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Some new classes of exact solutions of the investigated equation have been found.

The relativistic eikonal equation is fundamental in theoretical and mathematical physics.
Here we consider the equation
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In [1] it has been shown that the maximal local invariance group of the equation (1) is the
conformal group C(1, 4) of the 5-dimensional Poincaré–Minkowski space. Using special ansatzes
multiparameter families of exact solutions of the eikonal equation were constructed [1, 2, 3, 4].

It is well known that the conformal group C(1, 4) contains the generalized Poincaré group
P (1, 4) as a subgroup. The group P (1, 4) is the group of rotations and translations of the five-
dimensional Minkowski space M(1, 4). For the investigation of the equation (1) we have used
the continuous subgroups [5, 6, 7, 8, 9] of the group P (1, 4). Earlier using the subgroup structure
of the group P (1, 4), we have constructed ansatzes which reduce the equation (1) to differential
equations with fewer independent variables. The corresponding symmetry reduction has been
done. Among the reduced equations there are one-, two-, and three-dimensional ones. For some
of the reduced equations we have found its exact solutions. On this base some classes of exact
solutions of the eikonal equation have been constructed. The part of the results obtained can
be found in [10, 11, 12].

The present paper is devoted to the construction of new exact solutions of the investigated
equation. In order to find these solutions we have solved some other reduced equations. Using
the solutions of these reduced equations, we have obtained some new classes of exact solutions
of the eikonal equation.

At first, we present some new exact solutions of the investigated equation which have been
obtained on the base of solutions of one-dimensional reduced equations.
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Now, we give some new exact solutions of the eikonal equation which have been constructed
on the base of solutions of two-dimensional reduced equations.
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where f is an arbitrary smooth function;
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