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1. Introduction.

First introduced by Gaston Darboux, and then brought to maturity by Élie Cartan,
[6, 8], the theory of moving frames (“repères mobiles”) is acknowledged to be a powerful
tool for studying the geometric properties of submanifolds under the action of a transfor-
mation group. While the basic ideas of moving frames for classical group actions are now
ubiquitous in differential geometry, the theory and practice of the moving frame method
for more general transformation group actions has remained relatively undeveloped and is
as yet not well understood. The famous critical assessment by Weyl in his review, [47], of
Cartan’s seminal book, [8], retains its perspicuity to this day:

“I did not quite understand how he [Cartan] does this in general, though in the
examples he gives the procedure is clear . . .Nevertheless, I must admit I found the book,
like most of Cartan’s papers, hard reading.”

Implementations of the method of moving frames for certain groups having direct
geometrical significance — including the Euclidean, affine, and projective groups — can
be found in both Cartan’s original treatise, [8], as well as many standard texts in dif-
ferential geometry; see, for example, the books of Guggenheimer, [19], which gives the
method center stage, Sternberg, [44], and Willmore, [50]. The method continues to at-
tract the attention of modern day researchers and has been successfully extended to some
additional examples, including, for instance, holomorphic curves in projective spaces and
Grassmannians. The papers of Griffiths, [18], Green, [17], Chern, [12], and the lecture
notes of Jensen, [23], are particularly noteworthy attempts to place Cartan’s intuitive
constructions on a firm theoretical and differential geometric foundation. However, none
of the proposed modern geometrical formulations of the theory incorporates the full scope
or range of applicability of the method as originally envisioned by Cartan. To this day,
both the formulation and construction of moving frames for general Lie group actions has
remained obscure, particularly for anyone interested in new applications. Although they
strive for generality, the range of examples treated remains rather limited, and Weyl’s
pointed critique of Cartan’s original version still, in our opinion, applies to all of these
later efforts.

There are two main goals of this series of papers devoted to a study of Cartan’s method
of moving frames. The first, of utmost importance for applications and the subject of the
present work, is to develop a practical algorithm for constructing moving frames that is easy
to implement, and can be systematically applied to concrete problems arising in different
applications. Our new algorithm, which we call the method of “moving coframes”, not
only reproduces all of the classical moving frame constructions, often in a simpler and more
direct fashion, but can be readily applied to a wide variety of new situations, including
infinite-dimensional pseudo-groups, intransitive group actions, restricted reparametrization
problems, joint group actions, to name a few. Although one can see the germs of our ideas
in the above mentioned references, our approach is different, and, we believe, significantly
easier to implement in practical examples. Standard presentations of the method rely on
an unusual hybrid of vector fields and differential forms. Our approach is inspired by
the powerful Cartan equivalence method, [11, 16, 38], which has much of the flavor of
moving frame-type computations, but relies solely on the use of differential forms, and the
operation of exterior differentiation. The moving coframe method we develop does have
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a complete analogy with the Cartan equivalence method; indeed, we shall see that the
method includes not only all moving frame type equivalence problems, under both finite-
dimensional Lie transformation groups and infinite Lie pseudo-groups, but also includes
the standard Cartan equivalence problems in a very general framework.

Our second goal is to rigorously justify the moving coframe method by proposing a
new theoretical foundation for the method of moving frames. This will form the subject
of the second paper in the series, [15], and will be based on a second algorithm, known as
regularization. The key new idea is to avoid the technically complicated normalization pro-
cedure during the initial phases of the computation, leading to a fully regularized moving
frame. Once a moving frame and coframe, along with the complete system of invariants,
are constructed in the regularized framework, one can easily restrict these invariants to
particular classes of submanifolds, producing (in nonsingular cases) the standard moving
frame. This approach enables us to successfully bypass branching and singularity com-
plications, and enables one to treat both generic and singular submanifolds on the same
general footing. Once the regularized solution to the problem has been properly imple-
mented, the a posteriori justification for the usual normalization and reduction procedure
can be readily provided. Details and further examples appear in part II, [15].

Beyond the traditional application to the differential geometry of curves and surfaces
in certain homogeneous spaces, there are a host of applications of the method that lend
great importance to its proper implementation. Foremost are the equivalence and symme-
try theorems of Cartan, that characterize submanifolds up to a group transformation by
the functional relationships among their fundamental differential invariants. The method
provides an effective means of computing complete systems of differential invariants and
associated invariant differential operators, which are used to generate all the higher order
invariants. The fundamental differential invariants and their derived invariants, up to an
appropriate order, serve to parametrize the “classifying manifold” associated with a given
submanifold; the Cartan solution to the equivalence problem states that two submani-
folds are (locally) congruent under a group transformation if and only if their classifying
manifolds are identical. Moreover, the dimension of the classifying manifold completely
determines the dimension of the symmetry subgroup of the submanifold in question. We
note that the differential invariants also form the fundamental building blocks of basic
physical theories, enabling one to construct suitably invariant differential equations and
variational principles, cf. [38].

Additional motivation for pursuing this program comes from new applications of mov-
ing frames to computer vision promoted by Faugeras, [13], with applications to invariant
curve and surface evolutions, and the use of the classifying (or “signature”) manifolds in
the invariant characterization of object boundaries that forms the basis of a fully group-
invariant object recognition visual processing system, [5]. Although differential invariants
have evident direct applications to object recognition in images, the often high order of
differentiation makes them difficult to compute in an accurate and stable manner. One
alternative approach, [35], is to use joint differential invariants, or, as they are known in
the computer vision literature, “semi-differential invariants”, which are based on several
points on the submanifold of interest. Although a few explicit examples of joint differential
invariants are known, there is, as far as we know, no systematic classification of them in the
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literature. We show how the method of moving coframes can be readily used to compute
complete systems of joint differential invariants, and illustrate with some examples of di-
rect interest in image processing. The approximation of higher order differential invariants
by joint differential invariants and, generally, ordinary joint invariants leads to fully invari-
ant finite difference numerical schemes for their computation, which were first proposed in
[5]. The moving coframe method should aid in the understanding and extension of such
schemes to more complicated situations.

In this paper, we begin with a review of the basic equivalence problems for subman-
ifolds under transformation groups that serve to motivate the method of moving frames.
Section 3 provides a brief introduction to one of the basic tools that is used in the moving
coframe method — the left-invariant Maurer–Cartan forms on a Lie group. Two practical
means of computing the Maurer–Cartan forms, including a novel method based directly
on the group transformation rules, are discussed. Section 4 begins the presentation of the
moving coframe method for the simplest category of examples — finite-dimensional transi-
tive group actions — and illustrates it with an equivalence problem arising in the calculus
of variations and in classical invariant theory. Section 5 extends the basic method to intran-
sitive Lie group actions. The simplest example of an infinite-dimensional pseudo-group,
namely the reparametrization pseudo-group for parametrized submanifolds, is discussed in
Section 6 and illustrated with a well studied geometrical example — the case of curves in
the Euclidean plane. This is followed by a discussion of curves in affine and projective ge-
ometry, reproducing classical moving frame computations in a simple direct manner based
on the moving coframe approach; in Section 7, the connections between the classical and
moving coframe methods are explained in further detail. Section 8 employs the moving
coframe method to completely analyze the joint differential invariants in two particular
geometrical examples — two-point differential invariants for curves in the Euclidean and
affine plane. Section 9 discusses how to analyze more general pseudo-group actions, illus-
trating the method with two examples arising in classical work of Lie, [28], Vessiot, [46],
and Medolaghi, [34]. In addition, we show how to solve the equivalence problem for second
order ordinary differential equations under the pseudo-group of fiber-preserving transfor-
mations using the moving coframe method, thereby indicating how all Cartan equivalence
problems can be treated by this method. Finally, we discuss some open problems that are
under current investigation. In all cases, the paper is designed for a reader who is interested
in applications, in that only the basic algorithmic steps are discussed in detail. In order
not to cloud the present practically-oriented exposition, precise theoretical justifications
for the algorithms proposed here will appear in the second paper in this series, [15].

2. The Basic Equivalence Problems.

We begin our exposition with a discussion of the basic equivalence problems which
can be handled by the method of moving frames; see Jensen, [23; p. VI], for additional
details. Suppose G is a transformation group acting smoothly on an m-dimensional man-
ifold M . In classical applications, G is a finite-dimensional Lie group, but, as we shall
see, the method can be extended to infinite-dimensional Lie pseudo-group actions, e.g.,
the group of conformal transformations on a Riemannian surface, the group of canonical
transformations on a symplectic space, or the group of contact transformations on a jet
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space. In either situation, a basic equivalence problem is to determine whether two given
submanifolds are congruent modulo a group transformation. We shall divide the basic
problem into two different versions, depending on whether one allows reparametrizations
of the submanifolds in question. Formally, these can be stated as follows.

The Fixed Parameter Equivalence Problem: Given two embeddings ι:X →
M and ι:X → M of an n−dimensional manifold X into M does there exist a group
transformation g ∈ G such that

ι(x) = g · ι(x) for all x ∈ X. (2.1)

The Unparametrized Equivalence Problem: Given two submanifolds N,N ⊂M
of the same dimension n, determine whether there exists a group transformation g ∈ G
such that

g ·N = N. (2.2)

Submanifolds satisfying (2.2) are said to be congruent under the group action.

In both problems we shall only consider the question in the small, meaning that (2.1)
only needs to hold on an open subset of X, or that congruence, (2.2), holds in a suitable
neighborhood of given points z0 ∈ N , z̄0 ∈ N . Global issues require global constructions
that lie outside the scope of the Cartan approach to equivalence problems.

Note that the problem of determining the symmetries of a submanifold, meaning the
set of all group elements that preserve the submanifold, forms a particular case of the
equivalence problem. Indeed, a symmetry of a submanifold is merely a self-equivalence.
For instance, the unparametrized symmetries of a given submanifold N ⊂ M are those
group elements that (locally) satisfy g ·N = N . Note that the symmetry group of a given
submanifold forms a subgroup H ⊂ G of the full transformation group.

Example 2.1. A classical example is inspired by the geometry of curves in the
Euclidean plane. A curve C ⊂ R

2 is parametrized by a smooth map x(t) = (x(t), y(t))
defined on (a subinterval of) R. The underlying group for Euclidean planar geometry is
the Euclidean group E(2) = O(2) n R

2 consisting of translations, rotations and (in the
non-oriented case) reflections.

In the fixed parametrization problem, we are given two parametrized curves x(t) and
x(t), and want to know when there exists a Euclidean motion such that x(t) = R ·x(t)+a
for all t, where the rotation R ∈ O(2) and translation a ∈ R

2 are both independent of t.
Physically, we are asking when two moving particles differ by a fixed Euclidean motion at
all times, a problem that has significant applications to motion detection and recognition
of moving objects.

In the unparametrized problem, we are interested in determining when two curves are
congruent under a Euclidean motion, meaning C = R · C + a for some fixed Euclidean
transformation (R, a) ∈ E(2). This occurs if and only if there exists a change of parameter
t̄ = τ(t) such that x(τ(t)) = R · x(t) + a for some fixed Euclidean transformation (R, a).

A Euclidean symmetry of a curve C is a Euclidean transformation (R, a) that preserves
the curve: R ·C + a = C. For instance, the Euclidean symmetries of a circle consist of the
rotations around its center. In the fixed parameter version, the circle must be parametrized
by a constant multiple of arc length for this to remain valid.
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Example 2.2. Consider the action

A: (x, u) 7−→
(
αx+ β

γx+ δ
,

u

γx+ δ

)
, A =

(
α β
γ δ

)
∈ GL(2), (2.3)

of the general linear group GL(2) on R
2. This forms a multiplier representation of GL(2),

cf. [14, 38], which lies at the heart of classical invariant theory. We restrict our attention
to curves given by the graphs of functions u = f(x), thereby avoiding issues of reparam-
etrization. Two such curves are equivalent if and only if their defining functions f and f̄
are related by the formula

f(x) = (γx+ δ) f̄

(
αx+ β

γx+ δ

)
= (γx+ δ)f̄(x̄), (2.4)

for some nonsingular matrix A. Equation (2.4) is the fundamental equivalence condition
for first order Lagrangians that depend only on a derivative coordinate in the calculus of

variations, cf. [36]. Moreover, if f(x) = n

√
P (x), and f̄(x̄) = n

√
P (x̄), then (2.4) becomes†

P (x) = (γx+ δ)n P

(
αx+ β

γx+ δ

)
= (γx+ δ)n P (x̄). (2.5)

In the case when P and P are polynomials of degree n, (2.5) indicates their equivalence
under projective transformations, and so forms the fundamental equivalence problem of
classical invariant theory.

In the general unparametrized equivalence problem, typically, the submanifolds N
and N are formulated via explicit parametrizations ι:X →M , with image N = ι(X) and
ι:X →M , with N = ι(X), where, for simplicity, the parameter spaces are taken to be the
same. (Indeed, since our considerations are always local, we shall not lose any generality
by assuming that X ⊂ R

n is an open subset of Euclidean space.) In such cases, we can
easily reformulate the unparametrized equivalence problem in the following form.

The Reparametrization Equivalence Problem: Given two embeddings ι:X →
M and ι:X → M of an n−dimensional manifold X into M does there exist a local
diffeomorphism Φ:X → X, i.e., a change of parameter, and a group transformation g ∈ G
such that

ι(Φ(x)) = g · ι(x), for all x ∈ X. (2.6)

We shall see that by solving the fixed parametrization problem, first in the case of
G being a finite dimensional Lie transformation group, then extending this to the case
of G being an infinite Lie pseudo-group of transformations, that we will then be able to
solve the reparametrization problem. For instance, we can reformulate the unparametrized
equivalence problem for curves in the Euclidean plane as a fixed parametrization problem
for curves in the extended space E = R×R

2, which has coordinates (t,x) = (t, x, y). The

† We are ignoring the branching of the n
th root here. See [36, 38] for a more precise version

of this construction.
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extended curve is given as the graph {(t,x(t))} of the original parametrized curve, and the
pseudo-group G = Diff (1) × E(2) acting on E consists of a finite-dimensional group, the
Euclidean group E(2) acting on R

2, together with the infinite-dimensional pseudo-group
Diff (1) consisting of all smooth (local) diffeomorphisms t̄ = τ(t) of the parameter space
R.

The formulation of the reparametrization problem in the form (2.6) indicates an in-
termediate extension of the two cases, in which one only allows a subclass of all possible
reparametrizations.

The Restricted Reparametrization Equivalence Problem: Given two embed-
dings ι:X → M and ι:X → M of an n−dimensional manifold X into M and a Lie
pseudo-group of transformations H acting on X, determine whether there exists a group
transformation g ∈ G such that (2.6) holds for some reparametrization Φ ∈ H in the
prescribed pseudo-group.

For example, one might consider the problem of equivalence of surfaces in Euclidean
space, in which one is only allowed conformal, or area preserving, or Euclidean reparame-
trizations. The general reparametrization equivalence problem is, of course, a special case
when the pseudo-group H = Diff (X) is the entire local diffeomorphism group.

In general, the solution to any equivalence problem is governed by a complete system of
invariants. In the present context, the invariants are the fundamental differential invariants
for the transformation group action in question. Thus, any solution method must, as a
consequence, produce the differential invariants in question.

Example 2.3. In the case of curves in Euclidean geometry, the ordinary curvature†

function κ = |xt |−3(xt ∧ xtt) is the fundamental differential invariant. For the fixed
parametrization problem, there is a second fundamental differential invariant — the speed
v = |xt |. Furthermore, all higher order differential invariants are obtained by successively
differentiating the curvature (and speed) with respect to arc length ds = v dt = |xt | dt,
which is the fundamental Euclidean invariant one-form. (In the fixed problem, one can
replace s derivatives by t derivatives since dt is also invariant if we disallow any changes in
parameter.) A similar result holds for general transformation groups — one can obtain all
higher order differential invariants by successively applying certain invariant differential
operators to the fundamental differential invariants, cf. [38].

The functional relationships between the fundamental differential invariants will solve
the equivalence problem. Roughly speaking, one uses the differential invariants to param-
etrize a “classifying” or “signature” manifold associated with the given submanifold, and
the result is that, under suitable regularity hypotheses, two submanifolds will be congruent
under a group transformation if and only if their classifying manifolds are identical . For
example, in the unparametrized Euclidean curve problem, the classifying curve is param-
etrized by the two curvature invariants (κ, κs), whereas in the fixed problem, one uses all
four invariants (v, κ, vs, κs) to parametrize the classifying curve. See [5] for applications of

† Here |a | is the usual Euclidean norm and a ∧ b is the scalar-valued cross product between
vectors in the plane.
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the classifying curve to the problem of object recognition in computer vision. Of course,
this “solution” reduces one to another potentially difficult identification problem — when
do two parametrized submanifolds coincide? One approach to the latter problem is to use
the Implicit Function Theorem to realize the classifying submanifold as the graph of a
function, which eliminates the reparametrization ambiguity. Alternatively, in an algebraic
context, a solution can be provided by Gröbner basis techniques, cf. [4]. Neither approach
completely resolves the general identification problem, but particular cases can often be
handled effectively.

Remark : A more standard solution to the equivalence problem depends on the choice
of a base point x0 = x(t0) on the curve. Then the curvature κ(s) as a function of arc
length s =

∫
x

x0

ds uniquely characterizes the curve up to Euclidean congruence, [19; p.

24]. The classifying curve approach has two distinct advantages: first, there is no choice of
base point required, which eliminates the translational ambiguity inherent in the curvature
function κ(s); second, the classifying curve is completely local, whereas the arc length s is
a nonlocal function of the curve. Note that the classifying curve can be computed directly,
without appealing to the arc length parametrization.

The differential invariants can also be used to determine the structure of the symmetry
group. In the case of an effectively acting Lie group G, the codimension of the symmetry
subgroup H of the submanifold N , i.e., dimG − dimH, is the same as the number of
functionally independent differential invariants on the submanifold. In particular, the
maximally symmetric submanifolds occur when all differential invariants are constant; if
G acts transitively, then these can be identified with the homogeneous submanifolds of M ,
i.e., the orbits of suitable closed subgroups of G, cf. [23]. For instance, in the Euclidean
case, the maximally symmetric curves are where the curvature is constant, which are the
circles and straight lines, since these are the orbits of the one-parameter subgroups of E(2).
(Technically, these retain the infinite-dimensional reparametrization group Diff (1) as an
additional symmetry group.) In the fixed parameter version, the circles and straight lines
must be parametrized by a constant multiple of their arc length in order to retain their
distinguished symmetry status.

Finally, we remark that differential invariants can be used to construct general invari-
ant differential equations admitting the given transformation group. Specifically, suppose
J1, . . . , JN form a complete system of functionally independent kth order differential invari-
ants, defined on an open subset Vk ⊂ Jk of the jet space where the prolonged group action
is regular. Then, on Vk, any kth order system of differential equations admitting G as a
symmetry group can be written in terms of the differential invariants: Hν(J1, . . . , JN ) = 0.
For example, the most general Euclidean-invariant third order differential equation has the
form dκ/ds = H(κ), equating the derivative of curvature with respect to arc length to a
function of curvature. Similar comments apply to invariant variational problems, and we
refer the reader to [37, 38], for details. These results form the foundations of modern
physical field theories, in which one bases the differential equations, or variational princi-
ple, on its invariance with respect to the theory’s underlying symmetry group. The groups
in question range from basic Poincaré and conformal invariance, to the exceptional simple
Lie groups lying at the foundations of string theory, as well as infinite-dimensional gauge
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groups and groups of Kac–Moody type. Remarkably, complete systems of differential in-
variants are known for only a small handful of transformation groups arising in physical
applications — a collection that includes none of the above mentioned groups! Our moving
coframe algorithm provides an direct and effective means for providing such classifications.

3. The Maurer–Cartan Forms.

In our approach to the theory and practical implementation of the method of moving
frames, the left-invariant Maurer–Cartan forms on a finite-dimensional Lie group play an
essential role. We therefore begin by reviewing the basic definition, and then present two
computationally effective methods for finding the explicit formulae for the Maurer–Cartan
forms. The theoretical justification for the second method will appear in part II, [15].

Throughout this section, G will be an r-dimensional Lie group. We let Lg:h 7→ g · h
denote the standard left multiplication map.

Definition 3.1. A one-form µ on G is called a (left-invariant) Maurer–Cartan form

if it satisfies
(Lg)

∗µ = µ for all g ∈ G. (3.1)

Remark : If one uses the right-invariant Maurer–Cartan forms instead, one is led to
an alternative theory of right moving frames. Although the left versions appear almost
exclusively in the literature, their right counterparts will play an important role in the
theoretical justifications and the regularized method introduced in part II. In this paper,
though, we shall exclusively use the left-invariant Maurer–Cartan forms and moving frames;
see [15] for details.

The space of Maurer–Cartan forms on G is an r-dimensional vector space, which can
naturally be identified with the dual to the Lie algebra g of left-invariant vector fields on
G. If we choose a basis v1, . . . ,vr of g, then there is a dual basis µ1, . . . , µr of the space
of Maurer–Cartan forms, satisfying 〈µi ;vj 〉 = δi

j , where δi
j is the usual Kronecker delta.

The basis Maurer–Cartan forms satisfy the fundamental structure equations

dµi = −
∑

j<k

Ci
jk µ

j ∧ µk, (3.2)

where the coefficients Ci
jk are the structure constants corresponding to our choice of basis

of the Lie algebra g. The Maurer–Cartan forms are a coframe on the Lie group G, meaning
that they form a pointwise basis for the cotangent space T ∗G, or, equivalently, that we
can write any one-form ω on G as a linear combination ω =

∑
fi µ

i thereof, where the fi

are suitable smooth functions.

The most common method for explicitly determining the Maurer–Cartan forms on a
given Lie group is to realize G ⊂ GL(n) as a matrix Lie group. The independent entries
of the n× n matrix of one-forms

µ = A−1 dA (3.3)

form a basis for the left-invariant Maurer–Cartan forms on G. Here A = A(g1, . . . , gr) ∈ G
represents the general matrix in G, which we have parametrized by local coordinates
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(g1, . . . , gr) near the identity, and dA =
∑

(∂A/∂gi) dgi is its differential, which is an n×n
matrix of one-forms.

For example, in the case G = GL(2), the four independent Maurer–Cartan forms are
the components of the matrix

µ =

(
µ1 µ2

µ3 µ4

)
= A−1 dA =

1

αδ − βγ

(
δ dα− β dγ δ dβ − β dδ
α dγ − γ dα α dδ − γ dβ

)
. (3.4)

Similarly, if G = E(2) = O(2) n R
2 is the Euclidean group in the plane, then we can

identify E(2) ⊂ GL(3) as a subgroup of GL(3) by identifying (R,a) ∈ E(2) with the 3 × 3
matrix

(
R a

0 1

)
=




cosφ − sinφ a
sinφ cosφ b

0 0 1


 .

Substituting into (3.3) leads to

µ =

(
R−1 −R−1a

0 1

)(
dR da
0 0

)
=




0 −dφ cosφda+ sinφdb
dφ 0 − sinφda+ cosφdb
0 0 0


 .

Thus, the three independent Euclidean Maurer–Cartan forms are

µ1 = dφ, µ2 = cosφda+ sinφdb, µ3 = − sinφda+ cosφdb. (3.5)

In cases when the group is explicitly realized as a local group of transformations on a
manifold M , and not necessarily as a matrix Lie group, it is useful to have a direct method
for determining the Maurer–Cartan forms. Given g ∈ G and z ∈ M , we explicitly write
the group transformation z̄ = g · z in coordinate form:

z̄i = Hi(z, g), i = 1, . . . ,m.

We then compute the differentials of the group transformations:

dz̄i =

m∑

k=1

∂Hi

∂zk
dzk +

r∑

j=1

∂Hi

∂gj
dgj , i = 1, . . . ,m,

or, more compactly,

dz̄ = Hz dz +Hg dg. (3.6)

Next, set dz̄ = 0 in (3.6), and solve the resulting system of linear equations for the
differentials dzk. This leads to the formulae

−dz = F dg = (H−1
z ·Hg) dg,

or, in full detail,

− dzk =
r∑

j=1

F k
j (z, g) dgj , k = 1, . . . ,m. (3.7)
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Then, for each k and each fixed z0 ∈M , the one-form

µ0 =

r∑

j=1

F k
j (z0, g) dg

j , (3.8)

is a left-invariant Maurer–Cartan form on the group G. Alternatively, if one expands the
right hand side of (3.7) in a power series (or Fourier series, or . . . ) in z,

r∑

j=1

F k
j (z, g) dgj =

∞∑

#I=0

zI µI , (3.9)

then each coefficient µI also forms a left-invariant Maurer–Cartan form on G. In particular,
when G acts locally effectively, the resulting collection of one-forms spans the space of
Maurer–Cartan forms.

Example 3.2. Consider the action of GL(2) given by

x̄ =
αx+ β

γx+ δ
, ū =

u

γx+ δ
, (3.10)

as discussed above. Differentiating (3.10), we find, as in (3.6),

dx̄ =
(γx+ δ)(αdx+ x dα+ dβ) − (αx+ β)(γ dx+ x dγ + dδ)

(γx+ δ)2

=
(αδ − βγ) dx+ (γx+ δ)(x dα+ dβ) − (αx+ β)(x dγ + dδ)

(γx+ δ)2
,

dū =
(γx+ δ) du+ u(γ dx+ x dγ + dδ)

(γx+ δ)2
.

Setting dx̄ = 0 = dū and solving for dx and du, we obtain

−dx =
δ dβ − β dδ

αδ − βγ
+

(
δ dα+ γ dβ − αdδ − β dγ

αδ − βγ

)
x+

(
γ dα− αdγ

αδ − βγ

)
x2,

−du =

(
αdδ − γ dβ

αδ − βγ

)
u+

(
αdγ − γ dα

αδ − βγ

)
xu.

(3.11)

Note that the coefficients of 1, x and x2 in the first formula, i.e.,

µ̂1 =
δ dβ − β dδ

αδ − βγ
, µ̂2 =

δ dα+ γ dβ − αdδ − β dγ

αδ − βγ
, µ̂3 =

γ dα− αdγ

αδ − βγ
, (3.12)

recover three of the Maurer–Cartan forms in (3.4), while the coefficient of either u or xu
in the second formula provides the remaining one.

Remark : The coefficients in (3.11) are, in fact, immediately found in terms of the
coefficients of the infinitesimal generators for the transformation group. See [15] for details.
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If G does not act effectively on M , then the forms computed by this method will form
a basis for the annihilator

(gM )⊥ =
{
ω ∈ g

∗ ∣∣ 〈ω ;v 〉 = 0 for all v ∈ gM

}

of the Lie algebra of the global isotropy subgroup

GM = { g ∈ G | g · z = z for all z ∈M } ,

and thus can be identified with the Maurer–Cartan forms for the effectively acting quotient
group G̃ = G/GM . For example, if we only treat the linear fractional transformations
in x in (3.10), then the resulting three Maurer–Cartan forms (3.12) all annihilate the
generator v = α∂α + β∂β + γ∂γ + δ∂δ of the isotropy subgroup {λ11} ⊂ GL(2) consisting
of scalar multiples of the identity matrix. Hence, the three one-forms can be identified
with a basis for the Maurer–Cartan forms of the effectively acting projective linear group
PSL(2) = GL(2)/{λ11}.

4. Compatible Lifts and Moving Coframes.

In this section, we begin our development of the moving coframe method, strting with
the simplest problems and gradually work our way up to more complicated situations.
Throughout this section, we assume that G is an r-dimensional Lie group which acts
locally effectively and transitively on an m-dimensional manifold M . (As remarked above,
we can always assume local effectiveness by quotienting by the global isotropy subgroup.)
We begin by choosing a convenient “base point” z0 ∈M .

Definition 4.1. A smooth map ρ:M → G is called a compatible lift with base point
z0 if it satisfies

ρ(z) · z0 = z. (4.1)

In order to compute the most general compatible lift, we solve the system of m equa-
tions (4.1) for m of the group parameters in terms of the coordinates z on M and the
remaining r−m = dimG−dimM group parameters, which we denote by h. This leads to
a general formula g = ρ0(z, h) for the solution to the compatibility equations (4.1). In other
words, by solving the compatibility conditions (4.1), we have effectively “normalized” m
of the original group parameters. Since our considerations are always local, in practice, we
only need to solve the compatibility equations (4.1) near z0. In accordance with Cartan’s
terminology, [6], we will call the general compatible lift ρ0(z, h) the moving frame of order

zero for the given transformation group. If ι:X →M defines a parametrized submanifold
N = ι(X), then one can view the composition ρ0(ι(x), h) as a restriction of the order
zero moving frame to the submanifold N , where the unnormalized parameters h determine
the degree of indeterminacy of the moving frame on N . In geometrical situations, such
restrictions can be identified with the classical moving frames; see also Section 7 below.

Example 4.2. Consider the planar action (2.3) of the general linear group GL(2):

A · (x, u) =

(
αx+ β

γx+ δ
,

u

γx+ δ

)
, A =

(
α β
γ δ

)
∈ GL(2), (4.2)
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The action (4.2) is transitive on M = R
2\{u = 0}. Choose the base point to be z0 = (0, 1).

Since A · z0 = (β/δ, 1/δ), any compatible lift A = ρ(x, u) must satisfy β/δ = x, 1/δ = u,
and hence the solution to (4.1) is

β =
x

u
, δ =

1

u
. (4.3)

The most general compatible lift thus has the form

ρ0(x, u, α, γ) =

(
α x/u
γ 1/u

)
, (4.4)

where α = α(x, u), γ = γ(x, u) are arbitrary functions, subject only to the condition
α 6= xγ, so that the determinant of (4.4) does not vanish, and hence ρ0 does take its values
in the group GL(2).

Note that since G acts transitively, we can locally identify M ' G/H with a ho-
mogeneous space, where H = Gz0

is the isotropy group of the base point. Therefore, a
compatible lift is merely a (local) section of the fiber bundle G→ G/H.

Proposition 4.3. Two maps ρ, ρ̂:M → G are compatible lifts with the same base

point if and only if they satisfy

ρ̂(z) = ρ(z) · η(z),

where η:M → H is an arbitrary map to the isotropy subgroup of the base point z0.

Thus, in the previous example, the isotropy subgroup H of the point z0 = (0, 1)

consists of all invertible lower triangular matrices of the form

(
α′ 0
γ′ 1

)
. Indeed, we can

rewrite (4.4) in the factored form

ρ0(x, u, α, γ) =

(
α x/u
γ 1/u

)
=

(
1 x/u
0 1/u

)(
α′ 0
γ′ 1

)
, (4.5)

where α′ = α− xγ, γ′ = uγ, reconfirming Proposition 4.3 in this particular example.

Although the remaining unspecified group parameters can be identified with the
isotropy subgroup coordinates, in any practical implementation of the moving coframe
algorithm, it is not necessary to identify the isotropy subgroup explicitly, nor to adopt its
particular coordinates to characterize the order zero moving frame. Thus, in the present
example, the coordinates α, γ, are just as effective as the subgroup coordinates α′, γ′. (The
interested reader can follow through the ensuing calculations using the subgroup coordi-
nates instead, reproducing the final result.)

The order zero moving frame ρ0(z, h), which is the general solution to the compatible
lift equations (4.1), defines a map from the zeroth order moving frame bundle B0 = M×H '
G/H×H, coordinatized by (z, h), to the group G, which is, in fact, a local diffeomorphism
ρ0:B0 −→̃ G. There is an induced action of G on the moving frame bundle B0 that
makes ρ0 into a G-equivariant map: ρ0(g · (z, h)) = g · ρ0(z, h). Thus, the action on the
unnormalized group parameters h can be explicitly determined by multiplying the moving
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frame on the left by a group transformation. The action of G on B0 projects to the original
action of G on M , so that g · (z, h) = (g · z, η(g, z, h)) for g ∈ G.

In the present example, the induced action of GL(2) on the unspecified parameters
α, γ, is found by multiplying the moving frame (4.4) on the left by a group element(
a b
c d

)
∈ GL(2); explicitly,

(
α x̄/ū
γ 1/ū

)
=

(
a b
c d

)
·
(
α x/u
γ 1/u

)
=

(
aα+ bγ (ax+ b)/u
cα+ dγ (cx+ d)/u

)
. (4.6)

Therefore, the action of G = GL(2) on the moving frame bundle B0 is given by

x̄ =
ax+ b

cx+ d
, ū =

u

cx+ d
, α = aα+ bγ, γ = cα+ dγ. (4.7)

Note that the (x, u) transformations coincide with the original action (2.3), as they should.

Remark : In practical implementations of the moving coframe algorithm, we do not

have to explicitly compute this group action. We do this here so as to provide the reader
with some justification for our claims.

Remark : The action of G on B0 = M×H does not project to an action on the isotropy
subgroup H, even if we use the associated subgroup coordinates. In the present example,
we find (4.7) implies that the subgroup coordinates α′, γ′ in (4.5) transform according to

α ′ =
ad− bc

cx+ d
α′, γ ′ = γ′ +

cu

cx+ d
α′.

The next step is to characterize the group transformations by a collection of differential
forms. In the finite-dimensional situation that we are currently considering, these will be
obtained by pulling back the left-invariant Maurer–Cartan forms µ on G to the order zero
moving frame bundle B0 using the compatible lift. The resulting one-forms ζ0 = (ρ0)

∗µ

will provide an invariant coframe on B0, which we name the moving coframe of order zero.
The moving coframe forms ζ0 clearly satisfy the same Maurer–Cartan structure equations
(3.2).

Theorem 4.4. The order zero moving coframe forms completely characterize the

group transformations on the bundle B0. In other words, a map Ψ:B0 → B0 satisfies

Ψ∗ζ0 = ζ0 if and only if Ψ(z, h) = g · (z, h) coincides with the action of a group element

g ∈ G on B0.

In the present example, we substitute the formulae (4.3) characterizing our compatible
lift (4.4) into the Maurer–Cartan forms (3.4). The result is the order zero moving coframe

ζ1 =
dα− x dγ

α− γx
, ζ2 =

dx

u(α− γx)
,

ζ3 =
u(αdγ − γ dα)

α− γx
, ζ4 = − γ dx

α− γx
− du

u
,

(4.8)
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which forms a basis for the space of one-forms on B0. The skeptical reader can explicitly
check that these four one-forms really do completely characterize the group action (4.7),
as described in Theorem 4.4.

Let us now consider a curve N ⊂ M . For simplicity, we shall assume that the curve
coincides with the graph of a function u = u(x). However, this restriction is not essential
for the method to work, and later we show how parametrized curves can also be readily
handled by the general method. We restrict the moving coframe forms to the curve,
which amounts to replacing the differential du by its “horizontal” component ux dx. If
we interpret the derivative ux as a coordinate on the first jet space J1 = J1M ' R

3 of
curves in M , then the restriction of a differential form to the curve can be reinterpreted
as the natural projection of the one-form du on J1 to its horizontal component, using the
canonical decomposition of differential forms on the jet space into horizontal and contact
components. Indeed, the vertical component of the form du is the contact form du−ux dx,
which vanishes on all prolonged sections of the first jet bundle J1M . We refer the reader
to [38; Chapter 4] for a comprehensive review of the contact geometry of jet bundles.
Therefore, the restricted (or horizontal) moving coframe forms are explicitly given by

η1 =
dα− x dγ

α− γx
, η2 =

dx

u(α− γx)
,

η3 =
u(αdγ − γ dα)

α− γx
, η4 =

γ(xux − u) − αux

u(α− γx)
dx,

(4.9)

which now depend on first order derivatives.

The next step in the procedure is to look for invariant combinations of coordinates
and group parameters. Each such invariant combination will either provide us with a
basic differential invariant for the problem, or, in the case that it explicitly depends on
the remaining group parameters, a “lifted invariant” which can be normalized and thereby
eliminate one of the remaining group parameters, as discussed below. Specifically, in
the present example, a function J(α, γ, x, u, ux) will be a lifted invariant provided it is
unaffected by the group action on its arguments, meaning that

J(α, γ, x̄, ū, ūx̄) = J(α, γ, x, u, ux), (4.10)

wherever α, γ, x̄, ū, are related to α, γ, x, u, according to the induced action (4.7) of the
group on the moving frame bundle, and ūx̄ is related to ux according to the standard
prolongation, [38], of the action of G on M to the first jet bundle J1. In the present
case, if x̄, ū are given by (4.7), then a straightforward chain rule computation provides the
prolonged action of GL(2) on the derivative coordinate:

ūx̄ =
(cx+ d)ux − cu

ad− bc
. (4.11)

In other words, we interpret α, γ, x, u, ux as coordinates on a bundle B̃0 → J1 over the

first jet space, which is merely the pull-back B̃0 = (π1
0)∗B0 of the zeroth order moving

frame bundle via the standard projection π1
0 : J1 → M . There is an induced action of

G on B̃0 which projects to its prolonged action on J1. A (first order) lifted invariant,
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then, is just a function J : B̃0 → R which is invariant under the action of G on B̃0. If the
lifted invariant J = J(x, u, ux) does not, in fact, depend on the group parameters α, γ,
then it will be a (first order) differential invariant. (However, in the present example,
there are no non-constant first order differential invariants, since GL(2) acts transitively
on J1.) Alternatively, if J actually depends on either α or γ then it can be used in the
normalization procedure.

Fortunately, the lifted invariants can be determined without explicitly computing the
prolonged group action, or solving any differential equations. They appear in the linear
dependencies among the restricted (horizontal) moving coframe forms! Indeed, because
the one-forms are invariant, each coefficient Ji in a linear relation η0 = J1 η1 + · · ·+ Jk ηk,
in which the forms ηi on the right hand side are linearly independent, is automatically
invariant under the action of the group. In our example, we note that, among the restricted
one-forms (4.9), there is one linear dependency, namely η4 = Jη2, where

J = γ(xux − u) − αux. (4.12)

One can explicitly verify that J is indeed a lifted invariant, meaning that it satisfies (4.10)
whenever α, γ, x̄, ū, ūx̄, are related to α, γ, x, u, ux, according to (4.7), (4.11).

The ultimate goal of the moving frame method is to eliminate all the ambiguities, i.e.,
the undetermined group parameters, in the original moving frame, in a suitably invariant
manner. Cartan’s crucial observation is that, we can, without loss of generality, normalize

any lifted invariant by setting it equal to any convenient constant value,

J(α, γ, x, u, ux) = c, (4.13)

without affecting the equivalence problem. In (4.13), c can be any constant, subject only to
the requirement that the solutions to (4.13) remain in the group, e.g., that the determinant
of any resulting matrix (4.4) remains nonzero. Typically, c is taken to be 0, 1, or −1,
although other values can be chosen to simplify the resulting formulae. Assuming that J
does actually depend on the parameters α, γ, we can solve the normalization equation (4.13)
for one of them; e.g., α = α(γ, x, u, ux). Because J is an invariant, such a normalization
will not alter the solution to the equivalence problem, and hence we can use it to eliminate
α from the original formulae for the moving frame and moving coframe. The result is a first
order moving frame, depending on one fewer unnormalized group parameter. This produces
a corresponding first order moving coframe, to which one can apply the same procedure,
leading to a chain of successive normalizations and reductions, eventually enabling one
to completely eliminate all the undetermined parameters and specify a uniquely defined
moving frame on some suitable jet bundle Jn = JnM .

In accordance with the general procedure, then, we can normalize our particular lifted
invariant (4.12) by setting it equal to zero; the solution to the normalization equation J = 0
is then given by

α =

(
xux − u

ux

)
γ. (4.14)

Substituting (4.14) into (4.4) produces the first order moving frame

ρ1(x, u, ux, γ) =

(
(xux − u)γ/ux x/u

γ 1/u

)
, (4.15)
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which now depends on first order derivatives of u, and just one unnormalized group pa-
rameter. We can regard the coordinates (x, u, ux, γ) as parametrizing a bundle B1 → J1

sitting over the first jet space, which is realized as a G-invariant subbundle of B̃0, namely

B1 = J−1{0} ⊂ B̃0. As before, one can restrict the first order moving frame to a curve
u = u(x) by restricting the map ρ1 to the first prolongation or jet of the curve, i.e., we set
u = u(x), ux = u′(x), in (4.15), with γ indicating the remaining ambiguity. There is an
induced action of GL(2) on B1, which projects to the usual first prolonged action G(1) of
the group on J1, cf. (4.7), (4.11), and makes the first order moving frame ρ1:B1 −→̃G into
a local G-equivariant diffeomorphism. In our case, the explicit transformation rules on B1

are given by

x̄ =
ax+ b

cx+ d
, ū =

u

cx+ d
, ūx̄ =

(cx+ d)ux − cu

ad− bc
, γ =

(
(cx+ d)ux − cu

ad− bc

)
γ, (4.16)

which coincide with left multiplication of the first order moving frame (4.15) by the given
group element. (Again, these explicit formulae are provided for illustration only, and are
not essential for application of the method.) Furthermore, substituting (4.14) into (4.8),
we find the first order moving coframe

ζ1 =
dγ

γ
− dux

ux

+
du− ux dx

u
, ζ2 = −ux dx

γu2
,

ζ3 =
γu dux

ux

− γ(du− ux dx), ζ4 =
du− ux dx

u
.

(4.17)

As in the order zero case, cf. Theorem 4.4, the first order moving coframe completely
characterizes the group transformations on B1.

As before, we determine new lifted invariants by restricting the first order moving
coframe one-forms to a curve u = u(x). This amounts to replacing du and dux by their
horizontal components ux dx and uxx dx respectively, leading to the restricted forms

η1 =
dγ

γ
− uxx dx

ux

, η2 = −ux dx

γu2
, η3 =

γuuxx dx

ux

, η4 = 0, (4.18)

that now depend on second order derivatives. Alternatively, one could deduce these re-
stricted forms by substituting the normalization (4.14) into the previous restricted forms
(4.9). Note in particular that the fact that η4 vanishes is an automatic consequence of
our normalization condition η4 = Jη2 = 0; alternatively, we note that ζ4 is an invariant
contact form, which hence vanishes when restricted to any submanifold. Now there is an
additional dependency, namely η3 = Kη2, where

K = −γ
2u3uxx

u2
x

,

is a new lifted invariant. Again, the reader can check that K is invariant under the
prolonged action of GL(2) on the bundle B̃1 = (π2

1)∗B1 → J2, where π2
1 : J2 → J1 is the

natural projection, and is provided by (4.16) and the second order prolongation (chain
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rule) formula

ūx̄x̄ =
(cx+ d)3uxx

(ad− bc)2
. (4.19)

We can normalize K = −1 by setting

γ =
ux√
u3uxx

. (4.20)

Note that we cannot normalize K = 0 since this would require γ = 0, but then the lift
(4.15) would have zero determinant, violating the group conditions. The final lift

ρ2(x, u, ux, uxx) =




xux − u√
u3uxx

x

u
ux√
u3uxx

1

u


 (4.21)

defines the second order moving frame. The moving frame (4.21) provides an explicit G-
equivariant identification ρ2:V2 −→̃ G of the open subset V2 = {uuxx 6= 0} ⊂ J2 of the
second jet bundle with an open subset of the group G, identifying the prolonged action of
G(2) on J2 with the ordinary left multiplication on G; thus

ρ2(g
(2) · z(2)) = g · ρ2(z

(2)), g ∈ GL(2), z(2) = (x, u, ux, uxx) ∈ V2.

Substituting (4.20) into (4.18) produces the final set of invariant one-forms

ζ1 = − duxx

2uxx

− du

2u
− ux dx

u
, ζ2 = −

√
uxx

u
dx,

ζ3 =
dux√
uuxx

− ux(du− ux dx)√
u3uxx

, ζ4 =
du− ux dx

u
,

(4.22)

which form the second order moving coframe. Note that the second order moving frame
(4.21) provides an equivalence, ρ∗2µi = ζi, mapping the moving coframe forms on the
second order jet space to the Maurer–Cartan forms (3.4) on the group. Consequently, the
forms ζi uniquely characterize the second order prolonged action of GL(2) on V2 ⊂ J2.

Finally, the restricted (horizontal) moving coframe forms become

η1 = −uuxxx + 3uxuxx

2uuxx

dx, η2 =

√
uxx

u
dx, η3 = −η2, η4 = 0.

There is one final linear dependency, namely η1 = −I η2, where

I =
uuxxx + 3uxuxx

2
√
uu3

xx

(4.23)

is the fundamental differential invariant of the transformation group, also known as the
group-invariant curvature. The remaining one-form ds = η2 is the fundamental invariant
one-form, or group-invariant arc length element. All higher order differential invariants
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can be found by differentiating the curvature invariant with respect to the invariant arc
length; for instance, the fundamental fourth order differential invariant is

J =
∂I

∂η2
=
dI

ds
=

√
u

uxx

dI

dx

=
2u2uxxuxxxx − 3u2u2

xxx − 2uuxuxxuxxx + 6uu3
xx − 3u2

xu
2
xx

4uu3
xx

.

(4.24)

From the general theory, we conclude that every differential invariant for the group (2.3) is
a function of the curvature and its successive derivatives with respect to the arc length. On
the regular part V2 of the jet space J2, all GL(2) invariant ordinary differential equations
can be written in terms of these invariants; for instance the most general invariant third
order ordinary differential equation has the form

uuxxx + 3uxuxx = k
√
uu3

xx, (4.25)

for some constant k.

Applications to the equivalence problem for curves (which includes the equivalence
problem for first order Lagrangians as well as that of classical invariant theory) follow
directly from the general theorems. Given a function u = u(x), we define its classifying

curve C to be the planar curve parametrized by the fundamental differential invariants
I(x), J(x). The general result states that two curves are mapped to each other by a group
transformation (2.3), so C = g · C, if and only if their classifying curves are identical,
C = C. A curve C is maximally symmetric if and only if its classifying curve reduces to a
point; in this case the original curve is, in fact, an orbit of a one-parameter subgroup of
GL(2). Thus, we have, in a very simple and direct manner, recovered the results in [36]
on the equivalence and symmetry of binary forms, which were found by a much less direct
approach based on the standard Cartan equivalence problem for particle Lagrangians.

There are a few technical points that should have been addressed during the preceding
discussion. First, one needs to impose certain conditions on the function u(x) in order to
ensure that the computation is valid. For instance, the normalization (4.14) requires
ux 6= 0, i.e., the curve does not have a horizontal tangent. (We have already assumed
that it does not have a vertical tangent by requiring that it be the graph of a smooth
function.) If ux = 0, then we can still normalize J = 0 as long as u 6= xux, in which case
we normalize by solving for γ instead of α. Actually, both cases can be simultaneously
handled by the normalization α = λ(xux − u), γ = λux, where λ 6= 0 is a new parameter
whose normalization will be specified at the next stage of the procedure. The reader can
check that this alternative procedure leads to the same lift and differential invariants as
before. In the second normalization, we have assumed† uxx > 0 in order to take the square
root. For uxx < 0 we would need to normalize K = +1, and use

√
− uxx instead. Thus

the problem actually separates into two branches, with the inflection points uxx = 0 being
interpreted as singular points for the group action. The straight lines, for which uxx ≡ 0,
form a special class and must be analyzed separately. Finally, the square root itself has a

† In the complex-valued problem, there is no sign restriction.
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sign ambiguity (or, in the complex case, an ambiguity in its choice of branch). Both signs
must, in fact, be allowed in the final expression for the lift and the differential invariants.
Such branching and ambiguous sign phenomena will be familiar to practitioners of the
Cartan equivalence method; see [38] for a detailed discussion of these issues.

Let us finish this section by summarizing the basic method of moving coframes, in a
form which will apply to more general problems. The basic steps are:

(a) Determine the general invariant lift, or moving frame of order zero, by choosing a
base point and solving (4.1) for the given group action.

(b) Determine the invariant forms. In the finite-dimensional case, they are the Maurer–
Cartan forms, which can be computed either by using the matrix approach, or by
direct use of the transformation group formulae.

(c) Use the invariant lift to pull-back the invariant forms, leading to the moving coframe
of order zero.

(d) Determine lifted invariants by finding linear dependencies among the restricted or
horizontal components of the moving coframe forms.

(e) Normalize any group-dependent invariants to convenient constant values by solving
for some of the unspecified parameters.

(f ) Successively eliminate parameters by substituting the normalization formulae into
the moving coframe and recomputing dependencies.

(g) After the parameters have all been normalized, the differential invariants will appear
through any remaining dependencies among the final moving coframe elements.
The invariant differential operators are found as the dual differential operators to
a basis for the invariant coframe forms.

Note that we do not need the explicit isotropy groups for the transformation group
actions, nor do we need compute explicit formulae for the prolonged group action in order
to successfully apply the method.

Remark : If one is solely interested in the final differential invariants and invariant
horizontal one-forms (i.e., invariant forms on the submanifold itself), then one need only
determine the effect of the normalizations on the horizontal components of the moving
coframe forms during the computation. The moving coframe itself will also include in-
variant contact forms, which vanish upon restriction, but which, nevertheless, play an
important role in other aspects of the geometry. See [38, 40, 20], for applications of in-
variant contact forms to the study of invariant evolution equations, with applications to
image processing. Applications to the computation of the invariant cohomology of the vari-
ational bicomplex, cf. [2], are also of particular importance in the analysis of symmetries
and conservation laws of variational problems.

Remark : The proposed method of moving coframes has the same basic structure as
the Cartan equivalence method, [11, 16, 38], in that one deals with a system of differential
forms depending on arbitrary parameters, and seeks to normalize all the parameters by a
suitable collection of lifted invariants. One can, indeed, view the two methods as partic-
ular cases of a completely general equivalence procedure. However, it is worth pointing
out a few of the differences between the two. First, the Cartan method only deals with
lifted coframes, whose constituents are linearly independent differential forms, whereas the
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differential forms occurring in the moving coframe method are linearly dependent. The
invariant combinations (lifted invariants) used to normalize the parameters are found via
linear dependencies in the moving coframe method, whereas they arise as unabsorbed tor-
sion coefficients in the differentials of the lifted coframe forms in the Cartan equivalence
method. In the moving coframe method, the differentials of the moving coframe one-forms
satisfy the Maurer–Cartan structure equations, and hence do not provide any nonconstant
invariants. Finally, and perhaps most significantly, the group parameters g only occur
algebraically in the lifted coframe elements in the Cartan equivalence method, whereas in
the moving frame problems their differentials dg occur as well, since they appear in the
Maurer–Cartan forms. One can, of course, imagine solving hybrid equivalence problems,
in which aspects of both problems occur during the normalization procedure, although we
are not currently aware of any interesting examples where these occur naturally.

5. Intransitive Lie Group Actions.

Our next task is to extend the moving coframe method to the case of finite-dimensional
Lie groups whose action is no longer transitive. In the intransitive case, we still assume
that G is an r-dimensional Lie group acting effectively, and regularly, which implies that
its orbits, which we take to have dimension s, form a foliation of M . We choose a local
cross-section K ⊂ M to this foliation, i.e., a submanifold of dimension m− s intersecting
the orbits transversally, and introduce a compatible lift ρ:M → G by requiring that, for
each z near K, the lift ρ satisfies

z = ρ(z) · z0, for some z0 ∈ K. (5.1)

The general solution to the compatible lift equations (5.1) will be of the form ρ(z, h)
depending on r − s parameters h. Note that unless the isotropy subgroups at each point
in the cross-section happen to be identical, we cannot identify the unspecified parameters
as local coordinates on any subgroup H ⊂ G, leading us beyond any principal bundle-
theoretic interpretation of the method. Nevertheless, the Implicit Function Theorem will
allow us to locally write the general compatible lift in this form. In addition, the group
admits (locally) m− s functionally independent invariants, I1(z), . . . , Im−s(z), whose level
sets characterize the orbits. The zeroth order moving frame will then be the map

ρ0(z, h) = (ρ(z, h), I(z)), (5.2)

whose first components g = ρ(z, h) are those of the general compatible lift (for the given
cross-section) and, in addition, has the invariants w = I(z) = (I1(z), . . . , Im−s(z)) as
further components. Note that ρ0 is only locally defined, since z must lie near the cross-
section K, and, moreover, the remaining parameters h are determined in accordance with
the Implicit Function Theorem.

Note: We can view the range G× R
m−s of ρ0 as having the structure of a Cartesian

product Lie group, the additive group structure on the second factor formalizing the fact
that we can add invariants.

The moving coframe forms in this case are constructed from the Maurer–Cartan forms
µ on the group G, together with the coordinate one-forms dw = {dw1, . . . , dwm−s} on
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R
m−s. The group transformations are then characterized by the conditions

Φ∗w = w, Φ∗dw = dw, Φ∗ µ = µ. (5.3)

Using the moving frame lift g = ρ(z, h), w = I(z), to pull back these one-forms, we are led
to the zeroth order moving coframe, consisting of the pulled-back Maurer–Cartan forms
(ρ0)

∗µ, along with the differentials (ρ0)
∗dwκ = dIκ of the group invariants. At this stage,

the set up of the intransitive problem is complete, and one proceeds, as in the transitive
case, to look for dependencies among the restricted coframe forms, and then normalize the
resulting lifted invariants.

Example 5.1. The intransitive action

A : (x, u) 7−→
(
x,
αu+ β

γu+ δ

)
, A =

(
α β
γ δ

)
∈ SL(2), (5.4)

of the special linear group SL(2) on M = R
2 arises in complex function theory, [21]. (We

restrict to SL(2) in order to maintain local effectiveness.) The group orbits are vertical lines
and so the basic invariant is merely I(x, u) = x. We choose the cross-section K = {u = 0}.
Solving the equation A(x, u) ·z0 = (x, u), where z0 = (y, 0), leads to the general compatible
lift

A0(x, u, α, δ) =




α δu

αδ − 1

δu
δ


 , (5.5)

which forms the group component of the zeroth order moving frame. The other component
is just the invariant

w = I(x, u) = x. (5.6)

Pulling back the Maurer–Cartan forms µ = A−1 dA and dw via the lift (5.5), (5.6), leads
to the order zero moving coframe

ζ1 = (αδ − 1)
du

u
− dδ

δ
, ζ2 = δ2 du,

ζ3 =
u d(αδ) + αδ(1 − αδ) du

δ2u2
, ζ4 = dx.

(5.7)

As before, we restrict to a curve u = u(x) by replacing du by its horizontal component
ux dx. Letting ηi denote the horizontal component of ζi, we find that there is one resulting
linear dependency, namely

η2 = δ2ux dx = J dx = Jη4.

The leads to the first normalization δ = 1/
√
ux resulting from setting J = 1. Substituting

this normalized value into (5.5), (5.6), provides the first order moving frame. Further-
more, substituting into (5.7) produces the second order moving coframe, with horizontal
components

η1 =

(
2αu3/2

x + uuxx − 2u2
x

2uux

)
dx, η2 = η4 = dx, η3 =

√
ux

u
( dα− αη1). (5.8)
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Now we normalize the coefficient of η1 to 0 by setting α = u−3/2
x (u2

x − 1
2uuxx). The final

moving frame (of order 2) is

A2 =
1

u3/2
x

(
u2

x − 1
2uuxx uux

− 1
2uxx ux

)
, w = x. (5.9)

The corresponding restricted moving coframe has reduced to

η2 = η4 = dx, η3 = − 1
4S η2, η1 = 0, (5.10)

where

S =
2uxuxxx − 3u2

xx

u2
x

(5.11)

is the classical Schwarzian derivative of the function u(x), whose invariance under lin-
ear fractional transformations is of fundamental importance in complex function theory.
Since the one-form dx is invariant, all the higher order differential invariants are found by
differentiating S with respect to x.

Actually, the preceding computation can be slightly simplified by extending our gen-
eral method to non-effective actions. We consider (5.4) as defining a non-effective (and
intransitive) action of the general linear group GL(2) on R

2. We may apply the second
algorithm for computing the required Maurer–Cartan forms, leading to the three one-forms
(3.12) that annihilate the global isotropy subalgebra. We substitute the compatible lift

formulae β = δu for the order zero moving coframe, which is now A0 =

(
α δu
γ δ

)
, into

(3.12), leading to the restricted moving coframe forms

η̂1 =
δux dx

α− uγ
, η̂2 =

dα− u dγ + γux dx

α− uγ
− dδ

δ
,

η̂3 =
γ dα− αdγ

δ(α− uγ)
, η̂4 = dx.

(5.12)

The first dependency between η̂1 and η̂4 leads to the reduction δ = (α − uγ)/ux. Sub-
stituting into η̂3 leads to a second dependency, and the resulting normalization yields
α = γ(u− 2u2

x/uxx). At this stage, even though we have not normalized the final parame-
ter γ, it no longer appears in the coframe, which coincides with our earlier one, (5.10). It
does, of course, occur in the final moving frame lift, which is obtained by multiplying the
matrix A2 in (5.9) by γ. However, γ plays no other role in the problem, and merely reflects
a final indeterminacy stemming from the ineffectiveness of the group action. The main
point in this solution method is that one does not have to explicitly implement an effective
action, as was done in the original lift (5.5), in order to solve the problem. Indeed, in more
complicated examples, it may be relatively straightforward to write down the compati-
ble lift for an ineffective group action, whereas doing the same for the effectively acting
quotient group G/GM may be considerably more complicated.

Example 5.2. Consider the elementary similarity group G = R
+

n R
2 acting tran-

sitively on M = R
2 via

A : (x, u) 7−→ (αx+ a, αu+ b). (5.13)
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For the base point z0 = (0, 0), the associated moving frame of order 0 is the lift with a = x,
b = u. The Maurer–Cartan forms {dα/α, da/α, db/α} are pulled back to provide the zeroth

order moving coframe, whose horizontal (or, more precisely, non-contact) components are

η1 =
dα

α
, η2 =

dx

α
, η3 =

ux dx

α
. (5.14)

There is a single linear dependency η3 = I η2, but the resulting invariant I = ux does
not depend on the remaining group parameter, and hence cannot be used to normalize
it. To proceed further in such cases, we work in analogy with the preceding intransitive
case. Here the intransitivity is on the first order jet bundle, and is an indication of the fact
that this particular group exhibits the pathology of “pseudo-stabilization” of its prolonged
group orbits, cf. [38]. We therefore introduce an additional invariant one-form dux, whose
horizontal component is

η4 = uxx dx = K η2.

The resulting dependency leads to the lifted invariant K = αuxx which yields the desired
normalization α = 1/uxx and the second order moving frame. The associated invariant
coframe is

η2 = η4 = uxx dx, η1 = −J η2, η3 = I η2, (5.15)

yielding two fundamental differential invariants

I = ux, J = u−2
xxuxxx. (5.16)

The higher order invariants are found by differentiating J with respect to η4 = uxx dx '
dux, so that a basic fourth order invariant is

K =
dJ

dux

=
1

uxx

dJ

dx
=
uxxxx

u2
xx

− 2J2.

Note that dI/dux = 1, so that differentiating I produces nothing new. Thus, in this
case, we find two fundamental differential invariants, and require three, namely (I, J,K),
to parametrize the classifying curve that solves the associated equivalence problem. We
conclude that the phenomenon of pseudo-stabilization of group orbits is reflected in the
moving coframe procedure by the premature appearance of differential invariants, whose
differentials are required to finish the procedure. See [38, 39] for further discussion.

Remark : Interestingly, if the scaling acts differently on x and u, so the group is

A : (x, u) 7−→ (αx+ a, αku+ b), (5.17)

for k 6= 1, then pseudo-stabilization does not occur. Such cases can be readily handled via
our basic method without any such intransitive normalizations.

6. Reparametrization Pseudo-Groups.

The classical applications of moving frames to curves and surfaces in Euclidean, affine,
and projective geometry, cf. [6, 8, 19], can all be readily implemented using the moving
coframe algorithm. In each case, we consider the reparametrization equivalence problem

24



for submanifolds, so that the underlying transformation group is the Cartesian product
of an infinite Lie pseudo-group, namely the local diffeomorphism group Diff (X) of the
parameter space, and a finite-dimensional Lie group acting on the manifold M . In this
case, in addition to the Maurer–Cartan forms for the group, one also includes the one-forms
defining the diffeomorphism pseudo-group. One can then proceed to reduce and normalize
as before. For simplicity, we just deal with planar curves, although extensions to surfaces
and curves in higher dimensional ambient spaces can also be handled without significant
further complications.

Example 6.1. Euclidean geometry of curves. The most well-known classical example
is the reparametrization equivalence problem for curves in the Euclidean plane, introduced
in Example 2.1 above. In this case, we are dealing with a finite-dimensional group, the
Euclidean group E(2) on the plane, together with the pseudo-group Diff (1) consisting of
all smooth (local) diffeomorphisms of the line representing the change of parameter. Thus,
the entire pseudo-group G = Diff (1) × E(2) acts on the total space M = R × R

2 with
coordinates (t,x) = (t, x, y). For the Euclidean component, we use a compatible lift

A0(x, y, φ) =

(
R x

0 1

)
=




cosφ − sinφ x
sinφ cosφ y

0 0 1


 , (6.1)

and compute the pull-back of the associated Euclidean Maurer–Cartan forms:

ζ = A−1
0 dA0 =

(
R−1dR R−1dx

0 0

)
=




0 −dφ cosφdx+ sinφdy
dφ 0 − sinφdx+ cosφdy
0 0 0


 . (6.2)

On the other hand, the pseudo-group Diff (1) is characterized by the invariance of the
canonical one-form σ dt on the frame bundle F(R), cf. [26], and hence we include this
additional one-form in our moving coframe formulation. Restricting these four one-forms
to a parametrized curve (x(t), y(t)) leads to

η1 = dφ, η2 = (xt cosφ+ yt sinφ) dt, η3 = (−xt sinφ+ yt cosφ) dt, η4 = σ dt.
(6.3)

Now η2 = J1η4 and η3 = J2η4 are the linear dependencies, with associated lifted invariants

J1 =
xt cosφ+ yt sinφ

σ
, J2 =

−xt sinφ+ yt cosφ

σ
.

We normalize J1 = 1, J2 = 0 by setting

φ = tan−1(yt/xt), σ =
√
x2

t + y2
t . (6.4)

This immediately produces the first order moving frame

R =
1√

x2
t + y2

t

(
xt −yt

yt xt

)
, a =

(
x
y

)
, σ =

√
x2

t + y2
t . (6.5)
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The canonical one-form σ dt has been reduced to the fundamental arc length form ds =√
x2

t + y2
t dt for the Euclidean group. Substituting into (6.3), we are left with a final set

of horizontal one-forms

η1 = κ η4, η2 = η4 = ds =
√
x2

t + y2
t dt, η3 = 0. (6.6)

Here

κ =
xtytt − xttyt

(x2
t + y2

t )3/2
=

xt ∧ xtt

|xt |3
= xs ∧ xss (6.7)

is the fundamental differential invariant for the Euclidean group — the curvature of the
plane curve. All higher order differential invariants are obtained by successively differen-
tiating the curvature with respect to arc length.

The classical Frenet equations for curves in the Euclidean plane are reformulations of
our final moving frame formulae. (See Section 7 below for more details on the connection
with the classical theory.) The rotational component in (6.5) is traditionally written as
R = (e1, e2), where e1 is the unit tangent and e2 the unit normal. The translational
Maurer–Cartan forms η2 = ds, η3 = 0 are computed by the original formula as the entries

of R−1dx =

(
ds
0

)
, which reduces to the first Frenet equation

dx

ds
= e1. Similarly, the

Maurer–Cartan matrix

R−1 dR =

(
0 −κ
κ 0

)
ds implies that

dR

ds
= R ·

(
0 −κ
κ 0

)
.

The columns of the latter matrix differential equation complete the system of Frenet equa-
tions:

dx

ds
= e1,

de1

ds
= κ e2,

de2

ds
= −κ e1. (6.8)

Finally, the Maurer–Cartan structure equations (3.2) for the Euclidean group reduce to
the classical Frenet–Serret equations for curves. See [13; p. 23], [19; p. 20], for details.

Remark : One can also compute, as in our original example, the full moving coframe
forms on the jet bundle, leading to a corresponding set of fundamental Euclidean-invariant
contact forms.

Remark : Actually, since we are dealing with the full pseudo-group Diff (1) consisting
of all diffeomorphisms of R, the final one-form η4 = σ dt in our moving coframe (6.3) is, in
fact, irrelevant — one could perform the same normalization (6.4) of the angle φ based on
the dependency between η2 and η3, the lifted invariant now being J2/J1 which is normalized
to zero by setting J2 = 0, leading to the same final moving coframe and curvature invariant.
Thus the calculations for parametrized curves and surfaces can, in fact, be done without
invoking the diffeomorphism pseudo-group. Nevertheless, in all examples we have treated,
the inclusion of the canonical one-form η4 on the parameter space leads to an immediate
identification of the final invariant arc length element. More generally, the restricted
reparametrization equivalence problem does require the introduction of suitable one-forms
that characterize the pseudo-group of allowed reparametrizations.
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Remark : The problem of Euclidean equivalence of curves with fixed parametrizations,
as discussed in Example 2.1, can also be formulated and solved in the moving coframe
context. Now we are in the intransitive framework, where the parameter t provides a
scalar invariant. Consequently, we retain the first three one-forms η1, η2, η3 in (6.3), but
replace η4 by dt to form the moving coframe. We normalize J1 = 0 as before, but now J2 =

v =
√
x2

t + y2
t forms a first order differential invariant — the speed of the particle. The

final moving frame has η1 = K dt, η2 = 0, η3 = v dt, η4 = dt, where K = xtytt−xttyt = v3κ
is a second order differential invariant. The higher order differential invariants are found
by differentiating with respect to t. Note that the arc length ds = v dt is also an invariant
one-form, being an invariant multiple of dt, and hence one can, without loss of generality,
apply the arc length derivative d/ds to produce the higher order differential invariants
instead. Thus, in this case, a complete list of differential invariants is provided by v, κ,
and their derivatives with respect to arc length.

Example 6.2. The equiaffine geometry of curves in the plane is governed by the
special affine group SA(2) = SL(2) n R

2, acting on M = R
2 according to

g : x 7−→ Ax + a, x ∈M, A ∈ SL(2), a ∈ R
2. (6.9)

We shall adopt a vector notation for the matrix A = (αβ) ∈ SL(2), so that the column
vectors are subject to the unimodularity constraint

α ∧ β = 1. (6.10)

It will be computationally convenient not to explicitly implement the unimodularity con-
straint (6.10) by solving for one of the parameters, but retain it as an additional constraint
that is to be respected during the course of the calculation. This method, i.e., treating
a subgroup of a larger Lie group via a collection of algebraic constraints, rather than
parametrizing it directly, has general applicability, and can be readily implemented as is
done in this particular case.

The Maurer–Cartan forms are computed directly as in Section 3, leading to

µ1 = α ∧ dα, µ2 = β ∧ dα, µ3 = β ∧ dβ, ν1 = α ∧ da, ν2 = β ∧ da. (6.11)

Note that the unimodularity constraint (6.10) implies that

α ∧ dβ = β ∧ dα, (6.12)

which means that the matrix of Maurer–Cartan forms µ = A−1 dA must be trace free.

Choose the base point to be x0 = 0. Solving the compatible lift equations x = g·x0 = a

yields the zeroth order moving frame, which sets a = x. Substituting into the Maurer–
Cartan forms (6.11), we find that, for a parametrized curve x(t), the forms ν1, ν2 restrict
to the following two horizontal forms:

η1 = (α ∧ xt) dt, η2 = (β ∧ xt) dt. (6.13)

Their ratio produces the lifted invariant (α ∧ xt)/(β ∧ xt), which is normalized to 0 by
setting

α = λxt, (6.14)
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for some scalar parameter λ. Substituting (6.14) into the first Maurer–Cartan form µ1 =
α∧ dα, leads to the restricted form ξ1 = λ2(xt ∧xtt) dt. Assuming xt ∧xtt 6= 0, the latter
form can be normalized to equal −η2 by setting

−β ∧ xt = λ2(xt ∧ xtt), or β = λ2 xtt + µxt, (6.15)

for some scalar µ. However, applying the unimodularity constraint (6.10) to the normal-
izations (6.14), (6.15), we deduce that λ3(xt ∧ xtt) = 1, and thus

λ =
1

3

√
xt ∧ xtt

. (6.16)

Note that (6.15), (6.16) reduce the form η2 to be minus the equi-affine arc length form

ds = 3

√
xt ∧ xtt dt. (6.17)

Furthermore, substituting (6.15), (6.16) into the second Maurer–Cartan form, we find it
reduces to a multiple of ξ1 = ds, so

ξ2 = β ∧ dα = J ds,

where the lifted invariant

J = µ(xt ∧ xtt)
1/3 +

xt ∧ xttt

3(xt ∧ xtt)
4/3

is normalized to zero in the obvious manner. Therefore, the final moving frame is given by

α =
dx

ds
=

xt
3

√
xt ∧ xtt

, β =
d2x

ds2
=

xtt

(xt ∧ xtt)
2/3

− (xt ∧ xttt)xt

3(xt ∧ xtt)
5/3

, a = x. (6.18)

The final Maurer–Cartan form becomes

ξ3 = β ∧ dβ = κ ds,

where

κ = xss ∧ xsss =
(xt ∧ xtttt) + 4(xtt ∧ xttt)

3(xt ∧ xtt)
5/3

− 5(xt ∧ xttt)
2

9(xt ∧ xtt)
8/3

(6.19)

defines the equi-affine curvature. As usual, all higher order differential invariants are
obtained by differentiating κ with respect to the equi-affine arc length ds. This reproduces
the basic invariants of the equi-affine geometry of curves, [19]; see also [5] for applications
in computer vision.

As with the Euclidean case, we recover the classical Frenet equations as simple refor-
mulations of the final moving frame formulae. We identify the linear part

A = (e1, e2) = (xs,xss)

of the final moving frame with the equi-affine frame at a point x(t) on the curve, so
that e1 = xs is the unit affine tangent vector, whereas e2 = xss is the unit equi-affine
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normal. Combining this with the Maurer–Cartan matrix A−1 dA =

(
0 1
κ 0

)
ds leads to

the complete Frenet equations of planar equi-affine geometry, [13; p. 27]:

dx

ds
= e1,

de1

ds
= e2,

de2

ds
= κ e1. (6.20)

See [19; § 7–3] for further details.

Example 6.3. The most complicated example treated in the literature, [7], is the
projective geometry of curves in the plane. Here the group is SL(3), acting on M = RP

2

according to

g: (x, u) 7−→
(
αx+ βu+ γ

ρx+ σu+ τ
,
λx+ µu+ ν

ρx+ σu+ τ

)
, detA = det

∣∣∣∣∣∣

α β γ
λ µ ν
ρ σ τ

∣∣∣∣∣∣
= 1. (6.21)

For simplicity, we deal with curves which can be expressed as the graphs of functions,
u = u(x), although the general case of parametrized curves can be handled via the same
sequence of normalizations. Choose the base point to be z0 = (0, 0). Solving g · (0, 0) =
(x, u) leads to the order zero moving frame in the form†

A =



α β xτ
λ µ uτ
ρ σ τ


 , where α =

1 + τ [β(λ− ρu) + x(µρ− λσ)]

τ(µ− σx)
. (6.22)

The one-forms in the first order moving coframe are the entries of the pull-back of the
Maurer–Cartan matrix A−1 dA, which we label (in row order) as η1, . . . , η8, the final entry
being η9 = −η1−η5, reflecting the unimodularity of A. For simplicity, we just indicate the
salient features of the computation without dwelling on the details. (These computations
were done with the aid of some Mathematica routines written for this purpose.) The
first normalization comes from the ratio η3/η6, whose vanishing requires

µ = σ(u− xux) − βux.

Plugging this normalization back into the moving coframe forms and recomputing, we find
that we can normalize η6 = η2 by requiring

β = σx− u−1/3
xx .

In the next stage, we set η5 to zero by normalizing

σ =
τ(ρu− λ)u1/3

xx

ux

− uxuxxx − 3u2
xx

3uxu
4/3
xx

.

† In this example, we have chosen to implement the unimodularity constraint explicitly.
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At the next step, we can no longer just look at one-forms depending only on dx — these
do not produce any further invariants. However, we discover that η8 = Jη2 +η4, and hence
the rather complicated lifted invariant J can be normalized to zero, leading to

λ = ρu−
uxuxxx − 3u2

xx + ux

√
18ρτu8/3

xx − P4

3τu5/3
xx

,

where
P4 = 3uxxuxxxx − 5u2

xxx.

Next, the normalization η2 = −η7 requires

τ = 3

√
L5

54u4
xx

, where L5 = 9u2
xxuxxxxx − 45uxxuxxxuxxxx + 40u3

xxx.

The final normalization

ρ =
M2

6 + P4L
2
5

3 3

√
4u4

xxL
7
5

, where M6 = (uxxDx − 4uxxx)L5

comes from setting η1 to zero. The final moving frame is explicitly given by

α =
λ+ ρ(xux − u)

ux

− 3

ux

3

√
2u5

xx

L5

, β = xµ− u−1/3
xx , γ = xτ

λ =
uM2

6 + 6uxuxxL5M6 +K4L
2
5

3 3

√
4u4

xxL
7
5

, µ = uσ − ux

u1/3
xx

, ν = uτ

ρ =
M2

6 + P4L
2
5

3 3

√
4u4

xxL
7
5

, σ =
M6

3u4/3
xx L5

, τ =
L

1/3
5

3 3

√
2u4

xx

.

(6.23)

The corresponding final coframe has

η2 = η6 = −η7 = ds =
3

√
L5

3 3
√

2uxx

dx = 3

√
9u2

xxuxxxxx − 45uxxuxxxuxxxx + 40u3
xxx

54u3
xx

dx,

(6.24)
which determines the well-known projective arc length element, while η4 = η8 = −κ ds
yields the projective curvature invariant

κ =
6uxxL5DxM6 − 32uxxxL5M6 − 7M2

6 − P4L
2
5

3
√

2L
8/3
5

. (6.25)

Again, all higher order differential invariants are found by differentiating the projective
curvature κ with respect to the projective arc length ds. This relatively straightforward
computation reproduces the moving frame and the fundamental invariants for the projec-
tive geometry of curves. Cartan, [7], presents a variety of alternative methods to arrive
at the same basic result. See also [38] for a Lie-theoretic approach, and Wilczynski, [49],
for an approach based on differential operators.
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In the classical moving frame method, one identifies the columns of the 3× 3 moving
frame matrixA = (P2,P1,P) as homogeneous coordinates for three points in the projective
plane RP

2, the last column P = τ · (x, u, 1)T representing the point on the curve. The
Maurer–Cartan matrix

A−1 dA =




0 1 0
−κ 0 1
−1 −κ 0


 ds

reduces to the full set of projective Frenet equations,

dP

ds
= P1,

dP1

ds
= −κP + P2,

dP2

ds
= −P − κP1. (6.26)

See also [13; pp. 33ff.] for applications to projective curvature evolutions and computer
vision.

7. Connections with the Classical Moving Frames Method.

Our initial identification of a moving frame as an equivariant lift from the underlying
space to the Lie group will be familiar to readers of the modern formulations of Griffiths,
[18], and Jensen, [23]. However, since this point of view is not completely standard, it
is worth reviewing how it relates to the more usual geometric approaches, e.g., [19, 50].
Traditionally, a moving frame is realized as a collection of vectors (or, in the projective case,
points) in the underlying space. The reason that this works in the classical cases, including
Euclidean, affine, and projective geometry of submanifolds, is that it is possible to identify
the components of the group itself with objects in the underlying transformation space. For
example, in the Euclidean case, one identifies a Euclidean group element (R,a) ∈ E(m) '
O(m) n R

m with a vector a ∈ R
m, together with an orthonormal frame determined by

the columns of the orthogonal matrix R. The zeroth order moving frame, then, uses the
lift a = x, where x is a point on the submanifold N ⊂ R

m, and the orthogonal matrix
is identified with an orthonormal frame in the ambient space based at the point. The
remaining ambiguity in the frame is up to orthogonal transformations, which must then
be resolved in an invariant manner. Similarly, in the equi-affine case, one identifies a group
element (A,a) ∈ SA(m) ' SL(m) n R

m with a vector a ∈ R
m together with a unimodular

frame determined by the columns of the matrix A. Again, the zeroth order moving frame
takes a = x to be a point on the submanifold, and the unimodular frame becomes a set
of vectors based at the point x. In both cases, the moving coframe method introduces the
Maurer–Cartan forms µ = (σ,ν), where σ = A−1 dA, ν = A−1 da, leading to the initial
structure equations

dx = A · ν, dA = A · σ. (7.1)

The moving coframe forms satisfy the usual Maurer–Cartan structure equations (3.2),
which, in the classical cases, become the fundamental Cartan structure equations for Eu-
clidean or affine geometry.

Usually, one bypasses the order zero moving frame entirely, and proceeds directly to
the first order moving frame, in which the frame at the point x ∈ N is split into two parts,
so that (using column vector notation)

A = (E,F ) = (e1, . . . , en, f1, . . . , fm−n), (7.2)
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where the first n = dimN frame vectors form a basis for the tangent space TN to the
submanifold, while the remainder are left arbitrary, subject to the entire frame satisfying
the proper orthonormality or unimodularity constraint. Thus, in the Euclidean case, the
vectors {f1, . . . , fm−n} form an orthonormal basis for the normal space to N , whereas in the
equi-affine case they are left arbitrary subject only to the condition that the determinant
of the matrix (7.2) be unity. If we parametrize the submanifold by x(t1, . . . , tn), then the
most general first order moving frame (7.2) will have the form

E = (e1, . . . , en) = V ·B, (7.3)

where

V = (v1, . . . ,vn), vi =
∂x

∂ti
, (7.4)

is the m × n Jacobian matrix, whose columns span the tangent space to N , while B is
an invertible n× n matrix. (In the Euclidean case, the matrix B is restricted so that the
columns of E are orthonormal, leaving an O(n) ambiguity.)

Let us show how this preliminary normalization to a first order moving frame is an
immediate consequence of our general normalization procedure. Using the zeroth order
moving frame lift, the pull-backs of the subset of Maurer–Cartan forms given by the entries
of ν = A−1 da can be written in matrix form as

ν = A−1 dx = A−1V dt.

Precisely n of the m one-forms ν are linearly independent, and hence we can normalize
so that the last m − n of these forms vanish. This requires that the matrix A satisfy the
block matrix equation

A−1V =

(
D
0

)
, (7.5)

where D is a nonsingular n×n matrix, while 0 denotes the zero matrix of size (m−n)×n.
Writing A = (E,F ) in block form (7.2), we see that (7.5) requires

V = E ·D, or E = V · C, where C = D−1,

thereby recovering (7.3). Thus, we can see that in such cases, the first order frame recovered
by an order zero normalization coincides with the traditional first order frame involving
tangent and normal directions.

Similar considerations apply to the projective case. According to Cartan, [7], the
zeroth order frame can be identified with a set of n+ 1 linearly independent points in the
projective space which are identified with the columns of the matrix A ∈ SL(n+ 1). The
zeroth order lift, as in (6.22), amounts to identifying one of the columns with the point
on the curve x. More precisely, the column is a vector with n+ 1 components, which are
interpreted as the homogeneous coordinates of x.

In more sophisticated versions, one realizes the moving frame on the submanifold N ⊂
M as a section of the frame bundle F(M) of M , pulled back to N , i.e., a section ψ:N →
F(M). One can also try to handle cases that do not so readily fit into this simple framework
by reinterpreting them as sections of a suitable higher order frame bundle F k(M) over N ,

32



cf. [26]. Although this is possible for all (regular, transitive) transformation groups, the
original geometrical realization has now been obscured, and such a reformulation does not,
we think, offer much insight or help in the explicit implementation of the method.

Consequently, the method of moving coframes includes all the classical constructions
based on the indicated identification of group elements with geometric objects on the trans-
formation space. However, once one goes beyond the traditional cases, such identifications
become much less apparent, and, in our opinion, attempting to mimic the Euclidean, affine,
and projective constructions directly on the transformation space has hindered the devel-
opment of any significant extensions of the method. Furthermore, once one steps outside
the realm of “classical” moving frame geometries, one can no longer use the identification
of the first order frame with tangent and normal directions. Our non-traditional exam-
ples all illustrate this — the first order frames do not include the tangent spaces to the
submanifolds in any obvious manner, because their näıve identification with subspaces of
Euclidean space is not necessarily invariant with respect to the given transformation group.
It is our view that, in order to attain their full range of applicability, the constructions
must be viewed in the purely group- or, more generally, bundle-theoretic framework that
we have presented here and develop in detail in part II.

8. Joint Differential Invariants.

New applications in image processing and object recognition, [35], have demonstrated
the need for classification and computation of the joint differential invariants or, as they are
known in computer vision, semi-differential invariants, for a given transformation group.
Specifically, one is given a Lie group (or pseudo-group) G acting on M and considers
its diagonal action g · (z1, . . . , zk) = (g · z1, . . . , g · zk) on the k-fold Cartesian product
M×k = M × · · · ×M . The invariants I(z1, . . . , zk) of such a Cartesian product action are
known as the k-point joint invariants of the transformation group. Note that for j < k,
any j-point invariant can be regarded as a k-point invariant, in several different ways.
For example, the two-point invariant I(z1, z2) produces three invariants on M×3, namely

Î(z1, z2, z3) = I(z1, z2) or I(z1, z3) or I(z2, z3). If I is not symmetric in its arguments,
these in turn lead to 3 further invariants by interchanging the points. To avoid this trivial
extension, we will reserve the term k-point invariant for a joint invariant which cannot be
written as as one depending on fewer than k arguments.

Similarly, the invariants of the prolonged diagonal action of G(n) on a k-fold Cartesian
product of jet spaces (Jn)×k are the joint differential invariants of k different submanifolds
N1, . . . , Nk ⊂ M , which we view as a single submanifold N1 × . . . × Nk of the Cartesian
product space M×k. In applications, the submanifolds Nj = N are identical, but the joint
differential invariants are measured at k different points along the given submanifold.

The method of moving coframes readily adapts to this slightly more general situation,
and immediately provides complete classifications of joint differential invariants for all of
the standard geometric transformation groups.

Example 8.1. Euclidean joint differential invariants. Consider the Euclidean group
E(2) acting on the plane M = R

2. We consider two-point differential invariants, corre-
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sponding to the Cartesian product action

(x,y) 7−→ (R · x + a, R · y + a), x,y ∈M, (R, a) ∈ E(2), (8.1)

on M×2 ' R
4. Note that the action is intransitive on M×2, with the interpoint distance

r = | z |, where z = x − y, (8.2)

being the fundamental joint Euclidean invariant. (See [48] for a proof that all Euclidean
joint invariants can be written in terms of the elementary two-point invariants.) We can
choose the cross-section to the orbits given by x0 = 0, y0 = (r, 0), which leads to the
compatible lift with

a = x, (r cosφ, r sinφ) = z = x − y. (8.3)

Therefore, all the group parameters are normalized by the initial compatible lift, and it
only remains to substitute (8.3) into the Euclidean Maurer–Cartan forms (3.5). The net
result is the following system of invariant forms:

ζ1 = z · dx, ζ2 = z · dy, ζ3 = r2 dφ = z ∧ dz. (8.4)

Note that the forms (8.4) include the differential of the joint invariant (8.2) since r dr =
ζ1 + ζ2. Therefore, given two parametrized curves

x = x(t), y = y(s), (8.5)

the first two one-forms (8.4) restrict to define two invariant one-forms

η1 = (z · xt) dt, η2 = (z · ys) ds, (8.6)

while η3 = I1 η1 + I2 η2, where

I1 =
z ∧ xt

z · xt

, I2 =
z ∧ ys

z · ys

, (8.7)

are the two fundamental first order differential invariants, which, along with the original
joint invariant (8.2), form a complete system of first order joint differential invariants. The
vector identity

(a · b)2 + (a ∧ b)2 = |a |2|b |2 (8.8)

demonstrates that

J1 =
|xt |
z · xt

=

√
1 + (I1)

2

r

is also a joint differential invariant, and hence (in the orientation-preserving case) one can
replace the one-forms (8.6) by the two Euclidean arc-length forms

ω1 = J1 η1 = |xt | dt, ω2 = J2 η2 = |ys | ds. (8.9)

Theorem 8.2. Every two-point Euclidean joint differential invariant is a function of

the interpoint distance r = |x − y | and its derivatives with respect to the two arc length

forms (8.9).
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For example, to recover the Euclidean curvature κ1 = |xt |−3(xt ∧ xtt) of the first
curve, we differentiate

∂I1
∂η1

=
z ∧ xtt

(z · xt)
2
− (z ∧ xt)[(z · xtt) + |xt |2]

(z · xt)
3

=
(z ∧ xtt)(z · xt) − (z ∧ xt)(z · xtt)

(z · xt)
3

− I1J
2
1

=
(xt ∧ xtt)| z |2

(z · xt)
3

− I1J
2
1 = κ1r

2 − I1J
2
1 ,

where we have used the first of the following equivalent determinantal identities

(a ∧ b)(c · d) + (b ∧ c)(a · d) − (a ∧ c)(b · d) = 0,

(a ∧ b)(c ∧ d) + (b ∧ c)(a ∧ d) − (a ∧ c)(b ∧ d) = 0.
(8.10)

Example 8.3. Equi-affine joint differential invariants. A more substantial example
is provided by the two-point differential invariants for the special affine group SA(2) =
SL(2) n R

2, acting on M = R
2. The Cartesian product action

(x,y) 7−→ (Ax + a, Ay + a), x,y ∈M, A ∈ SL(2), a ∈ R
2, (8.11)

is transitive on M×2. As in Example 6.2, we use the vector notation A = (αβ) ∈ SL(2),
where α ∧ β = 1.

In view of (8.11), we can choose the base point x0 = 0, y0 = (1, 0), noting that the
diagonal ∆ = {x = y} ⊂ M×2 is a singular two-dimensional orbit. This leads to the
compatible lift with

a = x, α = z = x − y. (8.12)

Substituting into the Maurer–Cartan forms (6.11), we find that, for a pair of parametrized
curves as in (8.5), the following horizontal forms:

(z ∧ xt) dt, (β ∧ xt) dt, (z ∧ ys) ds, (β ∧ ys) ds,

the first two being the pull-backs of ν1, ν2, and the latter being that of ν1 − µ1, ν2 − µ2.
Generically (i.e., provided x − y is not parallel to xt) we can normalize the second form
to zero, leading, in view of (8.12) and the unimodularity constraint, to

β =
xt

z ∧ xt

, (8.13)

which, combined with (8.12) provides the complete moving frame. The remaining one-
forms are

η1 = z ∧ dx = (z ∧ xt) dt, η2 = z ∧ dy = (z ∧ ys) ds, (8.14)

which provide the two fundamental invariant one-forms, and

η3 = β ∧ dy =

[
xt ∧ ys

z ∧ xt

]
ds, η4 = β ∧ dβ =

[
xt ∧ xtt

(z ∧ xt)
2

]
dt.

The resulting linear dependencies provide the two basic differential invariants, consisting
of a single first order invariant

I =
xt ∧ ys

(z ∧ xt)(z ∧ ys)
, (8.15)
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and the first of the two second order invariants

J1 =
xt ∧ xtt

(z ∧ xt)
3
, J2 =

ys ∧ yss

(z ∧ ys)
3
. (8.16)

Clearly J2 can be obtained from J1 by the interchange symmetry x ↔ y. Alternatively,
we use (8.10) to compute

∂I

∂η1
− I2 = − (xtt ∧ ys)(z ∧ xt) − (xt ∧ ys)(z ∧ xtt)

(z ∧ xt)
3(z ∧ ys)

=
(xtt ∧ xt)(z ∧ ys)

(z ∧ xt)
3(z ∧ ys)

= J1,

so that (8.16) are equivalent to the invariant first order derivatives of the single basic joint
invariant I.

Theorem 8.4. Every two-point equi-affine joint differential invariant is a function

of the fundamental first order invariant (8.15) and its derivatives with respect to the two

“joint arc length” forms (8.14).

The reader is invited to try to express the ordinary affine curvature in terms of the
derivatives of I. The same method readily extends to multi-point invariants of more general
groups, including the projective group, as well as joint invariants for surfaces and higher
dimensional submanifolds. Additional examples and applications will appear elsewhere.

9. Pseudo-Group Actions.

The next case is that of infinite Lie pseudo-groups, cf. [28, 30, 10, 42, 43]. See also
[29, 45], for classical results on differential invariants of Lie pseudo-groups, and Kumpera,
[27], for a modern treatment. These are readily fit into the same general framework as
follows. Assume, initially, that the pseudo-group G acts transitively on the space M .
By definition, a Lie pseudo-group consists of an infinite-dimensional family of invertible
(local) transformations that form the general solution to an involutive system of partial
differential equations. We can always characterize the transformations ψ:M → M in G
as the projections of bundle maps Ψ:B → B, defined on a principal fiber bundle B → M ,
that preserve a system of one-forms ζ = {ζ1, . . . , ζk} defined on B:

Ψ∗ζ = ζ. (9.1)

The forms ζ will play the role of the moving coframe forms for the pseudo-group, and the
fiber coordinates of the bundle B will play the role of the undetermined group parameters.
Of course, in this case ζ does not form a full coframe on B. (It cannot, because the sym-
metry group of a coframe is necessarily a finite-dimensional Lie group, [38].) A compatible
lift, or moving frame of order zero, is just an arbitrary section ρ0:M → B. Such a section
defines a corresponding moving frame ρ = ρ0

◦ ι:X → B on any parametrized submanifold
ι:X → M . With these provisos, the normalization and reduction procedure proceeds as
in the finite-dimensional situation.

Example 9.1. Consider the pseudo-group G consisting of (local) diffeomorphisms
on M = R

2 of the form
x̄ = f(x), ū =

u

f ′(x)
. (9.2)
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The Lie algebra of G is generated by vector fields of the form

vh = h(x)∂x − uh′(x)∂u.

This pseudo-group was first introduced by Lie, [28; p. 353, 32], in his classification of
infinite-dimensional pseudo-groups acting on the plane. We are interested in the action of
G on curves which, for simplicity, we assume are graphs of functions u = u(x).

The first step is to construct a bundle B and one-forms on the bundle whose invariance
characterizes the pseudo-group transformations. In this case, away the axis u = 0, the
group transformations (9.2) form the general solution to the defining system of partial
differential equations

zu = 0, zx =
u

w
, wu =

w

u
, (9.3)

for x̄ = z(x, u), ū = w(x, u), cf. [46; p. 325]. The system (9.3) defines a submanifold
Φ:R ↪→ J1(R2,R2) of the first jet space, parametrized by the coordinates (x, u, z, w,wx).
The pull-backs of the basic contact forms on J1(R2,R2) to the equation submanifold R
are given by

θz = Φ∗(dz − zx dx− zu du) = dz − u

w
dx,

θw = Φ∗(dw − wx dx− wu du) = dw − wx dx− w

u
du.

(9.4)

The Pfaffian system
θz = 0, θw = 0,

with independence condition dx ∧ du 6= 0 is involutive on R, cf. [9], [3, 38]. Indeed, the
first Cartan character is s1 = 1, as it should be. Following a general procedure† presented
by Kamran, [24], we set dz = dw = 0, which amounts to pulling back to a level set of R
where u = u0 and w = w0 are constant. Choosing w0 = 1 we find that the contact forms
(9.4) reduce to the invariant one-forms

ζ1 = −u dx, ζ2 = −wx dx− du

u
.

Therefore, the desired bundle B ' M × R will be coordinatized by x, u, and the
remaining jet coordinate, which we rewrite as α = wx for clarity. In other words, the
zeroth order moving coframe forms for the pseudo-group (9.2) will be

ζ1 = u dx, ζ2 = αdx+
du

u
. (9.5)

Restricting to a curve u = u(x), and letting ηi denote the horizontal component of ζi, we
have the relation

η2 = (uα+ ux) dx = (uα+ ux)η1,

† Interestingly, this method is similar to our construction of the Maurer–Cartan forms in the
finite-dimensional case.
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and so we normalize α = −ux/u. Thus the final invariant moving coframe is

ζ1 = u dx, ζ2 =
du− ux dx

u
, (9.6)

the first providing a pseudo-group invariant arc length form, and the latter an invariant
contact form. Note that there are no dependencies among these one-forms, and hence
there are no differential invariants in this example. Indeed, it is not hard to see that
the prolonged actions of G are transitive on every jet space JnM , justifying the preceding
statement.

Example 9.2. We now extend the pseudo-group discussed in the previous example
to an intransitive action obtained by augmenting the transformation rules (9.2) by an
additional invariant coordinate y, so that the pseudo-group now has the form

x̄ = f(x), ȳ = y, ū =
u

f ′(x)
. (9.7)

This pseudo-group was introduced by Lie, [31; p. 373], in his study of second order partial
differential equations integrable by the method of Darboux. In his paper on group split-
ting and automorphic systems, Vessiot, [46], used (9.7) as one of two principal examples
illustrating his method. More recently, Kumpera, [27] again employed this pseudo-group
to illustrate his formalization of the Lie theory of differential invariants. Now we are inter-
ested in the equivalence problem and differential invariants for surfaces u = u(x, y) under
the pseudo-group (9.7). The Maurer–Cartan forms are given by supplementing (9.5) by
an additional coframe element ζ0 = dy. The linear dependency

η2 = −(uα+ ux) η1 −
uy

u
dy

again produces the normalization α = −ux/u, along with the basic first order differential
invariant

I =
uy

u
.

The final invariant moving coframe is

ζ0 = dy, ζ1 = u dx, ζ2 =
du− ux dx

u
. (9.8)

The invariant total differential operators associated with the first two horizontal forms are

∂

∂ζ0
= Dy,

∂

∂ζ1
=

1

u
Dx. (9.9)

Applying them to the fundamental invariant I produce the second order differential in-
variants

J1 =
uuyy − u2

y

u2
, J2 =

uuxy − uxuy

u3
,

agreeing with the classical formulae. All higher order differential invariants are obtained
by successively applying the invariant total derivative operators (9.9) to the invariant I.
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Similarly, the classifying surface associated with a generic surface u(x, y) is parametri-
zed by the four invariants (y, I, J1, J2); two surfaces are congruent under a pseudo-group
transformation if and only if their classifying surfaces are identical. Surfaces with higher
order† symmetry occur when I is a function of y only, so that u(x, y) = f(x)g(y) is mul-
tiplicatively separable. Finally, the most general second order partial differential equation
admitting (9.7) as a symmetry group can be written in the form

H

(
y,
uy

u
,
uuyy − uy

2

u2
,
uuxy − uxuy

u3

)
= 0. (9.10)

These are the class of equations considered by Lie, [31; p. 374].

In his classification of planar second order partial differential equations which admit
symmetry pseudo-groups, Medolaghi, [34], treats the same example, but rewritten in a
slightly different coordinate system. The group transformations take the form

x̄ = f(x), ȳ = y + f ′(x), ū = u. (9.11)

Applying the same method (or merely changing variables) leads to the invariant moving
coframe

ζ1 = e−y dx, ζ2 =
uy

ux

dx+ dy, ζ3 = du.

The basic differential invariants are

u, I = uy, J1 = uyy, J2 = ey(uyuxy − uxuyy),

the latter two being obtained by applying the invariant differential operators

Dy, ey
(
Dx − (ux/uy)Dy

)
,

to I. This recovers Medolaghi’s form, [34; p. 249],

H
(
u, uy, uyy, e

y(uyuxy − uxuyy)
)

= 0, (9.12)

of Lie’s equation (9.10). The pseudo-group (9.11) is the second of nine different pseudo-
groups acting on a three-dimensional space that are isomorphic to the diffeomorphism
pseudo-group Diff (1), as classified by Medolaghi, [34; p. 242]. The other eight pseudo-
groups can be handled by the same method, reproducing the differential invariants and
invariant differential equations catalogued there.

Example 9.3. Consider the infinite Lie pseudo-group

x̄ = f(x) , ȳ = yf ′(x) + g(x), ū = u+
f ′′(x)y + g′(x)

f ′(x)
, (9.13)

acting on the space M ' R
3 with coordinates (x, y, u). Here f(x) and g(x) are arbi-

trary smooth functions of a single variable x. The case g ≡ 0 corresponds to the third of

† See [15] for more details on higher order submanifolds, including an interpretation as “non-
reducible partially invariant solutions” to partial differential equations, cf. [41].
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Medolaghi’s pseudo-groups, [34]; the present generalization was introduced by J. Pohjan-
pelto (personal communication). The pseudo-group transformations can be characterized
in terms of an involutive system of invariant one-forms on a rank five bundle B →M , with
coordinates (x, y, u, α, β, γ, δ, ε). These can be found by a similar method to that used in
Example 9.1:

ζ1 = −αdx, ζ4 =
dα

α
− γ

α
dx,

ζ2 = −αdy + uα dx, ζ5 =
dβ

α
+
u

α
dγ − δ − uε

α
dx− ε

α
dy,

ζ3 = −du− β dx− γ dy, ζ6 =
dγ

α
− ε

α
dx.

(9.14)

It is easy to check that a local diffeomorphism Ψ:B → B satisfies Ψ∗ζi = ζi, i = 1, . . . , 6,
if and only if it is a bundle map whose projection ψ:M →M has the form (9.13).

We now consider the equivalence problem for surfaces u = u(x, y) under the pseudo-
group (9.13). In order to invariantly normalize the bundle parameters, we replace du by
its horizontal component ux dx+ uy dy, which leads to the linear relation

η3 = J1 η1 + J2 η2,

among the horizontal components ηi of ζi. The lifted invariants are

J1 =
ux + β + u(uy + γ)

α
, J2 =

uy + γ

α
.

Both J1 and J2 can be normalized to zero by choosing β = −ux and γ = −uy, which
defines the first order moving frame. Substituting these values in the last two moving
coframe forms yields

η5 = −
uxx dx+ uxy dy

α
−
u(uxy dx+ uyy dy)

α
− δ − uε

α
dx− ε

α
dy

=
uxx + 2uuxy + u2uyy + δ

α2
η1 −

uxy + uuyy + ε

α2
η2,

η6 = −
(uxy + ε) dx+ uyy dy

α
= −

uxy + uuyy + ε

α2
η1 +

uyy

α2
η2.

We can normalize the coefficients of η1, η2 in both formulae by choosing

α =
√
uyy, ε = −uxy − uuyy, δ = −uxx − 2uuxy − u2uyy,

which produces the second order moving frame, given by

α =
√
uyy, β = −ux, γ = −uy, δ = −uxx − 2uuxy − u2uyy, ε = −uxy − uuyy.

Finally, substituting into the last moving coframe form leads to η4 = −I1η1 − I2η2, where

I1 =
uuyyy + uxyy + 2uyuyy

2u
3/2
yy

, I2 =
uyyy

2u
3/2
yy

, (9.15)
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are the principal differential invariants of the pseudo-group. The fundamental invariant
horizontal one-forms are

η1 = −
√
uyy dx, η2 = −

√
uyy (dy − u dx),

so that the invariant total differential operators are

D1 =
1√
uyy

(Dx + uDy), D1 =
1√
uyy

Dy.

As above, these can be applied to the basic differential invariants (9.15) to generate all
higher order differential invariants.

Example 9.4. In this example, we show how the well-known equivalence problem of
characterizing second order ordinary differential equations under the pseudo-group of fiber-
preserving transformations, cf. [22, 38], can be recast into the moving frame formulation,
and thereby solved by our moving coframe techniques. This example indicates a general
procedure for reformulating all Cartan-type equivalence problems, [11, 16, 38], as moving
frame equivalence problems under a suitable infinite-dimensional Lie pseudo-group.

We consider the trivial bundle M ' R × R, with coordinates x, u. Let G denote the
pseudo-group of fiber-preserving transformations, i.e., bundle maps

x̄ = ϕ(x), ū = ψ(x, u). (9.16)

We let G(2) denote the associated second prolongation acting on J2, cf. [38]. A (regular)
second-order differential equation

∆(x, u, ux, uxx) = 0 (9.17)

can be identified with a hypersurface S∆ ⊂ J2. Two such second order ordinary differential
equations are equivalent if and only if their associated surfaces are mapped to each other,

g(2)(S∆) = S∆, (9.18)

by a prolonged fiber-preserving transformation g(2) ∈ G(2).

In order to use the method of moving frames we need the structure equations of the
pseudo-group G(2). These can be found by the Cartan prolongation algorithm, [11, 16, 38],
leading to

dζ1 = ω1 ∧ ζ1,
dζ2 = ω2 ∧ ζ2 − ζ3 ∧ ζ1,
dζ3 = (ω2 − ω1) ∧ ζ3 + ω3 ∧ ζ2 − ζ4 ∧ ζ1,
dζ4 = (ω2 − 2ω1) ∧ ζ4 + ω4 ∧ ζ1 + ω5 ∧ ζ2 + ω6 ∧ ζ3,
dω1 = (ω6 − 2ω3) ∧ ζ1,
dω2 = −π2 ∧ ζ2 − ω3 ∧ ζ1,
dω3 = −π1 ∧ ζ2 − π2 ∧ ζ3 + ω3 ∧ ω1 − ω5 ∧ ζ1,
dω4 = −π3 ∧ ζ1 − π4 ∧ ζ3 − π5 ∧ ζ2 − 3ω1 ∧ ω4 − ω4 ∧ ω2 + 3(ω3 − ω6) ∧ ζ4,
dω5 = −2π1 ∧ ζ3 − π2 ∧ ζ4 − π5 ∧ ζ1 − π6 ∧ ζ2 + 2ω5 ∧ ω1 − ω3 ∧ ω6,

dω6 = −2π1 ∧ ζ2 − 2π2 ∧ ζ3 − π4 ∧ ζ1 − ω1 ∧ ω6 + ω5 ∧ ζ1.
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The Cartan characters are s1 = 5 and s2 = 1, the kernel dimension is 7, hence this differ-
ential system is involutive. The parametric values of the one-forms ζ, ω, are determined
by introducing the group transformation matrix

S =




α1 0 0 0
0 α2 0 0
0 α3α2α

−1
1 α2α

−1
1 0

α4α2α
−2
1 α5α2α

−2
1 α6α2α

−2
1 α2α

−2
1


 , (9.19)

where αi, βi are the fiber coordinates on the prolonged bundle. Equation (9.19) paramet-
rizes the structure group corresponding to the action of the fiber-preserving pseudo-group
on J2; see, for instance, [38; p. 398] for the corresponding group on J1. The first set of
lifted forms are




ζ1
ζ2
ζ3
ζ4


 =




α1 0 0 0
0 α2 0 0
0 α3α2α

−1
1 α2α

−1
1 0

α4α2α
−2
1 α5α2α

−2
1 α6α2α

−2
1 α2α1

−2







dx
du− uxdx
dux − uxxdx

duxx


 .

Furthermore, 


ω1 0 0 0
0 ω2 0 0
0 ω3 ω2 − ω1 0
ω6 ω5 ω4 ω2 − 2ω1


 = S−1dS + Ω,

where Ω represents the absorbed torsion terms. The explicit formulas are

ω1 =
dα1

α1

+
α6 − 2α3

α2

ζ1,

ω2 =
dα2

α2

+
α3

α1

ζ1 − β2ζ2,

ω3 =
dα3

α2

+
α3α6 − α5 − α2

3

α2
1

ζ1 − β1ζ2 − β2ζ3,

ω4 =
α2

α3
1

dα4 − β3ζ1 +
α6α5 + α3α5 − α3α

2
6 − α2

2β5

α2
2

ζ2 +
α2

6 − α5 − β4α
2
1

α2
1

ζ3 + 3
α3 − α6

α1

ζ4,

ω5 =
dα5

α2
1

− α3

α2
1

dα4 + β6ζ2 − 2β1ζ3 − β2ζ4 − β5ω1,

ω6 =
dα6

α1

− β4ζ1 − 2β1ζ2 − 2β2ζ3.

We now assume, for simplicity, that the second order ordinary differential equation
(9.17) is given by the graph of a section σ: J1 → J2; this is equivalent to assuming that the
equation is normal, and solved

uxx = Q(x, u, ux), (9.20)

for its highest order derivative. (However, the moving frame method could be applied
without this assumption; doing the corresponding problem for non-normal equations using
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the Cartan equivalence approach would be harder.) Pulling back the Maurer-Cartan forms
under the map σ amounts to substituting for uxx according to (9.20) where-ever it occurs.
We denote the pull-back of ζi by ηi and of ωi by $i. To apply the moving frame method,
we look for dependencies among the resulting one-forms. The first of these is

η4 = J1η1 + J2η2 + J3η3,

where

J1 =
α2

α3
1

(
α4 +

dQ

dx

)
,

J2 =
1

α2
1

(
α5 − α6α3 +

∂Q

∂u
− α3

∂Q

∂ux

)
,

J3 =
1

α1

(
α6 +

∂Q

∂ux

)
.

(9.21)

Here
dQ

dx
=
∂Q

∂x
+ ux

∂Q

∂u
+Q

∂Q

∂ux

denotes the total derivative of Q, restricted to the equation manifold (9.20). The lifted
invariants (9.21) can all be translated to zero by choosing

α4 = − dQ

dx
, α5 = − ∂Q

∂u
, α6 = − ∂Q

∂ux

.

We then pull-back the forms ω5, ω6, leading to

$5 ≡ −
(

2β1 +
1

α1α2

Quux

− α3

α2
2

Quxux

)
η3,

$6 ≡ −
(

2β2 +
Quxux

α2

)
η3,

mod{η1, η2}

Translating the coefficients of η3 to zero in $5 and $6 gives

β1 = − 1

2α1α2

Quux

+
α3

2α2
2
Quxux

, β2 = − 1

2α2

Quxux

,

which then leads to the pulled-back forms

$1 =
dα1

α1

−
(
Qux

+ 2α3

α1

)
η1,

$2 =
dα2

α2

− α3

α1

η1 +

(
1

2α2

Quxux

)
η2,

$3 =
dα3

α1

+

(
Qu − α2

3 − α3Qux

α2
1

)
η1 +

1

2α1α2

(
Quux

− α3Quxux

)
η2 +

(
1

2α2

Quxux

)
η3.

At this stage, we have reproduced the system of one-forms obtained via the Cartan equiv-
alence method in [22; p. 394]. Further discussion of this example can be found in this
reference.
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10. Conclusions.

In this paper we have described a systematic procedure for determining moving frames
and invariant differential forms for very general Lie group and Lie pseudo-group actions.
The moving frame and moving coframe can be used to directly determine a complete system
of fundamental differential invariants and invariant differential operators for the given
transformation group. These, in turn, have immediate applications, including the solution
to equivalence problems, classification of symmetry groups, rigidity theorems, construction
of invariant equations and variational principles, and so on. As we have demonstrated,
the method not only readily reproduces all of the standard examples of moving frames
known in the literature, but is also in a form that can immediately be applied to a host of
new and interesting group actions, including intransitive and ineffective actions, infinite-
dimensional Lie pseudo-groups, joint actions, and so on. The theoretical foundations of our
method will be presented in the second paper in this series, [15]. Additional applications
— to differential invariants, to the theory of Lie pseudo-groups, to automorphic systems,
and to computer vision — will be the subject of subsequent papers in this series. Some
extensions that we intend to investigate include:

(1) The moving coframe method, as described in this paper, parallels the explicit “para-
metric” approach to the solution of Cartan equivalence problems. Gardner, [16],
showed how, in such situations, one could perform an “intrinsic” computation,
based on the infinitesimal group action on the torsion coefficients, and thereby
determine the general structure of the solution. An interesting question is whether
one can implement an intrinsic version of the moving coframe algorithm.

(2) In [25], an inductive approach to complicated equivalence problems, based on the
solution to a simpler problem based on a subgroup of the full structure group,
was proposed; see also [38]. In his thesis, Lisle, [33], successfully uses a simi-
lar idea in his “frame method” for symmetry classification of partial differential
equations. The inductive approach not only simplifies the computations, but also
provides direct correspondences between the invariants of the two problems. Is
there a similar inductive version of the moving coframe method? For example,
does the computation of the moving frame for curves in the plane under, say, the
equi-affine group help simplify the corresponding projective computation, thereby
expressing the projective arc length and curvature directly in terms of its equiaffine
counterparts?

(3) In [5], a new scheme for generating invariant numerical approximations to differen-
tial invariants based on the use of joint invariants was proposed, and illustrated in
the planar Euclidean and equi-affine cases. The computation of joint differential
invariants using the moving coframe method strongly indicates that it could be ap-
plied to the general problem of invariant numerical formulae for more complicated
transformation groups. In particular, determining how joint invariants converge
to differential invariants as the points coalesce would be of great importance.

(4) An immediate and important application of the moving method would be to the
classification of the differential invariants associated many of the transformation
groups arising in physics. As remarked above, to date such classifications have
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not been completed, even for some of the most fundamental groups of physical
importance.

Acknowledgments: We particularly thank Ian Anderson for inspiration, enlightening
discussions, and provocative comments. One of us (P.J.O.) would like to thank Allen Tan-
nenbaum and Olivier Faugeras for stimulating remarks on moving frames and differential
invariants in computer vision.
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