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Abstract. The primary goal of this paper is to provide a rigorous theoretical justi-
fication of Cartan’s method of moving frames for arbitrary finite-dimensional Lie group
actions on manifolds. The general theorems are based a new regularized version of the
moving frame algorithm, which is of both theoretical and practical use. Applications in-
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invariant differential operators on jet bundles, as well as equivalence, symmetry, and rigid-
ity theorems for submanifolds under general transformation groups. The method also
leads to complete classifications of generating systems of differential invariants, explicit
commutation formulae for the associated invariant differential operators, and a general
classification theorem for syzygies of the higher order differentiated differential invariants.
A variety of illustrative examples demonstrate how the method can be directly applied to
practical problems arising in geometry, invariant theory, and differential equations.
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1. Introduction.

This paper is the second in a series devoted to the analysis and applications of the
method of moving frames and its generalizations. In the first paper, [9], we introduced the
method of moving coframes, which can be used to practically compute moving frames and
differential invariants, and is applicable to finite-dimensional Lie transformation groups as
well as infinite-dimensional pseudo-group actions. In this paper, we introduce a second
method, called regularization, that not only provides, in a simple manner, the theoretical
justification for the method of moving frames in the case of finite-dimensional Lie group
actions, but also gives an alternative, practical approach to their construction. The reg-
ularized method successfully bypasses many of the complications inherent in traditional
approaches by completely avoiding the usual process of normalization during the general
computation. In this way, the issues of branching and regularity do not arise. Once a
moving frame and coframe, along with the complete system of invariants, are constructed
in the regularized framework, one can easily restrict these invariants to particular classes of
submanifolds, producing (in nonsingular cases) the standard moving frame. Perhaps Grif-
fiths is the closest in spirit to our guiding philosophy; we fully agree with his statement,
[12; p. 777], that “The effective use of frames . . . goes far beyond the notion that ‘frames
are essentially the same as studying connections in the principal bundle of the tangent
bundle’.” Indeed, by de-emphasizing the group theoretical basis for the method, which,
in the past, has hindered the theoretical foundations from covering all the situations to
which the practical algorithm could be applied, our formulation of the framework goes
beyond what Griffiths envisioned, and successfully realizes Cartan’s original vision, [5, 7].
The regularized method can be readily used to compute all classical, known examples of
moving frames, as well as a vast array of other, non-traditional Lie group actions. Indeed,
the method is not restricted to transitive group actions on homogeneous spaces, although
these form an important subclass of transformation groups that can be handled by our
general procedure.

In general, given a finite-dimensional Lie group G acting on a manifold M , a moving
frame (of order zero) is defined as a G-equivariant map ρ:M → G. Moving frames on
submanifolds N ⊂ M are then obtained by restriction. This general definition appears in
Griffiths, [12], Green, [11], and Jensen, [14], and can be readily reconciled with classical
geometrical constructions, [9]. It is not hard to see that an order zero moving frame can
only exist when the group action is free and regular. Consequently, the first part of this
paper will be devoted to developing the theory of moving frames in the simple context of
free group actions on manifolds. We show how a moving frame and a complete system of
invariants can be constructed via the process of normalization. Normalization amounts to
choosing a cross-section K ⊂ M to the group orbits, and computing the group element
g = ρ(z) which maps a point z ∈M in the manifold to the chosen cross-section, so g ·z ∈ K.
The resulting map ρ: z 7→ g from the manifold to the group is the moving frame. With
this data in hand, the group action can be characterized as the local diffeomorphisms
which preserve a system of invariant functions and one-forms that are prescribed by the
choice of cross-section and the pull-back of the Maurer-Cartan forms on the group via the
moving frame. By restricting the invariant functions and one-forms to a submanifold, the
solution to the basic congruence and symmetry problems follow directly from Cartan’s
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solution to the general equivalence problem for coframes, [8, 18]. That is, the invariants
and the derived invariants of a submanifold serve to parameterize a classifying manifold
that uniquely characterizes the equivalence class and symmetries of the submanifold under
the action of the group.

If the prescribed group action is not free on M , then an order zero moving frame
cannot be determined. The strategy then is to prolong the group action to the jet bundles
Jn = Jn(M,p) of n-jets of p-dimensional submanifolds of the underlying manifold M .
Assuming that the group G acts effectively on subsets† then the prolonged transformation
group will act locally freely on an open subset of Jn for n sufficiently large, and hence one
can use the moving frame construction described in the previous paragraph to determine
a moving frame of order n for regular submanifolds. In general, the invariants and derived
invariants associated with such a moving frame can be identified with a complete system
of nth order differential invariants for the transformation group. Thus, the congruence and
symmetry theorems for regular submanifolds are easily restated in terms of differential
invariants and their associated classifying manifold. Moreover, our methods have the
widest range of generality possible; by using sufficiently high order jets, we are able to
establish moving frames for all submanifolds except those which are “totally singular”. The
latter can be geometrically characterized as submanifolds whose isotropy subgroup does not
act freely thereon, and hence cannot be endowed with fully determined moving frames. For
example, in equi-affine geometry, the straight lines are totally singular, and do not possess
equi-affine moving frames. In this manner, the regularized procedure also sheds light on
a comment of Weyl, [27; p. 600], on the desirability of investigating “special classes of
manifolds by imposing conditions on the invariants”, using the example of minimal curves
in Euclidean geometry where the usual normalization procedure breaks down. A related
idea of I. Anderson (personal communication) involves the regularization of differential
invariants for transformation groups by introducing additional parametric coordinates in
order to avoid “phantom” singularities in jet space. The regularized moving frame method
provides a general construction that allows one to rigorously implement the ideas of Weyl
and Anderson in practical situations.

A key idea that underlies our theory of regularization is to replace any complicated
group action on a manifold by a “lifted action” of the group on the trivial principal bundles
B(n) = G × Jn over the original manifold and its associated jet spaces. Once the action
of the group is free on a particular jet space, the moving frame map is nothing but an
equivariant section of the principal bundle B(n) under the lifted action. The equivariant
section so obtained allows one to pull back invariant objects on the principal bundle to the
base. Fortunately, all the invariant objects on the principal bundle are trivial to construct,
and so the particularities of the construction are all embodied in the chosen moving frame
section, and can thereby be systematically analyzed.

The regularization approach to moving frames provides new, effective tools for un-
derstanding the geometry of submanifolds and their jets under a transformation group.

† This condition is very mild. See Section 2 for the precise definition, and a demonstration
that it always holds, without loss of generality, in the analytic category.
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Applications include a new and more general proof of the fundamental theorem on classifi-
cation of differential invariants, a general classification theorem for syzygies of differential
invariants, as well as new explicit commutation formulae for the associated invariant dif-
ferential operators. We demonstrate a simple but striking generalization of a “replacement
theorem” due to T.Y. Thomas, [24]. Two types of general rigidity theorems, uniquely
characterizing congruent submanifolds by finite order jets, are proved, thereby extend-
ing known results for submanifolds of homogeneous spaces. We also give a new basis
for Ovsiannikov’s theory of partially invariant solutions of partial differential equations,
[22]. All of our theoretical results are provided in a form that can be applied to practical
examples, which we illustrate with several explicit examples of independent interest in Sec-
tion 15. This wide range of both theoretical and practical applications clearly demonstrates
the power of our approach to the general theory of moving frames.

2. Lie Transformation Groups.

Let us begin by collecting some basic terminology associated with finite-dimensional
transformation groups. See [18] for details. Throughout this paper, G will denote an
r-dimensional Lie group acting smoothly on an m-dimensional manifold M .

Definition 2.1. The isotropy subgroup of a subset S ⊂M is

GS = { g ∈ G | g · S = S } . (2.1)

The global isotropy subgroup is the subgroup

G∗S =
\

x∈S

Gx = { g ∈ G | g · s = s for all s ∈ S }

consisting of those group elements which fix all points in S.

Definition 2.2. The group G acts

(i) freely if Gz = {e} for all z ∈M ,

(ii) locally freely if Gz is a discrete subgroup of G for all z ∈M ,

(iii) effectively if G∗
M = {e},

(iv) effectively on subsets if G∗
U = {e} for every open U ⊂M ,

(v) locally effectively if G∗
M is a discrete subgroup of G,

(vi) locally effectively on subsets if G∗
U is a discrete subgroup of G for every open U ⊂M .

If the group G does not act effectively, one can, without any loss of generality, replace
G by the effectively acting quotient groupG/G∗

M , which acts in essentially the same manner
as G does, cf. [18]. Clearly, if G acts effectively on subsets, then G acts effectively. Analytic
continuation demonstrates that the converse is true in the analytic category. However, it
does not hold for more general smooth actions as the following elementary example shows.

Example 2.3. Let h(x) be any C∞ function such that h(x) > 0 for x > 0, but
h(x) = 0 for x ≤ 0. Let G ' R

2 be the two-parameter abelian transformation group acting
on M = R

2 via (x, u) 7→ (x, u+ ah(x) + bh(−x)), where (a, b) ∈ G and (x, u) ∈ M . Then
G acts effectively on M , but not effectively on any open subset that is contained in either
the right or left half plane.
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Since they do not arise in usual applications, we will not attempt to analyze patho-
logical smooth actions which are effective but not subset effective. Thus we shall, without
significant loss of generality, only consider transformation groups that act effectively on
subsets.

Definition 2.4. A group G acts semi-regularly on M if all its orbits have the same
dimension. A semi-regular group action is regular if, in addition, each point x ∈ M has
arbitrarily small neighborhoods whose intersection with each orbit is a connected subset
thereof.

Proposition 2.5. An r-dimensional Lie group G acts locally freely on M if and only
if its orbits all have dimension r.

Definition 2.6. Suppose G acts semi-regularly on the m-dimensional manifold M
with s-dimensional orbits. A (local) cross-section is a (m − s)-dimensional submanifold
K ⊂ M such that K intersects each orbit transversally. The cross-section is regular if K
intersects each orbit at most once.

If G acts semi-regularly, then the Implicit Function Theorem guarantees the existence
of local cross-sections at any point ofM . Regular actions admit regular local cross-sections.

Example 2.7. The following simple construction, based on the Frobenius Theorem,
cf. [18], is of fundamental importance for the theoretical justification of the method of
moving frames. Suppose G acts freely and regularly on M . Then we can introduce flat

local coordinates

z = (x, y) = (x1, . . . , xr, y1, . . . , ym−r), x ∈ G, y ∈ Y, (2.2)

that locally identify M with a subset of the Cartesian product G × Y , with Y ' R
m−r,

and such that the action of G reduces to the trivial left action g · z = (g · x, y). The y
coordinates provide a complete system of functionally independent invariants for the group
action. In these coordinates, a general cross-section is given by the graph K = {(a(y), y)}
of a smooth map a:Y → G. When we use flat coordinates, we shall always assume, without
loss of generality, that the identity cross-section {e} × Y , i.e., when a(y) ≡ e, belongs to
the flat coordinate chart.

Remark : In practice, of course, the determination of the flat coordinates for a given
transformation group action may be extremely difficult. A significant achievement of the
method of moving frames is that it allows one to compute invariants without having to
find the flat coordinates, or integrate any differential equations.

Throughout this paper, we shall let g denote the right Lie algebra of G consisting
of right-invariant vector fields on G. The map ψ:v 7→ v̂ that associates a Lie algebra
element v ∈ g to the corresponding infinitesimal generator v̂ = ψ(v) of the associated
one-parameter subgroup forms a Lie algebra homeomorphism from g to the space of vector
fields on M . The kernel of ψ coincides with the Lie algebra of the global isotropy subgroup
G∗M , thereby identifying the Lie algebra of infinitesimal generators ĝ = ψ(g) with the
quotient Lie algebra of the effectively acting quotient group G/G∗

M . In particular, G acts
locally effectively if and only if kerψ = {0}.
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3. Regularization.

Our approach to the theory of moving frames is based on the following simple but
remarkably powerful device. In general, any complicated transformation group action can
be “regularized” by lifting it to a suitable bundle sitting over the original manifold. The
construction is reminiscent of the regularization procedure based on universal bundles
used to compute equivariant cohomology, cf. [3], [13; § 4.11], although our method is
considerably simpler in that we only require finite-dimensional bundles.

Let G be a smooth transformation group acting on a manifold M . Let B = G ×M
denote the trivial left† principal G bundle over M .

Definition 3.1. The left regularization of the action of G on M is the diagonal action
of G on B = G×M provided by the maps

L̂g(h, z) = L̂(g, (h, z)) = (g · h, g · z), g ∈ G, (h, z) ∈ B. (3.1)

The right regularization of G is given by

R̂g(h, z) = R̂(g, (h, z)) = (h · g−1, g · z), g ∈ G, (h, z) ∈ B. (3.2)

We will also refer to the regularized actions (3.1), (3.2), as the left or right lifted

action of G since either projects back to the given action on M via the G equivariant
projection πM :B → M . In the sequel, the left (respectively right) regularization of a
group action will lead to left (right) moving frames associated with submanifolds of M .
The key, elementary result is that regularizing any group action immediately eliminates all
singularities and irregularities, e.g., lower dimensional orbits, non-embedded orbits, etc.
Moreover, the orbits of G in M are the projections of their lifted counterparts in B; all of
the lifted orbits have the same dimension as G itself.

Theorem 3.2. The right and left regularizations of any transformation group G
define regular, free actions on the bundle B = G×M .

Thus, lifting the action of G on M to the bundle B has the effect of completely
eliminating any irregularities appearing in the original action.

Definition 3.3. A lifted invariant is a (locally defined) smooth function L:B → N
which is invariant with respect to the (either left or right) lifted action of G on B.

Both regularized actions admit a complete system of globally defined, functionally
independent lifted invariants.

Definition 3.4. The fundamental right lifted invariant is the multiplication function
w:B →M given by

w = g · z. (3.3)

† Modern treatments of principal bundles, e.g., [13, 23], tend to concentrate on right principal
bundles. However, we find the left version more convenient for our purposes.
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The fundamental left lifted invariant is the function w̃:B →M given by

w̃ = g−1 · z. (3.4)

From the point of view of invariants and moving frames, right regularization is the
simpler of the two because its fundamental invariant does not require the computation
of the inverse transformation g−1. On the other hand, in the literature, most examples
are constructed using the left regularization. Moreover, the final formulae for the moving
frame are typically simpler if the left regularization is used. However, the theoretical and
practical aspects of our regularized moving frame method underline the primacy of the right
version. Therefore, from now on, the terms “regularization” or “lift” without qualification
will always mean the right versions of these objects. All results will automatically have a
left counterpart, typically found by applying the group inversion g 7→ g−1.

Proposition 3.5. The fundamental lifted invariant w = g ·z is invariant with respect
to the regularized action (3.2) of G on B. Moreover, given z ∈M , the corresponding level
set w−1{z} coincides with the orbit of G through the point (z, e) ∈ B.

If we introduce local coordinates on M , then the components of w form a complete
system of m = dimM functionally independent invariants on B.

Proposition 3.6. Any lifted invariant L:B → N can be locally written as a function
of the fundamental lifted invariants, L(g, z) = F [w(g, z)], so that L = F ◦w for some
F :M → N .

In particular, if F (z) is any function onM , then we can produce a lifted invariant F ◦w
on B by replacing z by w = g · z in the formula for F . The ordinary invariants I:M → N
of the group action are particular cases of lifted invariants, where we identify I with its
composition I ◦πM with the standard projection. Therefore, Proposition 3.6 indicates that
ordinary invariants are particular functional combinations of lifted invariants that happen
to be independent of the group parameters. For such functions, a simple but striking
“replacement theorem” provides an explicit formula expressing an ordinary invariant in
terms of the lifted invariants.

Theorem 3.7. If I(z) = F (w(g, z)) = F (g · z) is an ordinary invariant, then F (z) =
I(z).

Proof : In other words, replacing z by w in the formula for the invariant does not
change its value, i.e., I(z) = I(w). To prove this result, we use the invariance of I and the
fact that at the identity g = e, the lifted invariant reduces to w = z. Q.E.D.

Example 3.8. Let G = SO(2) be the rotation group acting on M = R
2 via

(x, u) 7−→ (x cos θ − u sin θ, x sin θ + u cos θ) . (3.5)

The (right) regularized action on the cylinder B = SO(2) × R
2 is given by supplementing

the planar transformation rules (3.5) with the group law φ 7→ (φ − θ)mod 2π. Note that
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the action on B is regular, so we have effectively replaced the singular orbit at the origin
by a regular orbit {(0, 0)}×SO(2) ⊂ B. There are two fundamental right lifted invariants:

y = x cosφ− u sinφ, v = x sinφ+ u cosφ. (3.6)

Note that
r2 = y2 + v2 = x2 + u2

is an invariant for the lifted action which reduces to the ordinary radial invariant for the
action back on M . The fact that r has the same formula in terms of x, u as it does in y, v
is a simple manifestation of the general Replacement Theorem 3.7.

A differential form ω on the principal bundle B = G ×M is (right) G-invariant if

it satisfies (R̂g)
∗ω = ω for every g ∈ G. Of particular importance are the (pulled-back)

Maurer–Cartan forms associated with the Lie group G. We introduce a basis {v1, . . . ,vr}
for the (right) Lie algebra g of G. The corresponding dual basis µ = {µ1, . . . , µr} for
the right-invariant differential forms on G are known as the Maurer–Cartan forms. We
shall also use µ to denote the corresponding Maurer–Cartan one-forms on B, namely the
pull-backs (πG)∗µ of the forms on G under the standard projection πG:B → G. The
Maurer–Cartan forms µ on B are invariant under the right regularized action of G.

Since B = G×M is a Cartesian product, its differential d naturally splits into a group
and manifold components: d = dG + dM . Moreover, since the regularized action (3.2) is a
Cartesian product action, the splitting is G-invariant.

Proposition 3.9. If ω is any G-invariant differential form on B, then both dMω and
dGω are invariant forms. In particular, if L is any lifted invariant, then dML and dGL are
invariant one-forms on B.

In particular, the differential dw of the fundamental lifted invariant w = g ·z will split
into two sets of invariant one-forms on B, namely dMw = g · dz and the group component
dGw. The notation g · dz is meant suggestively; in terms of local coordinates (z1, . . . , zm)
on M , the components of g · dz are the pull-backs g∗ dzi of the coordinate differentials
via the group transformation g. There is a beautiful explicit formula that expresses group
components dGw as invariant linear combinations of the Maurer–Cartan forms µ on B.

Theorem 3.10. Let G act on M . Let {v1, . . . ,vr} be a basis for the Lie algebra g,
and let

v̂κ =
m∑

i=1

f i
κ(z)

∂

∂zi
, κ = 1, . . . , r, (3.7)

be the corresponding infinitesimal generators on M , written in local coordinates z =
(z1, . . . , zm). Let µ = {µ1, . . . , µr} be the dual Maurer–Cartan forms, pulled back to B.
Let w = (w1, . . . , wm) be the components of the the fundamental lifted invariant w = g · z,
expressed in the same local coordinates. Then the group differential of the components of
w are given by

dGw
i =

r∑

κ=1

f i
κ(w) µκ , i = 1, . . . ,m. (3.8)
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In other words, the coefficients of the Maurer–Cartan forms in (3.8) are the lifted invariant
counterparts of the coefficients of the infinitesimal generators (3.7), obtained by replacing
z by the lifted invariant w.

Proof : Let v ∈ g correspond to the infinitesimal generator v̂ on M . For simplicity,
we use the same notation for the corresponding vertical and horizontal vector fields on B,
which generate the actions† (h, z) 7→ (exp(tv)·h, z) and (h, z) 7→ (h, exp(tv̂)·z) respectively.
(The infinitesimal generators of the left regularization (3.1), then, are the sums v + v̂ of
these vector fields.) We then notice that

v(w) =
d

dt

[(
exp(tv) · g

)
· z
]∣∣∣∣

t=0

=
d

dt
[exp(tv̂) · w]

∣∣∣∣
t=0

.

The latter expression is equal to the value of the vector field v̂ at the point w = g · z;
therefore, in local coordinates,

vκ(wi) = f i
κ(w), i = 1, . . . ,m, κ = 1, . . . , r.

On the other hand, duality‡ of the Maurer–Cartan forms implies that

dGw
i =

r∑

κ=1

vκ(wi) µκ =

r∑

κ=1

f i
κ(w) µκ,

completing the proof. Q.E.D.

Remark : Theorem 3.10 justifies the method for computing Maurer–Cartan forms di-
rectly from the group transformations introduced in part I, [9].

Example 3.11. Return to the rotation group acting on M = R
2 as in (3.5). Apply-

ing dM and dG to the lifted invariants (3.6) will produce four lifted invariant one-forms on
B. The manifold components are

dMy = (cosφ) dx− (sinφ) du, dMv = (sinφ) dx+ (cosφ) du.

On the other hand, the group components can be written as invariant multiples of the
Maurer–Cartan form µ = dφ, namely

dGy = −(x sinφ+ u cosφ) dφ = −v dφ, dGv = (x cosφ− u sinφ) dφ = y dφ.

Equation (3.8) implies that the coefficients (−v, y) can be computed directly as the invari-
ant counterparts of the coefficients (−u, x) of the infinitesimal generator v̂ = −u∂x + x∂u.

Remark : A lifted invariant L(g, z) = F (w) is independent of all group parameters,
and hence reduces to an ordinary invariant as in Theorem 3.7 if and only if dGL = 0.
In view of (3.8), the equation dGL(g, z) = dGF (w) = 0 is equivalent to the usual Lie
infinitesimal invariance conditions vκ(F (z)) = 0, κ = 1, . . . , r, rewritten in terms of w
instead of z.

† Recall that the right-invariant vector fields generate the left action of G on itself.

‡ See Example 5.13 below for details.
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4. Moving Frames.

Let us now define moving frames in the context of a Lie group acting on a manifold.
The justification for this definition appears in part I, [9], and is based on the earlier work
of Green, [11], Griffiths, [12], and Jensen, [14].

Definition 4.1. Given a transformation group G acting on a manifold M , a moving

frame is a smooth G-equivariant map

ρ :M −→ G. (4.1)

In (4.1), we can use either the right or the left action of G on itself, and thus speak
of right and left moving frames. As in the usual method of moving frames, we shall only
be interested in their local existence and construction. Thus, we can relax our condition
and only require local G-equivariance of the moving frame map, i.e., for group elements
near the identity. There is an elementary correspondence between right and left moving
frames.

Lemma 4.2. If ρ̃(z) is a left moving frame on M , then ρ(z) = ρ̃(z)−1 is a right
moving frame.

Example 4.3. An important example is when G is a Lie group acting on itself, so
M = G, by left multiplication h 7→ g · h. If a ∈ G is any fixed element, then the map
ρ̃(g) = g · a clearly defines a (left) moving frame. Moreover, every (left) moving frame
necessarily has this form, with a = ρ̃(e). Similarly, every right moving frame is provided
by a map ρ(g) = a · g−1 for some fixed a ∈ G.

Not every group action admits a moving frame. The key condition is that the action
be both free and regular.

Theorem 4.4. If G acts on M , then a moving frame exists in a neighborhood of a
point z ∈M if and only if G acts freely and regularly near z.

Proof : To see the necessity of freeness, suppose z ∈ M , and let g ∈ Gz belong to its
isotropy subgroup. Let ρ̃ :M → G be a left moving frame. Then, by left equivariance of ρ̃,

ρ̃(z) = ρ̃(g · z) = g · ρ̃(z).
Therefore g = e, and hence Gz = {e} for all z ∈ M . To prove regularity, suppose that
z ∈M and that there exist points zκ = gκ · z belonging to the orbit of z such that zκ → z
as κ→ ∞. Thus, by continuity,

ρ̃(zκ) = ρ̃(gκ · z) = gκ · ρ̃(z) −→ ρ̃(z) as κ→ ∞,

which implies that gκ → e in G. This suffices to ensure regularity of the orbit through z.

To prove sufficiency, we use the flat local coordinates z = (x, y) ∈ G × Y introduced
in Example 2.7. A general local cross-section K ⊂M is given by a graph x = a(y). Then
the map

ρ̃(x, y) = x · a(y) (4.2)

is clearly G-equivariant under left multiplication on G, and hence defines a left moving
frame. Moreover, every left moving frame has this form, provided we define the cross-
section via a(y) = ρ̃(e, y). Q.E.D.
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Remark : If G acts only semi-regularly and/or locally freely†, then the preceding proof
can be easily adapted to find a locally G-equivariant moving frame.

Theorem 4.5. If ρ(z) is a right moving frame, then the components of the map
I:M → M defined by I(z) = ρ(z) · z provide a complete system of invariants for the
group.

Proof : Using our flat local coordinates, Lemma 4.2 implies that the right moving
frame corresponding to (4.2) is

ρ(z) = a(y)−1 · x−1, z = (x, y). (4.3)

Therefore
ρ(z) · z = (a(y)−1, y) ∈ K. (4.4)

In particular, the last m − r components of (4.4) provide the invariants y, while the first
r components are functions of the invariants. Q.E.D.

The proof of Theorem 4.4 shows that the determination of a moving frame is intimately
connected to the process of choosing a cross-section to the group orbits. Example 4.3 is a
particular case of this construction since a cross-section to a transitive group action is just
a single point. Equation (4.4) shows that the group element g = ρ(z) given by the right
moving frame map can be geometrically characterized as the unique group transformation
that moves the point z onto the cross-section K. Moreover, I(z) = ρ(z) · z is the point on
the cross-section K that lies on the G orbit passing through z.

Remark : In fact, any map ρ:M → G that satisfies I(z) = ρ(z) · z ∈ K will produce
invariants by a choice of local coordinates on K. The action of G need not be free and the
map ρ need not be equivariant; moreover, the group can equally well be a pseudo-group.

Theorem 4.5 implies that if J(z) is any other invariant function, then, locally, we can
write J(z) = H(I(z)) in terms of the moving frame invariants I. As noted in the proof, the
components of I are not necessarily functionally independent, but one can always locally
choose a set of m − r components which do provide a complete system of functionally
independent invariants, or, equivalently, a system of local coordinates on the quotient
manifold M/G.

An alternative way of understanding the moving frame construction presented above
is to view the regularization of a group action as giving rise to the double fibration

G×M

¡
¡
ª

πM @
@R
w

M M

(4.5)

of the regularized bundle B over M . Given a cross-section K to the G orbits, the set

L = w−1(K) ⊂ B = G×M

† A (locally) free action is automatically semi-regular.
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forms an m-dimensional submanifold of B that is invariant with respect to the lifted action
of G on B. Projection onto M defines a locally equivariant diffeomorphism πM :L −→̃M
and hence L is the graph of a local section σ = (πM | L)−1, called the moving frame section.
It is not hard to see that σ defines the graph of the moving frame, so σ(z) = (ρ(z), z) for
z ∈M , i.e.,

ρ = πG
◦σ:M −→ G.

Since σ:M → L is G-equivariant, any invariant object on B pulls-back, via σ, to an invari-
ant object on M . In particular, the invariant I(z) = ρ(z) · z constructed in Theorem 4.5
is given by

I = σ∗(w) = w ◦σ:M −→ K.

As noted above, given any function F :M → R, the composition F ◦w:B → R defines
a lifted invariant, L(g, z) = F (g ·z). Moreover, pulling back L via the moving frame section
σ:M → B, defines an ordinary invariant J(z) = F (w(σ(z))) = F (ρ(z) · z). Thus a moving
frame provides a natural way to construct invariants from arbitrary functions!

Definition 4.6. The invariantization of a function F :M → N with respect to a
moving frame ρ:M → G is the composition J = F ◦w ◦σ = F ◦ I.

Invariantization does depend on the choice of moving frame. Geometrically, J(z)
equals the value of F at the point on the cross-section that lies on the G orbit through
z. Theorem 3.7 says that if F itself is an invariant, then F ◦w is independent of the
group parameters, and hence J = F , i.e., the invariantization process leaves invariants
unchanged. Thus, one can view invariantization as a projection operator from the space
of functions to the space of invariants.

Example 4.7. Consider the usual action (3.5) of SO(2), which is regular on M =
R

2 \ {0}. The positive u axis defines a cross-section K = { (0, v) | v > 0 } to the orbits.
The map g = ρ(x, u):M → K which rotates the point (x, u) to the point (0, r) ∈ K, where
r =

√
x2 + u2, is clearly SO(2)–equivariant. The moving frame ρ:M → SO(2) induced by

this choice of cross-section is therefore given by the equivariant map φ = tan−1(x/u) that
determines the the rotation angle needed to map (x, u) to K. The corresponding moving
frame section σ:M → B = SO(2) ×M is given by σ(x, u) = (tan−1(x/u), x, u). Pulling
back the lifted invariants (3.6) produces the invariants σ∗y = 0, σ∗v = r. If F (x, u) is any
function, then L(φ, x, u) = F (y, v) is its lifted counterpart, and so its invariantization is
the radial invariant J = F (0, r). The reader should try computing other moving frames
and the corresponding invariants by choosing other cross sections, e.g., { (v, v) | v > 0 }, or
{ (v, v2) | v > 0 }.

Our construction is intimately tied to the Cartan procedure of normalization of group
parameters, which is, traditionally, the basic process used in the practical construction of
moving frames, [5, 7]. Normalization can be interpreted as the restriction of the regularized
group action to an invariant submanifold of the regularized bundle B. In particular, when
G acts freely on M , we can restrict to a local section of B and thereby uniquely specify all
of the group parameters.
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Definition 4.8. A lifted invariant L:B → N is regular provided its group differential
dGL has maximal rank n = dimN at every point in its domain of definition.

The essence of the normalization procedure that appears both in the method of moving
frames, as well as the Cartan equivalence method, is captured by the following simple
definition.

Definition 4.9. A normalization of the regularized group action consists of its re-
striction to a nonempty level set Lc = L−1{c} of a regular lifted invariant L:B → N .

Every level set of a lifted invariant forms a G-invariant submanifold of the regularized
action. Note that the regularity assumption on the lifted invariant implies that the projec-
tion πM :Lc → M maps Lc onto an open subset of M . Thus, regularity ensures that the
normalization does not introduce any dependencies among the z coordinates, since that
would introduce unacceptable constraints on the original manifold M .

In local coordinates, if L(g, z) = (L1(g, z), . . . , Ln(g, z)) is a regular lifted invariant
and c = (c1, . . . , cn) ∈ N belongs to the image of L, then the implicit function theorem
says that we can (locally) solve the system of n equations

L1(g, z) = c1, . . . Ln(g, z) = cn, (4.6)

for n of the group parameters, say ĝ = (g1, . . . , gn), in terms of the remaining r − n
group parameters, which we denote by h = (h1, . . . , hr−n) = (gn+1, . . . , gr), and the z
coordinates:

g1 = γ1(h, z), . . . gn = γn(h, z), (4.7)

or, simply, ĝ = γ(h, z). The coordinates h and z serve to parametrize the G-invariant level
set Lc = L−1{c}. The remaining group parameters h can be interpreted as parametrizing
the isotropy subgroup of the submanifold { z |L(e, z) = c }.

Proposition 4.10. If G acts freely and regularly on M , then we can completely
normalize all of the group parameters by choosing a regular lifted invariant L:B → N
having maximal rank dGL = r = dimN = dimG everywhere.

Definition 4.11. Let K ⊂M be a local cross-section to the G orbits. The normal-

ization equations associated with K are the system of equations

w = g · z = k, where k ∈ K. (4.8)

Remark : The normalization equations (4.8) are the same as the compatible lift equa-
tions discussed in part I, [9].

If we assume that G acts freely and K is a regular cross-section, then there is a unique
solution g = ρ(z) to the normalization equations, determining the right moving frame
associated withK. More explicitly, if we choose the flat local coordinates z = (x, y) ∈ G×Y
from Example 2.7, then the fundamental lifted invariant has the form w = g · z = (g ·x, y).
Choosing a cross-section x = a(y) reduces the normalization equations (4.8) to g ·x = a(y),
with G-equivariant solution g = ρ(x, y) = a(y) · x−1, which agrees with the right moving
frame (4.3) after applying the group inversion to the cross-section map a(y).
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In practice, one constructs a “standard” cross-section by solving the normalization
equations in the following manner. Locally we choose r components of the fundamental
lifted invariant w = g · z, say w1, . . . , wr, which satisfy the regularity condition

∂(w1, . . . , wr)

∂(g1, . . . , gr)
6= 0. (4.9)

Solving the equations

w1(g, z) = c1, . . . wr(g, z) = cr, (4.10)

where the constants c1, . . . , cr are chosen to lie in the range of the w’s, leads to a complete
system of normalizations g = ρ(z) for the group parameters. The resulting map determines
a moving frame, and corresponds to the local cross-section K = {z1 = c1, . . . , z

r = cr}.
Furthermore, Theorem 4.5 implies that if we substitute the normalization formulae g =
ρ(z) into the remaining lifted invariants w̃ = (wr+1, . . . , wm), we obtain a complete system
of m− r functionally independent invariants for the group action on M :

Ir+1(z) = wr+1(ρ(z), z), . . . Im(z) = wm(ρ(z), z). (4.11)

Thus, barring algebraic complications, the normalization procedure provides a simple
direct method for determining the invariants of free group actions. Note particularly that,
unlike Lie’s infinitesimal method, cf. [17], we do not have to integrate† any differential
equations in order to compute invariants.

Remark : If L(g, z) is any other regular lifted invariant of rank r, then we can introduce
local coordinates on M to make L agree with the first r components of w = g · z when
written in the new coordinates. Thus changing the normalized invariants is equivalent to
changing coordinates on M .

Example 4.12. Let G = SE(2) = SO(2) n R
2 be the planar Euclidean group,

parametrized by (φ, a, b). Consider the free, local action of SE(2) on M = R
4 that maps a

point (x, u, p, q) ∈M to
(
x cosφ− u sinφ+ a, x sinφ+ u cosφ+ b,

sinφ+ p cosφ

cosφ− p sinφ
,

q

(cosφ− p sinφ)3

)
. (4.12)

The fundamental lifted invariants are the individual components (y, w, r, s) of (4.12). Let
us normalize the first three lifted invariants to all be zero, leading to the normalization
equations

y = x cosφ− u sinφ+ a = 0, v = x sinφ+ u cosφ+ b = 0, r =
sinφ+ p cosφ

cosφ− p sinφ
= 0.

(4.13)

† In a sense, though, we have integrated the differential equations by being able to explicitly
write down the group transformation formulae for w = g · z. However, it is rare that one can
integrate the ordinary differential equations for the invariants without being able to find the group
transformations!
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This corresponds to choosing the cross-section K = { (0, 0, 0, κ) |κ ∈ R } to the three-
dimensional orbits of SE(2). The solution to (4.13) is

φ = − tan−1 p, a = − x+ up√
1 + p2

, b =
xp− u√
1 + p2

, (4.14)

which defines the right moving frame ρ:M → SE(2). The left moving frame is obtained
by inverting the group element parametrized by (4.14), whereby

φ̃ = tan−1 p, ã = x, b̃ = u. (4.15)

Finally, if we substitute (4.14) into the final lifted invariant s = (cosφ − p sinφ)−3q, we
recover the fundamental invariant

κ =
s

(1 + r2)3/2
=

q

(1 + p2)3/2
. (4.16)

Note again the common functional dependency on the coordinates on M and the associated
lifted invariants, in accordance with Theorem 3.7. If we identify p = ux, q = uxx, then
(4.12) coincides with the second prolongation of the standard action of SE(2) on curves in
the plane, (4.15) agrees with the classical left moving frame for Euclidean curves, cf. [9],
and the invariant (4.16) is, of course, the Euclidean curvature. See Example 10.4 below.

Example 4.13. Consider the joint action (x, y) 7→ (Rx+a,Ry+a) of the Euclidean
group (R, a) ∈ SE(2) on (x, y) ∈ M = R

2 × R
2. The action is free on M \ D, where

D = {x = y} is the diagonal. The lifted invariants are the components of z = Rx + a,
w = Ry + a. We normalize z = 0 by setting a = −Rx. The remaining normalized
invariant now reduces to w = R(y−x). Away from the diagonal, we can further normalize
the second component of w to be zero by specifying the rotation matrix R to have angle
φ = − arg(y−x); this amounts to picking the cross-section K = {(0, 0, d, 0)}. The resulting
normalizations specify the right moving frame for the joint Euclidean action. The first
component of w then reduces to the distance | y − x | = d, which forms the fundamental
joint invariant for the Euclidean group. A similar construction for the n-dimensional
Euclidean group E(n) provides a simple proof of an analytical version of a theorem in
Weyl, [28], that the only joint Euclidean invariants are functions of the distances between
points. Extensions to joint invariants for other transformation groups are straightforward.
See [9] for recent results on joint differential invariants.

In applications to equivalence problems, one restricts the moving frame to a sub-
manifold of the underlying space M . The resulting maps from the submanifold to the
group agree with the traditional definition of a moving frame in classical geometrical sit-
uations. Assume that S = ι(X) is an immersed submanifold parametrized by a smooth
map ι:X →M of maximal rank equal to the dimension of X.

Definition 4.14. A moving frame on a submanifold S = ι(X) is a map λ:X → G
that factors through a G-equivariant map ρ:M → G, so that λ = ρ ◦ ι.
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In other words, the moving frame λ on S can be realized by the following commutative
diagram

M

½
½½>ι Z

ZZ~
ρ

X λ - G

(4.17)

The moving frame ρ must, of course, be defined in a neighborhood of S. As before, we can
consider either left or right moving frames on the submanifold S. Lemma 4.2 still applies
and shows that they are merely inverses of each other.

5. Equivalence Problems for Coframes.

We now turn to the applications of moving frames to equivalence problems for sub-
manifolds. In preparation, we first review a very particular equivalence problem, that of
coframes on a manifold. The goal of both the Cartan equivalence method and the moving
coframe method is to produce, via the normalization and reduction process, an invariant
coframe, and thereby reduce the original equivalence problem to an equivalence problem
for coframes. Thus it is essential that we understand the known solution to this particular
equivalence problem before proceeding further. We refer the reader to [8, 10, 18] for more
details on the basic theory as well as numerous examples.

Let M and M be m-dimensional manifolds, and let ω = {ω1, . . . , ωm} and ω =
{ω 1, . . . , ωm} be respective coframes thereon. The basic coframe equivalence problem is
to determine when there exists a (local) diffeomorphism ψ:M →M such that

ψ∗ ω i = ωi, i = 1, . . . ,m. (5.1)

More generally, one might also include a collection of smooth scalar-valued functions
Iν :M → R and Iν :M → R, where ν = 1, . . . , l, that are required to be mapped to
each other, meaning that Iν(x) = Iν(x) whenever x = ψ(x), or, equivalently,

ψ∗ Iν = Iν , ν = 1, . . . , l. (5.2)

We formalize this as follows.

Definition 5.1. An extended coframe on a manifold M is a collection Ω = {ω, I}
consisting of a coframe ω along with a collection I = (I1, . . . , Il) of smooth scalar functions.

Definition 5.2. A local diffeomorphism ψ:M → M is an equivalence between ex-
tended coframes Ω = {ω, I} on M , and Ω = {ω, I}, on M if and only if ψ satisfies
(5.1), (5.2), which we abbreviate as ψ∗ Ω = Ω. In particular, a symmetry of an extended
coframe Ω is a self-equivalence, i.e., a local diffeomorphism ψ:M →M such that ψ∗Ω = Ω.

The symmetry group G of an extended coframe Ω = {ω, I} is the local transformation
group consisting of all symmetries. The functions Iν in Ω are then invariants for the group
G, hence their common level sets are G-invariant subsets of M . In view of this remark, we
shall often refer to the functions I in an extended coframe Ω as its invariants.

Two equivalent extended coframes must have the same number of invariants. More-
over, if there is a functional dependency Il = H(I1, . . . , Il−1) among the invariants of Ω,
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then the corresponding invariants of any equivalent coframe Ω must satisfy an identical

functional relation: I l = H(I1, . . . , I l−1). The function H(y1, . . . , yl−1) in such a func-
tional relation is known as a classifying function for the extended coframe. As argued
in [18], the most natural way to keep track of such functional dependencies between the
structure invariants is to introduce the associated classifying manifold.

Definition 5.3. The classifying manifold C(Ω) of an extended coframe Ω = {ω, I}
is the subset I(M) ⊂ Z = Z(Ω) of the classifying space Z ' R

l that is parametrized by
the invariant functions I = (I1, . . . , Il):M → Z.

Definition 5.4. An extended coframe Ω is called semi-regular of rank t if its in-
variants have constant rank t = rank dI. Note that t equals the number of functionally
independent invariants near any point. An extended coframe Ω is called regular if its
classifying manifold is an embedded submanifold of its ambient classifying space. In this
case, the rank of the coframe equals the dimension of C(Ω).

Lemma 5.5. If Ω = ψ∗ Ω are equivalent extended coframes, then their classifying
manifolds are identical, C(Ω) = C(Ω).

Remark : If the equivalence map ψ is only locally defined, then one must restrict the
classifying manifolds to the open subsets U = dom ψ ⊂M and U = ψ(U) ⊂M .

The converse to Lemma 5.5 is not true in general — one must impose an additional
“involutivity condition” on the extended coframes in order to prove sufficiency of the
classifying manifold condition. In preparation, we note that one can (simultaneously)
perform two elementary operations on extended coframes that preserve their symmetry
and equivalence constraints.

Definition 5.6. Two regular extended coframes Ω = {ω, I} and Θ = {θ, J} on M
are said to be invariantly related if

(a) There exists a local diffeomorphism ϕ: C(Ω) → C(Θ) such that J = ϕ ◦ I, and

(b) There is a smooth map A: C(Ω) → GL(m,R) such that θ = (A ◦ I)ω.

We shall write Θ = Φ(Ω), where Φ = (ϕ,A), for such an invariant relation.

Note that the first condition means that the two classifying manifolds have the same
dimension, and so both coframes contain the same number of functionally independent
invariants. Moreover, each invariant in Θ is functionally dependent on the invariants in Ω,
i.e., Jν = ϕν(I1, . . . , Il), and conversely. The second condition means that the one-forms
in the two coframes are invariant linear combinations of each other, so

θi =

m∑

j=1

(Ai
j
◦ I) ωj , i = 1, . . . ,m. (5.3)

Proposition 5.7. If ψ∗ Ω = Ω are equivalent extended coframes, and Θ = Φ(Ω)
and Θ = Φ(Ω) are invariantly related coframes for the same functions Φ = (ϕ,A), then
ψ∗ Θ = Θ are also equivalent.
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The proof is immediate. Note that this allows us to always assume (at least locally)
that the functions occurring in our extended coframe are functionally independent; for
example, we can use those corresponding to a consistent choice of local coordinates on the
classifying manifold.

Corollary 5.8. Two invariantly related extended coframes Θ = Φ(Ω) have the same
symmetry group.

The complete solution to the extended coframe equivalence problem (5.1), (5.2), is
based on the Frobenius Theorem for closed differential ideals, [4, 18]. One effectively
determines a complete system of functionally independent invariants by successive differ-
entiation, and adjoins them to the original invariance conditions (5.2). There are two ways
in which additional scalar invariants can arise. First of all, since the one-forms ω form a
coframe, we can re-express their differentials in terms of wedge products thereof, leading
to the structure equations

dωk = −
∑

i<j

Ik
ij ω

i ∧ ωj , k = 1, . . . ,m. (5.4)

The structure coefficients Ik
ij are readily seen to be invariants of the problem, i.e., satisfy

(5.2), and hence should be included in our list of invariants. Thus, even if we began with no
additional invariants, the structure equations automatically produce some for us, whose
invariance must be taken into account in the resolution of the problem. Secondly, the
coefficients Iν,k = ∂Iν/∂ω

k of the differential

dIν =

m∑

k=1

Iν,k ω
k =

m∑

k=1

∂Iν
∂ωk

ωk, (5.5)

of any invariant are also automatically invariant, and are known as the (first order) derived

invariants corresponding to the original invariant Iν . The invariant differential operators
∂/∂ωk are known as coframe (or covariant) derivatives; these coincide with the dual frame
vector fields to ω.

Remark : The coframe derivative operators do not necessarily commute. Applying d
to (5.5) and comparing with (5.4) produces the basic commutation formulae:

[
∂

∂ωi
,
∂

∂ωj

]
=

m∑

k=1

Ik
ij

∂

∂ωk
. (5.6)

If the one-forms ωk = dfk are all (locally) exact, then all the structure coefficients vanish,
and so the coframe derivatives do commute in this particular case.

Definition 5.9. The derived invariants of an extended coframe {ω, I} with l invari-
ants I = (I1, . . . , Il) are the l(m+ 1) + 1

2m
2(m− 1) functions

I(1) = (. . . , Iν , . . . , Iν,k, . . . , I
k
ij , . . .)

consisting of
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(a) the original invariants I1, . . . , Il,

(b) their first order coframe derivatives Iν,k = ∂Iν/∂ω
k, ν = 1, . . . , l, k = 1, . . . ,m, and

(c) the coefficients Ik
ij , k = 1, . . . ,m, 1 ≤ i < j ≤ m, in the structure equations (5.4) for

each dωk.

Definition 5.10. The derived coframe associated with an extended coframe Ω =
{ω, I} is the extended coframe Ω(1) = {ω, I(1)} consisting of the original coframe along
with all its derived invariants.

Lemma 5.11. A map ψ:M → M determines an equivalence between extended
coframes Ω and Ω if and only if it determines an equivalence between their corresponding
derived coframes Ω(1) and Ω(1).

In this manner, one recursively defines the higher order derived coframes Ω(k) =
(Ω(k−1))(1) by computing the higher order derived invariants. Lemma 5.11 shows that all
such higher order derived coframes are also equivalent under the given map. The process
will terminate whenever the set of first order derived invariants arising from the current
list of invariants fails to produce any new, meaning functionally independent, invariants.

Definition 5.12. An extended coframe Ω = {ω, I} is called involutive if it is regular
and is invariantly related to its derived coframe Ω(1).

Thus, a regular extended coframe is involutive if and only if rank Ω = rankΩ(1),
which occurs if and only if its derived invariants are functionally dependent on the original
invariants: I(1) = H ◦ I.

Example 5.13. The most familiar example of an involutive coframe is the Maurer–
Cartan coframe µ = {µ1, . . . , µr} on an r-dimensional Lie group G. The symmetry group
of the Maurer–Cartan coframe coincides with the right action of G on itself. Involutivity
follows from the basic Maurer–Cartan structure equations

dµk = −
∑

i<j

Ck
ij µ

i ∧ µj , k = 1, . . . , r, (5.7)

where Ck
ij are the structure constants for the dual basis vi = ∂/∂µi of the Lie algebra g.

Since all the derived invariants are constant, the Maurer–Cartan coframe has rank 0. In
fact, any rank 0 coframe is locally equivalent to a Maurer–Cartan coframe; see [19] for
global versions of this result, based on the theory of “non-associative local Lie groups”.

Lemma 5.14. Let Ω be an extended coframe. If the derived coframe Ω(s) is invo-
lutive, then so are all higher order derived coframes Ω(k), k ≥ s. Moreover, rank Ω(k) =
rank Ω(s) for all k ≥ s.

Proof : Any functional dependency among invariants I = H(I1, . . . , Il) automatically
induces a functional dependency among the corresponding derived invariants:

∂I

∂ωi
=

l∑

ν=1

∂H

∂Iν

∂Iν
∂ωi

, i = 1, . . . , p. (5.8)

This observation suffices to prove the result. Q.E.D.
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Remark : Equation (5.8) implies that if an invariant in Ω(k) is functionally dependent
on the others, then one does not need to include its derived invariants in the higher
order derived coframes Ω(k+1) since their associated functional dependencies are automatic.
In other words, we can reduce the number of invariants in Ω(k+1) by a well-determined
invariant relation, as in Definition 5.6. Therefore, at each step, one really only needs
compute the coframe derivatives of the independent invariants.

Definition 5.15. The order of an extended coframe Ω is the minimal integer s such
that Ω(s) is regular and involutive. We call t = rank Ω(s) the involutivity rank of Ω.

Remark : Our definition of order is slightly different than that in [18]. If we start
with an ordinary coframe ω, under the present construction the structure invariants I i

jk

will appear at order 1, and hence, unless the coframe has rank 0, involutivity will not occur
until at least order 2.

Let us call an extended coframe Ω fully regular if it and its derived coframes Ω(k), k =
0, 1, 2, . . ., are regular. In the fully regular case, the ranks tk = rank Ω(k) are nondecreasing,
t0 ≤ t1 ≤ t2 ≤ · · · ≤ m and bounded by the dimension of M . Moreover, if ts = ts+1, then

Ω(s) is involutive, and hence Ω has order s and involutivity rank t = ts = ts+1 = · · · . In
particular, a fully regular coframe has order s ≤ m. Coframes of order greater than m can
occur if singularities are present, but can be resolved at some higher order.

The fundamental equivalence and symmetry theorems for coframes can now be stated.
Both are direct consequences of Frobenius’ Theorem; details can be found in [18].

Theorem 5.16. Let M and M be m-dimensional manifolds. Two finite order ex-
tended coframes Ω onM and Ω onM are locally equivalent if and only if they have the same
order s, and their (s+1)st order classifying manifolds are identical: C(Ω(s+1)) = C(Ω(s+1)).
In this case, if z0 ∈ M and z0 ∈ M map to the same point I(s+1)(z0) = I(s+1)(z0) in the
common classifying manifold, then there is a unique local diffeomorphism Φ:M →M with
Φ(z0) = z0 and Φ∗Ω = Ω.

Remark : One can replace the order s by any higher order k ≥ s in the theorem. Thus,
in fully regular cases, one can always determine the equivalence of two extended coframes
on an m-dimensional manifold by comparing the (m+ 1)st order classifying manifolds.

Remark : Regularity relies on two conditions: first, the invariants have constant rank,
and, second, they parametrize an embedded submanifold of the classifying space. The
latter can clearly be weakened to include immersed classifying manifolds, since the result
is local anyway, and so one can restrict to a subdomain where the classifying manifold is
embedded. In fact, one can resolve singularities and self-intersections of the classifying
manifold by going to a yet higher order coframe. Indeed, if Ω(s) is “semi-involutive”,
meaning that it is semi-regular and of the same rank as C(Ω(s+1)), then formula (5.8)
implies that one can identify the classifying manifold C(Ω(k)) for any k > s with the
k− s− 1 jet of C(Ω(s+1)). Thus, if C(Ω(s+1)) intersects itself transversally, then C(Ω(s+2))
will not intersect itself at all, and can be used instead. Thus, in the analytic category, one
can eliminate all such singularities and self-intersections by going to a classifying manifold
of sufficiently high order.
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Theorem 5.17. The symmetry group of an extended coframe Ω of order s is a freely
acting local Lie group of transformations of dimension r = m− t, where t = dim C(Ω(s)) is
the involutivity rank of Ω. The orbits of G are the common level sets of the (s+1)st order
invariants I(s+1).

This completes our survey of the basic equivalence problem for (extended) coframes.
One can also investigate the equivalence of more general “extended one-form systems”
Ω = {ω, I} containing of a collection of one-forms that do not necessarily form a coframe.
The overdetermined case, where the one-forms ω span the cotangent space, is easily reduced
to the case of an extended coframe. One can locally choose a coframe, say {ω1, . . . , ωm}
from among the one-forms in Ω. Any additional one-forms in Ω can be written as linear
combinations of the given coframe,

ωk =

m∑

i=1

Jk
i ω

i, k > m. (5.9)

The coefficients Jk
i will be invariant functions for the problem, and should be included

among the functions in an invariantly related extended coframe. Thus, the overdetermined
equivalence problem reduces to an extended coframe equivalence problem (5.1), (5.2),
where the invariant functions include all the original invariants Iν as well as the coefficients
Jk

i stemming from the linear dependencies (5.9). The underdetermined case, when the one-
forms fail to span the relevant cotangent spaces, can be treated by the Cartan equivalence
method until it is reduced to either a coframe equivalence problem, or to an involutive
differential system defining a Lie pseudo-group via the Cartan–Kähler Theorem, cf. [4, 18].
For brevity, we will not discuss the latter more complicated theory here.

6. Moving Coframes.

The method of moving coframes was introduced in [9] as a practical means of deter-
mining moving frames for general transformation groups, and will now be incorporated
into our regularized approach. The following definition is inspired by Cartan’s approach
to equivalence problems, which always begins by characterizing the (pseudo-)group of al-
lowable transformations by a suitable collection of differential forms.

Definition 6.1. Let G be a finite-dimensional Lie group acting on a manifold M .
A G–coframe is, by definition, a regular, involutive extended coframe Ω = {ω, I} on M ,
whose symmetry group coincides with the transformation group G.

In other words, if Ω = {ω, I} is a G–coframe, then a local diffeomorphism ψ:M →M
satisfies the symmetry conditions

ψ∗ω = ω, ψ∗I = I, (6.1)

if and only if ψ(z) = g ·z coincides with the action of a group element g ∈ G. For example,
the right Maurer–Cartan coframe on a Lie group forms a G–coframe for the right action
of G on itself. Since G–coframes are always assumed to be involutive, the solution to the
equivalence problem for coframes implies that they are essentially unique.
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Proposition 6.2. Let Ω be a G–coframe on M . An extended coframe Θ is also a
G–coframe if and only if Ω and Θ are invariantly related.

Proof : Corollary 5.8 implies that if the two extended coframes are invariantly re-
lated, then their symmetry groups are the same. Conversely, according to Theorem 5.17,
the orbits of the symmetry group of an involutive extended coframe are the level sets of
its invariants. Since the two collections of invariants have the same level sets, they are
necessarily functionally related, as in part a) of Definition 5.6. Moreover, since the sym-
metry groups coincide, the coefficients Ai

j relating the coframes, as in (5.3), must also be
invariants, proving the result. Q.E.D.

Theorem 5.17 implies that the symmetry group of an involutive extended coframe acts
locally freely. This condition also turns out to be sufficient; see Theorem 6.5 below. The
moving frame method provides a simple mechanism for constructing G–coframes. Suppose
G acts freely and regularly on the m-dimensional manifold M . Let ρ:M → G be a (right)
moving frame. We let ζ = ρ∗µ denote the pull-back of the Maurer–Cartan forms to M . If
G acts transitively on M , whence m = r, then ζ forms a coframe on M , called the moving

coframe associated with the given moving frame. The coframe ζ has the same structure
equations (5.7) as the Maurer–Cartan coframe on G, and hence forms an involutive coframe
of rank zero on M .

Remark : The pull-back of the left Maurer–Cartan coframe µ̃ on G under the left
moving frame map ρ̃ leads, up to sign, to the same collection of moving coframe forms:
ρ̃ ∗µ̃ = −ρ∗µ = ζ. This is because the inversion g 7→ g−1 maps the right Maurer–Cartan
forms on G to minus their left-invariant counterparts.

If G does not act transitively, then the one-forms ζ = ρ∗µ only form a coframe when
restricted to the orbits, and we need to supplement them by an additional m − r one-
forms to construct a full coframe. Locally, if we choose a complete system of functionally
independent invariants y = (y1, . . . , ym−r), then the m one-forms

{ζ, dy} = {ζ1, . . . , ζr, dy1, . . . , dym−r} (6.2)

form a coframe on M .

Definition 6.3. The moving coframe associated with a given moving frame map
ρ:M → G is the extended coframe Σ = {ζ, dy, y} consisting of the pulled-back Maurer–
Cartan forms ζ = ρ∗µ, along with the invariant functions y and their differentials.

Lemma 6.4. The moving coframe Σ forms an involutive G–coframe on M .

Proof : Involutivity is immediate, since the Maurer–Cartan structure equations (5.7)
along with the equations d(dyi) = 0 imply that all the derived invariants for the moving
coframe are constant. To prove that the only symmetries are the group transformations
z 7→ g · z, we note that, in the flat local coordinates of Example 2.7, the associated moving
coframe consists of the Maurer–Cartan forms µ pulled back to the orbits G× {y0}, along
with the invariants and their differentials. Invariance of the y’s implies that any symmetry
of the moving coframe must have the form ψ(x, y) = (ϕ(x), y), where ϕ:G → G is a
symmetry of the Maurer–Cartan coframe, and hence agrees with right multiplication by a
group element. Q.E.D.
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We have thus proved the following basic existence theorem.

Theorem 6.5. Let G be a Lie group acting on a manifold M . Then the following
are equivalent:

(i) G acts freely and regularly on M .

(ii) G admits a moving frame in a neighborhood of each point z ∈M .

(iii) There exists a G–coframe in a neighborhood of each point z ∈M .

There is a second important method that can be used to construct an alternative
G–coframe for a free group action without appealing to the Maurer–Cartan forms. First,
the invariants I(z) = ρ(z) · z were earlier interpreted as the pull-back, via σ:M → B,
of the fundamental lifted invariants w = g · z. Second, by applying Proposition 3.9, the
differential dw of the fundamental lifted invariant will split into two sets of invariant forms
on B, namely dMw = g · dz and the group component dGw. Theorem 3.10 implies that
the latter are invariant linear combination of the Maurer–Cartan forms µ on B. Therefore

dw = dMw + dGw = g · dz + F (w)µ, (6.3)

where the coefficients F (w) are explicitly determined by (3.8). We now pull back dMw via
our moving frame section σ to construct a system of G-invariant one-forms on M .

Theorem 6.6. Let G act freely on M . Let ρ:M → G be a right moving frame.
Then the extended coframe Γ = {γ, I} consisting of the invariant functions I(z) = ρ(z) · z
along with the one-forms γ = ρ(z) · dz forms a G–coframe on M .

Proof : The fact that I = σ∗w include a complete system of functionally independent
invariants was given in Theorem 4.5. Applying σ∗ to (6.3), we find

dI = σ∗(dMw) + σ∗(F )ζ = γ + (F ◦ I)ζ.

Therefore, the one-forms γ = σ∗(dMw) are invariantly related to the moving coframe
forms {ζ, dI}, as in (5.3). It is not hard to see that the γ define a coframe on M , and so
the result follows from Corollary 5.8. Q.E.D.

Formula (3.8) provides an explicit local coordinate formula relating the normalized
coframe forms γ with the Maurer–Cartan forms:

γk = dIk −
r∑

κ=1

(fk
κ

◦ I) ζκ, k = 1, . . . ,m, (6.4)

where Ik(z) is the kth component of I(z) = ρ(z) · z. Note that the coefficients in (6.4) are
obtained by invariantization, as in Definition 4.6, of the coefficients f k

κ (z) of the infinites-
imal generators (3.7) with respect to the moving frame ρ. In particular, if we normalize
wk = ck to be constant, then Ik = ck is constant also, and the dIk term in (6.4) disappears.

Example 6.7. Consider the action (4.12) of the planar Euclidean group on R
4. The

right Maurer–Cartan forms on SE(2) are

µ1 = dφ, µ2 = da+ b dφ, µ3 = db− a dφ. (6.5)

23



The corresponding components of the right moving coframe ζ = ρ∗µ are obtained by
pulling back the Maurer–Cartan forms (6.5) using the right moving frame (4.14), so

ζ1 = − dp

1 + p2
, ζ2 = −dx+ p du√

1 + p2
, ζ3 =

p dx− du√
1 + p2

. (6.6)

In order to complete (6.6) to a G–coframe on M = R
4, we must supplement the forms

(6.5) by the fundamental invariant (4.16) and its differential

ζ4 = dκ =
(1 + p2) dq − 3pq dp

(1 + p2)5/2
, κ =

q

(1 + p2)3/2
. (6.7)

The complete extended coframe (6.6), (6.7) forms a SE(2) coframe on M — its symmetries
coincide with the group transformations (4.12).

On the other hand, computing the G–coframe {γ, I} as in Theorem 6.6, we only
need compute the differentials of the fundamental lifted invariants, and then pull-back
via the moving frame map, thereby avoiding explicit determination of the Maurer–Cartan
forms. Differentiating (4.12) with respect to the coordinates (x, u, p, q) on M leads to the
one-forms

dMy = cosφdx− sinφdu, dMv = sinφdx+ cosφdu,

dMr =
dp

(cosφ− p sinφ)2
, dMs =

(cosφ− p sinφ) dq + 3q sinφdp

(cosφ− p sinφ)4
,

(6.8)

which, along with the Maurer–Cartan forms (6.5) form a SE(2) coframe for the lifted action
on B = SE(2)×M . The corresponding SE(2) coframe on M is found by pulling back (6.8)
via the right moving frame (4.14); the result is

γ1 = σ∗(dMy) = −ζ2, γ3 = σ∗(dMr) = −ζ1,

γ2 = σ∗(dMv) = −ζ3, γ4 = σ∗(dMs) = ζ4.
(6.9)

The formulae (6.9) relating the two coframes can be deduced from (6.4), as we now explic-
itly show. The group components of the differentials are

dGy = dG(x cosφ− u sinφ+ a) = −v µ1 + µ2,

dGv = dG(x sinφ+ u cosφ+ b) = y µ1 − µ3,

dGr = dG

(
sinφ+ p cosφ

cosφ− p sinφ

)
= (1 + r2)µ1,

dGs = dG

(
q

(cosφ− p sinφ)3

)
= 3rsµ1.

(6.10)

The lifted invariant coefficients in (6.10) follow directly from (3.8) and the formulae

v1 = −u∂x + x∂u + (1 + p2)∂p + 3pq∂q, v2 = ∂x, v3 = ∂u, (6.11)
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for the infinitesimal generators of the Euclidean action (4.12) that are dual to the chosen
Maurer–Cartan form basis (6.5). Indeed, if we write down the coefficient matrix




−u 1 0
x 0 1

1 + p2 0 0
3pq 0 0


 (6.12)

for the vector fields (6.11), then (6.10) can be written in matrix form




dGy
dGv
dGr
dGs


 =




−v 1 0
y 0 1

1 + r2 0 0
3rs 0 0






µ1

µ2

µ3


 , (6.13)

and the coefficient matrix is the lifted version of (6.12), obtained by replacing the coordi-
nates on M by their corresponding lifted counterparts. Formula (6.9) then follows from
(6.4): 



γ1

γ2

γ3

γ4


 =




0
0
0
dκ


−




0 1 0
0 0 1
1 0 0
0 0 0






ζ1

ζ2

ζ3


 . (6.14)

In (6.14), the first term is the pull-back of the lifted coordinate differentials (dy, dv, dr, ds)
via the normalization map (4.13), while the coefficient matrix in the second is the invari-
antization of the infinitesimal generator coefficient matrix (6.12) with respect to the given
moving frame.

7. Equivalence of Submanifolds.

We now apply our general results to the equivalence problem for submanifolds under
a freely acting transformation group. Given submanifolds S, S ⊂ M , we want to know
whether or not they are congruent under a group transformation, meaning that g · S = S
for some g ∈ G. In this section, we review the solution to this problem in the case when
G acts regularly and freely on M . Actually, we shall only consider the local problem here,
so that the congruence condition is only required to hold in a neighborhood of a point.
Global questions can be handled by continuation processes (e.g., analytic continuation).

Definition 7.1. Let S = ι(X) and S = ι(X) be two embedded p-dimensional
submanifolds parametrized by maps ι:X →M , and ι:X →M . The submanifolds are said
to be (locally) congruent under a transformation group G provided there exists a group
element g ∈ G and a (local) diffeomorphism ψ:X → X such that

ι(ψ(x)) = g · ι(x). (7.1)

for all x in the domain of ψ.

In the case when G acts freely, the solution to the congruence problem follows directly
from the theorem for submanifolds embedded in Lie groups, [12].
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Theorem 7.2. Let G be a free, regular Lie transformation group acting on M .
Let Ω = {ω, I} be a G–coframe on M . Then two embedded p-dimensional submanifolds
S = ι(X) and S = ι(X) are locally congruent under G if and only if the pulled-back
extended coframes Ξ = {ξ, J} = ι∗Ω on X and Ξ = {ξ, J} = ι∗Ω on X are locally
equivalent.

The diffeomorphism ψ:X → X determining the reparametrization part in the corre-
spondence (7.1) must satisfy ψ∗ Ξ = Ξ. In other words, in terms of the defining coframe
and invariants,

(ι ◦ψ)∗ω = ι∗ω, (ι ◦ψ)∗I = ι∗I. (7.2)

Remark : For the fixed parameter equivalence problem, we do not allow the reparam-
etrization map ψ in the equivalence condition (7.1), which thus reduces to ι(x) = g · ι(x),
x ∈ X. The solution to this problem follows from Theorem 7.2: the pulled-back G–
coframes must now be identical: Ξ = Ξ.

The original G–coframe Ω is involutive; in particular, if Ω = Σ is the moving coframe,
it will have constant derived invariants. The pull-back Ξ = ι∗Ω will, of course, have
the same structure equations as Ω. However, if the submanifold S has strictly smaller
dimension than M , i.e., dimS = p < m, the one-forms ξ = ι∗ω are not a coframe
on X, because there are too many of them. Thus, Ξ will constitute an overdetermined
one-form system, as discussed at the end of Section 5. In order to apply our general
equivalence theorems, we need to reduce Ξ to an extended coframe by eliminating the
linear dependencies among the pulled-back one-forms. Near each point x ∈ X we can
choose† p linearly independent one-forms $ = {$1, . . . , $p} from among the pulled-back
forms ξ. The choice of $ is governed by a transversality condition on the submanifold S.

Definition 7.3. Let ω̃ = {ω1, . . . , ωp} be a collection of p pointwise linearly indepen-
dent one-forms on an m-dimensional manifold M . A p-dimensional submanifold S = ι(X)
is transverse with respect to ω̃ if and only if the one-forms $ = ι∗ω̃ forms a coframe on
the parameter space X, and so S satisfies the independence condition

$1 ∧ · · · ∧$p = ι∗
(
ω1 ∧ · · · ∧ ωp

)
6= 0. (7.3)

We refer the reader to [4] for a detailed discussion of the role of independence con-
ditions and transversality in the context of exterior differential systems. Thus, given an
extended coframe Ω = {ω, I}, we shall impose an independence condition on p-dimensional
submanifolds S ⊂ M by choosing p of the one-forms in ω. Since we can rearrange the
forms in ω (or, more generally, take constant coefficient linear combinations) without af-
fecting the symmetry properties of Ω, we shall, without loss of generality, assume that the
independence condition (7.3) is always with respect to the first p one-forms in Ω. With
such a choice, we can define transversality of a submanifold with respect to an extended
coframe Ω.

† As we shall see below, this is effected by a choice of independent and dependent variables on
the original manifold M .
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Definition 7.4. A p-dimensional submanifold S = ι(X) is transverse with respect
to an extended coframe Ω = {ω, I} where ω = {ω1, . . . , ωm}, if and only if it is transverse
with respect to the first p one-forms ω̃ = {ω1, . . . , ωp}.

On a transverse submanifold, $ = ι∗ω̃ forms a coframe on the parameter space X.
Therefore, we can write the remaining pulled back one-forms as linear combinations of
them,

ξk =

p∑

j=1

Kk
j (x)$j , k = p+ 1, . . . ,m.

The coefficients K = (. . .Kk
j . . .) provide additional invariants for the overdetermined

one-form system Ξ. Replacing the extra one-forms by these invariants reduces Ξ to an
invariantly related extended coframe, Υ = {$, J,K} on X, having the same symmetry
and equivalence properties as Ξ does. We shall call Υ the restricted G–coframe on the
submanifold S. If S is also transverse† we can similarly construct the extended coframe
Υ = {$, J,K} on X using the same choice of coframe basis $ = ι∗ω̃ relative to the given
G–coframe.

Lemma 7.5. Let Ω be a G–coframe on M . Two transverse submanifolds S = ι(X)
and S = ι(X) are locally G congruent if and only if the corresponding restricted G–
coframes Υ on X and Υ on X are equivalent.

Now, even though the original G–coframe Ω is involutive, the restricted G–coframe Υ
will almost never be involutive. Thus, one will typically need to replace Υ by its involutive
counterpart Υ(s), where s is the order of Υ.

Definition 7.6. A submanifold S ⊂ M is called regular of order s with respect
to the G–coframe Ω if S is transverse and the restricted G–coframe Υ has order s. The
classifying manifold of S is defined as C(S) = C(Υ(s+1)). The rank t of S is the dimension
of its classifying manifold: t = dim C(S).

Using this construction, Theorem 5.16 then gives a complete solution to the congruence
problem for submanifolds when the group acts freely.

Theorem 7.7. Let G be a free, regular Lie transformation group acting on M , and
let Ω be a G–coframe. Let S = ι(X) and S = ι(X) be regular p-dimensional submanifolds.
Then S and S are locally G equivalent if and only if they have the same order, s, and their
classifying manifolds C(S) = C(S) are identical.

The symmetry group of S is, by definition, its isotropy subgroupGS ⊂ G. Theorem 7.7
demonstrates that the action of GS on S can be identified with the symmetry group of the
restricted G–coframe Υ on the parameter space X.

Theorem 7.8. Let S ⊂ M be a regular p-dimensional submanifold of order s and
rank t with respect to the transformation group G. Then its isotropy group GS has
dimension p− t = dimS − rankS and acts freely on S.

† This can always be arranged locally by a suitable choice of the one-forms eω.
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In particular, S has maximal symmetry if and only if it has rank 0, meaning that
all the restricted invariants J,K are constant on S. In this case, the dimension of the
isotropy group equals the dimension of S and hence GS acts transitively on (the connected
components) of S. In particular, S must lie in a single G orbit of M .

Remark : Later we shall see that the invariants K arising from linear dependencies
among the one-forms in Ξ can be identified with the first order differential invariants for
the group action. Moreover, the derived invariants correspond to suitable higher order dif-
ferential invariants. Thus, the classifying manifolds used to solve the equivalence problem
are identified with those parameterized by the differential invariants for G.

Example 7.9. Consider the abelian Lie group G = R
3 acting by translations on

M = R
3. A G–coframe is given by the coordinate one-forms Ω = {dx, dy, du}. The

surface S = {x2 + 2yu = 0 | y 6= 0 } satisfies the transversality condition dx ∧ dy |S 6= 0.
Parametrizing S by ι: (x, y) 7→ (x, y,− 1

2x
2y−1), we see that the restricted one-forms Ξ =

ι∗Ω satisfy the linear dependency du = −(x/y) dx+ 1
2 (x/y)2 dy, leading to the functionally

dependent invariants −x/y and x2/(2y2). Therefore, the restricted coframe on S is

Υ =

{
dx, dy,−x

y
,
x2

2y2

}
.

However, Υ is not involutive since d(x/y) = (1/y) dx − (x/y2) dy, so that the derived
coframe†

Υ(1) =

{
dx, dy,−x

y
,
x2

2y2
,−1

y
,
x

y2
,
x

y2
,−x

2

y3

}

is involutive. Therefore S is a surface having rank 2 and order 1, and hence admits at
most a discrete translation symmetry group; in fact, the isotropy subgroup of S is trivial.
The classifying manifold is the surface parametrized by the twelve invariants in

Υ(2) =

{
dx, dy,−x

y
,
x2

2y2
,−1

y
,
x

y2
,
x

y2
,−x

2

y3
, 0,

1

y2
,−2x

y3
,

1

y2
,−2x

y3
,
3x2

y4

}

so that

C(S) =

{
(a1, . . . , a12) ∈ Z = R

12

∣∣∣∣∣
a2 = 1

2a
2
1, a4 = a5 = −a1a3, a6 = a2

1a3, a7 = 0

a8 = a10 = a2
3, a9 = a11 = 2a1a

2
3, a12 = 3a2

1a
2
3

}
.

Any translationally equivalent surface S must have the same classifying manifold, so that
S also has order 1 and rank 2, and has the same functional relationships among its corre-
sponding twelve invariants.

We are now ready to discuss the role of the regularized action in the equivalence
problem for general group actions. Here we no longer need to assume that G acts freely

† Actually, since the second invariant x2/2y2 is a function of the first, its derived invariants
are redundant, as their functional dependencies are automatically determined, cf. (5.8).
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on M , but we replace it by its freely acting regularization on B = G ×M . Associated
with an embedded submanifold S = ι(X) ⊂ M is the submanifold SG = ιG(G ×X) ⊂ B
parametrized by

ιG(g, x) = (g, ι(x)), g ∈ G, x ∈ X.

The bundle G×X is the pull-back under ι of G×M . On B, we consider the G–coframe
Ω = {µ, dw,w}. As a direct consequence of Theorem 7.2, we obtain the following result.

Proposition 7.10. Two embedded submanifolds SG and SG parametrized by maps
ιG:G×X → G×M , and ιG:G×X → G×M are locally G congruent if and only if the
pulled-back extended coframes Ξ = {ξ, J} = ι∗Ω on X and Ξ = {ξ, J} = ι∗Ω are locally
equivalent.

Suppose that S = ι(X) satisfies the transversality condition specified by ω̃. Then
SG = ιG(X) satisfies the transversality condition defined by (πM )∗ω̃∪µ. It is clear that we

can construct a coframe Ω̃ invariantly related to Ω such that the one forms ω1, . . . , ωp ∈ Ω̃
generate (πM )∗ω̃. Following the procedure above Lemma 7.5 we have the restricted G–
coframe Υ on G×X where $ = {$1, . . . , $p, µ1, . . . , µr} such that $1, . . . , $p annihilate
the tangent space to the fibers of π:G×X → X. Denoting by similar barred expressions
using the map ιG:G×X → G×M , the equivalence theorem takes the following form.

Proposition 7.11. Two embedded submanifolds ι:X → M and ι:X → M which
satisfy the transversality condition ω̃, are equivalent if and only if the extended coframes
Υ on G×X and Υ on G×X are equivalent.

Proof : First suppose X and X are equivalent. Thus ι = g · (ι ◦ψ−1), where g ∈ G and
ψ:X → X. Define the diffeomorphism Ψ:G×X → G×X by

Ψ(h, x) = (g · h, ψ(x)), h ∈ G, x ∈ X. (7.4)

Clearly, ιG ◦Ψ = R̂g · ιG, where R̂g denotes the right regularized action (3.2) of G. Then

(ιG ◦Ψ)∗µ = (R̂g · ιG)∗µ = (ιG)∗µ, (ιG ◦Ψ)∗w = (R̂g · ιG)∗w = (ιG)∗w.

Conversely, if there exists such a Ψ, then Proposition 7.10 implies that ιG ◦Ψ = R̂g · ιG for
some g ∈ G. In order to finish the proof we need to check that Ψ splits as in (7.4). The
conditions on Ψ in the theorem then imply Ψ∗µ = µ and Ψ∗$ = $, and hence Ψ has
the form in (7.4). Q.E.D.

Let L:G ×M → N be a regular lifted invariant. Let c be in the image of L and let
Lc = L−1{c} be the corresponding invariant level set. Denote the restriction of µ and w
to Lc by µ̃ and w̃. The submanifold Lc is G invariant and the local diffeomorphisms of Lc

which preserve the restricted invariants w̃ and forms µ̃ coincide with the action of G on Lc.
That is {µ̃, w̃} forms an (overdetermined) G–coframe on Lc. Now let R = (ιG)−1(Lc) ⊂
G×X, and similarly for R ⊂ G×X.
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Proposition 7.12. Under the above hypothesis, the embedded submanifolds X and
X are equivalent if and only if there exists a diffeomorphism Ψ̃:R→ R such that

Ψ̃∗I = I, Ψ̃∗ ω = ω,

where I, I and ω, ω are the pull-backs of the restricted invariants w̃ and forms µ̃ by ιG
and ιG respectively.

The proof is similar to that in Proposition 7.11.

Remark : If the function L defining the invariant submanifold Lc is of rank r = dimG
in the vertical direction for the projection πM :G × M → M then Proposition 7.12 is
resolved by Theorem 7.7.

Remark : The transformations in GS determine symmetries of the restricted coframe
on G × X. However since at least p of the invariants I are automatically functionally
independent, dimGS ≤ dimG, as it should be.

Therefore, regularization can be used to replace the equivalence of p-dimensional sub-
manifolds S ⊂ M under a non-free action of G by equivalence of (p + r)-dimensional
submanifolds SG ⊂ B under the free regularized G action. This approach avoids the use
of differential invariants, and will also take care of singular submanifolds, since the lifted
submanifold R is always regular. Incidentally, Proposition 7.12 can be used to justify par-
tial normalization, as discussed in Section 16 below, while the preceding remark can be
used to justify complete normalization. This alternative method certainly warrants further
investigation.

8. Jet Bundles.

The results in the preceding sections lead to a complete construction of a moving
frame in the case when the group acts freely on the underlying manifold. If the group does
not act freely, then an ordinary moving frame does not exist, and one needs to prolong
to some jet space of suitably high order before the procedure can be applied. In such
cases, the higher order moving frame will naturally lead to the differential invariants for
the transformation group. We begin by reviewing the basics of jet bundles, cf. [17, 18].

Given a manifold M , we let Jn = Jn(M,p) denote the nth order (extended) jet bundle
consisting of equivalence classes of p-dimensional submanifolds S ⊂ M under the equiva-
lence relation of nth order contact, cf. [16], [17; Chapter 3]. In particular, J0 = M . We let
jnS ⊂ Jn denote the n-jet of the submanifold S; more explicitly, the parametrization map
ι:X → S ⊂ M induces a parametrization jnι:X → jnS ⊂ M . The fibers of πn

0 : Jn → M
are generalized Grassmann manifolds, [16]. A differential function of order n is a scalar-
valued function F : Jn → R. Sometimes, it is convenient to work with the infinite jet bundle
J∞ = J∞(M,p), which is defined as the inverse limit of the finite order jet bundles under
the standard projections πk

n: Jk → Jn, k > n. Functions and differential forms on J∞ are
obtained from their finite order counterparts, where we identify a form ω on Jn with its
pull-backs (πk

n)∗ω on Jk for any k > n, and hence with a differential form on J∞. For
further details on infinite jet bundles, see [1, 26].
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We introduce local coordinates z = (x, u) on M , considering the first p compo-
nents x = (x1, . . . , xp) as independent variables, and the latter q = m − p components
u = (u1, . . . , uq) as dependent variables. Splitting the coordinates into independent and
dependent variables has the effect of locally identifying M with an open subset of a bundle
E = X ×U ' R

p ×R
q. Sections u = f(x) of E correspond to p-dimensional submanifolds

S that are transverse with respect to the horizontal forms dx = {dx1, . . . , dxp}, as in Def-
inition 7.3. The induced coordinates on the jet bundle Jn are denoted by z(n) = (x, u(n)),
with components uα

J representing the partial derivatives of the dependent variables with
respect to the independent variables up to order n. Here J = (j1, . . . , jk) is a symmetric
multi-index of order k = #J , with 1 ≤ jν ≤ p. The (x, u(n)) define local coordinates on the
open, dense subbundle JnE ⊂ Jn(M,p) determined by the jets of transverse submanifolds,
or, equivalently, local sections u = f(x). In the limit, we let z(∞) = (x, u(∞)) denote the
corresponding coordinates on J∞E ⊂ J∞(M,p), consisting of independent variables xi,
dependent variables uα, and their derivatives uα

J , α = 1, . . . , q, 0 ≤ #J , of arbitrary order.

The intrinsic geometry of jet space is governed by a fundamental collection of differ-
ential forms.

Definition 8.1. A differential form θ on the jet space Jn(M,p) is called a contact

form if it is annihilated by all jets, so that (jnι)
∗θ = 0 for every p-dimensional submanifold

S = ι(X) ⊂M .

The subbundle of the cotangent bundle T ∗Jn spanned by the contact one-forms will
be called the nth order contact bundle, denoted by C(n). The infinite contact bundle
C(∞) ⊂ T∗J∞ is a codimension p subbundle of T ∗J∞. (This result is not true for finite
order contact subbundles, which is one of the main reasons for going to infinite order.)
In terms of local coordinates (x, u(∞)), every contact one-form can be written as a linear
combination of the basic contact forms

θα
J = duα

J −
p∑

i=1

uα
J,i dx

i, α = 1, . . . , q, 0 ≤ #J. (8.1)

Combining the horizontal coordinate one-forms dxi with the basic contact forms θα
J pro-

duces the local coordinate coframe on J∞:

dx = {dx1, . . . , dxp}, θ(∞) = {. . . , θα
J , . . .}. (8.2)

Therefore, choosing local coordinates on M induces a splitting T ∗J∞ = H ⊕C(∞) of the
cotangent bundle into horizontal and contact or vertical subbundles, with H spanned by
the horizontal one-forms dx. Let πH :T∗J∞ → H and πV :T∗J∞ → C(∞) be the induced
projections, so that any one-form ω = ωH + ϑ splits into uniquely defined horizontal and
vertical components, where

ωH = πH(ω) =

p∑

i=1

Pi(x, u
(n)) dxi (8.3)
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is a horizontal one-form, and

ϑ = πV (ω) =
∑

α,J

Qα
J (x, u(n)) θα

J (8.4)

is a contact form. If ω is a one-form on Jn then, typically, its horizontal component ωH is
a one-form on Jn+1.

The splitting of T∗J∞ induces a bi-grading of the differential forms on J∞. The
differential d on J∞ naturally splits into horizontal and vertical components, d = dH +dV ,
where dH increases horizontal degree and dV increases vertical degree. Closure, d ◦d = 0,
implies that dH

◦dH = 0 = dV
◦dV , while dH

◦dV = −dV
◦dH . In particular, the horizontal

or total differential of a differential function F : Jn → R is the horizontal one-form

dHF =

p∑

i=1

(DiF ) dxi (8.5)

on Jn+1, where

Di =
∂

∂xi
+

q∑

α=1

∑

J

uα
J,i

∂

∂uα
J

(8.6)

denotes the usual total derivative with respect to xi, which can be viewed as a vector field
on J∞E. Similarly, the vertical differential of a function F (x, u(n)) is the contact form

dV F =

p∑

i=1

∑

K

∂F

∂uα
K

θα
K . (8.7)

Definition 8.2. A total differential operator is a vector field on J∞ which lies in the
annihilator of the contact bundle C(∞).

Proposition 8.3. Every total differential operator has the form

D =

p∑

i=1

Qi(x, u
(n))Di, (8.8)

where Q1, . . . , Qp are differential functions.

The preceding construction forms the foundation of the variational bicomplex that
is of fundamental importance in the study of the geometry of jet bundles, differential
equations and the calculus of variations; see [1, 26, 29] for details.

9. Prolonged Transformation Groups.

Any transformation group G acting on M preserves the order of contact between
submanifolds. Therefore, there is an induced action of G on the nth order jet bundle
Jn(M,p) known as the nth prolongation of G. Alternatively, one can characterize the
prolonged group transformations as the unique lifted maps on the jet bundle that preserve
the space of contact forms.
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Definition 9.1. A map Ψ: Jn → Jn is a contact transformation if it preserves the
order n contact subbundle: Ψ∗C(n) ⊂ C(n).

Proposition 9.2. If ψ:M →M is a local diffeomorphism, then its nth prolongation
is the unique contact transformation ψ(n): Jn → Jn that satisfies ψ ◦πn

0 = πn
0

◦ψ(n).

We denote the prolonged group action on Jn by G(n). Note that if G acts globally
on M , then its prolonged action G(n) is also a global transformation group on Jn(M,p),
but, generally only a local transformation group on the coordinate subbundles JnE since
G may not preserve transversality.

Remark : Our methods also apply, with minor modifications, to more general contact
transformation groups. Bäcklund’s Theorem, cf. [18], implies that these reduce to pro-
longed point transformation groups on M , or, in the codimension 1 case, prolonged first
order contact transformation groups.

Let us choose a basis {v1, . . . ,vr} for the Lie algebra g of infinitesimal generators on
M , and let {pr(n) v1, . . . ,pr(n) vr} denote the corresponding the infinitesimal generators of
the prolonged group action G(n). In terms of local coordinates (x, u(∞)) on J∞, we obtain
pr(n) vκ by truncating the infinitely prolonged vector field

pr vκ =

p∑

i=1

ξi
κ(x, u)

∂

∂xi
+

q∑

α=1

∑

j=#J≥0

ϕα
J,κ(x, u(j))

∂

∂uα
J

, κ = 1, . . . , r, (9.1)

at order n. The coefficients of (9.1) are explicitly determined by the standard prolongation
formula, [18]:

ϕα
J,κ = DJQ

α
κ +

p∑

i=1

ξi
κ u

α
J,i, (9.2)

where

Qα
κ(x, u(1)) = ϕα

κ(x, u) −
p∑

i=1

ξi
κ(x, u)uα

i (9.3)

is the characteristic of vκ.

The moving frame construction in Section 4 can be applied to the prolonged group
action G(n) provided it acts (locally) freely on Jn. Therefore, we need to understand the
basic geometry of the prolonged action in order to understand the full range of applicability
of the higher order moving frame construction.

Definition 9.3. Given G acting on M , we let sn denote the maximal orbit dimension
of the prolonged action G(n) on Jn. The stable orbit dimension s = max sn is the maximum
prolonged orbit dimension. The stabilization order of G is the minimal n such that sn = s.

A fundamental stabilization theorem due to Ovsiannikov, [22], completely character-
izes the stable orbit dimension; see also [18, 20] for further details.

Theorem 9.4. A Lie group G acts locally effectively on subsets of M if and only if
its stable orbit dimension equals its dimension, s = r = dimG.
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Definition 9.5. The regular subset Vn ⊂ Jn is the open subset consisting of all
prolonged group orbits of dimension equal to the stable orbit dimension. The singular

subset is the remainder, Sn = Jn \ Vn, which is the union of all G(n) orbits of less than
maximal dimension.

Note that, by this definition, Vn = ∅ and Sn = Jn if n is less than the stabilization
order of G(n). If G acts analytically, then Vn is a dense open subset of Jn for n greater than
or equal to the stabilization order. The singular subset Sn can be characterized by the
vanishing of the Lie determinant or its generalizations, cf. [18; chap. 6]. A point z(n) ∈ Jn

will be called a regular jet provided z(n) ∈ Vn or, equivalently, the prolonged orbit passing
through z(n) has dimension r = dimG, assuming G acts locally effectively on subsets. The
stabilization Theorem 9.4 combined with Proposition 2.5 immediately implies the freeness
of the prolonged action on the regular subset of jet space.

Proposition 9.6. If G acts locally effectively on subsets, then G acts locally freely
on the regular subset Vn ⊂ Jn.

Remark : It would be nice to know that G(n) acts freely on (a dense open subset of)
Vn provided n is sufficiently large. We do not know a general theorem that guarantees the
freeness of prolonged group actions, although it seems highly unlikely, particularly in the
analytic category, that a group acts only locally freely on all of Vn when n is large.

Definition 9.7. A submanifold S ⊂M is order n regular if jnS ⊂ Vn. A submanifold
S ⊂M is totally singular if jnS ⊂ Sn for all n = 0, 1, . . .

The characterization of submanifolds which are singular to all orders is of importance
for understanding the range of validity of the moving frame method. The following theorem
can be found in [20].

Theorem 9.8. A submanifold S ⊂ M is totally singular if and only if its isotropy
subgroup GS does not act locally freely on S itself.

Example 9.9. Consider the special affine group SA(2) = SL(2) n R
2 acting on the

plane M = R
2 via z 7→ Az+b, where detA = 1. The totally singular curves are the straight

lines, the isotropy subgroup consists of translations, shears, and unimodular scalings in the
direction of the line. In terms of the coordinates z = (x, u), the singular subset of Jn is
given by

Vn =
{

(x, u(n))
∣∣∣ uxx = uxxx = · · · = un = 0

}
, (9.4)

where un = dnu/dxn. A curve u = f(x) is totally singular at a point (x0, f(x0)) if and
only if f (n)(x0) = 0 for all n ≥ 2. In particular, an analytic curve that is totally singular
at a point is necessarily a straight line.

The full affine group A(2) is more interesting. Here the totally singular curves are
the parabolas and the straight lines. The isotropy group of a parabola, say u = x2, is the
two-dimensional nonabelian subgroup (x, u) 7→ (λx+µ, λ2u+2λµx+µ2). In this case the
singular subset of Jn is also determined by the total derivatives of the Lie determinant

Vn =
{

(x, u(n))
∣∣∣ Dn−4

x

[
uxxuxxxx − 5

3u
2
xxx

]
= 0

}
. (9.5)
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The parabolas and straight lines form the general solution to the affine Lie determinant
equation uxxuxxxx = 5

3u
2
xxx.

Let us now quickly review the standard theory of differential invariants for Lie trans-
formation groups; see [18; Chapter 5] for details.

Definition 9.10. A differential invariant is a (locally defined) scalar differential
function I: Jn → R which is invariant under the action of G(n), so that I(g(n) · z(n)) =
I(z(n)) for all g ∈ G and all z(n) ∈ Jn where the equation is defined.

Assuming G acts locally effectively on subsets, there are

in = dimJn − dimG = p+ q

(
p+ n

n

)
− r (9.6)

functionally independent differential invariants of order ≤ n near any point z(n) ∈ Vn.

Remark : If n is less that the stabilization order, then we replace r in (9.6) by the
maximal orbit dimension of G on Jn and restrict z(n) to lie in the open subset of Jn where
the prolonged orbits of G(n) have maximal dimension.

The basic method, due to Lie and Tresse, [25], for constructing a complete system of
differential invariants is to use invariant differential operators. A total differential operator
(8.8) is said to be G-invariant if it commutes with the prolonged action of G. The most
effective way to construct such operators relies on a suitably G-invariant basis for the
horizontal one-forms on the jet space.

Definition 9.11. A differential one-form ω on Jn is called contact-invariant if and
only if, for every g ∈ G, we have (g(n))∗ω = ω+ θg for some contact form θg. A horizontal

contact-invariant coframe on Jn is a collection of p linearly independent horizontal one-
forms which are contact-invariant under the prolonged action of G(n).

For brevity we shall usually drop the adjective “horizontal” in the description of
contact-invariant coframes. Contact-invariant coframes are the jet space counterparts of
the differential geometric coframes discussed in Section 5. Note that a contact-invariant
coframe only forms a coframe on the horizontal subbundle H ⊂ T ∗J∞. A full coframe on
J∞ requires additional contact forms; see below.

Proposition 9.12. If I is any differential invariant, its horizontal differential dHI is
a contact-invariant one-form.

Thus, if we know p suitably independent differential invariants, we can construct
a horizontal contact-invariant coframe. However, this approach is usually not the best
method for determining such coframes. If F (x, u(n)) is any differential function, we can
rewrite its horizontal differential in terms of the horizontal coframe as

dHF =

p∑

j=1

(DjF ) ωj . (9.7)
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The resulting G-invariant total differential operators D1, . . . ,Dk are the jet space counter-
parts of the usual coframe derivatives, cf. (5.5). In local coordinates, suppose

ωi =

p∑

j=1

P i
j (x, u

(n)) dxj , i = 1, . . . , p, (9.8)

where the coefficient matrix P = (P i
j ) is nonsingular. The corresponding invariant differ-

ential operators are then given by

Dj =

p∑

i=1

Qi
j(x, u

(n))Di, j = 1, . . . , p, (9.9)

with inverse coefficient matrix Q = (Qi
j) = P−1. If we consider the coordinate one-forms

dx = (dx1, . . . , dxp)T and total derivatives D = (D1, . . . , Dp)
T as column vectors, then

(9.8) is written as ω = P · dx, while (9.9) becomes D = QT ·D = P−T ·D. The invariant
differential operators form an invariant “horizontal frame” on J∞, cf. [15].

Any invariant differential operator maps differential invariants to higher order differ-
ential invariants, and thus, by iteration, produces hierarchies of differential invariants of
arbitrarily large order. In this way, a complete list of differential invariants can be pro-
duced by successively differentiating a finite number of differential invariants, which we
call a generating system of differential invariants. We use the notation DJ = Dj1

· · · Djk
,

1 ≤ jν ≤ p, denote the corresponding kth order invariant differential operators.

Theorem 9.13. Suppose that G is a transformation group, and let n be its order
of stabilization. Then, in a neighborhood of any regular jet z(n) ∈ Vn, there exists a
contact-invariant coframe {ω1, . . . , ωp}, and corresponding invariant differential operators
D1, . . . ,Dp. If I(z(k)) is a differential invariant, then so is DJI for any multi-index J .
Moreover, there exists a generating system of functionally independent differential invari-
ants I1, . . . , Il, of order at most n+1, such that, locally, every differential invariant can be
written as a function of the differentiated invariants {DJIν | ν = 1, . . . , l, #J ≥ 0 }.

See [22; p. 320] and [18; Theorem 5.49] for more details. The theorem is mis-stated
in [18] — the order of the fundamental differential invariants should be at most n + 1,
not n + 2. Except in the case of curves, where p = 1, the precise number of differential
invariants required in a generating system is not known. A refinement of Theorem 9.13
will be proved below; see Theorem 13.1.

The invariant differential operators coming from a general contact-invariant coframe
do not necessarily commute. The commutation formulae (5.6) for ordinary coframe deriva-
tives are an immediate consequence of the closure identity d2 = 0. Similarly, if ω is the
contact-invariant coframe, then

dHω
k = −

∑

i<j

Ak
ij ω

i ∧ ωj , k = 1, . . . , p, (9.10)
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where the coefficients Ak
ij = −Ak

ji are differential invariants. Thus, applying dH to (9.7)
produces the commutation formulae

[Di,Dj ] =

p∑

i=1

Ak
ij Dk, i, j = 1, . . . , p, (9.11)

for the associated invariant differential operators. If all the coframe forms are constructed
from differential invariants, i.e., ωk = dHI

k, k = 1, . . . , p, then dHω
k = 0, and hence

the invariant differential operators all commute in this particular case. The commutation
formula (9.11) implies that a complete system of higher order differential invariants can
be obtained by only including the differentiated invariants DJIν corresponding to nonde-
creasing multi-indices 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ p. However, even with this proviso, the
differentiated invariants DJIν are not necessarily functionally independent.

Definition 9.14. Given a functionally independent generating system of differen-
tial invariants I1, . . . , Ik, a syzygy is a functional dependency among the differentiated
invariants: H(. . .DJIν . . .) ≡ 0.

There are two types of syzygies, the first arising from the commutation rules for the
invariant differential operators, and the second “essential syzygies” are where the function
H only depends on the differentiated invariants DJIν having nondecreasing multi-indices
J . In Theorem 13.4 below, we shall provide a precise classification of all such syzygies.

Example 9.15. An elementary example is provided by the three parameter group
(x1, x2, u) 7→ (λx1 + a, λx2, u + b) acting on M = R

3. The one-forms ω1 = (x2)−1dx1,
ω2 = (x2)−1dx2 form a contact-invariant coframe, with invariant differential operators
D1 = x2D1, D2 = x2D2. We note the commutation formula [D1,D2] = −D2. The first
order differential invariants I1 = x2u1 and I2 = x2u2 form a generating system, and
Iijk = (D1)

j(D2)
kIi, i = 1, 2, j + k ≥ 0, form a complete system of differential invariants.

In this case there is a single essential syzygy, D2I1 = D1I2−I1, from which all higher order
syzygies can be deduced by invariant differentiation.

Remark : For curves in an m-dimensional manifold, one requires k = m−1 generating
differential invariants, and a single invariant differential operator D. Moreover, in this
case, there are no syzygies among the differentiated invariants DkIν , cf. [11, 18].

10. Higher Order Regularization.

We are now in a position to describe the general version of our moving frame construc-
tion. The key idea is to apply the regularization technique to the prolonged group action
on the extended jet bundles over the manifold M . All of our earlier constructions (which
describe the order zero case) can be immediately applied to this particular type of trans-
formation group action. Moving frames can be computed provided the prolonged action is
(locally) free, i.e., on the regular subset of Jn. In this manner, we shall be able to construct
a higher order moving frame associated with all but the totally singular submanifolds of
the original space.
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We assume that G acts locally effectively on subsets of M . For simplicity, we only
discuss the right regularization of the prolonged group action on the jet bundle Jn =
Jn(M,p) corresponding to p-dimensional submanifolds of M . The left counterparts can be
simply obtained by applying the group inversion.

Definition 10.1. The nth order regularized jet bundle is the trivial left principal
bundle πn:B(n) = G × Jn → Jn. The nth order (right) regularization of the prolonged
group action on Jn is the action of G on B(n) given by

R(n)
g (h, z(n)) = R(n)(g, (h, z(n))) = (h · g−1, g(n) · z(n)), g ∈ G, (h, z(n)) ∈ B(n).

(10.1)

Theorem 3.2 implies that the regularized action on B(n) is both free and regular.

Definition 10.2. A lifted differential invariant is a (locally defined) invariant func-
tion L:B(n) → N .

A complete system of functionally independent lifted differential invariants is provided
by the components of the order n evaluation map

w(n) = g(n) · z(n). (10.2)

Clearly w(n):B(n) → Jn is invariant under the lifted action (10.1). As in Section 3, every
lifted differential invariant can be locally written as a function of the fundamental lifted
differential invariants w(n). In particular, an ordinary differential invariant I: Jn → R also
defines a lifted differential invariant L = I ◦πn, and hence can also be locally expressed
as a function of the w’s; conversely, any lifted invariant L(g, x, u(n)) that does not depend
on the g coordinates automatically defines an ordinary differential invariant. Our simple
replacement Theorem 3.7 immediately applies to the construction of differential invariants
from their lifted counterparts.

Theorem 10.3. Let I(z(n)) be an ordinary differential invariant. Then we can write
I(z(n)) = I(g(n) · z(n)) as the same function of the lifted differential invariants.

Remark : In Riemannian geometry, Theorem 10.3 reduces to the striking Thomas
Replacement Theorem, [24; p. 109], which is proved by appealing to normal coordinates.
See [2] for recent applications of Thomas’ result.

Example 10.4. Consider the (standard) action of the Euclidean group SE(2) on
M = R

2. Introducing local coordinates (x, u), the second order prolongation maps a point
(x, u, ux, uxx) ∈ J2 to
(
x cosφ− u sinφ+ a, x cosφ+ u sinφ+ b,

sinφ+ ux cosφ

cosφ− ux sinφ
,

uxx

(cosφ− ux sinφ)3

)
, (10.3)

reproducing the action (4.12). The second order lifted invariants (10.2), which we de-
note as w(2) = (y, v, vy, vyy), are the components of the transformation formulae (10.3).
The Euclidean curvature differential invariant can be constructed in terms of the lifted
invariants:

κ =
vyy

(1 + v2
y)3/2

=
uxx

(1 + u2
x)3/2

. (10.4)
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The Replacement Theorem 10.3 guarantees that the formula for κ in terms of the usual
jet coordinates (x, u, ux, uxx) is the same functional relation as its formula in terms of the
lifted invariants (y, v, vy, vyy).

The regularization construction extends to the infinite order regularized jet bundle
π∞:B(∞) = G × J∞ → J∞ in the obvious manner. The pull-back of the contact bundle
C(∞) ⊂ T∗J∞ defines the contact subbundle† C(∞) ⊂ T∗B(∞). Similarly, the pull-back
via πG:B(∞) → G of the cotangent bundle of G, spanned by its Maurer–Cartan forms,
define a second intrinsic subbundle of T ∗B(∞), which we also denote by T ∗G. The product
bundle T∗G × C(∞) forms a codimension p subbundle of the cotangent bundle T ∗B(∞).
Since B(∞) = G× J∞ is a Cartesian product, the differential on B(∞) naturally splits into
jet and group components, d = dJ + dG.

Proposition 10.5. If ω is a G-invariant differential form on B(∞), then so are both
dJω and dGω. In particular, if L(g, z(n)) is a lifted differential invariant, then its jet and
group differentials, dJL and dGL, are invariant one-forms on B(∞).

Let us now discuss the local coordinate expressions for the regularized action and its
invariants. As above, the introduction of local coordinates (x, u(∞)) on J∞ produces a local
coframe on B(∞) consisting of the horizontal forms dx, the system of basic contact forms θ,
along with the right-invariant Maurer–Cartan forms µ, all pulled back to B(∞). The choice
of horizontal complement produces a splitting of the differential on B(∞) into horizontal,
vertical, and group components, so that we have the more refined decomposition

dω = dJω + dGω = dHω + dV ω + dGω (10.5)

for any differential form on B(∞). Note also that

dH
◦dH = 0, dV

◦dV = 0, dG
◦dG = 0,

dH
◦dV = −dV

◦dH , dH
◦dG = −dG

◦dH , dV
◦dG = −dG

◦dV .
(10.6)

Remark : We have not investigated the topological and variational aspects of the in-
duced “regularized variational tricomplex” governed by the differentials dH , dV and dG.

In particular, the horizontal and the vertical differentials of a function F (g, x, u(n))
have the same formulae (8.5), (8.7), as before, where the total derivatives Di have their
usual coordinate formulae, i.e., there are no derivatives with respect to the g coordinates.
Note that the horizontal and vertical differentials of a lifted invariant are not , in general, G-
invariant one-forms on B(∞). However, the horizontal differential does satisfy the weaker,
but very important, invariance property of Definition 9.11.

Proposition 10.6. If L(g, z(n)) is a lifted invariant, then its horizontal differential
dHL is a contact-invariant one-form.

† For simplicity, we drop explicit reference to the pull-back via the projection map.
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The standard jet space coordinates (x, u(∞)) are not well adapted to the lifted group
action on B(∞), and we shall replace them by a fundamental system of invariant coor-
dinates based on the fundamental lifted differential invariants. The introduction of local
independent and dependent variable coordinates z = (x, u) on M induces a local identi-
fication with a trivial bundle E = X × U . This induces a splitting of the fundamental
zeroth order lifted invariants w = (w1, . . . , wm) = g · z into two components. In the (x, u)
coordinates, we write‡ w = (y, v), where y = (y1, . . . , yp) will be considered as “lifted
independent variables”, and v = (v1, . . . , vq), as “lifted dependent variables”. Let

ηi = dHy
i =

p∑

j=1

(Djy
i) dxj , i = 1, . . . , p, (10.7)

denote the horizontal differentials of lifted independent variables. The coefficient matrix
Dy =

(
Djy

i
)

is obtained by total differentiation of the lifted invariants y treating the
group parameters as constants, so the lifted horizontal forms η = (Dy) · dx are defined
on the first order regularized jet space B(1). Since the functions yi are lifted invariants,
Proposition 10.6 implies that the one-forms η are contact-invariant under the lifted action
of G on B(1). The η’s are linearly independent if and only if the y’s have nonvanishing
total Jacobian determinant:

detDy =
D(y1, . . . , yp)

D(x1, . . . , xp)
= det

(
Djy

i
)
6= 0. (10.8)

This condition can be geometrically characterized as follows.

Proposition 10.7. The horizontal one-forms η = (Dy) ·dx are linearly independent,
η1∧· · ·∧ηp 6= 0, on the open subset W(1) ⊂ B(1) determined by the 1-jets of submanifolds S
such that both S and g ·S are transverse with respect to the given coordinates on M . Thus,
W(1) = { (g, z(1)) ∈ G × J1E | g(1) · z(1) ∈ J1E }. At such points, we call η = (η1, . . . , ηp)
the lifted (horizontal) contact-invariant coframe for the given coordinate chart.

The corresponding invariant differential operators are readily found. As in the usual
(unlifted) version, (9.7), we write the total differential of any scalar function F :B(n) → R

in invariant form

dHF =

p∑

j=1

(EjF ) ηj (10.9)

with respect to the prescribed contact-invariant coframe. The corresponding total differ-
ential operators are E = (Dy)−T · D, or, explicitly,

EjF =
D(y1, . . . , yj−1, F, yj+1, . . . yp)

D(y1, . . . , yp)
=

p∑

i=1

Zi
j(g, x, u

(1))Di, (10.10)

‡ For simplicity, we have chosen to split the lifted invariants into independent and dependent
components in the same way as we split the unlifted variables. Actually, one can choose alter-
native splittings of w into p independent and q dependent components, although one must then
accordingly modify the required transversality conditions.
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where Z = (Zi
j) = (Dy)−1. Thus, we can identify the lifted invariant differential operator

Ej = Dyj with total differentiation with respect to the lifted invariant yj ; in particular,

Ejy
i = δi

j . Note that the lifted invariant differential operators do not involve differentiation
with respect to the group parameters. A very important point is that, unlike the usual
invariant differential operators, the lifted invariant differential operators always mutually
commute: [

Ei, Ej

]
= 0. (10.11)

This follows from the closure of the horizontal differential, dH
◦dH = 0, and is an immediate

consequence of the fact that the lifted contact-invariant coframe (10.7) is the horizontal
derivative of lifted invariants; see the discussion following (9.11). We let EK = Ek1

· . . . · Ekl

denote the associated higher order invariant differential operator; equation (10.11) shows
that the order of the invariant differentiation is irrelevant.

The lifted invariant differential operators can be used to compute higher order lifted
differential invariants. The basic result follows immediately from (10.9), the contact-
invariance of the forms η, along with the fact that the prolonged group transformations
preserve the contact ideal.

Proposition 10.8. If L:B(n) → R is any lifted differential invariant, then so are its
invariant derivatives EKL:B(n+k) → R, where k = #K ≥ 0.

If we successively apply the invariant differential operators associated with the first p
lifted invariants y = (y1, . . . , yp) to the remaining zeroth order invariants v = (v1, . . . , vq),
we recover all the higher order lifted invariants v(n). Since w(n) = g(n) ·z(n), an alternative
way of viewing this result is that the process of lifted invariant differentiation produces
the explicit formulae for the prolonged group transformations, thereby implementing the
standard process of implicit differentiation, cf. [17].

Lemma 10.9. The components of the nth order lifted invariant w(n) consist of the
basic invariants w = (y, v) together with the higher order lifted differential invariants

vα
K = EKv

α, α = 1, . . . , q, #K ≤ n. (10.12)

Proof : For fixed g, the map w(n): Jn → Jn is a contact transformation on the jet
bundle, hence the pull-back (w(n))∗ maps contact forms to contact forms. Now,

(w(n))∗θα
K = dJv

α
K −

p∑

i=1

vα
K,i dJy

i, α = 1, . . . , q, #K ≤ n− 1. (10.13)

The right hand side will be a contact form if and only if its horizontal component vanishes,
so that

dHv
α
K =

p∑

i=1

vα
K,i η

i, α = 1, . . . , q, #K ≤ n− 1. (10.14)

Comparing (10.14) with (10.9) completes the proof. Q.E.D.
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Example 10.10. For the (standard) action of the Euclidean group SE(2) on M =
R

2, the zeroth order lifted invariants w = (y, v) are just the group transformation formulae:

y = x cosφ− u sinφ+ a, v = x cosφ+ u sinφ+ b.

The lifted horizontal contact-invariant form is

η = dHy = (cosφ− ux sinφ) dx,

which is well-defined provided φ does not rotate the curve to have a vertical tangent.
Therefore

E = Dy =
1

cosφ− ux sinφ
Dx

is the lifted invariant differential operator. The higher order lifted invariants are obtained
by successively applying E to the other zeroth order lifted invariant v. The first two are

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
, vyy =

uxx

(cosφ− ux sinφ)3
. (10.15)

As remarked above, the one-forms ηi = dHy
i are not strictly invariant under the

prolonged group action. However, we can use their invariant counterparts

τ i = dJy
i = dHy

i + dV y
i = ηi + χi, i = 1, . . . , p, (10.16)

to define a fully invariant coframe on the regularized jet bundle B(∞). In (10.16), the χi

are contact forms that are not invariant under the lifted action of G.

There are two methods for constructing invariant contact forms. First, since the
horizontal component of the invariant one-form on the right hand side of (10.13) vanishes
by virtue of (10.14), its vertical component

ϑα
K = dJv

α
K −

p∑

k=1

vα
K,i dJy

i = dV v
α
K −

p∑

k=1

vα
K,i dV y

i, α = 1, . . . , q, (10.17)

is an invariant contact form. The resulting collection ϑ = {. . . , ϑα
K , . . .} forms a complete

set of lifted invariant contact forms on B(∞). The forms τ ,ϑ are the pull-backs of the
canonical coframe (8.2) by the map w(∞) modulo the Maurer–Cartan forms µ.

Proposition 10.11. The collection of one-forms

τ = {τ1, . . . , τp}, ϑ = {. . . , ϑα
K , . . .}, µ = {µ1, . . . , µr}, (10.18)

provide an invariant local coframe on B(∞) = G× J∞.

Invariant contact forms can also be found via the process of invariant differentiation.

Theorem 10.12. Let ϑα define the complete system of invariant zeroth order contact
forms, as in (10.17) with K = ∅. The higher order contact forms

ϑα
K = EKϑ

α, α = 1, . . . , q, #K > 0, (10.19)

obtained by Lie differentiating the zeroth order contact forms provide a complete list of
lifted invariant contact forms.
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Proof : Applying dH to (10.17) and using (10.6), we find

dHϑ
α
K = −

p∑

j=1

dV (vα
K,jη

j) −
p∑

i,j=1

vα
K,i,j η

j ∧ dV y
i +

p∑

i=1

vα
K,idV η

i = −
p∑

j=1

ϑα
K,j ∧ ηj .

(10.20)
The identity (10.19) follows by pairing (10.20) with the total vector field Ej . Q.E.D.

11. Higher Order Moving Frames.

The construction of higher order moving frames proceeds in direct analogy with the
zeroth order version. As usual, for simplicity, we only explicitly treat the right versions.

Definition 11.1. An nth order (right) moving frame is a map

ρ(n): Jn −→ G (11.1)

which is (locally) G-equivariant with respect to the prolonged action G(n) on Jn, and the
right multiplication action h 7→ h · g−1 on G itself.

The corresponding left moving frame of order n is merely ρ̃ (n)(z(n)) = ρ(n)(z(n))−1.
Note that an nth order moving frame automatically defines a moving frame on the higher
order jet bundles, namely ρ(n) ◦πk

n: Jk → G, k ≥ n. The fundamental existence theorem
for moving frames is an immediate consequence of Theorem 4.4.

Theorem 11.2. If G acts on M , then an nth order moving frame exists in a neigh-
borhood of any point z(n) ∈ Vn in the regular component of Jn.

Remark : Proposition 9.6 only guarantees the local G-equivariance of the moving
frame; global equivariance requires that G(n) act freely on Vn.

In particular, the minimal order at which any moving frame can be constructed is the
stabilization order of the group. Indeed, according to the construction in Section 4, the
choice of a cross-section K(n) ⊂ Jn to the prolonged group orbits serves to define a moving
frame ρ(n) in a neighborhood of any point z(n) ∈ K(n). The set L(n) = (w(n))−1K(n)

forms the graph of a local G-equivariant section σ(n): Jn → B(n), whose moving frame
is ρ(n) = πG

◦σ(n). Moreover, composing σ(n) with w(n) produces the corresponding
differential invariants.

Definition 11.3. The fundamental nth order normalized differential invariants as-
sociated with a moving frame ρ(n) of order n (or less) are given by

I(n)(z(n)) = w(n) ◦σ(n)(z(n)) = ρ(n)(z(n)) · z(n). (11.2)

Theorem 11.4. If J(x, u(n)) is any nth order differential invariant, then, locally, J
is a function of the normalized nth order differential invariants, i.e., J = H ◦ I(n).
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Remark : The fundamental normalized differential invariants are not necessarily func-
tionally independent. Indeed, typically we normalize some of the components of the fun-
damental lifted invariant w(n) by setting them equal to constants; the corresponding nor-
malized differential invariants will then, of course, also be constant. However, Theorem 4.5
does imply that the nth order normalized differential invariants contain all of the nth order
differential invariants. In particular, any lower order differential invariants, including those
on jet bundles where G does not yet act freely, will appear as functional combinations of
the I(n).

As in the order zero case, given an arbitrary differential function F : Jn → R, then
L = F ◦w(n):B(n) → R defines a lifted differential invariant, and hence J = L ◦σ(n) =
F ◦ I(n) defines a differential invariant, called the invariantization of F with respect to
the given moving frame. Thus a moving frame provides a natural way to construct a
differential invariant from any differential function! Theorem 10.3 just says that if F
itself is a differential invariant, then F ◦w(n) is independent of the group parameters, and
hence J = F . Thus, invariantization defines a projection, depending on the moving frame,
from the space of differential functions to the space of differential invariants. One case
of interest is the jth total derivative DjF (x, u(n+1)) of a differential function F (x, u(n)).
The corresponding lifted invariant coincides with the jth invariant derivative of the lifted
invariant L = F ◦w(n), so that DjF ◦w(n+1) = EjL. Consequently, the invariantization of
DjF is given by

EjL ◦σ(n) = DjF ◦ I(n+1). (11.3)

As in the order zero case, in applications to equivalence problems, one restricts the
moving frame to a submanifold.

Definition 11.5. An nth order moving frame restricted to a p-dimensional subman-
ifold ι:X → S ⊂ M whose n-jet jnS lies in the domain of definition of ρ(n) is defined as
the composition

λ(n) = ρ(n) ◦ jnι :X −→ G. (11.4)

Equivalently, a nth order moving frame is a smooth map λ(n):X → G which factors
through an equivariant map from Jn to G:

Jn

½
½½>jnι Z

ZZ~
ρ(n)

X λ(n) - G

(11.5)

generalizing the order zero construction (4.17). Theorems 4.4 and 9.8 serve to characterize
the submanifolds which admit moving frames.

Theorem 11.6. A submanifold S ⊂M admits a (locally defined) nth order moving
frame if and only if S is regular of order n, i.e., jnS ⊂ Vn.

Thus, in the analytic category, a submanifold S admits a moving frame (of some
sufficiently high order) if and only if its isotropy subgroup GS acts freely on S.
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The practical implementation of the higher order moving frame construction relies
on the higher order version of the normalization method. Consider a point z(n) ∈ Vn

contained in the regular subset of the nth jet space. According to Proposition 4.10, in
a neighborhood of z(n), we can choose a regular system of r lifted differential invariants
L(g, x, u(n)) having maximal rank r = rank dGL = dimG. The Implicit Function Theorem
allows us to solve the normalization equations

L1(g, z
(n)) = c1, . . . Lr(g, z

(n)) = cr, (11.6)

for the group parameters g in terms of z(n) provided the normalization constants c =
(c1, . . . , cr) belong to the image of L. Typically, one chooses L to be r suitable components
of the fundamental lifted differential invariant w(n) = g(n) · z(n) that have as low an order
as possible, subject to the maximal rank condition, although this is by no means essential
to the implementation of the method. The solution to the normalization equations (11.6)
determines an nth order moving frame g = ρ(n)(x, u(n)). Substituting the formula for the
moving frame into the remaining lifted invariants produces a complete system of differential
invariants on the open neighborhood of z(n) ∈ Vn where ρ(n) is defined.

In terms of the invariant local coordinates w(n) = (y, v(n)) on B(n), the fundamental
normalized differential invariants I (n) = (σ(n))∗w(n) associated with the given moving
frame g = ρ(n)(x, u(n)) are

J i(x, u(n)) = yi(ρ(n)(x, u(n)), x, u), i = 1, . . . , p,

Iα
K(x, u(l)) = vα

K(ρ(n)(x, u(n)), x, u(k)), α = 1, . . . , q, k = #K ≥ 0.
(11.7)

In the second formula, l = max{n, k}. As above, some of these may be constant and/or
functionally dependent due to normalizations. However, (11.7) do include a complete sys-
tem of differential invariants, meaning that, provided k ≥ n, any other kth order differential
invariant can be locally expressed as a function of the J i and Iα

K for #K ≤ k.

Example 11.7. Consider the elementary similarity group G = R
+

n R
2 acting on

M = R
2 via

(x, u) 7−→ (αx+ a, α3u+ b). (11.8)

If we choose y = αx + a as the lifted independent variable, then η = dHy = αdx is
the corresponding horizontal invariant form, with invariant differential operator E = Dy =

α−1Dx. Successively applying E to the dependent order zero lifted invariant v produces the
complete system of higher order lifted invariants: vn = Env = α3−nun, where un = Dn

xu,
and n ≥ 1. Therefore, on B(4), say, the lifted invariants w(4) are

y = αx+ a, v = α3u+ b, vy = α2ux, vyy = αuxx, vyyy = uxxx, vyyyy = α−1uxxxx. (11.9)

The simplest first order moving frame is found by normalizing y = v = 0, ux = 1, whereby

a = − x√
ux

, b = − u

u3/2
x

, α =
1√
ux

, (11.10)
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which is well-defined on the subset Ṽ1 = {ux > 0}. The resulting normalized fourth order
differential invariants I(4) are obtained by substituting (11.10) into the lifted invariants:

J1 = 0, I0 = 0, I1 = 1, I2 =
uxx√
ux

, I3 = uxxx, I4 =
√
ux uxxxx.

The moving frame (11.10) applies to curves u = f(x) provided the tangent is not horizontal,
so ux 6= 0. If the curve has a horizontal tangent, then one can construct a second order
moving frame by using the alternative normalization vyy = 1, with

a = − x

uxx

, b = − u

u2
xx

, α =
1

uxx

, (11.11)

which is well-defined on the subdomain V2 = {uxx 6= 0}, and hence applies to curves with
horizontal tangent at a point, but not those with inflection points. (Curves with horizontal
inflection points can be handled by a yet higher order normalization.) The moving frame
(11.11) leads to a slightly different normalized fourth order differential invariant I (4):

J̃ = 0, Ĩ0 = 0, Ĩ1 =
ux

u2
xx

, Ĩ2 = 1, Ĩ3 = uxxx, Ĩ4 = uxxuxxxx,

all of which are, naturally, functions of the previous normalized differential invariants
on their common domain of definition. Note that the two moving frames correspond to
different choices of cross-section of J2, namely {(0, 0, 1, k)} for (11.10) and {(0, 0, k̃, 1)} for
(11.11).

Remark : In his thesis, I. Lisle, [15; Ex. 4.4.21], introduces a “näıve elimination
method” for determining differential invariants that is essentially the same as the normal-
ization method used here. Our theory of normalization demonstrates how Lisle’s method
can be formalized into a practical and elegant alternative to the more traditional methods
for computing differential invariants.

12. Higher Order Moving Coframes.

The final ingredients in our general theory are the jet space counterparts of the moving
coframe forms. These will produce the normalized invariant differential operators that can
be used to recursively construct complete systems of higher order differential invariants,
and will govern the equivalence and symmetry properties of submanifolds.

Definition 12.1. The moving coframe of order n associated with an order n moving
frame ρ(n): Jn → G is the extended differential system Σ(n) = {ζ(n), dI(n), I(n)} consisting
of the pull-back ζ(n) = (ρ(n))∗µ of the Maurer–Cartan forms to Jn, along with the nth

order normalized differential invariants I (n) and their differentials.

Lemma 12.2. The nth order moving coframe Σ(n) forms a G(n)–coframe on Vn.

In other words, Σ(n) is involutive and its symmetry group coincides with the nth

prolongation of G acting on Jn. Lemma 12.2 is a direct consequence of Lemma 6.4.
Any other G(n)–coframe on Jn is invariantly related to the moving coframe, meaning
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that its functions are combinations of the differential invariants, and the one-forms are
linear combinations of the moving coframe forms, with differential invariant coefficients.
A particularly useful G(n)–coframe can be constructed using the method in Theorem 6.6.

Theorem 12.3. Let ρ(n):Vn → G be a right moving frame on the nth jet bundle
over M . The extended coframe Γ(n) = {γ(n), I(n)} consisting of the normalized differential
invariants

I(n)(z(n)) = ρ(n)(z(n)) · z(n) = (σ(n))∗w(n), (12.1)

and the one-forms

γ(n) = ρ(n)(z(n)) · dz(n) = (σ(n))∗dJw(n), (12.2)

forms a G(n)–coframe on Jn, and hence is invariantly related to the moving coframe Σ(n).

Example 12.4. Consider the elementary similarity group (11.8). The moving
coframe Σ(2) is obtained by applying the moving frame map (11.10) to the right invariant
Maurer-Cartan forms

µ1 =
dα

α
, µ2 = da− a

α
dα, µ3 = db− 3b

α
dα. (12.3)

The resulting moving coframe forms are

ζ1 = −dux

2ux

, ζ3 = − du

u3/2
x

, ζ2 = − dx√
ux

, ζ4 = d

(
uxx√
ux

)
,

where the final form is the differential of the fundamental second order differential invariant
I2 = u

−1/2
x uxx. The second order extended coframe Γ(2) is obtained by applying the moving

frame map (11.10) to the jet differentials of the lifted invariants

dJy = αdx, dJv = α3 du, dJvy = α2 dux, dJvyy = αduxx,

leading to

γ1 =
dx√
ux

, γ2 =
du

u3/2
x

, γ3 =
dux

ux

, γ4 =
duxx√
ux

.

The invariant relation

γ1 = −ζ2, γ2 = −ζ3, γ3 = −2ζ1, γ4 = ζ4 − I2ζ
1,

between the two G(2)–coframes follows from (6.4), using the coefficients of the prolonged
infinitesimal generators for the given transformation group.

As in Section 10, we use the local coordinates (x, u(∞)) on J∞ and lifted coordinates
(g, y, v(∞)) on B(∞). The pull-back of the lifted contact-invariant coframe η = dHy under
the moving frame section will produce a contact-invariant coframe, from which we can
construct the required invariant differential operators.
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Definition 12.5. The normalized contact-invariant coframe is the pull-back of the
lifted contact-invariant coframe:

ω = (σ(n))∗η = (σ(n))∗dHy. (12.4)

Lemma 12.6. The horizontal one-forms ω = (σ(n))∗dHy are linearly independent at
a point z(n) in the domain of definition of the moving frame map if and only if z(n) = jnS|z
is the n-jet of a transverse submanifold S ⊂M .

Proof : In terms of our bundle coordinates, the transversality of S implies z(n) ∈ JnE.
According to Proposition 10.7, the one-forms η will be linearly independent at a point
(g, z(n)) ∈ G × JnE ⊂ B(n) if and only if g(1) · πn

1 (z(n)) ∈ J1E, which automatically
implies g(n) · z(n) ∈ JnE. Therefore, ω will be linearly independent if and only if k(n) =
ρ(n)(z(n))·z(n) ∈ JnE. But, by construction, k(n) ∈ K(n) is the cross-section representative
of the orbit of G(n) through z(n), and hence lies in the coordinate chart JnE used to
construct the moving frame. Q.E.D.

In local coordinates, the normalized one-forms ω are therefore obtained by using the
moving frame to replace the group parameters in (10.7), so

ωi =

p∑

j=1

Djy
i(ρ(n)(x, u(n)), x, u(n)) dxj =

p∑

j=1

P i
j (x, u

(n)) dxj , (12.5)

whose coefficient matrix P = (σ(n))∗Dy is the pull-back of the total Jacobian matrix of
the independent lifted invariants.

Remark : The coefficients P i
j cannot be obtained by invariantly differentiating the

normalized invariants J i = (σ(n))∗yi; in other words, ωi 6= dHJ
i. Indeed, in many cases,

the y’s are normalized to be constant, whereas the ω’s are clearly not zero. This is because
the operations of total differentiation and normalization do not commute.

The invariant differential operators associated with the horizontal coframe (12.5) are
obtained by normalizing the lifted invariant differential operators (10.10), so that the Ei

on B(∞) project, by σ(n), to G-invariant total differential operators on J∞. In coordinates,

Di =

p∑

j=1

Qj
i (x, u

(n))Dj =

p∑

j=1

Zj
i (ρ(n)(x, u(n)), x, u(1))Dj , (12.6)

where Q = P−1 = (σ(n))∗Z can be constructed directly from (10.10).

Example 12.7. Consider the similarity group (11.8). Under the first order moving
frame map (11.10), the lifted horizontal form η = dHy = αdx reduces to ω = u−1/2

x dx.
Similarly the lifted invariant differential operator E = α−1Dx reduces to D =

√
uxDx,

which maps differential invariants to higher order differential invariants. However, D
does not directly produce the normalized invariants. For example, vyy normalizes to

I2 = u−1/2
x uxx, but vyyy = E(vyy) normalizes to I3 = uxxx, which is not the same as
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DI2 = uxxx + u−1
x u2

xx. The second order moving frame (11.11) produces a different hor-

izontal one-form, namely ω̃ = u−1
xx dx, whose invariant differential operator D̃ = uxxDx

produces yet another hierarchy of differential invariants, which, naturally, are functions
of the normalized differential invariants. The explicit formulae relating these different
hierarchies of differential invariants will be found in the next section.

13. Recurrence Formulae, Commutation Relations, and Syzygies.

We have now introduced the basic ingredients in the regularized theory of moving
frames. In this section, we discuss several important consequences of our constructions.
These include recurrence formulae and general classification results for differential invari-
ants, commutation formulae for the associated invariant differential operators, and, finally,
a general syzygy classification. The results are all illustrated at the end of the section by
a particular example arising in classical invariant theory.

An important point, encountered in Example 12.7, is that the normalized invariant
differential operators, unlike their lifted counterparts, do not directly produce the nor-
malized differential invariants. For example, consider the normalized differential invariant
Iα = (σ(n))∗vα corresponding to the lifted zeroth order invariant vα as in (11.7). Apply-
ing an invariant differential operator to Iα produces a higher order differential invariant
DKI

α, but this is not , in general, equal to its normalized counterpart Iα
K = (σ(n))∗vα

K =
(σ(n))∗[EKv

α]. For example, if we normalize vα = cα, then Iα = cα is constant, and so its
derivatives are all zero, but the higher order Iα

K are generally not trivial. The goal is to
determine a recursive formula for constructing the Iα

K directly without having to appeal to
the lifted invariants. Our starting point is formula (10.14), to which we apply the moving
frame pull-back (σ(n))∗. A difficulty is that, while (σ(n))∗ trivially commutes with the
differential d, it does not commute with the operations dH and dV . Therefore, we rewrite

dHv
α
K = dvα

K − dV v
α
K − dGv

α
K (13.1)

before applying (σ(n))∗. We find

p∑

i=1

Iα
K,i ω

i= (σ(n))∗(dHv
α
K) = dIα

K − (σ(n))∗(dV v
α
K) − (σ(n))∗(dGv

α
K)

= dHI
α
K − πH

[
(σ(n))∗(dGv

α
K)
]

=

p∑

i=1

(DiI
α
K)ωi − πH

[
(σ(n))∗(dGv

α
K)
]
.

(13.2)

The next to last equality is obtained by applying the horizontal projection πH , noting that
the left hand side is a horizontal form. Moreover, the pull-back of any lifted contact form,
such as dV v

α
K , remains a contact form on J∞. The second summand in the final line of

(13.2) provides the correction terms that relate the differential invariants Iα
K,i and DiI

α
K .

To find the explicit formula for these correction terms, we adapt Theorem 3.10 to the
case of the nth order regularized action of G on B(n). Since vα

K is a component of the lifted
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invariant w(n) = g(n) · z(n), equation (3.8) implies that, at a point w(n) ∈ B(n), we can
write the group differential in terms of the Maurer–Cartan forms on B(n):

dGy
i =

r∑

κ=1

ξi
κ(w)µκ, i = 1, . . . , p,

dGv
α
K =

r∑

κ=1

ϕα
K,κ(w(k))µκ, α = 1, . . . , r, k = #K.

(13.3)

The coefficients in (13.3) are the invariant counterparts of the coefficients ξi
κ(z), ϕα

K,κ(z(k))
of the prolonged infinitesimal generator pr vκ, as given in (9.1). Substituting (13.3) into
(13.2) and its counterpart for dHy

i using (11.7) leads to the key system of identities

ωi = dHJ
i −

r∑

κ=1

ξi
κ(I(0)) ζκ

H , i = 1, . . . , p,

p∑

i=1

Iα
K,i ω

i = dHI
α
K −

r∑

κ=1

ϕα
K,κ(I(k)) ζκ

H , α = 1, . . . , r, k = #K.

(13.4)

Here ζ
(n)
H = {ζ1

H , . . . , ζ
r
H} = πH(ζ(n)) = πH((ρ(n))∗µ). The coefficients in (13.4) are

obtained by invariantizing the coefficients of the prolonged infinitesimal generators of the
group action (9.1), meaning that we replace the jet coordinates z(k) by the fundamental
normalized differential invariants I (k). Note that if G acts transitively on Jk, then there
are no nonconstant kth order differential invariants, and hence in such cases the coefficients
of order k or less will be automatically constant. The first terms on the right hand side of
(13.4) can be re-expressed in terms of the contact-invariant coframe ω using the associated
invariant differential operators, as in (9.7), so

dHJ
i =

p∑

j=1

(DjJ
i) ωj , dHI

α
K =

p∑

j=1

(DjI
α
K) ωj . (13.5)

On the other hand, the horizontal components of the Maurer–Cartan forms can themselves
be written in terms of our contact-invariant coframe,

ζκ
H =

p∑

j=1

Kκ
j [I(n+1)(x, u(n+1))]ωj , κ = 1, . . . , r, (13.6)

where the coefficients are certain differential invariants of order n+1. Substituting (13.5),
(13.6), into (13.2) produces the fundamental recurrence formulae for the differential in-
variants:

DjJ
i = δi

j +M i
j , DjI

α
K = Iα

K,j +Mα
K,j . (13.7)

The “correction terms”, that account for the non-commuting of the processes of normal-
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ization and “horizontalization”, are explicitly given by

M i
j =

r∑

κ=1

ξi
κ(I(0))Kκ

j (I(n+1)),

Mα
K,j =

r∑

κ=1

ϕα
K,κ(I(k))Kκ

j (I(n+1)),

i, j = 1, . . . , p,

α = 1, . . . , q, #K = k.
(13.8)

There are similar recurrence formulae for higher order differentiated invariants,

DJI
α
K = Iα

J,K +Mα
K,J , (13.9)

where the higher order correction terms can be determined by iterating the basic recurrence
formulae (13.7).

The coefficients Kκ
j in (13.6) can, in fact, be explicitly determined from a subset of

the identities (13.7). Suppose, for simplicity, that we are normalizing r components of w(n)

to be constant. The corresponding invariants, J i and Iα
K will then also be constant, and

hence the horizontal derivative term on the right hand side of (13.4) will vanish. For these
particular forms, (13.4) reduces to a system of r linear equations relating the horizontal
moving coframe forms ζ1

H , . . . , ζ
r
H to the contact-invariant coframe forms ω1, . . . , ωp. The

coefficients of these linear equations are differential invariants of order ≤ n + 1. (On
the right hand side, the coefficients are of order ≤ n, while (n + 1)st order differential
invariants can appear on the left.) Since G(n) acts freely, its infinitesimal generators are
linearly independent on the domain of definition of ρ(n), and hence transversality of the
cross-section used to normalize the differential invariants implies that the coefficient matrix
for this linear system is invertible. Solving for one-forms ζH produces the required system
of coefficients in (13.6).

Remark : In the method of moving coframes, [9], one normalizes the lifted differen-
tial invariants arising from the linear dependencies among the horizontal components of
the moving coframe forms. In this case, the coefficients in (13.6) will be the chosen nor-
malization constants and/or differential invariants. Typically, one is able to normalize all
the coefficients to be constant up until the final step, at which point the fundamental
differential invariants appear as coefficients.

The key observation is that the correction term (13.8) is a (typically nonlinear) func-
tion of the differential invariants of order ≤ k, provided k ≥ n+ 1, where n is the order of
the chosen moving frame. This immediately implies provides a new proof, and a refined
version of, Theorem 9.13.

Theorem 13.1. Suppose G acts freely on Vn ⊂ Jn. Then, locally, every differential
invariant on V∞ = (π∞

n )−1Vn can be found by successively applying the invariant differ-
ential operators D1, . . . ,Dp to a generating set of differential invariants of order at most

n+ 1, namely the independent components of I (n+1).

The commutation formulae (9.11) for the invariant differential operators (12.6) can
now be explicitly determined from the moving frame formulae. In view of (10.6), (12.4),
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we can compute

dHω = πH(dω) = πH [(σ(n))∗(d dHy)] =

= πH [(σ(n))∗(dGdHy)] = −πH [(σ(n))∗(dHdGy)].
(13.10)

Here we used the fact that dV produces (lifted) contact forms, which do not contribute to
the horizontal two-form dHω. Applying dH to to (13.3), and noting that dHµ = 0, we find

dHdGy
k =

r∑

κ=1

[dHξ
k
κ(w)] ∧ µκ =

p∑

j=1

r∑

κ=1

Ej(ξ
k
κ(w)) ηj ∧ µκ, (13.11)

where ξk
κ(z) is the coefficient of ∂/∂xk in the infinitesimal generator vκ. Combining (11.3),

(13.6), (13.10) and (13.11), proves that

dHω
k =

p∑

i,j=1

r∑

κ=1

Kκ
i [I(n+1)] (Djξ

k
κ)[I(1)] ωi ∧ ωj ,

where (Diξ
k
κ)[I(1)] is obtained by substituting the first order normalized differential invari-

ant into the total derivative Diξ
k
κ(z(1)) of the coefficient ξk

κ of the infinitesimal generator
vκ. Therefore, by (9.10), the commutation coefficients in (9.11) are explicitly given by

Ak
ij =

r∑

κ=1

Kκ
j [I(n+1)] (Diξ

k
κ)[I(1)] −Kκ

i [I(n+1)] (Djξ
k
κ)[I(1)] . (13.12)

Our fundamental recurrence formulae (13.7) also provide a resolution of the syzygy
problem for differential invariants. First, in the normalization context, the solution is
now trivial. According to our general construction, given a moving frame of order n, the
normalized differential invariants (11.7) provide a complete system of differential invari-
ants of order k ≥ n. Assume, for simplicity, that the normalization consists of setting
r = dimG components† of the nth order lifted invariants w(n) to be constant. Then the
remaining components will pull-back to functionally independent differential invariants.
Therefore, all syzygies among the normalized differential invariants (11.7) occur through
the normalization equations, and hence are of order at most n, the order of the moving
frame.

The more subtle question is to understand the syzygies among the differentiated in-
variants DJIν , arising from a generating system of differential invariants. If we choose the
generating system to be the nonconstant normalized differential invariants of order ≤ n+1,
then the resulting syzygies will be of two kinds. Those involving differential invariants of
order ≤ n will depend on the precise structure of the normalizations and the invariants
themselves. Once these are understood, the higher order syzygies are more regular. Before
attempting to formulate a general theorem, let us consider a simple example. Suppose

† In the more general situation where we normalize certain functional combinations of the

components of w(n), one must modify the subsequent constructions accordingly.
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our moving frame has order n and that the normalized differential invariant Iα
K of order

n = #K is constant. Suppose that the normalized differential invariants Iα
K,i and Iα

K,j of
order n+ 1 are not constant, and can be taken as part of the generating set of differential
invariants. Since the correction terms in (13.7) have order k for k ≥ n+ 1, we have

DjI
α
K,i = Iα

K,i,j +Mα
K,i,j , DiI

α
K,j = Iα

K,i,j +Mα
K,j,i,

where the correction terms Mα
K,i,j and Mα

K,j,i are differential invariants of order ≤ n + 1
that are not necessarily equal. Therefore, we deduce a syzygy between the differentiated
invariants

DjI
α
K,i −DiI

α
K,j = Mα

K,i,j −Mα
K,j,i,

where the right hand side is a differential invariant of order n+1. The constant normalized
differential invariant Iα

K is a “phantom differential invariant” that provides the seed for the
syzygy. A general syzygy theorem for differential invariants can now be straightforwardly
proved using these basic observations.

Definition 13.2. A phantom differential invariant is a constant normalized differ-
ential invariant.

Theorem 13.3. A generating system of differential invariants consists of a) all non-
phantom differential invariants J i and Iα coming from the non-normalized zeroth order
lifted invariants yi, vα, and b) all non-phantom differential invariants of the form Iα

J,i

where Iα
J is a phantom differential invariant.

Proof : The key remark is that the coefficients Kκ
j in the formulae (13.6) are all ei-

ther constant or one of the generating differential invariants mentioned in the theorem.
The invariantized vector field coefficients ϕα

K,κ, on the other hand, are of order at most
#K. Therefore, if Iα

K,j is a normalized differential invariant that does not belong to the
generating set, then rewriting the recurrence formula (13.7) as

Iα
K,j = DjI

α
K −Mα

K,j

expresses it in terms of the generating invariants and lower order invariants. A simple
induction completes the proof. Q.E.D.

Theorem 13.4. All syzygies among the differentiated invariants arising from the
generating system constructed in Theorem 13.3 are differential consequences of the follow-
ing three fundamental types:

(i) DjJ
i = δi

j +M i
j , when J i is non-phantom,

(ii) DJI
α
K = c+Mα

K,J , when Iα
K is a generating differential invariant, while Iα

J,K = c is a
phantom differential invariant, and

(iii) DJI
α
LK − DKI

α
LJ = Mα

LK,J −Mα
LJ,K , where Iα

LK and Iα
LJ are generating differential

invariants the multi-indices K ∩ J = ∅ are disjoint and non-zero, while L is an
arbitrary multi-index.

Remark : One can often use the syzygies to substantially reduce the generating sys-
tem of differential invariants. In such cases, one must accordingly modify the remaining
syzygies.
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Example 13.5. We now illustrate the preceding formulae with a nontrivial example.
Let M = R

3, with coordinates x1, x2, u. Consider the action of GL(2) defined by the order
zero invariants

y1 = αx1 + βx2, y2 = γx1 + δx2, v = (αδ − βγ)u = λu, (13.13)

where λ = αδ− βγ. This action plays a key role in the classical invariant theory of binary
forms, when u is a homogeneous polynomial, cf. [18]. The lifted contact-invariant coframe
and associated invariant differential operators are

η1 = dHy
1 = αdx1 + β dx2, E1 = λ−1(δD1 − γD2),

η2 = dHy
2 = γ dx1 + δ dx2, E2 = λ−1(−βD1 + αD2),

(13.14)

where Di is the total derivative with respect to xi. The lifted differential invariants are
thus vjk = (E1)

j(E2)
kv; in particular

v1 = δu1 − γu2, v2 = −βu1 + αu2, v11 =
δ2u11 − 2γδu12 + γ2u22

λ
,

v12 =
−βδu11 + (αδ + βγ)u12 − αγu22

λ
, v22 =

β2u11 − 2αβu12 + α2u22

λ
.

If we normalize using the cross-section

y1 = 1, y2 = 0, v1 = 1, v2 = 0, (13.15)

we are led to the first order moving frame

(
α β
γ δ

)
=

1

x1u1 + x2u2

(
u1 u2

−x2 x1

)
. (13.16)

This moving frame is well-defined on surfaces u = f(x, y) provided the relative invariant
x1u1 + x2u2 6= 0. (Different choices of cross-section lead to other types of constraints. For
example, if u 6= 0, then we could normalize v = 1 instead of, say, v2 = 0.) The resulting
normalized differential invariants are I (2) = (J1, J2, I, I1, I2, I11, I12, I22) = (σ(2))∗w(2),
where

J1 = 1, J2 = 0, I =
u

x1u1 + x2u2

, I1 = 1, I2 = 0,

I11 =
(x1)2u11 + 2x1x2u12 + (x2)2u22

x1u1 + x2u2

, I12 =
−x1u2u11 + (x1u1 − x2u2)u12 + x2u1u22

x1u1 + x2u2

,

I22 =
(u2)

2u11 − 2u1u2u12 + (u1)
2u22

x1u1 + x2u2

. (13.17)

The normalized coframe and associated invariant differential operators are

ω1 =
u1 dx

1 + u2 dx
2

x1u1 + x2u2

=
dHu

x1u1 + x2u2

,

ω2 =
−x2 dx1 + x1 dx2

x1u1 + x2u2

,

D1 = x1D1 + x2D2,

D2 = −u2D1 + u1D2.
(13.18)
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The invariant differential operators are well-known: D1 is the scaling process and D2

the Jacobian process in classical invariant theory. The prolonged infinitesimal generator
coefficient matrix and its invariantized counterpart are, up to second order,




x1 x2 0 0
0 0 x1 x2

u 0 0 u
0 0 −u2 u1

u2 −u1 0 0
−u11 0 −2u12 u11

0 −u11 −u22 0
u22 −2u12 0 −u22




,




1 0 0 0
0 0 1 0
I 0 0 I
0 0 0 1
0 −1 0 0

−I11 0 −2I12 I11
0 −I11 −I22 0
I22 −2I12 0 −I22




. (13.19)

The invariant linear relations




1 0
0 1
I11 I12
I12 I22



(
ω1

ω2

)
= −




1 0 0 0
0 0 1 0
0 0 0 1
0 −1 0 0







ζ1
H

ζ2
H

ζ3
H

ζ4
H


 =




−ζ1
H

−ζ3
H

−ζ4
H

ζ2
H


 , (13.20)

follow from (13.6) and the subsequent remarks. The left hand side in (13.20) is obtained
by pulling back the lifted contact-invariant one-forms

dHy
1 = η1, dHy

2 = η2, dHv1 = v11η
1 + v12η

2, dHv2 = v12η
1 + v22η

2,

corresponding to our choice (13.15) of normalizations; the matrix on the right hand side
is the minor consisting of first, second, fourth and fifth rows of the invariantized matrix
(13.19), again governed by the normalizations. We rewrite (13.20) in the matrix form




ζ1
H

ζ2
H

ζ3
H

ζ4
H


 =




−1 0
I12 I22
0 −1

−I11 −I12



(
ω1

ω2

)
. (13.21)

The coefficients Kκ
j in (13.6) are the entries of the coefficient matrix in (13.21). The

commutator between the two invariant differential operators,

[D1,D2] = −I12D1 + (I11 − 1)D2, (13.22)

now follows from our general formula (9.11), (13.12). Indeed, the (Diξ
k
κ)[I(1)] are obtained

by first computing the total derivatives of the independent variable coefficient matrix
(which consists of the first two rows of (13.19))

(
x1 x2 0 0
0 0 x1 x2

)

and then invariantizing by substituting the normalized differential invariants (13.17) for
the jet coordinates. In this particular case, the latter process is trivial since the total
derivatives are all either 1 or 0.

55



The correction terms to the recurrence formula can be easily obtained by multiplying
the invariantized matrix (13.19) by the coefficient matrix (13.21); the resulting matrix




1 0 0 0
0 0 1 0
I 0 0 I
0 0 0 1
0 −1 0 0

−I11 0 −2I12 I11
0 −I11 −I22 0
I22 −2I12 0 −I22







−1 0
I12 I22
0 −1

−I11 −I12


 =




−1 0
0 −1

−I(1 + I11) −II12
−I11 −I12
−I12 −I22

(1 − I11)I11 (2 − I11)I12
−I11I12 (1 − I11)I22

(I11 − 1)I22 −
− 2I2

12

−I12I22




.

(13.23)
contains the correction terms in (13.7) — the columns correspond to normalized differential
invariants and the rows to invariant differential operators. Specifically, we have

D1J
1 = δ11 − 1 = 0, D2J

1 = δ12 − 0 = 0,

D1J
2 = δ21 − 0 = 0, D2J

2 = δ22 − 1 = 0,

D1I = I1 − I(1 + I11) = 1 − I(1 + I11), D2I = I2 − I I12 = −I I12,
D1I1 = I11 − I11 = 0, D2I1 = I12 − I12 = 0,

D1I2 = I12 − I12 = 0, D2I2 = I22 − I22 = 0,

D1I11 = I111 + (1 − I11)I11, D2I11 = I112 + (2 − I11)I12,

D1I12 = I112 − I11I12, D2I12 = I122 + (1 − I11)I22,

D1I22 = I122 + (I11 − 1)I22 − 2I2
12, D2I22 = I222 − I12I22.

Here Iijk = (σ(1))∗vijk are the third order normalized differential invariants. An alter-
native method for computing the correction matrix (13.23) that avoids the intermediate
system (13.21) is to first perform a Gauss–Jordan column reduction on the invariantized
coefficient matrix (13.19) making the chosen normalization rows — in the present case
rows 1,2,4,5 — into an identity matrix, and then multiply by the pulled-back coefficient
matrix corresponding to the horizontal derivatives of the normalized lifted invariants, as
given on the left hand side of (13.20); the result will be minus the correction matrix. In
the present case, (13.23) is minus the matrix product




1 0 0 0
0 1 0 0
I 0 I 0
0 0 1 0
0 0 0 1

−I11 −2I12 I11 0
0 −I22 0 I11
I22 0 −I22 2I12







1 0
0 1
I11 I12
I12 I22


 . (13.24)

According to Theorem 13.3, we can take I, I11, I12, I22 as our generating system of
differential invariants. The third row of this system of identities produces the syzygies of
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the second type. Actually, this means that we can use I to generate I11, I12, leaving only
I22 as an additional fundamental invariant. There are three fundamental syzygies of the
third type:

D1I12 −D2I11 = −2I12,

D1I22 −D2I12 = 2(I11 − 1)I22 − 2I2
12,

D2
1I22 −D2

2I11 = 2I22D1I11 + (5I12 − 2)D1I12 + (3I11 − 5)D1I22 −
− (2I11 − 5)(I11 − 1)I12 + 4(I11 − 1)I2

12.

The final syzygy comes from extending our recurrence formulae on to the next order, by
appending the appropriate columns to the prolonged vector field coefficient matrix (13.19).
Using I to generate I11 and I12 will modify the syzygies accordingly.

14. Equivalence, Symmetry, and Rigidity.

We now reach the culmination of the paper. The fundamental problems that have
motivated the development of the theory of moving frames are equivalence and symmetry
of submanifolds under a Lie transformation group G, as introduced in Section 7. If G acts
freely on M , then, as we saw, the basic order zero theory, as described in Theorems 7.7
and 7.8, provides the solution. However, in the non-free case, we need to prolong in order
to make the group act (locally) freely. Since two submanifolds are equivalent under the
action of G on M if and only if their n-jets are equivalent under the prolonged action of
G(n) on Jn, we can then readily adapt our earlier results.

When we restrict the G(n)–coframe on Jn to a submanifold, the resulting linear de-
pendencies among the restricted one-forms lead to additional invariants. In the order zero
context, these invariants are not directly predicted by the moving coframe, but appear to
depend on the submanifold itself. An important fact is that, in the jet bundle context,
they are merely the restrictions of higher order differential invariants! Thus, even in the
order zero case, the jet bundle constructions lead to significant new information.

We start with the G(n)–coframe Γ(n) = {γ(n), I(n)} on Jn constructed in Theo-
rem 12.3. Let ι:X → M parametrize a submanifold S = ι(X), so that jnι:X → Jn

parametrizes the corresponding n-jet jnS. We assume that jnS lies in the domain of def-
inition of our chosen order n moving frame ρ(n), which implies that S is order n regular.
Let Ξ(n) = (jnι)

∗Γ(n) denote the restriction of the nth order coframe to S. As in the order
zero case, the one-form system Ξ(n) is overdetermined on X, and we need to reduce it
to an extended coframe. Now since jnι annihilates the contact forms, only the horizon-
tal components of the forms in Γ(n) will contribute to the one-forms in Ξ(n). Therefore,
the linear dependencies among these one-forms will arise from the linear dependencies
among the horizontal components of the one-forms in the G(n)–coframe. The one-forms
γ(n) = (σ(n))∗dJw(n) are, by definition, the pull-backs of the jet differentials of the lifted
invariants. We have already used the horizontal components dHy of the “independent vari-
able” lifted invariants to construct the contact-invariant coframe ω = (σ(n))∗dHy. The
remaining “dependent variable” lifted invariants will lead to additional contact-invariant
horizontal forms δ(n) = (σ(n))∗dHv

(n), which must be invariant linear combinations of the
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contact-invariant coframe ω. According to (13.2),

δα
K = (σ(n))∗dHv

α
K =

p∑

i=1

Iα
K,i ω

i, α = 1, . . . , q, #K ≥ 0. (14.1)

The coefficient Iα
K,i is the normalized differential invariant of order #K + 1. Therefore,

the linear dependencies among the horizontal forms γ
(n)
H = {ω, δ(n)} are the differential

invariants of order n+ 1. With this in mind, we make the following definition.

Definition 14.1. The nth order differential invariant coframe on Jn is the extended
horizontal coframe

∆(n) = {ω, I(n)} (14.2)

consisting of the contact-invariant coframe and the nth order normalized differential in-
variants.

Proposition 14.2. The horizontal components of the nth order moving coframe

Σ
(n)
H = {ζ(n)

H , dHI
(n), I(n)} or its normalized counterpart Γ

(n)
H = {γ(n)

H , I(n)} are invariantly
related to the differential invariant coframe ∆(n+1) = {ω, I(n+1)} of order n+ 1.

Proof : Formula (14.1) shows that Γ
(n)
H is invariantly related to ∆(n+1). Moreover,

since Σ(n) is invariantly related to Γ(n), the same is true for Σ
(n)
H . In particular, the fact

that dHI
(n) can be written as a linear combination of ω with (n + 1)st order differential

invariant coefficients is immediate from (9.7). Q.E.D.

We now restrict the coframes to a regular submanifold S = ι(X). Let Υ(n) =
{$, J (n)} = (jnι)

∗∆(n) denote the restriction of the differential invariant coframe to S.
Transversality implies that $ = (jnι)

∗ω will form a coframe on the parameter space X,
while J (n) = (jnι)

∗I(n) corresponds to the pull-back of the nth order normalized differential
invariants to X.

Proposition 14.3. Let S = ι(X) be a submanifold whose n jet lies in the domain
of definition of the given moving frame. Then Ξ(n) = (jnι)

∗Γ(n) is invariantly related to
the restricted (n+ 1)st order differential invariant coframe Υ(n+1) = (jn+1ι)

∗∆(n+1).

Remark : A key point is that, by construction, the invariant relation does not depend
on the particular submanifold S and hence we can replace Ξ(n) by Υ(n+1) without altering
the equivalence relations between different submanifolds.

If Υ(n+1) is not involutive, then we need to extend it by appending additional derived
invariants. A second key fact is that the derived invariants are merely the differential
invariants of the next higher order restricted to S. This is an immediate consequence of
(13.4) and (13.6).

Proposition 14.4. The kth order derived coframe (Υ(n+1))(k) for the restricted
differential invariant coframe Υ(n+1) is invariantly related to the coframe Υ(n+k+1).
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Remark : We can now interpret the additional invariants that arose in the order zero
construction — they are the differential invariants associated with the freely acting trans-
formation group on M .

Definition 14.5. The kth order differential invariant classifying manifold C(k)(S)
associated with a submanifold ι:X → M is the manifold parametrized by the normalized
differential invariants of order k, namely J (k) = I(k) ◦ jkι. The submanifold S is order k
regular if C(k)(S) is an embedded submanifold of its classifying space Z (k) (which can, in
fact, be identified with JkE).

Definition 14.6. The differential invariant order of S with respect to an nth order
moving frame ρ(n) is the minimal integer s ≥ n such that the extended coframe Υ(s) is
involutive. The differential invariant rank of S is t = rank Υ(s) = dim C(s)(S).

Remark : The differential invariant order defined here is slightly different from the
order defined earlier. For instance, if the (n + 1)st order differential invariants I(n+1)

provide a complete system of invariants on S, then S will have differential invariant order
n+1, but will be an order zero submanifold with respect to the restricted coframe Υ(n+1).

Theorem 14.7. Let S ⊂ M be a regular p-dimensional submanifold of differential
invariant rank t with respect to the transformation group G. Then its isotropy group GS

is a (p− t)-dimensional subgroup of G acting locally freely on S.

In particular, the maximally symmetric submanifolds are those of rank 0, where all
the differential invariants are constants. See [5, 14], for a general characterization of such
submanifolds as group orbits in the case when M = G/H is a homogeneous space.

In the fully regular case, the ranks tk = rank dJ (k) = dim C(k)(S) of the kth order
fundamental differential invariants on S are all constant for† k ≥ n, and satisfy

tn < tn+1 < tn+2 < · · · < ts = ts+1 = · · · = t ≤ p, (14.3)

where t is the differential invariant rank and s the differential invariant order. Generically, a
p-dimensional submanifold will have differential invariant order n equal to the stabilization
order of the group, provided there are at least p functionally independent differential
invariants of order ≤ n; if G admits less than p independent nth order differential invariants,
then the generic differential invariant order will be n + 1. According to (9.6), the latter
situation occurs only when

q

(
p+ n

n

)
< r = dimG ≤ p+ q

(
p+ n

n

)
= dimJn. (14.4)

If S is fully regular, then its differential invariant order is always bounded by either n+p−1
or, possibly, n + p; the latter case only occurs if all nth order differential invariants are
constant, and there is but one independent differential invariant appearing at each order
n + 1 ≤ k ≤ n + p. In this context, it is instructive to reconsider the higher order
submanifold discussed in Example 7.9.

† The differential invariant ranks for k < n will not play any significant role.
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Example 14.8. Consider the Lie group G = R
3 acting by translations on M =

R
3. For a moving frame of order zero, the generating differential invariants for surfaces

u = f(x, y) are just the derivatives ux, uy. Any nonplanar solution to the nonlinear

partial differential equation‡ uy = 1
2u

2
x will define a surface of rank 2 and differential

invariant order 2. (The function u(x, y) = −x2/2y discussed in Example 7.9 above is a
particular case.) Indeed, the second order differential invariants are uxx, uxy = uxuxx, and

uyy = u2
xuxx. The single independent invariant uxx is, however, not a function of the first

order invariant ux, since their Jacobian matrix is

∂(ux, uxx)

∂(x, y)
=

(
uxx uxy

uxxx uxxy

)
=

(
uxx uxuxx

uxxx uxuxxx + u2
xx

)
= u3

xx 6= 0,

since u is nonplanar. Thus one must use the third order differential invariant classifying
manifold to characterize such solutions.

Remark : The nonplanar solutions to the differential equation in Example 14.8 provide
examples of non-reducible partially invariant submanifolds, where we are using Ovsian-
nikov’s terminology, [22]. Ondich, [21], discusses conditions that a partially invariant
solution be “non-reducible”, meaning that it is not invariant under a (continuous) sub-
group of the symmetry group G, and hence has maximal rank p. In the moving frame
approach, then, one can completely characterize non-reducible partially invariant solu-
tions to partial differential equations as those whose graphs are submanifolds of higher
order and maximal rank.

The fundamental equivalence theorem for submanifolds under general transformation
group actions is a direct consequence of the corresponding Equivalence Theorem 7.2 for
submanifolds under free actions.

Theorem 14.9. Let S, S ⊂ M be regular p-dimensional submanifolds whose n-jets
lie in the domain of definition of a moving frame map ρ(n). Then S and S are (locally)
congruent, S = g · S if and only if they have the same differential invariant order s and
their classifying manifolds of order s+ 1 are identical: C(s+1)(S) = C(s+1)(S).

Finally, we discuss rigidity theorems for submanifolds under transformation groups.
These come in two varieties. Roughly speaking, a rigidity result says that, under certain
conditions, a submanifold is uniquely determined by its k-jet for some finite order k.

Definition 14.10. A submanifold S is order k congruent to a submanifold S at a
point z ∈ S if there is a group transformation g ∈ G such that S and g · S have order k
contact at the point z.

We shall call S order k congruent to S if this occurs for every z ∈ S. Note that the
group transformation g = g(z) may vary from point to point. If G(k) acts freely on Jk,
then the group transformation g(z) determining the contact is uniquely determined. The

‡ Any other first order nonlinear equation uy = F (ux) relating the two differential invariants
will also work.

60



first rigidity theorem, which generalizes results in Griffiths, [12], Green, [11], and Jensen,
[14], states that order k congruence implies congruence provided k is sufficiently large.
The rigidity order of S is the minimal k for which this applies. For example, the rigidity
order of a circle under the Euclidean group is two, since the only curves that are second
order congruent to a circle are translates of it. On the other hand, a generic curve in the
plane has rigidity order 3 under the Euclidean group.

Theorem 14.11. Let S ⊂ M be a regular p-dimensional submanifold which has
differential invariant order s with respect to a given moving frame. Then S has rigidity
order at most s+1. In other words, a submanifold S is order s+1 congruent to S at every
point z ∈ S if and only if S = g · S for a fixed g ∈ G.

Proof : Note first that S and Sg = g ·S have identical classifying manifolds. Moreover,

if S and Sg have order s+1 contact at a common point z, then their (s+1)–jets coincide,
and hence their order s+1 differential invariant classifying manifolds agree at the point z.
Therefore, the two submanifolds are order s+1 congruent at every point if and only if their
order s+1 differential invariant classifying manifolds are identical: C (s+1)(S) = C(s+1)(S).
Therefore, the result is an immediate consequence of Theorem 14.9. Q.E.D.

The simplest case is when the order of the moving frame equals the stabilization order
of the group G. Generically, the rigidity order of a regular submanifold will be either
n+ 1 or n+ 2, depending on whether (14.4) holds. Barring higher order singularities, the
maximal rigidity order will be n+ p+ 1. Jensen, [14], appears to assert that the rigidity
order is at most n + 1, but does not consider (non-generic) submanifolds of higher order,
as in Example 14.8, or having other types of singularities.

A second type of rigidity theorem shows that one can uniquely characterize the group
transformation mapping congruent submanifolds by knowing their order of contact.

Definition 14.12. A p-dimensional submanifold S ⊂ M is said to be order k rigid

if the only congruent submanifold S = g · S which has kth order contact with S at a point
is S itself.

In other words, if S = g · S, then the condition jkS|z0
= jkS|z0

at z0 ∈ S ∩ S implies

g ∈ GS and so S = S. The second rigidity theorem can now be stated.

Theorem 14.13. Let G act freely on Vn ⊂ Jn. Let S be an order n regular p-
dimensional submanifold which has differential invariant order s ≥ n. Then S is rigid of
order s+ 1.

Proof : We let ρ(n) be a moving frame defined in a neighborhood of S. Let S = g · S
have contact at order s + 1 at z0 ∈ S ∩ S. Let z

(s+1)
0 = js+1S|z0

= js+1S|z0
∈ Vs+1.

Congruence implies that S and S have identical differential invariant classifying manifolds
C(s+1)(S) = C(s+1)(S), which are parametrized by their (s+1)–jets. Theorem 5.16 implies
uniqueness of the group transformation g defining the congruence map once we specify

that it fix the common point z
(s+1)
0 . Finally, freeness of the action of G on Vs+1 implies

that g = e, which proves rigidity. Q.E.D.
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Remark : If G only acts locally freely on Vs+1, then Theorem 14.13 reduces to a local
rigidity result, i.e., (s+ 1)st order contact of S = g · S and S implies that the congruence
transformation g must lie in a discrete subgroup of G. However, since the higher order
differential invariants completely determine the higher order jets of the submanifolds, one
can eliminate the discrete ambiguity provided G(k) acts freely on the appropriate subset
of Jk for k sufficiently large.

Example 14.14. Consider the translation action z 7→ z + a of G = R
2 on M = R

2.
The derivative coordinates ux, uxx, uxxx, . . . provide a complete system of differential
invariants. The classifying curve of a generic curve u = f(x) is parametrized by (ux, uxx).
However, singularities may require us to prolong to higher order in order to assure rigidity.
For example, the curve C given by u = x4 − 2x2 has second order contact at z0 = (1, 0)
with its translate by a = (2, 0). Moreover, the first two differential invariants {ux, uxx}
have rank 1 on C. However, C is not regular of differential invariant order 2 because its
second order classifying curve intersects itself at the point ux = 0, uxx = 8, which permits
second order non-rigidity. The curve C is locally rigid at order 1, and completely rigid at
order 3.

15. Examples.

We now demonstrate the preceding theory with several additional examples. Only
space precludes discussing a more extensive range of examples in this paper. However, all
of the classical examples, including Euclidean, affine and projective geometry, as well as
an extensive variety of new transformation group actions (e.g., conformal geometry) not
previously treated by the classical moving frame techniques, can be directly handled by
our regularized techniques.

Example 15.1. We return to the multiplier representation

(x, u) 7−→
(
αx+ β

γx+ δ
,

u

γx+ δ

)
, A =

(
α β
γ δ

)
∈ GL(2), (15.1)

of the general linear group GL(2) on R
2 that was studied in depth in part I, [9], and plays

a fundamental role in classical invariant theory and the calculus of variations. The right
lifted invariants of order zero are just

y =
αx+ β

γx+ δ
, v =

u

γx+ δ
. (15.2)

Choosing y as the lifted independent variable, its jet differential

η = dJy =
αδ − βγ

(γx+ δ)2
dx (15.3)

determines the lifted horizontal invariant form. The corresponding invariant differential
operator is

E = Dy =
(γx+ δ)2

αδ − βγ
Dx. (15.4)
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Applying E recursively to the dependent lifted invariant v leads to the lifted differential
invariants vk = Ekv, the first few of which are

vy =
(γx+ δ)ux − γu

αδ − βγ
, vyy =

(γx+ δ)3uxx

(αδ − βγ)2
,

vyyy =
(γx+ δ)5uxxx + 3γ(γx+ δ)4uxx

(αδ − βγ)3
,

vyyyy =
(γx+ δ)7uxxxx + 8γ(γx+ δ)6uxxx + 12γ2(γx+ δ)5uxx

(αδ − βγ)4
.

(15.5)

These formulae coincide with the transformation laws for the prolonged group action. On
the regular subdomain V = {uuxx > 0} ⊂ J2, we can choose the cross-section defined by
the normalizations

y = 0, v = 1, vy = 0, vyy = 1. (15.6)

Solving for the group parameters gives

α =
√
uuxx, β = −x

√
uuxx, γ = ux, δ = u− xux. (15.7)

These serve to parametrize a right GL(2) moving frame of order two:

ρ(2)(x, u, ux, uxx) =

(√
uuxx −x

√
uuxx

ux u− xux

)
. (15.8)

The left moving frame computed in [9] is obtained by inverting:

ρ̃ (2)(x, u, ux, uxx) = ρ(2)(x, u, ux, uxx)−1 =
1√
u3uxx

(
u− xux x

√
uuxx

−ux

√
uuxx

)
. (15.9)

Substituting the moving frame normalizations (15.7) into the higher order lifted differential
invariants leads to the normalized differential invariants; the first nonconstant ones are
obtained by normalizing vyyy and vyyyy:

I =
uuxxx + 3uxuxx√

uu3
xx

, J =
u2uxxxx + 8uuxuxxx + 12u2

xuxx

uu2
xx

. (15.10)

Incidentally, the Replacement Theorem 10.3 implies that we can also write I and J using
the same formulae in the lifted invariants, e.g., I = v−1/2v−3/2

yy (vvyyy +3vyvyy). Applying
the normalizations (15.7) to the lifted horizontal form (15.3) leads to the contact-invariant
one-form and the associated invariant differential operator:

ω =

√
uxx

u
dx, D =

√
u

uxx

Dx. (15.11)

The jet differentials of the second order lifted invariants are

dJy =
αδ − βγ

(γx+ δ)2
dx ,

dJv =
du

γx+ δ
− γu dx

(γx+ δ)2
,

dJvy =
(γx+ δ) dux − γ du+ γux dx

αδ − βγ
,

dJvyy =
(γx+ δ)3 duxx + 3γ(γx+ δ)2uxx dx

(αδ − βγ)2
.

(15.12)
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The right-invariant Maurer–Cartan forms on GL(2) are the entries of the matrix product
dA ·A−1, namely

µ1 =
δ dα− γ dβ

αδ − βγ
, µ2 =

−β dα+ αdβ

αδ − βγ
,

µ3 =
δ dγ − γ dδ

αδ − βγ
, µ4 =

−β dγ + αdδ

αδ − βγ
.

(15.13)

The eight one-forms (15.12), (15.13) form a coframe on B(2) = GL(2)×J2 whose symmetry
group coincides with the right lifted action of GL(2). The group differentials can be written
as invariant linear combinations of the Maurer–Cartan forms:

dGy = y µ1 + µ2 − y2 µ3 − y µ4, dGv = −yv µ3 − v µ4,

dGvy = −vy µ
1 + (yvy − v)µ3, dGvyy = −2vyy µ

1 + 3yvyy µ
3 + vyy µ

4,
(15.14)

and can replace the Maurer–Cartan forms in the lifted coframe. The coefficients in (15.14)
are given directly by formula (3.8). As in Example 6.7, we write down the coefficient
matrix corresponding to the prolonged infinitesimal generators of GL(2); we find, to order
4, 



x 1 −x2 −x
0 0 −xu −u

−ux 0 xux − u 0
−2uxx 0 3xuxx uxx

−3uxxx 0 5xuxxx + 3uxx 2uxxx

−4uxxxx 0 7xuxxxx + 8uxxx 3uxxxx



. (15.15)

The lifted version is obtained by replacing x and u by y and v:




y 1 −y2 −y
0 0 −yv −v

−vy 0 yvy − v 0
−2vyy 0 3yvyy vyy

−3vyyy 0 5yvyyy + 3vyy 2vyyy

−4vyyyy 0 7yvyyyy + 8vyyy 3vyyyy



. (15.16)

The first four rows of (15.16) then give the coefficients in (15.14). The normalized matrix




0 1 0 0
0 0 0 −1
0 0 −1 0
−2 0 0 1
−3I 0 3 2I
−4J 0 8I 3J




(15.17)

is obtained by substituting (15.6), (15.10) into (15.16); in other words, (15.17) is the
invariantization of the infinitesimal generator coefficient matrix (15.15).

Since GL(2) acts transitively on the open subset of J2 under consideration, we can
find the moving coframe on J2 either by normalizing the jet differentials (15.12) or the

64



Maurer–Cartan forms (15.13). The former become γ = (ρ(2))∗dJw, so that

γ1 = (σ(2))∗dJy =

√
uxx

u
dx,

γ2 = (σ(2))∗dJv =
du− ux dx

u
,

γ3 = (σ(2))∗dJvy =
dux − uxx dx√

uuxx

+
ux(du− ux dx)√

u3uxx

+

√
uxx

u
dx,

γ4 = (σ(2))∗dJvy =
duxx − uxxx dx

uxx

+
uuxxx + 3uxuxx

uxx

dx,

(15.18)

where we have explicitly written out the contact and horizontal components, the lat-
ter being invariant linear combinations of the invariant one-form ω. Indeed, in view of
(15.6), (15.10),

γ1
H = (σ(2))∗dHy = ω,

γ2
H = (σ(2))∗dHv = (σ(2))∗(vydHy) = 0,

γ3
H = (σ(2))∗dHvy = (σ(2))∗(vyydHy) = ω,

γ4
H = (σ(2))∗dHvyy = (σ(2))∗(vyyydHy) = I ω.

(15.19)

On the other hand, substituting (15.17) in the general identity (6.4) produces the explicit
linear dependencies:

γ1 = −ζ2, γ2 = ζ4, γ3 = ζ3, γ4 = 2ζ1 − ζ4, (15.20)

Combining (15.19), (15.20) yields the corresponding formulae for the horizontal compo-
nents of the moving coframe:

ζ1
H = 1

2I ω, ζ2
H = −ω, ζ3

H = ω, ζ4
H = 0, (15.21)

reconfirming our moving coframe computation in part I.

Substituting (15.17), (15.21) into the general formula (13.7), (13.8), produces the
explicit formula connecting the normalized and derived differential invariants. The easiest
way to compute the correction terms is to multiply the matrix (15.17) by the column vector(

1
2I,−1, 1, 0

)T
whose entries are given in (15.21); the result is a column vector

(
1, 0, 1,−1 − I, 3 − 3

2I
2, 8I − 2IJ

)T

whose entries are the correction terms. (Alternatively, one can use column operations as
in Example 13.5.) For example, the last two entries imply

DI = J − 3
2I

2 + 3, DJ = K − 2IJ + 8, (15.22)

where K = (σ(2))∗vyyyyy is the fifth order normalized differential invariant. Note that we
can iterate to find higher order correction terms, e.g.,

D2I = DJ − 3I DI = K − 5IJ + 9
2I

3 − 9I + 8.
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Example 15.2. Consider the intransitive action of the orthogonal group O(3) on
surfaces in three-dimensional space M = R

3. Assume that the surface is given as the graph
of a function u = f(x1, x2). The order zero invariants are



y1

y2

v


 = R



x1

x2

u


 , R = (Ri

j) ∈ O(3). (15.23)

The lifted contact-invariant coframe and associated invariant differential operators are

(
η1

η2

)
=

(
R1

1 +R1
3u1 R1

2 +R1
3u2

R2
1 +R2

3u1 R2
2 +R2

3u2

) (
dx1

dx2

)
,

(
E1

E2

)
=

(
R1

1 +R1
3u1 R1

2 +R1
3u2

R2
1 +R2

3u1 R2
2 +R2

3u2

)−T (
D1

D2

)
.

(15.24)

The lifted invariants are vjk = (E1)
j(E2)

kv; in particular

(
v1
v2

)
=

(
R1

1 +R1
3u1 R1

2 +R1
3u2

R2
1 +R2

3u1 R2
2 +R2

3u2

)−T (
R3

1 +R3
3u1

R3
2 +R3

3u2

)
.

The normalization
y1 = 0, v1 = 0, v2 = 0, (15.25)

leads to a particularly simple first order moving frame. Introduce the column vectors

z = (x1, x2, u)
T , n =

N

|N | =
(−u1,−u2, 1)

T

√
1 + u2

1 + u2
2

,

which respectively define the point on the surface, and the corresponding unit normal.
Then

R = (t t̂ n)T , where t =
z ∧ n
| z ∧ n | , t̂ = n ∧ t =

z − (z · n)n

| z ∧ n | , (15.26)

define distinguished, orthogonally equivariant, unit tangent vectors. The moving frame
(15.26) applies to surfaces provided that the unit normal is not parallel to the point z.
Pulling back the remaining lifted invariants leads to the first order differential invariants

J = (σ(1))∗y2 =
(z · n)2 − | z |2

| z ∧ n | = −| z ∧ n | = −
√

| z |2 − (z · n)2,

I = (σ(1))∗v = z · n.
(15.27)

(It’s interesting that we don’t obtain the invariant |z| directly; it is of course a function of
the fundamental invariants (15.27).)

The contact-invariant coframe and invariant differential operators are obtained by
pulling back the horizontal differentials of the yi, so

ω = Adx,

D = A−T D,
where A =

(
t · t1 t · t2
t̂ · t1 t̂ · t2

)
. (15.28)
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Here t1 = (1, 0, u1), t2 = (0, 1, u2) are the coordinate tangent vectors to the surface, and A
is the transpose of their coefficient matrix with respect to the moving frame tangent vectors
t, t̂. A generating system of differential invariants requires the corresponding normalized
second order invariants:

(
I11 I12
I12 I22

)
=

1

|N | D
2u =

A−T (∇2u)A−1

√
1 + u2

1 + u2
2

. (15.29)

Here ∇2u is the usual Hessian matrix of u, so D2u represents an “equivariant Hessian”.
However, using (13.7), the recurrence relations (or syzygies)

D1J = I I12, D2J = 1 + I I22, D1I = −J I12, D2I = −J I22,

show that only I, J , and I11 are required to form a generating system of differential
invariants.

Example 15.3. Consider the action of the rotation group SO(3) on M = R
4 corre-

sponding to the lifted zeroth order invariants

y = Rx, v = u with R ∈ SO(3), (15.30)

where y = (y1, y2, y3), x = (x1, x2, x3). In this case, the differential invariants were
found in [18; Chapter 5] by an ad hoc approach; the moving frame method allows us
to be systematic. The lifted invariant one-forms and corresponding invariant differential
operators are

ηi = dHy
i =

3∑

j=1

Ri
j dx

j , Ei =

3∑

j=1

Ri
j Dj i = 1, 2, 3.

The lifted invariants are then

yi =
3∑

j=1

Ri
jx

j , v = u, vi =
3∑

j=1

Ri
juj , vij =

3∑

k,l=1

Ri
kR

j
l ukl, · · · .

To determine a first order moving frame, we consider the cross-section

y2 = 0, y3 = 0, v3 = 0. (15.31)

The normalization equations (15.31) can be solved provided x ∧ ∇u 6= 0, where ∇u =
(u1, u2, u3). The solution is R = (a b c)T , where the column vectors

a =
x

|x | , b = a ∧ c =
(x · ∇u)x− |x |2∇u

|x ||x ∧∇u | , c =
x ∧∇u
|x ∧∇u | , (15.32)

define a rotationally equivariant orthonormal frame. The resulting first order invariants
are

J1 = |x |, J2 = J3 = 0, I = u, I1 =
x · ∇u
|x | , I2 = −|x ∧∇u |

|x | , I3 = 0.

(15.33)

67



Of course, one can eliminate the denominators since they are invariant themselves. The
corresponding contact-invariant coframe and invariant differential operators are

ω̃1 = x · dx, ω̃2 =
[
(x · ∇u)x− |x |2∇u

]
· dx, ω̃3 = (x ∧∇u) · dx,

D̃1 = x · D, D̃2 = ∇u · D, D̃3 = (x ∧∇u) · D,
(15.34)

where the tildes indicate that we have dropped the invariant denominators arising from a
direct pull-back via (15.32). We leave it to the reader to deduce the commutator formulae.
A complete generating system of differential invariants requires second order invariants:

I11 = xT (∇2u)x, I12 = xT (∇2u)∇u, I13 = xT (∇2u) (x ∧∇u),
I22 = ∇uT (∇2u)∇u, I23 = ∇uT (∇2u) (x ∧∇u), I33 = (x ∧∇u)T (∇2u) (x ∧∇u).

(15.35)
However, using either the recurrence relations (keeping in mind that we modified the
invariant differential operators and second order invariants from their normalized versions)
or directly computing, we see that only three differential invariants,

J1 = |x |, I = u, I33 = (x ∧∇u)T (∇2u) (x ∧∇u),
are required to generate all the rest.

16. Partial Regularization.

The one draw-back to the regularized method as presented so far is that one needs to
compute a sufficient number of higher order lifted differential invariants before commencing
the normalization procedure. This can be quite computationally intensive — for instance,
in the case of projective geometry of curves in the plane, cf. [6], one needs to prolong
to sixth order derivatives in order to specify a complete set of normalizations. In the
classical Cartan approach, as well as our earlier method of moving coframes, cf. [9], one
avoids having to to perform a complete prolongation before starting to normalize. A
similar option exists in the regularized method; one can, provided some care is taken,
normalize lower order lifted invariants by solving for some of the group parameters, and
then using these simplified expressions to compute higher order, partially regularized lifted
invariants. The optimal strategy is to normalize globally defined lifted invariants, but
regularize locally defined ones. This allows one to construct, with a minimal amount of
computation, a partially regularized moving frame that applies to all submanifolds. The
full normalization can then be accomplished for particular classes of submanifolds satisfying
appropriate regularity conditions.

An essential complication is that the lifted invariant differential operators that are used
to construct the higher order invariants cannot be directly normalized ! Indeed, unlike their
fully lifted or their fully normalized counterparts, partially normalized invariant differential
operators will often contain additional terms involving derivatives with respect to the
remaining group parameters. As pointed out by I. Anderson (personal communication), the
additional terms can be interpreted as coming from the reduction of the flat connection on
the regularized bundle to the appropriate partially normalized principal subbundle. These
terms are correctly predicted by the moving coframe approach, but are less transparent
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when using a direct approach based on the lifted invariants. The resulting theory has
yet to be fully developed, and lack of space precludes a detailed treatment in the present
paper.

We shall content ourselves with treating one final illustrative example, that of curves
in the plane under the special affine group; see [9] for details. We shall demonstrate how
a regularized version of our moving coframe method can be used to perform a globally
defined partial regularization that includes nonconvex curves. Also, for variety, and since
the classical results are in terms of the left moving frame, we will use the left regularized
action in this example. Let SA(2) = SL(2) n R

2 act on M = R
2 according to

g · (x, u) = (αx+ βu+ a, γx+ δu+ b), αδ − βγ = 1. (16.1)

The zeroth order left lifted invariants are the components of g−1 · (x, u), i.e.,

y = δ(x− a) − β(u− b), v = −γ(x− a) + α(u− b). (16.2)

In the fully regularized approach, we compute the higher order lifted invariants by succes-
sively differentiating v with respect to y using the lifted invariant differential operator

E =
1

δ − uxβ
Dx (16.3)

associated with the invariant horizontal form η = dHy = (δ − βux)dx. The first few are

vy = Ev = −γ − αux

δ − βux

, vyy = Evy = − uxx

(δ − βux)3
,

vyyy = Evyy = − (δ − βux)uxxx + 3βu2
xx

(δ − βux)5
,

vyyyy = Evyyy = −uxxxx(δ − βux)2 + 10uxxuxxxβ(δ − βux) + 15u3
xxβ

2

(α+ βux)7

By choosing the cross-section {(0, 0, 0, 1, 0)} ⊂ J3 we obtain the classical equi-affine moving
frame

β = −1

3
u−5/3

xx uxxx, α = u−1/3
xxx , γ = −uxu

−1/3
xx , a = x, b = u. (16.4)

The first differential invariant is found by applying the moving frame normalizations to
the next lifted invariant vyyyy, leading to the equi-affine curvature

κ =
3uxxuxxxx − 5u2

xxx

3u
8/3
xxx

. (16.5)

In the partial normalization approach, we try to normalize lifted invariants as they
appear, and thereby avoid the long computations required to initially produce the general
higher order lifted invariants. For example, we can normalize the zeroth order lifted in-
variants y = v = 0 by setting a = x, b = u. In the moving coframe method, we substitute
these normalizations into the independent left invariant Maurer–Cartan forms

µ1 = δ dα− β dγ, µ2 = δ dβ − β dδ, µ3 = αdγ − γ dα,

ν1 = δ da− β db, ν2 = −γ da+ αdb.
(16.6)
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The linear dependency between the horizontal components

ν1
H = (δ − βux) dx, ν2

H = (−γ + αux) dx,

produces the first order lifted invariant vy, which can, of course, be constructed directly.

Normalizing ν2
H = 0 produces the partial normalizations

a = x, b = u, γ = αux, δ = βux +
1

α
, (16.7)

the final formula being a consequence of unimodularity. The partially normalized Maurer–
Cartan forms

ν1 = α−1 dx− β(du− ux dx), ν2 = α(du− ux dx),

include the basic invariant contact form, while

ν1
H = ω = α−1 dx (16.8)

is a contact-invariant horizontal form. Now, the key complication is that even though
one might be tempted to directly normalize the invariant differential operator (16.3), the

resulting total differential operator Ê = αDx, which is dual to the horizontal form (16.8),

is not an invariant differential operator ! In other words, applying Ê to the higher order
partially normalized differential invariants does not produce lifted differential invariants.
For example, the linear dependency between the horizontal component of µ3 = α2 dux and
ω leads to the second order partially normalized differential invariant

J = α3uxx,

which agrees with the reduction of the lifted invariant vyy under the partial normalizations

(16.7). However, αDxJ = α4uxxx does not agree with the reduction of vyyy under (16.7),
which is

K = α4uxxx + 3α5βu2
xx. (16.9)

Indeed, α4uxxx is not even a lifted invariant! Thus we cannot use the directly normal-
ized total differential operator to compute higher order partially normalized invariants.
One resolution of this difficulty relies on adapting the moving coframe method, [9]. The
remaining partially normalized Maurer–Cartan forms are

µ1 = α−1 dα− αβ dux, µ2 = −α−2β dα+ α−1 dβ − β2 dux, µ3 = α2dux. (16.10)

If L(α, β, x, u(n)) is any function, then

dL ≡ (DxL) dx+ Lα dα+ Lβ dβ ≡ (αDxL+ βJLα)ω + (αLα − βLβ)µ1 + αLβµ
2,

where ≡ indicates that we have omitted the unimportant vertical (contact) components.
We conclude that if L is any lifted invariant, then so are

DL = αDxL+ βJLα = αDxL+ α3βuxxLα,

F1(L) = αLα − βLβ , F2(L) = αLβ .
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For example, DJ = K, F1J = 3J , F2J = 0, while

DK = L = α5uxxxx + 10α6βuxxuxxx + 15α7β2u3
xx, F1K = 5K, F2K = 10JK,

where L is obtained by substituting (16.7) into vyyyy. Therefore, higher order partially nor-
malized differential invariants are given by successively applying the invariant differential
operator

D = αDx + βJ∂α = αDx + α3β uxx∂α (16.11)

to the fundamental invariant J = α3uxx. (Since the operators F1 = α∂α − β∂β and
F2 = α∂β preserve the order of differential invariants, they will not produce anything
new.) Note the appearance of additional “connection terms” involving derivatives with
respect to the remaining group parameters in (16.11); these have no counterpart in either
the fully lifted theory or the fully normalized version. They can be interpreted as arising
from the total derivative component of the reduction of the flat connection on B(∞), to
the subbundle specified by the normalizations (16.7). As usual, further reductions rely
on imposing genericity assumptions on the curve. In the standard case, one assumes that
uxx 6= 0, which allows us to perform the non-global normalization J = 1, K = 0, leading
to the standard moving frame (16.4). See [9] for further details.

17. Conclusions.

In this paper we have provided a general theoretical foundation for the method of
moving frames for finite-dimensional Lie transformation groups. The regularization proce-
dure is also of great practical applicability, and gives a powerful tool for investigating the
differential invariants, equivalence and symmetry properties of submanifolds under quite
general transformation groups. Further applications that warrant further research and
development include:

(1) An immediate application of the moving frame method would be to the classification
of the differential invariants associated with many of the transformation groups
arising in physics. As remarked in [18], to date such classifications have not been
completed, even for some of the most fundamental groups of physical importance.

(2) In [11], M. Green gives various intriguing numerical formulae for the number of
differential invariants for curves in a homogeneous space. These formulae were
generalized in [18], but the extension to surfaces and higher dimensional sub-
manifolds remains open. The resolution of the syzygy problem given here should
provide insight into resolving such generalizations.

(3) The completion of the theory of partial regularization of Section 16 and the determi-
nation of explicit connection formulae would greatly aid in the practical application
of the method to concrete problems.

(4) The variational tricomplex given by the operators dH , dV and dG on the regularized
bundle could have important applications to the study of differential equations,
variational problems, and conservation laws under the action of symmetry groups,
and thus deserves a detailed investigation.

(5) Applications to Ovsiannikov’s method of partially invariant solutions using the re-
marks after Example 14.8 appear to be quite promising.
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(6) The commutation formulae and syzygy classifications will have important applica-
tions to Lisle’s “frame method” for symmetry classification of partial differential
equations, [15].

(7) An inductive approach to complicated equivalence problems was described in [18],
and is based on the solution to a simpler problem based on a subgroup of the
full group. Lisle, [15], successfully uses an inductive approach to determining the
invariant differential operators, which indicates that a general implementation of
inductive methods for moving frames would not be difficult. Inductive formulae
have the advantage of expressing invariant quantities for the larger group in terms
of those associated with the subgroup.

(8) Finally, a theoretical justification of the moving frame method for infinite pseudo-
groups, as illustrated in [9], corresponding to the finite-dimensional theory de-
scribed here, would be of great significance. Such a theory would, we believe, be
an important aid in further developing the general theory and applications of Lie
pseudo-groups.
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Gauthier–Villars, Paris, 1953, pp. 1311–1334.

[9] Fels, M., and Olver, P.J., Moving coframes. I. A practical algorithm, Acta Appl.

Math. 51 (1998), 161–213.

[10] Gardner, R.B., The Method of Equivalence and Its Applications, SIAM,
Philadelphia, 1989.

[11] Green, M.L., The moving frame, differential invariants and rigidity theorems for
curves in homogeneous spaces, Duke Math. J. 45 (1978), 735–779.

[12] Griffiths, P.A., On Cartan’s method of Lie groups and moving frames as applied to
uniqueness and existence questions in differential geometry, Duke Math. J. 41

(1974), 775–814.

[13] Husemoller, D., Fiber Bundles, McGraw–Hill, New York, 1966.

[14] Jensen, G.R., Higher order contact of submanifolds of homogeneous spaces, Lecture
Notes in Math., No. 610, Springer–Verlag, New York, 1977.

[15] Lisle, I., Equivalence Transformations for Classes of Differential Equations,
Ph.D. Thesis, University of British Columbia, Vancouver, 1992.

[16] Olver, P.J., Symmetry groups and group invariant solutions of partial differential
equations, J. Diff. Geom. 14 (1979), 497–542.

[17] Olver, P.J., Applications of Lie Groups to Differential Equations, Second Edition,
Graduate Texts in Mathematics, vol. 107, Springer–Verlag, New York, 1993.

[18] Olver, P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press,
Cambridge, 1995.

[19] Olver, P.J., Non-associative local Lie groups, J. Lie Theory 6 (1996), 23–51.

73



[20] Olver, P.J., Singularities of prolonged group actions on jet bundles, preprint,
University of Minnesota, 1998.

[21] Ondich, J., A differential constraints approach to partial invariance, Euro. J. Appl.

Math. 6 (1995), 631–638.

[22] Ovsiannikov, L.V., Group Analysis of Differential Equations, Academic Press, New
York, 1982.

[23] Sternberg, S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs,
N.J., 1964.

[24] Thomas, T.Y., The Differential Invariants of Generalized Spaces, Chelsea Publ. Co.,
New York, 1991.
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