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Abstract. The process of integrating an nth-order scalar ordinary differential equa-
tion with symmetry is revisited in terms of Pfaffian systems. This formulation imme-
diately provides a completely algebraic method to determine the initial conditions
and the corresponding solutions which are invariant under a one parameter subgroup
of a symmetry group. To determine the noninvariant solutions the problem splits into
three cases. If the dimension of the symmetry groups is less than the order of the equa-
tion, then there exists an open dense set of initial conditions whose corresponding
solutions can be found by integrating a quotient Pfaffian system on a quotient space,
and integrating an equation of fundamental Lie type associated with the symmetry
group. If the dimension of the symmetry group is equal to the order of the equation,
then there exists an open dense set of initial conditions whose corresponding solutions
are obtained either by solving an equation of fundamental Lie type associated with
the symmetry group, or the solutions are invariant under a one-parameter subgroup.
If the dimension of the symmetry group is greater than the order of the equation, then
there exists an open dense set of initial conditions where the solutions can either be
determined by solving an equation of fundamental Lie type for a solvable Lie group,
or are invariant. In each case the initial conditions, the quotient Pfaffian system, and
the equation of Lie type are all determined algebraically. Examples of scalar ordinary
differential equations and a Pfaffian system are given.
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1. Introduction

A method to simplify the integration of a scalar ordinary differential equation
(ODE) by utilizing its symmetry group was known to Lie and is described in
detail in numerous texts [13], [3]. This classical procedure involves performing
a sequence of differential substitutions in which the original differential equation
becomes one of lower order. Solutions to the original differential equation are
then found by first integrating the lower-order equation and then back integrating
the differential substitutions. In this paper we reconsider this integration process
geometrically in terms of Pfaffian systems.

Every scalar nth-order ODE can be identified with an (n + 1)-dimensional
differentiable manifold R and a rank n Pfaffian system I on R. The manifold R
can be considered as the domain of initial conditions for the differential equation,
and a solution to the differential equation is an integral manifold of I . A symmetry
group of the differential equation is then a Lie group G which acts on the manifold
R and preserves I .

Lie’s integration process admits a simple geometric description in terms of R,
I , and G. The geometric equivalent to the reduction of order step in Lie’s process
becomes finding a quotient space R , and the quotient Pfaffian system Ī on R . The
back integration of the differential substitution becomes the problem of solving the
horizontal lift equations for a connection on a principle G bundle. This geometric
formulation can be thought of as the dual point of view to the integration process
in [7] and [6].

Approaching the integration problem in this way has a number of theoretical
as well as practical advantages. First, the subset of the initial conditions for the
solutions which are invariant under a one-parameter subgroup are determined
algebraically. Then the subset of initial conditions on which the reduction process
is valid is also determined completely algebraically. These domains are determined
before any integration is performed. In comparison, the domain of application and
the role of the invariant solutions in the algorithm given in [13] or [3] is difficult to
determine. For example, it might not be possible to find the general solution (6.7)
in Example 6.3 in Section 6 using the algorithm from these references.

A second advantage to our approach is that the algebraic steps in the reduction
process are easily identified. For example, the computation of the quotient Pfaffian
system Ī can be done using only algebraic operations.

The last advantage we mention is related to the differential equation which
determines a horizontal lift for a connection on a principle fiber bundle. This
equation is a special differential equation known as an equation of fundamental
Lie type. Equations of fundamental Lie type are geometric differential equations
on a Lie group which have many useful properties. For example, if the group is
solvable, then the equation can be integrated by quadratures (this may only be true
locally if the group is not simply connected). This property leads to a geometric
proof of the well-known theorem that “an nth-order scalar ordinary differential
with an n-dimensional solvable symmetry group can be integrated by quadrature.”
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Our approach allows us to precisely state the hypothesis and domain on which this
theorem is valid.

In order to use the symmetry group of a scalar ODE to simplify solving the
equation, the first step suggested by the geometry of the problem is to consider the
subset Rnt ⊂ R of initial conditions where solutions with initial values in Rnt are
contained in the orbit of a one-parameter subgroup of the symmetry group. This
set of initial conditions and the corresponding maximal solutions, which are the
orbits of one-parameter subgroups of the symmetry, are easily found using only
algebraic operations.

The geometry of the problem then leads us to consider three distinct cases. The
different cases are distinguished by the dimension of the group G. The first case is
when the dimension of the symmetry group is less than the order of the equation.
In this case there exists a dense G-invariant open set of initial conditions R0 ⊂ R
where the reduction process described above is valid. The set R0 is determined
algebraically from the symmetry group G and the equation.

The second case is where the dimension of the symmetry is equal to the order
of the equation. In this case there exists an algebraically determined G-invariant
open set R0 of initial condition where the union R0 ∪ Rnt is dense in the set R of
all initial conditions. Solutions with initial conditions in R0 are found by solving
an equation of fundamental Lie type. There are differential equations where R0

is empty and all solutions can be found algebraically. These equations are easily
characterized, and an example is given.

The last case consists of differential equations where the dimension of the
symmetry group is greater than the order of the equation. In this case there exists
an algebraically determined open set of initial conditions R0 such that the union
R0 ∪ Rnt is dense in R. Solutions with initial values in R0 can be found by
quadratures.

The contents of the paper are as follows. Section 2 contains the necessary back-
ground on Pfaffian systems with symmetry. Included in Section 2 are some basic
results on invariant integral manifolds of completely integrable Pfaffian systems.
These results are used in Sections 3, 4, 5, and 6 to study the invariant solutions
to ODEs.

Section 3 begins with an introduction to group actions on the jet space J n(R,R).
The second part of Section 3 provides some results on the orbit structure of contact
transformation on J n(R,R). These results are essential in determining the domain
of application of the integration process.

Section 4 begins with the basic definitions which make a scalar ODE into a
geometric quantity. External symmetry groups are also defined. We generalize
these definition and define a geometric structure on a manifold called an nth-order
scalar ODE structure. This definition is essential in order to be able to make a
precise statement on when the quotient of an ODE by an external symmetry group is
an ODE of lower order. The results of Section 3 are used to study the orbit structure
of a symmetry group of an nth-order ODE structure. The quotient of an ODE
structure by a symmetry group is then shown to be an ODE structure of lower order.
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Section 5 contains the geometric analogue of the two-step integration method
of Lie. At the end of Section 5 the results of the preceding sections are summarized
in terms of the practical matter of integrating a scalar ODE.

Lastly, Section 6 contains four examples demonstrating the theory.

2. Completely Integrable Pfaffian systems with Symmetry

2.1. Preliminaries

Let M be an n-dimensional differentiable manifold, T ∗M the cotangent bundle,
and �1(M) the space of differential one-forms on M . A Pfaffian system I is a
submodule I ⊂ �1(M) over C∞(M). The Pfaffian system I is of constant rank r
if there exists a rank r subbundle I ⊂ T ∗M such that I is the space of sections of
I . We will only consider constant rank Pfaffian systems and simply refer to I as a
Pfaffian system.

The algebraic ideal in�∗(M) generated by a Pfaffian system I will be denoted
by 〈I 〉. If θ ∈ I , then by dθ mod I we mean modulo 〈I 〉∩�2(M). If U is an open
subset in M , then I (U ) ⊂ T ∗U is the restriction of the bundle I to U while I(U )
are the corresponding sections.

Given a set S = {θa}a∈A where θa ∈ �1(M), we denote by I = [θa]a∈A the
Pfaffian system generated by S over C∞(M). If I is also of constant rank, we also
write I = [θa]a∈A for the corresponding bundle.

The derived system I ′ ⊂ I is defined by

I ′ = [θ ∈ I | dθ = 0 mod I ].

We will assume that I ′ is constant rank so there exists a rank r ′ subbundle I ′ ⊂
T ∗M such that I ′ is the space of sections of I ′. The bundle I ′ is determined
pointwise by

I ′x = span{θx | θ ∈ I(U ) and dθ = 0 mod I (U )},
where x ∈ M and U ⊂ M is any open neighborhood of x .

Setting I 〈1〉 = I ′, the higher derived systems are defined inductively and, as-
suming they are of constant rank, we have I 〈k〉 = (I 〈k−1〉)′. This leads to the derived
flag

I 〈∞〉 ⊂ · · · ⊂ I 〈2〉 ⊂ I 〈1〉 ⊂ I 〈0〉 ⊂ T ∗M,

where I 〈0〉 = I .
The annihilator I⊥ ⊂ T M of the rank r Pfaffian system I is the rank n − r

subbundle defined pointwise as

I⊥x = {X ∈ Tx M | θ(X) = 0 for all θ ∈ Ix }. (2.1)

A Pfaffian system I is completely integrable if I⊥ is completely integrable. Equiv-
alently, the Pfaffian system I is completely integrable if and only if I ′ = I . The
complete integrability of I can also be checked locally.
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Corollary 2.1. A Pfaffian system I is completely integrable if and only if for all
x ∈ M there exists an open set U containing x , and a basis of sections {θ i }1≤i≤r

of I (U ) such that1

dθ i = ρi
j ∧ θ k (2.2)

for some ρ j
k ∈ �1(U ), 1 ≤ j , k ≤ n.

An integral manifold of a Pfaffian system I is an immersion ι : N → M
satisfying

ι∗θ = 0 for all θ ∈ I. (2.3)

Condition (2.3) implies dim N ≤ n − r . If I is of codimension 1 (rank n − 1),
then the integral manifolds are curves. An integral manifold N is maximal if N is
connected and the image of N is not a proper subset of another connected integral
manifold. If I is completely integrable, then the existence of integrable manifolds
is given by Frobenius’ Theorem [16].

Theorem 2.2 (Frobenius’ Theorem). Let I be a completely integrable rank r
Pfaffian system on the n-dimensional manifold M . Then through each point p ∈ M
there exists a unique maximal integral manifold having dimension n − r .

See [4] for more information on Pfaffian systems.

2.2. Symmetries of Pfaffian Systems and Quotients

Let G be a Lie group of dimension m acting on M with multiplication map µ :
G × M → M . The notation µ(g, p) = g p will be used. Let µg : M → M
be the diffeomorphism µg(p) = µ(g, p), and let µp : G → M be the function
µp(g) = µ(g, p). Denote by g = TeG the Lie algebra of G, with the Lie bracket
on g being induced by the bracket for the right invariant vector-fields.

The homomorphism ρ : g → χ(M) to the vector-fields χ(M) on M is defined
by

ρ(z) = Z where Zp = d

dt
µ(exp(tz), p)

∣∣∣
t=0
, z ∈ g, (2.4)

and exp(tz) is the one-parameter subgroup of G generated by z. It follows from
this formula that

Zp = (µp)∗z. (2.5)

The image of g by ρ is the Lie algebra of infinitesimal generators which will
be denoted by � = ρ(g). We also let Γ ⊂ T M be the completely integrable
distribution defined pointwise by Γp = span{�(p)}.

1 The summation convention will be used throughout.
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Lemma 2.3. Let z ∈ g and let Z = ρ(z). Then, for all p ∈ M and g ∈ G,

(1) g∗Zp = ρ(Adgz)gp;
(2) (µp)∗(Lg)∗z = ρ(Adgz)gp; and
(3) g∗Γp = Γgp.

Proof. A proof of (1) is given on page 269 in [1]. To prove (2), let Lg denote left
multiplication in G by g ∈ G. Then, as functions from G to M ,

µp ◦ Lg = µg ◦ µp. (2.6)

The differential of equation (2.6) is

(µp)∗(Lg)∗ = (µg)∗(µp)∗.

Evaluating this on z ∈ g and using part (1) proves part (2).
Part (1) implies that g∗(Γp) ⊂ Γgp and (g−1)∗(Γgp) ⊂ Γp. This proves (3).

A Lie group G acting on M acts locally effectively on subsets if for every
nonempty open set U ⊂ M , the subgroup of G which fixes every point in U is
discrete.

Lemma 2.4. A Lie group G acting on M acts locally effectively on subsets if and
only if for each open set U ⊂ M the map ρ : g → �U is an isomorphism.

Proof. Suppose U is an open set of M and there exists z ∈ g, with ρ(z)U = 0.
Let H ⊂ G be the one-parameter subgroup generated by z. Then each point in U
is invariant under H . It easily follows from this argument that the action is locally
effective on subsets if and only if ρ : g → �U is an isomorphism.

A Lie group G acts locally freely on M if, for each p ∈ M , the isotropy subgroup

G p = {g ∈ G | gp = p}
is discrete. Let M ⊂ M be the open subset

M = {p ∈ M | rankΓp = m}, (2.7)

where m = dim G. The next lemma shows that M is the maximal subset of M
on which G acts locally freely.

Lemma 2.5. Let G be an m-dimensional Lie group acting on M . Then G p is
discrete if and only if p ∈ M.

Proof. Let p ∈ M . The isotropy subgroup G p is discrete if and only if the isotropy
subalgebra satisfies

gp = ker ρp = {z ∈ g | ρ(z)p = 0} = 0. (2.8)
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Therefore G p is discrete if and only if ρp : g → Γp is a vector-space isomorphism
which is equivalent to p ∈ M.

Clearly if dim G > n, then G can never act locally freely on M , and M = ϕ.
Let M/G be the quotient space and let q : M → M/G be the projection map.

If we use the notation M for the set M/G, then the action of the Lie group G on
M will have been assumed to act on M in a sufficiently regular manner so that
M is a differentiable manifold with the projection map q : M → M being a
submersion. See [13] for more information on this hypothesis. One consequence
of this assumption is that the orbits of G on M all have the same dimension. If
the orbits are of dimension q then the dimension of M is n − q. We also note that
ker q∗ = Γ. We will use the notation M/G when the action of G on M may not
have the regularity property above.

A Lie group G acting on M is a symmetry group of the Pfaffian system I if
for all g ∈ G, g∗ I = I . The elements of a symmetry group of a Pfaffian system
map integral manifolds to integral manifolds. That is, if s : N → M is an integral
manifold of I and g ∈ G, then g ◦ s : N → M is an integral manifold of I .

We now define the reduction or quotient of a Pfaffian system by a symmetry
group. The definition given here is different than the one in [2] where the authors
work with differential ideals. For the Pfaffian systems we are interested in, the two
definitions agree.

Definition 2.6. Let G be a symmetry group of the Pfaffian system I on the
manifold M with quotient manifold M . The reduced system Ī ⊂ T ∗M is defined
by

Ī p̄ = {θ̄ ∈ T ∗p̄ M | q∗θ̄ ∈ I }.

The subset I ⊂ T ∗M is not necessarily a bundle without some conditions on
the action of G. Sufficient conditions that guarantee I is a bundle can be described
in terms of two canonical intersections. The first intersection is Γ ∩ I⊥ ⊂ T M
where I⊥ is defined in equation (2.1). This subset of T M plays an important role
throughout the paper. The second intersection is Isb = I ∩ Γ⊥ ⊂ T ∗M where

Γ⊥p = {α ∈ T ∗p M | α(X) = 0 for all X ∈ Γp}.
The semibasic forms Isb = I ∩ Γ⊥ are therefore given pointwise by

Isb,p = {θ ∈ Ip | θ(X) = 0 for all X ∈ Γp}.

Theorem 2.7. Let I be a rank r Pfaffian system on M , and G a symmetry group
of I with q-dimensional orbits. If Γ ∩ I⊥ is of constant rank k, then Isb ⊂ T ∗M
and I ⊂ T ∗M are constant rank r + k − q Pfaffian systems.

Proof. IfΓ∩ I⊥ has constant rank k, then 0 ≤ k ≤ min(n−r, q) and Isb = I∩Γ⊥
is of constant rank r + k − q . Therefore Isb is a subbundle.
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The rank k assumption for Γ ∩ I⊥ implies that the projection q∗(I⊥) is a
subbundle of T ∗M of rank n − r − k. We now check that the rank r + k − q
subbundle (q∗(I⊥))⊥ is Ī . Let ᾱ ∈ T ∗p̄ M , then ᾱ satisfies ᾱ ∈ Ī p̄ if and only if
q∗ᾱ(X p) = ᾱ(q∗(X p)) = 0 for all X ∈ I⊥p . That is, if and only if ᾱ ∈ (q∗(I⊥) p̄)

⊥.
Therefore Ī = (q∗ I⊥)⊥ is a subbundle of rank r + k − q.

The next corollary, whose proof can be found in [2], shows that local generators
for Ī can be computed algebraically from local generators for Isb, and conversely.

Corollary 2.8. Let U ⊂ M be an open set and σ : U → U a cross-section,
where U = q(U ). If {θ i

sb}1≤i≤r+k−q form a local basis of sections for Isb(U ), then
{σ ∗θ i

sb}1≤i≤r+k−q form a local basis for Ī (U ). Conversely, if {θ̄ i }i=1,...,r+k−q form
a local basis for Ī (U ), then {q∗θ̄ i }1≤i≤r+k−q form a local basis for Isb(U ).

If I is completely integrable, then the next theorem answers whether Ī is also.

Theorem 2.9. Let G be a symmetry group of the rank r completely integrable
Pfaffian system I satisfying rank(Γ ∩ I⊥) = k. Then Isb and Ī are completely
integrable rank r + k − q Pfaffian systems.

Proof. Let p ∈ M and chose an open set U ⊂ M about p such that T ∗U and
I (U ), where U = q(U ), are trivial. Let {θ̄ α}1≤α≤r+k−q be a basis of section for
Ī (U ) and let θα = q∗θ̄ α which form a basis of sections for Isb(U ). Extend this to
a basis {θα, ηi }1≤i≤q−k for the sections of I (U ), and then further extend this to a
basis {θα, ηi , ωa}1≤a≤n−r for T ∗U .

The forms ηi are a basis of sections for I (U ) mod Isb(U ), and so we may
choose X j , j = 1 . . . q − k, sections of Γ(U ) satisfying ηi (X j ) = δi

j on U .
The complete integrability of I implies that

dθα = ραβ ∧ θβ + Pα
i jη

i ∧ η j + Qα
ajω

a ∧ η j (2.9)

where ραβ ∈ �1(U ) and Pα
i j , Qα

aj ∈ C∞(U ). Evaluating equation (2.9) on Xl and
using the fact that the forms θα are actually G-basic, we get

0 = ραβ (Xl)θ
β + 2Pα

l j η
j − Qα

alω
a, 1 ≤ l ≤ q − k.

Therefore, Pα
l j = Qα

al = 0 and so Isb is completely integrable.
To show that I is completely integrable, let p̄ = q(p), and let σ : U → U be

a cross-section such that p = σ( p̄). By pulling back equation (2.9) with σ and
taking into account Pα

k j = Qα
ak = 0 we get

d θ̄ α = σ ∗(ραβ ) ∧ θ̄ β .

Therefore I is completely integrable.
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2.3. Transversality

Let G be a symmetry group of the rank r Pfaffian system I on M . Given p ∈ M ,
the group G acts transversally to I at p if

Γp ∩ I⊥p = 0.

Let Mt ⊂ M be the set of points in M where G acts transversally to I ,

Mt = {p ∈ M | Γp ∩ I⊥p = 0} = {p ∈ M | rank θ i (Xα) = q}, (2.10)

where {θ i }1≤i≤r is a basis for Ip and {Xα}1≤α≤q is a basis for Γp. Let Mnt ⊂ M
be the complement of Mnt in M ,

Mnt = M − Mt = {p ∈ M | Γp ∩ I⊥p �= 0}. (2.11)

The set Mnt consists of points in M where G is not transverse to I .

Lemma 2.10. The subsets Mt ,Mnt ⊂ M are G-invariant.

Proof. Let p ∈ M . The annihilator of the symmetry equation g∗ Igp = Ip is

I⊥gp = g∗(I⊥p ).

By combining this equation with part (3) of Lemma 2.3, we have

Γgp ∩ I⊥gp = g∗(Γp ∩ I⊥p ).

This equation implies that if p ∈ Mnt (or Mt ), then gp ∈ Mnt (or Mt ).

The group G is a transverse symmetry group of I if G is transverse to I at every
point in M , and so Mt = M . If G is transverse to I , then Theorems 2.7 and 2.9
have the following corollaries.

Corollary 2.11. If G is a transverse symmetry group of the Pfaffian system I
with q-dimensional orbits on M , then Ī is a rank r − q bundle. If I is completely
integrable, then so are Isb and Ī .

Other properties of transverse symmetry groups can be found in [2]. For exam-
ple, Proposition 4.1 of [2] implies the following.

Lemma 2.12. Let G be a transverse symmetry group of the Pfaffian system I .
If s : N → M is an integral manifold of I , then q ◦ s : N → M is an integral
manifold of Ī .
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2.4. Integral Orbits

In this section we consider the problem of constructing integral manifolds which
are orbits of a subgroup of a symmetry group of a completely integral Pfaffian
system I . Throughout this section G is an m-dimensional symmetry group of the
completely integrable rank r Pfaffian system I .

Let p ∈ M and define δ p ⊂ � by

δ p = {Z ∈ � | Zp ∈ I⊥p }. (2.12)

If δ p �= 0, then by equation (2.11) p ∈ Mnt .

Lemma 2.13. The subspace δ p ⊂ � is a Lie subalgebra.

Proof. Let X, Y ∈ δ p. We show that [X, Y ]p ∈ I⊥p . Let U be an open neigh-
borhood of p and {θ i }1≤i≤r a local basis of sections of I satisfying (2.2). The
vector-fields X and Y are infinitesimal generators of the symmetry group G, there-
fore,

LXθ
i = Fi

j θ
j and LY θ

i = Gi
jθ

j , (2.13)

for some Fi
j ,Gi

j ∈ C∞(U ). Taking the identity

θ i ([X, Y ]) = (LY θ
i )(X)− (LXθ

i )(Y )+ dθ i (X, Y ),

and substituting from (2.2) and (2.13) we get

θ i ([X, Y ]) = Gi
jθ

j (X)− Fi
j θ

j (Y )+ (ρi
j ∧ θ j )(X, Y ), ρi

j ∈ �1(U ).

By evaluating this equation at p and using the fact that X p, Yp ∈ I⊥p , proves
θ i ([X, Y ])p = 0. Therefore, [X, Y ]p ∈ I⊥p and so δ p is a subalgebra.

The sought after integral manifold through p will be the orbit of a subgroup of
G having its Lie algebra isomorphic to δ p.

Let gp be the isotropy subalgebra defined in equation (2.8) and let h ⊂ g be
the Lie subalgebra defined by h = ρ−1(δ p), where ρ is the homomorphism in
(2.4). Clearly gp ⊂ h, and is a subalgebra. Let H be a Lie subgroup of G with Lie
algebra h, and let Hp ⊂ H be the closed Lie subgroup with Lie algebra gp,

Hp = H ∩ G p = {h ∈ H | hp = p}.
Let π : H → H/Hp be the standard smooth quotient map.

Let s : H/Hp → M be the smooth function

s([h]) = s(π(h)) = µ(h, p) = µp(h) = h · p, h ∈ H. (2.14)

The function s identifies the orbit of H through p with the homogeneous space
H/Hp.
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Theorem 2.14. The function s : H/Hp → M is an integral manifold.

Proof. We begin by checking that s is an immersion, which is standard. Let
h ∈ H , ẑ ∈ T[h] H/Hp, and z ∈ h such that h∗π∗z = ẑ. Consider the following
equation:

s∗(ẑ) = s∗(h∗π∗z) = s∗(π∗h∗z) = (µp)∗(µh)∗z = (µh)∗ρ(z)p, (2.15)

which follows from equations (2.14), (2.6), and (2.5). The function µh is a diffeo-
morphism of M , and so if equation (2.15) is 0, then ρ(z)p = 0. Therefore z ∈ gp,
which implies π∗z = 0, and that ẑ = 0. Thus s is an immersion.

To show s is an integral manifold we let θ ∈ Ihp and use equation (2.15) to get

θ(s∗(ẑ)) = θ((µh)∗(µp)∗z) = (µ∗hθ)(ρ(z)p). (2.16)

By the invariance of I ,µ∗hθ ∈ I p, and by the definition of h, ρ(z)p ∈ I⊥p . Therefore
(2.16) is zero and s : H/Hp → M is an integral manifold.

If I is of codimension one, then Theorem 2.14 has the following corollaries.

Corollary 2.15. Let I be a rank n Pfaffian system on an (n + 1)-dimensional
manifold M . If p ∈ Mnt , then there exists z ∈ g which is algebraically determined
by equation (2.12) such that exp(tz)p is the maximal integral curve through p.

Corollary 2.15 is used in the examples to determine the invariant solutions. The
next corollary is obvious.

Corollary 2.16. Let I be a rank n Pfaffian system on an (n + 1)-dimensional
manifold M . If a symmetry group G acts transitively on M , then the maximal
integral curve through any point p ∈ M is the orbit of an algebraically determined
one-parameter subgroup.

3. Group Actions on J n(R,R)

3.1. Preliminaries

Let J n(R,R) be the (n + 2)-dimensional manifold consisting of the n-jets of
functions from R to R, and let (x, u, ux , . . . , un) be the standard coordinates on
J n(R,R). The contact one forms

θ i = dui−1 − ui dx, i = 1, . . . , n, (3.1)

on J n(R,R) generate the family of Pfaffian

Ca = [θ1, . . . , θa], a = 1, . . . , n.
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The rank of Ca is a, and a simple computation shows that Ca−1 = (Ca)′, a =
1, . . . , n, where C0 = 0. The derived flag of Cn is then

0 = C0 ⊂ C1 ⊂ · · · ⊂ Cn.

The two-dimensional annihilator (Cn
σ )
⊥ at σ ∈ J n(R,R) is computed from

equation (3.1) to be

(Cn
σ )
⊥ = span{Dx , ∂un },

where

Dx = ∂x + ux∂u + · · · + un∂un−1 . (3.2)

Let

πn
n−1 : J n(R,R)→ J n−1(R,R)

be the projection, and let Vert(πn
n−1) = ker(πn

n−1)∗. Then

Vert(πn
n−1) = {∂un } ⊂ (Cn)⊥. (3.3)

A Lie group G acting on J n(R,R) acts by contact transformations if

g∗Cn = Cn. (3.4)

That is, G is a symmetry group of the Pfaffian system Cn . A symmetry group of
a Pfaffian system preserves its derived flag, and so

g∗Ca = Ca, a = 0, . . . , n.

Let G be a Lie group acting on J n(R,R) by contact transformations. Bäcklund’s
Theorem [13] states that if G is a Lie group acting on J n(R,R) by contact trans-
formations, then the action is the prolongation of the action of G on J 1(R,R) by
contact transformation.

Bäcklund’s Theorem has an infinitesimal version. A vector-field Z on J n(R,R)

is an infinitesimal contact transformation if

LZθ
k = 0 mod Cn

for all k = 1, . . . , n. The infinitesimal form of Bäcklund’s Theorem [12] states

Z = ξDx +
n∑

a=0

Qa∂ua , (3.5)

where Q0 is a function on J 1(R,R), Dx is given in equation (3.2), and

ξ = −∂ux Q0, Q1 = (∂x + ux∂u)Q
0, Qa = (Dx )

a−1 Q1. (3.6)

The functions Qa can be considered as functions on J a(R,R) for each a =
1, . . . , n.
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If � is the Lie algebra of infinitesimal generators of a Lie group of contact
transformations and Z ∈ �, then Z is an infinitesimal contact transformation and
has the form of equation (3.5).

The infinitesimal form of Bäcklund’s Theorem together with Lemma 2.4 imply
the next lemma.

Lemma 3.1. Let G be an m-dimensional Lie group acting by contact transfor-
mations on J n(R,R), n ≥ 2. The group G acts locally effectively on subsets on
J n(R,R) if and only if the action of G on J k(R,R), k = 1, . . . , n − 1, is locally
effective on subsets.

3.2. Orbits of Contact Transformations

In this section we make the following assumptions. The group G is an m-dimen-
sional Lie group acting locally effectively on subsets on J n(R,R), n ≥ 1, by
contact transformations. The vector-fields {Zα}1≤α≤m are a basis for � the Lie
algebra of infinitesimal generators.

Let W  ⊂ J n(R,R) be the subset defined in equation (2.7), and let W t and
W nt be the subsets defined as in equations (2.10) and (2.11) where I = Cn . The
set W  is the subset of J n(R,R) on which G acts locally freely. The set W t is the
subset on which G is transverse to Cn , and W nt is the complement of W t .

The orbit structure of locally effective actions of G on J n(R,R) are usually
sufficiently complicated so that the quotient J n(R,R)/G is not a manifold (as de-
scribed in Section 2.2). The irregularity of these orbits has important consequences
when using symmetry to solve differential equations. The following fundamental
theorem will be used to help understand some of the orbit structure.

Theorem 3.2. For any k ≤ min(m, n) the k × k matrix

Pi
j = θ i (Zj ), 1 ≤ i, j ≤ k,

is invertible on an open dense subset of J n(R,R).

Proof. Let k ≤ min(m, n), and let U ⊂ J n(R,R) be the set where Pi
j , 1 ≤ i ,

j ≤ k, is invertible,

U = {σ ∈ J n(R,R) | det Pi
j (σ ) �= 0, 1 ≤ i, j ≤ k}. (3.7)

The set U is clearly open.
We will prove U is dense using induction on k. We begin by using the infinites-

imal form of Bäcklund’s Theorem (3.5), and write the infinitesimal generators as

Zα = ξαDx +
n∑

a=0

Qa
α∂ua , α = 1, . . . ,m.

This gives Pi
j = θ i (Zj ) = Qi−1

j , 1 ≤ i, j ≤ k.
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Let k = 1, and suppose there exists an open set V ⊂ J n(R,R) where at points
of V ,

P1
1 = θ1(Z1) = (du − ux dx)

(
ξ1 Dx +

n∑
a=0

Qa
1∂ua

)
= Q0

1 = 0.

Then on V , ξ1 = 0, and Qa
1 = 0 by (3.6), and so Z1 = 0 on V . This contradicts

the hypothesis that G acts locally effectively on subsets (Lemma 2.4). Therefore
the open set where P1

1 �= 0 is dense, and the theorem is true for k = 1.
Assume the theorem is true for k − 1, but that Pi

j = Qi−1
j , 1 ≤ i , j ≤ k, has

rank less than k on an open set V ⊂ J n(R,R). The induction hypothesis implies
that there exists an open dense set V ′ ⊂ V such that the k − 1 by k − 1 square
matrix Pa

b = Qa−1
b , 1 ≤ a, b ≤ k − 1, is invertible on V ′. The submaximality

assumption means that the k× k matrix Pi
j = Qi−1

j , 1 ≤ i , j ≤ k, is of rank k− 1
on V ′ and, consequently, there exists ra ∈ C∞(V ′) such that

Qa
k =

k−l∑
l=1

rl Qa
l , a = 0 . . . k − 1, (3.8)

at points of V ′. Now using Qa+1
k = Dx Qa

k , a = 0 . . . k − 2, and differentiating
(3.8) we get

Qa+1
k −Dx (Q

a
k ) =

k−1∑
l=1

(rl Qa+1
l −Dx (r

l)Qa
l −rl Dx Qa

l ) = 0, a = 0 . . . k−2,

at points of V ′. Therefore, on V ′,

k−1∑
l=1

Dx (r
l)Qa

l = 0, 0 ≤ a ≤ k − 2.

The matrix Qa
l is invertible on V ′, and so

Dx (r
l) = 0. (3.9)

Now differentiating equation (3.8) with respect to un and using ∂un Qa
j = 0, j =

1, . . . , k, 0 ≤ a ≤ k−1, implies that rl does not depend on un . This, together with
equation (3.9), implies rl are constants. Now let Y = Zk−rl Zl ∈ �. On the set V ′,

Y =
(
ξk −

k−1∑
l=1

rlξl

)
Dx .

By applying equations (3.5) and (3.6) to Y , we conclude that Y = 0 on V ′. This
contradicts the hypothesis that G acts locally effectively on subsets (Lemma 2.4).
No such original choice of V exists so U in equation (3.7) is dense.
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When dim G = m ≤ n, we define the subset W 0 ⊂ J n(R,R) by

W 0 = {σ ∈ J n(R,R) | det θα(Zβ)σ �= 0, 1 ≤ α, β ≤ m}. (3.10)

The set W 0 has the following properties.

Lemma 3.3. Let dim G = m ≤ n. Then:

(1) W 0 is a G-invariant open dense subset of J n(R,R), and G acts locally
freely on W 0.

(2) G is transverse to Cs , m ≤ s ≤ n, on the set W 0.

Proof. For part (1), the set W 0 is G-invariant by the same argument used in the
proof of Lemma 2.10. That W 0 is dense is just Theorem 3.2 when m ≤ n. The
defining condition for W 0 implies that at p ∈ W 0, the vectors {Zα(p)}1≤α≤m are
linearly independent. By equation (2.7), W 0 ⊂ W  and so Lemma 2.5 implies G
acts locally freely on W 0.

For part (2), equation (3.10) implies that equation (2.10) is satisfied at points
of W 0. Thus G is transverse to Cm on W 0. Now (Cs)⊥ ⊂ (Cm)⊥ for m ≤ s ≤ n.
Therefore, if Γp ∩ (Cm

p )
⊥ = 0, then Γp ∩ (Cs

p)
⊥ = 0 for m ≤ s ≤ n.

When dim G = m ≥ n + 1 the following lemma on the orbit structure of G is
known [12], but we provide an alternate proof.

Lemma 3.4. If dim G = m ≥ n + 1, then the set

W 1 = {σ ∈ J n(R,R) | rankΓσ ≥ n + 1}

is a G-invariant open dense subset of J n(R,R).

Proof. The set W 1 is open by definition and G-invariant by Lemma 2.3. We only
need to show W 1 is dense. Theorem 3.2 states that the n×n matrix, θ i (Zj ), 1 ≤ i ,
j ≤ n, is invertible on a dense open set U in J n(R,R). Therefore the infinitesimal
generators Zj , j = 1, . . . , n, are pointwise linearly independent on U .

Assume there exists a nonempty open subset V ⊂ J n(R,R) where the orbits
of G have dimension less than n+ 1. Then on the nonempty open set V ∩U there
exists f j ∈ C∞(U ∩ V ) such that

Zn+1 =
n∑

j=1

f j Z j .

The Lie derivative of the contact forms with respect to Zn+1 on U ∩ V is

LZn+1θ
i = f jLZj θ

i + θ i (Zj ) d f j .
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The vector-field Zn+1 is a symmetry of the contact structure therefore,

θ i (Zj ) d f j = 0 mod Cn(U ∩ V ).

Since θ i (Zj ) is invertible on U ∩ V this equation implies

Dx ( f j ) = 0 and
∂ f j

∂un
= 0.

Therefore f j are constants on U ∩ V , and the vector-field Zn+1 − f j Z j ∈ �
vanishes on U ∩ V . This contradicts the hypothesis that G acts effectively on
subsets (Lemma 2.4). No such V exists and the set W 1 is dense.

The last lemma in this section considers the case where dim G = m ≥ n + 2.

Lemma 3.5. If dim G = m ≥ n + 2, then either:

(1) the set

U = {σ ∈ J n(R,R) | rankΓσ = n + 2}
is dense in J n(R,R); or

(2) G is solvable or g is sl(2,R).

In case (2), there exists an (n + 1)-dimensional solvable subgroup H ⊂ G.

Proof. The open set U consists of points lying on orbits of maximal dimension.
Suppose that U is not dense. The set W 1 defined in Lemma 3.4 is open and dense
and so there exists p ∈ W 1−U and an open set V ⊂ W 1 about p with V ∩U = ϕ.
On the open set V the rank of Γ is n+ 1. Therefore � restricted to U ⊂ J n(R,R)

is an (n + 2)-dimensional Lie algebra of vector-fields of contact transformations
whose pointwise span is (n + 1)-dimensional. The local classification of contact
transformations [12], [9], [5] implies there are only a few possibilities. Either
the Lie algebra is initially intransitive on an open set in J 1(R,R), or the action
pseudo-stabilizes (see Theorem 5.24, p. 153 of [12]). The Lie algebra g is then
either solvable or sl(2,R). This proves part (2). If G is solvable, then the final
comment is trivial. If g is sl(2,R), then n = 1, and again the final comment is
trivial.

4. Scalar ODE Structures and Quotients

4.1. Scalar ODEs and External Symmetries

A scalar nth-order ODE is a subset R ⊂ J n(R,R) given by the zero-set of a
smooth function F : J n(R,R)→ R which depends explicitly on un . Specifically,

R = {σ ∈ J n(R,R) | F(σ ) = 0}
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where F satisfies

∂F

∂un

∣∣∣∣
R

�= 0.

The condition ∂un F |R �= 0 has a number of elementary consequences. First,
R ⊂ J n(R,R) is an embedded (n + 1)-dimensional manifold. Second, taken
together with equation (3.3) we have

Tσ J n(R,R) = Tσ R ⊕ Vert(πn
n−1) for all σ ∈ R. (4.1)

This implies that the projection map πn
n−1 restricted to πn

n−1 : R → J n−1(R,R)

is a local diffeomorphism. Lastly, about each point σ ∈ R there exists an open set
U ⊂ J n(R,R) and smooth function f : πn

n−1(U )→ R such that

R ∩U = {(x, u, ux , . . . , un = f (x, u, ux , . . . , un−1) |
(x, u, ux , . . . , un−1) ∈ πn

n−1(U )}.
(4.2)

Let ι : R → J n(R,R) be the inclusion map, and define the family of Pfaffian
systems {I a}0≤a≤n on R by

I a = ι∗Ca, a = 0, . . . , n. (4.3)

The Pfaffian systems I a can be written in terms of the forms θ̃ i = ι∗θ i , i =
1, . . . , n, as

I 0 = 0 and I a = [θ̃1, . . . , θ̃a], a = 1, . . . , n. (4.4)

A solution to the differential equation is then an integral manifold s : N → R
of I n , where s satisfies the condition s∗ι∗ dx �= 0.

The Pfaffian system I n is of codimension 1, and so its rank is its only local
invariant. However, the collection {I a}0≤a≤n of Pfaffian systems does have local
invariants.

Lemma 4.1. The bundles {I a}0≤a≤n satisfy:

(1) rank I a = a, a = 0, . . . , n;
(2) I k−1 = (I k)′, k = 1, . . . , n − 1; and

(3) d I 1mod 〈I 1, I n ∧ I n〉, is rank 1 if n > 1, and rank 0 if n = 1.

(4.5)

Proof. Let σ ∈ R. Equations (3.3) and (4.1) imply dim(Tσ R ∩ (Cn
σ )
⊥) = 1 and

so

dim((Tσ R)⊥ ∩ Cn
σ ) = dim(Tσ R)⊥ + dim Cn

σ − dim(Tσ R ∩ (Cn
σ )
⊥)⊥ = 1.

Therefore, I n
σ = Cn

σ ⊂ T ∗σ R is rank n. For the systems I a we have [θ1, . . . , θa]σ ⊂
Cn
σ is a subspace of dimension a, and so I a

σ = [θ1, . . . , θa]σ is of constant rank a.
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This proves (1). To show (2) we choose a chart U containing σ with coordinates
(x, u, ux , . . . , un−1) as in (4.2). In these coordinates

θ̃n = dun−1 − f (x, u, ux , . . . , un−1) dx,
θ̃ k = duk−1 − uk dx, k = 2, . . . , n − 1.

Therefore, by equation (4.4), I k−1 = (I k)′, k = 1, . . . , n − 1.
We now check condition (3). By computing in the previously chosen chart, we

find

d θ̃1 = θ̃2 ∧ dx mod〈dx ∧ θ̃1, θ̃ k ∧ θ̃1, θ̃ i ∧ θ̃ j 〉, 1 ≤ i, j, k ≤ n.

Therefore condition (3) is satisfied for n > 1. The case n = 1 is trivial.

Let µ : G × J n(R,R)→ J n(R,R) be an action of G by contact transforma-
tions. Then G is an external symmetry group of the equation R ⊂ J n(R,R) if the
subset R ⊂ J n(R,R) is invariant with respect to the action of G on J n(R,R). In
this case the action µ of G on J n(R,R) restricts to an action µR : G × R → R
which by definition satisfies

ι(µR(g, σ )) = µ(g, ι(σ )) for all g ∈ G, σ ∈ R.

Lemma 4.2. Let G be an external symmetry group of the nth-order ODE R,
n ≥ 2. If G acts locally effectively on subsets of J n(R,R), then G acts locally
effectively on subsets of R.

Proof. We begin by noting that the map πn
n−1 : R → J n−1(R,R) is equivariant

with respect to G, and that by Lemma 3.1 G acts locally effectively on subsets of
J n−1(R,R). Suppose that G does not act locally effectively on subsets of R. By
Lemma 2.4, there exists a nonempty open set U ⊂ R and a continuous subgroup
GU ⊂ G such that gp = p for all p ∈ U, g ∈ GU . By the comment following
equation (4.1) we may assume that πn

n−1 : U → πn
n−1(U ) is a diffeomorphism.

We then find

gπn
n−1(p) = πn

n−1(gp) = πn(p) for all g ∈ GU .

Therefore G does not act locally effectively on subsets of J n−1(R,R) which con-
tradicts Lemma 3.1.

4.2. Scalar ODE Structures

In order to prove that the quotient of a scalar ODE by the action of an external
symmetry group is again a scalar ODE, we need a coordinate invariant description
of a scalar ODE. The definition we choose is motivated by the properties of the
flag of Pfaffian systems {I a}0≤a≤n on the manifold R for a scalar nth-order ODE
in Lemma 4.1.
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Definition 4.3. An nth-order scalar ODE structure is a pair (M, {I a}0≤a≤n)

where M is an (n + 1)-dimensional manifold, and {I a}0≤a≤n is a flag of Pfaf-
fian systems satisfying conditions (1), (2), and (3) in equation (4.5).

By the discussion in Section 4.1 above, (R, {I a}0≤a≤n) is an nth-order ODE
structure. The next theorem shows that an nth-order scalar ODE structure can
locally be identified with a scalar nth-order ODE.

Theorem 4.4. Let (M, {I a}0≤a≤n) be an nth-order scalar ODE structure.
About each point p ∈ M there exists an open set U with local coordinates
(x, ux , . . . , un−1), and a smooth function f : U → R such that I a(U ) =
[θ1, . . . , θa], a = 1, . . . , n, where

θ k = duk−1 − uk dx, k = 1, . . . , n − 1, and
(4.6)

θn = dun−1 − f (x, ux , . . . , un−1) dx .

Proof. If n = 1 the theorem is trivial, so assume n ≥ 2. Let p ∈ M and apply
Theorem A.3 using the Pfaffian system I n−1. By Theorem A.3 there exists an open
neighborhood U of p with local coordinates (x, u, u1, u2, . . . , un−1) such that

I n−1(U ) = [du − u1dx, . . . , dun−2 − un−1dx].

The rank of I n is n, so there exists θ̃ ∈ I n(U ) mod I n−1(U ) of the form
θ̃ = a dun−1 + b dx where (a, b) �= (0, 0) on U . Condition (3) in equation (4.5)
implies a �= 0 on U . Therefore there exists a generator θn of I n(U ) mod I n−1(U )
having the form

θn = dun−1 − f (x, u, u1, . . . , un−1) dx .

This proves the theorem.

4.3. Symmetries, Orbits, and Quotients

An m-dimensional Lie group G acting on M is a symmetry group of an nth-order
scalar ODE structure (M, {I a}0≤a≤n) if

g∗ I a = I a for all a = 0, . . . , n. (4.7)

This definition generalizes the definition of an external symmetry group of an
nth-order scalar ODE.

Throughout this section we will assume G is a symmetry group of the nth-order
ODE structure (M, {I a}0≤a≤n) and that G acts locally effectively on subsets of M .
As usual, {Zα}1≤α≤m will be a basis for the infinitesimal generators �. We will
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use the subset M ⊂ M defined in equation (2.7), and the subsets Mt and Mnt as
defined in equations (2.10) and (2.11) with I = I n .

Theorem 4.4 states that the Pfaffian system I n−1 on M is locally equivalent to
Cn−1 on J n−1(R,R), while equation (4.7) states g∗ I n−1 = I n−1. This suggests
that the action of G on M might behave in a similar manner to a group acting on
J n−1(R,R) by contact transformations. This is the case and Lemmas 3.3, 3.4, and
3.5 from Section 3.3 have analogues for scalar ODE structures. We warn the reader
to be careful with the value of n when comparing the lemmas below to those in
Section 3.3.

We begin by defining a set M0 ⊂ M for symmetry groups G with dim G =
m ≤ n,

M0 = {p ∈ M | det θα(Zβ) �= 0, where I m
p = span{θα}, 1 ≤ α, β ≤ m}. (4.8)

The analogue of Lemma 3.3 is first.

Lemma 4.5. Let dim G = m < n. Then:

(1) M0 is G-invariant, open, and dense in M , and G acts locally freely on M0.
(2) G acts transversally to I s , m ≤ s ≤ n, on M0. In particular, M0 ⊂ Mt .

Proof. The set M0 is G-invariant by the argument used in Lemma 2.10. By
equation (2.7), M0 ⊂ M, so G acts locally freely by Lemma 2.5. We now show
M0 is dense. Let p ∈ M and choose a local chart U about p satisfying the
conditions of Theorem 4.4. Let {θα}1≤α≤m be a local basis for I m(U ) of the form
in equations (4.6). The set V = M0 ∩U is

V = M0 ∩U = {σ ∈ U | det θα(Zβ), 1 ≤ α, β ≤ m}.

By Theorem 3.2, the set V is open and dense in U . The set M0 is then the union
of these V as p ∈ M varies. Therefore M0 is open and dense in M . This proves
(1). Part (2) is proved exactly the same as part (2) in Lemma 3.3.

The same technique used in the proof of Lemma 4.5 can be used to prove the
analogues of Lemmas 3.4 and 3.5. These are the next two lemmas.

Lemma 4.6. If dim G = m ≥ n, then the set

M1 = {p ∈ M | rankΓp ≥ n} (4.9)

is G-invariant, open, and dense in M .

Lemma 4.7. If dim G = m > n, then either:

(1) the set Mnt is dense in M ; or
(2) G is solvable, or g = sl(2,R).
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In case (2), there exists an n-dimensional solvable subgroup H ⊂ G.

Proof. Let W ⊂ Mnt be

W = {p ∈ M | rankΓp = n + 1},

and suppose Mnt is not dense. Then W is not dense. Choose an open set U such
that U ∩W = ϕ, and which forms a local chart about p satisfying the conditions
of Theorem 4.4. Applying Lemma 3.5 to the open set U implies (2).

The next lemma has no analogy on jet space.

Lemma 4.8. Let dim G = n. The G-invariant subset M0 ∪ Mnt ⊂ M is dense.

Proof. We start by using the identity M = Mt ∪ Mnt and write the subset M1

defined in equation (4.9) above as

M1 = (M1 ∩ Mt ) ∪ (M1 ∩ Mnt ). (4.10)

It follows from equations (4.8), (4.9), and (2.10) that (M1∩Mt ) = M0. Therefore
M1 ⊂ M0∪Mnt by equation (4.10). By Lemma 4.6, M1 is dense, and so M0∪Mnt

is also.

Lemmas 4.5, 4.7, and 4.8 will be used to determine the domains on which
the reduction procedure is valid. The next lemma also simplifies determining the
domains in the reduction.

Lemma 4.9. Let dim G = m ≤ n. If G acts locally freely on M , then Mt = M0,
and M = M0 ∪ Mnt .

Proof. Let p ∈ M . The action is locally free so {Zβ(p)}1≤β≤m form a basis for
Γp. Let {θα}1≤α≤m be a basis for I m

p . By definition, p ∈ Mt if Γp ∩ I⊥p = 0, which
by equation (2.10) is true if and only if det θα(Zβ) �= 0. Therefore, Mt = M0 and
M = M0 ∪ Mnt .

We now come to the principle theorem of this section. This theorem states that
the quotient of an nth-order scalar ODE structure by a locally free action of an
m-dimensional symmetry group with m < n is an (n − m)th-order scalar ODE
structure.

Theorem 4.10. If dim G = m < n, G is transverse to I m , and G acts locally
freely on M , then the quotient (M , {J v}0≤v≤n−m), where J v = Ī v+m , is an (n −
m)th-order ODE structure.
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Proof. To show condition (1) in Definition 4.3, we begin by using the argu-
ment in part (2) of Lemma 3.3. This shows G acts transversally to the bun-
dles I v+m, v = 0, . . . , n − m. Corollary 2.10 then implies that the quotients
= Ī v+m, v = 0, . . . , n − m, are rank v subbundles of T ∗M 0, and condition (1) is
satisfied.

Applying Theorem 5.1 on page 14 in [2] we have

Ī v+m−1 = (I v+m)′ = ( Ī v+m)′, v = 1, . . . , n − m − 1.

This shows that the flag {J v}0≤v≤n−m on M satisfies condition (2) in Definition
4.3.

We check condition (3) for m+1 < n. The case m+1 = n is left as an exercise.
Let p̄ ∈ M , U be an open neighborhood of p̄ in M , and let U ⊂ q−1(U ) be an
open set where the following properties hold. First, U = q(U ), and on U there is
a coframe {σ̄ , η̄v}, v = 1, . . . , n − m, adapted to the flag J v, v = 1, . . . , n − m.
Second, on U the forms {dx, θ i }1≤i≤n form a coframe, where θ i are given by (4.6).
The last property we require is that there exists a cross-section γ : U → U .

Now let ηm+v = q∗η̄v, v = 1, . . . , n − m and σ = q∗σ̄ . A coframe on U is
given by the forms {σ, θα, ηm+v}1≤α≤m,1≤v≤n−m , and for a > m we have I a(U ) =
[θα, ηv]1≤α≤m,m+1≤v≤a . The structure equation for ηm+1 is then

dηm+1 = f σ ∧ ηm+2 + τ ∧ ηm+1 +
m∑
α=1

τα ∧ θα,

where f �= 0 on U and τ, τα ∈ �1(U ). Since ηm+1 is basic, then dηm+1 is also
basic. Therefore ιZ dηm+1 = 0 for all Z ∈ �. The fact that the action of G is
locally free and transverse to I m together with ιZ dηm+1 = 0 implies τα = 0 and
τ is semibasic. This results in the equation

dηm+1 = f σ ∧ ηm+2 + τ ∧ ηm+1 (4.11)

where τ ∈ �1
sb(U ) (the semibasic one forms on U ). Taking the pullback of equation

(4.11) by the cross-section γ : U → U we get

dη̄1 = f̄ σ̄ ∧ η̄2 + (γ ∗τ) ∧ η̄1,

where f̄ = f ◦ γ doesn’t vanish on U . This equation proves that condition (3) in
Definition 4.3 is satisfied for the flag {J v}0≤v≤n−m . Therefore (M , {J v}0≤v≤n−m)

is an (n − m)th-order scalar ODE structure.

Remark 4.11. Lemma 4.5 implies that the hypothesis of Theorem 4.10 are valid
on the subset M0 in equation (4.8). See Case 1 in Section 5.3 for the practical
implications of this.
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5. Integration

5.1. Connections and Equations of Lie Type

Let G be an m-dimensional Lie group acting freely on the n-dimensional manifold
M so that q : M → M is a left principle fiber bundle. Assume G is also a symmetry
group of the rank m Pfaffian system I on M and that G acts transversally to I .

Theorem 5.1. Let Q = I⊥ ⊂ T M , then Q is a principle G bundle connection
for q : M → M .

Proof. We check conditions (a), (b), and (c) on page 63 of [10]. To check condition
(a), we need to show that Q is a horizontal distribution. The dimension of Q is n−m,
and Γ is of dimension m. The transversality condition (2.10) implies Q ∩ Γ = 0.
Therefore, T M = Q ⊕ Γ. The vertical bundle is Γ, so Q is horizontal.

Condition (b) is that Q is G-invariant. The group G is a symmetry group of I
and therefore if g ∈ G, then g∗ I = I . By taking complements, then g∗Q = Q.

Condition (c) requires Q to be smooth, which is trivially true.

Let ω : T M → g be the Lie algebra valued connection form corresponding to
Q. The form ω satisfies (using our conventions for g)

ω(ρ(z)) = z and (µg)
∗ω = Adg(ω). (5.1)

These are the formulas on page 64 in [10] expressed in terms of left principle
bundles.

We now give a local description of ω. Let {eα}1≤α≤m be a basis for g and let
{Zα = ρ(eα)}1≤α≤m be the corresponding basis for the Lie algebra of infinitesimal
generators. Let U ⊂ M be an open set where {θα}1≤α≤m are a basis for I (U ).
Let Pα

β = θα(Zβ), 1 ≤ α, β ≤ m. The matrix Pα
β is invertible on account of

transversality.

Lemma 5.2. On the open set U , the Lie algebra valued one form ω is

ω = (P−1)αβθ
β ⊗ eα.

Proof. It is sufficient to check the first condition in equation (5.1), which is the
defining equation for ω. This is checked on a basis by computing

ω(Zγ ) = (P−1)αβθ
β(Zγ )⊗ eα = (P−1)αβ Pβ

γ eα = eγ .

This proves the lemma.

Finding the horizontal lift of a curve in M with respect to a connection on
M requires solving a special type of differential equation called an equation of
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fundamental Lie type, which we now define. Let g be the Lie algebra of G, and
recall that we use the right invariant vector-fields to define the brackets on g. Let
τ : g → χ(G) be the homomorphism τ(z) = Xz where Xz is the left invariant
vector-field,

Xz(g) = −(Lg)∗z.

Given a curve α : R→ g, the homomorphism above leads to the ODE,

γ̇ (t) = τ(α(t))(γ (t)) = −(Lγ )∗(α(t))
for a curve γ : R → G. This equation is called an equation of fundamental Lie
type. If G is simply connected and solvable, then an equation of fundamental Lie
type can be solved by quadratures. See page 55 in [8] for more information on
equations of Lie type.

For the rest of this section let G be an m-dimensional Lie symmetry group
of the nth-order ODE structure (M, {I a}0≤a≤n) with m ≤ n. Assume that G acts
transversally to I m and freely on M . By Theorem 5.1, (I m)⊥ is a connection, and
so let ω be the corresponding connection form for I m defined by (5.1).

Lemma 5.3. Let Ī n be the quotient Pfaffian system on M of I n . Then

I n = I m ⊕ (q∗ Ī n). (5.2)

Proof. As usual G acts transversally to I n , and so the subbundle q∗ Ī n ⊂ I n is of
rank n − m (Corollary 2.11). Now I m ∩ Γ⊥ �= 0 and q∗ Ī n ∩ Γ⊥ = 0. Therefore
q∗ Ī n ∩ I m = 0. The subbundle I m ⊂ I n is rank m, and thus equation (5.2)
holds.

The fundamental theorem of Section 5 which is given next is a decomposition
property of integral manifolds (see also Proposition 6.1 in [2]).

Theorem 5.4. Let Ī n be the rank n − m quotient Pfaffian system on M of the
rank n Pfaffian system I n on M . Let s̄ : N → M be an integral curve of Ī n ,
ŝ : N → M a lift of s̄, and γ : N → G a smooth curve, where N ⊂ R is an
open interval. The curve s : N → M given by s(t) = µ(γ (t), ŝ(t)) is an integral
manifold of I n if and only if γ satisfies the equation of fundamental Lie type,

γ̇ (t) = −(Lγ )∗ω( ˙̂s). (5.3)

Proof. Let s̄, ŝ, γ , and s be as stated in the theorem (the curve ŝ exists because
N is an interval). To find conditions on γ so that s is an integral manifold of I n

we use Lemma 5.3. We first show that ṡ vanishes on q∗( Ī n). Let p ∈ s(N ) and let
θ ∈ (q∗ Ī n)p. Then θ = q∗θ̄ , θ̄ ∈ Ī n

q(p). The curve s̄ is an integral manifold of Ī n ,
therefore,

θ(ṡ) = q∗θ̄ (ṡ) = θ̄ (q∗ṡ) = θ̄ ( ˙̄s) = 0.
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By this computation and Lemma 5.3, the curve s : N → M is an integral manifold
of I n if and only if ω(ṡ) = 0.

The tangent vector ṡ is

ṡ(t) = (µγ )∗ ˙̂s + (µŝ)∗γ̇ . (5.4)

Evaluating the connection form ω on ṡ in equation (5.4) gives

ω(ṡ) = ω((µγ )∗ ˙̂s)+ ω((µŝ)∗γ̇ ). (5.5)

By the equivariance property of ω in equation (5.1) we have

ω((µγ )∗ ˙̂s) = Adγ ω( ˙̂s). (5.6)

By part (2) in Lemma 2.3, the properties of ω, and that (Lγ−1)∗γ̇ (t) ∈ g for all
t ∈ N ,

ω((µŝ)∗γ̇ ) = ω((µŝ)∗(Lγ )∗(Lγ−1)∗γ̇ ) = Adγ ω((µŝ)∗(Lγ−1)∗γ̇ )

= Adγ ((Lγ−1)∗γ̇ ).

Combining this equation with (5.6), equation (5.5) is then

ω(ṡ) = Adγ ((Lγ−1)∗γ̇ + ω( ˙̂s)).
This is zero if and only if γ satisfies equation (5.3).

The curve s in this Theorem 5.4 is a horizontal lift of s̄ with respect to the
connection (I m)⊥. Also note that every integral manifold of I n can be determined
by Theorem 5.4.

Corollary 5.5. Let s : N → M be an integral manifold to I n , s̄ = q ◦ s, and let
ŝ : N → M be any lift of s̄. Then there exists a smooth curve γ : N → G such
that s(t) = µ(γ (t), ŝ(t)), t ∈ N , and γ satisfies the equation of fundamental Lie
type (5.3).

Proof. By Lemma 2.12, s̄ : N → M is an integral manifold to Ī n . Let ŝ :
N → M be a lift of s̄. The projections of ŝ and s agree, so there exists a function
γ : N → G such that s(t) = µ(γ (t), ŝ(t)), t ∈ N . The action of G is free and so
γ is unique and smooth. By the proof in Theorem 5.4, γ satisfies equation (5.3).

5.2. Remarks on Theorem 5.4

Theorem 5.4 and Corollary 5.5 can be interpreted as decomposing the problem of
finding integral manifolds for I n into finding integral manifolds for the quotient
system Ī n , and then constructing integral manifolds for I n from those for Ī n by
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solving an equation of Lie type. The process of taking a solution to the quotient
and constructing a solution to the original problem is known as the reconstruction
problem [2]. Solving the equation of Lie type is the reconstruction problem in the
case at hand.

We now summarize the process of finding integral manifolds using Theorem
5.4 and highlight the steps which are algebraic. Suppose we are interested in
finding an integral manifold of I n through p ∈ M . In the first step we compute
the quotients M and Ī n . Only algebraic operations are required to compute these
quotients [2]. Now let p̄ = q(p), and let s̄ : N → M be an integral manifold to Ī n

satisfying s̄(t0) = p̄, t0 ∈ N . If m < n, then integration is required at this step to
determine s̄. If dim G = n, then Ī n = 0 and we may choose s̄ : N → M to be any
immersion.

Next choose a lift ŝ : N → M of s̄ satisfying ŝ(t0) = p for some t0 ∈ N .
This is an algebraic problem. The equation of Lie type in (5.3) of Theorem 5.4 is
then determined algebraically from �, I n , and ŝ. Solving the equation of Lie type,
which requires integration, with the initial condition γ (t0) = e gives the integral
manifold s : N → M , s = µ(γ (t), ŝ(t)). The function s satisfies s(t0) = p.

The proof of Theorem 5.4 does not use the ODE structure in an essential way.
This leads to a number of simple corollaries for quotients of Pfaffian systems with
symmetry. We give one example.

Corollary 5.6. Let G be a freely acting n-dimensional symmetry group of the
rank n Pfaffian system I on the (n + 1)-dimensional manifold M , with M the
quotient. If G is transverse to I , then every integral curve s : N → M , N ⊂ R an
open interval, can be found by solving an equation of fundamental Lie type. If G
simply connected and solvable, then s can be found by quadratures.

Example 4 in Section 6 is an application of this corollary to a system of second-
order ODEs.

The results of Section 5.1 can be extended to the case where the action of the
Lie group G on M is locally free, with only some minor changes. First the bundle
M → M is not a principle G bundle, but the set (I m)⊥ in Theorem 5.1 is still
(a) horizontal, (b) invariant, and (c) smooth. The connection form ω can still be
constructed locally by Lemma 5.2, Lemma 5.3 and Theorem 5.4 also hold as stated.
However, Corollary 5.5 may only hold locally.

5.3. Integration of Scalar ODEs with Symmetry

Let G be an m-dimensional external symmetry group of the nth-order ODE R ⊂
J n(R,R), where G acts locally effectively on subsets of J n(R,R). Let I a , a =
0, . . . , n, be the Pfaffian systems on R from equation (4.3). By Lemma 4.2, G acts
locally effectively on subsets of R and the results of Section 4 hold for the ODE
structure (R, {I a}0≤a≤n).
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We begin by noting that on the domain Rnt which is determined algebraically
from I n and Γ in equation (2.11), Corollary 2.15 applies. Any connected so-
lution to the ODE R with initial condition in Rnt is contained in the orbit of
some one-parameter subgroups of G. The subgroups and their orbits (and so
these solutions) are determined algebraically. This is demonstrated in the
examples.

There are now three cases to consider depending on the dimension of G.

Case 1. If m < n, then by Lemma 4.5 the G-invariant subset R0 ⊂ R, defined in
equation (4.8), is dense. The group G acts locally freely on R0 and transversally to
I m . The set R0 is determined algebraically. Theorems 4.10 and 5.4 and Corollary
5.5 apply on R0. Every solution with initial condition in R0 is found by solving an
(n−m)th-order ODE, together with an equation of fundamental Lie type. To solve
the differential equation for initial conditions in R0, we first integrate the (n−m)th-
order quotient ODE (R̄, { Ī v}n−m≤v≤n). The solutions for the quotient are then used
to construct, using only algebraic operations, the equation (5.3) of fundamental
Lie type. Solutions to the original equation are then found by multiplying the lift
ŝ of a solution to the quotient and the solution γ to the equation of Lie type. See
Example 1 in Section 6.

Case 2. If m = n, then Lemma 4.8 implies there exists a G-invariant open dense
set R0 ∪ Rnt ⊂ R where R0 is defined in equation (4.8) and Rnt is defined in
(2.11). The subsets R0 and Rnt are determined algebraically from I n and �. By
equation (2.7) G acts locally freely on R0 and transversally to I n . Theorem 5.4
and Corollaries 5.5 and 5.6 apply on the open set R0. Solutions with initial values
in R0 can be found by choosing a smooth curve ŝ transverse to the orbits of G
on R0 and solving the corresponding equation of fundamental Lie type. The Lie
equation (5.3) is determined algebraically from ŝ. If G is simply connected and
solvable, then Corollary 5.6 states that every solution with initial value in R0 can
be found by quadratures. See Example 2. Unlike Case 1 above, the set R0 can be
empty, see Example 3.

Case 3. If m > n, Lemma 4.7 applies. If Rnt is dense, then every integral curve with
initial condition in Rnt is contained in the orbit of some one-parameter subgroup of
G. If Rnt is not dense, then part (2) of Lemma 4.8 implies there exists a subgroup
H ⊂ G which is solvable and of dimension n. Case 2 applies with G being replaced
by H . Let R0

H be the subset of R determined by the subgroup H in equation (4.8),
and let

RD = R0
H ∪ Rnt .

The subset RD ⊂ R is dense (by Lemma 4.8), and any solution to R with initial
condition in R0

H can be determined by quadratures (Coroallary 5.6). Therefore,
if dim G > n, then there exists a dense subset of initial conditions where the
solutions can be found algebraically or by quadrature. This domain is determined
algebraically.
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Remark 5.7. In practice one has only the Lie algebra infinitesimal external
symmetries of R. These are the infinitesimal contact transformations tangent of
J n(R,R) which are tangent to R. This Lie algebra often occurs as the Lie algebra
of a local group action on J n(R,R) by contact transformations. Fortunately, the
definitions and most results from Sections 3, 4, and 5, hold exactly as written for
local group actions. The reason is that most of the constructions depend only on
the infinitesimal generators � and the distribution Γ.

Theorem 5.4 and Corollary 5.5 do need to be modified when only a local action
of G is given. For example, Theorem 5.4 holds with the following modification. Let
s̄ : N → M be an integral manifold of Ī , and let ŝ be a lift of s̄. About each point
t0 ∈ N there exists a connected open set N0 containing t0, and open neighborhood
of G0 ⊂ G containing the identity e, such that s(t) = µ(γ (t), ŝ(t)), t ∈ N0, is an
integral manifold if and only if γ satisfies equation (5.3). A similar local statement
for Corollary 5.5 is easily made.

If G acts only locally and locally effectively on R, the summary in this section
is valid taking these comments into consideration.

6. Examples

Example 6.1. This example is of type 1 in Section 5.3. The fourth-order differ-
ential equation on page 156 in [3]

uxxxx = 1

(uux )2
(5u2uxx uxxx ux + 4uu2

x u2
xx− u4

x uxx− 3uu3
x uxxx− 4u2u3

xx ), (6.1)

defines the equation manifold R = {(x, u, ux , uxx , uxxx ) ∈ R5 | uux �= 0}, and
by equation (4.3) the Pfaffian system

I = [du − ux dx, dux − uxx dx, duxx − uxxx dx,

duxxx − (uux )
−2(5u2uxx uxxx ux + 4uu2

x u2
xx − u4

x uxx

− 3uu3
x uxxx − 24u2u3

xx ) dx].

The three-dimensional solvable external symmetry group

G = {(a, b, c) | a ∈ R, b, c ∈ R∗}
with multiplication law

(a′, b′, c′)(a, b, c) = (a′a, b′ + a′b, c′c),

and action on R given by

x ′ = ax+b, u′ = cu, u′x = a−1cux , u′xx = a−2cuxx , u′xxx = a−3cuxxx ,

is an external symmetry group of equation (6.1). The action is free on R.
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Let eα ∈ TeG, α = 1, 2, 3, be the basis

e1 = ∂a, e2 = ∂b, e3 = ∂c. (6.2)

The infinitesimal generators Zα = ρ(eα) of the action of G on R are then

Z1 = x∂x − ux∂ux − 2uxx∂uxx − 3uxxx∂uxxx , Z2 = ∂x ,

Z3 = u∂u + ux∂ux + uxx∂uxx + uxxx∂uxxx .

The dense open subset R0 ⊂ R from equation (4.8), is given by det θα(Zβ) �= 0,
α, β = 1, 2, 3, and is

R0 = {(x, u, ux , uxx , uxxx ) ∈ R | uxxx �= 2u2
xx u−1

x − uxx ux u−1 and uux �= 0}.
The action is free and so, by Lemma 4.9, Rt = R0, and Rnt = R − R0 is then
given by

Rnt = {(x, u, ux , uxx , uxxx ) | uxxx = 2u2
xx u−1

x − uxx ux u−1 and uux �= 0}.
The union R0 ∪ Rnt = R consists of all initial conditions.

We start with R0. The first part of the decomposition for finding solutions with
initial values in R0 requires computing the quotient Pfaffian system Ī . This is done
using Corollary 2.8. Let (t, y) be coordinates on the quotient R0 = R0/G and let
δ(t, y) = (0, 1, 1, t, y) be a cross-section of q : R0 → R0. The semibasic form is

θsb = (2uxxx uux − 2u2
xx u + uxx u2

x )ux du − (3uxxx uux − 4u2
xx u + 2uxx u2

x )udux

− (2uxx u − u2
x )uux duxx + (uux )

2 duxxx

and so

Ī = [δ∗θsb] = [dy + (1− 2t) dt].

The most general integral manifold s̄ of Ī satisfying the independence condition
dt �= 0 can be written as a graph as y = t2 − t + c0.

We now find the equation of Lie type in (5.3). First we compute the connection
formω = ω1⊗e1+ω2⊗e2+ω3⊗e3 on R0 which is determined from Lemma 5.2
to be

ω1 = �((ux uxxx − u2
xx ) du − (uuxxx − ux uxx ) dux + (uuxx − u2

x ) duxx ),

ω2 = dx −�((ux uxx−xu2
xx + xux uxxx ) du+(2uuxx+xuuxxx−xux uxx ) dux

− (uux + xuuxx − xu2
x ) duxx ),

ω3 = �((ux uxxx − 2u2
xx ) du + 2ux uxx dux − u2

x duxx ),

where � = (u2
x uxx + ux uuxxx − 2uu2

xx )
−1. Following Theorem 5.4, let ŝ(t) =

δ ◦ s̄ = (0, 1, 1, t, t2 − t + c0), and we find the curve ω( ˙̂s) : R→ g to be

ω( ˙̂s) = (ω1( ˙̂s), ω2( ˙̂s), ω3( ˙̂s)) = (t2 − c0)
−1(1− t, 1, 1).
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By using the basis for TeG in equation (6.2), the equation (5.3) of Lie type is

ȧ(t) = a(t)(1− t)(c0− t2)−1, ḃ(t) = a(t)(c0− t2)−1, ċ(t) = c(t)(c0− t2)−1.

(6.3)
The group G is solvable, and the coordinates on G have been chosen so that
equations (6.3) can be integrated by quadratures.

We now consider the invariant solutions for equation (6.1) by applying Corollary
2.15. At a point σ 0 ∈ Rnt , we have

σ 0 = (x0, u0
x , u0

xx , u0
xxx = 2(u0

xx )
2(u0

x )
−1 − u0

xx u0
x (u

0)−1).

Then

�σ∩(Iσ )⊥ = span{((u0
x )

2−u0u0
xx )Z1+(u0u0

x−(u0
x )

2x0+u0u0
xx x0)Z2+(u0

x )
2 Z3}.

Corollary 2.15 implies that the orbit through σ 0 of the one-parameter subgroup
determined the vector in the equation above is the maximal solution. By computing
this subgroup, the solution (or orbit) with initial value σ 0 is given in parametric
form by

x = x0 + λ−1u0
x u0(1− eλt ), u = u0e−(u

0
x )

2t ,

where λ = u0u0
xx − (u0

x )
2. As a graph these solutions are

u = u0

(
(x0 − x)λ+ u0

x u0

u0
x u0

)−λ−1(u0
x )

2

.

The solutions u = u0e(x−x0)u0
x (u

0)−1
when λ = 0 are found in a similar way. The

entire set of initial conditions for this example have now been accounted for.

Example 6.2. This example is of type 2 in Section 5.3. The differential equation

uxxx = 3u2
xx

ux
+ u3

xx

u5
x

(6.4)

from page 152 in [13], defines the equation manifold R = {(x, u, ux , uxx ) ∈ R4 |
ux �= 0 }, and from equation (4.3) the Pfaffian system

I = [du − ux dx, dux − uxx dx, duxxx − (3u2
xx u−1

x + u3
xx u−5

x ) dx].

Equation (6.4) admits the three-dimensional solvable external symmetry group

G = {(a, b, c) | a, b, c ∈ R},

with multiplication law

(a′, b′, c′)(a, b, c) = (a′ + a + c′b, b′ + b, c′ + c),
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and local action on R given by

x ′ = x + a+ cu, u′ = u+ b, u′x = (1+ cux )
−1ux , u′xx = (1+ cux )

−3uxx .

Let eα ∈ TeG, α = 1, 2, 3, be

e1 = ∂a, e2 = ∂b, e3 = ∂c. (6.5)

The corresponding infinitesimal generators Zα = ρ(eα) on R are

Z1 = ∂x , Z2 = ∂u, Z3 = u∂x − u2
x∂ux − 3ux uxx∂uxx .

The local action of G is free everywhere on R, and the sets R0 and Rnt in Lemma
4.9 are

R0 = {σ ∈ R | uxx �= 0}, Rnt = {σ ∈ R | uxx = 0}.
Theorem 5.4 applies on the set R0, and the connection form ω = ω1 ⊗ e1 +

ω2 ⊗ e2 + ω3 ⊗ e3 on R0 is computed using Lemma 5.2 to be

ω1 = dx + 1

(ux uxx )2
(3u6

x + 3uxx uu4
x + u2

xx u) dux − u3
x

u3
xx

(u2
x + uxx u) duxx ,

ω2 = du + 3u5
x

u2
xx

dux − u6
x

u3
xx

duxx , ω3 = − (3u4
x + uxx )

uxx u2
x

dux + u3
x

u2
xx

duxx .

The curve ŝ(t) = (0, 0, 1, t) is transverse to Γ and ω( ˙̂s) : R→ g in Theorem 5.4
is

ω( ˙̂s(t)) = (−t−3,−t−3, t−2).

With the basis in equation (6.5) for TeG, the corresponding equations of Lie type
(5.3) are

ȧ = (1+ c)t−3, ḃ = t−3, ċ = −t−2.

The coordinates on G have been chosen so that these equations can be integrated
by quadratures.

For initial conditions σ = (x0, u0, u0
x , 0) ∈ Rnt the solutions are contained in

the orbit of the one-parameter subgroup with infinitesimal generator Z1 + u0
x Z2

(Corollary 2.15). In parametric form these orbits are

x = x0 + t, u = u0 + u0
x t.

All initial conditions have been accounted for.

Example 6.3. This example is of type 2 in Section 5.3. The fifth-order differential
equation

uxxxxx = 5uxxx (9uxxxx uxx − 8u2
xxx )

9u2
xx

(6.6)
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defines the manifold R = {(x, u, ux , uxx , uxxx , uxxxx ) ∈ R6 | uxx �= 0}, and the
Pfaffian system

I = [du − ux dx, dux − uxx dx, duxx − uxxx dx, duxxx − uxxxx dx,

duxxxx − 5uxxx (9uxxxx uxx − 8u2
xxx )/(9u2

xx ) dx].

Equation (6.6) admits the five-dimensional external symmetry group G= S A(2)=
{(A, b) | A ∈ SL(2,R), b ∈ R2}, with local action on R,

x ′ = ax + bu + b1, u′ = cx + du + b2, u′x = δ−1(c + dux ),

u′xx = δ−3uxx , u′xxx = δ−4uxxx − 3bδ−5(uxx )
2,

u′xxxx = δ−5uxxxx − 10bδ−6uxx uxxx + 15b2δ−7u3
xx ,

where δ = (a + bux ) and ad − bc = 1.
Let eα , α = 1, . . . , 5, of TeG = sl(2,R)× R2 be the basis given by

e1 =
((

0 0
0 0

)
,

(
1
0

))
, e2=

((
0 0
0 0

)
,

(
0
1

))
, e3=

((
1 0
0 −1

)
,

(
0
0

))
,

e4 =
((

0 1
0 0

)
,

(
0
0

))
, e5=

((
0 0
1 0

)
,

(
0
0

))
,

the infinitesimal generators Zα = ρ(eα) on R are

Z1 = ∂x , Z2 = ∂u, Z3 = pr(x∂x − u∂u), Z4 = pr(u∂x ), Z5 = pr(x∂u)

where pr means prolongation. The local action of G on R is free. A simple cal-
culation shows det θα(Zβ) = 0, 1 ≤ α, β ≤ 5. Therefore R0 from equation (4.8)
is empty and so, by Lemma 4.9, R = Rnt . Consequently, from the discussion in
Case 2 of Section 5.3, every integral curve (or solution to (6.6)) is an orbit.

The solutions can be found algebraically and so we compute them. Let σ 0 =
(x0, u0, u0

x , u0
xx , u0

xxx , u0
xxxx ) ∈ R and let

δ=3u0
xx u0

xxxx−4(u0
xxx )

2, τ1 = u0
xδ−3(u0

xx )
2u0

xxx , τ0 = u0δ+9(u0
xx )

3−x0τ1.

If δ �= 0, then an infinitesimal generator lying in ker θα(Zβ)σ 0 is

Zσ 0 = −τ0 Z1+ 1

2δ
(9(u0

xx )
4τx−2τ1τ0)Z2−τ1 Z3+δZ4+ 1

δ
(9(u0

xx )
4τ3−τ 2

1 )Z5.

By Corollary 2.15, the solution through σ 0 is the integral curve given in R2 by

x = − τx

2τ3
− 3u0

xx√
τ3

sinh(α0t)− 3u0
xxx u0

xx

τ3
cosh(α0t),

u = 2τ0τ3 − τ1τx

2δτ3
− 3u0

xx (3(u
0
xx )

2u0
xxx + τ1)√

τ3δ
sinh(α0t)

− 3u0
xx (3τ3(u0

xx )
2 + τ1u0

xxx )

τ3δ
cosh(α0t)
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where

α0 = 3
√
τ3(u

0
xx )

2, τ3 = (u0
xxx )

2 + δ.
Writing the curve as a graph yields the general solution

u = c0 + c1x ±
√

c3x2 + cx x + c2(4c3c2 − c2
x ). (6.7)

In terms of the initial conditions σ 0, the constants are

c0 = δ−1τ0, c1 = δ−1τ1, c2 = 1
4 12−2/5δ−4/5τ−1

3 (τ 2
x − 36(u0

xx )
2δ),

c3 = 12−2/5δ−4/5τ3, cx = − 2
5δ
−4/5τx .

The solution for the initial conditions where δ = 0 or τ3 = 0 are computed in a
similar manner.

Example 6.4. In this example we apply Corollaries 5.6 and 2.15 to the problem
of solving a system of ODEs. The two second-order differential equations on page
14 in [14],

ẍ = ẋ2 f

(
ẋ

ẏ

)
, ÿ = ẋ2g

(
ẋ

ẏ

)
, (6.8)

give rise to the Pfaffian system

I =
[

dx − ẋ dt, dy − ẏ dt, dẋ − ẋ2 f

(
ẋ

ẏ

)
dt, d ẏ − ẋ2 f

(
ẋ

ẏ

)]

on the manifold M = {(t, x, y, ẋ, ẏ) ∈ R5 | ẏ �= 0}. Equations (6.8) admit the
four-dimensional solvable external symmetry group

G = {(a, b, c1, c2) | a ∈ R∗, b, c1, c2 ∈ R}
with multiplication law

(a′, b′, c′1, c′2)(a, b, c1, c2) = (a′a, b′ + a′b, c′1 + c1, c2 + c′2)

and action on M given by

t ′ = at + b, x ′ = x + c1, y′ = y + c2, ẋ ′ = ẋ

a
, ẏ′ = ẏ

a
. (6.9)

The action of G is free on M .
Let e1 = ∂a, e2 = ∂b, e3 = ∂c1 , e4 = ∂c2 be a basis for TeG. The corresponding

infinitesimal generators Zα = ρ(eα) are

Z1 = t∂t − ẋ∂ẋ − ẏ∂ẏ, Z2 = ∂t , Z3 = ∂x , Z4 = ∂y .

G satisfies the transversality condition (2.10) on the set Mt ⊂ M computed from
equation (2.10) to be

Mt = {σ ∈ M | ẋ(ẋ g − ẏ f ) �= 0}. (6.10)
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The invariant solutions will have initial condition in

Mnt = {σ ∈ M | ẋ(ẋ g − ẏ f ) = 0}.
We first look at solutions to equation (6.8) with initial conditions in Mt . Corol-

lary 5.6 applies on the set Mt , and solutions can be found by solving an equation of
fundamental Lie type. The components of the connection form on Mt are computed
using Lemma 5.2 to be

ω1=�( f d ẏ−g dẋ), ω2=dt+�((ẏ ẋ−2+tg) dẋ−(ẋ−1+t f ) d ẏ),

ω3=dx+�(ẏ ẋ−1 dẋ− d ẏ), ω4=dy+�(ẏ2 ẋ−2 dẋ− ẏ ẋ−1 d ẏ),

where � = (ẋ g − ẏ f )−1. The curve ŝ(τ ) = (0, 0, τ, 1), τ ∈ R, is transverse to
the orbits of G, and ω( ˙̂s) : R→ g in Theorem 5.4 is

ω( ˙̂s(τ )) =
(

g(τ )

f (τ )− τg(τ )
,

1

τ 2(τg(τ )− f (τ ))
,

1

τ(τg(τ )− f (τ ))
,

1

τ 2(τg(τ )− f (τ ))

)
.

The equations of Lie type (5.3) corresponding to our choice of basis for g are

aτ = a(τ )g(τ )

τg(τ )− f (τ )
, bτ = a(τ )

τ 2( f (τ )− τg(τ ))
,

c1,τ = 1

τ( f (τ )− τg(τ ))
, c2,τ = 1

τ 2( f (τ )− τg(τ ))
.

The coordinates have been chosen so that these can be integrated by quadratures.
We now find the invariant solutions with initial conditions σ ∈ Mnt . By Corol-

lary 2.15, the solutions are orbits of Z ∈ � such that Zσ ∈ �σ ∩ Iσ , Zσ �=
0. For initial conditions where σ = (t0, x0, y0, ẋ0, ẏ0) ∈ Mnt which satisfy
(ẋ0g(ẋ0/ẏ0) − ẏ0 f (ẋ0/ẏ0)) = 0, ẋ0 �= 0, the solution is the orbit of the one-
parameter subgroup with infinitesimal generator

Z = −α0 X1 + (1+ α0t)X2 + ẋ0 X3 + ẏ0 X4, where α0 = ẋ0 f (ẋ0/ẏ0).

The explicit parametrized solutions (or orbits) are

t = t0+ 1

α0
(1− e−α0τ ), x = x0+ ẋ0τ, y = y0+ ẏ0τ, τ ∈ R. (6.11)

As a graph these solutions are

x = x0 − ẋ0

α0
ln(1+ α0(t0 − t)), y = y0 − ẏ0

α0
ln(1+ α0(t0 − t)), t ∈ R.

Solutions with α0 = 0 or ẋ0 = 0 are written down similarly.

Remark 6.5. If the functions f and g in equation (6.8) satisfy ẋ g− ẏ f = 0, then
every solution is the orbit of a one-parameter subgroup of the symmetry group G.
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Appendix A

The theorems in this appendix give conditions that a codimension two Pfaffian
system is locally equivalent to J n(R,R) in terms of invariants of the Pfaffian
system. These theorems are a modification of Proposition 6.3, p. 162 in [15].

Theorem A.1. Let M be an (n + 2)-dimensional manifold, and I 〈0〉 a rank n
Pfaffian system on M with the derived flag I 〈k〉 satisfying rank(I 〈k〉) = n − k,
k = 0, . . . , n. There exists an open dense subset M0 ⊂ M where, about each point
p ∈ M0, there is an open set U containing p and a local coframe {ρ, σ, θ i }i=1,...,n

on U such that I 〈n−k〉(U ) = [θ1, . . . , θ k], k = 1, . . . , n, and

(1) dθ k = ρ ∧ θ k+1 mod I 〈k〉(U ), k = 1, . . . , n − 1,

(2) dθn = ρ ∧ σ mod I 〈0〉(U ).
(A.1)

Proof. Let U be an open set such that T ∗U is trivial. Let {ω, τ, ηi }1≤i≤n be a
coframe on U such that I 〈k〉 = [η1, . . . , ηn−k]. By the definition of the derived
series and the choice of coframe we have the structure equations,

dηk = ωk ∧ ηk+1 mod I 〈n−k〉(U ), k = 1, . . . , n − 1,

dηn = f nω ∧ τ mod I 〈0〉(U ),
(A.2)

where

ωk = akω + bkτ +
n∑

α=k+2

ck
αη

α, (A.3)

and f n , ωk are nonzero at every point in U . This last condition implies, for k =
n − 1, that

(an−1, bn−1) �= (0, 0) (A.4)

at every point in U .
We now show there exists an open dense subset V ⊂ U where (ak, bk) �= (0, 0)

at any point of V for each k = 1, . . . , n − 1. If k = n − 1, then by (A.4) V = U .
We proceed by (reverse) induction. Suppose for some k ∈ {1, . . . , n − 2} that
(ak, bk) = (0, 0) on an open set W̃ ⊂ U . By the induction hypothesis choose
W ⊂ W̃ a nonempty open set where (ak+t , bk+t ) �= (0, 0) at any point of W for
t = 1, . . . , n − k − 1. Taking the exterior derivative of (A.2) and using (A.3), we
have

0 = d2ηk ∧ η1 ∧ · · · ∧ ηk+1 = −
(

n∑
α=k+2

ck
αη

α

)
∧ωk+1 ∧ ηk+2 ∧ η1 ∧ · · · ∧ ηk+1.

Substitutingωk+1 from equation (A.3) into this equation, and using (ak+1, bk+1) �=
(0, 0) at points of W , implies ωk = ck

k+2η
k+2 and ck

k+2 �= 0 on W . Assuming
k < n − 2, and computing

0 = d2ηk ∧ η1, . . . , ηk ∧ ηk+2 = ck
k+2ω

k+2 ∧ ηk+3 ∧ ηk+1 ∧ η1 ∧ · · · ∧ ηk ∧ ηk+2
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implies ck
k+2 = 0, which is a contradiction. For k = n−2, the argument is similar.

Thus (ak, bk) can’t vanish on an open subset of U for any k = 1, . . . , n − 1. This
finishes the induction.

Let Vk ⊂ U be the open dense subset of U where (ak, bk) �= (0, 0), k =
1 . . . n − 1, and let

V =
n−1⋂
k=1

Vk

which is open and dense in U . By making the change of coframe

ω̃ = a1ω + b1τ +
n∑
α=3

c1
αη

α, τ̃ = −b1ω + a1τ, (A.5)

on V , we have

dη1 = ω̃ ∧ η2 mod I 〈n−1〉(V ). (A.6)

Now equations (A.2) and (A.3) hold with ω and τ replaced by ω̃ and τ̃ and a
redefining ωk, ak and bk , ck

α appropriately.
We now show by induction that

ωk = f kω̃, k = 1 . . . n − 1, (A.7)

where f k �= 0 on V . Equation (A.7) holds for k = 1 with f 1 = 1. Assume (A.7)
is true for k and compute

0 = d2ηk ∧ η1 ∧ · · · ∧ ηk+1 = − f kω̃ ∧ ωk+1 ∧ ηk+2 ∧ η1 ∧ · · · ∧ ηk+1,

and then substitute for ωk+1 from (A.3). This implies ω̃ ∧ ωk+1 = 0. Therefore
(A.7) holds for k+ 1, and hence for all k, k = 1 . . . n− 1. The structure equations
at this point are (A.6) together with

dηk = f kω̃ ∧ ηk+1 mod I 〈n−k〉(U ), k = 2, . . . , n − 1,

dηn = f n

(a1)2 + (b1)2
ω̃ ∧ τ̃ mod I 〈n−1〉(U ).

Now make a final change of coframe

ρ = ω̃, σ = f2 f3, . . . fn

(a1)2 + (b1)2
τ̃ , θ k = ( f2 f3 . . . fk−1)η

k, k = 3, . . . , n.

The coframe {ρ, σ, θ1, . . . , θn} satisfies the structure equations (A.1) on V . To
finish the proof of the theorem, we simply let M0 be the union of all V constructed
in this manner.

Remark A.2. If M is a four-dimensional manifold, then Theorem A.1 holds
everywhere on M , not just on an open dense subset.
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Theorem A.3. Let M be an (n + 2)-dimensional manifold, and I 〈0〉 a rank n
Pfaffian system on M with the derived flag I 〈k〉 satisfying rank(I 〈k〉) = n − k,
k = 0, . . . , n. Suppose that either n = 1, 2, or n > 2 and

d I 〈n−1〉 mod 〈I 〈n−1〉, I 〈0〉 ∧ I 〈0〉〉 (A.8)

is constant rank 1. Then about each point p ∈ M , there exists an open set U and
local coordinates (x, u, u1, u2, . . . , un) such that

I 〈n−k〉(U ) = [du − u1 dx, . . . , duk−1 − uk dx], k = 1, . . . , n. (A.9)

In other words the Pfaffian system I 〈0〉 on M is locally equivalent to the contact
structure Cn on J n(R,R).

Proof. Suppose that for each p ∈ M , there exists an open set V and coframe
{ω, τ, θ i }1≤i≤n on V such that I 〈n−k〉(V ) = [θ1, . . . , θ k], and the structure equa-
tions (A.1) are satisfied. The forms {θ i }1≤i≤n generate I 〈0〉(V ) and satisfy the con-
ditions in the Goursat Normal Form Theorem [4]. Hence about any point p ∈ M ,
there exists an open set U with local coordinates (x, u, u1, u2, . . . , un−1) such that
equation (A.9) holds. If n = 1, 2, the existence of the coframe {ω, τ, θ i }1≤i≤n is
proved in Theorem A.1.

To prove the existence of such a coframe for n > 2 we start off exactly as
in Theorem A.1. Let p ∈ M , and U an open neighborhood of p with coframe
{ω, τ, ηi }1≤i≤n on U such that I 〈n−k〉 = [η1, . . . , ηk]. The structure equations are

dηk = ωk ∧ ηk+1 mod I 〈n−k〉(U ), k = 1, . . . , n − 1,

dηn = f nω ∧ τ mod I 〈0〉(U ),

where

ωk = akω + bkτ +
n∑

α=k+2

ck
αη

α,

and f n , ωk , and (an−1, bn−1) �= (0, 0) are nonzero at every point in U . The
hypothesis in equation (A.8) implies that (a1, b1) �= (0, 0) at every point in U . We
now make a change of coframe as in equation (A.5). By continuing to follow the
proof of Theorem A.1 word for word from (A.6) onward, proves the existence of
the required coframe {ω, τ, θ i }1≤i≤n .

Remark A.4. The Goursat Normal Form Theorem [4] implies that the Pfaffian
system in Theorem A.1 is locally equivalent to J n(R,R) on a dense subset of M .
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