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Abstract. We consider the group of invertible image gray-value transformations and propose a 
generating equation for a complete set of differential gray-value invariants up to any order. Such 
invariants describe the image’s geometrical structure independent of how its gray-values are mapped 
(contrast or brightness adjustments). 
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1 Introduction 

The incorporation of the notion of scale in the 
analysis of local image structure has led to an op- 
erational and well-posed definition of a deriva- 
tive. To this end, a given image is embedded in 
a scale-space, i.e., a one-parameter family of de- 
rived images, intended to represent that image 
at various resolutions. Such a scale-space is ob- 
tained by convolving the image data by a set of 
Gaussian filters of various widths [1]-[lO]. For 
each fixed-scale representative one can then give 
an operational definition of a linear derivative 
by formally applying the appropriate conjugate 
differential operator to the (smooth) Gaussian 
kernel and convolving the image data with the 
resulting derivative kernel. This requires a com- 
plete family of Gaussian derivatives in addition 
to the basic, zeroth-order Gaussian. Note that 
the preceding definition of an image deriva- 
tive does not require any infinitesimal limiting 
procedure; image differentiation, by virtue of 
scale, is really a matter of integration (and this 
fact, of course, accounts for its well-posed be- 
havior). The mathematical principle underlying 
well-posed differentiation is well known from 
the theory of regular tempered distributions [ l l ] .  

Throughout the paper we will be dealing with 
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local image properties. To this end, we will set 
up an arbitrary Cartesian coordinate frame in 
each point of the image domain, and we will con- 
sider local quantities that are invariant against 
Cartesian coordinate transformations (rotations, 
reflections,’ and translations). The reader is 
assumed to have a basic notion of Cartesian 
scalars, vectors, and, in general, tensors. These 
concepts invariably show up in a coordinate- 
invariant description of physical quantities. See 
[12], [13] for an easy introduction and [14] for 
a detailed treatment in the context of local im- 
age structure. For an in-depth mathematical 
exposition of the tensor formalism the reader is 
referred to [15]. 

Instead of considering transformations that af- 
fect the independent, spatial coordinates, in this 
paper we consider the group of general intensity 
transformations acting on the image’s gray-values 

6 :  IR -+ IR: L H 2 = B(L). 

In this equation L and 2 denote the gray val- 
ues before and after the transformation, respec- 
tively. Invertibility (or strict monotonicity) is 
necessary to prevent loss of gray-value informa- 
tion contained in the image. But apart from 
this natural group requirement, B may be any 
nonlinear transformation. Requiring invariance 
under this group amounts to considering equiv- 
alence classes of (locally defined) images that 
share a common local iso-intensity, or isophote 
structure. Therefore the relevant &invariant 
local image properties correspond to geomet- 
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rically invariant local properties of isophotes. 
The purpose of this paper is to present a generat- 
ing equation for a complete set of local isophote 
properties up to any order (see also [16]-[19]). 

Gray-value invariance is of some interest in 
computer vision and biological vision. It is well 
known that in human vision a rather general 
class of (nonlinear) transformations of the reti- 
nal irradiance distribution has little effect on 
perception, or, at least, on recognition. Al- 
though gamma corrections may produce results 
that are more pleasing to the eyes, their pri- 
mary justification lies in their invariants. It is 
apparently the case that, at least up to some ap- 
proximation, many visual tasks can be solved on 
the basis of such invariants only. This observa- 
tion should affect the way computer-vision and 
image-analysis tasks are handled as well. This 
is our motivation for considering local image 
properties that are invariant under the group 8. 

2 Notation and Conventions 

In the context of this paper an image is a smooth 
scalar function defined on a d-dimensional spa- 
tial domain of definite resolution, i.e., a fixed- 
scale section of a given scale-space. The image 
gray-value or intensity will be denoted b L, 
and, its value at a particular point z E IR will 
be denoted by L(z)  or, for brevity, by L. We 
will henceforth assume that all derivatives (in- 
cluding zeroth order) are obtained at a given 
inner scale, as explained in section 1, but we 
will not make this scale explicit in our notation. 

The Cartesian coordinates of a spatial vector 
z will be denoted by xi, where we use a Latin 
index from the middle of the alphabet, whose 
values are in the range 1,  . . . , d. For this type 
of so-called spatial indices we will use the con- 
densed Einstein summation convention, i.e., we 
will omit the summation symbol whenever such 
an index occurs twice in a given term. So tiui 
stands for t iui, etc. This is a useful conven- 
tion in the context of Cartesian tensor calculus, 
in which the indices are related to the group 
of Cartesian coordinate transformations. To be 
more specific we make the following definitions. 

d y  

DEFINITION 1 (spatial indices). A spatial index 
i in a d-dimensional space is a formal index 
in the range 1, ..., d that is associated with 
the ith basis vector of a Cartesian coordinate 
system and is subject to the Cartesian-tensor 
transformation law. 

DEFINITION 2 (Cartesian-tensor transformation 
law). If T is a Cartesian n-tensor, the corn- 
ponents of which are Zl...in with respect to a 
given system of Cartesian coordinates, zi say, 
and if Pi = rijxj + a; is any Cartesian coordi- 
nate transformation, then the components of T 
with respect to the new coordinate system are 
given by 

The reader may verify that the vanishing of a 
tensor in a given coordinate system also implies 
its vanishing in any other coordinate system. 
Writing equations in terms of tensors therefore 
reveals their manifest invariance against coorcli- 
nate transformations. Also, an Einstein surn- 
mation, or a contraction of a pair of indices, in 
an (n  + 2)-tensor yields an n-tensor. In partic- 
ular, a full contraction of all indices (possible 
for even-rank tensors) yields an invariant (i.e., 
a 0-tensor). This is why spatial indices are re- 
ferred to as formal indices in Definition 1; their 
intentional use is in the context of tensor calcu- 
lus, and so an actual realization of a Cartesian 
coordinate frame is usually of no importance; 
see also [12]-[15]. 

Apart from spatial indices, we will introduce 
parameter indices for labeling the various corn- 
ponents of a parametric variable E (these may (or 
may not be connected to a representation of the 
Cartesian group). For these we will use Greek 
indices from the beginning of the alphabet, :jO 

that cn denotes one of the components of E ,  

with a taken from the range 1, . . . , p.  These 
parameters are introduced to parameterize a p -  
dimensional submanifold of the image domain, 
and so in general we have 1 5 p 5 d. It turns out 
to be convenient to use the so-called multi-inda 
convention for these parametric indices. 

DEFINITION 3 (multi-indices). A multi-index E 
of dimension p is an ordered p-tuple (121, . . . , n!,) 
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of nonnegative integers n,, E Z,+, a! = 1, . . . , p. 

We will henceforth mark a multi-index by a 
tilde and will assume all multi-indices to be 
of dimension p unless stated otherwise. The 
following conventions apply to multi-indices. 

DEFINITION 4 (multi-index conventions). Let 
E be a multi-index of dimension p; then 

3 Theory 

Let us start this section with a useful lemma. 

LEMMA 1 (implicit differentiation). Let L = 
L ( z )  denote a scalar image on a d-dimensional 
spatial domain, and let 

s : IR" ---t IR" : & ct 2 = I$(&) 

be a parameterized p-dimensional surface in IRd. 
Denoting d"L/dxi,  dzin by Li we have, 
for all R = (nl, . . . , nI,) with /RI 2 1, 

* P  

(7i,l>l j = 1  

in which Sf/Ss, denotes the implicit derivative 
of f with respect to col i.e., 

S f  def a(f 0 4)  Wi af 
6&, k, 82; +, _ -  --=-- 

and in which the q inner summations marked by 
"*" are restricted to multi-indices of dimension 
p that add up to R, i.e., 

* :  pk = E ,  

and in which the Einstein summation convention 
applies to the spatial indices il a i,. 

Proof 1. The proof of Lemma 1 follows from 
a straightforward application of the chain rule 
for differentiation in combination with Leibniz's 
product rule. These will be considered familiar. 

Lemma 1 gives the 5th derivative of the im- 
age L, taken along the surface S. In principle, 
one needs to know only the values of L on 
that surface in order to calculate it. But note 
that we have expressed this surface derivative in 
terms of measurable properties, viz., the image's 
partial derivatives Li which are defined on a 
full neighborhood of each surface point. As ex- 
plained in section 1, there is an easy operational 
method for extracting these partial derivatives 
in a well-posed way, viz., through convolution 
with Gaussian derivatives. 

A special case of Lemma 1 is obtained if we 
consider a (d - 1)-dimensional surface in IRd 
with a Monge-patch parameterization. 

PROPOSITION 1 (implicit differentiation along a 
(d-1)-dimensional Monge patch). Let L = L(z)  
denote a scalar image on a d-dimensional spatial 
domain, and let 

s : IRd-1 + IRd : U t-f 2 = 4(u) 

be a parameterized (d  - 1)-dimensional Monge 
patch, with 4 : IRd-' + IRd given by 

+a(.) = U ,  (a  = 1, ..., d -  l ) ,  

= 4 4  

for some smooth function w : IRd-' --$ IR. 
Then, using the multi-index notation for the 
(d - 1)-dimensional parameter space, we have 

k = l  in which Sf/Su, denotes the implicit derivative 
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of f with respect to U,, i.e., 

and in which the k + 1 multi-index summations 
are subject to the constraint 

k 

j = 1  

By convention, if k = 0, the j-sum vanishes 
identically and the k inner summations over Fj 
evaluate to unity. 

Note the following: 

(1) All (q,  k = 0) terms vanish identically, ex- 
cept for the term (q  = [El, k = 0), for 
which the iTliil-sum contributes by one ef- 
fective term only, viz., the one for which 
FlE1 = E,  yielding (l/E!)aliilL/auE. 

(2 )  The (q  = 1, k = 1) term also contributes by 
only one multi-index in the innermost sum, 
viz., the one with T, = ??(is;, = is), yielding 
the term (lp!) (aL/aw)(al%/auE). 

Proof2. We use Lemma 1 and insert +,(U) = U ,  

for a = 1, . . . , d- 1 and $ d ( u )  = w(u). We then 
evaluate the Einstein summation, write 2, = U ,  

for a = 1, ..., d - 1, and write q = w, using 
the following observation: 

In this equation the right-hand side is 1 if F' = 'iij 
and is 0 otherwise, where ?ij is the (d - 1)- 
dimensional multi-index whose ath entry is given 
by 6,1m(a = 1, . . . , d - 1). Furthermore, 

alxj al% I 
auxl auzl * 

With z q - k  defined as x(&t?ij, the result then 
follows after some elementary arithmetic. 

- --- 

EXAMPLE 1 (some lowest-order results). Con- 
sider an image defined on a 3D space. Let 
U ,  U be the Monge-patch parameters for a 2D 
surface S : ( U ,  U) c-, ( U ,  U, w(u, U)), defined on 

a full neighborhood of (0, 0), with a smooth 
height function w(u, U). Then, in terms of the 
Cartesian coordinates ( U ,  U, w) (defined in the 
straightforward way), we have the following vari- 
ations up to third order: 

aw aw 
L f l V U  + LUVW - + 2LUVUJ 

-= 
6u6u2 au 

aw aw a2w + 2Luw,-- + 2Lu, - au au auav 
aw 2 aw 2 a w  

a2w aw a2w + Lu, 2 au 

+ L,',, (%) + L,,, (,) 
+ 2L,,U, T&-& 



General Intensity Transformations and Difierential Invariants 175 

The following proposition shows the effect 
of a gray-value transformation on the image’s 
differential structure. 

PROPOSITION 2 (transformation of spatial deri- 
vatives). Let L = L(z)  denote a scalar im- 
age on a d-dimensional spatial domain, and let 
2 = z(z) denote the scalar image obtained by 
applying a gray-value transformation 2 = 8 ( ~ )  
to L. Then we have, for all ii = (n1, ..., n d )  

with liil 2 1, 

in which the q inner summations are restricted 
to multi-indices of dimension d that add up to 
n, i.e., - 

’I 

* :  CFk = 5, 
k= 1 

and in which G(q)(L) denotes the qth derivative 
of G(L). 

Proof 3. Proposition 2 can be regarded as a 
special case of Lemma 1 by making some for- 
mal substitutions. The idea is to consider the 
image L = L(z )  as a Monge patch in a (d  + 1)- 
dimensional space, for which the spatial variable 
z is identified with the parameter E .  To this 
end, replace d in Lemma 1 by D = d + 1, p b 
P = d, z E IRd, and E E IR]’ by X = (z; y) E IR 
and E E IRp, respectively, and, accordingly, 
each spatial index i ~ .  = 1, . . . , d by a corre- 
sponding index I k  = 1, ..., D. Consequently, 

B 

each derivative a/axi is replaced by a/aX,  = 
(a/azi;a/ay).  Moreover, replace q5 : IRp -, 

and, finally, replace L : IRd -+ IR : z H L(z)  by 
A : IRD -, IR : X H A ( X )  = G(y). With these 
formal substitutions and the observation that the 
Einstein summation yields effective terms only 
for index values I h  = D, k = 1, ..., q, corre- 
sponding to y-derivatives in X-space (by virtue 
of the z-independence of A(X) = G(y)), the 
proof of Proposition 2 follows from Lemma 1. 

Proposition 2 relates the image’s spatial deri- 
vatives before and after a gray-value transforma- 
tion. It states that, in general, nth-order deriva- 
tive is affected by a gray-value transformation in 
a way that depends not only on the transforma- 
tion details (i.e., the G(Q)(L),  with q = 1, .. . , n), 
but also on all image derivatives of orders less 
than or equal to n. In other words, only the 
set of all derivatives up to nth order (inclusive) 
transforms in a closed way. In particular, one 
can therefore expect an nth-order differential 
gray-value invariant to entail all spatial deriva- 
tives of orders 1, . . . , n. The notion of a local 
jet of order n, notation J”[L](2) ,  captures this 
nth-order local structure. It is defined as the 
equivalence class of functions with spatial con- 
tact of order n at a given base point. The 
following is a possible operational definition. 

DEFINITION 5 (local jet for gray-value images). 
Let L = L(z)  be a scalar image defined on a d- 
dimensional spatial domain, and let Li, ... i, be the 
tensor of rank k formed by the kth-order partial 
derivatives akL/azi ,  . . azit (with ij = 1, . . . , d 
for each j = 1, ..., k). Then the image’s local 
jet of order n at base point P can be represented 
by the set of all k-tensors Li, ...i, up to rank n 
(inclusive), evaluated at base point P: 

J”[L](P) = {Li,...jk(P) I k = 0, . * .  n}. 

Note that this definition is independent of the 
choice of a Cartesian frame since it relies on 
Cartesian tensors only. This Cartesian repre- 
sentation will turn out to be useful here, but it 
should be noted that there are many equivalent, 
non-Cartesian representations (see [6]). In the 
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mathematical literature, one often finds the ze- 
roth order excluded from the definition (cf. [20]). 

The preceding local-jet representation ac- 
counts for a complete description of local image 
structure up to nth order. This is obvious from 
Taylor’s expansion, which expresses the image’s 
gray values in a full neighborhood of a given 
base point, x say, in terms of the image deriva- 
tives at z; so if 62 E IR”, then 

indexed list {.k } l = l , , , , , I k  k = 1 > - - f l  into a singly indexed list 

of type { ~ i } ~ , l , . . . ,  ,, with n = E“,=, I,. In this 
procedure the upper index k takes lexicograph i- 
cal precedence over the lower index 1. In other 
words, A concatenates the q rows labeled by E, 
the kth row of which has Ir;  entries: 

m = l  
1 L(a: + 62) = j-JLjl...jb(,)6q * * * 62jk 

k=O Proof4 The proof of Proposition 3 again relies 
entirely on the chain rule and Leibniz’s produlzt 
rule, and it follows by induction with respelzt + 0(116211”+’). 

The concept of a local jet for an image remains 
meaningful even when invariance under gray- 
value transformations is required. This follows 
from the fact that if L1, L2 E J7L[L](P) ,  then 
also E , ,  22 E P [ ~ I ( P ) .  

Recall that multi-indices merely label compo- 
nents, but they are not related to a represen- 
tation of a transformation group, as opposed 
to Cartesian (or spatial) indices. To make its 
invariance against Cartesian coordinate trans- 
formations manifest, we have to recast Proposi- 
tion 2 into covariant form. 

to n. 

It is instructive to write out some lowest- 
order results. 

Example 2 (some lowest-order results). If 
2 = B(L),  then up to order four we have the 
following relationship between the derivatives 
before and after a gray-value transformation: 

E; = L;B‘(L), 
Eij = LjjB’(L) + LJjB’yL), 

Eijk = LijkB’(L) PROPOSITION 3 (transformation of spatial deri- 
vatives in covariant form). Let L = L(z)  denote 
a scalar image on a d-dimensional spatial do- 

+ [L& + Ljr,L; + L&]B”(L) 
+ L;LjLkB”(L), 

+ [L& + Li.jlLA. + Lj& + LijL&l 
+ LikLjl + LilLjk]BN(L) 
+ [L&Ll + LjkLjL, + LilLjLk 

main, and let 2: = E(,) denote the scalar image 
obtained by applying a gray-value transforma- 
tion 2 = B(L) to L. Then, using a spatial index 

Eijk l  = L ~ ~ ~ ~ G ~ ( L )  

to denote a derivative with respect to the asso- 
ciated spatial variable, we have, for all n 2 1, 

in which the q inner summations are restricted 
to indices that add up to n, i.e., 

a 

* : I,,, = n, 
111 = I 

S denotes the index syrnmetrization operator, 
and A is the lexicographical index-ordering op- 
erator that “unravels” or “flattens” a doubly 

Proposition 3 shows that the tensorial deriva- 
tives in Definition 5 are not invariant against 
general intensity transformations nor do they 
transform in a simple (covariant) way. There is 
an apparent redundancy in the image derivatives 
with respect to this group of transformations. 
Because this redundancy is rather complex, a’c- 
cording to Proposition 3, it is far from trivial to 
form differential gray-value invariants based on 
the local-jet components Li, ... i t .  
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Image derivatives directly relate to the struc- 
ture of the intensity profile of the image, i.e., 
the form of the graph (x;y = L ( x ) )  E IR" x IR. 
Consequently, their relation to the graph's y- 
independent (G-invariant) geometrical structure, 
i.e., the underlying structure common to all 
members of the equivalence class of images re- 
lated by one-to-one gray-value maps, is rather 
indirect. 

Proposition 3 also shows that things are 
much simpler for the two-parameter affine sub- 
group of first order gray-value transformations 
r(L;X, p) = X + e/'L (offset and linear scaling 
of gray values), in which case each derivative 
L;,.+(k > 0) merely scales by a constant factor 
e/' (hence becomes a relative invariant of unit 
weight, or even an absolute invariant under the 
one-parameter subgroup F(L;X,  0) = X + L). 
In that particular case, the local-jet represen- 
tation of Definition 5 clearly has its merits.2 
Because of their (relative) invariant nature, it 
is very easy to form differential invariants with 
respect to the affine subgroup F(L;  A, p)  on the 
basis of the tensors ~5;,...~~; simply combine these 
into any Cartesian invariant, and the result is a 
(relative) invariant under the affine gray-value 
transformation group. If absolute invariants are 
required, one can always pair relative invariants 
of the same weight and consider their ratios. 
See [14] for details. 

The general case, in which arbitrary gray-value 
transformations are admitted, is not so simple. 
Clearly, the relevant geometry in this context 
is that of the image's iso-intensity, or isophote 
picture (or, equivalently, of its dual objects, the 
gradient integral curves, or flow lines). In that 
case, the representation of Definition 5 is not 
very convenient for reasons already explained. 
On the other hand, Definition 5 is very attractive 
for its operational nature (its components can be 
obtained directly by mere linear correlations), 
and so it would be convenient to have a similar 
local-jet construct that explicitly captures the 
image's P-invariant isophote structure and whose 
components can be expressed in terms of those 
in Definition 5.  

In fact, the essential parts for such a construct 
are readily available from the previous theory. 

DEFINITION 6 (local jet for isophotes). Let L = 
L(z)  denote a scalar image on a d-dimensional 
spatial domain, and let P be a regular point, 
i.e., a point at which the image gradient does 
not vanish. By a suitable choice of Cartesian 
coordinates we may assume that z p  = 0 E IRd 
are the coordinates of P. Let 

s : IR"* ---t IRd : U I-) 5 = +(U) 

be the Monge-patch parameterization of the 
isophote (hyper) surface through P, with + : 

---t IRd given by m"- 1 

+ n ( ~ )  = u a  ( a =  l , . . . , d - 1 ) ,  { = w('LL). 

Furthermore, let be the tensor of rank 
k formed by the kth-order partial derivatives of 
the Monge patch, i.e., dkw/au,, . au,, (with 
aj = 1, . . . , d - 1 for each j = 1, . . . , k). Then 
the local jet of order n for the image's isophote 
I at base point P can be represented by the set 
of all k-tensors w ~ ~ . . . , ~  up to rank n (inclusive), 
evaluated at base point P: 

J"[ I ] (P)  = {w, ,... ,,(P) I k = 1, ..., n}. 

The function w : E-' + IR can be inter- 
preted as the height map for the isophote at 
the point z = (u;O) E IRd near P. So the local- 
jet definition is actually the same as for the 
gray-value case of Definition 5,  with the gray- 
value map on the d-dimensional spatial domain 
replaced by this height map on the isophote's 
tangent plane. 

The coordinates of a Cartesian frame estab- 
lished in this way will henceforth be denoted by 
(un;w), a = 1, ..., d -  1, in which the positive 
w axis is aligned with the image gradient. This 
is always possible at a regular point. Note that 
there is a residual parameterization freedom in 
the isophote's tangent plane, since only the w 
axis is fixed. Instead of the Cartesian symmetry 
group E(d) = SO(d) x T(d) of rotations (SO(d)) 
and translations ( T ( d ) ) ,  we are left with the sub- 
group E(d - 1) of coordinate transformations in 
the tangent plane (the tensor indices aj in Def- 
inition 6 transform according to this subgroup). 
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An admissible constraint on the set of all possi- 
ble local frames is called a gauge condition. The 
preceding partial w gauge will be referred to as 
the "gradient gauge." 

Completeness of the representation of Def- 
inition 6 follows from the observation that if 
Su E is a small vector in the tangent 
plane of the isophote at base point P : U = 0, 
we have: 

" 1  
w(Su) = -w,l....k(o)Su,l k! * .  * su,, 

k= 1 

+ 0(116Ull"+'). 

It is understood that the Einstein summation 
now applies to the aj indices. 

We have arrived at a proper definition of lo- 
cal 8-invariant image structure (Definition 6) ,  
but it remains to be made operational by es- 
tablishing its relation to Definition 5.  To this 
end, we may apply Proposition 1 to the image's 
isophotes. The d - 1 Monge-patch parameters 
correspond to the nongauged Cartesian coor- 
dinates on the (d  - 1)-dimensional isophote's 
tangent plane. 

To make the E(d - 1) symmetry of Propo- 
sition 1 manifest, we can write it as a tensor 
equation on the isophote's (d - 1)-dimensional 
tangent space. 

PROPOSITION 4 (implicit differentiation along 
isophotes in covariant form). Let L = L ( z )  
denote a scalar image on a d-dimensional spa- 
tial domain, and let Ip  be an isophote passing 
through a regular point P. Let TIP be the 
(d- 1)-dimensional tangent (hyper) plane to this 
isophote at point P, and let U, = 1, . . . , d - 1 
be any set of Cartesian coordinates on TIP. 
Moreover, let w,, ...,, be defined as in Defi- 
nition 6, and define the k-tensor L$)...du,, 

order derivative with respect to the gradient 
gauged (u ;w)  coordinate system in IRd. Fi- 
nally, let Sal...,, L denote the nth-order variation 
S"L/Su,, . - . Su,,. Then, using E(d - 1)-tensor 
notation for TIP, we have 

as aj+kL/awjau,, . . . au,,, i.e., the ( j  + k)th- 

'1 

in which, the k 1, summations (m = 1, ..., IIC) 
are subject to the constraint 

k 

m= 1 

A is the lexicographical index-ordering operator 
as introduced in Proposition 3, and S denotes 
spatial index symmetrization. By convention, if 
k = D, the m-sum vanishes identically and the k 
inner summations over 1, evaluate to unity. 

Proof5 Proposition 4 follows simply by refor- 
matting the equivalent Proposition 1, switching 
from multi-indices to tensor indices. 

In this tensorial form, the analog of Example 1 
becomes as follows. 

EXAMPLE 3 (some lowest-order results). Let 
Then the vari- 

ations of Proposition 4 up to order three aire 
given by (compare this tensorial notation with 
Example 1): 

Lal...%w...tj+...w denote Lal...(l,. (j ) 

6,L = L, + Lww,, 
SabL = Lab + Lawwb + Lbwwa 

+ LwwWaWb -k Lww& 
S a d  = Lobe + Labwwc + Lacwwb + Lbcwwa 

-k Lnwwwbwc + Lbwwwawc + Lcwwwawb 
+ Lnwwbc + Lhwwac + Lcwwab 
+ LwwWncwb -k Ltuwwbcwa + Lwwwabwc 
+ Lwwwwawb~~c f LwWabo 

The crucial observation that finally establishes 
the relation between Definition 5 and Defini- 
tion 6 is trivial. 

OBSERVATION 1. All variations Sal...,,, L on 
TIp(n 2 1) defined in Proposition 4 vanish iden- 
tically. 

This leads to the following generating equation 
for the components of Definition 6. 



General Intensity Transformations and Diferential Invariants 179 

PROPOSITION 5 (generating equation). Let L = 
L ( z )  be a scalar image, let P be a regular point, 
and let I p  be the isophote passing through P. 
If 6,L is the system of all kth-order variations of 
L on T I p  for k = 1, . . . , n, then the G-invariant 
local n-jet components ~ , , . . . , ~ ( k  = 1, . . . , n) are 
determined by the generating equation 

S,L = 0.  

In turn, this leads to the following inductive 
scheme for wal ...a,1. 

PROPOSITION 6 (inductive scheme for local 
isophote jet). The components O ~ % U / ~ U ~ (  1x1 = 
1, . . . , /HI) are determined inductively by 

with the usual constraint on the k + 1 multi- 
index summations 

k: 

j =  1 

and the convention that if k = 0, the j-sum 
vanishes identically and the k inner summations 
over Fj evaluate to unity. Alternatively, in co- 
variant E(d - l) form, the k-tensors ~ ~ , . . . , ~ ~ ( k  = 
1, . . . , n) are determined inductively by 

* * E  

in which the k 2, summations (m = 1, . . . , k) 
are subject to the constraint 

k 

*: q - k  + Elm = 12 
m=l 

and in which S and A are defined as before. 

Proof 6. Set the left-hand side of the equa- 
tion in Proposition 4 (or in the correspond- 
ing Proposition 1) equal to zero, and solve for 
the (q  = 1, k = 1) term, i.e., the only term 
containing the nth-order (IElth-order) derivative 
wal. . .~(8~%/6'uE),  multiplied by the factor L,. 
The (q  = n, k = 0) term, the only effective one 
in the (q, Ic = 0) sum, has been made explicit 
here. See the remarks after Proposition 1. 

Clearly, the local isophote jet is ill defined 
at singular points where L ,  = 0. In a generic 
image, however, almost all points are regular. 
Proposition 6 shows how to obtain the isophote 
local jet in any given regular point P in terms of 
E(d- 1) tensors w,~.. .~,  defined on the isophote's 
tangent bundle. On the basis of this one can 
construct Cartesian differential invariants in the 
usual way (see [9], [14]), which are also invariant 
under the group B of general gray-value trans- 
formations. 

There remains a problem of practical interest, 
viz., how to evaluate those E(d - 1)-invariants 
on the isophote's tangent bundle in terms of 
E(d)-invariants on the image domain, so that 
one does not need to perform any actual trans- 
formation to an explicit gradient-gauged (U;  w) 
coordinate frame to derive &invariants. One 
way of achieving this is to extend the gradient 
gauge by imposing a geometrically significant 
gauge on the U coordinates, thereby removing 
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all residual gauge degrees of freedom, and to re- 
late the gauged ( U ;  w)-coordinate derivatives to 
Cartesian invariants on the image domain. One 
may set up such a gauge system in a regular 
point by complementing the gradient vector to 
any independent set of d vectors by suitable con- 
tractions of tensor products based on local image 
derivatives. This set can then be orthogonalized, 
e.g., by running the Gram-Schmidt orthogonal- 
ization process from standard linear algebra. 

It should be noted that there are several possi- 
bilities for choosing a geometrically independent 
set of vectors in addition to the gradient, each of 
which may lead to a different gauge system. The 
following example shows one such possibility for 
using the incomplete gradient gauge to initial- 
ize an inductive scheme for an unambiguous, 
full gauge. 

EXAMPLE 4 (inductive scheme for full gauge). 
Consider the following set of d vectors in IRd: 

Then the following system is orthogonal (Gram- 
Schmidt): 

In particular, if the are linearly independent 
( I c  = 0, ... , d - l), then the U(&)  provide an 
orthogonal basis for IRd. In that case, the 
coordinate derivatives are given by the following 
Cartesian-invariant, directional derivatives: 

One may wonder whether the gauge condition 
in Example 4 is admissible, i.e., whether the 
dk) are independent (k = 0, .. . , d - 1). The 
admissibility of the gauge for a given point P 
generally depends on the choice of the system 

(a = 1, . . . , d - 1) in relation to the local 

geometry of the isophote at P. In this case, 
if one of the eigenvectors of the Hessian Lij 
is proportional to the gradient at a given point 
P, then the vectors da), and hence da) (a = 
1, . . . , d - l), are not linearly independent in 
P and the gauge is not admissible. This is 
most easily verified by diagonalizing the Hessian. 
(The scalars dk) -do) ( I c  = 0, . . . , d - 1) are part 
of a set of so-called irreducible invariants; see 
[14] for an explanation and a proof.) 

Before we turn to some applications, it is use- 
ful  to relax the strict Ginvariance requirement 
a bit and admit relative tensors and invariants 
as well. Relative 8-invariants acquire a factor 
that is some power of the Jacobian of the group 
transformation, i.e., some power of G'(L). 

PROPOSITION 7 (relative 8-tensors). Let W q  ... a, 
be the &invariant Cartesian tensors defined in 
Definition 6. Then the Cartesian tensors I U ~ ! . . ~  

defined by 

are relative 8-invariants of weight p .  This means 
that if 2 = 8(L) is a gray-value transformation 
and is the 8-transform of w!$%, than 
one has 

Wa, hJl ., .a,, = L;wa,...% 

Proof 7. This follows from the fact that L,,, 
is a relative G-invariant of unit weight: E,,, = 
8'(L)L,o; see also Example 2. 

Although not invariant, these relative invari- 
ants are in some sense close to invariant because 
they all transform with some power of one aind 
the same factor. Consequently, it is easy to 
combine them into absolute invariants by tak- 
ing appropriate products and ratios. Or, if one 
refrains from that but considers only relative 
invariants of equal weight, I and J say, then all 
relations of the type I = J are invariant in the 
absolute sense. 

4 Applications 

To illustrate the general method for generating 
gray-value invariants, we consider the lowest- 
order cases in 2D and 3D images. 
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4.1 
in 2 0  

Isophote Curvature and Corner Detection 

In the 2D case the isophotes are generally 1D 
curves and the index a = 1 in Proposition 4 
refers to a single Cartesian coordinate for pa- 
rameterizing the isophote's local tangent; we will 
write v instead of ul. 

First of all, we need to specify a full gauge 
compatible with the partial gradient gauge. In 
this case this is trivial; there is no residual (ro- 
tational) freedom for the v axis once we have 
made the w axis coincident with the gradient 
direction (hence we can manage without the 
general scheme of Example 4). Let us define 
the basis vectors @, 0 as follows: 

with ~ i j  the 2D, antisymmetric Uvi-Civita tensor 
defined by = -cZ1 = 1 and cI1 = ~ 2 2  = 
0. The derivatives here and in what follows 
are to be evaluated at the location of interest. 
The gauge is related to an arbitrary Cartesian 
coordinate frame by the following identities: 

a - E i j ~ j  a - - -- av m a x i '  

Working out Proposition 4 (or Example 3) to 
order three within this gauge yields the following 
result (a self-explanatory notation is used): by 
virtue of the gradient gauge one has w' = 0 and 

LU7J '&f 
6' w" = -- - 

LW 

(one may use the identity ~ i j ~ k l  = Sikbjjl - Si tS jk  

to substitute for double €-tensors; see [14] for a 
general result in d dimensions). Note that the 
third-order derivative w"' is expressed in terms 
of two second-order gray-value invariants K ,  p 
and one third-order gray-value invariant U (see 
Proposition 3 or Example 2 for a verification of 
this statement). Clearly, w" = n is the isophote 
curvature [5], [21]. Ignoring the genuine third- 
order property U, we may wonder about the 
geometrical significance of the other second- 
order gray-value invariant p. 

To appreciate the geometrical significance of 
p, note that our generating scheme for gray- 
value invariants is based on the isophote picture; 
the structure of the orthogonal trajectories of 
the isophotes, i.e., the gradient integral curves 
(or flow lines, for short), has been deemphasized 
since these dual objects are implicitly defined by 
the isophotes. Hence one may foresee a rela- 
tionship between isophote properties captured in 
the derivatives of w and properties of flow lines. 

For example, p = L,,/Lw, an apparent gray- 
value invariant itself (and a Cartesian relative, 
or pseudoinvariant), is the Jlow-line curvature. 
This is easily demonstrated. A flow line is a 
gradient integral curve by definition, and so it 
can be parameterized by ~ ( s ) ,  the unit tan- 
gent vector of which is aligned with the gra- 
dient E; = 0,. Then the absolute value of 
the flow-line curvature Incfl equals &, or 

But it is easily verified that this is just p2. The 
Cartesian pseudocharacter of p accounts for the 
orientation of the flow-line-curvature vector rel- 
ative to the v axis (which is chosen so as to give 
the (U, w) frame the standard orientation). This 
orientation reverses upon reflections of the coor- 
dinate axes (because 0 flips). Taking this orien- 
tation into account, we can thus define f c f  = p. 

Isophote curvature has been used successfully 
in corner-detection algorithms. If a corner is 
defined as a point at which both the isophote 
curvature K: and the gradient magnitude L, (the 
latter of which, of course, is not a gray-value 
invariant) are large, it makes sense to consider 
their trade-off in the form of a relative gray-value 
invariant, as proposed in Proposition 7. This 
leads to the Cartesian invariants nbJl = nL$,, 

fc: = (LiLijLjkLkLlLl - (LiLijLj) )( L,Lm)-3. 
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with p > 0. The smallest value of p that turns 
this into a polynomial invariant is p = 3. More- 
over, this particular choice yields a relative aJgine 
invariant, which means that it is invariant un- 
der the special linear group of spatial trans- 
formations SL(2). Since it is a shear-invariant 
combination of gradient magnitude and isophote 
curvature, one could call this invariant “edge- 
curvature strength.” Figure 1 shows the invari- 
ant &I3] = LfaijLjkeklLl, or 

~ 3 1  = L . L . . L .  - LiLiL . .  
1 13 3 33 

= -L$,, + ~L,L,L, ,  - L&, 
= -L,~,L:: 

for a synthetic, noise-perturbed gray-value im- 
age. The derivatives have been calculated 
for a couple of resolutions by convolutions 
with the appropriate Gaussian derivative ker- 
nels. Figure 1 also shows the third-order invari- 
ant XIh] = wN’L$, which apparently trades off 
edge strength against the directional derivative 
of isophote curvature in the isophote direction. 
One could call it “inflection strength.” Its zero 
crossings correspond to extrema of isophote cur- 
vature. It is a relative gray-value invariant of 
weight 6 and also a relative Cartesian invariant; 
it is sensitive to the orientation of the Carte- 
sian coordinate frame. In arbitrary Cartesian 
coordinate systems it is given by 

XI61 = -&il&jrn&kd’lLmLn 
(LijkLpLp + 3LijLkpLp) 

= - 3 ( ~ 3 , ,  - ~L,L,L, ,  + L~L, , )  

x (LTLYL,, - L&, + L$,, - LzL,L,, 

+ (L: f L;)(L:L,,, - 3L:L,Lx,, 
+3LxL;Lxx, - L;L,,,) 

= - L7JVV L:~ + L,Jt, LVUJ LL * 

The reader is referred to [22] for an in-depth 
study of and to [23] for an application 
of isophote and flow-line curvature to medical 
imaging. 

4.2 Principal Isophote Curvatures in 3 0  

In the 3D case the isophotes are generally 2D 
surfaces and the index a = 1, 2 in Proposition 4 

Fig. 1. Top row: an artificially created binary ‘‘amoeba” 
image (first image, intensity difference 100 arbitrary units) 
perturbed by additive pixel uncorrelated Gaussian noise with 
a standard deviation of 100 units (second image). Middle 
row: the invariant = -L,,Li = LiLijLj - LiLiLjj 
applied to the perturbed image at two different scales, 
Ina  = 1/2 and Ina = 9/4, respectively (a taken relative 
to pixel scale). This invariant expresses a shear-invariant 
trade-off between edge strength (the factor fii) and isophote 
curvature ( -Luu/Lw) .  In the small-scale case the invariant 
responds to a trade-off of small-scale gradients and isophote 
curvatures (as it should), which are primarily determined by 
the significant small-scale noise. In the large-scale case 
the positive and negative arcs corresponding to the curved 
edged of the large-scale amoeba structure are apparent. 
Bottom row: the invariant --AIG] = L,,,,,,L:, - 3LuULu,,L~, = 
E ~ ~ E ~ , , , E ~ ~ L ~ L , ~ L , ( L ~ ~ ~ L ~ L ~  + 3LjjLkpLp) calculated for the 
amoeba image. This third-order invariant measures a trade- 
off between gradient magnitude (the factor L:,) and rate 
of change of isophote curvature along the isophote (the re- 
mainder) and therefore could be called “inflection strength.” 
Note that its extrema correspond to points of inflection, and 
its zero crossings correspond to curvature extrema on the 
boundary. Scales: same as previously. 
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refers to a pair of Cartesian coordinates for pa- 
rameterizing the isophote's local tangent plane; 
we will write (U, v) instead of (211, 212). 

In addition to the gradient gauge, which is 
now a truly partial gauge, we now have a non- 
trivial, residual E(2)-gauge group corresponding 
to Cartesian transformations of the (U, v) plane 
(rotations around the w axis and translations of 
the origin within the plane). We need to set 
up a Cartesian frame according to some admis- 
sible, geometry-induced full gauge. Once we 
have this, we may derive gray-value invariants 
from their generating equation simply by susbsti- 
tuting the directional (U, v, w )  derivatives from 
this gauge. 

We will focus on the lowest-order isophote 
properties, the principal curvatures. In particu- 
lar, we address the question of how to evaluate 
them in an arbitrary Cartesian coordinate system 
(2, y, z). There are several ways to achieve this. 

One way (which always works) is to system- 
atically carry out the inductive scheme of Ex- 
ample 4. According to that example one may 
set up a Cartesian coordinate frame at each 
point P of the image domain by orthogonal- 
izing the three vectors vp )  = Li, vi(') = LijLj, 
and "12) = LijLjkLk, provided they are linearly 
independent. This is the case if P is a regu- 
lar point and if the eigenvectors of the Hessian 
are not proportional to the gradient. How- 
ever, although this brute force method will work, 
the reader may verify that applying the Gram- 
Schmidt procedure of Example 4 turns out to 
be rather cumbersome. 

Instead, one may proceed more intelligently 
in this still relatively simple 3D case by using the 
following three vectors (cijk is the antisymmetric 
Levi-Civita pseudotensor in 3D, normalized by 
fixing €123 = 1): 

"10) = hi, 

U!') = EijkLjLklLl, 

= &ijtLj&klmL1LmnLn. 

This triple is already orthogonal by construc- 
tion. One may then evaluate the tensors w ~ , . . . ~ ~  
of Proposition 6 in this particular gauge by sub- 
stituting the directional derivatives as indicated 
in Example 4. The wa,..,&, resulting from this 

gauge form a complete set of gray-value invari- 
ants. 

Both methods are based on an explicit con- 
struction of a Cartesian basis. For the lowest- 
order gray-value invariants there is an even 
simpler way, which does not seem to require 
such a construction at all. All we actually 
need is its implicit definition, i.e., an admis- 
sible, full gauge. To see how it works, recall 
(from elementary linear algebra) that the resid- 
ual E(2)-transformation group in the partial gra- 
dient gauge is just what it takes to diagonalize 
the Hessian wunUb (again we tacitly assume all 
quantities to be evaluated at the spatial loca- 
tion of interest). So let us set w,, = 0 at the 
point of interest; this, together with the gradient 
gauge wll = w,, = 0, establishes an admissible, 
full gauge, at least up to (discrete) reflections. 

In this frame Proposition 4 (or Exam- 
ple 3) yields 

up to second order and 

LUlI,l Lu,, Luw 
Wuurr = -- +3--, 

Lw Lw Lw 
LUl,, Lllu L7Jw 

Wllll, = - - + --, 
Lw Lw Lw 

Lll,, Luu LllW w,,, = -- + --, 
Lw Lw Lw 

L,,, L,, Lvw w,,, = -- +3--. 
Lw Lw Lw 

up to third order. 
Although we do not have the principal di- 

rections as such, we do know (by our implicit 
gauge condition wll, = 0) that U and v are the 
Cartesian coordinates corresponding to these. 
We may replace the principal curvatures wuu 
and w,,,, by the (U,  v)-symmetric combinations 
M and G, given by 
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i.e., the mealz curvature and the gaussian cur- 
vature, respectively [24]-[26]. Then all it takes 
to find their expression in arbitrary Cartesian 
coordinate systems is to write down a manifest 
Cartesian invariant that reduces to the preced- 
ing expressions for hl and G when subjected to 
the gauge w,, = w,, = w,,,, = 0. One may find 
these in one step (consider only the few simplest 
possibilities that are consistent with the order 
and zero homogeneity of M and G): 

To see that this is correct, insert the ( U ,  v, w) 
gauge (which implies L,, = L, = L,,, = 0) in the 
right-hand side and observe that the expressions 
simplify to the previous definitions of M and G. 
By manifest invariance, this identity then holds 
in any other Cartesian coordinate system! The 
method used here demonstrates the power of 
tensor calculus. Choosing an explicit (x, y, z )  
coordinate system, we obtain 

in which cycl.(x, y, z )  stands for all terms ob- 
tained from the previous ones by the two cyclic 
permutations of the coordinates (x, y, z )  + 

As before, we may give up strict gray-value 
invariance and consider relative gray-value in- 
variants according to Proposition 7. So let us 
define the Cartesian invariants Mb’1 = MU:, and 
G[ZJ] = GQ,, with p > 0. 

Figure 2 shows a visualization of a 3D image of 
a torus. Figures 3 and 4 show the invariants 
and G[41 calculated for the torus image. They 
are presented on 8 slice-by-slicc basis, where 
the torus is sliced along a plane parallel to its 
symmetry axis. 

(Y, z ,  + ( z ,  $ 7  Y). 

Fig. 2. Visualization of a 3-D, 128 x 128 x 64-voxel imxge 
of a torus. The torus is defined by the parametric equation 
(z, y, Z) = ((R+rsin4)cosB, (R+rsin4)sin0, rcos+),arith 
(0, 4)  E [0,2n) and R > T .  The two defining radii T ancl R 
are 18 and 32 units relative to voxel size, respectively. The 
interior and exterior of the torus have uniform gray-valiJes 
Li and L,;, respectively, with Lj - Le = AL > 0. 

5 Conclusion and Discussion 

We have considered the group of gray-value 
transformations and have proposed a generat- 
ing equation for a complete set of local gray- 
value invariants up to any order for gray-value 
images of arbitrary spatial dimensions d. The 
method is based on the gray-value-invariant geo- 
metrical structure of the typographical isophote 
picture. Within the partial gradient gauge, the 
solution comprises a set of gray-value-invariant 
tensor fields transforming under the Euclidean 
group E(d - 1). These tensors parameterize 
the isophote’s local-jet bundle. Various com- 
plete families of gray-value invariants can be 
derived from these tensors by imposing geomet- 
rically meaningful gauge conditions, in addition 
to the gradient gauge, for removing the residual 
E(d - 1)-gauge degree of freedom. 

We have illustrated the general scheme by ex- 
amples in 2D and in 3D. These examples are 
simple enough to serve as a clear geometrical il- 
lustration of the general principle. Higher-order 
invariants are increasingly difficult to interpret 
geometrically. Nevertheless, completeness of 
the scheme guarantees that one does not end 
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Fig. 3. Four typical slices showing the relative gray-value invariant M131 for the torus image. Background gray corresponds 
to MI31 = 0. In this example there is 
a slightly negative mean curvature at the inside (because I < R < 2 ~ ) .  reaching an absolute minimum on the circle 
( r ,  y, z )  = ((R - r)cos 8, (R -- r)sin 8, O)(O 5 0 < 27r); in this example Mmin = (R - 21)/(2r(R - I)) = -1/126 in inverse voxel 
units. The maximum value is reached at the outside, i.e., on the circle (T ,  y, z) = ((R + 1)cos8, (R + r)sin 8, O ) ( O  5 8 < 2a), 
viz., Mmax = (R + 21)/(2r(R + 7 ) )  = 17/450 inverse voxel units. Scale: U = 2.25 voxel units. 

The major part of the torus in this example has positive mean curvature. 

Fig. 4. Four typical slices showing the relative gray-value invariant GI41 for the torus image. Background gray corresponds to 
d41 = 0. The image clearly shows the elliptic points on the outside of the torus (0 < I$ < P), the hyperbolic points on the 
inside (P .= I$ < 2n), and the parabolic points separating the elliptic and hyperbolic parts of the surface (4 = 0, T). Scale: 
o = 2.25 voxel units. 

up with a mere ad hoc set of gray-value invari- 
ants; it gives a complete account of the image’s 
gray-value-invariant structure. 

By duality, local isophote properties arising 
from our generating scheme are compounded 
with properties of the gradient-integral curves, 
or flow lines. We have given a simple example 
of this in the case. Despite the dual relationship, 
which has been our motivation for disregarding 
the flow line picture, it may still be interesting 
to derive the explicit relationship between these 
dual sets. We have not addressed this issue here. 

An important problem that remains to be 
solved is the effect of gray-value transformations 
on scale-space; although a gray-value transfor- 
mation preserves the isophote picture on each 
fixed level of scale, it does have a nontrivial ef- 
fect on the isophote hierarchy across scales, i.e., 
the structure of the iso-intensity surfaces in the 
(d  + 1)-dimensional scale-space domain. 

Finally, note that the general group of gray- 
value transformations has nontrivial subgroups 
that may be of particular interest to certain 
applications. For these subgroups, the sets of 
invariants may be larger than those for the gen- 
eral group. 

Acknowledgment 

We are indebted to J. Blom, R. van Maarseveen, 
and M. van Eert for their contributions to the 
software development and A. Salden for his 
in-depth study of isophote surfaces in 3D. We 
also thank A. van Doorn for useful comments 
and suggestions. 

Notes 
1. When reflections are included, we will allow for so-called 

pseudoinvariants, i.e., quantities invariant up to  a minus 
sign, which show up under a mirror transformation. The 
term invariant will then be used to denote both absolute 
invariants and pseudoinvariants. 

2. Note that for the A-parameterized groups it makes sense 
to exclude the exceptionally transforming zeroth-order 
component from the definition of a local jet, whereas for 
the pure scaling and trivial subgroups, T(L;O, p )  = e”L 
and I‘(L;O, 0) = L,  there is no reason to do so. 
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