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1 Introduction and motivation

A renewed interest in the theory of invariants has emerged in the vision and
robotics communities speared by the need to increase the capabilities of arti-
ficial systems to represent objects shapes and their robustness in performing
recognition tasks. This has produced a large number of publications and a book
[16]. Tt is not too surprising that the question of invariance is also at the heart
of another problem central to computer vision, namely the problem of scale-
space analysis. These two questions, namely invariant shape representation and
scale-space are at he heart of the core of Koenderink and his coworkers [14, 13, 7].

This article addresses the question of describing the differential properties of
shapes which are invariant to the action of a group. The shapes of interest are
differentiable manifolds such as curves and surfaces but can also be differentiable
sets of lines such as complexes or congruences. The groups of interest in computer
vision are the euclidean, affine (or unimodular affine) and projective groups.

Among the methods that can be used to obtain such descriptions there is one
that clearly emerges because of its simplicity, elegance, generality, and because
it is quite amenable to computer implementation. This method is known as the
Cartan’s moving frame method and has been developed in the first decades of
this century by Elie Cartan and his students [2, 3]. The method is widely used in
mathematics and physics but has not yet attracted many researchers in computer
vision with the notable exception of ter Haar Romeny and his coworkers [17].

In section 2 of this article we give a detailed description of the moving frame
method which is completely general and can be used (and automated) in all
practical cases. This description uses the tools of the modern exterior differential
calculus which were being invented at the time Cartan was developing his moving
frame method and is an extended version of what can be found in [2].

We then attempt to help the reader develop some intuition about how the
method actually works by using it on three simple and useful examples: plane
curves subject to the action of the euclidean, affine, and projective groups. To
help even further the intuition we present geometric interpretations of the affine
and projective arc lengths. We also relate projective and affine invariants to the
more familiar euclidean ones. We found these relations quite useful in applica-
tions.



The question of scale-space is discussed in the context of curve evolution.
This approach is closely related to the scale-space defined for grey-scale images
[23] through for example the evolution of isophotes. But it is also closely related
to the question of shape description as shown for example in the work of Kimia
Tannenbaum and Zucker [12]. For the three groups of interest we show that the
Cartan’s method provides a natural framework in which to think about curve
evolution as predicted by an intrinsic heat equation. One important idea which
follows from the study of differential invariants is that the evolution of the curve
is defined, up to a transformation of the group of interest, by the evolution of its
arc length and of its curvature. The euclidean case had been covered by Gage
and Hamilton [8, 9, 10] from the viewpoint of mathematicians and by Mackworth
and Mokhtarian in computer vision [15]. The affine case has been worked out by
Sapiro and Tannenbaum [19, 18, 21, 20] and by Alvarez, Guichard, Lions and
Morel [1]. The projective case is new and we shed some light on it in this article.

One interesting fact is that the three scale-spaces are intimately connected
in the sense that they can be thought of as forming a hierarchy. It is likely that
this hierarchy can be used in several ways. In this article we develop only the
application that consists in reducing the order of derivation that is required to
compute the invariants. For example, we show that the affine scale-space reduces
the order of derivation necessary to compute the affine curvature from four to
three by trading space for scale. A similar property holds in the projective case.

2 Method of moving frames

The method of moving frames, due to Elie Cartan [2, 3], deals in a very simple
way with problems of differential calculus on curves and surfaces in a context
which is not necessarily the usual Euclidean one. In our opinion, the efficiency
of the method lies in its potential for being automated, i.e., we can easily write
it in an algorithmic form.

We will consider essentially projective, affine and Fuclidean spaces which
can be regarded as specialisations of each other. Groups of the same name are
fundamental for understanding these spaces.

2.1 Background on projective frames

A projective frame in P” is a set of n + 2 projective points such that no subset
of n+ 1 of these points belongs to the same hyperplane. We will designate them
by Ag, A1, -+, Any1. If we choose A, 41 such that

Anpi =) A,
=0

then the representatives of points A;, ¢ = 0,---, n are defined up to global scale,
i.e., if A; is a representative of point A;, then so is AA;, for any ¢ = 0,-- -, n.



With this choice, the fact that no subset of n + 1 of these points belongs
to the same hyperplane is equivalent to saying that the determinant of size
(n+ 1) x (n+ 1) of representatives of the first n + 1 is different from 0

det(Ag, -, Ay) £ 0

The set of frames of the vector space R*t! satisfying the previous condition is
an open set U of (R"*1)"*1 the complement of the closed set defined by

det(Ag, -+, Ay) =0
We can normalize things in such a way that we have the important condition
det(Ag, -+, Ap) =1 (1)

The mappings A; : U — R**! will be considered as the differentiable mappings
of the open set of (R"*1)"*! into R™*!. For a given frame r, we note A;(r) the
value of that function at the point r of U, i.e. the representative of the i+first
point of the frame r.

2.2 Cartan equations: projective case

We will consider a frame r € U depending on one or more parameters. Such a
frame is called a moving frame.

The n+ 1 functions Ag, A, -+, A, defined on the open set U naturally give
us n differential forms of degree one. Therefore dA;(r) € L((R"1)"+1; prtl),
the set of linear mappings from (R"*1)"*+! into R"*1. One of the key points of
the method of moving frames is to write the value of this linear mapping in the
projective frame r

Ai(r) = Z wij(r)A;(r) (2)

Therefore the functions w;; are differential forms of degree one with values in
R.. This relation is true for ¢ =0, ---,n+ 1.

The differential forms w;; are not independent, they satisfy a number of
equations, called the Cartan or Lie equations which we now derive.

By differentiating the condition (1) on the determinant of points A;, we
immediately obtain the following relation satisfied by the forms w;;

Zw“’ = 0 (3)

This means that there are only (n + 1)? — 1 independent differential forms. This
is precisely the dimension of the projective group of P?. By writing that the
second differentials of forms dA; are zero we obtain n + 1 additional relations



which must be satisfied by the forms w;;. In effect, from well-known properties
of exterior differentiation, these relations can be written
d(dAZ) = Z(dAJ ANwij + dwijAj) =0 (4)
j=0
If we replace dA; in this equation by that given in (2) , we obtain the following

relations "

n
0= Z(dwij — Zwik /\wkj)A]' 1=0,---,n
j=0 k=0

and since the points A; form a projective frame, we deduce

n
dwi]' = Zwik A wij (5)
k=0
These equations, called the structure or Cartan equations, are fundamental for
the study of projective curves and surfaces.

2.3 Cartan equations: Affine and Euclidean cases

This is a specialization of the previous ideas to the affine and Euclidean cases.
We will need coordinates and we denote by zg, - - -, z,, the coordiantes of a point
of P™. In the first case, we choose a particular hyperplane H of P” to which
we can give an affine space structure as the hyperplane at infinity of space P™.
The affine transformations constitute the subgroup of the projective group that
leaves H invariant. The points of H represent the directions of the affine space
A" thus constructed. If we choose for H the hyperplane of equation z, = 0,
then a point of A" with coordinates g, - - -, 2,1 corresponds to the point of P"
with coordinates zg, -, 2z,_1,1 and a vector v of R”® corresponds to the point
of H with coordinates [v? 0]7, to within a nonzero scalar.

An affine frame consists of a point A, the origin of the frame, and n vec-
tors of R™ written e;,2 = 1,---,n. We suppose that these vectors are linearly

independent, i.e.,

det(e;) # 0 (6)
An affine frame can thus be considered as a particular projective frame for which
Ag is in P"\H and the A;,i=1,---,n are in H. Condition (6) implies that the
set of affine frames is an open set U of R*(**+1)_ A and e; are thus differentiable
functions U — R™. As in the projective case, we can consider an affine frame r
which depends on one or more parameters. This frame is called moving frame.
Using reasoning similar to the projective case allows us to write the differential
forms dA, deq, - - -, de, as linear combinations of vectors e;

n
dA = E w;eq
i=1
n
dei: E Wij€j
i=1



In effect, we have the particular case Ag = [AT 1]T, A; =[e],0]7,i=1,---,n,
thus dA and de; only depend one;, i =1,---,n.
Equations (5) are still valid

dw; = Ewk A Wi (7)
k=1

dwij:Zwik/\wkj 5,3=1,---/n (8)
k=1

If we consider the subset of affine frames such that det(e;) = det(Ag, -+, A,) =
1, we must add an equation similar to equation (3)

Zw“’ = 0 (9)

Corresponding to this restriction on frames is a restriction on the group of trans-
formations of the space in which we are interested. Here we consider the uni-
modal subgroup of the affine group. This subgroup is defined as follows. The
transformation M’ of a point M of A" by an affine tranformation is given by
the relation

M' =HM +b

where H is a matrix of size n x n such that det(H) # 0, and b is a vector of
size n. The unimodal subgroup is the one for which we have det(H) = 1. The
unimodular affine group depends upon n? — 1 + 1 parameters which, according
to (9 is precisely the number of independent differential forms w; and w;;.

We consider the Euclidean case similarly by introducing Euclidean frames
which are affine frames such that the matrix of the vectors e; is orthogonal. We
express it in the form

e; e = 0
and by differentiating these relations, we obtain
e;-dej +de;-e; =0
We deduce by replacing the differentials with respect to w;;
wij+wji=014j=1,---,n
and thus we have in particular
wi; =0 Vi

The euclidean group depends upon ¢ = "2% parameters which, according to
our analysis, is precisely the number of independent differential forms w; and
Wij .



2.4 Introduction to the method of moving frames

We will consider a set D of points operated on by a finite and continuous group
G with ¢ parameters. In practice, D will be a Fuclidean, affine, or projective
space and G will be one of the groups previously studied. In this section, we
note wy, - - -,w, the differential forms attached to a general frame.

We will consider manifolds of dimension A in D. In practice, we have A = 1
or 2, i.e., we will study curves or surfaces. To a point A of manifold V) we attach
two types of elements

Frames : an infinity of inclusive families of frames: frames of order 0, - - -, frames
of order P.
Integers : g, the number of invariants of order 0, - - -, up — pp_1, the number

of invariants of order P.

We then define the contact element of order P of the point A of V) as the family
of frames of order P of this point and by the set of invariants of order < P of this
point. Note that the transformations of these frames into each other constitute
a subgroup Gp of G, called the subgroup of order P of the contact element
considered.

In other words, each contact element is characterized by a family of frames
relative to which it occupies the same position, and by a system of numbers
concerning its “form”, the invariants. This notion of families of included frames
is interesting for many reasons. One of them is that it will allow us to compare
the Frenet frames obtained for groups of included transformations: the Frenet
frame for the Euclidean group will be a particular frame of order three for the
affine group. Similarly, the affine Frenet frame is a particular frame of order 3
for the projective group.

Let us take a contact element of order P; its most general frame of order P
depends on vp parameters, which we call secondary parameters of order P and
write z1,- -, #,,. These parameters are different from the A parameters, called
principal parameters, on which depend the points of the manifold V3 and which
are written t1,---,%x. Note that the frames of a contact element correspond to
constant values of principal parameters since the origin A of the frame is fixed.
We can show that infinitesimal translations of this frame are characterized by
the property that ¢ — vp linear combinations of the w; components disappear.
More precisely, infinitesimal translations of the most general frame of order P—1,
attached to the contact element being considered, eliminate g—vp_; independent

linear combinations of wy, - - -, w,. In effect, for a frame of order P — 1, the forms
wi, - -,we depend on A + vp_; parameters and we can write
A vp—1
w; = Zaljdt]’ + E bipdxy,
j=1 k=1
where a;; and b;; are functions of £, ---, 45,21, -, %,,_,. By eliminating the

vp_1 forms dzy from among the ¢ forms w;, we obtain ¢ — vp_; linear combina-
tions of the ¢ forms w; which are expressed as linear combinations of the A forms



dt; and which disappear when the principal parameters are constant, that is for
a frame belonging to a contact element of order P — 1, or in fact, to a contact
element of any order higher than P — 1.

The infinitesimal translation of a frame of order P eliminates these ¢ —vp_y
linear combinations and vp_1 — vp others that we will call principal components
of order P. We note them 7,0 =¢—vp_1+ 1,9 —vp.

Let us now consider the most general contact element of order 0, i.e., any
point A of D and vertex frames of this point. Reasoning similar to the above
shows that the principal parameter differentials are linear combinations of A
forms suitably chosen among the principal components of order 0. We assume in
the following, to simplify without loss of generality, that these A forms are the
first A principal components of order 0, of which there are ¢ —vg, i.e., w1, -+, 7.

A frame which varies while always remaining of order P depends on the A
principal parameters of V, and on vp secondary parameters of order P. By defini-
tion, its principal components of orders < P are independent of the differentials
of the secondary parameters; these are thus linear combinations of 7y, -, wy.
Therefore, we have the following proposition

Propositionl. The principal components of orders < P of the frames of or-
der P of Vi are linear combinations of w1, -, w5 with coefficients in terms of
wnvartants of order < P.

Since the invariants are functions of the principal parameters only, we can also
state the following proposition

Proposition2. The differentials of invariants of orders < P are linear com-
binations of mwy,---,wy with coefficients which are functions of the invariants
of orders < P. The differentials of the invariants of order P and the principal
components of order P of the frames of order P are thus linear combinations of

w1, -, T with coefficients in terms of the invartants of order < P
A
dko = baimi ppo1 << pp (10)
i=1
A
Wa:ZbiM»ﬂ'i g—vp_1 <a<q—vp (11)
i=1

The coefficients b,; and b/, are functions of the invariants of order < P and
of the secondary parameters of order P. They are called coefficients of order P.
The fundamental idea of the method of moving frames is to study how the group
Gp affects coefficients of order P.

Let m;,i =1,---,q—vp be the ¢ —vp principal components of order P which
are linear combinations of ¢ forms w;

q
ﬂ'i:Zaijwj i:1,~~~,q—l/p (12)

ji=1



The coefficients a;; are either constants or functions of invariants or order < P.
Let us compute the exterior differentials of the =;

q q
dm; = Z dai]' Awj + Zaijdwj (13)
j=1 ji=1
Differentials of a;; can be written in the form

hp
daij = Z Dwmdk’m (14)
m=1
and we know the structure equations of group G

dw, = E Cpstws N\ Wy

5,1

To simplify the developement we then suppose that the rank of the first square
submatrix of size ¢ — vp of the matrix [a;;] equals ¢ — vp which allows us to

compute w;, i = 1,---, ¢ — vp with respect to m;
q—vp vp
Wi = Z a;j7j+zdian—yp+n t=1,-,qg—vp (15)
j=1 n=1

If we now consider the differential system
7r1:0 ﬂ-q_yP:O

this system is completely integrable when the principal parameters are constant.
Therefore, according to Frobenius’s theorem, we have the following relations

dmi AT A ATq_yp =0 i=1,---,g—vp
By replacing dm; by its value (13) in this expression we obtain the relations

E?:l daij ANwj ATy N NTg_yp+
Es,t(zgq'ﬂ a;jCjst)ws ANwg AT A - ATg_yp =0

izla"'aq_VP

The first part of this relation including the terms in da;; identically equals zero,
by (14) and (10). The other part will contribute to eliminating all terms con-
taining factors w,; A w; with s and ¢ > ¢ — v,. More precisely, let us rewrite the
second part of the previous relation as

EAistws ANwg AT AN ATy, =0
5,1

If we replace in this expression all values of w; and w; for values of the indexes
s and t less than or equal to ¢ — vp by the expressions (15) and group the terms
together, we will end up with an expression like

E Ajggws Nwg AT A Amg_yp, =0
s,t>q—vp,s<t



in which only the indexes s and ¢ larger than ¢ — vp are left. Since the differential
forms which appear in this sum are linearly independent, it implies that all
the coefficients A}, are equal to 0. But these coefficients are precisely those
which appear in the second part of the expression for dm; in (13), hence the
corresponding terms will disappear from this expression and there will remain
only the terms for which the differential form w; Aw; AT A~ A _y, is identically
0 i.e. those terms of the form mo AWy ATIA- - ATy, a =1, q—vp, t > q—1p
and those of the form o ATg AT A Amy_y,, 0,8 =1,---,¢g—vp. We can
thus write

d"ri = (qx_ﬁVPl CiapTa ATp + Zq v UP 1 AinaTa ANWg—vpint
S Dl Ao S S B Aqrgn (16)
Z = 1a yq—Vvp

We now reach the climax of the plot. Let us take the exterior differentials of
equations (10) and (11)

A A
0= dbai Ami+ Y bai Admi pp_y < a <pp (17)
i=1 i=1
A by
dﬂ'a:Zdb;i/\ﬂ'i—l—Zb;i/\dﬂ'i g—vp_1<a<qg—vp (18)

and make two substitutions.

The first substitution consists of replacing the vp — vp_; principal compo-
nents m, of order P in the equations (16) by their values given by (11), thus
depending on coefficients of order P which we represent as the vector b’ of size
A(vp — vp_1), the ¢ — vp_; principal components of order < P by their values
with respect to @y, -+, wy and coefficients of order < P. Similarly, let us replace
in these equations the differentials of the up — pp_; invariants of order P by
their values taken from (10), that is with respect to coefficients of order P which
we represent as the vector b of size A(up — pup_1), and the pp_; differentials
of invariants of order < P by their expressions with respect to w1, -+, 7y and
coefficients of order < P. We thus obtain

dﬂ-i = Eiﬁ 1 Zaﬁ(b bI)ﬂ-a AT g + Ea 1 EVP A;an(bl)ﬂ-a A wq—VP+Tl+
Za 1 EVP B;an(b)ﬂ-a A Weg—vp+n

or

dm; = Z Emﬁ (b, b") TQAT/H_ZZ fan(D, D) ToAwg_ypgn 1 =1, g—vp

a,f=1 a=1ln=1

The second substitution consists of replacing the dm; by their values in equations

(17) and (18). We then obtain

vVp A

A
> (dbaj = fajn(b, b )Yy—ypin + > ran(b, b)) A =0

j=1 n=1 h=1



vp A

A
Z(dblaj - Z gajn(b, bl)wq—VP+n + Z rlozh(ba bl)ﬂ-h) Nmj = 0

j=1 n=1 h=1

From these relations we deduce that

vp A
dbozj - E fozjn(ba bl)wq—l/p+n + Z T’ah(b,b/)ﬂ'h

n=1 h=1
and
vVp A
db/aj o Z gai”(b’ b/)wq—VP+n + Z rlah(b: b/)ﬂ'h
n=1 h=1
are linear combinations of A differential forms m;. If we denote by €4_,.4n the

restriction of the differential form wy_,,4, when the principal parameters are
constant and the principal forms 7y, - - -, w of order 0 disappear, we finally obtain
differential equations yielding the action of the group Gp on coefficients of order

P

vp
dboj =Y fajn(b,b)eq—ypin

n=1

(19)

vp

db/ozj = Z Jajn(b, b/)eq—Vp+n

n=1

Let us examine in more detail how this leads to an algorithmic method for

computing the different classes of frames. At the beginning of step P + 1, we
assume known

1.
2.
3.

o

The number of invariants of order 1, 2, ---, P;

The definition of frames of order 1, 2, ---, P;

The definition of principal components of orders < P of frames of order P,
their expressions in terms of 7y, -- -, m), and invariants of orders < P;

The expressions of differentials of invariants of orders < P with respect to
w1, -, 7 and invariants of orders < P;

then obtain the information at order P + 1 as follows

If necessary, we orientate the contact element of order P in order for the
family of frames of order P to be continuous

. We define the principal components of order P. To do so, we deduce, from the

tables of secondary coefficients of orders P and P —1, a system of vp_; —vp
principal components of order P (equations (12)).

. We compute their exterior derivatives (16).

Using formulas (10) and (11) we define coefficients of order P and compute
infinitesimal transformations (19) of the group Gp taken as operating on
these coefficients.



5. Considering the space Wp of these coefficients, we then determine orbits of
points of Wp under the action of Gp.

6. We then trace in Wp as simply as possible ! a manifold wp which intersects
each orbit in one and only one point. Thus each point of Wp has one and
only one homolog on wp. Choosing a point of wp amounts to choosing an
orbit of Wp.

7. As frames of order P+ 1 we choose frames of order P to which corresponds a
point of wp. We choose as invariants of order P 4+ 1 parameters which allow
us to distinguish the point of wp. In the very important special case when
Gp operates transitively on Wp, wp is reduced to one point and there are
no invariants of order P + 1.

When point B is on wp, equations (10) and (11) yield the expressions of differ-
entials of invariants of order P and principal components of order P in terms
of m1, -+, 7, and the invariants of order P + 1. Gpy; is the subgroup of Gp
which leaves point B fixed. The table of secondary components of order P +1 is
obtained from the table of order P by linking differential forms e, with the re-
lation (19) where we take db,; = db;,; = 0. These relations supply the principal
components of order P + 1 since it is precisely the linear combinations of forms
w; which disappear for all frames of order P + 1 with fixed origin.

We will show by the example of plane curves how the ideas developed above
are applied in the case of the projective, affine and Euclidean geometry.

3 Curves in the Euclidean Plane

This well-known case will allow us to explain the method of moving frames.
We consider Euclidean frames in the plane (A, e;, e2). From what we have seen
above, the equations of the most general moving frame are written

dA = wie] + woeq

de; = wizes

des = —wizeq
These frames thus depend on ¢ = 3 parameters which is the number of pa-

rameters of the plane Euclidean group. Cartan’s structure equations are very
simple

dwy = —ws Awia (20)
dws = w1 Awis (21)
dW12 = 0 (22)

We now consider a curve (¢) of class C? which we will assume parametrized
by t. We will consider the set of frames whose origin is at a point of the curve
(¢). This is a family of frames with two parameters, the parameter ¢, called the
principal parameter, and the orientation @ of e; with respect to the horizontal,
called the secondary parameter.

! This is all a matter of flair and insight!



3.1 Frames of order 0

A contact element of order 0 consists of a point A and all the euclidean frames
having origin A . Frames of order 0 are characterized by the fact that point
A is fixed. These frames depend on only one parameter ¢, and we thus have,
according to the notation of the previous section, vy = 1. Also according to that
section, we must find that ¢ — vy independent linear combinations of w1, ws and
w1g disappear when we restrict them to this subclass of frames.

In effect, the three forms wy, wy and wis are linear combinations of the forms
dt and df. They are thus not independent. If we eliminate dff within these three
forms, we will obtain two two linear combinations depending only on d¢. A linear
combination of these three forms containing only dt¢ disappear for dt = 0, i.e.,
when varying the frame in the family with one parameter # relative to point A.
Let us find these two linear combinations.

Since frames of order 0 are characterized by the fact that the point A is fixed,
we have dA = 0. We will call secondary coefficients, denoted by e; and es, the
differential forms induced by w; and ws on this subfamily of frames, (similarly,
we denote by ¢;;, the restriction to the subfamily of frames under consideration
of the differential form w;;). The condition dA = 0 implies that the secondary
coefficients e; and ey equal zero. We have thus found our two linear combinations
of the forms wy, ws and w2 which disappear along with dt: they are clearly w; et
wy ! We call them principal components of order 0 and, according to the previous
section, we denote them by m; = w1 and w3 = ws. It is useful to visualize in table
form, called the table of secondary components of order 0, the differential forms
which disappear on the subfamily of frames being considered, and the relations
between the others. We obtain

0 0
0 €12
—€19 0

The principal components of frames of order 0 are

Order 0

Wi, W2

3.2 Frames of order 1

According to the above section, we have two principal components of order 0
which are w; and ws. In proposition 1 of the previous section, these principal
components are linear combinations of 77 which is equal to w;. We thus have
wy = aw and a is called the coefficent of order 0.

We consider a frame which varies while always remaining of order 0 ( its
origin is fixed at a point of the curve). From the above, its principal components
of order 0 are w; and ws, which introduces a secondary coefficient a of order 0,
such that

Wo = awq



a 1s a function of the secondary parameter § and of the principal parameter ¢.
Let us compute the exterior differential of wy, using on the one hand the previous
expression, and on the other hand the structure equations (8)

dws = da Awi + a dwi = w1 Awys
Let us use the fact that dw; = —ws Awis = —awi A wis. We obtain
w1 A (da + wi2(1 + a2)) =0

We thus have da + wq2(1 + a2) = awi, and since wi = 0 for frames of order 0,
we finally obtain

da = —(a2 + e

The group Gy operates transitively on @ and we can choose a subset such that
a = 0 from the class of frames of order 0. These frames are called frames of order
1. They therefore satisfy the condition ws = 0. The vector e; is thus tangent to
the curve. According to the previous equation, this implies e;3 = 0. Frames of
order 1 do not depend on any secondary parameter and we thus have v; = 0.
From the previous section, an infinitesimal translation of the frame of order 1
zeros ¢ — vg = 2 linear combinations of wy,ws, wis (wy and wy) and vg — vy =1
new one, which is consequently wis.

Thus the table of secondary components of order 1 is

00
00
00

The principal components of frames of order 1 are

Order 0 |Order 1

w1, wa(=0)| wig

We find here again that the secondary coefficient of order 1, the ratio “}2, is an

invariant of order 2 which we identify as the curvature k. We have the classical
Frenet formulas

dA
= _ e
ds !
de
d_sl = Kes (23)
dez
= —Kej

ds



3.3 Application to the evolution of curves

We are now going to consider the case of a family of curves. In order to deal
with this problem, we change our notation slightly and consider a closed embed-
ded smooth curve (i.e. a curve with no self-intersections). We denote by p the
principal parameter. The curve can be considered as a mapping A : S' — R?
where 8! is the umit circle. We now consider smooth embedded plane curves
deforming in time. Let A(p,t) : S' x R — R? be a family of such curves
where p parametrizes the curve and t represents the time. Let s be the euclidean
arc-length along a curve of the family, a function of p and ¢t. We now propose to
study the following evolution equation:

At = Ass (24)

in which the partial with respect to t is taken at p constant and the partials with
respect to s are taken at ¢ constant. This equation can be thought of as a heat
equation (because of the formal similarity with the usual heat equation) which is
intrinsic to the curve. It has been studied by Gage and Hamilton [8, 9, 10] who
proved that a planar convex embedded curve converges to a round point when
evolving according to (24) and Grayson [11] who proved that a planar embedded
nonconvex curve converges first to a convex one and then to a round point.

Since a curve in the euclidean plane is defined up to a rigid transformation
by its arclength and curvature, it is natural to establish how they evolve in time
when the curve changes according to (24). The key is of course to use the Frenet
equations (23).

We first derive a general result which we will use also in later sections. It is
related to the fact that the operators of partial derivative with respect to ¢ (at
p constant) and with respect to s (at ¢ constant) do not commute since s is a
function of p and t. Let then ¢ equal fjl—;, it is easy to show that the Lie bracket

(2, 2] is equal to

g 0 0? o? g: 0
(5 5) = 5= — 57 = —— - (25)
ot’ O0s Otds  0sot g Os

Applying this formula twice, we obtain the following expressions which we will
find useful later:

o 0% g0 g0 00
90~ Lglas Y e T o (26)
d
- iﬁ__[g_t] 9 _ B3 i_i;g_fﬁ » a4 (27)
otos3 g 95 g " 9s? g 0s3  0s3 Ot

Similarly, we will need the following expressions of the higher order derivatives
of A with respect to the arclength s which we obtain from the Frenet formulae:
A,s = —k%e; + K e (28)
A = —3kske1 + (Kss — fc3)e2 (29)
A = (k* = 3% — drgor)er + (ks — bRk )es (30)



Evolution of arc-length It is now easy to characterize the evolution of arc-
length. We use the relation

e1-e1:1

which can be rewritten as

A, A, =1
and take its derivative with respect to ¢:
Ats ' As =0

We then use equations (25) and (24) to rewrite

A =—TA, + A,
g

Using equation (28) we finally get

gt = —'fzg (31)

Evolution of curvature The principle of the method is to use a differential
equation that is satisfied by each curve of the family. Using the Frenet equations
and equation (28) we obtain

KAy — kA2 + K5A, =0
We take the derivative of this equation with respect to ¢:
KtAgs + KA s — Kis A2 — KgAyg2 + 3kik2A; + K3A; =0

We then use equations (25)-(27), the Frenet equations and equations (28)-(30)
to obtain the equation

P(Kaﬁt; Rs, "fs2)e1 + Q(K, Ri, KRg, Rg2, Kg3, h:ts)eQ =0

This implies P = @ = 0. The first equation yields the sought for evolution
equation:

Kt = Kss + l‘fS (32)

We then replace x;s by —gg—’ffs + kg in @ thanks to equation (25), use equation
(32) and find that @ is identically 0. Equation (32) is an example of a special
kind of partial differential equation called a reaction diffusion equation. These
equations have been studied quite extensively in mathematics (see for example
[22]). In fact we have here a system of two coupled pde’s (equations (31) and
(32)) which must be studied as such.



4 Affine unimodal bidimensional geometry

We will consider the affine frames of the plane (4,e;,es). In section 2, the
equations of the most general moving frame are written

dA = wie] + waeq
de; = wire1 +wizes

des = wore1 —wy1€9

Thus these frames depend on ¢ = 5 parameters which is the number of parame-
ters of the plane unimodular affine group.

4.1 Frames of order 0

A contact element of order 0 consists of a point A and all the affine frames of
origin A. Frames of order 0 are characterized by the fact that the point A is fixed,
thus dA = 0, which implies that the secondary coefficients e; and es equal 0:
g — vy = 2. Thus frames of order 0 depend on vy = 3 parameters. We have two
principal components of order 0, 71 = w; and 73 = w»2. As mentioned above, it
is convenient to set the differential of the principal parameter which defines the
position of a point of the curve equal to the first principal component, i.e., to
w1 . The table of secondary components of order 0 is given by

0 0
€11 €12
€21 —€11

The principal components of frames of order 0 are

Order 0

Wi, Wa

4.2 Frames of order 1

Given a frame which varies while always remaining of order 0 (its origin is fixed
at one point of the curve). According to the above, its principal components of
order 0 are linear combinations of 71, which introduces a coefficient a of order
0, such that s = amq, i.e.,

Wo = awq

Let us compute the exterior differential of ws using on the one hand the previous
expression, and on the other hand the structure equations (8)

dws = da A w1 + adw,

Using the facts that dwy = w1 Awig +wa Awag = wy A (w11 + aws ) and dwy =
w1 Awiz +wa Awaa = wi A (w12 + awas), we obtain

w1 A (da + w1z + a(was —wi1) — a2w21) =0



Therefore we have da + wis + a(was — wi1) — a’ws1 = owr, and as wy; = 0 for
frames of order 0, we obtain

2
da = —e15 — afeaz — €11) + a“ea

The group Gy thus operates transitively on a. We can choose a subset such that
a = 0 from the class of frames of order 0. These frames are called frames of order
1. They thus satisfy the condition ws = 0. The vector e; is therefore tangent to
the curve. According to the equation shown above, this implies e;5 = 0.

We thus have a principal component wys of order 1. Thus vy — v1 = 1 and
frames of order 1 depend on v; = 2 secondary parameters. The table of secondary
components of order 1 is given by

0 0
€11 0
€21 —€11

The principal components of frames of order 1 are

Order 0 |Order 1

w1, wa(=0)] wia

4.3 Frames of order 2 and 3

The same method applied to frames varying while always remaining of order 1
(resp. of order 2) allow us to determine the principal components of frames of
order 3.

Order 0 Order 1 | Order 2 |Order 3
wi, wa(= 0)|wia(= wi)|wi1(= 0)] wa

The form w; satisfies dw; = 0 and is therefore exact. We let
w; =do

where o is called the affine arc length parameter. We have an invariant of order

4, the ratio “2-, which is the affine curvature k. Frames of order 3 are Frenet

frames and we have the following equations

dA
—— —e
do !
de1
= 33
do 2 (33)
d
2 = ke1

do



4.4 Analytic determination of arc length and affine curvature

Supposing the curve parametrized by any parameter ¢ and using the Frenet
formulas, we have

dA _dAdo _ do

dt ~ do dt 't

d’A B d’c n (d0)2

a2~ Vaz TN

Taking the vector products and with e; x es = 1, we obtain

do dA  d’A

— = (— 1/3 34
a = o < @) (34)
This equation will allow us to compute the affine arc length parametrization
from any parametization of the curve. Pushing the derivative further will enable
us to compute the affine curvature. In effect

d3A do 5 d3 do d*c

2 (R(ZZ il 3

a5~ )+ g en 35 e

Taking the vector product with % and extracting k yields

dio d’o
po__at @) 1 LA A (35)
(F)?2 (@ (Fpdr o de

This expression is true for any parameter ¢.In the case where t = s, the Euclidean
arc length, we have
dR

n PA_ b G
R ds3 RZ ™ R
3 dSU' 1 d2R 3 4 dR
El R-% 4 x4kt

+ 9( ds )

d_A:t A

ds ds?
do 1 @ _  1dR p _
dS_R ds? — 3 dsR ds3 __3 ds?

Wl

2R—
By replacing these terms with their values in equation (35), we obtain

. 1d°R 1. 1 dR 4
b= _R 54+ - "R 5 — _(Z2\2R"3
R +35152R 9(515)R

2
We recognize the common term %dfif;’ in the last two terms of the right-hand

side, and we obtain this handsome formula

1 d°R%
2 ds?
Note that we have obtained the relation between the affine arc length parameter
o and the Euclidean arc length parameter s

d_a
ds

k=-R%+ (36)

= k3 (37)



where k is the Euclidean curvature. This, naturally, also yields the Euclidean
norm of the affine tangent e;

_dA  dA ds _eRE
e = do ~ ds do
so that . .
lei|=[R|3 = |k|7% (38)

We can continue and compute the components of the affine normal e, in the
basis (t,n)

dey dRS _i, 1
= %: 75 K 2t+ K3n
The component of the affine normal on the Euclidean normal is therefore equal to
x%. This remark turned out to be of great importance in the affine “scale-space”
analysis [19, 18, 20, 1].

€3

4.5 Geometric interpretation

We take two points A and B, and two line directions d and d’ represented by
two vectors that we denote A’ and B’. These four elements determine a triangle
ABAgp1, where Ag; is obtained as the intersection of the lines passing through
A parallel to A’ and through B parallel to B’. It is easy to show that the area
S of the triangle ABAg; is given by the following formula
1(A’x BA) - (BA x BY)

S§=3 A’ x B/

(39)

The quadruple A, B, A’ and B’ also determines in a unique way a parabola
passing through A and B, and tangent to (A, Ag1) and (B, Ag1). The equation
of this parabola is written

t2
A(t) = Ag+tA) + §A0 (40)

with

Ag=A(t) =A(0)=A A, =A(t;) =B

dA
a li=ty XA' =0 dd—é li=t, xB' =

Let us compute the area of the triangle ABAg; in terms of ¢;. We use (39) to

write
(A6 X AoAl) . (AOA1 X All)

1
2 Al x Al

S(t) =

2 " "
We replace AgA; in the previous equation by t; Aj+ %Ao and A} by Aj+t1 A,
and we obtain

1 1
S(t) = gt?Ag x A



The area of the triangle defined by two points of the parabola at parameters ¢;
and 5 is thus given by the formula

1 1
S(tl,tQ) = g(tz — tl)SA/O X AO
From which we deduce the following addition law
S(to, t1)¥ + S(t1,12)5 = S(to, 12)3

which was already known to Mdbius (see figure 1).

Fig. 1. We have the curious relation
Area(ABA1 ) + Area(BCAyz)% = Area(AC Agy)*

Let us demonstrate that this law is nothing but the addition law of affine arc
length along the parabola. In effect, according to the equation (34), we have
do dA  d’A

@G _ aa 1/3
dt _(dt % dt2)

so that, according to (40)

dO’ "1
P (A x Ag)=

We can conclude that o(t) = QS(t)%, which gives the addition formula.

4.6 Application to the evolution of curves

Similarly to the euclidean case (see section 3.3), we are now going to consider
the case of a family of curves. We use the same notations as in this section
and consider smooth embedded plane curves deforming in time. Let A(p,t) :
8! x R — R? be a family of such curves where p parametrizes the curve and ¢
represents the time. Let o be the affine arc length along a curve of the family, a
function of p and t. We now propose to study the following evolution equation:

A=A, (41)



in which the partial with respect to f is taken at p constant and the partials with
respect to o are taken at ¢ constant. This equation, as (24), can be thought of as
a heat equation (because of the formal similarity with the usual heat equation)
which is intrinsic to the curve. It has been studied by Sapiro and Tannenbaum
[19, 18, 21, 20] who proved that a planar convex embedded curve converges to
an elliptic point when evolving according to (41) and that a planar embedded
nonconvex curve converges first to a convex one and then to an elliptic point.

Since a curve in the affine plane is defined up to an affine transformation by
its arc length and curvature, it is natural to establish how they evolve in time
when the curve changes according to (41). The key is of course to use the Frenet
equations (33).

We use the equations (25), (26), (27) which are unchanged in the affine frame-
work. We will also need the following expressions of the higher order derivatives
of A with respect to the arc length ¢ which we obtain from the Frenet formulae:

A,s = ke (42)
Aa4 = /{:Uel + ]{782 (43)
A,s = (B2 4+ k2)ey + 2k,e9 (44)

Evolution of affine arc length It is now easy to characterize the evolution of
do

arc length. We let ¢ = Fr and use the relation
€1 A €y — 1
which can be rewritten as
A, NA,, =1

and take its derivative with respect to t¢:
A NA, +A NA, =0

We then use equations (25) and (41) to rewrite

Ay =—TLA, + A
g

Using equation (42) we obtain

A AAyy=k— LA, ANA,, =k L
g g

Similarly, using equations (26) and (43), we obtain
A AAry = (k—229A, NA,, =k — 22
g g
and finally
2
gt = —gkg (45)

which is the affine analog of (31).



Evolution of affine curvature The principle of the method is to use a dif-
ferential equation that is satisfied by each curve of the family. Using the Frenet
equations and equation (42) we obtain

A,s — kA, =0
We take the derivative of this equation with respect to ¢:
At03 - k’tAa - k’Ata =0

We then use equations (25)-(27), the Frenet equations, equations (42)-(45) to
obtain the equation

1 4
(gka'a' — 5]{72 — k’t)el =0

This yields the sought-for evolution equation:
1 4
ke = koo — ok? 46

which is the affine analog of (32).

Evolution of euclidean curvature It is interesting to look at the temporal
evolution of the euclidean curvature when the curve evolves according to (41).
In order to do this, we use equation (38) which says:

wln

A, A, =k~

where k is the euclidean curvature. If we take the derivative of this equation
with respect to time, we obtain

wlon

1
Ato . AU = —gfftl"i_

From previous computation, we know that A;, = %kAU, where k is the affine
curvature. Thus we obtain

Ky = —kk (47)

This equation is interesting because it says that we can save one order of deriva-
tion by using the scale-space defined by the curve evolution (41). Indeed, accord-
ing to equation (36), the affine curvature can be obtained from a second order
derivative of the euclidean curvature with respect to euclidean arc-length. But,
according to equation (47), we can obtain the affine curvature from a first order
derivative of the euclidean curvature with respect to time.



5 Plane projective geometry

We will now consider projective frames in the plane (A, A1, As). As in §2.2, the
equations of the most general moving frame are

dA = wgoA + w1 A + worAs
dA1 = wipA +wi1A1 + wisAs
dAs = wa0A +w21Aq + waz Ay

with the relation
woo +wi1 Fwar =0

The most general moving frame thus depends on ¢ = 8 parameters, which is the
number of parameters of the plane projective group.

The moving frame method can be applied in a straightforward fashion to this
case and we do not give the details here. The interested reader is referred to [4].
We find that, in order to get to the Frenet frame, we have to consider frames of
order up to 6.

The differential wq; is exact. Let wg; = do where o is called the projective
arc length parameter. The secondary coefficient % of order 6 is an invariant of

order 7. We write
Wio  wio k

Wol o % o
where k is the projective curvature. Frames of order 6 are the Frenet frames and
we have the following equations

dA

_ :A

do !

dA,
—— =—kA+ A 48
7o + A, (48)
dA
T2 A kA,

do

5.1 Geometric interpretation

We now give a useful geometric interpretation of the projective arclength. Let
us consider two points A and B on a curve (¢), the tangent Ty to (¢) at A, the
tangent Tp to (¢) at B and the chord (A, B). We then consider the pencil of
conics going through the points A and B and tangent there to 74 and Tg. The
equation of each conic in this pencil can be written as

TaTg + A(A, B)?

where A varies between —oo and co. Indeed the degenerate conic (¢1) composed
of the two lines T4 and T of equation T47p = 0 and the degenerate conic
(e2) composed of the double line (A, B) of equation (A, B)? = 0 both belong to
the pencil, the first one being obtained for the value A; = 0 of A, the second
for the value A2 = co. Among the conics of this pencil, there is one (c4) with



a contact of order 3 with the curve (¢) at A and one, (¢p) with a contact of
order 3 with the curve (¢) at B. Let A4 (resp. Ap) the corresponding values
of the projective parameter A. We consider the cross-ratio of the four conics
((ca),(cB),(c1), (c2)). It is a projective invariant equal to the ratio A4 /Ap. We
relate it to the projective arc-length op — 04 between the two points A and B
on the curve (¢).

Let us consider the Frenet frame (A4, A1, A2) at A. We represent each each
point M of the projective plane by its coordinates z, y in this coordinate system,
ie.

MIA—|—$A1+yA2

Finally, we choose A as the origin of arclength o. Let X(o),Y (o) be the coor-
dinates of B and let us compute the equations of T4, Tg, (A, B). Clearly, since
Ta = (A, A1), the equation of Ty is simply y = 0. Since B = A + XA; + YA,
we have By = X'A; + Y'A, where ’ indicates the derivative with respect to
arclength. Since Tp = (B, By), the equation of Tg is (X —2)Y'+(y—Y)X' = 0.
Finally, the equation of (A, B) is yX — #Y = 0. The equation of our pencil of
conics can thus be written as:

(X =2)Y" + (y = Y)X )y + MyX —aY)? =0 (49)
Let us now compute A4 and Ap. To find A4, we rewrite (49) as:
_ A B
y= TXY'=X'Y —zY 'ty X' (yX — IY)2 =
A —:cY’+ x!
— vy (yX —2Y)?(1 - FELAE

expanding the square we find:

AY?

sz + azy + fy? + terms of higher degree in z and y

y=-

Since the reduced equation of the curve (¢) is y = x2—2 +o(z*) ([4]), the conic (ca)
of the pencil which has a contact of order 3 with (¢) at A is defined by:

L XY - XY

AT T oy
The Frenet frame at B is defined by B and B; which we have already discussed
and Bs whose coordinates in the Frenet frame at A are X and Y”. Thus the
equation of the line (B, By) is (X —2)Y" + (y —Y)X" = 0. We let u = (X —
2)Y'"+ (y—Y)X" and v = (X — 2)Y' 4+ (y — Y)X'. The equation of (¢) in
the Frenet frame (B, By, Bs) can be written v = % + o(u*). A straightforward
computation shows that x and y can be expressed as functions of u and v as
follows:

(50)

v X" —uX' Y —uY’
r = X + Y//X/ _ Y/XI/ y = Y + Y//X/ _ Y/XI/

This allows us to rewrite equation (49) as follows:

oY — uY’ V(XY = X"Y) +u(X'Y — Y'X)

2
IU(Y + YIIX/ _ YIXII) + A( YIIX/ _ YIX// )




from where it follows that:

A , 1
I (W(X'Y — XY")? + auv + Bv?) Ty
V(Y X! —yrxm? L+ Y(Y’}’/X’—;/"X”)

and therefore:

AMX'Y — XY')?
v=— Y(;”X’ — Y’X3’)2 u? 4+ yuv + 6v? + terms of higher degree in u and v

Since the reduced equation of the curve (¢) is v = % + o(u?), the conic (cp) of
the pencil which has a contact of order 3 with (¢) at B is defined by:

Y(Y//Xl _ lell)Q

Ap = —
b 2X'Y — XY')?2

(51)

From this we write the ratio Aa/Ag:

A (XY XY
As - YS(Y//X/ _ Y/X//)z

Considering the fact that we have Y = £~ — )2(—5 +0(X7) (see for example [4]),

2
we find that:
Aa 11

VST
Since X = o+ O(0?) ([4]), we have obtained the following important result:

log!/%( J13X +o(X?)

Proposition3. Let A and B be two points of a curve (¢) and o be the projective
arc-length of the portion of the curve between A and B. If we consider the four
conics (¢1),(c2),(ca),(cB) defined above and belonging to the pencil of conics
tangent in A to the tangent to (c¢) at A and in B to the tangent to (¢) at B,
we can define their cross-ratio T = {(c1),(c2);(ca),(cB)}. We have the following
property:

log'/3r

11
lim =(—
o—0 o 10

)1/3

This proposition gives a geometric interpretation of the projective arclength.

5.2 Analytic determination of the arc length parameter and
projective curvature

We shall use a method which is somewhat different from the affine case, i.e., the
method of differential equations. This gives a complementary insight, even if the
moving frame theory is more geometrical. We thus consider a point A of a plane
curve (¢) parametrized by ¢ with projective coordinates zq(t), z1(t), z2(t). We
let A = [zo(t),z1(2), z2(¢)]T. The coordinates z; of A all satisfy the same third
order differential equation obtained by setting the determinant of order 4

1"

0" 0" 0 0
AI” A” A/A



to 0 (take 0 = 24,1 =0,1,2).

We write this equation in the following form

6”/ +p011 + qgl _|_ 7’9 — 0 (52)
by letting
S A’A| _ A" A" Al (AT A" A
P A A AT TATAA] T T AT A4

and excluding the points of inflexion for which
|A"A"A|=0

Equation (52) defines a class of curves projectively equal to each other and to
the curve (¢), but it does not necessarily give all curves projectively equal to (¢).
In effect, if we change A into A = A(t)A, we obtain a new equation (52) which,
from the same curve (¢), also defines curves that are projectively equal to it.
This also applies to the change of parameter ¢ — ¢ = f(¢).This indeterminacy
allows us to simplify the equation (52). We look for two functions A(t) and f(t)
in order to eliminate the terms in ¢ and 6" in the equation. We shall see that
there are infinitely many possible ways, as ¢ is only defined up to homography.

Reducing the differential equation We thus want to convert the equation

d2A d2A dA
A=0
s TP Tyt (53)
to the form d3A
——— 4+TFA=0 (54)

by means of the transformations

In the following, we represent derivatives in ¢ by superscripts. We easily compute
the following expressions

dA dA dt N A

E_EE_FAJFFAI
2N " " /
—<f—f—f><f—ff Wt g
SR P 7 SN
+(3X’ X A" 3/\f”2)A,

75 T e
3N 3Af A
s A A




Thus in order to determine 7(¢), A(t), f(t) we obtain the system of three equa-
tions

3 3f"
T TP
3)\// 6)\’ f” flll + 3fll2 3
A A f/ f/ f’2
A R) N AN U S ) U A

D W A N T W R A
The first equation gives the ratio )‘TI
A/ fll p
373 (55)

hence the ratio AT by derivation. If we replace these two ratios by their expres-

sions in the second equation after simplifying, we obtain
1 flll 3 fll2 1 1 1
ST i = b P e

2 f 4 f 12 4 4

The first member of this equation is the Schwarzian of T with respect to ¢. Once

t is known we deduce A by means of (55).

We easily see that f is defined only up to homography. In effect we have the
following proposition

(56)

Proposition4. If we consider two functions f(t) and F(t) of the same vari-
able t, then a necessary and sufficient condition for F' and f to be related by a
homographic relation with fized coefficients

_af(t)+b
PO=rw+d

is that the Schwarzians {F}; and {f}: are equal.

Proof. The proof involves eliminating the three unknown parameters defining
the homographic transformation by successive derivations. We first obtain

(ad = be)f' (1)
(cf(t) + d)?

and the logarithmic derivative of both sides of this equation gives

F/(t) =

1" 1"

FO_r@ 20

Py f) )+ 4

A further derivation eliminates the constant % giving the equation

1 1"

FU) 3ET) fU) 317

Fty  2F20) - fO) 2 1)
't ={rhk

i.e., as required



It follows that if we consider the cross-ratio of the four values of # corresponding
to any four points of (¢), this ratio does not depend on the particular choice of
t. This is an invariant for the four point system. We shall call it the four point
cross-ratio on (c).

Projective arc length parameter If we take into account the expressions of
t and of A(t) in the last equation of the previous system, this reduces to

/ 1 2 1 1 1 i
—£'3 3 ! / —
—r— - S g+ = —p = H(t
rfR=r—gpat oopt = gd + g + g (t) (57)

which can also be written
Fdi° = Hdt3

Thus whatever the choice of ¥ as the solution of the Schwarz equation, the

expression of 7dl° always has the same value. We obtain the differential do of
the arc length parameter by letting

do® = Fdt° = Hdt3

Thus we have
do =75di = H3dt (58)

Since H involves derivatives of the fifth order, we find that the differential of the
projective arc length parameter is an invariant of (¢) of the fifth order.

Projective curvature Using o to parametrize (¢), equation (53) has no terms

n d;ﬁ and is written in the form
d2A dA
—— +2k—+hA =0
do3 + do +

The quantities h and k are invariant by a projective transformation on (¢), but
they are not independent since, for any parameter ¢, we must have

do® = Hdt?

In particular, if we have dt = do, we have H = 1 which, taking into account
equation (57) enables us to write

h—k =1
When parametrized by its projective arc length, the differential equation of the
curve is written in the form

d3A dA
—— +2%k—+(k"+1)A =0
do3 + I + (kK +1) (59)



This leaves only one invariant k in the equation, and it is the projective curva-
ture introduced previously. As ¢ is the chosen parameter, we can compute the
projective curvature, and

t=op=0q=2kr=k+1

The Schwarzian {¢}, of ¥ with respect to ¢ is given by (equation (56))

_ 1

tle = =k

o=
and we can deduce

k= 2{%}0

To determine k& we need the following theorem

Theorem 5. Given two functions x(t) and y(t) of the same variable t, we have

{y}odz® = [{y}e — {z}:]dt®
Applying this theorem to z(t) = o(t) and y(t) = #(t), we obtain

{1} ,do” = [{T}: — {o}Jdt?

hence, taking into account the expression of k, we have

We know {t}; and we need to compute {c};. We have

do 1

27 _ g3

dt
Deriving logarithmically

o 1H

o 3 H

and a further derivative yields

1 " 1 I
o o 2 1H 1 H?

o ¢ 3 H 3H?
From these two relations we immediately deduce

1 U-III 3 0-112 1 HII 7 HI2
(h=3% -1 =

20 40 6 H 36 H
Hence by replacement in the expression of k

1"

1 1 1H 7 H?
V- +ge-35r+ ] (60)

1
k:H_E[__ ——
2 6 3 H 18 H



Relation with unimodal affine geometry Let us suppose that the curve (¢)
is

parametrized by its affine arc length o,. The affine Frenet frame is a spe-
cial case of the projective frame where the vectors e; and e; represent A;
and Ay, two points of the line at infinity, whose projective coordinates are
A; = [e], 0], i = 1, 2. Also, the origin A, of the frame defines a projective
point A, with coordinates A, = [AZ 1]7. According to the affine Frenet equa-
tions (33), the point A(o,) satisfies the differential equation

"

0" 6" ¢ o
kael €2 €1 Aa =0
0 00 1
written in the form
0" — k0 =0

where k, is the affine curvature. We thus have
p=0g=—k,r=0

The differential equation that gives the projective parameter ¢ (equation (56))
is

_ 1
tle = ——k4
{tho. =~
As for the projective arc length o, (equation (57)), we have

1 dk,
H(oa) = 2 do

By making this equation closer to the equation (60) we obtain the relation be-
tween the projective curvature k, and the affine curvature

B2 ke LEY T R,
l{:p_(7) [—7—§E+E(E)] (61)

where / indicate a derivative in o,. We also obtain the relation between the
projective arc length and the affine arc length

do, (1dka)%
do, “2do,

(62)

We can also consider the scale factor A, a function of ¢,, which enables us
to transform from the affine point A, to the normalized point of the projective
Frenet frame. We write that A = AA, and we determine A so that | A A; Ay | =
1. We then apply the affine and projective Frenet formulas

A, = AIAG +A Zga e
As = (N 4+ Ab)A, (2N 925 + AT )er +A(425)2kaes

do dog »

(63)




where / indicates a derivative in op and we find

doa

AA A=A -1
A A As] =002
Hence, given the equation (62),
]{fl 1 do
A =(-2%)s = p 64
(ot = 4 (64)

where the / indicates a derivative in o,.

5.3 Application to the evolution of curves

Similarly to the euclidean and affine cases (see sections 3.3 and 4.6), we are now
going to consider the case of a family of curves. We use the same notations as in
these sections and consider smooth embedded plane curves deforming in time.
Let A(p,t) : 8! x R — P? be a family of such curves where p parametrizes
the curve and t represents the time. Let o be the projective arc-length along a
curve of the family, a function of p and £. We now propose to study the following
evolution equation:

At = Agg (65)

in which the partial with respect to ¢ is taken at p constant and the partials
with respect to o are taken at ¢ constant. This equation, as (24) and (41), can
be thought of as a heat equation (because of the formal similarity with the usual
heat equation) which is intrinsic to the curve. It has been studied by this author
[5, 6].

Since a curve in the projective plane is defined up to an projective transfor-
mation by its arclength and curvature, it is natural to establish how they evolve
in time when the curve changes according to (65). The key is of course to use
the Frenet equations (48).

We use the equations (25), (26), (27) which are unchanged in the projec-
tive framework. We will also need the following expressions of the higher order
derivatives of A with respect to the arc-length o which we obtain from the Frenet
formulae:

A, s = —2kA, _(1—}—]{70)A (66)
Agi = (—ko2 +2k")A — (14 3k, )AL — 2k A (67)
Ags = (—kos + Tk, + 3k)A + 4(k* — ko) AW — (14 5k,)A®) (68)

In these equations, we have written A1) and A(?) instead of the usual A; and
A5 to avoid problems with partial derivatives.



Evolution of projective arc-length It is now easy to characterize the evolu-
tion of arc-length. We use the relation

|A A A(®) | =1
and take its derivative with respect to t:
|AAD A | =] A ADAD |+ | AALAD |+ [ AADAD =0 (69)

According to the equations (65) and (48) the first determinant is equal to —k.
According to the equations (25), (66) and (48) we have

AV A, =-ZAD LA = (T2 AD — (14 k,)A
g

g

and thus the second determinant of the right-hand side is equal to —(%’ + 2k).
Similarly, the second Frenet equation allows us to write

0
A§2) _ E(kA—i— Ayr) = kiA+kAss + Atoo

Using equations (26) and (67), we can compute the coefficient of the term A(%)
in that expression which yields —(Qgg—’ + k) for the value of the third determinant

in the right-hand side of equation (69). Adding these three values and equating
them to zero, we obtain

A AAy,=k— LA, ANA,, = k-2
g g

Similarly, using equations (26) and (43), we obtain

4

which is the projective analog of (31) and (45).

Evolution of projective curvature The principle of the method is once again
to use a differential equation that is satisfied by each curve of the family. We
can write equation (66) as

Ays +2kA, = —(1+ky)A

The two sides of this equation represent the same projective point., i.e. A. The
projective point represented by the left-hand side follows the same curve, for a
constant value of p, as the point A. This implies that the tangents must be the
same, and therefore that the two vectors A A A; and A A %(Aoa + 2kA,) are
parallel. Using equations (65) and the Frenet equations, it is easy to show that

ANA, =ANAD (71)



In order to compute %(Aoa + 2kA,) we use equations (25), (27) et (68) to
obtain

A/\%(Aoa—i—%Ao) = (2ky—Akyo+ 4k L —[91],) ANAD —(14+5k,+3[2],) AAA )
g ‘g
(72)

The condition that the two vectors are parallel is thus equivalent to the two
equations

gt _ 19t —
th—4k’o2—|—4k’g [g]02—0

1+5k0+3[%]0 =«

where « is a function that is equal to 1 + k, according to the equation (70).
Replacing in the first equation the value of £+ and of its second order derivative
with respect to o computed from the second equation, we obtain the sought-for
evolution equation:

4
ke = g(/c02 + 2k?) (73)

which is the projective analog of (32) and (46).

Evolution of the affine arc-length and curvature We now relate the previ-
ous results to affine geometry for two reasons. The first reason is that the analog
of equation (65) has been studied in the affine case and therefore it is interesting
to compare the evolutions of the curve in the two cases. the second reason is
that, in some sense, the affine results will shed some light on the projective ones.

Let then E;,¢ = 1,- -, 4 be the standard projective basis of P2 which is repre-
sented by the standard basis of 3 and the vector [1,1,1]7. The set P?\(E}, Es)
i.e. the projective plane minus the ”line at infinity” is isomorphic to the affine
plane A2, This identification allows to define a family of curves embedded in .42
from a family of curves embedded in P2.

Let X, Y and Z be the coordinates of the vector A representing the projective
point A belonging to one the curves in the family. Since we are interested in the
part of the curve included in A%, we can assume that 7 # 0. Let a = %A be
the representative of the point A in A?. At each time instant ¢, we can assume
that this point is parametrized by its projective arc-length o,. From section 4
we know that we can define an affine arc-length as

do 1
: :| E3:aop:aop0p |é

do,

if we stay away from the inflection points where a,, A a;,,, = 0. We use the
affine Frenet equations (33) in

da

dog, — €1
e, _

dog, — €2
de. _kael



We consider the vectors e; and ey as vectors of R? whose last coordinate is 0 to
be compatible with our study of P%. The vectors e; and e, are related by

(s3] A €y — E3 (74)

We have also derived in a previous section the following relations between
the affine and projective Frenet frames (equations (63))

do,
AV = 7 a4 z%%,
? dap

do d’c do
a 7 a 7 a2
2T+ (e

AP =(Z, . + Zk 27,
(Zoy0, + Zkp)at ( ?do, dag

and (equation (64))
dop
do,

If we now consider for convenience the quantity

1 dk,
A==
2 do,

(75)

we can prove (see [5, 6] for details) the following two results

Proposition6. Let h = dgpﬂ the temporal evolution of the affine arc-length is

h 2 Ay s
h = —— 4k A_E __‘era
t 3( P+ ( A

- (2 (76)

and

Proposition7. The function A evolves according to the equation

Ao,

1 Aaaoa
Ay = AR (5

- )’] = A%[log | Als., (77)

Moreover, if we perform the change of variable V = %log A%V evolves according
to the equation

Vi=e V'V, 0. (78)

Looking back at equation (61) giving the relation between the projective and

affine curvatures, we see that equation (77) allows to compute the ratio 3%~ =
which involves a third order derivative of the affine curvature with respect
to the affine arc length as a function of the second order derivatives of the affine
curvature with respect to the affine arc length and the time parameter of the
projective evolution equation (65). Thus, just as in the affine case we gain one

order of derivation if we trade space (arc length) for time (scale).

AUa.Ffa
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Conclusion

This article is a general introduction to Cartan’s moving frame method which
is elegant, simple, and of an algorithmic nature. We have demonstrated how to
use it systematically on three examples relevant to computer vision, curves in
the euclidean, affine and projective planes, and derived the corresponding Frenet
equations. We have then used these equations to show that the analysis of the
deformation of plane curves according to an intrinsic heat equation could be
done in a common framework, yielding very similar expressions for the evolution
of the three curvature invariants.
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