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Some Applications of Cartan’s Method of Equivalence



Abstract

Cartan’s method of equivalence is used to prove that there exists two fundamental
tensorial invariants which determine the geometry of sysiems of n (> 2) sccond order
ordinary differential equations. These invariants allow us prove thal there exist a
unique equivalence class of second order equations which admit a Lie poini symmetry
group of maximal dimension, the dimension being 72 +4n+3. For third order systems
of ordinary differential equations, we prove that the possible dimension of the point.
symmetry group is bounded by n? 4+ 3n 4+ 3. As well we find that there is a unique
third order system whose symmetry group has dimension n? + 3n + 3.

We also characterize invariantly under point transformations some cquivalence
classes of parabolic quasi-linear second order partial differential equations, and ex-
amine their point symmetry groups. We are able to make our characlerizations by

proving a reduction theorem for principal fibre bundles.



Résumé

La méthode d’équivalence est utilisée afin de prouver qu’il existe deux invariants ten-
soriels fundamentaux qui determinent la géométrie du systémes de n (> 2) équations
differentielles ordinaires du second ordre. Ces invariants nous permettent de démontrer
qu’il existe une classe d’équivalence unique d’équations du deuxieme ordre admettant
un groupe de Lie de symétries ponctuelles de dimension maximale, plus précisément
n®4+4n+3. Pour les systémes d’équations differentielles ordinaires d’ordre trois, nous
prouvons que la dimension possible du groupe de symétries ponctuelles est bornée par
n? 4+ 3n + 3. De méme nous trouvons qu'il y a un unique systéme d’ordre trois dont
le groupe de symétries est de dimension n? + 3n 4 3.

Nous caractérisons des classes d’équivalence d’équations aux dérivées partielles
paraboliques quasi-linéaires d’ordre deux de fagon invariante sous le groupe de trans-
formations ponctuelles et examinons leurs groupes de symétries ponctuelles. Cette
caractérisation est rendue possible grace & un théoreme de réduction que nous avons

obtenu pour les fibrés principaux.
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Notation

vV, V* - An n-dimensional vector space and its dual

{eiticicn: {€'} i<icn - A basis for V and V* respectively

AV - The exterior algebra of V

4,0 - The lelt interior multiplication and symmetric tensor product
(W), =eidw - The coeflicient operator

(W),ipi = €5 de; dw

M, T(M) - A smooth differentiable manifold and its tangent bundle
F(M) - The frame bundle of M

7: (F;,Epu;) > M - A fibre bundle with fibre F of dimension f,

total space E of dimension m + f, and base M

V(E) = ker(m.) - The vertical bundle of a fibre bundle

P*(iR) - The n-dimensional real projective space

GL(n,IR) - The general linear group of n x n non-singular real matrices

Gri(1) - The Grassman manifold of k-planes in IR’

Gr! (T(M)) - The Grassman bundle of f-planes in T(M)

M,(IR) - The ring of n x n real matrices

G,g - A linear Lie group and its Lie algebra

Tz Tiagy - Skew-symmetrization and symmetrization of indices, e.g.
Tiij) = 1/2(T3; — Ti:)

‘Al - The transpose

<w' > - The ideal generated by the one-forms «*

Otherwise, we follow the notational conventions in Warner [37], and assume the sur-

mation convention.
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Introduction

Tn 1908 Elie Cartan [11] presented a fairly general method for determining whether
two given exterior differential systems which are generated by 1-lorms are equivalent
under a change of local coordinates belonging to a specified group ol translormations.
This method is now called the Cartan method of equivalence and the problem it solves
is known as the Cartan equivalence problem.

With this powerful theory Cartan was able 1o provide solutions Lo numerous prob-
lems of differential geometry by casting them as equivalence problems. In general
Cartan’s method provides an invariant coframe whose structure lunclions can then
be used to give necessary and sufficient conditions for the exislence of an equivalence
or to determine the structure of the symmetry group of the problem. A classic exam-
ple of where an invariant coframe is produced by the method is the local equivalence
problem for Riemannian metrics. In this case the structure functions which appear
give rise to the Riemann curvature tensor.

The cases for which the method does not provide an invariant, coframe are precisely
the problems which admit infinite Lie pseudogroups of symmetrics, such as the local
conformal equivalence problem for Riemannian metrics in the plane. Infinite pscu-
dogroups arise essentially when the equations governing the cquivalence problem arce
not completely integrable but satisfy the involutivity criterion of the Cartan-Kéhler
theorem as applied to Plaffian systems. Cartan applied his equivalence method to

produce many impressive results in problems like the equivalence of functionals in the



Calculus of Variations [14], and the equivalence of ordinary and partial differential
equations [13], [12]. For example, one famous result from [12] is the (non-linear) rep-
resentation of the non-compact real form of the exceptional Lie group Gs as a group
of symmetries of a Pfaffian system in five variables (see also [16]).

There is a general consensus (see the introduction in [16]) that Cartan’s original
papers on the method of equivalence are rather difficult to follow. The reformulation
by Chern [10] and by Singer and Sternberg [35] of the equivalence problem using prin-
cipal fibre bundles put Cartan’s work on a more rigorous foundation. Finally today
we find a full account of Cartan’s method with many explicit examples worked out
in the book by Gardner [16]. Gardner has clarified many of the steps in the practical
implementation of the equivalence method and has provided a basic algorithm for
the solution. His work has generated a lot of new research activity in the subject.
We will summarize the principal bundle formulation basically following Sternberg
[36] with the intention of providing a proof of an essential result (Theorem 1.3, and
Theorems 1.7, 1.8 and 1.9) which we will need for Chapter 3. For the actual calcu-
lations in Chapters 2 and 3 we use the formulation provided by Gardner [16], which
we summarize in Section 1.6.

Current research using the equivalence method includes Control Theory [18], [38],
Calculus of Variations [25], [34] (and references therein), General Relativity [4], [28],
and differential equations [27], [24], [23] these references being far from exhaustive.
Our concern will be with applications to differential equations, and in particular in
Chapter 2 we apply the Cartan method to study the equivalence of second order
systems of ordinary differential equations under smooth point transformations. We
find there are two fundamental families of tensorial invariants }3; and S’}M which all
other invariants are differential functions of. We use these invariants to prove the

property that there is a unique equivalence class of systems of ordinary differential

Q%]



equations

d*z ; . dad

—_— = t,a?, — 0.1

dtz f H H dt ( )
which admits a symmetry group of maximal dimension. Every cquation in this class
is shown to be equivalent by a change of coordinates to the trivial system

d?at
dt?

A simple criterion for checking the maximal symmetry property is that the two fun-
damental invariants must vanish. This is the content of Theorem 2.2, while Lemma
2.3 provides the explicit formula for the invariants. In this chapter we also demon-
strate that all systems of n third order ordinary differential equations admit symmetry
groups with dimensions less than or equal to n% + 3n + 3, and thal the equivalence
class of the trivial equation

d3zt

dt®

is the unique equation with symmetry group of dimension rn* + 3n + 3.

In Chapter 3 we apply the equivalence method to investigate the Monge-Ampere
and quasi-linear parabolic partial differential equations in the plane. In order to give
an invariant characterization of Burgers’ equation we apply the reduction theorems
we have given in Chapter 1. We also provide an invariant classification for the heal
equation which is known to admit an infinite Lie pseudogroup of symmetrics.

We shall make the blanket assumption that all objects are infinitely differentiable
(or real analytic when using the Cartan-Kahler theorem). We will also assume (unless
otherwise stated) that we are working in open contractible subsets of real Euclidean

space since our considerations are mostly of a local nature.



Chapter 1

Cartan’s Method of Equivalence

1.1 Introduction

The goal of this chapter is to give a brief introduction to the equivalence problem
of Elie Cartan. Our presentation of the equivalence problem follows a geometric
formulation in terms of principal fibre bundles and G-structures. We present this in
Sections 1.2 through 1.5 following closely Sternberg [36] while omitting most of the
proofs. This summary of the geometric form of the equivalence problem is given in
order to have a self-contained proof of Theorem 1.3 and Theorem 1.7. These theorems
are described in terms of the local equivalence problem in Section 1.6 and will be used
for applications in Chapter 3.

The procedure to be followed for the practical implementation of the solution of
the local equivalence problem is know as Elie Cartan’s method of equivalence. It is
thanks to the fundamental work of R.B. Gardner [16] that the method of equivalence
has been greatly clarified and applied to a whole array of equivalence problems which
admit a geometric formulation. Although some familiarity with this material will be
assumed in this thesis we shall summarize in Section 1.6 the relevant terminology and

material we shall need. For a more complete description of the method of equivalence



we refer the reader to Gardner [16] and Kamran {24].

1.2 Principal Fibre Bundles

Before giving the preliminary definitions, we would like to warn the reader that in
Sections 1.2 through 1.6 we follow the traditional definition for a principal bundle in
that we use right actions. [However, it is more natural when working with differential
forms and with the equivalence problem to use left actions, thus we will use principal
bundles with left actions and in all other sections and chaptlers besides Sections 1.2
to 1.6.

Let M be a differentiable manifold of dimension m, and let # : Pg — M be a
principal fibre bundle with structure group G and right action R. When we [ix a
point @ € G the action R is a difleomorphism of Pg which we will write as 1,. Let
W be a k-dimensional manifold with a right ! G action p and consider E = Pg xgW.
Any section s : M — E defines a G-equivariant function § : Pg — W by requiring

the diagram

1d,8

Pe —1%8 bW
T e
M . E

be commutative. One of the most important uses of this point of view rests on how

to use § to obtain a reduction of Pg, and to proceed we need

Theorem 1.1: Let 0 : Pg — G/H be a smooth map salisfying oo By = Ly~ 00
then Pqg s reducible to Py.

Proof: Let m € M and p € Pg where #(p) = m. Then ¢(m) = (m, p,o(p)) defines
a section of Pg xg G/H. m

1Given W with a left action L we use L,~: as the induced right action.

5



Theorem 1.1 can be applied to our previous considerations as

Lemma 1.1: Lel W be as above and o : Pg — W be ¢ G—equivariant map. Lel
O., C W be the orbil of a poini w € Wg { Oyis a homogencous space ). When
M = 7 0 071(O,) is a submanifold of M we may apply the above theorem to
P = o~ Oy) lo oblain a reduction of Pg to 7’51.;'” = o~ (w) where Hy, is the

slabilily group of the point w.

Tn practice we often impose for some w € W that 7 0 7' (w) = M, thus the above

determines a global reduction of Pg. The standard example of this is

Exr;\mple 1.1: Let M besuch that there exists 2 non-degenerate g : M — T™(M) © T(M)
of signature (p,q). We have the following map § : F(M) — VOV, and

G\ (dieg(I,,—1,)) is the O(p,q) reduction of the frame bundle corresponding
to g.

We will call any G-equivariant [unction § : Pg — V, where V is a vector space with a
left G action, a tensorial invariant. For the next example let 7 : (F;,Eny;) = M

be a fibre bundle and let V(E) C T'(E) = ker x, be the vertical bundle.

Example 1.2: The frame bundle F(£) admits a reduction to

H= 4B AeGL d CeGL 1
_ﬂ{(o C) € GL(f) an € (m)} (1.1)

where f = fibre dimension of V (which of course is also the dimension of F).

We may view V(E) as a section of Gr/(T(E)).

One key point in this example is that Gr/(f +m) = GL(f + m)/H (see [37]). We
will use this example in the next section.

We now study the geometry of the frame bundle of a principal fibre bundle. We
have T(Pg) is the tangent bundle of Pg, g the Lie algebra of G with ¢ = dim g and



Z the zero-section of T'(Pgg). For each A € g there exists the corresponding vector-
field A on Pg defined by A(p) = R.(A4,Z(p)). A is referred 1o in Kobayashi and
Nomizu [31] as the fundamental vector-field corresponding to A. The fundamental

vector-fields satisfy the property,
(Ro)«0 Ao Ry = (ady-1 A) (1.2)

where ad is the adjoint representation of G. The vertical bundle of Py C T'(Pg),
defined by V(Pg) = ker(r.) : T(F(M)) — T'(M), is isomorphic to Pg x g. Choosing
a basis A® of g defines an isomorphism V(Pg) « Pg x g, which is explicitly given by
noting, X, € V(Pq) implies? X = X,A%p) where X, € IR. The isomorphism is then
given by X « X A®.

1.3 G-structures

Perhaps the most useful principal bundle are of reductions of the [rame bundle on

a manifold, and following Sternberg [36], let F(M) be the frame bundle of M. A

G-structure Bg is reduction of (M) to G C GL(V). On the frame bundle thei‘c:ﬁ.

exists a canonical V-valued differential one-form w : T(F(M)) — V defined by
w(X) = (u)™! o 7.(X) where X € T,(F(M)) and we may view v € F(M) as an

isomorphism
u:V — Try(M) . (1.3)

The form w is defined on any reduction of F(M) by restriction, and in this situation
we will continue to denote the restricted form by w. Properties of w which will be

needed later are

Lemma 1.2: (R)'w=¢"'w fora€G.

2The fundamental vector fields A® form a global basis of sections for V(Pg).

7



This in infinitesimal form is

Lemma 1.3: Ljw= Alddw=—Aw for A€ g.

Lemma 1.4: Let ¢ : M — N be a diffeomorphism. Then there exists a unique lift
¢ : F(M) — F(N) which is a principal bundle diffeomorphism and salisfies the

properties

wh =w and Nod=gorM,

Using the interpretation of u € F(M) in equation (1.3), é may be written explicitly

as

-

p(u) = guou: V — Tyy(N) (1.4)
This leads us to the definition,

Definition 1.1: ( Sternberg [36], pg.313, Def.2.2) Let BY and BY be G-structures
on M and N respectively. We say ch‘f is equivalent to B‘g’ if there exist a

diffeomorphism ¢ : M — N such that ¢ : BY — BY is a diffeomorphism.

We will call the map ¢ between two equivalent G-structures an equivalence map.

If we now assume G is connected then we have the extension of Lemma 1.4,

Lemma 1.5: The G-struciures BY and BY are equivalent if and only if there exist

a diffeomorphism ® : BY — BY such that

"N = WM | (1.5)

In other words, if ® satisfies condition (1.5) then ® is a lift of a diffeomorphism
$ : M — N and is thus also a bundle map. See Gardner [16] for a proof. If
we consider Example 1.2 then two fibre bundles (E',¥') — M’ and (E,F) - M



are equivalent (as fibre bundles) if there exists an equivalence map between the
H—structures (contained in F(E) and F(E')), where H is given by equation (1.1) of
Example 1.2.

We now recall some basic definitions {rom representation theory. Let G be a linear
Lie group. A real representation (g, V') is a smooth homomorphism g : G — Awt(V).
Associated with the representation g are the dual, tensor and exterior algebra rep-
resentations which will be referred to collectively as the tensor representation ol G

with respect to u. We will call a representation space V' a G-module.
Example 1.3: (The tensor product representation) Let (u, V) and (v, W) be rep-

resentations of G. The tensor product representation (yt ® v,V @ W) is delined

as

VxW J Ve w

(#a,va)i (h®¥)
V x W —— Vew

where (¢ ® v), is the unique map making the above diagram commutative.

Definition 1.2: Let (g, V) be a representation of G. A subspace W C V' is said
to be G —invariant if (W) C W. W is a G-submodule and we cell (1, W) «

subrepresentation of p.

A useful result about representations is

Lemma 1.6: Letq: V'@V @V — V*AV*®@V be skew-symmelrization in
the first two arguments and, let W C Hom(V,V) be a G-invarienl subspuce.
Then Hom(V,W) C Homn(V,V @ V*) and q(Hom(V,W)) C Hom(V AV,V)
are G-invariant subspaces with respecl to the lensor represeniation of p. In
particular

n Hom(VAV,V)
0 — kerll — Hom(V\W) = o wvwyy 0




is a shorl ezact sequence of G-modules.

We need to consider a number of special cases of this lemma.

Case 1 : Let (¢, V) be the defining representation of G C GL(V), and let W =
g C Hom(V,V) be the Lie algebra of G. W is G-invariant, and the subrepresenta-
tion of the tensor representation of (¢, V') on g is ad (the adjoint representation). In
this case the kernel from Lemma 1.6 is usually denoted g, and is called the first
prolongation of g. The subrepresentation on g*) we will write as (r,g(")). The

subrepresentation of u on Hom(V,g) is (ad ® ¢*) is given by
T— adyTte-s T € Hom(V,g) a€G.

The subrepresentation on the quotient in Lemma 1.6 for this case we will denote by

o, and for the representation (¢, V), we will often write ¢,(v) = av.

For the next two cases define j to be the injection j : Hom(V,g) — Hom(V &g, Vdg)

given in matrix form as

) I, O ,
](T)=(T Ig) ) T € Hom(V,g) . (1.6)

Case 2: Let (ad®:*, Hom(V, g)) and (¢@ ad, V@ g) be the representations of G from
Case 1, then W = j(Hom(V,g)), is G-invariant. In fact ¢, ®adej(T) = j(ad. @ ¢2(T))
for T' € Hom(V,g) follows by the matrix calculation

& ad, §(T) a 0 I, 0 a’l 0 In 0
a adg = =
! 0 ad, T I 0 ad,— ad,Ta™? 1,

Case 2 will be of use in Section 1.3. We shall denote by u the tensor representation of

(¢t ® ad) on Hom(V ©gAV ®g,V @g) and by fi the representation on the quotient

as given in Lemma 1.6.

10



Case 3: Let W = j(g"), ( this is just T € g in equation (1.6) ), is G-invariant.
Again as in Case 2 we have a @ adoj(T') = j(7o(T)) for 7' € gt and where (r,g(")
was defined in Case 1. This case will be of use in Section 1.4. We shall let A be the

representation on the quotient given in Lemma 1.6 in this case.

We use Sternberg [36], pg.316 in defining the structure function. Let H! and
H? be two horizontal subspaces at © € Bg and let v,w € V, X', ¥' € [ and
X2 Y? € H? with w(X') = w(X?) = v and w(¥"') = w(¥?) = w We now define

Sm:V o g as
S r2(v) = X' — X?

and éHi € Hom(VAV,V),i=1,2 as

Cri(v Aw) = dw(X' A YY) (1.7)
We then have

Crz(vAw) —CmvAw) = <Y (X! —XNadw> - <X, (Y=Y adw>
= S m(v)(w) — S 2 (w)(v) - (1.8)
The right hand side of equation (1.8) above is just q(Si1 j2), so that
C(vAw)=q(Crlv Aw)) for any horizontal ff

is a well defined function

Hom(V AV, V)
q(Hom(V, g)

G . BG —_—
C also satisfies
C(Reu) = 0,1 Clu) ,

11



where ¢ was defined above in Case 1. The role of the structure function in the

cquivalence problem is illustrated by the following result,

Theorem 1.2: ( Siernberg [36], pg.319, Theorem 2.1 ) If ¢ is an equivalence map

between two G-structures BY and BY on M and N then
CNod=Cm

We will use Lemma 1.1 to simplify questions about the equivalence of G-structures
in the following way: Let L C %}% be a G-invariant subspace with projection
71, and let O; be the orbit of a point ! € L. Using 7z, oC in place of ¢ in Lemma 1.1
we have that if two G-structures BY and BY on M and N are equivslent then 8%

and Bﬁl are equivalent, where H; C G is the stability group of { € O;n( this assumes

Hom{(VAV.V

the conditions of Lemma 1.1 are satisfied ). Often we choose L = qHomVE)"

1.4 The Frame Bundle of a G-structure

Let m : Bg — M be a G-structure, and let 7! : F(Bg) — Bg be the frame bundle
of Bg with canonical V & g—valued one-form © and right action R! of GL(V & g).

Using the projections
Tv:V@g—-V and ng:Vog—og,

we can define a canonical reduction of F(Bg), which we denote by Bg, as follows: Let
T € F(Bg) , u = 7'(%), and X € T5(F(Bg)) such that 71X € V,(Bg) then u € By
if and only if

P1) wv 0Oz = (r')w,  and (1.9)
P2) (rg 0 O(X))(u) = 71X . (1.10)

12



These two conditions can be written equivalently as @ € Bg il and only if
wod((v,A)=v and  T0,A4) = A(u), forall (v,A)eVDg.

Note that the image of V under @ € Ea is a horizontal subspace of T,(Bg). I'he

structure group G is the Abelian group,

I, T
G= ( 0 ) CGL(V®g) where T & Hom(V,g) (1.11)

g

We now want to define a right action £ : F(Bg) x G — F(Bg) which has the

property of preserving Bg. This will be done in two steps, first by using Lemma 1.4

we find the right action R on Bg admits a 1ift R such that the lollowing diagram
commutes

F(Bg) x ¢ —E— F(B)
i x I l
BG x G

,n.l

Be and R, 0=0. (1.12)

R
Now define the map p: F(Bg) x G — F(Bg) to be R! restricted to the subgroup

a 0
( )CG’L(VEBg).

0 ad,
That is
pa(') = Rogey,(v') ,  u' € F(Ba). (1.13)
Pe satisfies
wlop, =7'. (1.14)

and because R, commutes with the action of B!, we also have

pbofi‘;=ﬁ;opb beG. (1.15)

13



We are now able to define £ by
So(u') = pooRu(u') = Riopa(u'), (1.16)

and it is straightforward to check that ¥ defines a right action of G on F(8¢g). £

also satisfies the following two lemmas

Lemma1.7: £, 0®=a"'®ad,10
Proof: Calculating using equation (1.12) and Lemma 1.2 gives

S 0 =p" Ry O=p"0=0a"19ad0

]
Lemmal.8: w7, 7!l X=0 ifandonlyif w.7l3.X=0
Proof: The following calculation uses equations (1.14) and (1.12)
Tn Wi Saw X = 71'3 Pux E,X=7r.. 7r} f%:,,Xzﬂ', R, wiX=1r,7r:X,
[rom which the lemma follows. |

For the remainder of this section let
T€EBy , Xe€Tx(Bg) , u=7'("@) and a€G.
The importance of & and By lies in the theorem,
Theorem 1.3: The map I, when restricted to By defines a diffeomorphism

Y.:Bg— Bg forallacG



Note ¥, is typically not a G bundle map.

Proof: We need to show that P1 and P2 in equation (1.9) are satisfied at the point

.(7) € F(Bg). To check property P1 we need to verify
(Trl)*w(E,.X) =Ty © @Eu(ﬁ)(gu*.\r) . (IIT)

The left hand side of equation (1.17) simplifies to

——

Waa (ThpuullanX) = wua(wlfﬂ*X) = Wy ( Ry, mL X) (1.18)

by using equation (1.14) then (1.12). Lemma 1.2 applied to equation (1.18)
above then yields

R w(m,X) = o w,(7i X) . (1.19)
Now applying Lemma 1.7 to the right hand side of equation (1.17) we have
Ty O @EG(EJ(BQ,X) =Ty C BG*OE(X) = (J!_]Trv o} GE(A’) (i[ .20)

Since @ € BY, we may use property P1 at @ from which it is clear that equations
(1.20) and (1.19) imply equation (1.17). Hence P1 is satisfied at £,(7).
To check property P2, Lemma 1.8 implies we only need to verily that

(?Tg 0 Op,@ (L X)) (ua) = 8. X (1.21)

for all X € Tg(Bg) satislying 7! X € V,(Bg). Using Lenmima 1.7 the left hand

side of equation (1.21) above is
(7g © T Og(X))(ua) = (ad,-17g 0 O(X))(ua) (1.22)
while the right hand side of (1.21) by equation (1.12) is
R..m X .
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Now use the fact @ € Bz and equation (1.2), so that equation (1.22) becomes
Run(mg 0 0(X)) () = (ady-17g 0 O(X))(ua) .

Equation 1.21 is now satisfied, completing the proof. [ ]

We now examine the effect of the action of £ on the structure function

A, Hom(VogAVag Vdg)
e a(Hom(V & g, &")

Ql

By Case 2 following Lemma 1.6, the image space of C admits the left action fi of G
( while the numerator has action g ). We have

Theorem 1.4: C(X4(T)) = fig-1C (7).

The proof below is analogous to that of Sternberg [36], pg.318.

Proof: Let H C Ty(Bg) be a horizontal subspace, (v,A4) , (w,B) € V&g, and
X , Y € H such that 8(X) = (v, A), and O(Y) = (w, B). By Lemma 1.7 we

have
LOX)=(a v, adg—1A) and LS 0Y)=(e w, ad,~B)
as well as
TS dOXAY)=a" ®ad,~dO(X AY) .
Thus
Cs. 7((v,A)A(w,B)) = o' @ad,-1Cx({av,ad,A) A (aw, ad, B))
" = pe-Cq{(v, 4) A (, B)) (1.23)

Since q(Hom(V & g,8') C Hom(V@® gAV &g,V & g) is G-invariant with

respect to i, when we pass to the quotient we have the result. [
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Consider now the situation in which the structure function C is independent ol the
action B! of G on Bg. This defines a function

Hom(VogAVdg, Vog)

C%:Bg — “a(Hom(V G g.g') (1.24)
by C°(u) = C(%) where T is any point in Bg such that 7'(7) = v. We have
Theorem 1.5: The function C° in equation (1.24) satisfies,
C%(ua) = et C(1)
Proof: We have n1X,(%) = ue along with Theorem 1.4 gives
CO(ua) = T(EaT) = fumiO(T) = flams C(1)
u

Theorem 1.5 gives rise to necessary conditions for equivalence of two G-structures in

the same way the structure function does in Theorem 1.2.

1.5 Prolongation

Let A = q(Hom(V,g)) and let C be a subspace of Hom(V AV, V) such that {{om(V A
V,V) = C®A. A choiceof C defines a reduction of B by considering @ € Bg salislying

the condition
Cy, €C , whereu = 7'(Z)  and H, =a(v,0)

(that is H, is the image of V in Ty(Bg)). The reduced group as a subgroup of G
we get by considering only T' € g*) in equation (1.11). This reduction of F(Bg) is

known as the first prolongation of Bg which we denote by
7' Bgay — Bg .
The importance of this principal bundle is the following,
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Theorem 1.6: (Sternberg [36], pg-336, Theorem 1.2) Two G—spaces BY and BY
on M and N are cquivalent if and only if the G\ —spaces B, and Bluy over

BY and BY are equivalent.

For the rest of this section we will require that the complement C C Hom(V AV, V)
ahove be G—invariant® with respect to the tensor representation of (¢, V) (See Case

1) we then have the extension of Theorem 1.3 to

Theorem 1.7: The map 5, when restricted to By defines a diffeomorphism

Ee:Bgwy — Bgy forallaecG

Proof: Let u! € Bgu), u = «'(v') and H, = u!(v,0). We need to check that
H!, = E,(u')(v,0) satisfies C;, € C. However, by the definition of R, and

equation (1.4) we have
H:m = Ra* Hu 3

and the G—invariance of C means Cp, g, € C, which finishes the proof. [ |

Note the G-invariance of C is crucial since without it ¥, would map Bgp) to EE (see
previous section).
Writing C! as the structure function on Bgu), we also have the corresponding

extension o Theorems 1.4 and 1.5,
Theorem 1.8: C'(X,(uv!)) = A1 C(u?).

Where A, is defined in Case 3 after Lemma 1.6. If we assume C! is independent of

G and let C' denote the function on the Bg so that,
CYu) = ¢’ o 1l (u?) (1.25)

then we also have,

3For compact G this is always possible
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Theorem 1.9: The function C’ satisfies,

C'(ua) = A1 C'(n)

We may then use C* for reduction of G as usual.
As an example consider the case where g{¥ = 0, and the existence of a Bgq

structure is equivalent to the existence of a connection, the horizontal distribution

H c T(Bg) is given by
H. = u!(v,0).
We have the following,

Lemma 1.9: Let o be the connecltion one-form, then the canonicel one-form ©

from Section 1.4 is given by
Q= (r"Ywd (@) (1.26)
Proof: Let X Tu1(BE1), we have that v’ (v, A) = 7. X =X ® Xg where Xy =

u'(v,0) € H,. Thus Xg = u'(0, A) and by definition we have a(m, X) =A =

Now g() = 0 means at each point u! € Bga) we have H,a = Tu(Bgw) and so the

structure function C! has the property,

C'=C" :Bg — Hom(VAV,V)® Hom(V @g,V)® Hom(g Ag,V)
SHom(VAV,g)® Hom(V @ g,g) ® Hom(g A g, 8). (1.27)

We will write the above as (Cy,C¥, (Y, Cg, Cg, C%) and each term in this case is

easy to determine by E. Cartan’s structure equations for 2 connection which are,

do(X,¥) = ~5la(X), (Y )] + 2, )
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dw (X,Y) = —%(a(X) () — oY) - w(X)) + T(X,Y)

where Q is the curvature form and T the torsion form of the connection «. To
determine €' let v' € V, A' € g, and X' € T, (B ), ¢ = 1..2 and examine the three
cases,

Case 1: Let u!(v%,0) = 71 X" then using Lemma 1.9
Clv' Av?) = dO(XY, X?) = T(z! X!, 71 X?) @ Q(mi X", 71 X?)
and thus,
CL(' Av?) = T(x!X',71X?)
Cg(v' A v}) = Q(rlX',xlX?) (1.28)
Case 2: Let u!(0, A') = 71 X*, then
CH(AL A A2) = dO(X, X?) = —%[a(Xl),oz(Xz)] = —%[A‘, A7,
From which we have
CHA'AAY) = 0
Cg(A'AA%) = —%[Al,Az] : (1.29)
Case 3: Let ul(v!,0) = n1X? | 4?0, A?) = n1X? |, then
C'(v' @ A%) = dO(X?, X?) — dO(X?, X1) = A? o
I'rom this we have
Civ'® A%) = A?d!
Cgv'® 4% = 0. (1.30)

Particular examples where the G action on the curvature tensor is used to generate

further necessary conditions for the equivalence problem can be found in [4] and [28].
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1.6 Local Equivalence and Symmetry

As mentioned in the introduction to this chapter, the theory of local equivalence is
discussed in detail in both Gardner [16] and Kamran [24] and familiarity with this
material will be assumed for the rest of this thesis. We will only extract a few ol the
important results and mention the standard terminology which we use. As in these
references, we use trivial left principal bundles which arise more naturally wlien using
differential forms.

The set up for the study of the local equivalence problem is as follows: Let U,V C
IR* be open and contractible, and let w};,w}, be coframes on U and V respectively.

We know that any diffeomorphism ¢ : U — V satisfies

$rwl, = Klwj,
where K ; : U — GL(n,R). However if we encode in the coframes some geomelric
structure, we would like to know if there does exist a diffeomorphism preserving this

structure. This usually translates into the requirement that K J‘ take values in a given

linear group A € GL(n,R) so that the problem can be stated as,

“ Local Equivalence Problem: Does there exist a diffeomorphism ¢ : U — V|

such that
¢l = Kiw},
where K} : U — Hc GL(n,R).
A standard example is,

Example 1.4: Let (M,g) and (M,g) be Riemannian manifolds, and let (U, wf,),
(V,wi) be local orthonormal coframes. M and M are locally isometric if and

only if there exists ¢ : U — V such that K} : U — O(n,R).

Let H C H be an open neighbourhood of the identity 7 with a subset of 8_‘;- the

4We will be concerned with local problems from here on, so we will make this assurnption
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standard coordinate on GL(n,R) being coordinates on H. Definc on U x H the

R*-valued differential form
W= S;—wéf ,

so thal (U x H,w') is a (trivial) left principal bundle with w' being the canonical form.
So we may apply the necessary conditions in Theorem 1.2 obtained by computing the
structure function. In order to give the local description of the structure function we

first denote by by (a®)i<s<n a maximal linearly independent subset of the one-forms
(dS)(S™)5 -

The right-invariant forms (ab)lgbsh- are known as a right-invariant Maurer-Cartan

forms. On H we have
(dSL)(S7)5 = Cjya®

and (Ci,a’) is a right-invariant Lie algebra-valued form, known as a Lie algebra-valued
Maurer-Cartan form .

To compute the structure function first on U/ x H take duw’
do' = (dSINS™)enw’ + Stdwly = Cholaw’ + Diwinw®

where we have lifted Cia® to U x H. Then perform what often Gardner [16] calls

absorption of torsion, that is let
& = o + Vit
and solve as many of the linear equations
VieCipp = Ty - (1.31)

for Vi as possible. The purpose of solving these equations is to choosing a splitting

Hom(VaV,V) =C & A as in section 4. We may write the resulting equations in the
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form,

dw' = CloPaw? + F;kwj/\wk . (1.32)
where we have dropped the hats on o, and where ’f;k takes values in C. The [lacl
that f;k takes values in C means that it is a representative lor {he structure function
(which takes values in a quotient). We call the collection of forms w' base lorms,
while we call the collection a® of forms h* forms.

When determining the infinitesimal form ol the group action on F}k, of essential

importance is

Lemma 1.11: ( Cartan’s Lemma ) Let {w'} be an independent sci of one-lorms,
and let {r'} be an arbitrary set of one-forms of the same finite cardinalily; then

miaw' = 0 if and only if,
m; = Kijw’ , where Kin=0. (1.33)
After applying Cartan’s Lemma we will often write instead of (1.33) the congruence,
=0  mod(w)

We will use the Cartan Lemma in the form of congruences without [urther reference.

The set of solutions of the homogeneous system associated Lo equations in (1.31)
(these equations with right--ha,nf_! side zero) is just h'") the first prolongation of h as
defined in Case 1 of Lemma 1.7. Finding these solutions we call finding the kernel of
the absorption map, and a parameterization for this set of solutions may be used
as local coordinates on H (or for h!)), the first prolongation of H (or h). Suppose
now that we have a prolonged equivalence problem so we have U x H x H{) — U x H,
with the structure function p! : U x H x H1} = W, where W is the appropriale veclor
space. If p is independent of H(!), then there exists a function p’ : U x H — W such

that p' o 7! = p'. Theorems 1.7, 1.8, and 1.9 determine the procedure one follows in

this situation, to summarize:
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Theorem 1.10: If the complement C used in defining the prolongation H® s H-
equivariant, then p' is @ H-equivariant function, with the H—action on W being

given by the subrepresentation of H on the quotient in equation (1.24).

A very well understood case in the equivalence problem is when H = {e} and this
is known as the equivalence problem for {e}-structures. Using the (invariant) coframe

{w'}, the covariant derivatives fj; of f € C®°(U) are defined by
df = [df] w' = fl,w" .

From the structure equations,

o’ = Ty ot (1.34)
we then define, |
Fo= {Fj'k’ rj'klix ) Fj"cla& PERE Fj‘k]i,i, ...i,} (1.35)
and
ks(p) = rank(Fs), - | (1.36)

At some finite number for s we have ks(p) = ksp1(p) = k(p) which is called the rank
of the {e}-structure at p. Necessary and sufficient conditions for the existence of an
equivalence between two {e}-structures can be given in terms of the rank of F and
the functional dependencies of its elements, see one of [36], [16], {24].

A diffeomorphism ¢ : U — U such that
oW = W (1.37)
is called a symmetry (or automorphism). In the case that the one-forms w' form a
coframe or an {e}-structure the set of symmetry’s form a finite dimensional local Lie
transformation group which we call the symmetry group of the {e}-structure.

The group operation is composition of functions, while the symmetry group has the

property,



Theorem 1.11: The dimension of the symmelry group at p € U is dim(M) - k{p).

This of course implies the dimension of the symmetry group is less than or equal to
the dimension of the {e}-structure. The global counterpart to this theorem is classical

[30] pg. 13. A corollary of Theorem 1.11 that we will usc is,

Corollary 1.1:  An {e}-structure has a mazimal dimension symmetry group if and

only if the structure function is conslant.

In this case the {e}-structure is a local Lie group by the third fundamental theo-
rem of Lie. In the case that we have an {e}-structure {w'} on a principal bundle
U x H, Lemma 1.6 allows us to conclude that any symmetry is a prolongation ol a
diffeomorphism of U.

If the structure {unction F;L in equation (1.32) is independent of H we nced to
determine whether equations (1.37) admit what is known as an infinite Lie pseu-
dogroup. For the precise definition of an infinite pseudogroup we refer the reader to
Kamran [24]. In summary, the conditions in (1.37) for the existence of a symmetry
are a system of partial differential equations for ¢. In the case that the system of dif-
ferential equations admit a family of solutions which can be parameterized by a finite
number of arbitrary constants (in an open set) then the collection of symnetries form
a finite dimensional Lie transformation group (the constants being the local group
coordinates). One case we have already mentioned where this occurs is when the w
form a coframe in which case Theorem 1.11 applies. On the other hand it is con-
ceivable that the partial differential equations in (1.37) admit solutions which depend
on arbitrary functions. In that case the collection of solutions satislying (1.37) form
what we call an infinite Lie pseudogroup. Cartan devised a criterion based on an ex-
istence theorem known as the Cartan-Kahler theorem for the existence of integral

manifolds of analytic exterior differential systems called the involutivily test. This
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determines whether an analytic exterior differential systems will admit a general so-

lution depending on arbitrary functions. To give this criteria for the equations (1.37),

deline

Definition 1.3: The Cartan characters for (1.32) are defined inductively by,

( v ,;:b
, , , maz rank
o1 +oo+...top= . . (1.38)
vy, .0 € R"
\ .0 /

The importance of the Cartan characters are then due to the following,

Theorem 1.12: (Involulivity test) If
dim(gM) =3 lo} (1.39)
=1

and Ciy # 0, then the symmeiries of equation (1.32) form an infinite Lie

pseudogroup.

If the terms T;L are constant then the infinite Lie pseudogroup is transitive, otherwise

it is called intransitive.



Chapter 2

Systems of Ordinary Differential

Equations

2.1 Introduction

In this chapter we will apply the Cartan method of equivalence to study the equiv-
alence of systems of n (> 2) second and third order ordinary dillerential equations
under point transformations. This approach was first utilized by Chern 7] who ex-

amined equivalence under the groups of smooth invertible transformations
I=1 T =1i(af) and
t=1 T = Tbi(t,:ﬂj) (2.1)

for systems of second-order ordinary differential equations. Chern subsequently {9]

considered the equivalence of systems of 7 order ordinary differential equations under

the invertible smooth transformations
t=1 & ='(l,z%).

Chern was able to associate to any system of equations an {e}-structures or an in-

variant coframe. We shall prove the same result is true under the larger group of
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point transformations,
[=g() &= 22)

With each second order system of ordinary differential equations the associated
{e}-structure we obtain is of dimension n? + 4n + 3. This {e}-structure enjoys the
important property that its structure function can be expressed solely in terms of two
fundamental families of tensorial invariants P}, §%,,. When we further consider equa-
tions admitting symmetry groups of maximal dimension, an analysis of the integra-
bility conditions yields the rather remarkable fact that there is a unique equivalence
class ol second order systems of ordinary differential equations admitting a symme-

try group ol maximal dimension. The vanishing of the tensorial invariants 15; ,5’;:“

characterizes this equivalence class and a representative for this class is

Pt

e 0. (23)
We may interpret this result another way by saying that given a system of second
order equation admitting a symmetry group of dimension n? + 4n + 3 there exist
a set of coordinates such that the equation is of the form (2.3). The upper bound
n? + 4dn + 3 was also found in [19], while the uniqueness result for scalar equations
has been known for a long time (see the discussion in [22]). The structure equations
we have in the case of maximal symmetry are those of sli(n +2,R) (this is true in the
scalar case as well [22]).

The fundamental tensorial invariants f’; and gjk, appear in numerous applications
for example the inverse problem of the Calculus of Variations [1] and [32]. However
their role and that of any associated invariants one can construct from }5; and Si
can still be further explored. 4 —

Considerably less is known about systems of differential equations of order greater

than 2. In particular it is unknown which 7** order systems r > 3 admit a symme-

try group of maximal dimension. In the case of scalar third order equations, Chern
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has investigated local equivalence under contact translormation [8]. 1L is interesting
to note that here Chern has shown that third order equations admit local contact
invariants, while a classic theorem of Lie states that all second order scalar ordi-
nary differential eqﬁa.tions ave contact equivalent. A prool of Lhis last [acl using the
equivalence method is given in [16].

The point symmetry properties {or systems of ordinary diflerential equations have
been studied in [20] where it is shown that for » > 3 an r** order syslem ol n
equations admits at most an n? + (r + 1)n + 3 dimensional symmetry group. While
in [19] it is demonstrated that the trivial equation z{" = 0 admits a symmictry group
of dimension n? 4+ rn + 3. Dr. A. Gonzilez-Lépez the author of these two works,
pointed out this discrepancy to me, and [elt that perhaps the equivalence method
could help to determine whether there are equations whose symmetry groups have
higher dimension than n% + rn + 3. In Section 2.4 what we find by applying the
equivalence method to third order systems is an associated {e}-structure of dimension
:ri2+3n+3. Thus (by Theorem 1.11) the dimension of the symmetry group is less than
or equal to n?+3n+3. We also find, as in the case of second order equations, analysis
of the integrability conditions demonstrates that there is a unique equivalence class
of third order systems of ordinary differential cquations admitting a symmelry group

of maximal dimension. Again the trivial equation,

= (F':L'i

is a representative for this class.
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2.2 Systems of Second Order Ordinary Differen-
tial Equations

In order to apply the equivalence method to systems of second ordinary differential

equations we must first translate the system of second ordinary differential equations

2 g . dxi ,
% = (t,mJ,‘%) 1<i<n (2.5)

into a Pfaffian system. To do this, first let U € J'(IR, IR™) be an open subset and let
(t,2',z!) be standard coordinates on..J'(IR,IR"). We then associate to the equations

(2.5) the Plaffian system generated by
0 = dat — zidt * = dz! — fidt (2.6)
whose importance is,

Lemma 2.1: The solutions »* = z*(1) to equations (2.5) are in one to one cor-
respondence with the one_"e"dimensional integral manifolds v : R — U of the

Pfaffian system (2.6) which satisfy v*dt # 0. )

If we now consider another system of second order ordinary differential equations

d?z . f_ . dzi '
— = t 77 —— .
and the associated Pfaffian system

0 =di' —zidf 7' =dz - Fdl (2.8)
on U C JY(IR,R") with coordinates (f,%",%}) we may then define equivalence as,

Definition 2.1:  The fwo systems of differential equations (2.5), (2.7) are equivalent
if and only if there exists a point transformation (1,7) = U(t,27) whose first

prolongation ¥, satz:éﬁes
U<l > = <0 >, (2.9)
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( See Appendix A for more details on difleomorphisms of J*(IR, IR™)). In other words
the systems (2.5) and (2.7) are equivalent if and only il there exists a smooth map
¥ : U — U taking integral manifolds of (2.6) with independence condition y*df # 0
to integral manifolds of (2.8) with independence condition (W o)*dl £ 0.

Before proceeding we introduce the following notation for the partial derivatives

of a smooth function f € C*(U),

9 of Ji= o

f"=3t’ fd:ﬁ;’lﬁ?,

The one-forms given in (2.6) and (2.8) generate the same Plaffian system as do the
one-forms
0 = doi — zidt 7 =dat — fidt — -;- S0 (2.10)
0 =dii —zdl  F =dE - fdl - % Fu (2.11)

Thus, we may use (2.10) and (2.11) in Definition 2.1. This new st of Pfaflian forms

(2.10) can be obtained from {2.6) by a reduction argument and was used by Chern
[7] in his solution to the equivalence problem under the transformation in (2.1). The
usefulness of this modified coframe will be apparent in Lemma 2.2.

Extending (gi,ﬁi) in (2.10) to the coframe (& = di, 0%, 7) on U we can explicitly
compute the covariant derivatives (dg)s, (dg)z, and (dg)z of a smooth [unclion

g € C*(U) by

dg = (dg)5® + (do) T + (dg)e: 7 (2.12)
where
dg 1 k .
(dg); = T (dg)‘a‘j =g;+ Eglkf[j ’ (d.fl);?j =45 - (2.13)

These equations will be used in the parametric calculations.
Making the analogous extension of (51,1?"') in (2.11) to the local coframe (& =

di, E‘,ﬁi) on U we obtain
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Lemma 2.2: The lwo differential systems (2.10) and (2.11) are equivalent if and

only if there exists a point transformation (§,&) = U(1,2') with ¥, : U —» U

salisfying §
I

& @

o~f o~

o | =S| ¢

= o~

7 7

where S : U — H is a smooth function on U taking values in the Lie subgroup

H of GL(2n + 1,R) defined by

a Ej 0
H=3|0 A 0 , a € R, A\ € GL(n,R), E; € R, cc R} (2.14)
0 cAl a7'A}

Proof: Sufficiency is obvious, and by Appendix A we need to only determine ¥j7
We find by Lemma A.2
wrg=i T L 7 “1 gic1 d i iz 1o fOF ok
W3(dz) — fidt — Ef i) =a 'Ai(dz) — fldt) + Ci0° — §\D1 (8:1:1) A’G
where
.oy S .06 _do
A= 20 ~ 5 = o ~ 5 9 T @

Now Lemma A.1 in Appendix A tells us that if the systems are equivalent then

1dgi

b= pi(t,z) thatis flol; =)= -t

from which we determine that

.{Of __Bf‘o\I’1aml'_3¢2 ne_ (8 dbi 8
i (61‘;{)_ ozt 9z Oz} o(A™); = dz% di %33," (A7)
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Now in this equation we switch the order of the differentiations (as in Lemma
A.2) to get
af 1 dy k
Ul — ——— 471)5
' (3.’1"{) 2ot \adl ) T o T ol et T Vit ] (A7;
_ 40 (L) | i of
dt dzt \a d a7} At
which further simplifies to
aft d ( ) - 6[
» . — Ai 1 1 w1
Uy (35{) [dt +a gk +Cp| (A )

_ [ lda ; 1d Of
Now defining

NEN 1 )' {
[g_a_(d )+a¢1 opioft . g

+ i (4 (2.15)

i i -1 4i 1 -1k
—gﬁ'/‘lk"]' (A)+a A,%——i—q] (A )J

1

T 242 dt
and noting that

d : t
we finally have
af: £ —1 4t af’
‘I' (353)_2[0!‘ —C(Sj]+ﬂl la A( )J

This completes the proof of the lemma. n

The idea of using Chern’s adapted coframe i ‘the set up of our equivalence problem

so as to reduce the structure group from the outset is an application of the “inductive

approach” to equivalence problems presented in [26]. For the Lie group H in this

lemma we have the Maurer-Cartan form

o K 0 .
0 @ 0 = dS(87) (2.16)
0 ofi - af
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which parametrically is given by

da d 0 a”? —a” E (AT 0
0 dAL 0 0 (A7)} 0
0 deAl+cdAl a7 dAl —a " da A 0 —ac(A)t  a(A7)}
f (G, (A-)s — L EAT 0
=1 o dAL(A-)S 0
0 (detct)s  dA(A)E

It will be convenient in the next section to use the following convention

EAT' = By(A™):

7

2.3 The Associated {e}-Structure

In this section we will apply the equivalence method of Cartan with the coframe
G=d F=de-2idt F=dzi - fidt— % T (2.17)

and with the structure group given in Lemma 2.2. We first define the lifted coframe

W a Ej 0 Q
o | =10 A 0 iR (2.18)
7 0 cAj- a‘iA} 7

from which we may state,

Theorem 2.1: Solutions ¥, : U — U to the equivalence problem for systems of
n (> 2) second order ordinary differential equations are in one-to-one correspon-
dence with the solutions of an equivalence problem for an n?4-d4n+3 dimensional
{e}-structure which is obtained by applying the equivalence method to the initial

coframe (E&,a",ﬁ") with the structure group given in Lemma 2.2.
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Proof: We proceed initially with the parametric calculations in order to be able to
have the explicit form of some of the tensorial invariants later. Dilferentiating

the (&, 6%, 7) forms we find by using equations (2.12) and (2.13) thai

do=0 (fai=QA1?i+}5_f|ijﬁAaj
and
o~y dgd 1d| AJ' 11"’“"‘1' 13‘“ ’jk
d';r = —ff\ t'——‘—?" (flj)Ag —-?‘—flj(wA'Jr —|--2—flku)/\( )
YRS NI BV PR
= p}ﬂ-’/\w + 'éfljw.f\’ﬂ"? +‘ "'):fljkojl\ﬁk + Tjkojl\ {)A
where
{ rt 1d H 1 Tk
Py = =li+sgli— 7wl (2.19)

i 17 1 ;
Tk = 3 (f[.k|ﬂ+§f|zuf|lk1)

The expressions for di, dft and d7 back in terms of the lifled [rame are then

do =0
- . o . (220
it = — [(A—l);.,r: — e AT)il7 + &;(flg)(A-’)iok] Alw — [EA07)
and |
- L, oingacaviok  Loping amtnik o Cfping a=1\d ok a A=1pi
' = [E(Pj)(A 0" — §(f|j)(A Jim +§(f|j)(A )id ] Aw = EATD)
HIhNAT AT RO = S (AT Ao a 0™ (2:21)

Thus differentiating (2.18) and using equation (2.16) the siructure equalions

are
dw o K; 0 w a I 0 dio
o' |[=]10 @ 0 AL+ 0 A 0 i
dx? 0 off Qf—af} T 0 éA; a™' Al A7
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Now substituting from (2.20) and (2.21) we have the equations
-1 . X
do = anw+ kil — LA [w-” - + %A‘L(fﬁ)(A“‘)LLOm] Aw— EAF)
. -1 . . .
dt = Qinlf — [W'. -l + a—z-—A}(ffk)(A'])fOl] A(w — EAT'H)
and
it . . .
drt = —¢ [W{ — bt + %A}c(f{;})(fl'l)iﬂk] r(w— EA;'07)
-t i l EY( A jok_l [ A—i:’ L e A—ljok — EATYY
+a A a(Pj)( )i 2(f[;)( kT 2(f|;)( 107 | A (w ;)
. - . 1 ;
o AT AT (AT )0 0™ — S AL f) (AT

NIAE xfa o™

and dr’ simplifies to

dr' = ol 4+ (O — abi)an? + a7 AUTE AT (AT)E A O™ (2.22)
+ [0 AL ()A O + 0 = ent — S AUANA] a0 — BA700)
S A A™ Y (Ao

In these equations we may now absorb torsion by

a= &+ EA7 7 + 2¢(w - EA;'07)
5i= Rj— EAPmEAT — [cBA7 + SEB(fL) (A7) (w — EAT09)

0 = Qi -~ mBA7 + [o8} — SF-Ai(fL)(A)P| (0 — EAT'0Y) (2.23)
_%Al(f“m)( -l)ngn(A-l)j
o= G+ [+ S| (w— BAF') + 15 [BAG P + B2 7l (A7) 67

which leads to the structure equations (after dropping hats)

dv = oarw+ Kjnl?
ot = Qj-.n\ 0 — miaw (2.24)
dr' = oalf + (93 - aﬁ;'-)/\ 7 + P;le\w + Qj-kojf\ g%
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where

and
2
QJL EA[;P” + EAI_IP[J‘SL} + - Al ( Tr ﬁ s[m{s ) (A—‘)},I(A—l)z

We point out that the absorption by o in equation (2.23) has been chosen so that
Pj‘ and Q; . are trace free (we will use this [requently later on). If we now consider
the parametric forms for f’; and Q;L above we see that any furither reductions
of the structure group will depend on the algebraic structure of P and Q.
For example we see from (2.25) that f’; is acted on by conjugation. One could
proceed by putting 13; into a normal [orm and possibly further reduce H. Fhis
however will not be done, and instead we resort to Theorem 1.6 and prolong.
To this effect we compute H) by finding the kernel of the absorption {finding
the solution to the homogeneous system of equations (1.31)) as described in

Section 1.6. The first two equations in (2.24) tell us that
a=a+Lw+ Kb Q=08+ MO & =R+ Kjw+ Dud® (2.26)

where ME;‘;.-] = Dpj = 0, is possibly in the solution space Lo the homogencous

system. Inserting this along with
o =5+ quw+ril? + 57 (2.27)
into the last equation in (2.24) gives
(7 + qw + ;07 + 5;7°)a 0 + (M0° — Lw — K 0%85)am? =0 (2.28)

and immediately we have from this ¢ = r; = L = 0. While putting the coeffi-

cient of 8% 17 to zero gives
i — 86l — K8 =0 .
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Since we assume n > 1, skew-symmetrization and symmetrization of this equa-

tion gives,
si=K; and M} =2K8} . (2.29)

Thus we have a parameterization of HY by K; and Djx, and we may lift the

colrame (w, 0", 7', a, 5:, %, o) to U x H x HW by

a=o+ K Q) = OF + 2/.50¢

=0+ I{jﬂ'j R; = Kk; + Djkﬂk + .K_,'w

We wili now drop the overline and we may then write the lifted structure equa-

tions in the general form,

| _ | . (2.30)
do = ﬂ_‘,!/\ w 4 tl dﬂ; = zﬂ(kts;)f\ 0"' + T;

where t° and t' are 2-forms, T? is a R" valued 2-form, and T% is a ML(IR)
valued 2-form all of which are contained in the exterior algebra generated by

(w, 0%, 7', h*) and where
ﬂj = df(j and T_,'k = dDjk . (2.31)

Now absorb torsion in equation (2.30) by

B = Bi= () = () gun 0" (23)
T = Ti—(Th) (2.33)

and after dropping the hats, the structure equations (2.30) retain the form with

the additional conditions

(to)ai =0, (tl)ﬂ(kw.f) 6" =0, (T?j) gk =0 (2-3‘%)_;:?
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Our goal from here on will be to determine the form of the left over torsion
{ structure function ) by applying a sequence of integrability conditions. The
condition we use first is ¢20° = 0 from equation (2.24)
200 = cf.Qj-A 0 — Qj-.». di? + dwa 7t — wadr
and substitute from (2.30) to get
@0 = (Bin 0% 8+ Bin 0 + THA 0 — Qin (Qna 0" — 7o aw)
+(anw + &ia AT —wa (0’/\ 0 + (2 — abi)a bl + Q;kﬂj;\l)k)
0 = (Ti— Qa0+ Tak;+ oaws} — ~}k0"/\w)/\ d

From which we obtain

T = Qa0 — 7ins; — onwi + QL0 aw + Ein 0F (2.35)
where {_; i 1s a collection of one-forms satislying

Enlinldt =0

2

The next integrability condition we use is d*w = 0 from equation (2.24) and

using equations (2.24) and (2.30) we find

d?w = darw—andw +deal — kadl
0 = (1:0 + ;A wj)Aw + (Tf — QA Kj — KA Qj‘)/\ 0 (2.36)

from which we deduce

0= —gjand FAw + EA0T TP =ans; + ka8 4 a0 4 Eaw  (2.37)

3

where ffj,E? and A are one-forms which by equation (2.36) are subject to the

conditions,
a) Eabin0i=0

| (2.38)
b) (A),=(A); =0  thatis A has no ¢ or w terms.
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The condition b) here is really a choice we make in order that the decomposition
for t% in (2.37) be unique. There is no loss in generality by this. If we now take
into account the absorption in equation (2.32) which gives rise to the conditions

in (2.34) we find that
(), =& =0 (2.39)
and so the torsion terms in equ:é,tion (2.37) simplify to
t0 = —giam 4+ Aaw T? = ann; + kin O + E40 07 (2.40)

The last, integrability condition we have from equation (2.24) is d®7' = 0 and

this gives,

d*nt = doal' — onddf + d(Q — aban — (U ~ a))adr? + dPinGAw
+PHd0 nw — O A dw) + dQ507a 0F — 20%,67a db*
where by using equations (2.30) (2.35) and (2.40) this becomes
d*r' = (Biam? + a0 — oa (Al — 1Aw) — (Bin 6F — bam® + Maw)ar!
+(Ben 088} + Bin 0 + U — mia k5 — gawdt + QL 85Aw + Exn 0F)and
—(Q — a8i)n (oat? + (U — as)an* + Bio*aw + GJ,0510")
+cl]5;/\ 0inw + d@;k/\ 0ing* + }3; (Qi/\ 0% aw — 07 A (anw + Kpn Gk))
-‘.ZQ;kUjA Qa0 — 7Frw) .
Further simplification yields
0 = (dPj — QLP} + POk + 20P] 4+ 3QL.7")n 0w
+(dQ, — Q% — 2010 + aQiy — Bk it
FEAI AT — (A 4 20)AwaT 4 (8! + ano)a b’ (2.41)

40



By putting the coefficient of wa#® in this equation to zero and recalling from

equation (2.38) that A has no ¢ or w terms, we have
A=-2c (2.42)
and so, by equations (2.40) and (2.30) we have
da = Bl — kjaml — 208w . (2.43)

We would like to continue using equation (2.41) but belore this is possible we
must know some information about the form of t1. "This can be done by taking

d*>a mod(¢#) and here we find,

dPa = df;a 07 — Bindt? — db;a 4+ g drd — 2donw + 20Aw

2ona —t')aw mod(0') .

We then deduce,

t' = ona + A0+ x'Aw (2.44)
where x! and £} are one-forms subject to the conditions,

a) (x"=(x"y =0
b) (Y gk 0F = — (6%,-) 5=0 from equation (2.34) .

where condition a) gives the unique decomposition in (2.44). We may now place
t! in equation (2.41) to further investigate £},. In particular the #¥am? term

from equation (2.41) being zero is
(65— (4P) w—3Q%w + (dQy) 0+ 6 (&) , 0] a0¥an? =0 (2.45)
so that we may write in general
i = Thw + Ry 0' + Siyn’ . - (2.46)
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where '.’jk , .S';:,k and Rj;[,k] = Rj,k are smooth functions on U/ x H x HW, Taking

this expression for &, and imposing condition a) in (2.38) we also have
Tin = St = Bpjag =0

As well using the expression for 5;;. in equation (2.45) and setting the coeflicient

of 'A 0%A 77 o zero we have
Sfjf]k = 0 or S(IJM) = S;,:k[ .
In any case using (2.35) and (2.46) we have

dﬂ; = 26(};6;-)}\ oF + Qi/\ Q? — A Kj=—OA w¢5§

Q% — Ti)0 aw + Riy 05 0" + Siymta bt (2.47)
Using the trace of d2} and da from (2.43) we then have
A — (n + 1)da=(n + 2)(kir 7 + oaw) + (Thw + Riy0* + Si,mf)a 0t (2.48)
and thus setting
& — (n+1)d*a=0  mod(base, h*) (2.49)
we determine that,
dSi, —(n+2)Tw =0  mod(base, h*) (2.50)

which allows us to translate the trace Sjj, to zero. We emphasize here that this
also implies that the H(") action on T}, and R is trivial. The translation of

the trace of S, to zero gives the reduction of D;; = 0 in the prolonged group
HM) and that, |

Tix=0  mod(base) .
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in equation (2.30). Explicitly we will denote

i 3 T .
Siut = Siu ) ——5Smd - (2.51)

and the reduction of H(") by H%”. To continue now we may use all the previous
equations except the absorplion in (2.33) and thus the conditions on T% in
(2.34) must be dropped. 1t should be pointed oul that in the first round of
computation with H®) we never actually necded to impose the condition in
(2.34) on T? in order to determine the group action in {2.50). Thus we may

summarize the structure equations on U x 1 x H) as

dae = Binll —gjami — 200w
doe = ﬁj/\?fj—i-af\a-l-f};\ﬂj—l—x'/\w
dQ_';- = 2}3(;,.6_#)/\ 0+ Qil\ Qi‘ —7ia Kj— A w&j (2.52)

+( ~§|’k - I?k)oka’\w + .[?,;';MOL‘A Ol ‘i's";:kﬂrkf\ 0’
dii = finw+ans; +ra 0 + E2n 07

with the conditions on the functions Q, R, §,7",
Qijk) =0, R[Ju] = R; kD = =0, S{jkl) = S_;:H ) -”[fik] =0 (2.53)

(the trace of @ and 5 are zero ) and condilions on the one-lorms €1, x' and &

(€6) 0 = (&) =05 (), = (x'), =0, (€%) 0y =0, Ein0'ati =0.(2.50)

If we now try to prolong the structure equations we sec by the equations in
(2.52) that the kernel of the absorption by f; is zero. In other words the f3;
forms are invariant. This finally allows us to conclude thal we have an {e}-
structure on &/ x H x I-I(ll} of dimension n? 4+ 4n 4 3, the final invariant colrame

being (w,g‘.,?T",Cf, fﬂj;gg'ya’:ﬁj)- .
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The two Lensorial invariants /*-and S} which are components of the structure func-
tion play a fundamential role in this {e}-structure and so we will determine their
parametric form at the identity of H x H(). We have .

Lemma 2.3: The pamm(e}ric forms for P; and S’jk, at the identity of the structure
](1) o

group H x HY"" are _
Pi 1d 1d p Ll
(Pl = §Ef - —f |;.f (zdtf o Z_f kS |z)
‘g;:klle = f]ijk! flm(_;kal}

Proof: The form of (P)]. is 1mmemate from equations (2.19) and {2.25), while to

find ( m)|e we need to first determine
i = (d9le) s | (2.55)

in equation (2.47) before the reduction of HW to Hgl). To compute this we take
dQ} in equation (2.23) and evaluate at the identity. To do this first notice

D=w=-EBA7P  thus d{w—~ EAF0)=0
from which we find

(0= (P05} 4 (8,)len T+ (dAin dAR), - At
(e~ A ) A Y en B~ S AL ) (A7), (A-“ e

{N

Then use equation (2.23)

A

dale = o,
to find

| Bila =0 | (257)”
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Now use equation (2.23) again, giving

dEjle = Kjle dAi = Qile + .)(ﬁ;)w + 5 (fua)(ﬂ‘

which determines the #*# term of (d€¥]e) from (2.56) as
&

Finally we note that by equation {2.51) we have S'jk, as the trace free part of

(S}1;) completing the proof. n

The form given for Si,, in this theorem can also be checked explicitly by carrying out.
g ki ymg

the calculation with the frame change

n + 2]‘]";.1.1

which corresponds to the final reduction. We see from equation (2.23) the actual

parametric form for 13; at an arbitrary point in the structure group. We will say

more about S'j-k, later.

Now we would like to prove the main result of this seciion,

Theorem 2.2: There exists a unique {e}-siructure with « mazimal dimensional
symmetry (automorphism) group. For this {e}-structure the structure funclion
vanishes, and « representalive for the syslem of equations giving rise lo lhis
{e}-structure is the “free parlicle” equalion

&2zt
=0 (2.58)

The equivalence class of this equalion is invarianily characlerized by the lwo

vanishing condilions
C(PHle=3E S — Py — T - L (S - - LTh) =0
(Shedle = Sl — s fmindly = 0
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Before we proceed with the proof of this theorem we should point out that this result
is a special case of Theorem 2.3 in the next section. The reader could skip this proof

altogether and proceed Lo Theorem 2.3 of which this is a simple corollary.

Proof: What we intend to show is that by making the assumption that the two
components of the torsion (or structure function) }5; and gjk; in Theorem 2.1
are constant, then they must be zero, as well this implies that all other

torsion elements must be zero. This will follow from the integrability con-

ditions for the {e}-structure in Theorem 2.1. Qur initial assumptions first imply
dP{=0 and dSi,; =0, (2.59)

We now use d?n = 0 which is easily taken from equations (2.41) (2.43) (2.44)

(or use the structure equations in (2.52)), to get
0 = (——Q};Pj"' + Piﬂ? + 2&15; + 3@};3—71'" —- Ti:jwk - x16;) Aiaw
+ (dQl, — QL — 20,0k + Qi — Piry + €464 + Rip') a9a6" . (2.60)

The requirement that the coefficient of an87aw be zero is

~

pi=0. (2.61)

M

From (2.60) we now have the following equation
3Qi;m — Tim* — X6t =0 mod{w, #)

where by taking the trace of this and noting by equation (2.54) that x* has no

" or w terms we arrive at

1

1 ok
= T
X n M

Then putting the coefficient of 7¥A87aw in equation (2.60) to zero we have
A i o Loig

46



However skew-symmetrizing this on j,k and taking the trace gives
Ti; =0 (2.62)
while just skew-symmetrization at;(j symmetrization using (2.53) leads to
Qi;=0 and Ti=0. (2.63)
What is left of equation (2.60) is
(584 + Rigm)atia0* =0 (2.64)
So we may write
£ = Wign* + X0 o (2.65)
where Wi, and Xj; are functions satisfying
Wik = Xy = 0 (2.66)

where the skew-symmetry comes [rom the conditions on £} in equation (2.54).

We actually have {rom (2.64) and (2.65) that

R =-Wgyby or Wyp=£n (2.67)

ik
The next step will be to compute as in equation (2.48) but use (:);A =P =
aird equations (2.65), (2.67) to find
P — (n+Dd?a = (n+2)(dkint —rian’ + donw — andw)+d( R 074 0%)
0 = (n+2En0ar + Wymaliaw + Xi0'a P aw)

I

+dWin O al? + Wi (A 0" — maw)n O? (2.68)

where here equation (2.67) is used. From this we may conclude that €% is of

the form
& = Wayr' + Xij0' + w¥; (2.69)
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where m[j,j;;ﬂj and 17,-,- are functions which by equation {2.54) are subject to

the conditions,
Wi =0 Xigy =Xan =0 , ¥y =0. (2.70)
Inserling this expression for £ into equation (2.68) and using the conditions

(2.66) and (2.70) readily gives,
Wi=0 Xij=0 Enabiar'=0. (2.71)

('.["i.'iis implies £} = 0) The last of these conditions gives,

Xaj=0 ¥5=0  Wu;=0 (thus Wy = Wiy) (2.72)

while W, being zero implies by equation (2.67) that |
;’kl =0

At this point the only possibly non-zero torsion coefficients are S’;H, szk in

(2.69) and the torsion in df;.

We continue to apply the integrability conditions, the next one being

v
]r

d*a = dB;nl? — Bindl — dtc,-rffrj + kjadn’ — 2doaw + 2o dw
0 = dBintV — Bin(Qa0* — miaw) — (Birw + an k5 + Kxn S5 + ERA O a

+ w5a (a0 + (D — a))aTh) = 2Biand + ora)aw + 204 (anw + k;n 8%

0 = (dﬁj—ﬁkaﬂ;‘—m_fna—i-{ﬁjmrk)nﬂj .

If we use (2.71) then we may write

N
1~

dB; = Bin Q;‘ + ka0 + Ajra 0 &
where .
Aija gnll =0 (2.73)
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Now we compute dzﬂg from (2.52)

P = 2AdBi8 0T — Pubiyn d0¥) + dQUA QY — QUAdQE + disjar — wjadit

+{dwr o — wa cla)(s; + dS'_'T.-MA a0 4 g;kr(d'ﬂ'ka\ 0t — w*addh)
and using equations (2.52) with the assumption that d.S"Jf-M =0 we gel

0 = ["Q:ﬂgﬁl + g_;ml(QT - aézl) + S}kmﬂzn + gfnkfggn] Aﬂ-k"\ 0'
-[-AJ';\,A 0k 0 + ijw’,\ 05nrt (274)

Two immediate consequences we have by putting the cocfficient ol aa 784 8¢ and

of #!A 0% 7' to zero ave that

——

Siy=0 and Wy =0, (2.75)

)

This now implies that *

Ak = Xy 0 (2.76)

Now put the coefficient of 77a 0¥A 0 in d?c to zero and finally we have,

=

_;kl = 0 f (2.77)

Thus the only possible constant values for the torsion is zero, proving the the-

orem. - m

To summarize this theorem we note that equation (2.60) implies that 1'3; is acted on

by scaling by the one dimensional subgroup of H generated by a. This dependency is

also seen in the parametric form of 133-" in equation (2.25). While for S'J"-,_., we also find

by equation {2.74) that .‘;'}k, is scaled by the action of subgroup generated by . ‘Thus

the only way that these tensorial objects can thus be absolute invariants is if they

!For dimension n > 2 , we actually have Ajx = 0
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vanish. The condition in Theorem 2.2 agree with those obtained for linear equations
to be equivalent to (2.58) in [21].

For completleness we have

Corollary 2.1: The {e}-structure admitling a mazimal symmetry group has siruc-
lure equalions
dw = orw+ giab
do = Qﬁ-r\ 0 — miaw
drt = oaf'+ (Qj1 — abi)am!
da = Pintl — gjnm! — 208w
dQ; = 2,6@6}3;\ 0" + QAR — Ak — oW
do = Biami +ona
di; = Binw 4 an fc;+n_,-AQf: .
These are the Maurer-Cartan equations of sl(n + 2,IR).
It is possible to realize the symmetry group of &= 0 as PGL(n+2,IR) in the following

way [19]: Let (z', 2™ = ¢,2™"? = 1) be standard affine coordinates on an open set

U of ]Pn-H (]R.), and let
L=({)e PGL{(n+2,R), 1<a,b<n+2.

Acting with L on IP"t!(IR) takes a point p with coordinates (z%,1) to a point B with

coordinales,
i l}m’+lﬁl+1t+[f«.+z E=M 1<jij<n
¥+ TE O+ Graiebi 0T

where we have assumed L is sufficiently close to the identity so that the denominator

does not vanish. If we now consider the set points in U given implicitly by z* =

B't 4 C* where B* and C' are constants then under L,
T=F1+C
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where

(O B )B4 1) — (0 + L, (0 + )
¥ B + L0+ 3D — (7B + BEN({T07 + B
)

nd
~_ BB+, (Y07 4 Ipa) = (BC7 + L ) B 4+ 01
(P8I + NG+ ) — (G B+ RENC7 + 0

Thus we see for L sufficiently close to the identity, L maps solutions of #'= 0 to
solutions of T = 0. The structure equations in Corollary 2.1 are related to this
example by the fact there is an injection of PGL{n + 2,IR) into the sccond order

frame bundle of P**(IR), see Kobayashi [29].

2.4 The Fundamental Invariants

In this section we provide the proof that in the {e}-structure of Theorem 2.1 all the
tensorial invariants are differential functions of 13; and S';:M. The proof of Theorem

2.2 is a special case.

Theorem 2.3: The {e}-structure with invariant coframe (w, 0,7, 0, %, k4, 0, ﬁj)

in Theorem 2.1 has the struclure equalions,

dw = arw+ Kja 0
dot = Qj;/\ § — rirw
drt =onali+ (Q:1 - a5})f\ wd 4+ ﬁ;oi,\w + Q;kgj,\ o*
d =28 85A 0 + QA -7k — oAwd}
F( @k — Ti)0FAw + Rig0Fa 0 + 5wk 0!

do = fiamt + ona+ ZkiPin0 fwViamd 4+ Wimiald + X009 4+ wYia 09

dr; = finw + ank; + a4+ Wigm*a 0 + Xiu0a 0! + w¥ien 0%

dﬂj = ﬁ,-/\ Q; + King + R;P;Aw "1"’?52/\ (@BLBL - jk)ﬂk + n—_l_'l'”i Feg)h Ok

“i(7
W' a0l + X1 0580 + wY?, 0}: i
TV T A0+ A Al 4 wlia . Y
b W
7
-.“\\ J:/
_“\\\ /



where the torsion elements as differential function of P} and Sy, are,

= it (47)). 25 =5 [(4B) . — Vst T = (df’ ) o + Vil
= L} (dP ) Riy = (d@,,;) -+ Wil Wi =& (dTD) .

=~ (dT ) y Xb =3 [(dR:M) ( )91]] X = — oz (dBin);
= (dS}k,)w,. Win = 71 [(dSle) A(J"-)l]
X = (deu) 4 — WimpPF — (d)w)

= [(d ) (dT(J)ek) St FT" ]

This proof is similar to that of Theorem 2.2 only more care is needed for handling

Py

the indices. Again, we apply integrability conditions to obtain the results.

Proof: We begin by putting d?x' = 0, which is found in equations (2.41), (2.43)
and (2.44) (or use the structure equations in (2.52)), to get

0 = (dB}— QP+ POk +2aP] 4 3Q};n* — Tim* — x16) nb9nw
+ (d@j—k— QiQL, — 2Qi; %) + aQiy — Py + &6l + R;'J.,,n') A0 A 0% (2.78)
which gives

AP} - QiP} + B0k +2aP} + 3Q;m* — Tiyr - x'6i = 0

O _— mod(w, 6')(2.79)
dQj, — QY — 201 Yy + 0@y — Py + &6l + Rir' =0

Taking the trace in the first of these equatlons and noting from (2.54) that x!

has no w or #' terms we find

1
xl = “—Vkﬂ'k i: k

with V; being functions. Then teking the coefficients of #%A89aw in eqzation

(2.78} we obtain

® s (), +3Q}; - Ti; + Visi = 0 (2.80)



Skew-symmetrizing on j,k and taking the trace gives

V=~ i - (a?)) | (2.81)

where we have used the conditions on Q;L and 'l"jk in (2.53). Skew-symmetrization
and symmetrization in equation (2.80) leads to

= 3 ((4h) - i)

.fik = (dﬁ‘ (is')frk)'*'v(iéi)'

We now take the trace in the second equation in (2.79) and (ind

(n—1)& — nkﬁf — 2Rl =0 mod(w, §) (2.82)

[#1]

In other words we may write

£ = Rkﬁf + Wigr* + Xi;0* + Yyw (2.83)

n—1

where W, X and Y; are functions satisfying,
Wiy = Xjry = 0 (2.84)

by the conditions on £} in equation (2.54). Thus substituting (2.83) into (2.82)
gives

2

1—n

Wi; = by and Ry =0, (285)

Now inserting this expression for £} into 2.78 and puttling the coefficients of
T A0 A 0% and 6ia05aw to zero gives
(dé}k) a1 WIU‘S;;-] + Ry = 0 (2.86)
— (dB)  + (d) +¥y8y = 0.
Taking the trace of the second equation above we have

1

Y: =
T =1

(dB) (2.87)
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At this point all information from the first integrability condition in equation

(2.78) has been obtained. We have Wj and X, in (2.83) still undetermined.

We now continue by setting d?a = 0 and use equations (2.24) and (2.30)

d*a = dBat? — Bindl? — drjan? + kiadn’ — 2doaw + 20 dw
0 = dBjnt’ — Bin (Un 0" — Tinw) — (Binw + ankj + ke i + 4,05 )a 7
tn (oald + (U — ab)an® + Pig*rw + QL 054 0")
—2(B;n ™ +ona + E;-A Oj)Aw + 20n (arw + Kjn Gj)

0= [dﬁj - ﬁkfxﬂf — Kjno + §§jn 7 — kgn ij‘/\w + 2§}Aw — KIA Q;-kOkA] N
thus
B = Bin Ul + ka0 — ELATH + sy P — 260w + kia Q405 +X5un 08 (2.88)
where the one-forms );; satisfy,
Ainbind? =0 . (2.89)
Now compute d*§¥: from (2.52)

d? Q;

2(dﬁ(k5;-°)n 0t — ﬁ(kéj)/\ d0*) 4+ dQin Q;‘ —Qin dQ;-’ + dijam® — kjadrF
+ (dwao —wado)6: + df ~jk— )0 aw 4+ (Q —Th)(d0*aw — 851 dw)
+ dRi0%A0' + 2Ry d0A 0" + dSin i ab' + S (dr*a 0" — 7Fndb')
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and using equations (2.52)

0=2(AinQ + senc — Enm! + xin Pl — 2k aw + nn Q0" 8209

FAjen 050 — 2B n (a0 — Tiaw)

+ (ﬁk,\ 0 — winng — 0wl + (Qhm — Tin 0™ aw + Riy0™ a0 + 5,7 a00) AQ%
—Qin (Bia 0 — whnr; — ot + (Qh, — Th)0™aw + R, 0720 + 55w a0
+(Binw + ankj + i QF 4+ a0 )T

—K;A (cm 0 4+ ( — abl)ar® + ﬁ;ﬂk,\w + QL,()"'AO’)

Hanw + k00000 — wa (Biand 4+ ona + Ead) + d(Qly — Th)A 0k aw

+(@h — T ( QA0 Aw — Ok ncnw — 05 a ka0

+dRL A0 A0+ 2RE (QE A O™ — T8Aw)A 0! + dSE a7 A0

+8i (on 6% + Qb amm —anmh + PEO™Aw + Q0™ A0 )A O = 7Fn (A 0" — 7 A w)

which simplifies to

(2@ — Th) ~ Qi(Qh — Th) + (@l — TH)Q + 08L) + (@ — T A0*aw
(@ — TH A w0 + [dREy — Qi Ry + 2R, Q0 + R 7] a 08 a 01

+2R mFA Ol Aw +[d§§k, — 87 + 51, — a8P) + 55,0 + ng,n;n] A th(}(’?..g())
FAjn A0 + 58 (PEO™aw + QF0mA07)A 0"

+2(kin Pl + Kun Q0" — ERnm)a 809 — 26 nwn 0 + SiElA 0¥ aw

+(8jn Pl + 558 Q0NN OF + EalFani =0,

Taking the trace of this we have,

0 = [dR:H + ZR:mIQTkn] Aakl\ 0‘ — [dT;-ik + Tt-i[(ﬂi. + O!i)] Iy Oknw + gjgﬁklﬂ'kl\ 0‘/\0)
—fl"fkﬂk/\ K g — (n+ 2)§J?kn a0k 4 (n+2)Ea0krw — (n + 2)kma C?;-’iﬂjf\ 0%2.91)
—~(n + 2)kmn Prinw

We find X} by using (2.83) then putting the coefficient of #'A 0¥ Aw in the above

equation to zero, that is

(dRiy) — (dTH) g + (R +2)Xu =0 (2.92)

55



Now put the term with 774 0% in (2.91) to zero so
i 2 i i 0 i g —
2Rl + (n+ 2)Wiw — (n+ 2)h— (T4 w+ (4R , 0] anin04=0(2.93)
From which we may conclude that £% is of the form

& = ﬁ/jlk'ﬂ'l + )?jmﬁ" + wi}jk (2.94)

2

where W;jk,}/ﬂjk and )7;5 are functions which by equation (2.54) are subject to

the conditions,

-

Wasm =0 , Xgn=0 , ¥i=0 (2.95)

Inserting the expansion for % from equation (2.94) into (2.93) and putting the

coefficient of i/ A 0* to zero gives,
Wiw=0 or Wiy = W(ijk) (2.96)

The coefficient of wam?a0* in equation (2.93) being zero gives after skew-

symmetrization

Wir = — *1i~2 (QRf'jk - (d iiu),,k]) (2.97)

which simplifies by equation (2.85) and the symmetry properties of Rj-k, in

equation (2.53) to
! i
Wi = = CA (2.98)
The symmetric part of the coefficient of wania8* in (2.93) gives,
. 1 ;
Vi = —— (aTis) (2.99)

The coefficient of ¢'amia 8% in equation (2.93) being zero gives,

Xy =

- _1|_ 5 (dR::m)wj (2.100)
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We now need to find Wik, which can be done by putting the coefficient of
7™ a7'a 0% in equation (2.90) to zero, which gives

e 1

(dS;‘.l[k)wm]—fvj,[ma;.]=o or ifvjk,.—.l—:;(dégk,)ﬂ . (2.101)

Finally we are left with the delermination of A, so pul the cocfficient. of #* 0!

in equation 2.90 to zero

(de‘[k - dT_;[k) %~ (Qhk — Tip)eg + dREy — Q6 R + 2RE o Q-+ R, 0

+/\J[l\-611] - (ds';nj[k) ﬂl]Wm - S_;m[lPIz?w + Sj'n[m ;:i]om - kalfsj'wm + X,,t_;[kﬁf]?r”'
-!-‘X'jkl‘rri — (in(S; -+ 2Xj[k6f])w — Nsz;é";: - h.‘mQ?Ekls;:] - ""j(:)i-l = {
If in this equation we now substitute
and take the trace on 7,{ and symmetrize on jk we have
(n =1y = ((dT;L) R (dTii(j)ok) - 1}mkﬁ‘im) w+ ((ds'fj;.-)ﬂi — X))t
+Tit5 = ol

note that here we have used (2.85). This still leaves X7, undetermined. It can

be found by taking d?x; and setting to zero the coefficient of 0¥a 0'aw, which is
0= Xy + Wing B + (dX0)_ = (Vi) (2.102)

This completes the determination of the colrame as given in Theorem 2.3 m

We can determine the infinitesimal group action on P{ and 5%, [rom equations

(2.78) and (2.90) as,

iH

P} — QL Pk 4 Pk + 20 P

- . . J . mod(hasc).
dSi — ST + Sty (O = abT) + 55,00 + Syl =

From this Theorem 2.2 is an immediate corollary.
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2.5 Systems of Third Order Ordinary Differential
Equat:i‘(—)'ns‘

In this section we will study the question of equivalence of systems of third order

differential equations,

&P ; . dad 2
o = (t TN dt2) | (2103)
3z o o dB d%7d
= =7 (t?z"{?) (2.104)

\
J |

We proceed in a manner mml.a.r to section 2. Let U C Jz(]R R™) and T ¢ J*(IR,IR")

with standard coordinates, (i 1: :1,1, zi) and (1,2%, %}, 2.) and associate to the systems

- ol differential equations in (2.103), and (2.104) the Pfaffian systems,

0i = dzi_, — zidl 0% =dzi — fit, o/, 23, 2)dt
= doicy it Q== [ m A (2.105)
Ob = d%_, — 3l 0, =dzi— Fi(f,7,3,%)dt _

As ir.t. he sccom. order case finding a one-dimensional integral manifold « of the ﬁrst

Pl'mﬂlén oystf‘.n in (‘) ]~'I5) satisfying
v dt #0
is identical toﬁlji-rix-ding a solution to the system of equatiéns in (2.103).

The two differential systems in (2.105) are equiva,lent‘ if and only if there exists a

diffeomorphism (I, &= (#(i, ), ¥i(t, 7)) = W(t,27), with second prolongation s

== satis{ying

SR “E}?;< O-c Fe=1.3 = < 0,: >e=1..3 . (2106)

- .-:,I-

Extending the one-forms in (2.105) to-the coframes

@=dt,F) and @B=d0) c=1,23, (2.107)

Appendix A allows us to simplify condition (2”106) to
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Lemma 2.4: The two differential systems in {2.105) are equivalent if and only if

there exists a point transformalion,

(3, 7) = ({2, 27), ¥(t, 5)) = W(1, 29) (2.108)
~whose second prolongation U salisfies
w w
0s 0 =8 0
0; 0;
05 0

where § : U — H is a smooth function on U laking values in the Lie subgroup

H of GL(3n + 1, R) defined by

(e o0

G lo a0 S0 | aeR, AieGLnR), £ e R |
0 Bi aAi 0 (BE), (G3), (Di) € My(IR)

o ¢ o a= A _ J

" The proof of this comes directly from Appendix A. For the Lie group H we have the

':‘IME_L'urgf'-Cartan form

1
i

o B o s 0 0 _\. .
0 0 0 : -
. . | =dS(87) (2.109)
0 g Q. —aé 0
ow x5 o-u
where (571} is ‘-“ -
a —a EAS 0 0
0 (A'l)f,- I 0 0
0 —a(A™)i BF (AT} a( A=)} 0

0 @ (A)CE= e DE(A™ Y BI)(A™); —a¥(A-LDHAY (A7 ) S

We will use the coﬁventions of the last section.

1
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Theorem 2.4: Solutions ¥ : U — U to the equivalence problem for systems of n (>
2) third order ordinary differential equations are in one-to-one correspondence
wilh the solulions of an equivalence problem for an n®+3n+3 dimensional {e}-
struclures which is oblained by applying the equivalence method to the initial

coframe (&, 0%, 0, B) with the structure group given in Lemma 2.4.
In this proof we will have the range of indices b =1,2 and ¢ = 1,2, 3.

Proof: To proceed we first write dai = —dzindt and dﬁ; = —dzirdt and dﬁg =
—dfindt in the Tifted frame
d = —(A); (65 — BY(A™)}6}) A (w — EA70])
Ay = —a( A=) (0} + (C] — a™ DY(A™)EBL)(A™)10; — aD(A™)50})

. (2.110)
a(w - EAT)
i = —dfina(w ~ EA7'0))
} From these equations and di = 0 the first two structure equations are
dw = anw+ ;a0 — EAF (05 — Bi(A)E0)A (w — EAF'6)) 2111)

A0 = QUal] — Oiaw + 0in EAT0] + BY(A™)F0LA (w — EAF'6) .
By making the absorptions,

a = a+BA7Y | .

8 = &+ BAYOSEAT +(w - EAPO)EAPBHA-Y,  (2112)

Q = &~ 0EAT + (w— EAP0F)Bi(A™),

we see that equations (2.111) become ..

de = &aw+ ff{,a\ 0
T GhwT R (2.113)
do"l = Q;)\ 9'{ - 05/\&) .
We still have the following freedom to absorb using \& and Q},
Ta=at Vot W
_memreT (2.114)
=05 + X501
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Considering the last two equations in (2.110) and the @bsorption in (2.112) we

may write in general ( and clropping hats )
dy = SR 0] + (U — abi)a 0] = Vinos + Ti03aw + Pi0iaw + Q¥ 00n 0% (2.115)
0y = i8] + Nin 05 4+ (U — 20803 + Y0inw + 2,00 0F . S
where b= 1,2, ¢=1...3 and P}, }k,' Jf', Y’bj", Zb"}k arc function whosé:i)m‘l.ic- 't

ular form is not important. We may now further absorb {orsion by

~ 1
0 = -~ _T‘:w .
n .

i— g i ci ok N
B; = B+ Pw-- Q_quc ; .
2= Si4yle—z0er

. o~ \ ami ok o
1\3: = /\; -+ Yﬁtw — 422;:-?0;& _ 4.52;:1.03

which leads to the last two structure equations,

A0y, = B0+ (U — abi)n0h — Oinw + TilAnw ~

doy = Tin0L+ N 0] +2 - 206)n 0] + Sitiaw
where TJ’ and Sj”‘:@re;ﬁﬁ;ci;ions, and T 5?\'0. To determine the group action on
the torsion we first Eompute d?0 and find

e

4208 = (dOf — QA QF — wa B - ;;,-A 0)n 03

giving
Y = UAE +wa i+ ka0 mod (i )

Now take d205 mod( 0 ),

h POy = Binbhiw + (UADE +wn Bl + £ja05)n 05 — dan 0
— (O — ab)A (Vi) — an0F — Ginw + THOAwW)
— (MAl) + Qb — 2an 05)aw + Oinanw
T 4 dTiAGAw + Tk OAw mod(0})
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" o continue we substitute into this equation B} = Bi + 86} and X = Xi 4 ASE
where ﬁj‘ and 5\; are trace-free which results in
—[(dT} — QLT + Tk + 28} - M)aw
+(dor + rmpn 05 4+ 28aw — Maw)ial] =0 mod(0l).
Té](ing the trace of this gives
dor = —kialh — 28w + daw mod(6%) (2.116)
while from the trace-free part wéiﬁé:ve,

df; - Qif’f + Ti9§ + 25} - 1:, =0  mod(base) (2.117)
We now compute d?65 mod(#i, 0%) and use (2;116)

A

d*0; ,i;z\ Ginw + AnOinw + (wa ﬁ; + wa B8} 4 Qi .Q;‘)A &%

N

4+ 2(=284 Nafiaw + (2 — 206)n 05w
+

dS;:n ﬂg,\w + S;( l/\ 0§A w__— o Oin w) mod(ﬂi, 07) o

where equation (2.116) has been used. From this we find . o

dSE — QLSE + SEOE — aSi+ X+ B+ 30— B)Si=10  mod(base)(2.118)

Using equations (2.117) and (2.118) we may translate 'f’; and Si to zero. With

this reduction we have

A=p  and Bi=M= 05;: mod(base) (3119)

where o is a right-invariant one-form on the reduced group. To continue with

this reduction note that everything up to equations (2.115) stays the same (in

the modified {frame) while equations (2.115) become o

d0 = 0% (G —a8i)n 0] — Oiac + SIBIA s+ T, 0 0% + US, 0 0%
dO} = 07+ oabh + (U — 206 ) 0] + Ribiaw + Viliaw + U, 0ir 0%
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. where the Tunctions satisfy,

In the first equation we may now absorb

~ 1 21 {ypi

e O k
% = 8 "‘T(:L)o

(T = T30+ —— 2 0] - U 0%

Caala 1
o= otg “ T - (n=1)

so that we have

des = on 6 + (Q:1 — aé;-)r\ 05 — Oinw + 5;0 Aw + Tb'*() ADF 4 U'.{UJ;A 0%

S’ T(jk) = Tf_j - UIJ = 0 ._":T-‘l', (2.120)

By using I} any terms with ¢ in equation (2.120) for 0% can bc abso:hc d 50

“we have,

doi = SEn0] + on0f + (Qf — 20850 0 + Vi Oinw + U, 03 05 + U™, 047 05

d*0i= don 0 — oA Qi 07 — (Sin0] + (9 — 2061)n 0))aw -+ Oin (aaw + £5a 8))
—(Q — ot + TH05) (0n 0] — GG + S'gé.f;w + T90kn 00 + T7,05004)
+(dSi + 5i0% + a8i)aOiaw — Si0in kea 0F + (AT, + 2T QL) n 0 A 0

+40n 03008 + O, (S 0] + (O — 2080 0))n 0F = Bn Qn07) - mod(0])

m

From this we may extract the following two properties, iy

d5i — 018k + 510k + 208} - (do), 6 — X
di, — Q0L + O30 + U39, — 0% + (do) i 6%~ ,;kg;.

i
o

T

mod{basc)

_*We now compute the group action on part of the structure function by taking ""r

29 = 0 mod(8)),

B
.
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By writing E} = i; + 26;: and setting the trace and trace-free part of the first
cquation the trace-free on i,j part of the second equation leads to
—(do), = %
dS‘; - 15'? + 5‘19;‘ -+ 20{5";: — f,; = 0 mod(base) (2.121)
AT, — GO + UL + U40%, — ol + ne;6l — w8l = 0
We may then use the group action to translate

Si=0 and Ti=0 (2.122)

1

where we note the translation on Ujk is the trace on the second index. Next we
compute d*05 mod(#, 53)

(Fa:';” = (X1 D8})a Oinw + doat —on (Q; - aﬁj‘;-)A 0

J
— (% —208)a (on 0+ Vibjaw + UB 05 08) + (dVF + ViQ5)Abirw
+ (AU, + 2UE (% — abi))n05a 05 mod(#, 63) .

M 2

By using equation (2.121) in this we have
dVi — RVF + Vi + 20V + 5E 42860 =0 mod(base)  (2.123)

so we may translate the trace of Vji to zero. With the corresponding reduction
of the structure group we have thus eliminated Ej- and #;. With the same
absorptions {using the new frame) we may then write the structure equations
as '
i
dot = Q;-A 09 — Oinw L
A0y = onl}+ (2 — a8i)ad] — Oinw + T 007 08

dOy = onl+ (R — 206805 + Ritinw + Vibjaw + Ut 0in0% "=

do = anw +_W°-k0£z\ 0%
(2.124)

iy

where W, T, V/, R}, and U bc}k are functions with,
w=Vi=0

Il at this point we try to prolong these equations we obtain an {e}-structure. m
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Next we look at the case of maxi-nal symmetry,

o Theorem 2.5: There exists a unique {e}-siructure with a maximal dimensional
symmetry (automorphism) group. For this {e}-structure the structure function
vanishes, and a representative for the system of equalions giving rise lo this {c}
-structure is

&3z

S5 =0 (2.125)

Proof: The assumption of maximal symmetry implies that the structure function
(the torsion above) is constant. We will then demonstrate that theonl y possible
constant values for the torsion are zero. The first implication lor the structure

function to be constant is
AW, = dT%, = dV} = dRj = dU*, = 0
We set d?w = 0 mod(w ) to find

d2w = .;CYI’\ (W“JAH*C’A Of) + W‘:deﬂgf\ Ojf - Wcjk0£A Q;‘A 0‘1 rnod( w J

where by equations (é.124) we then have

—oWeuat Wil + Wil + Wehio =0 c=1,2
=3 Wha+ WO + W5, =0

mod(basc)

It now easily concluded by choosiﬁg the different values for ¢ that

cjk = and so dw = anw (2.126)

d*»: = 0 then gives

da = prw (2.127)
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where p is a one-form ( and (p), = 0 w.l.o.g ). Now put d*6} =0

&P = dQ_';-AO{ —Qia (Qf/\ﬂ{ — ng\w) + anwn 0}
—wA (cn\ 05 + (U — abi)n 0 — Ginw + TC'LB-"A 0’“) |

so that
df = Qia Qi‘ +wnob} + ~°‘{:ij 02+ Thn o5 + Sjk,f?f,\ 0! (2.128)
where Tjk are one forms and Sjk, are Tunctions subject to

Tf:‘k =0 Stk = Siiwy =0 (2.129)
Next compute d26} o
0% = donli — o (Qi,\o-'f agx‘lb) — pawnll
+(a 25 + wa 0'6‘ + r Lan I + 7 LA 0% + S"LIB{‘A 64)n 0
—(% — a6i)is (ot a; + (T a81)A 0% — Binco + Tk,oknof)
—(onli + (Q = 205\\'\ 03 ch';ﬂ AOi‘)Aw_’ + Ginanw (2.130)
T, (1= c)asisp + QLér + + 8107 ) AGInOF + (1 — )T+ on 00 0}
-I-l’l’kﬂ;‘/\ 02/\&) + T (T"jmﬂg;\ 0T — Ghaw)aOF

+T ,k(V_}lf)gAw + R}OIAW + chjmob" 07 VA 0% + Gin an w T“Aa-’/\ Piaw.

Il we now -‘let

E:do‘—d’.ﬂ& "- nT=p+o (2.13]_)

we then have

1l
o

T (abioy +40f67) — T + T% 0o + (&) 6 (2.132)
TTn (670 + 800 — QT + To + () 61+ it -

T (—abl6p + 600 + 8500) — T, + (), 6

0  mod(base)

1]
o

l.}-'_./'
t

[
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where in the first equation we have used that Tz(ijk) = 0. Taking the trace on

the first and third of these equations we get

() = () =0
from which we conclude
T =0.
By the condition T[‘;,-k] = 0 the second equation in.(2.132) gives
(g =74 =0 mod(base) (2.133)
We have that equation (2.130) at this point is
En 0] — nawn 0 + (A0S + SEL0SA 00N 0] — Ut 0iniaw =0 (2.134)
from which we find
€, ,=n=0 mod(base) (2.135)
and this with (2.133) gives
E=0 | mod(base) (2.136)
We now take d20%
20, = (orna+ )l ~ on (R — abi)ali — Oiaw)
+ (UnQF +wacbl + TEA I + S5 080 00)n 0% — 2(—0 + )awn 0}
— (% — 206L)a (onlf + (0 — 20650 0] + REGIAw + V0dnw + U0 0.)
+ RL(Un0] — Ofna)aw + Vi(onl] + (O — ab)als — Gna)aw

+ U (6567(2 = b~ c)a + S ot 810 )a 072 0F
+ (VP54 Ut ) on 0] n 0F
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We then find
(@) ,, = BRi=0

(#6) , = 20i=0

2

(dzgé) a0lof 4 -b= Ui, =0
and so |
405 = onlh+ (% — 208N + UL 0In0E + U 0n05
Now use (2.133) and write
Th = Whw + Xj 05 + Y04

where we are assuming that W, Xi,, Y}, are constant by maximal symmetry.

We then compute d*Q; =0

i

P = dUAQY — QindOf + dwn o6l — wa(oaa + £5))
+ T/I/LaAon +Aﬂk (O’AB’I-]-QI Aa’;—a’/\ﬂé)/\ﬂk
+ Vi (oah+ n 03 — 2005 + U 07805 + U 07 n0) 26F

mr

- (W;kw + OSIMOI ;::.—912 + jllkGS)A dos
so that
(dzﬂi)aka — ;k =

( )agkgi X.;'Ik =0
( )g;-ag, = W =0

I

Thus 7, = 0. Similarly we may write
0= W0} + X;6

68



where W;, X; are constants by the assumption of maximal symmetry, and by

using equation (2.134) there are no 0} terms. Now take

d*a = ocaarw—(ora+Eaw+ Wi(dt] —0iralaw  (2.137)

+X;(oal] + Qhn 05)Aw
and putting the following coefficients to zero we have

(#a) , = W;=0
o [hed

(dza)ag{w = X;=0 (2.138),
and so = 0. Equation (2.137) now tells us that
Enw =0 C(2139)

so that when we wedge equation (2.134) with w we have S,Ef = 0. 7At this point,
equation (2.134) is
' .""—‘"E‘riEA 0 — Um'k I 03Aw = UZZ'LU%A 02Aw ={

'..rand by wedging with 8{ gives U3 = U, = 0. This of course implics £ = 0.
We have thus determined that the structure function must be zero. I is shown
in [19] that the trivial system of third order eq'UaLi_o'ns

daiﬂi

di?

=) -

admits a symmetry group of dimension n? 4 3n 4 3 and so these equalions

generate the {e}-structure with maximal symmetry. ]

From this theorem we obtain, \

Corollary 2.2: All sysiems of third order differential nol equivalent by a poini

transformation to T'= 0 admit ¢ symmetry group of dimension sirictly less

than n? +3n + 3.
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For completeness we give,

Corollary 2.3: The {e}-struclure with mazimal symmetry has the structure equa-

lions,

dw = aaw

i = Qi — finw

oy = onli+(Q — adi)adl — Giaw
A0y = onl+(Q — 206)r 0]

da = —orw
de- = Qia Q;‘ + wa 0"5;'-
do = onn
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Chapter 3

Parabolic Equations

3.1 Introduction

In this Chapter we would like to apply the Cartan equivalence method to study sec-
ond order quasi-linear parabolic partial differential equations in the plane under the
pseudogroup of point transformations. This study is to be contrasted with the one un-
dertaken by Kamran and Shadwick [27], and Kamran [24] {or quasi-lincar hyperbolic
and elliptic equations in the plane, where necessary and suflicient condilions were
given for a quasi-linear non-parabolic second order partial dillerential equation Lo
be equivalent to certain types of f-Gordon equations, with emphasis on equations
admitting infinite Lie pseudogroups of symmelries.

Following [17], a partial differential equations of sccond order in one dependent,

and two independent variables

2 2 2
F(m,y,z,& % a—i _(? z 8_;:) =0 (3.1)

defines a locus in the space J2(IR? IR) given by
L= {(z,y,z,p, ¢ 31t) € Jz(les R) | F(z,y,2,p, 4,7, l) = O}
where (z,y, z,p, 4,7, s,1) are standard coordinates for J2(IR?, IR). We assume that £
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can be identified locally with an imbedded 7-dimensional manifold £ C IR” and that

the function satisfies the non-degeneracy condition

OF 8F OF
Y TS 9
(ar’as’ a{,{)?*5(0,0,0). (3.2)

so the equation is truy second order. A solution to (3.1) is then a function
[:U—- R satisfying j2eX.

For a recent analysis of the role of characteristics in geometry of second order hyper-
bolic equations see [17).
We will be interested in the parabolic Monge-Ampére equations that is equations

of the form,
F(z,y,2,p,¢,1m,81)=e(rt —s*)4+gr+2bs+ki~f=0 (3.3)
where b, ¢, f, g,k are smooth functions of (z,y, z, p, ¢) satislying,
ef4+gk—0"=0. _ (3.4)

We shall see in the next section that these equations enjoy the property that they can
be cast into an exterior differential system on J*{IR?, IR). The original investigations
on the equivalence of a restricted class of parabolic Monge-Ampére equations under
contact translormations were made in a famous paper of Cartan [12]..Monre recently
these equations have been considered from the point of view of conservation laws
by Bryant and Griffiths [6]. In contrast to these works we consider the problem of

equivalence under smooth invertible point transformations,
(%,7,7) = ¥(z,y,2) .

We proceed first in the next section by giving the differential geometric framework

for the Monge-Ampére equations which will lead to the equivalence problem. We .= .
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then proceed to study some particular invariant classes of (3.3) which culminates in
determining the invariant classification of the heat cquation and by using Theorem

1.10, an invariant coframe for Burgers’ equation,

r—qg—zp=90. (3.5)
The symmetry properties of this equation are well known and discussed in Olver
[33] and Bluman and Kumei {3]. By using the equivalence method we delermine
an invariant frame associated with (3.5) which determines the Lic algebra of the

symmetry group all without solving any differential equations. T'his is in contrast

with what is required in the standard infinitesimal approach in [3] and [33].

3.2 Parabolic Monge-Ampere Equations

We begin by briefly discussing some of the geometry of what are known as Monge-

Auipére structures. The flavour of this discussion follows the exposition ol Bryant

and Griffiths [6]. To define Monge-Ampére struciure we first use Bryant ei. al.[5] or

Kobayashi [30] in defining

Definition 3.1: A contact manifold (M?*+, Zo) is an odd-dimensional manifold
with @ Pfaffian system Ty which is locally yenerated by a one-forin 0, with d0
being of rank 2k.

A locally generated differential system means in this case for M**! {here exist a

cover {Ua, ¢o} of M, a collection of one-forms 6, and a collection of smooth functions

- Aag : Uap — IR” such that

(ﬁﬁaﬁ.a)‘aa = /\aﬁ,(q/’aﬁ.ﬁ)'oa

where (¢opq) : Ung — Uy and ($apa) : Uap = Up are the canonical injections. This
notion extends to arbitrary differential systems in an obvious way. If the manifold is

orientable the contact structure is generated by a global one-form [30].
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For the contact manifold M?**! the two-lorm d0 defines a conformal symnlectic
structure on € = ker(0) € T(M) (the structure group of the frame bundle of £ is
reducible to esp(k)) and £ = T*(M) mod § = T(M)/Z, so

do: & — &

is an isomorphism. The formns 0 and df define a reduction Pq € F*(M), as in Chapter

1 Section 1.1, to

0
H={(‘° ) ,ceR—{0}, T € csp(k), veIR”"}

v

where T correspond to the conformal symplectic structure on £ (and £*). What this

reduction corresponds locally is that a local coframe (6,w*, %) lies in Pg if and onty

if
d0 =X wiag' mod(d) XeCe(M). (3.6)
t=1
A diffcomorphism ¢ : (M, Zp) — (M,Zo) satisfying the ¢"Zp = Zo, is called a
contact trausformation.tLoca}ly ¢ satisfies ¢*0 = A0 where A € C*°(M).

The basic result about the local structure of contact manifolds is the follzwing
(30]

Lemma 3.1:  Let (M**1,0) be a contact manifold. About each point p € M there

exisls an open set U with local coordinates (z,z,p') such thal

0=dz =Y p do*. (3.7)

i=1

We call a coframe (0,w',n’) on U admissible if it satisfies (3.6) and coordinates

(z,2',p") as in Lemma 3.1 standard coordinates on U. The frame (0, da, dp')

is admissible.
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Now we restrict our attention to 5-dimensional contact manifolds. We first point
out the following interesting geometric property ol Monge-Ampére cquations whici,

distinguishes them among all second order partial differential equations,

Lemma 3.2: Solutions lo equalion (3.3) are in one-lo-onc correspondence with
two-dimensional integral manifolds L : U — J'(IR*, IR) of the differential system
on (JY(IR?,R),0) generated by the lwo-form

K= ( dx, dy, dp, dg )A K t( dx, dy, dp, dr) )

[ F u
where - K = | S
trr A
| 0 e (o —f Y A
£ = : , I = , H: =
—e 0 f o —g —b

and the contact one-form 0 = dz — pdx — gdy which salisfy the independence

condition L*(dzady) £ 0 .
~ This property property leads to the general geometric definition,

Definition 3.2: A Monge-Ampére struclure on M® is an czlerior differentiol sys-

tem I which is locally generaled by 0 and a lwo-form &, where & and d are

linearly independent.

The rank of a Monge-Ampére structure is defined to be the rank of & ( as a skew-
symmetric form ) and this invariant can be either 2 or 4. We assume the rank of & to

be constant on M. (These definitions could of course be easily extendurd to manifolds

of higher dimension.)

Definition 3.3: If the rank of the Monge-Ampére structure is 2 then il is said lo

be parabolic .

e
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Locally the rank two condition is equivalent to the condition
K#0 det(K)=(ef+ghk-0)=0. . (3.8)

A Monge-Ampére equation satisfying these conditions would be parabolic by “uie
standard definitions for second order equations, see [17]. It is now easy to define the
equivalence of Monge-Ampére equations by using the differential system Z generated

by £ and 0,

Definition 3.4: Two Monge-Ampére structures (M°,I) and (Ms,f) are equiva-
lent if and only if there exists a.contact transformation ¥ : M — M such that

¢*Z = I. Locally this is the condition,

'E=Asg "‘mod(G) where A € C®(M) . .. +(3.9)

QOur discussior. up until now has been given rather generally in terms of con-

tact transformations, however out main goal is to study local equivalence of Mouge--

i .
Ampére equations under point transformations. Thus we assume M”® is now an open

set U € JY(IR?,R) with the standard coordinates on J*(IR?,IR). We then have,

Lemma 3.3: Let (0,dz, dy, dp,dq) and (9,dz, dy, dB, d7) be as in Lemma 3.1, then

a contact transformation (%,%,%,7,9) = ¥(z,¥y,2,p, q) is the first prolongation
\

of a poini iransformation (%,7,%) = ¥(z,y, z) if and only if

\
'

(5Y [ o)
dT ' dz
Uil dg [=8] dy " =
dp dp

\ 47 ) \ 94

76

et



where S : U — G where § is a smooth function leking valucs in the Lic subgroup”

G of GL(5,IR) defined by

c 0 0 ceR, Aie GlL(n,R)
G= B Al 0 Ei, B ¢ R . {3.10)
(tA-)iEF (tA“)iD;“-' e( ‘A"’)f;- D; € Maoyg (symmelric) N

This can be verified by a calculation similar to appendix A or sec [24]. Now given a

contact structure x we have the local invariant under point transformations:

Lemma 3.4: The condition e = 0 is invariant under poini transformalions.

Proof : After a point transformation the coelficient matrix K of x becomes

7o AL (A7) D F o H Aj 0
0 a(A)} ~(*H) E ] \ ("A7)iD¥ c(*A7);
so that
i = (A)EF(A),
From this, the invariance property e = 0 follows immedialely. ‘ ]

Equations that satisfy this invariant condition are just the classical quasi-linear
second order equations. This Lemma simply:fexbresses the lact that the properly of
being quasi-linear is invariant under point transformation. It is important to note

the condition e = 0 is not an invariant under arbitrary contact translormalions scc

15] pe. 295.

We continue now studying equation (3.3) with ¢ = 0 and 0* — gk = 0. By the
non-degeneracy & # 0 ( which is the same as (3.2) ) we may assume without loss of
generality that ¢ # 0 and dividing (3.3) by g we have that any parabolic quasi-lincar

~

equation can be put in the following form v

Fer42hs+hiie[=0 (3.11)
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where h(z,y,2,p,q) = kg~ from (3.3). Suppose now that (U,0,%) and (V, 5,%) are

local Monge-Ampére structures with

0 —f 2h A2

f 0 =1 =2h
-2h 1 0 0
N VO

K=

and corresponding K giving rise to quasi-linear parabolic equations of the form (3.11)

above. By changing to the (admissible) coframe

! 1 000 dx
32 L 100 dy

= Y - (3.12)
72 0 00 1)\ dg

we find & = 7'A&%. Performing now the same change of coframe in the V system we

have

Lemma 3.5: Two parabolic quasi-linear equations are equivalent by a point trans-

Jormation (%,§,2) = ¥(z,y,2) if and only if

3 [ §

[+

where § 1 U — H', with W' being the subgroup of the Lie group in Lemma 3.3

: ap a . 0 d
Ai=| "7 7| and Di= ' (3.13)
0 a3z /. dy dy

o

S
€

-,

==

with
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Proof The frames (8,54, 7') and (0,&',7') being admissible means we need Lo only

impose the condition (3.9) in Definition 3.4. Writing

- = =i ; 0 0
R=win Qi where Q=
-1 0

we have

-~

UiE = Gin ‘ALQE LAY (af + DLE™)  mod(D) .

HY

- and the equivalence condition then requires,

ALQE(AT = A QL ALQE(ATYIDL =0 A eC®UXC)  (3.14)

with A nowhere vanishing on U x G. Explicitly we have

) . —AZAT (ARY?

QA = ety | T )

—(A7)* AA
which by first condition in (3.14) we have Af = 0 giving the form for A:;- in
(3.13). The structure of D% follows by a similar computation. |

We now proceed to study the equivafér;ce problem with the structure group in this

last lemma.

3.3 Parabolic Quasi-Linear Equations

In order to apply the equivalence method we first need to compute the Lic algebra

valued Maurer-Cartan form for H’. From Lemma 3.5, we (ind

c 0 ¢
dS)s™) = | # . 0

\ T B o8- 0

2
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where,

¢! ' 0 0
s = —c (A7), B (A7) 0
—c (D(A)EBI — BY) —c DA, ot AL
a‘ud
Qi = dAL(A)s B =1(dB/ - QiBY) o= lde
5 = (‘A)i(dDf — o DF)(A™), TF = =1 (BiB* + (A7) (dE — oBF)) (3.15)

J

The form of A; and Dj- in Lemma 3.5 tell us that Qj— and I} may be written

Q=

2

3 B =

o oo . 0
0 0 ! o Do

~ “Next we would like to apply the equivalence method to the lifted coframe
510,8%,2%,7",7%) | (3.16)

where the hatled forms given in (3.12) and the structure group of Lemma 3.5. The
task of examining all pos&;ible invariantly defined branches which may arise would
be extremely lengthy and not particularly useful in view of the large number of
subcases™which would nesd o' be considered. While we will start by applying the
equivalence method in as much generality as possible we will inevitably be lead tov'
making choices for the branches we pursue. Thus we will chose our branches so
as to obtaig:gharacterizations of of Burgers’ equation the heat equation and some
others, which‘satisfy our invariant as§umptions. It will be seen that even with our
assuriptions the computations are rather exicnsive. If we start with the coframe

in (3.12) which is associsted to the quasi-linear equation (3.11) we may write the
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structure equations in the general form

df = oaf+wiang’ +g;wal+ hiyial

dot = Aia0+ Qgij + R;ijO + Sipind + Thwia 7}"':' -5 wlaw?
dpf = Tia0+ E}ij + (0'5;'- - ‘Q})A?}j + \GiijO + l'Vj'qu()

+Yiwi an® + B wlaw? + igtan?

(3.17)

where g, 2, k%,[,3, R, 5,T are functions on {/ x H. We now apply Ciirtan’s method of

equivalence to this problem. First we absorb torsion by

o =7 - giw — h;y! gt = B‘ — ijj — S;:'rr'"
5= 58— kiw' + (Yor — g26ip*  Ti= Ti- Viw! — Why

g1 — Ylll st
0 §2

m=m+mw—(

so the resulting equations can be written dropping hats,
dd = onl+wjap
do' = Bal0+ Qaw! + Qiaw?
dw? = B0+ Lnw® + Tfjwlzx 7

dl = TAQ+ Siaw? + (0~ QY)a "+ Y w'an? - Tyian?

= YO+ Diawt + Sanw? + (0 — D2)an? — Qday!
-}-?fkwln 7;" + ?21;1/\ n®

where
T2 =172 Y =v2 Y
15 = 41 n=ry+si—Y,+g
=1 —2
Y12=Y112 Y12=Y122_91+32“K212

2

T=lthy+TY TP=C—h+T,-1T4
By expressing the condition d?f A 8 = 0 we get

I'=Ty, Yy;=0 =0
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so that T?[,T]zz and 712 are the only possible non-zero torsion terms in (3.19). The
infinitesimal group action on Tfl and T_’fz are determined by putting

(d*w?)aw?af = 0, which gives
g

Al 7Fie O @2 _Tr ol —
i+ '[ilz(o- _Sz?) F=Tafy =0 mod{(base) . (3.22)
T2, + T(o + Q) —202) =0
While (d®n")aw?alan* gives,
V), + V15200 —03) —-T5,% = 0 mod(base) . (3.23)

We will make the invariant assumptions T-ig = ( and ')7:2 # 0, and then use the group
action t.anslational group action which we see in (3.22) to translate Tfl to 0 (thus
by equation (3.21) T translates to 0), and scale 712 to 1. Thus in a modified coframe

which gives rise to this choice of invariants the new structure group satisfies,
Q: = 20! f2=0  mod(base) (3.24)

The structure equations in the next round of computations will be such that the

invariant conditions
I'=T,=T,=0 and Y,=1 (3.25)

are satisfied (after the absorption has been performed). In this next round of com-
putations we return to equations (3.17) but append the conditions (3.24), and thus

with this first reduced group and modified coframe we perform the absorptions,
N . . s |
o = G—g =hm, B=p - R —Sin + SR

~ ! 1
Q= O 4+ That — (9 — Vi, st )t + (§R§9, 0)

B = &i- k' + (Y - a26i)n" (3.26)
Y A § -
T = Ty —wig- | 2727 ]

Rn?
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With this absorption and taking into account the invariant conditions from (3.25)

above the structure equations are then,

dd = onl+wny’
dw' = BA0+ Q{Awl + Qiaw?
dw? = 20Aw?+ Efwll\ 0+ ??njz\ 0+ ngngx 7+ 5w aw?

dpt = Y0+ Siaw? + (0 — Q)an +whagy?®
dn? = Ta0+ Siaw! + Sanc? 4 (0 — 201)ag? — Qlay!
+V WA + Tytan?.
where

R =R} 3°=5"+2Y -2 ??1 =Y+ =Yy + s
5i=8 TP=P=h—2T} YiL=Yi+q-2V\-Y) (3.28)
Expressing d20 A 8 = 0 gives

-2 _ w2 _ -2 2 e
Yll_oa le——s , =Ty

To determine the infinitesimal group action on the left over torsion ferms we first
take (2w?)aw? = 0, to get,
dﬁf + ﬁ?(a =)+ :5_'321 =0
dgf + ?f(?.o‘ —3y) — 3392 = 0 mod(base) (3.29)
d55 + 5220 —4Q) = 0

The form of the infinitesimal group action in these equations demonstrate thal the

assumptions
R=0, ©5'=0. (3.30)
are invariant. We now assume this to be true. Then use

(2(dPw")nw? + (P )aw!) a0 = 0
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lo find,

AT + To (0~ ) = Ty + 281 =

PR mod(hase) (3.31)

dI%, + Top{c —201) = 0

which we assume ng = 0 and translate —Tgl to 0. Lastly selting
d2WPAnal — 2P0 A WPA 0 — 2d20A WA = 0

results 1n, ;

d5' +FQ 4T —20) = 0 mod(base) (3.32)

and so we may translate 3% to 0. The translation of Tﬁl to 0 and 32 to 0 give rise to

a new colrame and structure group so that
Al=0 =-2T" mod(base) (3.33)
In the next round of the computations we will have the invariant conditions,

=5 =T=%=0. (3.34)

-2

R
alter absorption. With our reduction (3.33) we then perform the absorption,

" - 1
o = F—gw-—hy + (W + é-Rg)G _
. , 1
N = &+ Tt — (9" - Yo' + 5 R0 + (s + 21 )
A 1 . .
T = 11— 520 + Toyn') — Viw? = Wy? | (3.35)
B o= 5 - k' + (Y5 — 0)60)7" — (s* + 2V )y
2 = 5 - Ko+ (Y — 0800k - 2(s! +2v)p?

) . y 1
T8 = TP Vil ~ Wiy — Rin' + (W] = SB)”.
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Taking into consideration the invariant conditions (3.25), (3.34) the structure equa-

tions are then

dd = onl+ Wj/\'f]j
do' = Qlaw' —2T'aw? + Tpwan? + Riw'al 4 ?}wﬁn()
do* = 20%ir0?
d! = TWAO0+Saw? + (60— QD)an' +w'ay?
A = TIA0+ Tiaw' + Saaw? + (0 — 209497 + 2T A’
+Y i an + Tylan?
where
RBi=R-3  Yu=Y-Yitp+s
Téz =Ty —2W; ?fz =Yf — Y+ — 2V
5 =5} P'= = hy — 2T}, + 202

As well d?0A 8 = 0 gives

Computing

determines,

—2 52 =1
Yi;=0 =Ty

d*w)aw? + (Pwirw' =0

AR, +Ryc+ 5,5 = 0

I

dﬁ: + 23‘;(0 - Qi)+ 2§;T' 0 mod(basc)

dS, +5(20 ~301) = 0

from which we will make the invariant assumption Ti: = :S_; = 0. While

((dzwl)/\a;\ n' — Q(dznl)nwz;\ r].l) aw' =0
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gives,
751 7l
dl'y + 15,0 =0 mod(basc)
which we also assume to be zero. We have at this point assumed,
1 all Ifal +
Ri=5,=0=T13=0. (3.10)

Thus all the torsion in equation (3.36) is zero, and the structure equations arc of the

form
di = oal+wiay!
dw!' = Qaw! = 2T'AW?
do? = 201aw? (3.41)

dy' = TWHO0+ XA+ (0= Qan' +w'an?
dn® = Y20+ Diaw! + Spaw? + (J—QQ})A1]2+2T’A1]'
We will now impose the invariant conditions on an arbitrary parabolic equation and

find a canonical form for the equations which satisly the conditions.

Theorem 3.1: Any parcbolic partial differential equation of the forn,
tae = £(P(@,5,2) + 0 (0, 1,2) 22 20 + L3050 2) with o =g) (342)

" and g, 9%, f° otherwise arbilrary, admilts by application of the equivalence method
the siructure equations in (3.41) on U x M where H is the Lie subgroup of TV

given parametrically by

E1 .
ay = —2 c“l . as=(a)?, B'=0. (3.43)

Proof : We need io verify that any parabolic equation satisfying the invariant
criteria up to this point must he of the form given in (3.42). II we begin with

the initial coframe as in (3.12) and note that the assumptions that 2} = 0 and
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5% = 0 imply that dw? A w? = 0 which in turn implies there exists coordinates
such that w? = Ady'. In turn any partial dilferential equation satisfying these

conditions may be written as, (dropping primes)

zer = f(T, 9,4, 2,25, 2y) J (3.44)
We will assume that these coordinates have been chosen. We then continue our
parametric calculations with the coframe & = dz — pdz — g¢dy,

S = s 51 = dp — fdz
“ * " p-fdu (3.45)
& =dy 7t =dq .

The first step is to find the torsion terms Tfj and _)7}2 = Y}, in equation (3.19).
Al the identity of the group they are found to be,

2

(f1j)|e - (lej)e =0

(?:2“6 (Y111)|e = (dﬁl)aqu = fq

fl

From equation (3.23) we use as to scale ¥, to 1 leading to the reduction of the

structure group by,
a3 = (a;)? B*=0

where B% = 0 comes from the translation in (3.22). We then change the coframe

(3.45) by

1
& = —dy % = f.dg (3.46)
q

which gives rise to these reductions. Now using this modified coframe we de-

termine the next set of invariant conditions (3.34) by computing,

- 1 dfy .. 5= 2y -
di* = —‘f"‘(d_:’-"l + fzf + qunl + foal In@? (3.47)
q

87



from which we determine,

(T§2)|c = f‘m (_['-2‘1)| qu (TI-:”‘ =0, (3.48)

Ty 2

The last torsion term we need at this point is

| df,
S — (2Y 4 oyl ~2 o (g5 iy 0
(S )lf—’ = (3 )e -+ 21’;1 —+ (dw )3132 +- 2 (([U )G‘;f‘ = .?,f_,, - EE.’I—'
where the second term arises from the absorplion in (3.28). The new colrame

corresponding to the translations of Tﬁl and "}71“ to 0 is then

~ digY ~2 | Ipy 7

5 = i () By

7= fqd‘I+(fp 2} [f{_-z:) ok (3.49)
@2 = f—:dy

7 = dp-— fda

where w! and ' haven’t changed. The parametric reduction of the structure

group is given by

. (2]
B'=0 and ay = —2F'— |
C

. e . b '
In order to determine the restrictions on [ by the assumption 1%, being zero

which from (3.48) gives,

qu =0 thus f = fl(:c,y,z,p)q+ f”(:c,y,z,p) * (350)

From the frame (3.49) we may determine the final invariants by taking dw'. We

first find,

_ ) -
Gl = k=5 (2] + 22 (a5

zfpquq — (qu)z
4f;
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while (?i) = ( is casily seen by using (3.50). Next we compuie,

(Tl = (Th)le —2W;)le
Jog _ 1 0 (dfy) | foe 1/
R (“i)*'o}’c, (@ =2(37) 0

[Finally we compute,

-] 1 1d fm 1 f dfq
Ml = =3~ () -y (- 572)
_ L (o ”,%)
= i (P -2
2fo{Jam = Jeq) + 02 epofo = foafze) + [ (2fope Sy — (qu)z) ~ Joafzq

4qu2
The assumption that -.5_': =0 is zero is

foi® = 2fopefy = 0
Substituting the form of f in equation (3.50) in here gives

2

(o) —2f, 1 = 0

whose general solution is,
1 0 1 2
! =% (g(20,2) + ¢ (w0, 2)p) - (3.51)

While requiring R; = 0 and taking into account ?i = () gives,
2 o+ ol — 1) = F3(fa+pf2) =

and then inserting the form of f! given in (3.51), into this equation we find

a e,
a_g (3’ Y.z ) -6—mg1(.1;,7,z)

and finally we have finished the proof. n
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We may summarize this result by saying that any parabolic partial differential equa-
tion which satisfies the invariant conditions in equation (3.25), {3.34) and (3.40), can
be put into the canonical form (3.41). We now check the conditions of Theorem [.11
to see whether the structure equations satisly the conditions for an infinite Lie pseu-
dogroup. The dimension of the solution space of the homogencous system (Lhie kernel
of the absorption) is of dimension 5 and can be parameterized by Ky, Ka, K, Ky, .

This results in the freedom

0= ﬁi, T = ¥1 4 Kijw?, = flg + Kow' 4+ Kyw? + K0 + 2Ky 359)
- , -~ 9.02
o= 3‘, El = El + I{ng -+ I\,lo, T‘E = "I‘Z + ](1&)1 + ]\)4[.&)2 + [\’50 .
while the Cartan characters are found to be
o\=3 o,=2 (3.53)

We thus have dim (h"}) = 5 s 342(2) equations (3.41) arc not the structure equalions
of an infinite Lie pseudogroup.
From equation (3.52) we may use K; to paramelerize the [irst prolonged group

H® and we now determine,

Proposition 3.1: The prolongation of the slructure equations

dd = onl+w;a Y
do! = Qaw! —27TAw?
dw? = 20law? (3.54)

dﬂl = T1A0+21Aw2+(U—Q})A7]1+wIAT[2
dp? = TIA0+ Iiaw! 4 Saaw? + (0 - 201)ag? + 2T A

gives rise to a G-structure on U x H x I'I(ll), where I'[(II) C HY is a two dimen-
sional subgroup, with 10 lensorial invariants T, : I/ x H — IR which arc acled

on trivially by Hgl).
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Proof : In order to find the structure equations for the lifted coframe first denote
by B; = df; the Maurer-Cartan forms for H"), and then apply d? = 0 to the

equations (3.54) of Theorem 3.1. Using d*w? = 2dQ}aw? = 0 we conclude,
40! = £ a0 (3.55)
where £ is a one-form such that (1), = 0. d*w! =0 gives,
dY!' = Biaw? + T'AQ] - %{mwl + fonw? (3.56)
where £ is a one-form and (€3} = 0. Next we take,
“P0 = don—on (wian?) + (U aw! — 2T Aw?)ag!
~w'A (1AW + TR0+ (0 — QD)an') + 20 aw?an?
—wiA (Eiaw! + T2 0 + (0 = 20)an? + 2TA9Y)
= (do— WA T — A THA 0
so that
do = WA T+ WPA T2 4 £3a0 (3.57)
where §3 is a one-form such that (£3), = 0. Continuing we have,
&t = dYA0 = YA (oAl +winy’) + dE AW’ — 25yA W aw?
+ (do —dQ})an! — (0 = QDA (Braw? + TIA0 + wlan?) + 2dT A g}
+ (aw! = 2T w)an? —wlA (Ziaw? + TA0 + (0 — QDag? + wlan?)
= (dE1=3Z;a 0 + 3T A0 + T2p —~wlaA Do —aa T 4+ £1ap! — E24 O)aw?
—(Eonn! + WA T + %glml)f\o (3.58)

where we have used (3.53), (3.57) and (3.56). Now wedging this with w? we
conclude,

& =272 4+ T + Thpw' + Tyyn?

& = T+ Taw? + Tam?
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Using these expressions in equalion (3.58) that we just computed, we [ind
dS; = Binl + Panc® + 35 Q) + 3PA T AT +oa Y,
+w1f\ Eg — §1A'i]l + '11;33?]1#\0 + {2!\0 -+ E.|Aw2 (359)
where £ is a one-form with (&), = 0. Last take d*3* (o find,
d2T]2 = dTir0 — T2A (O‘Ao -+ ij?]j) - EH\(Q}AWI — 2T1Aw2)
FBTAD + 3 T+ A T2 b a8y —Ean’ + En 0 + Eiaw? + Than'a0)aw!
+dE3aw? — 289n Maw? + (WA T+ WA T2 4 Ean ) = 26 aw?)an?
~(o = 2QHA (Z1aw! + Taaw® + 1200 + 2T ay")
+(2TIA Y — Eaw! + 268w )an! = 2TIA(B1aw? + (0 — Q)ag' +w'ay?)
which gives,
dY? = Bsnl+ farw?® + Biaw' + 272400 + Eanws® + a2
-I-T33771Aw1 + £gn w? + Exnll (3.60)
dEg = ﬁg/\wl -+ ,83sz -+ gﬂlf\?]l - ﬁ‘lf\() + ‘1(T1A E| + T2A 22) + 2’![21\ T"!
+oa 22 - 261/\ 7]2 + 252/\ 7}1 + f,p‘\wl -+ £5A w2 - EGA 0 (36 |)
where {5, s, {7 are one-forms with (£5),. = (&) = (&), = 0. The lact thal
no f3; terms enter into df)}, allows us to use T}; in equation (3.59) to reduce the
structure group with out worrying about the absorption. By taking d*Q) [rom
(3.55) and (3.59) we get
PO = 2dT? + dTna0 + dlypnw’ + dTyan! mod(w*) (3.62)
Thus,
d +28:=dla+28, = 0 mod(base, h*)
and so we may translate T1; and T3 lo 0 resulting in
& = 2% + Tiap' (3.63)
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from (3.59). We have thus eliminated the group parameters X, K5 in equation
(3.52) (and hence B, and S5 vanish in ali equations that follow). In order to

further simplify the & and & terms we put d*Q =0
sz} = 2(én W'+ £3n 772 -+ T33T]]l\w1 + &a0)a w? + dTyqn nlnwz
+T14(T1A0 + (e + Qi)/\ 171 +wla 7]2)sz
which gives,.

£y = Tl + Toow! + Togn* + Thyn?

N 1 1 1 (3.64)
ET = —5_[,]4T -4 Tg]w + T'i"‘ln

Now we proceed as usual and perform the absorption,
Br=PF—b1, Pa=Pi—-&, Bi=Ph—&

in equations (3.59), (3.60) and (3.61). We may now compute the action of H()
on & (3.64)) by taking

(FTI =d(T1A Q%—Tz,«wi - %Tldnll\wl -+ (Tglg -+ ngwl + T:.ml -+ T1.|T]2)Aw2)
= deg + ﬁq =0 mod(base, h*)

where we have used (3.64). So we may also eliminate Xy (and $,;) in the

prolonged group by translating T5; to 0. We may now use d*Y? to find,
3
£ = —§T1-1E1 + Ta10 + Toow' + Toan' + Tosn®

"To make the last round of computation we absorb torsion by,

Br=PB~& Bs=PB—& (3.65)
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and find the final structure equations are,

dQ} = 272 w? + Tptaw?
do = w'A T+ WA T2 + (3Tiw! + Tagw? + Taan')a 0
AT = TIAQY = T2aicd — LT awt + (Tond + Touty' + Toay)ns?
dT? = 212008 - 373 Sane? — LT3 TA0 — (Toy + Tl an' = L7l mof?

FToam an? + (T8 + Toaw + Toan* + (Tos — Ta)yInw? + Togy'a 0
dX) = Borw?+ 3{EA QL+ T+ ) aTE) 4 04 X1 4+ (Tagyt +Toan' +1T040%)a 0
A5 = Bpnw! + Ban? + A(TIASy + T2 55) + 6p2A T2 4 on 5y

—%TMEM 0 — 4Ty an® + (2721 — T5)0a ' + Toawa 0 4 Tisn*a 0 .

(3.66)

The fact that the forms 8; or B3 will not appear in taking d of the first 1 of

these equations implies that the 10 different torsion terms
Tva, Ty Toay Taa, Taa, Tory To2, Toa, Tosy (3.67)

do not depend on the group parameters K3, K3, and thus the conditions of the

theorem are satisfied. - | [

Since the tensorial invariants in (3.67) are acted on trivially by H{" this G-structure
is of the type considered in Theorem 1.10 and we may apply our reduction theorem.
This will be done below in the case of Burgers’ equation. While the general parametric
form for the tensorial invariants in (3.67) are too lengthy to write down we can make

one simple claim in the case all they all vanish,
Theorem 3.2: If the invariant conditions,
T = T21 =Thy = Tsa = T34 = Tm = Jogg=Toa=Tgs =T =0 (3-68)

in equations (3.66) are satisfied then the resulling equalions are the cquations of
a transitive infinite Lie pseudogroup. As well, any parabolic cqualion salisfying
the conditions of Theorem 3.1 and the conditios (3.68) is equivalent Lo the heal

equation zp, = z
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Proof : By taking d of the equations in (3.66) the condition that all the torsion be

zero is casily found to be invariant. For example we have {rom equation (3.62)
dTM + Tm(ﬂi + 0') =0 mod(base) . (369)

Thus we only need to check the condition of Theorem 1.11 to see if we have the

cqualions ol a transitive infinile Lie pseudogroup. The first Cartan character is
a; =2. (370)

while the kernel ol the absorption by £; and Ej in (3.66) is seen to be 2 dimen-

sional, that is
dim ((h})®) =2

and thus the conditions of Theorem 1.11 are satisfied. It is a straight forward
calculation to check that the heat equation gives rise to the condition in (3.68)
by using the frame from Theorem 3.1 given in equation (3.49) which in this case

is,
(0,dz,dy, dp,dq) .
The last part of the theorem follows from the standard results on infinite tran-
sitive Lie pseudogroups [16]. E
One interesting observation we should also make in the example of the heat equation
is,

Lemma 3.6:  The structure equations for the differential forms (0,0 ,w?,Q}, 0, T4, T?)
with the conditions (3.68) are the Maurer-Cartan equations the for the finite di-

mensional subgroup of the symmetry group of the heat equation.
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Proof: We write the structure equations,

d0 = oal+wjny

do! = Qaw! =27 aw?
dw? = 20law?

dQl = 272.0°

de = WA +wPaAT?

dY' = TAQ - T2
dY? = 2720

and a comparison with the reference [33] pg. 122. gives the resuit. n

We now turn to the case of Burgers’ equation (3.5) and -a.ppl_y Theorem 1,10 Lo
reduce H. The calculations are too extensive to be done by hand bul we have writlen

a MAPLE program and summarize the computations.

Theorem 3.3 The equivalence class of Burgers’ equation z,, = z, + 2 2, is {nowri-
antly characterized by the invariant coframe,
w! = A(dz — zdy)
w? = A%dy
0! = A\Y(dz — pdz — qdy) where A = (7 + 27’):1‘
7t = A%dp — Mz + A7 (p? + zq + 22q)dy
7% = A=%(dq + pdz + zdp) + 3pdy

with structure equations

d0 = 0an*+u'an' +wian?

dw! = WAl — twlan®

dof = —Zutar? (3.71)
dp' = w'an? —wial+ 2ylan?

d? = Jwlaw? — 3wian!
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Proof : Mo defermine the invariant frame we have a number ol options, either
compute all of the torsion in (3.66) or compute part of the torsion perform a
reduclion and proceed with a standard equivalence problem on the base. We
will give the expressions for the torsion in equations (3.66) at the identity of H,

Tu=—1, Ty =-p, T24=0, T33=0, T34 =0, Tsy = —1(¢+ zp),
To2=(Up+ 2 g+2zp), Tox=—-3p, Tes =0, Ta =0

The following normalization for the torsion above

rj r L 1
I']A = —1, T21 =0, .F3320, .['51 _—"0, ng = —3
give rise to the corresponding congruences,
Q=—0, =0, T'=0, T, =0, 0=0 mod(base) (3.72)

This leaves only £; in the structure equations (3.54) after group reduction. The

frame change corresponding to this reduction is

(7 ) (a0 o 0o o \(7)
w! 0 A 0 0 0 w!
T | = 0 0 A? 0 0 ?
7k 0 0 0 A0 7t

\ﬁzj \ PA™ 0 dp+22 0 A7 \?;'2/

One last group reduction allows us to make £; = 0 mod(base), and the corre-

sponding the frame change is
Nt =7+ (P° + zq + 2Pp)A &P
' =T+ (p’ + 20+ 2°p)A @

which leads to the frame of the theorem.

The structure equations in (3.71) are the Maurer-Cartan equations for the symmetry

group ol Burgers’ equation (compare with [3] pg. 266). In the case of linear equations

we find all the invariants except Ty, vanish.
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Appendix A

Contact Transformations

Let U C J*(M,.,) be open, and let (¢, z}, zi, ..., 2! ) be a system of local coordinates
1 + P 0“1 g logy Y

on U. The contact system in these coordinates is generated by

0:; = dai_, —aidt where :=1.n , p=l.co

Any contact transformation W, : J% — J¢ preserves the contact siructure on J” for

p < a, and from this we determine the explicit form ol W, in lerms ol the point

transformation ! ¥g on M.

Lemma A.1:  Let (£,3) = (£, %0), ¥i(t,20)) = Wo(t, ) be a point transforma-
tion. The prolongation ¥y : J* — J* is given in local coordinales by

gb) dp

."_cj,_!_l = 'z,bf,_,_l(t, .’cf), mi, ...,:c:;_,_l) = (di a0 where p=l..a—1
Proof This will follow by induction. First W, is obtained by requiring
30, =0 mod(0;) (A1)
By computing in coordinates

i d d i do\
Uy(dz — Zidl) = (af_z P ¢) + (-(;—‘[zq - (-ﬁ) o \llg) dl

1For n > 1 any contact transformation is the prolangation of a point transformation by Bicklund’s
theorem [2].
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so that condition (A.1) gives

o (do\ 7 di
nE\a) @
Continuing by induction we find

‘I’;+]0P+l = ‘I’.(df:i _i:)+ldz)
d
= d) = v S+ 2501)

0z
B . 04 déi, . dé
- afH(aJ_ a—)” +(:r i )

which by requiring
111;0_,, =0 mod(ty,0a, ..., 8,)

gives the result.

To simplify the next lemma let ¢ = T;? and E; . We may now write the

contact transformations in more detail as follows,

Lemma A.2:

(46 0O 0 0 0

0 0
(0, | A4 a4 0 0 0 o0 o |[a
Ay B a4, 0 0 0 0
v = 0 0
. B . a4 0 O .
\ 04 / . . . . . . 0 \00, )
\ A. B} . . . . a Ao )

where A, = % Yi £ and B = g—ﬁ‘-
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Proof Lemma A.1 gives everything here excepl the diagonal terms, which we de-

note by D,. Lemma A.l gives

a i 1d i
Doy = 1’%’*’1 __9 (-l- 1’b"’) p=1l.n—1 (A.3)

= 9
Tpar  Oapyy \a dl

Now using the commutator,

-2
Ol dt] T Qal

and that
da 81/):; _o
97541 Oy
we find that equation A.3 gives
1098 1
Doy ==e _ 1L
o+l a aa:i-. GDP
A simple induction now completes the prool. [

100



Bibliography

[1] Anderson 1. and Thompson G. The inverse problem of the calculus of variations

for ordinary differential equations. Memoirs of the AMS, 473(98), 1992.

[2] Anderson R.L. and Ibragimov N.H. Lie-Baecklund Transformations in Applica-
tions, volume 1. SIAM Studies in Appl. Math., Philadelphia, USA, 1979.

[3] Bluman G.W. and Kumei S. Symmetries and Differential Equations. Springer-
Verlag, New-York, USA, 1989.

[4] Boyer C.P. and Plebariski J.F. General relativity and G-structures i. general

theory and algebraically degenerate spaces. Reports on Mathematical Physics,

14:111-145, 1978.

[5] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., and Griffiths P.A.
FErxterior Differential Systems. Springer-Verlag, New-York, USA, 1991,

ryant R.L. and Griffiths P.A. Characteristic cohomology of differential systems
[6] Bryant R.L. and Griffiths P.A. Characteristic cohomology of differential
(ii): Conservation laws for a class of parabolic equations. Duke University,

Mathemalics Preprint Series, 1993(2), 1993.

[7] Chern S.S. Sur la géométrie d’un systéme d'équations différentielles du second

ordre. Bulletin des Sciences Mathématiques, 63:206-212, 1939.

101



[8] Chern S.S. The geometry of a differential equation " = f(x,y, 9", y"). Sci. Rep.
Tsiing Hue Univ., pages 97-111, 1940.

[9] Chern S.5. The geometry of higher order path-spaces. J. Chin. Math. Soc.,
(2):247-276, 1940.

[10] Chern S.S. The Geometry of G-structures. Bull. Amer. Math. Soc., 72:167-219,
1966.

[11] Cartan E. Les sous-groupes des groupes continus de transformations. Annales

de ’Ecole Normale, XXV:57-194, 1908.

[12] Cartan E. Les systémes de Plafl & cinq variables aux dérivées partietles du second

ordre. Annales de I’Ecole Normale, 27:109-192, 1910.

[13] Cartan E. Sur les variétés & connexion projective. Bull. Soc. Math., 52:205-241,
1924.

[14] Cartan E. Sur un probleme d’équivalence de la théoric des espace mébriques

généralisés. Mathematica, 4:1311-1334, 1930.

[15] Forsyth A.R. Theory of Differential Equations, volume 6(1V). Cambridge Uni-
versity Press, Cambridge, UK, 1906.

[16] Gardner R.B. The Method of Equivalence and its Applications. CBMS-NSF
Regional Conf. Ser. in Appl. Math., 58, 1989,

[17] Gardner R.B. and Kamran N. Characteristics and the geometry ol hyperbolic

equations in the plane. Journal of Differential Equations, 104:60-116, 1993.

[18] Gardner R. and Shadwick W.F. Feedback equivalence of control systems. Syslems
Control Lett., 8:463-465, 1987.

102



[19]

[20]

[21])

[22]

[23]

24]

[28]

(Gonzalez-Gascdn I'. and Gonzalez-Lopez A. Symmetries of differential equations

iv. Jounal of Mathemalical Physics, 24(8):2006-2021, 1983.

Gonzalez-Gascon F. and Gonzalez-Lopez A. New results concerning systems of
differential equations and their symmetry vectors. Physics Letlers, 108A:320-

321, 1985.

Gonzalez-Lépez A. Symmetries of linear systems of second-order differential

equations. J. Math. Phys.,29(5):1097-1105, 1988.

Grissom C., Thompson G., and Wilkens G. Linearization of second order ordi-
nary dillerential equations via Cartan’s equivalence method. Journal of Differ-

ential Bgqualions, 77:1-15, 1989.

Hurtubise J.C. and Kamran N. Projective connections, double fibrations, and

ormal neighbourhoods of lines. Mathematische Annalen, 292:383-409, 1992.

Kamran N. Contributions to the study of the equivalence problem of Elie Cartan
and its applications to partial and ordinary differential equations. Acud. Roy.

Belg. Cl. Sei. Mém. Collect. 8°, (2)45, no.7, 1989.

Kamran N. and Olver P. Equivalence of higher order Lagrangians on the line I

Formulation and reduction. J. Math. pures et appl., 70:369-391, 1989.

Kamran N. and Olver P. Equivalence problem for first order lagrangians on the

line. Journal of Differential Equations, 80(1):32-78, 1989.

Kamran N. and Shadwick W.F. Equivaience locale des équations aux dérivées
partielles quasi linéaires du diexieme ordre et pseudo-groupes infinis. C. R. Acad.

Sci. Paris, Série 1, 303(12):555-558, 1986.

Karlhede A. and MacCallum M.A.H. On Determining the Isometry Group of a
Riemannian Space Gen. Rel. Grav., 14(7), 1982.

103



[29] Kobayashi S. Frame bundles of higher order contact. Proc. Symp. Pure Math.,

3:186-193, 1961.

[30] Kobayashi S. Transformation Groups in Differential Geomelry. Springer-Verlag,
New-York, USA, 1972.

[31] Kobayashi S. and Nomizu XK. Foundalions of Differential Geomelry, voliune one.
John Wiley, New-York, USA, 1963.

[32] Kosambi D.D. Systems of differential equations of the second order. Quarterly

Journal of Mathematics, 6:1-12, 1935.

[33]) Olver P. Applications of Lie Groups to Differential Equalions. Springer-Verlag,
New-York, USA, 1986.

[34] Olver P. Equivalence and the Cartan Form. Acte Applicandac Mathemalicae,
31(2):99-136, 1993.

[35] Singer I. and Sternberg S. The infinite groups of Lie and Cartan. J. Analyse.
Math., 15:1-114, 1965.

[36] Sternberg S. Differential Geometry. Chelsea, New-York, USA, second cdition,
1982.

[37] Warner F.W. Foundations of Differentiable Manifolds and Lie Groups. Springer-
Verlag, New-York, USA, 1983.

[38] Wilkens G. Local feedback equivalence of conlrol sysiems with 3 slates and 2
control variables. PhD thesis, University of North Carolina, Chapel Hill, 1987.

104





