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1. I n t r o d u c t i o n .  Let A -- 0 be a system of differential equations, 
and let S be its solution space. A symmetry group of the differential equa- 
tions A -- 0 is group G which acts on the space of solutions S. Typically 
a symmetry  group of a differential equation is known, even though the 
solution space is not. A basic idea, which originated with Sophus Lie, is 
that  it might be easier to determine S / G  than it is to determine S. This 
idea (simplifying finding solutions to differential equations using a group) 
is one of the principle motivating problems in studying exterior differential 
systems with symmetry. 

To describe the quotient S / G  we first partition S into orbits having 
inequivalent stabilizers, 

S = S G U S ~ U. . .  U S sr~. (1.1) 

The set SG corresponds to fixed points of the action of G. The solutions in 
SG are the G-invariant solutions, which are also sometimes called equiv- 
ariant solutions. The set S free correspond to points in S on which G acts 
freely. Solutions in S/re~ have no symmetry. The intermediate terms in 
(1.1) are solutions which are fixed (invariant) respect to some subgroup of 
G. The quotient can then be partitioned, 

S / G  = (S G/G) u (S  u . . .  u (1.2) 

where SG/G = sG. 
EXAMPLE 1.1. Laplace's equation on R 2 - (o ,  o ) ,  

Uxx -'~ Uyy = 0 

admits SO(2) acting on the punctured plane in the usual way 

(x) (coso s,nO) (x) 
y sin 0 cos 0 y 
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as a symmetry group. I f  u = f ( x , y )  is a solution to Laplace's equation, 
then it is easy to check that 

f ( x , y )  -- f ( xcosO + y sin 0 , - x  sin 0 + y cos 0) 

is also a solution, and so SO(2) acts on S. The set S C are the rotationally 

i var a t  otutio   to Lapta  '   quatio .  ati fy f (x ,y )  = f (x ,y) ,  
and so f must have the form 

f = f (v /z  + 

This leads to the fundamental solution. The set $]ree are the solutions to 
Laplace's equation without any rotational symmetry, which would be most 
solutions. 

Lie's original way of thinking was to find a family of quotient differ- 
ential equations A - 0 whose solutions would be in 1-1 correspondence 
with the different terms in the quotient $ / G  in Equation (1.2). A serious 
problem with this idea is that it is unclear whether the quotient of a differ- 
ential equation is another differential equation. For example, what would 
the quotient of Laplace's equation by SO(2) in Example 1.1 be? The diffi- 
cultly here lies in the usual coordinate description of differential equations. 
However exterior differential systems (EDS) are a coordinate invariant way 
to represent differential equations and in this context the idea of a quotient 
differential equation can be easily realized. 

A second important problem which arises in implementing a quotient 
is the following. Suppose that /X was a set of differential equations whose 
solutions represented one of the quotients in Equation (1.2). We then need 
to take a solution ~ to this quotient equation A and construct a solution s 
to the original equation A - 0. This is sometimes called the reconstruction 
problem. 

m 

In this article I will focus on how to find the quotient A, and what 
is the "reconstruction problem". I would like to list two other important 
problems which should be kept in mind in the theory of quotients. 

1) The inverse problem. Given a differential equation 5 = 0, is there 
"simple" differential equation A - 0 such that  5 - A? 

2) How are the geometric properties of A - 0 related to those of 
/X -_ 0? For example suppose A - 0 are the Euler-Lagrange equations for 
some Lagrangian A. Are A the Euler-Lagrange equations for some quotient 
Lagrangian ~? For 8 c  the question is known as the principle of symmetric 
criticality [4, 1]. For S f r ~  this is sometimes known as Lagrangian Re- 
duction [9, 10]. Symmetric criticality and Lagrangian reduction lie at the 
opposite ends of the symmetry spectrum! 

2. S y m m e t r i e s  and  q u o t i e n t s  of  EDS.  
DEFINITION 2.1. An exterior differential system (EDS) is a differen- 

tial ideal Z c f~*(M). 



EXTERIOR DIFFERENTIAL SYSTEMS WITH SYMMETRY 353 

Differential equations A = 0 give rise to exterior differential systems 
(EDS). Examples are given below. 

DEFINITION 2.2. An integral manifold of 27 is an immers ion  s : N 
M such that s'27 -- O. 

Solutions to A = 0 are integral manifolds to a corresponding EDS 27. 
DEFINITION 2.3. A symmetry  of an exterior differential system is a 

dif feomorphism r  ~ M such that r = 27. A symmetry  group of 27 
will be a Lie group G acting smoothly on M where each dif feomorphism 
g : M ~ M is a symmetry  of 27. 

Symmetries of differential equations determine symmetries of their cor- 
responding EDS 27. Symmetries of EDS behave like symmetries of differ- 
ential equations. If r is a symmetry of the EDS 27 and s : N --~ M is an 
integral manifold of 27, then 

(r o s )* I  = s* r  = s* I  = 0. 

Therefore symmetries map integral manifolds to integral manifolds. Given 
a symmetry group G of an EDS 27, the symmetry  group of an integral 
manifold is 

G, = { g e G i g s ( N ) =  s ( N )  }. 

If Gs = G, then N is a G-invariant integral manifold. The G-invariant 
solutions to a differential equation correspond to G-invariant integral 
manifolds. 

We use the following notation. If {0~} C ~* (M) is a set of differential 
forms, then the differential ideal they generate is 

27 = < 0 i, dO i >, 

where < ,  > means the algebraic ideal in ~*(M).  If 0i c ~ I ( M )  (one- 
forms) then 27 is a Pfaffian System. The EDS which will be of main interest 
through this article are constant rank Pfaffian systems. 

DEFINITION 2.4. A (constant) rank r Pfajfian system 27 is an exterior 
differential system generated by the sections of a rank r subbundle I C 
T * M .  

We will usually refer to the bundle I as the Pfaffian system, and we 
will also denote by 

I = {0 '}  

the subbundle of T * M  which is the point-wise span of the differential one- 
forms 0 i E ~1 (M). 

The annihilator I • c T M  of a rank r Pfaffian system I c T * ( M )  is 
the rank n -  r subbundle defined point-wise by 

= { v  T p M  I e (v )  - o, v e g ,  p M }. 
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An integral manifold of a constant rank Pfaffian system I is then an im- 
mersion s" N ~ M such that  

_k 
s , T x N  c I~(x). 

Symmetries of a constant rank Pfaffian system I are diffeomorphisms r : 
M -~ M which preserve the subbundles I and I x.  

REMARK 2.1. Infinitesimal methods will be used when discussing 
symmetry [13]. 

EXAMPLE 1.1 (Continued). Laplace's equation on ~ 2 _  (0,0), gives 
rise to a rank three Pfaffian system I = {0~, 0 ~ ,  Ou~ } on a seven manifold 
M7 - (x, y, u, ux, u u, Uxu, Uuu), where 

0~ = d u -  u x d x -  uudy, 

Ou~ = dux + u u u d y -  uxydy, (2.1) 

Ou~ - duy - uxydx - uyydy. 

Solutions u - f ( x , y )  to Laplace's equation define integral manifolds s : 
~t 2 - (o, o) --~ MT,  

s ( x , y ) -  ( x , y , u - -  f ,  u x -  fx ,  uy = fy, u x y -  fxy,  u y y -  f yy ) .  

The infinitesimal generator of the prolonged SO(2) action on M7 is 

X = xOy - yO~ + uxOuy - UyOu~ - 2UyyOu~u + 2uxyOuuy, (2.2) 

and is an infinitesimal symmetry  of I (or 5[). 

2.1. T h e  q u o t i e n t .  Let G be a Lie group acting smoothly on M, 
with infinitesimal generators F. Let r c T M ,  be the corresponding point- 
wise span of elements of F. In the following discussion we will assume that  

_ 

the action of G on M if sufficiently regular so that  q" M ~ M / G  = M is 
a smooth submersion. With this hypothesis on the action, r c T M  is a 
rank q subbundle where q is the dimension of the orbits. Furthermore 

r = ker q.  

which is also the vertical bundle for q. 
DEFINITION 2.5. The quotient of an EDS 5[ C gt*(M), is the EDS  

5[ C ~* (M)  defined by 

2 =  { ~ c ~*(~)  I q*~ c ~ }. 

If 5[ is a constant rank Pfaffian system (with bundle I c T ' M ) ,  the 
_ 

quotient of the bundle I is the subset I c T * M  given point-wise by 

[ 2 -  { 0 C T~h:/ [ q*0~ C Ix where q ( x ) - 2  }. 
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This can be computed in terms of I • C T M  by 

i = (q . ( I s  s . 

Necessary and sufficient conditions that  the subsets [ C T*/17/, or q.  (I • C 
T M  are subbundles are well known [8]. 

LEMMA 2.1. The subsets [ C T*2f/I, and q . ( I •  C T2f/I are subbundles 
if  and only i f  there exists a non-negative integer k such that 

dim (I~ gl (ker q,)z)  = dim (I~ gl - k, v x e M. (2.a) 

Then rank q ,  (I  z )  - n -  r -  k and rank f -  r + k -  q, where rank r - q. 
It is handy to write out the intersection I~ gl r~  in Equation (2.3) in 

a basis. Let x c M, {X~}l_<~_<q be a basis for r~  and let {0i}l<i<r be a 
basis for I~. Then 

I~  gl r ~ = ker Oi ( Xa ) , (2.4) 

where the kernel is computed on the index a. 
The first issue that  occurs in EDS reduction is that  even when condi- 

tion (2.3) is satisfied, bundle reduction and Pfaffian system reduction do 
not necessarily commute. 

EXAMPLE 2.2. Consider the three dimensional manifold M = 
(x, u, ux),  with rank one Pfaffian system 

I - { du - uxdx }, and 2 : - < d u - u ~ d x ,  du~ A dx >. 

The group G - R acting on M by c . (x ,  u, u~) - (x, u+c ,  u~) is a symmetry  
of I.  The projection map is q(x, u, ux) = (x, u~). The bundle quotient is 

q,  (I • = TR 2 therefore [ = 0 

While the EDS  quotient is, 

Z = <du~ A d x  >. 

If a Pfaffian systems 2: is completely integrable then EDS reduction 
and bundle reduction commute [5]. For Pfaffian systems which are not 
completely integrable, sufficient conditions are given in [2]. 

The intersection condition in Equation (2.3) will be the focus for the 
remainder of the article. We begin with a simple application, see [5]. 

THEOREM 2.1. Suppose Z is a constant rank Pfaflfian system with 
symmetry  group G. I f  there exists Xzo c I~:• N rzo with Xxo 7 ~ O, then 
etXxo, X c g is a one-dimensional integral manifold. 

The integral manifold e t z x o  in this theorem is the integral curve of 
the infinitesimal generator X through the point x0. Equivalently, it is the 
orbit of the one-parameter subgroup e t z  through the point x0. 

We now turn to a few examples before continuing with the development 
of the theory. 
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3. E x a m p l e s .  
EXAMPLE 3.3. The Chazy equation 

yzzz = 2yyzz - 3y~ 

gives rise to the completely integrable rank three PfaJfian system I = 
{01, 0 2, 0 3 } on a four dimensional manifold Ma = (x, y, Yx, Yx~), where 

0 l = d y - y ~ d x ,  0 2 = d y ~ - y ~ x d x ,  0 3 = d y ~ - ( 2 y y ~ - 3 y ~ ) d x  (3.1) 

Solutions to the Chazy equation are integral manifolds of I. The PfaJfian 
system (3.1) is invariant with respect to the (infinitesimal) action of SL(2) 
on M4 given by F = {X1, X2, X3} where 

X l  - - O x ,  

x ~  = 2xO~ - 2yo~ - 4 y ~ o ~  - s y ~ o ~ ,  

By Equation (2.4), there exists Xp c I~ ClYp with Xp r 0 if and only if the 
determinant det(O~(Xj)) = O. This occurs at the points p C M4 satisfying, 

l y  3 1 

For initial conditions (x ~ yO, yO, yO ) satisfying this constraint, the (unique) 
solution obtained from Theorem 2.10 is the one-dimensional orbit, 

x = x ~ + 2t  (~~ + ay~  + y o ~ / ~ )  
ty~ ~ + x/~ 6) - 1 ' 

y = yo + 2tyo ((3t(yo)  _ yo + tyo o) -$ + tyoyo o _ 3yo _ 

where 50 _ (yO)2_ 6yO. This is a 2 parameter family of invariant solutions 
to the Chazy equation, which are easily written as a graph. 

EXAMPLE 3.4. The standard Pfaffian system for the ordinary differ- 
ential equation 

5uxxx(9uxxxxuxx 2 - 8 u ~ )  

uzxzzz = 9u~z , 

is invariant with respect to the five dimensional special aJfine group 

G = SA(2) = { (A,b) ] A e SL(2, R), b e R e }, 

with aJfine action on (x, u) and then prolonged. Every solution is the orbit 
of a one-parameter subgroup, from which the general solution, 

U -= Co q ClX -Jr- V/C3 x2 q CxX -ff c2(4c3c2 -- C2x) 
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where co, Cl, C2, C3, Cx are constants, can be found. See [5] for the details. 
EXAMPLE 3.5. Consider the pseudo-Riemannian metric on 1~4 

-~X4(dxldx3 dx2dx2) + e~X4dx3dx3 + c dx4dx4 ~ - e  

where if c < 0 the metric is Lorentzian, and if c > 0 the metric has split 
signature. The geodesic equation define a completely integrable rank eight 
Pfaffian system I on a nine-dimensional manifold M9 = {(t, xi,2~), 1 _< 
i < 4} given by 

{ 4 
I -  dxg-Jc~dt, dSCl--~Jc4(2JCl-3Jcae2~4)dt, d~c2--~Jc2Jc4dt, 

(3 .a)  
1 

dx3- -~x3x4dt ,  d~4-~-~c ( e -  ( 4 X l X 3  - �9 

The geodesics are integral manifolds. The Pfaffian system (3.3) is invariant 
with respect to time translations and the induced action of the isometry 
group which has Killing vector-fields 

X1 w_ Ox, ,X2 - Ox2, X3 ~- Ox3, X4 - X2Ox, -Jr-X3Ox2, 
X5 = 5x10~ + 2x20~ - x30~ + 30~. 

We work at the point p c M9 given by 

k 
t = o, x -  ( o , o , o , o ) ,  x = (3 .4)  

where k ~ O. The vector-field X c F, 

k k 
X -- Ot -~- "~X1 -~- kX3 - Ot -~- -~Oxl -~- kOxa 

satisfies O(X) = O, V 0 EIp  where p is the point (3.~). The integral curve 
of X in M through the point (3.~) is 

k 
Xl ~----~t, x2 = O, X 3 - - k t ,  X4--" O, (3.5) 

which by Theorem 2.10 is an integral manifold. The curve (3.5) is a 
geodesic which is the orbit of a one parameter subgroup corresponding 
to X .  

REMARK 3.1. Geodesics which are orbits of the isometry group are 
called homogeneous geodesics. Homogeneous geodesics always exist for ho- 
mogeneous Riemannian manifolds [11], but it is an open question whether 
every homogeneous pseudo-Riemannian manifold admits a homogeneous 
geodesic. 

E X A M P L E  3.6. Every geodesic on a Riemannian symmetric space is 
homogeneous. 
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EXAMPLE 3.7. The contact system on J2(R, R2) is a rank four  Pfaf- 
f ian system I - {Ox, Oy, 0~, Oij } on a seven dimensional manifold M7 - 
( t, x, y, 5, ~I, ii, ~I ) where 

Ox = dx - ~dt, Oy = dy - ~]dt, O~ - d~ - iidt, Oy - d~] - ijdt. (3.6) 

Any  prolonged graph (x(t) ,  y(t)) is an integral manifold. The action of the 
oriented Euclidean group E (2) +, 

( 2 ) _ ( c o s 0  - s i n 0  ) ( x )  
sin 0 cos 0 y 

( x )  ( c o s 0 - s i n 0  ) ( 2 )  
~} = sin 0 cos 0 ~t 

( x )  ( c o s 0 - s i n O )  ( ~ ) 
~) = sin 0 cos 0 ~/ 

+ 

(3.7) 

is a symmetry  group of I .  The only possible integral curves which are orbits 
satisfy ~ - ~ - O, and are single points. (Re-parameterization of t is not 
being allowed as part of the symmetr ies . )  

4. Quo t i en t s .  

4.1. I nva r i an t  in tegra l  manifolds .  In order to compute the quo- 
tient of a constant rank Pfaffian system I, we need to partition M into 
G-invariant subsets on which we can control the behavior of the quotient. 
One key is the intersection condition 

I~nr~ 

from Equation (2.3) of Lemma 2.1, or (2.4). Let K C M be the G-invariant 
subset 

K = { x c M I r ~ c I ~  }. (4.1) 

This is the set of points x E M where every form 0 E Ix vanishes on every 
Xx E rx.  It is also the set of points where the matrix in (2.4) has the 
smallest possible rank (zero). 

Assume c �9 K ~ M is an embedded submanifold and that T x K M I ~  has 
constant dimension independent of x. Then 2?K = c'2? is a constant rank 
Pfaffian system. Further assume that the action of G on K is sufficiently 
regular so that q "  K ~ K / G  is a smooth submersion. At points x E K, 
r x  C (IK,x) • and so by Lemma 2.1 the quotient IK has the same rank 
as IK. It is also easy to show that bundle reduction and Pfaffian system 
reduction commute in this case, and therefore ZK is constant rank Pfaffian 
system. 

The Pfaffian system IK determines the "G-invariant solutions". 
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THEOREM 4.1. Let N C M be an embedded integral manifold of IK. 
Then N = q-l(fiT) C M is a G-invariant integral manifold of I. 

Proof. The manifold N is clearly G-invariant, so we only need to show 
_ 

it is an integral manifold. Let x E N,  X E TxN,  and 2 - q(x), X = q , X .  
Note 2 E/V and )( E T~/V. 

_ _ 

Choose an open set U c K containing ~, and a cross-section a"  M 
M with a(2) - x. Then 

X - a , f (  + V 

for some V c Fx (the vertical bundle at x). Evaluating on 8 c 27, 

8(X) - 8(a ,2~  + V) 

= + e ( y )  

- - 0 .  

The first term vanishes because a*8 c :~K, and/V is an integral manifold. 
The second term vanishes because we are at point of K (4.1). E] 

A few important remarks about this theorem are appropriate. 
REMARK 4.1. The reconstruction problem is algebraic. The inverse 

image process in the theorem provides the reconstruction. 
REMARK 4.2. The converse of this theorem is also true. Every invari- 

ant integral manifold factors though the set K, and projects to an integral 
manifold of IK. 

REMARK 4.3. Integral manifolds of :YK can always be enlarged (lo- 
cally) to be invariant. 

REMARK 4.4. The set K is the subset of M on which F are Cauchy- 
characteristics for :YK. Perhaps this makes Theorem 4.1 not so surprising. 

EXAMPLE 1.1 (Continued). For Laplace's equation with Pfa]fian sys- 
tem (2.1), we determine the set K.  With the forms in (2.1) and Z in (2.2) 
we get 

e (z) = - _ - - + 

The set K is then given by 8~(X) = O. Solving these equations we find K 
is four dimensional and choosing coordinates K - (x, y, u, a), the inclusion 
L ' K ~ M 7  is 

I x - x , y - y , u - u ,  u z - a x ,  u y - a y ,  u z y - - ~  

The one-forms in ~ pullback by L to give, 

L* 8u - du - axdx - aydy, 

2x2a 
L* 8u~ - xda + x2 + y--------~dx + 

2xya 
L* 8~ - yda + x2 + y--------~dx + 

2xya ( x 2 - y 2 ) a )  

X 2 _jr_ y 2 '  U y y  - -  X 2 _jr_ y 2  " 

2xya 
x 2 + y2 dy, 

2y2a 
x 2 + y2 dy. 
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Therefore IK is rank two. The quotient K / G  - { (r, u, a) l r > 0 } is three 
dimensional and the rank two quotient Pfaffian system is, 

I-K - { d u - a r d r ,  rda + 2adr }. 

The submanifolds 

s(r) - ( r, cl + c2 log r, c2r -2 ) (4.2) 

are integral manifolds of [K. By Theorem ~.1, the inverse image of (~.2) 
leads to the invariant solutions 

( c2 y2 (x2 + y 2 ) - l )  x , y , u - c l + ~ - l o g ( x  2 +  ) , a = c 2  

4.2. T h e  t r a n s v e r s e  set .  A second G-invariant subset of M is the 
transverse set 

M r =  { x C M I I  ~ AFx = 0  ). (4.3) 

This is the set of points in M where the rank of the matrix in (2.4) is as 
large as possible. 

Suppose M t is an embedded submanifold and that  G acts regularly on 
M t. Let 

27M t - -  27IM t 

be the restriction of 27 to M t. The transversality condition I~  A Fx - 0 
implies that  27M' is a constant rank Pfaffian system with the same rank as 
27. Unlike the case for the invariant integral manifolds in section 4.1, the 
quotient :lMt is not necessarily a Pfaffian system. 

The set M t was studied in detail in [2]. We recall a few things from 
that  reference. First, the integral manifolds of 27M t have essentially no 
continuous symmetry. Second, if s" N --* M, an integral manifold of 27M~, 
then q o s �9 N --* /~t  is an integral manifold of :lM~. (The immersion 
property still holds). 

A generalization of Proposition 6.1 from [2], solves the reconstruction 
problem. 

THEOREM 4.2. Let fit ---. 1~I t be an embedded integral manifold of 
ZM~. Then 27]q-1(~) is completely integrable, and the leaves are integrable 
manifolds of 27. 

An immediate consequence of this theorem is that  the integral mani- 
folds of 27 are surjective (locally) by q onto the integral manifolds of 27M~. 

There is a particularly nice geometric way to think about the recon- 
struction problem when the action of G on M t is free. Starting with an 
integral manifold s " / V  --*/~t  of :lM~, let ~" N --* M be any cover of N. 
Any other cover s �9 N --* M of ~ is of the form 

= t , ( A ( t ) ,  
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where A �9 N --~ G is unique. If we require s(t) to be an integral manifold of 
27, then A(t)  satisfies a generalized equation of Lie type. Equations of Lie 
type are differential equations on Lie groups which have many applications 
and interesting properties. For example, the equations are integrable by 
quadratures for (simply connected) solvable Lie groups. 

EXAMPLE 3.7 (Continued). The infinitesimal generators of the ac- 
tion of the oriented Euclidean group E(2) + in (3.7) on the 7 dimensional 
manifold j2(I~,I~2) are 

F = span { Ox, Oy, XOy - yOx + ~Oy - fjO~ + ~0~ - f]O~ }. 

Using the forms in Equation (3. 6) for I,  the transverse subset M t in Equa- 
tion (~. 3) for the E + (2) action is 

M t = {p C J2(R, R2) ] (5, $) ~ (0, 0)}. 

The group E(2) + acts freely on M t and the quotient is M t  = M t / G  is 
dimensional, ]~t _ {(t, v, kl,  k2), v ~ 0}. The quotient E D S  is 

~ M  t - -  < d v  - k2dt, dk2 A dt, k ldk l  A dt >, 

_ 

which is not a Pfajfian system. A typical integral manifold for  ~ M  t is 

dv 
$(t) -- (t, v = v(t), k2 = --~, kl = k(t)),  v(t) ~ O. 

An integral manifold in M t which projects to ~ is of the form 

s(t) = p(A( t ) ,  a o $(t)) 

where a(t ,V,  k l , k2)  - (t,O,O,O,v, k l ,k2) ,  and A"  • --~ E(2) + satisfies 

dO kl( t )  da db = v(t) cos 0(t) m = . 
d--[ = - v ( t )  sin O(t) - O, d--t ' dt v(t) 

This is an equation of Lie type for the curve a �9 R --~ g, 

a(t)  = IO, _ v ( t  ) k l ( t ) )  
" 

REMARK 4.5. The example above can be generalized to Jk(I~, G / H )  
with the following interpretation. Compute the quotient of the contact 
structure Z on Jk(I~, G / H ) / G  on the transverse set for k sufficiently large. 
Let ~ be an integral manifold to the quotient system. By finding an integral 
manifold to 27 projecting to ~, we have solved the prescribed "curvature" 
problem for curves in a homogeneous space. The curve ~ is the prescribed 
curvature. The reconstruction is done (in general) by solving an equation 
of Lie type on the group G. 
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EXAMPLE 1.1 (Cont inued) .  Laplace's equation with the basis for  I in 
Equation (2.1), and infinitesimal generator (2.2), the matrix O~(X) is 

(yux - XUy,-Uy - XUxy - UUyy, ux - XUyy + yuxy) . 

On the SO(2)- invar iant  set M~ = { y u ~ -  xuy ~ 0}, which is a subset 
of M t, the matrix On(X) is full rank. The quotient is six dimensional 
M ~ / S O ( 2 )  = { (r, v, p, q, s, t) I r > O} with projection map 

1 log(x 2 + y2 r = ~ ), v = u, p = xux + yUy, q = XUy - yux, 

XUy - yux + 2yXUyy + (x 2 - y2)U~y 

XUy - yuz 

t -- Uyy(X 2 - y2) _ 2xyu~y - XUx - yUy. 

XUy - yUx 

The quotient IM~ is the rank two Pfajfian system 

I-M~ = { d p -  sdv + (tq + ps)dr, dq - tdu + ( t p -  sq)dr }. 

The submanifold 

v 
( r - - r ,  v = v ,  p = - ,  q = r ,  s - - r  -1, t - - O )  

r 
m 

is an integral manifold of IMp. 
The reconstruction problem leads to the completely integrable system 

of partial differential equations for  O(r, v), 

r 2 & O = - v ,  rO~O= l. 

The solution is 0 = vr -1 + co. This leads to the integral manifolds (as a 
graph) 

1 log(x 2 + y2) (a rc t a  n y _ c) 
x ' 

which are not SO(2)  invariant. 
REMARK 4.6.  I t  is a good  exercise to c o m p u t e  the  equa t ion  of Lie 

type  on SL(2)  for the  Chazy  equa t ion  on the  set of t r ansve r se  ini t ial  con- 
di t ions.  The  t r ansve r se  init ial  condi t ions  will be the  c o m p l e m e n t  to those  
in E q u a t i o n  (3.2). 

EXAMPLE 4.8. In this last example, we demonstrate an inverse prob- 
lem. Consider the "Cartan-Hilbert equation "1 in the form of the rank 
three Pfaflfian system I = {01, 02, 0 3} on the five dimensional manifold 
M5 = (Zl, z2, Z3, t l ,  t2), where 

O1 1 dzl t2dtl,  - dz2 - -~ , 1 2 = -2 - 02 lt21dt2 0 3 = dz3 + -~t2dtl. (4.4) 

1The usual form of Cartan Hilbert equation is z ~ = (y~)2. 



EXTERIOR DIFFERENTIAL SYSTEMS WITH SYMMETRY 363 

The derived flag for this Pfaffian system is (3, 2, 0), and the Lie algebra 
of the symmetry  group is the split form of G2. The integral manifolds are 
easily determined with t = t l to be, 

l d f  
Zl - -  f ( t ) ,  t2  - 2 dt '  z2 - F l ( t ) ,  z 3 - -  F2( t  ) 

where F1, F2 satisfy, 

dF1 _ _ l t2d2  f 
dt 4 dt 2'  

The group G -  R 3 acting on M5, 

dF2 l ( d f )  2 
dt = 8 d-t " (4.5) 

(a, b, c ) .  (zl, z2, Z3, t l ,  t2) -- (Zl ~- a, z2 ~- b, Z3 ~- C, t l ,  t2) (4.6) 

is a symmetry  group of I1. 
Now let I .- I1 | be the direct sum two copies of the "Cartan-Hilbert" 

Pfaffian system (~.~), on the ten-dimensional manifold M5 x M5 where, 

1 1 s2ds 1 } I2 - -~dwl - s2dsl, ds2 - l s2ds2, ds3 + -~ 

is on the second five-dimensional manifold M5 = (Wl, w2, w3, 81,82). Let 
G -  R 3 from (~.6) act diagonally on M5 • M5 by 

a(z , t )  • (w, s) = (z + a, t) • ( w + a , s )  

where a c R 3. The quotient (/1//5 • M5) /G  is a seven dimensional manifold 
/1//7 - (21,22, 23, t 1, t2, Sl, s2), and the quotient map q �9 M5 • M5 ~ M7 is 

q ' ( z , t )  • ( w , s ) = ( ~ = z - w , t , s ) ,  

where 2i - z ~ - w i ,  1 < i < 3. The quotient Pfaffian system (I1 |  = I 
is easy to compute and is the rank three Pfaffian system, 

{ 1 1 1 } 
1 l t2d t2+ s2ds2 d23+  t 2 d t -  s2ds . i - -~d21 - t2dt i + s2ds 1, dz2 - -~ -~ , -~ 1 "~ 1 

By making a change of coordinates 

2 2 4(uy - yuyy - xuxy) 6u3yux - x - 3xu~yuyy 
Z l  - -  , 22 - -  

Uyy U3y 

2 2 u y ( u y  - 2 x u ~ y )  x2(1 + 3UyyUzy) + 2(xuz u) + 
Z3 --- 3u3y uyy 

t l  UxyUyy -- 1 -- X ~__ , t2 ._ XUxyUyy  -- UyUyy , 

Uyy Uyy 

UxyUyy  ~- 1 XUxyUyy  -- UyUyy ~- X 
S l  - -  , 8 2  ~ , 

Uyy Uyy 
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we get 

{ 1 } 
f = d u - u x d x - u y d y ,  d u z + ~ d x - u z y d y ,  duy -uxydx-uyydy  . (4.7) 

This is the standard Pfaffian system for the non-Monge-Ampere partial 
differential equation, 

3 3UxxUyy + 1 - 0 .  (4.8) 

By taking integral manifolds to I1 and I2, the map q produces the 
general solution to this non-Monge-Ampere equation by a non-linear super- 
position of solutions to the Cartan-Hilbert system. The solution is given 
implicity by 

X = ~  
(g' - ] )  

2(t- 
1 1 

y -- ~(j~ + g')(t - s) + ~(g - f)  

I ( G 2 - F 2 ) -  u - ~  

+ t s f  g' 
12(t - s) 

where 

(tg' - s]) 2 (sg' + t /)((2s - t)g' + ( 2 t -  s ) / )  

2 4 ( t -  s) 4 8 ( t -  s) 

(El - ~ l ) ( g '  - ?) 
4(t- 

( f ( t l ) , F l ( t l ) , F 2 ( t l ) ) ,  and ( g ( s l ) , a l ( S l ) , a 2 ( S l ) )  

are integral manifolds of the corresponding system (~.5). 
REMARK 4.7. The Pfaman system in Equation (4.7) for the non 

Monge-Ampere partial differential equation in the plane (4.8) is the quo- 
tient of two fairly simple Pfaffian systems. The quotient allows us to find 
the general solution to the partial differential equation (4.8). The Pfaffian 
system (4.7) is called Darboux Integrable. It can be shown that  a Darboux 
integrable EDS can be given explicitly by a non-linear superposition (or 
G-quotient) of two "simple" EDS. Darboux integrability also occurs for 
systems of equations, such as the harmonic map and the Toda Molecule 
equation. See [3] for more details. 

5. T h e  m o m e n t  m a p .  The procedure in Sections 4.1 and 4.2 for 
finding integral manifolds involves two steps. The first step is to restrict 
the Pfaffian system to a G-invariant set (K or Mr). The second step is to 
compute the quotient Pfaffian system on the invariant set. 

This two step process is very similar to symplectic [13] or contact 
reduction [12] where a moment map is used. In the reduction process we 
have outlined, there is a moment map which is a direct generalization of 
the moment map in contact geometry (a contact manifold is a particular 
rank one Pfaffian system). 
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We begin with a local description of this map.  Suppose I is cons tant  
rank r Pfaffian and {0i}l<i<r  is a basis of local sections. The  m o m e n t  
p :  M --~ R r | g* given by 

Oi(X) , X e g. 

In this equat ion  we have identified g with the infinitesimal genera tors  F. 
The  set K in Section 4.1 is then  the zero-set of the m o m e n t  map,  while 
M t is the full rank set for the momen t  map.  The  reduct ion process we 
have described is then  similar to t ha t  for symplect ic  or contac t  r e d u c t i o n -  
restr ic t ion then  quotient.  

A global descript ion of p can be given [12]. Let L = T M / I  • be the 
quot ient  vector-bundle ,  and let E : T M  ~ T M / I  • be the  vector-bundle  
project ion map.  The  momen t  map  p is a section of Horn(g ,  L) = g* | L 
given by 

= x c g .  

The a rgumen t  in [12] for contact  manifolds proves the following theorem.  

THEOREM 5.1. The m o m e n t  map # : M --, H o m ( g , L ) ,  is 

equivariant. 

A c k n o w l e d g e m e n t .  The  au thor  would like to t hank  Ian Anderson 
for numerous  helpful suggestions. The Maple package Vessiot available at  
w w w . m a t h . u s u . e d u / ~ f g _ m p  and developed by Ian Anderson was used in 
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