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THE INVERSE PROBLEM OF THE CALCULUS 

OF VARIATIONS FOR SCALAR FOURTH-ORDER ORDINARY 


DIFFERENTIAL EQUATIONS 


h1. E. FELS 

ABSTRACT.A simple invariant characterization of the scalar fourth-order ordi- 
nary differential equations which admit a variational multiplier is given. The 
necessary and sufficient conditions for the existence of a multiplier are ex- 
pressed in terms of the vanishing of two relative invariants which can be as- 
sociated with any fourth-order equation through the application of Cartan's 
equivalence method. The solution to  the inverse problem for fourth-order 
scalar equations provides the solution to  an equivalence problem for second- 
order Lagrangians, as well as the precise relationship between the symmetry 
algebra of a variational equation and the divergence symmetry algebra of the 
associated Lagrangian. 

Solving the inverse problem of the calculus of variations for scalar differential 
equations consists of characterizing those equations which may be multiplied by a 
non-zero function such that the resulting equation arises from a variational prin- 
ciple. Specifically in the case of scalar fourth-order ordinary differential equations 
we will determine for which equations 

there exist smooth functions g # 0 (the variational multiplier) and Lagrangian L 
such that 

is an identity, where E(L)  = 0 is the Euler-Lagrange equation for the Lagrangian 
L. 

A complete solution to the inverse problem for the simplest possible case of a 
scalar second-order ordinary differential equation has been know since Darboux 
[9]. Darboux determined that every second-order ordinary differential equation 
admits a multiplier and we will find that this is far from the case for a fourth-order 
equation. Thus the inverse problem for fourth-order scalar equations is the simplest 
non-trivial case which admits a complete solution. 
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The formulation of the variational multiplier problem for scalar equations is eas- 
ily extended to systems of differential equations where the problem is to determine 
whether it is possible to multiply a system of equations by a non-singular matrix of 
functions such that the result is a variation of some Lagrangian. In particular the 
multiplier problem for a system of two second-order ordinary differential equations 
has been thoroughly analyzed in the famous work of J .  Douglas [lo]. Recently 
Anderson and Thompson [4] have also studied this problem using the variational 
bicomplex (see section 2 below). Our solution for the scalar fourth-order equations 
will be based on ideas from these two articles. 

The first step in Douglas's solution to the inverse problem involved showing 
that necessary and sufficient conditions for the existence of a multiplier could be 
expressed in terms of the existence of solutions to a system of partial differential 
equations, which arise from the Helmholtz conditions, and where the unknowns are 
the multipliers (for a discussion of the Helmholtz conditions see [13]). Solving this 
system of partial differential equations would then provide the multiplier matrix 
for certain pairs of second-order ordinary differential equations. By using Riquier 
theory to analyze the existence and degree of generality of the solution space of the 
system of partial differential equations for the multipliers, Douglas discovered that 
there exist pairs of second-order equations which admit no multipliers, some which 
admit finitely many different multipliers (with distinct Lagrangians) as well as pairs 
of equations which admit infinitely many different multipliers (and Lagrangians). 
Unfortunately due to the overwhelming complexity of the analyses, Douglas some- 
times was only able to determine the degree of generality of the solution space 
to the partial differential equations for the multipliers and was unable to find a 
pair of ordinary differential equations with the specified degree of generality of the 
multipliers. 

The solution to the inverse problem given by Douglas emphasizes an important 
aspect in solving the inverse problem for the fourth-order equation (1.2). To find 
a complete solution to the inverse problem we must not only determine which 
equations admit a multiplier, but we must also determine how unique the multiplier 
and associated Lagrangian is. Fortunately we will find in the fourth-order inverse 
problem that if an equation admits a variational multiplier so that (1.2) is satisfied, 
then the multiplier and the associated Lagrangian are essentially unique. The 
uniqueness of a variational structure for a variational fourth-order equation will 
subsequently be used to solve an equivalence problem for second-order Lagrangians 
as well as provide the relationship between the symmetry group of a variational 
scalar fourth-order equation and the divergence symmetries of its Lagrangian. 

The approach we take in solving the fourth-order inverse problem follows a re- 
fined version of Douglas's solution to the multiplier problem given by Anderson and 
Thompson [4]. Anderson and Thompson derive the system of determining equations 
for the multiplier in a natural way using the variational bicomplex. They showed 
that the existence of a multiplier was in direct correspondence with the existence 
of special cohomology classes arising in the variational bicomplex associated with 
a differential equation. The advantage in this formulation of the inverse problem 
is that the invariant nature of the problem is clearly emphasized. Anderson and 
Thompson proceeded to study the existence problem for the cohomology classes 
using exterior differential systems which was considerably easier than the intricate 
analysis of Douglas, and subsequently they were able to determine some of the 
exceptional examples which had eluded Douglas. 
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Our solution to the multiplier problem will use in an essential way the formu- 
lation of the inverse problem of Anderson and Thompson. In the next section we 
will recall the theory of the variational bicomplex as it applies to problem (1.2). 
In particular by using the cohomology formulation of the multiplier problem we 
determine the exterior differential system which must be integrated in order that 
a cohomology class and hence a multiplier as in (1.2) exists. The novelty of our 
solution to the problem relies in writing the exterior differential system in terms 
of an invariant coframe obtained through Cartan's equivalence method. In section 
3 we provide the details of the equivalence method calculations for a fourth-order 
ordinary differential equation under contact transformations and obtain the asso- 
ciated {e)-structure and hence the invariant coframe. In section 4 we use this 
coframe to analyze the exterior differential system for the cohomology class and 
this provides the solution to the inverse problem which can be described solely in 
terms of vanishing conditions on two of the relative invariants (torsion) found in 
section 3. Lastly, in section 5 we consider two applications of the solution to the 
inverse problem. 

2. THE VARIATIONAL BICOMPLEX 

The variational bicomplex was initially introduced in order to formulate and solve 
the inverse problem in the calculus of variations, and so we recall the basic theory 
of the bicomplex which allows us to solve the multiplier problem for fourth-order 
equations. 

The infinite jet space (see [I]) J x ( R , R ) ,  while not a manifold in the stan- 
dard sense, does admit local coordinates (x, u,, u,,, ...,u,., ...) and a contact ideal 
C(Jw(R, R)) generated by the one-forms 

(2.1) 8' = du-u,dx,  O1 = dux -u,,dx, ... , Or = du, -u,+'dx, ... . 
The one-forms in (2.1) along with the differential form dx form a basis for the 
exterior algebra of differential forms on J"(R, R). From this basis of forms we 
define the vector-field & on Jw(R, R) by the conditions 

so that the component form of & is 

d d " d 
-dx - + z u a + 1 , .= dx 

a=O 

& is called the total x-derivative. 
We now define two subspaces RO~P(JX(R,R))  and R' P--'(JX(R, R)) ,  for p 2 1, 

of the set of p-forms on Jw(R,  R). The first space is defined inductively by 

R0 '(Jx(R, R))  = {u,O" ua,E C"(JX(R, R))  , 0 5 i < m), 

R O P ( J ~ ( R , R ) )  = { a , ~ 8 ' ,a, E R O P - ~ ( J = ( R , R ) )  , o 5 i < w , p  2 1) 

where the summation convention is used here and will be assumed from now on. 
The second subspace, R1."-' (J"(R, R)) ,  is then defined as 

R ' ~ ~ - ~ ( J ~ ( I W ,{ a ~  R)), p > 1) .R)) = dx, a E RO~~-~(J" (R ,  

These subspaces provide a direct sum decomposition of the p-forms on Jw(R,  R) 

(2.3) RP ( JW(R,  R))  = ROlp(Jw(R, R)) $ R1.P-l (Jw(R, R)) 
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and thus every differential form w E R* ( J w  ( R ,  R ) )  may be written 

= W o , ~+ W l . ~ - l  

where 

We also define ROlO(Jw(R,R ) ) to be the smooth functions C w  ( J X  ( R ,  R ) ) ,  and for 
convenience we take R2J'(Jw(R,  R ) )  = 0. 

The direct sum decomposition in (2.3) induces a splitting of the exterior deriv- 
ative into a direct sum of two derivative operators 

The operator dH acts on smooth functions h E RO.O(JX(R,R ) ) by 

where 

where & is the total derivative operator in (2.2),while the operator dH on forms 
is 

d H w = d x ~ C d w ,  W E R ~ " ~ ( J ~ ( R , R ) ) ,r = 0 , 1 ;  3 2 0 ,  
d i  


where C d  is the Lie-derivative along 2.The operation of dv = d - dH on a 
d i  


smooth function h is given in coordinates by 

and the action of d v  extends easily to forms. The two derivative operations are 
then operators 

dH : RrlS( J ~ ( R ,  + R ) ) ,R ) )  R ~ + ~ . ~ ( J ~ ( R ,  


d v  : R T ' " ( J X ( R ,R ) )  + N ' ~ ~ + ' ( J ~ ( I W ,  r =
R)) , O,1; s  2 0,  

where dH is called the horizontal exterior derivative while dv is the vertical exterior 
derivative. These two derivatives satisfy the properties 

(2.5) dg  = 0 , d; = 0 , dHdv + d v d ~= 0 . 

Finally the variational bicomplex is defined to be the double complex 

{ R 7 " " ( J X ( R ,  ~ V ) ~ - = O , ~ . Z : ~ ~ O .R ) ) ,  d ~ ,  

The reader should consult [ I ]for a thorough treatment of the variational bicomplex. 
A Lagrangian is represented in the bicomplex by a one-form X E R 1 > O ( J w ( R ,R ) )  

whose local coordinate expression is 

(2.6) X = L ( x ,  u,, ...,ul)dx , 
and where the order of the Lagrangian X is defined to be the highest derivative 
dependence of L in (2.6);i.e. the Lagrangian in (2.6)has order I .  The first varia- 
tional formula in the calculus of variations can be conveniently expressed using the 
variational bicomplex formalism as 
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Lemma 2.1. Let X E R1lO(JW(R,R)) be an lth-order Lagrangian as in (2.6). Then 

(2.7) dvX = E(X)+ d ~ v  

where E(X)E S1'l'(JX (R, R))  is the Euler-Lagrange form 

E(X)= -+ dx ---I" + (--~ x ) 2 ~ x + . . . + ( - & ) 1 ~ ] Q ~ A d x["i;' )-- dux -

du1 

and 7 E 0 O . l  (JX(R,R))  is 

Setting the coefficient of 8 ' ~  dx in the differential form E(X) to zero generates 
the Euler-Lagrange equations for X which we denote by E(L) .  The Poincark-Cartan 
form associated with a Lagrangian A ,  which is important in the geometry of varia- 
tional problems (see [14]), is the one-form defined by 

where 7 is given in (2.8). 
There is a simple procedure, which we will now describe, that allows us to asso- 

ciate a variational bicomplex with a fourth-order ordinary differential equation. A 
fourth-order ordinary differential equation 

(2.10) Uzzzz - f(x,U,  u, , Ux,, u,,,) = 0 

defines a 5-dimensional sub-manifold R of J4(R,  R) by the inclusion 

where (x, u,  u,, u,,, u,,,) are local coordinates for R .  We call R the equation man- 
ifold for equation (2.10). The map i in (2.11) extends to a map i : R + J W ( R ,  R) 
by prolongation 

The variational bicomplex associated with the differential equation (2.10) whose 
equation manifold is R will be denoted by {Sir.S(R), dH, dv),.=o, liS>o; this bicom- 
plex is defined to be the pullback of the complex {SITIS(Jm(R, dv)r=0,1;s2~R)), d;, 
by the inclusion i : R + Jm(R,R). For example, the contact ideal on R is 

C(R) = {QO = du - u,dx, Q1 = du, - u,,dx , 82 = du, - u,,,dx, 
(2.12) 

Q3 = du, - f(x, u, u,, u,,, u,,,)dx) 

while the total derivative of a function h E C X  (R) ,  which we will write as $,has 
the coordinate expression 

If we consider those fourth-order ordinary differential equations which admit a 
multiplier, so that (1.2) is satisfied, then the pullback of the variational formula 
(2.7) to the equation manifold R yields 
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( i * E ( X )  = 0 by t,he assun~ption that the equation admit,s a nl~lt~iplier ). The 
essential idea underlying the solutioil to  the inverse problem now lies in defining a 
differential two-form w E R 0 ) 2 ( R )by 

(2.14) 	 w = dv( i*q )  

which from equations (2.13) and (2.4) is found to be closed. The closed differential 
two-form w, which may also be written in terms of the Poincark-Cartan form as 
w = i"dO using (2 .9) ,when written out explicitly is 

d 2  L 	 d d 2 L  ,2,\ 00w = - % l h ~ ~ ) +----

(2.15) 	 du,, d x  d u Z z 2  
d d 2 L  

$2---
du,, d u  d u ,  

The differential forrn w in (2.14) provides the proof of necessity in the first part 
of the following key theorem ( [4 ]Theorem 2.6 page 20, as it applies to our case), 

Theorem 2.2. The fourth-order differential equation (2.10) admits a multiplier 
and a non-degenerate Lagrangian of order 2 ,  if and only if there exists a differential 
form w E R 0 > ' ( R )having the algebraic structure 

(2.16) w = a300r,%3 + a20°r, %2 + aI%'r, 8' + ao%ln8" 

with 0,3 non-van,ishing, and where w satisfies the closwre conditio~z 

Moreover there is a one-to-one correspondence between these closed two-forms and 
non-degenerate second-order Lagrangians A, modulo the addition to X of a total 
derivative d ~ hwhere h E C m ( J " ( R ,  R)),and depends on at most first derivatives. 

A non-degenerat,e Lagrangian X satisfies by definit#ion 

d 2 L ( x ,u,u,,u,,) 
# 0,

du,, 
and compariilg this coildition with equation (2.15) gives rise to the non-vanishing 
condition on as in (2.16).  We will often identify two non-degenerate Lagrangians 
X 1  and X 2  if 

(2.17) 	 = A2 + d~ h ( x ?u,u,) 

where h E C X ( J 1 ( R ,  R ) ) .  By using this identification the second part of Theorem 
2.2 st,ates that the correspondelice bet,weeil X and w described ill the equa,t<ions 
(2.13) and (2.14) is one-to-one. 

Theorem 2.2 reduces the multiplier problem to a simple geometric condition 
on the equation manifold R .  In fact this interpretation of the closed forrrl w in 
Theorem 2.2 is a special case of a more general phenomenon. That is the entire 
space of closed two-forms 

can be int,erpreted in terms of variational operat,ors [2].An equat~ioii is said to admit 
a variational operator if there exists a total differential operator whose action on 
the original equation results in an equat(ior1 which is variational. The existence of 
a closed form (2.18) implies by a generalization of Theorem 2.2 that the equation 
determining R admits a variational operator. A variational multiplier is of course 
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a special case of a variational operator where the total differential operator has no 
derivative terms. 

In order to simplify the description of the solution to the inverse problem we 
define a submodule of V(R) c R012(R), by 

where ( ~ i ) ~ = ~ . . s  E CX(JW(R,R) ) .  We also define a subspace V(R) c V(R) by 

Theorem 2.2 now states that solving the inverse problem corresponds to determining 
for which equations with corresponding manifolds R do there exist w E V(R) 
with as # 0. We will find that V(R) is a contact invariant subspace of R0.2(R) 
which demonstrates, by Theorem 2.2, that whether or not an an equation admits 
a variational multiplier is a contact invariant problem. This motivates us to study 
the contact geometry of R by using Cartan's equivalence method [7]. 

3. THE{el-STRUCTUREFOR FOURTH-ORDER ORDINARY 

DIFFERENTIAL EQUATIONS 

In this section we use the equivalence method of E. Cartan to associate an 
invariant coframe with any fourth-order scalar ordinary differential equation. In 
principle the relative invariants arising in the structure equations for this coframe 
can be used to distinguish between non-equivalent equations. We identify two of the 
relative invariants which will be used in section 4 to characterize the fourth-order 
equations which admit a multiplier. 

A convenient description of the equivalence method is given in [I l l ,  while our 
calculations in this section are found to be similar to those for the third-order 
scalar ordinary differential equation case presented in [8].To begin let (x, u, u,) 

and (3,ti, tiz) be local coordinates on J1(R, R) and ?(R, R) respectively. Two 
fourth-order scalar ordinary differential equations 

are defined to be contact equivalent (in the classical sense) if there exist a contact 
transformation 

I ~l (R, R) +7'(R,R), 

which is given in local coordinates by 

and a (nowhere vanishing) smooth function h(x, u, u,, u,,, u,,,) such that 

(Q4)*[iialzE- f (3,ti, tia, tir3, tiaza)] 
(3.3) -

- h(x, u, uz, uxz, uxzx) [ u 1 5 X 5  - f (x, u, ur ,uxz ,usnr)] 

where Q4 : J4 (R ,R)+ J ~ ( R ,R) is the prolongation of Q1. In other words the two 
differential equations (3.1) are contact equivalent if there exists a contact preserving 
change of variables of the form (3.2) which transforms one equation into a multiple 
of the other. 

We now express the relation of contact equivalence between the two equations 
in (3.1) as an equivalence relationship between coframes so that the equivalence 



method may be applied. This is done by considering each differential equation in 
(3.1) as defining a smooth submanifold 

as in equation (2.11), and then choosing the particular coframes on R and 2 by 
taking the canonical basis for the contact module C(R) and that for C(R) as given 
in equation (2.1) together with the differential forms a = dx and a = dz. That is, 
we have the coframes 

on R and R respectively. By canonically identifying R with J3(R, R),  the prolonga- 

tion of a contact transformation Q3 : J3(R,  R) + J ~ ( R ,R) defines a diffeomorphism 
Q3 : R +R. This identification allows us to express the equivalence condition (3.3) 
as 

Lemma 3.1. Two fourth-order ordinary differential equations (3.1) are contact 
equivalent i f  and only if there exists a contact transformation Q': J1(R,R)  + 
-1
J (R, R) such that 

where S : R + H is a smooth function on R taking values i n  the Lie subgroup 
H c GL(5,R) defined by 

I 

a u  v 0 0 
O b  0 0 0 
0 cl a-'b 0 0 
0 cz cg ap2b  0 

, O  c4 cz cg a-3b 

We may now apply the equivalence method by using Lemma 3.1 and lifting the 
forms in (3.4) to R x H and R x H by defining the one-forms, 

(with the analogous definition on R x H) where S is the local parameterization of 
H in equation (3.6). By taking the exterior derivative of equation (3.7) we have 
the first set of structure equations 

where (dS)S-I is a Maurer-Cartan form for H. The Maurer-Cartan form we use is 
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where a,p , 3  p,7, are right invariant one-forms on H (with the analogous defi- 
nitions on R x H )  and where S is the local parameterization of H in equation 
(3 .6) .  

wi th  the lifted forms in (3.7)  and the Maurer-Cartan form (3.9)  the equivalence 
method can be applied to find 

Theorem 3.2. Solutions Q3 : R +R to  the equivalence problem for fourth-order 
0rdinar.y differential equations are in one-to-one correspondence with the solutions 
of an  equivalence problem for an  8 dimensional {e)-structure o n  R x G where G is  a 
three dimensional Lie subgroup of H .  The  essential part of the structure equations 
of the coframe are given by 

d o  = a~ CT +TIQ O A  Q 1  +T2Q O A  Q 2  +T3Q O A  Q3 

+T~Q ' A  0% T~Q'A Q 3 ,  

dQO= P A  8' + P A  Q',  
do1 = ( ~ - Q ) A Q ~ + ~ A Q ~ + C T A Q ~ ,  

where T,, a = 1 , . . . , 8 ,  and I,, s = 1 ,2 ,  are smooth functions o n  R x G. 

The reader who is interested in the characterization of the variational fourth or- 
der equations (and applications) may skip the derivation of the structure equations 
and proceed to section 4. In the remainder of this section we derive the structure 
equations along with some of the parametric forms of some of the invariants. 

Proof. The initial structure equations in (3.8)  on R x H are determined from the 
equations 

d(dui  - u,+ldx) = ~ X A  i =dui+l , 0 , 1 , 2 ,  

(3.11) d(du3 - f d x )  = d x ~ d f  

to be (after absorption of torsion [ l l ] )  

dCT = ~ A C T + ~ A Q ~ + V A Q ~ ,  

dQo = ~ A B ~ + C T A B ' ,  

(3.12) dQ1 = ( ~ - ~ ) A Q ' + ~ ~ A Q ~ + C T A ~ ~ ,  

dQ2 = ( p- 2a)AQ 2  $ Q O  + 7 3 ~  + CTA Q3 + K1C T A  Q 2 ,  

dQ3 = ( ~ - ~ ~ ) A Q ~ + ~ ~ A B ~ + ~ ~ A B ' + ~ ~ A Q ~ + K ~ ~ A Q ~ .  

By taking the exterior derivative of the second and third equation in (3.12) above 
we also have the equations 

d p  - ~ A Q '+ y l A a  - 0 

m o d ( Q O ) ,- 0 

(3.13) d a + 2 y l ~ a - y 3 ~ a + v ~ ~ 2  m o d ( Q O ,Q ' )  . 

We can now determine the group action on the torsion elements K1 and K2 in 
(3.12) by computing d 2 Q 2 ~  Q O AQ O A  Q ' A  Q3 and d 2 Q 3 ~  Q'A  Q2 and using (3.13) to get 
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The action of the structure group on K1 and K2 allows us to translate K1 and K2 
to zero by using the group elements corresponding to y6 and 73. The reduced group 
H1 (which is easily obtained by exponentiation) will have the Maurer-Cartan form 
of (3.9) subject to the relations 

We will make the substitution yl = y from now on. 
The new struct,ure equations with group H1will have the same first three struc- 

ture equations of (3.12) (with yl = y )  while t,he last two are 

In the first of these equations we may still absorb La by letting 

As well we have equations (3.13) along with d 2 Q 1 ~Q1 = 0 giving (dropping the") 

It now follows from setting d 2 Q 2 ~QOr,Q 1  = 0 and (3.18) that 

The action of the reduced group on the independent torsion elements L 1 ,  Lg and L4 
is obtained by taking d2B2r,B O A  Q 2  and d 2 Q 3 ~B O A  Q1A O3 while using (3.18) to find 

7 
d L 1 + 2 L 1 ~ + y 5 - - y 2  0

3 
(3.20) 	 dL3 + L3 (P  - 2a) - u -- 0 

0 

mod(base). 

d L s + 2 L 4 a - y 5 - y 2  

These equations imply that the torsion elements L1,  L4 and Ls can be translated 
to zero using y2:75 and u. The new structure group H2 c H1 resulting from 
this reduction will have the I\/Iaurer-Cartan form of H L subject to the conditions 
7 2  = O,ys = 0, and u = 0. 

The new structure equations with group H2 are (after absorption of torsion) 

where dQoand dB1 are the same as in (3.12) (with yl = A/). The n/I4 term arises in 
these equations because the absorption in (3.17) is no longer possible. The action 
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of the structure group on the terms M3 and M5 is found by taking d2Q2r,Q'A B2 
resulting in 

Thus we may translate M3 and M5 to zero further reducing the group to the 
subgroup G c H2 which is three dimensional. The i\/Iaurer-Cartan form of G is 
obtained from that of H 2  with the extra conditions p = O,y4 = 0. The structure 
equations then read 

do = a/\a + Nl B1/\ Q2 + N2 e3 + N3 B'A e0 + Ng Q ~ Aeo + N5 e 3 ~go, 

where again dB0 and dB1 are the same as in (3.12) (with yl = y). At this point we 
have an {el-structure on U x G. The torsion coefficients N6,N7 and Nlo in the 
{el-structure vanish as seen by the following calculations: 

d2e2AelAe2 = or,B O A  e lAe2,, e3, 
d2Q3r,BOA e1 = N7 OA 6 " ~Q'A e 2 A  Q ~ ,  

d2o2/\6 " ~B2 = N6 a/\B O A  B1/\ 6 " ~e3 . 
By relabeling the non-zero torsion the structure equations in (3.10) are obtained. 

This theorem is well known [5]  but the {el-structures in Theorem 3.2 and [5] 
have a different form. 

In section 4 we will the following information about the structure equations for 
d a  and dp. 

Corollary 3.3. The  forms d a  and dp satisfy 

dp + TA a +T~e 2 A  el +T~Q ~ A  = 0 mod(BO), 

(3.22) 
2

d a  + - y ~a -T5e3/\B2 = 0 mod(BO,el) .
3 

This calculation easily follows from the equations in Theorem 3.2. The two 
torsion coefficients T5 and Il also play an important role in the next section and 
by a simple consequence of the structure equations in Theorem 3.2 we find 

Corollary 3.4. The  torsion coeficient T5 and Il are relative invariants. They  
satisfy 

dT5 + T5(2P- 5a) E 0 mod(base), 

dIl + 311a = 0 mod(base). 

This corollary implies that the vanishing of T5 and I1is an invariant property 
of a fourth-order differential equation. In section 4 we will show that the invariant 
subclass of fourth-order equations defined by the vanishing of T5and Il are precisely 
those equations which admit a variational multiplier. We compute the parametric 
values of these relative invariants to be 
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Lemma 3.5. The  parametric value of relative invariants T5 and Il ( a t  the identity 
of G )  are 

1 a f  a f  I' (z )~+------

2 du,, du,,, 8 du,,, 

Proof. In order to determine the parametric values of the torsion elements we use 
some of the intermediate calculations from Theorem 3.2 and restrict to the identity 
of t,he group in quest,ion. By using equations (3.11) we have 

The modification in the coframe obtained by the translating Kl and K2 to zero in 
(3.14) is by setting 

The resulting coframe on R is given by 

together with the twisted forms 

1 a f8; = du,, -u, , ,~x -	-- 0; 1

6 du,,, 
1 a f  

6; = du,,, - f d z  -	------(du,, - u,,,dx)
2 au,,, 

To find the torsion in equations (3.16) we take the exterior derivative of the forms 
in (3.24) to get 

i d  a f  la.'rlu..,A 	 A O;A Q A AQ;,dxA  9; + dz  

du,, 2 d x  du,,, 2 du,,, 1 
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which after substituting from (3.24) easily gives 

L 1  = 
6 d x  du,,, ' 

L g  = 

In order to determine the twist in the coframe on R corresponding to translating 
L 1  and L4 to zero in (3.14) we solve the equations 

which along with the translation of L5  = 3L3  to zero in (3.20) gives the coframe 

We are now in a position to compute T5from 

which gives the expression for T5as stated in the lemma. Next we compute M 3  in 
equation (3.21) by 

d e ? ~e ; ~02. e; 
1 a f  3 d + L ~ ) ~ X A Q :  Q ? A Q ;-du,,,Adx + --du,,Adx - - - ( L ~  1 A Q ~ 

6 du,, 10 d x  

which upon substitution from (3.24) and (3.25) gives 

1 d2 a f  3 d a f  1 a f  d a f
M 3  = 	 -------- ----

5 d x 2  du,,, 10 d x  du,, 4 du,,, d x  du,,, 

In a similar manner we compute M6 to be 

3 
2 d f  d f+-PA- + "("S)
5 du,, du,,, 180 du,,, 

The relative invariant I 1  is then computed by noting from equation (3.21) that 

SO 

I 1 = & + n / r ,  

which is the expression for I l  in the statement of the lemma. 
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4. THEVARIATIONAL MULTIPLIER PROBLEM 

At the end of section 2 we described necessary and sufficient conditions for a 
fourth-order scalar ordinary differential equation 

with equation manifold R, to admit a multiplier as being equivalent to the existence 
of a closed differential two-form ;lE V(R) .  Specifically ;lhad to be of the form 

where {ai)z=o,...,3 E C m ( R )  and {B"i)i,o,,,,,3 are the contact forms on the manifold 
R defined in (2.12). If we subject the differential form L;i in (4.2) to a contact 
transformation of R ,  then by using Lemma 3.1 to transform the differential forms 

- .  
(Qz)i=O,...,,,it is clear that the algebraic form of LJ in (4.2) is invariant. Thus the 
module V ( R )  in (2.19) and the subspace V ( R )  in (2.20) are invariant with respect to 
contact transformations. The fact that the space V ( R )  is invariant implies through 
Theorem 2.2 that determining whether an equation admits a multiplier is a contact 
invariant problem. The invariant nature of determining which scalar fourth-order 
ordinary differential equations admit a multiplier will allow us us to demonstrate 
that the vanishing of the relative invariants in Corollary 3.4 (or Lemma 3.5) asso-
ciated with a fourth-order equation (4.1) characterizes variational equations. 

In analogy with definitions (2.19) and (2.20) at that end of section 2, we define 
the spaces 

V(R x G) = {w E R ~ ( Rx G) I = a3eoAe3+a2eoAQ~ 

where {ai)i=o,...,3 E C m ( R  x G) ,  and {Qi)i=o~,,,,3 are the components of the invari- 
ant coframe determined in Theorem 3.2. We may express Theorem 2.2 in terms of 
conditions on the geometry of the {el-structure R x G ,  by using definitions (4.3), 
as 

Lemma 4.1. A fourth-order equation admits a variational multiplier if and only 
if there exists a (closed) two-form w E V ( R  x G )  with a3 non-vanishing. 

The proof of this lemma is a consequence of the geometric relationship between 
the spaces V ( R )  and V(R  x G) .  In fact if we let w E V ( R  x G )  and X be any 
infinitesimal generator of the left action of G on R x G ,  we have X l w  = 0 and so 

Thus every closed differential form w E V(R x G )  is invariant with respect to the 
left action of G on R x G ,  and consequently there exists a unique closed differential 
G E V ( R )  such that 

where T is the projection T : R x G -+ R .  The correspondence in (4.4) is one-to-one 
and the spaces V(R)  and V ( R  x G )  are canonically isomorphic. This being so we 
let 

and we may re-express Lemma 4.1 as 
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Corollary 4.2. Equation (4.1) admits a variational multiplier if and only if u# 0 .  

The partial differential equations dw = 0 for the unknowns {ai)z=o,...,3which 
arise in Lemma 4.1 can be written in terms of the invariant coframe in Theorem 
3.2. The existence of a solutions to dw = 0 will then be expressed in terms of the 
relative invariants. Fortunately the partial differential equations dw = 0 for the 
unknowns {ai)i=o.....3 dramatically simplify due to several algebraic relationships 
which must hold amongst the terms {ai)i=o,....3 in order for the dimension u in 
(4.5) to be non-zero. We find 

Lemma 4.3. If there exists a non-zero differential form w E V ( Rx G )  then w 
must  have the algebraic structure 

(4.6) = U ( B O A  e3 - e l Ae2 )  . 
Proof. We work with the structure equations (3.10) modulo (a,P,7) .  By taking 
the exterior derivative of an arbitrary w E V ( Rx G )  (using the structure equations 
(3.10))and concentrating on terms which contain a ,  we find 

which demonstrates that w can be closed only if it has the algebraic form 

w = a 3 ( e 0 ~e3 - Q ' A  e2 )+ a l Q o ~B1 + a 2 Q 0 ~e2 . 
In a similar manner we compute 

where 

The equations in (4.7) clearly imply that w could be closed only if a2 = 0 .  Lastly 
we find 

and so a1 must be zero in order for w to be closed, which proves the lemma. 

The lemma implies that the partial differential equations dw = 0 contain only 
the single unknown function a.  The differential equations for a are obtained by 
setting the exterior derivative of w in (4.6) to zero giving 

Dividing this equation by a leads immediately to the following lemma. 

Lemma 4.4. If there exists a non-zero solution a to (4.8) then there exists a one-
form X E R 1 ( R  x G )  such that 

The contact invariant condition (4.9) is not necessarily satisfied by an arbitrary 
{e)-structure on R x G from section 3. In fact the next lemma shows that being 
able to solve equation (4.9) provides the first non-trivial condition on the geometry 
of R x G which must be satisfied in order to be able to find a closed two-form w as 
in Lemma 4.1. The result is 
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Lemma 4.5. There exists a one-form X E R 1(U x G )  such that equation (4.9) holds 
i f  and only i f  the relative invariant I1 i n  the structure equations (3.10) vanishes. If 
I1 = 0 then 

Proof. Using the structure equations in (3.10) we find 

d(eoAe3 - e l Ae2 )= ( 2 p  - 3a)A ( B O A  e3 - el,, e2)
(4.11) + 11aA Q'A 8' - T ~ Q O A  e l A  e2 
and we may immediately conclude that the vanishings of I1 and T8 are necessary 
conditions for (4.9) to hold. If we now assume that I1 = 0 the computation 

implies that T8 vanishes as a consequence of the assumption I l  = 0.  This proves 
that the vanishing of I l  is both necessary and sufficient for (4.9) to be satisfied 
which proves the first part of the lemma. Substituting the hypothesis I I  = 0 ,  which 
implies T8 = 0 ,  into the computation in (4.11) we obtain equation (4.10) which 
finishes the proof of the lemma. 

This lemma in conjunction with Lemma 4.1 implies that any fourth-order ordi-
nary differential equation satisfying I l  # 0 will not admit a multiplier. 

From now on we consider only those geometries R x G in Theorem 3.2 which 
satisfy the invariant condition I1 = 0 so that equation (4.10) holds. The differential 
equations for a in (4.8) are then 

(4.12) (da + a(2P - 3 a ) )A (Q'A e3 - Q ' A  e2 )= 0 

It is now easy to check that given any p E R 1( Rx G )  with p~ w = 0 then p = 0 .  
We then conclude that the differential equations (4.12) for a are 

The degree of generality of the possible space of solutions a to this equation is 

Lemma 4.6. If there exists a non-zero solution a to the partial differential equa-
tions (4.13),  then the solution a is unique up to multiplication by a non-zero real 
scalar. 

A simple but important consequence of this lemma is 

Corollary 4.7. u = 0 or 1. Equation (4.1) is variational if and only if u = 1. 

At this point we may conclude that if a fourth-order ordinary differential equation 
admits a variational multiplier then the Lagrangian (and multiplier) are unique up 
to scaling. 

We continue studying the integrability conditions for the first-order partial dif-
ferential equations (4.13) for a by taking the exterior derivative of (4.13).  An 
application of the Poincar6 lemma proves 

Lemma 4.8. There exists a (non-zero) solution a to the partial differential equa-
tion (4.13) if and only if 

(4.14) 2dp - 3 d a =  0 . 
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Thus equation (4.14) together with the hypothesis that I l  = 0 finally provides 
necessary and sufficient conditions in terms of the geometry of {el-structures of 
Theorem 3.2 which would guarantee the existence of the closed form w as in Lemma 
4.1. 

Continuing with the assumption I 1  = 0 and using the equations (3.22) in Corol-
lary 3.3,  the integrability conditions in (4.14) could in general have the form 

(4.15) 2 d p - 3 d a =  B ~ ~ Q ~ A Q ~+ C i e i ~ w= O  

where the functions Bij,C, E C m ( Rx G)  can be written in terms of the struc-
ture functions of the {el-structure and their covariant derivatives. However the 
integrability conditions (4.15) simplify because the functions Bij and Ci are not all 
independent. In fact under the assumption I l  = 0 if we take the exterior derivative 
of (4.9)  t>oget 

( 2 d p  - 3 d a ) ~( B O A  e3 - Q ' A  e 2 )= 0 

and then substitute from (4.15) it follows that we can write 

(4.16) 
2dp  - 3da  = blQor,e1 + b 2 e o ~e2 + bg(e lr ,e2 + e O Ae3)+ bb,Q1r,e3 + b b , e 2 ~e3 

where (br)r=1,...,5E C m ( R  x G ) .  Thus there are at most five independent integra-
bility conditions for the partial differential equations (4 .13) .  This simplification of 
the integrability conditions in (4.14) allows us to prove the theorem 

Theorem 4.9. The  condition u = 1 i s  satisfied if and only if the two relative 
invariants T5 and I l  vanish. 

Proof. We have already established from the arguments above that the vanishing 
of I l  and (br)r=1....,5are necessary and sufficient conditions for the existence of a 
closed form (4 .2) .  The coefficient b5 in (4.16) can be expressed in terms of the 
torsion in the structure equations (3.22) using Corollary 3.3 to give 

(4.17) b5 = 3T5 . 
This implies that T5= 0 and I1  = 0 are necessary conditions for the existence of a 
closed form w. In order to establish that the vanishing of T5and I l  guarantees that 
the form w is closed , we need to show these two conditions imply (b,)r=1~,,. ,5= 0.  
First the assumption T5= 0 and equation (4.17) trivially imply that b5 = 0 so that 
equation (4.16) becomes 

2dp  - 3 d a  = b 1 o 0 ~8' + b 2 o 0 ~8' + ba(o1/\e2 + Q O A  e3)+ b4e1r,e3 = 0 .  

Taking the exterior derivative of this equation and concentrating on terms which 
contain a we find 

( 2 d 2 p- 3d2a)r ,B O A  elr,ar,pr, y = b4ar,B O A  Q ' A  o2r,Q ~ Aar,P A  y , 
which implies b4 = 0 .  In a similar manner we also have 

( 2 d 2 p- 3 d 2 a ) ~eor,e2aAP A  = 2 b 3 u ~B O A  Q ~ Ae 2 ~Q ~ Aa. p~ y 
which implies b3 = 0 .  Again by similar arguments we have bl = 0 and b2 = 0 which 
proves that the assumptions T5= 0 and I1  = 0 imply (b,),=1,,,,,5 = 0 .  

By using Lemma 3.5 the characterization of fourth-order scalar ordinary dif-
ferential equations which admit a multiplier can then be expressed parametrically 
as: 
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Corollary 4.10. A fourth-order ordinary differential equation admits a variational 
multiplier and non-degenerate second-order Lagrangian such that (1.2) is satisfied 
if and only if 

We also have as a corollary of Lemma 4.6 and Theorem 2.2 

Corollary 4.11. If a fourth-order ordinary differential equation admits a varia- 
tional multiplier and non-degenerate second-order Lagrangian such that (1.2) is sat- 
isfied then the multiplier, Lagrangian, and associated closed two-form w are unique 
up to multiplication by a non-zero real scalar. 

The uniqueness of the Lagrangian in Corollary 4.11 is of course subject to  the 
identification in (2.17). Corollary 4.10 and 4.4 provide a complete solution to  the 
multiplier problem for fourth-order scalar ordinary differential equations. 

As a final remark t o  conclude this section we would like t o  point out that the 
proof of Theorem 4.9 could be shortened by simultaneously trying to  solve the 
equivalence method and determining the necessary and sufficient conditions for 
the existence of the form w .  This would require one less step in the equivalence 
method in section 3. For our particular problem it was easy enough to obtain the 
final {el-structure in Theorem 3.2, but for more complicated problems the shorter 
solution would be preferred. The technique of running the equivalence method 
while imposing the conditions which control the existence of LJ is used in [6] to  
characterize the second-order parabolic partial differential equations in the plane 
which admit multiple conservation laws. 

In this section we provide two simple applications of the characterization of vari- 
ational fourth-order ordinary differential equations given in section 4.  Our first 
application is based on the fact that the solution to  the problem of determining 
whether two {el-structures are equivalent is well known [ l l ] .  With this in mind, 
we define an equivalence relation on the set of non-degenerate second-order La- 
grangians such that we can associate a unique {el-structure with each Lagrangian 
equivalence class thus solving the equivalence problem. The {el-structure we as- 
sociate with a given Lagrangian X is of course the {el-structure in Theorem 3.2 
defined by the Euler-Lagrange equations of A. 

Let 

be two non-degenerate second-order Lagrangians with corresponding Euler-
Lagrange equations E ( L )  = 0 and E(L) = 0.  We define the two Lagrangians 
in (5.1) to  be equivalent if there exists a classical contact transformation Q1 : 
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J 1 ( R ,R )  + ( R ,R )  with prolongation @ : J" ( R ,R )  i T m ( R ,R ) ,  such that 

where c E R*,p E C X ( J 1 ( R , R ) ) ,and llr# is the projected pullback 131. The 
projected pullback in equation (5.2) can be written as 

and this formula for l l r # ( X )  is the standard definition for the transformation law of 
a Lagrangian. 

The equivalence relation (5.2) on the space of Lagrangians along with the defi-
nition of equivalence for fourth-order ordinary differential equations given in (3.3) 
allows us to prove 

Theorem 5.1. There exists a one-to-one correspondence between the equivalence 
classes of non-degenerate second-order Lagrangians and the equivalence classes of 
the associated Euler-Lagrange equations. 

Proof. Two Lagrangians as in (5 .1)  satisfying (5.2) clearly have equivalent Euler-
Lagrange equations (in the sense of (3 .3 ) ) ,so that we need to only prove sufficiency. 
Suppose X = Ldx and = f ; d ~are two non-degenerate second-order Lagrangians 
with equivalent Euler-Lagrange equations. Let @ : J m ( R ,  R )  i ~ " ( I W ,R )  be the 
map that provides the equivalence between E ( L )  = 0 and E ( Z )= 0 and define the 
Lagrangian 

The condition that the two Euler-Lagrange equations for X and X are equivalent 
simply implies 

E ( X )  = $ E (A) 

for some 11 E C X ( J X( R ,R ) ) .  Using this in the first variational formula (2 .7) ,which 
,-. 

in terms of X is 

dvX = E ( X )  + dH'Tj 

where 'Tj E Roll (J" ( R ,R ) ) ,  leads to 

Pulling this equation back to the equation manifold i : R -+J m ( R ,  R )  defined by 
E ( L )  = 0 ,  as described in equations (2.13) and (2.14), we associate with X the 
two-form 

The form ŵ  is closed on the equation manifold R and hence by Corollary 4.11 we 
may conclude 

where c E R* and w is the_closedtwo-form on R associated with A. If we now define 
the Lagrangian A'= cP1X,the above procedure produces the two-form w'= c-lG 
associated with A' and clearly u'= u.The second part of Theorem 2.2 then implies 
that (5.2) holds. 
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Thus in summary Theorem 5.1 allows us to answer the question of whether 
two Lagrangians are equivalent by determining whether the corresponding Euler- 
Lagrange equations are equivalent. As a direct application of Theorem 5.1 combined 
with Theorem 4.9 we state 

Corollary 5.2. The equivalence classes of non-degenerate second-order Lagran- 
gians are in  one-to-one correspondence with the equivalence classes of {el-structures 
given i n  Th.eorem 3.2 which satisfy I I  = 0 and Tj = 0.  

This provides a complete solution to the equivalence problem for non-degenerate 
second-order Lagrangians with respect to the equivalence relationship (5.2), and 
completes our first application. 

In our second application we determine the relationship between the symmetry 
algebra of a fourth-order Euler-Lagrange equation and the divergence symmetry 
algebra of the corresponding Lagrangian. 

An infinitesimal symmetry of a fourth-order scalar ordinary differential equation 

with corresponding equation manifold R is a vector-field x on J1(R, R) which 
preserves the contact structare on J' (R, R) and whose evolutionary representative 

(see 1131) 

satisfies 

(5.6) X" ( 7 ~ , , , ~  - f (2 ,u,u,, u,. , u,,,)) = $ (uzxzz- f (2, u, u,,u,, , u,,,)) 

for some $ E C X  (Jm(R,  R)) ,  and where X" is the prolongation of X to JX(B,R). 
On the other hand, an infinitesimal divergence symmetry of a Lagrangian X is a 
vector-field 2 on J1(R, R) which preserves the contact structure on J1(R, R) and 
whose evolutionary representative as in (5.5) satisfies 

for some p E C"(JX(R, B)) .  It is a classical result [13] that every infinitesimal 
divergence symmetry of a Lagrangian X is an infinitesimal symmetry of the associ- 
ated Euler-Lagrange equations; however the converse of this theorem is often not 
true. That is, an infinitesimal symmetry of an Euler-Lagrange equation need not 
define a divergence symmetry of the associated Lagrangian. This discrepancy can 
be precisely described in the case of fourth-order scalar Euler-Lagrange equations. 

Let X = Ldx be a non-degenerate second-order Lagrangian with Euler-Lagrange 
equation E(L) = 0 which defines the equation manifold z : R --+ J" (R, R). Fur- 
thermore let g be the Lie algebra of infinitesimal symmetries of the fourth-order 
ordinary differential equation E(L)  = 0.Mre then find 

Theorem 5.3. Let X be an evolutionary representatave of an infinitesimal sym- 
metry x E g .  There exists a constant c E R such that 

for some p E C M ( J K ( R ,  R)). 

Note that if c = 0 in this theorem then the symmetry x is, by definition, a 
variational symmetry. 
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Proof. Let x E g and define the Lagrangian 
A 

X = Lx-X . 
The symmetry condition (5.6) implies 

for some K E Cm(Jm(R,R) ) .  Substituting these two equations into the Lie de-
rivative with respect to X X  of the first variation equation in (2.7) and using the 
standard properties of evolutionary vector-fields [I] we get 

where i j  = Lx-q. We may use this equation to define the two-form on R 

ŵ  = dv i*Fj 

and, as usual, ŵ  E V(R) (w is closed and has the appropriate algebraic form). We 
conclude from Corollary 4.11 that 

where c E R and w E V(R)is the closed form associated with X through Theorem 
2.2. There are now two possibilities to  consider depending on whether the constant 
c in (5.8) is zero or not. First assume that c # 0 in equation (5.8), and define 
A/ = c-lx. The differential two-form w/associated with X' satisfies 

where again LJ is the closed form associated with A. This equation along with the 
second part of Theorem 2.2 allows us to conclude that (5.7) holds. The case c = 0 
is similar. 

Let h be the Lie algebra of infinitesimal divergence symmetries of A. The Lie 
algebra h is a subalgebra of g and the precise relationship between these two sym-
metry algebras is 

T h e o r e m  5.4. The Lie algebra g splits as a direct sum of vector-spaces 

where s is a vector-space of dimension 0 or 1. Thus g = h + s where g = d i m g ,  
h = d i m  h, and s = d i m s  . The dimension of s is 1 if and only if there exists a 
symmetry x E g and a constant c E R* such that 

Proof. Let {X,),=l,,,.,, be a set of evolutionary vector-fields corresponding to a 
basis for the Lie algebra g .  According to Theorem 5.3 we have a collection of 
constants c, E R and functions pa E C m ( J X ( R ,R)) such that 

If c, = 0 for a = 1,.. . , g ,  then the theorem is true and g = h .  Thus we as-
sume, without loss of generality, cl # 0 and define a new basis of g so that the 
corresponding evolutionary representatives are 



By taking the Lie derivatives of X with respect to these vector-fields we find 

A 

where j2, E Cm(JCD(E,R)).Thus X,,a = 2, .  . . ,g, are the evolutionary form of 
divergence symmetries of A, and the theorem is proved. 

This theorem shows that in the case of a scalar fourth-order variational problem 
that the symmetry algebra of a variational equation and the corresponding diver-
gence symmetry algebra of the Lagrangian will be isomorphic if and only if there 
is no symmetry of the Euler-Lagrange equation which scales the Lagrangian. In 
light of Theorem 5.4, if we define a vector-field x to be a divergence symmetry of 
a Lagrangian X if there exist c E E such that 

for some p E Cm(J"(R.R)), then these clivergence symmetries are in one-to-
one correspondence with symmetries of the Euler-Lagrange equations for the La-
grangian. 

To conclude this article, we would like to point out that Theorem 5.3 and Theo-
rem 5.4 are true for scalar ordinary differential equations of arbitrary (even) order 
[2]. Finally, by using the fact that bounds on the maximal dimension of the point 
and contact symmetry groups of scalar ordinary differential equations are known 
[14],Theorem 5.3 and 5.4 provide bounds on the maximal dimension of the diver-
gence symmetry algebra of a Lagrangian which are in agreement with [12]. 
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