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INTRODUCTION

After Killing [1] 1 and Cartan [1] have given a classification of all simple
complex Lie groups, the determination of all (essentially anisomorphic) simple
real groups may be reduced to the problem of finding different real forms of
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1 The numbers in square brackets refer to the bibliography at the end of this

paper (p. 248).
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218 Felix Gantmacher

a given complex simple structure. This problem was solved by Cartan in 1914 in
his great memoir [2]. In it Cartan does not give a general way to deal with the
problem, but considers separate simple complex structures, and operating in each
case with specific devices finds all different real forms. In 1929 Cartan 2 establi-
shed a beautiful theorem giving a general method for the solution of the pro-
blem. But although the theorem itself is of a purely algebraical character, Cartan’s
proof of it is based upon the theory of symmetric Riemann spaces developed by
him. In the same memoir Cartan points out how the canonical representation of
inner automorphisms in a simple compact Lie group may be used for the appli-
cation of his theorem to the p;oblem of finding simple real groups.

The absence of a canonical representation of outer automorphisms makes it
however impossible for Cartan to apply his second method to some simple com-
plex structures, for instance to the E;. Lardy [1] filled this gap in 1935 —1936,
but in a rather round about and complicated way.

The Chapter [ of the present paper contains an algebraical proof of Cartan’s
theorem. We are using here the canonical representation of inner automorphisms
with simple elementary divisors in a complex Lie group, established in the prece-
ding paper [1] of the author. Accidentally we find a new proof for the remar-
kable connection between the complex an the compact semi-simple Lie group
(Cartan found this connection starting from his theory of symmetric Riemann
spaces). Using further the canonical representation of outer automorphisms3 we
find a similar representation in the compact semi-simple Lie group.

All this gives us the possibility to obtain, in Chapters I and III, with the
help of Cartan’s theorem, all simple real groups with simple complex structure
in a direct and comparatively short way.

For denotations and fundamental conceptions used in the present paper we
refer to our preceding paper 4.

CHAPTER I
REAL FORMS OF A COMPLEX SEMI-SIMPLE LIE GROUP

§ 1. The problem
Consider a real infinitesimal Lie group 3, of r dimensions. If
L (1

is a basis of this group, any infinitesimal e'ement £ can be represented in the form
r
t..—=i§1 85, x (2)

where the parameters t; may assume arbitrary real values. The operation of com-
mutation, applied to the basis elements, gives

le;, ek]"‘—‘;::lcjkes G k=1,...,r). (3)

2 Cartan, [6], p. 27.
8Gantmacher, [1], p. 138—143.
¢ Ibid., Introduction.
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The ct,; are the structure constants of the given group in the basis (1); for a

real group the cjk are real.

Suppose now that the parameters 7, in (2) assume all possible complex values.
Then the infinitesimal elements # will form a complex Lie group N of r complex
dimensions. We shall say that the group N is obtained from the group R, by
the process of ,complexing®, and shall call the group R, the real form of the
group <.

One and the same complex group R may have several different real forms.
In fact, there may exist several such bases that the transformation of one of them
into another is realized by a non-real linear transformation, while the structure
constants of each basis are real. To such bases there will correspond different
real forms of the complex group 3.

But beside the process of finding real forms of a given complex Lie group
[process A)] there exists another method [process B)] of obtaining real groups
from complex ones. If we consider the real and the imaginary parts of the para-

meters 7, as real coordinates of a certain vector ¢ in the space of 2r dimensions
and automatically extend to this space the operation of commutation, we obtain
a real Lie group N! of 2r dimensions. The group N! is uniquely determined by
the complex group R.

Theorem 1. Applying to all possible complex simple Lie groups the pro-
cesses A) and B) of forming real groups we obtain all real simple Lie groups 1.

Proof. In order to prove our assertion consider an arbitrary real simple Lie
group o, of r dimensions. After the process of ,complexing* we obtain a com-
plex group 3, which may be non-simple. Accordingly we distinguish two cases:

1) N is a simple group. In this case the original simple real group N, is a
real form of the complex simple group N, or, as we shall say, the simple real
group Jt, has a simple complex structure.

2) N is non-simple. But N is at any rate a semi-simple group, since the semi-
simplicity, being an implication of the fact that the quadratic form ¢ is not degene-
rated 2, is not affected by the process of ,complexing®. In the case under consi-
deration N is a direct sum of two complex conjugated invariant subgroups & and

%, each of which has _r_ complex dimensions. It is easily verified that the pro-
3 P y

9
cess B), applied to any of the groups & and g‘r}, yields a group 3R, isomorphic to
the original real simple group 3.

Indeed, we can choose a basis for § and % respectively in the form

' . n ’ o n r
e,=ep-ie,, e, =e,—ie, (r=12,...,35) (4}

where

1 We call an infinitesimal real group simple, if it has no real invariant subgroups
different from zero and from itself.
2 Cartan, (1], p. 51

1*
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may be taken to be a basis of the original real group Jt,. The structure formulae
for § and g will be as follows:

r

2 - -
le, eq]=§c~;qes, le,, e,]= c;q es. (p,g=1,..., %). (5)

"Mwh

Moreover, since ¢ and  are invariant subgroups in N,
r

[p’ q]‘_‘o (prq:lr'--r'i)' (6)

From (5) and (6) we find the structure formulae for the original group (we put

€8, =Chy +-ics, , s, and ¢ are real):

r r
2 2
A ” ) ’ ’ - ”on
ey egl= 2 21 Chebs T3 21 Cpgs? (7)

On the other hand, if we apply the process B) to &, we find a real simple group
R, with the basis

el,...,e_,:,iel,...,ie,
2 2

If we introduce in the group R, the new basis
1 r

1 1" .
ky=gtp Ky=—ic, (p=1,...,3),

then, using formulae (5), it is easily verified that the structure constants of the
group N, in this basis coincide with the structure constaats of the group R, in

the basis ep, e’. The groups N, and R, are thus isomorphic.

Observe that the process B) correlates to every complex simple group & of
r dimensions a uniquely determined real simple group R, of 2r real dimensions
having a non-simple (semi-simple) complex structure. The structure constants of
the group R, are found in a simple way from the structure constants of .

Thus the whole problem is reduced to the process A), namely to the determi-
nation of different (1. e. in the real domain anisomorphic) simple groups having
a given simple complex structure.

§ 2. The real forms of a complex semi-simple Lie group
Every real semi-simple group gives after the process of ,complexing® again
a semi-simple group. On the other hand, every complex semi-simple group can
be obtained, after Cartan-Weyl, by the process of ,complexing* from a compact
real group, for which the form ¢ is negative definite.
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Hence all real semi-simple groups having a given complex structure may be

‘obtained in the following way:
1°. We start from a real compact semi-simple infinitesimal group 3, in which

for an appropriate choice of the real basis

€1y Cosveey €y

(which is supposed to be fixed throughout the paper) and any element t=21,.ei 1
— (¢, t)=2'c?. (8)

Applying the process of ,complexing® to the group N,, we obtain the group N.
2°, We look now for all linear transformations P in Jq, which transform our
basis e; into a new basis g;==Pe;, in which the structure constants ¢f, of the

»complexed“ group,
(8 &el= 218 9)

will be real. To each such basis g; there corresponds a real semi-simple infini-
tesimal group. In this way we obtain up to an isomorphism all real forms of

the complex group N.

3°. Among the so obtained real groups we choose a complete system of aniso-
morphic groups.

Every linear transformation P, which transforms the basis e; into the basis
&;» 1s determined by a matrix (p,,) such that

Pe; =7 pye,- (10)

Two questions arise in connection with what has been said above:
1. Which are the linear transformations P realizing the transition to real

groups (see 2°)?

2. In which case do two linear transformations P and P, lead to two iso-
morphic real groups (see 3°)?

Let us answer the first question. Consider the complex conjugated matrices
(p;) and (;_rik). The transformations P and P 2 defined by them transform the
basis e; into respectively the bases g, and #;, and the structure constants ¢, and

dj, in these bases will be conjugated:

s, =cs,. (11)

If P realizes the transition to a real group, the cj, are real and &5, =c;,. Then,
since P~1 transforms the basis g; into the basis e;, the product 'PP-1 transforms
the basis g; into 4, and hence preserves the structure constants c§,. But a linear

transformation A transforming a basis into a basis and preserving the structure
constants is an automorphism of the given group. Thus

1 All variable indices occuring in this section run from 1 to r, where r is the dimen-
sionality of the group.

2 According to this denotation we shall call two linear transformations (complexly)
conjugated, if in the basis e; they are characterized by (complexly) conjugated matrices.
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Theorem 2. A linear transformation P transforms a real compact group
N, into a real group then and only then, when

ﬁP—I::A, (12)

where A is an automorphism of the complex infinitesimal group R.
This is the answer to the first question.
Let now P and P, transform the basis e, into respectively

&="Pe;, k=P, (13)

and suppose that to these bases correspond isomorphic real groups with the struc-
ture constants

cs

% and dj,. (14)

This means that there exists a basis /,, connected with &; by real relations

L, =3\ryk;  (r; — real numbers), (15)

for which the structure constants are the same ¢}, as for g;. Then [, =P, (}r;e)).

Let us now define a real transformation R (R =R, see footnote 2) by the equations

Rei-_—_Zrﬁej s, (16)
Then
l;=P\Re,;. (17)

Since P-1! transforms the basis g; into ¢;, the transformation P,RP~! transforms
the basis g; into /; and preserves the structure constants ¢j,. Consequently

PRP-1=A, (A, is an automorphism), (18)
or
P=AP\R, where A=A7.. (19)
Hence
Theorem 3. Two linear transformations P and P, satisfying each the
relation (12) transform the compact group R, into two isomorphic real groups
then and only then, when
P=AP\R, (20)

where R is an arbitrary real transformation and A is an arbitrary automor-
phism of the ,complexed* semi-simple Lie group 3.

§ 3. Cartan’s theorem

In what follows we shall denote by the same letter the linear transformation
and the matrix characterizing it in the original basis e;.
Every automorphism A leaves the form ¢ invariant:

@ (A, Aty =g (t, ). (1)

3 We may point out that from the equation (15) it does not follow that /;= Rk,
since the matrix (r;;) corresponds to the linear transformation R only in the basis e;.
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But in our case @:—21:2‘. . Consequently A is an orthogonal (in general com-

plex) matrix.
Consider those A, for which the equation

PP-1=A (22)
has solutions P. Evidently they satisfy the condition

AA=E, (23)
where E is the unit matrix, i. e.
A—=A"1, (24)
On the other hand, A is a complex orthogonal matrix. Consequently
A =A-1 1, . (25)
Hence _
A=A =A"1, (26)

or A is simultaneously Hermitian and orthogonal.

In connection with this fact we have to analyse the structure of matrices,
which are simultaneously Hermitian and orthogonal.

Theorem 4. If a matrix A is simultaneously Hermitian and orthogonal,

then
A=_3el®, (27)

where S is a real symmetrical orthogonal matrix ( S2=E), ® isa real skew-
symmetrical matrix and S and O are commutable:

SO =PS. (28)

Proof Put A=F-{iK, F and K being real. Since A is Hermitian,
A=A', and consequently

F=F', K=—K, (29).
i. e. F is symmetrical and K is skew-symmetrical. On the other hand, since
AA=E,
we have
F?+ K2} i(KF— FK)=E,
whence

F?+ K?=E, FK=KF. (30)

The symmetrical matrix F and the skew-symmetrical K are thus commutable),
Therefore we can reduce them to the canonical form by means of one and the
same real orthogonal transformation. To this end we first reduce F by a real
orthogonal transformation Q to the diagonal form. Then

F*=QFQ 1= {fiE}, f,Ey - - -, [,E,}, (31)

where fr5477 (Y548, 1. 6=1,2, ..., and E,, E,, ..., E, are unit matrices).
Observe that K* = QKQ~! is again a real skew-symmetrical matrix.

1 By A' we denote the transposed matrix of A.
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The matrices F* and K* are commutable. Therefore K* consists of m ,cells“
situated along the main diagonal (all other elements of K* are equal to zero):

K*={Kly KQ’ --O)Kp}° (32)

The skew-symmetrical matrix Kw may be now reduced to the canonical form

?(T by'a real orthogonal transformation O,. The corresponding transformations
of the matrices ij7 by O7 do not change the matrix F*. Thus we can reduce,

by a simultaneous orthogonal transformation O, the matrices F and K to the
following canonical form:

F=F*={};,f2,...,};},

—_ 0 —k& 0 — &, (33)
= {0 7)o E) 00 o).
Since the matrices F and K are commutable,
Z:E:fl’ e 1};v—l:f2v:fv' (34)
On the other hand,
F2 4 K*=E, (35)
whence _
f?—kf:...:ff—kgz], f§v+1=...:l. (36;
Therefore
= (K —ikl) (f —ikv) } ~
= = R S , =1, ...,x=1 ¢, 37
A F+lK {(lkl fl ’ lkv fv = ( )

— ik
But it is easily verified that a matrix of the type ({k }), where f2 — k2 =1,

may be represented in the form:

=xe ° . (38)

itk f
'Here |f|]==chwy, = k=shg, and the signs = correspond to the signs in
== |f]. (39)
Thus -
A=F—|—iK=
0 —o 1[0~
’—:{"‘e (% 0), cey *e (?v 0 )’+1, 1+1}=Set¢'a (40)
where
S = 0 — % 0 —9,
S=f=t o h = {0 7)o (0, T8 00 e
and
§ = ©s. (42)

Observing that
A=0-140 (43)
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and putting
S=0-150, P=0-100, (44)
we come to the equation
A= Sei®, (45).

where S and @ possess the properties stated in the theorem.
Let us now return to the equation

PPl—A. (46)

Here the automorphism A has the form A=—=Se!®, where S is a real symmetri-
cal orthogonal matrix, ® a real skew-symmelrical matrix and

SO =98S.

Then it is easily verified that the formula

., D
—:2
P=e¢ ’)/SR, . (47)
where R is an arbitrary real matrix and
Vi=1Flsy Lhlg (48)

gives all solutions of the equation
PP-1=Se¢i®, (49)
Let us now prove that @ is an infinitesimal automorphism. The group U of
all automorphisms of a given semi-simple Lie group consists of a finite number
of components: A=Y, A, ...+ A,_; (Y, is the adjoint group, i. e. the

aggregate of all inner automorphisms)2. In other words, the factor-group A/,
is finite. Therefore there exists such an even number 2y that
A2 = i® — S‘)IO .
But @ is a skew-symmetrical real matrix; it has simple elementary divisors.
Consequently the inner automorphism e2"® has also simple elementary divisors.
In virtue of the canonical representation of inner automorphisms with simple ele-
mentary divisors? there exists such an inner automorphism U that
ei® — [J-1eHY, (50)
Here el is a chief automorphism with respect to a certain maximal Abelian
subgroup § in N, containing a regular element, Hx=[hx], k< Y). We may
assume that this subgroup ) is obtained by the process of ,complexing® from
the corresponding subgroup Y of the original compact form. Then
H=H,+iH,, HH,=—H,H,, (51y
where H, and H, are two real infinitesimal automorphisms of the given semi-
simple Lie group (i. e. H, and H, are infinitesimal automorphisms of the com-
pact group R).
From (50) and (51) follows
e2vid :BIBZ'
2Cartan, [4].
3 Gantmacher, [1], p. 117.
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where By =U-lefil, B,=U-1¢/:3y. Since H, and H, are infinitesimal auto-
:morphisms, they are skew-symmetrical [due to the special choice of the basis;
see (8)] and consequently have imaginary characteristic roots and simple ele-
mentary divisors. Hence B, and B, have also simple elementary divisors and
the modulus of all characteristic numbers of B, is equal to one, while all cha-
racteristic numbers of B, are positive. In virtue of commutability of B, and
B, the characteristic numbers of their product, i. e. of e2®, are the
products of the corresponding characteristic numbers of the factors. But the
characteristic numbers of ¢2® are positive. Hence

B, =E, (52)
and therefore
e2i® — B, — U~ tiHU, (53)

But all characteristic numbers of the matrix 2vi®D, as well as of the matrix
U-1iH,U, are real. Hence from (53) it follows that

29id = U~YH,U, (54)

1. e. that ® is an infinitesimal automorphism. Thus we have proved the follow-
ing
Theorem 5. In order that the equation

PPl =A, (55)

where A is a given automorphism of the complex group N and P the requi-
red linear transformation in N (the complex conjugate is taken with respect
to the compact form), should have solutions, it is necessary and sufficient that
A should have the form

A=Sei?, (56)

where S is an involutive automorphism (S®=E) of the compact group R,,
D an infinitesimal automorphism of the compact group N, and S and P are
commutable.

If this condition is satisfied, all solutions of (55) are given by the for-
mula

@
P—=e ‘Y8R, (57)

where /'S :l—-i—l S+ }—j—l E and R is an arbitrary real linear transformation
in ® (R=R).

Let now P realize the transition from the original compact group N, to a
certain real group. Then, by Theorem 2, P satisfies the equation (55). For A

and P we have thus the expressions (56) and (57).
.o

—_i—

Since e ° is an automorphism, from (57) it follows (see Theorem 3) that

the transformations Pand }/'S realize transitions to isomorphic real groups. We
may thus confine ourselves to transitions realizable by transformations of the

type l/§
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So we have proved the following fundamental theorem of Cartan 4:

Theorem 6 (Cartan). All different real forms of a given complex semi-
simple group may be obtained in the following way:

First we find all involutive automorphisms of a compact form, i. e. aufo-

morphisms S, for which
S?—F. (58)

Then we take the basis composed of the ,Eigen“-vectors of the matrix S,
multiply those vectors of this basis which correspond to the characteristic
number — 1 by i and leave the remaining wvectors of the basis unchanged. To
the so obtained basis there corresponds a real form of the given complex
semi-simple Lie group.

§ 4. The connection between a complex semi-simple Lie group and
its compact form

Consider an arbitrary automorphism A of a complex semi-simple Lie group
. Since A and A are automorphisms,

AAT'=Q
is also an automorphism. By Theorem 5,
Q=Sei®, (59)
—:2
A=e ? /SR, (60)

where §=8=35"" is an automorphism, ® = is an infinitesimal automor-
phism and
SO —=>8S, R:—é
-2
Since A and e 7 are automorphisms, we conclude from (60) that

C=V SR (61)

is an automorphism.
Then from the equation

E=C"'V/SR
we conclude, by Theorem 3, that P=1)/S realizes the transition from the ori-

ginal compact group to a group isomorphic to it. But then the form ¢ must be
negative definite also for this new group. Hence all characteristic numbers of

/'S must be equal to one, 1. e.

V' S=E. (62)
From (61) and (62) it then follows that
R=0C,

4Cartan, [6], p. 27.
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i. e. that R is an automorphism of the compact group. From (60) and (62) follows

2
A=e °R (63)
and
L]
AT'=R7te 2. (64)

Replacing in (63) ——% by ®Pandin (64) A-1 by A and % by @, we co-

me to the result that any automorphism A of acomplex semi-simple Lie group
may be represented in the form

A=¢e*R, (65)
as well as in the form

A= Rei®, (66)

where R is a finite and @ an infinitesimal automorphism of a compact Lie
group. This is the remarkable result of Cartanl, establishing a close connection
between the topological structures of the groups of automorphisms of the complex
and the compact semi-simple Lie groups.

§ 5. The canonical representation of automorphisms of a compact
semi-simple Lie group

Let us prove the following
Theorem 7. If two automorphisms A and B of a compact semi-simple
group are conjugated with respect to the ,complexed“ adjoint group, they
are conjugated also with respect to the compact adjoint group.
Proof. Let
B=T-14T, : (67)

where 7 is an inner automorphism of the complex group. Then
B=T"'AT. (68)

Finding A from (69) and substituting in the so obtained equation for B its
expression from (68), we find

A=TTATT!, (69)
i. e. TT"" and A are commutable. As it follows from (65)
T=¢*R, (70)

where R is an inner (finite) automorphism and @ aninfinitesimal automorphism
of the compact group.

Observe that since all characteristic numbers of 2i® are real and 77 '=
—e~2® @ isa function of 77-1, Consequently ® is commutable with A.

1Cartan, [5], p-p. 260—251. From this result of Cartan it follows that ¥ and
Ycompact have one and the same fundamental group.
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Therefore, substituting in (68) instead of T the product e’®*R, we obtain

B=R"14R, (71)
q. e. d.
Now observe that from the compactness of the group of automorphisms it

follows that the modulus of all characteristic numbers of every automorphism of
a compact group is equal to 1, and all elementary divisors of these automor-
phisms are simple!. Therefore we have for any automorphism A of the compact
group 2
A=U-1ZU,
where Z=Zoeﬁ is a chief automorphism in that component 9, which contains A4,
Since the modulus of all characteristic numbers of Z must be equal to 1,

all parameters A, in H must have imaginary values. But then Z will be an
automorphism (in fact, chief automorphism) of the compact group. In virtue of
the preceding theorem we can also consider U as an inner automorphism of
the compact group. Thus we arrive at the following

Theorem 8. Each automorphism A of the compact group is conjugated,
with respect to the compact adjoint group, to a chief automorphism of the
compact group:

pact grotp A=U"1ZU, (72)

where U is an inner automorphism of the compact group,

CHAPTER II

THE DETERMINATION OF REAL GROUPS OF THE FIRST CATEGORY WITH
SIMPLE COMPLEX STRUCTURE

§ 6. Preliminary remarks

In the preceding chapter we have seen that the problem of determination
of all real forms of a simple complex Lie group may be reduced tothe determi-
nation of all involutive automorphisms of the compact form of this group. By
Theorems 3 and 8 we can moreover confine ourselves to consideration of chief*
automorphisms.

We shall refer o real form of a given simple complex group to the first or
tothe second category according as to whether it is generated by an inner
or an outer involutive automorphism.

Consider an involutive chief inner automorphism S.Its characteristic numbers
are -1 and — 1. Consider the decomposition with respect to these characte-
ristic numbers:

R=f +K_,,

UIn fact, from Ae=1De it follows that A”e=1»"e. Further, since from the sequence
A" (n=1, 2, ...) we can choose a subsequence converging to a certain automorphism,
|X] must be equal to 1. The same considerations show that we can not have

Ae=)le, Ag=1)g+te,
Atg=\"g | " le.
2Gantmacher, [1], p. 139,

since then we should have
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and let h = &, 1. Let further
f={bh e, ...} ad K _ ,={e,e_,, ...}
Denote by V, and V_, the aggregates of roots

a,—a,... and p,—p,...
Thus to the automorphism S corresponds the decomposition of the root system:

V=(V},V_y),
and from the structure formula
[ea’ eﬁ]= Nuaea.z.g,
where N,,=~=0, if a—-B is a root (see also Gantmacher, [1], p. 107), it fol-
lows that :

V Vi,
V-:i V1_1> cV, V\+V_cV_, (73)
(on the left only those roots are added, whose sum is again a root).

Suppose that for another involutive chief automorphism S' 2 we have a
similar decomposition of the root system:

V=(V/, V_).
If the systems V, and V| may be transformed into each other by a cer-

tain rotation T <= I 3, then the involutive automorphisms S and S' generate
isomorphic real groups.

Indeed, the rotation t transforms the root system iuto itself. Hence from
Vi=1(V,) follows V' =1(V_,). The rotation T may be completed to an automor-
phism A of the compact group . This automorphism transforms &, into & and & _,
into &' ,. Hence it follows that

§'=AS4-!
and consequently
/S =AySAa (74)
By Theorem 3, S and S’ generate isomorphic real groups.

This remark shall be used later. Denote by v the number of characteristic

roots of S equal to 1 and by p==r — v the number of roots equal to —1.

-
Since for the original compact group @:—2 t2, for the real group correspon-
ding to the automorphism Sthe form ¢ will have, by Cartan’s theorem, u positive
and v negative squares. The signature of the form o

d=pu—v=20 —r=r—2y (75)

Cartan calls the character of the real group under consideration. It is evident
that real groups having different characters can not be isomorphic.

1Gantmacher, [1], p. 117.

2 Here and in the following the dash does not mean the transposed matrix.
3 Gantmacher, [1], p. 129.

¢ Ibid., p. 130.
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Consider the root forms

(@)) = é ab\ o

p=l
and put A=mip (i =V-_—_1). Then

(@) =mi (ap) =mi D) aPy »
1
Since for §

() =+ 1, (76).
all

n

(ap) = Z afy,

must have integral values. In what follows under a root form we shall under-
stand (ay).
We shall write

((Pl’ L] (‘?n)—:-:((plly -"7('?;,)

or, briefly, (77)

=9,
if for all roots
(ap) = (ag’) (mod 2). (78)
In this case the corresponding involutive chief automorphisms S and S’ will
have the same characteristic numbers: e™(?) — emi(ae"),
We shall say that the systems of numbers (¢,,...,¢,) and (9], ...,9") are
equivalent and shall write
91y - 9 ) D (Pps ooy D), (79)

if there exists a rotation 1< I transforming the vector ¢ into a vector con-
gruent to ¢@": , ,
T((‘?I?°"’ (‘?n)'__'—:('?l’ "”"?n)‘ (80)

In this case, as we have already seen, the corresponding involutive auto-
morphisms S and S’ generate isomorphic real groups. Hence, in finding the
involutive chief inner automorphisms of the given complex simple structure, we
may confine ourselves to consideration of unequivalent systems of numbers
(¢ys ++-»9,, for which the root forms assume integral values.

After these preliminary remarks we pass now to direct consideration of
separate complex simple structures 5.

§ 7. The structure A,
The root forms are here
p—% (Pg=1,...,n+1) ! 81)
with the additional condition
01 oo 90 =0. (82)

6 Gantmacher, [1], p. 126—127.
1 Here and in what follows we shall suppose that indices occuring in the deno--
tation of one and the same root form assume different values.
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All differences ©,—¢, are integers. Each system of ¢, may be replaced by a
congruent system consisting of integers [and, generally speaking, not satisfying
the additional condition (82)]. These integral values of v, we may reduce to
the modulus 2. _

Observe that 1) permutations of ¢, are rotations 7, 2) we can add to all ®,
one and the same number without affecting the form (agp).

Using these transformations, we reduce the whole problem to the conside-
ration of the following systems of ¢,:

B,=0, ...,0,1,...,1) (=0,1,..., n41).
D e

But
Byon(—1, ,—1, 0,...,0)=(1, , 1,0, .. ,O)m]
(/)(O, '--10, 17"-$1):%n+1_1~ l} (83)
N e’
. 11 )
Hence we may ascribe to /only the values
1=0,1,..., [”j ] . (84)
To the system £, corresponds the involutive automorphism S,, for which

=4l l—)— (1P I =1 — (e 1 —2p=1—m, | (89)

where m=n-+1—2/=n-41, n—1, ,{ (1)

The so obtained ['5—_2'-—3] real simple groups may be realized in groups of linear

transformations in n -1 complex variables, leaving invariant respectively the
Hermitian forms

XXy e X XX e X1 X
n+4+1
(1=0,1,....[5-]).

§ 8. The structure B,
The root forms:
£9, =0, =9, (pg=1,...,n). (86)
We may take ¢,to be integers reduced to the modulus 2.
As in the preceding case we may confine ourselves to consideration of only
those S, for which

1= =%

where /=0,1,...,n For §, we have
n=2l-}4l(n—10)=20(2n—20+1),
0=2u—r=42n—214+1)—2n-}+1)n=
=n—2m(m-+1),
m=n—2l=n, n—2,..., —n,

:-_—_O, —-—':{)

Opppy =1 =9 =1,

(87)

A —

m———

2 Cartan, 121, p. 276.
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or, which is in this case equivalent,
m=0,1,...,n.

We have n-}1 different simple real groups with the complex structure B,.
These groups may be realized in groups of real linear transformations, leaving
invariant respectively the quadratic forms

At ay— X — e — X, ((=0,1,...,0) L

§ 9. The structure C,

Let us take the root forms in the form

(x9,=9,) (p,g=1,...,n). (83)

o —

Inpp,

We may suppose all ¢, to be integers, all odd or all even, reduced to the
modulus 4, i. e. either I) all <pp=0,2, or II) all gopz.—:l.

Note the following rotations t:

1) the permutation of g,

2) the change of sign of one of the numbers 9,

I. In this case we may confine ourselves to consideration of the systems

B,=(0,...,0,2,...,2) (=0,1,..., n). (89)
N
l

But the addition,of 2 to all ©, gives a congruent system, and the change
of sign of g, is a rotation t. Hence the transformation

q)‘:,—‘———Q—-(pp p=1,...,n)

realizes a transition to an equivalent system. Therefore

Lind, . (90)
Thus / in (79) may be confined to the values
n
1=0,1,...,[2]. (91)
For the corresponding S
n=4l{n—1), \
0=2p—r=8/(n—1)—2n*—2n=—n —2m?, ] (92)

where

0

m=n—2=n, n—2,..., { 1-

The so obtained [71—42—'—2] real simple groups may be realized in groups of linear

transformations, leaving simultaneously invariant the skew-symmetrical bilinear
form '

4

! ! ’
Xy Xy XpX) = eos A Xy 1 X5, — Koy

1 Cartan, [2], p. 280—281.

) 2 MaremaTHueckumit c6opHuK, T. 5(47), N. 2.
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and the indefinite Hermitian form

¥, - | ‘. — P % !
XpXr T e e T Xy Xy XXy T e T XXy,

(=0,1,..., [%].

Il. The cases, in which ¢ === 1, may be reduced to the one case: p,=1.
It is easily seen that for the corresponding involutive automorphism S

we have
¢ =un.

To this case corresponds the group of real linear transformations, leaving
invariant the skew-symmetrical bilinear form

! ! ! !
— _— 2
XX x2x1 + s —}—xQﬂ_‘x?n xmxm_l

§ 10. The structure D,

The root forms we take to be
=I¥ (pg=1,...,n). (93)

All 9, must be integers congruent to each other to modulus 2, and these
integers may be reduced to modulus 4.

As in the preceding section we may evidently confine ourselves to consi-
deration of

B,=(0,...,0,2,...,2 (@=0,1,..., ng) |
o i
I . 94
V=(1,1,...,1). i 54)
S s e e ey’ J
n
For &, we have
p=4l(n—10), 0=24—r= 95)
=8l(n—I)—n@2n—1)=n—2(n—2)2==n—2m2, } {
where m=—n, n—2, ..., { (])

The corresponding real structures may be realized in groups of real linear
transformations, leaving invariant the quadratic forms

Ay = — s — X,
(=0,1,.... 5] =
For the system X=(1,...,1) we find at once
¢=—n.

The corresponding real structure is realized in the group of linear transforma-
tions in 2n complex variables, leaving simultaneously invariant the quadratic
form

x1x2+ s _l— Xon—1%2n

1Cartan, [2], p. 292
2 Cartan, [2], p. 291.
1 Cartan, [2], p. 286.
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and the indefinite Hermitian form

- 5 | v . v 2
XXy = XoXg = oo T Koy 1 Xop g — XopXoy

§ 11. The structure G,
The root forms we may take to be

=9, 9,—%, (P, g=1,2,3) (96)

with the additional condition
01+ 9 -+ 93 =0. (97)

Here ¢, and o, may be confined to the values 0, 1. We consider the follow-
ing systems:

B, =(0, 0, 0), B,=(0, 1,—1)=(0, 1, 1). (98)
1. x,Li= (0, 0, 0), 0 —=—14.

This is a compact real group, which may be realized in the following way1:
We define in the seven-dimensional real vector space the operation of
»vector multiplication®,

c=—=a >< b, (99)
where
& s b @iy biys @1 by
Cc, = 100
! a5 b, + a4 b, - Qs biy (100)

(i=1, ..., 7; the indices on the right-hand side are to be reduced to modulus 7).
The compact real group, in which we are interested, consists of all or-
thogonal transformations 7, leaving this operation of vector multiplication inva-

riant:
T(axb)y="Tax Tb. (101)

2. B,=(0, 1, 1), p==38, 0=2u —r=2.
To this case corresponds the group of linear transformations in the real seven-
dimensional space, leaving a certain indefinite quadratic form and the operation
of vector multiplication, defined above, invariant 2.

§ 12. The structure F,
The root forms are

v —

TP T E 9, T (T Ty Loy ). (102)
The v, may be confined to the values 0, =1, 2, but @, 4,9, v, must
be an even number. Observe also that subtraction of 2 from two of the 9

gives a system congruent to the original one.

2 Loc. cit., p. 286.
1 Cartan, [2], p. 297—298; Lardy, [1], p. 212—-215.
?Cartan, [2], p. 297—298.

2%
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Note the following rotations 1:

1) the permutation of @,

2) the change of sign of some of the o,

3) the subtraction from each @, of the semi-sum of all the g,.

Since these operations, as well as the subtraction of 2 from two of the
9y transform any system of the 9, into a system equivalent to it, we may
consider the following cases:

B;=(0, 0,0, 0) (3=—52),
B,=(0, 0, 0, 2) (8=—20), (103)
B, =(0, 0,1, 1) (=4

[B,=(1, 1, 1, 1)?(1,—1,—1,—1)(?(2, 0, 0, 0)nB,| .
1

In order to show how these three real structures are realized, let us consi-
der the so called Cartan’s normal group?. To this end we introduce the fol-
lowing denotations.

If 7 is an infinitesimal transformation of a linear group defined by the
equations

n
2 =0z=a,z, (i=1,...,n),
1
we shall write this transformation 7 in the following form:
n
of
Tf=of= a2, —,
f f [,kzzl ik kazi

where f is an arbitrary differentiable function of the z;. We take 26 complex
variables

Xpy Xy Vo 2

(i==1, =2, =3, £4, a==1, f==2, y==x3, 0==x4)

i _ f __ . o _
‘)xi —piv axans’—pa@‘{a’ ay q, 3z r.

By the dash we shall denote the change of sign of the index. Then Cartan’s
pormal group is the linear group with the following infinitesimal transformations 3:

1 We write, for instamce, B B, if the system B’ can be obtained from the system
1

8 by the transformation 1), etc. »
2 Cf. Cartan, [1], p. 145.- A
8 Loc. cit,, p. 145. :
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Vif=  xip;—xupn +‘ 2, Z (01D 0 XutjePsjk1)
X f=—x.q —|— 2yp.+ ¢, 02 2O e

vy 1> 0
Xy f=—x3q+29p; + ¢ aZ aeaxdﬁ’ﬁpaaﬁ’

> T
~
XT f=— Xyq _l" QJ’PY ‘l‘ & a%{ ; €aXay5Pagys
X f= — xoq+2yp; 15, 126 Yevx“ﬁ"’paﬁﬁ’ A.

Xag.f: x.3/pa - x“’pp - ea EBer“'ﬁ'YapaB*[S’
Ts
Xw{f: Xy1Py — XarPy — & Z 5% a'81"8Pagya>
. 8,3
KXo f=

f—x3’p, — X3Py — & ZE PAEL L) PR

(104)

XDy — XalPy — & 32 CBXG’BT lpm@‘[o’

Xy f =Xopg — Xa1py — & Z € Xa33'Pugyis
o

Xy = Xppy — Xop, — & 2 eﬁx“:?‘r"?’pﬂﬁ’

0)

1375f ( 3 50 pqus + x“’3’ (q - emegeyear) +
+ easm (Saparsgs — Fap,) -+
+ &% (x3paz 15— Xal3yh ’p@ _I'_ €8, x*{’pd’ﬂy'o — xu’@’*(a’p7) +
+ 8 xo’pa’%(ﬁ’_xa’d"{ p )
(i=1’ 2’ 3’ 47 a:IIy =I27Y='_":3y a=i4
e, >0, if j>>0 and & <0, if j<{0).
If we confine the variables in this group to real values, we obtain a real

simple group with the character §—4.
If we subject the complex variables x;, X3, ¥, 2 to the conditions

Xir == X;, Xargiy/pt == — a”o*y y, Z—,.,, (105)

we obtain a simple real group with the character 6 =— 20.
If, finally, we replace the conditions (105) by the conditions
x,-/:}t., xalgr.{/,;l:}“&t&, y:)—l, 2=z R (106)

we obtain a compact group with the character ¢ = — 52.

§ 13. The structure Ej
Here the root forms are
—9p =@+ 9, 1+9), = <°1+<v +w3+<94+@5 e )
(P, g=1,. joaon
» =10, +¢& where ¢, are integers and ¢ assumes one of the three va-
1
lues: 0, 3 g

We have o
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Since we can add to or subtract from all ¢, two thirds, the cases e==

=% and e= — émay be omitted, and we may suppose that the v, are inte-

gers reduced to the modulus 2.
Note the following rotations t:
1) the permutation of 9,
2) the change of signs of all Q0
3) the mapping g, effecting mirror images, where (29) =9, 4 0, -} @,

‘-?:1 =9, 01 + 954 ),
Oy ra= .q+3+ g‘ (21 + 9o+ 9s)
4) the mapping o, effecting mirror images where (a9) =10, ...} o

6
5D (109)
1

¢ =
CTp

°°I

In virtue of rotation 1) we may confine ourselves to the systems

R,=(0,...,0, 1,...,1) (=0,1,...,6).

—
But
Vo=1(0, 1, 1, 1, 1, l)cln(l, 1, 1, 1, —1, 0);4/;(0, 0,0,0,=2,—1)»» ¥,
and

SBscln(l, 1, 1, 1, 1, O)cgﬁ(—l, —1, —1, 2,2, hH ;»Q¥,.
Further,

Re=(1, 1, 1, 1, 1, Np(=1, =1, =1, 2,2, 0By
©(3,0,0, 1, =1, 0) (1, =2, =2, 2, 0, B,

It remains to consider the systems L;, LB, and V,.

1. B,=(0, 0, 0, 0, 0, 0), 6=—T78. .

To this case corresponds the compact real simple group, which may be given
as the group of linear transformations in 27 complex variables x,, y,, 2,,=
=—2z, (p, =1, 2,...,6), leaving invariant the following two forms: the
cubic form

2 Yetg— X PG 8 b V) 2R (110)
2%'4 P q, st u,v
where
(p, q, s, t, u, v)=-+1, if the permutation is even,
(p, q, s, t, u, v)=—1, 1if the permutation is odd,
and the positive definite Hermitian form
;xpxp_f'zyqu p;] pa%pg (1)

2. ,SBI—.'_—(O, 0, 0, 0, 0, 1), m=32, §——14.

1Cartan, [2], p. 313.
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The corresponding real simple group may be defined in the same way as
the compact group of the preceding case, with the only difference that instead
of the positive definite Hermitian form (111) we must take here the indefinite
Hermitian form

5. _ _ 5 5 5 _
lepxp—x(;xs—quyq—{—yﬁys — lepquq—zlzpﬁzpﬁ. (112)

3. B,=(0,0,0,0,1,1), p=40, &=2.

The real simple group corresponding to this case is again determined in
the same way as in case 1, with the only difference that we must take here
instead of the Hermitian form (111) the form

pr;p"_zyqu_zzpquq 2. (113)
§ 14. The structure E;
The root forms are
Cp— %> Lpp—l_(‘?q—l'—(ps—}—(‘?! (114)
with the additional condition

9 ...+ gg=0. : (115)

The ¢, will be here evidently of the form
¢,=0,+¢e where e=0, %, “%’ ~1)— (116)

Since we can add 51 to all ¢, without changing the characteristic numbers of

the involutive automorphism S, we can omit the cases e:—i— and e:% .
. e=0, g, are integers reduced to modulus 2. The equation (115) we
replace by a congruence to the modulus 2. We. put

V=(0,...,0,1,...,1) (I=0,1,2, 3, 4).
l N

2

Note the following rotations t:
1) the permutation of @p
2) the mirror image with respect to the origin:
c‘o[')..-:—cpp =1, ...,8),
4
3) the mapping ¢, effecting mirror images, where (acp):Zcp :

T q

, ! :
$g=9¢ — 3 (T T O+ 0,
' 1
'?q+4:‘9q+4+§‘(‘?1+‘?2+st+<?4)'

Observe, besides, that to all g, can be simultaneously added —;—

2 Loc. cit., p. 313.
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Then
By=(0,...,0,—1, ... ,—1)=(1,...,1,0,...,00wB,_, (117)
N —— 1
2 2l
and
Byn(l, —1,1,0,1,—1,1,0) nB,. A (118)
1 1
L e—o. Let :
1 1
W= (greeer g0 Doy 15) (1=0,1,2,3, 4.
D SIS
2
Again
N 1 1 1
%l=<lz, 9 14, QZ‘, .« 9y 2"4‘)%%4_1
B
21
Besides,
A 1 1 1 1 3 3 3 3
Wy (—g, —5 —g —x 1o, 12,13 13
(1 1 1 1 1 1 1 1y
=(3 © o %0 25 29 27) =%

Thus it remains to consider the systems

Ry, B,, W, W

~0 A0y AV

1. B,=(0, 0, 0, 0, 0, 0, 0, 0), &=— 133.

To this case corresponds the linear group, which may be given as the group
of linear transformations in 56 complex variables Xpg = X000 Yog="—"Yop
(p, =1, ..., 8), leaving invariant the following three forms: the positive de-
finite Hermitian form

2 %0 %002 Y0 Vg (119)
< %pq pq+p'q raYrq
the bilinear form
,,2:; ($0gYpq — Y pa%pg) (120)

and the biquadratic form
» 2 squxriypsyqr+
+F 2 w(p, a1 s t’ u, v, w) {quxrsxtux*u'w+ypqyrsytava}' (]21)'

Here
P, q, r s t u v w)=-+1, if the permutation is even,
(p, ¢, 7, s, ¢, u, v, wy=—1, if the permutation is odd !.

2. B,=(0,0,0,0,0,0, 1, 1), .6d=—05. ,
The corresponding real group may be realized in the group of linear trans-
formations in 56 complex variables, leaving invariant beside the bilinear form

1 Cartan, [2], p. 323.
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(120) and the biquadratic form (121) the following indefinite Hermitian form 2:
qu kg (Xpg%pq T VpgVpq)
y=l=—1, lpz—}—l (p:,él,Q).J

1 1 1 1 1 1 1 1 N
2 %=(5 1 3 1 1 1 T 1) =T
To this case corresponds the group of linear transformations in 56 .real
parameters, leaving invariant the bilinear and the biquadratic forms (120)
and (121) 2,

1 1 1 1 1 1 1 1 N
£ W =1, ¥ 5. 5+ 5 5 g 13), 3=—2.

To this case cotresponds the group of linear transformations in 56 variab-

(122)

les Xpgr Yeogr connected by the relations '
Yo = Mhg¥pg> (123)
where M=l=—1 kL=...=k=1,

which leave the forms (120) and (121) invariant 2.

§ 15. The structure Eg
The root forms are

©,—%, =@,+9,+9) (@ gs=1...,9 (124)
with the additional condition
' o 90,4 ... Fo,=0. (125)

1 1
T ——3‘ The

numbers &, may be reduced to modulus 2, if we replace in (125) the sign =
by the sign==(mod2). Since we can simultaneously add to or subtract from

i 0 = I P
In this case 9,=9 ¢, where §, are integers and ¢=0,

all g, two thirds, we can omit the cases s:% and ¢ = — ;— and assume that

all g, are integers reduced to the modulus 2.
Note the following rotations t:
1) the permutation of ¢,
2) the mapping o, effecting mirror images, where (a9)=1, 4 ¢, ¢,:

’ 2
¢, =9, — 3 (01 +9:49) (=1, 2, 3),
' 1
st:¢s+§((‘?1+cp2+(?3) (S=4» 5’ 61 77 87 9)'
Putting ¥,=(0,..., 0, 1,...,1) (=0, 1, 2,3, 4) and using the

2
rotations 1) and 2), we find

%1({)(3a O’ ey 1)(?(17 ——'2y _2y 1, 1) 17 lv 17 2)({)%3, (126)

By (1, 1, 1,1, 0,0,0,0, 00

? (127)
cg)(_l, —1; _1’ 2; 1» 1; 1: ]1'1)({)%4-

2 Ibid., p. 323.
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It remains to consider B, B, and V,:
1) B,=(0, 0, 0, 0, 0, 0, 0, 0, 0), &=—248,
2) ¥,=(0, 0, 0,0,0,0,0, 1, 1), &=—24,
3) V,=(0, 0,0,0,0, 1,1, 1, 1), &=8.
For realizations we take the corresponding adjoint groups !.

CHAPTER III

THE DETERMINATION OF SIMPLE REAL GROUPS OF
THE SECOND CATEGORY

§ 16. Preliminary remarks

In the preceding sections we determined the simple real groups of the first
category more or less on the lines of Cartan! and Lardy 2. Passing now to
groups of the second category we shall however base our deductions on the
canonical representation of outer automorphisms and reduce the whole problem
to the determination of all outer chief involutive automorphisms3. If the compo-
nent ;, in which we are interested, is given by the particular rotation t, in the
given subgroup §), then the chief involutive automorphisms in 9, may be taken
to be of the form _

gt zomnee ) -
%=1, a"=1(a), h=ph* 4
The signs of the %, are the same for all values of the parameters )‘p occuring
in 7. '
Put Zy={Z},-,. Then from (128) we obtain

Z=Ze". (129)

We introduce now parameters cp;, connected with the &, by the relation ) =miv.
Then each involutive Z is characterized by a certain system of real values
(CAD]’ L (.Dn)

Let us prove the following proposition:

Two involutive automorphisms Z ———ZoeH‘P and Z':ZOeH‘-" are equivalent
(i. e. generate isomorphic real groups), if he—yp < Bh~.

In fact, let A==efx Then it is easily verified by means of (128) that

AZA = Z Mo+, (130)

Since hgq_y < =, by an appropriate choice of the real system y we can achieve
that 7, (y) — y=19 —¢. Then
Z'=AZA 1, (131)

where A is an automorphism of the compact group.

1Cartan, [2], p. 338.

1 Cf. Cartan, [6].

2 Cf. Lardy, [1], p. 209 and f.

83 Gantmacher, [1], Chapter IIL

4 Gantmacher, [1], § 14. The rotation 7;, being involutive, has characteristic
numbers 4+ 1 and — 1. Accordingly we have the decomposition h=Nh+ 4 h~, where
(; — 1) h+ =0 and (r;41) h~=0.
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§ 17. The structure A,

Chief automorphisms from the component 9, may be defined as follows !:

(Z —1)5=0,
Zepqz(—— l)p—q—xem(@p—@q)eq‘pl (p,g=1,...,n-+1), (132)
(9, =+ 9, = 0)-
Here, for the root form (ag)=¢, — ¢, we have ¢, =e,, and by the subin-

dex , is denoted the transition to the comjugated index, i. e. to the index,
which together with the original one forms one of the pairs

(172)7 (3:4)7---y (2f—'1) Qf)) (n+17 fl—l—l) 27 \I
where 1 1 (133)
n—+
=151 )
7, i1s a particular rotation in Y, defined by the equations
c‘o::—c.opl (p=1,2,..., n41). (134)
The equations
9yt 9, =0 (p=1...,n+41) (135)
determine the subspace )*, and the equations
©, =9, p=1,..., n4+1) (136)

the subspace §~.
Let now Z be an involutive automorphism, i. e. let Z2=E. Then from (132)

it follows that
(— 1PHPraraeior—00) — |, (137)

Consider now the two possible cases:
I. n+ 1=2f is an even number. In ‘his case for any p

(= 1)f"P=1, (138)

and hence the equation (127) is equivalent to the condition: all o
integers.

~ Since we can add to all ¢, one and the same number without affecting the
corresponding involutive automorphism Z, we may assume v, to be integers
reduced to the modulus 2, if we replace the equations

—
9, are

0, +9,=0 (p=1,..., n41) (139)
by the congruences
0,9, =9,+9, (mod 2) (p, g=1,..., n4 1) (140)

Observe that if &, =d¢, =1 and all other $,=0, £, = ). Hence, in virtue
of the proposition formulated in the preceding section, we can add 1 to any
pair @,, @, ; consequently we may confine ourselves to consideration of the
following systems @,

(O""’O) and (07 1701 1’°"7O’ 1)‘

1Gantmacher, [1], p. 139—140.
2 This last pair occurs only when n 4 1 is an odd number,
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1. (0,..., 0). Let us compute the corresponding d. The rotation 7, itself

_”;‘1 ”;1 to —1. Fur-
ther, all roots fall with respect to 1, into »-}1 monomial cycles (a) and bino-
mial cycles (3y). In corresponding invariant subspaces 3, 9%57
Zeol:ed (Sta)v
Zeg=rte,, Ze,=1e, (12=1) (%R@r)'
The binomial cycles contribute thus an equal number of roots 1 and — 1,
while the monomial cycles contribute 7 -1 roots equal to -} 1. Consequently

b=p—y=—n—1.

- To this case corresponds the linear quaternion group with ”—_‘-2—1 quaternion

variables 3.
2. (0, 1,0, 1,..., 0, 1). In the same way as in case 1 we find here 8 =n.
The corresponding real structure is realized in the group of linear real uni-
modular transformations in # -1 variables.
1. n+1=2f+1 is an odd number. In this case in the equation (135)

(n4+1),=n-+1, ¢,,,=0, and so we obtain for any p, ¢
e?”’%———l, o2 (p—tg) = 1 p, ¢g=1,...,n),
k,
Loe g,= 7, where &, are odd numbers, ¢, — g, are integers (p, g=1, ..., n),
Afl+1__0
As in the preceding case we can replace for p==n--1 any pair 9,, 9, by
¢,+1, 9, + 1. Then we have to consider only one system, namely
1 1 1 1
(g =g+ =2 0)
In this case the binomial cycles contribute again an equal number of roots -1
and — 1, while the monomial cycles give the relations
Ze,=—¢¥p—=—¢_.

Therefore we have in this case ¢ =n.
This real structure is realized, like that of the preceding case, in the group
of real linear unimodular transformations in n - 1 variables 4.

§ 18. The structure D,

Consider first the component A, (for n=4 we have beside this component
the components A,, A, A,, 2A,). The chief automorphisms Z from 9, have
the form 1!:

 (Z—w)h=0, )

Ze q:eﬂl (9p+‘?q)epq (p’q=+2 L 141
Zepq=em(<-.'>p+ﬂ°q7eplq p=—p==1, g== 2 *n), |
0,=0, 0_,=—0¢, (p=1,...,n). )

3 Cartan, [2], p. 273—274.
4 Tbid, p. 276.
1Gantmacher, 1], p. 140—141.
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Here the rotation 7, in § is defined by

@T:-@l, @Z:@q (g=2,...,n). (142)

The subspace )+ consists of all vectors /4, for which @, =0, and the subspace
b~ of all vectors A, for which @,=...=9,=0.

Since Z must be involutive, from (140) it follows that all ¢, have integral
values. The involutive automorphism will not be affected, if we add one and
the same number to all g, (we omit the condition ¢, =0) or change the sign of
some of the 9,. Therefore we may confine the values of ¢, to 0 and 1. Any
permutation of the numbers ¢,,...,9, gives an equivalent chief automor-
phism Z’. ,

In fact, such substitution T may be completed to a certain automorphism A
of the compact group %

(4—99=0, } (143
Aeuz ’J‘aea (}“1 = 1)‘

Then Z'=AZA-1. Besides, in virtue of the remark in § 16, ©, may be re-
placed by any number. Therefore we may confine ourselves to the systems

%’Z(O’”"O’t”.}l) (I1=0,1,...,n).
T
Since the transformation ¢'=1—« does not affect the involutive automorphism,

we may confine / to the values

1=0,1, ..., [%] . (144)
Computing ¢ for %,, we obtain

where
me—n—9-t1=n—1, n—3, {‘1)
These structures are realized in groups of linear real transformations in 2#n
variables, leaving invariant the indefinite quadratic forms

n 3
At —ee— =01 5] 7
Passing now to the case n=—=4, we observe that here we shallhave,béside the
components ¥, and A, the components 9A,, A,, A,, .. The particular rota-
tions 1,, 7,3, T, T;, corresponding to these components, may be chosen in such a
way ¢ that

2 —r o =2 )
T, =13, T,=T,0 =TT, T;="TT,="T07,. (145)

2 Loc. cit., p. 130.
3Cartan, [2], p. 285 and f.
4 Loc. cit., p. 285 and {.
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Observe that t25~1 and 12=~1. Hence involutive automorphisms will exist
only in 9, and (. But from (145) follows

— N, P —1
T, =T, Tyl =TT Ty = T,T,T;

)
and { (146)
)

—_—- e — 1
T,="T%T =7 9 U1 Ty

Completing 7, to an automorphism A, of the compact group, we shall have

N, —=A,N, A7 and A, =459, 4,, (147)

i e. 9, and 9, do not yield new real structures.

§ 19. The structure Eg

The chief outer automorphisms Z for E; may be defined in the following
way L

(Z—1)h=0,

Zepq :(— l)p‘—'q‘f'lew.('?p*“?q)e ’x
Zepq.s‘ — o™ (3p +’J?q+'~?s)gpqs’ if 2 < 3= q< 5<s,
Zelpqs = e‘“i(?p‘?"f"q'*"?s)e'pqs, if p<3=g<{b<s,
Ze{)p,s = ejl (I’?p'i' i +‘¢3)eqq‘s (s£p,p1)s (148
Ze o= — e ¥ptep, + ?s)eqq‘S (s 7&1),{:1), ' )
Zey ==e"te,, Ze)=—e "%, 490=Z<9p,

O 9 =95 -9, =9 + 0

(p,g=1,2,...,6).

By p, we denote the index conjugated with p, i. e. the index, which together
with p forms one of the pairs

(1,2), (3,4), (5,6).

The root forms are here

O, — %, (9

ST
'p vp ("Dq ?S)’ ——]E (‘PP } (149)
(p,g,s=1,...,6). J

The corresponding vectors e, we denote here by

€pgr Cpgs == " €ups== 111 e[')qs_—_—e;m:. cey €y, €.
The particular rotation 1, is defined by the equation
1 6
ﬁ??‘,:“‘?p.'{“gg 9, (150)

1 Gantmacher, [1], p. 143.
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Here Yh* is determined by the equations

0+t 2=+ 9 =9 + % (151)
and )~ by the equations

6
pa— ’ 1 P— P |
O =Py P00 9 =0 290 (152)
1

Suppose now that Z is an involutive automorphism, i.e. that Z2=FE. Then
all root forms (149) must have integral values. Hence

9p=b,Fe (p=1....6),
1 1

where ¢ =0, — 3,3

%, —% without affecting
Z, we may assume that the @, are integers. We may further reduce the g, to the
modulus 2, replacing at the same time the equations (151) by the congruences

91+ 9 =0+, =19;, + ¢ (mod 2). (153)

Since we can add to all ¢, any of the numbers

It is easily seen that for any two pairs of conjugated indices p, p, and g¢,
g, we may replace @ Ppr 990 Yy, by z?p—{—l, ‘?p,'l"l» cpq—l, ‘Pq,‘“l
{without changing the two remaining ¢, @), since the system (b, ooy by,
where &, =-41, ¢, =—1, ¢, =+1, ¢, =—1, all other =0, satis-
fies the equations (152) and the. addition of this system to the system ¢ does
not disturb the validity of the congruences (153). Therefore we have to consider

only the following four systems:

G

Ts'1:_" 0,...,0), %2:( » 1),
%gz(o, 1,0,1,0, 1), ‘15‘4=( 1 0 1, 1, 0).

We shall show that the systems 2B, and L, may be omitted. Indeed, take,
for instance, the system 2,. Denote by Z, the corresponding automorphism.
Take two root forms

(o) =09 +9;+9; and (09)=u, 49+ ... + ¢
and observe that
dep=ep, Zye,=—¢,. (154)

Consider now the mapping ¢,, with (ay) =19, + @, -} @, effecting mirror images

T ]

9 =P2p — 7 (%2 T 94 + @), 1 (155)

and complete g, to an inner automorphism U of the compact group, for which 2
(U—1)h=0, Ue,==eu. : (156)

2 Ibid., p. 130.
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Consider the automorphism
A, =UZ,U1. - (197)

Since the rotation ¢, interchanges the roots p and o, from (154) we find
Age,=e,. (158)

On the other hand, the rotations ¢, and 1, are commutable 3. The permutation
G, transforms therefore a cycle of the permutation t; again into a cycle and so
permutes the cycles of t; among themselves. From (157) it then follows that
the automorphism A, realizes in }) the rotation 1, and consequently has the same
invariant subspaces i, SIST as Z,. Moreover, in each of the 3%@7,

Ageg==pee,, Age, =65, Ms=1, (159)

i. e. A, is commutable with Z and consequently is itself one of the Z. Thus
A, can be obtained from Z for a certain system of the ¢,. But the equation
{158) shows that the sum of these ¢, is even, so that this system may be
reduced to one of the systems

0, ...,0) and (1,...,1).

Consider the system (0, ...,0). It can be easily calculated that for it é =
=-—26. The corresponding simple real structure may be realized in the group

of linear tr?nsformations in 27 complex variables Xpy Vgr Zpg=""%4p (p, g=
=1,...,0), leaving invariant the cubic form
DX Y2+ X a8t u0) 2,22, (160)
Dq Pyrees?

where the variables are subject to the following conditions:

y2p—-1 :x.,p’ yzp:_x2p—1’
Z?p—l,?q-—l :Z2p,2q’

Zop—1,29 = P2g—1,2p"

For the system (1,...,1) we find 6=6. To this system corresponds the
group of linear real transformations in 27 wvariables Xpr Voo Zpg (zpq:——qu,
p, g=1,...,6), leaving invariant the cubic form (160) 4.
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_(IToctynuao B penakuuio 1Q/VIII 1938 r.)

O kaaccuduraumu mpocThIX BeleCTBEHHBIX rpynn Jiun
Peankc lanTmaxep (Mocksa)
(Pesio.xe)

-

Kunmaur [1] u Kapran [1] manum knaccudukxanuio BceX MPOCTHX KOMITEKCHBIX
rpynn Jlu. [locne atoro ompenenende Bcex #E€H30OMOPQHBIX NPOCTHIX BEUIECTBEHHBIX
rpynn Jlu CBeMOCh K HAXOMIEHHIO Pa3/MYHBLIX BELIECTBEHHHIX (GOPM HaHHOH npo-
CTOH KOMIUVIEKCHOH rpymnel. Jta npo6iaema Ghina pemena Kapranom([2] B 1914 r.,
HO BeCbMa TPOMO3AKHM M, B M3BECTHOH CTeneHH, KycTapHeM MeToxoM. Kaprtau
nepeCHpaeT pas/iuyYHbe MPOCThle KOMIIEKCHBIE CTPYKTYPH M B Ipelesax KawmoH
CTPYKTYpBl ONEpUpYeT crneurbHIecKUMH I 3ToH CTPYKTypH mpueMamu. B 1929 r,

3 Marevaruyeckut CcO6OpHHK, T. 5 (47), N. 2,
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Kapran [6] ycTasoBua u3siiiHyl0 TeopeMmy, AAioulyl0 OOUIHH MOXXOX K HAXOKIEHHIO
NPOCTHIX BewlecTBeHHbIX rpynn Jlu. Xors cama TeopemMa MMeEET HEMNOCPENCTBEHHBIIT
anreCpanyeckuil xapakTep, J0Ka3aTenbcTBO ee y Kaprana TecHo CBSI3aHO C pasBH-
TOH MM TeopHe# clenHaTbHhIX DHUMAHOBBIX MPOCTpaHcTB. B 310l e pabore Kaprau
II0K23biBAET, KAKHM 00pAa30M KAHOHHUECKOe NpPeNCTaBleHHe BHYTPEHHHX aBTOMOD-
($u3MOB NPOCTOH KOMIAKTHOU rpyinbl JIu MOxeT ObiTb HCIONB30BAHO A/ HAXONIE-
HUSL OPOCTHIX BeuleCTBeHHHX rpynn. Ho oTcyrcTBHe aHaJoOrHuHoro mnpencTaBieHHs
A7 BHELIHHX aBTOMOP(H3MOB He JAeT €My BO3MOKHOCTH [IPHMEHHTb CBOH MeTo]
K HEKOTODBIM KOMILIEKCHbIM CTDYKTypaM, Hanpumep, Kk FE;. 10T npo6ean OGhi1
BocroHed B padorte Jlapaum [1] HeckoIbKO OGXOZHBIM H CIOKHBIM MyTeM.

B rnase I Hactosiuieit paGoThl naercss anreGpauuecKoe 10KAa3aTeTbCTBO OCHOBHPI
Teopenbl Kaprana. [lpu sToM cyuiecTBeHHO HCIOMB3YeTCSi YCTAHOB/IEHHOE ABTOPOM
B npensuayiied padore [1] kaHoHuueckoe NpencTaBJeHHe aBTOMOPGHH3MOB MNPOCTOM
KOMIIJIEKCHOH TpyMibl JIM, MMeIUHX MpoCcThie 3/MeMeHTapHbe IeJHTeIH.

[ToiryTHO 1oMyyaeTess ZOKAa3aTeNbCTBO 3amevarenabhoro npemioxeuus Kaprawa
O CBSI3H MEXKJLY TOIONOTHYECKOH CTPYKTY POl KOMILTEKCHOH 11pocTol rpyisl JIu v cTpyk-
TypoH ee BeIUECTBEHHOH KOMMakTHOH ¢opybl. 31ech K€ yCTaHaBAMBAETCH KaHOHH-
HecKoe IpeicTaB/ieHde BHEIHHX aBTOMOPGH3MOB KOMIAKTHON mnpoctoit rpymimsl JIu.
B nanpuefimnx raasax (II u III) Bce 3TO Hcnoab3yerca aasi  HellocpeaCcTBEHHOTO
M CPAaBHHTENbHO HEC/JOMHOIO MPOBEAEHHS KJIAaCCH(PMKAlUHH MPOCTHIX BELIECTBEHHMX
rpymu JIn.





