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Distributions

Definition
Let M be a smooth manifold. A distribution on M is a smooth
constant-rank vector subbundle of the tangent bundle TM.

We can think of a rank k distribution as being spanned by k
linearly independent vector fields. At each point the distribution
gives a k-dimensional linear subspace of the tangent space.
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Frobenius theorem

An integral manifold U of a distribution V ⊂ TM is a submanifold
of M such that the tangent space TmU ⊂ Vm for all points in m.

Theorem (Frobenius theorem)
Suppose V is a rank k distribution such that [X ,Y ] ⊂ V for all
X ,Y ⊂ V. Then locally there is a foliation of M by integral
manifolds of dimension k.

The k-dimensional integral manifolds are called the leaves of V.
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Jet bundles

Definition
The k-jet of a map φ : Rn → Rs at a point x consists of the point
x together with the values of the derivatives of φ up to order k.
The k-th order jet bundle Jk(Rn,Rs) consists of the k-jets of
functions Rm → Rs .

Example: let z(x) be a function R → R. Then the 1-jet of z at a
point x is

(x , z(x), z ′(x)).

The jet bundle J1(R,R) is isomorphic to R3, with coordinates x , z
and p = z ′.
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Graphs

The graph of the k-jet of a function is a submanifold of the jet
bundle.

gr(j1z) = { (x , z(x), z ′(x)) ∈ J1(R,R) | x ∈ R }.

When is a submanifold (locally) the graph of a function?
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Tangent space

The graph of the 1-jet of z is parameterized by the map

x 7→ (x , z(x), z ′(x)).

The tangent space at (x , z , p) is spanned by a single vector:

(1, z ′(x), z ′′(x)) = (1, p, z ′′(x)).

The vector is not arbitrary. The tangent space is always contained
in the distribution spanned by the two vectors:

(1, p, 0) and (0, 0, 1).

This is called the contact distribution.
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Example: z(x , y)

Let z(x , y) be a function R2 → R. Then the 2-jet of z at a point
(x , y) is

(x , y , z , zx , zy , zxx , zxy , zyy ) ∈ J2(R2,R) ∼= R7.

In this talk we will always denote the independent variables by x , y ,
the dependent variable by z and the first and second order
derivatives will be written as

p =
∂z
∂x , q =

∂z
∂y ,

r =
∂2z
∂x2 , s =

∂2z
∂x∂y , t =

∂2z
∂y2 ,

respectively.

The graph of the second order jet of the function is a submanifold
of Q = J2(R2,R).
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Tangent spaces
The tangent space to the graph of the 2-jet is spanned by two
vectors

(x , y) 7→(1, 0, ∂z
∂x ,

∂2z
∂x2 ,

∂2z
∂x∂y ,

∂3z
∂x3 ,

∂3z
∂x2∂y ,

∂3z
∂x∂y2 )

=(1, 0, p, r , s, ∂
3z
∂x3 ,

∂3z
∂x2∂y ,

∂3z
∂x∂y2 ),

and (0, 1, q, s, t, ∂3z
∂x2∂y ,

∂3z
∂x∂y2 ,

∂3z
∂y3 ).

These vectors are contained in the contact distribution W. The
contact distribution is spanned by the vector fields

X = ∂x + p∂z + r∂p + s∂q,

Y = ∂y + q∂z + s∂p + t∂q,

R = ∂r , S = ∂s , T = ∂t .

The distribution W defines the contact structure on the jet bundle.
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In other words: the graph of the 2-jet of z(x , y) defines an integral
manifold of W. The converse is also true.

Theorem
Let (Q,W) be the second order jet bundle of X = R2 with contact
distribution defined previously. Then an integral manifold of W
that is transversal to the projection Q → X is locally equal to the
graph of the 2-jet a function z(x , y).
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Partial differential equations

Any second order equation F (x , y , z , p, q, r , s, t) = 0 defines a
hypersurface M ⊂ Q = J2(R2,R). On M we define a contact
structure by V = W ∩ TM.

A solution of the partial differential equation F = 0 is a function
z(x , y) for which the graph of the 2-jet is a submanifold of M. At
the same time the graph is an integral manifold of W and hence of
V.

Theorem
Locally, there is a one-to-one correspondence between integral
manifolds of (M,V) transversal to the projection M → X and
solutions of the partial differential equation F = 0.
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Ernest Vessiot

Ernest Vessiot (1865–1952)
Picard-Vessiot theory (differential Galois
theory), ballistics
Formulation of partial differential
equations in terms of distributions (dual
to the work of Cartan), Darboux
integrable equations
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Vessiot theorem

Theorem
Let M be a 7-dimensional manifold with a rank 4 distribution V.
Then (M,V) is locally equivalent to the equation manifold of a
second order scalar equation in two independent variables if and
only if

For every m ∈ M the Cauchy characteristic space C(V)m of V
at m is equal to zero.
For every m ∈ M the derived bundle V ′

m has rank 6.
For every m ∈ M, C(V ′)m is contained in Vm and has rank 2.

Pieter Eendebak Contact Structures



Solving an ODE
Example:

z ′ = f (x)

First order jet bundle: coordinates x , z , p = z ′.
Equation manifold: hypersurface in the first order jet bundle
defined by p = f (x). Coordinates x , z . Contact distribution:
spanned by ∂x + f (x)∂z .

z

x
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Flows

ODE: Go with the flow!
Mathematician: Which one?
ODE: There is only one, now go!

PDE: Go with the flow!
Mathematician: Okay, I’ll take these two . . .
PDE: No! That is not allowed!
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Example: incompatible flows

Consider the wave equation zxy = 0. The equation manifold has
coordinates x , y , z , p, q, r , t. The contact distribution is spanned
by the 4 vector fields

∂x + p∂z + r∂p, ∂r ,

∂y + q∂z + t∂q, ∂t .

Suppose we take V = ∂x + p∂z + r∂p and W = ∂r . Do we get a
surface from the flow of these two vector fields?

No!

[V ,W ] = [∂x + p∂z + r∂p, ∂r ] = −∂p

The Lie brackets are the first order obstruction to the existence of
integral manifolds.
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Structure theory: hyperbolic equations

We have a 7-dimensional manifold M with a rank 4 distribution V.
We can use the Lie brackets to analyze the geometry of the system.

The contact distribution is the direct sum of two rank 2
distributions

V = V+ ⊕ V−

At every point the tangent space of an integral manifold has
1-dimensional intersection with both V+ and V−.
The characteristic systems satisfy [V+,V−] ⊂ V.
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Geometry of partial differential equations

PDE Contact structure
framework local coordinates geometric structures
system system of PDE’s distribution
solutions functions integral manifolds
differentiation partial derivatives Lie brackets
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Projection of vector fields

Let π : M → B be a smooth map. Suppose X is a vector field on
M. We say the vector field X projects to B if for all points x and y
with π(x) = π(y):

Txπ(X ) = Tyπ(Y ).

In other words, Txπ(X ) depends only on the point π(x), and not
on x itself.

Let V be a distribution on M. We say the distribution projects if

Txπ(Vx ) ⊂ Tπ(x)B

is independent of the point x .
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Think geometrically!

Vectorfield Symmetry projection

Pseudosymmetry projection No well−defined projection
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The projection method

Suppose we have a system of two rank 2 characteristic distributions
V+,V− on a manifold M such that [V+,V−] ⊂ V = V+ ⊕ V−.
Suppose we want to find integral manifolds.

1 Find a projection π : M → B that projects the two
characteristic distributions.

2 Find solutions of the system (B,TπV+,TπV−).
3 Lift the solutions to solutions of the original system.

Examples of such systems: second order equations (dimension 7),
first order systems of 2 equations for 2 functions in 2 variables
(dimension 6), Monge-Ampère equations (dimension 5),
pseudoholomorphic curves (dimension 4).
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Gaston Darboux

Gaston Darboux (1842–1917)
Darboux integral (integration theory),
Darboux theorem (symplectic geometry)
The method of Darboux to integrate
second order partial differential equations
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The method of Darboux

We look for projections M → R2 × R2 such that the projections of
V+ and V− are equal to the tangent spaces to the components of
R2 × R2.

1 Find a projection: find invariants of the characteristic systems.
2 Solve the projected system: hyperbolic holomorphic curves.
3 Lift hyperbolic holomorphic curves to solutions of the

equation.
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The method of Darboux 1:

If each characteristic system has at least two invariants the
equation is Darboux integrable. We can use the invariants as
coordinates on the base manifold B.
Suppose I1, I2 are invariants of V− and I3, I4 invariants of V+.
Define the Darboux projection

π : M → R2 × R2 : m 7→ (I1(m), I2(m), I3(m), I4(m)).

Then the characteristic systems are mapped to the tangent spaces
of the components of R2 × R2.
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The method of Darboux 2: hyperbolic holomorphic curves

For a complex structure J a holomorphic curve is a real
2-dimensional manifold for which the tangent space is J-invariant.
Construction for C2: holomorphic curves are given by the graphs of
complex-differentiable functions C → C.

We have direct product B = R2 × R2. Define K : TB → TB by
K = id on the first component and K = − id on the second
component. The integral manifolds we are looking for are
K -invariant. Since K 2 = id we call K a hyperbolic structure and
the integral manifolds hyperbolic holomorphic curves.

Construction for R2 × R2: choose two curves φ1, φ2 in R2. Then
the direct product S̃ = φ1 × φ2 ⊂ R2 × R2 defines a hyperbolic
holomorphic curve.
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The method of Darboux 2: constructing hyperbolic
pseudoholomorphic curves

R2

R2
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The method of Darboux 3: lifting solutions

Let S̃ be a solution of the system on B. Let S = π−1(S̃) and on S
we define W = V ∩ TS. Since V is transversal to π we have
rankW = dim S̃ = 2.

For any pair of vector fields X ,Y ⊂ W we have
Tπ([X ,Y ]) = [Tπ(X ),Tπ(Y )] ⊂ TS̃. Hence [X ,Y ] ⊂ TS.
Assume X ⊂ W+ = V+ ∩ TS, Y ⊂ W− = V− ∩ TS. Then
[X ,Y ] ⊂ [V+,V−] ⊂ V.
Since W has rank 2 this shows that [X ,Y ] ⊂ V for all
X ,Y ⊂ V.

Together: [X ,Y ] ⊂ W = TS ∩ V.
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The method of Darboux 3: lifting solutions

So for this distribution there are ‘no obstructions’ to find integral
manifolds. The distribution W is ‘integrable’ and by the Frobenius
theorem there exists a local foliation of M by 2-dimensional
integral manifolds of W and hence of V.

Theorem
There is a one-to-one correspondence between hyperbolic
pseudoholomorphic curves for the structure on B and
3-dimensional families of integral manifolds of V on M.

Pieter Eendebak Contact Structures



Geometric picture of lifting

π

ker Tmπ

Wm

M

B TmS̃

S
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Example: wave equation

Consider the wave equation s = 0. We can use x , y , z , p, q, r , t as
coordinates for the equation manifold. The Monge systems are
given by

V+ = span(∂x + p∂z + r∂p, ∂r ),

V− = span(∂y + q∂z + t∂q, ∂t).

The invariants of V− are x , p, r and the invariants of V+ are y , q, t.

We make the projection m 7→ (x , r , y , t).
On B = R2 × R2 we have coordinates (x , r , y , t). We take two
curves r = φ(x) and t = ψ(y). The direct product is a hyperbolic
holomorphic curve.
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Contact distribution for the wave equation

Lifting this surface yields

zxx = φ(x) ⇒

zx =

∫ x
φ(x) + D(y) ⇒

z =

∫∫ x
φ(x) + C(y) + D(y)x ⇒

. . .

Together

z(x , y) = z0 +

∫∫ x
φ(x) +

∫∫ y
ψ(y) = z0 + A(x) + B(y).
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Example: s = p/(y − x)

Let us consider the second order scalar partial differential equation
s = p/(y − x). The Monge systems are given by

V+ = span
(
∂x + p∂z + r∂p +

p
y − x ∂q, ∂r

)
,

V− = span
(
∂y + q∂z +

p
y − x ∂p + t∂q +

(
r(y − x) + p

(y − x)2

)
∂r , ∂t

)
.

Invariants. The distribution V+ has invariants y and τ = t. The
distribution V− has invariants x , p/(y − x) and
ρ = r/(y − x) + p/(y − x)2.

Projection. We make the projection

π : M → R2 × R2 : (x , y , z , p, q, r , t) 7→ (x , ρ), (y , τ).

On R2 × R2 we use (x , ρ) and (y , τ) as coordinates.
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Example: s = p/(y − x)

Lifting. Choose two arbitrary functions φ, ψ. In R2 × R2 we
define a holomorphic curve for the direct product structure by

ρ = φ(x), τ = ψ(y).

On the inverse image of the curve under π we have a rank 2
integrable distribution.

Integration yields the general solution of the equation:

z(x , y) = A(y) + B(x) + B′(x)(y − x).

p = B′(x) + B′′(x)(y − x)− B′(x) = B′′(x)(y − x)

s = B′′(x)
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Some results

All equations solvable by the method of Darboux are examples
of projections.
Symmetry reductions (Sophus Lie) are examples of
projections.
There are examples of projections that are neither a symmetry
reduction nor a Darboux projection.
Some Bäcklund transformations (KdV equation, Sine-Gordon
equation) can be formulated as projections through
pseudosymmetries.
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Messages to take home

Contact structures can be used to give a geometric
description of partial differential equations
Whenever symmetries are used, maybe pseudosymmetries can
be used as well (for making projections, or maybe something
completely different)

More: Contact Structures of Partial Differential Equations,
http://www.math.uu.nl/Research/Projects/Contact-Structures/
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