x) = f(a) + (x− a)f ′(a) + (x−a)2
2!

f ′′(a) + · · · + (x−a)n

n!
f (n)(a)

+ (x−a)n+1

(n+1)!
f (n+1)(ξ).

(10.21)

If the last term in the sum is small then we can approximate ourfunction with an
nth order polynomial.

f(x) ≈ f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · · + (x− a)n

n!
f (n)(a)

The last term in Equation 10.21 is called the remainder or theerror term,

Rn =
(x− a)n+1

(n+ 1)!
f (n+1)(ξ).

Since the function is infinitely differentiable,f (n+1)(ξ) exists and is bounded.
Therefore we note that the error must vanish asx → 0 because of the(x− a)n+1

factor. We therefore suspect that our approximation would be a good one ifx is
close toa. Also note thatn! eventually grows faster than(x− a)n,

lim
n→∞

(x− a)n

n!
= 0.
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FUNCTIONS.

So if the derivative term,f (n+1)(ξ), does not grow to quickly, the error for a certain
value ofx will get smaller with increasingn and the polynomial will become a
better approximation of the function. (It is also possible that the derivative factor
grows very quickly and the approximation gets worse with increasingn.)

Example 10.15.1.Consider the functionf(x) = ex. We want a polynomial ap-
proximation of this function near the pointx = 0. Since the derivative ofex is ex,
the value of all the derivatives atx = 0 is f (n)(0) = e0 = 1. Taylor’s theorem thus
states that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · + xn

n!
+

xn+1

(n+ 1)!
eξ,

for someξ ∈ (0, x). The first few polynomial approximations of the exponent
about the pointx = 0 are

f1(x) = 1

f2(x) = 1 + x

f3(x) = 1 + x+
x2

2

f4(x) = 1 + x+
x2

2
+
x3

6

The four approximations are graphed in Figure 10.7.
Note that for the range ofx we are looking at, the approximations become more

accurate as the number of terms increases.
Here is one way to compute these approximations usingSage :

Sage

sage: x = var("x")
sage: y = exp(x)
sage: a = lambda n: diff(y,x,n)(0)/factorial(n)
sage: a(0)
1
sage: a(1)
1
sage: a(2)
1/2
sage: a(3)
1/6
sage: taylor = lambda n: sum([a(i) * xˆi for i in range(n)])
sage: taylor(2)
x + 1
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FUNCTIONS.

Figure 10.7: Finite Taylor Series Approximations of1, 1 + x, 1 + x+ x2

2
to ex.

sage: taylor(3)
xˆ2/2 + x + 1
sage: taylor(4)
xˆ3/6 + xˆ2/2 + x + 1

Example 10.15.2.Consider the functionf(x) = cosx. We want a polynomial
approximation of this function near the pointx = 0. The first few derivatives off
are

f(x) = cosx

f ′(x) = − sin x

f ′′(x) = − cos x

f ′′′(x) = sinx

f (4)(x) = cosx
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It’s easy to pick out the pattern here,

f (n)(x) =

{

(−1)n/2 cos x for evenn,

(−1)(n+1)/2 sin x for oddn.

Sincecos(0) = 1 andsin(0) = 0 then-term approximation of the cosine is,

cos x = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · + (−1)2(n−1) x2(n−1)

(2(n− 1))!
+

x2n

(2n)!
cos ξ.

Here are graphs of the one-, two-, three- and four-term approximations.

Figure 10.8: Taylor Series Approximations of1, 1 − x2

2
, 1 − x2

2
+ x4

4!
to cos x.

Note that for the range ofx we are looking at, the approximations become more
accurate as the number of terms increases. Consider the ten term approximation
of the cosine aboutx = 0,

cos x = 1 − x2

2!
+
x4

4!
− · · · − x18

18!
+
x20

20!
cos ξ.

Note that for any value ofξ, | cos ξ| ≤ 1. Therefore the absolute value of the error
term satisfies,

|R| =

∣

∣

∣

∣

x20

20!
cos ξ

∣

∣

∣

∣

≤ |x|20
20!

.
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Note that the error is very small forx < 6, fairly small but non-negligible for
x ≈ 7 and large forx > 8. The ten term approximation of the cosine, plotted in
Figure 10.9, behaves just we would predict.

Figure 10.9: Taylor Series Approximation of1 − x2

2
+ x4

4!
− x6

6!
+ x8

8!
to cos x.

The error is very small until it becomes non-negligible atx ≈ 7 and large at
x ≈ 8.

Example 10.15.3.Consider the functionf(x) = lnx. We want a polynomial
approximation of this function near the pointx = 1. The first few derivatives off
are

f(x) = lnx

f ′(x) =
1

x

f ′′(x) = − 1

x2

f ′′′(x) =
2

x3

f (4)(x) = − 3

x4

The derivatives evaluated atx = 1 are

f(1) = 0, f (n)(1) = (−1)n−1(n− 1)!, for n ≥ 1.
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By Taylor’s theorem of the mean we have,

lnx = (x− 1) − (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · ·

+ (−1)n−1 (x− 1)n

n
+ (−1)n

(x− 1)n+1

n+ 1

1

ξn+1
.

Figure 10.10 shows plots of the one-, two-, and three-term approximations.

Figure 10.10: Taylor series (aboutx = 1) approximations ofx−1, x−1− (x−1)2

2
,

x− 1 − (x−1)2

2
+ (x−1)3

3
to ln x.

Note that the approximation gets better on the interval(0, 2) and worse outside
this interval as the number of terms increases. The Taylor series converges tolnx
only on this interval.

10.16 Example/Application: finite difference meth-
ods

This is less of an application of derivatives themselves andmore of an explanation
of one technique used to numerically approximate derivatives in a computer. Since
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10.16. EXAMPLE/APPLICATION: FINITE DIFFERENCE METHODS

this is a bit of an advanced topic, rather than explain the theory, we shall just give
a detailed example which contains the main ideas.

Example 10.16.1.Suppose you sample a function at the discrete pointsn∆x,
n ∈ Z. In Figure 10.11 we sample the functionf(x) = sinx on the interval
[−4, 4] with ∆x = 1/4 and plot the data points.

-4 -2 2 4

-1

-0.5

0.5

1

Figure 10.11: Sine function sampling.

We wish to approximate the derivative of the function on the grid points using
only the value of the function on those discrete points. Fromthe definition of the
derivative, one is lead to the formula

f ′(x) ≈ f(x+ ∆x) − f(x)

∆x
. (10.22)

Taylor’s theorem states that

f(x+ ∆x) = f(x) + ∆xf ′(x) +
∆x2

2
f ′′(ξ).

Substituting this expression into our formula for approximating the derivative we
obtain

f(x+ ∆x) − f(x)

∆x
=
f(x) + ∆xf ′(x) + ∆x2

2
f ′′(ξ) − f(x)

∆x
= f ′(x)+

∆x

2
f ′′(ξ).

282



10.16. EXAMPLE/APPLICATION: FINITE DIFFERENCE METHODS

Thus we see that the error in our approximation of the first derivative is ∆x
2
f ′′(ξ).

Since the error has a linear factor of∆x, we call this a first order accurate method.
Equation 10.22 is called theforward difference schemefor calculating the first
derivative. Figure 10.12 shows a plot of the value of this scheme for the function
f(x) = sinx and∆x = 1/4. The first derivative of the functionf ′(x) = cosx is
shown for comparison.

-4 -2 2 4

-1

-0.5

0.5

1

Figure 10.12: Forward Difference Scheme Approximation of the Derivative.

Another scheme for approximating the first derivative is thecentered difference
scheme,

f ′(x) ≈ f(x+ ∆x) − f(x− ∆x)

2∆x
.

Expanding the numerator using Taylor’s theorem,

f(x+ ∆x) − f(x− ∆x)

2∆x

=
f(x) + ∆xf ′(x) + ∆x2

2 f ′′(x) + ∆x3

6 f ′′′(ξ) − f(x) + ∆xf ′(x) − ∆x2

2 f ′′(x) + ∆x3

6 f ′′′(ψ)

2∆x

= f ′(x) +
∆x2

12
(f ′′′(ξ) + f ′′′(ψ)).

The error in the approximation is quadratic in∆x. Therefore this is a second
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order accurate scheme. Figure 10.13 is a plot of the derivative of the function and
the value of this scheme for the functionf(x) = sin x and∆x = 1/4.

-4 -2 2 4

-1

-0.5

0.5

1

Figure 10.13: Centered Difference Scheme Approximation of the Derivative.

Notice how the centered difference scheme gives a better approximation of the
derivative than the forward difference scheme.

284



CHAPTER

ELEVEN

Curvature

This is a chapter of advanced topics devoted to the elementary differential geom-
etry of curves. Given a curvey = f(x) in the plane, we have studied how well the
tangent line at a pointP0 = (x0, y0) on the curve approximates the graph nearP0.
Analgously, we can study how well the a “tangent circle” at a point P0 = (x0, y0)
on the curve approximates the graph nearP0. This “tangent circle” is called the
“circle of curvature,” its radius the “radius of curvature,” and its center the “cen-
ter of curvature.” The topics covered include: the radius ofcurvature, curvature
(which is the inverse of the radius of curvature), circle of curvature, and center of
curvature.

11.1 Curvature

The shape of a curve depends very largely upon the rate at which the direction
of the tangent changes as the point of contact describes the curve. This rate of
change of direction is calledcurvatureand is denoted byK. We now proceed to
find its analytical expression, first for the simple case of the circle, and then for
curves in general.

11.2 Curvature of a circle

Consider a circle of radiusR.
In the notation of Figure 11.1, let
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11.2. CURVATURE OF A CIRCLE

Figure 11.1: The curvature of a circle.

τ = angle that the tangent at P makes with thex-axis,

and

τ + ∆τ = angle made by the tangent at a neighboring point P′.

Then we say∆τ = total curvatureof arc PP′. If the point P with its tangent be
supposed to move along the curve to P′, the total curvature (= ∆τ ) would measure
the total change in direction, or rotation, of the tangent; or, what is the same thing,
the total change in direction of the arc itself. Denoting bys the length of the arc
of the curve measured from some fixed point (as A) to P, and by∆s the length of
the arc P P′, then the ratio∆τ

∆s
measures the average change in direction per unit

length of arc1. Since, from Figure 11.1,∆s = R · ∆τ , or ∆τ
∆s

= 1
R

, it is evident
that this ratio is constant everywhere on the circle. This ratio is, by definition, the
curvature of the circle, and we have

K =
1

R
. (11.1)

The curvature of a circle equals the reciprocal of its radius.

1Thus, if ∆τ = π
6 radians (=30o), and∆s = 3 centimeters, then∆τ

∆s
= π

18 radians per
centimeter =10o per centimeter = average rate of change of direction.

286



11.3. CURVATURE AT A POINT

11.3 Curvature at a point

Consider any curve. As in the last section,∆τ = total curvature of the arc PP’,
and∆τ

∆s
= average curvature of the arc PP’.

Figure 11.2: Geometry of the curvature at a point.

More important, however, than the notion of the average curvature of an arc is
that of curvature at a point. This is obtained as follows. Imagine P to approach
P along the curve; then the limiting value of the average curvature

(

= ∆τ
∆s

)

as P′

approaches P along the curve is defined as thecurvature at P, that is,

Curvature at a point =lim∆s→0

(

∆τ
∆s

)

= dτ
ds

.

Therefore,

K =
dτ

ds
= curvature. (11.2)

Since the angle∆τ is measured in radians and the length of arc∆s in units of
length, it follows that the unit of curvature at a point is oneradian per unit of
length.
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11.4 Formulas for curvature

It is evident that if, in the last section, instead of measuring the angles which the
tangents made with thex-axis, we had denoted byτ andτ + ∆τ the angles made
by the tangents with any arbitrarily fixed line, the different steps would in no wise
have been changed, and consequently the results are entirely independent of the
system of coordinates used. However, since the equations ofthe curves we shall
consider are all given in either rectangular or polar coordinates, it is necessary
to deduce formulas forK in terms of both. We havetan τ = dy

dx
by §3.9, or

τ = arctan dy
dx

. Differentiating with respect tox, using (4.23) in§4.1,

dτ

dx
=

d2y
dx2

1 +
(

dy
dx

)2 .

Also

ds

dx
=

[

1 +

(

dy

dx

)2
] 1

2

,

by (8.4). Dividing one equation into the other gives

dτ
dx
ds
dx

=
d2y
dx2

[

1 +
(

dy
dx

)2
] 3

2

.

But

dτ
dx
ds
dx

=
dτ

ds
= K.

Hence

K =
d2y
dx2

[

1 +
(

dy
dx

)2
] 3

2

. (11.3)

If the equation of the curve be given in polar coordinates,K may be found as
follows: From (5.13),

τ = θ + ψ.

288



11.4. FORMULAS FOR CURVATURE

Differentiating,

dτ

dθ
= 1 +

dψ

dθ
.

But

tanψ =
ρ
dρ
dθ

,

from (5.12). Therefore,

ψ = arctan
ρ
dρ
dθ

.

Differentiating with respect toθ using XX in §4.1 and reducing,

dψ

dθ
=

(

dρ
dθ

)2 − ρd
2ρ
dθ2

ρ2 +
(

dρ
dθ

)2 .

Substituting, we get

dτ

dθ
=
ρ2 − ρd

2ρ
dθ2

+ 2
(

dρ
dθ

)2

ρ2 +
(

dρ
dθ

)2 .

Also

ds

dθ
=

[

ρ2

(

dρ

dθ

)2
] 1

2

,

by (8.9). Dividing gives

dτ
dθ
ds
dθ

=
ρ2 − ρd

2ρ
dθ2

+ 2
(

dρ
dθ

)2

[

ρ2 +
(

dρ
dθ

)2
] 3

2

.

But

dτ
dθ
ds
dθ

=
dτ

ds
= K.

Hence
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K =
ρ2 − ρd

2ρ
dθ2

+ 2
(

dρ
dθ

)2

[

ρ2 +
(

dρ
dθ

)2
] 3

2

. (11.4)

Example 11.4.1.Find the curvature of the parabolay2 = 4px at the left-most end
of the chord that passes through the focus and is perpendicular to they-axis.

Solution. dy
dx

= 2p
y

; d2y
dx2 = −2p

y2
dy
dx

= −4p2

y3
. Substituting in (11.3),K =

− 40−p2

(y2+4p2)
3
2
, giving the curvature at any point. At the left-most end of the chord

(p, 2p),

K = − 4p2

(4p2 + 4p2)
3
2

= − 4p2

16
√

2p3
= − 1

4
√

2p
.

While in our work it is generally only the numerical value ofK that is of im-
portance, yet we can give a geometric meaning to its sign. Throughout our work

we have taken the positive sign of the radical
√

1 +
(

dy
dx

)2
. ThereforeK will be

positive or negative at the same time thatd2y
dx2 is, i.e., (by§7.8), according as the

curve is concave upwards or concave downwards.
We shall solve this usingSage .

Sage

sage: x = var("x")
sage: p = var("p")
sage: y = sqrt(4 * p* x)
sage: K = diff(y,x,2)/(1+diff(y,x)ˆ2)ˆ(3/2)
sage: K
-pˆ2/(2 * (p/x + 1)ˆ(3/2) * (p * x)ˆ(3/2))

Takingx = p and simplifying gives the result above.
Sage

sage: K.variables()
(p, x)
sage: K(p,p)
-pˆ2/(4 * sqrt(2) * (pˆ2)ˆ(3/2))
sage: K(p,p).simplify_rational()
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-1/(4 * sqrt(2) * sqrt(pˆ2))

Example 11.4.2.Find the curvature of the logarithmic spiralρ = eaθ at any point.
Solution. dρ

dθ
= aeaθ = aρ; d

2ρ
dθ2

= a2eaθ = a2ρ.
Substituting in (11.4),K = 1

ρ
√

1+a2 .
In laying out the curves on a railroad it will not do, on account of the high speed

of trains, to pass abruptly from a straight stretch of track to a circular curve. In
order to make the change of direction gradual, engineers make use of transition
curves to connect the straight part of a track with a circularcurve. Arcs of cubical
parabolas are generally employed as transition curves.

Now we do this inSage :

Sage

sage: rho = var("rho")
sage: t = var("t")
sage: r = var("r")
sage: a = var("a")
sage: r = exp(a * t)
sage: K = (rˆ2-r * diff(r,t,2)+2 * diff(r,t)ˆ2)/(rˆ2+diff(r,t)ˆ2)ˆ(3/2)
sage: K
1/sqrt(aˆ2 * eˆ(2 * a* t) + eˆ(2 * a* t))
sage: K.simplify_rational()
eˆ(-(a * t))/sqrt(aˆ2 + 1)

Example 11.4.3.The transition curve on a railway track has the shape of an arc
of the cubical parabolay = 1

3
x3. At what rate is a car on this track changing its

direction (1 mi. = unit of length) when it is passing through (a) the point(3, 9)?
(b) the point(2, 8

3
)? (c) the point(1, 1

3
)?

Solution. dy
dx

= x2, d
2y
dx2 = 2x. Substituting in (11.3),K = 2x

(1+x4)
3
2
. (a) At (3, 9),

K = 6

(82)
3
2

radians per mile =28′ per mile. (b) At(2, 8
3
), K = 4

(17)
3
2

radians per

mile = 3o16′ per mile. (c) At(1, 1
3
),K = 2

(2)
3
2

= 1√
2

radians per mile =40o30′ per

mile.

11.5 Radius of curvature

By analogy with the circle (see (11.1)), the radius of curvature of a curve at a point
is defined as the reciprocal of the curvature of the curve at that point. Denoting
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the radius of curvature byR, we have2

R =
1

K
.

Or, substituting the values ofx from (11.3) and (11.4),

R =

[

1 +
(

dy
dx

)2
] 3

2

d2y
dx2

(11.5)

and3

R =

[

ρ2 +
(

dρ
dθ

)2
] 3

2

ρ2 − ρd
2ρ
dθ2

+ 2
(

dρ
dθ

)2 . (11.6)

Example 11.5.1.Find the radius of curvature at any point of the catenaryy =
a
2
(e

x
a + e−

x
a ).

Solution. dy
dx

= 1
2
(e

x
a − e−

x
a ); d

2y
dx2 = 1

2a
(e

x
a − e−

x
a ). Substituting in (11.5),

R =

"

1+

„

e
x
a −e

−x
a

2

«2
# 3

2

e
x
a −e

−x
a

2a

=

„

e
x
a −e

−x
a

2

«3

e
x
a −e

−x
a

2a

= a(e
x
a −e−x

a )2

4

= y2

a
.

If the equation of the curve is given in parametric form, find the first and second
derivatives ofy with respect tox from (9.5) and (9.6), namely:

dy

dx
=

dy
dt
dx
dt

,

and

2Hence the radius of curvature will have the same sign as the curvature, that is,+ or −, ac-
cording as the curve is concave upwards or concave downwards.

3In §9.4, the next equation is derived from the previous one by transforming from rectangular
to polar coordinates.
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d2y

dx2
=

dx
dt
d2y
dt2

− dy
dt
d2x
dt2

(

dx
dt

)3 ,

and then substitute4 the results in (11.5).

Example 11.5.2.Find the radius of curvature of the cycloidx = a(t − sin t),
y = a(t− cos t).

Solution. dx
dt

= a(1 − cos t), dy
dt

= a sin t; d2x
dt2

= a sin t, d
2y
dt2

= a cos t. Substi-
tuting the previous example and then in (11.5), we get

dy
dx

= sin t
1−cos t

, d
2y
dx2 = a(1−cos t)a cos t−a sin ta sin t

a3(1−cos t)3
= 1

a(1−cos t)2
, andR =

h

1+( sin t
1−cos t)

2
i

3
2

− 1
a(1−cos t)2

=

−2a
√

2 − 2 cos t.

11.6 Circle of curvature

Consider any pointP on the curveC (see Figure 11.3). The tangent drawn to the
curve atP has the same slope as the curve itself atP (see§5.1). In an analogous
manner we may construct for each point of the curve a circle whose curvature is
the same as the curvature of the curve itself at that point. Todo this, proceed as
follows. Draw the normal to the curve atP on the concave side of the curve.

Move along this normal a distanceR from P to a pointC. With C as a center,
draw the circle passing throughP . The curvature of this circle is thenK = 1

R
,

which also equals the curvature of the curve itself atP .

Definition 11.6.1. (First definition) The circle so constructed is called thecircle
of curvaturefor the point P on the curve.

In general, the circle of curvature of a curve at a point will cross the curve at that
point. This is illustrated in the Figure 11.3.

Just as the tangent at P shows the direction of the curve atP , so the circle
of curvature atP aids us very materially in forming a geometric concept of the
curvature of the curve atP , the rate of change of direction of the curve and of the
circle being the same atP .

The circle of curvature can be defined as the limiting position of a secant circle,
a definition analogous to that of the tangent given in§3.9.

4Substituting these last two equations in (11.5) givesR =

h

( dx
dt )

2
+( dy

dt )
2

i

3/2

dx
dt

d2y

dt2
− dy

dt
d2x
dt2

.
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Figure 11.3: The circle of curvature.

Example 11.6.1.Find the radius of curvature at the point(3, 4) on the equilateral
hyperbolaxy = 12, and draw the corresponding circle of curvature.

Solution. dy
dx

= − y
x
, d

2y
dx2 = 2y

x2 . For(3, 4), dy
dx

= −4
3
, d

2y
dx2 = 8

9
, so

R =
[1 + 16

9
]
3
2

8
9

=
125

24
= 25

5

24
.

The circle of curvature crosses the curve at two points.
We solve for the circle of curvature usingSage . First, we solve for the inter-

section of the normaly − 4 = (−1/m)(x − 3), wherem = y′(3) = −4/3, and
the circle of radiusR = 125/24 about(3, 4):

Sage

sage: x = var("x")
sage: y = 12/x
sage: K = diff(y,x,2)/(1+diff(y,x)ˆ2)ˆ(3/2)
sage: K
24/((144/xˆ4 + 1)ˆ(3/2) * xˆ3)
sage: K(3)
24/125
sage: R = 1/K(3)
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sage: m = diff(y,x)(3); m
-4/3
sage: xx = var("xx")
sage: yy = var("yy")
sage: solve((xx-3)ˆ2+(-1/m)ˆ2 * (xx-3)ˆ2==Rˆ2, xx)
[xx == -7/6, xx == 43/6]

This tells us that the normal line intersects the circle of radiusR centered at(3, 4)
in 2 points, one of which is at(43/6, 57/8). This is the center of the circle of
curvature, so the equation is(x− 43/6)2 + (y − 57/8)2 = R2.

Figure 11.4: The circle of curvature of a hyperbola.
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11.7 Exercises

1. Find the radius of curvature for each of the following curves, at the point
indicated; draw the curve and the corresponding circle of curvature:

(a) b2x2 + a2y2 = a2b2, (a, 0).

Ans.R = b2

a
.

(b) b2y2 + a2y2 = a2b2, (0, b).

Ans.R = a2

b
.

(c) y = x4 − 4x3 − 18x2, (0, 0).

Ans.R = 1
36

.

(d) 16y2 = 4x4 − x6, (2, 0).

Ans.R = 2.

(e) y = x3, (x1, y1).

Ans.R = (1+9x1
4)

3
2

6x1
.

(f) y2 = x3, (4, 8).

Ans.R = 1
3
(40)

3
2 .

(g) y2 = 8x, (9
8
, 3).

Ans.R = 125
16

.

(h)
(

x
a

)2
+
(

y
b

) 2
3 = 1, (0, b).

Ans.R = a2

3b
.

(i) x2 = 4ay, (0, 0).

Ans.R = 2a.

(j) (y − x2)2 = x5, (0, 0).

Ans.R = 1
2
.

(k) b2x2 − a2y2 = a2b2, (x1, y1).

Ans.R = (b4x1
2+a4y12)

3
2

a4b4
.

(ℓ ) ex = sin y, (x1, y1).

(m) y = sin x,
(

π
2
, 1
)

.

(n) y = cos x,
(

π
4
,
√

2
)

.
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(o) y = log x, x = e.

(p) 9y = x3, x = 3.

(q) 4y2 = x3, x = 4.

(r) x2 − y2 = a2, y = 0.

(s) x2 + 2y2 = 9, (1,−2).

2. Determine the radius of curvature of the curvea2y = bx2 + cx2y at the
origin.

Ans.R = a2

2b
.

3. Show that the radius of curvature of the witchy2 = a2(a−x)
x

at the vertex is
a
2
.

4. Find the radius of curvature of the curvey = log sec x at the point(x1, y1).

Ans.R = sec x1.

5. FindK at any point on the parabolax
1
2 + y

1
2 = a

1
2 .

Ans.K = a
1
2

2(x+y)
3
2
.

6. FindR at any point on the hypocycloidx
2
3 + y

2
3 = a

2
3 .

Ans.R = 3(axy)
1
3 .

7. FindR at any point on the cycloidx = r arcvers y
r
−
√

2ry − y2.

Ans.R = 2
√

2ry.

Find the radius of curvature of the following curves at any point:

8. The circleρ = a sin θ.

Ans.R = a
2
.

9. The spiral of Archimedesρ = aθ.

Ans.R = (ρ2=a2)
3
2

ρ2+2a2 .

10. The cardioidρ = a(1 cos θ).

R = 2
3

√
2aρ.
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11. The lemniscateρ2 = a2 cos 2θ.

R = a2

3ρ
.

12. The parabolaρ = a sec2 θ
2
.

Ans.R = 2a sec3 θ
2
.

13. The curveρ = asin3 θ
3
.

14. The trisectrixρ = 2a cos θ − a.

Ans.R = a(5−4 cos θ)
3
2

9−6 cos θ
.

15. The equilateral hyperbolaρ2 cos 2θ = a2.

Ans.R = ρ3

a2 .

16. The conicρ = a(1−e2)
1−e cos θ

.

Ans.R = a(1−e2)(1−2e cos θ+e2)
3
2

(1−e cos θ)3
.

17. The curve

{

x = 3t2,

y = 3t− t3,

t = 1.

Ans.R = 6.

In Sage :

Sage

sage: t = var(’t’)
sage: x = 3 * tˆ2
sage: y = 3 * t-tˆ3
sage: Rnum = (x.diff(t)ˆ2+y.diff(t)ˆ2)ˆ(3/2)
sage: Rdenom = x.diff(t) * y.diff(t,2)-y.diff(t) * x.diff(t,2)
sage: R = Rnum/Rdenom
sage: R(1)
-6
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18. The hypocycloid

{

x = a cos3 t,

y = a sin3 t,

t = t1.

Ans.R = 3a sin t1 cos t1.

In Sage :

Sage

sage: t = var(’t’)
sage: x = cos(t)ˆ3
sage: y = sin(t)ˆ3
sage: Rnum = (x.diff(t)ˆ2+y.diff(t)ˆ2)ˆ(3/2)
sage: Rdenom = x.diff(t) * y.diff(t,2)-y.diff(t) * x.diff(t,2)
sage: R = Rnum/Rdenom
sage: R.simplify_trig()
-sqrt(9 * cos(t)ˆ2 - 9 * cos(t)ˆ4)

You can simplify this last result even further if you want.

19. The curve

{

x = a(cos t+ t sin t),

y = a(sin t− t cos t),

t = π
2
.

Ans.R = πa
2

.

20. The curve

{

x = a(m cos t+ cosmt),

y = a(m sin t− sinmt),

t = t0.

Ans.R = 4ma
m−1

sin
(

m+1
2

)

t0.
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21. Find the radius of curvature for each of the following curves at the point
indicated; draw the curve and the corresponding circle of curvature:

(a)x = t2, 2y = t; t = 1. (e)x = t, y = 6t− 1; t = 2.
(b) x = t2, y = t3; t = 1. (f) x = 2et, y = e−t; t = 0.
(c) x = sin t, y = cos 2t; t = π

6
. (g)x = sin t, y = 2 cos t; t = π

4
.

(d) x = 1 − t, y = t3; t = 3. (h)x = t3, y = t2 + 2t; t = 1.

22. An automobile race track has the form of the ellipsex2 + 16y2 = 16, the
unit being one mile. At what rate is a car on this track changing its direction

(a) when passing through one end of the major axis?

(b) when passing through one end of the minor axis?

(c) when two miles from the minor axis?

(d) when equidistant from the minor and major axes?

Ans. (a)4 radians per mile; (b)1
16

radian per mile.

23. On leaving her dock a steamship moves on an arc of the semi cubical
parabola4y2 = x3. If the shore line coincides with the axis ofy, and the
unit of length is one mile, how fast is the ship changing its direction when
one mile from the shore?

Ans. 24
125

radians per mile.

24. A battleship400 ft. long has changed its direction30o while moving through
a distance equal to its own length. What is the radius of the circle in which
it is moving?

Ans. 764 ft.

25. At what rate is a bicycle rider on a circular track of half amile diameter
changing his direction?

Ans. 4 rad. per mile =43′ per rod.

26. The origin being directly above the starting point, an aeroplane follows ap-
proximately the spiralρ = θ, the unit of length being one mile. How rapidly
is the aeroplane turning at the instant it has circled the starting point once?
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27. A railway track has curves of approximately the form of arcs from the fol-
lowing curves. At what rate will an engine change its direction when pass-
ing through the points indicated (1 mi. = unit of length):

(a)y = x3, (2, 8)? (d)y = ex, x = 0?
(b) y = x2, (3, 9)? (e)y = cos x, x = π

4
?

(c) x2 − y2 = 8, (3, 1)? (f) ρθ = 4, θ = 1?

11.8 Circle of curvature

The circle of curvature is sometimes called theosculating circle. It was defined
from another point of view in§11.6.

Definition 11.8.1. (Second definition) If a circle be drawn through three points
P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2) on a plane curve, and ifP1 andP2 be
made to approachP0 along the curve as a limiting position, then the circle will in
general approach in magnitude and position a limiting circle called the circle of
curvature of the curve at the pointP0. The center of this circle is called thecenter
of curvature.

Figure 11.5: Geometric visualization of the circle of curvature.
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Let the equation of the curve be

y = f(x); (11.7)

and letx0, x1, x2 be the abscissas of the pointsP0, P1, P2 respectively,C =
(α′, β′) the coordinates of the center, andR′ the radius of the circle passing
through the three points. Then the equation of the circle is

(x− α′)2 + (y − β′)2 = (R′)2;

and since the coordinates of the pointsP0, P1, P2 must satisfy this equation, we
have











(x0 − α′)2 + (y0 − β′)2 − (R′)2 = 0,

(x1 − α′)2 + (y1 − β′)2 − (R′)2 = 0,

(x2 − α′)2 + (y2 − β′)2 − (R′)2 = 0.

(11.8)

Now consider the function ofx defined by

F (x) = (x− α′)2 + (y − β′)2 − (R′)2,

in whichy = f(x) using (11.7).
Then from equations (11.8) we get

F (x0) = 0, F (x1) = 0, F (x2) = 0.

Hence, by Rolle’s Theorem (§10.1),F ′(x) must vanish for at least two values of
x, one lying betweenx0 andx1, sayx′, and the other lying betweenx1 andx2 say
x′′; that is,

F ′(x′) = 0, F ′(x′′) = 0.

Again, for the same reason,F ′′(x) must vanish for some value ofx betweenx′

andx′′, sayx3; hence

F ′′(x3) = 0.

Therefore the elementsα′, β′, R′ of the circle passing through the pointsP0, P1,
P2 must satisfy the three equations

F (x0) = 0, F ′(x′) = 0, F ′′(x3) = 0.
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Now let the pointsP1 andP2 approachP0 as a limiting position; thenx1, x2, x′,
x′′, x3 will all approachx0 as a limit, and the elementsα, β, R of the osculating
circle are therefore determined by the three equations

F (x0) = 0, F ′(x0) = 0, F ′′(x0) = 0;

or, dropping the subscripts, which is the same thing,

(x− α)2 + (y − β)2 = R2 (11.9)

(x− α) + (y − β)
dy

dx
= 0, (11.10)

differentiating (11.9).

1 +

(

dy

dx

)2

+ (y − β)
d2y

dx2
= 0, (11.11)

differentiating (11.10). Solving (11.10) and (11.11) forx − α andy − β, we get
(

d2y
dx2 6= 0

)

,














x− α =
dy
dx

h

1+( dy
dx)

2
i

d2y

dx2

y − β = −1+( dy
dx)

2

d2y

dx2

;
(11.12)

hence the coordinates of the center of curvature are

α = x−
dy
dx

h

1+( dy
dx)

2
i

d2y

dx2

β = y +
1+( dy

dx)
2

d2y

dx2

,
(11.13)

assumingd
2y
dx2 6= 0.

Substituting the values ofx − α andy − β from (11.12) in (11.9), and solving
for R, we get

R = ±

[

1 +
(

dy
dx

)2
] 3

2

d2y
dx2

,

which is identical with (11.5), [§11.5]. This is summarized in the following state-
ment.
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Theorem 11.8.1.The radius of the circle of curvature equals the radius of curva-
ture.

11.9 Second method for finding center of curvature

Here we shall make use of the definition of circle of curvaturegiven in §11.6.
Draw a figure showing the tangent line, circle of curvature, radius of curvature,
and center of curvatureC = (α, β) corresponding to the pointP = (x, y) on the
curve. For example, in Figure 11.5, replaceP2 by P , replace(α′, β′) by (α, β),
and imagine the tangent line to the curve drawn atP . Call the origin in the plane
O, the projection ofP to thex-axisD, the projection ofC to thex-axisA, and
callB the projection ofP onto the segmentCA. This is depicted in Figure 11.6.

Figure 11.6: Circle of curvature.

Then
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α = OA = OD − AD = OD −BP = x−BP,

β = AC = AB +BC = DP +BC = y +BC.

ButBP = R sin τ ,BC = R cos τ . Hence

α = x−R sin τ, β = y +R cos τ. (11.14)

Example 11.9.1.We shall solve for the radius of curvature ofy = x3 − x2 + 1 at
x = 1 usingSage .

Sage

sage: y = xˆ3-xˆ2+1
sage: Dy = diff(y,x)
sage: D2y = diff(y,x,x)
sage: R = (1+Dyˆ2)ˆ(3/2)/D2y
sage: R(1)
1/sqrt(2)
sage: alpha = x - Dy * (1+Dyˆ2)/D2y
sage: beta = y + (1+Dyˆ2)/D2y
sage: alpha(1)
1/2
sage: beta(1)
3/2

From (8.8) [§8.3], and (11.5) [11.5],

sin τ =
dy
dx

[

1 +
(

dy
dx

)2
] 1

2

,

cos τ =
1

[

1 +
(

dy
dx

)2
] 1

2

,

R =

[

1 +
(

dy
dx

)2
] 3

2

d2y
dx2

.

Substituting these back in (11.14), we get
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α = x−
dy
dx

[

1 +
(

dy
dx

)2
]

d2y
dx2

; β = y +
1 +

(

dy
dx

)2

d2y
dx2

. (11.15)

From Lemma 7.8.1 [§7.8], we know that at a point of inflection

d2y

dx2
= 0.

Therefore, by (11.3) [§11.4], the curvatureK = 0. From (11.5) [§11.5], and
(11.15) [§11.9], we see that in generalα, β,R increase without limit asd

2y
dx2 → 0.

Example 11.9.2.Find the coordinates of the center of curvature of the parabola
y2 = 4px corresponding (a) to any point on the curve; (b) to the vertex.

Solution. dy
dx

= 2p
y

; d
2y
dx2 = −4p2

y3
.

(a) Substituting in (11.13) [§11.8],

α = x+
y2 + 4p2

y2
· 2p

y
· y

3

4p2
= 3x+ 2p.

β = y − y2 + 4p2

y2
· y

3

4p2
= − y3

4p2
.

Therefore
(

3x+ 2p,− y3

4p2

)

is the center of curvature corresponding to any point

on the curve.
(b) (2p, 0) is the center of curvature corresponding to the vertex(0, 0).

11.10 Center of curvature

In this section, we discuss how the center of curvature can bethought of geomet-
ricaly as the limiting position of the intersection of normals at neighboring points.
Let the equation of a curve be

y = f(x). (11.16)

The equations of the normals to the curve at two neighboring pointsP0 andP1

are (using (5.2) [§5.3]),

(x0 − x) + (y0 − y)
dy0

dx0

= 0, (x1 − x) + (y1 − y)
dy1

dx1

= 0.
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If the normals intersect atC ′ = (α′, β′), the coordinates of this point must satisfy
both equations, giving

{

(x0 − α′) + (y0 − β) dy0
dx0

= 0,

(x1 − α′) + (y1 − β′) dy1
dx1

= 0.
(11.17)

Now consider the function of x defined by

φ(x) = (x− α′) + (y − β′)
dy

dx
,

in whichy = f(x) using (11.16). Then equations (11.17) show that

φ(x0) = 0, φ(x1) = 0.

But then, by Rolle’s Theorem (§10.1), φ′(x) must vanish for some value ofx
betweenx0 andx1 sayx′. Thereforeα′ andβ′ are determined by the two equations

φ(x0) = 0, φ′(x′) = 0.

If now P1 approachesP0 as a limiting position, thenx′ approachesx0, giving

φ(x0) = 0, φ′(x0) = 0,

andC ′(α′, β′) will approach as a limiting position the center of curvatureC(α, β)
corresponding toP0 on the curve. For if we drop the subscripts and write the last
two equations in the form

(x− α′) + (y − β′)
dy

dx
= 0, 1 +

(

dy

dx

)2

+ (y − β′)
d2y

dx2
= 0,

it is evident that solving forα′ andβ′ will give the same results as solving (11.10)
and ((11.11) forα andβ. Hence we have the following result.

Theorem 11.10.1.The center of curvatureC corresponding to a pointP on a
curve is the limiting position of the intersection of the normal to the curve atP
with a neighboring normal.
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11.11 Evolutes

The locus of the centers of curvature of a given curve is called theevoluteof that
curve. Consider the circle of curvature corresponding to a point P on a curve.
If P moves along the given curve, we may suppose the corresponding circle of
curvature to roll along the curve with it, its radius varyingso as to be always equal
to the radius of curvature of the curve at the pointP . The curve described by the
center of the circles is the evolute.
It is instructive to make an approximate construction of theevolute of a curve by
estimating (from the shape of the curve) the lengths of the radii of curvature at
different points on the curve and then drawing them in and drawing the locus of
the centers of curvature.

Formula (11.13) gives the coordinates of any point(α, β) on the evolute ex-
pressed in terms of the coordinates of the corresponding point (x, y) of the given
curve. Buty is a function ofx; therefore

α = x−

[

1 +
(

dy
dx

)2
]

dy
dx

d2y
dx2

, β = y +
1 +

(

dy
dx

)2

d2y
dx2

give us at once the parametric equations of the evolute in terms of the parameter
x.

To find the ordinary rectangular equation of the evolute we eliminatex between
the two expressions. No general process of elimination can be given that will
apply in all cases, the method to be adopted depending on the form of the given
equation. In a large number of cases, however, the student can find the rectangular
equation of the evolute by taking the following steps:

General directions for finding the equation of the evolute inrectangular coordi-
nates.

• FIRST STEP. Findα, β from (11.15).

• SECOND STEP. Solve the two resulting equations forx andy in terms of
α andβ.

• THIRD STEP. Substitute these values ofx andy in the given equation. This
gives a relation between the variablesα andβ which is the equation of the
evolute.

Example 11.11.1.Find the equation of the evolute of the parabolay2 = 4px.
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Figure 11.7: Evolute of a parabola.

Solution. dy
dx

= 2p
y
, d

2y
dx2 = −4p2

y3
.

First step.α = 3x+ 2p, β = − y3

4p2
.

Second step.x = α−2p
3

, y = −(4p2β)
1
3 .

Third step(4p2β)
2
3 = 4p

(

α−2p
3

)

or pβ2 = 4
27

(α− 2p)3.
Remembering thatα denotes the “x-coordinate” andβ the “y-coordinate” of a

rectangular system of coordinates, we see that the evolute of the parabolay = 4x2

is the “cusp”y2 = 4(x − 2)3/27. The curve (dotted) and its evolute (solid) are
plotted in Figure 11.7.

Example 11.11.2.Find the equation of the evolute of the ellipseb2x2 + a2y2 =
a2b2.

Solution. dy
dx

= − b2x
a2y

, d
2y
dx2 = − b4

a2y3
.

First step.α = (a2−b2)x3

a4 , β = − (a2−b2)y3

b4
.

Second step.x =
(

a4α
a2−b2

) 1
3
, y = −

(

b4β
a2−b2

) 1
3
.

Third step. (aα)
2
3 + (bβ)

2
3 = (a2 − b2)

2
3 , the equation of the evolute of the

ellipse.

When the equations of the curve are given in parametric form, we proceed to
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find dy
dx

and d2y
dx2 , as in§11.5, from

dy

dx
=

dy
dt
dx
dt

,
d2y

dx2
=

dx
dt
d2y
dt2

− dy
dt
d2x
dt2

(

dx
dt

)3 (11.18)

and then substitute the results in formulas (11.15). This gives the parametric equa-
tions of the evolute in terms of the same parameter that occurs in the given equa-
tions.

Example 11.11.3.The parametric equations of a curve are

x =
t2 + 1

4
, y =

t3

6
. (11.19)

Find the equation of the evolute in parametric form, plot thecurve and the evolute,
find the radius of curvature at the point wheret = 1, and draw the corresponding
circle of curvature.

Solution. dx
dt

= t
2
, d2x
dt2

= 1
2
, dy
dt

= t2

2
, d2y
dt2

= t. Substituting in above formulas
(11.18) and then in (11.15), gives

α =
1 − t2 − 2t4

4
, β =

4t3 + 3t

6
, (11.20)

the parametric equations of the evolute. Assuming values ofthe parametert, we
calculatex, y; α, β from (11.19) and (11.20). The curve (solid) and its evolute
(dotted) are plotted in Figure 11.9.
The point(1

4
, 0) is common to the given curve and its evolute. The given curve (a

“cusp”) lies entirely to the right and the evolute entirely to the left ofx = 1
4
.

Example 11.11.4.Find the parametric equations of the evolute of the cycloid,
{

x = a(t− sin t)

y = a(1 − cos t).
(11.21)

Solution. As in Example 11.5.2, we get

dy

dx
=

sin t

1 − cos t
,

d2y

dx2
= − 1

α(1 − cos t)2
.

Substituting these results in formulas (11.15), we get the answer:
{

α = a(t+ sin t),

β = −a(1 − cos t).
(11.22)
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Figure 11.8: Evolute of an parametric curve.

Figure 11.9: Evolute of a cycloid.

The curve (solid) and its evolute (dotted) are plotted in Figure 11.9.
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11.12 Properties of the evolute

From (11.14),

α = x−R sin τ, β = y +R cos τ. (11.23)

Let us choose as independent variable the lengths of the arc on the given curve;
thenx, y, R, T , α, β are functions ofs. Differentiating (11.23) with respect tos
gives

dα

ds
=
dx

ds
−R cos τ

dτ

ds
− sin τ

dR

ds
, (11.24)

dβ

ds
=
dy

ds
−R sin τ

dτ

ds
+ cos τ

dR

ds
. (11.25)

But dx
ds

= cos τ , dy
ds

= sin τ , from (8.5); anddτ
ds

= 1
R

, from (11.1) and (11.2).
Substituting in (11.24) and (11.25), we obtain

dα

ds
= cos τ −R cos τ · 1

R
− sin τ

dR

ds
= − sin τ

dR

ds
, (11.26)

and
dβ

ds
= sin τ −R sin τ · 1

R
+ cos τ

dR

ds
= cos τ

dR

ds
. (11.27)

Dividing (11.27) by (11.26) gives

dβ

dα
= − cot τ = − 1

tan τ
= − 1

dy
dx

. (11.28)

But dβ
dα

= tan τ = slope of tangent to the evolute atC, and dy
dx

= tan τ = slope of
tangent to the given curve at the corresponding pointP = (x, y).

Substituting the last two results in (11.28), we get

tan τ ′ = − 1

tan τ
.

Since the slope of one tangent is the negative reciprocal of the slope of the other,
they are perpendicular. But a line perpendicular to the tangent atP is a normal to
the curve. Hence

A normal to the given curve is a tangent to its evolute.
Again, squaring equations (11.26) and (11.27) and adding, we get
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(

dα

ds

)2

+

(

dβ

ds

)2

=

(

dR

ds

)2

. (11.29)

But if s′ = length of arc of the evolute, the left-hand member of (11.29) is precisely
the square ofds

′

ds
(from (8.12), wheret = s, s = s′, x = α, y = β). Hence (11.29)

asserts that

(

ds′

ds

)2

=

(

dR

ds

)2

, or
ds′

ds
= ±dR

ds
.

That is, the radius of curvature of the given curve increasesor decreases as fast as
the arc of the evolute increases. In our figure this means that

P1C1 − PC = arcCC1.

The length of an arc of the evolute is equal to the difference between the radii of
curvature of the given curve which are tangent to this arc at its extremities.

Thus in Example 11.11.4, we observe that if we foldQvPv ( = 4a) over to the
left on the evolute,Pv will reach toO′, and we have:

The length of one arc of the cycloid (asOO′Qv) is eight times the length of the
radius of the generating circle.

11.13 Exercises

Find the coordinates of the center of curvature and the equation of the evolute of
each of the following curves. Draw the curve and its evolute,and draw at least
one circle of curvature.

1. The hyperbolax
2

a2 − y2

b1
= 1.

Ans.α = (a2+b2)x3

a4 , β = − (a2+b2)y3

b4
; evolute(aα)

2
3 − (bβ)

2
3 = (a2 + b2)

2
3 .

2. The hypocycloidx
2
3 + y

2
3 = a

2
3 .

α = x+ 3x
1
3y

2
3 , β = y + 3x

2
3y

1
3 ; evolute(α+ β)

2
3 + (α− β)

2
3 = 2a

2
3 .

3. Find the coordinates of the center of curvature of the cubical parabolay3 =
a2x.

Ans.α = a4+15y4

6a2y
, β = a4y−9y5

2a4 .
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4. Show that in the parabolax
1
2 + y

1
2 = a

1
2 we have the relationα + β =

3(x+ y).

5. Given the equation of the equilateral hyperbola2xy = a2 show that

α+ β =
(y + x)3

a2
, α− β =

(y − x)3

a2
.

From this derive the equation of the evolute(α+ β)
2
3 − (α− β)

2
3 = 2a

2
3 .

Find the parametric equations of the evolutes of the following curves in terms
of the parametert. Draw the curve and its evolute, and draw at least one circle of
curvature.

6. The hypocycloid

{

x = a cos3 t,

y = a sin3 t.

Ans.

{

α = a cos3 t+ 3a cos t sin2 t,

β = 3a cos2 t sin t+ a sin3 t.
.

7. The curve

{

x = 3t2,

y = 3t− t3.

Ans.

{

α = 3
2
(1 + 2t2 − t4),

β = −4t3.

8. The curve

{

x = a(cos t+ t sin t),

y = a(sin t− t cos t).
.

Ans.

{

α = a cos t,

β = a sin t.
.

9. The curve

{

x = 3t,

y = t2 − 6.
.

Ans.

{

α = −4
3
t3,

β = 3t2 − 3
2
.

.

10. The curve

{

x = 6 − t2

y = 2t.
.

Ans.

{

α = 4 − 3t2,

β = −2t3.
.
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11. The curve

{

x = 2t,

y = t2 − 2.
.

Ans.

{

α = −2t3,

β = 3t2.
.

12. The curve

{

x = 4t,

y = 3 + t2.
.

Ans.

{

α = −t3,
β = 11 + 3t2.

.

13. The curve

{

x = 9 − t2,

y = 2t.
.

Ans.

{

α = 7 − 3t2,

β = −2t3.
.

14. The curve

{

x = 2t,

y = 1
3
t3.

.

Ans.

{

α = 4t−t5
4
.

β = 12+5t4

6t
.

.

15. The curve

{

x = 1
3
t3,

y = t2.
.

Ans.

{

α = 4t3+12t
3

β = −2t2+t4

2
.

.

16. The curve

{

x = 2t,

y = 3
t
.

.

Ans

{

α = 12t4+9
4t3

β = 27+4t4

6t
.

.

17. x = 4 − t2, y = 2t.
18. x = 2t, y = 16 − t2.
19. x = t, y = sin t.
20. x = 4

t
, y = 3t.

21. x = t2, y = 1
6
t3.

22. x = t, y = t3.
23. x = sin t, y = 3 cos t.
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24. x = 1 − cos t, y = t− sin t.
25. x = cos4 t, y = sin4 t.
26. x = a sec t, y = b tan t.
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CHAPTER

TWELVE

Appendix: Collection of formulas

12.1 Formulas for reference

For the convenience of the reader we give the following list of elementary formu-
las from Algebra, Geometry, Trigonometry, and Analytic Geometry.

1. Binomial Theorem (n being a positive integer):

(a+ b)n = an + nan−1b + n(n−1)
2!

an−2b2 + n(n−1)(n−2)
3!

an−3b3 + · · ·
+ n(n−1)(n−2)···(n−r+2)

(r−1)!
an−r+1br−1 + · · ·

2. n! = 1 · 2 · 3 · 4 · · · (n− 1)n.

3. In the quadratic equationax2 + bx+ c = 0,

whenb2 − 4ac > 0, the roots are real and distinct;

whenb2 − 4ac = 0, the roots are real and equal;

whenb2 − 4ac < 0, the roots are complex.

4. When a quadratic equation is reduced to the formx2 + px+ q = 0,

p = sum of roots with sign changed, and

q = product of roots.
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5. In an arithmetical series,a, a+ d, a+ 2d, ...,

s =
n−1
∑

i=0

a+ id =
n

2
[2a+ (n− 1)d].

6. In a geometrical series,a, ar, ar2, ...,

s =
n−1
∑

i=0

ari =
a(rn − 1)

r − 1
.

7. log ab = log a+ log b.

8. log a
b

= log a− log b.

9. log an = n log a.

10. log n
√
a = 1

n
log a.

11. log 1 = 0.

12. log e = 1.

13. log 1
a

= − log a.

14. 1 Circumference of circle =2π r.

15. Area of circle =π r2.

16. Volume of prism =Ba.

17. Volume of pyramid =1
3
Ba.

18. Volume of right circular cylinder =π r2a.

19. Lateral surface of right circular cylinder =2π ra.

20. Total surface of right circular cylinder =2π r(r + a).

21. Volume of right circular cone =2π r(r + a).

1In formulas 14-25,r denotes radius,a altitude,B area of base, ands slant height.
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22. Lateral surface of right circular cone =π rs.

23. Total surface of right circular cone =π r(r + s).

24. Volume of sphere =4
3
π r3.

25. Surface of sphere =4π r2.

26. sin x = 1
cscx

;

cos x = 1
secx

;

tanx = 1
cotx

.

27. tanx = sinx
cosx

;

cotx = cosx
sinx

.

28. sin2 x+ cos2 x = 1;

1 + tan2 x = sec2 x;

1 + cot2 x = csc2 x.

29. sin x = cos
(

π
2
− x
)

;

cos x = sin
(

π
2
− x
)

;

tanx = cot
(

π
2
− x
)

.

30. sin(π − x) = sinx;

cos(π − x) = − cos x;

tan(π − x) = − tanx.

31. sin(x+ y) = sinx cos y + cosx sin y.

32. sin(x− y) = sinx cos y − cos x sin y.

33. cos(x± y) = cosx cos y + ∓ sin x sin y.

34. tan(x+ y) = tanx+tan y
1−tanx tan y

.

35. tan(x− y) = tanx−tan y
1+tanx tan y

.

36. sin 2x = 2 sinx cos x; cos 2x = cos2 x− sin2 x; tan 2x = 2 tanx
1−tan2 x

.
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37. sin x = 2 sin x
2
cos x

2
; cos x = cos2 x

2
− sin2 x

2
; tanx =

2 tan 1
2
x

1−tan2 1
2
x
.

38. cos2 x = 1
2

+ 1
2
cos 2x; sin2 x = 1

2
− 1

2
cos 2x.

39. 1 + cosx = 2 cos2 x
2
; 1 − cosx = 2 sin2 x

2
.

40. sin x
2

= ±
√

1−cosx
2

; cos x/2 = ±
√

1+cos x
2

; tan x
2

= ±
√

1−cosx
1+cos x

.

41. sin x+ sin y = 2 sin 1
2
(x+ y) cos 1

2
(x− y).

42. sin x− sin y = 2 cos 1
2
(x+ y) sin 1

2
(x− y).

43. cos x+ cos y = −2 cos 1
2
(x+ y) cos 1

2
(x− y).

44. cos x− cos y = −2 sin 1
2
(x+ y) sin 1

2
(x− y).

45. a
sinA

= b
sinB

= c
sinC

; Law of Sines.

46. a2 = b2 + c22bc cosA; Law of Cosines.

47. d =
√

(x1 − x2)2 + (y1 − y2)2; distance between points(x1, y1) and(x2, y2).

48. d = Ax1+By1+C

±
√
A2+B2 ; distance from lineAx+By + C = 0 to (x1, y1).

49. x = x1+x2

2
, y = y1+y2

2
; coordinates of middle point.

50. x = x0 + x′, y = y0 + y′; transforming to new origin(x0, y0).

51. x = x′ cos θ − y′ sin θ , y = x′ sin θ + y′ cos θ; transforming to new axes
making the angle theta with old.

52. x = ρ cos θ , y = ρ sin θ; transforming from rectangular to polar coordi-
nates.

53. ρ =
√

x2 + y2, θ = arctan y
x
; transforming from polar to rectangular

coordinates.

54. Different forms of equation of a straight line:

(a) y−y1
x−x1

= y2−y1
x2−x1

, two-point form (or point-point form);

(b) x
a

+ y
b

= 1, intercept form;

320



12.1. FORMULAS FOR REFERENCE

(c) y − y1 = m(x− x1), slope-point form;

(d) y = mx+ b, slope-intercept form;

(e) x cosα + y sinα = p, normal form (α is the angle the normal line
crosses thex-axis andp is the length of the shortest segment between
the line in question and the origin);

(f) Ax+By + C = 0, general form.

55. tan θ = m1−m2

1+m1m2
, angle between two lines whose slopes arem1 andm2.

m1 = m2 when lines are parallel, and

m1 = − 1
m2

when lines are perpendicular.

56. (x − α)2 + (y − β)2 = r2, equation of circle with center(α, β) and radius
r.

Many of these facts are already known toSage :

Sage

sage: a,b = var("a,b")
sage: log(sqrt(a))
log(a)/2
sage: log(a/b).simplify_log()
log(a) - log(b)
sage: sin(a+b).simplify_trig()
cos(a) * sin(b) + sin(a) * cos(b)
sage: cos(a+b).simplify_trig()
cos(a) * cos(b) - sin(a) * sin(b)
sage: (a+b)ˆ5
(b + a)ˆ5
sage: expand((a+b)ˆ5)
bˆ5 + 5 * a* bˆ4 + 10 * aˆ2 * bˆ3 + 10 * aˆ3 * bˆ2 + 5 * aˆ4 * b + aˆ5

“Under the hood”Sage used Maxima to do this simplification.
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12.2 Greek alphabet

letters names letters names
A,α alpha N, ν nu
B, β beta Ξ, ξ xi
Γ, γ gamma O, o omicron
∆, δ delta Π, π pi
E, ǫ epsilon P, ρ rho
Z, ζ zeta Σ, σ sigma
H, η eta T, τ tau
Θ, θ theta Y, υ upsilon
I, ι iota Φ, φ phi
K,κ kappa X,χ chi
Λ, λ lambda Ψ, ψ psi
M,µ mu Ω, ω omega

12.3 Rules for signs of the trigonometric functions

Quadrant Sin Cos Tan Cot Sec Csc
First + + + + + +
Second + - - - - +
Third - - + + - -
Fourth - + - - + -

12.4 Natural values of the trigonometric functions

Angle in Angle in
Radians Degrees Sin Cos Tan Cot Sec Csc

0 0 0 1 0 ∞ 1 ∞
π
6

30 1
2

√
3

2

√
3

3

√
3 2

√
3

3
2

π
4

45
√

2
2

√
2

2
1 1

√
2

√
2

π
3

60
√

3
2

1
2

√
3

√
3

3
2 2

√
3

3
π
2

90 1 0 ∞ 0 ∞ 1
π 180 0 -1 0 ∞ -1 ∞
3π
2

270 -1 0 ∞ 0 ∞ -1
2π 360 0 1 0 ∞ 1 ∞
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You can create a table of trig values (for0 < θ < π/4 in radians) like this in
Sage :

Sage

sage: RR15 = RealField(15)
sage: rads1 = [n * 0.0175 for n in range(1,6)]
sage: rads2 = [0.0875+n * 0.0875 for n in range(1,9)]
sage: rads = rads1+rads2
sage: trigs = [’radian’, "sin", "cos", "tan", "cot"]
sage: tbl = [[RR(y)]+[RR15(eval(x+"(%s)"%y)) for x in trig s[1:]] for y in rads]
sage: print trigs; print Matrix(tbl)
[0.01750 0.9998 0.01750 57.14]
[0.03499 0.9994 0.03502 28.56]
[0.05247 0.9986 0.05255 19.03]
[0.06994 0.9976 0.07011 14.26]
[0.08739 0.9962 0.08772 11.40]
[ 0.1741 0.9847 0.1768 5.656]
[ 0.2595 0.9658 0.2687 3.722]
[ 0.3429 0.9394 0.3650 2.740]
[ 0.4237 0.9058 0.4677 2.138]
[ 0.5012 0.8653 0.5792 1.726]
[ 0.5749 0.8182 0.7026 1.423]
[ 0.6442 0.7648 0.8423 1.187]
[ 0.7086 0.7056 1.004 0.9958]

The first column are the values ofsin(x) at x ∈ {0.01750, 0.03500, ...0.7875}
(measured in radians). The second, third and fourth rows arethe corresponding
values forcos, tan andcot, respectively.
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CHAPTER

THIRTEEN

Appendix: A mini-Sage tutorial

The goal for this chapter1 is to introduce to aSage –newcomer some ways of
using Sage in calculus, emphasizing examples over detailed explanations or
programming background. We hope that you will consult the more detailed doc-
umentation, such as theSage Tutorial [T], available (free) on theSage website
if you want to learn more.

What is Sage ?

First, if you are a newcomer toSage then welcome!
Sage is a free, open-source mathematics software that supports research and

teaching in algebra, geometry, number theory, cryptography, numerical computa-
tion, and related areas. Both theSage development model and the technology in
Sage itself are distinguished by an extremely strong emphasis onopenness, com-
munity, cooperation, and collaboration: we are building the car, not reinventing
the wheel.

For an undergraduate student needing mathematical software, Sage does ba-
sically the same type of computations you would useMaple or Mathematica
for2, but it is free. Even the heavily discounted student price ofthese programs

1Much of the material in this chapter appears in the Tutorial on theSage website. The author
of the Tutorial is TheSage Group and the tutorial is licensed under the Creative Commons
attribution license,http://creativecommons.org/licenses/by/3.0/us/ .

2Since these mathematical software programs are different,some problems can be solved more
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can be weeks (or more) of a students’ salary3? . Sage is easy to use (that is, for
a beginner it is at least as easy to use as the commercial “competition”) and costs
a lot less!

A main goal forSage is to create the best available software for (among many
other mathematical topics)

• number theory (“What’s the 10 millionth prime?”),

• algebra (“How many legal positions does the Rubik’s cube have?”),

• geometry (“What is an algebraic equation describing the intersection of a
sphere and a cone?”),

• probability/statistics (“What is the probability of a royalstraight flush in
5-card stud poker game?”), and

• numerical computation (“What is the 10 millionth digit ofπ”?),

using the best possible GPL-compatible (open source) software. Currently,Sage
includes are:Maxima (for calculus and other symbolic computation),Singular
(for algebra),R (for statistics),Pari (for number theory),GAP(for more alge-
bra!), SciPy (for numerical computation), and over 60 more.Sage is headed
by the mathematician William Stein, who is at the Universityof Washington, in
Seattle.Sage is free and open source and willalways remain so.

Though much ofSage is implemented using Python, no Python background is
needed to read this chapter nor to follow the examples in thisbook. However, to
become expert inSage you will want to learn Python (a great language, used at
places such as Google and Industrial Light and Magic) at somepoint.

13.1 Ways to UseSage

You can useSage in several ways.

• Notebook graphical interface,

easily or faster inSage that the others, and conversely. However, formostof what you will need
to do, the functionality and speed is about the same.

3Though costs are an important and practical matter, we will be leaving the cost aside, and
arguing forSage purely on the basis of quality, openness and customizability. However, it is
worth noting that the latest license forMathematica is reported byWikipedia to be at least
2500 US dollars.Sage is free.
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• Interactive command line,

• Programs: By writing interpreted and compiled programs inSage /Python,
and

• Scripts: by writing stand-alone Python scripts that use theSage library.

The first two mentioned will be discussed below. For the latter two ways of using
Sage , please see theSage Tutorial [T] as they are more advanced than what is
needed here.

Here is a briefSage example, to illustrate the ease-of-use and some capabilites.
(More examples will be given later, but for a more complete tutorial, please see
[T].) To find the area under the curvey = x2 fromx = 0 tox = 1, your can type in
the following commands to see thatSage tells you the answer is1/3 = 0.333....

Sage

sage: x = var(’x’)
sage: integral(xˆ2,x,0,1)
1/3
sage: n(integral(xˆ2,x,0,1))
0.333333333333333

If you use theSage Notebook (described later) then you can useSage to
create an interactive application which allows you to approximate this area using
mid-point based rectangles. This is illustrated in Figure 13.1.

Use your mouse to move the slider to vary the level of the approximation. The
Sage code can be found at [W].

13.2 Longterm Goals forSage

• Useful: Sage ’s intended audience is mathematics students (from high
school to graduate school), teachers, and research mathematicians. The
aim is to provide software that can be used to explore and experiment with
mathematical constructions in algebra, geometry, number theory, calculus,
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Figure 13.1: Approximate area undery = x2

numerical computation, etc.Sage helps make it easier to interactively
experiment with mathematical objects.

• Efficient: Be fast.Sage uses highly-optimized mature software like GMP,
PARI, GAP, and NTL, and so is very fast at certain operations.

• Free and open source:The source code must be freely available and read-
able, so users can understand what the system is really doingand more
easily extend it. Just as mathematicians gain a deeper understanding of a
theorem by carefully reading or at least skimming the proof,people who do
computations should be able to understand how the calculations work by
reading documented source code. If you useSage to do computations in a
paper you publish, you can rest assured that your readers will always have
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free access toSage and all its source code, and you are even allowed to
archive and re-distribute the version ofSage you used.

• Easy to compile:Sage should be easy to compile from source for Linux,
OS X and Windows users. This provides more flexibility for users to modify
the system.

• Cooperation: Provide robust interfaces to most other computer algebra sys-
tems, including PARI, GAP, Singular, Maxima, KASH, Magma, Maple, and
Mathematica.Sage is meant to unify and extend existing math software.

• Well documented: Tutorial, programming guide, reference manual, and
how-to, with numerous examples and discussion of background mathemat-
ics.

• Extensible: Be able to define new data types or derive from built-in types,
and use code written in a range of languages.

• User friendly: It should be easy to understand what functionality is pro-
vided for a given object and to view documentation and sourcecode. Also
attain a high level of user support.

13.3 TheSage command line

The session below shows and example of “tab-completion”: start typing the begin-
ning of a command and hit the TAB key.Sage will then return a list of possible
completions.Veryhandy!

When you startSage you will get a smallSage banner and then theSage
command-line promptsage: . If you want to use the graphical user interface
(GUI), typenotebook() at the prompt and hit return. If you are happy to work
at the command line, here is an example of what a shortSage session could look
like:

Sage

sage: 2ˆ3
8
sage: t = var("t")
sage: integrate(t * sin(tˆ2),t)
-cos(tˆ2)/2
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sage: plot[TAB]
plot plot_slope_field plotkin_bound_asymp
plot3d plot_vector_field plotkin_upper_bound

13.4 TheSage notebook

TheSage Notebook can be tried out for free by anyone with an internet connec-
tion and a good browser athttp://www.sagenb.org (this also works with
the iPhone but not all cell-phones are configured for this).

The following screenshot illustrates a Notebook worksheet. Worksheets can be
saved (as text or as answs file in Sage worksheet format), downloaded, emailed
(for use by someone else), shared (with “collaborators”), or published (if created
on a publicSage server).

• Connect toSage running locallyor elsewhere(via ethernet).

• Create embedded graphics (in2- and3-d).

• Typeset mathematical expressions using LATEX.

• Add and delete input, re-executing entire block of commandsat once.

• Start and interrupt multiple calculations at once.

• The notebook also works withMaxima , Python , R, Singular , LATEX,
html, etc.!

Here are the commands used to create the output in the Notebook session in the
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Figure 13.2:Sage screenshot

above screenshot:

Sage Notebook

a,b,c,d,x,y=var(’a,b,c,d,x,y’)
show(solve(a * xˆ2+b * x+c==0,x))
show(solve(a * xˆ3+b * x+c==0,x))
solve(a * x+b * y==0,c * x+d * y==0,x,y)
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Sage notebook screenshot (an uploaded *.sws file)

• If you enjoy playing with the Rubik’s cube, there are several programs for
solving the Rubik’s cube inSage :

Figure 13.3:Sage notebook screenshot.

You can rotate the Rubik’s cube interactively with your mouse.
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• If you are interested in experimenting with calculus,Sage has excellent sym-
bolic computation and graphics capabilities. This is a Notebook session (to be
typed in a notebook “cell”, then executed):

Sage Notebook

var(’x’)
RR = RealField(15)
f = sin(x) * eˆ(-x)
p = plot(f,-1,5, thickness=2)
pt_list = (RR(0),RR(0.25),RR(0.5),RR(0.75),RR(1),RR(1 .25),RR(1.5),RR(1.75),\

RR(2),RR(2.25),RR(2.5),RR(2.75),RR(3),RR(3.25),RR(3 .5))
@interact
def _(pt=pt_list):

dot = point((pt,f(pt)),pointsize=80,rgbcolor=(1,0,0))
fp = f.diff()
slope = fp(pt)
sp = plot(f(pt)+slope * (x-pt),(x,-1, 5), color=’green’, thickness=2)
html(’<font color=red>Tangent to y = exp(-x)sin(x) at x = %s </font>’%RR(pt))
show(dot + p + sp, ymin = -.5, ymax = 1)

When these are all typed in a single cell and executed, using javascriptSage
displays an interactive graphic (see Figure 13.4) with a slider bar which allows
you to vary the point at which the tangent line is drawn to the graph off(x) =
e−x sin(x) using your mouse.

Such interactive commands are easy to write inSage !

13.5 A guided tour

This section is a guided tour of some of what is available inSage . For many
more examples, see theSage Reference Manual [R], which has thousands more
examples. Also note that you can interactively work throughthis tour in theSage
notebook by clicking theHelp link.

(If you are viewing the tutorial in theSage notebook, pressshift-enter
to evaluate any input cell. You can even edit the input beforepressing shift-
enter. On some Macs you might have to pressshift-return rather than
shift-enter .)

13.5.1 Assignment, Equality, and Arithmetic

With some minor exceptions,Sage uses the Python programming language, so
most introductory books on Python will help you to learnSage .
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Figure 13.4: Interact example

Sage uses= for assignment. It uses==, <=, >=, < and> for comparison:
Sage

sage: a = 5
sage: a
5
sage: 2 == 2
True
sage: 2 == 3
False
sage: 2 < 3
True
sage: a == 5
True

Sage provides all of the basic mathematical operations:
Sage

sage: 2 ** 3 # ** means exponent
8
sage: 2ˆ3 # ˆ is a synonym for ** (unlike in Python)
8
sage: 10 % 3 # for integer arguments, % means mod, i.e., remain der 1
sage: 10/4 5/2
sage: 10//4 # for integer arguments, // returns the integer q uotient 2
sage: 4 * (10 // 4) + 10 % 4 == 10 True
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sage: 3ˆ2 * 4 + 2%5
38

The computation of an expression like3ˆ2 * 4 + 2%5 depends on the order
in which the operations are applied; this is specified in the “operator precedence
table” inArithmetical binary operator precedence.

Sage also provides many familiar mathematical functions; here are just a few
examples:

Sage

sage: sqrt(3.4)
1.84390889145858
sage: sin(5.135)
-0.912021158525540
sage: sin(pi/3)
sqrt(3)/2

As the last example shows, some mathematical expressions return ‘exact’ val-
ues, rather than numerical approximations. To get a numerical approximation,
use either the functionn or the methodn (and both of these have a longer name,
numerical approx , and the functionN is the same asn)). These take op-
tional argumentsprec , which is the requested number of bits of precision, and
digits , which is the requested number of decimal digits of precision; the default
is 53 bits of precision.

Sage

sage: exp(2)
eˆ2
sage: n(exp(2))
7.38905609893065
sage: sqrt(pi).numerical approx()
1.77245385090552
sage: sin(10).n(digits=5)
-0.54402
sage: N(sin(10),digits=10)
-0.5440211109
sage: numerical approx(pi, prec=200)
3.1415926535897932384626433832795028841971693993751 058209749

13.5.2 Getting Help

Sage has extensive built-in documentation, accessible by typing the name of a
function or a constant (for example), followed by a questionmark:
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Sage

sage: tan?
Type: <class sage.calculus.calculus.Function tan>
Definition: tan( [noargspec] )
Docstring:

The tangent function

EXAMPLES:
sage: tan(pi)
0
sage: tan(3.1415)
-0.0000926535900581913
sage: tan(3.1415/4)
0.999953674278156
sage: tan(pi/4)
1
sage: tan(1/2)
tan(1/2)
sage: RR(tan(1/2))
0.546302489843790
sage: sudoku?

File: sage/local/lib/python2.5/site-packages/sage/ga mes/sudoku.py
Type: <type function>
Definition: sudoku(A)
Docstring:

Solve the 9x9 Sudoku puzzle defined by the matrix A.

EXAMPLE:
sage: A = matrix(ZZ,9, [5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0,
0,3,0, 0,6,7, 3,0,0, 0,0,1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0 ,8,
0,0,0, 0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4, 1,5,0, 0,3,0, 0,0 ,2,
0,0,0, 4,9,0, 0,5,0, 0,0,3])
sage: A
[5 0 0 0 8 0 0 4 9]
[0 0 0 5 0 0 0 3 0]
[0 6 7 3 0 0 0 0 1]
[1 5 0 0 0 0 0 0 0]
[0 0 0 2 0 8 0 0 0]
[0 0 0 0 0 0 0 1 8]
[7 0 0 0 0 4 1 5 0]
[0 3 0 0 0 2 0 0 0]
[4 9 0 0 5 0 0 0 3]
sage: sudoku(A)
[5 1 3 6 8 7 2 4 9]
[8 4 9 5 2 1 6 3 7]
[2 6 7 3 4 9 5 8 1]
[1 5 8 4 6 3 9 7 2]
[9 7 4 2 1 8 3 6 5]
[3 2 6 7 9 5 4 1 8]
[7 8 2 9 3 4 1 5 6]
[6 3 5 1 7 2 8 9 4]
[4 9 1 8 5 6 7 2 3]
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13.5.3 Basic Algebra and Calculus

Sage can perform various computations related to basic algebra and calculus: for
example, finding solutions to equations, differentiation,integration, and plotting.
See the “Sage reference manual” for more examples.

Solving Equations

Solving Equations Exactly

The solve function solves equations. To use it, first specify some variables;
then the arguments tosolve are an equation (or a system of equations), together
with the variables for which to solve:

Sage

sage: x = var(x)
sage: solve(x2 + 3 * x + 2, x)
[x == -2, x == -1]

You can solve equations for one variable in terms of others:
Sage

sage: x, b, c = var(x b c)
sage: solve([x2 + b * x + c == 0],x)
[x == (-sqrt(b2 - 4 * c) - b)/2, x == (sqrt(b2 - 4 * c) - b)/2]

You can also solve for several variables:
Sage

sage: x, y = var(x, y)
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]

In the following example, first we solve the system symbolically:
Sage

sage: var(x y p q)
(x, y, p, q)
sage: eq1 = p+q==9
sage: eq2 = q * y+p * x==-6
sage: eq3 = q * y2+p * x2==24
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sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)
[[p == 1, q == 8, x == (-4 * sqrt(10) - 2)/3,
y == (sqrt(2) * sqrt(5) - 4)/6],
[p == 1, q == 8, x == (4 * sqrt(10) - 2)/3,
y == (-sqrt(2) * sqrt(5) - 4)/6]]

For numerical approximations of the solutions, you can instead use:
Sage

sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solutio n dict=True)
sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]

(The functionn prints a numerical approximation, and the argument is the num-
ber of bits of precision.)

Solving Equations Numerically

Often times,solve will not be able to find an exact solution to the equation or
equations specified. When it fails, you can usefind root to find a numerical
solution. For example, solve does not return anything intersting for the following
equation:

Sage

sage: theta = var(theta)
sage: solve(cos(theta)==sin(theta))
[sin(theta) == cos(theta)]

On the other hand, we can usefind root to find a solution to the above equa-
tion in range0 < θ < π/2:

Sage

sage: find root(cos(theta)==sin(theta),0,pi/2)
0.78539816339744839

Differentiation, Integration, etc.

Sage knows how to differentiate and integrate many functions. For example, to
differentiatesin(u) with respect tou, do the following:
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Sage

sage: u = var(u)
sage: diff(sin(u), u)
cos(u)

To compute the fourth derivative ofsin(x2):
Sage

sage: diff(sin(x2), x, 4)
16* x4 * sin(x2) - 12 * sin(x2) - 48 * x2 * cos(x2)

To compute the partial derivatives ofx2 + 17y2 with respect tox andy, respec-
tively:

Sage

sage:
sage:
sage:
2* x
sage:
34* y
x, y = var(x,y)
f = x2 + 17 * y2
f.diff(x)
f.diff(y)

We move on to integrals, both indefinite and definite. To compute
∫

x sin(x2) dx

and
∫ 1

0
x

x2+1
dx

Sage

sage: integral(x * sin(x2), x) # Sage always omits the ’’+C’’
-cos(x2)/2
sage: integral(x/(x2+1), x, 0, 1)
log(2)/2

To compute the partial fraction decomposition of1
x2−1

:
Sage

sage: f = 1/((1+x) * (x-1))
sage: f.partial fraction(x)
1/(2 * (x - 1)) - 1/(2 * (x + 1))
sage: print f.partial fraction(x)

1 1
--------- - ---------
2 (x - 1) 2 (x + 1)
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13.5.4 Plotting

Sage can produce two-dimensional and three-dimensional plots.

Two-dimensional Plots

In two dimensions,Sage can draw circles, lines, and polygons; plots of functions
in rectangular coordinates; and also polar plots, contour plots and vector field
plots. We present examples of some of these here. For more examples of plotting
with Sage , see also theSage Reference Manual [R].

This command produces a yellow circle of radius 1, centered at the origin:

Sage

sage: circle((0,0), 1, rgbcolor=(1,1,0))

You can also produce a filled circle:

Sage

sage: circle((0,0), 1, rgbcolor=(1,1,0), fill=True)

You can also create a circle by assigning it to a variable; this does not plot it:

Sage

sage: c = circle((0,0), 1, rgbcolor=(1,1,0))

To plot it, usec.show() or show(c) , as follows:

Sage

sage: c.show()

Alternatively, evaluatingc.save(’filename.png’) will save the plot to
the given file.

Now, these ‘circles’ look more like ellipses because the axes are scaled differ-
ently. You can fix this:
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Sage

sage: c.show(aspect ratio=1)

The commandshow(c, aspect ratio=1) accomplishes the same thing,
or you can save the picture usingc.save(’filename.png’, aspect ratio=1) .

It’s easy to plot basic functions:

Sage

sage: plot(cos, (-5,5))

Once you specify a variable name, you can create parametric plots also:

Sage

sage: x = var(x)
sage: parametric plot((cos(x),sin(x)3),0,2 * pi,rgbcolor=hue(0.6))

You can combine several plots by adding them:

Sage

sage:
sage:
sage:
sage:
sage:
x = var(x)
p1 = parametric plot((cos(x),sin(x)),0,2 * pi,rgbcolor=hue(0.2))
p2 = parametric plot((cos(x),sin(x)2),0,2 * pi,rgbcolor=hue(0.4))
p3 = parametric plot((cos(x),sin(x)3),0,2 * pi,rgbcolor=hue(0.6))
show(p1+p2+p3, axes=false)

A good way to produce filled-in shapes is to produce a list of points (L in the ex-
ample below) and then use thepolygon command to plot the shape with bound-
ary formed by those points. For example, here is a green deltoid:

Sage

sage: L = [[-1+cos(pi * i/100) * (1+cos(pi * i/100)),\
... 2 * sin(pi * i/100) * (1-cos(pi * i/100))] for i in range(200)]
sage: polygon(L, rgbcolor=(1/8,3/4,1/2))
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(You don’t type the “...” above - they are filled in automatically by Sage when
you type\<shift-enter> , which is a way you can create a newline without
executing theSage command.) Typeshow(p, axes=false) to see this
without any axes.

You can add text to a plot:

Sage

sage: L = [[6 * cos(pi * i/100)+5 * cos((6/2) * pi * i/100),\
... 6 * sin(pi * i/100)-5 * sin((6/2) * pi * i/100)] for i in range(200)]
sage: p = polygon(L, rgbcolor=(1/8,1/4,1/2))
sage: t = text("hypotrochoid", (5,4), rgbcolor=(1,0,0))
sage: show(p+t)

Calculus teachers draw the following plot frequently on the board: not just one
branch of arcsin but rather several of them: i.e., the plot ofy = sin(x) for x
between−2π and 2π, flipped about the 45 degree line. The followingSage
commands construct this:

Sage

sage: v = [(sin(x),x) for x in srange(-2 * float(pi),2 * float(pi),0.1)]
sage: line(v)

Since the tangent function has a larger range than sine, if you use the same
trick to plot the inverse tangent, you should change the minimum and maximum
coordinates for thex-axis:

Sage

sage: v = [(tan(x),x) for x in srange(-2 * float(pi),2 * float(pi),0.01)]
sage: show(line(v), xmin=-20, xmax=20)

Sage also computes polar plots, contour plots and vector field plots (for special
types of functions). Here is an example of a contour plot:

Sage

sage: f = lambda x,y: cos(x * y)
sage: contour plot(f, (-4, 4), (-4, 4))
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Three-Dimensional Plots

Sage produces three-dimensional plots using an open source package called
[Jmol]. Here are a few examples:

Yellow Whitney’s umbrella http://en.wikipedia.org/wiki/Whitney umbrella:
Sage

sage: u, v = var(u,v)
sage: fx = u * v
sage: fy = u
sage: fz = v2
sage: parametric plot3d([fx, fy, fz], (u, -1, 1), (v, -1, 1), \
... frame=False, color="yellow")

Once you have evaluatedparametric plot3d , so that the plot is visible,
you can click and drag on it to rotate the figure. Typeparametric plot3d?
for more examples.

13.5.5 Some common issues with functions

Some aspects of defining functions (e.g., for differentiation or plotting) can be
confusing. In this section we try to address some of the relevant issues.

Here are several ways to define things which might deserve to be called “func-
tions”:

1. Define a Python function (as described for example in theSage Tutorial
http://www.sagemath.org/doc/tutorial/tour_functions.html
or the Python docs athttp://docs.python.org/tutorial/ ). These
functions can be plotted, but not always differentiated or integrated.

Sage

sage: def f(z): return z2
sage: type(f)
<type function>
sage: f(3)
9
sage: plot(f, 0, 2)

In the last line, note the syntax. Usingplot(f(z), 0, 2) instead will give
an error, becausez is a dummy variable in the definition off and is not defined
outside of that definition. Indeed, justf(z) returns an error. The following will
work in this case, although in general there are issues and soit should probably
be avoided (see item 4 below).
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Sage

sage: z = var("z")
sage: derivative(f(z),z)
2* z
sage: plot(f(z), 0, 2)

At this point,f(z) is a symbolic expression, the next item in our list.
2. Define a “callable symbolic expression”. These can be plotted, differentiated,

and integrated.
Sage

sage: g(x) = x2
sage: g
# g sends x to x2
x |--> x2
sage: g(3)
9
sage: Dg = g.derivative(); Dg
x |--> 2 * x
sage: Dg(3)
6
sage: type(g)
<class sage.calculus.calculus.CallableSymbolicExpres sion>
sage: plot(g, 0, 2)

Note that whileg is a callable symbolic expression,g(x) is a related, but differ-
ent sort of object, which can also be plotted, differentated, etc., albeit with some
issues: see item 5 below for an illustration.

Sage

sage: type(g(x))
<class sage.calculus.calculus.SymbolicArithmetic>
sage: g(x).derivative()
2* x
sage: plot(g(x), 0, 2)

3. Use a pre-definedSage ‘calculus function’. These can be plotted, and with
a little help, differentiated, and integrated.

Sage

sage: type(sin)
<class sage.calculus.calculus.Function sin>
sage: plot(sin, 0, 2)
sage: type(sin(x))
<class sage.calculus.calculus.SymbolicComposition>
sage: plot(sin(x), 0, 2)
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By itself, sin cannot be differentiated, at least not to producecos .
Sage

sage: f = sin
sage: f.derivative()
0

Usingf = sin(x) instead ofsin works, but it is probably even better to use
f(x) = sin(x) to define a callable symbolic expression.

Sage

sage: S(x) = sin(x)
sage: S.derivative()
x |--> cos(x)

Here are some common problems, with explanations:
4. Accidental evaluation.

Sage

sage: def h(x):
... if x<2:
... return 0
... else:
... return x-2

The issue:plot(h(x), 0, 4) plots the liney = x − 2, not the multi-line
function defined byh. The reason? In the commandplot(h(x), 0, 4) , first
h(x) is evaluated: this means pluggingx into the functionh, which means that
x<2 is evaluated.

Sage

sage: type(x<2)
<class sage.calculus.equations.SymbolicEquation>

When a symbolic equation is evaluated, as in the definition ofh, if it is not
obviously true, then it returns False. Thush(x) evaluates tox-2 , and this is the
function that gets plotted.

The solution: don’t useplot(h(x), 0, 4) ; instead, use
Sage

sage: plot(h, 0, 4)
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5. Accidentally producing a constant instead of a function.
Sage

sage: f = x
sage: g = f.derivative()
sage: g
1

The problem: g(3) , for example, returns an error, saying “ValueError: the
number of arguments must be less than or equal to 0.”

Sage

sage: type(f)
<class sage.calculus.calculus.SymbolicVariable>
sage: type(g)
<class sage.calculus.calculus.SymbolicConstant>

g is not a function, it’s a constant, so it has no variables associated to it, and you
can’t plug anything into it.

The solution: there are several options.

• Definef initially to be a symbolic expression.
Sage

sage: f(x) = x
# instead of f = x
sage: g = f.derivative()
sage: g
x |--> 1
sage: g(3)
1
sage: type(g)
<class sage.calculus.calculus.CallableSymbolicExpres sion>

• Or with f as defined originally, defineg to be a symbolic expression.
Sage

sage: f = x
sage: g(x) = f.derivative() # instead of g = f.derivative()
sage: g
x |--> 1
sage: g(3)
1
sage: type(g)
<class sage.calculus.calculus.CallableSymbolicExpres sion>
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• Or with f andg as defined originally, specify the variable for which you are
substituting.

Sage

sage: f = x
sage: g = f.derivative()
sage: g
1
sage: g(x=3) # instead of g(3)
1

Please see theSage Tutorial for more details and examples.

13.6 Try it!

Sage users are acommunity. Please join us!

http://www.sagemath.org/

http://www.sagenb.com/
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CHAPTER

FOURTEEN

Appendix: GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

¡http://fsf.org/¿

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a wayto get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is notlimited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
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This License applies to any manual or other work, in any medium, that containsa notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as“you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “ Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “ Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothingthat could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters,or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be
at most 25 words.

A “ Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely availabledrawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format isnot Transpar-
ent if used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designedfor human
modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
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formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “TitlePage”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentionedbelow, such as
“Acknowledgements”, “ Dedications”, “ Endorsements”, or “History ”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and thelicense notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
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Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begindistribution of
Opaque copies in quantity, to ensure that this Transparent copy will remainthus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance toprovide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses acopy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent tothe other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving thepublic
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it anitem
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document asgiven
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for publicaccess to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part ofthe section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflictin
title with any Invariant Section.

353



O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, youmay at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties—for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in theModified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, un-
der the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmod-
ified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sec-
tions with the same name but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original author orpublisher of
that section if known, or else a unique number. Make the same adjustment to thesection
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.
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6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in thevarious docu-
ments with a single copy that is included in the collection, provided that you followthe
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying ofthat document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is calledan
“aggregate” if the copyright resulting from the compilation is not used to limit thelegal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections withtranslations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of theseInvariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original versionof this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typicallyrequire
changing the actual title.
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9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license froma particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder ex-
plicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstatedpermanently if
the copyright holder notifies you of the violation by some reasonable means,this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses ofparties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft)by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If
the Document specifies that a proxy can decide which future versions ofthis License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
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anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other thanthis MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1,2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMCis eligible
for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after thetitle page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-CoverTexts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.
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If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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dy
dx

, 45

acceleration, 156
angle between two curves, 119
arclength, 223, 225
arctan, 23
argument, 5

binomial theorem, 317

center of curvature, 301
chain rule, 74, 242
circle of curvature, 293
circle, area formula, 318
composition, 72
concave down, 191
concave upward, 191
cone, volume formula, 319
constant, 1
continuous, 14
continuous in an interval, 17
critical point, 186
critical value, 188
curvature, 285, 287
curve, 18

cardioid, 139, 147
catenary, 129
cissoid, 122
cycloid, 134

Folium of Descartes, 139
hyperbolic spiral, 140
hypocycloid (astroid), 139
lemniscate, 145
logarithmic spiral, 147
spiral of Archimedes, 147
Witch of Agnesi, 123

cylinder, volume formula, 318

dependent variable, 5
derivative, 44
difference scheme

centered, 283
forward, 283

differentiable, 44
differential, 222
differentiating operator, 45
differentiation, 45

chain rule, 62
power rule, 60
product rule, 60
quotient rule, 60

direction of a curve, 116
discontinuous, 15
domain, 6

equations of a line, 320
evolute, 308
exp, 18
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finite difference equations, 282
function, 3, 5

decreasing, 183
increasing, 183
piecewise-defined, 24
composite, 72
inverse, 74
piecewise-defined, 3

function:implicit, 107

geometric series, 318
graph, 18
greatest common divisor (GCD), 148

hypocycloid, 130

increment, 42
independent variable, 5
indeterminate form, 259
inflection point, 213

law of cosines, 320
law of sines, 320
Leibnitz’s Formula, 169
length of the normal, 125
length of the subnormal, 125
length of the subtangent, 125
length of the tangent, 125
ln, 20
logs

addition rule, 318
power rule, 318

maximum, 255
maximum value, 186
Mean Value Theorem, 252, 253

Extended, 253, 254
minimum, 255
minimum value, 186

multiple root, 148

normal line, 125

parameter, 130
parameters, 1
parametric equations, 130, 154
parametric equations of the path, 131
point of inflection, 213
polar coordinate formulas, 320
prism, volume formula, 318
pyramid, volume formula, 318

quadratic formula, 317

Rolle’s Theorem, 249
roots of polynomials, 148
rule for finding extremal values, 189, 191
rule for finding points of inflection, 213
rule for multiple roots, 148
rule for plotting curves, 216

second derivative test, 191
sign graph, 189
sign test of the first derivative, 189
sin, 18
sphere, volume formula, 319
strategy for finding local extrema, 193
strategy for related rates, 229
subtangent, 125

tan, 23
tangent line, 124, 125
Taylor’s Formula, 276
Taylor’s formula, 254
Taylor’s Theorem, 276
total curvature, 286
trigonometric function identities, 319
turning points, 186
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variable, 1
velocity, 153
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