
Math. Ann. 308, 701–732 (1997)

On relative invariants

Mark Fels?, Peter J. Olver??

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE,
Minneapolis, MN 55455, USA (e-mail: fels@math.umn.edu; olver@ima.umn.edu)

Received: 20 January 1996 / Revised version: 23 April 1996

Mathematics Subject Classi�cation (1991): 13A50, 14D25, 22E45, 53C05,
54H15, 58D15

1 Introduction

This paper is concerned with the classi�cation of relative invariants for trans-
formation group actions on manifolds. Classically an invariant (or absolute
invariant) of a transformation group is a function whose value is una�ected by
the group transformations. A simple example is provided by the area function,
which is invariant under the special a�ne group consisting of area-preserving
transformations. The classi�cation of invariants of regular Lie group actions
is well known, being a direct consequence of the general Frobenius Theorem,
cf. [25]. Our interest is in a slight, but important generalization, where consid-
erably less is known. A relative invariant of a transformation group is a func-
tion whose value is multiplied by a certain factor, known as a multiplier, under
the group transformations. For example, under the full a�ne group, area is no
longer invariant, but is scaled according to the determinantal multiplier, and
hence de�nes a relative invariant. Ordinary invariants can be viewed as �xed
points of the induced representation of the transformation group on the space
of real-valued functions on the underlying manifold. Similarly, relative invari-
ants are �xed points of an associated multiplier representation, cf. [2, 22]. The
general classi�cation problem for relative invariants is of fundamental impor-
tance in a variety of areas, ranging from classical invariant theory, [12, 32], to
quantum mechanics, [33, 11], to the theory of special functions, [22, 30], to
computer vision, [23], to the study of di�erential invariants, [25].
Additional impetus for this study comes from the observation that many

other types of invariant geometric and algebraic objects can be viewed as cer-
tain relative invariants, lending further importance to our results. These include
invariant vector �elds and di�erential forms, including invariant volume forms,
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[3], invariant frames and coframes, [25], invariant metrics, [28], invariant dif-
ferential operators on symmetric spaces, [14, 15, 29], and so on. Indeed, we
can identify a multiplier representation with a bundle action of the transforma-
tion group on a vector bundle, and the relative invariants then correspond to
group-invariant sections of the bundle; the aforementioned cases are all par-
ticular types of tensor bundle actions. Unlike the preceding geometric objects,
invariant connections, also of great interest to geometers, [17, 28], are associ-
ated with a generalization of the underlying multiplier representation, which we
name an inhomogeneous multiplier representation. We show how this general-
ization can be readily treated using the same general framework. An additional
class of important applications arises in the theory of prolongation of trans-
formation group actions to jet bundles, which lies at the heart of Lie’s theory
of symmetry groups of di�erential equations, cf. [24]. The invariant di�eren-
tial operators which arise in the theory of di�erential invariants, cf. [25], and
the group-invariant arc length and=or volume elements can all be characterized
as suitable relative invariants for the prolonged group action. Further applica-
tions to symmetry reduction and group-invariant solutions of partial di�erential
equations can be found in [1].
Remarkably, despite this vast wealth of immediate applications, we are

not aware of any systematic investigation into the general theory of relative
invariants that appears in the literature. Of course, some results, principally
dealing with particular types of relative invariants such as invariant metrics, are
well known. Nevertheless, the general classi�cation result for relative invariants,
along the lines of the Frobenius theorem for absolute invariants, does not appear
to be known.
In the paper, we generalize the aforementioned theorem, and completely

solve the general classi�cation problem for relative invariants of regular multi-
plier representations, proving a new algebraic formula that speci�es their precise
number. A special case of this general theorem, governing the existence of
a complete system of relative invariants, appears in the recent book by the
second author, [25; Theorem 3.36]. The broad range of applicability of our
theorem is illustrated with a detailed treatment of several important applica-
tions. In particular, we establish a completely geometric condition for the ex-
istence of invariant vector �elds. The paper concludes with a discussion of the
applications to invariant connections, along with some illustrative examples.

2 Transformation groups and multiplier representations

We begin with a brief review of some basic terminology from the theory of
transformation groups; we refer the reader to [25] for the details. We will
be considering smooth actions of Lie groups on smooth manifolds. We will
state our results for real Lie group actions, although they are equally valid
in the complex analytic category. Also, for expedience, we shall assume that
the group actions are globally de�ned, although all of our results can, provided
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su�cient care is taken, be formulated and proved for local transformation group
actions.
Let G be a transformation group acting on a manifold M . Since we

will often be applying in�nitesimal methods, we will usually require that G
be connected. The group action is called semi-regular if all its orbits have
the same dimension. The action is called regular if, in addition, each point
x∈M has arbitrarily small neighborhoods whose intersection with each orbit is
a connected subset thereof. The group action is called transitive if the only
orbit is M itself; in this case we can identify M with a homogeneous
space G=H .
The isotropy subgroup of a subset S ⊂M is the subgroup GS = {g ∈ G|

g · S ⊂ S} consisting of all group elements g which �x S. A transformation
group acts freely if the isotropy subgroup of each point is trivial, so Gx = {e}
for all x∈M . The action is locally free if Gx is a discrete subgroup of G for all
x∈M , or, alternatively, that the orbits of the action have the same dimension
as G itself (and hence can be locally identi�ed with a neighborhood of the
identity in G with G acting via left multiplication).
A transformation group acts e�ectively if di�erent group elements have

di�erent actions, so that g · x = h · x for all x ∈M if and only if g = h. The
e�ectiveness of a group action is measured by its global isotropy subgroup
G0 =

⋂
x∈M Gx = {g | g · x = x for all x ∈ M}, which is a normal Lie sub-

group of G. Thus, G acts e�ectively if and only if G0 = {e}; slightly more
generally, G acts locally e�ectively if G0 is a discrete subgroup of G. There is
a well-de�ned, e�ective action of the quotient group Ĝ = G=G0 on M , which
“coincides” with that of G, in the sense that g; g̃ ∈ G have the same action
on M , so g · x = g̃ · x for all x ∈ M , if and only if they have the same
image in Ĝ, so g̃ = g · h for some h ∈ G0. We say that a group acts e�ec-
tively freely if and only if Ĝ acts freely; this is equivalent to the statement that
every local isotropy subgroup equals the global isotropy subgroup: Gx = G0 for
all x∈M .
Let U be a �nite-dimensional vector space. Given a transformation group

G acting on a manifold M; there is a naturally induced representation of G on
the space F(M;U ) of smooth U -valued functions F : M → U , where g ∈ G
maps the function F to the function F = g · F de�ned by F(�x) = F(g−1 · �x).
Our principal interest lies in an important generalization of this “trivial” rep-
resentation, known as a multiplier representation, cf. [2, 22, 25].

De�nition 2.1 Given an action of a group G on a space M and a �nite-
dimensional vector space U; by a multiplier representation of G we mean
a representation F = g · F on the space of U -valued functions F(M;U ) of
the particular form

F(�x) = F(g · x) = �(g; x)F(x); g∈G; F∈F(M;U ) : (2.1)

The multiplier �(g; x) is a smooth map �: G × M → GL(U ) to the space
of invertible linear transformations on U . The condition that (2:1) actually
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de�nes a representation of the group G requires that the multiplier � satisfy
the multiplier equation

�(g · h; x) = �(g; h · x) �(h; x);
�(e; x) = 5 ;

for all g; h∈G; x∈M : (2.2)

Remark. This de�nition of multiplier representation is not the same as that
appearing in the work of Mackey, [21]; the latter are also known as projective
representations, [13]. Weyl, [32], requires the multiplier to just depend on the
group parameters, �: G → GL(U ), in which case (2.2) implies that � de�nes
a representation of G on U . One justi�cation for this restriction is that, in cer-
tain cases such as the linear action of GL(n;R) on Rn, these are, up to gauge
equivalence, [25], the only non-trivial multiplier representations; however, in
most cases, including the action of SL(n) on Rn, this restriction is too severe,
eliminating many interesting examples.

There is an alternative, fully geometrical approach to the theory of multiplier
representations, that allows us to apply standard results from the theory of trans-
formation groups. Let �: E → M be a vector bundle over a base manifold M of
rank n, which means that E has n-dimensional �bers E|x = �−1{x} ' U =Rn.
Let G be a transformation group acting on E by vector bundle automorphisms;
in local coordinates, the group transformations on E have the form

g · (x; u) = (g · x; �(g; x)u); g∈G; x∈M; u∈U ; (2.3)

acting linearly on the �ber coordinates u. The condition that (2.3) de�nes a
group action extending the action of G on the base M is equivalent to the
condition that � satisfy the multiplier equation (2.2).

Example 2.2 If G is a transformation group acting on a manifold M , then there
is an induced action on the tangent bundle TM , and thus de�nes a multiplier
representation on the space of vector �elds X(M). In local coordinates, we can
identify a vector �eld v =

∑m
i=1 �

i(x)@x i with the vector-valued function �(x) =
(�1(x); : : : ; �m(x)). The di�erential dg: TM → TM of a group transformation
g · x = �(g; x) then determines the Jacobian multiplier representation

�(�x) = �J (g; x)�(x); where �J (g; x) =
(
@� i

@x j

)
: (2.4)

The multiplier equation (2.2) in this case reduces to the usual chain rule for-
mula for the Jacobian of the composition of two group transformations.

Example 2.3 If G acts on the bundle E → M according to the multiplier
representation with multiplier �(g; x), then there is an induced action on the dual
bundle E∗ whose multiplier is the inverse transpose (or dual) of the original
multiplier: �∗(g; x) = �(g; x)−T . In the invariant theory literature, this is known
as the contragredient multiplier representation. For example, the dual to the
Jacobian multiplier representation corresponding to the action of the group on
vector �elds is the multiplier representation on the space 
1(M) of one-forms
corresponding to the pull-back action of G on the cotangent bundle T ∗M .
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3 Relative invariants

An invariant or absolute invariant of a transformation group G acting on
a manifold M is, by de�nition, a real-valued function I : M → R which is
una�ected by the group transformations: I(g · x) = I(x) for all g ∈ G and
all x in the domain of de�nition of I . According to the general Frobenius
Theorem, [25], if G acts regularly on M with s-dimensional orbits, then, lo-
cally, there exist m−s functionally independent absolute invariants, I1; : : : ; Im−s,
with the property that any other invariant can be written as a function of these
fundamental invariants: I(x)=H (I1(x); : : : ; Im−s(x)). The analogue of an invari-
ant for a general multiplier representation is known as a relative invariant.

De�nition 3.1 Let G be a transformation group acting on M and let �: M ×
G → GL(U ) be a multiplier. A relative invariant of weight � is a function
R: M→U which satis�es

R(g · x) = �(g; x)R(x) for all x∈M; g∈G ; (3.1)

where de�ned.

In terms of our vector bundle interpretation of multiplier representations,
a relative invariant can be identi�ed with a G-invariant section of the vector
bundle E.

Example 3.2 A relative invariant for the Jacobian multiplier representation
(2.4) is the same as a G-invariant vector �eld: dg(v) = v for all g ∈ G.
Note that the invariant vector �elds are not usually the in�nitesimal generators
of the group action, although this is true for abelian transformation groups, cf.
[3; Theorem IV.3.4]. For example, in the case that G acts on itself by left
multiplication, h 7→ g · h, the G-invariant vector �elds are the elements of the
left Lie algebra gL of G, whereas the in�nitesimal generators of this action are
the right-invariant vector �elds, i.e., the elements of the right Lie algebra gR.
Similarly, a G-invariant one-form is a relative invariant for the multiplier

representation determined by the dual action of G on the cotangent bundle
of M .

Example 3.3 Generalizing the pull-back multiplier representation on the space
of one-forms, one can consider the induced action of a transformation group
on the exterior powers

∧k T ∗M , corresponding to the action of G on the space

k(M) of di�erential k-forms on M . Relative invariants for the associated
multiplier representation are the invariant di�erential forms on M . Invariant
di�erential forms serve to de�ne the invariant de Rham cohomology groups,
which, in the case of a compact group action, can be used to determine the
ordinary de Rham cohomology groups, cf. [6]. For example, the case k =
m=dimM , gives the scalar multiplier representation on the space 
m(M) of
volume forms, and an invariant volume form is then a relative invariant thereof.
The case of right-, left-, and bi-invariant volume forms on Lie groups is a
particularly important special case, leading to the left and right Haar measures,
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as well as the classical result that a Lie group G admits a bi-invariant volume
form if and only if it is unimodular; see [9; Sect. 2.7] for an extensive survey.

Example 3.4 A G-invariant metric on a manifold M is determined by a sym-
metric rank two tensor ds2 =

∑
hij(x)dx i dx j satisfying g∗(ds2) = ds2 for all

group transformations g ∈ G, so that G acts via isometries. The associated
multiplier representation can be identi�ed with the second symmetric tensor
power of the dual Jacobian multiplier, governed by the action of G on the
symmetric tensor bundle

⊙2
T ∗M . A particularly important case is the prob-

lem of existence of bi-invariant metrics on Lie groups; here the manifold M is
a Lie group G, while the transformation group is the Cartesian product G×G,
acting on G by both left and right multiplication. See [28; Theorem 5.3] for
a solution to this problem in the real Riemannian case.

Note that if R is a relative invariant of weight � and I is any absolute
invariant, then I · R is also a relative invariant of weight �. Similarly, the sum
R1+R2 of relative invariants of the same weight � is also a relative invariant of
weight �. Thus the space R� of relative invariants of a given weight � forms
a module over the ring I of scalar absolute invariants. We therefore de�ne
the dimension of R� to be its dimension as an I-module. In other words, if
k = dimR�, then there exist k independent relative invariants R1; : : : ; Rk ∈R�

such that every relative invariant of weight � has the form J1R1+: : :+JkRk ∈R�

for suitable absolute invariants J1; : : : ; Jk ∈I. As always, our interest is local,
so this equation should be interpreted as holding on su�ciently small open
subsets of M .

De�nition 3.5 A multiplier representation on an n-dimensional vector space
U 'Rn is said to admit a complete system of relative invariants if the number
of independent relative invariants equals the dimension of U; so that dimR� =
n = dimU .

In the bundle-theoretic interpretation, if E → M is a rank n vector bun-
dle, then the associated multiplier representation admits a complete system
of relative invariants if and only if there exist n pointwise linearly indepen-
dent invariant (local) sections Ri: M → E, i = 1; : : : ; n, so that, at each point
R1(x); : : : ; Rn(x) form a basis for the �ber E|x. For example, the Jacobian multi-
plier representation corresponding to the tangent bundle TM admits a complete
system of relative invariants if and only if there is a (local) G-invariant frame
on the manifold M , i.e., a system of m = dimM pointwise linearly indepen-
dent G-invariant vector �elds. A G-invariant frame exists if and only if G acts
e�ectively freely; see [25] and Theorem 6.1 below.
If R is a relative invariant, then its particular values are, of course, not �xed

under the group action. However, the zero value is maintained, and hence the
system of equations R(x) = 0 given by the vanishing of a relative invariant is
G-invariant, meaning that G takes solutions to solutions. Eisenhart, [8], actually
de�nes a relative invariant to be a function whose zero set is invariant under the
group. This de�nition is, in fact, equivalent to ours provided the function has
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maximal rank. (See also [4] for a cohomological interpretation in the context
of symmetries of di�erential equations.)

Proposition 3.6 Let G be a transformation group acting on the m-dimensional
manifold M . Let F : M → Rn; with n 5 m; be a function whose di�erential
dF has maximal rank n. If the solution set S = {x |F(x) = 0} is non-empty;
and hence a submanifold of dimension m − n; then S is G-invariant if and
only if F is a relative invariant under some multiplier representation of G
on M .

Proof. Since F is assumed to be of maximal rank, we can introduce lo-
cal coordinates x = (y; z) = (y1; : : : ; y n; z1; : : : ; z m−n) such that Fi(y; z) = y i,
hence S = {y=0}. In these coordinates, group transformations take the form
g · (y; z) = (�(g; y; z); �(g; y; z)). Since S is G-invariant, �(g; y; z) = 0 whenever
y = 0, and hence Proposition 2.10 of [24] (applied to the individual compo-
nents of �(g; y; z)) implies that, locally, we can write �(g; y; z) = �(g; y; z) · y
for some function �: G×M → GL(n;R). The group law g · (h · x) = (g · h) · x
immediately implies that � satis�es the multiplier equation (2.2) and hence
de�nes a multiplier representation of M . Moreover, F is a relative invariant
for the multiplier �, completing the proof.

4 In�nitesimal generators

In accordance with Lie’s general approach to invariant theory, [19; Chapter 23],
the study of relative invariants of (connected) Lie group actions is most e�ec-
tively handled by an in�nitesimal approach. If G is a transformation group act-
ing on a manifold M , then its in�nitesimal generators form a �nite-dimensional
Lie algebra of vector �elds ĝ⊂X(M) on M . There is a natural Lie algebra1

epimorphism ’: g → ĝ from the Lie algebra of right-invariant vector �elds
on G to the space of in�nitesimal generators, mapping the generator of the
one-parameter subgroup exp(tv) to the vector �eld v̂ = ’(v) whose ow coin-
cides with the action x 7→ exp(tv)x. In general, we shall use a hat, v̂ = ’(v), to
denote the in�nitesimal generator corresponding to a given Lie algebra element
v ∈ g. If G acts locally e�ectively, then ’ is an isomorphism (and we could
unambiguously drop the hats); more generally, the space ĝ is isomorphic to
the Lie algebra of the e�ectively acting quotient group Ĝ = G=G0. The sub-
space ĝ|x⊂TM |x spans the tangent space to the orbit of G passing through the
point x.
Turning to the study of relative invariants, the space of in�nitesimal gen-

erators of the action of G on the vector bundle E consists of a Lie algebra
of vector �elds on E which is the image of the “extended” Lie algebra epi-
morphism  : g → g̃⊂X(E) from the Lie algebra g of right-invariant vector
�elds on G to the space X(E) of vector �elds on E. Linearity of the vector
bundle automorphisms de�ned by the group transformations implies that the

1From now on we use g = gR to denote the right Lie algebra of the group G
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local coordinate expressions for the in�nitesimal generators are linear in the
�ber coordinate u:

ṽ = v̂ + [Hv(x)u] · @u =
m∑
i=1

�i(x)
@
@xi

+
n∑

�; �=1
h�
�(x)u

� @
@u� ; (4.1)

where
v̂ =

m∑
i=1

�i(x)
@
@xi

∈ ĝ (4.2)

is the in�nitesimal generator for the action of G on M corresponding to the
Lie algebra element v∈g.

De�nition 4.1 The linear map �: g →F(M; gl(U )) which takes a Lie alge-
bra element v∈g to the associated matrix-valued function �(v) = Hv in (4:1)
is called the in�nitesimal multiplier for the given multiplier representation.

It is convenient to identify the in�nitesimal generator (4.1) of the multiplier
action with an n× n matrix-valued �rst order di�erential operator

Dv = v̂ − Hv =
m∑
i=1

�i(x)
@
@xi

− Hv(x) ; (4.3)

i.e., Dv is a di�erential operator acting on sections of E. Here v̂ ' v̂ 5 is
regarded as a scalar di�erential operator which acts component-wise on vector-
valued functions. (The reason for the change in sign in (4.3) will become
apparent once we discuss the in�nitesimal conditions for relative invariants –
see Theorem 4.3 below.) Note that even if G does not act e�ectively on M , it
may still act e�ectively on E, in which case Lie algebra elements v∈g0 lying
in the global isotropy subalgebra of M are mapped to the zero vector �eld on
M , so v̂ ≡ 0, while the associated di�erential operator Dv = −Hv reduces to
a pure multiplication operator.
The map taking a Lie algebra element v ∈ g to the corresponding matrix

di�erential operator Dv is readily seen to be a Lie algebra homomorphism,
meaning that the Lie bracket u = [v;w] between two generators v;w ∈ g is
mapped to the di�erential operator commutator

Du = [Dv;Dw] = Dv ·Dw −Dw ·Dv; u = [v;w] ; (4.4)

between the corresponding di�erential operators. Evaluating (4.4) using the
explicit formula (4.3) leads to a direct characterization of in�nitesimal multi-
pliers.2

Theorem 4.2 A linear function �: g →F(M; gl(U )) is an in�nitesimal mul-
tiplier if and only if it satis�es

�([v;w]) = v̂(�(w))− ŵ(�(v))− [�(v); �(w)] for all v;w∈g : (4.5)

Theorem 4.3 Let G be a connected group of transformations acting on M;
and let �: G × M → GL(U ) be a multiplier. A function R: M → U is a

2See [25] for a discussion of the cohomological interpretation of in�nitesimal multipliers
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relative invariant of weight � if and only if it satis�es the homogeneous linear
system of �rst order partial di�erential equations

Dv(R) = v̂(R)− HvR = 0 for all v∈g : (4.6)

Example 4.4 Consider the in�nitesimal 2× 2 matrix multiplier with in�nitesi-
mal generators

@x; x@x −
(

� �
 �

)
projecting to the usual action of the a�ne group A(1) on R. An easy com-
putation shows that R(x) = (f(x); h(x))T is a relative invariant if and only if
f and h are constant, and, furthermore, �f + h = 0 = �f + �h. Therefore,
this multiplier representation admits a nonzero relative invariant if and only if
��− � = 0. This indicates that the determination of the number of relative
invariants depends on more subtle data than a crude orbit dimension count as
in the Frobenius analysis of absolute invariants.

5 An existence theorem for relative invariants

We now turn to the main result of this paper, which is a general existence
theorem and dimension count for the number of relative invariants of an arbi-
trary multiplier representation. Applications to some of the examples discussed
above will appear in subsequent sections. We begin with an analysis of the
relevant geometrical data for the multiplier representation.
Let G be a transformation group acting by vector bundle automorphisms

on a vector bundle �: E → M . LetW⊂X(E) denote the involutive di�erential
system (or distribution, [31]) spanned by the in�nitesimal generators ṽ of the
bundle action of G on E, as in (4.1), and let V⊂X(M) denote the involutive
di�erential system spanned by the in�nitesimal generators v̂ of the projected
action of G on M . Thus W|z is the tangent space to the orbit of G through
z∈E, while V|x is the tangent space to the G orbit through x ∈M . Let z ∈
E have projection x = �(z) ∈ M . The di�erential of the projection map of
E restricts to a linear epimorphism d�: W|z → V|x, which maps ṽ = v̂ +
[Hv(x)u]@u ∈W|z onto the corresponding tangent vector v̂ ∈V|x. Let L|x =
ker[d�] ∩W|z denote the kernel3 of the projection d� at a point z ∈ E. As
in the identi�cation of the in�nitesimal generator of the bundle action (4.1)
with matrix-valued di�erential operators (4.3), at each point x∈M , an element
of L|x, which is a vector �eld of the form [L(x)u]@u, can be identi�ed with
the linear operator L(x), which acts on the �ber E|x ' U . In this manner, we
identifyL|x with a linear subspace of the space gl(E|x) ' gl(U ) of linear maps
on the �ber. The common kernel of the linear operators in L|x will be denoted
by K|x = kerL|x⊂E|x; in other words, u∈E|x belongs to K|x if and only if
L(x)u = 0 for all L(x)∈L|x. As we shall see, the dimension k = dimK |x of
3Linearity of the in�nitesimal generators of G in the �ber coordinates u implies that the
kernel only depends on the projected point x = �(z)
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the common kernel is the crucial quantity that determines how many relative
invariants there are for the multiplier representation corresponding to the bundle
action of G on E.

De�nition 5.1 The kernel rank k of a vector bundle action of a transforma-
tion group G on a vector bundle �: E→M is the dimension k = dimK|x of
the common kernel bundle; as de�ned above. The multiplier representation is
said to be regular if G acts regularly on the base M; and the kernel rank k
is constant.

In local coordinates, this construction takes the following form: Let G be
an r-dimensional Lie group acting (semi-)regularly on M , and let s denote the
dimension of its orbits in M . Thus, near any point x0 ∈M we can choose s
in�nitesimal generators v1; : : : ; vs∈g such that the corresponding vector �elds

v̂� =
m∑
i=1

�i
�(x)

@
@x i ; � = 1; : : : ; s ; (5.1)

form a basis for the subspace V|x⊂TM |x at each point x in a neighborhood
of x0. We complete v1; : : : ; vs to a basis of the Lie algebra g, thereby including
r − s additional generators vs+1; : : : ; vr∈g, which map to vector �elds

v̂� =
m∑
i=1

�i
�(x)

@
@x i ; � = s+ 1; : : : ; r : (5.2)

If r = s, then G acts locally freely, and there are no additional vector
�elds (5.2). In this case, our results are covered by a known theorem, [25;
Theorem 3.36], and so we shall concentrate on the case s ¡ r, although the
method of proof includes the free case too.
From now on, for convenience, we shall employ the Einstein summation

convention on repeated indices. Latin indices i; j; k will run from 1 to m. Greek
indices �, �, , � run from 1 to s, while �, �, �, run from s+ 1 to r. Finally
�, �, � run from 1 to r.
Since the �rst s vector �elds (5.1) form a pointwise basis for the space V|x,

the second set of in�nitesimal generators can be written as linear combinations
(with variable coe�cients) of the �rst, so that, using our summation and index
conventions,

v̂� = ��
� v̂�; � = s+ 1; : : : ; r ; (5.3)

where the coe�cients ��
�(x) are smooth scalar-valued functions de�ned on the

coordinate chart. On the bundle E, the in�nitesimal generators corresponding
to the �rst set of vector �elds (5.1) are matrix-valued di�erential operators of
the form

D� = v̂� − H� ; (5.4)

where the H�(x) are smooth n× n matrix-valued functions of x. Similarly, the
second set of in�nitesimal generators correspond to di�erential operators of the
form

D� = v̂� − H� = ��
�D� − L� ; (5.5)
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where, in view of (5.3), (5.4),

L� = H� − ��
�H� : (5.6)

The space L|x is the subspace of gl(U ) spanned by the r−s matrices Ls+1(x);
: : : ; Lr(x). The associated kernel space K|x is just their common kernel:

K|x =
r⋂

�=s+1
ker L�(x) = {u∈U | Ls+1(x)u = · · · = Lr(x)u = 0} : (5.7)

The kernel rank k of the multiplier representation is the dimension of the
subspace K|x.

A function R(x) forms a relative invariant if and only if it is annihilated
by the di�erential operators (5.4), (5.5), so that

v̂�(R) = H�R; � = 1; : : : ; r : (5.8)

In view of (5.5), this means that R must satisfy the system of partial di�erential
equations

v̂�(R) = H�R; � = 1; : : : ; s ; (5.9)

along with a system of algebraic equations

L�R = 0; � = s+ 1; : : : ; r : (5.10)

In other words, for each x ∈ M , we have R(x) ∈ K|x, which explains the
signi�cance of the kernel bundleK. At a point x, the dimension of the solution
space to the homogeneous linear algebraic system (5.10) is the kernel rank k of
the multiplier representation at that point. Our main theorem states that, under
appropriate regularity hypotheses, the space of relative invariants has the same
dimension k as the pointwise solution space to (5.10).

Theorem 5.2 Let G be a connected transformation group acting regularly by
vector bundle automorphisms on a vector bundle �: E→M; with constant ker-
nel rank k. Then the space of relative invariants of the associated multiplier
representation has dimension exactly k. Equivalently; there exist precisely k
pointwise linearly independent local G-invariant sections of E.

Proof. As above, let V denote the involutive di�erential system spanned by
the in�nitesimal generators v̂ of G on M , and let W denote the correspond-
ing involutive di�erential system spanned by the in�nitesimal generators ṽ on
E. Frobenius’ Theorem implies that we can introduce at local coordinates
(y; z) = (y1; : : : ; y s; z1; : : : ; z m−s) on M such that the z � = I�(x) provide the
local absolute invariants, and the orbits (integral submanifolds) intersect the
coordinate chart in the slices Oa = {z = a}. Without loss of generality, we
may assume that the coordinate chart forms a box, so that a� ¡ y� ¡ b�,
c� ¡ z� ¡ d�. Thus, in the (y; z) coordinates, the di�erential system V is
spanned by the basis tangent vectors @y1 ; : : : ; @y s , which are therefore certain
linear combinations

@
@y� = B�

� v̂� (5.11)
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of the generators v̂�∈ ĝ; the coe�cient matrix (B�
�(x)) in (5.11) is nonsingular.

Let

Ĥ� = B�
�H� so that

@
@y� − Ĥ� = B�

�D� : (5.12)

In view of equations (5.11), (5.12), the system of di�erential equations (5.9)
for a relative invariant R is linearly equivalent to a collection of s linear systems
of ordinary di�erential equations

@R
@y� = Ĥ�R; � = 1; : : : ; s ; (5.13)

in the individual orbit coordinates y�. Involutivity of the extended di�erential
system W implies that (5.13) form an involutive system of partial di�erential
equations for R, i.e., that the integrability conditions

@
@y� (Ĥ�R) =

@
@y� (Ĥ�R); �; � = 1; : : : ; s ; (5.14)

are identically satis�ed for any solution to (5.13). Therefore, given any point
x0 = (y0; z0) in our coordinate system, and initial conditions R(y0; z0) = R0,
there is a unique solution R(y; z0) to the system (5.13) de�ned on the integral
submanifold Oz0 of V passing through the initial point x0. More generally, if
we specify initial conditions R(y0; z) = S(z) on any transversal submanifold
Ty0 = {(y0; z)} to the foliation determined by the integral submanifolds of
W, there is a unique solution R(x) = R(y; z) for all x = (y; z) in the coordi-
nate chart. This solution will be a (local) relative invariant provided it lies in
the kernel bundle, i.e., R(x)∈K|x for all x. Clearly, then, we need to choose
the initial conditions in the kernel bundle, so that S(z) ∈K|(y0 ; z) for each
(y0; z) ∈Ty0 . We claim that this automatically implies that R(x) ∈K|x, i.e.,
R(x) satis�es the linear system (5.10) provided R0(z) = R(y0; z) does. Note
that the claim will automatically imply Theorem 5.2. Indeed, �xing y0, we
can (locally) choose k sections S1(z); : : : ; Sk(z) which form a basis for the ker-
nel space K|(y0 ; z) at each point in the transversal Ty0 . Let Ri(x) = Ri(y; z)
be the corresponding solution to the system (5.13) having initial conditions
Ri(y0; z) = Si(z); by the claim, Ri(x) ∈K|x for each x, and hence Ri is a
relative invariant. Moreover, any other relative invariant R(x) must restrict to
a linear combination R(y0; z) = J1(z)S1(z)+ · · ·+ Jk(z)Sk(z) of the basis func-
tions on the transversal Ty0 , the coe�cients Ji(z) being scalar functions. By the
uniqueness theorem for solutions to the system of ordinary di�erential equa-
tions (5.13), we necessarily have R(y; z) = J1(z)R1(y; z) + · · ·+ Jk(z)Rk(y; z).
The coe�cient functions Ji(z) are absolute invariants of G, which proves our
result.
Thus the proof of Theorem 5.2 reduces to the following lemma. In fact,

the transversal coordinates z only appear as parameters at this point, and can
be e�ectively ignored. (The smooth dependence of the relative invariant on z
follows from the smooth dependence on parameters of solutions to ordinary
di�erential equations.)
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Lemma 5.3 Suppose that R(y; z) is a solution to the di�erential equations
(5:13) with initial conditions R(y0; z) = S(z). If S(z)∈K|(y0 ; z); then R(y; z)∈
K|(y; z) for y in a neighborhood of y0.

Proof. We need to show that if S(z) satis�es L�(y0; z)S(z) = 0, for � =
r+1; : : : ; s, then, for all y near y0, we have L�(y; z)R(y; z)=0, �=r+1; : : : ; s.
This will immediately follow from the uniqueness theorem for ordinary dif-
ferential equations once we show that the derivatives of L�R with respect to
the in�nitesimal generators v̂� of V vanish whenever Ls+1R = · · · = LrR = 0.
Equation (5.11) will then show that all y derivatives of L�R vanish. One could
work directly with the y derivatives, but it is notationally simpler to use the
generators v̂�. Thus, we must compute

v̂�(L�R) = v̂�(L�)R+ L�v̂�(R) = (v̂�(L�) + L�H�)R ; (5.15)

the last equality following from (5.9). The desired result will therefore follow
once we establish the following fundamental identity:

v̂�(L�) + L�H� = H�L� + (c
�
�� − ��

�c
�
��)L� : (5.16)

Here c��� are the structure constants of the Lie algebra g relative to the basis

v1; : : : ; vr , and the functions ��
� are given in (5.3).

The proof of the identity (5.16) depends on a detailed analysis of the
commutation relations between in�nitesimal generators of both the action of
G on M and its bundle action on E. The fact that the in�nitesimal generators
form a Lie algebra implies that

[ v̂�; v̂�] = c���v̂� = c���v̂� + c���v̂� = [c
�
�� + ��

�c
�
��] v̂� : (5.17)

We let
����(x) = c��� + ��

�(x)c
�
�� ; (5.18)

so that (5.17) takes the abbreviated form

[ v̂�; v̂�] = ����v̂� : (5.19)

Similarly, the di�erential operators generating the multiplier representation must
have the same commutation relations, and hence, by (5.3), (5.5), (5.18),

[D�;D�] = c���D� = c���D� + c���D� = ����D� − c���L� ; (5.20)

for the same structure constants c���.

Remark. Our proof of the fundamental theorem does not require that the c���
in (5.17) be constant. However, it is not clear what meaning (if any) one can
attach to such an extension to more general involutive di�erential systems.

We now expand the vector �eld commutator (5.19) for a subrange of in-
dices, as governed by our index conventions:

[ v̂�; v̂�] = v̂�(�
�
�)v̂� + ��

�[ v̂�; v̂�] = (v̂�(�
�
�) + �

��
�
�)v̂� ; (5.21)
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where we used (5.3), (5.19). Since v̂1; : : : ; v̂s are pointwise linearly independent,
(5.19) and (5.21) imply that

v̂�(�
�
�) + �

��
�
� = ���� : (5.22)

Next, we expand the di�erential operator commutator (5.20) using (5.17),
(5.19):

����D� − c���L� = c���D� = [D�;D�]

= [ v̂� − H�; v̂� − H�]

= [ v̂�; v̂�]− v̂�(H�) + v̂�(H�) + H�H� − H�H�

= c���v̂� − v̂�(H�) + v̂�(H�) + H�H� − H�H�

= ����v̂� − v̂�(H�) + v̂�(H�) + H�H� − H�H� :

Therefore, by (5.4), we �nd that

v̂�(H�)− v̂�(H�)− H�H� + H�H� = c���H� = ����H� + c���L� : (5.23)

We now analyze (5.23) for the subrange of indices with �=�, �=�. Substi-
tuting the formula H� = L� + ��

�H� from (5.6), we expand the left hand side
of (5.23) using (5.3), (5.18):

v̂�(L�) + v̂�(�
�
�)H� + ��

� v̂�(H�)− ��
� v̂�(H�)

−H�L� − ��
�H�H� + L�H� + ��

�H�H� = ����H� + c���L� : (5.24)

On the other hand, if we substitute (5.22) and (5.23), with � = �, � = �, we
reduce (5.24) to our desired identity (5.16). This proves (5.16) and thereby
completes the proof of the fundamental Theorem.

Theorem 5.2 reduces the determination of the number of relative invariants
of a (regular) multiplier representation for a Lie group action to a straight-
forward algebraic computation based on the in�nitesimal generators of the
multiplier representation. As such, it can be readily applied to compute the
number of, say, invariant vector �elds, or invariant di�erential forms, or invari-
ant metrics, of any regular transformation group action; examples will appear
below. The explicit determination of the relative invariants, though, requires
the integration of a system of partial di�erential equations, namely (5.9).
A computationally convenient approach to the latter problem is to write the
original system of di�erential equations (5.8) in terms of a local basis (or
“frame”) of sections S1(x); : : : ; Sk(x), of the kernel bundle K near a point x0
where the kernel rank k = dimK|x is constant. The fact that every relative
invariant is a local section of K allows us to write

R(x) =
k∑

i=1
ri(x) Si(x) ; (5.25)
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where the scalar functions ri(x) are the components of R relative to the adapted
kernel frame. Applying such a change of frame in (5.8) serves to automati-
cally eliminate the algebraic conditions (5.10), while the remaining di�erential
equations (5.9) reduce to a Frobenius system of partial di�erential equations
for the coe�cients ri(x). See Example 7.11 for an illustration of this approach.
A particular case of Theorem 5.2 provides necessary and su�cient condi-

tions for a transformation group to admit a complete system of relative invari-
ants, as in De�nition 3.5. This result was �rst proved, by di�erent methods, in
[25; Theorem 3.36].

Theorem 5.4 A regular transformation group G acting via vector bundle auto-
morphisms on a rank n vector bundle E→M admits a complete system of n
independent relative invariants R1(x); : : : ; Rn(x) if and only if its orbits in E
have the same dimension as its orbits in M .

Proof. According to Theorem 5.2, the necessary and su�cient conditions that
the group admit n independent relative invariants is that the common kernel
bundle K have rank n. This is possible if and only if all the matrices L�

in (5.5) are identically zero, so that D� = ��
�D�. But, in view of (4.1), this

implies that the in�nitesimal generators of the bundle action satisfy the same
linear relations as their projections on M , i.e., ṽ� = ��

� ṽ�, and hence the space
g̃ of in�nitesimal generators on E has the same pointwise dimension as the
space ĝ of in�nitesimal generators on M .

Stated another way, a complete set of n independent relative invariants
will exist if and only if the subspace of TM spanned by the in�nitesimal
generators v̂ of G has the same dimension as the space of matrix di�erential
operators spanned by the associated generators Dv = v̂ − Hv of the multiplier
representation. In particular, since the dimension of the orbits of G in E is
necessarily at least as large as the orbit dimension in M , the condition in
Theorem 5.4 is automatically satis�ed if the dimension of the orbits of G in
M is maximal, meaning the same dimension as G itself:

Corollary 5.5 If G acts locally freely on M; then G admits a complete system
of relative invariants.

6 Invariant vector �elds

We now apply Theorem 5.2 to the study of invariant vector �elds for a trans-
formation group G acting on a manifold M . As discussed in Examples 2.2
and 3.2, the invariant vector �elds can be viewed as relative invariants of the
Jacobian multiplier representation on the tangent bundle of M . The in�nitesimal
generators have the form

Dv = v̂ − Jv; where Jv(x) =
(

@�i

@x j

)
(6.1)
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is the “in�nitesimal Jacobian matrix” of the coe�cients of the vector �eld v̂,
cf. (4.2). The in�nitesimal condition for a vector �eld w to be invariant is that it
commute with all the in�nitesimal generators of the group action: [ v̂;w] = 0 for
all v∈ g. In local coordinates, w =

∑
�i(x)@x i , so the commutator conditions

are precisely the in�nitesimal invariance conditions (4.6) for a relative invariant
of the Jacobian multiplier representation (2.4), i.e., v̂(�)− Jv� = 0.
The space Y ⊂ X(M) of G-invariant vector �elds forms a module over

the ring I of scalar invariant functions, and we are interested in its dimen-
sion k = dimY. (As always, our interest is local, on su�ciently small open
subsets of M .) The prototypical example is the action of an r-dimensional
Lie group on itself by left multiplication: h 7→ g · h. Here the invariant vector
�elds determine the left Lie algebra gL of G, having the dimension of the
group. A basis for the space Y = gL of left-invariant vector �elds on G forms
a G-invariant frame on the Lie group G. The existence of left-invariant frames
on a Lie group is a consequence of Corollary 5.5 since the right multiplication
action of G on itself is transitive, and hence locally free. Indeed, this result
is a special case of a theorem governing the existence of G-invariant frames,
formulated and proved in [25, Theorem 2.84].

Theorem 6.1 A regular transformation group G admits an invariant frame if
and only if G acts e�ectively freely on M .

Remark. The condition of e�ective freeness is also necessary and su�cient for
the existence of a G-invariant coframe, consisting of m one-forms on M that
form a pointwise basis for the cotangent space T ∗M |x.

In particular, if G acts transitively and e�ectively freely, then we can
locally identify M with a neighborhood of the identity in G, with the ac-
tion of G on M coinciding with left multiplication, and hence the G-invariant
vector �elds are identi�ed with the elements of the left Lie algebra gL. In
the more general intransitive (but still free and regular) case, each G orbit
can be identi�ed, as in the transitive case, with an open subset of G itself. In
terms of the associated local coordinates (y; z), the invariant frame consists of
r = dimG independent right-invariant vector �elds on G, mapped to each orbit,
and suitably parametrized by the invariants z, together with m − r additional
transverse invariant vector �elds.
Our principal goal is to generalize Theorem 6.1 and determine the geo-

metric conditions underlying the existence of a less than maximal number of
invariant vector �elds. It is not hard to produce examples of Lie group actions
which admit no (non-zero) invariant vector �elds. For instance, of the three
possible Lie group actions on the one-dimensional manifold M= R, [25; Theo-
rem 2.70], only the translation action x 7→ x+b admits an invariant vector �eld.
The a�ne action x 7→ ax + b and the projective action x 7→ (ax + b)=(cx + d)
admit no non-zero invariant vector �eld.

De�nition 6.2 A transformation group G acting on a manifold M is said to
act imprimitively if G admits an invariant foliation on M .
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The in�nitesimal criterion for the existence of an invariant foliation is con-
tained in the following classical result.

Theorem 6.3 Suppose that G is a connected Lie group acting regularly on M .
The level sets of a regular function F : M→Rl form a G-invariant foliation
if and only if for each v∈ g there is a smooth function 	v: Rl → Rl such
that v̂(F) = 	v(F).

Given a leaf L of a G-invariant foliation, let GL = {g ∈ G | g · L ⊂ L}
denote the associated leaf isotropy subgroup, which acts, via restriction, as
a transformation group on its leaf L.

Theorem 6.4 Let G act regularly on M . If G admits a k-dimensional module
of G-invariant vector �elds; then
(a) G acts imprimitively; admitting an invariant foliation with k-dimensional

leaves; and
(b) each leaf isotropy subgroup GL acts e�ectively freely on its leaf L of

the foliation.
Conversely; if G satis�es conditions (a) and (b); and satis�es the additional
regularity condition that the orbits of the action of each leaf isotropy sub-
groups GL on the corresponding leaf L all have the same dimension; inde-
pendent of L; then G admits a non-zero k-dimensional module of G-invariant
vector �elds.

Note. In the transitive case, the indicated foliation has only one leaf, namely
M itself, and so, technically, does not form an invariant foliation. However,
the integral curves of any individual invariant vector �eld also determine
a G-invariant foliation and so G must still act imprimitively. In particular,
a primitive transformation group never admits a non-zero invariant vector �eld!

Example 6.5 According to Lie’s classi�cation of transformation groups acting
on a two-dimensional manifold, [20], there are, locally, precisely four inequi-
valent actions of the unimodular group G = SL(2;R) on M = R2. See [10] for
details of the classi�cation, and [7] for applications of the unimodular actions
to the study of di�erential equations, Painlev�e analysis, and classical invariant
theory.
There is one intransitive action, generated by the vector �elds

v̂1 = @x; v̂2 = x@x; v̂3 = x2@x : (6.2)

A direct calculation based on the commutator condition [ v̂i ;w] = 0 proves that
every invariant vector �eld has the form w = �(y)@y. Here, the vertical lines
La = {x = a} form a G-invariant foliation. The isotropy group Ga of a vertical
line has in�nitesimal generators

(x − a)@x; (x2 − a2)@x ; (6.3)

consisting of the generators of G tangent to La, and so forms a two-dimensional
subgroup, conjugate to the subgroup of lower triangular matrices (which is the
isotropy group for the y-axis). However, since both vector �elds (6.3) vanish
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when x = a, the subgroup Ga acts completely trivially, and hence e�ectively
freely, on La. Thus, in accordance with Theorem 6.4 the space of invariant
vector �elds forms a one-dimensional module over the ring I = {f(y)} of
invariant functions, recon�rming the direct calculation. Note that in this case,
the horizontal lines L̃a = {y = a} also form a G-invariant foliation, but the
reduced action of the isotropy subgroup G̃a = G is not e�ectively free, and
hence this invariant foliation is not of use in con�rming the theorem.
The �rst transitive action of G = SL(2;R) is generated by the vector �elds

v̂1 = @x; v̂2 = x@x + y@y; v̂3 = x2@x + 2xy@y : (6.4)

A direct calculation shows that any invariant vector �eld is a constant multiple
of w = y@y. Again, the vertical lines La = {x = a} provide the invariant
foliation. The isotropy subgroup Ga of the leaf La is generated by the vector
�elds

(x − a)@x + y@y; (x2 − a2)@x + 2xy@y : (6.5)

Moreover, the restricted action on La is e�ectively free since the in�nitesimal
generators of Ga | La are obtained by setting x = a in (6.5), leading to two
vector �elds y@y, 2ay@y, which are constant multiples of a single vector �eld
(which happens to coincide with w – because the reduced action of Ga on La

is abelian).
On the other hand, the second transitive action of G = SL(2;R), which is

generated by

v̂1 = @x + @y; v̂2 = x@x + y@y; v̂3 = x2@x + y2@y ; (6.6)

does not admit an invariant vector �eld, even though the vertical lines La =
{x = a} form an invariant foliation. Indeed,

(x − a)@x + (y − a)@y; (x2 − a2)@x + (y2 − a2)@y (6.7)

are tangent to La, and so generate Ga, but their restrictions (y − a)@y,
(y2 − a2)@y, are not constant multiples of a single vector �eld on the one-
dimensional leaf of the foliation, and hence the reduced action of Ga on the
leaf of La is no longer free.

The third transitive action of SL(2;R) is generated by

v̂1 = @x; v̂2 = x@x + y@y; v̂3 = (x2 − y2)@x + 2xy@y : (6.8)

This case can be transformed into the second one, (6.6), by a complex analytic
change of variables, and so has a similar structure. Alternatively, the reader can
analyze this case directly.

Proof of Theorem 6.4. Assume �rst that G admits a regular k-dimensional
module Y of invariant vector �elds, and let w1; : : : ;wk be a basis. The Lie
bracket of two invariant vector �elds is also an invariant vector �eld, and
hence Y forms an involutive di�erential system on M having, by our reg-
ularity hypothesis, constant dimension k. Therefore, by Frobenius’ Theorem,
there is a k-dimensional foliation of M forming the integral submanifolds of
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the di�erential system Y, so that any G-invariant vector �eld w∈Y is tangent
to the leaves of the foliation. Since Y consists of invariant vector �elds, this
foliation is clearly G-invariant, proving condition (a). Moreover, given a leaf
L, the restriction of a basis of the space of invariant vector �elds to L forms
a frame w1 | L; : : : ;wk | L on L which is invariant under the isotropy subgroup
GL of the leaf. Applying Theorem 6.1 to L implies that GL must act e�ectively
freely on L, which demonstrates condition (b).
To prove the converse, we begin by introducing the adapted at local coor-

dinates (y; z) = (y1; : : : ; yk ; z1; : : : ; zm−k) such that the leaves of our G-invariant
foliation are (locally) given by the slices La = {z = a}. Let Ga = GLa denote
the isotropy subgroup of the leaf La, and let Ha = {g ∈ Ga | g · x = x for all
x ∈ La} ⊂ Ga denote the global isotropy subgroup of the restricted action of
Ga on La. According to our hypothesis, the quotient group Ĝa = Ga=Ha acts
freely on La. Moreover, the regularity hypothesis implies that the dimension of
the quotient group t=dim Ĝa, which coincides with the dimension of the or-
bits of Ga in La, is a constant, independent of a. By continuity, we can choose
a set of t pointwise linearly independent smooth vector �elds z1; : : : ; zt such
that each z� is tangent to each leaf, and the restrictions z1 | La; : : : ; zt | La form
a basis for the space ĝa of in�nitesimal generators of the action of Ĝa on La.

Note. Clearly at each point x ∈ M , we have z�|x ∈ ĝ|x. However, unless the
quotient group Ĝa itself is independent of a, the z�’s will not generally be
in�nitesimal generators of the action of G on M .

Let q = s − t, where s = dim ĝ denotes the dimension of the orbits of G.
Using regularity, we can locally choose in�nitesimal generators v̂1; : : : ; v̂q ∈ ĝ

such that, at each point x, the tangent vectors v̂1|x; : : : ; v̂q|x, z1|x; : : : ; zt |x, form
a basis for the space ĝ|x. In particular, v̂1; : : : ; v̂q are transverse to the leaf La.
Every in�nitesimal generator v̂ ∈ ĝ can then be uniquely expressed as a linear
combination

v̂ =
t∑

�=1
��z� +

q∑
�=1

��v̂� ; (6.9)

for certain coe�cient functions ��, ��. Transversality of the v̂�’s and the fact
that the leaves form an invariant foliation automatically implies that the func-
tions �� = ��(z) depend only on the transverse coordinates – see Theorem 6.3.
We claim that, because of the e�ective freeness of the restricted action, the
same is true for the coe�cient functions ��. Indeed, �x a leaf La. From the
in�nitesimal generator (6.9), we construct the modi�ed in�nitesimal generator

v̂∗ = v̂ −
q∑

�=1
��(a)v̂� =

t∑
�=1

��(y; z)z� +
q∑

�=1
[��(z)− ��(a)]v̂� ; (6.10)

which lies in ĝ since it is a constant coe�cient linear combination of in�nite-
simal generators v̂; v̂� ∈ ĝ. Moreover, restricting to La, i.e., setting z= a, we
�nd that

v̂∗ | La =
t∑

�=1
��(y; a)(z� | La) ∈ TLa (6.11)
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lies in the tangent space to the leaf, and hence is an in�nitesimal generator of
the restricted action of Ga on La. We now invoke the following in�nitesimal
characterization of e�ectively free group actions.

Lemma 6.6 A transformation group acts e�ectively freely with s-dimensional
orbits if and only if locally there exist s pointwise linearly independent in-
�nitesimal generators v̂1; : : : ; v̂s such that every other in�nitesimal generator
is a constant coe�cient linear combination thereof : v̂ = c1v̂1 + · · ·+ csv̂s, for
ci ∈ R.

Applying Lemma 6.6 to the action of Ga on La, we conclude that v̂∗ | La

must be a constant coe�cient linear combination of the in�nitesimal generators
z� | La of Ga, and hence the coe�cients ��(y; a) = ��(a) in (6.11) must be
independent of the leaf coordinates y. But this holds for every a, and hence,
as claimed, �� = ��(z) depends only on z.
Turning to the induced Jacobian multiplier representation on the tangent

bundle, we let Dv = v̂ − Jv denote the di�erential operator associated with
a vector �eld v̂, cf. (6.1). In particular, we let E� = z� − J� and D� = v̂� − J�
denote the di�erential operators associated with our previously de�ned vec-
tor �elds. (As with the vector �eld z�, the di�erential operator E� does not
necessarily correspond to an in�nitesimal generator of the Jacobian multiplier
representation of the transformation group G.) In particular, the di�erential
operator associated with the in�nitesimal generator (6.9) has the form

Dv =
t∑

�=1
��E� +

q∑
�=1

��D� − L̃v ; (6.12)

where, by the chain rule, the residual Jacobian matrix L̃v is an appropriate
linear combination of the Jacobians of the coe�cient functions ��, ��. Since
the vector �elds z�, v̂� are pointwise linearly independent, the kernel space
(5.7) coincides with the common kernel of the residual Jacobians: K|(y; z) =⋂
v∈g ker L̃v. Moreover, because the coe�cient functions ��, �� in (6.9) depend

only on z, the y derivative entries in the residual Jacobian matrices must all
vanish, and so these matrices have the block form L̃v = (0; Lv) whose �rst k
columns, corresponding to the y coordinates, are all zero. This implies that the
�rst k basis vectors of TM |(y; z) (i.e., the @y �) all lie in the common kernel, and
therefore, dimK|(y; z) = k. Thus the kernel rank is at least k, and therefore
Theorem 5.2 implies that G admits (at least) k independent invariant vector
�elds: dimY= k.

In the transitive case, there is an alternative approach to the invariant vector
�eld problem that relies directly on the (local) identi�cation of the manifold
M with a homogeneous space. Assuming G acts transitively on M , we �x
a point x0 ∈M , and let H =Gx0 be the associated isotropy subgroup. We can
identify M with an open subset of the homogeneous space G=H . Let N =
N (H) = {g | gHg−1 = H} denote the normalizer subgroup of H , and n ⊂ g

its Lie algebra, which is the normalizer subalgebra of the Lie algebra h of the
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isotropy subgroup H , i.e., n = {v ∈ g | [v;w] ∈ h for all w ∈ h}. The following
characterization of the normalizer subalgebra n is standard.

Lemma 6.7 Let h⊂g be a subalgebra of the Lie algebra g, and n⊂g denote
its normalizer subalgebra. Let v1; : : : ; vr be a basis for g such that vm+1; : : : ; vr
form a basis for the (r − m)-dimensional subalgebra h. Let cijk denote the
associated structure constants. A generator v = a1v1 + · · ·+ arvr will lie in n

if and only if its coe�cients satisfy
m∑

j=1
cij� a

j = 0; i = 1; : : : ; m; � = m+ 1; : : : ; r : (6.13)

Note that the last r − m coe�cients of the generator v are irrelevant,
since they just indicate its projection into h. In practice, we identify the quo-
tient space g=h with the space of generators of the form v = a1v1 + · · · +
amvm, whereby (6.13) are the necessary and su�cient conditions for v to
lie in g=h.
If G acts on a manifold M , then we let Nx = N (Gx) denote the normalizer

of the isotropy subgroup Gx of the point x ∈ M . We let g x ⊂ g denote the
Lie algebra of Gx, and nx ⊂ g the Lie algebra of Nx. Since the space ĝ|x of
in�nitesimal generators at the point x is identi�ed with the quotient space g=g x

of the Lie algebra by the isotropy subalgebra, we can identify the subspace
n̂x|x of generators coming from the normalizer subalgebra with the quotient
Lie algebra nx=gx.

Proposition 6.8 Suppose G acts transitively on M . Let Nx = N (Gx) denote
the normalizer subgroup at the point x ∈ M , and let nx be its Lie algebra. If
w is an invariant vector �eld on M , then w|x ∈ n̂x|x.
Proof. Fix the point x0, and choose a basis v1; : : : ; vr for g such that vm+1; : : : ; vr
form a basis for the isotropy subalgebra g0 = gx0 , whereby vi|x0 = 0, i = m+
1; : : : ; r. Since G acts transitively, the �rst m in�nitesimal generators v̂1; : : : ; v̂m
form a frame on M in a neighborhood of x, and so we can write any invariant
vector �eld

w =
m∑
i=1

hi(x)v̂i

as a linear combination thereof. As usual, the in�nitesimal invariance conditions

[ v̂�;w] = 0; � = 1; : : : ; r ; (6.14)

decouple into a system of di�erential equations, corresponding to the �rst m
generators, plus a system of algebraic equations, cf. (5.10), corresponding to
the generators of g x. Writing the latter in terms of the frame, v̂� =

∑m
i=1 �

i
�v̂i,

a straightforward computation shows that

[ v̂�;w] =
m∑
i=1

[
v̂�(hi) +

m∑
j=1

(
ci�j +

r∑
�=m+1

c��j�
i
�

)
hj

]
v̂i ; � = 1; : : : ; r :

Therefore, setting �= �, where m + 15 �5 r, and subtracting o� the corre-
sponding conditions for 15�5m, we �nd that the algebraic relative invariance
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conditions (5.6) take the form

m∑
j=1

[
ci�j +

r∑
�=m+1

c�
�j�

i
� −

m∑
i=1

�k
�

(
ci
kj +

r∑
�=m+1

c�
kj�

i
�

)]
hj = 0;

i = 1; : : : ; m ;
� = m+ 1; : : : ; r :

(6.15)

In particular, at x0, we have �i
�(x0) = 0, and so (6.15) reduces to

∑m
j=1 c

i
�jh

j =0.
Lemma 6.7 completes the proof.

Theorem 6.9 Let M = G=H with G acting by left multiplication. Let N =
N (H) be the normalizer. Then there is a well-de�ned action of N=H on G=H
induced by the right action of N on G. The invariant vector �elds for the
left action of G on G=H are then the in�nitesimal generators of this right
action of N=H .

Proof. The right action of the normalizer on G, namely g 7→ g · n, for n ∈ N ,
induces a well-de�ned action of the quotient group N=H on the homogeneous
space G=H :

(nH; gH) 7→ gH · nH = gn · (n−1Hn) ·H = gnH; nH ∈ N=H; gH ∈ G=H :

The right action of N=H clearly commutes with the left action of G on G=H ,
and hence the in�nitesimal generators of N=H are the G-invariant vector �elds
on G=H . On the other hand, Proposition 6.8 implies that the kernel rank of
the multiplier representation of G on the space of vector �elds on G=H equals
the dimension of N=H , and hence Theorem 5.2 implies that these generators
provide a complete collection of G-invariant vector �elds on G=H .

Example 6.10 Let us return to the transitive actions of SL(2;R) on M =R2

discussed above in Example 6.5. For the �rst transitive action, generated by the
vector �elds (6.4), the isotropy subgroup ĝa; b at a generic point (a; b), b-0,
where the orbits are two-dimensional, is generated by

ṽ3 = (x − a)2@x + 2(x − a)y@y :

We use the adapted basis v̂1 = @x, v̂2 = x@x + y@y and ṽ3, as in the proof of
Proposition 6.8. The normalizer subalgebra n̂a; b consists of all vector �elds w =
a1v̂1+a2v̂2+a3ṽ3, with ai constant, satisfying [w; ṽ3] = � ṽ3. Using Lemma 6.7,
we �nd that n̂a; b is spanned by v̂2 − av̂1 and ṽ3. Therefore, dimNa;b=Ga; b = 1
and, as we saw above, there is one independent invariant vector �eld, w = y@y,
which can be seen to generate the right action of Na;b=Ga; b on M .
For the second transitive action, generated by the vector �elds (6.6), the

isotropy subgroup ĝa; b at a generic point (a; b), a-b, is generated by

ṽ3 = (x − a)(x − b)@x + (y − a)(y − b)@y :

However, in this case, a similar elementary computation shows that the normal-
izer subalgebra coincides with the isotropy subalgebra, n̂a; b = ĝa; b, and hence,
as we saw above, there are no non-zero invariant vector �elds on M . The third
case, (6.8), is left to the reader.
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Of course, Theorem 6.4 includes Theorem 6.9 as a special case. The invari-
ant foliation of G=H is provided by the orbits of the right action of N=H , and
it is easy to see directly that N=H acts locally freely on G=H . However, this
approach does not appear to readily generalize to the intransitive case, since
the invariant vector �elds can have components which are transverse to the G
orbits in M . However, there is a restricted, but useful, generalization, which, in
the intransitive case, characterizes the invariant vector �elds which are tangent
to the group orbits. The proof is straightforward; see [1] for applications to
symmetry reduction of di�erential equations.

Theorem 6.11 Let G act regularly on M . Assume that the dimension of the
quotient normalizer group Nx=Gx is a constant, k, independent of x. Then the
space of invariant vector �elds which are everywhere tangent to the orbits
of G forms a k-dimensional module over the space of invariant functions.
Moreover, if w is such an invariant vector �eld, at each point it lies in the
space n̂x|x, and, in fact, its restriction to the orbit through x can be identi�ed
with a generator of the right action of Nx=Gx on the orbit.

Corollary 6.12 If dimNx = dimGx for every x ∈M , then every nonzero in-
variant vector �eld must be transverse to the orbits of G.

There are several interesting generalizations of the problem of existence
of invariant vector �elds that are worth a more detailed investigation. One is
to determine the invariant multi-vector �elds of a given transformation group,
a problem that arises in the analysis of the cohomology of the quotient space
M=G of a manifold by a regular group action, [1]. A multi-vector �eld is,
by de�nition, a section of an exterior power of the tangent bundle,

∧k
TM ,

and is the dual object to a di�erential k-form. The algebraic conditions for
the existence of invariant multi-vector �elds under non-free group actions are
straightforwardly determined using Theorem 5.2, but the underlying geometry
remains to be determined.
A second generalization, motivated by Helgason’s approach to geomet-

ric analysis and representation theory on Lie groups and symmetric spaces,
is to the existence problem for invariant di�erential operators on manifolds
under transformation groups. The literature on invariant di�erential operators
and their applications is vast, and we refer the reader to [14, 15, 29], for many
additional references. Both the �rst order case, which is related to the exis-
tence of “compatible” multiplier representations, and the problem for higher
order operators, particularly those of Laplace–Beltrami type, are of interest,
and can be handled by our general methods.
Yet another generalization is motivated by the determination of invariant

di�erential operators of (prolonged) group actions on jet bundles, as discussed
in [25; Chapter 5]. Such operators can be viewed as suitable relative invariants
of the prolonged group action, and are essential in the construction of complete
systems of di�erential invariants. It can be shown that, for a prescribed jet bun-
dle, the number of invariant di�erential operators corresponds to the number
of vector �elds which are invariant modulo a suitable vertical sub-bundle, and
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thus forms a particular case of the following general problem: Given a group
G acting on a manifold M , and a G-invariant foliation de�ned by an involu-
tive di�erential system W⊂TM , determine the number of G-invariant sections
of the quotient bundle TM=W. Or, stated another way, determine the num-
ber of vector �elds w on M which are G-invariant modulo the sub-bundle
W, i.e., [ v̂;w] ∈W for all v ∈ g. Thus, this problem is a natural general-
ization of the problem of invariant vector �elds, but we have been unable to
determine simple geometrical conditions governing the number of such vector
�elds.

7 Invariant connections and inhomogeneous relative invariants

Let E → M be a rank n vector bundle over a smooth manifold M , and let G be
a transformation group acting on E by vector bundle automorphisms, thereby
determining a multiplier representation of G. In this section, we discuss the
problem of �nding G-invariant connections on E. The most important case is
when the bundle is the tangent bundle, E = TM , but the same methods can be
easily adapted to more general vector bundles. As we shall see, the invariance
conditions for a connection lead to a generalization of the concept of relative
invariant, in that the in�nitesimal conditions (4.6) will contain an additional
inhomogeneous term. The resulting “inhomogeneous multiplier representation”
will correspond to the action of G on an a�ne bundle over the base manifold.
The inhomogeneous terms will cause no di�culties for extending our general
methods, and we will easily establish an analogue of the main existence result
of Theorem 5.2. This will be applied to provide an immediate result on the
structure and dimension of the space of G-invariant connections. The result
will be illustrated by some elementary examples.

De�nition 7.1 A connection on a vector bundle �: E → M is given by a
horizontal sub-bundleH ⊂ TE of the tangent bundle of E which is equivariant
with respect to the action induced by the scaling in the �bers of E.

A vector bundle automorphism �: E → E induces a map �∗: TE → TE on
the tangent bundle, and hence maps a connection H to an equivalent connec-
tion H = �∗(H); in particular � determines a symmetry of the connection
H provided �∗(H) =H. See [27; p. 397] for details.

In local coordinates the connection is prescribed by a collection of m =
dimM vector �elds on E of the form

Vi =
@
@xi

− ��
i�(x)u

� @
@u� ; i = 1; : : : ; m : (7.1)

Here and below, we again invoke the summation convention; now Latin
indices run from 1 to m, whereas Greek indices run from 1 to n. Thus, in
local coordinates, a connection is uniquely prescribed by the mn2 connection
coe�cients ��

i�(x). As in (4.3), we can identify any vector �eld ṽ ∈ X(E)
depending linearly on the �ber coordinates with a matrix-valued di�erential
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operator Dv. For the vector �elds (7.1), the associated operators are

Di =
@
@xi

+ �i; i = 1; : : : ; m ; (7.2)

where �i = (��
i�) is the ith n× n matrix of connection coe�cients. The condi-

tion that the vector bundle automorphism �(x; u) = (�(x);  (x)u) map a con-
nection spanned by the vector �elds (7.1) to a connection spanned by vector
�elds V1; : : : ;Vm is that �∗(Vi) = J j

i Vj for some smooth invertible matrix-
valued function J = (J j

i ): M → GL(m;R), which, owing to the form of the
spanning vector �elds, must be the Jacobian matrix J j

i = @�j=@x i of the base
transformation. A straightforward computation then produces the corresponding
transformation rule for the connection coe�cients.

Lemma 7.2 A vector bundle map �: E → E with local coordinate formula
�(x; u) = (�(x);  (x)u) maps the connection H with connection coe�cients
��
i� to the connection H whose connection coe�cients are given by

�∗(��
i�) =  �

 J̃
j
i  ̃

�
��


j� −

@ �


@x j J̃ j
i  ̃


� : (7.3)

Here  ̃ (x) = ( ̃ �
 (x)) =  (x)−1, and J̃ (x) = (J̃ j

i (x)) = J (x)−1 is the inverse
of the Jacobian matrix of �.

We note that the transformation rules (7.3) can be compactly re-expressed
in terms of the associated connection form


 = (du� + ��
i�u

� dxi)⊗ @
@u� ; (7.4)

as
�∗
 = 
 :

Here �∗(! ⊗ w) = (�∗!) ⊗ (�−1)∗w for ! a one-form and w a vector �eld
on E. See [17, 27] for details.
If the manifold M admits a G-invariant metric ds2, then the associated Levi-

Civita connection is automatically G-invariant, but this is not the only way that
G-invariant connections can arise. Indeed, it is easy to give examples in which
the group G admits invariant connections, which are metric connections, but
yet the group admits no invariant metric.

Example 7.3 Consider the case where the group GL(n;R) acts in the usual
linear fashion on M = Rn. The at connection on TM is invariant and is
the Levi-Civita connection for the standard Euclidean metric on M . However,
GL(n;R) is certainly not acting by isometries on M . This demonstrates that
G-invariant Levi-Civita connections may exist, in which the group G is not the
isometry group of the metric.

It is convenient to introduce a multi-index notation for the connection
coe�cients, letting capital Latin letters denote triples of indices, A = (i; �; �),
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whereby �A = ��
i�. Summing on repeated multi-indices, the transformation rules

(7.3) take on the more compact form

�A(�x) = �A
B(x)�

B(x) + �A(x); when �x = �(x) ; (7.5)

where

�A
B =  �

 J̃
j
i  ̃

�
� ; �A = − @ �



@x j J̃ j
i  ̃ 

� ; A = (i; �; �); B = (j; ; �) : (7.6)

If the transformation � belongs to a Lie group G acting on the bundle E,
the connection transformation rules (7.5) look like an inhomogeneous version
of our multiplier representation equation (2.1). This serves to motivate the
following extension of the concept of a multiplier representation.

De�nition 7.4 Let G be a transformation group acting on a manifold M ,
and let W be a �nite-dimensional vector space. An inhomogeneous multiplier
representation of G is a representation F = g · F on the space of W -valued
functions F(M;W ) of the particular form

F( �x) = F(g · x) = �(g; x)F(x) + �(g; x); g ∈ G; F ∈F(M;W ) ; (7.7)

where �: G ×M → GL(W ) and �: G ×M → W are smooth maps.
The condition that (7.7) actually de�nes a representation of the group

G requires that the functions � and � satisfy the inhomogeneous multiplier
equations

�(g · h; x) = �(g; h · x)�(g; x);
�(g · h; x) = �(g; h · x)�(h; x) + �(g; h · x);

�(e; x) = 11;
�(e; x) = 0;

for all
g; h ∈ G ;

x ∈ M :
(7.8)

We remark that these conditions can be intrinsically formulated by the action of
G on an a�ne bundle A → M whose �bers are isomorphic to the n-dimensional
a�ne space W ; details are left to the reader.

De�nition 7.5 An inhomogeneous relative invariant for an inhomogeneous
multiplier representation (�; �) of a transformation group G is a function
S: M → W which satis�es

S(g · x) = �(g; x)S(x) + �(g; x) for all x ∈ M; g ∈ G ; (7.9)

where de�ned.

For example, a connection admits a transformation group G on E as a sym-
metry group if and only if its connection coe�cients form a relative invariant
for G under the inhomogeneous multiplier representation whose multiplier is
given by equations (7.6). As with ordinary relative invariants, we call (�; �)
the weight of the inhomogeneous relative invariant. It is important to note that,
unlike an ordinary multiplier representation which always has the trivial zero
relative invariant, an inhomogeneous multiplier representation may have no
inhomogeneous relative invariants. Note that if S is an inhomogeneous relative
invariant of weight (�; �) and R is any relative invariant of weight �, then
S + R is also an inhomogeneous relative invariant of weight (�; �).
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Proposition 7.6 Let (�; �) be an inhomogeneous multiplier for a regular trans-
formation group G acting on an m-dimensional manifold M . Assume that the
space of homogeneous relative invariants of weight � has dimension k, and
let R1; : : : ; Rk be a basis thereof. If G admits one inhomogeneous relative in-
variant S0, then the most general inhomogeneous relative invariant of weight
(�; �) has the form S = S0 + I1R1 + · · ·+ IkRk for absolute invariants I1; : : : ; Ik .

Therefore, by Theorem 5.2, if the inhomogeneous multiplier representation
admits one inhomogeneous relative invariant S0, the space of inhomogeneous
relative invariants forms a k-dimensional a�ne module over the ring of absolute
invariants, where k = dimK denotes the dimension of the common kernel,
given by (5.7).

Theorem 7.7 Let G be a connected group of transformations acting on M .
A function S(x) is an inhomogeneous relative invariant for the associated
inhomogeneous multiplier representation if and only if it satis�es the following
inhomogeneous linear system of partial di�erential equations:

Dv(S) = v̂(S)− HvS = Kv; for every v ∈ g : (7.10)

Here �: g → F(M; gl(W )), �(v) = Hv, is the in�nitesimal multiplier cor-
responding to the ordinary multiplier representation of weight �, and �: g →
F(M;W ), �(v) = Kv, is its inhomogeneous counterpart. Thus � satis�es the
in�nitesimal multiplier condition (4.5), whereas � satis�es

�([v;w]) = ŵ(�(v))− v̂(�(w))− �(v)�(w) + �(w)�(v) : (7.11)

In local coordinates, the condition that there exist inhomogeneous rela-
tive invariants takes the following form. Suppose v̂1; : : : ; v̂s span the di�erential
system ĝ at each point. As in (5.3), we rewrite the additional generators as
functional linear combinations of the �rst s generators. Using (5.5) and its
inhomogeneous counterpart, we reduce the existence problem to a system of
algebraic equations of the form

L�S = N�; � = s+ 1; : : : ; r ; (7.12)

where
L� = H� − ��

� H�; N� = K� − ��
� K� : (7.13)

The associated inhomogeneous multiplier representation admits an inhomoge-
neous relative invariant if and only if the inhomogeneous linear system (7.12)
admits a solution S. If this occurs, then the space of inhomogeneous relative
invariants is an a�ne module over the space of absolute invariants of dimension
equal to that of the common kernel of the matrices Ls+1; : : : ; Lr .
The analogue of Theorem 5.2 for inhomogeneous relative invariants can

now be formulated. The proof proceeds similarly: the fact that the solution
space to the inhomogeneous linear system (7.12) is preserved under the system
of di�erential equations (7.10) follows from an inhomogeneous version of the
fundamental identity (5.16) whose precise statement and veri�cation we leave
to the reader.
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Theorem 7.8 Let (�; �) be an inhomogeneous multiplier for a connected reg-
ular transformation group G acting on a manifold M . Assume that the mul-
tiplier representation with multiplier � is regular, and let k be the kernel
rank. If the inhomogeneous linear system (7.12) is solvable at each point x,
then the space of inhomogeneous relative invariants of weight (�; �) forms
a k-dimensional a�ne module over the space of absolute invariants.

The in�nitesimal invariance conditions for a G-invariant connection are
found by di�erentiating (7.5) with respect to the group parameters. Alterna-
tively, one can use the Lie derivative condition v̂(
) = 0 on the connection
form (7.4). After a straightforward calculation, we deduce the following explicit
formula. Here ��

 denotes the standard Kronecker symbol.

Proposition 7.9 Let G be a connected group of transformations acting on the
vector bundle E → M with in�nitesimal generators as in (4.1). A connection
H ⊂ TE is G-invariant if and only if its connection coe�cients satisfy the
in�nitesimal invariance conditions

v̂(��
i�) +

{
�j
i (h

�
��

�
 − h�

�
�
�) + ��

�
�
�
@�j

@x i

}
�
j� = − @h�

�

@x i ; for all v ∈ g : (7.14)

Here v̂ ∈ ĝ denotes the associated in�nitesimal generator of the action of G
on M , and �(v) = Hv(x) = (h�

(x)) the in�nitesimal multiplier. In particular,
for an invariant connection on TM , Hv = Jv is the in�nitesimal Jacobian
multiplier (6.1).

We write the in�nitesimal conditions (7.14) in vector form

D̂v(�) = v̂(�)− Ĥ v� = K̂v ; (7.15)

where �̂(v) = Ĥ v, �̂(v) = K̂v, are the in�nitesimal multipliers of the inhomo-
geneous multiplier representation (7.3), with entries

Ĥ A
B = �j

i (h
�
�

�
� − h�

��
�
)− ��

�
�
�
@�j

@x i ; K̂
A
= − @h�

�

@x i ;
A = (i; �; �) ;

B = (j; ; �) :
(7.16)

In particular, if v1; : : : ; vr form a basis for g, and, on M , satisfy linear relations
of the form (5.3), then, as in (7.12), the algebraic constraints on invariant
connections have the form

L̂�� = N̂ �; � = s+ 1; : : : ; r ; (7.17)

where
L̂� = Ĥ � − ��

�Ĥ �; N̂ � = K̂� − ��
�K̂� : (7.18)

Example 7.10 Consider the action of SL(2;R) on M = R2 generated by the
vector �elds in (6.6). Choosing v̂1 = @x + @y and v̂2 = x@x + y@y to serve as
generators of the di�erential system, we have the linear relation

v̂3 = −xy v̂1 + (x + y) v̂2 :
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A straightforward computation based on equations (7.16), (7.18), shows that the
algebraic constraints (7.17) that determine the invariant connection coe�cients
are the inhomogeneous linear system

(x − y)�111 = −2;
3(x − y)�211 = 0;

(y − x)�112 = 0;

(x − y)�212 = 0;

(y − x)�121 = 0;

(x − y)�221 = 0;

3(y − x)�122 = 0 ;

(y − x)�222 = −2 :
(7.19)

In this case, (7.19) has a unique solution

�211 = �212 = �221 = �112 = �121 = �122 = 0; �111 = −�222 = − 2
x − y

; (7.20)

which are the Christo�el symbols for the hyperbolic metric ds2 =
(x − y)−2dx dy. Theorem 7.8 then implies that this group action admits a
unique invariant connection, generated by the di�erential operators

@x +
(
2(x − y)−1 0

0 0

)
; @y −

(
0 0
0 2(x − y)−1

)
; (7.21)

cf. (7.2). Note that we do not need to check that this connection satis�es the
associated di�erential equations

v̂i(�) = Ĥi(�) + K̂ i; i = 1; 2 ; (7.22)

since this follows automatically from Theorem 7.8. The metric ds2 also
admits the generators (6.6) as in�nitesimal isometries, and so in this case the
connection (7.21) arises as a G-invariant metric connection.

Example 7.11 Consider the action of the group SL(2;R) on M generated by
the vector �elds (6.4). Using the relation

v̂3 = −x2v̂1 + 2xv̂2 ;

the resulting inhomogeneous linear system (7.17) is (canceling a common
factor of 2)

y�112 + y�121 = −1; y�122 = 0; −y(�111 − �212 − �221) = 0 ;

y�122 = 0; y�112 − y�222 = 1; y�121 − y�222 = 1 :

In this case, the general solution is

�111 = r1 + r2; �112 = − 1
2y

; �121 = − 1
2y

; �122 = 0 ;

�211 = r1; �212 = r2; �221 = r3; �222 = − 3
2y

;

which depends on the three free variables r1; r2; r3. This shows that the kernel
rank is 3, and hence Theorem 7.8 implies that there exists a three parameter
family of connections on TM which are invariant under the in�nitesimal action
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(6.4). These are found by setting the undetermined coe�cients to be smooth
functions, ri = ri(x; y), and substituting into the remaining di�erential equations
(7.22). (This e�ectively implements the use of the frame-adapted coordinates
(5.25) for sections of the common kernel space.) The residual di�erential equa-
tions for the unknowns ri are easily found to be the Frobenius system

@ri
@x
= 0; y

@ri
@y
+ ri = 0; i = 1; 2; 3 :

Thus the most general invariant connection is generated by the matrix-valued
di�erential operators

@
@x
− 1
2y

(
c2 + c3 −1

c1 c2

)
;

@
@y

− 1
2y

(−1 0
c3 −3

)
; (7.23)

where c1; c2 and c3 are real constants. An easy exercise, based on Theorem 5.2,
shows that there are no metrics which admit the group having in�nitesimal
generators (6.4) as a symmetry group. Therefore, this provides another exam-
ple of a transformation group admitting invariant connections but no invariant
metrics.

Remark. When G acts transitively on M , which can thus be identi�ed with
a homogeneous space G=H , considerably more is known about invariant con-
nections. See [17; Sect. II.11, Sect. X.2] for an extensive survey. It would
be interesting to understand how our simple algebraic approach might shed
additional light on the deep geometrical theorems discussed there.

8 Conclusions and further research

In this paper we have determined a general result governing the precise number
of relative invariants of multiplier representations of connected Lie group ac-
tions. Applications to the study of invariant vector �elds and invariant connec-
tions have been explicitly indicated. Many additional applications are possible,
including the determination of the space of invariant di�erential forms, di�er-
ential invariants, invariant di�erential operators, both on the manifold and its
higher order jet spaces, etc. The practical determination of the number of rela-
tive invariants is, in speci�c examples, a straightforward algebraic computation
based on Theorem 5.2. Thus, the more interesting problem is to analyze how
the geometry of the transformation group action determines the number of rela-
tive invariants, along the lines of our Theorem 6.4. Of particular interest is the
problem of existence of invariant di�erential forms. Preliminary investigations
indicate that this is more complicated than the invariant vector �eld case, and
we have not, as yet, been able to determine reasonable geometric conditions for
their existence. Indeed, for transitive actions on symmetric spaces, the spaces of
invariant di�erential forms are governed by the Lie algebra cohomology spaces,
[6], and so our approach can be regarded as a complement to this established
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theory. The geometry associated with invariant multi-vector �elds and with in-
variant vector �elds modulo foliations, as discussed at the end of Sect. 6 are
also worthy of investigation. Another interesting problem is the determination
of invariant di�erential operators for prolonged group actions on jet spaces,
as these provide the basic mechanism for constructing higher order di�eren-
tial invariants. General results, [25; Chapter 5], show that a complete system
of such operators always exists at the stabilization order of the group, but,
in many interesting cases, lower order operators can be found. Theorem 5.2
provides readily veri�able algebraic conditions that permit such lower order
operators to exist, but the associated jet space geometry remains obscure. Even
in the case of invariant connections, the above presentation only indicated how
to perform the required algebraic manipulations for determining their number,
but the underlying geometry, including its relation to the existence of invariant
metric tensors, requires a more thorough investigation.
Finally, the extension of these results to the study of relative invariants

under the action of an in�nite Lie pseudo-group, [5, 26], is eminently worth
a detailed investigation. For instance, the theory of di�erential invariants of
Lie pseudo-group actions and their associated invariant di�erential operators,
[18], would be one immediate application of the appropriate generalization of
Theorem 5.2.
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