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Abstract. This is the first in a series of papers devoted to the development and applications of a
new general theory of moving frames. In this paper, we formulate a practical and easy to implement
explicit method to compute moving frames, invariant differential forms, differential invariants and
invariant differential operators, and solve general equivalence problems for both finite-dimensional
Lie group actions and infinite Lie pseudo-groups. A wide variety of applications, ranging from
differential equations to differential geometry to computer vision are presented. The theoretical
justifications for the moving coframe agorithm will appear in the next paper in this series.

Mathematics Subject Classifications (1991). 53A55, 58D19, 58H05, 68U10.

Key words: moving frame, differential invariant, Lie group, Lie pseudogroup, equivalence, sym-
metry, computer vision.

1. Introduction

First introduced by Gaston Darboux, and then brought to maturity by Elie Cartan,
[6, 8], the theory of moving frames (‘reperes mobiles') is acknowledged to be
a powerful tool for studying the geometric properties of submanifolds under the
action of a transformation group. While the basic ideas of moving frames for
classical group actions are now ubiquitous in differential geometry, the theory
and practice of the moving-frame method for more general transformation group
actions has remained relatively undeveloped and is as yet not well understood.
The famous critical assessment by Weyl in his review, [47], of Cartan’s seminal
book, [8], retains its perspicuity to this day:

“1 did not quite understand how he [Cartan] does this in general, though in
the examples he gives the procedure is clear. ... Nevertheless, | must admit |
found the book, like most of Cartan’s papers, hard reading”.

Implementations of the method of moving frames for certain groups having
direct geometrical significance — including the Euclidean, affine, and projec-
tive groups — can be found in both Cartan’s original treatise, [8], as well as
many standard texts in differential geometry; see, for example, the books of
Guggenheimer, [19], which gives the method center stage, Sternberg, [44], and
Willmore, [50]. The method continues to attract the attention of modern-day
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researchers and has been successfully extended to some additional examples,
including, for instance, holomorphic curves in projective spaces and Grassman-
nians. The papers of Griffiths, [18], Green, [17], Chern, [12], and the lecture
notes of Jensen, [23], are particularly noteworthy attempts at placing Cartan’'s
intuitive constructions on a firm theoretical and differential geometric founda-
tion. However, none of the proposed modern geometrical formulations of the
theory incorporates the full scope or range of applicability of the method as orig-
inally envisioned by Cartan. To this day, both the formulation and construction of
moving frames for general Lie group actions has remained obscure, particularly
for anyone interested in new applications. Although they strive for generality,
the range of examples treated remains rather limited, and Weyl's pointed cri-
tique of Cartan’s ariginal version still, in our opinion, appliesto all of these later
efforts.

There are two main goals of this series of papers devoted to a study of Car-
tan’s method of moving frames. The first, of utmost importance for applications
and the subject of the present work, is to develop a practical algorithm for con-
structing moving frames that is easy to implement, and can be systematically
applied to concrete problems arising in different applications. Our new algo-
rithm, which we call the method of ‘moving coframes’, not only reproduces
al of the classical moving frame constructions, often in a simpler and more
direct fashion, but can be readily applied to a wide variety of new situations,
including infinite-dimensional pseudo-groups, intransitive group actions, restrict-
ed reparametrization problems, joint group actions, to name a few. Although one
can see the germs of our ideas in the above-mentioned references, our approach is
different, and, we believe, significantly easier to implement in practical examples.
Standard presentations of the method rely on an unusual hybrid of vector fields
and differential forms. Our approach is inspired by the powerful Cartan equiva-
lence method [11, 16, 38], which has much of the flavor of moving frame-type
computations, but relies solely on the use of differential forms, and the operation
of exterior differentiation. The moving coframe method we develop does have
a complete analogy with the Cartan equivalence method; indeed, we shall see
that the method includes not only all moving frame type equivalence problems,
under both finite-dimensional Lie transformation groups and infinite Lie pseudo-
groups, but also includes the standard Cartan equivalence problems in a very
general framework.

Our second goal isto rigorously justify the moving coframe method by propos-
ing a new theoretical foundation for the method of moving frames. This will
form the subject of the second paper in the series [15], and will be based on
a second algorithm, known as regularization. The key new idea is to avoid the
technically complicated normalization procedure during the initial phases of the
computation, leading to a fully regularized moving frame. Once a moving frame
and coframe, along with the complete system of invariants, are constructed in
the regularized framework, one can easily restrict these invariants to particular
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classes of submanifolds, producing (in nonsingular cases) the standard moving
frame. This approach enables us to successfully bypass branching and singularity
complications, and enables oneto treat both generic and singular submanifolds on
the same general footing. Once the regularized solution to the problem has been
properly implemented, the a posteriori justification for the usual normalization
and reduction procedure can be readily provided. Details and further examples
appear in Part 11 [15].

Beyond the traditional application to the differential geometry of curves and
surfaces in certain homogeneous spaces, there are a host of applications of the
method that lend great importance to its proper implementation. Foremost are
the equivalence and symmetry theorems of Cartan, that characterize submani-
folds up to a group transformation by the functional relationships among their
fundamental differential invariants. The method provides an effective means of
computing complete systems of differential invariants and associated invariant
differential operators, which are used to generate al the higher-order invariants.
The fundamental differential invariants and their derived invariants, up to an
appropriate order, serve to parametrize the ‘ classifying manifold’ associated with
a given submanifold; the Cartan solution to the equivalence problem states that
two submanifolds are (locally) congruent under a group transformation if and
only if their classifying manifolds are identical. Moreover, the dimension of the
classifying manifold completely determines the dimension of the symmetry sub-
group of the submanifold in question. We note that the differential invariants also
form the fundamental building blocks of basic physical theories, enabling one
to construct suitably invariant differential equations and variational principles,
cf. [38].

Additional motivation for pursuing this program comes from new applications
of moving frames to computer vision promoted by Faugeras [13], with applica-
tions to invariant curve and surface evolutions, and the use of the classifying (or
‘signature’) manifolds in the invariant characterization of object boundaries that
forms the basis of afully group-invariant object recognition visual processing sys-
tem [5]. Although differential invariants have evident direct applications to object
recognition in images, the often high order of differentiation makes them difficult
to compute in an accurate and stable manner. One aternative approach [35], is
to use joint differential invariants, or, as they are known in the computer vision
literature, ‘semi-differential invariants', which are based on several points on the
submanifold of interest. Although a few explicit examples of joint differential
invariants are known, there is, as far as we know, no systematic classification
of them in the literature. We show how the method of moving coframes can be
readily used to compute complete systems of joint differential invariants, and
illustrate with some examples of direct interest in image processing. The approx-
imation of higher-order differential invariants by joint differential invariants and,
generally, ordinary joint invariants leads to fully invariant finite difference numer-
ical schemes for their computation, which were first proposed in [5]. The moving
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coframe method should aid in the understanding and extension of such schemes
to more complicated situations.

In this paper, we begin with a review of the basic equivalence problems for
submanifolds under transformation groups that serve to motivate the method of
moving frames. Section 3 provides a brief introduction to one of the basic tools
that is used in the moving coframe method — the left-invariant Maurer—Cartan
forms on a Lie group. Two practical means of computing the Maurer—Cartan
forms, including a novel method based directly on the group transformation
rules, are discussed. Section 4 begins the presentation of the moving coframe
method for the simplest category of examples — finite-dimensiona transitive
group actions — and illustrates it with an equivalence problem arising in the
calculus of variations and in classical invariant theory. Section 5 extends the
basic method to intransitive Lie group actions. The simplest example of an
infinite-dimensional pseudo-group, namely the reparametrization pseudo-group
for parametrized submanifolds, is discussed in Section 6 and illustrated with a
well studied geometrical example —the case of curvesin the Euclidean plane. This
isfollowed by adiscussion of curvesin affine and projective geometry, reproduc-
ing classical moving frame computations in a simple direct manner based on the
moving coframe approach; in Section 7, the connections between the classical
and moving coframe methods are explained in further detail. Section 8 employs
the moving coframe method to completely analyze the joint differential invari-
ants in two particular geometrical examples — two-point differential invariants
for curvesin the Euclidean and affine plane. Section 9 discusses how to analyze
more general pseudo-group actions, illustrating the method with two examples
arising in classical work of Lie [28], Vessiot [46], and Medolaghi [34]. In addi-
tion, we show how to solve the equivalence problem for second-order ordinary
differential equations under the pseudo-group of fiber-preserving transformations
using the moving coframe method, thereby indicating how all Cartan equiva-
lence problems can be treated by this method. Finally, we discuss some open
problems that are under current investigation. In al cases, the paper is designed
for a reader who is interested in applications, in that only the basic algorithmic
steps are discussed in detail. In order not to cloud the present practically-oriented
exposition, precise theoretical justifications for the algorithms proposed here will
appear in the second paper in this series [15].

2. The Basic Equivalence Problems

We begin our exposition with a discussion of the basic equivalence problems
which can be handled by the method of moving frames; see Jensen [23; p. VI],
for additional details. Suppose G is a transformation group acting smoothly on
an m-dimensional manifold M. In classical applications, G isafinite-dimensional
Lie group, but, aswe shall see, the method can be extended to infinite-dimensional
Lie pseudo-group actions, e.g., the group of conformal transformations on a Rie-
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mannian surface, the group of canonical transformations on a symplectic space,
or the group of contact transformations on a jet space. In either situation, a basic
equivalence problem is to determine whether two given submanifolds are con-
gruent modulo a group transformation. We shall divide the basic problem into
two different versions, depending on whether one allows reparametrizations of
the submanifolds in question. Formally, these can be stated as follows.

THE FIXED PARAMETER EQUIVALENCE PROBLEM. Given two embed-
dings:: X — M and7: X — M of an n-dimensional manifold X into M does
there exist a group transformation g € G such that

r)=g-1(x) VzelX. (2.1)

THE UNPARAMETRIZED EQUIVALENCE PROBLEM. Given two subman-
ifolds N, N ¢ M of the same dimension n, determine whether there exists a
group transformation g € G such that

g-N=N. (2.2)

Submanifolds satisfying (2.2) are said to be congruent under the group action.

In both problems we shall only consider the question in the small, meaning
that (2.1) only needs to hold on an open subset of X, or that congruence, (2.2),
holds in a suitable neighborhood of given points zg € N, Zop € N. Global issues
require global constructions that lie outside the scope of the Cartan approach to
equivalence problems.

Note that the problem of determining the symmetries of a submanifold, mean-
ing the set of all group elements that preserve the submanifold, forms a particular
case of the equivalence problem. Indeed, a symmetry of a submanifold is merely
a self-equivalence. For instance, the unparametrized symmetries of a given sub-
manifold N C M are those group elements that (locally) satisfy g - N = N.
Note that the symmetry group of a given submanifold forms a subgroup H C G
of the full transformation group.

EXAMPLE 2.1. A classical example is inspired by the geometry of curves in
the Euclidean plane. A curve C' C R? is parametrized by a smooth map x(t) =
(z(t),y(t)) defined on (a subinterval of) R. The underlying group for Euclidean
planar geometry is the Euclidean group E(2) = O(2) x R? consisting of transla-
tions, rotations and (in the nonoriented case) reflections.

In the fixed parametrization problem, we are given two parametrized curves
X(t) and x(t), and want to know when there exists a Euclidean motion such that
X(t) = R-X(t) +a for al ¢, where the rotation R € O(2) and trandation a € R?
are both independent of ¢. Physically, we are asking when two moving particles
differ by a fixed Euclidean motion at all times, a problem that has significant
applications to mation detection and recognition of moving objects.
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In the unparametrized problem, we are interested in determining when two
curves are congruent under a Euclidean motion, meaning C' = R - C + a for
some fixed Euclidean transformation (R, a) € E(2). This occurs if and only if
there exists a change of parameter ¢ = 7(t) such that X(7(t)) = R - x(t) + a for
some fixed Euclidean transformation (R, a).

A Euclidean symmetry of a curve C' is a Euclidean transformation (R, a) that
preserves the curve: R - C' + a = C. For instance, the Euclidean symmetries of
acircle consist of the rotations around its center. In the fixed parameter version,
the circle must be parametrized by a constant multiple of arc length for this to
remain valid.

EXAMPLE 2.2. Consider the action
A:(x,u)H<ax+5 u ) A:(O‘ ?)eGL(Z) 2.3)
v

yr+6 yr+6

of the general linear group GL(2) on R?. This forms a multiplier representation
of GL(2), cf. [14, 38], which lies at the heart of classical invariant theory. We
restrict our attention to curves given by the graphs of functionsu = f(x), thereby
avoiding issues of reparametrization. Two such curves are equivalent if and only
if their defining functions f and f are related by the formula

fla) = O+ 0) ] (2

for some nonsingular matrix A. Equation (2.4) is the fundamental equivalence
condition for first-order Lagrangians that depend only on a derivative coordinate
in the calculus of variations, cf. [36]. Moreover, if f(x) = {/P(z), and f(z) =

v/ P(z), then (2.4) becomes*

) — (e + 6)F(2), (2.4

ar + 0
yr + 0

P(z) = (va + 8)" P ( ) — (v + 6)" P(z). 25)
In the case when P and P are polynomials of degree n, (2.5) indicates their equiv-
alence under projective transformations, and so forms the fundamental equiva-
lence problem of classical invariant theory.

In the general unparametrized equivalence problem, typically, the submani-
folds N and N are formulated via explicit parametrizations ¢ : X — M, with
image N = «(X) and 7: X — M, with N = 7(X), where, for simplicity, the
parameter spaces are taken to be the same. (Indeed, since our considerations are
aways local, we shall not lose any generality by assuming that X C R™ is an
open subset of Euclidean space.) In such cases, we can easily reformulate the
unparametrized equivalence problem in the following form.

* We are ignoring the branching of the nth root here. See [36, 38] for a more precise version
of this construction.
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THE REPARAMETRIZATION EQUIVALENCE PROBLEM. Given two embed-
dings:: X — M and7: X — M of an n-dimensional manifold X into M does
there exist a local diffeomorphism ®: X — X, i.e,, a change of parameter, and
a group transformation ¢ € G such that

(P(x)=g-(x), VzelX. (2.6)

We shall see that by solving the fixed parametrization problem, first in the
case of GG being a finite-dimensional Lie transformation group, then extending
this to the case of G being an infinite Lie pseudo-group of transformations,
that we will then be able to solve the reparametrization problem. For instance,
we can reformulate the unparametrized equivalence problem for curves in the
Euclidean plane as a fixed parametrization problem for curves in the extended
space E = R x R?, which has coordinates (¢, X) = (t, z, ). The extended curve is
given asthe graph {(¢,x(t))} of the original parametrized curve, and the pseudo-
group G = Diff(1) x E(2) acting on E consists of a finite-dimensional group,
the Euclidean group E(2) acting on R?, together with the infinite-dimensional
pseudo-group Diff(1) consisting of al smooth (local) diffeomorphisms ¢ = 7(t)
of the parameter space R.

The formulation of the reparametrization problem in the form (2.6) indicates
an intermediate extension of the two cases, in which one only allows a subclass
of al possible reparametrizations.

THE RESTRICTED REPARAMETRIZATION EQUIVALENCE PROBLEM.
Giventwo embeddings:: X — M andz: X — M of an n-dimensional manifold
X into M and a Lie pseudo-group of transformations H acting on X, determine
whether there exists a group transformation g € G such that (2.6) holds for some
reparametrization ® € H in the prescribed pseudo-group.

For example, one might consider the problem of equivalence of surfaces in
Euclidean space, in which one is only allowed conformal, or area preserving, or
Euclidean reparametrizations. The general reparametrization equivalence problem
is, of course, a specia case when the pseudo-group H = Diff(X) is the entire
local diffeomorphism group.

In general, the solution to any equivalence problem is governed by a complete
system of invariants. In the present context, the invariants are the fundamental
differential invariants for the transformation group action in question. Thus, any
solution method must, as a consequence, produce the differential invariants in
guestion.

EXAMPLE 2.3. In the case of curvesin Euclidean geometry, the ordinary curva-
ture* function x = |x;|3(x; A Xi) is the fundamental differential invariant.

* Here |a] is the usual Euclidean norm and a A b is the scalar-valued cross-product between
vectors in the plane.
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For the fixed parametrization problem, there is a second fundamental differ-
ential invariant — the speed v = |x,|. Furthermore, al higher-order differen-
tial invariants are obtained by successively differentiating the curvature (and
speed) with respect to arc length ds = v dt = |x,| dt, which is the fundamental
Euclidean invariant 1-form. (In the fixed problem, one can replace s deriva-
tives by ¢ derivatives since dt¢ is aso invariant if we disallow any changes
in parameter.) A similar result holds for general transformation groups — one
can obtain all higher-order differential invariants by successively applying cer-
tain invariant differential operators to the fundamental differential invariants,
cf. [38].

The functional relationships between the fundamental differential invariants
will solve the equivalence problem. Roughly speaking, one uses the differential
invariants to parametrize a ‘classifying’ or ‘signature’ manifold associated with
the given submanifold, and the result is that, under suitable regularity hypotheses,
two submanifolds will be congruent under a group transformation if and only
if their classifying manifolds are identical. For example, in the unparametrized
Euclidean curve problem, the classifying curve is parametrized by the two cur-
vature invariants (k, ks = dk/ds), whereas in the fixed problem, one uses all
four invariants (v, k,vs, ks) to parametrize the classifying curve. See [5] for
applications of the classifying curve to the problem of object recognition in
computer vision. Of course, this ‘solution’ reduces one to another potentially
difficult identification problem — when do two parametrized submanifolds coin-
cide? One approach to the latter problem is to use the Implicit Function Theorem
to realize the classifying submanifold as the graph of a function, which elimi-
nates the reparametrization ambiguity. Alternatively, in an algebraic context, a
solution can be provided by Grobner basis techniques, cf. [4]. Neither approach
completely resolves the general identification problem, but particular cases can
often be handled effectively.

Remark. A more standard solution to the equivalence problem depends on
the choice of a base point xo = X(t9) on the curve. Then the curvature x(s)
as a function of arc length s = f;‘ ds uniquely characterizes the curve up to
Euclidean congruence, [19; p. 24]. The classifying curve approach has two dis-
tinct advantages. first, there is no choice of base point required, which eliminates
the translational ambiguity inherent in the curvature function «(s); second, the
classifying curve is completely local, whereas the arc length s is a nonlocal
function of the curve. Note that the classifying curve can be computed directly,
without appealing to the arc length parametrization.

The differential invariants can also be used to determine the structure of the
symmetry group. In the case of an effectively acting Lie group G, the codimen-
sion of the symmetry subgroup H of the submanifold N, i.e, dmG — dim H,
is the same as the number of functionally independent differential invariants
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on the submanifold. In particular, the maximally symmetric submanifolds occur
when al differential invariants are constant; if G acts transitively, then these
can be identified with the homogeneous submanifolds of M, i.e., the orbits of
suitable closed subgroups of G, cf. [23]. For instance, in the Euclidean case, the
maximally symmetric curves are where the curvature is constant, which are the
circles and straight lines, since these are the orbits of the one-parameter sub-
groups of E(2). (Technically, these retain the infinite-dimensional reparametriza-
tion group Diff(1) as an additional symmetry group.) In the fixed parameter
version, the circles and straight lines must be parametrized by a constant mul-
tiple of their arc length in order to retain their distinguished symmetry sta-
tus.

Finally, we remark that differential invariants can be used to construct general
invariant differential equations admitting the given transformation group. Specif-
ically, suppose Ji, ..., Jy form a complete system of functionally independent
kth order differential invariants, defined on an open subset V¥ ¢ J* of the jet
space where the prolonged group action is regular. Then, on V¥, any kth-order
system of differential equations admitting G as a symmetry group can be written
in terms of the differentia invariants: H,(Ji,...,Jy) = 0. For example, the
most general Euclidean-invariant third order differential equation has the form
dk/ds = H(k), equating the derivative of curvature with respect to arc length
to afunction of curvature. Similar comments apply to invariant variational prob-
lems, and we refer the reader to [37, 38], for details. These results form the
foundations of modern physical field theories, in which one bases the differ-
ential equations, or variational principle, on its invariance with respect to the
theory’s underlying symmetry group. The groups in question range from basic
Poincaré and conformal invariance, to the exceptional simple Lie groups lying
at the foundations of string theory, as well as infinite-dimensional gauge groups
and groups of Kac—-Moody type. Remarkably, complete systems of differential
invariants are known for only a small handful of transformation groups arising
in physical applications — a collection that includes none of the above-mentioned
groups! Our moving coframe algorithm provides an direct and effective means
for providing such classifications.

3. The Maurer—Cartan Forms

In our approach to the theory and practical implementation of the method of
moving frames, the left-invariant Maurer—Cartan forms on a finite-dimensional
Lie group play an essentia role. We therefore begin by reviewing the basic
definition, and then present two computationally effective methods for finding
the explicit formulae for the Maurer—Cartan forms. The theoretical justification
for the second method will appear in Part Il [15].

Throughout this section, G' will be an r-dimensional Lie group. We let L, :
h +— g - h denote the standard left multiplication map.
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DEFINITION 3.1. A 1-form x4 on G is caled a (left-invariant) Maurer—Cartan
form if it satisfies

(Lg)*p=p fordlged. (3.2

Remark. If one uses the right-invariant Maurer—Cartan forms instead, one is
led to an aternative theory of right moving frames. Although the left versions
appear amost exclusively in the literature, their right counterparts will play an
important role in the theoretical justifications and the regularized method intro-
duced in Part 1. In this paper, though, we shall exclusively use the left-invariant
Maurer—Cartan forms and moving frames, see [15] for detalils.

The space of Maurer—Cartan forms on G is an r-dimensional vector space,
which can naturaly be identified with the dual to the Lie algebra g of left-
invariant vector fields on G. If we choose a basisvy, ..., Vv, of g, then thereisa
dual basis i1, ..., u" of the space of Maurer—Cartan forms, satisfying (it vy) =
(5; where §' is the usual Kronecker delta. The basis Maurer—Cartan forms satisfy
the fundamental structure equations

du’ = =Y Chp? A pF, 3.2
I<k

where the coefficients C,. are the structure constants corresponding to our choice
of basis of the Lie algebra g. The Maurer—Cartan forms are a coframe on the Lie
group G, meaning that they form a pointwise basis for the cotangent space T*G,
or, equivalently, that we can write any 1-form w on G as a linear combination
w =Y fi i’ thereof, where the f; are suitable smooth functions.

The most common method for explicitly determining the Maurer—Cartan forms
on a given Lie group is to realize G C GL(n) as a matrix Lie group. The
independent entries of the n x n matrix of 1-forms

p=A1dA (3.3)

form a basis for the left-invariant Maurer—Cartan forms on G. Here A =
A(gh,...,g") € G represents the general matrix in G, which we have paramet-
rized by local coordinates (g%, ..., ¢") near theidentity, and dA = Y2(0A/dg") dg
is its differential, which is an n x n matrix of 1-forms.

For example, in the case G = GL(2), the four independent Maurer—Cartan
forms are the components of the matrix

H3  pa

1 6da— (Bdy 6d6 — Gdb
ad—py \ ady —yda ads—~d3 )

p = (“1 “2>:A1dA

(3.4)
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Similarly, if G = E(2) = O(2) x R? is the Euclidean group in the plane, then we
can identify E(2) ¢ GL(3) as asubgroup of GL(3) by identifying (R, a) € E(2)
with the 3 x 3 matrix

cos¢ —Sing a
(R a)_ sing cos¢ b
01/

0 0 1

Substituting into (3.3) leads to

_(R* —-R'a\ (dR da
=V o 1 0 o
0 —d¢ cos¢da+ singdd
=|d¢ 0O —singda-+ cosedb
0 0 0
Thus, the three independent Euclidean Maurer—Cartan forms are
1 =0dp, pupx=cos¢da+singdb, pu3z3=—singda+ cosedb. (3.5)

In cases when the group is explicitly realized as a local group of transforma-
tions on a manifold M, and not necessarily as a matrix Lie group, it is useful
to have a direct method for determining the Maurer—Cartan forms. Given g € G
and z € M, we explicitly write the group transformation z = ¢ - z in coordinate
form

7 =H(zyg), i=1,...,m

We then compute the differentials of the group transformations:

s HZ
dz’ Z ?3 on J, =1,...,m,
k=1
or, more compactly,
dz = H,dz + H,dg. (3.6)

Next, set dz = 0 in (3.6), and solve the resulting system of linear equations for
the differentials dz*. This leads to the formulae

—dz = Fdg = (H;' H,)dg,

or, in full detail,

—dF =S FF(z9)dg, k=1,...,m. (3.7
=1
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Then, for each k£ and each fixed zg € M, the 1-form
o= Ff(z0,g)dg’ (3.8)
j=1

is a left-invariant Maurer—Cartan form on the group G. Alternatively, if one
expands the right-hand side of (3.7) in a power series (or Fourier series, or ...)
in z,

Y Ff(z.9)dg’ = 2, (3.9
=1 =0

then each coefficient 1 also forms a left-invariant Maurer—Cartan form on G.
In particular, when G acts locally effectively, the resulting collection of 1-forms
spans the space of Maurer—Cartan forms.

EXAMPLE 3.2. Consider the action of GL(2) given by

_ ar + (0 . u
x_7x+6’ u_'yx+6’ (3.10)
as discussed above. Differentiating (3.10), we find, as in (3.6),
4 — (v& + 6)(adzx + zda + dB) — (azx + B)(ydz + x dy + df)
(yz +6)?
_ (ad —By)da + (yz + 6)(zda +dB) — (ax + B)(z dy + db)
(yx + 6)? ’
_ (yz+6)du+ u(ydr + x dy + do)
du = .
(yz +6)?
Setting dz = 0 = du and solving for dz and du, we obtain
_ 5dB—pds 6da+'yd,6—ad6—ﬁdfy>
dz = o6 —i—( Py T+
+ <7’Yda_adfy) - (3.11)
b — 3y x4, .
oy — (ad6_7d5>u+ (ad’y—'yda)xu
-\ ab— By ab — By '
Note that the coefficients of 1, = and z? in the first formula, i.e.,
_ sd3—pds  Sda+~dB—ads— Bdy
fi1=—f——2—, 2= ;
ab — By ab — By
(3.12)
o yda — ady
H3 = Oé(S*ﬁ’}/ )

recover three of the Maurer—Cartan forms in (3.4), while the coefficient of either
u or xu in the second formula provides the remaining one.
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Remark. The coefficientsin (3.11) are, in fact, immediately found in terms of
the coefficients of the infinitesimal generators for the transformation group. See
[15] for details.

If G does not act effectively on M, then the forms computed by this method
will form a basis for the annihilator

(om)" ={weg" | (wiv)=0 foral vegy}
of the Lie algebra of the global isotropy subgroup
Gu={9e€G|g-z==z fordl ze M},

and thus can be identified with the Maurer—Cartan forms for the effectively acting
quotient group G = G/G),. For example, if we only treat the linear fractional
transformations in x in (3.10), then the resulting three Maurer—Cartan forms
(3.12) all annihilate the generator v = ad, + S0z + 70, + 60s of the isotropy
subgroup {A1} C GL(2) consisting of scalar multiples of the identity matrix.
Hence, the three 1-forms can be identified with a basis for the Maurer—Cartan
forms of the effectively acting projective linear group PSL(2) = GL(2)/{\1}.

4, Compatible Lifts and Moving Coframes

In this section, we begin our development of the moving coframe method, starting
with the simplest problems and gradually work our way up to more complicat-
ed situations. Throughout this section, we assume that G is an r-dimensional
Lie group which acts locally effectively and transitively on an m-dimensional
manifold M. (As remarked above, we can always assume local effectiveness by
quotienting by the global isotropy subgroup.) We begin by choosing a convenient
‘base point’ zp € M.

DEFINITION 4.1. A smooth map p: M — G is caled a compatible lift with
base point zg if it satisfies

p(z) - 20 = 2. 4.1

In order to compute the most general compatible lift, we solve the system
of m equations (4.1) for m of the group parameters in terms of the coordinates
z on M and the remaining » — m = dimG — dim M group parameters, which
we denote by h. This leads to a general formula g = po(z, k) for the solution
to the compatibility equations (4.1). In other words, by solving the compatibil-
ity conditions (4.1), we have effectively ‘normalized’ m of the origina group
parameters. Since our considerations are always local, in practice, we only need
to solve the compatibility equations (4.1) near zp. In accordance with Cartan’s
terminology [6], we will call the genera compatible lift po(z,h) the moving
frame of order zero for the given transformation group. If +: X — M defines
a parametrized submanifold N = +(X), then one can view the composition
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po(t(x), h) asarestriction of the Oth-order moving frame to the submanifold V,
where the unnormalized parameters h determine the degree of indeterminacy
of the moving frame on N. In geometrical situations, such restrictions can be
identified with the classical moving frames; see also Section 7 below.

EXAMPLE 4.2. Consider the planar action (2.3) of the general linear group
GL(2)

_(ax+B w (o B
A*%W—(w+5w%m)’ A_<76>€&Q) 4.2)

The action (4.2) is transitive on M = R?\ {u = 0}. Choose the base point to
be zo = (0,1). Since A - zo = (3/6,1/6), any compatible lift A = p(z,u) must
satisfy /6 = x, 1/6 = u and, hence, the solution to (4.1) is

B== == (4.3)
u u

The most general compatible lift thus has the form

po(m,u,a,'y) - (j f_;:LL) ’ (44)

where o = a(z,u), v = v(z,u) are arbitrary functions, subject only to the con-
dition o # zy, so that the determinant of (4.4) does not vanish and, hence, po
does take its values in the group GL(2).

Note that since G acts transitively, we can localy identify M ~ G/H with
a homogeneous space, where H = G, is the isotropy group of the base point.
Therefore, a compatible lift is merely a (local) section of the fiber bundle G —
G/H.

PROPOSITION 4.3. Two maps p, p: M — G are compatible lifts with the same
base point if and only if they satisfy
p(z) = p(z) - n(2),

wheren: M — H isan arbitrary map to the isotropy subgroup of the base point
20

Thus, in the previous example, the isotropy subgroup H of the point zg =
(0,1) consists of al invertible lower triangular matrices of the form (j, 2)
Indeed, we can rewrite (4.4) in the factored form

(o z/u) (1 z/u o 0 A5
pdm,u,a,’y)—(v 1/u>_<0 1/u><’y’ 1)’ (45
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where o/ = o — x, v/ = wuy, reconfirming Proposition 4.3 in this particular
example.

Although the remaining unspecified group parameters can be identified with
the isotropy subgroup coordinates, in any practical implementation of the moving
coframe algorithm, it is not necessary to identify the isotropy subgroup explicitly,
nor to adopt its particular coordinates to characterize the Oth-order moving frame.
Thus, in the present example, the coordinates «, ~, are just as effective as the
subgroup coordinates o/, 7. (The interested reader can follow through the ensuing
calculations using the subgroup coordinates instead, reproducing the final result.)

The Oth-order moving frame po(z, h), which is the genera solution to the
compatible lift equations (4.1), defines a map from the Oth-order moving frame
bundle Bo = M x H ~ G/H x H, coordinatized by (z, k), to the group G,
which is, in fact, alocal diffeomorphism pg: Bo = G. Thereis an induced action
of G on the moving frame bundle By that makes po into a G-equivariant map:
po(g-(z,h)) = g-po(z, h). Thus, the action on the unnormalized group parameters
h can be explicitly determined by multiplying the moving frame on the left by
a group transformation. The action of G on By projects to the original action of
GonM,sothat g-(z,h) = (g-2,n(g,2,h)) for g € G.

In the present example, the induced action of GL (2) on the unspecified param-
eters «, vy, is found by multiplying the moving frame (4.4) on the left by a group

element (Z Z) € GL(2); explicitly,

a r/u) [(a b a z/u)  [(aea+by (az+Db)/u 4.6)
vy 1u) \e d v Yu) \eca+dy (cx+d)ju)
Therefore, the action of G = GL(2) on the moving frame bundle By is given by

ar +b U

— i=—— A= b ¥ = dy. (47
wrd T ara e=etby y=catdy. (47)

T =
Note that the (x,u) transformations coincide with the origina action (2.3), as
they should.

Remark. In practical implementations of the moving coframe algorithm, we
do not have to explicitly compute this group action. We do this here so as to
provide the reader with some justification for our claims.

Remark. The action of G on By = M x H does not project to an action on
the isotropy subgroup H, even if we use the associated subgroup coordinates. In
the present example, we find (4.7) implies that the subgroup coordinates o/, v/
in (4.5) transform according to

_, ad—bc , . , cu ,
_ o,
cr+d
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The next step is to characterize the group transformations by a collection of
differential forms. In the finite-dimensional situation that we are currently con-
sidering, these will be obtained by pulling back the left-invariant Maurer—Cartan
forms p on G to the Oth-order moving frame bundle By using the compatible
lift. The resulting 1-forms ¢y = (po)* p Will provide an invariant coframe on By,
which we name the moving coframe of order zero. The moving coframe forms
¢o clearly satisfy the same Maurer—Cartan structure equations (3.2).

THEOREM 4.4. The Oth-order moving coframe forms completely characterize
the group transformations on the bundle Bg. In other words, a map ¥: By — Bp
satisfies U*¢y = o if and only if U(z,h) = g - (2, h) coincides with the action
of a group element g € G on Bo.

In the present example, we substitute the formulae (4.3) characterizing our
compatible lift (4.4) into the Maurer—Cartan forms (3.4). The result is the Oth-
order moving coframe

da — xdy dx
Clzia <2:7a
o —yx u(a — yx) 49)
u(ady — v da) ~dz du '
C3:—> C4:* -
a—yx a—~vyr u

which forms a basis for the space of 1-forms on By. The skeptical reader can
explicitly check that these four 1-forms really do completely characterize the
group action (4.7), as described in Theorem 4.4.

Let us now consider acurve N C M. For simplicity, we shall assume that the
curve coincides with the graph of a function v = u(x). However, this restriction
is not essential for the method to work, and later we show how parametrized
curves can aso be readily handled by the general method. We restrict the moving
coframe forms to the curve, which amounts to replacing the differential du by its
‘horizontal’ component u, dz. If we interpret the derivative u, as a coordinate
on the first jet space J* = J*M ~ R3 of curves in M, then the restriction of a
differential form to the curve can be reinterpreted as the natural projection of the
1-form du on J* to its horizontal component, using the canonical decomposition
of differential forms on the jet space into horizontal and contact components.
Indeed, the vertical component of the form du is the contact form du — w,. dz,
which vanishes on all prolonged sections of the first jet bundle J*M/. We refer
the reader to [38; Chap. 4] for a comprehensive review of the contact geometry
of jet bundles. Therefore, the restricted (or horizontal) moving coframe forms
are explicitly given by

do — zdy dz
m = ) 2 = )
o —yx u(a — yx) 4.9)
u(ady — v da TUp — U) — QU '
s — (ady—~ )’ 774:7( ) dr.

o —yx u(a — yx)
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which now depend on first-order derivatives.

The next step in the procedure is to ook for invariant combinations of coordi-
nates and group parameters. Each such invariant combination will either provide
us with a basic differential invariant for the problem, or, in the case that it explic-
itly depends on the remaining group parameters, a ‘lifted invariant’ which can be
normalized and thereby eliminate one of the remaining group parameters, as dis-
cussed below. Specifically, in the present example, a function J(«, v, z, u, u,)
will be a lifted invariant provided it is unaffected by the group action on its
arguments, meaning that

J(a,7,z,u,uz) = J(o, v, z,u,uy), (4.10)

wherever a, 7, T, u, are related to o, v, x, u, according to the induced action (4.7)
of the group on the moving frame bundle, and u; is related to wu, according to
the standard prolongation [38], of the action of G' on M to the first jet bundle J*.
In the present case, if z,u are given by (4.7), then a straightforward chain rule
computation provides the prolonged action of GL (2) on the derivative coordinate:

_— (cx + d)ug — cu
v ad —bc

In other words, we interpret o, vy, z,u, u, as coordinates on a bundle By — &
over the first jet space, which is merely the pull-back By = (7§)*Bo of the Oth-
order moving frame bundle via the standard projection 3 : J* — M. Thereis an
induced action of G on By which projects to its prolonged action on J A (first-
order) lifted invariant, then, isjust afunction J: Bo — R which isinvariant under
the action of G on By. If the lifted invariant J = J(x, u,u,) does not, in fact,
depend on the group parameters «, v, then it will be a (first-order) differential
invariant. (However, in the present example, there are no nonconstant first-order
differential invariants, since GL(2) acts transitively on J'.) Alternatively, if J
actually depends on either o or ~ then it can be used in the normalization
procedure.

Fortunately, the lifted invariants can be determined without explicitly comput-
ing the prolonged group action, or solving any differential equations. They appear
in the linear dependencies among the restricted (horizontal) moving coframe
forms! Indeed, because the 1-forms are invariant, each coefficient .J; in a linear
relation ng = Jim1+ - - -+ Jrng, in which the forms n; on the right-hand side are
linearly independent, is automatically invariant under the action of the group. In
our example, we note that, among the restricted 1-forms (4.9), there is one linear
dependency, namely 14 = Jn2, where

J = y(zuy —u) — auy. (4.12)
One can explicitly verify that J is indeed a lifted invariant, meaning that it

(4.11)

(4.7), (4.12).



178 MARK FELS AND PETER J. OLVER

The ultimate goal of the moving frame method is to eliminate all the ambi-
guities, i.e., the undetermined group parameters, in the original moving frame,
in a suitably invariant manner. Cartan’s crucial observation is that, we can, with-
out loss of generality, normalize any lifted invariant by setting it equal to any
convenient constant value

J(a,%x,u,ux) ) (413)

without affecting the equivalence problem. In (4.13), ¢ can be any constant,
subject only to the requirement that the solutions to (4.13) remain in the group,
e.g., that the determinant of any resulting matrix (4.4) remains nonzero. Typically,
cistakento be 0, 1, or —1, although other values can be chosen to simplify the
resulting formulae. Assuming that J does actually depend on the parameters
a, v, we can solve the normalization equation (4.13) for one of them; eg., o =
a(y, z,u,u, ). Because J is an invariant, such a normalization will not alter the
solution to the equivalence problem, and hence we can use it to eliminate o from
the original formulae for the moving frame and moving coframe. The result is a
first-order moving frame, depending on one fewer unnormalized group parameter.
This produces a corresponding first-order moving coframe, to which one can
apply the same procedure, leading to a chain of successive normalizations and
reductions, eventually enabling one to completely eliminate all the undetermined
parameters and specify a uniquely defined moving frame on some suitable jet
bundle J* = J" M.

In accordance with the general procedure, then, we can normalize our par-
ticular lifted invariant (4.12) by setting it equal to zero; the solution to the
normalization equation J = 0 is then given by

o= (‘mf — “) . (4.14)

Uy

Substituting (4.14) into (4.4) produces the first-order moving frame

TUy — U)7Y /Uy x/u) ’ (4.15)

v 1/u

which now depends on first-order derivatives of «, and just one unnormalized
group parameter. We can regard the coordinates (z, u, u,,~y) as parametrizing a
bundle B; — J1 sitting over the first jet space, which is realized as a G-invariant
subbundle of By, namely By = J~1{0} c By. As before, one can restrict the
first-order moving frame to a curve v = wu(x) by restricting the map p; to the
first prolongation or jet of the curve, i.e., we set u = u(z), u, = v'(x), in (4.15),
with ~ indicating the remaining ambiguity. There is an induced action of GL(2)
on B1, which projects to the usual first prolonged action G of the group on Jt,
cf. (4.7), (4.11), and makes the first-order moving frame p1: B1 =G into alocal

pl(x,u,uz,v) = ( (
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G-equivariant diffeomorphism. In our case, the explicit transformation rules on
B, are given by

__ar+b . u (e +d)uy — cu
YTy d YTarad e = ad — bc ’
(4.16)
_ ((cx+d)uzcu)
= ad — bc o

which coincide with left multiplication of the first-order moving frame (4.15)
by the given group element. (Again, these explicit formulae are provided for
illustration only, and are not essential for application of the method.) Furthermore,
substituting (4.14) into (4.8), we find the first-order moving coframe

d du, du—u,d 2 d
= M T UEE Y 2”5’
Y Uy u yu
(4.17)
=Ty wedr), o= P

As in the Oth-order case, cf. Theorem 4.4, the first-order moving coframe com-
pletely characterizes the group transformations on 5;.

As before, we determine new lifted invariants by restricting the first-order
moving coframe 1-forms to a curve v = u(z). This amounts to replacing du and
du, by their horizontal components u, dxz and u,, dx, respectively, leading to
the restricted forms

dy  ugdx Uy dz
m=-——-———; m=————>,
0 Uy, yu
YUy O
m=———, m=0, (4.18)
Ug

that now depend on second-order derivatives. Alternatively, one could deduce
these restricted forms by substituting the normalization (4.14) into the previous
restricted forms (4.9). Note in particular that the fact that n, vanishesis an auto-
matic consequence of our normalization condition 74 = Jn, = 0O; aternatively,
we note that (4 is an invariant contact form, which hence vanishes when restricted
to any submanifold. Now there is an additional dependency, namely 1z = Ky,
where

2,3
YU Uy

2
Uy

K=-

isanew lifted invariant. Again, the reader can check that K isinvariant under the
prolonged action of GL(2) on the bundle B; = (72)*B; — F, where r2:  — J*



180 MARK FELS AND PETER J. OLVER

is the natural projection, and is provided by (4.16) and the second-order prolon-
gation (chain rule) formula

~ (cx + d)3uzy

We can normalize K = —1 by setting
7 Vulug,

Note that we cannot normalize K = 0 since this would require v = 0, but then
the lift (4.15) would have zero determinant, violating the group conditions. The
final lift

(4.20)

TlUy — U

VuStgy

pz(m, U, Uy, uzz) = (421)
Uy 1
U

V ugu:m:

defines the second-order moving frame. The moving frame (4.21) provides an
explicit G-equivariant identification p,: V2 =G of the open subset V2 = {uu,, #
0} ¢ P of the second jet bundle with an open subset of the group G, identifying
the prolonged action of G on J with the ordinary left multiplication on G;
thus

IS

p2(9? 22 =g pa(2?), geGL?2), 2P = (x,u,us,up) € V2.

Substituting (4.20) into (4.18) produces the final set of invariant 1-forms

duy, du updz B Uy
T 2w T
(4.22)
(am du, B Uy (du — uy dx) _ Ou—u,dz
3= ,—'LL'LL$$ /—u3uzz ) 4 = U )

which form the second-order moving coframe. Note that the second-order moving
frame (4.21) provides an equivalence, p5u; = (;, mapping the moving coframe
forms on the second-order jet space to the Maurer—Cartan forms (3.4) on the
group. Consequently, the forms ¢; uniquely characterize the second-order pro-
longed action of GL(2) on V2 ¢ .

Finally, the restricted (horizontal) moving coframe forms become

Ullggr + SUglpy

u
N = dr, m= %dx, n3=—m, n4=0.

22Uty
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There is one final linear dependency, namely n; = —1I 12, where

2¢/uud,

is the fundamental differential invariant of the transformation group, also known
as the group-invariant curvature. The remaining 1-form ds = 7 is the funda-
mental invariant 1-form, or group-invariant arc length element. All higher-order
differential invariants can be found by differentiating the curvature invariant with
respect to the invariant arc length; for instance, the fundamental fourth-order dif-
ferential invariant is

oI dI  [wdl

I:

(4.23)

J=—=—= —
Onp  ds Uy A
20Uy U — SUPUL, — QU U U + 6uui$ — 3ulu?

3
duu,,

From the general theory, we conclude that every differential invariant for the
group (2.3) is a function of the curvature and its successive derivatives with
respect to the arc length. On the regular part V2 of the jet space %, al GL(2)
invariant ordinary differential equations can be written in terms of these invari-
ants; for instance, the most general invariant third-order ordinary differential
equation has the form

for some constant k.

Applications to the equivalence problem for curves (which includes the equiv-
alence problem for first-order Lagrangians as well as that of classical invariant
theory) follow directly from the general theorems. Given a function u = u(x),
we define its classifying curve C to be the planar curve parametrized by the
fundamental differential invariants I(z), J(x). The general result states that two
curves are mapped to each other by a group transformation (2.3), so C = g¢-C, if
and only if their classifying curves are identical, C = C. A curve C' is maximally
symmetric if and only if its classifying curve reduces to a point; in this case the
original curve is, in fact, an orbit of a one-parameter subgroup of GL(2). Thus,
we have, in avery simple and direct manner, recovered the results in [36] on the
equivalence and symmetry of binary forms, which were found by a much less
direct approach based on the standard Cartan equivalence problem for particle
Lagrangians.

There are a few technical points that should have been addressed during
the preceding discussion. First, one needs to impose certain conditions on the
function u(x) in order to ensure that the computation is valid. For instance, the
normalization (4.14) requires u, # 0, i.e., the curve does not have a horizontal
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tangent. (We have aready assumed that it does not have a vertical tangent by
requiring that it be the graph of a smooth function.) If u, = 0O, then we can till
normalize J = 0 as long as u # xu,, in which case we normalize by solving
for ~ instead of «. Actually, both cases can be simultaneously handled by the
normalization o = A(zu, —u), v = Aug, where X # 0 is a new parameter whose
normalization will be specified at the next stage of the procedure. The reader
can check that this alternative procedure leads to the same lift and differential
invariants as before. In the second normalization, we have assumed* u,, > 0in
order to take the square root. For u,, < 0 we would need to normalize K = +1,
and use /—u,, instead. Thus the problem actually separates into two branches,
with the inflection points u,, = 0 being interpreted as singular points for the
group action. The straight lines, for which u,,, = 0, form a special class and must
be analyzed separately. Finaly, the sguare root itself has a sign ambiguity (or,
in the complex case, an ambiguity in its choice of branch). Both signs must, in
fact, be allowed in the final expression for the lift and the differential invariants.
Such branching and ambiguous sign phenomena will be familiar to practitioners
of the Cartan equivalence method; see [38] for a detailed discussion of these
issues.

L et usfinish this section by summarizing the basic method of moving coframes,
in a form which will apply to more general problems. The basic steps are

(a) Determine the general invariant lift, or moving frame of order zero, by
choosing a base point and solving (4.1) for the given group action.

(b) Determine the invariant forms. In the finite-dimensional case, they are the
Maurer—Cartan forms, which can be computed either by using the matrix
approach, or by direct use of the transformation group formulae.

(c) Use the invariant lift to pull-back the invariant forms, leading to the moving
coframe of order zero.

(d) Determine lifted invariants by finding linear dependencies among the restrict-
ed or horizontal components of the moving coframe forms.

(e) Normalize any group-dependent invariants to convenient constant values by
solving for some of the unspecified parameters.

(f) Successively eliminate parameters by substituting the normalization formulae
into the moving coframe and recomputing dependencies.

(g) After the parameters have all been normalized, the differentia invariants
will appear through any remaining dependencies among the final moving
coframe elements. The invariant differential operators are found as the dual
differential operators to a basis for the invariant coframe forms.

Note that we do not need the explicit isotropy groups for the transformation
group actions, nor do we need compute explicit formulae for the prolonged group
action in order to successfully apply the method.

* In the complex-valued problem, there is no sign restriction.
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Remark. If one is solely interested in the final differential invariants and
invariant horizontal 1-forms (i.e., invariant forms on the submanifold itself),
then one need only determine the effect of the normalizations on the horizontal
components of the moving coframe forms during the computation. The mov-
ing coframe itself will also include invariant contact forms, which vanish upon
restriction, but which, nevertheless, play an important role in other aspects of
the geometry. See [20, 38, 40], for applications of invariant contact forms to the
study of invariant evolution equations, with applications to image processing.
Applications to the computation of the invariant cohomology of the variational
bicomplex (cf. [2]) are aso of particular importance in the analysis of symmetries
and conservation laws of variational problems.

Remark. The proposed method of moving coframes has the same basic struc-
ture as the Cartan equivalence method [11, 16, 38], in that one deals with a
system of differential forms depending on arbitrary parameters, and seeks to
normalize all the parameters by a suitable collection of lifted invariants. One
can, indeed, view the two methods as particular cases of a completely general
equivalence procedure. However, it is worth pointing out a few of the differ-
ences between the two. First, the Cartan method only deals with lifted coframes,
whose constituents are linearly independent differential forms, whereas the dif-
ferential forms occurring in the moving coframe method are linearly dependent.
The invariant combinations (lifted invariants) used to normalize the parameters
are found via linear dependencies in the moving coframe method, whereas they
arise as unabsorbed torsion coefficients in the differentials of the lifted coframe
forms in the Cartan equivalence method. In the moving coframe method, the
differentials of the moving coframe 1-forms satisfy the Maurer—Cartan structure
equations and, hence, do not provide any nonconstant invariants. Finally, and per-
haps most significantly, the group parameters g only occur algebraicaly in the
lifted coframe elements in the Cartan equivalence method, whereas in the mov-
ing frame problems their differentials dg occur as well, since they appear in the
Maurer—Cartan forms. One can, of course, imagine solving hybrid equivalence
problems, in which aspects of both problems occur during the normalization pro-
cedure, although we are not currently aware of any interesting examples where
these occur naturally.

5. Intransitive Lie Group Actions

Our next task is to extend the moving coframe method to the case of finite-
dimensional Lie groups whose action is no longer transitive. In the intransitive
case, we still assume that G is an r-dimensiona Lie group acting effectively,
and regularly, which implies that its orbits, which we take to have dimension s,
form afoliation of M. We choose a local cross-section X ¢ M to this foliation,
i.e.,, a submanifold of dimension m — s intersecting the orbits transversally, and
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introduce a compatible lift p: M — G by requiring that, for each z near I, the
lift p satisfies

z=p(z) 2o forsome zy € K. (5.1

The genera solution to the compatible lift equations (5.1) will be of the form
p(z, h) depending on r — s parameters h. Note that unless the isotropy subgroups
at each point in the cross-section happen to be identical, we cannot identify the
unspecified parameters as local coordinates on any subgroup H C G, leading
us beyond any principal bundle-theoretic interpretation of the method. Neverthe-
less, the Implicit Function Theorem will allow us to locally write the general
compatible lift in this form. In addition, the group admits (locally) m — s func-

tionally independent invariants, I1(z), ..., I,—s(z), whose level sets characterize
the orbits. The Oth-order moving frame will then be the map

whose first components ¢ = p(z,h) are those of the general compatible lift
(for the given cross-section) and, in addition, has the invariants w = I(z) =
(I1(2), ..., In—s(2)) asfurther components. Note that pg is only locally defined,
since z must lie near the cross-section K, and, moreover, the remaining param-
eters h are determined in accordance with the Implicit Function Theorem.

Note. We can view the range G x R * of pg as having the structure of a
Cartesian product Lie group, the additive group structure on the second factor
formalizing the fact that we can add invariants.

The moving coframe forms in this case are constructed from the Maurer—
Cartan forms p on the group G, together with the coordinate 1-forms dw =
{dws, ..., dw,_s} on R™*. The group transformations are then characterized
by the conditions

O*W = w, O* dw = dw, d*n = . (5.3)

Using the moving framelift g = p(z, h), w = I(z), to pull back these 1-forms, we
are led to the Oth-order moving coframe, consisting of the pulled-back Maurer—
Cartan forms (po)* p, aong with the differentials (po)*dw,, = dI,; of the group
invariants. At this stage, the set up of the intransitive problem is complete, and
one proceeds, as in the transitive case, to look for dependencies among the
restricted coframe forms, and then normalize the resulting lifted invariants.

EXAMPLE 5.1. The intransitive action
Ai(x,u)H(x O‘“Jrﬁ), A:(O‘ ﬁ)eSL(Z), (5.4)

Tyu+6 v 6



MOVING COFRAMES: I. A PRACTICAL ALGORITHM 185

of the special linear group SL(2) on M = R? arises in complex function the-
ory [21]. (We restrict to SL(2) in order to maintain local effectiveness.) The
group orbits are vertical lines and so the basic invariant ismerely I (z, u) = x. We
choose the cross-section I = {u = 0}. Solving the equation A(z,u) 20 = (z,u),
where zo = (y, 0), leads to the general compatible lift

Q@ ou
AO(I‘, u, &, 6) = a6 — 1 ’ (55)
o
ou
which forms the group component of the Oth-order moving frame. The other
component is just the invariant

w=1I(x,u) =z (5.6)

Pulling back the Maurer—Cartan forms u = A=1dA and dw via the lift (5.5),
(5.6), leads to the Oth-order moving coframe

ClZ(Oé(S*l)d—u*@, (2 = 8% du,
ud(ad) + ad(1 — ad) du '
C3 = 5202 s C4 = dz.
u

As before, we restrict ourselves to a curve u = wu(z) by replacing du by its
horizontal component . dz. Letting n; denote the horizontal component of (;,
we find that there is one resulting linear dependency, namely

N = 8%uy dr = Jdz = Jng.

The leads to the first normalization 6 = 1/,/u, resulting from setting J = 1.
Substituting this normalized value into (5.5), (5.6), provides the first-order mov-
ing frame. Furthermore, substituting into (5.7) produces the second-order moving
coframe, with horizontal components

B ZOzug/z + Uy —
n 2uu,

2
2u$>d$, N2 = N4 = dz,
(5.8)
Uy
N3 = %(da —an).
Now we normalize the coefficient of 7 to 0 by setting o = u, ¥%(u2 — uuy,).
The final moving frame (of order 2) is

2 1
1 U, — 5UUpy Uly
AZ = w v 12 s w = . (59)
Uy _Quzz Ug

The corresponding restricted moving coframe has reduced to

n2 = N4 = dz, ns = —35m2, m =0, (5.10)
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where

2 T zzz_'?’ 2
g = ot - Yoa (5.11)

is the classical Schwarzian derivative of the function u(x), whose invariance
under linear fractional transformations is of fundamental importance in complex
function theory. Since the 1-form dz is invariant, all the higher-order differential
invariants are found by differentiating S with respect to x.

Actually, the preceding computation can be slightly simplified by extending
our general method to noneffective actions. We consider (5.4) as defining a
noneffective (and intransitive) action of the general linear group GL (2) on R2. We
may apply the second agorithm for computing the required Maurer—Cartan forms,
leading to the three 1-forms (3.12) that annihilate the global isotropy subalgebra.

We substitute the compatible lift formulae 6 = éu for the Oth-order moving
coframe, which is now A4y = (j 6; ) into (3.12), leading to the restricted

moving coframe forms

. buypdx  do—udy+yu,dzr do
nl:a—uw’ 2= a—uy 8
(5.12)
A_’yda—ocd'y e da
773_ (S(O[*’Uf}/) I 774_ .

The first dependency between 7; and 74 leads to the reduction § = (o — uy) /uy.
Substituting into 73 leads to a second dependency, and the resulting normalization
yields o = y(u — 2u2 /u,, ). At this stage, even though we have not normalized
the final parameter ~, it no longer appears in the coframe, which coincides with
our earlier one, (5.10). It does, of course, occur in the final moving frame lift,
which is obtained by multiplying the matrix A, in (5.9) by ~. However, v plays
no other role in the problem, and merely reflects a final indeterminacy stemming
from the ineffectiveness of the group action. The main point in this solution
method is that one does not have to explicitly implement an effective action, as
was done in the original lift (5.5), in order to solve the problem. Indeed, in more
complicated examples, it may be relatively straightforward to write down the
compatible lift for an ineffective group action, whereas doing the same for the
effectively acting quotient group G /Gy may be considerably more complicated.

EXAMPLE 5.2. Consider the elementary similarity group G = Rt x R? acting
transitively on M = R? via

A (z,u) — (ax + a,au +b). (5.13)

For the base point zp = (0,0), the associated moving frame of order O is the
lift with @ = z, b = u. The Maurer—Cartan forms {do/«, da/a,db/a} are
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pulled back to provide the Oth-order moving coframe, whose horizontal (or, more
precisely, non-contact) components are

d_a B d_x u, dz

= s 2 = 5 N3 =
[0 [0 [0

(5.14)

Thereis a single linear dependency 73 = I 12, but the resulting invariant 7 = u,,
does not depend on the remaining group parameter, and hence cannot be used
to normalize it. To proceed further in such cases, we work in analogy with the
preceding intransitive case. Here the intransitivity is on the first-order jet bundle,
and is an indication of the fact that this particular group exhibits the pathology of
‘pseudo-stabilization’ of its prolonged group orbits [38]. We therefore introduce
an additional invariant 1-form du,, whose horizontal component is

Na = Uy, dz = Knp.

The resulting dependency leads to the lifted invariant K = au,, which yields
the desired normalization « = 1/u,, and the second-order moving frame. The
associated invariant coframe is

N2 =na=uzdr, M =—Jn, n3 = Ing, (5.19)
yielding two fundamental differential invariants

I =g, J = Uy Py (5.16)
The higher-order invariants are found by differentiating .J with respect to 74 =
Uy, 0 ~ du,, SO that a basic fourth-order invariant is

K:d_t]:idj_uzzzz

—— = —2J2
du, Uy, dz u2,

Note that d//du, = 1, so that differentiating I produces nothing new. Thus,
in this case, we find two fundamental differential invariants, and require three,
namely (I, J, K), to parametrize the classifying curve that solves the associated
equivalence prablem. We conclude that the phenomenon of pseudo-stabilization
of group orbits is reflected in the moving coframe procedure by the premature
appearance of differential invariants, whose differentials are required to finish
the procedure. See [38, 39] for further discussion.

Remark. Interestingly, if the scaling acts differently on 2 and u, so the group
is
A (z,u) — (ax + a, oFu+ b), (5.17)

for k # 1, then pseudo-stabilization does not occur. Such cases can be readily
handled via our basic method without any such intransitive normalizations.
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6. Reparametrization Pseudo-Groups

The classical applications of moving frames to curves and surfaces in Euclidean,
affine, and projective geometry, cf. [6, 8, 19], can all be readily implemented
using the moving coframe algorithm. In each case, we consider the reparametriza-
tion equivalence problem for submanifolds, so that the underlying transformation
group is the Cartesian product of an infinite Lie pseudo-group, namely the local
diffeomorphism group Diff(X) of the parameter space, and a finite-dimensional
Lie group acting on the manifold M. In this case, in addition to the Maurer—
Cartan forms for the group, one also includes the 1-forms defining the diffeomor-
phism pseudo-group. One can then proceed to reduce and normalize as before.
For simplicity, we just deal with planar curves, although extensions to surfaces
and curves in higher dimensional ambient spaces can also be handled without
significant further complications.

EXAMPLE 6.1. Euclidean geometry of curves. The most well-known classica
example is the reparametrization equivalence problem for curves in the Euclidean
plane, introduced in Example 2.1 above. In this case, we are dealing with a
finite-dimensional group, the Euclidean group E(2) on the plane, together with
the pseudo-group Diff(1) consisting of al smooth (local) diffeomorphisms of
the line representing the change of parameter. Thus, the entire pseudo-group
G = Diff(1) x E(2) acts on the total space M = R x R? with coordinates
(t,X) = (t,z,y). For the Euclidean component, we use a compatible lift

c0s¢ —Shng =z

R
Ao(z,y,¢) = (0 )1(> = | sing cos¢ y (6.1)
0 0o 1

and compute the pull-back of the associated Euclidean Maurer—Cartan forms

R7'dR R ldx )

= A1dAg =
¢ 0 -0 ( 0 0

0 —d¢ cos¢pdr+singdy
=|dp 0O —singdx+coseody |. (6.2)
0O O 0

On the other hand, the pseudo-group Diff(1) is characterized by the invariance
of the canonical 1-form o d¢ on the frame bundle F(R), cf. [26], and, hence, we
include this additional 1-form in our moving coframe formulation. Restricting
these four 1-forms to a parametrized curve (z(t),y(t)) leads to

m = do, o = (2 COS¢ + y; SiNg) dt,

6.3
3 = (—x;SiN$ + y, COs¢) dt, na = o dt. 63
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Now 7, = Jing and n3 = Jong are the linear dependencies, with associated lifted

invariants
¢ COSp + y SiNg —x¢SiN® + Y COSP
Jl = 3 J2 = .
g g

We normalize J1 = 1, J» = 0 by setting

¢ =tan (y/zy), 0= zZ + yZ. (6.4)

This immediately produces the first-order moving frame

1 Te —Yt x
R=—+ Coa=("). o=+ 65
,/x§+y§<yt wt) <y> o

The canonical 1-form o dt has been reduced to the fundamenta arc length form

ds = y/a? + y?dt for the Euclidean group. Substituting into (6.3), we are left
with afinal set of horizontal 1-forms

m=rna,  p=ma=0ds=/af+yfdt, 3=0. (6.6)

Here

TeY — TeelYe  Xe N Xt
= CESTEE = TXE Xs A Xgs (6.7)
is the fundamental differential invariant for the Euclidean group — the curva-
ture of the plane curve. All higher-order differential invariants are obtained by
successively differentiating the curvature with respect to arc length.

The classical Frenet equations for curves in the Euclidean plane are reformu-
lations of our final moving frame formulae. (See Section 7 below for more details
on the connection with the classical theory.) The rotational component in (6.5) is
traditionally written as R = (e, €2), where e; is the unit tangent and e, the unit
normal. The translational Maurer—Cartan forms n, = ds, n3 = 0 are computed

ds ) which reduces to the

0
first Frenet equation dx/ds = e;. Similarly, the Maurer—Cartan matrix

0 — 0 —
RldR:< ;)ds implies that ?j—R:R-< “).
K S

by the original formula as the entries of R~1dx = (

k 0

The columns of the latter matrix differential equation complete the system of
Frenet equations:
X
Koo, Bse P g (68)
Finaly, the Maurer—Cartan structure equations (3.2) for the Euclidean group
reduce to the classical Frenet—Serret equations for curves. See [13; p. 23], [19;
p. 20], for details.
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Remark. One can also compute, as in our original example, the full moving
coframe forms on the jet bundle, leading to a corresponding set of fundamental
Euclidean-invariant contact forms.

Remark. Actually, since we are dealing with the full pseudo-group Diff(1)
consisting of all diffeomorphisms of R, the final 1-form 14 = o dt in our moving
coframe (6.3) is, in fact, irrelevant — one could perform the same normalization
(6.4) of the angle ¢ based on the dependency between 7, and 73, the lifted
invariant now being J>/J; which is normalized to zero by setting J, = 0,
leading to the same final moving coframe and curvature invariant. Thus, the
calculations for parametrized curves and surfaces can, in fact, be done without
invoking the diffeomorphism pseudo-group. Nevertheless, in al examples we
have treated, the inclusion of the canonical 1-form n4 on the parameter space
leads to an immediate identification of the final invariant arc length element. More
generally, the restricted reparametrization equivalence problem does require the
introduction of suitable 1-forms that characterize the pseudo-group of alowed
reparametrizations.

Remark. The problem of Euclidean equivalence of curves with fixed para-
metrizations, as discussed in Example 2.1, can also be formulated and solved in
the moving coframe context. Now we are in the intransitive framework, where
the parameter ¢ provides a scalar invariant. Consequently, we retain the first three
1-forms n1, 172, n3 in (6.3), but replace n4 by dt to form the moving coframe. We

normalize J; = 0 as before, but now J, = v = ,/xf + y? forms a first-order
differential invariant — the speed of the particle. The final moving frame has
m = Kdt, np =0, 13 = vdt, ns = dt, where K = z,yy — xuys = vk IS
a second-order differential invariant. The higher-order differential invariants are
found by differentiating with respect to ¢. Note that the arc length ds = v dt is
also an invariant 1-form, being an invariant multiple of d¢ and, hence, one can,
without loss of generality, apply the arc length derivative d/ds to produce the
higher-order differential invariants instead. Thus, in this case, a complete list of
differential invariants is provided by v, x, and their derivatives with respect to
arc length.

EXAMPLE 6.2. The equi-affine geometry of curves in the plane is governed by
the special affine group SA(2) = SL(2) x R?, acting on M = R? according to

g: X— AX+a, xeM, AcSL(2), acR2 (6.9)
We shall adopt a vector notation for the matrix A = (a3) € SL(2), so that the
column vectors are subject to the unimodularity constraint

aNpB=1 (6.10)
It will be computationally convenient not to explicitly implement the unimodu-
larity constraint (6.10) by solving for one of the parameters, but retain it as an
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additional constraint that is to be respected during the course of the calculation.
This method, i.e., treating a subgroup of a larger Lie group via a collection of
algebraic constraints, rather than parametrizing it directly, has general applica-
bility, and can be readily implemented as is done in this particular case.

The Maurer—Cartan forms are computed directly as in Section 3, leading to

n1 = a Ada, 12 = B A da, u3 =B ANds,

(6.12)
1 = aANda, v, =B ANda
Note that the unimodularity constraint (6.10) implies that
aNdB =06 Ada, (6.12)

which means that the matrix of Maurer—Cartan forms . = A~ dA must be trace
free.

Choose the base point to be xo = 0. Solving the compatible lift equations
X = g-Xo = ayields the Oth-order moving frame, which sets a = x. Substituting
into the Maurer—Cartan forms (6.11), we find that, for a parametrized curve x(t),
the forms vq, 1, restrict to the following two horizontal forms

m = (a A X)dt, n2 = (B A X¢)dt. (6.13)

Their ratio produces the lifted invariant (a A x;) /(8 A X¢), which is normalized
to O by setting

a = A Xy, (614)

for some scalar parameter A\. Substituting (6.14) into the first Maurer—Cartan
form p1 = a A da, leads to the restricted form &3 = A\2(x; A Xy) dt. Assuming
Xt A\ Xt # 0, the latter form can be normalized to equal —n, by setting

—BAX = )\Z(Xt ANXg), oOf B= A2y + pXe, (6.15)

for some scalar 1. However, applying the unimodularity constraint (6.10) to the
normalizations (6.14), (6.15), we deduce that A3(x; A x;;) = 1 and, thus,
A= _ (6.16)
X A Xy '

Note that (6.15), (6.16) reduce the form 1), to be minus the equi-affine arc length
form

ds = \3/ X¢ A\ Xgt dt. (617)

Furthermore, substituting (6.15), (6.16) into the second Maurer—Cartan form, we
find it reduces to a multiple of £, = ds, soO

& =P Nda = Jds,
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where the lifted invariant

X¢ A Xt

J = (% A xe) Y3 + 3(x; A Xe) 43

is normalized to zero in the obvious manner. Therefore, the final moving frame
is given by

_dx X¢
a_dS_\s/Xt/\Xtt7
a=x. (6.18)
8= @ _ Xt (Xt A Xirt) Xt

ds2 — (X; AX)?3 3(Xe A Xy)P/3
The final Maurer—Cartan form becomes
{3=pBNdB = rds,
where

(Xe A Xeger) + A(Xer A Xeae) 5(x¢ A Xttt)z
= Xss N\ Xsgs = o 6.19
" 3(Xt A Xtt)5/3 9(Xt A Xtt)8/3 ( )

defines the equi-affine curvature. As usual, al higher-order differential invariants
are obtained by differentiating x with respect to the equi-affine arc length ds.
This reproduces the basic invariants of the equi-affine geometry of curves [19];
see also [5] for applications in computer vision.

As with the Euclidean case, we recover the classical Frenet equations as
simple reformulations of the final moving frame formulae. We identify the linear
part

A= (elan) - (X57Xss)

of the final moving frame with the equi-affine frame at a point x(¢) on the
curve, so that 1 = X, is the unit affine tangent vector, whereas e, = X,
is the unit equi-affine normal. Combining this with the Maurer—Cartan matrix

A~1dA = (: (l)) ds leads to the complete Frenet equations of planar equi-
affine geometry [13; p. 27]:

dx de; de;

& — el7 & - eZ7 dS = K€. (620)

See [19; Sect. 73] for further details.

EXAMPLE 6.3. The most complicated example treated in the literature [7], is
the projective geometry of curves in the plane. Here the group is SL(3), acting
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on M = RP? according to

(ax+ﬂu+’y )\x+,uu+y)

g:(x7u)}—> ) )

pr+ou+71T prt+ou-+T
a fB v

detA=det| X p v|=1 (6.21)
p o T

For simplicity, we deal with curves which can be expressed as the graphs of
functions, v = u(x), athough the general case of parametrized curves can be
handled via the same sequence of normalizations. Choose the base point to be
zo = (0,0). Solving ¢ - (0,0) = (x,u) leads to the Oth-order moving frame in
the form*

a B xT 1 \ \
A=| 2w owr |, wherea = 1ETPA =) Falup = A0)] oy
T on)
p o T

The 1-forms in the first-order moving coframe are the entries of the pull-back of
the Maurer—Cartan matrix A~ dA, which we label (in row order) as s, ... ,7s,
the final entry being ng = —n1 — 75, reflecting the unimodularity of A. For sim-
plicity, we just indicate the salient features of the computation without dwelling
on the details. (These computations were done with the aid of some MATHEMATICA
routines written for this purpose.) The first normalization comes from the ratio
n3/1e, Whose vanishing requires

p=o(u—xu;) — fuy.
Plugging this normalization back into the moving coframe forms and recomput-

ing, we find that we can normalize ng = 72 by requiring
-1/3

B=o0x—u,,

In the next stage, we set 75 to zero by normalizing

1/3
oo T(pu — )\)uzé | UglUagg — 3u?

T
4/3

At the next step, we can no longer just look at 1-forms depending only on
dr — these do not produce any further invariants. However, we discover that
ng = Jnz + na and, hence, the rather complicated lifted invariant J can be
normalized to zero, leading to

Uy Upps — 3u§z + Uy 18,07'u%3 — Py

5/3 )
37'u$é

A= pu—

* In this example, we have chosen to implement the unimodularity constraint explicitly.
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Pz — 3 - 5
uzzu:m::m: U

TxrT*

Next, the normalization n, = —n7 requires

| Ls 2 3
T= B where Ls = us Uprresr — POUprlizrrlzprs + 40US,.,..
xrxr

The final normalization
_ Mg+ PLf

3¢/aut, L1

comes from setting n; to zero. The final moving frame is explicitly given by

where Mg = (tuge Dy — gzs)Ls

At p(rug —uw) 3 5/2u

_ AT AR ) 2 3 S — _ 13 —
a w o\ e B=xp—uy’", =z,
3 uMg + BGug iy, LsMe + K4L§ Uy
= ) W=u0 — —0¢, V =UT,
34t LL ugy
M2 + PyL2 M Y3
p = M6t Ta%s 0:74/5 R (6.23)
3\3/ 4u;‘ng Su:m: L5 3\3/ Zuiz
The corresponding final coframe has
d VEs 4
e = — = S — s
12 U 7 3 \3/§um
54u2., ’ '

which determines the well-known projective arc length element, while ny = ng =
—k ds yields the projective curvature invariant

 6uyy LsDy Mg — TME — 325, LsMg — P4L2
- ng 73 .

Again, al higher-order differential invariants are found by differentiating the
projective curvature x with respect to the projective arc length ds. This relatively
straightforward computation reproduces the moving frame and the fundamental
invariants for the projective geometry of curves. Cartan, [7], presents a variety
of aternative methods to arrive at the same basic result. See also [38] for aLie-
theoretic approach, and Wilczynski [49], for an approach based on differential
operators.

K

(6.25)
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In the classical moving-frame method, one identifies the columns of the 3 x 3
moving frame matrix A = (P2, P1,P) as homogeneous coordinates for three
points in the projective plane RP?, the last column P = 7- (2, u, 1)” representing
the point on the curve. The Maurer—Cartan matrix

0 1 O
AldA=| -k 0 1 |ds
-1 —x O

reduces to the full set of projective Frenet equations,

dp = Py, dPy = —kP + Py, dP, = —P — kP1. (6.26)
ds ds ds
See also [13; pp. 33ff.] for applications to projective curvature evolutions and

computer vision.

7. Connections with the Classical M oving Frames Method

Our initial identification of a moving frame as an equivariant lift from the under-
lying space to the Lie group will be familiar to readers of the modern formu-
lations of Griffiths [18], and Jensen [23]. However, since this point of view is
not completely standard, it is worth reviewing how it relates to the more usual
geometric approaches, e.g., [19, 50]. Traditionally, a moving frame is realized
as a collection of vectors (or, in the projective case, points) in the underlying
space. The reason that this works in the classical cases, including Euclidean,
affine, and projective geometry of submanifolds, is that it is possible to identify
the components of the group itself with objects in the underlying transforma-
tion space. For example, in the Euclidean case, one identifies a Euclidean group
element (R,a) € E(m) ~ O(m) x R™ with a vector a € R™, together with an
orthonormal frame determined by the columns of the orthogonal matrix R. The
Oth-order moving frame, then, uses the lift a = x, where x is a point on the
submanifold N ¢ R™, and the orthogonal matrix is identified with an orthonor-
mal frame in the ambient space based at the point. The remaining ambiguity
in the frame is up to orthogonal transformations, which must then be resolved
in an invariant manner. Similarly, in the equi-affine case, one identifies a group
element (A,a) € SA(m) ~ SL(m) x R™ with a vector a € R™ together with
a unimodular frame determined by the columns of the matrix A. Again, the
Oth-order moving frame takes a = x to be a point on the submanifold, and the
unimodular frame becomes a set of vectors based at the point x. In both cases,
the moving coframe method introduces the Maurer—Cartan forms p = (o, v),
where o = A~1dA, v = A~1da, leading to the initial structure equations

dx=A4- v, dA=A4 0. (7.1)
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The moving coframe forms satisfy the usual Maurer—Cartan structure equations
(3.2), which, in the classical cases, become the fundamental Cartan structure
equations for Euclidean or affine geometry.

Usually, one bypasses the Oth-order moving frame entirely, and proceeds
directly to the first-order moving frame, in which the frame at the point x € N
is split into two parts, so that (using column vector notation)

A= (E,F)=(e,....,e, f1,... . f_n), (7.2

where the first n = dim IV frame vectors form a basis for the tangent space 7'V
to the submanifold, while the remainder are left arbitrary, subject to the entire
frame satisfying the proper orthonormality or unimodularity constraint. Thus, in
the Euclidean case, the vectors {fy, ..., f,,—,} form an orthonormal basisfor the
normal spaceto IV, whereas in the equi-affine case they are left arbitrary subject
only to the condition that the determinant of the matrix (7.2) be unity. If we
parametrize the submanifold by x(¢1,...,t,), then the most general first-order
moving frame (7.2) will have the form

E=(e,...,e,) =V B, (7.3)
where
OX
= = — 7.4
V (V17 7Vn)7 Vi 8tz" ( )

is the m x n Jacobian matrix, whose columns span the tangent space to NV, while
B isaninvertible n x n matrix. (In the Euclidean case, the matrix B is restricted
so that the columns of E are orthonormal, leaving an O(n) ambiguity.)

Let us show how this preliminary normalization to afirst-order moving frame
is an immediate consequence of our general normalization procedure. Using the
Oth-order moving frame lift, the pull-backs of the subset of Maurer—Cartan forms
given by the entries of v = A~1da can be written in matrix form as

v=Atldx = A v dt.

Precisely n of the m 1-forms v are linearly independent and, hence, we can
normalize so that the last m — n of these forms vanish. This requires that the
matrix A satisfy the block matrix equation

A7y = b (7.5)
0/’ '

where D is a nonsingular n x n matrix, while O denotes the zero matrix of size
(m—n) x n. Writing A = (E, F') in block form (7.2), we see that (7.5) requires

V=E-D, oo E=V-C, whee C=D71
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thereby recovering (7.3). Thus, we can see that in such cases, the first-order frame
recovered by a Oth-order normalization coincides with the traditional first-order
frame involving tangent and normal directions.

Similar considerations apply to the projective case. According to Cartan [7],
the Oth-order frame can be identified with a set of n + 1 linearly independent
points in the projective space which are identified with the columns of the matrix
A € SL(n+1). The Oth-order lift, asin (6.22), amounts to identifying one of the
columns with the point on the curve x. More precisely, the column is a vector
with n + 1 components, which are interpreted as the homogeneous coordinates
of x.

In more sophisticated versions, one realizes the moving frame on the sub-
manifold N C M as a section of the frame bundle F (M) of M, pulled back to
N, i.e, asection: N — F(M). One can aso try to handle cases that do not
so readily fit into this simple framework by reinterpreting them as sections of
a suitable higher-order frame bundle 7% (M) over N, cf. [26]. Although this is
possible for al (regular, transitive) transformation groups, the original geomet-
rica realization has now been obscured, and such a reformulation does not, we
think, offer much insight or help in the explicit implementation of the method.

Consequently, the method of moving coframes includes all the classical con-
structions based on the indicated identification of group elements with geometric
objects on the transformation space. However, once one goes beyond the tradi-
tional cases, such identifications become much less apparent, and, in our opinion,
attempting to mimic the Euclidean, affine, and projective constructions direct-
ly on the transformation space has hindered the development of any significant
extensions of the method. Furthermore, once one steps outside the realm of ‘clas-
sical’ moving frame geometries, one can no longer use the identification of the
first-order frame with tangent and normal directions. Our nontraditional exam-
ples al illustrate this — the first-order frames do not include the tangent spaces
to the submanifolds in any obvious manner, because their naive identification
with subspaces of Euclidean space is not necessarily invariant with respect to the
given transformation group. It is our view that, in order to attain their full range
of applicability, the constructions must be viewed in the purely group- or, more
generally, bundle-theoretic framework that we have presented here and develop
in detail in Part II.

8. Joint Differential Invariants

New applications in image processing and object recognition [35], have demon-
strated the need for classification and computation of the joint differential invari-
ants or, as they are known in computer vision, semi-differential invariants, for
a given transformation group. Specifically, one is given a Lie group (or pseudo-
group) G acting on M and considers its diagona action g - (z%,...,2F) =
(g-2Y,...,9-2%) on the k-fold Cartesan product M>** = M x --- x M.
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Theinvariants I(z%, ..., 2*) of such a Cartesian product action are known as the
k-point joint invariants of the transformation group. Note that for j < k, any
J-point invariant can be regarded as a k-point invariant, in several different ways.
For example, the two-point invariant (z1, z2) produces three invariants on M <3,
namely f(zl,zz,;:3) = I(z1,22) Or I(z1,23) or I(z,23). If I is not symmetric
in its arguments, these in turn lead to 3 further invariants by interchanging the
points. To avoid this trivial extension, we will reserve the term k-point invariant
for ajoint invariant which cannot be written as as one depending on fewer than
k arguments.

Similarly, the invariants of the prolonged diagonal action of G on a k-fold
Cartesian product of jet space (J*)** are the joint differential invariants of &
different submanifolds Vi, ..., N, C M, which we view as a single submanifold
N1 x ---x Ny, of the Cartesian product space M **. In applications, the subman-
ifolds V; = N are identical, but the joint differential invariants are measured at
k different points along the given submanifold.

The method of moving coframes readily adapts to this slightly more general
situation, and immediately provides complete classifications of joint differential
invariants for all of the standard geometric transformation groups.

EXAMPLE 8.1. Euclidean joint differential invariants. Consider the Euclidean
group E(2) acting on the plane M = R2. We consider two-point differential
invariants, corresponding to the Cartesian product action

(X,y)— (R-x+a R-y+a), XyeM, (R,a)c€E_2), (8.2)

on M*? ~ R* Note that the action is intransitive on M *?, with the interpoint
distance

r=|z|, wherez=x-Yy, (8.2

being the fundamental joint Euclidean invariant. (See [48] for a proof that all
Euclidean joint invariants can be written in terms of the elementary two-point
invariants.) We can choose the cross-section to the orbits given by xo = 0,
Yo = (r,0), which leads to the compatible lift with

a=Xx, (rcos¢,rsing)=z=x-y. (8.3)

Therefore, al the group parameters are normalized by the initial compatible lift,
and it only remains to substitute (8.3) into the Euclidean Maurer—Cartan forms
(3.5). The net result is the following system of invariant forms

(1=1z-dx, (o =1z-dy, (3 =r?dp =2zAdz (8.4)

Note that the forms (8.4) include the differential of the joint invariant (8.2) since
rdr = (1 + (2. Therefore, given two parametrized curves

X = X(t)a y= y(3)7 (85)
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the first two 1-forms (8.4) restrict to define two invariant 1-forms

= (Z : Xt) dta 2 = (Z ' ys) dS’ (86)
while ny=1I1m+ Ix2no, where

Z N\ Xt ZAY,
I = Ih=—= 8.7
1 Z'Xt’ 2 Z'ys’ ( )

are the two fundamental first-order differential invariants, which, along with
the original joint invariant (8.2), form a complete system of first-order joint
differential invariants. The vector identity

(a-b)*+ (anh)® = [a*[b[? (8.8)
demonstrates that
J1 = Xt _ 1+ ()2
Z - X¢ r

isalso ajoint differential invariant, and hence (in the orientation-preserving case)
one can replace the 1-forms (8.6) by the two Euclidean arc-length forms

w1 = J]_ N = |Xt| dt, wo = Jz 2 = |y8| ds. (89)

THEOREM 8.2. Every two-point Euclidean joint differential invariant is a func-
tion of the interpoint distance » = |x — y| and its derivatives with respect to the
two arc length forms (8.9).

For example, to recover the Euclidean curvature x1 = |x;|~3(x; A Xy;) of the
first curve, we differentiate

oL zZAXy  (ZAX)[(Z-Xu) + %]

o (z-x)? (z-%)3
_ (Z/\Xtt)(Z-X(tZ) ‘Xt()i/\ Xt)(Z-Xtt) —I]_Jf

_ (e A x|z

Z w2 — IJ} = kyr? — [LJZ,
AL

where we have used the first of the following equivalent determinantal identities

(anb)(c-d)+ (bAac)(a-d)—(anc)(b-d)=0,

(anb)(cnd)+ (bAc)(and) —(anc)(bad)=0. (8.10)
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EXAMPLE 8.3. Equi-affine joint differential invariants. A more substantial ex-
ample is provided by the two-point differential invariants for the specia affine
group SA(2) = SL(2) x R?, acting on M = R2. The Cartesian product action

(X,y) — (Ax+a,Ay+a), x,yeM, AeSL(2), acR? (811

istransitive on M *2. Asin Example 6.2, we use the vector notation A = (a 3) €
SL(2), wherea A B = 1.

In view of (8.11), we can choose the base point xo = 0, Yy, = (1, 0), noting
that the diagonal A = {x =y} ¢ M*? isasingular two-dimensional orbit. This
leads to the compatible lift with

a=x, a=Z=X-Y. (8.12)

Substituting into the Maurer—Cartan forms (6.11), we find that, for a pair of
parametrized curves as in (8.5), the following horizontal forms

(Z A X¢)dt, (B A X)dt, (zNy,)ds, (BAY,)ds,

the first two being the pull-backs of 14,1, and the latter being that of v1 — 1,
vo— 2. Generically (i.e., provided x—y is not parallel to x;) we can normalize the
second form to zero, leading, in view of (8.12) and the unimodularity constraint,
to

X
ZAX

8= (8.13)

which, combined with (8.12) provides the complete moving frame. The remaining
1-forms are

m=2zAdx = (ZAX)dt, m=zANdy = (zAYy,)ds, (8.14)

which provide the two fundamental invariant 1-forms, and

773:,6/\dy={u]ds, ?74=,6'/\d,8:[

Xt/\xtt] .
Z N\ X

(Z A %¢)?

The resulting linear dependencies provide the two basic differential invariants,
consisting of a single first-order invariant

X¢ NY
[=—" "5 8.15
ZAx)EAY) (819
and the first of the two second-order invariants
Xe A Xgt Y AY
_ _ Js ss_ i
St P Ay (8.16)
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Clearly J, can be obtained from J1 by the interchange symmetry x < y. Alter-
natively, we use (8.10) to compute

0L 2 _ (X ANY)(ZAX) — (Xe NY)(ZAXit)
om (ZAX)3(zAYs)

_ e AX)ZAY) _ g

T @Ax)izay)

so that (8.16) are equivalent to the invariant first-order derivatives of the single
basic joint invariant 1.

THEOREM 8.4. Every two-point equi-affine joint differential invariant is a func-
tion of the fundamental first order invariant (8.15) and its derivatives with respect
to the two ‘joint arc length’ forms (8.14).

The reader is invited to try to express the ordinary affine curvature in terms of
the derivatives of I. The same method readily extends to multi-point invariants
of more general groups, including the projective group, as well as joint invari-
ants for surfaces and higher-dimensional submanifolds. Additional examples and
applications will appear elsewhere.

9. Pseudo-Group Actions

The next case is that of infinite Lie pseudo-groups, cf. [10, 28, 30, 42, 43].
See also [29, 45], for classical results on differential invariants of Lie pseudo-
groups, and Kumpera [27], for a modern treatment. These are readily fit into
the same general framework as follows. Assume, initialy, that the pseudo-group
G acts transitively on the space M. By definition, a Lie pseudo-group consists
of an infinite-dimensional family of invertible (local) transformations that form
the general solution to an involutive system of partial differential equations. We
can always characterize the transformations ¢»: M — M in G as the projections
of bundle maps ¥ : B — B, defined on a principa fiber bundle B — M, that
preserve a system of 1-forms ¢ = {(1, ..., (x} defined on B:

U*¢ = ¢ 9.9)

Theforms ¢ will play the role of the moving coframe forms for the pseudo-group,
and the fiber coordinates of the bundle B will play the role of the undetermined
group parameters. Of course, in this case ¢ does not form a full coframe on
B. (It cannot, because the symmetry group of a coframe is necessarily a finite-
dimensional Lie group [38].) A compatible lift, or moving frame of Oth-order,
is just an arbitrary section pp: M — B. Such a section defines a corresponding
moving frame p = pgot: X — B on any parametrized submanifold .: X — M.
With these provisos, the normalization and reduction procedure proceeds as in
the finite-dimensional situation.
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EXAMPLE 9.1. Consider the pseudo-group G consisting of (local) diffeomor-
phisms on M = R? of the form
u
f@)
The Lie algebra of G is generated by vector fields of the form

i=flr), a= 9:2)

Vi = h(2)0; — uh/(2)0,.

This pseudo-group was first introduced by Lie [28; p. 353], [32], in his classifica
tion of infinite-dimensional pseudo-groups acting on the plane. We are interested
in the action of G on curves which, for simplicity, we assume are graphs of
functions u = u(z).

The first step is to construct a bundle 5 and 1-forms on the bundle whose
invariance characterizes the pseudo-group transformations. In this case, away the
axis u = 0, the group transformations (9.2) form the general solution to the
defining system of partia differential equations

2y = 07 Zx = —, Wy = —, (93)

forz = z(z,u), u = w(x,u), cf. [46; p. 325]. The system (9.3) defines a subman-
ifold ®: R — JY(R? ,R?) of the first jet space, parametrized by the coordinates
(z,u, z,w,w,). The pull-backs of the basic contact forms on J(R?, R?) to the
equation submanifold R are given by

0, = d*(dz — z, dx — 2z, du) = dz — “ dz,
v (9.4)
0, = ¢*(dw — w, dx — wy, du) = dw — w, dz — Y du.
U

The Pfaffian system
‘9z = O> 9w = 0,

with independence condition dx A du # O is involutive on R, cf. [3, 9, 38].
Indeed, the first Cartan character is s; = 1, as it should be. Following a genera
procedure* presented by Kamran [24], we set dz = dw = 0, which amounts
to pulling back to a level set of R where u = ug and w = wg are constant.
Choosing wg = 1 we find that the contact forms (9.4) reduce to the invariant
1-forms

du

(1= —udx, (2= —w, dr — —
u

* Interestingly, this method is similar to our construction of the Maurer—Cartan forms in the
finite-dimensional case.
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Therefore, the desired bundle B ~ M x R will be coordinatized by z, v, and
the remaining jet coordinate, which we rewrite as a = w, for clarity. In other
words, the Oth-order moving coframe forms for the pseudo-group (9.2) will be

(1 =udz, (= adr+ %L (9.5

Restricting to a curve u = u(z), and letting n; denote the horizontal component
of ¢;, we have the relation

M2 = (ua + uy) dr = (ua + ug)m
and so we normalize o = —u, /u. Thus, the final invariant moving coframe is

G, =TT (96)
the first providing a pseudo-group invariant arc length form, and the latter an
invariant contact form. Note that there are no dependencies among these 1-forms
and, hence, there are no differentia invariants in this example. Indeed, it is not
hard to see that the prolonged actions of G are transitive on every jet space J* M,
justifying the preceding statement.

EXAMPLE 9.2. We now extend the pseudo-group discussed in the previous
example to an intransitive action obtained by augmenting the transformation
rules (9.2) by an additional invariant coordinate y, so that the pseudo-group now
has the form

u
fx)
This pseudo-group was introduced by Lie [31; p. 373], in his study of second-
order partial differential equations integrable by the method of Darboux. In his
paper on group splitting and automorphic systems, Vessiot [46], used (9.7) as one
of two principal examples illustrating his method. More recently, Kumpera [27]
again employed this pseudo-group to illustrate his formalization of the Lie theory
of differential invariants. Now we are interested in the equivalence problem and
differential invariants for surfaces u = wu(z, y) under the pseudo-group (9.7). The
Maurer—Cartan forms are given by supplementing (9.5) by an additional coframe
element (o = dy. The linear dependency

:y, ’a:

(9.7)

|

u
nr=—wa+w0m—;f®

again produces the normalization ov = —u, /u, along with the basic first-order
differential invariant

u

=2
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The final invariant moving coframe is

du — u, dz

Co = dy, (1 =udz, G = (9.8)

u
The invariant total differential operators associated with the first two horizontal
forms are

0 0 1
— =D — ==D,. 9.9
96" aa ©9
Applying them to the fundamental invariant I produce the second-order differ-
ential invariants
. Uy — u2

J1 = 5

Y 7, Ullgy — Ug Uy
b 2= u3 )

u
agreeing with the classical formulae. All higher-order differential invariants are
obtained by successively applying the invariant total derivative operators (9.9)
to the invariant 7. Similarly, the classifying surface associated with a generic
surface u(x, y) is parametrized by the four invariants (v, I, Ji1, J2); two surfaces
are congruent under a pseudo-group transformation if and only if their classifying
surfaces are identical. Surfaces with higher-order* symmetry occur when I is
a function of y only, so that u(z,y) = f(z)g(y) is multiplicatively separable.
Finally, the most general second-order partial differential equation admitting (9.7)
as a symmetry group can be written in the form

2
uu. —Uu —
H (y e ue,“””“y) =0, (9.10

These are the class of equations considered by Lie [31; p. 374].

In his classification of planar second-order partial differential equations which
admit symmetry pseudo-groups, Medolaghi [34] treats the same example, but
rewritten in a dlightly different coordinate system. The group transformations
take the form

T=f(x), y=y+[f(z), a=u (9.12)

Applying the same method (or merely changing variables) leads to the invariant
moving coframe

(1=e¢ Ydz, (o= Y g+ dy, (3 = du.

Uy

The basic differential invariants are

u, I =uy, J1 = Uyy, Jo2 = €Y (Uylgy — Uzlyy),

* See[15] for more details on higher-order submanifolds, including an interpretation as ‘nonre-
ducible partially invariant solutions' to partial differential equations, cf. [41].
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the latter two being obtained by applying the invariant differential operators
Dy, e’(Dy — (ug/uy)Dy),

to I. This recovers Medolaghi’s form [34; p. 249],
H (u, y, Uy, €7 (Uylgy — Ugliyy)) =0 (9.12)

of Lie's equation (9.10). The pseudo-group (9.11) is the second of nine different
pseudo-groups acting on a three-dimensional space that are isomorphic to the
diffeomorphism pseudo-group Diff(1), as classified by Medolaghi [34; p. 242].
The other eight pseudo-groups can be handled by the same method, reproducing
the differential invariants and invariant differential equations catalogued there.

EXAMPLE 9.3. Consider the infinite Lie pseudo-group

[ @)y +g'(x)

fi)
acting on the space M ~ R3 with coordinates (z,y, ). Here f(z) and g(x) are
arbitrary smooth functions of a single variable x. The case ¢ = 0 corresponds
to the third of Medolaghi’s pseudo-groups [34]; the present generalization was
introduced by J. Pohjanpelto (personal communication). The pseudo-group trans-
formations can be characterized in terms of an involutive system of invariant
1-forms on a rank five bundle B — M, with coordinates (z,y, u, o, 3,7, 6, ).
These can be found by a similar method to that used in Example 9.1:

T=f(x), g=yf(x)+g(x), a=u+ (9.13)

C]_:—Oédm, C4:———d$,
[0

(2= —adytuade,  (s=—+_—dy—

o= —du—fdr—dy, =2~ Sds

« «

It is easy to check that a local diffeomorphism W: B — B satisfies ¥*(; = ¢,
i=1,...,6,if and only if it is a bundle map whose projection ¢: M — M has
the form (9.13).

We now consider the equivalence problem for surfaces v = u(x, y) under the
pseudo-group (9.13). In order to invariantly normalize the bundle parameters, we
replace du by its horizontal component u, dx + u, dy, which leads to the linear
relation

n3 = Jiny + Jamnp,

among the horizontal components »; of ¢;. The lifted invariants are

Jl:um—i-ﬁ—i-u(uy—i-'y)’ Jzzuy—l-'y'

« «
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Both J1 and J> can be normalized to zero by choosing 3 = —u, and v = —u,,
which defines the first-order moving frame. Substituting these values in the last
two moving coframe forms yields

U O+ ugy Ay u(ugy A+ uy, dy) 6 —ue

s — dz — = dy
« « (% (%

Ugy + Uy + UPuyy + 6 . Ugy + Ullyy + €
— 1 —

= 2
o2 2 N2,

_(uzy—i-a)dx—i-uyydy _ Uay tutyy e
o a?

U
Ne = m -+ ﬁﬂz-

We can normalize the coefficients of 11,7, in both formulae by choosing

2
o= \/tyy, €= —Upy — Ullyy, 0 = —Ugy — 2Ulgy — U Uyy,
which produces the second-order moving frame, given by
A = [ Uyy, B = —ug, V= T Uy,
0= —Ugpy — 2Ullyy — uzuyy, €= —Upy — Ullyy.

Finally, substituting into the last moving coframe form leadsto 1, = — I1n1—I>n2,
where

_ Ullyyy + Usyy + 2uyUyy _ Uyyy
I = . T o R= (9.15)
Uyy Uyy

are the principal differential invariants of the pseudo-group. The fundamental
invariant horizontal 1-forms are
nl:*\/@dxa 7’]2:7\/U—yy(dy—udx)’
so that the invariant total differential operators are
= (D; +uDy),  Di= = D,.
Vlyy vV lyy

As above, these can be applied to the basic differential invariants (9.15) to gen-
erate all higher-order differential invariants.

Dy =

EXAMPLE 9.4. In this example, we show how the well-known equivalence
problem of characterizing second-order ordinary differential equations under the
pseudo-group of fiber-preserving transformations, cf. [22, 38], can be recast into
the moving frame formulation, and thereby solved by our moving coframe tech-
niques. This example indicates a general procedure for reformulating all Cartan-
type equivalence problems, [11, 16, 38], as moving frame equivalence problems
under a suitable infinite-dimensional Lie pseudo-group.
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We consider the trivial bundle M ~ R x R, with coordinates =, u. Let G
denote the pseudo-group of fiber-preserving transformations, i.e., bundle maps
We let G@ denote the associated second prolongation acting on J, cf. [38]. A
(regular) second-order differential equation

A(x, Uy Uy, Ugy) = 0 (9.17)

can be identified with a hypersurface Sa ¢ J. Two such second-order ordinary
differential equations are equivalent if and only if their associated surfaces are
mapped to each other,

9?(S5) = Sa. (9.18)

by a prolonged fiber-preserving transformation ¢@ e G2,

In order to use the method of moving frames we need the structure equations of
the pseudo-group G(?. These can be found by the Cartan prolongation agorithm,
[11, 16, 38], leading to

d¢y = w1 A Ca,
diz = w2 A (2 — (3 A Q1
d(z = (w2 —w1) AG3+ w3 A2 — Ca N,
dCs = (w2 — 2w1) A Ga+wa A QL+ ws A G+ we A (3,
dwy = (we — 2w3) A (1,
dwp = —m2 A (2 — w3 A (1,
dwz = —m1 Ao — T2 A3+ w3 Awy —ws A (1,
Owg = —m3 A (1 — T4 A (3 — 5 A (2 — 3wi A wa—
— w4 A w2 + 3(wz — we) A (a,
Jus = —2m1 A3 — T2 A4 — s A (1 — g A (2 + 2ws A wy — w3 A ws,
Jwg = —2m1 AN —2mp AN (3 — T4 AN (1 — w1 Aws +ws A (1.
The Cartan characters are s; = 5 and s, = 1, the kernel dimension is 7, hence

this differential system isinvolutive. The parametric values of the 1-forms ¢, w,
are determined by introducing the group transformation matrix

o1 0 0 0
0 o7, 0 0

S = 4 4 , (9.19)
0 o300y lo% Yo7 0

a4a2a52 a5a2a52 aeazaiz azaiz

where «;, 3; are the fiber coordinates on the prolonged bundle. Equation (9.19)
parametrizes the structure group corresponding to the action of the fiber-preserving



208 MARK FELS AND PETER J. OLVER

pseudo-group on J; see, for instance, [38; p. 398] for the corresponding group
on J'. The first set of lifted forms are

(1 o1 0 0 0 dx
G2 0 o2 0 0 du — u, dx
(3 N 0 azazagt  azagt 0 duy — gy Oz
Ca 40 ? asapal? aponar’ apan? dugy
Furthermore,
wp O 0 0
0 wy 0 0 .
=S57dS + Q,
0 w3 wo—wy 0
we Ws w4 wo — 2wq

where (2 represents the absorbed torsion terms. The explicit formulas are

_%+a672a3

w1 = <-la
a1 a2
day a3
wp=—+—C1— P20z,
a2
das  azag — as — o’
w3 =—+ 5 31— Bule — Bala,
a2 Qg
2 2
1%, agas + azas — azag — a50s5
wa = —3 dag — B3C1 + 0 250+
« «
1 2
2 2
ag — a5 — [aag a3 — Qg
+ 2 C3 + 3 C47
Oél a1
das a3
ws = — — — dau + BsC2 — 261(3 — [20a — Pswa,
Qg Q7
dag

we = P BaC1 — 261¢2 — 262(3.

We now assume, for simplicity, that the second-order ordinary differential
equation (9.17) is given by the graph of a section o: J* — F; this is equivalent
to assuming that the equation is normal, and solved

Ugr = Q(.CII, u, uz)7 (920)
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for its highest-order derivative. (However, the moving frame method could be
applied without this assumption; doing the corresponding problem for nonnor-
mal equations using the Cartan equivalence approach would be harder.) Pulling
back the Maurer—Cartan forms under the map o amounts to substituting for u..,
according to (9.20) wherever it occurs. We denote the pull-back of ¢; by 7; and of
w; by w;. To apply the moving frame method, we look for dependencies among
the resulting 1-forms. The first of these is

na = Jiny + Jomp + J3n3,

where
_ @ aQ
Jl - (X% (CM, + dx) )
1 0Q  0Q
Jo = Oz% (Oc5 a3 + Iu Oz3au$> , (9.21)
1 0
J3 = — (046 + Q) .
a1 Ouy
Here
d@ _ 0@ 3@ oQ
dr = Oz Tl + Q@uz

denotes the total derivative of @, restricted to the equation manifold (9.20). The
lifted invariants (9.21) can al be translated to zero by choosing

L dQ - 0Q - 9Q

oy = o5 = o = .
dzr’ Ou’ Ouy

We then pull-back the forms ws, wg, leading to

1 «
w5 = — <2ﬁl + @Quuz - a_gQuzuz> N3,
2 mod{nl, 172}.
Quzuz>
az

we = — (Zﬁz + 73,

Trandating the coefficients of 13 to zero in ws and weg gives
1 a3 1
pr = *mQuuz + T“%Quzuz, B2 = *EQuzuw

which then leads to the pulled-back forms
dog (Quz + 2043)
— | M

al a1

w1 =
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doy; a3 1

wy = — — —m+ (—Quzuz> 72,
o a1 200
do —dd—a )

w3 = 3+ (Qu 32 3qu>771+

1 1
+ T]_OZZ (Quuz - O‘3Quzuz) 2+ (EQquc) 3.
At this stage, we have reproduced the system of 1-forms obtained via the Cartan
equivalence method in [22; p. 394]. Further discussion of this example can be
found in this reference.

10. Conclusions

In this paper we have described a systematic procedure for determining moving
frames and invariant differential formsfor very general Lie group and Lie pseudo-
group actions. The moving frame and moving coframe can be used to directly
determine a complete system of fundamental differential invariants and invariant
differential operators for the given transformation group. These, in turn, have
immediate applications, including the solution to equivalence problems, classifi-
cation of symmetry groups, rigidity theorems, construction of invariant equations
and variational principles, and so on. As we have demonstrated, the method not
only readily reproduces all of the standard examples of moving frames known in
the literature, but is also in a form that can immediately be applied to a host of
new and interesting group actions, including intransitive and ineffective actions,
infinite-dimensional Lie pseudo-groups, joint actions, and so on. The theoretical
foundations of our method will be presented in the second paper in this series,
[15]. Additional applications — to differential invariants, to the theory of Lie
pseudo-groups, to automorphic systems, and to computer vision — will be the
subject of subsequent papers in this series. Some extensions that we intend to
investigate include:

(1) The moving coframe method, as described in this paper, parallels the explicit
‘parametric’ approach to the solution of Cartan equivalence problems. Gard-
ner [16], showed how, in such situations, one could perform an ‘intrinsic’
computation, based on the infinitesimal group action on the torsion coef-
ficients, and thereby determine the general structure of the solution. An
interesting question is whether one can implement an intrinsic version of the
moving coframe algorithm.

(2) In [25], an inductive approach to complicated equivalence problems, based
on the solution to a simpler problem based on a subgroup of the full struc-
ture group, was proposed; see also [38]. In histhesis, Lisle [33] successfully
uses a similar idea in his ‘frame method’ for symmetry classification of
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partial differential equations. The inductive approach not only simplifies the
computations, but also provides direct correspondences between the invari-
ants of the two problems. Is there a similar inductive version of the moving
coframe method? For example, does the computation of the moving frame
for curves in the plane under, say, the equi-affine group help simplify the
corresponding projective computation, thereby expressing the projective arc
length and curvature directly in terms of its equiaffine counterparts?

(3) In [5], a new scheme for generating invariant numerical approximations to

differential invariants based on the use of joint invariants was proposed, and
illustrated in the planar Euclidean and equi-affine cases. The computation of
joint differential invariants using the moving coframe method strongly indi-
cates that it could be applied to the general problem of invariant numerical
formulae for more complicated transformation groups. In particular, deter-
mining how joint invariants converge to differential invariants as the points
coalesce would be of great importance.

(4) Animmediate and important application of the moving method would be to

the classification of the differential invariants associated many of the trans-
formation groups arising in physics. As remarked above, to date such clas-
sifications have not been completed, even for some of the most fundamental
groups of physical importance.

Acknowledgements

We particularly thank lan Anderson for inspiration, enlightening discussions, and
provocative comments. One of us (PJ.O.) would like to thank Allen Tannenbaum
and Olivier Faugeras for stimulating remarks on moving frames and differential
invariants in computer vision.

References

1.

Ackerman, M. and Hermann, R.: Sophus Lie's 1884 Differential Invariant Paper, Math. Sci.
Press, Brookline, Mass., 1976.

. Anderson, |. M.: Introduction to the variational bicomplex, Contemp. Math. 132 (1992), 51-73.
. Bryant, R. L., Chern, S.-S,, Gardner, R. B., Goldschmidt, H. L. and Griffiths, P. A.: Exterior

Differential Systems, Math. Sci. Res. Inst. Publ. 18, Springer-Verlag, New York, 1991.

. Buchberger, B.: Applications of Grobner bases in nonlinear computational geometry, in:

J. R. Rice (ed.), Mathematical Aspects of Sientific Software, IMA Vol. in Math. Appl. 14,
Springer-Verlag, New York, 1988, pp. 59-87.

. Cdahi, E., Olver, P. J,, Shakiban, C., Tannenbaum, A. and Haker, S.: Differentia and numeri-

caly invariant signature curves applied to object recognition, Internat. J. Computer ision, to
appear.

. Cartan, E.: La méthode du repere mobile, la théorie des groupes continus, et les espaces

généralig’%, Exposés de géométrie No. 5, Hermann, Paris, 1935.

. Cartan, E.: Lecons sur la théorie des espaces & connexion projective, Cahiers scientifiques,

17, Gauthier-Villars, Paris, 1937.

. Cartan, E.: La théorie des groupes finis et continus et la geométrie difféerentielle traitées par

la méthode du repere mobile, Cahiers scientifiques 18, Gauthier-Villars, Paris, 1937.



212 MARK FELS AND PETER J. OLVER

9.
10.
11
12.

13.

14.
15.

16.
17.

18.

19.
20.

21.
. Hsu, L. and Kamran, N.: Classification of second-order ordinary differential equations admit-

23.

24.

25.
26.
27.
28.

29.

30.

31

32.
33.

Cartan, E.: Les systemes différentiels extérieurs et leurs applications géométriques, Exposés
de géométrie 14, Hermann, Paris, 1945.

Cartan, E.: Sur la structure des groupes infinis de transformations, in Oeuvres complétes,
Part. |1, yol. 2, Gauthier-Villars, Paris, 1953, pp. 571-624.

Cartan, E.: Les problemes d équivalence, in Oeuvres complétes, Part. 1l, Vol. 2, Gauthier-
Villars, Paris, 1953, pp. 1311-1334.

Chern, S.-S.: Moving frames, in Elie Cartan et les mathématiques d’ aujourd’ hui, Soc. Math.
France, Astérisque, numéro hors série, 1985, pp. 67—77.

Faugeras, O.: Cartan’s moving frame method and its application to the geometry and evolu-
tion of curves in the euclidean, affine and projective planes, in: J. L. Mundy, A. Zisserman,
D. Forsyth (eds), Applications of Invariance in Computer Vision, Lecture Notes in Computer
Sci. 825, Springer-Verlag, New York, 1994, pp. 11-46.

Fels, M. and Olver, P. J.: On relative invariants, Math. Ann. 308 (1997), 701-732.

Fels, M. and Olver, P. J.. Moving coframes, |I. Regularization and theoretical foundations,
Acta Appl. Math., to appear.

Gardner, R. B.: The Method of Equivalence and Its Applications, SIAM, Philadel phia, 1989.
Green, M. L.: The moving frame, differential invariants and rigidity theorems for curves in
homogeneous spaces, Duke Math. J. 45 (1978), 735-779.

Griffiths, P. A.: On Cartan’s method of Lie groups and moving frames as applied to uniqueness
and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
Guggenheimer, H. W.: Differential Geometry, McGraw-Hill, New York, 1963.

Heredero, R. H. and Olver, P. J.: Classification of invariant wave equations, J. Math. Phys. 37
(1996), 6414-6438.

Hille, E.: Ordinary Differential Equations in the Complex Domain, Wiley, New York, 1976.

ting Lie groups of fiber-preserving symmetries, Proc. London Math. Soc. 58 (1989), 387-416.
Jensen, G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces, Lecture Notes
in Math. 610, Springer-Verlag, New York, 1977.

Kamran, N.: Contributions to the study of the equivalence problem of Elie Cartan and its
applications to partial and ordinary differential equations, Mém. Cl. Sci. Acad. Roy. Belg. 45
(1989), Fac. 7.

Kamran, N. and Olver, P. J.: Equivalence problems for first order Lagrangians on the line, J.
Differential Equations 80 (1989), 32-78.

Kobayashi, S.: Canonical forms on frame bundles of higher order contact, Proc. Sympos. Pure
Math. 3 (1961), 186-193.

Kumpera, A.: Invariants différentiels d’'un pseudogroupe de Lie, J. Differential Geom. 10
(1975), 289-416.

Lie, S.: Uber unendlichen kontinuierliche Gruppen, Christ. Forh. Aar. 8 (1883), 1-47; dso
Gesammelte Abhandlungen, Vol. 5, B. G. Teubner, Leipzig, 1924, pp. 314-360.

Lie, S.: Uber Differentidinvarianten, Math. Ann. 24 (1884), 537-578; dso Gesammelte
Abhandlungen, Vol. 6, B. G. Teubner, Leipzig, 1927, pp. 95-138; see [1] for an English
trandation.

Lie, S.: Die Grundlagen fur die Theorie der unendlichen kontinuierlichen Transformationsgrup-
pen, Leipzig. Ber. 43 (1891), 316-393; aso Gesammelte Abhandlungen, Vol. 6, B. G. Teubner,
Leipzig, 1927, pp. 300-364.

Lie, S.: Zur algemeinen Theorie der partiellen Differentialgleichungen beliebeger Ordnung,
Leipz. Berich. 47 (1895), 53-128; adso Gesammelte Abhandlungen, Vol. 4, B. G. Teubner,
Leipzig, 1929, pp. 320-384.

Lie, S.: Gruppenregister, in Gesammelte Abhandlungen, Vol. 5, B. G. Teubner, Leipzig, 1924,
pp. 767-773.

Lidle, I.: Equivalence transformations for classes of differentia equations, PhD Thesis, Uni-
versity of British Columbia, Vancouver, 1992.

. Medolaghi, P.:: Classificazione delle equazioni ale derivate parziali del secondo ordine, che

ammettono un gruppo infinito di trasformazioni puntuali, Ann. Mat. Pura Appl. 1(3) (1898),
229-263.



MOVING COFRAMES: I. A PRACTICAL ALGORITHM 213

35.

36.

37.

38.

39.

40.

41.

42.

&R

46.

47.

50.

Moons, T., Pauwels, E., Van Gool, L. and Oosterlinck, A.: Foundations of semi-differential
invariants, Internat. J. Comput. Vision 14 (1995), 25-48.

Olver, P. J.: Classical invariant theory and the equivalence problem for particle Lagrangians.
I. Binary Forms, Adv. in Math. 80 (1990), 39-77.

Olver, P. J.: Applications of Lie Groups to Differential Equations, 2nd edn, Graduate Texts in
Math. 107, Springer-Verlag, New York, 1993.

Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge,
1995.

Olver, P. J.: Pseudo-stabilization of prolonged group actions. I. The order zero case, Nonlinear
Math. Phys. 4 (1997), 99-136.

Olver, P. J,, Sapiro, G. and Tannenbaum, A.: Invariant geometric evolutions of surfaces and
volumetric smoothing, SAM J. Appl. Math. 57 (1997), 176-194.

Ovsiannikov, L. V.: Group Analysis of Differential Equations, Academic Press, New York,
1982.

Robart, T. and Kamran, N.: Sur lathéorie local e des pseudogroupes de transformations continus
infinis I, Math. Ann. 308 (1997), 593-613.

. Singer, 1. M. and Sternberg, S.: The infinite groups of Lie and Cartan. Part | (the transitive

groups), J. Anal. Math. 15 (1965), 1-114.

. Sternberg, S.: Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.
. Tresse, A.: Sur lesinvariants différentiels des groupes continus de transformations, Acta Math.

18 (1894), 1-88.

Vessiot, E.: Sur I'intégration des systemes différentiels qui admettent des groupes continues
de transformations. Acta Math. 28 (1904), 307—349.

Weyl, H.: Cartan on groups and differential geometry, Bull. Amer. Math. Soc. 44 (1938),
598-601.

. Weyl, H.: Classical Groups, Princeton Univ. Press, Princeton, N.J., 1946.
49.

Wilczynski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces, B. G. Teub-
ner, Leipzig, 1906.
Willmore, T. J.: Riemannian Geometry, Oxford University Press, Oxford, 1993.



ﬁl‘ Acta Applicandae Mathematicag5: 127-208, 1999. 127
i\ © 1999Kluwer Academic Publishers. Printed in the Netherlands.

Moving Coframes: II. Regularization and
Theoretical Foundations

MARK FELS* and PETER J. OLVER
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, U.S.A.
e-mail: fels@math.umn.edu olver@ima.umn.edu

(Received: 16 November 1998)

Abstract. The primary goal of this paper is to provide a rigorous theoretical justification of Car-

tan’s method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds.
The general theorems are based a new regularized version of the moving frame algorithm, whic
is of both theoretical and practical use. Applications include a new approach to the construction an
classification of differential invariants and invariant differential operators on jet bundles, as well as
equivalence, symmetry, and rigidity theorems for submanifolds under general transformation group
The method also leads to complete classifications of generating systems of differential invariant
explicit commutation formulae for the associated invariant differential operators, and a general clas
sification theorem for syzygies of the higher order differentiated differential invariants. A variety
of illustrative examples demonstrate how the method can be directly applied to practical problem
arising in geometry, invariant theory, and differential equations.
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Key words: moving frame, Lie group, jet bundle, prolongation, differential invariant, equivalence,
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1. Introduction

This paper is the second in a series devoted to the analysis and applications of t
method of moving frames and its generalizations. In the first paper [9], we intro-
duced the method of moving coframes, which can be used to practically comput
moving frames and differential invariants, and is applicable to finite-dimensional
Lie transformation groups as well as infinite-dimensional pseudo-group actions
In this paper, we introduce a second method, called regularization, that not onl
provides, in a simple manner, the theoretical justification for the method of moving
frames in the case of finite-dimensional Lie group actions, but also gives an alterne
tive, practical approach to their construction. The regularized method successfull
bypasses many of the complications inherent in traditional approaches by con
pletely avoiding the usual process of normalization during the general computatior
In this way, the issues of branching and regularity do not arise. Once a moving

* Supported in part by an NSERC Postdoctoral Fellowship.
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frame and coframe, along with the complete system of invariants, are constructe
in the regularized framework, one can easily restrict these invariants to particula
classes of submanifolds, producing (in nonsingular cases) the standard movir
frame. Perhaps Giriffiths is the closest in spirit to our guiding philosophy; we fully
agree with his statement [12, p. 777], that ‘The effective use of framempes far
beyond the notion that ‘frames are essentially the same as studying connections
the principal bundle of the tangent bundle’.” Indeed, by de-emphasizing the grouj
theoretical basis for the method, which, in the past, has hindered the theoretic
foundations from covering all the situations to which the practical algorithm could
be applied, our formulation of the framework goes beyond what Griffiths envi-
sioned, and successfully realizes Cartan’s original vision [5, 7]. The regularizec
method can be readily used to compute all classical, known examples of movin
frames, as well as a vast array of other, nontraditional Lie group actions. Indeec
the method is not restricted to transitive group actions on homogeneous space
although these form an important subclass of transformation groups that can k
handled by our general procedure.

In general, given a finite-dimensional Lie grodpacting on a manifold\,
a moving frame (of order zero) is defined a&;eequivariant magp: M — G.
Moving frames on submanifoldy ¢ M are then obtained by restriction. This
general definition appears in Griffiths [12], Green [11], and Jensen [14], and cal
be readily reconciled with classical geometrical constructions [9]. It is not hard
to see that an order zero moving frame can only exist when the group actiol
is free and regular. Consequently, the first part of this paper will be devoted tc
developing the theory of moving frames in the simple context of free group actions
on manifolds. We show how a moving frame and a complete system of invariant:
can be constructed via the process of normalization. Normalization amounts t
choosing a cross-sectiocki ¢ M to the group orbits, and computing the group
elementg = p(z) which maps a point € M in the manifold to the chosen
cross-section, s@ - z € K. The resulting map: z — g from the manifold to
the group is the moving frame. With this data in hand, the group action can be
characterized as the local diffeomorphisms which preserve a system of invariar
functions and one-forms that are prescribed by the choice of cross-section and tl
pull-back of the Maurer—Cartan forms on the group via the moving frame. By re-
stricting the invariant functions and one-forms to a submanifold, the solution to the
basic congruence and symmetry problems follow directly from Cartan’s solution
to the general equivalence problem for coframes [8, 18]. That is, the invariant:
and the derived invariants of a submanifold serve to parameterize a classifyin
manifold that uniquely characterizes the equivalence class and symmetries of tt
submanifold under the action of the group.

If the prescribed group action is not free o, then an order zero moving
frame cannot be determined. The strategy then is to prolong the group action t
the jet bundles™) = J'(M, p) of n-jets of p-dimensional submanifolds of the
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underlying manifoldM. Assuming that the groupy acts effectively on subséts
then the prolonged transformation group will act locally freely on an open subse
of J* for n sufficiently large and, hence, one can use the moving frame constructior
described in the previous paragraph to determine a moving frame of orfder
regular submanifolds. In general, the invariants and derived invariants associate
with such a moving frame can be identified with a complete systentrobrder
differential invariants for the transformation group. Thus, the congruence and sym
metry theorems for regular submanifolds are easily restated in terms of differentie
invariants and their associated classifying manifold. Moreover, our methods hav
the widest range of generality possible; by using sufficiently high order jets, we
are able to establish moving frames for all submanifolds except those which ar
‘totally singular’. The latter can be geometrically characterized as submanifolds
whose isotropy subgroup does not act freely thereon, and hence cannot be endow
with fully determined moving frames. For example, in equi-affine geometry, the
straight lines are totally singular, and do not possess equi-affine moving frames. |
this manner, the regularized procedure also sheds light on a comment of Weyl [2°
p. 600], on the desirability of investigating ‘special classes of manifolds by impos-
ing conditions on the invariants’, using the example of minimal curves in Euclidean
geometry where the usual normalization procedure breaks down. A related ide
of 1. Anderson (personal communication) involves the regularization of differ-
ential invariants for transformation groups by introducing additional parametric
coordinates in order to avoid ‘phantom’ singularities in jet space. The regularizec
moving frame method provides a general construction that allows one to rigorousl
implement the ideas of Weyl and Anderson in practical situations.

A key idea that underlies our theory of regularization is to replace any com-
plicated group action on a manifold by a ‘lifted action’ of the group on the trivial
principal bundlesB™ = G x J* over the original manifold and its associated jet
spaces. Once the action of the group is free on a particular jet space, the movir
frame map is nothing but an equivariant section of the principal bu@dte un-
der the lifted action. The equivariant section so obtained allows one to pull bac}
invariant objects on the principal bundle to the base. Fortunately, all the invarian
objects on the principal bundle are trivial to construct, and so the particularities
of the construction are all embodied in the chosen moving frame section, and ca
thereby be systematically analyzed.

The regularization approach to moving frames provides new, effective tools fol
understanding the geometry of submanifolds and their jets under a transformatic
group. Applications include a new and more general proof of the fundamental the
orem on classification of differential invariants, a general classification theorem fol
syzygies of differential invariants, as well as new explicit commutation formulae
for the associated invariant differential operators. We demonstrate a simple bt
striking generalization of a ‘replacement theorem’ due to T. Y. Thomas [24]. Two

* This condition is very mild. See Section 2 for the precise definition, and a demonstration that i
always holds, without loss of generality, in the analytic category.
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types of general rigidity theorems, uniguely characterizing congruent submanifold:
by finite order jets, are proved, thereby extending known results for submanifold:
of homogeneous spaces. We also give a new basis for Ovsiannikov’s theory of pa
tially invariant solutions of partial differential equations [22]. All of our theoretical
results are provided in a form that can be applied to practical examples, which w
illustrate with several explicit examples of independent interest in Section 5. This
wide range of both theoretical and practical applications clearly demonstrates th
power of our approach to the general theory of moving frames.

2. Lie Transformation Groups

Let us begin by collecting some basic terminology associated with finite-dimen-
sional transformation groups. See [18] for details. Throughout this pépetl
denote arnr-dimensional Lie group acting smoothly on andimensional mani-
fold M.

DEFINITION 2.1. Theisotropy subgroupf a subsefS ¢ M is
Gs={geG|g-S=S} (2.1)
Theglobal isotropy subgroujs the subgroup

G?:ﬂGx:{geGlg-s:sforallseS}

xes

consisting of those group elements whichdikpoints inSS.

DEFINITION 2.2. The groups acts

(i) freelyif G, = {e} forall z € M,
(i) locally freelyif G, is a discrete subgroup ¢f for all z € M,
(iii) effectivelyif G, = {e},
(iv) effectively on subsets G3, = {¢} for every open/ C M,
(v) locally effectivelyif G, is a discrete subgroup df,
(vi) locally effectively on subseifsG7, is a discrete subgroup ¢f for every open
UcCcM.

If the groupG does not act effectively, one can, without any loss of generality,
replaceG by the effectively acting quotient group/ G?,, which acts in essentially
the same manner @& does, cf. [18]. Clearly, if5 acts effectively on subsets, then
G acts effectively. Analytic continuation demonstrates that the converse is true ir
the analytic category. However, it does not hold for more general smooth action
as the following elementary example shows.

EXAMPLE 2.3. Leth(x) be anyC® function such that(x) > 0 for x > 0, but
h(x) = 0forx < 0. LetG ~ R? be the two-parameter Abelian transformation
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group acting oM = R?via (x, u) — (x, u+ah(x)+bh(—x)), where(a, b) € G
and (x,u) € M. ThenG acts effectively onM, but not effectively on any open
subset that is contained in either the right or left half plane.

Since they do not arise in usual applications, we will not attempt to analyze
pathological smooth actions which are effective but not subset effective. Thus w
shall, without significant loss of generality, only consider transformation groups
that act effectively on subsets.

DEFINITION 2.4. A groupG actssemi-regularlyon M if all its orbits have the
same dimension. A semi-regular group actioregular if, in addition, each point

x € M has arbitrarily small neighborhoods whose intersection with each orbit is &
connected subset thereof.

PROPOSITION 2.5. An r-dimensional Lie grougs acts locally freely onV if
and only if its orbits all have dimension

DEFINITION 2.6. Supposé acts semi-regularly on the-dimensional manifold

M with s-dimensional orbits. A (localfross-sections a (m — s)-dimensional
submanifoldK C M such thatK intersects each orbit transversally. The cross-
section isregular if K intersects each orbit at most once.

If G acts semi-regularly, then the Implicit Function Theorem guarantees the
existence of local cross-sections at any poindafRegular actions admit regular
local cross-sections.

EXAMPLE 2.7. The following simple construction, based on the Frobenius The-
orem, cf. [18], is of fundamental importance for the theoretical justification of the
method of moving frames. Suppo&eacts freely and regularly ol. Then we can
introduceflat local coordinates

z=(x,y)=(xl,...,x’,yl,...,ym_’), xeG, yey, (2.2)

that locally identify M with a subset of the Cartesian produgtx Y, with ¥ =~
R™=", and such that the action df reduces to the trivial left actiop - z = (g -
x,y). They coordinates provide a complete system of functionally independent
invariants for the group action. In these coordinates, a general cross-section is give
by the graphK = {(a(y), y)} of a smooth mam: ¥ — G. When we use flat
coordinates, we shall always assume, without loss of generality, that the identit
cross-sectioffe} x Y, i.e., wheru(y) = e, belongs to the flat coordinate chart.

Remark.In practice, of course, the determination of the flat coordinates for a
given transformation group action may be extremely difficult. A significant achieve-
ment of the method of moving frames is that it allows one to compute invariants
without having to find the flat coordinates, or integrate any differential equations.
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Throughout this paper, we shall Igtdenote theight Lie algebra ofG con-
sisting of right-invariant vector fields oi. The mapy: v — V that associates a
Lie algebra element € g to the corresponding infinitesimal generas ¥ (v)
of the associated one-parameter subgroup forms a Lie algebra homeomorphis
from g to the space of vector fields ad. The kernel ofy» coincides with the Lie
algebra of the global isotropy subgrodyj,, thereby identifying the Lie algebra of
infinitesimal generatorg = v (g) with the quotient Lie algebra of the effectively
acting quotient groug/ G,. In particular,G acts locally effectively if and only if
keryr = {0}.

3. Regularization

Our approach to the theory of moving frames is based on the following sim-
ple but remarkably powerful device. In general, any complicated transformation
group action can be ‘regularized’ by lifting it to a suitable bundle sitting over
the original manifold. The construction is reminiscent of the regularization pro-
cedure based on universal bundles used to compute equivariant cohomology, ¢
[3, 13, 84.11], although our method is considerably simpler in that we only require
finite-dimensional bundles.
Let G be a smooth transformation group acting on a manifdidLet 8 =

G x M denote the trivial left principal G bundle overM.

DEFINITION 3.1. Theleft regularizationof the action ofG on M is the diagonal
action ofG on 8 = G x M provided by the maps

Ly(h,2)=L(g, (h,2)) =(g-h,g-2), g€G, (h,2)eB. (3.1)
Theright regularizationof G is given by
Ry(h,2) =R(g, (h,2))=(h-g 4 g-2), g€G, (h,z) € B. (3.2)

We will also refer to the regularized actions (3.1), (3.2), as the left or right
lifted actionof G since either projects back to the given actionMrvia the G
equivariant projectiomr,,: 8 — M. In the sequel, the left (respectively right) reg-
ularization of a group action will lead to left (right) moving frames associated with
submanifolds of/. The key, elementary result is that regularizing any group action
immediately eliminates all singularities and irregularities, e.g., lower dimensional
orbits, nonembedded orbits, etc. Moreover, the orbits of M are the projections
of their lifted counterparts igB; all of the lifted orbits have the same dimension as
G itself.

THEOREM 3.2. The right and left regularizations of any transformation graiip
define regular, free actions on the bundbe= G x M.

* Modern treatments of principal bundles, e.g., [13, 23], tend to concentrate on right principal
bundles. However, we find the left version more convenient for our purposes.
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Thus, lifting the action of5 on M to the bundleB has the effect of completely
eliminating any irregularities appearing in the original action.

DEFINITION 3.3. A lifted invariant is a (locally defined) smooth functioh:
8B — N which is invariant with respect to the (either left or right) lifted action of
G on 8.

Both regularized actions admit a complete system of globally defined, function-
ally independent lifted invariants.

DEFINITION 3.4. Thefundamental right lifted invarianis the multiplication
functionw: 8 — M given by

w=g-z. (3.3)
Thefundamental left lifted invarians the functionw: 8 — M given by
=gtz (3.4)

From the point of view of invariants and moving frames, right regularization
is the simpler of the two because its fundamental invariant does not require th
computation of the inverse transformatign'. On the other hand, in the literature,
most examples are constructed using the left regularization. Moreover, the fine
formulae for the moving frame are typically simpler if the left regularization is
used. However, the theoretical and practical aspects of our regularized movin
frame method underline the primacy of the right version. Therefore, from now on,
the terms ‘regularization’ or ‘lift’ without qualification will always mean thight
versions of these objects. All results will automatically have a left counterpart,
typically found by applying the group inversign— g~*.

PROPOSITION 3.5.The fundamental lifted invariant = g - z is invariant with
respect to the regularized actidi3.2) of G on 8. Moreover, givery € M, the
corresponding level sab~1{z} coincides with the orbit of; through the point
(z,e) € B.

If we introduce local coordinates oM, then the components ab form a
complete system ofi = dim M functionally independent invariants .

PROPOSITION 3.6.Any lifted invariantL: 8 — N can be locally written as a
function of the fundamental lifted invarianté(g, z) = Flw(g, z)], SO thatL =
F owforsomeF: M — N.

In particular, if F(z) is any function oV, then we can produce a lifted invariant
Fow on B by replacing; by w = g-z in the formula forF. The ordinary invariants
I: M — N of the group action are particular cases of lifted invariants, where we
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identify I with its composition! o m,, with the standard projection. Therefore,
Proposition 3.6 indicates that ordinary invariants are particular functional combina
tions of lifted invariants that happen to be independent of the group parameters. F
such functions, a simple but striking ‘replacement theorem’ provides an explicit
formula expressing an ordinary invariant in terms of the lifted invariants.

THEOREM 3.7. If I(z) = F(w(g,z)) = F(g - z) is an ordinary invariant, then
F(z) = 1(2).

Proof. In other words, replacing by w in the formula for the invariant does not
change its value, i.el,(z) = I (w). To prove this result, we use the invariance of
and the fact that at the identigy= ¢, the lifted invariant reduces to = z. O

EXAMPLE 3.8. LetG = SO(2) be the rotation group acting oWl = R? via
(x,u) —> (x cos® — usingd, x sind + u cosh). (3.5

The (right) regularized action on the cylind® = SO(2) x R? is given by sup-
plementing the planar transformation rules (3.5) with the groupdaws> (¢ —

#) mod 2r. Note that the action o#B is regular, so we have effectively replaced
the singular orbit at the origin by a regular orbi0, 0)} x SO(2) C 8. There are
two fundamental right lifted invariants:

y = x COS¢ — using, v = x SiNg + u COSp. (3.6)
Note that

r2=y2+v2=x2+u2
is an invariant for the lifted action which reduces to the ordinary radial invariant

for the action back oi/. The fact that has the same formula in terms.afu as
it does iny, v is a simple manifestation of the general Replacement Theorem 3.7.

A differential formw on the principal bundled = G x M is (right) G-invariant
if it satisfies(l?g)*w = o for everyg € G. Of particular importance are the
(pulled-back) Maurer—Cartan forms associated with the Lie gt@uye introduce
abasiqvy, ..., Vv, } for the (right) Lie algebrg of G. The corresponding dual basis
p = {ut, ..., u} for the right-invariant differential forms o6 are known as the
Maurer—Cartan formsWe shall also us@ to denote the corresponding Maurer—
Cartan one-forms o, namely the pull-backérs)* 1 of the forms onG under the
standard projectiong: 8 — G. The Maurer—Cartan formgs on B are invariant
under the right regularized action 6f.

SinceB = G x M is a Cartesian product, its differential d naturally splits into
a group and manifold components=ddg; + d,;. Moreover, since the regularized
action (3.2) is a Cartesian product action, the splittingigwariant.

PROPOSITION 3.9.If w is any G-invariant differential form ong, then both
dyw anddgw are invariant forms. In particular, ifL is any lifted invariant, then
dy L anddg L are invariant one-forms oeB.
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In particular, the differential @ of the fundamental lifted invariant = g - z
will split into two sets of invariant one-forms o8, namely d,w = g - dz and
the group componentgdv. The notationg - dz is meant suggestively; in terms of
local coordinategz!, ..., z") on M, the components qf - dz are the pull-backs
g*dz’ of the coordinate differentials via the group transformatioriThere is a
beautiful explicit formula that expresses group componegts s invariant linear
combinations of the Maurer—Cartan formon B.

THEOREM 3.10. LetG actonM. Let{v,, ..., V,} be a basis for the Lie algebra
g, and let

m ) 8
Ve = (7)) —, =1...,r 3.7
l_:Zl fi@gs « r (3.7)
be the corresponding infinitesimal generators M written in local coordinates
z=(z4 ..., 2. Letp = {u?, ..., i} be the dual Maurer—Cartan forms, pulled
back toB. Letw = (wl, ..., w™) be the components of the the fundamental lifted

invariant w = g - z, expressed in the same local coordinates. Then the group
differential of the components ef are given by

dei:Zf,f(w)u’(, i=1,...,m. (3.8)
k=1
In other words, the coefficients of the Maurer—Cartan formg3i8) are the lifted
invariant counterparts of the coefficients of the infinitesimal generd&i, ob-
tained by replacing by the lifted invariantw.

Proof. Let v € g correspond to the infinitesimal generatoon M. For sim-
plicity, we use the same notation for the corresponding vertical and horizonta
vector fields on8, which generate the actionsi, z) — (exp(tv) - h, z) and
(h,z) — (h,exp(fV) - z) respectively. (The infinitesimal generators of the left
regularization (3.1), then, are the sums V of these vector fields.) We then notice
that

d d e
v(w) = dr [(eXF(tV) ) g) 'Z]|t=0 = dr [eXF(tV) ’ w]|t=0'
The latter expression is equal to the value of the vectorTieltthe pointw = g-z;
therefore, in local coordinates,

VK(wi):f,f(w), i=1....m k=1 ...,r
On the other hand, dualityof the Maurer—Cartan forms implies that
dew' =) Vew) pu* =" fi(w) pu*,
k=1 k=1
completing the proof. O

* Recall that the right-invariant vector fields generate the left actiag of itself.
** See Example 5.13 below for details.
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RemarkTheorem 3.10 justifies the method for computing Maurer—Cartan forms
directly from the group transformations introduced in Part I [9].

EXAMPLE 3.11. Return to the rotation group acting #h = R? as in (3.5).
Applying dy; and g; to the lifted invariants (3.6) will produce four lifted invariant
one-forms onB. The manifold components are

dyy = (cos¢) dx — (sing) du, dyv = (sing) dx + (cos¢) du.

On the other hand, the group components can be written as invariant multiples c
the Maurer—Cartan form = d¢, namely

dgy = —(xsing + ucosy) dp = —v de,
dgv = (xcos¢p —using)d¢ = y de.

Equation (3.8) implies that the coefficientsv, y) can be computed directly as
the invariant counterparts of the coefficietsu, x) of the infinitesimal generator
v = —uax + Xau.

Remark A lifted invariant L(g, z) = F(w) is independent of all group para-
meters and, hence, reduces to an ordinary invariant as in Theorem 3.7 if and on
if dgL = 0. In view of (3.8), the equationgd.(g, z) = dg F (w) = 0 is equivalent
to the usual Lie infinitesimal invariance conditions(F(z)) = 0,« = 1,...,r,
rewritten in terms ofv instead of;.

4. Moving Frames

Let us now define moving frames in the context of a Lie group acting on a manifold.
The justification for this definition appears in Part 1 [9], and is based on the earliel
work of Green [11], Griffiths [12], and Jensen [14].

DEFINITION 4.1. Given a transformation group acting on a manifoldv, a
moving framas a smoothG-equivariant map

p: M — G. 4.1)

In (4.1), we can use either the right or the left actionGobn itself, and thus
speak of right and left moving frames. As in the usual method of moving frames, we
shall only be interested in their local existence and construction. Thus, we can rels
our condition and only require loca¥F-equivariance of the moving frame map,
i.e., for group elements near the identity. There is an elementary correspondent
between right and left moving frames.

LEMMA 4.2. If 5(z) is a left moving frame oM, thenp(z) = p(z) ! is a right
moving frame.
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EXAMPLE 4.3. An important example is whef is a Lie group acting on itself,
soM = G, by left multiplicationz — g - h. If a € G is any fixed element,
then the mag(g) = g - a clearly defines a (left) moving frame. Moreover, every
(left) moving frame necessarily has this form, with= p(e). Similarly, every right
moving frame is provided by a mag(g) = a - g~* for some fixedh € G.

Not every group action admits a moving frame. The key condition is that the
action be both free and regular.

THEOREM 4.4. If G acts onM, then a moving frame exists in a neighborhood of
a pointz € M if and only if G acts freely and regularly neay.

Proof. To see the necessity of freeness, supposeM, and letg € G, belong
to its isotropy subgroup. Lei: M — G be a left moving frame. Then, by left
equivariance op,

pP)=pg-2)=g p).

Thereforeg = ¢ and, henceG, = {e} for all z € M. To prove regularity, suppose
thatz € M and that there exist points = g, - z belonging to the orbit of such
thatz, — z ask — oo. Thus, by continuity,

P(z) =P8 2) =g - p(z) — p(z) ask — oo,

which implies thatg, — e in G. This suffices to ensure regularity of the orbit
throughz.

To prove sufficiency, we use the flat local coordinates (x,y) € G x Y
introduced in Example 2.2. A general local cross-seciforc M is given by a
graphx = a(y). Then the map

plx,y) =x-a(y) (4.2)

is clearly G-equivariant under left multiplication o6& and, hence, defines a left
moving frame. Moreover, every left moving frame has this form, provided we
define the cross-section vidy) = p(e, y). O

Remarklf G acts only semi-regularly and/or locally freglyhen the preceding
proof can be easily adapted to find a locallyequivariant moving frame.

THEOREM 4.5. If p(z) is a right moving frame, then the components of the map
I: M — M defined byl (z) = p(z) - z provide a complete system of invariants for
the group.

Proof.Using our flat local coordinates, Lemma 4.2 implies that the right moving
frame corresponding to (4.2) is

p(2)=a() t-x7h z=(x,y). (4.3)

* A (locally) free action is automatically semi-regular.
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Therefore

p(2)-z=(a(y) " y) € K. (4.4)

In particular, the last: — r components of (4.4) provide the invariantswhile the
firstr components are functions of the invariants. O

The proof of Theorem 4.4 shows that the determination of a moving frame
is intimately connected to the process of choosing a cross-section to the grou
orbits. Example 4.3 is a particular case of this construction since a cross-section
a transitive group action is just a single point. Equation (4.4) shows that the grouj
elementg = p(z) given by the right moving frame map can be geometrically
characterized as the unique group transformation that moves thezpmid the
cross-sectiork . Moreover,I (z) = p(z) - z is the point on the cross-sectidnthat
lies on theG orbit passing through.

Remark.n fact, any map: M — G that satisfied (z) = p(z) - z € K will
produce invariants by a choice of local coordinateko he action oiG need not
be free and the map need not be equivariant; moreover, the group can equally
well be a pseudo-group.

Theorem 4.5 implies that if (z) is any other invariant function, then, locally,
we can writeJ (z) = H(I(z)) in terms of the moving frame invarianis As noted
in the proof, the components df are not necessarily functionally independent,
but one can always locally choose a setof- » components which do provide a
complete system of functionally independent invariants, or, equivalently, a systen
of local coordinates on the quotient manifdifl/ G.

An alternative way of understanding the moving frame construction presentec
above is to view the regularization of a group action as giving rise to the double
fibration

:’% \ (4.5)

of the regularized bundI& over M. Given a cross-sectioR to theG orbits, the
set

L=wHKYCB=GxM

forms arm-dimensional submanifold @B that is invariant with respect to the lifted
action of G on 8. Projection ontaV defines a locally equivariant diffeomorphism

my: £ — M and hencef is the graph of a local section = (7 | £)72,
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called themoving frame sectiarit is not hard to see that defines the graph of the
moving frame, s@ (z) = (p(z),z)forz € M, i.e.,

p=ngo0. M — G.

Sinces: M — L is G-equivariant, any invariant object a pulls-back, viao, to
an invariant object oi/. In particular, the invariank(z) = p(z) - z constructed in
Theorem 4.5 is given by

I=0c"(w)=woo: M — K.

As noted above, given any functiofi: M — R, the compositionF o w:
B — R defines a lifted invariantL(g, z) = F(g - z). Moreover, pulling back
L via the moving frame section: M — B, defines an ordinary invariart(z) =
F(w(o(z))) = F(p(z) - z). Thus, a moving frame provides a natural way to
construct invariants from arbitrary functions!

DEFINITION 4.6. Theinvariantizationof a functionF: M — N with respect to
a moving framep: M — G is the compositio = Fowoo = Fo I.

Invariantizationdoesdepend on the choice of moving frame. Geometrically,
J (z) equals the value of at the point on the cross-section that lies on@herbit
throughz. Theorem 3.7 says that#f itself is an invariant, thef ow is independent
of the group parameters, and hente- F, i.e., the invariantization process leaves
invariants unchanged. Thus, one can view invariantization as a projection operat
from the space of functions to the space of invariants.

EXAMPLE 4.7. Consider the usual action (3.5) of @) which is regular on
M = R?\ {0}. The positivex axis defines a cross-sectid = {(0, v) |v > 0}

to the orbits. The mag = p(x,u): M — K which rotates the pointx, u)

to the point(0,r) € K, wherer = +/x2+u?, is clearly S@2)-equivariant.
The moving framep: M — SQO(2) induced by this choice of cross-section is
therefore given by the equivariant map= tan(x/u) that determines the the
rotation angle needed to map, u) to K. The corresponding moving frame section
o: M — 8 =SQ2) x M is given byo (x, u) = (tarm*(x/u), x, u). Pulling back
the lifted invariants (3.6) produces the invariaatsy = 0, o*v = r. If F(x, u)

is any function, thenL(¢, x,u) = F(y,v) is its lifted counterpart, and so its
invariantization is the radial invariank = F(0, r). The reader should try com-
puting other moving frames and the corresponding invariants by choosing othe
cross sections, e.d(v, v) |v > 0}, or {(v, v?) | v > 0}.

Our construction is intimately tied to the Cartan procedure of normalization
of group parameters, which is, traditionally, the basic process used in the prac
tical construction of moving frames [5, 7]. Normalization can be interpreted as
the restriction of the regularized group action to an invariant submanifold of the
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regularized bundleB. In particular, wherG acts freely omM, we can restrict to a
local section ofB and thereby uniquely specify all of the group parameters.

DEFINITION 4.8. A lifted invariantL: 8 — N is regular provided its group
differential d; L has maximal ranke = dim N at every point in its domain of
definition.

The essence of the normalization procedure that appears both in the methc
of moving frames, as well as the Cartan equivalence method, is captured by th
following simple definition.

DEFINITION 4.9. A normalizationof the regularized group action consists of
its restriction to a nonempty level segt. = L~*{c} of a regular lifted invariant
L. B— N.

Every level set of a lifted invariant forms @-invariant submanifold of the
regularized action. Note that the regularity assumption on the lifted invariant im-
plies that the projectionry: £, — M maps.L. onto an open subset aff.
Thus, regularity ensures that the normalization does not introduce any depende
cies among the coordinates, since that would introduce unacceptable constraints
on the original manifold\.

In local coordinates, ifL(g,z) = (L1(g,2),...,L,(g,z)) is a regular lifted
invariant andc = (c1,...,¢,) € N belongs to the image df, then the implicit
function theorem says that we can (locally) solve the systemegfuations

Ll(ga Z) == Cla L] Ln(g’ Z) - cl’L’ (46)
for n of the group parameters, sgy= (g, ..., g"), in terms of the remaining—n
group parameters, which we denote/by= (ht, ..., k") = (g"™, ..., g"), and
thez coordinates:

gh=y'h2, ..., g =y"h02, (4.7)

or, simply, ¢ = y(h, z). The coordinates: and z serve to parametrize the-
invariant level sett, = L~Y{c}. The remaining group parametérsan be inter-
preted as parametrizing the isotropy subgroup of the submanifolbl(e, z) = c}.

PROPOSITION 4.10.1f G acts freely and regularly ordf, then we can com-
pletely normalize all of the group parameters by choosing a regular lifted invariant
L: 8 — N having maximatankd; L = r = dim N = dim G everywhere.

DEFINITION 4.11. LetK C M be a local cross-section to th& orbits. The
normalization equationassociated witlk are the system of equations

w=g-z=k, where k € K. (4.8)
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Remark.The normalization Equations (4.8) are the same as the compatible lif
equations discussed in Part | [9].

If we assume thaG acts freely andK is a regular cross-section, then there
is a unique solutiorg = p(z) to the normalization equations, determining the
right moving frame associated wifti. More explicitly, if we choose the flat local
coordinates = (x,y) € G x Y from Example 2.2, then the fundamental lifted
invariant has the formw = g - z = (g - x, ¥). Choosing a cross-section= a(y)
reduces the normalization equations (4.8)¢tox = a(y), with G-equivariant
solutiong = p(x, y) = a(y) - x~1, which agrees with the right moving frame (4.3)
after applying the group inversion to the cross-section a(@jp.

In practice, one constructs a ‘standard’ cross-section by solving the normaliza
tion equations in the following manner. Locally we choeseomponents of the

fundamental lifted invarianb = g -z, sayw?, ..., w”, which satisfy the regularity
condition
dwl ... w"
M + 0. (4.9)
a(gh, ..., g")

Solving the equations
whg.2)=c1, ..., w(g.2)=c, (4.10)

where the constants, ..., ¢, are chosen to lie in the range of thes, leads to
a complete system of normalizatiogs= p(z) for the group parameters. The
resulting map determines a moving frame, and corresponds to the local cros:

sectionkK = {z! = c1,...,7" = c¢}. Furthermore, Theorem 4.5 implies that
if we substitute the normalization formulae = p(z) into the remaining lifted
invariantsiv = (w"*t, ..., w™), we obtain a complete systemof-r functionally

independent invariants for the group actionMn
') =w ™ (p@),2), ..., 1"@)=w"(p@),2). (4.11)

Thus, barring algebraic complications, the normalization procedure provides
simple direct method for determining the invariants of free group actions. Note
particularly that, unlike Lie’s infinitesimal method, cf. [17], we dot have to
integraté any differential equations in order to compute invariants.

Remark.If L(g, z) is any other regular lifted invariant of rank then we can
introduce local coordinates oW to makeL agree with the first components of
w = g - z when written in the new coordinates. Thus, changing the normalized
invariants is equivalent to changing coordinates\on

* In a sense, though, we have integrated the differential equations by being able to explicitly write
down the group transformation formulae for= g - z. However, it is rare that one can integrate the
ordinary differential equations for the invariants without being able to find the group transformations!
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EXAMPLE 4.12. LetG = SK2) = SO(2) x R? be the planar Euclidean group,
parametrized by, a, b). Consider the free, local action of 88 on M = R* that
maps a pointx, u, p, q) € M to

(x COS¢ — uSing + a, x Sing + u cos¢ + b,

sing + p cos¢g q ) (4.12)

cosp — psing’ (cos¢ — p sing)3
The fundamental lifted invariants are the individual componémtaw, r, s) of

(4.12). Let us normalize the first three lifted invariants to all be zero, leading to
the normalization equations

y = xC0S¢p —using +a =0, v=2xSiNg +ucosgp +b =0,
sing + p cosg ~0
cosp — psing

(4.13)

This corresponds to choosing the cross-seckon= {(0,0,0, k) |k € R} to the
three-dimensional orbits of $B). The solution to (4.13) is

p=—tantp a=-P PN (4.14)

Vit p? V1 p?
which defines the right moving frame M — SE?2). The left moving frame is
obtained by inverting the group element parametrized by (4.14), whereby

~

¢ =tanlp, a=x, b=u. (4.15)

Finally, if we substitute (4.14) into the final lifted invariant= (cos¢— p sing)3q,
we recover the fundamental invariant

S q

= (1+r2)32 (14 p?)3/2’ (4.16)
Note again the common functional dependency on the coordinatd$ and the
associated lifted invariants, in accordance with Theorem 3.7. If we identifyu
q = u.,, then (4.12) coincides with the second prolongation of the standard actior
of SE(2) on curves in the plane, (4.15) agrees with the classical left moving frame
for Euclidean curves, cf. [9], and the invariant (4.16) is, of course, the Euclidear
curvature. See Example 10.10 below.

EXAMPLE 4.13. Consider the joint actiofx, y) — (Rx + a, Ry + a) of the
Euclidean grougR, a) € SE?2) on (x,y) € M = R? x R?. The action is free
on M\ D, whereD = {x = y} is the diagonal. The lifted invariants are the
components of = Rx+a, w = Ry+a. We normalizez = 0 by settingn = —Rx.
The remaining normalized invariant now reducesute= R(y — x). Away from
the diagonal, we can further normalize the second componenttofbe zero by
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specifying the rotation matri® to have angley = — arg(y — x); this amounts to
picking the cross-sectioR = {(0, 0, d, 0)}. The resulting normalizations specify
the right moving frame for the joint Euclidean action. The first component of
then reduces to the distan¢e — x| = d, which forms the fundamental joint
invariant for the Euclidean group. A similar construction for theéimensional
Euclidean group E:) provides a simple proof of an analytical version of a theorem
in Weyl [28], that the only joint Euclidean invariants are functions of the distances
between points. Extensions to joint invariants for other transformation groups ari
straightforward. See [9] for recent results on joint differential invariants.

In applications to equivalence problems, one restricts the moving frame to :
submanifold of the underlying spadé. The resulting maps from the submanifold
to the group agree with the traditional definition of a moving frame in classical
geometrical situations. Assume th#it= ((X) is an immersed submanifold para-
metrized by a smooth map X — M of maximal rank equal to the dimension
of X.

DEFINITION 4.14. Amoving framen a submanifold = ((X) isamap.: X —
G that factors through &-equivariant map: M — G, sothath = p o .

In other words, the moving framg on S can be realized by the following
commutative diagram

/ x (4.17)

X * G

The moving framep must, of course, be defined in a neighborhoods oAs be-
fore, we can consider either left or right moving frames on the submanifold
Lemma 4.2 still applies and shows that they are merely inverses of each other.

5. Equivalence Problems for Coframes

We now turn to the applications of moving frames to equivalence problems for sub
manifolds. In preparation, we first review a very particular equivalence problem,
that of coframes on a manifold. The goal of both the Cartan equivalence metho
and the moving coframe method is to produce, via the normalization and reductio
process, an invariant coframe, and thereby reduce the original equivalence proble
to an equivalence problem for coframes. Thus it is essential that we understand t
known solution to this particular equivalence problem before proceeding further
We refer the reader to [8, 10, 18] for more details on the basic theory as well a
numerous examples.
Let M and M be m-dimensional manifolds, and led = {0, ..., »"} and

®={a,...,@") be respective coframes thereon. The basftame equivalence
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problemis to determine when there exists a (local) diffeomorphismM — M
such that

v'el=w, i=1...,m. (5.1)

More generally, one might also include a collection of smooth scalar-valued func:
tionsI,; M — Randl,; M — R, wherev = 1,...,1, that are required to

be mapped to each other, meaning thatt) = I,(x) wheneverx = v (x), or,
equivalently,

v I, =1, v=1...,1. (5.2)

We formalize this as follows.

DEFINITION 5.1. Anextended coframen a manifoldM is a collection2 =
{w, I'} consisting of a coframe along with a collectiorl = (14, ..., I;) of smooth
scalar functions.

DEFINITION 5.2. A local diffeomorphismy: M — M is anequivalencebe-
tween extended coframe&® = {w, I} on M, andQ = {®, I}, on M if and only

if ¥ satisfies (5.1), (5.2), which we abbreviateyasQ = . In particular, asym-
metryof an extended cofran® is a self-equivalence, i.e., a local diffeomorphism
Y. M — M such that)*Q = Q.

Thesymmetry groug; of an extended cofram@ = {w, I} is the local transfor-
mation group consisting of all symmetries. The functidnm 2 are then invariants
for the groupG, hence their common level sets ageinvariant subsets o#/. In
view of this remark, we shall often refer to the functiahs an extended coframe
Q as itsinvariants

Two equivalent extended coframesusthave the same number of invariants.
Moreover, if there is a functional dependenfy= H (4, ..., I,_1) among the
invariants of€2, then the corresponding invariants of any equivalent coframe
must satisfy ardentical functional relation:; = H (14, ..., 1,_1). The function
H(y1, ..., yi—1) in such a functional relation is known aglassifying functiorfor
the extended coframe. As argued in [18], the most natural way to keep track o
such functional dependencies between the structure invariants is to introduce tt
associated classifying manifold.

DEFINITION 5.3. Theclassifying manifold®(€2) of an extended cofram@ =
{w, I} is the subsef (M) C Z = Z(Q) of the classifying space ~ R! that is
parametrized by the invariant functiofs= (I, ..., I)): M — Z.

DEFINITION 5.4. An extended cofram® is calledsemi-regularof rank ¢ if its
invariants have constant rank= rank d/. Note that: equals the number of func-
tionally independent invariants near any point. An extended cofr@nige called
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regular if its classifying manifold is an embedded submanifold of its ambient
classifying space. In this case, the rank of the coframe equals the dimension ¢
C(Q).

LEMMAS.5. If Q =y*Q are equivalent extended coframes, then their classify-
ing manifolds are identical® (22) = C(R).

Remarklf the equivalence map is only locally defined, then one must restrict
the classifying manifolds to the open subsgts= domy C M andU = ¢(U)
C M.

The converse to Lemma 5.5 is not true in general — one must impose an ac
ditional ‘involutivity condition’ on the extended coframes in order to prove suffi-
ciency of the classifying manifold condition. In preparation, we note that one can
(simultaneously) perform two elementary operations on extended coframes th:
preserve their symmetry and equivalence constraints.

DEFINITION 5.6. Two regular extended cofram@s= {w, I} and® = {8, J}
on M are said to bénvariantly relatedif

(a) There exists a local diffeomorphism C(2) — C(®) such that/ = ¢ o I,
and
(b) There is a smooth map: C(R2) — GL(m, R) suchtha® = (A o INw.

We shall write® = ®(Q2), where® = (¢, A), for such an invariant relation.

Note that the first condition means that the two classifying manifolds have the
same dimension, and so both coframes contain the same number of functional
independent invariants. Moreover, each invariar®iis functionally dependent on
the invariants i, i.e., J, = ¢, (11, ..., I;), and conversely. The second condition
means that the one-forms in the two coframes are invariant linear combinations c
each other, so

o' =) (AioDa!, i=1....m. (5.3)
j=1

PROPOSITION 5.7. If Y*Q = Q are equivalent extended coframes, afd=
®(Q2) and ©® = () are invariantly related coframes for the same functions
® = (p, A), thenyr* ® = @ are also equivalent.

The proof is immediate. Note that this allows us to always assume (at leas
locally) that the functions occurring in our extended coframe are functionally in-
dependent; for example, we can use those corresponding to a consistent choice
local coordinates on the classifying manifold.

COROLLARY 5.8. Two invariantly related extended cofram@s= ®(2) have
the same symmetry group.
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The complete solution to the extended coframe equivalence problem (5.1)
(10.9), is based on the Frobenius Theorem for closed differential ideals [4, 18]. On
effectively determines a complete system of functionally independent invariants b
successive differentiation, and adjoins them to the original invariance condition:
(10.9). There are two ways in which additional scalar invariants can arise. First o
all, since the one-forme form a coframe, we can re-express their differentials in
terms of wedge products thereof, leading to the structure equations

:—Zlka) Ao, k=1,...,m. (5.4)

i<j

The structure coefﬂmentsk are readily seen to be invariants of the problem, i.e.,
satisfy (10.9), and hence should be included in our list of invariants. Thus, ever
if we began with no additional invariants, the structure equations automatically
produce some for us, whose invariance must be taken into account in the resolutic
of the problem. Secondly, the coefficierts, = 91, /0o of the differential

m m 81‘)
dr, =Y Lot =) o o, (5.5)
k=1

k=1

of any invariant are also automatically invariant, and are known as the (first-order
derived invariantscorresponding to the original invariat. The invariant dif-
ferential operators/dw* are known asoframe(or covarian) derivatives these
coincide with the dual frame vector fieldsdo

Remark The coframe derivative operators do not necessarily commute. Apply-
ing d to (5.5) and comparing with (5.4) produces the basic commutation formulae

d 9 SN
[3737}: li g (5.9)

If the one-formsw* = df* are all (locally) exact, then all the structure coefficients
vanish, and so the coframe derivatives do commute in this particular case.

DEFINITION 5.9. Thederived invariantsof an extended coframgo, 1} with [
invariants! = (I, ..., I;) are thel(m + 1) + 3m?(m — 1) functions

D=L L, 00D

consisting of

(a) the original invariantg,, ..., I,
(b) their first order coframe derivatives ; = ol,/dw*, v = 1,...,1, k
1,....,m,and
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(c) the coefficientsil.’;, k=1 ...,m 1<i < j < m,inthe structure equations
(5.4) for each d*.

DEFINITION 5.10. Thederived coframeassociated with an extended coframe
Q = {w, I} is the extended cofram@® = {w, IV} consisting of the original
coframe along with all its derived invariants.

LEMMA5.11. Amapy: M — M determines an equivalence between extended
coframes2 and Q if and only if it determines an equivalence between their corre-
sponding derived coframe3® and .

In this manner, one recursively defines the higher order derived cofi@ffles:
(Q*DYD by computing the higher-order derived invariants. Lemma 5.11 shows
that all such higher order derived coframes are also equivalent under the given ma
The process will terminate whenever the set of first order derived invariants arisin
from the current list of invariants fails to produce any new, meaning functionally
independent, invariants.

DEFINITION 5.12. An extended cofram@ = {w, I} is calledinvolutiveif it is
regular and is invariantly related to its derived cofrafi&.

Thus, aregular extended coframe is involutive if and only if r@nk rankQ®,
which occurs if and only if its derived invariants are functionally dependent on the
original invariants7® = H o 1.

EXAMPLE 5.13. The most familiar example of an involutive coframe is the
Maurer—Cartan coframg = {u?, ..., ©”} on anr-dimensional Lie groug. The
symmetry group of the Maurer—Cartan coframe coincides with the right action of
G on itself. Involutivity follows from the basic Maurer—Cartan structure equations

dukz—ZCf‘jui/\Mj, k=1 ...,r, (5.7)
i<j
where C¥. are the structure constants for the dual basis= 9/du’ of the Lie
algebrag. Since all the derived invariants are constant, the Maurer—Cartan cofram
has rank 0. In fact, any rank 0 coframe is locally equivalent to a Maurer—Cartar
coframe; see [19] for global versions of this result, based on the theory of ‘non-
associative local Lie groups'.

LEMMA 5.14. Let<2 be an extended coframe. If the derived cofra@® is in-
volutive, then so are all higher order derived cofran®@%’, k > s. Moreover,
rankQ® = rankQ® for all k > s.

Proof. Any functional dependency among the invariadfits= H(Iy, ..., I))
automatically induces a functional dependency among the corresponding derive
invariants:

!
ol 0H 09I, .
@:E -, i=1...,p. (5.8)




148 MARK FELS AND PETER J. OLVER

This observation suffices to prove the result. O

RemarkEquation (5.8) implies that if an invariant 2% is functionally depen-
dent on the others, then one does not need to include its derived invariants in tt
higher-order derived coframeg*+? since their associated functional dependen-
cies are automatic. In other words, we can reduce the number of invarigzits i
by a well-determined invariant relation, as in Definition 5.6. Therefore, at each
step, one really only needs compute the coframe derivatives of the independe!
invariants.

DEFINITION 5.15. Theorder of an extended cofram is the minimal integes
such thatQ® is regular and involutive. We call= rankQ® theinvolutivity rank
of Q.

Remark Our definition of order is slightly different than that in [18]. If we start
with an ordinary coframe, under the present construction the structure invariants
I]’ﬁk will appear at order 1 and, hence, unless the coframe has rank 0, involutivity
will not occur until at least order 2.

Let us call an extended cofrang& fully regular if it and its derived coframes
QW k=0,1,2, ..., are regular. In the fully regular case, the ranks: rankQ®

are nondecreasingy < 11 < h < --- < m and bounded by the dimension
of M. Moreover, ift, = t,,1, thenQ® is involutive and, hence2 has orders
and involutivity ranks = ¢, = t,,1 = ---. In particular, a fully regular coframe

has orders < m. Coframes of order greater thancan occur if singularities are
present, but can be resolved at some higher order.

The fundamental equivalence and symmetry theorems for coframes can now t
stated. Both are direct consequences of Frobenius’ Theorem; details can be foul
in [18].

THEOREM 5.16. Let M and M be m-dimensional manifolds. Two finite order
extended coframe® on M andQ on M are locally equivalent if and only if they
have the same order and their(s + 1)st order classifying manifolds are identical
G(§(S+l)) = C(QU*D). In this case, ity € M andzy € M map to the same point
164D (z9) = 191D (z0) in the common classifying manifold, then there is a unique
local diffeomorphismb: M — M with ®(zg) = 7o and ®*Q = Q.

RemarkOne can replace the ordeby any higher-ordek > s in the theorem.
Thus, in fully regular cases, one can always determine the equivalence of tw
extended coframes on am-dimensional manifold by comparing th@e: + 1)st
order classifying manifolds.

Remark Regularity relies on two conditions: first, the invariants have constant
rank, and, second, they parametrize an embedded submanifold of the classifyir
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space. The latter can clearly be weakened to include immersed classifying mau
ifolds, since the result is local anyway, and so one can restrict to a subdomai
where the classifying manifold is embedded. In fact, one can resolve singularitie
and self-intersections of the classifying manifold by going to a yet higher order
coframe. Indeed, if2® is ‘semi-involutive’, meaning that it is semi-regular and
of the same rank a8(Q¢*Y), then formula (5.8) implies that one can identify the
classifying manifold® (Q®)) for anyk > s with thek—s—1 jet of @(QU*+P). Thus,

if (QU+D) intersects itself transversally, the(Q“+2) will not intersect itself

at all, and can be used instead. Thus, in the analytic category, one can elimina
all such singularities and self-intersections by going to a classifying manifold of
sufficiently high order.

THEOREM 5.17. The symmetry group of an extended coframef orders is a
freely acting local Lie group of transformations of dimensios= m — ¢, where
t = dimC(QY) is the involutivity rank of2. The orbits ofG are the common level
sets of thes + 1)st order invariants/ ¢+9.

This completes our survey of the basic equivalence problem for (extended) cc
frames. One can also investigate the equivalence of more general ‘extended or
form systems’Q = {w, I} containing of a collection of one-forms that do not
necessarily form a coframe. Thgerdetermined¢ase, where the one-formsspan

the cotangent space, is easily reduced to the case of an extended coframe. C
can locally choose a coframe, s@y?, ..., »™} from among the one-forms if.

Any additional one-forms iif2 can be written as linear combinations of the given
coframe,

ok = Z Jl-kw", k > m. (5.9)

i=1

The coefficients/} will be invariant functions for the problem, and should be
included among the functions in an invariantly related extended coframe. Thus, th
overdetermined equivalence problem reduces to an extended coframe equivalen
problem (5.1), (5.2), where the invariant functions include all the original invariants
1, as well as the coefficients* stemming from the linear dependencies (5.9).
Theunderdeterminedase, when the one-forms fail to span the relevant cotangent
spaces, can be treated by the Cartan equivalence method until it is reduced to eitt
a coframe equivalence problem, or to an involutive differential system defining &
Lie pseudo-group via the Cartan—Kéhler Theorem, cf. [4, 18]. For brevity, we will
not discuss the latter more complicated theory here.

6. Moving Coframes

The method of moving coframes was introduced in [9] as a practical means o
determining moving frames for general transformation groups, and will now be
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incorporated into our regularized approach. The following definition is inspired
by Cartan’s approach to equivalence problems, which always begins by characte
izing the (pseudo-)group of allowable transformations by a suitable collection of
differential forms.

DEFINITION 6.1. LetG be a finite-dimensional Lie group acting on a manifold
M. A G-coframeis, by definition, a regular, involutive extended coframe=
{w, I} on M, whose symmetry group coincides with the transformation g@up

In other words, ifQ = {w, I} is a G-coframe, then a local diffeomorphism
¥ M — M satisfies the symmetry conditions

Vo = o, vl =1, (6.1)

if and only if 1 (z) = g - z coincides with the action of a group element G.

For example, the right Maurer—Cartan coframe on a Lie group for@iscaframe

for the right action ofG on itself. SinceG-coframes are always assumed to be
involutive, the solution to the equivalence problem for coframes implies that they
are essentially unique.

PROPOSITION 6.2.Let 2 be aG-coframe onM. An extended cofram@ is also
a G-coframe if and only if2 and ® are invariantly related.

Proof. Corollary 5.8 implies that if the two extended coframes are invariantly
related, then their symmetry groups are the same. Conversely, according to The
rem 5.17, the orbits of the symmetry group of an involutive extended coframe ar
the level sets of its invariants. Since the two collections of invariants have the sam
level sets, they are necessarily functionally related, as in part (a) of Definition 5.6
Moreover, since the symmetry groups coincide, the coefficiﬂnjtsselating the
coframes, as in (5.3), must also be invariants, proving the result. 0

Theorem 5.17 implies that the symmetry group of an involutive extended co-
frame acts locally freely. This condition also turns out to be sufficient; see Theo-
rem 6.5 below. The moving frame method provides a simple mechanism for con
structing G-coframes. Suppos€ acts freely and regularly on the-dimensional
manifoldM. Letp: M — G be a (right) moving frame. We lgt= p*u denote the
pull-back of the Maurer—Cartan forms M. If G acts transitively o/, whence
m = r, then¢ forms a coframe o/, called themoving coframessociated with
the given moving frame. The cofrangehas the same structure equations (5.7) as
the Maurer—Cartan coframe @hand, hence, forms an involutive coframe of rank
zero onM.

RemarkThe pull-back of the left Maurer—Cartan cofrafen G under the left
moving frame mayp leads, up to sign, to the same collection of moving coframe
forms:p* = —p*pu = ¢. This is because the inversign— g~ maps the right
Maurer—Cartan forms o6 to minus their left-invariant counterparts.
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If G does not act transitively, then the one-fortns- p*u only form a coframe
when restricted to the orbits, and we need to supplement them by an addiienal
r one-forms to construct a full coframe. Locally, if we choose a complete systern
of functionally independent invarianis= (y*, ..., y"™"), then them one-forms

(¢, dyy ={¢t, ..., ¢c", dyt, ..., dy™™"} (6.2)

form a coframe oM.

DEFINITION 6.3. Themoving coframeassociated with a given moving frame
mapp: M — G is the extended cofran®e = {¢, dy, y} consisting of the pulled-
back Maurer—Cartan formis= p*pu, along with the invariant functions and their
differentials.

LEMMA 6.4. The moving cofram& forms an involutiveG-coframe on\/.

Proof. Involutivity is immediate, since the Maurer—Cartan structure equations
(5.7) along with the equationgdy’) = 0 imply that all the derived invariants for
the moving coframe are constant. To prove that the only symmetries are the grou
transformationg — g-z, we note that, in the flat local coordinates of Example 2.7,
the associated moving coframe consists of the Maurer—Cartan fopued back
to the orbitsG x {yo}, along with the invariants and their differentials. Invariance
of the y’s implies that any symmetry of the moving coframe must have the form
Y(x,y) = (px),y), wherep: G — G is a symmetry of the Maurer—Cartan
coframe, and hence agrees with right multiplication by a group element. o

We have thus proved the following basic existence theorem.

THEOREM 6.5. LetG be a Lie group acting on a manifol. Then the following
are equivalent

(i) G acts freely and regularly oM.
(i) G admits a moving frame in a neighborhood of each poiatM.
(iiiy There exists &-coframe in a neighborhood of each poing M.

There is a second important method that can be used to construct an alternatt
G-coframe for a free group action without appealing to the Maurer—Cartan forms
First, the invariantd (z) = p(z) - z were earlier interpreted as the pull-back, via
o: M — B8, of the fundamental lifted invariants = g - z. Second, by applying
Proposition 3.9, the differentialw of the fundamental lifted invariant will split into
two sets of invariant forms o, namely d,w = g - dz and the group component
desw. Theorem 3.10 implies that the latter are invariant linear combination of the
Maurer—Cartan formg on 8. Therefore

dw =dyw+dgw =g - dz + F(w)pu, (6.3)
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where the coefficientd' (w) are explicitly determined by (3.8). We now pull back
dyw via our moving frame section to construct a system daf-invariant one-
forms onM.

THEOREM 6.6. LetG act freely onM. Letp: M — G be a right-moving frame.
Then the extended cofrariie= {y, I} consisting of the invariant functionqz) =
p(z) - z along with the one-formg = p(z) - dz forms aG-coframe onM.

Proof. The fact thatl = o*w include a complete system of functionally inde-
pendent invariants was given in Theorem 4.5. Applyirfgo (6.3), we find

dl =o*(dyw) +o0*(F)¢ =y + (Fol)¢.

Therefore, the one-formg = o*(dyw) are invariantly related to the moving
coframe formq¢, dI}, asin (5.3). It is not hard to see that thalefine a coframe
on M, and so the result follows from Corollary 5.8. O

Formula (3.8) provides an explicit local coordinate formula relating the normal-
ized coframe formy with the Maurer—Cartan forms:

yh=dr* = > (ffoDe*, k=1....m, (6.4)

k=1

where 7*(z) is thekth component off (z) = p(z) - z. Note that the coefficients

in (6.4) are obtained by invariantization, as in Definition 4.6, of the coefficients
£X(z) of the infinitesimal generators (3.7) with respect to the moving framie
particular, if we normalizev* = c¢* to be constant, thei* = ¢* is constant also,
and the d* term in (6.4) disappears.

EXAMPLE 6.7. Consider the action (4.12) of the planar Euclidean groug‘on
The right Maurer—Cartan forms on &8 are

ut = do, w? = da + b dg, w=db—adp. (6.5)

The corresponding components of the right-moving coframe: p*u are ob-
tained by pulling back the Maurer—Cartan forms (6.5) using the right-moving frame
(4.14), so

dp dx + pdu pdx — du
R T S e (6.6)

In order to complete (6.6) to @-coframe onM = R* we must supplement the
forms (6.5) by the fundamental invariant (4.16) and its differential

éAZdK:(1+1172)dq—3pqdp .= q
1+ p2¥2 1+ p?¥2

(6.7)
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The complete extended coframe (6.6), (6.7) forms &2gEoframe onM — its
symmetries coincide with the group transformations (4.12).

On the other hand, computing th@-coframe{y, I} as in Theorem 6.6, we
only need compute the differentials of the fundamental lifted invariants, and ther
pull-back via the moving frame map, thereby avoiding explicit determination of
the Maurer—Cartan forms. Differentiating (4.12) with respect to the coordinates
(x,u, p,q) on M leads to the one-forms

dyy = cos¢ dx — sing du, dyv = sing dx + cos¢ du,

dp
dur = (Cosgp — psing)?’ (6.8)
(cos¢p — psing)dg + 3g sing dp

(cosgp — psing)* ’
which, along with the Maurer—Cartan forms (6.5) form a(3Ecoframe for the

lifted action on8 = SK?2) x M. The corresponding SE) coframe onM is found
by pulling back (6.8) via the right moving frame (4.14); the result is

dMS =

y' = o*duy) =—¢%  yP=o"(dur) =2t
y? = o*(dyv) = =% y*=o*dus) =% (6.9)

The formulae (6.9) relating the two coframes can be deduced from (6.4), as w
now explicitly show. The group components of the differentials are

dgy = dg(xcosp —using +a) = —vut + u?,
dgv = dg(xsing +ucosgp + b) = y ut — u,

sing + p cosg B o 1
dG(—Cosd) — pSinqb) =A+rHu, (6.10)

_ q — 1
fos = dG((COS«l) - psin¢>3> e

The lifted invariant coefficients in (6.10) follow directly from (3.8) and the for-
mulae

dGr =

vi = —ud, +x3, + L+ p?d, + 3pqd,,
Vo = 9, V3 = 0, (6.11)

for the infinitesimal generators of the Euclidean action (4.12) that are dual to the
chosen Maurer—Cartan form basis (6.5). Indeed, if we write down the coefficien
matrix

—u 1 0
X 0 1

1+p2 0 0 (6.12)
0 O

3pq
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for the vector fields (6.11), then (6.10) can be written in matrix form
dey —-v 1 0 !
dov | _ y 0 2
dgs 3rs O ®

and the coefficient matrix is the lifted version of (6.12), obtained by replacing the
coordinates onVf by their corresponding lifted counterparts. Formula (6.9) then
follows from (6.4):

(oMo

! 0 0 10\

2

2| (o] [o o 1] (5%

=1 o 1 o0 o] (&) (6.14)
" de o 0 o ‘¢

In (6.14), the first term is the pull-back of the lifted coordinate differentidis dv,

dr, ds) via the normalization map (4.13), while the coefficient matrix in the second
is the invariantization of the infinitesimal generator coefficient matrix (6.12) with
respect to the given moving frame.

7. Equivalence of Submanifolds

We now apply our general results to the equivalence problem for submanifold:
under a freely acting transformation group. Given submanifsldS ¢ M, we
want to know whether or not they amngruentunder a group transformation,
meaning thag - S = S for someg € G. In this section, we review the solution

to this problem in the case wheh acts regularly and freely od. Actually, we
shall only consider the local problem here, so that the congruence condition is onl
required to hold in a neighborhood of a point. Global questions can be handled b
continuation processes (e.g., analytic continuation).

DEFINITION 7.1. LetS = ((X) andS = 1(X) be two embeddeg-dimensional
submanifolds parametrized by maps¥ — M, andi: X — M. The submanifolds
are said to be (locallygongruentunder a transformation grou@ provided there
exists a group elemegte G and a (local) diffeomorphisng: X — X such that

(Yx) =g-ux) (7.1)
for all x in the domain ofy .

In the case wheld; acts freely, the solution to the congruence problem follows
directly from the theorem for submanifolds embedded in Lie groups [12].

THEOREM 7.2. Let G be a free, regular Lie transformation group acting on
M. LetQ = {w, I} be aG-coframe onM. Then two embedded-dimensional
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submanifoldss = (X) and S = 7(X) are locally congruent unde if and only if
the pulled-back extended cofrantgs= {§, J} = *QonX andE = {§, J} =1"Q
on X are locally equivalent.

The diffeomorphismy: X — X determining the reparametrization part in
the correspondence (7.1) must satigfy & = E. In other words, in terms of the
defining coframe and invariants,

ToyY)'w="w, Toy)* I =1*1. (7.2)

Remark.For the fixed parameter equivalence problem, we do not allow the
reparametrization mag in the equivalence condition (7.1), which thus reduces
tot(x) = g - t(x), x € X. The solution to this problem follows from Theorem 7.2:
the pulled-backG-coframes must now be identica: = E.

The original G-coframeg2 is involutive; in particular, if2 = X is the moving
coframe, it will have constant derived invariants. The pull-b&k= *Q2 will,
of course, have the same structure equation®.adowever, if the submanifold
S has strictly smaller dimension thaw, i.e., dmS = p < m, the one-forms
¢ = *w arenot a coframe onX, because there are too many of them. Thus,
E will constitute an overdetermined one-form system, as discussed at the end «
Section 5. In order to apply our general equivalence theorems, we need to E2duce
to an extended coframe by eliminating the linear dependencies among the pulle
back one-forms. Near each pointe X we can choosep linearly independent
one-formsw = {w?, ..., w?} from among the pulled-back forngs The choice
of w is governed by a transversality condition on the submanifold

DEFINITION 7.3. Letw = {w?, ..., w”} be a collection ofp pointwise linearly
independent one-forms on andimensional manifold/. A p-dimensional sub-
manifold § = «(X) is transversewith respect taw if and only if the one-forms
w = ("o forms a coframe on the parameter spateand soS satisfies the
independence condition

zzrl/\---/\w”=L*(a)1/\---/\a)”);éo. (7.3)

We refer the reader to [4] for a detailed discussion of the role of independenc:
conditions and transversality in the context of exterior differential systems. Thus
given an extended cofrane = {w, I}, we shall impose an independence con-
dition on p-dimensional submanifold§ ¢ M by choosingp of the one-forms
in . Since we can rearrange the formsan(or, more generally, take constant
coefficient linear combinations) without affecting the symmetry propertieR, of
we shall, without loss of generality, assume that the independence condition (7.:

* As we shall see below, this is effected by a choice of independent and dependent variables ¢
the original manifoldM .
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is alwayswith respect to the firsp one-forms inQ2. With such a choice, we can
define transversality of a submanifold with respect to an extended cofeame

DEFINITION 7.4. A p-dimensional submanifold = ((X) is transversewith
respect to an extended cofrafle= {w, I} wherew = {w?, ..., »™}, if and only
if it is transverse with respect to the firstone-formse = {0?, ..., @”}.

On a transverse submanifoldr = (*@ forms a coframe on the parameter
spaceX. Therefore, we can write the remaining pulled back one-forms as linear
combinations of them,

P
Sk:ZK]].‘(x)w"', k=p+1...,m.
j=1

The coefficientsk = (. Kf ...) provide additional invariants for the overde-
termined one-form systerfi. Replacing the extra one-forms by these invariants
reducesE to an invariantly related extended coframg, = {w,J, K} on X,
having the same symmetry and equivalence propertieg dees. We shall call

Y the restricted G-coframeon the submanifold. If S is also transvergewe can
similarly construct the extended cofrae = {w, J, K} on X using thesame
choice of coframe basi® = " relative to the giverG-coframe.

LEMMA7.5. Let Q2 be aG-coframe onM. Two transverse submanifolds =
((X) and § = u(X) are locally G congruent if and only if the corresponding
restrictedG-coframesY on X and Y on X are equivalent.

Now, even though the originalr-coframe is involutive, the restricteds-
coframeY will almost never be involutive. Thus, one will typically need to replace
Y by its involutive counterparr®), wheres is theorder of Y.

DEFINITION 7.6. A submanifoldS c M is calledregular of order s with respect
to the G-coframeQ if S is transverse and the restrictédcoframeY has ordes.

The classifying manifolcbf S is defined ag2(S) = C(Y¢+V). The ranks of S is

the dimension of its classifying manifold:= dim C(S).

Using this construction, Theorem 5.16 then gives a complete solution to the
congruence problem for submanifolds when the group acts freely.

THEOREM 7.7. Let G be a free, regular Lie transformation group acting o,
and letQ be aG-coframe. LetS = ((X) and S = 1(X) be regular p-dimensional
submanifolds. Thes and S are locally G equivalent if and only if they have the
same order, and their classifying manifold&(S) = C(S) are identical.

* This can always be arranged locally by a suitable choice of the one-fbrms
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The symmetry group of is, by definition, its isotropy subgrou@gs C G.
Theorem 7.7 demonstrates that the actiorGefon S can be identified with the
symmetry group of the restricte@-coframeY on the parameter space

THEOREM 7.8. Let S ¢ M be a regularp-dimensional submanifold of order
and ranks with respect to the transformation grodp. Then its isotropy group s
has dimensiop — ¢t = dim S — rankS and acts freely or§.

In particular,S has maximal symmetry if and only if it has rank 0, meaning that
all the restricted invariantg, K are constant oi§. In this case, the dimension of
the isotropy group equals the dimensiorSand hences s acts transitively on (the
connected components) §f In particular,S must lie in a single5 orbit of M.

Remark Later we shall see that the invariaritsarising from linear dependen-
cies among the one-forms @ can be identified with the first order differential
invariants for the group action. Moreover, the derived invariants correspond tc
suitable higher order differential invariants. Thus, the classifying manifolds usec
to solve the equivalence problem are identified with those parameterized by th
differential invariants foiG.

EXAMPLE 7.9. Consider the Abelian Lie group = R3 acting by translations on
M = R3. A G-coframe is given by the coordinate one-foras= {dx, dy, du}.
The surfaceS = {x? + 2yu = 0|y # 0} satisfies the transversality condition
dx A dy| S # 0. Parametrizing by ¢ (x,y) — (x, y, —3x%y~1), we see that the
restricted one-form& = *Q satisfy the linear dependency &= —(x/y) dx +
2(x/y)?dy, leading to the functionally dependent invariants/y andx?/(2y?).
Therefore, the restricted coframe Stis

X x2
YT ={dx, dy, ——, — {.
{ i y2y2}

However, Y is not involutive since ¢k/y) = (1/y)dx — (x/y?) dy, so that the
derived coframe

2 2
T(l) = {dxa dy, _fv x_zv _E’ iz’ izv _X_S}
y 2y5 oy yr oyt oy
is involutive. Thereforey is a surface having rank 2 and order 1, and hence admits
at most a discrete translation symmetry group; in fact, the isotropy subgroup o
S is trivial. The classifying manifold is the surface parametrized by the twelve
invariants in
2 2
@ _ S . S S S
T _{dxv dyv ’ 27 27 707 2a

2y y ¥y 37y 37yt

2 1 2 3x2}
vy ¥y

* Actually, since the second invariant/2y? is a function of the first, its derived invariants are
redundant, as their functional dependencies are automatically determined, cf. (5.8).
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so that

C(S)

1.2 2
B 7 _ R12 a; = 5af, a4 = as = —ayas, ag = ajaz,ay =0
- (ala"'valz)e - 2 2 2 2
ag = aig = as, ag = a1 = 24143, ai2 = 3a;a;

Any translationally equivalent surfacemust have the same classifying manifold,
so thatS also has order 1 and rank 2, and has the same functional relationship
among its corresponding twelve invariants.

We are now ready to discuss the role of the regularized action in the equivalenc
problem for general group actions. Here we no longer need to assumg Htis
freely onM, but we replace it by its freely acting regularization 8n= G x M.
Associated with an embedded submaniféld= ((X) c M is the submanifold
S = 1g(G x X) C 8B parametrized by

LG(g,X):(g,L(X)), gEGa x e X.

The bundleG x X is the pull-back underof G x M. On B, we consider the
G-coframe2 = {u, dw, w}. As a direct consequence of Theorem 7.2, we obtain
the following result.

PROPOSITION 7.10.Two embedded submanifoldg and S; parametrized by
mapsig: G x X — G x M, andig: G x X — G x M are locally G congruent
if and only if the pulled-back extended cofraniés= {&,J} = (*Q on X and

B = {&, 7} ="Q are locally equivalent.

Suppose thas = ((X) satisfies the transversality condition specifieddy
ThenSs = 16(X) satisfies the transversality condition defined(by,)*® U pu.
It is clear that we can construct a cofrarfeeinvariantly related ta2 such that
the one formsw?, ..., w? € Q generatery)*®. Following the procedure above
Lemma 7.5 we have the restrictédcoframeY on G x X wherew = {w?, ...,
wP, ut, ..., 1} such thatw?!, ..., @? annihilate the tangent space to the fibers
of 7: G x X — X. Denoting by similar barred expressions using the mapG x
X — G x M, the equivalence theorem takes the following form.

PROPOSITION 7.11. Two embedded submanifolds X — M andi: X —
M which satisfy the transversality conditi@ah are equivalent if and only if the
extended coframe$ on G x X andY onG x X are equivalent.

Proof. First supposeX and X are equivalent. Thus = g - (t o ¥ 1), where
g € G andy: X — X. Define the diffeomorphisn¥: G x X — G x X by

Vh,x)=(g-h,¥vx)), hedG, xelX. (7.4)
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Clearly,iz o W = R, - ¢, WhereR, denotes the right regularized action (3.2) of
G. Then

I oW)'m = (Ry-16)* 1 = (1g)" 1,
(ZG o \I-’)*w = (Rg . tg)*w = (Lg)*w.

Conversely, if there exists suchdg then Proposition 7.10 implies thaf o W =
R, -1 forsomeg € G. In order to finish the proof we need to check thesplits as
in (7.4). The conditions o¥ in the theorem then imply*w = p and¥V*®w = w
and, hencey has the form in (7.4). 0

LetL: G x M — N be aregular lifted invariant. Letbe in the image of. and
let £, = L~{c} be the corresponding invariant level set. Denote the restriction
of p andw to L. by £ andw. The submanifold£. is G invariant and the local
diffeomorphisms of£,. which preserve the restricted invariaritsand formsu
coincide with the action of5 on .£.. That is{g, w} forms an (overdetermined)
G-coframe ont.. Now let R = (15)"%(L.) C G x X, and similarly forR C
G x X.

PROPOSITION 7.12.Under the above hypothesis, the embedded submaniolds
and X are equivalent if and only if there exists a diffeomorphimR — R such
that

UI=1, V'e=o,
wherel, T andw, @ are the pull-backs of the restricted invariariisand formsji
by andig respectively.

The proof is similar to that in Proposition 7.11.

Remark.If the function L defining the invariant submanifold,. is of rank
r = dimG in the vertical direction for the projection,,: G x M — M then
Theorem 7.12 is resolved by Theorem 7.7.

Remark.The transformations i/ determine symmetries of the restricted co-
frame onG x X. However, since at leagt of the invariants/ are automatically
functionally independent, ditis < dimG, as it should be.

Therefore, regularization can be used to replace the equivalepediofension-
al submanifoldsS ¢ M under a nonfree action aff by equivalence ofp +
r)-dimensional submanifold§; C B under the free regularize@ action. This
approach avoids the use of differential invariants, and will also take care of singula
submanifolds, since the lifted submanifdtds always regular. Incidentally, Propo-
sition 7.12 can be used to justify partial normalization, as discussed in Section 1
below, while the preceding remark can be used to justify complete normalization
This alternative method certainly warrants further investigation.
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8. Jet Bundles

The results in the preceding sections lead to a complete construction of a movin
frame in the case when the group acts freely on the underlying manifold. If the
group does not act freely, then an ordinary moving frame does not exist, and on
needs to prolong to some jet space of suitably high order before the procedure c:
be applied. In such cases, the higher order moving frame will naturally lead tc
the differential invariants for the transformation group. We begin by reviewing the
basics of jet bundles, cf. [17, 18].

Given a manifoldM, we let 3 = J'(M, p) denote thexth order (extended) jet
bundle consisting of equivalence classegpalimensional submanifoldS ¢ M
under the equivalence relation afh order contact, cf. [16, 17, Chapter 3]. In
particular, § = M. We letj,S c J' denote the:-jet of the submanifolds; more
explicitly, the parametrization map X — S C M induces a parametrization
jnt: X — j,S C M. The fibers ofrj: J' — M are generalized Grassmann mani-
folds [16]. Adifferential functionof ordern is a scalar-valued functiof: J* — R.
Sometimes, it is convenient to work with the infinite jet bundte 3 J°(M, p),
which is defined as the inverse limit of the finite order jet bundles under the stan
dard projectionst*: ¥ — J', k > n. Functions and differential forms of°Jare
obtained from their finite-order counterparts, where we identify a feron J
with its pull-backs(z*)*w on J for anyk > n, and hence with a differential form
on J°. For further details on infinite jet bundles, see [1, 26].

We introduce local coordinates= (x, u) on M, considering the firsp com-
ponentsx = (x!,...,x?) as independent variables, and the latte= m — p
components: = (u',...,u?) as dependent variables. Splitting the coordinates
into independent and dependent variables has the effect of locally identiffing
with an open subset of a bundle = X x U ~ R? x RY. Sectionsu = f(x)
of E correspond tg-dimensional submanifoldS that are transverse with respect
to the horizontal formsd = {dx?, ..., dx”}, as in Definition 7.3. The induced
coordinates on the jet bundlé dre denoted by™ = (x, u™), with components
u’ representing the partial derivatives of the dependent variables with respect to tf
independent variables up to orderHereJ = (ji, ..., ji) iS @ symmetric multi-
index of orderk = #J, with 1 < j, < p. The(x, u™) define local coordinates
on the open, dense subbundig€JC J'(M, p) determined by the jets of trans-
verse submanifolds, or, equivalently, local sections f(x). In the limit, we let
7 = (x, u®) denote the corresponding coordinates kI JF°(M, p), con-
sisting of independent variabla$, dependent variableg*, and their derivatives
uf,a=1,...,q,0<#J, of arbitrary order.

The intrinsic geometry of jet space is governed by a fundamental collection of
differential forms.

DEFINITION 8.1. A differential formd on the jet spac€'dM, p) is called acon-
tact formif it is annihilated by all jets, so thdj,.)*6 = 0 for everyp-dimensional
submanifoldS = «(X) C M.
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The subbundle of the cotangent bund@&)' spanned by the contact one-forms
will be called thenth ordercontact bundledenoted bye®™. The infinite contact
bundlec™ c T*JF* is a codimensiorp subbundle of7*J*. (This result is not
true for finite-order contact subbundles, which is one of the main reasons for goin
to infinite order.) In terms of local coordinatés, u*), every contact one-form
can be written as a linear combination of thessic contact forms

p
0F = du — u?[dx", a=1...,q, 0<#J. (8.1)
i=1

Combining the horizontal coordinate one-forms aith the basic contact forms
6% produces the local coordinate coframe & J

dr = {dx}, ..., dx?}, 0 ={...,0% ..} (8.2)

Therefore, choosing local coordinates drinduces a splitting *J° = # @ €
of the cotangent bundle intwrizontaland contact overtical subbundles, witt#¢
spanned by the horizontal one-forms. detrny: T*F° — # andxy: T*F° —
C© be the induced projections, so that any one-fasm= wy + 9 splits into
uniquely defined horizontal and vertical components, where

p
op =) =) P, u®)dy’ (8.3)

i=1

is a horizontal one-form, and

9 =my(w) =) 05 u")0y (8.4)
o,J

is a contact form. Ifv is a one-form on’Jthen, typically, its horizontal component
wy is a one-form on”31.

The splitting of 7*J* induces a bi-grading of the differential forms 6f.Jrhe
differential d on ¥ naturally splits into horizontal and vertical components=d
dy + dy, where ¢; increases horizontal degree andidcreases vertical degree.
Closure, @ d = 0, implies that ¢yody; = 0 = dyody, while dyody = —dyody. In
particular, the horizontal dotal differential of a differential functionF: J» — R
is the horizontal one-form

P
dyF = Z(D,-F) dx’ (8.5)

i=1

on J*t1 where

D; = 9 3 a 9 8.6
i—W'FZ;M‘]’i Y ()
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denotes the usual total derivative with respecttpwhich can be viewed as a
vector field on P E. Similarly, the vertical differential of a functiof (x, u™) is
the contact form

z OF
dyF=) Y o 0. (8.7)

i=1 K

DEFINITION 8.2. Atotal differential operatoris a vector field on<¥ which lies
in the annihilator of the contact bund@&>.

PROPOSITION 8.3.Every total differential operator has the form

p
D= 0ix.u”) D, (8.8)

i=1

whereQy, ..., Q, are differential functions.

The preceding construction forms the foundation of the variational bicomplex
that is of fundamental importance in the study of the geometry of jet bundles,
differential equations and the calculus of variations; see [1, 26, 29] for details.

9. Prolonged Transformation Groups

Any transformation groug; acting onM preserves the order of contact between
submanifolds. Therefore, there is an induced actiafi oh thenth order jet bundle

J' (M, p) known as the:th prolongationof G. Alternatively, one can characterize
the prolonged group transformations as the unique lifted maps on the jet bundl
that preserve the space of contact forms.

DEFINITION9.1. AmapV¥: J* — J' is acontact transformatiorif it preserves
the ordem contact subbundlel*e™ c ™.

PROPOSITION 9.2.1f y: M — M is alocal diffeomorphism, then itgh prolong-
ation is the unique contact transformatign”: J* — J' that satisfies) o 7} =
gy © VACH

We denote the prolonged group action 6rby G™. Note that ifG acts glob-
ally on M, then its prolonged actio™ is also a global transformation group
on J(M, p), but, generally only a local transformation group on the coordinate
subbundles™¥ sinceG may not preserve transversality.

Remark.Our methods also apply, with minor modifications, to more general
contact transformation groups. Backlund’'s Theorem, cf. [18], implies that these
reduce to prolonged point transformation groupsiMnor, in the codimension 1
case, prolonged first order contact transformation groups.
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Let us choose a basfs;, ..., Vv,} for the Lie algebrg of infinitesimal gener-
ators onM, and let{pr®™ vy, ..., pr®™ v,} denote the corresponding the infinites-
imal generators of the prolonged group acti@f?. In terms of local coordinates
(x, u®) on J°, we obtain p’ v, by truncating the infinitely prolonged vector
field

p
; 0
prVK = l_zzlgk(x’ M) 8)(,'[ +

q
N
+ Z Z 907,1(()6’ I/l(])) 814‘0; ’ K= 1,...,}", (91)

a=1 j=#J2>0

at ordern. The coefficients of (9.1) are explicitly determined by the standard
prolongation formula [18]:

p
95 =DsO¢ + Zsé g ;s (9.2)
i=1
where
p .
Q% (x, u®) = gl (x,u) = Y &l u)uf 9:3)

i=1

is thecharacteristicof v, .

The moving frame construction in Section 4 can be applied to the prolongec
group actionG™ provided it acts (locally) freely on"J Therefore, we need to
understand the basic geometry of the prolonged action in order to understand tf
full range of applicability of the higher order moving frame construction.

DEFINITION 9.3. GivenG acting onM, we lets, denote the maximal orbit di-
mension of the prolonged acti@i™ on J. Thestable orbit dimension = maxs,
is the maximum prolonged orbit dimension. T&imbilization orderof G is the
minimal » such that,, = s.

A fundamental stabilization theorem due to Ovsiannikov [22], completely char-
acterizes the stable orbit dimension; see also [18, 20] for further details.

THEOREM 9.4. A Lie groupG acts locally effectively on subsetsifif and only
if its stable orbit dimension equals its dimensiens r = dimG.

DEFINITION 9.5. Theregular subsetv" c J' is the open subset consisting of
all prolonged group orbits of dimension equal to the stable orbit dimension. The
singular subseis the remainder§” = J*\ V", which is the union of alG™ orbits

of less than maximal dimension.
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Note that, by this definitiony” = @ and$8” = J' if n is less than the stabi-
lization order ofG™. If G acts analytically, therv" is a dense open subset 6f J
for n greater than or equal to the stabilization order. The singular su#jsean
be characterized by the vanishing of the Lie determinant or its generalizations, ¢
[18, Chap. 6]. A point™ e J' will be called aregular jetprovidedz™ e V" or,
equivalently, the prolonged orbit passing through has dimensionr = dimG,
assumingG acts locally effectively on subsets. The stabilization Theorem 9.4
combined with Proposition 2.5 immediately implies the freeness of the prolongec
action on the regular subset of jet space.

PROPOSITION 9.6.1f G acts locally effectively on subsets, th@nacts locally
freely on the regular subsét” c J'.

RemarkIt would be nice to know that;™ acts freely on (a dense open subset
of) V" providedn is sufficiently large. We do not know a general theorem that
guarantees the freeness of prolonged group actions, although it seems highly u
likely, particularly in the analytic category, that a group acts only locally freely on
all of V" whenn is large.

DEFINITION 9.7. A submanifoldS C M is order n regular if j,S C V". A
submanifoldS c M istotally singularifj,S c 4" foralln =0,1, ... .

The characterization of submanifolds which are singular to all orders is of im-
portance for understanding the range of validity of the moving frame method. The
following theorem can be found in [20].

THEOREM 9.8. A submanifoldS ¢ M is totally singular if and only if its isotropy
subgroupG s does not act locally freely ofi itself.

EXAMPLE 9.9. Consider the special affine group @A= SL(2) x R? acting

on the planeM = R?viaz — Az + b, where detd = 1. The totally singular
curves are the straight lines, the isotropy subgroup consists of translations, shea
and unimodular scalings in the direction of the line. In terms of the coordinates
z = (x, u), the singular subset of ¥ given by

V= {(-xv u(n)) |uxx =Uxxx == Uy = O}a (94)

whereu,, = d'u/dx". A curveu = f(x) is totally singular at a pointxg, f (xp)) if
and only if £ (xo) = O for alln > 2. In particular, an analytic curve that is totally
singular at a point is necessarily a straight line.

The full affine group A?2) is interesting. Here the totally singular curves are the
parabolas and the straight lines. The isotropy group of a parabola, say?, is
the two-dimensional non-Abelian subgro0Q u) — (Ax + , A%u + 2k ux + p?).
In this case the singular subset 6fid also determined by the total derivatives of
the Lie determinant

V= {(X, u(n)) | D;Li‘l[uxxuxxxx — 2u? ] = O} . (95)

3 rxx
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The parabolas and straight lines form the general solution to the affine Lie detel

minant equation: i, ., = 2u2,.,.

Let us now quickly review the standard theory of differential invariants for Lie
transformation groups; see [18, Chapter 5] for details.

DEFINITION 9.10. A differential invariantis a (locally defined) scalar differ-
ential functionZ: » — R which is invariant under the action @™, so that
I(g™.zM)y =1(z™)forall g € G and allz™ e J* where the equation is defined.

AssumingG acts locally effectively on subsets, there are
inzdimJl—dimGzp—i-q(p—i_n)—r (9.6)
n

functionally independent differential invariants of ordérn near any point®™
%S

Remarklf n is less that the stabilization order, then we replaae(9.6) by the
maximal orbit dimension ofs on J and restrict:™ to lie in the open subset of J
where the prolonged orbits ¢ have maximal dimension.

The basic method, due to Lie and Tresse [25], for constructing a complete
system of differential invariants is to use invariant differential operators. A total
differential operator (8.8) is said to l@-invariant if it commutes with the pro-
longed action of5. The most effective way to construct such operators relies on a
suitably G-invariant basis for the horizontal one-forms on the jet space.

DEFINITION 9.11. A differential one-formw on J is called contact-invariant

if and only if, for everyg € G, we have(g™)*w = w + 6, for some contact
form 6,. A horizontal contact-invariant coframen J is a collection ofp linearly
independent horizontal one-forms which are contact-invariant under the prolonge
action of G™.

For brevity we shall usually drop the adjective ‘horizontal’ in the description
of contact-invariant coframes. Contact-invariant coframes are the jet space coul
terparts of the differential geometric coframes discussed in Section 5. Note the
a contact-invariant coframe only forms a coframe on the horizontal subbundle
FH C T*F°. A full coframe on ¥ requires additional contact forms; see below.

PROPOSITION 9.12.If I is any differential invariant, its horizontal differential
dy I is a contact-invariant one-form.

Thus, if we knowp suitably independent differential invariants, we can con-
struct a horizontal contact-invariant coframe. However, this approach is usually
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not the best method for determining such coframeg: (if, «™) is any differen-
tial function, we can rewrite its horizontal differential in terms of the horizontal
coframe as

14
dy F = Z(i).,-F)a)-". (9.7)
j=1
The resultingG-invariant total differential operato®y, ..., D, are the jet space

counterparts of the usual coframe derivatives, cf. (5.5). In local coordinates, suf
pose

p
o' :ZPJ’.(x,u(")) dx/, i=1,...,p, (9.8)
j=1

where the coefficient matriR = (P;f) is nonsingular. The corresponding invariant
differential operators are then given by

p
D;=> 0ix.u")D;, j=1....p. (9.9)
i=1

with inverse coefficient matrixQ = (Q;) = P~L If we consider the coordinate
one-forms @ = (dx%,...,dx?)” and total derivative = (Dy,...,D,)T as
column vectors, then (9.8) is written as= P - dx, while (9.9) become® =

QT .D = P~T.D. The invariant differential operators form an invariant ‘horizontal
frame’ on J°, cf. [15].

Any invariant differential operator maps differential invariants to higher order
differential invariants, and thus, by iteration, produces hierarchies of differential
invariants of arbitrarily large order. In this way, a complete list of differential invari-
ants can be produced by successively differentiating a finite number of differentia
invariants, which we call generating systerof differential invariants. We use the
notation®d; = D;,---D;,, 1 < j, < p, denote the correspondingh order
invariant differential operators.

THEOREM 9.13. Suppose that is a transformation group, and letbe its order

of stabilization. Then, in a neighborhood of any regularzét € V", there exists

a contact-invariant coframéw?, ..., w”}, and corresponding invariant differen-
tial operators Dy, ..., D,. If 1(z®) is a differential invariant, then so iD,/

for any multi-indexJ. Moreover, there exists a generating system of functionally
independent differential invariantg, ..., I;, of order at most: + 1, such that,
locally, every differential invariant can be written as a function of the differentiated
invariants{D; I, |v=1,...,1, #J > 0}.

See [22, p. 320] and [18, Theorem 5.49] for more details. The theorem is mis
stated in [18] — the order of the fundamental differential invariants should be at
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mostn + 1, notn + 2. Except in the case of curves, where= 1, the precise
number of differential invariants required in a generating system is not known. A
refinement of Theorem 9.13 will be proved below; see Theorem 13.1.

The invariant differential operators coming from a general contact-invariant
coframe do not necessarily commute. The commutation formulae (5.6) for ordinan
coframe derivatives are an immediate consequence of the closure idénitp d
Similarly, if  is the contact-invariant coframe, then

i<j

where the coefficientd’, = —A’;i are differential invariants. Thus, applying do
(9.7) produces the commutation formulae

)4
(D, D;1=) AD. i j=1....p. (9.11)
i=1

for the associated invariant differential operators. If all the coframe forms are
constructed from differential invariants, i.eof = dyI*, k = 1,..., p, then
dyo® = 0, and hence the invariant differential operators all commute in this
particular case. The commutation formula (9.11) implies that a complete syster
of higher order differential invariants can be obtained by only including the differ-
entiated invariantsD; I, corresponding to nondecreasing multi-indices. 1j; <

jo < -+ < Jjir < p. However, even with this proviso, the differentiated invariants
D, I, are not necessarily functionally independent.

DEFINITION 9.14. Given a functionally independent generating system of dif-
ferential invariantdy, .. ., I;, asyzygyis a functional dependency among the dif-
ferentiated invariants| (... D;1,...) = 0.

There are two types of syzygies, the first arising from the commutation rules
for the invariant differential operators, and the second ‘essential syzygies’ ar
where the functiond only depends on the differentiated invariaeds 7, having
nondecreasing multi-indices. In Theorem 13.4 below, we shall provide a precise
classification of all such syzygies.

EXAMPLE 9.15. Anelementary example is provided by the three-parameter grou
(x1, x%, u) — (x4 a, Ax? u + b) acting onM = R3. The one-formsy! =
x®)~ldx!, w? = (x?)~1dx? form a contact-invariant coframe, with invariant dif-
ferential operatorsD, = x?>D,, D, = x?D,. We note the commutation formula
[D1, D] = —D,. The first-order differential invariants = x2u1 andlr = x%u,

form a generating system, ardg; = (D) (D)1, i = 1,2, j +k > 0, form

a complete system of differential invariants. In this case there is a single essenti
syzyqy,D.I, = D11, — I, from which all higher-order syzygies can be deduced
by invariant differentiation.
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Remark.For curves in ann-dimensional manifold, one requirés= m — 1
generating differential invariants, and a single invariant differential operator
Moreover, in this case, there are no syzygies among the differentiated invariant
D1, cf. [11, 18].

10. Higher Order Regularization

We are now in a position to describe the general version of our moving frame
construction. The key idea is to apply the regularization technique to the prolonge
group action on the extended jet bundles over the mani#ldAll of our earlier
constructions (which describe the order zero case) can be immediately applied
this particular type of transformation group action. Moving frames can be com-
puted provided the prolonged action is (locally) free, i.e., on the regular subse
of J'. In this manner, we shall be able to construct a higher-order moving frame
associated with all but the totally singular submanifolds of the original space.

We assume thaf; acts locally effectively on subsets af. For simplicity,
we only discuss the right regularization of the prolonged group action on the je
bundle 3 = J'(M, p) corresponding tg-dimensional submanifolds a#. The
left counterparts can be simply obtained by applying the group inversion.

DEFINITION 10.1. Thesth orderregularized jet bundlés the trivial left principal
bundler,: 8™ = G x J* — J. Thenth order (right)regularization of the
prolonged group action ori s the action ofG on 8™ given by

= (h-gtg"-z"), geG, (h,z") e B™. (10.1)

Theorem 3.2 implies that the regularized action® is both free and regular.

DEFINITION 10.2. Alifted differential invariantis a (locally defined) invariant
functionL: 8™ — N.

A complete system of functionally independent lifted differential invariants is
provided by the components of the oraegvaluation map

w® = g . (10.2)

Clearlyw™: 8™ — J'is invariant under the lifted action (10.1). As in Section 3,
every lifted differential invariant can be locally written as a function of the fun-
damental lifted differential invariants™. In particular, an ordinary differential
invariant/: J* — R also defines a lifted differential invariait = I o =,, and
hence can also be locally expressed as a function abtkieconversely, any lifted
invariant L(g, x, ™) that does not depend on tigecoordinates automatically
defines an ordinary differential invariant. Our simple replacement Theorem 3.7
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immediately applies to the construction of differential invariants from their lifted
counterparts.

THEOREM 10.3. Let 1 (z™) be an ordinary differential invariant. Then we can
write I (z™) = I(g™-z™) as the same function of the lifted differential invariants.

Remarkln Riemannian geometry, Theorem 10.3 reduces to the striking Thoma:
Replacement Theorem [24, p. 109], which is proved by appealing to normal coor
dinates. See [2] for recent applications of Thomas’ result.

EXAMPLE 10.4. Consider the (standard) action of the Euclidean grou@)Sia

M = R?. Introducing local coordinates, «), the second order prolongation maps
apoint(x, u, uy, uy,) € Fto

(x COS¢ — uSing + a, x 0S¢ + u sing + b,

sin . COS x
NG + uy COSP u ) (10.3)

COSp — u, Sing’ (COSp — u, Sing)3
reproducing the action (4.12). The second-order lifted invariants (10.2), which we
denote a®® = (y, v, vy, Uyy), are the components of the transformation formulae

(10.3). The Euclidean curvature differential invariant can be constructed in term:
of the lifted invariants:

vyy Mxx
= = . 10.4
K (1+ U§)3/2 (1+ u§)3/2 ( )
The Replacement Theorem 10.3 guarantees that the formutaifiorerms of the
usual jet coordinateéx, u, u,, u,,) is the same functional relation as its formula
in terms of the lifted invariantsy, v, vy, vy,).

The regularization construction extends to the infinite order regularized jet bun
dle 7o: B = G x F°* — J* in the obvious manner. The pull-back of the
contact bundlee™ c T*JF° defines the contact subbundle®©® c T*8(),
Similarly, the pull-back viarg: 8 — G of the cotangent bundle @, spanned
by its Maurer—Cartan forms, define a second intrinsic subbundfe 8>, which
we also denote bf*G. The product bundl@*G x € forms a codimensiop
subbundle of the cotangent bundiéB . SinceB8 = G x J° is a Cartesian
product, the differential o3 naturally splits into jet and group components,
d=d; +dgs.

PROPOSITION 10.5.If w is a G-invariant differential form onB, then so are
bothd;w anddgw. In particular, if L(g, z™) is a lifted differential invariant, then
its jet and group differentialsyl; L anddg L, are invariant one-forms o8>,

* For simplicity, we drop explicit reference to the pull-back via the projection map.
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Let us now discuss the local coordinate expressions for the regularized actio
and its invariants. As above, the introduction of local coordinates ) on J°
produces a local coframe @B consisting of the horizontal formscdthe system
of basic contact form@, along with the right-invariant Maurer—Cartan forpasall
pulled back taB. The choice of horizontal complement produces a splitting of
the differential on8® into horizontal, vertical, and group components, so that we
have the more refined decomposition

do =d;jo +dsw =dyw +dyw + dgo (10.5)
for any differential form onB8*. Note also that

dHOdHIO, dedV:O, dGOdG:O,
dH o dV = —dv o dH, dH o dG = _dG o dH, (106)
dV OdG = _dG Odv.

RemarkWe have not investigated the topological and variational aspects of the
induced ‘regularized variational tricomplex’ governed by the differentiglsdi
and ¢;.

In particular, the horizontal and the vertical differentials of a functiag, x,
u™) have the same formulae (8.5), (8.7), as before, where the total derivative
D; have their usual coordinate formulae, i.e., there are no derivatives with respet
to theg coordinates. Note that the horizontal and vertical differentials of a lifted
invariant arenot, in general,G-invariant one-forms o8> . However, the hori-
zontal differential does satisfy the weaker, but very important, invariance property
of Definition 9.11.

PROPOSITION 10.6.If L(g, z™) is a lifted invariant, then its horizontal differ-
entialdy L is a contact-invariant one-form.

The standard jet space coordinatesu ) are not well adapted to the lifted
group action on8, and we shall replace them by a fundamental system of
invariant coordinates based on the fundamental lifted differential invariants. The
introduction of local independent and dependent variable coordipatesx, u)
on M induces a local identification with a trivial bundie= X x U. This induces a
splitting of the fundamental zeroth order lifted invariamts= (w?, ..., w™) = g-z
into two components. In théx, u) coordinates, we writew = (y, v), where

* For simplicity, we have chosen to split the lifted invariants into independent and dependen
components in the same way as we split the unlifted variables. Actually, one can choose alternati
splittings ofw into p independent ang dependent components, although one must then accordingly
modify the required transversality conditions.
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= (y%, ..., y?) will be considered as ‘lifted independent variables’, ane-
(i, ..., v?), as ‘lifted dependent variables’. Let
p
N =duy' =) DpyHde/, i=1...,p, (10.7)
j=1

denote the horizontal differentials of lifted independent variables. The coefficient
matrix Dy = (D,y') is obtained by total differentiation of the lifted invariants
treating the group parameters as constants, so the lifted horizontalfoem®y)-

dx are defined on the first-order regularized jet sp@¢E. Since the functions’

are lifted invariants, Proposition 10.6 implies that the one-foprere contact-
invariant under the lifted action af on 8. Then’s are linearly independent if
and only if they’s have nonvanishing total Jacobian determinant:

DO, ... yP)
D(x%,..., xP)

This condition can be geometrically characterized as follows.

detDy = — det(D;)")#0. (10.8)

PROPOSITION 10.7.The horizontal one-formg = (Dy) - dx are linearly inde-
pendenty! A --- A n? # 0, on the open subsev® c 8D determined by the
1-jets of submanifold$ such that bothS and g - S are transverse with respect to
the given coordinates ol . Thus, W& = {(g, zP) e G x FE | gV -z € JE}.
At such points, we calf = (%, ..., n?) thelifted (horizontal) contact-invariant
coframefor the given coordinate chart.

The corresponding invariant differential operators are readily found. As in the
usual (unlifted) version, (9.7), we write the total differential of any scalar function
F: 8™ — R in invariant form

p

duF =) (& F)n’ (10.9)

j=1

with respect to the prescribed contact-invariant coframe. The corresponding totz

differential operators ar& = (Dy)~" - D, or, explicitly,

D(ylv ceey y‘i_la Fa yl+1a ey yp)
DO, ..., yP)

p
= Z Z'(g.x,uP)D;, (10.10)

i=1
whereZ = (Z’) = (Dy)~L. Thus, we can identify théfted invariant differential
operator&; = D, W|th total differentiation with respect to the lifted invariant
y/; in particular, 8 iy = 5’ Note that the lifted invariant differential operators do
not involve dlﬁerentlatlon with respect to the group parameters. A very important
point is that, unlike the usual invariant differential operators, the lifted invariant
differential operatorslwaysmutually commute:

[&:.€]=0. (10.11)

&F =
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This follows from the closure of the horizontal differential; ddy = 0, and is an
immediate consequence of the fact that the lifted contact-invariant coframe (10.7
is the horizontal derivative of lifted invariants; see the discussion following (9.11).
We letéx = &, - - - - - &, denote the associated higher-order invariant differential
operator; Equation (10.11) shows that the order of the invariant differentiation is
irrelevant.

The lifted invariant differential operators can be used to compute higher-ordel
lifted differential invariants. The basic result follows immediately from (10.9), the
contact-invariance of the formg, along with the fact that the prolonged group
transformations preserve the contact ideal.

PROPOSITION 10.8.1f L: 8™ — R is any lifted differential invariant, then so
are its invariant derivativesy L: 8"+% — R, wherek = #K > 0.

If we successively apply the invariant differential operators associated with the

first p lifted invariantsy = (y*, ..., y?) to the remaining zeroth order invariants
v = (vi,...,v9), we recover all the higher-order lifted invariant§”. Since
w® = g .z an alternative way of viewing this result is that the process

of lifted invariant differentiation produces the explicit formulae for the prolonged
group transformations, thereby implementing the standard process of implicit dif
ferentiation, cf. [17].

LEMMA 10.9. The components of theth order lifted invariantw™ consist of
the basic invariantav = (y, v) together with the higher-order lifted differential
invariants

vy = ExvY, a=1...,q, #K <n. (10.12)

Proof. For fixedg, the mapw™: J* — J' is a contact transformation on the jet
bundle, hence the pull-bagk ™)* maps contact forms to contact forms. Now,

p
W™y og =dyy = v, dy', a=1....q. #K <n-1 (10.13)
i=1
The right-hand side will be a contact form if and only if its horizontal component
vanishes, so that

p
de%=Zv§‘(’in", a=1...,q, #K <n —1. (10.14)

i=1
Comparing (10.14) with (10.9) completes the proof. O

EXAMPLE 10.10. For the (standard) action of the Euclidean groug2s5Bn
M = R?, the zeroth order lifted invariants = (y, v) are just the group trans-
formation formulae:

y = xCO0S¢p — using + a, v = X COS¢ + using + b.
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The lifted horizontal contact-invariant form is
n =dyy = (COS$p — u, sing) dx,
which is well-defined provideg does not rotate the curve to have a vertical tan-
gent. Therefore
1
- COS¢ — u, Sing
is the lifted invariant differential operator. The higher-order lifted invariants are

obtained by successively applyir&to the other zeroth-order lifted invariamnt
The first two are

sin¢ + u, COS¢ Uxx
Uy = _ : ’ Vyy = — " 3
COS¢p — u, Sing (Cosgp — u, Sing)
As remarked above, the one-forms = dyy' are not strictly invariant under
the prolonged group action. However, we can use their invariant counterparts

U=dyy =dgy +dvy =n'+x'. i=1....p (10.16)

to define a fully invariant coframe on the regularized jet bur@le”. In (10.16),
the x’ are contact forms that are not invariant under the lifted actio@.of

There are two methods for constructing invariant contact forms. First, since the
horizontal component of the invariant one-form on the right-hand side of (10.13)
vanishes by virtue of (10.14), its vertical component

& =D,

X

(10.15)

P
o o o i
vy = dyug — E vK,idJy
k=1
P

= dyvly — ) v, dvy. a=1....4q, (10.17)
k=1
is an invariant contact form. The resulting collectidn= {..., 9%, ...} forms a
complete set of lifted invariant contact forms & . The formsz, # are the pull-
backs of the canonical coframe (8.2) by the m&p” modulo the Maurer—Cartan
formsu.

PROPOSITION 10.11.The collection of one-forms
r={t} ..., P}, P={.., 0% ...}, w={unt ..., "}, (10.18)
provide an invariant local coframe o8 = G x J°.

Invariant contact forms can also be found via the process of invariant differen-
tiation.

THEOREM 10.12. Let 9 define the complete system of invariant zeroth-order
contact forms, as iff10.17)with K = @. The higher-order contact forms

9 = €0, a=1,...,q, #K > 0, (10.19)
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obtained by Lie differentiating the zeroth-order contact forms provide a complete
list of lifted invariant contact forms.
Proof. Applying dy to (10.17) and using (10.6), we find

p P p
dpdy = =Y dy@g n)) = Y vk, ) Advy + ) vk dyn
j=1

i,j=1 i=1

p
= = wg A (10.20)
j=1

The identity (10.19) follows by pairing (10.20) with the total vector figld O

11. Higher Order Moving Frames

The construction of higher-order moving frames proceeds in direct analogy witt
the zeroth order version. As usual, for simplicity, we only explicitly treat the right
versions.

DEFINITION 11.1. Annth order (right)moving frames a map
o™ — G (11.1)

which is (locally) G-equivariant with respect to the prolonged actiGft’ on J,
and the right multiplication actioh — 4 - g~* on G itself.

The corresponding left moving frame of orderis merely p ™ (z™) =
0™ (z")~1. Note that amth-order moving frame automatically defines a moving
frame on the higher-order jet bundles, namel§ o 7*: ¥ — G, k > n. The
fundamental existence theorem for moving frames is an immediate consequen
of Theorem 4.4.

THEOREM 11.2. If G acts onM, then annth-order moving frame exists in a
neighborhood of any point™ e V" in the regular component aF.

Remark Proposition 9.6 only guarantees the loGakquivariance of the mov-
ing frame; global equivariance requires tii#t’ act freely onv”.

In particular, the minimal order at which any moving frame can be constructed
is the stabilization order of the group. Indeed, according to the construction ir
Section 4, the choice of a cross-secti&f”’ c J' to the prolonged group orbits
serves to define a moving framé® in a neighborhood of any point” ¢ K™,

The setL™ = (w™)~1K®™ forms the graph of a loca;-equivariant section
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o™ ¥ — 8™ whose moving frame is™ = 5 o ™. Moreover, composing
o™ with w™ produces the corresponding differential invariants.

DEFINITION 11.3. Thefundamentakth-order normalized differential invariants
associated with a moving frame™ of ordern (or less) are given by

1M (MY = w® 6 g™ (MY = p™ (M. ;™. (11.2)

THEOREM 11.4. If J (x, u™) is anynth-order differential invariant, then, locally,
J is a function of the normalizedh order differential invariants, i.eJ = HolI™.

RemarkThe fundamental normalized differential invariants are not necessarily
functionally independent. Indeed, typically we normalize some of the component:
of the fundamental lifted invarianb™ by setting them equal to constants; the
corresponding normalized differential invariants will then, of course, also be con-
stant. However, Theorem 4.5 does imply thattite order normalized differential
invariants contaimll of thenth order differential invariants. In particular, any lower
order differential invariants, including those on jet bundles whgrmdoes not yet
act freely, will appear as functional combinations of 18,

As in the order zero case, given an arbitrary differential funcfion' — R,
thenL = F o w™: 8™ — R defines a lifted differential invariant, and hence
J =Loo™ = F o I™ defines a differential invariant, called thevariantization
of F with respect to the given moving frame. Thus a moving frame provides a
natural way to construct a differential invariant from any differential function!
Theorem 10.3 just says that i itself is a differential invariant, the# o w™
is independent of the group parameters, and hdnee F. Thus, invariantization
defines a projection, depending on the moving frame, from the space of differentic
functions to the space of differential invariants. One case of interest jghietal
derivative D; F (x, u"*V) of a differential functionF (x, u™). The corresponding
lifted invariant coincides with thgth invariant derivative of the lifted invariant
L =Fow™, sothatD;F o w" = &;L. Consequently, the invariantization of
D; F is given by

g Loo™ =D;Fol"Y. (11.3)

As in the order zero case, in applications to equivalence problems, one restric
the moving frame to a submanifold.

DEFINITION 11.5. Annth order moving frame restrictetb a p-dimensional
submanifold:: X — S C M whosen-jet j,S lies in the domain of definition
of p™ is defined as the composition

AW =p®oji X — G. (11.4)
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Equivalently, anth order moving frame is a smooth maf’: X — G which
factors through an equivariant map frofntd G:

J’l
i (n)
/ \\" (11.5)
)\.(")
x— g

generalizing the order zero construction (4.17). Theorems 4.4 and 9.8 serve f
characterize the submanifolds which admit moving frames.

THEOREM 11.6. A submanifoldS ¢ M admits a(locally defined nth-order
moving frame if and only if is regular of orderm, i.e.,j, S C V".

Thus, in the analytic category, a submanifSlddmits a moving frame (of some
sufficiently high order) if and only if its isotropy subgroups acts freely ors.

The practical implementation of the higher-order moving frame construction
relies on the higher order version of the normalization method. Consider a poin
7™ e V" contained in the regular subset of il jet space. According to Propo-
sition 4.10, in a neighborhood @f”, we can choose a regular systenvdifted
differential invariantsL (g, x, «) having maximal rank = rankd;L = dimG.

The Implicit Function Theorem allows us to solve the normalization equations

Lq(g, N =c1, ..., L, (g, 7"y =¢,, (11.6)

for the group parameters in terms ofz™ provided the normalization constants
¢ = (c1, ..., c ) belongtothe image df. Typically, one chooses to ber suitable
components of the fundamental lifted differential invariant = g™ . z® that
have as low an order as possible, subject to the maximal rank condition, althoug
this is by no means essential to the implementation of the method. The solutio
to the normalization equations (11.6) determines#order moving frame =
o™ (x,u™). Substituting the formula for the moving frame into the remaining
lifted invariants produces a complete system of differential invariants on the opet
neighborhood of™ e V" wherep™ is defined.

In terms of the invariant local coordinates™ = (y, v”) on 8™, the fun-
damental normalized differential invarianmt&’ = (o ™)*w™ associated with the
given moving framez = p™ (x, u™) are

Jix, u™y =y (p™(x, u™), x,u), i=1...,p,
11.7)
Ig(x, u®y = v%(p(”)(x, u™y, x,u®), a=1,..., q, k=#K > 0.
In the second formuld, = max{n, k}. As above, some of these may be constant

and/or functionally dependent due to normalizations. However, (11.7) do include
complete system of differential invariants, meaning that, providedn:, any other
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kth-order differential invariant can be locally expressed as a function of‘thed
I¢ for #K < k.

EXAMPLE 11.7. Consider the elementary similarity groip= R x R? acting
on M = R?via

(x,u) —> (ax + a, o’u + b). (11.8)

If we choosey = ax + a as the lifted independent variable, thea= dyy = adx

is the corresponding horizontal invariant form, with invariant differential operator
& = D, = o !D,. Successively applying to the dependent-order zero lifted
invariantv produces the complete system of higher-order lifted invariants=

&"v = o®"u,, whereu, = D"u, andn > 1. Therefore, o8, say, the lifted
invariantsw® are

y=ax +a, v=cau + b, vy :ozzux, Uyy = OlUyy,
-1
vyyy = uxxxa vyyyy = uXXXX‘ (119)

The simplest first order moving frame is found by normalizing v = 0,u, = 1,
whereby
x u 1

) b:_—7
A/ Uy M)3C/2

which is well-defined on the subsatl — {uy > 0}. The resulting normalized
fourth-order differential invariant® are obtained by substituting (11.10) into the
lifted invariants:

(11.10)

MXX

Vg

Jt=0, Ip =0, =1, I, =

13 = Uxxx, 14 =V Ux Uxxxx-

The moving frame (11.10) applies to curves= f(x) provided the tangent is not
horizontal, sat, # 0. If the curve has a horizontal tangent, then one can construct
a second-order moving frame by using the alternative normalizatios- 1, with

a=->, b=-—, o= (11.11)

Uxx uxx Uxx

which is well-defined on the subdomai¥ = {u,, # 0} and, hence, applies
to curves with horizontal tangent at a point, but not those with inflection points.
(Curves with horizontal inflection points can be handled by a yet higher-order
normalization.) The moving frame (11.11) leads to a slightly different normalized
fourth-order differential invariant®:

J=0, I,=0 L =— L=1,

13 = Uxxx, 14 = UxxUxxxx,
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all of which are, naturally, functions of the previous normalized differential in-
variants on their common domain of definition. Note that the two moving frames
correspond to different choices of cross-section %9fnamely {(0, 0, 1, k)} for
(11.10) and{(0, 0, k, 1)} for (11.11).

Remarkln his thesis, I. Lisle [15, Ex. 4.4.21], introduces a ‘naive elimination
method’ for determining differential invariants that is essentially the same as the
normalization method used here. Our theory of normalization demonstrates ho
Lisle’s method can be formalized into a practical and elegant alternative to the
more traditional methods for computing differential invariants.

12. Higher Order Moving Coframes

The final ingredients in our general theory are the jet space counterparts of the mo
ing coframe forms. These will produce the normalized invariant differential oper-
ators that can be used to recursively construct complete systems of higher-ord
differential invariants, and will govern the equivalence and symmetry properties o
submanifolds.

DEFINITION 12.1. Themoving coframeof ordern associated with an order
moving framep™: J* — G is the extended differential system” = {¢™, dI™,
1™} consisting of the pull-back™ = (p™)*u of the Maurer—Cartan forms
to J, along with thenth-order normalized differential invariant€” and their
differentials.

LEMMA 12.2. Thenth order moving cofram& ™ forms aG ™ -coframe onfv".

In other words X is involutive and its symmetry group coincides with tith
prolongation ofG acting on 3. Lemma 12.2 is a direct consequence of Lemma 6.4.
Any other G™-coframe onis invariantly related to the moving coframe, mean-
ing that its functions are combinations of the differential invariants, and the one-
forms are linear combinations of the moving coframe forms, with differential in-
variant coefficients. A particularly usefd@ ™ -coframe can be constructed using
the method in Theorem 6.6.

THEOREM 12.3. Letp™: V" — G be aright moving frame on theh jet bundle

over M. The extended coframie™ = {y™ 1™} consisting of the normalized
differential invariants
10 (M) = p (7). 70 — (5,0, (12.1)

and the one-forms

y® = p® (™). dz® = (¢™y*d;w™, (12.2)
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forms aG™-coframe onJ* and, hence, is invariantly related to the moving coframe
zm,

EXAMPLE 12.4. Consider the elementary similarity group (11.8). The moving
coframeX @ is obtained by applying the moving frame map (11.10) to the right
invariant Maurer—Cartan forms

d 3b
ut = _oz’ p? =da — 4 do, W =db — = da. (12.3)
o o o
The resulting moving coframe forms are
;lz_d”", ;3:——d”2, ;%= — & Cot=d( =),
2u, uf/ N Uy Uy

where the final form is the differential of the fundamental second-order differen-
tial invariant I, = u; ~?u,.. The second-order extended cofraff’ is obtained

by applying the moving frame map (11.10) to the jet differentials of the lifted
invariants

d;y = adx, d;v = o3 du, djvy:azdux, dyvyy = o gy,
leading to
1 dx 2 du 3 du, 4 dut

S A v

)/1 — _;2, )/2 — _;3, )/3 — _24.1’ )/4 — ;4 _ 12§1,

between the twaG®-coframes follows from (6.4), using the coefficients of the
prolonged infinitesimal generators for the given transformation group.

As in Section 10, we use the local coordinates:*) on J* and lifted coor-
dinates(g, y, v©®) on 8. The pull-back of the lifted contact-invariant coframe
n = dgyy under the moving frame section will produce a contact-invariant coframe,
from which we can construct the required invariant differential operators.

DEFINITION 12.5. Thenormalized contact-invariant cofranmgthe pull-back of
the lifted contact-invariant coframe:

w=(c")n=(")dyy. (12.4)

LEMMA 12.6. The horizontal one-forme = (c™)*dyy are linearly indepen-
dent at a point™ in the domain of definition of the moving frame map if and only
if z =, S|, is then-jet of a transverse submanifofic M.

Proof. In terms of our bundle coordinates, the transversality whpliesz™
J'E. According to Proposition 10.7, the one-formpsvill be linearly independent
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at a point(g, z™) € G x JE c 8™ if and only if gV - 7] (z™) € J'E, which
automatically implieg™ - 7z e J'E. Thereforem will be linearly independent
if and only if k™ = p™(z™) . ;™ e J'E. But, by constructionk™ e K™ is the
cross-section representative of the orbitsf throughz™ and, hence, lies in the
coordinate chart"E used to construct the moving frame. 0

In local coordinates, the normalized one-formsare therefore obtained by
using the moving frame to replace the group parameters in (10.7), so

4
D,y (0 Cx, u™), x,u™)de/ =" Pj(x,u™) dx/, (12.5)

=1 j=1

Il
< tvj“

whose coefficient matrix? = (o™)*Dy is the pull-back of the total Jacobian
matrix of the independent lifted invariants.

Remark.The coeff|C|entsP’ cannotbe obtained by invariantly differentiating
the normalized invariantg’ = (c™)*y; in other wordsw’ # dy J'. Indeed, in
many cases, the's are normalized to be constant, whereasdlseare clearly not
zero. This is because the operations of total differentiation and normalizition
not commute

The invariant differential operators associated with the horizontal coframe (12.5
are obtained by normalizing the lifted invariant differential operators (10.10), so
that theg; on B8 project, bys ™, to G-invariant total differential operators on
J*. In coordinates,

p p
°(Di = Z Qlj (X, u(n)) D] = Z Zl] (p(n)(x’ u(n))v X, u(l)) D]v (126)

j=1 j=1
whereQ = P! = (¢™)*Z can be constructed directly from (10.10).

EXAMPLE 12.7. Consider the similarity group (11.8). Under the first-order mov-
ing frame map (11.10), the lifted horizontal form= dyy = « dx reduces to

o = u;Y?dx. Similarly the lifted invariant differential operatd = oD,
reduces taD = /u, D,, which maps differential invariants to higher-order differ-
ential invariants. Howevet) does not directly produce the normalized invariants.
For examplep,, normalizes tol, = u;“?u,,, but Vyyy = &(v,,) normalizes to

I3 = u,,,, Which is not the same a1, = u,, +u;*u? . The second- order mov-
ing frame (11.11) produces a different horlzontal one -form, namedy u_

whose invariant differential operatd = u,, D, produces yet another hlerarchy
of differential invariants, which, naturally, are functions of the normalized dif-
ferential invariants. The explicit formulae relating these different hierarchies of

differential invariants will be found in the next section.
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13. Recurrence Formulae, Commutation Relations, and Syzygies

We have now introduced the basic ingredients in the regularized theory of movin
frames. In this section, we discuss several important consequences of our co
structions. These include recurrence formulae and general classification results f
differential invariants, commutation formulae for the associated invariant differ-
ential operators, and, finally, a general syzygy classification. The results are a
illustrated at the end of the section by a particular example arising in classica
invariant theory.

An important point, encountered in Example 12.7, is that the normalized invari-
ant differential operators, unlike their lifted counterparts,ndbdirectly produce
the normalized differential invariants. For example, consider the normalized differ-
ential invariant/* = (o™)*v* corresponding to the lifted zeroth-order invariant
v¥ asin (11.7). Applying an invariant differential operatorZtoproduces a higher-
order differential invarianiDg 1%, but this isnot, in general, equal to its normalized
counterpart’¢ = (o ™)*v% = (o™)*[Exv®]. For example, if we normalize” =
¢*, thenI® = ¢* is constant, and so its derivatives are all zero, but the higher-
orderg are generallynottrivial. The goal is to determine a recursive formula for
constructing the g directly without having to appeal to the lifted invariants. Our
starting point is formula (10.14), to which we apply the moving frame pull-back
(o ™y*. A difficulty is that, while (o ™)* trivially commutes with the differential
d, it doesnot commute with the operations;cand d,. Therefore, we rewrite

dyvy = dvg —dyvg —dgok (13.1)

before applyingo ™)*. We find

P
Yoo = (@) )
i=1

= dIg — (™) (dyvy) — (0™)*(dgv%)
=dyly — mu[(c™)*(dev})]

p
=Y (D) o — (@) (devi)]. (13.2)

i=1

The next to last equality is obtained by applying the horizontal projectign
noting that the left-hand side is a horizontal form. Moreover, the pull-back of any
lifted contact form, such as,@%, remains a contact form orJ The second
summand in the final line of (13.2) provides the correction terms that relate the
differential invariants/¢ ; andD, 7.

To find the explicit formula for these correction terms, we adapt Theorem 3.1C
to the case of theth order regularized action @ on 8. Sincev¥ is a compo-
nent of the lifted invarianty™ = ¢ . 7™ Equation (3.8) implies that, at a point
w®™ e 8™, we can write the group differential in terms of the Maurer—Cartan
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forms onB™:

dey' = D Ewyps, i=1...p.
k=1

dovg = Zw%,K(w(k))MK, a=1....r, k=#K. (13.3)
k=1

The coefficients in (13.3) are the invariant counterparts of the coefficits,
9% (z®)) of the prolonged infinitesimal generator\gr as given in (9.1). Substi-
tuting (13.3) into (13.2) and its counterpart fog ¢ using (11.7) leads to the key
system of identities

o =dyJ' =Y EUAO, i=1...,p,

k=1

<

oIgio =dyly =Y of AP, a=1....r k=#K. (13.4)
i=1 k=1

Herec\W = (¢k,....¢0) = my(€™) = myu((p™)*p). The coefficients in (13.4)
are obtained by invariantizing the coefficients of the prolonged infinitesimal gener-
ators of the group action (9.1), meaning that we replace the jet coorditf&tes
by the fundamental normalized differential invariart¥. Note that if G acts
transitively on 3, then there are no nonconstah-order differential invariants,
and hence in such cases the coefficients of okder less will be automatically
constant. The first terms on the right-hand side of (13.4) can be re-expressed
terms of the contact-invariant cofrarmeeusing the associated invariant differential
operators, as in (9.7), so

P 14
dgJ' =) (D;J)e’,  dulg =) (DIHe’. (13.5)
j=1 j=1
On the other hand, the horizontal components of the Maurer—Cartan forms ca
themselves be written in terms of our contact-invariant coframe,

P
gy =Y KUV e, k=15, (13.6)
j=1

where the coefficients are certain differential invariants of ondetl. Substituting
(13.5), (13.6), into (13.2) produces the fundamergaurrence formulador the
differential invariants:

D;J =8+ M, DIy =1 ; + Mg ;. (13.7)
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The ‘correction terms’, that account for the nhoncommuting of the processes o
normalization and ‘horizontalization’, are explicitly given by

Mi = Y EAOKATY), i j=1....p,

k=1
M, =Y g% ADKSA"™Y), a=1....q #K =k (13.8)
k=1
There are similar recurrence formulae for higher-order differentiated invariants,
Dyl =17 + My ;. (13.9)

where the higher-order correction terms can be determined by iterating the bas
recurrence formulae (13.7).

The coefficient(} in (13.6) can, in fact, be explicitly determined from a subset
of the identities (13.7). Suppose, for simplicity, that we are normalizingmpo-
nents ofw™ to be constant. The corresponding invariamtsand 7¢ will then
also be constant, and hence the horizontal derivative term on the right hand side
(13.4) will vanish. For these particular forms, (13.4) reduces to a systeriinaiar
equations relating the horizontal moving coframe fogps. . ., ¢J, to the contact-
invariant coframe forms?, ..., »”. The coefficients of these linear equations are
differential invariants of ordex n + 1. (On the right-hand side, the coefficients
are of order< n, while (n + 1)st order differential invariants can appear on the
left.) SinceG™ acts freely, its infinitesimal generators are linearly independent on
the domain of definition 0p™, and hence transversality of the cross-section used
to normalize the differential invariants implies that the coefficient matrix for this
linear system is invertible. Solving for one-formg produces the required system
of coefficients in (13.6).

Remarkln the method of moving coframes [9], one normalizes the lifted differ-
ential invariants arising from the linear dependencies among the horizontal compc
nents of the moving coframe forms. In this case, the coefficients in (13.6) will be
the chosen normalization constants and/or differential invariants. Typically, one i
able to normalize all the coefficients to be constant up until the final step, at whict
point the fundamental differential invariants appear as coefficients.

The key observation is that the correction term (13.8) is a (typically nonlinear)
function of the differential invariants of ordet k, providedk > n + 1, wheren
is the order of the chosen moving frame. This immediately implies provides a new
proof, and a refined version of, Theorem 9.13.

THEOREM 13.1. SupposeG acts freely onV" ¢ J'. Then, locally, every dif-
ferential invariant onv>® = (#)~1v" can be found by successively applying
the invariant differential operator®;, ..., D, to a generating set of differential
invariants of order at most + 1, namely the independent components &Y.
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The commutation formulae (9.11) for the invariant differential operators (12.6)
can now be explicitly determined from the moving frame formulae. In view of
(10.6), (12.4), we can compute

dpow = 7ude) = 7x[(c™)* ([ddyy)]
= mul(c™)*(dg dyy)] = —mul(c™)*(dy dgy)]. (13.10)

Here we used the fact that goroduces (lifted) contact forms, which do not con-
tribute to the horizontal two-form gw. Applying dy to (13.3), and noting that
dyu = 0, we find

)4 r
d dgy* —Z[dﬂs (w)] A ZZ@ E@Hn’ Aps,  (13.11)

k=1 j=1«

where£X(z) is the coefficient 0f/0x* in the infinitesimal generatat, . Combining
(11.3), (13.6), (13.10) and (13.11), proves that

p r
dpo® =Y " Y KFIMPID;EH TV 0 A @,

i,j=1k=1

where(D;£5)[1D] is obtained by substituting the first-order normalized differen-
tial invariant into the total derivative B*(z'V) of the coefficient* of the infini-
tesimal generatov,.. Therefore, by (9.10), the commutation coefficients in (9.11)
are explicitly given by

= Z K.’,‘([I(n—i_l)](Dig,]:)[l(l)] _ K;([I(n—’_l)](Dj%'/:)[l(l)]. (1312)

k=1

Our fundamental recurrence formulae (13.7) also provide a resolution of the
syzygy problem for differential invariants. First, in the normalization context, the
solution is now trivial. According to our general construction, given a moving
frame of ordem, the normalized differential invariants (11.7) provide a complete
system of differential invariants of ordér> n. Assume, for simplicity, that the
normalization consists of setting= dim G components of the nth order lifted
invariantsw™ to be constant. Then the remaining components will pull-back to
functionally independent differential invariants. Therefore, all syzygies among the
normalized differential invariants (11.7) occur through the normalization equations
and, hence, are of order at mastthe order of the moving frame.

The more subtle question is to understand the syzygies among the different
ated invariantsD;, I,,, arising from a generating system of differential invariants.
If we choose the generating system to be the nonconstant normalized differenti
invariants of ordek n + 1, then the resulting syzygies will be of two kinds. Those

* In the more general situation where we normalize certain functional combinations of the
components ofs@™, one must modify the subsequent constructions accordingly.
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involving differential invariants of ordex » will depend on the precise structure
of the normalizations and the invariants themselves. Once these are understood,
higher order syzygies are more regular. Before attempting to formulate a gener:
theorem, let us consider a simple example. Suppose our moving frame has ord
n and that the normalized differential invariafft of ordern = #K is constant.
Suppose that the normalized differential invariaffts and/¢ ; of ordern + 1 are

not constant, and can be taken as part of the generating set of differential invariant
Since the correction terms in (13.7) have orkéor k > n + 1, we have

°Dllo(tl_llo((1]+MKlj’ g)IIO([]_IIO(tl]—i_MKjt’

where the correction term&$ ; i and M¢ ., are differential invariants of order
< n+1that are not necessarlly equal. Therefore we deduce a syzygy between i
differentiated invariants

a a a a
OD]'IK,i_gDiIK./_lwl(t] MK]:’

where the right-hand side is a differential invariant of order 1. The constant
normalized differential invarianty is a ‘phantom differential invariant’ that pro-
vides the seed for the syzygy. A general syzygy theorem for differential invariants
can now be straightforwardly proved using these basic observations.

DEFINITION 13.2. A phantom differential invarianis a constant normalized
differential invariant.

THEOREM 13.3. A generating system of differential invariants consists of

(a) all nonphantom differential invariant$’ and /* coming from the nonnormal-
ized zeroth order lifted invariantg’, v*, and

(b) all nonphantom differential invariants of the forfff; where/; is a phantom
differential invariant.

Proof. The key remark is that the coefficientS; in the formulae (13.6) are
all either constant or one of the generating differential invariants mentioned in the
theorem. The invariantized vector field coefficiecpﬁsrk, on the other hand, are of
order at most # . Therefore, ifI,"g, i is a normalized differential invariant that does
not belong to the generating set, then rewriting the recurrence formula (13.7) as

I,"(‘,j =Dl — M%,j

expresses it in terms of the generating invariants and lower order invariants. /
simple induction completes the proof. O

THEOREM 13.4. All syzygies among the differentiated invariants arising from
the generating system constructed in Theotéh8 are differential consequences
of the following three fundamental types
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(i) D;J' =8 + M}, whenJ' is nonphantom,
(i) D;Ix = ¢ + My ,;, whenlg is a generating differential invariant, while
17 x = cis a phantom differential invariant, and
(i) D17 — Dxlf; = Miy ;, — M7, ., Wherel7, and I7, are generating
differential invariants the multi-indiceX N J = ¢ are disjoint and nonzero,
while L is an arbitrary multi-index.

Remark.One can often use the syzygies to substantially reduce the generatin
system of differential invariants. In such cases, one must accordingly modify the
remaining syzygies.

EXAMPLE 13.5. We now illustrate the preceding formulae with a nontrivial ex-
ample. LetM = RS2, with coordinatest!, x?, u. Consider the action of GR)
defined by the order zero invariants

v = axt + B2, 2 = pxt 4 6x2,
v=(ad — By)u = Au, (13.13)

wherer = a8 — By. This action plays a key role in the classical invariant theory
of binary forms, when: is a homogeneous polynomial, [18]. The lifted contact-
invariant coframe and associated invariant differential operators are

n=dyyl =adx?+pdx?, & =21"16D1—yDy),

7]2 = d]—[y2 =y d_xl + 8dx2’ 82 — )"_l(_ﬁ Dl +o DZ), (1314)

where D is the total derivative with respect 1. The lifted differential invariants
are thusvj, = (81)7 (&)Fv; in particular

vy = duy — yuy, v2 = —Pus + auz,
8%u11 — 2y Surz+ y2uz
V11 = Y ’
—Béu11 + (ad + By)uiz — ayuz
V12 = >
A
B2u11 — 20Buro + oPuz
U2 = .
A
If we normalize using the cross-section
yl=1, y2 =0, vy =1, v, =0, (13.15)

we are led to the first-order moving frame

a B\ 1 Uy us
(V 5) - xlul +X2M2 (_XZ Xl) . (1316)

This moving frame is well-defined on surfaces= f(x, y) provided the rela-
tive invariantx®u, + x%u» # 0. (Different choices of cross-section lead to other
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types of constraints. For example,:f = 0, then we could normalize = 1
instead of, sayy, = 0.) The resulting normalized differential invariants &€ =
(JYL J2 1, I, I, Iy, Lo, I2p) = (0@)*w'@, where

u

Jl=1, J2=0, Izm, Ilzla 12:0’
Ly — (cH2ua1 + 26 x%u10 + (x%)%up;
xYuq + x%uy ’
Iy — —xtuoury + (xtuy — x2ux)up + xzuluzz,
xLuq + x2%uy
Iy — (u2)%u11 — 2uruouin + (141)21422‘ (13.17)

xYuq + x2%u»
The normalized coframe and associated invariant differential operators are

1 2
1 uq dx* 4+ uo dx dyu 1 2
= = s D = D D s
@ xYuq + x2%uy xYuq + x2%uy 1 =D+ xle
_ 2dx1 1dx2
2= XY Dy = —u» D1 + 1 Dy, (13.18)

xYuq + x2%u»
The invariant differential operators are well know®; is the scaling process and
D, the Jacobian process in classical invariant theory. The prolonged infinitesima
generator coefficient matrix and its invariantized counterpart are, up to secon
order,

xt x? 0 0
0 0 xt x2
u 0 0 u
0 0 —Uuy uq
Uo —uy 0 0 ’
—U11 0 —2u1p U1
0 —u11  —up 0
up  —2ui 0 —U
1 0 0 0
0 0 1 0
1 0 0 1
0 0 0 1
0 1 0 0 (13.19)
—I; O =2, I11
0 —-Ii1 —-In O
I, -2, O —122)
The invariant linear relations
1 0 . 1 0 0O = —it
0 1 |(fo"Y\ |0 0 1 0 A
Iih I (wZ)__ 0 0 01 S = | (13.20)
Iy I» 0 -1 0O e 2
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follow from (13.6) and the subsequent remarks. The left-hand side in (13.20) ic
obtained by pulling back the lifted contact-invariant one-forms

dHyl = dHy2 = ’72, dyvr = vt + v127]2,

duvy = vian® + voon®,

corresponding to our choice (13.15) of normalizations; the matrix on the right-
hand side is the minor consisting of first, second, fourth and fifth rows of the
invariantized matrix (13.19), again governed by the normalizations. We rewrite
(13.20) in the matrix form

A -1 0

2 I I w!

g1 = . 13.21
-6 50 e
Ch =111 —1I

The coefficientsk’; in (13.6) are the entries of the coefficient matrix in (13.21).
The commutator between the two invariant differential operators,

[D1, Do] = —112D1 + (J11 — 1) Dy, (13.22)

now follows from our general formula (9.11), (13.12). Indeed, (BgcX)[1 D]
are obtained by first computing the total derivatives of the independent variable
coefficient matrix (which consists of the first two rows of (13.19))

xr x2 0 O
( 0 0 «x? x2)
and then invariantizing by substituting the normalized differential invariants (13.17)
for the jet coordinates. In this particular case, the latter process is trivial since th
total derivatives are all either 1 or 0.
The correction terms to the recurrence formula can be easily obtained by mul

tiplying the invariantized matrix (13.19) by the coefficient matrix (13.21); the re-
sulting matrix

1 0 0 0

0 0 1 0

1 0 0 1 -1 0

0 0 0 1 11 I

0 -1 0 0 0 -1
—-I; O =2, I11 —In —Ip

0 —-Ii1 —-In O
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( -1 0
0 -1
—I(1+ I11) —11
—I11 =1
= I Iy (13.23)
1—- 1Lyl 22—yl
—I11l1> 1-1l»

(I1— DI — 212,

—1I1007)

contains the correction terms in (13.7) — the columns correspond to normalize
differential invariants and the rows to invariant differential operators. Specifically,

we have

DIt =681-1=0,
D1J?=62-0=0,

DJt=685-0=0,
D J*=65-1=0,

Dl =0L—-1A+11)=1—-11+ 119, Dol =1, —111o=—11,

Dily=Ilh1—111=0,
Dilp =112 — 112 =0,
D1l = Iin1+ (1 — 1) 111,
Diliz = I11z — I11lao,

Doly = I — 112 =0,
Doy = Izp — 12 =0,
Dolyy = hiz+ 2— I,
Dolip = ho+ (1 — Iy Iz,

Dilyp = hipp+ (I — V) Ipp — 213, Do17p = oo — 1212

Herel;jy = (o™)*v;;; are the third-order normalized differential invariants. An
alternative method for computing the correction matrix (13.23) that avoids the
intermediate system (13.21) is to first perform a Gauss—Jaolamnreduction on

the invariantized coefficient matrix (13.19) making the chosen normalization rows
— in the present case rows2 4,5 — into an identity matrix, and then multiply
by the pulled-back coefficient matrix corresponding to the horizontal derivatives of
the normalized lifted invariants, as given on the left-hand side of (13.20); the resul
will be minus the correction matrix. In the present case, (13.23)msisthe matrix

product

1 0 0 0
0 1 0 0
1 0 1 0
0 0 1 0
0 0 0 1

-l 2L, Ii1 O
0 —-In 0 Iy
I 0 —I 2

1 0
0 1
Iy Iz
Ly I

(13.24)

According to Theorem 13.3, we can takel11, 115, I2, as our generating system
of differential invariants. The third row of this system of identities produces the
syzygies of the second type. Actually, this means that we carnl usegenerate
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I11, I15, leaving only I, as an additional fundamental invariant. There are three
fundamental syzygies of the third type:

Dil1p — Doy = —2Ip,

Diloy — Doy = 2(I1y — D Ipp — 213,

Dilpy — Dily = 2IpD1h1 + (5I1p — 2)Dil12 + (Bl — 5 D1l —
— (2Iiy — 5 (In1 — DIp + 411 — VI3,

The final syzygy comes from extending our recurrence formulae on to the nex
order, by appending the appropriate columns to the prolonged vector field coef
ficient matrix (13.19). Using to generatel;; and I, will modify the syzygies
accordingly.

14. Equivalence, Symmetry, and Rigidity

We now reach the culmination of the paper. The fundamental problems that hav
motivated the development of the theory of moving frames are equivalence an
symmetry of submanifolds under a Lie transformation gréumas introduced in
Section 7. IfG acts freely onM, then, as we saw, the basic order zero theory, as
described in Theorems 7.7 and 7.8, provides the solution. However, in the nonfre
case, we need to prolong in order to make the group act (locally) freely. Since twt
submanifolds are equivalent under the actiorGabn M if and only if theirn-jets

are equivalent under the prolonged actiorG&P on F, we can then readily adapt
our earlier results.

When we restrict the5"™-coframe on J to a submanifold, the resulting lin-
ear dependencies among the restricted one-forms lead to additional invariants.
the order zero context, these invariants are not directly predicted by the movin
coframe, but appear to depend on the submanifold itself. An important fact is that
in the jet bundle context, they are merely the restrictiortsgtier order differential
invariantd Thus, even in the order zero case, the jet bundle constructions lead ti
significant new information.

We start with theG"™-coframel’™ = {y™ 1™} on F constructed in Theo-
rem12.3. Let: X — M parametrize a submanifolfl= ((X), sothatj:: X — J°
parametrizes the correspondinget j,S. We assume that § lies in the domain of
definition of our chosen ordermoving frameo™, which implies thatS is ordern
regular. Let2™ = (j,)*I'™ denote the restriction of theth order coframe td.

As in the order zero case, the one-form systéffi is overdetermined o, and

we need to reduce it to an extended coframe. Now sipnamnpihilates the contact
forms, only the horizontal components of the formdi#¥ will contribute to the
one-forms in2™. Therefore, the linear dependencies among these one-forms wil
arise from the linear dependencies among the horizontal components of the on
forms in theG™-coframe. The one-formg™ = (¢ ™)* d,; w™ are, by definition,

the pull-backs of the jet differentials of the lifted invariants. We have already usec
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the horizontal components,@ of the ‘independent variable’ lifted invariants to
construct the contact-invariant cofranee= (o ™)* dyy. The remaining ‘depen-
dent variable’ lifted invariants will lead to additional contact-invariant horizontal
forms 8™ = (o™)*dyv™, which must be invariant linear combinations of the
contact-invariant coframe. According to (13.2),

p
8§ = (@) dyvg =) If 0, a=1....q #K >0 (14.1)
i=1

The coefficienti ; is the normalized differential invariant of ordek#+ 1. There-

fore, the linear dependencies among the horizontal foyrﬁé = {w, 8"} are the
differential invariants of order + 1. With this in mind, we make the following
definition.

DEFINITION 14.1. Thenth orderdifferential invariant coframen J is the ex-
tended horizontal coframe

AD ={w, [™)} (14.2)

consisting of the contact-invariant coframe andkie order normalized differen-
tial invariants.

PROPOSITION 14.2.The horizontal components of thtéh order moving coframe
e = (¢ dy 1™, 1™} or its normalized counterparf’ = {y%, 1™} are
invariantly related to the differential invariant coframg”* = {w@, 1+V} of
ordern + 1.

Proof. Formula (14.1) shows th&t is invariantly related ta\ 9. Moreover,
sincex ™ is invariantly related ta"®, the same is true foE,(;”. In particular, the
fact that d; 77 can be written as a linear combination@fwith (z + 1)st order
differential invariant coefficients is immediate from (9.7). O

We now restrict the coframes to a regular submanifole: ((X). Let Y™ =
{w, J™} = (j,0)* A™ denote the restriction of the differential invariant coframe to
S. Transversality implies thatr = (j,¢)*® will form a coframe on the parameter
spaceX, while J® = (j,0)*1™ corresponds to the pull-back of tgh order
normalized differential invariants t&.

PROPOSITION 14.3.Let S = ((X) be a submanifold whose jet lies in the
domain of definition of the given moving frame. THeYY = (j,)*T'™ is in-
variantly related to the restrictedn + 1)st-order differential invariant coframe
T(”+l) — (jn+1t)*A(n+l)-

Remark.A key point is that, by construction, the invariant relation does not
depend on the particular submanifddand hence we can repla@® by Y¢+b
without altering the equivalence relations between different submanifolds.



192 MARK FELS AND PETER J. OLVER

If Y@+ is not involutive, then we need to extend it by appending additional
derived invariants. A second key fact is that the derived invariants are merely thi
differential invariants of the next higher-order restricted't@ his is an immediate
consequence of (13.4) and (13.6).

PROPOSITION 14.4.Thekth-order derived coframéY **+1)® for the restricted
differential invariant coframer®*9 is invariantly related to the coframg *++1,

Remark We can now interpret the additional invariants that arose in the order
zero construction — they are the differential invariants associated with the freely
acting transformation group a¥.

DEFINITION 14.5. Thekth order differential invariant classifying manifold
c®(S) associated with a submanifold X — M is the manifold parametrized
by the normalized differential invariants of ordernamelyJ® = 1® o j... The
submanifoldsS is order k regular if €% (S) is an embedded submanifold of its
classifying spac&® (which can, in fact, be identified witH £).

DEFINITION 14.6. Thedifferential invariant orderof S with respect to amth
order moving framep™ is the minimal integes > n such that the extended
coframeY® is involutive. Thedifferential invariant rankof S is ¢+ = rankY® =
dim @(S)(S).

Remark.The differential invariant order defined here is slightly different from
the order defined earlier. For instance, if thet+ 1)st-order differential invariants
1¢*+D provide a complete system of invariants nthensS will have differential
invariant ordem + 1, but will be an order zero submanifold with respect to the
restricted coframe +b,

THEOREM 14.7. LetS c M be aregularp-dimensional submanifold of differen-
tial invariant rank ¢ with respect to the transformation growp. Then its isotropy
group Gy is a(p — t)-dimensional subgroup @ acting locally freely ors.

In particular, the maximally symmetric submanifolds are those of rank 0, where
all the differential invariants are constants. See [5, 14], for a general character
zation of such submanifolds as group orbits in the case wies- G/H is a
homogeneous space.

In the fully regular case, the ranks = rank &/® = dimc®(S) of the kth
order fundamental differential invariants ¢hare all constant férk > n, and
satisfy

by <tgy1 <tpo<-+<tg=ty1=---=t<Dp, (14.3)

* The differential invariant ranks fdr < n will not play any significant role.
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wheret is the differential invariant rank ans the differential invariant order.
Generically, ap-dimensional submanifold will have differential invariant oraer
equal to the stabilization order of the group, provided there are at jeéstc-
tionally independent differential invariants of ord€rn; if G admits less thap
independentth-order differential invariants, then the generic differential invariant
order will ben + 1. According to (9.6), the latter situation occurs only when

q(p+n)<r=dimG<p+q(p+n):dimT. (14.4)
n n

If S is fully regular, then its differential invariant order is always bounded by
eithern + p — 1 or, possiblys + p; the latter case only occurs if atth-order
differential invariants are constant, and there is but one independent differentic
invariant appearing at each ordes- 1 < k < n + p.

In this context, it is instructive to reconsider the higher-order submanifold dis-
cussed in Example 7.9.

EXAMPLE 14.8. Consider the Lie grouf = R® acting by translations oM =

R3. For a moving frame of order zero, the generating differential invariants for
surfacesu = f(x, y) are just the derivatives,, u,. Any nonplanar solution to
the nonlinear partial differential equation, = u? will define a surface of rank

2 and differential invariant order 2. (The functiarix, y) = —x?/2y discussed

in Example 7.9 above is a particular case.) Indeed, the second-order differenti
invariants arer,,, u,, = u,u,,, andu,, = u?u,,. The single independent invariant
u,, is, however, not a function of the first-order invariant since their Jacobian
matrix is

0y, Uyy) _ ( Uyxx  Uxy ) _ ( Uxx UxUxx ) — ufx +£0,

2
d(x, y) Uxxx Uxxy Uxyx UxUyxx T UL,

sinceu is nonplanar. Thus one must use the third-order differential invariant clas-
sifying manifold to characterize such solutions.

Remark.The nonplanar solutions to the differential equation in Example 14.8
provide examples of nonreducible partially invariant submanifolds, where we are
using Ovsiannikov’s terminology [22]. Ondich [21] discusses conditions that a
partially invariant solution be ‘nonreducible’, meaning that it is not invariant under
a (continuous) subgroup of the symmetry graepand hence has maximal rapk
In the moving frame approach, then, one can completely characterize nonreducib
partially invariant solutions to partial differential equations as those whose graph:
are submanifolds of higher order and maximal rank.

* Any other first-order nonlinear equatiay = F (uy) relating the two differential invariants will
also work.
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The fundamental equivalence theorem for submanifolds under general tran:
formation group actions is a direct consequence of the corresponding Equivalenc
Theorem 7.2 for submanifolds under free actions.

THEOREM 14.9. Let S, S ¢ M be regular p-dimensional submanifolds whose
n-jets lie in the domain of definition of a moving frame mé&p. Thens and S are
(locally) congruent,S = g- S if and only if they have the same differential invariant
order s and their classifying manifolds of order+ 1 are identical: ¢+ (S) =
@(S+l)(S)_

Finally, we discuss rigidity theorems for submanifolds under transformation
groups. These come in two varieties. Roughly speaking, a rigidity result says tha
under certain conditions, a submanifold is uniquely determined lyjésfor some
finite orderk.

DEFINITION 14.10. A submanifold is orderk congruentto a submanif_oIcF at
a pointz € S if there is a group transformation € G such thatS andg - S have
orderk contact at the poing.

We shall callS orderk congruent toS if this occurs for every; € S. Note
that the group transformation = g(z) may vary from point to point. IIG* acts
freely on J, then the group transformatigsiz) determining the contact is uniquely
determined. The first rigidity theorem, which generalizes results in Griffiths [12],
Green [11], and Jensen [14], states that ofdepngruence implies congruence
providedk is sufficiently large. Theigidity order of S is the minimalk for which
this applies. For example, the rigidity order of a circle under the Euclidean group i
two, since the only curves that are second-order congruent to a circle are translat
of it. On the other hand, a generic curve in the plane has rigidity order 3 under th
Euclidean group.

THEOREM 14.11. Let S ¢ M be a regular p-dimensional submanifold which
has differential invariant ordes with respect to a given moving frame. Th&n
has rigidity order at mosk + 1. In other words, a submanifol is orders + 1
congruent tas at every point € S if and only if S = g - S for a fixedg € G.

Proof. Note first thatS andS, = g - S have identical classifying manifolds.
Moreover, if S andﬁg have order + 1 contact at a common poiat then their
(s + 1)-jets coincide and, hence, their orde+ 1 differential invariant classifying
manifolds agree at the poiat Therefore, the two submanifolds are order 1
congruent at every point if and only if their order+ 1 differential invariant
classifying manifolds are identica ¢+ (S) = C“+V(S). Therefore, the result
is an immediate consequence of Theorem 14.9. O

The simplest case is when the order of the moving frame equals the stabilizatio
order of the groups. Generically, the rigidity order of a regular submanifold will
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be eithern + 1 or n + 2, depending on whether (14.4) holds. Barring higher
order singularities, the maximal rigidity order will be+ p + 1. Jensen [14]
appears to assert that the rigidity order is at most 1, but does not consider
(nongeneric) submanifolds of higher order, as in Example 14.8, or having othe
types of singularities.

A second type of rigidity theorem shows that one can uniquely characterize th
group transformation mapping congruent submanifolds by knowing their order of
contact.

DEFINITION 14.12. Ap-dimensional submanifold C M is said to be ordek
rigid if the only congruent submanifoll = g - S which haskth order contact with
S at a point isS itself.

In other words, ifS = g - S, then the condition;fS|., = jxS|., atzo € SN S
impliesg € Gy and soS = S. The second rigidity theorem can now be stated.

THEOREM 14.13. Let G act freely onV"* C J'. Let S be an ordem regular p-
dimensional submanifold which has differential invariant order n. ThensS is
rigid of orders + 1.

Proof. We let o™ be a moving frame defined in a neighborhood SofLet
S = g- S have contact at order+ 1 atzo € SN S. Letz0™ = j,45]., =
js+18],, € V*TL. Congruence implies that and S have identical differential in-
variant classifying manifold€“+V(S) = €¢*+D(S), which are parametrized by
their (s + 1)-jets. Theorem 5.16 implies unigueness of the group transformation
defining the congruence map once we specify that it fix the common gifitit.
Finally, freeness of the action @ on V**! implies thatg = e, which proves
rigidity. O

Remarklf G only acts locally freely orv**+1, then Theorem 14.13 reduces to a
local rigidity result, i.e.(s + 1)st-order contact of = g - S andS implies that the
congruence transformatignmust lie in a discrete subgroup 6f. However, since
the higher order differential invariants completely determine the higher order jets
of the submanifolds, one can eliminate the discrete ambiguity provit€dacts
freely on the appropriate subset 6ffdr k sufficiently large.

EXAMPLE 14.14. Consider the translation action— z + a of G = R? on

M = R?. The derivative coordinates,, i, 4.y, ... provide a complete system

of differential invariants. The classifying curve of a generic cuive= f(x) is
parametrized by(u,, u,,). However, singularities may require us to prolong to
higher order in order to assure rigidity. For example, the curvgiven byu =

x* — 2x? has second order contactgt= (1, 0) with its translate by: = (2, 0).
Moreover, the first two differential invarian{s,, u,,} have rank 1 orC. However,

C is not regular of differential invariant order 2 because its second-order classifying
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curve intersects itself at the point = 0, u,, = 8, which permits second order
nonrigidity. The curveC is locally rigid at order 1, and completely rigid at order 3.

15. Examples

We now demonstrate the preceding theory with several additional examples. Onl
space precludes discussing a more extensive range of examples in this paper. Hc
ever, all of the classical examples, including Euclidean, affine and projective geom
etry, as well as an extensive variety of new transformation group actions (e.g., cor
formal geometry) not previously treated by the classical moving frame techniques
can be directly handled by our regularized techniques.

EXAMPLE 15.1. We return to the multiplier representation

ax + B u
yx+8 yx+48)

(x. 1) —> ( A= (;‘j ?) c GLQ2), (15.1)

of the general linear group GR) onR? that was studied in depth in Part | [9], and
plays a fundamental role in classical invariant theory and the calculus of variations
The right-lifted invariants of order zero are just

yz—ax+ﬁ, p=— (15.2)
yx+46 yx+96
Choosingy as the lifted independent variable, its jet differential
od — By
=djy=—"" 15.3
n=dy =) (15.3)

determines the lifted horizontal invariant form. The corresponding invariant differ-
ential operator is

e—D _(yx—|—8)2
) as—By

Applying € recursively to the dependent lifted invariankeads to the lifted differ-
ential invariantsy, = &*v, the first few of which are

D,. (15.4)

()/X + S)Mx —yu ()/X + 8)3uxx
Uy = — . Uyy = — 2
ad — By (@d — By)
8)Syyy + 3 8) 1t
; _ (Yx +8)uyxx +3y(yx +6)°u ’ (15.5)
Y (a8 — By)3

(VX 4 8) trer + 8y (¥ x + 8)%ursy + 12/2(yx + 8)°uyy
o = (@b — By)’ |
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These formulae coincide with the transformation laws for the prolonged groug
action. On the regular subdomain = {uu,, > 0} c P, we can choose the
cross-section defined by the normalizations

y =0, v=1, vy =0, vyy = 1. (15.6)
Solving for the group parameters gives

O =/ Ulyy, B = —x+/ulyy, Yy =y, §=u—xu,. (15.7)

These serve to parametrize a right @Lmoving frame of order two:

PPk, 1y, 1hyy) = (VZ““ ;X_V’;Z”). (15.8)

The left-moving frame computed in [9] is obtained by inverting:

5(2)()5,14’ Uy, Uyy) = /0(2)()5,14’ Uy, uxx)_l
_ 1 U— XUy XUl (15.9)
/uu, —U, NI

Substituting the moving frame normalizations (15.7) into the higher order lifted
differential invariants leads to the normalized differential invariants; the first non-
constant ones are obtained by normalizigg, andv,,,:

I g m’ J — leztxxxx + Suuxuxxx + 12”)%”)6)6 . (1510)

2
/.3 uu
uus, XX

Incidentally, the Replacement Theorem 10.3 implies that we can also Invaitel

J using thesameformulae in the lifted invariants, e.gl, = v_l/zv\fys/z(vva +
3v,vy,). Applying the normalizations (15.7) to the lifted horizontal form (15.3)
leads to the contact-invariant one-form and the associated invariant differentic

operator:

i, o= /%D, (15.11)

u Uy x

w =

The jet differentials of the second-order lifted invariants are

djy:de’ dv = Cu _ yudx i
(yx + 8)? yx+38  (yx+6)2
(yx+8)du, —y du + yu, dx
A = o5 — By |
8)3du,, + 3 8)%u,, dx
dfvyy=(yx+) fox £ 97 (px o Ot G (15.12)

(a8 — By)?
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The right-invariant Maurer—Cartan forms on @) are the entries of the matrix
product &4 - A~%, namely

1 0da—ydpB 5  —Bdo+adf

T T By T ws By

3= Sdr—yd a_ ZPOdy +ads (15.13)
od — By ad — By

The eight one-forms (15.12), (15.13) form a coframe B = GL(2) x P
whose symmetry group coincides with the right-lifted action off @LThe group
differentials can be written as invariant linear combinations of the Maurer—Cartar
forms:

doy = yul+u? —y2ul —yut,  dov = —you —wp,
dgvy = —v, u' + (yv, — V),
dovyy = =20y 1t + 3yvy,u® + vyt (15.14)

and can replace the Maurer—Cartan forms in the lifted coframe. The coefficient
in (15.14) are given directly by formula (3.8). As in Example 6.7, we write down
the coefficient matrix corresponding to the prolonged infinitesimal generators o
GL(2); we find, to order 4,

x 1 —x? —Xx
0 0 —Xxu —u
—U, 0 XUy — U 0
_Zuxx 0 3xuxx Uxx (1515)
_3uxxx 0 quxxx + Suxx Zuxxx
_4MXXXX 0 7xuxxxx + 8MXXX 3MXXXX
The lifted version is obtained by replacingandu by y andv:
y 1 —y? -y
0 0 —yv —v
—vy 0 YUy — v 0 15.16
—2v,, O 3yvyy Vyy (15.16)

—3vyyy 0 Syvyyy +3vy, 2uyy,
—dvyyyy O Tyvyyyy + 8uyyy Buyyyy

The first four rows of (15.16) then give the coefficients in (15.14). The normalized
matrix

0O 1 0 O
0O 0 0 -1
0O 0 -1
> 0 0 1 (15.17)
-3 0 3 Z
-4 0 8 3J
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is obtained by substituting (15.6), (15.10) into (15.16); in other words, (15.17) is
the invariantization of the infinitesimal generator coefficient matrix (15.15).

Since GL(2) acts transitively on the open subset 6uhder consideration, we
can find the moving coframe oA dither by normalizing the jet differentials (15.12)
or the Maurer—Cartan forms (15.13). The former become (p?)* d;w, so that

u
yl = (69@)*dyy = %dx,

du —u, dx
)’2 = (0(2))* djv = T,

P = (@ydyp, = L ta @ do | fue g
UUxx u3uxx u
d xx = Uxxx dX XXX 3 xUxx
yh = (@) dj, = =1  Ulex T HMxlhax (15.18)
Uxx Uyx

where we have explicitly written out the contact and horizontal components, the
latter being invariant linear combinations of the invariant one-farmindeed, in
view of (15.6), (15.10),

vi = (0@ dyy = o,
2 _ (g@y+(g = (DY (v. d =0
g a2 (15.19
Y = (@) dHUy = (o) (vyy dHy) = w,
y]fll = (0(2))* deyy = (0(2))*(1))7)1)7 dHy) =lw.
On the other hand, substituting (15.17) in the general identity (6.4) produces th
explicit linear dependencies:
yl==0% 2=t =3 yt=2t -t (15.20)
Combining (15.19), (15.20) yields the corresponding formulae for the horizontal
components of the moving coframe:
th=3lo, Z=—w, ;3 =w, ¢y =0, (15.21)

reconfirming our moving coframe computation in Part .
Substituting (15.17), (15.21) into the general formula (13.7), (13.8), produces
the explicit formula connecting the normalized and derived differential invariants.

The easiest way to compute the correction terms is to multiply the matrix (15.17

by the column vecto(37, —1, 1, O)T whose entries are given in (15.21); the result
is a column vector

(1,0,1,-1—1,3- 312,81 —21J)"

whose entries are the correction terms. (Alternatively, one can use column oper
tions as in Example 13.5.) For example, the last two entries imply

DI=7J-317+3, DJ=K-2IJ+8, (15.22)
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whereK = (0@)*vy,,,, is the fifth-order normalized differential invariant. Note
that we can iterate to find higher-order correction terms, e.g.,

DI=DJ-31DI=K—51J+31°—9I+8,

EXAMPLE 15.2. Consider the intransitive action of the orthogonal groug) O
on surfaces in three-dimensional spa¢e= R2. Assume that the surface is given
as the graph of a functiom = f(x%, x?). The order zero invariants are

yl xl
<y2> =R (xz) . R=(R) €0(@). (15.23)

v u

The lifted contact-invariant coframe and associated invariant differential operator:
are
nt Ri+ R3u; R+ Rjuz) [dx?
() = (a2 + ) ()
& RI+ Rius R}+ Riup\ ™" (Dy
(82) N (Rf + Riur RS+ R§u2) <D2)'
The lifted invariants are;; = (&)’ (€2)*v; in particular
vi\ _ (Ri+Rjur RI+Ruz\~" (R}+ R3us
(vz) B (Rf + R2u; R?+ Rguz) (Rg + Rguz)'
The normalization

yt=0, vy =0, v, =0, (15.25)

leads to a particularly simple first-order moving frame. Introduce the column vec-
tors

(15.24)

N _ (_ulv —up, 1)T

n= = ,
INT 1 u2 42

which respectively define the point on the surface, and the corresponding un
normal. Then

T
z = (x1,x2,u)",

ZANn . z—(z-n)n
t=nNt=——

R=(in)T, where r = ,
|z A nj |z A nj

. (15.26)

define distinguished, orthogonally equivariant, unit tangent vectors. The movinc
frame (15.26) applies to surfaces provided that the unit normal is not parallel tc
the pointz. Pulling back the remaining lifted invariants leads to the first-order
differential invariants

2
(z-n)?—|z|
= ——zAnl=—/|z]?=(z-n)?

_ (Dy*,,2 _
J =)y = zan| ’ (15.27)

I =YY=z n.
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(It's interesting that we don’t obtain the invariap directly; it is of course a
function of the fundamental invariants (15.27).)

The contact-invariant coframe and invariant differential operators are obtaine
by pulling back the horizontal differentials of thyé, so

®w = Adx,

D=ATD,
Herer, = (1,0,uy), & = (0,1, uy) are the coordinate tangent vectors to the
surface, and is the transpose of their coefficient matrix with respect to the moving

frame tangent vectors 7. A generating system of differential invariants requires
the corresponding normalized second-order invariants:

1 AT (Vau)A~L
(111 112) LR S (Vau) ‘
Lz Iz [N| /1+ui+u§
Here V2u is the usual Hessian matrix of, so D2u represents an ‘equivariant

Hessian’. However, using (13.7), the recurrence relations (or syzygies)

where A = (IA bt tz). (15.28)
it 71

(15.29)

D1J = I Iy, DrJ =1+1 Iy,
D1l = —J I, Dol = —J I,

show that onlyf, J, and/,; are required to form a generating system of differential
invariants.

EXAMPLE 15.3. Consider the action of the rotation group(3Con M = R*
corresponding to the lifted zeroth order invariants

y=Rx, v=u withReSO3), (15.30)

wherey = (1, y%, %), x = (x1, x2, x%). In this case, the differential invariants
were found in [18, Chapter 5] by an ad hoc approach; the moving frame metho
allows us to be systematic. The lifted invariant one-forms and corresponding in
variant differential operators are

3
' =dyy =) Ridy/, &=Y RD; i=123

j=1 j=1

The lifted invariants are then
3
vy o= ZR;x-’, vV =u,
j=1

3
. -
V; = E R;u.,-, Vij = R;(Rl Uk,
j=1 k, =1
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To determine a first-order moving frame, we consider the cross-section
y2 =0, y3 =0, vz = 0. (15.31)

The normalization equations (15.31) can be solved providedvu # 0, where
Vu = (u1, uz, uz). The solution isR = (a b ¢)”, where the column vectors

-Vu)x — | x|?V
a:i, b:a/\c:(x wx — | x|"Vu
x| | x| lx A Vul
x AVu
c = - (15.32)
|x A Vu|

define a rotationally equivariant orthonormal frame. The resulting first-order in-
variants are

x-Vu

| x |

, I3=0. (15.33)

Jt = x|, J2=7J3=0, I=u, L=

’

|x A Vu|
I = ————
lx|
Of course, one can eliminate the denominators since they are invariant themselve
The corresponding contact-invariant coframe and invariant differential operator:
are

ot =x - dv, 5)2:[(x-Vu)x—|x|2Vu]-dx,

&2 = (x A Vu) - dx,

Di=x-D, Dy=Vu-D, D3=(xAVu)-D, (15.34)
where the tildes indicate that we have dropped the invariant denominators arisin
from a direct pull-back via (15.32). We leave it to the reader to deduce the com

mutator formulae. A complete generating system of differential invariants requires
second order invariants:

I = xT(V2u)x, Ly = xT (V2u)Vu, Lz = xT (V2u)(x A Vu),
Ly = Vul (V?u)Vu, Iz = Vu (V2u)(x A Vu),
Iiz = (x A V)T (V2u)(x A Vu). (15.35)

However, using either the recurrence relations (keeping in mind that we mod
ified the invariant differential operators and second-order invariants from their
normalized versions) or directly computing, we see that only three differential
invariants,

Jt=1x], I =u, Isz= (x A V)T (V2u) (x A Vi),

are required to generate all the rest.
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16. Partial Regularization

The one draw-back to the regularized method as presented so far is that one nee
to compute a sufficient number of higher-order lifted differential invariants before
commencing the normalization procedure. This can be quite computationally inten
sive — for instance, in the case of projective geometry of curves in the plane, cf. [6]
one needs to prolong to sixth-order derivatives in order to specify a complete set ¢
normalizations. In the classical Cartan approach, as well as our earlier method
moving coframes, cf. [9], one avoids having to to perform a complete prolongatior
before starting to normalize. A similar option exists in the regularized method;
one can, provided some care is taken, normalize lower-order lifted invariants b
solving for some of the group parameters, and then using these simplified expre
sions to compute higher ordgrartially regularizedlifted invariants. The optimal
strategy is to normalize globally defined lifted invariants, but regularize locally
defined ones. This allows one to construct, with a minimal amount of computa:
tion, a partially regularized moving frame that applies to all submanifolds. The
full normalization can then be accomplished for particular classes of submanifold
satisfying appropriate regularity conditions.

An essential complication is that the lifted invariant differential operators that
are used to construct the higher order invariasganot be directly normalized
Indeed, unlike their fully lifted or their fully normalized counterparts, partially
normalized invariant differential operators will often contain additional terms in-
volving derivatives with respect to the remaining group parameters. As pointed ou
by I. Anderson (personal communication), the additional terms can be interprete
as coming from the reduction of the flat connection on the regularized bundle tc
the appropriate partially normalized principal subbundle. These terms are correctl
predicted by the moving coframe approach, but are less transparent when using
direct approach based on the lifted invariants. The resulting theory has yet to b
fully developed, and lack of space precludes a detailed treatment in the prese
paper.

We shall content ourselves with treating one final illustrative example, that of
curves in the plane under the special affine group; see [9] for details. We sha
demonstrate how a regularized version of our moving coframe method can be use
to perform a globally defined partial regularization that includes nonconvex curves
Also, for variety, and since the classical results are in terms of the left moving
frame, we will use the left regularized action in this example. Let3A= SL(2) x
R? act onM = R? according to

g-(x,u)=(axx+pPu+a,yx+du+b), od—py =1L (16.1)
The zeroth order left lifted invariants are the componentg®f. (x, u), i.e.,

y=38(x—a)— Bu—D>b), v=—y(x—a)+a(—>b). (16.2)
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In the fully regularized approach, we compute the higher-order lifted invariants by
successively differentiating with respect toy using the lifted invariant differential
operator

1
& =
S —u,p

associated with the invariant horizontal form= dyy = (6 — Bu,) dx. The first
few are

D. (16.3)

Y — Uy Uyx
vy:&’v:—m, Uyy:gl)y:—ma
((S - ,Bux)uxxx + 3,314;2“
Uyyy = EVyy = — (6 — Bu,)® ’
uxxxx(5 - ,3”)()2 + :I-Olftxxl'txxxlg((S - IBMX) + 15”)3cx132

Uyyyy = EVyyy = (a + Bu,)7

By choosing the cross-sectidi0, 0, 0, 1, 0)} ¢ JF we obtain the classical equi-
affine moving frame

1
-5/3 -1/3
/8 = _éuxx/ uxxxv (03 :uxx){ k)
y = —uxu;xl/3, a=x, b=u. (164)

The first differential invariant is found by applying the moving frame normaliza-
tions to the next lifted invariant,,,,, leading to the equi-affine curvature

Suyxu —5u? |
e (16.5)
MXXX

In the partial normalization approach, we try to normalize lifted invariants as
they appear, and thereby avoid the long computations required to initially pro-
duce the general higher-order lifted invariants. For example, we can normaliz
the zeroth order lifted invariantg = v = 0 by settinga = x, b = u. In the
moving coframe method, we substitute these normalizations into the independel
left invariant Maurer—Cartan forms

pt=38de —pdy, p?=68dg—pds, p*=ady—yda,
vi=58da — B db, V2 = —y da + o db. (16.6)

The linear dependency between the horizontal components
vp =0 —Bu)dy,  vi=(—y +au,)dx,

produces the first order lifted invariant, which can, of course, be constructed
directly. Normalizingv = 0 produces the partial normalizations

1
a=zx, b=u, Yy = ally, 8 = Bu, + —, (16.7)
o
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the final formula being a consequence of unimodularity. The partially normalized
Maurer—Cartan forms

vi=atdy — B(du — u, dx), v2 = a(du — u, dx),
include the basic invariant contact form, while
v =w=a tdx (16.8)

is a contact-invariant horizontal form. Now, the key complication is that even
though one might be tempted to directly normalize the invariant differential op-
erator (16.3), the resulting total differential operagr= « D,, which is dual to

the horizontal form (16.8), isot an invariant differential operatdin other words,
applying & to the higher-order partially normalized differential invariadtes not
produce lifted differential invariantd=or example, the linear dependency between
the horizontal component ¢ff = o? du, andw leads to the second-order partially
normalized differential invariant

3
J = Uy,

which agrees with the reduction of the lifted invariapt under the partial normal-
izations (16.7). Howevery D,J = a“u,,, does not agree with the reduction of
vyyy Under (16.7), which is

K = a*u ., + 30°Bu’,. (16.9)

Indeed,o*u,., is not even a lifted invariant! Thus, we cannot use the directly
normalized total differential operator to compute higher order partially normalized
invariants. One resolution of this difficulty relies on adapting the moving coframe
method [9]. The remaining partially normalized Maurer—Cartan forms are

wt = o tdoe — af du,, w? = —a?fda +atdg — B2du,,
W = o?duy. (16.10)
If L(c, B, x,u™) is any function, then
dL = (D,L)dx + L, do + Ly dB
= (@D, L+ BJLy)w+ (@Ly, — BLp)u* + aLgu?,

where= indicates that we have omitted the unimportant vertical (contact) compo-
nents. We conclude that If is any lifted invariant, then so are

DL =aD,L+BJLy =aD,L +a3BuyL,,
Fi(L) = aL, — BLg, Fo(L) = aLy.

For exampleDJ = K, #1J = 3J, F>J = 0, while

DK =L = uppey + 10016,314xxumx + 1&)17,32qu,
F1K = 5K, F>K = 10JK,
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whereL is obtained by substituting (16.7) intg,,. Therefore, higher-order par-
tially normalized differential invariants are given by successively applying the
invariant differential operator

D=aD,+BJ0y =aD, +aBu,d, (16.11)

to the fundamental invariant = ou,,. (Since the operator§,; = «d, — Bog

and 7, = adg preserve the order of differential invariants, they will not produce
anything new.) Note the appearance of additional ‘connection terms’ involving
derivatives with respect to the remaining group parameters in (16.11); these hay
no counterpart in either the fully lifted theory or the fully normalized version. They
can be interpreted as arising from the total derivative component of the reductiol
of the flat connection o3>, to the subbundle specified by the normalizations
(16.7). As usual, further reductions rely on imposing genericity assumptions on th
curve. In the standard case, one assumes:thag 0, which allows us to perform

the nonglobal normalizatiost = 1, K = 0, leading to the standard moving frame
(16.4). See [9] for further details.

17. Conclusions

In this paper we have provided a general theoretical foundation for the method c
moving frames for finite-dimensional Lie transformation groups. The regulariza-
tion procedure is also of great practical applicability, and gives a powerful tool for
investigating the differential invariants, equivalence and symmetry properties o
submanifolds under quite general transformation groups. Further applications th:
warrant further research and development include:

(1) Animmediate application of the moving frame method would be to the classi-
fication of the differential invariants associated with many of the transforma-
tion groups arising in physics. As remarked in [18], to date such classifications
have not been completed, even for some of the most fundamental groups «
physical importance.

(2) In[11] M. Green gives various intriguing numerical formulae for the number
of differential invariants for curves in a homogeneous space. These formulas
were generalized in [18], but the extension to surfaces and higher dimensions
submanifolds remains open. The resolution of the syzygy problem given hert
should provide insight into resolving such generalizations.

(3) The completion of the theory of partial regularization of Section 16 and the de-
termination of explicit connection formulae would greatly aid in the practical
application of the method to concrete problems.

(4) The variational tricomplex given by the operatogs, dy and @; on the regu-
larized bundle could have important applications to the study of differential
equations, variational problems, and conservation laws under the action c
symmetry groups, and thus deserves a detailed investigation.
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(5) Applications to Ovsiannikov’s method of partially invariant solutions using

the remarks after Example 14.8 appear to be quite promising.

(6) The commutation formulae and syzygy classifications will have important

applications to Lisle’s ‘frame method’ for symmetry classification of partial
differential equations [15].

(7) An inductive approach to complicated equivalence problems was described i

[18], and is based on the solution to a simpler problem based on a subgrou
of the full group. Lisle [15] successfully uses an inductive approach to de-
termining the invariant differential operators, which indicates that a general
implementation of inductive methods for moving frames would not be diffi-
cult. Inductive formulae have the advantage of expressing invariant quantitie:
for the larger group in terms of those associated with the subgroup.

(8) Finally, a theoretical justification of the moving frame method for infinite

pseudo-groups, as illustrated in [9], corresponding to the finite-dimensiona
theory described here, would be of great significance. Such a theory would
we believe, be an important aid in further developing the general theory anc
applications of Lie pseudo-groups.
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