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ABSTRACT
The equivalence problem for systems of second-order differential equations under point transfor-

mations is found to give rise to an {e}-structure of dimension rr + 4n + 3. It is then shown that the
structure function for this {e}-structure is a differential function of two fundamental tensor invariants.
The parametric forms of the fundamental invariants are given and their vanishing characterizes the
trivial equation .V = 0. We also show that the vanishing of the fundamental invariants characterizes the
unique system of second-order ordinary differential equations admitting a maximal-dimension Lie
symmetry group. Thus, equations not equivalent to x' = 0 admit symmetry groups of dimension strictly
less than n2 + An + 3.

1. Introduction

In this article we consider the following problem: given two systems of
second-order differential equations

d2x' t
dt2~fV

d2xl -./_

dl2~*V

j dxj\
X'~dtJ

-j d ^ \

' dtI
•*i,j*n), (2)

are they equivalent under the pseudo-group of smooth invertible local point
transformations? In other words, can one make an invertible change of
coordinates

such that when the system (1) is expressed in the coordinates (J, xl) it is identical
to the system (2). This notion of two systems of second-order differential
equations being equivalent defines an equivalence relation on the set of
differential equations of the form (1). We analyse this problem by applying Elie
Cartan's method of equivalence [2] which, in theory, provides a way to distinguish
between equivalence classes of the systems (1).

The problem of equivalence for scalar equations (n = 1) was originally solved
by Cartan [3]. Subsequently Chern [5] investigated the two equivalence problems
for systems under the restricted pseudo-groups of smooth invertible local
transformations which preserve the independent variable as given by

(J, x') = (t, iA'(*0) a nd (J, x') = (t, 4f'(t, xJ)). (4)

Chern was able to cast the question of equivalence between equations (1) and (2)
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into a question about the equivalence of exterior differential systems associated to
the corresponding equations, at which point the equivalence method of Elie
Cartan was immediately applicable. By applying Cartan's method, Chern was able
to associate to any system (1) an {e}-structure or an invariant coframe which may
be used to determine whether the systems (1) and (2) are equivalent by either of
the transformations in (4). Similarly we obtain an invariant coframe (of different
dimension to that of Chern) by applying the equivalence method with the larger
group of point transformations (3).

The invariant coframe or {e}-structure in our problem is of dimension
n2 + An + 3, and enjoys the important property that its structure function can be
expressed solely in terms of two fundamental families of tensor invariants (which
we call P'j and S'Jki), and their successive covariant derivatives. From the general
theory of {e}-structures we then know that P'j and S'jkl (along with their
corresponding covariant derivatives) can in principle be used to characterize the
different equivalence classes of systems of the form (1). Thus, tensors P) and S'jkl

are essential in determining the geometric properties of the system (1). One
example where this can be seen is the inverse problem in the calculus of
variations [1]. Here the structure of the tensor invariant P'j plays a significant role
in determining whether a system of the form (1) is a multiple of a set of
Euler-Lagrange equations for some Lagrangian (see the memoir by Anderson
and Thompson for details [1]). One importance of the tensor S'jkl is that its
vanishing characterizes systems of second-order equations which may be as-
sociated with a projective connection. This is demonstrated in Appendix B.

It is classical (see Cartan [4]) that the dimension of the symmetry group of an
{e}-structure is bounded above by its dimension which in our case is n2 + An + 3.
The fact that the symmetry group of the system (1) is identical with the symmetry
group of the {e}-structure immediately re-establishes the fact proved by F.
Gonzales-Gascon and A. Gonzalez-Lopez [8] that the symmetry group admitted
by a system of second-order differential equations is bounded above by
n2 + An + 3. For comparison, we point out that the proof of Gonzalez-Gascon and
Gonzalez-Lopez uses Lie-theoretic techniques.

Gonzalez-Gascon and Gonzalez-Lopez [8] have demonstrated that the simple
system

d2xl
 n

^ r = o (5)

is an example of a system which admits a Lie symmetry group of the maximal
dimension n2 + An + 3. Our contribution here consists of sharpening this result by
analysing the integrability conditions of our {e}-structure to show the remarkable
fact that (5) is the unique system of second-order differential equations (up to
change of coordinates) which admits a point symmetry group of maximal
dimension. We may state this in another way by saying that given a system (1)
admitting a symmetry group of dimension n2 + An + 3, there exists a set of
coordinates such that the system may be put in the form (5). Furthermore, we
also show that the vanishing of the fundamental tensor invariants provides a
simple coordinate-invariant characterization of the systems equivalent to (5).

It is interesting to note that this uniqueness result does not hold for either of
the pseudo-groups of transformations in (4) considered by Chern. That is, there
exists more than one equivalence class of equations which are maximally
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symmetric under transformations of either form given in (4). In the scalar case
(n = 1), the characterization of the equation x = 0 by the property of having a
point symmetry group of maximal dimension (which is 8) was known to Lie [11].
Furthermore, Lie was interested in maximally symmetric systems of equations
due to their relationship with the projective groups. Finally, we also note that a
complete classification of scalar equations which admit fibre-preserving symmetry
groups has been given by L. Hsu and N. Kamran [10].

2. Equivalence of systems of second-order ordinary differential equations

By following Chern [5] we cast the equivalence problem for equations (1) and
(2) into a question of equivalence for exterior differential systems on J\U, Un).
Let (f, x',/?') be coordinates on J\U, Un) and 0' = dx' - p1 dt the contact forms.
We assume that f'(t, x', pj) are smooth functions on a contractible open subset U
of J\M, Un) and associate to equation (1) the Pfaffian system on U generated by

0' = dxl - p( dt, ft1 = dp1 - f{t, x>, p') dt. (6)

The significance of this Pfaffian system is provided by the following lemma.

LEMMA 2.1. The solutions x' =x'(t) to equations (1) are in one-to-one corres-
pondence with the one-dimensional integral manifolds y: U—>U of the Pfaffian
system (6) which satisfy the independence condition y* dt ¥^ 0.

Similarly if we let 0 aJ\M, Un) be a contractible open subset with coordinates
(7, x', p') and contact forms 0' = dxl — p'dt, we then associate with equations (2)
the Pfaffian system generated by

0' = dxl - p' dl, ft^dp1 - f'(7, x\ p '•) dl (7)

To express the condition for equivalence of equations (1) and (2) in terms of the
Pfaffian systems (6) and (7) we need the explicit form of the prolongation of the
point transformation (7, xl) = W(t, x') in (3). We write the prolongation

in coordinates as

(7, x\ p1) = ¥,(*, x>, p>) = {<t>(t, X*), r(t, x>), m, x>,p1))
where ,-„*,.„-(»)-«:.

Let a) = dt and w = dt so that with the collection of 1-forms in equations (6)
and (7) we have (w, 9', n') and (w, 0', 7f') being local coframes on U and U
respectively. It is now possible to express the equivalence condition as an
equivalence problem for the Pfaffian systems (6) and (7).

LEMMA 2.2. The two systems of differential equations (1) and (2) are equivalent
if and only if there exists a point transformation (7, x') = W(r, x') with first
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prolongation W,: U —» U satisfying

(8)

where Sf\ £/—>H is a smooth function on U taking values in the Lie subgroup
H c GL(2n + 1, R) defined by

E< °\ 1
0 A] 0 laeU*,A'jeGL(n,U),EjeUn,CjeMn(U)>. (9)
0 C' a'xA)) J

Proof In order to verify this lemma, we need to compute tyfjr'. This is found
to be

= a-xA){dp\ -f'dt) + C)& + (/'oW, - a^^jto, (10)

where

*>,*£-**-*., c-^-r^A a-dA
1 dx1 dxJ ' dxJ J dx> dt

From equation (10) it is then clear that a necessary and sufficient condition for
equivalence is

J ' dt'

which proves the lemma.

By this lemma the problem of the equivalence of (1) and (2) is set in a form to
which the Cartan method may be readily applied. We now describe the
equivalence method.

Given two coframes (ojau), (uv) with 1 =s a, b =£ N on open contractible subsets
U, V c UN, the Cartan equivalence method provides a solution to the problem of
whether there exists a diffeomorphism <$>: U-* V such that

<f>*toy — KI,OJu fov \ ^ a, b^N, (11)

where Ka
b maps U to H and H c GL(JV, U) is a linear Lie subgroup of dimension

h. In Gardner's book [7], we find a detailed presentation of an algorithm which
implements the equivalence method and we present the essentials of this
algorithm. First define the lift of the coframe w^ to the product space U x H by

Q CPQ b /I o\
(i) — Jt)(i) [j. \*-£)

Subsequently, we complete the collection of forms of to a coframe on U x H by
lifting a maximal set of right-invariant Maurer-Cartan forms on H to U xH. We
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label the lifted forms by as where l^s^h, and note that any other such
collection of forms as which complete of to a coframe o n i / x H are of the form

as = as + Vs
aw

a, (13)

with Vs
a e C°°(£/ X H). Differentiating (12) we obtain the structure equations

do" = (d!fa
b)(Sf-l)b

c Au)c+<fa
b d(ob

v = Ca
bsa

s A O>* + rbco
b A OJC. (14)

At this point we perform what Gardner [7] calls absorption of torsion. This
amounts to using the freedom in the forms as in equation (13) to eliminate as
many of the F£cco° A ojb terms in equation (14) as possible. This requires solving
for as many of the functions Vs

a as possible in the equation

v\cCa
b]s = rbc. (15)

The resulting structure equations then take the form

dwa = Ca
bsa

s A a)b + fbca>b A a>c, (16)

where the f a
bc are linear combinations of the original Ya

bc. The importance of this
procedure is that fabc is now a tensor function on ( / x H (H-equivariant). The
absolute invariants of f£c will provide necessary conditions for the existence of an
equivalence. The invariants may then be used to reduce the structure group H to
a linear subgroup H, a H. After a reduction of the group H to Hj we return to
the start of the algorithm with Hj in place of H.

If the tensor f£c vanishes or if its structure is difficult to normalize, we prolong
the problem. The first step in prolongation is to compute the degree of freedom
we have in the coframe (wa, a') which leaves Ta

bc unchanged. The freedom here is
given by the solution to the homogeneous system of equations for Vs

a in (15)
which are

V\cCa
b]s = 0. (17)

The abelian group

with Vs
a satisfying (17), is called the (first) prolongation of H. We then start the

process again by lifting the coframe (a>a,as) on U X H to f /XHxH( 1 ) . The
algorithm terminates when we obtain the trivial group by either reduction or
prolongation. In this case the equivalence problem is known as the equivalence
problem for {e}-structures.

The entire equivalence method may be given by a geometric description using
principal fibre bundles. This approach is given by Sternberg in [12].

3. The associated {e}-structure

In this section we apply the Cartan equivalence method with the coframes and
structure group given in Lemma 2.2. For convenience we will introduce the
following notation: let V c Uk and rf be a coframe on V with Xa being the dual
frame to 17°, and let w be a 1-form and 0 a 2-form. We then define the coefficient
operator by
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with the obvious extension to forms of higher degree. As well, we use the
summation convention and (jk), [jk] for symmetrization and skew-
symmetrization on indices defined by

By using the coframe in equation (6) and the structure group of Lemma 2.2, we
can see that the lift of the coframe to U X H is

(19)

n> '

The structure equations for the lifted forms are then

da) \ / a) \ / da)
dff ) = (d^ST1 A I &+ ^ d# ), (20)

where {d^)^Tx is the lift to U X H of the Maurer-Cartan form for H given by

(21)- 0

\o

*y

2} i

0
0

We now apply the Cartan equivalence method to prove the following theorem.

THEOREM 3.1. Solutions W,: U—> U to the equivalence problem for systems of n
(^2) second-order ordinary differential equations are in one-to-one correspon-
dence with the solutions of an equivalence problem for an (n2 + An + 3)-
dimensional {e}-structure which is obtained by applying the equivalence method to
the initial coframe (a), 9', ft1) with the structure group H given in Lemma 2.2.

Proof By using the Maurer-Cartan form in (21) and the coframe in (6) we
find that the structure equations (20) can be written as (see Lemma 4.1 for more
details)

d(x) = a A a) + Kj A 91: + gjKj A to + hj9
i A OJ + kjk& A 9k,

d& = Q!jA9i-niA0) +1)& A OJ + m)k& A9k + KiA nj9
i,

d^ = 2JA& + (Qj- ab^AK' + Pi
j9>Aio + Qi

jk9
jA9k

where gjt hjy kjk, I), m), nj} P), Q'jk, K), L)k are functions on U x H. If we absorb
torsion by setting

a = a + gjK> -n-\K)- /j)o>, flj = Oj + /}w + m)^ - Jt'rij,

KJ = Kj + hjio + kjk e
k, Zj = tfj + P)a> + Q'k6

k + (mki - L l X .
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the structure equations become (after dropping the hats)

dio = a A a) + Kj: A &,

j (23)

dn1 = 2) A 0> + (Qj - aS{) A ^y + K)rf ACO + (nu8k] - gy-S'^it1 A it,

where K) is trace free. Setting d2d' = 0 determines that rij = gJt and

dQ!j = Sli
kAQ}-niAKj-l.)A(o mod {&), (24)

which allows us to compute d2j? = 0 mod (0') to find

rf£j + 22) - 2n"1Z^; - &kKi + K&} + a^ j = 0 mod (o», 0', TT1').

In this equation the appearance of the forms 2j allows us to use the group action
of C'j to translate AT) to zero and resulting in a reduced structure group H , c H
and reduced Maurer-Cartan form given by

Cj = cA), with ceU, and 2} = aS)

where a is a right-invariant form on Hj. In the new structure equations with the
reduced group Hj we may use the absorption for a, K' and ft) in equation (22)
and the only change for the equations in (23) is

die = a A 0' + (D!j - a fij) A nJ + Pft A w + Q'k6
J A 6k + (Lj* - m}*)^ A 0*.

We may further absorb torsion in this equation by setting (assuming that n ̂  2)

Q; = Q; + L{jk)e
k, o- = & + - p*w + ̂ 7 g^e* - ^ L ^ ^ ,

" " (25)
1 _ 1 -

d = a L\,k]e
k, Kj = K L'mu>,

where L'jk = L']k - m'jk, so that the resulting equation for dn1 is (dropping the
overlines on a, a, K;, and Q!/)

dn1 = o- A 0' + (Qj - afij) A ̂  + Pj0y AW + 0y*^' A 0 1 + L)kn
j A 6k,

where P), Q)k and L'jk are the trace-free parts of P), Q)k and L[jk] respectively. By
using (24) we now find that

At this point we prolong the structure equations, and a parametrization for the
prolonged group H ^ (the solution to equations (17)) is given by (Kj, Djk) in the
following:

a = a

Djk dk

where for these formulas we require n ̂  2. The overlined forms provide the
canonical form (or lifted forms) for the principal bundle U X Hj X HV}-» U X Hj
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and we apply the equivalence method in this case. The Maurer-Cartan form
(j3y, YJk) for H(i]) is given parametrically by

Pj = dKj and YJk=dDjk> (26)

allowing the structure equations to be written in the general form (by dropping
the overline)

dui = a A a) + Kj A 9',

d9i = Q!jA9i -K1 AW,

drf = aff + (Q) - a8j) A nj + P)9j A a> + Q)k9
j A 9k,

da = PjA9> + t°, (27)

dKj = Yjk A 0* + /3y A a> + T2,

dcr= PjA.7Z> + t ] ,

dn{ = 2/3{*fij)A0*+Tj,

where t° and t1 are 2-forms, T;
2 is an Revalued 2-form, and TJ- is an MM(R)-valued

2-form all of which are contained in the exterior algebra generated by
(o>, 9', n', a, a, Q), K;). NOW we absorb torsion in equation (27) by setting

/3y = j 3 y - ( t % , - ( t V ^ ' , (28)

Y,* = Y,*-(T2,V>, (29)

so that (after dropping the hats) the structure equations (27) retain the same form
but with the additional conditions

(t°), = 0, ( t ' W ^ O , (TJ,V) = O. (30)

To determine the left-over torsion (the structure function) we apply a sequence of
integrability conditions. The first condition we use is d2d' = 0 which, on account
of equation (27), gives

T)= Q'^An*- n' AKJ - aAajS' + Q^Ao) + ̂ kA9k, (31)

where £,'jk is a collection of one-forms satisfying

g*A0'A0* = O. (32)

The next integrability condition, dzo) = 0, gives

t°= -KyAtf'+AACO + ^Afl ' , (33)

T] = a A Ki; + KjA&j + $ A 9> + ̂ A(O, (34)

where £», £• and A are one-forms subject to the conditions

£jA9iA9i = 0, (35)

(A)(, = (A),, = 0. (36)

The condition (36) means that A has no (o or 9' terms, and arises in order that the
decomposition for t° in (33) be unique. The absorption in equation (28) (or see
(30)) implies that
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in equation (33). The next integrability condition, d2xl = 0, becomes, on account
of (27),

0 = (dPj - Q!kP
k + PkQ.f + 2aP) + 3(3jy;r*) A ff A W

+ {dQ)k - Q.\Ql
jk - 2Ql

l{p!k] + aQ)k + P\jKk]) A 0> A 0*

+ ?jkAdk Art - (\ + 2a)Aa> AK' + (t1 + a ACT) A &. (37)

Putting the coefficient of WATT' in this equation to zero and recalling from
equation (36) that A has no 6' or o> terms, we have

A = -2a. (38)

Before proceeding with equation (37) we need information about the form of t1.
This we get by setting d2a = 0 to find

dra = d/3j A& - ft A d& - dKj A K> + K; A die'

— 2 da A a> + 2a A dot

s 2(a A a - t1) A a) mod {&). (39)

Thus we have

t1 = a A a + $ A 6': + %" A a), (40)

where xx a n ^ £) a r e one-forms subject to the conditions

(Xl)~ = (Xl)e> = 0, (41)

(t1)^=-(ft)»/) = 0, (42)
where condition (41) gives a unique decomposition in (40) and condition (42)
comes from equation (30). Now substitute t1 from equation (40) into (37) and set
the 6k A nj term to zero to obtain

co - 3<2> + (dQi^d' + SU^hd1] A ^ A ^ = 0. (43)

From this we may conclude that g'jk may be written as

& = 7 > + /?Jtt0
/ + Sifcjr

/, (44)

with T'jk) S'jik and R'j^ = R)lk being functions on [ / x H x H(1). By considering the
condition in equation (32) and equation (43) we have the following constraints on
these functions

T'yic] = R'\jkl\ - 0, S'jki = S[jkiy (45)

At this point it is possible to determine the action of Hj1* on S'jki by taking the
exterior derivative of

d&i -(n + l)da = (n+ 2)(K, A it: + a A O>)

+ (Ti
ilco + Ri

Mdk + Si
iklK

k)Adl, (46)

to get

d2Q!j -(n + l)d2a= dS\kl - (n + 2)YW = 0 mod (o>, &, n\ a, K;, a, Qj).

Thus we may translate the trace S\jk to zero by using the action of Djk. The
corresponding reduction of H(1) has

A; = 0 and Yy* = 0.
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Explicitly we will write
3

S'jki= S'jki ~T Smo*5/), (47)

n + Z
and the reduction of H\l) by (Hi1^. To continue now we may use all the previous
equations except the absorption in (29) and thus the conditions on T̂  in (30) must
be dropped. If we try to prolong (H^),, it is easily seen from equations (27) that
the prolongation will be trivial, and thus the theorem is proved.

We now summarize what is known at this point about the structure equations
for the {e}-structure (w, &, n\ a, a, K,, Qj, )3,) on t / x H , x (Hi1})i. By using the
equations in (27) and the information in equations (31), (33), (34), (38), (40), and
(44), we have

do) = a A (o + Kj A &,

dd' = Q'Ae'-KiAa),

dn' = a A 6l: + (Q) - OS}) A nj + P)Qi A O> + Q)k& A 6k,

da = B; A &'- K, An ' -2a AGO,

da = Bj A K' + a A a + £} A & + X A CO,

dQlj = 2/3^5)) A 0 * + ^ A Q.f - n{ AKj-aA cob) + (Q)k - Tjk)d
k A OJ

+ R)kld
k A6' + S'JHK* A e',

dKj = B, A 0) + a A K,: + Kj A Q J ' + £tj A &,

with the conditions on Q)k, R)kh S
l
jkh T'jk from (45) being

Q(jk) = 0, R[jkl] = Rj(kl) ~ 0, S (yjt/) = SJkl, Tyk] = 0, (49)

and the traces of P), Q)k and S'jkl are zero. The conditions on the 1-forms £j, x1

and tj]j from equations (35), (36), (41) and (42) are

( ^ V = ( ^ . = 0, (xX = (x% = 0, (4V> = 0, ^ A 0 ' A ^ = O. (50)

We now proceed to examine further the torsion in this {e}-structure.

4. The fundamental invariants

In this section we examine the structure equations for the {e}-structure of
Theorem 3.1 to prove that all the tensor invariants which arise in the structure
equations are differential functions of P) and S)kl.

THEOREM 4.1. All tensor invariants which arise in the structure equations for the
{e}-structure (ID, 6l, Kl, a, Kjf a, Q!f, Bj) are homogeneous linear differential func-
tions of P'j and S'jki. That is, the tensor invariants may be expressed as
homogeneous linear combinations of P)kb S'jk, and their successive covariant
derivatives.

The method of proof involves taking the integrability conditions for the
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{e}-structure in (48) and showing that all the coefficients in the structure equations
are determined by P) and S'jki. We give the explicit dependencies for only a few of
the invariants.

Proof. We go back to equation (37) and take into account equations (38), (40)
and (44) (or use equation (48)) to get

0 = (dP'j - akPf + Pfrf + 2aP) + 3Qi!fn
k - 7 > * ~ x'fy A & A a>

+ (dQ'Jk - Qffij* - iQ'uPfq + aQ)k + P'uKk] + { ^ + R\jkK
l) A 0> A Gk.

From this equation we obtain the following congruences:

dP) - akP1 + P'tQf + 2«Pj + 3£H,TT* - TkjK
k - X

] S'j - 0 mod (0'),

~ 2QiyQ.'k] - aQ)k + P{jKk] + Z\j8k] + R'^n1 - 0 mod («).

If we take the trace in the first of these equations and take into account equation
(50) which shows that x1 n a s n o w o r &' terms, we find that

v1 — — n~^T' rrk

X — n l kiK •

Now taking the coefficients of 7T* A & A <D in equation (51) we obtain

^ + 3 2 ^ - T'v + n^T'uS'j^O. (53)

From this equation we determine Tk, by skew-symmetrizing on ;, k and taking the
trace to get

where we have used the conditions on Q)k and T'jk in (49). Now skew-
symmetrization and symmetrization in equation (53) leads to

If we now take the trace in the second equation in (52), we have

£j = (1 - n)-\kP1 + WkjK
k + Xkj6

k + Yjto, (55)

where Wjk) Xjk and Yj are functions yet to be determined. By the conditions on £)
in equation (50) these functions satisfy

Wuk) = Xijk) = 0. (56)

Upon substituting (55) into (51) and applying symmetry arguments similar to
those above we find that

^ ^ j (57)

with the first of these equations giving

WkJ = 2(l-n)-lR\knh R[Jk)i = 0. (58)

At this point all information from equation (51) has been obtained while W]k and
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Xjk in (55) are still undetermined. The next integrability condition we use is by
taking the exterior derivative of equation (46) to get

0 = (n + 2)(£% A 0* A 7t> - Kt A P)0' AW-K,A Q)k6
j A 0* + fJ A 0J A w)

+ d(T-jdJ Aw + R'jke
J A 0*), (59)

which implies that gjk has the form

t% = Wjlkx' + Xjlkd
l + <o?jk> (60)

where Wijk, Xijk and 9i}- are smooth functions. By equations (50) and (59) these
functions are subject to the conditions

Wijk=Wm), Xm = 0, ?m = 0. (61)

The coefficient of to A 6k A n> in equation (59) being zero gives

(n + 2)(fjk - Wjk) + 2R'ijk + {dVik)nl = 0. (62)

By observing the symmetry properties of fjk and Wjk from equations (61) and (56)
we find that symmetrization on ;, k in equation (62) determines fjk while
skew-symmetrization gives

{dTi)nk] ( 6 3 )

where we have used equation (58) and the symmetry properties of R'jkl in (49) to
arrive at this. Thus we have ¥jk and WJk in terms of covariant derivatives of T)k

which is given in (54). As well we may use WJk to determine R'Jk, by equation (57).
Lastly, the coefficient of nl A 6' AKk in equation (59) determines Wjlk, and we
only have to determine %jik in (60).

To determine %jlk we first use equation (39) to get

dj3, = 0* AD.1! + KjAd - i2
kj AKk + KkAPkO) - 2|J AW

+ KlAQ'jke
k + \jkAek, (64)

where the 1-forms A,-, satisfy A,y A 0'A 0;'= 0. This allows us to compute the
following:

ftfy (dSfo)^ - Wjl[m8k] = 0.
This determines Wjlk in terms of Sl

jki. To complete the theorem it is clear that the
integrability condition d2Kj = 0 along with the expression in (64) will completely
determine d/3;. This allows us to conclude that all the tensor invariants in the
structure equations for the {e}-structure are homogeneous linear functions of the
tensor invariants P) and S'jki and their successive covariant derivatives, thus
proving the theorem.

(For a complete list of the explicit dependencies of the tensor invariants in
terms of P) and 5}*/ see [6].)

Now we will perform some of the parametric calculations to find the explicit
form of the tensor invariants P) and S'jkl. In order to simplify the formulas we use
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the following notation for differentiation:

Jj Bit' T]i dpi' dt bt d^ dpi1'

We now give the parametric forms for the tensor invariants P) and S'jki.

LEMMA 4.1. The parametric forms for P) and S'jki at the identity of the structure
group H x ^ i 1 ' ) , are

Proof We first need to determine the frame corresponding to the reduction of
H to H], From the initial coframe in (6) we have

dd> = 0, dfr = -dp' A dt, dnl = -df A dt, (65)

and by using

•-1 -a-'Ek(A-')f
(A-')}

A-H a{A-lyj\vf,

we find that the structure equations are

da> = a A a> + K); A 6>'- EtiA'1)'^ - Ck(A-l)fdJ)A(w - Ek{A~*yj

dff = Q!jA ej - (TT' - Ck(A-])*6j) A(o> - Ek(A-])1ej),

dn> = 2j A 0y + (Ctij - aS'j) A n1 - C j ^ " 1 ^ ^ ' - C i ^ " 1 ) ^ ) A (w -

- ! r a r ) + Alf%A-l)lfii] A (« -

From these equations it is easy to determine K) in equation (23) to be

Thus changing to the frame

= dt, 9' = dx1 - pl dt, it1 = dp1 - f dt - \f\jfr, (66)CO

will give rise to an equivalence problem with structure group H^ We now
compute dnl, by using the frame (66), to be

da1 = -df Adt- \d(f\j) A 9j - \f\j(a> A kj + \f\ku> A 0k)

= pft A a> + \f\fi A it1 + \f\jk& A7tk + fjfl A 6k, (67)
where

i ^ | l l | f ri
jk = \{flk]n + \f\l{jf\k]). (68)
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From this it is immediate that

which proves part of the lemma. In order to find (5)w)|Id we need first to
determine

in equation (44) which is before the reduction of H\l) to (Hi1^. To determine this
we need to compute (dQy)|Id parametrically and this will require the parametric
form of the structure equations for the lift of the coframe (66). These equations
are given by equations (78) and (79) in Appendix A. Thus we are in a position
which allows us to write the parametric form of the absorption occurring in (22)
and (25) as

a = a

'l)- [cEk(A'l)j

+
— n

(69)

[c8j- \

To begin by computing dQ'p we first notice that

so that

By using this we find that

Now use equation (69) in the form da\ld = or|ld, to find by the absorption in (28)
that

Finally using equation (69) in the form

dE, Id ~~ Ki

we determine the kk A 8l term of from (70) to be

k T . , /"dpJ dpk dp
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To complete the proof we note that, from equation (47), S'jki is the trace-free part
of S'jki in the above equation.

In the next section we refer to the following simple corollary of Theorem 4.1.

COROLLARY 4.1. The structure function for the {e}-structure of Theorem 3.1 is
constant if and only if the tensor invariants P'j and S'jkl are constant.

5. Systems with maximal symmetry

In this final section we examine the {e}-structures which are maximally
symmetric. Maximally symmetric {e}-structures are characterized by having a
constant structure function and, in the light of Corollary 4.1, the {e}-structure we
have obtained in Theorem 3.1 will be maximally symmetric if and only if the
tensor invariants P'j and S'jki are constant. To examine the possibility that P) and
S'jk, are constant we determine their dependence on the group parameters.

THEOREM 5.1. The infinitesimal form of the group action o / H ^ X (H^), on P'j
and S'jki is given by

dP) - Q!kP$ + P'kQ.f + laP' = 0 mod (o>, 6', nl),

dS)kl - aj% + SUW - <xs?) + s)kmar + s u ^ f - o mod (w, e>, K1).

Proof. We begin the proof by using equation (52) from which the expression
giving the infinitesimal action of the structure group on P'j above follows
immediately. In order to find the infinitesimal action on S)kl set d2Q) = 0mod (<o),
which will lead to the second equation in (71) and prove the theorem.

The presence of the a term in the equations (71) implies that the one-
parameter subgroup of H(!1} generated by the element a acts on both P) and S'jkt

by scaling. This allows us to make the following observation.

COROLLARY 5.1. The tensor invariants P) and S'jki are constant if and only if they
are zero. In other words there exists a unique {e}-structure which is maximally
symmetric, and hence a unique (up to equivalence) system of second-order
ordinary differential equations which admit a Lie symmetry group of dimension
n2 + An + 3. This equivalence class is invariantly characterized by the conditions

P) = 0, 5J« = 0, (72)

and a representative for this class is given by

£•»•

For completeness we also state the following corollary.
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COROLLARY 5.2. All systems of second-order equations not equivalent to (73)
admit Lie symmetry groups only of dimension strictly less than n2 + An +3.

It is interesting to note that in the paper by Gonzalez-Lopez [9] the most
general linear system which can be transformed to (73) by a point transformation
is given. The expression given in [9] for this system of linear equations can easily
be checked to satisfy the conditions of Corollary 5.1. Lastly we remark that
putting P) = 0 and S)kl = 0 in the structure equations for the {e}-structure in
Theorem 3.1 gives the symmetry algebra of the equation (73). That is, the
structure equations are the Maurer-Cartan equations of s\{n + 2, U) (see [8]).

6. Appendix A

Here we give the parametric form of the structure equations for the lifted
frame

with (a), 6', ft') being defined in (66). The structure equations for the lifted forms
are

(74)
\0 cA) a-*A!j\dnj)

where

a = a~x da, K; = dEk{A^)) -a'1 daEk(A-l)f,

Q) = dAi(A~l)f, a=(dc + ca~l da)8).

Now we write the expressions for dd, d6' and dft' back in terms of the lifted
frame as

dco = 0, (75)

d§'= -[(A-W - c(A-*)j6> + \a-\f\^A-%ek] A(CU - ^ ( / T 1 ) ^ ) , (76)

and (from (67))

(77)
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Now we substitute from (75), (76) and (77) into (74) to get the equations

da) = aAU) + KjAOj- E^A'1)^ -c9j + ifl'^iC/f/)^"1)^^1]

A (a,- Ek(A-*)j0J). (78)

d& = a; A ej - [** - cdl + \a-lA){f\k){A-^d1} A (a> - E^A-^e'),

and

d;r' = <r A 0' + (Qj - aS;) A ̂  - c[^ - c0' + l2a~'Ai
k(f\J)(A-lykd

k]

We then simplify J^' to

dn1 = a A &' + (Qfj-aS^AK1 + a^A^XA-^A-^e1 A 8m

+ [a-'A'ip'^A-y^ + c2el - at - Jfl-MjC/^^-OM

A {co - Ek{A-l)1e*) - UXf^A-^UA-'tK" A 6r. (79)

7. Appendix B

The purpose of this appendix is to demonstrate that systems of second-order
ordinary differential equations with n dependent variables for which the tensor
S'jki vanishes are in one-to-one correspondence with projective connections on an
(n + l)-dimensional space. Before proceeding I would like to thank the referee
for clarifying this point.

The geodesic equations for two affine connections F, F, on U, 0 <= R"+1 with
coordinates xa, x° and affine parameters s, s are given by

d2xa
 n dxbdxc

- 7 T = - n c — — withO*Sflfft,c*/i, (80)
ds ds ds

d2xa - d^d? . , „
-^•^-Tlc-jz— with 0 =£a, b,c^n. (81)
ds ds ds

The two affine connections are projectively equivalent if there exists a
diffeomorphism $>: U-+U such that the paths, or solutions to (80), are in
one-to-one correspondence with the paths (or solutions) of (81). It is important to
note that the existence of <P is independent of the affine parameters 5, s. The
following lemma, which can be found in [13], gives necessary and sufficient
conditions for T to be projectively equivalent to f.

LEMMA B.I. Two affine connections Y and F are projectively equivalent if and
only if there exists a collection of functions <f>b such that

ra
bc = rbc + <t>{b8°y (82)
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An equivalence class of affine connections is called a projective connection.
In order to determine the role of the tensor S'jkl we first associate with (80) a

system of second-order ordinary differential equations in n dependent variables in
the following way. Given a solution xa = <f>a(s) to (80) we rewrite the system (80)
by eliminating the parameter s by solving for one of the dependent variables as
xo = <f>°(s). With the notation t = x°=<f)(s), we then find that the system (80)
becomes

_ (d<j>\2( dx>dxk dx'

Ul Ul Ul

. i — - r i - - - - l " 7 ^ ! I P ' _i_ O T"1' _i_ I"1' I I" 1 - = " • ' / «;•

<k2 rfr I d s / ~a¥~~\ds) V >*"d/"~dT Oy~d7 °°/ ° r "'w' ^n'

From these two equations we immediately obtain the second-order system in n
dependent variables

dt2-T(jk8l)dt dt dt+{2T°J8k~Tjk)~di dt

dxj

V1 oo°y ~ Z 1 0/7 j ~ l OOJ lo^J

where F£c are functions of (t, x') in our notation. Thus the connections F, F are
projectively equivalent if and only if the system (83) is equivalent to the
corresponding system for F by a point transformation.

Among all second-order systems of ordinary differential equations in n
dependent variables the ones which satisfy the invariant condition 5 ^ = 0 are
related to projectively equivalent affine connections by the following lemma.

LEMMA B.2. The systems of second-order ordinary differential equations

dh1 V .. dx*
*i,j*n (84)

which satisfy the invariant condition 5'jkl = 0 are in one-to-one correspondence with
projectively equivalent affine connections on an (n + l)-dimensional space.

Proof. First, given an affine connection F we have the associated system of
second-order equations in (83) which is easily seen to satisfy the condition

We now proceed to show that for any second-order system in n dependent
variables with S'jk, = 0 we may associate an (n + l)-dimensional affine connection.
By differentiating the equation 5}*/ = 0 with respect to pr we obtain

ri cm s' A /OC\
/ \jklr ~ZJ \mrUkOl) ~ U. [fib)

Now taking the trace on /, r in this equation we find
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which, by (85), gives

f'\jklm = 0.

In other words,/'(f, xj, xj) is at most cubic in x'. If we substitute the most general
cubic polynomial in x' into the equation S)kl = 0, we find the form of f'(t, xj, xJ)
and the corresponding system of equations to be

where Ajk, B'jk, C), and D' are functions of (t, x'). Given the system (86) we may
then define the affine connection

f}* = B'Jk, F-k = A j k , T'Oj = C'p Poo = D'. (87)

Finally, to complete the lemma we note that by constructing the affine connection
f in (87) using the system of equations (83), the connection f is projectively
equivalent to the original connection F (Lemma B.I) which gave rise to the
system (83).

The notion of projectively equivalent affine connections originated with Weyl
[14] and Cartan [3].
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