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Abstract. This is the first in a series of papers devoted to the development and applications of a
new general theory of moving frames. In this paper, we formulate a practical and easy to implement
explicit method to compute moving frames, invariant differential forms, differential invariants and
invariant differential operators, and solve general equivalence problems for both finite-dimensional
Lie group actions and infinite Lie pseudo-groups. A wide variety of applications, ranging from
differential equations to differential geometry to computer vision are presented. The theoretical
justifications for the moving coframe algorithm will appear in the next paper in this series.
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1. Introduction

First introduced by Gaston Darboux, and then brought to maturity by Élie Cartan,
[6, 8], the theory of moving frames (‘repères mobiles’) is acknowledged to be
a powerful tool for studying the geometric properties of submanifolds under the
action of a transformation group. While the basic ideas of moving frames for
classical group actions are now ubiquitous in differential geometry, the theory
and practice of the moving-frame method for more general transformation group
actions has remained relatively undeveloped and is as yet not well understood.
The famous critical assessment by Weyl in his review, [47], of Cartan’s seminal
book, [8], retains its perspicuity to this day:

“I did not quite understand how he [Cartan] does this in general, though in
the examples he gives the procedure is clear. . . . Nevertheless, I must admit I
found the book, like most of Cartan’s papers, hard reading”.

Implementations of the method of moving frames for certain groups having
direct geometrical significance – including the Euclidean, affine, and projec-
tive groups – can be found in both Cartan’s original treatise, [8], as well as
many standard texts in differential geometry; see, for example, the books of
Guggenheimer, [19], which gives the method center stage, Sternberg, [44], and
Willmore, [50]. The method continues to attract the attention of modern-day
? Supported in part by an NSERC Postdoctoral Fellowship.
?? Supported in part by NSF Grant DMS 95-00931.
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researchers and has been successfully extended to some additional examples,
including, for instance, holomorphic curves in projective spaces and Grassman-
nians. The papers of Griffiths, [18], Green, [17], Chern, [12], and the lecture
notes of Jensen, [23], are particularly noteworthy attempts at placing Cartan’s
intuitive constructions on a firm theoretical and differential geometric founda-
tion. However, none of the proposed modern geometrical formulations of the
theory incorporates the full scope or range of applicability of the method as orig-
inally envisioned by Cartan. To this day, both the formulation and construction of
moving frames for general Lie group actions has remained obscure, particularly
for anyone interested in new applications. Although they strive for generality,
the range of examples treated remains rather limited, and Weyl’s pointed cri-
tique of Cartan’s original version still, in our opinion, applies to all of these later
efforts.

There are two main goals of this series of papers devoted to a study of Car-
tan’s method of moving frames. The first, of utmost importance for applications
and the subject of the present work, is to develop a practical algorithm for con-
structing moving frames that is easy to implement, and can be systematically
applied to concrete problems arising in different applications. Our new algo-
rithm, which we call the method of ‘moving coframes’, not only reproduces
all of the classical moving frame constructions, often in a simpler and more
direct fashion, but can be readily applied to a wide variety of new situations,
including infinite-dimensional pseudo-groups, intransitive group actions, restrict-
ed reparametrization problems, joint group actions, to name a few. Although one
can see the germs of our ideas in the above-mentioned references, our approach is
different, and, we believe, significantly easier to implement in practical examples.
Standard presentations of the method rely on an unusual hybrid of vector fields
and differential forms. Our approach is inspired by the powerful Cartan equiva-
lence method [11, 16, 38], which has much of the flavor of moving frame-type
computations, but relies solely on the use of differential forms, and the operation
of exterior differentiation. The moving coframe method we develop does have
a complete analogy with the Cartan equivalence method; indeed, we shall see
that the method includes not only all moving frame type equivalence problems,
under both finite-dimensional Lie transformation groups and infinite Lie pseudo-
groups, but also includes the standard Cartan equivalence problems in a very
general framework.

Our second goal is to rigorously justify the moving coframe method by propos-
ing a new theoretical foundation for the method of moving frames. This will
form the subject of the second paper in the series [15], and will be based on
a second algorithm, known as regularization. The key new idea is to avoid the
technically complicated normalization procedure during the initial phases of the
computation, leading to a fully regularized moving frame. Once a moving frame
and coframe, along with the complete system of invariants, are constructed in
the regularized framework, one can easily restrict these invariants to particular
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classes of submanifolds, producing (in nonsingular cases) the standard moving
frame. This approach enables us to successfully bypass branching and singularity
complications, and enables one to treat both generic and singular submanifolds on
the same general footing. Once the regularized solution to the problem has been
properly implemented, the a posteriori justification for the usual normalization
and reduction procedure can be readily provided. Details and further examples
appear in Part II [15].

Beyond the traditional application to the differential geometry of curves and
surfaces in certain homogeneous spaces, there are a host of applications of the
method that lend great importance to its proper implementation. Foremost are
the equivalence and symmetry theorems of Cartan, that characterize submani-
folds up to a group transformation by the functional relationships among their
fundamental differential invariants. The method provides an effective means of
computing complete systems of differential invariants and associated invariant
differential operators, which are used to generate all the higher-order invariants.
The fundamental differential invariants and their derived invariants, up to an
appropriate order, serve to parametrize the ‘classifying manifold’ associated with
a given submanifold; the Cartan solution to the equivalence problem states that
two submanifolds are (locally) congruent under a group transformation if and
only if their classifying manifolds are identical. Moreover, the dimension of the
classifying manifold completely determines the dimension of the symmetry sub-
group of the submanifold in question. We note that the differential invariants also
form the fundamental building blocks of basic physical theories, enabling one
to construct suitably invariant differential equations and variational principles,
cf. [38].

Additional motivation for pursuing this program comes from new applications
of moving frames to computer vision promoted by Faugeras [13], with applica-
tions to invariant curve and surface evolutions, and the use of the classifying (or
‘signature’) manifolds in the invariant characterization of object boundaries that
forms the basis of a fully group-invariant object recognition visual processing sys-
tem [5]. Although differential invariants have evident direct applications to object
recognition in images, the often high order of differentiation makes them difficult
to compute in an accurate and stable manner. One alternative approach [35], is
to use joint differential invariants, or, as they are known in the computer vision
literature, ‘semi-differential invariants’, which are based on several points on the
submanifold of interest. Although a few explicit examples of joint differential
invariants are known, there is, as far as we know, no systematic classification
of them in the literature. We show how the method of moving coframes can be
readily used to compute complete systems of joint differential invariants, and
illustrate with some examples of direct interest in image processing. The approx-
imation of higher-order differential invariants by joint differential invariants and,
generally, ordinary joint invariants leads to fully invariant finite difference numer-
ical schemes for their computation, which were first proposed in [5]. The moving
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coframe method should aid in the understanding and extension of such schemes
to more complicated situations.

In this paper, we begin with a review of the basic equivalence problems for
submanifolds under transformation groups that serve to motivate the method of
moving frames. Section 3 provides a brief introduction to one of the basic tools
that is used in the moving coframe method – the left-invariant Maurer–Cartan
forms on a Lie group. Two practical means of computing the Maurer–Cartan
forms, including a novel method based directly on the group transformation
rules, are discussed. Section 4 begins the presentation of the moving coframe
method for the simplest category of examples – finite-dimensional transitive
group actions – and illustrates it with an equivalence problem arising in the
calculus of variations and in classical invariant theory. Section 5 extends the
basic method to intransitive Lie group actions. The simplest example of an
infinite-dimensional pseudo-group, namely the reparametrization pseudo-group
for parametrized submanifolds, is discussed in Section 6 and illustrated with a
well studied geometrical example – the case of curves in the Euclidean plane. This
is followed by a discussion of curves in affine and projective geometry, reproduc-
ing classical moving frame computations in a simple direct manner based on the
moving coframe approach; in Section 7, the connections between the classical
and moving coframe methods are explained in further detail. Section 8 employs
the moving coframe method to completely analyze the joint differential invari-
ants in two particular geometrical examples – two-point differential invariants
for curves in the Euclidean and affine plane. Section 9 discusses how to analyze
more general pseudo-group actions, illustrating the method with two examples
arising in classical work of Lie [28], Vessiot [46], and Medolaghi [34]. In addi-
tion, we show how to solve the equivalence problem for second-order ordinary
differential equations under the pseudo-group of fiber-preserving transformations
using the moving coframe method, thereby indicating how all Cartan equiva-
lence problems can be treated by this method. Finally, we discuss some open
problems that are under current investigation. In all cases, the paper is designed
for a reader who is interested in applications, in that only the basic algorithmic
steps are discussed in detail. In order not to cloud the present practically-oriented
exposition, precise theoretical justifications for the algorithms proposed here will
appear in the second paper in this series [15].

2. The Basic Equivalence Problems

We begin our exposition with a discussion of the basic equivalence problems
which can be handled by the method of moving frames; see Jensen [23; p. VI],
for additional details. Suppose G is a transformation group acting smoothly on
anm-dimensional manifold M . In classical applications,G is a finite-dimensional
Lie group, but, as we shall see, the method can be extended to infinite-dimensional
Lie pseudo-group actions, e.g., the group of conformal transformations on a Rie-
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mannian surface, the group of canonical transformations on a symplectic space,
or the group of contact transformations on a jet space. In either situation, a basic
equivalence problem is to determine whether two given submanifolds are con-
gruent modulo a group transformation. We shall divide the basic problem into
two different versions, depending on whether one allows reparametrizations of
the submanifolds in question. Formally, these can be stated as follows.

THE FIXED PARAMETER EQUIVALENCE PROBLEM. Given two embed-
dings ι : X →M and ῑ : X →M of an n-dimensional manifold X into M does
there exist a group transformation g ∈ G such that

ῑ(x) = g · ι(x) ∀ x ∈ X. (2.1)

THE UNPARAMETRIZED EQUIVALENCE PROBLEM. Given two subman-
ifolds N, N̄ ⊂ M of the same dimension n, determine whether there exists a
group transformation g ∈ G such that

g ·N = N̄ . (2.2)

Submanifolds satisfying (2.2) are said to be congruent under the group action.

In both problems we shall only consider the question in the small, meaning
that (2.1) only needs to hold on an open subset of X, or that congruence, (2.2),
holds in a suitable neighborhood of given points z0 ∈ N , z̄0 ∈ N̄ . Global issues
require global constructions that lie outside the scope of the Cartan approach to
equivalence problems.

Note that the problem of determining the symmetries of a submanifold, mean-
ing the set of all group elements that preserve the submanifold, forms a particular
case of the equivalence problem. Indeed, a symmetry of a submanifold is merely
a self-equivalence. For instance, the unparametrized symmetries of a given sub-
manifold N ⊂ M are those group elements that (locally) satisfy g · N = N .
Note that the symmetry group of a given submanifold forms a subgroup H ⊂ G
of the full transformation group.

EXAMPLE 2.1. A classical example is inspired by the geometry of curves in
the Euclidean plane. A curve C ⊂ R2 is parametrized by a smooth map x(t) =
(x(t), y(t)) defined on (a subinterval of) R. The underlying group for Euclidean
planar geometry is the Euclidean group E(2) = O(2) nR2 consisting of transla-
tions, rotations and (in the nonoriented case) reflections.

In the fixed parametrization problem, we are given two parametrized curves
x(t) and x̄(t), and want to know when there exists a Euclidean motion such that
x̄(t) = R · x(t) + a for all t, where the rotation R ∈ O(2) and translation a ∈ R2

are both independent of t. Physically, we are asking when two moving particles
differ by a fixed Euclidean motion at all times, a problem that has significant
applications to motion detection and recognition of moving objects.
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In the unparametrized problem, we are interested in determining when two
curves are congruent under a Euclidean motion, meaning C̄ = R · C + a for
some fixed Euclidean transformation (R, a) ∈ E(2). This occurs if and only if
there exists a change of parameter t̄ = τ(t) such that x̄(τ(t)) = R · x(t) + a for
some fixed Euclidean transformation (R, a).

A Euclidean symmetry of a curve C is a Euclidean transformation (R, a) that
preserves the curve: R · C + a = C. For instance, the Euclidean symmetries of
a circle consist of the rotations around its center. In the fixed parameter version,
the circle must be parametrized by a constant multiple of arc length for this to
remain valid.

EXAMPLE 2.2. Consider the action

A : (x, u) 7−→
(
αx+ β

γx+ δ
,

u

γx+ δ

)
, A =

(
α β

γ δ

)
∈ GL(2) (2.3)

of the general linear group GL(2) on R2. This forms a multiplier representation
of GL(2), cf. [14, 38], which lies at the heart of classical invariant theory. We
restrict our attention to curves given by the graphs of functions u = f(x), thereby
avoiding issues of reparametrization. Two such curves are equivalent if and only
if their defining functions f and f̄ are related by the formula

f(x) = (γx+ δ) f̄

(
αx+ β

γx+ δ

)
= (γx+ δ)f̄ (x̄), (2.4)

for some nonsingular matrix A. Equation (2.4) is the fundamental equivalence
condition for first-order Lagrangians that depend only on a derivative coordinate
in the calculus of variations, cf. [36]. Moreover, if f(x) = n

√
P (x), and f̄(x̄) =

n

√
P̄ (x̄), then (2.4) becomes?

P (x) = (γx+ δ)n P̄

(
αx+ β

γx+ δ

)
= (γx+ δ)n P̄ (x̄). (2.5)

In the case when P and P̄ are polynomials of degree n, (2.5) indicates their equiv-
alence under projective transformations, and so forms the fundamental equiva-
lence problem of classical invariant theory.

In the general unparametrized equivalence problem, typically, the submani-
folds N and N̄ are formulated via explicit parametrizations ι : X → M , with
image N = ι(X) and ῑ : X → M , with N̄ = ῑ(X), where, for simplicity, the
parameter spaces are taken to be the same. (Indeed, since our considerations are
always local, we shall not lose any generality by assuming that X ⊂ Rn is an
open subset of Euclidean space.) In such cases, we can easily reformulate the
unparametrized equivalence problem in the following form.
? We are ignoring the branching of the nth root here. See [36, 38] for a more precise version

of this construction.
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THE REPARAMETRIZATION EQUIVALENCE PROBLEM. Given two embed-
dings ι : X →M and ῑ : X →M of an n-dimensional manifold X into M does
there exist a local diffeomorphism Φ : X → X, i.e., a change of parameter, and
a group transformation g ∈ G such that

ῑ(Φ(x)) = g · ι(x), ∀ x ∈ X. (2.6)

We shall see that by solving the fixed parametrization problem, first in the
case of G being a finite-dimensional Lie transformation group, then extending
this to the case of G being an infinite Lie pseudo-group of transformations,
that we will then be able to solve the reparametrization problem. For instance,
we can reformulate the unparametrized equivalence problem for curves in the
Euclidean plane as a fixed parametrization problem for curves in the extended
space E = R×R2, which has coordinates (t, x) = (t, x, y). The extended curve is
given as the graph {(t, x(t))} of the original parametrized curve, and the pseudo-
group G = Diff(1) × E(2) acting on E consists of a finite-dimensional group,
the Euclidean group E(2) acting on R2, together with the infinite-dimensional
pseudo-group Diff(1) consisting of all smooth (local) diffeomorphisms t̄ = τ(t)
of the parameter space R.

The formulation of the reparametrization problem in the form (2.6) indicates
an intermediate extension of the two cases, in which one only allows a subclass
of all possible reparametrizations.

THE RESTRICTED REPARAMETRIZATION EQUIVALENCE PROBLEM.
Given two embeddings ι : X →M and ῑ : X →M of an n-dimensional manifold
X into M and a Lie pseudo-group of transformations H acting on X, determine
whether there exists a group transformation g ∈ G such that (2.6) holds for some
reparametrization Φ ∈ H in the prescribed pseudo-group.

For example, one might consider the problem of equivalence of surfaces in
Euclidean space, in which one is only allowed conformal, or area preserving, or
Euclidean reparametrizations. The general reparametrization equivalence problem
is, of course, a special case when the pseudo-group H = Diff(X) is the entire
local diffeomorphism group.

In general, the solution to any equivalence problem is governed by a complete
system of invariants. In the present context, the invariants are the fundamental
differential invariants for the transformation group action in question. Thus, any
solution method must, as a consequence, produce the differential invariants in
question.

EXAMPLE 2.3. In the case of curves in Euclidean geometry, the ordinary curva-
ture? function κ = |xt|−3(xt ∧ xtt) is the fundamental differential invariant.

? Here |a| is the usual Euclidean norm and a ∧ b is the scalar-valued cross-product between
vectors in the plane.
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For the fixed parametrization problem, there is a second fundamental differ-
ential invariant – the speed v = |xt|. Furthermore, all higher-order differen-
tial invariants are obtained by successively differentiating the curvature (and
speed) with respect to arc length ds = v dt = |xt| dt, which is the fundamental
Euclidean invariant 1-form. (In the fixed problem, one can replace s deriva-
tives by t derivatives since dt is also invariant if we disallow any changes
in parameter.) A similar result holds for general transformation groups – one
can obtain all higher-order differential invariants by successively applying cer-
tain invariant differential operators to the fundamental differential invariants,
cf. [38].

The functional relationships between the fundamental differential invariants
will solve the equivalence problem. Roughly speaking, one uses the differential
invariants to parametrize a ‘classifying’ or ‘signature’ manifold associated with
the given submanifold, and the result is that, under suitable regularity hypotheses,
two submanifolds will be congruent under a group transformation if and only
if their classifying manifolds are identical. For example, in the unparametrized
Euclidean curve problem, the classifying curve is parametrized by the two cur-
vature invariants (κ, κs = dκ/ds), whereas in the fixed problem, one uses all
four invariants (v, κ, vs, κs) to parametrize the classifying curve. See [5] for
applications of the classifying curve to the problem of object recognition in
computer vision. Of course, this ‘solution’ reduces one to another potentially
difficult identification problem – when do two parametrized submanifolds coin-
cide? One approach to the latter problem is to use the Implicit Function Theorem
to realize the classifying submanifold as the graph of a function, which elimi-
nates the reparametrization ambiguity. Alternatively, in an algebraic context, a
solution can be provided by Gröbner basis techniques, cf. [4]. Neither approach
completely resolves the general identification problem, but particular cases can
often be handled effectively.

Remark. A more standard solution to the equivalence problem depends on
the choice of a base point x0 = x(t0) on the curve. Then the curvature κ(s)
as a function of arc length s =

∫ x
x0

ds uniquely characterizes the curve up to
Euclidean congruence, [19; p. 24]. The classifying curve approach has two dis-
tinct advantages: first, there is no choice of base point required, which eliminates
the translational ambiguity inherent in the curvature function κ(s); second, the
classifying curve is completely local, whereas the arc length s is a nonlocal
function of the curve. Note that the classifying curve can be computed directly,
without appealing to the arc length parametrization.

The differential invariants can also be used to determine the structure of the
symmetry group. In the case of an effectively acting Lie group G, the codimen-
sion of the symmetry subgroup H of the submanifold N , i.e., dimG− dimH ,
is the same as the number of functionally independent differential invariants
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on the submanifold. In particular, the maximally symmetric submanifolds occur
when all differential invariants are constant; if G acts transitively, then these
can be identified with the homogeneous submanifolds of M , i.e., the orbits of
suitable closed subgroups of G, cf. [23]. For instance, in the Euclidean case, the
maximally symmetric curves are where the curvature is constant, which are the
circles and straight lines, since these are the orbits of the one-parameter sub-
groups of E(2). (Technically, these retain the infinite-dimensional reparametriza-
tion group Diff(1) as an additional symmetry group.) In the fixed parameter
version, the circles and straight lines must be parametrized by a constant mul-
tiple of their arc length in order to retain their distinguished symmetry sta-
tus.

Finally, we remark that differential invariants can be used to construct general
invariant differential equations admitting the given transformation group. Specif-
ically, suppose J1, . . . , JN form a complete system of functionally independent
kth order differential invariants, defined on an open subset Vk ⊂ Jk of the jet
space where the prolonged group action is regular. Then, on Vk, any kth-order
system of differential equations admitting G as a symmetry group can be written
in terms of the differential invariants: Hν(J1, . . . , JN ) = 0. For example, the
most general Euclidean-invariant third order differential equation has the form
dκ/ds = H(κ), equating the derivative of curvature with respect to arc length
to a function of curvature. Similar comments apply to invariant variational prob-
lems, and we refer the reader to [37, 38], for details. These results form the
foundations of modern physical field theories, in which one bases the differ-
ential equations, or variational principle, on its invariance with respect to the
theory’s underlying symmetry group. The groups in question range from basic
Poincaré and conformal invariance, to the exceptional simple Lie groups lying
at the foundations of string theory, as well as infinite-dimensional gauge groups
and groups of Kac–Moody type. Remarkably, complete systems of differential
invariants are known for only a small handful of transformation groups arising
in physical applications – a collection that includes none of the above-mentioned
groups! Our moving coframe algorithm provides an direct and effective means
for providing such classifications.

3. The Maurer–Cartan Forms

In our approach to the theory and practical implementation of the method of
moving frames, the left-invariant Maurer–Cartan forms on a finite-dimensional
Lie group play an essential role. We therefore begin by reviewing the basic
definition, and then present two computationally effective methods for finding
the explicit formulae for the Maurer–Cartan forms. The theoretical justification
for the second method will appear in Part II [15].

Throughout this section, G will be an r-dimensional Lie group. We let Lg :
h 7→ g · h denote the standard left multiplication map.
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DEFINITION 3.1. A 1-form µ on G is called a (left-invariant) Maurer–Cartan
form if it satisfies

(Lg)
∗µ = µ for all g ∈ G. (3.1)

Remark. If one uses the right-invariant Maurer–Cartan forms instead, one is
led to an alternative theory of right moving frames. Although the left versions
appear almost exclusively in the literature, their right counterparts will play an
important role in the theoretical justifications and the regularized method intro-
duced in Part II. In this paper, though, we shall exclusively use the left-invariant
Maurer–Cartan forms and moving frames; see [15] for details.

The space of Maurer–Cartan forms on G is an r-dimensional vector space,
which can naturally be identified with the dual to the Lie algebra g of left-
invariant vector fields on G. If we choose a basis v1, . . . , vr of g, then there is a
dual basis µ1, . . . , µr of the space of Maurer–Cartan forms, satisfying 〈µi; vj〉 =
δij , where δij is the usual Kronecker delta. The basis Maurer–Cartan forms satisfy
the fundamental structure equations

dµi = −
∑
j<k

Cijkµ
j ∧ µk, (3.2)

where the coefficients Cijk are the structure constants corresponding to our choice
of basis of the Lie algebra g. The Maurer–Cartan forms are a coframe on the Lie
group G, meaning that they form a pointwise basis for the cotangent space T ∗G,
or, equivalently, that we can write any 1-form ω on G as a linear combination
ω =

∑
fi µ

i thereof, where the fi are suitable smooth functions.
The most common method for explicitly determining the Maurer–Cartan forms

on a given Lie group is to realize G ⊂ GL(n) as a matrix Lie group. The
independent entries of the n× n matrix of 1-forms

µ = A−1 dA (3.3)

form a basis for the left-invariant Maurer–Cartan forms on G. Here A =
A(g1, . . . , gr) ∈ G represents the general matrix in G, which we have paramet-
rized by local coordinates (g1, . . . , gr) near the identity, and dA =

∑
(∂A/∂gi) dgi

is its differential, which is an n× n matrix of 1-forms.
For example, in the case G = GL(2), the four independent Maurer–Cartan

forms are the components of the matrix

µ =

(
µ1 µ2

µ3 µ4

)
= A−1 dA

=
1

αδ − βγ

(
δ dα− β dγ δ dβ − β dδ

α dγ − γ dα α dδ − γ dβ

)
. (3.4)
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Similarly, if G = E(2) = O(2)nR2 is the Euclidean group in the plane, then we
can identify E(2) ⊂ GL(3) as a subgroup of GL(3) by identifying (R, a) ∈ E(2)
with the 3× 3 matrix

(
R a

0 1

)
=


cosφ − sinφ a

sinφ cosφ b

0 0 1

 .
Substituting into (3.3) leads to

µ =

(
R−1 −R−1a

0 1

)(
dR da

0 0

)

=


0 −dφ cosφ da+ sinφ db

dφ 0 − sinφ da+ cosφ db

0 0 0

 .
Thus, the three independent Euclidean Maurer–Cartan forms are

µ1 = dφ, µ2 = cosφ da+ sinφ db, µ3 = − sinφ da+ cosφ db. (3.5)

In cases when the group is explicitly realized as a local group of transforma-
tions on a manifold M , and not necessarily as a matrix Lie group, it is useful
to have a direct method for determining the Maurer–Cartan forms. Given g ∈ G
and z ∈M , we explicitly write the group transformation z̄ = g · z in coordinate
form

z̄i = Hi(z, g), i = 1, . . . ,m.

We then compute the differentials of the group transformations:

dz̄i =
m∑
k=1

∂Hi

∂zk
dzk +

r∑
j=1

∂Hi

∂gj
dgj , i = 1, . . . ,m,

or, more compactly,

dz̄ = Hz dz +Hg dg. (3.6)

Next, set dz̄ = 0 in (3.6), and solve the resulting system of linear equations for
the differentials dzk. This leads to the formulae

−dz = F dg = (H−1
z ·Hg) dg,

or, in full detail,

− dzk =
r∑
j=1

F kj (z, g) dgj , k = 1, . . . ,m. (3.7)
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Then, for each k and each fixed z0 ∈M , the 1-form

µ0 =
r∑
j=1

F kj (z0, g) dgj (3.8)

is a left-invariant Maurer–Cartan form on the group G. Alternatively, if one
expands the right-hand side of (3.7) in a power series (or Fourier series, or . . . )
in z,

r∑
j=1

F kj (z, g) dgj =
∞∑
I=0

zI µI , (3.9)

then each coefficient µI also forms a left-invariant Maurer–Cartan form on G.
In particular, when G acts locally effectively, the resulting collection of 1-forms
spans the space of Maurer–Cartan forms.

EXAMPLE 3.2. Consider the action of GL(2) given by

x̄ =
αx+ β

γx+ δ
, ū =

u

γx+ δ
, (3.10)

as discussed above. Differentiating (3.10), we find, as in (3.6),

dx̄ =
(γx+ δ)(α dx+ x dα+ dβ)− (αx+ β)(γ dx+ x dγ + dδ)

(γx+ δ)2

=
(αδ − βγ) dx+ (γx+ δ)(x dα + dβ)− (αx+ β)(x dγ + dδ)

(γx+ δ)2 ,

dū =
(γx+ δ) du+ u(γ dx+ x dγ + dδ)

(γx+ δ)2 .

Setting dx̄ = 0 = dū and solving for dx and du, we obtain

−dx =
δ dβ − β dδ
αδ − βγ +

(
δ dα+ γ dβ − α dδ − β dγ

αδ − βγ

)
x+

+

(
γ dα− α dγ
αδ − βγ

)
x2,

−du =

(
α dδ − γ dβ
αδ − βγ

)
u+

(
α dγ − γ dα
αδ − βγ

)
xu.

(3.11)

Note that the coefficients of 1, x and x2 in the first formula, i.e.,

µ̂1 =
δ dβ − β dδ
αδ − βγ , µ̂2 =

δ dα+ γ dβ − α dδ − β dγ
αδ − βγ ,

µ̂3 =
γ dα− α dγ
αδ − βγ ,

(3.12)

recover three of the Maurer–Cartan forms in (3.4), while the coefficient of either
u or xu in the second formula provides the remaining one.
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Remark. The coefficients in (3.11) are, in fact, immediately found in terms of
the coefficients of the infinitesimal generators for the transformation group. See
[15] for details.

If G does not act effectively on M , then the forms computed by this method
will form a basis for the annihilator

(gM )⊥ = {ω ∈ g
∗ | 〈ω; v〉 = 0 for all v ∈ gM}

of the Lie algebra of the global isotropy subgroup

GM = {g ∈ G | g · z = z for all z ∈M},

and thus can be identified with the Maurer–Cartan forms for the effectively acting
quotient group G̃ = G/GM . For example, if we only treat the linear fractional
transformations in x in (3.10), then the resulting three Maurer–Cartan forms
(3.12) all annihilate the generator v = α∂α + β∂β + γ∂γ + δ∂δ of the isotropy
subgroup {λ1l} ⊂ GL(2) consisting of scalar multiples of the identity matrix.
Hence, the three 1-forms can be identified with a basis for the Maurer–Cartan
forms of the effectively acting projective linear group PSL(2) = GL(2)/{λ1l}.

4. Compatible Lifts and Moving Coframes

In this section, we begin our development of the moving coframe method, starting
with the simplest problems and gradually work our way up to more complicat-
ed situations. Throughout this section, we assume that G is an r-dimensional
Lie group which acts locally effectively and transitively on an m-dimensional
manifold M . (As remarked above, we can always assume local effectiveness by
quotienting by the global isotropy subgroup.) We begin by choosing a convenient
‘base point’ z0 ∈M .

DEFINITION 4.1. A smooth map ρ : M → G is called a compatible lift with
base point z0 if it satisfies

ρ(z) · z0 = z. (4.1)

In order to compute the most general compatible lift, we solve the system
of m equations (4.1) for m of the group parameters in terms of the coordinates
z on M and the remaining r −m = dimG − dimM group parameters, which
we denote by h. This leads to a general formula g = ρ0(z, h) for the solution
to the compatibility equations (4.1). In other words, by solving the compatibil-
ity conditions (4.1), we have effectively ‘normalized’ m of the original group
parameters. Since our considerations are always local, in practice, we only need
to solve the compatibility equations (4.1) near z0. In accordance with Cartan’s
terminology [6], we will call the general compatible lift ρ0(z, h) the moving
frame of order zero for the given transformation group. If ι : X → M defines
a parametrized submanifold N = ι(X), then one can view the composition
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ρ0(ι(x), h) as a restriction of the 0th-order moving frame to the submanifold N ,
where the unnormalized parameters h determine the degree of indeterminacy
of the moving frame on N . In geometrical situations, such restrictions can be
identified with the classical moving frames; see also Section 7 below.

EXAMPLE 4.2. Consider the planar action (2.3) of the general linear group
GL(2)

A · (x, u) =

(
αx+ β

γx+ δ
,

u

γx+ δ

)
, A =

(
α β

γ δ

)
∈ GL(2). (4.2)

The action (4.2) is transitive on M = R2 \ {u = 0}. Choose the base point to
be z0 = (0, 1). Since A · z0 = (β/δ, 1/δ), any compatible lift A = ρ(x, u) must
satisfy β/δ = x, 1/δ = u and, hence, the solution to (4.1) is

β =
x

u
, δ =

1
u
. (4.3)

The most general compatible lift thus has the form

ρ0(x, u, α, γ) =

(
α x/u

γ 1/u

)
, (4.4)

where α = α(x, u), γ = γ(x, u) are arbitrary functions, subject only to the con-
dition α 6= xγ, so that the determinant of (4.4) does not vanish and, hence, ρ0

does take its values in the group GL(2).

Note that since G acts transitively, we can locally identify M ' G/H with
a homogeneous space, where H = Gz0 is the isotropy group of the base point.
Therefore, a compatible lift is merely a (local) section of the fiber bundle G→
G/H .

PROPOSITION 4.3. Two maps ρ, ρ̂ : M → G are compatible lifts with the same
base point if and only if they satisfy

ρ̂(z) = ρ(z) · η(z),

where η : M → H is an arbitrary map to the isotropy subgroup of the base point
z0.

Thus, in the previous example, the isotropy subgroup H of the point z0 =

(0, 1) consists of all invertible lower triangular matrices of the form
(
α′ 0
γ′ 1

)
.

Indeed, we can rewrite (4.4) in the factored form

ρ0(x, u, α, γ) =

(
α x/u

γ 1/u

)
=

(
1 x/u

0 1/u

)(
α′ 0

γ′ 1

)
, (4.5)

ACAP1309.tex; 19/03/1998; 9:40; v.7; p.14



MOVING COFRAMES: I. A PRACTICAL ALGORITHM 175

where α′ = α − xγ, γ′ = uγ, reconfirming Proposition 4.3 in this particular
example.

Although the remaining unspecified group parameters can be identified with
the isotropy subgroup coordinates, in any practical implementation of the moving
coframe algorithm, it is not necessary to identify the isotropy subgroup explicitly,
nor to adopt its particular coordinates to characterize the 0th-order moving frame.
Thus, in the present example, the coordinates α, γ, are just as effective as the
subgroup coordinates α′, γ′. (The interested reader can follow through the ensuing
calculations using the subgroup coordinates instead, reproducing the final result.)

The 0th-order moving frame ρ0(z, h), which is the general solution to the
compatible lift equations (4.1), defines a map from the 0th-order moving frame
bundle B0 = M × H ' G/H × H , coordinatized by (z, h), to the group G,
which is, in fact, a local diffeomorphism ρ0 : B0 →̃G. There is an induced action
of G on the moving frame bundle B0 that makes ρ0 into a G-equivariant map:
ρ0(g·(z, h)) = g·ρ0(z, h). Thus, the action on the unnormalized group parameters
h can be explicitly determined by multiplying the moving frame on the left by
a group transformation. The action of G on B0 projects to the original action of
G on M , so that g · (z, h) = (g · z, η(g, z, h)) for g ∈ G.

In the present example, the induced action of GL(2) on the unspecified param-
eters α, γ, is found by multiplying the moving frame (4.4) on the left by a group

element
( a b

c d

)
∈ GL(2); explicitly,

(
ᾱ x̄/ū

γ̄ 1/ū

)
=

(
a b

c d

)
·
(
α x/u

γ 1/u

)
=

(
aα+ bγ (ax+ b)/u

cα+ dγ (cx+ d)/u

)
. (4.6)

Therefore, the action of G = GL(2) on the moving frame bundle B0 is given by

x̄ =
ax+ b

cx+ d
, ū =

u

cx+ d
, ᾱ = aα+ bγ, γ̄ = cα+ dγ. (4.7)

Note that the (x, u) transformations coincide with the original action (2.3), as
they should.

Remark. In practical implementations of the moving coframe algorithm, we
do not have to explicitly compute this group action. We do this here so as to
provide the reader with some justification for our claims.

Remark. The action of G on B0 = M ×H does not project to an action on
the isotropy subgroup H , even if we use the associated subgroup coordinates. In
the present example, we find (4.7) implies that the subgroup coordinates α′, γ′

in (4.5) transform according to

ᾱ ′ =
ad− bc
cx+ d

α′, γ̄ ′ = γ′ +
cu

cx+ d
α′.
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The next step is to characterize the group transformations by a collection of
differential forms. In the finite-dimensional situation that we are currently con-
sidering, these will be obtained by pulling back the left-invariant Maurer–Cartan
forms µ on G to the 0th-order moving frame bundle B0 using the compatible
lift. The resulting 1-forms ζ0 = (ρ0)∗µ will provide an invariant coframe on B0,
which we name the moving coframe of order zero. The moving coframe forms
ζ0 clearly satisfy the same Maurer–Cartan structure equations (3.2).

THEOREM 4.4. The 0th-order moving coframe forms completely characterize
the group transformations on the bundle B0. In other words, a map Ψ : B0 → B0

satisfies Ψ∗ζ0 = ζ0 if and only if Ψ(z, h) = g · (z, h) coincides with the action
of a group element g ∈ G on B0.

In the present example, we substitute the formulae (4.3) characterizing our
compatible lift (4.4) into the Maurer–Cartan forms (3.4). The result is the 0th-
order moving coframe

ζ1 =
dα− x dγ
α− γx , ζ2 =

dx
u(α − γx)

,

ζ3 =
u(α dγ − γ dα)

α− γx , ζ4 = − γ dx
α− γx −

du
u
,

(4.8)

which forms a basis for the space of 1-forms on B0. The skeptical reader can
explicitly check that these four 1-forms really do completely characterize the
group action (4.7), as described in Theorem 4.4.

Let us now consider a curve N ⊂M . For simplicity, we shall assume that the
curve coincides with the graph of a function u = u(x). However, this restriction
is not essential for the method to work, and later we show how parametrized
curves can also be readily handled by the general method. We restrict the moving
coframe forms to the curve, which amounts to replacing the differential du by its
‘horizontal’ component ux dx. If we interpret the derivative ux as a coordinate
on the first jet space J1 = J1M ' R3 of curves in M , then the restriction of a
differential form to the curve can be reinterpreted as the natural projection of the
1-form du on J1 to its horizontal component, using the canonical decomposition
of differential forms on the jet space into horizontal and contact components.
Indeed, the vertical component of the form du is the contact form du − ux dx,
which vanishes on all prolonged sections of the first jet bundle J1M . We refer
the reader to [38; Chap. 4] for a comprehensive review of the contact geometry
of jet bundles. Therefore, the restricted (or horizontal) moving coframe forms
are explicitly given by

η1 =
dα− x dγ
α− γx , η2 =

dx
u(α− γx)

,

η3 =
u(α dγ − γ dα)

α− γx , η4 =
γ(xux − u)− αux

u(α− γx)
dx,

(4.9)
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which now depend on first-order derivatives.
The next step in the procedure is to look for invariant combinations of coordi-

nates and group parameters. Each such invariant combination will either provide
us with a basic differential invariant for the problem, or, in the case that it explic-
itly depends on the remaining group parameters, a ‘lifted invariant’ which can be
normalized and thereby eliminate one of the remaining group parameters, as dis-
cussed below. Specifically, in the present example, a function J(α, γ, x, u, ux)
will be a lifted invariant provided it is unaffected by the group action on its
arguments, meaning that

J(ᾱ, γ̄, x̄, ū, ūx̄) = J(α, γ, x, u, ux), (4.10)

wherever ᾱ, γ̄, x̄, ū, are related to α, γ, x, u, according to the induced action (4.7)
of the group on the moving frame bundle, and ūx̄ is related to ux according to
the standard prolongation [38], of the action of G on M to the first jet bundle J1.
In the present case, if x̄, ū are given by (4.7), then a straightforward chain rule
computation provides the prolonged action of GL(2) on the derivative coordinate:

ūx̄ =
(cx+ d)ux − cu

ad− bc . (4.11)

In other words, we interpret α, γ, x, u, ux as coordinates on a bundle B̃0 → J1

over the first jet space, which is merely the pull-back B̃0 = (π1
0)∗B0 of the 0th-

order moving frame bundle via the standard projection π1
0 : J1 →M . There is an

induced action of G on B̃0 which projects to its prolonged action on J1. A (first-
order) lifted invariant, then, is just a function J : B̃0 → R which is invariant under
the action of G on B̃0. If the lifted invariant J = J(x, u, ux) does not, in fact,
depend on the group parameters α, γ, then it will be a (first-order) differential
invariant. (However, in the present example, there are no nonconstant first-order
differential invariants, since GL(2) acts transitively on J1.) Alternatively, if J
actually depends on either α or γ then it can be used in the normalization
procedure.

Fortunately, the lifted invariants can be determined without explicitly comput-
ing the prolonged group action, or solving any differential equations. They appear
in the linear dependencies among the restricted (horizontal) moving coframe
forms! Indeed, because the 1-forms are invariant, each coefficient Ji in a linear
relation η0 = J1 η1 + · · ·+Jkηk, in which the forms ηi on the right-hand side are
linearly independent, is automatically invariant under the action of the group. In
our example, we note that, among the restricted 1-forms (4.9), there is one linear
dependency, namely η4 = Jη2, where

J = γ(xux − u)− αux. (4.12)

One can explicitly verify that J is indeed a lifted invariant, meaning that it
satisfies (4.10) whenever ᾱ, γ̄, x̄, ū, ūx̄, are related to α, γ, x, u, ux, according to
(4.7), (4.11).
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The ultimate goal of the moving frame method is to eliminate all the ambi-
guities, i.e., the undetermined group parameters, in the original moving frame,
in a suitably invariant manner. Cartan’s crucial observation is that, we can, with-
out loss of generality, normalize any lifted invariant by setting it equal to any
convenient constant value

J(α, γ, x, u, ux) = c, (4.13)

without affecting the equivalence problem. In (4.13), c can be any constant,
subject only to the requirement that the solutions to (4.13) remain in the group,
e.g., that the determinant of any resulting matrix (4.4) remains nonzero. Typically,
c is taken to be 0, 1, or −1, although other values can be chosen to simplify the
resulting formulae. Assuming that J does actually depend on the parameters
α, γ, we can solve the normalization equation (4.13) for one of them; e.g., α =
α(γ, x, u, ux). Because J is an invariant, such a normalization will not alter the
solution to the equivalence problem, and hence we can use it to eliminate α from
the original formulae for the moving frame and moving coframe. The result is a
first-order moving frame, depending on one fewer unnormalized group parameter.
This produces a corresponding first-order moving coframe, to which one can
apply the same procedure, leading to a chain of successive normalizations and
reductions, eventually enabling one to completely eliminate all the undetermined
parameters and specify a uniquely defined moving frame on some suitable jet
bundle Jn = JnM .

In accordance with the general procedure, then, we can normalize our par-
ticular lifted invariant (4.12) by setting it equal to zero; the solution to the
normalization equation J = 0 is then given by

α =

(
xux − u
ux

)
γ. (4.14)

Substituting (4.14) into (4.4) produces the first-order moving frame

ρ1(x, u, ux, γ) =

(
(xux − u)γ/ux x/u

γ 1/u

)
, (4.15)

which now depends on first-order derivatives of u, and just one unnormalized
group parameter. We can regard the coordinates (x, u, ux, γ) as parametrizing a
bundle B1 → J1 sitting over the first jet space, which is realized as a G-invariant
subbundle of B̃0, namely B1 = J−1{0} ⊂ B̃0. As before, one can restrict the
first-order moving frame to a curve u = u(x) by restricting the map ρ1 to the
first prolongation or jet of the curve, i.e., we set u = u(x), ux = u′(x), in (4.15),
with γ indicating the remaining ambiguity. There is an induced action of GL(2)
on B1, which projects to the usual first prolonged action G(1) of the group on J1,
cf. (4.7), (4.11), and makes the first-order moving frame ρ1 : B1 →̃G into a local
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G-equivariant diffeomorphism. In our case, the explicit transformation rules on
B1 are given by

x̄ =
ax+ b

cx+ d
, ū =

u

cx+ d
, ūx̄ =

(cx+ d)ux − cu
ad− bc ,

γ̄ =

(
(cx+ d)ux − cu

ad− bc

)
γ,

(4.16)

which coincide with left multiplication of the first-order moving frame (4.15)
by the given group element. (Again, these explicit formulae are provided for
illustration only, and are not essential for application of the method.) Furthermore,
substituting (4.14) into (4.8), we find the first-order moving coframe

ζ1 =
dγ
γ
− dux

ux
+

du− ux dx
u

, ζ2 = −ux dx
γu2 ,

ζ3 =
γu dux
ux

− γ(du− ux dx), ζ4 =
du− ux dx

u
.

(4.17)

As in the 0th-order case, cf. Theorem 4.4, the first-order moving coframe com-
pletely characterizes the group transformations on B1.

As before, we determine new lifted invariants by restricting the first-order
moving coframe 1-forms to a curve u = u(x). This amounts to replacing du and
dux by their horizontal components ux dx and uxx dx, respectively, leading to
the restricted forms

η1 =
dγ
γ
− uxx dx

ux
, η2 = −ux dx

γu2 ,

η3 =
γuuxx dx

ux
, η4 = 0, (4.18)

that now depend on second-order derivatives. Alternatively, one could deduce
these restricted forms by substituting the normalization (4.14) into the previous
restricted forms (4.9). Note in particular that the fact that η4 vanishes is an auto-
matic consequence of our normalization condition η4 = Jη2 = 0; alternatively,
we note that ζ4 is an invariant contact form, which hence vanishes when restricted
to any submanifold. Now there is an additional dependency, namely η3 = Kη2,
where

K = −γ
2u3uxx
u2
x

is a new lifted invariant. Again, the reader can check that K is invariant under the
prolonged action of GL(2) on the bundle B̃1 = (π2

1)∗B1 → J2, where π2
1 : J2 → J1
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is the natural projection, and is provided by (4.16) and the second-order prolon-
gation (chain rule) formula

ūx̄x̄ =
(cx+ d)3uxx
(ad− bc)2 . (4.19)

We can normalize K = −1 by setting

γ =
ux√
u3uxx

. (4.20)

Note that we cannot normalize K = 0 since this would require γ = 0, but then
the lift (4.15) would have zero determinant, violating the group conditions. The
final lift

ρ2(x, u, ux, uxx) =


xux − u√
u3uxx

x

u

ux√
u3uxx

1
u

 (4.21)

defines the second-order moving frame. The moving frame (4.21) provides an
explicitG-equivariant identification ρ2 : V2 →̃G of the open subset V2 = {uuxx 6=
0} ⊂ J2 of the second jet bundle with an open subset of the group G, identifying
the prolonged action of G(2) on J2 with the ordinary left multiplication on G;
thus

ρ2(g(2) · z(2)) = g · ρ2(z(2)), g ∈ GL(2), z(2) = (x, u, ux, uxx) ∈ V2.

Substituting (4.20) into (4.18) produces the final set of invariant 1-forms

ζ1 = −duxx
2uxx

− du
2u
− ux dx

u
, ζ2 = −

√
uxx
u

dx,

ζ3 =
dux√
uuxx

− ux(du− ux dx)√
u3uxx

, ζ4 =
du− ux dx

u
,

(4.22)

which form the second-order moving coframe. Note that the second-order moving
frame (4.21) provides an equivalence, ρ∗2µi = ζi, mapping the moving coframe
forms on the second-order jet space to the Maurer–Cartan forms (3.4) on the
group. Consequently, the forms ζi uniquely characterize the second-order pro-
longed action of GL(2) on V2 ⊂ J2.

Finally, the restricted (horizontal) moving coframe forms become

η1 = −uuxxx + 3uxuxx
2uuxx

dx, η2 =

√
uxx
u

dx, η3 = −η2, η4 = 0.
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There is one final linear dependency, namely η1 = −I η2, where

I =
uuxxx + 3uxuxx

2
√
uu3

xx

(4.23)

is the fundamental differential invariant of the transformation group, also known
as the group-invariant curvature. The remaining 1-form ds = η2 is the funda-
mental invariant 1-form, or group-invariant arc length element. All higher-order
differential invariants can be found by differentiating the curvature invariant with
respect to the invariant arc length; for instance, the fundamental fourth-order dif-
ferential invariant is

J =
∂I

∂η2
=

dI
ds

=

√
u

uxx

dI
dx

=
2u2uxxuxxxx − 3u2u2

xxx − 2uuxuxxuxxx + 6uu3
xx − 3u2

xu
2
xx

4uu3
xx

. (4.24)

From the general theory, we conclude that every differential invariant for the
group (2.3) is a function of the curvature and its successive derivatives with
respect to the arc length. On the regular part V2 of the jet space J2, all GL(2)
invariant ordinary differential equations can be written in terms of these invari-
ants; for instance, the most general invariant third-order ordinary differential
equation has the form

uuxxx + 3uxuxx = k
√
uu3

xx, (4.25)

for some constant k.
Applications to the equivalence problem for curves (which includes the equiv-

alence problem for first-order Lagrangians as well as that of classical invariant
theory) follow directly from the general theorems. Given a function u = u(x),
we define its classifying curve C to be the planar curve parametrized by the
fundamental differential invariants I(x), J(x). The general result states that two
curves are mapped to each other by a group transformation (2.3), so C̄ = g ·C, if
and only if their classifying curves are identical, C̄ = C. A curve C is maximally
symmetric if and only if its classifying curve reduces to a point; in this case the
original curve is, in fact, an orbit of a one-parameter subgroup of GL(2). Thus,
we have, in a very simple and direct manner, recovered the results in [36] on the
equivalence and symmetry of binary forms, which were found by a much less
direct approach based on the standard Cartan equivalence problem for particle
Lagrangians.

There are a few technical points that should have been addressed during
the preceding discussion. First, one needs to impose certain conditions on the
function u(x) in order to ensure that the computation is valid. For instance, the
normalization (4.14) requires ux 6= 0, i.e., the curve does not have a horizontal
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tangent. (We have already assumed that it does not have a vertical tangent by
requiring that it be the graph of a smooth function.) If ux = 0, then we can still
normalize J = 0 as long as u 6= xux, in which case we normalize by solving
for γ instead of α. Actually, both cases can be simultaneously handled by the
normalization α = λ(xux−u), γ = λux, where λ 6= 0 is a new parameter whose
normalization will be specified at the next stage of the procedure. The reader
can check that this alternative procedure leads to the same lift and differential
invariants as before. In the second normalization, we have assumed? uxx > 0 in
order to take the square root. For uxx < 0 we would need to normalize K = +1,
and use

√
−uxx instead. Thus the problem actually separates into two branches,

with the inflection points uxx = 0 being interpreted as singular points for the
group action. The straight lines, for which uxx ≡ 0, form a special class and must
be analyzed separately. Finally, the square root itself has a sign ambiguity (or,
in the complex case, an ambiguity in its choice of branch). Both signs must, in
fact, be allowed in the final expression for the lift and the differential invariants.
Such branching and ambiguous sign phenomena will be familiar to practitioners
of the Cartan equivalence method; see [38] for a detailed discussion of these
issues.

Let us finish this section by summarizing the basic method of moving coframes,
in a form which will apply to more general problems. The basic steps are

(a) Determine the general invariant lift, or moving frame of order zero, by
choosing a base point and solving (4.1) for the given group action.

(b) Determine the invariant forms. In the finite-dimensional case, they are the
Maurer–Cartan forms, which can be computed either by using the matrix
approach, or by direct use of the transformation group formulae.

(c) Use the invariant lift to pull-back the invariant forms, leading to the moving
coframe of order zero.

(d) Determine lifted invariants by finding linear dependencies among the restrict-
ed or horizontal components of the moving coframe forms.

(e) Normalize any group-dependent invariants to convenient constant values by
solving for some of the unspecified parameters.

(f) Successively eliminate parameters by substituting the normalization formulae
into the moving coframe and recomputing dependencies.

(g) After the parameters have all been normalized, the differential invariants
will appear through any remaining dependencies among the final moving
coframe elements. The invariant differential operators are found as the dual
differential operators to a basis for the invariant coframe forms.

Note that we do not need the explicit isotropy groups for the transformation
group actions, nor do we need compute explicit formulae for the prolonged group
action in order to successfully apply the method.

? In the complex-valued problem, there is no sign restriction.
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Remark. If one is solely interested in the final differential invariants and
invariant horizontal 1-forms (i.e., invariant forms on the submanifold itself),
then one need only determine the effect of the normalizations on the horizontal
components of the moving coframe forms during the computation. The mov-
ing coframe itself will also include invariant contact forms, which vanish upon
restriction, but which, nevertheless, play an important role in other aspects of
the geometry. See [20, 38, 40], for applications of invariant contact forms to the
study of invariant evolution equations, with applications to image processing.
Applications to the computation of the invariant cohomology of the variational
bicomplex (cf. [2]) are also of particular importance in the analysis of symmetries
and conservation laws of variational problems.

Remark. The proposed method of moving coframes has the same basic struc-
ture as the Cartan equivalence method [11, 16, 38], in that one deals with a
system of differential forms depending on arbitrary parameters, and seeks to
normalize all the parameters by a suitable collection of lifted invariants. One
can, indeed, view the two methods as particular cases of a completely general
equivalence procedure. However, it is worth pointing out a few of the differ-
ences between the two. First, the Cartan method only deals with lifted coframes,
whose constituents are linearly independent differential forms, whereas the dif-
ferential forms occurring in the moving coframe method are linearly dependent.
The invariant combinations (lifted invariants) used to normalize the parameters
are found via linear dependencies in the moving coframe method, whereas they
arise as unabsorbed torsion coefficients in the differentials of the lifted coframe
forms in the Cartan equivalence method. In the moving coframe method, the
differentials of the moving coframe 1-forms satisfy the Maurer–Cartan structure
equations and, hence, do not provide any nonconstant invariants. Finally, and per-
haps most significantly, the group parameters g only occur algebraically in the
lifted coframe elements in the Cartan equivalence method, whereas in the mov-
ing frame problems their differentials dg occur as well, since they appear in the
Maurer–Cartan forms. One can, of course, imagine solving hybrid equivalence
problems, in which aspects of both problems occur during the normalization pro-
cedure, although we are not currently aware of any interesting examples where
these occur naturally.

5. Intransitive Lie Group Actions

Our next task is to extend the moving coframe method to the case of finite-
dimensional Lie groups whose action is no longer transitive. In the intransitive
case, we still assume that G is an r-dimensional Lie group acting effectively,
and regularly, which implies that its orbits, which we take to have dimension s,
form a foliation of M . We choose a local cross-section K ⊂M to this foliation,
i.e., a submanifold of dimension m− s intersecting the orbits transversally, and
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introduce a compatible lift ρ : M → G by requiring that, for each z near K, the
lift ρ satisfies

z = ρ(z) · z0 for some z0 ∈ K. (5.1)

The general solution to the compatible lift equations (5.1) will be of the form
ρ(z, h) depending on r−s parameters h. Note that unless the isotropy subgroups
at each point in the cross-section happen to be identical, we cannot identify the
unspecified parameters as local coordinates on any subgroup H ⊂ G, leading
us beyond any principal bundle-theoretic interpretation of the method. Neverthe-
less, the Implicit Function Theorem will allow us to locally write the general
compatible lift in this form. In addition, the group admits (locally) m− s func-
tionally independent invariants, I1(z), . . . , Im−s(z), whose level sets characterize
the orbits. The 0th-order moving frame will then be the map

ρ0(z, h) = (ρ(z, h), I(z)), (5.2)

whose first components g = ρ(z, h) are those of the general compatible lift
(for the given cross-section) and, in addition, has the invariants w = I(z) =
(I1(z), . . . , Im−s(z)) as further components. Note that ρ0 is only locally defined,
since z must lie near the cross-section K, and, moreover, the remaining param-
eters h are determined in accordance with the Implicit Function Theorem.

Note. We can view the range G × Rm−s of ρ0 as having the structure of a
Cartesian product Lie group, the additive group structure on the second factor
formalizing the fact that we can add invariants.

The moving coframe forms in this case are constructed from the Maurer–
Cartan forms µ on the group G, together with the coordinate 1-forms dw =
{dw1, . . . , dwm−s} on Rm−s. The group transformations are then characterized
by the conditions

Φ∗w̄ = w, Φ∗ dw̄ = dw, Φ∗µ̄ = µ. (5.3)

Using the moving frame lift g = ρ(z, h), w = I(z), to pull back these 1-forms, we
are led to the 0th-order moving coframe, consisting of the pulled-back Maurer–
Cartan forms (ρ0)∗µ, along with the differentials (ρ0)∗dwκ = dIκ of the group
invariants. At this stage, the set up of the intransitive problem is complete, and
one proceeds, as in the transitive case, to look for dependencies among the
restricted coframe forms, and then normalize the resulting lifted invariants.

EXAMPLE 5.1. The intransitive action

A : (x, u) 7−→
(
x,
αu+ β

γu+ δ

)
, A =

(
α β

γ δ

)
∈ SL(2), (5.4)
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of the special linear group SL(2) on M = R2 arises in complex function the-
ory [21]. (We restrict to SL(2) in order to maintain local effectiveness.) The
group orbits are vertical lines and so the basic invariant is merely I(x, u) = x. We
choose the cross-sectionK = {u = 0}. Solving the equation A(x, u)·z0 = (x, u),
where z0 = (y, 0), leads to the general compatible lift

A0(x, u, α, δ) =

 α δu

αδ − 1
δu

δ

 , (5.5)

which forms the group component of the 0th-order moving frame. The other
component is just the invariant

w = I(x, u) = x. (5.6)

Pulling back the Maurer–Cartan forms µ = A−1 dA and dw via the lift (5.5),
(5.6), leads to the 0th-order moving coframe

ζ1 = (αδ − 1)
du
u
− dδ

δ
, ζ2 = δ2 du,

ζ3 =
u d(αδ) + αδ(1 − αδ) du

δ2u2 , ζ4 = dx.
(5.7)

As before, we restrict ourselves to a curve u = u(x) by replacing du by its
horizontal component ux dx. Letting ηi denote the horizontal component of ζi,
we find that there is one resulting linear dependency, namely

η2 = δ2ux dx = J dx = Jη4.

The leads to the first normalization δ = 1/
√
ux resulting from setting J = 1.

Substituting this normalized value into (5.5), (5.6), provides the first-order mov-
ing frame. Furthermore, substituting into (5.7) produces the second-order moving
coframe, with horizontal components

η1 =

(
2αu3/2

x + uuxx − 2u2
x

2uux

)
dx, η2 = η4 = dx,

η3 =

√
ux
u

(dα− αη1).

(5.8)

Now we normalize the coefficient of η1 to 0 by setting α = u−3/2
x (u2

x− 1
2uuxx).

The final moving frame (of order 2) is

A2 =
1

u
3/2
x

(
u2
x − 1

2uuxx uux

− 1
2uxx ux

)
, w = x. (5.9)

The corresponding restricted moving coframe has reduced to

η2 = η4 = dx, η3 = − 1
4Sη2, η1 = 0, (5.10)
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where

S =
2uxuxxx − 3u2

xx

u2
x

(5.11)

is the classical Schwarzian derivative of the function u(x), whose invariance
under linear fractional transformations is of fundamental importance in complex
function theory. Since the 1-form dx is invariant, all the higher-order differential
invariants are found by differentiating S with respect to x.

Actually, the preceding computation can be slightly simplified by extending
our general method to noneffective actions. We consider (5.4) as defining a
noneffective (and intransitive) action of the general linear group GL(2) on R2. We
may apply the second algorithm for computing the required Maurer–Cartan forms,
leading to the three 1-forms (3.12) that annihilate the global isotropy subalgebra.
We substitute the compatible lift formulae β = δu for the 0th-order moving

coframe, which is now A0 =
( α δu

γ δ

)
, into (3.12), leading to the restricted

moving coframe forms

η̂1 =
δux dx
α− uγ , η̂2 =

dα− u dγ + γux dx
α− uγ − dδ

δ
,

η̂3 =
γ dα− α dγ
δ(α − uγ)

, η̂4 = dx.
(5.12)

The first dependency between η̂1 and η̂4 leads to the reduction δ = (α−uγ)/ux.
Substituting into η̂3 leads to a second dependency, and the resulting normalization
yields α = γ(u− 2u2

x/uxx). At this stage, even though we have not normalized
the final parameter γ, it no longer appears in the coframe, which coincides with
our earlier one, (5.10). It does, of course, occur in the final moving frame lift,
which is obtained by multiplying the matrix A2 in (5.9) by γ. However, γ plays
no other role in the problem, and merely reflects a final indeterminacy stemming
from the ineffectiveness of the group action. The main point in this solution
method is that one does not have to explicitly implement an effective action, as
was done in the original lift (5.5), in order to solve the problem. Indeed, in more
complicated examples, it may be relatively straightforward to write down the
compatible lift for an ineffective group action, whereas doing the same for the
effectively acting quotient group G/GM may be considerably more complicated.

EXAMPLE 5.2. Consider the elementary similarity group G = R+ n R2 acting
transitively on M = R2 via

A : (x, u) 7−→ (αx+ a, αu+ b). (5.13)

For the base point z0 = (0, 0), the associated moving frame of order 0 is the
lift with a = x, b = u. The Maurer–Cartan forms {dα/α, da/α, db/α} are
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pulled back to provide the 0th-order moving coframe, whose horizontal (or, more
precisely, non-contact) components are

η1 =
dα
α
, η2 =

dx
α
, η3 =

ux dx
α

. (5.14)

There is a single linear dependency η3 = I η2, but the resulting invariant I = ux
does not depend on the remaining group parameter, and hence cannot be used
to normalize it. To proceed further in such cases, we work in analogy with the
preceding intransitive case. Here the intransitivity is on the first-order jet bundle,
and is an indication of the fact that this particular group exhibits the pathology of
‘pseudo-stabilization’ of its prolonged group orbits [38]. We therefore introduce
an additional invariant 1-form dux, whose horizontal component is

η4 = uxx dx = Kη2.

The resulting dependency leads to the lifted invariant K = αuxx which yields
the desired normalization α = 1/uxx and the second-order moving frame. The
associated invariant coframe is

η2 = η4 = uxx dx, η1 = −Jη2, η3 = Iη2, (5.15)

yielding two fundamental differential invariants

I = ux, J = u−2
xxuxxx. (5.16)

The higher-order invariants are found by differentiating J with respect to η4 =
uxx dx ' dux, so that a basic fourth-order invariant is

K =
dJ
dux

=
1
uxx

dJ
dx

=
uxxxx
u2
xx

− 2J2.

Note that dI/dux = 1, so that differentiating I produces nothing new. Thus,
in this case, we find two fundamental differential invariants, and require three,
namely (I, J,K), to parametrize the classifying curve that solves the associated
equivalence problem. We conclude that the phenomenon of pseudo-stabilization
of group orbits is reflected in the moving coframe procedure by the premature
appearance of differential invariants, whose differentials are required to finish
the procedure. See [38, 39] for further discussion.

Remark. Interestingly, if the scaling acts differently on x and u, so the group
is

A : (x, u) 7−→ (αx+ a, αku+ b), (5.17)

for k 6= 1, then pseudo-stabilization does not occur. Such cases can be readily
handled via our basic method without any such intransitive normalizations.
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6. Reparametrization Pseudo-Groups

The classical applications of moving frames to curves and surfaces in Euclidean,
affine, and projective geometry, cf. [6, 8, 19], can all be readily implemented
using the moving coframe algorithm. In each case, we consider the reparametriza-
tion equivalence problem for submanifolds, so that the underlying transformation
group is the Cartesian product of an infinite Lie pseudo-group, namely the local
diffeomorphism group Diff(X) of the parameter space, and a finite-dimensional
Lie group acting on the manifold M . In this case, in addition to the Maurer–
Cartan forms for the group, one also includes the 1-forms defining the diffeomor-
phism pseudo-group. One can then proceed to reduce and normalize as before.
For simplicity, we just deal with planar curves, although extensions to surfaces
and curves in higher dimensional ambient spaces can also be handled without
significant further complications.

EXAMPLE 6.1. Euclidean geometry of curves. The most well-known classical
example is the reparametrization equivalence problem for curves in the Euclidean
plane, introduced in Example 2.1 above. In this case, we are dealing with a
finite-dimensional group, the Euclidean group E(2) on the plane, together with
the pseudo-group Diff(1) consisting of all smooth (local) diffeomorphisms of
the line representing the change of parameter. Thus, the entire pseudo-group
G = Diff(1) × E(2) acts on the total space M = R × R2 with coordinates
(t, x) = (t, x, y). For the Euclidean component, we use a compatible lift

A0(x, y, φ) =

(
R x

0 1

)
=


cosφ − sinφ x

sinφ cosφ y

0 0 1

 (6.1)

and compute the pull-back of the associated Euclidean Maurer–Cartan forms

ζ = A−1
0 dA0 =

(
R−1 dR R−1 dx

0 0

)

=


0 −dφ cosφ dx+ sinφ dy

dφ 0 − sinφ dx+ cosφ dy

0 0 0

 . (6.2)

On the other hand, the pseudo-group Diff(1) is characterized by the invariance
of the canonical 1-form σ dt on the frame bundle F(R), cf. [26], and, hence, we
include this additional 1-form in our moving coframe formulation. Restricting
these four 1-forms to a parametrized curve (x(t), y(t)) leads to

η1 = dφ, η2 = (xt cosφ+ yt sinφ) dt,

η3 = (−xt sinφ+ yt cosφ) dt, η4 = σ dt.
(6.3)
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Now η2 = J1η4 and η3 = J2η4 are the linear dependencies, with associated lifted
invariants

J1 =
xt cosφ+ yt sinφ

σ
, J2 =

−xt sinφ+ yt cosφ
σ

.

We normalize J1 = 1, J2 = 0 by setting

φ = tan−1(yt/xt), σ =
√
x2
t + y2

t . (6.4)

This immediately produces the first-order moving frame

R =
1√

x2
t + y2

t

(
xt −yt
yt xt

)
, a =

(
x

y

)
, σ =

√
x2
t + y2

t . (6.5)

The canonical 1-form σ dt has been reduced to the fundamental arc length form

ds =
√
x2
t + y2

t dt for the Euclidean group. Substituting into (6.3), we are left
with a final set of horizontal 1-forms

η1 = κη4, η2 = η4 = ds =
√
x2
t + y2

t dt, η3 = 0. (6.6)

Here

κ =
xtytt − xttyt
(x2
t + y2

t )
3/2

=
xt ∧ xtt
|xt|3

= xs ∧ xss (6.7)

is the fundamental differential invariant for the Euclidean group – the curva-
ture of the plane curve. All higher-order differential invariants are obtained by
successively differentiating the curvature with respect to arc length.

The classical Frenet equations for curves in the Euclidean plane are reformu-
lations of our final moving frame formulae. (See Section 7 below for more details
on the connection with the classical theory.) The rotational component in (6.5) is
traditionally written as R = (e1, e2), where e1 is the unit tangent and e2 the unit
normal. The translational Maurer–Cartan forms η2 = ds, η3 = 0 are computed

by the original formula as the entries of R−1 dx =
( ds

0

)
, which reduces to the

first Frenet equation dx/ds = e1. Similarly, the Maurer–Cartan matrix

R−1 dR =

(
0 −κ
κ 0

)
ds implies that

dR
ds

= R ·
(

0 −κ
κ 0

)
.

The columns of the latter matrix differential equation complete the system of
Frenet equations:

dx
ds

= e1,
de1

ds
= κ e2,

de2

ds
= −κ e1. (6.8)

Finally, the Maurer–Cartan structure equations (3.2) for the Euclidean group
reduce to the classical Frenet–Serret equations for curves. See [13; p. 23], [19;
p. 20], for details.
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Remark. One can also compute, as in our original example, the full moving
coframe forms on the jet bundle, leading to a corresponding set of fundamental
Euclidean-invariant contact forms.

Remark. Actually, since we are dealing with the full pseudo-group Diff(1)
consisting of all diffeomorphisms of R, the final 1-form η4 = σ dt in our moving
coframe (6.3) is, in fact, irrelevant – one could perform the same normalization
(6.4) of the angle φ based on the dependency between η2 and η3, the lifted
invariant now being J2/J1 which is normalized to zero by setting J2 = 0,
leading to the same final moving coframe and curvature invariant. Thus, the
calculations for parametrized curves and surfaces can, in fact, be done without
invoking the diffeomorphism pseudo-group. Nevertheless, in all examples we
have treated, the inclusion of the canonical 1-form η4 on the parameter space
leads to an immediate identification of the final invariant arc length element. More
generally, the restricted reparametrization equivalence problem does require the
introduction of suitable 1-forms that characterize the pseudo-group of allowed
reparametrizations.

Remark. The problem of Euclidean equivalence of curves with fixed para-
metrizations, as discussed in Example 2.1, can also be formulated and solved in
the moving coframe context. Now we are in the intransitive framework, where
the parameter t provides a scalar invariant. Consequently, we retain the first three
1-forms η1, η2, η3 in (6.3), but replace η4 by dt to form the moving coframe. We

normalize J1 = 0 as before, but now J2 = v =
√
x2
t + y2

t forms a first-order
differential invariant – the speed of the particle. The final moving frame has
η1 = K dt, η2 = 0, η3 = v dt, η4 = dt, where K = xtytt − xttyt = v3κ is
a second-order differential invariant. The higher-order differential invariants are
found by differentiating with respect to t. Note that the arc length ds = v dt is
also an invariant 1-form, being an invariant multiple of dt and, hence, one can,
without loss of generality, apply the arc length derivative d/ds to produce the
higher-order differential invariants instead. Thus, in this case, a complete list of
differential invariants is provided by v, κ, and their derivatives with respect to
arc length.

EXAMPLE 6.2. The equi-affine geometry of curves in the plane is governed by
the special affine group SA(2) = SL(2) n R2, acting on M = R2 according to

g : x 7−→ Ax + a, x ∈M, A ∈ SL(2), a ∈ R2. (6.9)

We shall adopt a vector notation for the matrix A = (αβ) ∈ SL(2), so that the
column vectors are subject to the unimodularity constraint

α ∧ β = 1. (6.10)

It will be computationally convenient not to explicitly implement the unimodu-
larity constraint (6.10) by solving for one of the parameters, but retain it as an
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additional constraint that is to be respected during the course of the calculation.
This method, i.e., treating a subgroup of a larger Lie group via a collection of
algebraic constraints, rather than parametrizing it directly, has general applica-
bility, and can be readily implemented as is done in this particular case.

The Maurer–Cartan forms are computed directly as in Section 3, leading to

µ1 = α ∧ dα, µ2 = β ∧ dα, µ3 = β ∧ dβ,

ν1 = α ∧ da, ν2 = β ∧ da.
(6.11)

Note that the unimodularity constraint (6.10) implies that

α ∧ dβ = β ∧ dα, (6.12)

which means that the matrix of Maurer–Cartan forms µ = A−1 dA must be trace
free.

Choose the base point to be x0 = 0. Solving the compatible lift equations
x = g · x0 = a yields the 0th-order moving frame, which sets a = x. Substituting
into the Maurer–Cartan forms (6.11), we find that, for a parametrized curve x(t),
the forms ν1, ν2 restrict to the following two horizontal forms

η1 = (α ∧ xt) dt, η2 = (β ∧ xt) dt. (6.13)

Their ratio produces the lifted invariant (α ∧ xt)/(β ∧ xt), which is normalized
to 0 by setting

α = λ xt, (6.14)

for some scalar parameter λ. Substituting (6.14) into the first Maurer–Cartan
form µ1 = α ∧ dα, leads to the restricted form ξ1 = λ2(xt ∧ xtt) dt. Assuming
xt ∧ xtt 6= 0, the latter form can be normalized to equal −η2 by setting

− β ∧ xt = λ2(xt ∧ xtt), or β = λ2xtt + µxt, (6.15)

for some scalar µ. However, applying the unimodularity constraint (6.10) to the
normalizations (6.14), (6.15), we deduce that λ3(xt ∧ xtt) = 1 and, thus,

λ =
1

3
√

xt ∧ xtt
. (6.16)

Note that (6.15), (6.16) reduce the form η2 to be minus the equi-affine arc length
form

ds = 3
√

xt ∧ xtt dt. (6.17)

Furthermore, substituting (6.15), (6.16) into the second Maurer–Cartan form, we
find it reduces to a multiple of ξ1 = ds, so

ξ2 = β ∧ dα = J ds,
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where the lifted invariant

J = µ(xt ∧ xtt)1/3 +
xt ∧ xttt

3(xt ∧ xtt)4/3

is normalized to zero in the obvious manner. Therefore, the final moving frame
is given by

α =
dx
ds

=
xt

3
√

xt ∧ xtt
,

a = x.

β =
d2x
ds2 =

xtt
(xt ∧ xtt)2/3

− (xt ∧ xttt) xt
3(xt ∧ xtt)5/3

,

(6.18)

The final Maurer–Cartan form becomes

ξ3 = β ∧ dβ = κ ds,

where

κ = xss ∧ xsss =
(xt ∧ xtttt) + 4(xtt ∧ xttt)

3(xt ∧ xtt)5/3
− 5(xt ∧ xttt)2

9(xt ∧ xtt)8/3
(6.19)

defines the equi-affine curvature. As usual, all higher-order differential invariants
are obtained by differentiating κ with respect to the equi-affine arc length ds.
This reproduces the basic invariants of the equi-affine geometry of curves [19];
see also [5] for applications in computer vision.

As with the Euclidean case, we recover the classical Frenet equations as
simple reformulations of the final moving frame formulae. We identify the linear
part

A = (e1, e2) = (xs, xss)

of the final moving frame with the equi-affine frame at a point x(t) on the
curve, so that e1 = xs is the unit affine tangent vector, whereas e2 = xss
is the unit equi-affine normal. Combining this with the Maurer–Cartan matrix

A−1 dA =
( 0 1
κ 0

)
ds leads to the complete Frenet equations of planar equi-

affine geometry [13; p. 27]:

dx
ds

= e1,
de1

ds
= e2,

de2

ds
= κe1. (6.20)

See [19; Sect. 7–3] for further details.

EXAMPLE 6.3. The most complicated example treated in the literature [7], is
the projective geometry of curves in the plane. Here the group is SL(3), acting
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on M = RP2 according to

g : (x, u) 7−→
(
αx+ βu+ γ

ρx+ σu+ τ
,
λx+ µu+ ν

ρx+ σu+ τ

)
,

detA = det

∣∣∣∣∣∣∣∣
α β γ

λ µ ν

ρ σ τ

∣∣∣∣∣∣∣∣ = 1. (6.21)

For simplicity, we deal with curves which can be expressed as the graphs of
functions, u = u(x), although the general case of parametrized curves can be
handled via the same sequence of normalizations. Choose the base point to be
z0 = (0, 0). Solving g · (0, 0) = (x, u) leads to the 0th-order moving frame in
the form?

A =


α β xτ

λ µ uτ

ρ σ τ

 , where α =
1 + τ [β(λ− ρu) + x(µρ− λσ)]

τ(µ− σx)
. (6.22)

The 1-forms in the first-order moving coframe are the entries of the pull-back of
the Maurer–Cartan matrix A−1 dA, which we label (in row order) as η1, . . . , η8,
the final entry being η9 = −η1− η5, reflecting the unimodularity of A. For sim-
plicity, we just indicate the salient features of the computation without dwelling
on the details. (These computations were done with the aid of some MATHEMATICA

routines written for this purpose.) The first normalization comes from the ratio
η3/η6, whose vanishing requires

µ = σ(u− xux)− βux.
Plugging this normalization back into the moving coframe forms and recomput-
ing, we find that we can normalize η6 = η2 by requiring

β = σx− u−1/3
xx .

In the next stage, we set η5 to zero by normalizing

σ =
τ(ρu− λ)u

1/3
xx

ux
− uxuxxx − 3u2

xx

3uxu
4/3
xx

.

At the next step, we can no longer just look at 1-forms depending only on
dx – these do not produce any further invariants. However, we discover that
η8 = Jη2 + η4 and, hence, the rather complicated lifted invariant J can be
normalized to zero, leading to

λ = ρu− uxuxxx − 3u2
xx + ux

√
18ρτu8/3

xx − P4

3τu5/3
xx

,

? In this example, we have chosen to implement the unimodularity constraint explicitly.
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where

P4 = 3uxxuxxxx − 5u2
xxx.

Next, the normalization η2 = −η7 requires

τ = 3

√
L5

54u4
xx

, where L5 = 9u2
xxuxxxxx − 45uxxuxxxuxxxx + 40u3

xxx.

The final normalization

ρ =
M2

6 + P4L
2
5

3 3
√

4u4
xxL

7
5

, where M6 = (uxxDx − 4uxxx)L5

comes from setting η1 to zero. The final moving frame is explicitly given by

α =
λ+ ρ(xux − u)

ux
− 3
ux

3

√
2u5

xx

L5
, β = xµ− u−1/3

xx , γ = xτ,

λ =
uM2

6 + 6uxuxxL5M6 +K4L
2
5

3 3
√

4u4
xxL

7
5

, µ = uσ − ux

u
1/3
xx

, ν = uτ,

ρ =
M2

6 + P4L
2
5

3 3
√

4u4
xxL

7
5

, σ =
M6

3u4/3
xx L5

, τ =
L

1/3
5

3 3
√

2u4
xx

. (6.23)

The corresponding final coframe has

η2 = η6 = −η7 = ds =
3
√
L5

3 3
√

2uxx
dx

= 3

√
9u2

xxuxxxxx − 45uxxuxxxuxxxx + 40u3
xxx

54u3
xx

dx, (6.24)

which determines the well-known projective arc length element, while η4 = η8 =
−κ ds yields the projective curvature invariant

κ =
6uxxL5DxM6 − 7M2

6 − 32uxxxL5M6 − P4L
2
5

3
√

2L8/3
5

. (6.25)

Again, all higher-order differential invariants are found by differentiating the
projective curvature κ with respect to the projective arc length ds. This relatively
straightforward computation reproduces the moving frame and the fundamental
invariants for the projective geometry of curves. Cartan, [7], presents a variety
of alternative methods to arrive at the same basic result. See also [38] for a Lie-
theoretic approach, and Wilczynski [49], for an approach based on differential
operators.
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In the classical moving-frame method, one identifies the columns of the 3×3
moving frame matrix A = (P2,P1,P) as homogeneous coordinates for three
points in the projective plane RP2, the last column P = τ ·(x, u, 1)T representing
the point on the curve. The Maurer–Cartan matrix

A−1 dA =


0 1 0

−κ 0 1

−1 −κ 0

 ds

reduces to the full set of projective Frenet equations,

dP
ds

= P1,
dP1

ds
= −κP + P2,

dP2

ds
= −P− κP1. (6.26)

See also [13; pp. 33ff.] for applications to projective curvature evolutions and
computer vision.

7. Connections with the Classical Moving Frames Method

Our initial identification of a moving frame as an equivariant lift from the under-
lying space to the Lie group will be familiar to readers of the modern formu-
lations of Griffiths [18], and Jensen [23]. However, since this point of view is
not completely standard, it is worth reviewing how it relates to the more usual
geometric approaches, e.g., [19, 50]. Traditionally, a moving frame is realized
as a collection of vectors (or, in the projective case, points) in the underlying
space. The reason that this works in the classical cases, including Euclidean,
affine, and projective geometry of submanifolds, is that it is possible to identify
the components of the group itself with objects in the underlying transforma-
tion space. For example, in the Euclidean case, one identifies a Euclidean group
element (R, a) ∈ E(m) ' O(m) n Rm with a vector a ∈ Rm, together with an
orthonormal frame determined by the columns of the orthogonal matrix R. The
0th-order moving frame, then, uses the lift a = x, where x is a point on the
submanifold N ⊂ Rm, and the orthogonal matrix is identified with an orthonor-
mal frame in the ambient space based at the point. The remaining ambiguity
in the frame is up to orthogonal transformations, which must then be resolved
in an invariant manner. Similarly, in the equi-affine case, one identifies a group
element (A, a) ∈ SA(m) ' SL(m) n Rm with a vector a ∈ Rm together with
a unimodular frame determined by the columns of the matrix A. Again, the
0th-order moving frame takes a = x to be a point on the submanifold, and the
unimodular frame becomes a set of vectors based at the point x. In both cases,
the moving coframe method introduces the Maurer–Cartan forms µ = (σ,ν),
where σ = A−1 dA, ν = A−1 da, leading to the initial structure equations

dx = A · ν, dA = A · σ. (7.1)
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The moving coframe forms satisfy the usual Maurer–Cartan structure equations
(3.2), which, in the classical cases, become the fundamental Cartan structure
equations for Euclidean or affine geometry.

Usually, one bypasses the 0th-order moving frame entirely, and proceeds
directly to the first-order moving frame, in which the frame at the point x ∈ N
is split into two parts, so that (using column vector notation)

A = (E,F ) = (e1, . . . , en, f1, . . . , fm−n), (7.2)

where the first n = dimN frame vectors form a basis for the tangent space TN
to the submanifold, while the remainder are left arbitrary, subject to the entire
frame satisfying the proper orthonormality or unimodularity constraint. Thus, in
the Euclidean case, the vectors {f1, . . . , fm−n} form an orthonormal basis for the
normal space to N , whereas in the equi-affine case they are left arbitrary subject
only to the condition that the determinant of the matrix (7.2) be unity. If we
parametrize the submanifold by x(t1, . . . , tn), then the most general first-order
moving frame (7.2) will have the form

E = (e1, . . . , en) = V ·B, (7.3)

where

V = (v1, . . . , vn), vi =
∂x
∂ti

, (7.4)

is the m×n Jacobian matrix, whose columns span the tangent space to N , while
B is an invertible n×n matrix. (In the Euclidean case, the matrix B is restricted
so that the columns of E are orthonormal, leaving an O(n) ambiguity.)

Let us show how this preliminary normalization to a first-order moving frame
is an immediate consequence of our general normalization procedure. Using the
0th-order moving frame lift, the pull-backs of the subset of Maurer–Cartan forms
given by the entries of ν = A−1 da can be written in matrix form as

ν = A−1 dx = A−1V dt.

Precisely n of the m 1-forms ν are linearly independent and, hence, we can
normalize so that the last m − n of these forms vanish. This requires that the
matrix A satisfy the block matrix equation

A−1V =

(
D

0

)
, (7.5)

where D is a nonsingular n× n matrix, while 0 denotes the zero matrix of size
(m−n)×n. Writing A = (E,F ) in block form (7.2), we see that (7.5) requires

V = E ·D, or E = V · C, where C = D−1,
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thereby recovering (7.3). Thus, we can see that in such cases, the first-order frame
recovered by a 0th-order normalization coincides with the traditional first-order
frame involving tangent and normal directions.

Similar considerations apply to the projective case. According to Cartan [7],
the 0th-order frame can be identified with a set of n + 1 linearly independent
points in the projective space which are identified with the columns of the matrix
A ∈ SL(n+1). The 0th-order lift, as in (6.22), amounts to identifying one of the
columns with the point on the curve x. More precisely, the column is a vector
with n + 1 components, which are interpreted as the homogeneous coordinates
of x.

In more sophisticated versions, one realizes the moving frame on the sub-
manifold N ⊂M as a section of the frame bundle F(M) of M , pulled back to
N , i.e., a section ψ : N → F(M). One can also try to handle cases that do not
so readily fit into this simple framework by reinterpreting them as sections of
a suitable higher-order frame bundle Fk(M) over N , cf. [26]. Although this is
possible for all (regular, transitive) transformation groups, the original geomet-
rical realization has now been obscured, and such a reformulation does not, we
think, offer much insight or help in the explicit implementation of the method.

Consequently, the method of moving coframes includes all the classical con-
structions based on the indicated identification of group elements with geometric
objects on the transformation space. However, once one goes beyond the tradi-
tional cases, such identifications become much less apparent, and, in our opinion,
attempting to mimic the Euclidean, affine, and projective constructions direct-
ly on the transformation space has hindered the development of any significant
extensions of the method. Furthermore, once one steps outside the realm of ‘clas-
sical’ moving frame geometries, one can no longer use the identification of the
first-order frame with tangent and normal directions. Our nontraditional exam-
ples all illustrate this – the first-order frames do not include the tangent spaces
to the submanifolds in any obvious manner, because their naı̈ve identification
with subspaces of Euclidean space is not necessarily invariant with respect to the
given transformation group. It is our view that, in order to attain their full range
of applicability, the constructions must be viewed in the purely group- or, more
generally, bundle-theoretic framework that we have presented here and develop
in detail in Part II.

8. Joint Differential Invariants

New applications in image processing and object recognition [35], have demon-
strated the need for classification and computation of the joint differential invari-
ants or, as they are known in computer vision, semi-differential invariants, for
a given transformation group. Specifically, one is given a Lie group (or pseudo-
group) G acting on M and considers its diagonal action g · (z1, . . . , zk) =
(g · z1, . . . , g · zk) on the k-fold Cartesian product M×k = M × · · · × M .
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The invariants I(z1, . . . , zk) of such a Cartesian product action are known as the
k-point joint invariants of the transformation group. Note that for j < k, any
j-point invariant can be regarded as a k-point invariant, in several different ways.
For example, the two-point invariant I(z1, z2) produces three invariants on M×3,
namely Ĩ(z1, z2, z3) = I(z1, z2) or I(z1, z3) or I(z2, z3). If I is not symmetric
in its arguments, these in turn lead to 3 further invariants by interchanging the
points. To avoid this trivial extension, we will reserve the term k-point invariant
for a joint invariant which cannot be written as as one depending on fewer than
k arguments.

Similarly, the invariants of the prolonged diagonal action of G(n) on a k-fold
Cartesian product of jet space (Jn)×k are the joint differential invariants of k
different submanifolds N1, . . . ,Nk ⊂M , which we view as a single submanifold
N1×· · ·×Nk of the Cartesian product space M×k. In applications, the subman-
ifolds Nj = N are identical, but the joint differential invariants are measured at
k different points along the given submanifold.

The method of moving coframes readily adapts to this slightly more general
situation, and immediately provides complete classifications of joint differential
invariants for all of the standard geometric transformation groups.

EXAMPLE 8.1. Euclidean joint differential invariants. Consider the Euclidean
group E(2) acting on the plane M = R2. We consider two-point differential
invariants, corresponding to the Cartesian product action

(x, y) 7−→ (R · x + a, R · y + a), x, y ∈M, (R, a) ∈ E(2), (8.1)

on M×2 ' R4. Note that the action is intransitive on M×2, with the interpoint
distance

r = |z|, where z = x− y, (8.2)

being the fundamental joint Euclidean invariant. (See [48] for a proof that all
Euclidean joint invariants can be written in terms of the elementary two-point
invariants.) We can choose the cross-section to the orbits given by x0 = 0,
y0 = (r, 0), which leads to the compatible lift with

a = x, (r cosφ, r sinφ) = z = x− y. (8.3)

Therefore, all the group parameters are normalized by the initial compatible lift,
and it only remains to substitute (8.3) into the Euclidean Maurer–Cartan forms
(3.5). The net result is the following system of invariant forms

ζ1 = z · dx, ζ2 = z · dy, ζ3 = r2 dφ = z ∧ dz. (8.4)

Note that the forms (8.4) include the differential of the joint invariant (8.2) since
r dr = ζ1 + ζ2. Therefore, given two parametrized curves

x = x(t), y = y(s), (8.5)

ACAP1309.tex; 19/03/1998; 9:40; v.7; p.38



MOVING COFRAMES: I. A PRACTICAL ALGORITHM 199

the first two 1-forms (8.4) restrict to define two invariant 1-forms

η1 = (z · xt) dt, η2 = (z · ys) ds, (8.6)

while η3 = I1 η1 + I2 η2, where

I1 =
z ∧ xt
z · xt

, I2 =
z ∧ ys
z · ys

, (8.7)

are the two fundamental first-order differential invariants, which, along with
the original joint invariant (8.2), form a complete system of first-order joint
differential invariants. The vector identity

(a · b)2 + (a ∧ b)2 = |a|2|b|2 (8.8)

demonstrates that

J1 =
|xt|

z · xt
=

√
1 + (I1)2

r

is also a joint differential invariant, and hence (in the orientation-preserving case)
one can replace the 1-forms (8.6) by the two Euclidean arc-length forms

ω1 = J1 η1 = |xt| dt, ω2 = J2 η2 = |ys| ds. (8.9)

THEOREM 8.2. Every two-point Euclidean joint differential invariant is a func-
tion of the interpoint distance r = |x− y| and its derivatives with respect to the
two arc length forms (8.9).

For example, to recover the Euclidean curvature κ1 = |xt|−3(xt ∧ xtt) of the
first curve, we differentiate

∂I1

∂η1
=

z ∧ xtt
(z · xt)2 −

(z ∧ xt)[(z · xtt) + |xt|2]

(z · xt)3

=
(z ∧ xtt)(z · xt)− (z ∧ xt)(z · xtt)

(z · xt)3 − I1J
2
1

=
(xt ∧ xtt)|z|2

(z · xt)3 − I1J
2
1 = κ1r

2 − I1J
2
1 ,

where we have used the first of the following equivalent determinantal identities

(a ∧ b)(c · d) + (b ∧ c)(a · d)− (a ∧ c)(b · d) = 0,

(a ∧ b)(c ∧ d) + (b ∧ c)(a ∧ d)− (a ∧ c)(b ∧ d) = 0.
(8.10)
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EXAMPLE 8.3. Equi-affine joint differential invariants. A more substantial ex-
ample is provided by the two-point differential invariants for the special affine
group SA(2) = SL(2) n R2, acting on M = R2. The Cartesian product action

(x, y) 7−→ (Ax + a, Ay + a), x, y ∈M, A ∈ SL(2), a ∈ R2, (8.11)

is transitive on M×2. As in Example 6.2, we use the vector notation A = (αβ) ∈
SL(2), where α ∧ β = 1.

In view of (8.11), we can choose the base point x0 = 0, y0 = (1, 0), noting
that the diagonal ∆ = {x = y} ⊂M×2 is a singular two-dimensional orbit. This
leads to the compatible lift with

a = x, α = z = x− y. (8.12)

Substituting into the Maurer–Cartan forms (6.11), we find that, for a pair of
parametrized curves as in (8.5), the following horizontal forms

(z ∧ xt) dt, (β ∧ xt) dt, (z ∧ ys) ds, (β ∧ ys) ds,

the first two being the pull-backs of ν1, ν2, and the latter being that of ν1 − µ1,
ν2−µ2. Generically (i.e., provided x−y is not parallel to xt) we can normalize the
second form to zero, leading, in view of (8.12) and the unimodularity constraint,
to

β =
xt

z ∧ xt
, (8.13)

which, combined with (8.12) provides the complete moving frame. The remaining
1-forms are

η1 = z ∧ dx = (z ∧ xt) dt, η2 = z ∧ dy = (z ∧ ys) ds, (8.14)

which provide the two fundamental invariant 1-forms, and

η3 = β ∧ dy =

[
xt ∧ ys
z ∧ xt

]
ds, η4 = β ∧ dβ =

[
xt ∧ xtt
(z ∧ xt)2

]
dt.

The resulting linear dependencies provide the two basic differential invariants,
consisting of a single first-order invariant

I =
xt ∧ ys

(z ∧ xt)(z ∧ ys)
(8.15)

and the first of the two second-order invariants

J1 =
xt ∧ xtt
(z ∧ xt)3 , J2 =

ys ∧ yss
(z ∧ ys)3 . (8.16)
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Clearly J2 can be obtained from J1 by the interchange symmetry x↔ y. Alter-
natively, we use (8.10) to compute

∂I

∂η1
− I2 = −(xtt ∧ ys)(z ∧ xt)− (xt ∧ ys)(z ∧ xtt)

(z ∧ xt)3(z ∧ ys)

=
(xtt ∧ xt)(z ∧ ys)
(z ∧ xt)3(z ∧ ys)

= J1,

so that (8.16) are equivalent to the invariant first-order derivatives of the single
basic joint invariant I.

THEOREM 8.4. Every two-point equi-affine joint differential invariant is a func-
tion of the fundamental first order invariant (8.15) and its derivatives with respect
to the two ‘joint arc length’ forms (8.14).

The reader is invited to try to express the ordinary affine curvature in terms of
the derivatives of I. The same method readily extends to multi-point invariants
of more general groups, including the projective group, as well as joint invari-
ants for surfaces and higher-dimensional submanifolds. Additional examples and
applications will appear elsewhere.

9. Pseudo-Group Actions

The next case is that of infinite Lie pseudo-groups, cf. [10, 28, 30, 42, 43].
See also [29, 45], for classical results on differential invariants of Lie pseudo-
groups, and Kumpera [27], for a modern treatment. These are readily fit into
the same general framework as follows. Assume, initially, that the pseudo-group
G acts transitively on the space M . By definition, a Lie pseudo-group consists
of an infinite-dimensional family of invertible (local) transformations that form
the general solution to an involutive system of partial differential equations. We
can always characterize the transformations ψ : M →M in G as the projections
of bundle maps Ψ : B → B, defined on a principal fiber bundle B → M , that
preserve a system of 1-forms ζ = {ζ1, . . . , ζk} defined on B:

Ψ∗ζ = ζ. (9.1)

The forms ζ will play the role of the moving coframe forms for the pseudo-group,
and the fiber coordinates of the bundle B will play the role of the undetermined
group parameters. Of course, in this case ζ does not form a full coframe on
B. (It cannot, because the symmetry group of a coframe is necessarily a finite-
dimensional Lie group [38].) A compatible lift, or moving frame of 0th-order,
is just an arbitrary section ρ0 : M → B. Such a section defines a corresponding
moving frame ρ = ρ0 ◦ ι : X → B on any parametrized submanifold ι : X →M .
With these provisos, the normalization and reduction procedure proceeds as in
the finite-dimensional situation.
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EXAMPLE 9.1. Consider the pseudo-group G consisting of (local) diffeomor-
phisms on M = R2 of the form

x̄ = f(x), ū =
u

f ′(x)
. (9.2)

The Lie algebra of G is generated by vector fields of the form

vh = h(x)∂x − uh′(x)∂u.

This pseudo-group was first introduced by Lie [28; p. 353], [32], in his classifica-
tion of infinite-dimensional pseudo-groups acting on the plane. We are interested
in the action of G on curves which, for simplicity, we assume are graphs of
functions u = u(x).

The first step is to construct a bundle B and 1-forms on the bundle whose
invariance characterizes the pseudo-group transformations. In this case, away the
axis u = 0, the group transformations (9.2) form the general solution to the
defining system of partial differential equations

zu = 0, zx =
u

w
, wu =

w

u
, (9.3)

for x̄ = z(x, u), ū = w(x, u), cf. [46; p. 325]. The system (9.3) defines a subman-
ifold Φ : R ↪→ J1(R2,R2) of the first jet space, parametrized by the coordinates
(x, u, z, w,wx). The pull-backs of the basic contact forms on J1(R2,R2) to the
equation submanifold R are given by

θz = Φ∗(dz − zx dx− zu du) = dz − u

w
dx,

θw = Φ∗(dw − wx dx− wu du) = dw − wx dx− w

u
du.

(9.4)

The Pfaffian system

θz = 0, θw = 0,

with independence condition dx ∧ du 6= 0 is involutive on R, cf. [3, 9, 38].
Indeed, the first Cartan character is s1 = 1, as it should be. Following a general
procedure? presented by Kamran [24], we set dz = dw = 0, which amounts
to pulling back to a level set of R where u = u0 and w = w0 are constant.
Choosing w0 = 1 we find that the contact forms (9.4) reduce to the invariant
1-forms

ζ1 = −u dx, ζ2 = −wx dx− du
u
.

? Interestingly, this method is similar to our construction of the Maurer–Cartan forms in the
finite-dimensional case.
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Therefore, the desired bundle B 'M × R will be coordinatized by x, u, and
the remaining jet coordinate, which we rewrite as α = wx for clarity. In other
words, the 0th-order moving coframe forms for the pseudo-group (9.2) will be

ζ1 = u dx, ζ2 = α dx+
du
u
. (9.5)

Restricting to a curve u = u(x), and letting ηi denote the horizontal component
of ζi, we have the relation

η2 = (uα+ ux) dx = (uα+ ux)η1

and so we normalize α = −ux/u. Thus, the final invariant moving coframe is

ζ1 = u dx, ζ2 =
du− ux dx

u
, (9.6)

the first providing a pseudo-group invariant arc length form, and the latter an
invariant contact form. Note that there are no dependencies among these 1-forms
and, hence, there are no differential invariants in this example. Indeed, it is not
hard to see that the prolonged actions of G are transitive on every jet space JnM ,
justifying the preceding statement.

EXAMPLE 9.2. We now extend the pseudo-group discussed in the previous
example to an intransitive action obtained by augmenting the transformation
rules (9.2) by an additional invariant coordinate y, so that the pseudo-group now
has the form

x̄ = f(x), ȳ = y, ū =
u

f ′(x)
. (9.7)

This pseudo-group was introduced by Lie [31; p. 373], in his study of second-
order partial differential equations integrable by the method of Darboux. In his
paper on group splitting and automorphic systems, Vessiot [46], used (9.7) as one
of two principal examples illustrating his method. More recently, Kumpera [27]
again employed this pseudo-group to illustrate his formalization of the Lie theory
of differential invariants. Now we are interested in the equivalence problem and
differential invariants for surfaces u = u(x, y) under the pseudo-group (9.7). The
Maurer–Cartan forms are given by supplementing (9.5) by an additional coframe
element ζ0 = dy. The linear dependency

η2 = −(uα+ ux) η1 −
uy
u

dy

again produces the normalization α = −ux/u, along with the basic first-order
differential invariant

I =
uy
u
.
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The final invariant moving coframe is

ζ0 = dy, ζ1 = u dx, ζ2 =
du− ux dx

u
. (9.8)

The invariant total differential operators associated with the first two horizontal
forms are

∂

∂ζ0
= Dy,

∂

∂ζ1
=

1
u
Dx. (9.9)

Applying them to the fundamental invariant I produce the second-order differ-
ential invariants

J1 =
uuyy − u2

y

u2 , J2 =
uuxy − uxuy

u3 ,

agreeing with the classical formulae. All higher-order differential invariants are
obtained by successively applying the invariant total derivative operators (9.9)
to the invariant I. Similarly, the classifying surface associated with a generic
surface u(x, y) is parametrized by the four invariants (y, I, J1, J2); two surfaces
are congruent under a pseudo-group transformation if and only if their classifying
surfaces are identical. Surfaces with higher-order? symmetry occur when I is
a function of y only, so that u(x, y) = f(x)g(y) is multiplicatively separable.
Finally, the most general second-order partial differential equation admitting (9.7)
as a symmetry group can be written in the form

H

(
y,
uy
u
,
uuyy − u2

y

u2 ,
uuxy − uxuy

u3

)
= 0. (9.10)

These are the class of equations considered by Lie [31; p. 374].
In his classification of planar second-order partial differential equations which

admit symmetry pseudo-groups, Medolaghi [34] treats the same example, but
rewritten in a slightly different coordinate system. The group transformations
take the form

x̄ = f(x), ȳ = y + f ′(x), ū = u. (9.11)

Applying the same method (or merely changing variables) leads to the invariant
moving coframe

ζ1 = e−y dx, ζ2 =
uy
ux

dx+ dy, ζ3 = du.

The basic differential invariants are

u, I = uy, J1 = uyy, J2 = ey(uyuxy − uxuyy),
? See [15] for more details on higher-order submanifolds, including an interpretation as ‘nonre-

ducible partially invariant solutions’ to partial differential equations, cf. [41].
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the latter two being obtained by applying the invariant differential operators

Dy, ey(Dx − (ux/uy)Dy),

to I. This recovers Medolaghi’s form [34; p. 249],

H
(
u, uy, uyy, e

y(uyuxy − uxuyy)
)

= 0 (9.12)

of Lie’s equation (9.10). The pseudo-group (9.11) is the second of nine different
pseudo-groups acting on a three-dimensional space that are isomorphic to the
diffeomorphism pseudo-group Diff(1), as classified by Medolaghi [34; p. 242].
The other eight pseudo-groups can be handled by the same method, reproducing
the differential invariants and invariant differential equations catalogued there.

EXAMPLE 9.3. Consider the infinite Lie pseudo-group

x̄ = f(x), ȳ = yf ′(x) + g(x), ū = u+
f ′′(x)y + g′(x)

f ′(x)
, (9.13)

acting on the space M ' R3 with coordinates (x, y, u). Here f(x) and g(x) are
arbitrary smooth functions of a single variable x. The case g ≡ 0 corresponds
to the third of Medolaghi’s pseudo-groups [34]; the present generalization was
introduced by J. Pohjanpelto (personal communication). The pseudo-group trans-
formations can be characterized in terms of an involutive system of invariant
1-forms on a rank five bundle B → M , with coordinates (x, y, u, α, β, γ, δ, ε).
These can be found by a similar method to that used in Example 9.1:

ζ1 = −α dx, ζ4 =
dα
α
− γ

α
dx,

ζ2 = −α dy + uα dx, ζ5 =
dβ
α

+
u

α
dγ−δ − uε

α
dx− ε

α
dy,

ζ3 = −du− β dx− γ dy, ζ6 =
dγ
α
− ε

α
dx.

(9.14)

It is easy to check that a local diffeomorphism Ψ : B → B satisfies Ψ∗ζi = ζi,
i = 1, . . . , 6, if and only if it is a bundle map whose projection ψ : M →M has
the form (9.13).

We now consider the equivalence problem for surfaces u = u(x, y) under the
pseudo-group (9.13). In order to invariantly normalize the bundle parameters, we
replace du by its horizontal component ux dx+ uy dy, which leads to the linear
relation

η3 = J1 η1 + J2 η2,

among the horizontal components ηi of ζi. The lifted invariants are

J1 =
ux + β + u(uy + γ)

α
, J2 =

uy + γ

α
.
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Both J1 and J2 can be normalized to zero by choosing β = −ux and γ = −uy ,
which defines the first-order moving frame. Substituting these values in the last
two moving coframe forms yields

η5 = −uxx dx+ uxy dy
α

− u(uxy dx+ uyy dy)

α
− δ − uε

α
dx− ε

α
dy

=
uxx + 2uuxy + u2uyy + δ

α2 η1 −
uxy + uuyy + ε

α2 η2,

η6 = −(uxy + ε) dx+ uyy dy
α

= −uxy + uuyy + ε

α2 η1 +
uyy
α2 η2.

We can normalize the coefficients of η1, η2 in both formulae by choosing

α =
√
uyy, ε = −uxy − uuyy, δ = −uxx − 2uuxy − u2uyy,

which produces the second-order moving frame, given by

α =
√
uyy, β = −ux, γ = −uy,

δ = −uxx − 2uuxy − u2uyy, ε = −uxy − uuyy.

Finally, substituting into the last moving coframe form leads to η4 = −I1η1−I2η2,
where

I1 =
uuyyy + uxyy + 2uyuyy

2u3/2
yy

, I2 =
uyyy

2u3/2
yy

, (9.15)

are the principal differential invariants of the pseudo-group. The fundamental
invariant horizontal 1-forms are

η1 = −√uyy dx, η2 = −√uyy (dy − u dx),

so that the invariant total differential operators are

D1 =
1
√
uyy

(Dx + uDy), D1 =
1
√
uyy

Dy.

As above, these can be applied to the basic differential invariants (9.15) to gen-
erate all higher-order differential invariants.

EXAMPLE 9.4. In this example, we show how the well-known equivalence
problem of characterizing second-order ordinary differential equations under the
pseudo-group of fiber-preserving transformations, cf. [22, 38], can be recast into
the moving frame formulation, and thereby solved by our moving coframe tech-
niques. This example indicates a general procedure for reformulating all Cartan-
type equivalence problems, [11, 16, 38], as moving frame equivalence problems
under a suitable infinite-dimensional Lie pseudo-group.
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We consider the trivial bundle M ' R × R, with coordinates x, u. Let G
denote the pseudo-group of fiber-preserving transformations, i.e., bundle maps

x̄ = ϕ(x), ū = ψ(x, u). (9.16)

We let G(2) denote the associated second prolongation acting on J2, cf. [38]. A
(regular) second-order differential equation

∆(x, u, ux, uxx) = 0 (9.17)

can be identified with a hypersurface S∆ ⊂ J2. Two such second-order ordinary
differential equations are equivalent if and only if their associated surfaces are
mapped to each other,

g(2)(S∆̄) = S∆, (9.18)

by a prolonged fiber-preserving transformation g(2) ∈ G(2).
In order to use the method of moving frames we need the structure equations of

the pseudo-group G(2). These can be found by the Cartan prolongation algorithm,
[11, 16, 38], leading to

dζ1 = ω1 ∧ ζ1,

dζ2 = ω2 ∧ ζ2 − ζ3 ∧ ζ1,

dζ3 = (ω2 − ω1) ∧ ζ3 + ω3 ∧ ζ2 − ζ4 ∧ ζ1,

dζ4 = (ω2 − 2ω1) ∧ ζ4 + ω4 ∧ ζ1 + ω5 ∧ ζ2 + ω6 ∧ ζ3,

dω1 = (ω6 − 2ω3) ∧ ζ1,

dω2 = −π2 ∧ ζ2 − ω3 ∧ ζ1,

dω3 = −π1 ∧ ζ2 − π2 ∧ ζ3 + ω3 ∧ ω1 − ω5 ∧ ζ1,

dω4 = −π3 ∧ ζ1 − π4 ∧ ζ3 − π5 ∧ ζ2 − 3ω1 ∧ ω4−
− ω4 ∧ ω2 + 3(ω3 − ω6) ∧ ζ4,

dω5 = −2π1 ∧ ζ3 − π2 ∧ ζ4 − π5 ∧ ζ1 − π6 ∧ ζ2 + 2ω5 ∧ ω1 − ω3 ∧ ω6,

dω6 = −2π1 ∧ ζ2 − 2π2 ∧ ζ3 − π4 ∧ ζ1 − ω1 ∧ ω6 + ω5 ∧ ζ1.

The Cartan characters are s1 = 5 and s2 = 1, the kernel dimension is 7, hence
this differential system is involutive. The parametric values of the 1-forms ζ, ω,
are determined by introducing the group transformation matrix

S =


α1 0 0 0

0 α2 0 0

0 α3α2α
−1
1 α2α

−1
1 0

α4α2α
−2
1 α5α2α

−2
1 α6α2α

−2
1 α2α

−2
1

 , (9.19)

where αi, βi are the fiber coordinates on the prolonged bundle. Equation (9.19)
parametrizes the structure group corresponding to the action of the fiber-preserving
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pseudo-group on J2; see, for instance, [38; p. 398] for the corresponding group
on J1. The first set of lifted forms are

ζ1

ζ2

ζ3

ζ4

 =


α1 0 0 0

0 α2 0 0

0 α3α2α
−1
1 α2α

−1
1 0

α4α2α
−2
1 α5α2α

−2
1 α6α2α

−2
1 α2α1

−2




dx

du− ux dx

dux − uxx dx

duxx

 .

Furthermore,
ω1 0 0 0

0 ω2 0 0

0 ω3 ω2 − ω1 0

ω6 ω5 ω4 ω2 − 2ω1

 = S−1 dS + Ω,

where Ω represents the absorbed torsion terms. The explicit formulas are

ω1 =
dα1

α1
+
α6 − 2α3

α2
ζ1,

ω2 =
dα2

α2
+
α3

α1
ζ1 − β2ζ2,

ω3 =
dα3

α2
+
α3α6 − α5 − α2

3

α2
1

ζ1 − β1ζ2 − β2ζ3,

ω4 =
α2

α3
1

dα4 − β3ζ1 +
α6α5 + α3α5 − α3α

2
6 − α2

2β5

α2
2

ζ2 +

+
α2

6 − α5 − β4α
2
1

α2
1

ζ3 + 3
α3 − α6

α1
ζ4,

ω5 =
dα5

α2
1
− α3

α2
1

dα4 + β6ζ2 − 2β1ζ3 − β2ζ4 − β5ω1,

ω6 =
dα6

α1
− β4ζ1 − 2β1ζ2 − 2β2ζ3.

We now assume, for simplicity, that the second-order ordinary differential
equation (9.17) is given by the graph of a section σ : J1 → J2; this is equivalent
to assuming that the equation is normal, and solved

uxx = Q(x, u, ux), (9.20)
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for its highest-order derivative. (However, the moving frame method could be
applied without this assumption; doing the corresponding problem for nonnor-
mal equations using the Cartan equivalence approach would be harder.) Pulling
back the Maurer–Cartan forms under the map σ amounts to substituting for uxx
according to (9.20) wherever it occurs. We denote the pull-back of ζi by ηi and of
ωi by $i. To apply the moving frame method, we look for dependencies among
the resulting 1-forms. The first of these is

η4 = J1η1 + J2η2 + J3η3,

where

J1 =
α2

α3
1

(
α4 +

dQ
dx

)
,

J2 =
1
α2

1

(
α5 − α6α3 +

∂Q

∂u
− α3

∂Q

∂ux

)
, (9.21)

J3 =
1
α1

(
α6 +

∂Q

∂ux

)
.

Here

dQ
dx

=
∂Q

∂x
+ ux

∂Q

∂u
+Q

∂Q

∂ux

denotes the total derivative of Q, restricted to the equation manifold (9.20). The
lifted invariants (9.21) can all be translated to zero by choosing

α4 = −dQ
dx
, α5 = −∂Q

∂u
, α6 = − ∂Q

∂ux
.

We then pull-back the forms ω5, ω6, leading to

$5 ≡ −
(

2β1 +
1

α1α2
Quux −

α3

α2
2
Quxux

)
η3,

$6 ≡ −
(

2β2 +
Quxux
α2

)
η3,

mod{η1, η2}.

Translating the coefficients of η3 to zero in $5 and $6 gives

β1 = − 1
2α1α2

Quux +
α3

2α2
2
Quxux , β2 = − 1

2α2
Quxux,

which then leads to the pulled-back forms

$1 =
dα1

α1
−
(
Qux + 2α3

α1

)
η1,
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$2 =
dα2

α2
− α3

α1
η1 +

(
1

2α2
Quxux

)
η2,

$3 =
dα3

α1
+

(
Qu − α2

3 − α3Qux
α2

1

)
η1 +

+
1

2α1α2

(
Quux − α3Quxux

)
η2 +

(
1

2α2
Quxux

)
η3.

At this stage, we have reproduced the system of 1-forms obtained via the Cartan
equivalence method in [22; p. 394]. Further discussion of this example can be
found in this reference.

10. Conclusions

In this paper we have described a systematic procedure for determining moving
frames and invariant differential forms for very general Lie group and Lie pseudo-
group actions. The moving frame and moving coframe can be used to directly
determine a complete system of fundamental differential invariants and invariant
differential operators for the given transformation group. These, in turn, have
immediate applications, including the solution to equivalence problems, classifi-
cation of symmetry groups, rigidity theorems, construction of invariant equations
and variational principles, and so on. As we have demonstrated, the method not
only readily reproduces all of the standard examples of moving frames known in
the literature, but is also in a form that can immediately be applied to a host of
new and interesting group actions, including intransitive and ineffective actions,
infinite-dimensional Lie pseudo-groups, joint actions, and so on. The theoretical
foundations of our method will be presented in the second paper in this series,
[15]. Additional applications – to differential invariants, to the theory of Lie
pseudo-groups, to automorphic systems, and to computer vision – will be the
subject of subsequent papers in this series. Some extensions that we intend to
investigate include:

(1) The moving coframe method, as described in this paper, parallels the explicit
‘parametric’ approach to the solution of Cartan equivalence problems. Gard-
ner [16], showed how, in such situations, one could perform an ‘intrinsic’
computation, based on the infinitesimal group action on the torsion coef-
ficients, and thereby determine the general structure of the solution. An
interesting question is whether one can implement an intrinsic version of the
moving coframe algorithm.

(2) In [25], an inductive approach to complicated equivalence problems, based
on the solution to a simpler problem based on a subgroup of the full struc-
ture group, was proposed; see also [38]. In his thesis, Lisle [33] successfully
uses a similar idea in his ‘frame method’ for symmetry classification of
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partial differential equations. The inductive approach not only simplifies the
computations, but also provides direct correspondences between the invari-
ants of the two problems. Is there a similar inductive version of the moving
coframe method? For example, does the computation of the moving frame
for curves in the plane under, say, the equi-affine group help simplify the
corresponding projective computation, thereby expressing the projective arc
length and curvature directly in terms of its equiaffine counterparts?

(3) In [5], a new scheme for generating invariant numerical approximations to
differential invariants based on the use of joint invariants was proposed, and
illustrated in the planar Euclidean and equi-affine cases. The computation of
joint differential invariants using the moving coframe method strongly indi-
cates that it could be applied to the general problem of invariant numerical
formulae for more complicated transformation groups. In particular, deter-
mining how joint invariants converge to differential invariants as the points
coalesce would be of great importance.

(4) An immediate and important application of the moving method would be to
the classification of the differential invariants associated many of the trans-
formation groups arising in physics. As remarked above, to date such clas-
sifications have not been completed, even for some of the most fundamental
groups of physical importance.
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Abstract. The primary goal of this paper is to provide a rigorous theoretical justification of Car-
tan’s method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds.
The general theorems are based a new regularized version of the moving frame algorithm, which
is of both theoretical and practical use. Applications include a new approach to the construction and
classification of differential invariants and invariant differential operators on jet bundles, as well as
equivalence, symmetry, and rigidity theorems for submanifolds under general transformation groups.
The method also leads to complete classifications of generating systems of differential invariants,
explicit commutation formulae for the associated invariant differential operators, and a general clas-
sification theorem for syzygies of the higher order differentiated differential invariants. A variety
of illustrative examples demonstrate how the method can be directly applied to practical problems
arising in geometry, invariant theory, and differential equations.

Mathematics Subject Classifications (1991):53A55, 58D19, 58H05, 68U10.

Key words: moving frame, Lie group, jet bundle, prolongation, differential invariant, equivalence,
symmetry, rigidity, syzygy.

1. Introduction

This paper is the second in a series devoted to the analysis and applications of the
method of moving frames and its generalizations. In the first paper [9], we intro-
duced the method of moving coframes, which can be used to practically compute
moving frames and differential invariants, and is applicable to finite-dimensional
Lie transformation groups as well as infinite-dimensional pseudo-group actions.
In this paper, we introduce a second method, called regularization, that not only
provides, in a simple manner, the theoretical justification for the method of moving
frames in the case of finite-dimensional Lie group actions, but also gives an alterna-
tive, practical approach to their construction. The regularized method successfully
bypasses many of the complications inherent in traditional approaches by com-
pletely avoiding the usual process of normalization during the general computation.
In this way, the issues of branching and regularity do not arise. Once a moving
? Supported in part by an NSERC Postdoctoral Fellowship.
?? Supported in part by NSF Grant DMS 95-00931.
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frame and coframe, along with the complete system of invariants, are constructed
in the regularized framework, one can easily restrict these invariants to particular
classes of submanifolds, producing (in nonsingular cases) the standard moving
frame. Perhaps Griffiths is the closest in spirit to our guiding philosophy; we fully
agree with his statement [12, p. 777], that ‘The effective use of frames. . . goes far
beyond the notion that ‘frames are essentially the same as studying connections in
the principal bundle of the tangent bundle’.’ Indeed, by de-emphasizing the group
theoretical basis for the method, which, in the past, has hindered the theoretical
foundations from covering all the situations to which the practical algorithm could
be applied, our formulation of the framework goes beyond what Griffiths envi-
sioned, and successfully realizes Cartan’s original vision [5, 7]. The regularized
method can be readily used to compute all classical, known examples of moving
frames, as well as a vast array of other, nontraditional Lie group actions. Indeed,
the method is not restricted to transitive group actions on homogeneous spaces,
although these form an important subclass of transformation groups that can be
handled by our general procedure.

In general, given a finite-dimensional Lie groupG acting on a manifoldM,
a moving frame (of order zero) is defined as aG-equivariant mapρ: M → G.
Moving frames on submanifoldsN ⊂ M are then obtained by restriction. This
general definition appears in Griffiths [12], Green [11], and Jensen [14], and can
be readily reconciled with classical geometrical constructions [9]. It is not hard
to see that an order zero moving frame can only exist when the group action
is free and regular. Consequently, the first part of this paper will be devoted to
developing the theory of moving frames in the simple context of free group actions
on manifolds. We show how a moving frame and a complete system of invariants
can be constructed via the process of normalization. Normalization amounts to
choosing a cross-sectionK ⊂ M to the group orbits, and computing the group
elementg = ρ(z) which maps a pointz ∈ M in the manifold to the chosen
cross-section, sog · z ∈ K. The resulting mapρ: z 7→ g from the manifold to
the group is the moving frame. With this data in hand, the group action can be
characterized as the local diffeomorphisms which preserve a system of invariant
functions and one-forms that are prescribed by the choice of cross-section and the
pull-back of the Maurer–Cartan forms on the group via the moving frame. By re-
stricting the invariant functions and one-forms to a submanifold, the solution to the
basic congruence and symmetry problems follow directly from Cartan’s solution
to the general equivalence problem for coframes [8, 18]. That is, the invariants
and the derived invariants of a submanifold serve to parameterize a classifying
manifold that uniquely characterizes the equivalence class and symmetries of the
submanifold under the action of the group.

If the prescribed group action is not free onM, then an order zero moving
frame cannot be determined. The strategy then is to prolong the group action to
the jet bundles Jn = Jn(M,p) of n-jets of p-dimensional submanifolds of the
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underlying manifoldM. Assuming that the groupG acts effectively on subsets?

then the prolonged transformation group will act locally freely on an open subset
of Jn for n sufficiently large and, hence, one can use the moving frame construction
described in the previous paragraph to determine a moving frame of ordern for
regular submanifolds. In general, the invariants and derived invariants associated
with such a moving frame can be identified with a complete system ofnth order
differential invariants for the transformation group. Thus, the congruence and sym-
metry theorems for regular submanifolds are easily restated in terms of differential
invariants and their associated classifying manifold. Moreover, our methods have
the widest range of generality possible; by using sufficiently high order jets, we
are able to establish moving frames for all submanifolds except those which are
‘totally singular’. The latter can be geometrically characterized as submanifolds
whose isotropy subgroup does not act freely thereon, and hence cannot be endowed
with fully determined moving frames. For example, in equi-affine geometry, the
straight lines are totally singular, and do not possess equi-affine moving frames. In
this manner, the regularized procedure also sheds light on a comment of Weyl [27,
p. 600], on the desirability of investigating ‘special classes of manifolds by impos-
ing conditions on the invariants’, using the example of minimal curves in Euclidean
geometry where the usual normalization procedure breaks down. A related idea
of I. Anderson (personal communication) involves the regularization of differ-
ential invariants for transformation groups by introducing additional parametric
coordinates in order to avoid ‘phantom’ singularities in jet space. The regularized
moving frame method provides a general construction that allows one to rigorously
implement the ideas of Weyl and Anderson in practical situations.

A key idea that underlies our theory of regularization is to replace any com-
plicated group action on a manifold by a ‘lifted action’ of the group on the trivial
principal bundlesB(n) = G × Jn over the original manifold and its associated jet
spaces. Once the action of the group is free on a particular jet space, the moving
frame map is nothing but an equivariant section of the principal bundleB(n) un-
der the lifted action. The equivariant section so obtained allows one to pull back
invariant objects on the principal bundle to the base. Fortunately, all the invariant
objects on the principal bundle are trivial to construct, and so the particularities
of the construction are all embodied in the chosen moving frame section, and can
thereby be systematically analyzed.

The regularization approach to moving frames provides new, effective tools for
understanding the geometry of submanifolds and their jets under a transformation
group. Applications include a new and more general proof of the fundamental the-
orem on classification of differential invariants, a general classification theorem for
syzygies of differential invariants, as well as new explicit commutation formulae
for the associated invariant differential operators. We demonstrate a simple but
striking generalization of a ‘replacement theorem’ due to T. Y. Thomas [24]. Two

? This condition is very mild. See Section 2 for the precise definition, and a demonstration that it
always holds, without loss of generality, in the analytic category.
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types of general rigidity theorems, uniquely characterizing congruent submanifolds
by finite order jets, are proved, thereby extending known results for submanifolds
of homogeneous spaces. We also give a new basis for Ovsiannikov’s theory of par-
tially invariant solutions of partial differential equations [22]. All of our theoretical
results are provided in a form that can be applied to practical examples, which we
illustrate with several explicit examples of independent interest in Section 5. This
wide range of both theoretical and practical applications clearly demonstrates the
power of our approach to the general theory of moving frames.

2. Lie Transformation Groups

Let us begin by collecting some basic terminology associated with finite-dimen-
sional transformation groups. See [18] for details. Throughout this paper,G will
denote anr-dimensional Lie group acting smoothly on anm-dimensional mani-
fold M.

DEFINITION 2.1. Theisotropy subgroupof a subsetS ⊂ M is

GS = {g ∈ G | g · S = S}. (2.1)

Theglobal isotropy subgroupis the subgroup

G∗S =
⋂
x∈S
Gx = {g ∈ G | g · s = s for all s ∈ S}

consisting of those group elements which fixall points inS.

DEFINITION 2.2. The groupG acts

(i) freely if Gz = {e} for all z ∈ M,
(ii) locally freelyif Gz is a discrete subgroup ofG for all z ∈ M,

(iii) effectivelyif G∗M = {e},
(iv) effectively on subsetsif G∗U = {e} for every openU ⊂ M,
(v) locally effectivelyif G∗M is a discrete subgroup ofG,

(vi) locally effectively on subsetsif G∗U is a discrete subgroup ofG for every open
U ⊂ M.

If the groupG does not act effectively, one can, without any loss of generality,
replaceG by the effectively acting quotient groupG/G∗M , which acts in essentially
the same manner asG does, cf. [18]. Clearly, ifG acts effectively on subsets, then
G acts effectively. Analytic continuation demonstrates that the converse is true in
the analytic category. However, it does not hold for more general smooth actions
as the following elementary example shows.

EXAMPLE 2.3. Leth(x) be anyC∞ function such thath(x) > 0 for x > 0, but
h(x) = 0 for x 6 0. LetG ' R2 be the two-parameter Abelian transformation
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group acting onM = R2 via (x, u) 7→ (x, u+ah(x)+bh(−x)), where(a, b) ∈ G
and(x, u) ∈ M. ThenG acts effectively onM, but not effectively on any open
subset that is contained in either the right or left half plane.

Since they do not arise in usual applications, we will not attempt to analyze
pathological smooth actions which are effective but not subset effective. Thus we
shall, without significant loss of generality, only consider transformation groups
that act effectively on subsets.

DEFINITION 2.4. A groupG actssemi-regularlyonM if all its orbits have the
same dimension. A semi-regular group action isregular if, in addition, each point
x ∈ M has arbitrarily small neighborhoods whose intersection with each orbit is a
connected subset thereof.

PROPOSITION 2.5. An r-dimensional Lie groupG acts locally freely onM if
and only if its orbits all have dimensionr.

DEFINITION 2.6. SupposeG acts semi-regularly on them-dimensional manifold
M with s-dimensional orbits. A (local)cross-sectionis a (m − s)-dimensional
submanifoldK ⊂ M such thatK intersects each orbit transversally. The cross-
section isregular if K intersects each orbit at most once.

If G acts semi-regularly, then the Implicit Function Theorem guarantees the
existence of local cross-sections at any point ofM. Regular actions admit regular
local cross-sections.

EXAMPLE 2.7. The following simple construction, based on the Frobenius The-
orem, cf. [18], is of fundamental importance for the theoretical justification of the
method of moving frames. SupposeG acts freely and regularly onM. Then we can
introduceflat local coordinates

z = (x, y) = (x1, . . . , xr , y1, . . . , ym−r ), x ∈ G, y ∈ Y, (2.2)

that locally identifyM with a subset of the Cartesian productG × Y , with Y '
Rm−r , and such that the action ofG reduces to the trivial left actiong · z = (g ·
x, y). They coordinates provide a complete system of functionally independent
invariants for the group action. In these coordinates, a general cross-section is given
by the graphK = {(a(y), y)} of a smooth mapa: Y → G. When we use flat
coordinates, we shall always assume, without loss of generality, that the identity
cross-section{e} × Y , i.e., whena(y) ≡ e, belongs to the flat coordinate chart.

Remark.In practice, of course, the determination of the flat coordinates for a
given transformation group action may be extremely difficult. A significant achieve-
ment of the method of moving frames is that it allows one to compute invariants
without having to find the flat coordinates, or integrate any differential equations.
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Throughout this paper, we shall letg denote theright Lie algebra ofG con-
sisting of right-invariant vector fields onG. The mapψ : v 7→ v̂ that associates a
Lie algebra elementv ∈ g to the corresponding infinitesimal generatorv̂ = ψ(v)
of the associated one-parameter subgroup forms a Lie algebra homeomorphism
from g to the space of vector fields onM. The kernel ofψ coincides with the Lie
algebra of the global isotropy subgroupG∗M , thereby identifying the Lie algebra of
infinitesimal generatorŝg = ψ(g) with the quotient Lie algebra of the effectively
acting quotient groupG/G∗M . In particular,G acts locally effectively if and only if
kerψ = {0}.

3. Regularization

Our approach to the theory of moving frames is based on the following sim-
ple but remarkably powerful device. In general, any complicated transformation
group action can be ‘regularized’ by lifting it to a suitable bundle sitting over
the original manifold. The construction is reminiscent of the regularization pro-
cedure based on universal bundles used to compute equivariant cohomology, cf.
[3, 13, §4.11], although our method is considerably simpler in that we only require
finite-dimensional bundles.

Let G be a smooth transformation group acting on a manifoldM. Let B =
G×M denote the trivial left? principalG bundle overM.

DEFINITION 3.1. Theleft regularizationof the action ofG onM is the diagonal
action ofG onB = G×M provided by the maps

L̂g(h, z) = L̂(g, (h, z)) = (g · h, g · z), g ∈ G, (h, z) ∈ B. (3.1)

Theright regularizationof G is given by

R̂g(h, z) = R̂(g, (h, z)) = (h · g−1, g · z), g ∈ G, (h, z) ∈ B. (3.2)

We will also refer to the regularized actions (3.1), (3.2), as the left or right
lifted action of G since either projects back to the given action onM via theG
equivariant projectionπM : B →M. In the sequel, the left (respectively right) reg-
ularization of a group action will lead to left (right) moving frames associated with
submanifolds ofM. The key, elementary result is that regularizing any group action
immediately eliminates all singularities and irregularities, e.g., lower dimensional
orbits, nonembedded orbits, etc. Moreover, the orbits ofG inM are the projections
of their lifted counterparts inB; all of the lifted orbits have the same dimension as
G itself.

THEOREM 3.2. The right and left regularizations of any transformation groupG
define regular, free actions on the bundleB = G×M.
? Modern treatments of principal bundles, e.g., [13, 23], tend to concentrate on right principal

bundles. However, we find the left version more convenient for our purposes.
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Thus, lifting the action ofG onM to the bundleB has the effect of completely
eliminating any irregularities appearing in the original action.

DEFINITION 3.3. A lifted invariant is a (locally defined) smooth functionL:
B → N which is invariant with respect to the (either left or right) lifted action of
G onB.

Both regularized actions admit a complete system of globally defined, function-
ally independent lifted invariants.

DEFINITION 3.4. The fundamental right lifted invariantis the multiplication
functionw: B →M given by

w = g · z. (3.3)

Thefundamental left lifted invariantis the functionw̃: B →M given by

w̃ = g−1 · z. (3.4)

From the point of view of invariants and moving frames, right regularization
is the simpler of the two because its fundamental invariant does not require the
computation of the inverse transformationg−1. On the other hand, in the literature,
most examples are constructed using the left regularization. Moreover, the final
formulae for the moving frame are typically simpler if the left regularization is
used. However, the theoretical and practical aspects of our regularized moving
frame method underline the primacy of the right version. Therefore, from now on,
the terms ‘regularization’ or ‘lift’ without qualification will always mean theright
versions of these objects. All results will automatically have a left counterpart,
typically found by applying the group inversiong 7→ g−1.

PROPOSITION 3.5.The fundamental lifted invariantw = g · z is invariant with
respect to the regularized action(3.2) of G on B. Moreover, givenz ∈ M, the
corresponding level setw−1{z} coincides with the orbit ofG through the point
(z, e) ∈ B.

If we introduce local coordinates onM, then the components ofw form a
complete system ofm = dimM functionally independent invariants onB.

PROPOSITION 3.6.Any lifted invariantL: B → N can be locally written as a
function of the fundamental lifted invariants,L(g, z) = F [w(g, z)], so thatL =
F ◦ w for someF : M → N .

In particular, ifF(z) is any function onM, then we can produce a lifted invariant
F ◦w onB by replacingz byw = g·z in the formula forF . The ordinary invariants
I : M → N of the group action are particular cases of lifted invariants, where we
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identify I with its compositionI ◦ πM with the standard projection. Therefore,
Proposition 3.6 indicates that ordinary invariants are particular functional combina-
tions of lifted invariants that happen to be independent of the group parameters. For
such functions, a simple but striking ‘replacement theorem’ provides an explicit
formula expressing an ordinary invariant in terms of the lifted invariants.

THEOREM 3.7. If I (z) = F(w(g, z)) = F(g · z) is an ordinary invariant, then
F(z) = I (z).

Proof. In other words, replacingz byw in the formula for the invariant does not
change its value, i.e.,I (z) = I (w). To prove this result, we use the invariance ofI

and the fact that at the identityg = e, the lifted invariant reduces tow = z. 2

EXAMPLE 3.8. LetG = SO(2) be the rotation group acting onM = R2 via

(x, u) 7−→ (x cosθ − u sinθ, x sinθ + u cosθ). (3.5)

The (right) regularized action on the cylinderB = SO(2) × R2 is given by sup-
plementing the planar transformation rules (3.5) with the group lawφ 7→ (φ −
θ)mod 2π . Note that the action onB is regular, so we have effectively replaced
the singular orbit at the origin by a regular orbit{(0,0)} × SO(2) ⊂ B. There are
two fundamental right lifted invariants:

y = x cosφ − u sinφ, v = x sinφ + u cosφ. (3.6)

Note that

r2 = y2+ v2 = x2+ u2

is an invariant for the lifted action which reduces to the ordinary radial invariant
for the action back onM. The fact thatr has the same formula in terms ofx, u as
it does iny, v is a simple manifestation of the general Replacement Theorem 3.7.

A differential formω on the principal bundleB = G×M is (right)G-invariant
if it satisfies (R̂g)∗ω = ω for every g ∈ G. Of particular importance are the
(pulled-back) Maurer–Cartan forms associated with the Lie groupG. We introduce
a basis{v1, . . . , vr } for the (right) Lie algebrag ofG. The corresponding dual basis
µ = {µ1, . . . , µr} for the right-invariant differential forms onG are known as the
Maurer–Cartan forms. We shall also useµ to denote the corresponding Maurer–
Cartan one-forms onB, namely the pull-backs(πG)∗µ of the forms onG under the
standard projectionπG: B → G. The Maurer–Cartan formsµ on B are invariant
under the right regularized action ofG.

SinceB = G×M is a Cartesian product, its differential d naturally splits into
a group and manifold components: d= dG + dM . Moreover, since the regularized
action (3.2) is a Cartesian product action, the splitting isG-invariant.

PROPOSITION 3.9. If ω is anyG-invariant differential form onB, then both
dMω and dGω are invariant forms. In particular, ifL is any lifted invariant, then
dML anddGL are invariant one-forms onB.

ACAP1384.tex; 9/02/1999; 8:05; p.8



MOVING COFRAMES: II. REGULARIZATION AND THEORETICAL FOUNDATIONS 135

In particular, the differential dw of the fundamental lifted invariantw = g · z
will split into two sets of invariant one-forms onB, namely dMw = g · dz and
the group component dGw. The notationg · dz is meant suggestively; in terms of
local coordinates(z1, . . . , zm) onM, the components ofg · dz are the pull-backs
g∗dzi of the coordinate differentials via the group transformationg. There is a
beautiful explicit formula that expresses group components dGw as invariant linear
combinations of the Maurer–Cartan formsµ onB.

THEOREM 3.10. LetG act onM. Let{v1, . . . , vr } be a basis for the Lie algebra
g, and let

v̂κ =
m∑
i=1

f iκ (z)
∂

∂zi
, κ = 1, . . . , r, (3.7)

be the corresponding infinitesimal generators onM, written in local coordinates
z = (z1, . . . , zm). Letµ = {µ1, . . . , µr } be the dual Maurer–Cartan forms, pulled
back toB. Letw = (w1, . . . , wm) be the components of the the fundamental lifted
invariant w = g · z, expressed in the same local coordinates. Then the group
differential of the components ofw are given by

dGw
i =

r∑
κ=1

f iκ (w) µ
κ, i = 1, . . . ,m. (3.8)

In other words, the coefficients of the Maurer–Cartan forms in(3.8) are the lifted
invariant counterparts of the coefficients of the infinitesimal generators(3.7), ob-
tained by replacingz by the lifted invariantw.

Proof. Let v ∈ g correspond to the infinitesimal generatorv̂ onM. For sim-
plicity, we use the same notation for the corresponding vertical and horizontal
vector fields onB, which generate the actions? (h, z) 7→ (exp(tv) · h, z) and
(h, z) 7→ (h,exp(t v̂) · z) respectively. (The infinitesimal generators of the left
regularization (3.1), then, are the sumsv+ v̂ of these vector fields.) We then notice
that

v(w) = d

dt

[(
exp(tv) · g) · z]∣∣

t=0 =
d

dt

[
exp(t v̂) · w]∣∣

t=0.

The latter expression is equal to the value of the vector fieldv̂ at the pointw = g ·z;
therefore, in local coordinates,

vκ (wi) = f iκ (w), i = 1, . . . ,m, κ = 1, . . . , r.

On the other hand, duality?? of the Maurer–Cartan forms implies that

dGw
i =

r∑
κ=1

vκ (wi) µκ =
r∑
κ=1

f iκ (w) µ
κ,

completing the proof. 2

? Recall that the right-invariant vector fields generate the left action ofG on itself.
?? See Example 5.13 below for details.
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Remark.Theorem 3.10 justifies the method for computing Maurer–Cartan forms
directly from the group transformations introduced in Part I [9].

EXAMPLE 3.11. Return to the rotation group acting onM = R2 as in (3.5).
Applying dM and dG to the lifted invariants (3.6) will produce four lifted invariant
one-forms onB. The manifold components are

dMy = (cosφ)dx − (sinφ)du, dMv = (sinφ)dx + (cosφ)du.

On the other hand, the group components can be written as invariant multiples of
the Maurer–Cartan formµ = dφ, namely

dGy = −(x sinφ + u cosφ)dφ = −v dφ,

dGv = (x cosφ − u sinφ)dφ = y dφ.

Equation (3.8) implies that the coefficients(−v, y) can be computed directly as
the invariant counterparts of the coefficients(−u, x) of the infinitesimal generator
v̂ = −u∂x + x∂u.

Remark.A lifted invariantL(g, z) = F(w) is independent of all group para-
meters and, hence, reduces to an ordinary invariant as in Theorem 3.7 if and only
if dGL = 0. In view of (3.8), the equation dGL(g, z) = dGF(w) = 0 is equivalent
to the usual Lie infinitesimal invariance conditionsvκ (F (z)) = 0, κ = 1, . . . , r,
rewritten in terms ofw instead ofz.

4. Moving Frames

Let us now define moving frames in the context of a Lie group acting on a manifold.
The justification for this definition appears in Part I [9], and is based on the earlier
work of Green [11], Griffiths [12], and Jensen [14].

DEFINITION 4.1. Given a transformation groupG acting on a manifoldM, a
moving frameis a smoothG-equivariant map

ρ : M −→ G. (4.1)

In (4.1), we can use either the right or the left action ofG on itself, and thus
speak of right and left moving frames. As in the usual method of moving frames, we
shall only be interested in their local existence and construction. Thus, we can relax
our condition and only require localG-equivariance of the moving frame map,
i.e., for group elements near the identity. There is an elementary correspondence
between right and left moving frames.

LEMMA 4.2. If ρ̃(z) is a left moving frame onM, thenρ(z) = ρ̃(z)−1 is a right
moving frame.
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EXAMPLE 4.3. An important example is whenG is a Lie group acting on itself,
soM = G, by left multiplicationh 7→ g · h. If a ∈ G is any fixed element,
then the map̃ρ(g) = g · a clearly defines a (left) moving frame. Moreover, every
(left) moving frame necessarily has this form, witha = ρ̃(e). Similarly, every right
moving frame is provided by a mapρ(g) = a · g−1 for some fixeda ∈ G.

Not every group action admits a moving frame. The key condition is that the
action be both free and regular.

THEOREM 4.4. If G acts onM, then a moving frame exists in a neighborhood of
a pointz ∈ M if and only ifG acts freely and regularly nearz.

Proof.To see the necessity of freeness, supposez ∈ M, and letg ∈ Gz belong
to its isotropy subgroup. Let̃ρ : M → G be a left moving frame. Then, by left
equivariance of̃ρ,

ρ̃(z) = ρ̃(g · z) = g · ρ̃(z).
Thereforeg = e and, hence,Gz = {e} for all z ∈ M. To prove regularity, suppose
thatz ∈ M and that there exist pointszκ = gκ · z belonging to the orbit ofz such
thatzκ → z asκ →∞. Thus, by continuity,

ρ̃(zκ) = ρ̃(gκ · z) = gκ · ρ̃(z) −→ ρ̃(z) asκ →∞,
which implies thatgκ → e in G. This suffices to ensure regularity of the orbit
throughz.

To prove sufficiency, we use the flat local coordinatesz = (x, y) ∈ G × Y
introduced in Example 2.2. A general local cross-sectionK ⊂ M is given by a
graphx = a(y). Then the map

ρ̃(x, y) = x · a(y) (4.2)

is clearlyG-equivariant under left multiplication onG and, hence, defines a left
moving frame. Moreover, every left moving frame has this form, provided we
define the cross-section viaa(y) = ρ̃(e, y). 2

Remark.If G acts only semi-regularly and/or locally freely?, then the preceding
proof can be easily adapted to find a locallyG-equivariant moving frame.

THEOREM 4.5. If ρ(z) is a right moving frame, then the components of the map
I : M →M defined byI (z) = ρ(z) · z provide a complete system of invariants for
the group.

Proof.Using our flat local coordinates, Lemma 4.2 implies that the right moving
frame corresponding to (4.2) is

ρ(z) = a(y)−1 · x−1, z = (x, y). (4.3)
? A (locally) free action is automatically semi-regular.
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Therefore

ρ(z) · z = (a(y)−1, y) ∈ K. (4.4)

In particular, the lastm− r components of (4.4) provide the invariantsy, while the
first r components are functions of the invariants. 2

The proof of Theorem 4.4 shows that the determination of a moving frame
is intimately connected to the process of choosing a cross-section to the group
orbits. Example 4.3 is a particular case of this construction since a cross-section to
a transitive group action is just a single point. Equation (4.4) shows that the group
elementg = ρ(z) given by the right moving frame map can be geometrically
characterized as the unique group transformation that moves the pointz onto the
cross-sectionK. Moreover,I (z) = ρ(z) · z is the point on the cross-sectionK that
lies on theG orbit passing throughz.

Remark.In fact, any mapρ: M → G that satisfiesI (z) = ρ(z) · z ∈ K will
produce invariants by a choice of local coordinates onK. The action ofG need not
be free and the mapρ need not be equivariant; moreover, the group can equally
well be a pseudo-group.

Theorem 4.5 implies that ifJ (z) is any other invariant function, then, locally,
we can writeJ (z) = H(I (z)) in terms of the moving frame invariantsI . As noted
in the proof, the components ofI are not necessarily functionally independent,
but one can always locally choose a set ofm − r components which do provide a
complete system of functionally independent invariants, or, equivalently, a system
of local coordinates on the quotient manifoldM/G.

An alternative way of understanding the moving frame construction presented
above is to view the regularization of a group action as giving rise to the double
fibration

G×M
πM w

M M

(4.5)

of the regularized bundleB overM. Given a cross-sectionK to theG orbits, the
set

L = w−1(K) ⊂ B = G×M
forms anm-dimensional submanifold ofB that is invariant with respect to the lifted
action ofG onB. Projection ontoM defines a locally equivariant diffeomorphism
πM : L

∼−→ M and henceL is the graph of a local sectionσ = (πM |L)−1,
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called themoving frame section. It is not hard to see thatσ defines the graph of the
moving frame, soσ(z) = (ρ(z), z) for z ∈ M, i.e.,

ρ = πG ◦ σ : M −→ G.

Sinceσ : M → L isG-equivariant, any invariant object onB pulls-back, viaσ , to
an invariant object onM. In particular, the invariantI (z) = ρ(z) · z constructed in
Theorem 4.5 is given by

I = σ ∗(w) = w ◦ σ : M −→ K.

As noted above, given any functionF : M → R, the compositionF ◦ w:
B → R defines a lifted invariant,L(g, z) = F(g · z). Moreover, pulling back
L via the moving frame sectionσ : M → B, defines an ordinary invariantJ (z) =
F(w(σ (z))) = F(ρ(z) · z). Thus, a moving frame provides a natural way to
construct invariants from arbitrary functions!

DEFINITION 4.6. Theinvariantizationof a functionF : M → N with respect to
a moving frameρ: M → G is the compositionJ = F ◦w ◦ σ = F ◦ I .

Invariantizationdoesdepend on the choice of moving frame. Geometrically,
J (z) equals the value ofF at the point on the cross-section that lies on theG orbit
throughz. Theorem 3.7 says that ifF itself is an invariant, thenF◦w is independent
of the group parameters, and henceJ = F , i.e., the invariantization process leaves
invariants unchanged. Thus, one can view invariantization as a projection operator
from the space of functions to the space of invariants.

EXAMPLE 4.7. Consider the usual action (3.5) of SO(2), which is regular on
M = R2 \ {0}. The positiveu axis defines a cross-sectionK = {(0, v) | v > 0}
to the orbits. The mapg = ρ(x, u): M → K which rotates the point(x, u)
to the point (0, r) ∈ K, where r = √x2 + u2, is clearly SO(2)-equivariant.
The moving frameρ: M → SO(2) induced by this choice of cross-section is
therefore given by the equivariant mapφ = tan−1(x/u) that determines the the
rotation angle needed to map(x, u) toK. The corresponding moving frame section
σ : M → B = SO(2)×M is given byσ(x, u) = (tan−1(x/u), x, u). Pulling back
the lifted invariants (3.6) produces the invariantsσ ∗y = 0, σ ∗v = r. If F(x, u)
is any function, thenL(φ, x, u) = F(y, v) is its lifted counterpart, and so its
invariantization is the radial invariantJ = F(0, r). The reader should try com-
puting other moving frames and the corresponding invariants by choosing other
cross sections, e.g.,{(v, v) | v > 0}, or {(v, v2) | v > 0}.

Our construction is intimately tied to the Cartan procedure of normalization
of group parameters, which is, traditionally, the basic process used in the prac-
tical construction of moving frames [5, 7]. Normalization can be interpreted as
the restriction of the regularized group action to an invariant submanifold of the
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regularized bundleB. In particular, whenG acts freely onM, we can restrict to a
local section ofB and thereby uniquely specify all of the group parameters.

DEFINITION 4.8. A lifted invariantL: B → N is regular provided its group
differential dGL has maximal rankn = dimN at every point in its domain of
definition.

The essence of the normalization procedure that appears both in the method
of moving frames, as well as the Cartan equivalence method, is captured by the
following simple definition.

DEFINITION 4.9. A normalizationof the regularized group action consists of
its restriction to a nonempty level setLc = L−1{c} of a regular lifted invariant
L: B → N .

Every level set of a lifted invariant forms aG-invariant submanifold of the
regularized action. Note that the regularity assumption on the lifted invariant im-
plies that the projectionπM : Lc → M mapsLc onto an open subset ofM.
Thus, regularity ensures that the normalization does not introduce any dependen-
cies among thez coordinates, since that would introduce unacceptable constraints
on the original manifoldM.

In local coordinates, ifL(g, z) = (L1(g, z), . . . , Ln(g, z)) is a regular lifted
invariant andc = (c1, . . . , cn) ∈ N belongs to the image ofL, then the implicit
function theorem says that we can (locally) solve the system ofn equations

L1(g, z) = c1, . . . , Ln(g, z) = cn, (4.6)

for n of the group parameters, sayĝ = (g1, . . . , gn), in terms of the remainingr−n
group parameters, which we denote byh = (h1, . . . , hr−n) = (gn+1, . . . , gr), and
thez coordinates:

g1 = γ 1(h, z), . . . , gn = γ n(h, z), (4.7)

or, simply, ĝ = γ (h, z). The coordinatesh and z serve to parametrize theG-
invariant level setLc = L−1{c}. The remaining group parametersh can be inter-
preted as parametrizing the isotropy subgroup of the submanifold{z |L(e, z) = c}.
PROPOSITION 4.10. If G acts freely and regularly onM, then we can com-
pletely normalize all of the group parameters by choosing a regular lifted invariant
L: B → N having maximalrank dGL = r = dimN = dimG everywhere.

DEFINITION 4.11. LetK ⊂ M be a local cross-section to theG orbits. The
normalization equationsassociated withK are the system of equations

w = g · z = k, where k ∈ K. (4.8)
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Remark.The normalization Equations (4.8) are the same as the compatible lift
equations discussed in Part I [9].

If we assume thatG acts freely andK is a regular cross-section, then there
is a unique solutiong = ρ(z) to the normalization equations, determining the
right moving frame associated withK. More explicitly, if we choose the flat local
coordinatesz = (x, y) ∈ G × Y from Example 2.2, then the fundamental lifted
invariant has the formw = g · z = (g · x, y). Choosing a cross-sectionx = a(y)
reduces the normalization equations (4.8) tog · x = a(y), with G-equivariant
solutiong = ρ(x, y) = a(y) ·x−1, which agrees with the right moving frame (4.3)
after applying the group inversion to the cross-section mapa(y).

In practice, one constructs a ‘standard’ cross-section by solving the normaliza-
tion equations in the following manner. Locally we chooser components of the
fundamental lifted invariantw = g ·z, sayw1, . . . , wr , which satisfy the regularity
condition

∂(w1, . . . , wr)

∂(g1, . . . , gr)
6= 0. (4.9)

Solving the equations

w1(g, z) = c1, . . . , wr(g, z) = cr, (4.10)

where the constantsc1, . . . , cr are chosen to lie in the range of thew’s, leads to
a complete system of normalizationsg = ρ(z) for the group parameters. The
resulting map determines a moving frame, and corresponds to the local cross-
sectionK = {z1 = c1, . . . , z

r = cr}. Furthermore, Theorem 4.5 implies that
if we substitute the normalization formulaeg = ρ(z) into the remaining lifted
invariantsw̃ = (wr+1, . . . , wm), we obtain a complete system ofm−r functionally
independent invariants for the group action onM:

I r+1(z) = wr+1(ρ(z), z), . . . , Im(z) = wm(ρ(z), z). (4.11)

Thus, barring algebraic complications, the normalization procedure provides a
simple direct method for determining the invariants of free group actions. Note
particularly that, unlike Lie’s infinitesimal method, cf. [17], we donot have to
integrate? any differential equations in order to compute invariants.

Remark.If L(g, z) is any other regular lifted invariant of rankr, then we can
introduce local coordinates onM to makeL agree with the firstr components of
w = g · z when written in the new coordinates. Thus, changing the normalized
invariants is equivalent to changing coordinates onM.

? In a sense, though, we have integrated the differential equations by being able to explicitly write
down the group transformation formulae forw = g · z. However, it is rare that one can integrate the
ordinary differential equations for the invariants without being able to find the group transformations!
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EXAMPLE 4.12. LetG = SE(2) = SO(2) n R2 be the planar Euclidean group,
parametrized by(φ, a, b). Consider the free, local action of SE(2) onM = R4 that
maps a point(x, u, p, q) ∈M to(

x cosφ − u sinφ + a, x sinφ + u cosφ + b,
sinφ + p cosφ

cosφ − p sinφ
,

q

(cosφ − p sinφ)3

)
. (4.12)

The fundamental lifted invariants are the individual components(y,w, r, s) of
(4.12). Let us normalize the first three lifted invariants to all be zero, leading to
the normalization equations

y = x cosφ − u sinφ + a = 0, v = x sinφ + u cosφ + b = 0,

r = sinφ + p cosφ

cosφ − p sinφ
= 0. (4.13)

This corresponds to choosing the cross-sectionK = {(0,0,0, κ) | κ ∈ R} to the
three-dimensional orbits of SE(2). The solution to (4.13) is

φ = − tan−1p, a = − x + up√
1+ p2

, b = xp − u√
1+ p2

, (4.14)

which defines the right moving frameρ: M → SE(2). The left moving frame is
obtained by inverting the group element parametrized by (4.14), whereby

φ̃ = tan−1p, ã = x, b̃ = u. (4.15)

Finally, if we substitute (4.14) into the final lifted invariants = (cosφ−p sinφ)−3q,
we recover the fundamental invariant

κ = s

(1+ r2)3/2
= q

(1+ p2)3/2
. (4.16)

Note again the common functional dependency on the coordinates onM and the
associated lifted invariants, in accordance with Theorem 3.7. If we identifyp = ux ,
q = uxx, then (4.12) coincides with the second prolongation of the standard action
of SE(2) on curves in the plane, (4.15) agrees with the classical left moving frame
for Euclidean curves, cf. [9], and the invariant (4.16) is, of course, the Euclidean
curvature. See Example 10.10 below.

EXAMPLE 4.13. Consider the joint action(x, y) 7→ (Rx + a,Ry + a) of the
Euclidean group(R, a) ∈ SE(2) on (x, y) ∈ M = R2 × R2. The action is free
on M \ D, whereD = {x = y} is the diagonal. The lifted invariants are the
components ofz = Rx+a,w = Ry+a. We normalizez = 0 by settinga = −Rx.
The remaining normalized invariant now reduces tow = R(y − x). Away from
the diagonal, we can further normalize the second component ofw to be zero by
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specifying the rotation matrixR to have angleφ = −arg(y − x); this amounts to
picking the cross-sectionK = {(0,0, d,0)}. The resulting normalizations specify
the right moving frame for the joint Euclidean action. The first component ofw

then reduces to the distance| y − x | = d, which forms the fundamental joint
invariant for the Euclidean group. A similar construction for then-dimensional
Euclidean group E(n) provides a simple proof of an analytical version of a theorem
in Weyl [28], that the only joint Euclidean invariants are functions of the distances
between points. Extensions to joint invariants for other transformation groups are
straightforward. See [9] for recent results on joint differential invariants.

In applications to equivalence problems, one restricts the moving frame to a
submanifold of the underlying spaceM. The resulting maps from the submanifold
to the group agree with the traditional definition of a moving frame in classical
geometrical situations. Assume thatS = ι(X) is an immersed submanifold para-
metrized by a smooth mapι: X → M of maximal rank equal to the dimension
of X.

DEFINITION 4.14. Amoving frameon a submanifoldS = ι(X) is a mapλ: X→
G that factors through aG-equivariant mapρ: M → G, so thatλ = ρ ◦ ι.

In other words, the moving frameλ on S can be realized by the following
commutative diagram

M
ρ

X

ι

λ
G

(4.17)

The moving frameρ must, of course, be defined in a neighborhood ofS. As be-
fore, we can consider either left or right moving frames on the submanifoldS.
Lemma 4.2 still applies and shows that they are merely inverses of each other.

5. Equivalence Problems for Coframes

We now turn to the applications of moving frames to equivalence problems for sub-
manifolds. In preparation, we first review a very particular equivalence problem,
that of coframes on a manifold. The goal of both the Cartan equivalence method
and the moving coframe method is to produce, via the normalization and reduction
process, an invariant coframe, and thereby reduce the original equivalence problem
to an equivalence problem for coframes. Thus it is essential that we understand the
known solution to this particular equivalence problem before proceeding further.
We refer the reader to [8, 10, 18] for more details on the basic theory as well as
numerous examples.

Let M andM bem-dimensional manifolds, and letω = {ω1, . . . , ωm} and
ω = {ω1, . . . , ωm} be respective coframes thereon. The basiccoframe equivalence
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problemis to determine when there exists a (local) diffeomorphismψ : M → M

such that

ψ∗ ω i = ωi, i = 1, . . . ,m. (5.1)

More generally, one might also include a collection of smooth scalar-valued func-
tions Iν: M → R and I ν: M → R, whereν = 1, . . . , l, that are required to
be mapped to each other, meaning thatI ν(x̄) = Iν(x) wheneverx̄ = ψ(x), or,
equivalently,

ψ∗ I ν = Iν, ν = 1, . . . , l. (5.2)

We formalize this as follows.

DEFINITION 5.1. An extended coframeon a manifoldM is a collection� =
{ω, I } consisting of a coframeω along with a collectionI = (I1, . . . , Il) of smooth
scalar functions.

DEFINITION 5.2. A local diffeomorphismψ : M → M is anequivalencebe-
tween extended coframes� = {ω, I } onM, and� = {ω, I }, onM if and only
if ψ satisfies (5.1), (5.2), which we abbreviate asψ∗� = �. In particular, asym-
metryof an extended coframe� is a self-equivalence, i.e., a local diffeomorphism
ψ : M →M such thatψ∗� = �.

Thesymmetry groupG of an extended coframe� = {ω, I } is the local transfor-
mation group consisting of all symmetries. The functionsIν in� are then invariants
for the groupG, hence their common level sets areG-invariant subsets ofM. In
view of this remark, we shall often refer to the functionsI in an extended coframe
� as itsinvariants.

Two equivalent extended coframesmusthave the same number of invariants.
Moreover, if there is a functional dependencyIl = H(I1, . . . , Il−1) among the
invariants of�, then the corresponding invariants of any equivalent coframe�

must satisfy anidentical functional relation:I l = H(I1, . . . , I l−1). The function
H(y1, . . . , yl−1) in such a functional relation is known as aclassifying functionfor
the extended coframe. As argued in [18], the most natural way to keep track of
such functional dependencies between the structure invariants is to introduce the
associated classifying manifold.

DEFINITION 5.3. Theclassifying manifoldC(�) of an extended coframe� =
{ω, I } is the subsetI (M) ⊂ Z = Z(�) of the classifying spaceZ ' Rl that is
parametrized by the invariant functionsI = (I1, . . . , Il): M → Z.

DEFINITION 5.4. An extended coframe� is calledsemi-regularof rank t if its
invariants have constant rankt = rank dI . Note thatt equals the number of func-
tionally independent invariants near any point. An extended coframe� is called
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regular if its classifying manifold is an embedded submanifold of its ambient
classifying space. In this case, the rank of the coframe equals the dimension of
C(�).

LEMMA 5.5. If � = ψ∗� are equivalent extended coframes, then their classify-
ing manifolds are identical,C(�) = C(�).

Remark.If the equivalence mapψ is only locally defined, then one must restrict
the classifying manifolds to the open subsetsU = domψ ⊂ M andU = ψ(U)
⊂ M.

The converse to Lemma 5.5 is not true in general – one must impose an ad-
ditional ‘involutivity condition’ on the extended coframes in order to prove suffi-
ciency of the classifying manifold condition. In preparation, we note that one can
(simultaneously) perform two elementary operations on extended coframes that
preserve their symmetry and equivalence constraints.

DEFINITION 5.6. Two regular extended coframes� = {ω, I } and2 = {θ, J }
onM are said to beinvariantly relatedif

(a) There exists a local diffeomorphismϕ: C(�)→ C(2) such thatJ = ϕ ◦ I ,
and

(b) There is a smooth mapA: C(�)→ GL(m,R) such thatθ = (A ◦ I )ω.

We shall write2 = 8(�), where8 = (ϕ,A), for such an invariant relation.

Note that the first condition means that the two classifying manifolds have the
same dimension, and so both coframes contain the same number of functionally
independent invariants. Moreover, each invariant in2 is functionally dependent on
the invariants in�, i.e.,Jν = ϕν(I1, . . . , Il), and conversely. The second condition
means that the one-forms in the two coframes are invariant linear combinations of
each other, so

θi =
m∑
j=1

(Aij ◦ I )ωj, i = 1, . . . ,m. (5.3)

PROPOSITION 5.7. If ψ∗� = � are equivalent extended coframes, and2 =
8(�) and2 = 8(�) are invariantly related coframes for the same functions
8 = (ϕ,A), thenψ∗2 = 2 are also equivalent.

The proof is immediate. Note that this allows us to always assume (at least
locally) that the functions occurring in our extended coframe are functionally in-
dependent; for example, we can use those corresponding to a consistent choice of
local coordinates on the classifying manifold.

COROLLARY 5.8. Two invariantly related extended coframes2 = 8(�) have
the same symmetry group.
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The complete solution to the extended coframe equivalence problem (5.1),
(10.9), is based on the Frobenius Theorem for closed differential ideals [4, 18]. One
effectively determines a complete system of functionally independent invariants by
successive differentiation, and adjoins them to the original invariance conditions
(10.9). There are two ways in which additional scalar invariants can arise. First of
all, since the one-formsω form a coframe, we can re-express their differentials in
terms of wedge products thereof, leading to the structure equations

dωk = −
∑
i<j

I kijω
i ∧ ωj, k = 1, . . . ,m. (5.4)

The structure coefficientsI kij are readily seen to be invariants of the problem, i.e.,
satisfy (10.9), and hence should be included in our list of invariants. Thus, even
if we began with no additional invariants, the structure equations automatically
produce some for us, whose invariance must be taken into account in the resolution
of the problem. Secondly, the coefficientsIν,k = ∂Iν/∂ωk of the differential

dIν =
m∑
k=1

Iν,kω
k =

m∑
k=1

∂Iν

∂ωk
ωk, (5.5)

of any invariant are also automatically invariant, and are known as the (first-order)
derived invariantscorresponding to the original invariantIν . The invariant dif-
ferential operators∂/∂ωk are known ascoframe(or covariant) derivatives; these
coincide with the dual frame vector fields toω.

Remark.The coframe derivative operators do not necessarily commute. Apply-
ing d to (5.5) and comparing with (5.4) produces the basic commutation formulae:[

∂

∂ωi
,
∂

∂ωj

]
=

m∑
k=1

I kij
∂

∂ωk
. (5.6)

If the one-formsωk = df k are all (locally) exact, then all the structure coefficients
vanish, and so the coframe derivatives do commute in this particular case.

DEFINITION 5.9. Thederived invariantsof an extended coframe{ω, I } with l
invariantsI = (I1, . . . , Il) are thel(m+ 1)+ 1

2m
2(m− 1) functions

I (1) = (. . . , Iν, . . . , Iν,k, . . . , I kij , . . .)
consisting of

(a) the original invariantsI1, . . . , Il,
(b) their first order coframe derivativesIν,k = ∂Iν/∂ω

k, ν = 1, . . . , l, k =
1, . . . ,m, and
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(c) the coefficientsI kij , k = 1, . . . ,m, 1 6 i < j 6 m, in the structure equations
(5.4) for each dωk.

DEFINITION 5.10. Thederived coframeassociated with an extended coframe
� = {ω, I } is the extended coframe�(1) = {ω, I (1)} consisting of the original
coframe along with all its derived invariants.

LEMMA 5.11. A mapψ : M → M determines an equivalence between extended
coframes� and� if and only if it determines an equivalence between their corre-

sponding derived coframes�(1) and�
(1)

.

In this manner, one recursively defines the higher order derived coframes�(k) =
(�(k−1))(1) by computing the higher-order derived invariants. Lemma 5.11 shows
that all such higher order derived coframes are also equivalent under the given map.
The process will terminate whenever the set of first order derived invariants arising
from the current list of invariants fails to produce any new, meaning functionally
independent, invariants.

DEFINITION 5.12. An extended coframe� = {ω, I } is calledinvolutive if it is
regular and is invariantly related to its derived coframe�(1).

Thus, a regular extended coframe is involutive if and only if rank� = rank�(1),
which occurs if and only if its derived invariants are functionally dependent on the
original invariants:I (1) = H ◦ I .

EXAMPLE 5.13. The most familiar example of an involutive coframe is the
Maurer–Cartan coframeµ = {µ1, . . . , µr } on anr-dimensional Lie groupG. The
symmetry group of the Maurer–Cartan coframe coincides with the right action of
G on itself. Involutivity follows from the basic Maurer–Cartan structure equations

dµk = −
∑
i<j

Ckij µ
i ∧ µj, k = 1, . . . , r, (5.7)

whereCkij are the structure constants for the dual basisvi = ∂/∂µi of the Lie
algebrag. Since all the derived invariants are constant, the Maurer–Cartan coframe
has rank 0. In fact, any rank 0 coframe is locally equivalent to a Maurer–Cartan
coframe; see [19] for global versions of this result, based on the theory of ‘non-
associative local Lie groups’.

LEMMA 5.14. Let� be an extended coframe. If the derived coframe�(s) is in-
volutive, then so are all higher order derived coframes�(k), k > s. Moreover,
rank�(k) = rank�(s) for all k > s.

Proof. Any functional dependency among the invariantsI = H(I1, . . . , Il)

automatically induces a functional dependency among the corresponding derived
invariants:

∂I

∂ωi
=

l∑
ν=1

∂H

∂Iν

∂Iν

∂ωi
, i = 1, . . . , p. (5.8)
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This observation suffices to prove the result. 2

Remark.Equation (5.8) implies that if an invariant in�(k) is functionally depen-
dent on the others, then one does not need to include its derived invariants in the
higher-order derived coframes�(k+1) since their associated functional dependen-
cies are automatic. In other words, we can reduce the number of invariants in�(k+1)

by a well-determined invariant relation, as in Definition 5.6. Therefore, at each
step, one really only needs compute the coframe derivatives of the independent
invariants.

DEFINITION 5.15. Theorder of an extended coframe� is the minimal integers
such that�(s) is regular and involutive. We callt = rank�(s) the involutivity rank
of �.

Remark.Our definition of order is slightly different than that in [18]. If we start
with an ordinary coframeω, under the present construction the structure invariants
I ijk will appear at order 1 and, hence, unless the coframe has rank 0, involutivity
will not occur until at least order 2.

Let us call an extended coframe� fully regular if it and its derived coframes
�(k), k = 0,1,2, . . ., are regular. In the fully regular case, the rankstk = rank�(k)

are nondecreasing,t0 6 t1 6 t2 6 · · · 6 m and bounded by the dimension
of M. Moreover, if ts = ts+1, then�(s) is involutive and, hence,� has orders
and involutivity rankt = ts = ts+1 = · · · . In particular, a fully regular coframe
has orders 6 m. Coframes of order greater thanm can occur if singularities are
present, but can be resolved at some higher order.

The fundamental equivalence and symmetry theorems for coframes can now be
stated. Both are direct consequences of Frobenius’ Theorem; details can be found
in [18].

THEOREM 5.16. Let M andM bem-dimensional manifolds. Two finite order
extended coframes� onM and� onM are locally equivalent if and only if they
have the same orders, and their(s+1)st order classifying manifolds are identical:
C(�

(s+1)
) = C(�(s+1)). In this case, ifz0 ∈ M and z̄0 ∈ M map to the same point

I (s+1)(z̄0) = I (s+1)(z0) in the common classifying manifold, then there is a unique
local diffeomorphism8: M →M with8(z0) = z̄0 and8∗� = �.

Remark.One can replace the orders by any higher-orderk > s in the theorem.
Thus, in fully regular cases, one can always determine the equivalence of two
extended coframes on anm-dimensional manifold by comparing the(m + 1)st
order classifying manifolds.

Remark.Regularity relies on two conditions: first, the invariants have constant
rank, and, second, they parametrize an embedded submanifold of the classifying

ACAP1384.tex; 9/02/1999; 8:05; p.22



MOVING COFRAMES: II. REGULARIZATION AND THEORETICAL FOUNDATIONS 149

space. The latter can clearly be weakened to include immersed classifying man-
ifolds, since the result is local anyway, and so one can restrict to a subdomain
where the classifying manifold is embedded. In fact, one can resolve singularities
and self-intersections of the classifying manifold by going to a yet higher order
coframe. Indeed, if�(s) is ‘semi-involutive’, meaning that it is semi-regular and
of the same rank asC(�(s+1)), then formula (5.8) implies that one can identify the
classifying manifoldC(�(k)) for anyk > s with thek−s−1 jet ofC(�(s+1)). Thus,
if C(�(s+1)) intersects itself transversally, thenC(�(s+2)) will not intersect itself
at all, and can be used instead. Thus, in the analytic category, one can eliminate
all such singularities and self-intersections by going to a classifying manifold of
sufficiently high order.

THEOREM 5.17. The symmetry group of an extended coframe� of order s is a
freely acting local Lie group of transformations of dimensionr = m − t , where
t = dimC(�(s)) is the involutivity rank of�. The orbits ofG are the common level
sets of the(s + 1)st order invariantsI (s+1).

This completes our survey of the basic equivalence problem for (extended) co-
frames. One can also investigate the equivalence of more general ‘extended one-
form systems’� = {ω, I } containing of a collection of one-forms that do not
necessarily form a coframe. Theoverdeterminedcase, where the one-formsω span
the cotangent space, is easily reduced to the case of an extended coframe. One
can locally choose a coframe, say{ω1, . . . , ωm} from among the one-forms in�.
Any additional one-forms in� can be written as linear combinations of the given
coframe,

ωk =
m∑
i=1

J ki ω
i, k > m. (5.9)

The coefficientsJ ki will be invariant functions for the problem, and should be
included among the functions in an invariantly related extended coframe. Thus, the
overdetermined equivalence problem reduces to an extended coframe equivalence
problem (5.1), (5.2), where the invariant functions include all the original invariants
Iν as well as the coefficientsJ ki stemming from the linear dependencies (5.9).
Theunderdeterminedcase, when the one-forms fail to span the relevant cotangent
spaces, can be treated by the Cartan equivalence method until it is reduced to either
a coframe equivalence problem, or to an involutive differential system defining a
Lie pseudo-group via the Cartan–Kähler Theorem, cf. [4, 18]. For brevity, we will
not discuss the latter more complicated theory here.

6. Moving Coframes

The method of moving coframes was introduced in [9] as a practical means of
determining moving frames for general transformation groups, and will now be
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incorporated into our regularized approach. The following definition is inspired
by Cartan’s approach to equivalence problems, which always begins by character-
izing the (pseudo-)group of allowable transformations by a suitable collection of
differential forms.

DEFINITION 6.1. LetG be a finite-dimensional Lie group acting on a manifold
M. A G-coframeis, by definition, a regular, involutive extended coframe� =
{ω, I } onM, whose symmetry group coincides with the transformation groupG.

In other words, if� = {ω, I } is aG-coframe, then a local diffeomorphism
ψ : M →M satisfies the symmetry conditions

ψ∗ω = ω, ψ∗I = I, (6.1)

if and only if ψ(z) = g · z coincides with the action of a group elementg ∈ G.
For example, the right Maurer–Cartan coframe on a Lie group forms aG-coframe
for the right action ofG on itself. SinceG-coframes are always assumed to be
involutive, the solution to the equivalence problem for coframes implies that they
are essentially unique.

PROPOSITION 6.2.Let� be aG-coframe onM. An extended coframe2 is also
aG-coframe if and only if� and2 are invariantly related.

Proof. Corollary 5.8 implies that if the two extended coframes are invariantly
related, then their symmetry groups are the same. Conversely, according to Theo-
rem 5.17, the orbits of the symmetry group of an involutive extended coframe are
the level sets of its invariants. Since the two collections of invariants have the same
level sets, they are necessarily functionally related, as in part (a) of Definition 5.6.
Moreover, since the symmetry groups coincide, the coefficientsAij relating the
coframes, as in (5.3), must also be invariants, proving the result. 2

Theorem 5.17 implies that the symmetry group of an involutive extended co-
frame acts locally freely. This condition also turns out to be sufficient; see Theo-
rem 6.5 below. The moving frame method provides a simple mechanism for con-
structingG-coframes. SupposeG acts freely and regularly on them-dimensional
manifoldM. Letρ: M → G be a (right) moving frame. We letζ = ρ∗µ denote the
pull-back of the Maurer–Cartan forms toM. If G acts transitively onM, whence
m = r, thenζ forms a coframe onM, called themoving coframeassociated with
the given moving frame. The coframeζ has the same structure equations (5.7) as
the Maurer–Cartan coframe onG and, hence, forms an involutive coframe of rank
zero onM.

Remark.The pull-back of the left Maurer–Cartan coframeµ̃ onG under the left
moving frame map̃ρ leads, up to sign, to the same collection of moving coframe
forms: ρ̃ ∗µ̃ = −ρ∗µ = ζ . This is because the inversiong 7→ g−1 maps the right
Maurer–Cartan forms onG to minus their left-invariant counterparts.
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If G does not act transitively, then the one-formsζ = ρ∗µ only form a coframe
when restricted to the orbits, and we need to supplement them by an additionalm−
r one-forms to construct a full coframe. Locally, if we choose a complete system
of functionally independent invariantsy = (y1, . . . , ym−r ), then them one-forms

{ζ , dy} = {ζ 1, . . . , ζ r , dy1, . . . , dym−r } (6.2)

form a coframe onM.

DEFINITION 6.3. Themoving coframeassociated with a given moving frame
mapρ: M → G is the extended coframe6 = {ζ , dy, y} consisting of the pulled-
back Maurer–Cartan formsζ = ρ∗µ, along with the invariant functionsy and their
differentials.

LEMMA 6.4. The moving coframe6 forms an involutiveG-coframe onM.
Proof. Involutivity is immediate, since the Maurer–Cartan structure equations

(5.7) along with the equations d(dyi) = 0 imply that all the derived invariants for
the moving coframe are constant. To prove that the only symmetries are the group
transformationsz 7→ g ·z, we note that, in the flat local coordinates of Example 2.7,
the associated moving coframe consists of the Maurer–Cartan formsµ pulled back
to the orbitsG × {y0}, along with the invariants and their differentials. Invariance
of they’s implies that any symmetry of the moving coframe must have the form
ψ(x, y) = (ϕ(x), y), whereϕ: G → G is a symmetry of the Maurer–Cartan
coframe, and hence agrees with right multiplication by a group element. 2

We have thus proved the following basic existence theorem.

THEOREM 6.5. LetG be a Lie group acting on a manifoldM. Then the following
are equivalent:

(i) G acts freely and regularly onM.
(ii) G admits a moving frame in a neighborhood of each pointz ∈M.

(iii) There exists aG-coframe in a neighborhood of each pointz ∈M.

There is a second important method that can be used to construct an alternative
G-coframe for a free group action without appealing to the Maurer–Cartan forms.
First, the invariantsI (z) = ρ(z) · z were earlier interpreted as the pull-back, via
σ : M → B, of the fundamental lifted invariantsw = g · z. Second, by applying
Proposition 3.9, the differentialdw of the fundamental lifted invariant will split into
two sets of invariant forms onB, namely dMw = g · dz and the group component
dGw. Theorem 3.10 implies that the latter are invariant linear combination of the
Maurer–Cartan formsµ onB. Therefore

dw = dMw + dGw = g · dz+ F(w)µ, (6.3)
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where the coefficientsF(w) are explicitly determined by (3.8). We now pull back
dMw via our moving frame sectionσ to construct a system ofG-invariant one-
forms onM.

THEOREM 6.6. LetG act freely onM. Letρ: M → G be a right-moving frame.
Then the extended coframe0 = {γ , I } consisting of the invariant functionsI (z) =
ρ(z) · z along with the one-formsγ = ρ(z) · dz forms aG-coframe onM.

Proof. The fact thatI = σ ∗w include a complete system of functionally inde-
pendent invariants was given in Theorem 4.5. Applyingσ ∗ to (6.3), we find

dI = σ ∗(dMw)+ σ ∗(F )ζ = γ + (F ◦ I )ζ .
Therefore, the one-formsγ = σ ∗(dMw) are invariantly related to the moving
coframe forms{ζ , dI }, as in (5.3). It is not hard to see that theγ define a coframe
onM, and so the result follows from Corollary 5.8. 2

Formula (3.8) provides an explicit local coordinate formula relating the normal-
ized coframe formsγ with the Maurer–Cartan forms:

γ k = dI k −
r∑
κ=1

(f kκ ◦ I )ζ κ, k = 1, . . . ,m, (6.4)

whereI k(z) is thekth component ofI (z) = ρ(z) · z. Note that the coefficients
in (6.4) are obtained by invariantization, as in Definition 4.6, of the coefficients
f kκ (z) of the infinitesimal generators (3.7) with respect to the moving frameρ. In
particular, if we normalizewk = ck to be constant, thenI k = ck is constant also,
and the dI k term in (6.4) disappears.

EXAMPLE 6.7. Consider the action (4.12) of the planar Euclidean group onR4.
The right Maurer–Cartan forms on SE(2) are

µ1 = dφ, µ2 = da + b dφ, µ3 = db − a dφ. (6.5)

The corresponding components of the right-moving coframeζ = ρ∗µ are ob-
tained by pulling back the Maurer–Cartan forms (6.5) using the right-moving frame
(4.14), so

ζ 1 = − dp

1+ p2
, ζ 2 = −dx + p du√

1+ p2
, ζ 3 = p dx − du√

1+ p2
. (6.6)

In order to complete (6.6) to aG-coframe onM = R4, we must supplement the
forms (6.5) by the fundamental invariant (4.16) and its differential

ζ 4 = dκ = (1+ p2)dq − 3pq dp

(1+ p2)5/2
, κ = q

(1+ p2)3/2
. (6.7)
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The complete extended coframe (6.6), (6.7) forms a SE(2) coframe onM – its
symmetries coincide with the group transformations (4.12).

On the other hand, computing theG-coframe{γ , I } as in Theorem 6.6, we
only need compute the differentials of the fundamental lifted invariants, and then
pull-back via the moving frame map, thereby avoiding explicit determination of
the Maurer–Cartan forms. Differentiating (4.12) with respect to the coordinates
(x, u, p, q) onM leads to the one-forms

dMy = cosφ dx − sinφ du, dMv = sinφ dx + cosφ du,

dMr = dp

(cosφ − p sinφ)2
, (6.8)

dMs = (cosφ − p sinφ)dq + 3q sinφ dp

(cosφ − p sinφ)4
,

which, along with the Maurer–Cartan forms (6.5) form a SE(2) coframe for the
lifted action onB = SE(2)×M. The corresponding SE(2) coframe onM is found
by pulling back (6.8) via the right moving frame (4.14); the result is

γ 1 = σ ∗(dMy) = −ζ 2, γ 3 = σ ∗(dMr) = −ζ 1,

γ 2 = σ ∗(dMv) = −ζ 3, γ 4 = σ ∗(dMs) = ζ 4. (6.9)

The formulae (6.9) relating the two coframes can be deduced from (6.4), as we
now explicitly show. The group components of the differentials are

dGy = dG(x cosφ − u sinφ + a) = −vµ1+ µ2,

dGv = dG(x sinφ + u cosφ + b) = y µ1− µ3,

dGr = dG

(
sinφ + p cosφ

cosφ − p sinφ

)
= (1+ r2) µ1, (6.10)

dGs = dG

(
q

(cosφ − p sinφ)3

)
= 3rsµ1.

The lifted invariant coefficients in (6.10) follow directly from (3.8) and the for-
mulae

v1 = −u∂x + x∂u + (1+ p2)∂p + 3pq∂q,

v2 = ∂x, v3 = ∂u, (6.11)

for the infinitesimal generators of the Euclidean action (4.12) that are dual to the
chosen Maurer–Cartan form basis (6.5). Indeed, if we write down the coefficient
matrix

−u 1 0
x 0 1

1+ p2 0 0
3pq 0 0

 (6.12)
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for the vector fields (6.11), then (6.10) can be written in matrix form
dGy
dGv
dGr
dGs

 =

−v 1 0
y 0 1

1+ r2 0 0
3rs 0 0

 (
µ1

µ2

µ3

)
, (6.13)

and the coefficient matrix is the lifted version of (6.12), obtained by replacing the
coordinates onM by their corresponding lifted counterparts. Formula (6.9) then
follows from (6.4):

γ 1

γ 2

γ 3

γ 4

 =


0
0
0

dκ

−


0 1 0
0 0 1
1 0 0
0 0 0

 (
ζ 1

ζ 2

ζ 3

)
. (6.14)

In (6.14), the first term is the pull-back of the lifted coordinate differentials(dy, dv,
dr, ds) via the normalization map (4.13), while the coefficient matrix in the second
is the invariantization of the infinitesimal generator coefficient matrix (6.12) with
respect to the given moving frame.

7. Equivalence of Submanifolds

We now apply our general results to the equivalence problem for submanifolds
under a freely acting transformation group. Given submanifoldsS, S ⊂ M, we
want to know whether or not they arecongruentunder a group transformation,
meaning thatg · S = S for someg ∈ G. In this section, we review the solution
to this problem in the case whenG acts regularly and freely onM. Actually, we
shall only consider the local problem here, so that the congruence condition is only
required to hold in a neighborhood of a point. Global questions can be handled by
continuation processes (e.g., analytic continuation).

DEFINITION 7.1. LetS = ι(X) andS = ι(X) be two embeddedp-dimensional
submanifolds parametrized by mapsι: X→M, andι: X→M. The submanifolds
are said to be (locally)congruentunder a transformation groupG provided there
exists a group elementg ∈ G and a (local) diffeomorphismψ : X→ X such that

ι(ψ(x)) = g · ι(x) (7.1)

for all x in the domain ofψ .

In the case whenG acts freely, the solution to the congruence problem follows
directly from the theorem for submanifolds embedded in Lie groups [12].

THEOREM 7.2. Let G be a free, regular Lie transformation group acting on
M. Let� = {ω, I } be aG-coframe onM. Then two embeddedp-dimensional
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submanifoldsS = ι(X) andS = ι(X) are locally congruent underG if and only if
the pulled-back extended coframes4 = {ξ, J } = ι∗� onX and4 = {ξ, J } = ι∗�
onX are locally equivalent.

The diffeomorphismψ : X → X determining the reparametrization part in
the correspondence (7.1) must satisfyψ∗4 = 4. In other words, in terms of the
defining coframe and invariants,

(ι ◦ ψ)∗ω = ι∗ω, (ι ◦ ψ)∗I = ι∗I. (7.2)

Remark.For the fixed parameter equivalence problem, we do not allow the
reparametrization mapψ in the equivalence condition (7.1), which thus reduces
to ι(x) = g · ι(x), x ∈ X. The solution to this problem follows from Theorem 7.2:
the pulled-backG-coframes must now be identical:4 = 4.

The originalG-coframe� is involutive; in particular, if� = 6 is the moving
coframe, it will have constant derived invariants. The pull-back4 = ι∗� will,
of course, have the same structure equations as�. However, if the submanifold
S has strictly smaller dimension thanM, i.e., dimS = p < m, the one-forms
ξ = ι∗ω are not a coframe onX, because there are too many of them. Thus,
4 will constitute an overdetermined one-form system, as discussed at the end of
Section 5. In order to apply our general equivalence theorems, we need to reduce4

to an extended coframe by eliminating the linear dependencies among the pulled-
back one-forms. Near each pointx ∈ X we can choose? p linearly independent
one-forms$ = {$ 1, . . . ,$p} from among the pulled-back formsξ . The choice
of $ is governed by a transversality condition on the submanifoldS.

DEFINITION 7.3. Letω̃ = {ω1, . . . , ωp} be a collection ofp pointwise linearly
independent one-forms on anm-dimensional manifoldM. A p-dimensional sub-
manifold S = ι(X) is transversewith respect tõω if and only if the one-forms
$ = ι∗ω̃ forms a coframe on the parameter spaceX, and soS satisfies the
independence condition

$ 1 ∧ · · · ∧$p = ι∗(ω1 ∧ · · · ∧ ωp) 6= 0. (7.3)

We refer the reader to [4] for a detailed discussion of the role of independence
conditions and transversality in the context of exterior differential systems. Thus,
given an extended coframe� = {ω, I }, we shall impose an independence con-
dition on p-dimensional submanifoldsS ⊂ M by choosingp of the one-forms
in ω. Since we can rearrange the forms inω (or, more generally, take constant
coefficient linear combinations) without affecting the symmetry properties of�,
we shall, without loss of generality, assume that the independence condition (7.3)
? As we shall see below, this is effected by a choice of independent and dependent variables on

the original manifoldM.
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is alwayswith respect to the firstp one-forms in�. With such a choice, we can
define transversality of a submanifold with respect to an extended coframe�.

DEFINITION 7.4. A p-dimensional submanifoldS = ι(X) is transversewith
respect to an extended coframe� = {ω, I } whereω = {ω1, . . . , ωm}, if and only
if it is transverse with respect to the firstp one-forms̃ω = {ω1, . . . , ωp}.

On a transverse submanifold,$ = ι∗ω̃ forms a coframe on the parameter
spaceX. Therefore, we can write the remaining pulled back one-forms as linear
combinations of them,

ξk =
p∑
j=1

Kk
j (x)$

j , k = p + 1, . . . ,m.

The coefficientsK = (. . . Kk
j . . .) provide additional invariants for the overde-

termined one-form system4. Replacing the extra one-forms by these invariants
reduces4 to an invariantly related extended coframe,ϒ = {$ , J,K} on X,
having the same symmetry and equivalence properties as4 does. We shall call
ϒ the restrictedG-coframeon the submanifoldS. If S is also transverse? we can
similarly construct the extended coframeϒ = {$ , J ,K} on X using thesame
choice of coframe basis$ = ι∗ω̃ relative to the givenG-coframe.

LEMMA 7.5. Let � be aG-coframe onM. Two transverse submanifoldsS =
ι(X) and S = ι(X) are locally G congruent if and only if the corresponding
restrictedG-coframesϒ onX andϒ onX are equivalent.

Now, even though the originalG-coframe� is involutive, the restrictedG-
coframeϒ will almost never be involutive. Thus, one will typically need to replace
ϒ by its involutive counterpartϒ(s), wheres is theorder of ϒ.

DEFINITION 7.6. A submanifoldS ⊂ M is calledregular of order s with respect
to theG-coframe� if S is transverse and the restrictedG-coframeϒ has orders.
Theclassifying manifoldof S is defined asC(S) = C(ϒ(s+1)). The rankt of S is
the dimension of its classifying manifold:t = dimC(S).

Using this construction, Theorem 5.16 then gives a complete solution to the
congruence problem for submanifolds when the group acts freely.

THEOREM 7.7. LetG be a free, regular Lie transformation group acting onM,
and let� be aG-coframe. LetS = ι(X) andS = ι(X) be regularp-dimensional
submanifolds. ThenS andS are locallyG equivalent if and only if they have the
same orders, and their classifying manifoldsC(S) = C(S) are identical.

? This can always be arranged locally by a suitable choice of the one-formsω̃.
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The symmetry group ofS is, by definition, its isotropy subgroupGS ⊂ G.
Theorem 7.7 demonstrates that the action ofGS on S can be identified with the
symmetry group of the restrictedG-coframeϒ on the parameter spaceX.

THEOREM 7.8. Let S ⊂ M be a regularp-dimensional submanifold of orders
and rankt with respect to the transformation groupG. Then its isotropy groupGS

has dimensionp − t = dimS − rankS and acts freely onS.

In particular,S has maximal symmetry if and only if it has rank 0, meaning that
all the restricted invariantsJ,K are constant onS. In this case, the dimension of
the isotropy group equals the dimension ofS and henceGS acts transitively on (the
connected components) ofS. In particular,S must lie in a singleG orbit ofM.

Remark.Later we shall see that the invariantsK arising from linear dependen-
cies among the one-forms in4 can be identified with the first order differential
invariants for the group action. Moreover, the derived invariants correspond to
suitable higher order differential invariants. Thus, the classifying manifolds used
to solve the equivalence problem are identified with those parameterized by the
differential invariants forG.

EXAMPLE 7.9. Consider the Abelian Lie groupG = R3 acting by translations on
M = R3. A G-coframe is given by the coordinate one-forms� = {dx, dy, du}.
The surfaceS = {x2 + 2yu = 0 | y 6= 0} satisfies the transversality condition
dx ∧ dy | S 6= 0. ParametrizingS by ι: (x, y) 7→ (x, y,−1

2x
2y−1), we see that the

restricted one-forms4 = ι∗� satisfy the linear dependency du = −(x/y)dx +
1
2(x/y)

2 dy, leading to the functionally dependent invariants−x/y andx2/(2y2).
Therefore, the restricted coframe onS is

ϒ =
{

dx, dy,−x
y
,
x2

2y2

}
.

However,ϒ is not involutive since d(x/y) = (1/y)dx − (x/y2)dy, so that the
derived coframe?

ϒ(1) =
{

dx, dy,−x
y
,
x2

2y2
,−1

y
,
x

y2
,
x

y2
,−x

2

y3

}
is involutive. Therefore,S is a surface having rank 2 and order 1, and hence admits
at most a discrete translation symmetry group; in fact, the isotropy subgroup of
S is trivial. The classifying manifold is the surface parametrized by the twelve
invariants in

ϒ(2) =
{

dx, dy,−x
y
,
x2

2y2
,−1

y
,
x

y2
,
x

y2
,−x

2

y3
,0,

1

y2
,−2x

y3
,

1

y2
,−2x

y3
,

3x2

y4

}
? Actually, since the second invariantx2/2y2 is a function of the first, its derived invariants are

redundant, as their functional dependencies are automatically determined, cf. (5.8).
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so that

C(S)

=
{
(a1, . . . , a12) ∈ Z = R12

∣∣∣ a2 = 1
2a

2
1, a4 = a5 = −a1a3, a6 = a2

1a3, a7 = 0

a8 = a10 = a2
3, a9 = a11 = 2a1a

2
3, a12 = 3a2

1a
2
3

}
.

Any translationally equivalent surfaceS must have the same classifying manifold,
so thatS also has order 1 and rank 2, and has the same functional relationships
among its corresponding twelve invariants.

We are now ready to discuss the role of the regularized action in the equivalence
problem for general group actions. Here we no longer need to assume thatG acts
freely onM, but we replace it by its freely acting regularization onB = G×M.
Associated with an embedded submanifoldS = ι(X) ⊂ M is the submanifold
SG = ιG(G×X) ⊂ B parametrized by

ιG(g, x) = (g, ι(x)), g ∈ G, x ∈ X.
The bundleG × X is the pull-back underι of G×M. OnB, we consider the

G-coframe� = {µ, dw,w}. As a direct consequence of Theorem 7.2, we obtain
the following result.

PROPOSITION 7.10.Two embedded submanifoldsSG and SG parametrized by
mapsιG: G×X→ G×M, andιG: G× X→ G×M are locallyG congruent
if and only if the pulled-back extended coframes4 = {ξ, J } = ι∗� on X and
4 = {ξ , J } = ι∗� are locally equivalent.

Suppose thatS = ι(X) satisfies the transversality condition specified byω̃.
ThenSG = ιG(X) satisfies the transversality condition defined by(πM)∗ω̃ ∪ µ.
It is clear that we can construct a coframẽ� invariantly related to� such that
the one formsω1, . . . , ωp ∈ �̃ generate(πM)∗ω̃. Following the procedure above
Lemma 7.5 we have the restrictedG-coframeϒ onG×X where$ = {$ 1, . . . ,

$p,µ1, . . . , µr } such that$ 1, . . . ,$p annihilate the tangent space to the fibers
of π : G×X→ X. Denoting by similar barred expressions using the mapιG: G×
X→ G×M, the equivalence theorem takes the following form.

PROPOSITION 7.11. Two embedded submanifoldsι: X → M and ι: X →
M which satisfy the transversality conditioñω, are equivalent if and only if the
extended coframesϒ onG×X andϒ onG×X are equivalent.

Proof. First supposeX andX are equivalent. Thusι = g · (ι ◦ ψ−1), where
g ∈ G andψ : X→ X. Define the diffeomorphism9: G×X→ G×X by

9(h, x) = (g · h,ψ(x)), h ∈ G, x ∈ X. (7.4)
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Clearly, ιG ◦ 9 = R̂g · ιG, whereR̂g denotes the right regularized action (3.2) of
G. Then

(ιG ◦9)∗µ = (R̂g · ιG)∗µ = (ιG)∗µ,
(ιG ◦9)∗w = (R̂g · ιG)∗w = (ιG)∗w.

Conversely, if there exists such a9, then Proposition 7.10 implies thatιG ◦ 9 =
R̂g ·ιG for someg ∈ G. In order to finish the proof we need to check that9 splits as
in (7.4). The conditions on9 in the theorem then imply9∗µ = µ and9∗$ = $
and, hence,9 has the form in (7.4). 2

LetL: G×M → N be a regular lifted invariant. Letc be in the image ofL and
let Lc = L−1{c} be the corresponding invariant level set. Denote the restriction
of µ andw to Lc by µ̃ andw̃. The submanifoldLc is G invariant and the local
diffeomorphisms ofLc which preserve the restricted invariants̃w and formsµ̃
coincide with the action ofG on Lc. That is{µ̃, w̃} forms an (overdetermined)
G-coframe onLc. Now let R = (ιG)

−1(Lc) ⊂ G × X, and similarly forR ⊂
G×X.

PROPOSITION 7.12.Under the above hypothesis, the embedded submanifoldsX

andX are equivalent if and only if there exists a diffeomorphism9̃: R→ R such
that

9̃∗I = I, 9̃∗ ω = ω,
whereI, I andω, ω are the pull-backs of the restricted invariants̃w and forms̃µ
by ιG andιG respectively.

The proof is similar to that in Proposition 7.11.

Remark.If the functionL defining the invariant submanifoldLc is of rank
r = dimG in the vertical direction for the projectionπM : G × M → M then
Theorem 7.12 is resolved by Theorem 7.7.

Remark.The transformations inGS determine symmetries of the restricted co-
frame onG × X. However, since at leastp of the invariantsI are automatically
functionally independent, dimGS 6 dimG, as it should be.

Therefore, regularization can be used to replace the equivalence ofp-dimension-
al submanifoldsS ⊂ M under a nonfree action ofG by equivalence of(p +
r)-dimensional submanifoldsSG ⊂ B under the free regularizedG action. This
approach avoids the use of differential invariants, and will also take care of singular
submanifolds, since the lifted submanifoldR is always regular. Incidentally, Propo-
sition 7.12 can be used to justify partial normalization, as discussed in Section 16
below, while the preceding remark can be used to justify complete normalization.
This alternative method certainly warrants further investigation.
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8. Jet Bundles

The results in the preceding sections lead to a complete construction of a moving
frame in the case when the group acts freely on the underlying manifold. If the
group does not act freely, then an ordinary moving frame does not exist, and one
needs to prolong to some jet space of suitably high order before the procedure can
be applied. In such cases, the higher order moving frame will naturally lead to
the differential invariants for the transformation group. We begin by reviewing the
basics of jet bundles, cf. [17, 18].

Given a manifoldM, we let Jn = Jn(M,p) denote thenth order (extended) jet
bundle consisting of equivalence classes ofp-dimensional submanifoldsS ⊂ M

under the equivalence relation ofnth order contact, cf. [16, 17, Chapter 3]. In
particular, J0 = M. We let jnS ⊂ Jn denote then-jet of the submanifoldS; more
explicitly, the parametrization mapι: X → S ⊂ M induces a parametrization
jnι: X → jnS ⊂ M. The fibers ofπn0 : Jn → M are generalized Grassmann mani-
folds [16]. Adifferential functionof ordern is a scalar-valued functionF : Jn→ R.
Sometimes, it is convenient to work with the infinite jet bundle J∞ = J∞(M,p),
which is defined as the inverse limit of the finite order jet bundles under the stan-
dard projectionsπkn : Jk → Jn, k > n. Functions and differential forms on J∞ are
obtained from their finite-order counterparts, where we identify a formω on Jn

with its pull-backs(πkn )
∗ω on Jk for anyk > n, and hence with a differential form

on J∞. For further details on infinite jet bundles, see [1, 26].
We introduce local coordinatesz = (x, u) onM, considering the firstp com-

ponentsx = (x1, . . . , xp) as independent variables, and the latterq = m − p
componentsu = (u1, . . . , uq) as dependent variables. Splitting the coordinates
into independent and dependent variables has the effect of locally identifyingM

with an open subset of a bundleE = X × U ' Rp × Rq. Sectionsu = f (x)

of E correspond top-dimensional submanifoldsS that are transverse with respect
to the horizontal forms dx = {dx1, . . . ,dxp}, as in Definition 7.3. The induced
coordinates on the jet bundle Jn are denoted byz(n) = (x, u(n)), with components
uαJ representing the partial derivatives of the dependent variables with respect to the
independent variables up to ordern. HereJ = (j1, . . . , jk) is a symmetric multi-
index of orderk = #J , with 1 6 jν 6 p. The (x, u(n)) define local coordinates
on the open, dense subbundle JnE ⊂ Jn(M,p) determined by the jets of trans-
verse submanifolds, or, equivalently, local sectionsu = f (x). In the limit, we let
z(∞) = (x, u(∞)) denote the corresponding coordinates on J∞E ⊂ J∞(M,p), con-
sisting of independent variablesxi , dependent variablesuα, and their derivatives
uαJ , α = 1, . . . , q, 06 #J , of arbitrary order.

The intrinsic geometry of jet space is governed by a fundamental collection of
differential forms.

DEFINITION 8.1. A differential formθ on the jet space Jn(M,p) is called acon-
tact formif it is annihilated by all jets, so that(jnι)∗θ = 0 for everyp-dimensional
submanifoldS = ι(X) ⊂ M.
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The subbundle of the cotangent bundleT ∗Jn spanned by the contact one-forms
will be called thenth ordercontact bundle, denoted byC(n). The infinite contact
bundleC(∞) ⊂ T ∗J∞ is a codimensionp subbundle ofT ∗J∞. (This result is not
true for finite-order contact subbundles, which is one of the main reasons for going
to infinite order.) In terms of local coordinates(x, u(∞)), every contact one-form
can be written as a linear combination of thebasic contact forms

θαJ = duαJ −
p∑
i=1

uαJ,i dx
i , α = 1, . . . , q, 06 #J. (8.1)

Combining the horizontal coordinate one-forms dxi with the basic contact forms
θαJ produces the local coordinate coframe on J∞:

dx = {dx1, . . . ,dxp}, θ (∞) = {. . . , θαJ , . . .}. (8.2)

Therefore, choosing local coordinates onM induces a splittingT ∗J∞ = H⊕C(∞)
of the cotangent bundle intohorizontaland contact orvertical subbundles, withH
spanned by the horizontal one-forms dx. Let πH : T ∗J∞ → H andπV : T ∗J∞ →
C(∞) be the induced projections, so that any one-formω = ωH + ϑ splits into
uniquely defined horizontal and vertical components, where

ωH = πH(ω) =
p∑
i=1

Pi(x, u
(n))dxi (8.3)

is a horizontal one-form, and

ϑ = πV (ω) =
∑
α,J

Qα
J (x, u

(n)) θαJ (8.4)

is a contact form. Ifω is a one-form on Jn then, typically, its horizontal component
ωH is a one-form on Jn+1.

The splitting ofT ∗J∞ induces a bi-grading of the differential forms on J∞. The
differential d on J∞ naturally splits into horizontal and vertical components, d=
dH + dV , where dH increases horizontal degree and dV increases vertical degree.
Closure, d◦ d= 0, implies that dH◦dH = 0= dV ◦dV , while dH◦dV = −dV ◦dH . In
particular, the horizontal ortotal differentialof a differential functionF : Jn → R
is the horizontal one-form

dHF =
p∑
i=1

(DiF )dxi (8.5)

on Jn+1, where

Di = ∂

∂xi
+

q∑
α=1

∑
J

uαJ,i
∂

∂uαJ
(8.6)
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denotes the usual total derivative with respect toxi , which can be viewed as a
vector field on J∞E. Similarly, the vertical differential of a functionF(x, u(n)) is
the contact form

dV F =
p∑
i=1

∑
K

∂F

∂uαK
θαK. (8.7)

DEFINITION 8.2. A total differential operatoris a vector field on J∞ which lies
in the annihilator of the contact bundleC(∞).

PROPOSITION 8.3.Every total differential operator has the form

D =
p∑
i=1

Qi(x, u
(n))Di, (8.8)

whereQ1, . . . ,Qp are differential functions.

The preceding construction forms the foundation of the variational bicomplex
that is of fundamental importance in the study of the geometry of jet bundles,
differential equations and the calculus of variations; see [1, 26, 29] for details.

9. Prolonged Transformation Groups

Any transformation groupG acting onM preserves the order of contact between
submanifolds. Therefore, there is an induced action ofG on thenth order jet bundle
Jn(M,p) known as thenth prolongationof G. Alternatively, one can characterize
the prolonged group transformations as the unique lifted maps on the jet bundle
that preserve the space of contact forms.

DEFINITION 9.1. A map9: Jn → Jn is acontact transformationif it preserves
the ordern contact subbundle:9∗C(n) ⊂ C(n).

PROPOSITION 9.2.If ψ : M →M is a local diffeomorphism, then itsnthprolong-
ation is the unique contact transformationψ(n): Jn → Jn that satisfiesψ ◦ πn0 =
πn0 ◦ ψ(n).

We denote the prolonged group action on Jn byG(n). Note that ifG acts glob-
ally on M, then its prolonged actionG(n) is also a global transformation group
on Jn(M,p), but, generally only a local transformation group on the coordinate
subbundles JnE sinceG may not preserve transversality.

Remark.Our methods also apply, with minor modifications, to more general
contact transformation groups. Bäcklund’s Theorem, cf. [18], implies that these
reduce to prolonged point transformation groups onM, or, in the codimension 1
case, prolonged first order contact transformation groups.
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Let us choose a basis{v1, . . . , vr} for the Lie algebrag of infinitesimal gener-
ators onM, and let{pr(n) v1, . . . ,pr(n) vr} denote the corresponding the infinites-
imal generators of the prolonged group actionG(n). In terms of local coordinates
(x, u(∞)) on J∞, we obtain pr(n) vκ by truncating the infinitely prolonged vector
field

prvκ =
p∑
i=1

ξ iκ(x, u)
∂

∂xi
+

+
q∑
α=1

∑
j=#J>0

ϕαJ,κ(x, u
(j))

∂

∂uαJ
, κ = 1, . . . , r, (9.1)

at ordern. The coefficients of (9.1) are explicitly determined by the standard
prolongation formula [18]:

ϕαJ,κ = DJQ
α
κ +

p∑
i=1

ξ iκ u
α
J,i, (9.2)

where

Qα
κ (x, u

(1)) = ϕακ (x, u) −
p∑
i=1

ξ iκ(x, u) u
α
i (9.3)

is thecharacteristicof vκ .
The moving frame construction in Section 4 can be applied to the prolonged

group actionG(n) provided it acts (locally) freely on Jn. Therefore, we need to
understand the basic geometry of the prolonged action in order to understand the
full range of applicability of the higher order moving frame construction.

DEFINITION 9.3. GivenG acting onM, we letsn denote the maximal orbit di-
mension of the prolonged actionG(n) on Jn. Thestable orbit dimensions = maxsn
is the maximum prolonged orbit dimension. Thestabilization orderof G is the
minimaln such thatsn = s.

A fundamental stabilization theorem due to Ovsiannikov [22], completely char-
acterizes the stable orbit dimension; see also [18, 20] for further details.

THEOREM 9.4. A Lie groupG acts locally effectively on subsets ofM if and only
if its stable orbit dimension equals its dimension,s = r = dimG.

DEFINITION 9.5. Theregular subsetVn ⊂ Jn is the open subset consisting of
all prolonged group orbits of dimension equal to the stable orbit dimension. The
singular subsetis the remainder,Sn = Jn \Vn, which is the union of allG(n) orbits
of less than maximal dimension.
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Note that, by this definition,Vn = ∅ andSn = Jn if n is less than the stabi-
lization order ofG(n). If G acts analytically, thenVn is a dense open subset of Jn

for n greater than or equal to the stabilization order. The singular subsetSn can
be characterized by the vanishing of the Lie determinant or its generalizations, cf.
[18, Chap. 6]. A pointz(n) ∈ Jn will be called aregular jetprovidedz(n) ∈ Vn or,
equivalently, the prolonged orbit passing throughz(n) has dimensionr = dimG,
assumingG acts locally effectively on subsets. The stabilization Theorem 9.4
combined with Proposition 2.5 immediately implies the freeness of the prolonged
action on the regular subset of jet space.

PROPOSITION 9.6. If G acts locally effectively on subsets, thenG acts locally
freely on the regular subsetVn ⊂ Jn.

Remark.It would be nice to know thatG(n) acts freely on (a dense open subset
of) Vn providedn is sufficiently large. We do not know a general theorem that
guarantees the freeness of prolonged group actions, although it seems highly un-
likely, particularly in the analytic category, that a group acts only locally freely on
all of Vn whenn is large.

DEFINITION 9.7. A submanifoldS ⊂ M is order n regular if j nS ⊂ Vn. A
submanifoldS ⊂ M is totally singular if j nS ⊂ Sn for all n = 0,1, . . . .

The characterization of submanifolds which are singular to all orders is of im-
portance for understanding the range of validity of the moving frame method. The
following theorem can be found in [20].

THEOREM 9.8. A submanifoldS ⊂ M is totally singular if and only if its isotropy
subgroupGS does not act locally freely onS itself.

EXAMPLE 9.9. Consider the special affine group SA(2) = SL(2) n R2 acting
on the planeM = R2 via z 7→ Az + b, where detA = 1. The totally singular
curves are the straight lines, the isotropy subgroup consists of translations, shears,
and unimodular scalings in the direction of the line. In terms of the coordinates
z = (x, u), the singular subset of Jn is given by

Vn = {(x, u(n)) |uxx = uxxx = · · · = un = 0}, (9.4)

whereun = dnu/dxn. A curveu = f (x) is totally singular at a point(x0, f (x0)) if
and only iff (n)(x0) = 0 for all n > 2. In particular, an analytic curve that is totally
singular at a point is necessarily a straight line.

The full affine group A(2) is interesting. Here the totally singular curves are the
parabolas and the straight lines. The isotropy group of a parabola, sayu = x2, is
the two-dimensional non-Abelian subgroup(x, u) 7→ (λx+µ, λ2u+2λµx+µ2).
In this case the singular subset of Jn is also determined by the total derivatives of
the Lie determinant

Vn = {(x, u(n)) ∣∣Dn−4
x

[
uxxuxxxx − 5

3u
2
xxx

] = 0
}
. (9.5)
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The parabolas and straight lines form the general solution to the affine Lie deter-
minant equationuxxuxxxx = 5

3u
2
xxx.

Let us now quickly review the standard theory of differential invariants for Lie
transformation groups; see [18, Chapter 5] for details.

DEFINITION 9.10. A differential invariant is a (locally defined) scalar differ-
ential functionI : Jn → R which is invariant under the action ofG(n), so that
I (g(n) · z(n)) = I (z(n)) for all g ∈ G and allz(n) ∈ Jn where the equation is defined.

AssumingG acts locally effectively on subsets, there are

in = dim Jn − dimG = p + q
(
p + n
n

)
− r (9.6)

functionally independent differential invariants of order6 n near any pointz(n)

∈ Vn.

Remark.If n is less that the stabilization order, then we replacer in (9.6) by the
maximal orbit dimension ofG on Jn and restrictz(n) to lie in the open subset of Jn

where the prolonged orbits ofG(n) have maximal dimension.

The basic method, due to Lie and Tresse [25], for constructing a complete
system of differential invariants is to use invariant differential operators. A total
differential operator (8.8) is said to beG-invariant if it commutes with the pro-
longed action ofG. The most effective way to construct such operators relies on a
suitablyG-invariant basis for the horizontal one-forms on the jet space.

DEFINITION 9.11. A differential one-formω on Jn is calledcontact-invariant
if and only if, for everyg ∈ G, we have(g(n))∗ω = ω + θg for some contact
form θg. A horizontal contact-invariant coframeon Jn is a collection ofp linearly
independent horizontal one-forms which are contact-invariant under the prolonged
action ofG(n).

For brevity we shall usually drop the adjective ‘horizontal’ in the description
of contact-invariant coframes. Contact-invariant coframes are the jet space coun-
terparts of the differential geometric coframes discussed in Section 5. Note that
a contact-invariant coframe only forms a coframe on the horizontal subbundle
H ⊂ T ∗J∞. A full coframe on J∞ requires additional contact forms; see below.

PROPOSITION 9.12.If I is any differential invariant, its horizontal differential
dHI is a contact-invariant one-form.

Thus, if we knowp suitably independent differential invariants, we can con-
struct a horizontal contact-invariant coframe. However, this approach is usually
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not the best method for determining such coframes. IfF(x, u(n)) is any differen-
tial function, we can rewrite its horizontal differential in terms of the horizontal
coframe as

dHF =
p∑
j=1

(DjF )ω
j . (9.7)

The resultingG-invariant total differential operatorsD1, . . . ,Dp are the jet space
counterparts of the usual coframe derivatives, cf. (5.5). In local coordinates, sup-
pose

ωi =
p∑
j=1

P ij (x, u
(n))dxj , i = 1, . . . , p, (9.8)

where the coefficient matrixP = (P ij ) is nonsingular. The corresponding invariant
differential operators are then given by

Dj =
p∑
i=1

Qi
j(x, u

(n))Di , j = 1, . . . , p, (9.9)

with inverse coefficient matrixQ = (Qi
j ) = P−1. If we consider the coordinate

one-forms dx = (dx1, . . . ,dxp)T and total derivativesD = (D1, . . . ,Dp)
T as

column vectors, then (9.8) is written asω = P · dx, while (9.9) becomesD =
QT ·D = P−T ·D. The invariant differential operators form an invariant ‘horizontal
frame’ on J∞, cf. [15].

Any invariant differential operator maps differential invariants to higher order
differential invariants, and thus, by iteration, produces hierarchies of differential
invariants of arbitrarily large order. In this way, a complete list of differential invari-
ants can be produced by successively differentiating a finite number of differential
invariants, which we call agenerating systemof differential invariants. We use the
notationDJ = Dj1 · · ·Djk , 1 6 jν 6 p, denote the correspondingkth order
invariant differential operators.

THEOREM 9.13. Suppose thatG is a transformation group, and letn be its order
of stabilization. Then, in a neighborhood of any regular jetz(n) ∈ Vn, there exists
a contact-invariant coframe{ω1, . . . , ωp}, and corresponding invariant differen-
tial operatorsD1, . . . ,Dp. If I (z(k)) is a differential invariant, then so isDJ I

for any multi-indexJ . Moreover, there exists a generating system of functionally
independent differential invariantsI1, . . . , Il, of order at mostn + 1, such that,
locally, every differential invariant can be written as a function of the differentiated
invariants{DJ Iν | ν = 1, . . . , l, #J > 0}.

See [22, p. 320] and [18, Theorem 5.49] for more details. The theorem is mis-
stated in [18] – the order of the fundamental differential invariants should be at
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mostn + 1, notn + 2. Except in the case of curves, wherep = 1, the precise
number of differential invariants required in a generating system is not known. A
refinement of Theorem 9.13 will be proved below; see Theorem 13.1.

The invariant differential operators coming from a general contact-invariant
coframe do not necessarily commute. The commutation formulae (5.6) for ordinary
coframe derivatives are an immediate consequence of the closure identity d2 = 0.
Similarly, if ω is the contact-invariant coframe, then

dHω
k = −

∑
i<j

Akijω
i ∧ ωj, k = 1, . . . , p, (9.10)

where the coefficientsAkij = −Akji are differential invariants. Thus, applying dH to
(9.7) produces the commutation formulae

[Di ,Dj ] =
p∑
i=1

AkijDk, i, j = 1, . . . , p, (9.11)

for the associated invariant differential operators. If all the coframe forms are
constructed from differential invariants, i.e.,ωk = dHI k, k = 1, . . . , p, then
dHωk = 0, and hence the invariant differential operators all commute in this
particular case. The commutation formula (9.11) implies that a complete system
of higher order differential invariants can be obtained by only including the differ-
entiated invariantsDJ Iν corresponding to nondecreasing multi-indices 16 j1 6
j2 6 · · · 6 jk 6 p. However, even with this proviso, the differentiated invariants
DJ Iν are not necessarily functionally independent.

DEFINITION 9.14. Given a functionally independent generating system of dif-
ferential invariantsI1, . . . , Ik, a syzygyis a functional dependency among the dif-
ferentiated invariants:H(. . .DJ Iν . . .) ≡ 0.

There are two types of syzygies, the first arising from the commutation rules
for the invariant differential operators, and the second ‘essential syzygies’ are
where the functionH only depends on the differentiated invariantsDJ Iν having
nondecreasing multi-indicesJ . In Theorem 13.4 below, we shall provide a precise
classification of all such syzygies.

EXAMPLE 9.15. An elementary example is provided by the three-parameter group
(x1, x2, u) 7→ (λx1 + a, λx2, u + b) acting onM = R3. The one-formsω1 =
(x2)−1 dx1, ω2 = (x2)−1 dx2 form a contact-invariant coframe, with invariant dif-
ferential operatorsD1 = x2 D1, D2 = x2 D2. We note the commutation formula
[D1,D2] = −D2. The first-order differential invariantsI1 = x2u1 andI2 = x2u2

form a generating system, andIijk = (D1)
j (D2)

kIi, i = 1,2, j + k > 0, form
a complete system of differential invariants. In this case there is a single essential
syzygy,D2I1 = D1I2 − I1, from which all higher-order syzygies can be deduced
by invariant differentiation.
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Remark.For curves in anm-dimensional manifold, one requiresk = m − 1
generating differential invariants, and a single invariant differential operatorD.
Moreover, in this case, there are no syzygies among the differentiated invariants
DkIν, cf. [11, 18].

10. Higher Order Regularization

We are now in a position to describe the general version of our moving frame
construction. The key idea is to apply the regularization technique to the prolonged
group action on the extended jet bundles over the manifoldM. All of our earlier
constructions (which describe the order zero case) can be immediately applied to
this particular type of transformation group action. Moving frames can be com-
puted provided the prolonged action is (locally) free, i.e., on the regular subset
of Jn. In this manner, we shall be able to construct a higher-order moving frame
associated with all but the totally singular submanifolds of the original space.

We assume thatG acts locally effectively on subsets ofM. For simplicity,
we only discuss the right regularization of the prolonged group action on the jet
bundle Jn = Jn(M,p) corresponding top-dimensional submanifolds ofM. The
left counterparts can be simply obtained by applying the group inversion.

DEFINITION 10.1. Thenth orderregularized jet bundleis the trivial left principal
bundleπn: B(n) = G × Jn → Jn. The nth order (right)regularization of the
prolonged group action on Jn is the action ofG onB(n) given by

R(n)g (h, z
(n)) = R(n)(g, (h, z(n)))

= (h · g−1, g(n) · z(n)), g ∈ G, (h, z(n)) ∈ B(n). (10.1)

Theorem 3.2 implies that the regularized action onB(n) is both free and regular.

DEFINITION 10.2. A lifted differential invariantis a (locally defined) invariant
functionL: B(n)→ N .

A complete system of functionally independent lifted differential invariants is
provided by the components of the ordern evaluation map

w(n) = g(n) · z(n). (10.2)

Clearlyw(n): B(n)→ Jn is invariant under the lifted action (10.1). As in Section 3,
every lifted differential invariant can be locally written as a function of the fun-
damental lifted differential invariantsw(n). In particular, an ordinary differential
invariant I : Jn → R also defines a lifted differential invariantL = I ◦ πn, and
hence can also be locally expressed as a function of thew’s; conversely, any lifted
invariantL(g, x, u(n)) that does not depend on theg coordinates automatically
defines an ordinary differential invariant. Our simple replacement Theorem 3.7
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immediately applies to the construction of differential invariants from their lifted
counterparts.

THEOREM 10.3. Let I (z(n)) be an ordinary differential invariant. Then we can
write I (z(n)) = I (g(n) ·z(n)) as the same function of the lifted differential invariants.

Remark.In Riemannian geometry, Theorem 10.3 reduces to the striking Thomas
Replacement Theorem [24, p. 109], which is proved by appealing to normal coor-
dinates. See [2] for recent applications of Thomas’ result.

EXAMPLE 10.4. Consider the (standard) action of the Euclidean group SE(2) on
M = R2. Introducing local coordinates(x, u), the second order prolongation maps
a point(x, u, ux , uxx) ∈ J2 to(

x cosφ − u sinφ + a, x cosφ + u sinφ + b,
sinφ + ux cosφ

cosφ − ux sinφ
,

uxx

(cosφ − ux sinφ)3

)
, (10.3)

reproducing the action (4.12). The second-order lifted invariants (10.2), which we
denote asw(2) = (y, v, vy, vyy), are the components of the transformation formulae
(10.3). The Euclidean curvature differential invariant can be constructed in terms
of the lifted invariants:

κ = vyy

(1+ v2
y)

3/2
= uxx

(1+ u2
x)

3/2
. (10.4)

The Replacement Theorem 10.3 guarantees that the formula forκ in terms of the
usual jet coordinates(x, u, ux, uxx) is the same functional relation as its formula
in terms of the lifted invariants(y, v, vy, vyy).

The regularization construction extends to the infinite order regularized jet bun-
dle π∞: B(∞) = G × J∞ → J∞ in the obvious manner. The pull-back of the
contact bundleC(∞) ⊂ T ∗J∞ defines the contact subbundle? C(∞) ⊂ T ∗B(∞).
Similarly, the pull-back viaπG: B(∞)→ G of the cotangent bundle ofG, spanned
by its Maurer–Cartan forms, define a second intrinsic subbundle ofT ∗B(∞), which
we also denote byT ∗G. The product bundleT ∗G× C(∞) forms a codimensionp
subbundle of the cotangent bundleT ∗B(∞). SinceB(∞) = G× J∞ is a Cartesian
product, the differential onB(∞) naturally splits into jet and group components,
d= dJ + dG.

PROPOSITION 10.5.If ω is aG-invariant differential form onB(∞), then so are
bothdJω anddGω. In particular, ifL(g, z(n)) is a lifted differential invariant, then
its jet and group differentials,dJL anddGL, are invariant one-forms onB(∞).
? For simplicity, we drop explicit reference to the pull-back via the projection map.
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Let us now discuss the local coordinate expressions for the regularized action
and its invariants. As above, the introduction of local coordinates(x, u(∞)) on J∞
produces a local coframe onB(∞) consisting of the horizontal forms dx, the system
of basic contact formsθ , along with the right-invariant Maurer–Cartan formsµ, all
pulled back toB(∞). The choice of horizontal complement produces a splitting of
the differential onB(∞) into horizontal, vertical, and group components, so that we
have the more refined decomposition

dω = dJω + dGω = dHω + dV ω + dGω (10.5)

for any differential form onB(∞). Note also that

dH ◦ dH = 0, dV ◦ dV = 0, dG ◦ dG = 0,

dH ◦ dV = −dV ◦ dH , dH ◦ dG = −dG ◦ dH,

dV ◦ dG = −dG ◦ dV .

(10.6)

Remark.We have not investigated the topological and variational aspects of the
induced ‘regularized variational tricomplex’ governed by the differentials dH , dV
and dG.

In particular, the horizontal and the vertical differentials of a functionF(g, x,

u(n)) have the same formulae (8.5), (8.7), as before, where the total derivatives
Di have their usual coordinate formulae, i.e., there are no derivatives with respect
to theg coordinates. Note that the horizontal and vertical differentials of a lifted
invariant arenot, in general,G-invariant one-forms onB(∞). However, the hori-
zontal differential does satisfy the weaker, but very important, invariance property
of Definition 9.11.

PROPOSITION 10.6.If L(g, z(n)) is a lifted invariant, then its horizontal differ-
ential dHL is a contact-invariant one-form.

The standard jet space coordinates(x, u(∞)) are not well adapted to the lifted
group action onB(∞), and we shall replace them by a fundamental system of
invariant coordinates based on the fundamental lifted differential invariants. The
introduction of local independent and dependent variable coordinatesz = (x, u)

onM induces a local identification with a trivial bundleE = X×U . This induces a
splitting of the fundamental zeroth order lifted invariantsw = (w1, . . . , wm) = g·z
into two components. In the(x, u) coordinates, we write? w = (y, v), where

? For simplicity, we have chosen to split the lifted invariants into independent and dependent
components in the same way as we split the unlifted variables. Actually, one can choose alternative
splittings ofw intop independent andq dependent components, although one must then accordingly
modify the required transversality conditions.
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y = (y1, . . . , yp) will be considered as ‘lifted independent variables’, andv =
(v1, . . . , vq), as ‘lifted dependent variables’. Let

ηi = dHy
i =

p∑
j=1

(Djy
i)dxj , i = 1, . . . , p, (10.7)

denote the horizontal differentials of lifted independent variables. The coefficient
matrix Dy = (Djy

i ) is obtained by total differentiation of the lifted invariantsy
treating the group parameters as constants, so the lifted horizontal formsη = (Dy)·
dx are defined on the first-order regularized jet spaceB(1). Since the functionsyi

are lifted invariants, Proposition 10.6 implies that the one-formsη are contact-
invariant under the lifted action ofG on B(1). Theη’s are linearly independent if
and only if they’s have nonvanishing total Jacobian determinant:

detDy = D(y1, . . . , yp)

D(x1, . . . , xp)
= det

(
Djy

i
) 6= 0. (10.8)

This condition can be geometrically characterized as follows.

PROPOSITION 10.7.The horizontal one-formsη = (Dy) · dx are linearly inde-
pendent,η1 ∧ · · · ∧ ηp 6= 0, on the open subsetW (1) ⊂ B(1) determined by the
1-jets of submanifoldsS such that bothS andg · S are transverse with respect to
the given coordinates onM. Thus,W (1) = {(g, z(1)) ∈ G× J1E | g(1) · z(1) ∈ J1E}.
At such points, we callη = (η1, . . . , ηp) the lifted (horizontal) contact-invariant
coframefor the given coordinate chart.

The corresponding invariant differential operators are readily found. As in the
usual (unlifted) version, (9.7), we write the total differential of any scalar function
F : B(n)→ R in invariant form

dHF =
p∑
j=1

(EjF ) η
j (10.9)

with respect to the prescribed contact-invariant coframe. The corresponding total
differential operators areE = (Dy)−T ·D, or, explicitly,

EjF = D(y1, . . . , yj−1, F, yj+1, . . . , yp)

D(y1, . . . , yp)
=

p∑
i=1

Zij (g, x, u
(1))Di , (10.10)

whereZ = (Zij ) = (Dy)−1. Thus, we can identify thelifted invariant differential
operator Ej = Dyj with total differentiation with respect to the lifted invariant
yj ; in particular,Ej yi = δij . Note that the lifted invariant differential operators do
not involve differentiation with respect to the group parameters. A very important
point is that, unlike the usual invariant differential operators, the lifted invariant
differential operatorsalwaysmutually commute:[

Ei ,Ej
] = 0. (10.11)
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This follows from the closure of the horizontal differential, dH ◦ dH = 0, and is an
immediate consequence of the fact that the lifted contact-invariant coframe (10.7)
is the horizontal derivative of lifted invariants; see the discussion following (9.11).
We letEK = Ek1 · · · · · Ekl denote the associated higher-order invariant differential
operator; Equation (10.11) shows that the order of the invariant differentiation is
irrelevant.

The lifted invariant differential operators can be used to compute higher-order
lifted differential invariants. The basic result follows immediately from (10.9), the
contact-invariance of the formsη, along with the fact that the prolonged group
transformations preserve the contact ideal.

PROPOSITION 10.8.If L: B(n) → R is any lifted differential invariant, then so
are its invariant derivativesEKL: B(n+k)→ R, wherek = #K > 0.

If we successively apply the invariant differential operators associated with the
first p lifted invariantsy = (y1, . . . , yp) to the remaining zeroth order invariants
v = (v1, . . . , vq), we recover all the higher-order lifted invariantsv(n). Since
w(n) = g(n) · z(n), an alternative way of viewing this result is that the process
of lifted invariant differentiation produces the explicit formulae for the prolonged
group transformations, thereby implementing the standard process of implicit dif-
ferentiation, cf. [17].

LEMMA 10.9. The components of thenth order lifted invariantw(n) consist of
the basic invariantsw = (y, v) together with the higher-order lifted differential
invariants

vαK = EKv
α, α = 1, . . . , q, #K 6 n. (10.12)

Proof.For fixedg, the mapw(n): Jn→ Jn is a contact transformation on the jet
bundle, hence the pull-back(w(n))∗ maps contact forms to contact forms. Now,

(w(n))∗θαK = dJ v
α
K −

p∑
i=1

vαK,i dJ y
i, α = 1, . . . , q, #K 6 n− 1. (10.13)

The right-hand side will be a contact form if and only if its horizontal component
vanishes, so that

dHv
α
K =

p∑
i=1

vαK,iη
i, α = 1, . . . , q, #K 6 n− 1. (10.14)

Comparing (10.14) with (10.9) completes the proof. 2

EXAMPLE 10.10. For the (standard) action of the Euclidean group SE(2) on
M = R2, the zeroth order lifted invariantsw = (y, v) are just the group trans-
formation formulae:

y = x cosφ − u sinφ + a, v = x cosφ + u sinφ + b.
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The lifted horizontal contact-invariant form is

η = dHy = (cosφ − ux sinφ)dx,

which is well-defined providedφ does not rotate the curve to have a vertical tan-
gent. Therefore

E = Dy = 1

cosφ − ux sinφ
Dx

is the lifted invariant differential operator. The higher-order lifted invariants are
obtained by successively applyingE to the other zeroth-order lifted invariantv.
The first two are

vy = sinφ + ux cosφ

cosφ − ux sinφ
, vyy = uxx

(cosφ − ux sinφ)3
. (10.15)

As remarked above, the one-formsηi = dHyi are not strictly invariant under
the prolonged group action. However, we can use their invariant counterparts

τ i = dJ y
i = dHy

i + dV y
i = ηi + χi, i = 1, . . . , p, (10.16)

to define a fully invariant coframe on the regularized jet bundleB(∞). In (10.16),
theχi are contact forms that are not invariant under the lifted action ofG.

There are two methods for constructing invariant contact forms. First, since the
horizontal component of the invariant one-form on the right-hand side of (10.13)
vanishes by virtue of (10.14), its vertical component

ϑαK = dJ v
α
K −

p∑
k=1

vαK,i dJ y
i

= dV v
α
K −

p∑
k=1

vαK,i dV y
i, α = 1, . . . , q, (10.17)

is an invariant contact form. The resulting collectionϑ = {. . . , ϑαK, . . .} forms a
complete set of lifted invariant contact forms onB(∞). The formsτ ,ϑ are the pull-
backs of the canonical coframe (8.2) by the mapw(∞) modulo the Maurer–Cartan
formsµ.

PROPOSITION 10.11.The collection of one-forms

τ = {τ1, . . . , τp}, ϑ = {. . . , ϑαK, . . .}, µ = {µ1, . . . , µr}, (10.18)

provide an invariant local coframe onB(∞) = G× J∞.

Invariant contact forms can also be found via the process of invariant differen-
tiation.

THEOREM 10.12. Let ϑα define the complete system of invariant zeroth-order
contact forms, as in(10.17)withK = ∅. The higher-order contact forms

ϑαK = EKϑ
α, α = 1, . . . , q, #K > 0, (10.19)
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obtained by Lie differentiating the zeroth-order contact forms provide a complete
list of lifted invariant contact forms.

Proof.Applying dH to (10.17) and using (10.6), we find

dHϑ
α
K = −

p∑
j=1

dV (v
α
K,jη

j )−
p∑

i,j=1

vαK,i,j η
j ∧ dV y

i +
p∑
i=1

vαK,i dV η
i

= −
p∑
j=1

ϑαK,j ∧ ηj . (10.20)

The identity (10.19) follows by pairing (10.20) with the total vector fieldEj . 2

11. Higher Order Moving Frames

The construction of higher-order moving frames proceeds in direct analogy with
the zeroth order version. As usual, for simplicity, we only explicitly treat the right
versions.

DEFINITION 11.1. Annth order (right)moving frameis a map

ρ(n): Jn −→ G (11.1)

which is (locally)G-equivariant with respect to the prolonged actionG(n) on Jn,
and the right multiplication actionh 7→ h · g−1 onG itself.

The corresponding left moving frame of ordern is merely ρ̃ (n)(z(n)) =
ρ(n)(z(n))−1. Note that annth-order moving frame automatically defines a moving
frame on the higher-order jet bundles, namelyρ(n) ◦ πkn : Jk → G, k > n. The
fundamental existence theorem for moving frames is an immediate consequence
of Theorem 4.4.

THEOREM 11.2. If G acts onM, then annth-order moving frame exists in a
neighborhood of any pointz(n) ∈ Vn in the regular component ofJn.

Remark.Proposition 9.6 only guarantees the localG-equivariance of the mov-
ing frame; global equivariance requires thatG(n) act freely onVn.

In particular, the minimal order at which any moving frame can be constructed
is the stabilization order of the group. Indeed, according to the construction in
Section 4, the choice of a cross-sectionK(n) ⊂ Jn to the prolonged group orbits
serves to define a moving frameρ(n) in a neighborhood of any pointz(n) ∈ K(n).
The setL(n) = (w(n))−1K(n) forms the graph of a localG-equivariant section
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σ (n): Jn → B(n), whose moving frame isρ(n) = πG ◦ σ (n). Moreover, composing
σ (n) with w(n) produces the corresponding differential invariants.

DEFINITION 11.3. Thefundamentalnth-order normalized differential invariants
associated with a moving frameρ(n) of ordern (or less) are given by

I (n)(z(n)) = w(n) ◦ σ (n)(z(n)) = ρ(n)(z(n)) · z(n). (11.2)

THEOREM 11.4. If J (x, u(n)) is anynth-order differential invariant, then, locally,
J is a function of the normalizednth order differential invariants, i.e.,J = H ◦I (n).

Remark.The fundamental normalized differential invariants are not necessarily
functionally independent. Indeed, typically we normalize some of the components
of the fundamental lifted invariantw(n) by setting them equal to constants; the
corresponding normalized differential invariants will then, of course, also be con-
stant. However, Theorem 4.5 does imply that thenth order normalized differential
invariants containall of thenth order differential invariants. In particular, any lower
order differential invariants, including those on jet bundles whereG does not yet
act freely, will appear as functional combinations of theI (n).

As in the order zero case, given an arbitrary differential functionF : Jn → R,
thenL = F ◦ w(n): B(n) → R defines a lifted differential invariant, and hence
J = L ◦ σ (n) = F ◦ I (n) defines a differential invariant, called theinvariantization
of F with respect to the given moving frame. Thus a moving frame provides a
natural way to construct a differential invariant from any differential function!
Theorem 10.3 just says that ifF itself is a differential invariant, thenF ◦ w(n)
is independent of the group parameters, and henceJ = F . Thus, invariantization
defines a projection, depending on the moving frame, from the space of differential
functions to the space of differential invariants. One case of interest is thej th total
derivativeDjF(x, u

(n+1)) of a differential functionF(x, u(n)). The corresponding
lifted invariant coincides with thej th invariant derivative of the lifted invariant
L = F ◦ w(n), so thatDjF ◦ w(n+1) = EjL. Consequently, the invariantization of
DjF is given by

EjL ◦ σ (n) = DjF ◦ I (n+1). (11.3)

As in the order zero case, in applications to equivalence problems, one restricts
the moving frame to a submanifold.

DEFINITION 11.5. An nth order moving frame restrictedto a p-dimensional
submanifoldι: X → S ⊂ M whosen-jet jnS lies in the domain of definition
of ρ(n) is defined as the composition

λ(n) = ρ(n) ◦ jnι : X −→ G. (11.4)
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Equivalently, anth order moving frame is a smooth mapλ(n): X → G which
factors through an equivariant map from Jn toG:

Jn
ρ(n)

X

jnι

λ(n)

G

(11.5)

generalizing the order zero construction (4.17). Theorems 4.4 and 9.8 serve to
characterize the submanifolds which admit moving frames.

THEOREM 11.6. A submanifoldS ⊂ M admits a(locally defined) nth-order
moving frame if and only ifS is regular of ordern, i.e., jnS ⊂ Vn.

Thus, in the analytic category, a submanifoldS admits a moving frame (of some
sufficiently high order) if and only if its isotropy subgroupGS acts freely onS.

The practical implementation of the higher-order moving frame construction
relies on the higher order version of the normalization method. Consider a point
z(n) ∈ Vn contained in the regular subset of thenth jet space. According to Propo-
sition 4.10, in a neighborhood ofz(n), we can choose a regular system ofr lifted
differential invariantsL(g, x, u(n)) having maximal rankr = rank dGL = dimG.
The Implicit Function Theorem allows us to solve the normalization equations

L1(g, z
(n)) = c1, . . . , Lr(g, z

(n)) = cr, (11.6)

for the group parametersg in terms ofz(n) provided the normalization constants
c = (c1, . . . , cr) belong to the image ofL. Typically, one choosesL to ber suitable
components of the fundamental lifted differential invariantw(n) = g(n) · z(n) that
have as low an order as possible, subject to the maximal rank condition, although
this is by no means essential to the implementation of the method. The solution
to the normalization equations (11.6) determines annth-order moving frameg =
ρ(n)(x, u(n)). Substituting the formula for the moving frame into the remaining
lifted invariants produces a complete system of differential invariants on the open
neighborhood ofz(n) ∈ Vn whereρ(n) is defined.

In terms of the invariant local coordinatesw(n) = (y, v(n)) on B(n), the fun-
damental normalized differential invariantsI (n) = (σ (n))∗w(n) associated with the
given moving frameg = ρ(n)(x, u(n)) are

J i(x, u(n)) = yi(ρ(n)(x, u(n)), x, u), i = 1, . . . , p,

I αK(x, u
(l)) = vαK(ρ(n)(x, u(n)), x, u(k)), α = 1, . . . , q, k = #K > 0.

(11.7)

In the second formula,l = max{n, k}. As above, some of these may be constant
and/or functionally dependent due to normalizations. However, (11.7) do include a
complete system of differential invariants, meaning that, providedk > n, any other
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kth-order differential invariant can be locally expressed as a function of theJ i and
I αK for #K 6 k.

EXAMPLE 11.7. Consider the elementary similarity groupG = R+ n R2 acting
onM = R2 via

(x, u) 7−→ (αx + a, α3u+ b). (11.8)

If we choosey = αx + a as the lifted independent variable, thenη = dHy = αdx
is the corresponding horizontal invariant form, with invariant differential operator
E = Dy = α−1 Dx. Successively applyingE to the dependent-order zero lifted
invariantv produces the complete system of higher-order lifted invariants:vn =
Env = α3−nun, whereun = Dn

xu, andn > 1. Therefore, onB(4), say, the lifted
invariantsw(4) are

y = αx + a, v = α3u+ b, vy = α2ux, vyy = αuxx,
vyyy = uxxx, vyyyy = α−1uxxxx. (11.9)

The simplest first order moving frame is found by normalizingy = v = 0,ux = 1,
whereby

a = − x√
ux
, b = − u

u3/2
x

, α = 1√
ux
, (11.10)

which is well-defined on the subset̃V1 = {ux > 0}. The resulting normalized
fourth-order differential invariantsI (4) are obtained by substituting (11.10) into the
lifted invariants:

J 1 = 0, I0 = 0, I1 = 1, I2 = uxx√
ux
,

I3 = uxxx, I4 =
√
ux uxxxx.

The moving frame (11.10) applies to curvesu = f (x) provided the tangent is not
horizontal, soux 6= 0. If the curve has a horizontal tangent, then one can construct
a second-order moving frame by using the alternative normalizationvyy = 1, with

a = − x

uxx
, b = − u

u2
xx

, α = 1

uxx
, (11.11)

which is well-defined on the subdomainV2 = {uxx 6= 0} and, hence, applies
to curves with horizontal tangent at a point, but not those with inflection points.
(Curves with horizontal inflection points can be handled by a yet higher-order
normalization.) The moving frame (11.11) leads to a slightly different normalized
fourth-order differential invariantI (4):

J̃ = 0, Ĩ0 = 0, Ĩ1 = ux

u2
xx

, Ĩ2 = 1,

Ĩ3 = uxxx, Ĩ4 = uxxuxxxx,
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all of which are, naturally, functions of the previous normalized differential in-
variants on their common domain of definition. Note that the two moving frames
correspond to different choices of cross-section of J2, namely {(0,0,1, k)} for
(11.10) and{(0,0, k̃,1)} for (11.11).

Remark.In his thesis, I. Lisle [15, Ex. 4.4.21], introduces a ‘naïve elimination
method’ for determining differential invariants that is essentially the same as the
normalization method used here. Our theory of normalization demonstrates how
Lisle’s method can be formalized into a practical and elegant alternative to the
more traditional methods for computing differential invariants.

12. Higher Order Moving Coframes

The final ingredients in our general theory are the jet space counterparts of the mov-
ing coframe forms. These will produce the normalized invariant differential oper-
ators that can be used to recursively construct complete systems of higher-order
differential invariants, and will govern the equivalence and symmetry properties of
submanifolds.

DEFINITION 12.1. Themoving coframeof ordern associated with an ordern
moving frameρ(n): Jn→ G is the extended differential system6(n) = {ζ (n), dI (n),
I (n)} consisting of the pull-backζ (n) = (ρ(n))∗µ of the Maurer–Cartan forms
to Jn, along with thenth-order normalized differential invariantsI (n) and their
differentials.

LEMMA 12.2. Thenth order moving coframe6(n) forms aG(n)-coframe onVn.

In other words,6(n) is involutive and its symmetry group coincides with thenth
prolongation ofG acting on Jn. Lemma 12.2 is a direct consequence of Lemma 6.4.
Any otherG(n)-coframe on Jn is invariantly related to the moving coframe, mean-
ing that its functions are combinations of the differential invariants, and the one-
forms are linear combinations of the moving coframe forms, with differential in-
variant coefficients. A particularly usefulG(n)-coframe can be constructed using
the method in Theorem 6.6.

THEOREM 12.3. Letρ(n): Vn→ G be a right moving frame on thenth jet bundle
overM. The extended coframe0(n) = {γ (n), I (n)} consisting of the normalized
differential invariants

I (n)(z(n)) = ρ(n)(z(n)) · z(n) = (σ (n))∗w(n), (12.1)

and the one-forms

γ (n) = ρ(n)(z(n)) · dz(n) = (σ (n))∗ dJw
(n), (12.2)
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forms aG(n)-coframe onJn and, hence, is invariantly related to the moving coframe
6(n).

EXAMPLE 12.4. Consider the elementary similarity group (11.8). The moving
coframe6(2) is obtained by applying the moving frame map (11.10) to the right
invariant Maurer–Cartan forms

µ1 = dα

α
, µ2 = da − a

α
dα, µ3 = db − 3b

α
dα. (12.3)

The resulting moving coframe forms are

ζ 1 = −dux
2ux

, ζ 3 = − du

u3/2
x

, ζ 2 = − dx√
ux
, ζ 4 = d

(
uxx√
ux

)
,

where the final form is the differential of the fundamental second-order differen-
tial invariantI2 = u−1/2

x uxx . The second-order extended coframe0(2) is obtained
by applying the moving frame map (11.10) to the jet differentials of the lifted
invariants

dJ y = α dx, dJ v = α3 du, dJ vy = α2 dux, dJ vyy = α duxx,

leading to

γ 1 = dx√
ux
, γ 2 = du

u3/2
x

, γ 3 = dux
ux
, γ 4 = duxx√

ux
.

The invariant relation

γ 1 = −ζ 2, γ 2 = −ζ 3, γ 3 = −2ζ 1, γ 4 = ζ 4− I2ζ 1,

between the twoG(2)-coframes follows from (6.4), using the coefficients of the
prolonged infinitesimal generators for the given transformation group.

As in Section 10, we use the local coordinates(x, u(∞)) on J∞ and lifted coor-
dinates(g, y, v(∞)) onB(∞). The pull-back of the lifted contact-invariant coframe
η = dHy under the moving frame section will produce a contact-invariant coframe,
from which we can construct the required invariant differential operators.

DEFINITION 12.5. Thenormalized contact-invariant coframeis the pull-back of
the lifted contact-invariant coframe:

ω = (σ (n))∗η = (σ (n))∗ dHy. (12.4)

LEMMA 12.6. The horizontal one-formsω = (σ (n))∗dHy are linearly indepen-
dent at a pointz(n) in the domain of definition of the moving frame map if and only
if z(n) = jnS|z is then-jet of a transverse submanifoldS ⊂ M.

Proof. In terms of our bundle coordinates, the transversality ofS impliesz(n) ∈
JnE. According to Proposition 10.7, the one-formsη will be linearly independent
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at a point(g, z(n)) ∈ G × JnE ⊂ B(n) if and only if g(1) · πn1 (z(n)) ∈ J1E, which
automatically impliesg(n) · z(n) ∈ JnE. Therefore,ω will be linearly independent
if and only if k(n) = ρ(n)(z(n)) · z(n) ∈ JnE. But, by construction,k(n) ∈ K(n) is the
cross-section representative of the orbit ofG(n) throughz(n) and, hence, lies in the
coordinate chart JnE used to construct the moving frame. 2

In local coordinates, the normalized one-formsω are therefore obtained by
using the moving frame to replace the group parameters in (10.7), so

ωi =
p∑
j=1

Djy
i(ρ(n)(x, u(n)), x, u(n))dxj =

p∑
j=1

P ij (x, u
(n))dxj , (12.5)

whose coefficient matrixP = (σ (n))∗Dy is the pull-back of the total Jacobian
matrix of the independent lifted invariants.

Remark.The coefficientsP ij cannotbe obtained by invariantly differentiating
the normalized invariantsJ i = (σ (n))∗yi ; in other words,ωi 6= dHJ i. Indeed, in
many cases, they’s are normalized to be constant, whereas theω’s are clearly not
zero. This is because the operations of total differentiation and normalizationdo
not commute.

The invariant differential operators associated with the horizontal coframe (12.5)
are obtained by normalizing the lifted invariant differential operators (10.10), so
that theEi on B(∞) project, byσ (n), toG-invariant total differential operators on
J∞. In coordinates,

Di =
p∑
j=1

Q
j

i (x, u
(n))Dj =

p∑
j=1

Z
j

i (ρ
(n)(x, u(n)), x, u(1))Dj , (12.6)

whereQ = P−1 = (σ (n))∗Z can be constructed directly from (10.10).

EXAMPLE 12.7. Consider the similarity group (11.8). Under the first-order mov-
ing frame map (11.10), the lifted horizontal formη = dHy = α dx reduces to
ω = u−1/2

x dx. Similarly the lifted invariant differential operatorE = α−1 Dx

reduces toD = √ux Dx, which maps differential invariants to higher-order differ-
ential invariants. However,D does not directly produce the normalized invariants.
For example,vyy normalizes toI2 = u−1/2

x uxx, but vyyy = E(vyy) normalizes to
I3 = uxxx, which is not the same asDI2 = uxxx+u−1

x u
2
xx. The second-order mov-

ing frame (11.11) produces a different horizontal one-form, namelyω̃ = u−1
xx dx,

whose invariant differential operator̃D = uxx Dx produces yet another hierarchy
of differential invariants, which, naturally, are functions of the normalized dif-
ferential invariants. The explicit formulae relating these different hierarchies of
differential invariants will be found in the next section.
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13. Recurrence Formulae, Commutation Relations, and Syzygies

We have now introduced the basic ingredients in the regularized theory of moving
frames. In this section, we discuss several important consequences of our con-
structions. These include recurrence formulae and general classification results for
differential invariants, commutation formulae for the associated invariant differ-
ential operators, and, finally, a general syzygy classification. The results are all
illustrated at the end of the section by a particular example arising in classical
invariant theory.

An important point, encountered in Example 12.7, is that the normalized invari-
ant differential operators, unlike their lifted counterparts, donot directly produce
the normalized differential invariants. For example, consider the normalized differ-
ential invariantI α = (σ (n))∗vα corresponding to the lifted zeroth-order invariant
vα as in (11.7). Applying an invariant differential operator toI α produces a higher-
order differential invariantDKI

α, but this isnot, in general, equal to its normalized
counterpartI αK = (σ (n))∗vαK = (σ (n))∗[EKvα]. For example, if we normalizevα =
cα, thenI α = cα is constant, and so its derivatives are all zero, but the higher-
orderI αK are generallynot trivial. The goal is to determine a recursive formula for
constructing theI αK directly without having to appeal to the lifted invariants. Our
starting point is formula (10.14), to which we apply the moving frame pull-back
(σ (n))∗. A difficulty is that, while(σ (n))∗ trivially commutes with the differential
d, it doesnot commute with the operations dH and dV . Therefore, we rewrite

dHv
α
K = dvαK − dV v

α
K − dGv

α
K (13.1)

before applying(σ (n))∗. We find

p∑
i=1

I αK,i ω
i = (σ (n))∗(dHvαK)

= dI αK − (σ (n))∗(dV vαK)− (σ (n))∗(dGvαK)
= dHI

α
K − πH

[
(σ (n))∗(dGvαK)

]
=

p∑
i=1

(DiI
α
K) ω

i − πH
[
(σ (n))∗(dGvαK)

]
. (13.2)

The next to last equality is obtained by applying the horizontal projectionπH ,
noting that the left-hand side is a horizontal form. Moreover, the pull-back of any
lifted contact form, such as dV vαK , remains a contact form on J∞. The second
summand in the final line of (13.2) provides the correction terms that relate the
differential invariantsI αK,i andDiI

α
K .

To find the explicit formula for these correction terms, we adapt Theorem 3.10
to the case of thenth order regularized action ofG on B(n). SincevαK is a compo-
nent of the lifted invariantw(n) = g(n) · z(n), Equation (3.8) implies that, at a point
w(n) ∈ B(n), we can write the group differential in terms of the Maurer–Cartan
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forms onB(n):

dGy
i =

r∑
κ=1

ξ iκ(w)µ
κ, i = 1, . . . , p,

dGv
α
K =

r∑
κ=1

ϕαK,κ(w
(k))µκ, α = 1, . . . , r, k = #K. (13.3)

The coefficients in (13.3) are the invariant counterparts of the coefficientsξ iκ(z),
ϕαK,κ(z

(k)) of the prolonged infinitesimal generator prvκ , as given in (9.1). Substi-
tuting (13.3) into (13.2) and its counterpart for dHy

i using (11.7) leads to the key
system of identities

ωi = dHJ
i −

r∑
κ=1

ξ iκ(I
(0))ζ κH , i = 1, . . . , p,

p∑
i=1

I αK,i ω
i = dHI

α
K −

r∑
κ=1

ϕαK,κ(I
(k)) ζ κH , α = 1, . . . , r, k = #K. (13.4)

Hereζ (n)H = {ζ 1
H, . . . , ζ

r
H } = πH(ζ (n)) = πH((ρ(n))∗µ). The coefficients in (13.4)

are obtained by invariantizing the coefficients of the prolonged infinitesimal gener-
ators of the group action (9.1), meaning that we replace the jet coordinatesz(k)

by the fundamental normalized differential invariantsI (k). Note that ifG acts
transitively on Jk, then there are no nonconstantkth-order differential invariants,
and hence in such cases the coefficients of orderk or less will be automatically
constant. The first terms on the right-hand side of (13.4) can be re-expressed in
terms of the contact-invariant coframeω using the associated invariant differential
operators, as in (9.7), so

dHJ
i =

p∑
j=1

(DjJ
i)ωj , dHI

α
K =

p∑
j=1

(Dj I
α
K)ω

j . (13.5)

On the other hand, the horizontal components of the Maurer–Cartan forms can
themselves be written in terms of our contact-invariant coframe,

ζ κH =
p∑
j=1

Kκ
j [I (n+1)(x, u(n+1))]ωj, κ = 1, . . . , r, (13.6)

where the coefficients are certain differential invariants of ordern+1. Substituting
(13.5), (13.6), into (13.2) produces the fundamentalrecurrence formulaefor the
differential invariants:

DjJ
i = δij +Mi

j , Dj I
α
K = I αK,j +Mα

K,j . (13.7)
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The ‘correction terms’, that account for the noncommuting of the processes of
normalization and ‘horizontalization’, are explicitly given by

Mi
j =

r∑
κ=1

ξ iκ(I
(0))Kκ

j (I
(n+1)), i, j = 1, . . . , p,

Mα
K,j =

r∑
κ=1

ϕαK,κ(I
(k))Kκ

j (I
(n+1)), α = 1, . . . , q, #K = k. (13.8)

There are similar recurrence formulae for higher-order differentiated invariants,

DJ I
α
K = I αJ,K +Mα

K,J , (13.9)

where the higher-order correction terms can be determined by iterating the basic
recurrence formulae (13.7).

The coefficientsKκ
j in (13.6) can, in fact, be explicitly determined from a subset

of the identities (13.7). Suppose, for simplicity, that we are normalizingr compo-
nents ofw(n) to be constant. The corresponding invariants,J i and I αK will then
also be constant, and hence the horizontal derivative term on the right hand side of
(13.4) will vanish. For these particular forms, (13.4) reduces to a system ofr linear
equations relating the horizontal moving coframe formsζ 1

H, . . . , ζ
r
H to the contact-

invariant coframe formsω1, . . . , ωp. The coefficients of these linear equations are
differential invariants of order6 n + 1. (On the right-hand side, the coefficients
are of order6 n, while (n + 1)st order differential invariants can appear on the
left.) SinceG(n) acts freely, its infinitesimal generators are linearly independent on
the domain of definition ofρ(n), and hence transversality of the cross-section used
to normalize the differential invariants implies that the coefficient matrix for this
linear system is invertible. Solving for one-formsζH produces the required system
of coefficients in (13.6).

Remark.In the method of moving coframes [9], one normalizes the lifted differ-
ential invariants arising from the linear dependencies among the horizontal compo-
nents of the moving coframe forms. In this case, the coefficients in (13.6) will be
the chosen normalization constants and/or differential invariants. Typically, one is
able to normalize all the coefficients to be constant up until the final step, at which
point the fundamental differential invariants appear as coefficients.

The key observation is that the correction term (13.8) is a (typically nonlinear)
function of the differential invariants of order6 k, providedk > n + 1, wheren
is the order of the chosen moving frame. This immediately implies provides a new
proof, and a refined version of, Theorem 9.13.

THEOREM 13.1. SupposeG acts freely onVn ⊂ Jn. Then, locally, every dif-
ferential invariant onV∞ = (π∞n )−1Vn can be found by successively applying
the invariant differential operatorsD1, . . . ,Dp to a generating set of differential
invariants of order at mostn+ 1, namely the independent components ofI (n+1).
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The commutation formulae (9.11) for the invariant differential operators (12.6)
can now be explicitly determined from the moving frame formulae. In view of
(10.6), (12.4), we can compute

dHω = πH(dω) = πH [(σ (n))∗(d dHy)]
= πH [(σ (n))∗(dG dHy)] = −πH [(σ (n))∗(dH dGy)]. (13.10)

Here we used the fact that dV produces (lifted) contact forms, which do not con-
tribute to the horizontal two-form dHω. Applying dH to (13.3), and noting that
dHµ = 0, we find

dH dGy
k =

r∑
κ=1

[dH ξkκ (w)] ∧ µκ =
p∑
j=1

r∑
κ=1

Ej (ξ
k
κ (w)) η

j ∧ µκ, (13.11)

whereξkκ (z) is the coefficient of∂/∂xk in the infinitesimal generatorvκ . Combining
(11.3), (13.6), (13.10) and (13.11), proves that

dHω
k =

p∑
i,j=1

r∑
κ=1

Kκ
i [I (n+1)](Dj ξ

k
κ )[I (1)]ωi ∧ ωj,

where(Diξ
k
κ )[I (1)] is obtained by substituting the first-order normalized differen-

tial invariant into the total derivative Diξ kκ (z
(1)) of the coefficientξkκ of the infini-

tesimal generatorvκ . Therefore, by (9.10), the commutation coefficients in (9.11)
are explicitly given by

Akij =
r∑
κ=1

Kκ
j [I (n+1)](Diξ

k
κ )[I (1)] −Kκ

i [I (n+1)](Dj ξ
k
κ )[I (1)]. (13.12)

Our fundamental recurrence formulae (13.7) also provide a resolution of the
syzygy problem for differential invariants. First, in the normalization context, the
solution is now trivial. According to our general construction, given a moving
frame of ordern, the normalized differential invariants (11.7) provide a complete
system of differential invariants of orderk > n. Assume, for simplicity, that the
normalization consists of settingr = dimG components? of the nth order lifted
invariantsw(n) to be constant. Then the remaining components will pull-back to
functionally independent differential invariants. Therefore, all syzygies among the
normalized differential invariants (11.7) occur through the normalization equations
and, hence, are of order at mostn, the order of the moving frame.

The more subtle question is to understand the syzygies among the differenti-
ated invariantsDJ Iν , arising from a generating system of differential invariants.
If we choose the generating system to be the nonconstant normalized differential
invariants of order6 n+1, then the resulting syzygies will be of two kinds. Those
? In the more general situation where we normalize certain functional combinations of the

components ofw(n), one must modify the subsequent constructions accordingly.
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involving differential invariants of order6 n will depend on the precise structure
of the normalizations and the invariants themselves. Once these are understood, the
higher order syzygies are more regular. Before attempting to formulate a general
theorem, let us consider a simple example. Suppose our moving frame has order
n and that the normalized differential invariantI αK of ordern = #K is constant.
Suppose that the normalized differential invariantsI αK,i andI αK,j of ordern+ 1 are
not constant, and can be taken as part of the generating set of differential invariants.
Since the correction terms in (13.7) have orderk for k > n+ 1, we have

Dj I
α
K,i = I αK,i,j +Mα

K,i,j , DiI
α
K,j = I αK,i,j +Mα

K,j,i,

where the correction termsMα
K,i,j andMα

K,j,i are differential invariants of order
6 n+1 that are not necessarily equal. Therefore, we deduce a syzygy between the
differentiated invariants

Dj I
α
K,i −DiI

α
K,j = Mα

K,i,j −Mα
K,j,i ,

where the right-hand side is a differential invariant of ordern + 1. The constant
normalized differential invariantI αK is a ‘phantom differential invariant’ that pro-
vides the seed for the syzygy. A general syzygy theorem for differential invariants
can now be straightforwardly proved using these basic observations.

DEFINITION 13.2. A phantom differential invariantis a constant normalized
differential invariant.

THEOREM 13.3. A generating system of differential invariants consists of

(a) all nonphantom differential invariantsJ i andI α coming from the nonnormal-
ized zeroth order lifted invariantsyi , vα, and

(b) all nonphantom differential invariants of the formI αJ,i whereI αJ is a phantom
differential invariant.

Proof. The key remark is that the coefficientsKκ
j in the formulae (13.6) are

all either constant or one of the generating differential invariants mentioned in the
theorem. The invariantized vector field coefficientsϕαK,κ , on the other hand, are of
order at most #K. Therefore, ifI αK,j is a normalized differential invariant that does
not belong to the generating set, then rewriting the recurrence formula (13.7) as

I αK,j = Dj I
α
K −Mα

K,j

expresses it in terms of the generating invariants and lower order invariants. A
simple induction completes the proof. 2

THEOREM 13.4. All syzygies among the differentiated invariants arising from
the generating system constructed in Theorem13.3are differential consequences
of the following three fundamental types:
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(i) Dj J
i = δij +Mi

j , whenJ i is nonphantom,
(ii) DJ I

α
K = c + Mα

K,J , whenI αK is a generating differential invariant, while
I αJ,K = c is a phantom differential invariant, and

(iii) DJ I
α
LK − DKI

α
LJ = Mα

LK,J − Mα
LJ,K , whereI αLK and I αLJ are generating

differential invariants the multi-indicesK ∩ J = ∅ are disjoint and nonzero,
whileL is an arbitrary multi-index.

Remark.One can often use the syzygies to substantially reduce the generating
system of differential invariants. In such cases, one must accordingly modify the
remaining syzygies.

EXAMPLE 13.5. We now illustrate the preceding formulae with a nontrivial ex-
ample. LetM = R3, with coordinatesx1, x2, u. Consider the action of GL(2)
defined by the order zero invariants

y1 = αx1+ βx2, y2 = γ x1+ δx2,

v = (αδ − βγ )u = λu, (13.13)

whereλ = αδ − βγ . This action plays a key role in the classical invariant theory
of binary forms, whenu is a homogeneous polynomial, [18]. The lifted contact-
invariant coframe and associated invariant differential operators are

η1 = dHy1 = α dx1 + β dx2, E1 = λ−1(δD1− γ D2),

η2 = dHy2 = γ dx1 + δ dx2, E2 = λ−1(−β D1+ αD2),
(13.14)

where Di is the total derivative with respect toxi . The lifted differential invariants
are thusvjk = (E1)

j (E2)
kv; in particular

v1 = δu1− γ u2, v2 = −βu1 + αu2,

v11 = δ2u11− 2γ δu12+ γ 2u22

λ
,

v12 = −βδu11+ (αδ + βγ )u12− αγ u22

λ
,

v22 = β2u11− 2αβu12+ α2u22

λ
.

If we normalize using the cross-section

y1 = 1, y2 = 0, v1 = 1, v2 = 0, (13.15)

we are led to the first-order moving frame(
α β

γ δ

)
= 1

x1u1+ x2u2

(
u1 u2

−x2 x1

)
. (13.16)

This moving frame is well-defined on surfacesu = f (x, y) provided the rela-
tive invariantx1u1 + x2u2 6= 0. (Different choices of cross-section lead to other
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types of constraints. For example, ifu 6= 0, then we could normalizev = 1
instead of, say,v2 = 0.) The resulting normalized differential invariants areI (2) =
(J 1, J 2, I, I1, I2, I11, I12, I22) = (σ (2))∗w(2), where

J 1 = 1, J 2 = 0, I = u

x1u1+ x2u2
, I1 = 1, I2 = 0,

I11 = (x1)2u11+ 2x1x2u12+ (x2)2u22

x1u1+ x2u2
,

I12 = −x
1u2u11+ (x1u1− x2u2)u12+ x2u1u22

x1u1+ x2u2
,

I22 = (u2)
2u11− 2u1u2u12+ (u1)

2u22

x1u1+ x2u2
. (13.17)

The normalized coframe and associated invariant differential operators are

ω1 = u1 dx1 + u2 dx2

x1u1+ x2u2
= dHu

x1u1+ x2u2
, D1 = x1 D1+ x2 D2,

ω2 = −x
2 dx1 + x1 dx2

x1u1+ x2u2
, D2 = −u2 D1+ u1 D2. (13.18)

The invariant differential operators are well known:D1 is the scaling process and
D2 the Jacobian process in classical invariant theory. The prolonged infinitesimal
generator coefficient matrix and its invariantized counterpart are, up to second
order,

x1 x2 0 0
0 0 x1 x2

u 0 0 u

0 0 −u2 u1

u2 −u1 0 0
−u11 0 −2u12 u11

0 −u11 −u22 0
u22 −2u12 0 −u22


,



1 0 0 0
0 0 1 0
I 0 0 I

0 0 0 1
0 −1 0 0
−I11 0 −2I12 I11

0 −I11 −I22 0
I22 −2I12 0 −I22


. (13.19)

The invariant linear relations
1 0
0 1
I11 I12

I12 I22

(ω1

ω2

)
= −


1 0 0 0
0 0 1 0
0 0 0 1
0 −1 0 0



ζ 1
H

ζ 2
H

ζ 3
H

ζ 4
H

 =

−ζ 1

H−ζ 3
H−ζ 4
H

ζ 2
H

 , (13.20)
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follow from (13.6) and the subsequent remarks. The left-hand side in (13.20) is
obtained by pulling back the lifted contact-invariant one-forms

dHy
1 = η1, dHy

2 = η2, dHv1 = v11η
1+ v12η

2,

dHv2 = v12η
1+ v22η

2,

corresponding to our choice (13.15) of normalizations; the matrix on the right-
hand side is the minor consisting of first, second, fourth and fifth rows of the
invariantized matrix (13.19), again governed by the normalizations. We rewrite
(13.20) in the matrix form

ζ 1
H

ζ 2
H

ζ 3
H

ζ 4
H

 =

−1 0
I12 I22

0 −1
−I11 −I12

(ω1

ω2

)
. (13.21)

The coefficientsKκ
j in (13.6) are the entries of the coefficient matrix in (13.21).

The commutator between the two invariant differential operators,

[D1,D2] = −I12D1+ (I11− 1)D2, (13.22)

now follows from our general formula (9.11), (13.12). Indeed, the(Diξ
k
κ )[I (1)]

are obtained by first computing the total derivatives of the independent variable
coefficient matrix (which consists of the first two rows of (13.19))(

x1 x2 0 0
0 0 x1 x2

)
and then invariantizing by substituting the normalized differential invariants (13.17)
for the jet coordinates. In this particular case, the latter process is trivial since the
total derivatives are all either 1 or 0.

The correction terms to the recurrence formula can be easily obtained by mul-
tiplying the invariantized matrix (13.19) by the coefficient matrix (13.21); the re-
sulting matrix

1 0 0 0
0 0 1 0
I 0 0 I

0 0 0 1
0 −1 0 0
−I11 0 −2I12 I11

0 −I11 −I22 0
I22 −2I12 0 −I22




−1 0
I12 I22

0 −1
−I11 −I12
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=



−1 0
0 −1

−I (1+ I11) −II12

−I11 −I12

−I12 −I22

(1− I11)I11 (2− I11)I12

−I11I12 (1− I11)I22

(I11− 1)I22− 2I 2
12 −I12I22


(13.23)

contains the correction terms in (13.7) – the columns correspond to normalized
differential invariants and the rows to invariant differential operators. Specifically,
we have

D1J
1 = δ1

1 − 1= 0, D2J
1 = δ1

2 − 0= 0,

D1J
2 = δ2

1 − 0= 0, D2J
2 = δ2

2 − 1= 0,

D1I = I1− I (1+ I11) = 1− I (1+ I11), D2I = I2− I I12= −I I12,

D1I1 = I11− I11= 0, D2I1 = I12− I12 = 0,

D1I2 = I12− I12= 0, D2I2 = I22− I22 = 0,

D1I11= I111+ (1− I11)I11, D2I11= I112+ (2− I11)I12,

D1I12= I112− I11I12, D2I12= I122+ (1− I11)I22,

D1I22= I122+ (I11− 1)I22− 2I 2
12, D2I22= I222− I12I22.

HereIijk = (σ (1))∗vijk are the third-order normalized differential invariants. An
alternative method for computing the correction matrix (13.23) that avoids the
intermediate system (13.21) is to first perform a Gauss–Jordancolumnreduction on
the invariantized coefficient matrix (13.19) making the chosen normalization rows
– in the present case rows 1,2,4,5 – into an identity matrix, and then multiply
by the pulled-back coefficient matrix corresponding to the horizontal derivatives of
the normalized lifted invariants, as given on the left-hand side of (13.20); the result
will be minus the correction matrix. In the present case, (13.23) isminusthe matrix
product

1 0 0 0
0 1 0 0
I 0 I 0
0 0 1 0
0 0 0 1
−I11 −2I12 I11 0

0 −I22 0 I11

I22 0 −I22 2I12




1 0
0 1
I11 I12

I12 I22

 . (13.24)

According to Theorem 13.3, we can takeI, I11, I12, I22 as our generating system
of differential invariants. The third row of this system of identities produces the
syzygies of the second type. Actually, this means that we can useI to generate
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I11, I12, leaving onlyI22 as an additional fundamental invariant. There are three
fundamental syzygies of the third type:

D1I12−D2I11 = −2I12,

D1I22−D2I12 = 2(I11− 1)I22− 2I 2
12,

D2
1I22−D2

2I11 = 2I22D1I11+ (5I12− 2)D1I12+ (3I11− 5)D1I22−
− (2I11− 5)(I11− 1)I12+ 4(I11− 1)I 2

12.

The final syzygy comes from extending our recurrence formulae on to the next
order, by appending the appropriate columns to the prolonged vector field coef-
ficient matrix (13.19). UsingI to generateI11 and I12 will modify the syzygies
accordingly.

14. Equivalence, Symmetry, and Rigidity

We now reach the culmination of the paper. The fundamental problems that have
motivated the development of the theory of moving frames are equivalence and
symmetry of submanifolds under a Lie transformation groupG, as introduced in
Section 7. IfG acts freely onM, then, as we saw, the basic order zero theory, as
described in Theorems 7.7 and 7.8, provides the solution. However, in the nonfree
case, we need to prolong in order to make the group act (locally) freely. Since two
submanifolds are equivalent under the action ofG onM if and only if theirn-jets
are equivalent under the prolonged action ofG(n) on Jn, we can then readily adapt
our earlier results.

When we restrict theG(n)-coframe on Jn to a submanifold, the resulting lin-
ear dependencies among the restricted one-forms lead to additional invariants. In
the order zero context, these invariants are not directly predicted by the moving
coframe, but appear to depend on the submanifold itself. An important fact is that,
in the jet bundle context, they are merely the restrictions ofhigher order differential
invariants! Thus, even in the order zero case, the jet bundle constructions lead to
significant new information.

We start with theG(n)-coframe0(n) = {γ (n), I (n)} on Jn constructed in Theo-
rem 12.3. Letι: X→M parametrize a submanifoldS = ι(X), so that jnι: X→ Jn

parametrizes the correspondingn-jet jnS. We assume that jnS lies in the domain of
definition of our chosen ordernmoving frameρ(n), which implies thatS is ordern
regular. Let4(n) = (jnι)∗0(n) denote the restriction of thenth order coframe toS.
As in the order zero case, the one-form system4(n) is overdetermined onX, and
we need to reduce it to an extended coframe. Now since jnι annihilates the contact
forms, only the horizontal components of the forms in0(n) will contribute to the
one-forms in4(n). Therefore, the linear dependencies among these one-forms will
arise from the linear dependencies among the horizontal components of the one-
forms in theG(n)-coframe. The one-formsγ (n) = (σ (n))∗ dJw(n) are, by definition,
the pull-backs of the jet differentials of the lifted invariants. We have already used
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the horizontal components dHy of the ‘independent variable’ lifted invariants to
construct the contact-invariant coframeω = (σ (n))∗ dHy. The remaining ‘depen-
dent variable’ lifted invariants will lead to additional contact-invariant horizontal
forms δ(n) = (σ (n))∗ dHv(n), which must be invariant linear combinations of the
contact-invariant coframeω. According to (13.2),

δαK = (σ (n))∗ dHv
α
K =

p∑
i=1

I αK,iω
i, α = 1, . . . , q, #K > 0. (14.1)

The coefficientI αK,i is the normalized differential invariant of order #K+1. There-

fore, the linear dependencies among the horizontal formsγ
(n)
H = {ω, δ(n)} are the

differential invariants of ordern + 1. With this in mind, we make the following
definition.

DEFINITION 14.1. Thenth orderdifferential invariant coframeon Jn is the ex-
tended horizontal coframe

1(n) = {ω, I (n)} (14.2)

consisting of the contact-invariant coframe and thenth order normalized differen-
tial invariants.

PROPOSITION 14.2.The horizontal components of thenthorder moving coframe
6
(n)
H = {ζ (n)H , dHI (n), I (n)} or its normalized counterpart0(n)H = {γ (n)H , I (n)} are

invariantly related to the differential invariant coframe1(n+1) = {ω, I (n+1)} of
ordern+ 1.

Proof.Formula (14.1) shows that0(n)H is invariantly related to1(n+1). Moreover,
since6(n) is invariantly related to0(n), the same is true for6(n)

H . In particular, the
fact that dHI (n) can be written as a linear combination ofω with (n + 1)st order
differential invariant coefficients is immediate from (9.7). 2

We now restrict the coframes to a regular submanifoldS = ι(X). Letϒ(n) =
{$ , J (n)} = (jnι)∗1(n) denote the restriction of the differential invariant coframe to
S. Transversality implies that$ = (jnι)∗ω will form a coframe on the parameter
spaceX, while J (n) = (jnι)∗I (n) corresponds to the pull-back of thenth order
normalized differential invariants toX.

PROPOSITION 14.3.Let S = ι(X) be a submanifold whosen jet lies in the
domain of definition of the given moving frame. Then4(n) = (jnι)∗0(n) is in-
variantly related to the restricted(n + 1)st-order differential invariant coframe
ϒ(n+1) = (jn+1ι)

∗1(n+1).

Remark.A key point is that, by construction, the invariant relation does not
depend on the particular submanifoldS and hence we can replace4(n) by ϒ(n+1)

without altering the equivalence relations between different submanifolds.

ACAP1384.tex; 9/02/1999; 8:05; p.65



192 MARK FELS AND PETER J. OLVER

If ϒ(n+1) is not involutive, then we need to extend it by appending additional
derived invariants. A second key fact is that the derived invariants are merely the
differential invariants of the next higher-order restricted toS. This is an immediate
consequence of (13.4) and (13.6).

PROPOSITION 14.4.Thekth-order derived coframe(ϒ(n+1))(k) for the restricted
differential invariant coframeϒ(n+1) is invariantly related to the coframeϒ(n+k+1).

Remark.We can now interpret the additional invariants that arose in the order
zero construction – they are the differential invariants associated with the freely
acting transformation group onM.

DEFINITION 14.5. Thekth order differential invariant classifying manifold
C(k)(S) associated with a submanifoldι: X → M is the manifold parametrized
by the normalized differential invariants of orderk, namelyJ (k) = I (k) ◦ jkι. The
submanifoldS is order k regular if C(k)(S) is an embedded submanifold of its
classifying spaceZ(k) (which can, in fact, be identified with JkE).

DEFINITION 14.6. Thedifferential invariant orderof S with respect to annth
order moving frameρ(n) is the minimal integers > n such that the extended
coframeϒ(s) is involutive. Thedifferential invariant rankof S is t = rankϒ(s) =
dimC(s)(S).

Remark.The differential invariant order defined here is slightly different from
the order defined earlier. For instance, if the(n+ 1)st-order differential invariants
I (n+1) provide a complete system of invariants onS, thenS will have differential
invariant ordern + 1, but will be an order zero submanifold with respect to the
restricted coframeϒ(n+1).

THEOREM 14.7. LetS ⊂ M be a regularp-dimensional submanifold of differen-
tial invariant rank t with respect to the transformation groupG. Then its isotropy
groupGS is a (p − t)-dimensional subgroup ofG acting locally freely onS.

In particular, the maximally symmetric submanifolds are those of rank 0, where
all the differential invariants are constants. See [5, 14], for a general characteri-
zation of such submanifolds as group orbits in the case whenM = G/H is a
homogeneous space.

In the fully regular case, the rankstk = rank dJ (k) = dimC(k)(S) of the kth
order fundamental differential invariants onS are all constant for? k > n, and
satisfy

tn < tn+1 < tn+2 < · · · < ts = ts+1 = · · · = t 6 p, (14.3)

? The differential invariant ranks fork < n will not play any significant role.
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where t is the differential invariant rank ands the differential invariant order.
Generically, ap-dimensional submanifold will have differential invariant ordern
equal to the stabilization order of the group, provided there are at leastp func-
tionally independent differential invariants of order6 n; if G admits less thanp
independentnth-order differential invariants, then the generic differential invariant
order will ben+ 1. According to (9.6), the latter situation occurs only when

q

(
p + n
n

)
< r = dimG 6 p + q

(
p + n
n

)
= dim Jn. (14.4)

If S is fully regular, then its differential invariant order is always bounded by
eithern + p − 1 or, possibly,n + p; the latter case only occurs if allnth-order
differential invariants are constant, and there is but one independent differential
invariant appearing at each ordern+ 16 k 6 n+ p.

In this context, it is instructive to reconsider the higher-order submanifold dis-
cussed in Example 7.9.

EXAMPLE 14.8. Consider the Lie groupG = R3 acting by translations onM =
R3. For a moving frame of order zero, the generating differential invariants for
surfacesu = f (x, y) are just the derivativesux, uy . Any nonplanar solution to
the nonlinear partial differential equation? uy = 1

2u
2
x will define a surface of rank

2 and differential invariant order 2. (The functionu(x, y) = −x2/2y discussed
in Example 7.9 above is a particular case.) Indeed, the second-order differential
invariants areuxx ,uxy = uxuxx, anduyy = u2

xuxx. The single independent invariant
uxx is, however, not a function of the first-order invariantux , since their Jacobian
matrix is

∂(ux, uxx)

∂(x, y)
=
(
uxx uxy
uxxx uxxy

)
=
(
uxx uxuxx
uxxx uxuxxx + u2

xx

)
= u3

xx 6= 0,

sinceu is nonplanar. Thus one must use the third-order differential invariant clas-
sifying manifold to characterize such solutions.

Remark.The nonplanar solutions to the differential equation in Example 14.8
provide examples of nonreducible partially invariant submanifolds, where we are
using Ovsiannikov’s terminology [22]. Ondich [21] discusses conditions that a
partially invariant solution be ‘nonreducible’, meaning that it is not invariant under
a (continuous) subgroup of the symmetry groupG, and hence has maximal rankp.
In the moving frame approach, then, one can completely characterize nonreducible
partially invariant solutions to partial differential equations as those whose graphs
are submanifolds of higher order and maximal rank.

? Any other first-order nonlinear equationuy = F(ux) relating the two differential invariants will
also work.
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The fundamental equivalence theorem for submanifolds under general trans-
formation group actions is a direct consequence of the corresponding Equivalence
Theorem 7.2 for submanifolds under free actions.

THEOREM 14.9. Let S, S ⊂ M be regularp-dimensional submanifolds whose
n-jets lie in the domain of definition of a moving frame mapρ(n). ThenS andS are
(locally) congruent,S = g ·S if and only if they have the same differential invariant
order s and their classifying manifolds of orders + 1 are identical:C(s+1)(S) =
C(s+1)(S).

Finally, we discuss rigidity theorems for submanifolds under transformation
groups. These come in two varieties. Roughly speaking, a rigidity result says that,
under certain conditions, a submanifold is uniquely determined by itsk-jet for some
finite orderk.

DEFINITION 14.10. A submanifoldS is orderk congruentto a submanifoldS at
a pointz ∈ S if there is a group transformationg ∈ G such thatS andg · S have
orderk contact at the pointz.

We shall callS order k congruent toS if this occurs for everyz ∈ S. Note
that the group transformationg = g(z) may vary from point to point. IfG(k) acts
freely on Jk, then the group transformationg(z) determining the contact is uniquely
determined. The first rigidity theorem, which generalizes results in Griffiths [12],
Green [11], and Jensen [14], states that orderk congruence implies congruence
providedk is sufficiently large. Therigidity order of S is the minimalk for which
this applies. For example, the rigidity order of a circle under the Euclidean group is
two, since the only curves that are second-order congruent to a circle are translates
of it. On the other hand, a generic curve in the plane has rigidity order 3 under the
Euclidean group.

THEOREM 14.11. Let S ⊂ M be a regularp-dimensional submanifold which
has differential invariant orders with respect to a given moving frame. ThenS
has rigidity order at mosts + 1. In other words, a submanifoldS is order s + 1
congruent toS at every pointz ∈ S if and only ifS = g · S for a fixedg ∈ G.

Proof. Note first thatS andSg = g · S have identical classifying manifolds.
Moreover, ifS andSg have orders + 1 contact at a common pointz, then their
(s + 1)-jets coincide and, hence, their orders + 1 differential invariant classifying
manifolds agree at the pointz. Therefore, the two submanifolds are orders + 1
congruent at every point if and only if their orders + 1 differential invariant
classifying manifolds are identical:C(s+1)(S) = C(s+1)(S). Therefore, the result
is an immediate consequence of Theorem 14.9. 2

The simplest case is when the order of the moving frame equals the stabilization
order of the groupG. Generically, the rigidity order of a regular submanifold will
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be eithern + 1 or n + 2, depending on whether (14.4) holds. Barring higher
order singularities, the maximal rigidity order will ben + p + 1. Jensen [14]
appears to assert that the rigidity order is at mostn + 1, but does not consider
(nongeneric) submanifolds of higher order, as in Example 14.8, or having other
types of singularities.

A second type of rigidity theorem shows that one can uniquely characterize the
group transformation mapping congruent submanifolds by knowing their order of
contact.

DEFINITION 14.12. Ap-dimensional submanifoldS ⊂ M is said to be orderk
rigid if the only congruent submanifoldS = g ·S which haskth order contact with
S at a point isS itself.

In other words, ifS = g · S, then the condition jkS|z0 = jkS|z0 at z0 ∈ S ∩ S
impliesg ∈ GS and soS = S. The second rigidity theorem can now be stated.

THEOREM 14.13. LetG act freely onVn ⊂ Jn. LetS be an ordern regular p-
dimensional submanifold which has differential invariant orders > n. ThenS is
rigid of order s + 1.

Proof. We let ρ(n) be a moving frame defined in a neighborhood ofS. Let
S = g · S have contact at orders + 1 at z0 ∈ S ∩ S. Let z(s+1)

0 = js+1S|z0 =
js+1S|z0 ∈ Vs+1. Congruence implies thatS andS have identical differential in-
variant classifying manifoldsC(s+1)(S) = C(s+1)(S), which are parametrized by
their (s + 1)-jets. Theorem 5.16 implies uniqueness of the group transformationg

defining the congruence map once we specify that it fix the common pointz
(s+1)
0 .

Finally, freeness of the action ofG on Vs+1 implies thatg = e, which proves
rigidity. 2

Remark.If G only acts locally freely onVs+1, then Theorem 14.13 reduces to a
local rigidity result, i.e.,(s + 1)st-order contact ofS = g · S andS implies that the
congruence transformationg must lie in a discrete subgroup ofG. However, since
the higher order differential invariants completely determine the higher order jets
of the submanifolds, one can eliminate the discrete ambiguity providedG(k) acts
freely on the appropriate subset of Jk for k sufficiently large.

EXAMPLE 14.14. Consider the translation actionz 7→ z + a of G = R2 on
M = R2. The derivative coordinatesux , uxx, uxxx, . . . provide a complete system
of differential invariants. The classifying curve of a generic curveu = f (x) is
parametrized by(ux, uxx). However, singularities may require us to prolong to
higher order in order to assure rigidity. For example, the curveC given byu =
x4 − 2x2 has second order contact atz0 = (1,0) with its translate bya = (2,0).
Moreover, the first two differential invariants{ux, uxx} have rank 1 onC. However,
C is not regular of differential invariant order 2 because its second-order classifying
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curve intersects itself at the pointux = 0, uxx = 8, which permits second order
nonrigidity. The curveC is locally rigid at order 1, and completely rigid at order 3.

15. Examples

We now demonstrate the preceding theory with several additional examples. Only
space precludes discussing a more extensive range of examples in this paper. How-
ever, all of the classical examples, including Euclidean, affine and projective geom-
etry, as well as an extensive variety of new transformation group actions (e.g., con-
formal geometry) not previously treated by the classical moving frame techniques,
can be directly handled by our regularized techniques.

EXAMPLE 15.1. We return to the multiplier representation

(x, u) 7−→
(
αx + β
γ x + δ ,

u

γ x + δ
)
, A =

(
α β

γ δ

)
∈ GL(2), (15.1)

of the general linear group GL(2) onR2 that was studied in depth in Part I [9], and
plays a fundamental role in classical invariant theory and the calculus of variations.
The right-lifted invariants of order zero are just

y = αx + β
γ x + δ , v = u

γ x + δ . (15.2)

Choosingy as the lifted independent variable, its jet differential

η = dJ y = αδ − βγ
(γ x + δ)2 dx (15.3)

determines the lifted horizontal invariant form. The corresponding invariant differ-
ential operator is

E = Dy = (γ x + δ)2
αδ − βγ Dx. (15.4)

Applying E recursively to the dependent lifted invariantv leads to the lifted differ-
ential invariantsvk = Ekv, the first few of which are

vy = (γ x + δ)ux − γ u
αδ − βγ , vyy = (γ x + δ)3uxx

(αδ − βγ )2 ,

vyyy = (γ x + δ)5uxxx + 3γ (γ x + δ)4uxx
(αδ − βγ )3 , (15.5)

vyyyy = (γ x + δ)7uxxxx + 8γ (γ x + δ)6uxxx + 12γ 2(γ x + δ)5uxx
(αδ − βγ )4 .
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These formulae coincide with the transformation laws for the prolonged group
action. On the regular subdomainV = {uuxx > 0} ⊂ J2, we can choose the
cross-section defined by the normalizations

y = 0, v = 1, vy = 0, vyy = 1. (15.6)

Solving for the group parameters gives

α = √uuxx, β = −x√uuxx, γ = ux, δ = u− xux. (15.7)

These serve to parametrize a right GL(2) moving frame of order two:

ρ(2)(x, u, ux, uxx) =
(√

uuxx −x√uuxx
ux u− xux

)
. (15.8)

The left-moving frame computed in [9] is obtained by inverting:

ρ̃ (2)(x, u, ux, uxx) = ρ(2)(x, u, ux, uxx)
−1

= 1√
u3uxx

(
u− xux x

√
uuxx

−ux √
uuxx

)
. (15.9)

Substituting the moving frame normalizations (15.7) into the higher order lifted
differential invariants leads to the normalized differential invariants; the first non-
constant ones are obtained by normalizingvyyy andvyyyy:

I = uuxxx + 3uxuxx√
uu3

xx

, J = u2uxxxx + 8uuxuxxx + 12u2
xuxx

uu2
xx

. (15.10)

Incidentally, the Replacement Theorem 10.3 implies that we can also writeI and
J using thesameformulae in the lifted invariants, e.g.,I = v−1/2v−3/2

yy (vvyyy +
3vyvyy). Applying the normalizations (15.7) to the lifted horizontal form (15.3)
leads to the contact-invariant one-form and the associated invariant differential
operator:

ω =
√
uxx

u
dx, D =

√
u

uxx
Dx. (15.11)

The jet differentials of the second-order lifted invariants are

dJ y = αδ − βγ
(γ x + δ)2 dx, dJ v = du

γ x + δ −
γ udx

(γ x + δ)2 ,

dJ vy = (γ x + δ)dux − γ du+ γ ux dx

αδ − βγ ,

dJ vyy = (γ x + δ)3 duxx + 3γ (γ x + δ)2uxx dx

(αδ − βγ )2 . (15.12)
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The right-invariant Maurer–Cartan forms on GL(2) are the entries of the matrix
product dA · A−1, namely

µ1 = δ dα − γ dβ

αδ − βγ , µ2 = −β dα + α dβ

αδ − βγ ,

µ3 = δ dγ − γ dδ

αδ − βγ , µ4 = −β dγ + α dδ

αδ − βγ . (15.13)

The eight one-forms (15.12), (15.13) form a coframe onB(2) = GL(2) × J2

whose symmetry group coincides with the right-lifted action of GL(2). The group
differentials can be written as invariant linear combinations of the Maurer–Cartan
forms:

dGy = yµ1 + µ2− y2µ3− yµ4, dGv = −yvµ3 − vµ4,

dGvy = −vy µ1 + (yvy − v)µ3,

dGvyy = −2vyyµ
1 + 3yvyyµ

3+ vyyµ4, (15.14)

and can replace the Maurer–Cartan forms in the lifted coframe. The coefficients
in (15.14) are given directly by formula (3.8). As in Example 6.7, we write down
the coefficient matrix corresponding to the prolonged infinitesimal generators of
GL(2); we find, to order 4,

x 1 −x2 −x
0 0 −xu −u
−ux 0 xux − u 0
−2uxx 0 3xuxx uxx
−3uxxx 0 5xuxxx + 3uxx 2uxxx
−4uxxxx 0 7xuxxxx + 8uxxx 3uxxxx

 . (15.15)

The lifted version is obtained by replacingx andu by y andv:
y 1 −y2 −y
0 0 −yv −v
−vy 0 yvy − v 0
−2vyy 0 3yvyy vyy
−3vyyy 0 5yvyyy + 3vyy 2vyyy
−4vyyyy 0 7yvyyyy + 8vyyy 3vyyyy

 . (15.16)

The first four rows of (15.16) then give the coefficients in (15.14). The normalized
matrix

0 1 0 0
0 0 0 −1
0 0 −1 0
−2 0 0 1
−3I 0 3 2I
−4J 0 8I 3J

 (15.17)
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is obtained by substituting (15.6), (15.10) into (15.16); in other words, (15.17) is
the invariantization of the infinitesimal generator coefficient matrix (15.15).

Since GL(2) acts transitively on the open subset of J2 under consideration, we
can find the moving coframe on J2 either by normalizing the jet differentials (15.12)
or the Maurer–Cartan forms (15.13). The former becomeγ = (ρ(2))∗ dJw, so that

γ 1 = (σ (2))∗ dJ y =
√
uxx

u
dx,

γ 2 = (σ (2))∗ dJ v = du− ux dx

u
,

γ 3 = (σ (2))∗ dJ vy = dux − uxx dx√
uuxx

+ ux(du− ux dx)√
u3uxx

+
√
uxx

u
dx,

γ 4 = (σ (2))∗ dJ vy = duxx − uxxx dx

uxx
+ uuxxx + 3uxuxx

uxx
dx, (15.18)

where we have explicitly written out the contact and horizontal components, the
latter being invariant linear combinations of the invariant one-formω. Indeed, in
view of (15.6), (15.10),

γ 1
H = (σ (2))∗ dHy = ω,
γ 2
H = (σ (2))∗ dHv = (σ (2))∗(vy dHy) = 0,

γ 3
H = (σ (2))∗ dHvy = (σ (2))∗(vyy dHy) = ω,
γ 4
H = (σ (2))∗ dHvyy = (σ (2))∗(vyyy dHy) = Iω.

(15.19)

On the other hand, substituting (15.17) in the general identity (6.4) produces the
explicit linear dependencies:

γ 1 = −ζ 2, γ 2 = ζ 4, γ 3 = ζ 3, γ 4 = 2ζ 1− ζ 4. (15.20)

Combining (15.19), (15.20) yields the corresponding formulae for the horizontal
components of the moving coframe:

ζ 1
H = 1

2I ω, ζ 2
H = −ω, ζ 3

H = ω, ζ 4
H = 0, (15.21)

reconfirming our moving coframe computation in Part I.
Substituting (15.17), (15.21) into the general formula (13.7), (13.8), produces

the explicit formula connecting the normalized and derived differential invariants.
The easiest way to compute the correction terms is to multiply the matrix (15.17)
by the column vector

(
1
2I,−1,1,0

)T
whose entries are given in (15.21); the result

is a column vector(
1,0,1,−1− I,3− 3

2I
2,8I − 2IJ

)T
whose entries are the correction terms. (Alternatively, one can use column opera-
tions as in Example 13.5.) For example, the last two entries imply

DI = J − 3
2I

2+ 3, DJ = K − 2IJ + 8, (15.22)
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whereK = (σ (2))∗vyyyyy is the fifth-order normalized differential invariant. Note
that we can iterate to find higher-order correction terms, e.g.,

D2I = DJ − 3I DI = K − 5IJ + 9
2I

3− 9I + 8.

EXAMPLE 15.2. Consider the intransitive action of the orthogonal group O(3)
on surfaces in three-dimensional spaceM = R3. Assume that the surface is given
as the graph of a functionu = f (x1, x2). The order zero invariants are(

y1

y2

v

)
= R

(
x1

x2

u

)
, R = (Rij ) ∈ O(3). (15.23)

The lifted contact-invariant coframe and associated invariant differential operators
are (

η1

η2

)
=
(
R1

1 + R1
3u1 R1

2 + R1
3u2

R2
1 + R2

3u1 R2
2 + R2

3u2

)(
dx1

dx2

)
,(

E1

E2

)
=
(
R1

1 + R1
3u1 R1

2 + R1
3u2

R2
1 + R2

3u1 R2
2 + R2

3u2

)−T (D1

D2

)
.

(15.24)

The lifted invariants arevjk = (E1)
j (E2)

kv; in particular(
v1

v2

)
=
(
R1

1 + R1
3u1 R1

2 + R1
3u2

R2
1 + R2

3u1 R2
2 + R2

3u2

)−T (
R3

1 + R3
3u1

R3
2 + R3

3u2

)
.

The normalization

y1 = 0, v1 = 0, v2 = 0, (15.25)

leads to a particularly simple first-order moving frame. Introduce the column vec-
tors

z = (x1, x2, u)
T , n = N

|N | =
(−u1,−u2,1)T√

1+ u2
1+ u2

2

,

which respectively define the point on the surface, and the corresponding unit
normal. Then

R = (t t̂ n)T , where t = z ∧ n
|z ∧ n| , t̂ = n ∧ t =

z− (z · n)n
|z ∧ n| , (15.26)

define distinguished, orthogonally equivariant, unit tangent vectors. The moving
frame (15.26) applies to surfaces provided that the unit normal is not parallel to
the pointz. Pulling back the remaining lifted invariants leads to the first-order
differential invariants

J = (σ (1))∗y2 = (z · n)2− | z |2
| z ∧ n | = − | z ∧ n | = −

√
| z |2− (z · n)2,

I = (σ (1))∗v = z · n.
(15.27)
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(It’s interesting that we don’t obtain the invariant|z| directly; it is of course a
function of the fundamental invariants (15.27).)

The contact-invariant coframe and invariant differential operators are obtained
by pulling back the horizontal differentials of theyi , so

ω = Adx,

D = A−T D,
whereA =

(
t · t1 t · t2
t̂ · t1 t̂ · t2

)
. (15.28)

Here t1 = (1,0, u1), t2 = (0,1, u2) are the coordinate tangent vectors to the
surface, andA is the transpose of their coefficient matrix with respect to the moving
frame tangent vectorst , t̂ . A generating system of differential invariants requires
the corresponding normalized second-order invariants:(

I11 I12

I12 I22

)
= 1

|N |D
2u = A−T (∇2u)A−1√

1+ u2
1+ u2

2

. (15.29)

Here∇2u is the usual Hessian matrix ofu, so D2u represents an ‘equivariant
Hessian’. However, using (13.7), the recurrence relations (or syzygies)

D1J = I I12, D2J = 1+ I I22,

D1I = −J I12, D2I = −J I22,

show that onlyI , J , andI11 are required to form a generating system of differential
invariants.

EXAMPLE 15.3. Consider the action of the rotation group SO(3) onM = R4

corresponding to the lifted zeroth order invariants

y = R x, v = u with R ∈ SO(3), (15.30)

wherey = (y1, y2, y3), x = (x1, x2, x3). In this case, the differential invariants
were found in [18, Chapter 5] by an ad hoc approach; the moving frame method
allows us to be systematic. The lifted invariant one-forms and corresponding in-
variant differential operators are

ηi = dHy
i =

3∑
j=1

Rij dxj , Ei =
3∑
j=1

Rij Dj , i = 1,2,3.

The lifted invariants are then

yi =
3∑
j=1

Rijx
j , v = u,

vi =
3∑
j=1

Rijuj , vij =
3∑

k,l=1

RikR
j

l ukl, . . . .
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To determine a first-order moving frame, we consider the cross-section

y2 = 0, y3 = 0, v3 = 0. (15.31)

The normalization equations (15.31) can be solved providedx ∧ ∇u 6= 0, where
∇u = (u1, u2, u3). The solution isR = (a b c)T , where the column vectors

a = x

|x| , b = a ∧ c = (x · ∇u)x − | x |2∇u
| x | | x ∧ ∇u | ,

c = x ∧ ∇u
| x ∧ ∇u | , (15.32)

define a rotationally equivariant orthonormal frame. The resulting first-order in-
variants are

J 1 = | x | , J 2 = J 3 = 0, I = u, I1 = x · ∇u
| x | ,

I2 = −| x ∧ ∇u || x | , I3 = 0. (15.33)

Of course, one can eliminate the denominators since they are invariant themselves.
The corresponding contact-invariant coframe and invariant differential operators
are

ω̃1 = x · dx, ω̃2 = [(x · ∇u)x − | x |2∇u] · dx,

ω̃3 = (x ∧ ∇u) · dx,

D̃1 = x · D, D̃2 = ∇u · D, D̃3 = (x ∧ ∇u) · D, (15.34)

where the tildes indicate that we have dropped the invariant denominators arising
from a direct pull-back via (15.32). We leave it to the reader to deduce the com-
mutator formulae. A complete generating system of differential invariants requires
second order invariants:

I11 = xT (∇2u)x, I12 = xT (∇2u)∇u, I13= xT (∇2u)(x ∧∇u),
I22 = ∇uT (∇2u)∇u, I23 = ∇uT (∇2u)(x ∧ ∇u),
I33 = (x ∧ ∇u)T (∇2u)(x ∧ ∇u). (15.35)

However, using either the recurrence relations (keeping in mind that we mod-
ified the invariant differential operators and second-order invariants from their
normalized versions) or directly computing, we see that only three differential
invariants,

J 1 = | x | , I = u, I33= (x ∧ ∇u)T (∇2u) (x ∧∇u),
are required to generate all the rest.
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16. Partial Regularization

The one draw-back to the regularized method as presented so far is that one needs
to compute a sufficient number of higher-order lifted differential invariants before
commencing the normalization procedure. This can be quite computationally inten-
sive – for instance, in the case of projective geometry of curves in the plane, cf. [6],
one needs to prolong to sixth-order derivatives in order to specify a complete set of
normalizations. In the classical Cartan approach, as well as our earlier method of
moving coframes, cf. [9], one avoids having to to perform a complete prolongation
before starting to normalize. A similar option exists in the regularized method;
one can, provided some care is taken, normalize lower-order lifted invariants by
solving for some of the group parameters, and then using these simplified expres-
sions to compute higher order,partially regularizedlifted invariants. The optimal
strategy is to normalize globally defined lifted invariants, but regularize locally
defined ones. This allows one to construct, with a minimal amount of computa-
tion, a partially regularized moving frame that applies to all submanifolds. The
full normalization can then be accomplished for particular classes of submanifolds
satisfying appropriate regularity conditions.

An essential complication is that the lifted invariant differential operators that
are used to construct the higher order invariantscannot be directly normalized!
Indeed, unlike their fully lifted or their fully normalized counterparts, partially
normalized invariant differential operators will often contain additional terms in-
volving derivatives with respect to the remaining group parameters. As pointed out
by I. Anderson (personal communication), the additional terms can be interpreted
as coming from the reduction of the flat connection on the regularized bundle to
the appropriate partially normalized principal subbundle. These terms are correctly
predicted by the moving coframe approach, but are less transparent when using a
direct approach based on the lifted invariants. The resulting theory has yet to be
fully developed, and lack of space precludes a detailed treatment in the present
paper.

We shall content ourselves with treating one final illustrative example, that of
curves in the plane under the special affine group; see [9] for details. We shall
demonstrate how a regularized version of our moving coframe method can be used
to perform a globally defined partial regularization that includes nonconvex curves.
Also, for variety, and since the classical results are in terms of the left moving
frame, we will use the left regularized action in this example. Let SA(2) = SL(2)n
R2 act onM = R2 according to

g · (x, u) = (αx + βu+ a, γ x + δu+ b), αδ − βγ = 1. (16.1)

The zeroth order left lifted invariants are the components ofg−1 · (x, u), i.e.,

y = δ(x − a)− β(u− b), v = −γ (x − a)+ α(u− b). (16.2)
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In the fully regularized approach, we compute the higher-order lifted invariants by
successively differentiatingv with respect toy using the lifted invariant differential
operator

E = 1

δ − uxβ Dx (16.3)

associated with the invariant horizontal formη = dHy = (δ − βux)dx. The first
few are

vy = Ev = −γ − αux
δ − βux , vyy = Evy = − uxx

(δ − βux)3 ,

vyyy = Evyy = −(δ − βux)uxxx + 3βu2
xx

(δ − βux)5 ,

vyyyy = Evyyy = −uxxxx(δ − βux)
2+ 10uxxuxxxβ(δ − βux)+ 15u3

xxβ
2

(α + βux)7 .

By choosing the cross-section{(0,0,0,1,0)} ⊂ J3 we obtain the classical equi-
affine moving frame

β = −1

3
u−5/3
xx uxxx, α = u−1/3

xxx ,

γ = −uxu−1/3
xx , a = x, b = u. (16.4)

The first differential invariant is found by applying the moving frame normaliza-
tions to the next lifted invariantvyyyy, leading to the equi-affine curvature

κ = 3uxxuxxxx − 5u2
xxx

3u8/3
xxx

. (16.5)

In the partial normalization approach, we try to normalize lifted invariants as
they appear, and thereby avoid the long computations required to initially pro-
duce the general higher-order lifted invariants. For example, we can normalize
the zeroth order lifted invariantsy = v = 0 by settinga = x, b = u. In the
moving coframe method, we substitute these normalizations into the independent
left invariant Maurer–Cartan forms

µ1 = δ dα − β dγ , µ2 = δ dβ − β dδ, µ3 = α dγ − γ dα,

ν1 = δ da − β db, ν2 = −γ da + α db. (16.6)

The linear dependency between the horizontal components

ν1
H = (δ − βux)dx, ν2

H = (−γ + αux)dx,

produces the first order lifted invariantvy , which can, of course, be constructed
directly. Normalizingν2

H = 0 produces the partial normalizations

a = x, b = u, γ = αux, δ = βux + 1

α
, (16.7)
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the final formula being a consequence of unimodularity. The partially normalized
Maurer–Cartan forms

ν1 = α−1 dx − β(du− ux dx), ν2 = α(du− ux dx),

include the basic invariant contact form, while

ν1
H = ω = α−1 dx (16.8)

is a contact-invariant horizontal form. Now, the key complication is that even
though one might be tempted to directly normalize the invariant differential op-
erator (16.3), the resulting total differential operatorÊ = αDx, which is dual to
the horizontal form (16.8), isnot an invariant differential operator! In other words,
applyingÊ to the higher-order partially normalized differential invariantsdoes not
produce lifted differential invariants. For example, the linear dependency between
the horizontal component ofµ3 = α2 dux andω leads to the second-order partially
normalized differential invariant

J = α3uxx,

which agrees with the reduction of the lifted invariantvyy under the partial normal-
izations (16.7). However,αDxJ = α4uxxx does not agree with the reduction of
vyyy under (16.7), which is

K = α4uxxx + 3α5βu2
xx. (16.9)

Indeed,α4uxxx is not even a lifted invariant! Thus, we cannot use the directly
normalized total differential operator to compute higher order partially normalized
invariants. One resolution of this difficulty relies on adapting the moving coframe
method [9]. The remaining partially normalized Maurer–Cartan forms are

µ1 = α−1 dα − αβ dux, µ2 = −α−2β dα + α−1 dβ − β2 dux,

µ3 = α2 dux. (16.10)

If L(α, β, x, u(n)) is any function, then

dL ≡ (DxL)dx + Lα dα + Lβ dβ

≡ (αDxL+ βJLα)ω + (αLα − βLβ)µ1+ αLβµ2,

where≡ indicates that we have omitted the unimportant vertical (contact) compo-
nents. We conclude that ifL is any lifted invariant, then so are

DL = αDxL+ βJLα = αDxL+ α3βuxxLα,

F1(L) = αLα − βLβ, F2(L) = αLβ.
For example,DJ = K, F1J = 3J , F2J = 0, while

DK = L = α5uxxxx + 10α6βuxxuxxx + 15α7β2u3
xx,

F1K = 5K, F2K = 10JK,
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whereL is obtained by substituting (16.7) intovyyyy. Therefore, higher-order par-
tially normalized differential invariants are given by successively applying the
invariant differential operator

D = αDx + βJ∂α = αDx + α3β uxx∂α (16.11)

to the fundamental invariantJ = α3uxx. (Since the operatorsF1 = α∂α − β∂β
andF2 = α∂β preserve the order of differential invariants, they will not produce
anything new.) Note the appearance of additional ‘connection terms’ involving
derivatives with respect to the remaining group parameters in (16.11); these have
no counterpart in either the fully lifted theory or the fully normalized version. They
can be interpreted as arising from the total derivative component of the reduction
of the flat connection onB(∞), to the subbundle specified by the normalizations
(16.7). As usual, further reductions rely on imposing genericity assumptions on the
curve. In the standard case, one assumes thatuxx 6= 0, which allows us to perform
the nonglobal normalizationJ = 1,K = 0, leading to the standard moving frame
(16.4). See [9] for further details.

17. Conclusions

In this paper we have provided a general theoretical foundation for the method of
moving frames for finite-dimensional Lie transformation groups. The regulariza-
tion procedure is also of great practical applicability, and gives a powerful tool for
investigating the differential invariants, equivalence and symmetry properties of
submanifolds under quite general transformation groups. Further applications that
warrant further research and development include:

(1) An immediate application of the moving frame method would be to the classi-
fication of the differential invariants associated with many of the transforma-
tion groups arising in physics. As remarked in [18], to date such classifications
have not been completed, even for some of the most fundamental groups of
physical importance.

(2) In [11] M. Green gives various intriguing numerical formulae for the number
of differential invariants for curves in a homogeneous space. These formulae
were generalized in [18], but the extension to surfaces and higher dimensional
submanifolds remains open. The resolution of the syzygy problem given here
should provide insight into resolving such generalizations.

(3) The completion of the theory of partial regularization of Section 16 and the de-
termination of explicit connection formulae would greatly aid in the practical
application of the method to concrete problems.

(4) The variational tricomplex given by the operators dH , dV and dG on the regu-
larized bundle could have important applications to the study of differential
equations, variational problems, and conservation laws under the action of
symmetry groups, and thus deserves a detailed investigation.
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(5) Applications to Ovsiannikov’s method of partially invariant solutions using
the remarks after Example 14.8 appear to be quite promising.

(6) The commutation formulae and syzygy classifications will have important
applications to Lisle’s ‘frame method’ for symmetry classification of partial
differential equations [15].

(7) An inductive approach to complicated equivalence problems was described in
[18], and is based on the solution to a simpler problem based on a subgroup
of the full group. Lisle [15] successfully uses an inductive approach to de-
termining the invariant differential operators, which indicates that a general
implementation of inductive methods for moving frames would not be diffi-
cult. Inductive formulae have the advantage of expressing invariant quantities
for the larger group in terms of those associated with the subgroup.

(8) Finally, a theoretical justification of the moving frame method for infinite
pseudo-groups, as illustrated in [9], corresponding to the finite-dimensional
theory described here, would be of great significance. Such a theory would,
we believe, be an important aid in further developing the general theory and
applications of Lie pseudo-groups.
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