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INTRODUCTION 

After Killing [I]1 and Cartan [1] have given a classification of all simple 
complex Lie groups, the determination of all (essentially anisomorphic) simple 
real groups may be reduced to the problem of finding different real forms of 

1 The numbers in square brackets refer to the bibliography at the end of this 
paper (p. 248). 
1 Математический сборник, т. 5 (47), N. 2. 
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a given complex simple structure. This problem was solved by Cartan in 1914 in 
his great memoir [2]. In it Cartan does not give a general way to deal with the 
problem, but considers separate simple complex structures, and operating in each 
case with specific devices finds all different real forms. In 1929 Cartan2 establi­
shed a beautiful theorem giving a general method for the solution of the pro­
blem. But although the theorem itself is of a purely algebraical character, Cartan's 
proof of it is based upon the theory of symmetric Riemann spaces developed by 
him. In the same memoir Cartan points out how the canonical representation of 
inner automorphisms in a simple compact Lie group may be used for the appli­
cation of his theorem to the problem of finding simple real groups. 

The absence of a canonical representation of outer automorphisms makes it 
however impossible for Cartan to apply his second method to some simple com­
plex structures, for instance to the EQ. Lardy [1] filled this gap in 1935 — 1936, 
but in a rather round about and complicated way. 

The Chapter I of the present paper contains an algebraical proof of Cartan's 
theorem. We are using here the canonical representation of inner automorphisms 
with simple elementary divisors in a complex Lie group, established in the prece­
ding paper [1] of the author. Accidentally we find a new proof for the remar­
kable connection between the complex an the compact semi-simple Lie group 
(Cartan found this connection starting from his theory of symmetric Riemann 
spaces). Using further the canonical representation of outer automorphisms3 we 
find a similar representation in the compact semi-simple Lie group. 

All this gives us the possibility to obtain, in Chapters II and III, with the 
help of Cartan's theorem, all simple real groups with simple complex structure 
in a direct and comparatively short way. 

For denotations and fundamental conceptions used in the present paper we 
refer to our preceding paper4. 

C H A P T E R I 
REAL FORMS OF A COMPLEX SEMI-SIMPLE LIE GROUP 

§ 1. The problem 
Consider a real infinitesimal Lie group fRt of r dimensions. If 

*,, * 2 , . . . , er (1) 

is a basis of this group, any infinitesimal element t can be represented in the form 
г 

where the parameters zt may assume arbitrary real values. The operation of com­
mutation, applied to the basis elements, gives 

г 

К. **l=2 6 f (i, k=\,...,r). (3) 

2 С а г t a n, [6], p. 27. 
3 G a n t m a c h e r , [1], p. 138—143. 
* Ibid., Introduction. 
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The с are the structure constants of the given group in the basis (1); for a 

real group the с are real. 
Suppose now that the parameters т,- in (2) assume all possible complex values. 

Then the infinitesimal elements t will form a complex Lie group Ш of r complex 
dimensions. We shall say that the group ?ft is obtained from the group ffit by 
the process of „complexing", and shall call the group ffit the real form of the 
group Ш. 

One and the same complex group ?ft may have several different real forms. 
In fact, there may exist several such bases that the transformation of one of them 
into another is realized by a non-real linear transformation, while the structure 
constants of each basis are real. To such bases there will correspond different 
real forms of the complex group Ш. 

But beside the process of finding real forms of a given complex Lie group 
[process A)] there exists another method [process B)] of obtaining real groups 
from complex ones. If we consider the real and the imaginary parts of the para­
meters т. as real coordinates of a certain vector t in the space of 2r dimensions 
and automatically extend to this space the operation of commutation, we obtain 
a real Lie group Ш1 of 2r dimensions. The group 3J1 is uniquely determined by 
the complex group Ш. 

T h e o r e m 1. Applying to all possible complex simple Lie groups the pro­
cesses A) and B) of forming real groups we obtain all real simple Lie groups 4 

Proof . In order to prove our assertion consider an arbitrary real simple Lie 
group 9?! of r dimensions. After the process of „complexing" we obtain a com­
plex group 9i, which may be non-simple. Accordingly we distinguish two cases: 

1) Ш is a simple group. In this case the original simple real group 3^ is a 
real form of the complex simple group Ш, or, as we shall say, the simple real 
group £Rt has a simple complex structure. 

2) 9t is non-simple. But ffi is at any rate a semi-simple group, since the semi-
simplicity, being an implication of the fact that the quadratic form cp is not degene­
rated 2, is not affected by the process of „complexing*. In the case under consi­
deration Ш is a direct sum of two complex conjugated invariant subgroups $ and 
g , each of which has -^ complex dimensions. It is easily verified that the pro­
cess B), applied to any of the groups g and g , yields a group 9t2 isomorphic to 
the original real simple group Шг. 

Indeed, we can choose a basis for g and $ respectively in the form 

ер = ер + "р> ep-=ep — le"p (/> = 1, 2 , . . . ,-£), (4) 

where 

e' e' e" e" 
J ~2 

1 We call an infinitesimal real group simple, if it has no real invariant subgroups 
different from zero and from itself. 

2 Gar tan, [1J, p. 51. 
1* 
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may be taken to be a basis of the original real group Шг The structure formulae 
for $ and $ will be as follows: 

r_ г 

l v ' * l = S c V ' ' l v ^ ] = 2 ^ ' (/>,<7=i,...,|). (5) 

Moreover, since gf and §f are invariant subgroups in 9ft, 

lV*J = 0 (P. ? = ! , . . . , - J ) . (6) 
From (5) and (6) we find the structure formulae for the original group (we put 
c* = cs' 4 - ics'' cs' and cs" are real); 
pq pq l p# » p# p# ' 

_r r 
2 i 2 

t*p> e?l— 2 2 *><Л 2 2 C P X ' 
1 

^ r 

1 2 1 2 

K'> * P = — "2" 2 С Р Л + " 2 " 2 С Р / Г ' . (7) 
£ г 

1 2 1 2 

[*p » eq\ — ~2 2 <>/* + 2" 2 Cp/I 
(p, 0 = 1 , . . . ,-J). 

On the other hand, if we apply the process B) to gf, we find a real simple group 
3ft2 with the basis 

£ j , • • • , # r > l^\y • • • j 1в г • 
2 2 

If we introduce in the group 5t2 the new basis 

then, using formulae (5), it is easily verified that the structure constants of the 
group 9t2 in this basis coincide with the structure constants of the group 3 ^ in 
the basis e' e" The groups Шх and 3t2 are thus isomorphic. 

Observe that the process B) correlates to every complex simple group $ of 
r dimensions a uniquely determined real simple group Шх of 2r real dimensions 
having a non-simple (semi-simple) complex structure. The structure constants of 
the group 3^! are found in a simple way from the structure constants of $ . 

Thus the whole problem is reduced to the process A), namely to the determi­
nation of different (i. e. in the real domain anisomorphic) simple groups having 
a given simple complex structure. 

§ 2. The real forms of a complex semi-simple Lie group 
Every real semi-simple group gives after the process of „complexing" again 

a semi-simple group. On the other hand, every complex semi-simple group can 
be obtained, after Cartan-Weyl, by the process of „complexing* from a compact 
real group, for which the form cp is negative definite. 
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Hence all real semi-simple groups having a given complex structure may be 
'obtained in the following way: 

1°. We start from a real compact semi-simple infinitesimal group 9t0, in which, 
for an appropriate choice of the real basis 

e \ i e2 » • • • > en 

(which is supposed to be fixed throughout the paper) and any element t = yy^ziei
 l: 

—<p(M)=2i- (8) 
Applying the process of „complexing" to the group 9t0, we obtain the group 9£. 
2°. We look now for all linear transformations P in 5t, which transform our 

basis e. into a new basis g. = Pei, in which the structure constants cs
ik of the 

„complexed" group, 

[ft. «J^S&f i . W 
will be real. To each such basis g. there corresponds a real semi-simple infini­
tesimal group. In this way we obtain up to an isomorphism all real forms of 
the complex group Ш. 

3°. Among the so obtained real groups we choose a complete system of aniso-
morphic groups. 

Every linear transformation Я, which transforms the basis et into the basis 
gn is determined by a matrix (pik) such that 

Two questions arise in connection with what has been said above: 
1. Which are the linear transformations P realizing the transition to real 

groups (see 2°)? 
2. In which case do two linear transformations P and Px lead to two iso­

morphic real groups (see 3°)? 
Let us answer the first question. Consider the complex conjugated matrices 

(pik) and (pik)- The transformations P and P 2 defined by them transform the 
basis e. into respectively the bases g. and hn and the structure constants cfk and 
ds

ik in these bases will be conjugated: 

If P realizes the transition to a real group, the cfk are real and ds
ik = cjk. Then, 

since P - 1 transforms the basis g. into the basis е., the product PP~l transforms 
the basis g. into hi and hence preserves the structure constants cjk. But a linear 
transformation A transforming a basis into a basis and preserving the structure 
constants is an automorphism of the given group. Thus 

1 All variable indices occuring in this section run from 1 to л, where r is the dimen­
sionality of the group. 

2 According to this denotation we shall call two linear transformations (complexly) 
conjugated, if in the basis et they are characterized by (complexly) conjugated matrices. 
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T h e o r e m 2. A linear transformation P transforms a real compact group 
9t0 Into a real group then and only then, when 

PP-i=A, (12) 

where A Is an automorphism of the complex Infinitesimal group 3ft 
This is the answer to the first question. 
Let now P and P1 transform the basis e. into respectively 

g. = Pen k. = Pxe0 (13) 

and suppose that to these bases correspond isomorphic real groups with the struc­
ture constants 

c!k a n d d!k- ( 1 4 > 

This means that there exists a basis ln connected with k. by real relations 

l{ = 2 rjfij (rji — r e a l numbers), (15) 

for which the structure constants are the same cs
ik as for gr Then l. = Px (У\г#е/\. 

Let us now define a real transformation R (/? = /?, see footnote 2) by the equations 

Then 
1( = Р^ег (17) 

Since P " 1 transforms the basis g. into ei9 the transformation PXRP~X transforms 
the basis gi into /. and preserves the structure constants cs

ik. Consequently 

P1RP~i = Al (At is an automorphism), (18) 
or 

P = APXR, where A = A~[l. (19) 
IIence 

T h e o r e m 3. Two linear transformations P and Pt satisfying each the 
relation (12) transform the compact group ?StQ Into two Isomorphic real groups 
then and only then, when 

P = APXR, (20) 

where R Is an arbitrary real transformation and A Is an arbitrary automor­
phism of the „complexed" seml-slmple Lie group ffi. 

§ 3. Cartan's theorem 

In what follows we shall denote by the same letter the linear transformation 
and the matrix characterizing it i n t h e o r i g i n a l b a s i s e / t 

Every automorphism A leaves the form cp invariant: 

ср(Ж, At)=y{t, t). (21) 

з We may point out that from the equation (15) it does not follow that li = Rkh 
since the matrix (r/;-) corresponds to the linear transformation R only in the basis ev 
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But in our casecp —— 2T^-• Consequently Л is an orthogonal (in general com­
plex) matrix. 

Consider those Л, for which the equation 

PP-i=A (22) 

has solutions P. Evidently they satisfy the condition 

AA = E, (23) 
where E is the unit matrix, i. e. 

A = A-K (24) 

On the other hand, Л is a complex orthogonal matrix. Consequently 

A' = A'1 К (25) 
Hence 

A' = A=A~\ (26) 

or A is simultaneously Hermitian and orthogonal. 
In connection with this fact we have to analyse the structure of matrices, 

which are simultaneously Hermitian and orthogonal. 
T h e o r e m 4. If a matrix A is simultaneously Hermitian and orthogonal, 

then 
A = Se'*, (27) 

where S is a real symmetrical orthogonal matrix (S2 = E), Ф is a real skew-
symmetrical matrix and S and Ф are commutable: 

5Ф = Ф5. (28) 

Proof . Put A = F-\-iK, F and К being real. Since A is Hermitian, 
A = A\ and consequently 

F = F, K= — K, (29). 

i. e. F is symmetrical and К is skew-symmetrical. On the other hand, since 

AA=E, 
we have 

F*-\-K*-\-i(KF — FK) = E, 
whence 

F2 - f K2 = E, FK = KF. (30) 

The symmetrical matrix F and the skew-symmetrical К are thus commutable). 
Therefore we can reduce them to the canonical form by means of one and the 
same real orthogonal transformation. To this end we first reduce F by a real 
orthogonal transformation Q to the diagonal form. Then 

F* = QFQ-i = {riEvr2E„...^Ej, (31) 

where ?\ф!\ (ч¥=Ъ, Vb= *' 2> • • • > V) a n d £i> E^ * • •» ^ a r e u n i t matrices). 
Observe that K* = QKQ~X is again a real skew-symmetrical matrix. 

1 By A' we denote the transposed matrix of A. 
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The matrices F* and K* are commutable. Therefore K* consists of JA „cells" 
situated along the main diagonal (all other elements of K* are equal to zeroj: 

K*={KV K29 . . . , ^ } . (32) 

The skew-symmetrical matrix К may be now reduced to the canonical form 
К by a real orthogonal transformation Oy. The corresponding transformations 
of the matrices f*Ey by 0Y do not change the matrix F* . Thus we can reduce, 
by a simultaneous orthogonal transformation O, the matrices F and К to the 
following canonical form: 

(33) 

Since the matrices F and К are commutable, 

Л =7t=fv • • • X - r =Л,=Л- (34) 
On the other hand, 

? » - ! - £ « = £, (35) 
whence 

/ ? - ^ = . . . = Л - ^ = 1. У | , + 1 = - . . = 1- (36) 
Therefore 

W+tf-{(£-£) (/-£).-. * . } . ,37, 
But it is easily verified that a matrix of the type f\ J, where/2 — &2 = 1, 

may be represented in the form: 

Here |/ |==chcp, ± /г = sh cp, and the signs zt correspond to the signs in 

/ = ± | / | . (39) 
Thus 

2 = ?+*£= 
. /0 - 9 l \ /o -<pv \ 

= { - . I * ° ) ± И Ь ° / , - l , . . . , z t l } = S ^ , (40) 

where 

3-<-.....>.Ч(;-?) (Го')'0--»}' <«> 
and 

5Ф = 35. (42) 
Observing that 

A = 0~1AO (43) 
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and putting 
S = 0~1SO, Ф = 0 - ! Ф 0 , (44) 

we come to the equation 
Л =&? '* , (45> 

where S and Ф possess the properties stated in the theorem. 
Let us now return to the equation 

ppi=A. 
Here the automorphism A has the form A = Se£®, where 5 is 
cal orthogonal matrix, Ф a real skew-symmetrical matrix and 

Then it is easily verified that the formula 

— •ф 

where R is an arbitrary real matrix and 

gives all solutions of the equation 

P P - i = S * № . (49) 

Let us now prove that Ф is an infinitesimal automorphism. The group SI of 
all automorphisms of a given semi-simple Lie group consists of a finite number 
of components: $ = 8to + 2ti-f-• • •+2 t*_ i (2lo i s t h e adjoint group, i. e. the 
aggregate of all inner automorphisms)2. In other words, the factor-group 9l/2l0 

is finite. Therefore there exists such an even number 2v that 

A* = eM*c:%. 
But Ф is a skew-symmetrical real matrix; it has simple elementary divisors. 
Consequently the inner automorphism еЫФ has also simple elementary divisors. 
In virtue of the canonical representation of inner automorphisms with simple ele­
mentary divisors3 there exists such an inner automorphism U that 

e™* =u~1eHU. (50) 
Here eH is a chief automorphism with respect to a certain maximal Abelian 

subgroup I) in 3t, containing a regular element, Hx = [hx], h a \ We may 
assume that this subgroup Ij is obtained by the process of „complexing" from 
the corresponding subgroup I) of the original compact form. Then 

Я = / / , + / Я я , НгН2 = Н2Нг, (51> 
where Hx and H2 are two real infinitesimal automorphisms of the given semi-
simple Lie group (i. е. Нг and H2 are infinitesimal automorphisms of the com­
pact group 9t0). 

From (50) and (51) follows 
**/Ф =BXB2, 

2 С а г t a n, [4]. 
3 G a n t m a c h e r , [1], p. 117. 

(46) 

a real svmmetri-

(47) 

(48) 
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where B1 = U~1eH^U, В2 = и~1еш*и. Since Hx and H2 are infinitesimal auto-
morphisms, they are skew-symmetrical [due to the special choice of the basis; 
see (8)] and consequently have imaginary characteristic roots and simple ele­
mentary divisors. Hence Bx and B2 have also simple elementary divisors and 
the modulus of all characteristic numbers of Bx is equal to one, while all cha­
racteristic numbers of B2 are positive. In virtue of commutability of Bx and 
B2 the characteristic numbers of their product, i. e. of еЪ1Ф, are the 
products of the corresponding characteristic numbers of the factors. But the 
characteristic numbers of еЪ1ф are positive. Hence 

B1 = E, (52) 
and therefore 

е™*=В2 = еи-1Ш*0. (53) 

But all characteristic numbers of the matrix 2у/Ф, as well as of the matrix 
U~1iH2U, are real. Hence from (53) it follows that 

2>/Ф = U~4H2U, (54) 

1. e. that Ф is an infinitesimal automorphism. Thus we have proved the follow­
ing 

T h e o r e m 5. In order that the equation 

~PP"1=A, (55) 

where A is a given automorphism of the complex group Ш and P the requi­
red linear transformation in Ш (the complex conjugate is taken with respect 
to the compact form), should have solutions, it is necessary and sufficient that 
A should have the form 

A = Se1'*, (56) 

where S is an involutive automorphism (S" = E) of the compact group 9t0, 
Ф an infinitesimal automorphism of the compact group diQ and S and Ф are 
commutable. 

If this condition is satisfied, all solutions of (55) are given by the for­
mula 

__ •ф 

P = e~'VS"/?, (57) 

where |AS = — ^ 5 -\ — E and R is an arbitrary real linear transformation 

in 3* (R = R). 
Let now P realize the transition from the original compact group ?ft0 to a 

certain real group. Then, by Theorem 2, P satisfies the equation (55). For A 
and P we have thus the expressions (56) and (57). 

.Ф 

Since e is an automorphism, from (57) it follows (see Theorem 3) that 
the transformations Pand ]AS realize transitions to isomorphic real groups. We 
may thus confine ourselves to transitions realizable by transformations of the 

type | / 5 . 
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So we have proved the following fundamental theorem of Cartan4: 
T h e o r e m 6 (Cartan). All different real forms of a given complex semi-

simple group may be obtained in the following way: 
First we find all involutive automorphisms of a compact form, i. e. auto­

morphisms S, for which 
S* = E. (58) 

Then we take the basis composed of the „Eigen"-vectors of the matrix S, 
multiply those vectors of this basis which correspond to the characteristic 
number — 1 by i and leave the remaining vectors of the basis unchanged. To 
the so obtained basis there corresponds a real form of the given complex 
semi-simple Lie group. 

§ 4. The connection between a complex semi-simple Lie group and 
its compact form 

Consider an arbitrary automorphism Л of a complex semi-simple Lie group 
9i. Since A and A are automorphisms, 

AA~X = Q 

is also an automorphism. By Theorem 5, 

Q = Se^1 (59) 

- / * 
A = e 2/SR, (60) 

where S = S = S~1 is an automorphism, Ф = Ф is an infinitesimal automor­
phism and 

5Ф = Ф£, R = R. 
. Ф 

Since A and e are automorphisms, we conclude from (60) that 

C=\/SR (61) 
is an automorphism. 

Then from the equation 
E^C^/SR 

we conclude, by Theorem 3, that P = ]/rS realizes the transition from the ori­
ginal compact group to a group isomorphic to it. But then the form cp must be 
negative definite also for this new group. Hence all characteristic numbers of 
j / 5 must be equal to one, i. e. 

VS=E. (62) 

From (61) and (62) it then follows that 

4 С а г t a n, [6], p. 27. 
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i. e. that R is an automorphism of the compact group. From (60) and (62) follows 

A=e~~l2R (63) 
and 

A~1 = R~1e \ (64) 
. Ф 

, - i ' T 

ф Ф 
Replacing in (63) —-к by Ф and in (64) A~l by A and у by Ф, we co­

me to the result that any automorphism A of a complex semi-simple Lie group 
may be represented in the form 

A = *'*/?, (65) 
as well as in the form 

A=Re**, (66) 
where i? is a finite and Ф an infinitesimal automorphism of a compact Lie 
group. This is the remarkable result of Cartan1, establishing a close connection 
between the topological structures of the groups of automorphisms of the complex 
and the compact semi-simple Lie groups. 

§ 5. The canonical representation of automorphisms of a compact 
semi-simple Lie group 

Let us prove the following 
T h e o r e m 7. / / two automorphisms A and В of a compact semi-simple 

group are conjugated with respect to the „complexed" adjoint group, they 
are conjugated also with respect to the compact adjoint group. 

Proof . Let 
B=T-iAT, (67) 

where T is an inner automorphism of the complex group. Then 

B = T~lAT. (68) 

Finding A from (69) and substituting in the so obtained equation for В its 
expression from (68), we find 

А^=Т7^гАТТ~\ (69) 

i. e. TT"X and A are commutable. As it follows from (65) 

T=e**Rt (70) 

where R is an inner (finite) automorphism and Ф an infinitesimal automorphism 
of the compact group. 

Observe that since all characteristic numbers of 2/Ф are real and 7T~ = 
= е- 2 / ф , Ф is a function of 7T"1 . Consequently Ф is commutable with A. 

i C a r t a n , [5], p.p. 250—251. From this result of Cartan it follows that 31 and 
(compact have one and the same fundamental group. 
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Therefore, substituting in (68) instead of T the product e^Ry we obtain 

B = R~*AR, (71) 
q. e. d. 

Now observe that from the compactness of the group of automorphisms it 
follows that the modulus of all characteristic numbers of every automorphism of 
a compact group is equal to 1, and all elementary divisors of these automor­
phisms are simple1. Therefore we have for any automorphism A of the compact 
group2 

A = U~*ZU9 

where Z — Z ^ is a chief automorphism in that component %. which contains Ae 

Since the modulus of all characteristic numbers of Z must be equal to 1, 
all parameters \ in H must have imaginary values. But then Z will be an 
automorphism (in fact, chief automorphism) of the compact group. In virtue of 
the preceding theorem we can also consider U as an inner automorphism of 
the compact group. Thus we arrive at the following 

T h e o r e m 8. Each automorphism A of the compact group is conjugated, 
with respect to the compact adjoint group, to a chief automorphism of the 
compact group: 

A = U-iZUy (72) 

where U is an inner automorphism of the compact group. 

CHAPTER II 
THE DETERMINATION OF REAL GROUPS OF THE FIRST CATEGORY WITH 

SIMPLE COMPLEX STRUCTURE 

§ 6. Preliminary remarks 
In the preceding chapter we have seen that the problem of determination 

of all real forms of a simple complex Lie group may be reduced to the determi­
nation of all involutive automorphisms of the compact form of this group. By 
Theorems 3 and 8 we can moreover confine ourselves to consideration of „chief 
automorphisms. 

We shall refer a real form of a given simple complex group to the f i r s t or 
to the s e c o n d category according as to whether it is generated by an inner 
or an outer involutive automorphism. 

Consider an involutive chief inner automorphism S* Its characteristic numbers 
are -f-1 and — 1. Consider the decomposition with respect to these characte­
ristic numbers: 

« = «!+«_!, 
1 In fact, from Ae = le it follows that Ane = lne. Further, since from the sequence 

An (л — 1 , 2, ...) we can choose a subsequence converging to a certain automorphism, 
\\\ must be equal to 1. The same considerations show that we can not have 

Ae = \ey Ag = \g+e, 
since then we should have 

Ang = lng+nln-1e. 
2 G a n t m a c h e r , [1], p. 139. 



230 Felix Gantmacher 

and let 1) с 5?! 1. Let further 
$ i={ l}> *«,*-»> • • •} a n d $ - 1 = { * Р > * - р ' • • • } • 

Denote by Vx and V_a the aggregates of roots 

a, —a, ... and p, —p, . . . 

Thus to the automorphism S corresponds the decomposition of the root system: 

V=(V19V^)9 
and from the structure formula 

where Л / ^ ^ O , if a-f-P Is a root (see also G a n t m a c h e r , [1], p. 107), it fol­
lows that 

v^+£.'1}
cV'1' v*+v-icv-i <73> 

(on the left only those roots are added, whose sum is again a root). 
Suppose that for another involutive chief automorphism S' 2 we have a 

similar decomposition of the root system: 

If the systems Vx and V[ may be transformed into each other by a cer­
tain rotation T с % 3, then the involutive automorphisms S and S' generate 
isomorphic real groups. 

Indeed, the rotation т transforms the root system into itself. Hence from 
V'x = T (Vx) follows V'_x = T (V_x). The rotation т may be completed to an automor-
phism A of the compact group 4.This automorphism transforms $x into ^ 1

, and^_ 1 

into $ ' _ r Hence it follows that 
S' = ASA~i 

and consequently 
/Sr=A\fJA-K (74) 

By Theorem 3, S and S' generate isomorphic real groups. 
This remark shall be used later. Denote by v the number of characteristic 

roots of S equal to 1 and by JUL = r — v the number of roots equal to — 1. 
r 

Since for the original compact group cp = — 2 r/> *or t n e r e a l g rouP correspon-
l 

ding to the automorphism Sthe form cp will have, byCartan's theorem, JJL positive 
and v negative squares. The signature of the form cp 

S == JJL — v = 2jx — r = r — 2v (75) 

Cartan calls the c h a r a c t e r of the real group under consideration. It is evident 
that real groups having different characters can not be isomorphic. 

i G a n t m a c h e r , [1], p. 117. 
2 Here and in the following the dash does not mean the transposed matrix. 
3 G a n t m a c h e r , [1], p. 129. 
* Ibid., p. 130. 
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Consider the root forms 

(А)=2<Л 

and put V=TT/<p (i = V— 1). Then 
n 

(aX) = m (acp) = m 2 ^ . 
i 

Since for S 
*(aX> = ± l , (76). 

all 
n 

i 

must have integral values. In what follows under a root form we shall under­
stand (acp). 

We shall write 
( ? ! , . . . , <?„)=(?; , . . . ,? ; , ) 

or, briefly, 
Ф = ?'. 

if for all roots 
(acp) = (acp') (mod 2). (78) 

In this case the corresponding involutive chief automorphisms S and S' will 
have the same characteristic numbers: e*'(«p) =£**(«?'). 

We shall say that the systems of numbers (cpx,.. . , сря) and (cpj, . . . , cp'J are 
equivalent and shall write 

(<Pi. •••>?*) ^ ( ^ •••>¥«)> (79) 

if there exists a rotation- i c J transforming the vector cp into a vector con­
gruent to cp': 

*(¥i» •••>¥«) = (?!' •••»¥«)• (80) 

In this case, as we have already seen, the corresponding involutive auto­
morphisms S and S' generate isomorphic real groups. Hence, in finding the 
involutive chief inner automorphisms of the given complex simple structure, we 
may confine ourselves to consideration of unequivalent systems of numbers 
(cpj, . . . ,ср д ) , for which the root forms assume integral values. 

After these preliminary remarks we pass now to direct consideration of 
separate complex simple structures5. 

§ 7. The structure An 

The root forms are here 

b~% (/>,? = ! , . . . , * + l ) l (81) 

with the additional condition 

< P i + - - - + ¥ „ + i = 0 . (82) 

б G a n t m a c h e r , [1], p. 126—127. 
1 Here and in what follows we shall suppose that indices occuring in the deno­

tation of one and the same root form assume different values. 

(77) 
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\ (83) 

All differences cp—cp are integers. Each system of cp may be replaced by a 
congruent system consisting of integers [and, generally speaking, not satisfying 
the additional condition (82)]. These integral values of cp we may reduce to 
the modulus 2. 

Observe that 1) permutations of cp are rotations т, 2) we can add to all cp 
one and the same number without affecting the form (acp). 

Using these transformations, we reduce the whole problem to the conside­
ration of the following systems of cp : 

&!=((>, . . . , 0 , 1 ^ . ^ 1 ) ( / = 0 , 1 Л + 1 ) . 

But 
S»/co(—1 — 1 , 0 , . . . ^0 ) = ( 1 , . . . , 1, 0, . . . ^ с/Л 

c/>(0, . . . , 0 , 1 ^ ) = ^ ! ^ . 
n+l—l 

Hence we may ascribe to / only the values 

/ = 0 , 1 [n-±±] . (84) 

To the system Э5г corresponds the involutive automorphism St, for which 

jx = 2/(/z-b 1 —/) , Ь = 2ц-г= \ 
= 4 / ( л + 1 — /) — (л + 1 ) 2 + 1 = 1 — ( л - f 1 - 2 / ) 2 = l -m\ j I 0 0 ' 

where m = n-[-1—2/=л-|-1, n—1,...,{ , . 

The so obtained | — 1 — | r e a l simple groups may be realized in groups of linear 
transformations in n -f-1 complex variables, leaving invariant respectively the 
Hermitian forms 

x \ x \ T" • • * "IT XIх l А7+1А Г /+1 • ' • Xn+lXn+l 

( /=o , i , . . . . I^- 1 ] ) . 

§ 8. The structure £rt 

The root forms: 

± V - ? /> -?< / ( /> .?= 1> . . . , * ) . (86) 

We may take cp t̂o be integers reduced to the modulus 2. 
As in the preceding case we may confine ourselves to consideration of only 

those S, for which 

< ? ! = . . . = ^ = 0 , Cp„_/+1 = . . . = < р я = 1, 
where / = 0, 1, . . . ,л. For ^ we have 

ц = 2/ + 4 / ( л - / ) = 2 / ( 2 л — 2 / + 1 ) , 
S = 2 pi — г = 4/ (2л — 2/ - j - 1) — (2л - f 1) /г = { 

= л — 2т{т -f-1), 
т = п — 2/ = л, л — 2, . . . , — л, 

(87) 

2 С а г t а п, 12], р. 276. 
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or, which is in this case equivalent, 

w = 0, 1, . . . , n. 

We have n-\-\ different simple real groups with the complex structure Bn. 
These groups may be realized in groups of real linear transformations, leaving 
invariant respectively the quadratic forms 

* ? + • • . + * ! / — 4 + 1 — • • • — xln+i C/ = 0, 1 л) i. 

§ 9. The structure Cn 

Let us take the root forms in the form 

- V i(-b-*fJ & 9 = 1» ... ,*). (88) 
We may suppose all cp to be integers, all odd or all even, reduced to the 
modulus 4, i. e. either I) all <p = 0 , 2, or II) all cp = zt 1. 

Note the following rotations т: 
1) the permutation of cp , 
2) the change of sign of one of the numbers cp . 
I. In this case we may confine ourselves to consideration of the systems 

^ = ( 0 , . . . , 0, 2 _ . , _ 2 ) ( / = 0 , 1 , . . . , n). (89) 

But the addition.of 2 to all cp̂  gives a congruent system, and the change 
of sign of cp is a rotation т. Hence the transformation 

<fo = 2 —<рр (p = l, . . . ,n) 

realizes a transition to an equivalent system. Therefore 

®* <"»„-/• (90) 

Thus / in (79) may be confined to the values 

/ = 0 , 1 , . . . , [ f ] . (91) 
For the corresponding S 

11=4Цп — /), ^ 
S = 2;JL — г = 8 / ( л — /) — 2ла — 2n = — n — 2m2, ) ( 9 2 ) 

where 
m = n — 2l = n, n — 2 , . . . , < j . 

The so obtained 1 T" 1 real simple groups may be realized in groups of linear 

transformations, leaving simultaneously invariant the skew-symmetrical bilinear 
form 

X\X2 X2X\ I • • • 1 X2n—lX2n X2nX2n — 1 

i Car tan, [2], p. 280—281. 
2 Математический сборник, т. 5(47), N. 2. 
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and the indefinite Hermitian form 

ХгХг . . . . -y- XnX2l
 X2l+lX2l+l • • • X2nX2n 

( / = 0 , 1 , . . . . [-J]). 
II. The cases, in which cp = z t 1, may be reduced to the one case: у = 1 . 
It is easily seen that for the corresponding involutive automorphism S 

we have 

To this case corresponds the group of real linear transformations, leaving 
invariant the skew-symmetrical bilinear form 

x\x2 ~~ X2X\ ~h • • • ~rx2n-\x2n ~~ x2nx2n-i 2* 

§ 10. The structure Dn 

The root forms we take to be 

—pf̂  (P, ? = ! , . . . , « ) . (93) 
All cp must be integers congruent to each other to modulus 2, and these 
integers may be reduced to modulus 4. 

As in the preceding section we may evidently confine ourselves to consi­
deration of 

2$,= (0, . . . , 0 , 2 , . . . , 2) (/ = 0 , 1 , . . . , [I]), ] 

2$ = (1,1,...,1). 
(94) 

For 93; we have 
]X = 4l(n — /), S = 2jji — r--

=-Sl(n — l)—n(2n—\) = n — 2(n — 2l)2^n — 2m'*, J * ' 

where m = n, n — 2, . . . , < j . 
The corresponding real structures may be realized in groups of real linear 

transformations, leaving invariant the quadratic forms 

x\ + • • • ~f~ xii ~~ x2i -и ~~ • • • ~~ x2n 
(/=0,1 [-J-]) i. 

For the system 35 = (1, . . . , 1) we find at once 

5 = — n. 

The corresponding real structure is realized in the group of linear transforma­
tions in 2n complex variables, leaving simultaneously invariant the quadratic 
form 

XlX2 i • • • ~T X2n—lX2n 

i С а г t a n, [21, p. 292. 
2 Car tan, [2], p. 291. 
i С a r t a n, [2], p. 286. 
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and the indefinite Hermitian form 

ХгХг Х2Х2 - ( - . . . ~Г X2n—lX2. 

§11 . The structure G2 

The root forms "we may take to be 

with the additional condition 
(?1+ (P2+ (P3 = °-

<P, U>, 9 = 1 . ' 2 , 3) (96) 

(97) 

Here <pj and cp2 may be confined to the values 0, 1. We consider the follow­
ing systems: 

аз1 =(о, о, о), аза=(о, i , _ i) = (o, i, i). (98) 
1. 3 3 , = ( 0 , 0 , 0), § = - 1 4 . 

This is a compact real group, which may be realized in the following way *: 
We define in the seven-dimensional real vector space the operation of 

„vector multiplication", 
c = aXby (99) 

where 
ai-9 bi-Z 
fl/-2 * / - 2 

+ fl/ + 2 * / + 2 
ai-i bi-x 

+ fl/+l * / + l 
fl/ + 3 * / + 3 

(100) 

( / = 1, . . . , 7; the indices on the right-hand side are to be reduced to modulus 7). 
The compact real group, in which we are interested, consists of all or­

thogonal transformations 7, leaving this operation of vector multiplication inva­
riant: 

T{axb) = TaxTb. (101) 

2. Жа~=(0, 1, 1), д = 8, * = 2 д - г = 2 . 
To this case corresponds the group of linear transformations in the real seven-
dimensional space, leaving a certain indefinite quadratic form and the operation 
of vector multiplication, defined above, invariant2. 

The root forms are 
§ 12. The structure FA 

Ь-Чг 2" ( ± : С?1~С?2±?з±?4)- (102) 

The cp̂  may be confined to the values 0, ± 1 , 2, but <px - j - cp., -J- cp3 -f- cp4 must 
be an even number. Observe also that subtraction of 2 from two of the cp 
gives a system congruent to the original one. 

2 Loc. cit., p. 286. 
1 Ca r t an, [2], p. 297—298; Lardy, [1], p. 212—215. 
2 С а г t a n, [2], p. 297—298. 

2* 
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Note the following rotations x: 
1) the permutation of cp 
2) the change of sign of some of the cp 
3) the subtraction from each cp of the semi-sum of all the cp 
Since these operations, as well as the subtraction of 2 from two of the 

tp , transform any system of the cp into a system equivalent to it, we may 
consider the following cases: 

931 = (0, О, О, О) (§ = — 52), 
аЗа = (0, 0, 0, 2) (§ = - 2 0 ) , \ (ЮЗ) 
3 5 8 = ( 0 , 0, 1, 1) (i = 4) 

[2*4 = 0> !> *» 1)оо(1, — 1, — 1.— 1)оо(2, 0, 0, 0 )с^$ 2 ] 1. 
2 3 1 

In order to show how these three real structures are realized, let us consi­
der the so called Cartan's normal group2. To this end we introduce the fol­
lowing denotations. 

If T is an infinitesimal transformation of a linear group defined by the 
equations 

n 

z\ = bzt= 2 aikzk (i = 1, . . . , я), 

we shall write this transformation T in the following form: 

Tf=bf= S *«**;£. 

where / is an arbitrary differentiable function of the zr We take 26 complex 
variables 

(/ = ± 1 , ± 2 , ± 3 , ± 4 , a = n\, f = ± 2 , т = ± 3 , 8 = ± 4 ) 

and put 

By the dash we shall denote the change of sign of the index. Then Cartan's 
normal group is the linear group with the following infinitesimal transformations3: 

i We write, for instairce, $c/)23f, if the system SS' can be obtained from the system 
l 

by the transformation 1), etc. 
2 Cf. Car tan, [1], p. 145.-
8 Loc. cit., p. 145. 
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^ / / = XiPi— •* / ' /> / '+ T 2 {XijklPijkl-Xi'JklPi'jkl), 
J',k,l J J 

XJ = — Xn'l + ZyPa+Sa 2 W 3 * * W / 4 Y 5 ' 

^ / = —д:^+2ур р -{ -ер 2 £
5^'гЛзТ8> 

a, | , о 
XJ= — xfq + 2yp 4-e 2 £ з^8 Т ^ а 3 т 8 , 

' ' ' a, 3, S r 

- Y 8 / = = - ^ ^ + 2 W 8 + £5 2 V ^ ' A * 3 T 5 > 

Xa?f= XVPa — X*'P$ — £a 2 ^Х^'^Р^Ь > 

^ a T / = * т ' А — **7?T — £a 2 e8*«W8P«pT3' 

Х^/=Х^РЛ — *a'/>8 — Sa 2 бр^а'Эт^Л^З» 

Xtff = X?'P1 — Xl'P$ — £
T 2 £ 8 * а З у о / ^ т 8 , 

a, 8 
^ B o / = = -^о'Рз ~" XVPb ~ £ p 2 i е1Х«?'чо>ра^ , 

о с , Y 

^ o Y / = *т'/>8 - *8 'PT - S8 2 ерДТаЭт^'Л^ v 

[ (Ю4) 

a, 3 
x*wf= — (У — Зеабрете82г)/;врт8 + у ха'зуо' (? - easpe7e8r) + 

+ £«£3£
Y

£8 (Х«'Р*'№ — X*WP*) + 
+ £3£8 (^З'/^аЗ'-р — -ХГа'Зу'о'Рр) + ^ {Х^р^'Ъ -*Га'3'Т8'/\) + 

+ S^g [ХЬ'ра^Ь' *а'3'Т'о/?8) 

(i=l, 2, 3, 4, а = ± 1 , р = ± 2 , у = ± 3 , § = ± 4 , 
£ у > 0 , if у > 0 and 8 ; < 0 , if у < 0 ) . 

If we confine the variables in this group to real values, we obtain a real 
simple group with the character § = 4. 

If we subject the complex variables xn лга3 8, y, z to the conditions 

xv = xi, * a W 8 ' = — л : а р т 8 , y=y , z = z, 

we obtain a simple real group with the character § = — 2 0 . 
If, finally, we replace the conditions (105) by the conditions 

XV = X., -ХГа'Зу8' = Ха^ь , у =y, Z = Z , 

we obtain a compact group with the character 5 = — 52. 

(105) 

(106) 

§ 13. The structure EQ 

Here the root forms are 

CO 

(p, q=\, ... , 6). ' | (107) 

We have ?p = cJ)p-J-s, where cb̂  are integers and s assumes one of the three va­

lues: 0, - j , — y . 
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Since we can add to or subtract from all ®p two thirds, the cases s = 

= -^-and г— — у may be omitted, and we may suppose that the cpf are inte­

gers reduced to the modulus 2. 
Note the following rotations т: 
1) the permutation of cp 
2) the change of signs of all cp 
3) the mapping aa effecting mirror images, where (acp) = cp2 -f cp2 -|- cp3: 

?1 = ?^—T (?i + ?2 + cPs)> ) 
! M ? = l , ?> 3), (108) 

4) the mapping aa effecting mirror images, where (arf) = cpx—J— . . . - ] - cp6: 

In virtue of rotation 1) we may confine ourselves to the systems 

£ s / = ( 0 , . . . , 0 , 1 , . . . , 1 ) ( / = 0 , 1 , . . . , 6 ) . 

But 
» Б = (о, i, l, i , i, i)c/>(i, i, i, 1 , - 1 , 0 ) ^ ( 0 , 0 , 0 , 0 , - 2 , - 1 ) ^ ^ 

1 4 

and 
255oo(l, 1, 1, 1, 1, 0 ) o n ( - l , - 1 , - 1 , 2,2, 1)с/>$4. 

Further, 
3 ? 6 = ( 1 , 1, 1, 1, 1, l ) ^ ( - l , ~ 1 , - 1 , 2 ,2 , 2)oo9S3on 

co(3, 0, 0, 1 , - 1 , 0)C/D(1, - 2 , - 2 , 2, 0, 1)сл$В2. 

It remains to consider the systems 330, 9?! and 332. 
1. 330 = (0, 0, 0, 0, 0, 0), 8 = - 7 8 . 
To this case corresponds the compact real simple group, which may be given 

as the group of linear transformations in 27 complex variables x , у , z — 
= — z (/?, q=l, 2, . . . , 6), leaving invariant the following two forms: the 
cubic form 

2 ХрУдгрд- 2 (^ ' ?' *' *' ^ V}ZpqZ*?uv* (1 1 0) 
/ / , tf /? , # , 5", ^, Й, tf 

where 
(/?, #, 5, /, Й, г;) = 4-1» if the permutation is even, 
(/?, #, s, t, u, v) = — 1 , if the permutation is odd, 

and the positive definite Hermitian form 

2 у Д Е е д + 2 у и *. (in) 
P Я РУЯ 

2. ^ = (0, 0, 0, 0, 0, 1), |Л=32 , » = —14. 

1 Car tan, [2], р. 313. 
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The corresponding real simple group may be defined in the same way as 
the compact group of the preceding case, with the only difference that instead 
of the positive definite Hermitian form (111) we must take here the indefinite 
Hermitian form 

5 _ _ 5 _ _ 5 _ 5 _ 

3. §B2=(0, 0, 0, 0, 1, 1), JJI = 4 0 , b = 2. 
The real simple group corresponding to this case is again determined in 

the same way as in case 1, with the only difference that we must take here 
instead of the Hermitian form (111) the form 

2 v , + 2 v , - 2 v „ 2- (из) 
§ 14. The structure E4 

The root forms are 

Ъ—Ъ> Ъ + Ъ + Ъ + Ъ ( 1 1 4 ) 
with the additional condition 

?! + •••+% = °- (П5) 
The cp will be here evidently of the form 

Ъ = Ь + г> where s = 0, I , — I , 1 . (116) 

Since we can add -к- to all cp̂  without changing the characteristic numbers of 

the involutive automorphism S, we can omit the cases s — — j and s = у . 

I. s = 0, <p are integers reduced to modulus 2. The equation (115) we 
replace by a congruence to the modulus 2. We. put 

Note the following rotations т: 
1) the permutation of <p , 
2) the mirror image with respect to the origin: 

<?p=-<9P (P=h ... ,S)y 

4 
3) the mapping aa effecting mirror images, where (a<f)=2 (fV 

l 

Observe, besides, that to all yp can be simultaneously added — , 

2 Loc. cit., p. 313. 
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Then 

» , - ( 0 , . . . , 0 , - 1 , . . . , — ! ) = - ( ! , . . . , 1,0, . . . ,0)<*^_, (117) 
21 21 

and 
9&,сл(1, — 1 , 1 , 0 , 1 , - 1 , 1,0) сл» а . (118) 

II. * = \ - Let 

2 B i = ( | . . . - . T' 1 T ' - - " 4 ) ( '=0, 1,2, 3,4). 

Again 

а в | - ( 4 > . . . , i | , 21, . . . ,21)^ж4_ г . 
^ т 

21 
Besides, 

^ 2 з \ 4 ' 4 ' 4 ' 4 , 4 , 1 4 ' 4 , i 4 

_ f i I I i 2 i 2-1- 2l 2 ^ = ^ ~" \ 4 ' 4 ' 4 ' 4 ' z 4 ' 4 ' 4 ' z 4 / " " ^ ' 

Thus it remains to consider the systems 

»o, 33,, 2$0, SB,. 

i. as0 = (o, о, о, о, о, о, о, 0), s = —133. 
To this case corresponds the linear group, which may be given as the group 

of linear transformations in 56 complex variables x = — x , ypq~—yqp 

(p, q=\j . . . , 8), leaving invariant the following three forms: the positive de­
finite Hermitian form 

^ХрдХрд+ЯУрдУрд* 0*9) 
p>q p*q 

the bilinear form 

p>q 

and the biquadratic form 

2 ХРЯХПУ^УЯГ + 
p, . . . ,s 

+ 2 (P, Я* П S> *> U, Vi W) {Xpq
XrsXtuXvwJrypqyrSytayvw}' 0 2 1 > 

F> ••• > w 

Here 
(/?, #, r, 5, /, a, v, ie;) = - | - l , if the permutation is even, 
(/?, #, r, 5, £, и, ?/, ^ ) = — 1 , if the permutation is odd *. 

2. S5 1 =(0 , 0, 0, 0, 0, 0, 1, 1), .8 = — 5 . 
The corresponding real group may be realized in the group of linear trans­

formations in 56 complex variables, leaving invariant beside the bilinear form 

1 С а г t a n, [2], p. 323. 
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p q \ pq pq I •?pqspq/ 
рл } (122) 

(120) and the biquadratic form (121) the following indefinite Hermitian form2: 

2 J lplg {х
рд

х
рд-\гУрдУрд)у 

\ = l2 = - h Xp = + 1 ( P = T M , 2 ) . J 

Q № —( l l l l l 1 l M * — 7 
6. J}sQ—[j, -4-, ? , T , T , - , T , ~ y , 0 — /. 
To this case corresponds the group of linear transformations in 56 r e a l 

parameters, leaving invariant the bilinear and the biquadratic forms (120) 
and (121) 2. 

4-®i=(i> i ' i* *• *• *• 4> 4 ) ' 5=~25-
To this case corresponds the group of linear transformations in 56 variab­

les x , ^ , connected by the relations 

Ур9 = 1рк9хР9' } (123) 
where X1 = i2 = — 1 , X 3 = . . . = X 8 = 1, j 
which leave the forms (120) and (121) invariant 2. 

§ 15. The structure Es 

The root forms are 
yp — yg, ± (cpp-f ^ + <p,) (/?, ?, 5 = 1 , . . . , 9) (124) 

with the additional condition 

In this case ?р = фр-1-2, where cbp are integers and s = 0, y , — - - . The 

numbers ф may be reduced to modulus 2, if we replace in (125) the sign = 
by the sign == (mod 2). Since we can simultaneously add to or subtract from 

all 0n two thirds, we can omit the cases £=-5- and s = — T and assume that 1 p 0 0 

all cp are integers reduced to the modulus 2. 
Note the following rotations т: 
1) the permutation of <p 
2) the mapping aa effecting mirror images, where (acp) == сра —{— cp2 —}— cp3: 

<Pi = ¥* — f (¥i + ?a + <Pe) fa=l> 2> 3)> 

?; = ?, + i ( ? i + ?2 + ?«) (* = 4> 5> 6> 7, 8, 9). 

Putting $Bj=(0, . . . , 0, l , . . . , l ) ( / = 0 , 1, 2, 3, 4) and using the 

rotations 1) and 2), we find 

2 3 ^ ( 3 , 0 , . . . , l )oo( l , _ 2 , - 2 , 1, 1, 1, 1, 1, 2)с/з&§| (126). 

882сл(1; 1, 1, 1, 0, 0, 0, 0, 0)oo 
; (127) 

с/>(-1, - 1 , - 1 , 2, 1, 1, 1, 1 ,Л)сл» 4 . ' 

2 Ibid., p. 323. 



242 Felix Gantmacher 

It remains to consider 3S0, 5b\ and S&2 : 
1) gS0 = (0, 0, 0, 0, 0, 0, 0, 0, 0), § = — 248, 
2) а31 = (0, 0, 0, 0, 0, 0, 0, 1, 1), S = —24, 
3) aS2 = (0, 0, 0, 0, 0, 1, 1, 1, 1), § = 8. 
For realizations we take the corresponding adjoint groups г. 

CHAPTER I I I 

THE DETERMINATION OF SIMPLE REAL GROUPS OF 
THE SECOND CATEGORY 

§ 16. Preliminary remarks 
In the preceding sections we determined the simple real groups of the first 

category more or less on the lines of Cartan г and Lardy2. Passing now to 
groups of the second category we shall however base our deductions on the 
canonical representation of outer automorphisms and reduce the whole problem 
to the determination of all outer chief involutive automorphisms3. If the compo­
nent Шп in which we are interested, is given by the particular rotation xi in the 
given subgroup I), then the chief involutive automorphisms in 31̂  may be taken 
to be of the form _ 

( Z - T , ) $ = 0 , Ze^x/^e^, ) 
y j = l , о'=т /(а), | = Г «. I 

The signs of the y.a are the same for all values of the parameters X occuring 
in X. 

Put Z0= {Z}}=ZQ. Then from (128) we obtain 

Z = Z0e". (129) 

We introduce now parameters cp̂  connected with the X by the relation Х = 7Ш>. 
Then each involutive Z is characterized by a certain system of real values 

Let us prove the following proposition: 
Two involutive automorphisms Z = ZQe ? and Zf = Z^e *' are equivalent 

(i. e. generate isomorphic real groups), if /^/—^ cz l)~. 
In fact, let A — eH*. Then it is easily verified by means of (128) that 

AZA-i=Z0eHv + 4W~7: (130) 

Since /V]—<P с )̂~> by a n appropriate choice of the real system у we can achieve 
that xi (y) — i = cp' — cp. Then 

Z' = AZA-\ (131) 

where A is an automorphism of the compact group. 

i C a r t a n , [2], p. 338. 
i Cf. C a r t a n , [6]. 
2 Cf. L a r d y, [1], p. 209 and f. 
3 G a n t m a c h e r , [1], Chapter III. 
4 G a n t m a c h e r , [1], § 14. The rotation т,-, being involutive, has characteristic 

numbers -f 1 and — 1 . Accordingly we have the decomposition rj = I)+-f-1)-, where 
("/ — l ) 5 + = 0 and ( ^ + 1 ) ^ = 0 . 
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§ 17. The structure An 

Chief automorphisms from the component Stj may be defined as follows 1: 

( Z - T , ) ^ = 0, I 
Zepg = (-iy-^-1e^fp-''qUqtPi (p,q=\,...,n+\)A (132) 

(?P + ?,, = 0). j 

Here, for the root form (acp) = cp — yg we have epq = ea, and by the subin-
dex 1 is denoted the transition to the conjugated index, i. e. to the index, 
which together with the original one forms one of the pairs 

(133) 
(1,2), (3,4), . . . , ( 2 / - 1 , 2/), (Й + 1 , Я + 1 ) 8 , ] 

where 

тг is a particular rotation in f), defined by the equations 

Чр = — <?Рг ( р = 1 , 2 , . . . , / i + l ) . (134) 
The equations 

^ + ^ = 0 ( p = l , . . . , * + 1 ) (135) 
determine the subspace 1)+, and the equations 

Ь = Ьг ( / > = 1 , . . . , Л + 1 ) (136) 
the subspace l p . 

Let now Z be an involutive automorphism, i. e. let Z2 = £. Then from (132) 
it follows that 

/ _ j4P + Pl + ? + ?t£2lt/(fPp--<Pg)_ -^ ( 1 3 7 ) 

Consider now the two possible cases: 
I. я + 1 = 2 / is an e^en number. In 'his case for any p 

( - 1 ) р + л = 1 , (138) 
and hence the equation (127) is equivalent to the condition: all cp —cp are 
integers. 

Since we can add to all yp one and the same number without affecting the 
corresponding involutive automorphism Z, we may assume cp to be integers 
reduced to the modulus 2, if we replace the equations 

<P,-b<PPl = ° (/> = ! , . . . , л + 1 ) (139) 
by the congruences 

¥/> + ?* = ¥* + ?* ( m o d 2) (/>> 9 = 1 > • - . i л + 1). (140) 
Observe that if фр = ф^ = 1 and all other ф = = 0 , /г. с i)~. Hence, in virtue 

of the proposition formulated in the preceding section, we can add 1 to any 
pair cp̂ , cp/7j; consequently we may confine ourselves to consideration of the 
following systems cp : 

(0, . . . , 0) and (0, 1, 0, 1 , . . . , 0, 1). 

i G a n t m a c h e r , [1], p. 139—140. 
2 This last pair occurs only when n -f 1 is an odd number. 
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I. (0, . . . , 0). Let us compute the corresponding 5. The rotation т2 itself 
contributes n1=f=^^-~- roots equal to 1 and n-^- roots equal to — 1. Fur­
ther, all roots fall with respect to xx into n-\-\ monomial cycles (a) and bino­
mial cycles (j5y). In corresponding invariant subspaces ffia, 9L 

Zea = ea (St.), 

The binomial cycles contribute thus an equal number of roots - j - 1 and — 1 , 
while the monomial cycles contribute n -\- 1 roots equal to - j - 1. Consequently 

S = pt — v — — n — 1. 
n _1_ 1 

To this case corresponds the linear quaternion group with —— quaternion 
variables 3. 

2. (0, 1, 0, 1, . . . , 0, 1). In the same way as in case 1 we find here b = n. 
The corresponding real structure is realized in the group of linear real uni-

modular transformations in n -f-1 variables. 
II. n-\- 1 = 2 / - | - 1 is an odd number. In this case in the equation (135) 

(n-\- l)1 = /z-f-1, ^ ^ = 0, and so we obtain for any /?, q 
e2^p==z_iy е2*И?р-ч<1)=\ (/?, q=l,...,n), 

kp 
i. e. <p_ = -rf, where kp are odd numbers, yp — uq are integers (/?, q=l, . . . , #), 

As in the preceding case we can replace for p=^=n-\-\ any pair у , ср by 
cp —]— 1, cp - ( - 1 . Then we have to consider only one system, namely 

(1 _ 1 1 _ ! o) 
\ 2 ' 2 ' " ' ' 2 ' 2 ' / ' 

In this case the binomial cycles contribute again an equal number of roots - j - 1 
and — 1, while the monomial cycles give the relations 

Zea = e™*P = — ea. 
Therefore we have in this case b = n. 

This real structure is realized, like that of the preceding case, in the group 
of real linear unimodular transformations in n + 1 variables 4. 

§ 18. The structure Dn 

Consider first the component Щ (for /z = 4 we have beside this component 
the components 3l2, 213, 9I4, 9l5). The chief automorphisms Z from Шг have 
the form *: 

( Z - x ^ - s O , ) 
Z e ^ = «*(?,>+ *«)«,, (p,q = ±2,...,±n), I 

£ « M
e * r f ( 9 , , + 9«4,ff (p = - P x = ± l , ? = ± 2 , . . . , ± я ) , f 

<Pi = 0, tP_p = — «Pp. (р = 1 , ; . . , я ) . J 

з С а г t a n, [2], p. 273—274. 
* Ibid, p. 276. 
i G a n t m a c h e r , [1], p. 140—141. 
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Here the rotation тх in lj is defined by 

?; = - ? 1 , <p* = ?<7 (0 = 2 , . . . , / i ) . (142) 

The subspace ^+ consists of all vectors /г, for which cpx = 0, and the subspace 
tp~ of all vectors A, for which <p2 — . . . =ср д = 0. 

Since Z must be involutive, from (140) it follows that all yp have integral 
values. The involutive automorphism will not be affected, if we add one and 
the same number to all cp (we omit the condition cpx = 0) or change the sign of 
some of the cp . Therefore we may confine the values of cp to 0 and 1. Any 
permutation of the numbers cp2, . . . , срл gives an equivalent chief automor­
phism Z\ 

In fact, such substitution т may be completed to a certain automorphism A 
of the compact group2: 

( Л - Т ) ^ ° ' 1 (143) 
Ae*=Ke« (Ha = l). J 

Then Z1r = AZA*1. Besides, in virtue of the remark in § 16, yt may be re­
placed by any number. Therefore we may confine ourselves to the systems 

^ = (0, . . . , 0 , V . . . ^ ) ( / = 0 , 1 , . . . , л ) . 
i 

Since the transformation cpf = 1 — cp does not affect the involutive automorphism, 
we may confine / to the values 

/ = 0 , 1 , . . . , [ J ] • (144) 
Computing 8 for 93z, we obtain 

Ъ = п — 2т?1 
where 

0 
1 m = n — 2l-\-l=n — 1, /г — 3, . . . , < 

These structures are realized in groups of linear real transformations in 2n 
variables, leaving invariant the indefinite quadratic forms 

^ + - - - + 4 + 1 - - - - - 4 V=o,i,..., [|]) 3. 
Passing now to the case n = 4, we observe that here we shall have, beside the 

components Sl0
 an(J 3Il5 the components 9I2, §l3, 9l4, Sl5. The particular rota­

tions т2 ,т3 ,т4 ,т5 , corresponding to these components, may be chosen in such a 
way 4 that 

* 8 = i > T4 = V l = T l T 2 > *5 = Т1Т2 = Т2Т1- ( 1 4 5 ) 

2 Loc. cit., p. 130. 
3 С а г t a n, [2], p. 285 and f. 
4 Loc. cit., p. 285 and f. 
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Observe that i ^ l and i^ ̂  1. Hence involutive automorphisms will exist 
only in Sl4 and 9t5. But from (145) follows 

and 
T5 = T2 * T2T1 = h h 4 = T2 V 2 

T4 T l 4 T 2 T 2 " l T 2 -

1 

J 
(146) 

Completing т2 to an automorphism A2 of the compact group, we shall have 

$Lb = A2%Ajl a n ^ 2I4 — ^ j ^ A , * (147> 

i. e. SI4 and 2(5 do not yield new real structures. 

§ 19. The structure E6 

The chief outer automorphisms Z for EQ may be defined in the following 
v/ay !: 

( Z - T ^ f j ^ O , 

Ze
pqs = e™(?p + 'H + "4^ , if/><3<<7<5<*, 

Z*'Pqs =e~Ki{'°p + ' 'q4"?* V
w» if/?<3<^<5^5, 

Ze' 
PPiS 

-е^р + ъ + Ые (s^=p,Pl), 
б 

Ze0 = е™Ъе0, Ze'0 = £ ? - ^ 0 , <p0 = 2 V 

( ? , ? = U , . . . ,6) . 

У (148) 

J 

By /7j we denote the index conjugated with /?, i. e. the index, which together 
with p forms one of the pairs 

(1,2), (3,4), (5,6). 

The root forms are here 
6 "I 

®n — ^~ . i t (со 4-со -1-со ), и - V со I 
ip *q> — VJp I Tq I 4V> — Z u ^ P J 

(/>,?, S = l , . . . , 6 ) . 

The corresponding vectors £a we denote here by 

J 

P p — • — p 
pq» / ^ 47^ " ' " * ' epas eoos ' * » e0 > ^ />^ qps 

The particular rotation tx is defined by the equation 

1 6 

(149) 

(150) 

1 G a n t m a c h e r , [1], p. 143. 



On the classification of real simple Lie groups 247 

Here t)+ is determined by the equations 

?i + ?2 = %-f ?4 = ?5 + ?6 (151> 
and f)~ by the equations 

б 

?1=?2» ?S = CP4> ¥ 5 = ¥ б » %Чр = 0- ( 1 5 2 ) 
1 

Suppose now that Z is an involutive automorphism, 1. e. that Z2 = E. Then 
all root forms (149) must have integral values. Hence 

where s = 0, — -^ , -^ . 
9 2 

Since we can add to all cp any of the numbers -^, —-тг without affecting 
Z, we may assume that the cp are integers. We may further reduce the cpp to the 
modulus 2, replacing at the same time the equations (151) by the congruences 

cPi + % ^ ? 3 + ?4 s CP5+?6 (mod 2)« (153> 

It is easily seen that for any two pairs of conjugated indices /?, px and q> 
qA we may replace cpp, cp^, cp̂ , cp^ by cpp -f- 1, cppi +• 1, cp̂  — 1, cp̂ x — 1 
(without changing the two remaining cp̂ , cp )̂, since the system (фа , . . . , ф6)> 
where ф == -f- 1, ф = — 1 , ф _ - | - 1 , ф _ — 1, all other ф = 0, satis­
fies the equations (152) and the. addition of this system to the system cp does 
not disturb the validity of the congruences (153). Therefore we have to consider 
only the following four systems: 

» i = ( 0 , . . . , 0 ) , 3Sa = (l 1), 
9^ - a ' :(0, 1,0, 1,0, 1), 334 = (0, 1,0, 1, 1,0). 

We shall show that the systems 2S3 and 3?4 may be omitted. Indeed, take, 
lor instance, the system 233. Denote by Z3 the corresponding automorphism. 
Take two root forms 

(P'f) = ¥i-b<p3 + tp5 a n d ((0C?) = t?i + t p 2 + - - - + < Р б 
and observe that 

Z3*p = e
P . Zte0 = — ea. (154) 

Consider now the mapping aa, with (aw) = ©2 -|- Ш4 + <Рб> effecting mirror images 

Ч*2Р = ЪР — § (<Pa+<P* + <Pe). \ 
! \ (155) 

« P ^ - 1 = ?2p_i + -3- (<P> 4 - 4»4 4 - <Pe) J 

and complete a„- to an inner automorphism (7 of the compact group, for which 2 

(£/—тх)Ь = 0, гл?в = ± е . . . (156) 

2 Ibid., p. 130. 
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Consider the automorphism 
A3 = UZBU~K (157) 

Since the rotation aa interchanges the roots p and w, from (154) we find 

V«o = *«>- (15§) 

On the other hand, the rotations aa and тх are commutable 3. The permutation 
aa transforms therefore a cycle of the permutation тг again into a cycle and so 
permutes the cycles of тх among themselves. From (157) it then follows that 
the automorphism Л3 realizes in )) the rotation хг and consequently has the same 
invariant subspaces Ша, fRo as Z 3 . Moreover, in each of the Щ , 

AzH = heV ^ T = J W fy = HT> (1 5 9) 

i. е. Л3 is commutable with Z and consequently is itself one of the Z. Thus 
Л3 can be obtained from Z for a certain system of the cp . But the equation 
(158) shows that the sum of these cp is even, so that this system may be 
reduced to one of the systems 

(0, . . . , 0 ) and ( 1 , . . . , 1 ) . 

Consider the system (0, . . . ,0) . It can be easily calculated that for it 8 = 
= — 26. The corresponding simple real structure may be realized in the group 
of linear transformations in 27 complex variables x , j / , z — — z (p, q = 
= 1, . . . , 6), leaving invariant the cubic form 

2 W W + 2 ( Л ^ ^ ^ ^ ) У А , (160) 
p,q P,.--,v 

where the variables are subject to the following conditions: 

У2р-1==Х2р1 У2р== Х2р-1> 

Z2p-l,2q—l===Z2p,2q' 

Z2p—l,2q — Z2q—l,2p • 

For the system ( 1 , . . . ,1) we find § = 6. To this system corresponds the 
group of linear real transformations in 27 variables x , у z (z ——z 
p} q= 1, . . . 5 6), leaving invariant the cubic form (160) 4. 
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О классификации простых вещественных групп Ли 
Феликс Гантмахер (Москва) 

(Резюме) 

Киллинг f l ] и Картан [1] дали классификацию всех простых комплексных 
групп Ли. После этого определение всех шеизоморфных простых вещественных 
групп Ли свелось к нахождению различных вещественных форм дайной про­
стой комплексной группы. Эта проблема была решена Картаном[2] в 1914 г., 
но весьма громоздким и, в известной степени, кустарным методом. Картан 
перебирает различные простые комплексные структуры и в пределах каждой 
структуры оперирует специфическими для этой структуры приемами. В 1929 г. 

3 Математический сборник, т. 5 (47), N. 2. 
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Картан [6] установил изящную теорему, дающую общий подход к нахождению 
простых вещественных групп Ли. Хотя сама теорема имеет непосредственный 
алгебраический характер, доказательство ее у Картана тесно связано с разви­
той им теорией специальных римановых пространств. В этой же работе Картан 
показывает, каким образом каноническое представление внутренних автомор­
физмов простой компактной группы Ли может быть использовано для нахожде­
ния простых вещественных групп. Но отсутствие аналогичного представления 
для внешних автоморфизмов не дает ему возможности применить свой метод 
к некоторым комплексным структурам, например, к Е&. Этот пробел был 
восполнен в работе Ларди [1] несколько обходным и сложным путем. 

В главе I настоящей работы дается алгебраическое доказательство основной 
теоремы Картана. При этом существенно используется установленное автором 
в предыдущей работе [1] каноническое представление автоморфизмов простой 
комплексной группы Ли, имеющих простые элементарные делители. 

Попутно получается доказательство замечательного предложения Картана 
о связи между топологической структурой комплексной простой группы Ли и струк­
турой ее вещественной компактной формы. Здесь же устанавливается канони­
ческое представление внешних автоморфизмов компактной простой группы Ли. 
В дальнейших главах (II и III) все это используется для непосредственного 
и сравнительно несложного проведения классификации простых вещественных 
групп Ли. 




