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Definition. An exterior differential system is
a subset of I ⊂ Ω∗(M), which is closed under
Ω∗(M)∧ and exterior differentiation

I = < θi, dθi, βa, dβa, . . . , >

where < > means algebraically generated by.
The EDS that will be of interested are mainly
(but not exclusively) Pfaffian systems - those
generated by one-forms and their derivatives.

I = < θi, dθi >

Definition. An integral manifold of I is an
immersion s : N → M such that s∗I = 0.

Definition. A symmetry of an exterior differ-
ential system is a diffeomorphism φ : M → M

such that φ∗I = I. A symmetry group of I will
be a Lie group G acting smoothly on M where
each diffeomorphism g : M → M is a symmetry
of I.
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If φ is a symmetry of the EDS I and s : N → M

is an integral manifold of I, then

(φ ◦ s)∗I = s∗φ∗I = s∗I = 0.

Therefore symmetries map integral manifolds
to integral manifolds.

From now on:

1) G is a Lie group acting smoothly on M

2) g Lie algebra of right invariant vector-fields

3) γ - Lie algebra of infinitesimal generators

4) ρ : g→ γ the homomorphism

3) Γ ⊂ TM is the point-wise span of γ

Differential Equations give rise to EDS, and
solutions to the differential equations are inte-
gral manifolds. Next are some example....
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Example 1. The Chazy equation

yxxx = 2yyxx − 3y2
x

gives rise to the EDS on M = (x, y, yx, yxx)

I = < dy−yxdx, dyx−yxxdx, dyxx−(2yyxx−3y2
x)dx >

Solutions to the Chazy equation are integral

manifolds.

The EDS is invariant with respect to the (lo-

cal) action of SL(2) on M :

x̂ =
ax + b

cx + d
, ŷ = (cx + d)2y + 6c(cx + d)

ŷx̂ =
dŷ

dx

dx

dx̂
ŷx̂x̂ =

dŷx̂

dx

dx

dx̂

where ad− bc = 1.
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Example 2. The geodesic equation for

η = e−
4
3x4(dx1dx3−dx2dx2)+e

2
3x4dx3dx3+cdx4dx4

where c < 0− Lorentz and c > 0− split sig..

The EDS on M = (t, xi, ẋi),1 ≤ i ≤ 4 is

I = < dxi − ẋidt,

dẋ1 −
2

3
ẋ4(2ẋ1 − 3ẋ3e2x4)dt

dẋ2 −
4

3
ẋ2ẋ3dt, dẋ3 −

4

3
ẋ3ẋ4dt

dẋ4 +
1

3c

(
4e−

4
3x4(ẋ1ẋ3 + 2ẋ2

2) + e
2
3x4ẋ2

3

)
dt >

The geodesics are integral manifolds.

The EDS is invariant with respect to time trans-

lations and the isometry group (5-d solvable)

whose Killing vector-fields are

X1 =∂x1 , X2 = ∂x2, X3 = ∂x3,

X4 =x2∂x1 + x3∂x2

X5 =− 5x1∂x1 − 2x2∂x2 + x3∂x3 − 3∂x4
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Example 3. The contact system on M =

J2(IR , IR 2) with coordinates (t, x, y, ẋ, ẏ, ẍ, ÿ) :

I = < dx− ẋdt, dy − ẏdy, dẋ− ẍdt, dẏ − ÿdt,

dẍ ∧ dt, dÿ ∧ dt >

Any prolonged graph (x(t), y(t)) is an integral

manifold.

The E+(2) action
(

x̂
ŷ

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
+

(
a
b

)

(
ˆ̇x
ˆ̇y

)
=

(
cos θ − sin θ
sin θ cos θ

) (
ẋ
ẏ

)

(
ˆ̈x
ˆ̈y

)
=

(
cos θ − sin θ
sin θ cos θ

) (
ẍ
ÿ

)

is a symmetry group of I.
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Example 4. The contact system on M =

J2(IR , IR )×J2(IR , IR ): (x, u, ux, uxx, y, v, vy, vyy)

I = < du− uxdx, dux − uxxdx, duxx ∧ dx,

dv − vydy, dvy − vyydy, dvyy ∧ dy >

This is also the system of PDE uy = 0, vx = 0

prolonged. Any prolonged graph u = f(x), v =

g(y) is an integral manifold.

Consider local symmetries of SL(2, IR )

û =
au + b

cu + d
, v̂ =

av + b

cv + d

ûx =
ux

(cu + d)2
, v̂ =

vy

(cv + d)2

ûxx =
uxx

(cu + d)2
− 2cu2

x

(cu + d)3

v̂yy =
vyy

(cv + d)2
− 2cv2

y

(cv + d)3

where ad− bc = 1.
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Suppose q : M → M/G = M̄ is a submersion.

Then Γ ⊂ TM is a rank q-subbundle, where q

is the dimension of the orbits. Also

kerq∗ = Γ

Definition. The quotient Ī ⊂ Ω∗(M̄) of I is

Ī = { θ̄ ∈ Ω∗(M̄) | q∗θ̄ ∈ I }

This definition is difficult to work with without

any assumptions on the EDS.

One invariant condition is constant rank.

If the Pfaffian system I is constant rank r then

I1 = I ∩Ω1(M) are sections of a rank r sub-

bundle I ⊂ T ∗M .

The symmetries of I then preserve I: g∗I = I.
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The quotient Ī ⊂ T ∗M̄ defined point-wise is

Īx̄ = { θ̄ ∈ T ∗̄xM̄ | q∗θ̄x̄ ∈ Ix where q(x) = x̄ }

This can be computed using IAn ⊂ TM

IAn
x = {V ∈ TxM | θ(V ) = 0 ∀ θ ∈ Ix}

which is a rank n− r sub-bundle. Then

Ī =
(
q∗(IAn)

)An

Ī is a sub-bundle if and only if

dim IAn
x ∩ kerq∗ = dim IAn

x ∩ Γx = k, ∀x ∈ M,

in which case rank Ī = r+k−q, with rank Γ =

q.



Computing

IAn
x ∩ Γx = {Z ∈ Γx | θ(Z) = 0, ∀ θ ∈ Ix}

in the basis θα for Ix, and Zi a basis Γx is

IAn
x ∩ Γx = ker θα(Zi). (1)

How to compute Ī (or Ī)?

1) Choose σ : M̄ → M a cross-section

2) Compute the semi-basic forms in I (or I):

Ix,sb = {θ ∈ Ix | θ(Z) = 0 ∀ Z ∈ Γx}
(the kernel in (1) on the form side)

3) The pullback σ∗θsb ∈ Ī, and generate Ī.

Ī being constant rank is also equivalent to Isb

being a constant rank sub-bundle’.
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Observations:

Theorem. If I is a rank r completely inte-

grable Pfaffian system, and rank IAn ∩ Γ = k,

then Ī is a rank r +k− q completely integrable

Pfaffian system.

If rank IAn ∩ Γ = k but I is not completely

integrable, then Ī is not necessarily a Pfaffian

system. It is possible to give sufficient condi-

tions so that Ī is Pfaffian system.

Theorem. Suppose I is a constant rank Pfaf-

fian system invariant with respect to G and

Zx0 ∈ IAn
x0

∩ Γx0 with Zx0 6= 0. Then etzx0,

z ∈ g is a one-dimensional integral manifold,

where Zx0 = ρ(z)x0.
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Example 1. SL(2, IR ), Chazy. The EDS is

θ1 = dy − yxdx,

θ2 = dyx − yxxdx,

θ3 = dyxx − (2yyxx − 3y2
x)dx.

A set of generators for γ are,

X1 = ∂x,

X2 = 2x∂x − 2y∂y − 4yx∂yx − 6yxxDyxx − 8yxxx∂yxxx

X3 = −x2∂x + 2(xy + 3)∂y + 2(2xyx + y)∂yx

+ 6(yx + xyxx)Dyxx + (12yxx + 8xyxxx)∂yxxx

The determinant det(θi(Xj)) = 0 if and only if

yxx = yyx − 1

9
y3 ± (y2 − 6yx)

3.

For initial conditions (x0, y0, y0
x, y0

xx) satisfying

this constraint , the (unique) solution is the

one-dimensional orbit:
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x = x0 + 2t
(δ0 + 3y0

x + y0
√

δ0)

ty0
x(y

0 +
√

δ0 − 1)
,

y = y0 + 2ty0
x

(
(3t(y0

x)
2 − y0 + ty0

xδ)
√

δ + ty0
xy0δ

)

where δ0 = (y0)2 − 6y0
x.

There is a 2 parameter family of invariant so-

lutions. (The solutions as a graph are easily

found).
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Example 2. Geodesics: The EDS is

I = < dxi − ẋidt, dẋ1 −
2

3
ẋ4(2ẋ1 − 3ẋ3e2x4)dt

dẋ2 −
4

3
ẋ2ẋ3dt, dẋ3 −

4

3
ẋ3ẋ4dt

dẋ4 +
1

3c

(
4e−

4
3x4(ẋ1ẋ3 + 2ẋ2

2) + e
2
3x4ẋ2

3

)
dt >

At the point

t = 0, x = (0,0,0,0), ẋ = (
c0
4

,0, c0,0), (2)

where c0 6= 0 the vector-field X ∈ γ,

X = ∂t +
c0
4

X1 + c0X3 = ∂t +
c0
4

∂x1 + c0∂x3

satisfies θ(X) = 0, ∀ θ ∈ I at (2). The integral

curve of X in M through the point (2)

x1 =
c0
4

t, x2 = 0, x3 = c0t, x4 = 0

and is a geodesic which is the orbit of a one

parameter sub-group corresponding to X.

Homogeneous geodesics always exist for ho-

mogeneous Riemannian manifolds.
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Example 5. The standard EDS for the differ-

ential equation

uxxxxx =
5uxxx(9uxxxxuxx − 8u2

xxx)

9u2
xx

Is invariant with respect to the five dimensional

symmetry group

G = SA(2) = { (A, b) | A ∈ SL(2, IR ), b ∈ IR 2 },
acting on (x, u) and then prolonged. Every so-

lution is the orbit of a one-parameter subgroup,

giving the general solution,

u = c0 + c1x±
√

c3x2 + cxx + c2(4c3c2 − c2x).

Example 6. Every geodesic on a Riemannian

symmetric space is homogeneous.

Remark: It is sometimes possible to generate

integral manifolds with dimension > 1 when

rank IAn
x ∩ Γx > 1.
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Why the quotient?

1) We want to split the problem of finding inte-

gral manifolds for I into finding integral man-

ifolds for Ī, and then build integral manifolds

utilizing G. (This second part is sometimes

called the reconstruction problem).

2) Classify the integral manifolds that are in-

equivalent with respect to G.

3) The inverse problem: Use I to simplify find-

ing integral manifolds to Ī.
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Let’s look at problem 1. In order to implement

the decomposition we need to partition M into

G-invariant subsets on which we can control

the behavior of the quotient. The key is:

IAn
x ∩ Γx

Consider the two G-invariant subsets

K = { x ∈ M | Γx ⊂ IAn
x }

and the transverse subset

M t = { x ∈ M | Γx ∩ IAn
x = 0 }.

What can be said about I and Ī and the recon-

struction problem on these subsets? (which

can be empty)
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We start with K. Assume

1) ι : K → M is an embedded submanifold,

2) the action of G on K is regular: q : K → K̄

Let IK = ι∗I, which under obvious conditions
is a constant rank Pfaffian system (rank de-

pends on the embedding). In this case Ī is a
constant rank Pfaffian system with the same
rank as IK.

Note that at each point in K, all forms in IK

are semi-basic!

An integral manifold s : N → M is G invariant
if gs(N) = N . These can be found as integral
manifolds to IK. Here’s how:

Theorem. Let N̄ ⊂ M be an embedded inte-

gral manifold of ĪK. Then N = q−1(N̄) ⊂ M

is a G-invariant integral manifold of I.
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Proof: N is clearly G-invariant. So need to

show it is an integral manifold.

Let x ∈ N , X ∈ TxN , and x̄ = q(x), X̄ = q∗X.

Note x̄ ∈ N̄ and X̄ ∈ Tx̄N̄ .

Choose and open set Ū ⊂ K̄ containing x̄, and

a cross-section σ : M̄ → M with σ(x̄) = x.

Then

X = σ∗X̄ + V

for some V ∈ Γx. Evaluating on θ ∈ I,
θ(X) = θ(σ∗X̄x̄ + V )

= σ∗θ(X̄) + θ(V )

= 0.

The first term vanishes because, all one-forms

in IK are semi-basic so pullback to ĪK, and

N̄ is an integral manifold. The second term

vanishes because we are at point of K (so that

V ∈ IAn
x ). QED.



Remarks:

1) The reconstruction problem is algebraic.

2) Integral manifolds of IK can always be en-

larged (locally) to be invariant.

3) K is the subset of M on which Γ are Cauchy-

characteristics for IK. This theorem is not so

surprising.
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The transverse subset M t.

1) Integral manifolds in M t don’t have contin-

uous symmetry.

2) For s : N → M , an integral manifold q ◦ s :

N → M̄ t is an integral manifold. (Ie. immer-

sion property still holds).

If M t is non-empty then the restriction

IM t = I|M t

has the same rank as I, but the quotient ĪM t is

not necessarily a Pfaffian system. (It is similar

though.)

The reconstruction problem is:

Theorem. Let N̄ → M̄ t be an embedded in-

tegral manifold of ĪM t. Then I|q−1(N̄) is com-

pletely integrable, and the leaves are integrable

manifolds of I.
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As a consequence of this theorem, the integral

manifolds of I are surjective via. q onto the

integral manifolds of ĪM t.

If the action of G on M t is free, there is a nice

geometric way to think about the reconstruc-

tion problem.

Let s : N̄ ⊂ M̄ t be an integral manifold of ĪM t,

and let ŝ : N̄ → M be any cover of N̄ . The

integral manifold N of I which projects to N̄

is of the form

s(t) = µ(A(t), ŝ(t))

where A : N̄ → G.

In order for s(t) to be an integral manifold of

I, A(t) satisfies a generalized equation of Lie

type. These are integrable by quadratures for

(s.c) solvable Lie groups.
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Example 3. E+(2) symmetry on J2(IR , IR 2)

with the standard contact structure:

I = < dx− ẋdt, dy − ẏdy, dẋ− ẍdt, dẏ − ÿdt,

dẍ ∧ dt, ÿ ∧ dt >

(Curves (x(t), y(t)) are integral manifolds)

The infinitesimal generators are

γ = span { ∂x, ∂y, x∂y−y∂x+ẋ∂ẏ−ẏ∂ẋ+ẍ∂ÿ−ÿ∂ẍ }
and E+(2) action is transverse at

M t = {σ ∈ J2(IR , IR 2) | (ẋ, ẏ) 6= (0,0)}

The quotient is 4 dimensional M̄ t = (t, v, k1, k2).

Let σ : M̄ t → M be the cross-section,

(t, x = 0, y = 0, ẋ = 0, ẏ = v, ẍ = k1, ÿ = k2).

The quotient EDS is (pullback semi-basic forms)

ĪM t = < dv−k2dt, dk2∧dt, (k1dk1+k2dk2)∧dt >
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A typical integral manifold for ĪM t is

s̄(t) = (t, v = v(t), k2 =
dv

dt
, k1 = k(t)), v(t) 6= 0.

An integral manifold in M t which projects to s̄

is of the form ∗

s(t) = µ(A(t), σ ◦ s̄(t))

where A : IR → E+(2) satisfies

da

dt
= −v(t) sin θ(t) = 0,

db

dt
= v(t) cos θ(t),

dθ

dt
= −k1(t)

v(t)
.

An equation of Lie type for α : IR → g,

α(t) =

(
0,−v(t),

k1(t)

v(t)

)
.

∗Finding an integral manifold to I projecting to s̄ is the
prescribed ”curvature” problem
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Example 4. SL(2) on two copies of jet-space.

On the set uxv 6= 0, the action satisfies

IAn ∩ Γ = 0.

Choosing the cross-section on M̄ t = (x, y, w, wx, wy)

x = x, y = x, u = 0, v = 1, ux = w, vy = 1,

uxx = wx − 2w2, vyy = wy/w + 2

The quotient EDS is

ĪM t = < dw − wxdx− wydy, dwxdx + dwydy,(
dwx + (

wxwy

w
− w2)dy)

)
∧ dx >.

Project integral manifold f(x), g(y) of I to

w =
uxvy

(u− v)2
=

f ′(x)g′(y)
(f(x)− g(y))2

integral manifolds of Ī.

If w = eu - Monge Ampere form of Liouville.
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Exercise: Compute the equation of Lie type

for the Chazy equation on the set of transverse

initial condtions.
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Is there a way to do this all at once?

Yes: In fact it might look familiar:

Suppose I is constant rank r Pfaffian and θi

are a basis of sections.

Then µ : M → IR r ⊗ g∗ given by

θi(X)

is the moment map.

K is the zero-set of the moment map.

M t is the full rank set for the moment map.

Reduction is the same as symplectic or contact

reduction - restriction then quotient.
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