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Abstract. A simple invariant characterization of the scalar fourth-order ordinary di�erential equations

which admit a variational multiplier is given. The necessary and su�cient conditions for the existence of a

multiplier is expressed in terms of the vanishing of two relative invariants which can be associated with any

fourth-order equation through the application of Cartan's equivalence method. The solution to the inverse

problem for fourth-order scalar equations provides the solution to an equivalence problem for second-order

Lagrangians, as well as the precise relationship between the symmetry algebra of a variational equation

and the divergence symmetry algebra of the associated Lagrangian.

1. Introduction

Solving the inverse problem of the calculus of variations for scalar di�erential equations consists of char-

acterizing those equations which may be multiplied by a non-zero function such that the resulting equation

arises from a variational principle. Speci�cally in the case of scalar fourth-order ordinary di�erential

equations we will determine for which equations

d4u

dx4
= f(x; u;

du

dx
;
d2u

dx2
;
d3u

dx3
);(1.1)

there exist smooth functions g 6= 0 (the variational multiplier) and Lagrangian L such that

g(x; u;
du

dx
;
d2u

dx2
;
d3u

dx3
)

�
d4u

dx4
� f(x; u;

du

dx
;
d2u

dx2
;
d3u

dx3
)

�
= E(L(x; u;

du

dx
;
d2u

dx2
) )(1.2)

is an identity, where E(L) = 0 is the Euler-Lagrange equation for the Lagrangian L.

A complete solution to the inverse problem for the simplest possible case of a scalar second-order

ordinary di�erential equations has been know since Darboux [9]. Darboux determined that every second-

order ordinary di�erential equation admits a multiplier and we will �nd that this is far from the case

for a fourth-order equation. Thus the inverse problem for fourth-order scalar equations is the simplest

non-trivial case which admits a complete solution.

The formulation of the variational multiplier problem for scalar equations is easily extended to systems

of di�erential equations where the problem is to determine whether it is possible to multiply a system of

equations by a non-singular matrix of functions such that the result is a variation of some Lagrangian. In

particular the multiplier problem for a system of two second-order ordinary di�erential equations has been

thoroughly analyzed in the famous work of J. Douglas [10]. Recently Anderson and Thompson [4] have

also studied this problem using the variational bicomplex (see section 2 below). Our solution for the scalar

fourth-order equations will be based on ideas from these two articles.

The �rst step in Douglas' solution to the inverse problem involved showing that necessary and su�cient

conditions for the existence of a multiplier could be expressed in terms of the existence of solutions to a

system of partial di�erential equations, which arise from the Helmholtz conditions, and where the unknowns

are the multipliers (for a discussion of the Helmholtz conditions see [13]). Solving this system of partial

di�erential equation would then provided the multiplier matrix for certain pairs of second-order ordinary
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di�erential equations. By using Riquier theory to analyze the existence and degree of generality of the

solution space of the system of partial di�erential equations for the multipliers, Douglas discovered that

there exist pairs of second-order equations which admit no multipliers, some which admit �nitely many

di�erent multipliers (with distinct Lagrangians) as well as pairs of equations which admit in�nitely many

di�erent multipliers (and Lagrangians). Unfortunately due to the overwhelming complexity of the analyses,

Douglas sometimes was only able to determine the degree of generality of the solution space to the partial

di�erential equations for the multipliers and was unable to �nd a pair of ordinary di�erential equations

with the speci�ed degree of generality of the multipliers.

The solution to the inverse problem given by Douglas emphasizes an important aspect in solving the

inverse problem for the fourth order equation (1.2). To �nd a complete solution to the inverse problem we

must not only determine which equations admit a multiplier, but we must also determine how unique the

multiplier and associated Lagrangian is. Fortunately we will �nd in the fourth-order inverse problem that if

an equation admits a variational multiplier so that (1.2) is satis�ed, then the multiplier and the associated

Lagrangian are essentially unique. The uniqueness of a variational structure for a variational fourth-order

equation will subsequently be used to solve an equivalence problem for second-order Lagrangians as well

as provide the relationship between the symmetry group of a variational scalar fourth-order equation and

the divergence symmetries of its Lagrangian.

The approach we take in solving the fourth-order inverse problem follows a re�ned version of Douglas'

solution to the multiplier problem given by Anderson and Thompson [4]. Anderson and Thompson derive

the system of determining equations for the multiplier in a natural way using the variational bicomplex.

They showed that the existence of a multiplier was in direct correspondence with the existence of special

cohomology classes arising in the variational bicomplex associated with a di�erential equation. The ad-

vantage in this formulation of the inverse problem is that the invariant nature of the problem is clearly

emphasized. Anderson and Thompson proceeded to study the existence problem for the cohomology classes

using exterior di�erential systems which was considerably easier than the intricate analysis of Douglas, and

subsequently they were able to determine some of the exceptional examples which had eluded Douglas.

Our solution to the multiplier problem will use in an essential way the formulation of the inverse problem

of Anderson and Thompson. In the next section we will recall the theory of the variational bicomplex as

it applies to problem (1.2). In particular by using the cohomology formulation of the multiplier problem

we determine the exterior di�erential system which must be integrated in order that a cohomology class

and hence a multiplier as in (1.2) exists. The novelty of our solution to the problem relies in writing

the exterior di�erential system in terms of an invariant coframe obtained through Cartan's equivalence

method. In section 3 we provide the details of the equivalence method calculations for a fourth-order

ordinary di�erential equation under contact transformations and obtain the associated feg-structure and
hence the invariant coframe. In section 4 we use this coframe to analyze the exterior di�erential system for

the cohomology class and this provides the solution to the inverse problem which can be described solely

in terms of vanishing conditions on two of the relative invariants (torsion) found in section 3. Lastly, in

section 5 we consider two applications of the solution to the inverse problem.

2. The Variational Bicomplex

The variational bicomplex was initially introduced in order to formulate and solve the inverse problem

in the calculus of variations, and so we recall the basic theory of the bicomplex which allows us to solve

the multiplier problem for fourth-order equations.

The in�nite jet space (see [1]) J1(R;R) while not a manifold in the standard sense, does admit local

coordinates (x; ux; uxx; :::; ur; :::) and a contact ideal C(J1(R;R)) generated by the one-forms

�0 = du� uxdx ; �
1 = du

x
� u

xx
dx ; ::: ; �r = dur � ur+1dx ; ::: :(2.1)

The one-forms in (2.1) along with the di�erential form dx form a basis for the exterior algebra of di�erential

forms on J1(R;R). From this basis of forms we de�ne the vector-�eld d

dx
on J1(R;R) by the conditions

d

dx
dx = 1 ;

d

dx
�r = 0 ; r = 0; 1; :::
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so that the component form of d

dx
is

d

dx
=

@

@x
+

1X
a=0

ua+1
@

@ua
:(2.2)

d

dx
is called the total x�derivative.

We now de�ne two subspaces 
0;p(J1(R;R)) and 
1;p�1(J1(R;R)), for p � 1, of the set of p-forms on

J1(R ;R). The �rst space is de�ned inductively by


0;1(J1(R;R)) = fai�
i; ai 2 C

1(J1(R;R)) ; 0 � i <1g


0;p(J1(R;R)) = f�i^ �
i; �i 2 
0;p�1(J1(R ;R)) ; 0 � i <1 ; p � 1 g

where the summation convention is used here and will be assumed from now on. The second subspace,


1;p�1(J1(R;R)), is then de�ned as


1;p�1(J1(R;R)) = f�^ dx; � 2 
0;p�1(J1(R;R)); p � 1 g :

These subspaces provide a direct sum decomposition of the p-forms on J1(R;R)


p(J1(R;R)) = 
0;p(J1(R;R))�
1;p�1(J1(R;R))(2.3)

and thus every di�erential form ! 2 
p(J1(R;R)) may be written

! = !0;p + !1;p�1

where

!0;p 2 
0;p(J1(R;R)) ; !1;p�1 2 
1;p�1(J1(R;R)) :

We also de�ne 
0;0(J1(R;R)) to be the smooth functions C1(J1(R;R)), and for convenience we take


2;p(J1(R;R)) = 0.

The direct sum decomposition in (2.3) induces a splitting of the exterior derivative into a direct sum of

two derivative operators

d = dH + dV :(2.4)

The operator dH acts on smooth functions h 2 
0;0(J1(R;R)) by

dH h(x; u
x
; :::ur) =

d

dx
(h)dx 2 
1;0(J1(R;R))

where

d

dx
(h) =

@h

@x
+

rX
a=0

ua+1
@h

@ua

where d

dx
is the total derivative operator in (2.2), while the operator dH on forms is

dH ! = dx^L d

dx

! ! 2 
r;s(J1(R;R)) ; r = 0; 1 ; s � 0

where L d

dx

is the Lie-derivative along d

dx
. The operation of dV = d � dH on a smooth function h is given

in coordinates by

dV h(x; ux; :::ur) =

a=rX
a=0

@h

@ua
�a 2 
1;0(J1(R;R)) ;

and the action of dV extends easily to forms. The two derivative operations are then operators

dH : 
r;s(J1(R;R)) ! 
r+1;s(J1(R ;R))

dV : 
r;s(J1(R;R)) ! 
r;s+1(J1(R;R)) ; r = 0; 1; s � 0

where dH is called the horizontal exterior derivative while dV is the vertical exterior derivative. These two

derivatives satisfy the properties

d2
H
= 0 ; d2

V
= 0 ; dHdV + dV dH = 0 :(2.5)
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Finally the variational bicomplex is de�ned to be the double complex f
r;s(J1(R ;R)); dH ; dV gr=0;1;2;s�0.
The reader should consult [1] for a thorough treatment of the variational bicomplex.

A Lagrangian is represented in the bicomplex by a one-form � 2 
1;0(J1(R ;R)) whose local coordinate

expression is

� = L(x; u
x
; :::; ul)dx ;(2.6)

and where the order of the Lagrangian � is de�ned to be he highest derivative dependence of L in (2.6),

ie. the Lagrangian in (2.6) has order l. The �rst variational formula in the calculus of variations can be

conveniently expressed using the variational bicomplex formalism as

Lemma 2.1. Let � 2 
1;0(J1(R ;R)) be an lth-order Lagrangian as in (2.6), then

dV � = E(�) + dH �(2.7)

where E(�) 2 
1;1(J1(R;R)) is the Euler-Lagrange form

E(�) =

"
@L

@u
+

�
�
d

dx

�
@L

@u
x

+

�
�
d

dx

�2
@L

@u
xx

+ :::+

�
�
d

dx

�l
@L

@ul

#
�0^ dx

and � 2 
0;1(J1(R;R)) is

� = Ar�
r ; Ar =

l�r�1X
s=0

(�1)s+1
�
d

dx

�s�
@L

@ur+s+1

�
; 0 � r � l � 1 :(2.8)

Setting the coe�cient of �0^ dx in the di�erential form E(�) to zero generates the Euler-Lagrange

equations for � which we denote by E(L). The Poincare-Cartan form associated with a Lagrangian �,

which is important in the geometry of variational problems (see [14]), is the one-form de�ned by

� = � � �(2.9)

where � is given in (2.8).

There is a simple procedure, which we will now describe, that allows us to associate a variational

bicomplex with a fourth-order ordinary di�erential equation. A fourth-order ordinary di�erential equation

uxxxx � f(x; u; u
x
; u

xx
; u

xxx
) = 0(2.10)

de�nes a 5-dimensional sub-manifold R of J4(R;R) by the inclusion

i : (x; u; u
x
; u

xx
; u

xxx
)! (x; u; u

x
; u

xx
; u

xxx
; f(x; u

x
; u

xx
; u

xxx
) ) � J4(R;R)(2.11)

where (x; u; u
x
; u

xx
; u

xxx
) are local coordinates for R. We call R the equation manifold for equation (2.10).

The map i in (2.11) extends to a map i : R ! J1(R ;R) by prolongation

uxxxxx =
d

dx
f ; ::: ; u4+r =

dr

dxr
f ; :::: :

The variational bicomplex associated with the di�erential equation (2.10) whose equation manifold isR will

be denoted by f
r;s(R); dH ; dV gr=0;1;s�0 and this bicomplex is de�ned to be the pullback of the complex

f
r;s(J1(R ;R)); dH ; dV gr=0;1;s�0 by the inclusion i : R ! J1(R;R). For example, the contact ideal on

R is

C(R) = f�0 = du� u
x
dx ; �1 = du

x
� u

xx
dx ; �2 = du

x
� u

xxx
dx ; �3 = du

x
� f(x; u; u

x
; u

xx
; u

xxx
)dxg(2.12)

while the total derivative of a function h 2 C1(R), which we will write as dh

dx
, has the coordinate expression

dh

dx
=
@h

@x
+ u

x

@h

@u
+ u

xx

@h

@u
x

+ u
xxx

@h

@u
xx

+ f(x; u; u
x
; u

xx
; u

xxx
)
@h

@u
xxx

:

If we consider those fourth-order ordinary di�erential equations which admit a multiplier, so that (1.2)

is satis�ed, then the pullback of the variational formula (2.7) to the equation manifold R yields

dV � = dH(i
��)(2.13)
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( i�E(�) = 0 by the assumption that the equation admits a multiplier ). The essential idea underlying the

solution to the inverse problem now lies in de�ning a di�erential two-form ! 2 
0;2(R) by

! = dV (i
��)(2.14)

which from equations (2.13) and (2.4) is found to be closed. The closed di�erential two-form !, which may

also be written in terms of the Poincare-Cartan form as ! = i�d� using (2.9), when written out explicitly

is

! = �
@2L

@u
xx

2
(�0^ �3 � �1^ �2) +

d

dx

@2L

@u
xx

2
�2^ �0 +

�
d

dx

@2L

@u
xx
@u

x

+ 2
@2L

@u
xx
@u

�
@2L

@u
x

2

�
�1^ �0 :(2.15)

The di�erential form ! in (2.14) provides the proof of necessity in the �rst part of the following key

theorem ([4] Theorem 2.6 page 20, as it applies to our case),

Theorem 2.2. The fourth-order di�erential equation (2.10) admits a multiplier and a non-degenerate

Lagrangian of order 2, if and only if there exists a di�erential form ! 2 
0;2(R) having the algebraic

structure

! = a3�
0
^ �3 + a2�

0
^ �2 + a1�

0
^ �1 + a0�

1
^ �2(2.16)

with a3 non-vanishing, and where ! satis�es the closure condition

d! = 0 :

Moreover there is a one-to-one correspondence between these closed two-forms and non-degenerate second-

order Lagrangians �, modulo the addition to � of a total derivative dHh where h 2 C1(J1(R;R)) depends

on at most �rst derivatives.

A non-degenerate Lagrangian � satis�es by de�nition

@2L(x; u; u
x
; u

xx
)

@u
xx

2
6= 0

and comparing this condition with equation (2.15) gives rise to the non-vanishing condition on a3 in (2.16).

We will often identify two non-degenerate Lagrangians �1 and �2 if

�1 = �2 + dH h(x; u; u
x
)(2.17)

where h 2 C1(J1(R;R)). By using this identi�cation the second part of Theorem 2.2 states that the

correspondence between � and ! described in the equations (2.13) and (2.14) is one-to-one.

Theorem 2.2 reduces the multiplier problem to a simple geometric condition on the equation manifold

R. In fact this interpretation of the closed form ! in Theorem 2.2 is a special case of a more general

phenomena. That is the entire space of closed two-forms

! 2 
0;2(R) ; d! = 0(2.18)

can be interpreted in terms of variational operators [2]. An equation is said to admit a variational operator

if there exists a total di�erential operator whose action on the original equation results in an equation

which is variational. The existence of a closed form (2.18) implies by a generalization of Theorem 2.2 that

the equation determining R admits a variational operator. A variational multiplier is of course a special

case of a variational operator where the total di�erential operator has no derivative terms.

In order to simplify the description of the solution to the inverse problem we de�ne a submodule of

V (R) � 
0;2(R), by

V (R) = f! 2 
0;2(R) j! = a3�
0
^ �3 + a2�

0
^ �2 + a1�

0
^ �1 + a0�

1
^ �2g(2.19)

where (ai)i=0::3 2 C
1(J1(R;R)). We also de�ne a subspace V (R) � V (R) by

V (R) = f! 2 V (R) j d! = 0g :(2.20)

Theorem 2.2 now states that solving the inverse problem corresponds to determining for which equations

with corresponding manifolds R do there exist ! 2 V (R) with a3 6= 0. We will �nd that V (R) is a contact
invariant subspace of 
0;2(R) which demonstrates by Theorem 2.2, that whether or not an an equation
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admits a variational multiplier is a contact invariant problem. This motivates us to study the contact

geometry of R by using Cartan's equivalence method [7].

3. The feg-structure for fourth-order ordinary differential equations

In this section we use the equivalence method of E. Cartan to associate an invariant coframe with any

fourth-order scalar ordinary di�erential equation. In principle the relative invariants arising in the structure

equations for this coframe can be used to distinguish between non-equivalent equations. We identify two

of the relative invariants which will be used in section 4 to characterize the fourth-order equations which

admit a multiplier.

A convenient description of the equivalence method is given in [11], while our calculations in this section

are found to be similar to those for the third-order scalar ordinary di�erential equation case presented in

[8]. To begin let (x; u; u
x
) and (�x; �u; �u

�x
) be local coordinates on J1(R;R) and J

1
(R;R) respectively. Two

fourth-order scalar ordinary di�erential equations

uxxxx = f(x; u; u
x
; u

xx
; u

xxx
) �u

�x�x�x�x
= �f(�x; �u; �u

�x
; �u

�x�x
; �u

�x�x�x
)(3.1)

are de�ned to be contact equivalent (in the classical sense) if there exists a contact transformation

	1 : J1(R;R)! J
1
(R ;R)

which is given in local coordinates by

x = �(x; u; u
x
) ; u =  (x; u; u

x
) ; �u

�x
=  1(x; u; u

x
) ;(3.2)

and a (nowhere vanishing) smooth function h(x; u; u
x
; u

xx
; u

xxx
) such that

(	4)�
�
�u
�x�x�x�x

� �f(�x; �u; �u
�x
; �u

�x�x
; �u

�x�x�x
)
�
= h(x; u; u

x
; u

xx
; u

xxx
) [uxxxx � f(x; u; u

x
; u

xx
; u

xxx
)](3.3)

where 	4 : J4(R;R) ! J
4
(R;R) is the prolongation of 	1. In other words the two di�erential equations

(3.1) are contact equivalent if there exists a contact preserving change of variables of the form (3.2) which

transforms one equation into a multiple of the other.

We now express the relation of contact equivalence between the two equations in (3.1) as an equivalence

relationship between coframes so that the equivalence method may be applied. This is done by considering

each di�erential equation in (3.1) as de�ning a smooth submanifold

(x; u; u
x
; u

xx
; u

xxx
)! J4(R ;R) ; (x; u; �u

�x
; �u

�x�x
; �u

�x�x�x
)! �J4(R;R)

as in equation (2.11), and then choosing the particular coframes on R and R by taking the canonical basis

for the contact module C(R) and that for C(R) as given in equation (2.1) together with the di�erential

forms � = dx and � = dx. That is we have the coframes�
� = dx

�i

�
;

 
� = dx

�
i

!
(3.4)

on R and R respectively. By canonically identifying R with J3(R;R), the prolongation of a contact

transformation 	3 : J3(R ;R)! J
3
(R;R) de�nes a di�eomorphism 	3 : R ! R. This identi�cation allows

us to express the equivalence condition (3.3) as

Lemma 3.1. Two fourth-order ordinary di�erential equations (3.1) are contact equivalent if and only if

there exists a contact transformation contact 	1 : J1(R;R)! J
1
(R;R) such that

(	3)�

 
�

�
i

!
= S

�
�

�i

�
;(3.5)
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where S : R ! H is a smooth function on R taking values in the Lie subgroup H � GL(5;R) de�ned by

H =

8>>>><>>>>:

0BBBB@
a u v 0 0

0 b 0 0 0

0 c1 a�1b 0 0

0 c2 c3 a�2b 0

0 c4 c5 c6 a�3b

1CCCCA ; a; b 2 R�; u; v; c1; c2; c3; c4; c5; c6 2 R

9>>>>=>>>>;
:(3.6)

We may now apply the equivalence method by using Lemma 3.1 and lifting the forms in (3.4) to R�H

and R�H by de�ning the one-forms,� b�b�i
�
= S

�
�

�i

�
(3.7)

(with the analogous de�nition on R�H) where S is the local parameterization of H in equation (3.6). By

taking the exterior derivative of equation (3.7) we have the �rst set of structure equations 
db�
db�i

!
= (dS)S�1

� b�b�i
�
+ S

�
d�

d�i

�
(3.8)

where (dS)S�1 is a Maurer-Cartan form for H . The Maurer-Cartan form we use is

(dS)S�1 =

0BBBB@
� � � 0 0

0 � 0 0 0

0 
1 � � � 0 0

0 
2 
3 � � 2� 0

0 
4 
5 
6 � � 3�

1CCCCA(3.9)

where �; �; �; �; 
a are right invariant one-forms on H , (with the analogous de�nitions on R � H) and

where S is the local parameterization of H in equation (3.6).

With the lifted forms in (3.7) and the Maurer-Cartan form (3.9) the equivalence method can be applied

to �nd,

Theorem 3.2. Solutions 	3 : R ! R to the equivalence problem for fourth-order ordinary di�erential

equations are in one-to-one correspondence with the solutions of an equivalence problem for an 8 dimen-

sional feg-structure on R�G where G is a three dimensional Lie subgroup of H. The essential part of the

structure equations of the coframe are given by

d� = �^� + T1 �
0
^ �1 + T2 �

0
^ �2 + T3 �

0
^ �3 + T4 �

1
^ �2 + T5 �

1
^ �3

d�0 = �^ �0 + �^ �1

d�1 = (� � �)^ �1 + 
^ �0 + �^ �2(3.10)

d�2 = (� � 2�)^ �2 +
4

3

^ �1 + �^ �3

d�3 = (� � 3�)^ �3 + 
^ �2 + I0�^ �
0 + I1�^ �

1 + T6 �
0
^ �1 + T7 �

0
^ �2 + T8 �

1
^ �2

where Ta; a = 1:::8 and Is; s = 1; 2 are smooth functions on R�G.

The reader who is interested in the characterization of the variational fourth order equations (and

applications) may skip the derivation of the structure equations and proceed to section 4. In the remainder

of this section we derive the structure equations along with some of the parametric forms of some of the

invariants.

Proof. The initial structure equations in (3.8) on R�H are determined from the equations

d(dui � ui+1dx) = dx^ dui+1 ; i = 0; 1; 2

d(du3 � fdx) = dx^ df(3.11)
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to be (after absorption of torsion [11])

d� = �^� + �^ �0 + �^ �1

d�0 = �^ �0 + �^ �1

d�1 = (� � �)^ �1 + 
1^ �
0 + �^ �2(3.12)

d�2 = (� � 2�)^ �2 + 
2^ �
0 + 
3^ �

1 + �^ �3 +K1 �^ �
2

d�3 = (� � 3�)^ �3 + 
4^ �
0 + 
5^ �

1 + 
6^ �
2 +K2 �^ �

3 :

By taking the exterior derivative of the second and third equation in (3.12) above we also have the equations

d� � �^ �1 + 
1^� � 0 mod(�0)

d�+ 2
1^� � 
3^� + �^ �2 � 0 mod(�0; �1) :(3.13)

We can now determine the group action on the torsion elements K1 and K2 in (3.12) by computing

d2�2^ �0^ �1^ �3 and d2�3^ �0^ �1^ �2 and using (3.13) to get

dK1 + �K1 + 
6 + 3
1 � 3
3 � 0 mod(base)

dK2 + �K2 � 
6 � 3
3 + 5
1 � 0 mod(base) :(3.14)

The action of the structure group onK1 andK2 allows us to translateK1 andK2 to zero by using the group

elements corresponding to 
6 and 
3. The reduced group H1 (which is easily obtained by exponentiation)

will have the Maurer-Cartan form of (3.9) subject to the relations


6 = 
1 
3 =
4

3

1 :(3.15)

We will make the substitution 
1 = 
 from now on.

The new structure equations with group H1 will have the same �rst three structure equations of (3.12)

(with 
1 = 
) while the last two are

d�2 = (� � 2�)^ �2 + 
2^ �
0 +

4

3

^ �1 + �^ �3 + L1 �^ �

1 + L2 �
2
^ �1 + L3 �

3
^ �1

d�3 = (� � 3�)^ �3 + 
4^ �
0 + 
5^ �

1 + 
^ �2 + L4 �^ �
2 + L5 �

3
^ �2 :(3.16)

In the �rst of these equations we may still absorb L2 by letting

� = b�+
1

2
L2 �

1 ; � = b� + 1

2
L2� ; 


5 = b
5 � 3

2
L2�

3 :(3.17)

As well we have equations (3.13) along with d2�1^ �1 = 0 giving (dropping theb)
d� � �^ �1 + 
^� � 0 mod(�0)

d�+
2

3

^� + �^ �2 + L3 �^ �

3 � 0 mod(�0; �1)(3.18)

d
 + �^ 
 � �^ �2 + 
2^� � 0 mod(�0; �1) :

It now follows from setting d2�2^ �0^ �1 = 0 and (3.18) that

L5 = 3L3 :(3.19)

The action of the reduced group on the independent torsion elements L1; L3 and L4 is obtained by taking

d2�2^ �0^ �2 and d2�3^ �0^ �1^ �3 while using (3.18) to �nd

dL1 + 2L1 �+ 
5 �
7

3

2 � 0

dL3 + L3 (� � 2�)� � � 0 mod(base)(3.20)

dL4 + 2L4 �� 
5 � 
2 � 0 :

These equations imply that the torsion elements L1; L4 and L3 can be translated to zero using 
2; 
5 and

�. The new structure group H2 � H1 resulting from this reduction will have the Maurer-Cartan form of

H1 subject to the conditions 
2 = 0; 
5 = 0; and � = 0.
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The new structure equations with group H2 are (after absorption of torsion)

d� = �^� + �^ �0 +M1 �
1
^ �2 +M2 �

1
^ �3

d�2 = (� � 2�)^ �2 +
4

3

^ �1 + �^ �3 +M3 �^ �

0 +M4 �
1
^ �2 +M5 �

3
^ �0(3.21)

d�3 = (� � 3�)^ �3 + 
4^ �
0 + 
^ �2 +M6 �^ �

1 +M7 �
1
^ �3 :

where d�0 and d�1 are the same as in (3.12) (with 
1 = 
). The M4 term arises in these equations because

the absorption in (3.17) is no longer possible. The action of the structure group on the terms M3 and M5

is found by taking d2�2^ �1^ �2 resulting in

dM3 + 3M3 �+ 
4 � 0 mod(base)

dM5 +M5 (� � �)� � � 0 mod(base) :

Thus we may translate M3 and M5 further reducing the group to the subgroup G � H2 which is three

dimensional. The Maurer-Cartan form of G is obtained from that of H2 with the extra conditions � =

0; 
4 = 0. The structure equations then read

d� = �^� +N1 �
1
^ �2 +N2 �

1
^ �3 +N3 �

1
^ �0 +N4 �

2
^ �0 +N5 �

3
^ �0

d�2 = (� � 2�)^ �2 +
4

3

^ �1 + �^ �3 +N6 �

1
^ �2

d�3 = (� � 3�)^ �3 + 
^ �2 + I0�^ �
0 + I1�^ �

1 +N7 �
1
^ �3 +N8 �

1
^ �0 +N9 �

2
^ �0 +N10 �

3
^ �0 +N11�

2
^ �1 :

where again d�0 and d�1 are the same as in (3.12) (with 
1 = 
). At this point we have an feg structure
on U � G. The torsion coe�cients N6; N7 and N10 in the feg�structure vanish as seen by the following

calculations

d2�2^ �1^ �2 = N10 �^ �
0
^ �1^ �2^ �3

d2�3^ �0^ �1 = N7 �^ �
0
^ �1^ �2^ �3

d2�2^ �0^ �2 = N6 �^ �
0
^ �1^ �2^ �3 :

By relabeling the non-zero torsion the structure equations in (3.10) are obtained.

This theorem is well known [5] but the feg-structures in Theorem 3.2 and [5] have a di�erent form.

In section 4 we will the following information about the structure equations for d� and d�.

Corollary 3.3. The forms d� and d� satisfy,

d� + 
^� + T2 �
2
^ �1 + T3 �

3
^ �1 � 0 mod(�0)

d�+
2

3

^� � T5 �

3
^ �2 � 0 mod(�0; �1) :(3.22)

This calculation easily follows from the equations in Theorem 3.2. The two torsion coe�cients T5 and

I1 also play an important role in the next section and by a simple consequence of the structure equations

in Theorem 3.2 we �nd

Corollary 3.4. The torsion coe�cient T5 and I1 are relative invariants. They satisfy

dT5 + T5(2� � 5�) � 0 mod(base)

dI1 + 3I1� � 0 mod(base) :

This corollary implies that the vanishing of T5 and I1 is an invariant property of a fourth-order di�erential

equation. In section 4 we will show that the invariant subclass of fourth-order equations de�ned by the

vanishing of T5 and I1 are precisely those equations which admit a variational multiplier. We compute the

parametric values of these relative invariants to be
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Lemma 3.5. The parametric value of relative invariants T5 and I1 (at the identity of G) are

T5 =
1

6

@3f

@u3
xxx

I1 =
@f

@u
x

+
1

2

d2

dx2
@f

@u
xxx

�
d

dx

@f

@u
xx

�
3

4

@f

@u
xxx

d

dx

@f

@u
xxx

+
1

2

@f

@u
xx

@f

@u
xxx

+
1

8

�
@f

@u
xxx

�3
:

Proof. In order to determine the parametric values of the torsion elements we use some of the intermediate

calculations from Theorem 3.2 and restrict to the identity of the group in question. By using equations

(3.11) we have

K1 = 0 ; K2 =
@f

@u
xxx

:(3.23)

The modi�cation in the coframe obtained by the translating K1 and K2 to zero in (3.14) is by setting

c6 = �
1

2

@f

@u
xxx

; c3 =
1

3
c6 :

The resulting coframe on R is given by

dx ; �00 = du� u
x
dx ; �10 = du

x
� u

xx
dx

together with the twisted forms

�20 = du
xx
� u

xxx
dx�

1

6

@f

@u
xxx

�10 ;(3.24)

�30 = du
xxx

� fdx�
1

2

@f

@u
xxx

(du
xx
� u

xxx
dx) = du

xxx
� fdx�

1

2

@f

@u
xxx

(�20 +
1

6

@f

@u
xxx

�10) :

To �nd the torsion in equations (3.16) we take the exterior derivative of the forms in (3.24) to get

d�20^ �
0
0^ �

2
0^ �

3
0 =

�
�du

xxx
^ dx �

1

6

d

dx

@f

@u
xxx

dx^ �10 +
1

6

@f

@u
xxx

du
xx
^ dx

�
^ �00^ �

2
0^ �

3
0

d�30^ �
0
0^ �

1
0^ �

3
0 =

�
�
@f

@u
xx

du
xx
^ dx�

1

2

d

dx

@f

@u
xxx

dx^ �20 +
1

2

@f

@u
xxx

du
xxx

^ dx

�
^ �00^ �

1
0^ �

3
0

d�30^ �
0
0^ �

1
0^ dx = �

1

2

@2f

@u2
xxx

du
xxx

^ �20^ �
0
0^ �

1
0^ dx

which after substituting from (3.24) easily gives

L1 =
1

18

�
@f

@u
xxx

�2
�

1

6

d

dx

@f

@u
xxx

L4 =
@f

@u
xx

+
1

4

�
@f

@u
xxx

�2
�

1

2

d

dx

@f

@u
xxx

L5 = �
1

2

@2f

@u2
xxx

:

In order to determine the twist in the coframe on R corresponding to translating L1 and L4 to zero in

(3.14) we solve the equations

c5 �
7

3
c2 = L1 ; c2 + c5 = �L4

which along with the translation of L5 = 3L3 to zero in (3.20) gives the coframe

�1 = dx +
1

6

@2f

@u2
xxx

�10 ; �01 = �00 ; �
1
1 = �10

�21 = �20 �
3

10
(L4 + L1)�

0
0 ; �

3
1 = �30 + (

3

10
L1 �

7

10
L4)�

1
0 :(3.25)
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We are now in a position to compute T5 from

d�1^�1^ �
0
1^ �

2
1 =

1

6

@3f

@u3
xxx

�1^ �
3
1^ �

1
1^ �

0
1^ �

2
1

which gives the expression for T5 as stated in the lemma. Next we compute M3 in equation (3.21) by

d�21^ �
1
1^ �

2
1^ �

3
1 =

�
�du

xxx
^ dx+

1

6

@f

@u
xx

du
xx
^ dx �

3

10

d

dx
(L4 + L1)dx^ �

0
0

�
^ �11^ �

2
1^ �

3
1

which upon substitution from (3.24) and (3.25) gives

M3 =
1

5

d2

dx2
@f

@u
xxx

�
3

10

d

dx

@f

@u
xx

�
1

4

@f

@u
xxx

d

dx

@f

@u
xxx

+
1

10

@f

@u
xx

@f

@u
xxx

+
11

360

�
@f

@u
xxx

�3
:

In a similar manner we compute M6 to be

M6 =
@f

@u
x

+
3

10

d2

dx2
@f

@u
xxx

�
7

10

d

dx

@f

@u
xx

�
1

2

@f

@u
xxx

d

dx

@f

@u
xxx

+
2

5

@f

@u
xx

@f

@u
xxx

+
17

180

�
@f

@u
xxx

�3
The relative invariant I1 is then computed by noting from equation (3.21) that

dM6 � 
4 � 0 mod(base)

so

I1 =M6 +M3

which is the expression for I1 in the statement of the lemma.

4. The Variational Multiplier Problem

At the end of section 2 we described necessary and su�cient conditions for a fourth-order scalar ordinary

di�erential equation

uxxxx � f(x; u; u
x
; u

xx
; u

xxx
) = 0 ;(4.1)

with equation manifold R, to admit a multiplier as being equivalent to the existence of a closed di�erential

two-form ~! 2 V (R). Speci�cally ~! had to be of the form

~! = a3 ~�
0
^
~�3 + a2 ~�

0
^
~�2 + a1 ~�

0
^
~�1 + a0 ~�

1
^
~�2 a3 6= 0 ;(4.2)

where faigi=0::3 2 C1(R) and f~�igi=0;:::;3 are the contact forms on the manifold R de�ned in (2.12). If

we subject the di�erential form ~! in (4.2) to a contact transformation of R, then by using Lemma 3.1 to

transform the di�erential forms (~�i)i=0;:::;3, it is clear that the algebraic form of ! in (4.2) is invariant.

Thus the module V (R) in (2.19) and the subspace V (R) in (2.20) are invariant with respect to contact

transformations. The fact that the space V (R) is invariant implies through Theorem 2.2 that determining

whether an equation admits a multiplier is a contact invariant problem. The invariant nature of determining

which scalar fourth-order ordinary di�erential equations admit a multiplier will allow us us to demonstrate

that the vanishing of the relative invariants in Corollary 3.4 (or Lemma 3.5) associated with a fourth-order

equation (4.1) characterize variational equations.

In analogy with de�nitions (2.19) and (2.20) at that end of section 2, we de�ne the spaces

V (R�G) = f! 2 
2(R�G) j! = a3�
0
^ �3 + a2�

0
^ �2 + a1�

0
^ �1 + a0�

1
^ �2g ;

V (R�G) = f! 2 V (R�G) j d! = 0g(4.3)

where faigi=0::3 2 C1(R � G), and f�igi=0;:::;3 are the components of the invariant coframe determined

in Theorem 3.2. We may express Theorem 2.2 in terms of conditions on the geometry of the feg-structure
R�G, by using de�nitions (4.3), as

Lemma 4.1. A fourth-order equation admits a variational multiplier if and only if there exists a (closed)

two-form ! 2 V (R�G) with a3 non-vanishing.
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The proof of this lemma is a consequence of the geometric relationship between the spaces V (R) and

V (R�G). In fact if we let ! 2 V (R�G) and X be any in�nitesimal generator of the left action of G on

R�G, we have X ! = 0 and so

LX! = 0 :

Thus every closed di�erential form ! 2 V (R�G) is invariant with respect to the left action of G on R�G,

and consequently there exists a unique closed di�erential ~! 2 V (R) such that

! = ��~! ;(4.4)

where � is the projection � : R�G! R. The correspondence in (4.4) is one-to-one and the spaces V (R)

and V (R�G) are canonically isomorphic. This being so we let

� = dimension V (R�G) = dimension V (R)(4.5)

and we may re-express Lemma 4.1 as

Corollary 4.2. Equation (4.1) admits a variational multiplier if and only if � 6= 0.

The partial di�erential equations d! = 0 for the unknowns faigi=0;:::;3 which arise in Lemma 4.1 can be

written in terms of the invariant coframe in Theorem 3.2. The existence of a solutions to d! = 0 will then

be expressed in terms of the relative invariants. Fortunately we the partial di�erential equations d! = 0

for the unknowns faigi=0;:::;3 dramatically simplify due to several algebraic relationships which must hold

amongst the terms faigi=0;:::;3 in order for the dimension � in (4.5) to be non-zero. We �nd

Lemma 4.3. If there exists a non-zero di�erential form ! 2 V (R � G) then ! must have the algebraic

structure

! = a(�0^ �3 � �1^ �2) :(4.6)

Proof. We work with the structure equations (3.10) modulo (�; �; 
). By taking the exterior derivative

of an arbitrary ! 2 V (R � G) (using the structure equations (3.10)) and concentrating on terms which

contain �, we �nd

d!^ �0^ �2 = �(a3 + a0)�^ �
0
^ �1^ �2^ �3 :

which demonstrates that ! can be closed only if it has the algebraic form

! = a3(�
0
^ �3 � �1^ �2) + a1�

0
^ �1 + a2�

0
^ �2 :

In a similar manner we compute

d!^ �1^ �2 = (_a3 + a2)�^ �
0
^ �1^ �2^ �3

d!^ �0^ �3 = (� _a3 + a2)�^ �
0
^ �1^ �2^ �3(4.7)

where

_a3� � da3 mod(�0; �1; �2; �3) :

The equations in (4.7) clearly imply that ! could be closed only if a2 = 0. Lastly we �nd

d!^ �1^ �3 = a1 �^ �
0
^ �1^ �2^ �3

and so a1 must be zero in order for ! to be closed, which proves the lemma.

The lemma implies that the partial di�erential equations d! = 0 contain only the single unknown function

a. The di�erential equations for a obtained by setting the exterior derivative of ! in (4.6) to zero giving

da ^ (�0^ �3 � �1^ �2) + a d(�0^ �3 � �1^ �2) = 0(4.8)

Dividing this equation by a leads immediately to the lemma

Lemma 4.4. If there exists a non-zero solution a to (4.8) then there exists a one-form � 2 
1(R � G)

such that

d(�0^ �3 � �1^ �2) = �^ (�0^ �3 � �1^ �2) :(4.9)
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The contact invariant condition (4.9) is not necessarily satis�ed by an arbitrary feg-structure on R�G
from section 3. In fact the next lemma shows that being able to solve equation (4.9) provides the �rst

non-trivial condition on the geometry of R�G which must be satis�ed in order to be able to �nd a closed

two-form ! as in Lemma 4.1. The result is

Lemma 4.5. There exists a one-form � 2 
1(U � G) such that equation (4.9) holds if and only if the

relative invariant I1 in the structure equations (3.10) vanishes. If I1 = 0 then

� = 2� � 3� :(4.10)

Proof. Using the structure equations in (3.10) we �nd

d(�0^ �3 � �1^ �2) = (2� � 3�)^ (�0^ �3 � �1^ �2) + I1�^ �
0
^ �1 � T8�

0
^ �1^ �2(4.11)

and we may immediately conclude that the vanishing of I1 and T8 are necessary conditions for (4.9) to

hold. If we now assume that I1 = 0 the computation

d2�3^ �0^ �2 +
3

2
d2�2^ �0^ �3 +

1

2
d2�0^ �2^ �3 = �

5

2
T8�^ �

0
^ �1^ �2^ �3

implies that T8 vanishes as a consequence of the assumption I1 = 0. This proves that the vanishing of I1 is

both necessary and su�cient for (4.9) to be satis�ed which proves the �rst part of the lemma. Substituting

the hypothesis I1 = 0; which implies T8 = 0, into the computation in (4.11) we obtain equation (4.10)

which �nishes the proof of the lemma.

This lemma in conjunction with Lemma 4.1 implies that any fourth-order ordinary di�erential equation

satisfying I1 6= 0 will not admit a multiplier.

From now on we consider only those geometries R � G in Theorem 3.2 which satisfy the invariant

condition I1 = 0 so that equation (4.10) holds. The di�erential equations for a in (4.8) are then

(da+ a(2� � 3� )) ^ (�0^ �3 � �1^ �2) = 0 :(4.12)

It is now easy to check that given any � 2 
1(R �G) with �^! = 0 then � = 0. We then conclude that

the di�erential equations (4.12) for a are

da+ a(2� � 3� ) = 0 :(4.13)

The degree of generality of the possible space of solutions a to this equation is

Lemma 4.6. If there exists a non-zero solution a to the partial di�erential equations (4.13), then the

solution a is unique up to multiplication by a non-zero real scalar.

A simple but important consequence of this lemma is

Corollary 4.7. � = 0 or 1. Equation (4.1) is variational if and only if � = 1

At this point we may conclude that if a fourth order ordinary di�erential equation admit a variational

multiplier then the Lagrangian (and multiplier) are unique up to scaling.

We continue studying the integrability conditions for the �rst-order partial di�erential equations (4.13)

for a by taking the exterior derivative of (4.13). An application of the Poincare lemma proves

Lemma 4.8. There exists a (non-zero) solution a to the partial di�erential equation (4.13) if and only if

2d� � 3d� = 0 :(4.14)

Thus equation (4.14) together with the hypothesis that I1 = 0 �nally provide necessary and su�cient

conditions in terms of the geometry of feg-structures of Theorem 3.2 which would guarantee the existence

of the closed form ! as in Lemma 4.1.

Continuing with the assumption I1 = 0 and using the equations (3.22) in Corollary 3.3, the integrability

conditions in (4.14) could in general have the form

2d� � 3d� = Bij �
i
^ �j + Ci �

i
^! = 0(4.15)
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where the functions Bij ; Ci 2 C1(R� G) can be written in terms of the structure functions of the feg-
structure and their covariant derivatives. However the integrability conditions (4.15) simplify because the

functions Bij and Ci are not all independent. In fact under the assumption I1 = 0 if we take the exterior

derivative of (4.9) to get

(2d� � 3d�)^ (�0^ �3 � �1^ �2) = 0

and then substitute from (4.15) it follows that we can write

2d� � 3d� = b1�
0
^ �1 + b2�

0
^ �2 + b3(�

1
^ �2 + �0^ �3) + b4�

1
^ �3 + b5�

2
^ �3(4.16)

where (br)r=1;:::;5 2 C
1(R�G). Thus there are at most �ve independent integrability conditions for the

partial di�erential equations (4.13). This simpli�cation of the integrability conditions in (4.14) allows us

to prove the theorem

Theorem 4.9. The condition � = 1 is satis�ed if and only if the two relative invariants T5 and I1 vanish.

Proof. We have already established from the arguments above that the vanishing of I1 and (br)r=1::5 are

necessary and su�cient conditions for the existence of a closed form (4.2). The coe�cient b5 in (4.16) can

be expressed in terms of the torsion in the structure equations (3.22) using Corollary 3.3 to give

b5 = 3T5 :(4.17)

This implies that T5 = 0 along with I1 = 0 are necessary conditions for the existence of a closed form !.

In order to establish that the vanishing of T5 and I1 guarantees that the form ! is closed , we need to

show these two conditions imply (br)r=1;:::;5 = 0. First the assumption T5 = 0 and equation (4.17) trivially

imply that b5 = 0 so that equation (4.16) becomes

2d� � 3d� = b1�
0
^ �1 + b2�

0
^ �2 + b3(�

1
^ �2 + �0^ �3) + b4�

1
^ �3 = 0:

Taking the exterior derivative of this equation and concentrating on terms which contain � we �nd

(2d2� � 3d2�)^ �0^ �1^�^�^ 
 = b4�^ �
0
^ �1^ �2^ �3^�^�^ 
 ;

which implies b4 = 0. In a similar manner we also have

(2d2� � 3d2�)^ �0^ �2�^�^ 
 = 2b3�^ �
0
^ �1^ �2^ �3^�^�^ 


which implies b3 = 0. Again by similar arguments we have b1 = 0 and b2 = 0 which proves that the

assumptions T5 = 0 and I1 = 0 imply (br)r=1;:::;5 = 0.

By using Lemma 3.5 the characterization of fourth-order scalar ordinary di�erential equations which

admit a multiplier can then be expressed parametrically as:

Corollary 4.10. A fourth-order ordinary di�erential equation admits a variational multiplier and non-

degenerate second-order Lagrangian such that (1.2) is satis�ed if and only if

T5 =
1

6

@3f

@u3
xxx

= 0

I1 =
@f

@u
x

+
1

2

d2

dx2
@f

@u
xxx

�
d

dx

@f

@u
xx

�
3

4

@f

@u
xxx

d

dx

@f

@u
xxx

+
1

2

@f
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+
1

8

�
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@u
xxx

�3
= 0:

We also have as a corollary of Lemma 4.6 and Theorem 2.2

Corollary 4.11. If a fourth-order ordinary di�erential equation admits a variational multiplier and non-

degenerate second-order Lagrangian such that (1.2) is satis�ed then the multiplier, Lagrangian, and asso-

ciated closed two-form ! are unique up to multiplication by a non-zero real scalar.

The uniqueness of the Lagrangian in Corollary 4.11 is of course subject to the identi�cation in (2.17).

Corollary 4.10 and 4.4 provide a complete solution to the multiplier problem for fourth-order scalar ordinary

di�erential equations.

As a �nal remark to conclude this section we would like to point out that the proof of Theorem 4.9 could

be shortened by simultaneously trying to solve the equivalence method and determining the necessary and
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su�cient conditions for the existence of the form !. This would require one less step in the equivalence

method in section 3. For our particular problem it was easy enough to obtain the �nal feg-structure in
Theorem 3.2, but for more complicated problems the shorter solution would be preferred. The technique

of running the equivalence method while imposing the conditions which control the existence of ! is used

in [6] to characterize the second-order parabolic partial di�erential equations in the plane which admit

multiple conservation laws.

5. Applications

In this section we provide two simple applications of the characterization of variational fourth-order

ordinary di�erential equations given in section 4. Our �rst application is based on the fact that the solution

to the problem of determining whether two feg-structures are equivalent is well known [11]. With this in

mind, we de�ne an equivalence relation on the set of non-degenerate second-order Lagrangians such that we

can associate a unique feg-structure with each Lagrangian equivalence class thus solving the equivalence

problem. The feg-structure we associate with a given Lagrangian � is of course the feg-structure in

Theorem 5.1 de�ned by the Euler-Lagrange equations of �.

Let

� = L(x; u; u
x
; u

xx
) dx 2 
1;0(J1(R;R)) ; � = L(�x; �u; �u

�x
; �u

�x�x
) d�x 2 
1;0(J

1

(R;R))(5.1)

be two non-degenerate second-order Lagrangians with corresponding Euler-Lagrange equations E(L) = 0

and E(L) = 0. We de�ne the two Lagrangians in (5.1) to be equivalent if there exist a classical contact

transformation 	1 : J1(R;R)! J
1
(R;R) with prolongation 	 : J1(R;R)! J

1

(R;R), such that

	#(�) = c �+ dH �(x; u; u
x
)(5.2)

where c 2 R�, � 2 C1(J1(R;R)), and 	# is the projected pullback [3]. The projected pullback in equation

(5.2) can be written as

	#(�) = 	�(�) mod(�0; �1) ;

and this formula for 	#(�) is the standard de�nition for the transformation law of a Lagrangian.

The equivalence relation (5.2) on the space of Lagrangians along with the de�nition of equivalence for

fourth order ordinary di�erential equations given in (3.3) allows us to prove

Theorem 5.1. There exists a one-to-one correspondence between the equivalence classes of non-degenerate

second-order Lagrangians and the equivalence classes of the associated Euler-Lagrange equations.

Proof. Two Lagrangians as in (5.1) satisfying (5.2) clearly have equivalent Euler-Lagrange equations (in

the sense of (3.3)), so that we need to only prove su�ciency. Suppose � = Ldx and � = Ldx are two

non-degenerate second-order Lagrangians with equivalent Euler-Lagrange equations. Let 	 : J1(R;R)!

J
1

(R ;R) be the map that provides the equivalence between E(L) = 0 and E(L) = 0 and de�ne the

Lagrangian b� = 	#(�) :

The condition that the two Euler-Lagrange equations for � and � are equivalent simply implies

E(b�) =  E(�)

for some  2 C1(J1(R;R)). Using this in the �rst variational formula (2.7) which in terms of b� is

dV b� = E(b�) + dHb�
where b� 2 
0;1(J1(R ;R)), leads to

dV b� =  E(�) + dHb� :
Pulling this equation back to the equation manifold i : R ! J1(R;R) de�ned by E(L) = 0, as described

in equations (2.13) and (2.14) we associate with b� the two-formb! = dV i�b� :(5.3)
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The form b! is closed on the equation manifold R and hence by Corollary 4.11 we may concludeb! = c !

where c 2 R
� and ! is the closed two-form on R associated with �. If we now de�ne the Lagrangian

�0 = c�1b�, the above procedure produces the two-form !0 = c�1b! associated with �0 and clearly !0 = !.

The second part of Theorem 2.2 then implies that (5.2) holds.

Thus in summary Theorem 5.1 allows us to answer the question of whether two Lagrangians are equivalent

by determining whether the corresponding Euler-Lagrange equations are equivalent. As a direct application

of Theorem 5.1 combined with Theorem 4.9 we state

Corollary 5.2. The equivalence classes of non-degenerate second-order Lagrangians are in one-to-one

correspondence with the equivalence classes of feg-structures given in Theorem 3.2 which satisfy I1 = 0

and T5 = 0.

This provides a complete solution to the equivalence problem for non-degenerate second-order La-

grangians with respect to the equivalence relationship (5.2), and completes our �rst application.

In our second application we determine the relationship between the symmetry algebra of a fourth-order

Euler-Lagrange equation and the divergence symmetry algebra of the corresponding Lagrangian.

An in�nitesimal symmetry of a fourth-order scalar ordinary di�erential equation

uxxxx � f(x; u; u
x
; u

xx
; u

xxx
) = 0(5.4)

with corresponding equation manifold R, is a vector-�eld ~X on J1(R;R) which preserves the contact

structure on J1(R;R) and whose evolutionary representative (see [13])

X = �
@

@u
(5.5)

satis�es

X1 (uxxxx � f(x; u; u
x
; u

xx
; u

xxx
)) =  (uxxxx � f(x; u; u

x
; u

xx
; u

xxx
))(5.6)

for some  2 C1(J1(R;R)), and where X1 is the prolongation of X to J1(R;R). On the other hand,

an in�nitesimal divergence symmetry of a Lagrangian � is a vector-�eld ~X on J1(R;R) which preserves

the contact structure on J1(R;R) and whose evolutionary representative as in (5.5) satis�es

LX1� = dH�

for some � 2 C1(J1(R;R)). It is a classical result [13] that every in�nitesimal divergence symmetry

of a Lagrangian � is an in�nitesimal symmetry of the associated Euler-Lagrange equations, however the

converse of this theorem is often not true. That is, an in�nitesimal symmetry of an Euler-Lagrange equation

need not de�ne a divergence symmetry of the associated Lagrangian. This discrepancy can be precisely

described in the case of fourth-order scalar Euler-Lagrange equations.

Let � = Ldx be a non-degenerate second-order Lagrangian with Euler-Lagrange equation E(L) = 0

which de�nes the equation manifold i : R ! J1(R ;R). Furthermore let g be the Lie algebra of in�nitesimal

symmetries of the fourth order ordinary di�erential equation E(L) = 0. We then �nd

Theorem 5.3. Let X be an evolutionary representative of an in�nitesimal symmetry ~X 2 g. There exists

a constant c 2 R such that

LX1�� c � = dH�(5.7)

for some � 2 C1(J1(R;R)).

Note that if c = 0 in this theorem then the symmetry ~X is, by de�nition, a variational symmetry.

Proof. Let ~X 2 g and de�ne the Lagrangianb� = LX1� :
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The symmetry condition (5.6) implies

LX1E(�) = �E(�)

for some � 2 C1(J1(R;R)). Substituting these two equations into the Lie derivative with respect to X1

of the �rst variation equation in (2.7) and using the standard properties of evolutionary vector-�elds [1]

we get

dV b� = �E(�) + dHb�
where b� = LX1�. We may use this equation to de�ne the two-form on Rb! = dV i�b�
and as usual, b! 2 V (R) (! is closed and has the appropriate algebraic form). We conclude from Corollary

4.11 that b! = c !(5.8)

where c 2 R and ! 2 V (R) is the closed form associated with � through Theorem 2.2. There are now two

possibilities to consider depending on whether the constant c in (5.8) is zero or not. First assume that

c 6= 0 in equation (5.8), and de�ne �0 = c�1b�. The di�erential two-form !0 associated with �0 satis�es

!0 = !

where again ! is the closed form associated with �. This equation along with the second part of Theorem

2.2 allows us to conclude that (5.7) holds. The case c = 0 is similar.

Let h be the Lie algebra of in�nitesimal divergence symmetries of �. The Lie algebra h is a subalgebra

of g and the precise relationship between these two symmetry algebras is

Theorem 5.4. The Lie algebra g splits as a direct sum of vector-spaces

g = h� s

where s is a vector-space of dimension 0 or 1. Thus g = h+ s where g = dimg, h = dimh, and s = dim s

. The dimension of s is 1 if and only if there exists a symmetry ~X 2 g and a constant c 2 R� such that

LX1�� c � = dH� :

Proof. Let fXaga=1::g be a set of evolutionary vector-�elds corresponding to a basis for the Lie algebra

g. According to Theorem 5.3 we have a collection of constants ca 2 R and functions �a 2 C
1(J1(R ;R))

such that

LX1
a

�� ca� = dH�a ; a = 1:::g :

If ca = 0 for a = 1:::g, then the theorem is true and g = h. Thus we assume, with out loss of generality,

c1 6= 0 and de�ne a new basis of g so that the corresponding evolutionary representatives arebXa = Xa �
ca

c1
X1 a = 2:::g :

By taking the Lie derivatives of � with respect to these vector-�elds we �nd

L
bX1
a

� = dH b�a ; a = 2:::g

where b�a 2 C1(J1(R;R)). Thus bXa; a = 2:::g are the evolutionary form of divergence symmetries of �,

and the theorem is proved.

This theorem shows that in the case of a scalar fourth-order variational problem that the symmetry algebra

of a variational equation and the corresponding divergence symmetry algebra of the Lagrangian will be

isomorphic if and only if there is no symmetry of the Euler-Lagrange equation which scales the Lagrangian.

In light of Theorem 5.4, if we chose to de�ne a vector-�eld ~X to be a divergence symmetry of a Lagrangian

� if there exist c 2 R such that

LX1� = c�+ dHb�(5.9)
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for some � 2 C1(J1(R;R), then these divergence symmetries are in one-to-one correspondence with

symmetries of the Euler-Lagrange equations for the Lagrangian.

To conclude this article, we would like to point out that Theorem 5.3 and Theorem 5.4 are true for scalar

ordinary di�erential equations of arbitrary (even) order [2]. Finally, by using the fact that bounds on the

maximal dimension of the point and contact symmetry groups of scalar ordinary di�erential equations are

known [14], Theorem 5.3 and 5.4 provide bounds on the maximal dimension of the divergence symmetry

algebra of a Lagrangian which are in agreement with [12].
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