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Abstract

Cartan's method of equivalence is used 1.0 pl'Ove that there exists two runcla.mental

tensorial invariants which determine the geometry of systems or n (:2: 2) second order

ordinary differential equations. These invariants allow us pl'Ove that there exist a

unique equivalence class of second arder equations which admit. a Lie point sYlllmet.ry

group of maximal dimension, the dimension being TI.
2 +4n+:3. For thinl order systems

of ordinary differential equations, we l'rave that the possible dimension or thc point

symmetry group is bounded by n2 +3n +3. As weil we find I.hal. I.here is a nniquc

third arder system whose symmetry group has dimension n2 + :3n +3.

We also characterize invariantly under point transformations some equivaleuce

classes of parabolic quasi-linear second arder partial dirrerential equal.ions, and ex­

amine their point symmetry groups. We are able 1.0 make our characl.crizal.ions by

pl'Oving a reduetion theorem for principal fibre bundles.

n
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Résumé

La méthode d'équivalence est utilisée afin de prouver qu'il existe deux invariants ten­

sOl'icls fundamentaux qui determinent la géométrie du systèmes de n (~ 2) équations

differentielles ordinaires du second ordre. Ces invariants nous permettent de démontrer

qu'il cxiste une classe d'équivalence unique d'équations du deuxième ordre admettant

un groupe de Lie de symétries ponctuelles de dimension maximale, plus précisément

n2 +4n+3. Pour les systèmes d'équations differentielles ordinaires d'ordre trois, nous

prouvons que la dimension possible du groupe de symétries ponctuelles est bornée par

n2 +3n +3. De même nous trouvons qu'il y a un unique système d'ordre trois dont

le groupe de symétries est de dimension n2 +3n +3.

Nous caractérisons des classes d'équivalence d'équations aux dérivées partielles

paraboliqucs quasi-linéaires d'ordre deux de façon invariante sous le groupe de trans­

formations ponctuelles et examinons leurs groupes de symétries ponctuelles. Cette

caractérisation est rendue possible grâce à un théorème de réduction que nous avons

obtenu pour les fibrés principaux.
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Notation
V,V'

{C;}19~n,{é}1~;~n

!l*V

...J, 0

(w)ci = c;...Jw

M, T(M)

F(M)

'Ir: (Fj,Em +f ) -> M

V(E) = ker('Ir.)

Ipn(Ul)

GL(n, IR)

Glok (l)

Glof (T(M))

M,,(JR)

G,g

rz' rI'
- [;j], ~ (ôi)

- An n-dimensional vector space and its dual

- A basis for V and V' respeetively

- The exterior algebra of V

- The left interior multiplication and symmetric tensor produet

- The coefficient operator

- A smooth differentiable manifold and its tangent bundle

- The frame bundle of M

- A fibre bundle with fibre F of dimension f,

total space E of dimension m +J, and base M

- The vertical bundle of a fibre bundle

- The n-dimensional real projective space

- The generallinear group of n x n non-singular real matrices

- The Grassman manifold of k-planes in RI

- The Grassman bundle of f-planes in T(M)

- The ring of n x n real matrices

- A linear Lie group and its Lie algebra

- Skew-symmetrization and symmetrization of indices, eog.

11["1 - 1/2(T,,, - T--)1) - 1) JI

•
- The transpose

- The ideal generated by the one-forms w;

Otherwise, we follow the notational conventions in Warner [37], and assume the sum­

mation convention.

VII
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Introduction

In 1908 Élie Cartan [11] presented a fairly general method fol' determining whdhel'

two given exterior differential systems which are generated by I-forllls are eqnivalent

under a change of local coordinates belonging to a specified group of transformations.

This method is now called the Cartan method of equivalencc and the problelll it solves

is known as the Cartan equivalence problem.

With this powerful theory Cartan was able to l'l'ovide solntions to numerous prob­

lems of differential geometry by casting them as equivalence problems. ln genera.1

Cartan's method provides an invariant coframe whose structure funetions can then

be used to give necessary and suflicient conditions for the existencc of an eqnivalence

or to determine the structure of the symmetry group of the problern. A c1assic ex,u!I­

pIe of where an invariant coframe is produced by the rnethod is the local equivalence

problem for Riemannian metrics. In this case the structlll'e funetions which appear

give rise to the Riemann curvature tensor.

The cases for which the method does not provide an invariant cofrallle are preciscly

the problems which admit infinite Lie pseudogroups of syrnmetries, such as the local

conformai equivalence problern for Riemannian metrics in the plane. Infinite pseu­

dogroups arise essentially when the equations goveming the equivalencc problern ,u'e

not completely integrable but satisfy the involutivity criterion of the Cartan-Kiihler

theorem as applied to Pfaffian systems. Cartan applied his equivalencc rnethod to

produce many impressive results in problems like the equivalence of functionals in the

1



•

•

Calculus of Variations [14], and the equiva!ence of ordinary and partial differential

equations [13], [12]. For examp!e, one famous result from [12] is the (non-linear) rep­

resentation of the non-compact l'cal form of the exceptional Lie group G2 as a group

of syrnrnetries of a Pfaffian system in five variables (see also [16]).

There is a genera! consensus (see the introduction in [16]) that Cartan's original

papers on the rnethod of equiva!ence are rather difficult to follow. The reformulation

by Chern [10] and by Singer and Sternberg [35] of the equivalence problem using prin­

cipal fibre bundles put Cartan's work on a more rigorous foundation. Finally today

we fine! a full account of Cartan's method with many explicit examp!es worked out

in the book by Gardner [16]. Gardner has clarified many of the steps in the practical

impiernentation of the equivalence method and has provided a basic algorithm for

the solution. His work has generated a lot of new research activity in the subject.

We will sumrnarize the principal bundle formulation basically following Sternberg

[36] with the intention of providing a proof of an essentia! resu!t (Theorem 1.3, and

Theorems 1.7, 1.8 and 1.9) which we will need for Chapter 3. For the actual calcu­

lations in Chapters 2 and 3 we use the formulation provided by Gardner [16], which

we summarize in Section 1.6.

CUITent research using the equivalencc method includes Control Theory [18), [38),

Calculus of Variations [25], [34] (and references therein), General Relativity [4], [28],

and differential equations [27], [24], [23] these references being far from exhaustive.

Our concel'Il will be with applications to differential equations, and in particular in

Chapter 2 we apply the Cartan method to study the equivalence of second order

systems of ordinary differential equations under smooth point transformations. We

flnd there are t\Vo fundamental families of tensorial invariants Pj and Sjkl which all

other invariants are differential functions of. We use these invariants to prove the

property that there is a unique equivalence class of systems of ordinary differential

2
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which admits a symmetry group of maximal dimension. Every eqnation in this c1ass

is shown 1.0 be equivalent by a change of coordinates to the trivial system

A simple criterion for checking the maximal symmetry property is that, the two fnn­

damental invariants must vanish. This is the content of Theorem 2.2, whilc Lemma

2.3 provides the explicit formula fol' the invariants. In this chapter wc also demOlI­

strate that ail systems of n third order ordinary differential equations admit symrnetry

groups with dimensions less than or equal to n2 + 3n +3, and that the eqnivalencc

class of the trivial equation

= 0

is the unique equation with symmetry group of dimension n2 +3n +3.

In Chapter 3 we apply the equivalence method to investigate the Monge-Ampère

and quasi-linear parabolic partial diIferential equations in the plane. In order 1.0 give

an invariant characterization of Burgers' equation we apply the reduction theorerns

we have given in Chapter 1. We also provide an invariant classi fication fol' the heat

equation which is known to admit an infinite Lie pseudogroup of syrnmet.ries.

We shall make the blanket assumption that ail objects are infinitely dirferentiahle

(or real analytic when using the Cartan-Kiihler theorem). We will also assume (unless

otherwise stated) that we are working in open contractible subsets of real Euclidean

space since our considerations are mostly of a local nature.

3
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Chapter 1

Cartan's Method of Equivalence

1.1 Introduction

The goal of this chapter is to give a brief introduction to the equivalence problem

of Élie Cartan. Our presentation of the equivalence problem follows a geometric

formulation in terms of principal fibre bundles and G-structures. We present this in

Sections 1.2 through 1.5 following closely Sternberg [36] while omitting most of the

proofs. This summary of the geometric form of the equivalence problem is given in

order to have a self-contained proof of Theorem 1.3 and Theorem 1.7. These theorems

are described in terms of the local equivalence problem in Section 1.6 and will be used

for applications in Chapter 3.

The procedure to be followed for the practical implementation of the solution of

the local equivalence problem is know as Elie Cartan's method of equivalence. It is

thanks to the fundamental work of R.B. Gardner [16] that the method of equivalence

has been greatly clarified and applied to a whole array of equivalence problems which

admit a geometric formulation. Although sorne familiarity with this material will be

assumed in this thesis we shall summarize in Section 1.6 the relevant terminology and

material we shall need. For a more complete description of the method of equivalence

4
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we refer the reader 1.0 Gardner [16] and Kamran [24].

1.2 Principal Fibre Bundles

Before giving the preliminary definitions, we would likc 1.0 lVartl thc rcader t.hat in

Sections 1.2 through 1.6 we fol1ow the traditional definition [or a principal bundle in

that we use right actions. However, il. is more natural when working wit,h dirfcrent,ial

forms and with the equivalence problem 1.0 use left actions, th us we will use principal

bundles with left actions and in ail other sections and chapters besicles Sections 1.2

1.0 1.6.

Let M be a differentiable manifold of dimension m, and let. 'Ir : Pa -> M be a

principal fibre bundle with structure group Gand right. action R. When we fix a

point a E G the action R is a diffeomorphism of Pa which we will writ,e as R". Let.

W be a k-dimensional manifold with a right 1 G action p and consider E = Pa Xa W.

Any section 5 : M -> E defines a G-equivariant function s : Pa -> W by rcqlliring

the diagram

(Id,s)
Pa --'---'-'--- Pa x W

'Ir) Ji
M 5 E

be commutative. One of the most important uses o[ this point of vicw rests on how

1.0 use s 1.0 obtain a reduction of Pa, and 1.0 proceed we need

Theorem 1.1: Let u : Pa -> G/H be a smoolh map salis/viny u 0 R" = L,,-, 0 U

then Pa is reducible 10 PH.

Proof: Let m E M and p E Pa where 'Ir(p) = m. Then r/>(m) = (m, p, u(p)) defines

a section of Pa Xa G/H. •

lGiven W with a left action L we use La -, as the indue.d right action.

5
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Theorem 1.1 can be applied to our previous considerations as

Lemma 1.1: Lei W be as above and (J' : PG -> W be a G-equivariant map. Let

Ow C W be the orbit of a point w E W G (Owis a homogeneous space J. When

M = 'Ir: 0 (J'-1(Ow) is a submanifold of M wc may apply the above theorem to

Pc = (J'-1(Ow) 10 obtain a reduction ofPG to PH" = (J'-1(W) where Hw is the

slabilily group of lhe poinl w.

In practice we often impose for sorne w E W that 'Ir: 0 (J'-1(W) = M, thus the above

dctermines a global reduction of PG. The standard example of this is

Example 1.1: Let M be such that there exists a non-degenerate g : M -> T"(M) 0 T(M)

of signature (p,q). We have the fol1owing map 9 : .r(M) -> V" 0 V, and

9-1(diag(Ip, -1.)) is the O(p, q) reduction of the frame bundle corresponding

to g.

We will call any G-equivariant function 9: PG -> V, where V is a vector space with a

left G action, a tensorial invariant. For the next example let 'Ir: : (Fh Em+J) -> M

be a fibre bundle and let V(E) C T(E) = ker 'Ir:" be the vertical bundle.

Example 1.2: The frame bundle .r(E) admits a reduction to

A E GL(J) and CE GL(m)} (1.1)

•

where f = fibre dimension of V (which of course is also the dimension of F).

Wc may view V(E) as a section of GrJ(T(E)).

One key point in this example is that GrJ(J +m) = GL(J +m)/H (see [37]). We

will use this example in the next section.

Wc now study the geometry of the frame bundle of a principal fibre bundle. We

have T(PG) is the tangent bundle of PG, g the Lie algebra of G with 9 = dim g and

6
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Z the zero-section of T('F'cc). For each A E g there exists t.he corresponding vedor­

field Â on 'F'c defined by A(p) = R.(A, Z(p)). A is rcferred t.o in Kobayashi and

Nomizu [31] as the fundamental vector-field corresponding t.o A. The fnndanlent.al

vector-fields satisfy the property,

• -1 -
(Ra).oAoRa =(ada-,A) (1.2)

where ad is the adjoint representation of G. The vertical bunclle of Pc C T('F'c),

defined by V('F'c) = ker(1r.) : T(F(M)) -t T(M), is isomorphic 1.0 'F'c x g. Choosing

a basis Aa of g defines an isomorphism V('F'c) <-+ 'F'c x g, which is explicit.ly given by

noting, X p E V('F'c) implies2 X = XaÂa(p) where Xa E IR. The isomorphisrn is t.hen

given by X <-+ XaAa.

1.3 G-structures

Perhaps the most useful principal bundle are of reductions of the frame bnndle on

a manifold, and foliowing Sternberg [36], let F(M) be the frarne bundle of M. Il

G-strueture Be is reduction of F(M) to G C GL(V). On the frame bundle t.here

exists a canonical V-valued differential one-forrn w : T(F(M)) ---> Il defined by

w(X) = (ut! 01r.(X) where X E Tu(F(M)) and we may view 11 E F(M) as an

isomorphism

u : V ---> 1~(u)(M) . (1.3)

•

The form w is defined on any reduction of F(M) by restriction, and in t.his sit.uat.ion

we will continue to denote the restricted form by w. Properties of w which will be

needed later are

Lemma 1.2: (Ra)*w = a-!w for a E G .

2The fundamental vector fields Aa form a global basis of sections for V(l'G) .

7
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This in infinitesimal form is

Lemma 1.3: LÂW = iL..Jdw = -Aw for A E g.

Lemma 1.4: Let q, :M -t N be a difJeomo,·phism. Then there e.?:ists a unique lift

1:F(M) -t F(N) which is a principal bundle difJeomorphism and satisjies the

TJrOperties

and
N ~ M

71" oq,=q,07l" .

Using the interpretation of u E F(M) in equation (1.3), 1may be written explicitly

as

1(u) = q,. 0 u: V -+ T~(u)(N)

This leads us to the definition,

(1.4)

Definition 1.1: (Sternberg [36], pg.313, Def.2.2) Let Blf and B~ be G-structures

on M and N respectively. We say Blf is equivalent to B~ if there exist a

difJeomorphism q, :M -t N such that 1:Blf ..... B~ is a difJeomorphism.

We will call the map q, between two equivalent G-struetures an equivalence map.

If we now assume G is conneeted then we have the extension of Lemma 1.4,

Lemma 1.5: The G-struetures Blf and B~ are equivalent if and only if there exist

a difJeomorphism <1> : Blf -t B~ such that

(1.5)

•
In other words, if <1> satisfies condition (1.5) then <1> is a lift of a diffeomorphism

q, : M -t N and is thus also a bundle map. See Gardner [16] for a proof. If

we consider Example 1.2 then two fibre bundles (E', F') -t M' and (E, F) -t M

8
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are equivalent (as fibre bundles) if there exists an cquivalencc map bel.wccn the

H-structures (contained in F(E) and F(E')), whcre H is given by eqnal.ion (LI) of

Exarnple 1.2.

We now recall sorne basic definitions from representation them·y. Let. G bc a lincar

Lie group. A real representation (p., V) is a smooth homomorphism l' : G -> Aul(V).

Associated with the representation p. are the dual, tensor and exl.erior a.lgcbra "ep­

resentations which will be referred to collectively as the tensor rcprescntation of G

with respect to p.. We will cali a representation space VaG-module.

Example 1.3: (The tensor product representation) Let (Il" V) and (/l, W) bc rcp­

resentations of G. The tensor product representation (/L @ /1, V @ W) is defined

as

1/ x W _---'z'---~ V@W

(p.a,va)] ](P.@/J)"

VxW V@Wz

where (p. @ v)a is the unique rnap making the above diagmm commutat.ive.

Definition 1.2: Let (p., V) be a representation of G. A suhspace Weil is sflid

to be G - invariant if p.(W) c W. W is a G-suhmodu/e and 'Ille cali ('L, W) IL

subrepresentation of p..

A useful result about representations is

Lemma 1.6: Let q : 1/* @ V* @ V -> V* /\ V* @ V he ske'lll-symmell'ÎZILlion in

the first two arguments and, let W C Iiom(V, V) he a G-i1l1JlLI'ianl SUhsplLce.

Then Iiom(\l, W) C Iiom(\l, V @ V*) and q(IJom(V, W)) C IJom(\l/\ V, V)

are G-invariant subspaces with l'espeel 10 lite lensor repl'esenllLiion of p.. In

partieu/ar

•
il Hom(V /\ V, V)

0---> kerII ---> Hom(\l, W) ---> q(IJom(\l, W))

9
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is a short exact sequence of G-modules.

We need to consider a number of special cases of this lemma.

Case 1 : Let (t, V) be the defining representation of G c GL(V), and let W =
g c IIom(V, V) be the Lie algebra of G. W is G-invariant, and the subrepresenta­

tion of the tensor representation of (t, V) on g is ad (the adjoint representation). In

this case the kernel fr~m Lemma 1.6 is usually denoted g(l), and is called the first

prolongation of g. The subrepresentation on g(I) we will write as (T, grIl). The

subrepresentation of Il- on IIom(V, g) is (ad @ t*) is given by

TE Hom(V,g) a E G.

The subrepresentation on the quotient in Lemma 1.6 for this case we will denote by

a, and for the representation (t, V), we will often write ta(v) = av.

For the next two cases definej to be the injectionj : IIom(V, g) -+ Hom(VEBg, VEBg)

given in matrix form as

(
lm

j(T) = T TE Hom(F,g) . (1.6)

Case 2: Let (ad@t*,Hom(V,g)) and (tEBad, VEBg) be the representations of G From

Case l, then W = j(Ilom(V, g)), is G-invariant. In fact ta EBadaj(T) = j(ada@t;(T))

for TEIlom(V, g) follows by the matrix ca1culation

(a 0) (lm 0) (a- I

aEBadaj(T) =
o ada T 1. 0

•
Case 2 will be of use in Section 1.3. We shall denote by Il- the tensor representation of

(t EB ad) on Hom(V EB g Il V EB g, V EB g) and by ÎÏ the representation on the quotient

as given in Lemma 1.6.

10
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Case 3: Let IV = j(g(1)), ( this is just T E g(l) in equation (1.6) ), is G-invariant.

Again as in Case 2 we have a EB ad.j(T) = j(T.(T)) for T E g(l) and where (T, g(t))

was defined in Case 1. This case will be of use in Section 1.4. Wc shall let. À he the

representation on the quotient given in Lemma 1.6 in this case.

We use Sternberg [36], pg.316 in defining the structure function. Let, Hl and

H2 be two horizontal subspaces at u E BG and let v, wEil, XI, yi E 11 1 and

X 2, y2 E H2 with w(X1) = w(X2) = v and W(yl) = W(y2) = W Wc now denne

SH'.H' : Il -> g as

and CHi E Hom(\! /\ Il, Il), i = 1,2 as

We then have

(1.7)

= SU1,ll'(V)(W) - SJ/'.ll'(W)(V) .

The right hand side of equation (1.8) above is just q(S}[J ,1/,), so that

(1.8)

CCV /\ w) = q(Cu(v /\ w))

is a well defined funetion

for any horizontal IJ

•
C : BG --> Iiom( Il /\ Il, Il)

q(Ilom(lI, g)

C also satisfies

C(R.u) = 0".-1 C(u) ,

11
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where a was defined above in Case 1. The role of the structure function in the

equivalence problem is illustrated by the following result,

Theorem 1.2: (Sternberg [36], pg.319, Theorem 2.1 ) If <P is an equivalence map

bellOeen llOO G-slruclures B~ and B~ on M and N then

We will use Lemma 1.1 to simplify questions about the equivalence of G-structures

. 1 r II' L L Hom(VI\VVl b G . . b 'tl' t'III t Je 10 oWlOg way: et C q(H.m(V,g)j e a -lOvanant su space WI l proJec Ion

'lrL, and let 01 be the orbit of a point 1E L. Using 'lrL 0 C in place of 0' in Lemma 1.1

we have that if two G-structures B~ and B~ on M and N are equivalent then B~

and B~, are equivalent, where HI C G is the stability group of 1E 01 ( this assumes

the conditions of Lemma Ll are satisfied ). Orten we choose L = ~(;1~2:'~\.

1.4 The Frame Bundle of aG-structure

Let 'Ir : Ba --> M be a G-strueture, and let 'lr l : 1"(Ba) --> Ba be the frame bundle

of Ba with canonical V EEi g-valued one-form 8 and right action RI of GL(V EEi g).

Using the projeetions

'lrV : V EEi g --> V and 'lrg: V EEi g --> g ,

we can defille a canonical reductioll of 1"(Ba ), which we dellote by Ba, as follows: Let

u E 1"(Ba ) , u = 'lr1(u), and X E Tü(1"(Ba)) such that 'Ir~X E Vu(Ba) then u E Ba

if and only if

•
Pl)

P2)

'lrV 0 8 ü = ('lr1)*wu and

('lrg 0 8(X))(u) = 'Ir~X .

12
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These two conditions can be written equivalently as u E Ba if and only if

wou((v,A)) = v and 'il(O, A) = À(u) , for a1\ (v, A) EV Œi g .

Note that the image of \1 under 'il E Ba is a horizontal snbspace of '/;,(Bc ). 'l'he

structure group G is the Abelian group,

(1.1\)TEIl am. (\l, g)where(lm T)
G= cGL(\IŒig)° 19

We now want to define a right action E : F(Bc ) x G -> F(Sc) which has the

property of preserving Sa' This will be done in two steps, !irst by using LemIna. \ A

we find the right action R on Sc admits a lift R such that the following diagl'alll

commutes

F(Sc) x G _=R_F(Sc)

~I x l j j~I
SG X G --"R,----' SG and (1.12)

Now define the mal' P : F(BG) X G -> F(BG) to be RI restricted to the snbgl'oup

(
a 0) CGL(\lŒig).
o ada

That is

(1.13)

pa satisfies

(UA)

•
and because Ra commutes with the action of RI, we also have

bE G. (1.15)

13
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Wc are now able to define L; by

(1.16)

and it is straightforward to check that L; defines a right action of G on :F(BG ). L;

also satisfies the following two lemmas

Proof: Calculating using equation (1.12) and Lemma 1.2 gives

•

Lemma 1.8: 11". 11"l X = 0 if and only if

Proof: The fol1owing calculation uses equations (1.14) and (1.12)

from which the lemma fol1ows.

For the remainder of this section let

•

•

The importance of L; and Ba lies in the theorem,

Theorem 1.3: The map L;. when ,·estricted to Ba defines a diffeomorphism

14



•
Note Ea is typically not a G bunclle map.

Proof: We need 1.0 show that Pl and P2 in equation (l.B) are satisfied al. the point,

Ea(u) E F(Ba ). To check property Pl we need 1.0 verify

(.1.17)

The left hand side of equation (1.17) simplifies 1.0

by using equation (1.14) then (1.12). Lemma 1.2 applied 1.0 eqnation (1.18)

above then yields

(U!))

Now applying Lemma 1.7 1.0 the right hand side of eqllation (l.17) we have

Since u E B~ we may use property Pl al. u from which il. is c1eal' that eqllations

(1.20) and (1.19) implyequation (1.17). Hence Pl is satisfied ai, E,,ciI).

To check property P2, Lemma 1.8 implies we only need 1.0 verify that

(1.21 )

for ail XE T;r(Ba) satisfying 7l'~X E Vu(Ba). Using Lemma 1.7 the lert, hand

side of equation (1.21) above is

•
- -(7l'g 0 E:0;r(X))(ua) = (adu-17l'g 0 0(X))(ua)

while the right hand side of (1.21) by equation (1.12) is

15
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Now use the fact ü E Ba and equation (1.2), so that equation (1.22) becomes

- -
Ra.('Il"g 0 8(X))(u) = (ada-l'll"g 0 8(X))(ua) .

Equation 1.21 is now satisfied, completing the proof.

We now examine the effect of the action of L; on the structure function

C . B- --t Hom(lf €El g 1\ V €El g, V €El g)
• G q(Hom(V€Elg,g1)

•

l3y Case 2 following Lemma 1.6, the image space of C admits the left action IL of G

( while the numerator has action p. ). We have

Theorem 1.4: C(L;a(ü)) = ILa-IC(ü).

The proof below is analogous to that of Sternberg [36J, pg.31S.

Proof: Let H C T;r(Ba) be a horizontal subspace, (v, A) , (w, B) E V €El g, and

X , Y E H such that 8(X) = (v, A), and 8(Y) = (w, B). By Lemma 1.7 we

have

and

as weil as

L;a' d8(X 1\ Y) = a-1 €El ada-l d8(X 1\ Y) .

Thus

Cl::.;i7((v, A) 1\ (w,B)) - -1 -a €Elad.-ICH((av,ad.A) 1\ (aw,ad.B))

Since q(Hom(lf €El g, gl) C Hom(V €El g 1\ V €El g, V €El g) is G-invariant with

•
= P..-IC7T((v,A) 1\ (w,B))

respect to p.. when we pass to the quotient we have the result .

16
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Consider now the situation in which the structure function C is inc!ependcnt. of t.hc

action R' of G on Bëf. This defines iL function

C
O B Hom(V EIl g Il VEIl g, V EIl g)

• G----;
. . q( Hom(\! EIl g, g')

by CO(u) = C(u) where u is any point in Bëf such that .1(U) = u. Wc have

Theorem 1.5: The Junclion Co in equrLlion (1.24) satisjies,

CO(ua) = P._1CO(U)

Proof: We have .'E.(u) = ua along with Theorem 1,4 gives

•
TheOl'em 1.5 gives rise 1.0 necessary conditions for equivalencc of t.wo G-st.ructurcs in

the same way the structure function does in Theorem 1.2.

1.5 Prolongation

Let A = q(Hom(V, g)) and let C be a subspace of Hom(\! Il V, V) such that Il om(V Il

V, V) = CEllA. A choice of C defines a reduction of Bëf by considcringu E Bëf satisfyiug

the condition

where u = .1 (u) and H" = u(v, 0)

•

(that is H" is the image of V in T,,(BG )). Thc reduccd group as a subgl'Oup of G

we gel. by considering only T E g(I) in equation (1.11). This reduction of :F(BG ) is

known as the first prolongation of BG which wc dcnotc by

The importance of this principal bundle is the following,

17



•

•

Theorem 1.6: (Sternberg [36J, pg.336, Theorem 1.2) Two G-spaces B~ and B~

on M and N are equivalent if and only if the G(lLspaces S~I) and B~(,) over

B~ and B~ are equivalent.

For the rest of this section we will require that the complement C C H om(V /\ V, V)

above be G-invariant3 with respect to the tensor representation of (t, V) (See Case

1) wc then have the extension of Theorem1:3 to

Theorem 1.7: The map 2::. when restricted to BG(1) defines a difJeomorphism

2::. : BG(I) --> B G(1) for ail a E G

Proof: Let u l E BG(1), u = 1rl (Ul ) and Hu = ul(v,O). Wc need to check that

lJ;,. = 2::.(ul )(v,O) satisfies CH~. E C. However, by the definition of fi. and

equation (1.4) wc have

and the G-invariance of C means Cn••Hu E C, which finishes the proof. •

Note the G-invariance of C is crucial since without it 2::. would map SG(I) to B o (see

previous section).

Writing Cl as the structure function on BG(,), we also have the corresponding

extension to Theorems 1.4 and 1.5,

Whcre À. is defined in Case 3 after Lemma 1.6. If we assume Cl is independent of

G(1) and let C' denote the function on the BG so that,

(1.25)

then we also have,

3For compact G this is always possible

18
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Theorem 1.9: The funetion C' satisjies,

We may then use C' for reduction of G as usual.

As an example consider the case where g(1) = 0, and the exis!.cncc of a B~(l)

structure is equivalent 1.0 the existence o[ a connection, the horizontal distribntion

1t C T(Ba) is given by

We have the fol\owing,

Lemma 1.9: Let a be the conneetion one-fOl'm, then the canonicat one-form E>

from Section 1.4 is given by

(1.26)

•

Proof: Let X E Tul (B~I), we have that ul (v, A) = 'Ir.X = XII œXg where XII =
ul(v,O) E Hu. Thus X g = ul(O,A) and by delinition we have a('Ir.X) = A •

Now g(1) = 0 means al. each point ul E Ba(l) we have Hul = 'l~" (Ba(l») and 50 the

structure function Cl has the property,

Cl = C' : Ba --> Hom(V /\ V, V) œHom(V ® g, V) œ1J0rn(g /\ g, V)

œHorn(V /\ V, g) œIIorn(V ® g, g) œIfom(g /\ g, g) . (1.27)

We will write the above as (C~, C~, C~, Ck, C~, C~) and each term in thi5 case is

easy 1.0 determine by E. Cartan's structure equations [or a connection which arc,

1
da(X, Y) = -2"[a(X), a(Y)] + !1(X, Y)

19
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dw (X, Y) = -~(a(X) . w(Y) - a(Y) .w(X)) +T(X, Y)

wbere n is the curvature form and T the torsion form of the connection a. To

determine Cf let vi E V, Ai E g, and Xi E Tul (B~l)' i = 1..2 and examine the three

cases,

Case 1: Let u1(vi, 0) = 1rlXi then using Lemma 1.9

a.nd thus,

Particular examples where the G a.ction on the curvature tensor is used to generate

further neccssary conditions for the equivalence problem can be found in [4] and [28].•

From which we have

Ct(A1 Il A2
) - 0

Cg(A1 Il A2
) = -~[At, A2

] •

From this we have

Cf,(Vl l8i A2 ) _ A2 VI

C~(vII8i A2
) = O.

20
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•

1.6 Local Equivalence and Symmetry

As mentioned in the introduction to this chapter, the theOl'y of local cquivalencc is

discussed in detail in both Gardner [16] and Kamran [2'1] and familiarity wit,h this

material will be assumed for the l'est of this t,hesis. We will only extract a few of the

important results and mention the standard terminology which we nse. As in thesc

references, we use trivialleft principal bundles which arise more natma!ly when nsing

differential forms.

The set up for the study of the local equivalence prob!em is as follows: Let. U, \1 C

IRn be open and contractible, and let wh, w~ be coframes on U and \1 respectivcly.

We know that any diffeomorphism <p : U -; \1 satislies

-1.* i l(i j
'1' Wv = l' jWU

where /(j : U -; GL(n, IR). However if we encode in the coframes sorne geometric

structure, we would like to know if there does exist a diffeomorphism preserving this

structure. This usually translates into the requirement that, /(j take values in a given

linear group Fi: C GL(n, IR) so that the problem can be stated as,

Local Equivalence Problem: Does there exist a dirreol11orphism q, U .... V,

such that

where /(j : U -; Fi: C GL(n, IR).

A standard example is,

Example 1.4: Let (M,g) and (M,g) be Riemannian manifolds, and Id (U,wh),

(V, w~) be local orthonormal coframes. M and Mare locally isornetric if and

only if there exists <p : U -; V such that I(j :U -; O(n, IR).

Let H C Fi: be an open neighbourhood of the identity 4 with a subset of S~ the

4We will be concerned with local problems from here on, so we wil! make this assurnption
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•

st.andard coordinat.e on GL(n, lR) being coordinat.es on H. Definc on U x H the

IIl"-valued dirrerential form

so t.hat. (U x H, w;) is a (t.rivial) left. principal bundle with w; being the canonical form.

50 we may apply the necessary conditions in Theorem 1.2 obtained by computing the

st.ructure function. In order 1.0 give the local description of the structure function we

first. denot.e by by (ab)t<b<h a maximal Iinearly independent subset of the one-forms

The righL-invariant forms (abh::;b::;h' are known as a right-invariant Maurer-Cartan

forms. On H we have

and (Cjbab) is a right.-invariant Lie algebra-valued form, known as a Lie algebra-valued

Maurer-Cartan form .

1'0 compute the structure function first on U x H take dw;

d ; (dSi)(S-')k j +S;d j Ci b j +r; j kW = k j/l.W j Wu = jbCi. /l.W jkW I\W •

where we have lift.ed Cjbc,b 1.0 U x H. Then perform what often Gardner [16J caUs

absorption of torsion, that is let

and solve as many of the linear equations

(1.31)

for V~ as possible. The purpose of solving these equations is 1.0 choosing a splitting

JIom( V1\ V, V) = C EI1 A as in section 4. We may write the resulting equations in the
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form,

d i Ci b j =1'· i k
W = jbCl AW + jkW AW . (1.:l2)

where we have dropped the hats on Clb, and where ~k takes values iu C. The fae\,

that ~k takes values in C means that il. is a representative for t.he st.rudure fuue\,iol\

(which takes values in a quotient). We call t.he colledion of fonns wi base forms,

while we call the collection Clb of forms h* forms.

When determining the infinitesima! form of the group action on ~k' or essent.in.l

importance is

Lemma 1.11: (Cartan's Lemma ) Let {wi} be an independcnt. set. of onc-forIus,

and let {7l"i} be an arbitrary set of one-forms of the same finite cardinalit.y; t.hen

7l"iAWi = 0 if and only if,

7l"i = KijWi , where Kliil = 0 . (1.:l3)

After applying Cartan's Lemma we will orten write inst.cad of (1.:33) t.hc congrnence,

•

We will use the Cartan Lemma in the form of congruences wit.hout. furt.hcr refcrcncc.

The set of solutions of thp. homogeneous system associat.ed t.o cquat.iol\s in (L3i)

(these equations with right.·hand side zero) is just. h(l) t.he first pmlongat.ion of h as

defined in Case 1 of Lemma 1.7. Finding these solutions we cali finding the kernel of

the absorption map, and a parameterization for t.his set. of solut.ions rnay he uscd

as local coordinates on H(1) (or for h(1)), the first prolongation of 1-1 (or hl. Suppose

now that we have a prolonged equivalence problem so we have U x fi x JI(I) -> U x Il,

with the structure function pl : U x If x If(l) -; W, where W is the appropriat.e veel,or

space. If p is independent of H(l), then there exists a function p' : U x 1-1 -; W such

that p' 0 7l"1 = pl. Theorems 1.7, 1.8, and 1.9 determine the procedure one follows in

this situation, 1.0 summarize:
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Theorem 1.10: If the complement C nsed in dejining the prolongation I-I(l) is H­

eqnivariant, then p' is a H-eqnivariant fnnetion, with the H-action on W being

ii gîven by the snbrepresentation of H on the qnotient in eqnation (1.24).

A very weil understood case in the equivalence problem is when H = {e} and this

is kllOWll as the equivalence problem for {e}-structures. Using the (invariant) coframe

{wi}, the covariant derivatives fli of f E COO(U) are defilled by

From the structure equations,

(1.34)

we thell define,

and

k.(p) = rank(F.)p .

(1.35)

(1.36)

At sorne linite number for s we have k.(p) = k.+l(p) = k(p) which is called the rank

of the {e}-structure at p. Necessary and sufficient conditions for the existence of an

equivalence between two {e}-struetures can be given in terms of the rank of F and

the funetional dependencies of its elements, see one of [36], [16], [24].

A dilfeomorphism rjJ : U -> U such that

(1.37)

•

is called a symmetry (or automorphism). In the case that the one-forms wi form a

coframe or an {e}-strueture the set of symmetry's form a finite dimensionallocal Lie

transformation group which we cali the symmetry group of the {e}-strueture.

The group operation is composition of functions, while the symmetry group has the

property,
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•

Theorem 1.11: The dimension of the symmelry gronp at pEU is dilll(M) - k(p).

This of course implies the dimension o[ the symmetry group is le" than or equal 1.0

the dimension of the {e}-structure. The global counterpart to thi, thcorclll is classical

[30] pg. 13. A coro11ary o[ Them'em 1.11 that we will use is,

Corollary 1.1: An {e}-stnLctnre has a maximal dimension symmr;!,ry gronp if and

only if the struciU7'e funciion is constant.

In this case the {e}-structure is a local Lie group by the thinl [undalllenta! thco­

rem of Lie. In the case that we have an {e}-struet.ure {w;} on a principal bundle

U x H, Lemma 1.6 a110ws us to conc1ude that any symmetry is a prolongation or a

diffeomorphism of U.

If the structure function Gk in equation (1.32) is independeni, or Il we need 1.0

determine whether equations (1.37) admit what is known as an infinite Lie pseu­

dogroup. For the precise definition of an infinite pseudogroup we rerer the reader 1.0

Kamran [24]. In summary, the conditions in (1.37) for the existence or a symmetry

are a system of partial differential equations for,p. ln the case t,hat the systelTl or dir­

ferential equations admit a family of solutions which can be parameteri~ed by a finite

number of arbitrary constants (in an open set) then the collection or sYlTllTletries 1'01'111

a finite dimensional Lie transformation group (the constants being the local gl'Oup

coordinates). One case~e have already mentioned where this occurs is when the w;

form a coframe in which case Theorem 1.11 appHes. On the other hand il. is con­

ceivable that the partial differential equations in (1.37) admit solutions which depend

on arbitrary functions. In that case the collection or solutions satisrying (1.:17) rorrn

what we call an infinite Lie pseudogroup. Cartan devised a criterion based on an ex­

istence theorem known as the Cartan-Kahler theorem [or the existencc or integral

manifolds of analytie exterior differential systems callerl the involutivity test. This
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determines whether an analytic exterior dilferential systems will admit a general so­

lution depending on arbitrary functions. To give this criteria for the equations (1.37),

define

Definition 1.3: The Cartan eharacters for (1.32) are defined induetively by,

je i
VI jb

max Tank
a;+a;+ ... +a~=

vI, ...VL E !Rn

jei
VL jb

The importance of the Cartan characters are then due to the following,

Theorem 1.12: (Involul'ivity test) If

n

dim (g(l) ) = L: la!
1=1

(1.38)

(1.39)

•

and ejb =1 0, then the symmetries of equation (1.32) form an infinite Lie

pseudogroup.

If the terms Ijk are constant then the infinite Lie pseudogroup is transitive, otherwise

it is called intransitive.
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Chapter 2

Systems of Ordinary DifferentiaI

Equations

2.1 Introduction

In this chapter we will apply the Cartan method of equivalencc to study t.he equiv­

alencc of systems of n (;:>: 2) second and t.hird order ordinary dirferent.ial cquat.ious

under point transformations. This approach was rirst. ut.iiized by Chem [7] who ex­

amined equivalence under the groups of smoot.h invert.ible transformat.ions

l =1 :ë = 'l/i(.7:i )

l =1 :if = 'Ii(t, xi)

and

(2.1 )

•

for systems of second-order ordinary differential equations. Chem subsequeutly [n]

considered the equivalence of systems of ,.th order ordinary di rferent.iai equat.ions undcl'

the invertible smooth transformations

Chem was able to associate to any system of equations an {e}-st.ructures 01' an in­

variant coframe. We shall prove the sarne result. is true under t.he larger group of
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point transformations,

(2.2)

•

With each second order system of ordinary differential equations the associated

{c}-structure we obtain is of dimension n2 + 4n + 3. This {c}-structure enjoys the

important property that its structure function can be expressed solely in terms of two

fundamental families of tensorial invariants Pj, S}kl' When we further consider equa­

tions admitting symmetry groups of maximal dimension, an analysis of the integra­

bility conditions yields the rather remarkable fact that there is a unique equivalence

c1ass of second order systems of ordinary differential equations admitting a symme­

try group of maximal dimension. The vanishing of the tensorial invariants Pj, S}kl
characterizes this equivalence class and a representative fol' this class is

d2x i

dt2 = 0 . (2.3)

We may interpret this result another way by saying that given a system of second

order equation admitting a symmetry group of dimension n2 + 4n + 3 there exist

a set of coordinates such that the equation is of the form (2.3). The upper bound

n2 +4n +3 was also found in [19], while the uniqueness result for scalar equations

has been known fol' a long time (see the discussion in [22]). The structure equations

we have in the case of maximal symmetry are those of sl(n +2, IR) (this is true in the

scalar case as weil [22]).

The fundamental tensorial invariants Pj and S}kl appear in numerous applications

fol' example the inverse problem of the Calculus of Variations [1] and [32]. However

their l'Ole and that of any associated invariants- ~ne can construct from Pi and S!kl
_:::_ J J

can still be further explored.

Considerably less is known about systems of differential equations of order greater

than 2. In particular it is unknown which r'h order systems r ~ 3 admit a symme­

try group of maximal dimension. In the case of scalar third order equations, Chern
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has investigated local equivalence under contact transrormat.ion [8]. lt, is int.cresl,ing

1.0 not.e that here Chern has shown that t.hird order equat.ions admit. local cont.act.

invariants, while a classic t.heorem of Lie states t·hat. ail second order scalar ordi­

nary differential equations are coutact equivalent. A l'roof of t.his last. faet. using t.he

equivalence method is given in [16].

The point symmetry propert.ies [or systems of ordinary dirrerent.ial equat.ious have

been studied in [20] where il. is shown t.hat l'or ,. ?: ~~ an 'l'th order syst.em or n

equations admits al. most an n2 +(,' + l)n +3 dimensional symlllet.ry gronp. While

in [19] il. is demonstrated that the trivial equation ...,(r) = 0 admit" ,1. sYllltllet.ry gronp

of dimension n2 + r n + 3. Dr. A. Gonzalez-L6pez the author of these t,wo works,

pointed out this discrepancy 1.0 me, and l'eH, that perhaps the equivalencc met.hod

could help 1.0 determine whether there are equations whose symmet.ry groups have

higher dimension than n2 +,. n + 3. In Section 2.4 what. we fincl by applying t.he

equivalence method 1.0 thircl order systems is an associat.ed {e}-st.nlct.ul·e of climellsiou

n2 +3n+3. Thus (by Theorem 1.11) the dimension of t.he symmct.ry group is less t.han

or equal 1.0 n2 +3n+3. We also find, as in the case of second order equat.ious, aualysis

of the integrability conditions demonstrates that t.here is a uuique equivalcnce c1ass

of third order systems of ordinary differential equations admit.t.ing a sYllllnct.ry group

o[ maximal dimension. Again the trivial equation,

(2.4 )

•

is a representative [or this class.
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2.2 Systems of Second Order Ordinary Differen-

tial Equations

ln order to applythe equivalence method to systems of second ordinary differential

cquations we must first translate the system of second ordinary di!ferential equations

~t~i = l (t, xi, d::) 1::; i ::; n . (2.5)

into a Pfaffian system. To do this, first let U C P(IR, !Rn) be an open subset and let

(t, :z;i, ,'/;\) be standard coordinates on P(IR, !Rn). We then associate to the equations

(2.5) the Pfaffian system generated by

whose importance is,

'lr
i = dx~ - J'dt (2.6)

Lemma 2.1: The solutions xi = xi(t) to equations (2.5) are in one to one cor­

respondence with the one',' dimensional integral manifolds, : !R -+ U of the

Pfaffian system (2.6) which satisfy ,'dt # O.

If we now consider another system of second order ordinary di!ferential equations

and the associated Pfaffian system

_. (_ . dxi )
= f' t, xJ

, dt (2.7)

(2.8)

•

on Ü c P(R, !Rn) with coordinates (t, Xi, X\) we may then define equivalence as,

Definition 2.1: The two sys!ems of differential equations (2.5), (2.7) are equivalent

if and only if there exists a point transformation (t, xi) = W(t, xi) whose first

prolongation WI satisfies

(2.9)
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( See Appendix A for more details on diffeomorphisms of Jl(IR, IR")). In other 1V0rds

the systems (2.5) and (2.7) are equivalent if and only if there exists a slllooth Illap

Iji : U -; U taking integral manifolds of (2.6) with independencc condition ,'dt 'fi 0

1.0 integral manifolds of (2.8) with independence condition (IJI 0 ,)",[[ 'fi 0 .

Before procceding we introducc the following notation for the part.ial derivat.ives

of a smooth funetion f E Goo (U),

af
fli=-a' .

O"
'·1

The one-forms given in (2.6) and (2.8) generate t.he same Pfaffjan system as do the

one-fOl'ms

(2.11)

(2.1 0)

d . ._o = di' - i~dt

. . . 1··
;r' = dx~ - J'dt - ?iJVJ

-i . _. 1 -. -.
ii' = di~ - J'dt - '2fVJ

Thus, we may use (2.10) and (2.11) in Definition 2.1. This new set of Pfaffian forllls

(2.10) can be obtained from (2.6) by a reduction argument and was used by Chcl'll

[7] in his solution 1.0 the equivalencc problem under the transformat.ion in (2.1). The

usefulness of this modified coframe will be apparent in Lemma 2.2.

Extending (Ôi, ;ri) in (2.10) to the coframe (w = dt, Ôi, ij') on U we can explicit.ly

compute the covariant derivatives (dg )w' (dg )Ôd and (dg );;i of a smooth fundion

g E GOO(U) by

dg = (dglww + (dglô, Ôi + (dg);;,;ri (2.12)

where

dg
(dglw = dt ' (dg);;; = gli . (2.1:1)

•
These equations will be used in the parametric calculations.

Making the analogous extension of (Oi, ifi) in (2.11) 1.0 t.he local cofrarne (& =
_ ",:::i .... i -

dt, () ,fi ) on U wc obtain
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•
Lemma 2.2: The Iwo differenlial syslems (2.10) and (2.11) are equivale1l1 if and

only if lhere exisls a poinllmnsformation (l,.;;;i) = \]i(t,x i ) with \]il : U -+ Ü

salisfying

where S : U -+ I-I is a smooth funclion on U taking values in the Lie subgroup

II of GL(2n + l, IR) defined by

>II=

a Ej 0

o Ai. 0
J

o cAi. a-'k,
J J

a E 1R*, A} E GL(n,1R), Ej E 1Rn
, cE 1R (2.14)

Proof: Sufficiency is obvious, and by Appendix A we need te only determine \]iiji-i.

We find by Lemma A.2

l]ii(dx; - J'dt - ~hOj) = a-' A}(dx{ -ldt) +cjêj - ~\]ii (~~~) A{ôk

where

dq,
a=-

dt

•

New Lemma A.1 in Appendix A tells us that if the systems are equivalent then

i .1.i (t ) h . f-i .T, _ .1.i _ 1 d1/Jfx2 = '/'2 ,x t at IS 0 "'1 - '/'2 ---
a dt

from which we determine that
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•
Now in this equation we switch the order of the difrerentiations (as in Lenllna

\Ji' (8l) =
1 8-J

Xl

A.2) to get

\Ji' (8l ) _
1 8~J

Xl

which further simplifies to

[
d (lAi) _'Ai8j' Ci] ( \_')k-d - k +a ,,, k + k J jt a' (/Xl

[
1 daAi 1 d (Ai) -'Ai 8jl Ci] (A-')k

- - a2 dt k+~ dt k +a , 8a;r + k j .

Now defining

1 da
c=--

2a2 dt

and noting that

d. .
_(A'.) = aC~dt J J

we finally have

This cornpietes the proof of the lem ma.

(2.15)

•
The idea of using Chem's adapted coframe <::the set. up of our equivalencc problcITI

so as to reduce the structure group from the outset is an application of the "inductive

approach" to equivalence problems presented in [26]. For the Lic group Il in this

lemma we have the Maurer-Cartan form

•
a /(,. 0J

0 ni. 0
J

0 (j{j\ n} - a{j}
J

(2.16)
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•
which parametrically is given by

da dEk 0 a-' -a-' Ek(A-')j 0

0 dA~ 0 0 (A-')j 0

0 dcA~ +cdA~ a-' dA~ - a-2 da A 0 -ac(A-')j a(k')j

da dEk(A-')j - d: EAi' 0
a

= 0 dA~(A-')j 0

0 (dc +cd:)8j dAHA-')j - d:8j

IL will be convenient in the next section to use the following convention

2.3 The Associated {e}-Structure

ln this section we will apply the equivalence method of Cartan with the coframe

w= dt ôi = dx i - x;dt
. . . 1··

iC' = dx~ - f'dt - ;;/VP (2.17)

•

and with the structure group given in Lemma 2.2. We first define the lifted coframe

w a Ej 0 W

Oi = 0 A'. 0 Ôi (2.18)
J

'lri 0 cA'. a-' Ai. :;ri
J J

from which we may state,

Theorem 2.1: Solutions \]il : U -> V' to the equivalence problem for systems of

n (2:: 2) second ordel' ordinary difJerential equations are in one-to-one correspon­

dence with the solutions of an equivalence problemfor an n2 +4n+3 dimensional

{e}-sl7~tcture which is obtained by applying the equivalence method to the initial

coframe (w, Ôi, iCi) with the structure group given in Lemma 2.2.
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Proof: Wc proceed initially with the parametric ca1culations in ordel' t.o be able t.o

have the explicit forrn of sorne of t.he t.ensoriai invariants lat.er. Dirrerent.iating

the (w, Ôi , iri ) forrns we find by using equat.ions (2.12) and (2.\ :1) t.hat.

and

dw = 0
~. . 1· ~.

dO' = WA 1i"' +- ri')'WA 0)
2'

where

(2.\!J)

The expressions for dw, dÔi and d1i"i back in t.errns of t.he lift.ed frame are t.hen

dw =0

dÔi = - [(kl)~1l"i -C(k')~oi + a;'(J{;l(k'){Ok] A(W - BAj'Oi)

and

(2.20)

d:ifÎ = [~(p~)(A-'){Ok - ~(JI~)(A-'){1l"k + ~(JI~)(A-'){ok] A (W - EAj'Oi)

+(Tjk)(A-')I(A-')~.oIAom- ~(JI~k)(A-')I(A-l)~1l"IAom (2.21)

Thus differentiating (2.18) and using equat.ion (2,16) the st.ructure equat.ions

are

dw 0' Ki 0 W a Ej 0 dW

dOi = 0 ni. 0 Il Oi + 0 Ai. 0 dÔi
) )

• d1l"i 0 uo! ni, - ao! 1l"i 0 èAi. a-lA! d'ifi
) ) ) ) )
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•
Now substituting from (2.20) and (2.21) we have the equations

dw = o:"w + l'i" Oi - EAl' [1I"i - cOi + a;1 AÜm(A-1)~om] ,,(w - EAl'Oi)

dO' = n~"oi _ [11"' _ cO' + a;l A~Utk)(A-l)~OI] ,,(w - EAj'Oi)

and

d1l"' = -c [11"' - cD' + a;' A~UI;)(A-l){Ok] ,,(w - EAl'Oi)

+a-' Ai [~(p~)(A-'){Ok - ~UI~)(A-I){1I"k + ~UI~)(A-I){ok] ,,(w - EAl'Oi)

+a-1A~(r!k)(A -1){(A-1)~Ol" Ir - ~A~Uljk)(A-' ){(A-' )~1I"1" om

and d1l"' simplifies to

d1l"' = O""Oi + (n~ - m5;)"1I"i +a-1A~(r!k)(A-'){(A-l)~01"om (2.22)

+ [a-' A~(p~)(A-l){Ok +c20' - C1l"' - 2
1
aA~Utk)(A-l)~1I"1] ,,(w - EAj'Oi)

-~A'(fl. )(A-1)i (A-1)k1l"m or2 1 iJk m r"

In these equations we may now absorb torsion by

0:=

n.j =

0"=

â +EAl'1I"i +2c(w - EAl'Oi)

Îii - EAl'1I"iEAj' - [cEAl' +a;' EICfllm)(A-l)j] (w - EAl'Oi)

fi} _1I"iEAj l + [ch} - a;l AjU11m)(k')j] (w - EAl'Oi) (2.23)

_lA' (fk )(A-')I ()n(A-' )'?'
2 k Iim n J

Ô" + [c2 +.-, pi] (w - EA-;lOi) + _1_ [EA-'P~ + 2.-
1 ri (A-l)~] Oi

n J J n-l k 3 I-n lk J

•

which leads to the structure equations (after dropping hats)

dw = o:"w + l'i"Oi

d()' = ni." Oi - 11"'" WJ

d1l"i = 0",,0' + (ni. - 0:6")"1I"i +pi()i"w +Q-i.k()i"OkJ J J J .
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•
where

and

P-; 1 Ai (k 1 m 8k) (A-I)I
i = a2 k PI - ;;Pm 1 i (2.25)

Q-i EA-IP-; 1 EA-'p,-I <i lA; ( 1 2 s 51) (A-I)"'( I-I)r
ik= li kl+ n-1 1 [jUkJ+;;- 1 T",r+ n_1Ts[",(rl if k

We point out that the absorption by (J' in equaLion (2.23) has been chosen so t.hal,

i'j and Q~k are trace free (we will use this frequenLly laLer on). If we now considcr

the parametric fOl'ms for i'j and Q~k above wc see thaL any fnrt.het· rcdnct.ions

of the structure group will depend on Lhe algebraic sLruct.lIl'e of i'j and Q~k'

For example we see from (2.25) Lhat i'j is acted on by conjugat.ion. Onc conld

proceed by putting i'j into a normal form and possibly furt.hcr rcduce H. This

however will not be done, and instead we resort. Lo Theorem 1.6 and prolong.

1'0 this effeet we compute H(l) by finding the kernel of t.he absorpLion (finding

the solution to the homogeneous system of equaLions (1.31)) as describcd in

Section 1.6. The first two equations in (2.24) Lell us Lhat

where M&kl = D[jkl = 0, is possibJy in the soluLion space Lo t.hc hOfTIogcneons

system. Inserting this along wi th

(2.27)

into the last equation in (2.24) gives

(2.28)

•
and immediately we have from Lhis q = ri = L = O. Whilc puLLing Lhc cocffi­

cient of Ok A '!ri to zero gives
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•
Since we assume n > 1, skew-symmetrization and symmetrization of this equa-

tion gives,

(2.29)

'l'hus we have a parameterization of H(l) by /(j and Djk, and we may lift the

coframe (w Oi "!ri a K,' ni, (7) to U x H x H(l) by, , , , &, J'

cr = a + /(joj

(j = 17 +/(j"!rj

~ = n~ +2/((kO})Ok

Kj = K,j +DjkO
k + /(jW

We wili now drop the overline and we may then write the lifted structure equa­

tions in the general form,

da = (Ji'" oj + tO

dl7 = (JjI'"!r j +t l

dK,j = TjkA Ok + (JjAW +Tl
d f"\i - 2(J ci Ok +Ti"j - (kUj)A j

(2.30)

where tO and t l are 2-forms, Tl is a IRn valued 2-form, and T~ is a Mn(IR)

valued 2-form aIl of which are contained in the exterior algebra generated by

(w, Oi, "!ri, hO) and where

(2.31)

Now absorb torsion in equation (2.30) by

(2.32)

(2.33)

•
and after dropping the hats, the structure equations (2.30) retain the form with

the additional conditions

(2.34):::~
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•
Our goal from here on will be 1.0 determine the fonn of the left over torsion

( structure function ) by applying a sequence of integrability conditions. The

condition we use first is d20i = 0 from equation (2.24)

and substitute from (2.30) 1.0 gel.

d20i = ((3kAOk 8} + (3jAOi + T})AOj - !1}A (!1{AOk -1l' jAW)

+(aAw + I>jAOj)A1l'i -WA ('J'AO i + (!1} - a8})AOi + QjkOiA{i)

o = (T} - !1iA!1] + 1l'iAI>j + O'Aw8} - Q}kOkAW)AOj

From which we obtain

T i ni nk i ci Q" i Ok "i Okj=ookAOOj-1l'Al>j-O'AWUj+ jk AW+\.jkA

where (}k is a collection of one-forms satisfying

"i OjOk 0
""jk" 1\ =

(2.:15)

The next integrability condition we use is d2w = 0 from equation (2.24) and

using equations (2.24) and (2.30) we find

(2.36)

from which we deduce

where (lj, f,? and À are one-forms which by equation (2.:j6) are subject 1.0 the

conditions,

•
a) f,ljAOjAOi = 0

b) (Àlw = (À)oi = 0 that is À has no Oi or W terms .
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•
The condition b) here is really a choice we make in order that the decomposition

for tO in (2.37) be unique. There is no loss in generality by this. If we now take

into account the absorption in equation (2.32) which gives rise to the conditions

in (2.34) we find that

and so the torsion terms in equation (2.37) simplify to

(2.39)

2 '.
T· = C/I\ ". +"'1\ œ+ t~'1\ 03

1 t J l ~IJ • (2.40)

The last integrability condition we have from equation (2.24) is d?tri = 0 and

this gives,

d2tri = d,nO i - O'l\dO i +d(n) - C/o})l\tr j - (n) - C/o})l\dtr j +dPjl\Ojl\w

+Pj(dOjI\W - oj 1\ dw) + dQ)kOj1\ Ok - 2Q)kOjI\dOk

whcre by using equations (2.30) (2.35) and (2.40) this becomes

d2
tr

i = ((3jl\trj + tl)I\Oi - 0'1\ (n)l\oj -trjl\w) - ((:hl\Ok - bkl\trk+Àl\w)l\tri

+((3kl\ Ok 0) + (3jl\ Oi + n~1\ nj - tri1\ Koj - 0'1\ wo) + Q)kOk 1\ W+ Ç}kl\ Ok)1\ tr j

-(n) - 0:0))1\ (O'l\oj + (n{ - o:oi)l\trk + P10kl\w + Q{IOkI\OI)

+dPjl\ oj 1\ W+ dQ)kl\ oj1\ Ok + Pj (n{1\ Ok I\W - oj1\ (C/I\ W+ "kl\ Ok))

••. k 1 k
-2Qjk031\(niI\0 -tr·I\W).

Further simplification yields

•
-i i -k "'i k ? -i "'i k jo = (dPj -nkPj +Pknj +~C/Pj +3Qkjtr )1\0 I\W

-i i"l -i 1 -i -i . k
+(dQjk - n1Qjk - 2Ql[jnk]+C/Qjk - P[jKok])1\ 031\ 0

+Ç}kl\ Ok1\ tr
j

- (À + 20')1\ WI\ tri + (tl + C/I\ 0')1\ Oi
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•
By putting the coefficient of WA 'Ir' in this equation to zero and rccal1ing l'rom

equation (2.38) that À has 110 Oi or W Lerms, we have

À = -20"

and so, by equations (2.40) and (2.30) we have

(2.'12)

We would like to continue using equation (2.41) but bcfore this is possibl" wc

must know sorne information about the form of t 1 . This can be done by t.aking

d2 a mod(Oi) and here we find,

We then deduce,

where Xl and çl are one-forms subject to the conditions,

a) (x1lw = (Xl)o; = 0

b) W)O(k~j) Ok = - (ç/').j) = 0 from eqllation (2.:34) .

where condition a) gives the unique decomposition in (2.44). Wc rnay now place

t l in equation (2.41) to further investigate Ç}k' In particular the OkA'lr
j term

from equation (2.41) being zero is

•
so that we may write in general

Ci Ti +R' 01+ S" 1<'jk = jkW jlk jlk'lr·

41
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•
where 7]k' Sh and R)[lk] = R)lk are smooth functions on U x H X H(l). Taking

this expression for Ç)k and imposing condition a) in (2.38) we also have

As weil using the expression for Ç)k in equation (2.45) and setting the coefficient

of 'lfIA OkA 'lfj 1,0 zero we have

or S ; - S;
(jkl) - jkl'

ln any case using (2.35) and (2.46) we have

ln; 2[3 d Ok n; nk; d("j = (kUj)A +"kA "j - 'If A Kj - UAWUj

+(Q~k - Tjk)Ok A W + R~klOkA 01+ S;kl'lf
k

A 01

Usillg the trace of dfl) and da from (2.43) we then have

(2.47)

and thus setting

we determine that,

dS!kl - (n +2)lkl =0

mod( base, h* )

mod( base, h * )

(2.49)

(2.50)

which allows us 1,0 translate the trace S!jk 1,0 zero. We emphasize heœ that this

also implies that the H(l) action on Tjk and R)kl is trivial. The translation of

the trace of Sjkl 1,0 zero gives the reduction of Djj = 0 in the prolonged group

H(1) and that

• ljk == 0

42
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•
in equation (2.30). Explicitly wc will denote

ç; _ S; __3_ 'lm li
... Jkl - Jkl .) .... m(jk( l)11.+_

(2.51)

and the reduction of H(1) by n\\). '1'0 continne now wc may nse ail the prl'villlls

equations except the absorption in (2.33) and thus the conditions on Tf in

(2.3'1) must he dropped. II. should he pointed ont that in the first l'Onnd of

computation with H(l) wc never actually needed 1.0 impose the condition in

(2.34) on Tf in order 1.0 determine the group aetiou in (2.50). TIIIIS wc Illay

summarize the structure equations on U x II x H(I) as

da - (3jAOj - o,jA'lr j - 217AW

- (3jA'lrj+ITAa+ç]AOj+XIAW

?(3 ck 0; + f"\; f"\k; c;= _ (kUj)A "kA "j -'Ir A o,j - ITAWUj

+(Q~k - 'l)k)Ok Aw + il~klOkAOI +,~jkl'lrkAOI

- (3;AW + aA 0,; + o,jA n{ + ÇfjA Oi

( 'i "J'i)........

•

with the conditions on the functions Q, il, 5, T,

Q- ; 0 R; il; 0 5-'; 5-'; 'I,i 0
(jk) =, fikl] = j(kl) =, (jkl) = jkl, fikl =

(the trace of Q and 5 arc zero) and conditions on the one-fol'lns ç], Xl and (f;

If we now try 1.0 prolong th0 structure equations wc sec by the eqnal,ions in

(2.52) that the !cernel of the absorption hy (:1; is zero. ln other words the (:1;

forms are invariant. This finally allows us 1.0 conclude that wc have an {c)­

structure on U x I-I X H\l) of dimension 11. 2 +411. +3, the final inVMiant cofrarne

•
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• - '-/' -.
The Lwo Lensorial invariants Pj,and Sjkl which are componenLs of Lhe structure func-

Lion play a fundamental role in Lhis {e}-sLructure and so we will deLermine their

parametric fOfln aL Lhe identiLy of H x H(l). We have

Lemma 2.3: The pammleil'ic Jorms Jar Pj and Sjkl at the identity oJ the structure

group H x HP) fL1'e \,'

(P;)I 1df; fi 1J;Jk 18i (ld fk fk 1flfk )
. j , = 2' dt Ij - ,j - 4" Ik Ij - -;; j 2' dt Ik - ,k - 4" Ik Il

'-- ';

Proof: The form of (pD l, is immeci;aLe from equations (2.19) and (2.25), while 1.0

find (Sjk,)I, we need 1.0 firsL determine

(2.55)

in equation (2.47) before the reduction of H(l) 1.0 HP). 1'0 compute this we take

dn~ in equation (2.23) and evaluate al. the identity. 1'0 do this first notice

•

From which wc find

(dn~)lc = (lh)lcI\Ôk8j + l/1j)l cI\Ôi + (dAtl\dAJ)lc - ii'il\(dEj)lc
-, 1 .

d( 8i a A;(Jl )(A-,)m)1 - d(Ai(fk )(A-')I (A-n'm, 1 Ôn (?56)- C j--;:;- 1 lm j eI\W-?, k l'm n Jif,e A • -
~ ~ /-/

,r-
~b-­

Then use cqua~jon (2.23)

dal, - al,

1.0 find

(2.57("
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•
Now use equation (2.23) again, giving

d li 1 ni 1 1( ri ) - 1(Ji )l-)k
ili ' = "i ' + "2 . Ii W +"2 Iik

(2.58)

•

Finally we note that by equatiotl (2.51) we have Sjkl as the t.race l'l'ce part. of

(S)kl) completing the proof. •

The form given for S)kl in this theorem can also be checked explicit.ly by cal'I'yillg out.

the calculation with the frame change

('"',)1 - (-)1 _1_, f'" Ôi
Jl,1 e - f\, e - n+2 J1mii

which corresponds 1.0 the final reductioll. We see l'rom equat.ion (2.25) t.he adnal

parametric form for Pj al. an arbitrary point. in the st.ructure gronp. Wc will say

more about S)kl later.

Now we would like 1.0 prove the main result of this section,

Theorem 2.2: There exists a unique {e) -st7'uctuTe w'ilh a maximal rLim,ensioual

symmel'ry (aulomo'/'phism) g7'OUp. FOT lhis {e} -sl,ruclm'e lhe st'l'Udltl'e fll1ldiou

vanishes, and a representalive J01' lhe syslem oJ efJ7wlious giving 'l'ise 10 lhis

{e}-structure is the "Jree particle" efJuation

J'xi
dl2 = 0

The equivalence class oJ this equalion is inva7'iantly cha7'llcle7'ÏzerL by lhe "'no

vanishing conditions

(Pi)1 ldJi fi lJiJk Ilji(ldJk Jk IJ1Jk)-O'. i' = 2" dt li - .i - 4 Ik li - ;; i 2" dt Ik - ,k - 4 Ik Il -

(S• i ) 1 - Ji 3 Jm lji - 0ikl ,- likl - n+2 Im(jk 1) -
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•
Bcfore wc proceed with the proof of this theorem we should point out that this result

is a special ca~e of Theorem 2.3 in the next section. The reader could skip this proof

altogether and proceed to Theorem 2.3 of which this is a simple corollary.

Proof: What wc intend to show is that by making the assumption that the two

components of the torsion (or structure function) Pj and Sjkl in Theorem 2.1

are constant, then they must he zero, as weil this implies that ail other

torsion elements must he zero. This will follow from the integrability con­

ditions for the {e}-structure in Theorem 2.1. Our initial assumptions first imply

dPj = 0 and dSjkl = 0 . (2.59)

Wc now use d27r i = 0 which is easily taken from equations (2.41) (2.43) (2.44)

(or use the structure equations in (2.52)), to get

_ ( i - k -.. i k - i ... i k i k 1 i) jo - -flkPj +Pkflj +2aPj +3Qkj7r - Tkj7r - X Oj /\ 0 /\ W

+ (dQjk - fl;Q}k - 2Qi[jfl~l +aQjk - P&Kkl +çboil +Rijk7r') /\ oj /\ Ok. (2.60)

The requirement that the coefficient of a/\ oj /\ w be zero is

Pj =0.

From (2.60) we now have the following equation

3Q- i k Ti k 1 ci 0
kj7r - kj7r - X Uj ==

(2.61)

•

where by taking the trace of this and noting by equation (2.54) that Xl has no

Oi or w terms we arrive at

Then putting the coefficient of 7rk /\ oj /\ w in equation (2.60) 1,0 zero we have
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•
I·Iowever skew-symmetrizing this on j,k and taking the l,race gives

(2.62)

while just skew-syrnll1etrization aud sYll1ll1etrization usiug (2,53) lcads \,0

and Tjk = o. (2.G;!)

What is left of equation (2.60) is

( Cl ci +Ri 1) oj Ok 0<'[jUk] Ijk'lr A A =

80 we may write

Cl W k v ok
<'j = kj'lr +Akj

where Wjk, and X jk are functions satisfying

(2.G'I)

(2.G5)

(2.G6)

where the skew-symmetry cornes from the conditions on çf in equation (2,M).

We aetual1y have from (2.64) and (2.65) that

(2.67)

(2.(i8)

The next step will he 1.0 compute as in equation (2.48) but use Q~k = 'ljk = 0

aild equations (2.65), (2.67) 1.0 find

., " " k
= (n +2)(d"iA 'Ir' ."'>"iA 'Ir' +dO"A W - O"A dw) +d( RijkO' A0 ")

2 .. .. ..o = (n +2)(ÇijAO'A'Ir' +Wij'lr'AO'AW +XijO'AO'AW)

+dWijAOiAoj +2Wij(n~AOk - 'lriAW)AO
j

where here equation (2.67) is used. From this wc may conclude that Çfj is of

the form

• 2 - l - 1 ......Çij = Wilj'lr +Xi/JO +WYij
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where Wilj, Xilj and Yij are functions which by equation (2.54) are subject to

the conditions,

(2.70)

!nserting this expression for aj into equation (2.68) and using the conditions

(2.66) and (2.70) readily gives,

Wij = 0 Xij = 0 (2.71 )

(This implies çJ = 0) The last of these conditions gives,

W[ilJj = 0 (thus W(i1j) = Wilj ) (2.72)

while W jk being zero implies by equation (2.67) that

At this point the only possibly non-zero torsion coefficients are Sjkh Wjlk in

(2.69) and the torsion in d(3j.

We continue to apply the integrability conditions, the next one being

d2
0 -
0 =

+
0 -

d(3jA oj - (3jA dOj - dl>/'lr j + I>jA d'lri - 2dlTAW + 217A dw
. • k . .

d(3jAO' - (3jA (ntA o· - 'Ir' AW) - ((3jAW + OA I>j + I>kA nj + Ç}kA (}k)A 'Ir'

I>jA(I7AOj + (ni - ooi)A1rk) - 2((3jA'lrj + I7AO)AW + 2I7A(OAW + I>jA(}j)
,\

(d(3j - (3kAnj -l>jAI7+Ç~jA7'k) A(}j .

•
\\

\
,~

If we use (2.71) then we may write

where .

(2.73)
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Now we compute d2n~ from (2.52)

d2ni ?(df3 d k Oi) f3 ci dOk) ln; nk ni Ink 1 k 1 k"j = - kUj" - (kUj)" +("k""j -"k"'''j +u;'j"rr -h'j,,(,rr

+(dw" a - w"da)8; + dS;kl"rrk"OI +S;kl(drrk"01 _rrk"d(1
)

and using equations (2.52) with the assumption that dSjkl = 0 we gel.

o = [ ni s"m + S"i (nm cm) + S"; nm +~; nm] k 01
-Hm jkl jml Hk - O'Uk jkmH.t ... mklHj 1\ 7r 1\

\ Ok 0; 'V 1 Ok ;+";k" " + v jlkrr" "rr. (2.74)

Two immediate consequences we have by putting the coefficient of 0'" rr k" 01 and

of rr l " Ok" 'Ir' to zero are that

This now implies that 1

and Wijk = O. (2.75)

Now put the coefficient of rrj"Ok"OI in d2a to zero and finally we lli\.ve,

(2.76)

(2.77)

Thus the only possible constant values for the torsion is zero, proving the the-

orem. - .

•

'1'0 summarize this theorem we note that equation (2.60) irnplies that j"j is actcd on

by scaling by thc onc dimcnsional subgroup of I-I gcncratcd by a. This dcpcndcncy iH

also secn in the paramctric form of j'''j in cquation (2.25). Whilc for Sjkl wc also find

by equation (2.74) that Sjkl is scaled by the action of subgroup generatcd by IL. 'l'IUIH

the only way that thcse tensorial objects can t,hus be absolute invariants is if they

1For Jimension n > 2 , we actually have ),ik = 0
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•

vanish. The condition in Theorcm 2.2 agree with those obtained for linear equations

to be equivalent to (2.58) in [21].

For complet.eness wc have

Corollary 2.1: The {e}-slructure admilling a maximal symmelry group has slruc-

Lure equalions

dw - cr" w +K.j" oj

dOi - ni." oj - 'lri" w
J

d'lr i - u" Oi + (n~ - cré})" 'lr
j

dcr - (3j" oj - K.j" 'lr
j

- 2u"w

dni. 2(3 ék Oi +ni nk i. ë
J - (k jl" k" j - 'Ir "K.j - U"W j

du = (3j" 'lr
j +u" cr

dK.j - {hw +cr" K.' +K.'" n!1 1 J ~.

These ar'e lhe Maurer-Carlan equations of sl(n +2, IR).

IL is possible to realize t.he symmetry group of :ë= 0 as PGL(n+2, IR) in the following

way [19]: Let (xi, xn+1 = t, X n+2 = 1) be standard affine coordinates on an open set

U of IPn+1 (IR), and let

L = (lb) E PGL(n +2, IR), 1 ~ a, b ~ n +2.

Acting with L on IPn+l(IR) takes a point p with coordinates (xi, t) to a point "Ji with

coordinates,

_. I;x j +1:1+1 t + 1~+2 t l';+lX j + I~:j:~
Xl = 1~+2 x j + In+2 t + In+2' - In+2 j + In+2 1 ~ j ~ n

J' n+1 n+2 j x n+2

where we have assumed L is sufficiently close to the identity so that the denominator

does not vanish. If we now consider the set points in U given implicitly by xi ­

Bit +Ci where Bi and Ci are constants then under L,

xi=Ft+?J
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where

Thus we see for L sufficiently close 1.0 the identity, L maps solut.ions of ,,:'= 0 t.o

solutions of ifi= O. The structure equations in Corollary 2.\ are relat.ed t.o t.his

example by the faet there is an injection of PGL(n + 2, Ill) int.o t.he second order

frame bundle of lPn+1 (lR), see Kobayashi [29].

2.4 The Fundamental Invariants

In this section we provide the l'roof that in the {e}-st.l'uct.ure of Theorem 2.1 ail t.he

tensol'ial invariants are differential funetions of Pj and Sjkl' The l'roof of Theorern

2.2 is a special case.

Theorem 2.3: The {e} -st,.,tetu7·e !Vith invariant cofmmc (w, Oi, '11"', a, n~, li;, o",(jj)

in Theorem 2.1 has the structu7'e equalions,

51

= ni." (Ji - '11"'" w
J

=0"" Oi + (ni. - c",5\)" 'll"i + p'Oi"w +Q-i.kOi" OkJ J J 3 .

= 2(J(k8j) " Oi +n~"nj _'II"i" Iii - 0"" w8j

+(Q- i Ti )Ok +Ri Ok 01 ..L. S-i k 01
jk - jk A W jkl A 1 jkl'1r A

= (J'" 'll"i +0"" a + _1_ 1i ..Pi" Oi +wj/,." 'll"i +W"'II"i" Oi +X ·Oi" Oi +wy." Oi1 n-l 1 3 J 1) 1) J

= (Ji" w +a" Ki +l'k'' nj +Wikl'll"k" 01+XiklOk" 01+WY;k" Ok

(J n, p"i'·'''C''' (Q" i Ok Ti )Ok l ,/'i Ok= i""i + Ki" 0" + K, i"W-rKi" ik - ik +n_Ii(jKk)"

+W}kl'll"k ,,(JI +XjklOk" 01+wYJk" li

dw = a" w + Iii" (Ji

d(Ji

•
()
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where the torsion elements as difJerential funclion of Ï'j and S;kl are,

1 ( - i)VJ' = - dP· in-l J 'Ir

! ( -.)}j = n-! dPi Oi

Y;k = - n~2 (dT/u)~k)

Tjk = (dÏ'{j) ~k) +V(jhk)

Wjk = 3~ (dT/ULkl
~ ! .
Xj1k = - n+2 (dR:lk)~j

mod(w,9')(2.79)

This proof is similar 1,0 that of Theorem 2.2 only more care is needed for handling

the indices. Again, we apply integrability conditions 1,0 obtain the results.

Proof: We begin by puttingd2
1r

i = 0, which is found in equations (2.41), (2.43)

and (2.44) (or use the structure equations in (2.52)), 1,0 get

o = (dÏ'j - !1~Pf -1- Ï't!1j +2aÏ'j +3QL1rk - Ttj1rk - Xl"j) A ojAW

+ (dQ}k - !1jQ~k - 2Qju!1~1 +aQ}k - Ï'&"kl +çrAl +RLk1rl) A oj A ok (2.78)

which gives

di,i ni P-k+ P-ink +2 P- i +3Q-i k Ti k ! <i - 0
j - "k j k"j a j kj1r - kj1r - X Uj =

-. . -1 -. 1 -. -. l' . 1
dQjk - !1lQjk - 2Qlu!1kl +aQjk - PÛ"kj +ÇU"),] +Rijk1r =0

Taking the trace in the first of these equations and noting from (2.54) that Xl
has no W or Oi terms we find

! _ T7 k _ 1Ti k
X - -Yk1r - -- k· 1r

_ 11. t

with V; being functions. Then t;Jdng the coefficients Of 1rk AO
j

AW in eCl~latibn

(2.78) we obtain

(2.80)
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Skew-symmetrizing on j,k and taking the trace gives

l~ = _1_ (dPi) .
n -1 J 11"'

(2.8 t)

where we have used the conditions on Q~k and 'ljk in (2.5:1). Skcw-symmcl.l'izat.ion

and symmetrization in equation (2.80) leads to

Q~k = ~ ((dP~Lkj - ji[j8~1)

Tjk = (dP{iLk) +I~A) .

We now take the trace in the second equation in (2.79) and nnd

mod(w,Oi) (2.82)

In other words we may write

cl 1. p'k w: k X Ok v
~i = --I!f,k i + ki'/r + ki + 'iw

n-

where Wik, Xik and }j are functions satisfy.ing,

(2.83)

(2.81 )

by the conditions on Ç[ in equation (2.54). Thus substituting (2.83) into (2.82)

gives

2 "
Wki = -1--R[kiji-n

and (2.85)

Now inserting this expression for çl into 2.78 and putting the coefficients of

'/rl/\ Oi /\ Ok and Oi /\ Ok /\ w to zero gives

•

(dQ~k) ~I + Wi[j8~j +Rl;k = 0

- (dP~)Okj + (dQ~kt + Y[j8~1 = O.

Taking the trace of the second equation above we have

1 ('")}j = -- dP! .
n -1 1 0'
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At this point ail information from the first integrability condition in equation

(2.78) has been obtained. We have Wjk and X jk in (2.83) still undetermined.

We now continue by setting d2a = 0 and use equations (2.24) and (2.30)

,Pa = df3j1,Oj - f3jAdO j - dKojA7fj + KojAd7fj - 2d'7AW + 20'Adw

o = df3jA oj - f3jA (ntA Ok - 7fj AW) - (f3jAW + aA Koj + KokA nj + E.~jOk)A 7fj

+KojA(O'AOj + (nt - a8i)A7fk + PgOkAW + QilokAO' )
. l ' .

-2(f3jA 7fJ + O'A a + E.jA OJ)AW + 20'A (aAW + KojA OJ)

o = [df3j - f3kAnj - KojA 0' + ajA 7fk - "kA p/AW + 2E.]AW - "lA Q~kOk A] Aoj

thus

df3 f3 nk <2 k p-k 2,,1 Q-I (Jk \ (Jk (2 88). j= kA"j+"jAO'-<"kjA7f +"kA jW- <,jAW+"IA jk +AjkA .

where the one-forms ..\;j satigfy,

(2.89)

•

Now compute d2n~ from (2.52)

,z2n~ = 2(df3(k8j) A0; - f3(k8})AdOk) + dniAnj - niAdnj + d"jA7fk - "jAd7fk
. -. . k _. . k k

+ (dwAO' - WAdO')8j + d(Qjk-T]k)(J 'AW + (Qjk-T1k)(dO AW - (J'A dw)

+ dR i Ok 0' +2R i dO k 0
'
+dS-; k (JI , S-; (d k 0

'
k d(Jl)jkl A jkl A jklA 7f A '1' jkl 7f A - 7f A
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and using equations (2.52)

0 - 2 (" ni +. e2 1+. p'i ·Je' +. Q''''OI) S(k Oi)- PIA ~ '1. /\'1." a - 1.,,[1./\ 7f' "'lA kW - """f.:,kA W I\.ml\ kt (j 1\

+ÀjkI\Bk" Bi - 2(J(k8})" (nr"OI- ?rk"w)

+ (" Bi i. 8i + (Q' i TI )0'" + 1'1 0'" 01 + S"l '" 01) '1k
JJkA -7rI\fi'.,k-UI\Wk km-'km I\WLkml 1\ kllll7r 1\ A.lj

ni (" Ok k.. 8k + (Q" k Tk )0'" + Rk 0'" 01 + S"k '" 01)-Hk/\ fJj/\ - 7r 1\ "'3 - (J'I\W j jm - jm I\W . jnti 1\ jml7T' 1\

+((Ji"w + a" Ki + Kk" nj + Ç]k" Ok)" ?ri

( BI (ni 8i ) k p"iOk +Q"I Ok 01)-Ki" 17" + "k - a k "?r + k "w kl"

+(a" w + Ki" Oi)" 17 - w" ((Jiui + 17" a + çJ" Oi) + d( Q}k - J1d" Ok"w

+(Qh - Tjk)(nr"BI"w - Ok"a"w - Ok" KI"OI)

+dRi Bk BI + ?RI (nk 0'" k ) 01+ dS"i k 01
jkl" 1\ .... jkl Hm" - 7r I\W 1\ jkl/\ 1r 1\

+8\ f.((j" Bk +nk "?r'" _ a" ?rk+ pk 0'""w + Q"k 0"'" or)" (jl_?rk" (ni" 0'" -?r"'" w)~Jkl ~ m m mr tu ~

which simplifies to

[d(Qh - Tjk) - ni(Q~k - Tjk) + (Q~I- Tjl)(n~ + a8i) + (Qik -11~)n~] "Ok"w

+(Q"i Ti )Ok BI + [dRI ni R'" + 2Ri n", + 1,i n",] Ok 01
jk - jk 1\"-1/\ jkl-Hm jkl jmlHk"mklHj 1\ 1\

+2Ri k 01 +[dS"i ni sOm + SOi (nm 8m) + SOi n", + SOi n"'l k "1jkl7f' 1\ I\W jkl- Hm jkl jml HI. - cr k jkmHt mkl~r.j 1\1r AfI l) (
(_..JO)

+À.." Bk" Bi + S"\ (pk om"W +Q"k om" or)" 01
Jk Jkl m mr

+2(KI" Plw +Km" QZ/OI - Çfk" ?rI)" 8YOI) - 2ç1"w" Oi +8}a" Ok"w

+(Ki" Plw + Ki" QiIOI)" Ok + Ç]k" Ok" ?ri = 0 .

Taking the trace of this we have,

o= [dR}kl + 2R}mlnrJ"Ok" 01
- [dTik + Tit(n~ + ai)] "Ok" w + 2R}kl?rk" 01

" w

-TikOk" KI" 01
- (n + 2)Ç]k"?ri " Ok + (n + 2)ç~" Ok"w - (n + 2)Km" Q]i,oi" 0~2.9 J )

-{n +2)Km" PrOi"w

We find X kl by using (2.83) then putting the coefficient of 01" Ok" w in the above

equation to zero, that is

(2.92)

5.5



•
Now put. t.he t.erm wit.h n:;"Ok in (2.91) t.o zero so

From which we may conclude that a; is of the form

(2.94)

where W;;k, XI;k and Y;; are functions which by equation (2.54) are subject 1.0

t.he conditions,

W[ôlilkl = 0 , X[;;k] = 0 , li;;] = 0 (2.95)

Insert.ing the expansion for çlk from equation (2.94) into (2.93) and putting the

coefficient of n:i" n:;" Ok 1.0 zero gives,

or (2.96)

The coefficient of w" n:;" Ok In equation (2.93) being zero gives after skew­

symmet.rization

(2.97)

which simplifies by equat.ion (2.85) and the symmetry properties of R}kl in

equat.ion (2.53) 1.0

•

The symmet.ric part of the coefficient of w" n:;A ok in (2.93) gives,

~ 1 ( ')YJk = --- dT!(, k)n+2 IJ 1r

The coefficient of 01" n:; A ok in equation (2.93) being zero gives,

~ 1 ( ')X;/k = -- dR~/k ;n+2 1 1r
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We now need 1,0 find Wijk, which can be donc by putting the coef!icient of

"mA"IAok in equation (2.90) 1,0 zero, which gives

or ~ 1 (")Wjkl = -"- d5jkl1-71. ll'i
(2.\01)

Finally we are left with the determination of >'ij, so l'ut the coefficient of ()kA()1

in equation 2.90 1,0 zero

(dQ~[k - dTj[k)ol]W - (Q~[k - Tj[k)"ll +dR~kl- fl~,R'Jkl + 2n~m[kfl;i' + R:..k1fl'J'

+>. Oi (dSi ) m Si pm +Si Q" n om X 5i ,n + X 8i '"j[k 1] - mj[k 01]" - jm[l kl W jn[m kil - ",kl' j" "'.ilk 1]"-. . . -. -. -,
+Xjkl ,,' - (XklOj +2Xj[k Oi])w - "mQZ/oj +"mQ'Jk5i] - "'iQkl = 0

If in this equation wc now substitute

where by 2.89 >'[;k] = 0 Xlikjl = 0

and take the trace on i, 1and symmetrize on jk wc have

(n -l)>.jk = ((dTjk)Oi - (dT!U)Ok) - SjmkfÔ;"') W+ ((d,S'fjk)oi - XUk)I),,1

+T!U"k) - "ITJk

note that here we have used (2.85). This still leaves Xijk undciermincd. II, can

be found by taking cf"j and setting 1,0 zero the coefficient of OkAOI AW, which is

(2.102)

This completes the determination of the coframe as given in Thcorern 2.3 •

We can determine the infinitesimal group action on jjj and ,S'}kl from cquations

(2.78) and (2.90) as,

•
dPj - niP} + ptnJ +2aPi _ 0

dS}kl - n:"sj};1 + S}ml(fl;;' - ao;;') + S}kmni + ,9:..kl n'J' _ 0

From this Theorem 2.2 is an immediate corollary.
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(2.104)

(2.103)

•
2.5 Systems of Third Order Ordinary DifferentiaI

Equations

ln this section we will study the question of equivalencc of systems of third arder

dirrerential equations,

~t:; = i (t,xi, d~i, ~;:i)

d
3 fë -; (- -i dxi d

2
xi )

diJ: - f t, x , dt' dP,.
Ji

We pl'Oceed in a manner similar ta section 2. Let U c P(lR, lRn) and ac P(R, Rn)
":1 . •. _'"

with standard coordinates, (ti, x', x\, x~) and (i, x', x\, x~) and associate ta the systems
,-,:::>

of dirrerential equations in (2.103), and (2.104) the Pfaffian systems,

ôi = dxi_1 - xidt
d . . _
Ob = dxt_1 - xtdt

0_; "::d; f;(i i i i)dt3 - X 2 - ,x 'Xl,X2
-=:.i . _. _ . . .
O d-' f'(i -J -J -J)dt3= x2 - ,x 'Xl,X2

b = 1,2 (2.105)

As in. t.he second order case finding a one·dimensional integral manifold, of the first
-.;~ -,~.).,::- :~:~:' .

PfaHi"ii.'-syst"lll in (2.1 05) satisfying..... - .' .'

,·dt f= 0

is identical to "finding a solution to the system of equations in (2.103).

The two differentia! systems in (2.105) are equivalent if,iild only if there exists a

di rrcomorphism (t, x;;:= (<p( i, xi), Vi(i, xi)) = iJi(i, xi), withs~cond prolongation iJi2

•

:'f;"< Oc >c=I ...3 = < Oc >=1...3
. '~/:

Extending the one·forms in (2.105) tothe coframes

(w = dt,ô~) and .(~ = dt, O~) c = 1,2,3 ,

Appendix A allows us to simplify condition (f106) to
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Lemmà2.4: The two difJe!'ential systems in (2.105) a!'e equ.i11l/.lent if (m" nnly if

the!'e exists a ]Joint transfo!'mation,

whose seeond ]Jrolongation Iji 2 satisfies

w w

ri' oi
w; 1 =S 1

{ji oi
2 2

{ji oi
3 3

(2.108)

whe!'e S : U -> H is a smooth function on U taking valu.es 'in the Lie snb!J/'ou1J

The proof of this cornes directly from Appendix A. For the Lie group li wc have the

l\tlauri;:Cartan form

a ,.. 0J

0 ni. ü
J

0 (3} ni.- a 8i.
J J

- 0 Ei. -Xi.
\ J . " . /'." J-'-'-/.

where (S-I)is . . ,-

o \
o
o ".

n~ - 2a8}

(2.1O!J)

•
o (A-')~'

o -a(k' )iENA-')j
o a2(k')Vej':" a-'DnA-')~E;')(A-l)j

~'::-.

We will use the conventions of the !ast section .
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Theorem 2.4: Solutions lIJ : U -> U to the equivalence problem for systems of n (2

2) thi1·d onler ordinary di.fJerential equations are in one-to-one correspondence

'with the solutions of an equivalence problem for an n2 +3n+3 dimensional {e}­

stnLctures which is obtained by applying the equivalence method to the initial

cofmme (w, Ô;, Ô;, Ô;) withthe structure group given in Lemma 2.4.

In titis l'roof we will have the range of indices b = 1,2 and c = 1,2,3.

Proof: To proceed we first write dÔ( = -dX;A dt and dÔ; = -dX;A dt and dÔ; =

-dfiA dt in the lifted frâ~e

dÔ( = -(A-I)~ (O~ - Bi(A-I)rOi) A (W - EAj'O{)

difi = -a(A-I)i. (oi + (C~ - a-IDi(A-I)kBi )(A-I)'"or _ aD~(A-I)k(}i)
2 J 3 k. k l '" r 1 k 1 2 (2.110)

A (W - EAj'On

dÔ~ = -dfiAa-I(W - EAj'O[J

From these equations and dw = 0 the first two s~~ucture equations are

dw

dO;

- (YAW + l>iA O{ - EA;t(O~ - Bi(A-l)rODA (w - EAj'O{)

= ni Oi Oi +Oi EA-IOi +Bi (A-')kO' ( EA-I(}i)Hij" 1 - 2A W 2" j 1 kil A W - ~ j 1 •

(2.111)

(Y =
,-" ..
-

1>- =J

ni. =J

By making the absorptions,

li + EAj'O~

'iI,. +EA-'(}k EA:-' + (w - EA:-IOi)EA-1 Bk(A-1 )1.J k2J JI kl J

fi~ - O;EAj' + (w - EAk'(}t)Bf(A-l)}

wc sec that cquations (2.111) bccome"
-/

(2.112)

dw

dOl

= liAW+RiAO{
-. i .

= niA (}I - 02 AW .
(2.113)

•
vVe still have the following freedom to absorb using li and fi~,

"li = & +Vw +WiO{
-ï -i i kni = ni +X(jk)OI
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Considering th~ last two equations in (2.110) and thi)'Hbsorption in.,(2.112) we

may write in general ( and dropping hats )

dOi _"-;,i + (roi ri) Oi Oi + 'l'iOi + /JiOi + Qbi Oi l"k
2 = ,oj/\V! "i - aUi /\ 2 ,- 3/\"-' i 2/\W i I/\W ik b/\ '1 2.115)

dO~ = E~/\ O{ + À~" O~ + (!1~ - 2ao})" O~ + Y'10~"W+ zcb)kO~" ot ;'(

where b = 1,2, c = 1...3 and Pj, Q~k,Tj,Y'7,Zbc~k are fnlldioll whosC'iJ<trtic­

ular form is not important. We may 1I0W further ahsod> torsion by

a = â _. ~Tiw
n

(.l)i = ?ii.j. pi Jci Ok
fJ !Ji:" jW - ~'k.i~,c

Ei, = 0i_ +yliw _ Zb!i ,Ok
J ~J J '..J k) b

À~ _ ~~ +Y1iw - Z22~iO~ - Z32tiO~

which leads 1.0 the last two structure equations,

- Pj"o; + (!1~ - ao~)"O~ - O;"W +ijo~"w

__ ~~i Oi +.",\ i Oi +-.;-.i ? <il Oi + S'iOi
:...Jj" 1 Aj" 2 ,<,G:,: - ....OUj /\ 3 j 3" W

where Tj and S)'1l;rc.(t(î;etions, anc: i'/ ",;:,p. To determille the grollp ~stioll 011
'" ;,-:--; '. . -' ~-

the torsion we rh'st compute d20j and lind
.'_.

giving

droi _:>,i rok + w (.li +._ OiHi =-.-C,kAHj AVj 11>j" 2

Now take d20~ mod( O{ ) ,

mod(O~ )

•

(.li Ok, ,. + (roi rok + (.li + Oi) Oi d Oi- Pk" 2 /"":" Hk/\ ai W/\!Jj "-i A 2 1\ 2 - Cil\. 2

(roi <i) (rok 'Oi Ok Oi + '1-'kOi )-,Hk - oVk " Hj" 2 - 0/\ 2 - 31\W j 21\W

(À~" O~ + !1~/\ O~ - 2a" 0;)/\ W +0;" a" w

+ dTj"O~"w +Tt!1j"O~"w rnod(O\)
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Ta continue we substitute ir.to this equation (3j = /3j + (3o} and À} = X} + Àoj

where /3i and Xi. are trace-free which results in
] J ..

•. . • k •• k " •.
-[(dT] - !1kTj' +TknJ +2(3j - Àj)AW

+(do: + KkA O~ + 2(3A W- ÀA W)Oj]A O~

Taking 'the trace of this gives

=0 mod(Oi) .

do: =-KjA O~ - 2(3AW + ÀA W

while from the trace-free part we;:h~ve,

... i i ... k ... i k .. i ... i ,,'
dTj - !1kTj +Tknj +2(3j - Àj =p

We now compute d20; mod(Oi, O~) and use (2.116)

mod(O~)

mod(base)

(2.116)

(2.117)

'.' . •. .. k •
_ ÀjAO~AW +ÀAO;AW + (WA(3j +WA(30j + nkA!1J)AO~

+ 2(-2(3 + À)AO;AW + (nt - 2O:0j,)AO~AW

+ dSjAO~Aw+ Sj(nlAO~AW_- O:AO;AW)
:~--

where cquation (2.116) has been used. From this we find

dSj - nL'7j
k + sj,nj - o:sj + X} + /3j + 3(À - (3)o}=fJ mod(base) (2.118)

Using equations (2.117) and (2.118) we may translate tj and Sj to·~ho. With

this reduction we have

À=(3 and (3j =À} =O'oj mod(base) ·'(2.119)

•

where 0' is a right-invariant one-form on the reduced group. To continue with

this reduction note that everything up to equations (2.115) stays the same (in

the modified frame) while equations (2.115) become
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In the first equation we may now absorb

so that we have

dOi Oi (ni 8i ) Oi Oi +S'iOi + 'l',bi Oi Ok + U- i Oi l'Ik2 = (J'A 1 + Hj - Q:' j 1\ 2 - aJ\W j IAW .. jl.: b" 1 jl.: ail. '1

where the'functions satisfy,

(2.120)

Dy llsing E~ any terms with O( in equation (2.120) for dO!l can bc'a.bsol'b,ed so

\i' we-':have,Ir

dOi ",i Oi + Oi + (ni 2 8i ) Oi +ViOi +U2i Oi Ok + U:li Oi Ok3 = ~jl\ 1 UA 2. Hj - Q:' j A 3 j ~"w jJ.... 2" 2 jk a" 2
" .

We now compute the group action on part of the stl'Uct.urc fllnetion by taking ,r

Fv i =0 mod(Oi)-- .~~, 2 - 2 ,

From this we may extract the following two propcl'tics,

•
mod Ihi~c)' . -

,,\

...::~-

"··-,r
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•
By writing E} = f;} + Eo} and setting the trace and trace-free part of the first

equation the trace-free on i,j part of the second equation leads 1.0

- (dat _ E

dB) - !1iBj + B~!1j +2aB) - f;} _ 0 mod(base) (2.121)

--i i"'t -i 1 -i l"i i" idUjk - !1/Ujk +U/k!1j +Uj/!1k - aUjk +nKojok - KokOj _ 0

We may then use the group action 1.0 translate

Bj = 0 and (2.122)

where we note the translation on Û)k is the trace on the second index. Next we

compute d20; mod(O{, rJ.Ü

,(20; _ (f;};- E6})AO~AW+ do"AO~ - o"A(!1} - aO))AO~

(!1} - 2ao})A (o"AO~ +VjO~AW + ip)kO~AO~) + (dV/ +V~!1j)AO~AW

+ (dU2jk +2U?~(!1~ - aO}))AO~AO~ mod(O{, o~) .

By using e<[uation (2.121) in this we have

dVi !1i Vk+ v,i!1k +2 Vi + ~i +?~ci - 0j - k j k j a j "'j ~"'Uj = mod(b0se) (2.123)

so we may translate the trace of vj 1.0 zero. With the corresponding reduction

of the structure group we have thus eliminated E} and Koj. With the same

absorptions (using the new frame) we may then write the structure equations

as

dw =
dO~ --
dOi =2

.,- , dOi.. -3

W c oj okaAW + jk cA 1

!1}A oj - O~AW

o"AO~ + (!1} - aoj)AO~ - O;AW +T1kO~AO;

Oi + (!1i ? Ci) oj +RiOj +V"iO; +Ubci oj OkaA 2 j - ....0'0j 1\ 3 j 1" W j 21\ W 'jk b1\ c

(2.124)

•
1 -. t-Ve T"ci V"i Ri d Ubci f t' . h\V lete l' jk, jk, j, i' an jk are une Ions Wlt ,

]( ,,1. this point we try 1.0 prolong these equations we obtain an {e}-structure. _
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Next we look al. the case of max;-nal symmetry,

Theorem 2.5: There exists a unique {e}-sl1'ucl.1tl'e with il maximal dilllellsiollai

symmetry (autom07'phism) group, FOI' this {e} -structure the stl'/u;tu/'c fuuC/:ioll

vanishes, and a representative fo'l' the system of equat.ious gilJing risc to thi.. {c}

-strucl1tre is

(2.J25)

Proof: The assumption of mnximal symmetry implies that the structure funet.ion

(the torsion above) is constant. We will then demonstrate that thecjnly possible

constant values for the torsion are zero. The fi l'st, implication for the strllet.ure

function to be constant is

dWci dT-ci dl!i Il,i dUbci 0jk = jk = i = ( Lj =. jk =

We set d2w = 0 mod( w ) 1.0 find

d2 (WC oj Ok) +Wc dOi ok Wc Oi nk 01
w = -Ci/\ jk cl\. 1 jk cA 1 - jk c" Hl" 1

where by equations (2.124) we then have

rnod( W )

-c W:,"a + WClkn~ + WCjln~ +WCj1u = 0

-3 W.~ka+W1kf!\ + W~ln~ = 0

c = 1,2
rnod(base)

It now easily concluded by choosing the different vailles for c th11t

•
d2

".:_- 0 then gives
~ ~- \ ;'

\ .

and so

da = pAW

dw = aAW (2.126)

(2.J 27)



•
where p iR a one-[orm ( '~nd (pt = 0 w.J.o.g ). Now put cFO; = 0

"Oi dni 0; ni (nk Oi Ok ) + Oia- 1 = "i A 1 - "kA "i A 1 - 2AW aAWA 2

-WA (O"AO; +(n} - aS})AO~ - O~AW + 1'CjkO~AOn

so that

dni ni nk + ci +T-ci Oi + i Ok +Si Ok 01
Hj = Hk" aj w/\ aUj kjW/\ c 7 jk /\ 1 jkl}/\ 1

where rjk are one [orms and S;kl are functions subject to

(2.128)

Next compute d20~
. '-,

(2.129)

. . .'. '~ .
d20~ = dO"A Ol - O"A (njA 01 - O~A w) - pA WA O~

+(ni nk + ci + ",,;Cc "Ilk + i (}k +Si (}k (}I) ();
Hok" Hj' _ W/\ aUj "_:_..L~ kjW" .... c> TjkÂ. 1 jkl 1" l, /\ 2

-(n} - aS})i,' (O"A J.:,+ (n{ - aSÙA O~ - (}~AW +1';Lo~A 0\)
\ ._' . .

-(o"AO~ +(n} - 2aSj).';0~ + Ubc;k(}&AO~)AW +O;AaAw (2.130)

+1'ci ((1 - c)aSI.Sm +n(sm + sl"nm) A(}i Aok + (1 - SC)1'0+1
' O"A Oi A01"lm J k J k J k c 1 3 Jk b 1

+7-'li Ok 0; + T-2i (T-cl (}i om (}I ) Ok
jk 1" 2" W . lk jm c/\ 1 - 3/\ W 1\ 1

+T-3i (1/IOi +RIOi +Ubc Oi (}m) Ok +Oi .". T-ci Oi Oklk j 21\W j 1l\W jm bA c 1\ 1 3" Ci.AW·,- jk cA 21\W.

If we nowlet,
', ..,

(2.131)

we then have

(2.132) "

mod(base)
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•
where in the first equation we have nsed that T2(~k) = O. Taking the trace on

the first and third of these equations we get

WOi = (Ç)Oi = 0
l ,

from which wc conclude

'r'ci 0. ik = .

By the condition r6kl = 0 the second equation in (2.132) gives

mod(base) (2.133)

We have that equation (2.130) at this point is

t Oi Oi (i Ok S'; Ok 01) Oi Ubc; Oi Ok 0.,A 1 -1]AWA 2+ rikA 1+ ikl lA 1 A 2- ik bA c AW =

from which we find

(2.13/1)

mod(base) (2.L:l5)

and this with (2.133) gives

mod(base)

We now takecfO~

(2.136)

•

d20~ = (O'A a +Ç)A 0; - O'A ((l1~ - afJ})AO{ - O;AW)

+ (l1~A l1; +WA O'fJ~ +rjkA O~ + SjklO~AO\)A O~ - 2( -0' +TI)A W" 0;
(ni 2 ci) ( Ok (nk 2 ck) Oi RkOi V· kOi Ubck Oi 01)"k - aVk A O'A 2 + "i - aVi A 3 + i IAW + i 2AW + il "A c

• k . k • . . . . k .+ Rj,(l1i AOj- 01Aa)AW +Vj'(O'AOj +(ni - afJDAO; - O~Aa)"w:

+ Ubci (cl Cm (2 b ) + cmrik, r/nm) Oi Oklm UjUk - - c a uk Hj'-':7 UjHk 1\ bÂ c

+ (Vb+lbi +Ubc+I! )O'A Oi" Ok,k ,k, c
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Wc then find

3R~ = 0

2Ùi = 0J

bci(.1 - b - c)U jk = 0

and so

dOi Oi + (Oi ? ci) oj +U I3i (Jj (Jk +U 22i (Jj Ok3 = rrA 2 "j - ~auj A 3 jk lA 3 jk 2A 2""

Now use (2.133) and write

i _ jVi +Xi 01+yi 01Tjk - '1 jkW jlk 2 jlk 3

where wc arc assuming that Wjk,Xjlk' ~\k arc constant by maximal symmetry,

Wc then compute d2n~ = 0

d2n~ _ dn~Anj - n~Adnj +dwArr8} -wA(rrAaH8})

+ WjkaAwAO; +XJlk (rrA(J; +n~A(J~ - aA(Jn A(J;

+ ~\k (rrAO~ +n~AO;;' - 2aA(J~ + UI3~lr(J;nA(J; + U22~r(J~A(J;) A(J;

( uri +?Si 01 +Xi (JI +yi (JI) d(Jk
ri jkW ~ jlk 1 jlk 2 jlk 3 A 1

so that

'l'hus Tjk = O. Similarly wc may write

1) = WjO{ +Xj(J~
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•
where lVj, X j are const,'.nts by the assumption of maximal sYlll111dry, and by

using equation (2.134) there are no O~ terms. Now t.ake

d2 cx = UI\CXI\W- (UI\CX +Ç)I\W +Wj(dO{ -O{I\O:)I\W

+Xj(uI\O{ +n{I\O;)l\w

and putting t.he following coefficients 1.0 zero we have

(d2
cx) = Wj =0

t."lOi W

(d2
cx) - X j =0lTo{w

and so 1] = O. Equation (2.137) now t.ells us t.hat

(2.137)

(2.138)

(2.139)

•

so that when we wedge equat.ion (2.13'1) with W we have S;2 = ·0.7\1. this point.

equation (2.134) is

'Oi U13i oj Ok· 0 U22 ; oj Ok 0ÇA 1 - jk 1/\ 3"-W = - jk 2" 21\W =

rand by wedging with oi gives Ul~k = U22jk = O. This of course implies ç = O.

We have thus determined that the structure function must be zero. Il. is shawn

in (19] that t.he trivial system of third order e<Îuat.ions

d3 x i

dt3 =0

admits a symmetry group of dimension n2 + 3n + 3 and sa t.hesc cquations

generate the {e}-structure with maxim~i symrnetry. _

From this theorem we obtain,

Corollary 2.2: Ali systems of third order difJercntial not elJllivalenl. by a point

transformation to xi= 0 admit a symmetry g1'01lTJ of dimension stricily less

than n 2 +3n +3.
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•

For complctencss wc givc,

Corollary 2.3: The {e} -sl7'1/clure with maximal symmetry has the structure equa-

lions,

dw - QAW

dO i = n~A Oi - O;AW1

dOi = aAOi + (n~ - QO;)AO~ - O;AW2

dO i = aA 0; + (n~ - 2QO;)A O~3

dQ = -(J'I\W

dni. ni n k Oi
J - kA i +WA a i

da = aAQ
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Chapter 3

Parabolic Equations

3.1 Introduction

In this Chapter we would like ta apply the Cartan equivalencc method to study sec­

ond arder quasi-linear parabolic partial differential cquations in the pJaue ullder the

pseudogroup of point transformations. This study is ta be contrasted with the olle UII­

dertaken by Kamran and Shadwick [27], and Kamran [24] for quasi-lilleal' hyperbolic

and elliptic equations in the plane, where necessary and suHiciellt, conditiolls were

given for a quasi-linear non-parabolic second order par1.iaJ dirferelltial equa.Lion 1.0

be equivalent ta certain types of f-Gordon equations, with emphasis 011 equatiolls

admitting infinite Lie pseudogroups of symmet.ries.

Following [17], a partial differential equations of second order in olle dcpelldellt

and two independent variables

az az a2z a2 z a2z
F(x,y,z'-a'-a'a 2'-aa 'a 2)=0x y x xy y

defines a locus in the space J2(lR2, IR) given by

(:l.J )

•
f:- = {(x,y,z,p,q,r,s,i) E J2(IR2,IR) 1 F(x,y,z,p,q,r,.s,l) = o}

where (x, y, z, p, q, r, s, i) are standard coordinates for J2(lH?, Ill). Wc assume th"t f:-
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can be identifiec! locally with an imbedded 7-dimensional manifold E C IR7 and that

the [uudion satisfies the non-degeneracy condition

oF oF oF
(or'&'m)#(O,O,O) .

so t.he equation is truy second order. A solution 1.0 (3.1) is then a function

1: U -> IR satisfying il E E .

(3.2)

For a recent. analysis of the l'ole of characteristics in geometry of second order hyper­

bolie equations sec [17J.

WC will be interested in the parabolic Monge-Ampère equations that is equations

o[ t.he form,

F(x, 1/, z, p, q, T, 8, t) = e (I·t - 8
2

) +9 T +2b 8 +kt - f = 0

wherc b, e,j, g, k are smooth functions of (x, 1/, z, p, q) satisfying,

(3.3)

(3.4)

•

Wc shall sec in the next section that these equations enjoy the property that they can

be cast into an exterior differential system on Jl(IR2, IR). The original investigations

on the equivalencc of a restricted class of parabolic Monge-Ampère equations under

contact transformations were made in a famous paper of Cartan [12].M'lre recently

these equations have been considered from the point of view of conservation laws

by Bryant and Griffiths [6]. In contrast 1.0 these works wc consider the problem of

equivalencc under smooth invertibIc point transformations,

(x, y, z) = \lJ(x,y,z).

Wc proceed first in the next section by giving the differential geometric framework

[01' the l\'longe-Ampère equations which will lead 1.0 the equivalence problem. We
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then proceed to study sorne particulal' invariant classes of (~I.:l) which cllhninates in

determining the invariant classification of the heat equation and by IIsin1\ Theorelll

1.10, an invariant coframe for Burgers' equation,

l'-q-Z]J=O. (a.5)

•

The symmetry properties of this equation are wel! known and discusscd in Olvet·

[33] and Bluman and Kumei [3]. By using the cquivalencc lIlet.hod we de\.erllline

an invariant frame associated with (3.5) which determincs the Lie algebra. of the

symmetry group al! without solving any differential eqna.tions. This is in coiltrast

with what is required in the standard infinitesimal approach in [:J] and [aa].

3.2 Parabolic Monge-Ampère Equations

We begin by briefly discussing some of the geometry of what arc known as l'vIonge­

Ampère structures. The flavour of this discussion follows the exposition of Bryant

and Griffiths [6]. '1'0 define Monge-Ampère structure wc first use Bryant ci,. al.[5] 01'

Kobayashi [30] in defining

Definition 3.1: A contact manifold (M2k+1, I o ) is an odd-dùncnsional lf!'l'II:ifold

with a Pfaffian system I o which is locally ycnemtcd by a onc-for.,1/, 0, with dO

being of rank 2k.

A locally generated differential system rneans in this case for M 2k+1 ther" exist II.

coYer {U", <,6,,} of M, a collection of one-forms 0", and a collection of smooth fund.ions

.' >',,(3 : U,,(3 -; IR' such that

where (<,6"(3,,,) : U,,(3 -; V" and (<,6"(3,,,) : U,,(3 -> U(3 arc the canollical injeetiolls. This

notion extends to arbitrary differential syst~ms in an obvions way. If the manifold is

orientable the contact structure is generated by a global one-form [:JO] .
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For Lhe conLad manifold M 2k+J Lhe Lwo-form dO defines a conforma! syml)lectic

st.rlldme on & = ke!'(0) C T(M) (t.he sLructure group of the frame bundle of & is

reclucible 1.0 csp(k)) and &" = T"(M) mod 0 = T"(M)/Ia so

dO:&-->C

is au isomorphism. The forms 0 and dO define a reduction Pa C F(M), as in ChapLer

Sec1.ion 1.1, Lo

Jf= {(: ;) ,cEIR-{O}, TEcsp(k), VEIR
2k

}

where T correspond Lo Lhe conformaI symplectic structure on & (and C). What Lhis

redllction corresponds locally is t.hat a local coframe (O,wi, 'Ii) lies in Pa if and OlllY

if

"
dO = À L'./"'Ii mod(O)

i=l
(3.6)

fi diffeomorphism </J : (M,Ia) --> (M,Ia) satisfying the </J"Ia = I a, is called a

contact transformation.' LocàJ!y </J satisfies </J"O = À0 where À E COO(M).

The basic resulL about the local sLrllcture of contact manifolds is the folkwing

[30]

Lemma 3.1: Let (M 2k
+J, 0) be a contact man~rold. About each point p E M the!'e

exists lm open sc! U !Vith local coordinates (z, xi, pi) such that

"O=dz-Lpidxi .
i=l

(3.7)

•
vVe cali a cofmme (O,wi, 'Ii) on U admissible if it satisfies (3.6) and coordinates

(z, :ri, pi) as in Lemma 3.1 standard coordinates on U. The frame (0, dxi, dpi)

is admissible.
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Now we restrict our attention ta 5-dimcnsional contact. manifolds. Wc first point

out the fo!lowing interesting geometric property of Monge-Ampère eqllatiolls whirL

distinguishes them among all second arder partial diffcrential cqllations,

Lelnma 3.2: Solutions to cqnation (3.3) arc in onc-to-onc cOl'rc"pontien"" wi/h

t'UJo-dimcnsional intcgml manifolds L : U -+ JI (IR2
, IR) of thc tiiJJcrcntial.,ystclII

on (JI (IR2
, IR), 0) gcncmtcd by I.hc two-form

and the contact one-fol'm 0 = dz - pdx - qdy which satisfy thc indcjJcndcncc

condition L' (du, dy) i= 0 .

This property property leads ta the generaI geometric definition,

Definition 3.2: A Monge-Ampère structure on MS is an cxtr~l'ior diJJcrcntùd sys­

tem l which is locally generated by 0 and a two-fonn ho, whcrc ho and dO {ll'C

linearly independent.

The rank of a Monge-Ampère structure is defined ta he the rank of ho ( as 11 skew­

symmetric form ) and this invariant can he eithcr 2 or 4. We assume the rank of ho to

he constant on M. (These definitions couId of course he easily cxtcnd,:<1 to manifolds

of higher d.\.!!1ension.)

Definition 3.3: If the 1'Ilnk of the Monge-Ampère sl1'ucl'/ll'C is 2 thcn it is saùl to

be parabolic .



•
· .--<~

Locally the rank two condition is equivalent to the condition

ICI= 0 (3.8)

A Monge-Ampère equation satisfying these conditions would be parabolic by' Lde

standard delinitions for second order equations, see [17]. It is now easy to deline the

equivalencc of Monge-Ampère equations by using the differential system I generated

by li and 0,

Definition 3.4: Two Monge-Ampère structures (MS,I) and (Ms,:T) are equiva­

lent if and only if there exi8ts a contact transformation W : M -+ M such that

,p"T = I. Locally this is the condition,

W"R" = À li \nod(O) where À E C"'(M) . . (3.9)

Our discussiol~ up until now has been given rather generally in tcrms of con­

tact transformations, however out main goal is to study local equivalence of Moi{ge-
','

Ampère equations under point transformations. Thus we assume MS is now an open

set U c Jl(IR" IR) with the standard coorciinates on Jl(1R2
, IR). We then have,

Lemma 3.3: Let (0, dx, dy, dp, dq) and (iJ, dx, dy, dp, dg) be as in Lemma :U, "ihen,

a contac!. transformation (x, y, z,p, g) = w(x, y, z,p, q)i.s the first prolongation
\ .

of a poim;transformalion (x,y,z) = w(x,y,z) if and only if
"

7j e
dx dx

W~ d'il =8 dy --~:

dp dp

dg dq

• ~,
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WhC7'C S : U -> G WhCl'C S is a smooth fnnction ta.king vaincs in the Ue snbgrol/.l' .

G of GL(5, IR) defined by

c a a cE IR., A~ E GL(n, m.)

G= Bi Ai. a Ei ,B i EIR2 (a.LO)
J

(lk')iEk ( 'A-')iDj c( 'A-l)~ D~ E 1112X2 (symmct.ric)

This can be verified by a ca1culation similar to appendix A or sec [24]. Now givcn a

contact structure f(, we have the local invariant under point transforma.tions:

Lemma 3.4: Thc condition e = a is inva1'tant 1L1ulc,. l'oint 1.1'Ilnsfol'/1wl.ions.

Proof: After a point transformation the coefficient matrix J( of hO becomes

so that

From this, the invariance property e = afollows imll1edia.tcly. •
Equations that satisfy this invariant condition arc just thc c1assical quasi-linear

second order equations. This Lemma simply.,'expresses thc l'ad tha!, thc pl'Operty of

being quasi-linear is invariant under pùint transformation. lt is important to notc

thlj condition e = a is not an invariant under arbit,rary contact transfol'lllation" sec

[15] pg. 295.

':. We continue now studying equation (3.3) with e = a and b2 - [f l, =0, 13y the

non-degeneracy f(, =f a ( which is the same as (3.2) ) we may assume without la"" of "-

generality that 9 =f a and dividing (3.3) by 9 we have that any parabo!ic quasi-lincar

equation can be put in 'the following form

• F=r+2hs+h2 t-J=0

77

(3.11)



•
where h(x,y,z,p,q) = kg-1 from (3.3). Suppose now that (U,Ô,K) and (V,O,~) are

local Monge-Ampère structures with

a -f 2h h2

f a -1 -2h
J(=

-2h 1 a a
-:h~ 2h a a

and corresponding K giving rise to qnasi-linear parabolic equations of the form (3.11)

ab?ve: l3y changing to the (adrriissible) coframe

Q1 1 a a a dx

Q2 -h 1 a a dy
= (3.12)

~1 -f a 1 h dp71
~2 a a a 1 dq71

wc find K= :;;1AQ2. Performing now the same -:hang",'of coframe in the V system we

have

Lemma 3.5: Two parabolic quasi-linear equations are equivalent by a point trans­

formation (x,jj,z) = Iji(x,y,z) if and oniy if

jj

oi
w

whe.,.e S : U -> H', with H' being the subgroup of the Lie group in Lemma 3.3

with



•
Proof The frames (Ô, Ci, if) and (0, wi, ~i) being admissible means wc nced ta only

impose the condition (3.9) in Definition 3.4. Writing

where Q~ = (0 0)
-1 0

we have

mod(Ô) .

and the equivalencc condition then requires,

with .\ nowhere vanishing on U x G. Explicit.ly we have

(:3.1'1)

which by first condition in (3.14) we have Ai = 0 giving the 1'01"111 fol' A~ ITI

(~.13). The structure of D; follows by a similar computation. •

We now proceed 1.0 study the equivalence pl'Oblem with the stl'tlcture group in this

last lemma.

3.3 Parabolic Quasi-Linear Equations

In order 1.0 apply the equivalence method we first necd to compute the Lie algeb",

valued Maurer-Cartan form for H'. From Lemma 3.5, we find

•
o
o
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•
WhCff~;

c-1 0 0

S-I = _c-l(A-l)~Bi (A-')~ 0

-c-' (Di(A -1 )jBi - Ei) _C-1Di(A-')j r- 1 tAi.
• J

and

ni. = dAi (A-l)~ (3i = l(dBi - n'k'Bk) 0" = ldc
:1 k Je' c

E~ -= eA-1)UdDr - o"Dn(A-l)~ yi = -~ (EiBk + (A-')i(dEk - O"Ek)) (3.15)

The form of A~ and D~ in Lemma 3.5 tell us that n~ and E~ may be written

i _ (ni n~)n·-
J 0 n~

.Next we wOllld like 1.0 apply the equivalence method 1.0 the lifted coframe

(3.16)

•

where the hatted forms given in (3.12) and the structure group of Lemma 3.5. The

t.ask of examining ail possible invariantly defined branches which mü.y arise would

be extremely lenll;thy ~,nd not particularly useful in view of the large number of

subcases"which would neèêi to'be considered. While we will st.art by applying the

equivalence method in as much generality as possible we will inevitably be lead 1.0

making ciloio'ls for the branches we pursue. Thus we will chose our branches so

as 1.0 obtafncharacterizat.ions of of Burgers' equation the heat equation and sorne
-"-":'-'

ot,hers, which sat.isfy mu: invariant assumptions. II. will be seen that even with our

assllmpt.ions the computations are rather extc:J~!ve. If we start with the coframe
"

in (3.12) which is associrtted 1.0 the quasi-linear equation (3.11) we may write the
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structure equations in the general rorm

dO

dr/

= (nO +WjA 7Jj +9jWjA0 +hj Jl j AO

- (3iA0 +niAwj + RiwjAO + Sj7JjAO +TjkwiA Jl l' si Wl AW2

= TiAO + ~iAWj + ((7oi. - Ini)AJlj +ViwjAO +Wi'ljAO
J J J J J

+Y/kwj
A 7Jk + ki W' AW2+ li JI ' A '1 2

(:1.17)

where 9, 11., k, l, s, R, S, Tare functions on (T X H. Wc now apply C(Lrl.an's mel.hod or

equivalence 1.0 this problem. First we absorb torsion by

(7 = If - 9jWj - hj7Jj

~i = Êi - kiw' + (Ydk - 920jlr7k

ni _ ni +Ti k ( 91 - 1";\
"j - "j jk7J-

o

(3i = ~i - Riwj - sj'li

Ti = Ti - Viwj - W!"l j
J J

(:1.18)

so the resulting equat,ions can be written dropping hal.s,

dO =
dw' =
dw2 =
d'I' =
d7J2 =

(7A 0 +WjA 7Jj

(3' AO+ njAw l +niAw2
(32AO+ n~Aw2 + T~jW1A7Jj

T'AO+ ~,AW2 + ((7:'" nJ)AJI' +Y:2wlArl2 + tJ/ATI2

T2A0+ ~,AW'+ ~2AW2 + ((7 - nDA '1 2
- niA JI'

+Y~kW1AJlk + ï2111A7J2

(:l.I!))

where

(3.20)

•
By expressing the condition d20 /\ 0 = 0 we gel.

-1' 7,2 y2 -12 -_ 0= 11' Ij=O
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•
so that T;" 1'~2 and Y:2 are the only possible non-zero torsion terms in (3.19). The

infinitesimal group action on 1'~1 and 1'~2 are determined by putting

(,Pw2)I\ W 2I\O = 0, which gives

mod(base) . (3.22)

mod(base) . (3.23)

We will make the invariant assumptions 1'~2 = 0 and Y:2 # 0, and then use the group

action t~.'l,nslational group action which we see in (3.22) to translate 1'~1 to 0 (thus

by equation (3.21) 71 translates to 0), and scale Y: 2 to 1. Thus in a modified coframe

which gives rise to this choice of invariants the new structure group satisfies,

mod(base) (3.24)

The structure equations in the next round of computations will be such that the

invariant conditions

-1 -2 -2
1 =1'11=1'12=0

-1
and Y12 = 1 (3.25)

are satisfied (after the absorption has been performed). In this next round of com­

putations we return to equations (3.17) but append the conditions (3.24), and thus

with this first reduced group and modified coframe we perform the absorptions,

<7 =
fli =J

Bi =
y; =•

(3.~5)
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•
With this absorption and taking into account. the invariant. condit.ions from (3.25)

above the structure equations are then,

d9 =

dwl -

dW2 =

dT/I -

dT/2 -

17A 0 +WjA T/j

(31/\9 + l1j/\w1 + l1iAw2

211j/\w2+R;wl/\ 0 +5>,j /\ 0 +T;jw2
A 1/ +S2wl/\W2

"[1/\0 + :B1 /\W
2 + (17 -11i)A111 +wlAl12

"[2AO+ :BI/\W
l + :B2/\W

2 + (17 - 2l1i)AT/2 -l1i/\11 1

+Y;jW1/\ T/j +ï
2
T/l/\ 112.

(') 'r)•.~ 1

wnere

82 = 8
2 + 2YA - 291

-2 2.· 1, =, -hl - 2T11

T;j = Tij 2Tl~

(:l.28)

Expressing d?0 1\ 9 = 0 gives

-2 -2 -2 -,2 _ '1,2Y 11 = 0, y 12 = -8, -·21 .

To determine the infinitesimai group action on the Jeft; over t.orsioll t.erms wc f1rst.

take (c/'w2)/\w2 = 0, 1.0 gel.,

-2 -2 -2
dR1+RI(17-l11)+5'2EI _ 0

-2 -2 -2 d(1 )d5'l + 5'1 (217 - 3l1Jl- 5'2l12 _ 0 rno )ase
-2 -2

d5'2 + 5'2(217 - 4l11) _ 0

(:l.2!))

The form of the infinitesimal group acUolI in these equat.iolls dernollst.rat.e t.hat. t.h"

assumptions

-2
RI = 0 ,

,2
Sj = 0 . (3.:lO)

•
are invariant. Wc now assume this 1.0 he true. Theil use
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to Hlld,

dT;1 + 'l'~1 (". - DJl - T~2nd 2,81 _ 0

d'l';2 +1';2('" - 2nJl _ 0
mod(base) (3.31 )

which we assume 1'~2 = 0 and translate 'l'~1 to O. Lastly setting

resulls in, ,
'c

mod(base) (3.32)

and so wc may translate :52 to O. The translation of 1';1 to 0 and :52 to 0 give rise to

a new coframe and strudure group so thal

,81 == 0 n~ == -2yl mod(base) (3.33)

In lhe next round of the computations we will have the invariant conditions,

-2 -2 -2 -2
RI = Sj =T 2j = S = 0 .

after absorption. With our reduetion (3.33) we lhen perform the aSsorption,

(3.34)

". =
nI =1

yI =
\~ =~1

\~ =~2

y2 =

•

, 1
(; - gjW - hj 7/J + (Wi + 2R~)O

- k 1n: +Tik7/' - (gl - Y;;)w l + 2R~O + (SI + 2V,I)W
2

yI _ ~(RI0 + '1'.1 ,,1) _ V,lwj _ W:I,,2
2 2 21" J 2 "

ÊI - kIWI + (YA - g2)8l)7/k - (SI +2V;1 )7/1

Ê2 - k2
W l + (Y21 - g28Z)7/k - 2(SI + 2V,1 )7/2

y2 _ v,2wj _ W2"j _ RI,,1 + (WI _ ~R2),,2
J J " 2', 1 2 2" •
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•
Taking into consideration the inv2.riant condit.ions (3.25), (3.:\,1) t.he st.ruc\.me equa­

tions are t.hen

dO - cu' 0 +WjA ''lj

1 (')1 l "V"1 2'lï\ 2 ,) -1 1 0 -1 ' ('1
dw = "IAW - 2~ AW +" 22W Al( + lllW A + Sjl/'A 1

dw2 _ 2oiAW2

dry1 = l1AO+~IAW2+(0"-ODA111+WIA'112

dry2 = 1 2AO+ ~!AW1 + E2AW2 + (0" -20DA1? +2T I A'//'

+Y;kW1A 1Jk +72
l/

1
A7/

2

where

R I RI !R2
1= 1-22

-'1,1 _ Tl _ 'J\Ul
22 - 22 - "2

-SI 1
j = Sj

As weil d20A 0 = 0 gives

Computing

v2 _ v2 }?2 .1
'11-'11- 21+f12+ s

Y
2 _ v2 vi + ?y'1
12-'12-'22 .cJI-- II

72 = {2 _ hl - 2T,II + 2W l2

-{2 _ '},I
- - 22 (:3.:\8 )

•

determines,

-1 -1 -1
0dR1+ RIO" + S2E1 -

-1 -1 1 ~1 1
0 mod(basc)dS1 + 2S1(0" - DI) + 2S2T -

-1 -1 1
0dS2 + S2(20" - 3D!) -

from which we will rnake the invariant assumption il: = S~ = O. While
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•
gives,

d1,1 1,1 0
.. 22 + 22a == mod(basc)

which we also assume to be zero. Vole luwe at this point assulIled,

Thus ail the torsion in equation (3.36) is zero, aud the strlldure eqlla,t,iolls arc of the

form

dO =
dw1 =
dw2 =
dr/ -

dTJ2 -

O'AO+WjAl/

11lAw1 - 2yl AW2
1

2111Aw2

yl A O+E1AW2 + (a - l111A TJ' +Wl A'11 2

y2A O+E1AW1 +E2 Aw2 + (a - 211DA'II2 +2yl A'III

We will now impose the invariant conditions on an arbitml'Y parabolic c'l"ation and

find a canonical form for the equations whlch satisfy thc conditions.

Theorem 3.1: Any par'abolic partial diJJel'entill.l eqnation oJ the JOl'm.,

'1' 0 11111..1. g. = fi,.

and gl, gO, JO ot/wl'wise al'bitmry, admits by ILPlllicrLtion oJ lhe e'ln;"Jn/ence mdJwd

the structnre eqnations in (3Al) on U x H whe"e H is lhe Lif; SnbfJl'01l.p oJ II'

given parametrical/y by

E l al
a2= -2--,

c
2 ia3 = (ad , B = 0 .

•
Proof: Wc: need to verify that any pat'abolic cquation sal,isfying the invariant

criteria up 1.0 this point must he of the form given in (3,42). If wc bcgin with

the initial coframe as in (3,12) and note that the ilBsurnptions that Il~ = 0 and
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•
8 2 = 0 irnply LhaL dw2 /\ W2 = 0 which in Lurn implies there exisLs coordinaLes

]

such LhaL W2 = >. dy'. In Lurn any parLial diiferenLial equa.Lion saLisfying Lhese

condiLions rnay be wriLLen as, (dropping primes)

Zxx = f(x,y,u,z,ZX'Zy). (3.4,1)

We will assume LhaL Lhese coordinaLes have been chosen. We Lhen continue our

parametric calculaLions with Lhe coframe Ô= dz - pdx - qdy,

';:;1 = dx

';:;2 = dy

7J! = dp - fdx

-2 d7J = q.
(3.45)

The first step is to find Lhe torsion terms Ti j and Y;2 = Y;~ in equation (3.19).

At. the idenLity of the group they are found to be,

(Tij)le = (T'fj)e = 0

(Y;2)le = (y~II)le = (diYt;l;J2 = fq

From equaLion (3.23) we use a3 to scale Y;2 to 1 leading to the reduction of the

structure group by,

where ]32 = 0 comes From the translation in (3.22). We then change the coframe

(3.45) by

(3.46)

•
which gives rise Lo these reductions. Now using this modified coframe we de­

Lermine the next seL of invariant conditions (3.34) by computing,

(3.47)
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•
from which we determine,

(1'()I, = 0 . (a.,IS)

The last torsion term we need at this point is

(-2)[ _ ( 2) + .)vl + ('-2) +.) (,.-,) _ ') r 1 dJ"s c - S e ,.01 11 ("w ...... .....2 ... CI} ..... :":1 - .... }J - T -,-
wl w W 17/ Jq (.3:

where the second term arises from the absorptioll in (3.28). The new coframe

corresponding ta the translations of 1';, and y:, ta 0 is then

DI = dx + (-f + ,..L~) D2 +~ Ô
P 'lJq dx 'l1q

-2 = Jqdq + (Ip - 2~, ~) il''1 (:3.49)
D2 = Ldy

f,
-1 = dp - Jdx'1

where wl and 'II haven't changed. The parametric reduction of the struet.ure

group is given by

and
1 (1,

a2 = -2E - .
c

In arder ta determine the restrictions on J by the assumpl,ion 1';2 being ~ero

which from (3.48) gives,

Jqq = 0 thus J = t(x,y,z,p)q + JO(x,y,z,]J) . (:l.!iO)

•

From the frame (3.49) we may determine the final invariant.s by taking dw l • We

first find,
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•
while (S~) = 0 is easily seen by using (3.50). Next we COIll,1ULe,

Fina.lly wc compute,

The assumption that S: = 0 is zero is

Substituting the form of f in equation (3.50) in herc gives

whose general solution is,

While requiring il: = 0 and taking into account S: = 0 gives,

(3.51)

•
and then inserting the form of fi given in (3.51), into this equation we find

and finally we have finished the praof.
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•
vVe may summarize this result by saying that any parabolic part.ial difrerent.ial e'llla­

tion which satisfies t.he invariant conditions in e'luat.ion (3.25), (:1.:1,1) and (:1.'10), can

be put int.o the canonical form (3.41). We now check the condit.ions of Thcorem 1.11

to see whether the st.ructure equations satisfy the condit.ions for an infillit.e Lie PSClI­

dogroup, The dimension of the solution spacc of the hornogencolls syst.em (t.he kernel

of the absorption) is of dimension 5 and can be paramct.erizcd by KI, K2 , Ka, K,,, Kr,.

This results in the freedom

a = u,

while the Cartan characters are found to he

•

We thus have dim (h(I)) = 5 # 3+2(2) equations (3.41) arc ilOt. t.he st.ruct.me eqllat.ions

of an infini te Lie pseudogroup,

From equat.ion (3,52) we may use Ki to parameterize t.he first prolonged group

H(I) and we now determine,

Proposition 3.1: The prolongation of the st1'UctUI'C cl/uations

dO = O"AO +WjA 1/j

dW l = nlAw1 - 2yl AW2

dW 2 - 2n1AW2 (3,54 )1

d1/1 - yl A O + E1AW2 + (0" - nDA1]1 +WI A1/2

d1/2 = y2A O + E1AW
1 + E2AW

2 + (0" - 2ni)A1/2 +2T'A''1 1

givcs risc to a G-structm'c on U x H X HII), whcrc HII) C H(J) is a two dimcn­

sional subgroup, with 10 tcnsorial invariants 1~ : {} x H ..... IR which (H'C actcd

on trivially by HP) .
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•
Proof: [n order t.o find t.he st.ruc1.ure equat.ions for the lifted eoframe first denote

by (1; = d[(; t.he Maurer-Cartan forms for 1-1(1), and then apply d2 = 0 1.0 the

cquations (3.51) of Thcorcm 3.1. Using d2
W 2 = 2dnj"w2= 0 wc eonclude,

whcre 6 is a one-form sueh that (6t, = O. (Z2w l = 0 gives,

1
(nI = (11"w2+ yl"n: - 26 "wl +Ç2"W2

whcrc 6 is a onc-form and (6t, = O. Ncxt wc take,
;...~

d 20 = d17"O - 17"(Wi"7]i) + (n:"wl - 2yl"W2)"7]1

_Wl" (EI"W2+ yI" 0 + (17 - nn" 7]1) + 2nj"w2" 7]2

_W2" (El" Wl + y2" 0 + (17 - 2ni)" 7]2 + 2yl" 7]1)

_ (d17 _ Wl" yI _ w2" y2)" 0

so that

whcrc 6 is a onc-form sueh that (6)0 = O. Continuing wc have,

(3.55)

(3.56)

(3.57)

•

d27/! = dyl" 0 - yI" (17" 0 + Wi" 7]i) + dEI" Wl - 2E1" n:" W2

+ (d17 - dl1i)"7]1 - (17-l1n,,(EI"W2+ yl"O+WI"7]2) + 2dyl" 7]1

+ (nl "wl - 2Y'"w2
)" 7]2 - Wl" (EI"W2+ yi" 0 + (17 - nn" 7]1 + Wl" 7]2)

= (dE t -3E1"l1j + 3yl" 7]2 + y2"7]I_Wl"E2-17"EI + 6"7]1 - 6"1I),,w2

-(6" 7]1 + Wl" y2 + ~Çl" Wl)" 0 (3.58)

wherc wc have used (3.55), (3.57) and (3.56). Now wedging this with W2 wc

eoncludc,

Çl = 2y2 + TllO + Tl2Wl + Tlol7]1

6 = tTlolWI +T33W2+T3oJ7]1 .
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•
Using these expressions in equation (3.58) that wc just computed, wc find

dEI = fJIAO + fJ2AU} + 3EIAl11 + 31/A TI +/,'A T2 + aAE I

+wl AE2 - 6A II' + 733111 AO + 6A{) + Ç'IAW2

where Ç'l is a one-form with (ç'llw, = O. Last take ,J2112 1,0 fiud,

(~1.5n)

d2TJ2 = dT2AO - y2A(aA 0 + WjA TJj) - ElA (111Aw l - 2Y' AW2)

+(3EIA111 + 3112A yI + TJI Ay 2 + aA El -6A TJI + 6A () + Ç'IA w2 + '/3:l111 AIi)AW'

+dE2AW2 - 2E2AI1:AW2 + (W1A TI +W2AT2 +é.3A{) - 26AW2)A1J2

-(a - 211l)A (EIAW1 + E2AW2 + y2Ali + 2yIA1/ 1)

+(2yIAI11- 6Aw1 + 26AW2)AIJI - 2y1A(E IAW2 + (a - I1i)AII' +W'A/12)

which gives,

dy2 __ 2 fJ 1 y2 1 1 2fJ5AO+fJ4AW + IAW +2 Al1 1 +6AW +6AII

+T33TJI AWI + Ç6AW2 + 6A () (:J.GO)

dE2 - fJ2AWI + fJ3AW2 + 2fJIA III + fJ4A () + 4(yl AE, + y2AE2) + 21]2 AT2

+aAE2 -26ATJ2+26ATJI +Ç4AWI +Ç5AW2 +ÇSA{) (:3.GI)

where Ç5, çs, 6 are one-forms with (eslw, = (çst, = (6lw, = O. The rael. tJw.t

no fJi terms enter into dl1l, aHows us 1,0 use 'flj in equation (:.J.59) 1,0 reduce the

structure group with out worrying about the absorption. l3y taking ,PI1: rl'Oin

(3.55) and (3.59) we gel,

Thus,

(:l,G2)

dTu + 2fJ5 =dT12 + 2fJI == 0 rnod(base, h")

•
and so we may translate Tu and T I2 to 0 resulting in

(3Ji3)
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•
from (3 ..59). We have thus e!iminated the group parameter~ 1(1, K s in equation

(3..52) (and hence fil and (3s vanish in ail equations that folIow). In order to

further sirnplify the 6 and é.7 terms we put d2111 = 0

(pnl = 2(Ç2AWI + Ç;,Af/2 + T33f/lAWl + é.7AO)AW
2 + dT14Af/

l
AW

2

+TI4 (T IAO + (a + nJ)Af/l +Wl Af/2)AW2

which gives,

6 = T210 + T22wl + T24 f/l + T14 f/2

é.7 = -!T14Tl +T21W
l +T74 f/l

Now we proceed as usual and perform the absorption,

(3.64)

in equations (3.59), (3.60) and (3.61). We may now compute the action of H(J)

on 6 (3.64)) by taking

d:Tl =d(TIA111- T2AWI - !T14 f/l AWI + (T210 + T22W l + TZ4 f/l + T14 f/2) AW2)

== dT22 +(34 == 0 mod(base, h')

where we have used (3.6'1). So we may aiso eiiminate K4 (and (34) in the

proionged group by transiating T22 to O. We may now use J2T l to find,

1'0 make the iast round of computation we absorb torsion by,

•
(3.65)
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•
and find the final structure equations are,

dfll = 2'T2AW2 + TWI IAW2

da = WI A'T I'+W2A'T2 + (Pj.jwl +T33w2 + 13411')AO

d'Tl = 'T1Afll- 'T2A",·1 -- ~TI4'1IAWl + (T:!lO + '1'2411' + 'l''4'12)AW2

d'T2 = 2'T2Afll- ~TI4EIAW2 - ~T14'T1AO - (12,' + 1:13)W' A1/' - p',.,W'AI12
(:l,GG)

+T34,/lA'I2 + (1'6101 + T62wI + 1'64111 + (1'05 - T13)1/2)AW2+ '/7'1//'AO

dEI = (32A W2 + 3(EIAfll +'12A'TI + 'II A'T2) + aA El + (~/331/' + '1'2411' + 'l''4112)A 0

dE2 = (32AW1 + (33 AW2 +'1('T1AEI + 'T2AE2) + 61/2A'T2 +aAE2

-~T14E1AO - 4T14'11A'I2 + (21'21 - To.,)OA'I1 + T02w1AO + 1'051/2AO.

The fact that the forms (32 or (33 will not appear in taking d or the fi"Ht '1 or

these equations implies that the 10 different tOI'Hion tenm

(3.G7) ..

do not depend on the group parameters J(2,1(3, and thus the conditiolls or the

them'em are satisfied. •

Since the tensorial invariants in (3.67) are acted on tl'Ïvially by H\') thiH C-stl'lIct.lll'e

is of the type considered in Theorem 1.10 and we may apply 0111' l'edllct.ioll theol'Cm.

This will be done below in the case of BUI'gers' equation. While the gelleral pammel.l'ic

form for the tensorial invariants in (3.67) are too lengthy to wl'ite dowlI wc cali make

one simple claim il} the case ail they ail vanish,

Theorem 3.2: If the invariant conditions,

(3.G8)

•
in equations (3.66) are satisfied then the resu/ting equations al'e the equations of

a transitive infinite Lie pse'udogroup. As weil, any parabo/ic cquation salisfyin.'I

the conditions of Theorem 3.1 and the conditio.\ (3.68) is equiva/cnt to the hr.al

equation Zxx = z\
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•
Proof: By taking d of the equations in (3.66) the condition that aIl the torsion be

zero is easily found to he invariant. For example wc have from equation (3.62)

mod(base) . (3.69)

Thus wc only need to check the condition of Theorem 1.11 to seC if wc have the

equations of a transi tive infinite Lie pseudogroup. The first Cartan character is

O'~ = 2 . (3.70)

while the kernel of the absorption by El and E2 in (3.66) is seen to be 2 dimen­

sional, that is

and thus the conditions of Theorem 1.11 are satisfied. It is a straight forward

calculation to check that the heat equation gives rise to the condition in (3.68)

by using the frame from Theorem 3.1 given in equation (3.49) which in this case

15,

(O,dx,dy,dp,dq) .

The last part of the them'em follows from the standard results on infinite tran-

sitive Lie pseudogroups [16], •

•

Olle interesting observation wc should also make in the example of the heat equôtion

IS,

Lel1una 3.6: The structure equations forthe difJerential forms'( 0, Wl ,w2,ni, 0", YI, Y2)

with the conditions (3,68) are the Maurer-Cartan equations the for the finite di­

mensional subg7'OUp of the symmetry g7'OUP of the heat equation.
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•
Proof: We write the structu.re equations,

da = aAO +WjA'I

dWI = njAw' - 2T'AW2

dw2 = 2nJ AW2

dnl - 2T2AW2
1

da - "-,lA T' + W2AT2

dTI - TIAn; _ T 2AW'

dT2 = 2T2AnJ

and a comparison with the reference [33] pg. 122. give8 t.he re8111t.. •
We now turn ta the case of Burgers' equation (3.5) and a.pply Thcorell1 1.10 t.o

reduce H. The calculations are tao extensive ta be done by hand b1lt wc have writt.et1

a MAPLE program and summarize the comput.ations.

Theorenl 3.3 The equivalence class of 13urgers' equa.tion z"x = z" + z z" ;s ;7/.1JI/.,.;­

antly chara.cterized by the 'invariant coframe,

WI = >'(dx - zdy)

W2 = >.2dy
1

al = >'-'(dz - pdx - qdy) whcre >. = ('1 + Z1')"

1]1 = >'-'dp - >'dx + >'-'(p2 + Z'l + z2q)dy

1]2 = >,-3(dq + pdz + zdp) + 3pdy

w;th structure equations

•

da = &OA'I2+W' A1]' +W2A1]2

dWI = w2 A0 - &wlA1]2

dw2 - _~W2A1]2

d1]1 = w1 A1]2 -W2AO + ~r/A1]2

d1]2 - 3WIAW2 - 3W2A1]'
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•
Proof: '1'0 determine the invariant frame we have a number of options, either

compute ail of the torsion in (3.66) or compute part of the torsion perform a

reduction and proceed with a standard equivalence problem on the base. Wc

will give the expressions for the torsion in equations (3.66) al, the identi'y of H,

Tl; = -1,121 = -p, T24 = 0, T33 = 0, T34 = 0, ToI = -t(q+zp),

TG2 = (4p+z2)(q+zp), T6'1 = -~p, T65 = 0, T7'1 = 0

The following normalization for the torsion above

1
T14 = -l, T21 = 0, T33 = 0, T61 = 0, T62 = --

2

give rise to the corresponding congruences,

nl == -(1, y2 == 0, yI == 0, E2 == 0, (1 == 0 mod(base) (3.72)

•

This leaves only El in the structure equations (3.54) after group reduction. The

frame change corresponding to this reduction is

0 À-l 0 0 0 0 0
",1 0 À 0 0 0 ",1

-" = 0 0 À' 0 0 ",2W·

r;1 0 0 0 À-2 0 r;1

r;2 pÀ-' 0 4p+Z2 0 À-' r;2

One last group reduction allows us to make El == 0 mod(base), and the corre·

spondil1g the frame change is

r/ = r;1 + (p2 + zq +Z2p)À-' W2

"12 = r;2 + (p2 +zq +Z2p)À-' WI •

which leads to the frame of the theorem.

The structme equations in (3.71) are the Maurer·Cartan equations for the symmetry

group of Burgers' equation (compare with [3] pg. 266). In the case of linear equations

wc find a.1l the invariants except T62 vanish.
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Appendix A

Contact Transformations

Let U C Jf(Mn+l) be open, and let (t, xh, '>:L ...,x~) be a system of local coordina,tes

on U. The contact system in these coordinates is generated by

where i = 1..71. , fi = 1..0'

Any contact transformation iIia : Ja -> Ja preserves the contact. structure on .1" fOI'

fi ::; 0', and {rom this we determine the explicit form of 'Po in terllls of the point

transformation 1 ilio on M.

Lemma A.l: Let (ï,xh) = (rfi(t,xo),1/4t,xo)) = ilio(l,x) lie IL pO'in/. trll.nsjorllUl­

tion. The prolongation iIia : JU -> Ja is gi'IJen in loclLl coo1'dùw,/.cs liy

. . " . (drfi ) -1 'b/)~
X~+l = ..p~+1 (i, x~, x;, ... ,X~+l) = di dl whe're fi = 1...0' - 1

Proof This will follow by induction. First ']il is obtained by requiring

mod(°tl (1\.J)

•
By computing in coordinates

iIi*(dxi _ xi d[l = (81/Jb _".i.!}i) 0; + (,J,/Jb _ (d1)) xi 0 ,p ) dt
o 0 l'1 8a!o n 8Xb 1 dt dt 1 0

1For n > 1 any contact transformation is the prolongation of a point transformatioll by Iliicklulld's
theorem [2].
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•
HO that condition (A.I) gives

_; _ (drP ) -1 dV'b
:"1 - dt dt

Continuing by induction we find

which by requiring

(A.2)

gives the result. •

'1'0 simplify the next lemma let a = ~~ and E; = ;:;. We may now write the

contact transformations in more detail as follows,

Lemma A.2:

Ao 0 0 0 0 0 0

ÔI Al -lA 0 0 0 0 0a 0

A2 B 2 -2A 0 0 0 01 a 0

W" - 0 0"
Bs a-sAo 0 0r

Ô" 0

An Bn a-nAo1

81/i . and Bs = ~whc1"C Ar = ~ - 1fJ:+J Ej r a~• 99
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•
Proof Lemma A.1 gives everything here except the diagonal tenns, which wc dc­

note by D p • Lemma A.1 gives

Now using the commutator,

and that

f' = 1.••11 - 1 (lU)

we find that equation A.3 gives

•

A simple induction now completes the pl'Oof.
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