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Definition. An exterior differential system is
a subset of T C Q*(M), which is closed under
Q*(M)AN and exterior differentiation

7 = <0 do*, 3% dB%, ..., >

where < > means algebraically generated by.
The EDS that will be of interested are mainly
(but not exclusively) Pfaffian systems - those
generated by one-forms and their derivatives.

T=<6" do*>

Definition. An integral manifold of 7 is an
immersion s : N — M such that s*7 = 0.

Definition. A symmetry of an exterior differ-
ential system is a diffeomorphism ¢ : M — M
such that ¢*7 = 1. A symmetry group of I will
be a Lie group G acting smoothly on M where
each diffeomorphism g . M — M is a symmetry
of I.



If ¢ isa symmetry of the EDSZands: N —- M
IS an integral manifold of Z, then

(po0s)T =35"¢"T =5s"T=0.

T herefore symmetries map integral manifolds
to integral manifolds.

From now on:

1) G is a Lie group acting smoothly on M

2) g Lie algebra of right invariant vector-fields
3) ~ - Lie algebra of infinitesimal generators
4) p: g — v the homomorphism

3) I' C TM is the point-wise span of ~

Differential Equations give rise to EDS, and
solutions to the differential equations are inte-
gral manifolds. Next are some example....
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Example 1. The Chazy equation

Yrzz = 2YYzz — 395
gives rise to the EDS on M = (z,v, Yz, Yzz)

T = <dy—yzdzr, dys—yzzdz, dyajgj—(nyxx—3y%)d$ >

Solutions to the Chazy equation are integral
manifolds.

The EDS is invariant with respect to the (lo-
cal) action of SL(2) on M:

b

=T o e d)2y + 6e(cx + d)
cx + d

__djdz __ djp da

YPT 0r dz TR T 4r dz

where ad — bc = 1.



Example 2. The geodesic equation for
4 2
n = e 3%4(dridr3z—drodrs)+e3"4drsdrs+cdradry

where ¢ < 0 — Lorentz and c¢ > 0 — split sug..

The EDS on M = (t,x;,2;),1 <i<4 s
T = <dx; — x;dt,

2
diy = 5 04 (221 — 3a3e2%4)dt

4 4
dro — gigfbgdt, dr3z — gfb3ib4dt
1 4 2
dxg + 3. <4€_§$4(:'E1a'33 + 2%%) + 65%451'3%) dt >
C
The geodesics are integral manifolds.
The EDS is invariant with respect to time trans-

lations and the isometry group (5-d solvable)
whose Killing vector-fields are

X]_ Zaxl ,X2 — 8332, X3 — agc3,
X4 :3328331 + 5133(9352
X5 —_— — 5:131(9x1 — 23326;(;2 _I_ 3338;1;3 — 385[34
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Example 3. The contact system on M =
J2(IR,IR?) with coordinates (t,z,vy, &, 7, &, 4) :

T = <dx — @dt,dy — ydy, di: — idt, dy — jjdt,
di A dt, dij A dt >

Any prolonged graph (z(¢),y(t)) is an integral
manifold.

The E1(2) action
[ cosf —sind TN, (@
~ \ sin6 cosé Yy b
[ cosf —sind x
~ \ sinf cosé 7
[ cosf —sind x
~ \ sinf cosé i

IS a symmetry group of 7.

.
LYy Ky &Y &) &)
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Example 4. The contact system on M =
JQ(R y R)XJQ(B ) R) (CE, U, Uy, Uxx,Y, v, ”Uy, ’Uyy)
T = <du— ugdr,duy — urzdr, dugy N dx,

dv — vydy, dvy — vyydy, dvyy N dy >
This is also the system of PDE uy = 0,v; =0

prolonged. Any prolonged graph u = f(xz),v =
g(y) is an integral manifold.

Consider local symmetries of SL(2,IR)

. __au-+b . _av—+b
u_cu—l—d’ v_cv—l—d
~ Ug ~ Vy
b = (cu + d)?’ v (cv + d)?
- Uxx QCU%
e = (cu + d)2 a (cu + d)3
- Vyy 26”5

Yvy = (cv + d)? a (cv + d)3
where ad — bc = 1.



Suppose q: M — M/G = M is a submersion.

Then I' C T'M is a rank g-subbundle, where ¢
iIs the dimension of the orbits. Also

kerq, =T
Definition. The quotient T C Q*(M) of T is

I={0cQ"(M) |q*0ecT}

This definition is difficult to work with without
any assumptions on the EDS.

One invariant condition is constant rank.

If the Pfaffian system Z is constant rank r then
71 = 7N QL(M) are sections of a rank r sub-
bundle I C T*M.

The symmetries of Z then preserve I: ¢g*I = 1.
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The quotient I C T*M defined point-wise is

Ir;={0ecT:M | qQ*0z € I, where q(z) =7 }

This can be computed using IA" c T M

MM =(veT,M|60V)=0V0cl)}

which is a rank n — r sub-bundle. Then

I= (q*(IA"))A"

I is a sub-bundle if and only if

dimIA" nkerq, = dimIA"NT, =k, Vze M,

in which case rank I = r+k—gq, with rank T' =
qg.



Computing

IAMNT, ={Zel, | 60(Z)=0, VO¢el,}

in the basis 6% for I, and Z; a basis I'; is
IAN N T, = ker0%(Z,). (1)
How to compute Z (or I)7

1) Choose o : M — M a cross-section

2) Compute the semi-basic forms in Z (or I):

Iy =10€1lx | 0(Z) =0V Z €Ty}

(the kernel in (1) on the form side)
3) The pullback ¢*0,, € Z, and generate 7.

I being constant rank is also equivalent to I,
being a constant rank sub-bundle’.



Observations:

Theorem. If7Z is a rank r completely inte-
grable Pfaffian system, and rank IANNT =k,
then Z is a rank r + k — q completely integrable
Pfaffian system.

If rank ITA" N T = k but Z is not completely
integrable, then 7 is not necessarily a Pfaffian
system. It is possible to give sufficient condi-
tions so that Z is Pfaffian system.

Theorem. Supposel isa constant rank Pfaf-
fian system invariant with respect to G and
Zpg € IRV N Ty With Zzy 7% 0. Then e'Zxzy,
Z € g is a one-dimensional integral manifold,
where Zzy = p(Z) -



Example 1. SL(2,IR), Chazy. The EDS is

0! = dy — yoda,
0% = dyz — Yaadz,
0° = dyee — (2yyzz — 3y3)dz.
A set of generators for ~ are,
X1 = O,
Xo = 220y — 2y0y — 4y20y, — OYzaDy,p — BYzz2Oyray
X3 = —220; + 2(zy + 3)0y + 2(2xya + y)dy,
+ 6(yz + 2yza) Dyyo + (12yza + 82Yzaa) Oyprs
The determinant det(6(X;)) = 0 if and only if

1
Yoz = YYr — §y3 + (y° — 6yz)°.

For initial conditions (29,4949, 49 ) satisfying
this constraint , the (unique) solution is the
one-dimensional orbit:
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(69 4 390 + yo\/5_o)
tyQ(y° + V¥ —1)
y = yO 4 2ty2 <(3t(yg)2 — yO —+ ty25)\[5 + tya?yo5)

where 6o = (y9)?2 — 649.

:1:=:UO—I—2t

There is a 2 parameter family of invariant so-
lutions. (The solutions as a graph are easily
found).
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Example 2. Geodesics: The EDS is
2
7 = <dx; — 2;dt, dz1 — 5@(25@1 — 333e2%4)dt
: 4 . . 4
dro — §x2x3dt, dr3 — §x3az4dt
1 4 2
dza + 3. <4e_§w4(j:1:i;3 + 2:i:§) + eﬁw%g) dt >
C
At the point
t=0, x=(0,0,0,0), Xx=(7’,0,¢0,0), (2)
where cqg # 0 the vector-field X € ~,
C C
X =0+ X1+ coXs =0 + 0y + ol
satisfies 0(X) =0, VO € 7 at (2). The integral
curve of X in M through the point (2)
mlz%t, xo> =0, x3 =cot, x4 =0

and is a geodesic which is the orbit of a one
parameter sub-group corresponding to X.

Homogeneous geodesics always exist for ho-
mogeneous Riemannian manifolds.
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Example 5. The standard EDS for the differ-
ential equation

2
. Suzer(Qugrrrtze — 8uazazx)
Urxxxxr — 2
Ouz,.

Is invariant with respect to the five dimensional
symmetry group

G=SA(2)={(A,b)|Ae SL(2,R), be R?},

acting on (z,u) and then prolonged. Every so-
lution is the orbit of a one-parameter subgroup,
giving the general solution,

u=cg—+cixx \/03:1:2 + cex + co(4ezen — cg)

Example 6. Every geodesic on a Riemannian
symmetric space is homogeneous.

Remark: It is sometimes possible to generate
integral manifolds with dimension > 1 when
rank TAP N, > 1.
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Why the quotient?

1) We want to split the problem of finding inte-
gral manifolds for Z into finding integral man-
ifolds for Z, and then build integral manifolds
utilizing G. (This second part is sometimes
called the reconstruction problem).

2) Classify the integral manifolds that are in-
equivalent with respect to G.

3) The inverse problem: Use Z to simplify find-
ing integral manifolds to Z.
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Let’'s look at problem 1. In order to implement
the decomposition we need to partition M into
G-invariant subsets on which we can control
the behavior of the quotient. The key is:

IANAT,
Consider the two G-invariant subsets
K={zcM|TycCIM}
and the transverse subset

Mi={zeM|T:NnIA"=0}.

What can be said about Z and Z and the recon-
struction problem on these subsets? (which
can be empty)
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We start with K. Assume
1) v : K — M is an embedded submanifold,
2) the action of G on K is regular: q: K — K

Let Zx = *Z, which under obvious conditions
is a constant rank Pfaffian system (rank de-
pends on the embedding). In this case 7 is a
constant rank Pfaffian system with the same
rank as Zy.

Note that at each point in K, all forms in Zy
are semi-basicl!

An integral manifold s : N — M is G invariant
if gs(N) = N. These can be found as integral
manifolds to Zy. Here's how:

Theorem. Let N C M be an embedded inte-
gral manifold of Ir;. Then N =q 1(N) c M
is a G-invariant integral manifold of 1.
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Proof: N is clearly G-invariant. So need to
show it is an integral manifold.

Let z € N, X € TN, and z = d(z), X = q.X.
Note z € N and X € T-N.

Choose and open set U C K containing z, and
a cross-section ¢ : M — M with ¢(Z) = =z.
Then

for some V € I',. Evaluating on 6 € 7,

0(X) =0(oxXz+ V)
= o"0(X) +6(V)
= 0.
The first term vanishes because, all one-forms
in Ty are semi-basic so pullback to Iy, and
N is an integral manifold. The second term
vanishes because we are at point of K (so that

vV e IAM). QED.



Remarks:
1) The reconstruction problem is algebraic.

2) Integral manifolds of Zx can always be en-
larged (locally) to be invariant.

3) Kis the subset of M on which I" are Cauchy-

characteristics for Zyx. This theorem is not so
surprising.
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The transverse subset M?,

1) Integral manifolds in M? don't have contin-
uous symmetry.

2) For s : N — M, an integral manifold qo s :
N — Mt is an integral manifold. (Ie. immer-
sion property still holds).

If M? is non-empty then the restriction

IMt :Z|Mt

has the same rank as Z, but the quotient fMt IS
not necessarily a Pfaffian system. (It is similar
though.)

T he reconstruction problem is:

Theorem. Let N — M! be an embedded in-
tegral manifold of Z,;:. Then I|q—1(N) is com-
pletely integrable, and the leaves are integrable
manifolds of 1.
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As a consequence of this theorem, the integral
manifolds of Z are surjective via. q onto the
integral manifolds of Z,:.

If the action of G on Mt is free, there is a nice
geometric way to think about the reconstruc-
tion problem.

Let s : N C M? be an integral manifold of Z,,
and let s : N — M be any cover of N. The
integral manifold N of Z which projects to N
is of the form

s(t) = u(A(t),5(1))
where A: N — G.

In order for s(t) to be an integral manifold of
T, A(t) satisfies a generalized equation of Lie
type. These are integrable by quadratures for
(s.c) solvable Lie groups.
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Example 3. ET(2) symmetry on J2(IR,IR?)
with the standard contact structure:

7T = <dx — zdt,dy — ydy, dx — xdt, dy — ydt,
de ANdt, y Adt>
(Curves (x(t),y(t)) are integral manifolds)

The infinitesimal generators are

v = span { Oz, Oy, x0y—yOz+10;—y0;+L0;—140; }

and ET(2) action is transverse at

M'= {0 € J?(R,R?) | (,9) # (0,0)}

The quotient is 4 dimensional M? = (t,v, k1, ko).

Let o : Mt — M be the cross-section,

(t,r =0,y=0,2 =0,y =v,2 = k1,y = ko).
The quotient EDS is (pullback semi-basic forms)
Tyt = < dv—kopdt,dky Ndt, (k1dky + kodko) Adt >
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A typical integral manifold for fMt IS

s(t) = (t,v =v(t), ko = %,kl = k(t)), v(t) # 0.

An integral manifold in M? which projects to 5
is of the form *

s(t) = p(A(t),o035(t))
where A : IR — E1(2) satisfies

da _ _(t)sino@) = o, % — u(t) cos 0(t),

dt
do o k1 (t)
dt ()’
An equation of Lie type for o« : IR — g,
kq(t)
t) = (0, —v(t), .
a(t) ( o(?) v@))

*Finding an integral manifold to 7 projecting to s is the
prescribed " curvature” problem
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Example 4. SL(2) on two copies of jet-space.
On the set uzv #= 0, the action satisfies

A"nr =o.
Choosing the cross-section on M! = (z,y, w, wz, wy)

r=x,y=z,u=0,v=1ury = w,vy = 1,
Upr = Wy — 2w2,fvyy = wy/w + 2
The quotient EDS is
fMt = <dw — wgdxr — wydy, dwzdr + dwydy,

(dwx + (wg;wy — w2)dy)) ANdx >.

w

Project integral manifold f(x),g(y) of Z to

o uavy _ [(@)d'(y)
(u=2v)2  (f(z) —g(y))?

integral manifolds of Z.

If w=e% - Monge Ampere form of Liouville.
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Exercise: Compute the equation of Lie type
for the Chazy equation on the set of transverse
initial condtions.
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Is there a way to do this all at once?
Yes: In fact it might look familiar:

Suppose T is constant rank r Pfaffian and 6*
are a basis of sections.

Then u: M — IR" ® g* given by
6" (X)

IS the moment map.
K is the zero-set of the moment map.
Mt is the full rank set for the moment map.

Reduction is the same as symplectic or contact
reduction - restriction then quotient.
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